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Prefacé

Mathematics is the music of science, and real analysis is the Bach of
mathematics. There are many other foolish things I could say about the
subject of this book, but the foregoing will give the reader an idea of where
my heart lies.

The present book was written to support a first course in real analysis,
normally taken after a year of elementary calculus. Real analysis is, roughly
speaking, the modern setting for Calculus, “real” alluding to the field of
real numbers that underlies it all. At center stage are functions,. defined
and taking values in sets of real numbers or in sets (the plane; 3-space,
etc.) readily derived from the real numbers; a first course in real analysis
traditionally places the emphasis on real-valued functions defined on sets
of real numbers. _ :

The agenda for the course: (1) start with the axioms for the field of real
numbers, (2) build, in one semester and with appropriate rigor, the foun-
dations of calculus (including the “Fundamental Theorem”), and, along
the way, (3) develop those skills and attitudes that enable us to continue
learning mathematics on our own. Three decades of experience with the
exercise have not diminished my astonishment that it can be done.

This paragraph is about prerequisites. The first three sections of the
Appendix summarize the notations and terminology of sets and functions,
and a few principles of elementary logic, that are the language in which
the subject of the book is expressed. Ideally, the student will have met
such matters in a preliminary course (on almost any subject) that provides
some experience in the art of theorem-proving. Nonetheless, proofs are
written out in sufficient detail that the book can also be used for a “first
post-calculus, theorem-proving course”; a couple of days of orientation on
material in the Appendix will be needed, and the going will be slower, at
least at the beginning, but it can be done. Some topics will have to be
sacrificed to accommodate the slower pace; I recommend sacrificing all of
Chapters 10 (Infinite series) and 11 (Beyond the Riemann integral), the
last four sections of Chapter 9, and Theorem 8.5.5 (used only in one of the
sections of Chapter 9 just nominated for omission).

Chapter 11 is an attempt to bring some significant part of the theory of
the Lebesgue integral—a powerful generalization of the integral of elemen-
tary calculus—within reach of an undergraduate course in analysis, while
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avoiding the sea of technical details that usually accompanies it. It will
not be easy to squeeze this chapter into a one-semester course-—perhaps
it should not be tried (I never did in my classes)—but it is good to have
a glimpse of what lies over the horizon. Probably the best use for this
chapter is a self-study project for the student headed for a graduate course
in real analysis; just reading the chapter introduction should be of some
help in navigating the above-mentioned sea of details.

Each section is followed by an exercise set. The division of labor between
text and exercises is straightforward: no proof in the text depends on the
solution of an exercise and, throughout Chapters 1-10, the exercises are
meant to be solvable using concepts and theorems already covered in the
text (the very few exceptions to this rule are clearly signaled). On the
other hand, many of the ‘exercises’ in Chapter 11 are included primarily
for the reader’s information and do require results not covered in the text;
where this is the case, references to other sources are provided.

Some exercises contain extensions and generalizations (for example, the
Riemann-Stieltjes integral and metric space topology) of material in the
text proper; an exceptionally well-prepared class can easily integrate such
topics into the mainstream. Other exercises offer alternative proofs of the-
orems proved in the text. Typically, exercises are for ‘hands-on’ practice,
to strengthen the reader’s grasp of the concepts introduced in that section;
the easiest are good candidates for inclusion on a test, which is how many
of them came into being,.

Experience persuades me that sequential convergence is the most natural
way to introduce limits. This form of the limit concept has much intu-
itive support (decimal expansions, the half-the-distance-to-the-wall story,
etc.), but I acknowledge that the decision is subjective and that I have not
always taught the course that way. The equivalent epsilon-delta and ‘neigh-
borhood’ formulations of limits (superior to sequences in some situations)
are also discussed fully. .

My observation is that the introductory course in analysis, more than
any other in the undergraduate mathematics curriculum, is a course that
makes a difference. The right course at the right time, distilling millennia
of human reflection into a brief semester’s time, it is a wonderful learning
machine whose output is, no less, Mathematicians.

Austin, Texas Sterling Berberian
Summer, 1993
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CHAPTER 1

Axioms for the Field R
“of Real Numbers

§1.1. The field axioms

§1.2. The order axioms

§1.3. Bounded sets, LUB and GLB _

§1.4. The completeness axiom (existence of LUB’s)

What are the real numbers and what can they do for us? The goal of
this chapter is to give a working answer to the first question (the remaining
chapters address the second). The present chapter should be regarded as
a leisurely definition; read no more than is necessary to have a feeling for
the axioms. .

The field of real numbers is a set R of elements a,b,¢,... (called real
numbers), whose properties will be specified by a list of axioms. The ax-
joms come in three groups: the field axioms, the order azioms a,nd the
completeness aziom.

The field axioms, entirely algebraic in character; have to deo, with prop-
crties of addition and multiplication. The order axioms pertain. to relative
‘size’ (greater than, less than). The completeness axiom is an order axiom
%0 important that it merits being split off from the others for emphasis.

1.1. The Field Axioms

1.1.1. Definition. A field is aset F such that, for every pair of elements
a,b of F,there are defined elements a+b and ab of F, called the sum
and product of a and b, subject to the following axioms:

(A1) (a+b)+c=a+ (b+c) (associative law for addition);

(A2) a+b=>b+a (commutative law for addition);

(A3) there is a unique element 0 € F such that a+0=a forall a € F
(existence of a zero element);

(A4) for each a € F there exists a unique element of F denoted —a,
such that a+ (—a) =0 (existence of negatives);

(M;) (ab)ec = a(bc) (associative law for multiplication);

(My) ab=ba (commutative law for multiplication);
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(M3) there is a unique element 1 of F, different from 0, such that
la=a for all a € F (existence of a unity element);

(M) for each nonzero a € F there exists a unique element of F,
denoted a~!, such that aa™! =1 (existence of reciprocals);

(D) a(b+c)=ab+ ac (distributive law).

Properties A;—-A4 pertain exclusively to addition, properties M;--M4 are
their analogues for multiplication, and the distributive law is a joint prop-
erty of addition and multiplication. It is instructive to notice that there
are fields other than R (which has yet to be defined!).

1.1.2. Example. The field of rational numbers is the set Q of fractions,
Q={m/n: m and n integers, n # 0},

with the usual operations

m m  mn +nam
—+ W ’ )
noon nn

m m  mm

n n nn'

The fraction 0/1 serves as zero element, 1/1 as unity element, (—m)/n
as the negative of m/n, and n/m as the reciprocal of m/n (assuming
m and n both nonzero).

1.1.3. Ezxample. The smallest field consists of two elements 0 and 1,
where 1+ 1 = 0 and all other sums and products are defined in the
expected way (for example, 1+0=1,0-1=0).

1.1.4. Ezample. Let F be any field. Write F[t] for the set of all
polynomials p(t) = ap + a1t + ... + a,t™ in an indeterminate ¢, with
coefficients a; in F, and write F(¢) for the set of all ‘fractions’ p(t)/q(t)
with p(t),q(t) € Flt] and ¢(t) not the zero polynomial. With sums and
products defined by the same formulas as in 1.1.2, F(t) is a field; it is
called the field of rational forms over F.

1.1.5. Ezample. Write Q+iQ for the set of all expressions a =r+is
(r,s€ Q). If a=r+is and o = r' +is are two such expressions,
o =c¢ meansthat 7 =7 and s = s'. Sums and products are defined
by the formulas

a+a =(r+r)+i(s+5),
ad’ = (rr’ — ss') +i(rs’ + sr').

It is straightforward to verify that Q + iQ is a field (called the field of
Gaussian rationals), with 0+ 10 serving as zero element, —r +i(—s) as
the negative of r +is, 1410 as unity element, and

LY
?
r? + 52 2 + 52
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as the reciprocal of r+ is. (assuming at least one of r and s nonzero).
Abbreviating r +i0 as r, we can regard Q as a subset of Q + iQ;
abbreviating 0+ il as i, we have 2

Here are some of the most frequently used properties of a field:

1.1.6. Theorem. Let F be a field, a and b elements of F.
(1) a+a=a & a=0.

(2) a0=10 forall a.

(3) —(-a)=a forall a.

(4) a(—b) = —(ab) = (—a)b forall a and 5.

(5) (—e)? =a? forall a.

(6) ab=0 = a=0 or b="0; in other words,

(6') a#0 & b0 = ab#0.

(7) a#0 & b#0 = (ab)"'=a"1b7t.

(8) (-l)a=—a forall a.

(9) —(a+b)=(—a)+(~b) forall a and b.

(10) Defining a — b tobe a+(— b) we have —(a—b)—b—a

Proof. (1) If a+a=a,add —a to both sides:

= -1,

(a+a)+(—a)=a+ (—a)
a+(a+(—a)) =a+(—a) [axiom A4]
a+0=0 [axiom Ag]
a=0. [axiom Ag]

Thus a+a=a = a =0, and the converse is immediate from axiom Aj.

(2) By axiom (D), a0 =a(0+0) =a0+a0,s0o a0 =0 by (1).

(3) (—a)+a=a+(—a)=0,80 a=—(—a) by the uniqueness part of
A,

(4) 0= a0 = a[b+ (—b)] = ab+ a(-b), so a(—b) = —(ab) by Ay; it
follows that (—a)b = b(—a) = —(ba) = —(abd).

(5) Citing (4) twice, we have (—a)(—a) = —[a(—a)] = ~[-(aa)] = aa,
in other words (—a)? = a®. {Shorthand: a2 = ae, a® = a?a, a* = a’a,
ete.}

(6), (6"), (7)If a and b are nonzero, then (ab)(a=1b671) = (aa~1)(bb~1)
=1:1=1 # 0; it follows from (2) that ab must be nonzero, and
(ab)~! =a~1b~! follows from uniqueness in axiom M,.

(8) (~l)a=—(la) = -a.

(9) —(a+b)=(-1)(a+b)=(-1)a+ (-1)b= (—a) + (-b).

(10) 0—(0 —b)=—la+(-b)] = (—a) +(=(=b)) =(-a) +b=b+(—a) =
b—a. C

1.1.7. Notations. In the rational field Q, m/n = m'/n’ means that
mn' = nm'; abbreviating m/1 as m, the set Z of integers can be
regarded as a subset of Q. For a nonzero integer n,

n(l/n) = (n/1)(1/n)=n/n=1/1=1,
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thus 1/n = n~!. The fractional notation is useful in an arbitrary field
F: one writes a/b for ab~!, where a,b € F and b # 0. (This is the
multiplicative analogue of subtraction.)

Exercises

1. Let F and G be fields. A monomorphism of F into G is an
injective mapping ¢ : F — G that preserves sums and products: (a+b)
= p(a)+p(b) and (adb) = p(a)p(b) forall a,bin F. If, in addition, ¢
is surjective (therefore bijective), it is called an isomorphism of F onto G
(and when F =G it is called an automorphism of F). Fields F and G
are said to be isomorphic, written F 22 G, if there exists an isomorphism
of F onto G.

(i) If ¢ :F — G is an isomorphism of fields, then the inverse mapping

¢~!:G—F is also an isomorphism. Thus, F*G = G =F.

(n) If ¢:F — G is a monomorphism of fields, then (1) =1. {Hmt
Apply ¢ to the equation 12 =1.}

(iii) The field Q of rational numbers is not isomorphic to the field Q(t)
of rational forms over Q. {Hint: Using (ii), argue that if ¢ : Q — Q(¢t) is
a monomorphism, then ¢(r) =r forall re Q.}

2. In the field F =Q+iQ of Gaussian rationals (1.1.5), if a =r +1is
define @ = r — is (called the conjugate of a). Show that the mapping
¢ :F > F defined by p(a)=a is an automorphism of F (in the sense of
Exercise 1) and that, for every nonzero element a, a~! = (r? + s?)"!@.

1.2. The Order Axioms

What sets R apart from other fields are its order properties; in technical
terms, R is a ‘complete ordered field’. We look first at the concept of
ordered field’ (the question of completeness is taken up in §1. 4).

1.2.1. Definition. An ordered fleld is a field F having a subset P of
nonzero elements, called positive, such that

(01) a,beP = a+beP,

(O2) a,beP = abeP,

(O3) a€F,a#0 = eithera€P or —a € P, but not both. .
.. In words, the sum and product of positive elements are positive; for each
nonzero element a, exactly one of @ and —a is positive. :

For elements a,b of F, we write a <b (or b>a)if b—a€P.

1.2.2. Remarks. With notations as in 1.2.1,

beP & b>0,
—-a€P & a<0.
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Elements a with a < 0 - are called negative. Properties O; and O, may
be written

a>0&b>0 =2 a+b>0 & ab> 0.

Property Og yields the following: If a, b€ F,and a #b (m other words,
a—b#0)theneither a >b or a <b but not both. Thus, for any pair of
elements a,b of F, exactly one of the following three statements is true:

a<b a=0b,a>b

This form of O3 is called the law of trichotomy.

The familiar properties of inequalities hold in any ordered field:
1.2.3. Theorem. In an ordered ﬁeld

1)

3)

a < a is impossible;

(
(2)if a<b and b<c then a<c;
(

a<b & a+c<b+c;

(4) a<b & —a> —b;

(5)
(6)
(7
(8)
(9)
(10)
(11)
(12)

a<0&b<0 = ab>0;
a<0&b>0 = ab<0;
a<b&c>0 = ca<ch;
a<b&c<0 = ca>ch;
a#0 = a%?>0;

1>0;

a+1>a;

a>0 = a~1>0.

Proof. (1) In the notations of 1.2.1, a—a =0 ¢ P, therefore ¢ < a
cannot hold.
(2) c—a = (c—b)+(b—a) is the sum of two positive elements therefore

a<c.
(3)
(4)
(5)
(6)
(")
(8)
(9)
(10)
(11)
(12)

(b+c)—(a+c)=b—a.

—a—(-b)y=b-a.

ab = (—a)(~b) is the product of two positive elements.

0 — ab = (—a)b is the product of positives, therefore ab< 0.
ch—ca=c(b—a).

ca cb=(—c)(b—a).

a? = aa = (—a)(—a) is the product of two positives.
1=12>0 by (9).

(a+1)—a=1>0.

If a>0 then aa™l=1>0 precludes a~! <0 by (6). ¢

1.2.4. Definition. In any ordered field, one defines 2=1+1, 3 =2+1,
4=3+1, etc.
Wehave 0 <1<2<3<4<... by 123
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1.2.5. Definition. In an ordered field, we write a < b (also b > a) if
either a < b or a =b. An element a such that a > 0 is said to be
nonnegative.

The expected properties of this notation are easily verified. {For exam-
ple, a<b&b<ec = a<c; a<b&c>0 = ca<ch,etc}

1.2.6. Ezample. The rational field Q is ordered, with
P={m/n: m and n positive integers }

as the set of positive elements. One sees from 1.2.3 and 1.2.4 that Q is
the ‘smallest’ ordered field.

1.2.7. Example. The field of Gaussian rationals (1.1.5) is not orderable,
because i2 = —1. {In an ordered field, nonzero squares are positive and
—1 is negative, so —1 can't be a square.}

Near the surface, and very useful:

1.2.8. Theorem. Let F be an ordered field, a and b monnegative
elements of F, n any positive integer.

(i) a<b & a™<b";

(i) a=b & o™ =b";

(i) a>b & a™>b".

Proof. (i), =: By assumption, 0 < a < b; we have to prove that
a™ < b™ for every positive integer n. The proof is by induction on =,
the case n =1 being the given inequality. Assuming a* < b*, consider
the identity

prtl _ gkt = b(bk _ ak) + (b _ a)ak;

the right side is positive because b > 0, b* —a* > 0, b—a > 0 and
aF >0, thus aFt! < p*+1,

The implication “=" of (iii) follows on interchanging the roles of ¢ and
b, and the implication “=>" of (ii) is obvious. The implication “=" is thus
valid for each of the three statements.

The implications “<=” come free of charge by trichotomy! For example,
suppose a™ < b™; the assertion is that a < b. The alternatives, a = b
or a > b, are unacceptable since they would imply either a™ = " or
a™ > b" (both of which are false). ¢

Exercises

1. In an ordered field, 0 <a<b = b ! <a7!l. {Hint: a1 -b"1=
a"l(b—a)b7l.}

2. In an ordered field, a2 +b2 =0 = a =b=0. Similarly for a sum
of n squares (n =3,4,5,...). {Hint: a% +b2 > a2.}
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3. In an ordered field, if a,b,c >0 and a <b+ ¢, then

a b c
< + )
l1+4a 7 1456 1+4+c¢

4. Write out the proof of 1.2.8 in full.

5. Let F be an ordered field, a and b any elements of F (not
necessarily positive), and n an odd positive integer. Prove:

(i) a<db & a™ < b,

(ii) a=b & o™ =b";

(ili) a>b & a™ > b".

{Hint: The heart of the matter is to prove “=" of (i). Consider first the
case that a <0 (and b<0 or b=0 or b>0).}

6. Let Q(t) be the field of rational forms over @ (1.1.4) and let S
be the set of all nonzero elements r(t) = p(t)/q(t) of Q(t) such that the
leading coefficients of the polynomials p and ¢ have the same sign, that
is, such that p(t) = ap + a1t + ... + amt™, ¢(t) = bg + b1t + ... + byt™

“with amb, > 0. {Equivalently, r can be written in the form r = p/q,
where p and ¢ are polynomials with integral coefficients and the leading
coefficients are both positive. }

(i) Q(t) is an ordered field, with S as set of positive elements.

(ii) For the ordering defined in (i), nl <t for every positive integer n.

7. In an ordered field, if a <b and if z = (a+b)/2= (a+b)27! then
a <z <b. (Soto speak, the average of two elements lies between them.)

8. In an ordered field, describe the set of elements z such that
2z + 1)(3z — 5) > 0.

9. In an ordered field, if a <b then a< }a+ -§—b < b; more generally,
a<ra+(l-r)b<b

whenever a <b and 0<r<1.

10. If a,b are elements of an ordered field, such that a < b+ ¢ for
every ¢> 0, then a <b. {Hint: Assume to the contrary and cite Exercise

7
11. In an ordered field, ab < [3(a + b)]*> for all a,b.

12. In an ordered field, a® —ab+b% > 0 for all a,b. {Hint: Divide
a+b into a3+ b3, then consider separately the cases ab<0, ab>0.}

13. (Bernoulli’s inequality) In an ordered field, let z be any element
such that z > —1. Prove that

(I+z)">1+nzx
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for every positive integer n. If £ > —1 and z # 0, then (14 2z)" >
1+ nz for all n> 2. {Hint: Induction.}

14. In an ordered field, (1+z)? > 1+ 2nz for every element z and
every positive integer n. {Hint: Exercise 13.}

15. Prove that in an ordered field,

(i) 20 = (1+z)* > 1+nz+3n(n—1)z? for every positive integer
({i) 0<z<1 = (1-2)"<1-nz+in(n—1)z? for every positive
integer n.

(i) If a; 20 for i=1,...,n then

.ﬁ(1+ai) 21+ia,~.

i=1 i=1
- 16. In an ox_‘dered field, if £ >0 and 7 is an integer > 2, then

1 1 .
1+z)">1+nz+ anwz > anwz.

17. If n is an integer that is not the square of an integer, then n is
not the square of a rational number. {An easy special case: n a prime
number. Still easier: the case that n = 2.}

18. In an ordered field, let P be the set of elements > 0. Prove that
P has neither a smallest element nor a largest element.

19. In an ordered field, n < 2" for every positive integer n. {Hint:
Induction.}

20. In an ordered field,

for every integer n > 2 (Exercise 13); infer (by factoring the left side) that

n—1 n
(1+L) < (1+l) .
n-1 n
21. In an ordered field, suppose a; < a2 < a3<.... Let b, = (a1 +
._._.+a,,)/n be the ‘average’ of aj,...,a,. Provethat b; <bs <bg < ....
1.3. Bounded Sets, LUB and GLB

1.3.1. Definition. Let F be an ordered field. A nonempty subset A of
F is said to be
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(i) bounded above if there exists an element K € F such that < K
for all z € A (such an element K is called an upper bound for A);
(ii) bounded below if there exists an element k € F such that k <z
for all x € A (such an element k is called a lower bound for A);
- (iii) bounded if it is both bounded above and bounded below;
(iv) unbounded if it is not bounded. .

1.3.2. Eramples. Let F be an ordered field, ¢ and b elements of
F with a < b. Each of the following subsets of F is bounded, with a
serving as a lower bqund and b as an upper bound:

[a,b]={:c€F:_ aSwa}-
(a,b)={z€F: a<z<b}
[@,0)={z€F: a<z<b}
(a, b]—{:veF a<w<b}

Such subsets of F are called intervals, with endpoints a and b; more pre-
cisely, [a,b] is called a closed interval (because it contains the endpoints)
and (a,b) is called an open interval (because it doesn’t); the intervals
[a,b) and (a,b] are called ‘semiclosed’ (or ‘semi-open’). {Caution: If
F = Q then the term ‘interval’ loses some of its intuitive meaning (an in-
terval in Q is considerably more ventilated—all those missing irrationals!—
than the familiar intervals on the real line); from the next section onward,
the term is used only in the context of the field F = R of real numbers
(cf. §4.1).} :

Note that (a,a) = [a,a) = (a,a] = @ because a<a 1s1mposs1ble On
the other hand, [a,a] = {a} (the set whose only element is a).

1.3.3. Ezample. An ordered field is neither bounded above nor bounded
below (for example, any proposed upper bound K is topped by K +1).

1.3.4. Ezample. In an ordered field F, the interval [0,1] has a largest
element but [0,1) does not; for, if a is any element of [0,1) then z =
(a+1)/2 is a larger element of [0,1) (§1.2, Exercise 7).

Note that 1 is an upper bound for [0,1), but nothing smaller will do:
if a <1 then [0,1) contains an element = larger than a (if a <0 let
z=1/2;if 0<a<1 let z=(a+1)/2). This prompts the following
definition:

1.3.5. Definition. Let F be an ordered field, A a nonempty subset
of F. We say that A has a least upper bound in F if there ex1sts an
element M € F such that

(a) M is an upper bound for A, thatis, = < M forall z€ A;

(b) nothing smaller than M is an upper bound for A ; that is,

M <M = 3JzcA 5 z> M,
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or, contrapositively,
M’ an upper bound for A = M < M’.

Since anything larger than an upper bound is also an upper bound,
conditions (a) and (b) can be combined into a single condition:

M’ is an upper bound for A & M > M.

If such a number M exists, it is obviously unique (it is the smallest
element of the set of upper bounds for A); it is called the least upper
bound (or supremum) of A, written

M =LUBA, or M =supA.

1.3.6. Remarks. As observed in 1.3.4, in any ordered field sup[0,1) =1;
note that the supremum of a set need not belong to the set. A set that is
bounded above need not have a least upper bound (Exercise 3).

There is an analogous concept for sets that are bounded below:

1.3.7. Definition. Let A be a nonempty subset of an ordered field F .
We say that A has a greatest lower bound in F if there exists an element
m € F such that

(a) m is a lower bound for A,

(b) if m’ is a lower bound for A then m >m’.

Such an element m is unique; it is called the greatest lower bound (or
infimum) of A, written

m=GLBA, or m=infA.

There is a natural ‘duality’ between sups and infs:

1.3.8. Theorem. Let F be an ordered field, A a nonempty subset of
F; write
—A={-z: z€A}

for the set of negatives of the elements of A. Let ¢ € F. Then:

(i) c is an upper bound for A & —c is a lower bound for —A;
(ii) ¢ is a lower bound for A & —c is an upper bound for —A;
(ii) If A has a least upper bound, then —A has a greatest lower bound

and inf(—A) = —(supA).

(iv) If A has a greatest lower bound, then —A has a least upper bound

and sup(—A) = —(inf A).

Proof. (i), (ii) The mapping z +— —2z isabijection F — F that reverses
order:
a<b & —a>-b.
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The condition
z<c forall z€ A

is therefore equivalent to the condition
—c<y forall ye —A.

This proves (i), and the proof of (ii) is similar.

(iii) Suppose A has a least upper bound «; we know from (i) that
—a is a lower bound for —A and we have to show that it is larger than
all others. Let k& be any lower bound for —A. For all a € A we have
k € —a, so a < —k; this shows that —k is an upper bound for A,
therefore a < —k,so —a >k as we wished to show.

The proof of (iv) is similar to that of (iii). ¢

Exercises

1. Let F be an ordered field, a € F. The subset
| {reF: z<a}
is bounded above, but not below; the subset
{= €F: z> a}

is bounded below, but not above. Each of the intervals of 1.3.2 is the
intersection of two unbounded sets; for example, .

[@g.b)={z: z2a}n{z: z<b}.

2. In the field Q of rational numbers, the subset P = {1,2,3,...} is
not bounded above.

{Hint: If K =m/n with m and n positive integers, then m+1 > K ;
every candidate K for upper bound is topped by a positive integer.}

3. In the ordered field Q(¢) of §1.2, Exercise 6, the subset P =
{1,2,3,...} is bounded; it has no least upper bound. '

{Hint: If r =p/q € Q(t) is any upper bound for P, then 2n <r for
all n€P,so r/2 is an upper bound for P smaller than r.}

4. If, in an ordered field, m = inf A and m' > m, show that there
exists an element a € A such that m < a <m’ (cf. 1.3.5).

1.4. The Completeness Axiom (Existence of LUB’s)

The property that distinguishes the field of real numbers from all other
ordered fields is an assumption about the existence of least upper bounds:
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1.4.1. Definition. An ordered field is said to be complete if it satisfies
the following condition: Every nonempty subset that is bounded above has
a least upper bound.

The crucial questions: Do such fields exist? If so, how many? The point
of departure of the present course is the assumption that the answers are
“yes” and “one”.! More precisely, we assume that there exists a complete
ordered field R and that it is unique in the sense that every complete
ordered field is isomorphic to R (cf. §1.1, Exercise 1). For convenient
reference:

1.4.2. Definition. R is a complete ordered field; its elements are called
real numbers.

In other words, R is a set with two operations (addition and multipli-
cation) satisfying the field azioms (1.1.1), the order azioms (1.2.1) and the
completeness aziom (1.4.1).

1.4.3. Examples. The ordered field Q(t) is not complete (§1.3, Exercise
3). The rational field Q isn’t complete either, but it takes a little more
work to prove it (2.2.4).

1.4.4. Remarks. With the field R of real numbers defined axiomatically,
we shouldn’t take the integers and rational numbers for granted. We're
going to anyway, to save time; thus the statements that follow are definitely
not self-evident.

The set of positive integers is the set

P=1{1,23,...},

where 2=1+1, 3 =241, etc. {The “etc.” and the three dots “...”
hide all the difficulties! A formal definition of P is given in Exercise 6; for
the moment, think of P informally as the set of ‘finite sums’ whose terms
are all equal to 1.} Every positive integer is > 0, and 1 is the smallest.
The set P is closed under addition and multiplication.

The set of natural numbers is the set

N={0}uP={0,1,2,3,...};
N is closed under addition and multiplication.

11t may seem surprising that something so fundamental as a consensus on
the treatment of the real numbers is to some extent a matter of faith and/or
hope—hope that the discovery of a hidden inconsistency does not bring the whole
structure tumbling down. Given enough assumptions about sets and rules for
manipulating them, generations of mathematicians have been able to persuade
themselves that it is poss1ble to construct a oomplete ordered field. (The hard
part is existence; once this is settled, the proof of uniqueness is relatively straight-
forward.) The pioneer who did it first was the German. mathematician Richard
Dedekind (1831-1916). There have always been dissenters of genius to the gen-
eral consensus, beginning with Dedekind’s fellow countryman Leopold Kronecker
(1823-1891).
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The set of integers is the set Z of all differences of positive integers,
Z={m-n: mneP};

Z is closed under the operations z+y, zy and —z. The set of positive
elements of Z is precisely the set P, therefore Z = {0}UPU(—P), where
-P={-n: neP}.

The set of rational numbers is the set

Q={m/n: mneZ, n#0},

where m/n = mn~!; Q contains sums, products, negatives and recip-
rocals (of its nonzero elements), thus Q is itself a field (a ‘subfield’ of
R).

We have the'inclusions PCNCZ Cc Q CR.

Besides the overt axioms for R (field, order, completeness) we propose
to accept a somewhat vague hidden one, namely, that P is ‘equal’ to the
set of ‘ordinary positive integers’ with which we have been friends for a
long time. There is essentially one path to righteousness: we should (1) set
down axioms for the set of positive integers (for example, Peano’s azioms),?
(2) show that there is essentially only one such set, (3) give an unambiguous
definition of the set P defined informally above, and (4) verify that P
satisfies the axioms in question. As long as we are assuming R to be
given axiomatically, an acceptable shortcut is to take only steps (3) and
(4) of the path; this is carried out in the Appendix (§A.4).

For a first reading, a time-saving, if not totally virtuous, alternative (I
recommend it!) is to provisionally accept the informal description of P,
glance at the ‘plausibility arguments’ in Exercises 3-5 for the key properties
of P (well-ordering property, principle of mathematical induction), and
move on to Chapter 2.3

Exercises

1. Let A and B be nonempty subsets of R that are bounded above,

and write
A+B={a+b: ac A, beB}.

Prove that A+ B is bounded above and that sup(A+B) =supA+supB.

2Cf. E. Landau, Foundations of analysis [Chelsea, New York, 1951].

3In the next chapter (2.2.4) we use the fact from elementary number theory
that 2 is not the square of a rational number (cf. §1.2, Exercise 17) to prove
the existence of irrational numbers (real numbers that are not rational), but the
more spectacular proof sketched in §2.6, Exercise 1 requires no number theory
at all.
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{Hint: Let a =supA, B =supB and observe that a+ 3 is an upper
bound for A + B. It suffices to show that if ¢ is any upper bound for
A+B then a+8<c.If ac A then a+b<c forall b€B,so c—a
is an upper bound for B; it follows that 8 <c—a, thus a <ec¢— g for
all a€ A}

2, Let A and B be nonempty sets of positive real numbers that are
bounded above, and write

AB={ab: a€ A, beB}.

Prove that AB is bounded above and that sup(AB) = (supA)(supB).

{Hint: Imitate the proof of Exercise 1, using division instead of subtraction. }

3. Argue (informally!) that the set of positive elements of Z is P.

{Hint: Suppose m,n€P and m—n>0,say m—n=z€R, 2>0.
Think of each of m,n as a sum of 1’s. The sum for m must have more
terms than the sum for n (otherwise, cancellation of the 1’s on the left
side of m =n+ 2z would exhibit 0 as a sum of positives); thus m —n is
a sum of 1°’s, hence is an element of P.}

4. Argue (informally!) that every nonempty subset S of P has a
smallest element (well-ordering property of P).

{Hint: Assume to the contrary that S contains a decreasing sequence
of elements n; > ng > nzg > .... Since ny —ng > 0 and n; — ny
is an integer, n; —ng > 1 (cf. Exercise 3). Similarly ng —n3 > 1, so
ny —ng > 2. ‘Continuing’, ny —ng43 = k, 80 k< n; forall kP,
contrary to §1.3, Exercise 2.}

5. (Principle of mathematical induction) If T is a subset of P such
that 1€ T andsuchthat n€T = n+1€T, then T=P.

{Hint: If T # P, the smallest element of S =P — T is an embarrass-
ment.}

6. Here is a formal definition of the set P described informally in 1.4.4.
There exist sets S C R such that (a) 1€S,and (b) z€S = z+1€8§
(for example, R has these properties). Define P to be the intersection of
all such subsets S of R. For n € P write n’ =n+1. Prove: (i) 1€P;
(i) neP=> neP; (Gi)if 1€ SCP and n€S = n’ €8, then
S="P; (iv)if mne€P and m’' =n' then m =n; (v) forall neP,
1#n'. {Hint for (v): Using (iii), show that n >0 forall neP.}

In other words, the set P, with distinguished element 1 and distin-
guished mapping n — n’, satisfies Peano’s azioms for the positive inte-
gers.



CHAPTER 2

First Properties of R

§2.1. Dual of the completeness axiom (existence of GLB’s)
§2.2. Archimedean property

§2.3. Bracket function

§2.4. Density of the rationals

§2.5. Monotone sequences

§2.6. Theorem on nested intervals

§2.7. Dedekind cut property

§2.8. Square roots

§2.9. Absolute value

Chapter 1 lays the foundation; what are we building? Our most am-
bitious objective is to give a logically rigorous presentation of Calculus,
learning as much as possible along the way. Everything has to come from
the axioms for the field of real numbers R (that in fact it does seems a
miracle!). The properties of R developed in this chapter lie very close
to the axioms; they require some ingenuity but no essential new concepts
(such as limits).

2.1. Dual of the Completeness Axiom (Existence of GLB’s)

The existence of least upper bounds is an assumption (completeness ax-
iom); the existence of greatest lower bounds then comes free of charge:

2.1.1. Theorem. If A is a.nonempty subset of R that is bounded below,
then A has a greatest lower bound, namely, inf A = —sup(—A).

Proof. The st —A = {—a: a € A} is nonempty and bounded above
(1.3.8, (ii)), so it has a least upper bound by the completeness axiom.
By (iii) of 1.3.8, —(—A) = A has a greatest lower bound and infA =
—sup(—A). ¢

A valuable application:
2.1.2. Corollary. inf {1/n: n€P}=0.
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Proof. Let A= {1/n: n € P}. By (12) of 1.2.3, A is bounded
below by 0,so A has a greatest lower bound a (2.1.1) and 0 <ea. On
the other hand, a < 1/2n for all positive integers n, so 2a is also a
lower bound for A; it follows that 2a < a, therefore a < 0 and finally
a=0.9

Exercises

1. If A and B are nonempty subsets of R such that a < b for all
a€ A and be B, then A is bounded above, B is bounded below, and
supA <infB.

2. If A is a nonempty subset of R that is bounded above, then
sup A = —inf(—A).
3. If A CR isnonempty and bounded above, and if B is the set of

all upper bounds for A, show that sup A = inf B, then state and prove
the ‘dual’ result.

4. If @ is a positive real number then inf{a/n: n€ P} =0. {Hint:
Modify the proof of 2.1.2.}

5. Find inf{(-1)"+1/n : neP}.

6. Let S be any set of intervals I of R (defined as in 1.3.2) and let
J =[S be their intersection, that is,

J=()1:1eS}={z€R: z€l forall IeS}.
Prove that there exist real numbers a and B, with o < 3, such that
(a,8) c I C o, Bl;

in particular, J is an interval (possibly empty, possibly degenerate).

{Hint: Assuming J nonempty, let = € J. Let A be the set of all left
endpoints of intervals 1€ S, B the set of right endpoiats. If I€ S has
left endpoint a and right endpoint b, then (a,b) C I C [a,b]; infer that
a <z <b,s0 z isan upper bound for A and a lower bound for B. The
numbers a =supA, #=infB meet the requirements.}

2.2, Archimedean Property

In every ordered field, 1 <2<3< ..., therefore 1>1/2>1/3> ...
(see 1.2.4 and §1.2, Exercise 1); for every y > 0, we thus have y >
y/2 > y/3 > .... We are habituated to expecting the elements y/n
(n=1,2,3,...) to be ‘arbitrarily small’ in the sense that, for every z >0,
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there is an n for which y/n is smaller than z. In actuality, there
exist ordered fields in which it can happen that y/n > 2 > 0 for all n,
that is, the elements y/n (n =1,2,3,...) are ‘buffered away from 0’ by
the element z (cf. §1.2, Exercise 6). The property at the heart of such
considerations is the following:

2.2.1. Definition. An ordered field is said to be Archimedean if, for
each pair of elements z,y with z > 0, there exists a positive integer
n such that nz > y. (Think of z as a ‘unit of measurement’. Each
element y can be surpassed by a sufficiently large multiple of the unit of
measurement. )

2.2.2. Theorem. The field R of real numbers is Archimedean.

Proof. Let x and y be real numbers, with z > 0. If y <0 then
lz > y. Assuming y > 0, we seek a positive integer n such that 1/n <
z/y; the alternative is that 0 < z/y < 1/n for every positive integer n,
and this is contrary to inf{l/n: neP} =0 (2.1.2). ¢

2.2.3. Ezample. The field Q(¢) of rational forms over Q, ordered as in
§1.2, Exercise 6, is not Archimedean.

The message of 2.2.2 is that, in an ordered field, completeness implies
the Archimedean property. The converse is false:

2.2.4. Theorem. The field Q of rational numbers is Archimedean but
not complete.

Proof. The Archimedean property for QQ is an immediate consequence
of 2.2.2 (see also Exercise 1). We have to exhibit a nonempty subset A of
Q that is bounded above but has no least upper bound in Q; the core of
the proof is the fact that 2 is not the square of a rational number (cf. §1.2,
Exercise 17).

Let A={reQ: r>0and r? < 2}; for example 1 € A,s0 A'is
nonempty. If r € Q and r > 2 then 2 >4 > 2,30 r ¢ A; stated
contrapositively, r <2 forall r€ A, thus A is bounded above.

We now show that A has no largest element. The strategy is simple:
given any element r of A, we shall produce a larger element of A. For
this, it suffices to find a positive integer n such that r+1/n € A, that is,
(r + 1/n)? < 2; by elementary algebra, this is equivalent to the condition

(%) n(2-r?)>2r+1/n.

Since 2 —r? > 0, the Archimedean property yields a positive integer n
such that n(2—1r%) > 2r+1;but 2r+1 > 2r+1/n, so the condition (*)
is verified. '

There are positive elements r of Q such that r2 > 2 (for example
r = 2); we show next that there i3 no smallest such element r. Given any
r€Q with » >0 and r? > 2, we shall produce a positive element of Q
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that is smaller than r but whose square is also larger than 2. It suffices
to find a positive integer n such that r—1/n >0 and (r -—1/n)? > 2,
equivalently,

(%) nr>1 and n(r’ —2) > 2r—1/n.

Since >0 and r? —2 > 0, the Archimedean property yields a positive
integer n' such that both

nr>1 and n(r’-2) >2r

(choose an n for each inequality, then take the larger of the two); but
2r > 2r — 1/n, so the condition (**) is verified.

Finally, we assert that A has no least upper bound in . Assume to
the contrary that A has a least upper bound ¢ in Q. We know that .
t? # 2 (2 is not the square of a rational number) and ¢ > 0 (because
1 € A). Let us show that each of the possibilities #> < 2 and t2 > 2 leads
to a contradiction.

If t2 <2 then t€ A;but then ¢ would be the largest element of A,
contrary to our earlier observation that no such element exists.

If t2 > 2 then, as observed above, there exists a rational number s
such that 0 < s <t and s > 2. Since ¢ is supposedly the least upper
bound of A and s is smaller than t, s can’t be an upper bound for
A . This means that there exists an element r of A with s < r; but then
82 <r? <2, contrary to s2>2.¢

Exercises

1. Give an elementary proof of the Archimedean property for Q@ (that
is, a proof that doesn’t depend on the existence of R).

{Hint: The essential case is z,y € Q with £ >0 and y > 0. Write

= afb and y = ¢/d with a,b,c,d positive integers. The inequality
nz >y is equivalent to nad > bc. Try n=1+be.}

2. Show that for every real number y > 0,

©y/n=2.

n=1

{Hint: An element z belonging to the left side would have to satisfy the
inequalities 0 < z < y/n for every positive integer n.}

3. Show that the subset P = {1,2,3,...} of R is not bounded above.
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2.3. Bracket Function

A useful application of the Archimedean property is that every real num-
ber can be sandwiched between a pair of successive integers:.

2.3.1. Theorem. For each real number z, there ezxists a unique integer
n such that n<xz<n+1.

Proof. Uniqueness: The claim is that a real number z can’t belong
to the interval [n,n + 1) for two distinct values of n. If m and n are
distinct integers, say m < n, then n — m is an integer and is > 0,
therefore n —m > 1 (cf. 1.4.4); thus m +1 < n and it follows that the
intervals [m,m + 1) and [n,n + 1) can have no element z in common.

Eristence: Let z € R. By the Archimedean property, there exists a
positive integer j such that j1 > —z, thatis, j+ =z > 0. It will suffice to
find an integer k such that j+z € [k,k+ 1), for this would imply that
z € [k — 4,k — j + 1); changing notation, we can suppose that z > 0.

Let S={ke€P: kl > z}. By the Archimedean property S is
nonempty, so S has a smallest element m by the ‘well-ordering principle’
(every nonempty set of positive integers has a smallest element). Since
meS, we have m > z.

If m=1 then 0 <z <1 and the assertion is proved with n =0.

If m>1 then m—1 is a positive integer smaller than m, so it can’t
belong to S; this means that m —1 < z, thus z € [m — 1,m) and
n=m—1 fils the bill. {

2.3.2. Definition. With notations as in the theorem, the integer n is
denoted [z] and the function R — Z defined by z +— [z] is called the
bracket function (or the greatest integer function, since [z] is the largest
integer that is < z).

Exercises

1. Calculate [2.3], [-2.3] and [-2].

2. Sketch the graph of each of the following functions f:R — R.

(i) f(z) = [z]. {Hint: ‘Step-function’.}

(il) f(z)=[22].

(ii) f(z) =[-z+3].

3. If £ =.234 then [100z +.5]/100 = .23; if z =.235 then [100z +
.5]/100 = .24 . Infer a general principle about ‘rounding off’.
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2.4. Density of the Rationals

Between any two reals, there’s a rational:

2.4.1. Theorem. If z and y are real numbers such that = < y, then
there exists a rational number r such that z <r<y.

Proof. Since y — z > 0, by the Archimedean property there exists a
positive integer n such that n(y —z) > 1, that is, 1/n < y — 2. Think
of 1/n as a ‘unit of measurement’, small enough for the task at hand; we
propose to find a multiple of 1/n that lands between z and y.

By 2.3.1 (applied to the real number nz ), there is an integer m such
that m <nz <m+1;then m/n <z and

z<(m+1l)/n=m/n+l/n<z+l/n<z+(y-z)=y,
80 r = (m+1)/n meets the requirements of the theorem. {

The conclusion of the theorem is expressed by saying that the rational
field Q is everywhere dense in R. So to speak, there are ‘lots’ of rational
numbers. A sobering thought: Are there any real numbers that aren’t
rational? The answer is yes and the proof is implicit in Theorem 2.2.4: the
set A described there is nonempty and bounded above, so it has a least
upper bound u# in R;if u were rational, then it would be a least upper
bound for A in the ordered field Q, contrary to what was shown in 2.2.4.

2.4.2. Definition. A real number that is not rational is called an ir-
rational number; thus, the irrational numbers are the elements of the
difference set

R-Q={z€R: z¢Q}.

Exercises

1. If z is any real number, prove that
z=sup{reQ: r<z}=inf{s€Q: z<s}.

2. (i) True or false (explain): If x is rational and y is irrational, then
z +y is irrational. {Hint: y=(z+y)—z.}

(ii) True or false (explain): If  and y are both irrational, then so is
r+y.

(ii) True or false (explain): If z is irrational and 3y is a nonzero
rational, then zy is irrational.

3. Show that if £ and y are real numbers with z < y, then there
exists an irrational number ¢ such that ¢ <t <y.

{Hint: If z is irrational, then so are —z and z/n (n =1,2,3,...).
Adapt the proof of 2.4.1.}
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4. (i) Give an example of a set of rational numbers whose supremum is
irrational.

(if) Give an example of a set of irrational numbers whose supremum is
rational.

2.5. Monotone Sequences

The concept of sequence is an old friend from elementary calculus (the
sequence of partial sums of an infinite series, the sequence of derivatives
of a function, etc.). The familiar examples are sequences of numbers and
sequences of functions, but, in principle, the elements that make up a
sequence can be drawn from any nonempty set:

2.5.1. Definition. If X is a set and if, for each positive integer n, an
element =, of X is given, we say that we have a sequence of elements
of X, or ‘a sequence in X’, whose nth term is z,.

Various notations are used to indicate sequences, for example

(%), (Zn)neps (Zn)n1s (Tn)n=1,23,...

(nothing sacred about the letter z, of course!).

Informally, a sequence of elements of a set is an unending list z,, 3,
z3,... of elements (not necessarily distinct) of the set. More formally,
we can think of it as a function f : P — X, where we have chosen to
write z, instead of f(n) for the element of X corresponding to the
positive integer n. Another notation that stresses the functional aspect of
a sequence: n+— z, (n €P).

In the notation (z,), the integers n are called the indices. Sometimes
index sets other than P are appropriate; for example, (an)nen for the
coefficients of a power series Y oo anz™.!

In this section, the focus is on certain special sequences of real numbers:

2.5.2. Definition. A sequence (a,) in R is said to be increasing if
a; < az £azg < ..., that is, if a, £ any1 for all n € P; strictly
increasing if a, < apy1 for all n; decreasing if a; > a3 > a3 > ...;
and strictly decreasing if a, > an4+y for all n.

A sequence that is either increasing or decreasing is said to be mono-
tone; more precisely, one speaks of sequences that are ‘monotone increas-
ing’ or ‘monotone decreasing’.

1The ultimate generalization: For any function f:I — X ofaset I into
aset X, we are free to write x; (or a;, etc.) instead of f(i),tocall I a
set of indices, and to use (x;);c1 as an alternative notation for the function f;
we then speak of (Z;)ier as a family of elements of X, indezed by the set 1.
The sequences defined in 2.5.1 are the families indexed by P.
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If (a,) is an increasing sequence, we write a, T, and if it is a decreas-
ing sequence we write a, |. (No special notation is offered for ‘strictly
monotone’ sequences. )

So far, this is just noodling with notations; here is a concept with some
substance:

2.5.3. Definition. If (a,) is an increasing sequence in R such that the
set A= {a,: n€P} is bounded above, and if a =sup A, then we write
an | a; similarly, a, | ¢ means that (a,) is a decreasing sequence, the
set A={a,: n€P} is bounded below, and a =infA.

. 2.54. Example. 1/n | 0. For, the sequence (1/n) is decreasing (§1.2,
Exercise 1) and inf{l/n: ne P} =0 (2.1.2).

2.5.5. Ezample. If 0 < ¢ < 1 then the sequence of powers (c") is
strictly decreasing and ¢ | 0.

. {Proof: To see that (c") is strictly decreasing, multiply 0 <c <1 by
c toget 0 < c? < c. Do it again to get 0 < ¢ < ¢2, and so on. Let
a =inf{c": n € P}. We know that a > 0 and ¢" | a; the problem
is to show that @ = 0. Since a/c < c® for all n (because a < '),
it follows that a/c < a; thus a(l — ¢) < 0, therefore a < 0 (because
1=¢>0)and finally a=0.}

The notations of 2.5.3 have some useful formal properties:

2.5.6. Theorem. If a, Ta and b, T b, then

(i) an+b, Ta+b,

(ii) —an | —a,

(iii) an +cta+c for every real number c.

Proof. (i) It is clear that (an + b,) is an increasing sequence that is
bounded above by a + b; the problem is to show that a + b is the least
upper bound.

Suppose a,, + b, < ¢ for all n; we have to show that a + b < ¢, that
is, a <c—b. Given any index m, it is enough to show that an, <c-b,
that is, b < ¢ — ay,; thus, given any index n, we need only show that
b, € ¢ - @i, , that is, . amy + b, < ¢. Indeed, if p is the larger of m and
n then a,, + b, < ap+ b, < c by the assumed monotonicity.

(i) This is immediate from (iii) of 1.3.8.

(iii) This is a special case of (i), with b, =¢ for all n.

Exercises

1.If a, |l a and b, | b then a, +b, [a+b.
2.If anfa, by Tb and an 20, b, 20 for all n, then anb, | ab.

- 8. If (d,) isasequenceintheset {0,1,2,...,9}, intérpret the ‘decimal’
.d1dads ... as areal number in the interval [0,1].
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{Hint: Consider a, = .didy...dn = didy...d,/10", where did...d,
is the integer whose digits are dy,ds,...,dn.}

4. Suppose a, Te and b, Tb. Let ¢ =max{a,b} be the larger of a
and b, ¢, = max{an,b,} the larger of a, and b,. Prove that c, 1 c.

5. Suppose a, 1 a and b, Tb. If a, < b, fora.ll n then a <b;is
the converse true?

6.If a, |0 and b >0 then a,bl 0.

7. 1f A={(-1)"+1/n: n € P}, find infA and supA. {Hint: If
A =BUC then infA =inf{infB,infC}.}

8.Ifap,la, by /b and a >0, b>0, then a,b, | ab.

9. (i) If r is a real number such that 0 < r < 1, then there exists a
unique real number s such that 0 <s<1 and s2=r,.

(ii) Infer from (i) that if @ € R, a > 0, then there exists a unique
beR, b>0,such that »®2 =a.

{Hints: (i) Writing y=1—r, £=1-35, wehave 0 <y <1 and the
problem is to find a real number z, 0 <z <1,suchthat (1-z)%=1-y,
that is, z = 1(y+2?). The formulas z1 =0, Zn41 = §[y+(zn)?] define
recursively an increasing sequence (z,) such that 0 <z, < 1. (This style
of proof is called the “method of successive approximations”.) (ii) Choose
a positive integer m such that m > a and consider 0 < a/m? < 1.}

2.6. Theorem on Nested Intervals

A sequence of intervals (I,) of R is said to be nested if I) D I; D
Is O .... As the intervals ‘shrink’ with increasing n, there is no assurance
that there is any point that belongs to every I,: consider, for example,
n = (0,1/n] (§2.2, Exercise 2). However, if the intervals are closed, we
can be sure that there’s at least one survivor:

2.6.1. Theorem. If (I,) i3 a nested sequence of closed intervals, then
the intersection of the 1, 1is nonempty. More precisely, if I, = [an,bn],
where an, <b, and [; D12 D13>..., and if

a =sup{a,: n€P}, b=inf{b,: n P},

then ¢ <b and hey[@n,bs] = [a,b].

Proof. {The notation [)o—,[an,bn] means the intersection (S of the
set S of all the intervals [an,b,] (cf. the Appendix, A.2.9).}
From {a@n+1,bn41] C [@n,bn] we see that

Gy, < Qpyy < bn+1 <bn;
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it follows that the sequence (a,) is increasing and bounded above (for
example by b, ), whereas (b,) is decreasing and bounded below (for ex-
ample by a;) . If a and b are defined as in the statement of the the-
orem, we have a, 1 a and b, | b (2.5.3). By 2.5.6 (and its ‘dual’, with
arrows reversed) we have —b, 1 —b, 80 an + (—bs) T a + (—b), therefore
b, —a, |l b—a. Since b, —a, >0 for all n, it follows that b—a > 0;
then a, <a<b< by, s0 [a,b] Clan,bs] forall n, therefore

[a,b] C ﬁ[an,b,,]. |
n=1

Conversely, if z belongs to every [a,,b,] then @, < z < b, for all n,
therefore a <z < b and we have shown that

oo

[ [an,ba] C [a,8]. O

n=1

The following corollary is known as the Theorem on nested intervals:
2.6.2. Corollary. If, in addition to the assumptions of the theorem,

inf(b, — a,) =0,
then there exists exactly one point common to the intervals [a,,bn], that
i,

ﬂ [@n, bn] = {c}

for a suitable point c.

Proof. As shown in the proof of the theorem, b, — a, | b — a; but
b, —a, | 0 by assumption, so b=a and

(e o] = la,0] = {a}. &

n=1

A surprising corollary is a nonconstructive! proof of the existence of
irrational numbers, quite different from the proof in §2.4; the argument is
sketched in Exercise 1.

1The argument persuades us that an irrational number exists, but gives us no
clear idea as to its size.
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Exercises

1. (i) The set of all rational numbers can be listed in a sequence
T1,72,73,... (in other words, there exists a surjection P — Q).
{Hint: First list the positive rational numbers in a sequence s, sz, 3, ...,

for example,
112123

1°2'1'3’2'1"°
(the fractions m/n with m+n = 2, then m+n = 3, then m+n =4 and
so on); the list 0,8y, —81, 82, —82, 83, —83, ... then contains every rational
number. } '

(ii) There exists a nested sequence of closed intervals [an,b,] such that
for every n, 7, € [an,bn].

{Hint: Call (0,3] the left third of the interval [0,1], and [2,1] the right
third, and similarly for any closed interval [a,b]. With notations as in (i),
the point 71 can’t belong to both the left third and the right third of
[0,1]; let I; be a third that excludes it. Let I; be a third of I, that
excludes ro. Let I3 be a third of I, that excludes r3, and soon.}

(iii) With notations as in (ii), necessarily

ﬂ [@n, bn] = {a}
n=1

with @ irrational. {Hint: The intersection is a closed interval [a, ] (2.6.1)
that excludes every rational number, so a < b is impossible (2.4.1).}

2. If x=.2847 then
x € [.284,.285] C [.28,.29] C [.2,.3].

Interpret a ‘decimal’ .dydads... as the intersection of a nested sequence
of closed intervals.

