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To my father, 

who through his own example 

taught me how to work, 

and to my mother 

in loving memory 



Preface 

These lecture notes, which took shape from a one-semester course taught to 
sophomores and juniors at Claremont McKenna College, constitute a substan­
tial, abstract introduction to linear algebra. Although we use material from 
elementary calculus on occasion to illustrate major ideas, there are virtually no 
formal prerequisites. This is not to say that the material is easy. Many students 
who have never needed to make much effort in previous mathematics courses 
will find themselves seriously challenged. 

What is the nature of linear algebra? One might give two antipodal and 
complementary replies; like wave and particle physics, both illuminate the 
truth: 

THE STRUCTURAL REPLY. Linear algebra is the study of vector 
spaces and linear transformations. A vector space is a structure 
which abstracts and generalizes certain familiar notions of both 
geometry and algebra. A linear transformation is a function 
between vector spaces that preserves elements of this structure. In 
some sense, this discipline allows us to import some long-familiar 
and well understood ideas of geometry into settings which are not 
geometric in any obvious way. 

THE COMPUTATIONAL REPLY. Linear algebra is the study of linear 
systems and, in particular, of certain techniques of matrix algebra 
that arise in connection with such systems. The aims of the 
discipline are largely computational, and the computations are 
indeed complex. 

This text leans heavily, even dogmatically, toward the structural reply. In my 
experience in both pure and applied mathematics, the recognition that a given 
problem space is a vector space is often in itself of more value than any associ­
ated computation. Moreover, realistic computational problems are almost 
exclusively done by computer, and therefore incessant hand-drilling in matrix 
techniques is both redundant and maladroit. Finally, linear algebra as abstract, 
noncomputational mathematics is often one's first encounter with mathematics 
as understood and appreciated by mathematicians. I hope that the student will 
learn here that calculation is neither the principal mode, nor the principal goal, 
nor the principal joy of mathematics. 
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Throughout, we emphasize structure and concept over calculation. The lec­
turer will note that the first three chapters bear the names of fundamental 
categories. Here are some further examples: 

(i) Early on, we explicitly introduce and use the language and most basic re­
sults of group theory. 

(ii) A few diagram chases are suggested, one of which yields a particularly 
elegant proof of the change of basis formula. 

(iii) The proof of the associative law for matrix multiplication is postponed 
until after the representation of linear transformations by matrices is intro­
duced. At this point it becomes simply an aspect of the associativity of 
composition of functions. 

(iv) The equality of the column and row ranks of a matrix is demonstrated 
entirely through the formal properties of the dual space. Accordingly, we 
define the transpose not just for matrices, but for arbitrary linear trans­
formations, and we fully reconcile these two notions. 

An outline of the exposition follows. 

(1) SETS AND FuNCTIONS. We begin by reviewing notation and terminology, 
most of which should be familiar, in one form or another, from early calculus. 
The equivalence ofbijectivity and invertibility of functions is the main result of 
the first half of the chapter. A brief digression on cardinality follows; this is not 
used at all in the sequel, but does provide a brief and appealing respite from the 
stream of formalities. The chapter concludes with an introduction to the sym­
metric group on n letters. This material is, of course, used later in the discus­
sion of determinants and leads gracefully into the next, more radical topic. 

(2) GROUPS AND GROUP HOMOMORPHISMS. Abstract groups are admittedly 
nonstandard fare for a course in linear algebra, but the rationale for their in­
clusion here is, perhaps ironically, as much pedagogical as mathematical. On 
the mathematical side, a vector space is first an additive group, and a linear 
transformation is first a homomorphism of additive groups. Moreover, group 
theory plays a critical role in matrix theory. Thus we lay the foundations here 
for most of what follows, and what follows is made simpler thereby.! On the 
pedagogical side, one must recognize that the comprehension and composition 
of proofs is the central means by which one encompasses abstract concepts. The 
group, in all of its axiomatic austerity, provides a wonderful training ground for 
dealing with informal axiomatic systems. The student will at first lack intui-

!We do not venture beyond that which is mathematically prerequisite to the remainder of the 
text; for example, the basic counting theorems for finite groups are not included. 
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tion, but in learning to write correct proofs, this is not altogether a disadvan­
tage. There are three sections. The first defines groups and subgroups and 
develops a few fundamental properties. The second introduces group homo­
morphisms, and already many linear algebraic themes begin to appear. (For 
instance, the characterization of the inverse image of an element under a 
homomorphism.) The last section briefly discusses rings and fields. The termi­
nology is used throughout (rings sparingly), but the reader who takes field to 
mean either the real or complex numbers, will suffer no serious consequences. 

(3) VECTOR SPACES AND LINEAR TRANSFORMATIONS. Building on additive 
group theory, this chapter introduces the two central objects of linear algebra, 
with some key examples. (The lecturer will no doubt want to supplement the 
material with many pictures.) We develop the basic arithmetic properties of 
vector spaces and subspaces, the notions of span and spanning sets, and the 
fundamental properties of linear transformations. Throughout, the proofs re­
main straightforward, and against the background of the previous chapter most 
students find little difficulty here. 

(4) DIMENSION. The topics covered include linear dependence and its charac­
terizations, basis and its many characterizations, and the fundamental structure 
theory of vector spaces: that every vector space admits a basis (Vector spaces 
are free!) and that every basis of a given space has the same cardinality. The 
student will see explicitly that the vector space axioms capture two primary 
concepts of geometry: coordinate systems and dimension. The chapter con­
cludes with the Rank-Nullity Theorem, a powerful computational tool in the 
analysis of linear systems. 

(5) MATRICES. Within this chapter, we move from matrices as arrays of num­
bers with a bizarre multiplication law to matrices as representations of linear 
systems and examples par excellence of linear transformations. We demon­
strate but do not dwell on Gauss-Jordan Elimination and LUDecomposition as 
primary solution techniques for linear systems. 

(6) REPRESENTATION OF LINEAR TRANSFORMATIONS. This long and difficult 
chapter, which establishes a full and explicit correspondence between matrices 
and linear transformations of finite-dimensional vector spaces, is the heart of 
the text. In some sense it justifies the structural reply to those who would 
compute, and the computational reply to those who would build theories. We 
first analyze the algebra of linear transformations on familiar spaces such as Rn 

and then pass to arbitrary finite-dimensional vector spaces. Here we present the 
momentous idea of the matrix of a transformation relative to a pair of bases and 
the isomorphism of algebras that this engenders. For the more daring, a dis­
cussion of the dual space follows, culminating in a wholly noncomputational 
and genuinely illuminating proof that the column and row ranks of a matrix are 
equal. Finally, we discuss transition matrices (first formally, then computa-
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tionally), similarity of matrices, and the change of basis formula for endomor­
phisms of finite-dimensional spaces. 

(7) INNER PRODUCT SPACES. The emphasis here is on how the additional 
structure of an inner product allows us to extend the notions of length and 
angle to an abstract vector space through the Cauchy-Schwarz Inequality. 
Orthogonal projection, the Gram-Schmidt process, and orthogonal comple­
mentation are all treated, at first for real inner product spaces, with the results 
later extended to the complex case. The examples and exercises make the 
connection with Fourier Series, although we only consider finite approxima­
tions. 

(8) DETERMINANTS. The determinant is characterized by three fundamental 
properties from which all further properties (including uniqueness) are derived. 
The discussion is fairly brief, with only enough calculation to reinforce the 
main points. (Generally the student will have seen determinants of small matri­
ces in calculus or physics.) The main result is the connection between the 
determinant and singularity of matrices. 

(9) EIGENV ALVES AND EIGENVECTORS. Virtually all of the threads are here 
woven together into a rich tapestry of surpassing texture. We begin with the 
basic definitions and properties of eigenvalues and eigenvectors and the de­
termination of eigenvalues by the characteristic polynomial. We tum next to 
Hermitian and unitary operators and the orthogonality of their eigenspaces. 
Finally, we prove the Spectral Decomposition Theorem for such operators-one 
of the most delightful and powerful theorems in all of mathematics. 

(10) TRIANGULATION AND DECOMPOSITION OF ENDOMORPHISMS. The discussion 
is a somewhat technical extension of the methods and results of the previous 
chapter and provides further insight into linear processes. (In a one-semester 
course, only the most energetic of lecturers and students is likely to alight on 
this turf.) In particular, we cover the Cayley-Hamilton Theorem, triangulation 
of endomorphisms, decomposition by characteristic subspaces, and reduction to 
the Jordan normal form. 

With deep gratitude I wish to acknowledge the influence on this work of two 
of my teachers, both of whom are splendid mathematicians. Professor Wilfried 
Schmid taught me much of this material as an undergraduate. While my notes 
from his class have long since vanished, my impressions have not. Professor 
Hyman Bass, my thesis advisor at Columbia University, taught me whatever I 
know about writing mathematics. Many of his students have remarked that 
even his blackboards, without editing, are publishable! These men have a gift, 
unequaled in my experience, for the direct communication of mathematical 
aesthetics and mathematical experience. Let me also thank my own students at 
Claremont McKenna College for their patient and open-minded efforts to 
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encompass and to improve these notes. No one has ever had a more dedicated 
group. 

Two of my best students, Julie Fiedler and Roy Corona, deserve special 
praise. While enrolled in my course, they proved to be such astute proofreaders 
that I asked them both to assist me through the final draft of the manuscript. 
Although I had expected that they would simply continue their proofreading, 
they quickly progressed beyond this, offering scores of cogent suggestions 
serving to clarify the material from the student's perspective. I hope that they 
recognize and take pride in the many changes their comments have effected in 
the final product. 

The aesthetic affinity of mathematics and music has always been 
powerful-at least for mathematicians. At times we compose, and at times we 
conduct. Linear algebra is one of the great symphonies in the literature of 
mathematics, on a par with the large works of Beethoven, Brahms, or Schubert. 
And so without further delay, the conductor raises his baton, the members of 
the orchestra find their notes, and the music begins ... 
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Index of Notation 

Notation Section Interpretation 

Vs;3s for all s; there exists an s 

p~q logical implication (if p, then q) 

p¢:::>q logical equivalence (p if and only if q) 

0,n,u null set, intersection, union, respectively 

Sr;;;.T set inclusion (S is a subset of T) 

SxT Cartesian product of sets 
N,Z,Q natural numbers, integers, and rational 

numbers, respectively 
R,C real and complex numbers, respectively 

R+,R~ nonnegative reals, positive reals 

Q*,R*,C* nonzero elements of indicated set 

j:S---*T 1.1 a function/with domain S and codomain T 

Im(f) 1.1 image of/ 

I s :S---*S 1.1 identity function on S 

Sf4t 1.1 smaps to t 
~o(R) 1.1 continuous real-valued functions on R 

go/ 1.2 composition of functions 

r l 1.3 inverse function 
Card(S) 1.4 cardinality of the set S 

.9'(S) 1.4 power set on S 

Sn 1.5 symmetric group on n letters 

(al"'ak) 1.5 k-cycle 

u:Sn---*{±I} 1.5 sign homomorphism 

Zn 2.1 integers modulo n 
G=:G' 2.2 G is isomorphic to G' 
rl(t) 2.2 inverse image of an element 
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Ker(tp) 2.2 kernel of a homomorphism 

Fp 2.3 finite field of p elements 

k n 3.1 set of n-tuples with components in k 

Rn, en 3.1 real and complex n-space, respectively 

Q[x],R[x],etc. 3.1 polynomials in the given indeterminate 
with coefficients in the indicated field 

~n(R) 3.1 real-valued functions on R with continuous 
nth derivative 

Span(v\,,,,,v m) 3.1 span of the vectors v \,,,., V m 

e\", .,en 3.1 canonical basis vectors for kn 

Pj:~~k 3.2 projection onto the jth factor 

WOxW\ 3.3 direct product of vector spaces 

TOxT\ 3.3 direct product of linear transformations 

WoEBW\ 3.3 internal direct sum of subspaces 

ToEBT\ 3.3 direct sum of linear transformations 

dim(V) 4.1 dimension of a vector space 

YB 4.1 coordinate map relative to the basis B 

Matmxn(k) 5.1 set of mxn matrices with entries in k 

Mn(k) 5.1 set of nxn matrices with entries in k 
Aj 5.1 jth column of the matrix A (also A to the 

power j, according to context) 

Aj 5.1 jth row of the matrix A 

In 5.1 nxn identity matrix 

~j 5.1 Kronecker delta 

t.4 5.1 transpose matrix 

GLn(k) 5.1 group of invertible nxn matrices over k 
TA 5.2 linear map on ~ defined by left multi-

plication by the mxn matrix A 

(A Iy), (A Iy) 5.3 augmented matrix 

Hom(V,W) 6.1 space of linear maps from V to W 
M(T) 6.2 matrix of T : ~ ~ km with respect to the 

canonical basis 

MB.B'(T) 6.3 matrix of T: V ~ V' with respect to bases 
B,B' 

MB(T) 6.3 matrix of T: V ~ V with respect to basis B 

v* 6.4 dual space of V 

v\*,.",vn* 6.4 dual basis to v\,,,,,vn 
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T* 6.4 transpose map of T (also see below) 

A-B 6.5 similarity of matrices 

(vlw) 7.1 inner product of vectors 

Ivl 7.1 length of a vector 

pru{v) 7.2 orthogonal projection onto a unit vector 

prw{v) 7.2 orthogonal projection onto a subspace 
WI 7.2 orthogonal complement of subspace W 

Re{z) 7.3 real part of a complex number 
Im{z) 7.3 imaginary part of a complex number 

Z 7.3 complex conjugate 

0l/A 8.1 row-column deletion operator 

det{A) 8.1 determinant of A 

SLn{k) 8.3 special linear group 

T* 9.2 adjoint endomorphism (also see above) 

A* 9.2 conjugate transpose matrix 

Tlw 9.3 restricted map 

Uwoo,Ur 10.3 characteristic subspaces (with respect to a 
given endomorphism) 

Twoo,Tr 10.4 restrictions of an endomorphism T to its 
corresponding characteristic subspaces 



1 
Sets and Functions 

We begin with an elementary review of the language of functions and, more 
importantly, the classification of functions according to purely set-theoretic 
criteria. We assume that the reader has seen the formal definition of a function 
elsewhere; in any case, we shall need nothing beyond the provisional definition 
implicit in the following paragraph. 

1.1 Notation and Tenninology 

Let S and Tbe nonempty sets. Recall that afunction (synonymously, a map or 
mapping) f: S ~ T is a pairing of elements from Sand T such that each element 
SES is associated with exactly one element tE T, which is then denoted f(s). If 
f(s)=t, we also say that t is the image of sunder! The set S is called the 
domain off; the set T is called its codomain. 

More conceptually, we may think of a function as consisting of three items 
of data: a domain S, a codomain T, and a rule of assignment f which maps 
every element of the domain to some element of the codomain. All three items 
participate in the definition, although often one simply speaks of the function! 
Note that 

(i) there is no requirement that every element of T occur as the image of some 
element in S; 

(ii) it is possible that two distinct elements of S are assigned the same element 
ofT. 

In this sense, the definition of a function is highly asymmetric. We shall see 
below that the next two definitions, in tandem, restore the symmetry. 

The set of all elements of T that occur as the image of some element in S is 
called the range or image off and denoted Im(j). The following definitions are 
paramount. 
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DEFINITION. The function / is called injective or one-to-one if it satisfies the 
following condition: 

Vs,s' ES, /(S) = /(S') => s = S' 

Equivalently, 

Vs,s' ES, S*S'=>/(S)*/(S') 

One may also say that/separates points. 

DEFINITION. The function/is called surjective or onto if Im(f) = T; that is, if 
the following condition is satisfied: 

Vt E T,::Js ES:f(S) = t 

DEFINITION. The function/is called bijective if it is both injective and surjec­
tive. 

EXAMPLES 

(1) Let Sbe any nonempty set. Then the function 

is called the identity map on S. It is clearly bijective. (The notation s ~ s 
indicates that Is has no effect on s.) 

The next example shows clearly how the notions of injectivity and surjec­
tivity depend not just on the rule of assignment, but essentially on the domain 
and codomain. First we recall the following standard elements of notation: 

R = the set of real numbers 
R+ = the set of nonnegative real numbers 

(2) We give this example in four parts. First, the function 
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is neither injective nor surjective. It is not injective since for any real 
number x, we have f(x) = f(-x). It is not surjective, since no negative num­
ber occurs as the square of a real number. Second, the function 

is surjective, but not injective. The rule of assignment hasn't changed, but 
the codomain has, and every nonnegative real number is indeed the square 
of a real number. Third, the function 

is injective, but not surjective: distinct nonnegative reals have distinct 
squares. Fourth, the function 

is bijective. By restricting both the domain and the codomain we have 
eliminated both obstructions to bijectivity. 

(3) Finally, consider differentiation as a function 

~\R) ~~o(R) 

fHdf 
dx 

Here ~l(R) denotes the set of differentiable functions f: R ~ R with con­
tinuous derivative and ~O(R) denotes the set of merely continuous func­
tions f: R ~ R, with no assumption of differentiability. Viewed in this light, 
differentiation is not injective, since any two functions that differ by a con­
stant have the same derivative, but it is surjective by the Fundamental 
Theorem of Calculus. For if f is any continuous real-valued function de­
fined on R, then for any fixed aeR, 

d x -J f(t)dt = f(x) 
dx a 
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which shows explicitly thatfdoes indeed lie in the image ofthe differentia­
tion operator. 

1.2 Composition of Functions 

Suppose we are given two functions f: S ~ T and g : T ~ U. Then we can form 
their composition gof: S ~ U defined by gof(s) = g(f(s». Composition is often 
represented by a commutative diagram: 

f 
S T 

go~ l g 

U 
Figure 1.1. Commutative diagram. 

This indicates that an element taking either path from S to U arrives at the 
same image. 

Note that for anyfunctionf:S~Twe have 

so that the identity functions act neutrally with respect to composition. 

1-1 PROPOSITION. Let there be given functions 

f:S~T, g:T~U, h:U~V 

Then 
ho(go f) = (h og) 0 f 

Thus composition off unctions, when defined, is associative. 

PROOF. We show that both functions have the same effect on any element of S: 

h 0 (g 0 f)(s) = h«g 0 f) (s» = h(g(f(s))) = (h 0 g)(f(s» = (h 0 g) 0 f(s) 

This completes the proof. D 

In view ofthis result, we need not write parentheses in connection with com­

position. 
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WARNING. Composition of functions is in general not defined in both direc­
tions, and when it is, it need not be commutative. For example, consider the 
functions f(x) = x2 and g(x) = x+ 1 with domain and codomain assumed equal to 
the real numbers. Bothfog and gofare defined, but clearly these functions are 
unequal. 

1-2 PROPOSITION. Let there be given functions f: S ~ T and g: T ~ U. Then 

(i) if both f and g are injective, so is gof; 

(ii) if both f and g are surjective, so is gof; 

(iii) if both f and g are bijective, so is gof; 

(iv) if gof is injective, then so is f; 
(v) ifgofis surjective, then so is g. 

PROOF. (i) Suppose that gof(s) = gof(s~. We must show that the arguments are 
equal. We have the following chain of inferences: 

gof(s)=gof(s') ~ g(f(s))=g(f(s')) by definition of composition 

~ f(s) = f(s') sinceg is injective 

~ s = s' since f is injective 

This establishes injectivity. 

(ii) This is an embryonic example of a diagram chase. Referring to the commu­
tative diagram illustrating composition of functions (Figure 1.1), given any ele­
ment u E U, we can lift it to an element tE T via the surjective map g. This 
element t can in tum be lifted to an element SES via the surjective map f By 
construction, s has image u under the composed map, which is therefore sur­
jective. 

(iii) This follows immediately from parts (i) and (ii). 

(iv) We must show that two distinct arguments for fproduce distinct images. 
Again we establish a chain of inferences: 

s:t:.s' ~ gof(s):t:.gof(s') 

~ g(f(s)) :t:.g(f(s')) 

~ f(s):t:. f(s') 

Thusfis injective, as claimed. 

since g 0 f is injective 

by definition of composition 

by definition of a function 
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(v) This may be realized as another embryonic diagram chase, which we leave 
as an exercise in the style of (ii). Referring to the same picture, the student 
should work out the essentials and then carefully write out the argument. 0 

1.3 Inverse Functions 

DEFINITION. Letf:S~Tbe a function. Thenfis called invertible if there exists 
a function g: T ~S such that 

gof= Is and fog = IT 

In this case g is called an inverse function off 

Note the symmetry of the definition: if g is an inverse function off, thenfis 
an inverse function of g. 

1-3 PROPOSITION. Iffis invertible, its inverse is unique. 

PROOF. Suppose thatfhas inverse functions g and h. The following calculation 
shows that they are equal: 

h = holT = h 0 (f 0 g) = (h 0 f) 0 g = Is 0 g = g o 

In light of this result it is sensible to speak of the inverse off, which is often 
denoted)1. By the earlier observation of symmetry, (/1)-1 = f 

1-4 THEOREM. A function f: S ~ T is invertible if and only if it is bijective. 

PROOF. =:}) Suppose thatfis invertible with inverse function g. We shall show 
that it is both injective and surjective. By definition, fog = IT ; since the identity 
function is surjective, it follows from Proposition 1-2, part (v), that f must be 
surjective. Likewise, gof= Is, which is injective, and hencefis injective. 

<=) Suppose thatfis bijective. Then for each point teT, define g(t) to be the 
unique seS such thatf(s)=t. (It exists by the surjectivity off; it is unique by the 
injectivity.) Then clearly by construction, 

g(f(s» = sand f(g(t» = t 

This completes the proof. o 
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EXAMPLE. Consider the exponential function 

(R: denotes the set of positive real numbers.) This is clearly bijective with 

well-known inverse 

R: -)oR 
x H In(x) 

We have the familiar formulas 

as a special case of the definition of an inverse function. 

1.4 Digression on Cardinality 

This brief digression makes striking use of the concepts hitherto introduced, but 
is not used in any way in the sequel, except in the exercises for this chapter. 

Let Sand T be nonempty sets. Then one says that Sand T are of the same 
cardinality and writes Card(S) = Card(T) if there exists a bijection f: S -)0 T. In 
the case of a finite set S having the same cardinality as the set {1, ... ,n}, we 
abbreviate this to Card(S)=n. Note that this statement does not assert an equal­
ity of numbers, but rather affirms the existence of a bijection. Essentially cardi­
nality generalizes the notion of counting to infinite sets. 

One compares cardinalities in the following sense: If there exists at least an 
injective functionj: S -)0 T, we write Card(S)::;; Card(T). If there exists an injec­
tion, but no bijection, we write Card(S) < Card(T). This notation carries all of 
the usual properties of inequalities; in particular, we have the following cele­
brated theorem. (For the proof, see Exercise 21 below.) 

THEOREM. (Schroeder-Bernstein) If Card(S)::;; Card(T) and Card(T)::;; Card(S), 
then Card(S)=Card(T). 

Here are some amazing facts about cardinality. One can find proofs in any 
text on set theory or real analysis. 
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(1) Card(N)=Card(Z); that is, the set of natural numbers N={O,1,2, ... } has 
the same cardinality as the set of integers Z={ ... ,-2,-1,O,+1,+2, ... }. 

(2) Card(Z) = Card(Q); that is, the set of integers has the same cardinality as 
the set of rational numbers (quotients of integers) Q. 

(3) Card(Q) < Card(R); that is, the set of rational numbers has smaller cardi­
nality than the set of real numbers R. 

(4) Card(R)=Card(C); that is, the set of real numbers has the same cardinality 
as the set of complex numbers C. 

(5) For any set S, let9"(S) denote the set of all subsets of S. (This is called the 
power set of S.) Then if Sis nonempty, 

Card(S) < Card(9"(S)) 

Beginning with an infinite set S and iterating this operation, we can manu­
facture a never-ending ascending chain of infinite sets of strictly increasing 
cardinality. Hence there are infinitely many classes of infinity! 

(6) Does there exist a set X such that Card(N) < Card(X) < Card(R)? This is 
unknown. The assertion that there is no such set is called the continuum 
hypothesis. (The question is somewhat more subtle than we have suggested 
here and is strongly tied to the very foundations of set theory and hence of 
mathematics.) 

1.5 Permutations 

Let Pn = {1,2, ... ,n} denote the set consisting of the first n positive integers. 
Then the set of all bijective maps P n ..... P n is called the symmetric group on n 
letters and denoted Sn' (Note that for two finite sets of the same cardinality, the 
notions of injectivity, surjectivity, and bijectivity are equivalent; this is called 
the Pigeonhole Principle.) Elements of Sn are called permutations. We record 
some important properties of Sn' all of which follow from our previous work: 

(i) Composition is an associative operation on Sn' In particular, Sn is closed 
under composition of functions. 

(ii) The identity map in Sn acts as an identity element with respect to composi­
tion. 
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(iii) For every element fin Sn' there is an element gin Sn such that 

fog=gof=IPn 

That is, every element of Sn has an inverse in Sn. 

This last assertion is justified by the equivalence of bijectivity and inver­
tibility of functions. 

(One may well wonder why, of all the numerous pr~perties of permu~tions, 
we have in particular cited these three. The answer Will be made clear III the 
following chapter.) 

EXAMPLE. Let n=3. We list the permutations by a 2x3 array which shows the 
image of each number directly below it. 

Note that this representation will work for any n. 

1-5 PROPOSITION. The cardinality ofSn is nL 

PROOF. Consider the construction of a permutation: there are n choices for the 
image of 1, n - 1 independent choices for the image of 2, n - 2 independent 
choices for the image of 3, etc. Hence there are altogether n·(n-l)"· 3·2·1 =n! 
such permutations. [J 

We now pass to a more structural description of Sn. Let aI' a2, ••• ,ak be k dis­
tinct numbers in {l, ... ,n}. Then the k-cyc/e 

is the permutation defined by the following assignments: 

All other numbers are unaffected. In the special case of a 2-cycle, we speak of a 
transposition. We shall see shortly that all permutations may be constructed 
from transpositions. 
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EXAMPLES 

(I) Write the following permutation in S5 as a cycle. 

1r= (1 2 3 4 5) 
4 135 2 

We see that 1 maps to 4, 4 to 5, 5 to 2,2 back to 1. Accordingly 

;r= (1452) 

(2) Express the following permutation in S5 as a product of cycles. 

1r= (1 2 3 4 5) 
35412 

By tracing the orbit of each element, we find that 

;r= (134}0(25) 

Note that these cycles have no elements in common. 

(3) Express the following product of cycles in S6 in row form. 

;r= (45}0(1364) 

Recalling that composition of functions proceeds from right to left, we find 
that 

1r = ( 1 2 3 4 5 6) 
326 145 

Generalizing our second example above, one can show that every permutation 
is expressible as the product (composition) of disjoint cycles. (Here disjointness 
means that no element occurs in more than one of the factors.) Moreover, every 
cycle can be written as the product of transpositions. For example, 

(1234) = (14}0(13}0(12) 

Thus every permutation can be factored into a product of transpositions. Now 
there is nothing unique about this factorization, but the following result, which 
is critical to linear algebra, does hold. 
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1-6 THEOREM. (Invariance of Parity) Suppose that a permutation may be ex­
pressed as the product of an even number of transpositions. Then every 
factorization into transpositions likewise involves an even number of fac­
tors. Similarly, if a permutation may be expressed as the product of an odd 
number of transpositions, then every such factorization involves an odd 
number of transpositions. 

In other words, there may be different ways of expressing a permutation as a 
product of transpositions, but the parity of the number of factors is unique. 
Hence we may speak of a permutation as being either odd or even depending on 
whether it factors into an odd or even number oftranspositions. 

The proof of this theorem depends upon the construction of a powerful map 

called the sign homomorphism. Its definition follows. (We shall fully explain 
the term homomorphism in Chapter 2.) 

Let ;rlie in Sn. We say that ;rreverses the pair (i,}), if i<j, but ;rU)<;r(i). It 
is easy to count the number of reversals when a permutation is expressed in 
matrix form: for every element in the second row, we count how many smaller 
elements lie to the right. For example, the permutation 

7r = ( 1 2 3 4 5 6) 
426 135 

has 3+ 1 +3+0+0+0= 7 reversals. Now if ;rhas m reversals, define 

a{;r) = (-l)m 

Hence the sign map is negative for permutations that have an odd number of 
reversals and positive for those that have an even number of reversals. It is 
clear that a transposition of adjacent elements, having exactly one reversal, has 
sign -1. The key result is this: 

1-7 LEMMA. Let ;rbe a permutation and Ta transposition. Then 

cr( To;r) = -cr(;r) 

Thus composition with a transposition changes the sign of a permutation. 

PROOF. This is easy to see in matrix form. Assume that ;rES has the represen-
tation n 
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We ask what effect the transposition (ajaj ) has on 1(. To swap aj and aj we must 
first push aj to the right across j - i entries. (This amounts to j - i adjacent trans­
positions.) Each move either adds or subtracts a reversal and hence changes 
the sign of the permutation once. We must next push a. to the left across j - i -1 
entries (one fewer), again changing the sign once foi each move. In total we 
have made 2(j - i) - 1 sign changes. Since this number is manifestly odd, the 
sign of 1" 0 1( has indeed been changed relative to 1(, as claimed. 0 

By repeated use of the lemma it follows that for the product of m transposi­
tions 

Now the proof of Theorem 1-6 is clear: Suppose we have two equal products 
of transpositions 

Then applying o-to both sides, we find that 

and therefore m and m' have the same parity, as claimed. 

Exercises 

1. Find sets S, T, and U and functions f: S ~ T and g: T ~ U such that gof is 
injective, but g is not injective. (Hint: The choice of S={O}, T={O,l}, and 
U={O} will inevitably lead to the desired result.) 

2. Find sets S, T, and U and functions f: S ~ T and g: T ~ U such that gofis 
surjective, butfis not surjective. 

3. Find a non-identity function R ~ R which is its own inverse function. That 
is,fof=IR or, equivalently,f(f(x))=x for all real x. 

4. Assess the injectivity and surjectivity of each of the following functions 
from R to R. Be sure to defend your responses rigorously. For example, to 
show that a function is bijective, you might exhibit the inverse function. 
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You might also deduce valuable information by sketching the graph as you 
did in calculus. 

(a) f(x) = 2x + 1 

(b) f(x) = x 3 - 3x 

(c) f(x) = eX 

(d) f(x) = X4 - 2x2 

(e) f(x) = e-~ 

5. Find a bijective map from the open interval (-tr/2, +tr/2) to the set R of real 
numbers. This shows, by the way, that both sets have the same cardinality. 
(Hint: Think trigonometrically.) 

6. Explicitly construct a bijective function from the set of integers Z to the set 
of even integers 2Z. Despite your naive intuition to the contrary, this shows 
that Card(Z) = Card(2Z). 

7. Prove that if Card(S) = Card(D and Card(T) = Card( U), then Card(S) = 
Card(U). (Hint: Unwind the definition of equality of cardinality and check 
your basic facts about composition of functions.) 

8. Let NxN denote the set of all ordered pairs (m,n) of natural numbers. [For 
example, (1,2), (0,7), etc.] Show that Card(NxN) = Card(N) by explicitly 
constructing a bijection NxN ..... N. Be sure to explain your answer care­
fully. (Hint: Plot a few of the points ofNxN on an ordinary xy-graph. Look 
for a path through the nodes which visits every point of N xN exactly once. 
This allows you to enumerate the points-in other words, to construct a 
bijection with the set N. In fact, it is not hard to write down an explicit 
formula.) 

9. Express the following composition of cycles in matrix notation. 

(1 476)0(275) 

Be sure to work from right to left. 

10. Decompose the following permutation into the product of disjoint cycles. 
(Recall that disjointness means that no element occurs in more than one of 
the cycles.) 
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K=(61 2 3 4 5 6 7 8 9) 
5 9 143 8 7 2 

11. How many reversals does the permutation !rin the previous problem mani­
fest? What is its sign? Factor !rinto the product of transpositions. 

12. Referring to the permutation, 

K= (1 2 3 4 5 6 7 28) 
8 1 364 5 7 

(a) express!ras the product of disjoint cycles; 

(b) express K as the product of transpositions; 

(c) compute the sign of 1r, 

13. Let trESn be a k-cycle. For which positive integers n is ;(' equal to the 
identity map? Here ;(' means !r composed with itself n times. (Hint: Try 
some examples for small k.) 

14. Suppose that for permutations !rand dn Sn' !ro'r='ro1r, (Recall that this is 
not in general true.) Show that for all positive integers n, (!ro't)n= ;('ot". 

15. Show that disjoint cycles commute; that is, if !r and 'r are cycles with no 
elements in common, then !ro'r= 'r01r, 

16. Recall that every permutation may be written as the product of disjoint 
cycles. Using this fact and the previous three exercises, show that ;('1 is the 
identity map for any permutation !r in Sn' (This says, in particular, that if 
one shuftles a deck of 52 cards in exactly the same way 52! times, the deck 
will return to its original state. Since 52! is approximately 8x1067, it is far 
easier to prove this result than to establish it empirically.) 

17. We showed above that for transpositions 'r), 'r2, ••• , 'rm 

and also that every permutation is the product of transpositions. Use these 
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two facts to prove that for all permutations "\ and "2' 

We shall see shortly in Section 2.2 that this special property explains why 
the sign map a:Sn --+{±1} is called a homomorphism. 

Let Sand Tbe nonempty sets. Recall that their Cartesian product SxT consists 
of all ordered pairs (s,t) such that SES and tE T. By ordered pair we mean that 

(s,t) = (s' ,t') <=> s = s' and t = t' 

(For a rigorous set-theoretic definition of this concept, see any book on set 
theory.) 

18. Show that if Sand Tare nonempty sets, then Card(SxT) = Card(TxS). 
[Hint: Explicitly construct the bijection. Where in TxS can you send (s,t)? 
What is the inverse map?] 

Recall that sets Sand T are called disjoint if they have no common elements; 
that is, if S 1\ T= 0. In this case, Sv T is referred to as the disjoint union of S 
andT. 

19. Let S, S', T, T' be sets such that Sand T are disjoint, as are S' and T'. As­
sume further that Card(S) = Card(S') and Card(T) = Card(T'). Show that 
Card(Sv T)=Card(S'v T'). Note that this result extends easily to arbitrary 
disjoint unions (possibly involving an infinite family of disjoint sets). 

20. Let Sand Tbe nonempty sets. Show that there exist sets S' and T' such that 
Card(S) = Card(S') and Card(T) = Card(T') with S' and T' disjoint. (Hint: 
Take S'=Sx{O} and T'=Tx{I}. Can S' and T' have any elements in com­
mon?) 

The final problem constitutes a short, elegant proof of the Schroeder-Bernstein 
Theorem. We assume that Sand Tare nonempty sets and that there exist injec­
tive mapsj:S--+Tandg: T --+S. This amounts to the assertion that both Card(S) 
:s; Card(T) and Card(T):S; Card(S). Since we are only interested in cardinalities, 
by the previous exercise we may assume that Sand T are disjoint. 
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21. Given any UES, define a sequence 

in Su T as follows. For positive indices, 

So =U 

to = f(so) 

Sl = g(to) 

tl = f(sl) 

S2 = g(tl) etc. 

Hence the sequence goes on forever in this direction. For negative indices, 

t_1 = g-I (so) 

S_I = rl(t-I) 

t_2 =g-I(S_I) 

S_2 = r l (t-2) etc. 

provided that these inverse images exist! Otherwise, the sequence termi­
nates. (We are really abusing the notation here, since the inverse functions 
f-I and g-I are not assumed to exist. But whenever the inverse image of a 
given element does exist, it is unique since both f and g are assumed in­
jective.) Note that there are three possibilities: 

(i) the sequence continues to the left without limit; 

(ii) the sequence terminates on the left at an element of S; 

(iii) the sequence terminates on the left at an element of T. 

Now define Su t:;;. S to be those elements of S that occur in the sequence r u 
and similarly define Tu t:;;. T to be those elements of T that occur in r u' 

(a) Show that for any pair of elements U,VES, either Su = Sy or Su and Sy are 
disjoint; show that an analogous statement holds for Tu and TV" Since for 
all UES and tET, we have UESu and tETg(t) (why?), this implies that S is 
the disjoint union of subsets of the form Su and similarly for T. 

(b) Show that for each UES, Card(S) = Card(Tu)' (Hint: Consider each of the 
three possibilities for ru introduced above. Doesn't each suggest an obvi­
ous map from Su to Tu?) 
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(c) Show that Card(S) = Card(T). This completes the proof of the Schroeder­
Bernstein Theorem. [Hint: Use part (b) and Exercise 19.] 

The argument outlined in this exercise is adapted from Paul J. Cohen's classic 
monograph Set Theory and the Continuum Hypothesis. 



2 
Groups and Group Homomorphisms 

This chapter introduces the notion of an abstract group, one of the fundamental 
objects of both algebra and geometry and very much at the heart of linear alge­
bra. In the early stages, the student will perhaps see only .a rather arbitrary 
looking (but attractive!) informal axiomatic system. This is a gross deception. 
The definition distills millennia of mathematical experience. Another theme 
also emerges: objects are not nearly so interesting in themselves as the relation­
ships they bear to one another. In the case of groups, these relationships are 
expressed by group homomorphisms. 

2.1 Groups and Subgroups 

Let S be a nonempty set. Recall that SxS denotes the set of all ordered pairs (s,t) 
of elements in S. A binary operation on S is a function SxS ~ S. We almost 
invariably denote the image of (s,t) under this operation with some infix opera­
tor such as *. Hence 

Note that the notion of closure is implicit in our definition since the codomain 
of the operation is S. Often, however, we wish to pass from a set S to a subset T 
and consider the status of * as an operation on T. In this case, closure is not at 
all implicit and must be verified. 

An operation is called associative if 

for all s,t,ueS. We say that eeS is an identity for * if 

s*e =s= e*s 

for all seS. (In general, an identity need not exist.) Finally, we say that * is 
commutative if 
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s*t = t*s 

for all S,tES. 

DEFINITIONS. A magma (S,*) is a set S together with an operation * (and no 
other assumptions). An associative magma is called a semigroup. A semigroup 
with an identity element is called a monoid. Each of these objects is called 
commutative if the operation in question is commutative. 

With one further requirement, we reach one of the fundamental structures in 
all of mathematics. 

DEFINITION. A group (G,*) is a monoid in which every element is invertible. 
Specifically, 

(i) the operation * is associative on G; 

(ii) there exists an element eEG which is an identity for *; 

(iii) for every SE G there exists a tE G such that s*t = e = t*s. 

With regard to this last condition, we say that t is an inverse for s. By symme­
try, s is likewise an inverse for t. 

A group is called commutative if the corresponding operation is. A commu­
tative group with operation denoted + is called an additive group. The identity 
of an additive group is usually denoted O. Note that this may not be the familiar 
zero of ordinary arithmetic. 

EXAMPLES 

The following magmas are largely familiar objects. Nonetheless, the reader 
should explicitly verify all applicable axioms. 

(1) (N,+), the set of natural numbers under addition, is a commutative monoid 
(with identity 0), but not a group, since only 0 has an inverse (itself). 

(2) (Z,+), the set of integers under addition, is an additive group. The additive 
inverse of n is -n. 

(3) (Q,*), the set of rational numbers under multiplication, is a commutative 
monoid, but not a group, since 0 is not invertible. 

(4) (Q*,*), the set of nonzero rational numbers under multiplication, is a com­
mutative group. 
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(5) The set {-I,+l} forms a commutative finite group with respect to multipli­
cation. For those familiar with complex numbers, so does {+i,-I,-i,+l}. 

(6) For any positive n, (Sn'o) constitutes a finite group of order n!; this is pre­
cisely the content of the analysis given at the start of Section 1.5. One can 
show easily that Sn is noncommutative for n > 2. 

(7) The set WO(R) of continuous real-valued functions defined on R forms an 
additive group with respect to addition of functions. (Closure is verified by 
noting that the sum of two continuous functions is again continuous.) The 
additive inverse ofJ(x) is -J(x). 

Observe that ~O(R) constitutes no more than a monoid with respect to 
composition of functions. Why? 

(8) Here is a small additive group of 5 elements, often denoted Zs. 

+ 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 
4 4 0 1 2 3 

There is little mystery to the operation: we simply add the operands as 
usual and then discard all but the remainder when divided by 5. This con­
struction can be adapted to any positive integer n to form Zn' the additive 
group of integers modulo n. Clearly Card(Zn)=n. 

The explicit listing of products in the last example is called a Cayley table. 
The name honors Arthur Cayley (1821-95), who first introduced the notion of 
an abstract group in the middle of the nineteenth century. Curiously enough, 
the definition was far ahead of its time and ignored for many decades. 

Unless we require special emphasis on the operator, in the sequel we shall 
usually write st for the product s*t, except in the additive case, for which we 
always write s+ t. Also, in view of the associative law, we shall often drop the 
parentheses for products of three or more group elements. 

The following propositions summarize some of the most basic properties of 
groups. These facts, together with their proofs, should become part of the 

student's psyche. 
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2-1 PROPOSITION. (Cancellation Laws) Let G be a group. Then for any three 
elements s,t,ueG, 

st = su => t = u 
st = ut => s= u 

PROOF. Suppose that st=su. Then since s is invertible, there exists an element x 
in G, such that xs = e. Using the associative law and the definition of an iden­
tity, we now have the following chain of equalities: 

st =su 
x(st) = x(su) 
(xs)t = (xs)u 

et =eu 
t=u 

The second assertion is proved similarly. 

In additive notation, this result becomes 

s+t=s+u =>t=u 
s+t=u+t =>S=U 

2-2 PROPOSITION. Let G be a group. Then the following assertions hold: 

(i) The identity element eeG is unique. 

o 

(ii) Inverses are unique; that is, for every seG there i!xists a unique teG 
such that st=e=ts. Henceforth we denote this unique inverse S-i. 

(iii)Ifs,teG with st=e, then s=t-i and t=S-i. Hence to check inverses, we 
need only check on one side. 

(iv) For all seG, (S-i)-i =s. 

(v) For all s,teG, (st)-i=i-iS-i. 

(vi) IfseG, then ss=s ifand only ifs=e. 

PROOF. (i) Suppose that both e and e' are identities. Then by the definition of 
an identity for the group operation, we have e = ee' = e', which proves unique­
ness. Note that this argument works in any magma. 
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(ii) Suppose that both t and t' are inverses for SE G. Then st = e = st', and by left 
cancellation we have t=t'. 

(iii) Suppose that st=e. Multiply both sides by s-I to find that 

which via associativity shows at once that S-I = t. 

(iv) We have already observed that if t is an inverse for s, then s is an inverse 
for t. But in view of the uniqueness of inverses, this is precisely the content of 
the assertion. 

(v) We compute the product 

According to part (iii) above, this suffices to show that rl S-I = (stt l , as 
claimed. 

(vi) Clearly ee = e. If ss =s, we cancel an s from each side of the equation to 
find that s=e. Thus e is the only element satisfying this property. [J 

An element s of a magma such that ss = s is called idempotent. Hence part 
(vi) of the proposition states that the identity is the only idempotent element of 
a group. 

Note that we can define exponentials in groups as we do in ordinary algebra: 

S' = s·s .. ·s (n times) 

s-n = S-I 'S-I"'S-I (n times) 

for positive n, and sO is defined to be the identity e. Take care, however! The 
familiar formula 

(st)" = s"t" 

holds for all n if and only if we are working in a commutative group. That this 
is true for a commutative group is obvious. To see the converse, note that on the 
one hand, 

(SI)2 = slsl 

while on the other, 
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If these expressions are equal, sstt = stst and we can cancel s from the left and t 
from the right to obtain st=ts. 

In additive notation, the inverse of s in G is denoted -s and we abbreviate 
the expression s+(-t) to s-t. Repeated addition is expressed via integral coeffi­
cients. Thus 

ns = s + s+··· +s (n times) 

Interpreting the previous proposition and our discussion of exponents in this 
special case, we have many familiar arithmetic properties, such as these: 

-(-s) = s 

-(s+t) = -s-t 

n(s+t) =ns+nt 

for all S,tEG and integers n. Note that the last two identities are entirely depen­
dent on commutativity. 

Subgroups 

DEFINITION. Let (G,*) be a group. Then a subset H of G is called a subgroup of 
G if it constitutes a group in its own right with respect to the operation * de­
fined on G. 

We can always show directly that a nonempty subset H of G is a subgroup by 
verifying that 

(i) H is closed under the operation defined on G. 

(ii) H contains the identity of G. (Why can't there be a "restricted" identity­
one that works in Hbut is not the identity of the full group?) 

(iii) If s lies in H, then so does s-I. 

The point is that associativity is inherited from the ambient group. 

2-3 PROPOSITION. A nonempty subset H of a group G is a subgroup of G if and 
only if the following condition holds: 

s,t EH => sri EH 

Thus the problem of checking that a nonempty subset is a subgroup is often 
reduced to one step. 
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PROOF. =» Let Hbe a subgroup and suppose that sand (lie in H. Then (-I lies 
in H, and therefore so does the product st-I by closure. 

