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Preface

This is a textbook on multivariate and vector calculus, but it is also a story.
It is a story that begins and ends with revolutions in our understanding
of the physical world in which we live. It carries us from the birth of the
mechanized view of the world in Isaac Newton’s Mathematical Principles
of Natural Philosophy, in which mathematics becomes the ultimate tool
for modeling physical reality, to the dawn of a radically new and often
counterintuitive age in Albert Einstein’s Special Theory of Relativity, in
which it is the mathematical model that suggests new aspects of that reality.

This is also a chance to have some fun with mathematics. Here is the
promised reward of being able to do something interesting and useful with
the calculus that you have mastered in the past year. A colleague once told
me of a high school experience in which he had the opportunity to partic-
ipate in a special class that promised to reveal the basic tools of mathe-
matics. Visions of orbit calculations and other mathematical applications
danced through his head in anticipation. He was disappointed when the
course turned out to be set theory. Presented here is the course for which
he was hoping. We shall compute orbits and rocket trajectories, see how to
model flows and force fields, derive the laws of electricity and magnetism,
and show how observations of mathematical symmetry lead to the conclu-
sion that matter and energy are interchangeable.

If I stand accused of blurring the line between mathematics and physics,
I enthusiastically plead “Guilty!” Mathematics is often viewed as all tech-
nique, the foundation for interesting studies of the world but dull and
tedious in and of itself. I hope that this book will reveal to you some of
the intimate interplay between mathematics and our understanding of the
physical universe and, in the process, illuminate some of the intrinsic beauty
of mathematics itself.

I have also tried to emphasize the mathematical structure underlying this
subject. For this, I have taken my inspiration from two of the great texts
on several variable calculus: Tom Apostol’s Calculus and Harold Edwards’
Advanced Calculus. The former was my own textbook as an undergraduate,
and I admire its clarity and precision and, above all, its treatment of the
derivative of a vector field as a linear transformation. Edwards opened the
world of differential forms to me, and I am especially indebted to him for
revealing the natural progression from the fundamental theorem of calculus
to Maxwell’s equations to special relativity. I have taken what I found most
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imitation as sincere flattery.

The physicist and occasional mathematician Freeman Dyson, in an ad-
dress to the American Mathematical Society in 1972, spoke of the passage
from the equations of electricity and magnetism to the insights of special
relativity as one of the opportunities missed by mathematicians as they
divorced themselves from the problems of physics. Even today, most math-
ematicians have a poor appreciation of Maxwell’s contributions. An excerpt
from Dyson’s comments is included as Appendix A. I hope that many of
you will be motivated to read all of his address and to participate in the
reintegration of physics and mathematics that I feel has begun.

This book grew out of an honors calculus class at Penn State. It is in-
tended to be covered in one 15-week semester of four classroom hours per
week. That is a fast pace, and yet it is one that dedicated students can
maintain. There are no interchangeable parts. This text was designed to
be used as a whole. That does not mean that each chapter need be given
the same emphasis. Chapters 1, 3, and 11, as well as Sections 8.2, 8.5, 9.5,
and 10.9, can be touched lightly and rapidly with the student responsible
for reading and assimilating much of the material. But, I hope that the in-
structor will not give these portions too scant attention for they provide the
flesh of a subject that too often is reduced to the dry bones of technique.

There are many people to whom I owe a debt of gratitude for help with
this book, among them Don Albers and Freeman Dyson for their early
encouragement; Ray Ayoub, Allan Krall, Steve Maurer, and David Rosen,
who went through much of the manuscript and suggested improvements;
the National Security Agency for its support; and my editor at Springer-
Verlag, who expressed consistent confidence in this project and made a
number of valuable suggestions. But, most especially, I wish to thank the
students who struggled through the first draft of the text in the fall of
1990 and pointed out many of my misprints, as well as places where the
explanations were obscure, the examples inadequate, and the exercises im-
possible. I do not claim that they or I have now found all such faults, but
this is a better book for their efforts. They are Jeffrey Caruso, Robert Col-
bert, David Druist, Mark Flood, Kathleen Galvin, Darren Gibula, Steven
Gradess, Stanley Hsu, Steven Jackson, John Johnson, Timothy Keane,
Brian Ledell, Kurt Ludwick, Lara Palmer, Brian Pavlakovic, Christine Pen-
ney, Julie Richards, Alexander Richman, Nicola Schussler, Andrew Shrop-
shire, Michael Smith, Peter Stone, Xiong Sun, Christopher Tatnall, Melissa
Wallner, Marc Weinstein, and Jill Wyant.

To anyone who requests it, I will send a current list of corrections for
this book, and I ask your help in finding misprints and errors. Regular mail
should be sent to Macalester College, St. Paul, MN 55105, USA; e-mail to
bressoud@macalstr.edu.

David M. Bressoud March 6, 1991
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F =ma

The heavens declare the glory of God,
and the firmament shows his handiwork.
—Psalm 19

Had I been present at the creation, I would have given some
useful hints for the better ordering of the universe.
—attributed to King Alfonso X of Castile (1221-1284)

[Newton] has so clearly laid open and set before our eyes the
most beautiful frame of the System of the World, that if King
Alfonso were now alive, he would not complain for want of the
graces either of simplicity or of harmony in it.

—Roger Cotes, from the Preface to the second edition of
Philosophie Naturalis Principia Mathematica (1713)

1.1 Prelude to Newton’s Principia

Popular mathematical history attributes to Isaac Newton (1642-1727) and
Gottfried Wilhelm Leibniz (1646-1716) the distinction of having invented
calculus. Of course, it is not nearly so simple as that. Techniques for evalu-
ating areas and volumes as limits of computable quantities go back to the
Greeks of the classical era. The rules for differentiating polynomials and the
uses of these derivatives were current before Newton or Leibniz were born.
Even the fundamental theorem of calculus, relating integral and differential
calculus, was known to Isaac Barrow (1630-1677), Newton’s teacher. Yet
it is not inappropriate to date calculus from these two men for they were
the first to grasp the power and universal applicability of the fundamental
theorem of calculus. They were the first to see an inchoate collection of
results as the body of a single unified theory.

Newton’s preeminent application of calculus is his account of celestial
mechanics in Philosophie Naturalis Principia Mathematica or Mathemati-
cal Principles of Natural Philosophy. Ironically, he makes very little specific
mention of calculus in it. This may, in part, be due to the fact that calculus
was still sufficiently new that he felt it would be suspect. In part, it is a
reflection of an earlier age in which mathematicians jealously guarded pow-
erful new techniques and only revealed the fruits of their labors. Newton’s
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FIGURE 1.1. The solar system as we understand it.

Principia is couched in the language of Euclidean geometry. It is worth-
while for us to look at some of his arguments in that language, if only to
convince ourselves that there must be a better way of presenting it. But,
before we begin the exploration of Newton’s work, I think it is important
to understand why this is seen as the most important book in science ever
written.

We are all familiar with the modern understanding of our solar system.
The sun sits at the center of a ring of essentially concentric orbits, each
planet following an elliptical path around the sun, which sits not at the
center but at one focus of the ellipse. It is the picture given in Figure 1.1.
No one has ever seen this picture. Even today there are no satellites sitting
at that vantage point tracking the orbits and plotting their paths, much
less in the seventeenth century when this picture was first proposed by
Johann Kepler (1571-1630). Kepler and the astronomers before and since
him have constructed their understanding of the solar system by watching
the sun and planets, observable as points of light, move across the sky. We
only see this two-dimensional projection of their paths. We often speak of
the ignorance of medieval astronomers who placed the earth immovable at
the center with the sun and planets revolving in circular orbits about it,
but that is a very reasonable model consistent with the two great precepts
of the scientific method: observe carefully and explain simply.

One clear observable is the immovability of the earth on which we stand.
There is no sensation of movement, of hurtling 'round the sun. In fact, when
the earth does dislodge, as in an earthquake, it is terrifying not just because
of the physical danger, but there is also an innate sense that something that
should not move is shifting. Well into the seventeenth century this remained



1.1. Prelude to Newton’s Principia 3

FIGURE 1.2. Part of the curve traced by a point on an epicycle.

an argument of some of the most learned scientists that the sun could not
be at the center.

A second clear observable is that most stars hold fixed positions in the
canopy of the night sky as it rotates, once every 24 hours, and moves
through its yearlong progression. But, there are certain stars, known as
the planets (from the greek wAavrrns meaning “wanderer”), that move
against this fixed backdrop. They stay in a narrow band about the ecliptic
or path of the sun during the year. To assume that the sun and planets
revolve in circular orbits of constant speed with the earth at the center is
a simple explanation of what has been observed.

The problems arose as the observations became better. One of the first
inconsistencies to be noticed was that the four seasons are not of equal
length. It is 92.5 days from the vernal equinox to the summer solstice, 94
days from then until the autumnal equinox. The summer half of the year is
therefore 186.5 days, well over half of the 365.25 days that constitute a full
year. Hipparchus of Rhodes and Alexandria (d. circa 125 B.C.), considered
the father of trigonometry, explained this phenomenon by moving the earth
off the center of the circle.

There were more inconsistencies. The speed of a planet as it travels along
the ecliptic is not constant and in fact it will sometimes reverse direction
and back up. This was eventually explained by Ptolemy of Alexandria (d.
168 A.D.) through the use of epicycles and equants. An epicycle is a small
circle whose center moves along a larger circle (Figure 1.2). If the planet
moves uniformly around the epicycle while the center of the epicycle circles
the earth, then seen from the earth the planet will seem to speed up, slow
down, briefly reverse direction, and then return to its original direction.
This explains the type of motion observed, but it is not enough to clarify all
of the variations in speed. The equant is a point located off the center of the
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circle such that the movement of the center of the epicycle appears uniform,
not from the center of the large circle, but from the equant. Together these
gave a model that was not simple but at least agreed with the observations
to within the possible accuracy of that time.

Kepler’s Revelation

The system proposed by Nicolaus Copernicus (1473-1543) with the sun
at the center and the earth and planets following circular orbits around it
had the great advantage of simplicity. The problem was that astronomical
measurements had become far more precise. The Copernican system was
inaccurate, off by as much as four to five degrees at a time when astronom-
ical measurements were becoming accurate to within a few minutes or even
fractions of mintites (60 minutes = 1 degree). Tycho Brahe (1546-1601)
spent the last 20 years of his life making such detailed observations of plan-
etary positions. His data were bequeathed to his assistant, Johann Kepler,
who faced the daunting task of finding a model that was both simple and
agreed with his mentor’s calculations. In this, he succeeded brilliantly. As
he himself wrote in the preface to his chapter on the planets in Harmonice
Mundi:

It is not eighteen months since I caught the first glimpse of light,
three months since the dawn, very few days since the unveiled
sun, most admirable to gaze upon, burst upon me. Nothing
restrains me; I shall indulge my sacred fury; I shall triumph
over mankind by the honest confession that I have stolen the
golden vases of the Egyptians to build up a tabernacle for my
God far from the confines of Egypt. If you forgive me, I rejoice;
if you are angry, I can bear it; the die is cast, the book is written,
to be read either now or by posterity, I care not which; it may
well wait a century for a reader, as God himself has waited six
thousand years for someone to behold his work.

Kepler’s “unveiled sun” was the realization that Tycho Brahe’s measure-
ments could be explained by the following three laws.

1. A planetary orbit sweeps out equal area in equal time.
2. A planetary orbit is an ellipse with the sun at one focus.

3. The square of the period of the orbit is directly proportional to the
cube of the mean distance (the average of the closest and farthest
distances from the sun).

Few scientists had problems with the first or third law, but the second
proved a considerable stumbling block to those who had been schooled to
think in terms of straight lines and circles. Why an ellipse? Why should the
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heavens, a pure manifestation of God’s handiwork, be ruled by a degenerate
form of the circle?

It was Newton’s Principia, published in 1687, that ultimately confirmed
Kepler’s model and restored this lost purity by showing that elliptical orbits
as described by Kepler are equivalent to the statement that gravitational
acceleration is inversely proportional to the square of the distance to the
orbiting body. Simplicity of geometric form was replaced by simplicity of
underlying forces.

1.2 Equal Area in Equal Time

This is not the place for a detailed analysis of the Philosophie Natu-
ralis Principia Mathematica. All 1 seek is to convey some of the flavor
of what Newton accomplished. He begins with definitions of mass, momen-
tum (what Newton calls motion, mass times velocity), various forces, and
acceleration, and then states what he calls his three “Axioms, or Laws of
Motion”.

1. Every body continues in its state of rest, or of uniform motion in
a right line, unless it is compelled to change that state by forces
impressed upon it.

2. The change of motion is proportional to the motive force impressed,
and is made in the direction of the right line in which that force is
impressed.

3. To every action there is always opposed an equal reaction; or, the
mutual actions of two bodies upon each other are always equal, and
directed to contrary parts.

It is the second axiom that gives us our equation
F =ma,

or force equals mass times acceleration. If the mass is constant, then ma
is the derivative of muv; it is the rate at which the motion or momentum
is changing. Equality, not just proportionality, is achieved by a judicious
choice of units. It is important to realize that here and in what follows
Newton works with small instantaneous forces that create discrete changes
in the velocity of the moving body. It is the genius of calculus that con-
tinuous changes can be approximated by, and are in fact the limit of, such
discrete changes. Without the tools of calculus at hand, Newton works with
instantaneous forces and discrete changes and then argues that in the limit
these give a valid picture of the continuous phenomena of our world.

In elaborating on his second axiom, Newton specifies that this new com-
ponent to the velocity that has been created by the instantaneous force
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FIGURE 1.3. AD=AB + AC.

should be added to the previous velocity and that this addition is accom-
plished by what is today known as the parallelogram rule. We represent ve-
locity by a vector specifying direction and magnitude. Vectors are usually
drawn as arrows or directed line segments whose lengths are proportional
to the respective magnitudes. It is important to remember, however, that
the vector is only the magnitude and direction of the directed line segment
and that the same vector can have different endpoints. We shall denote the
line segment from point A to point B by AB. If we are talking about the
line segment, then it has no direction; AB is the same as BA. To denote
the vector represented by the directed line segment from A to B we shall
use AB.
The vector from B to A has the opposite direction and so

BA = - AB.

But the vector AB is not wedded to the points A and B. In Figure 1.3,
the vector from A to B and the vector from C to D are the same vector
since they represent the same magnitude and direction. If we do not change
magnitude or direction, then the vector is the same no matter where we
put it.

If 4B represents the initial velocity and AC the change in velocity created
by the instantaneous force, then we locate the point D so that ABDC is a
parallelogram. The vector AD is the resulting velocity vector (Figure 1.3).
It will be convenient to denote the length of a vector AD by |AD|. Note that

the length of the vector AD is the same as the length of the line segment
AD.
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A B

FIGURE 1.4. Area swept out when there are no forces.

Newton’s Proof of Kepler’s First Law

Newton begins his study of Kepler’s laws by showing that the first law is a
consequence of the force of gravity acting along the straight line connecting
the sun to the orbiting planet.

Theorem 1.1 (Newton’s Proposition I) Let S be a fized point and let
P be a moving particle such that the only forces acting on P at any gwen
time lie wn the direction of the line connecting S to P at that moment.
Then, the path followed by P will lie within a single plane, and the area
swept out by the line connecting S to P will be the same for any equal
length of time.

It is worth noting how much more this says than just Kepler’s first law.
Equal area in equal time is a consequence of any type of force that is purely
radial, no matter how wildly it may fluctuate. A precise definition of a plane
will have to await Chapter 2. For now, it is enough to use your intuitive
understanding of a plane as a flat surface.

Proof: We first observe that the theorem holds when there are no forces
acting on P. By Newton’s first law of motion, P travels in a straight line
at a constant velocity. This means that it travels equal distances in equal
time. If we call this line [, then we may assume that S does not lie on [ for
otherwise the area swept out is always zero. Our point P stays in the plane
defined by the point S and the line I. We fix a specified length of time and
choose any two points A and B on [ such that P travels from A to B in
this specified time (see Figure 1.4).

The area swept out by P as it travels from A to B is the area of the
triangle SAB, which is one half | AB| times the perpendicular distance from
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A B c

FIGURE 1.5. Area swept out under radial force.

S to . Both the distance from A to B and the perpendicular distance from
S to | are independent of the choice of starting point, A, and so the area
is also independent of the choice of A.

We now assume that when the particle reaches B it is acted on by an
instantaneous force along the straight line SB. By Newton’s second law of
motion, this adds a new component parallel to BS to the existing velocity
of the particle P. We denote it by the vector Bv. Note that V does not
have to lie between B and S. The force could equally well be pushing P
away from S, in which case V' would lie below the line I. The rest of this
argument would remain valid.

We now mark a point C on ! (Figure 1.5) such that |AB| = |BC|. The
vector BC represents the original velocity vector at the point B before the
instantaneous force was applied. The resulting velocity is thus given by B_[;,
where D is found by using the parallelogram rule. Since D lies in the plane
of S and [, our particle stays in this same plane.

The area swept out in our second specified length of time is the area
of the triangle SBD. Since the line through D and C is parallel to the
line through S and B, the area of this triangle is one half |SB| times the
perpendicular distance between BS and C'D. But, this is also the area of
the triangle SBC, which is equal to the area of the triangle SAB. Thus
equal area has been swept out.

Q.E.D.

The initials Q.E.D. stand for Quod Erat Demonstrandum, a
Latin translation of the phrase émep £6er Sei€ow with which
Euclid concluded most of his proofs. It means “what was to be
proved” and signifies that the proof has been concluded.
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Newton’s Proposition II observes that if the area of triangle SBD is
equal to the area of SAB (and thus of SBC), then the line through C' and
D must be parallel to BS, and therefore the force acting on the particle
when it was at B was in the direction of BS. We thus see that the property
of sweeping out equal area in equal time is more than a consequence of
the force acting radially; it is actually equivalent to it. We have proved the
following theorem.

Theorem 1.2 (Newton’s Proposition ITI) Let S be a fized point and let
P be a moving particle that stays in a fized plane containing S and sweeps
out equal area in equal time; then, the only forces acting on P are radial
forces from S.

1.3 The Law of Gravity

The story that Newton discovered gravity as the result of a falling apple
is apocryphal. It is also misleading because Newton did not discover grav-
ity. People had long been aware that there is something that causes apples
to fall off trees and invariably head toward the ground. But, Newton did
discover two important aspects of gravity that revolutionized our under-
standing of the mechanics of the universe. The first was that the same force
that pulls apples to the ground is responsible for keeping planets in their or-
bits. The second was that the strength of this force is inversely proportional
to the square of the distance between the two bodies involved.

It is common today to begin with the assertion that gravitational attrac-
tion is inversely proportional to the square of the distance and then from
that to derive that planetary orbits must be ellipses with the sun at one
focus. We shall eventually do this. If one is pressed to explain why this
particular law of gravitational attraction holds, recourse to explanation by
intimidation is too often used. There is, apparently, no other conceivable
law of gravity. Newton, in his Principia, begins by exploring other possible
laws. He then assumes the validity of Kepler’s first two laws and shows
that they imply his law of gravitational attraction. It is a rather appealing
argument and utilizes a great deal of the geometry of conic sections, most
of which Newton gleaned from Conics by Appolonius of Perga (262-170
B.C.).

I shall present Newton’s argument very much the way he did, but there
are some preliminary definitions and results on ellipses that we shall need,
and here I intend to cheat and use analytic geometry, the algebraic descrip-
tion of geometric curves, to speed us through this basic material.
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FIGURE 1.6. The point P determined by the angle 6.

Properties of Ellipses

The general equation of an ellipse with its major axis on the z axis is

1,‘2 2

y
§+

b2
where we shall take @ > b > 0. This ellipse crosses the z axis at (*a,0)
and the y axis at (0,+b). The quantity a is called the semimajor azis, b is
called the semiminor axis. The center of the ellipse is at the origin O. An
arbitrary point P on the ellipse can be described or parametrized by the
angle 6 by

=1,

P = (acosf, bsin§).
Note that 6 is usually not the angle between OP and the positive z axis
(Figure 1.6). If we set
P' = —P = (—acosf,—bsinb),

then the line PP’ passes through the origin. We call it a diameter of the
ellipse (Figure 1.7).
We define points @ and Q' by changing the parameter 6 by +m/2:
Q = (acos(f+ 7/2),bsin(f + 7/2))
= (—asin6,bcosb),
Q" = (acos(d —7/2),bsin(d — 7/2))
= (asinf,—bcosh).

The diameter QQ’ is the conjugate diameter to PP’. Note that QQ’ usually
does not meet PP’ at a right angle. However, pairs of conjugate diameters
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FIGURE 1.7. Conjugate diameters.
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do possess a number of very nice properties given in the following lemmas,
whose proofs are left as exercises.

Lemma 1.1 The tangent to the ellipse at P is parallel to the conjugate
diameter to PP'.

Lemma 1.2 Any chord of the ellipse that is parallel to the tangent at P
is bisected by the diameter PP’ (Figure 1.7).

Lemma 1.3 If the chord GG’ is parallel to the tangent at P and intersects
the diameter PP’ at M, then (Figure 1.7)

IGM|> _ |PM||P'M|
loQr —  loPr

Lemma 1.4 The area of the parallelogram whose vertices lie at the end-
points of two conjugate diameters is always 2ab.

The foci of our ellipse are the points

Fy = (=Va?-1b%0),
F = (Va2 -12,0).

The reason for their name comes from the following two lemmas, whose
proofs are also left to the exercises.

Lemma 1.5 Let P be any point on the ellipse. The sum of the distances
|F1P| and |F2P| is the constant 2a.

Lemma 1.6 Let P be any point on the ellipse. The line that bisects the
angle [ F\ PF; is perpendicular to the tangent to the ellipse at P.

These two lemmas imply that if the inside of our ellipse is mirrored and
we place a light source that flashes for a single instant at the focus Fj, then
all of the reflected light rays will meet at the same moment at the other
focus, F; (Figure 1.8).

The final lemma we shall need is not a standard result on ellipses and is
proved by Newton in Principia.

Lemma 1.7 Let P be any point on the ellipse, QQ’ the conjugate diameter
to PP’, and let E be the point of wintersection of F1 P and QQ’ (Figure 1.9).
Then, the distance from E to P is the length of the semimajor axis:

|EP| = a.

Proof: Let O be the point at the origin. We draw the line through F;
parallel to QQ’ and let I denote its point of intersection with F; P. We
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FIGURE 1.8. A mirrored ellipse.

FIGURE 1.9. Proof of Lemma 1.7.

13
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draw the line bisecting the angle /F} PF,. By Lemmas 1.1 and 1.6, this
angle bisector is perpendicular to the line segment F3I. We thus see that

|IP| = |PFy|.

By the similarity of the triangles Fy I F; and F; EO and the fact that |F} Fy|
is twice |F10|, |F1I| must be twice |F1 E| or

|F\E| = |EI|.
Now, by Lemma 1.5, we see that

2a = |FP|+|PF,|

— |FE| +|EP| + |PE|
|EI| + |EP| + |IP|
2IEP].

Q.E.D.

Newton’s Proof of the Law of Gravity

We are now equipped to follow Newton’s derivation of the law of gravita-
tional attraction.

Theorem 1.3 (Newton’s Proposition XI) If a particle P moves along
an ellipse in such manner that its only acceleration or change in velocity is
always directed along the line from P to the focus Fy, then the magnitude of
that acceleration, and thus the magnitude of the attracting force, is inversely
proportional to the square of the distance between P and F}.

Proof: As before, we let O be the center of the ellipse, PP’ the diameter
with one endpoint at P, Q@' its conjugate diameter, and a and b the
semimajor and semiminor axes, respectively (Figure 1.10). We draw the
line bisecting the angle /Fy PF; and let K be its point of intersection with
the conjugate diameter QQ’. By Lemmas 1.1 and 1.6, PK is perpendicular
to QQ'.

We draw the tangent to the ellipse at P and mark a point R on it so
that the vector PR represents the velocity of our particle as it reaches the
point P. We draw the line through R parallel to PF; and let S denote its
first point of intersection with the ellipse. If our particle is subject to an
instantaneous change in velocity at P, which will then carry it to S, then
the change in velocity must be represented by the vector P_x', where X lies
on the line PF; and |PX| = |RS|.
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FIGURE 1.10. Proof of Theorem 1.3.

Let A denote the area swept out as our particle moves from P to S and
let L denote the constant 2b%/a (called the principal latus rectum). What
Newton actually proves is that

|RS|
A?

h 4

approaches LIPFi?

in the limit as R approaches P. Since the area swept out, A, is constant
by Theorem 1.1, the magnitude of the change in velocity is inversely pro-
portional to |PF}|?, the square of the distance between P and the focus.
In the remainder of the argument, equalities that are only asymptotically
true will be identified by using =.

There are three more points we need to construct: E, the intersection of
PF, and QQ'; V, the intersection of OP and the extension of the line SX;
and T, obtained by dropping the perpendicular from S to the line PFj.
The area A, swept out as the particle moves from P to S, is approximated
by |PF||ST]/2.

We observe three equalities and one asymptotic equality

LIRS| _ |RS| |PX| |PE|  a
L|PV| — |PV|  |PV]|  |OP|  |OP|
where the third equality follows from the fact that XV is parallel to EO
and the last equality arises from Lemma 1.7,
L|PV| L

= 2
|PV||VP| Ve (12)

(1.1)
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|PV|IVP'|  |OP|? (1.3)
ISVi2  |oQI’ '
by Lemma 1.3, and
SV2 _ [SX]? _ |PEP _ _a® _ |OQP w4
|IST|2 ~ |ST)?  |PK|]*> = |PK|? b’ ‘

where the approximate equality follows because both |SV| and |SX| are
asymptotically equal to the perpendicular distance from S to the line PK
(see Exercise 13, Section 1.4), the first equality arises through use of similar
triangles, the second equality follows from Lemma 1.7, and the last follows
from Lemma 1.4.

Multiplying the left sides of Equations (1.1) through (1.4) and then the
right sides of these equalities, we obtain

LIRS| L|PV| |PV|VP||SV? _ a L |OP]|0QJ?
LIPV||PV|[VP'| |SV]Z |ST|Z ~ |OP|[VP'||OQ]F b2 °

We simplify both sides and observe that |V P’| is very close to 2|OP| when
|PR)| is small:
LIRS| _ La|OP| _ 2|0P| _ 1
IST|12 — |VP'p2 = |VP| ~
Dividing both sides by L|PF};|? and using our approximation for the area,
A = |ST||PF;|/2, we finally get

IRS| 1
(IST||PR[)> — LIPR|*
IBS| . _ 4
A2 T ILPRP (15)

Q.E.D.

1.4 Exercises

1. For the ellipse 22/9 + y%/4 = 1 and each of the following points P,
find the endpoints of the conjugate diameter QQ’.
(a) P=(3,0).
(b) P =(3v2/2,V2).
(c) P=(-2v?2,2/3).
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11.

1.4. Exercises 17

For the ellipse 22/25 + y2/9 = 1, let P = (3,12/5) and G = (0, 3).
Find the point H on the ellipse so that the chord GH is parallel to
the conjugate diameter QQ’.

In Exercises 3-12, we are working with the general ellipse
z2/a? +y%/b? = 1 and a point P = (acosf,bsin ) on the ellipse.
Show that the slope of the conjugate diameter QQ’ is —(b/a) cot 6.
Prove Lemma 1.1 by using Exercise 3 and showing that the slope of
the tangent to the ellipse at P is also —(b/a) cot 6.

In Exercises 5-9, let ¢ be an arbitrary angle and define

G = G(¢) = (acos(8 + ¢), bsin(6 + ¢)),
G’ = G'(¢) = (acos(f — ¢),bsin(6 — ¢)).
Note that Q = G(r/2),Q’ = G'(r/2).

Show that the slope of GG’ is —(b/a) cot  no matter which value of
¢ we choose, and thus GG’ is always parallel to QQ'.

Show that a straight line intersects an ellipse at a maximum of two
points. Thus, if we select a point H on the ellipse so that GH is
parallel to QQ’, then H = G'.

Prove Lemma 1.2 by using Exercise 6 and showing that the midpoint
of GG’ is at
M = cos ¢(acosb,bsinb).

Prove Lemma 1.3 by showing that
|PM||P'M| = sin®¢ |OP|?,
IGM|* = sin?¢ |0Q|*.

Show that the area of triangle QOP is ab/2. Use this fact to prove
Lemma 1.4.

In Exercises 10-12, let F; and F, be the foci of the ellipse
and let ¢ = |F10| = |F20|, ¢ = a% — 2.