3. Let (an,bn) be a nested sequence of open intervals, where a, < b,
for all n,and let A =[)(an,bn) be their intersection. '

(i) It can happen that” A = @. (Example?)

(if) If (an) is strictly increasing and (b,) is strictly decreasing, then
A is a closed interval (in particular, A # @). {Hint:" Apply 2.6.1 to the
closed intervals [an,b,].}

4. Let [a,b] be a closed interval in R, a < b, and let (z,) bé any

scquence in R. Prove that [a, ] contains a real number not equal to any
term of the sequence. {Hint: Cf. Exercise 1.}
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2.7. Dedekind Cut Property

2.7.1. Definition. A cut (or Dedekind cut) of the real field R is a pair
(A,B) of nonempty subsets of R such that every real number belongs
to either A or B and such that a < b forall a€ A and b€ B. In
symbols,

A#0, B#£@, R=AUB, a<b (Vac A,beB).

(It follows from the latter property that ANB =2.)
2.7.2. Examples. If v € R and

(%) A={zeR: z<~v}, B={zeR: 2>~}

then (A,B) isacutof R (notethat A has a largest element but B has
no smallest); the pair

(+%) A={zeR: z<7}, B={zeR: 227}

also defines a cut of R (for which B has a smallest element but A has
no largest).
The key fact about cuts of R is that there are no other examples:

2.7.3. Theorem. If (A,B) is a cut of R then there exists a unique
real number v such that either the formulas (*) or the formulas (**) are
verified.

Proof. Uniqueness. The number ~ is uniquely determined by the prop-
erty of being either the largest element of A or the smallest element of
B, according as we are in case (*) or in case (**).

Ezistence. Note that A is bounded above (by any element of B) and
B is bounded below (by any element of A). Let

a=supA, B=infB.

If a € A then a <b for all b€ B, therefore a < 3; since a € A is
arbitrary, a < 8. In fact a = 3, for if a < 8 then any number in the
gap between a and [ is an embarrassment: it is too large to belong to
A | too small to belong to B . Write v for the common value of a and
0 by assumption, ~ must belong to either A or B.

case 1: ve€A.

Let’s show that the formulas (*) are verified. At any rate,

Ac{zeR: z<v}, Bc{zeR: z>v};

for, the first inclusion follows from ~ = sup A, and the second inclusion
follows from v = infB and the fact that v € B is ruled out by v € A.
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These are ‘self-improving’ inclusions: they imply that both are in fact
equalities. For example, if z <~ then necessarily z € A; the alternative
is = € B, unacceptable because it would imply z > +. (The crux of the
matter is that the left members of the inclusions have union R, whereas
the right members are disjoint.)

case 2: v € B.

One argues similarly that the formulas (**) are valid. {Alternatively,
apply case 1 to thecut (—B,~A) of R, where —B is the set of negatives
of the elements of B, and similarly for —A.} ¢

The way cuts were originally introduced, and why Dedekind’s name is
associated with them, is explained in the exercises.

Exercises
1. Let A and B be nonempty sets of rational numbers, with AUB =

Q,such that a <b forall a€ A, be B. Prove:
(i) There exists a unique real number + such that either

() A={reQ: r<~}, B={reQ: r>~}
or
(x%) A={reQ: r<~}, B={reQ: r>4}.

{Hint: Imitate the proof of 2.7.3.}
(ii) If ~ is rational, then exactly one of the conditions (*) or (**) holds.
(iii) If ~ is irrational, then both of the conditions (*) and (**) hold,
and they may both be expressed as

A={reQ: r<~v}, B={reQ: r>~}.

2. With notations as in Exercise 1, the pair (A,B) is called a (Dedekind)
cut of the rational field Q.
(i) Show that the formulas

A={reQ: r<0}u{reQ: r>0 and 7% <2}
B={reQ: r>0 and r?>2}

define a cut (A,B) of the rationals. {Hint: There is no rational number
r with r2=2.}

(i) Let ~ be the real number provided by Exercise 1. Show that 42 =
2. {Hint: Asshown in the proof of 2.2.4, there is no largest positive number
whose square is < 2, no smallest whose square is > 2.}
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Dedekind’s stroke of genius': Define v/2 to be this cut (A,B) of the
rationals. There are still many loose ends to be looked after (defining sums
and products of cuts, regarding cuts (*) and (**) that lead to the same real
number as being ‘equal’, etc.), but these are largely housekeeping chores.
The decisive stroke is the first: something new ( /2 ) has been defined in
terms of something old (a strategically chosen pair of subsets of Q).

2.8. Square Roots

2.8.1. Theorem. Every positive real number has a unique positive square
root. That is, if c€ R, ¢ > 0, then there erists a unique € R, >0,
such that =2 =c.

Proof. Uniqueness: If £ and y are positive real numbers such that
2 =c=1y? then r =y by 1.2.8. {Explicitly, 0 = 2232 = (z+y)(z—y)
and r+y >0, therefore z—y=0.}

Ezistence: Given ¢ € R, ¢ > 0, the strategy is to construct a cut
(A,B) of R for which the v of 2.7.3 satisfies 42 = c. Let

A={zeR: z2<0}U{zeR: 2>0 and 7% <},
B={z€eR: £>0 and 2% >c}.

Then A # @, B # @ (for example, c+1 € B)and AUB = R
(obvious). Moreover, if a € A and b€ B then a < b: this is trivial if
a <0, whereas if ¢ > 0 then a? < ¢ < b implies a < b (1.2.8). In
summary, (A,B) is a cut of R; let v be the real number that defines
the cut (2.7.3).

Note that A contains numbers > 0; for, if ¢ > 1 then 1/2 € A
(because 1/4 < 1 < c), whereas if 0 < ¢ < 1 then ¢ € A (because
¢® < c). It follows that v > 0.

Next, we assert that + € B; by the arguments in the preceding section,
we need only show that A has no largest element. Assuming a € A, let’s
find a larger element of A. If a <0 then any positive element of A will
do. Suppose a > 0. We know that a2 < c; it will suffice to find a positive
integer n such that (a+1/n)? < ¢. The existence of such an n is shown
by the argument in 2.2.4 (with 2 replaced by c).

From 2.7.3, we now know that

A={zeR: z<v}, B={z€eR: z2>27}.

Since 7€ B we have 72 >¢; it remains only to show that 42 < c, that
. 2 _
is, v*—-¢<0.

!R. Dedekind, The theory of numbers (translated from the German original)
[Open Court Publ. Co., LaSalle, 1901; reprinted by Dover Publ. Co., New York].
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By the Archimedean property, choose a positive integer N such that
N~y > 1. For every integer n > N ,wehave 1/n <1/N <+v,s0 y—1/n>
0; since, moreover, ¥ — 1/n belongs to A (it is < v), it follows that
(v — 1/n)? < ¢, therefore

y2 —c < 2y/n—1/n% < 2y/n.

Thus (y2—¢)/2y<1/n forall n > N, and all the morefor 1 <n < N,
consequently
(v*—c)/2y<inf{l/n: neP}=0

(2.1.2); since 2y > 0 we conclude that 72 — ¢ < 0, as we wished to
show. ¢

2.8.2. Definition. With notations as in the theorem, z is called the
square root of ¢ and is denoted /c;! the definition is rounded out by
defining V0 =0.

It follows that every nonnegative real number has a unique nonnegative
square root.

Exercises

1. Let A={re€R: z > 0}. Prove that the mapping f: A — A
defined by f(z) = z? is bijective.

2. Infer the existence of irrational numbers from 2.8.1 (cf. §2.6, Exer-
cise 1).

3.1f 0<a<b in R, then a<vb.

4. Prove that /2 + /3 is irrational. Then prove that /n+ vn + 1
is irrational for every positive integer n. {Hint: §1.2, Exercise 17.}

5. Define a sequence (a,) in R recursively as follows: a; = V2,
Ant1 = V2+ 0.
(i) Show that (a,) is strictly increasing. {Hint: Induction.}
(ii) Show that a, < 2 for every positive integer n.
(ili) Let a =supa, . Prove that a =2. {Hint: Argue that a® =a+2
(cf. §2.5, Exercise 2).} -

6. If ¢:R — R is a monomorphism of fields (§1.1, Exercise 1) then ¢

must be the identity mapping: ¢(z) =z for all z € R. Sketch of proof:
(i) ¢(r) =r for every rational number r.

(i) <y = ¢(z) < p(y). {Hint: Write y —z = 22 and apply ¢.}

10ne also writes ¢!/2 for /¢, a notation consistent with the general defini-
tion of powers in §6.2 and 9.5.13.
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(i) ¢(z) =z for every x € R. {Hint: If » and s are rationals with
r<z<s,then r<o(z)<s by (i) and (ii); infer from §2.4, Exercise 1
that z < p(z) < z.}

7T.If 0<z<y then fy—Vr<y—z.

2.9. Absolute Value

2.9.1. Definition. The absolute value of a real number a is the non-
negative real number |a| defined as follows:

a if a>0
la] = 0if a=0
—a if a<0

in other words,

a if a>0
la| = .
—-a if a<0.
Absolute value can be defined in any ordered field (1.2.1); its elementary
properties follow at once from the properties of order:

2.9.2. Theorem. For real numbers a,b,c,x:
(1) |a]>0.
(2) laf* =a?.
(3) Properties (1) and (2) characterize |a|: if £ >0 and z2 =a
then x =|al.
(4) la| =0 < a=0; |a| >0 & a#0.
(5) la]=1b & a2=0b? & a=+b.
(6) | —al=lal.
(7) lad| = lai|b].
(8) —la| € a < |a|; more generally,
(9) |z]£ec & —c<Lzx<e.
(10) |a+b] < |a] +|b].
(11) {lal - [b]] < la — ]

Proof. (1), (2) and (4) are obvious from the definition of absolute value.
(3)If x>0 and z? = a?, that is, 2% = |a]?, then z = |a] by 1.2.8.

(5) and (6) follow easily from (1)—(3).

() If x =la||b], then x? = |a|?|b|? = a?b? = (ab)?, therefore z = |ab|

2

by (3).
(8) If a >0 then —|a] = —a <0 < a = |a|, whereas if a <0 then
—la| = —(—a) =a <0< a].

(NI —c<z<c thenboth —z <c and z <c¢;but |z] iseither z
or —z,s0 |z] <c. Conversely, if |z| ¢ then —c < —Jz] <z <|r|<ec.



§2.9. Absolute Value 31

(10) Addition of the inequalities
—lal<a<lia]l, —1b|<b< Y

yields —(ja| + [b]) < a+b<|a|+]b|,s0 |a+b| <|a|+|b] by (9).

(11) Let = = |a| — |b]. Then |a| = |(a — b) + b| < |a — b| + {b], thus
z < |a — b|. Interchanging a and b, we have —z < |[b—a| = |a -},
therefore |z| <|a—b]. ¢

When the points of a line are labeled with real numbers in the usual
way (with the ‘origin’ labeled 0), |a| may be iuterpreted as the distance
from the origin to the point labeled a. For example, | £ 5| = 5 means
that either of the points labeled 5 and —5 has distance 5 from the origin

(Figure 1).

5 5
r A N % Al
-5 0 5
FIGURE 1

More generally, the distance between any two real numbers can be defined
in terms of absolute value:

2.9.3. Definition. For real numbers a,b the distance from a to b
is defined to be |a — b]. One also writes d(a,b) = |a — b|; the function
d: RxR — R defined by this formula is called the (usual) distance
function on R .

For example (Figure 2), if a = —2 and b = 5, then |a—b| = |-2-5|=T7.

-2 0 5
FIGURE 2

As we see in the next chapter, distance—equivalently, absolute value—is
at the bottom of convergence (which is at the bottom of everything else!).1
Exercises

1. For any real numbers a and b,
1
sup{a,b} = E(a +b+]a—1b]),

1
inf{a,b} = (e +b - |a— b)),

'We could easily dispense with the concept of distance, but the geometric
language it suggests is useful. For example, instead of saying that |a — b| is
‘small’ we have the option of saying that a is ‘near’ b; instead of ‘|a — b
hecomes arbitrarily small’ we can say that ‘a approaches b’, etc.
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where sup{a,b} = max{a,b} is the larger of @ and b, and inf{a,b} =
min{a, b} is the smaller.

2. Let A be a nonempty set of real numbers. Prove that A is bounded
in the sense of 1.3.1 if and only if there exists a positive real number K such
that |z] < K forall z € A. {Hint: If A C [a,}] try K =max{lal,[b]}.}

3. Show that |a +b| = |a| + |b] if and only if ab > 0. {Hint: After
squaring, the equation is equivalent to ab = |ab|.} Note that if a and b
are nonzero, then ab > 0 means that a and b have the same sign.

4. With notations as in 2.9.3, verify the following properties of the
distance function d:

(i) d(a,b) >0; d(a,b)=0 & a=5b.

(i) d(a,b) =d(b,a).

(iii) d(a,c) < d(a,b) +d(b,c).

5. If X is any nonempty set, a function d : X x X — R with the
properties (i)-(iil) of Exercise 4 is called a metric (or ‘distance function’)
on X. These properties are called, respectively, strict positivity, symmetry,
and the triangle inequality. Verify that the function D : RxR — R defined
by the formula

la — b
1+|a—b

is also a metric on R. {Hint: §1.2, Exercise 3.}

D(a,b) =

6. Let X be any nonempty set. For every pair of points z,y of X,
define
l1if z#y,

d(w,y)={0 fomy

Prove that d is a metric on X in the sense of Exercise 5 (it is called the
discrete metric on X).

7. If d is a metric on the set X (Exercise 5), deduce from the triangle
inequality that

|ld(z,y) — d(z',y')| < d(z,2") + d(y, ')

for all z,y,2',y’ € X.
{Hint: d(z,y) <d(z,2') +d(¢’,y) < d(z,z') +d(’,y') +d(v',y).}



CHAPTER 3

Sequences of Real Numbers,
Convergence

§3.1. Bounded sequences

§3.2. Ultimately, frequently
" §3.3. Null sequences

§3.4. Convergent sequences

§3.5. Subsequences, Weierstrass-Bolzano theorem
§3.6. Cauchy’s criterion for convergence

§3.7. limsup and liminf of a bounded sequence

The chapter begins with a discussion of sequences that culminates in
the concept of convergence, the fundamental concept of analysis. The
Weierstrass-Bolzano theorem (§3.5), nominally a theorem about bounded
sequences, is in essence a property of closed intervals; Cauchy’s criterion
(§3.6) is a test for convergence, especially useful in the theory of infinite
series (§10.1). The chapter concludes with a dissection of convergence into
two more general limiting operations.

3.1. Bounded Sequences

For a review of sequences in general, see §2.5.

3.1.1. Definition. A sequence (z,) of real numbers is said to be
bounded if the set { z, : n € P} is bounded in the sense of 1.3.1.
A sequence that is not bounded is said to be unbounded.

3.1.2. Remark. A sequence (z,) in R is bounded if and only if there
exists a positive real number K such that |z,| < K for all n.

{Proof: If a <z, <b forall n and if K = |a| + |b] (for example)
then la| < K and |b| < K, thus

—-K<-lg|<a<z, <b<L |B| LK
by (8) of 2.9.2, therefore |z,| < K by (9) of 2.9.2.}

3.1.3. Ezamples. Every constant sequence { 2, = z for all =) is
hounded. The sequence x,, = (~1)" is bounded.
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3.1.4. Example. The sequence z, = n is unbounded. {For every real
number K there exists, by the Archimedean property, a positive integer n
such that n = nl > K, thus the set of all z, is not bounded above.}

3.1.5. Theorem. If (z,) and (y,) are bounded sequences in R, then
the sequences (Tn +yYn) and (Tnyn) are also bounded.

Proof. If |zn| < K and |ys| < K' then [T, + yn| < |zn| + |yn| <
K+K' and [zayn| = |zn|lyn| S KK'. &

Exercises

1. Show that if (z,) and (y,) are bounded sequences and ¢ € R,
then the sequences (cz,) and (zn — yn) are also bounded.

2. True or false (explain): If (z,) and (z,y,) are bounded, then
(yn) is also bounded.
3. Show that the sequence (z,) defined by
Tn= szt t
2 3
is unbounded. {Hint: z3, — z, >1/2 for all n.}

4. Show that the sequence (z,) defined recursivelyby 1 =1, Znt1 =
Zn + 1/z, is unbounded.

{Hint: Assuming to the contrary that the sequence has an upper bound
K, argue that K — 1/K is also an upper bound.}

5. *Show that the sequence z, =sin(n?+1) is bounded.,!

6. Show that the sequence a:n) defined by

+ o + 3' ot

is bounded above by 2. {Hint: n!>2""1 forall n.}

7. Show that the sequence (an) defined by

)

is bounded above by 3. {Hint: By the binomial formula,

=35 (0%

show that the term for index &k is < 1/k!, then cite Exercise 6.}

IStatements between split-level asterisks involve objects not yet constructed
or properties not yet proved, but likely to be familiar from other courses.
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3.2. Ultimately, Frequently

Let’s pause to introduce some terminology useful for general sequences:

3.2.1. Definition. Let (z,) be asequence in aset X andlet A bea
subset of X.

(i) We say that z, € A ultimately if z,, belongs to A from some
index onward, that is, there is an index N such that z, € A for all
n > N ; symbolically,

AN 5 n>N = z,€A.

{Equivalently, 3N > n> N = gz, € A, because n > N means the
same thing as n > N +1.}

(ii) We say that z, € A frequently if for every index N there is an
index n > N for which z, € A; symbolically,

(YNYI3n>N>z,€A.

{Equivalently, (VN)3n>N>3z,€A.}

3.2.2. Ezample. Let x, = 1/n,let € > 0 and let A = (0,¢€); then
zn, € A ultimately.

{Proof: Choose an index N such that 1/N <€ (2.1.2); then n > N
= 1/n<1/N<e.}

3.2.3. Ezxample. For each positive integer n, let S, be a statement
(which may be either true or false). Let

A={neP: S, istrue}.

We say that S, is true frequently if n € A frequently, and that S,
is true ultimately if n € A ultimately. For example, n2 —5n+6 > 0
ultimately (in fact, for n > 4); and n is frequently divisible by 5 (in
fact, for n =5, n=10, n =15, etc.).

There’s an important logical relation between the two concepts in 3.2.1;
to say that something doesn’t happen ultimately means that its negation
happens frequently:

3.2.4. Theorem. With notations as in 3.2.1, one and only one of the
Jollowing conditions holds:

(1) z, € A ultimately;

(2) z, ¢ A frequently.

Proof. To say that (1) is false means that, whatever index N is pro-
posed, the implication
n>N = z, €A
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is false, so there must exist an index n > N for which z, ¢ A; this is
precisely the meaning of (2). ¢

For example (cf. 3.2.3) if (z,) is a sequence in R then either z, <5
ultimately, or z, > 5 frequently, but not both.

Exercises

1. For the sequence x, =n, z, is both frequently even and frequently
odd; does this conflict with 3.2.47

2. *True or false (explain):
(i) If z, =sin(nw/2) then z, =1 frequently.
(ii) f z, =sin(2r/n) then z, <1 ultimately..

3. Let (Ay) be a sequence of subsets of a set X. Define

limsupA, = {z € X: z € A,, frequently},
liminf A, = {z € X: z € A, ultimately }.

Prove:
(i) liminf A,, C imsup A,, .
(ii) liminf Ay, = Une; Nher Ak -
(iii) (limsup A,)’ = liminf A}, (’ means complement).
(iv) limsup A, = N, Uper Ak -

4. With notations as in Exercise 3, call (A,) a convergent sequence
of sets if liminf A,, and limsup A, are equal; their common value A is
then called the limit of the sequence, denoted lim A, , and the sequence is
said to converge to A, written A, — A. ’

Prove: If (A,) is an increasing sequence of sets with union A (con-
cisely, A, T A), then A, — A. State and prove the analogous proposition
for decreasing sequences.

3.3. Null Sequences

3.3.1. Definition. A sequence (z,) in R is said to be null if, for every
positive real number e, |z,| < e ultimately.
For example, the sequence (1/n) is null (3.2.2).

The concept of convergence (§3.4) will be defined in such a way that
the null sequences are precisely the sequences that converge to 0; thus the
‘ultimately’ concept is at the core of the concept of convergence.

Definition 3.3.1 can be expressed as follows: Given any € > 0 (no matter
how small), the distance from z,, to the origin is ultimately smaller than ¢
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(in this sense x, ‘approaches’ 0). A more informal® way to say it: z, is
arbitrarily small provided n is sufficiently large. {This is imprecise in
the sense that “arbitrarily small” is understood to suggest that the degree
of smallness is specified in advance, before any indices are selected; and
“sufficiently large” is understood in the sense of “ultimately” (not merely
“frequently”).} '

Various operations on null sequences lead to other null sequences (in
particular, the example x, = 1/n generates an abundance of examples):

3.3.2. Theorem. Let (x,) and (y») be null sequences and let ¢ € R.
Then:

(1) (zn) is bounded.

(2) (czn) is null

(3) (zn+yn) is null

(4) If (bn) is a bounded sequence then (bpzy) is null.

(6) If (za) is a sequence such that |z,| < |za| ultimately, then (z,)
is also null.

Proof. (1) Applying 3.3.1 with € =1, we have |z,| < 1 ultimately; let
N be an index such that |z,| <1 forall n > N. If K is the larger
of the numbers 1,|z,|,|z2],...,lzn]|, then |z,| < K for every positive
integer n, thus (z,) is bounded. :

(3) Let €>0. Since (z,) is null, there is an index N; such that

n> N = |z,| <e€/2;
similarly, there is an index N such that
n2Ny = |y,| <e€/2,
so if N is the larger of N; and N, then
n2N = |p+yn] <|2n] +lynl <€/2+€/2=¢.
This proves that (z, +y,) is null.
(4) Let K be a positive real number such that |b,| < K for all n.
Given any € > 0, choose an index N such that

n>N = lzn| < €/K;

'In mathematics, ‘formal’ and ‘rigorous’ are code words for ‘precision’. The
aim of precision is to clarify; if an argument already appears to be clear then
there is no demand for greater precision (though there may be a need for greater
precision—indeed, greater precision of expression may reveal the argument, and
even the asserted proposition, to be faulty). Since clarity is partly in the eyes of
the hebolder, standards of rigor can vary from generation to generation (and, at
a given time, from one individual to another).
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s
then
n2>N = |bpZn| = |bnl|zn| < Klzn] <e,

thus (b,zy,) is null
(2) is a special case of (4).
(5) By assumption, there is an index N; such that

n> N1 = |z,] < |zal.
Given any € > 0, choose an index N; such that
n2 N = |z, <e€;
if N =max{N;, N2} then
n>2N = |z,| < |zn| <€,

thus (z,) is null. ¢
As an example of (5), if |x,| < 1/n ultimately then (z,) is null.
Another important source of examples:

3.3.3. Theorem. If a, Ta or a, | a then the sequence (an, — a) is
null.

Proof. If a, | a then, by 2.5.6,
Gn — @ =an+(—a) | a+(—a) =0.

In particular, a, —a >0 and inf(a, —a) =0. Given any € > 0, choose
an index N such that ay —a < €; then

n>N = la,—a|=a,—-a<an—-a<e,

thus (a, —a) is null. The case that a, T a is deduced by applying the
foregoing to —a, | —a. ¢

3.34. Example. If |z| < 1 then the sequence (z™) is null. {Proof:
Writing ¢ = |z|, we have ¢™ | 0 by 2.5.5; thus, the sequence (|z"|) =
(c™) is null (3.3.3), therefore so is the sequence (z™).}

3.3.5. Example. Fix z € R and let x, = z for all n. The constant
sequence (z,) isnullif and only if 2 = 0. {Proof: The condition “|z,| < €
ultimately” means |z| < €; if this happens for every € > 0, then z =0
(for, if #0 then €= 1|z| is an embarrassment).}
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Exercises

1. Prove: If (z,) and (y») are null thensois (znyn)-
2. Prove that (z,) is null if and only if (z2) is null. (Generalization?)

3. True or false (explain): If (x,) and (y») are sequencesin R such
that (znyn) is null, then either (z,) or (y,) is null.

4. Let =, = v/n+1—/n. True or false (explain): (z,) is null. {Hint:
Consider y, = vn+ 1+ /n and calculate z,y,.}

5. Show that a sequence (z,) in R is not null if and only if there
exists a positive number € such that |z,| > € frequently.

6. *True or false (explain): The sequence z, = n[l—cos(1/n)] is null.,

7. If |a] <1 prove that the sequence a, = nl|a|® is null. {Hint: Look
at ant1/an -}

8. Show that the sequence a, = vnZ+1—n is null.

9. Let (a,) be anull sequencein R, let ¢ : P — P be injective and
define b, = ay(») (in other words, the n’th term of the new sequence
is the o{n)’th term of the old sequence). Prove that (b,) is also a null
sequence; in particular, every rearrangement of a null sequence is null.

{Hint: If N is a positive integer and M is an integer larger than every
element of 07'({1,2,...,N}), then m>M = o(m) >N .}

10. If (z,) is a null sequence and y, = (21 +...+x,)/n (the average
of the first n terms), then (y,) is also a null sequence.
{Hint: Suppose |z,| <€ forall n>N.If n> N, then

Yn = yN(N/n) + (@N41+ ... +Zn)/n;

estimate the second term on the right, noting that the number of terms in
the numerator is < n.}

11. If p: R — R is a polynomial function without constant term and
(zn) is a null sequence, then (p(z,)) is null

3.4. Convergent Sequences

Taking a cue from Theorem 3.3.3, we make the following definition:

3.4.1. Definition. A sequence (a,) in R is said to be convergent
in R if there exists a real number a such that the sequence (a, —a) is
null, and divergent if no such number exists.

Such a number a (if it exists) is unique. {Proof: Suppose that both
(an—a) and (a,—b) arenull. Let z, = (an—b)—(a,—a) =a—b. Being
the difference of null sequences, (z,) is null (3.3.2), therefore a —b =0
(3.3.5).}
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3.4.2. Definition. With notations as in 3.4.1, the number a is called
the limit of the convergent sequence (a,), and the sequence is said to -
converge to a; this is expressed by writing

lim a, =a,
n—oo

an — G 88 N — 00,

more concisely, lima, =a or a, — a.

3.4.3. Ezample. If an T @ or a, | @ then ap, — a (3.3.3), thus every
bounded monotone sequence is convergent (2.5.3).

3.4.4. Example. a, - 0 & (a,) is null. {Since a, —0 = a,, this is
immediate from the definitions.}

3.4.5. Ezample. a, — a & a, —a — 0. {Immediate from 3.4.4 and
the definitions.}

3.4.6. Ezample.. z" —0 & |z| <1. {Proof: If |z| <1 then z" —0
by 3.3.4; if || 2 1 then |Jz™ = |z|* > 1 for all n, therefore (a2™) is
not null.}

3.4.7. Ezample. If |z| <1 and apn =1+2z+2%2+...+2™"!, then
an — 1/(1 — z); for,

S SN o S S U
" l-z l1-=z -z 1-z

n

is a constant multiple of a null sequence (3.4.6), hence is null (3.3.2).
The basic properties of convergence are as follows:

3.4.8. Theorem. Let (an), (bn) be convergent sequences in R, say
an —a and b, = b, and let ¢c€R. Then:

(1) (an) is bounded,

(2) can, —ca,

(3) an+bn—>a+b

(4) anbn — ab,

(5) lan| — |af.

(6) If b#0 then |by| is ultimately bounded away from 0, in the sense
that there evists an r > 0 (for ezample, r = 1|b|) such that |b.| > r
ultimately.

(7) If b and the b, are all nonzero, then an/b, — a/b.

(8) If an, <b, forall n,then a<b.

Proof. (1) (an — a) is null, therefore bounded (3.3.2), and a, =
(an — a) +a shows that (an) is the sum of two bounded sequences.

(2) cay, — ca=c(a, —a) is a scalar multiple of a null sequence, so it is
null by 3.3.2.
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(3) (@n +bn) — (a+b) = (an —a) + (bn — b) is the sum of two null
sequences, therefore is null (3.3.2).

(4) @nbn — ab = an(bp, — b) + (a, — a)b; since (a,) is bounded and
(bn —b), (an —a) are null, it follows from 3.3.2 that (a,b, —ab) is null.

(5) By 292, |lan| — lal| < |an — a|, where (an —a) is null, so
(lan| — |al) is null by 3.3.2.

(6) Let r = 3|b| and choose an integer N such that

n>N = |by—bl<r.
Then, for all n> N, |
2r = |b| = |(b—bn) + bp| < [b—bn| + |ba| < 7+ |bn],

so |bp| >r.
(7) From (6), it follows that the sequence (1/b,) is bounded; thus
1 1 1
— —Z=_—"(b-b
bn b bnb(b )

is the product of a bounded sequence and a null sequence, therefore is null.
Thus 1/b, — 1/b, therefore

@n/bn = an(1/bn) — a(1/b) = a/b

by (4).

(8) Let ¢n=b,—a, and c=b—a;then ¢, >0 and ¢, — ¢, and
our problem is to show that ¢ > 0. By (5), |ea| — |c|, that is, ¢, — |c];
already ¢, — c¢,80 c¢=]c| >0 by the uniqueness of limits.

3.4.9. Theorem. If A C R is nonemply and bounded above, and if
M =supA, then there exists a sequence (z,) in A such that z, - M.

Proof. For each positive integer n, choose z, € A sothat M —1/n <
Tn <M (135).

Similarly, if A C R is nonempty and bounded below, then inf A is the
limit of a sequencein A.

Exercises

1. If a, —» a, b, = b and a, <b, frequently, show that a <b.
2. Suppose a, — a. Define

Prove that s, — a. {Hint: §3.3, Exercise 10.}
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3. Show that the sequence

o (-3 (- (o)

is convergent. {Hint: Calculate a, for the first few values of n.}

4. Let @ and b be fixed real numbers and define a sequence (z,)
as follows: 21 =a, 3 =b and, for n > 2, z, is the average of the
preceding two terms, that is, z, = }{(Zn-2+ Zn_1).

(i) Draw a picture to see what is going on. {Assume a < b and think
midpoints. }

(ii) Prove (by induction) that

1in-
-’Bn+1—zn=(—5) l(b—a)-

(iii) Show that

Tyl — L1 = [z": ( - %)k_l] (b—a).

k=1

(iv) Prove that z, — (a+2b)/3.

5. Find lima, for the following sequences:
D) ea=F+%+...+5.
(i) an= (/)2 +(2/n)2+..4+(n/n)?

: n

6. Given the polynomial functions
p(z) =22+ 22 +3z+1, gq(z)=3z"+2z3+22+3,

define
a =—"— (n=123...).
Prove that a, — 2/3.
7. Prove that the sequence

R N L1
"T a4+l n+2 7 n+4n

is convergent, to a limit < 1. {Hint: Show that the sequence is increasing
and bounded above by 1.}

8. Prove that the sequence (a,) defined recursively by a; = 1 and
Gn41 = @n +1/a, (n=1,2,3,...) is not bounded. {Hint: 3.4.3.}
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9. Prove that the sequence

n
an=(l+l)
n

is convergent. {Hint: §1.2, Exercise 20 and §3.1, Exercise 7.}

10. Let a, = n!/n™. Show that a, — 0. {Hint: Show that a, | and
that an{1/an, hasalimit < 1.}

11. Let (a,) be a convergent sequence in R, let ¢ : P — P be
injective and define b, = @,(n). Prove that (b,) is also convergent and
that limb, =lima, . {Hint: §3.3, Exercise 9.}

12. Let X be a nonempty set and let d be a metric on X (§2.9,
Exercise 5).

(i) If (z,) is a sequence in X and if z,y are elements of X such
that d(z,,z) — 0 and d(z,,y) — 0, provethat z =y. {Hint: d(z,y) <
d(z,Tn) + d(zn,y) .}

(i) A sequence (z,) in X is said to be convergent if there exists a
point £ € X such that d(z,,z) — 0. By (i), such a point z is unique;
it is called the limit of the sequence (z,), written z = limz, , and the
sequence is said to converge to z, written z, — .

Prove: If z, - ¢ and y, — y then d(z,,yn) — d(z,y). {Hint: §2.9,
Exercise 7.}

(i) If d is the discrete metric on X (§2.9, Exercise 6), a sequence
in X is convergent if and only if it is ultimately constant. {Hint: If
d(zn,z) — 0 then d(z,,z) <1 ultimately; the only available distances
are 0 and 1.}

13. Let d be a metric on the set X, and let D be the metric on X
defined by the formula D =d/(1 +d) (cf. §2.9, Exercise 5).

(i) Show that d =D/(1 — D). '

(ii) Prove that d(zn,z) —» 0 & D(z,,z) — 0; in other words, con-
vergence for the metric d means the same thing as convergence for the
metric D.

14. Let [an,b,] be a nested sequence of closed intervals such that
b,—an | 0 and let (z,) be asequence such that z, € [a,,bn] forall n.
Prove that (z,) is convergent.

3.5. Subsequences, Weierstrass-Bolzano Theorem

Given a sequence (z,) , there are various ways of forming ‘subsequences’:
for example, take every other term,

T, I3,T5,...,
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or, take all of the terms from some index onward,
ZT6,27,TL8,---
or take all terms for which the index is a prime number,
2, L3, L5, L7, L1y

The general idea is that one is free to discard any terms, as long as infinitely
many terms remain. The formal definition is as follows:

3.5.1. Definition. Let (z,) be any sequence. Choose a strictly increas-
ing sequence of positive integers

nyp<ng<ng<...

and define yx = z,, (k=1,2,3,...). One calls (yx) a subsequence
of (zn). This is also expressed by saying that z,,,Zn;,Zng,... is a
subsequence of zi1,z2,zs,..., or that (z,,) isa subsequence of (zy).

Forming a subsequence amounts to choosing a sequence of indices; what
is essential is that the chosen indices must march steadily to the right-—no
stuttering, no dropping back.

3.5.2. Remark. Let (ny) be a strictly increasing sequence of positive
integers:
n<ng<ny<....

For every positive integer N, there exists a positive integer k such that
ny > N (therefore n; > N for all j > k). {Proof: It clearly suffices to
show that ny > k for all positive integers k. This is obvious for k =1.
Assuming inductively that ng > k, we have ngp1 2npg+1>k+1.}

3.5.3. Remark. Here’s a useful perspective on subsequences. A sequence
(z,) in a set X can be thought of as a function f : P — X, where
f(n) = z,,. A subsequence of (z,) is obtained by specifying a strictly
increasing function o : P — P and taking the composite function foo
(Figure 3):

FIGURE 3

Thus, writing ny = o(k), we have (foo)(k) = f(o(k)) = f(nk) = &, -
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3.5.4. Remark. An application of the preceding remark: If (yx) is a
subsequence of (z,), then every subsequence of (yx) is also a subsequence
of (zn). The crux of the matter is that if 0:P—P and 7:P— P are
strictly increasing, then sois cor:P— P.

{In detail, suppose that f : P — X defines the sequence (z,), that
is, f(n) = z,, and that o : P — P defines the subsequence (yx), that
is, yx = f(o(k)). Write g = foo; then g: P — X with g(k) = y.
Suppose (z;) is a subsequence of (y;), say defined by 7:P — P, so that
2 = g(7(i)). Then gor=(foo)oT= fo(ooT),s0 (z) is defined by
the strictly increasing function co7:P —P.}

The following properties of subsequences will be used on many occasions:

3.5.5. Theorem. Let (a,) be a sequence in R and let (an,) be a
subsequence of (an).

(1) If (an) is bounded, then so is (an,)-

(2) If (an) is null, then so is (a,,).

(3) If (an) is convergent, then so is (an,); more precisely, if an — a
as n — oo then also a,, —a as k— oo.

(4) If an 1 a then dalso a,, 1 a, and similarly for decreasing sequences.

Proof. (1) If |a,| £ K for all n, then in particular |a,, | < K for
all k.

(2) Write bg =an, (k=1,2,3,...). Let €> 0. By assumption, there
is an index N such that |a,| <€ forall n > N. Choose k so that
ng > N (3.5.2); then

J2k = nj 20, 2N = |ag,| <e.

Thus (bg) is null.

(3) By assumption, (a, — a) is null, therefore so is its subsequence
(an, — a), consequently an,, — a.

(4)If an T a thesubsequence (an,) iscertainly increasing and bounded
above (by a); writing

b=sup{a,, : k€P},

we know that b < a and we have to show that b = a. Given any positive
integer n, there is a k such that ngx > n (3.5.2), therefore

an < @n, <Db;

thus a, <b for every positive integer 7, therefore a < b.

If a, | a then —a, T —a, therefore —a,, T —a by the foregoing,
consequently an, | a.
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Subsequences often arise in situations like the following:

3.5.6. Theorem. Let (z,) be a sequence and let (P) be a property
that a term z, may or may not have. Then the following conditions are
equivalent: '

(a) Tn has property (P) frequently;

(b) there exists a subsequence (z.,) of (z.) such that every z, has
property (P).

Proof. Let A={neP: z, has property (P) }.

(a) = (b): By assumption, n € A frequently (3.2.3). Choose n; € A.
Choose ny, € A so that no > n; (3.2.1). Choose n3 € A so that
n3 > ng; and so on. The subsequence zp,,Zn,;Zns,.-. constructed in
this way has the desired property.

(b) = (a): By assumption, n, € A for all k. Given any index N,
the claim is that A contains an integer n > N. Indeed, ny > N for
some k (3.5.2). ¢ '

Here is the kind of application for which the preceding theorem is useful:

3.5.7. Ezample. Suppose we're trying to show that |a, — a] < € ulti-
mately. The alternative (3.2.4) is that |a, — a| > € frequently, in other
words (3.5.6) |an, —a| > € for some subsequence (an,) of (an); it may
be more convenient to prove that the alternative is false.

The next theorem is, at first glance, surprising:
3.5.8. Theorem. Every sequence in R has a monotone subsequence.

Proof. Assuming (a,) is any sequence of real numbers, we seek a sub-
sequence (a,,) that is either increasing or decreasing (2.5.2).

Call a positive integer n a peak point for the sequence if a, > ar for
all k> n. {Think of the sequence as a function f:P—-R, f(r)=an.
For n to be a peak point means that no point of the graph of f from
n onward is higher than (n,a,); so to speak, ‘a, is not topped to the
right’.} There are two possibilities:

(1) Suppose first that n is frequently a peak point. If n; < ny <
n3 < ... are peak points, then the subsequence (a,,) is decreasing. For,
Gn, > Qn, (because n; is a peak point), @, = a,, (because ny is a
peak point), etc.

(2) The alternative is that, from some index N onward, n is not a
peak point. Let n; = N. Since n,; is not a peak point, a,, is ‘topped
to the right’: there is an index na > n; such that a,, > an,. But ng
isn’t a peak point either, so there is an n3 > ny such that an, > an,.
Continuing in this way, we obtain an increasing subsequence of (a,). ¢

The theorem has an equally surprising (and famous) consequence:

3.5.9. Theorem. (Weierstrass-Bolzano theorem) Every bounded sequence
in R has a convergent subsequence.
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Proof' Let (a,) be a bounded sequence of real numbers. By the
preceding theorem, (a,) has a monotone subsequence (a,,). Suppose,
for example, that (a,,) is increasing; it is also bounded, so a,, Ta for
a suitable real number a (2.5.3), and a,, —a by 3.43.

The Weierstrass-Bolzano theorem can be reformulated as a theorem
about closed intervals:

3.5.10. Corollary. In a closed interval [a,b], every sequence has a subse-
quence that converges to a point of the interval.

Proof. Suppose z, € [a,b] (n = 1,2,3,...). By the theorem, some
subsequence is convergent to a point of R, say z,, — z; since a <
Tn, <b forall k, it follows that a <z <b (3.4.8), thus z € [a,}]. O

Exercises

1. Let (an) be asequencein R. Prove that (a,) is unbounded if and
only if there exists a subsequence (a,,) such that le, | >k forall k.

2. Let (a,) be a sequence in R. Prove that the following conditions
are equivalent:

(a) (an) is divergent;

(b) for every a € R there exist an ¢ > 0 and a subsequence (an,)
such that la,, —a| >¢ forall k.

3. *True or false (explain): The sequence a, =sin n has a convergent
subsequence.,

4. True or false (explain): If (a,) is any sequence in R, then the

sequence
an

Z = ——
" 1+ ag)

has a convergent subsequence.

5. Construct a sequence that has a subsequence converging to 0 and
another converging to 1. (Generalization?)

6. Let (an,) be a sequence in R that is bounded but not conver-
gent. Show that there exist two subsequences converging to different lim-
its. {Hint: Let a be a real number such that some subsequence of (a,)
converges to a, then apply Exercise 2.}

7. Prove that the following conditions on a sequence (a,) in R are
cquivalent:
(a) (an) is bounded;

"This elegant argument is taken from the book of W. Maak [An introduction
to modern calculus, Holt, 1963], p. 30.
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(b) every subsequence of (a,) has a convergent subsequence.
{Hint: Exercise 1.}

8. If X is a nonempty set, and d is a metric on X (§2.9, Exercise 5),
the pair (X,d) is called a metric space. A metric space is said to be com-
pact if every sequence in the space has a convergent subsequence (cf. §3.4,
Exercise 12).

(i) Let X be an interval in R with endpoints ¢ and b (1.3.2), where
a < b, and let d{z,y) = |z — y| be the usual metric on X. Prove: X
is compact if and only if X = [a,b]. {Hint: The “if” part is covered by
3.5.10. Show that the other three kinds of intervals with endpoints a and
b are not compact.}

(i) If (X,d) is a compact metric space, show that the subset {d(z,y) :

z,y € X} of R is bounded. {Hint: For every pair of sequences (z,)
and (y,) in X, the sequence of real numbers d(z,,y,) has a convergent
subsequence. }

9. Prove that if (a,) is a monotone sequence in R that has a bounded
subsequence, then (a,) is convergent.

10. If (a,) is a sequence in R and a € R, the following conditions
are equivalent:

(a) (Ve >0) |a, —a| < € frequently;

(b) there exists a subsequence of (a,) converging to a.

If the word “frequently” in (a) is replaced by “ultimately”, how must (b)
be changed so as to remain equivalent to (a)?

3.6. Cauchy’s Criterion for Convergence

The criterion for a monotone sequence to converge is that it be bounded
(3.4.3, 3.4.8). Cauchy’s criterion for convergence applies to sequences that
are not necessarily monotone:

3.6.1. Theorem. (Cauchy’s criterion) For a sequence (a,) in R, the
following conditions are equivalent:

(a) (an) is convergent;

(b) for every € > 0, there is an index N such that |am — an] < €
whenever m and n are > N; in symbols,

(Ve>0)3N > mn>2N = jam —an| <e.

Proof. (a) = (b): Say a, — a. If ¢ > 0 then |a, —a| < €¢/2
ultimately, say for n > N; if both m and n are > N then, by the
triangle inequality,

lam — an| = [(am — a) + (a — an)|
<lam —a|+|a—an| <€/24+€/2=¢.
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(b) = (a): Assuming (b), let’s show first that the sequence (as) is
bounded. Choose an index M such that |e,—a,| <1 forall m,n> M.
Then, for all n > M,

lan| = |(an — am) + an| < lan — an| + lanm| < 1+ laml,
therefore the sequence (a,) is bounded; explicitly, if
r = max{|a1|, |az|,...,lem-1|,1 + |laml|},

then |a,| <r forall n.

By the Weierstrass-Bolzano theorem, (a,) has a convergent subse-
quence, say a,, — a (3.5.9); we will show -that a, — a.

Let € > 0. By hypothesis, there is an index N such that

(%) mn>N = |am —an| <€/2.
Since a,, — a, there is an index K such that
(**) k>K = |an, —a] <¢€/2.

Choose an index k such that n, > N (3.5.2); while we're at it, we can
require that k > K. Then, for all n > N,

lan — al < lan — an, |+ |an, —al < €/2+¢€/2
by (*) and (**). This shows that the sequence (a,—a) isnull,so a, — a
(34.1). 6

The interest of Cauchy’s criterion is that the condition in (b) can often be
verified without any knowledge as to the value of the limit of the sequence
(a virtue shared by the convergence criterion for monotone sequences men-
tioned at the beginning of the section).

Exercises
1. Let (a,) be a sequencein R and define
8n =a1+---+an7
tn =la| +... +|an].

Prove: If (t,) is convergent, thensois (s,). {Hint: |8y —8n| < [tm —tal
by the triangle inequality.}

2. Let (A,) be a sequence of nonempty subsets of R such that

(i) A; DA DAy ..., and
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(i) lx—yl<1/n forall z,y€A,.
Let (a,) be asequence in R such that a, € A, for all n. Prove that
(an) is convergent.

3. Let (X,d) be a metric space (§3.5, Exercise 8). A sequence (z,)in
X is said to be Cauchy (for the metric d) if, for every € > 0, there is an
index N such that m,n > N = d(zpn,z,) <e.

(i) If a sequence (z,) in X is convergent (§3.4, Exercise 12) then it
is Cauchy.

(ii) If X is the interval (0,1] in R, with the usual metric d(z,y) =
|z — yl|, then the sequence (1/n) is Cauchy but not convergent in X.

(iii) If d is the discrete metric on X then every Cauchy sequence in
X is convergent. {Hint: Cf. §3.4, Exercise 12, (iii).}

4. A metric space (X,d) issaid to be complete if every Cauchy sequence
in X is convergent in X (cf. Exercise 3). Prove: A closed interval [a, b]
in R, with the metric d(z,y) = |z—y|, is a complete metric space. {Hint:
Cf. the proof of 3.5.10.}

5. Let (X,d) be a metric space and let D be the metricon X defined
by the formula D = d/(1+d) (cf. §3.4, Exercise 13). Prove that (X,d)
is complete (in the sense of Exercise 4) if and only if (X, D) is complete.

6. Prove that every compact metric space (§3.5, Exercise 8) is complete
in the sense of Exercise 4.

3.7. Limsup and Liminf of a Bounded Sequence

For a monotone sequence, what does it take to be convergent? The
answer is that it has to be bounded (3.4.3).

Let’s turn the tables: For a bounded sequence, what does it take to be
convergent? The answer given in this section is based on an analysis of two
monotone sequences derived from the sequence; in effect, the question of
general convergence is reformulated in terms of monotone convergence.

3.7.1. Notations. Let (a,) be a bounded sequence in R, say |a,| < K
for all n. For each n,let A, be the set of all terms from n onward,

An = {an,an41,8n42,.. .} = {ax: k2n};
then A, is bounded, indeed A, C [—-K, K], and we may define
b, =sup A, =supay, ¢, =infA, = inf a;.
k>n k>n
This produces two sequences (b,) and (c), and it is clear that ¢, < b,
for all n. These sequences are also bounded; indeed,

—KSGnSbnSK
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for all n. Moreover, (c,) is increasing and (b,) is decreasing; for,
A, D Apqa, therefore

cn =inf A, <inf Apt1 =cnta,
bp =supAp > supAnyt1 =bny1;
thus, writing
c=supc, =sup{c,: n€P},
b=infb, =inf{b,: neP},
we have ¢, Tc¢ and b, | b.

3.7.2. Definition. With the above notations, b is called the limit
superior of the bounded sequence (a,), written

. —b=infb =i
limsupa, =b ;Zlbn anI (:lzlgak) ,

and c is called the limit inferior of the sequence (a,), written

liminf a,, = ¢ = sup¢, = sup | inf ak) .
n>1 n>1 \k2n

3.7.3. Ezamples. (i) For the sequence
1,-1,1,-1,...,

A, ={-1,1} foral n,so by =1 and ¢, = —1 for all n, therefore
b=1 and ¢=-1.
(ii) For the sequence
1,-1,1,1,1,...,

Ap={1} for n>3,s0 bp=c, =1 for n >3, therefore b=c=1.
(iil) For the sequence

1 2 1

2’3 3

1 1 k

314 1
47 4’ 57"‘7 k’ k+1?""

b,=1 and ¢, =0 for all n, therefore b=1 and ¢=0.
3.7.4. Theorem. For every bounded sequence (a,) in R, liminfa, <
litmsup ay,.

Proof. In the preceding notations, the problem is to show that ¢ < b.
BBy 3.4.3, we have ¢, — ¢ and b, — b; since ¢, < b, for all n, it
follows that ¢ < b (3.4.8).
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{Alternative proof: If m and n are any two positive integers and
p =max{m,n}, then m <p and n < p, therefore

Cm < Cp Sbp S bn.

This shows that each ¢, is a lower bound for all the b,, so ¢, <
GLBb, =b; then b is an upper bound for all the ¢,,,s0 ¢=LUBg¢, <
b} ¢

What does this have to do with convergence? Everything:

3.7.5. Theorem. For a sequence (a,) in R, the following conditions
are equivalent:

(8) (an) is convergent;

(b) (an) is bounded and liminfa, =limsupa,.
For such a sequence, lima, = liminfa, =limsupa,.

Proof. (a) = (b): If a, — a then (a,) is bounded (3.4.8) and our
problem is to show that, in the notations of 3.7.2, c=b=a.
Let € > 0. Choose an index N such that |a, —a] <€ forall n > N;
then, for all n > N,
—€<ap,—a<e,

that is, @ — € < an < a + €. This shows (in the notations of 3.7.1) that
Ay Cla—¢€a+¢,
consequently
a—-e<cey<by<a+e;
but ey <c<b<by,so
a—e<c<b<La+te.
In particular,
a-1/n<c<b<La+l/n

for every positive integer 7 ; since 1/n — 0, it follows from 3.4.8 that
alc<b<gLa,thus a=c=b.

(b) = (a): Assumlng (an) is bounded, define b and ¢ as in 3.7.1.
{Later on, assuming b = c, we will show that (a») is convergent.}

Let € > 0. Since b = GLBb,, is the greatest lower bound of the b,
and since b+¢€>b, b+ ¢ can’t be a lower bound for the b, ; thus b4 ¢
is not < every b,,s0 b+4e€ > by for some N, that is,

b+e>sup{an: n>N}.
Then n> N = a, < b+ €. We have shown that

(Ve>0) ap < b+ e ultimately.
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A similar argument shows that
(Ve>0) c—e<a, ultimately.
Combining these two results, we have
(Ve>0) c—e<ap <b+e ultimately.

It follows that if ¢ =b and a denotes the common value of ¢ and b,
then
(Ve>0) |an —a| < € ultimately;

in other words, a, —a.

3.7.6. Remark. For any bounded sequence (a,), b, | b and —c, | —c,
therefore b, —c, | b—c (2.5.6). Theorem 3.7.5 can thus be reformulated as
follows: A sequence (a,) in R is convergent if and only if it is bounded
and b, — ¢, | 0. This is the promised reformulation of convergence in
terms of monotone convergence.

Every bounded sequence (a,) has a convergent subsequence (3.5.9); in
fact, there are subsequences converging to ¢ and to b, and these numbers
are, respectively, the smallest and largest possible limits for convergent
sitbsequences:

3.7.7. Theorem. Let (a,) be a bounded sequence in R and let
S={z€R: a,, — z for some subsequence (an,) };
let ¢ =liminfa, and b= limsupa,. Then
{e,b} €S C e 8],

thus ¢ is the smallest element of S and b is the largest.

Proof. The first inclusion asserts that each of ¢ and b is the limit of a
suitable subsequence of (a,,); for example, let’s prove the assertion for b.

Let € > 0. As shown in the proof of 3.7.5, a, < b+ € ultimately.
Also, an > b—e€ frequently; the alternative is that a, < b— ¢ ultimately
{3.2.4), say for n > N, which would imply that by < b— € < b, contrary
fo b < by . Putting these two remarks together, we see that

(Ve>0) b—e<an<b+e frequently.
With e =1, choose n; so that
b-1<a, <b+1;
with € = 1/2, choose ns > n; so that

b-1/2<a,, <b+1/2;
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continuing in this way, we construct a subsequence (an,) such that
|an, — bl < 1/k for all k; then a,, — b,so b€ S. The proof that
c€ S is similar.

To prove the second inclusion, assuming a,, — £ we have to show that
¢ < z < b; let’s show, for example, that = < b, that is, £ —b < 0. Given
any € > 0, it suffices to show that z—b < ¢ (2.1.2). Indeed, a, < b+€ for
all sufficiently large n, therefore an, < b+ e for all sufficiently large k,
therefore * < b+ € by (8) of 3.4.8. The proof that ¢ < z is similar. ¢

Exercises

1. Find limsupa, and.liminfa, for each of the following sequences
(). an =(=1)"+1/n

(i) an =(-1)"(2+3/n)

(iii) an =1/n+ (-1)"/n?

(iv) an =[n+(-1)*(2n+1)]/n

'_2.. 'Cdr_nplete the proof of 3.7.7. {That is, show that ¢ € S and that
c<z forall z€8.}

3. With notations as in 3.7.7, prove that (a,) is convergent if and only
if S is a singleton (that is, S = {a} for some a €R).

