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Preface

In this book we lead the student to an understanding of elementary linear
algebra by emphasizing the geometric significance of the subject.

Our experience in teaching beginning undergraduates over the years has
convinced us that students learn the new ideas of linear algebra best when
these ideas are grounded in the familiar geometry of two and three
dimensions. Many important notions of linear algebra already occur in
these dimensions in a non-trivial way, and a student with a confident grasp
of these ideas will encounter little difficulty in extending them to higher
dimensions and to more abstract algebraic systems. Moreover, we feel that
this geometric approach provides a solid basis for the linear algebra needed
in engineering, physics, biology, and chemistry, as well as in economics and
statistics.

The great advantage of beginning with a thorough study of the linear
algebra of the plane is that students are introduced quickly to the most
important new concepts while they are still on the familiar ground of
two-dimensional geometry. In short order, the student sees and uses the
notions of dot product, linear transformations, determinants, eigenvalues,
and quadratic forms. This is done in Chapters 2.0-2.7.

Then the very same outline is used in Chapters 3.0-3.7 to present the
linear algebra of three-dimensional space, so that the former ideas are
reinforced while new concepts are being introduced.

In Chapters 4.0-4.2 we deal with geometry in a space of four dimensions
and introduce linear transformations and matrices in four variables.

Finally, in Chapters 5.1-5.3 we study systems of linear equations in n
unknowns, and in conjunction with such systems we develop the notions
of n-dimensional vector algebra and the ideas of subspace, basis, and
dimension.
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Except in a single chapter, the student need only know basic high school
algebra and geometry and introductory trigonometry in order to read this
book. The exception is Chapter 2.8, Differential Systems, where we assume
a knowledge of elementary calculus.
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CHAPTER 1.0
Vectors in the Line

Analytic geometry begins with the line. Every point on the line has a real
number as its coordinate and every real number is the coordinate of exactly
one point. A vector in the line is a directed line segment from the origin to a
point with coordinate x. We denote this vector by a single capital letter X.
The collection of all vectors in the line is denoted by R'.

We add two vectors by adding their coordinates, so if U has coordinate
u, then X + U has coordinate x + u. To multiply a vector X by a real
number r, we multiply the coordinate by r, so the coordinate of rX is rx.
The vector with coordinate zero is denoted by 0. (See Fig. 1.1.)

The familiar properties of real numbers then lead to corresponding
properties for vectors in 1-space. For any vectors X,U,W and any real
numbers r and s we have:

X+U=U+X

X+U)+W=X+U+W)

Forall X,0+X=X=X+0.

For any X, there is a vector —X such that X + (—X) = 0.
rX+U)=rX+rU

(r+s)X=rX+sX

r(sX) = (rs)X

X=X

We can define the length of a vector X with coordinate x as the absolute
value of x, i.e., the distance from the point labelled x to the origin. We
denote this length by |X| and we may write |X| = \/)? . (We always under-
stand this symbol to stand for the non-negative square root.) Then 0 is the
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0 X
: ;
U X+U
-DX 0 X 2X
— ———
Figure 1.1

unique vector of the length 0 and there are just two vectors with length 1,
with coordinates 1 and —1.



CHAPTER 2.0
The Geometry of Vectors in the Plane

Many of the familiar theorems of plane geometry appear in a new light
when we rephrase them in the language of vectors. This is particularly true
for theorems which are usually expressed in the language of analytic or
coordinate geometry, because vector notation enables us to use a single
symbol to refer to a pair of numbers which gives the coordinates of a point.
Not only does this give us convenient notations for expressing important
results, but it also allows us to concentrate on algebraic properties of
vectors, and these enable us to apply the techniques used-in plane geometry
to study problems in space, in higher dimensions, and also in situations
from calculus and differential equations which at first have little resem-
blance to plane geometry. Thus, we begin our study of linear algebra with
the study of the geometry of vectors in the plane.

§1. The Algebra of Vectors

In vector geometry we define a vector in the plane as a pair of numbers
(;) written in column form, with the first coordinate x written above the
second coordinate y. We designate this vector by a single capital letter X,
x
y
line segment, starting at the origin in the coordinate plane and ending at

i.e., we write X =( ) We can picture the vector X as an arrow, or directed

the point with coordinates x and y. We illustrate the vectors A =(::),

B =(;) C =(;‘), and D =(Z) in Figure 2.1.
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Figure 2.1
We add two vectors by adding their components, so if X =(§,) and
U =(z), we have
_(x+u
X+U=(315) (1)

Thus, in the above diagram, we have A + B = C, since

=)+ (-G -(9)-c

We multiply a vector X by a number r by multiplying each coordinate of

X by r, ie.,
x=r(5)= () @

In Fig. 2.1, D =(i) = 2(;) = 2B, and we also have B = 1D.

Multiplying by a number r scales the vector X giving a longer vector rX
if r > 1 and a shorter vector rX if 0 < r < 1. Such multiplication of a vector
by a number is called scalar multiplication, and the number r is called a
scalar. If r = 1, then the result is the vector itself, so 1X = X. If r = 0, then

multiplication of any vector by r = 0 yields the zero vector ( g), denoted by

0= (8) If X is not the zero vector, then the scalar multiples of X all lie on
a line through the origin and the point at the endpoint of the arrow
representing X. We call this line the line along X. If r > 0, we get the points
on the ray from (8) through (;), while if r < 0, we get the points on the

opposite ray. In particular, if r= —1, we get the vector (=X =

X\ =(—X . :
( l)( y) (__ y) which has the same length as X but the opposite
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2B

“%B A

-A -B

-2A B

Figure 2.2

direction. We denote this vector by —X =( - ; ) and we note that

X_'__X=__x_'_—-x=x+(—-x)___0=0 3
=) )T en) )7 ®)

We say that the vector —X is the negative of X or the additive inverse of X.
In Figure 2.2, we indicate some scalar multiples of the vectors A =(3)

dB=(! :
and B = ( 5 )
Two particularly important vectors are E, = ((1)) and E, = ((1)), which we

call the basis vectors of the plane. The collection of all scalar multiples
rE, = r( 1) = ( r) of E, then gives the first coordinate axis, and the second

0 0
. .. . . - 0 - 0 . =X
coordinate axis is given similarly by sE, s( 1) (s) Since X ( y)
(0) +(y) x(o) +y(1) xE, + yE,, we may express any vector X

uniquely as a sum of one vector from the first coordinate axis and one
vector from the second coordinate axis. Thus,

=20 G) (3) (0 (5) -

and, similarly, D = ( ‘2‘ ) =2E,; +4E,.
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(3)=yE,“ x=(;‘)=xlz,+ylsz

=0

Figure 2.3

x
J

of a rectangle whose other three coordinates are ()(;)’ (8), and (())1) (See
Fig. 2.3)
More generally, we may obtain a geometric interpretation of vector

.. . . . . 0 X X
addition as follows. If we start with the triangle with vertices ( 0), (0 ), ( y)

Writing a vector in this way expresses the point ( ) as the fourth vertex

Figure 2.4



2.0 The Geometry of Vectors in the Plane 7

and move it parallel to itself so that its first vertex lies on (g), then the
u+x
v+y

Thus, the sum of the vectors X =(;) and U =(g) can be obtained by

translating the directed segment from 0 to X parallel to itself until its
beginning point lies at U. The new endpoint will represent U + X, and this
will be the fourth coordinate of a parallelogram with U, 0, and X as the
other three vertices.

In our diagrams we have pictured addition of a vector X with positive
coordinates, but a similar argument shows that the parallelogram interpre-
tation is still valid if one or both coordinates are negative or zero.

By referring either to the coordinate description or the geometric descrip-
tion, we can establish the following algebraic properties of vector addition
and scalar multiplication which are analogous to familiar. facts about
arithmetic of numbers:

other two vertices lie on (“ ':)' x) and ( ), respectively. (See Fig. 2.4.)

@ X+U=U+X Commutative law for vectors
6 X+U)+A=X+U+A). Associative law for vectors
(6) There is a vector 0 such that

X+0=X=0+ Xforall X. Additive identity
(7) For any X there is a vector

— X such that X + (—=X) = 0. Additive inverse

@) rX+U)=rX+rU. Distributive law for vectors
O @r+5HX)=rX+sX. Distributive law for scalars
10) r(sX) = (rs)X. Associative law for scalars

(11) 1-X=Xfor each X.

Note that it is possible for the parallelogram to collapse to a doubly
covered line segment if we add two multiples of the same vector. In Fig.
2.5, we show the parallelograms for B + B, A + B, and A + (—A).

We can use the negative of a vector to help define the notion of difference
U — X of the vectors X and U. (See Fig. 2.6.) We define

U-X=U+(-X),

so, in coordinates,

u x _ _(u —-X\_{u—x

(6) = (5)=U-X=U+(%=(5)+(Z5) = (5=5)
Since U-X)+X=U+({(-X)+X)=U+0=U, we see that/U— X is
the vector we add to X to get U. Thus, if we move U — X parallel to itself

until its beginning point lies on X, we get the directed line segment from X
to U. Thus,

=p=(2)-(3=(2) w0 3ae(2)-()-(7)
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A+B

Figure 2.5

A pair of vectors A, B is said to be linearly dependent if one of them is a
multiple of the other. If A =0, then the pair A,B is linearly dependent,
since 0 = 0 - B no matter what B is. If A # 0 and the pair A, B is linearly
dependent, then B = tA for some ¢. If B =0, then we use ¢t =0, but if A
and B are both nonzero, we have B = tA and (1/1)B = A, so each of the
vectors is a multiple of the other.

If A, B is a linearly dependent pair of vectors and both A and B are
nonzero, then the vectors rA for different values of r all lie on a line
through the origin. The fact that A,B is a linearly dependent pair means
that B lies on the line determined by A.

A

U + (-X)

X

Figure 2.6
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Exercise 1. For which choice of x will the following pairs be linearly dependent?

@ ((F)}G) @((2)(57)
O () @20

Exercise 2. True of false? If 4 is a scalar multiple of B, then B is a multiple of A.

Exercise 3. True or false? If A is a nonzero scalar multiple of B, then B is a nonzero
scalar multiple of A.

Just as the multiples #X of a nonzero vector X give a description of a line
through the origin, we may describe a line through a point U parallel to the
vector X by taking the sum of U and all multiples of X. The line is then
given by U + ¢X for all real ¢. (See Fig. 2.7.)

For example, the line through B = (%) parallel to the vector A = (3) is

given by X =B + tA=(%) +t(:;') =(%) +(3tt) =(21-:-3tt)' This is called

the parametric representation of a line in the plane, since the coordi-
nates x =2+ 3¢ and y =1+ ¢ are given linear functions of the param-
eter t. Similarly, the line given by the parametric equation in coordi-

nates (;) = (3; i;i) can be written in vector form as X = (:;’) +

(gi)=(3)+t(‘2‘)="+tn

Exercise 4. Write an equation of the line through (i) parallel to the vector (%)

1» U+X
U + X

U + (-X)

Figure 2.7
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Exercise 5. Write an equation for the line through A =(:;’) and B =(;) Hint:
This line will go through B and be parallel to the vector B — A.

Exercise 6. Show that the parametric equation X =V + #(U — V) represents the
line through U and V if U and V are any two vectors which are not equal.

By the Pythagorean Theorem, the distance from a point (x) to the

y
origin (g) is Yx?+ y?, and we define this number to be the length of the
vector X =(;), written |X|. For example, if X = (i), then |X| =v3%+ 42

=5, while |E,| =‘((1))

= 1and |0] =y0? + 07 = 0. Since the square root is
always considered to be positive or zero, the length of a vector is never

negative, and in fact |X| is positive unless X = (g)

Exarie 1 X~ U] =|(3) = ()| =|(5 2 %)| = =(x = u)? + (y - v)2.
For any scalar r, we have

IPX]=| ()] =V + () =P + 7 = [V + 57 = X,

Thus, the length of a scalar multiple of a vector is the length of the vector
multiplied by the absolute value of the scalar. For example, | — 5X| =
| = 511X] = 5[X.

Exercise 7. Show that the midpoint of the segment joining points X and U is

;X + ).

If X #(g), then X # 0, so we may scale by the reciprocal (1/|X|) to get a
vector (1/|X])X. This vector lies along the ray from 0 to X and it has length

)X

The vectors of length 1 are called unit vectors, and they are represented
by the points on the unit circle in the coordinate plane. The vector (1/|X])X
is represented by the point where the ray from 0 to X intersects this unit
circle. (See Fig. 2.8).

Any vector on the unit circle may be described by its angle # from the
ray along the positive x-axis to the ray along the unit vector. We call 4 the
polar angle of the vector. We may then write the unit vector using
cos0)

trigonometric functions as ( :
sin

X X|=1.
X X = g X
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XI_ cosﬁ
[/} sm0

/()

Figure 2.8

If X is any vector, we have
cosf |X|cos 8
X = X =
= I( X ) | '(sine) (|X|sin0)
for some angle #. This representation of X as a positive scalar multiple of a

unit vector is called the polar form of the vector X, since we have written
the coordinates of X in the form of polar coordinates.

ExampLE 2. If X=( ?) ), we have X = 3E,, where E, is the unit vector
0
(1)=(C?S( )) If X= ( )’ then X = ‘/_[1/‘/—] \/_(09500), where 8

0 sin (0) l/\/f sin
=45° =7 /4.

§2. The Dot Product

An extremely useful notion in linear algebra is the dot product of two
vectors X and U defined by

X-U=(})(5)=xu+p. (12)
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The dot product of two vectors is then a number formed by adding the
product of their first coordinates to the product of their second coordinates.

For example, if A=(:;') and B=(;) then A-B=3-1+1:2=35 and

A-A=3-3+1-1=10. Note that E,-E,=1-1+0-0=1 while E, - E,
- 1).(0)=1-0+0-1=0
(0)(§ ~

In general, X - X =(;) (;) = x2+ y>=|X}3 so the length of any vec-

tor is the square root of the dot product of the vector with itself. We
therefore have X - X > 0 for all X, with equality if and only if X = 0.

The dot product has certain algebraic properties that are similar to
properties of ordinary multiplication of numbers:

(13) X-U=U-X Commutative law for dot product
(14) X)-U=rX-U) Associative law for scalar and dot
product

(15 A-X+U)=A-X+A-U Distributive law for dot product

Each of these properties can be established easily by referring to the

coordinate definition. For example, if A = (Z), X= (’)ﬁ), and U = (z), we

have
A-(X+U)=(Z)°(;Iz)=a(x+u)+b(y+v)

PPN _(a\ (x ay (u
= (ax + by) + (au + bv) = (b) (y)+(b) (o)
=A-X+A-U

In ordinary multiplication of real numbers, the product ax equals zero

only if either a = 0 or x = 0. Note, however, that it is possible for the dot
product of two vectors to be zero even if neither vector is equal to zero. For

example, (%) ( _11) =2(—1)+2-:1=0.(See Fig. 2.9.)

Exercise 8. Show that if X =0, then either r =0 or X = 0.

We may ask under which circumstances the dot product of two nonzero

vectors X and U will be zero, i.e., when do we have X-U=(;) (z)

= xu + yv = 07 One possibility is that one vector lies in the first coordinate
axis and the other lies in the second coordinate axis, in which case the two
vectors are perpendicular. If X does not lie in either coordinate axis, then

x # 0 and y # 0. The slope of the line from the origin through (’;) isy/x,

and this is not equal to zero. Since xu + yv = 0, it follows that yv = — ux.
If u=0, then v=0 as well. If ¥ 0, then ux#0, so —1=yv/ux =

(y/x)(v/u). Thus, either U = 0 or the line from the origin to U = (g) has
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Figure 2.9

slope v/u equal to the negative reciprocal of y /x, the slope of the line from
the origin to X. Therefore, these two lines must be perpendicular. It follows
that in every case if the dot product of two nonzero vectors is zero, then the
two vectors are perpendicular.

Retracing our steps, we easily see that, conversely, if X and U are any
two perpendicular vectors, then X - U = 0.

Exercise 9. Show that for any vector (3‘}), we have (j‘,) perpendicular to the vector
=y
( x )
Note that the line with equation
ax+by=0
may be described in two equivalent ways:

(i) The set of vectors X = ( ;) which are perpendicular to the vector (Z)

(ii) The line along the vector ( _ab ) (by Exercise 9, the vector (';lb) is
perpendicular to (Z)).

Exercise 10. Find a vector U such that the line with equation 5x + 2y =0 lies
along U.

Exercise 11. Find an equation of the form ax + by =0 for the line along the
vector ( :;’)

Exercise 12. Find a vector U such that the line with equation y = 2x lies along U.
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For any vector X=(’)‘,), we have X-E1=(§,)~((1))=(x-l)+

(y+0)= x. Thus, the dot product of X with the unit vector E; is the
coordinate of the projection of X to the first coordinate axis. Similarly, the

dot product X - E, = ( j‘,) ((1)) = y of the vector X with the unit vector E, is

the coordinate of the projection of X to the second coordinate axis.
cos ¢

More generally, if we have any unit vector W = ( @
sin

) we may use the

polar form of the vector X = |X|( cos g ) to get a geometric interpretation of
sin

the dot product of X and W (see Fig. 2.10). We have
w52 (522) = m((20)-(22)
= |X|(cosf cos ¢ + sinf sin ¢).
There is a basic trigonometric identity that states that
cosfcos¢ + sinfsing = cos(d — ¢) = cos(¢ — 8), (16)
so we have X - W = |X| - cos(d — ¢). Therefore, the dot product of a vector

X with a unit vector W is the product of the length of X and the cosine of
the angle between X and W. If this angle ( — ¢) is between 0 and = /2,

A
) x=h(s2)

cos ¢
0 sm ¢

(

Figure 2.10
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0-9

Y

X\ cos@~9

-

Figure 2.11

then this number |X|cos(@ — ¢) is the length of the adjacent side when the
hypotenuse is |X|. Thus, if X is a vector which makes an acute angle with
the unit vector W, then the dot product X - W is the length of the projection
of X to the line from the origin through W (see Fig. 2.11).

If the angle between X and W is greater than /2, then cos(d — ¢) is
negative and the dot product X - W is a negative number. The projection of
X to the line from 0 through W will lie on the ray opposite the ray from 0
through W, and the length of this projection is the absolute value of the dot
product of X and W. (See Fig. 2.12). In all cases, then, we can say that the
dot product X - W represents the coordinate of the projection of the vector
X to the directed line from the origin through the unit vector W.

In general, if we take the dot product of two nonzero vectors in polar

form X = |X|(0980) and U= IUI(C?S‘P), we get
Slno Sln¢
o cos¢ cosf cos¢
X-U=x°°s). ( )=x . _ s
| l( sinf vl sin¢ X[l sind sin¢ IX| [Ulcos(8 — ¢)

(17)
Thus, the dot product of two nonzero vectors is the product of their lengths
multiplied by the cosine of the angle between them.
We may use the dot product to calculate the angle between two nonzero
vectors just by writing

X-U _ xu + yv ‘ (18)

cos(p— 8) = =
TN T A e e
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\ o

Y

Figure 2.12

For example, if A=(:;’), and B=(;), then |A| =10, [B|=Y5, and
A-B=5. Thus,
5

cos(¢p — 0) = 5o é

and § — ¢ =7 /4.

Exercise 13. Find the angle between (%) and (g)

Exercise 14. Find the angle between (:;’) and ( _ ;)

Similarly, using the trigonometric relation

sin(¢ — #) = sin¢ cos@ — cos sin ¥, (19)
we obtain an expression for sin(¢ — ). Setting X = ( ;), U= (z), we have
cosf=—% | sin0=#, cos¢p= —4

\/xz + y2 \/x2 + y2 u? + v?
and
sing = —2 |
Vu? + v?
and so
sin(¢p — ) = ——= & (20)

\/x2+y2 Vi + 02 -
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I\
/u.
X
0-¢
U-X
Figure 2.13

Note that the sine of the angle from ( ) to ( ) is the opposite of the sine

Y
of the angle from to . We will return to this formula in Chapter 2.5.
y v

If we apply this notion of dot product to the difference of two vectors, we
obtain an important result from trigonometry. We calculate the square of

the length of the segment from X = |X|(°°sg) to U= IUI(COS¢) (see Fig.
2.13):
U-XP=U-X)- (U-X)=U-U-X-U-U-X+X-X
=|UP -2U - X+ |X]* = |[UP? + |X* - 2|U| [X|cos(8 — ¢). (21)

Thus, the square of the length of one side of a triangle is the sum of the
squares of the lengths of the other two sides minus twice the product of
those lengths and the cosine of the angle between them. This result is
known in trigonometry as the law of cosines.

In particular, if the vectors U and X are perpendicular, so that the angle
between them is § — ¢ = x/2, then |U—X|*=|U*>+|X|?, so X:U

= |X]||Ul|cos(8 — ¢) = 0. We thus have another proof of the result that two
nonzero vectors are perpendicular if and only if X - U = 0. In linear algebra,
we use the convention that the zero vector is perpendicular to every vector,
and we frequently use the synonym orthogonal instead of perpendicular.
We may thus say that two vectors X and U are orthogonal if and only if
X-U=0.

We use the notion of dot product to solve some geometric problems
which will be crucial in our further development of linear algebra:

(i) To find the projection of a given vector to a given line through the
origin.
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(i) To compute the distance from a given point to the line through the
origin with equation ax + by = 0.

(iii) To calculate the area of a parallelogram with one vertex at the origin.

(iv) To give a geometric interpretation of a system of two linear equations
in two unknowns (where both lines go through the origin).

(i) We already know that if W is a unit vector, then the dot product of X
and W represents the coordinate of the projection of the point X to the line
from the origin through W. We set Py(X) (read “P sub W of X”) equal to
the vector on this line which is the projection of X to the line. Thus,
Py(X) = (X - W)W.

If U is an arbitrary vector, then we can find a formula for the projection
Py(X) of X to the line from the origin along U by using the above formula
to find the projection of X to the line from the origin through the unit
vector U/|U]J, i.e.,

) y_ X-UU _ (X-U)U @

=(x. U \U _ =
PU(X)'(X U] |UP CRY

Y
Hence the length of the projection of X to the line along U is given by
XU
o
Alternatively, we may try to find the projection of X to the line along the

nonzero vector U by finding a scalar ¢ such that X — ¢U is orthogonal to U.
(See Fig. 2.14). In terms of the dot product, we obtain

0=(X-1U)-U=(X-U)-¢(U-U),

-

X

Sl

Py(X) = tU

Figure 2.14
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0= PU(B)

Figure 2.15

so t =(X-U)/(U-U) and the projection of X to the line along U is
Py(X)= U= (FZ)U

which agrees with formula (22).

ExampLE 3. To find the projection of B = (;) to the line along A = ( :;' ), we

have (see Fig. 2.15)

3
S(AB A _ 5412
PAB) = (4T3 JA= f5A= 24 1
2
To find the projection of B=( ;) to the line along U=( "12), we have

- (B4 )o- ($)o-0

(This fits with our intuition that if X is orthogonal to U, the projection of X
to the line along U will be the origin itself.)

Exercise 15. Find the projection of ( —21) to the line along (“;’ )

to the line along (1)

Exercise 16. Find the projection of ( )

1)
1
Exercise 17. Find the projection of (:;’ ) to the line along ( 22)

Exercise 18. Find the distance from (:; ) to the line along (;)
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Figure 2.16

(ii)) Now we want to find the distance d’ from a point (;0) to a line L
0

with equation ax + by = 0, where a and b are not both 0 (see Fig. 2.16).
The vector U =( _ab ) is a nonzero vector on this line and the vector

V= (Z) is a non-zero vector perpendicular to this line. The distance from

X= ( ;z) to the line L is then given by the length of the projection of X to
the line along V. By (23) we obtain

X0\ (@
()’0) (b) _ |axq + byo|

G

If (;0) is a point on L, then the expression ax, + by, = 0, so by (24),
0

X-V|
g _
vl

24

d’ =0, as we expected.

3
1
Exercise 20. Verify that the sum of the squares of the distances from a point X to
the perpendicular lines ax + by = 0 and bx — ay = 0 is equal to the square of the
length of X.

Exercise 19. Find the distance from ( ) to the line y = 2x.

(iii) Once we have the formula for the distance from a point to the line
along a given vector, it is an easy matter to find a formula for the area of a
parallelogram with one vertex at the origin. If the other three vertices are

A=(a),B= b ,and A+ B= atb , then the distance from A to the
¢ d c+d
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\ad-bC\

G o-(3)
E= -

T

Figure 2.17

line along B is given by formula (24) by the expression
|ad — bc|
Vb2 + d?
Multiplying this distance by the length V6% + d2 of the base B, we get
the formula

ad — bc| = area of the parallelogram with sides [ ¢ | and b). 25
)@
¢

(See Figure 2.17.)
(iv) Let us try to solve the system of equations
2x+3y=0
’ 26
4x— y=0 (26)
for the unknowns x and y.
Suppose x, y is a solution. We define the vector X=(§,). The first
equation then says that X(g) =0 and the second that X ( 41) =0.

Thus, the vector X is orthogonal to both the vectors (g ) and ( 4 1 ) This is

possible only if X = 0.
Hence, (x) = (g), so the only solution to (26) is x =0, y = 0.

y
Now look at the general case of a system
ax + by =0,
’ 27
cx +dy=0, 7)

where a, b, ¢, d are given constants such that not both a and b are zero and
not both ¢ and d are zero.

Of course, x =0, y = 0 is a solution of (27). Are there others, and if so
what are they?
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Figure 2.18

Let x, y be a solution other than 0, 0. Set X = (’;) Then X 5 0 and

x-(g)=0 and x-(2)=o.

Thus, there is a nonzero vector orthogonal to both vectors (Z) and (;)

(See Fig. 2.18.) This can only happen where (Z) and (2) lie on the same
line through the origin. Since (2) # 0, there is some scalar ¢ with

(Z) = t(g), and so a = tc and b = td. Also t # 0. Every vector X on the

) is then orthogonal to both (Z) and (2) Our

a

line perpendicular to ( b

result is this:
(27) has a solution other than x = 0, y = 0 only when there is some scalar
t such that

a=tc, b=1.
In that case, there is a line consisting of solutions x, y, namely the line
orthogonal to (Z)

Exercise 21. Find all solutions to the system of equations
3x+2y=0,
4x —y=0.

Exercise 22. Find all solutions to the system of equations
5x+y=0,
-10x -2y =0.



CHAPTER 2.1
Transformations of the Plane

Recall the notion of a “function.” A function is a rule which assigns to each
number some number. This suggests the following definition: 4 transforma-
tion of the plane is a rule which assigns to each vector in the plane some
vector in the plane.

We denote transformation by letters 4, B, R, S, T, etc.

ExAMPLE 1. Let P be the transformation which assigns to each vector X the

projection of X on the line along the vector U = (é)
We write P(X) for the vector which P assigns to X and we call P(X) the

image of X (see Fig. 2.19).

Let X= ( ;) and let us calculate P(X). By formula (22) of Chapter 2.0,

x+2y
x+2y 1 _ 5

= . 1)
1+4 2 %—(x+2y) (

roy= (-

ExaMpLE 2. Let S be the transformation which assigns to each vector X the

reflection of X in the line along the vector (;)

Given X = ( 3‘,), we want to find the coordinates of the point S(X) such

that the midpoint of the segment from X to S(X) is the projection of X to
the line along U =(;) Denote the coordinates of S(X) by x’, y’. Then
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v-(1)
Y P(X) 2

P(Y)

Z =/P(Z)

Figure 2.19

1(X + S(X)) = P(X), where P was defined in the preceding example. So,
X+ §(X) =2P(X)

and
S(X)=2P(X) - X.

From formula (1), we then obtain

, x+ 2y
x 5
X) = =2 -
S(X) , 2(x +2y)
Y 5
+2
,tY)
- 5
+2
NGELN

Thus

X\ _[—ix+iy
4 tx+31y |

For example, if X =( 1%), then S(X) =(;,,) =(2)

Exercise 1. In each of the following problems, U is a nonzero vector and P denotes

the transformation which projects each vector X to the line along U. Let X =(;)

and P(X) =(’}‘;,), and calculate x’ and y’ in terms of x and y.
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@ U=(})
) u=(9),
@u=(_"))
@ U=(1).

In each case draw a diagram and indicate several vectors and their images.

Exercise 2. Consider the line 5x — 2y = 0 and let P denote projection on this line.

ay . : a’ = a ’ 3
If ( b) is a given vector and ( b’) P( b)’ express @’ and b’ in terms of a and b.

Exercise 3. For each of the vectors U in Exercise 1, let S(X) =(;l,) denote the

reflection of (’}‘)) in the line along U. Calculate the coordinates x’ and y” in terms of’

x and y. In each case draw a diagram and indicate several vectors and their images.

Exercise 4. Let L be the line 5x — 2y = 0, and let S denote reflection in L. If (Z) is

a

a given vector and (a:) = S( b

b ), express a’ and b’ in terms of a and b.

ExampLE 3. Let D, be the transformation which sends each vector into

twice itself:
Dy(X) = 2X.

If x= ( x) and D,(X) = ( ;,,), let us calculate x” and y'.

y
()= e -2x-2()-(3)

So
x' =2x
o 2
{y =2y. @)

An obvious generalization of this example consists in replacing the
number 2 by the number r and defining the transformation D, by D,(X)
= rX. For X =(;), D,(X) =(;,,), then, we find that x" = rx, y’ = ry. We
call D, the transformation of stretching by r.

Fix a scalar # with 0 < § < 2%. We define the transformation R, of
rotation by 0 radians as follows (see Fig. 2.20): Let X be a vector. Rotate the
segment from 0 to X around 0 counterclockwise through an angle of 4
radians. The endpoint of the new segment is Ry(X).

ExampLE 4. Let X =(’y‘) and set (;) =R, /,(X). Find x, y’. (See Fig.

. . . . 0 X X :
2.21.) By rotating the triangle with vertices (0), ( y)’ ( 0) through a right
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Ry(Y)
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R,(X)

Figure 2.20
angle at the origin, we see that ,
x'=-y, y=x
: _(x
Exercise 5. Let X —( y)' Calculate
(@) Rs,/n(X),
(b) R,(X),
(C) RZW(X)»
(@) R,/4X).

4u
R, (X) = ( X ) .

Figure 2.21
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_ cos (¢ + 6)
R/X) =Ix| sin (¢ + 0))

CcOS @
6 +0 lexl(Si"¢)

Figure 2.22

You may have found part (d) of Exercise 5 a bit difficult. Here is a
method that lets us calculate R,(X) for any 8:

Set X=(~*) and xl, = Ry(X). We can write X and Ry(X) in the form
y y o

sin¢ sin ¢’

X = |x|(cos¢)’ Ry(X) = |Ra(x)|(cos¢,)’

where ¢ is the polar angle of X, and ¢’ is the polar angle of R,(X). Then
¢’ = ¢ + 0 and | Ry(X)| = |X]. (See Fig. 2.22.) So

cos(¢ + 8) ~ X cos¢pcosf — singsind
sin(¢ + 6) B sin¢ cos# + cos¢sinf

Ry(X) = |X|(

|X|cos ¢ cos — |X|sin ¢sin 8
IX]|sin¢ cos§ + |X|cos¢sind |’

Now
[X|cos¢ = x, [X]sing = y.
So
x’ xcosf — ysinf
- R X = N
(y’) (%) (ycos0+xsin0)
or

{ x' = (cosf)x — (sinf)y, 3)

y' = (sinf)x + (cosf)y.

Exercise 6. Interpret the results you obtained for Exercise 5 as corollaries of
formula (3), by giving 4 suitable values.
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Figure 2.23

ExAMPLE 5. Let T, be the following transformation: T, sends every horizon-

. _ . _ 2 . X . x
tal line y = c into the parabola y = x* + ¢ by sending ( y) into (xz +y)'
(See Fig. 2.23.) In other words, if X = ( ;) and (; ,,) = X' = T,(X), then
x'=x
’ 4
{yr = x2 +y. ( )

Let S, T be two transformations. When do we say that they are equal,
i.e., § = T? Recall that two functions f, g were called equal if f(x) = g(x)
for every number x. In a similar spirit, we say S = T provided

S(X)=T(X) for every vector X.

ExampLE 6. The transformation R_, /2 which rotates each vector clockwise
by 7 /2 radians, and the transformation R;, /25 which rotates each vector
counterclockwise by 3w /2 radians, are equal, i.e.,

R_;/2= Rsq)s.



CHAPTER 2.2
Linear Transformations and Matrices

In Chapter 2.1, we looked at a number of transformations of the plane. Let
us list the results we obtained for each transformation 7, giving x’, y’ in

X'\ _ x
terms of x, y, where (y,) = T(y)’

(i) P = projection to the line along (;)

x=xgb,
2(x +2y)
D
(ii) S is reflection about the line along ( )
=344
S S B
24,43
Y= 5 5 Y.
(iii) D, is stretching by r.
x'=rx,
Y =1y.

(iv) R, is rotation by # radians.
x" = (cos#)x — (sinf )y,
y = (sinf)x + (cosf)y.
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(v) T, is the transformation of Example 5.
x' = x,
e L2
y=x"+y.
Can we describe some single general type of transformation, expressing
x" and y’ each in terms of x and y, which includes the above examples as

special cases?
Let a, b, ¢, d be scalars. Denote by 4 the transformation which sends

each vector X = ( ;) into the vector X’ = ( ; ,, ), where

M

Settinga=1, b= % c=2%,d=4%, we re-obtain example (i) above. Setting
a=—-3,b=%c=4%,d % we get (ii). Settinga=r,b=0,c=0,d=r,
we get (iii). If we take a=cosf, b= —sm0 ¢ =sinf, d = cosf, we obtain
(iv). However, no choice of a, b, ¢, d will give us (V).

A transformation 4 given by a system (1) is called a linear transformation
of the plane and the symbol

(2
c d

is called the matrix of A, denoted m(A). The plural of “matrix” is
“matrices.” Reflection through a line and projection to a line are linear
transformations, provided the line goes through the origin. Stretchings D,
and rotations are also linear transformations. It is not possible to describe
all linear transformations in simple geometrical terms. However, Equations
(1) provide a simple algebraic description.

Let us list the matrices of the linear transformations (i)-(iv) considered
above.

x" =.ax + by,
y'=cx +dy.

If i

v el )
—3 4

(i) m(S>=( N )

(i m2)=(5 %)

) mR)=(n8 eond)

v) T, is not a linear transformation.

We need the linear transformation which is the analogue of the function
f(x) = x. That function sends every number into itself. The identity transfor-
mation, denoted I, sends every vector into itself:

I(X) =X, for every vector X.
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Since I sends X = (x) into I(X) = ( ;), the system

Yy
x'=x,
Y=y
describes I. Thus the matrix of I is
. {1 0)
I)= .
(vi) m(r)=(1

Finally, we need the linear transformation zero, denoted 0, which sends
every vector into the zero vector:

0X)=0, for all X.
Evidently, the matrix of 0 is
. 0=(0 9)
(vii m©=(2 9
Next we introduce some useful notation. Let 4 be the linear transforma-

tion with matrix (f ‘s]) and let X = (j‘}

(7 2)5)=4(3) =400 ®

For instance, if D is stretching by 2, then
2 0\(x\_p(x)= (2x)
0 2/\y y 2y )
or if P is projection on the line along (é), then
(s 3)0)-0)- (e
A = P =
5/\) y XT3

Let A have the matrix (f ;1), X=(x) and A(X)=(’;/,). Then

) be a vector. We shall write

QI =

Y
x'=px + qy,
Y =rx+sy.
By definition (2),
(7 9)06)=4(G)=()
rosj\y Yy Y
and so
(7 D)= (%58 ®

Formula (3) is basic. We interpret (3) as saying that the matrix (1: Z) acts

on the vector ( ;) to yield the vector (1: ;‘ I 3)
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5 2))-0238)
(5 5= (ie)
(g g)(;)=(2x22y)’
36-

Let A be an arbitrary linear transformation. We claim that 4 sends the
origin into the origin, i.e.,

A(0) =0,

for if (a b ) is the matrix of A, then
c

d
10=(2 2)(o)=(5)=>
©) ¢ d/\0 0
A basic reason why linear transformations are interesting is that a linear
transformation acts in a simple way on the sum of two vectors. Let A be the
linear transformation with matrix (“ Z ) andlet X = ( X ), X= ( ’; ) be two

c J
vectors.

AKX 4T = 4 x+Xx _[a b\(x+X
ecen-a(717)- (2 2)GE)
_ a(x+X)+b(y+y) _ (ax + by) + (ax + by)
"(c(x+f>+d(y+y‘))"((ex+dy)+(c>‘c+dy‘))

S R AR

Thus, we have found
AX+X)=4X)+ A4(X) 4)
for every pair of vectors X, X.
A similar calculation shows
A(1X) = tA(X), %)

if X is a vector and ¢ is a scalar.

<

Exercise 1. Verify that formula (5) is true.
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Conversely, let B be a transformation of the plane. Let us not assume
that B is linear, but instead let us suppose that (4) and (5) are valid for B,
i.e., suppose

B(X+X)=B(X)+ B(X), B(X)=1B(X), (6)

whenever X and X are vectors and ¢ is a scalar. We claim that it follows
that B is a linear transformation, i.e., B is given by a system (1) for suitable
a b,c,d.

To see this, set E, = ((1)) andE, = ( (1)) Then an arbitrary vector X = ( ;)
can be expressed as
X=xE, + yE,.
Set B(X) = ( ; : ) By hypothesis,
B(X) = B(xE,) + B(yEy) = xB(E,) + yB(E,).
B(E,) can be written
B(E) = ( g ),

and similarly B(E,) =(’Z") Thus
x'\ _ _ fu w) _ [ux +wy
(3)=2o0=x(5) ()= (533)

x' = ux + wy,

So

Yy =uvx+ zy.
Thus, x’, y" have the form of Eq. (1) of this chapter. Hence B is a linear
transformation, by definition. The matrix of B is (z ‘Z") Thus we have

proved that if B is a transformation satisfying (6), then B is a linear
transformation. Summing up, we have shown:

Theorem 2.1. Let A be a transformation of the plane. Then A is a linear
transformation if and only if for every pair of vectors X and X and every
scalar t:

AX+X)=4(X)+ 4(X), (Ta)
and
A (1X) = tA(X). (7b)

Note: (7a) and (7b) together imply
A(X + 5sX) = tA(X) + s4(X) ®)
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for every pair of scalars ¢, s and every pair of vectors X, X. This is so, since
by (7a),

A (X + sX) = A(1X) + A4 (sX),

while by (7b), 4 (¢X) = t4(X) and 4 (sX) = 54 (X). On the other hand, (8)
clearly implies both (7a) and (7b). Thus, in Theorem 2.1, we may replace
the two conditions (7a) and (7b) by the single condition (8). From now on,
when presented with a transformation T, if we wish to show that T is a
linear transformation, we can do either of the following: Show that T
satisfies (7a) and (7b) (or, equivalently, (8)), or show that there is some

matrix ( ‘Z Z ) such that for every vector X = ( 3‘,), the vector T(X) = ( ;,,)

is given by:

x' = ax + by,
y' =cx + dy.

If A is the linear transformation with matrix (a Z ), then 4(E))
c

(2 )2 s (2 )(0)=(2) o e o

scribe the matrix of 4 by saying that its first column is the image of the first
basis vector E, and the second column is the image of E,.

u

ExaMPLE 2. Let P denote projection on the line along U =(o

P(X) =( X-U )U. Then

), SO

U-u
w? |
2, 2
P(E =(_“__)u =|w+0® |
(1) u? + 02 (D) uv
ku2+02‘
up
2, 2
_ v uy_ | # +0v
P(EZ) - ( W+ 02 )(D) - 02
\u2+vzl
Thus the matrix of P is given by
u? vu
2, 2 2, 2
u"+ov u"+o
m(P) = It )
uv v

u? + v? u? + v?
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For example, if U is the unit vector U = (cpso ), then u?> + v> =1, so
s

in 6
2 .
m(P)=(cos0 ‘ s1n00f)s20). (10)
cosfsinf sin“g

Theorem 2.1 allows us to give a simple solution of the following geomet-
ric problem: Let 4 be a linear transformation and let L be a straight line.
By the image of L under A we mean the collection of all vectors 4 (X) when
X is a vector whose endpoint lies on L. We denote this image by 4 (L).

EXAMPLE 3. The image of the x-axis under the transformation R, /,, which
is rotation by 7 /2 radians, is the y-axis.

What kind of geometric object does the image of L under 4 turn out to
be? The answer is given by:

Theorem 2.2. Let A be a linear transformation and let L be a straight line.
Then the image of L under A is either a straight line or a single point.

Proor. Remember from Chapter 2.0 that we can choose vectors X, and U
in such a way that L is described by

X=X,+ U, t a real scalar.
Thus, for each X on L,
X=X,+ U.
Hence, by (7a) and (7b),
A(X) = A(Xp + tU) = A(X,) + tA(U).
If A(U) ## 0, then as X runs through all vectors with endpoint on L, 4 (X)
runs through the collection of points
A(X,) + tAU), ¢ real.
This is a straight line, and so the image of L under A4 is this line. (See Fig.