Show that |F;P| = a + ccos@ and |PF;| = a — ccos 6, thus proving
Lemma 1.5.

Draw the line [ bisecting the angle /F; PF5, and then draw the line
m through F; perpendicular to ! (Figurel.11). Let R = (s,t) be the
point of intersection of m with FyP. Prove that |PR| = a — ccos#.
Using similar triangles, prove that

c+acosf

a+ccosf’
2bcsin 6 cos 6

a+ccosf

s+c¢c = 2ccosb
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F IO'/ Fy

FIGURE 1.11. Exercise 11.

12. Using the results of Exercise 11, prove that the slope of RF; is

t —b
= —cot#,
a

s—c
thus proving Lemma 1.6.

13. In Figure 1.10, extend the line through S, X, and V so that it inter-
sects the line PK at W. Let § = /RPS and ¢ = /F; PK. Show that
|SX|/|SW| =1—tanftan¢. As S approaches P, ¢ stays fixed but
0 approaches 0. Use this to conclude that |SX|/|SV| approaches 1.

14. The quote from Harmonice Mundi is something of a cheat. It only
refers to the third law, the first two having been published ten years
earlier in Astronomia Nova. Kepler also had a fourth law governing
the relative distances of the planets from the sun. It is now conve-
niently forgotten by most scientists since it was wrong. What was
Kepler’s fourth law? Hint: see Figure 1.12, taken from his book Mys-
terium Cosmographicum, published in 1596.

1.5 Reprise with Calculus

While I find Newton’s proof of Theorem 1.1 very appealing in its simplicity
and the clarity with which it illuminates the connection between radial
force and equal areas, his proof of Theorem 1.3 is not as transparent as
one would wish. There is much more to Newton’s Principia. He goes on
to derive Kepler’s laws from the law of gravity and then to explore the
consequences of his insights. The entirety of Principia consists of three
volumes. But, at this point, I want to leave Newton and find a simpler
language for explaining celestial mechanics.

The search for a better idiom in which to understand our mathematics
is going to be a recurrent theme throughout this book. It is not always
easy to make the transition; new concepts are often at a high level of
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FIGURE 1.12. Kepler’s fourth law?

abstraction and difficult to grasp. But, once you are comfortable with the
new terminology, it can greatly clarify relationships and proofs. I feel that
the effort expended is more than repaid in a better understanding of the
material at hand and an enhanced ability to build on it. It is worth keeping
in mind, however, that we always have choices and that future generations
may look upon our expressions and proofs as unnecessarily convoluted.

Trajectories as Functions

In moving into the language of calculus, we first need to describe the tra-
jectory of our moving particle as a function. We can think of its position
7(t) as a function of time. For this chapter, we shall stay in the z,y plane.
The z and y coordinates are each functions of time:

r(t) = (z(t), y(2))-

For any specific value of ¢, we can think of 7(t) as either a point in the plane
or as the vector from the origin to this point. While initially somewhat
confusing, it is very convenient to be able to move freely between these two
interpretations.

We speak of 7(t) as a function from one real variable, ¢, to two real
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FIGURE 1.13. 7(t) = (* + 1,t3 — t).

variables, ¢ and y. This aspect of 7 is described in notational shorthand:
7:R — R2

A function from one variable to one variable such as f(t) = t3 — ¢ is called
a scalar function. A function from one variable to more than one variable
such as 7(t) is called a vector function. We shall restrict our attention to
functions for which the derivative is defined at all or almost all values of ¢.
A nice example is the path (Figure 1.13) for which the position at time

t is given by

z(t) = t2+1,

yt) = 21—t
The velocity vector at time ¢, ¥(t), is the rate at which the position is
changing:
dr
dt’
and is uniquely determined by the rate at which the z coordinate of our
particle is changing:

U=

dr

— =2t

dt
and the rate at which the y coordinate is changing

dy 2
— =3t -1
dt 3 ’

so that we have for our example

N dr d
(t) = (E’ :l}t{) = (2t,3t2 - 1).
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Here is where we can exploit the ambiguity between points and vectors.
It is natural to think of the velocity as a vector. At time t = 2, our particle
is at the point (5,6) moving with a velocity (4,11), that is, the velocity
has the same magnitude and direction as the vector from (0,0) to (4,11).
But, we can also view the velocity as a vector function describing its own
path in the z,y plane and ask how the velocity is changing. The rate of
change of the velocity is the acceleration d@(t), which is the derivative of the

velocity:
dv ( d’z d%y

=5 = (@)=

For the problem at hand, that of understanding celestial mechanics, it is
easiest to use the polar coordinates r(t), the distance to the origin at time
t, and 6(t), the angle between 7(t) and the positive z axis. We shall need to
assume that we stay away from the origin so that r(t) is never zero. Note
that r(t) is the magnitude of the vector 7(t):

r(t) = |F(t)]- (1.6)
The relationships between rectangular and polar coordinates are given by

z=rcosf, y=rsind, (1.7)

r=+x2+y?, tanf=y/z. (1.8)

Local Coordinates

It is also convenient to compute in terms of local coordinates that change as
our particle moves. In particular, we shall want to decompose the acceler-
ation into a component parallel to the vector 7(t) and a second component
perpendicular to it. This can be done by defining a unit vector or vector of
length 1 in the direction of 7 by

G(t) = ) _ (r(t) cos 8(t), r(t) sin6(t))
) r(t)

= (cos(t),sinf(t))  (1.9)

and a perpendicular unit vector (Figure 1.14)
Ug(t) = (—sin(t), cosb(t)). (1.10)

It is important to keep in mind that %, and iy are functions of t. In
particular, they have derivatives that are related:

di, . . df dé do
praie (-— sinf —, cos§ —) = o Us> (1.11)

diig df ., de dé
—CE- = (—0080 E,—smO %) = —a Up. (112)
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FIGURE 1.14. The local coordinates i, and .

Since the product rule for derivatives works on each coordinate, it also
holds for the product of a scalar function times a vector function:

df_, di(t)
7 f(t 7(t)) = ()+f(t)7- (1.13)
Combining these results with the fact that
7= ri,, (1.14)
we see that
L dF_d, . dr di, _dr ., . df
V=g T gl = gty = gty (L)
g W () (B,
T odt dt r) T ae \Uat ?
_dr +drd0 +drd0 +rd20 ey do [ db
= gl dtdte ZaBtrmpbrtrylTg
(B (YY) o (B drd
— |\ a2 dt GrlramE Tl aa)
d2r d\?\ . 1d do
= (W—r(a) )ur+7‘dt (’r E) ig. (1.16)
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Modern Proof of Kepler’s First Law

Equation (1.16) tells us that acceleration is entirely radial, that is, parallel
to 7, if and only if

1d/ ,do

rat ( a) =0

which is equivalent to saying that r(t)2 df/dt is a constant independent of
t. We have proven the following result.

Lemma 1.8 If the position of a particle over time is described by the vector
function 7(t), then the acceleration is purely radial if and only if r(t)? df/dt
s a constant independent of t.

Combining this with the next lemma gives us another proof of Theorems
1.1 and 1.2.

Lemma 1.9 If the position of a particle over time is described by the vector
function 7(t), then the rate at which the radial vector sweeps out area is
given by
dA 1 de
— = -r(t)? . 1.17
dat 2 ®) dt (1.17)
Proof: Given a circle with center at the origin and radius r, the area of
the sector swept out by the radius as it moves through an angle of Af
is given by (r2/2)Ad. It follows that if AA is the area swept out by the
radial vector from time s to time ¢ and if the distance from the origin stays
constant during this time interval, then
2
AA=T o,
2
where A0 = 0(t) — 6(s).
If r does not stay constant, then we can find two points in the interval
[s,t], call them ¢; and ¢3, where r takes on its minimum and maximum
values, respectively, over this interval:

T(tl) S T S ’I‘(tz).

It follows that

2 2
"(tT‘)Ae <AA< %Ao.

We now divide through by At =t — s:

() A0 AA_ r(a)? A0
2 At — At T 2 At
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and take the limit as s approaches t. This forces ¢; and t; to also approach
t and yields

2 2
r(t) d_0<%<r(t) @
2 dt — dt — 2 dt
Q.E.D.

Modern Proof of the Law of Gravity

We shall now use calculus to demonstrate that if the acceleration is purely
radial and the path is an ellipse with one focus at the origin, then the
acceleration is inversely proportional to the square of the distance from the
origin.

Lemma 1.10 The general equation of an ellipse with one focus at the ori-
gin and magjor axis on the x axis is given in polar coordinates by

r(1+ecosf) =c, (1.18)

where € and c are real constants, |e| < 1, ¢ > 0. The semimajor azxis is
c/(1 — %) and the semiminor azis is c/v/1 — €2.

Proof: Equation (1.18) can be rewritten as
r=c—ercosé.

We use Equations (1.7) and (1.8) to convert this to rectangular coordinates
and then square each side to obtain

z® +y? = ¢ — 2cex + %27,

which can be rewritten as

2cex c2e? c2e?
1— 2 [ 22 2 _ 2
( e)(av +1—52+(1—e2)2)+y SR g
To1-—¢g2’
1— 21\2 2

a? b2

where a = ¢/(1 — €%),b = ¢/V/1 —€2.

The center of this ellipse is at (—ce/(1 — €2),0) which is cle|/(1 — &2)
from the origin. This is precisely the distance of the focus from the center
of the ellipse:
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= c? 3 c? _ c2e? _ cle]
(1-¢€2)2 1-¢2 (1-¢2)2 1-—g2’

Q.E.D.

Theorem 1.4 If a particle moves so that its acceleration is always radial
and if the particle follows the curve given by Equation (1.18), then the
acceleration is

—k2

at) = Wﬁm (1.20)

where k = 2 (dA/dt) is a constant.

Proof: The fact that dA/dt is constant follows from Theorem 1.2. From
Lemma 1.9 we know that

dé
P - =k 1.21
=k (1.21)
If we solve for d@/dt:
dé 9
I 1.22
=k, (1.22)
then we can substitute into our expression for the acceleration [Equa-
tion (1.16)]:
. d?r K2\
a = (@ - 7‘_3) Uyp. (123)
We solve Equation (1.18) for 7 and then differentiate with respect to ¢:
_ c
" 1tecosd’

dr _ —ce(—sinf) df _ cesinf k

dt ~ (14+ecosf)2dt  c2r—2 r2’
where the last equality uses Equations (1.18) and (1.22). Simplifying this
expression, we obtain

dr ke |,
E = ?sm0.

We differentiate a second time and again use Equations (1.18) [in the form
cosf = (c — r)/re] and (1.22) to simplify:
d’r ke oﬁ_g(c—r)ﬁ_k? k?

az - ¢ ' c re 12 3 cr?’
and therefore P L2 12
- T o o
a = <W - ’[‘_3) Up = ——Fur. (124)

Q.E.D.
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1.6 Exercises

1.

10.
11.

12.

13.

© © N o o

For each of the following paths given by 7(t), find the position of the
particle at the specified times and sketch the path.
(a) 7(t) = (3cost,sint),t = 0,7/3,3n/4,3mr/2.
(b) 7(t) = (sint,t? — 1),t = —n/2,0,7/2, .
(c) 7(t) = (Vt,Vt/(t+1)),t =1/4,1,2,4.
(d) 7(t) = (t —2sint,1 — 2cost),t = —n/3,0,w, 2m.

—¥

For each of the vector functions in Exercise 1, find the velocity ¢ at
the indicated times.

For each of the vector functions in Exercise 1, find the acceleration @
at the indicated times.

Using the relationships of Equation (1.7), prove that

do _ z(dy/dt) —y(dz/dt)
dt z2 +y2 '

(1.25)

It follows that acceleration is radial if and only if z(dy/dt) and
y (dz/dt) differ by a constant.

In Exercises 5-10, let 7(t) = (t2 —t,tv/2t — 2),0 <t < 2.
Sketch the curve described by 7(t).

Find r(t).

Find @, and iy as functions of ¢.

Find dr/dt and df/dt. (Hint: use Exercise 4.)

Express the velocity in terms of the local coordinates @, and .
Express the acceleration in terms of the local coordinates 4, and .

Compare and contrast the proof of Theorems 1.1 and 1.2 given in
Section 1.5 with Newton’s original proof. Which proof do you like
better? Why?

The constant ¢ in Equation (1.18) is called the eccentricity. What
happens if € is larger than 1?7 equal to 17 equal to 07 less than 0?7

If ¢ = 1 in Equation (1.18), then there is a value of 8, § = m, for
which 7 is not defined. If e = —1, then r is not defined when 6 = 0.
If |e] is larger that one, then there is an interval of values for 6 over
which 7 is not defined. Find this interval in terms of £ and explain its
relationship to the path 7(1 + £cosf) = ¢ when |e] > 1.



14.

15.

16.

17.

18.

19.

20.

21.
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Prove that the constant ¢ in Equation (1.18) is half of the latus rectum
L of the ellipse.

Comparing Equations (1.5) and (1.20) we see that |RS| is the change
in velocity per unit time, which corresponds to |a@(t)|; 24 is twice
the area swept out per unit time, which corresponds to k; |PF}| is
the distance from the sun, which corresponds to r; but L is twice c.
Explain this discrepancy.

Find the acceleration in terms of distance from the origin of a particle
moving along an ellipse with its center at the origin (instead of having
one focus at the origin) and sweeping out equal area in equal time.

Find the acceleration in terms of distance from the origin of a particle
moving along the logarithmic spiral

r=e"

where ¢ is an arbitrary constant, given that the particle sweeps out
equal area in equal time.

Given a particle that sweeps out an equal area in equal time and
whose path is given by r = f(8), show that the acceleration is given

by
LR [f”(o) L, (f’(e))2 _ 1] i

rs | £(0) f(9)

Find the acceleration in terms of distance from the origin of a particle
with constant angular velocity,

o

a =k

which follows an elliptical orbit with the sun at one focus,

r(1+ecosf) =c.

If we use complex coordinates to represent the points in the plane of
the orbit, then we have the correspondence

i@y = (cos,sinf) — e = cosf +isinf.

Show that iy corresponds to ie®.

Show that if '
7=re¥, (1.26)

where r and 0 are functions of time ¢, then
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_‘_d'f_"—drio dalo
=5 =3¢ +rdt ie (1.27)

and

L d¥F d2r d6\?*\ 5 1d [ ,d0\ . 4



2
Vector Algebra

2.1 Basic Notions

While the terminology of calculus that we have at hand is certainly suffi-
cient to prove the converse of Theorem 1.3, namely, that Newton’s law of
gravity implies that planets must move in elliptical orbits with the sun at
one focus, this and other arguments we are to make will be greatly simpli-
fied if we adopt a language developed in the late nineteenth century, that
of vector algebra.

Vector algebra came into its own not because it helped in understanding
celestial mechanics, but because it clarified the then emerging explanations
of electricity and magnetism. With roots in the work on quaternions by
William Hamilton (1805-1865) and the calculus of extension by Hermann
Giinther Grassman (1809-1877), vector algebra began to gain acceptance
when it was employed by James Clerk Maxwell (1831-1879) in his expla-
nations of electricity and magnetism in the 1870s. It received its first full
published exposition in 1893 in the first volume of Oliver Heaviside’s (1850
1925) Electromagnetic Theory. With the publication of Vector Analysis in
1901 by Edwin B. Wilson (1879-1964), based on lectures by J. Willard
Gibbs (1839-1903), the language of vector algebra became entrenched in
mathematical physics.

Yet, as we shall see, electricity and magnetism are much more succinctly
explained in the language of differential forms. Everything we do in this
chapter can be and eventually will be restated in terms of differential forms.
There are problems, however, in leaping directly into them. They represent
a much higher level of abstraction than we need at present. Vectors are more
concrete and recognizable objects, and vector algebra is still an important
tool that you are likely to run across elsewhere.

Addition and Scalar Multiplication

We shall restrict our attention in this chapter to vectors in three dimensions,
although most of what will be said carries over into an arbitrary number
of dimensions. We already have representations of vectors as points: to say
that 7= (2, 4, 3) means that the magnitude of 7 is the distance from the
origin to (2,4,3), and the direction of 7 is the direction from the origin
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FIGURE 2.1. 27+ 47 + 3k.

to (2,4,3). This representation of ¥ as a point in z,y,2 space in effect
decomposes 7 into a sum of three vectors: a vector of length 2 in the «
direction, a vector of length 4 in the y direction, and a vector of length 3
in the z direction (Figure 2.1). To make this decomposition slightly more
explicit, we set 7, 7, and k to be the unit vectors in the z,y, and z directions,
respectively. We can then write

7= 20+ 47+ 3k.

We also know how to add vectors by using the parallelogram rule de-
scribed in Section 1.2. From the parallelogram rule, we see that vector
addition is commutative:

T+ 8§=5§+T, (2.1)
because it does not matter which side of the parallelogram we lay down
first. Vector addition is associative:

(F+8)+t=7r+(5+1). (2.2)

The sum of 7, §, and ¢ is the vector to the far corner of the parallelepiped

formed by these three vectors (Figure 2.2). We also have two distributive
laws:

(a+ b7 = ar+br, (2.3)

a(F+3§) = aF+as. (2.4)

Equation (2.4) is valid because magnification of ¥+ § by a factor a cor-
responds to magnifying the entire parallelogram, which means magnifying
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r

FIGURE 2.2. 7+ §+ 1

each side by a factor of a. Reversing the direction of ¥+ § (that is, mul-
tiplication by —1) corresponds to reversing the directions of both + and
5.

Together these properties imply that we can add any two vectors by
adding the respective coordinates of their representations:

(2,4,3) + (5,-1,2) = 27+47+3k+57— 7+ 2k
77+ 37+ 5k
= (7,3,5).

We multiply a vector by a real number by multiplying each of its coordi-
nates:
3(5,—1,2) = 3(57— 7+ 2k)
= 15— 37+ 6k
= (15,-3,6).

Given two points, say 7 and S, the vector from 7 to §'is §— 7. Here again
we are exploiting the duality between points and vectors and using the fact
that

F+(§—7) =3
The vector from (2,4,3) to (5,—1,2) is (3,—5,—1). Remember that this

says the distance and direction from (2,4,3) to (5, —1,2) is the same as the
distance and direction from the origin to (3, -5, —1).

Parallel Vectors and Lines

We define vectors 7 and § to be parallel if and only if there is a real number
a such that ¥ = a§ or § = ar. The zero vector, 0, is thus parallel to every
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other vector. As examples, (2,4,3), (4,8,6) = 2(2,4,3), (10/3,20/3,5) =
(5/3)(2,4,3), and (—1,-2,-3/2) = —(1/2) (2,4, 3) are all parallel vectors.

A nonzero vector 7 defines a unique line through the origin, namely, the
line passing through 7 and the origin. We can parametrize this line by using
the real variable ¢ and define it as the set of points: {t7 |t € R}, where R
denotes the set of real numbers. Note that any other nonzero vector parallel
to 7 gives the same line, but with a different parametrization:

{(2t,4¢,3t) | t € R} = {(4s,8s,65) | s € R}.

These two sets are the same. The only difference is the value of the param-
eter at a given point in the set.
A point (z,y,2) lies on this line if and only if it satisfies the vector
equation
(z,y,2) = (2t,4¢t,3t)

for some t. This can also be written as a system of three simultaneous
equations:

= 2t,
y = 4,
z = 3t.

If desired, we can eliminate ¢ from these equations and reduce it to a system
of two equations in z, y, and z:

2z =y,
3r = 2z.

Better than this we cannot do. We always need two equations to describe
a line in three dimensions.

If we want a line that passes through some point other than the origin,
for example through @ = (3,5, —1), but is still parallel to the vector ¥ =
(2,4,3), then we add @ to each of the points in the original set. This new
line is described as the set

{g+tF|teR}

Our system of equations becomes

= 3+2t,
= 5+ 4t,
z = —1+3t,
or equivalently,
2r = y+1,

3r = 2z+11.
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Planes

A plane containing the origin is uniquely determined by two nonparallel
vectors, call them 7 and §. Specifically, it is the set of all linear combinations
of ¥ and §

{uF+v5]|u, ve R}

We say that 7 and § span this plane. The significant difference between a
line and a plane is that a line has one free parameter while a plane has
two free parameters. As with the line, there is more than one choice of
parametrization for the same plane. We can start with any two points in
this plane as long as the corresponding vectors are not parallel.

Each point in our plane corresponds to a unique pair of real numbers,
(u,v). To see this, suppose that

u” + v18 = ug¥™ + V28,
If u; = ug, then v18 = v28, and so v; = vs. In this case, the two repre-

sentations of the point are identical. If u; # ug, then we can solve for 7 in
terms of §:

U — usT = w28 — 1185,
(u1 - 'U,Q)'I—" = (1)2 - ’Ul)g,
- V2 — U1
r = ———3&.
u; — ug

This case contradicts our assumption that ¥ and § are not parallel.
If our plane is defined by the vectors 7 = (2,4, 3) and § = (5, —1,2), then
any point (z,y, z) in our plane must satisfy the vector equation

(z,y,2) = (2u, 4u, 3u) + (5v, —v, 2v),
which we can write as a system of three equations:

= 2u+ 5v,
= 4u—v,
z = 3u+2wv.

If 7 and § are not parallel, then it is always possible to reduce these three
equations to a single equation in z, y, and z:

z+y—2z=0.

To work backward from the equation of a plane to a parametrization, we
need only find two nonparallel vectors satisfying this equation. For example,
(1,1,1) and (2,0,1) will do. Notice that this does not give us the same
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parametrization with which we started, but rather a new and equally valid
parametrization describing the same plane:

{u(1, 1,1) +v(2,0, 1) | u,v € R}

That our original vectors (2,4,3) and (5,—1,2) lie in this plane is verified
by observing that

(2,4,3) = 4(1,1,1) = (2,0, 1),
(5,-1,2) = —(1,1,1)+3(2,0,1).

If we want a plane that is parallel to the original plane but passes through
d@ = (3,5, —1) instead of the origin, then we add this vector to each of the
points in our original plane. Our system of three equations becomes

= 3+ 2u+ 5v,
= 5+4+4u—w,
z = —1+43u+2v,

or equivalently,
z+y—2z=10.

If we are given this equation and want to find a parametrization, we
need to find a point in this plane, for example (5,5,0), and then find two
vectors from that point to two other points in this plane: the vector from
(5,5,0) to (6,6,1) is (1,1,1); the vector from (5,5,0) to (7,5,1) is (2,0,1).
We say that (1,1,1) and (2,0,1) also span this plane. One of the possible
parametrizations is thus given by

{(5,5,0)+u(l,1,1)+v(2,0,1) | u,v € R}.

2.2 The Dot Product

Work is force times distance. If the force acts in the same direction as the
moving object, then computing the work is simply a matter of multiplying
these quantities. But, if the force is at an angle to the motion (Figure 2.3),
then only the component of the force in the direction of motion contributes
to the work.

We let the vector F represent the direction and magnitude of the force, d
the direction and magnitude of the distance moved, and 6 the angle between
them. The magnitude of the effective force is |F|cos 6, and so the work is

Work = |F||d| cos.

The scalar or dot product is a notation for representing this particular
product of vectors: L.
F.d=|F||d]|cosb. (2.5)



2.2. The Dot Product 35

FIGURE 2.3. The component of the force in the direction of the distance.

The particular case where the vectors are equal, and thus 8 = 0, gives us

7o =7 (2.6)
so that
7| = V7. 7. (2.7
As a consequence, we see that
T r=77=k-k=1 (2.8)

It also follows from the definition that for any real number a,

3y

a(f-8)=af-§=7-as. (2.10)

Because cos /2 = 0, the dot product of perpendicular vectors is always
0 ,and therefore,

=

k=7

- -

7=

=

S

=0. (2.11)

Decomposition of a Vector

Given a unit vector, i, this product is particularly useful when decomposing
7 into the sum of a component parallel to 4 and a component perpendicular
to 4. This decomposition is unique (Figure 2.4), and we can represent it by

F = 7y Pl (2.12)

The magnitude of 7, is |¥|| cos 8|, where 6 is the angle between 7 and 4.
More specifically, we have

—

Ty = |F|cosf @ = (F-4)d. (2.13)
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FIGURE 24. 7=y + Ty

If § is any nonzero vector, then §/|§| is the unit vector in the direction of
8. If we define 7 to be the component of 7 in the direction of &, then we
see that

s 7§53 T8 r-§
Ty = |Flcos) — = —— = —5=|(=——1]5 2.14
s = Fleost 1 = T = = (75) @14
It follows that L.
O S\ L -
Tg+ 8 = (%)s-s=r-s. (2.15)
5.8

The Distributive Law

The sum of any two vectors parallel to ¢ is again a vector parallel to ¢. The
sum of two vectors perpendicular to ¢ lies in the plane perpendicular to ¢
and so is again a vector perpendicular to ¢. This implies that if ¥ = 7+ §
then

—

Up =Tt + 8¢, UL =Te1 +8eu-
Equation (2.15) says that #'-t = % - {. Combined with the observation we
have just made, this implies that

- -

(F+8)t=01=7 1= (FR+5)t (2.16)

We now use Equation (2.14) and our distributive law for the sum of two
scalars times a vector [Equation (2.3)]:

- (Ft. TN\ (7T §-t
(7+5) = (;—EH;—Ft)- =(;—E+;{)tt—rf)+(sf) (2.17)
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The distributive law now implies a simple rule for taking the dot product
of two vectors written in coordinate form:

(a,b,¢) - (f,g,h) = (ar'+bj+ck)- (fT+ gj+ hk)
= afiT+agr-T+ahi-k
+bf7- T+ bgT T+ bhT -k
+cfk-T+cgk-T+chk-k
= af +bg+ch. (2.18)

It follows from Equations (2.7) and (2.18) that

l(a,b,¢)] = V/(a,b,c)-(a,b,c) = Va2 + b2+ c2. (2.19)

The Triangle Inequality

We can also use the dot product to prove the triangle inequality,
|7+ 8| <|F| + 5], (2.20)

as follows:

[F+ 82 = (F+35)-(F+35)
|7|2 + 27 5+ |5
7|2 + 2|7||5 | cos 8 + |52
7 [? + 2|7||5| + |51
(I7] +151).

IA

Furthermore, we see from this argument that equality occurs if and only if
cos@ =1, that is, if and only if 7 and § have the same direction.

Examples

To get some feeling for how the dot product works in practice, let us take
our vectors ¥ = (2,4,3) and §= (5, —1,2). We see that

(2,4,3)-(5,-1,2) = 2x5+4x(=1)+3x2
= 12,

V22 +42 + 32
= V29,

1(2,4,3)]
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|(57 _1)2)|

52 4+ (—1)% + 22
= V30,

|(2v473) + (5) _1v2)| = |(77375)l
v49+9+25
V73 < V29 + /30,

Lo_ (243)-6,-1,2)
"= Gl Gony oY
12

N ( 52’2)

= (2,4,3) - (2, )
22 11
- <09?;9€))

L (5,-1,2)-(2,4,3)
S = 243 243 24Y
12
= 5(243)

_ (28 30
—\29°29°29)°
B 24 48 36
Srl = (57_1)2)_(%7%vﬁ)
121 77 2
29’ 29 °29)/"°

Also, if 6 is the angle between (2,4, 3) and (5, —1, 2), then we can solve for
cos 6 in Equation (2.5),

(2,4,3)-(5,-1,2) 12
l(21473)”(5,_172)| B \/29)(30

The dot product is also useful whenever we are defining objects in terms
of perpendicularity since two vectors are perpendicular if and only if their
dot product is 0. (The vector 0, in addition to being parallel to every vector,
is also perpendicular to every vector.) For example, the plane through @ =
(—2,6,5), perperdicular to ¥ = (1,5, —4), consists of those points (z,y, z)

= 0.406838... .

cosf =
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for which 7 is perpendicular to the vector from (—2,6,5) to (z,y, 2):
0 (1v5’ _4) : ((IL‘, Y, z) - (_2’ 6, 5))

(1,5,—-4) - (x +2,y — 6,2 — 5)

z+24+5y—30—42+20

= z+5y—4z-8.

In general, the plane through @ = (a1, as2,a3), perpendicular to 7 =
(r1,72,73), satisfies the equation

0 = (r1,72,73) ((z,¥,2) — (a1,02,a3))
= rr+ry+r3z—7-4d. (2.21)

Note that the coefficients of z, y, and z in the equation of a plane correspond
to a vector perpendicular to that plane. It follows that parallel planes have
equations that can be written so that they differ only in the constant term.