4. Observe that Theorem 3.7.7 gives a proof of the Weierstrass-Bolzano
theorem independent of the earlier proof (3.5.9).

5. If (a,) is any bounded sequence, prove that liminfa, = —limsup
(—an).

6. Let (a,) and (b,) be bounded sequences in R. Prove:

(i) limsup(an + b,) <limsupay, + limsup by, .

{Hint: Let c = limsup(a, +b,) and let (a,, +bn,) bea subsequence
of (ap +b,) converging to c. Passing to a further subsequence, we can
suppose that (an,) is convergent, say an, — z. Then b, — c -z,
z < limsupa, and ¢ -z < limsupb,.}

(11) liminf(a, + b,) > liminf a,, + liminf b,

(iii) If an, >0.and b, >0 for all n, then

limsup(anby) < (limsupa,)(limsup by,).

(iv) If a, —a then

limsup(an + bp) = a + limsup by, , .
liminf(a, + b,) = a + liminf b, .

(v) Give examples to show that the inequalities in (i)-(iii) may be strict.
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7. Let (an) be a bounded sequence in R.

(i) Prove that if b = limsupa, then b satisfies the following condition:
(Ve > 0) a, < b+ ¢ ultimately and a, > b — ¢ frequently.

(ii) Show that the condition in (i) characterizes the limit superior, in the
sense that if b€ R satisfies the condition then necessarily b = limsupa,, .

8. Let (a,) be a bounded sequence in R.

(i) Prove that if ¢ = liminfa, then c satisfies the following condition:
(Ve >0) ap > ¢ — ¢ ultimately and a, < ¢ + ¢ frequently.

(ii) Show that the condition in (i) characterizes the limit inferior.

{Hint: Exercises 5 and 7.}



CHAPTER 4

Special Subsets of R

§4.1. Intervals

§4.2. Closed sets

§4.3. Open sets, neighborhoods
§4.4. Finite and infinite sets

§4.5. Heine-Borel covering theorem

The purpose of the chapter is to explore those special subsets of R (pre-
eminently, but not exclusively, intervals) that prove to be most useful in
the study of the functions of calculus.

4.1. Intervals

There are 9 kinds of subsets of R that are called intervals. First, there
are the 4 kinds of intervals described in 1.3.2:

[a,b], (a,b), [a,b), (a,b].

These can be visualized as segments on the real line (Figure 4).

° o [a,b]

—— o (a,b)
— o [a,b)

o——-e (a,b]

[ ]

FIGURE 4

{The segments are transposed above the line so as to show the absence
or presence of endpoints; for example, the segment with a hole at the left
end and a dark bead at the right end represents the interval (a,b].}

AR
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Next, for each real.number ¢ there are the four ‘half-lines’ -

{zeR: z<e¢},
{zxeR: z<c},
{zxeR: z>c},
{zxeR: z>c},

pictorially represented in Figure 5.

I 3
)}

A
&

®
4

e, -

C

FIGURE 5

Finally, R itself is regarded as an interval (extending indefinitely in
both directions):

A
\

0

The four kinds of bounded intervals have simple representations in terms
of their endpoints; the five kinds of unbounded intervals have similar rep-
resentations, but first we have to invent their endpoints:

4.1.1. Definition. For every real number z, we wnte x < 400 and
.+ » —00; in one breath,

—o<r<+00 (VzeR).

{'I'hink of 400 (read “plus infinity”) as a symbol that stands to the right
ol every point of the real line, and —oo (“minus infinity”) as a symbol
that. stands to the left of every point of the line.} To round things out, we
write —oo < 400.

lu effect, a new set R U {—00,400} has been created, by- ad301n1ng
to R two new elements and specifying the order relations between the
new clements ((—oo and  +o0 ) and the old ones (the elements of R).



58 4. Subsets of R

None of this is-in the least mysterious: there is a natural correspondence
between real numbers z and points P of a semicircle (Figure 6),

0
FIGURE 6

and the “points at Zoo” are just what is needed to correspond to the
endpoints of the semicircle.

A computationally simpler explanation: the function f:(-1,1) - R
defined by f(z) = z/(1 — |z|) is an order-preserving bijection (Figure 7);

FIGURE 7

it can be extended (in an order-preserving way) to the closed interval [—1, 1]
by assigning the values +oo to the endpoints +1.

Getting back to the business at hand, the unbounded intervals now have
a simple representation:



84.1. Intervals 59
4.1.2. Definition. For any real number ¢, we write

[e,(40)={z€R: c<z<+0}={zeR: z>c},
(e,(+0)={z€R: e<z<+0}={zeR: z>c},
(-oo,J={z€R: ~co<z<c}={zcR: z<c},
(—o0,¢)={z€eR: _—oo.<_':z:'<c}={zelR: z<c},
(—o0,+0) ={r€R: —co<z<+0}=R.

{Note that when +oc or —oo (neither of which is a real number) is used

as an ‘endpoint’ of an interval of R, it is always absent from the interval,

therefore it is always adjacent to a parenthesis (never a square bracket).}
To summarize it all for convenient reference:

4.1.3. Definition. An interval of R is a subset of R of one of the
following 9 types:
[a,b], (a,b), [a,b), (a,b],

[e, +00), (c,+00), (—00,¢], (—00,¢), (—00,4+00) =R

where a,b,c are real numbers and a <b.

In particular, the empty set @ = (a,a) = [a,a) = (a,a] and singletons
{a} = [a,a] qualify as intervals, albeit ‘degenerate’.

The intervals of R, of all 9 types, are characterized by a single property
(called convezity):

4.14. Theorem. Let A be a nonempty subset of R. The following
conditions are equivalent:
(a) A is an interval;
(b) for every pair of points in A, the segment ]mmng them is contained
in A; that is,
z,y€EA, z<y = [r,y CA.

Proof. The implication (a) = (b) is obvious.

(b) = (a): There are four cases, according as A is bounded above (or
not) and bounded below (or not).

case 1: A bounded below, but not bounded above.

Let a =inf A. We will show that A = (a,+00) or A = [a,+00); for
Lhis, it suffices to show that '

(a,400) C A C [a,+00).

The second inclusion is immediate from the definition of a. Assuming
r € (a,+00), we have to show that r € A. Since r > a = GLBA, there
exists £ € A such that a < £ < r. {Reason: a is the greatest lower
bhound of A, and 7> a,so r can’t be a lower bound, etc.} On the other
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hand, since A is not bounded above, there exists y € A such that y > r.
Thus z<r<y with z,y€ A,s0 r € [z,y] C A by the hypothesis (b).

The remaining three cases are easily proved using appropriate variations
on the preceding arguments; they are left as an exercise, with the following
sketch as hint.

case 2: A bounded above, but not below.

With b=supA, one argues similarly that

(—00,b) C A C (—00,b].

case 3: A bounded (above and below).
With ¢ =infA and b=supA, one argues that

(a,0) C A C[a,b],

80 A is one of the four kinds of bounded interval.

case 4: A neither bounded above nor below.

For every r € R there exist z,y € A with z<r<y,s0 r€(zr,y]C
A;thus A=R. ¢ '

4.1.5. Corollary. If S is any set of intervals and J = (S is their
intersection, then J is an interval (possibly empty).

Proof. By definition, J is the set of all real numbers common to all of
the intervals belonging to &, that is,

J={reR: rel forevery 1€8}.

Assuming J nonempty, it will suffice to verify condition (b) of the theorem.
Suppose z,y€J, £ <y. Then z,y €I forevery I € S; by the theorem,
[z,y) C1 for all 1€ S, consequently [z,y]CJ. O

Exercises

1. Complete the proof of 4.1.4 (especially cases 2 and 3).

2. (i) If T and J are intervals in R such that INJ # &, prove that
IUJ is an interval.

(ii) True or false (explain): If I and J are nonempty intervals such
that TUJ is an interval, then INJ # 2.

(iii) Same question as (ii), assuming I and J are open intervals.

(iv) Same question as (ii), assuming I and J are closed intervals.

3. Let S be a set of intervals in R such that, for every pair of intervals

ILJ in 8§, there exists K € & such that 1UJ C K. Prove that the union
(US of all the intervals in S is an interval.
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4. Let S be a nonempty subset of R, let S be the set of all closed
intervals whose endpoints are in S, and le¢ A =|JS. Prove that A is
an interval,

5. Let A bea Subset. of R with the following property: for every
x € A there exists y € A such that z <y and [z,y] C A. True or false
(cxplain): A is an interval.

6. How would you extend the operation =z — —z from R to RU
{—o00,4+00}? Why?

7. True or false (explain): (o ,[n,+00) = 2.

n=1

8. Let I bean interval, (z,) asequencein I that converges to a point
£ of I. Prove that there exists a closed interval J C I that contains z
and every z,, .

{Hint: Translating by —z, one can suppose that z, — 0. Passing to
subsequences, reduce to the case that z, > 0 for all n. It then suffices
to show that the sequence has a largest term, and for this it is enough
to find an index N such that z, < zn ultimately. The alternative
is that (V N) z, > zny frequently, whence a subsequence (z,,) with
&n; < Tp, < Tng < ...; but this is ruled out by z,, — 0.}

9. (i) Every interval is the union of an increasing sequence of closed
intervals.
(ii) The union of an increasing sequence of intervals is an interval.

4.2. Closed Sets

The most important subsets of R for calculus are the intervals. There
nre differences among intervals, some important, others not (depending,
in part, on the context). For example, the difference between (0,1) and
(0,5) is only a matter of scale; the inequalities defining them are qualita-
tively the same. The intervals (0,1) and (0,4o0) are different in kind,
one being bounded and the other not; even so, the difference is somewhat
muted by the examples following 4.1.1. _

By contrast, the intervals I = (0,1) and J = [0,1] prove to have
dramatically different properties (§4.5); the crux of the matter is that the
endpoints 0,1 of I can be approximated as closely as we like by points
of 1 but they are not themselves points of 1. More precisely, the endpoints
of T, though not in I, are limits of convergent sequences whose terms are
in I. On the other hand, if a convergent sequence has its terms in J
then its limit must also be in J, by (8) of 3.4.8. The latter property is
neaningful for sets that are not necessarily intervals:!

IThis is the point at which our surreptitious study of the ‘topology’ of R
heging (cf. the remarks in the Preface).
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4.2.1. Definition. A set A of real numbers is said to be a closed subset
of R (or to be a closed set in R) if, whenever a convergent sequence has
all of its terms in A, the limit of the sequence must also be in A. That is,
if , —» = and z, € A for all n, then necessarily = € A. {Suggestively:
You can’t escape from a closed set by means of a convergent sequence!} In
symbols,

z, €A (Vn)
zeR => z€A.

Tp - T
Convention: The empty subset @ of R is closed.?

4.2.2. Example. R is a closed subset of R (nowhere else for the limit
to go!).

4.2.3. Ezample. Every singleton {a} (a € R) is closed (the constant
sequence T, =a converges to a).

4.2.4. Ezample. For every real number c, the intervals [c,+o00) and
(—oc,c] are closed sets. For example, if z, — z and z, >c¢ forall n,
then z > ¢ by (8) of 3.4.8. {Caution: These are closed sets and they are
intervals, but they are not closed intervals; the latter term is reserved for
intervals [a, ] .}

Before enlarging the list of examples, let’s prove some useful general
properties of closed sets:

4.2.5. Lemma. If A is a closed subset of R, z, — = in R, and
Tp € A frequently, then z € A.

Proof. By assumption, there is a subsequence (z,,) with =, € A for
all k;since =, — z, £ € A by the definition of a closed set. ¢

4.2.6. Theorem. (i) @ and R are closed sets in R.

(ii) If A and B are closed sets in R, then so is their union AUB.

(iii) If S is any set of closed sets in R, then their intersection (S is
also a closed set.

Proof. (i) Already noted in 4.2.1 and 4.2.2.

(ii) Suppose z, € AUB forall n and z, — z. If z, € A frequently
then z € A by the lemma; the alternative is that z, € B ultimately, in
which case z € B, again by the lemma. Either way, t € AUB.

(iii) Let B=NS={ze€R: zc€Aforall AcS}. Suppose z, =z
and z, € B forall n. Foreach A€ S, z, € A for all n, therefore

2Rationale: For A = @ the statement on the left side of the implication
is never true, so the implication is true by ‘vacuous implication.” Think of the
implication as a pledge: as soon as someone presents us with an £ € R and
a sequence (Z,) satisfying the left side of the implication, we stand ready to
veri(fiy that = belongs to A; we're waiting...and, meanwhile, the pledge is
valid.
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x € A (because A is closed); thus = € A for all A € S, therefore
e nS =B. ¢ :

4.2.7. Example. Every closed interval
[a, b] = (—'mv b] n [a! +m)

is a closed set (in view of 4.2.4, it is the intersection of two closed sets).

4.2.8. Ezample. If A,,...,A, is a finite list of closed sets in R, then
Lheir union A;U...UA, isalso a closed set. {Induction on (ii) of 4.2.6.}

4.2.9. Ezample. Every finite subset A = {a1,...,a,} of R is a closed
sct; for, A={a1}V...U{a,} is closed by 4.2.3 and 4.2.8.

If A is aclosed set, we know where the limits of its convergent sequences
nre (they are in A). On the other hand, the set A = (0,1] contains a
convergent sequence—for example z, = 1/n—whose limit is not in A.
For an arbitrary subset A of R we may contemplate the set A of all
real numbers that are limits of sequences whose terms are in A ; regardless

of the status of A, A is always a closed set:
4.2.10. Theorem. Let A be any subset of R and let

A={z€R: a, =z for some sequence (a,) in A}.

Then A is the smallest closed set containing A, that is,

(1) ADA,

(2) A is a closed set,

(3) if B is a closed set with B> A then BDOA.
Moreover,

(4) A is closed <> A =A;

(5) A is the set of all real numbers that can be approzimated as closely
us we like by elements of A, that is,

z€A & (Ve>0) 3a€A 3 jz—a|l<e.

Proof. (1)If a € A let @, =a forall n;then a, —a,s0 a€A.

(3) Assuming B is a closed set with A C B, we have to show that
Ac B. Let z€ A,say a, —» 2z with a, € A for all n; then a, €B
for all n (because A C B), therefore z € B (because B is closed).

(1) To say that A is closed means (4.2.1) that A C A;since A D A
automatically, the condition A C A is equivalent to A =A.

(5), <=: For each positive integer n let ¢ = 1/n and choose a, € A
wiuch that | —a,| <1/n. Then a, — z,s0 T €A.

> Let £ € A.say ap, — T with a, € A forall n. If € >0 then
v a,] <€ forsome n (in fact, nltimately!).
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(2) Assuming z, — z with z, € A for all n, we have to show that
z € A. Let’s apply the criterion of (5): If € > 0, choose n so that
|z — x| < €/2; for this n, choose a € A so that |z, —a| < ¢/2. Then
|z — a|l < €/2+ €/2 by the triangle inequality. ¢

4.2.11. Definition. With notations as in the preceding theorem, A is
called the closure of A in R. {Alternate terminology: The points of A
are said to be adherent to A, and A is called the adherence of A.}

Exercises

1. (i) Prove: For each ¢ € R, neither of the intervals (c,+o00) and
(—oo,c¢) is a closed set.

(ii) Prove: If a < b then none of the intervals (a,b), (a,), [a,b) is a
closed set. . _

(iii) Find the closure in R of each of the intervals in (i) and (ii).

2. Prove that Z is a closed subset of R, but Q is not.

3. If A is a bounded nonempty subset of R, prove that supA € A
and infA € A.

4. Let 1 = R — Q be the set of all irrational numbers. Prove that
I=Q=R.

5. If A is a closed subset of R, prove that each of the following sets B
is also closed:

(i) B={-z: z€A};

(ii) B={|z|: z€A};

(iii) B={z?: z€A}.

{Hint for (ii) and (iii): Weierstrass-Bolzano theorem.}

6. (i) If A and B are any two subsets of R, prove that

AUB= A UB.

(ii) Disprove (with a counterexample): ANB = A NB. {Hint: Exer-
cise 4.}
(iii) Disprove (with a counterexample):

A=

=1 n=1

Cs

3

{Hint: List the rational numbers in a sequence (ry,) andlet A, ={rn}.}
7. Let (a,) be asequencein R and let

S={zreR: a, — z for some subsequence (a,,)}
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(conceivably S = @ ). Prove:
(#) S={zreR: (Ve>0) |a, —z| <€ frequently};
(ii) S is a closed subset of R.
{Hint for (i): Proof of 3.7.7. Hint for (ii): Proof of (2} of 4.2.10.}

8. Let (X,d) be a metric space (§3.5, Exercise 8) and let A be a
subset of X. Imitating 4.2.1, call A a closed subset of X if, whenever
r, € A(neP)and z, — z (in the sense of §3.4, Exercise 12), necessarily
r € A. Guided by 4.2.11, define the closure A of a subset A of X.

(i) Prove the metric space analogues of 4.2.2, 4.2.3, 4.2.5, 4.2.6, 4.2.8-
1.2.10. '

(ii) Let ¢ be a fixed point of X. For any r >0 consider the sets

{zeX: d(z,c)<r}, {zeX: d(z,c)>r}

and prove the analogues of 4.2.4 and 4.2.7.

9. For asubset A of R, the following conditions are equivalent: (a) A
is closed; (b) if z, — z and =z, € A frequently, then z € A; (c) if
In — ¢ and z, € A ultimately, then z € A.

4.3. Open Sets, Neighborhoods

According to Theorem 4.2.10, the meaning of z € A is that for every
¢ >0 theinterval (z — e,z +¢) intersects A, that is,

(Ve>0) (z—e,z+e)NA#2.

The meaning of ¢ A is the negation of the preceding condition: there
exists an € > 0 for which the interval (z — e,z + €) is disjoint from A,
that is,

de>0 3 (z—€e,z+e)NA=g2,

in other words,
Je>0 3 (z—¢,z+€) ClA,

where CA = R — A is the complement of A ; so to speak, not only does
+ belong to CA, but there is a little buffer zone about z that remains
m CA —informally, all points ‘sufficiently close to z’arein CA. There is
n technical term for this idea:

4.3.1. Definition. A point = € R is said to be interior to a subset A
of R if there exists an r > 0 such that (z —r,z+r) C A, that is, such
that

ly—zl<r = yeA.
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If z is interior to A, one also says that A is a neighborhood of z .1
The set of all interior points of A (there may not be any!) is called the
interior of A, denoted A°:

° ={ze€R: z isinteriorto A};

thus, A° is the set of all points of A of which A is a neighborhood.

4.3.2. Examples. Q has no interior points (i.e., it has empty inte-
rior), because every open interval contains an irrational number (§2.4, Ex-
ercise 3). Assuming @ < b, the point a belongs to [a,b) but not to its
interior; the interior of {a, b} is (a,b).

The discussion preceding 4.3.1 can be summarized as follows:

4.3.3. Theorem. If A is any subset of R, then
z¢ A & ze€(CA)°;

thus CA = (CA)°.

In words, the complement of the closure (of a set) is the interior of the
complement (of the set). The formula in 4.3.3 can be written

X =C(CA)°;

in effect, the passage from A to its closure A is the composite of three
operations: take complement, then take interior, then take complement
again. Applying the formula to CA in place of A, we have

° =(CCA,

thus the interior of A is the complement of a closed set (we’ll have more
to say about this shortly).

In general, A C A; equality is a special event (A closed). In general,
A° C A; again, equality is a special event:

4.3.4. Definition. A subset A of R is called an open set if every point
of A is an interior point, that is,

(VzeA) 3¢e>0> (z—€,z+¢) CA.

(Equivalently, A is a neighborhood of each of its points.)
Intuitively, for every point of an open set A, there is a buffer zone about

the point—whose size may depend on the point—that is also contained
in A.

YThe relation ‘ A is a neighborhood of z'is just an alternate way of saying
that ‘z is interior to A°’. Analogy: b > a is just another way of saying @ < b.
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To say that A is open means that A C A°; since A D A° automati-
cally, an equivalent condition is that A = A°, in other words, A is equal
to its interior. The analogy with closed sets is no accident:

4.3.5. Theorem.? For a subset A of R,
(i) A is open & CA is closed;
(ii) A is closed < CA is open.

Proof. (i) In general, A° = C-ﬁ_,_so the following conditions are equiv-
alent: A open, A=A°, A=C0CA, CA=CA CA closed.
(ii) Apply (i) with A replaced by CA. ¢

4.3.6. Corollary. For every subset A of R, A° is the largest open
subset of A.

Proof. By the remarks following 4.3.3, A° is the complement of a closed
set, 8o it is open. On the other hand, if U is any open set with UC A,
then U C A®°; for, if £ € U then z is interior to U, so it is obviously
interior to A as well. Summarizing, A° is is an open subset of A, and
it contains all others.

4.3.7. Corollary. Let A C R, z € R. The following conditions are
cquivalent:

(a) A is a neighborhood of z;

(b) there exists an open set U such that z € UC A.

Proof. (a) = (b): U= A° fills the bill (4.3.6).
(b) = (a): Since z € U and U is open, U is a neighborhood of z,
therefore so is its superset A (clear from 4.3.1).

The next theorem is the open set analogue of Theorem 4.2.6:

4.3.8. Theorem. (i) @ and R are open sets in R.

(ii) If A and B are open sets in R, then so is their intersection ANB.

(iti) If S is any set of open sets in R, then their union |JS is also
an open set.

Proof. (i) @ =CR and R = (@ are the complements of closed sets
(4.2.6), hence are open (4.3.5). The proofs of (ii) and (iii) could also be
bused on 4.2.6 and 4.3.5, but we learn more by going back to first principles:

(ii) Assuming z € ANB we have to show that z is interior to ANB.
Since z € A and A is open, thereisan r >0 with (z—-r,z+7r)CA.
Similarly, thereis an s > 0 with (z—s,z+38) C B. If ¢ is the smaller
of 7 and s, then '

(zx—-t,z+t)CANB,

s0 x is interior to ANB.

.2Caution: In life, “open” generally means “not closed”; but in R, a subset
tuny be neither closed nor open, for example the interval [0,1).
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(iii) Le¢t B=|JS. If £ € B then z € A forsome A € §. By
assumption, A is open,.so there isan r > 0 with (z —nr,z+r) CA;
since A C B, it-follows that (z—r,x+r) C B, thus z is interior to B.
We have shown that every point of B is an 1nter10r point, consequently
B is open.

4.3.9. The proof of (ii) of 4.3.8 shows that if A and B are neighbor-
hoods of =z thensois ANB.

Exercises

1. Show that z € A if and only if every neighborhood of z inter-
sects A.

2. (i) Show that (ANB)° = A°NB° for all subsets A and B of R.
(ii) True or false (explain): (A UB)° = A° UB° for all subsets A
and B of R. : :

3. If A isasubset of R and U is an open set in R, prove that
ANUDANU.

{Hint: If z € ANU and V is a neighborhood of z,then UNV is also
a neighborhood of z.}

4. Let A be a subset of R and, for each positive integer n, let
U,.={a:e.]R: |z —a| <1/n for some a€ A}.

Prove:
(i) U, is an open set. {Hint: Exhibit it as the union of a set of open
intervals. }

(iii) Every closed set in R is the intersection of a sequence of open sets.

5. Prove that every open set in R is the union of a sequence of closed
sets. {Hint: 4.3.5.}

6. (i) Find a sequence of open intervals whose intersection is not an open
set.
(ii) Find a sequence of closed intervals whose union is not a closed set.

7. Asubset A of R issaid to be dense in R if its closure is R, that
is, A =R. Prove that the following conditions are equivalent:

(a) A isdensein R;

(b) for every nonempty open set U in R, UNA # @&; that is, A in-
tersects every nonempty open set in R.
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8. Prove that A is a dense subset of R (Exercise 7) if and only R— A
lias empty interior.

9. (i) Prove that Q and R—Q are dense subsets of R (cf. Exercise 7).

(ii) Exhibit a subset A of R, with A # R, such that A is dense but
R — A is not.

(iii) If U and V are dense open sets in ]R , prove that U NV isalso
dense.

(iv) Let (z,) be any sequencein R andlet A=R—{z,: n € P}
be the remaining points of R. Prove that A is dense in R. {Hint: CA
contains no nondegenerate closed interval (§2.6, Exercise 4); cf. Exercise 8.}

10. Let (X,d) be a metric space (cf. §3.5, Exercise 8). If ¢ € X and
r >0, the set
Upc)={zeX: d(z,c) <}

is called the open ball in X with center ¢ and radius r, and the set
B,(c)={ze€X: d(z,c)<r}

is called the closed ball with center ¢ and radius r.

Let A C X, z € X. In analogy with 4.3.1, z is said to be interior
to A (and A is called a neighborhood of z) if there exists an r > 0 such
that U,(z) C A; the set of all interior points of A is called the interior
of A, denoted A° A is said to be open if every point of A is an interior
point (cf 4.34).

(i) Show that if A and B are neighborhoods of a pomt T, then so is
ANB.

(i) Every closed ball is a closed set (§4.2, Exercise 8). Prove that every
open ball is an open set.

(iii) Prove the metric space analogues of 4.3.3 and 4.3.5-4.3.8.

11. In a metric space (cf. Exercise 10) the following conditions on a
point z and a subset A are equivalent:

(a) z is interior to A;

(b) if z,, —» = then z, € A ultimately.

{Hint: (a) = (b) is easy. If (a) is false then, for each n € P, the open
ball U,/,(x) must contain a point z, that is notin A; infer that (b) is
false.}

12. Let C be a set of nonempty open sets in R such that for U,V e,
cither U=V or UNV =@ (thesetsin C are then said to be ‘pairwise
disjoint’). Prove: Either C is finite, or the sets in C can be listed in a
sequence (Uy).

{Hint: Enumerate the rational numbers in a sequence (r,); in each
U & C choose a rational number.}

13. Let U be a nonempty open set in R. Prove that U is the union
ol nset C of pairwise disjoint intervals that are open sets. {Hint: For each
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z € U, write I, for the set of all y € U such that the closed interval
with endpoints £ and y is contained in U; by 4.1.4, I, is an interval.
Let C be the set of intervals I .}

14. If A is a nonempty closed subset of R such that A # R, then
CA is not closed; thus, the only subsets of R that are both closed and
open are & and R.

{Hint: Choose a € A, b€ CA. If, for example, a < b, let ¢ =sup(AN
[a,b]) and argue that c € A (cf. §4.2, Exercise 3) whereas (c,b] c CA.}

15. If p is a nonzero polynomial with real coefficients, then {zeR:
p(z) #0} is an open set.

16. Let I be an interval with endpoints ¢ < b. If U is an open set in
R such that UNI# @, then UN(a,b) # 2.

17. A subset A of R is said to be connected if it has the following
property: If U and V are open sets in R such that A ¢ UU YV,
UNA#@ and VNA #3,then UNVNA #&; in other words, if U
and V are open sets such that

=(UNA)U(VNA) and (UNA)N(VNA)=

then either UNA =@ or VNA = @. Examples: @ is connected
(trivial); R is connected (Exercise 14).

The following propositions culminate in a proof that a subset of R is
connected if and only if it is an interval.

(i) Every connected set A is an interval. {Hint: If a,b € A and
a < ¢ <b, it suffices to show that c € A (4.1.4). If c ¢ A consider the
sets U= (-o00,¢) and V= (c,+00).} -

(ii) Every closed interval [a, b] is connected. {Hint: Let U and V be
open sets such that

[av b] = (Uﬂ [a’ b]) U (Vﬂ [a" b])’
Unfa,bt)Nn(Vniae,b) =2

Let A=Un/e,b, B=VnN][a,b and assume to the contrary that A
and B are both nonempty. Note that A and B are closed sets in R; for
example, if z, € A and =z, — z, the alternativeto x € A is = € B,
whence z, € V ultimately, contraryto ANB=@&. If ¢ =supA, then
¢ € A (§4.2, Exercise 3). Necessarily ¢ = b; for, if ¢ < b then there
exists an € > 0 such that [c—¢,c+¢€ C U and c+ e < b, which leads
to the absurdity c+e€ € A. Thus b =supA. Similarly, b =supB, so
b€ ANB, a contradiction.}

- (iii) If A UA,, where (A,) is a sequence of connected sets such
that A; C Ap CA3C ..., then A is connected. {Hint: Let U and V
be open sets with

=(UNA)U(VNA) and UNnVNA=g.
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Foreach n, A, = (UNA,)U(VNA,) with the terms of the union disjoint,
so either UNA, =@ or VNA,=0.If UnA, =@ frequently, then
UNnA, =@ forall n,whence UNA=g.}

(iv) Every interval in R is connected. {Hint: Every interval is the union
of an increasing sequence of closed intervals.}

18. There exists a sequence of open intervals (a,,b,) such that every
open set in R is the union of certain of the (a,,b,). {Hint: Think
rational endpoints. }

19. For a subset A of R, the following conditions are equivalent:
(a) A isopen; (b)if z, —z and z € A, then z, € A ultimately; (c) if
Zn —» ¢ and z € A, then z, € A frequently. (Cf. §4.2, Exercise 9.)

4.4. Finite and Infinite Sets

The subject of the next section is a famous theorem about “finite cov-
crings”; to appreciate it, we should pause to reflect on the mathematical
usage of the terms “finite” and “infinite”.}

Intuitively, a set is finite if, for some positive integer r, the elements of

the set can be labeled with the integers from 1 to r. More formally:

4.4.1. Definition. A nonempty set A is said to be finite if there exist
a positive integer r and a surjection {1,...,7} — A. Convention: The
cmpty set @ is finite. A set is said to be infinite if it is not finite.

Finite sets are often presented in the following form. If o : {1,...,7} —
A is a surjection and one writes z; = o(i) for i=1,...,r, then

A=o({1,...;7}) ={=z1,...,2.}.

We also say that zj,...,z, is a finite list of elements.?

4.4.2. Example. For each positive integer r, theset {1,...,r} is finite.
{Proof: The identity mapping {1,...,7} — {1,...,r} is a surjection.}

4.4.3. Example. The set P of all positive integers is infinite. {Proof:
We have to show that there does not exist a surjection {1,...,r} —» P for
any r. In other words, assuming r € P and p: {1,...,r} =P, we have
to show that ¢ is not surjective. Let n =1+ (1) + ... + ¢(r); then
w(i) <mn forall ¢=1,...,r, therefore n is not in the range of ¢.}

'Suggestion for a first reading: Skim through the definitions and the statements
of the theorems. If the statements look plausible and the proofs feel superfluous,
it is not a sin to skip over the details. (Someday—not necessarily today—you'll
want to worry about such matters.) The underlying challenge: when we use the
wards, do we know what we’re talking about?

2The word “list” often also connotes the particular order in which the ele-
iments are written down; the list x3,;,r3 would then be distinguished from
Iy ry.ry . although the sets {xy, 21,23} and {z1,z2,Z3} are equal.
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4.4.4. Theorem. If f:X — Y is any function and A is a finite subset '
of X, then f(A) is a finite subset of Y.

Proof. If o : {1,...,7} —» A is surJective, then i — f(o(i)) is a
surjection {1,...,7} — f(A). &

4.4.5. Theorem. If A;j,...,A,, is a finite list 6f finite subsets of a set,
then AjU...UA,, is also finite. _

Proof. For each j = 1,...,m there is a positive integer r; and a
surjection o;:{1,...,7;} = A;. Let r=r1+... 47y ; we will construct
a surjection "

o:{1,..., 7} = AjU...UA,
in the ‘obvious’ way. (But it still takes some concentration to put it down
on paper!)

The elements of {1,...,7} can be organized, in ascending order, as a
union of m subsets:

{1,...,r}={1,...,m}U{rm+1,...,m1+r}U...

U{m+...+rmaa+1,...,m+ ...+ rme1+7m}
=B;UB;U...UB,,,

where the sets
Bj={'l"1+...+7‘j_.1+1,...,T‘1+...+T’j_1 +T'j}

are pairwise disjoint. (Convention: When j = 1, the ‘empty sum’ r; +

.+ ;-1 ‘is understood to mean 0.)

For each j=1,...,m the formula 6;(i) =7y +...+7j—1 +1i defines
a bijection

6;:{1,...,7;} - B;.

Define o : {1,...,7} - AjU...UA,, asfollows. If k € {1,...,r}
then k € B for a unique j G {1 .,m}, so k = 6;(i) for a unique
ie{l,.. ,r,} define

o(k) = o;(i) = 0;(8;" (k).

In other words, o is the unique mapping on {1,...,7} that agrees with
j 007 1 on B;.
It remams only to show that o is surJectlve, indeed,

o({1,...,7r}) =e(B1U...UB)
=o(B;)U...Uc(Bn)
=01(07'(B1))U... Uom (0, (Bm))

=0 ({1,....m}U...Uon({L,...,7n})
=AU...UA,. O
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4.4.6. Lemma. If ACP and A is infinite, then there exists a strictly
increasing mapping ¢ : P— A; in particular, ¢ is injective and p(n) >
n forall n€P.

Proof. Apart from notation, it’s the same to show that there exists a
sequence (a,) in A such that m <n = an < an (§2.5). Define a,
recursively as follows. Since A is not finite, it is nonempty; let a; be
the smallest element of A3 Then A # {a;} (because {a;} is finite
and A isn’t), so A — {a1} # &; let a2 be the smallest element of
A—{a1}. Then a2 >a; and A # {a1,as} (because {ai,a2} is finite),
so A — {aj,az} has a smallest element a3, and a3 > az. Assuming
ay,...,a, already defined in this fashion, let a,41 be the smallest element
of A~ {ay,...an}.

The function ¢ : P — A deﬁned by ¢(n) = a, is strictly increasing.
It follows, by induction, that ¢(n) >n for all n. For, ¢(1) > 1; and if
(k) > k then @(k+1) > (k) > k, therefore p(k+1)>2k+1.$

4.4.7. Theorem. Ewery subset of a finite set is finite.

Proof. Suppose F is finite and B c F. By assumption, there exists
a surjection o : {1,...,7} — F for some positive integer r. Let A =
a~1(B) be the inverse image* of B under o;then o(A) =B (because
o is surjective), so it will suffice to show that A is finite (4.4.4).

Now, A c {1,...,r}. If A were infinite, by the lemma there would
cxist & mapping ¢ : P — A such that ¢(n) >n for all n € P; but then
n < ¢(n) <r for all n, whichis absurdfor n=r+1. ¢

4.4.8. Corollary. Every superset of an infinite set is infinite.
Proof. Suppose B D A. By the theorem,’

B finite = A finite;
in contrapositive form, this says

A not finite = B not finite. {

4.4.9. Corollary. If ¢:P — A is injective, then A 1is infinite.

Proof. If B = ¢(P) is the range of ¢, then ¢ defines a bijection
P — B;let ¥: B — P be the inverse of this bijection. Since ¥(B) =
and P is infinite (4.4.3), B can’t be finite (4.4.4); but BC A,s0 A
isn’t finite either (4.4.8). ¢

The property in 4.4.9 characterizes infinite sets (if you believe the fol-
lowing proof of the converse):

3We're citing here the ‘well-ordering property’ of the set of positive integers:
cvery nonempty subset of P has a first element.
“The set of all i € {1,...,7} such that o(i) € B (see also §5.1).
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4.4.10. Theotem. A set A is infinite zf and only if there exists an
injection P — A.

Proof. The “if” part is 4.4.9.

Conversely, assuming A infinite, we have to produce a sequence (a,)
in A suchthat m # n = am # a,. “Construct” a, recursively
as follows. Since A is infinite, it is nonempty; choose a; € A. Then
A # {a1} (because {a;} is finite), so A — {a;} # @; choose ay €
A —{a;}. Assuming a,,...,a, already chosen, A # {ay,...a,}; choose
Gnt1 € A= {a,...,a,}. ¢

Exercises

1. (i) Why is the set Q of rational numbers infinite?
(ii) Prove that the set R — @ of irrational numbers is infinite. {Hint:
Consider the mapping n— n++v2 (n e P).}

2. If f:X — Y is injective and X is infinite, prove that Y is
infinite.

3. Prove that every interval with endpoints a < b is an infinite subset
of R.

4. If A and B are sets then the product set A x B is the set of all
ordered pairs (a,b) such that a € A and b € B, with the understanding
that (a,b) = (a’,b') means that a=a’' and b="V.

(i) Prove that if A and B are finite then sois A x B.

(ii) If A and B are nonempty and AxB is ﬁnlte, prove that A and
B are finite.

{Hints: (i) The correspondence (i,j) — (i — 1)s +j defines a bijection

{1,...,r} x{1,...,8} = {1,...,7s}.
(ii) Consider the ‘projection mappings’ (a,b) — a and (a,b).—b.}

5. Let A be asubset of R. A point = € R is called a limit point of
A if every neighborhood of x contains a point of A different from z.
{For example, 0 is a limit point of each of the intervals (0,1) and [0,1).}
Prove:

(i) If z is a limit point of A, then z€A.

(i) ¥ z€ A—A then z is a limit point of A.

(i) z is a limit point of A & z € A - {z}.

(iv) Every bounded infinite subset of R has at least one limit point.
{Hint: Apply 4.4.10, then the Weierstrass-Bolzano theorem.}

5Superficially, the argument looks a lot like the proof of 4.4.6; the difference
is that, without the well-ordering property used in the proof of 4.4.6, there is
ambiguity in the choice of the a,.
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6. If A is a subset of R, the set of all limit points of A (Exercise 5)
is called the derived set of A, traditionally denoted A’ (regrettably con-
flicting with a popular notation for ‘complement’; we just have to keep our
cye on the ball).

QI zn, 5z, zn#2z (Vn) and A= {z}U{z,: n € P}, then
A’ = {z}.
(ii) f ACBCR then A'CB.

(ili) (AUB) = A’UB’ for all subsets A, B of R.

(iv) If k is any positive integer, give an example of a set A CR such
that A’ has exactly k elements.

(v) Give an example with A’ ={0}uU{l/n: neP}.

(vi) A’ is a closed set; why?

(vii) A=AUA’ for every subset A of R.

4.5. Heine-Borel Covering Theorem

The Heine-Borel theorem is a theorem about open coverings of a closed
interval; first, we have to explain the words.

4.5.1. Definitions. Let A CR and let C be a set of subsets of R. If
cach point of A belongs to some set in C, we say that C is a covering
of A (or that C covers A); in symbols,

(VzeA) 3CeC > z€C

or, more concisely,
AclJe.

If, moreover, every set in C is an open subset of IR, then C is said to
Ihe an open covering of A. If a covering C of A consists of only a finite
uumber of sets, it is called a finite covering. If C is a covering of A and
if D cC issuch that D is also a covering of A, then D is referred to
us a subcovering (it is a subset of C but a covering of A).

To get a feeling for these concepts, let’s look at two instructive examples.

4.5.2. Ezample. Suppose A consists of the terms of a convergent se-
quence and its limit, that is, »

A={z}u{z,: neP},

where z, — z. If C is an open covering of A then A is covered by
linitely many of the sets in C. {Proof: The limit 2 belongs to one of the
sets in C,say ¢ € U e C. Since U is open, there is an ¢ > 0 with
(r — €,z +€) C U, it follows that z, € U ultimately, say for n > N.
Iiach of the terms z; (i =1,...,N) belongs tosome U; €C,s0 A is
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covered by the sets U,Uy,...,Uy.} So to speak, every open covering of
A admits a finite subcovering.

4.5.3. Example. Let A be the open interval (2,5) and let C be the
set of all open intervals (2+ 1,5 -~ 1) (n € P). Then C is an open
covering of A, but no finite set of elements of C can cover A. {Reason:
Each element of C is a proper subset of A and, among any finite set of
elements of C, one of them contains all the others.} Thus, C is an open
covering of A that admits no finite subcovering.

Without further fanfare:

4.5.4. Theorem. (Heine-Borel theorem) If (a,b] is a closed interval
in R and C 1is an open covering of [a,b], then [a,b] is covered by a finite
number of the sets in C.

Proof. Let S be the set of all z € [a,b] such that the closed interval
[a,z] is covered by finitely many sets of C. At least a € S, because
[a,a] = {a} and a belongs to some set in C; our objective is to show
that beS.

At any rate, S is nonempty and bounded; let m = supS. Since S C
[a,b], we have a < m < b. The strategy of the proof is to show that
(1) meS,and (2) m=b.

(1) Since m € [a,b] C UC, there isa V € C such that m € V; since
V isopen, [m—¢,m+¢€ CV forsome e > 0. Thought (for later use):
we can take € to be as small as we like.

Since m —e < m and m is the least upper bound of S, there exists
z €S with m—e<z <m. From z €S we know that the interval [a, z]
is covered by finitely many sets in C, say

[@,2) cUU...UU,;

on the other hand, [z,m]C [m—¢,m+¢ CV,s0 [a,m]=[a,z]U [z, m]
is covered by the sets V,Uy,...,U, of C. This proves that m € S, and
a little more: :

(¥ [a,m+€e cVUUU...UU,;

it follows that m+¢€ > b, because m+¢ < b would imply, by virtue of (*),
that m + € € S, contrary to the fact that every element of S is <m.
(2) The preceding argument shows that b—m < ¢ and the argument is
valid with € replaced by any positive number smaller than €. It follows
that b —m < 0. {The alternative, 0 < b — m < €, would entail the
absurdity b—m < b—m.} Thus b <m;already m<b,s0 b=meS.

The Heine-Borel theorem states that if A = [a,b] then every open
covering of A admits a finite subcovering; the same is true for the set
A ={z}u{z,: n € P} formed by a convergent sequence and its limit
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(4.5.2). Two examples precipitate a definition (and a question—are there
other examples?);

4.5.5. Definition. A subset A of R is said to be compact if every
open covering of A admits a finite subcovering.
Such sets are readily characterized:

4.5.6. Theorem. For a subset A of R, the following conditions are
equivalent:

(a) A is compact;

(b) A is bounded and closed.

Proof. (a) = (b): Suppose A is compact. The open intervals (—n,n)
(n € P) have union R, so they certainly cover A; by hypothesis, a finite
number of them suffice to cover A, which means that A C (-m,m) for
some m, consequently A is bounded.

To show that A is closed we need only show that A C A (§4.2),
cquivalently, CA ¢ CA. Assuming z ¢ A let’s show that z ¢ A; we seek
a neighborhood V of z such that VNA =@ (cf. 4.3.3). If a € A then
r # a (because z ¢ A), so there exist open intervals U,,V, such that
a€Uy, €V, and U,NV, =2 (Figure 8).

Ua VG
o——nrt———o0 [ o *]
x
FIGURE 8

As a varies over A, the sets U, form an open covering of A ; suppose
AcU, U...ul,, .

Let :
U=U, U...UU, , V=V, N...NV,, .

Then ACU and V is a neighborhood of x (4.3.4). If y € Uy, then
i ¢ Va, , therefore y ¢ V; it follows that VNU = & (V misses every term
in the formula for U, so it misses their union), consequently VNA =2.

(b) = (a): Assuming that A is bounded and closed and that C is
an open covering of A, we seek a finite subcovering. By hypothesis, the
mt V=R—A isopen and A is contained in some closed interval, say
A  [a,b]. Why not apply the Heine-Borel theorem to [a,b] ? The points of
|, b] that are in A are covered by C; what’s left, [a,b] — A, is contained
m V. We thus have an open covering of [a,b]: the sets in C, helped out
by the set V. It follows that

(+) [a,b) cVUUU...UU,
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for suitable Uy,...,U, in C. The set A is contained in [a,b] but is
disjoint from V, so it follows from (*) that

" AcUyuU...UU, -

and we have arrived at the desired finite subcovering. ¢

The concept of compactness is exceptionally fertile; we will have many
occasions to appreciate it.

4.5.7. Corollary. Every nonempty compact set A C R has a largest
element and a smallest element.

Proof. By the theorem, A is bounded and closed. Let M =supA and
choose a sequence (z,) in A such that z, — M (3.4.9); then M € A
(because A is closed) and M is obviously the largest element of A.
Similarly, inf A belongs to A and is its smallest element. {

Exercises

1. Let A be a subset of R. Prove that the following conditions are
equivalent:

(a) A is compact;

(b) every sequence in A has a subsequence that converges to a point
of A.

2. Let A and B be closed subsets of R, C a compact subset of R.
Prove:

(i) Theset A+C ={a+c: a€ A, c€ C} is closed. {Hint: If
an + ¢, — z, pass to a convergent subsequence of (c,).} -

(if) Theset A+B={a+b: a€ A, b€ B} need not be closed. (Try
A={-1,-2,-3,...} and B={n+1/n: n=2,3,4,...}.)

(iii) If A c C then A is also compact.

(iv)If A and B are compact, then soare A+B, ANB and AUB.

(v) If K isaset of closed subsets of R, at least one of which is compact,
then (X is compact.

3. True or false (explain): If A is any bounded subset of R, then its
derived set A’ is compact. (Cf. §4.4, Exercise 6.)

4. True or false (explain): The only compact intervals in R are the
closed intervals (a,b]. :

5. Let A be a nonempty open set in R. Prove:
(i) A is the union of the set C of all open intervals (r, 8) with » and
s rational and (r,8) C A.
(ii) A is the union of the set D of all open intervals (r,s) with r
and s rational and [r,s] C A.



§4.5. Heine-Borel Theorem 79

(iii) C and D are open coveringsof A, DCC.

(iv) D admits no finite subcovering. {Hint: §4.3, Exercise 14.}

(v) C admits a finite subcovering if and only if A is the union of a
finite number of open intervals with rational endpoints.

6. Let (X,d) be a metric space (§3.5, Exercise 8). Call a set C of
subsets (open subsets) of X a covering (open covering) of X if |JC = X.
It can be shown (the proof is not easy) that the following conditions are
equivalent:

(a) Every sequence in X has a convergent subsequence.

(b) Every open covering of X admits a finite subcovering.

Thus, the definition of compactness mentioned in §3.5, Exercise 8 is
equivalent to the definition suggested by 4.5.5.

7.If z, >z and A= {z}U{z,: n€ P}, then A is compact (4.5.2)
therefore it is closed and bounded by 4.5.6. Prove that A is closed and
bounded without using 4.5.6.

8. If (A,) is a sequence of nonempty, compact subsets of R such
that A, D Ap41 for all n, prove that the intersection A = (A, is
nonempty. {Hint: If A = & then the sets CA, (n > 2) form an open
covering of A;.}



CHAPTER 5

Continuity

§5.1. Functions, direct images, inverse images
§5.2. Continuity at a point

§5.3. Algebra of continuity

§5.4. Continuous functions

§5.5. One-sided continuity

§5.6. Composition

"In elementary calculus, continuity and derivatives are painted with the
same brush and the brush is called ‘limits’; this is good for showing the
core of unity in the processes of calculus. However, when we look at these
concepts more closely, they are quite different: continuity has to do with
the interaction between functions and open sets, whereas differentiability
involves in addition the algebraic structure of the number field (from the
very outset one considers ‘difference quotients’).

The present chapter is devoted to the basic notions of continuity of real-
valued functions of a real variable (functions f : S — R, where § is
a subset of R); the next chapter emphasizes those aspects of continuity
that depend on the order properties of R. Since functions are in the
forefront from now on, we begin with a discussion of the effect of a function
f:X —Y on subsets of its initial set X and its final set Y.

5.1. Functions, Direct Images, Inverse Images

The fundamental definitions concerning functions are summarized in the
Appendix (§A.3). A function f:X — Y acts on points of X to produce
points of Y. In this chapter it will be useful to let f also act on subsets
of X to produce subsets of Y, and vice versa (even if f does not have
an inverse function in the sense of A.3.10!).

The basic idea is very simple: if A is a subset of X we can let f
act on all of the elements of A; the result is a set of elements of Y, in
other words a subset of Y, denoted f(A) and called the image (or ‘direct

Qan
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image’) of A under f. In symbols,

fA)={yeY: y= f(z) forsome z € A}
={f(z): z€A}.

In particular, if A is a singleton, say A = {a}, then f(A) is also a

singleton:
f{a}) = {f(a)}.
More generally, if z;,...,, is any finite list of elements of X, then

f{z1,-..,za}) = {f(z1), ..., f(zn)}.

In the reverse direction (from Y to X) the situation (and the notation)
is a little more complicated: if B is a subset of Y, we consider the
clements = of X that are mapped by f into B, in other words, such that
f(z) € B. The set of all such elements z (there may not be any!) forms
a subset of X (possibly empty), called the inverse image of B under f,
denoted f~1(B); in symbols,

fFiB)={zeX: f(z)€B}.
5.1.1. Example. Let f:R — R be the function f(z) =z?. Then

2 = {4}, r{-22h={4}, {4 =1{-2.2}.
Also,
f([os 2]) = [014] = f([—1s2])’ f_l([o? 4]) = [-2v 2]
and f([0,+00)) = [0,4+00) (why?).

*5.1.2. Example. Let f be the sine function, that is, define f: R — R
by f(z) =sinz. Then f(x) =0, f~1({0}) ={nr: ne€Z}, and
J7Y({r}) =2 (why?). Also,

f(~n/2,7/2]) = [-1,1] = f(R),
£74([0,1)) = {J [2nm, (2n + 1)].

nel

{Exercise: Unravel all of these formulas; i.e., what do they say? Draw a
picturel}, .
The following theorem helps us get a grip on these concepts:

5.1.3. Theorem. Let f: X —Y be any function.
(1) For subsets A1,A2 of X,

A C Az = f(A)) C f(A2).
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(1') For subsets B,,B; of Y,
B;CB; = f7'(B:)C f'(B2).

(2) f(A1UAR) = f(A1)U f(A2) for all subsets A;,A; of X.

(2') f~Y(B1UB;) = f~1(B,)U f~1(Bz) for all subsets B,,Bz of Y.

(3) f(f~Y(B)) C B for every subset B of Y.

(3) FYf(A)) DA for every subset A of X.

(4) FY(B1NBy) = f~1(B1) N f~Y(By) for all subsets B,,B; of Y.

(5) f~YY-B)=X— f~Y(B) for every subset B of Y.

Proof. {There are no (4) and (5); the obvious formulas that come to
mind are in general false.}

(1) Assuming y € f(A;) we have to show that y € f(A2). By as-
sumption y = f(z) for some z € A;; but A; C A, so z also belongs
to Az, thus y= f(z) € f(A2).

(1) If = € f~1(B;) then f(r) € B; C Bz, so f(z) € By, in other
words z € f~1(B,).

(2) Forapoint y in Y,

Y€ f(A1UAy) & y= f(r) forsome z in A;UA;
& y= f(z) forsome z in A; orin A
& Y€ f(A1) or y€ f(As)
& Y€ f(A)Uf(A2).

(2) For a point = in X,

z€ f~}(BjUB;) & f(zx)eBUB;
< f(z)€By or f(z) € By
& z€ f7Y(B,) or ze f7Y(B2)
& zef(B)Uf(By).

(3)If z€ f~1(B) then f(x) € B;thus f(f~(B)) CB.
(3)If z € A then f(z) € f(A), so = € f~(f(A)); thus A C

fHf(A)) .
(4’) For a point = in X,

ze f~}(BiNB;) & f(z) €B;NB;
& f(z) €B; and f(z) € B
& z€ f~1(B)) and z € f71(By)
& z€ fIBi)Nf1(By).
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(5') For a point z in' X,

refY(Y-B) & f(r)eY-B
< f(z)¢B
& z¢f'(B)
e zeX-fY(B).

Another way of expressing this formula: f~'(CyB) = Cxf~'(B), where,
for example, byB =Y — B is the complement of B in Y (cf. A.2.7).

Exercises

1. Let f: X — Y be a constant function, say f(z) =c €Y for all
r € X, let r; and z; be distinct points of X, and let A; = {z,},
Az = {z2}.
(i) Compare f(A;NAz) and f(A1)N f(A2).
(i) Compare f(X—A;) and Y —f(A;);also f(X—A;) and f(X)—
J(A1).

2. let f:X — Y beany functlon

(i) Prove that f }(By — Bp) = f~1(B1) — f1(Bz) . for all subsets
B[,Bg of Y.

(ii) For a subset B of Y, prove:

fiB)=2 & BnfX)=

3. Let f:X—Y be a function.
(i) To say that f is injective means that forevery y € Y, f~1({y}) is
cither empty or a singleton. _
(ii) To say that f is surjective means that forevery y € Y, f~1({y}) is
nonempty.
(iii) To say that f is bijective means ... (complete the sentence).

4. Let f:X — Y be an injective function. Prove:
(i) fY(f(A)) = A for every subset A of X.
(ii) If A,,A2 are subsets of X such that f(A;) = f(A;), then A; =
A,.
(iii) f(A1 N Az) = f(A1) N f(Ag) for all subsets A;,A; of X; more
penerally,
(iv) if S is any set of subsets of X, then

NS =N£S.

where NS={z€X: z€A forall AecS} and f(S)={f(A): A€
Sh.
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(v) f(A1—Az) = f(A1) — f(A2) for all subsets A;,A; of X.
5.If f:X— Y is a surjective function, prove that B = f(f~!(B)) for
every subset B- of Y.

