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List of Frequently Used Symbols

All symbols are fully defined at the place where they are first introduced. As
a convenience to the reader we have collected some of the more frequently
used symbols in several places. The largest coliection is the one given below.
Shorter lists, for later use can be found in the introductions to Chapters X

and XL
def equality by definition
€ “a e A" means “a belongs to the set A or “g is an element
of A”
N the set of nonnegative integers (0 included)
Ry* the set of strictly positive integers (0 excluded)
Zz the set of positive and negative integers including 0
R the set of real numbers (the real line)
R" the set of ordered n-tuples of real numbers
a e R" may be represented as a = (4, - ..,a,). Moreover,
R" is a Euclidian space with the scalar product
(a,b) = .Zla"b"
whetea = (a,...,a),b = (by,..., b). R' = R;R%is
the plane
C the set of complex numbers
cr the set of ordered n-tuples of complex numbers. The

scalar product in C" is denoted as in R”, but
(a,by = Y a;b; = (b a).
i=1

Xiii
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A()

B('! )

C(.,.,.)
N(C)

List of Frequently Used Symbols

the set of n-times continuously differentiable functions
on a domain ¥". We may furthermore specify the
domain E where these functions take their values by
writing €"(¥"; E).

the norm of u. For instance, if wueC" we have || =
Cu,up':if we €(¥), fu} = Lub |u(x)|, where

xXe¥
la(x)|i is the norm of u(x) in the domain of values for
u; fluji = 0 imples that u = 0.
a linear operator:

A(au + fiv) = 2A(u) + PA(v).
a bilinear operator:
Boyu, + ayus. fyv, + Byv,) = o, 8,B(u,, v,)
+ a8, Buy, v2) + a; 8By, v,) + 2, 8,B(uy, vy)

a trilinear operator

a general nonlinear operator with no constant term and
no linear term in a neighborhood of 0:

N() = B(u, w) + C(u, u, u} + O(ju*)

Sometimes we assign a slightly different meaning to A, B, C:

(Au) = Ayu; = Ayuy + Apuy + -+ A,

(B - V)I- = B"J'kuj'vk

(C-u-v-w), = Ciprtd; v Wy

where we use the summation convention for repeated indices and where

F(t, u, U)
f(z, 1, w)

F,, F,,ctc
Fu(t’ i, UO | ')
F(t. i1, Ug|v)

a=¢4 0y

(A;;) is the matrix of a linear operator
(B;;) 1s the matrix of a bilinear operator
(Cijy) 1s the matrix of a trilinear operator

a nonlinear operator—see the opening paragraph of
Chapter I

reduction of F to “local form,” see §1.3

derivatives of F; see §1.6-7

the linear operator associated with the derivative of F at
U = UO

first derivative of F(z, u, U), evaluated at U = U,, acting
onv

an eigenvalue of a linear operator arising in the study of
stability of u = 0

When wu =0 corresponds to a time-periodic U(r) =
U(t 4+ T), then o is a Floquet exponent
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an eigenvalue of a linear operator arising in the study of
bifurcating solution. We use the same notation, £ and
n,for the real and imaginary part of and y and depend
on the context to define the difference.

frequency w and period T

amplitude of a bifurcating solution defined in various
ways: under (11.2), (V.2), (VL.72), (VIL6),, (VIIL.22),
Figure X.1.

notation for a scalar product ¢a, by = (b, a) with the
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Introduction

In its most general form bifurcation theoryisa theory of asymptotic solutions
of nonlinear equations. By asymptotic solutions we mean, for example, steady
solutions, time-periodic solutions, and quasi-periodic solutions. The purpose
of this book is to teach the theory of bifurcation of asymptotic solutions of
evolution problems governed by nonlinear differential equations. We have
written this book for the broadest audience of potentially interested learners:
engineers, biologists, chemists, physicists, mathematicians, economists, and
others whose work involves understanding asymptotic solutions of nonlinear
differential equations.

To accomplish our aims, we have thought it necessary to make the
analysis:

(1) general enough to apply to the huge variety of applications which arise in
science and technology; and

{2) simple enough so that it can be understood by persons whose mathe-
matical training does not extend beyond the classical methods of analysis
which were popular in the nineteenth century.

Of course, it is not possible to achieve generality and simplicity in a
perfect union but, in fact, the general theory is simpler than the detailed
theory required for particular applications. The general theory abstracts
from the detailed problems only the essential features and provides the
student with the skeleton on which detailed structures of the applications
must rest.

It is generally believed that the mathematical theory of bifurcation requires
some functional analysis and some of the methods of topology and dynamics.
This belief is certainly correct, but in a special sense which it is useful to
specify as motivation for the point of view which we have adopted in this work.

xvii




XViil Introduction

The main application of functional analysis of problems of bifurcation is the
justification of the reduction of problems posed in spaces of high or infinite
dimension to one and two dimensions. These low-dimensional problems are
associated with eigenfunction projections, and in some special cases, like
those arising in degenerate problems involving symmetry-breaking steady
bifurcations, analysis of problems of low dimension greater than two is
required. But the one- and two-dimensional projections are the most
important. They fall under the category of problems mathematicians call
bifurcation at a simple eigenvalue.

The existence and nature of bifurcation and the stability of the bifurcating
solutions are completely determined by analysis of the nonlinear ordinary
differential and algebraic equations which arise from the methods of reduction
by projections. The simplest way, then, to approach the teaching of the subject
is to start with the analysis of low-dimensional problems and only later to
demonstrate how the lower-dimensional problems may be projected out of
high-dimensional problems. In the first part of the analysis we require only
classical methods of analysis of differential equations and functions. In the
second part of the analysis, which 1s treated in Chapters VI and VIII, we can
proceed in a formal way without introducing the advanced mathematical
tools which are required for the ultimate justification of the formal analysis.
It goes almost without saying that we believe that all statements which we
make are mathematically justified in published works which are cited and
left for further study by courageous students.

It is perhaps useful to emphasize that we confine our attention to problems
which can be reduced to one or two dimensions. In this setting we can discuss
the following types of bifurcation: bifurcation of steady solutions in one
dimension (Chapter II) and for general problems which can be projected
into one dimension (Chapter VI); isolated solutions which perturb bi-
furcation in one dimension (Chapter I1I) and for general problems which can
be projected into one dimension (Chapter VI); bifurcation of steady solutions
from steady solutions in two dimensions (Chapters 1V and V) and for
general problems which can be projected into two dimensions (Chapter VI);
bifurcation of time-periodic solutions from steady ones in two dimensions
(Chapter VII) and for general problems which can be projected into two
dimensions (Chapter VIII); the bifurcation of subharmonic solutions from
T-periodic ones in the case of T-periodic forcing (Chapter IX), the bi-
furcating torus of “ asymptotically quasi-periodic™ solutions which bifurcate
from T-periodic ones in the case of T-periodic forcing (Chapter X), the
bifurcation of subharmonic solutions and tori from self-excited periodic
solutions (the autonomous case, Chapter XI). It is not possible to do much
better in an elementary book because even apparently benign systems of
three nonlinear ordinary differential equations give rise to very complicated
dynamics with turbulentlike attracting sets which defy description in simple
terms. In one dimension all solutions lie on the real line, in two dimensions all
solutions of the initial value problem lie in the plane and their trajectories



Acknowledgments xix

cannot intersect transversally because the solutions are unique. This severe
restriction on solutions of two-dimensional problems has already much less
force in three dimensions where nonintersecting trajectories can ultimately
generate attracting sets of considerable complexity (for example, see E. N.
Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130 (1963)).

We regard this book as a text for the teaching of the principles of bi-
furcation. Qur aim was to give a complete theory for all problems which in a
sense, through projections, could be said to be set in two dimensions. To do
this we had to derive a large number of new research results. In fact new
results appear throughout this book but most especially in the problem of
bifurcation of periodic solutions which is studied in Chapters X and XI.
Students who wish to continue their studies after mastering the ¢lementary
theory may wish to consult some of the references listed at the end of Chapter L.

There are many very gooed and important papers among the thousands
published since 1963. We have suppressed our impulse to make systematic
reference to these papers because we wish to emphasize only the elementary
parts of the subject. It may be helpful, however, to note that some papers
use the “method of Liapunov-Schmidt” to decompose the space of solutions
and equations into a finite-dimensional and an infinite-dimensional part. The
infinite part can be solved and the resulting finite dimensional problem has
all the information about bifurcation. Other papers use the “center mani-
foid™ to reduce the problems to finite dimensions. This method uses the fact
that in problems like those in this book, solutions are attracted to the center
manifold, which is finite dimensional. Both methods are good for proving
existence theorems. Though they can also be used to construct solutions,
they in fact involve redundant computations. These methods are systemati-
cally avoided in this book. Instead, we apply the implicit function theorem to
justify the direct, sequential computation of power series solutions in an
amplitude &, using the Fredholm alternative, as the most economic way to
determine qualitative properties of the bifurcating solutions and to compute
them.
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Preface to the Second Edition

This second edition of Elementary Stability and Bifurcation Theory is an
expanded and simplified revision of our earlier work. We have removed and
corrected the small number of errors which readers brought to our attention
and we have tried to clarify and simplify wherever possible, most especially in
the less elementary parts of the book relating to the bifurcation of periodic
solutions, which is developed in Chapters X and XI. It has to be confessed that
many readers did not find the final chapters of our previous book elementary.
We have made simplifications and hope at least that this treatment is as near
to being elementary as is possible. We set down a unified theory in the previous
version and focused only on the well-established parts of the subject. In this,
and the old version of the book, we restrict our attention to what has become
known as local bilurcation theory, analysis of stability, and branching in
the neighborhood of points of bifurcation. Global methods require tools of
geometry and topology and some of these are very well explained in a recent
book by Guckenheimer and Holmes*. Our book leans more heavily on
analysis than on topology, and it is basically restricted to analysis near points
of bifurcation.

Of ali the interesting developments which have taken place in bifurcation
theory in the past decade, at least two have attained the status of established
parts of bifurcation theory. The first of these concerns problems which are
invariant under symmetries. A fairly compiete exposition of this theory, which
was started by David Sattinger, can be found in the two-volume work by
Golubitsky and Schaeffert. The second development, the use of normal forms,

* (uckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcation of
Vector Fields. Applied Mathematical Sciences, Vol. 42. New York: Springer-Verlag, 1983.

t Golubitsky, M. and Schaefler, D. Singularities and Groups in Bifurcation Theory. Applied
Mathematical Sciences, Vol. 51, New York: Springer-Verlag, [983.
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can be related to the pioneering works of Landau and Stuart on amplitude
equations but also follows, perhaps, more completely from the more recent
techniques associated with the center manifold theorem, We referred to some
of this in the last version; amplitude equations are better understood now and
we have tried to pass on our understanding.

Symmetries often occur in physical systems and it is important to have
efficient mathematical methods to extract their consequences. Symmetry often
leads to multiple eigenvalues and to bifurcating solutions which break sym-
metry. Group theory allows an efficient classification of genuinely different
types of bifurcating solutions. For example, in the Taylor-Couette flow of
fluid between rolating concentric cylinders, symmetry arguments imply that
bifurcating flows are either axisymmetric with horizontal cells (Taylor vortex
flow), or spiral waves or ribbons breaking rotation symmetry and translation
invariance along the axis of the cylinderf. Group theory, combined with
amplitude equations, has been used to predict, without explicit computations,
certain types of motion§, which were only observed later in experimentsy.

We have continued to organize our studies of bifurcation theory with power
series in the amplitude, using the Fredholm alternative to invert the perturba-
tion equations which arise at different orders in the perturbation. In the
present edition, however, we have greatly emphasized amplitude equations.
The amplitude equations, unlike the amplitude expansions, do not commit
us, at the outset, to name the invariant set describing the bifurcation. For
example, it is not necessary to say at the start that you seek a steady
solution or a time-periodic solution. Instead, the qualitative properties of the
solutions which bifurcate can be found in the solution set of the amplitude
equations.

Amplitude equations were used in applications to problems of hydro-
dynamic stability in the 1960s. More recent approaches emphasize the center
manifold, whose tangent space is spanned by excited modes, and the normal
forms which are the simplest forms for the amplitude equations. The equations
are controlled by excited modes. The linearly damped modes, sometimes
called “slaves,” do not enter strongly into the dynamics. There are different
ways to generate amplitude equations; the one we like uses expansions of all
quantities relative to criticality and the Fredhoim alternative, preserving the
unity of method and presentation achieved in the first edition.

In the present edition we have added problems and discussions of simpie
symmetries, and emphasized methods which can be used to simplify ampilitude
equations in the presence of symmetry. In §VI.14 we show how a symmetry may
lead to pitchfork bifurcation. In several examples in Chapter VI we show how
to compulte bifurcations and stability of bifurcating solutions in a symmetric

I Chossat, P. and Tooss, G. Primary and secondary bifurcations in the Couette—Taylor problem.
Japan J. Appl. Math., 2, 3768 (1985).

§ Iooss, G. Secondary bilurcations of Taylor vortices into wavy inflow or outflow boundaries, J.
Fluid Mech., 173, 273-288 (1986).
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problem with a double cigenvalue in the presence of discrete symmetries. We
compare the method of amplitude expansions with the method of amplitude
equations, plus symmetry. Rotation symmetry combined with Hopf bifurca-
tion may lead to “rotating waves” breaking both rotational and time-shift
invariance, as we show in §§VIIL5 and X1.22.

We have added an additional Chapter XIT to this edition, in an attempt to
introduce some of the methods, which are used in the study of stability and
bifurcation of conservative systems, to our study of dissipative systems. The
omission of such considerations in the last edition may have been a source of
confusion to a huge number of readers who confront bifurcation problems in
their work on conservative systems. Students of elasticity, for example, fall into
this category. In this final chapter we have confined our attention to equilib-
rium solutions of conservative problems, leaving aside many of the important
but not elementary questions arising in the dynamics of Hamiltonian systems.
Hamiltonian systems perturbed by small dissipation are important in the
theory of chaos but are not treated here.

Finally, we take note of the huge impact made by modern computers on
the various parts of the theory of stability and bifurcation. One can scarcely
overestimate the importance of numerical methods which have made possible
the actual realization of theoretical approaches in a form suitable for com-
parison with observation and experiment. Numerical analysis of bifurcations
is a large specialized subject which deserves to be treated in its own right, in
a dedicated manner not possible in this book.




CHAPTER I

Asymptotic Solutions of
Evolution Problems

We are going to study asymptotic solutions of evolution equations of the form

dU

i Fiz, u, U}, (L1}
where { > 0 is the time and u is a parameter which lies on the real line
— o0 < u < oo. The unknown in (L.1) is U(z). F(z, 4, U) is a given nonlinear
function or operator.* When F is independent of ¢ we omit ¢ and write
F(y, U). (1.1) governs the evolution of U(t) from its initial value U(Q) = U,.
An asymptotic solution is a solution to which U() evolves after the transient
effects associated with the initial values, have died away. Itis necessary to state
more precisely what is meant by U{z), F(t, ¢, U), and an asymptotic solution.
This statement requires some preliminary explanations and definitions.

I.1 One-Dimensional, Two-Dimensional,
n-Dimensional, and Infinite-Dimensional
Interpretations of (1.1)

In one-dimensional problems U(t)is a scalar, —o0 < U < oo, and F(z, p, U)
is a scalar-valued function of (¢, u, U). For example, in acoarse approximation

* We assume here that F depends on the present value of U(s) and not on its history. For more
general possibilities, see Notes for Chapter L
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of an ecological logistics problem, U could be the density of mosquitoes in
Minnesota and g the available food supply. The rate of increase of the density
of mosquitoes is given by the nonlinear function F(u, U). The mosquito
population increases when F > 0, decreases when F < Oand is in equilibrium
when F(g, U) = 0. In the equilibrium distribution the food supply u# and
population density U are related by F = 0. There can be many equilibrium
distributions; for example,

Flu, U) = (ai(1) — Ula(w) - U)...(a(p) — U) (1.2)

could have n equilibrium distributions each one corresponding to a zero of a
factor: afu) = U. The determination of equilibrium distributions does not
tell us what density of mosquitoes to expect given the availability of human
flesh because some equilibrium distributions are unstable and will not per-
sist under perturbation. So we have to find the equilibrium distributions and
to determine their stability.

In two-dimensional problems U(:) is a two-dimensional vector with
components (U,(r), U,(t)), and F(z, p, U) is vector-function whose com-
ponents [F{t, u, Uy, U,), Fy(t, u, Uy, ;)] are nonlinear functions of the
components of U. The same notations are adopted for n-dimensional
problems with n > 2;in this case the vectors have n components.

We follow the usual mathematical conventions and define

(RY, B%, R") = (the real line, the plane, n-dimensional space).

Scalars take on values in R! and n-component vectors take on values in &",
It is customary to simplify the notation for ! by dropping the superscript :
R =R.

It is also conventional in mathematics to speak of infinite-dimensional
problems but, in general, something more than and something different
from n —» oo is meant. By an infinite-dimensional problem we mean that
U= U(x,,...,x,, t)is a field on a n-dimensional (usually < 3 dimensions)
region ¥ of (x,,... » Xy)-space and that F(¢, 4, U) is an operator involving
operations on the spatial variables x,, x,, . . ., x, which carry vector fields in
¥ into vector fields in ¥". Partial differential equations and integral equations
fit this description. For partial differential equations it is necessary to supplie-
ment (I.1) with boundary conditions. For example, in problems of reaction
and diffusion involving n different species ficlds C(x, ¢) in a temperature
field T(x, t) defined on the region ¥~ of three-dimensional physical space the
evolution of the (n + 1)-dimensional vector field U(x, t) = (C(x, 1),
Co(x,1),..., C\(x,7), T(x, )) = (U, (x, 1, Us(x,1),..., U, (x, 1) is governed
by

G au
a_'j =FGuU) e, ZE=Fnl),  a=12..n+1, (13)
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where
Ft, 1, U) = V- (DggVUj + g, U) + ho(x, ¢, 1), (L4)*
(D) =(n+ 1) x (n+ 1) matrix of diffusion coefficients;
g, U) is a nonlinear function of p and U and g,(, 0y =0; (L5)
and

h.(x, t, i) is a prescribed function of ¢ and ¢,
On the boundary 87" of ¥ with outward normal n some linear combination
of the-normal derivatives and values of the components of U are prescribed:
(n ° V)Ma,ﬂ(xs L, nu')Uﬂ + Na:ﬂ(xs t, .U)U,g = Pcz(x! L .u)s (16)

where M, and N, are square matrices and P(x, t, i) is prescribed. This
probiem is infinite-dimensional because it is defined for each of the infinitely
many places x of ¥,

Another example is the Navier-Stokes equations for a homogeneous
incompressible fluid. Here (1.1) can be taken as the equation for the vorticity
® = curl V, where V(x, t) is the velocity, v is the kinematic viscosity and

P
a_(: — W2 + (@ - V)V — (V- V)o + px, 1, 1)

o = curl V. )]

div V = 0,

where p(x, t, 1) is a prescribed forcing term. The solutions (V, @) of (1.7)
together with boundary conditions prescribing V, say

V(x, 1) = Y(x,t,p) for xe€d¥, (1.8)

determine V(x, t) in¥".

It is perhaps useful here to state that in many situations the higher-
dimensional problems can be reduced to one- or two-dimensional ones
(see, e.g., Chapters VI and VIII).

1.2 Forced Solutions; Steady Forcing and
T-Periodic Forcing; Autonomous and
Nonautonomous Problems

Now we adopt the convention, which clearly applies to the examples given

in §I.1, that U = 0 is not a solution of the evolution problem associated with
(I.1). The function U = 0 cannot solve this problem because U # 0 is

* We use the convention of repeated indices. A repeated index is to be summed over its range:
e, Dgug = Dyuy + Doouy + D, uy.
N
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forced by nonzero forcing data. In the examples mentioned in §1.1, the forcing
data is a,(uax(u)...a(u) # 0 in (1.2), hix,t, ;) and P(x,t, u) # 0 in
(1.3-6), and p(x, t, ) and Y(x, 1, u1) # 0 in (1.7, 8). If we ignore the boundary
conditions in problems of partial differential equations then the forcing
data is given by F(z, 4, 0) # 0.

We are going to restrict our attention to problems in which the forcing data

F(t, 1, ) ¥ F(y, 0) # 0 and F(y, U)is independent of ¢ (L9
or
F(t, 1, 0) = F(t + T, 41,0} # 0 and F(t, u, U) is T-periodic. (1.10)
When F(u, U) is independent of ¢, the problem

du
ar = Fw U) (1.11)
is said to be autonomous. When F(t, u, U} is periodic in t with period T, the
problem

4U

7 =~ FowU)=F@e+ T, U) (1.12)
is said to be nonautonomous, T-periodic. We shall usually omit the words
“T-periodic” in describing nonautonomous problems since only the T-
periodic ones are considered in this book.

I.3 Reduction to Local Form

We make the assumption that for x in a certain interval of R there are
asymptotic solutions of (I.11) and (1.12} which imitate evolution properties
of the forcing data. So there is a steady solution UG) (11} and a T-periodic
solution U, ) = Tz + T, y) of (1.12).

Consider an arbitrary disturbance, u of U. The equations which govern this
disturbance are

du

= FGu U+ 0) - B 0% () (L13)
in the autonomous case, and
d . .
le: = F(t, 1, U + w) — Ft, g, 0)% 1z, 1, w), (1.14)

where f(t, i, u) = f(t + T, g, w) in the nonautonomous case; u identically
zero is a solution of (I.13) and (I.14). Problems (I.13) and (1.14), in which
u = Q1is a solution, are said to be reduced to local form.



1.5 Asymptotic Solutions and Bifurcating Solutions 5

There is no great loss of generality involved in the reduction to local form.
It is a valid reduction for those values of u for which U(u) and 0z, p) exist.

Equations (1.13) and (L.14) are identical except for the presence of ¢ in
f(z, 4, w) in (1.14). But the behavior of solutions of these two problems is
very different. This is no surprise. The difference arises from a big difference
in the nature of forcing data which drives the dynamical equations from the
outside.

L4 Asymptotic Solutions

We have already defined two types of asymptotic solutions: (1) steady
solutions of autonomous problems and (2) T-periodic sotutions of non-
autonomous problems.

One of the main features of bifurcation is the appearance of solutions which
break the symmetry pattern of the forcing data. For example, we may get (3)
a t-periodicsolution U(r) = U(t + t)or w(t) = u(t + 7)of thesteady problem
(I.11) or (L.13), respectively. We may get (4) subharmonic solutions u() =
Ut + nT)oru(t) = u(t + nT), where n = 1,2, 3, ... of nonautonomous, T-
periodic problems (1.12) or (I.14), respectively. We may also get (5) sub-
harmonic bifurcating solutions of t-periodic solutions of autonomous
problems. Suppose there is a z-periodic solution of (1.13}

Y PR LR IR @$1s)
Then f is autonomous even though u depends on t. A disturbance v of u(g, t)
satisfies
du + v)
dt

If there are periodic solutions of (L16), ulye, £) + v() =uly, t + D + ¥t + T)
where ¥ = nt,n=1,2,3,...,asv—> Othenu + v is said to be subharmonic.
Finally we can get bifurcation of periodic solutions of autonomous and
nonautonomous problems into “asymptotically quasi-periodic” solutions.
These solutions are sometimes said to live on a bifurcating torus and they
are discussed in Chapter X.

We do not give a general definition of asymptotic solutions. Instead, by
“asymptotic solution” we mean one of the six types listed above.

= f(ﬂ» “(lu& t) + V(t)). (116)

1.5 Asymptotic Solutions and Bifurcating Solutions

Bifurcating solutions arc asymptotic solutions which form intersecting
branches in a suitable space of functions. For example, when U lies in R!
the bifurcating steady solutions form intersecting branches of the curve
F(u, U) = 0 in the p, U plane. When U lies in R? the bifurcating solutions
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form connected intersecting surfaces or curves in the three-dimensional
(#, Uy, U,) space. We say that ong asymptotic solution bifurcates from
another at u = g if there are two distinct asymptotic solutions U'"(y, 1)
and Uy, 1) of the evolution problem, continuous in g, and such that
U“)(Ju{): t) = U(Z)(FO’ I)'

Not all asymptotic solutions arise from bifurcation. Isolated solutions
and disjoint branches of solutions are common in nonlinear problems (see
Figure IL.7).

L6 Bifurcating Solutions and the
Linear Theory of Stability

To get the linearized theory we subject an asymptotic solution to a small initial
perturbation. If the perturbation grows the asymptotic solution is unstable,
and if it eventually decays the asymptotic solution is stable to small distur-
bances. It may be unstabie to larger disturbances, but if it is stable to small
disturbances then there is no other asymptotic solution of the evolution
problem close to the given one. Since solutons which bifurcate from the given
one branch off the given one is a continuous fashion it is often (but not
always) true that a necessary condition for bifurcation is the instability of
the asymptotic solution to indefinitely small disturbances, (This necessary
condition is true for bifurcation at a simple eigenvalue.) The stability theory
for indefinitely small disturbances is linear because quadratic terms in the
disturbance equations are negligible compared to linear ones.

Suppose, for example, that Ut 4y is a solution of (1.12) and év is a dis-
turbance of U where & is a constant. Then

B B, Ut ) + 090) — . O,

5dt_

S0

dv d

-5 = L ] q—if F t, u, U ]

yr [d5 F(t, 1, U + 5v}]ﬁ=o ult, 1, Tlv)

where Fy(z, 4, U{-)is a linear operator, linear in the variable after the vertical
bar, called the derivative or linearization of F evaluated at U, p). In the same
way f.(t, 1, 0[-) is the derivative of f evaluated at the solution u = 0 and

dv
— = {10 (L17)
7 = & 1 01w) 1
defines the linearized equation reduced to local form. To simplify notation we
write

ru(ts .ul ') d—i-r fu(t, Hy 0‘ ')' (1'17)2
The solution u = 0 of (1.14) is said to be asymptotically stable if v - 0 as
[ — oo (see §IL.7).
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1.7 Notation for the Functional Expansion
of F(z, 1, U)

It is frequently useful to expand the nonlinear operator F(z, ut, U) as a Taylor
series around the vector Uy. Thus

F(t, 1, Uy + v) = F(t, 4, Up) + Fult, 1, Uplv)
1 1
+ EFUU(L u, Ugly|v) + 3 Fyuu(t, tt, Ugl¥[v]Y)

+ O(IvI*), (1.18)
where, for example,
Fuu(t, #, Uglalb) = Fyylt, p, Uylbja)

dor P2F(t, u, Ug + 6,3 + 3,b)
- 30,86, R

(1.19)

is a bilinear operator carrying vectors into vectors. Fypylt, i, Uylv]¥|v)is
generated from a trilinear operator in the same way. The multilinear operators
are obviously symmetric with respect (o the argument vectors to the right
of the vertical bars.

When U(t) e R" we may express the functional derivatives in terms of
matrices

{FU(t! Hy U0|V)}i = {A(ta Hs UO) ) v}i = Aij(t7 U UO)Ujs

1
E{FUU(L H, Uol¥Iv)} = {B(t, Hs Up)v-v} = B:‘jk(ta i, Ug)voy,

1
E{FUUU(L Uy wivIv) = {C(t, 1, Uyv-v v},
= Gualt, B Ug ooy, (1.20)

where indices range from 1 through n, summation of repeated indices is
implied, and B;j and Ciy, are symmetric with respect to interchange of the
subscripts following i.

The same considerations apply when the problem is reduced to local
form. In this case (see (1.17),) we have

d 1 1
d—': = f(t, u, w) = £, plw) + 5fw(t,u|n|u) + ;fuuu(r,ulululu) + -
(1.21)
and in R"

f(t,u,u)=A(t,,u)-u+B(t,u)-u-u+C-u-n-u+ e (L22)
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NOTES

The theory of bifurcation applies generally to nonlincar problems, not only when
bifurcating solutions are asymptotic solutions of evolution problems like (I.1), but
also in the case of mtegral equations, nonlinear algebraic and functional equations,
integro-differential and functional-differential equations, especially these of retarded
type in which memory effects are important; for example

_(3:1:: j Gl — OF(z, . (1)) dr.
¢ w

The theory given in this book is a guide to how to study these other problems; in many
cases only slight and obvious changes are required.

The time-derivativein (L1) is important in the definition of asymptotic solutions and
the discussion of their stability. For example, in the nex chapter we shall show that the
theory of bifurcation of plane curves F{u, ») = 0 is the same as the study of singular
peints of these curves. The study of singular points may be connected with stability but
the connection is incidental and not intrinsic. The problem of stability depends on
whether the system is dissipative or conservative, Conservative systems are more
difficult in the sense that small perturbations of them never decay. In this book we
treat only dissipative systems.

There are many works and some monographs devoted to problems of bifurcation.
The French word bifurcation was introduced by H. Poincaré, Sur I'équilibre d’une
masse fluide animée d’un mouvement de rotation, Acta Math., 7, 259380 (1885).
There are many books and monographs devoted to problems of bifurcation and
stability. Most of these are not elementary or, if elementary, they are too biased
toward particular applications whose study, however meritorious, involves many
details of application which are not intrinsic or central to the problems of bifurcation
and stability. A partial list of review articles, collections of papers, bocks, and mono-
graphs which may help students after they have mastered the elementary theory is
given below,

Arnold, V. I. Geometrical Methods in the Theory of Ordinary Differential Equations.
New York-Heidelberg-Berlin: Springer-Verlag, 1982 (Russian original, 1977),

Amann, H., Bazley, N, Kirchgissner, K. Applications of Nonlinear Analysis in the
Physical Science. Boston-London-Melbourne: Pitman, 1981,

Chow, S. N. and Hale, §. K. Methods of Bifurcation Theory., Berlin—Heidelberg—New
York: Springer-Verlag, 1982,

Golubitsky, M. and Schaeffer, D. Singularities and Groups in Bifurcation Theory,
Applied Mathematical Sciences, Vol. 51, Berlin-Heidelberg-New York: Springer-
Verlag, 1984,

Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems and
Bifurcations of Vector Fields. Applied Mathematical Sciences, Vol. 42. Berlin—
Heidelberg—New York: Springer-Verlag, 1983.

Gurel O., and Rossler, O., eds. Bifurcation theory and its applications in scientific
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CHAPTER 11

Bifurcation and Stability of
Steady Solutions of Evolution
Equations in One Dimension

We consider an evolution equation in R? of the form

du

7 = e, (IL1)

where F(-,-) has two continuous derivatives with respect to g and w. It is
conventional in the study of stability and bifurcation to arrange things so that

F(u,0) = 0 for all real numbers u. (IL2)

But we shall not require (IL2). Instead we require that equilibrium solutions
of (I.1) satisfy u = &, independent of ¢ and

Flu, e) =0, (IL.3)

The study of bifurcation of equilibrium solutions of the autonomous problem
(IL.1) is equivalent to the study of singular points of the curves (JL.3) in the
(1, &) plane.

II.1 The Implicit Function Theorem

The implicit function theorem is a basic mathematical result used in bifurca-
tion theory. The simplest version of this theorem may be stated as follows:

Let Fpg, &9} = O and let F be continuously differentiable in some open region
containing the point (o, &9) of the (1, &) plane. Then, if F(u,, gy) # 0, there
exist o > Qand f > 0 such that:

(i) The equation F{i,e) =0 has a unique solution & = e(u) when
Ho —a < u < pg +asuchthat e, — f < e < gy + .

10
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(i) The function &(-} is continuously differentiable when py ~ o0 < p <
Hg + o

(i) e p) = —Fu(u e(u))/F(p, e(p))-

Remark 1. We can solve for p(e) if F (1o, &) # 0.

Remark 2. If F is analytic so is u(e) or &(u).

Remark 3. Suppose we wish to solve the equation

F[ﬂ, Etl)’ . E(n)] =0

for . If Fug, 5, ..., e =0 and F, (i, €5, ..., &6") # 0, the implicit

function theorem holds with & — B, < & < e + f,, k=1,....n and
we obtain a unique function p = p(e'™, ..., ") in the interval po — o <
H< fo + o

Remark 4. The proof of the implicit function theorem is given in nearly
every book on advanced calculus and is omitted here.

