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Preface

The book at hand has its origins in and reflects the structure of a course
that I have given regularly over the years at the University of Texas. The
course in question is an undergraduate honors course in complex analysis.
Its subscribers are for the most part math and physics majors, but a smat-
tering of engineering students, those interested in a more substantial and
more theoretically oriented introduction to the subject than our normal
undergraduate complex variables course offers, can usually be found in the
class. My approach to the course has been from its inception to teach it in
everything save scope like a beginning graduate course in complex function
theory. (To be honest, I have included some material in the book that I
do not ordinarily cover in the course, this with the admitted purpose of
making the book a suitable text for a first course in complex analysis at
the graduate level.) Thus, the tone of the course is quite rigorous, while its
pace is rather deliberate. Faced with a clientele that is bright, but math-
ematically less sophisticated than, say, a class of mathematics graduate
students would be, I considered it imperative to give students access to a
complete written record of the goings-on in my lectures, one containing full
details of proofs that I might only sketch in class, the accent there being
on the central idea involved in an argument rather than on the nitty-gritty
technicalities of the proof. I also deemed it wise to provide the students
with a generous supply of worked-out examples appropriate to the lecture
material. Since none of the textbooks available when I started teaching the
course had exactly the emphasis I was looking for, I began to compile my
own set of lecture notes. It is these notes that have evolved into the present
book.

In rough terms the course I have been describing comprises Chapters I,
III, IV, V, VII, and VIII of the book, together with the first three sections
of Chapter IX. Chapter II, a resume of information from plane topology, is
a reference chapter. It would never occur to me — nor would I recommend
to anyone else — to go systematically through this chapter in teaching a
complex variables course. Instead, the ideas from Chapter II get dispersed
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throughout my lectures, each topological notion being brought up as it
becomes germane to the development of complex function theory. While
this system works fine in the setting of a lecture, I find it disruptive to the
ongoing narrative of a book. Therefore, just as other authors have done
before me, I have chosen to assemble all the background material from
elementary topology in a single place for ease of reference. Chapters VI and
X, and with them the last two sections of Chapter IX, furnish “enrichment
topics” to those who wish to proceed slightly beyond the essential core of
basic complex analysis. The subject matter in Chapters VI and X would,
I think, be regarded as standard in most beginning graduate courses.

Located at the end of each chapter is a collection of exercises. Though
some of these are intended to foster the development of the computational
skills pertinent to complex analysis, most have a pronounced theoretical
flavor to them, in keeping with the course for which they were designed.
Many of the “classic” exercises in function theory turn up among these
problems. Quite a few of the exercises, on the other hand, are original to
this book (or they are, at least, to the best of my knowledge).

It is high time that I expressed my gratitude to everyone who has
had a hand in the creation of this book. These individuals include a num-
ber of graduate students at Texas — Michael Pearson, Michael Westmore-
land, and Edward Burger are three that spring immediately to mind —
who carefully read through early versions of the manuscript, helped rid it
of numerous errors, and, most importantly, identified places that from a
student’s perspective were badly in need of change. I am grateful to col-
leagues (in particular, to Barbara Flinn and Jean McKemie) who agreed
to “field test” portions of the manuscript in their own classes. Their input
has greatly improved the finished product. My special thanks go to Aimo
Hinkkanen, with whom I’ve had many useful conversations during the final
stages of preparation of the book and who has been an invaluable source
of suggestions for problems. This book would have remained a pipedream
were it not for the diligent efforts of Suzy Crumley, who typed it, and Buff
Miner, who did the graphics and generally oversaw the production of the
manuscript. Both patiently bore the brunt of my revisionist tendencies.
Needless to say, they share none of the blame for the inevitable errors that
have crept into the text and managed to escape detection under my proof-
reading. The editorial staff at Springer-Verlag (notably, Rob Torop and his
successor, Ulrike Schmickler-Hirzebruch) have been extremely helpful and
understanding. Above all, I appreciate the fact that they did not pressure
me with deadlines during my stint as graduate advisor, when my literary
output slowed to a trickle. A “tusen tack” goes to the Mittag-Lefller In-
stitute in Djursholm, Sweden, where some finishing touches were applied
to the manuscript in the course of my stay there during the academic year
1989-90 (and where Kari Hag and David Herron obliged with some greatly
valued proofreading). My teacher, Fred Gehring, has been a source of both
inspiration and encouragement for the undertaking. Finally, I would like to
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acknowledge the support of my wife, Mary Ann, and my sons, Kevin and
Sean. Despite being innocent bystanders, they were often in perfect posi-
tion to catch the flak of my frustration when things did not go as planned
with this project. To them I say: the struggle is over and dad is a happy

camper again.
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Chapter I

The Complex
Number System

Introduction

Most of us met complex numbers for the first time in high school algebra,
where the imaginary unit i = +/—1 and expressions of the type z + iy
arose quite naturally in the study of quadratic equations. Back then we
didn’t balk for an instant at the prospect of extracting square roots of
negative numbers. We simply learned to deal with complex numbers on a
formal level by mastering the few innovations that caused the algebra of
the complex number system to differ from that of the real numbers — and
we managed just fine. It is in much the same spirit that we wish to begin
the study of complex analysis in this chapter. After a nod in the direction
of more rigorous mathematics in which we outline a proper definition of
the complex number system, we review for the reader some of the standard
elementary facts of complex arithmetic. By then embellishing these facts
with detail of a perhaps less familiar character, we lay the groundwork for
a careful treatment of the theory of analytic functions of a single complex
variable.

1 The Algebra and Geometry of Complex Numbers
1.1 The Field of Complex Numbers

We assume on the part of the reader a knowledge of calculus, including a
basic familiarity with the structure of the real number system IR and with
analytic geometry in two-dimensional real euclidean space IR%. An element
z of IR? is nothing but an ordered pair z = (:z: y) of real numbers z and
y. For elements z = (z,y) and w = (u,v) of IR? to be declared equal it is
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required that £ = u and y = v. The addition of such pairs is carried out in
the most straightforward fashion,

z+w=(z+u, y+v).

So-called “imaginary numbers” involving the quantity v/—1 were in rea-
sonably wide-scale use long before the time of the Irish mathematician
William Rowan Hamilton (1805-1865). That use amounted in large part to
formal — which is not to suggest uninventive — algebraic manipulation,
not unlike what most of us experience today in our initial contact with
complex numbers. It was Hamilton, however, who in an 1833 paper finally
“demystified” these numbers and placed them on a firm logical footing. He
did so by observing that there is an advantageous way to define a product
zw of the elements z and w; namely,

2w = (zu—yv, zv+ yu) .

The term “advantageous” alludes to the fact that, with the operations of
addition and multiplication in IR? so defined, the ordinary rules governing
the arithmetic of real numbers — e.g., the associative laws for addition and
multiplication, the commutative laws for these operations, the distributive
law — see their validity extended to IRZ. In standard mathematical par-
lance, when endowed with these two algebraic operations IR? acquires the
structure of a field. (See Appendix A for the exact definition of this concept
and for other material pertaining to fields.) It has become traditional to
employ the designation € for R? in its manifestation as a field and to refer
to the elements of IR?, in this context, as complez numbers. The role of zero
in the field € is played by (0,0) and the element (1,0) serves as its multi-
plicative identity. The additive inverse of the complex number z = (z,y)
is the element —z = (—z, —y); the multiplicative inverse 2= (or 1/2) of z
is given by z7! = (z[z? + y?]7!, —y[z? + y%]~!) — provided, of course,
that z is different from zero.

Just how does the mysterious number ¢ fit into this scheme? In order
to answer this question, we first remark that the set of complex numbers of
the form z = (z,0) constitutes a subfield of € that is structurally indistin-
guishable from the field of real numbers. For this reason it is customary to
blur any distinction between the real number £ and the complex number
(z,0) and actually to employ z as a convenient abbreviation for (z,0). Un-
der this convention IR itself is regarded as a subfield of €. If we introduce
the symbol i as a special notation for the complex number (0,1), we observe
that

i = (0,1)(0,1) =(~1,0) = -1,
in accordance with the convention just established. In the field € the real
number —1 does, indeed, have i as a square root! Furthermore, an arbitrary
complex number z = (z,y) can be rewritten as follows:

z=(2,9) = (2,0)+(0,9) = (2,00 + (0, )(,0) =z + iy .
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The upshot of the preceding comments is that we are justified in think-
ing of a complex number z as a quantity of the type z = z + iy, where z
and y are real numbers and where i2 = —1. In fact, the representation of
complex numbers in the form z = z + iy — as opposed to the ordered
pair notation z = (z,y) — is the universally preferred one. (On aesthetic
grounds we may occasionally opt to write z 4+ yi. Somehow 1 4 5 looks
peculiar, while 1+ 5¢ doesn’t.) For reasons chiefly of historical interest z is
called the real part of z, and y — not 1y, as one might expect — is termed
its tmaginary part. Use of the notations Re z and Imz to signify the real
and imaginary parts of z is quite common. The formulas that define the
sum and product of complex numbers z = z + iy and w = u + v now take
the forms

zvw=z+u+i(y+v) , zw=zu—yv+i(zv+yu).
For example, we compute
(1+4)+(-2—-9)=-1+43:,

(2-6i)(1+1i)=8—4i,

245 | o (3 4\ _ 14 923
m_.(2+5z)(3——4z) _(2+51)(25+25)— 25+25.

One big difference between IR and € must be stressed from the outset.
The complex number field is an “unorderable field” — we once again refer
the reader to Appendix A for a precise definition of the term — so that
expressions like z < w are not generally meaningful in €. When inequalities
appear in this book it will always be tacitly assumed that the quantities
under comparison are real numbers.

While few mathematical illustrations can claim to be worth the thou-
sand words promised by the adage, there is often genuine benefit to be
gained by studying a mathematical concept from a geometric viewpoint.
The usual way of representing complex numbers graphically is to depict
z = z + 1y, depending on the context, either as the point with coordinates
(z,y) in the cartesian plane or as the vector from the origin to that point
(Figure 1). In this setting the cartesian plane is spoken of as the complez
plane, the z-axis as the real azis, and the y-axis as the imaginary azis.
The graphical interpretation of complex addition is indicated in Figure 2.
The geometric meaning of multiplication is less transparent and will be
described shortly, following some additional preparation. Mathematicians
tend to use the expressions “complex numbers” and “complex plane” inter-
changeably, despite the geometric overtones of the latter. We join with the
crowd in our usage of these terms, drawing little or no distinction between
them.
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1.2 Conjugate, Modulus, and Argument

The conjugate of the complex number z = z + iy is the complex number
% — z — 1y. For instance, i = —i and 3 — ivV2=3+ iv?2. Graphically z and
7 correspond to points that are mirror images of one another with respect
to the real axis (Figure 3).

U W
\

Nt

Figure 3.

One verifies with little effort the following elementary i1dentities:

Z=2z;
(1.1) T¥w=z+0 , W=I0 , zjw=z/T;

Rez=(2+%2)/2 , Imz=(z-2)/2i.

A real number z in € is characterized by the property that Z = z; an
element 2 of € is purely imaginary, meaning that Re z = 0, precisely when
Z=—z.

The modulus |z| of z = z+iy is defined by |z| = /22 + y2. (The terms
magnitude and absolute value are commonly used synonyms for “modu-
lus.”) As an example, | — 3 + 4i] = 5. Clearly |z| gives the length of the
vector corresponding to z in the complex plane (Figure 4). More gener-
ally, |z — w| is the ordinary distance between the points of the plane that
represent z and w.

Some basic properties of the modulus are summarized in (1.2). Only
the verifications of the final two assertions entail even the slightest compli-
cation. For these we refer the reader to Examples 1.1 and 1.2. The checking
of the other statements is left as an exercise.
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z
|z
-
Figure 4.
(|zw| = |z]jw| , {z/w]|=|z|/|w];
lzl=1z| , 2z2=|z*;
(1.2) ¢ [Rez| < 2], [Imz] <|z];
2+ w| < |z] + |w] ;
2+ w| > {lz] = [w]] -
If z # 0, we remark that _
-1 %
(1.3) z7h = mel
In particular, z71 = 7 if |z} = 1. Identity (1.3) shows how z and z7!

compare graphically: z~! points in the direction of Z and has modulus
1/]z| (Figure 5).

Consider next a complex number z other than zero. It is always possible
to express z in polar form,

(1.4) z = |z[(cos @ + isin @) ,

where # is a real number: if 2 = z + iy, we merely choose any 6 that
satisfies cosf = z/|z| and sinf = y/|z]. For instance, 1 + ¢ has a polar
representation
1+i=\/§(cos£+isin£) .
4 4
Each real number @ for which (1.4) holds is termed an argument (or an
amplitude) of z. Geometrically, 8 simply provides a measurement in radians
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/ ~

1/1zl

Figure 5.

of the angle from the positive real axis to the vector depicting z in the
complex plane. The usual sign conventions for angles in polar coordinates
are to be observed. In Figure 6 we indicate with @;,60,, and 63 three
arguments of z; 6; and 0, are positive arguments, whereas 03 is a negative
argument.