<=) Suppose that H satisfies the condition stated in the proposition. We shall 
verify each of the points (i), (ii), and (iii) above. First (ii). Since His nonempty, 
it contains some element s. But then by assumption, H also contains the product 
srI =e, as required. Now since H contains sand e, it also contains erl =rl, 
which verifies condition (iii). Finally, if s and t lie in H, then by the previous 
step, so does t-1. But again by hypothesis this implies that the product s(t-1)-1 = 
st lies in H, thus establishing closure. 0 

In additive notation, the condition of the proposition is 

s,tEH=>s-tEH 

Note that a group G is always a subgroup of itself. Other subgroups are called 
proper subgroups. Likewise, the subset {e} always constitutes a subgroup of G, 
called the trivial subgroup. The student should now find, if possible, nontrivial 
proper subgroups for each of the examples of groups listed above. We give a 
few of these. 

EXAMPLES 

(1) For any integer n, define 

nZ = {na:aEZ} 

(i.e., all multiples of n). Then nZ is a subgroup of the additive group Z. 
This is clear by Proposition 2-3 since na-nb =n(a-b), whence the differ­
ence of two elements chosen from nZ again lies therein. Note that this sub­
group is nontrivial if n is not 0 and proper if n is not ±l. 

(2) For any nonzero rational number a, 

(i.e., all integral powers of a) is a subgroup of the multiplicative group Q*. 
Check this as in Example l. 

(3) Consider the additive group jFO(R) of continuous real-valued functions de­
fined on R. Let I be the set of all functions whose value at 0 is O. Then I is 



2.2. Group Homomorphisms 25 

a subgroup ofWo(R). For ifjandg lie in 1, then 

(f-g)(O) = j(O)-g(O) = 0-0 = 0 

whence the difference is also in 1. This example generalizes readily. 

(4) The set {O,2,"4) is a subgroup of the additive group Z6 defined above. 
(Here we use the bar to distinguish these elements from ordinary integers.) 
One easily verifies this directly. 

2.2 Group Homomorphisms 

DEFINITION. Let Go and G1 be groups. Then a function rp: Go ~ G1 is called a 
homomorphism oj groups if it satisfies the following condition: 

rp(st) = rp(s) rp(t) 

for all s,tEGO• 

Note carefully that the implied operations occur in (possibly) different 
groups, the first in the domain, the second in the codomain. 

In additive notation, the condition that defines a group homomorphism 
amounts to 

rp(s+ t) = rp(s) + rp(t) 

for all s,tEGO• 

EXAMPLES 

(1) Let a be any real number. Then the functionf:R~R defined by j(x)=ax is 
a homomorphism from the group of real numbers under ordinary addition 
to itself. We have only to check that 

j(x+y) = a(x+y) = ax + ay = j(x) + j(y) 

(2) Differentiation is a group homomorphism WI(R) ~ WO(R). This is essen­
tially the content of the familiar rule of differentiation 

d dlf du _(j+g)=_+_o 
dx dx dx 
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(3) The exponential map 

(regarded by some as the most important function in mathematics) is a 
homomorphism from the group of real numbers under addition to the 
group of positive real numbers under multiplication. To see this, note that 

(4) The sign homomorphism 0": Sn ~ {±1} is a group homomorphism from the 
symmetric group on n letters (under composition) to the multiplicative 
group {±1}. The requisite property that 

was shown in Chapter 1, Exercise 17. 

Whenever we introduce a class of maps that respect the structure of both do­
main and codomain in the sense that group homomorphisms do, a proposition 
of the following form is in order. 

2-4 PROPOSITION. The composition of group homomorphisms is a group homo­
morphism. 

PROOF. Let tpO:GO~GI and 11'1 :GI ~G2 be group homomorphisms. Then for all 
S,tEGO' we have 

This completes the proof. D 

2-5 PROPOSITION. Let tp:GO~Gl be a homomorphism of groups. Then thefol­
lowing assertions hold: 

(i) tp(eo)=el' where ej is the identity ofGj'j=O,l. 

(ii) tp(S-I)=tp(S)-1 for all sEGO' 

(iii) tp(sm)=tp(s)m for all sEGo and integers m. 

In additive notation (in which form'we shall most often meet this result), these 
properties read as follows: 



(i) qJ(O)=O 

(ii) qJ(-s)=-qJ(s) 

(iii) qJ(ms)=mqJ(s) 
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PROOF. (i) By the definition of a homomorphism and an identity 

whence qJ(eo) is idempotent (Le., equal to its p~oduct with. i~self). But the only 
element in G1 with this property is el by part (VI) ofProposltlon 2-2. 

(ii) For all SEGo' 

hence qJ(S-I) = qJ(S)-1 by part (iii) of the proposition just cited. 

(iii) Exercise. [Hint: Distinguish between the cases of positive and negative 
integers m and use part (ii).] (J 

A bijective homomorphism of groups rp: GO~GI is called an isomorphism of 
groups or a group isomorphism. One writes GO=G1 to indicate the existence of 
an isomorphism. This says that the groups are structurally identical. So, for in­
stance, Example 3 above shows that 

which is remarkable. We leave it as an exercise to show that if rp is an isomor­
phism, then so is the inverse map rp-I. 

Before proceeding with the theory of group homomorphisms, we inteIject a 
purely set -theoretic notion. Iff: S ~ T is a function, then for any tE T, we define 
the inverse image oft under f, henceforth denotedrl(t), to be the set of all SES 
such that f(s) = t. Note that the inverse image is empty if t does not lie in the 
image off and may contain more than one element iff is not injective. Hence 
the notationf-I(t) makes sense even whenffails to be invertible as defined in 
Chapter 1. (This is a slight abuse of notation: the inverse image of t under f in 
the sense just introduced is technically a subset of S; the value of the inverse 
function-should one exist-is, for any given lET, just a point SES.) 

DEFINITION. Let rp:GO~GI be a group homomorphism. Then the kernel of rp, 
denoted Ker(rp), is defined by 

Ker(rp) = {SEGO : qJ(s)=e} 
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That is, Ker(qJ) = qJ-l(e), the inverse image of the identity of the codomain. 
(Note that we are no longer subscripting the identity; its meaning is implicit in 
the context.) We shall see shortly that the kernel of a homomorphism reflects 
the amount of information lost in applying the map. 

The image of qJ, Im( qJ), is its image in the ordinary function-theoretic sense; 
that is, 

Im(qJ) = {teGl : 3seGo such that qJ{s)=t} 

A result of the following type should be no surprise for structure-preserving 
maps. 

2-6 PROPOSITION. Both the image and the kernel of a group homomorphism 
are subgroups of their ambient groups. 

PROOF. We show that the kernel is a subgroup; the image is left to the student. 
First note that the kernel is never empty since it always contains the identity. 
Lets and tlie in the kernel ofa homomorphism qJ:GO-+G1• Then by the defini­
tion and elementary properties of homomorphisms, we have 

Hence the product st-I is also in the kernel, and by Proposition 2-3 this suffices 
to establish that the kernel is a subgroup. 1:1 

Finally we examine one of the most important properties of a group homo­
morphism: the efficient characterization of inverse images. 

2-7 PROPOSITION. Let qJ: GO-+G1 be a homomorphism of groups and suppose 
that qJ{s)=t. Then 

qJ-I(t) = {sk:keKer(qJ)} 

That is, the complete solution set to the equation qJ{x) = t is precisely the 
set of all products sk where s is any particular solution and k lies in the 

kernelofqJ· 

In additive notation, this reads 

qJ-I(t) = {s + k : keKer(qJ)} 

which is to say that the solution set to the equation qJ{x) = t consists of all sums 
of the form s+ k, where s is any particular solution and k ranges over the kernel 

of the map qJ. 
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PROOF. We have two things to show: one, that every element of the form sk 
with keKer(l]') lies in the inverse image of t under 1]'; two, that every element 
in the inverse image of t is indeed of this form. 

Part One. Consider the product sk where k lies in the kernel. We have 

IJ'{sk) = IJ'{s)lJ'{k) = te = t 

since I]' is a homomorphism which by assumption sends s to t, and since 
furthermore elements in the kernel by definition map onto the identity e. 

Part Two. Suppose that u also lies in the inverse image of t. Then by assump­
tion 

lJ'{u) = IJ'{s) 

and we have 

Therefore the product S-IU is equal to some element k of the kernel. But clearly 
if s-lu=k, then u=sk, and u has the required form. This concludes the proof. 0 

2-8 COROLLARY. A homomorphism of groups is injective if and only if it has 
trivial kernel (i.e., its kernel consists only of the identity element). 

PROOF. If a homomorphism I]' is injective, the inverse image of the identity of 
the codomain can only contain one object-the identity of the domain. Con­
versely, according to Proposition 2-7, the complete inverse image of any ele­
ment t of the codomain is either empty or consists of products of the form sk 
where k is in the kernel and s has image t. But if the kernel is trivial, there is 
only one such product, se=s. Hence there is at most one element in the inverse 
image of t, which is precisely to say that I]' is injective. 0 

EXAMPLES 

(1) Consider the mapping of multiplicative groups 

R*~R* 

XHX2 

This is a homomOJjphism-albeit a dreary one-since (xy)2=X2y2. The ker­
nel of this noninjective map is {±l}. What is the inverse image of a non-
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negative real number y? In accordance with Proposition 2-7, it is :9/1,. The 
kernel thus reflects the loss of the sign in squaring a real number. 

(2) Reconsider differentiation, which we now regard as an additive group ho­
momorphism D: ~l(R) ~ ~O(R) with D(j) = dJldx. We know from calculus 
that 

Ker(D) = {f:j(x)=c for all x, for some constant cER} 

That is, the kernel consists of all constant functions and thus reflects the 
loss of constant terms under differentiation. Now the interpretation of our 
last proposition is quite familiar: if FE~l(R) is such that D(F)=f, then 

D-l(f) = {F + c : cER} 

This is perhaps better recognized in its more customary form: 

J j(x)dx = F(x) +c 

where F is any antiderivative of j (i.e., a particular solution to dFldx = f) 
and c is an arbitrary real constant [i.e., an element of Ker(D»). 

2.3 Rings and Fields 

We have seen that a group is an extremely general algebraic structure which 
admits a vast range of specific instances. We now briefly explore a specializa­
tion with quite a different flavor. We shall be concerned simultaneously with 
two operations and an essential property that intertwines them. 

DEFINITION. A ring (with unity) consists of a nonempty setA together with two 
operations + and * such that the following properties hold: 

(i) (A,+) is an additive group. 

(ii) (A,*) is a monoid (i.e., an associative magma with an identity, which in 
this case we shall always denote as I). 

(iii) These operations satisfy two distributive laws, asserting that 

a*(b+c) = a*b + a*c and (a+b)*c = a*c + b*c 

for any three elements a,b,ceA. 
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Note that the operation * is not necessarily commutative. If it is, we speak of 
a commutative ring. Ordinarily we shall refer to + as addition and * as multi­
plication, even though these terms may not carry their usual meaning. Again it 
is customary to write ab for a*b. 

Before giving examples, we note one critical special case. 

DEFINITION. A commutative ring k is called afield if k*, the set of nonzero 
elements of k, forms a group with respect to the ring multiplication. Thus every 
nonzero element of k has a multiplicative inverse. 

EXAMPLES 

(1) The integers Z constitute a commutative ring with respect to ordinary ad­
dition and multiplication. However, Z is not a field because +1 and -1 are 
its only invertible elements with respect to multiplication. 

(2) The rational numbers Q constitute a field with respect to ordinary addition 
and multiplication. So do R, the real numbers, and C, the complex num­
bers. 

(3) The set ~O(R) of continuous real-valued functions with domain R is a 
commutative ring, but not a field, with respect to addition and multiplica­
tion of functions. It inherits the requisite properties from the corresponding 
properties of real numbers. The identity with respect to multiplication is 
the constant functionj(x)= 1. 

(4) Let Z[x] denote the set of all polynomials in the indeterminate x with inte­
gral coefficients. Then Z[x] is a commutative ring with respect to addition 
and multiplication of polynomials; the required properties are all familiar 
laws of elementary algebra. Similarly, we can form the commutative rings 
Q[x], R[x], and C[x]. In fact, if k is any commutative ring whatsoever, one 
can define the polynomial ring k[x], although its interpretation as a collec­
tion of functions must be carefully reviewed. 

(5) The following pair of Cayley tables defines a field structure on a set 
consisting of only three elements. This field is denoted F3. Note that we 
have merely added a multiplicative structure to Z3. 

+ 0 1 2 * 0 1 2 

0 0 1 2 0 0 0 0 
1 1 2 0 1 0 1 2 
2 2 0 1 2 0 2 1 
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The tables are computed as in Example 8 of Section 2.1 above: add or 
multiply as ordinary integers and then discard all but the remainder of di­
vision by 3. 

This construction generalizes to any prime number p to yield the finite 
field F p. What happens if we do not use a prime modulus? The student can 
show that we still obtain a commutative ring, but never a field. (See 
Exercises 21-25 at the end of this chapter.) 

The following proposition summarizes those arithmetic properties of rings 
which are used routinely. All of the properties of additive groups, of course, 
remain in effect. 

2-9 PROPOSITION. Let A be a ring with unity. Then the following assertions 
hold: 

(i) Oa=O=aO, 'v'aeA 

(ii) a(-b)=-(ab)=(-a)b, 'v'a,beA 

(iii) (-a)(-b)=ab, 'v'a,beA 

(iv) (-I)a=-a, 'v'aeA 

(v) (-1)(-1)=1 

PROOF. For (i), note that Oa=(O+O)a=Oa+Oa by the distributive law, whence 
Oa must be the additive identity 0 by elementary group theory [proposition 2-2, 
part (vi)]. A similar argument shows also that aO = O. For (ii), using the dis­
tributive law, we compute that 

ab + a(-b) = a(b - b) = aO = 0 

whence a(-b) must be -ab, the additive inverse of ab, and similarly for (-a)b. 
Noting that for all aeA, -(-a) = a [proposition 2-2, part (iv)], the other three 
properties are special cases of (ii). 0 

Exercises 

1. Give an example of a noncommutative group of 24 elements. (Hint: 
24 = 4!.) 

2. Give an example of a group G and a nonempty subset H of G which is 
closed under the operation defined on G, but is not a subgroup of G. (Hint: 
G must be infinite for this to occur.) 
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3. Show that a group G is commutative if and only if the following statement 
holds: 

[Hint: Using Proposition 2-2, parts (iv) and (v), compute (s-lr1r1 two 
ways.] 

4. Show that the following Cayley table can only be completed in one way so 
that the elements s, t, u, and v constitute a group. Deduce the requisite 
products, rigorously defending each step. 

* s t u v 

s u 

t 

u v 

v 

[Hint: What do the cancellation laws imply about the rows and columns of 
this table? The crux of the matter, which you may not appreciate until you 
have solved the problem, is that for any x in a group G, the left and right 
multiplication maps y H xy and y H yx are bijective functions from G to 
itself (i.e., they are permutations of the set G).] 

5. Let Go and Gibe groups. Consider the set 

This is just the Cartesian product of the two sets Go and G I. Define an op­
eration on GOxG1 as follows: 

That is, we carry out the product componentwise, making use of the opera­
tions defined on the factor groups. Show that GOxG1 is a group with respect 
to this operation. Be sure to verify all requisite properties explicitly. This is 
called the direct product of Go and G1. 

6. Show that GOxG1 ~ G1xGO. (Explicitly construct the isomorphism; this is 
easy.) 
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7. Continuing in the same context, consider the functions 

Po:Go x G1 ~ Go 

(so,~) H So 

PJ:GOxG1 ~Gl 

(so,~) H Sl 

These are called projection maps. The first, Po' retains the first coordinate 
and drops the second. The second, PI' retains the second and drops the 
first. Show that both maps are surjective homomorphisms and compute the 
kernel of each. 

8. Consider the special case of the direct product GxG of a group G with it­
self. Define a subset D of GxG by 

D = {(s,s) : SEG} 

That is, D consists of all elements with both coordinates equal. Show that 
D is a subgroup of GxG. This is called the diagonal subgroup. Do you see 
why? 

9. Consider the direct product RxR of the additive group of real numbers 
with itself and the functionj:RxR~R defined by j(x,y)=2x-y. Show that 
j is a homomorphism of groups; describe its kernel and image. 

10. Show that the functionf:R~R defined by j(x)=ax+b (a,bER, b:t:O) is not 
a homomorphism of additive groups from (R, +) to itself. 

11. Let G be a group and consider the additive group of integers Z. For any 
fixed SEG, show that the function 

rp:Z ~ G 

n Hs" 

is a homomorphism. Deduce from this that if G is finite, then Ker( rp) is 
nontrivial and therefore there exists a positive integer m such that sm = e. 
(Hint: Can a map from an infinite set to a finite set be injective? Consider 
the answer to this question in light of Corollary 2-8.) 

12. Use the previous problem and Proposition 2-6 to show that for each ele­
ment s of a group G, the subset (s)= {sn: nEZ} is a subgroup of G. This is 
called the cyclic subgroup generated by s. 
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13. Show that if H is a subgroup of G and sEH, then (s) r;;H. (Hint: Consider 
each of the three possibilities for s", according to whether n is positive, 
negative, or 0.) 

14. Show that if a subgroup H of (Z4'+)' the additive group of integers modulo 
4, contains either 1 or 3, then in fact H= Z4. (See Example 8 of Section 2.1 
for a refresher on Zw) 

15. Find all subgroups of (Zs'+)' the additive group of integers modulo 5. 
(Hint: Examine each of the cyclic subgroups. Remember that a subgroup 
must be closed under the given operation.) 

16. Let qJl,qy Z-+G be homomorphisms from the additive group Z to an arbi­
trary group G. Show that if qJl(l) = qJP), then qJl = (h In other words, a 
group homomorphism from Z into any group is completely determined by 
its action on 1. 

17. Prove that a permutation and its inverse have the same sign. [Hint: Since 
the sign map is a homomorphism, o(n--I ) = o(n-tl. Now what are the mul­
tiplicative inverses of ±1?] 

18. Let An denote the set of all even permutations in Sn (that is, permutations 
with sign +1). Show that An is a subgroup of Sn. (Hint: An is by definition 
the kernel of what homomorphism?) 

19. Let G be a group. For sEG, define Ls: G~G by L,(t)=st for all tEG. Ls is 
thus left multiplication (or, more properly, left translation) by s. 

(a) Let Sym(G) denote the set of all bijections from G to itself (i.e., all permu­
tations of G). Show that for each SEG, LsESym(G). 

(b) Show that the mapping 

A:G ~Sym(G) 

sHLs 

is a homomorphism of groups. This amounts to showing that L =L oL sl 8 I· 

(c) Show that A is, moreover, injective. Conclude that every group is isomor­
phic to a subgroup of a permutation group. This result is called Cayley's 
Theorem. [Hint: To establish injectivity, compute Ker(A).] 

20. Let A be a ring. Show that A is commutative if and only if the following 
identity holds: 
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(Hint: Multiply out the left-hand side using the distributive law twice but 
not the commutative law. Compare to the right-hand side.) 

21. Give an example of a commutative ring A such that neither a nor b is 0, 
but ab=O. In this case we say a and b are zero divisors. 

22. Show that a field can never have zero divisors; that is, if ab =0, then either 
a or b is itself equal to o. 

23. Write out both Cayley tables (one for addition, and one for multiplication) 
for F s. (See Example 5 of Section 2.3 above.) 

24. Write out both Cayley tables for Z6' the ring of integers modulo 6. Show 
that this ring is not a field. 

25. More generally show that Zn is not a field whenever n is not a prime inte­
ger. (Hint: Use Exercise 22 above.) 

26. A commutative ring without zero divisors is called an integral domain. 
Show that a commutative ring A is an integral domain if and only if we 
have the cancellation law 

ab=ac ~ b=c "iIa,b,ceA, a:;t:O 

Use this result and the Pigeonhole Principle to show that every finite inte­
gral domain is a field. 

27. Construct a field of four elements. (Hint: This might be hard. Recall that 
the ring Z4 will not work.) 



3 
Vector Spaces and Linear 
Transformations 

Building on our work with groups and group homomorphisms, we now define 
vector spaces and linear transformations. Again the axioms may at first look 
arbitrary, but as we shall see in subsequent chapters, they are a masterpiece of 
abstraction-general enough to admit a vast range of diverse particular in­
stances, but restrictive enough to capture the fundamental geometric notion of 
dimension. 

3.1 Vector Spaces and Subspaces 

The following is one of the two principal definitions in linear algebra. While 
we work over an abstract field k (see Section 2.3), the student may well think of 
k as the real numbers, with the understanding that the only properties we are 
using are the field axioms. 

DEFINITION. A vector space over a field k consists of a set V together with a 
binary operation + and an external scalar operation kx V ~ V, called scalar 
multiplication, which satisfy the following axioms: 

(i) (V,+) is an additive group. 

(ii) (A,u)V=A(,uv) for all A,,uek, ve V. 

(iii) (A + ,u)v= AV+,uv for all A,,uek, ve V. 

(iv) A(V+W)=AV+AW for all Aek, v,wev' 

(v) Iv=vforallveV. 

In this context, elements of V are called vectors. Elements of k are called 
scalars, and scalar multiplication is indicated by simple juxtaposition of a sca­
lar (on the left) with a vector. For us, the most important fields will be R and 
C, and we then speak, respectively, of real and complex vector spaces. Since V 
and k both have an additive identity, we shall distinguish them by writing 0 
(bold typeface) for the zero in V and 0 (regular typeface) for the zero in k. 
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EXAMPLES 

(1) Any field k is a vector space over itself. In this case the vector space axi­
oms are the ordinary ring axioms applied to a field. In particular, R is itself 
a real vector space; C is itself a complex vector space. 

(2) Let k be any field and let k2 denote the set of all ordered pairs (X1,X2) of 
elements of k. Then k2 is a vector space over k with respect to the opera­
tions 

(XI'X2) + (Yl,y2) = (x1+Yl'x2+Y2) V'XI'X2,yl,y2Ek 

a(x1,x2) = (axl'ax2) V'a,x1,x2Ek 

We know that k2 is an additive group by Exercise 5 of the previous chapter, 
and the other axioms are inherited directly from the field axioms for k. 
Note in particular that the additive group identity is (0,0); the additive in­
verse of (xl'x2) is (-xl'-x2). In the special case k= R, we speak of the vector 
space R2 (read R-two), and these operations then have a clear geometric 
interpretation. Addition is performed by completing a parallelogram; the 
diagonal then represents the sum (see Figure 3.1). Scalar multiplication is 
just the expansion or contraction of a vector by a given factor. (Scalar mul­
tiplication by a negative number a expands or contracts by lal while also 
reflecting through the origin.) 

x+y 

Figure 3.1. Addition in R2 by the parallelogram law. 
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(3) This example generalizes the last. Let k be any field and let n be any posi­
tive integer. Define k n to be the set of all n-tuples of elements of k. That is, 

Once again define addition and scalar multiplication in k n componentwise: 

(x\""'xn) + (yp ... ,yn) = (x] +y\" .. ,xn+Yn) 

a(xp" .,xn) = (axp ... ,axn) 

Then kn is a vector space over k. The student should again carefully review 
the axioms. In the special case k= R, we speak of real n-space, Rn. (R3 has 
the geometric interpretation of ordinary three-dimensional space.) In the 
special case k= e, we speak of complex n-space, en. Generally in k n we 
distinguish vectors from scalars by using bold type. Thus we might write 

In hand-written discourse, one also uses the notation x to denote a vector 
in real or complex n-space. 

(4) ~O(R), the set of continuous real-valued functions defined on R, is a real 
vector space with respect to ordinary addition of functions with scalar mul­
tiplication defined by 

(af)(x) = al(x) 

To illustrate, we verifY one of the distributive laws: 

[a(j+g)] (x) =a'(j+g)(x) = a'(j(x) +g(x»=al(x) +a·g(x) = (af)(x) + (ag)(x) 

which shows that a(j+g)=af+ag for all real a. Similarly, ~n(R), the set of 
all real-valued functions on R having continuous nth derivative defined 
everywhere, is a real vector space. One can even replace R by e to obtain 
the complex vector space of complex-differentiable functions, but complex 
differentiability is an altogether more delicate matter. 

(5) The set Q[x] of polynomial functions with rational coefficients is a vector 
space over Q with respect to ordinary addition and scalar multiplication of 
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polynomials. Similarly, one has the real vector space R[x] and the complex 
vector space C[x]. 

We will meet many more examples soon, but first we need some elementary 
properties common to all vector spaces. Note that all of the properties of addi­
tive groups remain in effect. In particular, the identity 0 and additive inverses 
are unique. Moreover, we have a cancellation law for addition. 

3-1 PROPOSITION. Let V be a vector space over afield k. Then the following as­
sertions hold: 

(i) .,1,0=0 'if AEk 

(ii) Ov=O VVE V 

(iii) (-A)v = -(Av) VAEk, VE V 

(iv) AV=O ~ (.,1,=0 or v=O), VAEk, VE V 

PROOF. (i) By the right distributive law, AO=A,(O+O)=AO+AO, whence .,1,0 must 
be the zero vector by elementary group theory [proposition 2-2, part (vi)]. 

(ii) By the left distributive law, Ov=(O+O)v=Ov+Ov, and the same argument as 
above shows that Ov=O. 

(iii) Compute the sum AV+ (-A)v= (A-A)v=Ov=O. Hence (-A) V is indeed the 
additive inverse of AV, as claimed. 

(iv) Suppose that AV=O, but .,1,*0. Then multiplying both sides of AV=O by kl, 
we have, according to part (i) and the associative law for scalar multiplication, 
that kl(Av)=(kIA)v=lv=v=O, as required. 0 

Subs paces 
As we did for groups, we now explore the corresponding substructure for vector 
spaces. 

DEFINITION. A subset W of a vector space V over a field k is called a subspace 
of V if it constitutes a vector space over k in its own right with respect to the 
additive and scalar operations defined on V. 

One way to establish that W is a subspace of V would be to show that it is an 
additive subgroup which is closed under scalar multiplication, since in this case 
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the requisite axioms concerning scalar multiplication are inherited from V. But 
it turns out that there is a much simpler criterion. 

3-2 PROPOSITION. (Subspace Criterion) Let W be a nonempty subset of the 
vector space V. Then W is a subspace of V if and only if it is closed under 
addition and scalar multiplication. 

PROOF. Assume that W is closed under addition and scalar multiplication. To 
show that W is a subspace, it suffices to show that it is an additive subgroup, 
and for this we need only show that if v and w lie in W, then so does v - w 
(proposition 2-3). According to the previous result, 

v-w = v + (-w) = v + (-l)w 

But now consider the expression on the right: (-l)w lies in W, since by assump­
tion W is closed under scalar multiplication. Hence so does the sum, since by 
assumption W is moreover closed under addition. The converse is clear. 0 

EXAMPLES 

(1) Given any vector space V, the subsets {O} and V itself are clearly subspaces 
of V. The former is called the trivial subspace. 

(2) Consider the real vector space V=R2, viewed as the coordinate plane. Then 
both the x- and y-axes are subspaces of V. This is most easily seen geomet­
rically: the sum of two vectors on either axis remains on that axis; a scalar 
multiple of a vector lying on an axis again remains on the axis. The same 
argument shows more generally that any line through the origin constitutes 
a subspace of V. 

(3) Next consider the vector space V=kn where k is any field. Let Wbe the set 
of vectors (xw .. ,x) satisfying the equation 

Then W is a subspace of V. The verification is left as an exercise. Notice 
that this generalizes to the solution set of any linear equation of the form 

in n variables. (What happens in the case that the right-hand side is not O?) 
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(4) Working within ~O(R), we have a chain of subs paces 

Here ~n(R) denotes the set of all real-valued functions on R with continu­
ous nth derivative defined everywhere. The required closure properties are 
familiar from calculus. 

(5) Let V=Q[x), the rational vector space of all polynomials in x with rational 
coefficients, and let n be any nonnegative integer. Then the set W of all 
polynomials of degree less than or equal to n is a subspace of V. This holds 
because the sum of two polynomials of degree less than or equal to n is 
again a polynomial of degree less than or equal to n, and similarly for sca­
lar multiplication. (By convention, the degree of the zero polynomial is 
considered to be -00.) 

We now introduce a generic construction of subspaces. 

DEFINITION. Let v w .. , V n be a family of vectors in the vector space V defined 
over a field k. Then an expression of the form 

is called a linear combination of the vectors v1""'v n' The set of all such linear 
combinations is called the span ofv1"",vn and denoted Span(vw"'vn). 

Note that we can extend the notion of span to an infinite family of vectors 
with the understanding that linear combinations drawn from such a collection 
may involve only finitely many vectors with nonzero coefficients. 

3-3 PROPOSITION. Let vp""",vn be a family of vectors in the vector space V. 
Then W=Span(v l ," " ",vn) is a subspace ofV. 

PROOF. Let us consider two linear combinations 

and 

Their sum, by the distributive law, is 
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which is also a linear combination of the given family. In the same vein, it is 
clear that a scalar multiple of a linear combination of the Vj is likewise a linear 
combination of the vt According to the subspace criterion given above, this 
suffices. 0 

If W=Span(v!'" .. ,vn), we say that Wis generated or spanned by v!,"",vn' We 
also say that this family spans W. In the case that V itself is spanned by a finite 
collection of vectors, we say that Visjinitely generated orjinite dimensional. 

EXAMPLES 

(1) Let V=R2 be the coordinate plane. Then the span of the single vector (1,1) 
consists of all multiples a(1,I) = (a,a) and hence is the line x2 =x\. Now 
consider the span of the two vectors (1,1) and (1,0). We claim that this is V 
itself. To verity the claim, we must show that any given point (x\,x2) can be 
expressed as a linear combination of (1,1) and (1,0). But this is to say that 
we can always solve the vector equation 

for a and b. This in turn amounts to the linear system 

a+b =x\ 

a =x2 

for which we indeed have the obvious solution a=x2, b=x\-x2. The student 
would do well to interpret this result geometrically. 

(2) Let V=kn, where k is any field. Consider the family of n vectors 

e\ = (1,0,0, ... ,0) 
e2 = (0,1,0, ... ,0) 

en = (0,0,0, ... ,1) 

These are called the canonical basis vectors for reasons to be explained 
subsequently. Clearly these vectors span V, since it is trivial to write any 
vector (xi'''''xn) as a linear combination of the ei 

n 

(x1, .. ·,xn ) = L>jej 
j=l 

It follows that V is finite dimensional. 
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(3) Consider the span of the functions sin(x) and cos(x) in the real vector space 
~0(R). This consists of all functions of the form 

f(x) = asin(x) + bcos(x) 

where a and b are real numbers. We shall see later, by the way, that ~0(R) 
is not finite dimensional. 

(4) Let V be the vector space of polynomials with rational coefficients of de­
gree less than or equal to n. (Recall that this is a subspace of Q[x).) Then 
V is finitely generated and spanned by the polynomials 1,x,x2, ... ,xn. 

(5) The reader may know that the general solution to the ordinary differential 
equation 

y"-4y=O 

isy=coe2x+c1e-2x. In the language of the current discussion, this is to say 
that the general solution is precisely the span of the functions e2x and e-2x 
in ~2(R). In particular, the solution set constitutes a subspace of this vector 
space. For reasons that will become clear in the following section, such be­
havior is typical of homogeneous linear differential equations. 

3.2 Linear Transformations 

This is the second of the two principal definitions in linear algebra. It expresses 
a relationship between vector spaces (over the same field of scalars) which pre­
serves elements of structure. 

DEFINITION. Let V and V' be vector spaces over a common field k. Then a 
function T: V ~ V' is called a linear transformation if it satisfies the following 
conditions: 

(i) T(v+w)=T(v)+T(w) \tV,WEV 

(ii) T(AV) = AT(v) \tVE V, AEk 

One also says that Tis k-linear or a vector space homomorphism. 

Note that the first condition states that T is a homomorphism of additive 
groups, and therefore all of our previous theory of group homomorphisms ap­
plies. In particular, we have the following derived properties: 
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(iii) T(O) = 0 

(iv) T(-v) = -T(v) 'v'VE V 

(v) T(mv) = m'T(v) 'v'VEV, mEZ 

EXAMPLES 

(l) The constant map from V to V' that sends every element of V to the zero 
vector in V'is, of course, linear. This is called the zero map. 

(2) Let Vbe any vector space. Then Iv: V ~ Vis a linear transformation. More 
generally, let A be any element of k. Then the function T;.: V ~ V defined by 
T;,.(v) = AV is a linear transformation. This follows from the left distributive 
law for vector spaces and the commutativity of k. 

(3) Let V= kn. Define a family of maps PJ, ... ,pn: V~kby 

Then p;, is called projection onto the jth coordinate. The student should 
verify that these maps are indeed linear. 

(4) Let V=R2 and let a,b,c,dbe any real numbers. Then the map T: V~Vde­
fined by 

is a linear transformation. To check this we first verify additivity: 

T«x\ ,x2) + (Y\ 'Y2)) = T(x\ + y\,x2 + Y2) 

= (a(x\ + y\)+b(x2 + Y2),C(X\ + Y\) +d(X2 + Y2)) 

Comparing coordinates, we see that both expressions are equal. We next 
verify that scalar multiplication commutes with T. Let A be any real num­
ber. Then 

T(A(X\ ,x2)) = T(Ax\ ,Ax2) 

= (aAxJ +bAx2,CAxJ +dAx2) 

= A(aoX1 +bx2,coX1 +dx2) 
= AT(x\,x2) 
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This example is most important because it shows that solving the linear 
system 

ll4 +bx2 = YI 

cXj +dx2 = Y2 

amounts to solving the vector equation T(xI'X2)=(YI,y2)' Thus solving a lin­
ear system is equivalent to finding an inverse image under a linear map! 
This observation generalizes to all dimensions. 

(5) Let D: ,?I(R) ~ '6'°(R) be the differentiation operator. Then D is a linear 
transformation of real vector spaces. This amounts to the familiar rules of 
differentiation 

D(f+g) = D(f) + D(g) 

D(aj) = a 'D(f) 

for allf,gE'6'I(R) and aER. 

We resume the main exposition to consider general properties of linear 
transformations. 

3-4 PROPOSITION. The composition of linear transformations is a linear trans­
formation. 

PROOF. Let T: V ~ V and T': V/ ~ V/ be linear transformations. We know that 
their composition T'oT is a group homomorphism, so we need only show that it 
commutes with scalar multiplication. This is trivial: 

T' 0 T(AV) = T'(T(AV» 

= T'(A(T(v» 

= AT'(T(v» 

= A(T' 0 T)(v) o 

Note that since a linear transformation is a special case of a group homo­
morphism, its kernel and image are defined as for groups, and these are sub­
groups of their respective ambient groups by Proposition 2-6. But even more is 
true. 

3-5 PROPOSITION. The kernel and image of a linear transformation are sub­
spaces of their ambient vector spaces. 
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PROOF. Let T: V ~ V' be a linear transformation. We already know that Ker(T) 
and Im(T) are subgroups, so it suffices to show that they are closed under scalar 
multiplication. Assume that v lies in Ker(T). Then for any Aek, 

T(AV) = AT(v )=A.O=O 

and therefore AV also lies in Ker(T). Closure ofthe image under scalar multipli­
cation is equally straightforward and left as an exercise. [J 

The next definition, proposition, and corollary mimic the corresponding re­
sults for groups developed in Section 2.2. 

DEFINITION. A bijective linear transformation T: V ~ V' is called an isomorph­
ism of vector spaces. 

We often write v= V' to indicate the existence of such an isomorphism. The 
student should show that if T is an isomorphism of vector spaces, so is the 
inverse map 11. 

Since linear transformations are in particular group homomorphisms, the 
following assertions need no further proof. (See Proposition 2-7.) 

3-6 PROPOSITION. Let T: V ~ V' be a linear transformation and suppose that 
T(v) =v'. Then the inverse image of v' under Tconsists of sums of the form 
v + u where u lies in the kernel ofT. That is, 

T-1(v') = {v + u : ueKer(T)} 
[J 

3-7 COROLLARY. A linear transformation is injective if and only if it has zero 
kernel. [J 

We now look at some particular cases of this elementary theory. 

EXAMPLES 

(1) Consider the map T:R2~R defined by T(XI,x2)=X1 +x2. The kernel of T 
consists of all points of the form (x,-x) and is thus a line through the 
origin. It follows from the corollary that T is not injective. What is the in­
verse image under T of any real number a? According to the previous 
proposition, since (a,O) is one such pre-image, the entire inverse image 
consists of points of the form (a,O) + (x,-x). This is just the line through 
(a,O) parallel to the line defined by the kernel. 
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(2) We show on general principles that if the real linear system of equations 

2~ -x2 =YI 

XI +X2 =Y2 

has any solution for given YI and Y2' then it is unique. Recall that we can 
realize this system as the vector equation T(xl ,X2) = (YIJ'2) where T is the 
linear transformation defined by 

To show uniqueness of solutions amounts to showing that T is injective, 
which in turn is equivalent to showing that T has zero kernel. Hence the 
entire problem reduces to establishing that the associated homogeneous 
system 

2xI -X2 =0 

XI +X2 =0 

has only the solution (0,0). But this is obvious, as one sees from adding 
both equations to show that both XI and hence x2 are O. This type of argu­
ment admits vast generalization, as we shall see later when we treat the 
general topic of linear systems. 

(3) Let V= R"+ I and let V' be the subspace of R[x] consisting of all polynomials 
of degree less than or equal to n. Define a function T: V ~ V' by 

Hence T takes the n + 1 coordinates of a vector in V as coefficients of a 
polynomial in V'. This map is evidently linear, according to the arithmetic 
of ordinary polynomials, and certainly invertible (map a polynomial to the 
vector defined by its coefficients). Hence V::V'. 

(4) Let V=~2(R) and V' = 'e'0(R). Then the map T: V ~ V' defined by 

T(y) =y"+y 

is linear. (Verify!) Solving the ordinary differential equation 
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amounts to finding the inverse image ofJ(x) =.0+ 12x2 under T. An obvious 
particular solution is y = .0. Now the general solution to the corresponding 
homogeneous equation 

y"+y=o 

is well known to be 

y = clcos(x) + c2sin(x) (CI'C2ER) 

and this amounts to the kernel of T. Hence according to the previous 
proposition, the general solution to the original nonhomogeneous equation 
is 

This discussion is typical of linear differential equations. 

3.3 Direct Products and Internal Direct Sums 

We now introduce two related constructions. The first describes how two or 
more vector spaces over the same field may be combined into a single space. 
The second describes how a given vector space may be decomposed into a kind 
of summation of subspace components. 

Although both of these notions are mathematically fundamental, this mate­
rial is not used heavily in the sequel and may be omitted on a first reading. 

Direct Products 

Let Wo and WI be vector spaces over a common field k. We define their direct 
product, V = Wo X WI' as follows. As a set, V consists of all ordered pairs of ele­
ments from Wo and WI' respectively; that is, 

The additive structure on V is given componentwise: 

And so, too, for the scalar multiplication: 
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As a special case of Exercise 5 of Chapter 2, we know that (V,+) is an additive 
group with identity (0,0). The vector space axioms for scalar multiplication are 
easily verified. 

Clearly we can extend the notion of a direct product to more than two vector 
spaces. Note that the familiar vector space It' is in fact a particular instance of 
this construction: 

k n = k x k x ... xk 
'-----.r----' 

n-times 

Continuing with the case V=WOxWI, we have two projection maps Po and PI 
given by 

Po 
v ~ Wa 

The student should verify that each of these maps is a surjective linear trans­
formation. Again, these notions extend easily to the direct product of more than 
two vector spaces. 

The direct product has an abstract universal property. Given a pair of linear 
transformations To: U ~ Wo and TI : U ~ WI defined on a common vector space 
U over k, there exists a unique linear transformation 

such that 

This may be expressed by the commutative diagram shown in Figure 3.2. 

Figure 3.2. The universal property of the direct product. 
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The definition of ToxTI (and also its uniqueness) is clear: since thejth com­
ponent of ToxTI(u) must be ~(u), (j=O,I) we must have 

for all UEU. We leave the routine details of linearity as an exercise and pass on 
to the next construction, the internal direct sum. 

Internal Direct Sums 

Let Vbe a vector space over a field k. Our task now is to identify conditions un­
der which V can be decomposed into the sum of two or more subspaces which 
are completely independent of each other in a sense to be made clear presently 
(and even more so in the following chapter). 

Let Wo and WI be subspaces of V. Then we write V= Wo + WI if every element 
of V can be written as a sum of the form WO+wI with WjEUJ (j=O,I). If, more­
over, Wo and WI have only the zero vector in common (i.e., Won WI = {O}), we 
then write V= Wo EB WI and say that V is the internal direct sum of Wo and WI' 
Internal direct sums satisfy the following key proposition, which in tum be­
comes the basis of a universal property strikingly related to that of the direct 
product. 

3-8 PROPOSITION. Let V be a vector space. Then the following three statements 
are eqUivalent: 

(i) V is the internal direct sum of subs paces Wo and WI' 

(ii) Every element VE V can be expressed uniquely in the form 

with WjE UJ (j=O,I). 

(iii) V= Wo+ WI' and whenever WO+wl=O for some WjEUJ U=O,l), then 
both Wo and WI are O. 

PROOF. (i)~(ii) Assume that V= WoEB WI' We must show that the representa­
tion of every element in Vas the sum of elements from W. and W respectively 
. . 0 I' , 
1S uruque. Suppose that 

where Wj,UjEUJ (j=O,I). Then 
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But the left-hand side of this equation clearly lies in the subspace Wo, while the 
right-hand side lies in WI. Hence their common value lies in Wo(1 WI which is 
by assumption {O}. Thus 

whence Wj=uj (j=O,I), as required. 

(ii):::} (iii) We are given that V= Wo + WI and that, in particular, the representa­
tion of 0 as a sum of elements in Wo and WI is unique. Hence 0 = 0 + 0 is indeed 
the only such decomposition. 

(iii):::} (i) Assuming (iii), let WE Wo(1 WI. Then the equation 

O=W+(-W) 

implies that W = 0 (since trivially the first term on the right lies in Wo and the 
second term lies in WI). Hence WO(1WI={O} and V=WoEBW\, as claimed. 0 

Just as with direct products, the notion of an internal direct sum extends 
easily to the case of more than two subspaces. In fact, we say V is the internal 
direct sum of subspaces Wo" .. ,Wm (m~ 1) and write 

if the following conditions are satisfied: 

(i) V= Wo + ... + Wm; i.e., every element in V can be expressed as a sum of ele­
ments in the subspaces Wo, ... ,Wm· 

(ii) For allj=O, .. . ,m, nJ (1 ~)V; = {O}. 
#j 

That is, each W. has trivial intersection with the span of the other direct sum­
mands. With this extension of the definition, Proposition 3-8 admits an obvious 
and direct generalization, which we leave as an exercise. 

We conclude with an abstract universal property exhibited by the direct sum. 
Assume that V= WoEB WI· We have two inclusion maps 

which are obviously linear transformations. Now let there be given linear trans­
formations To: Wo ~ U and TI : WI ~ U into a common vector space U over k. 
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Figure 3.3. The universal property of the direct stun. 

Then there exists a unique linear transformation 

such that 

This may be expressed by the commutative diagram shown in Figure 3.3. 
Note how this diagram relates to the corresponding picture for the direct 

product: the arrows have been reversed! For this reason one says the direct sum 
and the direct product are dual constructions. 

The definition of ToffiTI (and hence its uniqueness) is straightforward. Given 
anyveV, we may write v uniquely as a sum WO+wI with wjeUj (;=0,1). Now set 

Similarly, 

as required. Again we leave the routine details of linearity as an exercise. 

EXAMPLES 

(1) Here is a simple example of a direct sum, upon which we shall expand 
implicitly in the following chapter. Let V= R2 and define subspaces Wo and 
WI of Vas follows: 

Wo = {(x,O):xeR} 

WI = {(O,y):yeR} 
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Then Wo is precisely the x-axis, while WI is precisely the y-axis. We have 
the obvious facts 

(i) V= Wo+ WI; 

(ii) Wo and WI intersect only at O. 

Therefore V= WoEB WI' 

(2) Let V= R[x] , the space of all real polynomials in x. Define two subspaces of 
Vas follows: 

Wo = Span{l,x2,x4, ... } 

WI = Span{x,x3,x5, ... } 

Recall that elements of Wo are called even polynomials, and elements of WI 
are called odd polynomials. Since every polynomial in V can be expressed 
uniquely as the sum of an even polynomial and an odd polynomial, it fol­
lows that V= Wo EB WI' 

Exercises 

1. Show that the solution set W of vectors (X I,X2) in R2 satisfying the equation 

is a subspace of R2. 

2. Determine whether the solution set to the equation 

is a subspace ofR3. (Hint: What element must a subspace contain?) 

3. Let V= R2. Exhibit a subset of V which is an additive subgroup of V, but not 

a subspace of V. 

4. Show that a subspace ofR2 containing both (1,0) and (1,-1) must be all of 

R2 itself. 

5. Let V be a vector space over a field k and suppose that U and Ware sub­
spaces of V. Show that U 11 W, the intersection of U and W, is likewise a 

subspace of V. 
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6. Show by example, using V= R2 for instance, that if U and Ware subspaces 
of V, then Uu W, the union of U and W, is not necessarily a subspace of V. 

7. Continuing in the context of the previous problem, show that U u W is a 
subspace of V if and only if either U r:;;;. Wor W r:;;;. U. 

8. Again let U and W be subspaces of V. Let U + W denote the set of all vectors 
of the form u +w where U E U and WE W. Show that U + W is a subspace of V. 

9. Continuing in the context of the previous problem, show that U + W is the 
smallest subspace of V containing both U and W; that is, if X is any sub­
space of V containing both U and W, then U + W r:;;;.x. 