I1.2 Classification of Points on Solution Curves

In our study of equilibrium solutions (IL3} it is desirable to introduce the
following classification of points.

(i) A regular point of F(u, £) = Ois one for which the implicit function theorem
works:

F,#0 or F,#0. (I14)

If (11.4) holds, then we can find a unique curve u = u(e) or & = &(y) through
the point.

(i) A regular turning peint is a point at which p(e) changes sign and
F(u, ) # 0.

(iii) A singular point of the curve F(u, £} = (is a point at which

F,=F =0 (IL5)
(iv) A double point of the curve F(u, £} = 0 is a singular point through which
pass two and only two branches of F(u, &) = 0 possessing distinct tangents.

We shall assume that all second derivatives of F do not simultaneously
vanish at a double point.

(v) A singular turning (double) point of the curve F(y, £) = 0 is a double point
at which y, changes sign on one branch.
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(vi) A cusp point of the curve F(u, &) = Ois a point of second order contact
between two branches of the curve. The two branches of the curve have the
same tangent at a cusp point.

(vii) A conjugate point is an isolated singular point solution of F(y, £) = 0.

(viii) A higher-order singular point of the curve F(u, &) = Q1is a singular point
at which all three second derivatives of F(y, ¢} are null,

Remarks. The elementary theory of singular points of plane curves is
discussed in many books on classical analysis; for example, see R. Courant,
Differential and Integral Calculus, Vol. I1, Chap. 11T (New York Interscience,
1956). To complete the study of bifurcation in R we shall also need to study
the stability of the bifurcating solutions (see Sections IL8-I1.14 extending
results presented by D. D. Joseph, Factorization theorems and repeated
branching of solution at a simple eigenvalue, Annals of the New York
Academy of Sciences, 316, 150-167 (1979)).

I1.3 The Characteristic Quadratic. Double Points,
Cusp Points, and Conjugate Points

It is necessary to be precise about double points. Suppose (g, g,) is a
singular point. Then equilibrium curves passing through the singular points
satisfy

2F(u, &) = F,, 0% + 2F,,0edu + F..86% + o[(|8u| + |8¢))*] = 0 (IL6)

where du = y — py, de = & - ¢, and F,, = F,(u,, €), etc. In the limit, as
(1, &) = (g, &) the equation (IL6) for the curves F(u, €) = 0 reduces to the
quadratic equation

Fu di? + 2F  dedu + Fde* = 0. (IL7)

for the tangents to the curve. We find that
nu:::n(EO) Fs# I D 1
_ 2 118
[“93(80) F.u# 1 * Fiu —-1] ( )
)] _  Fu[1] _ [D l] 1L9
Lf')(#o) C F |1 FL{-1f 1)

D=F%~F,F,. L10)

or

where
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If D < 0 there are no real tangents through (i, £o) and the point (o, €0)
is an isolated {(conjugate) point solution of F(y, £) = 0.

We shall consider the case when (jig, &) 15 not a higher-order singular
point. Then (tg, &) 1 2 double point if and only if D > 0. If two curves pass
through the singular point and D = 0 then the slope at the singular point
of higher-order contact is given by (IL8) or (I1.9). If D > Oand F,, #0,
then there are two tangents with slopes z;'(g,} and 143" (e,) given by (ILB).
IfD>0and F,, = 0, then F,, # 0and

de[2 duF,, + deF,.] =0 (1L11)

and there are two tangents &,(uo) = 0 and pleo) = —Fof2F . M e, (o) = 0
then F,(#o, €0) = 0. So all possibilities are covered in the following two
cases:

(A) D>0, F, #0 withtangents 1 eo) and p(e).
(B) b>0, F,, =0 with tangents £,(1o) = 0 and p(eo)
= _FEE/ZFcu-

I1.4 Double-Point Bifurcation and the
Implicit Function Theorem

Solutions (4, &) of F(u, &) = 0 are said to undergo double-point bifurcation
at (ug, &) if two curves with distinct tangents pass through (uo. &)- We
suppose D > 0 and use the implicit function theorem to find the curves.
Consider case (A) specified in the last paragraph of §11.3 and define a to be
determined function v(g) satisfying the equation p — o = v(g)(& — &y) and
such that

to o wgg) = 1e€o)

where p(g,) has one of the two values pi, 42 given by (11.8) as the solution
of the characteristic quadratic equation. Now define

aet 2F(1, €)
(s — €o)’

= F,0* +2F,v+F,

G(v, &)

+ HFo + 3F v + 3F,,0% + F v} (e — go) + ofle — &ol).
(11.12)
We have defined G so that
G(ve, €0) = Fouvh + 2F o + Fpe =0

for both choices of v,. Moreover, differentiation of (I1.12) using (I1.8)
shows that

GV £0) = 2pdEo)F uu + Fu) = +2./DsgnF,, #0.  (L13)
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So the existence of two functions v'¢) and v'¥(e) with v'e) = ullgy)
and v%(e,) = u®(e,) is guaranteed by the implicit function theorem,

We leave the strict proof of bifurcation for case (B) using the implicit
function theorem as an exercise for the reader.

IL5 Cusp-Point Bifurcation

We suppose now that £, ') has six continuous partial derivatives and shows
what happens at a cusp point of second-order contact, The difficulty here is
that, in general, it will not be possible to obtain g as a function of & or gasa
function of i. Then, we introduce a parameter » in order to obtain parametric
representations u(n) and &(n).

Since (g, €) = (0, 0)is a singular point

F0,00)=0, F,=F =0 and D=o

We assume in what follows that second derivatives of F are not all ZEro, say
F.. #0.(If F, =0, then Fuu # 0 because D = 0 and the roles of # and ¢ are
interchanged.) After differentiating

Fln) = Fln(u, e] =0,  u(0) = 5(0) = 0,
twice at n = 0, we find that
Foty + 2F 6, + F, 0% = 0. (I1.14)
This leads to
F;zs‘gn + F;:::f-lu =0,
Foe, + Fp, =0, (I1.13)
Dnfferentiating .# () = 0 at # =0 once more, and using {TL.15), we find that
£k‘s;:££(}?£,u)3 ~+ 3'Fes,u(E:,u)2F'ee - 3F£y,u}1£ﬂ(1;:‘:s)2 + Fupu(Fae)J]#r? = (. (1116)

In general, the coeflicient of ,u.,? 1s not zero; hence

=g, =0 (IL17)
Using (I11.17) and differentiating % () = 0, we get
F.el + 2F gy + Fuk =0, (IL18)

which leads to
Fpby + Fruttyn =0,
F e + Foutty, =0, (I1.19)

eu oy

A fifth differentiation of & (1) = 0 gives
FEEB’marrrm + st(#nugnw + grr'ﬂ“rrm'r) + Fum”mrluvrnvr =0, (L1.20)
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which is automatically satisfied, due to (11.19). Finally, a sixth differentiation
gives (after using {11.9) and (IL.17)

2
Fotpmn + 2FeuCann oo + Fucthinn

2e O
+ %[Fsseer?n + 3Feen£r2ml“v1rr + 3Fsu.u8rmrurzm + Fuﬂulur?ﬂ] =0 (r.21)

We may define the arbitrary parameter in terms of the function (n), #(0) = 0,
14, (0) = 0, as follows:

ulm = Stph® @ = £2, (11.22)

where the sign of g, is, in principle, determined by the sign of .
Now, (I1.21) and (11.22) lead to

Fied, + 3 — 2F, F3 + 3Fu ok - 3F, F, F2 + FopuF21p, = 0. (1123)

This equation determines the sign of p,, = £21n practice and the value of Een
which is not zero in general. We then obtain two solutions for &,,,. Higher-
order differentiations of # (i) = 0 will determine higher derivatives of ¢, as in
§11.3 and 1L4. In fact, the two solutions may be obtained by changing # to
—n, so, finally, we obtain a solution of the form

w=nt or p=-—n
e =Lt n? + Segn’ + 00", (11.24)

where ¢, is given by (IL.19) and &, by {11.23). This solution represents one
curve forming a cusp at (g, &) = (0, 0) with a tangent given by F.e + F, b = 0
(see Figure 11.6).

EXERCISE

L1 Assume that the coefficient of s in (IL16) vanishes. Then, assuming that £, 0,
show that there are in general (wo curves £ = ¢* () tangent at the point {0, 0) to
theline Fe + Fp=10 {take p = 17 and compute the curvatures e1,). Hint: See the first
edition of this book.

11.6 Triple-Point Bifurcation

We turn next to the case in which all second-order derivatives of F(-, -) are

null at a singular point. Confining our attention to the case in which F,,,, # 0
we may write (IL.15) as

F,
(e — 1OV, — BN, — A0 = 48+ 30
pp

b S, Fae _ g (1125

F e ppu

where p't, @ and pi® are values of u(e) at & = &. It follows from (IL1.25)
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that
Fo 1 (1),,02) (1),,(3) (2),,03
}__ = E(lue o+ He 'l + Hg #2 ’)’ (1126)
ey
Fau.u _ 1 (1) (2} (3)
oo T30+, (I1.27)
L
and
FEEE
7= P,
Bup

If the three roots of (11.25) are real and distinet, three bifurcating solutions
pass through the singular point (g, &). If two roots are complex, then there
18 0 bifurcation. The formulas (I1.26, 27) are useful in relating the stability of
bifurcation to the shape of the bifurcating curves at a triple point.

I1.7 Conditional Stability Theorem

Some of the solutions which bifurcate are stable and some are unstable,
To study the stability of the solution y = ¢ we very often study the linearized
equation

Z, = Fip o)Z, (11.28)
the general solution of which is
Z=¢"7,, (11.29)
where
¢ = F(u, e (I1.30)

Since all solutions of (11.28) are in the form (T1.29) we find that disturbances
Z of & grow when ¢ > 0 and decay when ¢ < 0, The linearized theory then
implies that (u(e), &) satisfying F(u, &) = 0 is stable when o < 0 and is
unstable when ¢ > 0,

Now we shall demonstrate that the conclusion of linearized theory holds
for the nonlinear equations provided that the disturbance is not too large.
Let » be a disturbance of & u = ¢+ p, where

%’ = Fue), € + v} — Flu(e), ¢)

= F(u(e), e)v + R(e, v), {Ii.31)
where
(R(g v)| < K|p)? (I1.32)
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when |v} is small enough. We want to show that near the origin v is like
Z(1) = e"Z,, 0 = F{u(e), ¢) and tends to zero exponentially or increases
exponentially according as ¢ < 0 or ¢ > 0. We may write (IL31) as

%(ue'“') = R(s, v)e” " (11.33)
Hence
v(t)e” = v(0) + J‘;R(s, v(s))e” " ds (11.34)
and, using (I1.32), we find that
[1(t) — v(0)e™| < K ﬁe"“‘”lv(s)lz ds. (11.35)
We want to show that (11.35) implies that u(t) » 0 as t — o0 if o{e) <0
and |0)| is small enough. Suppose ¢ < 0. Then there is n > 0 such that

o(e) + n < 0. Now, for the time being, assume that

[u(0)] < forailt = 0. (1L.36)

=)=

Combining (I1.35) and (11.36) we find that

() — v(0)™| < ne™ Ie"“lv(s)l ds. (11.37)
0
From (11.37) we deduce that
()] < [v(O)]e™ + ne"‘je_"slv(s)l ds. (11.38)
0
Setting
def [
yt) = J.e’“lv(s)l ds (11.39)
0

we have (I1.38) in the form

0 < ¥t} < (O] + my(®),  ¥0)=0. (11.40)

Multiplication of (IL40) by the integrating factore™ ™ followed by integration
leads to

ye™™ < {1 — e""Hu(0)|/n. (1L.41)
Returning now to (IL37) with (11.41) we find that
() — v(0)e™| < |(0)| e+ ™. (11.42)
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Equation (I1.42) shows that v() >0 exponentially when 6(c) < 0 and that
le(t)| < n/K is satisfied for all ¢ 2 0 when |v(0){ is small enough.

We have shown that (u(e), €) is cxponentially stable when ole) =
F{u(e), &) < 0 and |t(0}) is small enough. The condition on [e{D)] is the
reason that (u(e), ¢) is said to be conditionally stable, If [(0)| were un-
restricted we would have unconditional or global stability. Global stability is
a rare property since it implies that at a fixed value of p there is just one
steady solution u = ¢ which attracts all solutions of (IL.1) at that fixed i
Frequently more than one solution exists at the same p and each stable
equilibrium solution attracts its own restricted set of u’s (see F ig. IL7).,

We next demonstrate that the null-solution equation (IL31) is unstable
when ¢ > 0. Equation (11.34) is still valid. Hence if we assume that

lv()| < &

foralit > 0,and let t - oo in (11.34), we obtain

o(0) = — J:DR(E, v(sNe "% ds.
Then we may rewrite ( 11.34) as

vft) = — f 00R(s, v(s))e”" 9 s,

Now, using the estimate {IL32), we have

] 2
lu(r)] < Kszf e gy = 58—,
t a
and ¢ has to satisfy
K 2
< T:_ (11.43)

Choose v(0)# 0, and ¢ < o/K, contradicting (11.43). It is then impossible to
maintain [(t)] < & for all 1. Hence the solution u(r) leaves the fixed interval
ata time ¢y < + oo. This completes the proof of the equivalence between the
linear result and the nonlinear one for the stability of the nuli solution of
(I1.31).

Remarks. The proof of the conditional stability theorem in R? follows the
proof of the classical theorem of Lyapunov for systems in R” (for example,
see Coddington and Levinson, Theory of Ordinary Differential Equations
{(New York: McGraw-Hill, 1965), Chapter 3).
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11.8 The Factorization Theorem in One Dimension

Theorem 1 (Factorization Theorem). For every equilibrium solution F(u, €) =
0 for which p = p{e) we have

o(e) = F(u(e), e} = — ple)F (u(e), &) & —p, 6(e). (11.44)

The proof of Theorem 1 follows from the equation

dF(u(e), €)
de

This type of factorization may be proved for the stability of bifurcating
solutions in spaces more complicated than R'. But the theorem is most
easily understood in R'. One of the main implications of the factorization
theorem is that o{¢) must change sign as € is varied across a regular turning
point. This implies that the solution u = &, g = p(e) is stable on one side
of a regular turning point and is unstable on the other side (Figure IL1).

A regular turning point is also called a saddle-node point of bifurcation
because when (for example) u is increased, two equilibrium points suddenly
appear from nowhere, one being stable, the other unstable. The saddle-node
characterization of regular turning points is useful in problems of dimension
greater than one.

= Ffu(e), &) + w(e)F (i), &) = 0.

Corollary 1. (A) Any point (ig, &) of the curve u = () for which é(gp} =0,
is a singular point. (B) Any point (o, &) of the curve e(p) for which a(pg) = 0
is a singular point.

The proof of (A) follows from (11.44) and the proof of (B) from

dF
o) = Flu, e(p)), i F,+gF,=0. (11.45)

\~—turning point

~
~

0 #

Figure IL.1 Exchange of stability at a regular turning point
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I1.9 Equivalence of Strict Loss of Stability and
Double-Point Bifurcation

We connect the study of stability to the study of bifurcation under the
“strict crossing” hypothesis introduced by Hopf* and used in almost all
studies of bifurcation and stability. This hypothesis restricts the study of
bifurcation to double points; cusp points and higher-order singular points
are excluded.

Corollary 2. Suppose that (1o, &) is a singular point and (A) o(ey) # 0 or
(B) 0,(p0) # 0. Then (1y, ¢} is a double point.

In case (A) we find from (I1.44) that at the singular point (u{eg), &)
odeo) = F, + nucFau = _-u.?Fpu =y # 0. (IL46)

Equation (I146) shows that the characteristic quadratic equation (I1L7)
holds at (u(zq), &9). Since there is a curve through this point, D > 0 and we
need to show that D # 0. We shall assume that D = F2, — FF, = 0
and show that this assumption contradicts (I1.46). We first note that (11.46)
implies that not all three of the second derivatives of F are null at (o), £0)-
If F,,F,, #0and D=0 then (I1.8) becomes ps,)} = ~F,/F,, and (1L46)
may be written as F,, — (FL/F,) = —D/F,, #0. So D # 0 after all. If
FF,=0and D=0 then F,, = 0 and (IL46) may be written as g, = F.,
= —ulF,, # 0. S0 D # 0 after all.

In case (B) we solve F(u, &) = 0 for e(n). At the singular point {1y, &),

we havestrict loss of stability becausc o, = F,, + F,.¢, = F,, = \/Dsgn F,,.

I1.10 Exchange of Stability at a Double Point

It is possible to make precise statements about the stability of solutions
near double points. All of the possibilities for the stability of double-point
bifurcation can be described by the cases (A) and (B) which were fully speci-
fied under (IL.11). In case (A) two curves i'Ne) and u®(¢) pass through the
double point (4o, &). In case (B) two curves, &'y} (with eMpy) = 0)
and u®)(e), pass through the double point. The eigenvalue o belongs to the
curve with superscript (1) and ¢'®' to the curve with superscript (2).

* E. Hopf, Abzweigung einer periodischen Lésung von einer stationdren Lasung emes Dif-
ferenttalsystems, Berichten der Marhematisch- Physischen Kiasse der Sdchsischen Akademie der
Wissenschaften zu Leipzig XCIV, 1-22 (1942). An English translation of this paper by L. N,
Howard can be found in the book by Marsden and Mc Cracken (see Notes to Chapter I).



IL.10 Exchange of Stability at a Double Point 21

Theorem 2. Suppose (iig, &o) is a double point. Then, in case (A),

oM(e) = — uI(E) {3/ Dle — £o) + ole — &)} (1147)

and
aP(e).= pP(e) 13/ D(e — &) + o6 — €o)}; (11.48)
where § = F,/|F,,| and D and F,, are evaluated at & = &. And in case (B),
o) = s/D(t — o) + ot = fto) (11.49)

and
a(e) = —spP(e) {y/Dle — &) + ofe — &0}, (1.50)

wheres = F,,/|F,,|

PrOOF. If ¢t = p(c) we have (I1.44) in the form,

G(E) _ﬂa(E)Fu(lu(E)9 E)
_#9(8){[Fuu(u09 80)#5(80) + Fep(#{)! 80)] (8 - 80)

+ o(z — &)} (IL.51)

il

i

The formulas (I1.47) and (IL48) arise from (IL51) when g,(g,) is replaced with
the values given by (IL8). If & = &(u) with &,(zo) = 0 then F wHos €0) = 0,
F?p(#os 80) = D, and

o) = F(pt, e() = Fo{ito, €Yt — Ho) + ot — Ho)
= 5/D(u — po) + ol = po)-

Theorem 2 gives an exhaustive classification relating the stability of
solutions near a double point to the slope of the bifurcation curves near
that point. The result may be summarized as follows. Suppose | — g > 0
is small. Then (IL47) and (I1.48) show that ¢'*(&) and ¢'®/(c) have the same
(different) sign if u{!)(¢) and u?'(e) have different (the same) sign. A similar
conclusion can be drawn from (IL49) and (IL50). The possible distribu-
tions of stability of solutions is sketched in Figure 112 (dotted lines mean
unstable).

Theorem 3. Assume that all singular points of solutions of F(u, €} =0 are
double points. The stability of such solutions must change at each regular
turning point and at each singular point (which is not a turning point), and
only at such points.
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Figure [1.2  Stability of solutions in the neighborhood of double-point bifurcation.
The double point in each of the eight sketches is (140, &5). The top four sketches have
§ = —1land the bottom four have s = 1. Stability is determined by the sign of the eigen-
value given by (I147) and (11.48)

II.11 Exchange of Stability at a Double Point for
Problems Reduced to Local Form

The analysis of double-point bifurcation is even easier when one first makes
the reduction (1.14) to local form. It may be helpful to make a few remarks
about the bifurcation diagrams which follow from analysis of (I.14). Nearly
all the literature starts from a setup in which « = 0 is a solution of the
evolution problem. If F(u, 0) = 0 for all # then F(0,0) = F,(0,0) = 0 and
the strict loss of stability of the solution ¥ = 0 as 4 is increased past zero is

a0y = F,(0,0) £ 0, say > 0. (I1.52)
Then D = F2, > 0 and
a¥(e) = — ey (0} s + ole)). (IL53)

The bifurcation diagrams which follow from these results and the con-
ventional statements which we make about them are given by the diagrams
and caption to Figure I1.3.

A marvelous demonstration which can help to fix the ideas embodied in
theorem 3 has been found by T. B. Benjamin, Benjamin’s demonstration is
an example of the buckling of a simple structure under the action of gravity.
His apparatus is a board with two holes through which a wire is passed.
The wire forms an arch above the board whose arc len gthis [ The wire which
is actually used in Benjamin’s demonstration is like a bicycle brake cable:
it is wound like a tight coil spring and covered with a plastic sheath. The
demonstration apparatus is sketched in Figure I1.4.
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Supercritical bifurcation
on one side

o

Subcritical bifurcation
on one side

Figure IL3  Stability of solutions bifurcating from ¢ =

|&} > 0 for values of u (>0 in the diagram) for which ¢ =
solutions have |&| > 0 for values of 1 for which & =

AN

Two-sided (transcritic)
bifurcation

0. Supercritical solutions have

0 is unstable. Suberitical

0 is stable

We imagine that the equation of motion for the wire arch is

The steady solutions of (11.54) are imagined to
shown in Figure I15. Here 8 = 0is one solution
another solution (the bent arch). In fact there is a one
between Benjamin's demonstration a
nothing is seen in the demonstration t
and there is nothing in the diagram that is n

db
i F(l, 6).

board|[ .

side view

Figure 114

Benjamin's apparatus
under gravity loading. The bifurcatio
Figure 11.5. When ! is small the only sta
When | > |, is large the upright position is uns

the right as shown in the front view. The bent position
I < I.Whenl, <<l there are three stable steady solutions, the upright one =0
and the left or right bent one (|6} # 0)

(11.54)

be in the form F(i(6), 8) = 0
(the upright one) and I(6) is
-to-one correspondence
nd the bifurcation diagram (IL5);
hat does not appear in the diagram
ot in the demonstration. The

gravity
¥
-8
[ i
|
front view

for demonstrating the buckling of a wire arch
n diagram which fits this system is shown in
bie solution of {IL.54) is the upright one (8 = 0.
table and the arch falls to the left or to
of the wire is also stable when
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r()

hysteresis loop / @)

=]
o

Figure I1.5  Bifurcation diagram for the buckling of the wire arch. When [ is small
the only equilibrium of (11.54) is the upright one (8 = 0). The solution & = 0 loses
stability when p = I — I is increased past zero. A new solution w(#) = {8) — I cor-
responding to the bent arch then undergoes double-point bifurcation at a singular
turning point (4, 8) = (1., 0). The system is symmelric in . When { > {, only the left
and right bent equilibrium configurations are stable, The points (, 8) = ({,, +6,) are
regular turning points. When lo <1 <1 there are three stable solutions § = 0 and the
symmetric left and right bent positions. In this region the system exhibits hysteresis. If
the length / of the arch of the wire above the board is decreased while the wire is bent the
bent configuration will continue {o be observed until! = /,. When [ = Iy the bifurcating
bent position s a regular turning point. When / < lo only & = 0 is stable, So when |
is reduced below {, the arch snaps through to the upright solution, Now if we increase
I the arch stays in the vertical position until | = I When | > [_ the upright solution
loses stability and the arch falls back into the left or right stable bent position

interpretation of events in the demonstration is given in the caption for Figure
IL.5.

Double-point bifurcation is the most common form of bifurcation which
can occur at a singular point. Other types of bifurcation, cusp points, triple
points, etc., are less common because they require some relationship between
higher-order derivatives of F(u, £). Such situations are sometimes called
nongeneric bifurcation. There is a technical mathematical sense for the word
generic (having to do with dense open coverings), but most of the time the
word is used as a fancy alternative for the plain english word typical. Analysis
of typical problems does not help you if your probiem is not typical. For
example, it is surely wise to base calculations of the gravitational attrac-
tion between massy points on Newton’s law of the inverse square rather than
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on some imagined generic law, say inverse square plus epsilon, leading to an
even stranger epsilon-not-zero world than the epsilon-zero world we now
know. In the same sense if your problem is such that D = 0 when al! second
derivatives are not null you will eventually get cusp-point bifurcation no
matter how typical double-point hifurcation may be.

I1.12 Exchange of Stability at a Cusp Point

Let us consider the case studied in §11.5 where the cusp is described with the
parametrized curve (I11.24). A direct computation, using (IL.19), gives

a(n) = F,Lu®), em] = §Fbpun® + O(1*). (I1.55)

It follows from (11.5) that linearized stability is associated with the sign of »
{(see Figure [1.6(a)).

)

Figure I1.6(a) Stability of the solutions at a cusp point of bifurcation
EXERCISE

I1.2 Verify that the stability of solutions hifurcating at the singular point of Exercise
11.1 is described in Figure I1.6(b).

o | 2)

b N
M)

’
)

Figure I1.6(b) Stability of branching solutions in the singular cases treated in Exercises
I1.1 and T1.2
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11.13 Exchange of Stability at a Triple Point

The stability of the branches (I1.25) may be determined from the sign of

o(e) = — pu(e)F (ule), &)
= =30, (FOAVY + gVl + pPpl)
—fule) (@ + 1 + p) + ul(eo)} (6 — &)
+ 0(z — &)?, (11.56)
where we have used (I1.26-27) to express the expansion of F W(u(e), €) in

powers of ¢ — g,. This expression may be evaluated on cach of the three
branches as follows

a'(z) K@D — uD) (Y — ™)
6(2)(5) = —%Fu.uu #32)(‘5)(#(” 2))(1“(3) 12)) (8 - 50)2
0‘(3)(8) 3)(8)(‘”(1) 3))(“(2) .5;3))
+ O — &), (IL.57)

where it may be assumed without loss of generality that p(V > u(2 > 43,
The distribution of stability of the three distinct branches is easily determined
from (IL57). For example, the sign of

60’“’( E)
HEF

is (—1). We leave further deductions about bifurcation and stability at a
singular point where the second derivatives are all null as an exercise for the
interested reader. Tt will suffice here to remark that the stability of a branch
passing through such a point can change if and only if u,(¢) changes sign
there.

I1.14 Global Properties of Stability of
Isolated Solutions

Allthe resuits which we have asserted so far can be shown to apply to problems
of partial differential equations, like the Navier-Stokes equations, under a
condition, to be explained in Chapter VI, called bifurcation at simple eigen-
values. Theorem 2 applies in these more general problems because all the
branches are connected; they are really branches in a higher-dimensional
space whose projections are represented as plane curves,

It is necessary here to emphasize that it is not necessary for equilibrium
solutions of evolution equations to be connected by bifurcations. There are
isolated solutions, which are as common as rain, which are not connected to
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W= 9%

Figure IL7  Bifurcation, stability, and domains of attraction of equilibrium solutions of

j_lt‘ =u(® — p)(p + 2u — )W — 1002 + [u -3 - 1) (I1.58)

The equilibrium solution z = 9/u in the third quadrant and the circle are isolated
solutions which cannot be obtained by bifurcation analysis

Fiu, )

W
SRS O

Figure 1.8 Variation of F satisfying good conditions on the line u = constant. We
see immediately that the sign of the slopes F (4, ) alternate
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other solutions through bifurcation. Such isolated solutions of F(u,e) =0
occur even in one-dimensional problems (see Figure 117 for one typical
example). In the one-dimensional case it is possible to prove that the stability
of solutions which pierce the line g = constant is of alternating sign, as
shown in Figure IL7. This result, however, is strictly one-dimensional and
does not apply to one-dimensional projections of higher-dimensional
problems, in which curves of solutions which appear to intersect when pro-
jected onto the plane of the bifurcation diagram actually do not intersect
in the higher-dimensional space. The strictly one-dimensional result to which
we have just alluded gives a complete description of the domains of initial
values attracted by a steady solution.

To have the strong R' result that the stability of solutions is of alternating
sign we must assume that F satisfics some reasonable regularity conditions.
For example, if for a fixed p, the solutions ¢ of Fi (11, &) = 0 are isolated, then
they are countable and we may write them g, where £y <& < gy
and ! is in Z (positive or negative integers). Now we assume that the line
# = constant does not meet any singular point of F and that F,(u, &) # 0
for all . This situation is sketched in Figure IL8.

The significance of this result is dramatized by the sketch of the domain of
attraction of equilibrium solutions of (I1.58) in Figure I1.7.



CHAPTER 111

Imperfection Theory and Isolated
Solutions Which Perturb Bifurcation

Isolated solutions are probably very common in dynamical problems. One
way to treat them is as a perturbation of problems which do bifurcate. This
method of studying isolated solutions which are close to bifurcating solutions
is known as imperfection theory. Some of the basic ideas involved in 1m-
perfection theory can be understood by comparing the bending of an initially
straight column with an initially imperfect, say bent, column (see Figure
II1.1). The first column wifl remain straight under increasing end loadings P
until a critical load P, is reached. The column then undergoes supercritical,
one-sided, double-point bifurcation (Euler buckling). In this perfect (plane)
problem there is no way to decide if the column will buckle to the left or to
the right. The situation is different for the initially bent column. The sidewise
deflection starts as soon as the bent column is loaded and it deflects in the
direction x < 0 of the initial bending. I the initial bending is small the
deflection will resemble that of the perfect column. There will be a small,
nonzero deflection with increasing load until a neighborhood of P, is
reached: then the defiection will increase rapidly with increasing load.
When P is large it will be possible to push the deflected bent column into a
stable “abnormal” position (x > 0) opposite to the direction of initial
bending.

To understand the isolated solutions which perturb bifurcation it is
desirable to examine the possibilities with some generality. It is possible to do
this simply, again by studying steady solutions of one-dimensional problems.

29
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lp
AR Z /J./
[ (-
\ K
R § E/f% [ % e
Maximum horizontal
deflection of the column
——-—-——-—"/ Pr
""" P
(@) (b)

Figure IIL.]  (a) Buckling of a straight column. Double-point supercritical bifurcation.
(b) Bending of a bent column. {solated solutions which perturb double-point bifurcation

III.1 The Structure of Problems Which Break
Double-Point Bifurcation

Consider an evolution equation in one dimension
dx
— = F(u, x, 8), 1111
7 = Flx9) (IL1)

where 3 and p are parameters, F has at least three continuous derivatives with
respect to each of its three variables in a neighborhood of the point (u, x, 8)
= {0, 0, 0). To simplify notation we drop the tilde overbar on F and on the
partial derivatives of F when these quantities are evaluated at the point
(0, 0, 0). For example,

F ¥ F@0,0,0),

F,L¥F(0,0,0), et
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It is assumed that (u, x) = (0, 0) is a double point of F(u, x, 0) = 0. At such
a point we have

F =0,
F,=0,
(111.2)
F,=0,
D=F: —F,F.,.>0.
We are interested in the steady solutions of
Flu, e 6) =0, (ITL.3)

which break the solutions which bifurcate at the double point into isolated
solutions for & # 0. To break bifurcation it is enough that

Fs#0. (IIL4)

II1.2 The Implicit Function Theorem and the
Saddle Surface Breaking Bifurcation

Let us derive the form of the isolated solutions which break the bifurcation.
The implicit function theorem, (I11.2),, and (IIL4) imply that there is a
function & = Ay, £) such that A0, 0) = 0 and

Fu, e A, £)) = 0. (11L5)
It follows from (II1.5) that
F,+ F;A, =0 (1IL.6)
and
F,+ FsA, = 0. (LIL7)

Since F, = F, = 0 and F; # 0 at the double point we may conclude that
A=A =0 (I111.8)

Equations (IIL8) show that the surface é = A(y, ¢) is tangent to the plane
d = 0 in the three-dimensional space with coordinates (g, ¢, &) at the point
(0,0, 0). We shall show that this point is a saddle. For this it suffices to
demonstrate that in addition to (111.8) we have

AZ — A, A, > 0. (IIL.9)




32 11 Impetfection Theory and Isolated Solutions Which Perturb Bifurcation

Equation (II1.9) follows from the three second partial derivatives of (IIL5)
Fu+ FsA,, =0,
F,. + F,A, =0, (111.10)
Fp+ F:A, =0,

and the inequality D > 0, which holds at a double point (II1.2),.
Since A(y, £) is as smooth as F(y, &, 8) we may represent Ay, €) as a series

»

d = Ay, €) = ae? + 2beu + cy® + de?