The notation argz will be used in this text to designate the set of
all arguments of z. Assuming that one such argument 6y is known, this
set is readily described: argz consists of all real numbers # having the

Figure 6.
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form 8 = 0y + 2kw, where k is an integer. To give an illustration of this,
arg(—1) = {(2k+ 1)7: k = 0,£1,---}. (N.B. It is customary in complex
analysis to write argz = @ — rather than § € argz — to express the
fact that € is an argument of z. This mild abuse of notation is so well
established that any attempt to avoid it would ultimately do the reader
a disservice.) We select one special member of arg z, the unique argument
6 of z in the interval (-, n], for “preferential treatment” and employ it,
circumstances permitting, in situations where a definite argument is called
for. This argument is referred to as the principal argument of z. It is denoted
by Argz. For example,

Argi:g- , Arg(l—-i):—g— , Arg(-m)=m.

In general,the principal argument of z = z + iy (# 0) is given by

Arcsin(y/|z|) ifz>0,
Argz = { m — Arcsin(y/|z|) ifz<0andy>0,
—m — Arcsin(y/|z]) fz<0andy<0.

Here, for t in the interval [—1, 1], Arcsint signifies the unique number u in
[-m/2, w/2] satisfying sinu = t. The distinction between arg z, which is a
whole set of numbers, and Arg z, which is a particular element of arg 2, is an
important one to keep straight. Thus, our notational conventions permit us
to say that arg(—1) = —n, for —n is certainly an argument of —1, but not
Arg(—1) = —, since —x is not the argument of —1 in the interval (-, 7).
Let it be emphasized one last time that no assignment of arguments is
made to the complex number zero.

Given non-zero complex numbers z and w written in polar form, z =
|2](cos§ + isinf) and w = |w|(cos ¥ + isiny), we can without difficulty
derive polar representations for z~! and zw. First, it follows from (1.3)
that

(15) 27! =|z|7*(cos @ — isin @) = |z|"* [cos(—0) + isin(—8)] .
As for the product zw,
zw = |z||w]|(cos 8 + isin 8)(cos ¢ + isin )
= |z||w][cos 6 cos ¢ — sin @ sin 3 + i(cos G sin ¢ + sinf cos )] ,
from which we infer that
(1.6) zw = |z||wl|[cos(0 + ) + isin(f + ¥)] .

Identity (1.6) leads directly to the geometric interpretation of complex
multiplication promised earlier: zw is the complex number with magnitude



1. The Algebra and Geometry of Complex Numbers 9

Figure 7.

|z|lw| and with 8+ as one of its arguments. (See Figure 7.) As implications
of formulas (1.5) and (1.6) we observe that

arg(z™!) = —argz , arg(zw)=argz+argw

— understood in the sense that the set of arguments of z~! is made up of
all negatives of arguments of z and that all sums of arguments of z and w
constitute the set of arguments of zw. It is not always the case, by the way,
that Arg(z~!) = — Arg z or that Arg(zw) = Argz + Argw. For instance,
Arg(—1/2) = # # — Arg(—2) and Arg(—1) = 7 # Arg(—i) + Arg(—1).

A further implication of (1.5) and (1.6), in conjunction with a straight-
forward induction argument, is the relation

(1.7) (cosf + tsin 8)" = cos(nf) + isin(nd) ,

valid for any real number ¢ and for any integer n. Identity (1.7) bears the
name de Moivre’s formula in honor of Abraham de Moivre (1667-1754), to
whom its discovery is ascribed. An important consequence of de Moivre’s
formula, as we shall now see, is a simple procedure for finding roots of
complex numbers.

Theorem 1.1. Suppose that z is a non-zero complex number and that n is
a positive integer. Then z has ezactly n distinct complex nth -roots. These
roots are given in polar form by

2k .. (A k
(1.8) m[cos (Argzn-{- W) -I-zsm( gz 2 W)]

n

fork=0,1,...,n—-1.



10 I. The Complex Number System

Proof. Write z = |z|(cos# + isin @), with § = Arg z. We seek all complex
numbers w = |w|(cos ¥ +isin y) for which it is true that w™ = z. An appeal
to de Moivre’s formula transforms this equation into

|w|” [cos(ny) + isin(ny)] = |z|(cos 8 + isin §) ,

from which it is apparent that we are imposing on w the requirements
|w|® = [2], cos(ny) = cosf, and sin(ny) = sin 8. The first condition is met
precisely when |w| = {‘/I_z-l , while the latter two can be satisfied if and only
if nyp = 0+ 2kx for some integer k; i.e., ¢ = (6 +2kx)/n for some integer k.
The choices k = 0,1,...,n — 1 produce distinct n**-roots of z. Any other
choice for k merely leads to a duplicate of one of these roots. Accordingly,
(1.8) describes the complete set of n**-roots of z. u

The geometric content of Theorem 1.1 is that the n**-roots of z are
represented by a certain set of n points located on and equally spaced
along the circle of radius {/]z] centered at the origin of the complex plane.
(The case z = 4i and n = 4 is illustrated in Figure 8.) The n**-root of z

4% roots of 4i

Figure 8.

obtained by taking k£ = 0 in (1.8) will be called the principal n**-root of z.
The notation {/Z is reserved for this distinguished root, a usage consistent
with (1.8), where it is implicit that {/]z] indicates the unique real n**-root
of |z]. We repeat for the sake of emphasis: in this book {/z always means
the principal nt*-root of z; i.e.,

5= [ (2252 4 i (28]

n n

Technically speaking this formula does not apply to z = 0, since Arg0 is
undefined. The unique n'*-root of zero is, of course, zero itself. For this
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reason it is sensible to include zero in the above notation by agreeing that

/0 = 0. As usual, we abbreviate ¥z to v/Z.
The following set of examples is intended to demonstrate techniques
for working with the various concepts introduced above.

EXAMPLE 1.1. Verify the “triangle inequality”: |z + w| < |z| + |w|-
We first use the properties listed in (1.1) and (1.2) to derive the identity

(1.9) |z + wl|* = |2|* + 2 Re(2m) + |w|? .
Direct computation produces
Iz +wf? = (24 w)(z + W) = (24 W)(Z + D) = 2% + 2B + wI + WD
= zZ+ 20 + 20 + wB = |z|* + 2Re(2®) + |w|? ,
and (1.9) follows. Next,
|21 + 2Re(zW) + |wf® < |2I* + 2| Re(2D)| + |w|* < |2f* + 2|28] + |w]?
= [2[* + 2|zllw| + [w]® = (|2} + [w])? .
Referring to (1.9) we conclude that
|2+ w|* < (2] + [w])* .
Taking square roots on both sides results in the desired inequality.

EXAMPLE 1.2. Prove that |z + w| > ||z| — |w]|-
The trick is to write z = (z+w)—w and to apply the triangle inequality,

Izl =z+w)—w| < |z4+w|+|-w|=|z+w|+ |w] .
This leads to the inequality
|z + w| > |z] = Jw| .

Repetition of the preceding computation with the roles of z and w inter-
changed gives

|z 4+ w| > |w] ~ |z} .
Now ||z| — |w|| = |2| - {w| if |2] > |w| and ||z} = |w|| = |w| - |2| if [w] > |z|.
In all cases, therefore, we can assert that |z + w| > ||z] — |w]|.

EXAMPLE 1.3. Describe geometrically the set S of complex numbers z
that obey the condition |z — 1| = 2|z + 1].



12 I. The Complex Number System
Write z = z 4 iy. Recalling (1.9), we remark that
zeS e |z-1=2]z+ 1|
&Slz =17 =4z +1]?
& |2 —2Rez+1=4|z> +8Rez + 4
& 3|z|2?+10Rez+3=0

&3 +yH)+10x4+3=0

10
<=>.7:2+—.7:+y2=~—1

3
10 25 16
2 20, 9 10
<:>:':+33:+9+y 9
@(+5)2+ 2 1S
T+ 3 y' =3 -

(N.B. The symbol < stands for “if and only if” or “is equivalent to.” The
notation = is read “implies” and <= means “is implied by.”) The set S is
now easily seen to be a circle of radius 4/3 centered at the point —5/3 on
the real axis.

EXAMPLE 1.4. Find a “complex” equation for the hyperbola with “real”
equation z2 — y® = 1.
Make the substitutions z = (z + 2)/2, y = (2 — Z)/2i. Then

2 2 (z4+2)? (2-2)?% 222+7
Y= 4 2
It follows that the given hyperbola is described by the complex equation
22472=2,

EXAMPLE 1.5. Determine all solutions of the equation z* 4 16 = 0.
It is required to find all 4**-roots of —16. Noting that v16 = 2 and
that Arg(—16) = =, we invoke Theorem 1.1 to identify these roots:

2[cos(7w/4) + isin(w/4)] , 2[cos(37/4) + isin(37/4)] ,

2[cos(57/4) + isin(57/4)] , 2[cos(Tw/4) + isin(Tx/4)] .

After evaluation of the assorted trigonometric expressions, this list reduces

to V2 + iv2, =2+ iv/?2, =2 — iv/2, and V2 — iV2.

EXAMPLE 1.6. Solve the quadratic equation z2 — 3z + 3+ i = 0.
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The quadratic formula works just as efficiently in solving quadratic
equations with complex coefficients as it does in solving the corresponding
equations with real coefficients. (See Exercise 4.13.) As a consequence, the
desired roots are given by

39— 4)(3+9) _3xV3-4
= 2 = 2 ‘

To compute /=3 — 41, set ¢ = Arg(—3 — 41). Then -7 < 0 < —7/2,
cosf = ~3/5, and sin@ = —4/5. In view of Theorem 1.1 and the definition

of the principal square root,
V=3 —=4i = V5 [cos(8/2) + isin(6/2)] .

Appealing to the half-angle formulas from trigonometry — note that
cos(#/2) > 0 and sin(6/2) < 0 — we compute

1+cosf®  [1-(3/5) 1
cos(6/2) = \/ = \/ 5 =%

sin(0/2) = — [~ o2l -\ [LEOB) -

whence v/—3 — 47 = 1 — 24. The solutions of the given equation are, there-
fore, 2—7and 1+1.

and

2 Exponentials and Logarithms of Complex Numbers
2.1 Raising e to Complex Powers

It is our goal in this section to define the quantity e* for complex z and to
derive its elementary properties. Recognizing that from a strictly rigorous
outlook the introduction of this notion here might be judged premature,
we feel that this point is far outweighed by the enormous convenience of
having complex exponentials at our disposal early on. There is, after all,
no great problem in deciding what e* ought to mean, as we now discover.
Recall from calculus the Taylor series expansion of e for real ¢,
t2 t3 t4
= t
ef=1+t+ o1 + = 30 + +
If we substitute iy for ¢ in this series and compute formally, fighting off any
qualms about the precise meaning of convergence, we arrive at

y? 3
eV =1+ iy— ———-1—-+—-+
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2?2 oyt P . 3 5 7
= (1_§+5_§+'“) +z(y—§—!+%—%—!+---) :
The two series in the last line should again evoke memories from calcu-
lus — they are Taylor expansions of cosy and sin y, respectively. In other
words, the suspicion arises that e?¥ = cosy + isiny represents the proper
interpretation of e'¥. Next, since e*t! = e’e’ for real numbers s and ¢, in
an attempt to assign meaning to the quantity e*+% it is difficult to avoid
the suggestion that etV = e”e®. In fact, motivated by the preceding con-
siderations, we now actually take the step of defining e® for z = z 4 iy via
the formula

(1.10) e’ = e®(cosy+ isiny) .

The notation exp(z) is a frequently employed substitute for e*, used espe-
cially in situations where z is replaced by a more complicated expression.
For instance, we might write exp{(z + 1)/(z% 4 4)] in preference to the cor-
responding expression involving e. Here are a few sample computations of
e’:

=1, e==1, "/ =¢i | ¢ =cosl+isinl.

The definition (1.10) makes it obvious that e* # 0 holds for every com-
plex number z and that

(1.11) le’] = eRe* | arg(e’)=Imz .
Furthermore, de Moivre’s formula implies directly that
(1.12) (e*)* =e™*

for every integer n. In particular, (e?)~! = e~%.

Let z = z + iy and w = u + iv. Bearing in mind formula (1.6), we
calculate

e’e” = e®(cosy+ isiny) e*(cosv + isinv)
= "% [cos(y + v) + isin(y + v)] = &2V
and so verify a fundamental law of exponents:
(1.13) efe? = e tY |

For which values of z is it the case that e = 1?7 Certainly 2 = 0 has this
property, but many other complex numbers share it. For e* = 1 to hold,
it is essential first of all that eR¢* = |e?| = 1. It follows that Rez = 0, so
only purely imaginary numbers z = iy fall under consideration. But €Y =
cosy + isiny = 1 is true if and only if cosy = 1 and siny = 0, conditions
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satisfied precisely when y = 2k for some integer k. The conclusion: e* =1
if and only if z = 2kni for some integer k. More generally, since by (1.12)
and (1.13) the equation e? = e¥ is equivalent to e*~* = 1, we remark that

(1.14) e’ = e & w = z + 2k~i for some integer k .

