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Preface

4

Some of the central questions of mathematical logic are: What is a
mathematical proof? How can proofs be justified? Are there limitations
to provability? To what extent can machines carry out mathematical
proofs?

Only in this century has there been success in obtaining substantial
and satisfactory answers, the most pleasing of which is given by Godel’s
completeness theorem: It is possible to exhibit (in the framework of
first-order languages) a simple list of inference rules which suffices to
carry out all mathematical proofs. ““Negative™ results, however, appear
in Godel’s incompleteness theorems. They show, for example, that it is
impossible to prove all true statements of arithmetic, and thus they reveal
principal limitations of the axiomatic method.

This book begins with an introduction to first-order logic and a proof of
Godel’s completeness theorem. There follows a short digression into model
theory which shows that first-order languages have some deficiencies in
expressive power. For example, they do not allow the formulation of
an adequate axiom system for arithmetic or analysis. On the other hand,
this difficulty can be overcome—even in the framework of first-order
logic—by developing mathematics in set-theoretic terms. We explain the
prerequisites from set theory that are necessary for this purpose and then
treat the subtle relation between logic and set theory in a thorough manner.

Godel’s incompleteness theorems are presented in connection with
several related results (such as Trahtenbrot’s theorem) which all exemplify
the limitations of machine oriented proof methods. The notions of com-
putability theory that are relevant to this discussion are given in detail. The
concept of computability is made precise by means of a simple programming
language.



vi Preface

The development of mathematics in the framework of first-order logic (as
indicated above) makes use of set-theoretic notions to an extent far beyond
that of mathematical practice. As an alternative one can consider logical
systems with more expressive power. We introduce some of these systems,
such as second-order and infinitary logics. In each of these cases we point
out deficiencies contrasting first-order logic. Finally, this empirical fact is
confirmed by Lindstrom’s theorems, which show that there is no logical
system that extends first-order logic and at the same time shares all its
advantages.

The book does not require special mathematical knowledge ; however, it
presupposes an acquaintance with mathematical reasoning as acquired, for
example, in the first year of a mathematics or computer science curriculum.
Exercises enable the reader to test and deepen his understanding of the text.
The references in the bibliography point out essays of historical importance,
further investigations, and related fields.

The original edition of the book appeared in 1978 under the title
“Einfiihrung in die mathematische Logik.” Some sections have been revised
for the present translation; furthermore, some exercises have been added.
We thank Dr. J. Ward for his assistance in preparing the final English
text. Further thanks go to Springer-Verlag for their friendly cooperation.

Freiburg and Aachen H.-D. EBBINGHAUS
November 1983 J. FLuMm
W. THOMAS
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CHAPTER 1
Introduction

Towards the end of the nineteenth century mathematical logic evolved into
a subject of its own. It was the works of Boole, Frege, Russell, and Hilbert,
among others,! that contributed to its rapid development. Various elements
of the subject can already be found in traditional logic, for example, in the
works of Aristotle or Leibniz. However, while traditional logic can be
considered as part of philosophy, mathematical logic is more closely related
to mathematics. Some aspects of this relation are:

(1) Motivation and Goals. Investigations in mathematical logic arose mainly
from questions concerning the foundations of mathematics. For example,
Frege intended to base mathematics on logical and set-theoretical principles.
Russell tried to eliminate contradictions that arose in Frege’s system.
Hilbert’s goal was to show that “the generally accepted methods of mathe-
matics taken as a whole do not lead to a contradiction” (this is known as
Hilbert’s program).

(2) Methods. In mathematical logic the methods used are primarily
mathematical. This is exemplified by the way in which new concepts are
formed, definitions are given, and arguments are conducted.

(3) Applications in Mathematics. The methods and results obtained in
mathematical logic are not only useful for treating foundational problems;
they also increase the stock of tools available in mathematics itself. There are
applications in many areas of mathematics, such as algebra and topology.

! Aristotle (384-322 BC.), G. W. Leibniz (1646-1716), G. Boole (1815-1864), G. Frege (1848-
1925), D. Hilbert (1862-1943), B. Russell (1872-1970).
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However, these mathematical features do not result in mathematical
logic being of interest solely to mathematicians. For example, the mathe-
matical approach leads to a clarification of concepts and problems that also
are of importance in traditional logic and in other fields, such as epistemology
or the philosophy of science. In this sense the restriction to mathematical
methods turns out to be very fruitful.