6. Every function f:X — Y can be written as a composite f=io0s
with s surjective and i injective. {Hint: Let ¢ : f(X) — Y be the
mapping i(y) = y, which ‘inserts’ the subset f(X) of Y into Y.}

7. Let X and Y besets, P(X) and P(Y) their power sets (A.2.8).
A function f:X — Y defines functions f, : P(X) — P(Y) and f*:
P(Y) — P(X), by the formulas

fo(A)=f(A)={f(z): z€A},
f*B)=f"'(B)={z€X: f(z)eB}.

Discuss the composite functions f.o f* and f*o f,. {Hint: (3) and (3')
of 5.1.3; cf. Exercises 4 and 5.}

5.2. Continuity at a Point

Continuity has to do with functions and open sets. The open sets are
the complements of the closed sets, and our definition of closed set is based
on the notion of convergent sequence (4.2.1), so continuity has to do with
functions and convergent sequences; the precise definition is as follows:

5.2.1. Definition. Let f: S — R, where S is a subset of R, and
let a € S. {In other words, a is a point of the domain of a real-valued
function of a real variable.} We say that f is continuous at ¢ if it has
the following property:

Z, €8, T, ~a > f(wn)—’f(a)

That is, if (z,) is any sequence in S converging to the point ¢ of S,
then (f(zn)) convergesto f(a). If f is not continuous at a, it is said
to be discontinuous at a.

5.2.2. Ezample. The identity function idg : R — R (cf. A.3.2) is
continuous at every ¢ € R. '

5.2.3. Ezample. If f : R — R is a constant function, say f(z) =
¢ (V z € R), then f is continuous at every e € R.

5.2.4. Example. The function f:R — R defined by

1 for z>0
f(z)"{o for <0

is discontinuous at a = 0. {Consider the sequence z, = 1/n.}
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5.2.5. Example. The function f:R — R defined by

[1ifzeQ
f(x)‘{o if 2¢Q

(where Q is the set of rational numbers) is discontinuous at every a € R.
{If a is rational, consider the sequence z, = a + (1/ n)V2; if a is
irrational, let z, be a rational number with ¢ <z, <a+1/n (2.4.1).}

The definition of continuity (5.2.1) says it with sequences; we can also
say it with epsilons:

5.2.6. Theorem. Let a € SC R, f:8 — R. The following conditions
on [ are equivalent:

(a) f is continuous at a;

(b) for every € > 0, there exists a § > 0 such that

z€S, |r—al<éd = |f(z) - f(a)| <e.
Proof. Just for practice, here is condition (b) in ‘formal symbolese’:
(Ve>0)36>0> (reS&|z—a|<d) = |f(z)— fla)| <e.

What it says, informally, is that f(z) is near f(a) provided z € S is
sufficiently near a. The degree of nearnessto f(a) (namely e¢) is specified
in advance (and arbitrary); the degree of nearness to ¢ (namely 6) hasto
be found. If a smaller ¢ is specified, the chances are that § will also have
to be taken smaller (but not necessarily; for a constant function, whatever
the given € >0, any 6§ > 0 will do). Now for the proof:

(b) = (a): Let z, €S, zn — a; we have to show that f(z.) — f(a).
et € >0; we seek an index N suchthat n > N = |f(z,) - f(a)| <e.
Choose § > 0 as in (b) (to go along with the given ¢), then choose N
wo that n > N = |z, —a] < § (possible because z, — @); in view of
the implication in (b), n > N. = |f(z,) — f(a)| <e.

~(b) => ~(a): (We are proving (a) = (b) in contrapositive form.) Assum-
ing ~(b), there exists an € > 0 such that for every § > 0 the implication
in (b) fails; thus

(+) (V6>0)3z€S 3 |z—a| <b&|f(x)— f(a)| > .

{What'’s going on? Condition (b) says that for every € > 0 there exists a
snecessful § > 0, where success means that the implication in (b) is true.
'I'he negation of (b) says that there exists an € > 0 for which every 6 >0
lnils; for & to fail means that the implication in (b) fails, and this means
there is an z for which the left side of the implication is true but the right
side iy not.}
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For each n € P choose z, €S so that |z, —a|<1/n and |[f(z,)—
f(a)| > € (apply (*), with 6 =1/n). Then (z,) isasequencein S that
converges to a, but (f(zn)) does not converge to f(a); the existence
of such a sequence negates the condition defining continuity at a (5.2.1).
Assuming ~(b), we have verified ~(a). ¢

When the domain of f is all of R, we can say it with neighborhoods: "

'5.2.7. Theorem. If f: lR_—Q R and a € R, the following conditions are
equivalent:

(a) f is continuous at a;

(b) for every neighborhood V of f(a), f~'(V) is a neighborhood of a.

Proof. (a) = (b): Let V be a neighborhood of f(a); according to
4.3.1, there is an € > 0 such that (f(a) —¢, f(a)+¢€) C V. Since f is

continuous, we know from the preceding theorem that there exists a § > 0
such that |z —a] < 6 = |f(z) — f(a)| < €, in other words

z€ (a—6,a+6) = f(z)€(f(a)—¢ f(a)+e).

Thus,

f((a—8,a+8)) C (f(a)—¢ fla)+e) CV,
whence (a—8,a+6) C f~1(V), which shows that f~!(V) is a neighbor-
hood of a.

(b) = (a): Let us verify criterion (b) of 5.2.6: given any ¢ > 0, we
seek a suitable 6 > 0. Since V = (f(a) —¢, f(a) +¢€) is a neighborhood
of f(a), by hypothesis f~!(V) is a neighborhood of a, so there exists
a 6 > 0 such that (a —6,¢+6) C f~1(V); this inclusion means that
z€ (a—6,a+8) = f(z) €V, in other words, |z —a| <0 = |f(z)-—
fle)] <e. &

Exercises
1. Show that the function f : R — R defined by f(z) = |z| is
continuous at every a € R. {Hint: 3.4.8, (5).}

2. The constant function g:Q — R defined by g(r)=1 (Vre€Q)is
continuous at every a € Q; does this conflict with 5.2.5?

3. Let f: R — R be the bracket function f(z) = [z] (see 2.3.2).
Discuss the points of continuity and discontinuity of f. {To show that a
function is discontinuous at a, exhibit an offending sequence z, — a.}

4. Let f:S—=R, a €S CR. Suppose f has the property
Zn €S, 2o, - a = (f(z,)) is convergent.

Prove that f is continuous at a.
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{Hint: Interlace a sequence (r,) converging to a with the constant
sequence a,a,a,....}

5. Let A be a nonempty, proper subset of R (thatis, ACR, A# @,
A #R). Define f:R-—-R by

1ifzeA
f(x)z{o if 7¢A.

Prove that f has at least one point of discontinuity.

{Hint: If some point a € A is the limit of points of CA, then f is
discontinueus at a. If no such point exists, then A is open (4.3.3); but
then A can’t be closed (§4.3, Exercise 14), so some point b € CA is a
limit of points of A.}

6. Define f:[0,1] — [0,1] as follows. Let z € [0,1]. If z is irrational,
define f(z) =0. If = is rational and z # 0, write z = m/n with m
and n positive integers having no common factor, and define f(z) =1/n.
I'inally, define f(0) = 0.

Prove that f is continuous at every irrational point and at 0, discon-
linuous at every nonzero rational.

{Hint: If z is irrational and r, = my/n, is a sequence of ‘reduced’
fractions with 7, — x, imagine the consequences of (n;) being a bounded
sequence. }

7. Let f:R— R be the function defined by

f(z) x if x is irrational
) =
0 if z is rational.

Prove that f is continuous at 0, and discontinuous at every other point
ol R.

8. Let (X,d) and (Y,D) be metric spaces, f: X —Y, a € X. The
function f is said to be continuous at a if

T, €X, T, = a = f(z,) = f(a),
in other words (§3.4, Exercise 12),
d(z,,a) > 0 = D(f(zn), f(a)) — 0.

With neighborhoods defined as in §4.3, Exercise 10, prove that the following
«onditions are equivalent:
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(a) f is continuous at a;
(b) Ve>0) 36>0 >

d(z,a) <6 = D(f(z),f(a)) <e;

(c) V a neighborhood of f(a) in Y = f~!(V) is a neighborhood
of ¢ in X.

5.3. Algebra of Continuity

Various algebraic combinations of continuous functions are continuous:

5.3.1. Theorem. Suppose a € SCR and f:S—R, g:S—R;let ¢
be any real number.

If f and g are continuous at a, then so are the functions f+g, fg
and cf.

Proof. The functions in question are defined on S by the formulas

(f +9)(=) = f(z) + g()
(f9)(z) = f(z)g(x)
(cf) (=) = cf(x)

(that is, they are the ‘pointwise’ sum, product and scalar multiple).
If z, €S and z, — a, then f(z,) — f(a) and g(z,) — g(a) by
the assumptions on f and g, therefore

(f +9)(@n) = f(%n) + 9(2a) — f(a) +9(a) = (f + 9)(a)

by 3.4.8, (3). This shows that f + g is continuous at @, and the proofs
for fg and cf are similar. {Incidentally, cf is the special case of fg
when g is the constant function equal to c.} ¢

This simple theorem pays immediate dividends:

5.3.2. Corollary. Every polynomial function p: R — R is continuous at -
every point of R. :

Proof. Say p(z) = ag + 612 + az® +... + arz” (z € R) , where the
coefficients ag,ai,...,a, are fixed real numbers. If u : R — R is the
identity function w(x) = =, then p is a linear combination of powers
of u:

p=aol+au+au®+...+au"

3 0

(for example, u® is the function z — (u(z))3 = 23 ; by convention, u° is
the constant function 1). Since u is continuous, so are its powers (5.3.1),
therefore so is any linear combination of them (5.3.1 again). ¢
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Quotients are a little more delicate (we have to avoid zero denominators):

5.3.3. Theorem. With notations as in 5.3.1, assume that f and g are
continuous at a and that g is not zero at any point of S. Then f/g is
also continuous at a.

Proof. The formula defining f/g:S— R is

(f/9)(z) = f(z)/9(z) (z€S8).

(In general, f/g is defined—by the same formula—on the subset T =
{reS: g(z) #0} of S; in the present case, T =S.) If z, € S and
£n — @, then

(F/9)(@n) = f(2n)/9(zn) — f(a)/9(a) = (f/9)(a)

by 3.4.8, (7). O

5.3.4. Example. Suppose p: R — R and ¢g: R — R are polynomial
functions, g not the zero polynomial; let

F={zeR: q(z) =0},

which is a finite set (possibly empty). {By the factor theorem of elementary
anlgebra, g(c) = 0 if and only if the linear polynomial z — c¢ is a factor
of g, that is, g(x) = (z — ¢)qi(z) for a suitable polynomial ¢; and for
all £ € R. Thus every root of ¢ splits off a linear factor, so the degree
of ¢ puts an upper bound on the number of roots.} Let r = p/q be the
(uotient function (called a rational function), defined on the set S =R—F

hy the formula
r(z) = p(x)/g(z) (z€8).

If f=p|S and g = q|S are the restrictions of p and ¢ .to S (A.3.4),
it. is clear from 5.3.2 that f and g are continuous at every point of S,
therefore so is r = f/g (5.3.3).

Exercises

1. With notations as in 5.3.1, assume f and g are continuous at a.
Define |ff: S — R by the formula |f|(z) = |f(z)| (x€S),and h:S —
R by the formula h(z) = max{f(z),g(x)}. One writes h = sup(f,g),
or h = max(f,g), even though h is not “the larger of f and g¢”.
Similarly &k = inf(f,g) = min(f,g) is defined by the formula k(z) =
min{ f(z), g(x)} . Prove:

(i) |f| is continuous at a.

(i) h and k are continuous at a.
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{Hint: (i) 3.4.8, (5). (ii) ‘A= 3(f +g+|f —gl); cf. §2.9, Exercise 1.}
2. Notations as in 5.3.1. True or false (explain):

(i) If ‘f+g is continuous at a,then f and g are continuous at a.
(ii) If |f| is continuous at a, then f is continuous at a.

3. Notations as in 5.3.3. True or false (explain):
(i) If f/g and g are continuous at a, then f is continuous at a.
(i) If f/g and f are continuous at a,then g is continuous at a.

4. Find arational function r : R — R that is not a polynomial function.
(The focus of the problem is on the domain of r.)

5.4. Continuous Functions

5.4.1. Definition. Suppose f :S — R, where S is a subset of R;
f is said to be a continuous function (or ‘continuous mapping’) if it is
continuous at every a € S.

The polynomial and rational functions discussed in the preceding section
are important examples of continuous functions (5.3.2, 5.3.4). An example
not covered by these is the function z +— |z| (see also the exercises); here
is another:

5.4.2. Erample. The function f :[0,00) — R defined by f(z) = vz
is continuous. {Proof: For a sequence (z,) in [0,00), it is clear that
(#x) is null if and only if (\/Z,) is null (cf. §3.3, Exercise 2); this assures
continuity at 0. If > 0 and z, — z, substitute z, for y in the
inequality

ly — 2| = (V¥ — V&) (VI + V)| 2 |Vy - VzlVz,

valid forall >0, y>0.}"

5.4.3. Theorem. Let S be a nonempty subset of R. If f:S - R,
g:8S — R are continuous functions and ¢ 13 any real number, then the
functions f+g, fg and cf are also continuous; if, moreover, g is not
zero at any point of S, then f/g is also continuous.

Proof. This is immediate from 5.3.1 and 5.3.3. ¢

When the domain of f is all of R, there is a neat formulation of
continuity in terms of open sets (or closed sets):

5.4.4. Theorem. For a function f:R — R, the following conditions are
equivalent:

(a) f is continuous;

(b) U open = f~1(U) open;

(c) A closed = f~(A) closed.
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Proof. (a) = (c): Assuming f is continuous at every point of R, we
have to show that the inverse image of any closed set is closed. Let A be
n closed subset of R; assuming z, € f~}(A) and z, — z € R, we have
to show that z € f~!(A). Since f is continuous, f(z,) — f(z); but
f(z,) € A and A isclosed, so f(z) € A, in other words z € f~1(A).

(c) = (b): If U is an open set, its complement CU is closed (4.3.5),
therefore f~!(CU) is closed by (c); then f~1(CU)=Cf~(U) shows that
f~Y(U) is the complement of a closed set, so f~!(U) is open.

(b) = (a): Given any a € R, we have to show that f is continuous
at a. Let € >0;weseeka § > 0 suchthat |z—a} <é = |f(x)—f(a)] <
¢, that is,

z€ (a_éya+6) = f(.’L')e (f(a)—e,f(a)+e),

in other words (a — é,a +6) C f~((f(a) — ¢, f(a) + €)). The interval
U= (f(a) — ¢, f(a) +€) is an open set, so f~(U) is open by (b); obvi-
ously f(a) € U, so a € f~}(U), and the existence of a § > 0 such that
(e —68,a+68) C f~1(U) follows from the fact that f~1(U) is a neighbor-
hood of a. ¢

Exercises

1.If f:R— R iscontinuous and U is an open set in R, then f(U)
uced not be an open set (consider a constant function). Find an example
of a continuous function f:R — R and a closed set A such that f(A)
is not closed. {Hint: Find the range of the function f(z) = z%/(1+z?).}

2. If f:[0,1] — (0,1} is continuous, then f has a fixed point, that is,
there exists a point a € [0,1] such that f(a)=a.

{Hint: Check that the set A = {z € [0,1] : f(z) > =} is nonempty
ad let a =supA.}

3. If f:[a,b] — R is continuous, prove that there exists a continuous
finction F': R — R that ‘extends’ f, in the sense that F(z) = f(z) for
nll & € [a,b]. {Hint: For z > b define F(z)= f(b).}

4. Let f:R — R. The graph of f is the set
Gr={(z.f(2)): z€R}={(z,9): z€R & y=f(2)}.

(i) Suppose f is continuous. Prove that if (zn,yn) € Gy and z, — z,
unw =y, then y = f(z), that is, (z,y) € Gy. Does this remind you of
closed sets?

(ii) Find a discontinuous function whose graph has the property in (i).
{tlint: 1/z.}
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5.If f:R —R is continuous and A is a compact subset of R, then
f(A) is also compact. {Hint: If C is an open covering of f(A), t.hen the
sets f~1(U), where U €C, form an open covering of A.}

6. Let A be a nonempty subset of R and define f:R — R by the. A
formula
f(z)y=inf{lz—a|: a€A}.

Prove that f is a continuous function. {Hint: |z —a| < |z—y|+ |y —al;
show that |f(z) - f(y)| < |z -yl.}

7. If f:[a,b] » R is continuous, then the range of f is a compact
subset of R. {Hint: Exercises 3 and 5.}

8. Prove: (i) There exists no continuous surjection f:[-1,1] — (~1,1).
{Hint: Exercise 7.}

(ii) There exists a continuous bijection g : R — (~1,1) with continuous
inverse. {Hint: Consider g(z)=z/(1+ |z|).}

(iii) There exists a continuous surjection h:R — [-1,1].

(iv) There exists a continuous surjection k:(-1,1) — [-1,1].

9. If I isanintervalin R and f:I— R is continuous, then f(I) is
also an interval (Intermediate value theorem). :

{Hint: If I =R, argue that f(R) is connected (§4.3, Exercise 17). If .
I=[a,b] then f is extendible to a eontinuous function F :R — R with
F(R) = f(I) (Exercise 3). In general, I is the union of an increasing
sequence of closed intervals; cf. §4.3, Exercise 17, (iii).}

10. If f:R—R and g: R — R are continuous and f(r) = g(r) for
every rational number r,then f =g. {The role of the set Q of rational
numbers can be played by any dense subset of R (cf. §4.3, Exercise 7).}

11. Let A be a closed subset of R and suppose ¢ ¢ A. Construct -
a continuous function f : R — [0,1] such that f(c) =0 and f(z) =1 -
for all z € A (one can even arrange for f to be zero in a neighborhood
of c¢). {Hint: R— A contains an open interval containing c.}

5.5. One-Sided Continuity

In discussing functions f defined on an interval {a,b], behavior at
the endpoints requires some special treatment (for example, the point a
can only be approached from the right); that’s one reason for considering
‘one-sided’ matters. Another reason is that ‘two-sided’ behavior can often
profitably be discussed by breaking it up into ‘left-behavior’ and ‘right-
behavior’. For example, the function f with the graph of Figure 9 has
a tangent line problem at the origin; as = approaches 0 from the right,
the slope of the chord joining (0,0) and (z, f(x)) approaches 1, and for z
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approaching 0 from the left, the slope of the chord approaches —1; but
the function fails to have a well-defined ‘slope’ at (0,0) because the ‘left
slope’ and ‘right slope’ are different.

y=—x y=x

(x, f(z))

FIGURE 9

In this section we lay the technical foundation for one-sided discussions
of this sort.

5.5.1. Definition. Let a € N C R. We say that N is a right neigh-
borhood of a if there exists an r > 0 such that {a,a +7] C N. If
Lhere exists an s > 0 such that [a —s,a] C N then N is called a left
neighborhood of a. {Thus N is a neighborhood of a in the sense of
4.3.1 if and only if it is both a left neighborhood and a right neighborhood
of a.}

For example, if a < b then the closed interval [a,}] is a right neighbor-
hood of a, a left neighborhood of b, and a neighborhood of each of its
inlernal points z € (a,b).

552. f M and N are right neighborhoods of a, thensois MNN.

if M is a right neighborhood of @ and M C N then N is also a right
ncighborhood of a.

5.5.3. Definition. Let a € SCR, f:8 — R. We say that f is right
continuous at a if (i) S is a right neighborhood of a, and (ii) if (z,)
i a sequence in S such that z, >a and z, — a, then f(z,) — f(a),
in symbols,

ZTn €S
zn>a 3 = f(z,)— fla).
T, —a

‘Left continuity’ is defined dually (with “right” replaced by “left” and
“ry,>a” by ‘o, <a’)
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5.5.4. Suppose a € SCR, f:S—R.Let T=-S={-z: z€8}
and define g: T —» R by g(z) = f(—z). Then f is left continuous
at a if ard only if g is right continuous at —a.

5.5.5. Theorem. Suppose f:8 — R and S is a right neighborhood
of a. The following conditions on f are equivalent:

(a) f is right continuous at a;

(b) for every € > 0 there exists a 6§ > 0 such that

a<z<a+é = |f(z)— f(a)| <e¢;

(¢) V aneighborhood of f(a) = f~1(V) is a right neighborhood of a.

Proof. (a) = (b): Let’s prove ~(b) = ~(a). The argument is similar
to the one given in 5.2.6: condition (b) says that for every ¢ > 0 there
is a ‘successful’ § > 0; its negation means that there exists an ¢ > 0
for which every 6§ > 0 ‘fails’. In particular, for each n € P, 6§ = 1/n
fails, so there exists a point z, € S with a < z, < a + 1/n, such that
|f(zn) — f(a)] 2 €g. Then z, >a and z, — a but (f(zn)) does not
converge to f(a), so f is not right continuous at a.

(b) = (¢): If V is a neighborhood of f(a), there is an € > 0 such
that (f(a)—e¢, f(a)+€) CV. Choose § >0 asin (b). By the implication

in (b),
f((a,a+8)) C(f(a) =€ fa)+e)C V.

Also f(a) € V,s0 f([a,a+86)) C V;thus [a,a+6) C f71(V),s0 f~1(V)
is a right neighborhood of a.

(¢) = (a): Assuming z, € S, =, > a, Z, — a, we have to show
that f(zn,) — f(a). Let € > 0; we must show that |[f(z.) — f(a)| < €
ultimately. Since V = (f(a) —¢, f(a) +¢€) is a neighborhood of f(a), by
hypothesis f~(V) is a right neighborhood of a, so there is a § > 0 such
that [a,a+68) C f~1(V); ultimately z, € [a,a +6),s0 f(zn) €V, that
is, |f(za) — fla)l<e. &

The relation between continuity and ‘one-sided continuity’ is as follows:

5.5.6. Theorem. If a € SCR and f:S — R, the following conditions
are equivalent:

(a) f is both left and right continuous at a;

(b) S is a neighborhood of a and f is continuous at a.

Proof. (a) = (b): By the definition of ‘one-sided continuity’ (5.5.3),
S is both a left and right neighborhood of a, hence is a neighborhood
of a. If V is a neighborhood of f(a), then f~1(V) is both a left
neighborhood and a right neighborhood of a (5.5.5 and its dual), hence is
a neighborhood of a. In particular, if € >0 and V = (f(a)—¢, f(a)+e€),
then there exists a 6§ > 0 such that (a — 6,a +6) C f~1(V), that is,
lz—al <éd = |f(z) — f(a)] <e. Thus f is continuous at a (5.2.6).
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(b) = (a): By assumption, S is a neighborhood of a, and
T €8, Tn > a > f(za) — f(a).
u particular, S is a right neighborhood of a and
T, €S, Tn>a, Tn —a > f(z,) — f(a),

thus f is right continuous at a. Similarly, f is left continuous at a.

5.5.7. Corollary. If f:[a,b] = R, a < b, then the following conditions
are equivalent:

(a) f is continuous;

(b) f is right continuous at a, left continuous at b, and both left and
right continuous at each point of the open interval (a,b).

Proof. The first statement in (b) means that f is continuous at a, the
scecond that it is continuous at b, and the third that it is continuous at
every point of (a,b) (5.5.6). &

Exercises

1. State and prove the ‘left’ analogue of 5.5.5.

2. Suppose f:S— R, g:S — R are right continuous at a € S, and
let. ¢ € R. Prove:

(i) f+g, fg and cf are right continuous at a.

(ii) If, moreover, g(a) # O, then theset T = {zx € S: g(z) # 0}
is a right neighborhood of a, and the function f/g : T — R is right
continuous at a. {For z € T, (f/g)(z) is defined to be f(z)/g(z).}

3. Let a € N c R. The following conditions are equivalent:

(a) N is not a right neighborhood of a;

(b) there exists a sequence (z,) in the complement CN of N such
that =, >a and z, —a.

4. Call a set A CR right-open if it is a right neighborhood of each of
s points (cf. 4.3.4). By convention, @ is right-open. The analogue of
1.3.8 is true:

(i) @, R are right-open sets;

(i) if A and B are right-open sets then sois ANB (cf. 5.5.2);

(ii1) if S is any set of right-open sets in R, then the union [JS is also
tight-open.

For example, every interval [a, b) is right-open; it follows that a set A C
i is right-open if and only if it is the union of a set S of intervals [a, b).

5. If f:R — R the following conditions are equivalent:
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(a) f is right continuous at every a € R;
(b) U open = f~1(U) is right-open (cf. Exercise 4).

6. Let f:R — R be a function such that f(zr+y) = f(z) + f(y) for
all z,y in R. Suppose that for each x € R, f is either left continuous
at z or right continuous at z. Prove that f(z) = cz for a suitable
constant c.

{Hint: Let ¢= f(1) and note that f(r)=ecr forall r€Q.}

5.6. Composition

5.6.1. The composition of functions—one function followed by another—
is familiar from calculus (in connection with the “chain rule” for differen-
tiation). The simplest general setting is as follows (Appendix, A.3.3): we
are given functions f:X —Y and g:Y — Z (Figure 10),

f g
X » Y > 7
gof
FIGURE 10

where the final set for f is the initial set for g; for z € X, the corre-
spondence

z — f(z) —~ 9(f(z))

produces a function X — Z, called the composite of ¢ and f and
denoted go f (verbalized “g circle f”). The defining formula for

gof:X—17 is
(g0 f)(z) = 9(f(z)) (z€X).

5.6.2. The simplest situation of all is where X = Y = Z. For example,
if f:R—>R and g: R — R are the functions f(z) = 22+ 5 and
9(y) =9® then

(90 )(@) = 9(£(2)) = (£(2))* = (2" +5)°.

. Thus h=go f is the function h(z) = (z2+5)° (z €R).

5.6.3. Slightly more permissive than the setup of 5.6.1 is the situation
where f: X > Y, g: U >V and f(X) c U. If z € X then
f(z) € f(X) C U, s0 g(f(z)) makes sense; thus go f : X = V can be
defined by the same formula as in 5.6.1.
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The relation between composition and continuity is harmonious (to tell
the truth, there are a few sour notes in the exercises):

5.6.4. Theorem. Suppose f:S— R, g: T =R, where S and T are
subsets of R such that f(S) C T, andlet a € S. If f is continuous
at a, and g is continuous at f(a), then go f is continuous at a.

Proof. If z, € S, z, — a then f(z,) — f(a) (because f is con-
tinuous at a), therefore g(f(zn)) — g(f(a)) (because g is continuous
st f(a)), in other words (go f)(zn) — (go f)(a). ¢

5.6.5. Corollary. With notations as in 5.6.4, if f and g are continuous
functions (5.4.1) then so is go f.

Incidentally, it suffices in 5.6.5 that f be continuous and that g be
continuous at every point of the range f(S) of f.

5.6.6. Given two functions f:X — Y and g: U — V such that the
set

A={zeX: f(z)eU}

is nonempty, a function gof : A = V can be defined by the formula
(9o f)(z) = g(f(z)) (VzeA).

In principle, one can compose any two functions, but the result may be
disappointing. For example, if f and g are the functions

f:R—=R, f(z)=0 (VzeR)
g:R-{0} >R, gz)=1/z (Vz#0)

the formula for go f suggested by the foregoing discussion is (go f)(z) =
a(f(z)) = 1/ f(z) =1/0. {Not to worry—the domain of gof is the empty
net. }

Exercises

1. If f:R— R and g: R — R are continuous functions, we know
that go f : R — R is continuous (5.6.5). Give an alternate proof using
open sets. .

(i) With notations as in 5.6.4, prove that if f: S — R is right
continuous at a € S and g: T — R is continuous at f(a), then go fis
right continuous at a. _

(if) True or false (explain): If f: R — R is continuous at a, and
g : R — R is right continuous at f(a), then go f is right continuous
nt. a. {Hint: Let g(z) = [z] (2.3.2) and let f(z) ==z for z rational,
f(r)=—z for z irrational.}

(iii) Give an example of an everywhere discontinuous function f:R —
R and a nonconstant, everywhere continuous function g : R — R such
that go f is everywhere continuous. {Hint: Consider g(z) = |z|.}



CHAPTER 6

Continuous Functions
on an Interval

§6.1. Intermediate value theorem

§6.2. n’th roots

§6.3. Continuous functions on a closed interval
§6.4. Monotonic continuous functions

§6.5. Inverse function theorem

§6.6. Uniform continuity

Intervals are convex (4.1.4) and closed intervals are compact (4.5.4); these

special properties of intervals are reflected in special properties of contin-

uous functions defined on them. Applications include the construction of
n'th roots, a characterization of injectivity (§6.4) and automatic continuity

of inverse functions (§6.5).

6.1. Intermediate Value Theorem

If a continuous real-valued function on a closed interval has opposite

signs at the endpoints, then it must be zero somewhere in between:

6.1.1. Lemma. If f : [a,b] = R is a continuous function such that ._

f(a)f(b) <0, then there exists a point c € (a,b) such that f(c)=0.
Proof. We can suppose f(a) > 0 and f(b) < O (otherwise con-

sider —f). The idea behind the following proof: there are points z

in [a,b] (for example, £ = a) for which f(z) > 0, and b isn’t one
of them; the ‘last’ such point z is a likely candidate for c.

Theset A= {r €[a,b]: f(z) >0} is nonempty (because a € A) and

bounded. It is also closed: for, if £, € A and z, — z, then z € [a,b]
(4.2.7) and f(z,) — f(z) by the continuity of f; since f(z,) >0 for
all n, f(z)>0 by 3.4.8, (8),thus z€A.

Let ¢ be the largest element of A (proof of 4.5.7). In particular,
f(c) > 0, therefore ¢ # b, thus ¢ < b. If c <z < b then z ¢ A
(all elements of A are < ¢), so f(z) < 0. Choose a sequence (z,)
with ¢ <z, <b and z, — c; then f(c) = lim f(z,) < 0, consequently
fle)=0.9 '
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6.1.2. Theorem. (Intermediate Value Theorem) If I is an interval in R
und f:I— R is continuous, then f(I) is also an interval.

Proof. Assuming r,s € f(I), r < s, it will suffice to show that [r,s] C
S(I) (4.14). Let r <k < s; weseek c €1 such that f(c) =k. {The
message of the theorem: If r and s are values of f, then so is every
number between r and s.} By assumption r = f(a) and s= f(b) for
suitable points a,b of I;since r# s, also a #b. Let J be the closed
interval with endpoints a and b (whether a < b or b < a does not
interest us); since I is an interval, J C I. Define g : J — R by the
formula

9(z)=f(z) -k (z€J).

Since f is continuous, so is g¢; moreover,

g(a)=f(a)—k=r—-k<0,
gb)=f(b)—k=s8-k>0.

By the lemma, there exists a point ¢ € J such that g(c) =0; thus cel
ad f(e)—k=0,s0 k= f(c) € f(I). ¢

6.1.3. Corollary. With f:I1 — R as in the theorem, if f is not zero at
any point of 1 then either f(x) >0 (Vz €l) or f(z) <0 (Vzel).

Proof. The alternative is that f(a) < 0 and f(b) > 0 for suitable
points a,b of I;then 0 € f(I) by the theorem, contrary to the hypothesis

on f.Q

6.1.4. Corollary. If f: R — R is continuous and 1 is any interval
in R, then f(I) is also an interval.

Proof. Apply 6.1.2 to the function f|I:I — R (the restriction of f
to 1). ¢

Applications of the Intermediate Value Theorem (briefly, IVT) are given
in the next four sections and in the exercises.

Exercises
1. If p is a polynomial of odd degree, with real coefficients; then p has
nl. least one real root.
{Hint: For example, if p(z) = 52% — 222 + 3x — 4 then
Cf(n)=n3(5-2/n+3/n? —4/n%) (YneP);

the second factor converges to 5 as n — oo, so f has values > 0.
Similarly, consideration of f(—n) shows that f has negative values.}
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2. True or false (explain): If I is a bounded interval and f:I— R is
continuous, then f is bounded.

3. True or false (explain): If f: R — R is continuous and I is an
interval in R, then f~(I) is an interval.

4. Every continuous function f:[0,1] — [0,1] has a fixed point, that
is, there exists a point ¢ € [0,1] such that f(c) =c.

{Hint: Let g(z) = f(z) — z and consider the possibilities for g(0)
and g¢(1).}

*6.2. n’th Roots

The Dedekind cut technique used to construct square roots (2.8.1) can
be adapted to higher-order roots (Exercise 1), but the Intermediate Value
Theorem provides an efficient shortcut:

6.2.1. Theorem. If n s a positive integer and f : [0,+00) — [0, +00)
is the function defined by f(zx) =z", then f is bijective.

Proof. From 1.2.8 we see that f(a) = f(b) = a=>b,s0 f isinjective.
Write I = [0,+00); thus f:I — I and it remains to show that f is
surjective, that is, f(I)=1.

Since f is continuous, its range f(I) is an interval by the IVT (6.1.2).
From f(0) =0 we have 0 € f(I), and an easy induction argument shows
that f(k) > k for every positive integer k; it folows that [0, %] C f(I) for
all k € P, therefore (Archimedes) [0,+00) C f(I). Thus I C f(I) C I,
whence equality. ¢

6.2.2. Definition. If £ > 0 and n is a positive integer, the unique
y = 0 such that g™ = = (6.2.1) is called the n’th root of =z, written

y= ¥z (or y=2'/").

6.2.3. Corollary. If n is an odd positive integer and g: R — R is the
function defined by g(x) =z, then g is bijective.

Proof. By the IVT, g(R) is an interval, and g(R) contains [0, +o00)
by 6.2.1; but g(~z) = —g(z) (because n is odd), so g(R) also contains
(—0o0,0], thus is equal to R. Injectivity is easily deduced from 6.2.1 since
z and g(x) have the same sign. (Alternatively, cite §1.2, Exercise 5.)

6.2.4. Definition. If € R and n € P is odd, the unique real number
y such that y™ =z (6.2.3) is called the n’th root of z, written ¥z
(or z'/™); when z > 0, this is consistent with 6.2.2.

( *Optional. The logarithmic function provides an alternate path to n'th roots
9.5.15).
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6.2.5. Remark. If n is even, then ¥z is defined only for = > 0; when
n isodd, = can be any real number. In either case, {¥x always has the
sign of .

Exercises

1. Prove 6.2.1 by adapting the Dedekind cut technique of 2.8.1. {Hint:
Given ¢>0 weseek y >0 with y" =c. Let

A={zeR: z<0}U{z€R: 2>0 and’ 2" < ¢}
B={z€R: £>0 and 2" >c}.

Argue that A has no largest element as follows. Suppose = >0, z" < c.
The sequence

(r+1/kK)" -2 (k=1,2,3,...)

is null (binomial formula) and ¢—z" > 0, so ultimately (z+1/k)*—z" <
c—z", thatis, (z+1/k)" <ec.}

2. If 0<z <y then 0< yy— ¥xr < {/y— z. Infer that the functions
£ — Yz of 6.2.2, 6.2.4 are continuous.

6.3. Continuous Functions on a Closed Interval

A continuous image of a closed interval is a closed interval:

6.3.1. Theorem. If f : [a,b] — R is continuous, then the range of f is
a closed interval.

Proof. Write I = [a,b]; we know from the IVT (6.1.2) that f(I) is an
interval, so we need only show that f(I) is (i) bounded and (ii) a closed
set.

(i) The claim is that the set {|f(z)|: z €I} is bounded above. Assume
to the contrary. For each positive integer n, choose a point z, € 1
such that |f(z,)] > n. It is clear that no subsequence of (f(z,)) is
hounded. However, (z,) is bounded, so it has a convergent subsequence
(Weierstrass-Bolzano), say z,, — z. Then z € I (because I is a
closed set) and f(xn,) — f(z); in particular, (f(z,,)) is bounded, a
rontradiction.

(ii) Suppose yn, € f(I), yn — y; we have to show that y € f(I).
Say yn = f(zn), xn € I; passing to a subsequence, we can suppose
+, — x € R. As in the proof of (i), z € I and f(z,) — f(z), that is,
v — flx);but g, - y,s0 y=flx)e f1). o
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6.3.2. Corollary. (Weierstrass) If f:[a,b] = R is continuous, then f
takes on a smallest value and a largest value.

Proof. By the theorem, f([a,b]) = [m,M] for suitable m and M.
Thus, if m = f(c¢) and M = f(d), then f(c) < f(z) < f(d) for all
z € [a,b]. ¢

The continuous function (0,1) = R definedby z— z is >0 at every
point of its domain, but it has values as near to 0 as we like; on a closed
interval, that can’t happen:

6.3.3. Corollary. If f: [a,b] > R 13 continuous and f(x) > 0 for
all z € [a,b], then there exists an m > 0 such that f(z) > m for all
z € [a,b].

Proof. (So.to speak, f is ‘bounded away from 0’.) With notations as
in the preceding proof, we have f(z) >m = f(c) >0 forall z € [a,b]. O

6.3.4. Definition. A real-valued function f : X — R is said to be
bounded if its range f(X) is a bounded subset of R, that is, if there
exists a real number M >0 such that |f(z)]< M forall x€X; f is
said to be unbounded if it is not bounded.

6.3.5. Examples. Every continuous real-valued function on a closed in-
terval is bounded (6.3.1). The continuous function f:(0,1] = R defined
by f(z)=1/z is unbounded.

Exercises

1. Give a concise proof of 6.3.1 based on the fact that the closed intervals
are the compact intervals (§4.5, Exercise 4). {Hint: §5.4, Exercise 7.}

2. The continuous function [1,+00) — R defined by z— 1/x has no
smallest value, although the interval [1,+o00) is a closed set. Does this
conflict with 6.3.27

3. Find a bounded continuous function f:(0,1] - R such that f can-
not be extended to a continuous function [0,1] — R. {Hint: First contem-
plate the behavior of sin(1/z) as z — 0, then simulate the pathological
behavior by a simpler function (for example, a ‘sawtooth’ function).}

4. A polynomial function p : R — R is bounded if and only if it is
constant.
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6.4. Monotonic Continuous Functions

6.4.1. Definition. Let S C R (in the most important examples, S is an
interval). A function f:S - R issaid to be

increasing, if z <y = f(r) < f(y),
strictly increasing, if z <y = f(z) < f(v),
decreasing, if z <y = f(z) > f(y),
strictly decreasing, if z <y = f(z) > f(v),

where it is understood that r and y are in the domain S of f. If f
is either increasing or decreasing, it is said to be monotone; a function is
strictly monotone if it is strictly increasing or strictly decreasing.

6.4.2. Examples. Let n be a positive integer. The function
f:[0,4+00) = [0, +00), f(z)=2"

is strictly increasing (cf. 1.2.8, 6.2.1); so is the function

g:R—-R, g(z)=2>""!
(cf. 6.2.3). The function R — R defined by z + z? is neither increasing
nor decreasing.

6.4.3. Example. The function (0,4o00) — (0, +00) defined by z — 1/z
is strictly decreasing (§1.2, Exercise 1).

6.4.4. Ezamples. Every constant function is increasing (and decreasing),
but not strictly. If a function is both increasing and decreasing, then it is
a constant function.

*6.4.5. Examples. The functions
log: (0,400) - R, exp:R— (0,+00)

are both strictly increasing (here the base is e). These functions are
constructed in §9.5.,

If f:S — R is strictly monotone, it is obvious that f is injective.
Here is a deeper result in the reverse direction:

6.4.6. Theorem. If f:[a,b] — R is continuous and injective, then f
s strictly monotone.

Proof. If a = b there is nothing to prove; assuming a < b, f(a) # f(b)
by injectivity. We can suppose f(a) < f(b) (if not, consider —f); let’s
show that f is then strictly increasing. The heart of the matter is the
following
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claim: If a <z <b then f(a) < f(z) < f(b).

Assume to the contrary that f(z) < f(a) or f(z) > f(b), in other
words (injectivity) f(z) < f(a) or f(z) > f(b). In the first case, f(z) <
f(a) < f(b), thus k = f(a) is intermediate to the values of f|[z,b] at
the endpoints of [z, b]; the IVT then yields a point ¢t € (x,b) with f(t) =
k = f(a), contrary to injectivity. In the second case, f(a) < f(b) < f(z),
and an application of the IVT to f|[a,z] yields a point t € (a,z) with
F(t) = f(b), again contradicting injectivity.

Assuming now that @ < c¢ < d < b, we have to show that f(c) < f(d).
If a=c and d = b there is nothing to prove. If a = ¢ < d < b then
f(e) < f(d) by the claim, and similarly if @ < ¢ < d = b. Finally,
if a <ec<d<b then f(a) < f(c) < f(b) by the claim applied to
a<c<b;butthen f(c) < f(d) < f(b) by the claim appliedto e<d < b
and the function f|[c,b]. ¢

The theorem extends easily to functions on every kind of interval:

6.4.7. Corollary. If I is an interval and f:I — R i3 continuous and
injective, then f 1s strictly monotone.

Proof. If 1 is a singleton there is nothing to prove. Otherwise, let
r,8 €I with r < 8. Since f is injective, f(r) # f(s); we can suppose
f(r) < f(s) (if not, consider —f). We assert that f isstrictly increasing.
Given c¢,d € I, ¢ < d, we must show that f(c) < f(d). Let J = [a,b]
be a closed subinterval of I that contains all four points 7r,s,c¢;d; for
example,

a = min{r,c}, b = max{s,d}

fill the bill. From the theorem, we know that f |J is either strictly in-
creasing or strictly decreasing; since f(r) < f(s) it must be the former,
in particular f(c) < f(d). ¢

Exercises

1. Let f:R— {0} - R— {0} be the function f(z)=1/z.

(i) If a<b<0 then f(a)> f(b).

(ii) True or false (explain): f is decreasing. {Hint: Sketch the graph.}

2. If f:S — R is increasing, then f is injective if and only if it
is strictly increasing. A monotone function is injective if and only if it is
strictly monotone.

8. Let S and T besubsetsof R, f:S— T abijection, f~1 :T—S§
the inverse function. If f is strictly increasing then so is f~!.

4. Let ¢c€ S C R. A function f: S — R is said to have a local
mazimum at c if there exists a neighborhood V of ¢ in R such that
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VCS and f(z) < f(c) forall z € V. Local minima are defined similarly
(just change the inequality to f(z) > f(c)).

Prove: If f:{a,b] — R is continuous and has no local maximum or
local minimum, then f is strictly monotone.

5. Let I be an interval, f:I — R an increasing function such that
f(I) is an interval. Prove:

(i) If a,b€I, a<b, then f([a,b]) = [f(a),f(d)]. {Sketch of proof:
The inclusion C is obvious. Conversely, suppose f(a) < k < f(b). Then
k€ [f(a), f(b)] C (), say &k = f(c), c€]I; from f(a) < f(c) < f(b)
infer that a < ¢ < b, whence k= f(c) € f([a,b]).}

(ii) f is continuous. {Sketch of proof: Suppose a, — a in I; we
must show f(a,) — f(a). Let € > 0 and assume to the contrary that
[f(an) — f(a)] > € frequently. Say f(an) — f(a) > ¢ frequently; passing
to a subsequence, we can suppose f(a,) > f(a) + € for all n. From
f(a) < f(a) + € < f(a1) and (i), we have f(a)+ e = f(c) for some c;
and f(a) < f(c) < f(a,) implies a < ¢ < a,, for all n, contrary to
an, —a.}

6. Let n be a positive integer.

(i) The function [0, +00) — [0,+00) definedby z +— {/z is continuous.
{Hint: Exercises 3 and 5.}

(ii) If n isodd, the function R — R defined by z+— {7z is continuous.

7. If I and J are intervals and f:I — J is bijective, the following
conditions are equivalent: (a) f is continuous; (b) f is monotone. If the
conditions are verified then f~! is also continuous. {Hint: Exercises 3
and 5.}

8. If U isanopensetin R and f:U — R is continuous and injective,
then f(U) is also an open set. {Hint: Reduce to the case that U is an
open interval.}

9. For every interval I, there exists an increasing bijection of I onto
one of the intervals [0,1], (0,1), [0,1), (0,1].
{Hint: The function g of §5.4, Exercise 8, (ii) is strictly increasing.}

6.5. Inverse Function Theorem

Under the right conditions, the inverse is continuous ‘free of charge’:

6.5.1. Lemma. If f:[a,b] — [c,d] is bijective and continuous then the
inverse function f~!:[c,d] — [a,b] is also continuous.

Proof. Assuming y, — y in [c,d], we are to show that f~1(y,) —
/ "(y). Let z, = f~Y(yn), = = f~(y) and assume to the contrary
that (x,) does not converge to x. Then there exists an ¢ > 0 such
that |z, — z| > € frequently; passing to a subsequence, we can suppose
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that |z, — x| >.€ for all n. Since (z,) is bounded, some subsequence
is convergent (Weierstrass-Bolzano), say z,, — t. Then t € [a,b] so
f(xnk) - f(t) by continuity; but f(xﬂk) =Yn, 2 Y, 80 ¥y = f(t),
t=f'y)=z. Thus z,, — z, contrary to |z,, —z|>¢ (V). {

6.5.2. Theorem. (Inverse Function Theorem) Let I be an interval in R,
f: T > R continuous and injective; let J = f(I) (an interval, by 6.1.2),
so that f:1— J is continuous and bijective. Then f~!:J —1 is also
continuous.

Proof. From 6.4.7 we know that f is monotone; we can suppose that
f is increasing (if not, consider —f). Suppose y, — yin J; writing
ZTn = " (yn), == f"'(y), we have to show that =, — .

Theset A= {y}U{yn: n€ P} iscompact (4.5.2, 4.5.5), so it has a
smallest element ¢ and a largest element d (4.5.7). Then A C[c,d] CJ.
Say ¢ = f(a), d = f(b); since f is increasing, a < b and f([a,b]) =
[f(a), f(b)] = [e,d], so zn, — z follows from applying the lemma to the
restriction f|[a,b] : [a,b] — [c,d]. ¢

6.5.3. Example. If n is a positive integer and I = [0,+o00), then the
function I — I defined by z — {/z is continuous; for, it is the inverse
of a continuous bijection (6.2.1). If n is odd, then the function R — R
defined by z — {/z is continuous (cf. 6.2.3).

Exercises
1. Let f:[a,b] — [c,d] be monotone and bijective.
(i) If f is increasing and (z») 18 any sequence in [a, b}, show that
limsup f(z,) = f(hm sup 9','")

and similarly for lim inf.

(ii) Deduce from (i) that f is continuous. {Hint: If f is increasing,
cite (i) and 3.7.5. If f is decreasing, consider —f.}

(iii) Infer from (ii) that f~! is also continuous.

2. The reference to compactness in the proof of 6.5.2 is avoidable (84.1,
Exercise 8).

*6.6. Uniform Continuity

6.6.1. Theorem. Suppose f : [a,b] — R is continuous. Given any
€ >0, there exists a 6 > 0 such that

z,y €[a,0], [z -yl <6 = |f(z)-fy)l<e.

*Omissible (6.6.1 is cited only in §9.7, Exercise 5).
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This is not just a restatement of the definition of continuity; there is a
subtle difference: to say that f:S — R is continuous means that for each
y€S and € >0 thereisa § > 0 (depending in general on both y
and ¢) such that

€S, lz—yl<é = |f(x)-fly)l <e.

The message of the theorem: when the domain of f is a closed interval,
the choice of § can be made to depend on ¢ alone; so to speak, § works
‘uniformly well’ at all points of the domain.

Proof of 6.6.1. Let ¢ > 0; weseeka § >0 for which the stated implica-
tion is valid. Assume to the contrary that no such § exists. In particular,
for each n € P the choice § = 1/n fails to validate the implication, so
there is a pair of points z,,y, in [a,b] such that

Ixﬂ - yﬂl < l/n but If(xn) - f(yn)l 2 €.

For a suitable subsequence, z,, — z € [a,b] (Weierstrass-Bolzano); then
Uni = Tny — (Zng = Yn,) and Ty, — Yn, — 0 show that also y,, — x.
By continuity,

fx"k) f(x and f(yn,) — f(z),

50 f(Zn.) = f(Yn,) — 0, contrary to |f(Tn,) = f(¥ni)l 2 €. O

6.6.2. Definition. Let S be a subset of R. A function f:S — R is
said to be uniformly continuous (on S) if, for every € > 0, there exists
a 6 > 0 such that

T,y€8, |lz-yl<§ = |f(z)- fy)l <e.

It is obvious that uniform continuity implies continuity, but the converse
is false:

6.6.3. Ezample. The function f:(0,2] - R defined by f(z)=1/z is
continuous but not uniformly continuous. This is ‘obvious’ from the graph
of f. {The nearer y is to 0, the steeper the ‘slope’ of the graph; for a
particular ¢, the nearer y is to 0, the smaller § will have to be taken.}
Here’s a formal argument. Assume to the contrary that f is uniformly
continuous. In particular, for ¢ = 1 there is a § > 0 (which we can
suppose to be < 1) for which

z,y€(0,2], x—y| <6 = |l/z-1/yl<1.
The last inequality may be written |z — y| < zy, so in particular

(%) rye (0,2, lr-yl=6 = 6<ay.
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If yo=1/n and z,=6+1/n, then |z, —y,| =8 < z,y, by (*); since
TnYn — 0, this is absurd.

Exercises

1. If A isacompact subset of R (4.5.5) then every continuous function
f : A — R is uniformly continuous. {Hint: Adapt the proof of 6.6.1
(cf. §4.5, Exercise 1).}

2. Let SCR, f:S— R. Consider the statements:
() VyeS)(Ve>036>0 >

€S, |lr—yl<é = |f(z)-Ffw)| <e.
(i) Ve>0)36>0 5 (VyeSs)
z€S, Jr—yl<d = |f(x)-fly)l<e.

One of these says that f is continuous, the other that f is uniformly
continuous. Which is which?

3. The function f : R — R defined by f(z) = 1/(1 + z?) is uniformly
continuous. {Hint: Show first that |f(z) ~ f(¥)] < |z — y| for all =
and y.}

4. If f:S > R is uniformly continuous and (z,) is a Cauchy sequence
in S, then (f(zn)) is also a Cauchy sequence.

5. ()If f:S—R and g:S — R are uniformly continuous then so
are f+g, |fl, sup(f,g) and inf(f,g) (see 5.3.1 and §5.3, Exercise 1
for the notations). What about fg? (Be suspicious!)

(ii)If f:8S >R and g : T - R are uniformly continuous and
f(S) C T, then the composite function go f : 8 — R is uniformly
continuous.

8. If S is a bounded subset of R and f : S — R is uniformly
continuous, then f is bounded. {Hint: Exercise 4.}

7. Let (X,d), (Y,D) be metric spaces. A function f: X — Yis
said to be uniformly continuous (for the given metrics) if, for every ¢ >0,
there exists a § > 0 such that

z,2’ €X, d(z,2') <6 = D(f(z),f(a") <e.

Prove:-

(i) The analogue of Exercise 4 holds for a function f:X - Y.

(ii) If X is compact (cf. §4.5, Exercise 6) and f:X — Y is continuous,
then f is uniformly continuous. {Hint: Adapt the proof of 6.6.1.}
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8. Let f:[0,400) — [0,4+00) be the continuous bijection f(z) =
(cf. 6.2.1, 6.5.3). Prove ‘directly’ (using inequalities and the formula for f)
that f is uniformly continuous.

{Hint: Extrapolate from z =0, where the tangent line is steepest.}

9. If SCR and f:S — R, the following conditions are equiva-
lent: (a) f is uniformly continuous; (b) Zn,yn €S, T~y — 0 =
f(@n) = f(ya) — 0.



CHAPTER 7

Limits of Functions

§7.1. Deleted neighborhoods

§7.2. Limits

§7.3. Limits and continuity

§7.4. €,6 characterization of limits
§7.5. Algebra of limits

Our main reason for taking up limits is to prepare the way for deriva-
tives in the next chapter. More generally, limits provide a framework for
discussing ‘indeterminate forms’ (0/0, 0°, 0-oc, etc.)!. For example, in
calculating the derivative of a function f at a point ¢, we look at the
difference quotient

f(=z) - f(e)
T—¢
and decide what happens as = approaches ¢ while avoiding c; this
amounts to evaluating an ‘indeterminate form’ of type 0/0.

The integral can also be regarded as a kind of limit (§9.8); this is not
the most intuitive way to define the integral, but it’s nice to know there’s
a single concept that unifies the fundamental processes of calculus.