We have earlier represented a non-zero complex number z in the polar

form
z=r(cosf +isinb) ,

where r = |z| and 6 is any argument of 2. This polar description of z can
now be expressed more economically as
(1.15) z=re’ .
In most situations (1.15) will henceforth be our preferred mode of polar
representation. Notice that if we set » = 0 in (1.15) we obtain what amounts
to a polar representation of 2 = 0 — # can be chosen arbitrarily — even
though we assign no argument to 0.

2.2 Logarithms of Complex Numbers

What does it mean to state that s = Int, the (natural or base e) logarithm
of the positive real number ¢t? The answer confided to us by our high school
math teachers is, of course, that e* = ¢t. We would like to mimic this idea
and say what it means for a complex number w to be the logarithm of a non-
zero complex number 2. The analogous requirement would be that e* = 2
and, indeed, any w enjoying this property is pronounced a logarithm of z.
The difference between the real and complex situations is that, whereas
e’ = 1 1s satisfied for a unique real value of s, there are infinitely many
complex values of w for which e¥ = z. For example, e¥ = 1 is satisfied
by w = 2kwxi for k = 0,41,--- . Each such w is to qualify as a complex
logarithm of 1! As happened with arguments, one of the logarithms of a
given non-zero complex number z will be singled out for distinction, that
being w = In|z| + i Arg z. Owing to (1.13) and (1.15), the calculation

eV — elnI.a:|-{-: Argz lnlzletArgz iArgz

=e = |zle =z

confirms that w definitely is a logarithm of 2. It is termed the principal
logarithm of z and is denoted by Log z. (Our use of the notation log z, on
the other hand, parallels the usage we’ve established for argz; i.e., logz
indicates the set of all logarithms of z. To write log z = w merely signifies
that w is one of the possible logarithms of 2.) In order to reinforce it, we
restate this notational convention: throughout this tert Log z designates

the principal logarithm of z, the one defined by
Logz=In|z|+iArgz.



16 I. The Complex Number System

This definition insures that Logz = Inz for a positive real z. (From now
on we shall write Log z instead of In £ when z > 0.) As examples, we record

Log(—1) =mi , Log(ei)=1+(x/2)i , Log(l—i)= Logv2—(7/4)i.

Because an arbitrary logarithm w of z satisfies e¥ = z = ¢™8* it is a
consequence of (1.14) that w acquires the form

w = Log 2z + 2k=i = Log |z| + i(Arg z + 2kw)

for some integer k. Furthermore, any complex number of this type is a
logarithm of z. In other words, the complete set logz of logarithms of
z is made up of all complex numbers Log|z| + i, where 6 ranges over
the set of arguments of z. For z = —1, to give one example, we have
log(—1) = {(2k + 1)7i: k =0,%1,---}.

If w, is a logarithm of z; and w, a logarithm of z5, then

eV1t¥2 = g¥1e%2 = 42,

which demonstrates that w; + ws is a logarithm of z; zo. This fact leads to
the statement
log(z122) = logz; +logzy ,

interpreted as follows: the set of logarithms of z; 22 consists of all sums of
logarithms of z; with logarithms of z;3. It is not, in general, to be expected
that Log(z;22) = Logzi + Logz,. (For instance, Log(—1) = (~#/2)i #
(37/2)i = Log(—1) + Logi.) Certainly Logz; + Log z; is a logarithm of
z129, Just not necessarily the principal one.

2.3 Raising Complex Numbers to Complex Powers

One standard way to define t®, where t is a positive real number and a is
an arbitrary real number, is by means of the formula t® = 418t If we at-
tempt to carry this formula over to the complex setting with a mind toward
raising a non-zero complex number z to a complex power A, we immediately
encounter an apparent obstacle: z has many different logarithms. Which
one should we use? The answer: all of them! Just as we must accept the
fact that z has an infinite number of logarithms, we must be prepared for
there to be many different ways — but not always infinitely many, as it
turns out — to raise z to the power A. To be precise, for any logarithm w
of z the complex number e*¥ is called the A-power of z associated with w.
The choice w = Log z gives rise to the principal A-power of z. The familiar
notation z* will see its use restricted to this special A-power of z. To re-
peat, lest there be any confusion later on: 2z* will be employed in this book
exclusively to symbolize the principal A-power of z, the one given by

z/\ - eALogz )



3. Functions of a Complex Variable 17

Here are two simple examples:
. . 2; . .
2% = 27 logd — 7' = cos(n?) + isin(n?)

1_2

z-21r'| —_ 8211 logs

= e

Since an arbitrary logarithm of z has the structure Log z + 2k7i for a
suitable integer k, it follows easily that the general A-power of z inherits
the form e2**% ;2 where k is an integer. (By way of illustration, if z = 1
and A = 2mi, then z* = =" and e2¥™» = ¢=%%" g5 the collection of A-
powers of z in this instance is seen to consist of the numbers e~ (4k+1)7 g0
k=0,%1,---.) There are two cases meriting special commentary. Should
) itself be an integer, say A = n, then quite clearly e2***! = 1 whenever
k is an integer, in which event the sundry A-powers of z all reduce to z",
the “usual” n**-power of z. Secondly, if A = 1/n for a positive integer n,

we observe that
( 2kni ) ( Log z )
exp exp
n n

Log |z| 4i (Argz + 2k7r)]

n n

e2k1rAsz.\

exp |
exp (Log {/l_z_l) exp [i (Arg z: 2k7r)]

) [ Argz + 27
= V/|z| exp [z ( ~ )]

and conclude, as might be anticipated, that the set of A-powers of z co-
incides with the set of n'*-roots of z listed in Theorem 1.1. In particular,
zl/n — \,./;

Although it is true that z**+# = 2*z¥, other “laws of exponents” have
only limited validity for principal powers. To single out one such law, (zw)*
is not generally the same as z*w*; e.g., (—1)!/? = (v/2 — iv/2)/2, which is
different from (—1)1/2i/2 = (—/2 + i/2)/2. Similarly, (2*)# can differ
from z*#. As a rule it is advisable to exercise due caution in carrying out
algebraic manipulations that involve complex exponents.

i

3 Functions of a Complex Variable
3.1 Complex Functions

Having reviewed the algebra of complex numbers and established some
convenient notation and terminology, we conclude this chapter by casting
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a preliminary glance at the ultimate objects of study in complex analysis,
complex-valued functions of a complex variable. (In truth, it is only a spe-
cial class of these functions that comes under scrutiny in the subject, but
this fact need not concern us for the time being.) To begin, we recall some
pertinent background material concerning functions in general.

If A and B are sets, a function f from A to B is a rule of correspondence
that assigns to each element z of A an element f(z) of B, the value of f at z.
The notation f: A — B is used to indicate that f is such a function. We refer
to the set A as the domain-set of f and to B as its target-set. For a subset S
of A the image of S under f, denoted f(S), is the set of values that f attains
on S;ie., f(S) = {f(z): z € S}. The particular set f(A) is called the range
of f. For the most part the functions of interest in this text are those of the
kind f: A — €, where A is a subset of C. In fact, we go so far as to lay down
the following guidelines: in the absence of any statement to the contrary,
f:A — C will always signify a function whose domain-set A s a subset of
C; unless otherwise stipulated, any function referred to in the text is pre-
sumed to be of this type. (The chief situation covered by “otherwise stip-
ulated” occurs in Chapter VIII, where functions involving the “extended
complex plane” are discussed.) Frequently such a function will be defined
by giving a formula that prescribes its values, something like f(z) = 22
or f(z) = e*, with no specification made regarding its domain-set. When
this is the case, it will be our normal convention to take as the domain-set
of the function in question the set of all complex numbers for which the
defining formula “makes sense.” For example, f(z) = (22 — 1)/(z%2 + 1)
represents a function f with domain-set A = {z: z # i} = C ~ {&i},
since the formula defining f only ceases to be meaningful at complex num-
bers where its denominator vanishes. (N.B. The notation S ~ T is used for
{z:z2 € S, z ¢ T}.) By the same convention, f(z) = Logz determines a
function whose domain-set is A = C ~ {0}.

The class of rational functions of z is going to be a prominent source
of examples for this book. We are thinking here of functions of the type

ag+a12+ -+ ap2”
f(z) = ;
bo+biz+ -+ bp2z™
where the coefficients ag,ay,...,a, and by, by,...,b,, are complex num-

bers. Included in this class are the polynomial functions of z, the rational
functions having the special form

(1.16) f(z)=ao+arz+ -+ apnz".

(Assuming that a, # 0 in (1.16), we say that f is a polynomial function of
degree n.) Sometimes we shall also want to draw examples from a broader
class of rational functions, the rational functions of = and y. This class
consists of polynomial functions of ¢ and y — the value of such a function
at z = z + iy is given by an expression of the sort

f(z) =apo+apex+apny+---+ amna:"‘y" ,
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again with complex coefficients agg, @10, --,@mn — and their quotients.
Every rational function of z is clearly a rational function of z and y, but
not the other way around. By our convention polynomials are defined every-
where in €, whereas to obtain the domain-set of a general rational function
we must remove from C all points at which its denominator takes the value
z€ro.

It is occasionally instructive to look at a function f: A — C in terms
of its real and imaginary parts; i.e., to represent f in the form f = u + iv,
where u(z) = Re[f(2)] and v(2z) = Im[f(z)]. The functions u and v are,
naturally, real-valued functions on A. It is even possible to carry this a
step further, by identifying z = z + iy with the ordered pair (z,y) of real
numbers and by writing u(z) = u(z,y) and v(z) = v(z,y). In other words,
we can regard u and v as real-valued functions of the two real variables z
and y. Applied to the function f(z) = 22 this procedure yields

uw(z) =u(z,y) =22 —-y* , v(z)=v(z,y) = 2zy .
In case f(z) = e* the corresponding functions are

u(z) = u(z,y) = e“cosy , v(z)=v(z,y) =€ siny.

3.2 Combining Functions

The elementary algebra of complex-valued functions of a complex variable
does not differ radically from that of real-valued functions of a real variable.
Presented with a pair of functions f: A — € and g: B — €, we can multiply
J by a complex number ¢ to obtain the function cf, add f and g to form
f + g, multiply these functions to produce fg, and take their quotient f/g.
Both f + ¢ and fg have domain-set AN B, and the domain-set of f/g
is {z € AN B: g(z) # 0}, provided these sets are non-empty. Two other
useful functions associated with a given function f = u+iv are its modulus
|f] = (u? + v?)¥/2 and its conjugate f = u — iv.

A more interesting way of combining functions f: A — Cand g: B — C
to manufacture a new function arises when the range of f is contained in
B. In this situation it is possible to form a function g o f: A — C, the
composition of g with f, by setting g o f(z) = g[f(2)]. In the case of the
functions f(z) = 2? and g(z) = €?, for instance, we have go f(z) = ¢* and
fog(z) = e,

An idea of major importance associated with the composition of func-
tions is that of an “inverse function.” Suppose that a function f: A — C is
one-to-one (or, to use a synonym favored by complex analysts, univalent),
which means that f(z;) = f(22) only when z; = z,. Under this assumption
we can define a function g: f(A) — A as follows: for win f(A), g(w) is the
unique element of A such that f{g(w)] = w. Thus, to find z = g(w) we must
solve the equation f(z) = w for z in terms of w. The function g is called the
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inverse of f and is usually denoted by f~!. (Care must be exercised lest the
inverse f~! of f be confused with the reciprocal of f, that is, with 1/f. The
context will ordinarily rule out any possible ambiguity along these lines.)
Setting B = f(A), one readily checks that f~}(B) = A, that f~lof(z) = 2
for all z in A, and that f o f~!}(w) = w for all w in B. Consider, as an
illustration, the exponential function f(z) = e*. This function fails to be
univalent on its full domain-set €, and, consequently, it does not have an in-
verse function. If, however, we modify the exponential function by suitably
restricting its domain-set, we do arrive at functions that admit inverses.
(This sounds a theme that we shall take up in earnest in Chapter III un-
der the heading “branches of the logarithm.”) For example, it follows from
(1.14) that the function f: A — €, where A = {z: —7 < Imz < 7} and
f(z) = €, is univalent, and it is easy to see that B = f(A) = € ~ {0}.
We conclude that f possesses an inverse function f~!: B — A. In order to
compute z = f~1(w) for w in B we must find the solution z of ¢’ = w
belonging to A, a task quickly accomplished: z = Log w, the principal log-
arithm of w. As a result, f~!(w) = Log w gives us a formula for the inverse
of f. Of course, once the inverse of a function f has been determined, there
is no real need to use different letters for the variables in f and f~!, as
long as the domain-set of each function is kept in mind. We are thus free
to write f~1(z) = Log z in the present situation without fear of confusion.