As another example, the minimum distance from the point (7, —3,4) to
the plane z+y—22 = 10 is the perpendicular distance. To find this distance,
we first find a vector from any point on the plane, we can choose (0,0, —5),
to (7,-3,4):

t=(7,-3,4) — (0,0,—5) = (7,-3,9).

The perpendicular distance is the magnitude of the component of ¢ in the
direction of the perpendicular to the plane, ¥ = (1,1, —2).

nd l(7v "'3v9) ) (17 1» _2)| l — 14' 7
t,’, = - = —\/6,

2.3 The Cross Product

Consider a rigid spinning body with its center of mass at the origin. We
can use a vector, 7, to represent its spin. The line from the origin to 7 is
the axis of rotation, and we use the convention that if we look back toward
the origin from 7 then the spin is counterclockwise. The magnitude, |F|,
represents the angular velocity which could be measured in radians per
second. The faster the spin, the longer the vector. Let § be any point on
the body and let 6 be the angle from 7 to § (Figure 2.5). Since the point
§ is moving around the axis, it has a velocity, 7. The magnitude of this
velocity, ||, is |7| times the distance of § from the axis of rotation, that is,

7] = |7'||81] sin 6.

The direction of ¥ is perpendicular to the plane spanned by 7 and § and
is completely determined by our spin convention. We can think of ¥ as a
peculiar product of ¥ and 3 called the vector or cross product:

T=Fx3 (2.22)
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FIGURE 2.5. A rigid spinning body.
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FIGURE 2.6. The magnitude of # x §.

Note that the magnitude of 7 x § is the area of the parallelogram defined
by 7 and § (Figure 2.6). If 7 and § are parallel, then § = 0 or 7, and so
sinf = 0 and the cross product is 0. In particular, this tells us that

7x 7= 0. (2.23)

The Right-Hand Rule

If 7 and § are not parallel, then # and §' span a plane. The direction of 7 x §
is taken to be perpendicular to this plane. That restricts us to two possible
directions. The choice of which of these two we take is determined by the
spin convention described previously which is referred to as the right-hand
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FIGURE 2.7. The right-hand rule: first version.

rule and can be described in several different but equivalent ways.

Imagine a standard (right-handed) screw through the origin,
perpendicular to the plane spanned by 7 and §. If you turn this
screw from 7 to §, then the direction of its resulting movement
(either in to or out from the plane) is the direction of ¥ x §
(Figure 2.7).

OR

Cup your right-hand with the thumb outstretched, as if you are
about to hitchhike. Place it so that the little finger lies flat on
the plane spanned by 7 and § and so that the direction from 7
to § is the same as the direction of the curl of your fingers as
you travel from the wrist around to the finger tips. The thumb
is pointing in the direction of ¥ x § (Figure 2.8).

OR

Stretch the thumb, index finger, and middle finger of your right-
hand so that each is pointing in a different direction. If you line
up the thumb with 7 and the index finger with &, then the
middle finger points in the direction of 7 x § (Figure 2.9).

The first observation that we need to make is that the cross product
is not commutative. If we switch ¥ and &, then we change the direction
in which we are turning the screw, and we wind up going in the opposite
direction:

§XF=—-FX3§. (2.24)
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FIGURE 2.8. The right-hand rule: second version.

FIGURE 2.9. The right-hand rule: third version.
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It is left as an exercise to show that the cross product is also not associative.
_ Applying the definition of the cross product to the basis vectors 7, J; and
k, we see that

IxT=7xj=kxk=0, (2.25)
Ixj=k, TxT=—k, (2.26)
Txk=1% kxj=-1, (2.27)
kxi=7 Txk=-7 (2.28)

If we multiply the magnitude of one of our vectors by a positive real
number, then the magnitude of the product is multiplied by the same pos-
itive constant and the direction of the cross product remains the same. If
we reverse the direction of one of our vectors, that is, multiply it by —1,
that reverses the direction of the resulting cross product. We thus have the
following relationship for any real number a:

a(Fx §) = af X §=1T X a3. (2.29)

The Distributive Law

The cross product is also distributive:
(F+8)xt=(Fxt)+ (Fxt), (2.30)

but it will take a little work to see why this is so. We can assume that 7,
3, and t are given in the order of the right-hand rule, for if not, then 7, §,
and —t are in the order of the right-hand rule. If

(F+38)x —t=(Fx —t)+ (§x -t),

then we can divide through by —1 to obtain Equation (2.30).

We begin with the one case on which we can build, namely, when 7, §,
and ¢ are mutually orthogonal, each is perpendicular to the other two. The
vectors 7 and § both lie in the plane perpendicular to t, and since they are
not parallel, they must span this plane. This implies that 7+ § also lies in
this plane, and so 7 + § is perpendicular to t. The magnitude of our cross
product in this case is just the product of the magnitudes:

|(F+ §) x t| = |7+ §|E).

Since our cross product is perpendicular to £, it lies in the plane spanned
by 7 and §. It is readily verified (by taking the dot product with 7+ § and
remembering that 7+ § = 0) that the vector
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is perpendicular to 7+ § and lies in this plane. The magnitude |7+ §| is

F+35] = VF+5) - 7+5) = VIFR+27 5+ 517 = VTP + 5]

But this is also the magnitude of ¥ and so the unit vector in the direction
of ¥ is U/|F + §|. That we want this vector and not its negative can be
checked using the right-hand rule or by making certain that the signs are
correct if we let || or |§| approach 0.

Since we know the magnitude and direction of our cross product, we have
shown that in this special case where , 5, and t are mutually orthogonal:

. LT
F+8)xt = |[F+8|t|-=—=
(F+35) | "Hr+s|
= |t|7
5|\t i
_ lleF_lrUlg
|7 |5
. 8 o T
= —|Flitlim + I8t
|51 |7

where the last equality holds because 7 x ¢ is in the direction of —5 and
§x tis in the direction of 7.

If all we know about 7 and & is that they are both perpendicular to £
(but not necessarily to each other), then we can decompose § into

§=8+8,=5—=7r+38..

. 57 ;
(F+3)xi = <f+-—ff &i)xt

What if 7 and § are not perpendicular to ¢? If 8 is the angle between 7
and t, then the magnitude of 7, is |7||sin#|. The plane defined by  and
t is the same as the plane defined by 7;; and ¢, and so

Fxt=r xt. (2.31)
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We can now prove the distributive law for three arbitrary nonzero vectors
7, §, and t:
(F+38)xt = (F+7L+8+81)xt
= ((Fe+8)+ (Fer + 81)) x
= (fpL +81) x t.

We can use our distributive law for the case where the vectors in the sum-
mation are both perpendicular to ¢:

(F+8)xt = (F xt)+ (5eL x 1)
= (Fxt)+(Fxt).
This concludes the proof that the distributive law [Equation (2.30)] holds
for any three nonzero vectors.

Equations (2.25) — (2.28) and (2.30) provide us with a rule for taking the
cross product of two vectors given in coordinate form:

(a,b,c) x (f,g,h) = (aT+bj+ ck) x (f7+ g7+ hk)
af @x7) + ag(Tx ) + ah (i‘x 12)
+ bf (7xT) + bg(7xT) + bh(7xE
+ cf(Exi‘) + cg(Exj‘) + ch(-‘xlz)
= agk — ahjy — bfk + bhV + cf) — cg?¥

(bh — cg)7 + (cf — ah)J + (ag—bf)k
= (bh —cg,cf —ah,ag — bf). (2.32)

Example

As an example, the plane spanned by (1,—2,3) and (5,0, —1) is perpendic-
ular to the vector formed by the cross product of these two vectors:

(1,-2,3) x (5,0,—1) = (2— 0,15+ 1,0 + 10) = (2, 16, 10).

Thus, the plane spanned by these vectors and containing the origin has the
equation
2z + 16y + 102 = 0,

or equivalently,
z+8y+52=0.

One trick for remembering how to take the cross product of two vectors
given in coordinate form is to arrange the coordinates as in Figure 2.10.
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FIGURE 2.10. The cross product (a,b,c) x (f, g, h).

We take products along the indicated diagonals with a positive sign when
moving down from left to right, a negative sign when moving down from
right to left. The sum of these products is the cross product. Equivalently,
this is the determinant of the 3 x 3 matrix:

(a’b?c) X (f,g,h) =

- &
(S} S
>0

2.4 Using Vector Algebra

For the purposes of this book, it is preferable to concentrate on the geomet-
ric meaning of the dot and cross products rather than the rules for formal
manipulation of vectors in coordinate form. The power of vector algebra
arises from these geometric interpretations. The impetus for adopting vec-
tor algebra came precisely from a desire to avoid cumbersome coordinate
calculations. Oliver Heaviside, in the introduction to his chapter “The El-
ements of Vectorial Algebra” in FElectromagnetic Theory, compares vector
algebra with the traditional approach of Cartesian coordinates:

The mere sight of the arrangement of symbols should call up
an immediate picture of the physics symbolised, so that our
formulee may become alive, as it were. Now this is possible, and
indeed, comparatively easy, in vectorial analysis; but is very
difficult in Cartesian analysis, beyond a certain point, owing to
the geometrically progressive complexity of the expressions to
be interpreted and manipulated. Vectorial algebra is the natural
language of vectors, and no one who has ever learnt it (not too
late in life, however) will ever care to go back from the vitality
of vectors to the bulky inanimateness of the Cartesian system.

Vector algebra is particularly well suited for physical applications because
there is no natural system of coordinates for our universe, and so physical
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7

FIGURE 2.11. The scalar triple product: ¥ x §- t.

laws should be invariant of any coordinate frame. This means that we
want mathematical models, and ways of manipulating them, that avoid
specifying a set of fixed basis vectors. This is precisely what vector algebra
does.

The Scalar Triple Product

One attractive consequence of the geometric view of the dot and cross
products is the immediate interpretation of the scalar triple product that
it yields. The scalar triple product of 7, 5, and ¢ is defined to be
(Fx&)-t

or, more simply, just 7 x & t, which is well-defined since we must take the
cross product first.

If we assume that no two of these vectors are parallel, then they define
a parallelepiped (Figure 2.11). The magnitude of the cross product 7 x §
is the area of the base, and if 7, 5, and ¢ are in the order of the right-hand
rule, then 7 x § points in the direction of the altitude of our parallelepiped.
The actual altitude is the component of £ 'in the direction of 7 x §, which is

It follows that the volume of this solid defined by 7, &, and ¢ is

t-(Fx8) . . -~ .. W =
X = t- X — X -t
IFX§I |T SI (T 3) (T 3) )

the scalar triple product. If 7, §, and ¢ are not in the order of the right-hand
rule, then replacing ¢ by —¢ rectifies this, and so the scalar triple product
will be the negative of the volume of the parallelepiped.
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FIGURE 2.12. Theorem 2.1.

We have just proved a most curious and powerful result. There are 12 dis-
tinct scalar triple products that can be constructed using the three vectors
7, §, and t, namely,

Fx§-t {x§-7
Fxt-7 Fx 7t
tx 7.8 Fxt-§
FExt t-5x7
FtxT §-Fxt
& 7x§ Fix 3§

But, these 12 scalar triple products can take on only two possible values,
either the volume of the parallelepiped defined by 7, 5, and £, or its negative.
If 7, §, and ¢ are in the order of the right-hand rule, then each of the scalar
triples on the left is equal to the volume of the parallelpiped; each of the
six on the right equals the negative of the volume of our solid.

Applications to Euclidean Geometry

Vector algebra also provides a powerful tool for proving the results of Eu-
clidean geometry, and this power comes precisely from the distributive laws
that we have struggled to prove. As examples, consider the following the-
orems.

Theorem 2.1 Let 7 be any point on a circle with its center at the origin
and let the segment from —d to @ be a diameter of this circle (so that
|@| = |7|). Then, the vector from @ to 7 is perpendicular to the vector from
—d to 7 (Figure 2.12).

Proof: The vector from @ to 7 is ¥ — @, the vector from —a to 7 is 7+ a.
The dot product of these vectors is

(F—a) - (F+a) = (F-7)+(F-a)—(
= |F

1
]!
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FIGURE 2.13. Theorem 2.2.

and so these vectors are perpendicular.

Q.E.D.

Theorem 2.2 Ifa, b, and c are the lengths of the sides of a triangle, and
if 0 is the angle between the sides of lengths a and b (Figure 2.13), then

c? = a® + b* — 2abcosé.

Proof: Let the vector @ represent the side of length a, |@| = a, b the side
of length b, |b| = b, and ¢ = b — @ the side of length c, |¢| = c. We then see
that

¢ = [¢* = [b-a® = (b-a) (b-a)

52 — (25 [i) +|d@? = b% —2abcosf + a’.

Q.E.D.

Finally, we consider the equation in polar coordinates of an ellipse with
one focus at the origin [Equation (1.18)]:

r(1+ecosf) =c.

Using the notation of vector algebra, we can rewrite this in a form inde-
pendent of any coordinate frame:

7| +7-&=c, (2.33)

where €’ is a constant vector of length less than 1 and c is a positive constant.
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2.5 Exercises

1.

10.
11.

For each of the following pairs of vectors, find their sum, dot product,
and cross product.

(a) (2,-3,1), (6,2,-3)

(b) (5,—6,1), (3,2,-3)

(c) (3,0,-2), (—6,0,4)

(d) (-2,5,1), (3,0,6)

. Which pairs in Exercise 1 are perpendicular; which are parallel?

. Ilustrate Equations (2.3) and (2.4) by drawing vectors in a plane.

In Exercises 4 to 8, use 7= (—1,2,-2), §=(3,-5,4).

. Find |7|, |§], and |+ §]. Verify that the sum of any two of these

quantities is greater than the third.

. Find 7, 751, Sy, and 8, .

Find the cosine of the angle between 7 and §. Find the sine of the
angle between 7 and § (assuming the angle lies between 0 and 7).

Find the equation of the plane through the origin spanned by 7 and
§.

. Find the equation of the plane through (3, —1,2) spanned by 7 and
§.
. Consider the plane containing the origin and spanned by the vectors

7=(2,0,—1) and § = (-3,1,0). Which of the following points lie on
this plane? For those that do, express them as a linear combination
of 7 and §.

(a) (5,1,-1)

(b) (6,-2,0)

(c) (1,1,-2)

(d) (la "'17 '—1)
In Exercises 10 to 14, the plane in question is the plane

whose equation is
T—4y+72=3.

Find a vector perpendicular to this plane.

Find two vectors that span this plane.



12.
13.
14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.
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Find a parametric representation for this plane.
Find the perpendicular distance from (1,1,1) to this plane.

Find the equation of the plane parallel to this one but passing through
(2,0,3).

Find the distance from (0, —2,—3) to the line passing through
(—1,2,0) and (2, —4,2).

Find the cosine of the angle between 7'+ jand 7'+ '+ k.

Let @ be a nonzero vector. If - £ =ad -y and @ x & = @ x ¥, does it
necessarily follow that & = ¢? Justify your answer.

Let 7= (2,1,1). Find the vector & that satisfies

7-£=2 and ¥x & =(-1,3,-1).

Given that 7-8§=0,7-% = ¢, and 7 x £ = §, find the component of ¥
in each of the three mutually orthogonal directions: 7, 5, and 7 x §.

Prove that the cross product is nonassociative. That is, find three
vectors 7, S, and t for which

Prove that
|7"‘><.§‘|2+(7"‘-§‘)2=|F2§'|2. (2.34)

Prove that if x5 =0 and d-b = 0, then at least one of these vectors
must be 0.

Prove that .
a-axb=0

for any two vectors @ and b.

Let 7 be a point on a circle with diameter from —a to @ (so that |7| =
|&@|). Draw the chord through  perpendicular to @ (the length and
direction of this chord is 27, ). Let t = 7, be the point of intersection
of this chord with the diameter. Prove that the square of half the
length of the chord is the product of the distance from —& to ¢ times
the distance from t to @:

Farl® = ((+3)-(@~1

).
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25.

26.

27.

28.

29.

30.

31.

2. Vector Algebra

Consider a parallelogram defined by the vectors @ and b. Describe
the diagonals in terms of these two vectors. Show that the diagonals
are perpendicular if and only if |@| = |b|. Use vector algebra to show
that the diagonals bisect each other.

Prove that . . .
|@+b|>+|a—b|*>=2@|*+2/b|*
What geometric property of parallelograms does this imply?

Exercises 27 to 31 use vector algebra to derive Heron’s formula
for computing the area S of an arbitrary triangle with sides
of length a, b, and c:

S =+/s(s—a)(s—b)(s—c), (2.35)
where s = (a+b+c¢)/2.

Let the vectors d, 5, and ¢ represent the three sides of our triangle,
¢ = b — d. Show that

482 = (@xb)-(@xb). (2.36)
Using Equation (2.34), show that Equation (2.36) can be written as
45% = (ab+a-b)(ab—a-b). (2.37)

Show that .
@-b=(a®+0b*-c?)/2 (2.38)

Combining Equations (2.37) and (2.38), show that

1652 =(a+b+c)(a+b—c)la—b+c)(—a+b+c).

Complete the proof of Heron’s formula.
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Celestial Mechanics

3.1 The Calculus of Curves

We are not quite ready to prove that Newton’s law of gravitational at-
traction implies Kepler’s second law. We need to take a closer look at the
Calculus of vector functions in the light of the vector algebra described in
the last chapter.

As in Section 1.5, let 7(t) denote the position of a moving particle at
time ¢. The derivative of 7(t) is defined as it is for scalar functions:

d .. . T(t+h)=7(t)
ler(t) = A%T (3.1)

Observe that 7 (t+h)—7(t) is the vector from 7(t) to 7' (t+h), which can be
viewed as a chord of the curve traced by our moving particle (Figure 3.1).
In the limit, this becomes a tangent to the curve. The velocity vector is
defined to be this derivative:

#(t) = Zl(_li #(t). (3.2)

The acceleration vector is the derivative of the velocity:

2
at) = di’ta(t) - gt-f 7(t). (3.3)

Throughout this chapter, we shall assume that the first two derivatives of
7(t) exist.

Rules of Differentiation

Derivatives of vector functions satisfy the same basic rules of differentiation
that hold for scalar functions.

Theorem 3.1 If 7(t) is constant, then

d
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F(t+h)

7 (t)
FIGURE 3.1. 7(t + h) — 7(t).

Proof: If 7(t) is constant, then

7(t+h) —7(t) =0,
so that
= 0.

> oL

0 = im,

I
&

Q.E.D.

Theorem 3.2 Let 7(t) and §(t) be differentiable vector functions, A(t) a
differentiable scalar function, and c a real constant. We have

d, dar
d . . dF d§
d, . dx dr
d,. . df . _ ds
E(r-s) = 7 s+T 7 (3.7)
d dr ds
Z(Fx3) = d—:x.§'+f’xd—:. (3.8)

Proof: The proofs exactly mimic those for scalar functions. To prove
Equation (3.4) we observe that

d, . . cr(t+h)—cr(t)
@) = Jin h
_ limc'r(t—i—h)—r(t)

Pl

h—0
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= clim
h—0

. dr

dt’
The proof of Equation (3.5) is similarly straightforward and is left as an
exercise. For Equation (3.6), we insert

CAG)FE+R) +AG)FE+R) =0

7(t+h) —7(t)
h

into the numerator of the definition of the derivative:

%()\F)

- im At + R)7 (t +hh) Q)R ()

- At + R)T(E+h) = AT (t+ h) + AT+ h) — ()7 (L)

= % h

_ ’lli_%(/\(t+h’)l—)\(t)f,(t+h)+/\(t)F(t+h’1—F(t))
AR =MD [

= (&Ln_h—) (,{‘Ea"(t*"))
H(t)(;%r(tm;—r(t))

_ AT

What makes this proof work is the distributive law:

AE+R)F(E+h) = AOF(E+h) = (At+h)—At) 7+ h),
AT E+R) = AOFE) = AE) (F(t+h) —F(t).

Notice that we need both forms of this law, Equations (2.3) and (2.4). We
have proven that the distributive law also holds for dot products and cross

products, and so exactly the same argument yields Equations (3.7) and
(3.8).

Q.E.D.

One corollary to this theorem is a result we used in Section 1.5.
Corollary 3.1 If7(t) = (z(t),y(t), 2(t)), then
& _ (do dy dz
dt  \dt’dt’dt)’

That is, differentiation of a vector function expressed in coordinate form is
performed by differentiating each of the coordinates.
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Proof: We use the additive rule [Equation (3.5)], the rule for the derivative

of a product [Equation (3.6)], and the fact that 7, 7, and k are constants so
that ~
@ df  dE -

dt  dt  dt
It follows that
i d . s dr_, dy, dz »  (dz dy dz
o T @@t ak) = i g i gk = (dt’dt’dt)'
Q.E.D.

Corollary 3.2 If dr/dt is zero for all t, then 7(t) is a constant vector.

Proof: We can write

7(t) = (z(t),y(t), 2(1)),
so that dr/dt = 0 if and only if

do _dy _ds _
dt  dt dt

From single variable calculus, this implies that z, y, and 2z are constants.
Q.E.D.
The next corollary may be slightly surprising at first glance, but a little

consideration of what it means should convince you that you already know
it.

Corollary 3.3 If |7(t)| is a constant independent of t, then 7 (t) s per-
pendicular to U(t).

Proof: By our hypothesis,
7= |F]? = ¢
where c is a constant. Differentiating both sides with respect to ¢ yields

dF dF
%(F-f) =L rer D 2 org,

0= dt dt

and therefore, 7 and ¥’ are perpendicular.

Q.E.D.
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C

FIGURE 3.2. The curve 7(t) = (cost,sint,t).

What we have just proved is that the tangent to a circle is always per-
pendicular to the radius.

Example

As an example, we take a path that spirals up a vertical cylinder of radius
1 (Figure 3.2):
7 (t) = (cost,sint,t).
The velocity is
¥(t) = (—sint,cost, 1).

The magnitude of this velocity is

|T(t)| = Vsin?t + cos2t + 1 = /2,

a constant, and so Corollary 3.3 implies that the acceleration will always
be perpendicular to the velocity. In fact, the acceleration is

d(t) = (- cost, —sint,0),

and it is easily seen that

S
ST
I

o
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Arc Length and Tangents

We now define the following functions. The distance from the origin is

r(®) = 7], (3.9)
the speed is
v(t) = [9(8)], (3.10)
the arc length is .
s(tr) = /0 ot) dt, (3.11)
the unit tangent is
T(t) = % u(t) #0, (3.12)

and the principal normal is

N _ Tl(t) (1) — @ N
N(¢t) = For T'(t) = = #0. (3.13)

We have already met 7(t). The speed is the absolute value of the velocity.
Integrating the speed or distance traveled per unit time over an interval of
time gives the total distance traveled in that time, denoted by s(t). Starting
the integral at 0 is an arbitrary convention since we usually treat the arc
length not as a function of one time variable but of two: the arc length
from t =ty to t = t;:

t1

s(t1) — s(to) = / v(z) dz. (3.14)
to

The unit vector in the direction of ¥(¢) is called the unit tangent or simply

the tangent. The principal normal has two important properties given in

the next theorem.

Theorem 3.3 The principal normal, N (t), is perpendicular to the tangent,
T(t), and, if 9(t) and d(t) are not parallel, then N(t) lies in the plane
spanned by U(t) and a(t).

Proof: Since |T(t)| = 1, Corollary 3.3 implies that T"(t), and thus N (¢), is
perpendicular to T'(t). Since #(t) and @(t) are not parallel, neither of them
is identically 0. We have

- _d-‘_d 2 NN 2] "/_v,~ 7| N
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FIGURE 3.3. An osculating plane for 7(t) = (cost,sint,t).
Since @ and ¥ are not parallel, v|T"| is not zero. Therefore, we have
= 1 v
N=—a- — 7.
v|T"| v2|T"|
Q.E.D.

What we have demonstrated is that T and N are perpendicular unit
vectors spanning the plane defined by ¥ and @, and thus T' and N provide
a convenient basis for describing points in this plane. If we translate this

plane so that it passes through 7 (t),

{F+aT + BN | a, 8 € R},

we obtain what is called the osculating (or kissing) plane (see Figure 3.3).
Remember that 7, T, and N are all functions of time, ¢, so that our plane
changes over time. The significance of the osculating plane is that if our
acceleration were constant, then our curve would lie in this plane. It thus

provides us with a plane we can consider to be tangent to the curve.

Example

Returning to our spiral,
7(t) = (cost,sint,t),

we have

r(t) = Vcost+sin?t+t2 = 1+12,
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v(t) = Vsin?t +cos2t+1 = V2,
¢

s(t) = /\/id:c = V2,
0
2

T@) = %(— sint,cost, 1),

N(t) = (—cost,—sint,0).

A perpendicular to the osculating plane is given by

U x @ = (sint, —cost, 1).

The dot product of this perpendicular with 7 is
vxa-r=t,

and so the equation of the osculating plane passing through 7 is

vxa-(z,y,2)—Txa-7=0,
which is
(sint)x — (cost)y+z—t =0.

For example, the osculating planes at t = 0, 7/2, and 57 /4 are, respectively,

—-y+z = 0,
z+z—-7/2 = 0,

2 2
——\/———a:+—\/—:y+z—§£ = 0.

2 2 4

Curvature

We next investigate the notion of curvature, finding the radius of the circle
that best approximates our curve. Let us start by assuming that the curve
traced by 7(¢) is in fact an arc of a circle of radius p lying in some plane.
We specify some fixed direction in that plane and let «(t) be the angle
between the tangent, T, and our fixed direction (Figure 3.4). We view our
plane so that the path travels counterclockwise around the center of the
circle.

We consider the derivative da/ds, the rate at which o changes with
respect to the arc length. On a circle, this is constant, and the value of
this constant can be determined by considering what happens if we go
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y axis

N,

T axis

FIGURE 3.4. The angle a(t) between T and the chosen direction.

completely around the circle: o will have changed by 27 while the arc

length traversed is 2mp,
da 2m 1
=== -z, 3.16
ds 2mp p (3.16)
For a curve lying in a plane, da/ds is well defined, and we can define p
as the reciprocal of this derivative at the point in question. To calculate p,

we observe that

da _ do/dt

ds  ds/dt’
From Equation (3.11), we see that
ds

If we standardize our plane so that 7’is the unit vector in our chosen direc-
tion and j'is the perpendicular unit vector in the plane, then

T(t) = (cosa) T+ (sina) 7.
Differentiating both sides with respect to ¢ gives us
T'(t) = o/ () [~ (sina) 7'+ (cos @) 7).
The vector in parentheses is a unit vector and so
T (@®)] = |/ (®)]-

Since the particle is moving counterclockwise, the angle a(t) is increasing,
and so o(t) is positive:
da

—_— = ad
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We have shown that .
da _ do/dt _ |T'(t)]
ds  ds/dt  w(t)

This gives us a definition of curvature that is valid for any curve for which

T' is well defined.

Definition: The curvature of the path 7(t), denoted by «(t), is defined
to be the reciprocal of the radius of the circle that best approximates the
curve at 7 (t). Specifically, this is defined to be

K(t) = LI:(%)—' (3.17)

The radius p(t) = 1/k(t) is called the radius of curvature. Note that the
curvature is zero if and only if the path is a straight line.

Computing |T"(t)| from the definition is often difficult. The following
theorem provides us with a more direct approach to computing k.

Theorem 3.4 If 7(t) is twice differentiable and the first derivatwe is not
0, then the curvature of the path traced by 7 (t) is given by

@ x 1]

K . (3.18)

Proof: From Equations (3.15) and (3.17) we see that
a(t) = v'T +v|T'|N = o'T +v?*kN,
and so, since Txv= 0,
AxT =T xT+0v2kN x7 = v’,N x 7 = v’sN x T.
Since |N x T| = 1, we finally arrive at
@ x 7] = vik.
Q.E.D.

Examples

The curvature of 7(t) = (cost,sint,t) is

|(—sint,cost,1) x (—cost, —sint, 0)]
23/2
|(sint, — cost, 1)| V2 1

23/ o8z T

K =
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T T 1 T
-4 -3 -2 -1 /l 2

FIGURE 3.5. The curve r + rcosf = 1.

and the radius of curvature is 2.