7.1. Deleted Neighborhoods

The idea of ‘deleted neighborhood’ of a point ¢ is to permit a variable
z to approach ¢ without ever having to be actually equal to c¢. The
formal definition is as follows:

7.1.1. Definition. Let S be a subset of R, ¢ areal number: SCR,
c € R. (We do not assume that c belongs to S, but it might.) We say
that

S is a deleted right neighborhood (DRN) of ¢ if thereisan r > 0 such
that (c,c+r)CS (thatis, c<z<c+r = z€8);

1 Expressions that are, at first glance, nonsense.
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§7.1. Deleted Neighborhood

S is a deleted left neighborhood (DLN) of ¢ if thereisan r > 0 such
that (¢—7,¢) CS (thatis, c—r<z<c¢ = z€8S);

S is a deleted neighborhood (DN) of ¢ if thereis an r > 0 such that
(c=rc)U(c,e+7r)CS (thatis, O<|z—¢/<r => z€S).

7.1.2. Remarks. (i) S is a deleted neighborhood of ¢ if and only if it is
both a deleted left neighborhood and a deleted right neighborhood of ¢.

(ii) If S is a deleted neighborhood of ¢ andif SC T CR, then T is
also a deleted neighborhood of ¢; in particular, every neighborhood of ¢
is a deleted neighborhood of ¢. Similarly for DRN’s and DLN's.

(iii) If S and T are DRN’s of ¢, thensois SNT.

(iv) S is a DRN of ¢ if and only if SU {¢} is a right neighborhood
of ¢ (cf. 5.5.1). Similarly for DLN’s and DN’s.

7.1.3. Ezxzample. If a < b then the open interval (a,b) is a DRN of a,
a DLN of b, and a neighborhood of every internal point. The same is true
of the intervals [a,d], (a,b] and [a,b).

7.1.4. Example. If f:{a,b) > R, a <b, and if ¢ € [a,b], then the set
la,b] — {c} isaDNof ¢ if c€ (a,b); aDRNof ¢ if ¢=a; and a DLN
of ¢ if ¢="5. The function g: [a,b] — {¢} - R defined by

is familiar from elementary calculus. (See also Chapter 8.)

7.1.5. Remarks on the terminology. If it is disconcerting that a “deleted
neighborhood” of ¢ might contain ¢, reflect on the fact that we also per-
mit a “neighborhood” of ¢ to contain points that are far away from c.
lFor neighborhoods, the points far from ¢ are ignored; for deleted neigh-
horhoods, the presence of ¢—if it is present—is likewise ignored. The
alternatives to “deleted neighborhood” (quasi-neighborhood, etc.) are no
more satisfactory; the source of our discomfort is the decision that, what-
cver we call the sets described in 7.1.1, the ordinary neighborhoods of ¢
are to be included among them.

Exercises

1. True or false (explain):

(i) If S and T are deleted neighborhoods of ¢, thensois SNT.
(i) If S isaDNand T isa DRNof ¢,then SNT isa DRN of c.
(iii) If S isaDLNand T isa DRN of ¢, then SNT isa DN of ¢;

~une question for SUT.

2. If T isaneighborhood of ¢, then T~ {c} isa DN of c¢. State the
right” and ‘left’ versions.



112 7. Limits of Functions

3. Deleted neighborhoods can also be defined in metric spaces (call S
a deleted neighborhood of ¢ if SU {c} is a neighborhood of c), but
the concept is useless if {c} is an open set (such points ¢ are called
isolated points); in particular, the concept is useless for discrete metric
spaces (contemplate the statement of Exercise 2 with T = {c} ).

7.2. Limits

Continuity of a function f at a point @ means, informally, that f(z)
approaches f(a) as z approaches a. In the theory of limits, f is
permitted to be undefined at a provided that, as z approaches a, f(z)
approaches something:

7.2.1. Definition. Let f:S — R, where S is a deleted neighborhood
of c€ R. We say that f has a limit at c if there exists a real number

L such that
Tn €8

TnFc p = f(zn) > L.
Tp—C
Such a number L is unique (3.4.1); it is called the limit of f at c,

written
lim f(z) =L,
T—C

or, for emphasis,
lim¢ flx)=1L.

z—e, TFC
The statement that f has a limit at ¢ is also expressed by saying that
‘limg_,. f(z) exists’.

7.2.2. Ezample. If S is a neighborhood of ¢ and f: S — R is
continuous at c, then f haslimit f(c) at c:

lim £(z) = £(c).

Indeed, f(x,) — f(c) for every sequence (z,) in S such that z, —c
(and in particular for those with z, # ¢ for all n).

7.2.3. Ezamples. If f:R— {3} — R is the function defined by f(z) =
z? for z # 3, then lim,3 f(z) = 9. The same is true for the function
f:R—> R defined by

2r+3 for z<3
f(z)={ 2? for >3
1 for =3
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(draw a picture!), and for the function f:R — R defined by

2x+3 for x rational
f (.’L‘) = 2 . .
T for x irrational.

‘One-sided limits’ are defined by modifying 7.2.1 in the obvious way:

7.2.4. Definition. Let f:S — R, where S is a deleted right neighbor-
hood of ¢ € R. We say that f has a right limit at ¢ if there exists a
real number L such that

Tn €8S
Tnp>C = f(z,) — L.

Z, —C

Such a number L is unique and is called the right limit of f at c,
written

lim f(z)=L

T—C,T>C

or

lim f(z)=1L,

z—ct

or, concisely, f(c+) = L. The statement that f has a right limit at ¢ is
also expressed by saying that ¢ f(c+) exists’. Left limits (when they exist)
are defined similarly: S is assumed to be a DLN of ¢ and we require
&y < c; the symbols

lim f(x)v hm_ f(x)a f(C"')

z—c,z<cC

denote the left limit of f at ¢ (when it exists).

7.2.5. Ezample. If S is a right neighborhood of ¢ and f:S —» R
is right continuous at c, then f has right limit f(c) at ¢ (adapt the
argument of 7.2.2); similarly with “right” replaced by “left”.

7.2.6. Example. If f:R — R is defined by

1 for <0
fzy=<2 for z=0
3 for >0

then, at the point 0, f has left limit 1 and right limit 3; f does not
have a limit at 0 (applying f to the sequence z, = (—1)"/n produces
a divergent sequence).

7.2.7. Theorem. Let f:S — R, where SCR, and let ¢ € R. The
following conditions are equivalent:
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(a) f has a limit at c;
(b) f(c—) and f(c+) exist and are equal.
When f has a’limit L at c, necessarily L= f(c—) = f(c+).

Proof. (a) = (b): By assumption, S is a deleted neighborhood of ¢, so
it is also a DLN and a DRN.If f haslimit L at c,then f(z,) — L for
every sequence in S with z, — ¢ and z, # c; this is true in particular
when z, <c¢ for all n and when z, > c for all n, thus f(c—) and
fc+) exist and are equal to L.

(b) = (a): By assumption, S is a DLN and a DRN of ¢, so it is a
DN of ¢. Write L for the common value of f(c—) and f(c+). If
(zn) is a sequence in S with z, — ¢ and x, # c for all n, then
either (i) z, < ¢ ultimately, or (ii) z, > ¢ ultimately, or (iii) =z, < ¢
frequently and z, > c frequently. In cases (i) and (ii) it is clear that
f(zn) — L. In case (iii), let (x,,) be the subsequence with z,, < c and
(Tm;) the subsequence with z,,, > c; then f(z,,) — f(c—) = L and
f(%m;) — f(c+) = L, whence f(zn) — L.

Here’s a useful theorem on the ezistence of one-sided limits:

7.2.8. Theorem. If f: (a,b) = R is a bounded monotone function then
f has a right limit at every point of [a,b) and a left limit at every point of
(a,b].

Proof. 1t suffices, for example, to show that f(a+) exists.* We can
suppose f is increasing (if not, consider —f). Let L =inf{f(z): a <
z < b} (recall that f is bounded); we assert that f has right limit
L at ¢. Assuming a < z, < b and z, — a, we have to show that
f(zn) - L.

Let € > 0. By the definition of L (as a greatest lower bound) there
exists c € (a,b) such that L < f(c) < L+ €. Ultimately a < z, < c,
therefore L < f(z,) < f(c) < L+€ ,80 |[f(zn) — L| < €. We have
shown that for every ¢ >0, |f(z,)— L| < € ultimately; in other words,
f(xa) 2 L. ¢

7.2.9. Remark. A function f:[a,b] — R is said to be regulated if f
has a right limit at every point of [a,b) and a left limit at every point of
(a,b]. It follows from 7.2.8 that every monotone function f: [a,b] — R is
regulated.

Exercises

1. Let f:S — R, where S is a deleted neighborhood of ¢ € R. The
following conditions are equivalent:

*A dual argument shows that f(b—) exists, and if @ < ¢ < b then the
arguments can be repeated on the restrictions of f to the subintervals (c,b)
and (a,c).
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(a) f hasalimit LeR at c;

(b) £, €S, Tn #c, Tn— ¢ => the sequence (f(z,)) is convergent.
(Cf. §5.2, Exercise 4.)

Similarly for left limits and right limits.

2. Let f:S— R, where S is a deleted right neighborhood of c € R,
and let L € R. The following conditions are equivalent: '

() fle+)=L;

(b) f(xn) — L for every sequence (z,) in S such that z, >c and
In lcC.

{Hint: If z, >¢, 2z, — ¢ andif |[f(z,)—L|>€>0 frequently, then
the inequality |f(z»)— L| = € holds for a decreasing subsequence of ()
(cf. 3.5.8).}

3. If f has alimit L #0 (notations as in 7.2.1) then there exists an
7 >0 suchthat 0<|r—c|]<r = z €S and f(z)#0. {Hint: Assume
to the contrary that r = 1/n ‘fails’ for every positive integer n.}

4. If f:[a,b] = R is a regulated function (7.2.9) then f is bounded.
{Hint: Assume to the contrary and apply the Weierstrass—Bolzano theo-
rem. }

5. Suppose f : [a,b) » R has a right limit at every point of [a,b).
Define g : [a,b) = R by g(z) = f(z+) for all = € [a,b). Prove:
g is right continuous at every point of [¢,b). {Hint: If a <z <z, <b
and z, — , choose y, sothat z, <y, <b, |Tph —yn| < 1/n and

|f(yn) — 9(z0)| <1/n.}

7.3. Limits and Continuity

For a function defined on a neighborhood of a point, continuity at the
point means the same thing as having a limit equal to the functional value:

7.3.1. Theorem. Let f:S — R, where S is a neighborhood of c € R.
The following conditions on f are equivalent:

(a) f is continuous at c;

(b) 3 limg, f(z) = f(c).

Proof. (a) = (b): This is 7.2.2.

(b) = (a): Assuming z, € S, z, — ¢, we have to show that f(z,) —
f(c). This is obvious if z, = ¢ ultimately, and if z, # ¢ ultimately then
it. is immediate from (b). The remaining case, that z, = c frequently and
r, # c¢ frequently, follows from applying the preceding two cases to the
appropriate subsequences (cf. the proof of 7.2.7).

7.3.2. Remarks. There are ‘right’ and ‘left’ versions of 7.3.1. For exam-
ple, if S is a right neighborhood of ¢ and f:S — R, then f is right
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continuous at ¢ if and only if 3 f(c+) = f(c). (In the proof of 7.3.1,
replace =, #c¢ by z, >c.)

7.3.3. Corollary. Let S be a deleted neighborhood of ce R, f:S —R.
The following conditions on f are equivalent:

(8) f has alimit at c;

(b) there ezists a function F :SU {c} » R such that F is continuous
at ¢ and F(z)= f(z) forall z€S~-{c}.

Necessarily F(c) = lim,_,. f(z).

Proof. Recall that ¢ may or may not belong to S; if ¢ € S then
Su{c}=S,andif c¢S then S—{c} =8S.
(a) = (b): Say f haslimit LER at c. Define F:SU{c} =R as

follows:
L if z=c¢
(=) = {f(a:) if z€S-{c}.

{If c¢S we are extending f to SU{c};if c€S and f(c)# L, we
are redefining f at c¢;if c€ S and f(c) = L, nothing has happened,
that is, SU{c} =S and F=f.}

If zo,€SuU{c}, zn#¢, 2, = c,then z, €S —{c} and F(z,) =
f(zn) = L =F(c); by 7.3.1, F is continuous at c.

(b) = (a): Assume F has the properties in (b). If =z, € S, z, #c,
Zn — ¢, then f(z,) = F(x,) — F(c) by the continuity of F at c; this
shows that f has limit F(c) at c. ¢

7.3.4. Remarks. There are ‘one-sided’ versions of 7.3.3. For example, if
S is a deleted right neighborhood of ¢ and f:S — R, then f hasa
right limit at ¢ if and only if there exists a function F :SU{c} — R such
that F is right continuous at ¢ and F(z) = f(z) forall z € S— {c};
necessarily F(c) = f(c+).

7.3.5. Corollary. Let f:[a,}| =R, a <b. The following conditions

are equivalent:
(a) f is continuous on [a,b];

(b) 3 f(a+) = fla), 3 f(b-) = f(b) and, for every c € (a,}),

3 limg,¢ f(z) = f(c).
Proof. Condition (b) says that f is right continuous at a, left con-

tinuous at b, and continuous at every internal point ¢, in other words, .°

f is continuous at every point of [a,b]; condition (a) says the same thing

(5.5.7). &
Exercises

1. Let f:(a,b) > R be bounded and monotone. Prove: f can be
extended to a function F :[a,b] — R that is right continuous at a and
left continuous at b. {Hint: 7.2.8.}

2. Write out in full the proofs sketched in 7.3.2 and 7.3.4.
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7.4. ¢,6 Characterization of Limits

Limits were defined in 7.2.1 by means of sequences; we can also say it
with €'s:

7.4.1. Theorem. Let f:S — R, where S is a deleted neighborhood of
c€R, andlet L € R. The following conditions are equivalent:

(a) 3 limg. f(z)=1L;

(b) for every € > 0 there exists a 6 >0 such that

z€S,0<|z-¢c|<6 = |f(r)-—L|<e.

Proof. Note that there does exist a 6§ >0 suchthat 0<|z—-¢c| < § =
r € S, in particular f(z) is defined for such z; so the problem in (b) is
to assure that in addition |f(z)— L| <e.

Let F:SuU{c} - R be the function such that F(c) =L and F(z)=
f(z) for all z € S— {c}. Condition (b) then says that for every ¢ > 0
there exists a 6 > 0 such that

z€8,0<|z—c <6 = |F(z)-F(c)|<e,
equivalently,
zeSU{c}, lr—¢cl<bé = |F(z)-F(c)|<e

(no harm in letting z = c); thus condition (b) is equivalent to the conti-
nuity of F at ¢ (5.2.6), which is in turn equivalent to (a) by 7.3.3. ¢

7.4.2. Remarks. There are one-sided versions of 7.4.1. For example,
let f:S — R, where S is a deleted right neighborhood of ¢ € R, and
let L € R. In order that f have a right limit at ¢ equal to L, it is
necessary and sufficient that for every € > 0 there exist a § > 0 such
that

z€S,c<r<c+é = |f(x)-L|<e.

Exercises

1. Let f:S — R, where S is a deleted neighborhood of ¢ € R, and
let L € R. The following conditions are equivalent:

(a) 3 limg . f(z)=L;

(b) for every neighborhood V of L in R, f~!(V) is a deleted neigh-
borhood of c¢. (Ct. 5.2.7.)

Similarly for one-sided limits.

2. Write out in full the proofs of the assertions in 7.4.2.
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7.5. Algebra of Limits

The ‘algebra of continuity’ (§5 3) translates, via 7.3.3, into an ‘algebra
of limits’:

7.5.1. Theorem. Let S be a deleted neighborhood of ¢ € R, and suppose
f:S—R, g:S— R have limits at c, say "

lim f(z) = L, limg(z)=

Then the functions f +g, fg and af (a € R) also have limits at c,

and
lim(f +g)(z) = L+ M,

lim(af)(z) = oL,
Lim(fg)(=) =

If, moreover, M # 0, then f/g is defined on a deleted neighborhood of
c and y

tim (f/g)(a) = L/M.

Proof. Let F:SU{c} - R, G:SU{c} - R be the functions such
that "
F(c)=L, F(z)= f(z) for z€S—{c},
G(c)=M, G(z)=g(x) for z€S—{c}.

By 7.3.3, F and G are continuous at ¢, therefore sois F+G (5.3.1);
moreover,
(F+GQ)c)=F(c)+G(c)=L+M

and (F + G)(a:) f(x) +9(x) = (f+ g)(z) for = €S- {c}, therefore -
(7.3.3) f+g hasalimit at ¢ equal to L+ M. The proofs for af and
fg are similar.

Finally, suppose M # 0. With ¢ = 1|M| in 7.4.1, choose § >0 so
that

0<lz—c|<6 = z€S and |g(e)~ M| < 3|M].

In particular, 0 < |z —c| <68 = g(z) # 0; restricting the functions f
and g to the deleted neighborhood (c—6,¢) U (c,c+ 6) of ¢, we can
suppose that 9 isnever 0 on S. Then F/G is continuous at ¢ (5.3.3)
and

(F/G)(z) = f(z)/9(x) = (f/g)(z) for z€8-{c},
so f/g haslimit F(c)/G(c)=L/M at ¢ (7.3.3). ¢
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7.56.2. Remarks. There are ‘one-sided’ versions of 7.5.1. For example,
if S is a deleted right neighborhood of ¢ and the functions f:S = R,
¢:S — R have right limits at ¢, then the functions f+g, af (a€R)
and fg have right limits at ¢, and

(f +9)(c+) = fle+) +g(c+),
(af)(ct) = af(ct),
(Fg)(ct) = f(et)glct).

If, moreover, g(c+) #0 then f/g is defined on a deleted right neighbor-
hood of ¢ and (f/g)(c+) = f(c+)/g9(c+).

Exercises
1. Prove 7.5.1 directly from the definition of limit, using sequences
(7.2.1).
2. Write out a detailed proof of the assertions in 7.5.2.
3. Let f:S—R, g:T— R and suppose that

lim f(z) =L, ’}ﬂg(y) =M

(in particular, S is a deleted neighborhood of ¢, and T is a deleted
neighborhood of L). Assume there exists an r > 0 such that

O0<|jz—c/]<r = z€8S and f(z)# L.
P'rove: go f is defined on a deleted neighborhood of ¢, and
lim(g o f)(z) = M.
4. In Exercise 3, if T is a neighborhood of L and g¢ is continuous

nl. L, then the assumption about f(z) # L can be dropped.

5. In Exercise 3, with the same assumptions on g, assume only that S
is a deleted right neighborhood of ¢, f(c+)= L, and thereisan r >0
such that

c<g<c+r = ze€8S and f(x)#L.

'Then gof is defined on a deleted right neighborhood of ¢ and (gof)(c+)
M.

6. Suppose
lim f(x) =L, linig(y) =M
y—b

T—c
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and suppose that the limit

lim(g f)(a)

exists (it might not!). Show that the limit of go f at ¢ must equal either

M or g(L) (or both).!

{Hint: Choose a sequence (z,) such that (go f)(z,) is defined, z, #
c,and z, — c;either f(z,)# L ultimately, or f(z,) =L frequently.} A

1P, Ramankutty and M. K. Vamanamurthy [American Mathematical Monthly
82 (1975), 63].
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CHAPTER 8

Derivatives

§8.1. Differentiability

§8.2. Algebra of derivatives
§8.3. Composition (Chain Rule)
§8.4. Local max and min

§8.5. Mean Value Theorem

The theme of the chapter: studying a function by studying its rate of
change. Although most of the concepts of the chapter are familiar from
clementary calculus, some of the refinements of the ‘mean value theorem’
proved in the last section will probably be new to the reader; these are for
application in the chapter on integration.

8.1. Differentiability

8.1.1. Definition. Let S be a subset of R, f a real-valued function
defined on S, ¢ a point of S;thatis, c€SCR and f:S - R. Let
g:S—{c} = R be the function defined by the formula

f(z) — f(e)

9(z) = =——
(called a ‘difference-quotient’ function associated with f). We say that

f is differentiable at ¢ if S is a neighborhood of ¢ and g hasa
limit at c;

f isright differentiable at ¢ if S is a right neighborhood of ¢ and
¢ has a right limit at c;

f is left differentiable at ¢ if S is a left neighborhood of ¢ and
¢ has a left limit at c.

When they exist, these limits are called the derivative, right deriva-

1014
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tive and left derivative of f at c, written

70 = lim 10121
N f(c)
fr(c)_z]ilg_'_ Z—c :

8.1.2. Theorem. Let f:S — R, where S is a neighborhood of ¢ € R.
The following conditions on f are equivalent:

(a) f is differentiable at c;

(b) f is both left and right differentiable at c, and fi(c) = fl(c). i
For such a function f, necessarily f'(c) = f/(c) = fl(c). by

Proof. This is immediate from 7.2.7 and the definitions. {

e St P b e T
SR S SRR R T

Just as for general limits, there are sequential and ¢, criteria for dif-
ferentiability; for example,

8.1.3. Theorem. Let f:S — R, where S is a neighborhood of c € R,
and let L € R. The following conditions on f are equivalent: ok
(a) f is differentiable at c, with derivative L; o
(b) for every € > 0 there ezists a 6§ > 0 such that if z € S and
O<|z—cl<é then :

(@)= £(©) ~ Lz - &)| < el — o] '

Proof. The last inequality in (b) may be written |g(z) — L| < €, where r

g is the difference-quotient function (8.1.1), thus the theorem is 1mmed1ate
from 7.4.1. {

8.1.4. Remarks. There are ‘one-sided’ versions of 8.1.3. For example,
in the criterion for right differentiability, S is a right neighborhood of ¢
and the conditionon z in(b)is e<z <c+6.

Another useful criterion:

8.1.5. Theorem. Let f:S — R, where S is a neighborhood of c. The
following conditions on f are equwalent

(a) f is differentiable at c; : 3

(b) there exists a function A:S — R such that A is continuous at ¢ -
and

f(x)— flc)=A(z)(z—c) forall z€8S.
A function A satisfying the conditions in (b) is unique, and f'(c) = A(c).

Proof. The equation in condition (b) is trivially satisfied for z = ¢, so
the condition means that, in the notation of 8.1.1, there exists a function
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A:S — R such that A is continuous at ¢ and A(z) = g(z) for all
z € S — {c}; this is in turn equivalent, by 7.3.3, to the existence of a limit
for g at c—in other words, to condition (a)—and the limit is necessarily
equal to A(c), that is, f'(c) = A(c). ¢

8.1.6. Remarks. There are one-sided versions of 8.1.5. For example, in
the criterion for right differentiability, S is a right neighborhood of ¢ and
A 1is required to be right continuous at c¢.

. 8.1.7. Corollary. If f:8 — R is differentiable at ¢ then f is contin-
uous at c.

Proof. In the notations of 8.1.5,
f(@)=fle)+ A(z)(z—c) forall z€8,

so f is continuous at ¢ by 5.3.1. $

8.1.8. Ezample. The function f:R — {0} » R defined by f(z)=1/z
is differentiable at every c € R — {0}, with f'(c) = —1/c?. {Apply 8.1.5
to the identity

1/z = 1/c=(-1/cz)(z ),

citing the continuity of the function A(z) = -1/cx at c¢ (5.3.3).}

Exercises
1. Write out in full the proofs of the assertions sketched in 8.1.4 and
8.1.6.

2. Verify that the function f:R — R defined by f(z) = |z| is both
left and right differentiable at 0 but is not differentiable at 0.

3. Prove: If f:S — R isright differentiable at c € R then f isright
continuous at c.

4. Let f:R — R be defined by

flz) = z for z rational
¥)= 0 for z irrational.

Verify that f is continuous at 0 but has neither a right derivative nor a
left derivative at 0.

5. Let S be a neighborhood of ¢ € R and suppose f:S — R is
differentiable at ¢. Let (a,), (b,) be sequences in S such that

a, #c¢, by #ec, a'n?ébnv an —c, bp—c.
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(i) If an <c<b, for all n, prove that

f(bn) — f(an)

’
bn‘—an —)f(c)'
{Hint: Let
o = bpn—c B, = C—0n
n-bn_an’ " bn—an,

note that o, >0, 8, >0,a,+8,=1 and
Fbr) = £@n) _ 1) = [g(b,) — F/(O)lem + [9(an) = F(©)]6n

bn —an
where g is the difference-quotient function of 8.1.1.}

(ii) Show that if ¢ < an < bn the conclusion of (i) may be false. {Hint:
Let b, = 1/n, let (a,) be a sequence with bp41 < @n < b, and let
f:[-1,1] > R be the piecewise linear function such that f(1/n) = 1/n?,
f(a,) =0 and f(z)=0 for ~-1<z<0:

bn+1 Qn bn

Assume a, to be chosen so near to b, that the difference-quotient in (i)
is > 1. Note that f/(0) =0.}

8.2. Algebra of Derivatives

The characterization of differentiability in 8.1.5 reduces the proofs of the
basic ‘laws of differentiation’ to elementary algebra:

8.2.1. Theorem. Let f:S—R, g:S — R, where S is a neighborhood
of ceR. If f and g are differentiable at ¢ then so are f+g, af
(a€R) and fg, and

(F+9)(c)=F(e)+4'(c),
(af)(c) =af'(c),
(f9)'(c) = f(e)g'(c) + f'(c)g(c);
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if, moreover, f(c)# 0, then 1/f is differentiable at ¢ and

(1/£)(c) = ~f'(e)/ f(c)*.

Proof. By 8.1.5, there exist functions A:S— R, B:S — R, continu-
ous at ¢, such that

f(z)— f(c) = A(z)(z - ), g(z) - g(c) = B(z)(z —c)
for all z € S. The function A+B:S — R is also continuous at ¢ (5.3.1)

(f + 9)(=x) = (f + 9)(c) = [f(=) - F(c)] + [9(z) — 9(c)]
= A(z)(z — c) + B(z)(z — ¢)
=(4+B)(a)-(z~0)
for all x € S; by 8.1.5, f+ g is differentiable at ¢, with derivative
(A+ B)(c) = A(c) + B(c) = f'(¢) + ¢'(c) . The proof for af (a€R)is
similar. For all x € S, '

f(=)g(z) = f()g(c) = [f(z) — fc)g(z) + f(c)lg(z) — g(c)]
= A(z)(z - c)g(z) + f(c)B(z)(z - ¢),
thus
(f9)(z) — (f9)(c) = [Ag + f(c)Bl(z) - (z — o),
where Ag + f(c)B is continuous at ¢ (8.1.7, 5.3.1); therefore fg is
differentiable at ¢ and
(f9) (c) = [Ag + f(c)B](c) :
= A(c)g(c) + f(e)B(c) = f'(c)g(c) + f()g'(c) -

Suppose, in addition, that f(c) # 0. Since f is continuous at ¢, 1/f
is defined on a neighborhood T of ¢ (cf. the proof of 7.5.1); for z € T,

1/f(z) - 1/f(c) = [-1/f() f(@)]f (=) — f(c)]
= [-1/f(c)f(z))A(z)(z - ¢)
=[-A(z)/f(e)f()l(z - ©) ,
and the function B(z) = —A(z)/f(c)f(z) is continuous at ¢ (8.1.7,
5.3.3), 80 1/f is differentiable at ¢ and
(1/£)(c) = B(e) = —f'(c)/ £(e)*.

8.2.2. Remark. There are analogues of 8.2.1 for one-sided differentiability
(cf. 8.1.6 and Exercise 2 of §5.5).
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Exercises

1. Write out the details for 8.2.2.

2. (i) Let S be a neighborhood of ¢ € R and suppose that f:S — R
is differentiable at c. Prove (by induction): For every positive integer n,
the function g = f" is differentiable at ¢ and ¢'(c) = nf" (c)f'(c).
{Hint: f7=f. 1.}

(ii) Deduce that a polynomial function p : R — R is differentiable at
every c € R.

3. Prove that, in the notations of 8.2.1, if f and g are differentiable
at ¢ and if g(c)# 0, then f/g is differentiable at ¢ and
9(c)f'(c) — fe)g'(e)
g9(c)?
4. From Exercises 2 and 3, deduce the differentiability of a rational
function p/q at every point ¢ where q(c) #0 (cf. 5.3.4).

5. (i) Let ap,a1,...,a, € R, let c€ R andlet p: R — R be the
polynomial function

(f/9)'(c) =

n

p(z) = Z ar(z - c)k.

k=0

Prove: a; = p'®)(c)/k!, where p*) is the k'th derivative function of p.
{Recursively, p® =p and p®* = (p(*~V)". By convention, 0!=1.}
(ii) If p: R — R is a polynomial function of degree n and if c € R,

then )
Z p (C) — )
for all z € R. {Hint: In view of (1), it suffices to show that every power

function z — z™ is a linear combination of functions z — (z — ¢)*; look
at the binomial expansion

" =lc+(z—0c)" = g:o (Z)c’”‘k(x —c)F.}

(iti) If p: R — R is a polynomial function such that p(c) = p'(c) =
p"(c) = ... = p™(c) = 0, then p(z) = (z — c)™+q(z) for a suitable
polynomial ¢. {Hint: Use (ii).}

8.3. Composition (Chain Rule)

8.3.1. Theorem. (Chain Rule) Let f:S — R, where S is a neighbor-
hood of ce R; let g: T — R, where T is a neighborhood of f(c); and
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suppose that f(S) C T, so that the composite function go f:S - R is
defined: -

Y

cE®w
(S|

If f is differentiable at ¢, and g is differentiable at f(c), then gof
is differentiable at ¢ and

(g0 fY(e)=9'(f(c)) - F'(0).

Proof. Write h = go f. By 8.1.5, there exists a function A:S - R,
continuous at ¢, such that

(1) f(x)— f(c)=A(z)(x —c) forall z€8.
Similarly, there is a function B : T — R, continuous at f({c), such that

(2) 9(y) — 9(f()) = Bw)(y - f(¢)) forall yeT.
If s€S then f(z)€ T; putting y= f(z) in (2), we have
9(f(=)) — 9(f(c)) =B(f(z)) - (£(z) - £(9))
= B(f(x)) - Al@)(z ~ ©)
by (1), thus
(3) h(z) — h(c) =[(Bo f)Al(z)- (x—c) forall z€8S.

Since (Bo f)A is continuous at ¢ (5.6.4, 5.3.1), it follows that h is
differentiable at ¢ and
h'(c) = [(B o f)A](c) = (B o f)(c) - A(c)
= B(f(c)) - A(c) = ¢'(f(c)) - f(0). &

8.3.2. Remarks. There are partial ‘one-sided’ versions of 8.3.1 (but see
kixercise 4). For example, assume S is a right neighborhood of ¢ and
T is a neighborhood of f(c);if f is right differentiable at ¢, and g is
differentiable at f(c), then go f is right differentiable at ¢ and

(g0 fn(e) =4 (f(0) - £i(c).
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{With notations as in the proof of 8.3.1, A and f are right continuous
at c,s0 (Bo f)A isright continuous at ¢ (cf. §5.6, Exercise 2 and §5.5, °
Exercise 2).} ¥

Exercises

1. Write out in full the proofs sketched in 8.3.2.

2. Deduce from 8.3.2 that if f: S — R is right differentiable at ¢
and if f(c) # 0, then 1/f is defined in a right neighborhood of ¢ and
is right differentiable at ¢, with

(1/£)(e) = —fr(e)/ f(e).

3. Let S be a right neighborhood of ¢ € R and let T = —§ = *
{—z: z €S}, which is a left neighborhood of —c. If f:S — R isright
differentiable at ¢ then the function g: T — R defined by g(z) = f(—z) -
is left differentiable at —c, and

gi(—c) = = f:(c).

*4. f f:R—> R is the function f(z) = -z and g:R — R is the °
function defined by :

(z) = 0 for >0,
gE = z sin(l/z) for <0,

then g is right differentiable at 0 but go f is not.,

8.4. Local Max and Min

8.4.1. Definition. Let f:S — R, where S is a neighborhoodof ce R.
We say that ' _
' has a local maximum at ¢ if there exists a neighborhood V of ¢,
with V C S, such that f(z) < f(c) forall z€V; ,

f has a local minimum at ¢ if there exists a neighborhood Vof ¢, .
with V C S, such that f(z) > f(c) for all £ € V (in other words,
—Jf has a local maximum at c).

8.4.2. Remarks. A function f:S — R is said to have a maximum
(or ‘global maximum’) at c€ S if f(z) < f(c) forall £ € S (here S
need not be a neighborhood of ¢); if f(z) > f(c) for all z € S then
f is said to have a minimum (or ‘global minimum’) at ¢. For example,
every continuous function defined on a closed interval has a maximum and
a minimum (6.3.2).
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8.4.3. Lemma. Suppose f:S — R has a local mazimum at c. Then

(i) f right differentiable at ¢ = f!(c) <0;

(i) f left differentiable at ¢ = f/(c) > 0.

Proof. 1t is implicit that S is a neighborhood of ¢ in R (8.4.1).
Shrinking S if necessary, we can suppose that f(z) < f(c) forall z€S.

(i) Let (z,) be a sequence in S with ¢, > ¢ and z, — c. By

assumption, fon) ©
Ty) — flc ,
“2.¢ JAGR

In the difference quotient on the left, f(z,) — f(c) <0 and z, -c>0,
so the fraction is < 0, therefore so is its limit (3.4.8).

(ii) Assuming z, < c¢, the numerator in the above difference quotient
is <0 and the denominatoris < 0. ¢

8.4.4. Theorem. Let f:S — R, where S is a neighborhoodof ce R. If
f has a local mazimum or a local minimum at ¢, and if [ is differentiable
at c, then f'(c) =

Proof. If f has a local maximum at c then, by the lemma,
0< file)=f'(e) = f1(c) <0,

so f'(¢) = 0. If f has a local minimum at c, apply the preceding
argument to —f. §

Exercises

1. Prove that the function f:R — R defined by f(z) =2°®—3z hasa
local maximum at = = —1, a local minimum at z =1, but no maximum
or minimum value. In contrast, the function g : [0,1] — R defined by
g(z) =z has a maximum at 1, a minimum at 0, but no local maximum
or local minimum. {Shortcut: After establishing the character of f at 1,
note that f is an odd function.}

2. True or false (explain): If f:8 — R has a maximum at an interior
point ¢ of S then f has a local maximum at c.

8.5. Mean Value Theorem

The basic theme of this section is the interaction between a function and
its derivative.

8.5.1. Theorem. (Rolle’s theorem) If f : [a,b] — R is continuous,

a <b, f is differentiable at every point of (a,b), and f(a) = f(b), then
there exists a point c € (a,b) such that f'(c) =0
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Proof. By 6.3.1, the range of f is a closed interval, say f([a,b]) =
[m,M]. If m=M then f isconstant and f'(c) =0 for all c € (a,b).
Suppose m < M; say m = f(¢), M = f(d). Since f(a) = f(b) and

f(c) # f(d), not both of ¢ and d can be endpoints of [a,b], so at least

one of them must be an internal point; if, for example, d € (a,b), then f
has a local maximum at d,so f'(d)=0 by 8.4.4.¢

8.5.2. Theorem. (Mean Value Theorem) If f:[a,b] — R is continuous,
a<b, and f is differentiable at every point of (a,b), then there exists a
point c € (a,b) such that

f(b) = f(a) = f'(c)(b—-a).

Proof. In other words, there is an internal point at which the tangent
line is parallel to the chord joining the endpoints (Figure 11).

(a, f(@)

¢ tmE TR el RS AT L T

-~ (e, f(e))

FIGURE 11

Write
f(b) - f(a)
" b—a
for the slope of the line joining the endpoints of the graph; the equation of
this line is y = f(a) + m(x — a). Define F: [a,b] —» R by ‘subtracting’
the line from the graph of f, that is,

F(z) = £(z) - [f(@) + m(z - a)].

Then F is continuous on [a,}], differentiable on (a,b), F(a) =0, and
F(b) = 0 (by the definition of m); thus F satisfies the hypotheses of
Rolle’s theorem, so there is a point ¢ € (a,b) such that

0=F'(c)=f(c)-m. O
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8.5.3. Corollary. For a continuous function f : [a,b] — R that is
differentiable on (a,b), the followmg conditions are eqmvalent

(a) f is increasing; .

(b) f'(z) >0 forall z € (a, b)

Proof. (a) = (b): The elementary argument is similar to that in 8.4.3.

(b) = (a): Note first that f(a) < f(b); for, in the notation of the mean
value theorem, f'(c) > 0 and b—a > 0, therefore f(b) — f(a) > 0.
More generally, if a <z <y <b then f(z) < f(y) (apply the preceding
result to the restriction of f to the interval [z,y]); in other words, f is
increasing. ¢ .

8.5.4. Corollary. If f:[a,b] — R is continuous, differentiable on (a,b),
and f'(z) =0 forall z € (a,b), then f is a constant function.

Proof. By the preceding corollary, f is increasing; but the hypotheses
are also satisfied by —f, so f is also decreasing. There’s only one way
out: f is constant. {

This corollary is greatly strengthened by (ii) of the following theorem
(destined for application in the theory of integration):*

8.5.5. Theorem. Let f: [a,b] — R be a continuous function that is
right differentiable at every point of (a,b).
@A) If fi(x) =20 for all z € (a,b) then f is an increasing function
on [a, b]
() If fi(z)=0 forall z € (a,b) then f is a constant function.
(iii) If fi(z) > 0 for all z € (a,b) then f is strictly increasing
on [a,b].

Proof.2 (iii) We show first that f is increasing. To this end, it suffices
to show that f(a) < f(b). {For, if a < ¢ < d < b then the restriction of
f to [e,d] also satisfies the hypotheses of (iii).} Assume to the contrary.
that f(a) > f(b). Choose k sothat f(b) <k < f(a) and let

A={zclab]: f(z)>k};

A is bounded, and nonempty {(a € A). Also, A is a closed set; for, if
rn € A and &, — z,then z € [a,b] (because [a,b] is a closed set) and
f(z) = lim f(z,) > k by the continuity of f and (8) of 3.4.8, thus z € A.
It follows that A has a largest element ¢, namely ¢ =supA (4.5.7). In
particular, f(¢) > k and, since f(b) < k, we have ¢ # b, therefore
¢ < b. We are going to show that also f(c) < k, hence f(c) =

LThe rest of the section, somewhat difficult, can be deferred until 9.6.11. It
would not be a sin to omit it altogether.

2A combination of ideas I learned from my colleague Ralph Showalter and the
book of E. J. McShane [Integration, Princeton, 1944], p. 200, 34.1.
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Choose a sequence (t,), ¢ < t, < b, such that t, — c¢. Since ¢
is the largest element of A and ¢, > ¢, t, does not belong to A,
therefore f(t,) ¥ k; passing to the limit, f(c) <k. Thus f(c) =k and
f(b) < f(c) < f(a); in particular, c # a, therefore a < ¢ < b, that is,
¢ € (a,b). By hypothesis, f is right differentiable at ¢ and f(c) > 0.
However, f(t,) — f(c) = f(t,) — k < 0, and passage to the limit in the

inequality
_'f_(t_")_-.-_f_(_cl < 0
t, —¢

yields fl(c) <0, a contradiction.

We now know that f is increasing. If it failed to be strictly increasing, -
there would exist a pair of points ¢,d in [a,b] with ¢ <d and f(c) =
f(d); it would then follow that f is constant on [c,d], sothat f/(z)=0
for all z € (c,d), contrary to hypothesis.

(i) Assuming a < ¢ < d < b, we are to show that f(c) < f(d). Given
any positive integer n, it suffices to show that f(c) + ¢/n < f(d) +d/n
(passage to the limit then yields the desired inequality). Let g : [a,b] — R
be the function defined by g(z) = f(x)+z/n. Then g is continuous and,
for every z € (a,b), g is right differentiable at z with gl.(z) = fl(x) +
1/n >1/n>0; by (iii), g(c) < g(d), that is, f(c)+c/n < f(d)+d/n.

(ii) By assumption, f/(z) = 0 and (—f),(z) = —f}/(z) = 0 for all
z € (a,b). By (i), f and —f are both increasing, so f is both increasing
and decreasing—in other words, constant. ¢ .

8.5.6. Remark. The foregoing proof of (iii) shows that, to conclude f is
strictly increasing, it suffices to assume that f/.(z) >0 for all z € (a,b) °
and that every open subinterval (c,d) of [a,b] contains a point z with

fr(z) > 0.

8.5.7. Remark. Theorem 8.5.5 is true with “right” replaced by “left” and
f! by f/. {Apply 8.5.5 to the function z — —f(—z) on [-b, —a] (or to
the function z+— —f(a+b—z) on [a,b]).}

Exercises

1. Write out in full the proof sketched in 8.5.7. {Hint: Cf. §8.3, Exer-
cise 3.}

2. Let I be an interval that is an open subset of R andlet f:I— Rbe
a function such that, at every point = € I, f has a derivative f'(z) #0.
Let J= f(I) (also an interval, by 6.1.2). Prove:
(i) f is injective (hence strictly monotone). {Hint: Rolle’s theorem
(and §6.4, Exercise 7).}
(ii) The interval J is also an open subset of R.
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(ii1) The function g:J — I inverse to f is differentiable at every point
yeJ,and ¢g'(y)=1/f(g(y)). {Hint: g is continuous (6.5.2).}

3. Suppose f : I — R is continuous, I an interval (of any sort),
and suppose that at every interior point z of I, f is differentiable and
f'(x) > 0. Prove: f is an increasing function on I.

4. Let a <c < b. Suppose f:(a,b) — R is continuous, differentiable
at every point of (a,b) —{c}, and that f’ has a limit at c¢. Prove: f is
differentiable at ¢ and

£(9) = lim £(@)

(thus f’ is continuous at ¢). {Hint: MVT.}

5. Suppose f:[a,b] = R, g:[a,b] — R are continuous, f and g
are differentiable on (a,b), and ¢'(z) #0 for all z € (a,b). Prove there
exists a point ¢ € (a,b) such that

f(b) — f(a) _ f'(c)
g(6) —g(a) (o)

(Cauchy’s mean value theorem).
{Hint: The fraction on the left exists by Rolle’s theorem. Speaking of
Rolle’s theorem, consider the function F = [f(b)— f(a)lg—{g(b)—g(a)]lf .}

6. (Darbouz’s theorem) If the interval I is an open subset of R, and
if f:1— R is differentiable at every point of I, then the range of f’
is an interval (not necessarily an open set). (This has the flavor of an
‘intermediate value theorem’ for f’, but we are not assuming that f' is
continuous!)

{Hint: If a,b are points of I with a < b, and if K lies strictly
between f'(a) and f'(b), argue that the function g: [a,b] = R defined
by g(z) = f(z) — Kz has a maximum or a minimum in (a,b); if, for
example, f'(a) < K < f'(b), inspection of the signs of the one-sided
derivativesof g at a and b shows that g has a minimum at an internal
point of [a, b]; cf. 8.4.4.}

7. (L’Hospital’s rule) If f(z) — 0, g(z) — 0 and f'(z)/¢'(zx) = L as
z — ¢, then f(z)/g(z) = L as z — c¢. The hypotheses on f and g¢:
on some deleted neighborhood of ¢, f and g are differentiable (hence
continuous) and ¢’ is zero-free, and the stated limits of f, g and f'/g’
exist. The conclusion is that g is zero-free on a deleted neighborhood of
c and that f/g has a limit, as = — ¢, equal to the limit of f'/g’.

{Hint: Since the hypotheses and conclusion are ‘local’, we can suppose
that f and g are defined on an open interval (a,b) with a < ¢ < b,
that f/, ¢’ are defined on (a,b) — {¢} and ¢’ is never O there, and
that f(c) = g(¢) = 0 (if necessary, define—or redefine—f and g at c
to have this property), so that f and g are continuous on all of (a,b).
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Note that g has no zero in (a,b) other than ¢ (Rolle). If z, — ¢,
z, # ¢, Exercise 5 provides a point t, between ¢ and =z, such that

f(@n)/9(n) = f'(tn)/g'(tn) ; necessarily t, —c.}

8. Let f:[1,3] = R be a continuous function that is differentiable on
(1,3) with derivative f'(z) = [f(z)]?+4 for all z € (1,3). True or false
(explain): f(3) — f(1) =5.

9. The argument of 8.5.5, (iii) can be sharpened in the following way.
Assume that f:[a,b] — R is continuous and that N is a subset of [a,b)]
such that, for every = € (a,b) — N, f is right differentiable at = and
fi(z)>0.

(iii’) If f(N) has empty interior, then f is increasing; if both N and
f(N) have empty interior, then f is strictly increasing.

{Hint: In the argument of 8.5.5, if f(a) > f(b), then f(N) cannot
contain the interval (f(b), f(a)); choose k € (f(b), f(a)) — f(N).}

10. Let f:[a,b] = R be continuous and suppose (c,) is a sequence
of points of [a,b] such that f is right differentiable at every point of
(a,b) not equal to any of the points ¢,. Let N={c,: n€P}. Then
the statements (i)—(iii) of 8.5.5 remain true with z € (a,b) replaced by
z € (a,b) - N. '

{Hint: The sets N and f(N) both have empty interior (cf. §2.6, Ex-
ercise 4).}

11. Corollary 8.5.3 can be generalized as follows. Let f:[a,b] = R be
continuous and suppose there exists a sequence (cp) of points of [a, b] such
that f is right differentiable at every point of (a,b) other than the ¢, .
The following conditions are equivalent:

(a) f is increasing on [a, b];

(b) fl(x) =0 forall z€(a,d)—{c,: neP}.

{Hint: Exercise 10.}



CHAPTER 9

Riemann Integral

§9.1. Upper and lower integrals: the machinery
§9.2. First properties of upper and lower integrals
§9.3. Indefinite upper and lower integrals

§9.4. Riemann-integrable functions

§9.5. An application: log and exp

§9.6. Piecewise pleasant functions

§9.7. Darboux’s theorem

§9.8. The integral as a limit of Riemann sums

To save repetition, the following notations are fixed for the entire chapter:

[a,b] is a closed interval of R, a<b
f:[a,b] = R is a bounded function
M =sup f =sup{f(z): a <z <b}
m=inf f =inf{f(z): a<z <b}.

We also write M = M(f) and m = m(f) to indicate the dependence
of M and m on f. Other notations are introduced as needed (for
subintervals of [a,b], for other functions, etc.), but the foregoing are the
indispensable core.

The agenda: When should f have an ‘integral’ and what should it be?
What are its properties? What good is it?

9.1. Upper and Lower Integrals: The Machinery

9.1.1. Definition. A subdivision' ¢ of [a,}] is a finite list of points,
starting at a, increasing strictly, and ending at b:

a={a=ao<a1<a2<---<a,.=b}.

LThe term ‘partition’ is frequently used. However, the most firmly established
use of the word ‘partition’ is for the decomposition of a set into pairwise disjoint
subsets, whereas adjacent subintervals associated with a subdivision have a point
in common; hence our preference for the term ‘subdivision’.
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The a, (¥ =0,1,2,...,n) are called the points of the subdivision; the
‘trivial subdivision’ ¢ = {a = ag < a; = b} is allowed. The effect of o
(when n > 1) is to break up the interval [a,b] into n subintervals

(@0, a1, [a1,a2), ..., [@n—1,8n];
the length of the v’th subinterval is denoted e, ,
ev=0ay—ay-1 @E=1,...,n);
the largest of these lengths is called the norm of the subdivision o, written

N(o) = max{e,: v=1,...,n}.

9.1.2. Definition. With the preceding notations, for v = 1,...,n we
write
M, = suP{f(x) i a1 £ < au}a
m, =inf{f(z): a1 S2< @ };
thus M, and m, are the supremum and infimum of the function
f|l@av—1, ay] (the restriction of f to the »’th subinterval). Obviously
m, < M, ; the difference

wy =M, —m, (20)

is called the oscillation of f over the subinterval [a,—_;,a,].2 When we
wish to show the dependence of these numbers on f, we write M,(f),

my(f), w(f).

9.1.3. Definition. With the preceding notations, the upper sum of f
for the subdivision ¢ is the number

S(o) = 2": Mye,

v=1

and the lower sum of f for o is the number
n
s(o) = E myey;
v=1

we write Sy(o) and sy(¢) to express the dependence of these numbers
on f and o.

2This concept is not needed until §9.7.
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The upper and lower sums can (at least for f > 0) be interpreted as
crude ‘rectangular’ approximations to the area® under the graph of f. For
example, in Figure 12,

a ay az a3 b
] I
ao FIGURE 12 a4

the shorter rectangles (shaded) represent the terms of the lower sum’
mie; + Mmo€g + Mmzes + Mgy
and the taller rectangles, the upper sum
Mie; + Maez + Mzez + Myey
for a subdivision 0 = {a =ap < a1 < az <az < a4 =b}.
9.1.4. Theorem. If o is any subdivision of [a,b], then
m(b—a) < s(g) < S(e) K M(b—a).
Proof. Say o ={a=ap<a1<--<a,=b}. For v=1,...,n,
(%) m<m, <M, <M;

for, m, < M, is obvious, and the inequalities m <m,, M, < M follow
from the inclusion

{f(x): ap-1€x<a,}C{f(z): a<z <b}.

Muitiply (*) by e, and sum over v, noting that

n

Ze,,=b—a.<>

v=1

3The geometric language is pure fantasy, albeit helpful; what is actually hap-
pening takes place in the definitions and theorems. One consequence of the theory
is a definition of ‘area’ in which we can have some confidence.
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It follows that the sets

{s(0) : o any subdivision of [a,b]},
{S(¢) : o any subdivision of [a,}]},

are bounded; indeed, by 9.1.4 they are subsets of the interval
[m(b — a), M(b— a)]. If, in a sense, the ‘right answer’ is the area un-
der the graph of f, then the lower sums are too small and the upper sums
are too big; the appropriate numbers to consider are the following:

9.1.5. Definition. The lower integral of f over [a,b] is defined to be
the supremum of the lower sums, written

/ : f =sup{s(o) : o any subdivision of [a,d] },

and the upper integral is defined to be the infimum of all the upper sums,
written

=b
/ f =inf{S(0) : o any subdivision of [a,b]}.

9.1.6. Exzample. In favorable cases these two numbers are equal, but
here’s a ghastly example where everything goes wrong: f(z) =1 for all
rational z in [a,b] and f(z) =0 for all irrational z. For this function,
every lower sum is 0 and every upper sum is b— a, thus

_/bf=0 and /:bf=b—a.

9.1.7. Remarks. There's a useful analogy with bounded sequences (§3.7).
In arriving at the upper integral, for each subdivision o we take a supre-
mum (actually, one for each term of S(c)), then we take the infimum of
the S(o) over all possible subdivisions o ; this is analogous to the limit
superior of a bounded sequence (3.7.2). Similarly, the definition of lower
integral is analogous to the limit inferior of a bounded sequence (inf fol-
lowed by sup). The pathology in 9.1.6 represents a sort of ‘divergence’;
just as the ‘nice’ bounded sequences are the convergent ones (those for
which liminf = limsup ), the ‘nice’ bounded functions should, by analogy,
be those for which the lower integral is equal to the upper integral. (All of
these prophecies are fulfilled in what follows!)

Obviously

o(0) < /bf and /:bfsS(a)

for every subdivision o . Some other useful inequalities:
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9.1.8. Theorem. For every bounded function f:[a,b] =R ,

m(b—a) < /beM(b—a),

La
=b

mp-a)< [ f<MG-a),

where m=inff and M =supf.
Proof. This is obvious from 9.1.4. {

Upper and lower sums are in a sense approximations to the upper and
lower integrals. The way to improve the approximation is to make the
subdivision ‘finer’ in the following sense:

9.1.9. Definition. Let o and 7 be subdivisions of [a,b]. We say that T
refines o (or that 7 is a refinement of o )—written 7 > o (or o < 7)—if
every point of o is also a point of . Thus, if

c={a=a<a; < - <ap,=b},
r={a=by<b < - <by=0b},

then 7 > o means that each a, is equal to some b, ; in other words, as
sets,

{ag,a1,...,a,} C {bo,b1,...,bm}.

9.1.10. Remarks. Trivially ¢ > o;if p> 7 and 7> o then p»> 0.
If 7>0 and o > r—that is, 0 and 7 have the same points—then o
and r are the same subdivision and we write o =7.

If > o it is obvious that N(7) < N(o). The effect of refinement on
upper and lower sums is as follows:

9.1.11. Lemma. If 7 > o then S(r) < S(o) and s(r) > s(o).

Proof. In other words, refinement can only shrink (or leave fixed) an
upper sum; refinement can only increase (or leave fixed) a lower sum.

If 7 =0 there is nothing to prove. Otherwise, if + has r > 1 points
not in o, we can start at ¢ and arrive at 7 in r steps by inserting one
of these points at a time, say

T=09<01<X...X0p=T,

where o} is obtained from o,—; by inserting one new point. We need
only show that S(ox) < S(ox—1) and s(ok) > 8(ok-1); thus, it suffices to
consider the case that 7 is obtained from ¢ by adding one new point c.
Suppose

c={a=0y<a;<---<a,=b}.
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Say ¢ belongs to the u’th subinterval, a,_; < ¢ < a,, so that
r={a=0a<a1<...<0u-1<€<ay < auy1 << ap=b}.