2.24.) If A(U) =0, then 4(X) = 4(X,) for each X with endpoint on L. So
the image of L under 4 is the single point 4 (X,).

ExaMPLE 4. Let 4 denote reflection in the x-axis and let L be the line along
(;) Find the image of L under 4. The point ( Ztt) has image ( g 2t) S0

the line along ( 12) is the image of L under 4. (See Fig. 2.25.)

EXAMPLE 5. Let P denote projection on the y-axis and let L be the x-axis.
Find the image of L under P. (See Fig. 2.26.) If X lies on L, then P(X) = 0.
Hence, the image of L under P is a single point, the origin.
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Xo

A(U)

A(Xo)

A(L)
Figure 2.24

Exercise 2. For each of the following transformation T calculate the image of the
X-axis.

(a) T is rotation by 45°.

(b) T is reflection in the line y = 2x.

(c) T is projection on the line y = x.

A(L)

Figure 2.25
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e}

v

=X
|

(=)
Xy

Figure 2.26
Exercise 3. A is the transformation with matrix ( 21 3)

(a) Find the image of the line along (:;’) under 4.

(b) Find the image of the line along (Z) under 4.

Exercise 4. Let B be a linear transformation such that whenever X is a nonzero
vector, then B(X) 5= 0. Show that for every straight line L through the origin, the
image of L under B is a straight line through the origin.

If X is a nonzero vector then the set of vectors {rX|0 < r < 1} is the
segment from 0 to the point X. If X = 0, then the collection {rX|0 < r < 1}
contains only the zero vector, and in this case we say that the segment
degenerates to a point.

If T is any linear transformation, then 7'(rX) = rT(X), so the image of
the segment {rX|0 < r < 1} is the segment {r(7(X))|0 < r < 1}, possibly
degenerate if 7(X)=0. -

The set of points {U+ rX|0< r <1} is also a segment, from U to
U+X.

If X and U are linearly independent vectors, then the set of vectors
{rX+ sU|0< r<1,0< s <1} describes the parallelogram determined by
X and U (see Fig. 2.27). The sets {rX|0<r<1} and {sU|0<s< 1}
form two edges of the parallelogram and the other two edges are {rX +
U|0< r<1}and {X+ sU|0 < s < 1}. The four corners of the parallelo-
gram are, in order: U, 0, X, U + X.

If X and U are linearly dependent, but not both 0, then the four points
‘U, 0, X, and U + X all lie on the same line and the set {rX + sU|0< r <1,
0 < s < 1} is then a degenerate or collapsed parallelogram.
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U+X

Figure 2.27

If X and U are both 0, then {rX + sU|0 < r, s < 1} is also just the point
0, so the parallelogram degenerates to a single point.

If T is a linear transformation, then T(rX + sU) = rT(X) + sT(U), so the
image of the parallelogram II = {rX + sU|0 < r, s < 1} is the parallelo-
gram T(ID) = {rTX)+ sT(U)|0<r<1, 0<s<1}. Even if X,U is a
linearly independent pair, the parallelogram 7'(IT) might be degenerate.

Exercise 5. Describe the parallelograms determined by the following pairs of
vectors:

@ (1) (1)
® (1) (3)
© (})(23)
@ (o) (1)

Exercise 6. Describe the images of each of the preceding parallelograms under the
projection to the first coordinate axis:

?(5)= (o)

Exercise 7. Do the same for the linear transformation with matrix ( "; - i)



CHAPTER 2.3
Products of Linear Transformations

Let 4 and B be two linear transformations. We define the transformation C
which consists of 4 followed by B, i.e., if X is any vector

C(X) = B(4(X)).
We write C = BA and we call C the product B times A.

Associating to 4 and B their product B4 is in some ways analogous to
multiplying two numbers, and we shall pursue this analogy later on.

EXAMPLE 1. B is reflection in the x-axis and 4 is reflection in the y-axis (see
Fig. 2.28). Find BA.

Choose X = ( ;) Then

AX)=("5) and B(4X))=(_})
So
(BA)(X)=(:;)=—X.

Thus, BA sends each vector into its negative. In other words, B4 = R_,
rotation by 7 radians.

Exercise 1. Show that if S, T are linear transformations, then ST and TS are linear
transformations. (Use (7a) and (7b) or (8) in Chapter 2.2.)

Exercise 2. Let A, B have the same meaning as in Example 1. Show that 4B = R,,.
ExaMPLE 2. Let P be projection on the x-axis and Q projection on the
y-axis. Find QP. (See Fig. 2.29.)

It X = (), then P = () and so (2P)X) = 2(P(X) = () =(g).
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A(X)

[ J
BA(X)

Figure 2.28

Thus QP is the transformation which sends every vector into the origin, i.e.,
QP =0.

ExAMPLE 3. Let 4 be a linear transformation and let I denote the identity
transformation. Let us find A7 and I4.
Fix a vector X

(AD)(X) = A(1(X)) = A(X)

and
(1A)(X) = 1(4(X)) = A (X).
Hence,
Al=A and I4A=A. (nH
A
X
P(Y) QP(Y)
QP(X) P(X)

Figure 2.29
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Note: The number 1 has the property that
al=la=a

for every number a. In view of (1), the identity transformation I plays the
same role in multiplying linear transformations as the number 1 does in
multiplying numbers.

Exercise 3. Let P be projection on the x-axis and let R, /, be rotation by /2
radians.

(a) Calculate PR, /,.
(b) Calculate (R, /5)P.

Observe that your answers for (a) and (b) in Exercise 3 are different.
Thus PR, ,, # R, ,,P. The commutative law of multiplication, i.e., the law
that ab = ba, which is valid for every pair of numbers a, b is false for the
product of linear transformations. That is, if 4,B are linear transforma-
tions, then sometimes 4B = BA and sometimes AB = BA. If AB = BA, we
say that 4 and B commute. For instance, if 4 is any linear transformation
and [ is the identity, then 4 and I commute.

Now suppose that 4 and B are two linear transformations having

matrices (a Z ) and (‘_’ b_ ), respectively. What is the matrix of the
¢ ¢

d
transformation AB?

( ) (C )( ) ((j): ‘y).
.y .y

a b||ax+ by
AB(X)=4(B (X)) = .
c di|cx+dy

Q)

So

’a(ﬁx + I;y) +b(ex + Jy)
c(ax + I;y) +d(ex + Jy)
'(aé +bc)x + (ab +bd )y
(ca@ +de)x + (cb +dd )y

ra& +b¢ ab+bd||x

ca+dec cb+dd y'
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So the matrix of 4B is
ca+de ch+dd

We define the product of matrices m(A) and m(B) to be the matrix
m(AB) of AB. Thus

m(A)ym(B) = m(AB). 3)
In other words,
(a b)(ﬁ 5)=(a¢7+b6 a5+bc7). @)
c dI\¢ d ca+dé cb+dd

Note that on the right-hand side of (4), the upper left-hand entry is the dot

4))
(2)(2)
<))

ExampLE 4. Find the product (; g)( 51 ‘7‘) By formula (4),

(l 0)( 5 4)=(1-5+0»—1 1-4+0-7)=(5 4).
2 3/)\—-1 7 2-5+3-—-1 2-4+43.7 7 29
Exercise 4. In each case, calculate the indicated product of two matrices:
@ (75 o)(7o o)

® (5 0)(o o)
©( 3G 5)

Exercise 5. Let U be the linear transformation having matrix ((l) (1))

the upper right-hand entry is

the lower left-hand entry is

[SYRES]

0N O =

(a) Interpret U geometrically.
(b) Show that UU = I.
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Exercise 6. Let V' be the linear transformation having matrix ((1) - é) Show that
VV = R,, rotation by # radians.

Exercise 7. Let Ry and R, be rotation by angles of # radians and Q radians,
respectively. Show that

R0R¢ = R0+¢ ,
rotation by 6 + ¢ radians.
Exercise 8. Exhibit a linear transformation N such that N = 0, while NN = 0.

Exercise 9. Let A4 be the linear transformation with matrix (é : é)

(a) Show that if X is any vector which lies on the line along ( i ), then 4A(X) = 0.

(b) Show that if X is any vector, then A4 (X) lies on the line along ( ;)
(c) Find a linear transformation B with B 5= 0 such that B4 = 0.
(d) Find a linear transformation C with C == 0 such that AC = 0.

If a,b,c are three numbers, then the associative law holds, i.e., (ab)c
= a(bc).
If A, B, C are three linear transformations, then

(AB)C = A(BC), (5a)
and
(m(A)m(B))m(C) = m(4)(m(B)m(C)). (5b)

Note: (5a) says that the associative law holds for multiplication of linear
transformations, while (5b) says that it holds for multiplication of matrices.

PrOOF OF (5a): Let X be any vector. Then
((4B)C)(X) = 4B(C(X)) = A(B(C(X)))
= A((BC)(X)) = (4 (BC))(X).
Hence
(AB)C = A(BC).
So (5a) holds.

PRrROOF OF (5b): By definition of multiplication of matrices, if S and T are
linear transformation, then m(S)m(T) = m(ST). Hence, using (5a), we get

(m(A)ym(B))m(C) = m(ABym(C)
= m((AB)C) = m(4(BC))
= m(A)m(BC) = m(A)(m(B)m(C)).
Thus (5b) holds.
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c d

(2 G D) 9= a6 ) 9)
¢c d\u v ros c d/\\u o/\r s
We could obtain this equation directly, using formula (4), but that would
require more effort.
Let A and B be two linear transformations. By the sum of A and B,

A + B, we mean the transformation which assigns to each vector X the
vector 4(X) + B(X) so

(4 + B)X)=A(X)+ B(X), foreachX.

Note: If (a b), ( Z ﬁ ), and (f Z) are three matrices, (5b) yields

If the matrix m(4) = (a Z) and the matrix m(B) =(
c

e m](5)]= )+ 26)=(2 5G|

=(ax+by)+(ax+5y)= (a+a)x+ (b+b)y
cx + dy ox + dy (c+O)x+(d+d)y

=(a+a b+5)(x).

c+c d+adl’

Thus, 4 + B is a linear transformation and its matrix is (a +‘z b+ 11 )
c+d d+d

We define the sum of the matrices m(A) and m(B), denoted m(A4) + m(B),
as m(A + B). Thus

(a b)+( 5)=(a+a b+5)_
c d ¢ d c+¢ d+d
Similarly, if 4 is as above and ¢ is a scalar, we denote by t4 the

transformation defined by
(t4)(X) = t4 (X), for every vector X,

[SYRERN]

o

[N

and we definé
tm(A) = m(t4).

t(a b)=(ta tb).
c d tc td

It follows that

EXAMPLE 5.

(1 2) (—1 0) (1+2(—1) ) ) (-1 2)
+2 = = :
3 4 01 3 4+2(1) 36
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As an application of the notion of the sum of two linear transformations,
let us do the following example.

ExAMPLE 6. Let L be a straight line through the origin and denote by S the
transformation which reflects each vector in X. Let P denote the transfor-
mation of projection to L. If X is any vector, then (X + S(X)) = P(X).
Hence
X + §(X) =2P(X),
and so
S(X)=2P(X) - X = (2P — I)(X).

Since this holds for every vector X, we get

S=2P-1 (6)

EXAMPLE 7. Let L be a straight line through the origin and denote by 8 the
angle from the positive x-axis to L. Find the matrix of the transformation S

which reflects each vector in L. (See Fig. 2.30.) The vector U = ( ‘s’:ﬁg) isa
unit vector and lies on L. By (10) of Chapter 2.2, if P is the transformation
which projects to L, then
m(P)=( cos’d sin0¢os0).
cosfsinf sin?4

By Example 6, S = 2P — I, so

m(s)=2m(p)__m(1)___( 2cos?f 2cos0sin0)__((l) (1))

2cosfsinf 2sin’4

- (2cos20 -1 2cos€sin0)'
2cosfsinf 2sin’0 — 1

Y = S(Y)

Figure 2.30
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By the double-angle formulae from trigonometry, we have

cos28 = 2cosd — 1, sin26 = 2sin# cosé.
So

cos26 sin 24
= . 7

m(S) (sin20 ——cos20) )
Exercise 10.

(a) Using (7) show that (m(S))? = m(I).
(b) Give a geometric explanation of the result of part (a).

Exercise 11. Using formula (7), find the matrix of the transformation which reflects

each vector in the line along (é)

Exercise 12. Let H, be the transformation with matrix (}C 2) Show

1 0Y)/1 0)\_ 1 0 _
(k 1)(m 1) (k+m 1),andconcludethatHka Hii

Exercise 13. Let J, be the transformation with matrix ((l) 11‘ ) Show that J,J,,
=J k+m-
Exercise 14. Conclude H,J,, and J,, H, for a given pair of scalars k, m.

Exercise 15. Describe the images of the unit square under the transformations
H I’Hz» H —-1-

Exercise 16. Describe the images of the unit square under the transformations
Jy, I J .

Note: The transformations H, and J,, are called shear transformations.
The transformation K with matrix

m)=( )

is called a permutation and its matrix is called a permutation matrix.

Exercise 17. Let (‘c’ 2) be a matrix. Show that
6 96 -C
1 0/\c d a
R
c d/J\1 0 d c)

Note that multiplying a matrix on the left by a permutation matrix
interchanges the rows, while the corresponding multiplication on the right
interchanges the columns.

Ny
~—

and

AN}
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Permutation matrices and shear matrices, as well as the identity matrix,
are called elementary matrices. A matrix

d 0
0 4,
with entries 0 except on the diagonal is called a diagonal matrix.
Theorem 2.3. Let (a Z) be an arbitrary matrix. We can find elementary
c
matrices e\, e,,e;3,e, and a diagonal matrix (6(1; 3 ), such that
2
a b d 0
PROOF. Suppose a # 0. We have

£ -t %
k 1/\c d ka+c kb+d)
Taking k = —c/a, we get
43 9-G
k 1/\c d 0 x/
where x = —(c/a)b + d. Also,
(a b)(l m)=(a ma+b)
0 x/\0 1 0 x '
Taking m = —b/a, we get

(5 2 7)=( %)
G DE 2o )= 2

Thus we have

and so (8) holds.

What if a=0? Either (z Z) is the zero matrix, or some entry is
nonzero, say ¢ # 0. Then
(0 e 2-(c )
1 0/Ac d a b
Since ¢ # 0, the preceding reasoning applies to (Z Z ) and we can

choose shear matrices e; and e; such that

(o Glomaelt oo
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(1’ (1)) So again (8) holds. If b % 0 or

d # 0, we proceed in a similar way to obtain (8).

is a diagonal matrix, where e, =(

ExAMPLE 8. Let us find formula (8) for the matrix (g g )
5962
1 0/\2 3 0 5/
(5 o) 36 )= 36 )= %)
1 0/\2 3/\0 1 0 5/\0 1 05
Thus (g (5)) is the diagonal matrix of formula (8) here.

Exercise 18. Find elementary matrices e, and e; and a diagonal matrix (d' 0)

0 d,
such that

of? 2o (% O

N3 372 \0o &)



CHAPTER 2.4
Inverses and Systems of Equations

§1 Inverses

If a,x, y are numbers, then
a(x+y)=ax + ay.
If A is a linear transformation and X and Y are vectors, then by Theorem
2.1 of Chapter 2.2,
AX+Y)=A4(X)+ A(Y).
Thus we see that the operation which takes a number x into the number ax
is somehow similar to the operation which takes a vector X into the vector
A (X), where 4 is a linear transformation.
Next, consider the equation:

ax =y M

where a and y are given numbers, a # 0, and x is an unknown number. We

solve (1) by taking the reciprocal 1/a of a, and multiplying both sides by it,
arriving at

1 =1 =1
a(ax)—- L andso x L
As an analogue of equation (1) for vectors, we may consider a linear
transformation 4 and a vector Y and look for a vector X such that
AX)=Y. )
To solve (2) we should like to have an analogue of the reciprocal for the

transformation 4. Now the reciprocal 1/a satisfies

La=1 and a-1=1
a a
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A reasonable analogue would be a linear transformation B such that
BA=1 and AB=1. 3)

Suppose we have found such a B. Then we can solve Eq. (2) by applying B
to both sides. This gives
B(A(X)) = B(Y).
But
B(A(X)) = (BA)(X) = [(X) =X,
so we get
X = B(Y). (4)

We can verify that (4) really gives a solution to (2) by applying 4 to both

sides of (4). This gives
A(X)=A(B(Y))=(4B)(Y)=I(Y) =Y,
and so (2) is valid.

The problem of solving Eq. (2) will thus be resolved, provided we can
find a linear transformation B satisfying B4 = I and AB = I. Such a linear
transformation B is called an inverse of A.

Note that there is exactly one number which fails to have a reciprocal,
namely the number 0. It turns out that there are many linear transforma-
tions which have no inverse, and later on in this chapter we shall see how
we can decide whether or not a given linear transformation has an inverse.

Let A be a linear transformation. If b is an inverse of A, then B undoes
the effect of 4 on a vector in the following sense: if 4 sends the vector X to
the vector Y, then B sends the vector Y to the vector X.

To see that this is so, consider a vector X. Define Y = 4(X). By (3),

(BA)(X)=I(X) or B(A(X))=X.
So B(Y) =X, as we have claimed. (See Fig. 2.31.)

ExaMPLE 1. Fix r # 0. Find the inverse of D,, i.e., of stretching by r.
D, takes the vector X into the vector rX. To undo this, we must multiply
by the scalar 1/r. Thus, we set B = D, . Then if X is any vector,

(BD,)(X) = B(D,(X)) = B(rX) = 1 () = x.
Hence, BD, = I. Also,
(D,B)(X) = D,(B(X)) = D,( +X) = r( 1X) =X,
Thus, B satisfies (3) and so D, ,, = B is an inverse of D.

EXAMPLE 2. Ry denotes rotation by § radians. Find the inverse of R, /,.
Let X be a vector. R/, rotates X by 7/2 radians counterclockwise
around 0. To undo the effect of R, ,, we can rotate by — 7 /2 radians.
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AX) =Y x _ B(Y) = BA(X)

Figure 2.31

Thus, we set B = R_, ,. If one prefers, we can write B = R;, ,, since
rotation by —x /2 radians and rotation by 37 /2 radians have the same
effect on each vector, and so R_, , = R;,/,. Then, if X is a vector,

(BR,/2)(X) = B(R; /x(X)) = R_; /2(R; (X)) = X.
Thus, BR, =1 Also,
(Re/2B)(X) = R, /(B(X)) = R, jo(R_;/2(X)) = X.
Thus, R, ,B = I. So B satisfies (3), and R_, , = B is an inverse of R, ,.

Exercise 1. Find the inverse of R;, 4.

ExaMPLE 3. Let L be a straight line through the origin. Let S be reflection
in the line L. Find an inverse to S. (See Fig. 2.32.)

A Y= S(X)

X =S(Y) = S5(X)

Figure 2.32
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If we start with a vector X, then reflect X in L and then reflect in L
again, and we return to X. In other words,
S(SX))=X or (S§)(X)=X

Thus, SS = I. Hence, if we take 4 = S and B = S, then (3) is satisfied. So
S is an inverse of itself.

Note: For numbers, the analogous situation occurs when a number a is
its own reciprocal, as in casea=1ora= —1.

Now let 4 be an arbitrary linear transformation. Can 4 have more than
one inverse? Assume that B and C are two linear transformations each of
which satisfies (3), i.e., assume

AB=1 and BA=1 3)

and, also,
AC=1 and C4A=1 (6)

By (5), BA = 1.

Hence, (B4)C =IC = C.

By the associative property, (BA)C = B(AC). So

B(AC)=C.
By (6), AC =1, so B(AC) = BI = B. Hence,
B=_C.

We have seen, then, that if B and C each is an inverse of 4, then B = C.
In other words, 4 can have only one inverse. Thus we can speak of the
inverse of 4, and we denote this inverse, provided it exists, by 4 ~!. Thus,
A-A"'=Tand A7'- A =I. Examples 1, 2, and 3 can then be expressed
as follows:

(D,)"'=D,,,
(R,))"'=R_, ),
S 1=s.

Exercise 2. Let T be the transformation with matrix (2 0), so that T( x) ___(2x )
05 y) =5,

for every vector (’)‘,) Find the matrix of 77!,

Exercise 3. Let T be the transformation with matrix (3 ;) Find the matrix of
T-.

ExaMpPLE 4. Let P be projection on the x-axis. Suppose B is an inverse of
P. Then, BP = I, so (BP)(X) = X for every vector X.
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Choose a vector X = ( (}))) with y # 0. Then P(X) = (g), and so

(BP)(X) = B(P(X)) = B(g) 0.
Hence
X = (BP)(X) =0.

But X was not the zero vector, and so we have reached a contradiction.
From this we are forced to conclude that there is no linear transformation
B satisfying BP = I. So P has no inverse.

Next we observe that if 4 is a linear transformation which has an inverse
A1, then A satisfies the following condition:

The only vector X with 4 (X) = 0 is the vector X = 0. @)

To see this, choose X with 4 (X) = 0. Then 4 ~ (4 (X)) = 4~ '(0) = 0, and
also 47 1(A(X)) = (4 '4A)X) = I(X) =X. So X =0, and so (7) is true.

Now let 4 be a linear transformation with matrix (“ Z) We shall
c

prove:

Proposition 1. Condition (7) holds if and only if ad — bc + 0.

PRrROOF. Suppose ad — bc = 0. Then we have
A= D)= (L aa) = )
a ¢ d/\ a —cb + ad 0o/
A(2) =0 (2= (5")= (o)
—-c ¢ d/\—c 0 0
; -bY=(0 d\=(0
If (7) holds, it follows that ( ~?) (0) and ( 4) ( 0). Hence a,b,¢,d
are all zero, so A(X) =0 for every X. But then (7) is false, so we have a

contradiction. Hence if ad — bc = 0, then (7) does not hold.

Conversely, suppose ad — bc # 0. Let X =(;) be a vector with 4 (X)

=o.men (§) = a00=(2 2)3) (57 g) >

ax+by=0,
cx +dy—0.
Multiplying the first equation by d and the second by b and subtracting, we
get
(ad — bc)x =0,

and hence x = 0. Similarly, we get y =0. Hence X = ( ;) = (8) Thus
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X =0 is the only vector with 4(X) =0, so (7) holds. The proposition is
proved.

We saw earlier that if 4 has an inverse, then (7) holds and so ad — bc
# 0. Let us now proceed in the converse direction.

a b

Consider a linear transformation 4 with matrix ( d)' Assume
C

ad — bc # 0. ®)

We seek an inverse B for 4. Set m(B)=(f;’ ;]), where p,q,r,s are

unknown numbers. We must have

(¢ 9= %)

S0
ap+ br=1,
_ )
cp+dr=0,
and
aq + bs =0,
cq+ds=1.
Hence
dap + dbr = d,
bep + bdr =0,
and so
(ad — bc)p = 4,
and, since (8) holds, we get
__ d
P=ad—bc-
To simplify the notation, we set A = ad — bc.
Exercise 4. Using the system (9), show that
r= —Tc . (10)
Exercise 5. Using the relations
aq + bs =0,
cq+ds=1,

show that

q=:A—lZ and s=%. (11)
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We have obtained

d —b)
P49 1a A
—-c a
rs A A
Exercise 6. Calculate
d -b [ d -b
= — |la b a b|| = —=
_Ac 2 and _Ac ﬁ
| cdlxT =z

Show that both products equal ((1) ?)

Earlier we saw that if 4 has an inverse, then ad — bc # 0. Combining this
with Exercise 6, we have

Theorem 2.4. Let A be a linear transformation with matrix (a Z)
c

(i) If A has an inverse, then ad — bc + 0,
(i) If ad — bc # 0, then A has an inverse B and
=b

m(B) = , (12)

|
l>|0 (b
s >

where A denotes ad — bc.

EXAMPLE 5. Let A have the matrix (; i) Since 1-4—-2-3=-2+%#0,4

has an inverse 4 ~!. The matrix of 4 ~!is

4 -2) (_
=1 B R
=3 _1 3 _17F
-2 -2 2 2

ExAMPLE 6. Solve the system
x+2y=4,
¢ (13)
3x+4y=0

for x and y.
We write the system in the form

(5= D06)=6)
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-2 1
3/2 —1/2

(3)=47(0)= (2 -1)(6)= (")

Hence, the solution is

By the preceding example, 4 ~! has the matrix ( ) Hence,

§2. Systems of Linear Equations

We consider the following system of two equations in two unknowns:
ax + by = u, (14)
cx +dy=o.

For each choice of numbers u, v, we may ask: Does the system (14) have
a solution x, y? And if (14) has a solution, is this solution unique?
We may write the above system in matrix form by introducing the linear

a b

transformation 4 with matrix ( d)' Then the system (14) may be written

c
AX) =1, (15)
where X is the vector (;) and U =(g)

Suppose that the transformation 4 has an inverse 4 ~!. For given vector
U,

A(A7(U)) = (44" HU) =1,
so X = 4 ~!(U) is a solution of (15). Conversely, if X is a solution of (15),
then
X=4"14X))=4""').
So (15) has the unique solution X = 4 ~(U).
In particular, if U=0, we find that X =(0) =A "(0) is the unique

0 0
solution of the system

ax + by =0, (16)
cx+dy=0.

This system, with zero on the right-hand side, is called the homogeneous
system associated with the system (14).

No matter what the matrix (a Z,) is, the homogeneous system has at
c

least one solution, the solution X = ( g) This is called the trivial solution of
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the homogeneous system, and we have seen above that if 4 has an inverse,
then the trivial solution is the only solution of the homogeneous system. If
A does not have an inverse, then by Theorem 2.4, ad — bc = 0, and so by

Proposition 1 in §1 of this chapter, there is a nonzero vector X = ( 3‘,) with

A(X)=0. Then x, y is a nontrivial solution of the homogeneous system
(16).
What is the totality of solutions of (16)? If a,b,c,d are all 0, then every

;) in the plane is a solution. If @ and b are both 0, but ¢ and d are

not both 0, then the solutions are all (

vector (

X

)
totality of solutions is the line cx + dy = 0. A similar statement holds if ¢

and d are both 0, but @ and b are not both 0.
Finally, if 4 does not have an inverse and either @ % 0 or b % 0 and, also,
either ¢ # 0 or d # 0, we may conclude that the totality of solutions of (16)

) with ¢x + dy =0, and so the

is the line through the origin orthogonal to (Z)

We can summarize what we have found so far in the following two
propositions.

Proposition 2. The system (14) has a unique solution for every vector (z) if

and only if the transformation A has an inverse.

Proposition 3. The homogeneous system (16) has a nontrivial solution if and
only if A fails to have an inverse. In this case the totality of solutions of (16) is
either the whole plane or a line through the origin.

Now suppose that 4 fails to have an inverse, and 4 % 0. Then the
solutions of (16) form a line through the origin, or, in other words, if we fix
one nonzero solution X* of (16), then every solution of (16) equals X" for
some scalar ¢. If X and X are two solutions of the system 4 (X) = U, then

AX-X)=4X)-4X)=U-U=0,
so X — X is a solution of (3). Hence X — X = rX" and so for some ¢,
X=X +X".

We can therefore describe all solutions of the nonhomogeneous system (15)
in the following way:

Proposition 4. Assume A is not the zero transformation. If A does not have an
inverse, then if Xisa particular solution oi( 15), so that A X) =1, we may
express every solution of (15) in the form X + tX", where X" is a non-trivial
solution of the homogeneous system (16).
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ExaMPLE 7. Find all solutions of the system
x+2y=3,

—2x —4y = —6. ("
The corresponding homogeneous system is
x+2y=0,
—2x—4y =0.

and the solutions to this system are the multiples t( _12) of a vector X"

-4 Y
lar solution of the system (17), so it follows, by the above proposition, that
the set of all solutions is given by

(1) ()32
1 1 1+¢
ExampLE 8. Find all solutions of the system

x+2y=3,
—2x+4y= —6.

perpendicular to (;) and ( —2 ) We observe that (x) = ( i ) is a particu-

(18)

In this case the matrix (_1 ) ﬁ) has an inverse, —;—( ‘2‘ "12), so the

unique solution to the system (18) is given by
HE )
8\2 1 -6 o/
ExaMPLE 9. Find all solutions of the system
x+2y=3,
¢ (19)
—2x—4y =5.

In this case the system (19) has no solution. If we had a solution to the
first equation, we could multiply both sides of the equation by —2, to get

—2x —4y = —6,
and this is inconsistent with the second equation,
—2x —4y=5.

More generally, we can get a solution of the system
x+2y=u,
—2x—4y=v
if and only if
—2x—4y = —2u
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and

—2x—4y=v
are consistent, i.e., if —2u = v. For example, in the system (17), we have
u=30v=—6.

Exercise 7. Find all solutions of the following systems.

(@ 2x+y=0,
3x—y=0.
(b) 2x+y=0,
—4x -2y =0.
Exercise 8. Find all solutions of the following systems.
(@) 2x+y=1,
3Ix—-y=1
(b) 2x+y=1,
—4x-2y=1.
Exercise 9. Find all solutions of the system
2x+y=1,
—4x —2y=—2.
Exercise 10. Find all solutions of the system
x+y=10,
5x + 5y = 50.
Exercise 11. For what choices of the numbers u, v does the system
X+y=u,
S5x+5y=v

have a solution?

§3. Inverses of Shears and Permutations

Recall the elementary matrices, H,, J,, and K which we discussed at the
end of Chapter 2.3. We had

=1 0w =(3 £) mor=(0 1)

Exercise 12. Show that
H'=H_,, Il =J_,, K- '=K.



CHAPTER 2.5
Determinants

Let 4 be a linear transformation with matrix (a Z) The quantity
c

ad — bc
is called the determinant of the matrix (a Z ) and is denoted
c
a b
. 1
e d (1)
Expressed in these terms, Theorem 2.4 states that 4 has an inverse if and

only if

a Z ' # 0. We shall see that the determinant gives us further
c

information about the behavior of 4.

Consider a pair of vectors X, X, regarded as an ordered pair with X first
and X, second. Denote by « the angle from X, to X,, measured counter-
clockwise, and assume that a = 0 and « # .

If sina > 0, we say that the pair X, X, is positively oriented. This holds
exactly when a lies between 0 and 7 (see Fig 2.33). If sina < 0, we say the
pair X, X, is negatively oriented. This holds if a is between 7 and 27 (see
Fig. 2.34).

ExampPLE 1. The pair E,E, is positively oriented (see Fig. 2.35). The pair
E,, —E, is negatively oriented (see Fig. 2.36). The pair E,, E, is negatively
oriented (see Fig. 2.37). The pair (;),( —'21) is positively oriented (see Fig.
2.38).

We saw in (20), Chapter 2.0, that if (;) and (g) are two vectors and if
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X,
‘} A
X,
X,
o x‘ /
\Ja
0<a<rm r<a<22T
sina> 0 sina<O0
Figure 2.33 Figure 2.34

is the angle from (;) to (g), then

X0 — yu
\/x2 +y? V2 + 02

sina =

Now let X, =(;' ), X, = ( ;2) be a given pair of vectors. How can we
1 2

tell from the numbers x|, y,,x,, y, whether or not the pair X;,X, is
positively oriented? Let o denote the angle from X, to X,, measured
counterclockwise. By the preceding,

X1 V2~ V1X%2

Vet + 0tV + 3

sina =

@)

Figure 2.35
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N s :
.

Y-E,

Figure 2.36

Hence, sina >0 if and only if x,y,—y;x,>0. But x,y,— y;x,=
Xy X

i So, we conclude:

The pair X, , X, is positively oriented if

X1 X

0.
DATED &) > )

and only if the determinant ‘

Next let 4 be a linear transformation which has an inverse. We say that
A preserves orientation if whenever X|,X, is a positively oriented pair of

A

E. 4

Y
Y

p
N

Figure 2.37
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Figure 2.38

vectors, then the pair A(X,),4(X,) of image-vectors is again positively
oriented.

EXAMPLE 2.

(2) Rotation by R, , preserves orientation;
(b) D,, stretching by 3, preserves orientation;
(c) reflection in the x-axis does not preserve orientation.

Let 4 be a linear transformation which preserves orientation and let

(a Z) be its matrix. Set E, =((l)), E,= (?) The pair E,, E, is positively
c

oriented. Hence, the pair A4 (E,), 4 (E,) is positively oriented. 4 (E,) =(g)’
AE) = (z ) So by (3), we have

a b
>0.
c d '
Thus, if A preserves orientation, then the determinant is positive. Con-

versely, suppose (a Z) >0 and let us see whether it follows that A
c

X3

)2

. . x
preserves orientation. Let X, = ( yl ), X, =(
1

) be a positively oriented

pair of vectors. Then

a b\[x ax, + by
A X = 1 = 1 1
) (" d)()’l) (Cxl+d.y1)
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and
a b\(x ax,+ b
A(X,) = 2| (2T D2
c dj\y, cx, + dy,
The pair 4(X),4(X,) is positively oriented, by (3), if and only if the
determinant

ax, + by, ax,+ by,

0.
cx, +dy, cx,+dy, >

This determinant equals
(ax, + by,)(cx, + dy,) — (ax, + by,)(cx; + dy;)
= acx,x, + bdy, y, + adx, y, + bcy,x,
—acxyx, — bdy, y, — adx, y, — bcy,x,
= ad(x,y; = %, 01) = be(x,0, = x01)
= (ad — bc)(x,y, — X, )1)-
So we have found

ax,+ by, ax,+by,| _|a b| |x x; 4

cx,+dy, exya+dy,| |e dl |y oyl )

Since X,, X, is positively oriented, the determinant i' ;2 > 0. By hy-
1 )2

pothesis, |a b l > 0. So
c d

ax, + by, ax,+ by,

>0,
cxy+dy, cx,+ dy,

and so the pair 4(X,), 4 (X,) is positively oriented. If

a b| < 0, the same
c d

calculation shows that 4 (X,), 4 (X,) is negatively oriented. In the preceding,
the pair X,, X, could be any given positively oriented pair of vectors. So we
have proved the following:

Theorem 2.5. Let A be a linear transformation with matrix (a Z ) If
c

a b | <0, then A does not
c d

a Z| >0, then A preserves orientation. If
c

preserve orientation.

Let us say that A reverses orientation if whenever X;,X, is a positively

oriented pair, then 4(X,),4(X,) is a negatively oriented pair. If we look
back over our preceding argument, we see that, in fact, we have shown: if

a zl < 0, then A4 reverses orientation.
c
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X,

Figure 2.39

Next, we shall calculate the effect of a transformation 4 on area. Let A4

a b ) and assume |¢ 2| >0. Let 7 be a parallelogram,
c d c d

two of whose sides are the vectors X, = ( ;‘ ) and X, = ( ;z), such that the
1

have the matrix (

pair X, X, is positively oriented.
Let A (7) be the image of = under 4, i.e., 4(7) = {A(X)|X is a vector in

7). (See Figs. 2.39 and 2.40) By (3), ;‘1 ;z > 0. By (25), Chapter 2.0,
Xy X3
- . 5
area(m) Vi &)
A
A(Xs)
Al(r)

A(X,)

Y

Figure 2.40
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By Theorem 2.5 A(X,),4(X,) is a positively oriented pair. By (5), with
A (m) replacing 7,
ax; + by, ax,+ by,

A = .
area(A (m) cx; +dy, cx,+ dy,
By calculation (4), this determinant equals |4 z . ;' ;2 . Thus, we have
1 )2
area(d (7)) = |4 Zr area(r). (6)
c

If we instead assume that

a Z! < 0 and perform the corresponding
c
calculation, we get

area(A4 (7)) = —

a §| area(). 0

We thus have:

Theorem 2.6. Let A be a linear transformation with matrix (a Z) such that
c

a Z I # 0. If = is any parallelogram with one vertex at 0, then
c

area(A (w)) = (absolute value of ‘; Z )area(vr).

We can derive an interesting consequence from Theorem 2.6. If C is a
linear transformation, we write det C for the determinant of the matrix of
C. Now let 4,B be two linear transformations. Assume det4 > 0, detB
> 0. Then A preserves orientation and B preserves orientation. It follows
that BA preserves orientation. Let Q be the unit square Q = {(x, y)|
0<x<1,0< y<1).

(BA)(Q)=B(4(Q2))
$O
area((BA)(( Q))) = area(B(A( Q))) = (det B )area(4( Q)),
by Theorem 2.6. Hence,
det(BA)area( Q) = (det B ) (detA)area( Q).

It follows that

det(BA) = (det B) (det4). ®)
We have obtained this under the assumption det4 >0 and detB > 0.
Recall the earlier result:

a b
c d

ax, + by, ax,+ by, X, Xy

Y1 )2

= .

cx;+dy, cxy+ dy,
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For this formula, (“ b) and (x' xz) are any two matrices, and on the
c d v V2

left-hand side we have the matrix of (“ b )(x' xz). So (8) is true
c d/I\J)1r

without restriction. We have:

Theorem 2.7. If A, B are two linear transformations, then

det(BA) = (det B) (det4).

Exercise 1. Calculate the product of the matrices (:1; ‘2‘) and ( _01 ;) and verify

Theorem 2.7 when A =(; i) and B=('(')1 ;)

Exercise 2. Let Q be the square of side 1 whose edges are parallel to the coordinate

2

axes and whose lower left-hand corner is at ( 5

). If A is a linear transformation,
define

A(Q) = {A(X)|the vector X isin Q }.
In each of the following cases, sketch 4( Q) and find area(4( Q)).

(i) Matrix of 4 is (i ‘1))

(ii) Matrix of 4 is (2 0).

13
(iii) Matrix of A is (“ b).
c d

Exercise 3. Show that the conclusion of Theorem 2.6 remains valid when # is any
parallelogram, not necessarily with one vertex at 0.

Exercise 4. In this exercise Q,, Q,, etc., are rectangles with sides parallel to the
axes. Q) is the square of side 10 with lower left-hand corner at (g) Q, and Q5 are

squares of side 2 with lower left-hand corners at (g) and (2), respectively. Q4 is a
square of side 1 with lower left-hand corner at (4"‘5 ) Qs is the rectangle of height 1,

3
1

removing from Q, the figures Q,, Qs, Qa, Os.

base 4, with lower left-hand corner at ( ) We denote by W the region obtained by

(a) Draw W on graph paper.

(b) Let A4 be the linear transformation having matrix ( i ?)
(c) Draw the image A (W) on graph paper.

(d) What is the area of 4(W)?
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§1. Isometries of the Plane

Let us find all linear transformation T which preserve length, i.e., such that
for every segment, the length of the image of the segment under T equals
the length of the segment, or, in other words, whenever X, and X, are two
vectors, then
IT(X)) — T(Xp)| = 1X; — X, 9
Such a transformation is called an isomerry.
We know that T(X,) — T(X;) = T(X, — X;). So (9) says that
IT(X; = Xy)l = X, = X,.
Hence (9) holds, provided we have
|T(X)| = X]| for every vector X. (10)

Conversely, if (9) holds, we get (10) by setting X, = X, X, = 0. So (9) and
(10) are equivalent conditions.
Let T be a linear transformation satisfying (10) and denote by (“ Z

the matrix of 7. What consequences follow for the entries a, b, c,d from the

fact that T preserves length, i.e., that (10) is true?
Set X =(,). Then

y
roo=(2 2)0)-(553)
|T(X)| = \/(ax + by)’ + (ex + dy)’ .

Since | T(X)| = [X| ={x? + y*, we have

\/(ax + by)2 + (ex + dy)? =yx?+ %,

and so, simplifying, we get
a’x? + 2abxy + bY? + ¢%x? + 2cdxy + dy* = x> + y?,

and so

ie.,

(@ + A)x* + (b2 + d¥) y* + (2ab + 2cd)xy = x> + y2. (11)

This holds for every vector X = (;) Setting X = ((l)), we get
) a+ct=1
and setting X = ((1)), we get

(i) b’+d*=1
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Inserting this information in (11) and simplifying, we get
(2ab + 2cd)xy = 0.

Setting x = 1, y = 1 and dividing by 2, we get

(iii) ab+ cd=0.

Thus relations (i), (ii), and (iii) are consequences of (10). We can interpret
these relations geometrically. Set

0-(2) V=)

Then (i), (ii), and (iii) say that:
[Ul=1, |[V|=1, and U-V=0.

Since |U| = 1, we can write (‘;) =U= (‘s’:;fg), where 8 is the polar angle of

U, so a = cosf, ¢ = sind.
Since U-V =0 and |V| = 1, V is obtained from U either by a positive or
cos 0)

a negative rotation by 7/2. In the first ,(b)=V=R(
negative rotation by =/2. In the first case d /2 g

=( —sino)’ so b= —siné, d = cosd. Hence,
cosf
a b)_(cosh —sin0) 12
(c d) (sin0 cosf /' (12)
In the second case, (Z) =V= R_,,/z( Zﬁfz) =( —Si:oés’é’)’ so b =siné,
= —cosf. Hence,
a b cosf sinf
= . 13
(c d) (sin0 - cos0) (13)

We recognize the matrix (12) as the matrix of the rotation R,. (See Fig.