As a second example, consider the problem of finding the velocity, ac-
celeration, and curvature of the path of a particle following the parabola
given in polar coordinates by

r(1+cosf) =1, (3.19)
which is traversed at a constant speed,
v(t) =2,

in a counterclockwise direction about the origin (Figure 3.5).
If we differentiate both sides of Equation (3.19) with respect to t and use
the relationship
14+cosf=r"1, (3.20)
we see that d "
r .
E(l + cosf) — rsm0E =0,
dr _, . db
ar ——rsm@a =0,
d_ 1 dr
dt  r2sinfdt’
We now recall from Equation (1.15) that
dr do

U= Eur+raw,

where %, and iy are perpendicular unit vectors, and so

= (&) (-2 022

(3.21)
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Combining this with the expression for df/dt given in Equation (3.21) and
recalling that we have a constant speed of 2, we see that

1+ g =
r2sin?6

Using the fact that our curve is traversed counterclockwise, we can choose
the proper sign, and we see that

dr
dt

dr

1+r2sin?6
dt

2 = =
v |rsin 6|

dr  _ 2rsinf
dt V1+r2sin?6’
do 2

dt rv 1472 sin26

We can simplify the square root by using the fact that sin®6 = 1 — cos? 6
and, from Equation (3.20), that cosf = r~! —1:

1+72%sin%0 = 1+72 —r2cos?0 = 1+72 —r2(r~ ! = 1)% = 2.

We have shown that

% = sin6v2r, (3.23)
% = 7323, (3.24)
7= V2(r'2sin0d, +r2G). (3.25)

If we differentiate Equation (3.25), remembering that r, 6, @,, and iy
are all functions of ¢, we get the acceleration

o 1 _1/2d7‘ . ~ 1/2 d0_, 1/2 do_,
a = \@(27‘ 7 sinfi, +r cosGdtur+r sm0dtU9

1 d dé
— 32 2% ﬂr) .

2 dt dt

Substituting our values of dr/dt and d6/dt from Equations (3.23) and (3.24)
yields

(sin? 0) i@, + 2r~(cos8) i, + 2r~'(sin @) dp
— r~(sin @) dp — 2r~2d,
(sin®@ + 2r~'(cos@ — r~ 1)) @, + v~ (sinb) iy
(sin® @ + 2r~1) @, + v~ (sin6) d, (3.26)

Y
Il

where in the last line we have used Equation (3.20) once again. It follows
that
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ixa = (V2r~V/2sin?0 - Var~1/2(sin?6 + 2r71)) @ x
= —2\/57'—3/2 U, X Ug,
|Txd = 2v2r 32,
2./2 -3/2
K —\/_g = (2r)7%/2
Exercises
. Prove that
d . . dr ds
a(r + 3) = % + E
Prove that
d(i" §) = dr S+7 ds
dt T odt dt’
Prove that
—‘i(Fx§)—fx§‘+'F‘xE
dt T odt dt’

In Exercises 4 through 12, use each of the following trajec-
tories:

()

7(t) = 27— 4t7— 2k,
(b) 7(t)

= (cosht) 7'+ (sinht) 7'+ tk,
(cosht = (et + et)/2,sinht = (e — e™t)/2)
(c) 7(t) =tcost?+tsint]+ k.

. Sketch the curve traced over the interval from ¢ = 0 to 2.
. Find 9(¢) and a@(t).
. Find r(t) and v(t).

. Find the cosine of the angle between 7 and ¢. For what values of t is

7 perpendicular to 77 When is it parallel to '?

. Find the cosine of the angle between ¥ and @. For what values of ¢ is

¥’ perpendicular to @? When is it parallel to @?

. Find the definite integral that expresses the arc length from ¢ = 0 to

2.
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10.
11.
12.
13.

14.
15.

16.

17.

3. Celestial Mechanics
Find ¥ x a.
Find the equation of the osculating plane at time .

Find the curvature at time t.

Prove that

Does 7 (t) - 9(t) = 0 for all ¢ imply that r(t) is constant?
Consider a particle whose path is the ellipse
r(2+ cosf) = 2,

traversed in a counterclockwise direction about the origin, and that
sweeps out one unit of area per unit time:

dA 1 ,df
— =_r"—=1
a2 @t
Find the velocity and acceleration expressed in terms of the local

coordinates i, and uyg.

Consider a particle whose path is the spiral

r=e%,
sweeping out one unit of area per unit time. Find the velocity and
acceleration expressed in terms of the local coordinates i, and iy.

A missile traveling at constant speed is homing in on a target at the
origin. Due to an error in its circuitry, it is consistently misdirected
by a constant angle a. Find its path. Show that if |a| < 90°, then
it will eventually hit its target, taking 1/ cosa times as long as if it
were correctly aimed. (Hint: use local coordinates @, and y.)

3.3 Orbital Mechanics

Equipped with calculus and vector algebra, we can now make short work
of Newton’s result that the law of gravity implies Kepler’s second law.

Lemma 3.1 Let 7(t) be the position of a particle at tyme t, U(t) its velocity,
and a(t) its acceleration. If @ is radial (always parallel to 7), then

Fxv=K, (3.27)
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where K is a constant vector of magnitude

- dA
K = |K| = 2 e (3.28)
= rusing, (3.29)

where dA/dt is the rate at which area is swept out and ¢ is the angle between
7 and U.

Proof: From Equation (3.8) and the fact that ¥ and @ are parallel, we
have

—(Fx?0) =Tx0+7Fxd=0+0 =0,

and thus, by Corollary 3.2, ¥ X ¥ is a constant vector that we shall call K.

Equation (3.29) follows from Equation (3.27) and the definition of the
cross product. To prove Equation (3.28), we use the representations of #
and 7 in terms of local coordinates [Equations (1.14) and (1.15)]:

- L dr ag .\  ,do .
K—rxv—ru,.x(aur+rau9) =r dt(u,xug), (3.30)
so that &0
K=r—. 31
™ (3.31)

Lemma 1.9 now concludes the proof.

Q.E.D.

Kepler’s Second Law

The full law of gravity says that the force of gravitational attraction is in-
versely proportional to the square of the distance and directly proportional
to each of the masses:

- Mm
F= —Gr—2ur, (332)

where G is a gravitational constant, M and m are the respective masses,
and r is the distance. If m is the mass of our orbiting particle, then its

acceleration satisfies .
F =ma, (3.33)

or
i = ———ii,. (3.34)
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Theorem 3.5 Let 7(t) denote the position at time t of a moving particle
whose acceleration is given by Equation (3.34) and that sweeps out area at
the constant rate K/2. There then exists a constant vector € such that

. . K?
|7‘|+7"6—G—M. (335)
Equivalently, if (r,0) is the position in polar coordinates, then
K2
r(1+ecosf) = G (3.36)

We recognize Equation (3.36) as the equation of a conic section: an el-
lipse, parabola, or hyperbola (Lemma 1.10 and Exercise 12 of Section 1.5).
In particular, if |£| < 1, then it is the equation of an ellipse with one focus
at the origin.

Proof: We shall prove this by using the identity for scalar triple products:

Fx7-K=oxK-T (3.37)
By Equation (3.27), the left side is
Pxv-KE=K K=K (3.38)

To evaluate the right side, we use our definition of @ [Equation (3.34)],

the representation of K in local coordinates [Equation (3.30)], and the fact
that (d/dt)d, = (d0/dt)dy [Equation (1.11)]:

L = GM 2dd
ax K = (—r—2u,)x(r au,xug)

de ., . » de d .
o [i@, x (dr x Ug)] = GM Eug = %(GMur).

d,, =
a—i(’UXK)

This means that the derivative of 7x K —GM U, is 6, andso "xK—-GM Uy
is a constant vector which we shall denote by GM¢:

1

= GM(i, +¢), (3.39)

v X
TxK-7 = GM(@,+€)-7 = GM(|F| +7-&). (3.40)

pt

Combining this result with Equations (3.37) and (3.38), we see that

K? = ix9-KE = ixK -7 = GM(|f| +7-8),
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Equation (3.36) follows from the equalities || =r and 7-& = recosé.

Q.E.D.

I challenge the reader to return to Newton’s original proof of Kepler’s
second law (Proposition XVII) and work through it, comparing it to this
proof.

Equation of the Orbit

If we define the positive z axis to be parallel to £ = 7’ and set

K?

= — 41
TEem (3.41)
then we have an elliptic orbit precisely when |¢| < 1, and the equation of

this orbit is, by Lemma 1.10,

2

2 2 2 7
A=)z +a) +y" = 7, (3.42)

where -
o= m . (3.43)

The apogee, or farthest distance, is
lely Y (L+ el ¥

2
= = = . .44
Mt m s et T aoepasre - ioE O

The perigee, or nearest distance, is

y —lely y (1~ lel)y v
B _ - = . (3.4
il w Rl pa A ity e &%

The mean distance is the semimajor axis:

Y
=1 (3.46)

Note also that if € is positive, then most of the ellipse lies to the left of
the y axis, and the orbiting particle reaches its perigee when it crosses the
positive z axis. If € is negative, then most of the ellipse lies to the right of
the y axis, and the orbiting particle reaches its apogee when it crosses the
positive z axis (Figure 3.6).

If the absolute value of € is 1, then our orbit is a parabola. If it is greater
than 1, then the orbit is a hyperbola. What is significant about these cases
is that they are nonperiodic: our particle sweeps in close to the object it is
orbiting and then heads off, never to return. A satellite circling the earth
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FIGURE 3.6. Orbits for € = —%, -%, and 2.

that achieves a parabolic or hyperbolic orbit is said to reach escape velocity.
Assuming it is on the outbound arm (and so is in no danger of crashing
into the earth), the earth’s gravity cannot hold it back.

Eccentricity and Escape Velocity

Let us narrow our focus to satellites orbiting the earth where the value of
GM is approximately

GM =4 x 10" m3/s2. (3.47)

To simplify matters, we shall ignore the effects of the moon and other
bodies. If we know the position, 7, and velocity, ¥, of our satellite at any
given time, we can find K and ¢ and thus compute the orbit. Our first
problem will be to find the escape velocity from the earth.

The constant K is easily computed from Equation (3.29): K = rvsin ¢,
where ¢ is the angle between 7 and ¢. To find ¢ from r, v, and ¢ is a little
trickier. From Equations (3.39) and (3.27), we see that

Tx K x(Fx7)
GM =~ GM

@ + &= (3.48)

We can solve this for £ and then get

e = ¢.¢
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UX (Fxv) Ux (FxT)
( GM “)( GM “)

1 2
ol X Fx O = G0 x (Fx ) @] +1. (349)
Now, v is perpendicular to 7 x ¥, and therefore,
[T x (7 x ¥)| = rv?|sin ¢|.

We can rearrange our scalar triple product ¥'x (Fx ¥) @, to [(@, X ¥)-(Fx)].
Since i, x ¥ is parallel to 7 x ¥, the dot product of these vectors is simply
the product of their magnitudes:

T x (F x ¥) - @, = (vsin ¢)(rvsin¢) = rv?sin? ¢.

Making these substitutions into the last line of Equation (3.49), we obtain

2,4 o2 2 2
2 _ rfvisin ¢_2rv sin” ¢
© T Tonure T
rv?sin® ¢
= 1+W(rv2—2GM). (3.50)

If, instead of factoring out rv2/G2M?, we replace the 1 in the first line by
cos? ¢ + sin? ¢, we see that we can also write 2 as

ro? \?
2 _ a2 2
€“ =sin 1———] +-cos”¢. 3.51
o (1-Gyg) +ooto (351)

If ¢ = 0, then our satellite is moving vertically. It either keeps going
forever in a straight line or slows down, reverses direction, and crashes
back into the earth. Since neither of these cases is particularly interesting,
we shall assume that ¢ is not zero.

Because r and v are positive, we have a nonperiodic orbit (Je| > 1) if and
only if

rv? > 2GM =8 x 10" m3/s?,

14
v 2>/ % m/s. (3.52)

As we get further from the earth, the escape velocity decreases. At the
surface of the earth where r is roughly 6.4 x 106 meters, the escape velocity
is about 11200 m/s or 24 800 miles/h. Note that escape velocity does not
depend on the angle between r and v. In practice, you must check that
you are not on a trajectory that will collide with the earth. As long as this
will not happen, heading in any direction at 25 000 miles/h will launch you
toward the ends of the universe.

A circular orbit has an eccentricity of ¢ = 0, which is achieved if and
only if

r? =GM AND ¢=m/2.
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In a properly elliptic orbit (0 < |e| < 1), the angle between 7 and ¥ is
/2 at precisely two points: the apogee and the perigee. At these points,
we have the relationship

or

=+ (1 - %) . (3.53)

The choice of sign is determined by whether the perigee occurs on the
positive or negative = axis. The eccentricity is positive when rv? > GM
and negative when rv? < GM, and so

2
TV

Kepler’s Third Law and Geosynchronous Orbit

Kepler’s third law now comes for free. The area inside an elliptic orbit is 7
times the product of the semimajor and semiminor axes, which is

v Yy rK*4
—e21—¢2 - G2M?2(1 — £2)3/2°

Since the area is swept out at the constant rate K /2, the period of the orbit
(the time needed to complete one orbit) is the area divided by the rate:

™

orK3
G2M2(1 — €2)3/2
s /2

/GM (1 _ &-2)3/2

27

= m03/2, (355)
2

period® = 4La3, 3.56
GM

period =

where a is the semimajor axis. Equation (3.56) is Kepler’s third law.

An orbit is said to be geosynchronous if its period is the same as the
time it takes the earth to complete one rotation, that is, 1 day or 86400 s.
Inserting this and the value of GM into Equation (3.55), we get an a value
of about 42000 km, or roughly 35600 km above the surface of the earth.
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Accelerating while in Orbit

A curious phenomenon happens to a vehicle in orbit that fires its rockets to
achieve acceleration in a nonradial direction. If two vehicles are traveling
in tandem in a circular orbit and one of them produces a brief acceleration
in the direction of its velocity, then instead of pulling ahead of its com-
panion, it will swing out into an orbit of greater eccentricity and actually
fall behind. The mathematics behind this comes out of our equation for
eccentricity [Equation (3.51)].
Initially, since we are in a circular orbit, we have

rv? = GM,
and the semimajor axis is r, so the period is

2w 7‘3/2,
vGM

We let our first vehicle continue in this orbit, but we briefly fire the rock-
ets on the second vehicle. In view of the distances involved, a “burn,” or
rocket firing, of a few seconds can be viewed as an instantaneous increase
in velocity, so that at the moment of the burn the position of our second
vehicle, 75(t), is still the same as that of the first vehicle, but the velocity
has changed from ¥ to

period =

172 = C’l_f,
for some positive constant c. We have assumed that our instantaneous
acceleration is parallel to ¥, so that initially the angle between 75 and 5
is still w/2. It is convenient to define the positive = axis so that the burn

occurs as we cross it.
The new value of K is

K2 = IF2 X'l72| = |‘FX C’Jl = cK. (357)

Since the angle between 7 and @, is 7/2 and rv? = GM, the new value of
€ satisfies

2 2
i <G ¢ — 1 (3.58)

Since c is assumed to be positive, we have a noncircular orbit unless ¢ = 1.
Note that we stay in a periodic orbit if and only if ¢ < v/2. If ¢ is less than
1 (we have decelerated), then we are at our apogee and e, is negative. If
¢ is larger than 1 and less than v/2, then we are at our perigee and &3 is
positive.

We have demonstrated that if the second vehicle fires its afterburners,
it will swing out into a wider orbit. But as long as c is less than v/2, it
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will continue to return to its perigee on each orbit. Which vehicle gets back
first? The semimajor axis for the second vehicle is

_ K2 _ c2K? _ K? o

T GM(1-€2)  GM(2¢2—ct) GM(2-¢c2) 2—c2

az

and so its period is
o7 r3/2

VGM (2= 27

as opposed to the period of the first vehicle,

If the second vehicle has accelerated, 1 < ¢ < v/2, then it will take it
longer to return to the point of the burn. To beat the first rocket back to
that point, it must decelerate, 0 < ¢ < 1. Care is required, however, as
deceleration puts you into an eccentric orbit passing closer to the earth,
and it is desirable to avoid colliding with it.

Caveat

Before using the mathematics of this chapter to send a satellite into orbit,
be aware that in practice we cannot ignore the moon’s influence. For a few
orbits staying relatively close to the earth, the moon will not have much
effect, but over time it will modify the orbit considerably. In fact, in time,
the sun and each of the planets, even each of the asteroids, will exert a
measurable sway over the satellite. The mathematics we have developed is
incomplete as an exact model of our universe because our universe consists
of more than two objects.

Our model is a good approximation, and the influence of the other bodies
can be calculated to almost any degree of accuracy. But, we are placed in
a position uncomfortably close to that of pre-Keplerian astronomers: we
possess a beautiful and simple theory that is only a first approximation.
To make it agree with observational accuracy, we need to complicate it
considerably.

This is not to suggest that we are no better off than our medieval prede-
cessors. It is Newton’s laws that tell us how to make most of the corrections.
There is no need to resort to convoluted inventions to account for them.
Yet, there is something basically dissatisfying about the present state of
affairs. One wishes for a model that combines elegance, utility, and sim-
plicity, probably in forms we would not yet recognize, in an explanation of
the intricate dance of many bodies under gravitational attraction. There is
some indication that the collection of results now being grouped under the
heading of chaos theory is groping in this direction.
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3.4 Exercises

1. Prove that @, x (u, X Up) = —dp.
2. Prove that in a properly elliptic orbit, the angle between 7 and ¥ is
m/2 only at the apogee and the perigee.

3. Mars has a radius of approximately 3300 km and a mass 0.15 times
that of Earth. Find the escape velocity on the surface of Mars.

For Exercises 4 through 7, we are considering a rocket that
is fired to 300 km above the surface of the earth, 6.7 x 10 m
from the center of the earth. At this point, the engines are
cut off and the rocket enters orbit. The angle between 7 and
¥ is denoted by ¢.

4. What velocity must it have attained if it is to remain in a circular
orbit at this height? What is the period of this orbit?

5. If its speed is 9000 m/s and ¢ = =/2, what are the values of the
apogee and perigee of the resulting orbit? What is the period of this
orbit?

6. If its speed is 9000 m/s and ¢ = w/3, what are the values of the
apogee and perigee of the resulting orbit? What is the period of this
orbit?

7. If its speed is 9000 m/s, find the angle ¢ that will result in an orbit
whose perigee is 6.5 x 10 m. What are the values of the eccentricity,
apogee, and period of this orbit?

8. A rocket has attained a circular orbit around the earth at 6.6 x 10°
m from the center of the earth. It is traveling at a speed of 7785
m/s. We want to move it out to a circular orbit of r = 7.0 x 10°
m by executing a burn, increasing its speed to v; so that it enters
an eccentric orbit whose apogee is 7.0 x 105 m. When it reaches this
apogee, we perform a second burn to increase its speed from wvq, the
speed of the eccentric orbit at the apogee, to 7560 m/s, the speed
needed to maintain a circular orbit at this height. Find v, and vs.

9. Show that the absolute value of the eccentricity is the difference be-
tween the apogee and the perigee divided by their sum. Find the
absolute value of the eccentricity of an orbit whose apogee is 12 x 108
meters and whose perigee is 8 x 106 m.

For Exercises 10 through 14, we consider the New York to
Tokyo space shuttle now being planned. Our shuttle acceler-
ates until it is 160 km above New York (6.56 x 10 m from the
center of the earth). At that point, the engines are cut, and
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FIGURE 3.7. The New York to Tokyo shuttle, Exercises 10 to 14.

the shuttle enters an orbital glide until it is 160 km above
Tokyo, at which time it decelerates for the landing. For the
purposes of simplification, we shall ignore the rotation of the
earth until the last problem in this set.

New York is at 70° W, 41° N; Tokyo is at 140° E, 36° N. Find the
angle between the lines connecting the center of the earth, O, to New
York and Tokyo, respectively. All of our calculations are on the plane
defined by these three points, and we take the bisector of this angle
to be the positive z axis (Figure 3.7).

Find the speed needed to achieve a circular orbit at » = 6.56 x 106.
How many minutes will it take for the orbital glide between New York
and Tokyo?

What speed must it reach if instead of a circular orbit it is to enter
an elliptic orbit with apogee at

(a) 7.0 x 108 m,

(b) 7.5 x 108 m,

(c) 8.0 x 106 m,

(d) 9.0 x 108 m?

In each of these cases, how many minutes will it take for the orbital
glide?

Find the value of the apogee that minimazes the speed we need when
we enter the glide. What is this minimal speed, and how long will the
glide last?

Redo Exercise 11 taking into consideration the fact that the rotation
of the earth is moving Tokyo eastward at the rate of 15°/h.
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Differential Forms

4.1 Some History

With this chapter we begin the study of functions whose domain and range
consist of several variables:

F:R" — R™.

If the domain has more than one dimension, such functions are often re-
ferred to as fields. It is a scalar field if the range is one dimensional, a vector
field if the range has more than one dimension. Examples of vector fields
in the physical world include fluid flows, where the function is defined on
points in space, mapping them to vectors representing the velocity of the
flow at that point, and force fields, where the function is again defined on
points in space, mapping them to vectors representing the force exerted at
that point. It is customary in the second year of a calculus course to use
the language of vector algebra in extending the tools of calculus to these
phenomena, giving rise to what is known as vector analysis. Here I shall
break with tradition and move beyond vector analysis to the yet more pow-
erful terminology of differential forms, equivalent in its essential aspects to
what is known to physicists as tensor analysis.

As explained in Chapter 2, vector analysis draws its strength from its
invariance under rigid motions: translations and rotations. The notion of
absolute position, or frame of reference, should not play a role in the state-
ment of physical laws. In general, physical properties are affected by other
transformations. For example, a shear (Figure 4.1), such as that given by
the transformation from the u,v plane to the z,y plane by

r = u+v,
y =

distorts distances and angles. But, there are some physical laws and prop-
erties that are invariant under any continuous deformation of space. A good
example of this involves the lines of magnetic force. These form closed loops
and have the property that for any closed volume that does not include
the magnet, the number of lines of magnetic force entering this volume is
equal to the number of lines of magnetic force that leave it. This property
is known as incompressibility, and it remains no matter how we stretch,
twist, or deform our space.
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FIGURE 4.1. The shear: = u + v,y = v.

Albert Einstein (1879-1955) based his “Die Grundlage der allgemeinen
Relativitédtstheorie” or “The Foundation of the General Theory of Rela-
tivity” on the assumption that the description of gravity must incorporate
just such an invariance. In his words (the italics are his),

The general laws of nature are to be expressed by equations
which hold good for all systems of coordinates, that are co-
variant with respect to any substitution whatever (generally co-
varant).

The problem is to find such an invariant (or, in the terminology of tensor
analysis, covariant) language. Fortunately, by 1916, when Einstein pub-
lished his treatise, such a language was already well developed, the language
of differential forms.

We owe the terminology of differentials to Leibniz, but a real under-
standing of them did not begin until the mid-1800s. Calculus can be used
to compute geometric quantities, such as length, surface area, and vol-
ume. The study of differential forms arose out of the nineteenth-century
project to use the formulas of calculus as the foundation for geometry.
This had its roots in work of Carl Friedrich Gauss (1777-1855) and Gabriel
Lamé (1795-1870), among others, but it really began in 1854 with Georg
Friedrich Bernhard Riemann (1826-1866) and his thesis “Uber die Hy-
pothesen welche der Geometrie zu Grunde liegen” or “On the Hypotheses
which Lie at the Foundation of Geometry.” A key feature of this new geom-
etry, today called Riemannian geometry, is the invariance of the basic defi-
nitions under continuous deformations. In the years after Riemann’s death,
his ideas were developed by many mathematicians, most notably Eugenio
Beltrami (1832-1900), Elwin Bruno Christoffel (1829-1900), and Rudolf
Lipschitz (1832-1903). Differential forms as we shall regard them were first
described in 1899 in an article by Elie Cartan (1869-1951) and in the third
volume of Les Méthodes Nouvelles de la Mécanique Céleste or New Methods
of Celestial Mechanics by Henri Poincaré (1854-1912). In the closing years
of the nineteenth century and into the twentieth, Gregorio Ricci-Curbastro
(1853-1925) of the University of Padua and his student Tullio Levi-Civita
(1873-1941) began the task of restating the laws of physics in terms of
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differential forms and the invariants of Riemannian geometry.

It was this work that Einstein drew upon in formulating general rela-
tivity. The term tensor analysis was his invention. The word tensor goes
back to Hamilton’s quaternions, out of which vector analysis arose, and the
sense in which it is used there is analogous to the manner in which we shall
view differential forms. Einstein’s designation suggests the strong ties that
in fact exist between tensor and vector analysis. The distinction between
tensors and differential forms is largely a matter of notation. I have chosen
the language of differential forms because I find it simple and direct and
because the rules governing the manipulation of differential forms or ten-
sors are mysterious unless one keeps in mind the origins of these creatures
in differential and integral calculus.

4.2 Differential 1-Forms

We begin with the simplest of all differential forms, the different:al
dz.

More precisely, this is a constant differential 1-form, or simply a I-form.
First-year calculus has problems with this object. The definition in Thomas
and Finney’s Calculus and Analytic Geometry is typical: “We define dz to
be an independent variable with domain (—o00,00).” Why, if it is only an
independent variable, use such a distinctive notation? The reason is that
dz satisfies a curious relationship: if y = f(z), then the differentials of z
and y are linked by

dy = f'(z) dz. (4.1)
Where does this relationship arise? The answer: in integration. If yo =
f(zo) and y1 = f(z1), then

/y:l dyz/a: f(z) dz.

The lesson is that differential forms exist to be integrated. This is where we
shall look for the definition of a differential.

Given a differential form, such as 3z dz, we are only missing the limits
of the integral. Once those are supplied, we can evaluate the integral over
the line segment between those points. Thus, our differential form 3z2 dx
can be viewed as a mapping from the set of all finite intervals to the set of
real numbers:

b
[a,b] — / 3z dx = b3 — a3.
a
If we introduce a change of variables, for example £ = 2t + 1, then
Equation (4.1) gives the relationship
3z2dr = 3(2t +1)22dt = (24t + 24t + 6) dt,
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which implies that this differential form is also defined on the t axis, sending
[(a—1)/2,(b—1)/2] to precisely the same real number:

—1b-1 (b—1)/2

[a , f’——] — (24% + 24t + 6) dt = b® — a®.
2 2 (a-1)/2

The differential form is thus invariant under invertible differentiable trans-

formations.

Definition: A differential I-form in one variable, call it g(z) dz, is a map-
ping from the set of finite intervals to the real numbers defined by

b
g(z) dz : [a,b] — / g(z)dz € R.

Furthermore, it is invariant under invertible differentiable transformations
as follows. If z = f(¢), then g(z) dz = g(f(t))f'(t) dt, and

F7b)

g(f N @) dt: [f (), f1 )] — e g(f@)f'(t) dt

= /ab g(z) dz.

This may all be a bit confusing, especially as nothing really new has been
said, and yet the usual way of looking at integrals has been turned on its
head. You are accustomed to viewing integration as something you do to a
function. We are now going to regard it as the action of a differential on a
finite interval. The key to remember is that we are focusing on the differ-
ential inside the integral and viewing it as a mapping from finite intervals
to real numbers.

Constant 1-Forms in Several Variables

In one dimension, dz is a mapping from the interval [a, b] to the number
b—a. In two dimensions, the z,y plane, we define dz to be a mapping from
a directed line segment to the the change in the z coordinate. We thus
have, for example,

(3.2)
/ dr = 3—-1 = 2,
(

1,5)

(3,2)
/ dy = 2-5 = =3.
(1,5)

As we move to higher dimensions, the differential form begins to take
on physical significance. Consider a constant two-dimensional force field:
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at any point in the z,y plane the force exerted on a particle is the same
constant vector, for example, (2,3). We want to compute the amount of

work done by this force field as it moves a particle from @ to b along a
straight line. .
The displacement as we move from & to b is

J=g—d= (bl -—al,bg—az).
If we let Az denote the change in the z coordinate,
Az = bl - ai,

and Ay the change in the y coordinate,

Ay = b2 — az,
then .
d = (Az, Ay).
From Section 2.2, we know that the work done by our force field is
Work = F.d
~ (2,3)- (Az,Ay)
2Az + 3Ay.

For this reason, it is natural to associate to our constant force field the
constant differential 1-form

2dz+3dy
and to define
b 5 b
/2dw+3dy = 2/ d$+3/ dy
= 2Az+3Ay.

The differential 1-form corresponding to a constant force field is therefore
a mapping from directed line segments to the amount of work done by the
field as it moves a particle along this line segment.
Similarly, in three dimensions, a constant force field such as (4, -1, 3) is
described by a 1-form:
4dz — dy + 3 dz.

