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Preface

“In truth, it is not knowledge, but learning, not possessing,
but production, not being there, but travelling there, which
provides the greatest pleasure. When I have completely
understood something, then I turn away and move on into
the dark; indeed, so curious is the insatiable man, that
when he has completed one house, rather than living in it
peacefully, he starts to build another.”

Letter from C. F. Gauss to W. Bolyai on Sept. 2, 1808

This textbook adds a book devoted to applied mathematics to the series
“Grundwissen Mathematik.” OQur goals, like those of the other books in the
series, are to explain connections and common viewpoints between various
mathematical areas, to emphasize the motivation for studying certain prob-
lem areas, and to present the historical development of our subject.

Our aim in this book is to discuss some of the central problems which
arisc in applications of mathematics, to develop constructive methods for the
numerical solution of these problems, and to study the associated questions
of accuracy. In doing so, we also present some theoretical results needed for
our development, especially when they involve material which is beyond the
scope of the usual beginning courses in calculus and linear algebra. This book
is based on lectures given over many years at the Universities of Freiburg,
Munich, Berlin and Augsburg. Our intention is not simply to give a set of
recipes for solving problems, but rather to present the underlying mathe-
matical structure. In this sense, we agree with R. W. Hamming [1962] that
the purpose of numerical analysis is “insight, not numbers.”

In choosing material to include here, our main criterion was that it
should show how one typically approaches problems in numerical analysis.
In addition, we have tried to make the book sufficiently complete so as to pro-
vide a solid basis for studying more specialized areas of numerical analysis,
such as the solution of differential or integral equations, nonlinear optimiza-
tion, or integral transforms. Thus, cross-connections and open questions
have also been discussed. In summary, we have tried to select material and
to organize it in such a way as to meet our mathematical goals, while at the
same time giving the reader some of the feeling of joy that Gauss expressed
in his letter quoted at the beginning of this preface.

The amount of material in this book exceeds what is usually covered
in a two semester course. Thus, the instructor has a variety of possibilities
for selecting material. If you are a student who is using this book as a
supplement to other course materials, we hope that our presentation covers
all of the material contained in your course, and that it will help deepen
your understanding and provide new insights. Chapter 1 of the book deals
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with the basic question of arithmetic, and in particular how it is done by
machines. We start the book with this subject since all of mathematics
grows out of numbers, and since numerical analysis must deal with them.
However, it is not absolutely necessary to study Chapter 1 in detail before
proceeding to the following chapters. The remaining chapters can be divided
into two major parts: Chapters 4 — 7 along with Sections 1 and 2 of Chapter
8 deal with classical problems of numerical analysis. Chapters 2, 3 and 9,
and the remainder of Chapter 8 are devoted to numerical linear algebra.

A number of our colleagues were involved in the development and pro-
duction of this book. We thank all of them heartily. In particular, we would
like to mention L. Bamberger, A. Burgstaller, P. Knabner, M. Hilpert, E.
Schafer, U. Schmid, D. Schuster, W. Spann and M. Thoma for suggestions,
for reading parts of the manuscript and galley proofs, and for putting to-
gether the index. We would like to thank I. Eichenseher for mastering the
mysteries of TEX; C. Niederauer and K. Bernt for preparing the figures and
tables; and H. Hornung and 1. Mignani for typing parts of the manuscript.
Our special thanks are due to M.-E. Eberle for her skillful preparation of the
camera-ready copy of the book, and her patient willingness to go through
many revision with the authors.

Munich and Augsburg G. Hiammerlin
December, 1988 K.-H. Hoffmann

Note to the reader: This book contains a total of 270 exercises of various
degrees of difficulty. These can be found at the end of each section. Cross
references to material in other sections or subsections of a given chapter will
be made by referring only to the section and subsection number. Otherwise,
the chapter number is placed in front of them. We use square brackets [-] to
refer to the papers and books listed at the end.

Translator’s Note: This book is a direct translation of the first German edi-
tion, with only very minor changes. Several misprints have been corrected,
and some English language references have been added or substituted for the
original German ones. I would like to thank my wife, Gerda, for her help in
preparing the translation and the camera-ready manuscript.