In mathematical logic, as in traditional logic, deductions and proofs are
central objects of investigation. However, it is the methods of deduction
and the types of argument as used in mathematical proofs which are con-
sidered in mathematical logic (cf. (1)). In the investigations themselves,
mathematical methods are applied (cf. (2)). This close relationship between
the subject and the method of investigation, particularly in the discussion
of foundational problems, may create the impression that we are in danger
of becoming trapped in a vicious circle. We shall not be able to discuss this
problem in detail until Chapter VII, and we ask the reader who is concerned
about it to bear with us until then.

§1. An Example from Group Theory

In this and the next section we present two simple mathematical proofs.
They serve as illustrations of some of the methods of proof as used by
mathematicians. Guided by these examples we raise some questions which
lead us to the main topics of the book.

We begin with the proof of a theorem from group theory. We therefore
require the axioms of group theory, which we now state. We use o to denote
the group multiplication and e to denote the identity element. The axioms
may then be formulated as follows:

(G1) Forallx, y,z: (xoy)oz = xo0(yo2).
(G2) Forallx: xoe = x.
(G3) Forevery x thereisa y such that x-y = e.

A group is a triple (G, %, %) which satisfies (G1), (G2), and (G3). Here G
is a set, ¢ is an element of G, and - is a binary function on G, i.e., a function
defined on all pairs of elements from G, the values of which are also elements
of G. The variables x, y, z range over elements of G, o refers to ¢, and e
refers to %,

As an example of a group we mention the additive group of reals (R, +, 0),
where R is the set of real numbers, + is the usual addition, and 0 is the real
number zero. On the other hand, (R, -, 1) is not a group (where - is the usual
multiplication). For example, the real number 0 violates axiom (G3): there
is no real number r such that 0-r = 1.

We call triples such as (R, +,0) or (R, -, 1) structures. In Chapter 111 we
shall give an exact definition of the notion of structure.

§2. An Example from the Theory of Equivalence Relations 5

Now we prove the following simple theorem from group theory:

1.1 Theorem (Existence of a Left Inverse). For every x there is a y such that
yox =e.

PrOOF. Let x be chosen arbitrarily. From (G3) we know that, for a suitable y,

€8] Xoy=e.
Again from (G3) we get, for this y, an element z such that
2 yoz =e.

We can now argue as follows:

yox =(yex)ce (by (G2))
=(yex)o(yoz) (from(2))
=yo(xo(yoz)) (by(Gl)
=yo((xoy)oz) (by(Gl)

= yo(eoz) (from (1))

=(yece)ez (by (G1))

=yez (by (G2))

=e (from (2)).
Since x was arbitrary, we conclude that for every x there is a y such that
yex =e. D

The proof shows that in every structure where (G1), (G2), and (G3) are
satisfied, i.e., in every group, the theorem on the existence of a left inverse
holds. A mathematician would also describe this situation by saying that the
theorem on the existence of a left inverse follows from, or is a consequence of
the axioms of group theory.

§2. An Example from the Theory of
Equivalence Relations

The theory of equivalence relations is based on the following three axioms
(xRy is to be read “x is equivalent to y”):

(E1) For all x: xRx.
(E2) For all x and y: If xRy, then yRx.
(E3) For all x, y, z: If xRy and yRz, then xRz.

Let A be a nonempty set, and let R* be a binary relation on 4, ie.,
R = A x A. For (a, b) € R* we also write aR“b. The pair (A4, R*) is another
example of a structure. We call R* an equivalence relation on A, and the
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structure (A, R*) an equivalence structure if (E1), (E2), and (E3) are satisfied.

For example, (Z, Rs) is an equivalence structure, where Z is the set of integers
and

R = {(a,b)|a,be Z and b — ais divisible by 5}.

On the other hand, the binary relation R,, on Z, which holds between two
integers if they are relatively prime, is not an equivalence relation over Z.
For example, 5 and 7 are relatively prime, and 7 and 15 are relatively prime,
but 5 and 15 are not relatively prime; thus (E3) does not hold for R, .

We now prove a simple theorem about equivalence relations.

2.1 Theorem. If x and y are both equivalent to a third element, they are
equivalent to the same elements. More formally, for all x and y, if there is a u
such that xRu and yRu, then for all z, xRz if and only if yRz.

PROOF. Let x and y be given arbitrarily; suppose that for some u
(1 xRu and yRu.

From (E2) we then obtain

) uRx and uRy.