The value of the integral of this 1-form over the directed line segement from
@ to b, where .
b—a=(Az,Ay,Az),

b
/ 4dr —dy+3dz=4Az - Ay+ 3 Az.
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As an example,
(-1,7,4)
/ 4dr—dy+3dz = 4(-3)-(2)+3(7) = 7.
(2757_3)

Note that changing the direction of our line segment so that we travel
from b to @ changes the sign on the amount of work done, and thus changes
the sign of the integral:

(2,5,—3)
/ ddz —dy+3dz = 4(3) — (—2) +3(-7) = -T.
(-1,7,4)

Evaluating 1-Forms by Pullbacks

We can also evaluate the 1-form 4 dz — dy+ 3 dz by using a parametrization
of the line segment from @ to b:

(z,y,2) = @+t(b—a) = (1—t)@+th.

As t ranges from 0 to 1, (z,y,2) goes from @ to b.If G = (2,5,—3) and
b= (-1,7,4), then the parametrization is

(z,9,2) = (2,5,-3) + t(-3,2,7),

or,
r = 2-3t
y = 5+2t (4.2)
z = —=3+4Tt.

The differentials of z, y, and z can be expressed in terms of the differential
of t:

dr = -3dt,
dy = 2dt,
dz = T7dt,

and so our 1-form can be expressed as a 1-form in the single variable t:

4dr—dy+3dz = —-12dt—2dt+21dt
7dt.

We call 7dt the pullback of 4dx — dy + 3 dz. The system of Equations (4.2)
took us from ¢ space to z,y,z space. We have used it to pull a differential
form in z,y,z space back to a differential form in t space.
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In t space, our integral is from 0 to 1, and so we have

(-1,7,4) 1
/ 4dr —dy+3dz = / 7dt = T.
(2,5,~3) 0

Nonconstant 1-Forms

The advantage of using a pullback to evaluate a 1-form is most evident
when the coefficients of the differentials are not constant. In most cases,
the force vector at any given point in a three-dimensional force field is going
to depend on where we are. That is, the z, y, and z components of our force
will each be functions of z, y, and z:

—

F(x9y7 Z) = (fl(l‘?y’ Z), f2($7y7 Z), f3(xvy7 Z))

The corresponding 1-form in three dimensions is
fl(x9 Y, z) dz + f2(wa Y, Z) dy + fS(:L‘a Y, Z) dz.

Given the directed line segment from @ to b, we define

b
\/; fl(l‘,yv Z) dr + f2($,y7 Z) dy+f3(a:,y, Z) dz

to be the work done by this force field as it moves a particle along the
directed line segment from a to b.

As we shall demonstrate in Chapter 5, we can evaluate this 1-form by
parametrizing our line segment, substituting for z, y,and z the appropriate
functions of ¢. For example, let @ = (0,3,2) and b = (—5,2,0). The line
segment from & to bis parametrized by

—5t,
= 3-1t,
z = 2-2t.
If the force at (z,y, 2) is given by (2% +y, —z + 22,yz), then the work done

by this field in moving a particle along the directed line segment from & to
b is

(~5,2,0)
/ (22 +y)dz + (—x + 22) dy + yz dz
(0,3,2)

= /1(25t2 + 3 —t)(—5dt) + (5t + 4 — 4t)(—dt)
0

+ (2t% — 8t + 6)(—2 dt)
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FIGURE 4.2. Constant fluid flow.

1
/ (—129¢% 4 20t — 31) dt
0

—43% + 1062 — 31|,
= —64.

Two-Dimensional Fluid Flows

Consider a sheet of liquid flowing over a two-dimensional plane at a uniform
velocity; at each point, the velocity is the same, for example, (4,1). Now
consider a line segment stretched across the flow, say from (3,1) to (0,5)
(Figure 4.2). The problem before us is to compute the rate at which our
fluid is crossing this line segment.

The fluid that flows across our line segment in one unit of time is rep-
resented by the parallelogram defined by the flow vector, (4,1), and the
vector representing our segment, (0,5) — (3,1) = (—3,4). Since we have
uniform flow, the quantity of fluid per unit time is the area of this paral-
lelogram. If we imbed our vectors into three-dimensional space, then this
area is precisely the magnitude of the cross product:

area = |(4,1,0) x (-3,4,0)]|
= 1(0,0,19)|
= 19.

The direction of our line segment gives us an orientation. If we decide
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that the flow that we have described is in the positive direction, then the
flow across the line segment from (0,5) to (3,1) would be defined as a
negative flow. A convenient convention is to decide that the sign agrees
with the sign of the 2z coordinate in the cross product. If you stand on the
directed line segment looking in its direction, then left to right is a positive
flow, right to left is negative. . .

If we define our line segment to be from @ to b where b — @ = (Az, Ay),
and if the flow velocity is the constant vector (v1,vs2), then the rate at
which the fluid crosses the line segment is the z coordinate of

(v1,v9,0) x (Az,Ay,0) = (0,0,v; Ay — vy Az)
= (0,0, —v; Az + v Ay).
This suggests that the 1-form corresponding to a constant fluid flow,

(v1,v2), should be
—vg dz + v dy.

With this definition, the rate at which the fluid crosses the directed line
segment from @ to b is given by

b
/ —vo dr + vy dy = —vg Az + vy Ay.
a

Examples

The constant flow (—2,3) crosses the segment from (-1, 3) to (3,1) at the
rate of

(3,1)
/ _3dz— 2dy = —3(4) — 2(~2) = —8.
(_1:3)

The negative sign implies that the flow is from right to left as seen standing
on (—1,3) and looking toward (3,1). The flow can also be computed by
parametrizing our line segment:

= —1+4t,
y = 3-—2t,

(3,1) 1
/ -3dz—-2dy = / —8dt
(_1»3) 0

= -8

The variable flow (3z + y,z — 2y) crosses this same line segment at the
rate
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(3,1) 1
/ (—z+2y)dz+ (Br+y)dy = / (7 — 8t)(4 dt) + (10t)(—2 dt)
(-1,3) 0
1
= / (—52t + 28) dt
0
= 2
Note that 2 represents the net flow. From (-1, 3) to (15/13,25/13), the flow

is positive (left to right). From (15/13,25/13) to (3,1), the flow is negative
(right to left).

4.3 Exercises

1. Evaluate the differential form 4dx—2dy+3dz on each of the following
directed line segments:
(a) from (—1,2,5) to (-3,3,2),
(b) from (-3,3,2) to (—1,2,5),
(¢) from (2,0,1) to (—1,0,2),
(d) from (—1,2,5) to (0,5,3),
(e) from (0,5,3) to (-3,3,2).

2. The line segment from (3,0,1) to (1,4, —2) can be parametrized by

r = 3-2t
y = 4,
z = 1-3t,
with ¢ going from 0 to 1, or by
Z,
= 6 - 2z,
z = Z + §$
o227

with = going from 3 to 1. Show that both parametrizations yield
the same result when using the pullback to compute the integral of
6 dz — 2dy + dz over the line segment from (3,0,1) to (1,4, —2).

3. Let ky dx + k2 dy + k3 dz be a constant 1-form and let a, 5, and ¢ be
any three points in z, y, z space. Prove that the integral of this 1-form
from @ to ¢'is the sum of the integral from a to b plus the integral
from b to C.
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Using the result of Exercise 3, prove that the amount of work done
by a constant force field in moving a particle from @ to b along a path
composed of straight line segments is independent of the path.

Show that the evaluation by pullback of a constant 1-form, k; dz +
ko dy + k3 dz, over the directed line segment from 7 to 3 does not
depend on which linear parametrization is chosen.

Find the amount of work done by the constant force field dz+3 dy—dz
as it moves a particle along the intersection of the planes z+y+2 = 1
and z — 2y = —2 from where it intersects the y, z plane (z = 0) to
where it intersects the z,z plane (y = 0).

. Evaluate the differential form ydz +2dy+xzdz on each of the following

directed line segments.

(a) from (0,2,-1) to (3,0,1),
(b) from (3,0,1) to (0,2, 1),
(¢) from (3,1,2) to (—1,1,1)
(d) from (0,2,-1) to (1,3,2),
(e) from (1,3,2) to (3,0,1).

y

. Prove that in an arbitrary force field the amount of work done in

moving from & to b may depend on the path.

. Show that the gravitational field generated by a body of mass M at

the origin is given by

z Yy z
—GM(;§ dz + ;gdy+;§dz),
where r = /22 + y2? + 22. (Note that this 1-form is not defined at
the origin.)

Prove that the work done by the gravitational field of Exercise 9 in
moving a particle along the directed line segment from & to b depends
only on |@] and [b|.

Prove that the work done by the gravitational field of Exercise 9
depends only on the endpoints of the path.

Consider a cyclonic force field circling the z axis in a counterclockwise
direction with a strength inversely proportional to the distance from
the z axis. Show that this force field is described by the 1-form

—ydzr zdy
c(w2+y2 +w2+y2)’

for some constant ¢. (This 1-form is not defined on the z axis.)
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Find the amount of work done by the force field of Exercise 12 over
each of the following directed line segments:

(a) from (1,-1,0) to (1,1,0),
(b) from (1,-1,0) to (—1,0,0),
(c) from (—1,0,0) to (1,1,0).

Consider the 2-dimensional flow (3,—1). Find the rate at which it
crosses each of the following line segments:

(a) from (2,2) to (3,5),
(b) from (3,5) to (2,2),
(c) from (2,2) to (3,2),
(d) from (3,2) to (3,5),
(e) from (—2,1) to (4,—-1).

Consider the 2-dimensional flow that has the velocity (z + y,zy) at
the point (z,y). Find the rate at which it crosses each of the following
line segments:

(a) from (2,2) to (3,5),
(b) from (3,5) to (2,2),
(c) from (2,2) to (3,2)
(d) from (3,2) to (3,5),
(e) from (—2,1) to (4,—-1).

y

Find the rate at which the fluid flow
(y—v*)dz + (zy — z)dy

crosses the line segment from (2, —2) to (2,4). Where along this seg-
ment is the flow positive and where is it negative?

Find the rate at which the fluid flow of Exercise 16 crosses the line
segment from (4, —2) to (2,6). Use the pullback to determine where
the flow is positive and where it is negative.

Consider a fluid flow emerging from the origin at a constant rate and
flowing uniformly out in all directions. If we assume that our fluid is
incompressible, then the rate at which the fluid flows into any given
region must equal the rate at which it flows out of the region. In
particular, if we take as our region the annulus with its center at the
origin, an inner radius r;, and an outer radius 7o, then the rate at
which the fluid crosses the circle of radius r; must equal the rate at
which it crosses the circle of radius ro. Show that this implies that
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FIGURE 4.3. Oriented triangles.

the velocity of the flow is inversely proportional to the distance from
the origin and that the 1-form describing this flow is given by

-y dzx zdy
c<w2+y2 +$2+y2)'

4.4 Constant Differential 2-Forms

Differential 1-forms are mappings from directed line segments to the real
numbers. Differential 2-forms are mappings from oriented triangles to the
real numbers.

Consider a triangle in the z,y plane with vertices at @, 5, and ¢. We
denote this triangle by .

T =1d,b, ]

and say that it has a positive orientation if traveling from a to b to ¢ and
back to @ makes the circuit of the boundary in a counterclockwise direc-

tion. It has a negative orientation if the order of the vertices is clockwise
(Figure 4.3). The differential 2-form

dz dy

is a mapping from oriented triangles in the z,y plane to their signed area.
That is, if the orientation is positive, then dz dy maps the triangle to its
area. If the orientation is negative, then it maps the triangle to the negative
of its area:

dz dy : [(0,0),(3,0),(0,4)] — 6,
dz dy : [(0,0),(0,4),(3,0)] — —6.

The constant differential 2-form

k dz dy,
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maps an oriented triangle to k times its signed area.
The area of the triangle

T = [a@, b, €] = [(a1,az2), (b1, b2), (c1, c2)]

is half the area of the parallelogram defined by b—dandc— @, and so the
signed area of our triangle is half the 2z coordinate of

(b1 — a1,b2 — a2,0) x (c1 — ay,c2 — az,0)
= (0’ 0, (bl - al)(c2 - a2) - (b2 - 0'2)(01 - al)) .

If we define the integral over T of dx dy to be the value of dz dy on T, then

[ dzdy=3 (@1~ a(ea—aa) - (ba - ax)r - ). (43
T

As an example, let T = [(1,2),(4,0), (0, —2)]. The value of the integral
of 5 dx dy over T is

/ 5dedy = 2[(4—1)(~2-2) ~ (0~ 2)(0~ 1] = 35
T

The projection of a point (z,y, z), onto the z,y plane is the point ob-
tained by setting the z coordinate equal to 0: (z,y,0). The projection of
the triangle

(@, b, €] = [(a1, a2, as), (b1, ba, bs), (c1, c2, ¢3)]
onto the z, y plane is the triangle defined by the projections of the vertices:
[(0,1, as, 0)7 (bh b27 0)7 (Ch C2, 0)]

We define the differential 2-form, dz dy, in three-dimensional space to be
the mapping from an oriented triangle T = [d@, b, €] to the signed area of its
projection onto the z,y plane, which is the z coordinate of %(5 —d) x (€—a).

Similarly, dz dz maps this triangle to the signed area of its projection
onto the z,z plane which is the y coordinate of (b — @) x (¢ — @). The
2-form dy dz maps this triangle to the signed area of the projection onto
the y, z plane, the = coordinate of %(5 — @) x (¢— a@). (We put the z before
the z in dzdz because k x 7 = 7. The positive y axis is in the positive
direction relative to the z,z plane, but not to the z, z plane.)

We have shown that

%(E_fi) x (€—@d) = (/Tdydz,/szdx,/Tda:dy), (4.4)

where T = [, b, ).
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If we take
T = [(170’ 2)7 (_17 173)1 (Ov 27 2)]

to be our oriented triangle, then

(b—a) x (¢— @)

%(—2, 1,1) x (—1,2,0)

1 3
(-1-1-2).

Using this and Equation (4.4), we see that

/d:cdy =
T
/dzda: =
T
/dydz = -1
T

Three-Dimensional Fluid Flow

N =

|

NI—= N W

We consider a three-dimensional fluid flowing at a constant velocity, ¥ =
(v1,v2,v3). In three dimensions, it does not make sense to speak of the rate
at which this fluid crosses a line segment, but rather the rate at which it
crosses a surface. We shall take our surface to be the triangle T = (@, b, ¢].
The positive direction from this triangle is defined to be the direction of
the normal vector given by

ii=(b—a) x (¢— a). (4.5)

Equivalently, if we circle the boundary from a to b to ¢, then the normal
vector points in the direction of movement of a right-hand screw turned in
this direction (Figure 4.4). A flow across our triangle is positive if and only
if its component in the direction of the positive normal is positive; that is,
if and only if

v-7i > 0.

The volume of fluid crossing our triangle per unit time is the volume of
the parallel prism whose base is our triangle and whose sides are determined
by @ (Figure 4.5). This is half the volume of the parallelepiped defined by
7, b—a, and ¢ — @, which is half the scalar triple product of these three
vectors. Observe that if we take our three vectors in this order, then the
sign will be correct: the rate of flow across the triangle is
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FIGURE 4.4. An oriented triangle in 3-space.

\\\\

FIGURE 4.5. Three-dimensional flow across a triangle.
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7-(b-a) x (¢- @)

=v1/dydz+v2/ dzda:+v3/ dx dy
T T T

= / v1 dydz + v dzdz + v3 dz dy. (4.6)
T

N~

It therefore makes sense to identify the constant flow ¥ = (v, vg,v3) with
the constant differential 2-form

vy dydz + vg dz dx + v3 dz dy.

Example

To find the rate at which the constant flow (2, —1,3) crosses the triangle
T = [(09 17 —2)) (37 1) 0)7 (—2) 2, 1)]’

we find the signed areas of the projections of this triangle onto the y, 2-,
z,z-, and z,y planes:

1 -13 3
5(3)0) 2) X (-27 173) - (-17 T) 5) ’

and then we evaluate

/2dydz—dzdw+3dwdy = 2(—1)-—(—%)+3(%)
T

Pullbacks

We can also evaluate the integral in Equation (4.7) by using a pullback to
the triangle
U= [(0’ 0)’ (I’O)a (0, 1)]

in the u, v plane. A mapping from this triangle to
T =1(0,1,-2),(3,1,0),(-2,2,1)]
is given by
3u — 2v,
y = l+v,
z = =24 2u+ v.
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The problem at hand is to determine how the differentials dz dy, dz dz,
and dydz are related to dudv. Our mapping takes the unit square with
vertices at (0,0),(1,0),(1,1), and (0,1) in the u,v plane to the parallelo-
gram with vertices at (0,1),(3,1),(1,2), and (—2,2) in the z,y plane. The
signed area of this parallelogram is the z coordinate of

(3,0,0) x (-2,1,0) = (0,0,3),

which is 3, and so 1 unit of area in the u, v plane corresponds to 3 units of
area in the z,y plane which means that

dz dy = 3 dudv,

so that our integrals are related by

/da:dy:/ 3 dudv.
T U

In general, the mapping from the triangle
U =((0,0),(1,0),(0,1)]

to the triangle with vertices at

6: = (a17a27a3)a
I; = (b17b27b3)7
¢ = (c1,02,¢3)

is given by

a1+ (by —a1)u+ (1 — a1)v,
ag + (b2 — a2)u + (c2 — az)v,

z = az+ (bs —az)u+ (c3 — az)v.

The unit square in the u, v plane is mapped to the parallelogram in the
z,y plane, whose signed area is the z coordinate of

(b1 — a1,¢1 —a1,0) x (ba — ag,c2 — a2,0)
= (0,0, (b1 — a1)(c2 — a2) — (b2 — a2)(c1 — a1)),

and so
dzdy = ((b1 — a1)(c2 — ag) — (b — az)(c1 — a1)) dudv. (4.8)
Similarly, we have that

dzdzx = ((bs—a3)(c;1 —a1)— (by —ai)(c3 —az))dudv, (4.9)
dydz = ((by —a2)(c3 —a3) — (b3 — a3z)(c2 —a2)) dudv. (4.10)
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Fortunately, we do not have to memorize these unwieldy formulas. Note
the relationships between the 1-forms:

dr = (b1 —a1)du+ (1 —a1) dv,
dy = (b2 —ag)du+ (c2 — a2) dv,
dz = (bs—a3)du+ (cz—a3)dv.

We need rules for multiplying differentials so that the products dz dy, dz dz,
and dy dz will be correct.

Rules for Multiplying Constant Differential Forms

1. Constants commute with differentials:

du(k dv) = k dudv. (4.11)

2. Multiplication of constants and differentials is distributive:

(k1 + ko)du = ki du+ ks duy, (4.12)
k(du+dv) = kdu+kdv. (4.13)

3. Multiplication of differentials is anticommutative:
dudv = —dv du. (4.14)
This implies that the product of a differential with itself is 0:

dudu = 0. (4.15)

Using these rules gives us precisely the results we want. For example,

drdy = [(by —a1)du+ (c1 — a1) dv] [(b2 — a2) du + (c2 — az) dv]

(b1 — a1)(b2 — a2) dudu + (by — a1)(c2 — a2) dudv
+ (c1 — a1)(bg — az) dvdu + (c; — a1)(c2 — ag) dvdv

= [(by — a1)(c2 — a2) — (b2 — a2)(c1 — a1)] dudv.

To emphasize the point that multiplication of differentials is not commu-
tative, one often sees the special symbol “A”, called the wedge or ezterior
product:

du A dv = —dv A du.
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I have chosen to suppress this symbol because, for our purposes, differ-

entials never multiply in any
differential forms is known as

Example

other way. The anticommutative algebra of
the ezterior algebra.

Returning to our original example, we have

dr
dy
dz

3du—2dv,
dv,
2du+ 3 dv,

and so

dz dy (3du — 2dv) dv

3dudv,

(2du + 3 dv)(3 du — 2 dv)
—13 dudv,

(dv)(2du + 3 dv)

-2 dudv.

dzdx

dydz

Knowing the pullbacks, we can evaluate the integral over T

/ 2dydz — dzdx + 3dxdy
T

/ 2(—2dudv) — (—13 dudv) + 3(3 dudv)
U

/ 18 du dv
U

=9.

4.5 Exercises

1. Evaluate the differential form 3dz dy on each of the following oriented

triangles:
a) [(0,0), (4,0), (2, 1)),
b) [(5,2),(1,3),(3,4)],

( )

( )
c) (3,4),(1,3),(5,2)],

(d [(1,0,-2),(3,1,5),(-2,1,0)].
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2. Find the mappings taking the triangle [(0,0), (1,0), (0,1)] in the u,v
plane to each of the following oriented triangles in z,y, z space:

(a) [(0,1,-3),(2,1,5), (- 206)]

)[(206)(215)( =3,

(© (2, 1)(230)(141)]

(d) (1, 32)(211)(0 -7,5)},
(

(e) [(-1,2,3),(0,3,4),(2,5,6)].
3. Find the pullback of
2dydz+3dzdx —2dzdy
for each of the mappings in Exercise 2.
4. Evaluate the differential form
2dydz+3dzdzr —2dz dy

for each of the mappings in Exercise 2.

5. Find the rate at which a fluid flowing with constant velocity v =
(3,0, —1) crosses each of the following triangles:
(a) [(-2,1,0),(5,3,-1),(8,-5,2)],
(b) [(8,-5,2),(5,3,-1),(-2,1,0)],
(¢) [(1,-1,0),(2,0,2),(3, -2, -3)],
(d) [(0,0,0),(0,1,0),(1,0,0)],
(e) [(1,0,0),(0,1,0),(0,0,1)],
f) [(0,0,0),(0,0,1),(0,1,0)],
g) [(0,0,0),(1,0,0),(0,0,1)].

/-\
o~ o~ o~ o~

—~~

6. The four triangles of parts d through g of Exercise 5 are the faces of
a tetrahedron (Figure 4.6), oriented so that the positive direction is
outward on all four faces. Prove that for any constant flow, the sum
of the rates at which the fluid crosses each of these faces is zero.

7. Using Exercise 6 and pullbacks, show that for any constant flow and
any tetrahedron whose triangular faces are all oriented outward the
net rate at which the flow crosses the surface of the tetrahedron (the
sum of the rates at which the flow crosses each of the faces) is zero.

8. Show that the plane containing the triangle T = [(0,1,-2),(3,1,0),
(—2,2,1)] is 2z + 13y — 3z = 19. We can solve for z in terms of
and y. Use this and the rules for multiplying differentials to express
2dydz — dzdx + 3dx dy in terms of just dz dy.
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FIGURE 4.6. Tetrahedron.

The projection of T = [(0,1,-2),(3,1,0),(-2,2,1)] onto the z,y
plane is S = [(0,1),(3,1),(—2,2)]. Find the area of this triangle.
Using Exercise 8, evaluate

/ 2dydz —dzdx + 3dx dy
T

by means of the pullback to the z,y plane. Compare your answer
with the example on page 93.

Find the rate at which the constant flow 3dydz + 2dzdx — 5dxz dy
crosses the triangle in the plane

r4+2y+32=6

with vertices on the z, y, and 2 axes, oriented so that (1,2, 3) is the
positive direction.

If a, I_;, and ¢ are on the same line, then

—

C=d+tb-a)
for some real number ¢. Find a mapping from [(0,0), (1,0), (0,1)] to

@, b,a+ t(g — a@)] and show that the pullbacks of dz dy, dzdzx, and
dy dz are all 0.

Show that the evaluation by pullback of a constant 2-form, ky dydz+
ko dz dz + k3 dz dy, over an oriented triangle, T' = [d, b, €], does not
depend on which linear parametrization is chosen.

Consider a fluid flow in three dimensions that emerges from the origin
at a constant rate and flows uniformly out in all directions. If we
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assume that our fluid is incompressible, then the rate at which fluid
flows into any given region must equal the rate at which it flows out of
that region. In particular, if we take as our region the spherical shell
with its center at the origin, an inner radius 71, and an outer radius
T2, then the rate at which the fluid crosses the spherical surface of
radius r; must equal the rate at which it crosses the spherical surface
of radius r. Show that this implies that the velocity of the flow is
inversely proportional to the square of the distance from the origin
and that the 2-form describing this flow is given by

c(a:dysdz + ydzsdw + zda;dy)’
T r r

where r = /12 + y2 + 22.

4.6 Constant Differential k-Forms

An oriented tetrahedron or pyramid with a triangular base (Figure 4.6)
is defined by four points, [, b,¢d ], and has a positive orientation if the
vectors b — a, ¢ — a, and d — @ are in the order of the right-hand rule.
Otherwise, it has a negative orientation. We define the constant differential

3-form
dr dydz

to be a mapping from the oriented tetrahedra to the real numbers defined by
taking an oriented tetrahedron to its signed volume. Since the tetrahedron

-,

T = [d,b,¢,d]
has one-sixth the volume of the parallelepiped defined by b— i, ¢ — d, and
d — d, we see that

/dwdydz= é(z?—a).(a—a) x (d - @). (4.16)
T

A constant 3-form, k dz dydz, maps T to k times the signed volume of T.
If we are in more than three dimensions, for example in 4-dimensional
space-time, the oriented tetrahedron is still defined by four points. The
differential dz dy dz maps this tetrahedron to the signed volume of its pro-
jection onto z,y, z space.
We can also evaluate 3-forms by pullbacks. Let

U =1(0,0,0),(1,0,0),(0,1,0),(0,0,1)]
in u, v, w space and let

T= [(alv az, 0,3), (blv b27 b3)’ (cly C2, 63)7 (dlv d27 dS)]
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in z,y, z space. We have a mapping from U to T given by

z = a1+ (by—a1)u+ (1 —ar)v+ (dy — a1)w,
y = az+ (b2 — a2)u + (cg — az)’U + (d2 — a2)w, (4.17)
z = az+ (b3 —az)u+ (c3 —az)v + (ds — az)w.

Under this transformation, the unit cube in u, v, w space is mapped to the

parallelepiped spanned by b— a, ¢ — a, and d—ain T,y, 2z space, and so
the relationship between the respective 3-forms is given by

drdydz = (b—ad) - (¢— @) x (d — @) dudv dw. (4.18)

It is left as Exercise 1 in Section 4.8 to verify that if we take the differential
equations

dr = (by—a1)du+(c1 —a1)dv+ (dy — a1) dw,
dy (b2 — a2) du + (c2 — ag) dv + (d2 — a2) dw, (4.19)
dz = (bs—a3)du+ (c3—a3z)dv+ (d3 —a3) dw

and multiply together dz, dy, and dz using the rules of Section 4.4, we get
precisely Equation (4.18).

Example

Let T = [(2,1,-3),(0,2,1),(5,—2,4),(—3,1,0)] and U as above. The map-
ping from U to T is given by

2 —2u + 3v — 5w,
14+u—3v,
z = —3+4u+Tv+ 3w.

The 3-forms are related by

dzdydz = (—-2du+3dv—>5dw)(du—3dv)(4ddu+T7dv+3dw)
= 18 dudvdw + 9 dvdudw — 35 dw du dv + 60 dw dv du
= (18—-9-35-60) dudvdw
= —86dudvdw.

Evaluating dz dy dz over T yields

1
(-86) = —14z.

/da:dydz = / —86dudvdw = 1
T U 6
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Simplices

A line segment is also known as a I-simplez, a triangle as a 2-simplex, and
a tetrahedron as a 3-simplez. In general, an oriented k-simplez lives in at
least k dimensions and is defined by k£ + 1 ordered points:

T = [dp, dy, a2, - - ., dk),
where each @; is a vector of at least k dimensions:
a; = (ay, azi,-..,a1), >k
The standard k-simplex in k-dimensional space is given by
U =|(o,0,0,...,0),(1,0,0,...,0),(0,1,0,...,0),...,(0,0,0,...,1)],

and the mapping from U to T is given by

Ty = a0+ (611 — aro)ur + (a12 — a10)uz + - - - + (@1 — a10)us,
Ty = ago + (@21 — ago)uy + (age — ago)uz + - -+ + (a2k — azo)uk,
T = ap+ (@ —ap)ur + (a2 — ao)ug + - - - + (@ — aio) uk.

(4.20)

k-Forms

The differential k-form
dxydzy -+ dxy

is a mapping from oriented k-simplices to their signed hypervolumes which
can be defined by the pullback

dridrg - dry, = [(au —ayo) duy + -+ - + (a1x — a10) duk]
X +++ X [(ak1 — ako) duy + - -+ + (agk — ako) dug]
= D(ﬁl - (-J:O, .o ,fl:k — [1:0) du1 d’U,Q s duk, (421)

where D(@, —dp, . ..,ar—dp) is the coefficient of du; ... duj obtained when
we use our rules for multiplying differentials.
As is shown in Exercise 13 of Section 4.8, the hypervolume of the standard

k-simplex is
1 1

k! 1.2. ... .k’
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and so

/dwl...al:,,,c - /D(d‘l—d‘o,...,d‘k—d‘g)dul~-~duk,
T U

1. L
ED(GI — ag,y...,0k —(l()). (422)

Evaluating D(gl, by, ... , bk)
A permutation of the set of integers 1 through k is a 1-to-1 and onto map-
ping, denoted by o, from this set to itself:

For i in {1,2,...,k}, o(3) is also in {1,2,...,k}.