2.41.) Also, we recall that in Chapter 2.3, we saw that (cps 20 sin26 ) is
sin2d — cos26

the matrix of the reflection in the line through the origin in which forms an

cosd siné )
sinf —cosé
in (13) is the matrix of reflection through the line forming an angle {8 with

the positive x-axis. So we have:

angle # with the positive x-axis. It follows that the matrix (

Theorem 2.8. Let T be a length-preserving linear transformation, i.e., assume
- ; ; ;. (cos@ —sinf

that T satisfies (10). Then either the matrix of T is (sin 0 cosd ) for some

number 0 and then T is rotation Ry, or else the matrix of T is

( cosd  sinf

sinf — cosf

which forms an angle of 0 /2 with the positive x-axis.

), and then T is reflection through the line through the origin
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A
— [ cos@

U= ( sin 8 )
-siné
cos 0

/]
sin @
~cos @
Figure 2.41

Exercise 5. For each of the following matrices, the corresponding transformation is
either a rotation or a reflection. Decide which case occurs for each matrix. When it
is a rotation, find the angle of rotation, and when it is a reflection, find the line in
which it reflects.

(a) (—1/\/5 1/\/7),

VE 1/
o (255 33)
© (1 o)
Exercise 6. A transformation T is length preserving and the matrix of T is (‘C’ Z)

(i) Show that the determinant l‘; z is either 1 or —1.

(ii) Show that T is a rotation when the determinant is 1 and a reflection when the
determinant is —1.

Exercise 7. Let T, T, be two length-preserving transformations.

(a) Show that T, T, is length preserving.
(b) Show that if T, and T, are both reflections, then T, T} is a rotation.
(c) Show that if T, is a rotation and T, is a reflection, then T,T) is a reflection.

Exercise 8. Let T be reflection through the line along ( i) and let T, be reflection

through the line along ( ;) Write T, T, in the form T,T, = R, and find the num-
ber 6.
Having studied the effect of a linear transformation on area and length,

we can ask what happens to angles. Let L, L, be two rays beginning at the
origin and let # be the angle from L, to L,, measured counterclockwise. Let
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Figure 2.42

A be a linear transformation having an inverse. The images 4(L,) and
A(L,) are two new rays beginning at 0. Denote by 8’ the angle from A(L,)
to A(L,). (See Figs. 2.42 and 2.43.) If 8’ = @ for each pair of rays L,,L,,
then we say that 4 preserves angle.

We devote the next set of exercises to studying those linear transforma-
tions which preserve angles.

Exercise 9. Let A and B be two linear transformations which preserve angles. Show
that the transformation 4B and BA preserve angles.

Exercise 10.

(a) Show that each rotation R, preserves angles.
(b) Show that each stretching D, preserves angles.

A(L,)

0'

A(Ly)

Figure2.43 '
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Exercise 11. Let Ry and D, be rotation by § and stretching by ¢, respectively. Then

R,) = (cos@ —-sin0)
m(Rs) (sin0 cosd

and

o= (; )

(a) Show that D,R, preserves angles.
(b) Find the matrix m(D,Ry).
(c) Show there exist numbers a,b, not both 0, such that m(D,Ry) =

(—ab Z)

Exercise 12. Show that if a, b are any two numbers not both 0, then the transforma-

tion whose matrix is ( ab b ) preserves angles.
—-b a

Exercise 13. Let A have the matrix (i)' to) Show that 4 preserves angles if and
2

Only if L=,

In the following exercises, 4 denotes a linear transformation which
preserves angles and (a Z ) =m(A4).
c

Exercise 14. Set E, =((1)), E2=((1’). Then A(E,) =(¢), A(E2)=(z)‘ Show that
the angle from (g) to (Z) is 7/2.

tycosd

Exercise 15. Write (‘c’) in the form (" ) =(t inf
1

c

) where 7, > 0. Show that (Z)

can be expressed in the form (z) =( —tt;:;n:), where 7, > 0.
2

Exercise 16. By the preceding,
a b\ _[(ticos§ —tsinf
c d t;sinf  t,cos8 |
a b\ _ (cos@ -—sinf\(# 0
c d sinf cosd J\O &)

Exercise 17. Denoting by B the transformation with matrix (t(; to), by the
2

Show that

preceding exercise, we get A = RyB.

(a) Show that B preserves angles.
(b) Using Exercise 13, show that ¢; = ¢, and deduce that B equals the stretching
D,, where r = t,.
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Exercise 18. Use the preceding exercise to prove the following result: if 4 is a linear
transformation which preserves angles, then 4 is the product of a stretching and a
rotation.

Exercise 19. Show that if 4 is a linear transformation which preserves angles, then
the matrix of A has the form ( —flb b )

§2. Determinants of Shears and Permutations
Recall the elementary matrices
(1 O (1 k (0 1
m(Hy) (k 1)’ () (o 1)’ m(K) (1 0)’

Exercise 20. Find the determinants for m(Hy), m(J}), and m(K).



CHAPTER 2.6
Eigenvalues

ExAMPLE 1. Let L be a line through the origin and let S be the transforma-
tion which reflects each vector in L. If X is on the line L, then S(X) = X. If
X is on the line L’ which goes through the origin and is perpendicular to L,
then SX) = —X.

Let T be a linear transformation. Fix a scalar ¢. If there is a vector X # 0
such that T(X) = rX, then we say that ¢ is an eigenvalue of T. If ¢ is an
eigenvalue of 7, then each vector Y such that T(Y)=¢Y is called an
eigenvector corresponding to 7.

In the preceding example, t =1 and ¢= —1 are eigenvalues of the
reflection S. Every vector Y on L is an eigenvector of S corresponding to
t=1, since S(Y)=Y=1-Y. Every vector Y on L’ is an eigenvector of S
corresponding to ¢ = — 1, since S(Y) = —Y = (—1) - Y (see Fig. 2.44).

Let T be a linear transformation. A vector X # 0 is an eigenvector of T,
corresponding to some eigenvalue, if and only if T takes X into a scalar
multiple of itself. In other words, X is an eigenvector of T if and only if X
and T'(X) lie on the same straight line through the origin (see Fig. 2.45).

ExaMPLE 2. Let D, be stretching by r. Then for every vector X, D,(X) = rX.
Hence, r is an eigenvalue of D,. Every vector X is an eigenvector of D
corresponding to the eigenvalue r.

EXAMPLE 3. Let R, , be rotation by 7 /2 radians. If X is any vector # 0, it
is clear that X and R, ,(X) do not lie on the same straight line through the
origin. It follows that R, /, has no eigenvalue (see Fig. 2.46).

Exercise 1. Let L be a straight line through the origin and let P be the transforma-
tion which projects each vector X to L (see Fig. 2.47).
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X = S(X)

S(Y)=-Y

Figure 2.44

(a) Show that 0 and 1 are eigenvalues of P.
(b) Find all the eigenvectors which correspond to each of these eigenvalues.
(c) Show that P has no eigenvalues except for 0 and 1.

Exercise 2. Find all eigenvalues and corresponding eigenvectors for each of the
following transformations:

(a) Rotation by « radians,
() 1,
(c) 0.

Let A be a linear transformation and (a Z ) its matrix. Assume ¢ is an
c

X

J

) is a corresponding eigenvector with (;) s&(g)

eigenvalue of 4 and (

A

X)

Figure 2.45
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Rr/2 (x)

Y

Figure 2.46

(2 26)-C)

ax + by = tx,

or

cx +dy =1y,
and so
(a—t)x+ by =0,
cex+(d—1t)y=0.

L
Y

P(X)

P(Y) = 0Y

P(Z)=12Z

Figure 2.47
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But x, y are not both 0. So we can apply Proposition 1, Chapter 2.4, and
conclude that

(a—t)(d—t)—bc=0. )
Equation (1) can be expressed in the equivalent forms:
a—t b
=0, 2
¢c d-—t )
and
t*—(a+d)t+ (ad — bc)=0. 3)

We call Eq. (3) the characteristic equation of A. We have seen that if ¢ is
an eigenvalue of A4, then ¢ is a root of Eq. (3). Furthermore, since ¢ is a real
number by definition, ¢ is a real root.

Conversely, suppose that ¢ is a real root of (3). Let us show that ¢ is then
an eigenvalue of 4. By assumption,
a—t b

c d—1t

By Proposition 1, Chapter 2.4, there exists a pair of scalars x, y with

(5)#(S) soenthar (71,2 )(5) =(5) and 50

(a—tx+by=0

=0.

and
cx+(d—1t)y=0.
This implies that

ax + by = x,
cx +dy =y,
so
(& AG)=G)
c dl\y y

X

Thus, ¢ is an eigenvalue of 4, and ( »

) is an eigenvector corresponding to ¢.

In summary, we now know:

Theorem 2.9. A real number t is an eigenvalue of the linear transformation A
if and only if t is a root of the characteristic equation of A.

Exercise 3. Find the characteristic equation and calculate its roots for each of the
following transformations:

(a) stretching D,;
(b) rotation Ry;
(c) reflection in the y-axis;

(d) reflection in the line along (i)
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Note. By an eigenvalue (or eigenvector) of a matrix we shall mean an
eigenvalue (or eigenvector) of the corresponding linear transformation.

ExampLE 4. Find all eigenvalues and eigenvectors of the matrix (i 43 )

SoLuTioN. The characteristic equation here is
3—-1¢ 4 |-o

4 -3t
or
2-25=0.
Its roots are ¢ = 5 and ¢ = — 5. So, the values 5 and —5 are the eigenvalues.

Let us find the eigenvectors which correspond to ¢ = 5. We seek (x) with

)0 y

Thus,
3x +4y =5x,
4x — 3y =5y,
s0
—2x+4y =0,
4x — 8y =0.

It follows that x = 2y. Thus, an eigenvector with eigenvalue 5 has the form
(%)
Y
Conversely, every vector of. this form is an eigenvector for
3 4\(2 10y 2y
= = 5 .
4 -3\y S5y y
Notice that the eigenvectors we have found fill up a straight line through

the origin. Try to find the eigenvectors of (i 43) which have —5 as

their eigenvalue.

We now turn our attention to a class of matrices which occur in many

applications of linear algebra, the symmetric matrices. A matrix (a Z) is
c

called symmetric if b = c, i.e., if the matrix has the form (i t ) The matrix
u
(3 4

7 3 ), which we studied in Example 4, is symmetric.
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Let A be a linear transformation and assume m(4) =(Z b ), so that
c
m(A) is symmetric. The characteristic equation of 4 is

a—1 b =0
b c—t

or
(a—t)(c—t)—b*=1—(a+c)+ (ac— b?) =0. 4)
The roots of (4) are

a+cxy(a+c)—d(ac— b?

! 2

Simplifying, we obtain
(a + c)’>—4(ac — b*) = a* + 2ac + ¢* — dac + 4b>
=a’> —2ac + ¢* + 4b* = (a — ¢)’+ 4b>

Since (a — ¢)® + 4b% > 0, its square root is a real number. We consider
two possible cases:

() (@a—c)*+4b2=0;
then a = ¢ and b =0, so m(4) =(Z IZ) =(8 2), and so 4 is stretching,
A = al.

(i) (@ —c)® +4b>>0;
then (4) has the two distinct real roots

\/ —¢)? + 4b?
t=(a+c)+ (a )"+

! 2

and
(a+ ¢)—y/(a—c)* + 4b?
t2 = 2 .
By Theorem 2.9, ¢, and ¢, are eigenvalues of 4. We have proved:

Proposition 1. Let A be a linear transformation with symmetric matrix

(a b ) Then either A = al or A has two distinct eigenvalues t,,t, where
c

b
tl=%((a+c)+m),

5'((a+ ¢) —y/(a—c)* +4b* )

5



80 Linear Algebra Through Geometry

Exercise 4. For each of the following matrices, find two eigenvalues of the corre-
sponding linear transformation:

0 2
o () 1)
(iii) (;;_ 2 )

T

Exercise 5. For each of the linear transformations in the preceding exercise, find
one nonzero eigenvector corresponding to each eigenvalue. Show that in each case,
if X, X, are eigenvectors corresponding to distinct eigenvalues, then X, and X, are
orthogonal.

Exercise 5 suggests that the following theorem may be true.
Theorem 2.10. Let A be a linear transformation with symmetric matrix

(Z b ) and let t|,t, be distinct eigenvalues of A. Choose nonzero eigenvectors
c

X, X, corresponding to t, and t,, respectively. Then X, and X, are orthogonal.

ProoF. First assume that b 0. Set X, =(j}' ), X2=();2 ) Then
1 2

a b\(*1\_ ,[*

(b c)(y.) "(y.)' So

or

ax, + by, = t1x,

by, = (1, — a)x,.
If x, =0, then by, =0, and since b # 0 by assumption, then y, =0, so
X, =(0), contrary to hypothesis. So, x, # 0 and

0
n_h-a
X b -
Similarly, x, # 0 and
Y _h-a
Xy b

Since y,/x, and y,/ x, are the slopes of X, and X,, to prove that X, and X,
are orthogonal amounts to showing that

(2)(2)- o (52) (55 )= o
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Try showing that (5) is true, using the values of ¢,, ¢, obtained in the last
theorem, before reading the rest of the proof.
By Proposition 1, in this chapter,

h=1ta+Lic+1iy(a—c)+4b?

and
=ta+ic—1iy(a—c)y’+4b>.

So,

h-a=ic—a) —ffa—cp +4
and

n-a=3(c—a)+ia- o+,
Then

(ti—a)(t,—a)=4%(c— a)z—%[(a -+ 4b2] = —b%

Hence,

tl_a t2—a ——bz——l
( b )( b )_ 2

as desired. Thus, X, and X, are orthogonal.

Now if b =0, then (g lc’)=(g ‘c)) So #, = a, x,=(’(‘)‘) and t,=c,

X, =(}92). Since ();') and ( }?2) are orthogonal, the desired conclusion

holds here as well.

An alternative proof of Theorem 2.10 can be obtained from the following
exercises.

Exercise 6. Let A be the linear transformation which occurs in Theorem 2.10. Let
X, Y be any two vectors. Show that

AX) Y =X-A(Y).

Exercise 7. Let A be as in the preceding exercise and let #,,#, be distinct eigenval-
ues of A4, and X, X, the corresponding eigenvectors.

(a) Show A (X)) - X, = 1,(X; - Xp) and A(Xy) - X, = 1,(X; - X;).

(b) Using Exercise 6, deduce from (a) that #;(X; - X,) = t-,(X| - X5).

(c) Using the fact that ¢; 5= ¢,, conclude that X, - X, =0. Thus, Theorem 2.10
holds.
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Exercise 8. For each of the following matrices, find all eigenvalues and eigenvec-
tors:

ol 3)

® (3 3):
oft )

@ (5 1)

© (2 ?)

O (527 “eond )

cosf  sinf
(g)(sin0 —cosﬁ)'

Exercise 9. Given numbers a, b, ¢, d, show that the matrices (a Z) and (‘bi c)
c a

have the same eigenvalues.

Exercise 10. Denote by N a linear transformation such that N2 = 0. Show that 0 is
the only eigenvalue of N.

Exercise 11. Let B be a linear transformation such that B has the eigenvalue 0 and
no other eigenvalue. Show that B2 = 0.

Exercise 12. Let E be a linear transformation such that E2 = E. What are the
eigenvalues of E?

Exercise 13. Let C be a linear transformation such that C has eigenvalues 0 and 1.
Show that C2 = C.

Exercise 14. Let T be a linear transformation with nonzero eigenvectors X, X, and
corresponding eigenvalues ¢,,,, where t; 5 ¢,.
Set S =(T — t,I(T — t,1).

(a) Show that S(X,)=0.

(b) Show that S = (T — t,IXT — t,I).

(c) Show that S(X;) =0.

(d) Show that S(¢,X; + ¢,X;) =0, where ¢, c, are given constants.
(e) Show that S$ =0, i.e.,

(T“ tll)(T— 121)=0.

Exercise 15. Let T be a linear transformation and let (a Z) be its matrix. Assume
c

T has eigenvalues ¢, t, with ¢, 5= ¢,.
Using part (e) of Exercise 14, show that

T? - (a+d)T + (ad — bc)l = 0. 6)
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d
assume that T has any eigenvalues. Show by direct calculation that (6) is still true.

Exercise 16. Let T be a linear transformation and let (‘CI b ) be its matrix. Do not

Exercise 17. Verify formula (6) when T has matrix
1 1

(a) ( 1 1),
2 0

®) (0 3)’
05

© (5 o)



CHAPTER 2.7
Classification of Conic Sections

We can use matrix multiplication to keep track of the action of a transfor-

mation 4 on a pair of vectors (;’) and (;2 ) Let m(A4) be the matrix of
1 2
A, and consider the matrix\ ( ;'I ;i) whose columns are (;'1) and (;z)

If we set (x:) = A(x‘) and (xz) = A(x2 ), then, as we shall prove,
N1 N »2 V2

m(A)("‘ "2) - ("'i "5)- 1)

Y1 X Y1 .yé
4 ’

EXAMPLE 1. m(A)=(; i) (;'1 ;22)=((1’ ‘01). Then A((l))

(7)o

0 -3
L3 -6
3 4\1 0 4 -3/
Direct computation verifies this equation.

To prove (1) in general, we write

e =(¢ 2

A(xl)_(ax1+by1) A(xz)_(ax2+by2)
)1 cxy + dy, ’ Y2 cx, + dy, '

Then
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Formula (1) states that

m(A)( .);11 Y2

which is true because of the way we have defined multiplication of
matrices. So formula (1) holds in general.
X2
t )
2( )’2)

Now suppose that
or, in other words, that (;‘) and (xz) are eigenvectors of 4. Then (1)
1

X\ _[ax;+ by, ax,+ by,
cx;+dy, cx,+dy,)

A(5)=0(G) 4()-

m(A)( x2)=(t1xl tzxz).
Y )2 hyr )

The matrix on the right-hand side equals

(5 )6 )
»n »J\0 )

so we have found the following result.

gives

Let the linear transformation 4 have eigenvectors (;') and (;2)
2

corresponding to eigenvalues ¢, ¢,. Then

o ) =0 e o) @

2
linearly dependent. 1t follows by (25), Chapter 2.0, that the determinant

l » )’2 is different from 0, and so, by Theorem 2.4, the matrix (; 1 3‘;)

possesses an inverse (;' ; ) !, We now multiply both sides of Eq. (2) on
1 )2

- . x
In addition, now suppose that the eigenvectors (yl) and ( ) are not
1

the right-hand side by (y' ;2

- B\(x x) T _(x w6 0)(x x)
mA) = m(A)(y1 }’2)()’1 )’2) (yn yz)(o ’2)()’1 yZ) .

We introduce the linear transformations P and D with m(P)=

) !. This yields

0
(x1 ) m(D) = . The last equation can now be written
Y )2 t,

m(A4) = m(P)m(D)m(P)~".
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It follows that A = PDP ~'. We have proved:

Theorem 2.11. Let A be a linear transformation with linearly independent

eigenvectors (;' ) and (;2 ), corresponding to the eigenvalues t, and t,. Then
1 2
A= PDP"! 3)

wherem(P)=();l ;22) andm(D)=(2)1 t())
1 2

Note: Assume ¢, and ¢, are eigenvalues of 4 and X,, X, are correspond-
ing nonzero eigenvectors. If ¢, # ¢,, then it follows that X, and X, are
linearly independent. To see this, suppose the contrary, i.e., suppose X,
= sX, for some scalar s with s # 0. Then

and so st X, = A(X,) = t,X, = £,5X,. It follows that st; = ¢,5, and so ¢,
= t,, which contradicts our assumption. So X, and X, are linearly indepen-
dent, as claimed, as long as ¢, and ¢, are distinct.

Whenever A4 is a linear transformation whose characteristic polynomial
has distinct real roots, then formula (3) is valid.

Note: Recall that a matrix whose entries are 0 except for those on the

diagonal, i.e., whose form is ( (s) (t))’ is called a diagonal matrix. The matrix

of the transformation D above is a diagonal matrix.
It is easy to compute the powers of a diagonal matrix.

(3= (5 0 )= (5 8)
(o= o0 9)=(5 o5 2)=(5 o)

Continuing in this way, we see that the nth power of the diagonal matrix

((S) (t)) is the diagonal matrix (so" tO") whose entries on the diagonal are

the nth powers of the original entries.

Exercise 1. For each of the following matrices, find the nth power of the matrix
when n =2,3,7,100.

o (3 9)

® (5 1o)

@ (39
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Now let 4 and D be the linear transformations which occur in Theorem
2.11. By (3), A = PDP ~'. Hence,

A*= (PDP "y (PDP 'Y= PD(P~'P)DP~'= PDIDP !
= PDDP~'= PD?*P "},
A’ = AA*= (PDP~'\(PD*P~'y=PD(P~'P)D?P"!
= PDID?*P~'= PDP~ .
Continuing in this way, we find that
A*=PD*P~', A4°=PD%P7},
and in general,
A"=PD"P", 4
where n is a positive integer. It follows that
m(A") = m(PD"P "y = m(P)ym(D" Yym(P "y = m(P)(m(D))'m(P~").
i

Since m(D)=(i)1 0

?), we know that (m (D))" =(

). So we have
2

n 10 -1
(m(A>)=m(A")=m(P>(’O t;)’"(P ) )

Note: Formula (5) allows us to calculate the nth power of m(4) in a
practical way, as the following example and exercises illustrate.

ExampLE 2. Let us find the nth power of the matrix (3 4 ) for

4 -3
n=123....
In Example 4, Chapter 2.6, we found that the eigenvalues are ¢, =5,
t, = —5. As corresponding eigenvectors, we can take

X=() = x=(3)

The transformation P of Theorem 2.11 then has matrix m(P) = (% _21 )
Then

mp=h=m@)=( 2055 13)

(Z —43)n=(? —21)(50 (—05)")(—265 Z:)

By (5),
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For instance, taking n = 3, we get
34\ _(2 —1)\(125 0 \(2/5 1/5
4 -3 1 2 0 -—-125\-1/5 2/5

_(2 ~1(50 25\ _( 75 100
1 2 J\2s -50) \100 -75)

Exercise 2. Let A be the linear transformation whose matrix is (; 3 1 ) Find a

linear transformation D with diagonal matrix and find a linear transformation P,
using Theorem 2.11 such that 4 = PDP ~ 1,

Exercise 3. Let 4 be as in the preceding exercise. Calculate the matrix m(4'%)
=(; 2 1)10'

Exercise 4. Using Theorem 2.11, calculate ( i 1)8.
3 0)6'

Exercise 5. Using Theorem 2.11, calculate ( 12

Exercise 6. Fix scalars a,b. Show that if n is an even integer, then (g b )" is a
—a

diagonal matrix.

The second application of eigenvalues which we shall discuss in this
chapter concerns quadratic forms. Let a,b,c be given scalars. For every
pair of numbers x, y, we define

H(x, y) = ax*+2bxy + cy*.

H is called a quadratic form, i.e., a polynomial in x and y, each of whose
terms is of the second degree.
Associated with H, we consider the curve whose equation is

ax?+2bxy + ¢p* = 1. (6)
We denote this curve by C.

EXAMPLE 3.

(@) a=1,b=0, c = 1. Then Cy, is the circle: x> + y*= 1.
(i) a=1,b=0, c= —1. Then C,, is the hyperbola: x? — y*>=1.

Question. Given numbers a, b, ¢, how can we decide what kind of curve Cy is?

Let us introduce new coordinate axes, to be called the u-axis and the
v-axis, by rotating the x- and y-axes about the origin (see Fig. 2.48).
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Figure 2.48

Expressed in terms of the new u and v coordinates, the equation of C,; may
look more familiar. This will happen if C;; has an axis of symmetry and we
manage to choose the u-axis along that axis of symmetry.

EXAMPLE 4. a =0, 2b = 3, ¢ = 0. C, has the equation: 3xy =1 or xy = {.
Evidently the line x = y is an axis of symmetry of C. Let us choose the
u-axis along this line. Then the v-axis falls on the line x = —y.

X

y
Denote by a the polar angle of X in the (u, v)-system. Then the polar angle

of X in the (x, y)-system is a + 7 /4 (see Fig. 2.49). Hence,

Suppose a point X has old coordinates and new coordinates ( %).
v

x| _ X cos(a + 7 /4) _ x| (cosa)y2 /2 — (sina)y2 /2
y sin(a + 7 /4) (sina)y2 /2 + (cosa)y2 /2
_ ﬁ |X|cosa — |X[sina
2 | |X|sina + [X|cosa |
Also,
(o) =X(Sina )
s0

u = |X|cosa,
v = [X]sina.
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Figure 2.49
Thus,
x _ﬁ u—v
(y)‘ 2 (u+v)’
2 2 7
=£ +£o
2 2

Now suppose X is a point on Cy. Then 3xy = 1. Hence,
2o V2 \(2 2 Y _
3(714— TD)(_Z—u-'- TD) = 1,
or
2
2 _
3(——2—) (u—o)(u+v)=1,
or
3-i-vh)=1
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We have found: if X is a point on Cy with new coordinates (g), then

—30?=1. (8)

Equation (8) is an equation for C, in the (u,v)-system. We recognize (8)
as describing a hyperbola with one axis along the u-axis.

Now let a,b,c be given numbers with b+ 0 and let H(x, y) = ax?+
2bxy + cy2. We can express H(x, y) as the dot product

(ax : by) . ();) = (ax + by)x + (bx + @)y = H(x, y).

bx + ¢y
Also,
(ax+by) _f(a b (x)
bx + ¢y b c)\y/)
Thus,
=((a b&Y(*\\.(*
H(x ) ((b c)(y)) (5) ®)
Now, (Z b ) is a symmetric matrix, so Proposition 1, Chapter 2.6, tells
c

us that (Z b ) has eigenvalues ¢,,7,. Since b #0, 7, # t,. Let X, be an
c

eigenvector corresponding to ¢, such that |X,| = 1.

We choose new coordinate axes as follows: The u-axis passes through X,
directed so that X, points in the positive direction. The v-axis is chosen
orthogonal to the u-axis and oriented so that the positive u-direction goes
over into the positive v-direction by a counterclockwise rotation of = /2
radians.

Set X, = ( ;' ) and set X, =( ;y ! ) Then X, lies on the v-axis. We know
1 1

that each eigenvector corresponding to ¢, is orthogonal to X, and, hence,
lies on the v-axis. Hence, every vector lying on the v-axis is an eigenvector
corresponding to #,. In particular, X, is such an eigenvector (see Fig. 2.50).
Let X be any point, with (;) its old coordinates and (z) its new
coordinates. Then

X =uX, + vX,.

Then
X
u=X~X1=(;)-(yll)=xx,+yy,,

- (19)
v=X-X2=(;)~( xll)=—xy,+yx1.
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-

t.X, -

Y

Figure 2.50

Using (9), we have

H(x ) =(9 P)x)-x= [(Z b)wx, + vXZ)} [4X, + vX, ]

= (utlxl + Dt2x2) * (qu + DXz)
= u2tI + th2 .

Thus, we have found:

Theorem 2.12. Let t,,t, be the eigenvalues of the matrix ( Z b ), where
c

X

b +#0. Let X be any point, and let ( Y

new coordinates. Then

) be its old coordinates and (g) be its

ax? + 2bxy + ¢y* = tju? + 0% (1)

Now let X be a point on the curve C whose equation is ax* + 2bxy +

cy*=1. Let (;) and (g) be, respectively, the old coordinates and the new

coordinates of X. Then using (11), we get
tu? + ot =ax? + 2bxy + ¢p? =1,

since (;) lies on Cy. So

tlu2+ t2b2= l. (12)
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Equation (12) is valid for every point on C, and only for such points.
This means that (12) is an equation for C,; in the (u,v)-system.

ExaMpLE 5. Describe and sketch the curve Cp,: 3x% + 8xy — 3y = 1. Here

a=3,b=4,c=—3. The matrix (Z b) =(i 43). The eigenvalues are
c -

tl = 5 and t2= "'5.

(Z —43)(%) B 5(%)

Since we need an eigenvector X, =(;') of length 1, we set X, =
1

o))

1/{5
2 1
- —— s y = —— .
1 5 1 5
We choose the u-axis to pass through X, so it is the line y = 2x, and the
v-axis is the line y = — 1 x. In the new system, the equation of C is
5u? - 50 =1, (13)

where we have used (12) with ¢, =5, r, = —5.
We can check Eq. (13) by using the relations between u,v and x, y. By
(10) we know

u—xlx+y1y——‘/—2§—x+%y,
= — —_ 1 2
v=—pyx+x y= Ex+—‘/75_—y

Hence,
2 2
5u2—-502=5( x+—y) (_Lx+1y)
BB 55
=5-4Q2x+y)y-5-4(—x+2)
=4x?+4xy + y? — x2 + 4xy — 4y?
=3x?+ 8xy — 3y~

Thus, for every point X in the plane, if (x) are the old and (g) are the new

Y
coordinates of X, then we have
5u? — 50% =3x2 + 8xy — 3y° (14)

By definition of CH, X lies on Cy, if and only if 3x? + 8xy — 3y =1 and so
if and only if 5u% — 50% = 1. So (13) is verified.
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5 _ru
() -

Figure 2.51

From Eq. (13), we find that Cy; is a hyperbola with its axes of symmetry
along the u- and v-axes (see Fig. 2.51).
Now let H(x, y) = ax* + 2bxy + cy* be a given quadratic form. Assume

b #0. Let ¢, ¢, denote the eigenvalues of the matrix (Z b ) We have:
c

Theorem 2.13. Let Cy; denote the curve ax* + 2bxy + cy* = 1.
@ Ift,,t, are both > 0, then Cy is an ellipse.
(@ii) If t,,t, <O, then Cy is empty.
(iii) If t,,t, have opposite signs, then Cy is a hyperbola.
Exercise 7. Using the fact that in the (v, v)-system, C; has equation
hut+ tot=1,

prove Theorem 2.13.

ExaMpLE 6. Describe the curve Cy,

X2+ 2xp+ yP=1. (15)
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Here (Z b ) =( } :) and ¢, ¢, are the roots of the polynomial
c

1—1¢ 1 2
=" =2t
1 l—t‘

So ¢, =0, t, = 2. In the (u,v)-system, C; has the equation
0u?+2v*=1 or v?P=1.
This equation describes a locus consisting of two parallel straight lines

v=1/y2 and v = 1/y2. Thus, here C,, consists of two straight lines. We
can also see this directly by writing (15) in the form

(x+yy=1 or (x+yy>*—1=0

or, equivalently, ((x + y) + 1)((x + y) — 1) = 0. So Cy; consists of the two
linesx+y+1=0andx+y—1=0.

Thus, in addition to the possibilities of an ellipse, hyperbola, and empty
locus, noted in Theorem 2.13, C,; may consist of two lines.

Exercise 8. Classify and sketch the curve 2xy — y? = 1.
Exercise 9. Classify and sketch the curve 4x? +2y2 xpy + 3y? = 1.
Exercise 10. Classify and sketch the curve x2 — 2xy + y? = 1.
The quadratic form H(x, y) = ax* + 2bxy + cy* is called positive definite

if H(x, y) >0 whenever (x, y) # (0,0). For instance, H(x, y) = 2x> + 3y?
is positive definite and H(x, y) = x> — y? is not positive definite.

Exercise 11. Give conditions on the coefficients a,b,c in order that H(x, y) is
positive definite. Hint: Make use of formula (11).



CHAPTER 2.8
Differential Systems

ExaMPLE 1. We are given two tanks of capacity 100 gallons, each filled with
a mixture of salt and water. The tanks are connected by pipes as shown in
Fig. 2.52 and at all times the mixture in each tank is kept uniform by
stirring.

The mixture from tank I flows into tank II through a pipe at 10 gal /min,
and in the reverse direction, the mixture flows into tank I from tank II
through a second pipe at 5 gal/min. Also, the mixture leaves tank II
through a third pipe at 5 gal/min, while fresh water flows into tank I
through another pipe at 5 gal/min.

Denote by x(¢) the amount of salt (in lbs) in tank I at time ¢, and by y(¢)
the corresponding amount in tank II. Suppose, at time ¢ = 0, there are x,
Ibs of salt in tank I, and O Ibs of salt in tank II. Find expressions for x(¢)
and y(¢) in terms of ¢.

Consider the time interval from time ¢ to time ¢ + Az. During that time
interval, each gallon flowing into tank I from tank II contains y(#)/100 lbs
of salt, while each gallon flowing from tank I to tank IT contains x(¢)/100
Ibs of salt. Hence, the net change of the amount of salt in tank I during the
time interval is

A Sy(0)At  10x(r)At
Y7700 T T 100

while the corresponding change for tank II is

10x(£)Ar 10y (1)At
YT 100 T 100
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- § —

— 10—

Figure 2.52

Dividing both equations by At and letting At — 0, we get

d 5
G O= 15570~ 100 % x (1),
(M
(t) = 100 x(t) - 100 y(t)
In addition, we know that
x(0)=x, »(0)=0. @
The functions ¢t — x(¢), t = y(f) must be determined from conditions (1)
and (2).

A system of equations involving two unknown functions x and y which
has the form

dx

-t by,
pt 3)
ik + dy,
where a, b, c, d are given constants, is called a differential system.
Thus (1) is a differential system with a= — &, b= 35, c={%,

d = — }%&. The condition
x(0)=xo,  y(0)=yo,

where x,, y, are given constants, is called an initial condition for the system
(3). Thus (2) is an initial condition.
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We shall use the notion of a vector-valued function of ¢. A vector-valued

x,(t
function X(¢) assigns to each number ¢ a vector X(7) =( 'Et; ) Thus,
X2

0-(,5) 0 w0-(2)

sin¢
x,(?)
x

are vector-valued functions. If X(¢) =( 0 ), then ¢ — x,(¢) and t = x,(¢)

2
are scalar-valued functions. We define the derivative of the function

£ X(t) =(2§3) by

dX _ (dx,/adr
dt dx,/dt)

2
Thus, if X(¢) =( t ) then dX /dt =( 2’2), while if X(¢) =( cos ) then
£+1 3t sin ¢

dX/dt =( —sintt ) Note that dX/dt is again a vector-valued function.
cos

Exercise 1. Fix a vector Y. Define a vector-valued function z— Y(7) by setting
Y(¢) = t"Y. Show that

av _ nt" Y.

dt

Now let the scalar-valued functions ¢ — x (), t — y(¢) be a solution of the
differential system (3). In vector form, we can write

(Gra)= (i a) @

t
We define the vector-valued function ¢ — X(¢) by X(¢) = ( xiti). Then the
Y

left-hand side of (4) is dX/dt, and the right-hand side of (4) is
ax + by a b\(x a b
= = X(1)).
(cx+dy) (c d)(y) (c d)( ©)

Thus (4) may be written in the form

dX b
-8 Hxo. )
How shall we solve Eq. (5) for X(#)? Recall that letting a matrix (a Z)
(4

act on a vector X to give the vector (a Z )X is analogous to multiplying a
c

number x by a scalar a to give the number ax. So Eq. (5) is analogous to
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the equation

dx
E = ax, (6)

where x is now a scalar-valued function of ¢ and a is a given scalar. We
know how to solve Eq. (6). The solutions have the form

x(t) = Ce”,
where C is a constant. Setting ¢ = 0, we get x(0) = C, so
x(t) = x(0)e” = e"(x(0)),

where we have changed the order of multiplication with malice afore-
thought. Let us look for a solution to Eq. (5) by looking for an analogue of
e"(x(0)). We take
X(f) = e™(X(0)),  with m= (‘C’ Z). %)

First we must define the exponential of a matrix. In §1 we shall define,
given a matrix m, a matrix to be denoted e” or exp(m) and to be called the
exponential of m.

Applying the matrix ¢” to a fixed vector X(0), we then obtain a vector
for each ¢, and thus we get the vector-valued function ¢ — X(¢) defined in
(7). We shall then show that X(¢) solves (5).

In what follows we shall use the symbol I for the matrix ((1) (l))’ which is

properly denoted m([I). This simplifies the formulas, and should cause no
confusion.

§1. The Exponential of a Matrix

Let m =(a Z) be a matrix. Since we have defined addition and multipli-
¢

cation of matrices, we can write expressions such as m? or m* — 3m + I
We interpret m> — 3m + I as the result of applying the polynomial P(x)
= x> —3x + 1 to the matrix m:

P(m)=m’—=3m+ L
More generally, if Q(x) is the polynomial
Q(X)=¢,x"+ ¢ x" '+ - +ox + g,
where ¢,,¢,_1, . - . , C1,Co are scalars, we set
Q(m)y=c,m"+ c,_ym" "'+ -+ + cym+ ¢y,

and we regard Q(m) as the matrix obtained by applying the polynomial Q to
the matrix m.
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We now replace the polynomial Q by the exponential function exp(x). We
know that exp(x) is given by an infinite series

exp(x)—-l+x+2'+ +%’1+~-, O ®)

where the series converges for every number x. We wish to apply the
function exp(x) to the matrix m. We deﬁne

exp(m) = I+m+2' +%'i+ %)

An infinite series is understood as a /imit. Thus, Eq. (8) means that the
sequence of numbers

X
11+x1+x+2',.. 1+X+7+ +71T,...

converges to the limit exp(x) as n = co. Similarly, we interpret Eq. (9) to
say that exp(m) is defined as the limit of the sequence of matrices

m? m"
Of course, exp(m) is then 1tse1f a matrix.

ExAMPLE 2. Let m be the diagonal matrix

_(s O
m(Ot)’

where s, ¢ are scalar. What is exp(m)? Recall the formula for ((S) (t))"

found in Chapter 2.7.

m

+(s3/3! 0 )_'_.H_‘_(s"/n! 0 )
0 r/3 0 t"/n!

_[1+s+s2/21+/3+ -+« +5"/n! 0
0 1+ t+2/21+83/3!+ -« +t"/n!
Letting n— oo, we find that
o m"
exp(m)—nll)nolo (1+m+7'-+ c+ p )

lim (1+s+ - +s"/n!) 0 e 0

3 n_}w = .
i n t
0 nlgtgo(1+t+ +t"/n!) 0 e
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Thus,
s 0\|_(e O
exp[(o t)] (0 e’)'

ExampLE 3. Find exp[(o 1)]

00
(o 1)2=(o 1)(0 1)=(0 0).
0o 0o/ \o oo o/=\o o
O 1n= =
Hence,(o o) Oforn=2,3,....50

wol(3 )= )+( 2)=(5 1)

Let A be a linear transformation. We define exp(A) as the linear
transformation whose matrix is exp[m(4)].

EXAMPLE 4. Let R, /, be rotation by 7 /2. Find exp(R, ;).

Set m = m(R, /) =(? —Ol )

2 _ 0 —1)/0 —1)=(—1 0)= Y 4
" ( 1 0 )( 10 o —1)=(=bE
Hence, for every positive integer k,

K= (D))= (=D = (=1

and so
M2 = 2 = ((__ l)kl)m = (= 1Y*m.
So
m*=(-lm, m'‘=I mi=m, mb=(-DI, m'=(-l)m,

and so on. Hence,

1 1
exp(m)=1+m+2—!(—l)1+ (—1)m+ I
1 1
_ 1 1 1 1 1 1
“(matamat (gt
We can simplify this formula by recalling that
X2 x* xS
cosx—l——z' +4' 6' + -
and
nx=x— X X X L.
sSiInx = x — 3—+§- 7!+ ,
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SO
11,4 1 _ 1
cosl=1 E!-'FZ!- 6'+ ,
and
o1 1 1 1 .
sinl = §+§ ﬁ+
So

exp(m) = (cos 1)I + (sin 1)m = (cos 1)((1) (1)) + (sin 1)((1) "3)

- (cosl ——sinl).
sinl cosl

So exp(R, /,) is the linear transformation whose matrix is

(cosl - sinl).
sin 1 cos |

Exercise 2. Fix a scalar ¢ and consider the matrix (0 '(')’) Show that

0 —¢ cost —sint
= . 1
exp[(t 0 )] (sint cost? ) (10)
Exercise 3. Setm=(i })

(i) Calculate m* for k =2,3,4, ... .
(ii) Calculate exp(m) and simplify.

Exercise 4. Set m =(3 1).

(i) Calculate m* for k =2,3,4, ...
(ii) Calculate exp(m) and simplify.

In Chapter 2.7, we considered a linear transformation 4 having eigenval-
ues ¢, t, with ¢, # ¢, and eigenvectors X, = ( ;l ) and X, = ( i ) We
1

Y2
defined linear transformations P and D with

X 2 Y
m(P)=()’| ;2)’ m(D)=(i) tz),

and we showed, in formula (5) of Chapter 2.7, that

(m(A))"=m(P)(t(;n ton)m(P“), n=1,23,....
2
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It follows that

exp(m(4)) =1+ m(A)+ 51!_(m(A))2+ e

t, 0 m(P) (¢ 0
=I+m(P)| "' m(P~") + ! m(P~ Y+ .-
()(0 tz)( )+ = (0 2@
2
=m(P)| I+ W0 + 4 B m(P™")
0 1) 2\o 2
(where we have used that m(P)- m(P ") =1I)
T+ + (/2083 + - -- 0
. B m(P~")
0 I+6+Q0/208+ - -
=m(pP)(¢" 0)mP"'.
@& O Jmeey
Thus, we have shown:
Theorem 2.14.
exp(m(A))=m(P)(j;' ?)m(P”r (1
e2
ExampLE 5. Calculate exp[(i 43)}.
Here
2 -1
=5’ = —), x = , = .
f n==5 X=(}) %=(3))
So

w3 ) (2 )

By (11), we have
S )]G 35 22 1)

(NG §R)

=( @/5)e°+ (1/5)e > (2/5)e— (2/5 )e—5)
(2/5)e° — (2/5)e™ (1/5)e*+ (4/5)e™*)

ExampPLE 6. Calculate exp[ ((1) 8) ]
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Since =2 — t=t(t — 1), the eigenvalues are t, =1, t, = 0.