+ ee’pt + feu? + gu® + o((|pl + e))*).* (IIL11)
where
_ Fce
2F,’
— Fgu
2F,’
_Fu
2F;’
[Fau: - 3F55F56/F5]
31F, ’
[F_uee - (2F::5Fe:p + F&yFse)/Fd]
2F, ’
[Fuue - (ZF,ueFué + FwFaa)/Fa]
3F, ’
— 3F,, F /F;]
31F;s '

b=

C =

d= —

(111.12)

f=—

LF s

* o{(|u| + |¢]}°) goes to zero faster than ¢/ + [s])® as g —» Oand £ — 0.

Figure [[1.2  Saddle surface 6 = Ay, ¢)
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Our problem now is to solve (I11.11) with coefficients (IT1.12}) for u(e, 8)
{or e(p, 8)) for a fixed value of 4. The intersection of the surface & = Ay, &)
and the planes é = constant determines these curves (see Figure I11.2).

I11.3 Examples of Isolated Solutions Which

Break Bifurcation
It is of interest to give some simple typical examples of the isolated solutions
which are generated by breaking double-point bifurcation with the param-

eter 8. For small values of 6 we get a local representation of the isolated
solution by the lowest-order truncation of (I1L.11)

& = ae* + 2beu + cu’. (I11.13)
This local section of the surface § = A(y, ¢) is a hyperbola (see Figure II1.3).

o0=0
5 <0 & >0

<0
>0

Figure II1.3  Projection of the curves (I11.13) onto the plane § = 0

ExampLE IIL1. Two-sided bifurcation (Figure 111.4):

p(,u, Ed)=¢ee—pwy+5=0. (I11.14)
> E=H
/ -

<0 d>0

Figure I11.4 Projection of the curves (I11.14) onto the plane 4 = 0
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ExaMpLE III.2. Two-sided bifurcation with a turning point (Figure IIL5):
Flu,e,8)y=eu—c— )+ 6=0. (111.15)

&

/ém

>0 H

__ 020

& <0

Figure IIL.5 Projection of the curves (IIL15) onto the plane 4 = ¢

ExamprLE IIL3. One-sided supercritical bifurcation (Figure 111.6):

F, 6, 8) = e(e> — p) + 6 = 0. (I1L.16)
&
o>0
<0
5>0 #
4 <0

Figure ITL6 Projection of the curves (II1.16) onto the plane 6 = 0

II1.4 Iterative Procedures for Finding Solutions

In the next step of our analysis we give a systematic procedure to develop
the function u(e, ). Two cases are considered:

(i) F(u, ¢, ) is in general form and F, # 0.
(i) F(y, ¢ 8) is the local form (see §1.3) that is, Fx, 0,0) = 0 for all
in an interval around zero.

Case (i). F,, # 0. We introduce a new parameter

= ;iz (II1.17)
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having the same sign as 8. The coefficients for the series representation
u(e. ) = py(B)e + pa(Be? + o |e?) (IIL18)

of the isolated solutions which break double-point bifurcation may be
computed by identification through terms of order O(e?). If F(., -, ) is
analytic in the neighborhood of (0, 0, 0) then all the terms of the Taylor
series for (II.18) may be computed by identification. If F is sufficiently
smooth but not analytic, we may compute a unique asymptotic representation
of the form (II1.18) in finite terms (a Taylor polynomial). To get u, and u,,
insert (I1L17)and (I11.18) inta (II1.11) and identify the coefficients of identical
powers of &:

d=a+ by, + i, (11119}
0 = 2bu, + 2cups + d + epty + fud + gud. (111.20)
Equation (111.19) has two roots

b 1 D .
@ =-—-"4+2 2435
uy () C+c 4F§+ c,

(I11.21)

For each of the two roots u and uj there is a unique 7 and u3 given by
(I11.20) provided that

D .
= 22
Ty Sc # 0, (111.22)

and there are unique isolated solutions breaking bifurcation given by
B¥(e, 8) = uf (B)e + pie + ol|el?),
B(80) = uy (O + pye? + of|2P),

Lﬁgﬂa - ;w g[i] + h(e, 5)[_ i] u [2}2 g;] (IT1.24)

1
he, 6) = — - / Det — 2FsF,, 6 - (sgn(eF,)),
up

sgn(eF;) = +1 ifeF; > 0,
= -1 if£F5<0.

(I11.23)

where

and
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Hence (4] (e, 8), fif (e, 8)) is a first approximation to u*(e, &) and (g, 8).
To find the second order approximation we solve (II1.20) for u, and find that

prEed)| _[aEd| 1 1 if (e, &)
[H(ﬁ, 5)] - [ﬁf(ﬂv ‘5)] 2ch(e, 8) {ds? [“1] ¥ egl[—.ﬁf(& 5)J

(a1 e, 5))2] [ (@] (e, 8))
+/ E[—(ﬁl(e, | T —ar o)

for a fixed § = &/e?, when & = 0.

]} + o(]e?) (IIL25)

Case (ii). F(y, 0, 0) = 0 for u in an interval around zero. In this case
£ = 0 is a solution of the bifurcation problem and ¢ = g = 0. It is easy to
verify that in this case

Ay, 0) = 0,

so that ¢ is a factor of the series on the right of (IIL.11). To find the curve
i = p(e, 8) which breaks bifurcation, we again introduce a parameter 0

8 =ed = A, £) = Ay, ¢), (I11.26)
6= A(w, &) = ae + 2bu + de? + eept + fii + o[(le] + (p])?]. (IL27)

We can solve (T11.27) with respect to u by the series method used in case (i)
or by the method of successive approximations described below:

b=y {6 = ac = de? — esu = fi} + of(lel + 1)) (L28)

The first approximation is given by
1 . 1 {é
~pD = 5 ey = {0 )
po~ % {0 — azg} {E ae}. (111.29)

The denominator b = —F_/F; = —\/B/F s # 0. Hence (II1.29) gives two
isolated solutions which break double-point bifurcation. For example,
if a = 0 as in (II1.16) (Example I1L.3), we get two bifurcating solutions when
¢ =0:¢=0,and u = 0. The isolated solutions which perturb these bifur-
cating solutions when § # 0 are given by the hyperbola ¢ = §/2be (Figure
ITL7). The second approximation is given by

| B 2
p~uH = % {0 — ag — de* — eep' — fu'"’}

_l 6 z_e 2 f 5 :
_EB{E ae — de E(&—as)—m(g—aﬁ) . (ITIL30)

For example, if a = 0 we get two bifurcating solutions when § = 0. These
bifurcating solutions are given locally by

e=0 and pu= — ;582 (I11.31)
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Figure I1].7 Hyperbola which breaks double-point bifurcation in the first approxima-
tion whena = 0

020
d=20 0

Figure IIL.8 Seccond approximation for Figure I11.7

corresponding to one-sided bifurcation if d/2b # 0 (d/2b < 0 in Figure
IIL8). The isolated solutions which break bifurcation when & # 0 are given
by (IIL30). In the supercritical case the picture shown in Figure IIL7 is
corrected by the second approximation in the manner shown in Figure I11.8.

It is necessary to add that cases (i) and (ii) exclude certain possibilities;
for example, F,, = 0, F,,, # 0, which in any event could be obtained under
case (i) in some new coordinates (¢, €') obtained under orthogonal trans-
formation of the (4, ¢) plane. The required orthogonal transformation
suppresses the mixed product (ue in the hyperbola (II1.13)) and brings us
back to the case F, . # 0.

I11.5 Stability of Solutions Which Break Bifurcation

The stability of isolated solutions on the curve u(e, 5) may be obtained from
the factorization theorem. Perturbing the solutions p = (s, 8), x = & of
(I1L.1) with small disturbances proportional to " we find that

We) = FAu(@, &), & 8) = — pdd, e)F (1, &), & 9). (I11.32)
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We can prove that:

(i) Stable branches with #{e, 0) of one sign perturb with & to stable
branches with (e, 8) of the same sign:

(i) the stability of any branch u = u(e, ) changes sign at each and
every regular turning point.

Property (i) follows from continuity and property (i} from (111.32),
Typical examples of the stability principles (i) and (ii) are shown in Figure
ITL9,

------ L RRL M - =

7 i
d=0 d#0
£
d#0
520 LT
I;’
&
§=0-75%£0
0 = [ :‘L::: Sommmm———
§#0 0=0  x
This solution \
exhibits hysteresis 50

Figure IIL9 Stability of isolated solutions perturbing bifurcation
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I11.6 Isclas

We now relax the assumption introduced in §IIL I and assume that (I11.2) and
(IIL4) hold with D < 0. This assumption means that the singular point of
F{u, &, 0) is isolated (a conjugate point) and there is no bifurcation when
6 = 0. We can proceed as in § 1.2 and compute & = Ay, £) = O(| | + [€])?
where
AZ — AL A, <O

The principal part of 8= A(y,&); ie, & =378 + A, en+ A, 1
determines sections of an elliptic paraboloid instead of the hyperbolic
paraboloid studied in § II1.2. When J has the correct sign the curves in the
planes & = constant are closed (isolas) and they shrink to zero with é.
There are no solutions when & has the other sign.

ExampLE 111.4
Py, e, 8)% u2 + e + &2 — 8 + 0{8% + |81(lel + |ul) + (le] + 41’} =0

determines closed curves close to ellipses when & is positive and small (see
Figure IIL10).

£

N\
N

Figure I1.10 Level lines of isolas

é>0

EXERCISE

IIL1 (Imperfection theory for a “bifurcation at infinity” (4 — o)) Let us consider the
two following examples

1
dx _ x(ﬁ - x2) + 8, (IT133)
dt i
dx 1
AT S 3
0 x(‘u x ) 4, (I11.34)

where p > Qoru < 0.
Show that the steady solutions and their stabilities are as in Figures IIL11 and I11.12.
(Compare with Figures IIL.5 and IIL6.
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Figure [IL.11 Case (I11.34)

Figure 1IL.12  Case (II1.33)

Problems of bifurcation from infinity have been studied by Rosenblat
and Davis, SIAM J. Appl. Marh, 1, 1-20 (1979).)

NOTES

Imperfection theory can be traced back at least to Koiter (1945) in problems in elastic
stability and Zochner (1933) in problems involving liquid crystals, The imperfection
theory of Matkowsky and Reiss {1977) is close to the one given here but their aims
were such as to lead them to treat the problem, which is analytic when F is, as a singular
perturbation. We have preferred to stress the analytic nature of the problem, which is
implied by the implicit lunction theorem, to define analytic iterative procedures for
obtaining the curves. Imperfection theory can be regarded as a special case arising from
the singularity theory of R. Thom (1968) when there is a single control parameter (8).
In this simplest case of singularity theory a canonical cubic

& = 2bey + de? (I11.35)
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governing the breakup of one-sided bifurcation is important. This curve is the lowest-
order approximation of the curve (II1.30) relating § to £ on the plane y = constant.
Examination of the terms on the right of (I11.30) shows that 3 ~ O(¢*) and the terms
neglected in going from (E1L.30) to (111.35) are O(e*). The graph of {I11.35} is like that
shown in (TIL8). In our theory we find that (IIE7) is the first approximation to the
curves breaking bifurcation and that it is never necessary to counsider a cubic equation.
The recent work of Golubitsky and Schaeffer (1979) relaxes some of the assumptions
of Thom’s theory and treats the problem of the breaking of bifurcation by equivalence
classes of control parameters from a general, but more or less advanced, standpoint.

Golubitsky, M. and Schaeffer, D. A Theory for impetfect bifurcation via singularity
theory. Comm. Pure Appl. Math, 32, 1-78 (1979).

Koiter, W. T., On the stability of elastic equilibrium (in Dutch), Amsterdam: H. J. Paris,
1945; translated into English as NASA TTF-10833 (1967).

Matkowsky, B. J. and Reiss, E. Singular perturbation of bifurcations, SI4AM J. Appl.
Math., 33, 230-255 (1977).

Thom, R., Topological methods in biology, Topology, 8, 313-335 (1968).

Zochner, H. The effect of a magnetic field on the Nematic state. Trans. Faraday Seoc.,
29 945-957 (1933).




CHAPTER IV

Stability of Steady Solutions of
Evolution Equations in
Two Dimensions and n Dimensions

We noted in the introduction that the solutions of three nonlinear ordinary
differential equations can be turbulent-like and outside the scope of elemen-
tary analysis. In fact, the most complete results known in bifurcation theory
are for problems which can be reduced to one or two dimensions. So we
shall start our analysis with two-dimensional autonomous problems,
reduced to local form (1.21):

du

B tw, (Iv.1)

where

Sl w) = A u; + Bp(dujuy + Crptdujuy uy + O(||H||4)- (Iv.2)

The same equations (JV.1) and (IV.2} held in R". In general, the subscripts
range over (1,2,...,n);in R%, n = 2.

To test the stability of the steady solution Ufu) corresponding to the
zero solution u = 0 of (IV.1), we examine the evolution of a disturbance
v of u = 0 which, in the linearized approximation, satisfies

d
T = 1w 01) = AG-v (IV.3)
or, in index notation,
dv,-
T A ()v;. (1v.4)

The stability to small disturbances of the sclution u = 0 is controlled by the
eigenvalues of A(u) (see § IV.3). We are especially interested in the case in
which A(p)isa2 x 2 matrix (see § IV.2), But it is best to start more generally.

42



1V.2 Algebraic and Geometric Multiplicity—The Riesz Index 43

IV.1 Eigenvalues and Eigenvectors of
an n x n Matrix

Let A(s) be an n x n matrix with real-valued components A;{u). Let
x, ¥ be n-component vectors with possibly complex components.
The system of linear homogeneous equations

A X = gX, Al'ij' = agx;, (IVS)
gives a nonzero solution x if and only if ¢ = &, is a root of the polynomial
P(o) =det[A — ol] = (—1)(c — a; (6 — 63)--- (6 —a,) =0,

where I is the unit matrix with components d;;, 6, (I = 1,..., n) is an eigen-
value of A, and x solving A - X = ;X is an eigenvector.

[V.2 Algebraic and Geometric Multiplicity —
The Riesz Index

We define y, as the number of repeated values of o, in P(o) = 0; then p, is
called the _c_zlgebraic @ultiplicity of g,. It is the order of the zero g, of P(c) =
(6 — a)"P(a) = 0, B(a)) # 0; 0, is a simple eigenvalue of Aif g = 1.

We define n, as the number of linearly independent eigenvectors belonging
to a,; then n, is called the geometric multiplicity of o,.

There are always n complex values of ¢ for which the polynomial (of
degree n) P(c) = 0. Of course some (or all) of these values may be repeated.
There is one and only one eigenvector belonging to each simple eigenvalue.
If an eigenvalue is repeated then there is at least one eigenvector and, at
most, y, linearly independent eigenvectors; that is

Wz

The Riesz index 9, of the eigenvalue 6, may be defined as the lowest integer
7, such that the two systems

A—aD'x=0 (A—gabh"'x=0, (IV.6)

have the same solutions x. If y; = m, then 7, = 1 and o, is said to be semi-
simple. If the Riesz index is greater than one there are fewer eigenvectors than
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repeated roots and it is necessary to introduce the notion of generalized
cigenvectors (see § IV.4).*

IV.3 The Adjoint Eigenvalue Problem
We now define the usual scalar product

oy E x5 = (Fx, (IV.7)

where the overbar designates complex conjugation. A* is the adjoint of A
if<x, A-y> = (A*-x,y> for all x, ye C”. Since

Y, A x) = Y%y = (AT)J'I‘_V:' X; = (AT. Y, X,

we conclude that A* = A", where AT is the transpose of the matrix A. If
the elements of A were complex we would find that A* = AT,
We now note that

V(A —ab) x> = (AT - aD) y,x) =0
for ally € C" when x solves (IV.5) and for all x € C" when ysolves ATy = gyor
AT. ¥ = oy, (IV.8)
Since
det (AT — oT) = det (A — ol) = P(c),

the adjoint eigenvalue problem determines the same set of eigenvalues.
Suppose x; and y; belong to the eigenvalue o,. Then, comparing (IV.5)
and (IV.8) we get

(o; — 6)<{x;,¥y) = {6r — 0%, ¥
=(A-x)-¥, - xI’(AT'YJ')
=CA-x,y,)— <xIsAT'yJ'> =0,

so that any eigenvector of 4 belonging to the eigenvalue gy is orthogonal to
any eigenvector of AT belonging to an eigenvalue &, such that

o; ¥ 0y,

* Generalized eigenvectors are frequently associated with nondiagonalizable matrices in
Jordan form. We shall give the theory of these in R? (this chapter} and in R" (Appendix IV.1).
Generalized cigenvectors are important in the theory of linear ordinary differential equations.
They correspond to “secular” solutions, polynomials in ¢ times exponentials (for example, see
E. Coddington, E. and N, Levinson, Theory of Ordinary Differential Eguations (New York:
McGraw-Hill, 1955, Chapter 3).
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We have, therefore,
{xg, ¥4 = 0. (IV.9)

If ¢, = o, is semi-simple with algebraic multiplicity g, = m, thereare y; = m
linearly independent eigenvectors x;; and adjoint eigenvectors y;; which
may be selected so that

Ky, Yy =6y forij=12....,m (IV.10)

So biorthonormal bases may be selected on the subspace spanned by the
u, = m eigenvectors belonging to semi-simple eigenvalues. It is not possible
1o select biorthonormal bases of eigenvectors if o, has Riesz index larger
than one (see Appendix IV.1).

If A= AT the eigenvalue problem is self-adjoint. The eigenvalues of
self-adjoint operators are real and semi-simple (see Appendix IV.1).

IV.4 Eigenvalues and Eigenvectors of
a 2 x 2 Matrix
a C
b df

a b
= AT
a=[d)

IV.4.1 Eigenvalues

b

P(g):det[a:U J_ ]:az—a(a+d)+ad-bc=0,

o, a';'d-l_\/g’

(av.11)
+d
ML LN/
where the discriminant A is defined by
_ n? 2
Adéi(—a— 4d) + be = (f_%ﬂ — ad + be = i(tr A)? — det A,

and

trA aq +d
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IV.4.2 Eigenvectors
_ (a - 6%, + bxyy =0,
X1 = [xlz where cxyy +{d — o)x,; = 0;

X2 (@ — 02)x51 + bxy, =0,
= h
*2 [ :, where cxyy + (d - G3)x3, = 0;

y by, +d—0)j,,=0

¥, = ,:J:’zl] where (fi — 0¥y + C?zz =0,
b¥ay +(d — 6,)7,, = 0.

IV.4.3 Algebraically Simple Eigenvalues

Case 1. A > 0.0, # o, are real. There are two real eigenvectors and two
adjoint eigenvectors.

Case 2. A < 0. 0, = 7,. There are two eigenvectors and they are con-
jugate. The same is true of the adjoint problem.

IV.4.4 Algebraically Double Eigenvalues

Case 3. A=0.Then 6, =0, = (a + d)/2 is an eigenvalue of algebraic
multiplicity two. The eigenvector problems are given by

gx, + bx, = 0,
(Iv.12)
C.xl —_ qu = 0,
Vi + ¢y, =0,
s % (IV.13)
by, — ¢y, =0,
where g = (@ —~ d)/2and A = ¢? + bc = 0.
1V.4.4.1 Riesz Index !
g=b=c=0 (IV.14)

Then

a 0
A=[O aJ:aI

and every vector X is an eigenvector belonging to 6, = @, = a. We can select
two orthonormal ones. So a is a double semi-simple eigenvalue.
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1V.44.2 Riesz Index 2
g* + be =0, [q| + |bt + |c| #0.

¢ =06, = d, = (a + d)/2 is algebraically double and geometrically simple.

There is one and only one eigenvector satisfying (A — ol)-x = 0 and an
arbitrary normalizing condition. The components x, x, of x satisfy (IV.12)
and if ¢ # 0, or ¢ # 0, or b # 0 then x is given by

_ | —b/q _ |k _ 1 |1
*= [ 1 ]xz - [ 1 ]xz - [—q/b]x‘ B [c/q]x"

Similarly, there is one and only one adjoint eigenvector satisfying (AT — oI)-¥
= 0 and an arbitrary normalizing condition. The components 7,, ¥, of ¥
satisfy (IV.13), and if b # 0, or ¢ # 0, or ¢ # 0 then § is given by

Ry N
The scalar product of x with its adjoint cannot be normalized because
,y)=x-§=0 (IV.15)
We next consider generalized eigenvectors { satisfying
(A—odaDh-{=x (IV.16)
Since x is an eigenvector we have
(A-oD* =0 (Iv.17)

Every vector in R? satisfies (IV.17) because

b]? 00
_ oy = |1 - )
A =eb [c —q] [0 0]
But the { satisfying (IV.16) must have
g6y + by = x4
b
=—--x, ifg#0,
q
efy —qlz = x;.
Similarly there is a generalized adjoint eigenvector {* satisfying

(AT-oD-*=7 (AT-oD?-{* =0,
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and
qET + ng = J_)l,
bg? - q?’z‘ =3,

Given ¥, we may normalize by specifying some value, say one, for the
scalar product of the generalized eigenvector and the adjoint eigenvector,

&yr=1 (1v.18)
Since
& y> =< @AY~ a5
= (A —-oh-§{*

= 0%

=4+ 04F

o _Xeha_ X x%F_ (1V.19)
q b ¢ ’

we may set x; = b/y, for arbitrary values of , # 0if b # 0.
In the case which we adopt as canonical, ¢ = g=20, b#0, we have

(AV.19), x, =5, =0, {; = x/b and {F = 1/x,, 7, = bjx,, B = ¢, bjx?
(we may choose {, = 0).

The results discussed for R? under § IV.4.4.2 are special cases in the general
theory for R, n > 2, of eigenvalues which are not semi-simple, The general
theory is discussed in the appendix to this chapter.

IV.5 The Spectral Problem and Stability of
the Solution u = 0 in R”

Set v = ¢7'x in (IV.3). We find that

A(g)-x = ox, (Iv.20)

where

o(p) = &) + in(p) (Iv.21)

1 an eigenvalue of A(u) if x # 0. We say that u = 0 is stable by the criterion
of the spectral problem if £(u) < 0 for all eigenvalues o(x), and is unstable if
there is a value o solving (IV.20) with x # 0 for which &u) > 0. The adjoint
eigenvalue problem is given by (IV.8).
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IV.6 Nodes, Saddles, and Foci

In RZ, x is a two-component vector and A(u)isa2 x 2 matrix. Let us suppose
that o, and @, are simple eigenvalues of A(y). There are two eigenvectors.

Suppose X, is an eigenvector of ,. X; is an eigenvector of 6, and v, = e77'x,,
J=1,2 Then
dvy
—= = 0;¥,. 1v.22
=, av.22)

From (IV.22) we may construct a picture of the geometric properties of
equilibrium points in the plane. There are three cases to consider.

(1) o,(u) = &) are real and &{p) and &,(u) are of the same sign. By
the construction ¥, and v, are real independent vectors. If &,(u) and &,(p)
are negative v, and v, tend to Oand O is called a stable node. In the other case
v, and v, leave 0 and 0 is called an unstable node (see Figure IV.1).

.

(@) (b) (c)

Figure IV.1 Trajectories near an equilibrium point in R? when a(u) is real-valued
{2) Stable node; {b) Unstable node: (c) Saddle

2) o du) = &(p) and &,(4) and &,(u) have different signs. Then 0 isa
saddle point, one of the two trajectories goes to 0 and the other escapes from
0 (see Figure IV.1). A saddle is always unstable.

(3) The two eigenvalues are complex:

a, = &u) + in(p) = 0.,

and the eigenvectors satisfy v, = ¥,.
The general solution of (IV.3) takes the form
v(£) = Re (oe™'v,) = $[ae”v; + 2e™'v;],
which may be also written as
v(t) = #“"[Re (av,) cos (n{p)t) — Im (av,)sin (n(wo]. (1v.23)

The trajectorics (I1V.23) are shown in Figure IV.2. The point v=101is a
stable focus if £(1) < 0 and an unstable focus if E(u) > 0.
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- ©

(a) (b)

Figure IV.2 Trajectories near an equilibrium point in B2, when the o,(u) are complex.
(a) Stable focus, (i) < 0; (b) Unstable focus, &p) > 0

IV.7 Criticality and Strict Loss of Stability

We shall assume, without loss of generality, that w = 0 is stable (¢(u) < 0
when ¢ < 0 and is unstable ($(u) > 0) when y > 0. The value =201s
critical. At criticality

(£0), #(0), a(0)) = (0, wy, icw,). (1v.24)
We say that the loss of stability of u = 0 is strict if

aer 45(0)
= >

£'(0) 0 (Iv.25)

and recall that in R' this condition implies double-point bifurcation. Let

()Y d(-)/dy. Then assuming that ¢ and x are differentiable we find by
differentiating (IV.20):

A(p) X + A'(w)-x = o'x + oX. (IV.26)

Now we form the scalar product of (IV.26) with the adjoint eigenvector
belonging to o and note that

(A-X,¥) =<x, AT y) = {ox, ),

so that
o<X, y) = (A" x,¥), {av.an
where
. _ |49 B
[AG)] = [C’(u) d’(u)]'

The formula (IV.27) holds if a(y) is simple. In the semi-simple case two
different eigenvectors x,; and x, belong to one and the same o and, in addition
to finding o'(1) we must determine the linear combinations of x, and x, for
which (IV.26) holds (eigenvectors of A’ for u# = 0). Equation (IV.27) is
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meaningless when ¢ is a multiple eigenvalue with Riesz index greater than
one; for in this case {x, ¥ = 0 for all eigenvectors and we cannot normalize
so that {x, ¥, = L.

Strict crossing in the case of a simple eigenvalue means that

a©) = (A©-x,¥:>  Red(©) >0, (Iv.28)

when the eigenvalue with greatest real part satisfies ¢,(0) = 0.
The possible ways in which o(u) can cross the line & = 0 in the simple
and semi-simple case are shown in Figure IV.3.

H ) " i "
4 o1()
o £, ()
Euy O & £ 0 £ 0&An) ¢
_iw-q.\ Ig-2(#)
° e
(a) {b) (©) (d)

Figure IV.3  Strict crossing £,(0) = 0, £,(0) > 0 directions in simple (a, b) and semi-
simple (c, d) cases. (a) Two eigenvalues are real and distinct; £,(0) = 0. (b) A complex-
conjugate pair crosses over. (¢) Two real eigenvalues cross together, but they may cross
at different rates (or in different directions). (d) Two complex-conjugate eigenvalues
cross together

The perturbation of o(u) at ¢ = 0 when ¢(0) is a double eigenvalue of
index two (not semi-simple) is special because o(-) is not differentiable in
general at u = 0. 6(0) is an algebraically double eigenvalue of index two when
A =0 and |q| + |b] + |c| # 0. There are three possibilities: (1) b#0,
c=q=0;(2c#0,b=g=0;(3)c b, g are not zero and g* + bc = 0.
These three cases are equivalent, since the matrices A(u) corresponding to the
three cases differ from one another by a similarity transformation.

We take case (1) as canonical and write

_ 101 a(uw) b
[A(w)] = [0 0] + ‘u[c’(,u) d'(u)]’ (IV.29)

where a', b, ¢’, and d' are bounded at u = 0. The two eigenvalues of A(u)are
determined by the quadratic equation

ue’ —0 + pd
= 0.

—_ ’ 1 b
det [ T o ] =g ~ op(a + d) + pla'd — pc'(1 + ub’)

Hence

Lua + d) + /u'l@ + )4 —ad + beT + e
+ . /pc + du@ + &) + o), (1V.30)

I

o (1)
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where we chose one of the two complex determinations for JHe'. We see
that 5..(0) = 0 and note that |do , (0)/du| = o but do/d./p = +./c if ¢
and u > (. There are two eigenvalues and they are complex when pc’ < 0
(see Fig. IV 4), Since there is always a positive eigenvalue when ue' >0, we
conclude that u = 0 is unstable when | #l is small and pc’ > 0. Since uc’ > 0
implies instability we can get stability only when uc’ < 0, so \/E isimaginary
and stability is determined by the sign of wa +d) ¢ >0 thenu=0is
unstable for small ¢ > 0 and is stable for 4 < 0ifa’ + & > 0. u = 0 can be
unstable on both sides of criticality.

o1(0) an

y(o,__\ /
~t} -
oz(MyO 0,{u)

03(H)

Figure TV.4 Behavior of eigenvalues perturbing a double non-semi-simple real
eigenvalue

Appendix IV.1 Biorthogonality for
Generalized Eigenvectors

Let A be an n x n matrix, n > 2 and define

T=A-ol, (Iv.3n)
where ¢ is any of the eigenvalues of A. Let
Ni={:T ¢ =0}

be the null space of the ith power of matrix T,
T=T-T---T (Itimes),
and let
n, = dim N[

be the number of independent vectors ¢ which are annihilated by T' where
I21HUT-¢=0thenT"- ¥ = 0forneM,n> 2. So, for example N, =2 N,
and N,,; 2 N,. We saw in § IV.2 that the Riesz index v is the largest integer
for which we have

NieN,c---cN,=N,,, forallkeN,
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where the inclusions are strict. We have already defined
n, = algebraic multiplicity of o,
n, = geometric multiplicity of o,

and of course, n, > 1. The vectors W € N, are the proper eigenvectors of g,
they satisfy T- ¥ = 0. The vectors § € N, [ > 1 are called generalized eigen-
vectors. There are no generalized eigenvectors when v = 1. In this case ¢
is a semi-simple eigenvalue of A, simple if n, = 1 and of higher multiplicity
otherwise. A Riesz index of one means that ¢ is semi-simple.

We also have generalized null spaces for the adjoint:

r= (Y DY =0
They have the same dimension as Nj,

for lgi<v

We shall now show that the eigenvalues ¢ of a real symmetric matrix A
are real and semi-simple, so the eigenvectors of A are proper and not general-
ized. We have A -x = ox and (A X, x>=(X A x> so that

o(x, X) = 6{X, x>

and ¢ = & if x # 0. Now assume that T2y = 0. Then

0= (T2, ¥ = <T- ¥, T-¥),

where TT = T because & = 0. It follows that T - ¥ = 0 so that ¥ is proper
and not generalized.

In the general case it can be shown (in books on linear algebra which
treat Jordan bases) that it is possible to choose the generalized eigenvectors
of T: Y, ..., ¥ so that

T =0,
T -y = ¥, (1V.33)
TP = Pt i=1,....k
V::e can also choose the generalized eigenvectors of TT: Y, ..., Y™, so
that

TT. W,?(Vi) =0,
TT. ‘_l’(iv‘_ 10— \‘],’?(vn, (1V.34)
TG = 0, i= Lok

where

P, q’?(m’) = 0y a*. (IV.35)
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QU ) = (Tt 1), gy
= QU D, TT gpon
m n+1

providedthat  <m < v, 1 < < v;. We deduce that
P, greary, — I<m<y,

and
WO =0, 1<ngy
WP =0, pmq1,

ExampLE IV.1. Consider the matrix

0 0 1
T=y0 0 -1
0 0 0

Zero is an eigenvalue of T of algebraic multiplicity three and

| 0
X; = (0], X; =1
0 0
are the eigenvectors belonging to the eigenvalue zero. It is easy to verify that

the only combination Xy + Px, satisfying T-¥ = ax, + fx, is the one
for which o = 1, B = —1;thatis,

1
Ty=x —x,=1_1] (1v.36)
0

It follows that it is not possible to solve the equations
T."’;—_xl’ T-\‘]:xz,

for the generalized eigenvector V¥ = Y. However, we may choose the proper
eigenvector of T in the form

I
V' =10| and ¢ =|_
0
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The generalized eigenvector ¥ = PP satisfying (IV.36) is

0
v = o].
1
The adjoint eigenvectors satisfying
T"- E’g(n =0,
TP Pt = §32, (1V.37)
TT b = Q,
where
0 0 0
TM = |0 0 0
1 -1 0
are
oy 0] 25 + P2
Wi = e, w@=lol W =|
B, B, Bs
These vectors also satisfy (1V.35) provided that
1 0 0
v =] w@ ol e = -]
0 1 0
Appendix [V.2 Projections
Consider the linear operator P defined in R" by
P.x={x ¥y for any x in R%, (IV.38)

where {r and * are two vectors satisfying {{, ¥*> = 1. Then Pl.x =
P(P-x) = {x,y* P -y = (x, YOI = P-x, so we have

P: =P (1v.39)

More generally, any lincar operator P in R" satisfying P? = P is called a
projection.
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Now consider a family of p vectors Wy ..., ¥, )of R" and a biorthogenal
family (§¥, .. ., V) satisfying

<‘~l’j; ‘J’;‘> = 5ij’ l,_] = 1_. ray P (IV.40)

Then we may define a linear operator P as follows:

=

P-x=

x, . (Iv.41)

1

[}

It is easy to verify that (IV.39) is satisfied, hence (IV.41) defines a projection
on a p-dimensional subspace of R". The condition (IVA0) is necessary,
otherwise we would not have P? = P for this operator.