If ¢ # 7, then o(3) # o(j).

For example, there are 24 permutations of the integers 1 through 4. One of
these permutations is

o(1)=3, o(2) =2, o(3)=4, o(4) =1

Let Sk be the set of all permutations of the integers 1 through k. For
1=1,2,...,k, let b; be a k-dimensional vector:

b; = (b1is b2iy - -+, bri).

You are asked in Exercise 7 of Section 4.8 to verify that the function D of
Equation (4.21) satisfies

k
D(El, ey gk) du1 v duk = Z H bia(i) dua(i). (4.23)

o€Sk i=1
The symbol II denotes the product:

k
[T bios) duoi) = (Bro(r) dttor)) (b2o2) Bio(@) -+ (bro(r) duor)) -

=1

If we define sgn(o) to be +1 or —1 so that

k
sgn(o) H dug(;) = duy - - - dug,
i=1
then .
D(by,...,bk) = Y sgn(o) [] biots)- (4.24)
0ESk =1
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Example

In the example given on page 100, we can write our transformation from
u, v, w space to «,y, z space as

T = 2 4+ -2u + v + -—buw,
y = 1 + u + -3v + 0-w,
z = -3 + du + v + 3w.

The vectors 51, 52, and 53 are the columns of coefficients of u, v, and w,
respectively:

bl = (_21 1’4)v
52 = (37 _37 7)»
53 - (_5’ 07 3)

Our function D must satisfy
dzdydz =D ((-2,1,4),(3,-3,7),(-5,0,3)) dudv dw,

and so
D ((——2’ 1’4)’ (3? —3? 7)7 ('—5707 3)) = —86.

We also get —86 if we use the formula given in Equation (4.24). There
are six permutations in Ss:

D ((-2,1,4),(3,-3,7),(=5,0,3)) = bi1b22bss — b11b2a3b32

— bi2b21b33 + b12b23b3;

— b13ba2b31 + bi3b21b32
(=2)(=3)(3) = (=2)(0)(7)

= (3)(1)(3) +(3)(0)(4)

= (=5)(=3)(4) + (=5)(1)(7)

= —86.

0-Forms

We have missed one type of differential form, the 0-form. A 0-simplez is
a point. A O-form is a mapping from a point in the given space to a real
number. In other words, 0-forms are simply real-valued functions or scalar
fields. It may seem strange to even bother defining O-forms, but as we
shall see later, it is convenient to include ordinary functions into the grand
scheme of differential forms.
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Summary

Most of the differential forms that we shall need are 0-forms, 1-forms, 2-
forms, or 3-forms.

0-forms: These are real-valued functions of one or more variables, for ex-
ample,

T—y+z

f@) =", gl@y) =acosy, hay.2) = G

A physical example of a 0-form is the function that describes the
temperature (a real number) at any point in a room (specified by a
3-dimensional vector).

1-forms: These map directed line segments (which are 1-dimensional) to
real numbers. In 3-dimensional space, we use 1-forms to describe force

fields:
zdr+ydy+ z2dz

(1132 + y2 + 22)3/2
is a field whose force vector always points away from the origin and
whose strength is the inverse square of the distance from the origin.

Its effect on a directed line segment is to compute the amount of work
done by the force field in moving a particle along that segment.

In 2-dimensional space, a 1-form can represent either a force field or
a fluid flow. In the latter case, it maps a directed line segment to the
rate at which fluid is flowing across that segment. The 1-form

zdr + ydy
z? + y?

represents a clockwise flow around the origin whose velocity at (z,y)
is

Y -z
x? + y2 ) x? + y2 :
In 1-dimensional space, a 1-form such as 3x2 dz is a mapping from

segments of the real number line to real numbers. The 1-form 3z? dz
takes the interval [a,b] to the real number

b
/ 3z2dz = b2 — a3.

2-forms: These map oriented triangles (which are 2-dimensional) to real
numbers. In 3-dimensional space, we use 2-forms to describe flows:
rzdydz +ydzdz + zdz dy
(1:2 + y2 + 22)3/2
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is a flow whose velocity at (z,y, 2) is

T Y z
((:c2 T2+ 2232 (@ + 12 + 22)3/2 (2 + 92 + z2)3/2) :

It assigns to the oriented triangle (or more generally to any surface
that can be built out of triangles) the rate at which fluid is flowing
through the surface.

In 2-dimensional space, a 2-form is a mapping from regions which can
be built out of triangles to the real number line. As an example, if
we have a thin, flat plate whose density at each point (z,y) is given
by the function p(z,y), then the 2-form p(z,y) dz dy assigns to any
2-dimensional region R the total mass of that region.

3-forms: These map oriented tetrahedra (which are 3-dimensional) to real
numbers. As an example, if p(z,y, z) denotes the density at the point
(z,y, 2), then the 3-form p(z,y, 2) dr dy dz maps a 3-dimensional re-
gion R that can be built out of tetrahedra to the mass of the region,
a real number.

4.7 Prospects

First, we take a quick glance back to vector algebra. There is a natural
correspondence between vectors and constant 1-forms:

(a,b,¢) —— adz + bdy + cdz.
In three dimensions, vectors also correspond to constant 2-forms:
(a,b,c) — adydz + bdzdx + cdz dy.

The cross product is simply the product of the vectors considered as 1-
forms:

(adz +bdy +cdz)(rdr+ sdy +tdz)
= (bt — cs) dydz + (cr — at) dzdz + (as — br) dz dy.

The dot product is the product of a 1-form and a 2-form:

(adz+bdy + cdz)(rdydz + sdzdz + t de dy)
= (ar + bs + ct) drdy dz.

Note that in three dimensions a scalar can be either a 0-form or a 3-form.
Looking ahead, it is clear that we have barely begun the task of evaluating
differential forms. For k > 2, we have only considered forms with constant
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coefficients. We shall need to expand this to forms whose coefficients are
real-valued functions of position. But more than this, we are going to have
to be able to evaluate forms on geometric objects that are more complex
than a simplex: on curves, contoured surfaces, and molded volumes. An
indication of how this is accomplished can be gained from a description of
evaluating 1-forms on differentiable curves.

We shall evaluate the 1-form

w= f(:l,‘, Y, Z) dr + 9($,y» Z) dy + h(.’L’, Y, Z) dz
over the curve
C = {(=(t),y(t), 2()) [t € [a, ]},
where z, y, and z are differentiable functions of ¢. The pullback of w is

dx

d d
2 b g(os) b))

o= (w2 & ﬁ

For example, let

w = ydr—zdy+zdz,
C {(cost, sint, t) |0 <t < 2rx}.

Since x = cost, y = sint, and z = t, we see that

dr = -—sintdt,
dy = costdt,
dz = dt.

The pullback of w is

w = (sint(—sint) — cost (cost)+t)dt
(-1 +t)dt,

Lo

and so we have

27
/ (=1+1)dt
0

t2 27
—t4+ =
2 0

= 2r(w—1).

This procedure will be justified in the next chapter, in which we shall also
show how to evaluate a k-form in k-dimensional space. In general, we shall
evaluate k-forms in spaces with more than k dimensions by parametrizing
the object over which we wish to integrate and by finding a pullback to
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k-dimensional space. To do this, we shall need to investigate differentiable
mappings of higher dimension and to find the effect of a pullback on an
arbitrary k-form. Chapters 6 through 9 will address this problem as we
study the differential calculus of vector fields.

The next step, taken in Chapter 10, is to investigate the fundamental
theorem of calculus in our new setting. For real-valued functions of a single
variable, the fundamental theorem carries the implication that the value
of an integral depends only on the endpoints of the interval and not on
how we get from one endpoint to the other. As revealed in the exercises
of Section 4.3, this is not always true in higher dimensions. Part of our
program will be to investigate under what conditions it is still true. More
generally, we shall see how the fundamental theorem of calculus extends to
the evaluation of differential forms in higher dimensions.

Finally, in Chapter 11, we shall take this amazing machinery and apply
it to the physical phenomena of electricity and magnetism, showing how
it reveals unexpected properties of these phenomena and how it leads to
special relativity and the equivalence of matter and energy.

All of this still begs the question of precisely what we mean by the integral
of a k-form and more importantly whether the value of our integral depends
upon our choice of parametrization. It does not, but this is a result that is
beyond the scope of this book. The interested reader is directed to Edwards’
Advanced Calculus.

4.8 Exercises

1. Verify that if we multiply dz, dy, and dz as given in Equations (4.19),
we get Equation (4.18).
2. Find the mappings taking
[(0,0,0),(1,0,0),(0,1,0), (0,0, 1)]
in u, v, w space to each of the following oriented tetrahedra in z,y, 2
space:
(8) (~2,0,3),(1,1,~2), (3,5,0), (4, ~2, 1)},
(b) [(1,0,0),(0,0,0),(0,1,0),(0,0,1)],
d) [(-3, 0 0) (2 1,3), (O, 0, 2), (5,1, -2)].
3. Find the pullback of dz dy dz for each of the mappings in Exercise 2.

4. Evaluate the 3-form dz dydz on each of the oriented tetrahedra of
Exercise 2.
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5. If a, 5, ¢, and d lie on the same plane, then

d=d+r(b—a)+s(@—a)
for some real numbers r and s. Find a mapping from
[(0’ 07 0)’ (1’ 07 0)7 (07 1’ 0)’ (0’ 0’ 1)]

to
@ b, ¢ d@+r(b—a) + s(¢— d))

and show that the pullback of dx dy dz for this mapping is always 0.
Consider the system of equations:

N = 3 - 2:1,‘1 +5.’L’2 —3.’L’3,

Y2
Yys = —1+5(L‘1-(L‘2+4£L‘4,

Ty — 31’3 + 21,‘4,

Y4 = 64 2x — 4.
Find the pullbacks of each of the following differential forms:
(a
(b

(c
(d

dy: dys,

dy, dya,

dy2 dys dya,

dyy dy2 dys dys.

~— N~

Using the definition of D given in Equation (4.21), prove that D can
be written as a sum over permutations as given in Equation (4.23).

A convenient way of describing a given permutation is to list the
images in order: o(1)a(2)---o(k). Thus, 35142 represents the per-
mutation

o(l) = 3,
o(2) 5,
o(3) 1,
o(4) = 4,
o(5) = 2.

Using this notation, list all permutations for £ = 3. What is the value
of sgn(o) for each of these permutations?

List all permutations for k = 4. What is the value of sgn(o) for each
of these permutations?
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11.

12.

13.

14.

15.
16.

17.
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The inversion number of a permutation is the number of pairs, (i, §),
for which ¢ < j but o(¢) > o(j). It is denoted by inv(c). As an
example, the permutation 35142 has six pairs of inversions: 3 > 1,
3>2,5>1,5>4,5>2,4>2, and so inv(35412) = 6. Prove that

sgn(o) = (—1)nv(@), (4.25)
Verify that for k = 3
D(by,b2,b3) = by - by x bs.
Let

51 = (07_37071)7

ba = (1,0,0,1),

b3 = (_4$07_270)7

b = (0,5—1,0).
Evaluate D(gl, 52, 53, 54)

Using induction and the fact that

1 k—1
/ AR
o (k—=1)! k!

justify the statement that the hypervolume of a fundamental k-sim-
plex is 1/k!.

In 4-dimensional space-time (z,y, 2,t space), a 4-dimensional vector
can be represented by either a constant 1-form or a constant 3-form.
Find the appropriate representations so that the product of a 1-form
and a 3-form corresponds to the dot product:

(a,b,c,d) - (e, f,g,h) = ae+bf + cg+ dh.

What is the analog of the cross product in four dimensions?

What is a constant 2-form in 4-dimensional space-time? (Note: it is
not a 4-dimensional vectar.)

Find the work done by the force field
(x+y)dr— (2z+1)dy+ (y — 2) dz
as it moves a particle along the curve

C={{t,t+1,t-1)|0<t <1}
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18.

19.
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Let ¢ be a fixed constant. Find the rate at which fluid crosses the
curve

y=c—cx?
directed from (—1,0) to (1, 0), if the fluid velocity at (z,y) is described
by the vector (—2z, 3y?). Find the value of ¢ that maximizes the rate

of flow.

Why do you think we define 2-forms and 3-forms in terms of triangles
and tetrahedra instead of parallelograms and parallelepipeds?
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Line Integrals, Multiple
Integrals

5.1 The Riemann Integral

There is a curious contradiction in the standard presentation of integral
calculus. It is an ancient subject rooted in the geometric investigations of
Archimedes of Syracuse (287-212 B.C.). His “method of exhaustion” for
computing arc lengths, areas, and volumes is recognizably equivalent to
our modern understanding of the integral as a limit of the summation

S f(z) Az — / f(@) da,

as the change in z becomes progressively smaller. Yet, in contraposition
to this, the most modern mathematics presented in most first-year calcu-
lus courses is the definition of the integral given by Bernhard Riemann
in his 1854 paper “Uber die Darstellbarkeit einer Function durch eine
trigonometrische Reihe” or “On the Representation of a Function as a
Trigonometric Series.”

What has happened is that the concept of the integral as an area under
a curve or as a limit of the sums of areas of approximating rectangles is
intuitively clear. In fact, the concept is so transparent that until the late
18th or early 19th centuries few mathematicians were led to think deeply
about what was involved. But, at this time, science turned to the physical
problems of finding models for mechanical vibrations and heat conduction.
These problems led to the introduction of infinite sums of trigonometric
functions, Fourier series, named for Joseph Fourier (1768-1830). His pa-
pers of 1807, 1811, and 1822 on heat conduction created great controversy
over whether he was justified in integrating an infinite sum of functions by
integrating each term in the summation.

In time, it was realized that this is a difficult question. In many cases,
there are no complications, but contradictions, paradoxes, and outright
errors can arise if such integration is not approached very carefully. The
need for a more precise definition of the integral became apparent. It was
in the context of integrating Fourier series that Riemann set what has
since become the standard definition of the definite integral as presented
in first-year calculus.
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A second impetus for a careful look at integration came from the investi-
gation of geometric invariants recounted in the previous chapter. Integrals
had been conceived in terms of areas and volumes. If they were now to de-
fine area and volume, a new characterization was needed in order to avoid
circular definitions. Since we shall not deal with Fourier series in this book,
most of the techniques presented in this chapter will be justified by an
appeal to the reader’s intuitive understanding of integrals. For a more rig-
orous treatment, the reader is directed to texts on real analysis or Edwards’
Advanced Calculus.

To the student who hopes to pursue mathematics well into the 20th
century, let me simply mention that by the end of the 19th, Riemann’s un-
derstanding of the integral had proven inadequate. Henri Lebesgue (1875-
1941) was to redefine the integral so that it could be applied to a far broader
class of functions.

Definition of the Riemann Integral

We restrict our attention to the definite integral of a bounded function over

a finite interval: ,
/ f(z) dz.

We choose a partition of this interval,
T={a=x0<x1 < <zn, =b},
set
Az =z; — 741,

and define the mesh of m, denoted ||r||, by

[|7|| = max Az;.
1<i<n

This is also sometimes called the norm of w. Note that n is not fixed but
depends on 7 and that our subintervals do not have to be of equal length.
However, as we make the mesh smaller, the number of subintervals, n, is
forced to become larger.

Given a partition of [a, b], we select points

z] € [zo, 1), 25 € 21, T2],..., 2 € [Tn-1, Tn].

A Riemann sum is an approximation to the integral given by

n

S f(al) Az,

i=1

We say that f is integrable or Riemann integrable over [a,b] if, regardless
of how we choose our points z},z3,...,z}, as the mesh of the partition
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approaches 0, the value of the Riemann sums approaches a fixed limit.
Equivalently, f is integrable over [a, b] if we can assign a value to f: f(z)dz
so that for any given ¢ > 0 (how close we want the Riemann sum to
approximate the integral), we can find a § (how small the mesh must be)
such that ||«|| < 6 implies

if(:c Az; — / f(z) dz

regardless of how we choose z7,z3,...,z}.

If f(z) is continuous on [a, b] or has only finitely many points of discon-
tinuity, then it will be integrable over [a, b]. The proof of this can be found
in Edwards’ Advanced Calculus.

< €,

5.2 Line Integrals

As we saw in Chapter 4, the integral of a 1-form over a curve is defined in
terms of a parametrization of that curve and the pullback to 1-dimensional
space. As we shall now see, that is a reasonable definition consistent with
the physical explanation of the integral as the amount of work done by the
force field described by our 1-form as it moves a particle along the curve.

Initially, we shall restrict our attention to curves in R2. Higher dimen-
sions present no additional difficulties. Let

f(z, y)dz + g(z, y) dy
be the 1-form to be evaluated on the curve
C = {(z(t), y(t)) [a <t < b},
where z(t) and y(t) are functions of ¢ with continuous derivatives in (a, b).

Let
F(t) = f(z(t), y(t), G(t) = g(z(t), y(t)).

We have defined the integral of our 1-form in terms of the pullback:

b dx dy
/c flz, y)dz + g(z, y) dy = / <F(t)~(—i—t— + G(t)gt—) dt. (5.1)

a

To justify this, let us divide our curve into small arcs by partitioning the
interval [a, b] into n subintervals:

[t07 tl]7 [tl7 t2]7 ceey [t’n—l’ t’n]a

where ¢ = tg < t; < -+ < t, = b. Let C; be the piece of C from
(z(ti=1),y(ti—1)) to (z(t:),y(t;)) (Figure 5.1) and let
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FIGURE 5.1. Approximating the curve by short lines.

Ati =t;—t;—1.

Let us focus on the integral of the 1-form f(z,y)dz as we move along C;. If
f(z,y) is a continuous function on C;, then F(t) is continuous on [t;_1, t;],
and so for any t} € [t;—1,t;], F(t}) will be a good approximation for f(z,y)
over C;. More precisely, we can guarantee that f(z,y) will be within any
prespecified amount of F(t}) if we have taken At; sufficiently small. The
effect of this is to imply that if f and g are continuous and our pieces of arc
are short enough, then on each particular C; we can treat our force field as
if it were constant:

| e ra@na = [ Fe)i+ow)
with a manageable error that can be made arbitrarily small.
From Exercise 4 of Section 4.3, the integral of a constant 1-form over any
path from @ to b is the same as the integral over the line segment from @
to b. Since F(t!) and G(t}) are independent of z and y, we see that

(xi,y:)
/ F(t?) dz + G(t) dy = / F(t}) dz + G(t}) dy
(

Tio1,Yi-1)

= F(t])(xi — zim1) + G(t]) (v — yi1).

3

We combine this result with the fundamental theorem of calculus for real-
valued functions of a single variable:

/ti '(t) dt = z(t;) — 2(ti-1),

ti—1

and we see that
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/C F(t}) dz + G(£}) dy
F(t7)[x(t:) — z(ti-1)] + G(t])[y(t:) — y(ti-1)]

t;

= F(t) / Y rwd + o) / V' (t) dt

ti—a ti—1

/ CRE () + Gy ()] dt.

ti—1

Using the continuity of F', G, =, and y’, this last integrand can be made
arbitrarily close to F(t)z'(t) + G(t)y'(t) over [t;—1,t;] by controlling the
size of At;. We thus have

3

/Cf(w,y)dﬂc+g(w,y)dy = Z/ (z, y) dz + g(z, y) dy

Z/ *) dz + G(t*) dy

Z / (F()Z' (t) + G(t)y (b)) dt

1
3 ||

:III

1

( ()2’ () + G()y' (1)) dt

I
s~ T

This has not been a proof of Equation (5.1), but rather a sketch of a
justification. Hopefully, it has been a convincing argument that when f
and g are continuous it makes sense to evaluate the integral in terms of the
pullbacks.

Integration with Respect to Arc Length

Recall from Chapter 3 that if we have a curve parametrized by

m(t) = (2(t),y(t), 2(1),

then the velocity vector at time ¢ is

o (dz dy dz
U(t)_(dt’dt’dt)’

the speed at time ¢t is

o= (2) 4 (@) 4 (%)’
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and the length of the arc from #(tg) to 7(t;) is given by

s(t1) — s(to) = /t "(t) dt.

Since d
s
Et‘ - ’U(t),
the differentials of s and ¢ are related by
ds = v(t) dt. (6.2)
Example

Let C be the curve y = y/z from z = 2 to z = 6. The integral

/yds
C

can be evaluated by using x as our parameter:
(z,y) = (z,V2).

With this choice of parameter, we have

dz\? [dy\? [
ds—\/((ﬂ) +<£) dr = 1+Z:;dl‘.
We therefore can evaluate our integral:
6 [ 1
/ yds / VZ/l+—dz
c 2 4z

1 /8
= 5/ vz + 1 dzx
2

6

- L §(4x +1)3/2

oo

2

=%

Mass and Center of Mass

It is often appropriate to integrate with respect to arc length. For example,
if we have a wire described by

7(t) = {(t,t3,1) |1 < t < 3},
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whose density, mass per unit length, at (z,y, 2) is

yZ
p(z,y,2) = o

then the total mass is calculated by dividing the wire into small pieces
where we treat the density as constant, multiplying each constant by the
length of the small piece, adding these masses, and then taking the limiting
case as the individual lengths approach 0:

Mass = /p(w,y,z)ds
"3
= / p(t, 12, )u(t) dt

t(l + 4t%)1/2 dt

3

Il

(1 4 4t2)3/2

2
'3
( 373/2 _ 53/2)
.823..

1

Given several point masses, m; at 1, mgy at Zs,...,m, at T, the center
of mass is defined as the point ¢ satisfying

Zmi(:i'i —5) =6,

or equivalently,
Z?:l mia_"‘i ( 5 3)

c=

If instead of point masses we have a solid wire C of known density p(Z) at
each point &, then the center of mass is given by

s JoZp(@) ds _ (fc wp(w) ds fc yp(w ds fC 2p(%) ds) 5.0
fC p(f) ds fC p fC p fC p(.’L‘ . .

For our example, if ¢ = (Z, 7, 2‘:), then

[P e2(1+4t%) /2 at
(37372 —5%/2) /12
3 [e(1+222)VI+ a2 —sinh ™' ]
16 (37372 — 53/2)
3(438v/37 — 18v/5 — sinh ™' 6 + sinh ' 2)

= = 2299...,
16 (373/2 — 53/2)
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LB +42) 2 ds
(373/2 — 53/2) /12
_ a4+ 42)3/2[] — 2 [24(1 + 4¢2)3/2dt
(373/2 _ 53/2)
3
33337 — 55 — [{5(1 +4t%)5/2]]
- (373/2 — 53/2)
1961 v/37 — 255

T (373/2 — 53/2) = 5.550... ,
[+ aa
‘T (373/2 —53/2)/12
An Alternate Notation
The line integral
/ fde+gdy+hdz
c

can also be expressed as an integral with respect to arc length. Let F be
the force field described by our 1-form:

F=(f,g,h).

If 7(t) parametrizes C, then the unit tangent to C' is

= U

F.
The amount of work done by the force field in moving a particle along C

can be expressed as
= U
/ F.—ds.
Cc v

Using the fact that ds = v dt and defining d7¥ = U'dt, we can write
F.g
c U

ds

I
S~

/fda:+gdy+hdz
c

dt

o
<Y

- dF. (5.5)

M,

T~
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This last is really no more than an alternate notation for the integral of the
1-form. You should familiarize yourself with it as the line integral is often
written in this manner.

5.3 Exercises

1. Integrate the 1-form zy? dx + y dy along each of the following paths

from (0,0) to (1,1):

(a) the straight line from (0,0) to (1,1),

(b) the line from (0,0) to (1,0) followed by the line from (1,0) to

(1,1),

(c) the lines from (0,0) to (0,1) to (1,1),

(d) the curve y = x2,

(e) the curve z = y?,

(f) the lines from (0,0) to (2,0) to (2,1) to (1,1).

2. Draw each path of Exercise 1 and compare the values of |, c zy?dz +
y dy. Find a path C from (0,0) to (1,1) for which

/a:yzda:+ydy=0.
c

w

. Repeat Exercise 1 for the 1-form zy? dz + z%y dy.

>

. Integrate the 1-form yz dz + 2z dy + zy dz over each of the following
paths from (0,1,0) to (2,1,1):
(a) the straight line from (0, 1,0) to (2,1, 1),
(b) the lines from (0,1,0) to (0,1,1) to (2,1,1),
(c) the lines from (0,1,0) to (2,1,0) to (2,1,1),
(d) the arc (2t,(2t — 1)%,t), 0< ¢t < 1.

5. Repeat Exercise 4 for the 1-form zy dr + yz dy + 2z dz.
6. Integrate the 1-form
—ydr+xdy
1:2 + y2

along each of the following paths from (—1,0) to (1,0):
(a) the lines from (-1,0) to (—1,1) to (1,1) to (1,0),
(b) the lines from (-1,0) to (—1,-1) to (1,—1) to (1,0),
(c) the lines from (—1,0) to (0, 1) to (1,0),
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(d) the lines from (—1,0) to (0,—1) to (1,0),
(e) the curve (—cost,sint), 0 <t <,
(f) the curve (—cost,—sint), 0 <t <.

7. Draw each path in Exercise 6. Can you find a path from (—1,0) to

(1,0) for which
/ —ydz +zdy — 0
c T+y?
Justify your answer.

8. Compare the results obtained in Exercises 1, 3, 4, 5, and 6. What can
you say about whether or not the value of the line integral depends
only on the endpoints of the curve over which you integrate? Ponder
what is different about these 1-forms.

9. Evaluate [(z?—2xy+y?) ds, where C = {(2cost,2sint)|0 < ¢t < w}.

10. Evaluate [,(z® — yz)ds, where C is the intersection of the planes
z+y—z=1land z=3z fromz=0tox =1.

11. Evaluate [, 2 ds, where C is the curve y = 252 fromz = 1 toz = 4.

12. Find the mass of a wire that is parametrized by C = {(3t%,(1 +
2t)3/2)|0 < t < 2} and that has a density given by p(z,y) = 2z+1.

13. Find the center of mass of a semicircular wire of uniform density and
radius 7.

14. Find the center of mass in terms of a of the spring coil of uniform
density described by

{(cost,sint,t) |0 <t < a}.

5.4 Multiple Integrals

The integrals of a 2-form over a region in R?, of a 3-form over a solid in R3,
or more generally of a k-form over a portion of R* are multiple integrals and
they form the backbone of integral calculus. The integral of a 2-form over
a piece of surface in R3 will be defined in terms of the pullback to a double
integral in R2. The integral of a k-form over a k-dimensional “manifold”
in R™ will be defined in terms of the pullback to a k-fold integral in R*.
The origins of multiple integration are hazy. It is at least implicit in
Newton’s Principia in which the total force exerted by a large body is cal-
culated by summing the contributions from each small volume of mass and
then passing to the limit where these small volumes approach points. Mul-
tiple integrals were freely used and occasionally misused in the eighteenth
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century. Augustin-Louis Cauchy (1789-1857) was among the first to rec-
ognize their potential problems. Karl J. Thomae (1840-1921) and Paul Du
Bois-Reymond (1831-1889) did much of the work of extending Riemann’s
notion of the integral to higher dimensions.

Double Integrals

We restrict our attention to bounded 2-forms over bounded rectangular
regions:

/f(x,wdxdy, R={(5,y)|a1 <o <by, az <y < b}
R

Just as it is helpful to think of an integral of a 1-form,

/a ' fle) da,

as the area of a region between y = f(z) and the z axis, so we can think
of the integral of a 2-form,

/ f(z,y) dedy,
R

as the volume of a region above the z,y plane whose height is given by
f(z,y). Thus, if R is the rectangle

R={(z,y)|0<z <1, 2<y<3},

/ zy? dz dy
R

is the volume of the solid lying above R, bounded above by the surface
z = zy? (see Figure 5.2).

If the region over which we are integrating, call it R*, is not a rectangle,
then we embed it inside a rectangle (Figure 5.3),

then

R* CR,

and define f(x,y) to be 0 if (z,y) is in R but not in R*. If the orientation
of R is not specified, then it is assumed to be positive. That is, positive
flow is in the direction of the positive z axis.

We approximate this volume with a Riemann sum. We partition R by
partitioning the segments on the z and y axes:

0 =T0<Ty < <Tym=0b1, a2=Yo <Y1 < <Yp=ba.
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FIGURE 5.2. The solid bounded above by z = zy?.