10. Let V= R2. What is the span of the vectors (2,4) and (-5,-10)? Describe 
this set geometrically. 

11. Let V=R2. What is the span of the vectors (1,2) and (2,1)? Describe this set 
geometrically. 

12. Let V=R2. State geometrically under what conditions the span of two non­
zero vectors x and y is all of V. 

l3. Is it possible to find a subspace of R2 which is neither a point, nor a line, 
nor all ofR2 itself? Explain geometrically. 

14. Show that the functions eX, cos(x), and sin(x) in '6"°(R) are not in the span 
of the infinite family of monomials l,x,x2, •••• Remember that a linear com­
bination, even when drawn from an infinite family, may nonetheless in­
volve only finitely many terms. (Hint: This problem essentially asks you to 
show that these familiar transcendental functions cannot be expressed as 
polynomials. What is the fate of a polynomial of degree n after being dif­
ferentiated n + 1 times?) 

15. Show that at least two vectors are required to span the vector space R2. 

16. Let aER and consider the function 

I:R~R 

xHax 

Show that 1 is a linear transformation of real vector spaces. What is the 
kernel of I? The image? (Be sure to distinguish two cases according to 
whether a=O.) 
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17. Define a function A from Rn to R as follows: 

1 " 
A(x)=-LXj 

n j=1 

Thus A (x) is just the average of the components of x. Show that A is a lin­
ear transformation. 

18. Express the kernel of the linear transformation T: R2 ~ R defined by 
T(x) ,x2) = 2x)- 5x2 as the span of a single vector. 

19. What is the kernel ofthe second derivative operator 

~2(R) ~~(R) 

d21 
I~ ax2 

on the real vector space of twice differentiable functions with continuous 
second derivative? 

20. What is the kernel of the nth derivative operator 

~"(R) ~~(R) 

d"1 
I~ ax" 

on the real vector space of n-times differentiable functions with continuous 
nth derivative? 

2l. Explain succinctly why the solution space of the differential equation 

y"-2y'+y=0 

is a subspace of~2(R). 

22. Show that a linear map T: R ~ R2 cannot be surjective. 

23. Let aeR be fixed and consider the function va defined by 

Va 

~O(R) ~ R 

I ~ I(a) 
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This map is called evaluation at a. Note how it reverses the usual roles of 
function and variable. Show that for all real numbers a, the evaluation map 
v is a linear transformation and describe Ker(v ). (For the novice, this im-

a a . 
portant construction can resemble an Escher drawmg!) 

24. Let a and b be real numbers. Define a function J: 'i§"O(R) ~ R on the space 
of continuous real-valued functions on R as follows: 

J(f) = f:f(X)dx 

Show that J is a linear transformation. Deduce from this that the set 

is a subspace of'i§"O(R). Assuming that a*b, what is the image of n 

25. Let T: V ~ V be a linear transformation of vector spaces over k and let AEk 
be a scalar such that there exists a nonzero VE V satisfying the equation 

T(v) = AV 

Thus T maps v onto a scalar multiple of itself. (Note that we do not claim 
this identity for all elements of V, just for some of them.) Then A is called 
an eigenvalue of T and any v (even 0) satisfying the equation above is 
called an eigenvector belonging to A. Show that the set of all eigenvectors 
belonging to the eigenvalue A is a subspace of V. This is called the eigen­
space belonging to A. 

26. Given a vector space V over k, assume that there exist subspaces Wo and WI 
such that V= Wo + WI (see the discussion of internal direct sums in Section 
3.3). Show that ifboth Wo and WI are finitely generated, then Vis likewise 
finitely generated. 

27. Define subspaces Wo and WI in R2 as follows: 

Wo=Span {(O,I)} and WI = Span {(l,I)} 

Show that R2= WoEB WI. (Hint: Using Proposition 3-8, this reduces to show­
ing that a particular system of two linear equations in two unknowns has a 
unique solution.) 
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28. Let U, Wo' and WI be vector spaces over k and let there be given linear 
transformations To: U --+ Wo and TI : U --+ WI' According to Section 3.3, we 
have a linear transformation To x TI : U --+ Wo X WI defined by 

29. Let T: V --+ Vbe a linear transformation from a vector space Vto itself such 
that To T=T. (Such a transformation is called idempotent.) Show that 

V = Ker(T) EB Im(T) 

[Hint: Given VE V, consider the effect of T on v-T(v).J 



4 
Dimension 

This chapter covers the fundamental structure theory for vector spaces. In par­
ticular, we shall show that all vector spaces admit coordinate systems (called 
bases) and that the number of coordinates is intrinsic to the space. These results 
in turn allow us to define the dimension of a vector space and thus to recast this 
most basic of geometric notions in purely algebraic terms. In so doing, we ex­
tend the application of this concept to many settings that have no obvious a 

priori geometric interpretation. 

4.1 Bases and Dimension 

This first definition is somewhat subtle, but the patient reader will see shortly 
that it is one of the keys to defining a coordinate system for an abstract vector 
space. 

DEFINITION. Let Vbe a vector space over k. Then a family of vectors v]"",vn is 
called linearly independent if 

Otherwise we say that the family is linearly dependent. 

To paraphrase, linear independence asserts that the only linear combination 
of the Vi that yields 0 is the one for which all coefficients are O. Linear depend­
ence asserts that there exist coefficients AI' ... ,An, not all 0, such that 

Note that the zero vector is never part of a linearly independent family. In the 
obvious sense we may also speak of a linearly independent or dependent set. 
(Technically, a family is always indexed and hence may have repeated ele­
ments; but see Exercise 1.) The null set is then vacuously linearly independent. 

For simplicity we have given the definitions above for a finite collection of 
vectors, but they are equally sensible for infinite families, provided that we 
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maintain the convention that a linear combination drawn from an infinite fam­
ily may only involve finitely many terms with nonzero coefficients. 

EXAMPLES 

(1) The following vectors in R3 are linearly independent: 

(1,0,0), (1,1.0), (1.1.1) 

To see this, assume that we have a linear combination that sums to 0; this 
is to say that we have a vector equation of the form 

Then comparing components, we see first that a3 must be O. second that a2 

must be 0, and finally that a l must be o. 

(2) The following vectors in R3 are linearly dependent: 

(1.0.0). (1.1.0). (2.1,0) 

This is clear since we have the linear dependence relation 

1·(1.0,0) + 1·(1.1.0) + (-1)·(2.1,0) = (0,0.0) 

The point is that we have achieved 0 as a nontrivial linear combination of 
the given vectors (the trivial case being where all coefficients are 0). 

(3) In k". the canonical basis vectors el •...• en are clearly linearly independent 
since 

n 

LAjej = (~ •... ,AII) 
j=1 

and this can be 0 if and only if all of the coefficients are zero. 

(4) Let v and w be any two vectors in an arbitrary vector space V. We leave it 
as an exercise to show that they are linearly dependent if and only if one is 
a scalar multiple of the other. In the special case V= Rn. this says that two 
vectors constitute a linearly dependent set if and only if they are collinear. 
What is the analogous statement for three vectors in Rn? 



4.1. Bases and Dimension 61 

Observe that if a collection of vectors is linearly dependent, then so is any 
larger collection that contains it. Similarly, if a collection of vectors is linearly 
independent, then so is any subcollection. 

We now come to an essential proposition, one that characterizes the notion 
of linear dependence and, in part, explains the terminology. 

4-1 PROPOSITION. (Characterization of Linear Dependence) Let vl' ...• vn be a 
collection of vectors. Then this family is linearly dependent if and only if 
one of the Vj can be expressed as a linear combination of the others. 

PROOF. =» Suppose that the v's are linearly dependent. Then there exists a 
linear dependence relation 

where not all of the coefficients are O. We may assume without loss of general­
ity that Al is nonzero. (Any other index will do just as well.) Then 

and therefore 

Thus we have indeed expressed v I as a linear combination of the others. Note 
carefully where we have used the assumption that Al is nonzero. 

¢=) Assume without loss of generality that VI can be written as a linear combi­
nation of the remaining vi" Then we have an equation ofthe form 

This yields at once the dependence relation 

which completes the proof. Cl 

The next result is slightly technical, but absolutely essential and used repeat­
edly. The idea is that a linear dependence relation among a collection of vectors 
implies a certain redundancy vis-a-vis their span. 
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4-2 LEMMA. Let vl' ... ,vn be a collection of vectors in V. Then if there is a lin­
ear dependence relation involving vi (i.e., vi occurs with nonzero 
coefficient), the span of the collection is unchanged when vi is deleted. In 
particular, vi lies in the span of the remaining vectors. 

PROOF. As in the previous proof, we can solve for vi in terms of the other 
vectors. We may then substitute the resulting expression into any linear combi­
nation in which vi occurs. This yields an equivalent linear combination of the 
remaining vectors, and hence the span indeed remains unchanged when Vj is 
deleted. (J 

This brings us to the key definition in establishing a "coordinate system" for 
an abstract vector space. 

DEFINITION. A (possibly infinite) collection of vectors B in a vector space V is 
called a basis for V if the following two conditions are satisfied: 

(i) B is linearly independent; 

(ii) B spans V. 

As a quick example, note that the canonical basis ew .. ,en for Ie" is obviously a 
basis in the sense just defined. 

We shall see below that conditions (i) and (ii) taken together imply a precise 
balance: B must contain enough vectors to span V, but not so many that it 
becomes linearly dependent. First we show that a basis is indeed akin to a 
coordinate system. 

4-3 PROPOSITION. B is a basis for V if and only if every vector in V can be 
written as a linear combination of the vectors in B in exactly one way. 

PROOF. ~) Since by assumption B spans V, every vector in V can be written 
somehow as a linear combination of elements of B. To demonstrate uniqueness, 
assume that two linear combinations of elements Vi in B U:= 1, .. . ,n) are equal: 

Moving all of the terms to the left, we obtain 

But the v. are linearly independent. Therefore all of the coefficients on the left 
must be 6, showing that the corresponding Ai and Pi are indeed identical. 
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<=) First note that B clearly spans V. Now if every vector in V can only be writ­
ten as a linear combination of elements of B in one way, then, in particular, 0 
can only be written as a linear combination of the elements of B in one way: all 
coefficients must be O. Hence by definition, B is linearly independent and there­
fore a basis for V. 0 

Given that V has a basis B of n elements v 1' .•• , V n' this proposition gives rise 
to an important linear transformation, the coordinate map YB: V ~k!', defined as 
follows: 

That is, the coordinate map extracts the coefficients arising in the unique ex­
pression of v as a linear combination of the basis elements and deposits them 
into the corresponding components of a vector in k!'. The student should verify 
that YB is linear and is in fact an isomorphism of vector spaces. (Hint: The in­
verse map is obvious.) The coordinate map will become more and more impor­
tant in later chapters. 

EXAMPLES 

(1) As noted above, the canonical basis for k!' is a basis. Clearly every element 
of k!' can be expressed uniquely as a linear combination of the canonical 
basis vectors as follows: 

n 

(~,···,A-n) = LA-jej 
j=l 

With respect to this basis, the coordinate map is precisely the identity map! 

(2) Consider the vector space V=R2. One verifies easily that the vectors 

both span V and are linearly independent. They therefore constitute a basis 
B for V. Let us consider the coordinate map. What is Y8(2,1)? We first ex­
press (2,1) as a linear combination of VI and v2: 

(2,1)= 1'(1,0)+ 1'(1,1) 

Both coordinates are thus 1 and we have 

rB(2,I) = (1,1) 



64 4. Dimension 

As an easy exercise, the student should deduce a general formula for the 
value of YB(XI'XJ. 

(3) The vector space V= R[x) of polynomials with real coefficients has infinite 
basis 1,x,x2, ... ,xn, ... since a polynomial can evidently be written in exactly 
one way as a linear combination of these monomials. If we take W to be the 
subspace of V consisting of polynomials of degree less than or equal to n, 
then we have the finite basis 

B = {l,x,x2, ... ,x"} 

and the associated coordinate map YB is just the vector of coefficients in the 
vector space /('t+l: 

(This is one of many cases for which it is more sensible to label the first 
coordinate ao.) 

We next develop other characterizations of bases. First, two definitions: 

DEFINITIONS. A subset S of V is called a maximally linearly independent set if it 
is linearly independent and not properly contained in any larger linearly inde­
pendent set. A subset S of V is called a minimal generating set or a minimal 
spanning set if it spans V, but no proper subset of S also spans V. 

4-4 PROPOSITION. Let S be a subset of the vector space V. Then the following 
three statements are equivalent: 

(i) S is a maximally linearly independent set. 

(ii) S is a minimal generating set. 

(iii) S is a basis for V. 

PROOF. We show (i) <:} (iii) and (ii)<:}(iii), which clearly establishes the result. 

(i) ~ (iii) We must show that S spans V. Given VE V, by assumption the set 
consisting of v and S is linearly dependent. Hence there is a dependence rela­
tionship in Su{v} and this must involve v, since S alone is an independent set. 
But then v lies in the span of S by Lemma 4-2, and since v was arbitrary, S 
spans V, as required. 
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(iii)=>(i) Since S is a basis, anything we might adjoin to it can already be writ­
ten as a linear combination of the elements of S, and so results in a linearly 
dependent set. Thus S is maximally linearly independent. 

(ii)=>(iii) We must show that S is linearly independent. Ifnot, then S is linearly 
dependent and we can delete an element without diminishing its span. But this 
contradicts the assumed minimality of S. 

(iii) => (ii) We must show that no proper subset of S can also span V. But if this 
were false, it would be possible to delete a vector v from S and still to span V. 
Then, in particular, v itself would have to lie in the span of the remaining vec­
tors, contradicting the assumed linear independence of S (by Proposition 4-1).0 

We now have three characterizations of bases: as coordinate systems, as 
maximally linearly independent sets, and as minimal generating sets. Our next 
pair of results does some essential counting. We begin with a major theorem on 
finitely-generated vector spaces. 

4-5 THEOREM. (The Exchange Theorem) Suppose that the collection v\"",vn 
spans V andw\"",wr is a linearly independent set. Then r~n. 

PROOF. This is subtle. Consider the slightly extended family 

This family is linearly dependent, since the v's already span V and so, in par­
ticular, WI can be written as a linear combination of them. Now any linear 
dependence relation must involve some of the v's since WI by itself is a linear 
independent set. Hence by Lemma 4-2, we can delete one of the v's-let's say 
VI-without diminishing the span of the collection, which accordingly remains 
all of V. Next consider the family 

Repeating the same argument, we find (i) that the family is linearly dependent, 
(ii) that the dependence relation must involve one of the v's since WI and w2 are 
by themselves linearly independent (being a subset of a linearly independent 
set), and (iii) that we can delete, say, v2 from the collection, preserving the span 
(which is again V). Now we can continue this process until all of the w's have 
been fed into the hybrid family of v's and w's, and at each step we are guaran­
teed to be able to delete one of the v's. But for this to be possible, r, the number 
ofw's, must be less than or equal to n, the number of v's. 0 
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This theorem shows us, at last, that the vector space axioms suffice to 
capture the notion of dimension. 

4-6 COROLLARY. (Existence of Dimension) Suppose that Band B' are both 
bases for the finitely-generated vector space V. Then Band B' have the 
same number of elements. 

PROOF. First note that according to the preceding theorem, both bases must be 
finite since V is spanned by finitely many vectors. So let n be the number of 
elements in B and let n' be the number of elements in B'. Then since B is 
linearly independent and B' spans V, we have n~n'. But likewise B' is linearly 
independent and B spans V, and so n' ~ n. Taken together, these inequalities 
imply that n=n'. (J 

This result in turn yields a critical definition. 

DEFINITION. The number of elements in a basis for a finitely-generated vector 
space V is called the dimension of V and denoted dim(V). The zero vector space 
is assigned dimension 0 and the empty set as basis. 

EXAMPLES 

(1) The vector space k" evidently has dimension n, since the canonical basis 
has n elements. 

(2) The vector space R[x] is not finitely generated (why?), and thus we say it is 
infinite dimensional. The subspace of all polynomials of degree less than or 
equal to n is finite dimensional and has dimension n+ 1, according to Ex­
ample 3 above. 

(3) We remarked earlier that the solution set to the differential equation 

y"+y=O 

is spanned by the linearly independent functions sin(x) and cos(x). Hence 
this subspace of ~2(R) has dimension 2. 

(4) The solution set in R2 to the linear equation 

is spanned by the single vector (1,-1), since the general solution is clearly 
{(x,-x) :xeR}. Hence its dimension is 1. 
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4.2 Vector Spaces Are Free 

We address the existence of bases in general, beginning with a technical 
proposition that applies to finitely generated vector spaces and is valuable in its 
own right. 

4-7 PROPOSITION. Let Sand S' be finite subsets of V such that 

(i) Sr:;;,S'; 

(ii) S is linearly independent; 

(iii) S'spans V. 

Then there exists a basis B of V such that Sr;;Br:;;,S'. 

In other words, between every linearly independent set and spanning set 
there is a basis. 

PROOF. Let S consist of the linearly independent vectors VI'" .,V n' and suppose 
that S' consists of these together with the additional vectors wp""wm' If S' is 
linearly independent, we are done. If not, at least one of the Wj is involved in a 
linear dependence relation (otherwise we contradict the independence of the Vj)' 

By Lemma 4-2, this vector may be deleted without affecting the span, which is 
therefore still V. Continuing in this way to delete the redundant w's, we must 
eventually reach a linearly independent set that spans V. This is the desired 
basisB. 0 

This proposition leads at once to the fundamental structure theorem for 
vector spaces. We prove it here only for finite-dimensional spaces, but it is true 
in general. 

4-8 THEOREM. The follOWing statements hold in any vector space: 

(i) Every linearly independent set may be extended to a basis. 

(ii) Every spanning set may be contracted to a basis. 

(iii) Every vector space has a basis. 

For reasons explained in Section 6.4, the last assertion is often stated thus: 

Vector spaces are free! 

and hence the title of this section. One cannot overstate the consequences of 
this fact, which we take as the Fundamental Theorem of Linear Algebra. 
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PROOF. As remarked above, we shall only treat the case of a vector space V 
spanned by finitely many elements. Hence any linearly independent set is finite 
and any spanning set admits a finite subset which also spans. (See Exercise 18.) 

(i) Let S be any linearly independent set and let T be a finite spanning set. 
Apply the previous proposition to S and S'=Su T to obtain a basis which con­
tains S. 

(ii) Let T be any spanning set. By the introductory remarks above, we may 
assume that T is a finite set. Apply the previous proposition to S'=T and S=0 
to obtain a basis which is a subset of T. 

The final statement follows at once from either (i) or (ii): we may extend the 
null set to a basis or contract any spanning set to a basis. 0 

4-9 COROLLARY. Every finite-dimensional vector space V over k is isomorphic 
to It' for some n. 

PROOF. As observed above, the coordinate map 18 for any basis B provides the 
isomorphism. (The point is that we now know a basis exists.) 0 

The contractibility of spanning sets to bases leads to our last characterization 
of bases. First we state a proposition which constitutes an important general 
criterion for deciding linear independence or span. 

4-10 PROPOSITION. Let V have dimension n. Then (i) no subset of V of more 
than n vectors can be linearly independent and (ii) no subset of V of 
fewer than n vectors can span V. 

PROOF. The first assertion restates the Exchange Theorem. For the second, note 
that any spanning set of fewer than n elements can be contracted (by Theorem 
4-8) to a basis of fewer than n elements, contradicting the uniqueness of 
dimension. 0 

4-11 THEOREM. Let V have dimension n and let S be a collection of n vectors 
in V. Then the following three statements are equivalent: 

(i) S is linearly independent. 

(ii) S spans V. 

(iii) S is a basis for V. 

PROOF. (i) => (iii) The first part of the previous proposition implies that S is 
maximally linearly independent and hence a basis for V. 
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(ii) => (iii) The second part of the previous proposition implies that S is a 
minimal generating set and hence a basis for V. 

The implications (iii) => (i) and (iii) => (ii) are trivial, so we have (i) <=> (iii) 
and (ii) <=> (iii), which completes the proof. 0 

REMARK. Note the following immediate consequence of this last theorem: if V 
has dimension nand W is a subspace of V also of dimension n, then W= V. This 
holds because a basis for W consists of n linearly independent vectors in V, 
which therefore constitute a basis for V. 

We conclude this hoard of fundamental results with an obvious-sounding, but 
slightly subtle fact about subspaces offinite-dimensional spaces. 

4-12 PROPOSITION. Every subspace of a finite-dimensional vector space is 
finite dimensional of smaller or equal dimension. 

PROOF. Let W be a subspace of the n-dimensional vector space V. Expand the 
null set one vector at a time to a maximally linearly independent set in W, 
which is therefore also a basis for W. This process must terminate in less than 
or equal to n steps, since a linearly independent set in W is also a linearly in­
dependent set in V, and, as we have seen, V cannot accommodate more than n 
linearly independent vectors. Hence W has a basis of less than or equal to n ele­
ments and corresponding finite dimension. [Note that we could not directly 
appeal to the result on the existence of bases (Theorem 4-8) since we have only 
proven it for finitely-generated spaces, and until now we had not shown that a 
subspace ofa finitely-generated vector space is finitely generated.] 0 

EXAMPLES 

(1) We know now on general principles that since R2 has dimension 2, any 
three vectors in R2 must be linearly dependent. We can visualize this geo­
metrically: two linearly independent vectors already span the plane. More 
generally, for any field k, any n + 1 vectors in k" must likewise be linearly 
dependent. 

(2) The vector space WO(R) is infinite dimensional since the polynomial func­
tions constitute an infinite-dimensional subspace. [Actually the identifica­
tion of R[x] with a subspace of WO(R) requires a little work. How does one 
know that distinct real polynomials produce distinct functions? This is not 
true, for instance, over the finite field Fp (cf. Section 2.3). We leave this 
question as an exercise with the following hint: If p(x) is a polynomial and 
per) = 0, then by high school algebra (x- r) is a factor of p(x). Hence the 
only polynomial which evaluates to ° everywhere is the ° polynomial.] 



70 4. Dimension 

(3) The following vectors are easily shown to be linearly independent in R3 
and hence a basis: 

(1,0,0), (1,1,0), (2,0,1) 

It follows that any vector in R3 can be expressed uniquely as a linear com­
bination of these three vectors. 

(4) Consider the following linear system in three variables over any field: 

al XI + bl x2 + q X3 = y) 

a2x) + b2x2 + C2X3 = Y2 

a3x) + b3x2 +C3X3 = Y3 

With respect to this system, we claim that the following statements are 
equivalent: 

(i) The system has at least one solution for all y),y2,y3. 

(ii) The corresponding homogeneous equation (all y.=O) has only the triv-
ial soluti@n (all Xj=O). J 

(iii) The system has exactly one solution for all YI,y2,y3. 

To see this, note that statement (i) is equivalent to the assertion that the 
vectors (a),a2,a3), (b»b2,b3), (c),c2'c3) span k3. (This is easier to see if we 
regard these vectors as columns rather than rows-something that we shall 
do more and more in the sequel.) Statement (ii) is equivalent to the asser­
tion that (a»a2,a3), (b»b2,b3), (c),c2'c3) are linearly independent. Finally, 
statement (iii) is equivalent to the assertion that (a»a2,a3), (b),b2,b3), 

(C),C2'C3) constitute a basis for R3. But according to Theorem 4-11, for any 
three vectors in k3, the attributes of being a spanning set, a linearly in­
dependent set, or a basis are equivalent, and therefore so are statements (i), 
(ii), and (iii), as claimed. This argument generalizes directly to higher 
dimensions, as we shall see in the following chapter. 

(5) Along the same lines as (4), one observes that a homogeneous linear 
system of three equations in four or more unknowns always has a nontriv­
ial solution in k3. This reduces to the observation that four or more vectors 
in k3 are linearly dependent. Again we have a more general statement in 
k". 
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4.3 Rank and Nullity 

This brief section describes a key connection between the image and the kernel 
of a linear transformation of finite-dimensional vector spaces. 

4-13 THEOREM. Let T: V ~ W be a linear transformation offinite-dimensional 
vector spaces. Then 

dim(Ker(T» + dim(Im(T» = dim(V) 

That is, the dimension of the kernel plus the dimension of the image is 
equal to the dimension of the domain. 

The number dim(Ker(T» is often called the nUllity of T while dim(Im(T» is 
often called the rank of T. Hence this theorem is often called the Rank-Nullity 
Theorem. 

PROOF. Let vI, ... ,vn be a basis for Ker(T). Extend this to a basis 

for V. By definition dim(Ker(T» = n and dim(V) = n + m. Hence it remains to 
show that dim(lm(T» = m. We do this by exhibiting a basis for Im(T) of pre­
cisely m elements. 

Since T is a surjective map onto its image, we have, by Exercise 15 below, 
that T maps the spanning set VI' ••• ' V n' WI' ••• ' W m for V onto the spanning set 

for Im(T). Now by construction, the first n of these images are 0 (because the 
vectors Vj lie in the kernel of T), so we may immediately contract this spanning 
set to T(wl), ... ,T(wm). We next show that this family is also linearly independ­
ent and therefore a basis for Im(T). Suppose that 

2 I T(wl)+···+2mT(wm)=O 

Then by linearity, we have that 

whence 
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But since Ker(T) is spanned by the v/s, it follows that 

for some family of l1/s in k. But unless all of the 2/s and J.l/s are 0, this violates 
the uniqueness of coordinates relative to the basis vl'""vn,wI"",wm for V 
(proposition 4-3). This completes the proof. [J 

4-14 COROLLARY. Let T: V -. W be a linear transformation of finite-dimension­
al spaces of the same dimension. Then the following three statements are 
eqUivalent: 

(i) T is injective. 

(ii) T is surjective. 

(iii) T is an isomorphism. 

PROOF. Clearly it is enough to show (i) <=> (ii). Let n be the common dimension 
of V and W. By Corollary 3-7, Tis injective if and only ifKer(T) ={O}; which is 
to say, if and only if dim(Ker(T» = O. By the remark following Theorem 4-11, 
T is surjective if and only if dim(Im(T» = n, the dimension of W. Hence it 
suffices to show that dim(Ker(T» = 0 if and only if dim(Im(T» = n. But in light 
of the equality dim(Ker(T»+dim(lm(T»=n, this is a triviality, and the proof is 
complete. [J 

4-15 COROLLARY. Let T: V-.W be a linear transformation offinite-dimension­
al vector spaces. 1fT is injective, then dim(V);5;dim(W).1fT is surjective, 
then dim(V):2':dim(W). 

PROOF. An easy exercise in the Rank-Nullity Theorem. 

Exercises 

1. Let vl' ... ,vn be a linearly independent family in a vector space V. Show that 
if i"#j, then Vj"#vj" In other words, a linearly independent family can never 
contain a repeated vector. 

2. Show that the following vectors are linearly independent in R3: 

(1,1,1) and (0,2,5) 
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3. Show that the following functions are linearly independent in g"D(R): 

sin(x) and cos(x) 

[Hint: Suppose that there exist a,bER such that a·sin(x)+b·cos(x)=0 for all 
x. Evaluate this linear combination at both x=o and x=ld2 to determine 
both a and b.] 

4. Give an example of a basis for RZ other than the canonical basis. 

5. Show that each vector xER3 can be expressed uniquely as a linear com­
bination of the following vectors: 

a=(1,I,1), b=(-I,I,O), c=(2,O,O) 

Conclude that a, b, and c constitute a basis for R3. 

6. Let V be the vector space of real polynomials in the indeterminate x of de­
gree less than or equal to 2. Given that the polynomials 

I, l+x, and I-x z 

constitute a basis B for V, find the coordinates of the following polynomial 
relative to this basis: 

1-2x+5xZ 

In other words, compute YB for this polynomial. 

7. Let Vbe the subspace of'6'D(R) spanned by the functions eX and e2x. Show 
that these functions constitute a basis for V What is the value of the asso­
ciated coordinate map for the function -2ex + 5e2x? (Remember that this is 
a vector in RZ.) 

8. Let aI' az, a3, a4 be nonzero real numbers. Show that the following set of 
vectors constitutes a basis B for R4: 

Find a general formula for the effect of the coordinate map YB on a vector 
(xl'xZ,X3,XJER4. (This yields a modest example of a lower triangular sys­
tem of equations; note how easily it is solved. Much more on this follows 
in Section 5.3 below.) 
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9. Extend the following linearly independent set to a basis for R3: 

(1,0,1) and (1,1,0) 

Be sure to establish that your answer indeed constitutes a basis. 

10. Give two examples of a real vector space of dimension 4. 

11. Give an example of an infinite-dimensional real vector space. 

12. Given that the solution space to the differential equation 

y"-2y ' +y=o 

is a subspace of~2(R) of dimension 2, show that the functions 

constitute a basis for this subspace. What, then, is the general solution to 
this equation? 

13. Let T: V ~ V' be a linear transformation of real vector spaces. Show that the 
solution set to the equation T(v) = 0 consists of either a single element or 
infinitely many elements, according to the dimension of the kernel of T. 

14. Let T: V ~ V' be a linear transformation of real vector spaces and let v' be 
an arbitrary element of V'. Show that the solution set to the equation T(v) = 

v'is either empty, or consists of a single element, or consists of infinitely 
many elements. 

15. Let T: V ~ V' be a smjective linear transformation. Show that if vp ... ,vn 
span V, then T(v1),oo.,T(vn) span V'. In other words, a surjective linear 
transformation maps a spanning set to a spanning set. [Hint: Choose any 
element v' E V'. It is equal to T(v) for some v in V, since T is surjective. Now 
express v as a linear combination of the given spanning set; map it over by 
T and see what happens.] 

16. Let T: V ~ V' be an injective linear transformation. Show that if vI" oo,vn is 
a linearly independent family in V, then T(vl),oo.,T(vn) is a linearly inde­
pendent family in V'. In other words, an injective linear transformation 
maps an independent set to an independent set. [Hint: This is quite elegant. 
Show that a linear combination of the T(v) which equals 0 implies a linear 
combination of the v. which lies in the k6rnel of T. But what is the kernel 

} 

of an injective linear transformation?] 
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17. Let T: V ~ V' be an isomorphism of vector spaces. Show that ifv" ... ,vn is a 
basis for V, then T(v,), ... ,T(vn) is a basis for V'. In other words, an isomor­
phism maps a basis to a basis. (Hint: Read the two previous problems 
again.) 

18. Let V be a finitely-generated vector space over k and let S be a (possibly 
infinite) spanning set for V. Show that there exists a finite subset of S that 
also spans V. This justifies one of the preliminary remarks in the proof of 
Theorem 4-8. [Hint: By assumption, V admits some finite spanning set T, 
every element of which can be written as a (finite!) linear combination of 
elements of S. Argue from this that only the vectors in S needed for these 
special linear combinations are required to span V. ] 

19. Suppose that T is a linear transformation from a vector space of dimension 
3 to a vector space of dimension 2. Use the Rank-Nullity Theorem to show 
that T is not injective. 

20. Suppose that T is a linear transformation from a vector space of dimension 
3 to a vector space of dimension 4. Use the Rank-Nullity Theorem to show 
that T is not surjective. 

21. Let Vbe the vector space of real polynomials of degree less than or equal to 
2 in the indeterminate x, and consider the linear transformation 

T:V ~ V 

d2 p 
P H--p 

dX2 

Show that the kernel of T is trivial. Deduce from this that the map T is an 
isomorphism. (Hint: Directly compute the effect of T on the general quad­
ratic polynomial ax2 +bx+c.) 

22. Let T: V ~ W be a linear transformation and assume that dim(V) = 6 while 
dim(W) =4. What are the possible dimensions for Ker(T)? Can T be injec­
tive? Why or why not? 

23. Let Vbe the vector space of real polynomials of degree less than or equal to 
2. Define T: V~R by 

J+' T(p) = _, p(x)dx 

Show that T is linear. What is the dimension of the kernel of T? (Hint: 
You need not compute the kernel to do this.) 
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24. Let V and V' be finite-dimensional vector spaces over a common field and 
suppose that dim(V) ~ dim(V'). Show that there exists a surjective linear 
transformation from V to V'. 

25. Let Vbe a vector space with finite-dimensional subspaces Wo and WI such 
that V=WoEBWI . (Review the internal direct sum in Section 3.3 above.) 
Suppose further that vp""",vn is a basis for Wo and up""",um is a basis for 
WI. Show that V is likewise finite-dimensional and that vp "" ",v n'up "" ",um is 
a basis for V. (This shows, moreover, that dim(V)=dim(Wo)+dim(WI).] 

26" Let Vbe a finite-dimensional vector space over a field k and assume that V 
has basis vP"""'vn" Show that 

where kvj denotes the subspace spanned by the single vector Vj in V. 

27. Let V be a vector space of dimension lover a field k and choose a fixed 
nonzero element VOE V, which is therefore a basis. Let W be any vector 
space over k and let WOE W be an arbitrary vector. Show that there is a 
unique linear transformation T: V ~ W such that T(vo) = WOo (Hint: What 
must T(AVO) be?] 

28. Let V be a finite-dimensional vector space over k and let W be any vector 
space over k. Suppose that vI,""",vn is a basis for V and that wp""",wn is an 
arbitrary family in W. Use the two previous problems and the universal 
property of internal direct sums to show that there exists a unique linear 
transformation T: V ~ W such that T(vj) =Wj (j=l,""",n). (We shall revisit 
this important result in Chapter 6, giving a less abstract proof.) 

29. Let V be a finite-dimensional vector space and assume that Wo is a sub­
space of V. Show that there exists a complementary subspace WI of V such 
that V= WoEB WI. (Hint: Extend a basis for Wo to a basis for V) 

30. Let T: V ~ V' be a surjective linear transformation of finite-dimensional 
vector spaces. Show that there exists a subspace Wof V such that 

V = Ker(T) $ W with W= V' 

(Hint: Use the proof of the Rank-Nullity Theorem.) 
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31. Give an example of an infinite-dimensional vector space V and a linear 
transformation T: V ..... V such that both Im(T) and Ker(T) are also infinite 
dimensional. (Hint: Try V=R[x), the vector space of polynomials with real 
coefficients. ) 



5 
Matrices 

This chapter formally introduces matrices and matrix algebra. First, we take a 
superficial look at matrices simply as arrays of scalars, divorced from any 
extrinsic meaning. We define the elements of matrix arithmetic and show that 
it is formally well behaved, which is surprising since the definition of matrix 
multiplication looks somewhat unnatural at this point. Second, we consider the 
connection between matrices and linear systems of equations. This begins to 
build a bridge between vector space theory and matrix theory that will be com­
pleted in the following chapter. Finally, we survey two powerful solution tech­
niques for linear systems and a related method for matrix inversion. 

5.1 Notation and Tenninology 

DEFINITION. Let k be a field. Then an mxn matrix over k is an array of the form 

all a l2 a ln 

A= 
a 21 a 22 a 2n 

where each entry aij lies in k. We often write A = (ai) to indicate that A is a ma­
trix whose (i,j)-entry is aij. The set of all such matrices is denoted Matmxn(k). 

One finds it convenient to establish notation describing both the rows and 
columns ofA. HenceforthAI, ... ,An will denote its columns andAI, ... ,Am will 
denote its rows. These may be regarded as vectors in ~ or~. [Indeed, vectors 
in ~ may likewise be considered either lxn matrices (row matrices) or nxl 
matrices (column matrices). The latter interpretation is more prominent.] We 
often consider A to be the amalgamation of its columns and write 
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In the important special case that m=n, we speak of square matrices and let 
M (k) denote the set of all square matrices with entries in k. 

n We now introduce two binary operations and an external scalar operation on 
matrices. Addition and scalar multiplication are natural and obvious; multipli­
cation is natural but obscure. 

DEFINITIONS. LetA = (aij) andB=(bij) lie in Matmxn{k). Then their sumA+B is 
the mxn matrix C={cij) defined by 

For any AEk, the scalar product M is the mxn matrix whose (i,j)-component is 
Aaij; that is, M = (Aaij). 

Thus addition is only defined for matrices of the same size, in which case it 
amounts to addition of corresponding components. Scalar multiplication has 
the effect of multiplying every entry by the given scalar. These operations are 
remarkably similar to those defined on ~, and in fact we have the following 
fundamental result. 

5-1 PROPOSITION. For all m and n, Matmxn{k) is a vector space over k of di­
mension mn. In particular, the matrices of a given size form an additive 
group with respect to matrix addition. 

PROOF. The proof is entirely similar to that for ~. The zero matrix of a given 
size is that matrix whose entries are all O. To see that the dimension of the 
space Matmxn(k) is mn, note that the following mn matrices constitute a basis: 

Eij = the matrix whose (i,j)-component is 1, with all other com-
ponents 0 (l~i~m, l~j~n) 0 

We now move on to the more interesting operation-matrix multiplication. 

DEFINITION. Let A EMatmxn(k) and BEMatnx/k), so that the number of columns 
of A is equal to the number of rows of B. Then we define their productAB to be 
the mxp matrix C=(cij) defined by 

n 

cij = L ai/Plfj 
k~1 

Note that the variable k used here as a summation index is not to be 
confused with the field k. (The distinction, in general, is clear from the con­
text.) When expanded, the summation above has the form 
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from which one sees that the (i,j)-component of AB is the "dot product" of the 
ith row of A with the jth column of B. 

EXAMPLE. We give one numerical example of a matrix product. (Any further 
such computations would be antithetical to the ethereal spirit of this book!) We 
calculate the product of a 2x3 matrix with a 3x4 matrix; the result is a 2x4 
matrix: 

We review in particular the calculation of the (2,3)-entry of the product. This is 
the dot product of the row 2 of the left-hand factor with column 3 of the right­
hand factor. Hence 0·0+2·1 + 1'2=4. 

Note that the product of an mxn matrix with an nx 1 column matrix is de­
fined and results in an mx 1 column matrix. In terms of these special products, 
one may show easily that 

(5.1) 

This is to say that to compute AB we may multiply each column of B by A and 
then amalgamate the resulting columns. 

WARNING. Matrix multiplication is not commutative. Worse yet, BA may not be 
defined, even though AB is, unless A has as many rows as B has columns. 

A special matrix in Mn(k) that arises in connection with matrix multiplica­
tion is the nxn identity matrix, denoted In' whose (i,j)-entry, often denoted 5;;, is 
1 if i = j and 0 otherwise. (The symbol 5;1 is called the Kronecker delta.) Thus 

I = n 

100 

010 

o 0 1 

In has the special property that! nA = A and A In = A whenever these products are 
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defined. The identity matrix is a special case of a diagonal matrix, a square 
matrix which has nonzero entries only on its top-left to bottom-right diagonal. 

We now summarize the principal arithmetic properties of matrix multi­
plication. Not surprisingly, Mn(k) fits snugly into one of the abstract structures 
introduced in Chapter 2. 

5-2 PROPOSITION. Matrix arithmetic has the following properties, whenever the 
indicated sums and products are defined: 

(i) (AB)C=A(BC) 

(ii) A(B+C) =AB+AC 

(iii) (A+B)C=AC+BC 

(iv) A(AB)=(M)B=A(AB) VAEk 

In particular, Mn(k) is a ring with unity. 

PROOF. All of these may be proved by direct calculation. We shall only prove 
(ii), leaving (iii) and (iv) as exercises and postponing (i) until later, when a par­
ticularly elegant argument will suggest itself. So let A = (ai) be an mxn matrix 
and let B=(bi) and C=(cij) be nxp matrices. We must show that corresponding 
components of A(B+C) andAB+AC match. The (i,i)-entry of B+ Cis biJ+ci,J' 
whence the (i,j)-entry ofA(B+C) is by definition 

n n n n 

~>ik(blg' +clg') = ~)ai~lg' +aikclg) = Lai~lg' + Laikclg' 
k=l k=l k=l k=l 

Here we have freely used the arithmetic properties of the field k. The right-hand 
side of the equation is precisely the sum of the (i,j)-entry of AB with the (i,i)­
entry of A C, and this is evidently the (i,i)-entry of AB + A C, thus completing the 
proof. D 

We conclude this section with two other basic notions: the transpose and the 
inverse. (The transpose is of far greater importance than is suggested by the 
following definition. Chapter 6 provides enlightenment.) 

DEFINITION. LetA = (aij) be an mxn matrix. Then lA, the transpose of A, is the 
nxm matrix whose (i,i)-component is aJi; that is, IA = (aJi). A (necessarily 
square) matrix equal to its own transpose is called symmetric. 

More conceptually, we obtain the transpose of A from A itself by inter­
changing its rows and columns. Clearly a diagonal matrix is symmetric. 
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EXAMPLE. We transpose a 2x3 matrix to obtain a 3x2 matrix: 

Matrix transposition is linear, but not quite multiplicative, as this next result 
shows. 

5-3 PROPOSITION. The matrix transpose has the following properties, whenever 
the indicated sums and products are defined: 

(i) I{A+B)=IA+IB 

(ii) I(M)=A IA 'VAEk 

(iii) I{AB)= IBIA 

We leave the proofs as exercises. A noncomputational explanation of (iii) 
follows easily from the results of Section 6.4. (See Chapter 6, Exercise 26.) Cl 

DEFINITION. An element A of Mn(k) is called invertible or nonsingular if there 
exists an element B EMn{k) such that AB = In = BA. The set of all such invertible 
matrices is denoted GLn{k) and called the general linear group of rank n matri­
ces over k. 

5-2a PROPOSITION. GLn(k) is a group for all nand noncommutative for n> l. 

PROOF. The student should show that for any ring A with unity, the set of mul­
tiplicatively invertible elements of A constitutes a group under the ring multi­
plication. (Closure is the only issue, albeit a small one.) This is called the group 
of units of A and denoted A x. By definition, GLn{k) is the group of units in the 
matrix ring Mn{k), and hence a group. Noncommutativity is slightly more 
subtle, but one shows easily that the following calculation in GLik) , which 
works over any field, can be "imported" into any larger matrix ring: 

G ~)G ~)=G ~) 
G ~)(~ ~)=(~ ~) Cl 

The proposition also shows tlmt the ring Mn{k) is noncommutative for n> 1. 
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The group GLn(k) is one of the most fundamental objects in mathematics, 
for reasons which will begin to emerge in the following section. Indeed, linear 
algebra abounds with tests for invertibility. 

5.2 Introduction to Linear Systems 

Throughout this section we regard vectors in ~ as columns (Le., nx 1 matrices). 
Let A = (aij) be an mxn matrix with entries in k. Then given XE~ the product 
Ax lies in It''. Hence we have a mapping 

which by the basic properties of matrix arithmetic (proposition 5-2) is a linear 
transformation: 

A(x+y) = Ax+Ay and A(Ax) = A.-Ax 

Let us explicitly describe Ax in terms of its components: 

= 

allx, +a'2x2+-"+a'nxn 
a2,x, + a22x2 +- .. +a2nxn 

We record two results apparent from this imposing equation. 

(1) The matrix product Aej of A with the jth canonical basis vector for ~ is 
precisely the jth column of A. (In the explicit equation above, x. is 1 while 
all other x's are O. Hence only the terms corresponding to the}th column 
appear on the right.) That is, 

Ae.=Aj 
J (5.2) 

This simple formula appears repeatedly at critical points throughout the 
remainder of the text. 

(2) The linear system of m equations in n unknowns 
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a11xI + ... + alnxn = YI 

ll:!IXI + .. ·+a2nxn = Y2 

is equivalent to the single matrix equation Ax=y. This might also be ex­
pressed as a vector equation as follows: 

a11 aln YI 
a21 a2n Y2 

xl + .. ·+ x = n 

ami amn Ym 

In the special case that y = 0 (so that all of the right-hand terms are 0), we 
speak of a homogeneous linear system. Note that the scalars are written on 
the right-an acceptable abuse in this one case. 

We now record some fundamental results about linear systems which follow 
directly from our results on linear transformations and dimension. Henceforth, 
if A is an mxn matrix over k, we let TA denote the corresponding linear trans­
formation from ~ into ~ which sends x to Ax; that is, 

The rank of A, denoted rk(A), is the rank of the linear transformation TA (the 
dimension of its image). From the vector form ofAx=y shown above, this just 
amounts to the dimension of the subspace spanned by the columns of A. The 
nullity of A is the nullity of TA (the dimension of its kernel). Note that Ker(TA) 
is exactly the solution set to the homogeneous linear systemAx=O. 

5-4 PROPOSITION. The set of all y for which there exists a solution to the linear 
system Ax = y of m equations in n unknowns is a subspace of~. The solu­
tion set to the homogeneous system Ax=O is likewise a subspace of~. 

PROOF. The set of all y in ~ for which there exists a solution to the given linear 
system is precisely the image of TA • Similarly, as remarked above, the solution 
set to the homogeneous equation Ax = 0 is just the kernel of TA• But we know 
from Section 3.2 that both the image and the kernel of a linear transformation 
are subspaces of their ambient spaces. [J 
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5-5 PROPOSITION. Suppose that n > m. Then the homogeneous linear system of 
m equations in n unknowns represented by the matrix equation Ax = 0 al­
ways has a nontrivial (i.e., nonzero) solution. In fact, the solution set is a 
subspace ofk" of dimension at least n-m. 

PROOF. The rank of A, being the dimension of Im(TA), a subspace of k"', is 
necessarily less than or equal to m and therefore strictly less than n. Since rank 
plus nullity must equal n, this implies that the nullity of A [the dimension of 
Ker(TA )] is positive and at least n-m. But this says precisely that the solution 
space to the homogeneous system Ax=O has dimension at least n-m, just as 
claimed. 0 

We now consider a case of utmost importance: n equations in n unknowns. 