ExampLe V.2 (in R?). The vectors

| 0 0 0
‘|’1= =1 ‘|’z= 0], ‘H‘: =11, ‘l’g= 01,
0 I 0 I

Satlsfy <‘l"‘, ‘J’j*> = 5”. I,j = 1, 2
The matrix of the projection P defined by

2
Pox=3 (x¥my, (IV.42)

may be formed from the columns P - ¢; of P where the e; are the standard
orthonormal basis vectors in [, <e;, €;> = d,;. Hence

3
(P-x)-¢,=(P x) = Z(P-ej),xj.
i=1
So Pj; = (P-e),. For example, (IV.42) may be written as

2 3
(P ' x)l = Z <eje ‘l’r)(‘l’n et>xjs
i f=1

i=1 j=

50 that
2
Ppj= Z <ejs \!’f><‘|’u €.
=1
Hence
0 —i 0
P=1]0 I 0] and P2=p,
0 0 1

Projections are the mathematical tool we use to reduce the dimension of
bifurcation problems. The more frequently used projections are such that
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they commute with a linear operator A:
P-A=AP, (1v.43)

Let A be a linear operator in R” (represented by an n x n matrix) having an
eigenvalue o of multiplicity n, and Riesz index v. Results stated in Appendix
V.1 guarantee that we may construct a projection P defined by

Pox =Y <x W0, T<sm<vg,

We may assert and then demonstrate that
P-A-x=A-P-x foranyx
For the demonstration, we define T = A — ol and show that
P-Tx=T-P-x
is equivalent to (IV.43). We have
T-P-x=Y < x YT Y™ for2<m=<y;

nt

=5 oY forl <m<v — L

In addition,
P-T-x= Z(x,ﬂ-tl;}“"’")dl?"’ forl <m < v,

= Tt forl<m<y - L.
proving (IV.43).

ExampLE IV.3 (in R*).

0 0 1 1
0 0 -1 1
T= )
0 0 0 1
0 0 0 1

the eigenvalue zero has a multiplicity 3 and index 2, and we may choose
the following system of generalized eigenvectors:

11 1 0
e B e I A N
0] 0 0
1] 0 0
Y = (1] ) YD = _(1) , ) — (1) X
-2 0 —1
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The projection (which is the sum of two commutin

just described)

g projections of the type

P =Gt + s + ., yr@y

has the matrix representation.

1 0
o 1
P=
0 0
0 o0
and we may verify that

0

PT=T-p={"°

0

0

L e o i ]

o o o

0

1
~1
0
0

—1
!
0
0

is in fact identical with T on the subspace generated by W, W ;s that
is, T-x =P-T-x when x = af{! + Sy + P2 In the present case this
subspace includes all vectors whose fourth component is zero.



CHAPTER V

Bifurcation of Steady Solutions
in Two Dimensions and the Stability
of the Bifurcating Solutions

We turn now to the analysis of steady bifurcating solutions of the two-
dimensional autonomous problem (IV.1). In this chapter we emphasize the
fact that the problem is two-dimensional by writing (IV.1) in component
form as

% = f([)(ua u]., uz)v I = 19 2; (v'l)

where
FOp, g, 4z} = @otty + bou, + p(a'(pu, + b'(phuy)
+ O‘l(ﬂ)“% + 20, (pu 4, + yl(#)“% + O(”“HS),

S, uy, uz) = couy + dotiy + e’ (uy + d'(us)
+ ap(ud + 2By + ya(wd + OCul)
The leading terms in f*¥ are components of the matrices (4,;{(1)) and (B,u(4))
defined by (IV.2), and |lul|® = v + u3.

We studied the stability of the solution u = 0 in Chapter 1V. We framed
our study in terms of the eigenvalues (1) of A(p). Now we shall find the
conditions under which new steady solutions of (V.1) can bifurcate and
specify the conditions under which they are stable to small disturbances.

V.1 The Form of Steady Bifurcating Solutions
and Their Stability

There are many equivalent ways (o parametrize one and the same bifurcating
solution. We may use the given physical parameter 4 and segk the bifurcating
solutions in the form (g, u (i), uy(p)). Or we may introduce an amplitude &

59
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defined by some function of u 1 and u; and seek solutions in the form (&, u(e),
u,(&), uy(e)). For example, we can choose ¢ = u, or e = Uy Or € = flu,, uy)
for some good function S In more general cases, like those arising in bi-
furcation of solutions of partial differential equations, the amplitude of the
bifurcating solution can be defined byasuitably chosen functional. Definitions
like (VI.7), which are based on projecting a component of the bifurcating
solution, are particularly convenient. Different definitions of ¢ are equivalent
if they are related to one another by an invertible transformation,
In this chapter we often parameterize the bifurcating branches by

Uy =&,
uy = &y(e), V.2)
i = gA(z).

Before starting the analysis of the solutions (V.2) it is of value to frame an
analysis of the problem in terms of the given parameter u:

(Ju! Uy, uZ) = (‘Ll, ul(nu)s uz(#)) (V3)

To obtain solutions in the form (V.3) it is enough that (u 1+ #7) be intersection
points of the two curves of the (uy, u,) plane of equations

ﬁ(nua Uy, uz) = 0, I = I, 2,

for some u = p, and that at the same i4g, the criterion

det # # 0,
where
%o
f 5u1 5u2
A
Ouy,  Ouy

of the implicit function theorem in R? (see Appendix V.1) is satisfied.
Thereis an intimate connection between the sufficient condition det F#0
for the existence of a branch and the stability of the solutions. The stability
of any solution to small disturbances vy of (V.3) or (V.2) is determined from
the linearized evolution problem governing v;:
e, _ o o

=N EY ] 21123
at " au g, e !

where, for (V.3),
.ﬁ = f:(ﬂc)s ul(nuO)a “z(.uo))
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or, for (V.2)
fi = fleo Meo), €0, €0 M(0))-

The evolution problem is solved by exponentials

W) =e" (vft) = e™{))

if the eigenvalue y and eigenfunction § satisfy the spectral problem

yo=44

The eigenvalues of the Jacobian matrix £ are y;(uo) and y(tto) and 2a
solution (V.3) is stable when p = po (0T &= & for uto = p(eg)) if the real
part of both eigenvalues is negative. Obviously, fi(to, U1, u,) = 0 and

det F = 7, (fo)y2{pio) # 0

is a sufficient condition for the existence of a continuous branch of the
solution (V.3)for yina neighborhood of p, framed in terms of the eigen-
values governing stability.

If y,(po) is complex, then 7(so) = 5,(ito) and det F = 1p1(uo)? > 0.
If v, () is real-valued then v,(ito) is also real. The ambiguous case in which
the existence of a branch through (i, 4y, #2) cannot be established by the
argument following (V.3) using the implicit function theorem is when one of
the two eigenvalues governing stability vanishes. We may describe this
ambiguous case in geometric terms as follows: det # 5 0 when u = o
if and only if the curves relating 1, and u, in the (u;, u,) plane intersect
transversaily when p = to; that is, fi(le, ¥s, u,) = 0 and f5(ig, #y, 42) = 0.
If these curves have the same tangent at the point where they intersect, then
the two equations

afi of o _ _
aul 5“. +£5u2—0, = 1,2,

have a nonzero solution (duy, du,); that is, det # = 71(to)y2(ite) = 0.
After setting (i, uy, u) = (64, & &y) we get

% %
du, Ju,
F=\
% o
5111 auz
_[a0+ e(ld + 2a;, + 2B,y) bo + (A" + 28, + 2y1y)]+ 0()
co + #Ac’ + 205 + 28,¥) do t e(Ad' + 285 + 2v2) )

(v4)
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V.2 Necessary Conditions for the Bifurcation
of Steady Solutions

Now we shall use the implicit function theorem to prove the existence of
unique functions A¢) and (&) satisfying
fl(lu'! Uy, uZ) = Bgl(ll(s), g, y(ﬁ)) = 0,

fz(.us My, u2) = SQZ(A(S)a &, JJ(S)) = 0!
where

gk & p) =ao + boy + o[Ma + by) + «, + 281y + yy*] + 0(8Y),
924, 8, ¥) = co + doy + [A(c + AV} + ay + 28,y + 9,32] + O(e?).

We seck steady bifurcating solutions of the equation

gi(Ale), &, y(e)) = 0. (V.5)
To solve (V.5) we first require that
(A, 0, yo) = 0, i=1,2 {(V.6)
Equations (V.6) imply that
ay + boyg = 0,
Co + doyg = 0. (v.7)

Equations (V.7) imply that agdy — byey = 0 so that 6,(0} = 0 (see §IV.4.2).
We can define the eigenvector
]
X, =
Yo

belonging to ¢,(0) = 0 (see §1V.4.2). There are three cases to consider:

() A= (ag+ do)/4 — ayd, + boco # 0. Then 6,(0) and o,(0) are
distinct. Since ayd,, - byc, = 0 we have

2
A=—L"°:@>o,

so that the two eigenvalues 61(0) = £,(0) =0, 0,(0) = 60} < 0(ap + dy < 0)
are real-valued. In this case we have bifurcation at the simple eigenvalue
£1(0) = 0. This problem is reduced to R! in projection in Chapter VI.

(i) o,(0) = 5,(0) = 0 has Riesz index two. We shall study this case,
without loss of generality (see §I1V.4.4.2) when the parameters are such that

o =cog=dy=by— 1=y, =0

(i) 6,(0) = 6,(0) = 0 has Riesz index one. This is the case of bifurcation
at a double semi-simple eigenvalue.
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V.3 Bifurcation at a Simple Eigenvalue

We set
y = Yo + &%, (V.8)
and define
chiA, &, ) = gdA & yo + ) =0, V9
where
hy(A, 5, §) = boJ + Ma + byo) + oy + 2B1ye + v1¥8 + O6) = 0, (V.10)
hy(A, & §) = doJ + A + d'yo) + 02 + 2B2y2 + 1205 + 0) = 0.
We find that
hi(Ag, 0, Fo) = boFo + Aolds + boyo)
+ tyo + 2B10¥0 + Y10¥0 = 0,
(V.11)

hy(4q. 0, ¥o) = do¥o + Aolco + dy¥o)
+ a9 + 2P20¥0 t Y200 = 0.

Recalling that yo = —ap/bo = —Co/dp, WE may verify that Equations (V.11)
determine unique values of ¥, and 4, 1n terms of coefficients evaluated at
4 = 0, provided only that the determinant of the coefficients of ¥, and Aq
does not vanish. This determinant is the same as the determinant of the
Jacobian matrix

oh, Oh,
ey _[a’o+b‘0yo bo]
oh, ohy| Lo+ doyo do
T

evaluated at € = 0 and it can be shown to be
do(dy + boyo) — bolco + doyo) = £1(0)E:(0) <O (V.12)

Given (V.12), it follows from the implicit function theorem that (V.10) can
be solved for A(e) and (). Then tracing back through (V.8) we get the
bifurcating solutions given by (V.2).

To prove (V.12) we note that (V.7) implies

dolay + boye) — bolco + dg ¥o)
= doa;j - Cobb - b()(:]g + aOdE)
= (ad — bc)p. (V.13)
Since
det A = ad — bc = élé21
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it follows that

(ad — befo = £,(0)¢5(0) + &,(0)¢,(0) = & (0}, (0),

proving (V.12).
Another method for constructing the same bifurcating solution, which is
Just as easy to implement, is given in §VI.2.

V.4 Stability of the Steady Solution Bifurcating
at a Simple Eigenvalue

We can determine the stability of the bifurcating solution in the linearized
theory by studying the eigenvalues of the matrix #. However, we are not
reaily interested in all the eigenvalues but only in the largest one which is
zero at criticality (the other eigenvalue is negative). So it is a good idea to
project into R!; then we can study the interesting eigenvalue, the one con-
troliing stability. This projection is carried out in §VI1.4, where we show that
supercritical steady solutions which bifurcate at a simple eigenvalue are
stable and subcritical solutions are unstable. This is exactly the same result
which we already proved in the analysis of bifurcation problems in R
(see Figure 11.3).

V.5 Bifurcation at a Double Eigenvalue
of Index Two*

In case {ii) of §V.2 we seek the steady solutions which bifurcate when a{(0) =0
is a double eigenvalue of index two with Qg =¢o=dy=by— 1=y, =0.
The steady solutions are in the form (V.2) with A(e) and y(e) to be determined
from the two nonlinear equations

A’ kel
g](/la & ,V) = gz(l, g, y) défg_i!(:e_y) =0, (Vl4)1

where
g =y + e{Ma + by) + ay + 2By + yy*t + 0(£%),

G2 =M +dV) + a0y + 2, + 12y + O, (V.14),

* This problem has been studied in a more general context by K. A, Landman and S. Rosenblat.
Bifurcation from a multiple eigenvalue and stability of solutions, STAM J. Appl. Math,, 34,
743 (1978).
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We shall use the implicit function theorem to solve (V.14). First, we note
that (V.14) is satisfied with

%20 ,

A0
91(— — 0, 0) =0, (V.15)
Co

gz(— %20 g, 0) =0
Cp

We can solve (V.14) for (A(g), 1(e)) when eis small and (A(g), ¥(2)) is close to
(A0), ¥(0)) = (—az0/c0, 0) provided that the determinant of

- gl Oy

J=1\_ N (V.16)
%, %,
oA dy

does not vanish when (4, ¥, £) = (—a30/¢s, 0, 0); that is when
- 0 1
detJ = det = —¢y # 0. V.17
o) =de [ca ody + 21320] e V17

If ¢, = 0 and a,, # 0 we can find the steady bifurcating solution in the
form (u, (), u>()). The construction of this solution is given as Exercise V.1
at the end of this chapter.

Supposing now ¢y # 0 we can casily find the bifurcating solution as a
power series in & The coefficients of the power series can be computed by
repeated differentiation of (V.14) with respect to ¢ al £ = 0. For the first
derivatives we get

dg,(A(e), & y(e) dy
SHLVAEA T TS = ! = V.18
I > + Aoy + 210 =0 { )
and
dd,(Ale). & ye)| _ dA de’'(0)  , dy | doy(0)
—-——"—'—dg o = CO% + AO )LO dﬂ + do dE + d“u

d
+ 2,320?}; +8,0=0, (V.19)

where 8, is the coefficient of 3 in the expansion of f X0, u,, 0). Equation
(V.18) gives dy/de, and (V.19) gives dAfde.

Another method for constructing the solution bifurcating from a double
cigenvalue of index two will be given in §VI.11. The method given there
projects problems of infinite dimensions into one dimension. The dimension
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of the important projection for infinite-dimensional problems is the geometric
multiplicity n,, irrespective of the algebraic multiplicity u, (see 8IV.2 and
VL11). In the present case n; = 1 even though u, = 2: we have one eigen-
vector and a double eigenvalue,

V.6 Stability of the Steady Solution Bifurcating
at a Double Eigenvalue of Index Two

The linearized stability of the bifurcating solution computed in (V.5) may be
determined from the sign of the real part of the Jacobian matrix # defined
by (V.4). In the present case with o =Co=do=Yyo=by— | = dych +
HAyg = 0,

f— [8(1006 +20110) 1 + 8(&0b6+2ﬁ10)
edocy + 205,) e(dody + 28,0)

The eigenvalues of # are v1(e) and y,(e) and are given bydet[# — +1] = 0:
that 1s,

] + O(?).

1
[z;((g] B [—Ezlgca]”zl:_ 1:, + ; {Aolay + dp)

+ 2o, + Zﬁm}[ﬂ + 0(e?'?),

Choose one determination of \/E say ./¢is real and positive if ¢ > 0, then
71(€) and y,(¢) are analytic in \/;: IfA, # 0, we have

71(€) L2 1
[?:(S)J = (- ucyp) [; 1] + OLu(e)].

Compare this with the formula (IV.30)

Ul(nu) _ 3172 1
LZ(#)] = (ucy) [_ 1] + O(w)

giving the eigenvalues for the stability of solution u = 0. When Heg > 0, zero
i1 unstable and the stability of the bifurcated solution is determined by the
eigenvalues y(c) at order u(e); that is. at order O(e), since (—pucy)'? is
imaginary. When ucj, < 0, the bifurcated solution is unstable while the zero
solution has its stability determined by the terms of order u in a,(u). Let us
assume that (ay + dy)cy < 0and ¢}, > 0. This implies that the zero solution
is stable for 4 < 0 and is unstable for # > 0. (The opposite is true if ¢, < 0.)
In this case the bifurcated solution is unstable for i < 0and may be stable or
unstable for 4 > 0 depending on the coefficient of ¢ in 7{&) (see Figure V.1).
We draw the readers attention to the fact that neither the zero solution nor the
bifurcated solution can be stable on both sides of criticality.
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(a) (b)

Figure V.1 Possible distributions of stability for steady solutions bifurcating from
¢ — 0 at a double eigenvalue of index 2 in the case ¢ > 0, where it is assumed that the
zero solution loses stability strictly as g is increased past zero (see (1V.30))

If A, = Oand ,,(0) # 0, the bifurcation is one-sided and the determination
of stability depends on details of the specific problem.

V.7 Bifurcation and Stability of Steady Solutions
in the Form (V.2) at a Double Eigenvalue
of Index One (Semi-Simple)*

Here and in §V.8 we are concerned with bifurcation and stability of steady
solutions under the hypothesis laid down under (iii) of §V.2. The hypothesis
is that ¢(0) = 0 is a double eigenvalue of index one (semi-simple). It follows
from this hypothesis that a, = by = ¢o = do = 0. We may find the bifurcat-
ing solutions in the form (V.2) or (V.3). When both solutions exist they are
equivalent and we may invert (u, u,(i), u5 (1)) & (eA(e), &, ey(e)). Here we
study (V.2) and in §V.8 we study (V.3).

The steady solutions (V.2) are determined as roots A(g), y(g) of the two
nonlinear equations

12 A’s £}
Gk 6 NE M =0, 1=12 (V.20)

where

G,(A & y) = Ma + by) + ay + 2By + 7y’ + Oe), V1)
Galh, €, y) = Ae + dy) + oz + 2B,y + 7257 + 0(e). '

* This problem has been studied by J. B. McLeod and D. H. Sattinger, Loss of stability and
bifurcation at a double eigenvalue, J. Functional Analysis, 14, 62, (1973). Problems involving
multiple semi-simple cigenvalues arise in bifurcation problems which break spatial symmetry
(see the book by Sattinger listed in the references at the end of Chapter I). It is frequently the
case that the eigenvalues depend on more than one parameter and are semi-simple only for
special relationships between the parameters. It is then useful to see what happens when the
patameters are moved in such a way as to split the multiple eigenvalues. It is even possible to find
secondary bifurcations in this way (see Example V.6 and Exercise V.6at the end of this chapter).
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We seek solutions of (V.20) which bifurcate at (& 4 ¥) = (0, Ag, yp). Tt
follows that
G1(4os 0, yo) = Aglap + byyo) + o1 + 2B10¥0 + P(o¥E = O, V22
92(10, 0, yo) = Aolco + doyo) + 020 + 2Br0¥e + 72032 = 0.

We can guarantee bifurcation, using the impiicit function theorem in R?
(see Appendix V.1), when

det £ 0, (V.23)
where the Jacobian J is given by
%, 04,
0% oy =Fwwwomm+mwwwwa
g, 04, o+ doyo 2Pag + 2y30¥0 + Aody
dA &y
at (g, 4, y) = (0, 4y, ¥o).

The stability of (u(e), u,(e), uy(e)) = (eA(e), €, £y(£)) may be determined from
the eigenvalues of

J= S[Aoab + 2000 + 2810V Aoby + 28,0 + 2?10)’0} + 0@
Aoo + 2050 + 28200 Aodpy + 2830 + 2y50¥0
def

= J, + O(e?). (V.25)

“n
fl

} (V.24)

When ¢ is small we may determine stability from the sign of the real parts of
the two eigenvalues belonging to J,.

Now we want to call the readers’ attention to a big difference between the
problem of bifurcation in the semi-simple case (iii) being treated now and the
previously treated cases (i) and (ii) of bifurcation at a simple eigenvalue and
at a double eigenvalue of index two. In the other two cases Si = egy, where g,
and g, do not vanish identically when ¢ = 0, The lowest-order balance occurs
then at the linear order ¢ and leads to linear equations (V.7) or (V.15) de-
termining a unique y, or a unique A,. In the present, semi-simple case,
Ji = %G, where §, and g, are finite at &¢ = 0. The lowest-order balance occurs
at order 2 and is nonlinear. From this nonlinear balance we can sometimes
get more than one bifurcating solution.

To see how the semi-simple problem can lead to multiple solutions we
need only to note that (V.22)isequivalent to a cubic equationfor yy, €0y} = 0
ifdyyyo — bpva0 # 0, where

F(yo) = (co + dyyolase + 2810¥0 + V10¥8)
= (do + boyoXeao + 28200 + V20 ¥E). (V.26)

This equation has three real distinct roots, two real roots one of which is
double, or one real root which may be triple (sce Figure V.2).
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\-//-\\ 3 real roots

\/\\ 2 real roots
\/\\ o

Figure V.2 The number of solutions which can bifurcate from ¢ = 0 at a double semi-
simple eigenvalue correspond to the roots of a cubic E(yo) = 0if dyyio — bov2a # 0

We may construct one bifurcating solution (A*¥(e), y*¥i(e)) for each simple
real root yi of the cubic %(y,) = 0 as a power series in powers of &. Since
1 < k < 3 there can be 1, 2, or 3 solutions, each with a different bifurcation
curve A¥(c) as in Figure V.3. To obtain the coefficients of the power series it
is only necessary to differentiate §(A*(e), &, y*¥(¢)) repeatedly with respect to
cat & = 0. For example, we may compute dA*(0)/ds and dy™*)(0)/de from the
two equations (I = 1, 2)

5.( A1k {k] ] 7.( A [k} -1 [k]

de di [ dy de

w(e) = eAle)
p(e) = eA?e)

ue) = edll(e)

Figure V.3 Bifurcation curves when there are three roots of $(y,) = 0and (V.23) holds
for each pair A%(0), y*(0)
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Second derivatives (dy™/de)(0) and (4 y*/de)(0) may be computed by dif-
ferentiating § twice, and so on,

The stability of the solutions which bifurcate in the semi-simple case is
complicated. Almost anything can happen (see §V.9).

V.8 Bifurcation and Stability of Steady Solutions
(V.3) at a Semi-Simple Double Eigenvalue
The bifurcating solution (V.3) may be obtained directly from (V.2) or they

may be constructed by the procedure suggested under (V.2). In this pro-
cedure we use the fact that a, = b, = ¢4 = d, = 0 to define

au
k:y

o Uy
i,=—,

H
i ) (V.27
- ~ -~ €| £ u F) u
oy, ) R g,
where / = 1. 2 and
fl(#e fiy, y) = ad, + b, + alﬁf + 26,84, + 71‘3% + O([pel), (V.28)

fz(ﬂs iy, 8y) = 'y + d'a, + o,0% + 20,8, + y,05 + O(|ul),

and a', b, ¢, d, a;, f;, y; are functions of . When g = 0 the equations
S0, 84, fi59) = 0 are conic sections:

s odef P oA
10=f1(0»”10,ﬁ20)
s P P a N R a2
= agltyo + bollyg + o083 + 28 0l olize + Y1030 = 0,

7 def p A
20 = 120, fi g, ;)
= Collyo + doflyg + ay0itfg + 2B400, 0l + 720830 = 0.

(V.29)

Bifurcating solutions are obtained from the points of intersection on the two
conics. The conics intersect at the origin (&), fi,) = (0, 0) for any u. Apart
from the origin there are, at most, three other solutions (see Figure V.3). The
intersection points of (V.29), and (V.29),, other than (G, 0), correspond to
the roots of the cubic equation %(y,) = 0 given by (V.26). There are three
solutions, or two solutions, or one solution, plus the solution (0, 0} (see
Figure V.4). The equations given in (V.7) are related to those given here by
the transformation (g, &, fi,) = (e, 1/4, yiA).

The connection between the existence and stability of bifurcating solutions
which was mentioned in §V.1 has an especially nice form relative to the
parametrization (V.27). We first note that #(u) = pu g, + O(p?) and find
that

det # = y? det £, + O(|ul®)
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a,
al
aZ
fi=0 / =0
i, =0 L;;:r)lmt of
- tangency
0 il f,
fZ = 0 ]? _ 0 fz
. 2 .
four solutions two solutions
f1 =0

three solutions

Figure V.4 Bifurcating solutions of the form {V.4) are intersection points of the two
conic sections (V.28). The implicit function theorem guarantees bifurcation when the
points intersect transversally and not at points of tangency

where

&0 aflo

?izp_ 220

Fo =

The stability of the solutions (V.3) to small disturbances is determined by the
sign of the real part of the eigenvalues v, (1), y2(1) of F(u). When p is small,

(y(p2), 72000)) = (¥ 10, V20) + 0(),

where (10, 720) are the eigenvalues of #,. The solutions (V.3) of fi(y, uy, uz)
— (are stable when u > Oissmallif Re 7, < Oand Re y;9 < 0.IfRe y;0 > 0
or Re 7,0 > 0 then the solutions (V.3) are unstable.

The implicit function theorem guarantees the existence of bifurcation for
4 in a neighborhood of zero when (V.29) holds and

det #o = 710720 # 0. (V.30)

This criterion fails at a point of tangency (see Figure V.4). Ifdet #, < 0,then
either 7,0 > 0 or y20 > 0 and one of the two eigenvalues

yilw) = 1rou + O #P), (v.31),

or
24} = 20 + O(1p1?) (V.31),
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(a) (b)

Figure V.5 Distribution of stability when det #, > 0 and the cigenvalues are real.
Here c = u, 0ore = u;. In (a) the supercritical solution is unstable and subcritical one
is stable

will be positive when || is small. It follows then that the bifurcating solution
(V.3) is unstable on both sides of criticality whenever det #, < 0 (as in
Figure V.1(b)).

If y,¢ is real-valued and det Fo > 0.theny 4 and y,, are both positive or
both negative. Equation (V.31) then shows that the bifurcating solution is
stable on one side of criticality and is unstable on the other side (see Figure
V.5).

The case in which y,, = 7,, is compiex is not so obviously related to
Fo. This case is one in which a double eigenvalue splits into a conjugate pair,
as in Fig. IV.3(d) (with 7 replacing ¢). In this case, if Re y,5 = Re 3,0 # 0
(trace of £, # 0) we have the same type of stability analysis as at Figure V.5.

V.9 Examples of Stability Analysis at a Double
Semi-Simple (Index-One) Eigenvalue

We now give some restricted examples in which the two conics mtersect
either in four distinct points (including the origin) or in two distinct simple
points, not at infinity (see exercises for other cases). We also restrict our-
selves to the case when the zero solution is stable for u < 0 and loses it
stability for 4 > 0.

ExaMPLE V.1
duy
dt

duy _ s

d} = Ui, Uy,
The conics of §V.8 intersect at the points (0,0), 4 = (1,0), B = (—1,2),
C = (=1, —1). The linear theory of stability may be applied at each point.

2 2
= My = puy —ouy + oug,
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We find that (0, 0) is a node (stable for y <0, unstable for g > 0), and pA,
B, uC are all saddle points so that the bifurcating solutions are unstable on
both sides of u = 0.

EXAMPLE V.2
du
'c# = 3w, — Suu; — ut + u,
dits
El_ = ZILIHI — UylU;.

The conics of §V.8 intersect at the points (0, 0) and A = (0, 5). The origin and
the bifurcating solution i4 are foci with the same stability. (Stable for u < 0,
unstable for u > 0.)

ExaMmpPLE V.3

u

U 3, — By — ui + ol
dt

du2 " :

= — Hqliz.

a iy 1tz

The conics of §V.§ intersect at the points 0,0, 4=(2.1), B={(0, 3),
C = (1, 1). The bifurcated solution uB and the origin are foci with the same
stability (stable for 4 < 0, unstable for > 0). The bifurcated solution pA
is a node, stable for i > 0, unstable for p < 0, and the solution uC is a saddle
point, so it is unstable for u > Dand u < 0.

ExAMPLE V.4
du, 2
TS = g, — Uy — Uyl
dt Uy 1 14z
du
d’tz = —2uu, + 2uuy 4 wyuy — U3,

The conics of §V.8 intersect at the points (0,0), A = (—1,2), B=1(0,2),
¢ = (1, 1). The bifurcated solution 4B is a node like the origin but with the
opposite stability (stable for x>0, unstable for u < 0). The two other
bifurcated solutions are saddles (unstable for y > Oand u < 0).

ExAMPLE V.5

dul_ U, + Uyt
at Hu 1Uz,

du
Tit_l = —pu, + fuy + Ui+
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The conics of §V.8 intersect at the point (0, 0) and 4 = (1, 0). The origin is a
focus (stable for 4 < 0, unstable for # > 0) and the bifurcated solution ud
is a saddle (unstable for 4 < 0 and u > 0),

Comments on Examples. V.1-5. Some general properties of stability of
bifurcating solutions may be determined from the following geometric
interpretation of the eigenvalue problem for #,. Consider the intersections
of the two conics

flo(ama azo) = 0, fzo(ﬁlo, azo) =0,

and assume all such intersections to be nontangential. Then

(Vflo A szo)'l’2

= T10720-

where k =i A j and  and  are the orthonormal base vectors along the

coordinate axis and
5 f a f
ij ( ij f.l{))

dhy o By

is the gradient vector of f}, at an intersection point, hence orthogonal to the
corresponding conic ( f,, = 0).

Each conic has a one-signed curvature (zero curvature if it is a product
of lines), so if we consider two consecutive (nondegenerate) intersection
points on one regular arc of one of these conics {see Figure V.6), the vectors
Vi AV a0 have opposite directions at these two points.

@
@) ®)
(1)
(1

Figure V.6

In the case of intersecting hyperbolas, we have to distinguish between the
case when the asymptotes of the hyperbolas separate one another as in
Figure V.7 and the opposite case as in F igure V.8. We observe from these
figures that the signs of det #, at the intersection points (including the origin)
take the following values:

L (+, 4+, +, =)or(—, —, —, +),or (+, +)or (—, —)in the case of two
hyperbolas whose asymptotes alternate in direction, and
il. (+, 4+, —, =)or (+, —) in the other case.
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@ @)
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) (1
@ @)
M
(2)
R
(1) 1
(1 @ W
(2) (2)

directions of the asymptotes

Figure V.7

This result was rigorously proved in the paper by McLeod and Sattinger
(1973) cited in §V.7.

In Example V.1 the signs of the determinant are (+,—, —. —); In
Example V.2 the signs are (+, +); in Example V.3 they are (+, +, +. -)
and in all we impose “+ " for the origin.

In Example V.5 the signs are (+, —) while in Example V.4 they are
(+, +, —, —), where the origin corresponds to a “+”.