FIGURE 5.3. Embedding in a rectangle R.
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FIGURE 5.4. Chosen values of f(z,y) = zy°.

The mesh of this partition is the maximum over all ¢ and j of Az; =
z; —x;—1 and Ay; = y; —y;_1. Our partition gives us an n x m grid. Inside
each subrectangle, we choose z}; and y;;:

Ti-1 <z < T, yi-1 <Yy <y
A Riemann sum for this partition is given by the double sum
m n
Z Z f(@ij, Z/:]) Az; Ayj,
i=1 j=1

which is the area of the base, Az; Ay;, times the height at (z};, y};)-
As an example, let

flz,y) =2y®, R={(z,9)|0<z <1, 2<y<3}.
Let us take for our partition:

Tog = 0, Ty = .5, Io = .8, I3 = 1,
Yo=2, y1=22, y2=24, y3=27, ys=3.

The mesh is 0.5. The values of (z};,y;;) are plotted in Figure 5.4, with
vertical arrows representing the values of f (:cw,yu) The corresponding
Riemann sum is

(:4)(2.2)*(:5)(-2) + (0)(2.5)%(.5)(-3)
3)+ (. 6)(2)2< 3)(:2) + (-6)(2.4)%(:3)(:2)
3) + (.7)(2.8)%(:3)(:3) + (:8)(2.1)*(:2)(-2)
1) 2.3>2(.2><2> +(.9)(2.6)%(.2)(:3) + (.9)(2.9)*(-2)(:3)
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The double integral exists if and only if there is a real number, denoted
by [ f(z,y) dzdy, such that

I|1r||—»o sz(%’yw ) Azi Ay; = / f(z, y) dzdy.

=1 j=1

Most of the time it does not matter how we proceed in reducing the size
of the mesh. Let . be the partition of the x’s, 7, the partition of the y’s.
Let z}; depend only on i:

w:j =z,
and let y;; depend only on j:
y;’j = Z/;

If we let ||my|| approach 0 first, we see that

lim ,yi) Az A
el (Imn—»ozzf =33 Yi

=1 j=1

/ f(z,y) dedy
R

m
HfWoE: M E:f@w%)A%) Az;
=050 M
m be
Z( f(=},y) dy) Az;
az

llmz =0 &=

by ba
/ ( f(z,y) dy) dz. (5.6)

Reversing the order of our limits yields

n

lim " Zf z},y}) Az | Ay;
limy 120 4= a0

be by
/ ( f(z,y) dw) dy. (5.7)

flz,y)=zy*, R={(z,y)|0<z<1,2<y<3},

/ f(z,y) dody
R

For our example,

we have
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1, r3
/ ty?dzdy = / < / zy? dy) dzx
R 0o \J2

119
= —zdx
L3

19
6
In the other order, we also have that

3 1
/:cy2 drdy = / (/ zy? d$) dy
R 2 0
3 1 z=1
/ —w2y2 dy
2 2 =0

3
12
Sy dy
Ix

19
6

The name “multiple integral” reflects the fact that higher dimensional
integrals can usually be evaluated by doing an iterated integration as de-
scribed previously. But be careful: there are two potential traps lying in
wait for the unwary.

First Warning

The first trap is notational. It is common practice to drop the parentheses

in the iterated integral:
3 ol
/ / zy® dz dy (5.8)
2 Jo

/avy2 dx dy
R
1 3
= //avy2dydav. (5.9)
0 J2

It is tempting when looking at Equations (5.8) and (5.9) to say that the
integral of xy? dz dy is the same as the integral of zy? dy dz. We know that
this is not true because

zy? dz dy = —zy? dy dx

by the anticommutativity of differentials. The problem is that on the right-
hand sides of Equations (5.8) and (5.9) we are not multiplying our differ-
entials. Rather, we are iterating our integrals using two 1-forms.
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This is a strong argument for using the special notation, the wedge A
mentioned in Section 4.4, to signify the product of differentials:

/$y2dw/\dy=—/ zy? dy A dz.
R R

But since the confusion can only occur inside an integral, we shall adopt the
convention that a single integral signifies that we are integrating a differ-
ential form; more than one integral means that we iterate the integration:

/avy2 dedy = ——/a:y2 dy dz, (5.10)
R

R
3 1 1,3
//$y2d$dy = //xyzdyd:c. (5.11)
2 Jo 0o J2

If this is still confusing, put the parentheses back into the iterated integral:
3/ p1 1, 03
/ </ :cyzd:c) dyz/ (/ $y2dy> dz.
2 \Jo 0 \J2

Second Warning

Not all double integrals can be evaluated by iterating single integrals, and
order of integration will sometimes matter. Fortunately, for a continuous
function in a bounded region whose boundary can be expressed as a finite
set of differentiable curves, the integral always exists and can be found by
iterating in either order. The kinds of situations that lead to problems can
be found in Exercises 19 and 20 of Section 5.6. These are the only examples
in this book for which the order of integration is a problem.

Higher Dimensions

What is true in two dimensions carries over with very little modification to
higher dimensions. Let f(Z) be a bounded scalar field defined on a bounded
rectangular region R C R¥:

R = {(z1,z2,...,2x) | @; < x; < by}
We partition each interval [a;, b;]:
Tz, = (@i = Tio < Ti1 <+ < Tip, = by),

and for each k-tuple, j'= (j1,J2,---,Jk), 1 < ji < ny, choose z7; such that

*
Ti(j,—1) < Tip < Ty, -
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We have divided our region R into small hypercubes and chosen one point,
(av’{]-,av;f,...,av;‘cf, inside each. From this partition and these points, we
obtain the Riemann sum:

ny n2

Nk
* * *
Z Z E f(wlj‘aij‘v' "vwkj‘) Al‘l]& Azgj, -+ Azkjy,

J1=1j2=1 Je=1

where
Awij,- = :L‘,'ji — xi(ﬁ—l)*

Again, if f(Z) is continuous over a bounded region whose boundary is
made up of finitely many differentiable surfaces, then the limit of the Rie-
mann sums as ||«|| approaches zero exists, and we can find this limit by
successively evaluating the one-dimensional integrals in any order:

by bo b
/ f(&) dzy dzg - - - dxp, = / / f(&) deg drg—1---dzy. (5.12)
R ay Jaz ak

Example

Let

f(a:vyvz) = 3$2y+2ysinz,
R {(z,y,2)| —1<2<1,0<y<2 0<2<7/2},

n/2 p2 pl
/ / / (3z2y + 2ysin z) dz dy dz
0 0o J-1
1 2 pm/2
/ / / (3z%y + 2ysin z) dz dy dz
-1Jo Jo
! 2 z=n/2
/ / (3z%yz — 2ycosz)|._," dydzx
-1Jo
1 g2
/ / (3—7r$2y + 2y) dy dz
-1Jo \ 2
1 y=2
3
_ / (lngﬁ + yz)
L\ 4

dz
1
/ (37z® + 4) dz

-1
27 + 8.

then

/ f(z,y,2) dzdydz
R

y=0
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I I:'l L
ST

FIGURE 5.5. R = {(z,y) |z >0, 0 <y < 4—z%}.

Integration over Nonrectangular Regions

If we are to integrate f(z,y) = ry? over the region
R={(z,9)|220,0<y<d4-a?}

(Figure 5.5), we can define a new function that agrees with f(z,y) inside
R and is 0 everywhere else:

2 2
_ [ = 0<z<2 0<y<4-a
g(z,y) = { 0, otherwise.

Integrating g over the rectangle 0 < z < 2, 0 < y < 4 is the same as
integrating f over R:

/Rf(w,y)dwdy= /02/049($,y) dy dz.

As it stands, this appears of little practical use, but if we isolate the integral
with respect to y, we see that x is being held constant and that

4 4—z2 4
/ g(z,y)dy = / xy® dy + / 0dy
0 0 4—z2

4—2?
= / zy? dy
0

= Lra-o?

3
7 64z

= —% + 42° — 1623 + 3

and so

2 4 9 .
0 0 0 3 3
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FIGURE 5.6. T = {(z,9,2) | z,¥,2 >0, z +y+ 2 < 1}.

~256 256 _ 256 256
24 6 4 6
2
2

We could equally well have integrated over z first:

4 p2 4 4—y
/ / o(z,y) dz dy / (/ wy?dz) dy
0 JO 0 0

4 2 3
-y
/0 2 W

= — —32
3

32
3

A Nonrectangular Region in R?

Let us integrate f(z,y,z) = zyz over the tetrahedron (see Figure 5.6)
T={(z,y,2)|2,9,2>0, z+y+2<1}

We change the problem to integrating g(z,y, ) over the cube 0 < z <
1, 0<y<1, 0<z<1, where

_Joxyz f z+y+2<1,
g(x,y,z)—{o if z+y+z>1,

1 p1 1
/wyz dzdydz=/ // g9(z,y, z) dx dy dz.
T 0o Jo Jo

and so
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Recall that an iterated integral corresponds to a Riemann sum. The
innermost integral is the innermost sum; this is the one that we compute
first. If the integral on x is innermost, then we are fixing values of z and y
and integrating with respect to z. After this integration is accomplished,
we move out one layer to the integral over y, where we treat z as constant.
Finally, we integrate over z. To rewrite our integral in terms of the original
function, we work our way inward, finding the maximum possible range of
the outermost variables first and then expressing succeeding variables in
terms of those whose range has already been delimited.

The outermost variable, z, can take on any value from 0 through 1. Once
it has been fixed, y can only range from 0 to 1 — 2. If y were larger than
1—2 thenz > 0and £ < 1— y — z could not both be satisfied. Once
we have fixed both z and y, = can only range from 0 to 1 — y — 2. This is
precisely the region where g(z,y, z) = zyz:

1,1l pl
///g(x,y,Z)dﬂvdydz
o Jo Jo
1 pl—2z pl—y—2z
= // / zyzdxrdydz
o Jo 0
1 1-2 1
// (—(1——y——z)2yz>dydz
1-2 1
= // (yz+ yz+2yz —y?z - yz2+y2z2)dydz
1, 14 1, 1
—z— = A d
/()(24z 62 +4z 6z +24 )z

1
720°

A Glance Ahead

One very efficient way of handling nonrectangular regions is to change
variables. Thus, if R is the unit disc,

R={(z,y) |:L‘2 +y2 <1},
it is usually much easier to switch to polar coordinates:
x = pcosf, y=psind.

The pullback of this tranformation takes our disc in the z,y plane back to
a rectangle, {(p,0) |0 < p <1, 0 <60 < 2r} in the p,0 plane. This change
of variables will be dealt with in Chapter 8 after results from differential
calculus have shown us how to find the pullback of arbitrary k-forms.
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5.5 Using Multiple Integrals

We can use our double integral to compute the value of a nonconstant 2-
form over an oriented triangle in R3. If a fluid has velocity (y+z,z+z,z—y)
at (z,y, z), then the rate at which it crosses the triangle

T=[(1,2,-1),(3,1,0),(0,1,1)]
is
/(y+z)dydz+ (z +2)dzdz + (x — y) dr dy.
T

We find a pullback to 2-dimensional space, for example by using the para-
metric equations:
= 142u—wv,
2—u—wv,
z = —l4+u+2v,

which pull T back to U = [(0,0), (1,0), (0, 1)]:
/ (y + 2)dydz + (z + 2)dzdz + (z — y)dz dy
T

- / (1 +v)(~du — dv)(du + 2 dv)
U

+ (3u +v)(du + 2dv)(2du — dv)
+ (=1 + 3u)(2du — dv)(—du — dv)

= /(1+v)(—dudv)+(3u+v)(—5dudv)+(—1+3u)(—3dudv)
U

= /U(2——24u—6v)dudv = /Ol/ol_v(2—24u——6v)dudv
1

= / [(2—6v)(1—v) —12(1 —v)?] dv
0

1
= / (-10+16v — 6v%)dv = —104+8 -2 = —4.
0

Area

The 2-form dz dy maps a rectangle in R? to its area. Now that we have
defined the double integral for arbitrary bounded regions, we can define
the area of a bounded region R by

Area(R)=/d$ dy. (5.13)
R



132 5. Line Integrals, Multiple Integrals

FIGURE 5.7. R= {(z,y) |0 < y < 1 — z?}.

The area of R is well-defined if and only if the integral exists.
Given a thin plate of shape R and density expressed by the function
p(z,y), we find its total mass by integrating density over area:

Mass=/p(:c,y) dz dy. (5.14)
R

As in the case of the 1-dimensional wire, the center of mass, (Z, ), satisfies

/ (x - Z)p(z,y) dz dy 0,
R

/ (y — 9)p(z,y) dz dy 0,
R

so that
/ zp(z,y) dr dy
R

/ p(z,y) dx dy
R

, (5.15)

81
|

/ yp(z,y) dz dy
R

/ p(z,y) dz dy
R

(5.16)

As an example, let (Figure 5.7)
R = {(z,y)|0<y<1-2%,
_ Y
p(:c,y) - 1 +JI2’

so that
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1 -z
Area = / dy dz

i
/-\
—
I
8
[ M)
N
U
8
]
Wl

z? +4:c — 8
d
( +3(1+m2)) e

? E’
_ 60m — 176
(Z,9) (0, 457r_120) ~ (0, 0.58).

Volume

We define the volume of a bounded region R C R3 to be the image of R
under the 3-form dz dy dz:

Volume(R)=/dwdydz, (5.17)
R

where the volume is well defined if and only if this integral exists. If the
density of R at (z,y, 2) is given by p(z,y, z), then

Mass =/ oz, y,z) drdydz. (5.18)
R



134 5. Line Integrals, Multiple Integrals

The coordinates of the center of mass are found by

/ zp(z,y,2) dzdydz
T = R , (519)

/ o(2,y,7) dz dy dz
R

/ yo(z,y,2) dzdydz
g = & , (5.20)

/ p(z,y, 2) drdy dz
R

/ zp(z,y,2) de dydz
R

/ p(2,9,2) dz dy d
R

(5.21)
The hypervolume of a bounded region R C R" in a higher dimensional
space is defined by

Hypervolume(R) = / dzi dzy - - dzy,. (5.22)
R

5.6 Exercises

1. Sketch the region R over which you are integrating and then evaluate
the following integrals:

@ [ @+t dedy, R={@y)|1<o<2 -1<y<1)
(b) /R rsinydrdy, R={(z,y)|0<z<1, 22 <y<2z?}
© [ @+, R={@y]1<y<2 P <a<P)
@ [ ccosydzdy, R={(=.9)|0<y<n/2 0<z <sing)
(e) /R zy drdy, R = triangle with vertices at (1,0), (2,2), and

(172);
0 [ evdody, R={(z.9) 0 <2< 1+ (ogn)/v}, 2< v <3
R

(g) / (3 + 2zy) dzdy, R = the parallelogram with vertices at
R
(1,3), (3,4), (4,6), and (2,5).
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. What is the region R over which you integrate when evaluating the
double integral

1 gl
/ / zv/1 —y? dy dz?
0 Jz2

Rewrite this as an iterated integral first with respect to x, then with
respect to y. Evaluate this integral. Which order of integration is
easier?

. What is the region R over which you integrate when evaluating the
double integral

2 T T
— dy dz?
/1 /1 V2 +y?
Rewrite this as an iterated integral first with respect to z, then with

respect to y. Evaluate this integral. Which order of integration is
easier?

. What is the region R over which you integrate when evaluating the

double integral
4 vz oy
[.[ Y

Rewrite this as an iterated integral first with respect to x, then with
respect to y. Evaluate this integral. Which order of integration is
easier?

2

dy dz?

. Find the area of the region bounded by the curves y = 22% and
T = 4y

. Find the area, mass, and center of mass of a thin plate bounded by
2?2 — y%? =1 and z = 4 with density

olz,y) =z.
. Find the mass of the elliptic region x2 +4y? < 4 if its density is given
by p(z,y) = z° +y*.

. Find the center of mass of a thin plate in the shape of a triangle
with vertices at (1,0,0), (1,2,0), (1,0,3) if the density is given by
plx,y,z) =z +y+2

. Find a transformation from u, v space to z,y, z space that takes the
triangle U = [(0,0), (1,0), (0, 1)] to the triangle

T =1(1,0,-2),(-1,2,0),(1,1,2)].
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10. Using the tranformation of Exercise 9, find the pullback of
(y—1)dydz+ (y + 2)dzdz — zdxdy
to u, v space.

11. Using the pullback of Exercise 10, evaluate

/(y— 1)dydz + (y + z) dzdz — z dz dy.
T

12. Using the pullback of Exercise 9, find where the flow across the tri-
angle U is positive and where it is negative. Use this to determine
where the flow across T is positive and where it is negative.

13. Let R be the region above the unit disc, z2 + y? < 1, lying between
the z,y plane and the surface z = |zy|. Find the volume of R.

14. Sketch the region R over which you are integrating and then evaluate
the following integrals:

(a) /(x+wz—y2)davdydz,
R

R={(z,9,2)|0<z <1, —2<y<0, 3<z<5}

(b) /R(w + 2) dz dy dz,

R={(z,y,2) |z>0,y>0, 2>0, z+y+2z <3}

(c) / zyzdrdydz,
R

R={(z,9,2)|t>0,y>0, 2>0, 22+ 3% +22 < 1}.

15. Describe the region over which each integral is evaluated and find the
limits if the order of integration is changed to dy dz dx or to dy dx dz:

(a)
/02/01/0341,(:::, y, z)dz dy dz.

2 VA2 p\fi—yP-22
/ / / f(z, y, 2)dzdydz.
1 Jo 0
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4—z 4—y— 2?2
/ / / f(z, y, 2)dzdydz.
(4-y—22)

Find the mass of the solid satisfying
x>0, y>0, 2>0, 22<4zr, z%2+y?<16,
whose density is given by p(z,y, z) = zy23.
Find the mass and center of mass of the solid of constant density 1

satisfying
>0, y>20, z+y<2

0<z<1l+z+2y.
Using multiple integration, show that the simplex satisfying
21 20,292>0,...,2, >0,z +z2+-- -+, <1,

has the hypervolume

1 1

n 1-2. n
Let

flz, y) = 1, if z is irrational,
YT 448, if not.
Show that . .
/ (/ f(w,y)dy) dr =1,
0 0

but that

/01 (/Olf(x,wdx) dy

does not exist (and therefore the order of integration can be very
important).

Define the function f(z,y) to be 1 if  and y are both rational num-
bers with the same denominator (when written in reduced form), and
0 for all other pairs (z,y). For example,

In the third example, the denominators are different because 2/6
reduces to 1/3. Let R be the unit square {(z,y)]|0<z <1, 0<
y < 1}. Show that it is possible for the iterated integrals to exist and
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be the same in either order while the corresponding multiple integral
does not exist by showing that

/01(/01f(w,y)da:)dy=/01(/01f(a:,y)dy)da:=0,

but that
/ﬂawmw
R

does not exist.



6

Linear Transformations

6.1 Basic Notions

A linear transformation is a function, E, from one or more real variables
to one or more real variables, that satisfies the following two conditions for
any values of @ and b in the domain and any real constant c:

L@+b) = L@+ L), (6.1)

L(cd) = cL(a). (6.2)
These conditions are extremely restrictive. Equation (6.1) implies that
L(Z) = LE&+0)
L

and so .
L(0) =0. (6.3)

If L is defined on just one variable, then that variable x is real, and so
L(z) = zL(1). (6.4)

In this case, the function is uniquely determined by the value of L(1). If L
is defined in 3-dimensional space, then any point in the domain is uniquely
representable as a7+ b7+ ck, where a, b, and c are real, and so

L(ai'+ b7+ ck) = aL(7) + bL(7) + cL(k). (6.5)
Here the function is uniquely determined by the values of E(z“ ), L(7 ), and
L(k).
In general, if the domain is an n-dimensional space, then any point in
the domain is uniquely representable in terms of the unit basis vectors:

7 o= (1,0,0,...,0),
’Z‘Z = (071707"'70)v

& = (0,0,0,...,1).
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‘We have
L(a17y + agla + - - + aniy) = a1 L(7)) + a2L(%) + - - - + anL(T,).  (6.6)

Our function is uniquely determined by the values of L(71), L(33), . . ., L(Z,).
Note that most of the transformations given in Chapter 4 were not linear
transformations. The example

= 2-—-2u+ 3v - dw,
y = 14+u-—3v,
z = =3+4u+Tv+ 3w
is not linear because it takes (0,0,0) to (2,1, —3) instead of (0,0,0). On the
other hand, the system of equations relating the differentials is a linear
transformation
dr = -2du+3dv-5dw,
dy = du—3dv,
dz = 4du+ Tdv+3dw.
In fact, if § = F(&) and F is differentiable, then the transformation from
the differential of £ to the differential of ¥ is always linear, just as it is in

one dimension: at (c, f(c)) on the curve y = f(z), the differentials of z and
y are related by the linear transformation:

dy = f'(c) dz. (6.7)

Differentiability

What does it mean to say that Fis differentiable? For real-valued functions
of a real variable, y = f(z) is differentiable at c if

o 1) = fle)
z—»c T—cC

exists. This is equivalent to saying that there exists a number, which we
call f’(c), such that

T—c
approaches 0 as = approaches c. If we set Ay = f(z)— f(c)and Az =z —¢
and define

B(e,Az) = 2~ f'(0),

then the existence of a derivative at c¢ is equivalent to saying that there
exists a number, f’(c), such that

Ay = f'(c)Az + Az E(c, Ax), (6.8)
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where

lim E(c,Az)=0.
Az—0

If we ignore the error term, Az E(c, Az), in Equation (6.8), we are left
with a linear function from Az to Ay. It is this equation, giving us a linear
approximation to the relationship between the change in = and the change
in y, that provides the power of differential calculus. It is thus this equation
that we wish to mimic as we move to higher dimensions.

Definition: Given a vector field
F:R" — R™ §=F®),

we say that Fis differentiable at ¢ if there exists a linear transformation

-

L.:R* — R™
such that . .
Ay = L(AZ) + |AZ| E(C,AZ), (6.9)
where
Ay = F(@)-F(@),
AT = ¥-2c
and

lim E(¢ AZ) = 0.
AT—0

The linear transformation L, is the derivative of Faté

If we define

dz = (dzy,dzo,...,dz,),
dy = (dyi,dys,...,dym),

and if L, is the derivative of 7 = F(Z) at ¢, then we define the relationship
between dy and dZ to be .
dy = L.(dZ). (6.10)

The definition of differentiability is not complete because we have not
yet defined
lim .
AZ—0
This will be dealt with at the beginning of the next chapter. The point
I wish to make here is that while you are accustomed to thinking of the
derivative of f(z) at £ = c as a real number we shall now need to think
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of it as a linear transformation. How we determine if such a linear trans-
formation exists and how we find it if it does will be the principal tasks of
Chapter 7. For now, we shall simply investigate linear transformations.

Matrix Notation

Consider a linear transformation, L, from u, v, w space to z, Y, 2, ¢ space and
let 7, 7; and k be the unit basis vectors in u, v, w space. As we have seen, L
is uniquely determined by what it does to 7, 7, and k. As an example, let
us assume that

L@ = (2,-1,6,13),
E(f) = (_375?77_8)a
L(k) = (24,9,-4,10).

It follows that
L(u?+ v] + wk)
= uL(@) + vLI(7) + wL(k)
= (2u, —u, 6u, 13u) + (—3v, 5v, Tv, —8v) + (24w, Yw, —4w, 10w)
= (2u — 3v + 24w, —u + 5v + 9w, 6u + Tv — 4w, 13u — 8v + 10w),

and L is represented by the system of equations:

= 2u— 3v + 24w,
= —u+ 5 + 9w,
= 6u+ Tv — 4w,
13u — 8v + 10w. (6.11)

~ N8 « 8

Note that each column of coefficients is the image of the respective basis
vector. .
In general, if L is a mapping from R™ to R™ and

-

L(i}) = (alj,agj,...,amj), j= 1,2,...,n

then L is represented by the system of equations:

Y1 = a11%1 +012T2 + - + A1p T,
Y2 = 02171+ @22T2 + -+ + Q2nTh,
Ym = aAmi1T1 + @22 + -0+ AmnTa.

Since we always have such a representation, it is convenient to record our
transformation by just recording the coefficients in a matriz or rectangular
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array and to refer to this as our transformation. To help avoid confusion,
we shall change from vector notation to boldface when we are referring to
the matrix:

a;y a2 Q1n
a1 Q22 -+ Q2n

L= . . (6.12)
am1 Am2 " Qmn

The dimensions of this matrix are m x n (m rows by n columns). The first
subscript is the number of the row, the second subscript is the number of
the column: a;; is the entry in the ith row and jth column.

An Example

Consider the mapping that rotates the z,y plane by 60° counterclockwise.
This is a linear transformation, and so it can be represented by the matrix
whose columns are the images of (1,0) and (0, 1). Rotating (1,0) by 60°
yields (1/2,/3/2); rotating (0, 1) gives us (—+/3/2,1/2). It follows that the
matrix for this transformation is

1 =3
2 2
¥3 1
2 2

Composition of Linear Transformations

Let L be the linear transformation given in Equation (6.11) and let M be
the linear transformation from 4-dimensional to 3-dimensional space whose
matrix representation is given by:

2 6 -3 1
M=| 10 -5 0 2
3 -2 4 -6

The composition of L followed by M , written Mo E, is a mapping from
R3 to R? sending (u,v,w) to (p,q,r) where

p = 2x+6y—3z+1
= 2(2u - 3v + 24w) + 6(—u + 5v + Yw)
—3(6u + Tv — 4w) + (13u — 8v + 10w)
= —Tu— 5v + 124w,
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qg = 10z —5y+2t

10(2u — 3v + 24w) — 5(—u + 5v + 9w)
+ 2(13u — 8v + 10w)

5lu — Tlv + 215w,

3z — 2y + 42 — 6t
= 3(2u — 3v + 24w) — 2(~u + 5v + Yw)

+ 4(6u + Tv — 4w) — 6(13u — 8v + 10w)

= —46u + 57v — 22w.

ﬁ
Il

If we define the product of M and L to be the matrix of their composition,
we see that we have:

2 6 -3 1\(_¥ 7% 7 -5 12
0 -5 0 2 oo 2= s m s
3 -2 4 -6)\ o T ¢ 46 57 -22

Definition: If the number of columns of M is equal to the number of rows
of L, then we define the matriz product, ML, to be the matrix representa-
tion of the composition MoL. To compute the matrix product, the entry
in the ¢th row and jth column of ML is the dot product of the ith row of
M with the jth column of L.

For our example, the entry in the second row, third column of ML is
(10,-5,0,2) - (24,9, —4, 10) = 215.

For the given transformations, the range of M is also the domain of L.
We can define the composition in the opposite order, LoM. Here, we get
a mapping from 4-dimensional space to 4-dimensional space whose matrix
representation is given by

_3‘223 2 6 -3 1

10 -5 0 2
6 7 4 3 -2 4 -6
13 -8 10

46 —-21 90 -—148
7 —49 39 45
70 9 -34 44
—-24 98 1 —-63

This product notation is extremely useful. We can employ it to write
our linear transformations in a form more directly analogous to the 1-
dimensional equation: y = cz. If L is the matrix representation of our
transformation and if we write £ as an n x 1 matrix denoted by x, ¥ as an
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m x 1 matrix denoted by y, then we can represent our system of equations
as

(5 @11T1 + G122 + -+ + QinZn
Yo a21T1 + G22T2 + -+ + A2pTn
Ym K Am1T1 + AGm2T2 + -+ + Amnln
/ i1 @12 - Oln T1
G21 a2 - G2p T2
= b
\ Am1 am2 *°° Qmn Tn
or equivalently,
y = Lx.

Identity and Inverses

If L has an inverse, say M, then M o L must be the identity transformation
taking 71 to 71, 72 t0 7, ..., %, tO 7. The matrix representation of the
identity transformation is

100 0

010 0

I=| 001 0 1. (6.13)
000 ... 1

To say that M is the inverse of L is equivalent to the statement
ML =1L

For example, if

then the inverse is given by

m=( 3 35).
(3 2)(5 )= 1)

because
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f(b)

f(a)

ab
FIGURE 6.1. The derivative as magnification.

6.2 Determinants

In this section, we shall restrict our attention to linear transformations for
which the domain and the range have the same dimension. Equivalently,
these are transformations whose matrix representation is a square matrix
(m x m). There are two related questions that we shall address in this
section and again in the last section.

1. When is such a linear transformation invertible?

2. What is the magnification of volume under this transformation? That
is, if we start with the unit cube spanned by the unit basis vectors,
what is the volume of its image?