5-6 THEOREM. Let A EMn(k). Then the following six statements are equivalent: 

(i) The linear system Ax=y has at least one solution for all YEk". 

(ii) The columns of A span k". 

(iii) The homogeneous system Ax=O has only the trivial solution x=O. 

(iv) The columns of A are linearly independent. 

(v) The linear system Ax = y has exactly one solution for all YEk". 

(vi) The columns of A constitute a basis for k". 

Moreover, a sufficient condition for any, hence all, of these statements is 
that the matrix A be invertible; i.e., A EGLn(k). 

Later we shall strengthen this theorem to see, in particular, that the inverti­
bility of A is not only sufficient but necessary. 

PROOF. We have already seen in Theorem 4-11 that (ii), (iv), and (vi) are 
equivalent. The equivalences (i) <=> (ii), (iii) <=> (iv) and (v) <=> (vi) are all 
apparent from the representation of the given linear system in vector form: 

all a ln YI 
a21 

XI+,,+ 
a2n Y2 

x = n 

anI ann Yn 

This establishes the equivalence of the six statements. We observe next that the 
invertibility of A implies (v). This is trivial: if A is invertible, then the linear 
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system Ax = y is solved uniquely by multiplying both sides of the equation by 
A-I to obtain X=A-Iy . This completes the proof. 0 

It is tempting at this point to establish the necessity of the invertibility of A 
as follows. Let Bj (here viewed as a column vector in k") be the unique solution 
to Ax=ej which is assumed to exist by (v). Let B= (BI , .. . ,Bn) be the amalgama­
tion of these columns into an nxn matrix. Then according to Eq. 5.1, 

and B is at least a right inverse for A. The problem is that since we have not yet 
established that A and B lie in the group GLn(k), we cannot apply elementary 
group theory to conclude that B is in factA-I. What we need to show is that we 
can construct a left inverse for A in a similar manner, and for this we need to 
know that the rows and columns of A span subspaces of equal dimension. This 
key result is better proved in the following chapter after we have a deeper 
understanding of the connection between matrices and linear transformations. 

5.3 Solution Techniques 

We shall now survey two powerful and popular techniques for solving the lin­
ear system Ax = y. Note that in general there may be none, one, or many solu­
tions, and the matrix A need not be square. 

REMARKS 

(1) If A is square and invertible, we of course have the option of finding A-I 
and solving Ax= y by multiplying both sides by A-I, as in the proof of the 
previous theorem. This is usually not efficient, however, since the problem 
of inverting A is often far more difficult than a direct solution to the origi­
nal equation. 

(2) For any but the smallest systems, solutions are almost invariably found via 
computer using any of the widely available numerical packages. (Hand cal­
culations are often intractable and at the very least invite miscalculation; 
they should only be trusted when thoroughly checked.) Since computer 
arithmetic is usually only approximate, one must then be concerned with 
several subtle numerical analytic issues that can dramatically affect the fi­
nal outcome. Such considerations are beyond the scope of our discussion 
and we refer the reader to texts on numerical methods or numerical analy-

sis. 
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Elimination Methods 

First note that the linear system 

allXi + ... + a1nxn = YI 
a21 x1 +,,·+a2nxn = Y2 

may be represented by the augmented matrix 

all a 12 a ln 
I 
I YI 
I 

a 21 a 22 a 2n : Y2 
I 
I 
I 
I 

amI a m2 a mn 
I 
I Ym 

which retains all of the information of the original system. [We often condense 
this to (A Iy), when convenient.] One can obviously apply the following trans­
formations to the augmented matrix without disturbing the solutions to the as­
sociated system: 

(i) Interchanging two rows. (We represent the interchange of row i with row j 
byR;~Rj') 

(ii) Multiplication of a row by a nonzero scalar. (We represent the multipli­
cation of row i by a constant A by Rj+-AR;.) 

(iii) Addition of a scalar multiple of one row to another. (We represent the 
addition of A times row j to row i by Rj+-R; +ARj') 

These are called elementary row operations and represent familiar transforma­
tions routinely applied to systems of equations. Their particular value with 
respect to linear systems lies in the elimination of variables. 

EXAMPLE. Consider the system 

Xi -X2 =4 

2x} -X2 =7 

We apply the following set of elementary row operations to the augmented ma­
trix: 
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(1 O! 3) 
o 1:-1 

Reconstituting the last matrix as a linear system, we have XI =3 andx2=-1. 

Of course, the example represents an unreasonably simple case, but it does 
manifest the general nature of the Gauss-Jordan elimination method, which we 
now sketch. The basic idea is to apply the elementary row operations to (A Iy) to 
bring the matrix A into conformance with four conditions: 

(i) all (if any) rows of A consisting entirely of O's lie at the bottom of A; 

(ii) the first nonzero entry of each nonzero row is 1; 

(iii) the leading 1 's of the nonzero rows move strictly to the right as we proceed 
down the matrix; 

(iv) all entries above and below the leading 1 of a nonzero row are O. 

If conditions (i)-(iii) are satisfied, we say that A is in row-echelon form. If 
conditions (i)-(iv) are satisfied, we say that A is in reduced row-echelon form. 
One can show by induction that every matrix can be brought to this latter form 
by elementary row operations. Note that whatever transformations are applied 
toA are also applied toy. 

We shall now give several examples of augmented matrices in reduced row­
echelon form both to elucidate the conditions above and to show that a system 
in this reduced form is easily solved. 

EXAMPLES 

(1) Consider a 4x4 system whose augmented matrix in reduced row-echelon 
form is 

100 
010 
001 
000 

0:5 
I 

o : 1 
I 

0 1 0 
1 

1 : 4 
I 

This is the simplest case of all-we have reached the identity matrix. The 
solution to the original system is evidently XI =5, x2= 1, x3=0, x4 =4. Simi­
lar considerations apply to any nxn system whose reduced row-echelon 
form amounts to In: the solution may be read off directly from the right 
column. 
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(2) Consider a 3x3 system whose augmented matrix in reduced row-echelon 

form is 

(3) 

(4) 

(1 0 O! 2J 
o 0 1: 7 , 
o 0 0:0 

The general solution is Xl = 2, X3 = 7, with no conditions whatsoever on x2• 

In fact, whenever a column in reduced form consists entirely of O's, the cor­
responding variable is left unconstrained and plays no further role in the 
solution. 

Consider a 4x5 system whose augmented matrix in reduced row-echelon 
form is 

1 2 0 0 o : 1 , 
° 0 1 0 0:0 , 
0 0 0 1 Oil 
0 0 0 0 0:4 

I 

We see that there are no solutions since the last row would otherwise imply 
that 0=4. We say that the system is inconsistent. This occurs whenever we 
observe a row for which every entry but the last is O. (More fundamentally, 
the system Ax=y is inconsistent if and only ify does not lie in the image of 
the associated linear transformation TA .) 

Consider the 4x5 system whose augmented matrix in reduced row-echelon 
form is 

1 2 0 0 -1: 1 , 
0 0 1 0 -4 : 5 , 
0 0 0 1 6' , 2 

0 0 0 0 0: 0 
I 

This system is not inconsistent and generalizes the situation in Example 2 
insofar as the variables corresponding to columns which do not manifest a 
leading 1 (in this case columns 2 and 5) are unconstrained. These vari­
ables, however, do playa further role in the general solution, which might 
be expressed thus: 
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XI = 1-2x2 +xs 

~ =5+4xs 
X4 = 2- 6xs 
X2 ,XS arbitrary 

This concludes our introduction to elimination techniques. We now pass on 
to a second approach-one with a decidedly distinct flavor. 

LU Decomposition 

This discussion applies to nxn systems. First, a matrix L = (ar> is called lower 
triangular if aij=O whenever i<j. A matrix U=(bij) is called u~per triangular if 
bij=O wheneverj<i. Thus 

a 11 0 0 0 b 11 bl2 b13 bIn 

a 21 a 22 0 0 0 b 22 b 23 b2n 

L= a 31 a 32 a 33 0 u= 0 0 b 33 b3n 

anI a n2 a n3 ann 0 0 0 b nn 

The beauty of triangular matrices in connection with linear systems is that 
equations such as Lx=y and Ux=y are easily solved by forward and back sub­
stitution, respectively. To be precise, the lower triangular system 

has solution 

XI = YI/ a 11 

x 2 = (Y2 - a 21x 1) / a 22 

(provided none of the diagonal entries is 0), and this is numerically trivial to 
compute. A similar set of equations applies to an upper triangular system with 
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the substitutions running from the bottom upward. This leads to a most elegant 
solution technique for the general nonsingular nxn system Ax=y, as follows. 

Suppose that we can find, respectively, lower and upper triangular matrices 
L and U such that A = L U. Then with this factorization in hand, we solve the 
linear system Ax=y in two steps: 

(i) Solve Lr.=y for r.. 

(ii) Solve Ux=r. for x. 

As described above, both solutions are straightforward, and we can see at once 
that the vector x thus obtained solves the original system: 

Ax = (LU)x = L(Ux) = Lr. = y 

This method is effective in practice because there is a numerically efficient 
technique known as Crout's algorithm for factoring A into the product of a 
lower and an upper triangular matrix. We shall not describe Crout's algorithm 
here, but it can be found in almost any book on numerical methods. 

EXAMPLE. Given the factorization 

A=U 
1 

rH 
1 0 

m~ 
1 

-rJ 
1 2 1 -1 

-3 1 4 0 

we solve the linear system 

( 
2 1 

!JGH~J 4 1 

2 -3 

using the two-step procedure described above. First, by forward substitution we 
solve 
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by back substitution to obtain XI = 1, x2= 1, x3=2. 

5.4 Multiple Systems and Matrix Inversion 

We elaborate briefly on a feature implicit in the Gauss-Jordan elimination 
method introduced in the previous section. Suppose that given a fixed mxn 
matrixA and vectorsYI'Y2Ekn, we are presented with two linear systems 

the point being to find respective solutions XI and x2 to each. Observe that the 
sequence of elementary row operations required to bring A to reduced row­
echelon form is entirely determined by A, so that in this sense the data on the 
right participate rather passively. Therefore the particular sequence of opera­
tions needed to solveAxI =YI will be precisely the same as that required to solve 
AX2 = Y2' the only difference being the arithmetic that takes place in the right­
most column of the augmented matrix. Thus an efficient method of solution is 
to represent the two systems by the (doubly) augmented matrix 

all a l2 a ln 
I 
I YII 
I 

YI2 

a 21 a 22 a 2n : Y21 Y22 
I 
I 
I 
I 

amI a m2 a mn 
I 
I Yml Ym2 

and then to row-reduce A. We can then read both solutions (if any) off the re­
duced augmented matrix, as previously. 

EXAMPLE. We revisit the system 

xl -x2 =4 

2xI -X2 =7 

and simultaneously consider the second system (with the same coefficients) 

XI -x2 =2 

2x, -x2 = 1 
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We apply the same sequence of elemental)' row operations as previously to the 
doubly augmented matrix representing both data sets: 

G 
-1:4 ~) (~ -1 : 4 

-~) I ~ I 

-1:7 R2~R2-2RI 1 : -1 

(~ 0: 3 -1) ~ I 

RI~RI+R2 1 : -1 -3 

The respective solutions are thus x I= (3,-1) and x2= (-1,-3). Note that this is 
only slightly more work than solving the original single system. 

These same considerations apply more generally to r systems of the form 

for any positive r. This is evidently equivalent (by Eq. 5.1) to the single matrix 
equation 

AX=Y (5.3) 

whereX=(xl, ... ,xr ) is an nxr matrix and Y=(vI'''''Yr ) is an mxr matrix. For 
computational purposes, we may represent Eq. 5.3 by the augmented matrix 
(A If). To solve it, we row-reduce A and read the solutions (if any) off the trans­
formed augmented matrix. (As in the single-system case, we obtain a unique 
solution if and only if A reduces to the identity matrix.) 

For A EMn(k), a special case of utmost importance is the equation 

the solution to which yields A-I, if in fact A is invertible. (See the remarks fol­
lowing the proof of Theorem 5-6.) Thus we have established a recipe for matrix 
inversion that amounts to the following: 

Apply elementary row operations to the augmented matrix (A lIn) to obtain, if 
possible, (Inlx). At this point, A-1=X. 

EXAMPLE. To illustrate, we shall invert the matrix of coefficients from our pre­
vious example: 

(1 -1) 
2 -1 
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The calculation proceeds as follows: 

(21 -I! 1 01) ~ 
-1 : 0 R2~Rr2Rl 

( 01 -I! 1 01) 
1: -2 

~) 
0: -1 

I 
1 : -2 

Thus 

(1 _1)-1 = (-1 1) 
2 -1 -2 1 

as one can easily verify by direct calculation. 

REMARK. As described in Exercise 7 below, there is an effective direct formula 
for the inversion of 2x2 matrices; one would not generally use the present 
method in such cases. 

Exercises 

l. Solve the following matrix equation for x, y, z, and w: 

2. Suppose that 

Show that x=w, z=O, and there is no constraint ony. 

3. Let A be an mxn matrix. Show that the matrix products A . t.4 and t.4 . A are 
both defined. Compute these products for the matrix 

A = (2 0 1) 
o 1 1 
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4. What is the dimension ofthe space of 4x4 symmetric matrices defined over 
a field k? Of all nxn symmetric matrices? (Hint: Count the degrees of free­
dom.) 

5. What is the dimension of the space of all 5x5 upper triangular matrices in 
Mn{k)? Of all nxn upper triangular matrices? 

6. Show that the product of two invertible matrices in Mn{k) is invertible. 

7. Let 

A=(: ~) 
lie inM2{k) and assume that ad-bc:#O. Show that A-I exists and that in 
fact 

Conversely, show that if ad - bc = 0, then A is not invertible. [Hints: To 
verify the formula for A-I, try computing its product with A. For the con­
verse, show that if ad-bc=O, then the columns of A are linearly dependent. 
HenceA cannot be invertible, according to Theorem 5-6.] 

8. Let B be the subset of GL2{k) consisting of all matrices of the form 

(Such matrices are indeed invertible according to the previous problem.) 
Show that B is a subgroup of GL2(k). 

9. For this problem and the next, superscripts on matrices indicate exponents 
rather than columns. ThusA2 meansA·A, not the second column ofA. 

Find a 2x2 matrix A such that A;eO (that is, A is not the zero matrix) but 
nonetheless A2 = 0. Next, find a 3x3 matrix such that A,A2:#0, but A3=0. 
Finally, for arbitrary n find an nxn matrix A, such that A, A2, A3, ... , An-I:# 
0, but An=O. (The following chapter will show you how better to think 
about this problem.) 
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10. Let A eMn{k) be such that A r = 0, the zero matrix, for some integer r ~ 1. 
Show that In -A is invertible. [Hint: Compute the product 

using the rules of matrix algebra. ] 

11. List the elements in GL2{F2) where F2 is the finite field of two elements, 0 
and 1. (Give thanks that we used the smallest possible field!) 

12. Explain succinctly why the solution space to a homogeneous system of m 
linear equations in n unknowns defined over a field k is a subspace of~. 
(Hint: Express the system in matrix fonn and relate it to a linear transfor­
mation from ~ to k"'.) 

13. Express the following linear system as a single matrix equation and as a 
single vector equation, as shown in Section 5.2: 

2~ -4X2 =7 

5x, +9x2 =4 

14. Without explicitly solving, show that the system above has a unique solu­
tion. (Hint: See Theorem 5-6.) 

15. Without explicitly solving, show that the system 

2~ + x2 =y, 

-x, +2X2 =Y2 

has a unique solution for ally,,y2ER. 

16. Find the rank of the matrix 

2 1) o 2 
o 1 

17. Let A be a 4x7 matrix (over any field) with at least one nonzero entry. 
What are the possible values for the rank of A? 

18. Using Gauss-Jordan elimination, solve the system given in Exercise 13. 
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19. Suppose that we are solving a 2x3 homogeneous linear system Ax = 0 by 
Gauss-Jordan elimination and reach the following augmented matrix in re­
duced row-echelon form: 

o -5! 0) 
1 4: 0 

What is the general solution to the original system? What is the dimension 
of the solution space? 

20. Suppose that we are solving a 3x4 linear system Ax = y by Gauss-Jordan 
elimination and reach the following augmented matrix in reduced row­
echelon form: 

(1 2 0 I! 5J 
o 0 1 4 P 

I o 0 0 0:4 

What can one say about solutions to the original system? 

21. Find all solutions to the following system by Gauss-Jordan elimination: 

XI + x2 - x3 =0 

XI +2X2 +4X3 = 0 

What is the dimension of the solution space? 

22. Does every linear system for which there are more variables than equations 
have a solution? If not, what additional condition is needed? 

23. Summarize in your own words why reduced row-echelon form is an effec­
tive device for solving linear systems of equations. 

24. Factor the following matrix into the product of a lower triangular and an 
upper triangular matrix: 

[Hint: Try something of the form 
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where x, y, Z, and ware to be determined.] 

25. Given the matrix factorization 

(~ : ~ J = (~ ~ ~J(~ ~ !J 
1511 121001 

solve the linear system 

Xl + X2 + 2X3 = 11 

2Xl +4X2 + 8X3 = 30 

Xl +5X2 + 11x3 = 28 

by the method of LU decomposition. 

26. Summarize in your own words why LU decomposition is an effective de­
vice for solving linear systems of equations. 

27. Use the techniques of Section 5.4 to derive the general formula given in 
Exercise 7 above for the inversion of 2x2 matrices. (Be careful not to 
divide by zero; you may need to look at more than one case.) 

28. Using the techniques of Section 5.4, invert the following carefully con­
trived matrix: 

This should go rather smoothly. 

29. To the sound of the rain and the chamber music of Claude Debussy, the 
author reaches for his calculator, an old but serviceable hp-ll C. Punching 
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the random number key nine times and recording the first digit to the right 
of the decimal point, he produces the following matrix: 

(9 2 OJ 
A= 2 4 3 

861 

He ponders; he frowns; he leaves it to the student to find A-I. 



6 
Representation of Linear 
Transformations 

We saw in the previous chapter that a matrix in Matmxn(k) acts by left multi­
plication as a linear transformation from ~ to ~. In this chapter we shall see 
that in a strong sense every linear transformation of finite-dimensional vector 
spaces over k may be thus realized. (We say that the associated matrix repre­
sents the transformation.) In passing, we introduce the notion of a k-algebra, a 
rich structure that is a hybrid of both vector space and ring. We show that the 
set of linear transformations from an n-dimensional vector space to itself is in 
fact isomorphic as a k-algebra to the familiar matrix algebra Mn(k). 

The representation of a linear transformation almost always depends upon 
the choice of bases, and according to the transformation in question, some bases 
will serve us better than others both computationally and conceptually. (Chap­
ters 9 and 10 are largely concerned with this theme.) Hence in Section 6.5 we 
also analyze just how the representation varies with this choice. 

The material is difficult, but well worth the effort. It completes the bridge 
between the structural theory of vector spaces and the computational theory of 
matrices-a bridge that we will cross many times in later chapters. 

6.1 The Space of Linear Transfonnations 

Let Vand Wbe vector spaces over k. Then Hom(V,W) denotes the set of all lin­
ear transformations from V to W. If fEHom(V,W) and AEk, we can define a 
function Af: V ~ Wby the formula 

(Af)(v) = Aj(v) VVE V 

It is trivial to show that Afis likewise linear. Similarly, if also gEHom(V,W), 
we can define a functionf+g from Vto Wby 

(f + g) (v) = f(v) + g(v) VVE V 

and one shows easily thatf+ g is linear. Thus Hom(V,W) is equipped with both 
addition and scalar multiplication. 
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6-1 PROPOSITION. Hom(V,W) is a vector space over k with respect to the op­
erations defined above. 

PROOF. We leave most of the details to the reader. Note that the zero in 
Hom(V,W) is the zero map, the constant function that sends everything in Vto 
the zero vector of W. The additive inverse offEHom(V,W) is (-I}f All of the 
requisite algebraic laws are inherited from the ambient space W. 0 

REMARK. This argument shows, moreover, that the set of functions from any 
nonempty set into W forms a vector space over k with respect to the operations 
given above. Thus neither the vector space structure of V nor the linearity of the 
elements ofHom(V,W) plays any role in this first result. 

There is considerably more structure here than we have so far revealed; the 
precise statement is somewhat technical, but not deep. 

6-2 PROPOSITION. Let U, V, and W be vector spaces over k. Then 

(i) g0U; + /z) = g0J; + g0/z VgEHom(V,W),J;,/zEHom(U,V) 

(ii) (g) + g2)of= g)of + g20f Vg),g2EHom(V,w),fEHom(U,V) 

(iii) (2g)of= go(2/) = }.(go/) VgEHom(V,W),fEHom(U,V),2Ek 

PROOF. We shall only prove (i); the others are similar. Let UE U. Then 

go U; + f 2)(u) = g«.t; + f2)(U)) 

= g(.t;(u) + f2(U)) 

= g(.t; (u)) + g(f2(U)) 

=g0.t;(U)+gof2(U) 

The calculation shows that both functions have the same effect on arbitrary 
elements of U. They are therefore identical. 0 

6-3 COROLLARY. For any vector space V over a field k, Hom(V,V) is both a 
vector space over k (as described above) and a ring with unity (with re­
spect to addition and composition of functions). Moreover, the vector 
space and ring structures are related by the following law: 

(2g)of= go(2f) = }.(go/) Vf,gEHom(V,V),2Ek 

PROOF. This follows directly from the previous proposition in the special case 
that U= V= W. The unity in Hom(V, V) is the identity map. 0 
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A structure that is both a ring and a vector space over k, with the additional 
property that the scalar multiplication commutes with the ring multiplication in 
the sense of the preceding corollary, is called a k-algebra. We have therefore 
shown that Hom(V,V) is a k-algebra for all vector spaces V over k. Note that 
according to Propositions 5-1 and 5-2, the matrix ring Mn(k) is also a k-algebra 
for all positive n. (And surely the discovery of two k-algebras in the same para­
graph must be fraught with latent but portentous consequences.) 

The final result of this section is crucial to the sequel. 

6-4 PROPOSITION. Let f and g lie in Hom(V,W). Iff and g take identical values 
on the elements of a spanning set for V, then they are identical on all of v,. 
that is,f=g. 

PROOF. Let S be a spanning set for V such that f and g agree on S. Let v be any 
element of V. Then we may write v as a linear combination of elements in S: 

Since f and g are linear, we have 

n 

V= LA.jVj 
j=t 

n n n n 

f(v) = f(LA.jVj ) = LA.jf(vj ) = LA.jg(v) = g(LA.jvj ) = g(v) 
j=t j=t j=t j=t 

The middle step is justified by the assumption that f and g take the same values 
on S. This completes the proof. [J 

6.2 The Representation ofHom(JCl,JC11) 

In this section we deal exclusively with the vector spaces k" and k"', whose 
elements we regard as column vectors. We saw previously that with every mxn 
matrix A we could associate the linear transformation TA eHom(k",k"') defined 
by Tix)=Ax. We now reverse the association to show every linear transforma­
tion in Hom(k",k"') is realizable as left multiplication by the appropriate matrix. 

DEFINITION. Let T be an arbitrary linear transformation from k" to k"'. Define 
M(T)eMatmxn(k) to be the matrix whosejth column is the vector T(e). We call 
M(T) the matrix ofT with respect to the canonical basesfor k" and k"'. 

EXAMPLE. Consider the linear transformation T: R3 ~ R2 defined by the follow­
ing rule of assignment: 
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Then 

Whence 

M(T)=(~ o 1) 
1 -1 

In anticipation of the general result to follow, we note a special relationship 
between T and M{T): for all xER3, T{x) has the same value as the matrix prod­
uct M(T) x, as seen by the following simple calculation: 

Hence to apply the transformation T, we might just as well multiply by M(T). A 
more elegant way of saying the same thing, using our earlier association of a 
linear transformation with a matrix, is this: T= TM(T)' We now formalize and 
extend these ideas. 

6-5 PROPOSITION. The mappings 

Matmxn{k) ~ Hom{k n ,km) 

A HTA 

Hom{e ,km) ~ Matmxn{k) 

THM(T) 

are mutually inverse isomorphisms of vector spaces. In particular, given 
any linear transformation TEHom{~,k"'), M(T) is the unique matrix such 
that 

T{x) = M(T)x 'rjXE~ 

The result says, in effect, that every linear transformation T:~ ~ k'" is 
uniquely represented by M{T) in the sense that T has the same effect as left 
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multiplication by M(T). This association is so compelling that often we fail to 
distinguish between T and M(T). 

PROOF. We shall show that the given maps are inverse to each other, leaving 
linearity to the student. (One direction suffices. Why?) For this we ask two 
questions: 

(i) What isM(TA) for any given mxn matrix A? By definition, thejth column of 
M(TA) is precisely Tiej) = Aej = Aj, the jth column of A. (See Eq. 5.2 in the 
previous chapter.) But if M(TA) and A have exactly the same columns, they are 
the same matrix. HenceM(TA)=A. 

(ii) What is TM(T) for any given linear transformation T? By definition TM(T)(e.) 
is the matrix product M(T)e" which is the jth column of M(T). But the jth col­
umn of M(T) is precisely T(ej), and this means that T M(T) and T have the same 
effect on the canonical basis. By Proposition 6-4, they must be the same func­
tion. Hence T M(T) = T. 

Parts (i) and (ii) taken together indeed show that the given maps are mutu­
ally inverse, and (ii) says precisely that left multiplication by M(T) is equivalent 
to T, as claimed. Uniqueness follows from the injectivity of the map A 14 TA : 

distinct matrices induce distinct linear maps, so no other matrix but M(T) can 
represent T. Cl 

Since isomorphisms preserve dimension (a basis maps to a basis) and the 
dimension ofMatmxn(k) is mn, this proposition yields the following corollary: 

6-6 COROLLARY. The dimension oJHom(kH,tm) is mn. Cl 

Again, there is more to be said with regard to composition. Let A EMatmxn(k) 
and BEMatnx (k). Then both TAB and TAoTB lie in Hom(kP,km). How do these 
maps compar:? Let us compute their effect on the canonical basis vectors. First, 

thejth column ofAB. Second, 

TAoTaCej) = TiTB(e) = TiBe) = TiBi) = A ·Bi 

which isA times thejth column of B. But by Eq. 5.1, these two expressions are 
equal. Hence T and T oTB agree on a spanning set for kP and therefore agree 

AB A .. Ih 
everywhere! We state this fundamental property as a propositIon. t as two 
striking corollaries. 



6.2. The Representation ofHom(IC',k"') 105 

6-7 PROPOSITION. TAB = TAoTB whenever the indicated matrix product is de-
fined. D 

CRITICAL REMARK. Matrix multiplication is defined the way it is precisely so 
that this result holds; that is, precisely to reflect the composition of linear 
transformations. 

We immediately exploit this proposition to give a truly elegant, non­
computational proof of the most fundamental property of matrix arithmetic. 

6-8 COROLLARY. Matrix multiplication is associative. 

PROOF. Suppose that the products A(BC) and (AB)C are defined. Then accord­
ing to the previous proposition, 

and 

But these maps are equal by the associativity of composition. This shows that 

Since according to Proposition 6-5 the association A H TA is bijective, we must 
have that A(BC) = (AB)C as claimed. Hence the associativity of matrix multipli­
cation is just an aspect of the associativity of composition of functions. D 

Perhaps not surprisingly, a tight relationship between matrix multiplication 
and composition of linear transformations also holds in the direction opposite 
to that expressed in Proposition 6-7. 

6-9 COROLLARY. Let T:kP~k" and T':k"~k'" be linear transformations. Then 

M(T'oT) = M(T)M(T) 

Thus composition of linear transformations corresponds to matrix multi­
plication. 

PROOF. The key to the proof is the associativity of matrix multiplication. Given 
any xEkP, since M(T') and M(T) represent T' and T, respectively, we have 
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T' 0 T(x) = T'(T(x» 
= T'(M(T}x} 

= M(T'}(M(T)x) 

= (M(T')M(T»x 

It follows that the product M(T')M(T) represents T'oT. By the uniqueness of 
such a representation, it follows that M(T'oT)=M(T')M(T). 0 

If M and N are k-algebras, then a vector space isomorphism rp: M ~ N is 
called an algebra isomorphism (or an isomorphism oJk-algebras) if it satisfies 
the additional condition 

cri...ab) = cri...a)cri...b) Va,beM 

With this definition, the results of the current section culminate in a fundamen­
tal theorem on the representation of linear transformations from the vector 
space k" to itself. 

6-10 THEOREM. The pair oJmappings 

Mn(k) ~ Hom(kn ,k"} 

A~TA 

Hom(k" ,k") ~ Mn(k) 
T~M(T) 

are mutually inverse isomorphisms oJk-algebras. 

PROOF. This statement summarizes Propositions 6-5 and 6-7 in the special case 
m=n=p. Proposition 6-5 says that the given maps are inverse isomorphisms of 
vector spaces. Proposition 6-7 says that, moreover, they are isomorphisms of k­
algebras: matrix multiplication in Mn(k) corresponds to composition of func­
tions in Hom(k",k"}. 0 

EXAMPLE. Let V= R2 and let To be the map which rotates points in the plane 
counterclockwise around the origin by the angle (). One can see geometrically 
that this map is linear. (For instance, in light of the parallelogram law for 
vector addition, it is easy to analyze the effect of rotation on the sum of two 
vectors.) We compute its matrix relative to the canonical basis. Rotating both 
canonical basis vectors by () (draw a picture!), we have at once that 

To( e1} = (cos (), sin ()) 

Tie2} = (-sin(},cos(}) 

Therefore the matrix of the transformation is 
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_ (cos 0 -sin 0) 
M(To) - . 0 0 sm cos 

We can use this to prove two elementary trigonometric identities. Let If/ be a 
second angle. Then by the nature of rotation, T(J+ '" = T(J 0 T", whence 

This amounts to the matrix equation 

(
COS( 0 + If/") -sin( 0 + If/"))=(c~s 0 -sin 0) (c~s If/" -sin If/") 
sin( 0 + If/") cos( 0 + If/") sm 0 cos 0 sm If/" cos If/" 

Multiplying out the right-hand product and comparing entries yields the well­
known (but usually forgotten) identities: 

cos(O + If/) = cos Ocos If/- sinOsin If/ 

sine 0 + If/) = sin Ocos If/ + cos Osin If/ 

(This is the best way to remember these identities!) 

6.3 The Representation of Hom(V,V') 

Throughout this section, all vector spaces are finite dimensional. 

Let T: V ~ V' be a linear transformation of vector spaces over k. Again we 
would like to represent this map by a matrix, but as we have seen in Section 
6.2, this requires (and will depend upon) a choice of coordinate systems for 
both Vand V'. 

Let dim(V)=n and let B={v1, ... ,vn} be a basis for V. (We should speak more 
precisely of an ordered basis in this context, since the ordering of the basis 
vectors in B affects the subsequent representation.) We have seen that the co­
ordinate map yB:V ~k" is the isomorphism defined by 

n 

YB(2,AjV) = (A1,···,An ) 

j=l 

Recall that this makes sense because every vector in V can be expressed 
uniquely as a linear combination of the basis elements. (Note that in the sequel 
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we shall usually regard these coordinate vectors as columns, even though we 
write them as rows for typographical efficiency.) In the same way, if further­
more dim(V') = m and V' has basis B' = {v;, ... , v~}, we have the coordinate map 
YB': V'~k"'. Now since an isomorphism is invertible, we can construct the fol­
lowing commutative diagram: 

T 
V ~ v' 

YB -L. -L. YB' 

kn ~ km 

T -1 YB'O °YB 

The bottom map is unique in the sense that it is the only way to complete the 
square. Moreover, being a linear transformation from ~ to k"', it may be repre­
sented by a matrix. This leads us to a fundamental definition. 

DEFINITION. Assuming the notation of the previous paragraphs, the matrix ofT 
with respect to the bases Band B' is the matrix of Y B' 0 Toy B-1 in the sense of 
the previous section. We denote this matrix MB,B'(T), 

Referring again to the diagram above, we see that MB,B'(T) is the unique 
matrix such that 

for all VE V. In this sense MB,B'(T) represents T, at the cost of introducing the 
coordinate maps. With this in mind, we might recast our previous commutative 
diagram as follows: 

T 
V ~ V' 

YB -L. -L. YB' 

kn ~ km 

MB,B,(T) 

The label on the bottom arrow indicates that the corresponding map is precisely 
matrix multiplication by MB,B'(T). 

The preceding definition, while somewhat technical, will reveal its elegance 
in subsequent proofs. The actual practice of constructing the matrix of a linear 
transformation is straightforward, as we shall soon see. But before moving 
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along to the examples, we establish some formal properties of this construction 
similar to those proved in Section 6.2. 

6-11 THEOREM. Let Vand V' be finite-dimensional vector spaces over the field 
k, with respective bases Band B' and dimensions nand m. Then the map 

Hom(V,v') ~ Matmxn(k) 

T H MB,B(T) 

is an isomorphism of vector spaces. 

PROOF. Note that the proof has a slightly different flavor from that of Proposi­
tion 6-5, since the inverse map in this case is a bit harder to work with. Leaving 
linearity as an exercise, we begin by noting that MB,B' is at least injective since 
it has trivial kernel: the only linear transformation represented by the zero 
matrix is the zero transformation. It only remains to show that MB,B' is sur­
jective, and this amounts to showing that every matrix A eMatmxn(k) represents 
some linear transformation T from V to V' relative to the bases Band B'. But 
referring to the previous commutative diagram, which essentially defines the 
matrix of a transformation, it is clear that A represents the linear transforma­
tion 

V ~ V' 

v H rB,-1 0 TA 0 rB(v) 

[If this is not clear, apply the definition of MB,B' to see that the matrix of this 
map reduces to M(TA ) = A.] Hence MB,B' is surjective, as required. Cl 

6-12 COROLLARY. Let V and V' have dimensions nand m, respectively. Then 
the dimension ofHom(1I; V') is mn. Cl 

With regard to composition, we have an amiable generalization of Proposi­
tion 6-7. 

6-l3 PROPOSITION. Let there be given vector spaces V, V', and V" over a com­
mon field k, with bases B, B', and B", respectively, and linear transfor­
mations T: V ~ V' and T': V' ~ V". Then 

PROOF. The proof is a simple calculation based on the corresponding fact for 
the composition of linear transformations from ~ to ~: 
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MB,B"(T' oT) = M(yB" o(T' 0 no YB -I) 

= M(yB" 0 T' 0 YB' -1 0 YB' 0 To YB-1) 

= M(YB" 0 T' oYB,-I)M(yB' oTo YB-1) 

= MB',B" (T')MB,B'(n 

REMARK. Using the commutative diagram of Figure 6.1 below, we may give an 
appealing, alternative proof of this proposition. The diagram shows at once that 

for all ve V. But then the matrix product on the right must be MB,B.~T'oT) since 
this is the unique matrix representing T'oTwith respect to the bases Band B". 

T T' 

V ~ V' ~ V" 

YB -l. -l. YB' -l. YB" 

k P ~ k" ~ k m 

MB,B,(T) MB',B,,(T') 

Figure 6.1. The diagram suggests an alternative proof of Proposition 6-l3. 

We pass now to the important special case that V= V' with a single given 
basis B. If TeHom(V,V), we abbreviate MB,B(T) to MB(T), which is then the 
matrix of YBoToYB -I. This is called simply the matrix of T relative to B. The 
following theorem summarizes all of our results so far. 

6-14 THEOREM. Let V be an n-dimensional vector space over k, and let B be 
any basis for V. Then the mapping 

Hom(V,V) --+ M,,(k) 

T H MB(T) 

is an isomorphism ofk-algebras. 1:1 

In preparation for the following examples, we note that the general proce­
dure for constructing the matrix of a linear transformation T relative to a pair of 
bases B and B' is quite simple and falls right out ofthe definition. We state it as 
follows: 

RULE. The jth column of MB,B.(T) is the coordinate vector relative to B' of 
T(v), where Vj is thejth element of the basis B. 
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To verify this, observe that by the definition of MB.B,(T), 

But rB(v} is precisely eJ, so 

which we recognize as the jth column of MB.B,(T). Hence these last two equa­
tions show that the jth column of MB.B{T) is precisely the coordinate vector of 
T(vj ) relative to E', as claimed. 

We now illustrate the theory for linear transformations of a finite-dimen­
sional vector space to itself. 

EXAMPLES 

(I) Let Vbe the real function space defined by the span of the functions sinx 
and cosx, which therefore constitute a basis for V. Let D be the differentia­
tion map on V. We compute the matrix of D with respect to the given basis. 
The plan is to evaluate D on members of the basis, to find the resulting co­
ordinate vectors, and to install these coordinate vectors as the columns of 
the matrix of D. We may combine the first two steps as follows: 

D(sinx) = 0 ·sinx + I·cosx 

D(cosx) = -I·sinx + O·cosx 

Hence according to the rule above, the matrix of D is 

Let us check the meaning of this. Consider the function 

f(x)=2sinx+5cosx 

In principle, we should be able to compute the derivative of f using the 
matrix A, as follows. First, find the coordinate vector off relative to our 
basis. This is (2,5)-but be prepared to think of it as a column. Second, 
multiply the coordinate vector by A: 
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Finally, interpret the result of this calculation as a set of coordinates in V. 
What function does it represent? The vector components take their respec­
tive places as coefficients of the basis elements. Thus 

f'(x) =-5 sinx+2cosx 

which is correct. Admittedly, this is the long way around to differentiate f, 
but it does illustrate the point nicely. 

(2) Continuing the example above, what is the matrix of D2, the second de­
rivative operator? Since D2=DoD, we can proceed in either of two ways: 
calculate directly as above or, applying Proposition 6-13, square the matrix 
A computed previously. Choosing the latter, we find that 

A2 =(-1 0) 
o -1 

The student should also make the direct calculation to verify that the same 
result is obtained. Along similar lines, D 4, the fourth-derivative operator, 
evidently yields the identity map on V. Indeed one can verify easily by ma­
trix arithmetic thatA4 = 12, 

(3) Let V be the real vector space of polynomials in x of degree less than or 
equal to 4, with basis 1, x, X2, x 3, X4. One shows easily that the matrix of 
the differentiation operator D on V is 

o 1 000 
00200 

A= 0 0 0 3 0 
o 0 004 
o 0 0 0 0 

Since the fifth-derivative operator is the zero map on V, it follows thatA5 is 
the 5x5 zero matrix. The diligent student should verify this. 

6.4 The Dual Space 

This section looks at a special case of Hom(V,V'), namely when V' is k, the 
ground field itself. The analysis seems entirely formal, but nonetheless it ex­
plains one of the more surprising properties of matrices (Corollary 6-20) and 
deepens our understanding of linear systems (Theorem 6-21). First we shall 
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need a fundamental result which explains some hitherto mysterious terminol­

ogy introduced in Chapter 4. 

6-15 THEOREM. Let V be a vector space over k with basis B. Then given any 
vector space W over k and any function g:B ~ W, there is a unique linear 
transformation g:V ~ W which extends g in the sense that g(v) = g(v) 
for all vEB; that is, the following diagram is commutative: 

i 

B-V 

gl/g 
w 

The top map i : B ~ V is the function that sends every element in B to it­
self-much like the identity function-but here the codomain is V. This is 
called the inclusion map. 

PROOF. Given any vector VE V, it can be written uniquely as a linear combina­
tion of basis elements. Say 

n 

V= LAjVj (v1, ... ,vn EB) 

Then define g as follows: 

j~1 

n 

g(v) = LAjg(Vj) 
j~1 

This is called extension by linearity. We leave it to the reader to show that this 
map is indeed linear and that it extends g in the sense above. That it is unique 
is clear: a linear function is completely determined by its effect on a spanning 
set (in this case B), and hence no other extension is possible. Cl 

Notice how this result depends upon the linear independence of a basis. For 
example, given the vectors v and -v, no such assertion is possible: there are 
many set maps g from {v,-v} into an arbitrary vector space W, but there is no 
chance of extending g to a linear map on V unless g(-v)=-g(v). The vectors are 
bound by a dependence relation. In contrast, the elements of a basis are com­
pletely unbound-any mapping of them into W can be extended to a linear 
transformation on all of V. Hence one says that a vector space is free on its ba­
sis, and since every vector space has a basis, one says that vector spaces are 
free. This explains the terminology of Chapter 4. 
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We shall soon put this theorem to work in connection with the following 
construction. 

DEFINITION. Let Vbe a vector space over k. Then Hom(V.k), the set of all vector 
space homomorphisms from V into k, is called the dual space of V and denoted 
V'I'. 

Both notationS Hom(V,k) and V'I' are suggestive and useful. We shall pass 
from one to the other as appropriate. 

The definition above associates with a vector space V over k its dual space 
V'I', but this is only half of the story. Let T: V --. W be a linear transformation. 
Then given any element fEHom(W,k), the composed map foT is a homomor­
phism from V to k. Thus we have defined a map, which is itself a linear trans­
formation, 

T*:W* --. v* 

fHfoT 

1'* is called the transpose map of T. Transposition has the following elementary 
properties, which we leave as exercises: 

(i) For any vector space V over k, (Iv)* = Ip*; that is, the transpose of the 
identity map on V is the identity map on V*. 

(ii) Let Tl and T2 be linear transformations of vector spaces over k such that 
the composition T1oT2 is defined. Then 

The reversal of the order of composition is known as contravariance, and 
Hom(V.-) is in fact our first example of a contravariant functor, although we 
shall say nothing further about this for the present (cf. Supplementary Topics). 

The transpose operator has certain critical formal properties, some of which 
we begin to explore in the following result. 

6-16 PROPOsmoN. Let T: V --. W be a linear transformation of vector spaces 
overk. Then 

(i) ifT is surjective, then T* is injective; 

(ii) ifT is injective, then T* is surjective. 

PROOF. (i) Let f and g lie in W* = Hom(W,k) and suppose that 1'*(f) = 1'*(g). 
This means thatfoT=goT. Since T is assumed surjective, given any WE W, there 
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exists VE V such that T(v)=w. Then 

f(w) = f(T(v» = foT(v) = goT(v) = g(T(v» = g(w) 

and hence f= g as required. Notice that this argument requires nothing but set 
theory. 

(ii) LetfEHom(V,k). Then we must show thatf=T*(g) for some gEHom(W,k). 
Since T*(g)=goT, this means that we must demonstrate the existence of a linear 
transformation g which makes the following diagram commutative: 

Notice the similarity of this picture to that of the first theorem in this section. 
Given any basis B for V, we know that the injective map T sends the linearly in­
dependent set B to a linearly independent set T(B) ~ W, which, while not neces­
sarily a basis for W, may be extended to a basis for W. Call this basis B'. Define 
a set map from B' to k according to the following dichotomy: 

if w=T(v) for some vEB, then send w tof(v); otherwise, send w to 0 

In other words, send the elements in B' that came from B via T to the corre­
sponding value of the original function f and send the rest to 0 (or anywhere 
else for that matter). By Proposition 6-15, this set map from B' ~ k extends 
uniquely to a linear transformation g: W ~ k. By construction, f and goT agree 
on the basis B for V and hence agree on all of B. This completes the proof. 0 

This result leads immediately to a major theorem. 

6-17 THEOREM. Let T: V ~ W be a linear transformation of finite-dimensional 
vector spaces over k. Then 

rk(T) = rk(T*) 

That is, the dimension of the image ofT is equal to the dimension of the 
imageofT*. 

We shall use this shortly to give a most elegant proof that a matrix and its 
transpose have the same rank. 
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PROOF. First, a special case. Suppose that Tis surjective. Then Im(T)=W, and 
rk(T)=dim(W). By Proposition 6-16, the transpose map T*: W*~ v* is injective 
and thus has trivial kernel. From the Rank-Nullity Theorem we may therefore 
infer that rk(T*)=dim(W*). But we shall see shortly (proposition 6-18) that in 
fact dim(W*)=dim(W), whence rk(T) = dim(W) = dim(W*) = rk(T*), completing 
the prooffor this case. 

Now let Tbe arbitraIy and let Im(T) = WI' a subspace of W. We construct the 
following commutative diagram, which factors T into the composition of a sur­
jective map followed by an injective map: 

W 

Yli 
V-Wi 

1i 
The map T) is just the same rule of assignment as T but with codomain reas­
signed to WI' the image of the original map T. The map i is just inclusion of W) 
into W. Note that T) is by construction surjective and i is evidently injective. 
Observe also that rk(T) = rk(T) since in each case the image is WI. 

No'Y take the dual of each space in the diagram and the transpose of each 
corresponding map. By contravariance we obtain a second commutative dia­
gram as follows: 

W* 

/! i* 
V*- Wi* 

r.* 1 

By the previous proposition, i* is surjective. By set theory it follows that T* and 
T) * have the same image and hence the same rank. Thus we have shown so far 
that 

rk(T) = rk(T) and rk(T*) = rk(T) *) 

But T) is surjective and thus conforms to our special case. Therefore 

rk(T) = rk(T) *) 

and by transitivity of equality rk(T)=rk(T*), as claimed. o 

The Dual Basis 
No doubt the student has wondered at the coincidence of language in speaking 
of the transpose of a matrix and the transpose of a linear map. We shall now 
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explain this and at the same time prove a beautiful result. 
Let V be a finite-dimensional vector space with basis vl,·.·,vn· In V* we 

define the elements v 1* , ... ,V n * to be the unique linear maps from V to k whose 
effect on the given basis is 

Thus v * takes the value 1 on the basis vector Vj' zero on every other basis vec­
tor, and extends by linearity to all of V. Given any fE V*, one sees at once that 

n 

f = If(v)Vj* 
j~1 

since by construction both sides clearly agree on the basis VI, ••• ,Vn" Moreover, 
this representation off is obviously unique. Hence every element of V* can be 
expressed in exactly one way as a linear combination of the Vj *, which therefore 
constitute a basis for V*. This is called the dual basis to VW··,vn· 

6-18 PROPOSITION. In the context above, the linear transformation from V to 
V* defined by 

is an isomorphism of vector spaces. Hence V::V*. 