3.3 Functions as Mappings

We have yet to mention a view of complex functions that occupies a central
place in the conception of this book, a geometric view. From its perspective
attention focuses on the role of a complex-valued function f of a complex
variable as a mapping (or transformation) of the complex plane. In practice
one often considers two separate copies of the complex plane — typically
labeled the z-plane and the w-plane — and studies the manner in which
geometric entities (lines, circles, etc.) in the z-plane are transformed into
the w-plane under the correspondence w = f(z). Such input can often
contribute appreciably to one’s understanding of a function. The following
examples are meant to dramatize the geometric aspect of complex func-
tions.

EXAMPLE 3.1. Discuss the geometric effect on the complex plane of the
transformation f(z) = az + b, where a # 0 and b are complex numbers.

Writing a = |ale’® with § = Arga, we realize f as the composition
f = ko hog of three extremely simple transformations:

g(z)=¢?z , h(z)=lalz , k(z)=z+b.

Based on our geometric understanding of the algebraic operations in €, the
action on the complex plane of each of the individual components of f is
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z'-plane w'-plane

Figure 9.

very easy to describe. The geometric effect of f is just the cumulative effect
Produced when the transformations g, h, and k operate in sequence, as fol-
lows. First, g rotates the plane about the origin through the angle 4, with
positive @ giving rise to a rotation in the counter-clockwise direction and
negative § to a clockwise rotation; next, the mapping & dilates (= stretches
or shrinks) the plane so that each ray issuing from the origin is mapped
to itself and all distances get multiplied by the factor |a|; finally, & causes
each point of the plane to be translated a distance |b] in the direction that
the vector representing b points. (Figure 9 traces the successive images of
a particular line segment under the elementary transformations that com-



22 I. The Complex Number System

pose to give f(z) = 2iz + 1 + i.) Transformations of the type treated in
this example are called sense-preserving similarity transformations. Such
transformations map any geometric figure in the complex plane — a trian-
gle, for instance — onto a figure similar, in the strict geometric meaning
of the word, to the given one.

EXAMPLE 3.2. Let n be a positive integer. Discuss the behavior of the
mapping w = z" on circles centered at the origin and on rays emanating
from the origin.

Observe that w = 0 if and only if z = 0. For z # 0 we express z
in the polar form z = |z|eA™?. Then w = z" has a polar representation

w = |z|*e™ A8 % which permits us to write |w| = |z|” and argw = n Argz.
(But not necessarily Argw = n Argz!) It follows that for r > 0 the circle
K = {z:|z| = r} is transformed to the circle K* = {w: |w| = r"}. As

a matter of fact, in view of Theorem 1.1 there are exactly n points on
K that are carried under w = z" to any given point of K*. In effect, this
transformation takes K and “wraps” it n times around K*. For —-xr < § < 7
the ray R = {re?’ : r > 0} is transformed to the ray R* = {se*?: s > 0},
this in a one-to-one fashion. Two rays forming an angle 9 at the origin
of the z-plane have as their images a pair of rays meeting at the origin of
the w-plane at an angle ni. The geometry of this mapping is portrayed in
Figure 10.

ny |
==
=zn
-
z-plane w-plane
Figure 10.

EXAMPLE 3.3. Describe the image of an arbitrary line L in the complex
plane under the function f(2) = e*.
We first deal with the case of a vertical line L = {2: Rez = z9}. A
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typical point z of L has the form z = zo + iy; its image w = f(z) is given
by w = eToHY = ¢Zoeiv. Accordingly, |w| = e®°, implying that f(L) is
contained in the circle K of radius e®® centered at the origin of the w-
plane. Due to the relationship argw =y, w is seen to visit every point of
K as z varies over any half-open interval of length 27 on L. The image
of L is, as a consequence, the complete circle K, each point of which has
infinitely many pre-images on L.

The general non-vertical L line in the complex plane is described by
another linear equation, y = mz +b. A point z of L has the representation
z = z + i(mz + b), with the result that w = ¢* = ee'(mz+d) Ip particular,
w has modulus e*. We can also specify an argument 8(w) of w by taking
9(w) = mz + b. When m = 0 — meaning that L 1s a horizontal line — we
see that w traverses the open ray R = {re”’ : 7 > 0} as z ranges over L.
If m > 0, both |w| and 6(w) increase steadily ~— |w| covering the interval
(0,00) and 8(w) the interval (—0o,00) — as z increases from —oo to 0.
The image produced is a curve that winds infinitely often around the origin
and is known as a logarithmic spiral. The spiral in question here is the one
with polar equation r = e(*=%/™_ When m < 0 the image of L is another
logarithmic spiral. (See Figure 11.)

L
A H 1 L3 f(.Lz) ,
: /7
: /7
: 7/
L, :
"""""" CTTT T f@=e
0 o oo S
z-plane w-plane
Figure 11.

From the preceding discussion we distill Figure 12, which is recorded
for future reference. The mapping depicted is again w = e, but with z
restricted to satisfy —m < Imz < . In diagrams of this kind the use
of the same symbol to mark points in the z-plane and w-plane serves to
indicate that such points correspond to one another under a mapping and
its inverse. In this figure, for instance, the origin of the z-plane corresponds
to the point 1 in the w-plane.
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EXAMPLE 3.4. Show that the function f(z) = (1 — z)/(1 + z) maps the
disk D = {z: |z| < 1} onto the half-plane H = {w: Rew > 0}.
Set w = f(z) and rewrite w in the following manner: for z = z + 1y,

l1-z 1—2z 142 1-2z+4z-2Z (1-|2?)—2yi
T 142z 142z 14z 1+2z22 |1+ 2|2 '

w

From this we read off the relationship

1—|z|?

Rew = -1 |
YT

which makes it evident that w belongs to H for z in D and for no other
z. We infer that f(D) is contained in H. Does every point of H belong to
f(D)? To answer this, fix w in H and solve the equation w = (1-2)/(1+2)
for z in terms of w. The solution is z = (1 — w)/(1 + w). By construction
w = f(z), so the above remark shows that z lies in D. Therefore, f(D) = H.
(See Figure 13.)

The mapping in Example 3.4 harbors several other noteworthy prop-
erties of which we will later have occasion to take advantage. The first is
that f is a univalent function whose domain-set A = € ~ {—1} coincides
with its range and whose inverse is f itself. This is so because the equation
w = (1-2)/(14z) can be solved for z in terms of w precisely when w # —1,
in which event the unique solution z is given by z = (1-w)/(1+w) = f(w).
Considerations similar to those in Example 3.4 reveal that the image un-
der f of the unit circle X = {z:|z] = 1} — or, more accurately, of the

“punctured” circle KX ~ {-~1} — is the imaginary axis in the w-plane.
Since f = f~!, the imaginary axis in the z-plane must then transform to
the unit circle, less the point w = —1, in the w-plane. (There is a standard

way to “fill in” the “punctures” occurring here, that being to adjoin an
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w=(1-2)/(1+z)

———-

z-plane

Figure 13.

ideal “point at infinity” to the complex plane and then to regard f as a
function on the so-called eztended complex plane € = C U {oo} satisfy-
ing f(—1) = oo and f(oco) = —1. So regarded, f maps the full circle K
onto the extended imaginary axis, meaning the imaginary axis together
with the point oo, and vice versa. These matters will be discussed more
carefully in Chapter VIIL.) Under f the set {z: |z] > 1} is sent to the
left half-plane {w: Rew < 0} with the point —1 removed. The punctured
real axis IR ~ {—1} is mapped by f to itself, the intervals (—co,—1) and
(—1, 00) each going to itself. The upper half-plane {z: Im z > 0} and lower
half-plane {z: Imz < 0} are interchanged by f; i.e., they are carried to
{w:Imw < 0} and to {w: Imw > 0}, respectively.

The function f(z) = (1—2)/(1+2) is just one member of a very impor-
tant class of complex functions, the class of Mobius transformations (also
called linear fractional transformations). This class consists of all functions
of the type f(z) = (az +b)/(cz + d), where a,b, ¢, and d are complex num-
bers for which ad — bc # 0. Such functions will be subjected to a systematic
examination in Chapter IX. Notice that every similarity transformation

f(2) = az + b qualifies as a Mdbius transformation, one for which ¢ = 0
and d= 1.

4  Exercises for Chapter I
4.1 Exercises for Section 1.1
4.1. If z = 1+ 2i and w = 3 + 44, express the following in the form z + 1y

(i) 3z 4+ iw ; (ii) 222 — 2w ; (iii) 2jw| + (1 — ©)z% ; (iv) (w+ z)/(w—2z);
(V) (1 = i2)/(1 + iz) ; (vi) (z + 5271)"1 ; (vii) Im(Zw?) + 25 Re(zw™?) ;
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(viii) 5 cos[Arg(z2)] + Hisin[Argw] .

4.2. Verify that 2+ w = 2+ W, 70 = ZW, and |zw| = |z|Jw] for all complex
numbers 2 and w. Assuming that w # 0, show also that (z/w) = /% and
|lz/wl| = |z|/|wl.

4.3. Confirm that the identity 142z +---+2" = (1—2z"*1)/(1—2) holds for
every non-negative integer n and every complex number z, save for z = 1.

4.4. Establish the so-called “parallelogram law” for complex numbers z
and w: |z 4+ w|?+ |z — w|? = 2|z|® + 2Jw|? .

4.5. Given that z # 0 and w # 0, demonstrate that |z + w| = |2| + |w]| is
true if and only if w = tz for some t > 0.

4.6. Provide geometric descriptions for the following subsets of C:

(i) {z: |z =1 =z —il}; (i) {z: |z =1 = 2]z =]} ; (iii) {z: |2 - 1] = 2} ;
(iv) {z: Q+i)z+ (1 =9)z=1}; (v) {2: 22+ 1z — 12— 3 =0} ;

(vi) {z: |z —i| + |z +i| =4} ; (vii) {z: |z =P + |z + > = 4} ;

(viii) {z: 222 =22 = 1} ; (ix) {z: 22 — 2% = i} . In each instance, sketch a
rough graph of the set.

4.7. Depict each of the following sets in the complex plane graphically:
(i) {z: z=00r Argz = n/4} ; (ii) {z: |Argz — Argi| < 7/6} ;

(i) {z: |Arg(z — ?)| < 7/6} ; (iv) {z: |Arg(iz + 1)| = n/3} ;

(v) {z: Argz+ Arg(z — 1) = =} ; (vi) {z: Arg(z — 1) — Argz = w/2} .
4.8. Verify that 2 Arg(1 + z) = Argz when |2| = 1, but 2z # —1. (Hint.
What is the set K = {1+ z: |z| = 1}7)

4.9. Establish de Moivre’s formula (1.7). (Hint. Deal with n = 0 directly,
use induction for n > 1, and reduce the case of negative n back to the case
n>1.)

4.10. Compute: (i) the square roots of —1+iv/3; (ii) the cube roots of —8;
(iii) the fourth roots of ¢ ; (iv) the square roots of 5 + 12i ; (v) the fourth
roots of 7— 24:¢ . The answers may involve radicals, but should not contain
any trigonometric expressions.

4.11. Show by example that /2w = 1/z \/w need not be true for arbitrary
complex numbers z and w. Confirm that this formula is valid, however, if
either z or w is a non-negative real number. (N.B. Similar comments apply
to the principal n**-root.)

4.12. Knowing that Ree > 0, demonstrate that |c + V¢ — 1| > 1, with
equality holding only when c¢ is a real number in the interval (0,1]. (Hint.
First check that Re(2V/¢Z — 1) > 0 for every ¢ under consideration.)

4.13. Prove by completing the square that the solutions of a quadratic
equation az?4bz+c = 0, in which a, b, c are complex numbers and a # 0, are
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given by the usual quadratic formula; i.e., by z = (—b £ V6% — 4ac)/(2a).

4.14. Find all the solutions of the equations: (i) z> —4iz~4—2i =0 ;
(i) 222 = (2+51) 2 =2+ i=0; (iii) 2* + (-4 +2i) 2> - 1=0 .

4.15. When cis real and in the interval [~1, 1], the roots z of 22—2¢cz+1 =0
have |z| = 1; when ¢ is any other complex number, this equation has one
root z; with the property that |z;] > 1 and a second root 25 having |z5| < 1.
Corroborate these statements and, in the latter case, identify z; and 2z,
explicitly. (Hint: Recall Exercise 4.12. The determinations of z; and z; will
vary, depending on whether Rec > 0, Rec = 0, or Rec < 0.)

4.16. Determine all solutions of 2"~ 42”2 4 ... 4+ 241 =0. Here n is
an integer greater than one.

4.17. It is plainly true of any complex number z that either V22 = z or
V22 = —2z. Identify the set of z for which the minus-sign represents the
proper choice.