Munich, July, 1990 L. L. Schumaker
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1
Computing

As we have already mentioned in the preface to this book, we consider nu-
merical analysis to be the mathematics of constructive methods which can
be realized numerically. Thus, one of the problems of numerical analysis is
to design computer algorithms for either exactly or approximately solving
problems in mathematics itself, or in its applications in the natural sciences,
technology, economics, and so forth. Our aim is to design algorithms which
can be programmed and run on a calculator or digital computer. The key to
this approach is to have an appropriate way of representing numbers which
is compatible with the physical properties of the memory of the computer.
In a practical computer, each number can only be stored to a finite number
of digits, and thus some way of rounding off numbers is needed. This in turn
implies that for complicated algorithms, there may be an accumulation of
errors, and hence it is essential to have a way of performing an error analysis
of our methods. In this connection there are several different kinds of error
types, which in addition to the roundoff error mentioned above, include data
error and method error.

It is the goal of this chapter to present the basics of machine calculation
with numbers. Armed with this knowledge, we will be in a position to
realistically evaluate the possibilities and the limits of machine computation.

1. Numbers and Their Representation

In numerical computations, numbers are the carriers of information. Thus,
the questions of representing numbers in various number systems and deal-
ing with them in a computer are of fundamental importance. A detailed
discussion of the development of our present-day concept of numbers can
be found in the book Numbers by H.-D. Ebbinghaus et al. [1990], and thus
we restrict our historical remarks in this chapter to an outline of the main
developments as they pertain to computers.
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1.1 Representing Numbers in Arbitrary Bases. We are all used to
working with real-valued numbers in decimal form. A study of the historical
development of number systems clearly shows, however, that the decimal
system is not the only reasonable one, and in fact, for the standpoint of
practical applications in computers, is not necessarily the most useful one. In
this section we discuss representing numbers using an arbitrary base B > 2.

Ezample. Consider representing the periodic decimal number z = 123.456 in the
binary system, that is with respect to the basis B = 2. Clearly, we can decompose
z into the two parts £g = 123 and z; = 0.456, where o € Z4 and 2; € Ry
with £, < 1.

We do not go into any detail on how to find the representation of z¢ in the
binary system; the result is 9 = 1111011. Now the decimal fraction z; can be
converted to a binary fraction by repeatedly doubling it as follows:

Ty -2=x904+2_-1, 22:=0912, z_,:=0
Ty 2=x3+2T_9, T3:= 0.-8—_2_—5, T_9:=1
z3-2=24+7-3, 74:=0.651l, z_3:=1
T4 2=T5+ T4, 25:=0303, z_4:=1
z5-2 =26 +2_5, z¢:=0.606, z_5:=0

=0213, z.¢:=1

T6 2=r7+T_g, ZT7:

This immediately leads to the binary representation £; = 0.011101, and it follows
that = 1111011.011101. This can also be written in the normalized form

z=27.0.1111011011101.

Remark. We use the symbol = in connection with numbers to mean that
all of the digits up to the last one are exact, while the last digit is rounded.
In tables, we do not distinguish between exact and rounded numbers.

The general situation is described by the following

Theorem. Let B be an integer with B > 2, and let = be a real-valued
number, x # 0. Then = can always be represented in the form

oo
(%) z =0BNZz_,,B_"

v=1
with 0 € {—1,+1}, N € N, and z_, € {0,1,...,B — 1}. Moreover, there
is a unique representation of this type with z_; # 0 and with the property
that for every n € IN, there exists a v > n such that

(*%) z_, #B-1.

Proof. Let £ € R, z # 0. Then the numbers o € {—1,+1} and N € IN are
uniquely determined by o := signz and N := min{x € N , |z| < B*}. Now
we set

2, := B™Vz|,
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and apply the method of the example, using the base B instead of 2.
The definition of N implies BN~! < |z| < BN, andso 0 < z; < 1.
Generalizing the method used in the example, we now consider the rule

z,,~B=a:,,+l + Ty, V€Z+,

where z_, is the largest integer which does not exceed z, - B. This gives
rise to sequences of numbers {z,},en and {z_,},eN with the properties

0<z, <1,
ID_VE{O,I,...,B—].}, V€Z+.

This is easy to check for ¥ = 1, since in this case we already have shown that
0 < r; < 1, and the asserted property of x_; is implied by 0 < ;B < B.
The proof for arbitrary v € Z 4 follows by induction.

Our inductive argument shows that for arbitrary n € Z4, z; can be
expanded in the form

* ¥k T = 2_yB™" + B " zn 1
+

v=1

with z_, € {0,1,...,B —1} and 0 < z,4; < 1. This implies that for every
n€Zy,
n
0<z — Zz_,,B_" < B™™.
v=1

Passing to the limit as n — oo leads to the representation

oo
T, = E z_,B7".
v=1

The number N was chosen precisely so that z_; # 0.