(Recall that this mapping of basis elements yields a unique linear transfor­
mation from V to V' via extension by linearity.) 

PROOF. We can clearly define an inverse map by Vj*H Vj; hence the given map 

is bijective. 0 

One sometimes says that the given isomorphism is not natural because it 
depends upon a choice of basis. We shall see later an example of a natural 
isomorphism, although we shall not attempt a technical definition of this subtle 
and historically elusive term. 

Resuming the general discussion, if BI={vl' ... 'vn} is a basis for the vector 
space VI and B2={wl , ••• ,wm} is a basis for the vector space V2' we let BI* and 
B2 * denote, respectively, the corresponding dual bases for VI * and V2 *. Now let 
T: VI ~ V2 be a linear transformation. The following result discloses the connec­
tion between the transpose operator for linear transformations and the transpose 
operator for matrices. 
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6-19 THEOREM. Let M(T) denote the matrix ofT with respect to the bases Bl 
and B2 and let M(T*) denote the matrix of T* with respect to the dual 
bases B2 * and BI *. Then 

M(T*) = tM(T) 

That is, the transpose of the matrix ofT with respect to the given bases is 
the matrix of the transpose ofT with respect to the dual bases. 

Before proving this, we note an immediate corollary. 

6-20 COROLLARY. The rank of a matrix is equal to the rank of its transpose. 
Hence the dimension of the space spanned by the columns of a given 
matrix is equal to the dimension of the space spanned by its rows. 

PROOF OF COROLLARY. The rank of a matrix A is just the rank of the associated 
linear transformation TA. We have seen that the rank of TA is equal to the rank 
of TA *, which by the theorem to be proven is represented by fA with respect to 
the dual basis. Hence rk(A)=rk(TA)=rk(TA*)=rk(fA). Cl 

PROOF OF THEOREM. By definition, the jth column of the matrix of T* with 
respect to the dual bases B2 * and BI * is the coordinate vector of T*(w/) with 
respect to VI *,0 ° o,V n *. This is not hard to compute if we keep in mind three 
elementary facts: 

(i) As we saw above, any linear map from f: V ~ k may be expressed in terms 
ofthe dual basis as 

n 

f = "Lf(vj)vj* 
j=1 

Again, this is because both of these maps obviously agree on the given ba­
sis vi'0oo,vn0 

(ii) If M(T)=(aij) with respectto the bases BI and B2, then 

m 

T(vj ) = "Laijwi 

i=1 

since the jth column of M(T) is by definition the set of coefficients needed 
to express T(vj ) as a linear combination of the basis elements wi'"0o,wmo 
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(iii) By definition of the dual basis, 

m 

wj*(LA;w;) = Aj 
;=1 

since Wj * annihilates all but the Wj component of the summation. 

Using (i)-(iii) in succession (changing indices where necessary), the calcu­
lation of T*(w *) is now entirely straightforward: 

J 

n * * = L[wj oT](v;)v; 
;=1 

n * * = L Wj (T(v;»v; 
;=1 

n 

= Laj;v;* 
;=1 

And now the startling conclusion: the jth column of M(T*) is the jth row of 
M(T)! Thus M(T*)= tM(T), as claimed. 0 

The corollary stated above allows us at once to extend impressively the 
already ponderous Theorem 5-6. (Even so, this is not yet the end of the story for 
this theorem. Still more awaits us in Chapter 8.) 

6-21 THEOREM. Let AEMn(k). Then the following ten statements are equiva­
lent: 

(i) The linear system Ax= y has at least one solution for all y E/(!!. 

(ii) The columns of A span /(!!. 

(iii) The rows of A span k!'. 

(iv) The homogeneous linear system Ax=O has only the trivial 
solution x=O. 

(v) The columns of A are linearly independent. 

(vi) The rows of A are linearly independent. 
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(vii) The linear system Ax=y has exactly one solution for all yek". 

(viii) The columns of A constitute a basis for k". 

(ix) The rows of A constitute a basis for k". 

(x) A is invertible; i.e., AeGLn(k). 

PROOF. In light of the equality of the rank of A with the rank of its transpose, 
the first nine statements follow at once from the general proposition that for n 
vectors in an n-dimensional space, the attributes of linear independence, span­
ning, and being a basis are equivalent. Moreover, we have seen in the earlier 
version of this theorem (5-6) that (x) implies (vii). Hence it only remains to 
show that a matrix satisfying (i)-(ix) is invertible. 

We observed in Section 5.2 that (i) implies the existence of a right inverse B 
for A. We now produce a left inverse analogously and show that the two are 
equal. First note how left multiplication of A by a row vector x operates: 

The result is that the coordinates of x appear on the right as coefficients in a 
linear combination of the rows of A. Thus one can interpret (iii) to mean that 
for every canonical basis vector ej (considered here as a row vector), there exists 
a row vector Cj such that CjA =ej U= 1, .. . ,n). Stacking these rows into a matrix 
C, we have by construction that CA = In. Finally note that C= CAB= B, showing 
thatA is indeed invertible and accordingly lies in GLn(k). CI 

The Dual of the Dual 

We are left with one loose end. Given a finite-dimensional vector space Vover 
k, we have constructed the dual space v* and have shown that V and V* are 
isomorphic, although the isomorphism does depend upon the choice of a basis. 
One wonders, what is V**, the dual of the dual? It is of course isomorphic to v* 
and hence to V, but in this case there is a much more natural isomorphism, 
which does not depend at all on a basis. 

6-22 THEOREM. Let ve V. Then the mapping ey: V*-~k defined by eyif) =f(v) is 
a linear transformation from V*=Hom(V,k) to k and hence an element of 
V**. Moreover, the association v~ey is an isomorphism from Vto V**. 

The map ey is called evaluation at v; this is a fundamental construction in 

algebra. 
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PROOF. We leave it as an exercise to show that evaluation at v is linear. Since V 
and V** have the same dimension, it suffices by the Rank-Nullity Theorem to 
show that the map v ~ ell has zero kernel. But if ell is the zero map from V* to 
k. thenftv)=O for aIifeHom(V,k). We claim that this forces v=O. Otherwise. 
we could extend v to a basis for V, and since any set map from a basis to k can 
be extended to a linear map from V to k. we could certainly construct a linear 
transformationj: V -+k which does not vanish at v-a clear contradiction. This 
completes the proof. [J 

6.5 Change of Basis 

In this final section we analyze what happens to the matrix of a transformation 
under a change of basis. We shall only discuss linear transformations T: V -+ V 
of a finite-dimensional vector space into itself (these are called endomorphisms 
of V). although the ideas carry over easily to linear maps T: V -+ W where W is 
an mbitrary finite-dimensional space. (See Exercise 25 below for an introduc­
tion to this generalization.) 

Assume that dim(V)=n and let both B={v\ •...• vn } and B'= {w\ •...• wn } be 
ordered bases for V. Then we have coordinate isomorphisms rB and rB' from V 
to 1". Let PeMn(k) represent the unique isomorphism <yBorB,-I) that makes the 
following diagram commute: 

In the picture. we identify the matrix P with the linear transformation defined 
as left multiplication by P (i.e.. Tp). Note that since P represents an isomor­
phislD, it is invertible. P is called the transition matrix from B' to B. 

One can easily give an alternative and less abstract description of P which is 
often computationally effective. By construction, for j= 1 •.. .• n 

The left-hand side is Pej=pj. thejth column of P. The right-hand side is the co­
ordinate vector of Wj with respect to the basis B. Thus we have the following 
result: 

RULE. Thejth column of the transition matrix P is the coordinate vector ofw. 
with respect to the basis B. J 
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EXAMPLE. Let Vequal the space of real polynomials of degree less than or equal 
to 2. LetB={I,x,x2} andB'={l+x,l-x,l+x2}. Then the transition matrix from 
B' to B is evidently 

We now come to the main point of the section, often called the change of basis 
formula. 

6-23 THEOREM. Let T: V -+ V be an endomorphism of a finite-dimensional vec­
tor space. Let M denote the matrix ofT with respect to the basis B and let 
N denote the matrix ofT with respect to the basis B'. Then 

N=P-1MP 

where P is the transition matrix from B' to B. 

PROOF. We give an elegant proof based on the three-dimensional diagram 
shown in Figure 6.2, which suggests the vertices and edges of a prism. 

We see that the triangular faces at either end are commutative since they are 
precisely the triangles that define the transition matrix P. Moreover, the front 
(slanted) and back faces are commutative since they are precisely the rectangles 
that define, respectively, the matrix N of T with respect to the basis B' and the 
matrix M of T with respect to the basis B. We claim that this forces also the 
commutativity of the bottom face, which clearly amounts to the matrix equation 
PN=MP. Multiplying both sides of this equality by p-I on the left yields the 
stated result and completes the proof, subject to verification of our claim. 

Figure 6.2. Theorem 6-23 may be inferred from the commutativity of this three-dimen­

sional diagram. 
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PROOF OF CLAIM. This is a lovely diagram chase, and the true flavor is not 
transmissible in print. (Ask your lecturer for a live demonstration and enjoy the 
blurred motion of the chalk darting from vertex to vertex as this or that given 
element is chased across the blackboard. But beware of homological algebraists 
and algebraic topologists: their performances may have to be video taped and 
played back in slow motion.) For the present, the following symbolic calcula­
tion must suffice. We omit the composition operator: 

NyB' = YB'T (commutativity of the front face) 

PNy B' = Py B'T (apply P on the left to both sides ) 

= Y BT (commutativity of the triangle at the right end) 

= MYB (commutativity of the back face) 

= MPy B' (commutativity of the triangle at the left end) 

PN=MP (apply YB'-l on the right to both sides) 

This establishes the claim. o 

EXAMPLE. Let V, B, B', and P be as in the previous example. Using the theorem 
above, we compute the matrix of differentiation on V with respect to B'. We can 
compute p-1 either by directly solving the matrix equation PX= 13 (as described 
in Section 5.4), or better yet, by finding the transition matrix from B to B'. The 
latter calculation can be carried out by inspection to yield 

[
112 1/2 

p-l = 112 -112 

o 0 

-1/2) 
-1/2 

1 

The matrix D of differentiation with respect to B we know from previous ex­
amples. Thus the matrix of differentiation with respect to B' is given by 