From xRu and uRy we deduce, using (E3),

(3) xRy,

and from yRu and uRx we likewise get (using (E3))

4) YRx.
Now let z be chosen arbitrarily. If
(5) xRz

then, using (E3), we obtain from (4) and (5)

YRz.
On the other hand, if
(6) YRz
then, using (E3), we get from (3) and (6)
xRz.
Thus the claim is proved for all z. O

As in the previous example, this proof shows that every structure (of the
form (A4, R*)) which satisfies the axioms (E1), (E2), and (E3), also satisfies
Theorem 2.1, i.e., that 2.1 follows from (E1), (E2), and (E3).

wra
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§3. A Preliminary Analysis

We sketch some aspects which the two examples just given have in common.
In each case one starts from a system @ of propositions which is taken to be a
system of axioms for the theory in question (group theory, theory of equiv-
alence relations). The mathematician is interested in finding the propositions
which follow from ®, where a proposition ¥ is said to follow from @ if ¥
holds in every structure which satisfies all propositions in ®. A proof of ¥
from a system ® of axioms shows that y follows from ®.

When we think about the scope of methods of mathematical proof, we
are led to ask about the converse: y

(*) Is every proposition y which follows from ® also provable from
®?

For example, is every proposition which holds in all groups also provable
from the group axioms (G1), (G2), and (G3)?

The material developed in Chapters II through V and in Chapter VII
yields an essentially positive answer to (*). Clearly it is necessary to make the
concepts “proposition”, “follows from”, and “provable”, which occur in
(%), more precise. We sketch briefly how we shall do this.

(1) The Concept “Proposition”. Normally the mathematician uses his
everyday language (e.g., English or German) to formulate his propositions.
But since sentences in everyday language are not, in general, completely
unambiguous in their meaning and structure, we cannot specify them by
precise definitions. For this reason we shall introduce a formal language L
which reflects features of mathematical statements. Like programming
languages used today, L will be formed according to fixed rules: Starting
with a set of symbols (an “alphabet ™), we obtain so-called formulas as finite
symbol strings built up in a standard way. These formulas correspond to
propositions expressed in everyday language. For example, the symbols of
L will include V (to be read “for all”), A (“and”), — (“if...then”), =
(“equal”), and variables like x, y, and z. Formulas of L will be expressions
like

Vx x = x, x =y, X =z,
and
VxVyVz{(x =y Ay=2z)>x = 2)
Although the expressive power of L may at first appear to be limited, we
shall later see that many mathematical propositions can be formulated in L.

We shall even see that L is in principle sufficient for all of mathematics. The
definition of L will be given in Chapter IL
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(2) The Concept “Follows From” (the Consequence Relation). Axioms
(G1)~(G3) of group theory obtain a meaning when interpreted in structures
of the form (G, <%, €%). In an analogous way we can define the general notion
of an L-formula holding in a structure. This enables us (in Chapter III) to
define the consequence relation: ¥ follows from (is a consequence of) @ if
and only if 4 holds in every structure where all formulas of ® hold.

(3) The Concept “Proof ”. A mathematical proof of a proposition y from
a system ® of axioms consists of a series of inferences which proceeds from
axioms of @ or propositions that have already been proved to new proposi-
tions, and which finally ends with .. At each step of a proof the mathematician
writes something like “From ... and one obtains directly that ”,
and he expects it to be clear to anyone that the validity of ... and of
entails the validity of .

An analysis of examples shows that the grounds for accepting such
inferences are often closely related to the meaning of connectives, such as
“and”, “or”, or “if-then”, and quantifiers, “for all” or “there exists”, which
occur there. For example, this is the case in the first step of the proof of 1.1,
where we deduce from “ for all x there is a y such that x o y = ¢” that for the
given x there is a y such that x o y = e. Or consider the step from (1) and (2)
to (3) in the proof of 2.1, where from the proposition “xRu and yRu” we
infer the left member of the conjunction, “xRu”, and from “uRx and uRy”
we infer the right member, “uRy”, and then using (E3) we conclude (3).

The formal character of the language L makes it possible to represent these
inferences as formal operations on symbol strings (the L-formulas). Thus,
the inference of “xRu” from “xRu and yRu” mentioned above corresponds
to the passage from the L-formula (xRu A yRu) to xRu. We can view this
as an application of the following rule:

(+) Itis permissible to pass from an L-formula of the form (¢ A ¥)
to the L-formula ¢.

In Chapter IV we shall give a finite system S of rules which, like (+), corre-
spond to elementary inference steps the mathematician uses in his proofs. A
Jormal proof of the L-formula ¢ from the L-formulas in ® (the “axioms?)
consists then (by definition) of a sequence of formulas in L which ends with
¥, and in which each L-formula is obtained by application of a rule from S
to the axioms or to preceding formulas in the sequence.

Having introduced the precise notions, one can convince oneself by
examples that mathematical proofs can be imitated by formal proofs in L.
Moreover, in Chapter V we shall return to the question () and answer it
positively, showing that if a formula ¥ follows from a set ® of formulas, then
there is a proof of Y from ®, even a formal proof. This is the content of the
so-called Gadel completeness theorem.