The terms of S(r) are the same as those of S(o) except that the y’th
term of S(o) is replaced by two terms of S(7); thus, in calculating S(o)—
S(r) (we are trying to show that it is > 0) all of the action is in the
p'th term of S(o), the other terms of S(o) being canceled out by terms
of S(r). In other words (replacing f by its restriction to [a,—1,a,.]),
we are reduced to the case that

o={a<b}, r={a<c<b}.
Writing M =sup f as before, and

M’ =sup{f(z): a_<_a:$c},
M" =sup{f(z): c<z <b},

we have
S(o)=M(b—a) and S(r)=M(c—a)+M"(b-c);
obviously M'< M and M”" < M, so
S(r) < M(c—a)+ M(b-c) = M(b—a)=S(s),
thus S§(7) < S(o). Similarly s(r) > s(o) (with the obvious notations,

m<m' and m <m”,etc.). $

The middle inequality in 9.1.4 can be improved in an mterestmg way .'
(cf. the ‘alternative proof’ of 3.7.4):

9.1.12. Lemma. If o0 and 7 are any two subdivisions of [a,b], then
s(o) < S(1).

Proof. Let p be a subdivision such that p > ¢ and p » 7. (Such
a p is called a common refinement of o0 and 7; for example, create p
by lumping together all of the points of & and 7.) By 9.1.11 and 9.1.4,

8{0) < 8(p) < S(p) < (7). ¢

The analogue of 3.7.4 (liminf < limsup ):
9.1.13. Theorem. For every bounded function f:|[a,b] — R,

b

[:fS/a .
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Proof. Fix a subdivision 7. By 9.1.12, s(o) < §(7) for every subdivi-
sion ¢, therefore

(+) LUssh)

by the definition of lower integral (as the least upper bound of the set of
all lower sums). Now let 7 vary: the validity of (*) for every 7 implies

that , _b
LfSLf

by the definition of the upper integral (as the greatest lower bound of the
set of all upper sums). $

Exercises

1. If f >0 then all upper and lower sums for f are >0, and

0< _/abfs/;bf-

2. If f:[a,b) = R and g¢: [a,b] » R are bounded functions such
that f(z) < g(z) for all z € [a,b], then

b b =b =b
/fs/gand/fs/g-
{Hint: Compare sf(0) and sg(c) for any subdivision ¢ .}

3. Suppose a<c<b, flc)y=1,and f(z)=0 forall z € [a,b]—{c}.
Compute the lower and upper integrals of f. Do the same for the function
f such that f(z) =0 for z €[a,c) and f(z)=1 for z € [c,}].

4. Prove that if f :[a,b] — R is increasing then its lower and upper
integrals are equal. (Similarly if f is decreasing.)

{Hint: For any subdivision ¢ (with notations as in 9.1.3), calculate
m,, M, and S(o)—s(o). Assuming the points of subdivision are equally
spaced, look at the chain of inequalities

s(o) < _/abfs/;bfss(o)

and calculate the gap between the left and right ends. }
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8. Fix an increasing function ¢ : [a,b] » R. As usual, f:[a,b] - R
is any bounded function. In the notations of 9.1.1 and 9.1.2, define N(o)
as before (as the maximal length of a subinterval of o), then make one
change: define e, = g(a,)—-g(a,-1). Since g is increasing, e, > 0; also,

D e=9()—g(a), 5;(0) =Y _mlg(as) = 9(au-1)], ete.

y=1 y=1

The exercise: work through the section taking into account the revised
definition of e, . In this context, the notations of 9.1.5 are replaced by

/bfdg and /;bfdy,

called the Riemann-Stieltjes lower and upper integrals of f with respect
to g4

6. If f:[a,b] = R is the given bounded function and g :[-b,—a] = R
is defined by g(y) = f(—y) for —b<y < —a, then

=b

and similarly for the lower integrals.

{Hint: If o ={a =ag < a; < -+ < ay = b}, write —0 = {-b =
bp<b <--- <bp =—a}, where b, = —a,—, for v=0,1,...,n. For
every v,

(00): buor SYS b} = {f(2): Gnoy ST < tnopir },

whence M, (9) = Mu—+1(f), Sg(—0) = Ss(o), ete.}

9.2. First Properties of Upper and Lower Integrals

The following theorem cuts the labor in half by reducing the study of
lower integrals to that of upper integrals:

9.2.1. Theorem. For every bounded function f:[a,b] - R ,

_/abf=—/:b(~f>.

4Cf. the books of W. Rudin [Principles of mathematical analysis, p. 120,
3rd. edn., McGraw-Hill, New York, 1976] and A. Devinatz [Advanced calculus,
p- 210, Holt, Rinehart and Winston, New York, 1968].
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Proof. Let o be any subdivision of [a,b] and adopt the notations of
9.1.3. Writing
A, ={f(®): ay-1<z<0a },

we have
sup(—A,) = —(inf 4,)

(1.3.8); this means that, in the notations of 9.1.2,

M,(=f) = —mu.(f)

for v=1,...,n, whence
S_5(0) = —3¢(0).
Writing
B = {sf(0) : o any subdivision of [a,b]},
we have
—B = {S_¢(0): o any subdivision of [a,b]},
therefore

=b

_/:f = sup B = —inf(~B) = —/a (=£). ¢

9.2.2. Definition. If a < ¢ < d < b, the definitions for f can be
applied to the restriction fl[c,d] of f to [c,d], that is, to the function
z +— f(x) (e <z < d); instead of the ponderous notations

_/cdfllc,d] and /:d.fl[c,d]

_/cdf anti /:df.

It is also convenient to define

c ~c
[r-[ =
Ye c
for any c € [a,b] (not unreasonable when one thinks of areal). .

With these conventions, the upper and lower integral is (for a fixed func-
tion f) an ‘additive function of the endpoints of integration’:

9.2.3. Theorem. If a<c<b then

(i) / f=/;cf+/c ,

we write simply
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() [1=[1+ [1.

Proof. Both equations are trivial when ¢=a or ¢ = b; we can suppose
a < c<b. In view of 9.2.1, it suffices to prove (i); writing L for the left
side of (i) and R for the right side, let us show that L< R and L > R.

Proof that L < R: Let o1 be any subdivision of [a,c], o2 any subdi-
vision of [c,b], and write o = 01 @02 for the subdivision of [a, b] obtained
by joining o, and o2 at their common point c. It is then clear that

8(o) = 8(e1) + S(o2)

(the upper sum on the left pertains to f, those on the right pertain to the
restrictions of f to [a,c] and [c,b]); then -

=b

| 1256 = St + 5(0a),
=b
/ f - S(01) < S(03).

Varying o2 over all possible subdivisions of [c, b], it follows that

/;b.f—s(ol)S/:b.f,
/;bf—/:bfss(«n);

since this is true for all o; we have
=b b =c
[ - <[+
a [+ a
whence L<R.

Proof that L > R: Let o be any subdivision of [a,b]. Let 7 be a
subdivision of [a,b] such that 7 > ¢ and 7 includes the point ¢ (for
example, let 7 be the result of inserting ¢ intoe o if it’s not already
there). Since c is a point of 7, as in the first part of the proof we can
write 7 =71 @7 with 7 a subdivision of [a,c] and 7, a subdivision of
[c,b]. Then

thus

&b

5(0) 2 5() = 5(n) + 8(m) 2 [ i+ [
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(the first inequality follows from 7 > o, the second from the definition of

upper integral). Thus S(o) > R for every subdivision o of [a, b], whence
L>R. ¢

Exercises

=b =b
[et=cf 1
a a
and similarly for the lower integral.
(ii) If ¢ <0 then

1. (i) If ¢>0 then

{Hint: ¢f =—(-c)f.}
2.If a<c<b and

f(z) = 0 fora<z<ec
# = 1 forc<z<b

then the upper and lower integrals of f are equal (§9.1, Exercise 3). Derive
their value using 9.2.3.

3. The upper and lower integrals of the function f(r) = z are equal
(89.1, Exercise 4); find their value.

{Hint: Let o, be the subdivision of [a,b] into n subintervals of equal
length h = (b— a)/n. Write out the expression for the lower sum s(o,),
simplify it using the formula 14+2+3+...+(n—1) = }(n - 1)n, and
show that 8(o,) T 1(b?—a?); infer that the lower integral is > 1(b% —a?).
Then look at the upper sums S(o,).} .

4. The results of this section extend to Riemann-Stieltjes upper and
lower integrals. {Caution: Exercise 2 does not carry over without an added
assumption on the function g of §9.1, Exercise 5.}

9.3. Indefinite Upper and Lower Integrals

The notations of 9.2.2 allow us to regard the upper and lower integrals
as functions of the endpoints of integration.

9.3.1. Definition. For the given bounded function f : [a,b] — R, we
define functions F:[a,b] = R and H :[a,b] — R by the formulas
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F(z)=[zf (a<z<b),
H(z) = /wf (e<z<b).

(Later in the section we consider variable lower endpoints of integration,
leading to a function G complementary to F, and a function K comple-
mentary to H.) The function F is called the indefinite upper integral
of f,and H is called the indefinite lower integral of f.

By convention (9.2.2), F(a) = H(a) =0; by 9.1.13, H(z) < F(z) for
all z € [a,b]. The pleasant surprise of this section is that the functions
F and H have nice properties even if nothing is assumed about the given
bounded function f; and (exaggerating a little) every nice property of f
(like continuity) yields an even nicer property of F (like differentiability).
First, a property that comes free of charge:

9.3.2. Theorem. Let k = max{|m|,|M|}, where m =inf f and M =
sup f. Then

|F(z) - F(y)l < klz —y|, [H(z)-H(y)| <klz -y

for all z,y inla,b]; in particular, F and H are continuous on [a,b].

Proof. We can suppose z < y. By the ‘additivity’ proved in 9.2.3,
7Y 7T Fy
[i=[ 1+ 1,
7Y
[ 1=Fa)-F@).

If m’ and M’ are the infimum and supremum of f on the interval [z, y],
we have m < m' < M’ < M ; citing 9.1.8,

thus

m(y—w)Sm'(y—a;)s/_ F<M(y-z)<My—1),

thus
m(y—z) < F(y) - F(z) < M(z—-y).

Since |m| <k and |M| < k,sothat —k <m and M <k, it follows
that :
—k(y—z) < F(y) - F(z) < k(y - z),

that is, |F(y) — F(z)| < k(y — z) = kly — =|.
The proof for H is similar (or take a shortcut via 9.2.1). ¢
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9.3.3. Theorem. If f >0 then F and H are increasing functions.

Proof. It is clear from 9.1.8 that the upper and lower integrals of a
nonnegative function are nonnegative. If a < ¢ <d <b then, citing 9.2.3,
=~d

F(d) = F(¢) + / £2 F),

thus F is increasing. Similarly for H . {

To hold down the lengths of proofs, it is sometimes convenient to separate
out ‘right’ and ‘left’ versions:

9.3.4. Theorem. If a < c < b and f is right continuous at c, then
F and H are right differentiable at ¢ and F)(c) = H(c) = f(c).

Proof. We give the proof for F'; the proof for H is entirely similar.
Let e>0. Weseeka 6 >0, with ¢+ 6 < b, such that

(*)  e<z<c+b = M

fle| <e.
Since f is right continuous at c, there exists a 6§ > 0, with ¢+ 6 < b,
such that

c<t<c+6 = |f(t)- flo)l <e.

FIGURE 13

Let ¢ < z < c+6 (see Figure 13). For all t € [c,z], we have |f(t)—f(c)| <

€, 80
fle)—e< f(t) < fle) +e.
If m,; and M, are the infimum and supremum of f on [c,z], then
fle)—e<my S M; < fc) +e,

therefore
@ -de-d<Sme-9< [ 1<Mulo=0) <If(e) +ele=0)-
Citing 9.2.3, we thus have
[£(0) - d(@ ~ ¢) < F(z) - F(©) S [£() + @ - ).
whence (*). ¢
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The ‘left’ version of 9.3.4:

9.3.4.) Theorem. If a <c<b and f is left continuous at c, then F
and H are left differentiable at ¢ and F](c) = H](c) = f(c).

Proof. The easiest strategy is to modify the preceding proof: replace
c<zr<c+8 by c—é<z<e, [cz] by [z, ete.

{An alternative strategy is to apply 9.3.4 to the function g : [-b, —a] = R
defined by g(y) = f(—y), which is right continuous at —c when f is left
continuous at c¢; the verification of the appropriate relations among the
indefinite integrals of f and g is straightforward but fussy.} ¢

9.3.5. Corollary. If a<ec< b and f is continuous at c, then F and
H are differentiable at ¢ and F'(c) = H'(c) = f(c).

Proof. By assumption, f is both left and right continuous at ¢, so by
9.3.4 and 9.3.4',

F{(c) = f(c)=F;(¢) and Hj(c) = f(c) = Hy(c);

by 8.1.2, F and H are differentiable at ¢, with F'(c) = f(c) and
H'(c)=f(c). ¢

It is occasionally useful to regard the upper and lower integrals as func-
tions of the lower endpoint of integration:

9.3.6. Definition. For the given bounded function f : [a,b] — R, we
define functions G: [a,b] = R and K :[a,b] —» R by the formulas

z)/fandK /f

9.3.7. Remarks. In view of 9.2.3, we have

for a<z<b.

. =b
F(:c)+G(:c)=/ f,
b
H(z) + K(z) = / ,

for a <z <b;thus G isin asense complementaryto F,and K to H.
This is the key to deducing the properties of G from those of F, and the
properties of K from those of H. For example, since F and H are
continuous (9.3.2), so are G and K.

9.3.8. Theorem. If a < c < b and f is right continuous at c, then
G and K are right differentiable at ¢ and Gi.(c) = K] (c) = —f(c).

Proof. This is immediate from 9.3.4 and the formulas in 9.3.7.
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Similarly,
9.3.8". Theorem. If a<c<b and f isleft continuous at ¢, then G
and K are left differentiable at ¢ and G)(c) = K](c) = —f(c).

9.3.9. Corollary. If a<c<b and f is continuous at ¢, then G and
K are differentiable at ¢ and G'(c) = K'(c) = —f(c).

Exercises

1. If f >0 then the functions G and K of 9.3.6 are decreasing. If
f<0 then G and K are increasing, while the functions FF and H of
9.3.1 are decreasing.

2. If f is monotone then F = H (and G = K). {Hint: §9.1,
lixercise 4.}

3.If a<c<b and

f(z) = 0 for a<z<c
7= 1 for e<z<b

then F is ‘piecewise linear’; find its formula. {Hint: §9.2, Exercise 2.}

4. If f(z) =z (a <z <b), then F(z) = (22 — a?). {Cf §9.2,
Iixercise 3.}

5. In the Riemann-Stieltjes context (cf. §9.2, Exercise 4), upper and
lower indefinite integrals are defined in the obvious way. In this context,
the expression k|r —y| in 9.3.2 gets replaced by k|g(z) —g(y)|; thus, the
continuity properties of F hinge on those of g. The Riemann-Stieltjes
analogue of 9.3.4: If f is right continuous at c, and g is right differ-
entiable at ¢, then F and H are right differentiable at ¢ with right
derivative f(c)gl(c).

6. The converses of 9.3.4-9.3.5 are false. {Cf. §9.6, Exercise 6.}

9.4. Riemann-Integrable Functions

9.4.1. Definition. A bounded function f : [a,b] — R is said to be
Riemann-integrable (briefly, integrable) if

_/ab.f=/:b.f-
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{The analogous concept for bounded sequences (liminf = limsup) is -

convergence!} We write simply ;
b

[

or (especially when f(z) is replaced by a formula for it)

/ ’ fa)ds,

for the common value of the lower and upper integral, and call it the -
integral (or Riemann integral) of f.
Most of this section is devoted to examples.

9.4.2. Remark. If f is Riemann-integrable then so is - —f, and

/ab(—f)z—/abf-

{This follows easily from 9.2.1.}

9.4.3. Ezample. If f(z) =1 for z rational and f(z) =0 for z
irrational, then f is not Riemann-integrable (9.1.6).1 '

A very useful class of examples:
9.4.4. Theorem. If f is monotone then it is Riemann-integrable.

Proof. We can suppose that f is increasing (cf. 9.4.2). For every sub-
division ¢ of [a,b], we ha.ve _

s(0) < _/:fs/jfssw)

(9.1.5, 9.1.13); to show that the lower integral is equal to the upper integral, .
we need only show that S(o) — s(o) can be made as small as we like (by .
choosing o appropriately). Say

c={a=ap<a; <- - <ay,=b};

let us calculate explicitly the upper and lower sums for o. In the notations
of 9.1.2 and 9.1.3, we have

= f(a'll—l)’ = f(a'u)

1There is a more comprehensive concept of integral, called the Lebesgue n-
tegral, for which this function is ‘integrable’, with integral 0 (cf. 11.5.4).
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(because f is increasing), therefore

s(0) = Zf(au_l)eu, S(a>—2f(au)eu

v=1

SO

(+) S(0) — 8(0) = 3 _[f(a) — flay-1)les .

v=1

Now assume that the points of o are equally spaced, so that
1
e, ==(b—a) (v=1,...,n);
n
the sum in (*) then ‘telescopes’,

8(0) = 5(0) = (b= &) 3 if(a) = f(as-r)

= (b~ a)[f(b) ~ f(a)],

which can be made arbitrarily small by taking n sufficiently large. ¢

:

The most famous (and useful!) example:

9.4.5. Theorem. If f is continuous on [a,b] then [ i3 Riemann-
integrable.

Proof. Let F and H be the indefinite upper integral and indefinite
lower integral defined in 9.3.1. We know that F(a) = H(a) = 0, and
our problem is to show that F(b) = H(b). By 9.3.2, F and H are
continuous on [a,b] . By 9.3.5, we know that F and H are differentiable
on (a,b) with F'(z) = f(z) = H'(z) for all z'€ (a,b). Thus F—H is
continuous on [a, b] , differentiable on (a,b), and (F — H) (z) =0 for all
x € (a,b),s0 F —H is constant by a corollary (8.5.4) of the Mean Value
Theorem; since (F — H)(a) =0, also (F — H)(b) =0, thus F(b) = H(b)
as we wished to show. & '

This theorem and its proof are usually cast in the following form:

9.4.6. Theorem. (Fundamental Theorem of Calculus) If f: [a,b] — R
is continuous, then

(1) f is Riemann-integrable on [a,b];

(2) there exists a continuous function F : [a,b] — R, differentiable on
(a,d), such that F'(z) = f(z) for all z € (a,b);

(3) for any F satisfying (2), necessarily

F(z) = F(a) + /zf for all z € [a,b];
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moreover, F is right differentiable at a, left differentiable at b, and -
Fi(a) = f(a), F{(b) = f(b). X
Proof. (1) is the conclusion of 9.4.5. The function F introduced in the -
proof of 9.4.5 has the properties in (2) and (3); in particular, the properties .
at a and b follow from 9.3.4 and 9.3.4". .
Suppose that J: [a,b] — R is also a continuous function having derlva-
tive f(z) at every z € (a,b). By the argument in the proof of 9.4.5, .
J — F is constant, say J(z) = F(z)+C for all z € [a,b]; then .

J(z) — J(a) = F(z) — F(a) =/ f forall z € [a,b],
and J has the one-sided derivatives f(a) and f(b) at the endpoints

(because F does). &

9.4.7. Corollary. If f:la,b] > R is continuous and F :la,b] > R is ~
a continuous function, differentiable on (a,b), such that F'(z) = f(z) for -
all z € (a,d), then

b
/f:Fm—F@.

9.4.8. Corollary. If f:la,b] = R is continuous, f >0 on [a,b], and- *

b
[ 1=0,
then f is identically 0.
Proof. With F as in 9.4.6, F is increasing (9.3.3) and

' b
Fw-ﬂa=/f=0
therefore F is constant; then f=F' =0 on (a,b),80 f=0 on [a, b} '
by continuity. ¢

As we shall see in §9.6, considerably more can be squeezed out of the proof
of 9.4.5; but first let’s take a break from theory to harvest the application
to logarithmic and exponential functions.

Exercises

1. If a <c < b, prove that f is Riemann-integrable on [a, b] if and
only if it is Riemann-integrable on both [a, ¢] and [c, ] .
{Hint: For every closed subinterval [c, d] of [a, b] , the number

[df— _/cdf
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is > 0 and is an additive function of the endpoints (in the sense of 9.2.3);
deduce that it is O for [a,d] if and only if it is 0 for both [a,c] and [c, §] .}

2. If f is Riemann-integrable and ¢ € R then cf is also Riemann-

integrable and
b b
/ cf =c/ f-
a a

3. Prove that if f and g are continuous on [a,b], then

/:(f+y)=/:f+/:y-

{Hint: FTC. For the case of arbitrary Riemann-integrable functions, see
9.8.3.}

{Hint: §9.2, Exercise 1.}

4. Corollary 9.4.8 has a much easier proof: assuming to the contrary that
J(¢) > 0 at some point c, argue that f(z) > % f(c) on a subinterval of
[a, b] and construct a lower sum for f thatis > 0.

5. True or false (explain): If f>0 and

=b

/a f=0,

6. Call the bounded function f : [a,b] = R Riemann-Stieltjes integrable
(briefiy, RS-integrable) with respect to the increasing function g : [a,b] —
R (cf. §9.1, Exercise 5) if the Riemann-Stieltjes lower and upper integrals
of f with respect to ¢ are equal; the common value is denoted f : fdg,
called the Riemann-Stieltjes integral of f with respect to g.2

The analogue of 9.4.5 in this context: If f is continuous on [a,b] then
J is RS-integrable with respect to g.

{Hint: Let 0 = {a =ap <a; <--- < an, = b} be a subdivision of [a,d],
calculate S(c) — s(o), where, for example, S(c) = Y,_, M,[g(a,) —
4(a,—1)], and use the uniform continuity of f (6.6.1) to choose o so that
S(a) - s(o) is arbitrarily small.}

then f is Riemann-integrable.

2This is one of several, not quite equivalent, variants of the ‘Riemann-Stieltjes
integral’ [cf. W. Rudin, Principles of mathematical analysis, 3rd edn., McGraw-
Hill, New York, 1976]. The intricacies of the subject are well sorted out in the
hooks of T. H. Hildebrandt [Introduction to the theory of integration, p. 51,
Theorem 10.9, Academic, New York, 1963] and K. A. Ross [Elementary analy-
sis: The theory of calculus, §35, Springer-Verlag, New York, 1980].
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*9.5. An Application: Log and Exp

The idea is to use a formula from ‘elementary’ calculus, together with

the machinery of the Riemann integral, to define in a rigorous way the ..

logarithmic and exponential functions. Your experience in calculus should

suffice for motivating the notations and definitions (you’ll see a lot of old -

friends wearing funny masks).

9.5.1. Definition. Define a function L : (0,+00) — R by the formulas

(cf. Figure 14)

/ -l-dt for z>1
Lt

L(z) = 0 for z=1

|
-—/ —t-dt for 0<z<1.

e

P

FIGURE 14 ' A

9.5.2. Convention. For an integrable function f: [a,b] —» R one writes

fe=-r

*This section can be omitted without loss of continuity in the rest of the
chapter.

il
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(this is consistent with the computation of integrals via antldenvatlves )
as in 9.4. 7) With this convention,

T
L(:z:):/1 %dt forall z>0

even when the limits of integration are in the ‘wrong order’):
gr

9.5.3. Theorem. With L defined as in 9.5.1,
(i) L(x)>0 & z>1;

(i) L(z)=0 & z=1;

(iii) L(z) <0 & 0<z<1.

Moreover,
(iv) (z—-1)/z<L(z) <z -1
forall z>0.

Proof. (iv) For z =1 the inequalities are trivial.
Suppose £>1. For 1 <t<zx we have

1
T

IA
o~ | =

<1

therefore

Ye-ns [fas1G-

by 9.1.8; thus (iv) holds for z > 1.
Suppose 0 <z <1l. For £ <t<1 we have

1<-<

o | =
&lli—'

therefore - _ }
1-(1 w)</11dt<-1-(1 z)
“Jt Tz

by 9.1.8; multiplying by —1, we get the inequalities of (iv).

(i)-(iii): The implications “<" are immediate from (iv), and the im-
plications “=" follow from them by trichotomy in the set of positive real
numbers (cf. the proof of 1.2.8).

9.5.4. Theorem L'(z)=1/z forall £>0.

Proof. Fix ¢ > 0; we have to show that L is dlﬁ'erentxable at ¢ and
that L'(¢) = 1/c.

Choose real numbers @ and b such that the closed interval [a, b] con-
tains both ¢ and 1 as internal points. {For example, let a = %c if
0<e<1,andlet a=% if ¢>1;ineither caselet b =c+1.} It will be
convenient to apply the machinery of the preceding sections to the interval

[a,b] and the function t+— 1/t (a <t <b).
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(i) Suppose ¢ > 1. For z in a neighborhood of ¢, L is given by the

formula zq
L(z) = / ~dt
1 ¢

with z > 1; by 9.3.5 (and 9.4.6) applied to the continuous function ¢ +—
1/t on [1,b], L is differentiable at ¢ with L'(¢) = 1/c, and by 9.3.4,
L is right differentiable at 1 with L.(1)=1/1=1.

(ii) Suppose 0 < ¢ < 1. For z in a neighborhood of ¢, L is given by

the formula )
L(z)= - / 1alt
z

with r < 1; by 9.3.9 applied to ¢t — 1/t on the interval [a,1], L is
differentiable at ¢ with L'(c) = —( 1/¢) =1/c, and by 9.3.8', L is left
differentiable at 1 with Lj(1) = —(-1/1)=1.

(iii) Suppose ¢ =1. As noted in 1) and (ii), Lj(1)=L,(1)=1,s0 L
is differentiable at 1 with L'(1)=1 (8.1.2). ¢

9.5.5. Corollary. The function L : (0,+00) — R is strictly increasing.

Proof. Since L'(z) =1/x >0 forall z > 0, this is immediate from the
Mean Value Theorem (8.5.2). ¢

9.5.6. Theorem. L(ab) = L(a)+ L(b) forall a >0, 5> 0.

Proof Fix a > 0 and define f: (0,+00) — R by f(z) = L(az).
Since = ~» ar is differentiable at every z > 0, with derivative a, from
9.5.4 and the Chain Rule (8.3.1) we see that f is differentiable at z with

F(z)=L'(az)-a = (1/az)a = 1/z = L'(z);
thus f — L is constant (8.5.4) and in particular
(f =~ L)) = (f = L)1) = £1) ~ (1) = L(@) = 0,

so L(a) = f(b) — L(b) = L(ab) = L(b) . ¢
9.5.7. Corollary. L(a™) =mL(a) for all a >0 and all integers m.
Proof. For a positive integer, this is an easy induction on m, since
L(a™*!) = L(a™a) = L(a™) + L(a). Also, L{a~') = —L(a) follows from
applying L to a~la =1, and the case of a negative integer follows from
the preceding two cases. <)

9.5.8. Corolla._ry. The function L : (0,+00) — R is continuous and
bijective.

Proof. L is continuous (even differentiable) and injective (even strictly
increasing); we have to show that every real number y belongs to the
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range of L. Since L(2) > 0 (9.5.3), by the Archimedean property we can
choose positive integers m and n such that

mL(2) >y and nL(2)> —y.

Then
(-n)L(2) <y <mL(2),

that is (9.5.7),
_ L(2™) <y < L(2™),
g0 y belongs to the range of L by the Intermediate Value Theorem
(6.1.2). &
9.5.9. Definition. We write E = L~! for the inverse of L.

Thus F : R — (0,+o0) is bijective, continuous (6.5.2) and strictly
increasing (by 9.5.5). The properties verified for L are refiected in its
inverse:

(i) E(x)>1 & z>0;

(i) E(z)=1 & z=0;

(iii) 0<E(z)<1 & z<0;

(iv) E(x+y) = E(z)E(y) forall z,y in R;

(v) a™ = E(mL(a)) forall a>0 and m e Z.

{For example, to verify the equations (iv) and (v), it suffices to apply L
to both sides and observe that the results are equal.}

On the way to proving that E' = E':

9.5.10. Lemma.

. L(z)
lim
z—1z—1

Proof. {At z =1, L(z) and = — 1 are both 0; so we are looking
at an ‘indeterminate form’.} The lemma follows from the inequalities (iv)
in 9.5.3: dividing by £ —1 (with or without reversal of inequalities), the
fraction in question is caught between 1/z and 1. ¢

9.5.11. Lemma. E(h) — 1
jim ZB =1 _
h—0 h

Proof. Let hp, — 0, hn, #0. Since E is continuous, E(h,) — E(0) =
1. Let z, = E(h,); then z, > 0, z, - 1 and z, # 1 (because
hn #0), so by 9.5.10

L(zn) -

Tp—1

=1.

1,

that is,

whence the lemma. {
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9.5.12. Theorem. E' =F.

Proof. Let x € R; we have to show that E is differentiable at x, with
E'(x) =E(z). If h #0 then

E(z+h) - E(zx) E(z)E(h) — E(x)
h - h
- by =1,

by 9.5.11, this tends to E(x) as h — 0, whence the theorem. ¢
The function E is the key to a general concept of exponential:

9.5.13. Definition. If a >0 and z € R, we define
o = E(zL(a)) .

{For z € Z this agrees with the elementary definition of 4%, by item (v)
following 9.5.9.} Note that

L(a®) = zL(a)

(because L = E~1).
9.5.14. Theorem. For all a >0, b>0 andall z,y in R,

(1) a®*tY =a%a¥,

(2) (a®)Y =a™,

(3) (ab)® = a%b°.

Proof. (1) By definition, a®*¥ = E((x + y)L(a)), whereas
a®a? = E(zL(a)) - E(yL(a)) = E(zL(a) + yL(a));

so it all comes down to the distributive law in R.
(2) Note that a® > 0, so the left side of (2) makes sense; and

(a®)Y = E(yL(a®)) = E(y - zL(a)),

whereas a®¥ = E(zy - L(a)); cite the associative and commutative laws
for multiplication in R.
(3) (ab)® = E(zL(ab)) = E(z[L(a) + L(b)]) , whereas

0t = E(eL(@)) - B(sL() = E(cL(a) +3L(b)) ;

tally another point for the distributive law. {
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9.5.15. Corollary. If a >0, m and n are integers, and n # 0, then

(al/n)n =a,

am/n

= @/ = @™,

Proof. By 9.5.14, (a'/?)" = a(!/"" = g! = q, and similarly for the
other equations. {When 7 is a positive integer, the first equation shows
that a!/™ is a roundabout way of constructing n’th roots (cf. 6.2.2); the
message of the other equations is that rational exponents have the desired

interpretation in terms of roots and integral powers.} ¢

Finally, we introduce the familiar notations for the exponential and log-
arithmic functions of calculus:

9.5.16. Definition. e = E(1).
Then L(e)=1>0,s0 e>1.

9.5.17. Theorem. (1) E(z) =e* forall z € R;
(2) L(e®*) =z forall z€R;
(3) for y>0 and z€R, L(y)=z ifandonlyif y=e.

Proof. (1) €* = E(zL(e)) = E(z - 1).
(2), (3) are immediate from (1) and the fact that £ and L are each
other’s inverses; in the classical notation,

L(y) =log,y=Iny
(the ‘natural’ or Naperian logarithm of y) . ¢
On the way to a limit formula for e*:
9.5.18. Lemma. If h> —1 then

— < <h.
1+h_L(1+h)_h

Proof. Put z=1+h in (iv) of 9.5.3.
9.5.19. Theorem. For all x € R,

T _ 1 T\
e nnango(1+n) .

Proof. The formula is trivial for = 0. Assuming = # 0, let h, =z/n
and let a, = (1 4+ h,)"; then n = z/h, and, for n sufficiently large,

a, >0 and

Liay) = nL(1+h) =2 E(—lhi"zf—)
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Since h, — 0, L{e,) — z by 9.5.10 (consider =z, = 1+ h, — 1),
therefore
an = E(L(an)) — E(z) = €"

by the continuity of E. {

e= lim (1+--1-) .
n—o00 .n

In particular,

Exercises

1. Prove that a® is ‘jointly continuous in e and z’, in the following
sense: if a, >0, a, - a>0 and z, — z in R, then af» — a®.

2. Fix ce R and define f:(0,+00) — (0,4+00) by f(z)==z°. Prove
that f is differentiable and f/(x) = cz®! for all z > 0. {Hint: Look
at Inof.}

3. Fix ¢> 0 and define g:R — (0,400) by g(z) = ¢*. Prove that
g is differentiable and g¢'(z) = (Inc)c*.

4. This exercise sketches the initial steps of a conceivable (albeit clumsy)
development of the trigonometric functions. '

Let f:R— (0,1] be the function f(z) =1/(1+z2). Define A:R —
R by the formulas

A(x)=/zf for >0,
0
A(:z:)=—-/0f for z < 0.

(The letter A anticipates the arctangent function.) :
(i) Show that A is an odd function: A(—z) = —A(z) for all z € R.
{Hint: f is an even function.}
(ii) A is strictly increasing. {Hint: A’= f.}
(iii) For every positive integer k,

1 1
Tre S AR - AE-D < 55—

{Hint: Integrate f over the interval [k —1,k].}

(iv) Let
1
sn=3
k=11+k
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Deduce from (iii) that s,, € A(n) < 1+ 3,1 for every positive integer n,
consequently A is bounded. {Hint: It is not difficult to show that

n
1
—<2
L
for every positive integer n (10.3.4).}

(v) The range of A is an open interval (—a,a). {Hint: (i), (ii), (iv) and
the IVT.} Define m = 2a (but we’re a long way from the circumference of
a circle!).

(vi) Let T :(—a,a) - R be the inverse function T'= A~1 (also strictly
increasing and odd). Show that 7’ = 1+ 72. {Hint: §8.5, Exercise 2.}
The notation T anticipates the tangent function on (—7/2,7/2).}

(vii) Define C':(—a,a) —» R by the formula

ce_ 1 _ 1
- (1 +T2)1/2 - (T’)1/2 :
Thus 1/C? =1+ T2. {The notation C anticipates the cosine function;
remember sec? = 1 + tan??}

(viii) Define S:(—a,a) =R by §=TC and note that S*+C? =1,

C'=-8, §=C.

5. Prove that (Inn)/n — 0 and infer that n!/" — 1. {Hint: If ¢t > 1
then 1/t <1/t/2, whence Inn < 2(n'/2 —1).}

9.6. Piecewise Pleasant Functions

We take up again the notations established at the beginning of the chap-
ter. Our objective: to enlarge substantially the class of functions we know
to be Riemann-integrable.

The concept of Riemann-integrability is ‘additive’ in the following sense:

9.6.1. Theorem. Let a < ¢ < b. The following conditions on a bounded
function f:[a,b] = R are equivalent:

(a) f is Riemann-integrable on [a,b];

(b) f is Riemann-integrable on both [a,c] and [c, b].

Proof. {The meaning of (b) is that the restricted functions f|[a,c] and
f|lc,b] are Riemann-integrable.} Let

A=/:bf— _/:f,
B=/:cf— /f
C=/:bf— _/cbf.
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Then A, B, C are 2 0 (9.1.13) and it follows from 9.2.3 that A=B+C,
therefore A=0 ifandonlyif B=C=0.¢

9.6.2. Corollary. Let
c={a=agy<a; < <a,=>b}

be a subdivision of [a,b]; f is Riemann-integrable on [a,b] if and only if -
it is Riemann-integrable on every subinterval [a,-1,a,] (¥ =1,...,n).

9.6.3. Theorem. Suppose f:[a,b] = R is a bounded function such that,
whenever a <c<d<b, [ is Riemann-integrable on [c,d]. Then f is |
Riemann-integrable on [a,b]. ;

Proof. With notations as in 9.3.1, let F and H be the indefinite upper |
and lower integrals of f.If a <c<d < b then, by 9.2.3, we have

F@=ro+ [ 1

and 4
B =B+ [ f;
the last terms on the right are equal by hy;)othesis, 80
F(d) — F(c) = H(d) — H{c).
Let (cn) and (dn) be sequences such that
a<cp<dy<b
and ¢, —a, d, — b; then
F(dn) = Plen) = H(dn) - Hcn)

for all n, so in the limit we have

F(b)-0=H(b) -0

by the continuity of F and H (9.3.2). In other words,
=b b
[i=[19

9.6.4. Definition. We say that f:[a,b] — R is piecewise monotone
if there exists a subdivision ¢ = {a = a9 < 4y < -+ < a, = b} of



§9.6. Piecewise Pleasant Functions 163

[a,b] such that f is monotone on each of the open intervals (a,_i,a,)
(v=1,...,n).

9.6.5. Theorem. If the bounded function f : [a,b] — R is piecewise
monotone, then it is Riemann-integrable.

Proof. In view of 9.6.2, we can suppose f is monotone on (e,b). If
a<c<d<b then f ismonotoneon [c,d], therefore Riemann-integrable
on [c,d] (9.4.4); by 9.6.3, f is Riemann-integrable on [a,b]. ¢

9.6.6. Definition. We say that f:[a,b] — R is piecewise continuous
if there exists a subdivision o = {a =ag < @1 < --* < a, = b} of [a,}]
such that f is continuous on each of the open subintervals (e,_i,a,)
(v =1,...,n). {It is the same to say that f is continuous at all but
finitely many points of [a,b].}

9.6.7. Theorem. If the bounded function f : [a,b] — R is piecewise
continuous, then it is Riemann-integrable.

Proof. In view of 9.6.2, we can suppose f is continuous on (a,b).
If a<ec<d<b then f is continuous on [c,d], therefore Riemann-
integrable on [c,d] (9.4.5); by 9.6.3, f is Riemann-integrable on [a, b]. {

We now turn to a different technique for proving Riemann-integrability.
9.6.8. Definition. If f:X —>Yand g:X —Y are functions such that

the set
{zeX: f(z)#9(z)}

is finite (possibly empty), in other words if f(z) = g(x) with only finitely
many exceptions (possibly none), we write

f=g fe

Another way to express it: f and g agree at all but finitely many points
of their common domain.

In particular, for functions f:[a,b] = R and g : [e,b] — R, to say
that f =g f.e. means that there exists a subdivision o = {a =ap < a; <
-+» < ap =b} of [a,b] such that f =g on each of the open subintervals
(a'll—h a,).

Changing a function at finitely many points has no effect on upper and
lower integrals:

9.6.9. Theorem. If f : [a,b] - R and g : [a,b] = R are bounded
functions such that f =g fe., then :

/;bf=/;bg and __/:f= _/:g-

Proof. We can restrict attention to upper integrals (9.2.1). In view of
9.2.3, we can suppose that f(z) =g(z) for all z € (a,b).
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Let F:[a,b] = R and G:[a,b] = R be the indefinite upper integrals
of f and g, respectively:

F(x)=/;zf and G(x)=/;zg

for a<xz<b.If a<ec<d<b then, as in the proof of 9.6.3,

~d
F) =Fo+ [ f,

=d
G(d)=G(c)+/ g,

and, since f =g on [cd], we have
F(d) - F(¢) = G(d) - G(c) ;

as in the proof of 9.6.3, F(b) = G(b) follows from the continuity of F
and G. ¢

9.6.10. Corollary. If f : [a,b] = R and g : [a,b] — R are func-
tions such that g is Riemann-integrable and f =g fe., then f is also

Riemann-integrable and
b b
[1=[v

Proof. This is immediate from 9.6.9. $

9.6.11. Theorem. If the bounded function f:[a,b] — R has a right limit
at every point of the open interval (a,b), then f is Riemann-integrable.

Proof. Let F' and H be as in the proof of 9.6.3. Given a <c< b, let
us show that F' and H are right differentiable at ¢ and F)(c) = H.(c).
Let g:[a,b] = R be the function such that

g(z) = f(z) forall z € [a,b] - {c},
g(c) = flet).

Thus g is right continuous at ¢ and, by 9.6.9, the indefinite upper and
lower integrals for g are the same as those for f, namely F and H.
Since ¢ is right continuous at c, it follows that F and H are right
differentiable at ¢ with F}(c) = g(c) = H.(c) (9.3.4). This proves the
assertion in the first paragraph.

Forget the preceding paragraph; it has done its duty. We now know that
F — H is continuous on [a,b] (9.3.2), right differentiable on (a,b), and
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(F-H).(c)=0 forall c€ (a,b); by 8.5.5, F—H is a constant function.
In particular,

(F - H)() = (F - H)(a) =
so F(b) = H(b); in other words, f is Riemann-integrable.! {

9.6.12. Corollary. If the bounded function f : [a,b] — R has a right
limit at all but finitely many points of [a,b], then f is Riemann-integrable.

Proof. This is immediate from 9.6.2 and 9.6.11. {

Note that this corollary includes 9.6.5 and 9.6.7 as special cases (but its
proof is much harder, since it relies on 8.5.5).

Exercises

1. Let g:[a,b} > R be Riemann-integrable, f:[a,b] = R a bounded
function, (z,) a sequence of points in [a,b] such that f(z) = g(z) for
all z in [a,b] other than the z,. Give an example to show that f need
not be Riemann-integrable. In other words, the conclusion of 9.6.10 may
be false if the finite number of exceptional points is replaced by a sequence
of exceptional points.

2. Let f:[c,+00) —» R and assume that f|[c,] is integrable for
every = > c. We say that f is integrable over [c,+00) if the integral
of f |[c, z] has alimit L as = — 400, in the following sense: for every
€ > 0, there exists an 1 > 0 such that

c

f -
[

Such an L is then unique; it is called the integral of f over [c,+00)

and is denoted

T>n = <e.

+o00 +oc

f or f(z)dz.

c c

With f as in the first sentence of the exercise, suppose ¢ < d < +00.
Prove that f is integrable over [c,+o00) if and only if it is integrable over

[d,+o0), in which case
+00 d +00
[ =[] s

3. State and prove the analogue of Exercise 2 for a function f: (—oo,¢] —
R.

11 learned this ingenious proof from a paper by R. Metzler [Amer. Math. Monthly
78 (1971), 1129 1131].
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4, Let f:R — R and assume that f |[a:, y] is integrable for every
closed interval [z,y] of R. If there exists a point ¢ € R such that the

integrals
c -+ 00
: / f and / f

exist in the sense of Exercises 2 and 3, then they exist for every ¢ € R and

the sum . oo
[+ 1

is independent of c¢; this sum is called the integral of f (over R) and is

denoted
+00

f.

5. Let f:(a,b) = R and assume that f I[a:, y] is integrable for every
closed subinterval [z,y] of (a,b). With an eye on Exercises 2—4, discuss the
concept of integrability of f over (a,b). (Integrals of the type discussed
in Exercises 2-5 are called improper.)

6. If a bounded function on [a,b] has a right limit at a point c € [a,b),
then its indefinite upper and lower integrals are right differentiable at ¢
(see the proof of 9.6.11). The converse of this proposition is false, as the
following example shows.

Let A={1-1/n: neP}U{1+1/n: neP}andlet f:[0,2] - R
be the function defined by

1 if z€A
f(‘”)={o if z¢A.

(i) Sketch the graph of f.
(ii) f is Riemann-integrable.
(iii) The indefinite integral F of f is identically zero.
(iv) F'(1) = f(1), but f has neither a left limit nor a right limit at 1.
{Hint: (ii) 9.6.12. (iii) First argue that F is zeroon [0,1—1/n] and
on [1+1/n,2].}

7. Let f :[a,b] = R be a bounded function, N = {c, : n € P} for
some sequence (c,) in [a,b]. Prove: If f has a right limit at every point
of (a,b) — N, then f is Riemann-integrable.

{Hint: If F and H are the upper and lower indefinite integrals of f,
apply §8.5, Exercise 10 to the function F - H.}

8. The function f : [0,1] — [0,1] of §5.2, Exercise 6 (f(z) = 0 if
z =0 or z isirrational, f(z) = 1/n if z = m/n is a nonzero ra-
tional in reduced form) is Riemann-integrable, with integral zero. {Hint:
Exercise 7.}
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9. Explore the analogues of the results of this section for the Riemann-
Stieltjes integral f: fdg defined in §9.4, Exercise 6. The facts are as
follows. _

(i) The analogues of 9.6.1 and 9.6.2 hold with no further restrictions on
the increasing function g.

(ii) The analogues of 9.6.3, 9.6.7, 9.6.9-9.6.10 hold assuming g is con-
tinuous on |[a, b} .

(iii) The analogues of 9.6.5 and 9.6.11-9.6.12 hold assuming g is contin-
uous on [a,b] and right differentiable on (a,b) (and the latter condition
can be relaxed to allow a sequence of exceptional points).

For example, the following result can be squeezed out of the proof of
Theorem 9.6.11: If the bounded function f : [a,b] — R has a right limit
at all but a sequence of points of the open interval (a,b), g is continuous
on the closed interval [a,b], and g has a right derivative at all but a
sequence of points of (a,b), then f is RS-integrable with respect to g
and the indefinite RS-integral z +— [ fdg has a right derivative equal
to f(z+)g.(z) at all but a sequence of points of (a,b). {Hint: §9.3,
Exercise 5 and §8.5, Exercise 10.}

9.7. Darboux’s Theorem

The rest of the chapter is modeled on E. Landau’s superb exposition.!

9.7.1. Definition. With notations as in 9.1.1 and 9.1.2, recall that the
number w, = M,—m, is called the oscillation of f over the subinterval
[av-1,a,] . We also write

Wf(d') = S(O‘) - 8(0') = Zwueu = Z(Mu - mv)(au - a'u—-l),

v=1 v=1

called the weighted oscillation of f for the subdivision o of [a,b].
{The ‘weights’ are the subinterval lengths e, ; the significance of the oscil-
lation w, is tempered by the length of the subinterval over which it takes
place. Note that the weighted oscillation incorporates data on both the
swing in y (via the w,) and the swing in z (via the e, ).}

9.7.2. Remark. If 7 > o then Wy(r) < Wy(o). {This is immediate
from 9.1.11.} '

9.7.3. Lemma. If o and T are any subdivisions of [a,b] and p is a
common refinement of o and T, then

Wi (p) < S(r) = s(0).

YE. Landau. Differential and integral calculus {Chelsca, New York, 1951);
my nominee for the best ealeulus book ever written.
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Proof. This is immediate from the chain of inequalities in the proof of
9.1.12. &

9.7.4. Lemma. For every bounded function f:[a,b] - R,

emmwaff—Lﬂ.

Proof. Write W for the infimum on the left side; since Wy(o) >0 for
all o, we have W > 0.
From the definitions (9.1.5) it is immediate that

Wf(G)Z/;bf— _/abf

for every subdivision o, therefore

w2 [ 1- [r.
a La

To establish the reverse inequality, choose sequences (0,) and (7,) of
subdivisions of [a,b] such that

s(op) — _/abf and S(Tn)—+/;bf

(possible by the definitions of upper and lower integrals). For each n , let
Pprn be a common refinement of o, and 7, ; citing 9.7.3, we have

W < Wi(pn) < S(1n) — s(0n)

and passage to the limit yields
—h b
we [ 1- [s
by 3.4.8, (8). &

9.7.5. Theorem. The following conditions on a bounded function
f:]a,b] = R are equivalent:

(a) f is Riemann-integrable;

(b) for every € > Q, there exists a subdivision o of [a,b] such that
W;(o) < €; in other words,

inf Wf((f) =0.
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Proof. This is immediate from 9.7.4 and the definition of Riemann-
integrability. ¢

The process of perfecting approximations by ‘indefinite refinement’ has
the flavor of passing to a limit; the thrust of the preceding remarks is that
f is Riemann-integrable if and only if the weighted oscillation tends to 0
as o ... as o ...shall wesay “o0 — 00”? There is another way to ‘get
to 00’: by making N(o)—the norm of the subdivision o (9.1.1)—tend
to 0. There’s a technical problem: if 7 > o then N(7) < N(o); but
N(7) £ N(o) does not imply that t refines o (apart from a and b,
they may have no points in common!). This complicates the formulation
of Riemann-integrability in terms of a limit as N(o) — 0, and it is this
technical difficulty that Darboux’s theorem overcomes (cf. 9.7.10).

9.7.6. Lemma. Let o be any subdivision of [a,b], let a < c < b and let

T be the refinement of o obtained by inserting the point c. If |f(z)]| < K
for all z € [a,b], then

S(r) 2 S(¢) - 2K -N(o).

Proof. What does the lemma say? We know that refinement can only
shrink an upper sum; the inequality says that insertion of a point can’t
shrink the upper sum by more than 2K - N{(o) (see Figure 15).

S(r)

g &

S(c) - 2K - N(o) S(o)

FIGURE 15

Say o={a=@ay<a1 <---<an=>b}. If ¢c=a, for some v, then
T =0 and the inequality is trivial. Suppose a,-; <c<a,. Let

M' =sup{f(z): ay_1 <z <c},
M" =sup{f(z): c<z<a,}.

As noted in the proof of 9.1.11,

S(o) — S(1) = Mye, — [M'(c — ay-1) + M"(ay — ¢)]
= (M, ~ M')(c— ay-1) + (M, - M")(a, - c);

since My, M’, M" all belong to [—K, K], so that

IM,, - M'| <2K, |M,-M"|<2K,
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we have
S(o)— S(t) < 2K(c—au-1) + 2K(a, — ¢)
=2K(a, —au—1) =2Ke, <2K -N(0). $
More generally,
9.7.7. Lemma. If 7 is obtained from o by inserting r new points,
and if |f| < K on|a,b], then
S(r) 2 S(o) — 2rK - N(o) .

Proof. Let 7=7p > Tpu1 > ... > 11 = To = 0, where 7; is obtained
from 7,_; by inserting one new point. By the preceding lemma,

S(T,'_l) - S(T,') <2K. N(T,'_l) <2K: N(O‘)

for ¢ = 1,...,r; summing these inequallties over i, the left members
telescope to S(0)—S(r) and the right members add up to 2Kr:-N(o). ¢

9.7.8. Theorem. (Darboux’s theorem?®) For every bounded function
file,b] =R,

=b
v St(o) = /a f
in the following sense: for every e > 0, there exists a 6§ > 0 such that,
for subdivisions o of [a,b],

=b

No)<é = |S;(o)— / f

<e.

Proof. Since Y
/ f < S(o)

for every upper sum S(o) = S¢(0), the inequality on the right side of the
implication is equivalent to

&b
() S(a)s/ f+e.

Let K > 0 be such that |f| < K on [a,b]. Given any € > 0, choose
a subdivision og¢ of [a, b] such that

=b
S(O‘Q)S/ f+€/2

2Published in 1875 independently by K. J. Thomae, G. Ascoli, H. J. S. Smith
and G. Darboux [cf. T. Hawkins, Lebesque’s theory of integration: s origins
and development, 2nd edn., pp. 40-41, Chelsea, 1975].
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(possible by the definition of upper integral as a greatest lower bound).
Say oo has m points other than the endpoints a and b; refining oy if
necessary, we can suppose m > 1. Let § = ¢/AmK . Assuming o is any
subdivision of [a,b] with N(o) < 8, let us verify the inequality (*).

Let 7 be the ‘least common refinement’ of o9 and o (7 is the result
of lumping together the points of 0p and o). Let r be the number of
points of 7 that are not in o (conceivably T = o, r = 0); these points
come from 09,50 0 <r<m. By9.77,

but

2rK -N(o) < 2mKé =¢/2,
80
() S(r) 2 S(0) - ¢/2;

also 7 > ap, so
=b

(i) S(r) < S(o0) < / f+e/2,

a
and (*) results from (i) and (ii). ¢
The analog of 9.7.8 for lower integrals:
9.7.8'. Theorem. For every bounded function f:[a,b] - R,

b
i as(0) = / f

in the following sense: for every e > 0, there ezists a 6§ > 0 such that,
for subdivisions o of [a,b],
b
sy(o) = / f

=a

N(o) <6 = <e.

Proof. Since
s5(0) = —S-4(0),
this is immediate from 9.7.8 (applied to —f) and 9.2.1.
Combining 9.7.8 and 9.7.8',

9.7.8”. Theorem. Let f:[a,b] — R be any bounded function. For every
€ > 0 there exists a 6§ > 0 such that, for every pair of subdivisions o and
T of [a,b] with N(o) <6 and N(r) <§, we have

b =b
[f-css<sins [ fee
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and in particular (letting v = o)
—b b
N(o)<é = Wf(a)g/ - /f+2e.

From this we deduce a ‘norm’ variant of 9.7.4:

9.7.9. Lemma. For every bounded function f:[a,b] — R,

Proof. By 9.7.4, the expression on the right side is equal to the infimum
W of all the weighted oscillations. Given any ¢ > 0, choose § > 0 as
in 9.7.8"; if o is any subdivision with N(o) < 6, then W < Wy(o) <
W+2. 9

This yields a characterization of Riemann-integrability in which the ‘re-
finement-limit’ of 9.7.5 is replaced by a ‘norm-limit’:

9.7.10. Theorem. For a bounded function f :[a,b] — R, the following
conditions are equivalent:3

(a) f is Riemann-integrable;

(b) limN(,)_,o Wf(a') =0.