(
1/2 112 

P-1DP = 112 -112 

o 0 

Multiplying this out yields 

~~~~)(~ ~ ~)( ~ -~ 
1 0 0 0 0 0 ~) 
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(
1/2 -112 

P-1DP = 112 -112 

o 0 -i] 
The reader should verify the result by direct calculation of the matrix of differ­
entiation relative to B'. 

The appearance of the transition matrix in the formula for change of basis 
suggests the following definition. 

DEFINITION. Let A,BeMn(k). We say that A is similar to B if there exists a 
matrixPeGLn(k) such thatB=p-1AP. We alsowriteA~B. 

6-24 PRoPOsmoN. For all matrices A,B,CeMn(k), we have 

(i) A~A 

(ii) A~B=>B~A 

(iii) A~B and B~C =>A~C 

Hence similarity is an equivalence relation on the set Mn(k). 

PROOF. We shall prove only (iii), leaving (i) and (ii) as easy exercises. Suppose 
that A is similar to B and B is similar to C. Then by definition, there exist ma­
trices P,QeGLn(k) such that 

B = P-1AP and C = Q-1BQ 

Substituting the first equation into the second yields 

C= Q-lp-1APQ = (PQ)-IA(PQ) 

which shows that A is similar to C. o 

The connection between similarity and the representation of linear transfor­

mations is this: 

6-25 PRoPOsmoN. Given A,BeMn(k), A is similar to B if and only if there 
exists a vector space V and an endomorphism T of V such that both A and 
B represent Twith respect to (poSSibly) different bases. 

PROOF. <=) This is precisely the content of the change of basis formula. 
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~) Suppose that B= P-IAP. Let V= Ie" so that A represents TA , left multipl~ca­
tion by the matrix A, with respect to the canonical basis el, ... ,en· Now consider 
the basis pi , ... ,pn, consisting of the columns of P. (This is indeed a basis by 
either Theorem 5-6 or Theorem 6-21, since P is invertible.) The transition 
matrix from pI , ... ,pn to the ~anonical ~asis is evident~y P itself, .so. tha~ ac~~rd­
ing to the theorem, the matnx of TA wIth respect to this new baSIS IS B-P AP, 
as~~ Q 

Exercises 

1. Let T: R2~ R be a linear transfonnation and suppose that T(l, 1) = 5 and 
T(0,1)=2. Find T(XPX2) for all x l ,x2ER. [Hint: The vectors (1,1) and (0,1) 
constitute a basis for R2.1 

2. Find the matrix with respect to the canonical basis of the linear transfor­
mation T:R3~R2 defined by 

3. Let T: R2 ~ R2 be the linear transfonnation which is defined by reflection 
through the line x=y. What is M(T), the matrix of T with respect to the ca­
nonical basis? Explain geometrically how one knows without calculation 
that M(T)2 is 12, the 2x2 identity matrix. 

4. Let Vbe the vector space of real functions spanned by the functions eX and 
e2x, which in fact constitute a basis for V. What is the matrix of the 
differentiation operator on V with respect to this basis? 

5. Find the matrix representation (with respect to the canonical basis) for 
each of the projection maps P/Ie"~k defined in Section 3.2. 

6. Let Vbe the real function space spanned by the linearly independent func­
tions sinx, sin 2x, and eX, which therefore constitute a basis B for V. What 
is the matrix of the second derivative operator on V with respect to B? 
(Why does this question make no sense for the first derivative operator?) 

7. Let V be a finite-dimensional vector space of dimension n over k. Show 
that the matrix of the identity map on V with respect to any basis is In' the 
nxn identity matrix. 
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8. Let T: V ~ V' be a linear transformation of vector spaces V and V' with 
bases B and B', respectively. Show that T is invertible if and only if the 
matrix of T with respect to Band B' is likewise invertible. Note that this re­
sult does not depend on the choice of bases. (Hint: Use Proposition 6-13 
and the previous problem.) 

9. Let Vbe a vector space over k of dimension n. Given Aek, let TA, denote the 
linear transformation from V to itself defined by TA,(v) = AV for all ve V. 
What is the matrix of TA, with respect to any basis? 

10. Let Vbe the real vector space of polynomials of degree less than or equal to 
2, with basis B= {1,x,x2}. Suppose that for some linear transformation T 
from V to itself, we have that the matrix of T with respect to B is 

(~ : ~) 
Compute T(2 + 5x-4r). 

11. Let Vbe the real vector space of polynomials of degree less than or equal to 
2, with basis B= {1,x,r}. Consider the differential operator D: V ~ V de­
fined by 

D(P(x» = 2p(x) + p'(x) - 5p"(x) 

What is the matrix of D with respect to B? Is D invertible? Why or why 
not? 

12. Consider C as a two-dimensional vector space over R with ordered basis 
{1,i}. For z=a + bi (a,beR), define the mapping Tz:C~C by 

so that Tz is just multiplication by z. By the field axioms for the complex 
numbers, this is a linear transformation. 

(a) What is the matrix of Tz with respect to the given basis? 

(b) Use the 2x2 matrix inversion formula (Chapter 5, Exercise 7) to invert the 
matrix associated with a nonzero z. What complex number does this repre-
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sent? (Congratulations! You have just rediscovered the well-known for­
mula for the inverse of a complex number.) 

(c) What is the matrix associated with the complex number i? 

(d) Finally, consider the matrix 

Compute A 1000 and A 1003. (Hint: This obviously has something to do with 
part (c) and should require almost no computation.) 

13. Let Vbe a vector space of dimension 3 and suppose that B={ VI'V2,v3} is an 
ordered basis for V. If the matrix of a linear transformation T: V ~ V rela­
tive to B is 

14. Let T: V ~ V be a linear transformation from a finite-dimensional vector 
space to itself and suppose that the nullity of T is n. Show that there exists 
a basis B for V such that the matrix of T with respect to B has precisely n 
columns ofO's. [Hint: If n=O, no basis vector is sent to O. If n>O, then ex­
tend a basis for Ker(T) to a basis for V.] 

15. Let T: V ~ V be a linear transformation from a finite-dimensional vector 
space to itself. Let A be the matrix of T with respect to some basis for V. 
Show that for any nonnegative integer r, T'=O if and only if Ar=O. (Here 
the exponents indicate, respectively, iterated composition and iterated mul­
tiplication.) 

16. Let T: V ~ Vbe a linear transformation from a vector space V of dimension 
n;;::2 to itself, and suppose that there exists a subspace Wof V of dimension 
m such that T(W)<;;;; W [that is, T(w)eWfor all WEW]. Assume further that 
n>m>O. Show that there is a basis B of V such that the matrix of T relative 
to B has the form 
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where P represents an mxm matrix, Q represents an mx(n - m) matrix, R 
represents an (n-m)x(n-m) matrix, and 0 denotes the (n-m)xm zero ma­
trix. (Hint: Extend a basis for Wto a basis for V.) 

17. Let V be a vector space of dimension n and suppose that V = WI E9 W2 for 
subspaces WI and W2 of V of positive dimensions n\ and n2, respectively. 
Now suppose further that T is an endomorphism of V such that T(~) ~ W. 
(j= 1,2), so that T maps each of the component subspaces into itself. Sho~ 
that there is a basis B for V such that the matrix of T with respect to B 
takes the form 

(~-t~) 
where P is an n\xn\ matrix, Q is an n2xn2 matrix, and the O's represent 
blocks of zeros of the appropriate sizes. 

18. Let Vbe a finite-dimensional vector space with basis v\, ... ,vn (n~2). Let T 
be the endomorphism of V defined by 

Let A be the matrix of T with respect to the given basis. Describe A. What 
isAn, the nth power of A? 

19. Assume that V is a vector space of dimension n. Let T be an endomorphism 
of V, and let there be given subspaces WI' ... ,Wn of V such that the follow­
ing three conditions are satisfied: 

(i) ~~ ~+l (j=I, ... ,n-l) 

(ii) dim(~)=j (j= I, ... ,n) 

(iii) T(~)~ ~ (j= I, .. . ,n) 

Show that there exists a basis B of V such that the matrix of T with respect 
to B is upper triangular. [Condition (iii) says that each ~ is T-invariant, a 
concept we shall revisit in Chapter 10.J 



Exercises 129 

20. Given the following basis B for R3. find the transition matrix from B to the 
canonical basis. 

B = {(1.2.-1). (6,0,1), (-1,2.2)} 

21. Let Vbe the vector space ofreal polynomials of degree less than or equal to 
4. Let B= {1.X ••.• ,x4} be the usual (ordered) basis of monomials. We can 
form an alternative basis 

B' = {(I +x)i } j=O •..•• 4 

Find the transition matrix from B' to B and the transition matrix from B to 
B'. (The first is easy~ the second slightly more difficult.) What is the 
relationship between the two transition matrices? 

22. Let there be given bases B. B'. and B" for the finite-dimensional vector 
space V. Suppose that the transition matrix from B" to B' is Q and that the 
transition matrix from B' to B is P. State and prove a formula for the 
transition matrix from B" to B. (Hint: Draw the appropriate commutative 
diagram.) 

23. Show that any two similar matrices have the same rank. (Hint: Use Prop­
osition 6-25.) 

24. What is the inverse to the map described in Theorem 6-14? 

25. Let V and W be finite-dimensional vector spaces with TEHom(V.W). As­
sume the following additional data: 

(i) With respect to the bases B and C for Vand W, respectively. the matrix 
ofTisM. 

(ii) With respect to the alternative bases B' and C' for Vand W, respective­
ly. the matrix of T is N. 

(iii) In V. the transition matrix from B' to B is P~ in W. the transition ma­
trix from C' to Cis Q. 

State and prove a formula relating N to M via P and Q. (Hint: Revise Fig­
ure 6.2 appropriately. The student may agree that this problem is rather 
more difficult to state than to solve!) 
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26. Using the ideas of Section 6.4 (in particular, Theorem 6-19), prove without 
calculation that for matrices A and B, t(AB)=tB'A, whenever these products 
are defined. [Hint: By the contravariance of the dual map, 

Now write down the matrix of this map in two ways.] 



7 
Inner Product Spaces 

So far we have seen that the definition of an abstract vector space captures the 
fundamental geometric notion of dimension. There remain. however, at least 
two other basic geometric ideas that we have not yet addressed: length and 
angle. To encompass them in the abstract we need to introduce a bit more struc­
ture, and in consequence we shall require that our ground field manifest some 
notion of order. Hence we no longer operate over some abstract field k but 
rather, for the most part, over the field R of real numbers. In the final section 
we shall generalize the results to the complex numbers C. 

7.1 Real Inner Product Spaces 

DEFINITION. A real inner product space V is a real vector space together with a 
map 

VxV~ R 

(V,w) H (vlw) 

called a real inner product, satisfying the following properties: 

(i) (vlv)~O 'tVEV, with equality if, and only if, v=o 

(ii) (vlw)=(wlv) 'tV,WEV 

(iii) (u+vlw)=(ulw)+(vlw) 'tU,V,WEV 

(avlw)=a(vlw) 'tV,WEV, aER 

Note that according to (ii), the relations expressed in (iii) hold equally well 
on the other side. 

These properties are called, respectively, positive definiteness, symmetry, 
and bilinearity. The term bilinearity reflects the linearity of the inner product in 
either variable; that is, for all VOE V, the following maps are linear: 



132 7. Inner Product Spaces 

(1) Let V= R". Then we define the canonical inner product or dot product on 
Vby the fonnula 

" 
(xly) = ~>jYj 

j:] 

The requisite properties are evident from the ordinary arithmetic properties 
of real numbers. One should also notice that this inner product can be real­
ized as matrix multiplication: 

(xlY)=~y 

where we use the transpose operator to convert x from a column vector to a 
row vector. 

(2) Let V=~o([a,b]), the vector space of real-valued continuous functions on 
the closed interval [a,b]. We define an inner product on Vby the fonnula 

b 

(fIg) = J J(x)g(x)dx 

" 
The requisite properties follow at once from the familiar rules for the defi­
nite integral. 

Notice that this second example is not so distant from the first. A function 
is in some sense a vector with infinitely many coordinates, one for each 
point x of the domain. We cannot directly add the infinitely many products 
of corresponding components J(x)g(x) as we do in the case of RIO, but we 
can replace the suggested calculation by a limit process operating on dis­
crete summations: the definite integral. 

An inner product immediately yields a reasonable definition of length. 

DEFINfTION. Let V be an inner product space. Then given a vector veV, we 
define the length or norm ofv, denoted lvi, by 

A vector of length 1 is called a unit vector. 
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Length has two obvious properties that follow at once from the definition of 
an inner product: 

(i) Ivl=O<=>v=O, 'I1veV 

(ii) lavl=lal'lvl 'ltveV, aeR 

Note that in (ii), the vertical bars around a real number denote the ordinary 
absolute value function; around a vector they denote length or norm as here 
defined. 

EXAMPLES REVISITED 

(1) For our first example above, we have 

( )

112 

Ixl= ix/ 
J=I 

which agrees in small dimensions with our ordinary notion of length, via 
the Pythagorean Theorem. 

(2) For our second example above, we have 

( b )112 
1/1= II(X)2 dx 

This notion of length for functions is not a priori geometric (and most em­
phatically has nothing to do with arc length), but the formalism does yield 
reasonable geometric interpretations and a good deal of useful and some­
times surprising information. 

We now come to the fundamental inequality for inner products. The proof 
given here for real inner product spaces is efficient but does not generalize to 
the complex case. A better, more conceptual proof awaits us in Section 7.3. 

7-1 THEOREM. (The Cauchy-Schwarz Inequality) Let V be an inner product 
space. Then for all vectors v and w in V, 

j(vlw)1 :s; Ivl'lwl 

Note carefully that the vertical bars on the left signifY absolute value; on the 
right they signifY the length function. (In light of this ambiguity, some denote 
length IIvll, but in practice our simpler notation causes no confusion.) 
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REMARK. As we shall soon see, almost all of the results of this and the follow­
ing section hold for both real and complex inner product spaces. Whenever this 
is so, we state our assertions simply for inner product spaces, implicitly inclu­
ding both cases. 

PROOF. For all xeR, 

(v+xwlv+xw) ~ 0 

Using bilinearity to expand the left side, we find that 

(vlv) + 2x(vlw) + x2(wlw) ~ 0 

or, equivalently, 

Iwl2 x2 + 2(vlw)x + Iv 12 ~ 0 

Now considering this as a statement about a polynomial in the indeterminate x, 
we conclude that this polynomial has at most one real root, so that the dis­
criminant is less than or equal to O. Therefore 

and 

Taking square roots, we have the stated inequality. Cl 

7-2 COROLLARY. (The Triangle Inequality) For all v and w in V. 

Iv+wl :;; Ivl + Iwl 

PROOF. This is an exercise in bilinearity with an opportune use of the Cauchy­
Schwarz Inequality: 

Iv+wI2= (v +wlv +w) 

= (vlv)+ 2(vlw)+(wlw) 

:;; IvI2+2Ivllwl+lwI2 

:;; (Ivl+lwI)2 

Again taking square roots of both sides, we obtain the desired result. Cl 

The student should plot two nonparallel vectors in R2 together with their 
sum to see how this result gets its name: since the shortest distance between 



7.1. Real hmer Product Spaces 135 

two points in the Euclidean plane is a straight line, the sum of the lengths of 
two legs of a triangle must exceed the length of the third. 

We see now that the Cauchy-Schwarz Inequality strengthens our sense that 
the abstract length function associated with an inner product does indeed be­
have like ordinary length. It is also the key to extending another primitive geo­
metric idea. 

DEFINITION. Let v and w be nonzero vectors in the inner product space V. Then 
the angle between v and w is the number Oe [O,n] defined by the equation 

cosO= (vlw) 
Ivllwl 

Note that this definition makes sense since the quotient on the right is guar­
anteed to lie between -1 and +1 by the Cauchy-Schwarz Inequality. (physics 
students may recognize the definition of the dot product as given in many texts: 
x·y = Ix II y Icos O. Of course this cannot be a definition of the dot product for us, 
since we are using essentially the same equation to define 0.) 

As an important special case of the angle between two vectors we have the 
following definition: 

DEFINITION. Let v and w be vectors in the inner product space V. Then we say v 
is orthogonal to wand write v-Lw if (vlw) = O. 

For nonzero vectors in a real inner product space, this, of course, corre­
sponds to the case where the angle between v and w is n/2. 

A family VI , ••• , V m of nonzero vectors in V is called an orthogonal family if it 
satisfies the condition that (v;lv')=O whenever i:II An orthogonal family con­
sisting entirely of unit vectors ii called an orthonormal family. In this case 

(v;lvj) = oij {l~i,j~m) 

(We may, of course, also speak of an orthogonal or orthonormal set.) 

EXAMPLES 

(1) The canonical basis for Rn is an orthonormal family and hence called an 
orthonormal basis for Rn. There are infinitely many others. For example, 
in the special case n=2, we can obtain the alternative orthonormal basis 

by rotating the canonical basis vectors counterclockwise about the origin by 
n/4 radians. Other angles, of course, yield other alternatives. 
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(2) The student can show (with some patience or perhaps a table of integrals) 
that the following infinite family of functions in ~o([-7r,+1lD is orthogonal: 

1, cosx, sinx, cos2x, sin2x, cos3x, sin3x"" 

They are not, however, orthonormal, but by a simple scalar adjustment one 
can make them so. (See Exercise 15 below.) 

In light of our previous work, these examples might suggest that an or­
thogonal family is linearly independent. This is indeed the case, as we shall 
now show. 

7-3 PROPOSITION. Every orthogonal family is also a linearly independent fam­
ily. 

PROOF. Let V\'" ",vm constitute an orthogonal family and suppose that 

m 

~::>jVj = 0 
j=1 

Then taking the inner product of the summation with any member vk of the 
family and using bilinearity and orthogonality, we find that 

m m 

o = (~>jVjIVk) = ~>/V)Vk) = ak(vklvk) 
j=1 j=1 

Since (vklvk) is nonzero (an inner product is positive definite), it follows at once 
that ak =0. Since this is true for all k, the assertion follows. 0 

We next look at another consequence of orthogonality. This is a generaliza­
tion of what many consider to be the most important theorem in mathematics. 

7-4 THEOREM. (The Pythagorean Theorem) Suppose that the vectors vl'""vm 

constitute an orthogonal family in the inner product space V. Then 

REMARK. Consider what this theorem says for two orthogonal vectors a and b 
in the Euclidean plane R2. Let the scalars a and b denote the corresponding 
lengths. Their sum c represents the hypotenuse of a right triangle, the length of 
which we denote c. The formula above then asserts that c2 =a2 +b2, and this is 
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indeed just the statement of the Pythagorean Theorem that we learned in high 

school geometry. 

PROOF. This is an almost trivial calculation: 

m m m 

ILVjI2=<LVjILVj) 
j=1 j=1 j=1 

= L(vAVk) 
I",j,k;;m 

m 

= L(vjlv) 
j=1 

The point is that only the diagonal terms contribute on the second line, since 
the vectors in question are assumed pairwise orthogonal. 0 

Before leaving this basic discussion, we should mention one last elementary 
fact concerning the connection between inner products and a certain class of 
matrices. A matrix CeM,,(R) is called positive definite if txCx>O for all non­
zero x in R". According to Theorem 6-21, since left multiplication by a positive 
definite matrix clearly has kernel 0 (Cx=O withoutx=O would certainly violate 
the defining condition), a positive definite matrix must be invertible. 

7-5 PRoposmoN. Let V be afinite-dimensional real vector space of dimension 
n with (ordered) basis B. Then every real inner product on V arises in the 
form 

where C is a real nxn positive definite, symmetric matrix. 

PROOF. Given a positive definite, symmetric matrix C, it is easy to show that 
the formula above defines an inner product. Conversely, given any real inner 
product on V, one can associate the symmetric matrix C=(cij) defined by 

where vw"'v" is the given basis. One can show by direct calculation that the 
given inner product is equivalent to the formula and that therefore C is indeed 
positive definite. {J 
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7.2 Orthogonal Bases and Orthogonal Projection 

Throughout, let Vbe a real inner product space. (All of the results proven here 
will also hold for complex inner product spaces.) 

DEFINITION. An orthonormal family in V that is also a basis is called an or­
thonormal basis for V. 

We have seen, for example, that the canonical basis for R" is an orthonormal 
basis. Orthonormal bases are particularly easy to work with since finding coor­
dinates and lengths is trivial. 

7-6 PRoPOsmoN. Let u1' ... 'u" be an orthonormal basis for V. Thenfor all v in 
V, the folloWing assertions hold: 

" (i) V= L(vluj)uj 
j=1 

" (ii) Iv12= L(vluji 
j=1 

" (vluk ) = (Laju)uk ) = ak (Uk Iuk ) = ak 
j=1 

as claimed. (Since the uj are in particular orthogonal, only the term for which 
the subscripts match contributes to the summation.) The second statement is 
just the Pythagorean Theorem: the uj are moreover unit vectors, so the length of 
each term (vluj)uj appearing in part (i) is exactly the absolute value of the scalar 
coefficient (vluj). 0 

The summands in part (i) are especially important and give rise to yet an­
other fundamental definition with strong geometric connotations. 

DEFINITION. Let v lie in Vand let UE Vbe a unit vector. Then 

is called the orthogonal projection ofv onto u. More generally, if W is a sub-
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space of V with orthonormal basis u1'·· .,um, then 

m 

prw(v) = L(vluj)uj 
j=1 

is called the orthogonal projection o/v onto W. Note that by construction the 
orthogonal projection lies in W since it is a linear combination of elements of 
W. (For convenience, we define the projection of any vector onto the zero 
subspace to be 0.) 

Figure 7.1 should help the student to visualize a low-dimensional case of or­
thogonal projection onto a subspace. In the picture, the vector v is shown above 
the planar subspace W, while its orthogonal projection prw<v) is, of course, 
shown to lie in W. Other incidental features of the illustration are formalized 
below in Lemma 7-7 and Corollary 7-11. 

With this new language we may paraphrase the previous proposition by say­
ing that a vector is the sum of its orthogonal projections onto the elements of a 
finite orthonormal basis. Moreover, we shall show shortly (Theorem 7-8) that 
every finite-dimensional inner product space does in fact admit an orthonormal 
basis, and therefore the orthogonal projection of a vector onto a finite-dimen­
sional subspace is always defined. We shall deduce further that this projection 
does not depend upon the particular choice of an orthonormal basis (Corollary 
7-10) and thus depends only upon W itself. This justifies our terminology in 
speaking of the projection onto Wwithout explicit reference to a basis. 

7-7 LEMMA. In the context of the definition above, for all v in V 

(v-prw<v» ..L Uk (k= 1, ... ,m) 

and hence v-pr w<v) is orthogonal to every vector in W. 

Figure 7.1. The orthogonal projection of v onto the subspace W spanned by the ortho­
nonnal set u1 and u2• 
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PROOF. Again a straightforward calculation: 

m 

= (vlut)-(L(vluj)u)ut ) 
j=1 
m 

= (vlut )-L(vlujXujlut ) 
j=1 

The transition from line 3 to line 4 is justified by the orthogonality of the u's; 
the last step requires that the u's be unit vectors. 

The second assertion of the lemma follows from bilinearity, since every ele­
ment of W can be written as a linear combination of the orthonormal basis 
vectors. D 

We are now ready to prove the existence of orthonormal bases for finite­
dimensional inner product spaces. The proof actually exhibits an algorithm for 
constructing such a basis, albeit a tedious one to execute by hand. 

7-8 THEOREM. (The Gram-Schmidt Orthonormalization Process) Every finite­
dimensional inner product space V has an orthonormal basis. 

PROOF. The proof is constructive. If V is the zero space, the empty set is vacu­
ously an orthonormal basis. Otherwise, let v\>" •• ,vn be a basis for V and define 
an ascending chain of subspaces Jfj in Vby Jfj=Span(vl, ... ,vj),j= l, ... ,n. Thus 

Now set 

Then u is a unit vector and thus an orthonormal basis for WI· We can therefore 
I d . 

define orthogonal projections onto WI' and thus define a secon urnt vector 
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The point is that we subtract from v2 its orthogonal projection onto WI to obtain 
a vector orthogonal to ul • and then we normalize it. This yields an orthonormal 
basis for W2. (Clearly two orthogonal. hence linearly independent. vectors in 
the two-dimensional space W2 must be a basis.) Iterating this procedure. at 

stage k we define 

for k=2 •...• n and thus obtain an orthonormal basis up .... un for Wn = V. 0 

EXAMPLES 

(1) We apply Gram-Schmidt to the basis for R3 consisting of the vectors 

(2.0.0). (1.5.0). (1.2.2) 

One finds at once that u l =(1.0,0). To find u2 • we first subtract from (1.5.0) 
its orthogonal projection onto the subspace spanned by U I : 

(0.5.0) = (1.5.0) - 1-(1.0.0) 

We normalize this to obtain u2 = (0.1.0). Finally. we subtract from (1.2.2) 
its orthogonal projection onto the subspace spanned by U I and u2 : 

(0.0.2) = (1.2.2) - 1·(1.0.0) - 2·(0.1.0) 

We again normalize and consequently find that u3 = (0.0.1). We have thus 
recovered the canonical basis! [Do not be misled-things don't always 
work out this easily. as you will see by repeating the procedure on these 
same vectors in reverse order. starting with (1.2.2). Try it.] 

(2) A more interesting problem is to apply Gram-Schmidt to the three-dimen­
sional subspace V of ~O([-I.+l]) spanned by the functions 1. x. and x2• 

After tedious but routine calculations. one obtains the functions 

JiJ6 M2 - -x and -(3x -1) 
2' 2' 4 

This is the start of something big: the so-called Legendre polynomials. 
which are so important in mathematical physics. 
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Orthogonal Complementation 

Let V be a finite-dimensional inner product space with subspace W. We define 
w\ the orthogonal complement ofW, by 

W.l = {veV: (vlw)=O 'v'weW} 

Thus W.l consists of all vectors in V orthogonal to every vector in W. 

7-9 PROPOSITION. In the context of the preceding definition, the following 
assertions hold: 

(i) W.l;s a subspace of V, 

(ii) WnW.l = {O}. 

(iii) For all ve V. there exist unique we Wand w-Le W.l such that v=w + w.i; 
moreover, w is precisely the orthogonal projection ofv onto W. 

Thus in the language of direct sums, V= WEBWl.. 

PROOF. Part (i) is an exercise. For (ii), note that ifw lies in both sets, it must be 
orthogonal to itself. Thus (wlw)=O and w must be O. For (iii), given a vector v, 
define w to be prw<v) (computed against any orthonormal basis for W) and w-L to 
be v-w. Then clearly v=w+w-L. Uniqueness follows from Proposition 3-8. [J 

7-10 COROLLARY. The orthogonal projection prw<v) is independent of the 
choice of orthonormal basis for W. 

PROOF. This is essentially the uniqueness statement ofthe preceding result. [J 

7~1l COROLLARY. For all v, prw<v) is the point ofW closest to v. 

Here closest means with respect to the obvious distance function Iv-wi, the 
length of the difference of two vectors. 

PROOF. Let v=w +W-L as in the previous proposition, so that w is the orthogonal 
projection ofv onto W. Then for any w'e W, by the Pythagorean Theorem 

Iw' _v12 = I(w' -w) - w.ll2 

= Iw' _w12 + Iw.L12 

and this is clearly minimized when w'=w. [J 
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7.3 Complex Inner Product Spaces 

In this brief section we generalize the basic definitions associated with a real 
inner product to the complex numbers C. Most of the previous discussion ap­
plies with little or no change. 

First recall that every complex number is uniquely expressible in the form 

z = a + bi 

where a and b are real numbers and P=-l. We call a the real part ofz, denoted 
Re(z), and b the imaginary part of z, denoted Im(z). The complex conjugate of 
z, denoted z, is defined as follows: 

z=a-bi 

That is, we change the sign of the imaginary part. Thus conjugation has no ef­
fect on real numbers. It is easy to show that complex conjugation is both addi­
tive and multiplicative, so that 

(z+w)=z+w 

(zw) =zw 

Accordingly, one says that conjugation is an automorphism of the field C. Fi­
nally, note that for all complex numbers z, 

Izl= J7i = .Ja2 +b2 

With these preliminaries, we can now state the definition of a complex inner 
product space. 

DEFINITION. A complex inner product space V is a complex vector space to­
gether with a map 

VxV~ C 

(v,w) H (vlw) 

called a complex inner product, satisfying the following properties: 

(i) (vlv)~O \lvE V, with equality if and only if v = O. 

(ii) (vlw) = (wlv) \Iv, w EV 
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(iii) (u+vlw)=(ulw) + (vlw) \fU,V,WEV 

(avlw)=a(vlw) \fV,WEV, aEe 

It is implicit in (i) that (vlv) is real for all VE V. From (ii) and (iii), we obtain 
an additional property (called antilinearity) in the second variable: 

(iv) (ulv+w)=(ulv) + (ulw) \fu,V,wEV 

(vlaw)= a(vlw) \fV,WEV, aEe 

EXAMPLES 

(1) Let V= en. Then we define the canonical inner product or dot product on 
Vby the formula 

n 

(xIY)= LXjYj 
j~1 

The requisite properties follow from the ordinary arithmetic properties of 
complex numbers. (See Exercise 26 below for some important remarks on 
this definition.) 

(2) Let V be the space of complex-valued continuous functions on the closed 
interval [a,b]. We define an inner product on Vby the formula 

b 

Ulg)= J j(x)g(x)dx 
a 

The requisite properties follow from the rules for the definite integral. 
(Note: The integration of a continuous complex-valued function j defined 
on an interval [a,b] is achieved by separately integrating, in the usual way, 
both its real and imaginary parts. Hence the familiar rules apply.) 

The definition of length for a complex inner product space is identical to 
that for a real inner product space; that is, 

Ivl= J(vlv) 

The key to showing that length as defined here has the expected properties (and 
later the key to defining the angle between two vectors) is again the Cauchy­
Schwarz Inequality. 
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7-12 THEOREM. (The Cauchy-Schwarz Inequality) Let V be an inner product 
space (real or complex). Then for all v and w in V, 

l(vlw)1 ~ Ivl-lwl 

PROOF. The simple proof given previously, which made essential use of the 
symmetry of the real inner product, will not go through in this case. We must 
give a more intrinsic argument. Assume that v is not the zero vector, since oth­
erwise the assertion is trivial. Define 

and 

v' =V-AW 

In light of Section 7.2, AW is formally the orthogonal projection of v onto the 
subspace spanned by w, and it follows as previously that (v' I w) = O. Now ex­
pand the square of the length of v': 

Thus 

o ~ Iv'12 = (V'IV-AW) 

= (v'lv) 

= (v-Awlv) 

= IvI2-(AWlv} 

and substituting the definition of A into this last inequality yields 

(vlw}(wlv) 1 12 
Iwl2 ~ v 

(vlw}(wlv)~ Ivl21wl2 

Now since (w I v) is the complex conjugate of (v I w), the product on the left is 
precisely I(v 1 w}lz. Taking square roots of both sides, the inequality is estab­
lished. Q 

As a corollary, we have the Triangle Inequality also for complex inner prod­
uct spaces; the previous proof goes through with one small change. 
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7-13 COROLLARY. (The Triangle Inequality) Let V be an inner product space 
(real or complex). For all v and w in V; 

Iv+wl S; Ivl + Iwl 

PROOF. Again we use the linearity of the inner product and the Cauchy­
Schwarz Inequality, but in this case we must beware that the cross terms are not 
equal, but rather conjugate: 

Iv+wI2= (v+wlv+w) 

= (vlv)+(vlw)+(wlv)+(wlw) 
= (vlv)+ 2 Re«v Iw») +(wlw) 

S; IvI2+2Ivllwl+lwI2 

= (Ivl+lwI)2 

In passing from the third to the fourth line, we make use of the following chain 
of inequalities: 

IRe«vlw»)IS;l(vlw)IS;lvl-lwl 

Taking square roots of both sides yields the stated result. 

We can now define the angle between nonzero vectors v and w in a complex 
inner product space to be the unique number Oe[O,7r] defined by the equation 

cosO= Re«vlw») 
Ivllwl 

This makes sense because the quotient lies between -1 and +1, according to the 
Cauchy-Schwarz Inequality. (To verify this, we appeal to the same chain of 
inequalities exhibited in the previous proof.) 

Orthogonality and orthonormality are defined as above, and the proof that 
an orthogonal set is linearly independent applies without change, as does the 
proof of the Pythagorean Theorem. (For some important observations on the 
relationship between angle and orthogonality in a complex inner product space, 
see Exercises 29 and 30 below.) 

Finally, note that all of the results of Section 7.2 are valid, with no changes 
in the proofs, for complex inner product spaces. In particular, we may apply 
Gram-Schmidt to show that every finite-dimensional complex inner product 
space has an orthonormal basis. 
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Exercises 

1. In RJ, compute the inner product of (1,2,-1) and (2,1,4). What is the 
length of each vector? What is the angle between these vectors? 

2. What is the angle between the vectors (1,2,4) and (2,5,1) in R3? You may 
leave your answer in terms of the inverse cosine function. 

3. Find all vectors in RJ which are orthogonal to both of the following vec­

tors: 

(1,2,0) and (1,0,1) 

This amounts to a homogeneous system of two equations in three un­
knowns. (Cognoscenti of the vector cross product may have their own 
ideas.) 

4. Compute the inner product (fIg) in ~O([-7T,+7T]) for the following func­
tions: 

f(x) = 2x and g(x) = sinx 

5. In the context of the previous problem, find the length of the functions f 
and g. What is the angle between these functions? Interpret the Cauchy­
Schwarz Inequality in this special case. 

6. In the inner product space ~o([-l,+l]), for which n are the monomials xn 
orthogonal to the constant function I? 

7. In the context of the previous problem, what is the length of each of the 
monomials xn? 

8. Use the Cauchy-Schwarz Inequality on the appropriate inner product space 
to bound the definite integral 

,,/2 

fJxsinxdx 
o 

9. Prove that in an n-dimensional inner product space an orthogonal family 
may contain at most n vectors. (Hint: If you need more than two sentences 
for this one, you've missed the point.) 
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10. Carry out the Gram-Schmidt orthonormalization process on the following 
pair of vectors in R2 to obtain an orthonormal basis: 

(2,1) and (-1,3) 

1l. Apply the Gram-Schmidt orthonormalization process to the vectors (3,4,5) 
and (1,0,1) to obtain an orthonormal pair of vectors with the same span. 

12. Let V=R3 and let Wbe the subspace of V spanned by the vectors (1,0,1) 
and (0,1,0). What point of W is closest to the vector (6,2,5)? 

13. In R3, let Wbe the subspace spanned by the vectors (1,1,2) and (1,1,-1). 
What point of Wis closest to the vector (4,5,-2)? 

14. In R3, find the orthogonal projection of (2,2,5) on the subspace spanned by 
the vectors (2,1,1) and (0,2,1). (Hint: First apply Gram-Schmidt to the 
spanning set.) 

15. Granting that the functions 

1, cosx, sinx, cos2x, sin2x, ... 

constitute an orthogonal family in '6'0([-n;+1l"]), modify each function by a 
scalar (not necessarily the same one) to convert this to an orthonormal 
family. 

16. Let /E V='6'°([-1l",+1l"]). Give a formula for the orthogonal projection of/ 
onto the subspace of V spanned by the 2n+ 1 functions 1, cosx, sinx, cos2x, 
sin2x, ... , cosnx, sinnx. Expand this in terms of the appropriate definite 
integrals, which you need not (and cannot!) compute. (Thus begins the de­
velopment of Fourier series or harmonic analysis.) 

17. Let v and w be vectors in the inner product space V, with w nonzero. Write 
down a formula for the orthogonal projection of v onto the subspace 
spanned by w. (Remember that w is not necessarily a unit vector.) This is 
often called simply the projection o/v onto w. 

18. Let Wbe the subspace spanned by (1,1,1) in R3. Find a basis for Wl., the 
orthogonal complement of W. [Hint: Any two linearly independent vectors 
orthogonal to (1,1,1) will do.] 

19. Let Wbe a finite-dimensional subspace of the inner product space V. Show 
that the projection map pr w: V ~ V is a linear transformation. What are the 
kernel and image of this map? (Hint: Use Proposition 7-9.) 
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20. In the context of the previous problem, what is prwoprw? 

21. Let W be a nontrivial, proper subspace of the finite-dimensional inner 
product space V and again consider the projection map pr w: V ~ V. Assume 
that the dimension of W is m. Show that there is a basis B for V such that 
the matrix of pr w with respect to B takes the fonn 

where I is the mxm identity matrix, and the zeros represent zero matrices 
m • 

of appropriate sizes. (Hint: Consider appending a basis for W.l to a basiS 
for W.) 

22. Show that complex conjugation is a bijective map from e into itself. (Hint: 
What is the inverse map?) 

23. Show that en is isomorphic to R2n as real vector spaces. [Hint: Use the 
functions Re(z) and Im(z) defined on the complex numbers.] 

24. Find the length of the following vector in e2: 

(2+5i,I-4i) 

Remember that the canonical inner product on e2 requires conjugation. 

25. Let Vbe the complex vector space of continuous complex-valued functions 
on the interval [-n;+7r]. Consider the functionfeV defined by f(x) = e ix• 

Find the length offin V. (Hint: The complex conjugate of e ix is e-ix and the 
formal properties of exponents still apply to the complex exponential.) 

26. In en we defined the canonical inner product by 

n 

(xIY)= LXjYj 
j=\ 

Why not define it instead more simply as 

n 

(xIY)= LXjYj 
j=\ 

without conjugation of the Yj? What essential feature would be lost? 
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27. Show that in a complex inner product space we have 

lavl=laHvl V'veV, aeC 

This generalizes another familiar property of real inner products and is 
needed to extend the proof of Proposition 7-6 to the complex case. 

28. Let Vbe a complex vector space with basis {vj}jeJ' where J is some index 
set, possibly infinite. Then show that Vasa real vector space has the basis 
{vj,ivj}jeJ' Hence if V has dimension n over C, it has dimension 2n over R. 

29. Let Vbe a complex inner product space and let v be any nonzero vector in 
V. Show that (vliv):;t:O but nevertheless the angle between v and iv is n/2. 
Hence in a complex inner product space, vectors forming a right angle 
need not be formally orthogonal. How, then, can one reconcile these no­
tions? See the following problem. 

30. Show that for two complex numbers z and w, the product zw is purely 
imaginary if and only if z and ware orthogonal as points of R2. [For this, 
identify the complex number a+bi with the point (a,b) in R2.] This at least 
reconciles perpendicularity and orthogonality in C. Now generalize this to 
higher dimensions. 



8 
Determinants 

The determinant is an amazing function that in some sense measures the in­
vertibility of an nxn matrix. In this chapter we first give a formal, functional 
description of the determinant, showing its existence via a recursive definition. 
We then exhibit a direct formula, which leads at once to a statement of unique­
ness and a surprising multiplicative property. [The determinant turns out to be 
a group homomorphism from GLn(k) to k*.J Finally, from this multiplicativity 
one easily deduces that a square matrix is invertible if and only if its determi­
nant is not zero. 

8.1 Existence and Basic Properties 

We begin with a handy bit of notation. Let k be a field. If A eMn(k), n> 1, then 
henceforth 

is the (n -1)x(n -1) matrix which results upon the deletion of the ith row and 
jth column ofA. For example, 

This operation turns out to be critical to the sequel. 
As further preparation for the main theorem of this chapter, next recall that 

we often write a matrix A as the amalgamation of its columns; that is, 

A = (A 1 , •• • ,An ) 

where Ai is thejth column ofA. 
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8-1 THEOREM. (The Fundamental Theorem of Determinants) For each n ~ 1, 
there exists a unique map 

called the determinant, satisfYing the following rules: 

(i) MULTILINEARITY. LetA=(Ai, ... ,An ) and suppose that Ai=AICI +A.-zC2 
for column vectors C\,C2 Ek n and scalars A\'A.-z. Then 

det(A) = AI det(A I , ... ,C;, ... ,An) + Az det(A I , ... ,Cz, ... ,An) 
i i 

oolWlU1i oolWlU1i 

That is, the determinant is linear in every column. 

(ii) ALTERNATION OF SIGN. Suppose that A =(AI, ... ,An ) and that Ai=Ai+1 
for some j, so that two adjacent columns of A are identical. Then 

det(A) = 0 

(iii) NORMALIZATION. The determinant of the nxn identity matrix is the 
unity ofk; that is, 

for all n. 

We shall see shortly how property (ii) earns its name. 

PROOF OF EXISTENCE. (Uniqueness will be shown later as a deeper consequence 
of the properties established here.) We begin by giving a recursive definition of 
the determinant. 

A lxl matrix is just an element of the ground field k, so for n = 1 define 
det(a) = a. All three properties clearly hold-the second vacuously. For n> 1, 
define det : Mn(k) --* k recursively by the formulas 

n 

det(A) = I (-l)j+1 alj det(qjA) 
j~1 

(8.1) 

(This is called expansion by the first row. Examples are coming!) Thus the 
evaluation of the determinant for a given matrix proceeds in terms of matrices 
of smaller sizes until we finally reach the scalar case, for which the map is 
given explicitly. Properties (i), (ii), and (iii) are now verified by induction. 
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(i) For notational simplicity we give the argument in the first column, but it 
clearly applies to any column. So assume that A) = A) C) + ~C2' and, in particu­
lar, that all=A)c)+~c2 where c) and c2 are, respectively, the first entries of C) 
and C2. Then by the definition above (Eq. 8.1), 

n 

det(A) = (AI'1 + A2c2)det(q IA) + L( -I)j+l alj det(qjA) 
j=2 

and so by induction, 

But notice now that 

n 

+ L(-I)j+lalj~ det(q/C;,A2, ... ,An» 
j=2 

n 

+ L(-I)j+)aljA2det(q/C2,A2, ... ,An» 
j=2 

since none of the three matrices involves the disputed first column of A. Thus 
we may combine the first and third and second and fourth summands of our 
prior expansion to obtain 

det(A) ~A,{ ~ det(q,(C;,A' " .. ,A"» + #,(-ira,jdet(qiC;,A' , .. ,A"»} 

+ A,{ c, det(q, (c" A',. .. ,A"» + #,(-1)'+' a'1 det( qi( c" A' , .. . ,A"»} 

Observe next that cldet(oll(CI,A2, ... ,An» is just the first term in the expansion 
of det(C],A2, ... ,An) and that c2det(oll(C2,A2, ... ,An» is similarly the first term 
in the expansion of det(C2,A2, ... ,An). Hence we can absorb these terms into the 
adjacent summations to obtain 

as claimed. 
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(ii) We now demonstrate the second property in the case of the first two col­
umns. As above, the argument carries over to the general case without diffi­
culty. Suppose thatAI=A2. Then by definition 

n 

det(A) = al1 det(qIA) - al2 det(q2A) + L (-1)i+1 alj det(qjA) 
j:3 

and the first two terms cancel since all= al2 and 811A = 81:0. The remaining 
terms involve the matrices 81jA U = 3, .. . ,n) for which again columns 1 and 2 
are identical. Hence, by induction, all of their determinants are zero, and the 
result follows. (The case n=2 is covered directly by the expansion above.) 

(iii) Normalization is immediate: Since the (1,l)-entry of In is the only nonzero 
entry on the first row, our recursive formula for the determinant yields 

which is 1 by induction. This completes the proof of the theorem. D 

EXAMPLES 

We give two examples of our recursive definition, both of which yield useful 
nonrecursive formulas. 

(1) Calculation of the determinant by expansion of the first row in the 2x2 
case yields at once the formula 

det ( : ~ ) = ad - be 

Recall that this expression arose in Chapter 5, Exercise 7, in connection 
with the invertibility of 2x2-matrices. 

(2) Using the 2x2-formula and expansion by the first row, we can easily de­
duce a formula for the determinant of the general3x3 matrix A = (a;): 

Applying the previous result to each of the terms, this resolves itself to 
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det(A) = all (a22a33 -a3~23) -a\2(a21a33 -a31a23 ) +a\3(a21a32 - a31a22 ) 

= alla22a33 + a12a23a31 + a1~21a32 - a31a22a13 - a32a2~11 - a33a21a12 

This formula can be remembered since it is generated by a simple pattern 
of diagonals. (Find it!) 

If we repeat this analysis for the general 4x4 matrix, what do we find? The 
determinant resolves itself into four 3x3 determinants, each of which involves 
six terms. Hence we might deduce a 24-term formula, of no particular value. 
(The 3x3 pattern does not persist!) Arguing inductively, one sees that recursive 
expansion of the determinant for the general nxn matrix involves the computa­
tion of n! terms. Since this expression grows explosively, the method is clearly 
not computationally effective. Nonetheless, the appearance of the factorial in 
this context is suggestive and foreshadows things to come. 

8-2 COROLLARY. The determinant has thefol/owing additional properties: 

(i) Suppose that A' is obtainedfrom A by interchange of two adjacent col­
umns. Then 

det(A') = -det(A) 

(ii) Suppose that A' is obtained from A by interchange of any two columns. 
Then 

det(A') = -det(A) 

(iii) Suppose that any two columns of A are identical. Then 

det(A) = 0 

PROOF. (i) LetA =(A \ .. . ,Ai,A.ft\ ... ,An) and letA '=(A \ .. . ,A.ft\Ai, ... ,An). Now 
consider the matrix 

Since A" has two identical adjacent columns, its determinant is O. Thus by 
multilinearity we have 

0= det(A \ .. . ,Ai,Ai, ... ,An) + det(A \ .. . ,Ai.Ai+I •...• An) 

+ det(A 1 ••••• Ai+I.Ai •...• An) + det(A \ .. .• Ai+\Ai+\ ...• An) 

The first and fourth terms in the sum are zero for having identical adjacent col­
umns. while the second and third are. respectively. det(A) and det(A '). Thus 
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0= det(A) + det(A ~ 

and the result follows. 

(ii) Recall from the theory of permutations (see the proof of Lemma 1-7) that 
any transposition is the result of an odd number of adjacent transpositions. 
Therefore the exchange of any two columns of A can be accomplished by an 
odd number of adjacent swaps, each of which changes the sign of the detenni­
nant once. An odd number of sign changes amounts to a single sign change, as 
claimed. 

(iii) If any two columns of A are identical, consider what happens when we 
swap these columns. On the one hand, the matrix A changes not at all, whence 
its determinant likewise remains unchanged. On the other hand, according to 
part (ii) of the present corollary, the determinant changes sign. But the only 
possibility for a number unaffected by a sign change is zero! (J 

This corollary explains why we described property (ii) of Theorem 8-1 as 
alternation of sign. The next result begins to forge a link between the deter­
minant and the theory of vector spaces and linear transformations. (The full 
connection is given in Theorem 8-10 below.) 

8-3 COROLLARY. Suppose that the columns of A are linearly dependent. Then 
det(A)=O. 

PROOF. If the columns of A are linearly dependent, then one column is a linear 
combination of the others. By multilinearity, we can expand the determinant 
into a sum of determinants of matrices with at least two identical columns. To 
be more precise, if 

then 

det(A) = L.Ak det(A1 , ••• ,Ak , ••• ,A") 
k . i 

:l-J columnj 

But part (iii) of the previous result implies that each summand, and hence the 
total determinant, is zero. (J 

Further progress in the theory of determinants depends upon a complem~n­
tary description of this map (one that could have ser:ed as .an alternative 
definition, albeit an ugly one). This is given in the followmg section. 
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8.2 A Nonrecursive Fonnula; Uniqueness 

We next give a nonrecursive formula for the determinant; this is notationally 
compact, but practically intractable except in the smallest dimensions. Its real 
importance is theoretical, as we shall see shortly. The reader should first review 
the definition of Sn' the symmetric group on n letters, and a: Sn -j-{ ±1}, the sign 
homomorphism, in Section 1.5. 

8-4 THEOREM. For al/ A EM/k), 

det(A) = La(tr)a;r(I)I"'a;r(n)n 
1fESn 

where tr varies over the symmetric group on n letters and a denotes the 
sign homomorphism. 

Note that there are n! terms in the summation. This is consistent with our 
earlier analysis. 

PROOF. Let E'i denote the nx 1 matrix with 1 in the jth component, 0 elsewhere. 
Then we may write A as 

By multilinearity, 

n 

det(A) = Lai\ det(E;,A 2 , ••• ,An) 
;=1 

Repeating this argument in the second column, we find further that 

det(A) = I Iai\aj2 det(E;,Ej, ... ,An) 
;=1 j=1 

Repeating this over all n columns, we obtain all possible combinations of coef­
ficients and column vectors Ej • This may be expressed as 

det(A) = Laq>(I)I···aq>(n)ndet(Eq>(I), ... ,Eq>(n» 
rp 

where rp ranges over all functions {l, ... ,n} -HI, ... ,n}. But by part (iii) of the 
Corollary 8-2, 
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if f{i..i)= rAJ) for any distinct pair of indices i,j. Thus rather than summing over 
all of the functions tp: {l, ... ,n}~{l, ... ,n}, it suffices to sum over only those 
that are injective. But by the Pigeonhole Principle, this is just the set of 
permutations of {1, ... ,n}. Hence 

det(A) = Lan(I)I"·an("),,det(En(I), ... ,En(II» 
.reS. 

Finally consider the determinants that appear in this expression. We know that 
we can obtain (Etr(1), ... ,Etr(,,» from I" = (EI>" .,En) by successive transpositions, 
the required number of such being even or odd according to the sign of the 
permutation 7r. Therefore 

and this establishes the formula. D 

8-5 COROLLARY. For all AeM,,(k), det(A)=det(~); that is, the determinant of 
a matrix is equal to the determinant of its transpose. 

PROOF. The proof reduces to a calculation that uses two elementary facts about 
permutations: 

(i) as 7r varies over S". so does 7r-1 (the inversion map on a group is its own 
inverse and hence is a bijection); 

(ii) 7rand n-I have the same sign (Chapter 2, Exercise 17). 

With this in mind, we have 

and this completes the proof. 

- '" o(7r-I )a .. ·a - ~ ,..-1(1)1 ,..-1(11)11 
.reS. 

= Lo(7r)a1n(1)· .. alln(lI) 

.reS. 

= det(~) 

D 
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Uniqueness of the Determinant 

The uniqueness of the determinant map is an immediate consequence of Theo­
rem 8-4, as we shall now demonstrate. 

PROOF OF UNIQUENESS. Our nonrecursive formula depends solely on the prop­
erties of multi linearity, alternation of sign, and normality. Thus any mapping 
Mn(k) ~ k which satisfies these three properties must also satisfy this closed 
formula. Hence there can be only one such map. Cl 

We shall see next, as a consequence of uniqueness, that the recursive defini­
tion of the determinant given in the Fundamental Theorem in terms of the first 
row applies equally well to any other row or column. This is a great conven­
ience for matrices with rows or columns consisting of many zeroes. 

8-6 PROPOSITION. (Expansion by Rows and Columns) The following formulas 
for the determinant also hold: 

(i) For any fixed row index i, 15.i 5.n, 

n 

det(A) = L(-lr+jaijdet(oijA) 
j~l 

(ii) For any fixed column index j, 15.j 5.n, 

n 

det(A) = L(-l)i+j aijdet(oijA) 
i~l 

PROOF. (i) The proof of the Fundamental Theorem applies to any row. Hence by 
uniqueness, expansion by any row must yield the same result. 

(ii) Since a matrix and its transpose have the same determinant, expansion by 
any given column is the same as expansion by the corresponding row of the 
transpose matrix. Hence the result follows from part (i). Cl 

8-7 COROLLARY. The determinant of a triangular matrix is the product of its 
diagonal entries. 

PROOF. For a lower triangular matrix, this follows at once by iterative expan­
sion in the first row. For upper triangular matrices, it follows at once by 
iterative expansion in the first column. (In the latter case, one could argue 
alternatively that an upper triangular matrix is the transpose of a lower tri­
angular matrix; both matrices have the same diagonal entries and the same 
determinant.) Cl 
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We have also a second corollary, which will be much needed in Chapter 10 
in connection with the reduction of matrices to certain standard forms. 

8-8 COROLLARY. Let A eMn(k) have the form 

where P represents an mxm matrix, Q represents an mx(n-m) matrix, R 
represents an (n-m)x(n-m) matrix, and 0 denotes the (n-m)xm zero ma­
trix. Then 

det(A) = det(P)det(R) 

Note in particular that the entries in Q play no part whatsoever in the evalu­
ation of the determinant. 

PROOF. We argue by induction on m, the size of P. If m = 1, then expansion by 
the first column yields only one term 

which reduces immediately to the formula given, since in this case P=all while 
R = q0. Suppose next that m> 1. Expanding again by the first column, we 
make the following three-step calculation, explained below: 

m 

det(A) = L(-I)i+la j) det(qIA) 
i=1 

m 

= L(-I)i+l aj) det(q)P)det(R) 
i=1 

= det(P)det(R) 

In the first step, we limit our expansion to only the first m terms because the 
remaining entries in A's first column are by assumption zero. In the second 
step, we invoke the induction hypothesis: the matrices q)A (i~m) are all of the 
same form as A, but the top-left block is one size smaller, having lost both a 
row and a column. (Note that R is unruffled by these deletions.) In the third 
step, we merely factor out deteR) and then recognize the remaining summation 
as the first-column expansion of det(P). This completes the proof 0 
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8.3 The Detenninant of a Product; Invertibility 

The nonrecursive formula for the determinant may be used to reveal yet another 
remarkable aspect of this map which seems completely foreign to its previous 
formal properties. 

8-9 THEOREM. Let A and B lie in Mik). Then 

det(AB) = det(A)·det(B) 

PROOF. This is similar to the proof of Theorem 8-4. The key is to recall that 

and that the jth column may be expressed as 

Using this fact, we first expand the determinant of AB by multilinearity to ob­
tain 

det(AB) = ~)9'(l)I' "b9J{n)n det(A9J{I),." ,A9J{n» 
9' 

where the sum is taken over all functions cp: {I,,, .,n} ~ {I,,, .,n}. As previ­
ously, the only functions to contribute are the permutations, and this yields 

det(AB) = ~)n(I)I·"bn(n)ndet(An(l), ... ,An(n» 
1CESII 

Each summand then involves the determinant of A following some permutation 
fr of its columns. But this reduces to the determinant of A times the sign of fr. 
Factoring out det(A) and appealing to the nonrecursive formula, we have 

det(AB) = det(A) L a(fr)bn(l)l,,·bn(n)n = det(A) det(B) 
?rES,. 

as claimed. o 

The multiplicative nature of the determinant once again extends our charac­
terization of invertibility. (The student will be relieved to know that this theo­
rem has now reached full maturity, at least as far as this text is concerned.) 
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8-10 THEOREM. Let A EMik). Then the following twelve statements are equiv­
alent: 

(i) The linear system Ax=y has at least one solution for all YEk". 

(ii) The columns of A span k". 

(iii) The rows of A span k". 

(iv) The homogeneous linear system Ax=O has only the trivial 
solution x=O. 

(v) The columns of A are linearly independent. 

(vi) The rows of A are linearly independent. 

(vii) The linear system Ax=y has exactly one solution for all YEk". 

(viii) The columns of A constitute a basis for k". 

(ix) The rows of A constitute a basis for k". 

(x) A is invertible; i.e., A EGLn(k). 

(xi) The determinant of A is nonzero. 

(xii) The determinant of IA is nonzero. 

PROOF. We have already established the equivalence of (i) through (x) in Theo­
rem 6-21. Moreover, we saw above that if A has linearly dependent columns, 
then the determinant of A is zero, showing that (xi) implies (v). The equiv­
alence of (xi) and (xii) is immediate from Corollary 8-5, leaving us finally to 
show that (x) implies (xi). This is easy: 

Suppose that A is invertible. Then there exists a matrix B such that AB = In. 
But then 

det(A) det(B) = det(AB) = det(In) = 1 

and clearly det(A) is nonzero, completing the proof. o 

The following corollary is immediate from the equivalence of (x) and (xi) 
and the multiplicativity ofthe determinant. 

8-11 COROLLARY. The map det:GLn(k) ~ k* is a homomorphism from the 
group of invertible nxn matrices to the group of nonzero elements ofk. 0 

The kernel of det : GLn(k) ~ k* is by definition the set of all nxn matrices of 
determinant 1. This much celebrated object is called the special linear group 
and denoted SLn(k). 
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REMARK. Our proof that a matrix is invertible if and only if it has nonzero de­
termina 1t is not optimal in the sense that we have implicitly used that a vector 
space over a field is free. In fact, one does not need so much structure, and an 
analogous result might have been proven for a mere commutative ring k with 
unity. [A eGLn{k) if and only if det{A) is invertible in k.J The proof is based on 
Cramer's Rule, a theoretically attractive, but computationally impractical for­
mula for solving linear systems via determinants. 

Exercises 

l. Using the recursive definition given in the proof of Theorem 8-1 (i.e., ex­
pansion by the first row), systematically evaluate the determinant of the 