1—1¢ OI
0 —t

The corresponding eigenvectors are X, = ((1)), X, = ((1)) So m(P)=

(1 0) = 1, and then m(P ~") = I. Hence, by (11),

B e

Exercise 5.
(a) Compute ((1) 8)" forn=1,2,3,....
(b) Compute exp[( 1 0)] directly from the definition and compare your answer

00
with the result of Example 6.

Exercise 6. Using Theorem 2.14, calculate exp[(; —31 )]

Exercise 7. Calculate exp[ (i g) ]

Exercise 8. Calculate exp[( } %) ]

Recall Eq. (5): dX/dt = m(X(¢)), where m =__(a Z ) We fix a vector X
c

and define X(¢) = exp(tm)(X,). In §2, we shall show that X(¢) solves (5) and
satisfies the initial condition X(0) = X, and we shall study examples and
applications.

§2. Solutions of Differential Systems

We fix a matrix m and a vector X,.

exp(tm) = I+tm+£—'-m +£3L"1—+

SO

(exp(tm))(Xo) = X, + tm(Xo) + m (Xo) + m (Xo) + -

Both sides of the last equation are vector-valued functions of ¢. It can be
shown that the derivative of the sum of the infinite series is obtained by
differentiating the series term by term. In other words,

4 ((exp(m))(X0)} = & (1m(X9) + & (L m(Xg) + . (12)
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The right-hand side of (12) is equal to
m(Xo) + m(Xg) + 3 m(Xp) + 4 m (Xo) +
= m(Xo) + tm*(X,) + m 3(Xo) + m*(Xo) + - -
= m(Xo) + m(om(Xe)) + m( & (Xo)) +m( £ i) +

2
- m{x0+ im(Xe) + Lo m(Xo) + Emi(Xg) + - }

= m{(exp(tm))(Xe))-
So (12) gives us
| (exp(tm))(Xo)} = m ((exp(tm))(Xo) - (13)
We define X(7) = (exp(tm))(Xy))- Then (13) states that
X (1) = m(X(1)). (14)

In other words, we have shown that X(¢) solves our original equation (5).
Also, setting ¢ = 0 in the definition of X(¢), we find that

X(0) = I(Xp) = X,, (15)
since exp(0)=7+0+0+ --. = I. So we have proved:

Theorem 2.15. Let m be a matrix. Fix a vector X,. Set X(¢) = (exp(tm))(X,)
for all t. Then,

X~ mX(1), (16)
and
X(0) = X, . (17

ExAMPLE 7. Solve the differential system

dx _
&=

dy _ (18)
"_1; = Ay

with the initial condition: x(0) = 1, y(0) =
t
In vector form, with X(¢) = ( x( )), we have
y(®)

X=(3 2
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with initial condition X(0) = ((1)) Set m = ((1) _01 ), X, = ((1)) and set

X(7) = exp(tm)(X,)-
By Exercise 2 in this chapter,

expom = exp (9 ) = (&) o)

So

x0=(5n ot o) = (5nt)
x(1)
y(®)

functions in (18), we see that it checks. Also, x(0) =1, y(0) =0, so the
initial condition checks also.

Since X(¢) =( ), we obtain x(f) = cost, y(f) =sint. Inserting these

ExampLE 8. Solve the differential system (18) with initial condition x(0)
= X0, y(0) = yo.
We take X, = ( ;0) and set
0

X(t) = (exp[o —(—)t])(xo) _ (cost - sint)(xo)’

t sint  cost /\ y,
so
X(1) = (c?s )Xo — (sint)y, .
(sin#)x, + (cost)y,
So

x(t) = (cost)xy— (sint)y,,  y(t) = (sint)xq+ (cost)y,.
We check that these functions satisfy (18) and that x(0) = x,, y(0) = y,.

3t 4t

Exercise 9. Calculat
xercise 9 acuaeexp[(4t ey

)], where ¢ is a given number.

Exercise 10. Using the result of Exercise 9, solve the system

dx

717=3x+4y x(0)=1
g with , (19)
3);’=4x—3y »(0)=0

by using Theorem 2.15 with m =(3 _ g) and X, =((1))

Exercise 11. Solve the system (19) with x(0) = s, y(0) = s,.
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C
| Z
R
L
Figure 2.53
Exercise 12. Solve the system

& _2x+ay x(0) =1
d with . (20)
7yt=4x+6y (0)=0

Exercise 13. Solve the system (1) (at the beginning of this chapter) with initial
condition (2).

ExAaMPLE 9. Consider an electric circuit consisting of a condenser of
capacitance C connected to a resistance of R ohms and an inductance of L
henries. A switch is inserted in the circuit (see Fig. 2.53). The condenser is
charged with a charge of Q, coulombs, with the switch open. At time ¢ = 0,
the switch is closed and the condenser begins to discharge, causing a
current to flow in the circuit. Denote by i(¢) the current flowing at time ¢
and by Q(r) the charge on the condenser at time ¢. The laws of electricity
tell us the following: the voltage drop at time ¢ equals (1/C)Q(¢) across the
condenser, while the voltage drop across the resistance is Ri(¢f) and the
voltage drop across the inductance is L(di/dt). The sum of all the voltage
drops equals 0 at every time ¢ > 0, since the circuit is closed. Thus, we have

1 : di
T Q(¥) + Ri(t) + L_!; =0
or

di 1 R.
3%= —1c 2O - T
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Also, the current at time ¢ equals the negative of dQ/dt or i(f)=
— dQ/dt. So the two functions: ¢-> i(¢) and t > Q(¢) satisfy
di _ i+ b,
dt 21
i __ @1)
dt ’
where a = —R/L, b= —~1/LC. So to calculate the current flowing in the
circuit at any time ¢, we must solve the differential system (21) with initial
condition Q(0) = Q,, i(0) = 0.

ExampLE 10. Let ¢, ¢, be two scalars. We wish to solve the second-order
differential equation

2
-‘;Tf+c,%-+c2x=0 (22)

by a function ¢ — x(¢) defined for all ¢, and we want to satisfy the initial
conditions

X =x,  (0)=y, 23)

We shall reduce the problem (22) to a first-order differential system of the
form (3). To this end we define y(f) = (dx /dr)(t). Then (22) can be written:
dy/dt+c,y+c,x=0o0r

d
—% = —CXx— ).
So x and y satisfy the differential system
dx _,
dt (24
Y _ —Ccx—¢
dt 2 1y
ExaMpLE 11. We study the equation
.4_2_'& = = —d£ =
o +x=0, x(0) = x,, 7 (0) = y,. (25)
Setting y = dx/dt, (25) turns into
dx _
a7
dy x(0) = x5, y(0)=y,. (26)
@

Exercise 14. Fix a scalar ¢. Show that

0 1\].{[ cost sint
exP[t(—l 0)] (—sint cost)'
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Exercise 15. Using the result of Exercise 14, solve first the equations (26) and then
Eq. (25).

In Theorem 2.15, we showed that the problem dX/dr= mX(z), X(0)
=X, has X(7) = (exp(tm)(X,)) as a solution for all z. We shall now show
that this is the only solution, or, in other words, we shall prove uniqueness
of solutions.

Suppose X, Y are two solutions. Then dX/dt = mX(¢), X(0) =X, and
dY /dt = mY(¢), Y(0) = X,. Set Z(¢) = X(¢) — Y(¢). Our aim is to prove that
Z(¢) = 0 for all . We have

dZ _ dX _dY _ X1y - mY(1)

dt dt dt
= m(X(t) = Y()) = mZ(¢). (27)
Also
Z(0) = X(0) - Y(0) =X, — X, = 0. (28)

We now shall use (27) and (28) to show that Z(¢) = 0 for all z. We denote
by f(¢) the squared length of Z(¢), i.e.,

f(y =1z
t—> f(r) is a scalar-valued function. It satisfies
f(t)>0  forallt and f(0)=0.

Exercise 16. If A(¢), B(¢) are two vector-valued functions, then

d _arn.dB _dA
2 (A -B() =AW - LB +B(r)- 4

It follows from Exercise 16 that

‘i‘g =4 @) 20)=2()- 2L + 2(1)- £ = 22(1)- 4L .

Using (27), this gives
g (1) =2Z(t) - mZ(1). (29)

We set m =(‘; Z) Fix ¢ and set Z(/) = Z =(2) Then
2 met =3(5)-{(c 2)(2))
-5) (&)

= 2(az} + bz,z, + czz, + dz3).
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Let K be a constant greater than |a|, |b|, ||, |d|. Then
2Z(t) - mZ(t)| < 2(lalz} + |b] 21| |z5] + lel |zo] 2] + |d]|zo)
<2K(|z) + 2|z |2)] + |2,).
Also,
2|z)||z)] < |z, + |zl
So
2Z(1) - mZ(t)| < 2K(2|z,]* + 2|z,") = 4K (|z,* + |2,%)
= 4K|Z|* = 4Kf(1).
By (29), setting M = 4K, this gives
b (1) < mafo) (30)
Consider the derivative

_4( f) ) _ eM(df/an - f(yMe™?®  (df/dr) — Mf(1) -

dt eM: eZMt eM!
By (30), the numerator of the right-hand term < O for all ¢. So
d (S
dt ( eM <o,

so f(#)/e™" is a decreasing function of z. Also, f(f)/e™ >0 and =0 at
t = 0. But a decreasing function of ¢, defined on ¢ > 0 which is > 0 for all ¢
and =0 at ¢ = 0, is identically 0.

So f(£)/e™" =0 for all ¢. Thus |Z(¢)* = f(t) = 0, and so Z(f) = 0, and so
X(¢) = Y(¢) for all ¢.

We have proved:

Uniqueness Property. The only solution of the problem considered in Theorem
2.15 is X(#) = (exp(tm))(Xy).



CHAPTER 3.0
Vector Geometry in 3-Space

Just as in the plane, we may use vectors to express the analytic geometry of
3-dimensional space.
X1
We define a vector in 3-space as a triplet of numbers |x,| written in
x3
column form, with x,, x,, and x; as the first, second, and third coordinates.

X1
x2 .
X3

We can picture the vector X as an arrow or directed segment, starting at the
X
origin and ending at the point x;]. We denote by R® the set of all vectors

We designate this vector by a single capital letter X, i.e., we write X =

X3
in 3-space, and we denote by R? the set of all vectors in the plane.

X1
X, | and

X3

We add two vectors by adding their components, so if X =
U

U, |, then

Uy

U=

x|+ u
Xy + u,
X3+ uy

X+U=

We multiply a vector by a scalar ¢ by multiplying each of the coordinates

by ¢, so
cX=cl|xy|=]cx,].
X5 cx,
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(1 0 0
WesetE, =0, E;, = 1], and E; = ()J, and we call these the basis vectors
0 0 1

of 3-space. The first coordinate axis is then obtained by taking all multiples

1) X
xE; =x10|=|0
0) 0
defined similarly. Any vector X may be expressed uniquely as a sum of

vectors on the three coordinate axes:

, of E;, and the second and third coordinate axes are

X, X 0 0
X=|[x|=[0]+|x|+]|0|=xE + x,E, + x;E;.
X3 0 0 X3

Geometrically, we may think of X as a diagonal segment in a rectangular
prism with edges parallel to the coordinate axes (see Fig. 3.1).

X U
Let X= xz] and U= uzl be two vectors. What is the geometric
X3 Us

description of the vector X + U? (See Fig. 3.2.) By analogy with the
situation in Section 2.0, we expect to obtain X + U by moving the segment
U parallel to itself so that its starting point lands at X, and then taking its
endpoint. To see that this expectation is correct, we can reason as follows:
If we move the segment U first in the x-direction by x; units, then in the

i

Figure 3.1



3.0 Vector Geometry in 3-Space 113

X+U

“ 2/
(0
(3)

(2

Figure 3.2

y-direction by x, units, and finally in the z-direction by x, units, it will at
all times remain parallel to its original position and in its final position it
will start at X. If we move the segment U by x, units in the x-direction, its
u, + x,
new endpoint is [ u,
Uy

. Taking the corresponding steps in the y- and

u, + x;
z-directions, we get |u; + X,
Uz + x3

= U+ X for the final position of the end-

point.

By the difference of two vectors X and U, we mean the vector X + (—U),
which we add to U to get X (see Fig. 3.3). We may think of X + (—U) as
the vector from the origin which is parallel to the segment from the
endpoint of U to the endpoint of X and has the same length and direction.
We often write X — U for the sum X + (—U).

As in the case of the plane, we can establish the following properties of
vector addition and scalar multiplication in 3-space: For all vectors X, U,
A, and all scalars r, s, we have

() X+U=U+X;
(i) X+U)+A=X+ U+ A);
(iii) there is a vector 0 such that X + 0 =X =0+ X for all X;
(iv) For any X there is a vector —X such that X + (—X) = 0;
W) rX+U)=rX+ruU;
i) (r + )X) = rX + 5sX;
(vii) r(sX) = (r)X;
(viii) 1-X =X for each X.
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Figure 3.3

Each of these properties can be established by referring to the co-
ordinatewise definitions of addition and scalar multiplication.
If A and B are vectors in R® and s and ¢ are scalars, the expression

sA + B
is called a linear combination of A and B.

As in two dimensions, the vectors A and B in R* are said to be linearly
dependent if one is a scalar multiple of the other. A collection of three
vectors, A, B, C is said to be linearly dependent if one of the vectors is a
linear combination of the other two vectors.

2 -1 5
ExampLE 1. IfA=|1[,B=| 0 }, and C = |2 |, then the triplet A, B, C is
3 -2 8
linearly dependent because
C=2A+(-1)B.

If a collection of vectors is not linearly dependent, it is said to be linearly
independent.

1] [0 0
ExaMPLE 2. The vectors [0], [1 }, and [0] are linearly independent since it
0) (0 1

0 1 0 0 0
is impossible to write || as s|Q| +¢|1 |, and, similarly, for |1| and |0].
1 0 0 0 1
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Exercise 1. Prove that the set of three vectors A, B, C is linearly dependent if and
only if it is possible to find scalars r, s, t not all zero, such that

rA+sB+tC=0.

Show that under these conditions we can write one of the vectors as a linear
combination of the other two and show the converse.

An extremely useful notion which helps to express many of the ideas of
the geometry of 3-space is the dot product. We define

Xy
x| -
X3

The dot product of two vectors is a scalar, e.g.,

U
U
U

X-U= =x1ul+x2u2+x3u3.

2) [ 2
1]-| 4 [=2-2+1-4+3-(=6)=—10.

3 -6
1] [0 1 1
We have E;-E,=(0|-{1|=0 and E,-E,=|0|-|0|=1. Similarly,
0) 0 0) 0

E,-E;=0=E; -E,, whileE,-E,=1=E; E,.

As in the plane, the dot product behaves somewhat like the ordinary
product of numbers. We have the distributive property (X +Y)-U=
XU+ Y- U and the commutative property X - U = U - X. Moreover, for
scalar multiplication, we have (+X)- U = #(X - U). To prove this last state-
ment, note that

x, u,
(IX) - U= [tx; | * |ty | = (tx))uy + (Exy)uy + (1X3)u,
x5 Uy

The other properties also have straightforward proofs in terms of coordi-
nates.

By the Pythagorean Theorem in 3-space, the distance from a point
X1

xz] to the origin is \x? + x? + x7, and we define this number to be

X3
3
4
12

X =

=169 =13,

the length of the vector X, written |X|. For example,

while |[E;| = 1 for each i and |0 = 0.

Xy X1
In general, X-X =[x, |- |X,| = x? + x2 + x2, and so this is the square
X3) |¥3

of the length |X| of the vector X. Note that for any scalar ¢, we have
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|eX| =VeX - X =Ve’X - X =|c[yX X =|c||X]|, where || =c? is the ab-
solute value of the scalar c. We have [X| > 0 with |X| =0 if and only if
X=0.

In terms of the notion of dot product, we shall now treat seven basic
geometric problems:

(i) To decide when two given vectors X and U are perpendicular.
(ii) To calculate the angle between two vectors.
(iii) To find the projection of a given vector on a given line through the
origin.
(iv) To find the projection of a given vector on a given plane through the
origin.
(v) To compute the distance from a given point to a given plane through
the origin.
(vi) To compute the distance from a given point to a given line through
the origin.
(vii)) To compute the area of the parallelogram formed by two vectors in
3-space.

(1) As in the case of the plane, we may use the law of cosines to give an
interpretation of the dot product in terms of the lengths |X| and |U]| of the
vectors X and U and the angle § between them. The law of cosines states

IX — UP? = |X]*> + |U]* = 2|X| |U]| cos§.
But
X-UP=X-U)- X-U)=X:-X-2X-U+U-U
= |XP?+|UP-2X-U.
Thus
X - U= [X||U|cos¥b.
The vectors X and U will be perpendicular if and only if cosf = 0, so if

and only if X-U=0.
(i) If X and U are not perpendicular, we may use the dot product to

1
compute the cosine of the angle between X and U. For example, if X = |2
1
-1
and U=| 1| |, then X-U=1)(-D+Q)1)+MB)=4, |X|=16,
3

U] =11, so 0050=4/f6—m.

(iii) The projection P(X) of a given vector X to the line of multiples of a
given vector U is the vector tU such that X — fU is perpendicular to U (see
Fig. 3.4). This condition enables us to compute ¢ since 0 = (X — U)-U
=X-U—-(tU)-U=X-U—-#U-U), so t=X-U/U-U and we have a
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7~
-

Figure 3.4

formula for the projection:

PX) = (55 v (1)

Note that this is the same as the formula we obtained in the 2-
dimensional case.
Note also that

rx)-U=((EL)) u=(EF)v-v=-xu

U-u U-u
U,
(iv) Fix a nonzero vector U = |#, | and denote by II the plane through
Uz
1
the origin which is orthogonal to U. Since Y = | y, | lies in II if and only if
Y3

Y - U =0, an equation of II is
uy +uyy, +uzp;=0. 3

Let X be a vector. We denote by Q(X) the projection of X on 11, i.e., the
foot of the perpendicular dropped from X to II. Then the segment joining
X and Q(X) is parallel to U, so for some scalar ¢,

X - Q(X) = U.

Then X — U = Q(X). Since Q(X) is in II, X — ¢U is perpendicular to U.
Then, by the discussion of (iii), X — Q(X) = P(X) or

0(X) = X — P(X).
(v) The distance from the point X to the plane through the origin
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perpendicular to U is precisely the length of the projection vector P(X), i.e.,
X-u

ST

It follows that the distance d from the point X to the plane through the
origin perpendicular to U with the equation xu, + x,u, + x;u; = 0 is given
by

PO =| g U=

| 2y + xXu, + X1

\/uf + u% + u§

(vi) The distance from the point X to the line along U with U # 0 is the
length of the difference vector |X — P(X)|. Since X — P(X) is perpendicular
to P(X), we get [X|* = |PX)]* + |X — P(X)]% so

X = PX)I* = [X[* - |P(X)

d=

Q)

and hence
X-PX))P=X-X- "

(see Fig. 3.5) and so the distance is given by

XU {X-X)U-U)- XUy

(vii) Let A, B be two vectors and let IT denote the parallelogram with two
sides along A and B (see Fig. 3.6). The area of II is the product of the base

X %

Figure 3.5
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A

_

7////////////////////////

Figure 3.6

[B|, and the altitude on that base which is the distance from A to B. By (5),
this distance = (1/|B|)\/(A -A)(B-B)— (A-B)’, s0

areall = /(A - A)(B-B) — (A-B)’ . (6)

§1. The Cross Product and Systems of Equations

Consider a system of two equations in three unknowns:

a\x; + ayx, + a;x, =0,

7
bl.xl + b2X2 + b3x3 = O. ( )
a, b, X1
Weset A =|a,| and B = (b, |. A solution vector X = x;} for (7) satisfies
a3 b3 X3

A-X=0, B-X=0.
We may find such an X by multiplying the first equation by b, and the
second by a, and subtracting

a\bx; + aybx, + a3b,x; =0,
abx, + a,byx, + a;b;x; =0,
Similarly, we may multiply the first equation by b, and the second by a,
and subtract to get
(ayby — ayb))x, + (asb, — aybs3)x; = 0. (8b)
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Figure 3.7

We can obtain a solution to the system (8a), (8b) by choosing
x) = (ayb3 — a3by), Xy = (a3h, — a,by), X3 = (a\by — asb)). (9)
Note that if we think of the subscripts 1, 2, 3 on a wheel, with 1 followed
by 2, followed by 3, and three followed by 1 (see Fig. 3.7), then in (9), x, is
obtained from x,, and x; is obtained from x, by following this succession

of subscripts of a;, b;. We define the cross product A X B of A and B to be
the vector

ayb; — a3b,
A X B = a3bl - alb3 . (10)
a,b, — a,b,

The vector X = A X B indeed satisfies the conditions
A-X=0, B-X=0,
which we set out to satisfy, and this is so since in the expression
A - X = g (ayb; — asb,) + ay(azh, — a,b;) + as(a;b, — a,b))
all terms cancel, leaving 0. The same happens for B - X.
We shall see that the cross product is very useful in solving geometric

problems in 3 dimensions.
We may easily verify that the cross product has the following properties:

(i) A X A =0, for every vector A.

(i) BXA=—AXB, for all A, B.

(iii) AX(B+C)=AXB+AXC, for all A, B, C.

(iv) (tA) X B=t(A X B) if ¢ is a scalar.
Exercise 2. Show that E; X E;, =E;, E, XE;=E|, and E; XE; = —E,.
Exercise 3. Show that AX B = —B X A.
Exercise 4. Show that A X (B + C) = (A X B) + (A X C).
Exercise 5. Show that tA X B = #(A X B).

Exercise 6. Show that A-(B X C) =B - (C X A) = C - (A X B).
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We now prove some propositions about the cross product.

(v). If A and B are linearly dependent, then A X B = 0.

ProoF. If B =0, then A X B =0 automatically. If B0 and A = ¢B, then
AXB=(B)XB=tBXB)=0.

(vi). Conversely, if A X B =0, then A and B are linearly dependent.

ProoF. If A X B = 0, then either B = 0 or at least one of the components of
B is nonzero. Assume b, # 0. Then a;b, — a,b; =0, so a, = (a;/b,)b, and
— azb, + a;b; =0, so a; = (a;/b;)b,. It follows that

a, (as/ b3)b, b,
A = |ay| = |(a3/b3)by| = (a;/b3)| b, | = (a3/bs)B.
as (a3/b3)b, b,

Therefore, A is a scalar multiple of B, so A and B are linearly dependent.
We reason similarly if b, # 0 or b, 0.

Exercise 7. If A, B, C are linearly dependent, show that A- (BX C)=B:(C X A)
=C-(AXB)=0.

(vii). Let II denote the parallelogram in R? with sides along A and B, where
B 0 (see Fig. 3.8). Then

areall = |A X B|. (1

ProOF. We have already found formula (6) for the area II:

areall = \/(A -A)(B-B)— (A-B)*.

Figure 3.8
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In coordinates, this gives
(areall)’= (@} + a3 + a3)(b] + b3 + b3) — (a\b, + ab, + asby)’
= a?b? + alb? + a?b} — (a;b,)*— 2a,b,a,b,
+a2b? + a3b? + a3b? — (a,b,)’ — 2a,b,azb,
+a3bl + alb3 + alb? — (a3bs3)’— 2a,b,a;3b,
= (albz - azb|)2+ (a3b| - a|b3)2+ (azb3 - a3b2)2
=|A X B]~

This establishes formula (11).

Observe that if A and B are linearly dependent, then the parallelogram IT
will be contained in a line so its area will be 0, agreeing with the fact that
A X B =0 in this case.

Let us now summarize what we have found.

If A and B are not linearly dependent, then we may describe the vector
A X B by saying that it is perpendicular to A and B and it has length equal
to the area of the parallelogram determined by A and B. Note that this
description applies equally well to rwo vectors, A X B and —(A X B) lying
on opposite sides of the plane containing A and B.

In Chapter 3.5 we will go more deeply into the significance of the sign of
A X B.

Next, we shall give a generalization of the Pythagorean Theorem. If we

a, b,
project A and B into the x,x, plane, we get the vectors az] and b, |- Note
0 0
that the area of the parallelogram II;, determined by these two vectors is
given by

a, b, 0
G| X |b||l= 0 = |a\b; — ab)].
0 0 a,b, — ayb,

Similarly, the area of the parallelogram II,, determined by the projections

0 0
[02] and [b,| of A and B to the x,x; plane is given by area (Il,) =
a3 b, |
|asb, — aybs), and finally areaIl,; = |a;b, — a,b;| (see Fig. 3.9).

Formula (vii) thus yields the following striking result which is a general-
ization of the Pythagorean Theorem:

(viii) (area I'I)2 = (areall l2)2 + (area 1123)2 + (area H13)2.

This is the analogue of the theorem that the square of the length of a
vector is the sum of the squares of its projections to the three coordinate
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Figure 3.9

axes (see Fig. 3.10):

(ix) Given three vectors A, B, C in 3-space, we shall next obtain a
formula for the volume of the parallelepiped determined by these three
vectors.

If A and B are linearly independent, then the distance from the vector C
to the plane determined by A and B equals the length of the projection of C
to the line along A X B, since the vector A X B is orthogonal to that plane.

A

Xy
tp (%)

X,

Figure 3.10
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So the distance is given by
IC- (A XB)
AXE (12)
(x) It follows that the volume of the parallelepiped IT with sides along A,
B, and C is given by the area of the base |A X B| multiplied by the height
|C- (A XB)|/|A XB| ie.,
volume Il = |C- (A X B)|. (13)

If A, B, and C are linearly dependent, then the parallelepiped is con-
tained in a plane so its volume will be zero, which agrees with the fact that
C- (A X B)=0in such a case, as we saw in Exercise 7.

We shall next see how the cross product helps us to study systems of
linear equations.

We consider a system of three equations in the three unknowns x,, x,,
X5t

a\x; + ayx, + a;x; =0,

b\ x, + byx, + byx; =0, (14)
c1x, + cxy + c3x3=0.
We set A=|a,|, B=|b,|, C=|c,|. The solutions X = | x, | of the system
as b, C3 X3

(14) are the vectors X such that X is perpendicular to the three vectors A, B,
C. We shall show the following:

(xi). There exists a nonzero solution vector X of (14) if and only if
C-(AXB)=0.

ProoF. Assume that C- (A X B)=0. If A and B are linearly dependent,
there is some plane IT through the origin which contains A, B, and C. We
choose a nonzero vector X perpendicular to IT. Then XA =0, X-B =0,
X-C=0,so X is a solution of (14).

If A and B are linearly independent, then A X B # 0. By assumption,
(AXB)-C=0. Also (AXB)-A=0and (AXB)-B=0. So AXB is a
nonzero solution of (14).

Conversely, assume that C-(A X B)# 0. Then A and B are linearly
independent, since otherwise A X B =0 and so C- (A X B) = 0, contrary to
assumption. Let II be the plane through the origin containing A and B.
Then A X B is perpendicular to II, and every vector perpendicular to II
is a scalar multiple of A X B. If X is a solution of (14), it follows that X =
t(A X B) for some scalar ¢. Since X:- C=0, ({(AXB)):- C=t((AXB)-C)
=0, and so ¢t = 0. Hence, X = 0 as claimed.

The following is a fundamental property of the geometry of R>.
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Proposition 1. If A, B, C are three linearly independent vectors in R3, then
every vector Y in R® can be uniquely expressed as a linear combination of A,
B, and C.

ProoF. Since C is not a linear combination of A and B, the line {Y — ¢C| ¢
real} which goes through Y and is parallel to C will not be parallel to the
plane determined by A and B. Thus, for some ¢, Y — ¢C lies in that plane
and so

Y-tC=rA+sB

for suitable scalars r, s. Therefore,
Y =rA+ sB+ ¢C. (15)
Expression (15) is unique, for if
Y=rA+sB+1C,
then rA + sB+ tC=r'A+ s'B + ¢C, so
(r—rA+(s—s)B+(—1t)C=0.

Since A, B, C are linearly independent, it follows that r — ¥’ =0, s — s’ =0,
t — t' = 0. So the expression (15) is unique, as claimed.

The vectors of length 1 are called unit vectors, and their endpoints form
the unit sphere in 3-space.

cos ¢ cos 8
Exercise 8. Show that for any choice of angles 8, ¢, the vector {cos«'p sino] is a unit
sin ¢
vector. Conversely, show that if 1 = u? + 12 + u2 and if u; 5= 0, then it is possible to

u
find an angle ¢ between —«/2 and /2 so that u; = sin ¢. The vector (uz) then
0

has length \/uf +ur = \/ 1 — u? =41 —sin%$ = cos¢, so we may write

u, = cos¢cosd, u, = cos¢psinf

u, cos ¢ cos §
for some 6 between 0 and 27. Hence | #; | = | cos¢sin 8 |-
u3 sin ¢

It follows that any nonzero vector X in R? may be written:

cos ¢ cos
X =|X||cos¢sind |,

sin ¢

for some choice of angles ¢, 6.



CHAPTER 3.1
Transformations of 3-Space

As in the planar case, we define a transformation of 3-space to be a rule T’
which assigns to every vector X of 3-space some vector T(X) of 3-space.
The vector T(X) is called the image of X under 7, and the collection of all
vectors which are images of vectors under the transformation 7 is called the
range of T. We denote transformations by capital letters, such as 4, B, R,
S, T, etc.

ExaMPLE 1. Let P denote the transformation which assigns to each vector
Xy

X =|x,| the projection to the line along U=
X3

Chapter 3.0, we have

1
1]. By formula (1) of
1

1 1 1
1 3X] +§X2+'3—X3

oo - (B0 (52

1 1 1
3X; F 33X+ 3x3 .

1 3 1 1
1 Ix +ix,+ §x;

ExaMPLE 2. Let S denote the transformation which assigns to each vector X
1
1
1
S(X) is defined by the condition that the midpoint of the segment between
X and S(X) is the projection of X to the line along U. Thus

S(X)=2P(X) - X

the reflection of X through the line along U =|1|. As in the planar case,
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or

1 1 — 1 2 2
Xy X+ 3%+ 3x3 Xy 3X 35X+ 53

= 1 1 1. - 25 —1 2
Slxp|=2| 5%+ 1x; + 3% X3 §X1 ~ 3%t 35X

1 1 1 2 2 — 1
X, 3%t 3X+ 33 X3 $%1F 353X~ 33

Exercise 1. In each of the following problems, let P denote projection to the line

X1
along U. Find a formula for the coordinates of the image P( X5 )
X3

1

(a U= o) (so we have projection to the first coordinate axis);
0
1
®G)YU={1};
0
1
©@U=[ 1}
-1
1
@U=fo0].
3
Exercise 2. For each 6f the vectors in the preceding exercise, find a formula for the
X1 X1
reflection S( xz) of the vector (xz) through the line along U.
X3 X2

ExampLE 3. Let O denote projection to the x,x;-plane and let P denote
projection to the x,-axis. Then

X, 0 X, X
Q Xy | = [Xy and P Xy | = 0.
X5 X5 X5 0

Note that O(X) + P(X) = X for each X.
ExampPLE 4. Let Q denote projection to the plane through 0 perpendicular

1 1
to U=11{ and let P denote projection to the line along U = |1 |. Then, as
1 1

in Example 3, we have Q(X) + P(X) = X, so by the formula in Example 1,
we have
X1 X1 3X1H 35X+ 35X, X1 —3x—ix
QXZ = XZ - %xl+%x2+%x3 = —-3Lx1+%x2—-:';X3.

1 1 1 — 1y 1 2
X3 X3 3XF 33X+ 33 3X1 — 3%t 3X3



128 Linear Algebra Through Geometry

Exercise 3. For each of the vectors U of Exercise 1, let Q denote projection to the
X1
plane perpendicular to U. Find the formula for Q( xz) in terms of the coordinates

X3

Xy
of X= X5 .

X3
ExAMPLE 5. Let II denote the plane through the origin perpendicular to
1
1
1
the midpoint of the segment joining X to R(X) is the projection Q(X) of X
to the plane II. Therefore,

R(X)=20Q(X) - X

U=|1]|. Let R denote reflection through the plane II. For any vector X,

where Q is the projection in Example 4. Therefore,

2 — 1 — 1 1 -2 —2
X1 3% T 3% 7 3X;3 X1 3%1 7 53X T 3%;3
=2| -1 2%, —Lx. | — =|-2 Ly —2
R|xp|=2| = 3%+ 3% — 3% X2 5%+ 3%~ 3x3
—lx —1 2 —2x, =2 1
X3 3%~ 3%+ 5%; X3 §X1 — 35Xt 3%;

Exercise 4. For each of the vectors U in Exercise 1, let R denote reflection through

Xy
the plane through the origin perpendicular to U. Find the formula for R(xz) in
X3

X1
terms of the coordinates of X = ( xz).
X3

ExaMPLE 6. Let D, denote the transformation which sends any vector into ¢
times itself, where ¢ is some fixed scalar number. Then

D,(X) = X,
SO
X, X, X,
D/ {x,|=t|xy|= |tx,].
X3 X3 x5

As in the planar case, we call D, the stretching by t.

If t =0, then Dy(X) = 0- X = 0 for all X so D, is the zero transformation,
denoted by 0. If ¢ = 1, then D,(X) = 1 - X = X for all X, so D, is the identity
transformation denoted by /.

ExAMPLE 7. For a fixed scalar § with 0 < § < 27, we define a rotation R,
of 8 radians about the x,-axis. This rotation leaves the x; component fixed
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and rotates in the x,x;-plane according to the rule for rotating in 2-
dimensional space, i.e.,

SN

X X
R} | %2 | = |(cosf)x; — (sinf)x; |,
X5 (sinf)x, + (cosd )X3 |
For example,
X1 X (xl\
erl/z[’@] = [—-x3 =RL;, 5| %
X3 X 1*3
and
X X X
R‘_,,/z sz = [ X3 | = Rg,lq,-/z xz]-
X5 - X, | X3

Xy
Exercise 5. In terms of the coordinates of X = (xz), calculate the images of
X3

(@) R}(X),
(b) R;/4(X), and
(© RL,;X).

ExAMPLE 8. In a similar way, we may define rotations R} and R; by 8
radians about the x,-axis and the x;-axis. We have the formulas

X, (cosf)x, + (sinf )x,
R02 Xy | = Xy
X3 (—sinf)x; + (cosf)x;
and
X, (cosf)x; — (sinf)x,
R} |x,| = |(sinf)x, + (cosB)x, |-
X3 X3

Note that the algebraic signs for R? are different from those of R} and R;.

Exercise 6. Calculate the images

(a) RXX),

(b) R}/4(X),

(© Rwll/z(erz/z(x)),
(@) R7/A(R7 /(X))



CHAPTER 3.2
Linear Transformations and Matrices

In Chapter 3.1 we examined a number of transformations 7 of 3-space, all

X1
X3 ’

X3

of which have the property that, in terms of the coordinates of X =

the coordinates of T'(X) are given by linear functions of these coordinates.
In each case the formulae are of the following type:

X a\x; + ax, + azx,
T x2 = bl.xl + bzXz + b3X3 .
X5 C1 Xy + Cyxy + C3X3

Any transformation of this form is called a linear transformation of
3-space. The expression

a, a, a;
by, b, bs
€ 6 G

is called the matrix of the transformation T and is denoted by m(T).
We can now list the matrices of the linear transformations in Examples

1-8 in Chapter 3.1.

(1 1 1
3 3 3
mPy=13 1 3| Q)
1 1 1
3 3 3
(1 2 2
3 3 3
mS)y=3% -1+ 3 2
2 2 —1
L 3 3 3
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_ [0 o0 o0
m(Q)=10 1 0} 3
o0 0 1
P -1 4]
m(Q)=|-3% % -—3| @
-1 _1 2
3 3 3 J
(1 —2 2]
3 3 3
mRy=|-% 1 -3 )
2 _2 1
3 3 3 )
t 00
m(D,)=10 ¢ 0} (6)
0o 0 ¢
. (1 0 0
m(Ry )= |0 cosfd —sind| (7
0 sinfd cosf )
, ((cosd O sinf)
m(R}) = 1 , ®)
L—sinfd 0 cosé)
(cos® —sinf O)
m(Rg3)= sinf cosfd O]
L 0 0 1)

1 00
We will denote by id, (read identity), the matrix m(I) = [0 1 0].

0 0 1
As in the plane, if T is a linear transformation with matrix m(7T)
a a, a3
=1b, b, b;|, then we write
€ 6 G
a; a, a;)(x a;x, + ayx, + asx;
bl b2 b3 x2 = b].x] + bz.Xz + b3X3 N (9)
Cp € C3]|X;5 C X+ Cyxy + C3X3
X
and we say that the matrix m(T) acts on the vector | X, | to yield the vector
X3

ax; + a,x, + asx,
byx; + byxy + byxs|.
X, + Cyxy + C3X3
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EXAMPLE 1.
1 2 3)[1] (1+2+3) [6
4 5 6|[1|=|4+5+6|=]15]|,
7 8 9|1 7+8+9 24
1 2 31(0)] (0o-2+3] [1
4 5 6[|—-1|{=[0-5+6|=|1]|,
7 8 9|| 1 0-8+9 1
1 2 3)(x;] [x,+2x,+3x,
4 5 6||x,|=[4x;+ 5x,+ 6x;5].
7 8 9||x, Tx, + 8x, + 9x,
EXAMPLE 2.

0 1 0)(x, X,
0 0 1]|x, X5

We now prove two crucial properties of linear transformations which

X
show how they act on sums and scalar products of vectors. If X = x2] and
X3
bg
Y= Va2l then
Y3
a a a)[[x b4 (a) a, az)(x;+ )
by by byf||xz|+ |y2||=|b1 by bs||x2t ),
€ 6 CGf|(X; )3 €1 ¢ (X3t )y

(ay(x;+y1) + ay(x,+ yy) + as(x3+ y3)
= |bi(x,+y;1) + by(xy+ y2) + b3(x5+ y3)
Le1(x1 + 1) + (X + yy) + e3(x3+ y3)

(a)x; + ayx; + asx; ay tayy,+ a3y,
= |byx; + byx, + byxs |+ [byy+ by, + by y;
L€1X%) + Xy + €35 anteay,tey;
(a; a, a3)[x a a, a3\(n
=1by by by||xy|+ (b1 by b3y,
€1 €2 C3(¥3 € G C3)\Js
a, a; a

Thus, for the associated transformation T with m(T)=|b, b, b;|, we
€1 €& G
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have
T(X+Y)+ T(X)+ T(Y). (10a)
Similarly, we may show that
T(rX) = rT(X) (10b)

for any scalar r.
Exercise 1. Prove the statement (10b).

Conversely, if T is a transformation such that T(X + Y) = T(X) + T(Y)
and T(rX) = rT(X) for all vectors X, Y and scalars r, then we may show

X1
that the coordinates of T'|x,| are given by a set of linear equations in the
X
X ’
coordinates of X = xz}. Specifically,
X3
X ((x, 0) 0
Tx2=T0+x2+O”
X3 Lo 0) Ix;
I 0 0
=Tx|0|+ x3|1|+ x3(0
[l ~f)
1 0 0
=x,T10|+ xT|1|+xT|0|
0 0 1
1] % 0] || (0] |% )
Let T|o|=1|b,|, T|1|=|b,|, T|0| = |b;|. Then
0 9 0) | 1 3
(x;) a, a,) a3)
Tlxy|=x1by|+ x5|b5 | + x3|b4
[*3) 1) €2 )

(@, x;) ax,) asx;)
[C1%1 €%, | C3X;3 |

(a,x, + ayx, + azx;
= blxl + b2x2 + b3X3
C1X + Cyxy + C3X3

as predicted. In summary, we have:
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Theorem 3.1. Let T be a transformation of 3-space. Then T is a linear
transformation if and only if T satisfies the conditions

TX+Y)=T(X)+ T(Y)
and
T(rX) = rT(X)

for all vectors X and Y and all scalars r.

Let T be a linear transformation of R>. Let L be a straight line in R®. By
the image of L under T, we mean the collection of vectors T'(X) for all
vectors X with endpoint lying on L. If II is a plane, we define the image of
II under T in a similar way.

Theorem 3.2. Let T be a linear transformation of R®. The image of a straight
line L under T is either a straight line or a point. The image of a plane 11
under T is either a plane, a straight line, or a point. The image of R* under T
is either R®, a plane, a straight line, or a point.