Proof. This is immediate from 9.7.9.

Exercises

1. (i) Prove that if f is Riemann-integrable then so is |f|. {Hint: If
Z,y € [ay—1,a,] then

If @) = If W] < 1f(2) = F@)| S wulf);

infer that w,(|f]) <w.(f).}
(ii) Is the converse true?

2. Prove: If f is Riemann-integrable then so is f2. {Hint: By Exer-
cise 1, we can suppose that f > 0. Then

wy(£2) = [M(f) = mu(OHIIM(F) +mu(F)];

infer that if 0 < f < K on [a,b] then Wy (o) < 2K - Wy(o) for every
subdivision ¢ .}

3This reformulation of Riemann-integrability is attributed to Riemann
[T. Hawkins, op. cit, pp. 17, 40].
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3. Prove that if f and g are Riemann-integrable on [a,b] then so is
f +g. {Hint: From the inequality :

I(f +9)(=) — (f + )W) < 1f(=) - FW)] + 19(z) — 9(¥)|

deduce that Wy, ,(0) < Wy(o) + Wy(o) for every subdivision o of
[a,8] .}

It is harder to see that the integral of the sum is equal to the sum of the
integrals; that's what Riemann sums are good for! {See the next section.)

4. Prove that if f and g are Riemann-integrable on [a,b] then so
is fg. {Hint: Exercises 2 and 3, Exercise 2 of §9.4, and the identity

) .
fo=7l(f+9)* = (f-9).
Alternatively, from the identity

(f9)(=) - (f9)w) = [f(2) - f(W)la(z) + f(W)[9(2) - 9(v)]

deduce that Wj,(0) < L-Wy(0)+K-W,(o), where |f| <K and |g| <L
on [a,b].}

5. It was proved in 9.4.5 that if f:[a,b] — R is continuous then it is
Riemann-integrable. Give an alternative proof, using criterion (b) of 9.7.5,
based on the uniform continuity of f. {Hint: Given any ¢ > 0, choose
§ >0 asin 6.6.1. If o is any subdivision with N(¢) < é, argue that
Wi(o) < e(b—a).}

6. In the context of Riemann-Stieltjes integration with respect to an
increasing function g (cf. §9.1, Exercise 5 and §9.4, Exercise 6), the formula
for ‘weighted oscillation’ in Definition 9.7.1 becomes

Wi(o) = S(o) — s(0) = Y_ (M, —my)[g(ar) - g(av-1)]-
v=1

Modify the definition of ‘norm’ to take account of g, by defining
Ny(0) = max{g(a,) — g(ay-1): v=1,...,n}

for a subdivision ¢ = {& = a9 < a1 < --- < an, = b}. All results of
this section then carry over to the Riemann-Stieltjes setting with N(o)
replaced by Ngy(o). In particular, the analogue of Theorem 9.7.10 may
be stated as follows: A bounded function f is RS-integrable with respect
to g if and only if Wy(a) -0 as Ny(o) — 0.
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7. In the spirit of Exercise 6, carry over the results of Exercises 1-5 to
the Riemann-Stieltjes setting.

{In the hint for Exercise 5, N(o) is defined as in 9.1.1, the inequality
becomes W¢(o) < €[g(b) — g(a)], and the desired conclusion is obtained
by citing the criterion (b) of the analogue of Theorem 9.7.5.}

9.8. The Integral as a Limit of Riemann Sums

The notations are those established at the beginning of the chapter
(9.1.1-9.1.3). '

9.8.1. Definition. If o0 ={a=a9 <a; <--- < a, = b} is a subdivision
of [a,b] and if, in each subinterval [a,_1,a,], a point is selected, say
z, € [ay-1,a,] (v =1,...,n), then the number

Z f(zv)e,
v=1

is called a Riemann sum for f; it depends on f, on o and on the
selected points z, , as is indicated by writing

Rg(0;21,...,Z0) = Zf(z.,)e.,

v=1

(verbally, a ‘sum with selection’).
Obviously s¢(o) < Rs(0;2Z1,...,2Zn) < Sf(0), so it is not surprising
that Riemann-integrability can be formulated in terms of such sums:

9.8.2. Theorem. For a bounded function f : [a,b] — R, the following
conditions are equivalent:
(a) f is Riemann-integrable;
(b) there ezists a real number A\ such that
N(li!)l_l_’oRf(a;zl,. Cey ) = A
in the following sense: for every € > 0 there exists a 6 > 0 such that
|Rs(o321,...,22) — A| <€

for every subdivision 0 = {a = a9 < a; <--- < @, =b} with N(o) < §
and for every selection z, € [a,—1,a,] (v=1,...n).

4With a little extra effort in Exercise 3, one can obtain the formula
J(fL + f2)dg = [ fidg + [ fodg, where f, and f; are RS-integrable with
respect to g [cf. W. Rudin, Principles of mathematical analysis, Theorem
6.12, 3rd edn., McGraw-Hill, New York, 1976].
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b
A= / f.
a
Proof . {Condition (b) is Riemann’s original formulation of integrabil-
ity.! }
(a) => (b): Assuming f is Riemann-integrable, let

»\=/:f;

let us show that A satisfies condition (b). For any subdivision ¢ = {a =
a9 < a3 <---<ap,=>b} and any selection z, € [a,-1,a,], we have

Necessarily

s(0) < Rs(0;21,...,2n) < 8(0), (o) <A< S(o),
therefore | | _
|Rs (o521, ...,22) — A| < S(0) — s(0) = Wy(0).

Given any € > 0, choose 6 >0 so that Wy(o) < e whenever N(o) < §
(9.7.10); it is clear that & meets the requirements of (b).

(b) = (a): Assuming A asin (b), we have to show that f is Riemann-
integrable and that its integral is A.

Given any € > 0, choose § >0 asin (b). Let 0 = {a =ap < a1 <

- < ap = b} be a subdivision with N(o) < §; to prove that f is
Riemann-integrable, it suffices by 9.7.5 to show that Wy(o) < 2¢. For any
selection zi,...,z, from the subintervals for o, we know from (b) that

n
(*) A—e< ) fl@)e, < A+te.
v=1
For each v =1,...,n, choose a sequence (z*) in [a,-1,a,] such that

f(zk) - M, as k — oo;

then n "
> fab)e, = Y Moe, = 5(0),
v=1 v=1

so by (*) wéhave
(%) A—e<S(o)<A+e.

LT, Hawkins, op. cit., p. 17.
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Similarly,
A—e<s(o) < A+¢;

thus S(o) and s(o) both belong to the interval [A —¢, A+ €], therefore
Wy(o) = S(o) — s(o) < 2.

This proves that f is Riemann-integrable and since, by 9.7.8,

S(a)—-»/bf as N(o) — 0,

/\=/abf.<>

9.8.3. Corollary. If f and g are Riemann-integrable on [a,b], then
f+ g is also Riemann-integrable and

/ab(f+y)=/:f+/:y'
/\=/abf and u=/abg.

If o={a=ap<a1<---<a,=>} isany subdivision of [a,b] then, for
every selection z, € [a,-1,a,] (v=1,...n), we have

it is clear from (**) that

Proof? Let

Ryyg(0321,. . 20) = E[f(-’”u) +g(zv)]ey

v=1

= Ry(0,21,...,2n) + Rg(0; 21, ..., Tn);
as N(a) — 0, the right member tends to A + p, therefore
Ryigloszr,...,zn) = A+ p
(all of this is easily said with €'s and §’s), and it follows that f+ g is
Riemann-integrable, with integral A+ u (9.8.2). ¢

For want of a similar formula for the integral of fg in terms of the
integrals of f and g, Riemann sums have nothing to contribute to the
proof that the integrability of f and g implies that of fg (see §9.7,
Exercise 4).

2For a proof using upper and lower Darboux integrals, see H. Kestelman,
Modern theories of integration [Oxford, 1937; reprinted Dover, 1960, p. 44.
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" 9.8.4. Remarks. Condition (a) of 9.8.2 (equality of the lower and up-
per integrals) should perhaps be called ‘Darboux-integrability’, and condi-
tion (b), ‘Riemann-integrability’. Theorem 9.8.2 says that the concepts are
equivalent, but there’s still an important difference in the way the value
space R of the functions is treated: condition (a) relies on the order prop-
erties of R (via sups and infs), while condition (b) relies on the distance
properties (via absolute value). This opens the way for generalizing the
concept of integral in different directions: Darboux’s way for value spaces
having order but not distance, Riemann’s way for value spaces having dis-
tance but not order. This is a typical way in which an equivalence (P
< Q) can serve as the point of departure for generalizations in different
directions.

9.8.5. Postlude. The last word on Riemann-integrability was uttered
by H. Lebesgue in the early 1900’s: A bounded function f : [a,b] — R
is Riemann-integrable if and only if the set D of points of discontinuity
of f is “negligible”. The term in quotes means that for every ¢ > 0,
there exists a sequence of intervals (I,) such that D C |JI, and the sum
of the lengths of the intervals is < e. The proof (not difficult) is given in
the last chapter (11.4.1).

Exercises

1. If f and g are Riemann-integrable on [a,b], then so are the func-

tions
h(z) = max{ f(z), g(z)} ,
k(z) = min{f(z), g(z)},

[lbh+Abk=[lbf+Abg

{Hint: §2.9, Exercise 1 and §9.7, Exercises 1, 3.}

and

2. There is a ‘Cauchy criterion” for the Riemann-integrability of a
bounded function f: in order that there exist a real number A satis-
fying (b) of 9.8.2, it is necessary and sufficient that for every e > 0, there
exist a 6 > 0 such that

|Rf(0;21,. .., Zn) = Re(T591, .- Ym)| S €
for every pair of subdivisions

c={a=ay<a <---<an,=b},
T={a=by<b <« <by, =b},
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with N(o) < § and N(r) < §, and for any selections z, € [a,,_l,a,,] ,
Yu € [bu-1,b,].

{Hint: Necessity is obvious (triangle inequality). Sufficiency: Let (o;)
be a sequence of subdivisions of [a,b] with N(o;) — 0. For each i, make a
selection for og; (for example, select the left endpoints of the subinterva.ls
for 0;) and let

Ai = Ry¢(0;; the selection for o).

Show that ();) is a Cauchy sequence in R, let A be its limit, and show
that A meets the requirements of (b) of 9.8.2.}

3. If (z,) is any sequence of points in R, prove that the set A = {xn :
n € P} has Lebesgue measure zero in the sense of 9.8.5.

4. Theorem 9.8.2 and its corollary are valid for the Riemann-Stieltjes
integral [ b fdg (defined in §9.4, Exercise 6), with N(a) replaced by
Ng(o) asin §9.7, Exermse 6.

{Hmt Since e, = g(a;,) — g(a,,_l) in this setting (§9.1, Exercise 5), the
sums-with-selection of 9.8.1 are glven by Rp(o;21,...,Zn) = Y pey f(@0)
[9(a.) — g(av-1)] .}



CHAPTER 10

Infinite Series

§10.1. Infinite series: convergence, divergence
§10.2. Algebra of convergence

§10.3. Positive-term series

§10.4. Absolute convergence

Infinite series are one of the grand themes of analysis. The most spectac-
ular applications (Fourier series, power series, orthogonal series, ...) have
to do with series of functions; this brief chapter touches only on the under-
lying fundamentals of series of constants. '

If (s,,) is a convergent sequence of real numbers, the differences s, — 851
tell us something about the speed of convergence. Writing a, = s, — $p—1
(with the convention sp = 0), the s, can be recovered from the a, via
a telescoping sum s, =Y _, ax, thus s, — s means ) ;_ ar — s as
n — oo and it is natural to write

00
8=Zak.
k=1

The theory of infinite series is the study of such ‘infinite sums’.

10.1. Infinite Series: Convergence, Divergence

10.1.1. Definition. If (a,) is a sequence of real numbers, the symbol

00

S

n=1

(or 3% an, or simply 3 ay) is called an infinite series (briefly, series);
a, is called the 7i’th term of the series. We write

n
8p = E ag ,

L_1
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called the n’th partial sum of the series. One also writes

oo

Zan=a1+a2+a3+....

n=1.

(This is an equality of symbols—they are equal by definition- -not neces-
sarily interpretable as an equality of numbers.) _
10.1.2. Example. If c€R, c#1,andif ap, =c*! (n=1,23,...),
then
2 noy_ 1-¢"
Sp,=14+c+c“+...+¢ =14

10.1.3. Definition. With notations as in 10.1.1, the series is said to be
convergent if the sequence (s,,) of partial sums is convergent in Rj if
8n, — 8 then s is called the sum of the series, we write

oo
E Gn = 8,

n=1

and we say that the series converges to s. A series that is not convergent
is said to be divergent.

Thus, for a convergent series, the symbol Y 1° a, is assigned a numerical
value; for a divergent series, we regard it just as a symbol.!

10.1.4. Ezample. If |¢| < 1 then the series

[o o]

Zc"_l =1l4c++2+...

n=1
is convergent, with sum 71~ (see the formula in 10.1.2). If ¢=1 then
8, = n and the series is divergent; if ¢= —1 then s, alternates between

1 and 0, so the series is again divergent; and if |¢| > 1 then (s,) is
unbounded, therefore divergent, so the series is again divergent. Briefly,
the series is convergent when |c| < 1, divergent when |c| > 1. It is called
a geometric series with ratio ¢ (each term is obtained from its predecessor
by multiplying by c¢).

10.1.5. Remarks. Let C be a condition that an infinite series ) an
may or may not satisfy. If

C true = Zan convergent,

1Just the same, there are various devious ways of assigning numerical values
to the symbol even for certain divergent series (the theory of ‘summability’).
Cf. Exercise 2.
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then C is called a sufficient condition for convergence. If
Za,, convergent => C true,

then C is called a necessary condition for convergence.? For example,
the condition «a, =0 (Vn)» is sufficient for convergence, obviously not
necessary; the condition «(s,) is bounded» is a necessary condition for
convergence, but it is not sufficient (10.1.4 with ¢ = —1). An interesting
necessary condition is a, — 0:

10.1.6. Theorem. If Y a, is convergent, then a, — 0.

Proof. If (s,) is the sequence of partial sums, say s, — s, then
Gpt+1 = 8pt+1 — 8n — 8 — 8 = 0, thus the sequence (@) is null. $

10.1.7. Ezample. The condition @, — 0 is not sufficient for the conver-
gence of Y a,. For example, the series
1+i4+is
5tz te-
(called the harmonic series) is divergent, although a, = 1/n — 0. For,
the sequence (sy,) of partial sums satisfies

n

S SRS BN S S S
T T LT n+n_k=1n+k n+n 2°

therefore is not convergent. {Proof #1: Cauchy’s critcrion. Proof #2: An
easy ‘telescoping’ argument shows that sax —s; > k- %, whence (s5) is
unbounded.} _

Cauchy’s criterion for convergence of sequences (§3.6) yields a necessary
and sufficient condition for the convergence of series (slightly reformulated
in several ways):

10.1.8. Theorem. (Cauchy’s criterion) For an infinite series Y ay , the
following conditions are egquivalent:

() Y. a. is convergent;

(b) for every € > 0, there exists a positive integer N such that

m
> o

k=n

m>n>N = <eE;

(¢) for every € > 0, there ezists a positive integer N such that

n+p

>a

k=n

n>N = <e for p=0,1,2,3,...;

2The language is obviously applicable to other situations: an implication P =
Q can be expressed by saying that Q is a necessary condition for P, and that
P is a sufficient condition for Q.
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(d) for every € > 0, there exists a positive integer N such that
n+p

o

k=n

n>N = <e for p=123,....

Proof. If m>n> N >1 and p € N, it is clear from the formulas

m n+p
E Ay = 8m — Sn-1, E A = Spt+p — Sn—1
k=n k=n

that the conditions (b)-(d) are reformulations of Cauchy’s criterion for the
convergence of the sequence (8,).

Exercises

1. Find the sum of the series > o, 2/3"71.

2. With notations as in 10.1.1, if a, = (—1)"*! then the sequence
(sn) alternates between 1 and 0. Let ¢, be the average of s1,...,8,:

81+ 82+...+ 8,
” .

t, =

Then t, alternates between (n+1)/2n and 1/2, so t, — 1/2. Why
not be daring and write

1+(—1)+1+(—1)+...=%.

Much worse off is the series 1+ 1+ 1+ ... (what is t, in this case?),
and repetition of the averaging process doesn’t improve matters.

3. Convergence is an ‘ultimate’ matter in the following sense: if a, = b,
ultimately, then 3 a, is convergent if and only if 3 b, is convergent.
{Hint: If (s,) and (t¢,) are the respective sequences of partial sums, then
$p — tn, is ultimately constant.}

4. (Leibniz’s alternating series test) If a, >0 for n odd, a, <0 for
n even, and |a,| | 0, then the series ¥ a, is convergent.

{Hint: If (s,) is the sequence of partial sums, then the subsequence
(s2r) is increasing, (S2n,-1) is decreasing, and s < 89, < s2p41 < 81}
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10.2. Algebra of Convergence

10.2.1. Theorem. If Y. a, and Y. b, are convergent, then so are
> (an +bs) and Y (can) (c€R), and

Z(a,,+b,,) =_Za,,+2b,,, Z(can) =cZa,,.
Proof. Let |
n n
5n=zaka tn=zbk
k=1 k=1
and suppose s, — &, t, —t. Then

n

Z(ak+bk)=3n+tn—>s+t,
k=1

and

n
Z(cak) = 8y, — CS
k=1

by 3.4.8. ¢

The second formula of 10.2.1 looks like an infinite ‘distributive law’.
There’s also an ‘associative law’; first, let’s make precise the kind of ‘asso-
ciativity’ that is involved:

10.2.2. Definition. Given an infinite series Y ;" a, and a strictly in-
creasing sequence of positive integers

nm<ng<ng<...,
define
b1=al+a2+---+anl

ba=0n,+1+...+0n,
b3=an,+1+...+ana

b, = Qnp_141+ .-+ Qny

(with ng = 0). The series Y by is called a regrouping of the series
Y an. {The series } b is obtained by adding the terms of Y a, in
finite ‘packets’.}

The bad news: If a, = (—1)"*! then the series

ia,.=1+(—1)+1+(—1)+...

n 1
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is divergent, but there is an obvious regrouping that is convergent (with
sum 0). The good news:

10.2.3. Theorem. (Associative law) If ) a, is convergent, then Ievery
regrouping > br of > an 18 also convergent, with same sum.

Proof. Let s, be the n’th partial sum of ) a,, t. the k’'th partial
sum of 3 by ; with notations as in 10.2.2,

tk=b1+...+bk=a1+...+a,,k=s,,k

by the ordinary associative law for addition, thus (i) is a subsequence of
the sequence (s,). If s, — ¢ then also t; — s (3.5.5). ¢

There is also a restricted version of ‘coinmutativity’ (10.4.3) and a kind
of multiplication for series (10.4.5), but both require an extra concept (‘ab-
solute convergence’).

Exercises

1. If the sequence of partial sums of an infinite series is bounded, then
the series has a convergent regrouping. {Hint: Weierstrass-Bolzano.}

2. Suppose the series Y_ b, is obtained from a series ). a, by inserting
a finite number of zero terms between a, and a,4;; thus, there is a
subsequence (b,,) of (b,) such that b, = ar (k = 1,2,3,...) and
b, =0 when n is not equal to any n,. Prove that ) a, converges if
and only if ) b, converges, in which case Y a,=>_b,.

{Hint: If s, =a1+...4+ar and ¢, =b;+...+ by, then s, =t,, for
all k,and t,=s; for ny <n<ngy .}

10.3. Positive-Term Series

10.3.1. Definition. One calls Y a, a positive-term series if a, >0
for all n.
The ‘fundamental theorem’ of such series:

10.3.2. Theorem. A positive-term series > a, is convergent if and only
if its sequence (38,) of partial sums is bounded; for such d series,

o0

E Gn = 8UpP Sy ,

n=l

thus sp 13 1 Gn.
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Proof. The sequence (s,) is increasing (because a, > 0), so it in
convergent if and only if it is bounded (3.4.3), in which case lims, =
Sup s, . ¢

10.3.3. Convention. For a positive-term series, we write E;"’ ay < +00
if the series converges, Y 7 a, = +oc if it diverges. {In either case,
Y an = sups, in the ordered set R U {—oc, +oc} of ‘extended real
numbers’ (4.1.1).}

10.3.4. Ezample. Y o> 1/n% < +oc.
{Proof:! Writing s, for the n’th partial sum, let’s show that s, < 2
for all n. This is trivial for n =1, and

n+l1 1 n+1 1
Sp+1 = k2—1+zk2
k=1 k=2
- 1+n+l 1
£ (k= 1)k
n+1
1 1
=143 [“1:.—1 - E]
k=2
n 1 n+l 1
=1+ -3 %
k=1 k=2
1 1
=14 2
R

(telescoping sum).}
A partial sum selects the first n terms; a ‘finite subsum’ selects any
finite set of terms:

10.3.5. Definition. Let ) a, be any infinite series. For every finite set
of indices F C P, write
SF = Z Ok 3

keF
such an sp is called a finite subsum of the series ) a, . {Convention:
sg = 0.} Note that if F, = {1,2,...,n} then sp_, = s, (the n’th partial
sum).
For a positive-term series, the supremum of all the finite subsums is
equal to the supremum of some of them:

10.3.6. Theorem. If 3 a, is a positive-term series and (s,) is its
sequence of partial sums, then

sups, =sup{sr: FCP, F finite}.

LB, Landau, Differential and integral calculus, p. 38.
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Proof. Recall that +o0o is allowed as a supremum (10.3.3). Note also
that if F and G are finite subsets of P with F C G then sf < sg
(because an, >0). Write s =supsy, t for the supremum of all the sf.
Since _

sp=6f, <t forall n,

we have s < t. On the other hand, if F is any finite subset of P then
F CF,, for some n, so

sy < 5F,, = 8, < 8;

varying F, t<s. ¢

10.3.7. Corollary. For a positive-term series Za,, , the following condi-
tions are equivalent:

(8) 2 an < +00;

(b) the set of finite subsums sp is bounded.
For such a series,

Za,, =sup{sr: F CP, F finite }.

Proof. This is immediate from 10.3.2 and 10.3.6.

10.3.8. Corollary. (Commutative law) Given a positive-term series ) an
and a permutation o of the set P of positive integers (that is, a bijection
o:P — P), define b, = a,(n) and consider the series S b, (called a
rearrangement of the original series). Then

Za,, =Zb,,.

In particular, every rearrangement of a convergent positive-term series is
converyent, with same sum.
Proof. If F is a finite subset of P, write

sF=Za,,, tF=Zb,,.

neF neF

g = Z Gg(n) = Z Gk = 84(F)

neF kea(F)

Then

so the set of finite subsums for the two series is the same, and the corollary
is immediate from 10.3.7. ¢

For series whose terms are not all positive, a rearrangement of a conver-
gent series may diverge (Exercise 1).
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Exerclsos

1. The convergent series

+

+

+..

NS

11,1
37371

N =

1
2
has a divergent rearrangement

1

2

1

+3+ +5+

+

+...

[e T8
) -

1,111 1l
3717375 7

N =

{In the second series, the appearance of the positive terms is accelerated
8o as to create packets of successive terms with sum > 1/2 (cf. 10.1.7).}

2. (Comparison test) Assume 0 < a, < b, for all n (or just ulti-
mately). Then

Z b, convergent = Za,. convergent ,

in other words,
Za,. divergent = Zb,, divergent .

3. (i) If (d») is a sequence of nonnegative integers such that 0 < d, <9
for all n, then the series
o0
y &
= 10n

is convergent; its sum is denoted .dided3.... {Hint: 0 < d,/10" <
9/10".}

(if) With notations as in (i), 0 < .didods... < 1. If z = .dydads.. .,
d, =9 ultimately and 0 <z < 1, then z has a representation in which
d, =0 ultimately.

(iii) If £ = .didads... and d, < 9 frequently, then dy = [10z],
dy = [10%z) —d; - 10!, d3 = [103z] — d; - 102 — d3 - 10!, etc.}

(iv) Every z € [0,1] can be written z = .didads... for a suitable
sequence (d,).

{Hint: We can suppose that 0 < z < 1. Let d; be the largest non-
negative integer such that d;10! < z and write z; = d;10~!. Assuming
di,...dn_; already defined and z,_; = d;107! + ... + dp—110~(*—1)
let d, be the largest nonnegative integer such that z,_; +d,10™" <=z
and write z, = Z,-1 +d,10™™. Then z,_; + (d, + 1)10™" > z,
whence = — z, < 10™". Necessarily d, < 9; for, if d, > 10 then
dn107" > 10"~V Jeads to
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T2 Tn > Tp—2+ (.d -1+ 1)10_("“1) ,
contrary to the maximality of d,-1.}
4. Describe the set of finite subsums of the series Y 7 (—1)".
5. Deduce another proof of 3" 1/n? < +00 from the observation that

n
/—l—dz 1—l<1
1 $ n

for every positive integer n. {It can be shown? that the value of the series
is 72/6.}

6. Deduce that Y 1/y/n = +o0o by adapting the trick in Exercise 5.
Then find a simpler proof (cf. Exercise 2). '

7. The series Y. 1/In(1 4+ n) is divergent. {Hint: 9.5.3, (iv).}

8. If 3 a, isa convergent positive-term series whose sequence of terms
is decreasing (hence a, | 0), then na, — 0.

{Hint: The sequence (s,) of partial sums is increasing and convergent.
If m>n then

Sm— Sn =CQny1+ ...+ ey 2 (M —n)any,

whence ma,;, < (Sm — %) + Ny . Given € > 0, the problem is to show
that ma,, < e ultimately; think of n as a useful parameter.}

9. Let o € R. The series ) 1/n® is (i) divergent if @ < 1, and
(i) convergent if a > 1. (For the definition of n®, see 9.5.13.)

{Hint: (i) Exercise 8. (ii) Use the method of Exercise 5; to calculate the
integral in question, cite §9.5, Exercise 2.}

10. (Comparison test of the second kind) Suppose a, >0, b, >0 and
@n+1/0n < bpy1/bn for all n. Prove that if > b, is convergent, then so
is Y an. :

{Hint: Multiply the given inequalitiesfor k =1,...,n toget an+1/a; <
bn41/b1 (‘telescoping product’).}

11. Let ) a, be a series with a, >0 for all n.
() If an+1/an =1 ultimately, then 3 a, is divergent.
(ii) f @pt1/an is bounded and limsup(ani1/an) <1, then 3 a, is
convergent ( Cauchy’s ratio test).
‘(iil) Give an'example where Y a, converges, a,i1/a, is bounded, but
limsup(an+1/an) > 1.
(iv) Calculate limsup(an41/an) for the convergent series >~ 1/n? and
for the deergent series > 1/n.

2K. Knopp, Theory and application of infinite series [2nd. English edition,
Blackie, London, 1951], p. 237.
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(v) Give an example where ) a, is convergent but ani1/a, is un-
bounded. :

{Hints: (ii) If limsup(ant1/an) <7 <1 then any1/an, <r ultimately
(83.7, Exercise 7).

(iii) Assuming b, > 0, Y b, convergent and b,,1/b, bounded (for
example, b, =c", where 0 <c<1),let azn—1 =b, and az, = 2b, for
all n.

(v) Assuming b, > 0 and ) nb, convergent (for example, b, =
1/n%), let asn_; = b, and ag, =nb, forall n.}

12. (Cauchy’s root test) Let 3 a, be a positive-term series.

(i) If (an)'/™ > 1 frequently, then ¥ a, is divergent.

(ii) If (an)/" is bounded and limsup(a,)/" < 1, then Y a, is
convergent.

(iii) If (@5 )'/™ is bounded and limsup(a,)'/” > 1, then ¥ a, is diver-
gent.

(iv) Calculate limsup(a,)!/® for the convergent series S.1/n? and
for the divergent series Y 1/n.

{Hints: (i) If a, — 0 then a, <1 ultimately. (ii) If limsup(an)/™ <
r < 1 then (a,)'/™ < r ultimately (§3.7, Exercise 7). (iii) If limsup
(an)'/™ > 7 >1 then (a,)Y" >r frequently. (iv) §9.5, Exercise 5.}

13. For every real number ¢ > 0, the series Y o c"/n! is convergent.
{Hint: Proof #1: Let a, = c*/n!, b, =1/2" and apply Exercise 10.
Proof #2: Exercise 11.}

14. If a, =n3/3" then the series Y a, is convergent.

10.4. Absolute Convergence
10.4.1. Definition. A series ) a, issaid to be absolutely convergent
if 3 lan| < +o0c (cf. 10.3.3).

10.4.2. Theorem. (Triangle inequality) If the series Y an is absolutely
convergent then it is convergent, and | » a,,] <Y lan|.

Proof. Write

n n
s,,=Zak, t,.=Z|ak|, t =supt,.
1 1

We are assuming that ¢ < +o00; we have to show that (sn) is convergent
and that |lims,| <t. If m > n then

m m
Zak < Zlak’

k=n k=n
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by the ordinary triangle inequality; it is then clear from Cauchy’s criterion
(10.1.8) that the convergence of ) |a,| implies that of )" a,. Writing
s = lim sy, , we have |s,| — |s|; since |s,]| <t, <t for all n, we conclude
that |s| <t (3.4.8). ¢

10.4.3. Theorem. (Commutative law) If " a,, is absolutely convergent,
then every rearrangement is convergent (in fact, absolutely), with same
sum. )

Proof. Assuming ) |an| < +o0 and o : P — P bijective, let b, =
Go(n) - We know from 10.3.8 that Y |b,| is convergent, therefore ) b, is
convergent by the preceding theorem; our problem is to show that 3 a, =

3 b, Let
n n
=3 o, =3
1 1

Say s, — s, t, — t; we must show that s = ¢, in other words, s,~—t, —
0.
Let € > 0. We seek an index p such that

n2p = ls,—ty] <e.
Since Y. |an| is convergent, by 10.1.8 there is an index N such that
m
(%) m2n2N¢Z|ak|5€.
k=n

Let p;=071(3) for i=1,...N andlet p=max{p,...pn}; since the
p; are distinct, p > N. Also, since p>p; for i=1,...,N, we have

{e(1),0(2),...,0(p)} D {o(m),.-.,0(pNn)} ={1,2,...,N},

therefore the list
b1 = a,(l), vy bp = a,(p)

includes the list a,,...,an.
Let n > p and consider

n n
(**) tn"3n=zbk_zak-
1 1

Since n > p, the list by,...,b, includes the list by,...,b,, hence also
the list a;,...,any;and n > p > N, so the list ay,...,a, also includes
a1,...,an. Thus a;,...,ay appear in both sums of (**), hence cancel

out; so for n > p, t, — s, is a sum of terms +a; with k¥ > N,
consequently |t, —s,| <e by (*). <o
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10.4.4. Notation. So far, the terms of a series have been ‘indexed’ by the
positive integers (a, is the term of ‘index’ n). Often it is useful to start
off the indices at 0; for exarfiple, we write

(> <] (> <]
_;_ = _;_ .
n=1 n=0
More generally, we write
o0
D an
n=0

to indicate the series Y " b, with b, = an_; .
This notation is useful in formulating the following theorem about ‘mul-
tiplying’ series (a nice application of absolute convergence):

10.4.5. Theorem. (Mertens’ theorem!) Suppose the series
(> <] (> <]
Z lan| and Z by
n=0 n=0
are convergent. Define
co = agho

c1 = agby + a1bo
¢ = agha + a1by + azby

and, in general, for every n € N,

Cp = Z aibj = agbn + a1bpn_1 + ... +an_1b1 +anby.
i+j=n

Then the series Y 5 cn is also convergent, and

Fee(54) ()

A"':iak’ A=ian
k=0

n=0
n o o]
B,=) b, B=) bn
k=0 n=0
n
Cp= ch.
k=0

K. Knopp, Theory and application of infinite series, p. 321; E. Landau,
Differential and integrel calculus, p. 163, Th. 220.

Proof. Write



192 10. Infinite Series

We know that A, — A and B, — B; our problem is to show that
C, — AB. We have

Cn=cp+ci+ez+...+¢,
= (aobo) + (a0b1 + a1bo) +...+ (aob,. +a1bp-1+...+an_1b1 + a,,bo)
=ao(b0+b1+...+b,,)
+ai(bo+bi+...+bn-1)
+...
+ an—1(bo + b1)
+ aybg
=agBn +a1Bn-1+a3Bp_2+... + ay-1B1 + anBO

Write (3, = B, — B; thus B,.=B+ﬁ,.,where Bn — 0, and

Crn = ag(B + Bn) + a1(B + Bn-1) +... + an(B + fo)
=(ao+a1+...+an)B+(a0Bs +a18n_1+ ...+ anfo)
=AﬂB+’Yn)

where

(*) Yn =aofn + 018n-1+...+anfo.

Since A, B — AB, it will suffice to show that ~,, — 0.

We are thus reduced to proving the following proposition: If 3 0° |an| <
+o0o and f, — 0, andif v, isdefined by (*), then +, — 0. {The indices
for (8,) and (yn) startat 0.} Let a =3 |an|; we cansuppose a > 0.
Given any € > 0, we have to show that |v,| <€ ultlmately Choose an
index N such that

k>N = |6k L¢/2a.

If n> N then

Yn = (Boan + BrGn-1+ ... + BN-18n—(N-1)) + (BNGn-N + - .. + Bn00) .

The first expression in parentheses has fixed length N and (since a, —0)
it is a linear combination of N null sequences (with coefficients fy,...,
Bn-1), so its absolute value can be made < ¢/2 by taking n sufficiently
large; by the choice of N,

1BNGn-N + - .. + Batol < (¢/20)(|an-n] + .. . + lao]) < (¢/2a)a = /2,

consequently (for n sufficiently large), |vn| <€/2+¢€¢/2. ¢

10.4.6. The series ) ¢, of the preceding theorem is called the Cauchy
product of the series Y a, and )_b,. The conclusion of the theorem is
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a sort of ‘distributive law’ (imagine multiplying the series by ‘doing what
comes naturally’).

Exercises

1. The converse of 10.4.3 is true: If every rearrangement of ) a, is
convergent, then Y |a,| is convergent.?

2. In the notations of 10.4.5, if both ) a, and ) b, are absolutely
convergent, then sois Y ¢, .-

3. In the notations of 10.4.5, if both Y a, and ) b, are convergent
but neither is absolutely convergent, then ) ¢, may not be convergent.
{Hint: Look at the Cauchy product of the convergent series

with itself. }
4. True or false (explain): If the series

oC o0
Y a, and ) |l

n=0 n=0

are convergent, then so is the series )¢, of 10.4.5.

5. If Y a, converges but not absolutely (such series are called condi-
tionally convergent) then, for every real number b, some rearrangement of
3 a, converges to b. {The proof is not easy.?}

6. For every real number z, the series Y o z"/n! is absolutely conver-
gent.

7. If Y a, is absolutely convergent and (b,) is a bounded sequence,
then Y bna, is absolutely convergent.

8. (i) If a, =(-1)"/In(n + 1), then the series ) a, is conditionally
convergent.

(i) If an, = [(sinn)/n]" then theseries Y. a, is absolutely convergent.

2E. Landau, op. cit., p. 158, Th. 217.



CHAPTER 11

Beyond the Riemann Integral

811.1. Negligible sets

§11.2. Absolutely continuous functions

§11.3. The uniqueness theorem

§11.4. Lebesgue’s criterion for Riemann-integrability
§11.5. Lebesgue-integrable functions

To motivate the chapter, let us recapitulate the ‘Fundamental theorem
of calculus’ for continuous functions on a closed interval (cf. 9.4.6).

Let f:[a,b = R be a continuous function. The key to the fundamental
theorem is the following consequence of the mean value theorem: If. F
and G are continuous real-valued functions on [a,b] such that F'(z) =
f(z) and G'(z) = f(z) for all points z in the open interval (a,b), then
F — G is a continuous function on [a,b] such that (F — G)'(z) = 0
on (a,b), consequently F—G is a constant function (8.5.4); in particular,
the equality :

(F - G)(a) = (F - G)(b)

means that F(b)— F(a) = G(b)-G(a), so that F(b)—F(a) depends only
on f and not on the particular continuous function F satisfying F’' = f
on (a,b). Free of charge, F has a one-sided derivative at the endpoints
a and b, equal to f(a) and f(b), respectively (9.4.6).

The functions F that appear in this way, associated with all possible
continuous functions f, are precisely the continuous functions F on |[a, b
having a finite derivative at every point of the interval (one-sided at the
endpoints) and such that the derivative function F’ is itself continuous on
[a,b]; such functions F are conveniently described as the continuously
differentiable functions on [a,b].

The role of the Riemann integral in the foregoing is to show that for
every continuous function f on [a,b], a function F such that F' = f
on [a,b] exists (9.3.4 and 9.3.5), namely

F(x):/xf (a<z<b).
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At the same time, the definition of the Riemann integral by means of
upper and lower sums establishes the number F(b) — F(a) as a plausible
definition for the ‘signed area’ under the graph of f. :

In the ‘uniqueness’ argument given above, the presence of the function f
is superfluous. What counts is that any two continuous functions F and
G on [a,b] having the same derivative on (a,b) differ only by a constant,
so that F(b) — F(a) = G(b) — G(a); this requires only the mean value
theorem (without reference to a function f or its Riemann integral).

This suggests extending the elementary integral in the following way.
Call a function f : [a,b] - R «integrables if there exists a continu-
ous function F : [a,b] —» R such that F'(z) = f(z) for every z in
(a,b); by the mean value theorem, one can then define without ambigu-
ity the «integral» of f to be the number F(b) — F(a), and, if we like,
we can write expressions such as | : f -for this number. In particular,
continuous functions f are «integrables in this sense, with «integrals
equal to the integral provided by the Riemann theory. A function that is
«integrable in this sense need not be continuous (Exercise 1), thus the
class of «integrables functions is larger than the class of continuous func-
tions. An «integrable» function need not be Riemann-integrable, or even
bounded (Exercise 2), so some non-Riemann-integrable functions acquire
an «integraly»; however, this good news masks a lot of bad news: many
(in a sense, most) Riemann-integrable functions fail to be «integrables.!
Thus, we now have two ‘little theories’ going off in separate directions in-
stead of a single unified theory: the class of Riemann-integrable functions
and the class of «integrable» functions both extend the class of continuous

functions, but neither of these extensions is contained in the other.

The problem is that in the definition of «integrables proposed above,
the requirement that ‘F’' = f on all of (a,b) is too restrictive and the
requirement that F be continuous on [a,b] is not restrictive enough. By
relaxing ‘all’ to ‘almost all’ (in an appropriate sense) and by requiring F
to be ‘absolutely continuous’ (in an appropriate sense), we can arrive at
a class of functions f, much larger than the class of Riemann-integrable
functions, for which a useful concept of integral can be defined. These are
the Lebesque-integrable functions (to be defined in §11.5). All of the cun-
ning resides in the definition of ‘almost all’; so to speak, the exceptional set
of points x where F fails to have a derivative, or where it has a deriva-
tive different from f(z), must be ‘negligible’ in an appropriate sense. The
concept of ‘absolute continuity’ can be formulated in terms of ‘negligible
sets’ as well.?2 Thus, the concept of ‘negligible set’ is the foundation of the
entire Lebesgue theory; that's the place to begin.

1For an example, see B.R. Gelbaum and J.M.H. Olmsted, Counterezamples
in analysis [Holden-Day, San Francisco, 1964], p. 43, Example 3.
2See §11.2, Exercise 4.
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11.1. Negligible Sets

A set of real numbers is said to be negligible if it can be covered by a
sequence of intervals whose total length is as small as we like. Formally:

11.1.1. Definition. A subset N of R is said to be negligible if, given
any € > 0, there exists a sequence (I,) of bounded intervals such that

Nc OI,, and if(l,.) <e,

n=1 n=1

where €(I) =b—a for an interval I with endpoints a <b.

11.1.2. Remarks. If an interval does not contain one of its endpoints, the
length is not changed by adjoining it; thus one can require the intervals
in the above definition to be closed. On the other hand if, in the above
definition, I, has endpoints a, < b, and if one replaces I, by the open
interval :
' (an — €/2"*1, a, +¢/2711),

the total length is then < 2¢; thus one can require the intervals 1,, to be
open. .

Putting these thoughts together, it is clear that the intervals in the def-
inition can be required (permitted) to be any one of the four kinds (open,
closed, semiclosed on the left, semiclosed on the right) or any mixture of
the four kinds.

11.1.3. Example. Any subset N of R whose elements are the terms of
a sequence is negligible. (Such sets are called countable.)

For, if N = {a, : n = 1,2,3,...} then the (degenerate) intervals
I, = [an,an] = {an} cover N and have total length 0.

For an example of a negligible set that is not countable, see Exercise 3.

11.1.4. Remarks. Negligible sets already play a decisive role in the the-
ory of the Riemann integral. H. Lebesgue gave the following criterion for
Riemann-integrability: A bounded function f : [a,b] —» R is Riemann-
integrable if and only if its set of discontinuities is negligible, that is, the
set

Dy ={z €[a,b]: f is not continuous at z}

is negligible. The proof (not difficult) is given in §11.4.
Here are some useful facts of the type ‘new negligible sets from old’:

11.1.5. Proposition. (1) If N is a negligible set then every subset M of
N s also negligible.

(2) If M and N are negligible sets, then so is their union MUN. More
generally,
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(3) If (Nk) is a sequence of negligible sets, then their union N =|{JNj
is also negligible.

Proof. (1) If NC JI; thenalso M c JIj.

(2) Let €> 0. Since M is negligible, there exists a sequence (I,) of
intervals such that

Mc(JI, and ) ¢l,) <e/2.

Similarly, there exists a sequence (J,) of intervals such that

NcJJn and Y () <e/2.
Then MUN is contained in the union of the sequence of intervals
II,J1’127J2’I3vJ3’ vey

the sum of whose lengths is <e/2+¢€/2=c¢.
(3) Given any € > 0, for each index k choose a sequence Iii,Ix2,Iis3,...
of intervals such that

o0 oC
NeCJIen and Y l(Ln) < €/2%;
n=1

n=]

then N C U, ,Ikn and the intervals Iyn (k,m = 1,2,3,...) can be
arranged in a sequence (J;). (For example, list those I, with k+n =2,
then those with ¥ +n =3, and so on.) Then

Sy <y (Zl(lkn)) < f:e/zk =e.
k=1 \n=1 k=1

i=1

{To prove the first < relation (actually, equality holds, but we can get
by with < here), it suffices to show that each partial sum Y°;_; £(J;) of
the series on the left side is < the ‘iterated sum’ on the right side; this
is easily seen by grouping together those intervals among Ji,...,J, that
come from the covering (I;,) of Nj, then those that come from (Ia,),
and so on until we have exhausted the list Ji,...,Jr.} ¢

It follows that if a finite number (or even a sequence) of points are ad-
joined to or deleted from a negligible set, the resulting set is also negligible;
in particular, in discussing negligible subsets of an interval [a,}], we need
not worry whether or not the endpoints of the interval belong to the subset.

The following ‘obvious’ property of negligible sets proves to be very useful
in §11.3:

11.1.6. Proposition. The interior of a negligible set is empty.



198 11. Beyond the Riemann Integral

Proof. Assuming N negligible and [a,b] C N (a < b), we need only
show that a = b. By (1) of the preceding proposition, we know that
[a,b] is negligible. Thus, given any € > 0, there exists a sequence of open
intervals (an,b,) such that

0

[a,b] C Ga"’" and Z(bn—an)ge.

n=1

By the Heine-Borel theorem (4.5.4) there exists a positive integer r such
that
[a,b] C (a1,b1)U...U(ar,by);

if we can infer from this inclusion that
(%) b—a<Z(bk—ak),
k=1

it will follow that b —a < ¢, whence b—a < 0 by the arbitrariness of ¢.
The proof of (x) is by induction on r. The case r = 1 is obvious. Let
r > 2 and assume that the assertion has been proved for a covering of a
closed interval by r—1 open intervals. Rearranging the intervals {a, bi)
if necessary, we can suppose that a € (a,,b,), so that a, < a <b,.

If b, >b then a, <a <b < b, and the inequality (*) is obvious. On
the other hand, if b, <b then

a,<a<b. <b,

therefore [b,,b] is disjoint from (a,,b,); however,

r

[br, 6] € [a,8] € | (ak,bi),

k=1

and since [b,,b] is disjoint from the last term of the union, necessarily

[br,b) L] (ax, be) -

By the induction hypothesis,
71
b—by <Y (bk—aw);

k=1

also b, —a < b, — a,, and addition of the two inequalities yields (x). {
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- For computational purposes, it will be useful to specify more sharply
the coverings by intervals that figure in the definition of a negligible set
(cf. the proof of 11.2.11); this involves some elementary observations on
the ‘algebra’ of intervals:

11.1.7. Proposition. Let A be the set of all finite unions

m
A=y,
j=1

where the I; are pairwise disjoint intervals in R (possibly degenerate,
and not necessarily bounded). Then: '

(1) AABeAd = ANBc A,

(2) AcA = CAcA,

(3) AL Be A = AUBe A,
that is, A is closed under finite intersections, complementation and finite
unions. In particular,

(4) A coincides with the set of all finite unions of intervals (not nec-
essarily pairwise disjoint).

Proof. (1) Suppose A = UjL,;I; and B = (J;_, Ji, where the I;
(resp. the Ji ) are pairwise disjoint intervals. Then

AnB=JL;nJ,
jik

where the mn sets I;NJ; are intervals (4.1.5) and are pairwise disjoint,
that is, if j # 37 or k# k' then

Lnde)N@ynd)=@LNnL)N@xNIy) =2.

Thus ANBe A.
(2), (4) Note that if I is an interval then CI is either a single interval
(degenerate if I =R) or the union of two disjoint intervals; for example,

Cla, +00) = (—o0,a), C(a,?d] = (—o00,a] U (b, +00) .

In either case, (I € A. Thus, if A =|JI; is any finite union of intervals
(not necessarily pairwise disjoint) then CA = [\CI; € A by (1). It follows
that A = C(CA) € A. This proves both (2) and (4).

(3) This is immediate from (4), or from (1), (2) and the formula AUB =
CCANCB). ¢

11.1.8. Corollary. If B is the set of all finite, disjoint unions of
bounded intervals, then B is closed under the operations ANB, AUB
and A - B.
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Proof. If A,B€ B thenthesets ANB, AUB and A-B=An(CB
belong to the class A of the preceding proposition and are obviously
bounded. ¢

11.1.9. Corollary. If (1.} is a sequence of closed intervals, then there
ezists a sequence of closed intervals (J,) such that
(l) U;‘:’=l Jn = U:;l I'n ’ ’
(i) the J, are pairwise nonoverlapping,® and
(iii) each J, is a subinterval of some I,

Proof. Let A =|J32,1, and let A, be the sequence of sets defined by

Ai=1; and An=In—UIk for n>1.

k<n

Writing Io = @, we have Ap, =In — Ui, Ix forall n>1.

Since A, CI, for all n, we have |JA, C|UI. =A. Infact, JA, =
A;for,if £ € A and n is the first index such that z € I,,, then z € A,,.

The sets A,, are pairwise disjoint; for, if m <n and z € A,,, then
z € 1,, and therefore z ¢ A, by the definition of A,,.

Since every I, belongs to the class B of the preceding corollary, it fol-
lows from that corollary that each A, is a finite disjoint union of bounded
intervals, necessarily subintervals of I,,. Say

A, = O Lok,
k=1

where In1,In2,...,Inr, are pairwise disjoint subintervals of I, ; the closed
interval J,; having the same endpoints as I,,; is also a subinterval of I, ,
and the intervals Jni,...,Jn., are pairwise nonoverlapping.

To obtain the desired sequence Ji,J3,J3,..., list the intervals Jq,...,
Jin, , then the intervals Ja1,...,J2n,, then the intervals Jsi,...,J3n;,
and so on. Since the A, are pairwise disjoint, the J, are pairwise
nonoverlapping. ¢

11.1.10. Corollary. If N is a negligible set and € > 0, then there exists
a sequence (Jn,) of pairwise nonoverlapping closed intervals such that

Nc|JIn and ) €(Jn) <e

If, moreover, N C [a,b], one can suppose that J, C [a,b] for all n.

Proof. Since N is negligible, there exists a sequence (I,,) of closed
intervals such that N C {JIn» and 3 £(I,) <e. Let (J,) be thesequence

3Two intervals I and J are said to be nonoverlapping if their intersection
is at most a single point. If the closures of I and J intersect in a single point,
then I and J are said to abut each other.
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of closed intervals constructed in the preceding corollary. With notations
as in the proof of that corollary, J.i,...,Jnr, are pairwise nonoverlapping
closed subintervals of I, and it will suffice to show that

LIn1) + ...+ €(0nr,) < UI) -

Changing notations, we are in the following situation: given nonoverlap-
ping intervals [a;,b1],...,[ar,b.] such that

[a1,51] V... Ula, b C [e,d],

we need only show that

) Y (bi—a) <d—c.

i=1

Reordering the intervals [ai,b;] if necessary (and eliminating any degen-
erate ones), we can suppose that [a;,b;] is to the left of [a;11,bi41] for
i=1,...,r—1, so that

c<ar<h<a<h<...<ar<b < d;

the inequality () is then verified by a ‘telescof)ing sum’ argument:

r r—1
d—c=(a1—c)+ Y (bi—a:) + ¥ (41— bi) + (d— br)
i=1

i=1

>0+ (b — a:) +0+0.

i=1

Finally, if N C [a,b] then the intervals J,N[a,b] meet the requirements
of the corollary. ¢

11.1.11. Definition. A statement is said to be true almost everywhere
(briefly, ‘a.e.’) on aset S C R if there exists a negligible set N such that
the statement is true for every = in S — N ; this is also expressed by saying
that the statement is true for almost every point of S (or for ‘almost
all’ points of S).

11.1.12. Ezamples. (i) The statement ‘F is differentiable a.e. on (a,b)’
means that there exists a negligible set N such that F'(z) exists for all
z € (a,b) — N.

(ii) The statement ‘f < g a.e. on [a,b]’ means that there exists a
negligible set N such that f(z) < g(z) for all z € [a,b] — N.

(iii) See also Excrcise 5.
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Exercises

1. Let f:[a,b] @ R be the (discontinuous) function such that f(z) =
1 for z € (a,b) and f(a) = f(b}) = 0. Show that f is «integrables in
the sense of the introduction.

2. Let F:[0,1] - R be the function defined by

zsin(l/z) for 0<z <1
F =
(=) { 0 for z=0

and define f:[0,1] - R by the formulas

F'(z) for0<z<1
f(:z:)—{ 0 for z=0.

Show that f is «integrables in the sense of the introduction, but is not
Riemann-integrable.

3. (Cantor set) For any closed interval [a,b], a < b, take out the open
middle third and write r(I) for what remains:

r(1) = [o,0 + %(b——a)]u b— %(b—a),b}.

More generally, if A =I;U...Ul, is a finite disjoint union of nondegenerate
closed intervals, define

r(A) = r(I)}U...ur(l,)

(which is the disjoint union of 2n closed intervals, the sum of whose
lengths is 2/3 of the sum of the lengths of the Iy ). Define powers of r
recursively by iterating this operation:

ri(A) = r(A), r2(A) = r(r(A)), r"*1(A) = r(r™(A)).

The set o
r=)r®,
n=1

where I=[0,1], is called the Cantor set.* Prove:
(i) T is negligible.
(i) T is uncountable, that is, no sequence (r,) in I' can exhaust I'.
{Hints: (i) For each n, consider the covering of T" by the intervals of
r™(I) and calculate their total length. (ii) Let I; be one of the intervals

4 After Georg Cantor (1845-1918).
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of r(I) that excludes z;, let Iz be one of the intervals of r(I;) that
excludes z2, and so on (cf. Exercises 1 and 4 of §2.6).}

4. Write out the details for the proof of assertion (3) of Proposition 11.1.5.

5. Justify the statement that almost every real number is irrational.

11.2. Absolutely Continuous Functions

If f: [a,b] - R is Riemann-integrable and k = sup|f|, then the
function F :[a,b] » R defined by F(z)= [’ f satisfies the inequality
|F(z) — F(y)| < klz —y| for all z,y in [a,b] (cf. 9.3.2). Functions F
satisfying such an inequality have a name:

11.2.1. Definition. A function F : [a,b] — R is said to satisfy a
Lipschitz condition! (or to be a ‘Lipschitz function’) if there exists a
constant M such that

|F(z) — F(y)) < Mlz - y]

for all z,y in [a,b].

Not every Lipschitz function F is of the form F(z) = F(a)+ f: f for
some Riemann-integrable function f; the proof is not easy.?

11.2.2. Remark. Every Lipschitz function is continuous. For, with nota-
tions as in the definition, it is clear that |z,—z| -0 = |F(z,)—-F(z)| =
0.