The stability of a solution whose Jacobian determinant is “+” is in-
determinate, and there is no relation given by these results between the
stabilities of different solutions with “+ > Jacobian determinants.

E3 ]

(2)
(

1) 2) (2)
(1)
(1)) (1)

directions of the asymptotes
2

Figure V.8
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ExampLE V.6, Consider the differential system in B2

dx

?[l = px; — x} - 2x1%;,

dx

‘de = —ax; + x,x; + x3,

where ¢ is a fixed parameter and # the bifurcation parameter. If ¢ = 0, then
zero is a double semi-simple eigenvalue of the lincarized operator for u = 0.
If we assume that ¢ > 0, we may represent the solutions as in Figure V.9,
They are given by

(1) x, =0, x; =0,

(2) X1 =0, x;=06-p

3) Xy = L, X, =0,

(4) Xy = 20 — 3y, X, =24 —o.

The points x, = 0, x, = /3 for u = 26/3 and x,; = a/2, x; =0foru=g/2
are points of secondary bifurcation.

X1

(\_’_{1 ) Hopf bifurcation (see

( / Chapters VII and VIII)
/.

(= =) Ay (= )

F_—— "
(—,+ (+! +)
(-, +)
X2
Figure V.9

To determine the stability of a steady solution we find the signs of the rea!
parts of the two eigenvalues for that solution. These signs are shown in
Figure V.9, The solution (4) is stable {—. ~) for supercritical points u>of2
near the point (x,, x,) = (0/2, 0) of secondary bifurcation and is unstable
(+, +) for subcritical points u < 20/3 close the point (x,, x,) = (0, ¢/3) of
secondary bifurcation. Between these two points two conjugate complex
eigenvalues cross the imaginary axis. To see this, set

(xls x2) = (20_ - 3:“ + x’13 2“ — o+ x’ZJ!
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where (x}, x3) satisfy

"
S = Gu - 200x; + 20) — ¥ - 2%,

dx; . bt L
—drz = (2 — o)X, + X3) + X\xh + X5
The eigenvalues y, and y, of the linearized system satisfy

y1¥2 = Qu — 0)20 - 3u) >0
and
Y1 + v = 5# — 3o.

When u = 30/5, the two eigenvalues are on the imaginary axis.

In Chapters VII and VIII we show that when a complex-conjugate pair
crosses the imaginary axis a time-periodic solution of the original problem
will bifurcate. This is known as Hopf bifurcation. In this example the tertiary
bifurcation is degenerate: it holds for a single value p = 34/5. If we add higher
order terms in the differential system, we obtain a non-degenerate Hopf
bifurcation as shown in Fig. V.9.

V.10 Saddle-Node Bifurcation

In (V.1) we studied steady solutions (#,, #;) not both zero, which bifurcate
from the basic solution (0, 0) reduced to local form. We treated the cases
in which (0, 0} solves the equations for steady flow on some interval of p
containing the origin; that is, f®(x,0,0) = 0,1 =1, 2. We now want to look
at the case in which pg is a regular turning point and to compute u,, 4, and
u as a saddle-node bifurcation. For this case, we assume that

O, 0,00=0, =12, (V.32)

and that the Jacobian matrix J at the point (s, 0, 0) has a simple eigenvalue
6,0, =0, and another eigenvalue g,4 < 0. Without losing generality, we may
put u, = 0 and choose a basis in R2 such that (V.1) may be written as

FO(, 1y, 4;) = ud; + pla’uy + b'uy) + ayul 4+ 2B uguy + s+,
FOU, 1y, Uy) = by + Gaouy + ulc'uy +d'uy) + o ul
+ 2Byu 4y + PaU3 + 0, (V.33)

where d,, 8,, a', b, ¢', &', ay, %3, By, Ba, 0y, 0 are functions of p.
To compute small solutions (uy, u;) of f(u, uy, ;) = 0,1 = 1,2for pclose
to zero, we again use the implicit function theorem and find functions u,{€),
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ple) of & = u,. The Jacobian matrix

o grw
- 8 du
I= 3 ia @r(j)
du  du,
computed at (0, 0, 0) is
& 0
030 G20|

The determinant of J at criticality is 8,40,,, which is nonvanishing when
010 = 6,(0) # 0. This condition then guarantees the existence of a bifurcating
solution of the required form.

Now we shall compute the principal part of the branch of steady solutions.
Using (V.33),, we find that

3
y = —=op + O(u + &% + | us)).
Tag

From (V.32),, we get

0
=l }82 + O(le]?);
l510
hence
1 /6
Uy = — (%L““’ - azo) £2 + 0(|g?). (V.34)
T30 10

Equation (V.34) shows that steady solutions exist only on one side of y = (.
Hence (u, &) = (0, 0) is a turning point. Moreover, for each fixed u # 0, there
are no steady solutions (4 < 0) or two solutions (¢ > 0) corresponding to
different signs of .

The stability of these two solutions can be derived from the study of the
eigenvalues of the Jacobian matrix at (g, uy, ;) = (u(e), &, uy(e))

_ 208+ 063 202+ 062)
© 20508 + O(62) 050 + 2Ba0 + 0D
whose eigenvalues are
Ta0 + 2650 + O(£?) and 2ea o + O(e?). (V.35)

The first one stays <0 when ¢ is small, while the second one changes its sign
with & As a consequence, the two solutions obtained for a fixed value of u
have different stabilities: one is a stable node while the other is a saddle
(see §1V.6).
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ExaMPLE V.7. Let us consider 2 mass m fastened to two identical springs of
constant k, length L, and natural length L.

These springs are fixed, respectively, in 4 and B with AB = 21. The mass m
can move on oy, the symmetry axis of the system. There is viscous friction on
the axis, with constant K, and a force P acts on the mass in the direction
of the axis. P is positive when it is as on Figure V.10.

The equation of motion of the mass m is

d? d )
md—tz)f + K% _ 2k(L — Ly)sinf = —P.

The equation which governs the movement of the mass is then as follows:

2tgf dtgt
gl | 9% o lir(cos 05t — (cos8)*Isin6 + P = 0. (V.36)

ml dr? dt

We define u = P/2kl; then equilibria are given by 0 = 6, with p = w(8,) such
that
p — sind, [(cos 8,)" ' — (cos 0,y '] =0. (V.37

The graph of (V.37) is shown as Figure V.11,
Let us denote by 6, the angle such that

cos B, = (cos )P, 8.€(0, m/2).
Then we observe that
w(8)=0,

and for 8 close to 6,, we have, after expanding,

3[1 — (cos 0,)** 1?2
— 8=—7—————————9—92 ol —6). (V3
w — ul6,) 2 c0s b, 6, — 6 + 06, —9) (V.38)

Figure V.10
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—-n/2

Figure V.11  Sketch of the graph of (V.37)

Consider y in a neighborhood of u(0,). For u > u(6,) there is no equilibrium
position 0, close to 6, while for # << u(6,) there are two such equilibria which
have opposite stabilities. The phenomenon which occurs at uyo= u(0) is
a saddle-node bifurcation.

When u (or equivalently P) increases, the angle 0, jumps from 8, to some
negative angle and tends towards — 7/2. Coming backwards by decreasing p,
the angle 6, increases to the value —0,, which is reached when Moo= —p.;
then 6, jumps to some positive angle and tends towards n/2. In this way, we
obtain hysteresis. For further results, see Exercise V.9,

Appendix V.1 Implicit Function Theorem for a
System of Two Equations in Two Unknown
Functions of One Variable

Consider the following system of two equations:
Silxy, xz.8) =0,
Salxy, x5, 8) = 0,

where f; and £, are continuously differentiable in the open “cube™: 4, <«
Xy <B4, <x,<B,,¢ << &,. Assume that

Jilx10, X20. 80) = fo(xy,. X290, &) = 0, (V.40)

(V.39)
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and 4, < x,0 < By, Ay < X309 < By, &; < &9 < 2, and that the Jacobian
matrix

g o
ax1 ax;
7= (V.41)
& U
dx, 0x;

computed at the point (X0, X20, £o); has a nonzero determinant: det ,# # 0.
Then, there exists @ > 0 and f > 0 such that the following assertions hold:
(i) There is a unique continuous pair of functions x; and x, defined for
g —ax<E<gt satisfying X, — B < xi(e) < xjp + B, i=12, and
Flxi(e), xa(e), 8) = 0,0 = 1,2
(i) Moreover, x, and x, are continuously differentiable for g — 2 <
E < g + aand

afl (Xl(E), XZ(B)! ‘5)

["“5)] = T X)) ” (V.42)
x3(€) L afa(x,(e), xz(ﬁ)a_ﬂ_) . .
J¢

If f; and f, are analytic functions of all variables, then x,(£} and x,(¢) are
analytic near £ = &.

Remark. This theorem is sufficient for our needs of the moment. Its proof
in a more general frame may be found in any book on advanced calculus.

The condition that det # # 0 also arises from Cramer’s rule for solving
for the higher-order derivatives of x,(&) and x,(e). If all derivatives of
fix1, x5, &) through order n are known at (X0, X2¢, &) and if akxj(.so)/ds",
j=L2 k=1...,n- 1, are also known, then the nth derivative of
f(x4(8), x,(g), &) vanishes and is of the form

dx, ce"  Ox; 08 !

of O, O O

=0,

8x, o8 = Ox, O¢" g2 =9,
where g, and g, contain only known terms of lower order. Cramer’s rule
says that these linear equations can be solved if det # # 0.

The functions x,(¢) and x,(g) can be constructed as a power series in &
up to the order allowed by their differentiability. As an exercise, the reader
should show that the construction can be carried out provided thatdet # # 0.
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EXERCISES
V.1 (see §V.5). Consider the system

du, . ,
Pt Hlaouy + byus) + aguf + 2Biousuy + 3,00k,

du, .
P udouy + 2y0u? + 2Bar0uius + Y2043,

where x,, # 0.
(i) Construct a steady bifurcating solution {11 (u), u5(21)) in the form

o0
Ul = 3 upp",  i=1,2,
n=1
Note that we are dealing with a case in which zero is a double eigenvalue of the linearized
operator for 4 = 0, of index 2, and that cg = Dasin§v.s.
Hint.  First show that u,, = Uy =ty = 0,13 = agdyfa,,, etc.

() Assume the zero solution is stable for ¢ < 0 and loses stability strictly as g
increases past zerc (with ap > 0and dfy > 0). Then show that the bifurcating solution is
unstable for 4 < 0 and for # > 0, when |u| is small (see Figure V.12)

hU,;

Figure V.12

V.2. Consider the system

du

_drl = wuy + 2ugu +oud Ol + [ ul + [u)?),
du; 2 2 2 3
T e o w0l 4 [ ]+ (),

which enters into the frame of §V.7 and §V.8.
(it Show that if you look for bifurcating solutions in the form
Uy =L 1y = &y(s) j = ed(e),
you obtain only rwe steady solutions bifurcating from zero;
(N Me=e up =06, p= g+ Od),

2 Uy = g, Uy = —2& + ), M= 3c + O,
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(ii)  Show that if you look for bifurcating solutions in the form
u; =€  up = ex(e), = &e),

you also obtain two bifurcating solutions, One solution is the same as {2). The other is
different: () uy, = O, uy = &= —& + O(e).

(iiy Show that if you look for bifurcating solutions in the form
w = w(p), g = ualp),

then you will find the three solutions (1), (2), (3) at once.

Remark. Herewe have the relationshipsdg 7o — Po¥2e = Oand chotg — Apdap = 0
which say that the “cubic”{V.26) is only quadratic in both cases (i) and (ii).

V.3. Consider the system
dul 2 3
ar = i, + My + Ul bty U,

du
cth = pu, — ity + 2ut — 2uqu,,
which enters into the frame of §V.7 and §V 8.

(i} Show by the method of §V.8 that you obtain only two nonzero bifurcating
solutions: (1) 1, = — + OG?), uy = —p + O, (D) u, = —4u + 0%, vy =
L+ 0.

(ii) Show that the method of §V.7 gives a third bifurcating solution of the form (3)
y = &y = &5 + O, p = —26% + O(eY).

Remark. This situation is due to the fact that the two conics

Uy F ty +uf +owu; =0,
w, — uy + 2ut — 2uyu; =0,

have a common asymptote. This common asymptote corresponds to the 3rd solution
computed under (i) by the method of §V.7 with 4, = 0.

v.4. Consider the system (S;)

du
Tdnli = ju, — fitt; — ui + i+ pu g,
duig (5+)
o = T +ud + ud,
which enters into the frame of §¥.7 and §V.8. Compute the steady solutions
3] uy =it; =0,
2) u =0, uy=u

and show that (3) there are no other solutions for (S. ), and two other solutions for (S_).
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V.5. Consider the system

du

—ﬁ = puz + wui + ul),
du

7{2 = — g + it + ud),

which enters into the frame of §V.7 and §V.8. Show that there is no bifurcation ar all.
Remark. 1n this case the “conics ™ have disappeared, so the method fails.

V.6 (Secondary bifurcation obtained by splitting a double semi-simple eigenvalue,
saving symmetry). Consider the system

du
d—;=#H1 _f"f"'u%,
(N
%=,uu1—cu1u2, c#0,1,
t

which is invariant under the transformation 4; = —u,. This system enters into the frame
of §V.8.

(i} Show that the two conics are hyperbolas which intersect at 2 points (including
0, 00ifc > I, or 4 pointsifc < 1. Show that the directions of their asymptotes alternatc
(as in Examples V.1-3 in §V.9). Show that the steady bifurcating solutions are

I L
ciy) = (. 0), =1 =c). == Nl =c]
(i u;) = (1. 0) ((_ - v C) (C Y c)
(i) Study the stability of the 0 solution and of the bifurcated solutions (¢ # 0, 1}
Suppose ¢ > 1, and show that the origin and the bifurcated solutions are both nodes but
with different stabilities. Suppose ¢ < 1 and show that the origin is a node (stable for

# < 0, unstable for ¢ > 0): (1, ) is a saddle; and (p/c, +(u/c) /1 — ¢) are saddles if
¢ < Oand nodesif 0 < ¢ < I (stable for # > 0, unstable for 4 < 0).

(iii) Consider now the “imperfect " system

du

d—!l=#h'1 —ui + ui + o,
2
(2) du,

ar M —oougug + Pus,

obtained by perturbing (1) by adding perturbations which keep the invariance under the
transformation u, — —u,. The problem is now to sec how the bifurcation described
under (i) behaves under perturbation.

Show that the steady solutions of (2) are given in the (i, 3, i) space by two conics
defined by u, = 0, yu, — ui +a=0 (hyperbola centered at 0, in the plane 4, = Q) and

r=cuy — B (e~ Dui+ud - fu, +a=0,

which is an ellipse if ¢ > 1, a hyperbolaife < 1,ina plane parallel to the u, axis (see
Figure V.13). Note that when u? > —4x and

1
Swp - oaso
[ ¢
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Figure V.13

there are four steady solutions (1, u) of (2). Deduce that if 82 + 41 — ¢) > Othereare
two bifurcations (“secondary bifurcations™), and that for B? + 4ol — ¢) < O there
are 3 or 4 isolated branches depending on whether ¢ > lor¢ < 1, with no bifurcation
at all.

Remark. In general, an imperfection in a system giving a bifurcation at a double
eigenvalue breaks the bifurcation, as in one dimension. The imperfection parameter
in the problem is «. When o = 0, we get secondary bifurcation for all 8 # 0. s a param-
gter which splits the double eigenvalue 6 = O at = 0 of the spectral problem for the
stability of (u,,u;) = 0 into two simple eigenvalues, ¢ = p and 0 = 4 + . We get
secondary bifurcation when we split the double eigenvalue with § and retain the sym-
metry u, — —t; of (2). The first persons to note that the splitting of multiple eigenvalues
could lead to secondary bifurcation were L. Bauer, H. Keller, and E. Reiss, Multiple
eigenvalues lead to secondary bifurcation, STAM Review, 17, 101 (1975). The first
persons Lo recognize the importance of symmetry in the creation of secondary bifurca-
tion by splitting perturbations were M. Golubitsky and D. Schaeffer, Imperfect bifurca-
tion in the presence of symmetry, Com. Math. Phys., 67, 205-232 {1979) and Michael
Shearer, Secondary bifurcation near a double eigenvalue, SIAM J. Math. Anal,, 11, No. 2,
365389 (1980).

V.7. (Periodic orbits bifurcating from the origin at a double eigenvalue of index 2).
Consider the system

du,
— =u
df 23
(D
d“z f 2 .
I Heglty + DUy, cg > 0,

which enters into the frame of §V.5, V.6.

ti) Compute and study the stability of the steady bifurcating solution (V.2), (ar
u < 0,(uy, uy) = (0. 0)is a center while (V.2)isasaddle,if u > Othe situation is reversed.)

{ii) Integrate the second-order nonlinear equation equivalent to (1) once and show
that for each y there is an infinite number of periodic solutions of (1). (See Figure V.14)
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homoclinic orbit
periodic solutions

center

saddle

Figure V.14  Phase-plane portraits of solutions of (1)

Remark. The system (1) has the form Hy= filuy uy, 1), 1= 1,2 with the special
property (6f,/0u,) + (8f3/7u,) = 0, This property implies that (1) is a conservative and
not a dissipative system. Conservative systems do not exhibit asymptotic stability and
they possess other special properties which will not be studied in this book.

V.8. Suppose that the quadratic terms mfi{pu,u) =0 and f5(u, 4y u,) = 0 vanish
but that cubic terms do not. Show that, in general, 0, 2, or 4 branches bifurcate.

Hinr.  Recall that two cubics intersect in 1,3, 5,7, or 9 points. and use symmetry.

V9. Consider Example V.7 and put up =8 — O, uy = dijde, fuu,,uy) = Uy,
Compute f®(y, u,, u,) and show that there is a saddle-node bifurcation at the point
(,U_H 0! 0)

V.10 (Keller's methed for going around turning points).* The numerical computation
of solutions in the neighborhood of turning points is frustrated by the fact that
Fi{1tg, 60} = O at a regular turning point (gg, £5). Of course, at a regular turning point
Fu(tto, &) # 0 and we can solve for 4 as a function of «. Another way to handle this is
to parametrize the bifurcation with a parameter s like the arc length on the bifurcation
curve, rather than e. Suppose

Flu.e)=0 (V.43)
and
N(g, e, 5) =0, (V44)

where g, ¢, 5 are real numbers, Ntto, &g, 55) = 0, and N,(p,, £y, Sg} # 0. Show that the
system (V.43) and (V.44) can be solved for £(s) and u(s) in the neighborhood of a
turning point. Verify that

def
Ny, & 5) = (1 — po) Fipy, &g} — (& — £0)F i, 80) — s + 5o =0

is an acceptable normalization. Show how this method may be worked for higher-
dimensional problems to B! in projection.

* Keller, H. Numerieal solution of bifurcation and nonlinear eigenvalue problems. In Applications
of Bifurcation Theory, edited by P. Rabinowitz, New York: Academic Press, 1977.



CHAPTER VI

Methods of Projection for General
Problems of Bifurcation into
Steady Solutions

We wish now to make precise the sense in which one- and two-dimensional
problems arise out of higher-dimensional problems, partial differential
equations, and integro-differential equations by methods of projection.

It is best to start with a problem which we have already treated in Chapter
V, using different notation, namely, the problem of bifurcation into steady
solutions in B? when the eigenvalues of £,(0 |) = A(0)(-) are real and distinct.
This problem is essentially a one-dimensional problem after a projection
associated with eigenvalue &,(0) = 0 at criticality and with eigenvector X,
and adjoint eigenvector y,. For maximum efficiency it is best to write this
demonstration of projection of the bifurcation problem into R! in a notation
which may directly be generalized to the problem of bifurcation at a real-
valued simple eigenvalue for infinite-dimensional problems such as those
which arise in the study of partial differential equations.

V1.1 The Evolution Equation and
the Spectral Problem

We first write the governing problem again using the functional notation
introduced in (1.21):

% = f(u, w) = f(ulu) + Hulniw) + O(ui), (VL)

where f,(1]u) = A(p) -ueic,asin (1.22). For the moment we think of (VL1) as
the two-dimensional problem treated under case (i)in Chapter V. The spectral

87
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problem for the stability of u = 0 was already derived in Chapter IV. A
small disturbance v = ™'y satisfies v — f.(¢|v) and

o(u)x = f(u]x). (V1.2)
In R? we imagine that A(u) = f(u|-) has two distinct real eigenvalues &,(u)
and £,{(¢) and two eigenvectors x, (i) and X,(1) (see §IV.2). So
Swx; = flulx), j=1,2, (VL3)
for 4 in an interval around zero. The problem adjoint to (VL.2) in the scalar
product (IV.7) is
a(py = £2(uly), (Vi4)
where f¥(u|-) L [€,(uel-)]* is the linear operator adjoint to f, in the scalar
product {a, b> = <b, 2> whose form in C" Is discussed in §IV.3. We define
£ by
@ Luib)> = [ (ula)]* by = (f¥u|a), b>
for all a and b in a suitable space (f should not be interpreted as the linear-
ization of some f*). In R"
£:ul) = AT(u)
may be represented by a matrix.
Under our assumptions about the eigenvalues of f,(u| ), (V1.4) reduces to

clwy: = fuly), i=12 (VL5)
When two cigenvalues are real and distinct
<X, ¥ = d&y.
At criticality, £,(0) = 0, £,(0) < 0, and £,(0) > 0 and
10 = <L,(0(x,), y,> (V1.6)

(see Figure IV.3(a)).

VI.2 Construction of Steady Bifurcating Solutions
as Power Series in the Amplitude

We first define the amplitude by a projection on the eigensubspace associated
with the adjoint eigenvector Y1 = ¥1(0) belonging to the eigenvalue &,(0) = 0:
ey, (VL7)

We then seek solutions as a power series in &:

ue)| < € [u,
[ﬂ(e)] B Zl n! [# ] (VL8)
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We are assuming that f(u, u) is analytic* in (4, 0) in a neighborhood of
(0, 0). After inserting (VL) into (VI.1) we find by identification that

fu(Olul) = 0!
fu(0|“z) + 2H1fuu(0‘“1) + fuu(olul l“l) = O-
£00]uy) + 3itrEu 010 10y) + 30, 00w) (V19)

+ 3u,£,(0]0y) + 3£,.(0(0,|vz)
+ 3u,£,0(0,) + f,..(0]u; [ugluy) =0,
and, in general,
£(0}u,) + np, -1, (O0lm) + k, =0, (V1.9)s

where k, depends on lower-order terms. Equations (V1.9} are to be solved
subject to the normalization (V1.7) which implies that

ug, ¥4 = 1, (u,,y,>=0 forn>1 (V110)

The solution of (VL9), and (VL.10), is immediate, since the eigenvalue
problem f,(0uy) = A(0)-u, = 0 with {u,, ¥,> = 1 has only one solution:

u; = X,. (VLI1)
In this way we eliminate the solution m = 0 of (VL1).
The other problems are not generally solvable. But they can be made

solvable by choosing the derivatives of u(e) properly. The method of selection
is described below.

Solvaibility Theorem (The Fredholm alternative). Given g € R2, the equation

f0lwy=2¢g (VL.12)
is solvable for ue R if and only if
& ¥,y =0 (VL13)

ProoF, Equation (VL.13) is necessary because
(L 40(u), y,> = (o, £30ly,)> = 0.
For sufficiency, we note that £,(0|w) = A(0) - u, so that

apgtiy + botiz — g1 = 0,

(VL.14)
Coly + douz —gr = 0.
Writing out f(0]y,) = AT(0) -y, = 0, we have
a + c = 0,
oY1t oY1z (VL15)

boyis + doy12 = 0,

* When f(u, u) is sufficiently smooth but not analytic, our construction gives the derivatives of
u(c) and pe} up 1o a certain order, and the truncated Taylor series (VLR) gives the asymptotic
expansion of the sofution,
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and
&Y¥Yi) =gy, + g2¥12 =0 (VL16)

Equations (VL15) and (VL16) show that the two equations (VI.14) are
dependent; in essence there is Just one equation and it may be solved, for
example, in u, for any given value of Uy. To make the solution unique it is
necessary to add any normalizing condition, say

WYD =y + uyy,,; =k, (VL17)

for any k, say 1 or O as in (VI.10), or ¢ as in (V1.7). We get a unique solution
(uy, uz) by solving (VI.14) and (VL.17). Only one equation of (V1L.14} is useful
in fact, the other being automatically satisfied.

Applying (VL13) to (V1.9),, using (VI.11), we find that

261 0ulO01%1). ¥ + <£,000%,1x,), ¥,> = 0. (V1.18)
Moreover, from (IV.27), we have
EuO1%1), ¥, > = (A0 Xy, ¥,> = £,(0) > 0. (VL19)
Hence
285(0) + <R 01x, %), ¥,> = 0, (VL20),

Since £,(0) # 0 we may solve (V1.20), for u,. We may then find a unique
u, satisfying (VL.9), and (VI.10).
In the same way, we get

31, $1(0) + 3<fuu(0fxl [u;), Yo+ <fuuu(o}xl IX, [x,), Yi2

+ 3u1<fuuu(0lx1 ,xl)v y1> + 3nu:1!<ruuu(0|x1)s y1>
+ 31ul<fuu(0|u2)e Y1> = 0: (VI'20)2

which leads to the determination of k2 and uy solving (VL9), and (VL.10),
More generally, the equation

m-1$100) + <ky, ¥, = 0 (VL.20),

determines u, , and u,, solving (VL9), and (VL10) as a function of the
lower-order coefficients.

VL3 R' and R! in Projection

Equations (VI.19) and (VI1.20) are essentially equations in R! arising in the
projection on x,. It is instructive to compare these equations with those that
arise in R! directly. To make this comparison we set F(y, &) = f(y, &), where
f(x, 0) is reduced to local form. Then (I1.52) is the R! analogue of (VI.19).
And if we replace &4(0) with $1(0), (IL52) becomes

€1(0) = £..(0,0) > 0, (VIL.21)
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and we may obtain g, n =1 by expanding f(u(e), €) in powers of gat ¢ = 0.
Identifying independent powers of & using (VI.21), we get

z.uléfl(o) + f;ar:(os 0) =0,
3“25’1(0) + fet:c(oﬂ 0) + 3“1}15# + 3#%,};3;1“ = 05 (Vlzz)
"}un—lé,I (0) + kn = Oa

where k, depends on lower-order coefficients. So (VL.21) and (V1.22), which
arise in R, are nearly identical to (V1.19) and (VI.20), which arise in R in
projection.

For saddle-node bifurcation, in this more general setting of R" in projection,
we assume that £(0, 0) = Oand that £,{0{0) has a one-dimensional null space with
eigenvector x, and adjoint eigenvector y, belonging to the eigenvalue zero.
Assuming now that {I,(0, 0), y,> and <f,,(0|%,]x4), ¥, » are not zero, it may be
shown that yt; = 0,u; = X, and gt = — CE,a(01%,1%1), ¥1 /<140, 0), ¥i>

V1.4 Stability of the Bifurcating Solution

We now turn to the study of the stability of the steady bifurcating solutions
in R2. For any steady bifurcating solution {u(e), u(e)), we have f(u(e), u(=)) = 0.
An infinitesimal disturbance v of u(g) satisties

dv

e £.(u(e), w(e)|v), (V1.23)
where in R?

£ (u(e), u(e)|v) = ) - ¥

and o#(g)isa 2 x 2 matrix. Settingv = "¢ we find, using (V1.23), the spectral
equation

7§ = f(u(e), w(e)| §). (VL.24),
There are two eigenvalues y of =#{e) in R2. One is close to £,(0) = 0 and the
other to £,(0). When ¢ is close to zero the two eigenvalues are necessarily
real-valued if £,{0) # O because complex eigenvalues must occur in conjugate
pairs. The eigenvalue probiem adjoint to (V1.24), is

E* = FX(p(e), u@)18*), (V1.24),
where in R?
f2(u(e), u(e)| T¥) = 7 (e) - &
and o#T(z) is the transpose of #(¢).

Factorization Theorem. Let {(¢) and E*(c) be the eigenvectors belonging to
w(¢) and suppose (&) is a simple eigenvalue of £,(u(e), 8(e)| -} and (ufe), C¥(e)>
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# 0. Then
we) = —HLO<Eue), u(e)), £¥e))

Qugde), T¥e)y (V1.25)
&le} = a!_(}.)lch*(s)—f {ue) + wu(e)(e)}), (V1.26)

where q(e) satisfies
G : =0 VI1.27
RO w(1(2), w(e)) + (yq — £, (u(e), u(z)|q)) = (VI.27)

and
{q(e), £*(e)> = 0.

Moreover, as ¢ — 0, u(E) = 0, L¥(e) — Y1, u(e) - x,, E(ule), u(e)), L%
- <fuu(0’ 0[’(1), Y, >£ = 6’1(0)8 and

7dE) = —u(e) 1€ (0) + O(e?)). (V1.28}

PROOF. Since f(u(z), u(c)) = 0, we find by differentiating once with respect
to & that

HLEple), WeD) + f(u(e), u(e) [u,(s)) = 0. (V1.29)

Equation (VI1.25) arises from the scalar product {(V1.29), £*>, using
Hlpuluy), £*> = Cu, F¥(u, ul §*)) = yu,, £*5. To find {V1.28), substitute
(VI.25) and (VI.26) into (VL.24) and (VI.29) to eliminate f(x, ulu). In
this way you will find that #(¢) times the left side of (V1.27) vanishes. Now
it may be shown that q(¢) solving (V1.27) is smooth in & so that all terms on
the left of (VI.27) are smooth in e, Hence u,(¢) is a true factor and the left side
of (VL.27) vanishes. To compute q solving (VL27) it is first necessary to
compute (VI1.24).

The factorization (VL.25) for R! in projection is the analogue of the
factorization (I1.44) for B!, And (VL28) for R! in projection is the same as
(IL.53) for R'. All the conclusions about the local properties of the bifurcating
solutions are the same in R! and R! in projection,

VL5 The Extra Little Part for R?! in Projection

We draw your attention to fact that the terms 3, 01x, |uy), ¥, and
3y <L, (0luy), y,> in (V1.20), for R in projection have no counterpart in
(V1.22), for R'. The extra term arises from the fact that there is a passive
part of the solution in R? which arises at higher orders as a result of nonlinear
coupling and has a zero projection into R'.

The extra little part is the term w in the decomposition

U=a(tx; +w, £ (ulx(w) = &)X, (), (VL.30)
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into the projection a(t)x, where a(t) = {u,y;», and the complementary
part {w, y,»> = 0 with zero projection. It is of interest to derive the equation
satisfied by a(z) and by w. We write (VLI) as

Bl + NGz v, (VL31)

where
N, u) = 3,z lujw) + O(luil®).
Substituting (V1.30) in (V1.31) we find

(@ — &i(warx, + i—‘: = f,(u|w) + N(u, u). (VI.32)

dw d
<E’ YI> =Z {w,y>=0

<fu(“|w)’ y1> = <ws r:(#lyl)> = él<ws ,V1> = 0'
we find that the projected part of the solution satisfies

Since

and

a - & (wa = (N, u), ¥, (V1.33)
while the complementary part with zero projection on x, satisfies
dw
7o A 1w) + {N(u u) — (N, ), ¥12%X1 ) (V1.34)

Equation (V1.34) shows that if all the eigenvalues of f,(u]-) except ¢:(1)
have a negative real part (in R? there is only one other eigenvalue, £,(u) < 0)
then, for f large enough, w = O(a®) because

ZN(#!‘ “) = azfuu(#lxl lxl) + 2afuu(.u|xl |w)
+ fa(ulwiw) + O(lull®).