following matrix: 

(1 2 1] 
A= 0 1 1 

102 

2. For any angle (J, evaluate the determinant of the matrix 

M( 0) = (c~s 0 - sin 0) 
smO cosO 

Recall that this is the matrix of rotation about the origin by the angle (J. 

3. Show that for A eMn(k) and ).,ek, det(M)=).,ndet{A). 

4. Show that if a matrix has a row or column of O's, then its determinant is O. 
(Hint: Make an elegant appeal to multilinearity.) 

5. Show that the determinant of a matrix is unchanged if we add a scalar 
multiple of one column to another. (Since according to Corollary 8-5 the 
determinant of a matrix is equal to the determinant of its transpose the 
same is also true for rows.) , 

6. Consider the matrix 
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7. 

in M3(k), where the a's and b'S are fixed and the x's may vary. Show that 
the set of all (X\,X2,X3) such that det(A)=O is a subspace of k 3 of dimension 
at least 2. (Hint: Recall that the determinant is a linear transformation in 
each column.) 

Evaluate the determinant of the matrix 

0 1 0 0 0 

0 0 1 0 0 

A= 0 0 0 0 1 

1 0 0 0 0 

0 0 0 1 0 

This is an example of a permutation matrix since it acts by permuting the 
canonical basis vectors of ~. 

8. Evaluate the determinant of the following matrix using expansion by any 
row or column as appropriate. 

A= 

1 

o 
4 

o 

1 -1 

1 2 

o 3 

2 0 

2 

o 
1 

o 

9. Evaluate the determinant of the following matrix using expansion by any 
row or column as appropriate. 

A= 

o 1 -1 2 

1 

4 

3 

1 

o 
2 

2 0 

2 -1 

o 4 

10. Evaluate the determinant of the following matrix without expanding by 
either rows or columns. 
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12. 
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(Hint: Try swapping columns to reach a triangular matrix; be sure to keep 
track of the sign.) 

Evaluate the determinant of the matrix 

2 -1 3 1 

0 2 2 0 
A= 

3 0 1 0 

0 0 2 0 

Evaluate the determinant of the matrix 

2 6 1 8 0 

0 4 5 7 1 

A= 0 0 4 9 7 

0 0 0 1 5 

0 0 0 1 0 

13. Consider a matrix A = (aij.)EMn(k) whose elements are all zero above the 
minor diagonal (from bottom left to top right). Give a succinct formula for 
the determinant of A. (Hint: Work out the 2x2, 3x3, 4x4, and 5x5 cases 
explicitly and then generalize.) 

14. Let A EMn(k) have factorization A = LU into the product of a lower trian­
gular matrix L and an upper triangular matrix U. Show that the determi­
nant of A is equal to the product of the diagonal terms in both Land U. 

15. Let A,BEM,,(k) and suppose that A is singular (i.e., not invertible). Show 
that the product AB is also singular. [Hint: Use the determinant. What is 
det(AB)?] 

16. Suppose that A is an invertible matrix such that both A and A -1 consist en­
tirely of integers. Show that the determinant of A is either + 1 or -1. (Hint: 
the determinant of a matrix of integers must also be an integer; this follows 
at once from the nonrecursive formula.) 

17. Consider each of the elementary row operations defined on matrices in 
Section 5.3. Analyze how each affects the determinant ofa square matrix. 

18. For all A EMn(R), prove that det(A :4)20. 
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19. Prove that if A is similar to B, then det(A) = det(B). (See Section 6.5 for the 
definition of similarity.) 

20. Prove that the following matrices are not similar: 

(Hint: The previous problem might help.) 

21. Determine whether the following set of vectors is linearly independent. 
(You now have an easy way to do this without resorting to a linear system.) 

(1,2,-1), (6,0,2), (4,-4,2) 

22. Show that 

Conclude that the vectors 

are linearly independent if and only if XI' x 2' and x3 are distinct. Generalize 
this to higher dimensions. (Hint: Use Exercise 5 above.) 

23. LetJ;, ... ,fn be a family offunctions in W<X>(R). Note that if 

n 

LAj.fj(X) = 0 
j=1 

for some family of coefficients AjER, then 

n 2. AjJ}k) (x) = 0 
j=1 
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for all k~O. (As usual,j<k) denotes the kth derivative off) With this back­
ground, show that if.!;, ... ,!" are linearly dependent, then 

h h fn 

det 
h(1) f2(1) fn(1) 

=0 

h(n-I) h(n-I) f;n-I) 

(This is called the Wronskian determinant of the family.!;, ... ,!" and is 
critical in the theory of differential equations.) 

24. Use the previous exercise to show that the functions eX, e2r, and e3x are 
linearly independent; that is, show that 

25. Use Exercises 22 and 23 to show that the collection of functions 

is linearly independent if and only if the numbers A.. are distinct. This 
generalizes the previous exercise. J 

26. Let 

[1 0 IJ 
A= 0 2 1 

143 

Find A -lor prove that it does not exist. 

27. Show that SLn(k) is a subgroup of GLn(k). (Hint: You need only reread the 
definition of the special linear group.) 
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28. Consider the 2x2 matrix 

A=(: ~) 
Let P=(a,c) and Q=(b,d) be the points in R2 defined by the columns of A. 
These points span a parallelogram whose vertices are 0, P, Q, and P+ Q. 
Find the area of this object. (Hint: Find the area of the rectangle and each 
of the four triangles in the Figure 8.1.) 

Figure 8.1. The vectors P and Q in R2 span a parallelogram. 



9 
Eigenvalues and Eigenvectors 

This chapter introduces and, to a limited extent, solves one of the classical 
problems associated with linear processes: their decomposition into well­
behaved, independent component subprocesses. What is especially noteworthy 
and exciting about the material is that it uses all of the major concepts intro­
duced so far, including the representation of linear transformations, real and 
complex inner product spaces, and the theory of determinants. The final theo­
rem of Section 9.3 is as exquisite as any work of art. 

9.1 Definitions and Elementary Properties 

DEFINITION. Let T: V ~ Vbe a linear transformation on a vector space V over k, 
and suppose that for some AEk there exists a nonzero VE V such that 

T(v) = AV 

Then A is called an eigenvalue ofT, and every vector v (including 0) that satis­
fies the equation above is called an eigenvector belonging to A. 

The terms characteristic value and characteristic vector are common syno­
nyms for eigenvalue and eigenvector. Note that geometrically an eigenvector of 
T is a nonzero vector v such that T(v) is parallel to v. 

EXAMPLES 

(1) Let V=R2 and let 

We have the linear transformation TA : V ~ V defined by left multiplication 
by A. Since 
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T =+1· T =-1· (+1) (+1) (+1) (+1) +1 +1 ' -1 -1 
both +1 and -1 are eigenvalues of TA (or simply of A) with corresponding 
eigenvectors as given. 

(2) Consider differentiation as a linear transformation on the real vector space 
'(fOO(R), the set of infinitely differentiable functions from R to R. Every 
number AER is an eigenvalue for differentiation with corresponding eigen­
vector CeAx, where C is an arbitrary real constant. 

As an easy exercise, the student should show that, in general, the set of 
eigenvectors belonging to a given eigenvalue A constitutes a subspace of V. This 
is called the eigenspace belonging to A and generalizes the notion of kernel 
(which may be considered the eigenspace belonging to 0). 

A basis for V consisting of eigenvectors of T is called an eigenbasis for V 
with respect to T. The matrix of a transformation with respect to an eigenbasis 
takes an especially simple form. 

9-1 THEOREM. Let T: V ~ V be a linear transformation on ajinite-dimensional 
vector space. Then T is representable by a diagonal matrix if and only if 
there exists an eigenbasis for V with respect to T. In this case, the diagonal 
entries are precisely the eigenvalues ofT. 

Such a transformation is called diagonalizable. 

PROOF. Suppose that vW .. ,vn is a basis B of eigenvectors and assume that the 
corresponding eigenvalues are Ai' ... ,An. Then 

and the matrix of T with respect to B is indeed the diagonal matrix whose di­
agonal entries are Ai'" .,An. Conversely, if the matrix of T with respect to a 
given basis is diagonal, then the corresponding basis vectors satisfy equations 
of the form above and are therefore an eigenbasis for V with respect to T. 0 

Recall from Section 6.5 that if Band B' are bases for the finite-dimensional 
vector space V, then for any given endomorphism T of V, 

where P is the transition matrix from B' to B. Recall, too, that matrices related 
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by an equation of this form are called similar. The previous theorem then has 
the following interpretation: 

9-2 COROLLARY. A EMn(k) is similar to a diagonal matrix if and only if there 
exists an eigenbasis for k n with respect to A. 0 

EXAMPLES 

(1) Continuing with Example 1 above, we see that V has an eigenbasis (1,1), 
(1,-1) with respect to T. Note that these vectors are also orthogonal. This is 
no mere coincidence, as we shall see shortly. 

(2) Consider the linear transformation T B: R2 ~ R2 defined by the matrix 

(
COS 0 -sin 0) 
sin 0 cosO 

As we have seen before, this is counterclockwise rotation by () around the 
origin. Clearly T B has no eigenvalues if () is not an integral multiple of 7r, 

since in this case no nonzero vector can be rotated onto a scalar multiple of 
itself. Thus there is no eigenbasis and the matrix is not diagonalizable. 

The question naturally arises, how does one find eigenvalues and eigenvec­
tors, if any? Surprisingly, this can be framed as a problem in finding roots of 
polynomials. We first treat the case of a matrix acting as a linear transforma­
tion on kn. We shall see shortly that this suffices for the general case of an 
arbitrary endomorphism of a finite-dimensional vector space. 

DEFINITION. Let A EMn(k) and let t be an indeterminate. Then the nth degree 
polynomial 

pet) = det(tIn - A) 

is called the characteristic polynomial of A. 

9-3 THEOREM. The eigenvalues of A are the roots in k of the characteristic 
polynomial of A. 

PROOF. Let .tl lie in the ground field k. Then p(.tl)= det(.tlln - A), and we have the 
following chain of equivalences: 
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det(AIn-A) = 0 ¢:> AIn-A is singular (recall that this means non-invertible) 

¢:> 3xekn, x::;tO, such that (.,Un - A)x= 0 

¢:> 3xekn, x::;tO, such thatAx=ltx [J 

The proof shows something more: given an eigenvalue It, the problem of 
finding the corresponding eigenspace reduces to solving the homogeneous lin­
ear system (AIn -A)x = O. 

Note also how this result depends upon the ground field. The polynomial 
t 2+1 has no roots in R, but does have roots in C. 

EXAMPLES 

(1) Again consider 

We compute the characteristic polynomial of A: 

p(t) = det(tI2 - A) = det = t2 -1 ( t -1) 
-1 t 

We see that the roots are + 1 and -1, precisely the eigenvalues of A that we 
had observed previously. 

(2) Next consider 

This is rotation by 1(/2 radians. Computing the characteristic polynomial as 
above we find that 

pet) = [2 + 1 

which has no real roots. Not surprisingly, A has no real eigenvalues. 

(3) Finally, consider the real 3x3 matrix 
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One may verify by direct calculation that 4 is a root of det(t/3 - A), the 
characteristic polynomial of A, and is therefore an eigenvalue of A. To find 
the complete corresponding eigenspace, we solve the homogeneous linear 

system 

which by construction must admit nontrivial solutions. We can equally 
well solve 

which, in this case, is a trifle easier to handle. This amounts to the singular 
system 

The student may readily verify that the general solution is {(-3z,z,z) :zER}, 
so that the eigenspace belonging to 4 is one-dimensional and spanned by 
the particular eigenvector (-3,1,1). 

Theorem 9-3 gives us, in principle at least, a way to determine the eigenval­
ues of a matrix considered as a linear transformation on k!'. In the more general 
case of an endomorphism T of a finite-dimensional vector space V, we can 
represent T by a matrix A relative to a given basis and then proceed as above. 
Both A and T will manifest exactly the same eigenvalues. (This is clear from 
the commutative diagram which defines the matrix of a linear transformation 
relative to a basis; see Section 6.3.) While A depends on the choice of basis, the 
characteristic polynomial does not. This follows at once from our next proposi­
tion: 

9-4 PROPOSITION. !ftwo matrices are Similar, then they have the same charac­
teristic polynomial. 

Thus if T: V -* Vis any endomorphism of a finite-dimensional vector space, 
we may speak of the characteristic polynomial of T as the characteristic poly­
nomial of any matrix representing T. Since by Theorem 6-23 all such repre­
sentations are similar, this polynomial is independent of the choice of basis. 

PROOF. Suppose that B=P-1AP. Then by the rules of matrix arithmetic (especi­
ally the distributive law), 
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tIn - B = tIn - P-IAP 

= p-1(tIn)P-p-1AP 

= p-I (tIn - A)P 

Here we have also used the property that scalar matrices (Le., scalar multiples 
of the identity matrix) commute with all matrices of the same size. From this 
equation and the multiplicativity of the determinant, we find that 

det(tIn - B) = det(p-I)det(tIn - A)det(P) 

= det(prl det(tln - A)det(P) 

= det(tIn - A) 

so that by definition both matrices have the same characteristic polynomial. 0 

We now explore some basic structural properties of eigenvalues and eigen­
vectors. 

9-5 PROPOSITION. Let AI'""" ,Ar be distinct eigenvalues of T: V ~ V with corre­
sponding nonzero eigenvectors VW"",vr . Then vl'""",vr are linearly inde­
pendent. 

PROOF. Suppose that vl'""",vr are linearly dependent. Then there is a shortest 
possible dependence relation among the Vj' and we assume that this involves s 
of these vectors (s> 1). After renumbering (if necessary), we have a relation of 
the form 

where none of the coefficients f.JjEk is zero. (Otherwise, we have a shorter de­
pendence relation.) Apply Tto both sides of the equation to obtain 

AV =11_ 1 v +"""+//1v I I r2"'2 2 rs'·s s 

Now subtract AI times our first equation from the second. This yields 

But since the A,. are distinct and the f.J. are nonzero, this is an even shorter de­
pendence relatfon among the Vj' and, ~s su~h, a clear contradiction. Thus thedv. 
must indeed be linearly independent, as claimed. 

This leads at once to a beautiful result on diagonalization. 
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9-6 THEOREM. Let A EMn(k) and assume that the characteristic polynomial of 
A has n distinct roots in k. Then A is diagonalizable. 

PROOF. The n distinct roots of the characteristic polynomial are the eigenvalues 
of A. By the previous result, the corresponding eigenvectors constitute a line­
arly independent set of n vectors in k" and hence are a basis. Since k" admits an 
eigenbasis with respect to A, A is diagonalizable by Theorem 9-1. [J 

9.2 Hennitian and Unitary Transfonnations 

This section analyzes two special classes of endomorphisms on inner product 
spaces, the first of which includes symmetric matrices. As far as possible, we 
give a unified treatment of both real and complex spaces. Thus inner product 
space means either real or complex inner product space unless otherwise noted. 

DEFINITION. Let T: V ~ V be an endomorphism of an inner product space V. 
Then an endomorphism T* defined on the same space is called an adjOint for T 
if it satisfies the following condition: 

(T(u) Iv) = (uIT*(v» VU,VEV 

T is called self-adjoint if T* = T. 

We shall show in the exercises that in the case of a finite-dimensional inner 
product space, ad joints exist and are unique. (See Exercise 18.) Hence in this 
case we may speak of the adjoint of an endomorphism. Note further the identity 
T**=T. This is shown by the following elementary calculation, which holds for 
all vectors u and v in either a real or complex vector space: 

(T(u)lv) = (uIT*(v» = (T*(v)lu) = (vIT**(u» = (T**(u) Iv) 

The point is that since T(u) and T**(u) have the same inner product with every 
vector, the difference T(u) - T**(u) is orthogonal to everything in V and hence 
must be the zero vector. 

Let us now consider real and complex matrices. As a preliminary, if A = (a . .) . _ U 
IS a complex matrix, then its conjugate A is (aij)' the matrix obtained from A 
by replacing every entry by its conjugate. It is easy to show that 

A+B=A+B and AB =AB 

whenever these expressions are defined. If A = (a), the conjugate transpose of 
A, denoted A *, is appropriately enough the transpose of its conjugate; that is, 
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the matrix whose (i,j)-entry is ajl' Note that for real matrices,A*=t.4. Not sur­
prisingly, (AB)* = B* A * whenever these products are defined. 

9-7 LEMMA. For all w, Z in en, (Awlz)=(wIA*z). Hence A* is the adjoint of A 
viewed as an endomorphism of en. In particular, for real matrices A, the 
transpose is the adjoint. 

PROOF. This is an easy calculation using the elementary fact 

(wlz)=twz 

(the right side to be read as a matrix product) together with the other basic 
properties of transposition and conjugation. Thus 

(Awlz)= t(Aw)z= tw t.4z = twA *z = (wiA *z) 

as claimed. [J 

We now introduce the first special class of endomorphisms to be considered 
here. 

DEFINITION. An endomorphism T of a finite-dimensional inner product space is 
called Hermitian if it is self-adjoint; that is, if T= T*. Accordingly, a matrix A 
is called Hermitian ifA=A*. (In the real case, this reduces to a symmetric ma­
trix.) 

It follows by definition that for a Hermitian mapping 

(T(u) Iv) = (uIT(v) V'u,veV 

Moreover, if B=uwoo,un is an orthonormal basis for V, then T is Hermitian if 
and only if the matrix A = (aij) of T with respect to B is Hermitian. To see this, 
note that 

while 

n 

(T(uj ) lUi) = (~,>~uklui) = (aijuilui ) = aij 
k=1 

n 

(ujIT(ui) = (uiLakiuk) = (UjlajiUj) = (iji 
k=1 

Clearly these two expressions are equal if and only if A = A * . 
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This brings us to two fundamental, related properties of Hermitian trans­

formations: 

9-8 PROPOSITION. All of the roots of the characteristic polynomial and hence 
all of the eigenvalues of a Hermitian transformation are real. Moreover, 
eigenvectors belonging to distinct eigenvalues are orthogonal. 

PROOF. Let T: V ~ V be Hermitian. Then as we have just seen, relative to an 
orthonormal basis for V, the matrix of T is also Hermitian, and so it suffices to 
analyze the eigenvalues of a Hermitian matrix A. One subtle but important 
point is that regardless of whether V is a real or complex inner product space, 
the matrix A operates on the complex space en by left multiplication. We need 
this extension because only over the complex numbers can we assume the exis­
tence of eigenvalues and eigenvectors for A. 

Let A be an eigenvalue for A with corresponding nonzero eigenvector w in 
en. Then we have the following chain of equalities: 

A(wlw) = (Awlw) = (Awlw) = (wIAw) = (WIAW) = I(wlw) 

Since w is not zero, neither is (wlw). We can thus cancel this factor from both 
sides to obtain 

A=A 

This can only happen if AER, establishing the first statement. For the second, 
assume that Al and Az are distinct (necessarily real) eigenvalues for A, with cor­
responding eigenvectors WI and w2• Then 

and since Al :;tAz, it follows that (WdW2)=O, as claimed. o 

One aspect of this proof deserves additional comment. The mechanism by 
which we interpreted T as a linear transformation on a complex inner product 
space via its matrix A is somewhat artificial. A more abstract construction 
called the tensor product, which does not depend upon bases, is more natural, 
but beyond the scope of our discussion. 

The next class of endomorphisms to be considered has two striking 
geometric properties that follow directly from a strictly algebraic definition. 

DEFINITION. An invertible endomorphism T of a finite-dimensional inner prod­
uct space is called a unitary transformation if its adjoint is equal to its inverse; 
that is, if T- I = T*. Accordingly, an invertible matrix A is called a unitary ma­
trix if A-I =A *. A real unitary matrix is called an orthogonal matrix. 
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Recalling the definition of the adjoint, we have at once that for a unitary 
mapping 

(T(u)IT(v) = (uIT*T(v) = (ulv) 

so that unitary transformations preserve lengths and angles. The converse also 
holds; in fact, a weaker condition suffices. 

9-9 PROPOSITION. Suppose that T satisfies the condition 

(T(u)IT(u) = (ulu) 

for all UE V, so that T preserves lengths. Then T is unitary. 

PROOF. We expand both sides of the equality 

(T(u +v)IT(u +v) = (u +vlu +v) 

to obtain 

(T(u)IT(u» + (T(u)IT(v» + (T(v)IT(u »+ (T(v)IT(v» = (ulu) + (u Iv)+ (v lu) +(vlv) 

Canceling the outer terms from each side yields 

(T(u) IT(v» +(T(v)IT(u) = (ulv)+(vlu) 

and in the real case, this suffices. In the complex case, both sides exhibit a sum 
of conjugates. Thus the imaginary parts cancel, resulting in the equality 

Re«T(u)IT(v») = Re«ulv») 

Substituting iu for u into this equation and exploiting the linearity of both T 
and the inner product, we find also that 

Im«T(u)IT(v)) = Im«ulv» 

since clearly Re(iz)=-Im(z) for all complex numbers z. Hence both the real and 
imaginary parts of (u Iv) and (T( u) I T( v) are equal, and so these numbers must 
themselves be equal. This completes the proof. 0 

Unitary matrices have an alternative characterization. Since the (i,j)-entry of 

A :4 is 

the complex inner product of the ith row of A with the jth column of tA 
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which is the same as 

the complex inner product of the ith row of A with the jth row of A 

it follows that A ~ equals f n = (8;j) if and only if the rows of A are orthonormal. 
Since the transpose of a unitary matrix is also unitary (exercise), the same 
result applies to the columns ofA. 

9-10 PROPOSITION. The eigenvalues of a unitary transformation have absolute 
value 1. Moreover, eigenvectors belonging to distinct eigenvalues are 
orthogonal. 

PROOF. Let T: V ~ Vbe unitary and let A be an eigenvalue, with corresponding 
nonzero eigenvector u. Then 

(ulu) = (T(u)IT(u) = (A.uIA.u) = AA(ulu) 

and it follows that 

AA = 1 

establishing the first statement. For the second, assume that Al and Az are dis­
tinct eigenvalues with corresponding eigenvectors u l and u2. Then 

(The last equality in the chain depends upon Az having absolute value 1.) Now 
since by assumption Al =1= Az, it follows that A/ Az =1= 1. Therefore (u I I u2) = 0, as 
claimed. 0 

9.3 Spectral Decomposition 

This brief section uses the basic properties of Hermitian and unitary transfor­
mations to prove one of the most beautiful and important results in mathemat­
ics. We begin with an easy technical lemma that isolates an essential common 
feature of both classes of transformations. 

9-11 LEMMA. Let T be either Hermitian or unitary. ffu is an eigenvector ofT 
and v is any vector orthogonal to u, then T(v) remains orthogonal to u. 

PROOF. Suppose first that T is Hermitian and that u is an eigenvector belonging 
to the eigenvalue A. Then 
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A(ulv) = (Au Iv) = (T(u) Iv) = (uIT(v» 

Hence if (u Iv)=O, also (u I T(v»=O, as claimed. Next suppose that T is unitary 
with u and A as given previously. In this case, however, A cannot be 0 since all 
of the eigenvalues of T have absolute value 1. (Alternatively, one could argue 
that T is invertible and hence has trivial kernel.) Then 

(ulv) = (T(u)IT(v» = (AuIT(v» = A(uIT(v» 

Hence again (ulv)=O implies that (uIT(v»=O. This completes the proof. 0 

If T: V ~ V is any endomorphism and W is a subspace of V, we say that W is 
T-invariant if T maps W into W; that is, if 

T(w)eW V'weW 

Under these conditions it is clear that T restricts to an endomorphism Tlw of W. 
The following observations are elementary: 

(i) The eigenvalues and eigenvectors of the restricted map Tlware also eigen­
values and eigenvectors of the original map T. 

(ii) If T is Hermitian, then so is Tlw, since if (T(u) Iv)=(u I T(v» in V, then cer­
tainly the same relation holds in W. 

(iii) If T is unitary, then so is Tlw, since if (T(u) I T(v»=(u Iv) in V, then certainly 
the same relation holds in W. 

This brings us to our major result: 

9-12 THEOREM. (Spectral Decomposition) Let T be an endomorphism of the 
finite-dimensional inner product space V and suppose that either 

(i) T is Hermitian (in which case V may be defined either over the real 
or the complex numbers), or 

(ii) T is unitary and V is defined over the complex numbers. 

Then there exists an orthonormal eigenbasis for V with respect to T. In 
particular, Tis diagonalizable. 

PROOF. The assumptions insure that all of the eigenvalues of T lie in the ground 
field for V: in the Hermitian case we know that the eigenvalues are real; in the 
unitary case, we work over the complex numbers, which are algebraically 
closed and therefore contain all of the roots of the characteristic polynomial of 
T. Assume that dim(V)=n. 
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Let Al be an eigenvalue of T and let ul be a corresponding eigenvector, 
which we normalize to unit length. Then U I spans a one-dimensional subspace 
Wof V with orthogonal complement W.L of dimension n-l. (Recall from Sec­
tion 7.2 that W.L is the subspace of all vectors orthogonal to W.) Evidently T 
maps W into itself, and, by the preceding lemma, T also maps W.L into W.L. 
Thus W.L is an invariant subspace for T. It follows from the observations pre­
ceding the theorem that T restricted to W.L is also Hermitian or unitary, as the 
case may be, and that its eigenvalues and eigenvectors are also eigenvalues and 
eigenvectors for T. Thus iterating the process, or arguing by induction, we fur­
ther obtain eigenvalues ~, ... ,An (not necessarily distinct) and corresponding 
orthonormal eigenvectors u2, ••• ,un. (The orthogonality follows by construction: 
at every step we choose uj from a subspace orthogonal to all of its predecessors.) 
The collection ul' ... ,un is thus the requisite orthonormal eigenbasis, and this 
completes the proof. I:l 

Exercises 

l. Describe geometrically the linear transformation TA : R2 ~ R2 given in the 
first example in Section 9.1 and then interpret the meanings of the eigen­
values and eigenvectors accordingly. 

2. Find one or more eigenvalue/eigenvector pairs other than exponentials of 
the form CeAx for the second derivative operator D2:jg"OO(R)~jg"OO(R). 

3. Show that if T: V ~ V is a linear transformation which is not injective, then 
o is an eigenvalue of T. (Hint: A non-injective linear transformation has 
nonzero kernel.) 

4. Find the characteristic polynomial, eigenvalues, and corresponding eigen­
vectors for the matrix 

A = (~ ~) 
5. For which real values of a does the matrix 

have real eigenvalues? State your answer as an inequality. (Hint: The 
characteristic polynomial is quadratic; you must insure that its discrimi­
nant is nonnegative.) 
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6. Compute the characteristic polynomial and eigenvalues for the matrix 

(1 0 0) 
A= 0 4 2 

o 2 1 

7. Show that the following matrix has no real eigenvalues. Interpret this 
geometrically. 

8. LetAeMn(R) where n is odd. Show that A has at least one real eigenvalue. 
(Hint: The degree of the characteristic polynomial is odd. What does this 
imply about its behavior at ±oo? Now recall the Intermediate Value Theo­
rem from elementary calculus.) 

9. For any A eMn(R), show that the number of complex roots of the character­
istic polynomial is even. This gives an alternate approach to the previous 
exercise. [Hint: Show that if A is a root, then so is its complex conjugate. 
Thus the complex (but not real) roots always occur in pairs, and their 
number must be even.] 

10. Let Aek be an eigenvalue of A eMn(k). Show that X is an eigenvalue of A r, 

the rth power of A , r~O. 

11. LetA eMn(k) be such thatAr (in this case, A to the power r, not the rth col­
umn of A) is the zero matrix for some r~ 1. Show that all of A's eigenvalues 
areO. 

12. Show that the eigenvalues of a triangular matrix are precisely the diagonal 
entries. 

13. Find an example of a real 2x2 matrix A which is not diagonalizable as an 
endomorphism of R2, but is diagonalizable as an endomorphism of C2. 

14. Find all of the eigenvalues of the matrix 
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15. Show that the matrix of the previous problem is not diagonalizable over 
either the real or complex numbers. (Hint: Find the eigenvectors by solving 
a small linear system.) 

16. Find the eigenvalues of the matrix 

A = (~ ~) 
17. For the matrix A of the previous problem, find an invertible matrix P such 

that P-1AP is a diagonal matrix. (Hint: Find the eigenvectors correspond­
ing to the eigenvalues of A; now recall the change of basis formula.) 

18. Let Vbe a finite-dimensional inner product space (either real or complex) 
and let T be an endomorphism of V. In this problem we show that an ad­
joint endomorphism T* exists and is unique. (Our approach assumes 
familiarity with Section 6.4.) 

(a) Let VE V. Define a mapping Lv from V to the ground field k by 

Show that Lv is linear for all v, so that we have a mapping 

L:V ~V* 

where V*=Hom(V,k) is the dual space. 

(b) Show that L is linear in the case of a real inner product space and anti­
linear in the case of a complex inner product space. That is, in both cases L 
satisfies the identity 

For real spaces we have also that 

but for complex spaces this relation must be replaced by 
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(c) Show that L: V ~ V* is bijective, so that every element of the dual space 
may be expressed uniquely as L" for some veV. (Take care to account for 
the not-quite linearity of L in the complex case.) 

(d) Let T be any endomorphism of V. Fixing an element ve V, show that the 
mapping u 14 (T(u)lv) lies in V*. Observe now that according to part (c), 
there exists a unique element in V, which we shall denote T*(v), such that 

(T(u)lv) = (uIT* (v» 

for all ueV, 

(e) Show that the association VI4 T*(v) is linear, so that T* is likewise an 
endomorphism of T. This is the long sought after adjoint map. Note that its 
uniqueness is implicit in our method of construction. 

REMARK. One might alternatively make a direct computational argument 
based on the existence of an orthonormal basis. This is perhaps simpler, 
but certainly less instructive. The approach taken here also explains (if you 
look closely and compare to Section 6.4) why the notation T* is used for 
both the adjoint map and the transpose map. 

19. LetAeMn(C). Show that (i)AA* is Hermitian, and that (ii)A**=A. 

21. Find all of the eigenvalues of the matrix 

How does one know in advance that these will be real? 

22. Find an orthonormal eigenbasis for R3 with respect to the matrix of the 
previous problem. What is the matrix of the given transformation with re­
spect to this new basis? Verify the change of basis formula in this case. 

23. Let V be a complex inner product space and let W be a finite-dimensional 
subspace of V, As usual, pr w denotes the orthogonal projection map from V 
to W. Show that prw (considered as an endomorphism of V) is a Hermitian 
transform; that is, prove that for all x and y in V, (prw<x) Iy)=(x I prw<y». 
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(Hint: Choose an orthonormal basis u), ... ,um for Wand directly compute 
both expressions.) 

24. The projection map defined in the previous problem can have at most two 
eigenvalues. What are they? (Hint: Don't compute; conceptualize!) 

25. Consider the differential operator ~CX)(R) --+ ~CX)(R) defined by 

D(y) = y" + py' + qy 

where p and q are real constants. Show that eA.r lies in the kernel of D if 
and only if ..t is a root of the polynomial 

p(t) = t2 + pt + q 

This is called the characteristic polynomial of the homogeneous equation 
y"+py'+qy=O. 

26. Find two linearly independent solutions to the homogeneous differential 
equation 

y"-5y'+ 4y=O 

27. Find two linearly independent solutions to the homogeneous differential 
equation 

y"-4y'+4y= 0 

This is harder than the previous problem. Why? 

28. Generalize the result of Exercise 25 to the case of an nth-order linear dif­
ferential operator 

29. Let AeMn(k) and let q be a polynomial with coefficients in k. Then since 
Mn(k) is a k-algebra, it makes sense to consider the matrix q(A), the result 
of evaluating q atA. [For instance, if q(t)=f-+5, then q(A)=A2+5In.] With 
this in mind, prove the following result: 

If ..t is an eigenvalue of A with corresponding nonzero eigenvector x, then 
q(A)x=q(..t)x and hence q(..t) is an eigenvalue of the matrix q(A). 
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30. Let A EMn(k) with characteristic polynomial p(t) and suppose that XE~ is 
an eigenvector of A. Using the previous problem, show that p(A)x=O. [Ac­
tually, much more is true: p(A) is in fact the zero matrix! This result, 
known as the Cayley-Hamilton Theorem, is proven in the next chapter.] 



10 
Triangulation and Decomposition of 
Endomorphisms 

In Section 9.3 we saw that Hermitian and complex unitary transformations al­
ways admit an orthogonal basis of eigenvectors, with respect to which these 
mappings are represented by simple diagonal matrices. This chapter presses the 
attack to find out what in general can be said about an arbitrary endomorphism 
T of a finite-dimensional vector space over an abstract field k. We first establish 
an astounding property of the characteristic polynomial; this is the content of 
the Cayley-Hamilton Theorem (10-1). Next, using similar techniques, we show 
that T is representable at least by an upper triangular matrix, provided that the 
roots of its characteristic polynomial all lie in k. This leads to the introduction 
of so-called nilpotent mappings. Maintaining our previous assumption on the 
characteristic polynomial, we then show that T is expressible as the sum of a 
diagonal map (easily built out of its eigenvalues) and a nilpotent map. Finally, 
further analysis of nilpotent endomorphisms yields a special matrix repre­
sentation called the Jordan normal form. 

This material is comparatively difficult, although the principal results are 
easily understood. Almost all of the examples of the theory are given in the 
exercises. 

Throughout this chapter all vector spaces are finite dimensional. 

10.1 The Cayley-Hamilton Theorem 

Let k be an arbitrary field, and let V be a vector space over k. Recall from 
Chapter 6 that Hom(V, V), the set of endomorphisms of V, constitutes a k-alge­
bra. This is to say, in particular, that Hom(V,v) enjoys the following algebraic 
properties: 

(i) With respect to addition and scalar multiplication of functions, Hom(V, V) 
is a vector space over k. 

(ii) With respect to addition and composition of functions, Hom(V,v) is a ring 
with unity (cf. Section 2.3). 
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(iii) Scalar multiplication commutes with composition in the following sense: 

(047;)7; =7;(047;)=04(7;7;) \7'o4ek;7;,7; eHom(V,V) 

(In this chapter we usually omit the composition operator and simply write TI T2 
for T1oT2.) 

Let k[t) denote the vector space consisting of all polynomials in the indeter­
minate t with coefficients in the field k. This is also a k-algebra, in this case 
with respect to ordinary addition and multiplication of polynomials, and is al­
ways commutative. Let p(t) be a polynomial in k[t), so that p(t) takes the form 

r 

p(t) = La/j (ao,·.·,ar ek) 
j=O 

Then given TeHom(V, V) it makes sense to evaluate p(T): 

r 

p(T)= LajTj 
j=O 

= arTr +ar_1Tr-1 +···+a.T+aolv 

Here Ti is the composition of T with itselfj times, with the natural convention 
that TO is the identity map. Fixing T we can regard this as a mapping 

k[t) 4 Hom(V,V) 

p ~ p(T) 

This map is obviously k-linear, but even more is true. Since powers of T com­
mute with each other, one shows easily that for all polynomials p,qek[t), 

p(T)q(T) = pq(T) 

where the right-hand side indicates that we first multiply p and q as polynomi­
als in t and then evaluate the result at T. Thus evaluation at T is in fact a homo­
morphism of k-algebras. 

Everything we have just discussed applies equally well to the matrix algebra 
Mn(k) (n ~ 1). In particular, if p(t)ek[t) and AeMn(k), then it makes sense to 
evaluate p(A): 

r 

p(A)= LajAj 
j=O 

= arAr +ar_1Ar-1 +···+a.A +arln 
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With these ideas in mind, we can now state the main result of this section: 

10-1 THEOREM. (Cayley-Hamilton) Let V be a vector space of dimension n;::: 1 
over the field k. If TeHom(V,V) has characteristic polynomial p(t), then 
p(T)=O; that is, p(T) is the zero map on V. Equivalently, if A eMn(k) has 
characteristic polynomial p(t), then p(A)=O; that is, an nxn matrix al­
ways satisfies its characteristic polynomial. 

This theorem is nothing less than amazing, although not especially deep. 
We postpone its proof to make way for an example and for some preliminary 

analysis. 

EXAMPLE 

Recall that the matrix of counterclockwise rotation on R2 by 1<12 radians about 
the origin is 

with characteristic polynomial p(t) = t 2 + 1. The Cayley-Hamilton Theorem as­
serts in this case thatA 2+I2 is the 2x2 zero matrix. To verify this, we need only 
compute 

A2=(-1 0) ° -1 

so that indeedA2+l2=O, as predicted. 

The key to Theorem 10-1 is the analysis of the characteristic polynomial of 
an endomorphism satisfying a special condition identified in Lemma 10-2 be­
low. To explain this, we revisit and highlight a definition made in passing near 
the end of the previous chapter-a definition that in fact generalizes the notion 
of an eigenspace. 

DEFINITION. Let T: V -+ V be a linear transformation. Then a subspace W of V is 
called invariant with respect to T (or T-invariant) if T(W) ~ W; that is, if for all 
weW, T(w)eW. 

Thus W is T-invariant if and only if T restricts to an endomorphism of W. 
Clearly both V itself and the zero subspace are invariant subspaces for any 
endomorphism. The eigenspace Wassociated with any given eigenvalue A of T 
is likewise T-invariant, since by construction T(w)=Awe Wfor all we W. 
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10-2 LEMMA. Let T: V ~ V be a linear transformation on a vector space V over 
k of dimension n> 1 and assume that T admits no proper, nontrivial in­
variant subs paces. Then there exists a basis B for V such that the matrix 
of T with respect to B takes the form 

0 0 0 0 a o 

1 0 0 0 a l 

0 
A= 

1 0 0 a 2 

0 0 0 0 a n- 2 

0 0 0 1 an-I 

for some scalars ao." .• a n_1 Ek. Moreover, p(t). the characteristic polyno­
mial ofT is then given by 

p(t) = t n - a Itn-I - a tn-2 -"'-a t - a n- n-2 \ 0 

PROOF. Let Vo be any nonzero vector in V. Now recursively define the elements 
VW",vn_1 of Vas follows: 

Vj+-\ = T(v) (j=O •...• n-2) 

Equivalently. vj=Tj(vo); we are simply following the trajectory ofvo under suc­
cessive applications of T. We argue by contradiction that the collection of vec­
tors vo ..... v n-I is linearly independent and hence constitutes a basis B for V. 
Suppose otherwise. Then there is a smallest j such that v 0" ••• Vj are linearly de­
pendent. Clearly o <j:S:n-l and Vj must be involved in the dependence relation. 
By Lemma 4-2. Vj then lies in W=Span(vo ..... vj_I). But then T(vo) •...• T(vj_l ) all 
lie in W. which is therefore a T-invariant subspace of V. Moreover. VOE W. so W 
is nontrivial. and W is spanned by fewer than n vectors. so W is also proper. 
This contradicts our hypothesis that no such invariant subspace exists. 

Given this basis B. the first part of the lemma follows immediately. For we 
know that 

n-I 
T(vj)=vj+\ (O:S:j<n-l) and T(vn_\) = Lajvj 

j=O 

for some family of scalars ajEk. whence the matrix of T relative to B is the 
matrixA. exactly as stated. 
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The second part of the lemma requires that we compute p(t), the character­
istic polynomial of A: 

t 0 0 0 -aD 

-1 t 0 0 -al 

0 -1 t 0 -a2 
p(t) = det 

0 0 0 t -an_2 

0 0 0 -1 t- an_I 

We shall show inductively, starting at n = 2, that p(t) reduces to the formula 
given above. For n=2 this is merely the calculation 

For n > 2, we expand by the first row. This yields two terms, corresponding to 
the first and last columns. The first term is 

t 0 0 0 -al 

-1 t 0 0 -a2 

0 -1 t 0 -a3 
t·det 

0 0 0 t -an- 2 

0 0 0 -1 t - an-I 

which, by the induction hypothesis, amounts to 

Thus it remains to show that the second term in the expansion, which is given 
by 
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-1 t 0 0 

0 -1 t 0 

-ao( _ly+l det 
0 0 -1 0 

0 0 0 t 

0 0 0 -1 

(remember the alternating signs in the expansion rule) is -ao. But this is won­
derful! The matrix in question is diagonal, whence its determinant is just the 
product of the n-l diagonal entries. Now watch how the signs balance: 

Thus the second term is indeed -ao, completing the proof of the lemma. 0 

Note that the second statement of the lemma is also true in the one-dimen­
sional case. For then the endomorphism T is scalar multiplication by some ao 
and the characteristic polynomial is just T -ao. 

This brings us to the heart of the Cayley-Hamilton Theorem, here stated as 
our final lemma. 

10-3 LEMMA. Let T: V -+ V be a linear transformation on a vector space V over 
k of dimension n ~ 1 and assume that T admits no proper, nontrivial in­
variant subs paces. Let p(t) denote the characteristic polynomial of T. 
Then p(T)=O. 

PROOF. Let v. and a. U=O, ... ,n-l) be as in the previous lemma and its proof. 
J } 

Recall in particular that 

n-l 

vj=Tj(vo) (O~j<n-l) and T(vn_1)=Lajvj 
j=O 

Using Lemma 10-2, we first compute the effect of p(T) on the basis vector vo: 

p(T)(vo) = r(vo) - an_1r-1 (vo) -···-a1T(vo) - aovo 

= T(vn_l)-an_lvn_l-···-alv\ -aovo 

=0 

Next consider the effect of p(T) on any other Vj (j>0): 
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p(T)(Vj) = p(T)(Ti (vo» 

= [p(T)Ti](vo) 

= [Ti p(T)](vo) 

= Tj (p(T) (vo» 

= Ti(O) 

=0 

The key point is that in the algebra Hom(V, V), the maps p(T) and Ti commute, 
since they involve only powers of T and scalars. Hence knowing that p(T) sends 
Vo to 0, we infer that p(T) also sends every element of the basis vo'·· .,v n-I to O. 
Therefore p(T) is itself the zero map, as claimed. I:l 

We now have all of the tools needed to prove Theorem 10-1. 

Proof of Theorem 10-1 

We work by induction on n, the dimension of V over k. The case n= 1 is covered 
by the preceding lemma, since a vector space of dimension 1 evidently has no 
proper, nontrivial subspaces whatsoever. Assume now that n> 1. Then if V has 
no proper, nontrivial T-invariant subspaces, we may again appeal to Lemma 
10-3 to conclude that T satisfies p(t), the characteristic polynomial of T. Thus 
we may proceed under the additional hypothesis that V does admit aT-invariant 
subspace WI which is neither all of V nor the zero subspace. 

Let BI be a basis for WI' Then we can extend BI to a basis B for all of Vby 
adjoining a linearly independent collection B2 to B I • These additional vectors in 
B2 themselves span a subspace W2 of V (also both proper and nontrivial), and in 
fact W= wlew2• Now consider A, the matrix of T with respect to B. Since T 
sends WI into itself, A has the following block decomposition: 

where P and R are square matrices whose sizes are, respectively, dim(WI) and 
dim(W2)· Note that W2 is not necessarily T-invariant, so the remaining block Q 
does not necessarily consist entirely of zeros. Let TR be the linear transforma­
tion from W2 to itself whose matrix is R relative to the basis B2• We need to 
investigate a special relationship between T and TR , but first observe that by 
Corollary 8-8 the polynomial p(t) has factorization 
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where PI(t) is the characteristic polynomial of T restricted to an endomorphism 
of WI (i.e., the characteristic polynomial of the matrix P) and P2(t) is the char­
acteristic polynomial of TR (i.e., the characteristic polynomial of the matrix R). 

From the structure of A , we deduce at once that given weW2, T(w) and TR(w) 
differ by an element of WI; that is, 

for all we W2. (The point is that TR acting on an element of B2 yields the linear 
combination of elements in B2 specified by the matrix R; T acting on the same 
element yields the same linear combination of elements in B2 , but then adds the 
linear combination of elements in BI specified by the matrix Q.) Applying T 
again and recalling the invariance of WI' we find further that 

for all we W2. Since replacing T by TR in the second term only costs us another 
element of WI' we conclude moreover that 

for all we W2• Continuing in this way, we see that for all nonnegative integersj 

Consequently, for any polynomial q(t)ek[t], we have 

q(T)(W)-q(TR)(W) e~ VweWz (10.1) 

So then, consider the endomorphismp(T)=PI(T)P2(T)=P2(T)PI(T). What is its 
effect on elements of WI? By induction, PI (T) is the zero map on WI' so for any 
weWI , 

p(T)(w) = [p2(T)A(T)](w) 

= P2(T)(0) 

=0 

And what is the effect of p(T) on elements of W2? In this case, we note that 
according to our general analysis (Eq. 10.1), 
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for WE W2. But again invoking the induction hypothesis, P2(TR) is the zero map 
on W2, from which we deduce at once thatp2(T)(W)EWI for all WEW2· There­
fore, given any WE W2, piT)(w)=wI for some wI E WI and 

p(T)(w) = [A (T)P2(T)](W) 
= PI (T)(w l ) 

=0 

Thus p(T) is the zero map on both WI and W2 and hence on all of V. This com­
pletes the proof. 0 

10.2 Triangulation ofEndomorphisms 

Let k be a field. Recall that a matrix A = (aij)EMn(k) is called upper triangular if 
a .. =O whenever)' < i; that is, if A has the form IJ 

all a l2 a l3 a ln 
0 a22 a23 a2n 

A= 0 0 a33 a 3n 

0 0 0 ann 

Evidently the upper triangular matrices constitute a subring of Mn(k), and in 
fact the invertible upper triangular matrices constitute a subgroup of GLn(k). 
(See Exercise 5 below.) Since we shall have no occasion to refer to lower trian­
gular matrices here, we make the following convention: 

Henceforth in this chapter, the phrase "triangular matrix" means "upper tri­
angular matrix. " 

Let T be an endomorphism of the vector space V. Then if we can find a basis 
B for V such that the matrix of T with respect to B is triangular, we say that T 
can be reduced to triangular form. One advantage of such a reduction is that 
the eigenvalues of T are then apparent; another is that nonsingular triangular 
matrices are easily inverted (Exercise 6). We now state and prove a theorem 
giving conditions under which such a reduction is possible. 

10-4 THEOREM. Let V be a vector space of dimension n over the field k, and let 
T be an endomorphism of V. Suppose that the characteristic polynomial 
ofT has all of its roots in k. Then T may be reduced to triangular form. 
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REMARKS. The meaning of the statement that a polynomial p(t) Ek[t] has all of 
its roots in k is clear enough when k is the field of real or complex numbers, but 
perhaps not when k is an abstract field. In this more general case, it simply 
means that there is no larger field K containing k in which new roots of p(t) 
appear. This is equivalent to the assertion that p(t) admits a linear factorization 
in k[t]; that is, there exist elements c,a1, ... ,anEk such that 

n 

p(t)=cIT(t-a) 
j=1 

In one direction, the implication is clear: if p(t) admits such a factorization, its 
only possible roots are a1, ... ,an, which by assumption all lie in k. The other 
direction is far more delicate and depends upon the fact that a nonconstant 
polynomial in k[t] always has a root in some extension field of k. 

PROOF. The proof, which is by induction on n, leans heavily on some of the 
ideas of the proof of the Cayley-Hamilton Theorem. (The common thread here, 
as the student may see later in a course in abstract algebra, is that the induction 
step proceeds essentially via the quotient space, a notion beyond the scope of 
this text.) The case n = 1 is trivial (every Ix 1 matrix is triangular!), so we as­
sume that n> 1. 

Let p(t) be the characteristic polynomial of T, and let AI be a root of p(t). By 
hypothesis and by the remarks above, such a root exists and lies in k. Thus AI is 
an eigenvalue for T. Let VI be a corresponding nonzero eigenvector. Then vI 
serves as basis for a one-dimensional T-invariant subspace WI of V. Now extend 
v I to a basis B = { V l' V 2" •• ,V n} for all of V, and let W2 be the subspace spanned by 
v2, ••• ,vn . Accordingly, we have V=WIEBW2 (although W2 is not necessarily also 
T-invariant). The matrix of T with respect to B has the form 

where R is an (n-l)x(n-l) matrix and the asterisk denotes a row of scalars, in 
which we shall have no further interest. Let TR denote the endomorphism of W2 

represented by R with respect to the basis v2, ••• ,vn. Then evidently T and TR 
acting on W2 only differ by elements of WI-a critical point in the sequel. 

Next consider q(t), the characteristic polynomial of Tw Expanding the de­
terminant of tln-A by the first column shows at once that 

p(t) = (t - AI)q(t) 

whence every root of q(t) is likewise a root of p(t). It follows then that all of the 
roots of q(t) also lie in k. Hence by induction, there exists a basis v~, ... ,v~ for 
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W with respect to which the matrix of TR is triangular. Call this new matrix R'. 
N~w the collection of vectors vl'v~, ... , v~ constitutes a basis B' for V, and since 
T and TR only differ by elements of WI on each of the vectors v;, ... , v~, it fol­
lows that the matrix of T with respect to B' has the form 

A' =(~.d-~.) o I R' 

But A' is manifestly triangular because R' is, and this completes the proof. 0 

Our first corollary is just the interpretation of this theorem for matrices via 
the change of basis formula (Theorem 6-23). 

10-5 COROLLARY. Let AeMn(k), and suppose that all of the roots of the char­
acteristic polynomial of A lie in k. Then there exists a matrix P in GLn(k) 
such that B=p-IAP is triangular. CJ 

Since the complex numbers are algebraically closed (that is, every polyno­
mial with complex coefficients has all of its roots in the complex numbers), 
Theorem 10-4 also yields the following: 

10-6 COROLLARY. Every endomorphism of a complex vector space may be 
reduced to triangular form. 0 

This result holds, of course, for any algebraically closed field. (There are 
others besides C; the interested student should hurry on to an abstract algebra 
course.) 

The next result adds some extra information to Theorem 10-4 in the special 
case of an inner product space. Note that it does not hold (or even make sense) 
over arbitrary fields. 

10-7 THEOREM. Let V be a real or complex inner product space and let T be 
an endomorphism of V. If V is defined over R, assume further that all of 
the roots of the characteristic polynomial ofT are real. Then there exists 
an orthonormal basis for V with respect to which the matrix of T is 
triangular. 

PROOF. The proof is identical to that of Theorem 10-4 except that in the induc­
tion step we choose Ui =~.l, the orthogonal complement of WI' We leave the 
details to the reader. 0 

The final result of the section is just the interpretation of this result for real 
or complex matrices. 
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10-8 COROLLARY. Let A be a real or complex square matrix. In the case that A 
is real, assume further that all of the roots of the characteristic polyno­
mial of A are likewise real. Then there exists a unitary matrix P such that 
B=P-IAP is triangular. CI 

The point is that the transition matrix P from an orthonormal basis of either 
Rn or en to the canonical basis is obviously unitary. (See the discussion follow­
ing the definition of a unitary transformation in Section 9.2.) 

10.3 Decomposition by Characteristic Subspaces 

Throughout this section, V is a vector space over k of dimension n, and T is an 
endomorphism of V, with characteristic polynomial p(t). Moreover. we assume 
that all of the roots ofp(t) lie in k. 

For the discussion at hand we require the following terminology and results 
from elementary abstract algebra. (The proofs can be found in almost any book 
on the subject.) 

A nonconstant polynomial g(t)Ek[t) is called irreducible in k[t) if for every 
factorization 

either hl(t) or h2(t) is a constant polynomial. Clearly every nonzero linear poly­
nomial (i.e., polynomial of first degree) is irreducible. (Note that irreducibility 
depends on the field k. See Exercise 8.) 

FACT 1. (Unique Factorization for Polynomials) Every nonconstant polynomial 
in k[t) can be factored into the product of irreducible polynomials in k[t). 
Moreover. apart from order and constant factors, this factorization is unique. 

FACT 2. Let g/ ..... gm be polynomials in k[t) and assume that gl, ... ,gm have no 
nonconstant common factors. Then there exist polynomials hl, ... ,hm in k[t) 
such that 

Note that the right side represents the constant polynomial 1. 

We can now proceed with the main exposition. The assumptions laid out at 
the head of the section guarantee the existence of AI' ... ,AnEk such that 
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n 

p(t) = IT (t-A) 
j=1 

Of course, not all of the Aj need be distinct. Suppose that r of them are. Then 
we may refine the factorization above to 

, 
p(t) = IT (t - Aj)mj (10.2) 

j=1 

where the positive integer mj is called the multiplicity of the root Aj U= I, ... ,r). 
Define r corresponding endomorphisms N1, •• • ,Nr of Vby 

and corresponding subspaces Ul" .. ,Urof Vby 

~=Ker(N) 

U= I, ... ,r). Observe that each ~ contains the eigenspace corresponding to A:" 
and hence is nontrivial. This brings us to a fundamental definition. 

DEFINITION. The subspaces U1"",Ur of V are called the characteristic sub­
spaces of V with respect to the endomorphism T. 

With these preliminaries in hand, we can now give a lovely generalization of 
the Spectral Decomposition Theorem (and also of Theorem 9-6). Note that we 
are restricted neither to Hermitian or unitary transformations nor to the field of 
real or complex numbers. The key assumption in force remains that all of the 
roots of the characteristic polynomial of T lie in the ground field k. 

10-9 THEOREM. Let UI'""Ur be the characteristic subs paces of V with respect 
to T. Then with respect to the notation above, the follOWing assertions 
hold: 

(i) Each characteristic subspace ~ U= I, ... ,r) is T-invariant. 

(ii) V = U1 EtJ .. ·EtJ U,; that is, each vector VE V can be expressed unique­
lyas a sum v=u1+"'+ur where UjEUj U=I, ... ,r). 

(iii) T restricted to ~ has only one eigenvalue, and this is Aj U= I, ... ,r). 

(iv) Dim(Uj)=mj, the multiplicity of A:,' U= I, .. . ,r). 
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PROOF. (i) With NI' ... ,Nr defined as above, we note that each N. clearly com-
mutes with T. By construction, Aj(~)={O}, and therefore J 

~T( U)= TAj( Uj)= T( {O})= {O} 

showing that T(~) lies in Ker(~) = ~, as claimed. 

(ii) According to Proposition 3-8, we must show that 

(a) V= U1+·· . + Ur ; that is, every element in V can be written as the sum of 
elements in U1' ... ,Ur . 

(b) Ifu l + ···+ur=O, where UjE~ (j=1, ... ,r), then each uj is itself zero. 

We shall first demonstrate (a). Consider the following family of polynomi­
als: 

qJ.(t) = p(t) (J' = I, ... ,r) 
(t-A)mj 

All we have done here is to delete the factors corresponding to Aj from p(t). By 
construction and the Cayley-Hamilton Theorem, 

and therefore qiT)(v) E ~ for all VE V. Moreover, since the qj have no noncon­
stant common factor, there exist polynomials hP) (j= 1, ... ,r) such that 

It follows that 

(10.3) 

Thus for any v E V, 
r 

V = L[h/T)q/T)](v) 
j;1 

But since q(T)(V)E U. and U. is T-invariant, it follows that thejth summand in 
this expres~ion does indeed tie in ~ (j= 1, ... ,r). This establishes point (a). 

To prove (b), we first note a special property of the products hP)qP) appear­
ing in the previous paragraph. Given UkE Uk (k= I, ... ,r), 
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(l0.4) 

for j= I, ... ,r. To see this, observe that qj has a factor of Nk whenever j~k, so 
that it annihilates all of Uk= Ker(Nk), thus justifying the second alternatIve of 
Eq. 10.4. Using this and Eq. 10.3, we find moreover that 

r 

Uk = ~)h/T)q/T)](Uk) 
j=1 

= [hk(T)qk (T)](Uk) 

which justifies the first alternative. 
Now suppose that u1 +"·+ur=O. Then in light ofEq. 10.4, for each indexj, 

applying h(T)q(T) to both sides shows that u.=O. Hence all of the summands 
are zero, is req~ired. Thus point (b) also hold's, and Vis indeed the direct sum 
of the characteristic subspaces Ul' ... ,ur' 

(iii) Let Tj denote the restriction of T to an endomorphism of ~ and let J.l be an 
eigenvalue of Tj. Then by Exercise 29 of Chapter 9, (p- Aj) mj is an eigenvalue 
of the endomorphism (Tj- Ajl u) mj. But by construction this latter map is zero 
on ~, whence its only eigenvalue is zero. It follows that J.l = Aj , as claimed. 
(The scalar A; is itself an eigenvalue of the restricted map since, as we observed 
earlier, ~. contains the entire eigenspace corresponding to Aj") 

(iv) Let nj=Dim(~) and let Bj denote a basis for ~ (j= I, ... ,r). Then com­
bining the elements of Bl'" .,Br in order, we have a basis B for V with respect to 
which the matrix of T takes the form 

A= 

o 
o 

o 0 Ar 

where eachAj is the n/nj matrix representing Tj (as defined above) with respect 
to the basis Bj" The characteristic polynomial of T on V is thus the product of 
the characteristic polynomials of these restricted maps. By part (iii), T. has A.as 

J J 
its only eigenvalue. Since by assumption all of the roots of the characteristic 
polynomial of T lie in k, this implies that the characteristic polynomial of Tj is 
exactly (t-A)nj . Thus given our initial factorization (Eq. 10.2) of p(t), the char­
acteristic polynomial of T on V, we have that 
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r r 

Il(t-AjtJ = Il(t-Aj)nj 

j=1 j=1 

By unique factorization of polynomials, this implies that mj = nj U= 1, ... , r), and 
this completes the proof. 0 