The proof proceeds in exact analogy with the proof in dimension 2 (proof
of Theorem 2.2 in Chapter 2.2).

Exercise 2. Describe the images of a line L ={A + tU|¢ real} under a linear
transformation 7.

Exercise 3. Let T be a linear transformation. Let IT be the plane {C + fU + sV |, s
real}, where U and V are linearly independent. Show that the image of IT under T is
the collection of vectors T(C) + tT(U) + sT(V). Under what conditions will the
image be a single point? When will the image be a line?

Exercise 4. The image under T of R = {x,E, + x,E; + x3E;| x,, x,, x; real} is
{x,T(E)) + x,T(E,) + x;T(E,;)}. Under what conditions on T(E,), T(E,), and
T(E,) is this all of R3?



CHAPTER 3.3

Sums and Products of Linear
Transformations

If T and S are linear transformations, then we may define a new transfor-
mation T + S by the condition

(T+ 8)X)=T(X)+ S(X) for every vector X.

Then by definition, (T + S)X+Y)=TX+Y)+ SX +Y), and since T
and § are linear transformations, this equals 7(X) + T(Y) + S(X) + S(Y)
=TX)+ SX)+ TY)+ SY) =(T+ S)X) + (T + S)Y). Thus for ev-
ery pair X, Y, we have

(T+S)X+Y)=(T+ S)X)+ (T+ S)Y).
Similarly, we may show
(T + S)(X) = t(T + S)(X).

Therefore, by Theorem 3.1, T + S is a linear transformation. It is called the
sum of the transformations 7" and S.

ap ap 4

a,, 4y ax| and the matrix of S is
a3 43 d4s

If the matrix of T is m(T) =

bll blZ b13
m(S)={b,, by, b,;|, then we may calculate the matrix m(T + S) of
b31 b32 b33
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T + S as follows:

X, X, X,
(T+S)X2 =T.X2 +S x2
x3 X3 x3
a;; ap api|ix by by bil|x
=\ay ay ay||x|+ by by byl|(x;
a3 4y Az (X3 by by b f|x;
ayx, + apx; +apx; byyxy + bpyxy + bysx,

= |ayx; + apXy + ayxy | + | byyxy + byx;y + bysx;

(F31%1 T+ 3%y + a33x; by x) + byyx; + byyx,

'(a” + by)x,+ (a + biy)x, + (a3 + bis)x;
= |(ay + by)x, + (ay + by)x, + (ay + by)x;
(@31 + by))xy + (ax + by)x, + (az3 + biz)x;

ay+ by ap+by, ap+bs|x

= |ay + by ayn+by aytby|lx.

(9t by ap+ by, ay+ by||x;

Thus the matrix for the sum of two linear transformations is just the matrix
formed by adding the corresponding entries in the matrices of the two
linear transformations.

We define matrix addition componentwise by the formula:

a, 4ap 4apg by by by ay+by ap+b, a;s+by;
Ay Ay ap |+ |by by byl =|ay+ by apnt by apt byl
as axp azp by b3y by ay + by apn+ by an+ by

M

Therefore we may write the matrix of T+ S as the sum of the matrices
of T and S:

m(T+ S)=m(T)+ m(S). Q)

Exercise 1. For any linear transformation T and any scalar ¢, we define a new
transformation ¢T by the condition: (¢:T)X) = ¢T(X) for all X. Show that ¢T is
a linear transformation by showing that (¢:7)X +Y) = (¢tT)X)+ (:T)Y) and
(tT)(sX) = s(tT)(X) for any vectors X, Y and any scalar s. For any matrix, we
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define the product of the matrix by the scalar ¢ to be the matrix whose entries are
all multiplied by 7, i.e.,

ay ap ap tay, la), tapy
llay axy ax|= |tay tay tay|- 3
a3 axp as tay) lazp lasy

Show that m(¢T) = tm(T).

ExAMPLE 1. We may use the above ideas to calculate the matrices of some
of the transformations we used in Chapter 3.2, e.g., if S is reflection in the
x;-axis and T is projection to the x;-axis, then S =2T — I, so

m(S)y=mQRT—-1)=mQ2T)— m(I)=2m(T)— m(I)

00O 1 00 -1 0 0
=210 0 O[—(0 1 O|=|0 —1 Of
0 01 0 01 0 0 1

As in the case of the plane, we may define the product of two linear
transformations T and S to be the transformation R given by R(X)
= S(T(X)).

We write R = ST, and we call R the product of S and T.

ExaMPLE 2. Let X be reflection in the x,x,-plane and J be reflection in the

x,x5-plane. Then
Xa| =] X2 Xy =] X2 |
X3 — X3

X3 X3

J and K(J(X))=K

Xy —X
Also, J(K(X))=J[ X, }=[ x, |, so KJ = JK.

— X3 — X3

Exercise 2. Show that if S and T are any linear transformations, then ST and TS
are linear transformation, using Theorem 3.1.

ExaMPLE 3. Let P be projection to the x,x,-plane and let Q be projec-

X1
tion to the x,x;-plane. Describe PQ and QP. We find PQ x2] =
X3
X 0 0 X 0
PlQ|x, =Px2=x2.AISO,QPx2=x2.
X3 X3 0 X3 0




138 Linear Algebra Through Geometry

Exercise 3. Let R denote projection to the x;-axis and let P denote projection to the
x;X,-plane. Find RP and PR.

ExaMPLE 4. Find PP. Since PP|x,|= P|P|x,|| = P|X,|=|x,|. There-
X3 X3 0 0

fore, PP(X) = P(X) for all X, so we have PP = P.
Exercise 4. Show that RR = R and QQ = Q, where R and Q are as above.

ExampLE 5. Find KQ and QK, when K and Q are the transformations
defined in Examples 2 and 3. We have

X, 0 0 X, X, 0
KQ|%|=K|X|=| X2 |, QK[X|=0Q| X |=]| X |
X3 X3 X3 X3 —X3 — X3
Thus KQ = QK.

Exercise 5. Find KP and PK, and RK and KR, where K, P, and R are the
transformations in Examples 2, 3, and 4.

EXAMPLE 6. Let S be a linear transformation and let I denote the identity
transformation. Find SI and IS. For each X, we have SI(X) = S(X) and
IS(X) = I(SX)) = S(X). Thus S/ = S = IS.

If T and S are linear transformations with matrices

a; ap 4ap by, by by
m(T)=|ay ayp ay| and m(S)= by by by,
asy aszp Qas; by by by

then we know that TS is also a linear transformation, so we may calculate
its matrix as follows. To find the first column of m(TS), we must find the

by,
image of E,, i.e., TS(E,) = T(S(E,)), where S(E,) = | b,; |. Thus
by
ay ap ap||bn ay by + apby + agsbsy,
T(S(El)) =\ay ayp Gy ||by | = |Gy by + ayby + axyb; |
ay a; ay||by a3 by + ayby, + aysbs,

Similarly, we may find the second column of m(TS) by computing
T(S(E,)) and the third column of m(TS) by computing T(S(E,)).

We define the product of the two matrices m(T) and m(S) to be the
matrix m(7TS) of the product transformation 7S. Thus m(T)m(S) =
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m(TS) or

ay ap ap||by by by
ay Ay axp||by by by | =m(TS)
ay axp ayp||by by b

ayby + apby + apbyy apbiy + apby +aby, anby+ apby; + abs;
= |ay by + apby + ayby  ay by + apby, + ayby,  ay b3+ aynby; + ayby |
asbyy + agby + ayby ay by + apby, + ayby, a3 b+ ayby; + ayb;;

“
2 1 2 1 112
ExampLE 7. If m(T) =11 3 1l|land m(S)=|2 3 [1]||, then
3 1 4 1 3 (1
m(T)m(S)
(2-141-242-1 2-141-342-3 2:2+1-142-1
=11-1+3-2+1-1 1-1+3-3+1-3 [1-:2+3-1+1-1]
3-14+1-244-1 3-1+1-344:3 3.2+1-1+4-1
(6 11 7
=(8 13 6
9 18 11
and
(1 1 2)(2 12 9 6 11
m(S)ym(T)=12 3 1j|{1 3 |1||{=|10 12 [11]|
1 3 1)J3 1 |4 8§ 11 9

Note that m(7S) # m(ST) in this case.

When computing the product of matrices in the 3-dimensional case, we
find that each entry is the dot product of a row of the first matrix with a
column of the second. The entry in the second row, third column, of
m(T)m(S) is given by the dot product of the second row of m(T) with the
third column of m(S). We indicate this entry in the examples above.

Exercise 6. Calculate the products of the following matrices:
2 1 0\/7 01 3 0 0\/2 0 6 01 0\/1 2 3
03 3411 1) o1 0ff1 1 1} 1 0 OJ{4 5 6}
0 2 1/\2 1 2 0 0 3/\1 3 2 00 1/\7 8 9

Exercise 7. Each of the transformations J, K, P, Q, R of Examples 1, 2, and 3 has
the property that the transformation equals its own square, i.e., JJ = J. Verify that
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m(J) - m(J)=m(J), and verify that each of the matrices of the other linear
transformations equals its own square.

Exercise 8. Since PR =0 as linear transformations, it follows that m(PR)
000

= m(0)=(0 0 0). Verify that m(P)m(R) =0 = m(R)m(P).
000

0 0 1

Exercise 9. Show that (1 0 0) has cube = id but a square = id. Describe the
010

linear transformation with this matrix.

As in the 2-dimensional case, the distributive law of matrix multiplication
over matrix addition is a consequence of this law for linear transformations.
The same is true for the associative laws of matrix multiplication and
matrix addition. Thus

(m(Tym(S)ym(R)=m(TS)m(R)=m((TS)R) = m(T(SR))
= m(T)ym(SR) = m(T)(m(S)m(R)), ®)

m(T)ym(S)+ m(T)ym(R)=m(TS)+ m(TR) = m(TS + TR)

=m(T(S+ R))=m(T)m(S + R)

= m(T)(m(S) + m(R)). (6
U

Exercise 10. Let U be a unit vector with coordinates (uz). Show that the projec-
U3

“12 Uty Uz
tion P to the line along U has the matrix jy,u, u usu, |-

Ujus Uyl “32.

Exercise 11. Show that the matrix for the reflection R through the line along U is

2“% -1 2“2“1 2“3“]
m(R)=| 2uu, 2u}—-1 2uu,

2uiuy  2upuy  2ui— 1

1/\3

ExampLE 8. If U= | /‘/;T , then, defining P and R as in Exercises 10

1/\3
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and 11,
) i
m(Py=13 3 3|=3[1 1 1]
TR

while

m(R)=2m(P)—-m(I)=§[2 1 2|
2 2 2

—
38
38

——

2
Exercise 12. Find the matrices of projection to the line along U = %( 1) and of
2

reflection through this line.

§1. Elementary Matrices and Diagonal Matrices

As in the 2 X 2 case, there are certain simple 3 X 3 matrices from which we
can build up an arbitrary matrix. We consider matrices of three types:
shear matrices, permutation matrices, and diagonal matrices.

(1) Shear Matrices: For i # j, let e = matrix with all I’s on the diagonal
and s in the i, j position and 0 otherwise. For example,

1 s 0 1 00
eiY2= 0 1 0f e§3= 01 s/
0 0 1 0 01

(2) Permutation Matrices: p; = matrix which is obtained from the identity
by interchanging the i’th and ;’th rows and leaving the remaining row
unchanged. For example,

0 0 1 1 0 0
Pi3=1(0 1 0} Px=10 0 1|
1 00 010

A matrix of one of these types is called an elementary matrix. If e is an
elementary matrix and m is any given matrix, it is easy to describe the
matrices em and me.

In the following discussion, we set

a, a, a
¢ & G
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EXAMPLE 9.
1 0 0)(a;, a, a, a, a, a,
e;lm =S 1 0 bl b2 b3 = |sa, + bl sa, + b2 Sas + b3 N
0 0 1lleg ¢ ¢4 ¢ ¢y 5

We see that e5,m is the matrix we get, starting with m, by adding s times
the first row of m to the second row of m and leaving the other rows alone.

Exercise 13. Show that ej,m is the matrix obtained from m by adding s times the
second row to the first row and leaving the other rows alone.

ExawmrLE 10.
a, a, a)(l 0 O a,+sa, a, a;
mes; = |b, by, by||s 1 O|=|b,+sb, b, by,
¢, ¢, ¢||0 0 1 c,+sc, ¢ ¢4
which is the matrix obtained from m by adding s times the second column
to the first column and leaving the other columns alone.

Exercise 14. Describe the matrix mej;.
The preceding calculations work in all cases, and so we have:

Proposition 1. For each i, j with i # j, e;m is the matrix obtained from m by
adding s times the j’th row to the i’th row of m and leaving the other rows
alone. Also, me; is the matrix obtained from m by adding s times the i’th
column to the j’'th column.

1 00
Note: Recall that id = [0 1 0], SO e,.j’.id =e].
0 01
Thus we can instantly remember what multiplication by e; does to an
arbitrary matrix by thinking of e; itself as the result of multiplying the

1 00
identity matrix by e,;.. For instance, €5, = I() 1 0}, so the product e3;id
s 0 1

= the matrix obtained by adding s times the first row of the identity to its
last row. Hence, this is what multiplication by e;; does to any matrix: it
adds s times the first row to the last row.

ExampLE 11.
0 0 1N(a, a, a; c € G
psm=10 1 0||b, b, by|=|b, b, bs|
1 0 Ofjc;, ¢ ¢ a, a, a,

Thus p,;m is the matrix obtained from m by interchanging the first and last
rows and leaving the second row alone.



3.3 Sums and Products of Linear Transformations 143

Exercise 15. Show that mp,; is the matrix obtained by interchanging the first and
third columns of m and leaving the second column alone.

For every permutation matrix p;, the situation is similar to that we have
just found; so we have:

Proposition 2. For each i, j with i # j, p,m is the matrix obtained from m by
interchanging the i’th and j’th rows, and mp; is the matrix obtained from m
by interchanging the i’th and j’th columns.

Again, to remember how p;; acts on an arbitrary matrix m, we need only
look at p;; and remember that p; = p;id.

t, 0 0
We call a matrix |0 ¢, 0| a diagonal matrix.
0 0 1
t, 0 0
ExampLE 12. Letd=|0 ¢ Of.
0 0 4
t;, 0 Olla;, a, a; ta, ta, ta,
dm= 0 t2 0 bl b2 b3 = tzbl t2b2 t2b3 .
0 0 #ijc; ¢ ¢4 136 13¢5 1305

Exercise 16. With d as in the preceding example, calculate md.
By the same calculation as in Example 12 and Exercise 16, we find:

Proposition 3. If d is any diagonal matrix, dm is the matrix obtained from m
by multiplying the i’th row of m by t; for each i, where t; is the entry in d in
the (i, i)-position. Also, md is obtained in a similar way, the i’th column of m
being multiplied by t;.

Exercise 17.

(a) Show that (p,,)* = id and similarly for p,; and p,;.
(b) Show that p3py3 # pr3 pia-

Exercise 18. Show that if

n 0 0 s, 0 0
d=10 t 0| and d4,=|0 s, 0},
0 0 1 0 0 s,

then d,d, = d,d,.
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Exercise 19. Calculate the following matrices:

1 0 0\f/4 0 0\/1 0 O
(a)m=(s10)(050)(010),
0 0 1/\0 0 6/\0 ¢ O
1 0 0\/2 O 0\/0 0 1
(b)m=(001)(0 -2 o)(010).
01 0/\0 0 o/\1 00O

By multiplying elementary matrices together, several at a time, we can
build up all matrices.

Theorem 3.3. Let m be a 3 X 3 matrix. We can find a diagonal matrix d and
elementary matrices e,e,, .. ., e, and f,, .. ., f, so that

m=ee,...edf\fy...f,.

We shall give the proof of this theorem in the next chapter.



CHAPTER 3.4
Inverses and Systems of Equations

Let T be a linear transformation of R>. As in the case of two dimensions,
we say that the linear transformation S is an inverse of T if

ST=1 and TS=1. )
Can a linear transformation have more than one inverse? The answer is
no and the proof is the same as in R% (See Chapter 2.4, page 52.)

ExamPLE 1. If ¢ # 0, then D, , is the inverse of D,.

ExAMPLE 2. The inverse of R,, rotation by # radians around the x,-axis,
then, is R! ;= R, _q.

ExaMPLE 3. Let 4 be the transformation with matrix [(1) (2) 8] The trans-
0 0 3
1 0 0
formation B with matrix |0 3 0| is the inverse of 4, because
0 0 4
X, 1 0 0)(x, X, 1 00 X, X,
AB|x%3|=A|10 1 Olixy||=A4||3 xf[=]{0 2 0|3 x3|=|x,
X3 0 0 1)ix; 1 x 0 0 3|4 x5 X3

so AB = I, and, similarly, B4 = I.

EXAMPLE 4. Let 7 be a plane and let P be projection on the plane 7. We
claim P does not have an inverse, and we shall give two proofs for this
statement.
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Suppose Q is a transformation satisfying PQ = QP = I.

(a) Choose a vector X which is not in the plane 7. Then X = I(X) = PQ(X)
= P(Q(X)).

But X is not in 7, while P( Q(X)) is in 7, so we have a contradiction.
Thus, no such Q exists.

(b) Choose a vector X # 0 with X L . Then P(X) = 0, and so Q(P(X)) = 0.
Thus X = I(X) = Q(P(X)) = 0. This is a contradiction. Therefore, no
such Q exists.

EXAMPLE 5. Let T have matrix

1 -1 0
0 1 =1/
-1 0 1

X1
We claim T has no inverse. Suppose S satisfies ST = 7S = I. Let X = XZ]
Y1 X3
be a vector in R>. Set S(X) = |y, |. Then
)2
Y1
X=IX)=T(S X))=T|):
)3
1 =1 0 \(»n Y= 02
=0 L =1l»n|=| rn=-»
=10 1y =7ty

Since (y, —y)) + (¥, —y3) +(—y, + ;) =0, X lies on the plane: x, +
X, + x3=0. Thus every vector in R® lies on this plane. This is false, so S
does not exist, and the claim is proved.

Exercise 1. Find an inverse for the transformation T which reflects each vector in
the plane x; = 0.

Exercise 2. Find conditions on the numbers a, b, ¢ so that the transformation T

with matrix
a 0 O
0 b O
0 0 ¢

has an inverse S. Calculate S when it exists.

Exercise 3. Find an inverse S for the transformation T whose matrix is

010
1 0 0}
0 01

Xy X2 Xy
Hint: T| x, | =| x; | for every | x; |.
X3 X3 X3
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10
Exercise 4. Find an inverse S for the transformation with matrix (0 0 1).

1 00
a b ¢
Exercise 5. Show that the transformation T with matrix | 24 25 2¢| has no
3a /3b 3c
inverse for any values of a, b, c.
a b c
Exercise 6. Show that the transformation T with matrix | d e f | has
at+d b+e c+f

no inverse for any values of a, b, ¢, d, e, f.

a, a; a
Exercise 7. Let T be the transformation with matrix [b, b, bs]. Suppose that
€y G G
there exist scalars ¢, t,, #3, not all 0, such that
a, b, <
tl as +t2 bz +t3 Cy =0.
as bs C3

(a) Show that there is a plane # such that for every vector X, T(X) lies in .
(b) Conclude that T has no inverse.

Let T be a linear transformation of R>. For a given vector Y, we may try
to solve the equation

TX)=Y M
by some vector X. Suppose S is an inverse of 7. Then
T(S(Y))=TS(Y)=I(Y) =Y,

so X = S(Y) solves (2).
Now let X be a solution of (2). Then

S(Y) = S(T(X)) = ST(X) = [(X) = X.

So S(Y) is the only solution of (2).

We have shown: if T has an inverse, then Eq. (2) has exactly one solution
X for each given Y.

Conversely, let T be a linear transformation which has the property that
Eq. (2) possesses exactly one solution for each Y. We shall show that it
follows that T has an inverse.

Denote by S(Y) the solution of (2). Then T(S(Y)) =Y, and if T(X) =Y,
then X = S(Y). We have thus defined a transformation S which sends each
vector Y into S(Y). By the definition of S, TS(Y) = T(S(Y)) =Y, for each
Y in R3. So TS = I. Also, if X is any vector, set Y = T(X). Then X = S(Y),
by the definition of S, and so X = S(T(X)) = ST(X). Hence I = ST. Thus
we have shown that S is an inverse of T.

Our conscience should bother us about one point. S is a transformation



148 Linear Algebra Through Geometry

of R3; but is it a linear transformation? To answer this question, choose two
vectors, X and Y.

T(S(X)+ S(Y)) = T(S(X)) + T(S(Y)) (since T is linear)
= TS(X) + TS(Y) = I(X) + I(Y) =X+,
)
S(X) + S(Y)
solves (2) with X + Y as the right-hand side. By the definition of S, it

follows that S(X) + S(Y) = S(X +Y). Similarly, S(¢X) = ¢tS(X) whenever ¢
is a scalar.

Exercise 8. Prove the last statement.
We have proved:

Proposition 1. Let T be a linear transformation of R. Then T has an inverse
if and only if the equation
IX)=Y )

has, for each Y, one and only one solution X.

Corollary. If T has an inverse, then
TX)=0 implies that X = 0. 3)

PrOOF. Set Y = 0 in Proposition 1.

Suppose, conversely, that T is a linear transformation for which (3)
holds, i.e., 0 is the only vector which T sends into 0. It follows that the
equation T(X)=Y has at most one solution for each Y. To see this,
suppose T(U)=Y and T(V) =Y. Then

TU-V)=TU)-T(V)=Y-Y=0,
soby (3, U-V=0,orU=V.

We proceed to show that (3) also implies the existence of a solution of
T(X) =Y for each Y. We saw, in Chapter 3.2, that the image of R under
any linear transformation is either a plane through 0, a line through 0, R,
or the origin. Suppose the image of R® under T is a plane 7 through 0. The
vectors T(E,), T(E,), T(E;) all then lie in . Three vectors in a plane are
linearly dependent. Thus we can find scalars ¢,, ¢,, ¢;, not all 0, such that
t, T(E) + t,T(E,) + t;T(E;) = 0. Therefore,

h
while ¢t,E; + t,E, + t;E; = | ¢, | # 0. This contradicts (3). Hence, the image
5]
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of R® under T cannot be a plane. In the same way, we conclude that the
image cannot be a line or the origin, and so the image must be all of R,
This means that for each Y, there is some X with T(X)=Y. So the
existence of a solution is established. We have just proved: If T is a linear
transformation of R* such that (3) holds, then Eq. (2) has one and only one
solution for each Y.

By Proposition 1, it follows that 7 has an inverse. Thus we have:

Proposition 2. Let T be a linear transformation of R. If (3) holds, i.e., if
T(X) = 0 implies that X =0, then T has an inverse. Conversely, if T has an
inverse, then (3) holds.

We now need a practical test to decide whether or not (3) holds, given
the matrix of some linear transformation 7. In two dimensions, the test was

this: If (a Z ) is the matrix of a transformation A, then 4 has an inverse if
c

and only if ad — bc # 0. We seek a similar test in R>.
Let T be the linear transformation whose matrix is

a, a, a
b, b, b;]|.
€ 6 G
We call the vectors
a, b, €y
A= a, |, B= b2 N C= Cy
as by C3
X
the row vectors of this matrix. The vector X = | X, | satisfies 7(X) = 0 if and
X3

only if

a,x, + ayx, + a;x; =0,
bl.xl + bzXz + b3X3 = O, (4)

c1X; + x5+ c3x;=0.
X
X2
X3

A-(BXC)=0. (5)

On p. 124, Chapter 3.0, we showed that (4) has a nonzero solution X =

if and only if

Combining this last result with Proposition 2, we obtain:
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Theorem 3.4. Let T be a linear transformation of R® and denote by A, B, C
the row vectors of the matrix of T. Then T has an inverse if and only if
A-BXC)#0.

Let T be a linear transformation of R® and assume that A - (B X C) # 0.
We wish to calculate the matrix of 7. Set

U vy w,
m(T™ Y= |u, v, wz},
Us vz Wy
1 u, 1 U,
where the u;, v;, w; are to be found. Then T 'o|= [uz], SO [0 =T|u,|,
0 Uy 0 Us

which we can write
au; + au, + aju; =1,
bu, + byu, + byuy; =0, (6)
cuy + cyuy + cyu; = 0.
Set A=A - (B X C). Then we have

A-(BXC)=A,
B-(BXC)=0,
C-BxXC)=0,
and hence, using the hypothesis A #= 0,
BXxXC _
A A= 1,
BXC
B A =0,
.BXC _
C A 0
u
Thus {u, | = B X C/A satisfies (6), so
U
r(BXC)- '(‘)\
A ’
0]
and so
(1
BZ(C = T——I 0l (7)
0

Now recall that by Exercise 6, Chapter 3.0,
A-BXC)=B-(CXA)=C-(AXB).
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By a calculation like the one which led to (7), we get
C X A = T—-l O
A

and

By the definition of the cross product,
by by]
€ G
by b,
G G
b, b,
1 G

BXC= and

CXA=

and

AXB=

We conclude that

n_ 1
m(T )_A c; ¢f |43 a| |by by|[ ®)

Note that

A=A-(BXC)=aq IZ IZZ
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1 2 3
EXAMPLE 6. If m(T)=|1 0 — 1], find m(T ™).
01 1
’1 1 1 O 0 1
=1-14+2(-1)+3-1=2.
By (8),
1 —(-1) -2 Lo -1
m(T-y=1l-1 —(=1) 4 |=|-4 & 2
1 -1 =2 TR -

Exercise 9. Verify that the matrix just obtained for m(T ~!) satisfies m(T)m(T ")
= m(I) and m(T ~"Ym(T) = m(I).

Exercise 10. Use (8) to find inverses for

010
@if{1 0 0})
0 0 1
10 0
®fo o -1}
01 o0
55 1
©l1 0 o)
0 0 1

Let m be a matrix which possesses an inverse matrix m ™!, i.e.,

mm ™' = m~'m = identity matrix = id.
a, a, a;
Let m=(b, b, b,;|. We shall give a new approach to the problem of
¢ 6 G
finding the entries in the matrix m ™",
Given a vector i; , consider the following system of equations for the
3

unknowns x;, x,, X;:
a;x, + ax, + azx;=y,,

bix) + byx; + byxy =y, ®
C1X) + Xy + c3x3=y3.

Suppose we can solve the system (9) be setting
xy=diy+dyy,+dsys,
X =e ) tey,teys, (10)
x3=fini+fora+ f103,
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where d,, ¢;, f; are certain numbers which do not depend on y,, y,, y;. We
define a matrix n by

d d, d,
n=\|e € e3], (l 1)
h L
Then (9) and (10) state that, setting
le D1
X=X and Y=|);|,
X3 Y3

m(X) =Y and n(Y) = X. So
nm(X) = n(m(X)) = n(Y) =X
This holds for each vector X. Hence
nm = id.
It follows that
n=(nm)(m~)y=idm™y=m"".

We thus have the following result:

The matrix n defined by (11) is the inverse of the matrix m.

1 2 3
EXAMPLE 7. m = [1 0 —1/|. Find m~"' by the preceding method.
01 1

The system (9) here is
X1 +2x,+3x3 =y,
Xy - X3=)2,
X, + XxX3=y;.

We can solve this by eliminating x, from the last equation by setting
X3 =)3— X3.
Inserting this expression in the first two equations yields
X1+ 2%, +3(y3 = X2) = y1s
X = (V3= X2) = )2
or
X = X =y,— 3y,
Xp+tX=y,+ 3.
Solving this system for x, and x,, we find
2x1 =1+ 32— 2y,
2= (y2+p3) = (N = 3y3)= =yt 2+ 4y,
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)
;=3 +3iya— )
Xp=—3y1+3y:+2;,
and
X3=3 Y1~ 3)2" Vs>
since

— — =1 -1 —
X3=Y3— X =3 )1~ 2)2" )3
Thus, here,
d, d, d; 3
ml=le e e|=|-

fl f2 f3 % "% -1

To our great relief, the answer we found agrees with our earlier answer to
Example 6.

Nl =
|
—

Exercise 11. Using the method just described, find inverses for the following
matrices:

010
@1 0 0}
0 01
5 5 1
® 111 0 0}
001
1 -1 2
©le o0 1}
3 02 1

Exercise 12. Using the methods just described, find an inverse for
1 a b
01 ¢}
0 01
1 s §?

Exercise 13. By computing A - (B X C), show that || ; ;2| has an inverse pro-

1 u o
vided s, ¢, u are all distinct. Hint: Simplify the expression you get for A - (B X C),
writing it as a product.

Exercise 14. S and T are linear transformations of R® which have inverses. Show
that ST has an inverse and that (ST)™!'=T~!§ 1.

Exercise 15. S is an invertible linear transformation of R, D is a linear transforma-
tion of R3, and T = S ~!DS. Show that

T?=8"'D%s, T*=S5"'D3%.
Exercise 16. n is a 3 X 3 matrix such that n°> = 0. Show that

G(d+n)""'=id —n+nx
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0 a b
Exercise 17. Set n =(0 0 c). Show that n® = 0. Using Exercise 16, find the

0 0O
. 1 a b
inverse of id+n={0Q 1 ¢]. Compare your result with the answer to Exer-
0 0 1
cise 12.
1 0 )
Exercise 18. For what values of a, b, ¢, d does [ 0 g b | have an inverse?
0 ¢ d

Calculate the inverse when it exists.

We defined the inverse S of a linear transformation T by the two
conditions:

() ST=1
and
(i) TS=1.

Suppose that only one of the two conditions is satisfied, say, (i) holds. Does
(ii) follow?

Proposition 3. Let S, T be linear transformations of R® such that ST = I.
Then TS = I.

ProOOF. Choose a vector X such that 7(X) =0. Then X = I(X) = ST(X)
= §(0) = 0. Then, by Proposition 2, T has an inverse, T "', with T~'T
=TT '=1. Since ST=1, S=8I=S(TT-")=(ST)T "' = IT""
=T '=T""'. Hence TS = T(T ") = I.

Exercise 19. Let S, T be two linear transformations. Show that if the product ST

has an inverse, then S has an inverse and T has an inverse.

§1. Inverses of Elementary Matrices and Diagonal
Matrices

Recall the elementary matrices ¢; and p; that we studied in Chapter 3.3.
Let us find the inverses of these matrices.

1 0 0){1 0 O 1 00
ExamPLE 8. e5ie5;,=10 1 0]//]0 1 O|=| 0 1 0|. Choosing
s 0 1JLlr O 1 s+t 0 1

= —y, this gives e3,e;,° = id, and replacing s by —s and ¢ by s, we get
e3—ise§| = id. SO (e;l)_l = e3—is.

Exercise 20. Show that (e3;) ™! = e3;*.

Exercise 21. Show that (ef,) ™! = ej5°.
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In the general case, for all j, j, and s, a similar calculation gives us:

Proposition 4. (¢)) ™' = ¢;°.
0 01

EXAMPLE 9. Recall that p;; = (0 1 0. We know that for each matrix m,
1 00

psm is obtained from m by interchanging the first and third rows and
leaving the second row alone. Hence,

P3Py =id,
SO (PBI)—I = P31

Exercise 22. Find (p;;)~".
In the general case, we have:

Proposition 5. For every i, j, i # J,

(pﬁ)—l=Pij‘

Next, consider the diagonal matrix

t, 0 0
d=|0 ¢, 0]
0 0 1

If any of the numbers ¢, ¢,, ¢; is 0, then by Theorem 3.4, d has no
inverse. If all ¢, # 0, we have

t, 0 O|fl/ty;, O 0

0 7 0| 0O 1/, O |=id,
0 0 5| O 0 1/t

1/t;, O 0
sod™'=| 0 1/t, 0 |. Thus we have:
0 0 1/4

Proposition 6. A diagonal matrix d has an inverse if and only if its diagonal
entries are all 0, and in that case d~" is the diagonal matrix whose
diagonal entries are the reciprocals of those for d.

We shall now show that, by multiplying a given matrix m by suitable
elementary matrices, we can convert m into a diagonal matrix.
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a 4 a4
Let m=|b, b, bs|. If a,# 0, we can choose ¢ so that b, + ta; = 0.
€ & G
Then
a; a a;
em= |0 by+ta, by+ta;].
¢ c, c3

Similarly, we can choose s so that
a, a, a,
e§1e2'lm =|0 b2 + ta, b3 + ta, .
0 c,+sa, c;3+ sa,

a, a4, a3
Thus e5,e5,m = [0 x |- Similarly, we can find r, g so that
0 z w
a 0 O
esieymenefs =10 x y| (12)
0 z w

If a, = 0, either m is the zero matrix or some entry of m is # 0, say, b; # 0.
Then

a a, a by b, b
mpy;=|by b, by| and pmp;;=|a; a, a|
C3 6 € €3 6 &

Since b; # 0, we can apply formula (12) to the matrix p,,mp,; and get

by 0 0
esienpimpienes =10 x vl (13)
0 z w

If x # 0, we can proceed as earlier and find scalars 7, j so that (2) yields

4 b 0 O
epesien praMpiseeies= |0 x 0l
0 0 u
The right-hand side is a diagonal matrix. If x =0, we consider two
possibilities. If y, z, w in (13) are all 0, then the right-hand side of (13) is a
diagonal matrix. If at least one of y, z, w # 0, say w # 0, we can multiply
the left-hand side in (13) on the left by p,; and on the right by p,; and
obtain
b

0
Pe3ien Prmpienehpyn =0 w
0 y

w
X N O
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where now w # 0. Proceeding as we did earlier when we had x # 0, we find

that
4 b; 0 0
enpynesenPrmpieehpyess =0 w 0
0 0 u
which is again a diagonal matrix. So in every case, we can find elementary
matrices ey, . . ., &, fi, . . ., f; so that

ee,...emfif,...fi=d,
where d is a diagonal matrix. It follows, by multiplying the last equation by
-1
e; ', that

— -1
e...egmf ... fi=e d
Continuing, we obtain
= ! —-1,-1
mfi...fi=e  ...e; ‘e d,
and
— -1 —1,—1ge—1lp—1 -1
m=e_ " ...ey e dff fil;...fi.

Note that the inverse of an elementary matrix is again an elementary
matrix. We have thus proved:

Theorem 3.5. Let m be a 3 X 3 matrix. Then we can find elementary matrices
8-> 8> My ..., hy and a diagonal matrix d so that

m=g g ...gdhh, ... h. (14)

ExAMPLE 10. Let us express the matrix

1 10
m=13 1 2
5 2 4
in the form (14),
1 1 0]
es’m=0 -2 2|,
s 2 4
1 1 0
ex’en’m=10 -2 2|,
0 -3 4]
1 1 0]
en’%es’es’m= 10 -2 2
o 0 1

Also,

1 1 0 1 0 0
0 —2 2lep'=l0 -2 2
0 0 1 0 0 1
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and
1 0 O 1 0 O
0 —2 2lep'es={0 -2 0|
0 0 1 0 0 1
1 0 0]
Setting d={0 —2 0|, we thus have ej*/%; %;,’mep;lel;=4d, so m

0 1)

_ 3,5 ,3/27 —11
= 32193133{ de;; e, or

1 1 0] (1t oo)ft o 0]f1 0 O
3 1 2(=(3 1 0{l0 1 0{l[0 1 o0
52 4, (0 0 1J|5 0 1J0 3/2 1

1 0 Off1t 0 0]|f1 1 O
0 -2 0fj0 1 =140 1 O]}
0 0 1Jj0O 0 1O O01

X

Exercise 23. Express the following matrices in the form of (14):

001
@11 0 o}
010
1 30
® 12 0 0}
0 00
111
©fo 2 2}
003

§2. Systems of Three Linear Equations in Three
Unknowns

We consider the following system of three equations in three unknowns:
a\x; + ax, + azx; = uy,
bl.xl + b2x2 + b3X3 = uz, (15)
Xy + Cyxy + C3xX3=u3.

For each choice of numbers u,, u,, u;, we may ask: Does the system (15)
have a solution x;, x,, x;? And if (15) has a solution, is this solution
unique?

We may write the above expression in matrix form by introducing the
linear transformation 7" with matrix

a; a4, a4
m= b, b, bs|.
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Then the system (15) may be written

TX)=1, (16)
X1 U
where X is the vector [xz and U = |u, |. We call (16) the nonhomogeneous

system with matrix m.
If the matrix m has an inverse, then the linear transformation 7 has an
inverse T ~!. We then have

T(T~'(U)) =(TT ") (U)=1;
so X = T~!(U) is a solution of (16), and, conversely, if 7(X)= U, then

X=T"YTX))=T"'(U).
So there is a unique solution vector X for each choice of U.

0
0| is the unique
0

0
o|=T7""
0

In particular, if U=0, we find that X =

solution of the system
T(X) =0. (17

This system, with the zero vector on the right-hand side, is called the
homogeneous system associated with the system (15).

No matter what the matrix m is, the homogeneous system has at least
0
0
0
of the homogeneous system, and we have seen above that if m has an
inverse, then the trivial solution is the only solution of the homogeneous
system.

But what if m does not possess an inverse? Will the system (17) then have
a nontrivial solution? Proposition 2 of this chapter tells us that the answer is
yes.

As in the 2-dimensional case, we obtain the following three general
results.

one solution, namely, the solution X = | |. This is called the trivial solution

Proposition 7. The system (16) has a unique solution X for every U if and only
if the transformation T has an inverse.

Proposition 8. The homogeneous system (17) has a non-trivial solution if and
only if T fails to have an inverse.

In the case that T fails to have an inverse, the general solution of (16) is
described as follows.

Proposition 9. If Xisa particular solution of (16), so that TX) = U, we may
express every solution of (16) in the form X + X", where X" is a solution of the
homogeneous system (17).
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ExaMpLE 11. Find all solutions of the nonhomogeneous system
(.xl +X2+x3= 1,

3 2xl - x2 = 5,

If x,;, x,, x5 solves the corresponding homogeneous system

'xl + XZ + .X3 = 0

4 2x1 - x2 = 0,

5x,+2x,+3x;=0,

then 2x, = x, and x, +2x;+ x;=0, so x;= —3x,. Hence, the most
X
general solution X" = x;] of the homogeneous system is
X3
X1
X = 2x,
- 3x,

A particular solution X of the nonhomogeneous system is

2
—1l
0

By Proposition 9, the general solution of the nonhomogeneous system is
then

X=

2 X, 2+ x,
X =|— l + 2x| = |- l + 2x, ,
0 —3x, - 3x,

where x, is an arbitrary real number.

§3. Two Equations in Three Unknowns

In the system (15) under consideration, the number of unknowns equals the
number of equations. Suppose we are given a system of two equations in
three unknowns:

a\x; + ayx, + a;x; = uy,

b,x, + bzXz + b3x3 = u2 . (18)
The homogeneous system corresponding to (18) is
a\x, + a,x, + a;x; =0, (19)

bl.xl + b2x2 + b3X3 = 0.
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x a b
Setting X = x; , A= a; ,B= b; , we may write the system (18) as
X3 a; b,
A-X=u,, B-X=u, (18)
and the system (19) as
A-X=0, B-X=0. (199

Proposition 10. If X is one solution of (18), then any solution of (18) can be
written as X + X", where X" is a solution of the homogeneous system (19).

ProOF. If A-X=A-X=u, and B-X=B-X=u,, then A-(X-X)=0
and B- (X —X) =0, so X — X is a solution X" of (19).

If A and B are linearly independent, then the solution space of (19) is just
the line perpendicular to the plane spanned by A and B, i.e., the line along
the nonzero vector A X B.

If A and B are linearly dependent, but not both 0, then the solution space
of (19) will be the plane through the origin perpendicular to the line
containing A and B.

If A =B =0, then the solution of (19) is all of R>.



CHAPTER 3.5
Determinants

Let m be the matrix
a, a, a
b, b, by
¢ 6 G
Let A, B, C denote the row vectors of this matrix. The quantity
A-(BXC)=B-(CXA)=C-(AXB)

is called the determinant of m and is denoted det(m) or

a, a, a
€ € G

Expressed in these terms, Theorem 3.4 of Chapter 3.4 says that m has an
inverse if and only if det(m) # 0. In Exercise 6 in Chapter 3.0, we saw that

A-(BXC)=B-(CxA)=C-(AXB)

Also AXB=—-B XA.
In what follows, we shall frequently make use of these relations.

() If two rows are interchanged, the determinant changes sign.

PrOOF.
by b, by
a, a, a;|=B-(AXC)=B-(—CXA)=-B:(CXA)
€ G G
a, a a
=_A‘(BXC)=—'b] b2 b3.

€ 6 G
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Interchanging the last two rows, we get

a, a4 a; a, a, a

€1 & G=A-(CXB)=—-A-(BXC)=—(b, b, by|.

by b, by ¢ €6 G
Finally, interchanging the first and third rows,

¢ 6 €G3 a a a3

bl b2 b3=C'(BXA)=-C'(AXB)=—b] b2 b3.

a, a, a, Cp € G

Thus (i) is proved.

@ii) If a row is O, then det(m) = 0.