§4. Preview 9
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Godel’s completeness theorem forms a bridge between the notion of proof,
which is formal in character, and the notion of consequence, which refers
to the meaning in structures. In Chapter VI we shall show how this connec-
tion can be used in algebraic investigations.

Once a formal language and an exact notion of proof have been introduced,
we have a precise framework for mathematical investigations concerning,
for instance, the consistency of mathematics or a justification of rules of
inference used in mathematics (Chapters VII and X).

Finally, the formalization of the notion of proof creates the possibility of
using a computer to carry out or check proofs. In Chapter X we shall discuss
the range and the limitations of such machine-oriented methods.

In the formulas of L the variables refer to the elements of a structure, for
example, to the elements of a group or the elements of an equivalence
structure. In a given structure we often call elements of the domain A first-
order objects, while subsets of 4 are called second-order objects. Since L
only has variables for first-order objects (and thus expressions such as
“y¥x” and “3Ix” apply only to the elements of a structure), we call L a first-
order language.

Unlike L, the so-called second-order language also has variables which
range over subsets of the domain of a structure. Thus a proposition about a
given group which begins “For all subgroups. ..” can be directly formulated
in the second-order language. We shall investigate this language and others
in Chapter 1X. In Chapter XII we shall be able to show that no language with
more expressive power than L enjoys both an adequate formal concept of
proof and other useful properties of L. From this point of view L is a “best-
possible” language, and so we succeed in justifying the dominant réle which
the first-order language plays in mathematical logic.



CHAPTER 1I
Syntax of First-Order Languages

In this chapter we introduce the first-order languages. They obey simple,
clear formation rules. In later chapters we shall discuss whether and to what
extent all mathematical propositions can be formalized in such languages.

§1. Alphabets

By an alphabet A we mean a nonempty set of symbols. Examples of alphabets
arethesets A, = {0,1,2,...,9}, A, = {a,b,c,..., x, y, z} (the alphabet of
lower-case letters), Ay = {o, [, a,d, x, f,), (}, and A, = {co, ¢y, C2,...}.

We call finite sequences of symbols from an alphabet A strings or words
over A. A* denotes the set of all strings over A. The length of a string { € A*
is the number of symbols, counting repetitions, occurring in {. The empty
string is also considered to be a word over A. It is denoted by [J, and its
length is zero.

Examples of strings over A, are

softly, xdbxaz.

Examples of strings over A, are

ff(x)dx, ijfao.

Suppose A = {|, ||}, that is, A consists of the symbols! a, := | and a, := |.
Then the string || over A can be read three ways: as a,a,a,, as a,a,, and as

! Here we write “a, == |” instead of “a, = |” in order to make it clear that a, is defined by the
right-hand side of the equation.

§l. Alphabets 11

a,a,. In the sequel we shall allow only those alphabets A where any string
over A can be read in exactly one way. The alphabets A, ..., A, given above
satisfy this condition.

We now turn to questions concerning the number of strings over a given
alphabet.

We call a set M countable if it is not finite and if there is a surjective map
o of the set of natural numbers N = {0, 1, 2, ...} onto M. We can then
represent M as {a(n)|n € N} or, if we write the arguments as indices, as
{a,|n e N}. A set M is called at most countable if it is finite or countable.

1.1 Lemma. For a nonempty set M the following are equivalent:

(a) M is at most countable.
(b) There is a surjective map a: N — M.
(c) There is an injective map f: M — N.

PROOF.Z We shall prove (b) from (a), (c) from (b), and (a) from (c).

(b) from (a): Let M be at most countable. If M is countable (b) holds by
definition. For finite M, say M = {aq, ..., a,} (M is nonempty), we define
o: N - M by

. a; fo<i<n,
oi) == .
a, otherwise.

o is clearly surjective.
(¢) from (b): Let a: N — M be surjective. We define an injective map
B: M — N by setting, forae M,

B(a) := the least i such that (i) = a.

(a) from (c): Let B: M — N be injective and suppose M is not finite. We
must show that M is countable. To do this we define a surjective map
a: N — M inductively as follows:

o(0) == the a € M with the smallest image under §in N,
a(n + 1) :=the a € M with the smallest image under § greater

than f(a(0)), ..., B(a(n)).

Since the images under § are not bounded in N, « is defined for all ne N,
and clearly every a € M belongs to the image of a. O

Every subset of an at most countable set is at most countable. If M, and
M, are at most countable, then so is M, U M,. The set R of real numbers
is neither finite nor countable: it is uncountable.