Hence we may write (VL.33) as
a— &(a = oy(wa’® + 0(a®), (VL35)
where o, () = {f(|%;1%,). ¥». In R? we may set
w = b(t)X,, f,(1]xz) = Ca(p)xa,
into (V1.34), and after projecting the result with y, find that

b — &,(1)b = ${as(wa® + 2B,(p)ab + 12()b*} (VL36)
+ O(lal + {bl),
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where
aZ(#) = <fuu(1u|xl le), YZ>9

Bar(w) = ], [x,), Y22,
7200) = {Bulnlxy1x,), y,0.
The amplitude b(t) of w enters (VL35) first at

0(a®) = 2abB, (1) + by,(u) + O(jlul*), (VL37)
where

Bl(ru') = <ruu(ﬂ|x1 IXZI)’ y1>9
ri(u) = <fuu(#fx2[x2)s Yi).

We may obtain the bifurcation results of § V1.2 from (VI1.35), (VL38), and
(VL37). For example, we can find a steady bifurcating solution in the form

(VL38)

a=e,
ag 1 N

b=n§25bn8,
= 1

u="§laun8-

VL6 Projections of Higher-Dimensional Problems

We are going to treat infinite-dimensional problems, in particular, problems
involving partial differential equations and other problems which can be
framed as evolution equations in Hilbert space, as if they were in R" The
idea is to show that bifurcation of high-dimensional problems takes place
in low-dimensional spaces R! or R? for a wide class, so we may “project”
the problems into the low-dimensional space. In R" we use an operator
notation which is formally identical to what we would use when treating an
evolution equation in a Hilbert space, and all the formal operations are the
same. So the results we compute in R” are exactly the same for a wide class
of problems in Hilbert spaces.* The only question then is to show that some

* Essentially similar results follow for problems which can be framed more generally as evolution
equations in Banach spaces. The really important property which we cannot drop is the Fred-
holm alternative for the solvability of the perturbation equations. In our very first example in
Appendix VL1 we consider an integro-differential equation which does not enter into the frame
of Hilbert spaces for which the Fredholm alternative works well. In fact, it is the Fredholm
alternative which is in back of the statement that in problems for which the alternative holds,
and the action is going on in the null space of a certain linear operator, the part of the problem
having a zero projection into the null space is like the fittle tail of a lively dog. So our use of
Hitbert spaces here is in no way essential: it is just one way for us 1o show that the analysis we
give in R" holds more generally —in Hilbert space, for example,
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boundary value problem can be set up as an evolution equation in a suitable
Hilbert space. This type of showing is fairly routine for many of the common
problems of continuum physics, but in any event is outside the scope of this
elementary book.

In Appendix V1.1 we give some examples of formal computation which
show how this theory works for partial differential equations and integral
equations.

In what follows we define H as the set of u for which the evolution problem
is well defined. For instance, for a system in R", H = R"; for a partial dif-
ferential equation of evolution, H will be the set of all functions satisfying
the boundary conditions and possessing smoothness sufficient to assure
that spatial derivatives and other defining properties of f{y, -) are satisfied.

From now on we assume that H is a Hilbert space. This means, among
other things, that it is a vector space with a scalar product <u, u, for u,
and u, in H which can be extended to complex elements, (W @;> = {up,u,),
and generally possesses the properties of the scalar product (see §IV.3)
inC".

Consider a linear operator A with values in H, whose domain is some dense
subset of H, as in the case of partial differential equations. (When H = R", A
is defined in all of H and may be expressed by ann x n matrix.) In the general
case the spectral problem

A-L=0l for CinH (V1.39)

has a meaning and defines eigenvalues ¢ and eigenvectors & In the simplest
of cases, all of the values of ¢ for which (V1.39) possesses nonzero solutions
are isolated, algebraically simple eigenvalues, The difficulty is that in H
there may be an infinite number of eigenvalues and even a continuum of
them. Even in the case when the continuum of eigenvalues is excluded, it
may happen that all of the solutions of the linear evolution problem

d—‘—’=A-v inH (V1.40)
dt

cannot be expressed as linear combinations {even infinite combinations) of
terms proportional to e™‘C,. In the most simple case when the spectrum
is of simple eigenvalues and A satisfies other requirements which occur
frequently in applications (for example, in R" and for fields defined over
bounded regions of space which are governed by equations of the reaction-
diffusion type or of the Navier-Stokes type) the solutions may be expressed
in such linear combinations, as in (VL.57).

In fact, our theory holds more generally; we do not require that solutions
be expressible in such linear combinations. It is enough that the evolution
problem should possess one solution of the form e™'{ where o, is an isolated
eigenvalue possessing the following properties.
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(i} No other value of o for which (VI.39) possesses nontrivial solutions
should have a larger real part than o,.

(1) ¢, is of finite multiplicity and finite Riesz index (the definition of
index and multiplicity are given in Chapter IV).

(i) The same properties (i) and (ii) are required of the eigenvaiues &
of the adjoint operator A* satisfying

(A vy = {u, A*-v) (VL41)

for all win the domain of A and all v in the domain of A*.

Then, as in Appendix V.1, we can find elements Wihior o {W¥hie, . in
H satisfying
(o1 —A)-y, =0,
(61 — A%) - =0,
and
U WD = 4y, (V1.42)

wherte n is the multiplicity of the eigenvalue o, and v its Riesz index. Moreover,
here, as in Appendix 1V.2, we may define a projection P:

Pous 3 b, (VL43)
i=1

and
P-Pu=Puy P-A-u=A.-P u, {V1.44)

for any u in H*. In fact, (V1.43) and (V1.44) are fundamental properties of
projections in a general setting.

In all of our problems the multiplicity and the index will not be larger than
two, so that the range of the projection P has one or two dimensions. In
these problems it is frequently more convenient to work with the com-
ponents {u,W¥> of the projection, rather than with the projection itself.

VL.7 The Spectral Problem for the Stability of u = 0

We shall now consider the evolution equation

du

o =fuw, 0 =0 ueH (V1.45)
A small disturbance v = ¢™{ of u = 0 satisfies
dv
p7i fuiv), ol =1,(u|0) (V1.46)

*In the domain of Afor P- A - .
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where

fu1) E 101 01) F AG)()
is the linearized part of f(u, u) evaluated at the point u = 0 and f,(u}-) is
the linearized operator introduced in §VL.6. The eigenvalues

o(w) = &) + in(y) (V1.47)

of f{u}-) have to satisfy (V1.46), for a nonzero {. They constitute part of
what is called the spectrum of f(u]-). If H = R", the spectrum is entirely of
eigenvalues. In many problems of partial differential equations (for example,
in evolution problems for parabolic partial differential equations, or in
Navier—Stokes problems on bounded domains) the spectrum is entirely of
eigenvalues.

We shall be interested in the case when the part of the spectrum which
controls the stability of u = 0 is a finite set of isolated eigenvalues. This is
true generally in R” and in most of the applications involving fields which
arise in continuum physics and mechanics.

In general &(u) and n(u), hence o(u), are continuous in u. If the eigenvalue
o is algebraically simple for some value g of g, then in a neighborhood of
iy, & 1, and ¢ are as smooth as f,(u|). The same smoothness holds for
semi-simple eigenvatues, for example, if the perturbation of the multiple
eigenvalue with p — pig splits the eigenvalue at first order in g — i, into
a number of eigenvalues equal to the multiplicity of o(u} at ¢ = fo. We
have seen already in §IV.7 that if o is multiple eigenvalue of Riesz index
greater than one for some value g of u, then in general &, #, o need not be
differentiable with respect to p at p, even if £,(u|-) is analytic.

Associated with the operator f,(u|-) = A(u) is the operator

3 (u]-) = A*(n) (V148)

satisfying (V1.41) and the adjoint spectral equation is
e8> = fi(ul L") (V149)

The stability of the solution u = 0 of (VL.45) may be determined from the
knowledge of the spectrum of f{uj-). Let us assume that the spectrum is
exclusively of eigenvalues. Then u = Qs conditionally stable if all eigenvalues
have a negative real part (¢ < 0), and is unstable if some eigenvalue has a
positive real part. Conditionally stable means that u = 0 is stable to small
disturbances. A conditionally stable solution may be unstable to large
disturbances whose evolution is not governed by the linearized theory.

Assume that for g < 0 the null solution u = 0 is conditionally stable,
and that this solution loses its stability when u crosses 0. We shall consider
two cases.

(@) For u = 0, a pair of simple eigenvalues iy, wo # 0, arc on the
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imaginary axis, the other cigenvalues being of negative real part. At criticality
o(0) = in(0) = iw,,  &0) =0,

and we assume that £,(0) > 0, In this case we get bifurcation into time-
periodic solutions (see Chapters VII and VIII). For now it will suffice to
remark that the linearized problem

dv
Frin £.(0}v)

has only two independent time-periodic solutions:
v(t) = ¢ and Wy).

The other solutions decay exponentially in time, In this case the construction
of a bifurcating solution requires that we project into a two-dimensional
space.

(b) For u = 0, a single eigenvalue crosses the origin. If ¢ = 0 is simple,
the problem may be reduced to R' by methods which are identical to those
used to reduce to R* the problem of bifurcation of solutions in R? when the
eigenvalues of the 2 x 2 matrix A(0) are real and distinct (see Figure VI.1).

" "
-l
4 ¢
-
— iy,
(a) (b)

Figure VI.1  Eigenvalues o{) = §(u) + in(u) of £,(u}-) at criticality 4 = 0. In case () a
pair of conjugate simple eigenvalues cross over. In case {b)asingle real-valued eigenvalue
passes through the origin

VI.8 The Spectral Problem and the
Laplace Transform

A better understanding of the evolution of the linearized initial-value
problem

g =falv),  v0) =1, (VL.50)
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may be obtained by the method of Laplace transforms. We first define the
transform

a
V() = f v(t)e M dt (VL51)
0
and the Mellin inversion formula
1 Et+ia
v(t) = — V(Ae* di, (VL.52)
27'” é_ foo

where A = £ + if. We next suppose that ¢ is large enough so that when
t = o0,
v(t)e ¥ =0, (VL53)

where v(;) satisfies (VI1.50). We will show that (VL.53) holds if & > &,(u)
where &,(x) is the largest of the real part of the eigenvalues of f,(x|).
Applying the Laplace transform to (V1.50), we find that

Vo = AV — f,(ul V). (VL54)

The spectrum of f,(¢|-) may now be defined as the set of values of 4 for which
(VL.54) cannot be solved for V. All of the eigenvalues belong to this singular
set. The values of A not in the spectrum are said to be in the resolvent set.
For these values we may invert (V1.54):

V(4 1) = R(4, 1) - Yo, (VL53)

where R(A, u) is the resolvent operator, the inverse of the linear operator
M — f(u|-). For many partial differential equations, R(4, 1) takes the form
of a Green integral operator.

Combining (VL.55) and (V1.52) we find that

1 E+iaw
v(t, u) = =— eMR(A, ) - vo dA. (V1.56)
2ni f—iw
We take £ large enough to place all the singularities of R(:, 1) on the left of the
line & = constant (see Figure V1.2). These singularities are nothing other
than the spectrum of f,(u|); the eigenvalues o of f,(u|-} are poles of R(4, u).
Simple eigenvalues are simple poles of R(4, y).

It is instructive to consider the case when a conjugate pair of simple
eigenvalues o, and &, have a real part larger than the real part of any of
other values in the spectrum of f(u]).

1t is not hard to show that

<V(I), gf) = <V0, Cf)em-
To show it, we first project (VI1.52) and find that

rf+ioc

o(e), B = ilaf V(A ), GEeM dA.

-5—im
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Figure V1.2 Poles of R(4, u) in the complex A plane are eigenvalues o of f,(u| ). Poles
plus other singularities of R(-|y) define the entire spectrum of £,(u|-)

Then projecting (V1.54) we calculate

¥o, 810 = AV, 1) — LB ul V), £
= AV, G100 — (V, 3 (ulet>
= (A —a )XV, LD

Hence,

<V0, E.’T) E+iw ell
* _ ——
0. &1 2m F—ioo A—o

= <V0, cf>eﬂlt-

So the method of residues (VI.56) applied in the present case (and sup-
pressing the dependence of v on y) leads us to a residue integral representa-
tion

dA

é1+icc

_ _ o 1
MO = Yo, SN, = g, B0 =2 [ VAR (VISY)

gy —ioo

where &, < Re o, < & (see Figure VL2) and the integral at the end of
(VL57) is orthogonal to { and F. When ¢ is large (VI.57) shows that

() ~ e (€™ vo, LG, + &7 vo, TEHE).

More generally, if the eigenvalue 6, is multiple, 7, is also multiple because
f,(u] ) is real and the method of residues may be used to derive a new form of
(VL56):

. 1 [étie
v(t) = &Pt} + &'P(t) + i | e R(A, p)- vy di, (VI.58)
g1—ioo
where R(A, g) = (A1 — f(u]-))~! and P(¢) is a polynomial of degree v — 1
in t, v being the Riesz index of &,, whose coefficients depend on v,. It is
possible to obtain an estimate of the integral in (V1.58) of the following type

¥(t) — 2Re (" P()] < ke®'[I¥,].
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Since &; = Reo; > &,, the first two terms on the right-hand side of (VI1.58)
dominate the behavior of ¥(¢) when t — c0. '

In concluding this section we remark that the formula (VI.56) is a general-
ization of the exponential of a matrix. When H = R”

v(r, 1) = er v, (VL59)

where the exponential is defined for ¢ > 0 and ¢ < 0. In more general cases,
for example, in evolution problems where H # R", we may define (V1.56)
only for t > 0, so instead of a group property

eA(ll +t1) eAneAtz,

where —o0 < f; < o, j= 1,2, we have semi-group property, because we
require that ¢, and ¢, = 0.

V1.9 Projections into R

When a single, real-valued, isolated, simple cigenvalue o(u) = &(u) of £,(ul")
crosses strictly through the origin of the complex g-plane when g = 0, we get
bifurcation of u = 0 into a steady solution u # Ofor p # 0. The solution may be
decomposed into a part on the null space of £,(0]-) and a little part which is
orthogonal to the eigenvector §* of £*(0}-) belonging to ¢ = 0. The analysis
is identical to the one given when u is in RZ, on the understanding that the
extra little part w defined in (V1.30) is some kind of “superposition of all
other modes,” eigenfunctions of £,0[-). In R", there are n — 1 other modes.
While for partial differential equations such superpositions, even infinite
ones, are not always possible, it is always possible to define w merely by
saying it is orthogonal to &¥.

The main thing to check in problems of a general type in H is that the
Fredholm alternative applies. The Fredholm alternative is said to apply if a
necessary and sufficient condition for the solvability of

£0|v)=® VveH, (V1.60)

is that
(W, L*> =0 (VLél)

for all £* such that £¥(0|L*) = 0. Then the solution v is determined up to
elements § satisfying £,(0]8) = 0. In the cases treated by us the dimensions
of the null spaces of £,(0|-) and f(0|-) are the same. In this chapter we have
one- or two-dimensional null spaces associated with eigenvector § and a one-
or two-dimensional adjoint null space associated with ¢*. So it is possible to
find a unigue solution of v of (VL.60) satisfying

vE*D =0 (V1.62)
for all £* on the null space of £0[).
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With this understanding we may view the theory of §VL.2 as appropriate
to the method of projection in the case of bifurcation at an algebraicaily
simple eigenvalue in R” or in a Hilbert space. Following the order already
used in treating problems in R! and R?, in §VI.10 we shall discuss the method
of projection for isolated solutions which perturb bifurcation at a simple
eigenvalue (double-point bifurcation defined for R! in Chapter I1); in
§VL.11 we apply the method or projection for bifurcation at a double eigen-
value of index two; and in §VI.12 we apply the same method to bifurcation at
a double semi-simple eigenvalue of index one.

VI.10 The Method of Projection for Isolated
Solutions Which Perturb Bifurcation at a
Simple Eigenvalue (Imperfection Theory)

Consider an evolution equation of the form

% = %(1,u,8) forwin H, (VL63)
where H is R" or some other function space which is defined for infinite-
dimensional problems such as partial differential equations according to
conventions adopted in §§VI.6-8. We further specify that u = 0 is a solution
of

F(u,u,0)= 0, (VL64)
which loses stability strictly as u is increased past zero. It then follows that

(VL64) undergoes double-point bifurcation of (4, u} = (0, 0). The spectral
problem for the stability of u = 0 is

o((1) = F (u, 0, 0]5(u)).
At criticality, #(0) = 0 is an isolated simple eigenvalue of # (-) and the
adjoint operator & e,
FOEFL0,0,010) =0, ¢ =g0), (VL65)
and
FHE*) = 0. (VL.66)

All the other eigenvalues of # () have negative real parts. The Operator
F () is such that the equation

F) =T (VL.67)

is uniquely solvable to within an additive multiple of { satisfying (V1.65),
provided only that

KFL* =0, (VL68)
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where £* satisfies (V1.66), and

v=C4+w, (WD =0, (V1.69)
where w = & '(f) and & '(-) is a well-defined operator with the property
that (& ;7 (), £*> = 0 for any f satisfying (V1.68). The strict loss of stability
of u = 0 solving (V1.64) as u is increased past zero implies that

0,(0) = {F L), £*> >0, (VL.70)
where
def =

yuu(') = 'a}',uu(o’ 090|)
Returning now to (V1.63) we imagine J is small and seck isolated steady
solutions which break bifurcation at (0, 0), under the condition that
(Fs8* #0. (VL.71)

defl

Recall that &F; = %50, 0, 0). It is also convenient to introduce an amplitude
e u, 0. (V1.72)

The condition (VL.71) and the implicit function theorem guarantee the
existence of a smooth solution u(y, &) and 8 = Ay, &) of

Fuy, ), Ay, ) =0, &= (g, &), §*). (VL73)
Setting ¢ = 0 in (VL.73) we find that
wu,0) =0 and A(y, 0)=0. (V1.74)
The first derivative of (VL.73) with respect to ¢ at ¢ = O is in the form
F(u)+ F;A =0, 1 = (u, £*. (VL75)
The solvability condition (VL.68) implies that A, = 0 and
u, =§& (VL76)
The second partial derivatives of (V1.73) are in the form
F ) + FLLIR) + Foh =0, (VL77)
Fu) + FLUL+ FA, =0, (VL78)

where u,, and w,, are orthogonal to ¢*. The solvability condition (VI.68)
implies that

(FLL10), &%)

A, = — (T (VL.79)
and
A o — (F L0, 5
" (F5
_ %O (VL80)

T{F T




104 VI Methods of Projection for General Problems of Bifurcation into Steady Solutions

When A, and A, satisfy (V1.79) and (VL.80), (VL.77) and (VI1.78) may be
solved uniquely. Turning next to third-order derivatives we compute
F i) + Do F g + 30, F () + 3F L I0,) + FoGITI0) = 0,
{VL81)

*g’;u(u,uce) + Auaayé + Lg'—ﬁn Ar:e + tg::,m(uc.!:) + 2yué(C)Auz
+ 27080 + F L0 =0, (V1.82)

F ) + A Fs + F 0 + 2F () + 2F 40, = 0. (V183)

These equations are uniquely solvable among vectors orthogonal to [*
when A,,,, A,,., and A, are selected so as to satisfy (VL.68).

Proceeding to higher orders in the same fashion we generate a Taylor
series

1 |
A(,u: E) = 5 [Azsgz + 2Asp8nu] + ? [Aaasea + SAnea.uEZ

+ 3A,.0%6] + Oe(| | + |e])]. (V1.84)

Equation (V1.84) is in the form of (II1.26). We now proceed to obtain the
function u(e, ) by successive approximations in R'. So the problem of
finding the isolated solutions which break double-point bifurcation has been
reduced to one dimension. We leave as an exercise for the reader the demon-
stration that the stability problem for the isolated solutions can be reduced
to one dimension as in (1I1.32),

VL11 The Method of Projection at a Double
Eigenvalue of Index Two

We are interested in the steady solutions which bifurcate from u = 0 where
uin H satisfies the evolution problem

N = W) = L) + MGl + O, (VISS)

The stability of u = 0 is determined by the sign of the real part of o(u),
where o(y) is the eigenvalue of £,(u]-) of largest real part

o(w)s = £,(ul8) for{in H. (V186)

We assume that at criticality (0} is a double eigenvalue of index two of the
linear operator

£,001) £ £,0). (VL87)
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Since o(0) = 0 is a double eigenvalue of index 2, we have the following
Jordan chain equations for eigenvectors and generalized eigenvectors (see
Appendices I'V.1 and IV .2).

fu(gl) = 0’ f:(;;) = 0!
£&) =8¢, fEn==.,
def

where £*(-) = [f,(0]-)]* is the linear adjoint operator defined relative to the
scalar product (-, -> in H:

G 53 = AiG2), T = <&, DY =0,
G B = <B(62), 1) = <Go, FXEID = (&2 £

We choose §, and §¥ so that (&, £1) = (§;, 81> = L, {5, §1) = 0. Now we
seek the solutions which bifurcate from u = 0 as a power series in the ampli-
tude in projection,

(V1.88)

g = {u, L, (VL89)
that is,
u(e) £,
b (8)] -5 £ H (VL.90)
We find that
fw)=0  <u,LH=1
f,(u,) + 2,f,,(0) + £,0[u, v} =0, (VI91)
{ug, §1 =0,
and

fu(un) + nnunflfuy(ul) + }t;: = 05 <un= €T> = 0» (VIQZ)

where ¢, depends on the derivatives of 4 and u of lower order. It is always
possible to satisfy the orthogonality condition (m,, §*> = 0 because if
i, is a solution of the equation which does not satisfy the orthogonality
condition then u, = &, — ¢ii,, {¥>§, satisfies the equation and the ortho-
gonality condition.

Equation (VI.91}), shows that

u, = ;- (VL93)
To complete the solution we need the following result.
Lemma (Fredholm alternative when zero is a double eigenvalue of index
two of £,(-)). The equation

)=V  deH, (V1.94)
is solvable if and only if

L) =0 (V1.95)
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The criterion (VI.95) is no different from (VL61); the inhomogeneous
term in (VI.99) must be orthogonal to all of the independent null vectors
of £f. There is only one null vector at a double eigenvalue of Riesz index two.
For solvability it is the geometric multiplicity which counts. It is obvious
that (VL95) is a necessary condition. The proof that (V1.95) is also sufficient
for solvability in R” follows from linear algebra. For more general problems
the requirement (V1.95) is exactly the form taken by the Fredholm alternative
defined in §V1.9 at an eigenvalue of index two.

Applying (V1.95) to (VL.91), we find that

2m,Co + <LL0015,18,), L3> = 0,
and, at order n,
1 Co + {4, 83 =0, (V1.96)

where
Co & (G E1. (V197)
Our bifurcation assumption
Co#0 (VL98)

is equivalent to the assumption (V.17) which we made in R2. So if Co#0
we can compute the series (VL.90) (each step determining B 1o W),

Turning next to the stability of the bifurcating solution (V1.90) we
derive the spectral problem

W = £.(u(e), w(e)(¥) (V1.99)

for small disturbances "y of u(e). Inserting the expansion {VI.90) into
(V1.99) we find that

W= 600 + el £,00) + £,015,1¥] + 0D . (VL100)
Let us decompose ¥ as
V=l + ol + W, (VL101)
where
=L, (WELH=0, i=12
Noting that
ED.E1 =0, L), 81 = (.88 = ay, (V1.102)
and using (VI.97), the equation (VL100}) takes the form of a system:
Yay = %y + &ayay + byay) + O(6)- W + O(e?) -,
vy = —eu Coxy + ehyay + O()- W + 0% -,  (VL103)
YW = (W) + O
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Now, because y is-close to zero (O(\/—é)) and f, is invertible on the space
orthogonal to {£¥, &%}, (VL.103); leads to W = O(e)-¥. Replacing W in
(VL.103), and (V1.103), we may justify* that y is an eigenvalue of a 2 x 2

matrix:

ea; + 0(e?) 1 + &b, + O(%)
A V1.104
[—EMIC;) + 0(e?) eb, + 0(e?) ( )
So we have
vy = £/ —eu, Co + ¥elay + by) + o(|e|>%) (VL.105)

and we derive exactly the same stability results for the Riesz-index-two
case in R? in projection as we derived in §V.6 for the same case in R2. The
stability results given in §V.6 and Figure V.1 fully describe the implications
of (VI.105).

VI1.12 The Method of Projection at a Double
Semi-Simple Eigenvalue

We want to show that bifurcation of u = 0 at a double semi-simple eigenvalue
associated with the higher-dimensional problem (V1.45) is the same as in
R2 (sce §§V.7-9) except for a small passive part which is orthogonal to the
projected part and is of higher order in the amplitude.

The stability of the steady solution u = 0 of (VL.45) is governed by the
spectral problem (V1.46) and the associated adjoint spectral problem (V1.49).
We assume that o(0) = 0 is a double semi-simple eigenvalue of £,(0|- YEL ()
Unlike the matrix A, in R2, the operator f,(-) does not vanish identically. For
example, if £,(-) = Aq(-) in R® we have

AO ‘; = UC!
where

0 0 0

0 0 -4

and ¢ =0 is a double semi-simple eigenvalue of A,. Two independent
vectors &, and {, which are annihilated by A,,

Ao‘§1=0, Ao'C2=09

* It is possible to justify this using the theory developed in T. Kato, Perturbation Theory Jor
Linear Operators (New York-Heidelberg-Berlin: Springer-Verlag, 1966).
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are said to lie in the null space of A, and we may choose these vectors so

that
1 0
A} fl
0 0
0
.
1

is determined uniquely by A -§; = —AL; and a normalizing condition.
In the general problem, f*(-) has a two-dimensional null space {with
eigenvector {F and {¥ belonging to ¢ = 0) when £{-) does and the equation

fid) =y (VI.106)

is solvable for ¢ in H if and only if (Y, £ = (g, {2 = 0.

Now we consider the problem of bifurcation and show that it reduces to
the one already considered in R2. We first look for a solution in the form
(V.3) of §V.8:

The third eigenvector

1 1
u(y) = uu + 3 u, p? + 379 i+ 0. (VL107)

(Similar methods can be used to obtain solutions in the form (V.2) of §V.7)
Substituting (VI.107) into (V1.45) we find, after identification, that

du,

ar = fu,).

It follows that {u,, {¥> and {u,, {¥) are independent of time, Let us seek
steady bifurcating solutions of (V1.45). These satisfy

fu;) = 0,
2A6,0,) + £.u[u) + f(u,) = 0,

fmuu(“ll“l Iul) + 3fuu,u(u19 “I) + 3fu,uu(ul)
+ 3fu,u(“2) + 3fuu(u1 |“2) + fu(“S) = 01
where, in a simplified notation, we have evaluated the derivatives of f at

(. w) = (0, 0). Equations (VL.108), and (VI.108), are solvable if and only if,
for!l=1and! =2,

2¢00,), TS + (Fu(uyfuy), 8 = 0 (VL109)

(VL.108)

and

<M(“1)! gf) + 3<fu,u(“2)! §?> + 3<fuu(“1 |“2)9 C?‘> = 09 (VIIIO)
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where
M(“l) = fuuu(“l |“l t“l) + 3fuu,u(“1 |“1) + 3{14#;1(“1)-

The solution u(x) may always be decomposed into a part on the two-
dimensional null space of f(-} and a part which is orthogonal to {¥ and

L3
u(p) = pi{x(p)l, + 608} + W),
{uu), 81> = pyu),
Cu(u), 83> = o),
(W, L) = (W, L5 = 0.

Since all solutions of f,(u;) = 0 can be composed of the two independent
ones, we have

(VL111)

u, = yol; + 606, (VL.112)
and W, = 0. Combining (VL.112) and (V1.109) we find that

f1(xo,80) = ayxo + b1 6y + % x5 + 2B1x0b6 + 7105 =0,
f2(xos B0} = @20 + b28y + a3 + 2B2x000 + 7205 =0,

where, forj = 1, 2,

(V1.113)

aj = <fuﬂ(§1)s §T>e
bj = <fu.u.(;2)5 §T>s

o; 5
f 5), C¥
g = Sl

_ <fuu(C2|g2)a CT)
Vi= 2 .

Equations (VI.113) are the intersecting conics (V.29) which we derived in R?;
(%0, 8) = (0, 0) is always a point of intersection. Besides this point of inter-
section there may be as many as three other points, If, as in B2, the condition

& 9
dxe 004

det #,# 0 where #,= o, of {VL.114)
2 2

%0 96,
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is satisfied at a point of intersection, then a solution bifurcates there. In
general, we may, besides u(u) = 0, have as few as one other solution or as
many as three

1 1
¥y = ully + 3 ulfl? 4 3 uled 4+ 0. (VL.115)

To show that (VL.113) and (V1.114) are sufficient for the existence of
bifurcation we first note that

u = 1,6 + 60,8, + Wy, (VL116)

where {(W,) = 2f, (u,) + f,(u,|u,), which is made solvable by (VL.113).
There is a Wi for each solution u¥l. Combining (V1.1 16) and (VI.110) we
find thatfor { = 1 and { = 2

Pt + XI {<fuu(;1)! Cf) + <fuu(ul ICI)’ g?‘>}
+ 0 {{uC2), &> + £ 00,08,).50)) = 0, (VL117)
where

Py= 3(M(u,), 88 + KLUAW )L B + (Flu, [W), 55,

is known from calculation at lower orders. We want to find ¥y and 6.
Inserting w; = x,§; + 8,§, into f,, we find, using (V1.113), that (V1.117)
has the form

P+ #,-x=0 where x=[xl}, P= [Pl]. (V1118)
8, P,

These two linear equations have unique solutions if and only if

det #, # 0.

Exactly the same condition of solvability arises at higher orders.

Now we show that the stability of the bifurcating solutions ul(w),
k = 1,2, or 3, and the solution u = 0 are determined by the eigenvalues of
Fo. Let u(u) be any one of the eventual four candidates for solutions and
let €' be a small disturbance of u satisfying the spectral problem

7€ = £, u(u)|5). (VL119)

When g =0, u =0, y(0) =0, and £(0, 0}£(0)) = f(8(0)} = 0 has two in-
dependent solutions §; and §,. Hence §(0) = AL, + BE,, where A and B
are to be determined. Differentiating (V1.119) once with respecttopaty = 0
and replacing §(0) in the equation which results, we find, after applying the
solvability conditions, that

—Vud + ALKELE) 8 + (L0, 15,), 54}
+ BIKE,E2). §1> + (F(u,18,), 810} = 0,
and
—VuB + ALKELE). 8 + (fw,]5,), 4}
+ Bidf,(82), 830 + (£a(u,18,). 55>} = 0,



VI.13 Examples of the Method of Projection 111

Inserting u;, = yo&; + 6o, into f,,(u,|-) we find that
yﬂA = jO ' A,

o[l

Hence the y, are eigenvalues of #,, asin R2. A rigorous justification of this
type of computation may be found in Kato (1966), cited in §VL1L.

where

VL13 Examples of the Method of Projection

In this section we shall apply the methods of projection which were
developed in this chapter to specific problems which arise as integro-dif-
ferential equations or as partial differential equations. The examples could
be treated as exercises for students. They are meant to teach interested
readers, by example, how to place their specific problems in the frame of our
general theory.

We have written the evolution problem reduced to local form as

du | 1
E = f(lu's ll) = u(#lu) + 5 fuu(“iulu) + ? fuuu(nulululu) + e
In some of the problems studied in this appendix this series for fis terminating

and derivatives of f higher than the first are independent of y:

1
5 fuu(nululu) = B(“s ll),

31 Fauli 1) = €, ),
The reader will note that some of the problems considered in the examples
and exercises are framed in terms of Hilbert spaces, as in the general theory.
The Hilbert space setting is convenient for purposes of rigorous demon-
stration and for the exposition of the principles of bifurcation in terms
resembling those which arise in R". It will be obvious that the computation
of bifurcation does not require Hilbert spaces. What is really required for the
formal computation of bifurcation is the Fredholm alternative. In all cases
the alternative shows the way to guarantee the solvability of the equations
arising in the construction of the bifurcating solution and defines the low-
dimensional projections which are relevant in this construction.
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ExamMPLEVLI (An integro-differential equation).* We consider the problem
of stability and bifurcation of the solution U = 0 of the following integro-
differential equation

U, x)
ot

2 k.
+ (1 — (e, x) — - J‘ {sin x sin y + b sin 2x sin 2y}
0

x {Ult, y) + U1, y)t dy = 0, (VL.120)

where U is a real function defined for ¢t > 0, 0 < x < n, continuous and
continuously differentiable once with respect to z. The parameter b is fixed
and satisfies 0 < b < 1; u is the bifurcation parameter.