It remains to check the property (*#*). We assume that it does not hold.
Then there exists an n € Z 4 such that z_, = B—1forall v > n+1, and
it follows that

$1=2n:$_,,B_u+(B—1) i B_V=Xn:I—VB_u+B_n‘
v=1

v=n+1l v=1

Comparing this equality with the formula (* * x), we see that z,4; = 1. But
this contradicts the fact that 0 < z,4; < 1.

To complete the proof of this theorem, it remains to establish the
uniqueness of the representation (x). Suppose

o0 oo
T, = Zx_,,B_" and y; = Ey_,,B_"
v=1

v=1
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are two expansions. Set z_, :=y_, —z_,. Then 0= Y72 2_,B™". Now
suppose that ; and y; are not the same; i.e., there is some first index n —1
with z_p41 # 0. Clearly, we can assume that z_n,41 > 1. Now it follows
from

[e ] [o o} oo
2oqp BT =) (=2, )BTV <Y |2 |[BTV <Y (B-1)B™Y =
v=n v=n v=n

m— 00

m

= lim Y (B™*'-B™*)=B""*!' - lim B™™ =B~ ""

m—0o0
v=n

that the reverse estimate z_,41 < 1 holds, and consequently z_,4; = 1.

This means that in the last inequality, we must have equality everywhere,
which implies, in particular, that

z_,=—B+1

forallv > n,andsoy_, = 0 and z_,, = B—1 for all v > n. This contradicts

the assumption that z; satisfies (%), and so y; must be the same as z;; see
also Problem 1. 0

Given a number z which is expanded as in (*) with respect to the basis
B, we can now write it in coded form as

z=o0B"N. 0z_1z_9x_3...,

where the z_, are the integers arising in the formula (*). Each of these is
in the set {0,1,...,B — 1}, and is called a digit. The digits characterize the
number.

The most used bases are 2, 8, 10, 16. The following table shows the
usual symbols used to represent the digits in these systems:

System Basis B | Digits

binary 2 0,1

octal 8 0,1,2,3,4,5,6,7

decimal 10 0,1,2,3,4,5,6,7,8,9

hexadecimal | 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F

The enormous simplification which arises when using the binary system
for computing was already recognized by Leibniz. A disadvantage of the
system is the fact that many numbers have very long representations, and
are hard to recognize. But the binary system has become of great practical
importance with the advent of electronic computers, since in such machines,
any representation scheme has to be based on the ability to distinguish
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Digits | Octal Decimal Hexadecimal

Direct | 3-excess Aiken-

code Stibitz-Code | Code
0 000 0000 0011 0000 0000
1 001 0001 0100 0001 0001
2 010 0010 0101 0010 0010
3 011 0011 0110 0011 0011
4 100 0100 0111 0100 0100
5 101 0101 1000 1011 0101
6 110 0110 1001 1100 0110
7 111 0111 1010 1101 0111
8 1000 1011 1110 1000
9 1001 1100 1111 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

between two states; i.e., it has to involve a binary coding. If we identify
these two states with the digits 0 and 1, we immediately get a one-to-one
mapping between numbers represented in binary form and the states of the
computer. If we want to use some other base, then each of the corresponding
digits has to be coded in binary form. When the basis B is a power of 2,
then this is especially simple. For example, in the octal system we need
triads (= blocks of 3 digits), and in the hexadecimal system, we need tetrads
(= blocks of 4 digits) in order to code each digit. Tetrads are also needed
for the binary coding of the digits in the decimal system, although in this
case six of the possible tetrads are not used. This implies some degrees of
freedom remain, and we say that the code is redundant. The above table
shows three of the known codes for the decimal system.

We note that in the 3-excess and Aiken codes, the nine compliment of
a digit can be obtained by exchanging the zeros and ones.

1.2 Analog and Digital Computing Machines. Computing machines
can be divided into two rather different classes depending on the way in
which they store and work with numbers: analog and digital machines. The
following table lists examples of both.
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Digital Computers Analog Computers

Tables Slide Rule

Mechanical calculator | Nomogram

Pocket calculator Mechanical
Analog Computer

Electronic Electronic

Digital Computer Analog Computer

Analog computers use continuous physical quantities such as the length
of a rod, voltage, etc. to represent numbers. Mathematical problems can be
solved by using a corresponding device which simulates the problem. Then
the solution of the problem can be interpreted as the result of a physical
experiment. For analog devices, the accuracy of the numbers being stored
and manipulated depends very heavily on the exactness of the measurements
being taken. We will not discuss analog computers further. Their present-
day use is limited to some special applications.