4.18. For which complex numbers z is it the case that \/z/Z = z/|2|?

4.19. Show that the locus of points z in the complex plane satisfying an
equation of the type A2%Z + Bz + Bz + C = 0, in which both A and C
are real numbers and |B|? — AC > 0, is a circle when A # 0 and a line
otherwise. Conversely, show that any circle or line in the complex plane
admits an equation of the kind just described.

4.20. Show that the locus S of points z in the complex plane subject to
the condition |z + 1||z — 1| = 1 is the curve described in polar coordinates
(r,0) by the equation r?2 = 2cos(26). (The curve in question is known as
a lemniscate.) Sketch a rough graph of this curve in order to obtain an
approximate picture of the set S. (N.B. In describing a point of IR? in
terms of polar coordinates (r,8) we always assume that » > 0. Naturally,
r = 0 holds only for the origin. Exercise 4.8 may be of help in establishing
that every point of S lies on the given lemniscate.)

4.21. Let ¢ be a complex number satisfying |c| < 1. Demonstrate that
IIZ +¢| < |1 + 22| if and only if |z| < 1, with equality holding if and only if
z| = 1.

4.22. Prove Lagrange’s identity: for zy,2,,...,2, and wy,ws,...,wy in

C,

n

z :zk'wk

k=1

2=(§|zk|2)(g|wk12)- S Jaw; - pml?

1<k<j<n

From it deduce Cauchy’s inequality:

"< (Z"jlzm) (ilwklz) .

k=1 k=1

n

> s

k=1
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4.2 Exercises for Section 1.2

4.23. Certify that e” = e? and that, except for non-positive real values of
z, Logz = Log 7 and z* = z*. What happens to the latter formulas when
z is both real and negative?

4.24. If n is a positive integer, establish the truth of the identities

14 cosf+ cos(29) 4+ .-+ COS(nG) -~ _;_ + Sln[éz:ln'(‘;/lgi/zl

and
cot(6/2)  cos[(2n + 1)8/2]
2 2sin(8/2)

sinf + sin(20) + - - - + sin(nf) =

for all real # other than integral multiples of 2. (Hint. Make use of Exercise
4.3 with z = ¢'))

4.25. Express in the form z + dy: (i) Log(—e?) ; (ii) Log(l — iv3);
(i) (=1)7 ; Giv) 08 5 (v) V% 5 (vi) & ; (vid) (V3 + )5 .
4.26. Determine the collection of all A-powers of z when (i) z = —e and

A=mi;(ii) z=1ie"? and A = i ; (iii) z = i and X = Logi ; (iv) z =1 and
A=1-—1.

4.27. As pointed out in the text, it is not always so that Log(z12z9 - 2,)
= Log z; + Log z2+ - - - + Log z,,. The best one can usually say is that these
quantities differ by an integral multiple of 271, a state of affairs often indi-
cated by writing Log(z122 - - - z,) = Log z; +Log 22+ - -+ Log 2z, (mod 27i).
Show that actual equality Log(z,23---2,) = Log z; + Logza+ - - - + Log 2,
occurs when and only when —7 < Argz; + Argza + .-+ Argz, < 7.

4.28. Verify that Log(l — z2) = Log(l — 2z) + Log(1 + z) when |z < 1.
What can be said about Log[(1 — 2)/(1 + 2)] for such 27

4.29. Establish that Log(2z*) = A Log z (mod 2x1), but give an example of
z and A for which Log(z*) # ALogz. Assuming that X is both real and
positive, determine the set of all z such that Log(z*) = A Log z. (Hint. For
the last part check first that A Arg z is an argument of z* when X is real.)

4.30. Confirm that the law of exponents 2*z# = z***# is valid for all
non-zero complex numbers z and all complex exponents A and p. Give an
example of complex numbers z, A, and g for which (2*)# # z*#.

4.31. Prove that the only circumstances under which |2*| = |z|* are
(a) when X is a real number or (b) when z is a positive real number and
the quantity (Im A) Log|z] is an integral multiple of 2.
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4.3 Exercises for Section 1.3

4.32. Determine the domain-sets of the following functions: (i) f(z)
(iz? + 2z + 5)/(z* + 322 — 4) ; (i1) g(2) = 2z/(2% + %) ; (iii) h(2)
(22 =22+ 17 (iv) k(z) = (¢* + 1)/(e* — 1) ; (v) £(2) = Log(e* —e7%) ;
(vi) m(2) = (z +¥°)/(i ~ 2* — iz?y?) .

4.33. Express the real and imaginary parts of the following functions as
functions of the two real variables z and y: (i) f(2) = 2% —iz ; (ii) g(2) =
22 —2i22 +1; (iii) h(z) = ze* + 27 Ye™% ; (iv) k(2) = Ze* — ze7 ; (V) £(2) =
zLogz for Rez > 0.

4.34. If f(z) = co+c12+ -+ + ¢, 2", derive the ensuing polar coordinate
representations for u = Re f and v = Im f:

1R

u(re®) = ag + Zn: r* [ax cos(k6) — by sin(k6))]

k=1
and
) n
v(re®) = by + Z r¥ [a sin(k8) + by cos(k8)] ,
k=1
where ¢ = ap + by for k=0,1,...,n.

4.35. Verify that the composition g o f of Mobius transformations ¢ and f
is again a Mdbius transformation. (N.B. It will follow from Exercises 4.36
and 4.48 that the inverse of a Mobius transformation is likewise a mapping
of this type, so the class of Mobius transformations forms what is known
as a “group” under the operation of composition.)

4.36. Suppose that f(z) = (az + b)/(cz + d) is a Mobius transformation
with the property that ¢ # 0. Through the process of actually computing
f~1, which turns out to be another Mébius transformation, certify that f
1s a univalent function whose domain-set is € ~ {—d/c} and whose range

i1s € ~ {a/c}.

4.37. Let A= {z: Rez > 0}, and let f: A — C be the function given by
f(z) = Log(z? + 1). Show that f is a univalent function. Find its range
B = f(A) and its inverse function f~!. (Hint. Perhaps the most efficient
way of identifying B is by geometrically tracking the image of A under
successive application of the elementary functions g(z) = 22, h(z) = z + 1,
and k(z) = Log z that compose to produce f.)

4.38. Define f: A — C, where A = {z: |z > 1}, via the formula f(2) =
(z + z=1) /2. Verify that f is a univalent function with range € ~ [-1, 1]
and compute f~1. (Hint. Exercise 4.15 is relevant here. The rule of corre-
spondence giving f~!(w) involves two different expressions, the applicable
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one varying with the location of w.)

4.39. Let D={z:|z| < 1}. Under the assumption that |c|] < 1, show that
f(z) = (z+ ¢)/(1 + ¢2) satisfies f(D) = D. (Hint. Recall Exercise 4.21.)

4.40. Determine f(S), where f(z) = e!/? and S = {2: 0 < |z| < r}.

4.41. If 2o is a root of a polynomial function f(z) = ag+ay2+---+a,2"
with real coefficients ag,a;,...,a,, then Zy is also a root of f. Prove this
assertion.

4.42. Suppose that zg is a root of a polynomial f(z) = ap+aj2+-:--+an2".
Demonstrate that z — z is a factor of f;ie., f(2) = (z—2p)g(2) for all z in
C, where g is also a polynomial function of z. (Hint. Look at f(2) — f(zo)
in two different ways.)

4.43. Prove that a polynomial function f(z) = ap + ayz+ --- + an2" of
degree n > 1 has at most n roots. ( Hint. Make use of the previous exercise.)

4.44. A point z is termed a fized point of a function f provided f(z) = z.
Locate all fixed points of the following functions: (i) f(2) = (1+4d)z2+1;
(i) g(z) = (L+ )z +1; (i) h(2) = 241 ; (iv) k(z) = ze* ; (v) £(2) =
(3z —4)/(z — 1) ; (vi) m(z) = (2z + 1)/(z + 1); (vii) p(2) = 1 + 22 — 23;
(vii) g(2) = 22+ 22 + 2 - 2 ; (ix) r(2) = (2% + 22) /(22 + 1).

4.45. What is the largest number of fixed points a polynomial f(z) =
ap+ayz+ -+ a, 2" of degree n > 2 could have? What about a proper
rational function f(z) = (ag +a1z2+ -+ anz™)/(bo + b1z + - - + b 2™),
where a, # 0, b, # 0, and m > 1?7 (The word “proper” here signifies that
n < m.)

4.46. Suppose that f(z) = (az+b)/(cz +d), where ad—bc =1 and ¢ # 0.
Show that f has only one fixed point when a+d = +2, but two such points
in all other cases.

4.47. Describe the geometric effect on the complex plane of the transfor-
mation f(z) = aZ + b, where a # 0 and b are complex numbers. (Such a
mapping is called a sense-reversing similarity transformation.)

4.48. If f and g are sense-preserving similarity transformations, show that
the composition g o f and the inverse function f~! are transformations of
that same type. What happens to g o f when either f or g is changed to
a sense-reversing similarity? When both f and g are so changed? What is
the character of the inverse of a sense-reversing similarity transformation?

4.49. A similarity transformation f(z) = az + b is devoid of fixed points
in the complex plane precisely when a = 1 and & # 0; otherwise, f has
exactly one fixed point or fixes every point. Support this claim.

4.50. Let the similarity transformation f(z) = az + b have 2, as a fixed
point. Show that f can be rewritten in the form f(z) = 20 + a(z — 2¢). De-
duce from this representation that the geometric effect of f on the complex
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plane amounts to a rotation about the point zo through an angle § = Arga,
followed by a dilation with respect to zp in which every ray issuing from 2o
is mapped to itself and all distances get multiplied by the factor |a|.

4.51. Prove that a sense-reversing similarity transformation f(z) = aZ+5b
has a unique fixed point if |a] # 1, has a line as its set of fixed points if
la| = 1 and ab = —b, and has no fixed points in the complex plane if |a| = 1
and ab # —b. (Hint. Remember Exercise 4.19.)

4.52. Consider the transformation w = (1 —2)/(1+ z) from Example 3.4.
Check that under this mapping the following sets transform as indicated.
(i) {z:Imz > 0} — {w:Imw < 0} ; (i) {z: Rez = -1,z # —1} —
{w:Rew=—-1w# -1} ; (i) {z: |2+ 2| = 1,z # -1} - {w: u= -2}
(iv) {z: 2 =1} = {w: Jw+(1/2)] = 1/2,w # -1} .

4.53. Demonstrate that under the correspondence w = z* any horizontal

line in the z-plane, apart from the real axis, is transformed to a parabola
in the w-plane. To what does the real axis get mapped?

2

4.54. Extend the previous exercise as follows: under the correspondence
w = 22 every line in the z-plane, except for lines passing through the
origin, is carried to a parabola in the w-plane. What are the images of
lines containing the origin? (Hint. Use Exercise 4.53 and the identity z? =
=29 (ei02)2))

4.55. By a cardioid is meant a plane curve that is similar, in the technical
geometric meaning of the term, to the curve whose polar equation is r =
1 + cosf. Show that the transformation w = 2? maps an arbitrary circle
K passing through the origin of the z-plane to a cardioid in the w-plane.
(Hint. If K has center zg, then this circle admits the description K =
{20 + z0e*® : —1 < 0 < 7}. Begin by looking at the case 2o = 1.)

4.56. If L is a line in the z-plane, determine its image under the mapping
w = /z when (i) L is horizontal, (ii} L is vertical, and (iii) L has equa-
tion y = zv/3. (N.B. The character of the image in (i) and (ii) will vary,
depending on whether L intersects the negative real axis or not. Keep in
mind that Re+/z > 0.)

4.57. Let K be a circle in the z-plane. Show that the image of K under
the mapping w = z~1 is a circle in the w-plane if K does not pass through
the origin, whereas its image — or, more correctly, the image of K ~ {0}
— 1s a line when the origin is a point of K. If L is a line in the z-plane,
prove that w = z~! maps L to a circle punctured at the origin when the
origin does not lie on L and transforms L — or, rather, L ~ {0} — to a
line with the origin deleted when L contains the origin. (Hint. Put Exercise
4.19 to work.)

4.58. Assuming that r # 1, check that the circle K = {z:|z| = r} is
transformed under the correspondence w = (z + z71)/2 to an ellipse in
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the w-plane. What is the image of K when r = 1?7 (Hint. Observe that
K = {re'?: 0 < 6 < 2n}. Start by expressing u = Rew and v = Imw for
w on the image of K as functions of the parameter 4.)

4.59. Let w = (az + b)/(cz + d), where ad — bc = 1 and ¢ # 0. Show that
the circle K = {z: |z + (d/¢)| = 1/|c|} in the z-plane is mapped by this
transformation to the circle K* = {w: |w — (a/c)| = 1/|c|} in the w-plane.
4.60. Given that zy,29, and z3 are distinct points in the complex plane,
verify that these points are the vertices of an equilateral triangle if and
only if

(1.17) 22422422 =220+ 2123+ 2223 .