Ul(t, x) is a continuous function of x on the interval 0 < x < 7 for each
fixed t > 0. We distinguish the function Uz, -) from the value of the function
U(t, x) at a certain x. So we define

we) < w010

where U(t, ') & C[0, ], the space of continuous functions of x [0, z]. In
this notation ¢ plays the role of a parameter and the value of the function at x
is [u(£)]1(x) = U(t, x). With this understanding we may rewrite (VL.120) as

def

= U, )

du _

it Sulu) + Clu, u,w),  u(t) e C[O, o, (VL121)

where u(¢) € C[0, n] means that [u(:)](x) is a continuous function on [0, =],
LAl (x) = —(1 — pU(, x)
+ E Jw[sin xsiny + bsin 2xsin 2y] x U(t, y) dy
T Jo

and
[C(u(t), u(e), u(tN](x) = % Jn[sin xsiny + bsin 2x sin 2y U, 3) dy.
0

We want to compute the steady solutions of (VL121) and to test their
stability. We first note that u = 0 is a solution of (VI.121). To study stability
of u = 0 we consider the spectral problem

av = f(u|v). (VI.122)

The values a(u) for which there are solutions v # 0 are said to be in the
spectrum of f,(u]-). More exactly, the spectrum may be defined as the set of
special values for which the problem

ov — flulv) =g (VL.123)

* For more details, see Pimbley {1969), cited at the end of Chapter L.
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has no unique solution (see §V1.8 on Laplace transforms for a fuller explana-
tion). In the present case we have

2 04
aV(x) + (1 — pVix) — - .[ (sin x sin y + b sin 2x sin 2y)V(y) dy = F(x).
0

(VI.124)
Hence F(-) of (V1.124) is the same as g of (V1.123).
To solve (V1.124) we decompose F and V' as
F(x) = Fysin x + F;sin2x + F3(x),
) ] (VI.125)
V(x) = V,sinx + V;sin2x + Vi(x),
where
J. Va(x) sin x dx = J‘ Va(x) sin 2x dx = 0. (V1.126)
0 0

Equation (VL.126) holds when we replace Vi(x) with F,(x). Combining
(VL.124) and (V1.125) we compute

(o + 1 — wVi(x) = Fs(x),
(¢ — W)V, = Fy, (VL127)
(6+1—p—bV,=F,.

It is clear that the spectrum of f,(u|-) is entirely of eigenvalues

GU(M) = M,
oW =p+b—1, (VL.128)
o) =p— L

We may obtain (VL.128) more directly by solving (VL122), which in the
present problem is given by (VL124) with F(x) = 0.

Since 0 < b < 1 the largest of the values (VI.128) is aq(w). It follows
that the solution U = 0 of (VL.120) is stable for u < 0 and is unstable for
y > 0. Moreover, the Fredholm alternative applies. Consider the problem

f0lo) = g.

We know that go(0) = 0 is an eigenvalue of f(0|-) and the decomposition
{V1.127) reduces to

— Va(x) = Fa(x),
0=F, (VL129)
(- DV, = F,.
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So if b # 1, the compatibility condition for the solvability of (VI.129) is
F, = 0; that is,

f F(x)sin x dx = (. (VI1.130),
0

If & = 1 then 6,4(0) = ¢,(0) = 0 is a double eigenvalue of JA0]-) and, in addi-
tion to (VI.130), it is necessary that

J. F(x)sin2xdx = 0. (VL130y,
0

Though the problem (VI.120) is not set in the context of Hilbert spaces
which we have used to frame the general theory of this chapter, the Fredholm
alternative works well and we can compute the bifurcated steady solutions
using expansions in powers of the amplitude ¢:

Ulx, e) = eU,(x) + e*Uy(x) + e2U,(x) + O(e*),
U= ey + &uy + O(e3).

where

2 . .
Uix) = - f {sin x sin y + bsin 2x sin 2y} U ,(v) dy,
0

2 T
= Ui(x)y + Uylx) = p f {sin x sin y + b sin 2x sin 21U () dy,
Q
2
k2 Ui(x) - 1 Uy(x) + Us(x) = -

x f {sinxsiny + bsin 2x sin 2y} (U5(y) + U3() dy.
0

We find that
Ulx, &) = esin x + O(e?),

u= -1 + 0@ (VI.131)
The bifurcating solution is one-sided and suberitical; hence it is unstable.

The bifurcation problem associated with (VI.120) has special features
which make possible the exact computation of all the bifurcated branches,
We first note that all of the steady solutions of (VE120) have U(x) = 0 at
x = 0and x = 7. We may therefore expand U(x) into a Fourier series of sines
and we find that all the Fourier coefficients except the first two must vanish.
Hence

U(x) = u, sin x + u; sin 2x
and (VI.120) reduces to
puy + 3ui + 3uud =0, (VL.132)
(#+ b — Duy + 3buiu, + 3bul = 0.
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The solutions of {V1.132) are:

u; = u; =0 (the null solution),

=+ —,/ —u, u, =0 (the solution (VL131)),
V3 (VL133)

=0, uy= +(2/\/3) ~(u+b— )b,

412 4lu—1
2 _ Ve _ 2 _ 7 _
ul—glib(l Uy + u 2], u3 9[ b + 1 2,u].

EXERCISE

VI.1. Show that a secondary bifurcating solution branches from (VI.133); provided
that b > 4 when u = (b — 1)/(2b — 1).

ExampLe V1.2 (Bifurcation of solutions of partial differential equations).
Consider the following partial differential equation:

ou U ou 2 ou ou
w5 52+z(,u—1)U uxa—-i»U Ua +4U(6x) =0,

(VL.134),

where U is a reaj-valued function defined for £t = 0, 0 < x < =, satisfying
the boundary conditions

U(t, 0) = i—g (t,m)y =0. (VIL.134),

In this example we choose H = L*(0, =), the space of square integrable
functions on (0, n), which is a Hilbert space with the scalar product

{u(e), ¥(1)y = J- ”U(z, xW (¢, x) dx,
0

where u(t) = U(r, ) is a vector with different components u(t)(x) for each
x. In what follows we suppress the variable .
Equations (V1.134) have the following form in H:

‘% = f,(u|u) + B(u, u) + C(u, u, u), (VL135)

where the operators f,(¢|-), B, and C are defined for u = U(:) in a subspace
of H consisting of U(.) satisfying the boundary conditions U(0) = dU(m)/0x
= (O and such that U, 8U/dx, and 82U/0x? are square integrable on (0, m); for
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example, {0U/dx, 0U/0x) < 0. To further specify the operators defining
(VL.135), we note that

f.(ul) =101 + #fuﬂ(ol-),

oI = "2 4 Ly,
[0 w)](x) = U( )+ x 6U(x)
[B(u, v)](x) = —U{x)V(x) + 2U(x) —— aV(x) +2V(x) aU(x)

[C(u, v, W)](JC) = A% Ox + a 5; + EX_ a .

To study the stability of the null solution of (V1.134) we first note that the
spectrum of f,(u|-) consists only of eigenvalues o satisfying

2 1 1 au
all = 6U+ U+,u( -U+x )

3{nggg WauaV 6W6U}

ox? Ox

(VL136)

U = gg () =0
Ox

for twice continuously differentiable functions U not identically zero. The
analytic computation of eigenvalues from (VL.136) is very difficult except
when u = 0; the eigenvalues of A, (of (V1.136) with u = 0) are
1 (2 1)?
dm=z—L?%l-mmEN
and the associated eigenvectors are proportional to sin ((2k + 1)/2)x.
Zero is an eigenvalue of f.(0]-) for k = 0 the other eigenvalues are negative.
The critical eigenvalue of f,(u]-) for 4 near to zero can be obtained by per-
turbations. We find that

o) = &0 + o),
¢'0) = <1018, 8%,

where {(x) and £*(x) are proportional because f,(0|-) = £X(0].)
Then, with

def

= [LO]*

. X
£(x) = sin 5
and

2
L*(x) = “sin &,
T
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we have
& =1
and
£y =%>0,

so that the null solution is stable for ¢ < 0 and unstable for g > 0.
Following exactly the methods used in §VI.2 to construct steady bifur-
cating solutions as a power series in the amplitude we write

u(e)| g |u,
)zl o

Combining (V1.137) and (VL135) we find, after identifying independent
powers of ¢, the equations (V1.9) for the Taylor coefficients. In the present
example these equations may be written as:

f0lu,) =0,
£,0(u;) + 2p1:f,,(0lu,) + 2B(ug, u) =0,
£,0]uy) + 3u,£,,(0(u;) + 6B(u,, uy)
+ 3p,£,(0|0;) + 6C(uy, uy;uy) =0,
£.0|u,) + ny,_f,.(0|u;) + terms of lower order = 0.

(VI1.138)

Equation (VL.138) implies that u, = § (see (VL.7) and (V1.11)). Hence
. X
Ul(X) = SN 5

We then compute the solvability condition for (V1.138),:

py {F01uy), §*> = —<(Buy, w,), &%)

= % J: {sinzg - 2sin%cos-§}sin§dx =0.
Since {f,,(0|8), £*> = &'(0) = § we have u = O and
f.0lu;) = —2B(, £), {u;, &*> = 0. (V1.139)
Equation (VI1.139) is equivalent to
U; +3U;=1—cosx — 2sinx,
U,(0) = Ui(m), (V1.140)

0= f U,(x) sin = dx.
o 2
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The unique solution of (V1.140) is (exercise for the reader)

32 . x 16 x 4 8
U,(x) I sin 5 T 3 cos 5 + 3 cos x + 3 sinx. (VL141)

In functional notation we write (VI1.141) as
u, = —2f71(0|BE, L))

with the understanding that u, is in the subspace orthogonal to {*.
To solve (V1.138); we must first compute

6<B(L, 1), §*> = 20 ~ 131:

3
6<C(c’ g, C)’ C*> = - 5'
Hence, the solvability condition for (V1.138), gives

3 176
3u, £(0) — 5+20- 3 =0 (V1.142)

that is, g, = 0.232.
In sum, the bifurcated solution may be represented as
X

U(x) = ¢sin 3

2
+ 5 Us() + 0, (VI143),

where U, is defined by (VI.141) and
#= 011682 + 0. (V1.143),

The bifurcated solution is supercritical; when {&| is small it exists only for
& > 0, and has two branches: ¢ > 0 and ¢ < 0. Both branches are stable.

ExampLE VL3 (In which the reader may check whether she (or he) is able to
go further!). Consider the following partial differential system:

au, 13*U, 8U,
A oxt T ax

— A,Ul - UIUvz 20,

% — A2 U,
ot ax?

U Ax 6U
14 _ 1 2 =0
FU: Uz(ax 2 6x) ’

where 0 < x < 1,1 > 0; satisfying the boundary conditions

U0, 5) = U1, e} =0, i=12 (VI.144),
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(For the evolution problem some initial data would be prescribed:
Uix,0),i=1,2)
(1) The space H here will be {L*(©, 1} = {(uy, up): uze L0, 1),

i = 1, 2) with the scalar product
1

Gt 1 > = [ 0+ ) d

Show that the eigenvalues of the linearized operator, which arises in the
study of the stability of the nult solution of (V1.144),, are in the form
%72 + A% and A — K2r¥/A for k=1,2,.... So, if 0 < A < m all the
eigenvalues are real and negative, while if 4 > msome eigenvalues are posi-
ti\crEi Hence the null solution is stable if A < =, unstable if A > 7. When
p= A — m =0, the eigenvalue zero is double, of index 1; the eigenvectors
may be chosen as:

R S RN ot

(2) Show that the adjoint £3(0[-) satisfies
]/TEU,I’ + TIUl Ul , 5Ul
. 0 = ’ h = £ Ui = »
L) |:an’2’ + U+ U, where =1 4, ox

and U, i=1, 2, satisfy the boundary conditions (VI.144),. Compute
eigenvectors of £(0]-), £}, £ such that (&, &¥> = 6;;. Show that we may
choose

2 sin x

0
e (_ %+ _17 - g) sinmx | s = [Tc sin nx]'

n?  2n

(3) We now enter the frame of §VI1.12 and look for a bifurcated steady
solution of the form

u(u) = pu, + ey, + O, p=4-m (V1.145),
where
u, = yo6; + 0obs. (V1.145),

Substituting (V1.145) into (V1.144), we obtain for ¥, 8, a system of two
nonlinear equations (see (V1.113)):

QYo + by + oy +2 B, + v,0% =0,
1Xo %o 140 Bixobo + v165 (V1.146)
az Yo + b2 + ay 1% + 2822000 + 7205 = 0.

Compute the coefficients in (VI.146) and show that a, =2, by =1— 7",
a; = 0, bz = 27':3: % = 0, %y = 0, ﬁl = 8/37[2 + 4/97:4; ﬁz =0,

_Af 2 8
L™ n)’ =3
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Show that the two conics (VL.146) intersect at the origin and at one and
only one other point. This other point corresponds to a bifurcated steady
solution,

(4) Now you should try to find the steady, bifurcated solutions in the
form

ue) = eu; + %52“2 + 0(33),
W= oy + 422 + O(Y),

where w; = {; + 6,5,. Show that all the solutions found in (3) can be
represented as series in ¢ but that there is possibly another solution not
found in (3) with 6, = 0 and y, = 0. Determine whether this possibility is
actually realized and send the answer to the authors, (If your work is correct
you will receive a real letter of congratulation from one of us.)

ExampLE V1.4 (Imperfection theory). In this example we treat a problem
using our analytic methods which Matkowsky and Reiss (1977 see notes to
Chapter III of this book) studied using their method of matched asymptotic
expansions,

The problem under consideration is given by

oU AU
= o T ALGW) + 8g(x, U, (VL147)

Ult,x) =0 atx=20,n
where 0 < x < m and 1 > 0. We first study bifurcation of steady solutions

with & = 0. Then we break bifurcation by perturbing it with § # 0,
To further specify (V1.147) we say that

GU)=Y a,U",  a, >0, (V1.148)

nx=1
is convergent when | U(z, x)| is small enough and that
g(x, 0) # 0. (V1.149)

The condition (VI.149) insures that U = 0 is not a solution of (VI.147)
when 6 # 0.
In this example, as in Example V1.2, H = L%(0, n) with the same scalar
product, and we may define the linearized “derivative” operator
2

U
f.lu[u) = ez T Aa U = 100w + uf,,(0|w),

where u = 4 — 1/a,, and whose domain is the space

{a ¥ U()e H: U©) = Un) =0,
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and U, dU/ox, 3*U/0x? are square integrable on (0, )}.* The eigenvalues of
f(u|-) are 6, = da;, — n*, n = 1,2, .... Hence the null solution (VL.147) is
stable for u < 0 and unstable for g > 0.

Turning next to the bifurcating solution (which exists only when 6 = Q)
we find that

&2 JE
u= el + T + 5 Us + 0(e®),

2
£
=gty + — ity + O,

2
with
£0(5) = 0,
2, 2
L01u,) + 20,8 + 2225 g,
1
6abu;  6as(?
£.(0{uy) + 3a,u,8 + 3agpu, + T + Ta + 6pya,8% =0,
1 1
£.(0(u,) + na p,_,§ + terms of lower order = 0.
We choose
. 2,
{(x) = sin x, £*(x) = —sin x,
so that
U]
! aldn’

If a, = 0, we obtain ¢, = 0 and u, = 0, and then
_das
2ai’
Then the bifurcated solution of (V1.147) with § = 0 is two-sided if ¢, # 0:
U(x) = esin x + 0(g?),

Hy =

1 8a (VL.150)
N=A—E;= _3n2§£+0(£2)’

or is one-sided if a; = O and a, # 0:

U(x) = esin x + 0(g?),
(VL151)
i 1 3(13
H=A~A— —= -
4, 4at
* This space is an algebra, that is, the product of two elements in this space is also in this space.
Terms like Cu, are products of two functions in this space.

2 + O().
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We now study the imperfect problem (4 # 0) using the notation of
§VI.10. We have

0= #(u,u,d)

= £,(0[u) + uf,,(0]u) + (u + i)[): a,u" + og(-, u)]. (VL152)

1 =2
Let us assume that
g(-, u) = g + g,u + O(u?), (VL.153)

where g, are known functions on [0, n]. The condition (VI.71) gives here
1 *
a4
that is

J go(x) sin x dx # 0. (V1.154)
1]

We seek now u(y, £) and & = A(y, &), where

def

ge= (u,L*>, (VL.155)
Formulas (V1.79), (V1.80) lead to
E%, 0% —aj

A,= —2a,——, A= s
“ g0, 5% b g, T

S0

6=— (3% aze® + a?£“)<go,§*>‘1 + O[1el(Jel + [11)*],

which describes the breaking of the bifurcation (VI.150) when a, # 0. In
the case when g, = 0, A,, = O and u,, = 0 and

@Oy 2aKelto

@S T g Oy e T g Ayt
2a}

Bue = 0 T

Hence, when a, = 0, the breaking of the bifurcation (VI.151) is given by

*®
6= [—a%sy - i:i e + a} m<<gglc’§*>> ue? + a?,uzs]
1+ B]

x {80, &*> 71 + O(lel(lel + |ul)®). (VL156)
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We note that & = 0 gives again the bifurcated solutions (VL.150), (VI.151).
If a, # 0, we have u(e, 6/¢) in the form

2
‘: ) . (VL157)

And ifa, = 0,a; # O then
_ {80, E*> 8 3ay & <g1§,2C"'> éa + (go,§*>2 (ﬁ)z

al & 4a} ai e a3 P
8 )3

£

+O(|e| +

ExaMPLE V1.5* (Bifurcation and stability of bifurcating solutions at a semi-
simple eigenvalue of multiplicity two by the method of power series). In this
problem, we analyze the bifurcation and stability of convection of a constant
property Darcy—Oberbeck—Boussinesq (DOB) fluid in a rectangular box,
heated from below. The lateral walls of the box are insulated, and the top and
bottom are conducting. After taking out the heat conduction, which is a linear
form in z, we find DOB equations in local form (see Joseph H (DDIII), 1976)
u—e RO = —-VP[u],

(VL.158)

80
— 4+ u'Vf — Rw = V20,
ot

with solutions

(0, 0)e B={u, 0|divu=0in Q, u-flpyqg =0,A-V8; = 0,6 =00nz =0, 1},
(VI.159)
where

Q isthebox {(x, .20 <x<L,0<y<L,0<z<I1};
S is the lateral wall as shown in Figure VL.3;

* This example is taken from a homework paper of Todd Hesla prepared by J. Shadid and
C. Verdier.

zh - LT -
e — = - — = i
A ittt AR
____________ .
(R ,5/// Ly
R Y S
£ . i
¥ ot
| Ll 2%
_______________ V' s 7
________________ v
p———— — = — — —— — §
x Lx

Figure V1.3 Fluid saturates a porous material filling a box of sides L, and L, and
height 1
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R is the square root of the Rayleigh number (the nondimensional
temperature diflerence across the layer);

u = (u, v, w) is the deviation of the fluid velocity from the base state; and

8 is the temperature deviation from the linear conduction profile.

For this problem, it has been shown {DDJII) that there is a poloidal
potential § such that
a»
u=V, (_x) — e, V23, (VL160)
0z
where V, = (8/0x, 8/3y), and # is unique up to an additive function of the form
f(x, y) + g(z) where V3 f = 0 in Q. Using the above-mentioned freedom in
the choice of , it can be shown that there exists exactly one poloidal potential
x satisfying (V1.160) which is the solution of
RO+ Viy =0,
iy o a0 (VL.161)
X
il gy _ g2 RV2y — y2
5+ VO Vo — = (Vi) + RViy = V7,
such that

Q=[£]EB={[;:llﬁ-vzf)zﬁ-vzx=00nS,x=8=0atz=O,1}.
(VL.162)

It can be seen that B is a vector space; and by introducing an inner product
¢, >, this space becomes an inner product space

{Qy, Qz>dgj.n Xz + 9152)519-

We rewrite (V1.161) and (V1.162) in matrix notation as

M%?+LQ+N(Q, Q=0 QeB, (VL.163)
where
0 0
M=lo 1"
vVZ R
L=LR)= RVZ —-Vv2|’
0
N(@Q,.Q.) = 2 30,7
U R | (9,0, - [vE, 0| 22
cz oz

2N(Qy, Q) = N(Q,, Q,) + N(Q,, Q).

(Note: N(Q,, Q) is a bilinear symmetric operator.)



VI.13 Examples of the Method of Projection 125

Equation (VE.163} is linearized by putting N = 0. The spectral problem for
the stability of Q = 0is obtained from the linearized equations by introducing

Q = xe”, (VL164)
where

oMx + Lx =0, xeB. (VI.165)

This set of coupled, constant coefficient, linear homogeneous partial dif-
ferential equations can be solved in the rectangular box Q by the method of
separation of variables. A typical “Fourier mode” is given by

[ Bl

m=0,12,.., n=012,..., k=1,23,..,

where

and 7, 6 are complex constants. The boundary conditions are satisfied by
(VIL.166) automatically. Substituting (VI.166) into the eigenvalue probiem
(VI.165), we obtain

RO — p*r?5 =0, (VL.167)
(o + f*7%)8 — Ra®n?§ = 0, (VL.168)
where
s _[m* 2 a2 2
OC:[L_,%+L_§:|’ B2 =" + k%]
This will have a nontrivial solution for §, # if and only if
R2 2
i
Equation {VI.169) shows that ¢ is real. It is also clear from (VI 169) that
a normal mode will grow, ¢ > 0, if
R2 - ﬁ;?:l _ £a2 +a§2]2n2-

— P, (VI.169)

R = (VL170)

The most dangerous mode has k = 1. We have stability in the linearized

theory when
ml n2 2
—+-—=+1
2[L§ ot ] at

R e (VL.171)
+}
[Li Ly
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Rﬂl

472 |-

|
|
1
1

Figure VI.4 Schematic diagram of discrete critical values R, associated with (VI.171)
when L, and L, are prescribed. The critical (m, n) mode is the dot with R, closest
to 4z

The critical value R, is the smallest possible positive value of (VI.171) over
the integers 0, 1, 2, etc. The values taken by the right-hand side of (VI.171) are
points on the curve
2 2
nz(ij—;i > 4n?
o
as (m, nj take on different values, as in Figure VI.4.

The analysis of steady solutions branching from a semi-simple eigenvalue
of multiplicity two will be formulated in the context of a specific domain Q.
Recali that

e Rio?
[o? + 1]

m:  n? 1 L.\?
ot =m+w=[m2(y) + nz}
2T | \L,

To find a ¢ of degeneracy two, we determine (m, n) such that « has the same
value for pairs (i, 1y ), (m,, #y). For simplicity, let L, = 2L and L, = L. Then

< i{(8) +]

Clearly, «* = 1/L? if and only if (m, n) are (2, 0) or (0, 1). To ensure that these
are the modes which bifurcate at criticality, we pick L = 1. Then at « = 1,
R = 4n?,

In the rectangular box of sides 2 and 1, we have eigenfunctions in the form

— [ + 1773,

where

|:‘g:| cos(kmx) cos(imy) sin(mnz),



V1.13 Examples of the Method of Projection 127

where
k=0,1,13% .. 1=0,12.73,..., m=1,273....

There are two eigenvectors at criticality, o = 1, (k,,m)=1(1,0,1),and (0, 1, 1).
After eliminating & = n§, and using (V1.167), we find that

X, = |: xf :|cos(nx) sin(nz),
X1

X, = |: i_z :lcos(n'y) sin{nz).
L74

2

We now undertake to compute the solutions which bifurcate and seck
steady solutions in power of an ampiitude

6 = (Q(x), go{X)>,
where
Qo(x) = &qp(x).
The normalization induced by the definition of ¢ has
<q0’ q0> =1, <qm q0> =0, n>1
We expand
Q(x, &) = eq(x, £) = eqo + 2°q; + £°qy, (VL172)
R} =Ry +eR, +&*R, + - (VI.173)
After inserting (V1.172) and (VI.173) into (V1.163), we find that
Lq + :Niq, q) =90, (VI.174)
L=Ly+eR,L+R,L+-,
N(g, 9) = M(go, 90) + e[N, (90, 9.) + N, (4,1, 90),

+...,
where

v? R,

L, = ,

° T |RVE —V?

- 0 1

L= . VI.175
v 0 (VLI75)

After identifying the coefficients of independent powers of &, we find
Loqo =0,
Loq, + RLgo + N(go, 40) =0, (VL176)
Lo, + R, Lq, + R,Lq0 + N(go, 4;) + N(q;. 90) = 0.
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The solvability conditions for equations (VI.176) are expressed in terms of
the adjoint problem

Log* = oq*.
To determine the null spaces of Ly and L, we introduce a notation for
d two-component vector depending on integers (k, |, m)

A 6:k, 1, m] & I:g] cos kmx cos Iny cos mnz.

We may then express L, and L] in the notation
Logo = [—F*7 + RO, 8 ~ Ra*J:k, |, m],
Liq} = [~ $°F — Re*0, R + B°F:k, 1, m],

where a? = k? + 17, 2 = «® + m”. From the solution of the linear problem
for ¢ = 0, it is apparent that a basis for the null space of L, is

¢=1[1,m1,0,1], ¢ =[1,m01,11
In addition, the corresponding adjoint null space has the following basis:
*=[{—=n1;1,0, 1], y*=[—m 1,0, 1, 1]
It follows from integrating that at criticality

2
@GN =0, Gy =Wy =1

We are now ready to state the Fredholm alternative for (V1.176). Given
r € B, the equation

Lyg=r (VL177)

is solvable for q € B if and only if
gy =0. {VI.178)
Now we apply (VLI.178), when r = [r, ry;k, I, m] and there are two null

vectors ¢* = ¢* and g* = ¥,

{r, ¢*> =

r, — 7y
2

5kléll)6ml=

Fy — Ny

2

If r has any component modes with (k, [, m) = (1, 0, 1) or (0, 1, 1), then (VL.177)
is solvable for q if and only if r, = nr;. Clearly, the general solution of
(VL177) is obtained adding an arbitrary element of the null space of L, to
the particular solution of (VI.177). Using the above definition of nuil space
basis and solvability conditions, the expansion coefficients are determined by
solving (VI1.176).

{ry*y = 0011 Om1 -
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Since q, is in the two-dimensional null space of Ly, we have
Qo = ao¢ + bo¥. (VL.179)

Using (V1.179), we may compute N(g,, go) and 1.q, in (VL.176),. Then, we
compute R, using (VL.178}

_ — (N@o. 90)- 957
1 <Lq, 90

where
N(go, 90} = [0, 1_:[-4?;0’ 0, 2] + [0, n*aghs. 1, 1,21,
and .
Lq, = [mag, —7*ae; 1,0, 1] + [mhy, —7hy; 0, 1, 1],
Therefore, it follows from the solvability condition that
R, =0
Since the system (VL.176), is now solvable, the solution can be obtained as

nao

q= [1,210,0,2] — 201, 3m;1,1,2] + a, ¢ + by

8(]+ n?)

The constants (dq, by), (¢;, b,) arc constrained by the normalization conditions
as

Z4bi=—-— VI
B+ b= (VL180)
a,ag + by by = 0. (VL.181)
Similarly, the equations at third-order are solvable if and only if
n? 1 3hZ
ag I:Rz - ?(ﬁ? + -l"z)il =0, (VL.182)
r? 1 3ak
RN R [ Y )} L1
b0|:R2 8(1+7r2+ 14):1 0 (VL183)

The solutions of (V1.180), (V1.182), and (183) are
I 11 11 v

I
2 1 1
0
o I +7 NI+ 147
2 1
bo 0 V1+al 1+rc TN+ w2

> n? 173
81+ 72) 8(1+ %) 112( 2) 120 + 1)
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We thus see that there are four branches of steady solutions which bifurcate
supercritically at Ry = 2n, corresponding to L, I, ITT, and 1V. The coefficients
of the power series expansion for each solution can be obtained without
further complication.

The stability of the branches near criticality is determined by the spectral
problem. We substitute

Q = eqix, &) + k(x, gle’”, (VI.184)
into (VL.163), using (V1.174) and linearizing to obtain

yMKk + Lk + eN(q, k) + eN(k, ) = 0, (VI.185)

where k € B.

Expanding y, k in a power series of ¢ as

y(e) = ey, + &%y, + - =0, {(VI.186)
k(x,e) =k, + ek, + 2%k, + - . (VL187)

we find that
Lok, =0, (V1.188)
71 Mk + Lok, + N(go, ko) + Niko, go) = 0, (VL189)

1Mk, + y, Mk, + Lok, + R, Lk, + N(‘lo, k,)
+ N, ko) + Nk, q;) + N(k,, qo). (VL.190)

Our problem requires that L, have a two-dimensional null space. Hence,
(VL.188) shows that
kg = cod + doifr. (VL191)

v, is determined by taking the inner product of (VL.189) with the adjoint
eigenvector gX.

<Mk, ¢§> = — 2{N(qq, ko), q¥>. (VL.192)

From (VI.192), it follows that y, = 0, and thus ¥, must be calculated to
determine the stability of the bifurcating solutions. The solution for k,is

k;=c ¢+ diyy — g(aocn + body)[1, 27,0, 0, 2]
- %(aodo + boco)[1, 3751, 1, 2].

After applying the Fredholm alternative, we find that (VL.190) is solvabie for
k; if and only if

7t 20 5n*
I}’Z — 2R, + gé(] laf, + m)] g + [‘Haobo:ldo =),

St n# 20
|:Iﬁ4a°b°:lc° + |:'y2 — 271'R2 + %(llbé + Tni):’do = (.
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A nontrivial solution of (¢,, d,) exists if and only if

a7/ 31 11 34?
9y = 2Ry — -~ + [279a3b3 .
2 = 27R, 56(1 + \/ Pdobo + (1 + TEZ) )

Therefore, using a,, by, and R, for cases I, IL, III, and IV, the stability of
the bifurcating solutions can be determined as

1,11 1L, IV
1
Gobo 0 Tva?
n* 1723
RZ 2 2
8(1 + n*) 112(1 + =)
o — 3% —17=*
T2 2 2
28(1 + =*) 28(1 + =)
Y=
2 i —* In*

2(1 + =%) 28(1 + %)

Recalling now that (g} = ¢%y, + O(¢*), we conclude that near criticality
branches IIT and IV have one positive {unstable) eigenvalue. Branches I and
II are stable, as shown in Figure VLS.