10.4 Nilpotent Mappings and the Jordan Nonnal Fonn 

The aim of this final section is to refine our results on reduction to triangular 
form. We first extract an easy consequence of Theorem 10-9. This leads us to 
the examination of nilpotent mappings (defined below) and then to the Jordan 
normal form (Theorem lO-18). 

In preparation we introduce an elementary notion. We call a triangular ma­
trix supertriangular if its diagonal entries are O. Thus a supertriangular matrix 
takes the form 

0 al2 aJ3 aln 

0 0 a23 a2n 

A= 

0 0 0 an- I•n 
0 0 0 0 

Supertriangular matrices have the following fundamental property: 

10-lO PROPOSITION. LetAeMn(k) be supertriangular. ThenAn=O. 

PROOF. At least three strategies come to mind. We could make an argument by 
induction, based on direct calculation. We could interpret A as the matrix of a 
linear transformation T on ~ and then argue that as j increases, Tj has mono­
tonically decreasing rank and must eventually become the zero map. But to 
shamelessly indulge-pardon the split infinitive and the oxymoron to fol­
low-an elegant overkill, nothing surpasses this: The matrix t1n-A is clearly 
triangular, with every diagonal entry equal to the indeterminate t. Hence the 
characteristic polynomial of A is precisely tn, and therefore, by the Cayley­
Hamilton Theorem, one concludes that An=O. 0 

A square matrix A is called nilpotent if Am=O for some positive integer m. 
The least such m is called the index of nil potency. (The terminology also 
applies, in the obvious way, to vector space endomorphisms.) Accordingly, the 
previous proposition may be paraphrased as follows: a supertriangular nxn 
matrix is nilpotent with index of nilpotency bounded by n. (So, too, for an en­
domorphism represented by such a matrix.) 
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Characteristic Subs paces Again: Scalar + Nilpotent 

We now take a more careful look at the restriction of an endomorphism to a 
characteristic subspace. Assume that V is a vector space over k of dimension n. 
Let T be an endomorphism of V such that all of the roots of the characteristic 
polynomial of T lie in k. As previously, we denote these roots AI'" .,Ar with cor­
responding multiplicities ml, ... ,mr and corresponding characteristic subspaces 
UI , • •• , U . Once again we let T.: U. ~ U. denote the restriction of T to an endo-

r J J J 
morphism of the characteristic subspace ~ (j = 1, ... , r). 

According to Theorem 10-4, Each ~ admits a basis Bj with respect to which 
the matrix Aj of Tj is triangular. Now the eigenvalues of a triangular matrix are 
precisely the diagonal entries, but by Theorem 10-9, part (iii), the only eigen­
value for Tj is At It follows thatAj has the form 

Aj * * * 
0 Aj * * 

Aj = 
0 0 Aj * 
0 0 0 Aj 

Clearly Aj may be written as the sum of the scalar matrix AIm and the super­
triangular (hence nilpotent) matrix represented by the aster{sk~. We have thus 
proven the following result: 

10-11 THEOREM. The restriction ofT to the characteristic subspace ~ may be 
decomposed as 

where DJ. is the scalar map A.] and N. is nilpotent 
J ~ J . Cl 

Dj is called the diagonal part ofT., while N. is called the nilpotent part. Note 
that since Dj is uniquely defined b/ Tj (by th~ eigenvalue A.), so is N. (as the 
difference between Tj and Dj ). J J 

The Structure of Nilpotent Mappings 

Theorem 10-11 calls our attention to nilpotent endomorphisms. Let V be a vec­
tor space over k of dimension n, and let N be a nilpotent endomorphism of V, so 
that eventually N'" is the zero map. We shall now construct a special basis for V 
with respect to which the matrix of N is perfectly simple. To this end, the 
following result is most fundamental. 
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10-12 PROPOSITION. Let WOE V, wo#O, and let m be the least positive integer 
such that N'"(wo) =0. Then the vectors 

are linearly independent. 

PROOF. Assume that 

m 

L,ujNm-j (wo) = 0 
j=1 

Then applying N m- I to both sides annihilates all but the last tenn, showing that 
,um is zero. Next applying N m- 2 to both sides shows similarly that ,um-I is zero. 
Continuing in this way, we see that all of the coefficients are zero. 0 

In the context of this proposition, the subspace W spanned by the linearly 
independent collection of vectors Nm-l(wo),Nm-2(wo),oo.,N(wo),wo is called a 
cyclic subspace of V with respect to N. We call the indicated basis a cyclic 
basis and call Wo the root of the cyclic basis. Evidently such a subspace is N­
invariant and the matrix of Nwith respect to Nm-l(wo),Nm-2(wo), .. ·,N(wo), Wo 

is the mxm matrix 

010 0 

o 0 1 0 

o 0 0 0 

1 

o 0 0 0 

While the full space V may itself not be cyclic [i.e., there may be no vector vo 
such that the vectors Nj(vo) U =O, ... ,n-l) constitute a basis for V-see Exercise 
22 below], we shall show that nonetheless there does exist a basis B for V such 
that the matrix of N with respect to B has this same beautiful fonn. The key is 
to show that V is at least the direct sum of cyclic subspaces. This requires some 
preliminary work, which we condense into three gentle lemmas. 

10-13 LEMMA. Let W be an m-dimensional cycliC subspace of V with cyclic ba­
sis N m-I (WO),Nm-2(WO)'oo., N(wo)' WOo Then every element of W may be 
expressed in the form q(N)(wo)for some polynomial q(t) in k[t]. 

PROOF. Since a basis is a spanning set, every element win Wtakes the fonn 
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Thus w=q(N)(wo) where 

This completes the proof. 

m 

W = LJljNtrJ-j (wo) 
j=\ 

m 

q(t) = LJI/trJ-j 
j=\ 

10-14 LEMMA. Let W be as above and suppose that for some q(t)ek[t], q(N) is 
the zero map on W. Then tm is a factor of q(t). 

PROOF. We can certainly express q(t) as 

for some q\(t),r(t)ek[t], where r(t) has degree less than m. (The polynomial r(t) 
consists of nothing more than the terms of q(t) of degree less than m.) Since N'" 
is by construction the zero map on W, it follows, in particular, that 

q(N)(wo) = [q\ (N)Nm](wo) +r(N)(wo) 

=r(N)(wo) 

where Wo is the root of the cyclic basis given for W. Thus if q(N) is also the zero 
map on W, then r(N)(wo) = O. But unless r is zero polynomial, this contradicts 
the linear independence of the basis vectors NtrJ-\(wo),Nm-2(wo), ... ,N(wo),wo' 
Hence q(t)=q\(t)tm, and tm is a factor of q(t), as required. I:] 

10-15 LEMMA. Let N be a nilpotent endomorphism of V and suppose that V 
admits a subspace W satisfying the following two conditions: 

(i) N(W)=N(V); that is, the image of Wunder N is identical to the im­
age of V under N 

(ii) W is the direct sum of subs paces that are cyclic with respect to N 

Then V is likewise the direct sum of cyclic subs paces. 

PROOF. Let ve V. By condition (i) there exists we W such that N(v) = N(w). Ac­
cordingly, v-weKer(N), showing that V= W+ Ker(N). Let Bw and BK denote 
bases for Wand Ker(N), respectively. By Proposition 4-7, there exists a subset 
Bl: of B K such that B wU Bl: is a basis for V. Let W' denote the span of Bl:, so 
that V= WEB W'. Now consider each of these two summands: The first, W, is the 
direct sum of cyclic subspaces by assumption (ii). The second, W', is either 
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trivial or, we claim, again the direct sum of cyclic subspaces. Why? Because 
every nonzero element of Ker(N)-and in particular every element of 
B~-generates a one-dimensional cyclic subspace with itself as cyclic basis! 
Thus V= WEB W' is also the direct sum of cyclic subspaces, as required. 0 

This brings us to our main result. The proof is somewhat subtle and bears 
close attention. 

10-16 THEOREM. Let V be a nonzero vector space and let N be a nilpotent 
endomorphism ofV. Then there exist cyclic subs paces Vp' .. ,vs of V with 
respect to N such that 

That is, V is the direct sum of cyclic subspaces. 

PROOF. The proof goes by induction on n, the dimension of V. The case n= 1 is 
trivial, since a nilpotent map on a one-dimensional vector space must be the 
zero map (exercise), with respect to which any nonzero element becomes a 
cyclic basis. So we assume that n > I. The strategy is to construct a subspace 
which satisfies the hypothesis of the preceding lemma. 

First note that N(V) :I; V, since otherwise N"'(V) = V for all m, contradicting 
the assumption that N is nilpotent. Thus by induction, N(V) is the direct sum of 
cyclic subspaces W\, ... ,Wr . Let WjE ffj (j = I, ... , r) denote the root of a cyclic 
basis for ffj, and let vl',,,,vr denote, respectively, a collection of pre-images for 
wl'""wr under N [i.e., N(v)=wj for allj]. Then define W; (j= I, ... ,r) to be the 
span of ffj together with Vj and define W' = ~' + ... +W: . Now clearly each W; is 
cyclic. (Indeed, Vj is the root of a cyclic basis.) Also N(W~ = N(V), since by con­
struction the mapping N sends the cyclic basis for W; rooted at Vj to the cyclic 
basis for W. rooted at w(j= I, .. . ,r). Hence in order to conclude the argument by 

J } 
application of Lemma 10-15, it suffices to show that W' = ~'EB .. ·EBW: ' and for 
this we need only establish the following conditional: 

r 

L w;. = 0 (wj EW},j = l, ... ,r) ~ w;. = 0 (j = I, ... ,r) 
j=1 

(10.5) 

By Lemma 10-13, w~ = q/N)(vj ) (j= I, ... ,r) for some family ofpolynomi­

als q\(t), ... ,qr(t) in k[t], so that the indicated summation takes the form 

r 

Lq/N)(vj ) = 0 
j=1 

Applying N to both sides and noting that N(v)=wj yields 
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r 

'Lq/N)(wj ) = 0 
j=1 

Now N(V) is the direct sum of cyclic subspaces W\, ... ,Wr , whence %(N)(wj) =0 
for all). Since Wj is the root of a cyclic .bas~s for ~, it follows fu~er that qiN) 
is the zero map on w.. By a weak apphcahon of Lemma 10-14, thiS shows that 
t is a factor of each of the qil), which is to say that q/t) = q;(t)t. Therefore 

r r 

Lq/N)(v) = L[qj(N)N](vj) 
j=1 j=1 

r 

= Lqj(N)(wj ) 
j=\ 

=0 

Again applying Lemma 10-14 (this time at full strength), we deduce that for 
each index}, the monomial tm) is a factor of q; (I), where mj is the dimension of 
w.. Therefore t mj+1 is a factor of q (t). But then q}(N) contains a factor of N mj+1, 

} } 

which by construction is zero on ~. Consequently w; = q/N)(vj ) = 0 for all}, 
as required by the conditional statement 10.5. This completes the proof. D 

Theorem 10-16 immediately allows us to extend the simple representation of 
a nilpotent endomorphism on cyclic subspaces to the full space: 

10-17 THEOREM. Let N be a nilpotent endomorphism of V. Then there exists a 
basis for V with respect to which the matrix of N has the form 

o I : 
I 

o : 
I 

I : 
0: ____________ J 

o 

o 
~O---l-------· 

I 

: o· 
I 
I 
I 
I 
I 
I o 

PROOF. By the preceding theorem, we can decompose V into the direct sum of 
cyclic (hence N-invariant) subspaces. By definition, each of these summands 
admits a basis with respect to which the restricted endomorphism has the given 
form. Accordingly, the full matrix with respect to the combined basis has such 
blocks strung along the diagonal, yielding precisely the desired structure. (Note 
that these square subblocks are not necessarily of the same size; also this form 
includes the possibility of the zero matrix, when all blocks are of size 1 xl.) D 
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And now the finale (marked allegro con brio). We combine Theorems 10-11 
and 10-17 to obtain an elegant representation of a general endomorphism (still 
under the assumption that the roots of its characteristic polynomial lie in the 
field k). 

10-18 THEOREM. (Reduction to Jordan Normal Form) Let V be a vector space 
over k of dimension n, and let T be an endomorphism of V such that all 
of the roots of the characteristic polynomial of T lie in k. Assume that 
these (distinct) roots are AI' ••• ,Ar with respective multiplicities ml, ... ,mr. 
Then there exists a basis for V with respect to which the matrix of T has 
blockform 

A= 

o 
~ 

o 
o 

o 0 A,. 

}., 1 i 
Ai "'. 1 

1 : 
}.: A _____________ zJ 

r 
o 

o 
~-------------

! A, 1 . 
: Ai"' 
: 
: 
I Aj 

Note that this includes the possibility of a diagonal matrix, again when all 
blocks are of size 1xl. The subblocks appearing in Aj are called the basic 
Jordan blocks belonging to the eigenvalue Ai" If these basic blocks occur in 
order of decreasing size, we then speak of the Jordan normal form of A, which 
is thus well defined up to the ordering oftheAj themselves. 

PROOF. We decompose V into its characteristic subspaces UI"",Ur with respect 
to T. By Theorem 10-11, on each of these subspaces T decomposes into the sum 
of its diagonal part (scalar multiplication by the corresponding eigenvalue) and 
its nilpotent part. By Theorem 10-17, there is a basis for each characteristic 
subspace U. with respect to which the nilpotent part is represented by a string of 
l's above the diagonal, with O's elsewhere. Since the diagonal part on ~ is 
represented by the scalar matrix A/ mJ relative to any basis, we obtain the blocks 
as shown. [J 
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Exercises 

l. Let Vbe a vector space over k. Show that Hom(V,V) is a commutative ring 
(with respect to addition and composition of functions) if and only if V has 
dimension l. 

2. Verify the Cayley-Hamilton Theorem for the matrix 

A = (~ ~) 
by direct calculation. 

3. Repeat the previous problem for the general2x2 matrix 

A=(: ~) 
4. Show that R2 has no invariant subspaces under left multiplication by the 

matrix 

A =(2 -1) 
5 -2 

5. Show that the invertible upper triangular matrices constitute a subgroup of 
GLn(k). (Hint: Proceed by induction on n.) 

6. Derive a straightforward method for inverting a triangular matrix. Show in 
particular that the diagonal entries of the inverse matrix are exactly the in­
verses of the corresponding diagonal entries of the original matrix. 

7. Reduce the following matrix in M2(R) to triangular form: 

8. Let a be a positive real number. Show that the polynomial t2 + a is irreduc­
ible in R[t] but not in C[t]. 
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9. The polynomials 

in R[x] have no nonconstant common factors. Find polynomials h\(x) and 
h2(x) in R[x] such that 

gl(x)~(x)+ g2(X)~(X) = 1 

(Such polynomials must exist according to the preliminary remarks in 
Section 10.3.) 

10. Consider the endomorphism TA defined on R3 by the matrix 

Find the characteristic subspaces of TA • Verify by direct calculation that 
they are indeed invariant subspaces and effect a direct sum decomposition 
ofR3. 

11. Give an example of a singular matrix which is not nilpotent. (Hint: One 
well-placed nonzero entry will do it.) 

12. LetA be a lower triangular matrix with zeros on the diagonal. Show that A 
is nilpotent. (Hint: Show first that a matrix is nilpotent if and only if its 
transpose is.) 

13. Show that if A is a nilpotent matrix and B is similar to A, then B is like­
wise nilpotent. 

14. Show that for any n, the only matrix in Mn(k) that is both diagonal and nil­
potent is the zero matrix. 

15. Prove that the characteristic polynomial of a nilpotent matrix A eMn(k) 
must be r. [Hint: Use the following fact from algebra: Given a nonconstant 
polynomial p(t) in k[t], there exists a field K containing k such that p(t) 
factors into linear polynomials in K[t]. Apply this to the characteristic 
polynomial of A , and then regardA as an element of Mn(K). A is still nilpo­
tent. What can its eigenvalues be? What must the linear factorization of its 
characteristic polynomial be?] 
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16. Let A eMn(k) be a nilpotent matrix. Show that the index of nilpotency is 
less than or equal to n. (Hint: The previous problem might apply. Also the 
proof of Proposition 10-10 suggests a more elementary approach.) 

17. Let VI"'" V n be a basis for the vector space Vand let T be an endomorphism 
of V. Suppose that there exist nonnegative integers rl, ... ,rn such that 

Show that T is nilpotent. 

18. Give an example of a vector space V and an endomorphism T of V such 
that T is not nilpotent but nevertheless satisfies the following condition: 

for each veVthere exists an n~O such that Tn(v)=O 

In other words, find an endomorphism T of some space V such that any 
given vector in V is annihilated by some power of T, but no single power of 
T annihilates every vector simultaneously. (Hint: The previous problem 
implies that V must be infinite dimensional. Keep this-and your first 
course in calculus-in mind.) 

19. Find the index of nil potency of the following nilpotent matrix: 

20. Let T=TA be the endomorphism ofR3 defined by the matrix A given in the 
previous problem. Find a cyclic basis for R3 with respect to T and then ver­
ify the change of basis formula as it applies to this new basis and the 
canonical basis. [In other words, show that when you conjugate the rather 
tame-looking matrix 

by the appropriate transition matrix (from the canonical basis to your cyclic 
basis), the original matrixA indeed results.] 
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2l. Repeat the previous two exercises for the nilpotent matrix 

22. Let V be a finite-dimensional vector space, and let N be a nilpotent endo­
morphism of V. Show that V is cyclic with respect to N (i.e., admits a cyclic 
basis) if and only if N has index of nilpotency equal to the dimension of V. 
[Hin/: If N has index of nilpotency m, then N"'""1(V):;tO for some ve V. 
Hence if m=dim(V), Proposition 10-12 may be brought to bear. Now what 
if m<dim(V)? Can a cyclic basis for Vexist?] 

23. Let N be the nilpotent endomorphism of R3 defined by the following matrix 
(with respect to the canonical basis): 

Decompose R3 into the sum of cyclic subspaces with respect to N. (This 
problem, although computationally trivial, does encompass the key ideas of 
the proof of Theorem 10-16.) 

24. Let N be a nilpotent transformation on the vector space V, and let W be a 
one-dimensional subspace of V. Show that W is cyclic with respect to N if 
and only if W lies in Ker(N). 

25. Let V be a vector space of dimension 4, and let N be a nilpotent endo­
morphism of V with index of nilpotency equal to 2. Show that V is the 
direct sum of either 2 or 3 cyclic subspaces. Give specific examples to show 
that both possibilities in fact do occur. 

26. LetAeM7(R) have the characteristic polynomial 

p(/) = (I -1)(1 - 2)4 (I - 5)2 

Describe all possible Jordan normal forms that might arise from such an 
endomorphism. 
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27. LetA,BEMn(k) be similar matrices and assume that the roots of their com­
mon characteristic polynomial lie in k. Show that A and B have the same 
Jordan normal form up to the ordering of the Jordan blocks. 



Supplementary Topics 

The first section of this supplementary chapter ties linear algebra into calculus 
and explains some fundamental aspects of multivariable differentiation. In the 
second section, we revisit the determinant of real matrices in order to introduce 
a surprising geometric interpretation. This yields a fresh explanation of the 
multiplicative nature of the determinant map and accounts for at least the 
plausibility of the change of variables formula in multivariable calculus. The 
third section briefly introduces quadratic forms, an idea with many applications 
but not otherwise required in our main exposition. The final section is sheer 
extravagance: an introduction to categories and functors, two modem notions 
that have fundamentally changed the language and nature of mathematical in­
quiry. A functional understanding of this topic requires a larger base of mathe­
matical experience than most students will have at this point, but perhaps it is 
not too soon at least to broach the topic. 

The results here are for the most part offered without proof and without ex­
ercises. The aim is not to develop technical facility but to broaden one's mathe­
matical perspective and mathematical culture. 

1 Differentiation 

Let/be a real-valued function defined on an open interval I!:;R and let a be an 
element of 1. Recall that the derivativef'(a) is defined by the formula 

f'(a) = lim/(a+h)- /(a) 
h-+O h 

(1) 

provided that the indicated limit exists. If so, we say that/is differentiable at a. 
In this section we shall explain how differentiation generalizes to a multivari­
able function/: U~Rmdefined on an open subset U ofR". To do so directly via 
Eq. 1 would require that we replace the real numbers a and h by vectors, while 
recognizing that the values of/must now also be read as vectors. But this leads 
immediately to nonsense: the quotient of an m-dimensional vector by an n­
dimensional vector. Clearly we must find an alternate path. 
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Since the obstruction to the generalization ofEq. 1 is division, a sensible ap­
proach to the problem is to reformulate this equation without the quotient. This 
is not difficult if we remember that the derivative f'(a) also provides the best 
possible linear approximation tofnear a. 

PROPOSITION. Suppose that f is differentiable at a. Then there exists a function 
g defined on an open interval containing 0 such that the following two condi­
tions hold: 

(i) f(a+h)=f(a)+f'(a)oh+lhlg(h) 

(ii) lim g(h) = 0 
HO 

PROOF. For h:t;O, we define g by solving the first equation for g(h). Thus 

(h) = f(a +h) - f(a) - f'(a) oh 
g ~I 

(h :t;0) 

Now define g(O) =0. This construction guarantees the existence of a function g 
that at least satisfies (i). Part (ii) is almost equally trivial. Multiplying our last 
equation by Ih I, we have 

Ihlog(h) = f(a+h)- f(a)- f'(a)oh 

Dividing both sides by h:t;O yields 

sgn(h)og(h) = f(a+h)- f(a) - f'(a) 
h 

where sgn denotes the sign function (+1 for positive arguments, -1 for negative 
arguments). The limit of the right-hand side as h approaches zero is itself zero 
by definition of the derivative. Hence g(h) must likewise have limit zero as h 
approaches zero, precisely as claimed. 0 

Define a linear transformation A.:R~R by A.(h) =f'(a) oh. Then the equation 
given in part (i) of the proposition may be recast as follows: 

f(a +h) = f(a) +A.(h) +Ihlg(h) 

We see the right-hand side as the sum of a constant, a linear term, and a term 
that vanishes rapidly as h approaches O. The key points in this formulation are 
that there is no division and that the derivative has been identified with a linear 
map. Now we are ready to generalize. 
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First recall that a subset U of Rn is called open if for every ae U there is a 
positive real number & (which may depend on a) such that whenever Ix - a 1< & 

for a vector xeRn, then x also lies in U; that is, U is open if all points in Rn 

sufficiently close to a given point of U likewise lie in U. (In the present context, 
distance is measured with respect to the standard inner product on Rn.) We 
need this notion of an open set so that the limits appearing below make sense. 

DEFINITION. Let f: U ~ Rm be a function defined on an open subset U of Rn. 
Then given a point aeU, we say thatfis differentiable at a if there exists a lin­
ear transformation A:Rn~Rm such that 

f(a +h) = f(a) +A(h)+lhlg(h) (2) 

for some function g defined on a neighborhood of OeRn (also with codomain 
Rm) satisfying the condition limg(h) = 0 . 

6-+0 

One can show that if a linear transformation A satisfying this definition ex­
ists, it is also unique. It is therefore appropriately called the derivative off at a 
and denoted Df(a). 

We know from Chapter 6 that wherever it is defined, Df(a) may be realized 
by an mxn matrix (relative to the canonical bases for Rn and Rm). In a moment 
we shall see how to compute this matrix, but first we recast Eq. 2 in matrix 
form as follows: 

f(a +h) = f(a) + Df(a)h +Ihlg(h) (3) 

Note that the middle term on the right now represents the product of an mxn 
matrix with a column vector in Rn. Again limg(h) = O. 

6-+0 

To compute Df(a) using the standard techniques of calculus, we introduce a 
simple device. Iffis any function with codomain Rm, we can express the value 
offat any point a of its domain in the following form: 

II (a) 

f(a) = f2(a) 

fm(a) 

The real-valued functions Jj=,q.o f(j= l, ... m) are called the component functions 
off, and each has the same domain as! 

The following theorem is the fundamental result on differentiation of multi­
variable functions. We state it without proof. 
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THEOREM. Letf: U~Rm be a/unction defined on an open subset U o/Rn. 

(i) I//is diflerentiable at some point aeU, each o/the partial derivatives 

(lSi Sm,ISj Sn) 

exists at a; moreover, the derivative all at a is given by the mxn matrix 

(ii) Suppose conversely that each 0/ the indicated partials exists in an open 
neighborhood 0/ a and is continuous at a. Then/is diflerentiable at a. 

The matrix appearing in Eq. 3 is called the Jacobian matrix of! For func­
tions built from the familiar elementary functions of calculus, it is trivial (if 
sometimes tedious) to compute. 

SPECIAL CASES 

(1) Consider a function/:R~Rm. Then/is called a path in Rm, since if we 
think of the independent variable as time, / describes a trajectory in m­
space. (Hence in this case we prefer to use the variable t rather than x.) 
Expressing/in terms of its component functions 

1; (t) 

f(t)= f2(t) 

fm(t) 

we compute the path derivative by direct differentiation of each of the 
components: 

R(t) 

Df(t) = f{(t) 

f:,(t) 

II/describes position, D/describes velocity. 
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(2) Consider a functionf: Rn ~ R. Then the derivative off takes the form of a 
row vector that is called the gradient off and denoted gradf: 

Df(a) = (gradf)(a) 

_ ( of of of) - Ox (a), Ox (a), .. ",-(a) 
1 2 Oxn 

In this case, Eq. 3 yields the linear approximation 

f(a +h) ~ f(a) +gradf(a)"h 

n of 
~ f(a)+ L-(a)"hj 

j=1 iJxj 

for small h. Ifwe rewrite this in the slightly different form 

n of 
f(a+h)- f(a)~ L-(a)"hj 

j=1 iJxj 

it explains why df, the so-called total differential off, is often expressed as 
follows: 

(3) As our final special case, we consider a matrix A eMatmxn(R) and the as­
sociated linear transformation TA : Rn ~ Rm defined as left multiplication by 
A. We invite the reader to show that TA is differentiable with derivative 
equal to A itself. This generalizes a familiar triviality from one-variable 
calculus, namely that d(ax)/dx=a. 

To summarize the main point of this section, the derivative of a function at a 
given point is a number or a matrix only insofar as this number or matrix rep­
resents a linear transformation that may be used to approximate the function 
locally. In this sense, the notion of derivative that one usually learns in a first 
course in calculus is slightly misleading, although entirely forgivably so. 

2 The Detenninant Revisited 

We shall now introduce a surprising interpretation of the determinant of a real 
nxn matrix as a measure of volume. Since the determinant of a real matrix may 
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Figure 1. On the left, Xl may be rotated onto x2 by a counterclockwise rotation of less 
than 1Tradians. On the right, this is clearly not possible. 

be negative, we shall first have to introduce the notion of oriented volume or 
oriented area. The latter term is appropriate in two-dimensional settings, where 
we shall illustrate these ideas. 

Consider two linearly independent vectors in Xl and x2 in R2, which there­
fore constitute an ordered basis. (In this context the ordering is paramount!) 
Figure 1 shows how these vectors may relate to each other. If it is possible to 
rotate Xl counterclockwise by less than 1T radians onto x2' we shall say that the 
pair of vectors has positive orientation. Otherwise, we shall call the associated 
orientation negative. In both cases the vectors span a parallelogram, as shown. 
Let us define a real-valued function a(xl,x2) on R2 as follows: 

If Xl and x2 are linearly independent and have positive orientation, 
then a(xpx2) is just the area of the parallelogram spanned by these 
vectors. 

If Xl and x2 are linearly independent and have negative orientation, 
then a(xl,x2) is minus the area of the parallelogram spanned by 
these vectors. 

If Xl and x2 are linearly dependent, then a(xpx2) is zero. 

We shall call a(xl,x2) the oriented area of the parallelogram spanned by the 
vectors Xl and x 2. 

Let us now deduce some properties of oriented area. Consider the calculation 
of a(cxl ,x2) where c is any real number. If c is positive, the parallelogram 
spanned by Xl and x2 has been either stretched or contracted in one direction by 
a factor of c, with no change in orientation. If c is negative, the parallelogram 
is again stretched or contracted, but also suffers a reversal of orientation. If c is 
zero, the parallelogram of course degenerates into a line segment with no area. 
The upshot of this analysis is that a(cxl,x2) = ca(xl,x2). The argument works 
equally well in the second variable. 

Figure 2 shows an even more striking property of oriented area: a is also 
additive in each variable. Combining this with the analysis of the last para­
graph, we have 
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x x 

Figure 2. Comparison of the two shaded regions (which differ by translation of a trian­
gle) shows that a(x+y,z)=a(x,z)+a(y,z). A similar analysis holds in the second vari­
able. 

(i) The oriented area function a is linear in each variable. 

And we can immediately state two other properties of oriented area, both of 
which are rather trivial-looking observations: 

(ii) For all vectors xER2, a(x, x) =0. 

(iii) The oriented area of the parallelogram spanned by the canonical basis 
vectors e1 and e2 is l~ that is, a(e1,e2) = 1. 

Now what can be the importance of these remarks? 
Recall that the Fundamental Theorem of Determinants (8-1) says in part that 

the determinant is uniquely characterized by three properties identical to those 
observed here for oriented area. Consequently, we have in splendid ignorance 
established that for a 2x2 real matrix A, det(A) is precisely the oriented area of 
the parallelogram spanned by the columns of A! In particular, 

Idet(A)1 = the area of the parallelogram spanned by the columns of A 

This is a result that one would hardly expect from our earlier algebraic charac­
terization of the determinant. (Unless, of course, one did Exercise 28 of Chap­
ter 8.) 

In real n-space, n linearly independent vectors x1, ••. ,xn span an n-dimen­
sional object called a parallelepiped or paralleletope. This is defined as the 
following subset of Rn: 

While it is harder to carry our intuitive understanding of orientation into higher 
dimensions (in fact, the determinant itself is the most convenient tool for such 
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analysis), the results derived for the plane may be extended rigorously. Thus for 
any nxn real matrix A, det(A) is precisely the oriented volume of the parallele­
piped spanned by the columns of A. (Or, for that matter, by the rows of A. Do 
you see why?) In particular, 

Jdet(A)J = the volume of the parallelepiped spanned by the columns of A 

We have thus achieved a complementary, geometric description of the deter­
minant. (Note that the present discussion does not apply over abstract fields; 
hence our previous algebraic description remains the more fundamental.) 

We can immediately put this new geometric interpretation of the determi­
nant to good use. Consider a nonsingular endomorphism T of Rn as represented 
by a matrix A with respect to the canonical basis. The columns of A are pre­
cisely the images of the canonical basis vectors under the mapping T. Hence the 
parallelepiped-in this case a hypercube-spanned by ew .. ,en maps to the 
parallelepiped spanned by the columns of A. Since the hypercube has unit vol­
ume and its image under T has volume Jdet(A)J, we can accordingly regard the 
determinant as a measure of the expansion in volume effected by T. This yields 
a satisfYing geometric explanation for the multiplicativity of the determinant: 
the application of two successive endomorphisms results in two successive ex­
pansions in volume; the cumulative effect is clearly the product of the two. 

The determinant as volume makes its appearance in calculus in a famous 
and fundamental theorem. Before stating it, we recall from the previous section 
that the derivative of a function g from Rn to Rm is a linear transformation Dg 
also from Rn to Rm. In particular, the derivative of a function g from Rn to itself 
is an endomorphism ofRn, and thus it makes sense to speak of its determinant. 

THEOREM. (Change of Variables Formula) Let U be an open subset ofRn and 
suppose that g: U ~ Rn meets the following conditions: 

(i) g is injective; 

(ii) the derivative Dg exists and is continuous throughout U; 

(iii) Dg has nonzero determinant throughout U. 

Then iff is a real-valued integrable function on the image of U under g, 

J f(v)dv = J f 0 g(u)·JdetDg(u)Jdu 
g(U) U 

We shall, of course, attempt no proof of this theorem, but let us at least point 
out that the factor JdetDg(u)J appears on the right side precisely to account for 
the local expansion that a differential volume element experiences when 
mapped from U to g(U) via g. 



222 Supplementary Topics 

3 Quadratic Forms 

Quadratic forms appear in many branches of mathematics, from statistics to 
number theory. In this section we introduce the subject over an abstract field 
and then state some of the most useful results about real quadratic forms. 

Let V be an n-dimensional vector space over an arbitrary field k. Then a 
bilinear form on V is a mapping B: Vx V ~ k that is linear in each variable. 
More explicitly, 

B(Au+,uV,W) = AB(u,w) + ,uB(v,w) 

for all A,,uek and u,v,weV, with a similar equation in the second variable. A 
bilinear form B is symmetric if B(u,v)=B(v,u) for all u,vev' 

Let us now fix a basis for V and identify V with k" via the associated co­
ordinate isomorphism. Along the lines of Proposition 7-5, one can easily show 
that the bilinear map B takes the form 

B(x,y) = txAy (x,yek") 

for some A eMn(k). Moreover, A is symmetric if and only if the bilinear form B 
is likewise symmetric. 

With Vas above, a map Q: V ~ k is called a quadratic form if it satisfies the 
following conditions: 

(i) for all ue V and Aek, Q(Au) = A2Q(U); 

(ii) the map BQ: VxV ~k defined by BQ(u,v) = Q(u,v)-Q(u)-Q(v) is a symmet­
ric bilinear form on V. 

Thus every quadratic form Q gives rise to an associated bilinear form BQ• We 
can in fact reverse this correspondence subject to one further technical condi­
tion (which the reader concerned only with the fields Rand C may ignore). 

A field k is said to be of characteristic 2 if 1 + 1 =0 in k. (Here 0 and 1 stand, 
respectively, for the additive and multiplicative identities of the field k, and not 
necessarily for ordinary integers.) For example, the finite field F2 has character­
istic 2 (cf. Section 2.3), and there are infinitely many other such fields. If a field 
k is not of characteristic 2, we may use the customary symbol 2 to denote the 
sum 1 + 1. Then 2 is multiplicatively invertible in k, since by definition k* is a 
group. As usual, we denote this inverse Y:z. 

Resuming the general discussion, assume henceforth that k is not of charac­
teristic 2, so that the fraction Y:z makes sense in k. Then with an arbitrary 
symmetric bilinear form B, we may associate the function QB: V ~ k defined by 
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Then QB turns out to be a quadratic form. In fact, we have the following bijec­
tive correspondence: 

PROPOsmON. Assume that k is not of characteristic 2. Then the mapping 

constitutes a bijective correspondence between the set of quadratic forms on V 
and the set of symmetric bilinear forms on V. Moreover, the inverse correspon­
dence is given by 

PROOF. We need only show that for any bilinear form B, QB is indeed a quad­
ratic form and that the indicated mappings are in fact mutually inverse. First 
we compute that 

Second we note that 

QB(U+V) -QB(U)-QB(V) = i(B(u+v,u +v) -B(u,u)-B(v,v») 

= i(B(u,v) + B(v,u») 

=B(u,v) 

This shows both that QB is indeed a quadratic form and that the first map given 
in the proposition is at least a left inverse for the second. Finally, we have that 

iBQ(u,u) = i(Q(u +u) - Q(u) - Q(u») 

= i(Q(2u) - 2Q(u») 

= i(4Q(u)-2Q(u») 

= (Xu) 

This establishes the inverse relationship in the other direction and thus con­
cludes the proof. [J 

We now pass to a less abstract characterization of quadratic forms on k!' 
(where k still is not of characteristic 2). Since each such form Q arises in con­
nection with a symmetric bilinear form and every bilinear form is represented 
by a symmetric matrix with respect to the canonical basis, we can always write 
Qas 
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Q(x)=~x 

= Laifxjxj 
j,j 

where A is a symmetric nxn matrix. (Here the indices vary independently from 
1 to n, so that there are n2 terms in the summation.) We shall say that A repre­
sentsQ. 

We next consider a change of variables. Suppose that x=Py for some matrix 
PeGLn(k). Let B= 'PAP, where A represents Q. Define another quadratic form 
R by R(y)='yBy. Then 

Q(x)=~x 

='(Py)A(Py) 

='y('pAP)y 

='yBy 
=R(y) 

In other words, except for a linear change in coordinates, A and B represent the 
same form. This leads to the following definitions: 

DEFINITIONS. If B= 'pAP for a nonsingular matrix P, then A and B are said to 
be congruent. Two quadratic forms represented by congruent matrices are 
called equivalent. 

One shows easily that this is an equivalence relation on Mn(k) which pre­
serves rank. A fundamental issue is then to determine when two forms are 
equivalent. We shall have a little to say about this in the special case that k=R. 

Real Quadratic Forms 
A quadratic form on a real vector space is called a real quadratic form. Recall 
that according to the Spectral Decomposition Theorem, a real symmetric ma­
trix is diagonalizable by an orthogonal matrix (for which the operations of 
transpose and inverse are identical). 

THEOREM. (The Principal Axis Theorem) Let Q : Rn ~ R be a real quadratic 
form. Then Q is eqUivalent, via an orthogonal transformation, to the form 

where A1, ... ,An are the eigenvalues of the matrix representing Q. 
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PROOF. SUppose that A represents Q. There exists an orthogonal matrix P such 
that 

A, 0 0 

o o 
D= 

where A" ... ,A." are the eigenvalues ofA. Clearly the quadratic form represented 
by the diagonal matrix D is that shown. [J 

COROLLARY. More specifically, every real quadratic form is eqUivalent to one 
of the type 

PROOF. We may suppose that the given form has already been diagonalized and 
is of the type 

Assuming that A.J" ... ,A.p are positive while A.p+J" ... ,A.p+q are negative, with the 
other coefficients zero, consider the following further change of variables: 

I 
Xj = ..p:;Yj (j = I, ... ,p) 

I 
Xj = ~-A.j Yj (j = p+I, ... ,p+q) 

Xj=Yj (j = p+q+I, ... ,n) 

This clearly transforms A.)X;2+ ..• +A."X; into the required expression. [J 

The ordered pair of integers (p,q) defined in the previous corollary is called 
the signature of the quadratic form. While we shall not prove it, the signature is 
an invariant of the form, which is to say that equivalent forms have the same 
signature. In fact, much more is true: 

THEOREM. (Sylvester's Law of Inertia) Two real quadratiC forms on real n­
space are eqUivalent if and only if they have the same signature. 
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We complete this section with one example of the amazing power of this re­
sult. 

EXAMPLE 

Suppose that a quadratic form Q on R4 is represented by a matrix A whose 
eigenvalues are +2, +1, 0, -1. Then Q has signature (2,1) and is therefore 
equivalent to the form 

Moreover, any quadratic form on R4 whose matrix has two positive eigenvalues 
and one negative eigenvalue is likewise equivalent to this form and equivalent 
to Q. 

4 An Introduction to Categories and Functors 

Samuel Eilenberg and Saunders Mac Lane introduced categories and functors 
into mathematics in 1945. These concepts represent as great a "triumph of gen­
eralization" (to quote John Fowles) as Darwin's theory of evolution. In the 
latter half of the twentieth century, they have not only changed the language of 
mathematical discourse, but also the nature of mathematical inquiry. 

While category theory, like group theory, has a technical life of its own, we 
are not concerned here with its technical development. Our only purpose is to 
exhibit the most basic definitions and examples so that the student may at least 
glimpse the beauty of these ideas as a framework for mathematics. 

DEFINITION (following Lang's Algebra, 1965). A category.wconsists of 

(i) a class of objects (not necessarily a set), denoted Ob(.w); 

(ii) for every pair of objectsA,BeOb(.w), a set Mor(A,B) of morphisms from A 
toB; 

(iii) for every three objectsA,B,CeOb(.w), a law of composition, which is to say 
a function Mor(B,C)xMor(A,B)~Mor(A,C). 

Moreover, these data are subject to the following axioms: 

CAT 1. Two sets Mor(A ,B) and Mor(A ',B') are disjoint unless A = A I and B= B'. 

CAT 2. For each A eOb(.w), there is a morphism l A eMor(A,A) which is neu­
tral with respect to composition. 

CAT 3. The law of composition is associative. 
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To state these last two axioms more precisely, we need some notation. 
Henceforth we write f: A ~B to indicate thatfeMor(A,B) and use 0 to denote 
the composition operator. Thus ifwe haveg:B~C andf:A~B, the composed 
morphism mandated by (iii) above is gof:A ~ C. Then CAT 2 says that for 
every object A, there is a morphism lA:A ~A such that 

for all morphisms g from any object to A and all morphisms h from A to any 
object. CAT 3 says that whenever three morphisms f, g, and h admit composi­
tion as indicated, we have 

(hog)of= ho(gof) 

Note that these properties seem modeled on ordinary composition of func­
tions. Indeed, sets and functions provide the first of a few examples likely to be 
familiar to the reader. 

EXAMPLES 

(1) Sets and Functions. The objects are sets; the morphisms are functions. The 
composition law is ordinary composition of functions, which we know to 
be always associative. For any setA, the neutral element in Mor(A,A) is the 
identity function on A. 

(2) Topological Spaces and Continuous Mappings. The objects are topological 
spaces and the morphisms are continuous mappings between spaces. To see 
that this is a category, it suffices to note that the identity map is always 
continuous and that composition of continuous functions is continuous. 
The other properties then follow from the ordinary rules for composition of 
functions. 

(3) Groups and Group Homomorphisms. The objects are groups and the mor­
phisms are group homomorphisms. As for the previous example, it suffices 
to note that the identity map is a group homomorphism and that the com­
position of group homomorphisms is a group homomorphism. 

(4) Vector Spaces and Linear Transformations (over a fixed field). Let k be a 
field. The class of all vector spaces over k constitutes a category for which 
the morphisms consist of k-linear transformations. As above, it suffices to 
note that the identity map is a linear transformation and that composition 
of linear transformations is a linear transformation. 

Now these examples are somewhat restrained insofar as in all cases the ob­
jects are sets and the morphisms are functions, although possibly of a restricted 
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A f B A f B 

F(~) 1'(1l ~B) F(~) !'12 ~B) 
Figure 3. lllustration of both covariant and contravariant functors. The vertical arrows 
represent assignments of objects; they are not themselves morphisms. 

type. Much more abstract categories are possible and useful (e.g., the category 
of ringed spaces from algebraic geometry). But the point we want to stress is 
that the morphisms-the structure preserving maps-are part of the defining 
data. In this sense the categorical approach is strongly relational. This will 
appear even more strikingly below as we introduce the notion of a functor. 

DEFINITION. Let JiI and 93' be categories. Then a covariant Junctor F from JiI to 
93' is a rule which assigns to every object A EOb(JiI) an object F(A) EOb(93') and 
to each morphism f:A ~ B a morphism F{f) : F(A) ~ F(B), subject to the follow­
ing axioms: 

FUN 1. For alIA EOb(JiI), F(lA) = IF(A). 

FUN 2. IfJ:A~B andg:B~C, thenF(gof)=F(g)oF(f) 

We also have the notion of a contravariant Junctor F, which assigns objects 
and morphisms across categories as above, but in this case reverses the direc­
tion of a morphism: ifJ:A ~B, then F(f): F(B) ~F(A). Accordingly, the sec­
ond axiom must be amended to read 

FUN 2'. IfJ:A~B andg:B~C, thenF(gof)=F(f)oF(g) 

Figure 3 illustrates the relationships of objects and morphisms for both co­
variant and contravariant functors. 

EXAMPLES 

(1) LetJil be the category whose objects are finite sets and whose morphisms 
are ordinary functions, and let93' be the category of vector spaces and lin­
ear transformations over some fixed field k. Given any finite set S, we can 
associate with it a real finite-dimensional vector space F(S) whose basis is 
S. Thus F(S) consists of formal sums 
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where two such expressions are equal if and only if all coefficients match. 
Addition and scalar multiplication are, as usual, defined componentwise: 

~)'s'S + L,us's= L(As+,us)'s 

,u LAs ·s= L(,uAs)'s 

Any morphism of finite sets (Le., a function) f: S ~ T induces the following 
morphism of vector spaces (Le., a linear transformation) F(f):F(S)~F(T) 
on the associated spaces: 

This is just extension by linearity, as explained in Section 6.4. Clearly the 
identity map on a finite set S induces the identity map on the associated 
vector space F(S). Moreover, the induced functions respect composition: 

iff: S ~ T and g: T ~ U, then F(gof)=F(g) of(f) 

Hence F constitutes a covariant functor from.Sl1' to 9J. (This may not be a 
particularly useful functor, but it does illustrate the main technical points.) 

(2) Our second example is both interesting and useful and has even appeared 
previously in the text! Consider the category of vector spaces over a fixed 
field k. Then to every vector space V we can associate its dual space V* = 

Hom(V,k). Furthermore, if T: V ~ W is a linear transformation, we have 
seen in Section 6.4 that 

T*:W* ~ V* 
f'r--"lfoT 

is likewise a linear transformation on the dual spaces. Our comments just 
prior to Proposition 6-16 say precisely that Hom(-,k) is a contravariant 
functor from this category to itself. The reader who has studied the re­
mainder of that section will note the good use made of this functoriality in 
the subsequent analysis. 

Generality and Functoriality 

The introduction of categories and functors has, over the last half century, 
changed the nature of mathematics both explicitly and implicitly. For example, 
both algebraic topology and algebraic geometry are much driven by the search 
for functors from topological spaces to discrete algebraic categories (such as 
groups and rings) that yield decisive information on the classification of spaces. 
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A less obvious effect occurs at the very heart of mathematics in connection with 
the process of abstraction: nowadays a definition might be considered suspect if 
the collection of objects it encompasses does not constitute a category; an asso­
ciation of objects across categories might be held defective if it is not functorial. 
We close our discussion with a few heuristic comments that may in some small 
way explain the immense effectiveness and appeal of the categorical frame­
work. We begin with some preliminary remarks on the nature of generality in 
mathematics. 

A natural approach to achieving mathematical generality is through general­
ized objects or forms. For example, we saw in Section 2.3 that both the integers 
and the set of continuous real-valued functions defined on the real numbers 
admit addition and multiplication subject to some very familiar laws. Conse­
quently both are subsumed under the mathematical structure of a commutative 
ring, which is accordingly an appropriate generalization of each. We speak of 
and study rings, and whatever their abstract properties, they are shared by the 
integers and by the continuous real-valued functions. The power of this ap­
proach is undeniable, and yet, as we shall now argue, necessarily limited. 

Axiomatic systems such as rings, groups, fields, and topological spaces dis­
till gradually out of mathematical experience. They are a means both to unify 
mathematics and to isolate the key properties of certain well-studied objects. 
Indeed, the capacity to identify viable forms is a quintessential and rare 
mathematical talent. To understand why this is more art than science, consider, 
for example, the notoriously austere axioms for an abstract group or a topo­
logical space. These resemble cosmetically any number of simple axiomatic 
systems that one might define, but their particular richness derives from two 
attributes, which by nature lie in opposition to each other: 

(i) They are sufficiently general to encompass a wide spectrum of mathemati­
cal phenomena. 

(ii) They are sufficiently restrictive to capture essential features of some part of 
the mathematical landscape. 

Point (i) alone is clearly insufficient. A magma (a set together with an opera­
tion, subject to no restrictions whatsoever) is certainly a more general object 
than a group, but is it correspondingly more central to mathematics? Of course 
not; so general an object commands virtually no interest. One might similarly 
relax the axioms for a topological space to achieve greater inclusiveness-but 
in this case at the expense of key features of spatiality. Thus the warning signs 
are clearly posted: transgress point (ii) at your peril. 

By stressing relationships across classes, functoriality deftly sidesteps the 
contention described above between generality and richness. Thus it achieves a 
measure of unity without retreat into banality. Moreover, functorial relation­
ships often allow one to bring to bear the full knowledge of one class. of ob~ec~s 
on the analysis of another. In this way categories and functors proVIde WIthin 
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mathematics itself a service that mathematics has long provided for science. 
And finally, in purely aesthetic terms, the exquisite balance between the ob­
jectified and the relational manifest in this approach reveals one of the most 
beautiful designs ever conceived by the human mind. 



Index 

A 

adjoint 
existence and uniqueness of, 183 
of a matrix, 176 
of an endomoIphism, 175 

algebraically closed field, 180, 197 
alternation of sign (for the 

determinant), 152 
angle {between vectors), 135, 146 
antilinearity, 144, 183 
associative operation, 18 

B 

basis, 62 
and dimension, 66 
as coordinate system, 62 
existence of, 67 
ordered, 107 

bijective function, see function 
bilinear form, 222 
bilinearity (of a real inner product), 

131 
binary operation, 18 

C 

canonical basis (vectors), 43, 62 
linear independence of, 60 

cardinality, 7 
Cartesian product of sets, 15 
category, 226 
Cauchy-Schwan Inequality, 133, 145 
Cayley table, 20, 31 

Cayley's Theorem (for groups), 35 
Cayley-Hamilton Theorem, 186, 189 
change of basis formula, 122 
Change of Variables Formula, 221 
characteristic polynomial 

of a differential equation, 185 
of a linear transformation, 173 
of a matrix, 171 

characteristic subspace( s), 199 
decomposition by, 199 
restriction of an endomoIphism to, 

203 
characteristic value, 169 
characteristic vector, 169 
closure, 18 
column matrix, 78 
commutative diagram, 4 
commutative operation, 18 
complex conjugate, 143 
complex inner product, 143 

canonical, 144 
complex n-space, 39 
composition of functions, see function 
conjugate transpose (ofa matrix), 175 
continuum hypothesis, 8 
contravariance, 114 
coordinate map, 63, 68, 107 
Cramer's Rule, 163 
Crout's algorithm, 91 
cycles, 9 

disjoint, 10 
cyclic basis, 204 
cyclic subspace, 204 
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D 

dependence relation, see linear 
dependence relation 

detenninant, 152 
and invertibi1ity of matrices, 162 
as volume, 218 
expansion by rows and columns, 159 
nonrecursive formula for, 157 
of a product, 161 
of a triangular matrix, 159 
recursive deftnition for, 152 
uniqueness of, 159 

diagonalizable (transformation), 170, 
175 

differentiation (as a linear map), 46 
differentiation (of multi variable 

functions), 216 
dimension, 66 
disjoint union, 15 
dot product, 132, 144 
dual basis, 117 
dual space, 114 

E 

eigenbasis, 170 
eigenspace, 57, 170 
eigenvalue(s), 57, 169 
eigenvector(s), 57, 169 
elementary row operations, 87 
endomorphism (ofa vector space), 121 
evaluation map, 57, 120 
Exchange Theorem, 65, 68 
extension by linearity, 113 

F 

fteld,31 
as a vector space, 38 
fmite,32 

free (on a basis), 113 
function(s), 1 

bijective, 2 
codomain of, 1 
composition of, 4 

domain of, 1 
injective, 2 
invertible, 6 
sutjective,2 

functor 
contravariant, 114,228 
covariant, 228 

Fundamental Theorem of 
Determinants, 152 

Fundamental Theorem of Linear 
Algebra, 67 

G 

Gauss-Jordan elimination method, 88 
92 ' 

general linear group, 82 
gradient, 218 
Gram-Schmidt Orthonormalization 

Process, 140 
group homomorphism(s), 25 

additive, 25,44 
composition of, 26 
image of, 28 
injectivity of, 29 
kernel of, 27 

group( s), 19 

H 

additive, 19 
cancellation laws, 21 
commutative, 19,33 
direct product of, 33 
exponentials, 22 
inverses, 19 

Hermitian (endomorphism or matrix), 
176 

homogeneous system (oflinear 
equations), 48, 84 

existence of solutions to, 85 

I 

identity (for an operation), 18 
identity map, 2 



imaginary part (of a complex number), 
143 

inclusion map, 113 
index of nilpotency, 202 
infinite-dimensional space, 66 
injective function, see function 
inner product space 

complex, 143 
real, 131 

invariance of parity, 11 
invariant subspace, 180, 189 
inverse function, 6 
inverse image (of an element), 27 
isomorphism 

of groups, 27 
of vector spaces, 47 

J 

Jacobian matrix, 217 
Jordan normal form, 208 

K 

k-algebra( s), 102 
isomorphism of, 106 

Kronecker delta, 80 

L 

Legendre polynomials, 141 
length (ofa vector), 132, 144 
linear combination (of vectors), 42 

nontrivial, 60 
linear dependence relation, 60 
linear map, see linear transformation 
linear system(s), 46, 70 

inconsistent, 89 
multiple, 92 
solution techniques for, 86 

linear transformation(s), 44 
composition of, 46, 105, 109 
idempotent, 58 
image of, 46 
injective, 47 

inverse image under, 47 
kernel of, 46 
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matrix of, 102, 108, 110 
representation of, 103, 108 
space of, 100 

linearly dependent (family or set), 59 
characterization of, 61 

linearly independent (family or set), 59 
LUDecomposition, 90, 165 

M 

magma, 19,21 
matrix, 78 

addition, 79 
augmented, 87 
diagonal, 81 
identity, 80 
inversion, 93 
invertible, 82 
lower triangular, 90 
multiplication, 79 
nonsingular,82 
of a linear transformation, 102, 108, 

110 
square, 79 
symmetric, 81 
transpose, 81, 117 
upper triangular, 90, 195 
zero, 79 

maximally linearly independent set, 64 
minimal generating set, 64 
monoid, 19 

morphisms (in a category), 226 
multilineari ty (of the determinant), 

152 
multiplicity (of a root), 199 

N 

natural isomorphism, 117, 120 
nilpotent matrix or mapping, 202 
norm (of a vector), 132 
normalization (of the determinant), 

152 
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nullity 

o 

of a linear transfonnation, 71 
of a matrix, 84 

objects (in a category), 226 
orbit, 10 
ordered pair, 15 
oriented area, 219 
oriented volume, 219 
orthogonal complement (of a 

subspace), 142 
orthogonal family, 135 
orthogonal matrix, 177 
orthogonal projection 

onto a subspace, 139 
onto a unit vector, 138 

orthogonality (of vectors), 135, 150 
orthononnal basis, 135, 138 
orthononnal family, 135 

P 

parity, 11 
path (in Euclidean space), 217 
path derivative, 217 
permutation(s), 8 

number of reversals in, 11 
odd and even, II 

permutation matrix, 164 
polynomial algebra, 188 
polynomial( s) 

even and odd, 54 
irreducible, 198 
space of, 40, 48 
unique factorization of, 198 

positive definite 
inner product, 131 
matrix, 137 

power set, 8 
Principal Axis Theorem, 224 
projection maps, 34, 45, 125 

Pythagorean Theorem, 133, 136, 138, 
142, 146 

Q 

quadratic form, 222 
real,224 
signature of, 225 

R 

rank 
ofa linear transfonnation, 71,115 
ofamatrix,84,118 

Rank-Nullity Theorem, 71 
real inner product, 131 

canonical, 132 
real n-space, 39 
real part (of a complex number), 143 
reduced row-echelon fonn, 88 
reduction to triangular fonn, 195 
ring(s),30 

arithmetic properties of, 32 
commutative, 31 
distributive law for, 30 
group of units of, 82 

root of a cyclic basis, 204 
rotation (as a linear transfonnation), 

106, 171 
row matrix, 78 
row-echelon fonn, 88 

s 
scalar multiplication, 37 

of matrices, 79 
Schroeder-Bernstein Theorem, 7,15 

self-adjoint (endomorphism), 175 
semigroup, 19 
sign homomorphism, II, 15,26, 35, 

157 
similarity of matrices, 124, 171 
span (ofa collection of vectors), 42 
special linear group, 162, 167 



Spectral Decomposition Theorem, 180, 
199 

subgroup, 23 
cyclic, 34 
diagonal, 34 
proper, 24 
trivial, 24 

subspace( s), 40 
criteria, 41 
internal direct sum of, 51, 58, 76, 

142 
trivial, 41 

supertriangular matrix, 202 
swjective function, see function 
symmetric group, 8,20, 157 
symmetry (of a real inner product), 131 

T 

tensor product, 177 
transition matrix, 121 
transpose map, 114 
transposition, 9 
Triangle Inequality, 134, 146 

u 
unit vector, 132 
unitary (endomorphism or matrix), 

177,198 
universal property 

of direct products, 50 
of internal direct sum, 52, 76 

v 
vector space homomorphism, see linear 

transformation 
vector space(s), 37 

complex, 37 
direct product of, 49, S8 
fmite-dimensional, 43 
fmitely generated, 43 
real,37 
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w 
Wronskian determinant, 167 

z 
zero map, 45, 101 
zero vector, 37 
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