(Hint. Exploit the fact that both the property of being the set of vertices
of an equilateral triangle and property (1.17) are invariant under similarity
— i.e., if 21, 22, and z3 enjoy one of these properties and if w; = az; + b,
where a # 0, then w;,ws, and w3 exhibit the same property — to reduce
the problem to a simple case.)

4.61. Let 21, 29,23, and z4 be distinct points of €. If these points list in
consecutive order the vertices of a square, demonstrate that

(21 — 23)(22 — 24) —

(1.18) (21 — 22)(23 — 2a)

2.

Provide an example to show that the validity of (1.18) does not, in general,
imply that 2;, 22, z3, and z4 are the consecutive vertices of a square. Under
the assumption that these points are the consecutive vertices of a parallel-
ogram, however, and also satisfy (1.18), establish that the parallelogram in
question is necessarily a square. (Hint. Appeal to similarity invariants.)



Chapter II

The Rudiments of
Plane Topology

Introduction

The present chapter is devoted to a survey of the basic definitions and
theorems from plane point-set topology that are prerequisite to a careful
discussion of complex function theory. (Additional topological concepts will
be introduced later in the text, as they become pertinent to developments.)
We warn the reader that a number of the statements found in this chapter
are just that, statements made without any attempt to justify them. Our
objective here is simply to assemble in one place for handy reference the
relevant background material from topology, not to provide an in-depth
account of the subject. Those desirous of a more detailed treatment are
encouraged to consult one of the many available textbooks on elementary
topology, e.g., Topology - A First Course by J.R. Munkres (Prentice-Hall,
Englewood Cliffs, N.J., 1975). Having said this, we hasten to add that the
bulk of the results offered here without proof are really nothing more than
exercises in sorting through the definitions of the concepts involved. They
can be treated as such by the ambitious reader.

1 Basic Notation and Terminology

1.1 Disks

We start by fixing notation for a number of standard sets that will be in
constant use throughout the book. If zp is a point in the complex plane
and if 0 < r < oo, we write

A(zo,r) = {z: |z — 2] <7},
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A(zo,r) = {z: |2~ 2| < 7},
A*(zo,r) ={2:0< |z— 2| < r} = A(2z0,7) ~ {20},
K(zo,r)={z:|z— 2| =71} .

The sets A(zq,7), A(20,7), and A*(zg,r) are called, respectively, the open
disk, the closed disk, and the punciured open disk of radius r centered at
zg, while K(zg,7) is nothing but the circle with center 2 and radius r.

1.2 Interior Points, Open Sets

Suppose that A is a subset of € and that 2 is an element of A. We say that
z i1s an interior point of A if there exists an r > 0 such that the open disk
A(z,r) is contained in A. A set U in the complex plane with the property
that every point of U is an interior point of U is known as an open set. (N.B.
The letters U, V, and W, when employed in this book to represent sets, will
invariably designate open sets.) Some elementary examples of open subsets
of € are the empty set ¢, the entire complex plane €, the open disk A(zo, ),
the punctured disk A*(zo,r), the set © ~ A(zo,7) = {z: |z — 20| > r}, and
the open upper half-plane {z: Imz > 0}. Two fundamental properties of
open sets are described in:

Theorem 1.1. The union of an arbitrary collection of open subsets of C
is an open setl. The intersection of a finite collection of open subsets of C
1s an open sel.

1.3 Closed Sets

A subset A of € is pronounced a closed set provided its complement € ~ A
is open. Examples of such sets include ¢, C, the closed disk A(zg,r), the
circle K(zo,r), the closed upper half-plane {z: Imz > 0}, and the real line
IR. The sets ¢ and € are the only subsets of the plane that are simultane-
ously open and closed, although this fact is not immediately obvious just
from the definitions of open and closed sets. It goes without saying that
most subsets of € are neither open nor closed. There is a proposition dual
to Theorem 1.1 dealing with closed sets. It can be inferred from the ear-
lier theorem by application of de Morgan’s rules for taking complements of
unions and complements of intersections.

Theorem 1.2. The intersection of an arbitrary collection of closed subsets
of € is a closed set. The union of a finite collection of closed subsets of C
s a closed set.
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1.4 Boundary, Closure, Interior

A point z in € is termed a boundary point of the plane set A if for every
r > 0 the open disk A(z,r) has non-empty intersection with both A and
C ~ A. The set consisting of all such boundary points is known as the
boundary of A. We use the notation 0A to signify this set. As examples,
observe that dA(zo,r) = 8A(20,7) = 0K (20,7) = K(20,7), OA*(z,1) =
K(z0,7) U {20}, and 0{z:Imz > 0} = R. An open set in the complex
plane is characterized by the property that it contains none of its boundary
points, whereas a closed set is distinguished by the feature of containing
all of its boundary points.

The set A = AU OA associated with a subset A of € is referred to
as the closure of A. (We rely on the context to make evident whether the
symbol — above a letter stands for “conjugate” or for “closure.”) By way of
illustration, the closure of the open disk A(zp,r) is the closed disk A(zp, 7).
Clearly a point z belongs to A if and only if AN A(z,r) is non-empty for
every r > 0.

We record the following observation.

Theorem 1.3. The boundary OA and closure A of a subset A of C are
closed sets.

Notice that a plane set A is closed precisely when A = A. To add one
last bit of basic terminology, the set of all interior points of a set A is called
the interior of A. The notation A° is commonly utilized to designate this
set, which is easily seen to be open.

1.5 Sequences

A sequence o in a set A — here we are not necessarily restricting A to be
a subset of € — is usually defined to be a function o:IN — A, where IN is
the set of positive integers. Writing a,, = o(n) we can view o as a rule for
listing in a specified order — namely, a;, a2, as, - - — the elements of its
range. Since ¢ may fail to be one-to-one, we must allow for duplications to
crop up in this list. In other words, we are free to regard a sequence o in A
as an ordered, but possibly repetitious list a;, as, as, - - - of elements of A,
indexed by the positive integers. The n*® entry a,, in the list is then called
the n*? term of the sequence. In this book the symbol (an) will be employed
as shorthand notation for the sequence a;,as,as, - -. (Sometimes we shall
run into sequences indexed by sets of integers other than IN. Sequences
@g,a;,as, - - - will, for instance, occur quite regularly. Such minor deviations
from the discussion at hand should cause no severe problems of adjustment.
We may occasionally write (an)ne, OF (@n)n=, in order to emphasize the
index set, but the context will ordinarily make even this unnecessary.)
There are several options available for presenting sequences in the con-
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crete. First, if there is a simple pattern to its terms, a sequence might be
described by writing out enough of the terms so that the pattern becomes
recognizable; a second option is simply to give the rule of correspondence
that expresses a, as a function of n; a third way to define a sequence is to do
so recursively by identifying a; and by detailing the procedure for obtaining
a, once ai,as,...,a,-1 are known. We can exemplify all three methods
using the sequence @y = 1,82 = —1,a3 = 1l,a4 = —-1,a5 = l,a6 = —1,---.
The pattern here is evident. Also, the general term a,, is readily expressed:
a, = (—1)*11. Lastly, the same sequence is presented recursively as follows:
a; =1and a, = —ap-1 for n > 2.

If (a,) is a sequence in a set A, then by a subsequence of (a,) is meant
a sequence, call it (b,), related to the given one in the following manner:
there is a sequence ny; < ny < ng-- - of positive integers such that b; = ay,,,
by = an,,b3 = a,,,--- . The notation (a,,) will serve to indicate such a
subsequence of {a,).

We stress again that the notion of a sequence is not confined to se-
quences of complex numbers. At various times in this book we shall have
occasion to consider sequences of sets A;, Az, As, - - -, sequences of complex
functions f;, fa, f3,- -, and, yes, even sequences of sequences!

1.6 Convergence of Complex Sequences

We now focus our attention on a sequence (z,) of complex numbers. It
may happen that, as n increases, the term z, develops an overwhelming
attraction for and finds itself inescapably drawn toward some particular
complex number 2. When this behavior is exhibited, we characterize (z,)
as a “convergent” sequence with zg as its “limit.” To make this precise,
we define a sequence (z,) in € to be convergent if there exists a complex
number zg of which the following is true: corresponding to each ¢ > 0
there is an index N = N(€) such that z, lies in the disk A(zg,€) for every
n > N. (See Figure 1.) This being so, there is exactly one such number
zp and it is called the limit of (z,). We write zp = limp— 00 2 OF 2z, — 29
to express the fact that (z,) is a convergent sequence with limit zg. In
symbol-free language one speaks of z, “tending to” or “converging to” or
“approaching” zo. We point out that z, — 24 is equivalent to |z, — 25| — 0.
This observation can be quite helpful in confirming that the suspected limit
of a complex sequence actually is the limit, for the reason that (]z, — 2o},
being a real sequence, is subject to analysis by techniques — the “squeeze
rule,” for one — without counterparts in C. The inequalities

|Rezy, —Rezo| < |z2n —20] , |Imz, —Imzo| < |2n — 2],

and
|2, — z0) < |Rez, — Rezo| + |Imz, — Im 2],

when combined with the squeeze rule, lead to a useful remark.
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Figure 1.

Lemma 1.4. A complez sequence (z,) ts convergent and has limit 2z if
and only if both of the real sequences (Rez,) and (Imz,) are convergent
and have Re zg and Im zy as their respective limits.

The algebra of limits for complex sequences is essentially the same as
1t is for the real sequences studied in beginning calculus. With the aid of
Lemma 1.4 one can easily deduce the contents of the following result from

the limit theorems of calculus.

Theorem 1.5. Let (2,) and (wy) be sequences in € such that z, — zo and
wy, — wo. Then ¢z, — czp for any complex numberc, 2, — Zo, |2n] — |20|,
Zpn + Wy — 29 + Wo, 2nWy — zoWo, and, if wo # 0, 2, /Wy — 20/ wo.

The quotient z,/w, is undefined, naturally, for any n with w,, = 0.
However, under the assumption that wy # 0, this creates a problem for at
most finitely many terms z,/wy,. We just disregard those terms in dealing
with the quotient sequence.

1.7 Accumulation Points of Complex Sequences

Even a non-convergent complex sequence (z,) may have associated with
it certain attention-grabbing points. In particular, there may exist one or
more points zo distinguished by the fact that, as n grows, z, returns arbi-
trarily often to each open disk centered at zo. Such a point is known as an
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“accumulation point” of (z,). An exact definition of this concept reads: a
sequence (z,) in € has the complex number zy as an accumulation point
if for each € > 0 the disk A(z, €¢) contains z, for infinitely many values of
n. A given sequence {(z,) may well fail to have any accumulation points.
At the opposite extreme it is possible for a single sequence (z,,) to have
every point of € as an accumulation point! If (z,,) is a convergent sequence
with limit zg, then zo is the unique accumulation point of {(z,}. On the
other hand, there exist non-convergent sequences having one and only one
accumulation point. (See (2.2) below.)

We examine how the ideas just introduced apply to some specific se-
quences. The constant sequence

21 =C, 22 =C ..., Zn =C,-+"

is obviously convergent and has limit ¢. A less trivial example of a conver-
gent sequence is given by

. 1 "
z1=11z2=_-)“"zﬂ:;).'.
Here z, — 0. The sequence
— —_— — an
(2.1) 21=1, 29==1,..., zZp=1",---

does not have a limit, although it does have four accumulation points —
namely, the points 1,—1,17, and —i. A non-convergent sequence with exactly
one accumulation point is

9
(2.2) 21=1,zgzi-,...,zn=21'"+n+(—1)"n,~--.
The unique accumulation point here is 0, but z, /A 0 (i.e., 2, does not
tend to 0), since the even-numbered terms of this sequence all lie outside
the disk A(0,1). Finally, it can be shown that for z in C the sequence

(2.3) 2=z, 29=2%,..., zg=2" ..

displays the following behavior: if |z| < 1, z, — 0; if |z] > 1, (zn) has
no accumulation points in C; if z = €*® with 8/2x a rational number, the
accumulation points of {(z,) are 1,z,2%,...,2972, and 297!, where 6/27 =
p/q in lowest terms; if z = ¢*® with #/2x irrational, the set of accumulation
points of (z,) is the entire circle K(0,1). (Only the last assertion is hard
to verify — and that quite tricky indeed.)

Assume that zp is an accumulation point of a complex sequence (z,).
We inductively construct a sequence n; < ng < nz--- of positive integers
as follows: we choose ny such that z,,, belongs to A(z0,1) and, having con-
structed ny, we choose ng 1 > n; such that z,,,, lesin A (zo, (k+1)71),
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The fact that zp is an accumulation point of (z,) makes the above choices
possible. In this way we arrive at a subsequence (2,,) of (zp) with the
property that |2n, ~ 20] < 1/k for all k, which implies that 2,, — 2z as
k — oo. This establishes the less obvious direction in the next result.