2 The goal of our investigations is, among other things, a discussion of the notion of proof.
Therefore the reader may be surprised that we use proofs before we have made precise what a
mathematical proof is. As already mentioned in Chapter I, we shall return to this apparent
circularity in Chapter VIL
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We shall later show that finite alphabets suffice for representing mathe-
matical statements. Moreover, the symbols may be chosen as “concrete”
objects such that they can be included on the keyboard of a typewriter.
Often, however, one can improve the transparency of an argument by using
a countable alphabet such as A,, and we shall do this frequently. For some
mathematical applications of methods of mathematical logic it is also
useful to consider uncountable alphabets. The set {c,|r € R}, which contains
asymbol ¢, for every real number r, is an example of an uncountable alphabet.
We shall justify the use of such alphabets in VIL.4.

1.2 Lemma. If A is an at most countable alphabet, then the set A* of strings
over A is countable.

PRrROOF. Let p, be the nth prime number: p, = 2, p; = 3, p, = 5, and so on.
If A is finite, say A = {a,, ..., a,}, where a, ..., a, are pairwise distinct,
or if A is countable, say A = {ay, a,, a5, ...}, where the a; are pairwise
distinct, we can define the map f: A* — N by

g =1, B@a,...a)=pg*t-....prth.

Clearly f is injective and thus (cf. 1.1(c)) A* is at most countable. Since
ag,d0dg,d0d0a,, . . . areallin A* it cannot be finite; hence it is countable. [J

1.3 Exercise. Let «: N — R be given. For g, b € R such that a < b show that
there is a point ¢ in the interval I = [a, b] such that ¢ ¢ {«(n)|n € N}. Con-
clude from this that I, and hence R also, are uncountable. (Hint : By induction
define a sequence I = I; > I, > ... of closed intervals such that a(n) ¢ 1, ,,
and use the fact that (), .y I, # &.)

1.4 Exercise. Show that if M, and M are countable setsand M, c M,
M, then M, is also countable.

1.5 Exercise. (a) Show that if the sets M, M;, ... are at most countable
then the union [ J;. M, is also,at most countable.
(b) Use (a) to give a different proof of Lemma 1.2.

§2. The Alphabet of a First-Order Language

We wish to construct formal languages in which we can formulate, for
example, the axioms, theorems, and proofs about groups and equivalence
relations which we considered in Chapter I. In that context the connectives,
the quantifiers, and the equality relation played an important role. Therefore,
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we shall include the following symbols in the first-order languages: —1 (for
“not”), A (for “and”), v (for “or”), — (for “if-then”), « (for “if and only
if”), ¥ (for “for all”), 3 (for “there exists”), = (as symbol for equality). To
these we shall add variables (for elements of groups, elements of equivalence
structures, etc.) and finally parentheses as auxiliary symbols. In order to
formulate the axioms for groups we also need certain symbols peculiar to
group theory, e.g., a binary function symbol, say o, to denote the group multi-
plication, and a symbol, say e, to denote the identity element. We call ¢ a
constant symbol, or simply, a constant. For the axioms of the theory of
equivalence relations we need a binary relation symbol, say R.

Thus, in addition to the “logical” symbols such as “—1” and “ A 7, we
shall need a set S of relation symbols, function symbols, and constants which
varies from theory to theory. Each such set S of symbols determines a
first-order language.

We summarize:

2.1 Definition. The alphabet of a first-order language contains the following
symbols:

(a) vg, vy, Uy, ... (variables);

(b) 1, A, v, =, (not, and, or, if -then, if and only if);
{c) Vv,3 (for all, there exists);

d = (equality symbol);

) ) ( (parentheses),

(f) (1) for every n > 1 a (possibly empty) set of n-ary relation symbols;
(2) forevery n > 1 a (possibly empty) set of n-ary function symbols;
(3) a (possibly empty) set of constants.

We shall denote by A the set of symbols listed in (a) through (¢), and by
S the set of symbols from (f). S may be empty. The symbols listed under (f)
must, of course, be distinct from each other and from the symbols in A.

S determines a first-order language (cf. §3). We call Ag:=A U S the
alphabet of this language and S its symbol set.

We have already become acquainted with some symbol sets: S, = {o, e}
for group theory and S, := {R} for the theory of equivalence relations. For
the theory of ordered groups we could use {-, e, R}, where the binary relation
symbol R is now taken to represent the ordering relation. In certain theo-
retical investigations we shall use the symbol set S, which contains the
constants ¢g, ¢y, ¢5,..., and for every n > 1 the countably many n-ary
relation symbols Rj, R}, R, ... and n-ary function symbols £, f%, f