Proor. If A=0, det(m)=0-(BXC)=0, and if B or C=0, det(m) =

A-(0XC)or A-(BXx0), and so det(m) =0.

(iii) If rwo rows are equal, then det(m) = 0.

ProoF. If A =B, det(m) =A - (A X C) =0, by Chapter 3.0., p. 121. Simi-

larly, if A=C, det(m)=0. If B=C, det(m)=A-(BXB)=A-0=0. So

(iii) is proved.

(iv) Suppose the three rows A, B, C are linearly dependent. Then det(m) = 0.

Proor. If B and C are linearly dependent, then B X C =0, so

det(m)=A-(BXC)=A-0=0.
If B and C are linearly independent, then A = ¢,B + ¢,C, and so
det(m)=A-(BXC)=(¢;B+¢,C)-BXC

=¢cB-BXC)+c,C-(BXC)=¢,0+c,0=0,

so (iv) is proved.

(v) Suppose the three rows A, B, C are linearly independent. Then det(m) + 0.
X1

x;] is a vector that m sends into 0, then
X3

Proor. If X =

a, a, a;)(x 0

by b, by||x,|= ’

€ 3|5 0

so A-X=0,B-X=0, C-X=0. By Proposition 1, Chapter 3.0, we con-
clude that X- X =0 and so X =0.

So m sends only 0 into 0. By Proposition 2 of Chapter 3.4, it follows that
m has an inverse, and so by Theorem 3.4 of Chapter 3.4, det(m) = 0.
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Putting (iv) and (v) together, we have:
(vi) det(m) # O if and only if the rows of m are linearly independent.
Exercise 1. Show that (iii) and (ii) are consequences of (iv).

(vii) If a scalar multiple of one row of a matrix is added to another row, the
determinant is unchanged.

PrOOF.
a, a, as
b, + ta, b,+ ta, b3+ta3=A-[(B+tA)><C]
€y ¢ C3

=A- (BXC+AXC)
=A-(BXC)+tA-(AXC)

a, a, a;
€ G G

Similar reasoning gives the result in the other cases.

Exercise 2. Verify (vii) for the case when ¢ times the last row is added to the first
row.

§1. The Transpose of a Matrix

a, a, a;
Letm=|b, b, b;|. Wecall the line through a,, b,, c; the diagonal of m.
G 6 G

The following pairs of entries lie symmetrically placed with respect to the
diagonal:
(ay,b)), (a3,¢)), (b3,¢,).

Let us interchange the elements in each pair, but leave the elements on the
diagonal alone, and write down the matrix this gives:

a, b, ¢

a, b, ¢,

as by ¢
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We call this new matrix the transpose of m and denote it by m*. Note that
the columns of m* are the rows of m and the rows of m* are the columns of
m.

(viii) det(m*) = det(m).

PROOF.
b, ¢ a, ¢ a, b
by ¢, a; ¢ a;, b,
= a1b203 - alC2b3 - bla2C3 + b102“3 + Clasz - Cla3b2
b, b b, b b, b
det(m)=a,| > 3l—ay ! l+a| ! 2
Ccy €3 ¢, ¢ ¢, ¢

= a,byc; — a,byc, — aybicy + aybye, + azh ey — asbye .
Thus det(m) = det(m*), as asserted.
We can use this result to give another characterization of matrices with
determinant # 0.

(ix) det(m) # O if and only if the columns of m are linearly independent.

Proor. If det(m) # 0, then det(m*) # 0 by (viii). Hence, the rows of m* are
linearly independent by (vi). But the rows of m* are the columns of m, so
the columns of m are independent.

Conversely, if the columns of m are independent, then the rows of m* are
independent, so det(m*) % 0 and det(m) # 0. The statement is proved.

Is the analogue of (vii) true when columns are used instead of rows?

ExaMPLE 1. Fix a matrix

a, a, a,
m= bl b2 b3 5
¢ 6 G

let ¢ be a scalar, and set
a, a,t+ta a,
m,=|b, b,+ th; b,|.
¢ ¢ttt ¢
Then
a, b, 9|
mF=|a,+ta, by+1th, c,+ tc;|.
as by C3
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By (viii),
det(m,) = det(m}).
By (vii),
a by ¢
det(m*)=|a, b, c,|=det(m*).

Using (viii), we again get det(m*) = det(m), so det(m,) = det(m). Thus

a, a,+ta; a, a, a, a
bl b2 + tb] b2 = bl b2 b3 N
¢, ¢t ¢ C, ¢ ¢

and so the analogue of (vii) holds in this case.

Exercise 3. Show that

a, + tay; a, a, a a, a;
bl + tb3 b2 b3 = bl b2 b3 .
Cy + ic3 €y €3 c; € (3

Reasoning as in Example 1 and Exercise 2, we find that:

(x) If a scalar multiple of one column of a matrix is added to another column,
the determinant is unchanged.

§2. Elementary Matrices

Recall the elementary matrices e,.j’. and p; we studied in earlier chapters. Let
us find their determinants.

EXAMPLE 2.
1 ¢+ O
det(e;;) =(0 1 o=1|1 0'—tlo 0|+0=1.
00 1 0 1 0 1

(xi) For every i, j, t, det(e;) = 1, and for every 1, j, det(p;) = — 1.

Exercise 4. Prove (xi).
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a a4, a4,
ExaMpLE 3. Let m = |b, b, b;|. Then
€ G G

a,+th, a,+1th, a;+ thy
epm=| b, b, b,
< &3 €3

Hence, by (vii), det(e[,m) = det(m).
ExAMPLE 4. Let m be as before. Then
a, ay,+ta, a,
me|t2 = bl b2+ tbl b3 .
¢ et iltey o
Hence, by (x), det(me],) = det(m).
EXAMPLE 5. Let m be as before.
¢ 6 G

pim=|b, b, bs|.
a, a, a

Then, by (i), det(p,3m) = —detm. By (xi), det(p,3) = — 1. So we have
det( p,3m) = (det(p,;))det(m).

Exercise 5. Show that for each matrix m,
det(ej3m) = det(e{3)det(m)
and

det(mejs) = det(m)det(efs).

Exercise 6. Show that for each matrix m,

det( pjym) = det( py)det(m).

Reasoning as in the preceding examples and exercises, we find:

(xii) For every i, j, t and every matrix m,

det(e;m) = det( e} )det(m)
and

det(me;) = det(m)det(ej).
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Also:

(xiii) For every i, j,
det( p;m) = det(mp;) = (detm)(det p,j)

t, 0 0 a, a, a
Let d = 0 t2 0 and m= bl b2 b3 . Then
0 0 1 € & &

ha, ta, ta,
3¢, 136, [363
If A, B, C are the rows of m, then tA, 1,B, 1;C are the rows of dm. Hence
det(dm) = t,A - (1,B X £;,C)
= tltzt3A . B X C = t|t2t3det(m).

Also, det(d) = t,t,t;. Thus we have proved:

(xiv) If d is a diagonal matrix and m is any matrix, then det(dm) = det(d)
det(m). Similarly, we get det(md) = det(m)det(d).

In Theorem 2.7 of Chapter 2.5, we showed that if a, b are two 2 X2
matrices, then det(ab) = (deta)(detb). We now proceed to prove the corre-
sponding relation for 3 X 3 matrices.

Theorem 3.6. Let a, b be two 3 X 3 matrices. Then det(ab) = (deta)(detb).

(Note: Theorems 3.5 and 3.6 appear below.)

In the 2 X 2 case, we proved the corresponding result by direct computa-
tion. Although it would be possible to do the same with 3 X 3 case, we
prefer to give a proof based on the properties of elementary matrices.

Proor. By Theorem 3.3 of Chapter 3.4, there exists a diagonal matrix d and
elementary matrices ¢;, f; such that

a=e ...edf...f
Using relations (xii), (xiii), and (xiv), we see that
deta = (dete)) . .. (dete,)(detd)(det f)) . . . (det f;).
Similarly, there exists a diagonal matrix d’ and elementary matrices g;, hj
so that
b=g ...gdh ... h
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and
deth = (det gy) . .. (det g,)(detd")(deth,) . .. (deth;).
Hence
ab=e ...edf ...fig;...gdh ...k
and
det(ab) = (det(e))) . . . (dete,)(detd)(det f;) . .. (deth,).
So

det(ab) = det(a)det(b).

Note: Even though, in general, ab # ba, we now see that det(ab)
= det(ba), because both are equal to (deta)(detb) = (detb)(deta).

§3. Geometric Meaning of 3 X 3 Determinants

Next we proceed to extend to determinants of 3 X 3 matrices the results we
found in Chapter 2.5 concerning the relations between determinants and
orientation and between determinants and area.

Consider a triplet of vectors X;, X,, X, regarded as an ordered triplet
with X, first, X, second, and X; third. Suppose X, and X, are linearly
independent. Then X, X X, is perpendicular to the plane of X, and X,, and
it is so chosen that the rotation about X, X X, which sends X; to X, is
through a positive angle a. The upper half-space determined by the ordered
pair X, X, is the set of all vectors X such that (X; X X;) - X > 0.

The driplet X, X,, X; is said to be positively oriented if X; lies in the
upper half-space determined by the ordered pair X, X, ie., if (X; X X,)-
X; > 0. If (X, XX,) - X3 <0, the triplet is said to be negatively oriented.

EXAMPLE 6.

(a) The triplet E,, E,, E, is positively oriented since (E; X E,) - E; = E; - E;
=1>0.

(b) The triplet E,, E,, —E, is negatively oriented, since (E, X E,) - (—E;)
= -1

(c) The triplet E,, E,, E; is negatively oriented, since (E; XE))-E;=
(—E;)-E; = —1.(See Fig. 3.11.)

Let
X1 X12 X13
X, = X3, X, = [Xn|, X; = |X3
X31 X33 X33
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E,XE; AE; =E, xE, AE_-,
Ez / Ez / Ez
E, Q\ El Q\ E,
I-E, Y _E, = E, xE,
Figure 3.11

be an oriented triplet of vectors. Then
X X1 X3
X)X X,) - X3=|X12 X3 X3f.
X13 X3 X33
By (viii), the right-hand term equals
X1 X2 X3
X1 X2 X3,
X31 X3 X33
which is the determinant of the matrix whose columns are the vectors X,
X,, X;. Let us denote this matrix by (X, | X,|X;). Thus
(Xl X X2) . X3 = det(xl | Xz | X3),

and so we obtain:

Proposition 1. The triplet X,, X,, X; is positively oriented if and only if
det(X, | X, | X;) > 0.

Next let 4 be a linear transformation which has an inverse. We say that
A preserves orientation if whenever X, X,, X, is a positively oriented triplet,
then the triplet 4(X,), 4(X,), A(X;) of image vectors is also positively
oriented.

In Chapter 2.5, Theorem 2.5, we showed that a linear transformation of
R? preserves orientation if and only if the determinant of its matrix > 0. Is
the analogous result true for R3?

ap ap a3

Let A be a linear transformation of R® with m(4) = a4y a;; ap|.

a3 4z as

Suppose 4 has an inverse and preserves orientation. Since the triplet E,, E,,
E; is positively oriented, it follows that the triplet 4(E,), A(E,), A(E,) is
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positively oriented. Hence, by Theorem 3.5, the determinant of the matrix
a
(A(E)|A(E)|A(Ey) is >0. But A(E))=|ay |, etc. So (A(E)|A(E,)
as;
| A(E;)) = m(4), and so det(m(A4)) > 0. Conversely, let 4 be a linear
transformation and suppose det(m(4)) > 0. Let X, X,, X; be a positively
X1
oriented triplet of vectors with X, = |x;;|, with X, and X, expressed
X31
apxy + apxy + apxs
51m11arly Then A(Xl) = |4y Xy + apXy + ay3x3, |, and we have similar
az1 X+ ayxy + azpx;,
expressions for 4(X,), 4(X;).
The matrix

(A(X1) 4 (Xz) [ 4(Xs5))

(@)% + appxy + ay3xs
Ay X F ApXy + axsXs
(@31%11 T a3pXy t+ a33xs3

apxpt apxnt asxs
3 X1yt yXsy + Ax3x3
a3 X1 + anXxy) + azxs

ay X3t apxyy+ apxy
A31X13 + A3Xa3 + Ay3xy
a3 X3+ anxy; + apxy

(@, ap ap)(*n X X3
= |Gy G QGy3|[X2 X33 X33
931 @32 Q33)(X31 X3 X33
Then, by Theorem 3.7,
ayy 4y ap||X; X2 X3
det(A(X)) [ A(Xy) | A(X3)) =[G @y Gyl||Xy X Xy
a3 A4z Aazz||X31 X3 X33

Since the triplet X, X,, X; is positively oriented, the second determinant on
the right-hand side is > 0, and since by hypothesis det(m(A4)) > 0, the first
determinant on the right-hand side is also > 0. Hence 4 (X,), 4(X,), 4(X;)
is a positively oriented triplet. Thus 4 preserves orientation. We have
proved:

Theorem 3.7. A linear transformation A on R® preserves orientation if and
only if det(m(4)) > 0.

We now proceed to describe the relation between 3 X 3 determinants and
volume. Let

X1 X123 X13
X, = |Xa|, X, = X1, X; = [X3
X31 X33 X33

be a positively oriented triplet of vectors. Denote by II the parallelepiped
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with edges along these vectors, i.e., IT consists of all vectors
where ¢, t,, ; are scalars between 0 and 1. By (ix) of Chapter 3.0,

X3 X3 X33 X1 X1 X3

Xn X1 X3

X2 X X3
X13 X3 X33

.

volume (IT) =X, - (X, X X,) =

X2 X2 X3
By (viii), the right-hand side equals
Xn X2 X3

Xa1 X2 X3
X31 X33 X33

= det(xl | X2 l X3).

So
volume (IT) = det(X, | X, | X;). ¢y

Now let T be a linear transformation having an inverse. Denote by 7T(II)
the image of IT under 7. T(II) is the parallelepiped determined by the
vectors T(X,), T(X,), T(X;). Hence, by formula (1) (see Fig. 3.12), we have

volume( 7'(I)) = det( T(X,), T(Xy), T(X3)). ()

Figure 3.12
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On the other hand, the calculation that led us to Theorem 3.5 gives
det(T(X,)| T(X;)| T(Xs)) = (det(m(T)))det(X, | X, |X;)
= det(m(T)) - volume(II).
By (2), this gives
volume( T'(IT)) = (det(m(T')))(volume(IT)). 3)
We have thus found the following counterpart to Theorem 2.6 of
Chapter 2.5. .

Theorem 3.8. Let T be an orientation-preserving linear transformation of R>.
If 11 is any parallelepiped, then

volume( T'(IT)) = (det(m(T')))(volume(IT)). 4

Note: If T reverses orientation, the same argument yields formula (4)
with a minus sign on the right-hand side, so for every invertible transforma-
tion T, we have

volume( T'(IT)) = |det(m(T'))|volume(IT). ®)
If T has no inverse, T(II) degenerates into a figure lying in a plane, so the

left-hand side is 0 while the right-hand side is 0, since det(m(T)) = 0 in this
case. Thus, formula (5) is valid for every linear transformation of R>.



CHAPTER 3.6
Eigenvalues

ExaMpLE 1. Let # be a plane through the origin and let S be the
transformation which reflects each vector through #. If Y is a vector on a,
then S(Y) =Y, and if U is a vector perpendicular to =, then S(U) = —U.
Thus for t =1 and ¢ = —1, there exist nonzero vectors X satisfying S(X)
= ¢X. If X is any vector which is neither on 7 nor perpendicular to =, then
S(X) is not a multiple of X.

Let T be a linear transformation of R* and let ¢ be a real number. We say
that ¢ is an eigenvalue of T if there is some nonzero vector X such that

T(X)=¢tX and X=+#0.

If ¢ is an eigenvalue of T, then we call a vector Y an eigenvector of T
corresponding to t if T(Y) = Y.

For example, the eigenvalues of S are 1 and — 1. The eigenvectors of S
corresponding to 1 are all the vectors in = and the eigenvectors of S
corresponding to — 1 are all the vectors perpendicular to .

ExaMPLE 2. Fix A in R. Let D, be stretching by A. Then for every vector X,
Dy(X) = AX. Hence A is an eigenvalue of D,. Every vector X in R® is an
eigenvector of D, corresponding to the eigenvalue A.

ExampLE 3. Let D be the linear transformation with the diagonal matrix

A, 0 0
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X A 000 (x, Axy
IfX=|x;|,then DX)=(0 A, 0 [xz] = [A,x, |. It follows that setting
X3 0 0 Ay|*3 A3X;
1 0 0]
E =[0,E;=|1|, E;=|0|, we have
0 0 1

Thus A, A,, A; are eigenvalues of D and E,, E,, E; are eigenvectors. Does

Xy
D have any other eigenvalues? Suppose D (X) = X, where X = | x; [, X # 0,
X3
x, Ax,
and ¢ is in R. Then |#x, | = |A,x, |, so tx; = A;x; for i = 1,2, 3. Since x; # 0
x5 AsXxsy

for some i, t = A;. Therefore, A, A,, A; are all the eigenvalues of D.

Exercise 1. With D as in Example 3, find all the eigenvectors of D.

Exercise 2. Let T be a linear transformation of R® satisfying 72 = I. Let ¢ be an
eigenvalue of T and X an eigenvector corresponding to ¢ with X 5= 0.

(a) Show that T2(X) = #*’X.
(b) Show thatt=1orz= —1.
(c) Apply what you have found to the reflection S in Example 1.

Exercise 3. Let T be a linear transformation of R? such that 72 =0.

(a) Show that 0 is an eigenvalue of T.
(b) Show that 0 is the only eigenvalue of T.

Exercise 4. Let T be the linear transformation with matrix
0 01
m(T)={0 0 0}
000

(a) Show that T2 =0.
(b) Apply Exercise 3 to determine the eigenvalues of T.
(c) Find all eigenvectors of T.

§1. Characteristic Equation

a 4@ G
Given a transformation T with matrix |5, b, b;|, how can we determine
€ & G

the eigenvalues of 7? We proceed as we did for the corresponding problem
in two dimensions.
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X
Assume ¢ is an eigenvalue of T and |X; | is a corresponding eigenvector
X3
X 0 (X X )
with |x,||0(. Then T|x,| = ¢|x,|, so
X3 0 | X3 X3 |
(@) ay a3)(x, X
b, by, by||x,|=1]|x,
€1 €2 C3)|X3 X3

or
a;x, + ayx, + a;x; = tx,,
bix, + byxy + byxy = tx,, ()
Clxl + 02X2 + C3X3 = t.X3 .
Transposing the right-hand terms, we get
(a; — t)x, + ax, + a3x; =0,
bl.xl + (bz - t)x2 + b3X3 = O, (2)
c1xy + cxy + (c3— )x3=0.
Thus x,, x,, x; is a nonzero solution of the homogeneous system (2). By
Proposition 8 and Theorem 3.4 of Chapter 3.4, it follows that the determi-
nant
a, -1 (12 a3
bl b2 —t b3 = 0. (3)
Cl 02 C3 -1
If the left-hand side is expanded, this equation has the form
— 4 w2+ uyt + uy; =0, 4)

where u,, u,, u, are certain constants.
Equation (3) is called the characteristic equation for the transformation 7.
We just saw that if ¢ is an eigenvalue of T, then ¢ is a root of the
characteristic equation of T. Conversely, if ¢ is a root of the characteristic
equation, then (3) holds. Hence, by Proposition 8 of Chapter 3.4, the
system (2) has a nonzero solution x,, x,, x;, and so (1) also has this
solution. Therefore,

X1 X1
T|xy|=t]|xy].
X3 X3

Hence ¢ is an eigenvalue of 7. We have proved:

Theorem 3.8. 4 real number t is an eigenvalue of the transformation T of R® if
and only if t is a root of the characteristic equation (3).
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Theorem 3.8 appears later.

ExAMPLE 4. Let T have matrix

1 00
-5 2 0}
2 31
The characteristic equation of T is
1-¢t 0 0
-5 2—-¢t 0 [=0
2 3 71—t

or
(1—t)|2;t 7(_)t|=(1—-t)(2—t)(7-—t)=0.

The roots of this equation are 1, 2, and 7, and so these are the eigenvalues
of T. Let us calculate the eigenvectors corresponding to the eigenvalue 2. If

X1
X, | is such a vector, then
X3

1 0 0ffx x, 2x,
=5 2 0f|x;[=2{x|=|2x,]|.
2 3 Tl|x, X3 2x4
Then
x,=2x,,
—=5x, + 2x, = 2x,,
2%, +3x, + Txy=2x5.

The first equation gives x; = 0. The second equation puts no restriction on
x,. The third equation yields

= _ =_3
Sx3=—3x, or x3=—3x,.

Thus an eigenvector of T corresponding to the eigenvalue 2 must have the

0 0
form | *2 |=]| Sy |, if we set y =1x,. Is every vector of this form an
—3x) (-3
eigenvector?
1 0 O0]| O 0 0 0
=5 2 0| 5y |= 10y = |10y |=2| 5y
2 3 7§|-3y 15y — 21y — 6y -3y

Thus the answer is yes and we have: a vector is an eigenvector of T with
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0
eigenvalue 2 if and only if it has the form | 5y |. Note that the vectors of
-3y
0
this form fill up the line < y| 5 ||y in R}, which passes through the origin.
-3

Exercise 5. Find all eigenvectors corresponding to the eigenvalue 1 for the transfor-
mation T of Example 4. Show that these vectors fill up a line through the origin.

ExAMPLE 5. Fix 8 with 0 < § < 27. R} is the transformation of R® which
rotates each vector by # degrees around the positive x,-axis. Find all
eigenvalues of R;. We have
cosf —sinf O
m(Rj)=|sinf cosfd O
0 0 1
so the characteristic equation is

cosf —t —sinf 0 0 0 1—-1¢
sin @ cosf —t 0 |=—| sinf cosf — ¢t 0
0 0 1—-1¢ cosf—t —sinf 0
= —(1 =] - (sinf)* = (cosd — 1)’]

=0.
If ¢ is a real root, then either 1 — ¢ =0 or (sin#)> + (cosf — r)* = 0. The
second equation implies that sinfd = 0 and cosf = ¢.

Case 1: 0 # 0,7. In this case, f = 1 is the only root of the characteristic
equation, and so 1 is the only eigenvalue. If X lies on the x;-axis, evidently
T(X)=X=1-X, so the x;-axis consists of eigenvectors with eigenvalue 1.
There are no other eigenvectors.

Case 2:  =0. In this case, R; = I, so 1 is the only eigenvalue and every
vector in R® is an eigenvector corresponding to this eigenvalue.

Case 3: 8 = 7. The characteristic equation of R? is
(1-8)(=1-1>=0
with roots ¢ = 1 and ¢ = — 1, so the eigenvalues of R,f are 1 and —1.
Exercise 6. Find the eigenvectors of R, which correspond to the eigenvalue —I.
Describe, in geometrical terms, how R2X is obtained from X if X is any vector.
Then explain, geometrically, why 1 and —1 occur as eigenvalues of R?>.
Now let 4 be a given linear transformation and let

—B+a’+bt+c=0
be the characteristic equation of 4.
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Define f(f) = — * + ar*> + bt + c. Then f is a function defined for all real
t. The equation f(f) = 0 must have at least one real root ¢,. To see this, note
that f(r) <0 when ¢ is a large positive number, while f(#) > 0 when ¢ is a
negative number with large absolute value. Therefore, at some point ¢, the
graph of f must cross the z-axis. Dividing f(#) by ¢ — ¢,, we get a quadratic
polynomial — t? + dt + e, where d and e are certain constants. Thus

f()y=(t—t)(—+dt+e).
The polynomial g(f) = — > + dt + e may be factored
g()=—(—1u)(t—1n)

where ¢, ¢, are the roots of g, which may be real or conjugate complex
numbers. We can distinguish three possibilities.

(i) t,, t, are complex numbers, ¢, = u + iv, t, = u — iv, with v # 0. Then
f(#) = 0 has exactly one real root, namely, f,. In this case, the graph of
fappears as in Fig. 3.13.

EXaMPLE 6. For 4 = R}, we found in Example 5,
f(ty=(1=1)[ —(sinB) - (cos# — 1)*].
Here g(t) =[—(sinf)* — (cosf — £)*] = — > + 2(cos @)t — 1. If §+#0 or =,

then g has no real roots, so possibility (i) occurs.

(i) ¢, and ¢, are real and ¢, = t,. If 7, = ¢, = t,, then f(¢) = 0 has a triple
root at #,. The graph of f now appears as in Fig. 3.14. If ¢, + ¢,, then f
has one simple real root, t;,, and one double real root, ¢, = ¢,. The
graph of f appears as in Fig. 3.15.

\

Figure 3.13
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.

Figure 3.14

ExaMpLE 7. For 4 = R?, we found

fiy=Q1-n(-1-1,
so to=1, t, = t, = —1, and possibility (ii) occurs.
For A = D,, we have

A—t 0 0

0 A=t 0 |=QA-1

f(y=

SO tg=1t, =1t =A

Figure 3.15
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Figure 3.16

(iii) ¢, and ¢, are real and ¢, # 1,. If ¢, = ¢, or t, = t,, the situation is as in
case (ii). If ¢, # £, and ¢, # ¢, then the equation f(¢) = 0 has the three
distinct real roots #;, ¢,, and t,. The graph of f now appears as in Fig.
3.16.

ExAMPLE 8. The transformation T of Example 4 had 1, 2, and 7 as the roots
of its characteristic equation and, so, illustrated case (iii).

Let us summarize what we have found. Using Theorem 3.9 we can
conclude:

Proposition 1. If A is a linear transformation of R, then A always has at least
one eigenvalue and may have one, two, or three distinct eigenvalues.

Exercise 7. Find all eigenvalues and eigenvectors of the transformation whose

0 0 2
matrixis{Q 1 0]}
1 00

c 0 b
Exercise 8. Let T be the transformation with matrix (0 c o).
0 0 ¢

(i) Find the characteristic equation of 7.
(ii)) Show that c is the only eigenvalue of 7.
(iii) Show the eigenvectors of T corresponding to this eigenvalue fill up a plane
through 0, and give an equation of this plane.
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Exercise 9.

(i) Find the characteristic equation for the transformation with matrix

0 1 0
o 0 1}
a a, a3

(ii) Show that given any three numbers a, b, c, there is some linear transformation
of R® whose characteristic equation is — > + a2 + bt + ¢ = 0.

Let 4 be a linear transformation of R® and let ¢ be an eigenvalue of 4. By
the eigenspace E, we mean the collection of all eigenvectors of 4 which
correspond to the eigenvalue ¢.

ExXAMPLE 9. Let P be the linear transformation which projects each vector
on the plane 7 through the origin. Then for each vector X in 7, P(X) =X,
while for each X perpendicular to 7, P(X) = 0. P has no other eigenvectors.
Hence, here E| = the plane =, E, = the line through 0 perpendicular to 7.

Let 4 be an arbitrary linear transformation of R® and ¢ an eigenvalue of
A. If X is a vector belonging to the eigenspace E,, then 4 (X) = X. Hence,
for each scalar ¢, 4(cX)=cA(X)= ctX = t(cX), and so cX is also in
E,. Thus E, contains the line along X. If E, is not equal to this line, then
there is some Y in E, such that X and Y are linearly independent. For each
pair of scalars ¢, ¢;, A4(c, X+ c,Y)=cAX) + c,A(Y) = ¢t X + c,tY
= t(¢, X + ¢,Y). Thus ¢;X + ¢,Y is in E,. So the entire plane

{(e: X+ c,Y)| ¢y ¢, in R}

is contained in E,. If E, does not coincide with this plane, then there is
some vector Z in E, such that X, Y, Z are linearly independent. By
Proposition 1 of Chapter 3.0, {¢,X + ¢,Y + ¢;z| ¢, ¢3, ¢; in R} is all of R®
and this set is contained in E,. So, in that case, E, = R*>. We have shown:

Proposition 2. If A is a linear transformation of R®, each eigenspace of A is
either a line through the origin, or a plane through the origin, or all of R’.

§2. Isometries of R

In Chapter 2.5 we found all the length-preserving linear transformations of
the plane. They turned out to be the rotations and reflections of the plane.
Let us try to solve the corresponding problem in 3-space.

A linear transformation T of R® which preserves lengths of segments is
called an isometry. Exactly as in R? we find that T is an isometry if and
only if

|T(X)|=|X| for every vector X. )
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Proposition 3. An isometry T preserves the dot product, i.e., for all vectors
XY,

T(X)  T(Y)=X"Y.

ProoF. Since (5) holds for each vector,
ITX =Y =X -YP

or
(TX=Y) - (TX=Y)) = (X=Y): X - Y).
So
(TX) = T(Y)) - (TX) - T(Y)) = (X-Y)- X-Y)
or

TX)- TX)-2TX)- T(Y)+ T(Y)- T(Y)=X-X—-2X-Y+Y"Y.
Again by (5), T(X) - T(X) = X - X and similarly for Y, so cancelling we get
=2T(X) - T(Y)= —-2X-Y,

and so
T(X)- T(Y)=X"Y.

Proposition 4. If T is an isometry of R®, then T has 1 or —1 as an eigenvalue
and has no other eigenvalues.

PrOOF. Every linear transformation T of R® has an eigenvalue ¢, so for
some vector X # 0, T(X) = ¢X. Then
X|=|TX)|=[X|=[¢]|[X], so [f=1.
Hence
t=1 or t=-1.

Proposition 5. If T is an isometry of R®, then det(T) =1 or dey(T) = —1.

Note: We write det(T) for det(m(T)), the determinant of the matrix of 7.

ProoF. Consider the cube Q with edges E,, E,, E;. The vectors T(E)),
T(E,), T(E,) are edges of the image, T(Q), of Q under T. For each i,
|T(E)| = |E,| =1, and for each i, j with i}, T(E,) - T(E)=E,;-E;=0.
Thus T(Q) is a cube of side 1. Hence, vol(T( Q)) = 1 = vol Q. Also, by
Theorem 3.6 of Chapter 3.5, vol T( Q) = |det(T)| - vol Q. Hence |det(T)|
=1.SodetT=1ordetT=—1.

One example of an isometry is a rotation about an axis. Fix a vector F
and denote by « the plane through 0 orthogonal to F. Fix a number §. We
denote by R, the transformation of the plane = which rotates each vector in
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Figure 3.17

7 counterclockwise by an angle § about F. Let Y be any vector in R*. We
decompose Y as
Y =Y+ sF,
where Y’ is the projection of Y on = and s is a scalar (see Fig. 3.17). We
now define
T(Y) = Ry(Y') + sF.

Note that T(Y) lies in the plane through Y perpendicular to F. We call the
transformation T a rotation about the axis F by the angle 6.

Exercise 10. Prove that T is a linear transformation of R and that T(F) = F.

For each Y, |T(Y)]* = |R,(Y') + sF|* = (Ry(Y') + sF) - (Ry(Y’) + sF) =
| Ry (Y| + s*F|% since R,(Y’) is orthogonal to F. Also, |Y|* = |Y'|* + s?|F|%.
Since R, is a rotation of 7, |R,(Y')| = |Y’|, and so | T(Y)|* = |Y|%. Thus T is
an isometry.

Now choose orthogonal unit vectors X;, X, in 7 such that X; X X, =F.
Then the triplet X, X, F is positively oriented. The triplet of vectors T'(X,),
T(X,), F is also positively oriented, and so T preserves orientation. The
proof is contained in Exercise 11.

Exercise 11.

(a) Express T(X,) and T(X,) as linear combinations of X, and X, with coefficients
depending on 6.

(b) Compute (T(X,;) X T(X,)) - F and show it equals (X, X X,)-F and hence is
positive. Thus T preserves orientation.

(c) Using Theorem 3.5 of Chapter 3.5, conclude that detT > 0.

Since T is an isometry, det 7= =1 and so, since det7" >0, det7 = 1. In
sum, we have proved:
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Proposition 6. If T is a rotation about an axis, then T is an isometry and
detT = 1.

What about the converse of this statement? Suppose T is an isometry
with det T = 1. Let F be an eigenvector of T with |F| = 1 and T(F) = ¢F. By
Proposition 4, we know that # = = 1. We consider the two cases separately.
Let us first suppose ¢ = 1. Then

T(F) =F.

Let = be the plane orthogonal to F and passing through the origin. If X is
a vector in 7,

T(X)-F=T(X)- T(F)=X-F=0,

so T(X) is orthogonal to F. Hence T'(X) lies in #. Thus T transforms = into
itself. (See Fig. 3.18) Let us denote by T, the resulting transformation of the
plane 7. T, is evidently a linear transformation of # and an isometry of =
since T has these properties on R®. In Chapter 2.5 we showed that an
isometry of the plane is either a rotation or a reflection. Hence either T, is a
rotation of « through some angle 8 or T, is a reflection of 7 across a line in
o through the origin.

Case 1: T, is a rotation of = through an angle 4. By the discussion
following after Proposition 5, we conclude that T is a rotation of R about
the axis F.

Case 2: T, is a reflection across a line in #. In this case there exist nonzero
vectors X, X, in 7 with 7,(X,) = X, T.(X,) = —X,, and we can choose

Figure 3.18
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these vectors so that the triplet X, X,, F is positively oriented. Also,
TX)=T,X)=X, and T(X,) =T,(X,)= —X,, so the triplet T(X)),
T(X,), T(F) is the triplet X;, —X,, F which is negatively oriented. But
detT =1 by hypothesis, and so we have a contradiction. Thus Case 2
cannot occur. We conclude: If £ =1, then T is a rotation about an axis.

Now let us suppose that t = —1, so T(F) = —F. We again form the plane
a orthogonal to F and the transformation T, of 7 on itself. As before, T, is
either a rotation of # or reflection in a line of 7.

Suppose T, is a rotation of # by an angle §. Choose orthogonal unit
vectors X, X, in 7 such that X, X,, F is a positively oriented triplet. Then
the triplet 7, (X,), T,(X,), F is again positively oriented.

Exercise 12. Prove this last statement by calculating (7,(X,) X 7,(X,))-F and
showing that it is positive.

It follows that the triplet T, (X,), 7, (X,), —F is negatively oriented. But
this is exactly the triplet 7(X,), T(X,), T(F). Since X,, X,, F was a
positively oriented triplet, this contradicts the fact that det 7= 1. Hence T,
is not a rotation of 7 so it must be a reflection of #. Therefore we can find
orthogonal unit vectors X, X, in 7 with 7,(X,) = —X,, T,(X;) = X,. Now
consider the plane 7’ determined by the vectors F and X, (see Fig. 3.19).
We note that since T(F) = —F and T(X,) = T,(X,) = —X,, T coincides on
the plane #’ with minus the identity transformation. Thus T rotates the
vectors of 7’ by 180° about the X,-axis. Also, T'(X,) = T,(X,) = X,. Hence
T acts on R? by rotation by 180° about the X,-axis.

In summary, we have proved:

Theorem 3.9. Let T be an isometry of R* and let det T = 1. Then T is rotation
about an axis.

Figure 3.19
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Let S and T be two isometries of R®>. What can be said about their
product ST?

Exercise 13.

(a) If S and T are isometries, then ST and TS are also isometries.
(b) If S is an isometry, then S ~! also is an isometry.

Exercise 14. If S is rotation about an axis and T is rotation about a possibly
different axis, then ST is rotation about an axis.

Note: If the axes for S and for T are distinct, our conclusion that ST is again a
rotation about some axis, though correct, is by no means evident.

Exercise 15. Let S be rotation by 90° about the x;-axis and T be rotation by 90°
about the x-axis. Find the axes for the rotations ST and T'S.

Exercise 16. Let T be an isometry with detT = —1.

(a) Show that — T is a rotation.
(b) Conclude that T is the result of first performing a rotation and then reflecting
every vector about the origin.

§3. Orthogonal Matrices

In Chapter 2.5, we found that a 2 X 2 matrix m is the matrix of an isometry
if and only if it has one of the following forms:

(i) (cos0 —sin0)
sind cosf /)

- cosf sinf )
il ; .
(1) ( sinf —cosé
Note that in each case the columns are mutually orthogonal unit vectors R2,
It turns out that the analogous statement is true in 3 dimensions. Let

an 4 4

m= Gy Gy dy|.
31 axn as

Exercise 17. Assume m is the matrix of an isometry 7.
1 if i=j,
(a) Show T(E;) - T(E)) = 1<i,j<3.
0 if i},
(b) Show that the columns of m are orthogonal unit vectors in R>.

Exercise 18. Assume m is the matrix of an isometry. Show that the inverse m ™!

equals the transpose m*.

Exercise 19. Show that, conversely, if m is a matrix satisfying m~' = m*, then m is

the matrix of an isometry.
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A matrix m such that

m~'=m* (6)

is called an orthogonal matrix. Exercises 18 and 19 together prove the
following result:

Proposition 7. A 3 X 3 matrix m is the matrix of an isometry if and only if m
is an orthogonal matrix.

Exercise 20. Let Rj be rotation around the x;-axis by an angle 8. Let m = m(Rp).
Directly show that m satisfies (6).

Exercise 21. Let T be reflection in the plane x + y + z = 0. Let m = m(T). Directly
show that m satisfies (6).

Exercise 22. Let S be rotation by 180° around the line: x =¢, y=1t¢, z=1. Let
m = m(S). Directly show that m satisfies (6).

Exercise 23. Let m be an orthogonal matrix.

(a) Show that m* is an orthogonal matrix.
(b) Show that the rows of m are orthogonal unit vectors in R>.

Exercise 24. Show that the product of two orthogonal matrices is an orthogonal
matrix.

Exercise 25. Consider the system of equation

apx, + apx; + apxz =y,
anx, + anxnXs + ay3X3 =y2 N (7)
a31Xy + azXy + ayx; = y3.

Assume the coefficient matrix
a 4 4ap
a ax a4y
as as as;

is an orthogonal matrix. Show that, given y,, y,, y3, the system (7) is solved by
setting

Xy=apyitany,tayy;, ®)

{xl =apy1+ ayy,+azy;,
X3=apy;+ayy,+ayy;.

Exercise 26. Let m be a 3 X 3 matrix. Assume that the column vectors of m are
orthogonal unit vectors. Prove that m is an orthogonal matrix.



CHAPTER 3.7
Symmetric Matrices

In the 2-dimensional case, we saw that a special role is played by matrices

(Z Z) which have both off-diagonal elements equal. The corresponding

condition in 3 dimensions is symmetry about the diagonal. We say that a
matrix is symmetric if the entry in the ith position in the jth column is the
same as the entry in the jth position in the ith column, i.e., a; = a; for
all i, j

c
e =
f

Note that this condition does not place any restriction on the diagonal
elements themselves, but as soon as we know the elements on the diagonal
and above the diagonal, we can fill in the rest of the entries in a symmetric

matrix:
If the following matrix is symmetric,

2 -1
7 0
z 3

b
d
e

o O

a, 4ap a;;
Ay Gy Ay |- (1)

a3 a4y das;

1
x

y

thenx=2,y=-1,z=0.

We may express the symmetry condition succinctly by using the notion
of transpose. Recall that the transpose m* of a matrix m is the matrix whose
columns are the rows of m. Thus a matrix m is symmetric if and only if
m* = m.



191

3.7 Symmetric Matrices

Exercise 1. For which values of the letters x, y, z, will the following matrices be
symmetric?

1 21
(a) X 2 1’
y z 4
2 5 2
(b) X 1 y»
2 40
x 5 2
©1ls5 y 1)
2 1 z
1 x 3
@y 2 4,
3 z 6
1 y 4
©13 x 5]
4 6 :z

Exercise 2. Show that every diagonal matrix is symmetric.

Exercise 3. Show that if 4 and B are symmetric, then 4 + B is symmetric and ¢4 is
symmetric for any c.

Exercise 4. True or false? If a and b are symmetric, then ab is symmetric. (Show
that (ab)* = b*a*).

Exercise 5. Show that if @ is any matrix, then the average 1(a + a*) is a symmetric
matrix.

Exercise 6. True of false? The square of a symmetric matrix is symmetric.
Exercise 7. Prove that for any 3 X 3 matrix m, the product m(m*) is symmetric.
(Recall that (mn)* = n*m*.)

We shall need a general formula involving the transpose of a matrix.
Let a be any matrix.

a) 4 ap
a=|a; a4 Aay
asy a4z Qas;
Then
a; ay az
a*=|a; ayp axn|.
a3 Q3 QAs;

Lemma 1. Let A be the linear transformation with matrix a and A* the linear
transformation with matrix a*. Then for every pair of vectors X, Y,

AX)-Y =X A*(Y).

@
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X]
X3
X3

)1
Y2
V3

anx; +apx, + alsst

1
ayXxy+ aypx, + ayxs|- |y,
a3 X, + aypx, +ayxs| |y

apx )yt apx; y + apxsy,
=+ayx1y,t anx;yy + apx; p,. 3)
taz x| y3+ apx, y; + asx; p;

a; Gy az|(N
Y2
V3

(apny1+ ay y, + az ys
= |Xy | (@)1t apy,+ azny;
%3] @yt apy,+ asp;

apx 1+ ayx;y, + azx, ys
tapxy yrt anx,y, + anx; ys. 4)
tapx;y + ayx;y, t+ anx;p;
The first line of the sum (3) is the same as the first column of (4), and
similarly for the other two lines. So the sums (3) and (4) consist of the same
terms in different arrangements, and thus 4(X) - Y = X - A*(Y).