Theorem 1.6. A sequence (z,) in € has the complex number zy as an
accumulation point if and only if there is a subsequence (2, ) of (2,) such

that Iimk—o-oo zﬂk = 2p.

The sequence (2.1) lists i among its accumulation points. One choice of
subsequence converging to 1 in that example is 24, 29, 213,..., 24541, " ;
another is 22, 23, 27, ..., Zk14+1, - - - - When a sequence (z,) is actually con-
vergent the behavior of its subsequences simplifies greatly, as the following

theorem shows.

Theorem 1.7. Suppose that a complez sequence (z,) is convergent and has
limit zo. Then limg_.o 2,, = 2o for every subsequence (z,,) of (z,).

Let A be a set in the complex plane and let z5 be an element of 4. For
each integer n > 1 we can pick a point z, belonging to AN A(z,1/n). By
this process we manufacture a sequence (z,} in A with the property that
zn — zg. Conversely, the existence of a sequence (z,) in A with 2z, as its
limit clearly places zo in A. We infer:

Theorem 1.8. The point zy belongs to the closure of a plane set A if and
only if there exists a sequence (z,) in A such that 2, — 2.

Combining Theorems 1.7 and 1.8 with the fact that closed sets A in €
are characterized by the condition A = A, we can give a new description
of such sets.

Theorem 1.9. The subset A of C is closed if and only if A contains every
accumulation point of every sequence in A.

2 Continuity and Limits of Functions
2.1 Continuity

To say that a function f: A — C is continuous at a point zg of A means
ntuitively that, when f is evaluated at a point z near zq, the value f(z)
lies in close proximity to f(z¢) and, even more, that the distance between
f(2) and f(z0) shrinks to zero as z is moved closer and closer to 2. By the
same token, to declare that f is discontinuous at z, conveys the information
that there exist points z in A ever so slightly removed from zg for which
f(z) lies at a distance from f(zo) larger than some fixed positive number.
The intuitive notion of continuity is incorporated into a formal definition
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Figure 2.

as follows: a function f: A — € is continuous at a point zg if zp belongs to
A and if corresponding to each ¢ > 0 there exists a § = 6(e, 20) > 0 with
the property that

(2.4) FIANA(z0,6)) C A(f(z0), €) -

(See Figure 2.) We have written § = é(¢, 29) here in order to underscore
the fact that § will normally depend on zg, not just on €. (N.B. Use
of (2.4) in place of the equivalent statement involving inequalities — i.e.,
|f(2) — f(20)] < € for every z in A satisfying |z — zp] < § — is made with
some foresight: as formulated, the definition of continuity carries over
almost verbatim to a definition of continuity for functions whose domain-
sets and ranges lie in the extended complex plane € = C U {00}, which
will be discussed in Chapter VIII, whereas the corresponding definition
in terms of inequalities is somewhat awkward in the extended setting.) A
function f: A — C is discontinuous (or has a discontinuily) at a point zg
if zo belongs to A, yet f is not continuous at zy. Negating the definition
of continuity, we see that the latter condition reduces to the existence of
some € > 0 with the property that

(2.5) FlANA(z0,8)] ~ A (f(20), ) # ¢

for every 4 > 0. Note that the expressions “f is continuous at z,” and “f is
discontinuous at zp” are employed only in relation to points zy belonging
to the domain-set of f. Thus, we do not speak of the function f(z) = 1/z
as discontinuous at the origin, for f is not defined there. (In Chapter VIII
we shall introduce the terminology “isolated singularity” in conjunction
with behavior akin to that of f(z) = 1/z at the origin.) A function that is
continuous at every point of its domain-set is called a continuous function.
More generally, we say that a function f is continuous on (or in)a set S
if S is contained in the domain-set of f and if the function obtained by
restricting f to S is a continuous function.
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The definition of continuity at a point has a convenient reformulation
in terms of sequences.

Theorem 2.1. A function f: A — C is continuous at a point zo of A if and
only if for every sequence (z,) in A converging to zo the image sequence

(f(2n)) converges 1o f(z0).

Proof. Assume first that f is continuous at zo and consider a sequence
(2,) in A such that z, — zo. We show that f(z,) — f(z0). Let € > 0 be
given. We must exhibit an index N with the property that f(zy) lies in
A (f(z0),¢€) for all n > N. By the definition of continuity we can choose
§ > 0 so that (2.4) holds. Next, since 2, — 2, we can select an index N
such that z, is a point of AN A(20,6) whenever n > N. By (2.4), f(zn)
belongs to A (f(z0),€) for all n > N, as desired.

For the converse, we assume that f is discontinuous at z; and use this
assumption to construct a sequence (z,) in A such that z, — z, while
f(zn) # f(20). As observed, the discontinuity of f at zo means that there
is some € > 0 such that (2.5) holds for every § > 0. Fix such an ¢. Statement
(2.5) is then true of § = 1/n, where n is a positive integer. This allows us to
pick a point z, of AN A(zp,1/n) for which f(z,) lies outside A (f(zo),¢).
Doing so for n = 1,2,3,--- we produce a sequence (z,) in A that satisfies
|zn — 20| < 1/n for all n, forcing z, — 2o. However, |f(zn) — f(20)] > € for
every n, so f(zn) # f(z0). n

In tandem, Theorems 1.5 and 2.1 make short work of the proofs of two
noteworthy propositions.

Theorem 2.2. Suppose that functions f:A — C and g: B — C are both
continuous at a point zg. Then the functions cf for a complex constant c,
Ref,Imf, f, |fl, f+9, fg, and, if g(z0) # 0, f/g are all continuous at
29. In particular, if f and g are continuous functions, then so is each of
the functions just listed, provided its domain-set is not empty.

Theorem 2.3. Suppose that f: A — € and g: B — C are functions for
which f(A) is contained in B. If f is continuous at zo and g is continuous
at wo = f(zq), then the composition go f is continuous at zy. In particular,
if f and g are continuous functions, then go f is a continuous function.

In order to demonstrate a method of establishing such results, we prove
Theorem 2.3. Consider an arbitrary sequence (z,) in A satisfying z, — 2.
Since f is continuous at 20, Wn = f(2n) — f(20) = wo (Theorem 2.1).
Similarly, the continuity of ¢ at wo implies that g(w,) — g(wg). Thus,
g0 f(zn) = g[f(2n)] = g(wn) — 9(wo) = g[f(20)] = g o f(20). Theorem 2.1
vouches for the continuity of g o f at z.

Since f(z) = Rez = =z and ¢(z) = Imz = y quite obviously define
continuous functions in €, Theorems 2.2 and 2.3 can be applied to them
repeatedly to generate a lot of other examples of continuous functions.
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It follows from Theorem 2.2, to give one illustration, that any rational
function of z and y is continuous. (See Section 1.3.1.) As an important
special case, we note that rational functions of z are continuous functions.
If ¢:IR — R is a continuous function, then in view of Theorem 2.3 both
w o f and p o g are continuous. Accordingly, h(z) = €*, k(z) = cosy,
and £(z) = sin y represent continuous functions. So, therefore, does E(z) =
e* = e” cosy+1ie® siny. In a similar spirit, by appealing to the fact that the
function ¢ defined on the interval [—1,1] by ¢(t) = Arcsint is continuous,
we are able to conclude that

(2.6) a(z) = Arcsin (TZT)

defines a continuous function in € ~ {0}. This particular function is sig-
nificant due to the relationship a(z) bears to Argz. It plays a role in doc-
umenting a fact to which we shall refer more than once in the future.

Lemma 2.4. The function §:C ~ {0} — IR given by 6(z) = Argz is
continuous in the set D = C ~ (—o00,0] and discontinuous at all points of
the interval (—oo, 0).

Proof. Let a: € ~ {0} — IR be the function in (2.6). Recalling our dis-
cussion of arguments in Section 1.1.2, we express (z) for z = z + 1y as
follows:

a(z) if >0,
(2.7) 0(z) = { ®— a(z) if z<0andy>0,
-7 — ofz) if z<0andy<0.

Formula (2.7) and the continuity of & make it apparent that ¢ is continuous
in the threeopensetsU = {z € D: 2> 0},V={z€ D:z < 0and y > 0},
and W = {z € D: z < 0 and y < 0}, so question marks concerning the con-
tinuity of 8 in D occur only at points of the imaginary axis. Consider such
a point zg, say with Imzy > 0. (The case Imzg < 0 is treated similarly.)
For z = z + ity in D with y > 0 we observe that

16(2) — 8(20)| = |e(2) — a(z0)]

if z > 0, while the fact that a(z) = % also gives

6(2) = (z0)] = |7 — a(2) = 2| = | — a(2)] = la(2) - a(z0)]

when z < 0. In other words, [6(z) — 8(20)] = |a(z) — a(20)| holds for
every z in D with Imz > 0. In conjunction with the continuity of o at zg,
this clearly implies the continuity of 8 at zp. The function € is continuous,
therefore, at all points of D.
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Finally, if ¢ is real and negative, look at the sequence z, = z¢ — n—1i.

Then 2, — o, but by (2.7)
0(zp) = -7 — a(z,) = —7 — a(zo) = —7 # 7 = 0(z0) ,

showing that @ is discontinuous at zq. »

Lemma 2.4 implies, among other things, that the principal logarithm
function, L(2) = Log z = Log |z]+ 7 Arg z, has its only discontinuities at the
points of the negative real axis. The last result of this section characterizes
continuous functions with open domain-sets. Its proof is left as an exercise.

Theorem 2.5. Suppose that U is an open sel in the compler plane. A
function f:U — C is continuous if and only if for every open subset V of
the complez plane the set {z € U: f(z) € V} is also open.

2.2 Limits of Functions

Closely associated with the notion of a function being continuous at a point
is the concept of a function possessing a limit at a point. Roughly speaking,
the limit of a function f: A — € at a point zy (which need not belong to
A) is the complex number wy (which may or may not exist) that renders
the function g: AU {20} — C defined by

g(z):{f(z) if z € A~ {2},

Wo ifz=Zo,

continuous at zo. The single detail that prevents this from being a proper
definition of limit is a technical one concerned with the relationship of the
point 2y to the set A. Specifically, we must insist that 2 be a limit point
of A, meaning that AN A*(2,r) # ¢ for every r > 0 or, equivalently, that
there exists a sequence (z,,) in A ~ {zp} such that z, — 2. For example,
the origin is a limit point of the set {1,1/2,1/3,---}, but not of the set
{0,1/2,2/3,3/4,- --}. With these preliminary remarks behind us, we make
the definition: a function f: A — C has the complez number wq as its limit
at a point zg if 2¢ is a limit point of A and if corresponding to each ¢ > 0
there exists a § = §(¢) > 0 with the property that

(2.8) FIAN A*(20,6)] C A(wp,€) .

(See Figure 3.) Assuming that a complex number wy fitting this description
exists — as already suggested, its existence is by no means assured —
there is only one such number. We write either lim,_,., f(z) = wo or
f(z) — Wp a8 2 — 2p to express symbolically the fact that the limit dOCS
exist and has value wp. (N.B. As in the definition of continuity at a point,
we have elected to use (2.8) in preference to the equivalent inequalities
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Figure 3.

— 1e., |f(z) — wo| < ¢ for every z in A satisfying 0 < |2 — 2| < § —
solely in the interest of fostering a smoother transition to limits in the
extended complex plane when that topic is taken up in Chapter VIIIL.) It
is a straightforward paraphrase of the definition of a limit to state
(2.9) lim f(2) =wp & lim |f(z) —wo|=0.

z—29 z—2g
Paralleling a remark made earlier in conjunction with convergent sequences
is the comment that the right-hand side of (2.9) is convenient to work with
because the real quantity |f(z) — wol is subject to the “squeeze rule.” To
exemplify this point, let us verify that

lin})[z+1+zLogz] =1.

We need only observe that for z #£ 0
{(z4+ 1+ 2Logz)— 1| = |2+ zLog z| = |z + z Log |z| + iz Arg 2|
< |zl + |2 Log |z|| + 2| Arg z| < |z| + ||2| Log |2]| + 72| .

It is not hard to see that the last expression tends to 0 as z — 0, since with
the aid of I’'Hospital’s rule we can evaluate the real limit lim,_ ¢+ ¢t Log:
Logt .. t7!