Part of the reason for asking this second question is that for real-valued
functions of a single variable, supplying this magnification is one of the
jobs of the derivative. The function f sends the interval [a, b] to the interval
[f(a), £(b)] (see Figure 6.1). The ratio of the lengths of these intervals is
the magnification. The derivative

f(®) — f(a)
b—a

is an approximation to this ratio and is equal to the limiting value as we take
progressively smaller initial intervals. As we shall see, in higher dimensions,
we often do not need the full derivative, the linear transformation Ec, but
only the number that tells us how it magnifies volume.

In a linear mapping from R? to R2, as an example

2 -3
= (3 2)

f'(e) = lim
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the unit square spanned by (1,0) and (0, 1) is mapped to the parallelogram
spanned by (2,5) and (—3,4). The signed area of this image parallelogram
is the z coordinate of (2,5,0) x (—3,4,0), which is

2x4—(=3)x5=23.

In general, if the linear mapping is given by

L= ailz a2 :
az1 a2
then the image parallelogram is spanned by (a11,a21) and (a2, az2) and it
has signed area
a11022 — G1202]-

We call this number the determinant of L. The notation for the determinant
is det(L) or, if L is given explicitly as a matrix,

apl a2

det(L) = 41 az

Theorem 6.1 A linear transformation,
L:R? — R2,

is invertible if and only if the determinant of its matriz representation is
not zero.

Proof: We begin by assuming that
det(L) = ai1a22 — a12a21 = 0.

If a11 = a12 = a2 = age = 0, then L sends everything to 6, and L is clearly
not invertible. If at least one of our entries is not zero, let us assume that
it is a1;. The following argument can be modified so that it works for any
of the four entries.

We use the fact that aj1a29 = ajza0;. If a13 = 0, then azs must be 0,
and so L(0,¢) = cL(0,1) = 0 for any c. It follows that Lisnot1to1 and
so is not invertible. If a12 # 0, then

E(O,l) = (612,022)
_ alZ( 011022>
= — (a1, ——
a a12

_ a2 a12021
= — | a1,
a a12
a2

= a a
all( 11, 21)

a2 >
= 22710
s (1,0)

- 1(2).
a1
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and therefore L is not 1 to 1 and so not invertible. We have thus proved
that if det(L) = 0, then L is not invertible.

If the determinant
6 = a11a22 — a12a2;

a a
L= 11 a2
az a2z

L1 ( azn/é —a2/é )

is not zero, then

has as inverse:

—azn/6  an/é
This is readily verified by multiplication:

L-L = ( az /6 —aiz/d ) ( a;p a2
—021/5 011/5 a1 Qa22
( (az2a11 — @12a21)/6  (a22a12 — a12a22)/6 >
(—az21a11 + anaz1)/6 (—azai2 +anazz)/é

(s7)

Using the example from the beginning of this section, if

2 -3
v=(373),

1 ( 4/23 3/23
L™ = ( —5/23 2/23 )

Q.E.D.

then

Three-Dimensional Determinants

In three dimensions, we define the determinant of a linear transformation
to be the signed volume of the parallelepiped that is the image of the
cube spanned by 7, 7, and k. We already know that this is the scalar triple
product of the images of the three unit basis vectors:

det(L) = L(¥)-L(7) x L(k), (6.14)
a1 ai12 a3 411022033 — 411232023
as1 G2 Q23 = + a21a32a13 — a21012033 (6.15)
azy azz2 ass + azi1a12a23 — az1a22013.

Our three image vectors,

(au, a21, 031), (4112, az2, 032), (013, a23, 033),
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span all of R3 if and only if they do not lie in a single plane containing the

origin. This is equivalent to saying that the parallelepiped that they span

has a nonzero volume. Thus, L is invertible if and only if det(L) is not zero.
If our linear transformation is represented by the matrix

2 -1 0
L=|3 0 -4 |,
2 1 3

which has the determinant
0+8+8+9+0—-0=25#0,
then it is invertible. The inverse happens to be

4/25  3/25 4/25
L'=|[ -17/25 6/25 8/25
3/25 —4/25 3/25

In Section 6.5, we shall see how to explicitly construct the inverse.
Properties of Three-Dimensional Volume

In more than three dimensions, we want to define the determinant to be
the appropriately signed hypervolume of the parallelepiped spanned by
L(#®), L(%),. .. L(Zy). The problem before us it how to define this signed
hypervolume.

Ordinary volume in three dimensions has three properties that we would
like it see carried over to our definition of signed hypervolume:

1. The volume of the unit cube is 1.

2. Volume is linear in each dimension (see Figure 6.2): The volume of the
parallelpiped spanned by @, b, and ¢ + 3 is the sum of the volumes
of the parallelepipeds spanned by @, b, and ¢; and by @, b, and ¢5:

-

G-bx (G +&) =@ bxa)+ @ -bxa).

The volume of the parallelepiped spanned by &‘,_‘I_)‘, and kcC is k times
the volume of the parallelepiped spanned by &, b, and ¢:

@-bxké=k(@ bxo).
3. If the three spanning vectors are linearly dependent, that is, if they

all lie in a common plane through the origin, then the resulting par-
allelepiped has zero volume.
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. .
FIGURE 6.2. Volume is linear in each dimension.

Properties of the Determinant

Given a linear transformation

E R — Rm,
let @y, dy, ..., @m be the images of the unit basis vectors:
a = (a11,021,-.-,8m1) = [_,‘('z'l)’
ay = (a12, a22,..., amz) = L(i’z),
(_im = (alﬂh a2m, - - - 7amm) = E('Z‘m)

The matrix representation of Lis given by

ail a2 e QA1m

a1 ag2 e a2m
L=

Am1 Am2 ... Omm

The determinant of L,
det(L) = det(d,d2,...,dm),

must satisfy the following conditions:

1. The signed hypervolume of the standard unit hypercube is 1:

det(ty, 3, . . . i) = 1.

2. The value of the determinant is linear as a function

vector:
det(dy,ds,...,dk + bk, ...,dm) = det(d,ds,...,
+ det(@y, @, ...
det(&‘l,&‘g,...,c&‘k,...,d'm) = Cdet(&l,ﬁz,...

(6.16)

of each column

Gk, .-, @m)

By -y ),
(6.17)

Jky - lm).

(6.18)
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3. If any two distinct basis vectors have the same image, then the value
of the determinant is zero:

@ = Gy (i # k) => det(@1, @, . ..,d@m) = 0. (6.19)

It may appear that in the third property we have settled for a weaker
condition than what can be demanded. For 3-dimensional volume, the vol-
ume is zero whenever the spanning vectors are linearly dependent. Here,
we have only required that the hypervolume be zero whenever two of the
spanning vectors are identical. However, as the next theorem demonstrates,
these restrictions are actually equivalent.

Theorem 6.2 Let f(dy,ds,...,am) be any real-valued function that satis-
fies Equations (6.17) through (6.19), then the following properties hold:

1. If any of the vectors in the argument of f is 0, then the value of f is

0:
f(@1,d,...,0,...,dm,) =0. (6.20)
2. Interchanging any two of the vectors in the argument of f changes
the sign:
f(@1y @iy By ey @m) = —F(@1ye ey Bhye vy Tiyneny Om)-
(6.21)

3. If the vectors in the argument of f are linearly dependent, then the
value of f is 0. That is, if there exist constants c1,ca,. .., Cm, not all
zero, such that

m
Z Cj(_ij = 6,
j=1
then
f(a@y,da,...,dm) =0.

Note: Linear dependence means that at least one of these vectors is a
linear combination of the others. For example, if ¢; # 0, then
- C2 C3 Cm
ay=——ds — —d3— "+ — —0am.
C1 C1 C1
Proof: Equation (6.20) is simply Equation (6.18) with ¢ = 0. Using Equa-
tions (6.17) and (6.19), we see that
0 = f(dy,...,q +dk,...,0; +8xy...,8m)
f(617'"vaiv"‘vﬁiv"'76m)
+f(617"'76i7“'vak7'"v.dm)
+f(61,...,6k,...,di,...,ﬁm)
+f(dl,...,l-ik,...,ak,...,dm)
= f(alv"'76i7'~'7ak7'”96m)

F F @1y @k iy Bm)s
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which is Equation (6.21). Finally, let us assume that ¢; is not zero in the
equation of linear dependence. We have

0 = f(0,d,...,dm)
= (Z a]va% am
= chf(ajva2a 1am)
Jj=1

Equation (6.19) implies that for each j > 1,

f(@;,aa,...,am)=0.
Since ¢; # 0, it follows that
0= f(a@1,dz2,.--,8m)-

Q.E.D.

Uniqueness of Hypervolume

We are now prepared to prove that there is at most one real-valued func-
tion of @,ds,...,d, that satisfies Equations (6.16) through (6.19), and
therefore these equations actually define the determinant.

Theorem 6.3 For any positive dimension m, let f(ay,ads,...,dm) be a
real-valued function satisfying Equations (6.17) through (6.19), then

f(al,az, . ,6m) = det(d‘l, 6:2, . ,6m)f(fl,i’2, e ,i’m). (622)
Proof: Let F be the difference of these functions:
F(@i,...,8m) = f(@1,...,8m) — det(@y,-..,8m)f@1, .-, im)-

The function F' satisfies Equations (6.17) through (6.19), and so it also
satisfies all of the properties given in Theorem 6.2. When the vectors in the
argument of F' are the unit basis vectors in order, we have

F(i’l,i’z,,’z’m) = f(i'l,,'i‘m) —f(i_‘l,,i_‘m) =O

Any rearrangement of these unit basis vectors changes the sign of both the
determinant and f in exactly the same way, and so F' continues to have
the value 0. Furthermore, if any of the unit basis vectors repeat, then by
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Equation (6.19) the value of F' is again 0. What this implies is that for any
choice of unit basis vectors, we have

F('le,zj2, e ,’ij) =0.
Now, we use the fact that F is linear in each coordinate. Let
a;,a2,...,0m

be any set of m m-dimensional vectors. For any set of values of ja, 73,...,Jm
taken from [1,m] we have

m
F(d‘lai:jzv"'vi‘jm) = ZajllF(i‘jl’i‘jZ""’i}m)
J1=1

i0=0.

=1

We proceed by induction. Assume that we have demonstrated that for
any set of values of ji, ji+1,- .., Jm taken from [1,m] we have

|

(619“'7&}—1»{3“"'7{.‘7’";) =0.

It then follows that

F(al,...,at_l,at,’tj‘_'_l,.‘.,’ij)
m
= E ajttF(al,...,at_l,zjt,zjtﬂ,...,zjm)
Je=1
m
= E 0=20
Je=1
Therefore, F(dy,dz,...,dm) =0

Q.E.D.

Corollary 6.1 There is at most one real-valued function satisfying all of
the conditions on the determinant: Equations (6.16) through (6.19). Equiv-
alently, Equations (6.16) through (6.19) uniquely define the determinant.

Proof: If f(i1,...,%m) = 1, then Equation (6.22) states
f(l-il,l-ig, e ,(.im) = det([il, 62, NN ,l-im).

Q.E.D.
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Definition of the Determinant

Is there a function that satisfies these four equations? Yes, and we have
already met it. We recall from Section 4.6 the function

D(@y,as,.--,dm) = Y sgn(o) [] aivw) (6.23)
oESH =1

where
(-J:j = (alj,agj, ey amj).
When m = 2, D(d,,ds) is equal to the determinant of the 2 x 2 matrix:

a11 a2

= 411022 — Q12021 .
azy a2

When m = 3, D(a, ds, d3) is equal to the determinant of the 3 x 3 matrix
[see Equation (6.15)].

Theorem 6.4 FEquations (6.16) through (6.19) are satisfied by our func-
tion D, and therefore,

det(d‘l,&‘z,...,&‘m) = D((-il,(_ig,...,l-im). (624)

Proof: For Equation (6.16), we have that

D@,y im) = 3 sen(o) [ ijo0i),

0ESH Jj=1
where
o1 =k
kY10 if j#E

The only nonzero term in the summation corresponds to the identity per-
mutation:
o(j) =3, forallj.
The term corresponding to the identity permutation is 1.
For Equation (6.17), we have that

D(ﬁl,...,6k+bk,...,6m)

m
= Y sgn() | [I @it | (@o-rm + bo-1ye)
j=1

0ESH
o (j)#k
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m
= Z sgn(o) H Gjo(s) | Go-1(k)k
dose )

m
+ Y sen(0) | [ @500 | bo-100

O’ESm

J:
o(§)#k
= D(&l,...,dk,...,ﬁm)+D(51,...,bk,...,6m).

The notation o~!(k) signifies the inverse image of k. For our purposes, it
is the row number that o associates to column k.
For Equation (6.18), we have that

D(dh ,Cak, .y m)

Sgn Gjo(5) | CAo—1(k)k
OESm j=1
(9)#

= c Z sgn(a)Haja(j)

0ESm j=1
= ¢D(@1,...,8ky .-, 8m)-

Finally, for Equation (6.19), we return to the original definition of D. If
we are given the linear relationships:

dy, = apdzry+aipdre+ -+ ai;m dzpy,

dys = ag1dzry +a dze + - + azm dTm,
. (6.25)

Y = am1dTy +am2dz2 + - + Gmm dTm,
then using our rules for multiplying differentials leads us to the relationship
dyl dy2 s dym = D(al,dg, ce ,(.im) dl‘l d:l,‘2 .o d:l,‘m. (626)

If @; = dk, then our system of differential equations (6.25) is symmetric in
dz; and dzk. In other words, interchanging dz; and dzj does not change
these equations. Since Equation (6.26) is defined by these equations, it also
must be symmetric in dz; and dxk. But in order to interchange dz; and
dzk, © < k, we need to move dzy k — i places to the left, resulting in £ — ¢
changes of sign, and then move dz; k — 7 — 1 places to the right, resulting
in an additional k — 7 — 1 changes of sign:
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d(l,‘l' . dl‘i_l* dl‘i ce d.’Bk_l di’l,‘k d$k+1 v dIL‘m,

k — i spaces

dry - dr;_; dxy diri d:l:k_lf dzg4y - dTm.

k — i — 1 spaces
The total number of changes of sign is 2k — 2i — 1, which is odd, and so
dry...dz;...dzg...deym = —dzy ... dT) ... d2; . . . dT .

What we have shown is that the right-hand side of Equation (6.26) re-
mains unchanged when we interchange dz; and dz; and that it changes
sign when we interchange dz; and dzy. The only way this can happen is if
the right-hand side is 0.

Q.E.D.

An Example

The determinant of the 4 x 4 matrix

1 0 -2 3
5 =7 4 6
2 -1 0 -5
-3 0 9 8

is a sum of 24 terms (one for each permutation of the numbers 1 through
4):

1 0 -2 3
5 =7 4 6
2 -1 0 -5
-3 0 9 8

= (D(=7)0)(8) — (N(=7)(=5)(9) - (N(4H)(-1)(8)
+ (1)(4)(=5)(0) + (1)(6)(=1)(9) - (1)(6)(0)(0)
—(0)(5)(0)(8) + (0)(5)(=5)(9) + (0)(4)(2)(8)
— (0)(4)(=5)(=3) — (0)(6)(2)(9) + (0)(6)(0)(-3
+(=2)(5)(=1)(8) = (=2)(5)(=5)(0) - (=2)(~ )(2)(8)
+ (=2)(=7)(=5)(=3) + (=2)(6)(2)(0) - (=2)(6)(-1)(=3)
—( 5)(0)(0) + (3)(=7)(2)(9)
( )(4)(2)(0) + (3)(4)(-1)(=3)

3)(B)(=1)(9) + B3)(
- B3)(=N0)(-3) -3

= —442.
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Consequences for Differentials

Let dx and dy be m x 1 matrices of differentials:

dz, dy

dza dya
dx = . , dy = .

dz., dym

Our definition of the function D and Theorem 6.4 imply the following
corollary.

Corollary 6.2 If dx and dy are related by the linear relationship
dy = L. dx,
then we also have the linear relationship
dyy dyz - - - dym = det(L.) dzy dzg - - - dzpy,.

Furthermore, the relationship between dx; dxs - --dx., and dy; dys - - - dym,
can be found by multiplication, using the special rules for the products of
differentials and scalars given in Section 4.4.

6.3 History and Comments

Ironically, the history of determinants goes back much further than that of
matrices. Linear algebra and the theory of matrices was essentially created
by Arthur Cayley (1821-1895) and others in the mid-nineteenth century
in order to provide a framework in which to place the burgeoning results
on systems of linear equations and determinants. As Morris Kline put it
in Mathematical Thought from Ancient to Modern Times, “One could say
that the subject of matrices was well developed before it was created.”
Leibniz, in a letter written in 1693, revealed familiarity with 3 x 3 de-
terminants as a test for linear independence. Cramer’s rule, a technique
that uses determinants to solve systems of linear equations and will be
explained in Section 6.5, is named for Gabriel Cramer (1704-1752), who
published it in 1750. Cramer was not the first to discover it; this rule had
been published two years earlier in the posthumous Treatise of Algebra by
Colin MacLaurin (1698-1746). The second half of the eighteenth century
saw a great deal of work on determinants by many of the prominent math-
ematicians of the time. Among them, Joseph-Louis Lagrange (1736-1813)
demonstrated the connection between determinants and volume in 1773.
We owe the term “determinant” to Carl Friedrich Gauss (1777-1855), who
actually used it to refer to what we today call the “discriminant” of a
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quadratic polynomial. As we shall see, the 2 x 2 determinant is very closely
related to the discriminant. In 1812, Augustin-Louis Cauchy (1789-1857)
defined the term “determinant” in its modern sense.

As we have seen in Corollary 6.2, if = F(Z) and if L, is the linear trans-
formation of Equation (6.9), then the determinant of the matrix representa-
tion of L, plays a crucial role in computing the pullback of dy; dys - - - dym.
This was recognized and exploited by Lagrange, Cauchy, and others in the
late eighteenth and early nineteenth centuries as they studied wave prop-
agation and other physical phenomena. The use of this determinant was
popularized in 1841 with the exposition “De determinantibus functional-
ibus” of Carl Gustav Jacob Jacobi (1804-1851). This determinant, det(L.),
now carries his name; it is the Jacobian. The matrix itself is usually referred
to as the Jacobian matriz.

The development of the determinant given in Section 6.2 may have
seemed unnecessarily circuitous. Indeed, many authors cut directly to a
definition of the determinant as the function D(ay,...,dy,). While this is
correct, it obscures the physical significance of the determinant that I have
tried to emphasize: that det(d,,...,dn) is the signed hypervolume of the
parallelepiped spanned by @y, ds, ..., an. It is this geometric interpretation
of the determinant that will be critical in our future investigations.

The second point about determinants, one which cannot be emphasized
too strongly, is stated in Corollary 6.2. Our rules for the multiplication of
differential forms carry geometric meaning in any number of dimensions. If
dy and dx have the same dimension and are related by

dj = L(dZ),

then the relationship between the volume in & space and the correspond-
ing volume in ¥ space is to be found simply by invoking these rules of
multiplication. This is the key to the power of the language of differential
forms.

Finally, the material in this chapter barely scratches the surface of the
theory of linear transformations. This chapter deals only with those basic
concepts that will be needed in the remainder of this book.

6.4 Exercises

1. Show that if L is an invertible linear transformation, then L1 must
be linear. Hint: since L is 1 to 1,

L(#) = L(&,) implies that Z) = Z,.

Show that



6.4. Exercises 159

L(I'@+3) = L(E'@)+L @),
E(E_l( _'1)) = E(Ci_l(ﬁl))~
2. Which of the following are linear transformations from R? to R2?
(a
(b

(c
(d

Shear: T(z,y) = (z + cy,y) for some constant c.
Translation: T(z,y) = (¢ + a,y + b) for some constants a and b.

Blow-up: T(z,y) = (az, by) for some constants a and b.

~— ~— ~—

Rotation: if £ = rcos6, y = rsiné, then

T(x, y) = (rcos(0 + @), rsin(f + ¢)),

for some constant angle ¢.

(e) Projection: given a fixed vector 7 =

(a, ) T maps each point to
the closest point on the line spanned

(f) Reflection: given a fixed vector 7= (a, b), T maps each point to
its reflection with respect to 7

T(ZF) = F-—2&r,

3. For each transformation in Exercise 2 that is linear, find the 2 x 2
matrix that corresponds to T' by finding the images of (1,0) and (0,1).
Find the determinant of T.

4. Show that every linear transformation from R? to R? can be written
as a composition of shears, blow-ups, and 90° rotations (T'(z,y) =

(—y,2)).

5. Define transformations L and M by

L@) = 7-2k, M@) = -7+3k,
L) = 3j+k, M(@) = 50+7—k,
Lk) = 21-7+k  M(k) = 7+37+E.

Find the matrix representations for I_:, M s LoM , and MolL.
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6. Among 2 x 2 matrices, the identity matrix, I, and the zero matrix, 0
(all of whose entries are 0), commute with all 2 x 2 matrices:

IM =MI, OM = MOo.

Are there any other 2 x 2 matrices that commute with all 2 x 2
matrices? Describe them.

7. Find two 3 x 3 matrices, A and B, such that
AB =0 and BA =0,
but neither A nor B is the zero matrix.

8. Compute each of the following determinants:

1 -1 0
(a) 4 11,
-1 0 2
123
(b) |2 3 4/,

3 4 5
11 1
()1 2 31,

1 36
10 2 0
30 -1 1
@ g5 o -2/
1 2 -3 1
2 -1 3 1
0 2 -2 -1
©1y 2 1 of
0 2 -7 -3
11 1 1
1 2 3 4
®11 3 6 10
1 4 10 20

9. Find the signed volume or hypervolume of the parallelepiped that is
spanned by
(a) (2,0,-1),(0,1,3),(—2,5,1);
(b) (6,-1,2),(2,2,0),(2,-5,2);
(C) (1’ 37 0’ _2)’ (27 '—57 1» O)v (07 _17 Oa 3)? ("'17 09 29 “‘2)
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10. Give a physical interpretation for the hypervolume of a parallelepiped
in 4-dimensional space-time.

11. The transpose of a matrix is the matrix obtained by changing the
rows into columns, the columns into rows. The transpose of

(48)
(i)

L= (aij)zlj=1’

then the transpose of L, written L, is

(=
N = O

S ==
— RN

In general, if

Lt = (aji);'fj:l.

Compute the determinants of the transposes of the matrices in Exer-
cise 8.

12. Prove that det(L) = det(L!) for any square matrix.

13. Prove that

1 1 1
a b ¢ |=((b-a)c—a)lc-0D).
a? v
14. Prove that
1 1 1
(@) | a® b ¢ |=(b—a)(c—a)(c— b)(ab+ ac+ bc),
a® ¥
1 1 1
() | a b ¢ |=(b—a)(c—a)(c—b)(a®+b*+c%+ab+ac+bc),
at bt !
1 1 1 1
b ¢ d
© | 2 2 2 2 |=C-a(c—a)d-a)c-bd-b)d—c).
a® ¥ 2 &
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15.

16.

17.

18.

19.
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Show that the equation of the plane containing the three points
(T, Yo, 20), (T1,¥1,21), and (T2, Y2, 22) is given by the equation

11 1 1
ToTo T2 (6.27)
Y Y% Y1 Y2
Z 20 21 22

Explain why this works by using the definition of the determinant as
signed hypervolume.

Prove that

det(fil,. N7 P/ 1 A ,(_J:m) = det(d‘l,. .. ,5:1;, ce,Artced;,. .. ,6m).
(6.28)

In other words, you can add a constant multiple of any column to

any other column without changing the value of the determinant.

For the determinant

1 -1 0
2 4 1|,
-1 0 2

note that if we add 1/2 times the third column to the first, then the
third row of the first column becomes 0. Find an appropriate multiple
of the second column to add to the new first column so that the second
row of the first column becomes 0. Now, compute the determinant.

For the determinant

10 2 0
3 0 -1 1
05 0 -2Y)
1 2 -3 1

add appropriate multiples of the fourth column to each of the first
three columns so that they each have a 0 in the fourth row. Now,
add appropriate multiples of the third column to each of the first two
columns so that they each have a 0 in the third row. Finally, add an
appropriate multiple of the second column to the first so that it now
has a 0 in the second row. Now, compute the determinant.

The method illustrated in Exercises 17 and 18 is called Gaussian
elimination (after Carl Friedrich Gauss). Prove that once we have
nothing but 0’s below the main diagonal: ay,,as2,.. ., @mm, then the
determinant is the product of the terms on the main diagonal.
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6.5 Invertibility

Our goal in this section is to prove that a linear transformation,
L:R™ — R™,

is invertible if and only if the determinant of its matrix representation
is not zero. The first step is to observe the not very surprising fact that
the magnification produced by a composition of two transformations is the
product of the individual magnifications.

Theorem 6.5 Let L and M be m x m matrices, then

det(LM) = det(L) det(M).
Proof: Let 51, 52, ceey l_;m be the images of the unit basis vectors under M:
L =M@),. .. bm = M(im).

The image of #; under L o M is therefore

=

L(M@)) = LGy,

and so L ..
det(LM) = det (L(bl), L(B), ..., L(bm)) .

As a function of 51,52,...,3m, this satisfies Equations (6.17) through
(6.19), and so by Theorem 6.3,

det (13(31), o E(Bm)) = det(By, ..., bm)det (E(a), o E(Tm))
= det(M)det(L).

Q.E.D.

Corollary 6.3 If L:R™ — R™ is invertible, then
det(L) # 0.

Proof: Let L~! be the inverse transformation, then
L7'L=1,

and so
det(L™!) det(L) = det(I) = 1.

Q.E.D.
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Cofactors

As in the proof of Theorem 5.1, we shall prove that L is invertible when
det(L) # 0 by actually constructing the inverse. Let L be an m x m matrix
with entry a;; in the ith row and jth column. It is common to write this
as

L= (aij)zzj=1-

As we proved in the previous section,
m
det(L) = Z sgn(o) H Ajo(j)-
oESH j=1

This summation can be decomposed by separating our set Sy, into subsets
on which ¢71(1) is the same:

Sm = {0 € Spm|o(l) =1}U{o € Sp|0(2) = 1}U---U{o € Sp|o(m) =1}.

We shall denote the set of permutations in which (i) = 1 by Sp,\; so that
our summation can be rewritten as

det(L) = Zail Z sgn(a)Haja(j). (6.29)

=1 0ESm\i j=1
J#i

There is a natural correspondence between the permutations o € Sp,\;
and 7 € S,,_1 as follows:

[ el) -1, if j<i,
) = {a(j+1)—1, it j >
r(G) +1, it j<i,

o) = { 1, if j=i,

rG-1)+1, if j>i.

For example, we have the following correspondence when i = 3:

o(l)y = 4 T(1) = 3
o(2) = 3 7(2) = 2
0’(3) =1 —

oc4) = 5 7(3) = 4
o(5) = 2 T(4) = L.

Since we have

dry---dz,m = sgn(o)dx,q): - dXe(m)
= (_l)i_l Sgll(g) dx; dxo(l) T dxo(i—l) dxo(i+1) e dxo(m)7
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and
dzy - dxm—1 = sgn(T) dxr(1y - dxf(m—l)’

we see that
(=1)""'sgn(o) = sgn(1). (6.30)

Equation (6.29) can thus be rewritten as

m m
det(L) = Z(—l)’_lail Z sgn(T) H Qo (s)- (6.31)
i=1 TESm-1 Jj=1
J#i
The sum over 7 € Sp,_; is the determinant of the (m — 1) x (m — 1)
matrix obtained by deleting the ith row and 1st column from L. We call
this smaller matrix the i1 minor of L and denote it by L;;. In general, the
ik minor of L, denoted L, is the matrix obtained from L by deleting the
1th row and the kth column. In this notation, Equation (6.29) looks like

det(L) = i(—l)"-la,‘1 det(L;1). (6.32)

i=1

In general, if we take the kth column instead of the first, we have the
relationship

det(L) = ) (=1)""*as det(Lir). (6.33)
=1
As an example, taking k = 2, we have
2 0 -1
3 -2 1
5 -3 4
3 1 2 -1 2 -1
- 0|3 it Sfeld T
= 0(7) —2(13) + 3(5) = —11.
We define the ik cofactor of L, denoted Ag;, to be
Api = (1) "% det (L) (6.34)

Note that we have switched the order of the subscripts in defining Ag;. Our
Equation (6.33) now looks even simpler:

det(L) = ) Apiaik. (6.35)
i=1

If we let
ar = (a1, G2k, - - - Amk)
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denote the kth column of L and
Ap = (A