PrOOF OF LEMMA 1. Set X = , Y= . Then

AX) Y=

X - A*(Y)

]
=
N

c Q12 Gy Ay
) 913 Gy 4z

An immediate consequence of Lemma 1 is:

Lemma 2. If m is a symmetric matrix, and M is the corresponding linear
transformation, then for all vectors X, Y,

MX)-Y=X-M(Y). 5)
We saw in Theorem 2.10 in Chapter 2.6, that eigenvectors of a symmetric

2 X 2 matrix corresponding to distinct eigenvalues are orthogonal. We now
prove the analogous result in 3 dimensions.

Theorem 3.10. Let m be a symmetric 3 X3 matrix and let M be the
corresponding linear transformation. Let t, t, be distinct eigenvalues of M,
and let X, X, be corresponding eigenvectors. Then X, - X, = 0.

ProoF.
M(X)) - X, = (6X)) - Xy = (X, - X)),
X, M(X,) = X, - (,X,) = 1,(X; - Xy).
Then by (5),
61X, - Xp) = 6,(X; - X,)-
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If X, - X, # 0, we can divide by X, - X, and get ¢, = t,, which contradicts
our assumption. Therefore X, - X, = 0.

ExAMPLE 1. Let us calculate the eigenvalues and eigenvectors of the linear
transformation M with matrix

1 1 -1
m={1 0 0|
-1 0 0
The characteristic equation of m is
1—-¢ 1 =1

1 —-¢t 0
-1 0 -t

=(1-0nHr-1(-)—1(=£)=0

or
-3+ 2+2:=0,

ie.,
—t(f*—t-2)=0.

Since 12 — t — 2= (¢ — 2)(¢ + 1), the eigenvalues of m are

t, =0, t, =2, ty=—1.

Let X, denote an eigenvector corresponding to ¢;, for i =1, 2, 3.

M(X))=0X, =0,

S0 setting
x 1 1 —-1]x 0
Xi=|y| 1 0 0 l||ly|=]|0
z -1 0 0 Jlz 0
or
x+y—2z=0,
X =0,
—-x =0.
0

Therefore x =0, y = z, so X, =1

1

} is an eigenvector corresponding to ¢,.

Similarly, if

X 1 1 —-1]f{x X
Xz—- y, 1 0 0 y =2y,
z -1 0 0 Jiz z
SO
x+y—z=2x,
x =2y,
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Setting x =2, we must take y=1landz= —1.Thenx+ y—z=2+1+1

= 4 = 2x, so the first equation is also satisfied. Thus X, =

2
1 |. Similarly
-1

1

we find X; = — 1} is an eigenvector corresponding to #; = — 1. Each pair

1
of two out of our three eigenvectors

U

is indeed orthogonal, as stated in Theorem 3.10.

Note: The eigenvectors corresponding to a given eigenvalue fill a line in
this case. For instance, the set of eigenvectors of m corresponding to ¢, =2

is the set of all vectors
2 2t
l = t | —o0 < t < o0.

-1 —t

tX2=t

340
Exercise 8. Find the eigenvalues of the matrix m = (4 3 o) and find all corre-

001
sponding eigenvectors.

Every 3 X 3 matrix has at least one eigenvalue, as we showed in Proposi-
tion 1 of Chapter 3.6. However, in general, we cannot say more.

Exercise 9. Give an example of a 3 X 3 matrix having as its only eigenvalue the
number 1 and such that the corresponding eigenvectors make up a line.

For symmetric matrices, the situation is much better, as the following
fundamental theorem shows:

Spectral Theorem in R®. Let m be a symmetric 3 X 3 matrix and let M be the
corresponding linear transformation. Then we can find three orthogonal unit
vectors X,, X,, and X, such that each X, is an eigenvector of M.

PROOF. M has at least one eigenvalue r;, as we know. Let X, be a
corresponding eigenvector of length 1. Denote by # the plane through the
origin which is perpendicular to X,. We wish to show that we can find two
further mutually perpendicular eigenvectors of M lying in #. We claim that
7 is invariant under M, i.e., that if a vector X is in #, then M (X) also lies in
a (See Fig. 3.20). Suppose X belongs to 7. Then by (5),

MX)-X,=X-M(X,)=X-1,X, = £,(X-X,).
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X,

M(X)

Figure 3.20

But X - X, =0, since X lies in 7. Hence M(X) - X; = 0, so M(X) is in #, and
our claim is proved.
We denote by A4 the transformation of # defined by
A(X) = M(X) for X in .

We shall now go on to show that = may be identified with the plane R
Also, when we make this identification, 4 turns into a linear transformation
of R? having a symmetric matrix. Using the results we found in Chapter 2.6,
we shall then find two eigenvectors for this 2 X 2 symmetric matrix and
these will turn out to give the “missing” eigenvectors in R* for our original

transformation M.
Let F,, F, be vectors in = which are orthogonal and have length 1. If X

and Y are vectors in m,
AX) Y=MX) - Y=X-M(Y)=X-A(Y),

so A satisfies

AX)-Y=X-A(Y) (6)
whenever X, Y lie in 7. Each vector X in 7 can be expressed as

X=xF, +xF,,

where x, =X - F,, x, = X - F,. We identify X with the vector (z;) in R?,
and in this way = becomes identified with R, Also, since 4 takes 7 into
itself, 4 gives rise to a linear transformation 4° of R%. For each X = x,F, +
x,F, in 7, A(X) is identified with A°( ﬁ;) in R? (see Fig. 3.21). What is the
matrix of 4°? Since 4 (F,) and A4 (F,) lie in 7, we have

A(F)) = aF, + bF,,

A(F,) = cF, + dF,,
wherea = A(F))-F,,b=AF))-F,,c=AF,)  F,,andd= A(F,)-F,. By
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x
R?

——|— - — — —] — — — e
A(X) of %1
/ gt
Figure 3.21+
(6), we get
b=A(F) F,=F, - A(F) =c. ()

Choose X = x,F, + x,F, and set
A(X) = x|F, + xJF,.
Then Ao(x') = (x,‘ ) Also,
x2 le
A(X) = x4 (F)) + x,4(F,) = x,(aF; + bF,) + x,(cF, + dF,)
= (ax, + cx,)F, + (bx, + dx,)F,.

40 x| xll _lax tcexyy _[a c)[x
Xy X3 bx, + dx, b d]\x, .
Thus the matrix of 4° is (a c) = (Z z), because of (7). We note that 4°

b d
has a symmetric matrix. By Theorem 2.10, Chapter 2.6, there exist two

Hence,

orthogonal nonzero eigenvectors (Zl) and (Z') for A°. Then, for a certain
2 2
of 1\ _ (%

scalar ¢, A (uz) = t(uz)‘

The vector U= u,F, + u,F, in  is identified with (Z‘) and A(U) is

2
identified with A°(“‘) = t(Z') in R2. Also, U is identified with z(Z‘ ) So
2

U 2
M@U) = A(U) = tU, and so U is an eigenvector of M lying in #. Similarly,
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V = v,F, + v,F, is an eigenvector of M lying in 7. Finally,

U-V=(uF, + u,F)) (v,F + 0,F,)=uo, + uyp,= (z;) . (z;) =0.
It follows that the three vectors
U v
X ’ ’
(/R

are an orthonormal set in R* consisting of eigenvectors of M.

Note: Although we have just shown that the transformation M has three
mutually orthogonal eigenvectors X, X,, X;, we have not shown that the
corresponding eigenvalues are distinct. Indeed, this need not be the case. If
1 0 0}

0 1 0]}, then M has only two
00 2

distinct eigenvalues, 1 and 2, although it has three orthogonal eigenvectors
E,, E,, E;. Here, E, and E, both correspond to the eigenvalue 1, while E,
corresponds to the eigenvalue 2.

M is the linear transformation with matrix

ExampLE 2. Let us find all eigenvalues and eigenvectors for the linear
transformation M with matrix

1 05
m=10 1 3|

5 31

The characteristic equation is

1-¢ O 5

0 1—-¢ 3
5 3 1—1¢
or (1 — H[(1 — £)> =9 — 251 = 0. So the eigenvalues are ¢, = 1 and the roots

of (1 — £)> — 34 =0, which are 1, = 1 +34 and z, =1 —y34. We seek an
X
eigenvector X, = ( y ) corresponding to t=1. So we must solve

3 36)-(0)

X x\ 1 0 5

M(y)=(y),1.e., 01 3

z z 5 3 1
x+5z=x,

y+3z=y,
S5x+3y+ z=2z.

=(1-n[A-1’=9]+5(=5(1-1)=0

The first two equations give z =0. Then the third gives 5x + 3y =0.
Hence, x = —3, y =15, z=0 solves all three equations. So we take

-3
X|= 5 .
0
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The plane # through the origin and orthogonal to X, which occurred in
the proof of the Spectral Theorem, here has the equation

x -3
yl |5 |=-3x+5=0 or y=4ix
z 0

By the proof of the Spectral Theorem, we can find in 7 a second eigenvec-

x
tor X, of M, corresponding to z, = 1 +34. X, = ( y) satisfies
z

x, ®)

wiw

)} =
since X, is on 7. Also,

1 0 5|fx X
5 1)1z z
SO
x+52=(1+\/§)x, )
as well as two further equations. However, Egs. (8) and (9) suffice to give
S0

x x 1
X, = yio 3/5)x - 3/5 .
z| |(V34/5)x V34 /5
In particular, taking x = 5, we find
5
X2= 3 .
V34
Each scalar multiple X, is an eigenvector of M corresponding to

t,=1+y34. An eigenvector X, corresponding to f; =1—134 will be
orthogonal to both X; and X,, as we know by the Spectral Theorem.
Hence, X; is a scalar multiple of X, X X,.

-3 5 5/34 5
X\ XX =15 |X| 3 |=|33% =34 ,
0 V34 -34 — 34
5
So we can take X;=| 3 as eigenvector for t; = 1 —y34.

v
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Note: The eigenvectors X, X,, X; do not have unit length. However, the
vectors X, /|X,|, etc., are also eigenvectors and do have unit length.

Exercise 10. For each of the following matrices, find an orthonormal set X, X,, X;
in R? consisting of eigenvectors of that linear transformation with matrix m.

-4 0 0
@m={ 0 2 3}
0 3 2

111
®m=[11 1)
1

[z o0 o
©@m={o0 5 o0
0 0

In Chapter 2.7, Theorem 2.11, we showed that if a 2 X 2 matrix m has
two linearly independent eigenvectors corresponding to the eigenvalues ¢,
t,, then

-1

m = pdp~",

. . [t O . - . .
where d is the diagonal matrix ( 01 ) and p is a certain invertible matrix.

5}
We shall now prove the corresponding fact in R,

Theorem 3.11. Let M be a linear transformation having linearly independent
eigenvectors X, X,, X; corresponding to eigenvalues t,, t,, t;. Let m be the
matrix of M. Denote by p the matrix (X,|X,|X;) whose columns are the

t, 0 0
vectors X;. Then p is invertible and, setting d = (; , 0,
0 0 f
m=pdp~". (10
Proor. Since X, X,, X, are linearly independent by hypothesis, the matrix
p has an inverse, by (ix), p. 166. We set E, = é ,Ey= (1) ,Ey= 8 .LetP
0 0 1

be the linear transformation with matrix p. Then
P(E)=X,, so MP(E)=MX)=1X,.
Similarly, MP(E,) = t,X, and MP(E;) = t;X;. Also, if D is the linear
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transformation with matrix d,

Similarly, PD(E,) = t,X, and PD(E,) = £,X;. Thus the transformations MP
and PD give the same results when acting on E, E,, E;, and so MP = PD.
Hence, M = PDP ™', and m = pdp~".

Corollary 1. Let m be a symmetric 3 X 3 matrix and let M be the correspond-
ing linear transformation. Let t|, t,, t; denote the eigenvalues of M, and set
t, 0 0
d=|0 t, 0| Then there exists an orthogonal matrix r of R* such that
0 0 1

m=rdr~. (11)

Proor. By the Spectral Theorem, M has eigenvectors X, X,, X; with
eigenvalues ¢,, t,, 5 such that X,, X,, X; form an orthonormal set in R®. In
particular, X, X,, X; are linearly independent, and so we can make use of
Theorem 3.11. We set r = (X, |X,|X;). By Theorem 3.11, m = rdr~'. The
only thing left to prove is that r is an orthogonal matrix. But the columns of
r are orthonormal vectors, so by Exercise 26 of Chapter 3.6, r is an
orthogonal matrix.

1 05
ExaMPLE 3. In Example 2, we studied the matrix m = {0 1 3] and found

5 31
the eigenvalues ¢, =1, t,=1+34, t;=1—y34 and corresponding
(normalized) eigenvectors

-3 5 5
x=-L|s| x=-L|3]| x=-L] 3 |
34| o V68 | Az V68 | _ 57

~3/38 5//68 5/V68 |
Here r=(X|X,|Xs)=| 5/y34 3//68 3//68 |- Formula (11) gives

0 12 -1/V2 ]

1 05 1 0 0
0 1 3[=r|0 1+34 0 |r
531 0 0 1—34 |

We note a useful consequence of formula (11).
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Corollary 2. Let m be a symmetric 3 X 3 matrix with eigenvalues t,, t,, t;.
Let r be the matrix occurring in (11). Then for each positive integer k,

tf 0 0
(m*=rl0 & o|r L (12)
0 0
1 05
Exercise 11. Use (12) to find m®, where [ 0 | 3| is the matrix of Example 3.
5 31

Exercise 12. For each of the matrices m in Exercise 10, obtain the form (11).



CHAPTER 3.8
Classification of Quadric Surfaces

A quadric surface is the 3-dimensional generalization of a conic section.
Such a surface is determined by an equation in the variables x, y, z so that
each term is of second degree; for example,

x2+2xy +322=1.
The general form of the equation of a quadric surface is
ax? + 2bxy + 2cxz + dy* + 2eyz + fz* =1, (1

where the coefficients a, b, ¢, d, e, and f are constants. We would like to
predict the shape of the quadric surface in terms of the coefficients, much
in the same way that we described a conic section in terms of the
coefficients of an equation

ax® + 2bxy + ¢y* =1
in two variables.

As in the 2-dimensional case, we may use the inner product and a
symmetric matrix in order to describe the quadric surface. We may then
use our analysis of symmetric matrices in order to get a classification of the
associated quadric surfaces.

We denote by 4 the linear transformation with matrix

a b ¢ X
m=|b d e| and X=|y
c e z

so that
ax + by + cz
AX)= |bx +dy + ez
cx+ey+fz
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and
X A(X) = ax? + byx + czx + bxy + dy> + ezy + cxz + eyz + f2?
= ax® + 2bxy + 2cxz + dy* + 2eyz + f2%.
We can therefore express relation (1) as
X-A4X)=1
Observe that m is a symmetric matrix. Consider some examples: If m is a

diagonal matrix so that

a 0 0
04dO0
00 f

m=

s

then the equation has the form
ax* + dy* + 2= 1.
If a=d=f=(1/r)* for some r > 0, then the equation becomes

x2+y2+22=r2,

and this is a sphere of radius r.
If a, d, and f are all positive, then we may write

1)? 1) 1
= —_— = d = —_— N iy
a=(z)=a=(F)> = s-(3)

and we have the equation
y

X —
2t F=1

~<|N
[ ]

This gives an ellipsoid with axes along the coordinate axes of R>.
If a and d are positive and f is negative, then

o= (&) a-(5)

and f=—1/ y? for some a, B, y; so the equation becomes
X2 2 2
x4 Y _z
a2 ,82 ,YZ

This is a hyperboloid of one sheet.
If a>0,butd <0, f<O0, then

a___(l)z, d__.__(_l__), f= —(lz) for some a, B, v,

a B? Y
so the equation becomes
222,
2 B

This is a hyperboloid of two sheets.
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If a<0, d<0, f<O, there are no solutions, since the sum of three
negative numbers can never be 1.

What if one or more of the diagonal entries are zero? If f= 0, we have
ax?+ dy*=1, and this is either an elliptical cylinder (if a >0, d > 0), a
hyperbolic cylinder (if a > 0, d < 0), or no locus at all if a <0, d <0.

If f=0and d=0, and a > 0, then we have ax*=1, and thisis a pair of
planes x = +1/a.

If a = 0= d = f, we have no locus.

This completes the classification of quadric surfaces corresponding to
diagonal matrices.

What if the matrix m is not diagonal, or, in other words, if one of the
cross-terms in Eq. (1), 2bxy, 2cxz, 2eyz, is nonzero?

u
In this case, we shall introduce new coordinates (v) for each vector
w

x
( y) in such a way that, expressed in terms of u, v, w, Eq. (1) takes on a
zZ

simpler form. Recall that by formula (11) of Section 3.7, there exists an
orthogonal matrix r such that

m=rdr~',
t, 0 O
where d=|0 ¢, O/ is the diagonal matrix formed with the eigenvalues
0 0 4

1, t5, t; of A. In other words, we have
A=RDR™, )

where R and D are the linear transformations whose matrices are r and d.
Note that since r is an orthogonal matrix, R is an isometry.

x u
IfX= ( y) is any vector, let U = ( o) be the vector defined by
z w

U= R™(X). (3a)
We regard u, v, w as new coordinates of X. Then
X = R(U). (3b)

By (2), A(X) = (RDR ~)(X) = RD(U), s0 X - A(X) = R(U) - R(D(U)).
Since R is an isometry, the right-hand side equals U-: D(U) =

t, 0 0
u u
(v) 10 ¢, 0 (v) = t,u’ + t,0> + t;w’. Expressing X - 4(X) in terms
L VI A A

of x, y, z, we get:
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Theorem 3.12.
ax? +2bxy + 2cxz + dy* + 2eyz + f22 = tut + 1,0 + Wt (4)

The quadric surface defined by (1) thus has, as its equation in u, v, w,
tut + o’ + tw?r =1, 4)

u x
Note: The new coordinates (v) of a vector X =( y) are actually the
w zZ

coordinates of X relative to a system of orthogonal coordinate axes. Since R
is an isometry, the vectors R(E,), R(E,), R(E,) are three mutually orthogo-
nal unit vectors in R>.

u
U= (v) =uE, + vE, + wE;,
w

)
X = R(U) = uR(E,) + vR(E,) + wR(E,).
u
Thus (v
w
along the vectors R(E,), R(E,), R(E,).

) are the coordinates of X in the system whose coordinate axes lie

ExampLE 1. We wish to classify the quadric surface
S:x?+2xy —2xz=1.

1 1 -1
The corresponding symmetric matrix m here is [ 1 0 O
-1 0 O
ple 1 of Chapter 3.7, the eigenvalues of m are 1, =0, t,=2, t; = —1. We
introduce new coordinates u, v, w as described above. By (5), we find that
an equation for X in the new coordinates is

202 —w?=1. (6)
Hence = is a hyperbolic cylinder.

. By Exam-

u
Question: How do we express the new coordinates (v) of a point
w

x
X= ( y) in terms of the original coordinates here? We found in Example 1,
z
Chapter 3.7, that the normalized eigenvectors of the matrix m =

11 -1
1 0 0 |are
-10 0

0 2

XI=_1'[1]’ X2=L 1
2 i & |

1 1
. X,=-L|_1]
5[1}
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By the way the matrix r occurring in (11) of Chapter 3.7 was obtained, we
now have

; . Py 0 \
V6 3
_|Lr 1 __1
|z k6 B
1 1 1
GG
Since r is an orthogonal matrix, we have
o 1 1
2 2
o2 L 1
6 6 V6 |
d 1 1
V3 BB

x u
If X is any vector, ( y) are its old coordinates and (v) its new coordi-
V4 w

nates, then by (3a),

u X 0 L L x‘
2 2
ol=r|y|=|& L -L|y| Q)
6 6 V6
w | |L -L L |,
) S R CR I |

Equations (7) allow us to calculate the new coordinates for any given vector

(;) in terms of x, y, and z.
z
Exercise 1. Classify the quadric surface:
x2+ 10xz + y? + 6yz + z°
(see Example 2, p. 197).
Exercise 2. Find an equation in new coordinates of the form
M2+ 00+ Awl=1
for the quadric surface —4x? + 2y* + 3yz + 222 = 1.



CHAPTER 4.0
Vector Geometry in 4-Space

§1. Introduction

In the preceding chapters, we have seen how the language and techniques
of linear algebra can unify large parts of the geometry of vectors in 2 and 3
dimensions. What begins with an alternative way of treating problems in
analytic geometry becomes a powerful tool for investigating increasingly
complicated phenomena such as eigenvectors or quadratic forms which
would be difficult to approach otherwise.

But now we consider 4-space. In the case of 4 dimensions or higher,
linear algebra has to be used almost from the very beginning to define the
concepts which correspond to geometric objects in 2 and 3 dimensions.

We cannot visualize these higher-dimensional phenomena directly, but
we can use the algebraic intuitions developed in 2 and 3 dimensions to
guide us in the study of mathematical ideas that are otherwise almost
inaccessible. Many of the algebraic notions which we have used in low
dimensions can be transferred almost without change to dimensions 4 and
higher and we will therefore continue to use familiar geometric terms such
as “vector,” “dot product,” “linear independence,” and “eigenvector” when
we study higher-dimensional geometry.

§2. The Algebra of Vectors

A vector in 4-space is defined to be a 4-tuple of real numbers written
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in column form with x; indicating the coordinate in ith place. We denote

X1

. . . . . X
this vector by a single capital letter, X, i.e., we write X = x2 . The set of all

3

X4

vectors in 4-space is denoted by R*.
No longer can we “picture” the vector X as an arrow starting at the
X1

X2

origin and ending at the point x in 4-space. The power of linear algebra
3

X4
is that it enables us to manipulate vectors in any dimension by using the

same rules for addition and scalar multiplication that we used in dimen-
sions 2 and 3.

X1
. . . x
We add two vectors by adding their components, so if X = xz and
3
X4
Uy
=%
U= Uy |’ then
Uy
X, + u
X2t u
X+U= Xy + 14y |
X4+ Uy

We multiply a vector by a scalar r by multiplying each of the coordinates
by r, so

x|
rX=r o P
X4 rx,
1 0 0 0
-0 |1 —10 —10
We set E, = ol E,= ol E,= 1l E,= ol and we call these four
0 0 0 1
vectors the basis vectors of 4-space. The first coordinate axis is then
1 X1
obtained by taking all multiples x,E, = x, g = g of E,, and the ith
0 0

coordinate axis is defined similarly for each i = 2,3,4. Any vector X may
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be expressed uniquely as a sum of vectors on the four coordinate axes:

X, X, 0 0 0
x 0 Xy 0 0
X=\x=lo|T|o|T|x]|T]|o0

x] o] lo] |o] [x
= xIE, + xZEZ + x3E3 + X4E4

H W N

In dimension 3, we described x,E, + x,E, + x;E; as a diagonal segment
in a rectangular prism with edges parallel to the coordinate axes. We drew
a picture which was completely determined as soon as we chose a position
for each of the coordinate axes. We can do the same thing in the case of a
vector in 4 dimensions, although it is not so immediately clear what we
mean by the analogue of a 4-dimensional rectangular parallelepiped, and
we will have to go further into the algebra of projections before we can
interpret the full meaning of the picture (see Fig. 4.1).

The line through X along the nonzero vector U is defined to be the set of
all vectors of the form X + ¢U for all real numbers ¢.

1
2
0
-1 2
along U and the set of all vectors which have 0 in the fourth coordinate.

1
Exercise 1. Let X = and U= i . Find the intersection of the line through X

3

/ Xy
[~ %
X3
;] g -
pd
/ A
’\/ /\
A 7
\ | X,
- oy
P — X
- |\ AL 4= 0
\\ <1 — -1 -
\\\

() — (0

Figure 4.1
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3
Exercise 2. Show that the line of Exercise 1 is the same as the line through Y = g
-2 3
along V= :g . (Show that every vector of the form X + U can be written as
-4

Y + sV for an appropriate choice of s and, conversely, that every vector Y + sV can
be written as X + U for an appropriate choice of ¢.)

0
Exercise 3. Show that the line of Exercise 1 meets the line through Z = ; along
0
-1
W= -‘1‘ at exactly one point. (Find ¢ and r such that X + tU=Z + rW, and
-5

explain why there is only one such solution.)

By the difference of two vectors X and U we mean the vector X + (—U)
which we denote by X — U.

As in the cases of R? and R, the vector algebra in R* has the following
properties: For all vectors X,Y, U and scalars r,s, we have

O X+U)+Y=X+U+Y).
) X+U=U+X
(iii) There is a vector 0 with X + 0 = X for all X.
(iv) For each X, there is a vector —X with X + (—X) =0.
W) (r+ )X =rX+sX.
(vi) r(sX) = (rs)X.
(vii) rX+U)=rX+ rU.
(viii) 1X =X for all X.

As in the previous case, each of these properties can be established
componentwise.

In R® the set of vectors orthogonal to a fixed nonzero vector forms a
plane. In R?, we call the set of vectors orthogonal to a fixed nonzero vector
a hyperplane. For example, the vectors orthogonal to E, form the hyper-

X

X3

plane consisting of all vectors with fourth coordinate equal to zero.

X4
We may use the properties of addition and scalar multiplication to define
the notion of a centroid for sets of vectors in R*. As before, we define the
midpoint of a pair of vectors X and Y by

C(X,Y)=4(X+Y)
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and the centroid of a triplet of vectors X,Y,U by
C(X,Y,Z)=1(X+Y+U).

Similarly, for any 4-tuple or 5-tuple of vectors in R* we define the centroid
to be the average

CXY,U,V) = 1(X+ Y+ U+V),
CX.Y,Z,U,V) =1 (X+Y+Z+U+YV),

Bl Bl D= S|

Recall that the centroid of a triangle formed by the endpoints of X, Y,
and Z is two-thirds of the way from Z to the midpoint of X, Y. In algebraic
language, this means that

CXY,Z)y=1Z+3iC(X)Y).
A simple substitution for C(X,Y) shows that this is indeed correct.
Exercise 4. Show that the centroid of the tetrahedron determined by the endpoints
of X, Y, U and V is three-fourths of the way from V to the centroid of X, Y, and U.

Exercise 5. Show that the centroid of X,Y,U,V is the midpoint of the segment
joining the midpoint of X, Y to the midpoint of U, V.

Exercise 6. Find a number ¢ such that

C(E|,E;,E; ,E4, t(E; + E; + E3 + Ey)) = 0.

Exercise 7. Show that the centroid of X,Y,Z, U,V is three-fifths of the way from
the midpoint of U,V to the centroid of X, Y, Z.

§3. Dot Product, Length, and Angle in R*

X
In 4-space we may define the length of the vector X = ); to be

X4

\/xf+x§+x§+ x2, denoted by |X|. As before, this number is non-

negative and |X|=0 if and only if X is the zero vector. Moreover,
|PX| = |r||X|. If X# 0, we may write X = |X|U, where U= (1/|X}X is a



212 Linear Algebra Through Geometry

vector of length 1. The vectors of length 1 in R* determine the unit sphere in
4-space.

cosf
Exercise 8. Show that for any choice of § and ¢, the vector U = (1/42) sg;g isa
sin ¢
unit vector in R*.
(cos @ cos a]
Exercise 9. Show that for any 0, ¢, and «, the vector V = sm()cqsa is a unit
COS ¢ SIn o
|singsina J
vector in R*.
(cos @ cos ¢ cos a
Exercise 10. Show that for any 0, ¢, and a, the vector W = cosﬁcos?sma is a
cos f sin ¢
L sin @

unit vector in R*,

Definition. Five points in R* are the vertices of a regular 4-simplex if the
distance between any two of the points is the same.

Exercise 11. Find a number ¢ so that the endpoints of the vector E|,E,,E;,E, and
t(E, + E, + E; + E,) form the vertices of a regular 4-simplex.

1
Exercise 12. Show that the vector sE, is equidistant from the vectors - }

’ ’

O — — -

0
-1 -1
_1 1l "11 . For which s do the endpoints of these five vectors form a regular
0 0

4-simplex?

Exercise 13. Show that the distance between any two of the six vectors E; + E,,

El +E3, E|+E4, E2+E3, E2+E4, E3+E4 is \/f or 2.

As in dimensions 2 and 3, we define a notion of dot product in R* which
enables us to treat many important ideas in linear algebra. We define

X1 u

X3 Uy
X-U= . = XUy + XoUy + XqUy + XU
2 3U3 4Uq -

X4 Uy

As before, for each vector X, we have |X| =yX - X and |X| =0 if and only
if X=0. Also, E;-E; =0 if i 5 j.
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Figure 4.2

Using componentwise arguments, we may establish the following proper-
ties of the dot product for any vectors X, U,V and any scalar r:

U-X=X:1,
(rX)-U=r(X-U),
X-U+V)=X-U+X-V.
As in dimensions 2 and 3, we wish to define the angle between two

vectors in such a way that the law of cosines will hold, i.e., for any two
nonzero vectors X and U (see Fig. 4.2), we wish to have

IX — U = |X]* + |UP* - 2|X]| |U| cos¥.
But by the properties of dot product, we have
X-UP=X-U)-X-U)=X-X-2X-U+U-1,
sO
X - UP=|XP+|UP-2X-U.
We would then like to define cosé by the condition
|X||U|cos§ =X-U and 0<O<m,

but to do this, we must have |cosf| < 1, i.e,, cos?d < 1. Thus we must show
that for any nonzero X and U, we have

X-U \’
(Wrer) <
(This inequality is known as the Cauchy—Schwarz Inequality.)
One case is easy: If U = ¢X for some ¢, then
X-U_X-1X_X-X__¢t
XITOT = XITX] ~ [~ 1

and —1<¢/|f|]<1,sincet/|t|=1ift>0and ¢/|t] = —1if t <O.
If U — X # 0 for all ¢, then we can use the quadratic formula to provide
the proof. We have

0<|U-XP=(U-£X): (U—-rX)=(U-U)-2(U- Xy + (X-X)#

for all z. But if (U-X)?>— (U- U)X X) were positive or zero, we would
have solutions ¢ of the equation

0=(U-U)—-2(U-X)r+ (X-X)?
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given by

~ —(—2U-X):\/4(U-X)2—4(U~U)(X-X)

! 2(X-X)

Since we cannot have any such solutions, we must conclude that

(U-X)><(U-U)(X-X)

ie.,
(U-X)°
[UPIXP?
We then define # by the equation
cos0=l%((—|l|—% for 0<O< .

If U=¢X for t >0, then cosfd =1 and § =0. If U=1¢X for ¢t <O, then
cosf=—1and §== If X-U=0, then § = #n/2 and we say that the
vectors X and U are orthogonal.

Exercise 14. Show that for any 6, the vectors cos§E, —sindE; and sinfE, +
cos §E, are orthogonal in R*.

t
—t

11—t
-1 2t—1

Exercise 15. Find a real number ¢ such that

1
% is orthogonal to

We say that a collection of vectors is orthonormal if each vector has unit
length and if any two distinct vectors in the set are orthogonal. For
example, the basis vectors {E|,E,,E;,E,} form an orthonormal set.

Exercise 16. Show that for any angle 8, the vectors {cosfE, + sin@E4, E,, E;,
—sinfE, + cosE,, } form an orthonormal set.

x) (—y u v
Exercise 17. Show that the four vectors [1}; ], [ x ], [_O}, [fy} are mutually
J - X

v u

orthogonal and all have the same length.
Exercise 18. Show that for all angles 8 and ¢, the vectors
{(cosOE, + sinE,)cos ¢ + sinpE;,
—(cos9E, + sinE,)sin ¢ + cos ¢E;,
—sinfE; + cos9E, ,E,}
form an orthonormal set.

Exercise 19. Find the angle between the vectors E; + E, and E, + E, + E; + E,.
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Exercise 20. Find the angle between the vectors E; — 1(E, + E,) and E,— {(E,
+ E,).

1
and i . What are the
-1

Exercise 21. Find the angle between the vectors

bk btk ok

1
possible cosines of angles between the vector } and the other vectors which have
1

each coordinate 1 or —1?

Exercise 22. Show that if U, V, and W are distinct vectors with each coordinate 1
or —1 and if V and W each differ from U by exactly one coordinate, then V — U
and W — U are orthogonal and they have the same length.

Xy
X2
X3
X4
called the 4-cube centered at the origin.

The collection of vectors X = with —1 < x; <1 fori=1,23,4is



CHAPTER 4.1
Transformations of 4-Space

By a transformation of 4-space, we mean a rule T which assigns to each
vector X of R* some vector T(X) of R*. The vector T(X) is called the image
of X under T, and the collection of all images of vectors in R* under the
transformation T is called the range of T. We continue to denote transfor-
mations by capital letters such as P, Q, R, S, T.

Examples of transformations are:

(1) Projection to the line along U # 0 defined by

o= (B4

(2) Reflection through the line along U # 0 defined by
S(X)=2P(X)-X.
(3) Multiplication by a scalar ¢ defined by
D,(X) = X.
(4) Projection to the hyperplane perpendicular to U # 0 defined by

9(X) =X - P(X).
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ExampLE 1. Let U = in R*; then

1
1
1
1

X+ X+ x5+ x4
Xi+ X+ x5+ x4

X1+ X+ x5+ x4
P(X)=( . )

I

Xp+ X+ X34+ x4 ’

bk ek ek e

Xy + X+ x5+ x4

=X+ X+ X3+ x4
SX)y=2P(X)—X=L1| 1T RFNT

x|+xZ+x3_X4

3x1_x2_X3—X4
—x;+3x,—x3— X
Q(X)=% 1 27 X377 X4

—X;— X, +3x;— x4
—X;— Xy — X3+ 3x4

Exercise 1. In each of the following problems, let P denote projection to the line
along U. Find a formula for the coordinates of the image P(X) in terms of the
coordinates of X.

5

1
_lo
@ U=|0}.
\OJ
-
_1
) U=7l,
0]
1\
©u=|7'
-1
(1]
=| 0
@u=|9
-1
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Exercise 2. For each of the vectors U in Exercise 1, find a formula for the image of
the reflection S(X) through the line along U.

Exercise 3. For each of the vectors U in Exercise 1, find a formula for Q(X), where
Q is the projection to the hyperplane orthogonal to U.

Using the description of a transformation in terms of its coordinates, we
can define further transformations, such as:

(5) Rotation in the x,x, plane by angle 8 defined by

X, cosfx, — sinfx,
R2|%2| = sinfx, + cosfx,
X3 X3
X4 X4
X

. x
Exercise 4. In terms of the coordinate of X = x2
3

, calculate the images R%(X),
X4

RY74(X), RZ,  (X).

Similarly, we have the images of R} in the x;x; plane by setting x; = x,
for all k # i, j and by defining

x; = cosbx; — sinfx,,

;.
x] = sinfx; + cosfx;.

Exercise 5. Calculate the images R2(X), RF(R,%(X)), RyH(RM(X)), RP(RJH(X)),
X1

RJX(RP(X)), where X = ;‘i .

X4

Just as in the case of objects in 3 dimensions, we may picture objects in
4-space by projecting them down to a 2-dimensional plane. The easiest such
projection is simply the projection to the first two coordinates in R, i.e.,

Xy

X X
T|%2 =( ‘).

X3 X2

X4

We call this the projection to the 1-2-coordinate plane. Even though this
transformation takes a vector in R* and sends it to a vector in R?, it
possesses the properties of a linear transformation since T'(X + fU) =
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T(X) + ¢tT(U) for any X, U in R* and any real number ¢. In particular, the
images of a line is another line if 7(U)# 0 and the image is a point if
T(U) = 0. This fact makes it easy to draw 2-dimensional pictures of objects
in 4-space which are composed of segments—we simply find the images of
the vertices of the object and connect the image points by a segment in R?
if the original vertices are connected by a segment in R*.

1 1 0

EXAMPLE 2. In R?, the points U = (1) , V= (1) ,and W = } determine an
1 1 1

equilateral triangle. The image points are T(U) =( } ), T(V) = ((1)),

T(W) = ((1’) (see Fig, 4.3).

Note that the image itself is not equilateral.

1
ExampLE 3. The tetrahedron in R* determined by the vertices U, = (1) ,
1
1 0 1
U, = it U= } , Uy= i has the same image as in Example 2 since
1 1 0

() = 70y =(1).

(W) (V)

(V)

Figure 4.3
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2
ExAMPLE 4. The tetrahedron in R* determined by the vertices V, = % ,
-1
1 -1 -3
V,= ‘bl , V3= é , V= ~ 3 | has the image given by Figure 4.4.
7
3 4 7
1
T(V,)
T(V,)
T(V,)
T(V2)

Figure 4.4

ExampLE 5. Consider the 4-cube centered at the origin with vertices given
by the vectors with all coordinates either 1 or — 1. The projection T of this

4-cube to the plane has only four distinct vertices (:), ( 11), (—11),

( ’_'} ), even though the 4-cube has 16 vertices. For example, the four

1 1 1 1

vertices | s 1 R 1 R 1 are all sent to (1) under T.
1 1 -1 -1 1
1 -1 -1 1

In order to get more useful pictures of an object like the 4-cube, we first
rotate the object before projecting to the 1-2-coordinate plane. For exam-
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ple, if we rotate the 4-cube # degrees in the 1-3-plane, we get

X, cosfx; — sinfx,
R} X2 X
X, sinfx, + cosfx; |
X4 X4
)

x;)

TR, Xy | _ (cosbx, — sinfx,
X3 x2
X4

1
If § = 30°, we then have TR}; i =(‘/3_/2 - 1/2)_
1
1

The picture opens up a certain amount, but we still see only eight distinct
vertex images.

If we first rotate in the 1-3-plane by # degrees and then in the 2-4-plane
by ¢ degrees we, get

X cosfx, — sinfx,
R2R1 |2 | = COS X, — sindx,
¢ Y0 - . ’
X3 sinfx, + cosfx,
X4 sin ¢x, + cos ¢x,
S0
X
x cosfx, — sinfx
TR§4R913 x2 = ( 1 ] 3 )
3 COS px, — SIin¢x,
X4
Thus
: V3/2+1/2
— +
TRERE| 1| = | B/2TI2
- } -2 /2442 /2
while

1
TR24RI3 -1 = ‘/3_/2+1/2
i S N B 3 SRy

-1
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We get 16 different images for the 16 vertices of the 4-cube, but again it is
difficult to interpret the image of the whole 4-cube.

If instead we first rotate in the 1-3-plane, then the 2-4-plane, then the
1-4-plane, we get a general position.

Xy
TRMUR2R1 2| = cosa(cosfx, — sinfx;) — sin a(sin px, + cos dx,) ‘
« e COS $X, — Sin x,
X4
Then
I B ﬁx S VS0 R N B SV
14 p2a p13[ X2 2\ 27 27 2\27 2
TR3R3 R0 x5 =
X4 .\/_g_x —-lx
2 72 27
3, 1, B B ]
_ ZXI—ZXZ—TX3—TX4
3
LN

Finally, if we rotate by 8 degrees in the 2-3-plane, we have
X1
X2

TRI§3RO‘I4R§4R‘913 x,

X4

cosa cosfx; — sina sinx, — cosa sin fx; — sina cos x,
— sin Bsin¢x, + cos Bcos¢x, — sin Bcoshx; — cos Bsingx, |

In particular,

Xy 3 1.3 3
x| _| amT TR
TR23R14R24R13 21
3042302304230 X -
_3 1. _ 3 3
X4 ZXI+ZX2 'TX:; T.X4

Now we have a picture in “general position” where no two images of
coordinate axes are linearly dependent.

These are precisely the sorts of instructions which are used in producing
computer graphics images (see Fig. 4.5), for example, in the film The
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0=30,6=0,a=0,8=0 0=30,6=30,a=0,8=0
i~ \
[~ q
#=30,¢6=30,a=30,8=0 9=30,¢6=30,a=30,8=10
Figure 4.5

Hypercube: Projections and Slicing by Thomas Banchoff and Charles
Strauss. We include several different pictures of that object corresponding
to other values of 4, ¢, a, and 8.