= lim =—limit=0.
t-1 t—0t+ —1—2 t—0+

hm tLogt = lim

t—0+ t—0+

We emphasize again that the question of the existence of lim,_, ,, f(2)

for a function f: A — € is a meaningful one as soon as 2, is a limit point of

A. It is not required — or even relevant — that zg belong to A. The single

most important type of limit with which we must come to terms in this

book arises in just such a situation. Assume that we are presented with a

function f: A — € and an interior point zg of A. The function g whose rule
of correspondence 1is

f(z) = f(20)

zZ— 20

9(z) =
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has domain-set B = A ~ {z9}. Because zp is interior to A, the set B
definitely has zp as a limit point. It therefore makes sense to ask: Does

lim g(z) = lim (2) = f(z0)

z2—20 z=z0  Z—2Zp

exist? It will not be lost on a student of calculus that what we are attempt-
ing to do here is to take a derivative of f at 29, a “complex” derivative!
This attempt represents the first step on the road to complex analysis, as
we begin to learn in the next chapter.

We have already hinted at the connection between limits and conti-
nuity. Given the formal definitions of these two concepts, we can describe

that connection precisely.

Theorem 2.6. Suppose that zo belongs to a subset A of C and that, in
addition, zg is a limit point of A. A function f: A — C is continuous at z

if and only if lim, ., f(2) = f(20).

A point of a plane set A that is not a limit point of A is called an isolated
point of A. For such a point zp it is evident that A N A(2q,7) = {20} once
r > 0 is sufficiently small. A function f: A — € is trivially continuous at
all isolated points of A, the only points of A to which Theorem 2.6 does
not address itself.

Two earlier results touching on continuity at a point have limit coun-
terparts that are cited often enough to warrant explicit statement. The first
corresponds to Theorem 2.1 and has a similar proof.

Theorem 2.7. Let zy be a limit point of a subset A of the complex plane.
A function f: A — € has limit wg at zg if and only if for every sequence
(zn) in A ~ {2,} converging to zy the sequence (f(z,)) converges o wy.

‘The second result certifies that the expected algebraic rules hold for
limits of functions. It follows from Theorem 2.7 in the same way Theorem
2.2 does from Theorem 2.1.

Theorem 2.8. Suppose that functions f: A — € and g: B — C salisfy
f(z) — wo and g(z) — wh as z — zy, where zp is a limit point of AN B.
Then as z — zg: cf(2) — cwg for any complex constant c; Re f(z) — Rewyg
and Im f(2) — Imwo; f(z) — Wa; |f(2)] — |wol; f(2) + 9(z) — wo + wh;
F(2)g(2) — wowy; if wh # 0, f(2)/9(z) — wo/w).

Here are some samples of limits evaluated with the help of the preceding
material:

}Lrl}[zs-3f+2]=0,

. z 2 .
. 2e* + 22+ 311_1.1})[26 +2 4] —
lim = = =
z—02+1+ 2Logz zlm})[z+1+zLo!§2-’]

2414,
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3 . 95 2 ., 2 .
lim 2 +8i . (z — 22)(2% + 2iz — 4) — lim Z +2iz —4

=2 2244 z-l—on.%i (z — 20)(z + 29) Jaare Y z 4 % =37 .

In the first case the function involved is continuous at the point where
the limit is being taken, so the problem of computing this limit reduces
to the simple process of evaluating the function at that point. For the
second limit we invoke Theorems 2.8 and 2.6, along with a limit computed
earlier. The third example, which is of a standard type that one meets
in beginning calculus, makes implicit use of the “local” character of limits:
the existence and value of lim,_,,, f(z) are determined by the restriction of
f to any pre-selected punctured disk centered at zp. Thus, if two functions
f and g agree in A*(zo,r) — meaning that their respective domain-sets
have the same intersection with A*(zp,r) and f(z) = g(2) for all z in that
common intersection — then lim,_, ;, f(2) = lim,_, g(z), in the sense that
both limits exist or neither does and that,when they exist, they are equal.
In our example f(z) = (2% +8i)/(22+4) and g(2) = (2% + 2iz — 4) /(2 + 2i)
are functions that agree in A*(2i,r) for every r > 0. Also, lim,_5; g(2) =
g(2t) = 31, for g is continuous at 2i. As a consequence, lim,_,9; f(2) = 3¢
as well.

A fina]l remark about limits may help to ward off errors later on.
It relates to the transition from limits that one encounters in the real-
variable confines of calculus to their complex analogues. Consider, for a
moment, the function f(z) = e~/ =*. We are aware from calculus that
limy o f(z) = limz_ e~1/2> = 0. There is a temptation — it must be
resisted — to assume that one can merrily substitute the complex variable
z for z here and write lim,_o f(z) = lim,_, e=1/2* = 0. However, if we
set z, = (2nm)"1/2e*/4 for n = 1,2, -, we observe that z, — 0, whereas
f(z,) = €727 =1 for every n, so f(z,) — 1. Thus, it is not true that
f(z) — 0 as z — 0! The lesson: we cannot rely on standard limits from
calculus to carry over automatically to the complex setting. Sometimes, of
course, they do — as an example, we shall eventually explain how to make
sense of sin z for complex z and verify that lim, _.osin z/2 = 1 — but, when
a limit does generalize in this way, that fact usually requires new confirma-
tion, often involving methods of proof quite different from the techniques
employed to establish the original calculus limit. (This will be true, in
particular, of the computation of complex derivatives.) The point is that
the existence of lim,_,,, f(z) makes relatively severe “two-dimensional” de-
mands on the function f near zy: the quantity f(2) is under a special kind
of control for a totally random approach of z to zp through the domain-set
of f. It i1s asking much less of a function to insist that its behavior be con-
trolled only along a specific curve (e.g., the real axis) passing through zp
or along sequences approaching zy from some specified direction.
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3 Connected Sets
3.1 Disconnected Sets

An excellent “real life” example of a disconnected set is the state of Michi-
gan. This “set” is the union of two “subsets”, Upper and Lower Michigan,
that would be separated from one another were it not for the Mackinac
Bridge. Similarly, a subset A of the complex plane will be called “discon-
nected” if it can be realized as the union 4 = B U C of non-empty sets B
and C that are “separated” from each other in a way to be prescribed mo-
mentarily. (We shall allow for the possibility that the two “pieces” B and
C of A might themselves be decomposable into still smaller pieces. This
even happens in the Michigan example when various islands in the Great
Lakes are taken into consideration.) By way of definition, a subset A of C is
declared to be disconnected if there exist open sets U and V in C that obey
the following three conditions: (i) U and V are disjoint; (ii)) ANU # ¢ and
ANV # ¢; (iii) A C UU V. Note especially that we can write A = BUC,
where B= ANU and C = ANV, and that these subsets B and C of A
are separated by the open “buffer zones” created about them by U and V,
respectively (Figure 4).

Figure 4.

The following lemma describes a property of sets that might initially
appear different from disconnectedness, but is actually equivalent to it.
In practice it is often easier to produce sets that meet condition (i) in
this lemma than to find the disjoint sets required by condition (1) in the
definition of a disconnected set. Such will be the case, for instance, in the
proof of Theorem 3.8.

Lemma 3.1. Let A be a set in the complez plane. Suppose that there ezist a
pair of open sets U* and V* in C satisfying the following three conditions:
() ANU*NV* = ¢, (i) ANU* # ¢ and ANV* £ ¢; (iii) A C U*UV*.
Then A is disconnected.



48 II. The Rudiments of Plane Topology

Proof. The catch here is that (i) does not prevent the two sets U* and V*
from intersecting at points away from A. The idea of the proof is to pare
U* and V* down to disjoint open sets, call them U and V, that continue to
meet requirements (ii) and (iii). This will confirm the disconnectedness of
A. To carry out this plan, write S = U* ~ V* and T = V* ~ U*. The sets
S and T are non-empty — S contains ANU* and T contains ANV* —
and disjoint. Because S lies in U* and because U* is open, corresponding
to each point z of S we can fix a number r, > 0 so that the disk A(z,2r,)
is contained in U*. We then set A, = A(z,r,). In like fashion we choose
for each w in T a disk A, = A(w,ry) in such a way that A(w,2ry) is
contained in V*. Now take U = |J,¢sA: and V = J,er Aw- As unions
of open sets, U and V are themselves open. Also, ANU = ANU* #£ ¢,
ANV = ANV* £ ¢, and, since ANU*NV* = ¢,

ACSuTCUuUV.

Finally, U NV = ¢. To prove this, it suffices to show that A, N A, = ¢
whenever z belongs to S and w to T'. Suppose that z; were an element of
A;NAy for such z and w. Assume first that r, < ry,. In this case we would
have

|z —w|<|z—2z0|+ |20 —wl <1, + 70 < 2ry

placing the element z of S in A(w, 2r,,), a subset of V*. This would clearly
violate the definition of S = U* ~ V*. Similar reasoning when r,, < r,
would lead to an inconsistency with the definition of T'. Therefore UNV = ¢
and A is seen to be disconnected. n

3.2 Connected Sets

A plane set A is said to be connected if it is not disconnected. Phrased in
more positive terms, the statement that A is connected asserts that the
only way to include A in the union of two disjoint open sets U and V is
the trivial way, which is to have A contained in either U or V. Certainly
a set consisting of a single point is connected. A more significant example,
one whose connectedness is closely associated with the completeness of the
real number system (see Appendix A.2.2), is a line segment in C.

Theorem 3.2. A line segment I in the complex plane is a connected sel.

Proof. Let I have endpoints zy and 2;. Then I is plainly described by
I = {(1 =t)zg+1tz1:0 <t < 1}. Suppose that I is contained in YUV,
where U and V are disjoint open sets in €. We must demonstrate that
lies in U or that it lies in V. We shall assume that 2o belongs to U and
verify the former. (If zq is a point of V, then an analogous argument shows
that I is contained in V.) Using the fact that f(£) = (1 —t)zo+12z; defines a
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continuous function on [0, 1] and that the sets U and V are open, we make
the following observation: (%) if ¢ is in [0, 1] and if f(Zo) is an element of U
(respectively, V), then f([0,1] N [to — 6,20 + 6]) lies in U (respectively, V')
for some & > 0. Consider the set J of all ¢ in [0, 1] with the property that
£([0,1]) is a subset of U. By assumption f(0) = zo is a point of U, s0t = 0
belongs to J. In particular, J # ¢. As a non-empty subset of [0,1], J has
a supremum (= least upper bound) to that belongs to [0,1]. It is evident
from the definition of ¢y that f must map the half-open interval [0,%,) into
. The observation (%), coupled with the disjointness of U and V, then
insures that f(fo) cannot be an element of V and so implies that f([0,¢0])
is a subset of U; i.e., to is an element of J. If {; < 1, a second appeal to (*)
would produce a § > 0 with the feature that f ([to,t0 + 6]) — and, hence,
£ ([0, + 6]) — is a subset of U. Thus o+ 6 would be a member of J larger
than to, an impossibility. The conclusions: tp =1, J =[0,1], and I = f(J)
is contained in U. »

Taking the union of a collection of connected sets with a common point
of intersection provides a mechanism for building up fairly complicated
connected sets from simple ones. The principle underlying this procedure
is:

Theorem 3.3. Let C be a collection of connected sets in the complex plane,
each of which contains a given point zo. The union of the members of C is
then a connected set.

Proof. Write A for the union in question and assume that A is contained
in YUV, where U and V are disjoint open sets. We must prove: A is either
a subset of U or a subset of V. We suppose that zy belongs to U and check
that A is contained in U. (The alternative case, where zp is an element of
V, is dealt with similarly.) For this, we need only prove that each member
C of C is a subset of U. The connectedness of any such C, together with
the information that
2we CCACUUV,

allows precisely that conclusion. »

In combination Theorems 3.2 and 3.3 confirm that a plane set A is
connected if it contains a point z with the following property: for each
point z of A ~ {29} the line segment with endpoints 2y and z is contained
In A. (We shall describe a set of this type as starlike with respect to zo.) In-
cluded in this class of sets are a number of commonplace sets that we would
intuitively think of as connected and that we can now officially certify as
connected according to the technical understanding of the term. Prominent
among them are the complex plane itself, the open disk A(z,r), and the
closed disk A(zg,r). The same two theorems just cited and a straightfor-
ward induction argument verify the connectedness of any polygonal arc, the
name we bestow on a set A = Uj_,I; formed by stringing together end-to-
end a finite number of line segments Iy, I ..., In, subject to the constraints
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that I; 4, be disjoint from Iy when k < j and that I;4, intersect I; only
at a common endpoint of these two segments. Figure 5 shows an example
with n = 6. The points zp and z; are the endpoints of this polygonal arc.

Figure 5.

3.3 Domains

A non-empty set D in the complex plane that is both open and connected
is standardly referred to as a domain in C. (This concept must not be
confused with the “domain-set” of a function. The desire to avoid potential
confusion between these two notions actually motivated our choice of the
term “domain-set” ~— as opposed to just “domain” — for the set where
a function is defined.) Throughout this book the letters D and G (for the
German equivalent of “domain,” Gebiet), when used to represent sets, will
consistently stand for domains. The definition of connectedness has as a
direct corollary a useful remark concerning domains.

Theorem 3.4. If a plane domain D 1s ezpressed as the union D=U UV
of disjoint open sets U and V', then either U = ¢ or V = ¢.
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