Digital computers represent numbers by a finite sequence of (discrete)
physical states; in fact it suffices to use two states such as yes/no. Here the
accuracy of a number is not constrained by how exact a physical measure-
ment can be made, but rather by the length of the sequences being used.

All computing machines have their roots in the various forms of the abacus
which were invented by different civilizations. It is known from several sources
that the abacus was already being used at the time of the Greek empire. Versions
of the abacus also apparently developed independently in Russia and Asia, and
have been used very heavily from ancient times right up to the present day. The
origin of the asiatic abacus was most likely in China, where its present-day form,
the Suanpan, uses two beads for carrying tens. It was exported to Japan in the
16-th Century, where it is known as the Soroban. This device is very similar to
the Roman abacus, and uses only one bead for carrying tens. The abacus used in
Russia is called the Stchoty, and with its ten beads on each rod is very similar to
devices used as late as the middle of this century in elementary schools in Europe
to learn arithmetic. It is interesting to note that, despite the wide availability of
electronic pocket calculators, in asiatic countries such as Japan and China, various
forms of the abacus are still heavily used, especially by tradespeople.

Books on arithmetic appeared in the middle ages, and served to explain the
passage from using a mechanical device like an abacus to written computation.
For those who could read, these books taught arithmetic rules in the form of al-
gorithms. Following these developments, and inspired by the book on logarithms
of the Scotsman LORD NAPIER OF MERCHISTON (1550-1617), the Englishman
EDMUND GUNTER (1581-1626) developed the first slide rule in 1624. This ana-
log device was still being used in the 1960’s, especially by engineers, and was only
replaced with the advent of the cheap electronic pocket calculator. Lord Napier
also developed a simple multiplication device capable of carrying out single digit
multiplication, and where the carryover of a ten had to be especially noted. WIL-
HELM SCHICKARD (1592 - 1635), a professor of biblical languages at Tibingen in
Germany, and one of the great scholars of his time, is regarded today as the father
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of the mechanical calculator. He was later also a professor of mathematics and as-
tronomy, and was active in geodesy and as an artist and copperplate engraver. He
was a friend of KEPLER, and it is clear from their correspondence that Schickard
had built a functioning machine capable of all four arithmetic operations: addi-
tion, subtraction, multiplication and division. Unfortunately, his machine has not
survived. The chaos of the thirty year’s war no doubt helped prevent Schickard’s
idea from becoming widely known. He died in 1635 from the plague.

The idea of a mechanical calculating machine was popularized by an inven-
tion of the famous French mathematician BLAISE PASCAL (1623 - 1662). As
a twenty-year old, Pascal developed an eight place machine capable of addition
and subtraction, which was particularly useful for his father, who was the tax
collector in Normandy. Because of his entree to the higher social circles, and the
widespread discussion of his ideas, he was greatly admired. He built approximately
seven copies of his machine, which he either sold or gave away.

Another essential step in the mechanization of calculation was provided by an
invention of GOTTFRIED WILHELM LEIBNIZ (1646 — 1716), who was a philoso-
pher, mathematician, and perhaps the last universal genius. Without knowing
about Schickard’s earlier work, he also constructed a machine capable of all four
arithmetic operations. In a letter to Duke Johann Friedrich of Hannover in 1671, he
wrote “In Mathematicis und Mechanicis habe ich vermittels Artis Combinatoriae
einige Dinge gefunden, die in Prazi Vitae von nicht geringer Importanz zu achten,
und ernstlich in Arithmeticis eine Maschine, so ich eine lebendige Rechenbank
nenne, dieweil dadurch zu wege gebracht wird, daf alle Zahlen sich selbst rechnen,
addieren, subtrahieren, multipliciren, dividiren ...” (from L. v. Mackensen: Von
Pascal zu Hahn. Die Entwicklung der Rechenmaschine im 17. und 18. Jahrhun-
dert, p. 21 - 33. In: M. Graef (ed.): 350 Jahre Rechenmaschinen. Vortrage eines
Festkolloquiums veranstaltet vom Zentrum fiir Datenverarbeitung der Universitat
Tibingen. Hanser Verlag, Miinchen 1973). The mechanical principles used in
Leibniz’ machine were used for many more years in the further development of
computing machines. Carry-over of digits was accomplished using staggered cylin-
ders, and the carry-over of tens<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>