CHAPTER 4.2
Linear Transformations and Matrices

In Chapter 4.1 we examined a number of transformations T of 4-space all
of which have the property that the coordinates of 7(X) are given as linear
functions of the coordinates of X. In each case we have formulas of the sort

X1 apx,+ apx; +apx;+ agx,
7|¥2| = [Fa%1 T G + a5X5 + ayexy
X3 a3 Xy + a3X; + azx; + ayx,
Xy A X+ AuXy + Ag3X3 + auxy

Any transformation which can be written in this form is called a /inear
transformation of 4-space.
a, G2 a3 ay
The symbol D1 G0 95 Da| ¢ called the matrix of the transforma-
a3 A4z Az Ay
Q41 Qg Q43 Ay
tion T and is denoted m(T). We abbreviate m(T) by ((;)), where a;; stands
for the entry in the ith row and the jth column.
We can now list the matrices of the linear transformations in the

1
examples of Chapter 4.1 (with U = } ):

1

m(P)= ’ M

B B= & &

Bl Bl B B
[N NN
PN N N
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—-1 1 11
2 2 2 2
bo-1 4
mS)=1 1 7 1l )
2 2 2 2
1 1 11
L 2 2 2 2
(t 0 0 0
0 ¢+ O
m2)=10 6 ¢ of ©
0 0 0 ¢
(3 1 —1 1
4 4 4 4
-4 1 -t -4
4 4 4 4
-1 _1 _1 3
L 4 4 4 4
(cos§ —sinf 0 0
12y _ |sinf cos§ O O
mRO)=1"0" o 1 oof )
L 0 0 0 1

As in dimensions 2 and 3, if T is the linear transformation with matrix
m(T) = ((ay)), we then write
Xy apx; + apx; + apx; + agx, »
= Xp| _ 921X F anXy + apXy + ayxs| _ | )2
((a; N(X)=((a3 ) Xy | = |@3%, F @apXy + Ag3xs + ayx, | | s

X4 Ay X1+ Xy + agx3 + auxy Ja
ba
and we say that the matrix ((a;)) acts on the vector X to yield Y = ;z . We
JYa

may then write the equations for the coordinates of Y as
Vi =X+ apXy + apx; + ayx,,  for i=1,2,3,4.

As in dimensions 2 and 3, we now prove two crucial properties of linear
transformations, which show how a matrix acts on sums and scalar prod-

Xy U

ucts. T X = |2 | and U =|"2|, and if Y = ((¢;))X + U), then
3 3
X, U,

Y= ,.l(x, +u)+ aiz(xz + uy) + ap(x; + uy) + ay(x,+ uy)
= (a3 X1 + apXy + apx; + ayxg) + (@) + apu, + azus + auuy).

Therefore, ((a;))(X + U) = ((¢;))X + ((¢;))U. It follows that T(X + U)
= T(X) + T(U).
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Similarly, we may show that T(rX) = rT(X) for any scalar r.
Conversely, if T is a transformation such that 7(X + U) = T(X) + T(U)
and T(rX) = rT(X) for all vectors X, U and scalars r, then

X, X 0 0 0
X3 0 0 X3 0
X4 0 0 0 X4

ay X X
We define a;; by setting T(E,) = b Then T| 2| = (a;) *21 Hence
i 0¥ g 1k, ay | X3 P x| ’
a4~

4
T is the linear transformation with matrix ((a;)).

In summary, we have:

X4 X4

Theorem 4.1. A transformation T of 4-space is a linear transformation if and
only if T(X+U) = T(X) + T(U) and T(rX) = rT(X) for any vectors X and
U and scalars r.

At this point we conclude our treatment of the linear algebra of 4
dimensions. In much the same way as in dimensions 2 and 3, we may
define the notions of products of transformations and of their correspond-
ing matrices, of inverses, determinants, and eigenvalues. These procedures
lead to systems of equations in four and more variables which we will take
up in the next chapter. We do mention two facts which are important
differences between dimension 4 and dimension 3 to help the student in
pursuing the subject of linear algebra beyond the material in this book.

First of all, although every linear transformation in R*® had at least one
eigenvalue, this property no longer holds in R* (as indeed it did not in R?).

For example, if we consider the double rotation R034R412, we have

X cosfx, — sinfx,

RHMR) x| _ sinfx, + cosfx,
. s

* | x, COS ¢X5 — Sin dxy

X4 sin ¢x; + cos ¢x,

and if R034R4§2(X) = AX for some A # 0, we have, first of all,
cosfx; — sinfx, = Ax,
sinfx, + cosfx, = Ax, ;

so unless x; and x, =0,
(cos@ — N)*+ sin’d = 0,
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and, therefore,
1+ A2 —2\cosf =0.

The only solutions then are A = (2cosf +y4cos¥ —4)/2. But this has
solutions only if cos? = 1, § = 0, . Similarly, the last two equations express
the condition that

cos ¢x; — sindxy = Ax;,

sin¢x; + cospx, = Ax,,
which can only occur if ¢ =0 or = or if both x; and x, = 0. Therefore, in
the case where neither § nor ¢ is 0 or =, the transformation Rj*R,* will
have no (real) eigenvalues or eigenvectors.

Also, the definition of the determinant of a matrix in R* requires more
care, although it is analogous to the definition in R? or R®. We recall that
we can express the 3 X 3 determinant in terms of 2 X 2 determinants as
follows.

a b, ¢
1 1 1 b2 c,
by ¢

b, ¢ b, c
1€ 1 €
a, b, c|=a —a, +as

by ¢ b, ¢

a; by ¢
In R* we define a 4 X 4 determinant in terms of 3 X 3 determinants:

a, b, ¢ d,

by d, byc,d, bc,d, bic,d,
a, b, ¢, 4,

= al b3C3d3 _az b3C3d3 +a3 b2€2d2 —(14 b202d2 .

a3 by ey dy| Ny | |bucads|  |bacads|  |Bresds

For example,

cosfd —A —sind 0 0
sind cosf — A 0 0
0 0 cos¢ —A —sing
0 0 sin ¢ cosp — A
cosf — A 0 0
=(cosf—A) O cos¢ —A  —sin¢
0 sin¢ cosp — A
— sinf 0 0
—sinf| O cos¢ —A —sing
0 sin ¢ cosp — A

= ((cosf — A+ sin’d )((cos¢ — A+ sin’¢)
= (A* = 2X\cosd + 1)(A> — 2Acos ¢ + 1).

The only cases in which this determinant is zero occur when either 8 or ¢ is
0 or 7.



CHAPTER 5.1
Homogeneous Systems of Equations

In Chapters 2.4 and 3.4, we studied systems of equations in » unknowns for
n=2and 3. What if n > 3?
ExampLE 1. Let us look at the system
X, +2x,+3x;— x,=0,
X3+ x3+ x,=0,

in four unknowns. By a solution of (1) we mean a vector X in R?,
X =

which satisfies the two equations in system (1). Thus

-1 0

-1 0
d

1| 2% o

0 0

are two solutions of (1).
Let us find all solutions of (1). Assume

X =
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is a solution of (1). Subtracting twice the bottom equation from the top, we
get

(%) + 2%, 4+ 3x3— x4) — 2(xy + x5+ x4) =0 —2(0)

or
.xl +X3_3X4=0.
So we have
xl+X3—3X4=O, (2)
X+ x3+ x,=0,
which we rewrite in the form:
xl=—X3+3X4, (3)
x2 = - X3 - X4 .

We just saw that every solution of the system (1) satisfies the system (3).
Conversely, retracing our steps, we see that if X is a solution of (3), then X
is also a solution of (1). But now (3) can be solved directly. We give
arbitrary values to x; and x, and then use (3) to calculate x, and x,. For
instance, set x; = — 10, x, = 3. Then, by (3),

x,=10+3-3=19,
and
x,=10-3=17.
Using these values for x;, i = 1, 2, 3, 4, we get

19

One can directly check that X is a solution of (1).
More generally, fix two numbers u, v. Set x; = 4, x, = v and define x,
and x, by (3). Then

x;= —u+ 3y,
X,=—u-—o.
Set
X, —u+30v -1 3
I EZY I A’ B Bl -1
X_xs_ u =u|l |+t o | 4

X4 v 0 1
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Letting u, v take on all possible scalar values, formula (4) then delivers all
solutions of (1).

Next, we shall study an arbitrary system of k equations in » unknowns
having the following form:

agx;+apx,+ -+ +a,x,=0,
azlxl + a22x2 + -+ a2n.xn = O,

(H)
agx,+apx,+ - +a,x,=0.

(H) is called a homogeneous system of linear equations.

Here a;, 1 < i< k, 1< j< n, are certain given scalars called the coeffi-
cients of the system (H) and x,, ..., x, are the unknowns. A solution of
(H) is an n-tuple of numbers

X
X2
%,
such that each of the k equations in (H) is satisfied by these » numbers.
By analogy with the discussion in Chapter 4.0, §2, we define an n-tuple X
as a vector in n-space, and we denote the totality of all such vectors by R”.
Addition of vectors in R" and multiplication of a vector by a scalar is defined
by analogy with the definitions given for the case n = 4, and the same basic

algebraic properties hold which we noted in that case. Furthermore, the dor
product of two vectors in R” is defined as in Chapter 4.0, §3, by

X-U=xu +xu+--- +x,u,,

where
X1 U
X2 U
X=| .| U=| .
X u,

Using dot-product notation, the system (H) can be written concisely as

A -X=0,
A,-X=0,
. (H)

A, X =0,
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%,
where X is the unknown vector | ; | and
xn
ap az
ap a
Al=| .|, A,=]| .| etc
a1n J A

Let us now give a procedure for finding all the solutions X of a given
system (H). Consider a second system

apx, +apx,+ - +aj,x, =0,
: (H)
agx, + apx, + -0 +ap,x,=0.
We say that the systems (H) and (H') are equivalent if every solution of (H)
is a solution of (H'), and conversely.
To solve (H) it will be enough if we can find a system (H’) which is
equivalent to (H) and which is easy to solve. Note that we did just that in

Example 1 when we found the system (2) which was equivalent to (1).
In the next example, k = 3 and n = 4.

ExaMmpLE 2. To solve
Xy _2X2+3X3 =O,
x1+ x2 +X4=0, (5)
4X3 - x4 = O,
subtract the top line from the middle line and leave the other lines alone.
We get the new system
X, — 2%, + 3x; =0,
3x2 - 3X3 + X4 = O, (Sa)
4X3 - X4 = 0.

(5a) is equivalent to (5).
Next, add 2 of the middle line in (5a) to the top line. We get

X, + x3+2%x,=0,
3XZ - 3X3 + X4 = O, (Sb)
4x,— x4=

(5b) is equivalent to (5a), and so it follows that (5b) is equivalent to (5).
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Next we add — 1 times the bottom line of (5b) to the top line, getting

xl +('§‘+%)X4=0,
3x2 - 3X3 + X4 = O, (50)
4x, — x4 =0.

Finally, add 3 of the bottom line of (5c) to the middle line, getting
X, +dx, =0,
3x, + 1x,=0, (5d)
4X3 d x4 = 0.
As before, (5¢) and (5d) are equivalent to (5). But (5d) can be solved at

once. Give an arbitrary value to x, and then use (5d) to calculate x,, x,, x;.
We find

_ o 11

X1 = T 12%a>
_f - 1

Xy = (= )%4>
—_ 1

X3—- ZX“.

Hence, we get, as a solution of (5d):

_ 1 1
Xy 12%4 12
1
= %2l = | T12%4| = 1
X= = =x| 7| (6)
X3 3%a 4
X4 X4 1

For different choices of x,, (6) gives all solutions of (5d) and, therefore,
all solutions of (5).

The method just used in Example 2 can be applied to any system of the
form (H). By a succession of steps in which a scalar times one line of the
system is added to some other line, while the remaining lines are left
unchanged, and, possibly, by relabeling the unknowns x;, we finally obtain
a system (H’) of the following form:

Xy +byxp Fbpx,t s by, %, =0,
X, +by Xy F Xy gt s by, x, =0,

(H')
X, +byxp Fbpxg,+ s+ b, x,=0,

where / is some integer, depending on the system (H), with 1 < / < n, and
b; are certain constants, such that the original system (H) and this system
(H') are equivalent. To find all solutions of (H’), and, therefore, of (H), we
need only fix numbers u,,u,, ..., 4,_;, set X, = 4y, ..., X, =u,_;, and
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then find x,,x,, ..., x; from (H'). We get

xXp=—byuy—bpuy— - = by, gy,
Xy = —byuy = bytty =+ ++ = by,
xp= —bjuy = bpuy = - = by, .

The solution X of (H) is then given by

X1 —bpuy— - — bl,n—lun—ll
X2 —byu— - — b2,n—1un—l
X=| % | = —byuy— -+ — by ity |.
X141 U
X142 U
xn J L un—l
In other words,
h 3
[~ by, — by, bip-i
—by -b, by
X = ul 1 + u2 0 + -+ un_l 0 . (7)
0 1 0
. 0 ) . 0 ) . 1

Letting u,, . . . , u take on all possible scalar values, (7) gives us all solutions
of (H), and each choice of u,, . . ., u, provides a solution of (H).

X1
ExAMPLE 3. Find a nonzero vector |X, | in R® which is orthogonal to each
X3
2 1
of the vectors |3 | and |1 |.
0 1
The condition on x;, x,, x5 is
2x, + 3x, =0,
{ X+ x,+x;=0 ®)
1 2 3= Y

So we must solve the system (8), of two equations in three unknowns.
Subtracting 1 the top line from the bottom line, we get the equivalent
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system

—1x,+ x3=0.
Adding 6 times the bottom line to the top one, we get the equivalent system
2x,+ +6x,=0,
[ X, | X5 (8b)
- -2'X2 + X3 = 0.
(8b) can now be solved to give
xl = - 3X3,
x2 = 2X3.
Xy
So the solution X = | x; | of (8) is given by
X3
- 3X3 - 3
X = 2X3 = x3 2
X 1

Here x, is an arbitrary scalar. In particular, taking x, = —1, we get: The
3 2 1
and to |1 |.
1

vector [— 2] is orthogonal to [3
Note: We could have solved this problem by using the cross product.

-1 0

Exercise 1. Find all solutions of the system in four unknowns:
X + X4 = 0,
Xy - x4=0, %
X|+X2+X3+X4=0.

Exercise 2. Find all solutions of the system:

X1 +2X4=0,
x1+xZ+X3+ x4=0.

(10)

Exercise 3. Find all solutions of the system in x,, X,, X3, X4:

x|+2x2 =0$
X2+X3+X4=0, (11)
X|+ Xy — X3 =0.

Exercise 4. Find all solutions of the system consisting of one equation in five
variables:

2xl—xZ+X3_4X4+X5=O.
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Exercise 5. Find all vectors in R* which are orthogonal in R*:

1
(a) to the vector _11 ;
-1
(1Y (o)
(b) to the vectors —11 , __11 H
(—1) L 0 ]
(1) ([0 1)
(c) to the vectors _11 , _11 ) g ;
\—11 L 0 J ~1;
- 1 3 - 0 3 rlw
(d) to the vectors -1 , 1 ) 0 ;
1 -1]1]0
(1) Lo U]
(1) (o) (1] (1
=1] |1| [O 0
(e) to the vectors 1 Pl lol | o
L 1 J {0 1/ \—1

Exercise 6. Find all vectors in R? which are orthogonal to the vectors:
g

BWN -
0 3O\ W



CHAPTER 5.2

Subspaces, Linear Dependence,
Dimension

§1. Subspaces

Consider a homogeneous system of linear equations in x|, . . ., x, such as
we have studied in Chapter 5.1. What “geometric object” in R" is described
by this system?

ExAMPLE 1. Take n = 3. The equation
2x, —3x,+x3;=0
describes a plane in R, passing through the origin.
Similarly, the equation
describes a line through the origin in R?; and the pair of equations
X1 + x2 - X3 = 0,
x;+2x,+ 3x;=0,

in x,, x,, x;, describes a line through the origin in R>.

As analogue of a line through the origin or a plane through the origin, we
have the notion of subspace of R". A subset of S of R” is called a subspace if
for every pair of vectors X and Y in S and any scalar ¢, the sum X + Y and
the scalar product X are in S. Equivalently, S is a subspace if for all X, Y
in S and for all scalars s, ¢, the vector sX + fY isin S.

ExaMmpLE 2. The set consisting of the 0 vector alone is a subspace of R”".
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Theorem 5.1. Let (H) be a homogeneous system of linear equations in
Xiy+..,X,. Then the subset S of R" which consists of all solutions of the
system (H) is a subspace of R”.

To prove this, we write (H) in the form:
A -X=0, A X=0,...,A,-X=0, )

where A, ..., A, are given vectors in R"” and X is the unknown vector in
R”. Then the set S of solutions of (H) consists of all X satisfying (1). Let X
and Y belong to S and let s, ¢ be scalars. Then

=¢t-0+5-0=0.

Similarly, A; - (¢( X+ sY) =0 for j=2,..., k. Hence, /X + sY satisfies (1)
and therefore belongs to S. Hence, S is a subspace of R".

ExaMPLE 3. Let a;,qa,, . . ., a, be n scalars, not all 0. The set S consisting of
Xy
X2

all X=| . | in R” such that

ax,+ax,+ - +ax,=0

is a subspace of R". Such a subspace, defined by a single equation, is called
a hyperplane in R". A hyperplane in R® is a plane through the origin, and a
hyperplane in R? is a line through the origin. The set of all vectors in R* of

u
the form 8 , where u, v, w are scalars, is a hyperplane in R*.

w

Exercise 1. Give an equation in x;, x,, x3, x4 defining this hyperplane.

Exercise 2. Let S be the set of all vectors in R* of the form , where ¢, s are

Uy &~ Uy~

scalars.

(i) Show that S is a subspace of R*.
(ii) Give a system of equations in x,, x,, x3, x4 defining this subspace.

Exercise 3. Let U;, U,, U; be three vectors in R”. Denote by S the collection of all
vectors of the form: s,U, + s,U, + s,U;, where sy, s,, 55 are scalars. Show that S is
a subspace of R".
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§2. Linear Dependence

In R? and R?, we had the notion of linear dependence of a set of vectors.
For n arbitrary and Y,,Y,, ..., Y, a set of / vectors in R”, we say that the
setY,, ..., Y, is linearly dependent if one of the Y, is a linear combination
of the rest. Equivalently, we can say that the set Y,,...,Y, is linearly
dependent if there exist scalars s, . . ., s;, not all 0, such that

SIYI + 32Y2 + e + SIYI = 0. (2)

If (2) holds and one of the s;, say s,, is not 0, we can solve for Y,, getting

and so Y, is a linear combination of the remaining Y,, and thus the set
Y,,Y,, ..., Y, is linearly dependent.

Conversely, suppose the set Y, ..., Y, is linearly dependent. Then for
some i,

Y=Y+ -+ Yo oY+ + Y,
and so we have

oY+ F+eo Yo (DY + Y+ oo+ Y, =0.

Thus (2) can be solved by the set of scalars ¢, ..., ¢, =Ly -+ -5 G
which are not all 0. Thus, deciding about linear dependence amounts to
seeing whether (2) can be satisfied by scalars s,, . . ., 5, which are not all 0.

The problem of deciding whether a given set of vectors is linearly
dependent or not leads to a homogeneous system of equations of the type
we studied in Chapter 5.1.

ExaMPLE 4. Is the set of vectors in R*,
2 1
AI = ; N A2 = g N A3 =
1 1

linearly dependent?
We look for scalars s, f, u such that sA, + rtA, + uA; = 0. This holds if

2s+ t+3u=0,
s + u=0,
3s +2t+5u=0, 3
s+ t+2u=0.

Let us solve the system (3). Subtracting multiples of the second line from
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the other lines, we find that (3) is equivalent to the system

t+ u=0,
s + u=0Q, 3
2 +2u=0, (32)
t+ u=0,
which in turn is equivalent to
t+u=0, 3b
{ s+u=0, (30)
and therefore has solutions, for arbitrary u:
t= —u, = —u.
Taking u =1, we get: t = —1, s = —1, u=1 as a solution of (3). Hence,

which we can check by direct computation. So the set A, A,, A; is linearly
dependent, and, in fact, A; = A, + A,.

Exercise 4. Is the set B, A,, A; linearly dependent, where

2 1

A2= ?

3
0 _
20 As 5
1 2

A set of vectors A, ..., A, in R” which is not linearly dependent is
called linearly independent.

ExaMPLE 5. The set

1 0 0
0 2 0
o |of |0
0 0 3
is linearly independent.
Exercise 5. For which value of ¢ is the set
1 0 1
1 3 t
=2 |-3] |4
0 0 0
linearly dependent?
Exercise 6. Is the set
1 3 1
0 2 -1
2 {10} 0
3 7 4

linearly independent?
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Exercise 7. Let U,,U,, ..., U, be nonzero vectors in R” which are mutually
orthogonal, i.e., U;-U; =0 if i = j. Show that the set U}, Uy, ..., Uy is linearly
independent.

§3. Dimension

We say that a straight line is one-dimensional (has dimension 1), while a
plane has dimension 2 and R*® has dimension 3. Exactly what does this
mean? Furthermore, can we define a dimension for subspaces of R”, n > 3?
What, for instance, shall we call the dimension of the hyperplane in R’
defined by the equation: x, + x, + x; + x4 + x5 = 0?

A straight line, through the origin, in R? or R?, consists of all the scalar
multiples of one nonzero vector. A plane =, through the origin, in R®
consists of the set of all linear combinations of two vectors A, B in #. In
other words, 7 consists of the set of all vectors

X =sA + (B, where s, t are scalars.

The only restriction on the pair A, B of vectors in = is that it is a linearly
independent pair.
Finally, R® can be expressed as the set of all linear combinations

xE; + yE, + zE;
of the three vectors E,, E,, E;, and this triplet of vectors is linearly

independent. These examples suggest a definition: let S be a subspace of
R”. Suppose there exist d vectors A[,A,, ..., A; in S such that

every vector X in S is a linear combination
X=1A+ LA, + - + 1A, @)
of this set of vectors,
and
theset A, ..., A, is linearly independent. 3)

Then we say that the dimension of S equals d.
We also say that a d-tuple of vectors A}, A,, ..., A, in S satisfying (4)
and (5) is a basis of S.

Note: To justify the definition of dimension just given, we need to know
that the number d we obtain does not depend upon how we choose the
vectors A, ..., A, in S. Fortunately we have:

Theorem 5.2 Suppose A, A,, ..., A, and B|,B,, ..., B, are two sets of
vectors in S which each satisfy (4) and (5). Then d = e.

Note: In other language, the theorem says that every two bases of a given
subspace S consist of the same number of vectors. This number is what we
call the dimension of S. We shall not give a proof of Theorem 5.2.
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Each subspace S has many different bases. For instance, let 7 be a plane
through the origin in R®. Every pair of vectors A, B in 7 which is linearly
independent satisfies (4) and (5) with S = 7 and is therefore a basis for 7.

EXAMPLE 6. Let S be the hyperplane in R’ defined by x; + x, + x5 + x, +
xs=0.

(a) Find a basis for S.
(b) Find the dimension of S.

X]
If X=|:|isin S, then x;, = —x, — x; — x, — x5, and so
Xs

TXp T X3 T Xg T X5

X3
X= X3
X4
Xs
-1 -1 -1 -1
1 0 0 0
= X, 0 +x3 1 +X4 0 +x5 0
0 0 1 0
0 0 0 1

= x2A2 + X3A3 + X4A4 + x5A5 ’

-1
1
where we set A, =| 0 | and so forth. Each of the vectors A,, A;, A,, A
0
0
belongs to S, as we verify by checking the equation which defines S. We
just saw that every vector in S is a linear combination of the 4-tuple A,, A;,
Ay, A,
Also, we claim that this 4-tuple of vectors is linearly independent.
Suppose, on the contrary, that the 4-tuple is linearly dependent. Then there
exist scalars s, ¢, u, v not all 0, so that

SAZ + tA3 + uA4+ DAS = 0

or
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It follows that
—s—t—u—v=0, s=0, t=0, u=0, v=0.

This contradicts the fact that s, ¢, u, v are not all zero. So the 4-tuple A,,
A, A,, A is linearly’dependent. Hence, this 4-tuple satisfies conditions (4)
and (5). Thus, the set A,, A;, A;, A is a basis of the hyperplane S, and so
the dimension of this hyperplane is 4.

§4. Exercises

Exercise 8. Find a basis for the plane in R3:

x:;-le =0.

Exercise 9. Find a basis for the hyperplane in R*:

4x| +3xZ—X4=0.

Exercise 10. The subspace S of R* is defined by the system of equations:
{ X — ZX3 = 0,

XZ"' X4=0.

(a) Find a basis for S.
(b) What is the dimension of S?
Exercise 11. Let S be the subspace of R® defined by the equations

2x, — x5, =0,
2xy— x3=0,
2x3— x4 =0,
2x4 — x5=0.

Find a basis for .S, and give the dimension of S.

Exercise 12. Let Z be a nonzero vector in R”. Let S be the subset of R” consisting of
all vectors ¢Z with ¢ a scalar. Show that S is a one-dimensional subspace of R".

Exercise 13. Fix n. Show that

(a) R" is a subspace of R".
(b) Find a basis of R".

Exercise 14. Find a basis for the subspace of R* defined by the system

2x; + x5 —3x3+ x4 =0,
2X|—‘XZ— X3—X4=0.
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Exercise 15. Find a basis for the subspace S of R* defined by the system
2x| +XZ—3X3+ X4=0,
2x| — Xy — X3 — X4=0,
Xy + x3+3x,=0.

Show that S is one-dimensional.

Exercise 16. Let S be a subspace of R>. Prove the following statements:

(a) If S has dimension 1, then S is a line.
(b) If S has dimension 2, then S is a plane.
(c) If S has dimension 3, then S is all of R3.
(d) S cannot have dimension greater than 3.

Exercise 17. Let S be a subspace of R”. Show that the vector 0 belongs to S.

243

Q)

By analogy with the cases n = 2, 3, 4, for any n, we call a transformation
T of R" linear if T(X + U)=T(X)+ T(U) and T(rX) = rT(X) for any
vectors X, U in R” and any scalar r. If T is a linear transformation of R”,
then by the range of T we mean the collection of all vectors 7'(X), where X
is in R”. By the null space of T we mean the collection of all vectors X in R"

such that 7(X) = 0.

Exercise 18. Show that the range of T is a subspace of R".

Exercise 19. Show that the null space of T is a subspace of R".

Exercise 20. Let T be the transformation of R* which assigns to each vector

X1 Xy
x x
X = | 72| the vector | 2|.
X3 X3
X4 0

(a) Show that T is a linear transformation of R*,
(b) Describe the range of T.
(c) Describe the null space of T.



CHAPTER 5.3
Inhomogeneous Systems of Equations

§1. Solutions

Let a;, 1<i<k 1< j<n be a setof constants, and fix k£ constants

Uy, Uy, ..., . The system

a”xl + 012x2 + -+ alnxn = ul N
a21x| + 022x2 + .-+ aznxn = uz,

e
aklxl + ak2x2 + .-+ A X, = Uy

is called an inhomogeneous system of linear equations. If all the u; =0, (I)
turns into the homogeneous system (H) which we studied in Chapter 5.1.
We set

uy X1
U, X,
U=| .|, X=|,.
uk xn

X is a solution of (I) if the equations in (I) are satisfied. How can we solve
such an inhomogeneous system? For n = k =2 and for n = k = 3, we have
studied such systems in earlier chapters. In the general case of arbitrary &
and n, we can proceed as in our solution of homogeneous systems in
Chapter 5.1 to find a succession of systems that are equivalent to (I), until
we reach a system (I') of the following form, where we may have relabeled
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the x;:
X +byXp F bpXpat o by, x, =0,
Xz thuXp i+ byXppt s by, X, =0y,
T)
X +byXpy FbpXp, ¥+ by, x, =0,
where v, . . ., v; is a new sequence of constants, constructed out of the u;.
We then solve the system (I’) directly by choosing x,, ,, . . ., x, arbitrarily
and solving for x,,x,, . . ., x;, using (I'). In this way, we find all solutions
of (I'), and hence all solutions of (I).
ExampLE 1. Solve the system
2x+3y+z=u,
xX— y—z=wv, (N

3x+2y =w,

where u, v, w are given numbers. Subtracting twice the middle line from the
top line, and then three times the middle line from the bottom line, we get
the equivalent system:

xX— y— z=wvo,
Sy+3z=u—2v, 1)

Sy+3z=w-—3v.
By a similar procedure, we get the following system (1”), equivalent to (1'),

and, hence, also equivalent to (1):
X—y— z=u,
Sy+3z=u-2v, (1)
O=w-3v)—(u—20)=w—u-—o.

Observe that (1”) does not have solutions for every choice of #, v, w. The

bottom line in (1”) implies that if (1”) has a solution, then w = v + u. One
more step, adding 1 times the middle of line (1”) to the top line, gives

u— %D, (l///)

(1"") has the form (I') discussed above. To solve (1”’), we must have
w = u + v. Under this assumption, we give z an arbitrary value ¢ and find
x=lu+iv+iy
y=tu-2v-1y @
z= L
For different choices of ¢, (2) provides us with all solutions of (1"”") and,
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hence, all solutions of our original system (1). In particular, take u =5,
v = 10, w = 15. Then the system

2x+3y+z= 15,
x— y—z=10, 3)
3x +2y =15

is solved by fixing a value ¢ and setting
x=1+6+%r= T+2%¢
y=1-4-3t=-3-14
zZ= = t.

One can check this by inserting these values in the system (3).

Exercise 1. Find all solutions of the system
2x+3y+z= 5,
x—y—z=10.
Exercise 2. Find conditions on u,, u,, u3, u, under which there exists a solution x,
X, X3, X4 Of the system:
X1 X = Uy,
2%+ x3=u,,
Xy — X4=us,
Xy— X4=Uy.

Assuming these conditions are satisfied, find all solutions of the system.

ExXAMPLE 2. Solve the system in four unknowns:
X+ x,=u,,
x2 + x3 = uz N
X3+ X4= Uy, 4
2%, = 3%, = uy.
We can easily see that this system is equivalent to
_SXZ': u4—'2u1,
Xy F X3=u,, ,
X3+ X4=us, *)
2xl e 3x2 = Uy,
and (4'), in turn, is equivalent to
—=5x, = uy—2u,,
x3=-5l(u4—.2ul)+u2= _%ul+u2+%u4’ (4//)
2x) = ug— 3(ug— 2u)) = $u; + 2uy,
X3+ X4 = Uy,

and, at last, (4”) is equivalent to the system obtained from (4”) by keeping
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the three top lines and replacing the bottom line by
Xg=ty = (= fuy + uy + Luy)
Thus the solution of (4) is unique, with given u;, and is as follows:

Y 1
Xy =5y +3uy,
X =.2.u —-lu
2=5Up — 35Uy, (5)
xy3=—3u;+uy +{uy,

= 2 — — 1
Xqg=5U — Uyt U3 — sUy,.

inserting these values for the x; in (4), we can check that our solution is
correct.

Note: In Example 1, the solution of the system (1) was not unique. Also,
in Example 1, the solution exists only for certain choices of u, v, w. In
Example 2, the solution was unique and exists for every choice of u,, u,, us,
u,. What can be said about the existence and uniqueness of the solutions for
the system (I)? We state, without proof, the following basic result for the
case k = n. Let us denote by (H) the homogeneous system corresponding to
(I), obtained by settingu, =0,i=1,...,k, in (I).

Theorem 5.3. Let k = n. We distinguish two cases:

(i) (H) has only the trivial solution 0. Then the inhomogeneous system (1) has
a unique solution for every choice of the u;.

(ii) (H) has a non-trivial solution. Then for certain u;, (I) has no solution.
Also, the solution of (1) is never unique.

The following example will illustrate how Theorem 5.3 can be used in
proofs.

ExaMPLE 3. Given three points in the plane: (x,, y,), (x5, y2), (X3, y3)
which are not collinear, show that there exists a circle which passes through
the three points.

The circle C with center (x,, y,) and radius R has the equation

(x- x0)2+ 07 “)’0)2= R?
or
x2 = 2xxy + x3 + y2 = 2yp, + y2 = R>.
We can rewrite this in the form
X+ y*+ax+by+c=0,
where a, b, ¢ are certain constants. This circle passes through our three
given points if and only if

xtyitaxtby+e=0, i=123
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Note that x; and y; are given numbers and a, b, and ¢ are numbers to be
found. We can rewrite this system in the form:

xa+yb+c=u,

X,a + yb+ c=u,, (6)

x3a+ ysb+ ¢ = us,
where = —x? — y?. We regard (6) as an inhomogeneous system of
equations in the unknowns a, b, c. The corresponding homogeneous system
is the following:

xa+yb+c=0,

X,a+ y,b+ ¢ =0, ™

x3a + y3b+ ¢ =0,
Suppose that this system has a nonzero solution a, b, c. Then the line
defined by

ax+by+c=0

passes through ¢ach of our three points. This contradicts the assumption
that the points are not collinear. Hence, (7) has only the trivial solution.
Thus we have case (i) in Theorem 5.3 for the system (6), and so (6) has a
solution a, b, c. It follows that

X+ yt+xa+yb+c=0, i=12,3.
The equation
x*>+y*+xa+yb+c=0
is thus satisfied by (x;, y;), i = 1,2,3. This equation can be written
(x+%)2+(y+%)2= —-c+%2-+b72,
which represents a circle which passes through each of the three points.

Note: The existence of this circle could also be shown by elementary
geometry. However, the method we used, based on Theorem 5.3, is applica-
ble to a wide variety of situations, some of which are given as exercises at
the end of this chapter.

§2. Geometric Interpretation

What is the geometric meaning of the collection of solutions of an inhomo-
geneous system (I)? In the case of a homogeneous system, the solutions
form a subspace.
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L,

Figure 5.1

ExaMPLE 4. Let L consist of all vectors X =(;) in R? such that

2x + 3y =3. ®)

L is clearly a straight line, but also L is not a subspace of R2. (How do we
know that?) Let L, consist of all solutions of the homogeneous equation:

2x +3y=0. &)

L, is a subspace of R%. How are L, and L related (see Fig. 5.1)? We can

construct L by moving L, parallel to itself, translating L, by a fixed vector.

In fact, ( i) satisfies (8). If () belongs to L, then 20x = 1) +3(y — 1

Y
2x+3y—5=0, and so (y_ l) (y) (1) lies on L,. Thus
X\ _ x’ 1 x"\ ,. . . .
( y) ( y,) +( 1 ), where (y,) lies on L,. So L is obtained by translating
L, by the vector ( i )

Proposition 1. Let T be the set of solutions in R" of the inhomogeneous system
(I). Then there is a subspace S of R" and a vector X° in R", such that T is the
translate of S by X°. In other words, T consists of all vectors X =Y + X",
where Y is in S.

To show this, we write the system (I) in the form:
Al’x=u1,...,Ak‘X=uk, (I)
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ayy A x?

ap (%3 0 L .

where A;=| ., |,...,A,=| . |. Choose X" = satisfying (I). Then if
: : o
aln akn Xn

X satisfies (I),
A (X=-X)=A-X-A - X°=A - X—u =y —u =0
Hence,
A-X-X%=0.
Similarly, Aj -X=X%=0, j=2,...,k Thus X — X satisfies the homo-
geneous system (H) which corresponds to (I).

We denote by S the subspace of R” defined by (H). If X is a solution of
(@), then Y =X — X%isin S and X = Y + X° Conversely, if X has this form,
then )

AX=A - (Y+X)=A - Y+A - X"=0+u =u.

Similarly, A; - X = u; for all j. So X is in T. Thus we have shown: X is in T,
ie,Xisa solutlon of (I), if and only if X lies in the translation of S by X°,
and this is what Proposition 5.1 asserts.

Exercise 3. Let T be the subset of R* defined by the equation
2x, = 3xy+ x3+ 5x4=10.
Find a subspace S of R* and a vector X° in R* such that T is the translate of S

by Xo.

§3. Exercises

Exercise 4. Let (x}, y;), (x2, ), (x3, y3) be three non-collinear points in the plane
with x,, x,, x5 all different. Show that there exists a parabola P with equation
y=ax>+bx +c,
where a, b, ¢ are constants and a 5= 0, such that each of the three given points lies
on P.
Exercise 5. Find the coefficients a, b, ¢ of a parabola y = ax® + bx + ¢ which
passes through the points
(1,6), (2,4), (3,0).

Exercise 6. (a) Show that a sphere in R* has an equation:
+y’+2l+ax+by+cz+d=0,

where a, b, ¢, d are constants.
(b) Given four points (x;, y;,2), j = 1,2,3,4 in R3 such that they do not all lie in
a plane, show that there is a sphere passing through all four points.
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Exercise 7. Find an equation for the sphere which passes through the points
(1,0,1), (0,2,3), (3,0,4), (1, 1, 1).

Exercise 8. Find a cubic curve with the equation y = ax> + bx? + cx + d passing
through the four points: (1,0), (2,2), (3, 12), (4, 36).

§4. Partial Fractions Decomposition

ExaMPLE 5. We wish to express the function

x) = 1
f(x) (x—=1)(x—=2)(x—3)
in the form

_ a b c
f(x)_x—-l+x—-2+x—-3’ (10)

where a, b, ¢ are constants to be found. Multiplying both sides by (x — 1)
(x —2) (x — 3), we see that (10) is equivalent to
Y l=a(x=2)(x—3) + b(x — 1)(x = 3) + c(x — 1)(x — 2)

which can be written as
1=(a+b+c)x2+(—-Sa—-4b—-3c)x+6a+3b+2c.
This is equivalent to the system

at+ b+ ¢c=0,
—S5a—4b—-3¢c=0, (11)
6a+3b+2c=1.

We easily solve this and find:
=1, b= —1, c=1.
Hence,

1 _ 12 -1
(x—D(x—2)(x—3) T x—1 +x—2+x—3'

Exercise 9. Express the function

_ 1
J&) = (x—=D(x+ Dx

in the form

b

=_4 4 _ b L c
f(x)_x—l+x+1+x'

Exercise 10. Find a, b, ¢, d such that
1 a b c

= d
G-Dx=-2)(x-3)(x-4) x-1 +x—2+x—3 +x—4'
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Exercise 11. Let a4, . . ., a, be n distinct numbers and set

f(x) = !

(x—a)(x-a) - (x—a,)’

An identity

Cy Cy [
+ + oo+ 7
XxX—a, x-—a, x—a

f(x)=

is called a partial fractions decomposition of f(x).

(12)

(a) Show that (12) is equivalent to an inhomogeneous system of » linear equations
in the unknowns ¢;, ..., ¢c,.

(b) Show that the corresponding homogeneous system has only the trivial solution.

(c) Use Theorem 5.3 to show that there exists constants ¢y, . .., ¢, which satisfy

(12).
Exercise 12. Does the system
X1+ 2x,+3x3+4x,=1,
2x| + 3x2 + 4X3 + 1x4 = 0,
3x| + 4x2 + lx:; + 2X4 = 0,
4%, + 1xy +2x3+3x4=0

(13)

have a solution? If it does, find all solutions.



Afterword

Our path through linear algebra has emphasized spaces of vectors in
dimension 2, 3, and 4 as a means of introducing concepts which go forward
to R” for arbitrary n. But linear algebra does not end here. Many of the
ideas we have studied also carry over to other collections of objects which
behave in many ways like vectors in R” but which have several different
properties. We list some variations which the reader may encounter in other
courses in mathematics as well as in other disciplines, such as chemistry,
physics, geology, economics, data analysis, and statistics.

Function Spaces. In elementary calculus, one encounters various collgc-
tions of real-valued functions from the real numbers to the real numbers
such as polynomials, trigonometric functions, and exponential functions. A
real-valued function f is defined as soon as we know its values f(x) for all x,
just as we know a vector as soon as we know each of its components. We
add functions f and g by defining f+ g to be the function with value
f(x)+ g(x) at the real value x, and we define scalar multiplication by
setting the value of rf at x to be r times f(x). With these definitions of
addition and scalar multiplication, the set of functions satisfies all of the
properties which we found in the case of each R”, and this justifies our
calling this set the space of real-valued functions. Important subspaces of
this space are the polynomials, the continuous functions, and the differen-
tiable functions.

Operations used in calculus, such as differentiation, turn out to be linear
transformations on certain spaces of functions. The problem of finding
eigenvalues for such transformations arises, for example, in the study of
vibrating strings and in the theory of spectral lines of atoms.
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Systems of Differential Equations are the generalization of the systems we
studied in Chapter 2.8. The solutions of a homogeneous system of differen-
tial equations form a subspace of the space of all differentiable functions.
Eigenvectors play an important role in the analysis of systems which arise
in engineering and in biology.

Infinite Dimensional Spaces. It is also possible to consider vectors with
infinitely many components, given as sequences (x;,X,,X;,...) of real
numbers. Again, we add sequences and multiply them by scalars compo-
nentwise as in R”, and once more the set of all sequences possesses the basic
properties of space of vectors in R”. It is no longer possible to find a finite
basis for this space of sequences. It has many important subspaces that
occur in advanced mathematics, and also in quantum physics, such as the
space of convergent sequences or the space of sequences with convergent
sums.

Complex Spaces. It is also possible to consider spaces in which the scalars
are not real numbers but, rather, complex numbers. Many of the same
ideas apply, but many results that depend on factoring polynomials will
change since there are polynomials like A2+ 1 =0 which have complex
roots but no real roots. Thus, a transformation which has no real eigenvec-
tors might nonetheless have complex eigenvectors.

More General Algebraic Systems. Spaces of vectors in R” are fundamental
in modern algebra, which develops abstract structures such as groups, rings,
and fields starting with axiom systems and proceeding formally. Many of
the key examples of these abstract concepts are found in the concrete
objects which we have investigated in this book, such as rings of matrices
and groups of isometries.

We wish the reader success in future encounters with the concepts of
linear algebra.
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