11.2.3. Remark. With notations as in the definition, if F is differen-
tiable at a point z € (a,b) then |F'(z)] < M (because the absolute value
of every ‘difference quotient’ of F is < M ). It is also true (but not easy to
prove) that a Lipschitz function on [a,b] is differentiable at almost every
point of (a,b).3

11.2.4. Proposition. The following conditions on a function F:[a,b] —
R are equivalent:
(a) F is Lipschitz;

1Named after Rudolf Lipschitz (1832-1903).

2There exists a ‘Lebesgue-integrable’ (cf. 11.5.1 below) bounded function f
on [a,b] such that f is not equal almost everywhere to a Riemann-integrable
function (see Example 32 on p.106 of B.R. Gelbaum and J.M.H. Olmsted’s Coun-
terezamples in analysis [Holden-Day, San Francisco, 1964]; the ‘Lebesgue in-
definite integral’ F' of f is a Lipschitz function not of the form F(z) =
F(a)+ f: g for any Riemann-integrable function g.

3Cf. E. Hewitt and K. Stromberg, Real and abstract analysis [Springer-
Verlag, New York, 1965], p. 267, (17.17).
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(b) F is continuous and there ezists a constant M such that £(F(I)) <
M{(I) for every closed subinterval I of [a,b].

Proof. (a) = (b): Let M be a constant such that |F(z) — F(y)| <
M|z — y| for all z,y in [a,b] and let 1 be a closed subinterval of [a,b].
Since F is continuous (11.2.2), F(I) is a closed interval (6.3.1), say
F(I) = [F(c), F(d)], where ¢,d € I. Then

L(F(D) = |F(c) - F(d)] < Mlc—d| < ML(T).

(b) = (a): Given z,y € [a,b], let T be the closed subinterval of [a,b]
with endpoints z and y. Then F(z), F(y) € F(I), therefore

|F(z) — F(y)l < ¢(F(T)) < M{T) = Mlz -y,

thus F is Lipschitz. ¢
Every Lipschitz function maps negligible sets to negligible sets:

11.2.5. Proposition. If F : [a,b] — R is Lipschitz and N is a negligible
subset of [a,b], then F(N) is a negligible subset of R.

Proof. Let M > 0 be a constant such that |F(z) — F(y)| < M|z - y|
for all z,y in [a,b]. Given any ¢ > 0, let (I,) be a sequence of closed
intervals such that N C |JI, and 3 ¢(I,) < ¢/M; replacing I, by
I, N [a,b], we can suppose that I, C [a,b]. Then F(N)cC |JF(I,) and,
by the preceding proposition, ¢(F(I,)) < M{(I,) for all n, therefore

S UF(L) S MY UL < M(e/M) =¢;

thus, F(N) can be covered by a sequence of intervals whose total length
is as small as we like. ¢ ‘

The mapping property in this proposition is so central to our discussion
that it is useful to have an abbreviation for it:

11.2.6. Definition. We shall say that a function F : [a,b] — R is
negligent if the image of every negligible subset of [a,b] is negligible, that
is,

N C [a,b] negligible = F(N) negligible.

Every Lipschitz function is negligent (11.2.5) but the converse is false;
indeed, since a negligent function remains negligent if it is redefined at
a finite number of. points, a negligent function need not be continuous.
An example of a continuous function that is not negligent is sketched in
Exercise 2.

The class of Lipschitz functions is big enough to contain all of the in-
definite integrals F(z) = F(a)+ [ f of Riemann-integrable functions f
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(though it is not exhausted by them). On the other hand, the class is too
small to contain all of the indefinite integrals associated with the ‘Lebesgue-
integrable’ functions f (yet to be defined, in §11.5); what is required is a
condition weaker than Lipschitz:

11.2.7. Definition. A function F :[a,b] — R is said to be absolutely
continuous (briefly, AC) if, given any e > 0, there exists a § > 0 such
that, for finite lists [a1,b1],. .., [an,bn] of pairwise nonoverlapping closed
subintervals of [a,b],

2": (bx —ar) <6 = ZIFbk Flax)| <e.

k=1

11.2.8. Remarks. Every Lipschitz function is absolutely continuous (with
the notations of 11.2.1, given € > 0 let § = ¢/M ), and every absolutely
continuous function is continuous (in the notations of 11.2.7, consider n =
1). Thus,

Lipschitz = absolutely continuous = continuous.

Neither implication is reversible: there exists an absolutely continuous func-

tion that is not Lipschitz (Exercise 5), and a continuous function that is

not absolutely continuous (cf. Exercise 2 and Proposition 11.2.11 below).
There is an analogue of Proposition 11.2.4 for absolute continuity:

11.2.9. Proposition. The following conditions on a function F : [a, b —
R are equivalent:

(a) F is absolutely continuous;

(b) F is continuous and, given any € > 0, there ezists a 6 > 0 such that,
for finite lists 13,...,1, of pairwise nonoverlapping closed subintervals

of [a, 8],
dew)<s = Y (FI) <e
k=1 k=1

Proof. (a) = (b): Given € > 0, choose § > 0 as in Definition 11.2.7.
Let I;,...,I, be pairwise nonoverlapping closed subintervals of [a,b] such
that > p_, 0(Ix) < 6. Say F(Ix) = [F(ck), F(dk)], where ci,d; € 1. If
Ji is the closed subinterval of I, with endpoints ck,dx (in some order)
then

n

IUCSED LN
k=1 k=1

therefore Y ¢_, |F(ck) — F(di)] < € by the choice of 6, in other words

Sre1 8(F(Ik)) <e
(b) = (a): For every closed subinterval I of [a,b], F(I) is a closed
interval in R by the continuity of F (6.3.1). Given € > 0, choose § >0
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as in condition (b). Let I,...,I, be nonoverlapping closed subintervals
of [a,b] such that ) ¢(Ix) < 6. Say Ir = [ak,bk]. Then F(ai), F(bi) €
F(Ii), therefore |F(ax) — F(bg)| < K(F(Ik)) , and

n

3 1F(a) ~ Fbl < 30 0(F (L) < e

k=1 k=1

by the choice of §. ¢

Linear combinations of absolutely continuous functions are also abso-
lutely continuous (for products, see Exercise 6):

11.2.10. Proposition. If F and G are absolutely continuous and ¢
is a real number, then the functions F + G and cF are also absolutely
continuous.

Proof. This follows easily from the relations

[(F + G)(b:) = (F + G)(a:)| < |F(bs) — Fas)| +1G(b:) — G(as)l,
[(cF)(b:) — (cF)(a)| = le| |[F(b:) — F(as)l ,

where the a;,b; are endpoints of nonoverlapping intervals of total length <
6, & having been chosen in Definition 11.2.7 to ‘work’ for both F and G
(take 6 to be the minimum of a é; that works for F and a 6, that
works for G). ¢

The next proposition is the key to the ‘uniqueness theorem’ of §11.3 that
makes possible the shortcut to the Lebesgue theory given in §11.5 (it also
figures in the proof of Lebesgue’s characterization of Riemann-integrability
given in §11.4):

11.2.11. Proposition. Every absolutely continuous function F : [a,b] —
R is negligent, that is,

N C [a,b] negligible = F(N) negligible.

Proof. Let N be a negligible subset of [a,b]. Given any € > 0, choose
6 > 0 as in Definition 11.2.7. Let (I,) be a sequence of closed inter-
vals such that N ¢ JI, and ) {(I,) < §. We can suppose that the
I, are nonoverlapping subintervals of [a,b] (11.1.10). Since F(N) C
UF(I.) and the F(I,) are closed intervals, it will suffice to show that
Y (F(l.)) <e.

Say F(l,) = [F(cn), F(d,)], where cp,d, € I,. If J, is the closed
subinterval of I, with endpoints ¢, and d, (in some order) then

Y3 <Y i) <6,
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therefore Y |F(c,) — F(dn)| < € by the choice of § (the latter inequality
is true for the partial sums of the series, hence for their supremum), in
other words Y ¢(F(I,)) <e€. ¢

It is possible to give an equivalent definition of absolute continuity in
terms of the concept of negligence; the facts arc reported in Exercise 4, but
the proofs are not elementary.

Exercises

1. If f is any bounded real-valued function on a closed interval |[a, 8],
then each of the functions F(z) = j;z f and H(z)= _f: f is Lipschitz.

2. A continuous function need not be negligent.

{Sketch of proof: Let I' be the Cantor set (§11.1, Exercise 3). There
exists a continuous function Fp : I' — [0,1] that is surjective,® and Fp.
can be extended to a continuous function F:[0,1] — [0,1] by the Tietze
extension theorem.® The Cantor set is negligible but F(I') = [0,1] is not.}

3. If F is negligent and G = F a.e., it does not follow that G is
negligent.

{Hint: Let F :[0,1] — R be the constant function F(z) =0 and let
G :[0,1] = R be a function such that G(I') = [0,1] and G(z) =0 for
z € [0,1] =T (cf. the hint for Exercise 2).} .

4. The following conditions on a function F :[a,b] — R are equivalent:

(a) F is absolutely continuous;

(b) F=G— H,where G and H are continuous, strictly increasing
and negligent;

(c) F is continuous, negligent and of bounded variation.

{A function F:[a,b] — R is said to be of bounded variation if there is a
finite upper bound for the sums Y";_; |F(ax)— F(bi)|, where {a1,b1],...,
[@n,by] is any finite list of nonoverlapping closed subintervals of |[a,b].°
Though the equivalences are easy enough to state, their proofs involve
concepts and results not taken up in this book, and the proofs of some of
the implications are downright difficult.”}

4Cf. J.L. Kelley, General topology [Van Nostrand, Princeton, 1955], p. 166,
(e).
SCf. J. Dixmier, General topology [Springer-Verlag, New York, 1984], p. 85,
7.6.1.

SAn equivalent condition is that F = G — H with G and H increasing
functions [cf. E. Hewitt and K. Stromberg, op. cit., p. 266, (17.16)].

"The equivalence (a) < (c) is due to S. Banach [cf. Hewitt and Stromberg,
op. cit., p. 288, (18.25)]. For a proof of (a) < (b), see the author’s article in
Paul Halmos: Celebrating 50 years of mathematics [Springer—Verlag, New
York, 1991], p. 284, Proposition.
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5. The function F :[0,1] - R defined by F(z) = /z is absolutely
continuous but not Lipschitz.

{Sketch of proof:® Since F has a derivative on (0,1) that is un-
bounded, F is not a Lipschitz function. That F is absolutely continuous
can be inferred from the fact that F(z) is the ‘Lebesgue integral’ from
0 to z of the function f : [0,1] — R defined by f(z) = %z"l/z for
0<z<1 and f(0)=0.}

6. If F and G are absolutely continuous functions on [a, ], then so
is FG.

{Hint: Let M and N be the least upper bounds (i.e., the maximum
values) of the functions |F| and |G|, respectively, and consider the iden-
tity

F(c)G(c) = F(d)G(d) = F(c)[G(c) — G(d)] + [F(ec) - F(d)]G(d),

whose right side has absolute value < M|G(c) — G(d)| + N|F(c) — F(d)| .}

7. In the context of Riemann-Stieltjes integration (§9.1, Exercise 5) let
F and H be the indefinite upper and lower RS-integrals of a bounded
function f with respect to an increasing function g (§9.3, Exercise 5). If
g is absolutely continuous (or Lipschitz) then the same is true of F' and H.

11.3. The Uniqueness Theorem

The core result of this section is a refinement of an argument in the proof
of Theorem 8.5.5:

11.3.1. Lemma. Let F : [a,b] — R be a continuous function and let
N be a subset of R such that, for every = € (a,b) — N, F is right
differentiable at x and Fl(z) > 0.

(i) If F(N) has empty interior then F is an increasing function.

(ii) If both N and F(N) have empty interior, then F is strictly in-
creasing.

Proof.! (i) Let a <c¢<d<b. We are to show that F(c) < F(d).

Assume to the contrary that F(d) < F(c). Since F(N) has empty
interior, it cannot contain the nondegenerate open interval (F(d), F(c)) ;
choose a point k € (F(d), F(c)) such that k ¢ F(N). Thus,

F(d) <k < F(c) and, forall z €N, F(z)#k.

8Ct. K. Stromberg, An introduction to classical real analysis [Wadsworth,
Belmont, CA, 1981], p. 163.

nspired by an argument in E.J. McShane’s Integration [Princeton University
Press, 1944], p. 200, 34.1.
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By the intermediate value theorem (6.1.2), F assumes the value k at
some point of the interval [c,d], that is, the set

A={zec,d: F(z)=k}

is nonempty. If z, € A and z, — z, then z € [c,d] (because [c,d]
is a closed set) and F(x,) — F(z) (because F is continuous); since
F(z,) = k for all n, it follows that F(z) =k, thus z € A. This shows
that A is a closed set.

Let s=supA;then s€ A (4.5.7), thus F(s)=k. So to speak, s is
the right-most point of [c,d] where F takes on the value k; since

F(d) < k= F(s) < F(c),

necessarily d # s and s # ¢, thus ¢ < s < d. Since F does not take
on the value k in N, necessarily s ¢ N, therefore s € (a,b) — N; by the
hypothesis on N, F is right differentiable at s and F/(s) > 0. '
Let (t.) be a sequence such that s < t, < d and t, — s. From
t, > s=supA wehave t, ¢ A, thus F(t,) # k. Necessarily F(t,) <k
for all n; for, if F(t.) >k for some n, then the inequalities F(d) < k <
F(t,) would imply the existence of a point in the open interval (t,,d) at
which F takes on the value k, contradicting the maximality of s. Thus
F(t,) <k = F(s) for all n, and passage to the limit in the inequalities

F(ta) = F(s) _ o
tn, — 8

yields F/(s) <0, contrary to the fact that s € (a,b) —

(ii) Now assume that both N and F(N) have empty interior. By (i),
F is increasing. Given a < ¢ <d < b, we are to show that F(c) < F(d).
At any rate, F(c) < F(d). Assume to the contrary that F(c) = F(d).
Then F isconstant on [c,d]. In particular, if = € (¢,d) then F'(z) =
therefore z cannot belong to (a,b) — N; it follows that z € N, and we
have shown that (c,d) C N, contrary to the assumption that N has
empty interior. ¢

11.3.2. Theorem. If F: [a,b] — R is absolutely continuous and if, at
almost every point of (a,b), F has a right derivative > 0, then F is
strictly increasing.

Proof? By assumption, there exists a negligible set N C [a, b] such that,
at every point z € (a,b) — N, F is right differentiable and F/(z) > 0.

21t can be shown that an absolutely continuous function is differentiable almost
everywhere [cf. Hewitt and Stromberg, Real and abstract analyszs [Springer-
Verlag, New York, 1965], p. 267, (17.17) and p. 283, (18.12); in the present
theorem we are not begging the question of dlfferentlablhty, but are assuming
that F' is right differentiable almost everywhere.
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Since F is negligent (11.2.11), F(N) is also negligible. Thus both N
and F(N) have empty interior (11.1.6) and the hypotheses of (ii) of the
lemma, are fulfilled.

11.3.3. Corollary. If F : [a,b] — R is absolutely continuous and if, at
almost every point of (a,b), F has a right derivative > 0, then F is
increasing.

Proof. Assuming e¢ < c < d < b, we are to show that F(c) < F(d).
Given any € > 0, it will suffice to show that F(c) < F(d) + e(d~c).

The function G : [a,b] — R defined by G(z) = F(z) + ex is abso-
lutely continuous (11.2.10) and, at almost every point of (a,b), G is right
differentiable with

G.(z)=F/(z)+e=2€>0,

therefore G is strictly increasing by the preceding corollary; in pa.rtlcular,
G(c) < G(d), that is,
F(c)+ec< F(d) + ed,

whence the desired inequality. ¢

11.3.4. Theorem. (Uniqueness theorem) If F : [a,b] — R is abso-
lutely continuous and if, at elmost every point of (e,b), F has a right
derivative equal to 0, then F' is a constant function.

Proof. Both F and —F satisfy the hypotheses of the preceding corol-
lary, consequently F' and —F are both increasing; in other words, F is
both increasing and decreasing, hence constant. ¢

" The following application makes a nice connection with Riemann-integra-
bility (to be exploited more fully in the next section):

11.3.5. Corollary. If f : [a,b] — R is a bounded function that has a
right limit at almost every point of (a,b), then f is Riemann-integrable.

Proof. Let F and H be the indefinite upper and lower integrals of f

(9.3.1), that is,
F(zx) = / f and H(z)= /w

~a

for all z € [a,b]. Then F and H are Lipschitz functions (9.3.2) and,
for almost every z in (a,b),

F(z) = f(z+) = H}(z)

by the proof of Theorem 9.6.11. Thus F — H is absolutely continuous
(11.2.8) and has right derivative 0 at almost every point of (a,b), conse-
quently F — H is constant by the uniqueness theorem (11.3.4). Inasmuch
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as F(a) = H(a) =0, we conclude that F — H is the function identically
zero; in particular F(b) = H(b), that is, f;bf = f:f. ¢

Exercises

1. What about left derivatives?
{Hint: Adapt the argument of 11.3.1 by considering instead s = inf A .}

2. Every theorem in Chapter 9 affirming the Riemann-integrability of a
class of functions is a special case of Corollary 11.3.5 (cf. 9.4.4, 9.4.5, 9.6.5,
9.6.7, 9.6.11 and 9.6.12).

11.4. Lebesgue’s Criterion for Riemann-Integrability

Here it is:

11.4.1. Theorem. The following conditions on a bounded function
f:]a,b] — R are equivalent:

(a) f is Riemann-integrable;

(b) f is continuous at almost every point of [a,b], that is, the set

D= {z € [a,b]: f is not continuous at z}

of points of discontinuity of f is negligible.

The implication (b) = (a) follows at once from Corollary 11.3.5; in-
deed, one need only assume that f has a right limit at almost every point
of (a,b) (not a true generalization, since the reverse implication will en-
sure continuity almost everywhere). The proof of the reverse implication
requires some preparation.

11.4.2. Lemma. If f: [a,b] —» R is a bounded function, ¢ is a point
of [a,}], and
Sc={y€R: f(zn) —y for some sequence z, — c},

then S is a closed and bounded subset of R with f(c) € S..

Proof. Suppose yn, € Sc and y, — y; we are to show that y € S..
For each n, it follows from the definition of S, that there exists a point
Z, € [a,b] such that |z, —c| <'1/n and |f(zn)— yn| < 1/n. Then
Zn, — ¢ and, since

If(xn)_ylS'f(xn)_yn|+|yn—y|"’0+0a

we have f(r,) —y,thus y€S..
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Since f is a bounded function, the set S. is bounded; indeed, if & <
f(z) < K forall z € [a,b],then S, C [k, K]. Finally, f(c) € S, (consider
the sequence z, =c forall n).

11.4.3. Definition. Let f: [a,b] — R be a bounded function and, for
each point ¢ € [a,b], let S. be the set defined in the lemma. Since S,
is nonempty, closed and bounded, it has a smallest and a largest element
(4.5.7). We define two functions f, f:[s,b] — R by the formulas

f(c)=minS., f(c)=maxS. forall c€[a,b].

Clearly f and f are bounded (by the same bounds as f) and f<f< Fi
on [a,b] (because f(c)€ S.).

11.4.4. Lemma. With notations as in the definition, let c € [a,b]. Then:

f 1is continuous at ¢ & f(c) = f(c),

in which case f(c) = f(c) = f(c).

Proof. =: If z, — ¢ then f(z,) — f(c) by the continuity of f at c,
therefore S. = {f(c)}; thus the elements f(c) and f(c) of S. coincide
with its unique element f(c). T ’

«: If f(cJ= f(c) then f(c) = f(c) = F(c) and S.= {f(c)}. Given
any sequence (z,) in [e,b] such that z, — c, we are to show that
f(zn) — f(c). Thus, given any ¢ > 0, we must show that |f(z,)—f(c)| <
€ ultimately.

Assume to the contrary that |f(z,) — f(c)| = ¢ frequently. Passing to
a subsequence, we can suppose that |f(z,) — f(c)| > € for all n. Since
the sequence (f(z.)) is bounded, by the Weierstrass—Bolzano theorem
it has a convergent subsequence; passing again to a subsequence, we can
suppose that f(z,) — y for some real number y. Then y € S, = {f(c)},
therefore y = f(c); thus f(z,) — f(c) and passage to the limit in the
inequalities |f(z,n) — f(c)| > € yields the absurdity |f(c) — f(c)| = €.

11.4.5. Lemma. If f:[a,b] = R is a bounded function and a <c<b,

then _
0<F(o)~ f() <M —m,
where (as in §9.1) M =supf and m=inf f.

Proof. If £, — ¢ and f(zn) > y then m < f(z,) < M for all n,
and passage to the limit yields m <y < M. Thus S, C [m, M| and, in
particular, _

m< fle)< fle)< M,

whence the asserted inequalities. ¢

We can now complete the proof of Theorem 11.4.1.
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Proof of (a) = (b): Assuming that f: [a,b] — R is Riemann-integrable,
we are to show that the set D of points of discontinuity of f is negligible.
By Lemma 11.4.4,

D= {z € [a,b]: f(z) - f(z)>0}.
For each positive integer k&, let
Dy = {z € [a,]: f(z)- f(z)>1/k};

since D = |Jzo, Dk, it will suffice to show that each Dy is negligible
(11.1.5).

Fix an index k and let ¢ > 0. Since f is Riemann-integrable, by
Theorem 9.7.5 there exists a subdivision

c={a=¢<a, < - <a, =b}

of [a,b] such that Wjy(o) < €/k, where k is the index just fixed and
Wy(o) is the weighted oscillation of f for o,

n

Wf(a) = S(O’) - 3(0) = Z(Ml/ - mu)(a'u —Gy-1)

v=1

(with notations as in §9.7). Since the negligibility of Dy is not influenced
by the inclusion or omission of the finitely many points a, , it will suffice
to show that the points of D; not equal to any a, are all contained in
the union of finitely many intervals of total length < ¢. Here are the inter-
vals: let I,,...,I,. be a faithful listing (no repetitions) of those intervals
(a,—1,a,) that contain at least one point of Dy ; we need only show that
Z;:l E(IJ) <e.

Fix an index j € {1,...,7}. Suppose I; = (a,—1,a,) and choose a
point ¢ of D; that belongs to I;. Since ¢ € Dy we have

1/k<7(c)—£(C)SM,,—m,,,

where the latter inequality follows from applying the preceding lemma, to
the restriction of f to the interval [a,_1,a,] (note that if z, is a se-
quence in [a,b] converging to c, then z, € (a,-1,a,) ultimately). It
follows that

() Lo = aum) < (M —ma)(a, —auo).

Summing the inequalities (x) over those v for which (a,-;,a,) contains
at least one point of Dy, the sum of the left sides is

1<
J=



214 11. Beyond the Riemann Integral

whereas the sum of the right sides is < Wy(o), which was chosen to be <
¢/k, thus :

1 r
= Zle(m <e/k,
J=

whence Y0_, £(I;) < ¢, as we wished to show. $

Lebesgue’s criterion brings with it a fairly satisfying ‘Fundamental the-
orem of calculus’ for the Riemann integral:

11.4.6. Theorem. Let f:[a,b] = R be a Rzemann-zntegmble function.
Then:
(1) The function F :[a,b] = R defined by

F(z)= /zf for all z € [a,b]

is Lipschitz and F'(z) = f(z) for almost every = in (a,b).
(2) If G is any absolutely continuous function such that G' = f a.e. then

G(:L')=G(a)+/:f Jor all x € [a,b];

in particular, G 1is Lipschitz and

b
/ f = G(b) - G(a).

Proof. (1) This is shown by the proof of 11.3.5.

(2) The function G — F is absolutely continuous (11. 2.10) and (G — F)’
=0 a.e., therefore G — F is constant by the uniqueness theorem of the
preceding section; thus, for all z € [a,b],

G(z) - F(z) = G(a) - F(a) = G(a) -

and

G(z) = G(a) + F(z) G(a)+/zf.<>

The only blemish on this otherwise appealing result is that it offers no
succinct description of the class of functions that can play the role of G (for
all possible Riemann-integrable functions f ); as noted following Definition
11.2.1, ‘Lipschitz’ is not enough. For complete satisfaction in this regard,
we must advance to the Lebesgue integral.
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Exercises

1. If f and g are Riemann-integrable then so is fg (§9.7, Exerc1se 4)
Give an alternate proof based on Lebesgue’s criterion.
{Hint: The union of two negligible sets is negligible.}

2. If a bounded function f: [a,b] —» R has a right limit at almost every
point of [a,b], then f is continuous at almost every point of [a,b)].

3. Let f: [a,b] = R be Riemann-integrable, 9 [a,b] - R an
increasing function, and write o

F(z)= / fdg and H(z) = /fdg (a<.1,'<b)

for the Riemann-Stieltjes indefinite upper and lower integrals of f with
respect to- g (cf. §9.1, Exercise 5). Take it on faith that g is differentiable
at almost every point of (a,b).! Then:

(i) At almost every z in (a,b), F and H are differentiable with F'(z) =
f(z)¢'(z) = H'(x). {Hint: §9.3, Exercise 5.}

(ii) If the points of discontinuity of f can be listed in a sequence, and if g
is continuous on [a, b} and the points of (a,b) where g is not differentiable
can be listed in a sequence, then f is RS-integrable with respect to g.
{Hint: Apply §8.5, Exercise 10 to F — H .}

(iii) If there exists a point ¢ in [a,b) such that neither f nor g is right
continuous at c, then f is not RS-integrable with respect to g.2

11.5. Lebesgue-Integrable Functions

Early in the twentieth century, the French mathematician Henri Lebesgue
(18751941}, beginning with his doctoral dissertation, introduced and per-
fected a theory of integration applicable to a class of functions nowadays
called ‘Lebesgue-integrable’.? A summit of the theory is his characteriza-
tion of the class of ‘indefinite integrals’ associated with these functions: it
is precisely the class of absolutely continuous functions.

Setting aside for the moment (as regards this book, forever) his precise
definition of ‘integrability’, which entails a lot of technical machinery,*

1Cf. E. Hewitt and K. Stromberg, Real and abstract analysis [Springer-
Verlag, New York, 1965}, p. 264, (17.12).

2Cf. T. H. Hildebrandt, Introduction to the theory of integration [Academxc
Press, New York, 1963], p. 50, 10.6.

3Cf. H. Lebesgue, Lecons sur l'intégration et la recherche des fonctzons
primitives |[Gauthier-Villars, 2nd edn., Paris, 1928], T. Hawkins, Lebesgue’s
theory of integration: Its origins and development [2nd edn., Chelsea, New
York, 1979)].

4Cf. B. Sz.-Nagy, Introduction to real functions and orthogonal expansions
[Oxford University Press, New York, 1965], Chapter 5.
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Lebesgue gave an astonishingly simple characterization of such functions:
A function f:[a,b] — R is ‘Lebesgue-integrable’ if and only if there exists
an absolutely continuous function F: [a,b] — R such that F'(z) = f(z)
for almost every z in (a,b).®

There is more to the story, as we shall note at the end of the section;
for the present, we take Lebesgue’s characterization as a cue for giving an
alternative, elementary definition of Lebesgue-integrability:

11.5.1. Definition. We shall say that a function f : [a,b] — R is
Lebesgue-integrable if there exists an absolutely continuous function
F : [a,b] - R such that F'(z) = f(z) for almost every z in (e,b)
(briefly, F' = f a.e.). Such a function F is called a primitive for f.
{Caution: It is not enough that F' = f a.e.; we also require that a
primitive be absolutely continuous (cf. Exercise 5).}

If G i8 another primitive for f, then F — G is a constant function
(11.3.4); in particular,

(F - G)(b) = (F - G)(a),

so that F(b) — F(a) = G(b) — G{a). Thus, there is no ambiguity in the
following definition:

11.5.2. Definition. With notations as in the preceding definition, the
number F(b) — F(a) (which is independent of the choice of a particular
primitive F') is called the Lebesgue integral of f from a to b, written

b
/ f=F(b) - F(a).

11.5.3. Example. By Theorem 11.4.6, every Riemann-integrable function
is Lebesgue-integrable and its integral as given by the preceding definition
coincides with its Riemann integral; thus the use of the same symbol [ ab f
in the two contexts is consistent.

11.5.4. Ezample. The function f:[a,b] — R defined by

1 for z rational
f(z) = L
0 for z irrational
is not Riemann-integrable (by either 9.4.3 or 11.4.1), but f is Lebesgue-
integrable with Lebesgue integral 0.
{Proof: If F is any constant function, then F'(z) = 0 = f(z) for
every z in the set of irrationals of (a,b), a.set whose complement in

5The corresponding statement with “Lebesgue” replaced by “Riemann”, and
“absolutely continuous” by “Lipschitz” is false, as noted following 11.2.1.
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[a,b] is negligible (cf. §2.6, Exercise 1 and 11.1.3); since F s absolutely
continuous, f is Lebesgue-integrable and f: f=F®) ~F(a)=0.}

11.5.5. Remark. Let f:[a,b] — R be Lebesgue-integrable and lot F' e
a primitive for f. If a <z < b then the restriction of f to [a,z] in nlwo
Lebesgue-integrable (the restriction of F' to [a,Z] serves as a primitive)
and its Lebesgue integral is F(z) — F(a); stretching the notation (as was
done for the Riemann integral in Definition 9.2.2) we write [ : f for this
integral, and, with the convention [ f =0, we have

F(x)—F(a)=/zf for all z € [a,b].

Thus, every primitive of f differs from the ‘indefinite integral’ function
z— [ f by a constant.

11.5.6. Remark. It can be shown that an absolutely continuous function
F :[a,b] — R has a derivative at almost every z in (a,b).% If .f : [a,b] —
R is then defined by

() F'(z) if it exists
)=
0 otherwise
we have F' = f a.e., consequently f is Lebesgue-integrable and F is

a primitive for f. In view of the preceding remark, it follows that every
absolutely continuous function F has the form

F@)=F@+ [ (@<z<h)

for a suitable Lebesguéintegrable function f.

The price we pay for the ease of the definition of Lebesgue integral given
above is the difficulty in proving its properties. Linearity comes effortlessly
(Exercise 1) and a few other accessible properties are noted in the exercises.
On the other hand, it is a fact that if f is Lebesgue-integrable then so
is |f|, but it is not clear how to prove it via Definition 11.5.1. The situation
is equally bleak as regards the ‘convergence theorems’ of the Lebesgue
theory. For example, if g and f, (n=1,2,3,...) are Lebesgue-integrable
functions on [a,b] such that |f.| < |g| a.e. for every n, and if f:[e,b] —
R is a function such that f.(z) — f(z) for almost every z in [a,b], then

it is known that f is Lebesgue-integrable and that [ : fa — ' f:f (this

6The proof is not easy; cf. Hewitt and Stromberg [op. cit., p. 283, (18.12)],
B. Sz-Nagy [op. cit., p. 94, Theorem, and pp. 108-111, Item 2], or the author’s
article in Paul Halmos: Celebrating 50 years of mathematics [Springer—
Verlag, New York, 1991], p. 267, last paragraph of the Introduction.
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result is known .as the ‘dominated convergence theorem’”); one shudders at
the prospect of inferring this result from Definition 11.5.1.

What we have given here is a painless overview of the ‘answer’ while
avoiding the hard technical considerations that are needed to get there;
the reader who is intrigued by the symmetry and elegance of the Lebesgue
theory will want to go on to overcome its technical challenges.

Exercises

1. If f and g are Lebesgue-integrable functions on [g,b] and c is a
real number, then f+ g and cf are also Lebesgue-integrable and

/:(f+g)=/:f+/:y, /:(Cf)=6/abf-

2. If f:[a,b] R and e < ¢ < b, then f is Lebesgue-integrable
on [a,b] if and only if its restrictions to [a,c] and [c,b] are Lebesgue-

integrable, in which case
b c b
IRRTRAT K
a a [+

(see 11.5.5 for the notations).

3. Let f:[a,b] = R be Lebesgue-integrable and let F' be a primitive
for f,sothat F(z) = F(a)+ [, f forall z in [a,b] (11.5.5). Then:
(i) f20 ae. & F isincreasing.
(ii) f=0 a.e. & F is constant.
(i) f>0 ae. = F is strictly increasing.
(iv) The converse of (iii) is false.®

4. If, for the definition of absolute continuity, we take instead the crite-
rion (b) of §11.2, Exercise 4, then the entire theory of the Lebesgue integral
presented here. rests effectively on one new coneept beyond the preceding
chapters: the concept of negligible set. However, inspection of the proof
of the uniqueness theorem (especially 11.3.2 and 11.3.3) shows that it is
necessary to prove that (i) the functions of the form F = G — H, where
G and H are continuous, strictly increasing and negligent, are themselves
negligent, and that (ii) the set of all such functions F is closed under sums
and scalar multiples. The proofs of (i) and (ii) are elementary but tricky.®

7Cf. Hewitt and Stromberg [0p. cit., p. 172, (12.24)].

8Cf. H.L. Royden, Real analysis [3rd edn., Macmillan, New York, 1988],
p- 111, Exer. 19.

9Cf. the author’s earlier-cited article in Paul Halmos: Celebrating 50 years of
mathematics, p. 283, Corollary 1, and his article “Why there is no ‘Fundamental
theorem of calculus’ for the Riemann integral” [Expositiones Mathematicae 11
(1993), 271-279].
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5. The constant function 0 on [a,b] is Lebesgue-integrablo and Its prim-
itives are the constant functions. However, there exists!" a nonconstant,
continuous increasing function F : [a,b] — R such that F/(r) = O for
almost every z; such a function cannot be absolutely continuous, or aven
negligent (cf. § 11.2, part (c) of Exercise 4).

6. Let f : [a,b] — R be Riemann-integrable, g : [a,b) — R an
absolutely continuous increasing function, and h the function on [a,b)
defined by

f(z)g'(z) if g is differentiable at z,
ha) = T . -
0 otherwise.

Then:
(i) f is RS-mtegrable with respect to g.

(i) A is Lebesgue-integrable and f h = f fdg; stretchmg the nota-

tions a little, we can express this formula as f fdg= f fg' .12
{Hint: Contemplate §11.4, Exercise 3; §11.2, Exercise 7 and the unique-
ness theorem of §11.3.}

10Cf. Hewitt and Stromberg [op. cit., p. 113, (8.28)].

Her BE:W. Hobson, The theory of functzons of a real variable and the
theory of Fourier series. Vol. 1, p. 545 [3rd edn., Cambridge University Press,
1927; reprinted by Dover, New York 1957].

12¢f, R. L. Jeffery, The theory of functions of a real variable, p. 206, The-
orem 8.5 [2nd edn., University of Toronto Press, 1953].
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A.l. Proofs, Logical Shorthand

A.1.1. A proposition is a statement which is either true or false, but
not both. {Example of a proposition: “The integer 12,537,968 is divisi-
ble by 17.” (Is it true?)} In the following discussion, letters P,Q,R,...
represent propositions.

If P is a proposition, then the negation of P is the proposition,
denoted ~ P (or P’), that is true when P is false, and false when P
is true. {Example: If P is the proposition “Every integer is > 0” then
~ P is the proposition “Some integer is < 0”.}

A.1.2. Some useful shorthand for expressing propositions and relations
between them:

SYMBOL MEANING EXAMPLES
& and z>0&z2<3
(also written 0 <z < 3)
or or >0 or <0
= implies P=Q (if P istrue

then Q must be true)
n odd = n+41 even
& if and only if P & Q means that both
P=Q and Q= P;
(z20&z<0) & z=0 .

v for all z2 >0 (V integers z)
3 there exists
dz3 22 =4
=) such that
3! there exists one Nz > 2x=6

and only one

For P & Q we may also write P = Q (especially if P and Q
themselves involve implication symbols).

N
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A.1.3. A theorem typically consists of an implication H = C; one
calls H the hypothesis of the theorem, C its conclusion. A proof of
the theorem consists in verifying that if the hypothesis is true then the
conclusion must also be true. The argument is sometimes broken down
into a chain of several implications that are easier to verify, the conclusion
of each being the hypothesis of the next (if there is a next); for example,

H=P;, =P,=P;=C.

The mechanism for inferring H = C from such a chain is the

Law of syllogism: If P=Q and Q=R then P=R.

Some other logical maneuvers permitted in proofs:

Law of the excluded middle: P or ~P (if P is not true then its
negation ~ P must be true).

Law of contradiction: P& (~ P) is false (P and ~ P can’t be
simultaneously true). .

De Morgan’s laws: ~ (P&Q) = (~ P) or (~ Q). That is, to say
that P and Q are not both true i8 to say that at least one of them
must be false. Similarly, ~ (P or Q) = (~ P)&(~ Q). {How would you
express it with words?}

A.14. To prove P = Q, it is the same to prove ~ Q = ~ P (called
the contrapositive form of P = Q). {For example, to prove that, for
integers z,y,

z20&y>0 = zy 20,

it is the same to prove that 7y <0 = z<0ory<0.}

A.1.5. A proof of P = Q by contradiction proceeds as follows. We
are given that P is true and we are to show that Q is true. We assume
to the contrary that Q is false. We now have two hypotheses: P and
~ Q (or one ‘compound’ hypothesis P& (~ Q)). Using authorized logi-
cal maneuvers (like those above), we produce a proposition R such that
both R and ~ R are true, which is absurd. The premise P& (~ Q) is
therefore untenable; in other words, if P is true then ~ Q must be false
(i.e., Q must be true), which is what we wanted to show.

Proofs involving the contrapositive form occur frequently; proofs by con-
tradiction are relatively rare (many proofs containing the phrase “assume
to the contrary” turn out, on inspection, to be proofs in contrapositive
form).

A.1.6. Finally, we mention proofs by induction. For each positive
integer n, we are given a proposition P,. We wish to show that P, is
true for every positive integer n. This is accomplished in two steps:

(1) verify that P; is true;

(2) verify that if Py istrue then Pyyy istrue (i.e., verify the implication
P = Piyr ).
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Step-(2) is called the induction step; the hypothesxs Pk of the induc-
tion step is called the induction hypothesis.

. For example, let P, be the proposition assertmg tha.t the sum of the
first n positive integers is given by the formula 1+ . + n= En(n +1).
The. truth of Pj . is established by the equality 1.= -5 1-2. In the
induction step, we assume that 1+...+k = 1k:(lc + 1) (the induction
hypothesis) and, on the basis of this assumption, we show (by elementary
algebra) that 1+ ...+k+(k+1)=1(k+1)(k+2).

A.2. Set Notations

A'2 1. The expression. € A means that z is an element of the set
A;itisread “z belongsto A”. Its negation, written z ¢ A, means that
z is not an element of A. : . . .

A22. {a,b,c,...} denotes the set whose elements arée a,bc,.... In
particular, {a} is the set whose only element is a; such sets are calle
singletons '

A.2.3. Forsets A and B 'A C B means that every element of A is
an element of B, that is,

€A = z€B;

we then say that A is contained in B (or that A is a subset of B).
The relation A C B is also written B D> A (read “B contains A”, or
“B is a superset of A”). These are four ways of saying the same thing:
z€A = ze€B. : . :

A24 ForsetsAandB A = B means that ACB&BCA that
is,
' T€A & zeB

(the’ elements of A are precisely the elements of B).

A25 {n €Z: —2<n<5} denotes the set of all integers n
such that —2 < n < 5; explicitly, it is the subset {-2,-1,0,1,2,3,4}
of Z. More generally, if X is a set and if, for ea.ch z € X, we a.re given
a proposmon P(z), then

uex P()}

denotes the set of all elements z of X for which the proposmon P(z) is
true. This is a-.common way of forming subsets of a set . X (examples are
given below). When there is a prior understanding as to the “universal set”
X from which the elements are drawn, we can omit it from the notation
and write simply {r: P(z)}. For example, if it is understood that we are
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talking about real numbers (not just integers), then {ir: =2 < < B} In
an interval of the real line.

A.2.6. @ denotes the empty set, that s, the set with no olemonta
(i-e., the set for which the statement x € @ In alwnyn falnn),

A.2.7; Let A and B be subsets of a sot X. The unfon of A and B
is the set
AUB={zeX: z€A or x€B}.

The intersection of A and B is the set
AnNB={zeX: zcA&z€eB}.
The complement of A in X is the set
AN={zeX: z¢A},
also written CA or X — A. The difference ‘A minus B’ is the set
A-B={zeX: r€A&z¢B};

thus A—B=AnB'.
Some properties of these notations:

(1) AUB=BUA, (AUB)UC=AU(BUC)

(2) AnNB=BnA, (AnNB)nC=ANn(BNC)

3) Aﬂ(BUC)—(AﬂB)U(AﬂC)

4) AuBNC)=(AUB)N(AUC)

(5) AUA' =X, AnA’'=2, (A’)’

(6)ACB®A’3B’ .

(7) (AUBY =A'NB', (ANBY = A’UB’ ,

(8) ACB & ANB=A & AUB=B & A-B= 2.

A28. If X is a set, then the power set of X, written P(X), is the
set whose elements are the subsets A of X; thus

AeP(X) & ACX.

For example, {—2,-1,0,1,2,3,4} € P(Z). {If X is a finite set with n
elements, then P(X) has 2" elements (in forming a subset of X there
are two choices for each point: include it or exclude it); whence the term
‘power set’.} . -

A29. If § is a set of subsets of a set X—in other words, if S C
P(X) —the intersection of S is the set of elements common to the sets
in. §, written . S

ﬂS={m€X: reA forall AcS};
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the union of S is the set of elementsof X that belong to some setin S,
written .
US=={:E€X:,2:EA forsome A€ S}.

A.2.10. Forsets X and Y, the cartesian product of X and Y (in
that order), written X x Y (verbalized ‘X cross Y’), is the set of all
ordered pairs (z,y) with z € X and y € Y ; concisely,

XxY={(zy): z€X,yeY}.
Equality of ordered pairs means ‘coordinatewise equaﬁty’:
(z,9) = (z’,g'j sr=r&ky=y.
For example, if X = {1,2} and Y ={2,4,5} then
XxY={(1,2), (,4), (1,5), (2,2), (2,4), (2,6)}.

If X and Y are finite sets with m and n elements, respectively, then
X xY has mn elements.

A.3. Functions

A3l If X and Y are sets, a function from X to Y is arule f
that assigns to each element = of X a single element of Y , called the
value of f at z and denoted f(z).

X Y

. This is expressed compactly by the notation f:X — Y. The set X is
called the initial set (or domain) of f, and Y is called the final set
of f. The term mapping is a synonym for “function” (as are, depending
on the context, the terms “transformation” and “operator”).
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The effect of a function f:X — Y outi also be exprosed by
frzm fl@) (zeX)
(f sends z to f(z)),or
. zef(@) (zeX)

(z goes to f(z)). When f is given by a formula, we can even dispense
with the letter f; for example, we can speak of the function Z — &
defined by n > n?.

A.3.2. For any set X the function X — X defined by z +~ z is called
the identity function on X, denoted idx : X — X. If A is a subset
of X, the function A — X defined by z — z is called the insertion
mapping of A into- X, written ia : A —X.

A33. If f:X—Y and g:Y — Z are functions (g picks up where
[ leaves off) the composite function go f : X — Z is defined by the
formula .
(gof)(a:) g(f(a:)) for all z€X;
so to speak, the points of X make the trip to Z by ‘transferring’ at Y:

z = f(z) - g(f(2)) .

A34.If f:X —>Y isafunctionand A isasubsetof X, thefunctlon
A —Y defined by 3
a~ f(a) (a€A)

is called the restriction of f to A, denoted
fIA:A-Y.
Note that f]A = fo 1A, where 4 : A — X is the insertion ma.ppmg
(A.3.2, A.3.3).
A.3.5. The set of all values of a function f:X — Y is a subset of Y,
namely

{f(): zeX}={yeY: y=f(z) for some z € X};

it is called the range (or image) of f. For example, the range of the
function f:Z — Z defined by f(n) = |n| is the set N of nonnegative
integers. -

A.3.6. A function f: X — Y is said to be surjective (or to be a
mapping of X onto Y ) if every element of Y is the image of at least one
element of X -so to speak, the function ‘uses up’ all of the final set. This is
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merely a matter of notation: the function Z — Z of A.3.5 is not surjective,
but the function Z — N defined by the same formula is surjective. In
general, a function f:X — Y can be converted into a surjective function
by replacing Y by the range of f (so to speak, by throwing away the
irrelevant part of the final set). This is possible in theory but that doesn’t
mean we can always do it. {What is the range of the polynomial function
p: R — R defined by the formula p(z) = 2% — 325 + 22* + 52 — 77}

A.3.7. A function f:X — Y is said to be injective (or to be a one-
one mapping) if different elements of X get sent to different elements

of Y, that is,
g#2 = f)# f(@);

expressed .in contrapositive form,
f@)=f@) = z=7".

If f is not injective, it can’t be made injective by a cosmetic change
(as in A.3.6); some surgery on the domain is required. For example, the
function Z — Z defined by n — n? is not injective, but the function
N — Z defined by the same formula is injective. {A fancier example: The
function R — R defined by z + sinz is not injective, but the function
[-m/2,7/2] = R defined by the same formula is injective.}

A.3.8. Afunction f:X — Y issaid to be bijective (or to be a one-to-
one correspondence) if it is both injective and surjective. For example,
a bijective mapping {1,2,3} — {7,8,9} is defined by the assignments
18, 27, 3—9. {Another example: The function [-m/2,7/2] —
[-1,1] defined by z+ sinz is bijective.}

A.3.9. An injective (surjeétive, bijective) function is called an injection
(surjection, bijection).

A3.10 If f:X —Y is a bijection, then for each y € Y there exists a
unique z € X such that y = f(z) (existence by surjectivity, uniqueness
by injectivity). The assignment y — z produces a function Y — X,
called the inverse of f and denoted :

iy =X,
If y=f(z) then f;i(y) =z . The formulas
@)=z, f(f'@W)=y (zeX yeY)

explain the relation between f and f~!; each undoes what the other
does. In the notations of A.3.2 and A.3.3,

f_1°f.=idx, f°f"1=idv-



§A.4. Integers 227

{Example: For the bijection [—7/2,7/2] — [-1,1] defined by z s sinz,
~ the inverse function [-1,1] — [-7/2,7/2] is called the Arcsine function.}
Note that f~! is also bijective and (f~!)~! = f.

A.4. Integers

The point of departure in this section (a supplement to Chapter 1) is.the
definition of the field R of real numbers (1.4.2); the objective is to give an
unambiguous definition of the set of ‘positive integers’ and honest proofs
of its key properties (cf. the remarks in 1.4.4).

The ‘row of dominoes’ image of the set of positive integers is as follows:
the set contains 1 (a first domino); the set contains n + 1 whenever it
contains. n (pushing over a domino causes the next one—there is a next
one—to go over); the set contains nothing else (pushing over 1 causes them
all to go down). The following definition embodies in formal language
this idea of a smallest possible set that contains 1 and is closed under
addition of 1:

A4.1. Definition. There are sets S C R such that (a) 1 € S, and
(b) z€S=>2+1€S (for example, R itself has these properties).
Let S be the set of all such subsets S of R, and define P to be the
intersection of all the setsin S:

P=()S={z€R: z€S forall SeS}.

The elements of P are called positive integers; if n € P we write
n’ =n+1 and call n’ the successor of n. The reader who has seen
Peano’s axioms for the positive integers will recognize them in the following
theorem:

A.4.2. Theorem. The set P of positive mtegers has the following prop-
erties:

(i) 1eP;

() neP = n' €P;

(ii)if 1eSCP and ne€S = n' €8S, then S =P (Principle of
mathematical induction);

(iv) if mneP and m' =n', then m=n;

(v)forall neP, 1#£n'.

Proof. (i), (ii) Every set in S (notations as in the preceding definition)
has these properties, therefore so does their intersection.

(iii) The assumption is that S C P and S € S; an intersection is
contained in every intersectee, so P C S.

(iv) If m’ =n’, thatis, m+1=mn+1, then (adding —1 to both sides)
m=n.
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(v) We first observe that n > 1 for every n € P. FOl‘,lf S={ne
P: n>1},itisclear that 1€ S and that n €S = n' €S, therefore

S="P by (ii).
Inpa.rtlcular for every n € P we have n>1>0, therefore n—-1=
n>0,thus ' #1. ¢

From the proof of the theorem we extract the following useful fact:
A.4.3. Theorem. For every n€ P we have n>1.

Property (v) says that 1 is not the successor of a positive integer; every
other positive integer is:

A.4.4. Theorem. If k€ P and k#1 then k=n' for some n€P.

Proof Let S={1}U{n’: n€P}. Wehave 1€ S and it is clear that
n€S = n' €S, therefore S =P by the principle of induction (property
(iii) of A.4.2). In other words,

P={1}u{n': neP},

whence the assertion of the theorem. {

The next two theorems establish that P is closed under addition and
multiplication (not at all obvious from the definition of P!).

A.4.5. Theorem. If m,n€P then m+neP.
Proof Wehave m+1=m'/€P forall meP. Let

S={neP: m+neP forall meP}.
By the preceding remark, 1€ S. If n € S then, for every meP,
m+n'=m+n+l=m'+neP

(because m’ € P and n € S), therefore n’ € S. By the principle of
induction, S =P, whence the assertion of the theorem. {
A.4.6. Theorem. If m,n € P then mneP.

Proof. Let :
S={neP: mneP foral meP}.

Obviously 1€8. If n€ S then, for every meP,
mn' =m(n+1)=mn+m,

where mn € P (because n € S), therefore mn’ € P by A.4.5. Thus
S =P and the theorem is proved. §

A.4.7. Definition. We write Z = {m —n: m,n € P} and call the
elements of Z integers. :
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In particular, 0 =1~-1€ Z;foradl n¢ P, n=n'- 1 & Z, thun
PCZ;from —(m—n)=n-m woneethat Z ‘containe negatives'; and
it is easy to see from A.4.5 and A.4.6 that Z in clowed under addition and
multiplication. The positive integers (1.0., the clements of P) are precisely
the integers (i.e., elements of Z) that are positive for the order of R:

A.48. Theorem. P={z€Z: z>0}.

Proof. If n€P thenn€Z and n >0 (A.4.3); thus P is contalned
in the set on the right.. To prove the reverse inclusion, consider the set

S={neP: meP&m-n>0) > m-neP},

we have to show that S=P.

If meP and m—1=x>0,then m=z+1>1;by Add, m=Fk
forsome k€ P,thus 2+ 1=m =k + 1, whence z = k € P, that is,
m —1 € P. This proves that 1€ 8. '

Suppose n€S.If meP and m —n' =z > 0, then

m=n+z>n" >n>1,
so m =k’ for some k € P; then
k-n=k'-n=m-n"=z>0,
therefore k —n € P (because n € S), in other words, m — n’ € P. This
showsthat n€S = n' €8S, whence S=P. §
At this point we call on the completeness axiom:

A.4.9. Theorem. P is not bounded above in R.

Proof. Assume to the contrary that P is bounded above and let M =
supP (1.4.1). In particular, n+1 < M forall n € P,so M -1 is
also an upper bound for P, whence M < M —1, leading to the absurdity
1<0.¢

A.4.10. Theorem. (Well-ordering property) If S is a nonempty subset
of P, then S has a smallest element.

Proof. Assume to the contrary that S has no smallest element. Let NV
be any element of S; a contradiction to A.4.9 will be obtained by showing
that k< N forevery k€ P.

It will suffice to show that for every k € P, there exists an n € S such
that N-n>k (forthen N>n+k>k). Let

T={k€P: N-n2>k forsome n€S};

the claim is that T =P and the proof is by induction.
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By assumption S has no smallest element, so there is an n.€ S with
n < N, therefore N-n¢e€P (A48)andso N-n21 (A43) This
shows that 1€ T. :

Suppose k € T. Choose n € S with N -n>k. By assumptlon, there
isan m €S with m<n, whence n—m€&P, n—m2>1; then

N-m=(N-n+n-m>k+1=F,

which shows that k&’ € T. This completes the proof that T = P and
achieves the contradiction. ¢

A.4.11. Remarks. Peano’s axioms for the positive integers! postulate
the existence of a set P with an element 1 and a mapping n — n’ sat-
isfying the conditions (i)~(v) of A.4.2. One then has the (arduous) task
of defining addition and multiplication and proving that they have the
desired propertxes (assocxa.t1v1ty, commutativity, dlstrlbutlve law, cancella-
tion, etc.).?

In effect, what we have shown in this section is that if one postula.tes
the existence of a complete ordered field R (a rather high-handed thing
to do, actually ...) then the integers come free of charge. This is not news
(the reals can be constructed from the positive integers?) but it is a wel-
come simplification as long as the reals are going to be taken axiomatically
anyway.

! Giuseppe Peano (1858-1932).
2Cf. E. Landau, Foundations of analysis [Chelsea, New York, 1951).
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