ExampLi V1.6 (Bifurcation and stability of bifurcating solutions at a semi-
simple eigenvalue of multiplicity two by the method of amplitude equations,

“Two-dimensional rolis”’

@ v

— stable

——— unst " ;
unstable Square cells

l@e)

Figure VL5 Bifurcation of convection in a box with aspect ratio two, at a double
cigenvalue together with an evaluation of stability
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using symmetry). We are now going to construct the bifurcating solution and
study the stability of bifurcating solutions, using amplitude equations. Group
theory is used to simplify the analysis. We are going to confine our attention
to the box shown in Figure V1.3 with sides

0<x <2, O<y<i, 0<z<1,
In this box, R, = 2r 1s the critical value and ¢ = O is a double eigenvalue with

eigenvectors

1 . 1 :
X, = l:n:l COS TTX SIN RZ, X; = l:ﬂ:l COS Ty sIn 7z. (VL193)

The system consisting of (VI.158), (V1.159) (or (VL.163)) and the boundary
conditions have three properties of symmetry. The system is unchanged if

(i) x is replaced by 2 — x. The symmetry operator S, is defined by

S:Qx 3, 2) = QR — x, 3, 2), (V1.194)

where Q is the system vector used in (VL 163);
(i) yis replaced by 1 — y, The symmetry operator S, is defined by

($,Q)(x, 3. 2) = Qx, 1 — y, z); (VL.195)

(i) z is replaced by 1 —z and Q by ~—Q. The symmetry operator S, is
defined by

(5:Q)(x, y.2) = —Qlx, 3,1 —z). (VL.196)

Our plan is to determine the Q satisfying (VI1.163) and the boundary
conditions in the nonlinear case as a bifurcation from criticality at the double
eigenvaiue zero, and to determine the stability of these bifurcating solutions.
We have already done this, but now we want to accomplish the same thing
using amplitudes A(f) and B(?) in the representation

Q = Axl + sz + ¢(#, A9 B}s (Vl‘lg—'")

where 4 = R — R, R, = 2. Equation (V1.197) is the form of a center manifold,
parametrized by A and B.} Clearly, we have a local representation of Q near
criticality when ¢ is known. We shall find ¢ in the form

b1, A, B) =Y. ¢ u? B, (VLI98)
where

$u00 = Po10 = P01 = 0. {V1.199)

It is possible to arrange that {¢, x¥)> = (¢, x*> = 0 (see remark following
(VL.178)). We need to compute the other coefficients ®,q and to determine

t This set, defined for sufficiently small values of | A} and [B| is here two-dimensional, invariant
under (VL.163) and locally attracting. A(r)and B(t) determine completely the behavior near Q = 0
of the solutions 4(1) as t — oo.
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the amplitude equations

dA
E? = f(“! A! B)’
(V1.200)
dB _ (4, A, B)
dlt - g ﬂ, il -

Now we shall use the symmetries to determine the form of the amplitude
equations. We note that ¢ in (VL197) is determined by a composition of
operations on the vector Ax, + Bx, and that changes in the sign of x; or x,
for given values of 4 and B are the same as changes in the sign of A and B for
fixed vectors x, and x,. The symmetries of the eigenfunctions are such that
Sx, =xfori=1,2,

zz : : x_‘xz (V1.201)
5%, = —xy,
Sty = —x, (V1.202)
The symmetry transformation (V1.201) implies that
fly, 4, B) = f(p, A, —B),
g(m A, —B)= —g(u, A, —B).
The transformation (V1.202) gives
flu, —4, —B)= —f(u, 4, B),
gly, —A, —B)= —g(u, — 4, —B).
Hence, f and g are of the form
f=Af(4 B,
g = B§(4%, B?),

(V1.203)

(V1.204)

and (V1.200) may be written as

dA4
T = gA + 2gA® + foAB* + -,

d
{V1.205)

dB , \

‘=B a B+ BB+

Since
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we find that
7= 2mu + O(p°),

is a double eigenvalue of L with respect to M.

We turn next to the computation of the coefficients of « and fin {V1.205).
For this we shall determine @54, 6,1, doo, at lowest order by identification
of the powers of 4 and B in (V1.163). After inserting

dQ _dA dB dA 0¢  dB ¢

T P TR P T R T 2
using (VI.197) and (VI.198) into (VI.163), using

(V1.206)

0
Nix;, x;3) = Ig¢ = N{x;, x,),
5 sin 2nz
0
NG x) = n* sin 2rz cos mx cos ny|’
we obtain
L.#g20 + N(x;, x,)} =0,
Leors + 2N(x,, x,) = 0, (VL.207)
L.#oos + Nix;, x,) =0,
where
v 2n
“ T |2nvE v
We find that
Po20 = Pozo Sin 2mz.
Since
—4n?g + 2nf = 0,
472 + 7t =0,
we have
_ ¥
16
Pooz = Bo20 = sin 27z. (VI.208)
8
Similarly,

P11 = oy SIN 272 COS TX COS WY
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is determined by
—6n23 + 2n8 = 0,
. (VI.209%)
— 4735 + 6120 + n* = 0.

Hence,
T

§in 27z COS TX COS Y.

Por1 = 3
14
Proceeding to higher orders, we find that identification of the coefficients
of A3, AB?, A%B, and B? in (V1.163) leads to
aoMx; + L oso + 2N(X;, Po20) = O,
(BoMx; + L.dgy; + 2N(X4, dooz) + 2N(X3, ¢011) = 0,
o VAX, «Po12 1> Pooz 2 Po11 (V1.210)
ayMx, + Lodoay + 2N(Xy, do11) + 2ZN(X;, o20) = 0,
BiMx; + L.dgos + 2N(X3, $oo2) = 0.
To show that 8, = a, and 8, = a,, it suffices that (V1.210} is invariant when
(Bo, B1, x, yyare changed to (xy, g, y, x)}. It is then sufficient to compute &, and

Bs. We first have
0

7 COS X Sin nz

b

Mx, =

and
0

AN(xy, doz0) = | , . )
) cos nx(sin z — sin 37z)

2N(x,, Pooz) + 2N(X2, @o11)
0

0

5 + el
——sin3nzcosnx

i . .
— cos mx(sin 7z — sin 3mz) 7

0

+| in®
——S(cos mx sin 3nz — cos mx cos 2wy sin xz) + —SE-c:os nx{1 + cos 2ny)(sin 7z — sin 3nz)

The coefficients of cos mx sin 7z in (V1.210) must vanish. Hence

5
3
g + o =0,
o7 g
5 5
n°  3n
_...0’

mhot gt 56 =
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and
(0. Bo) = —7*(3, 5%) = (B, o). (VL211)
The ratio of o /f, is as in Example VL5, but the scales are different; and
{VI.205) gives a truncated amplitude equation

dA nt Sm*

= A 43" 2

q T A g 28 1B

" o . (VI.212)
[4 s T

2= onuB -2 par — g,

ar TP T g 8

with explicit coeficients. We may determine the bifurcating solutions and their
stability from (VI.212). The bifurcating solutions are found at lowest order
from (VI.212) with time derivatives put to zero. There are three distinct
solutions where other distinct solutions are obtained by the use of symmetries.

I A* = 16u/n®, B = 0; A, and A_ are symmetric under §,.
Il B® = 16yu/n*, 4 = 0; B. and B_ are symmetric under S,.
HI. A% = B? = 112/177% let 4 and B be positive, then (— A4, — B) results
from the action of S,. (4, —B) and (— A, B) result from the action of
§,and §,S,, respectively.

The stability of these three solutions may be determined by linearization,
using (VI.212} again. We list below the eigenvalues of 7 for the disturbances
e’ of these solutions:

L y= —2n%A3/8 and ~3n*AZ/56;
H. asinI;
ITL. ¥, and y, such that 4

N + Y2 = "3'9

1 25
Yi¥z = ﬁsl:lﬁ - W] <0.

Solution 11T is unstable while T and II are stable each with its own basin of
attraction for initial conditions. In this manner we recover the results of
Example VI.5.

VI.14 Symmetry and Pitchfork Bifurcation

The existence of symmetry in nature often gives special properties which
manifest themselves in bifurcation. Pitchfork bifurcation arises from special
properties which make odd-order derivatives of u(g) vanish. This can happen
in translationally or rotationally invariant problems, as in Taylor instability
in fluid mechanics. Hopf bifurcation, leading to time-periodic solutions of
autonomous problems, corresponds to the use of symmetry, because the
translational invariance to time shifts in autonomous problems leads to the
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calculations of §VIL5. Some even simpler examples of pitchfork bilurcation
which are associated with invariance to sign changes are discussed below.

Consider system (VI.1)in R” but assume now that thercisa linear operator
g in R" such that

f(u, Su) = Sf(y, u), (V1.213)
where 82 = 1 and S # 1. In Example VL1, we have S defined by
SU=-U.

In Example V1.4, the system is symmetric if 6 = 0 with § defined by
SU(t, x) = Ult, m — x).

Other examples are in Example VL6 and Example VI8 at the end of this
section.

As a consequence of (V1.213), the linear operator f,(g, 0| -) commutes with
S. as well as all the coefficients in the Taylor expansion at u = 0; for example,

£, (01Sv{Sw) = S£,,(0]v|w).

Assume now that { and {* are eigenvectors belonging to the simple eigen-
value zero of the operator £,(01{) = 0 and adjoint operator, respectively. As a
consequence of symmetry

S{=z4, (V1.214)
and 87 is also an eigenvector belonging to zero; in Example V1.4 we have
S =1, (V1.215)
whereas in Example VI.1,
S{=-L (V1.216)

When (VI.215) holds, we may deduce that the bifurcating solution is sym-
metric invariant under S, because all the coefficients of the Taylor expansion

Figure VI.6 A mass m slides on a rotating hoop under the action of rotation, gravity,
and friction. The equilibrium position is (f, df/dt) = (0, 0)
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are invariant under S. More may be deduced when (VI.216) holds, because
for example,

{EalOluy[my), £*) = <1,,(0Su,|Su,), {*>
= <fuu(04“1|ul)! S*§*> = ﬁ<fuu(0‘“1iu1)s C*>a

since S*[* = —{* Hence, terms with second derivatives vanish and in the
same way all even-order derivatives vanish in projection. From this it follows
that

]

Haprr =0, p=0,12.;

that is, the bifurcation is a pitchfork, one-sided, supercritical or subcritical,
and symmetric (s} = u(—g).

ExaMpLE VI.7. A hoop of radius R rotates around a diameter collinear with
gravity g with a constant angular velocity w. A mass m slides on the hoop
moving under centripetal acceleration and retarded by friction proportional
to velocity with proportionality constant K, as in Figure VL6.
The equation of motion for the mass m
2
%g + K%? + %sinﬂ — w?sinficosf = 0.

Defining now u = (), d6/dt), we see that (0, 0) is an equilibrium which is
stable where w <, /¢/R and loses stability when o > \/QTR. The symmetry
Su = —u is obvious, so that even-order derivatives vanish in projection and
we get pitchfork bifurcation. In fact, the bifurcating solution, symmetric in 0,
is given by cos 8 = g/Rew?.

ExaMpLE VI.8. Consider the PDE problem

ou QU ou

L v

a ax? T Ox
U(t, 0) = Uz, ) = 0.

x {0, n), (VL.217)

Show that the symmetry S defined by
SU@R x)=--Ult,m — x)

commutes with (V1.217). Compute the pitchfork bifurcation at g = 1 (show
that the eigenvector { satisfies §{ = —7).



CHAPTER VII

Bifurcation of Periodic Solutions
from Steady Ones (Hopf Bifurcation)
in Two Dimensions

Up to now the only equilibrium solutions which have been introduced
are steady ones. Now we shall show how a time-periodic solution may arise
from bifurcation of a steady solution. In this case the symmetry of the forcing
data, which is steady, is broken by the time-periodic solution. The dynamical
system then has “a mind of its own”™ in the sense that the solution does not
follow the symmetry imposed by the given data.

Following the procedure alrecady adopted for steady solutions we start
with the lowest-dimensional problems in which the characteristic bifurcation
occurs and then show how this problem arises from higher-dimensional
ones by the method of projection.

VII.1 The Structure of the Two-Dimensional
Problem Governing Hopf Bifurcation

The problem of bifurcation of steady flow into time-periodic flow is basically
two-dimensional. It is not possible for a time-periodic solution to bifurcate
from a steady one in one dimension. In the two-dimensional autonomous
case we again consider the evolution problem (1V.2):

;= A (uy + Bip(pujuy + higher-order terms, (VILD)

where
. def dg;
T odr
and A; () are components of A(u).

139
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We suppose that the discriminant (4,, — 4,,)* + 44, A,, is negative
in a neighborhood of u = 0. Then the eigenvalues o(p) = E(p) + in(n) and
eigenvectors {(u) of A(u) are complex conjugates and

o(1)8 = AL (of; = Al (VIL2),
and
o(p)T* = ATEY, (VIL2),

where £*(u) is the adjoint eigenvector with eigenvalue #(x) in the scalar
product, {x, ¥ = x -¥. We may normalize so that

E e =C-0*= Ckfi“ =1,
GO =40 =
The eigenvalues a(u) = &(u) + in(u) arise in the spectral problem for
the stability of the solution u; = 0 of (VIL.1). We suppose that this loss of

stability occursat 4 = Oso that £(0) = 0. We will get bifurcation into periodic
solutions if

(VIL3)

o) = wo # 0 and %03 =£00) # 0 (VIL4)

(say £,(0) > 0).

VIL.2 Amplitude Equation for Hopf Bifurcation

To prove bifurcation into periodic solutions under conditions (VIL4),
we note that { and { are independent so that any real-valued two-dimensional
vector w = (uy, u,) may be represented as

u = a()l; + a0,
Substitute this into (VIL.1) and use (VIL2) to find

al; + al; = o(u)l; + awdl; + azijijCk
+ 2|al*B i i + e
+ O(lal?).

The orthogonality properties (VIL3) are now employed to reduce the
preceding into a single, complex-valued, amplitude equation

a= fp,a) = o(u)a + a(w)a® + 2B(ual? + Ww)a* + O(lal?) (VIL5)

where, for example, a(¢) = By ()L ;0¥ (For simplicity we shall suppress
cubic terms of /(u, a) in this chapter. These terms come into the bifurcating
solution at second order but do not introduce new features, In Chapter VIII
we retain the terms suppressed here.) The linearized stability of the solution
a =0 of (VIL5} is determined by 4 = o(u)a, a = constant x "™, At
criticality (4 = 0), @ = constant x €**°is 2n-periodic in s = wqt.
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VII.3 Series Solution

We shall show that a bifurcating time-periodic solution may be constructed
from the solution of the linearized problem at criticality. This bifurcating
solution is in the form

at) = b(s,e),  s=oet, o) =wy, u=pE), (VILE),
where ¢ is the amplitude of a defined by

1 i —is
e = 77 J‘O e *b(s, &) ds = [b]. (VIL6),

The solution (VIL6) of (VIL5) is unique to within an arbitrary translation
of the time origin. This means that under translation t — t + ¢ the solution
b(s + cexe), £) shifts its phase. This unique solution is analytic in & when
/ (i, @) is analytic in the variables (1, a, @) and it may be expressed as a series:

b(s, &) x b,(s)
afe) —ayl = ) &' | w, ] {(VILT)
1(e) n=t tn

(In certain degenerate cases bifurcation solutions exist only for 4 = 0 so that
i, = 0 for all n.)

VIL.4 Equations Governing the Taylor Coefficients

The perturbation problems which govern b,(s), w,, and g, can be obtained
by identifying the coefficient of ¢ which arise when (VIL7) is substituted
into the two equations: wbh = f(u, b} and & = [b]. We find that at order one

b, — iwgh, =0,  [h =1 by(s)=e"
At order two we find that [b,] = 0 and
wolby — iby] + wiby = py0,by + aobi + 2Bo|b 1 + yobi,
where g, = da(0)/du and, for example, , = «(0).

VIL.5 Solvability Conditions
(the Fredholm Alternative)

Equations of the form b(s) — ib(s) = f(s) = f(s + 2n) are solvable for
b(s) = b(s + 2n) if and only if the Fourier expansion of f(s) has no term
proportional to e*. Hence, because &, # 0 we obtain

Hy=w; =0 in (VIL.7)
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and
b ih, = (20€®* + 2B, + ype™?¥)
2 — iy = .

Wy
We find that
Zis _ _ - 2is
by(s) = (o€ 2o — (roe”"*/3))

iwg

The problem which governs at order three, with cubic terms in b neglected,*
is

be — i = 17®200 + 20,5y + 2a0b1by + 264(b,B; + Byby) + 270b,5,)
3 3 wq '
(VIL8)

To solve (VIL8) we must eliminate terms proportional to ¢* from the right-
hand side of (VIL8). This is done if [b,] = 0; that is, if

_ {4%ﬁ0 - 4|ﬂ0|2 — 208y — (2|'y0f2/3)}
ity )

iwy ~ o, = (VIL9)
The real part of (VIL.9) is solvable for y, provided that ¢, # 0. The imaginary
part of (VIL9) is always solvable for w,.

Proceeding to higher orders, it is easy to verify that all of the perturbation
problems are solvable when (VIL4) holds and, in fact, w(e) = w(—¢),
#(e) = p(—&) are even functions. It follows that periodic solutions which
bifurcate from steady solutions bifurcate to one or the other side of criticality
and never to both sides; periodic bifurcating solutions cannot undergo
two-sided or transcritical bifurcation (see Figures IL3 and VII.2).

VIL.6 Floquet Theory

Floquet theory is a linear theory of stability for solutions which depend
periodically on the time. The direct object of study of F loquet theory is a
linear differential equation with periodic coefficients, Such equations are
generated in the study of forced T-periodic solutions leading to a non-
autonomous linear equation with T-periodic coefficients, or in the study
of stability of periodic solutions which bifurcate from steady (autonomous)
problems. The theory of the stability of solutions which are more complicated
than periodic ones, say quasi-periodic ones, is much more difficult than
Floquet theory and does not admit elementary analysis.

* Such terms lead to triple products of #, and §, and, in any event, can be included without
difficulty.
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VIL6.1 Floquet Theory in R

We start by considering the stability of T-periodic solutions U(z) = Ui+ 7)
of V = F(V,t) = F(V,t + T)where F(0,t) = F(0,t + T} # Qis a prescribed
T-periodic forcing. Let V = U(f) + u. Then

= FU(t) + u, t) — FUQ@L Y
= fty=flut+T)
is in “local form,” (0,1} = 0,and f(u, t) admits a Taylor expansion: f(u,t) =

a,(Ou + ax(Du? + O(|u]®), where aft) = aft + T). The linearized evolution
problem is

(VIL10)

5= a,()v (VILI1)

and
oft) = (expf;al(s) ds)uo. (VIL12)
Let ¢(z) be the solution of (VIL11) for which £(0) = v, = 1,
P(r) = exp I;al(s) ds.

Since a,(t) = a,(t + T) we have

J.HTal(s) ds = J‘a‘(s) ds

T 0

t+ T T
ot + T) = (exp L a,(s) ds) (exp I a,(8) ds)
0

= ¢(OT), (VIL13)
$Q2T) = HTH(T),
$(nT) = (T).

and

The function
HT) =T (VIL14)

which satisfies the functional equation {VIL.13) is called a Floquet multiplier
and the numbers ¢ are called Floguet exponents. The exponents are not
uniquely determined by the multiplier:

2kni

1
6 =% log ¢(T) + 7 ke Z (VIL15)
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The exponents are eigenvalues of the differential equation (VIL17),
derived below. We define

() = plt)e .
Then
e+ Ty=¢(t + Te ™" = $(ne™™ = {() (VIL16)
is T-periodic and, since ¢ = a, {t)e,
ol = — { + a,(t). (VIL17)
So the general solution of (VIL11) may be written as
ut) = {{t)e”'vy,

where {(r) = {(t + T). If ¢ < 0 then {t) ~ O exponentially. If ¢ > 0 then
v(t) — o0. Equivalently if ¢(T) = exp [§ ay(s) ds < 1, then v(t) - 0,

Now we show that when ¢(T) < 1 or, equivalently, when ¢ < 0, then the
solution ¥ =0 of (VIL10) is conditionally stable. The proof is almost
identical to the one given for the autonomous problem in $I1.7. We first
rewrite (VIL10) as

u=a(thu + b(t, u), (VIL18)

which is equivalent to
) = 0o + [ 606~ bts, (o) ds
0

= {()e"u, + J‘te“"_s’C(I)C ~Y(s)b(s, u(s)) ds, {(VIL.19)
0

where ¢~' = 1/, {7 = 1/{. To see this equivalence it is easiest to dif-
ferentiate (VIL.19). We get

i = 5 GO + b, u0) + j & (e (5)b(s, u(s) ds,

%(i(t)e‘") = a,(t)e”'{(t),
and
U= b, u(t)) + a1(t){C(t)e‘"uo + J.'e"""’((r)ﬁ ~1(s)b(s, u(s)) dS}
0

= bt, u(t)) + a,(t)u.

The rest of the proof is identical to the one given in §I1.7. We find thatu = 0
Is exponentially stable when u, is sufficiently small and ¢ < 0.
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VIL6.2 Fioquet Theory in R? and R”

Some new features of Floquet theory must be introduced when u is a vector.
But no new features are introduced in generalizing Floquet theory from
R? to B” with n > 2. So we may work out the theory for

dv

i A(t) v, (VIL.20)
where v is a vector with n components and
A=A+ T) (VIL21)

is a T-periodic, n % n matrix, using n = 2 as an example.

The matrix A(f) may arise from the linearization of the equation V=
F(t, V) = F(t + T, V), F(t, 0) # 0, governing forced, T-periodic solutions
V = U(t) = U(t + T). The linearization of this nonlinear problem reduced
to “local form™ leads to:

V=U{) + v
aet (VIL22)
¥ = F(t, U(t) + v) — F(z, U} = £+, v),
where f(¢, 0) = O and f{t + T, v) = (¢, v). In this case
V= A(f) -V, (VIL23),
where
A =F (1, U@ -) = £t]-) (VIL23),

When n > 1, periodic solutions u(r) = u(t + T) may bifurcate* from
steady solutions V = V, of autonomous problems V = F(V), F(0) # 0.
Then the perturbation vin V = V4 + u(t) + v satisfies a T-periodic problem
reduced to local form:

v = F(V, + u(®) + v) — F(V, + u(®)) £ f(u@), v)
= f(u(t + T), ¥), (VIL24)
where f{u(r), 0) = 0. In this case
v = AV, (VIL25),
where
A(r) = F(V, +u(n)]) = f,(u()]-). (VIL25),

In our exposition of Floquet theory we do not usually need to maintain a
distinction between periodic matrices A(t) = A(t + T) which arise from
forced T-periodic problems and those which arise from autonomous problems

* We also may have periodic solutions of autonomous problems not coming from a previous
bifurcation.
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having a periodic solution. But the distinction is of substance because the
forced problem is invariant to t = T translations of the origin of time and
the autonomous problem is invariant to arbitrary translations of the origin of
time. A mathematical consequence of this distinction is that (s} is a T-
periodic solution of (V11.25) but U(t)isnot a T: -periodic solution of (VIL.23)
(for further discussion see the penultimate paragraph of this subsection).
Let v, and v, be linearly independent solutions of v = A(t)-vfor v(r) e B2
Then all solutions are linear combinations of these two solutions:
V(1) = av,(t) + bv,(t). (VIL.26)
Now ¥(t + T)solves v = A(t + T) v = A{t) - vif v(1) does. Hence
Vilt + T) = a,v,(1) + b,v,(0),

(VIL.2T7)
vy(t + T = a,v,(t) + by v, (1)

We have motivated the following definition of a fundamental solution
matrix in R":

Let v’ = e;-v; (i, j = 1,2, ..., n) be the jth component of the vector v;.
A fundamental solution matrix is any matrix whose columns are the com-
ponents of linearly independent solutions of ¥ = A(t)v, v e R”. Suppose

V(t) = [v,(0), v,(0), ..., v,(0)] (VIL28)
is a fundamental solution matrix. Then
%+H=M+HWMD=MMHﬂ.(Wﬂ)

So V(t + T) is a fundamental solution matrix if \7(:) is. It follo.\_ws that we
may express V(¢ + T) as linear combinations of the columns of V(r). Hence

Vit + T) = V(). C, (VIL30)

where C is a constant n x n matrix which depends in fact on ‘7(0) (and is of
course a functional of A{t)).
) da
C =
[b 1 bz]

In R? we have
and (VIL30) is the same as (VIL.27).

Let ®(t) be a fundamental solution matrix with initial value equal to the
unit matrix;

PO =1 (®;=24,) (VIL31)
Then @®(¢ + T) = @) - C so that when t = 0
™T)=_C. (VIL32)
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The monodromy matrix is the value at t = T of the fundamental solution
matrix V(r) satisfying (V11.29) when V(0) = L. So (VIL30) can be written as

@ + T) = OHW(T),
OQ2T) = ®X(T),
O(37) = ORTIV(T) = ®X(T),

and
O(nT) = (7). (VIL33)
The cigenvalues of ®(T) are the Floquet muitipliers. We find that
O(T) ¥ =T,
®¢T) Yy = AT, (VIL34)

O(T) ¥ = AT
Since ®(nT) = ®(T) we have A(T) = AnT) so that we may define a
Floquet exponent ¢ = & + i through the relation

MT)=expoT
and write the eigenvalue problem as
O(T) -y = TV, (VIL35)

If & is a Floquet exponent belonging to A(T), then a + (2nik/T), k€ Z,
is also a Floquet exponent belonging to AT).
Now we derive an eigenvalue problem for the exponent. First we define

v(t) = () . (VI1.36)
It then follows that
V0) = ¥
i+ T) =0+ T)- ¥ =00OWNT) ¥
= e TP®(t) - Y = &°T¥(1),
and
v = A(t)v.
Define
&) = e
so that { is T-periodic:
Gt+ Ty=e "t 4+ T)
= e~ "v(1) = &(1)

L= —al+ ve ™ = —af + AL, (VIL37),
Equations (VII. 37) define an eigenvalue problem for the Floquet exponents.

{(VIL37),

and
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We recall now that v(t) is a small disturbance of the forced T-periodic
solution U(r) or of the periodic bifurcating solution w(t). From the rep-
resentations (VI1.36) and (VII1.34) we find that

v(t + nT) = DTV = D)

and conclude that v(r) > 0 as t — oo {for ¢ between nT and (n 4 )T, | D)
is bounded above and below) provided that |A| = T < 1 for all Floguet
multipliers 4, = ¢*7 in the spectrum of ®(T). The equivalent statement
using exponents is that ¥(r) = ¢”(r), 8(t) =&(t + T) tendsto zeroatt —» o«
provided that £, = Re o, < O for all eigenvalues o, of (VIL37). The stability
implications of Floquet multipliers and exponents are represented graph-
ically in Figure VIL1.

g-plane
Im A ino + (2mi/T)

ol ,—‘ 1’}']
unstable "-plane ’

stable .

Re A ¢

I P
stable unstable

e ing

—ing — (2mi/T)

Figure VII.1 Floguet multipliers and Floquet exponents. Repeated poinis ify +
(2mik/T), k € Z, on the imaginary axis of the g-plane map into unique points of the
complex A-plane. The periodic solution loses stability when a complex-conjugate pair
of multipliers 4 escapes from the unit circle or a complex-conjugate pair of exponents
crosses the imaginary axis in the ¢-plane. An exponent which crosses the imaginary axis
at the origin (¢ = 0) corresponds to a multiplier which escapes from the unit circle at
4 = 1, Exponents crossing at g = xin/T correspond to a multiplier 4 = — . There
is a sense in which crossing of A = — 1 is "typical” (see Exercise X1.2)

Finally, we note again that in the autonomous case in which ut + ) =
u(t) satisfies @ = f(u), the function { = a satisfying ii = f,(u[a) is an eigen-
function of (VIL37) with eigenvalue ¢ = 0. The conditional stability of u(t)
(Coddington and Levinson, 1955, p. 323; cited in §IV.2) therefore gives
asymptotic stability not of a single solution but of a set of solutions ult + )
depending on the phase «. If small disturbances are attracted to this set, the
set of periodic solutions is said to have conditional, asymptotic orbital
stability,

Having finished this long digression on Floquet theory we are ready to
return to the problem of stability of the bifurcating pertodic solutions.
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VIL.7 Equations Governing the Stability of

the Periodic Solutions
We now search for the conditions under which the bifurcating periodic
solutions are stable. We consider a small disturbance z(t) of b(s, ). Setting
a(t) = b(s, €) + z(t) in (VIL5) we find the linearized equation (1) =
£(u(E), bls, €))z(t) where /, = 0¢/da and s = w(e)t. Then, using Floquet
theory, we set z(t) = e”y(s) where y(s) = y(s + 2m) and find that

yy(s) = —wi(s) + £l b)) = [HGs. ey1(s),  (VIL38)
where j(s) = dy(s)/ds.

VI1I1.8 The Factorization Theorem

The stability resuit we need may be stated as a factorization theorem. To
prove this thcorem we use the fact that vy = Qis always an eigenvalue of J with
eigenfunction b{s, &)

Jh=0 (VIL.39)
and the relation

w(e)b(s, ) = ule)(u(e), b(s, ) + Jb,, (VIL4D)
which arises from differentiating wb = Z(u, b) with respect to £ at any e.

Factorization Theorem. The eigenfunction y of (VIL38) and the Floquet
exponent y are given by the following formulas:

¥(s, &) = cle) {% bs, &) + b(s, €) + pedeq(s, 8)},

(e) = wle) + pLe)t(e), (VIL41)

(&) = ule)¥(e),

where c(¢) is an arbitrary constant and q(s, €) = q(s + 2, &), 1(¢) and Ae)
satisfy the equation

th + b, + (b)Y + e{yg — Jq} = 0 (VIL42)

and are smooth functions in a neighborhood of & = 0. Moreover (g) and
Ne)/e are even functions and such that

500y = —&(0),  #0) = —n,(0). (VIL43)

Remark. If 0,(0) # 0, ¢(¢) may be chosen so that
(s, £) = b(s, &) whene— 0.
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PROOF . Substitute the representations (VIL41) into (VIL.38) utilizing (VIL.39)
to eliminate Jb and (VI1.40) to eliminate Jb,. This leads to (VIL.42), which

may be solved by series
q(S, S) @ ql(s)
Heel= Y | % | (VIL44)

#(e) =0

where 9, = $,0) and %, = #(0). Using the fact that to the lowest order
b = &® y = O(¢?), and (from (VILS)) £, (1, b) = ¢,(0)e"c we find that

e“TiN0) + 3.0) + 0,1 — Jogo =0,  Jo & J(-,0).  (VIL4S)
Equation (VIL45) is solvable for gy(s) = go(s + 2m) if and only if the term
in the bracket vanishes; that is if (VIL.43) holds. The remaining properties
asserted in the theorem may be obtained by mathematical induction using
the power series (VI1.44) (see D. D. Joseph, Stability of Fluid Motions I,
(New York-Heidelberg—Berlin: Springer-Verlag, 1976), Chapter 2).

A

T

The linearized stability of the periodic solution for small values of &
may now be obtained from the spectral problem: u(s, £) = u(s + 2nx, ¢) is
stable when p(¢) < 0 (y(z) is real) and is unstable when 1(e) > 0 where

7e) = ue)de) = —pu )€U + O} (VIL46)

VIL9 Interpretation of the Stability Result

We have already assumed that the solution u = 0 of (VIL1} loses stability
strictly when p is increased past zero, ¢,(0) > 0. So the branches for which
#{e)e > 0 are stable and the ones for which p,(e)e < 0 are unstable. There
are two possibilities when ¢ is small: supercritical bifurcation (Figure
VI1.2(a)} or subcritical bifurcation (Figure VIL2(b)). It is not possible to have
transcritical periodic bifurcations as in Figure I1.3 because pu(e) = u( - 2).

ExampLe VIL1 (The factorization theorem and repeated branching of
periodic solutions.) Let F(u, V) and w(V) be analytic functions of x4 and V

such that w(0) = 1, F(g,0) = 0, F(0, ¥') # 0if V # 0, F, (4, 0) = Oifu=0,
Consider the following problem

0 -1
AR R R D

Every solution of (VII.47) satisfies

d
i (3 + 7)) = 202 + YHOF(, x2 + yP). (VI1.48)
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we) = pl(—¢)
time-periodic

-— -y
steady steady
(a)
1 g
fwfe,) #0ata turning ulg) = p(— &) is the bifurcation
point thent # O there, and the | ___——curve of the time-periodi_c‘
eigenfunction for solution u(s, £). The stability
stability is proportional exponent for u(s, &} is y{(£) and
to u(s, &,) T %) = pfe)Me) = W —¢)
hY = (e){90) + 0(333)}
cteady \ = u(e} =G + 067)
steady #
’l’
I’,

\
(b

Figure VIL2 (a) Supercritical (stable) Hopf bifurcation. (b) Subcritical (unstable) Hopf
bifurcation with a turning point. In (b), if zero loses stability strictly as g is increased
past zero, then £, > Oand zero is unstable for 4 > 0 (as shown): the double eigenvalue of
Jo splits into two simple eigenvalues of J(-, &): one eigenvalue is 0 and the other, y(g),
controls stability

Near x2 + y? = 0, F(g, x> + y*) ~ F.(4, 0)(x* + y?), so that x% + y* =0
is stable when g < 0 and is unstable when g > 0. A solution x4+ y? =¢?
with constant radius bifurcates at the point (g, £) = (0, 0). This solution
exists when p = u(e?) so long as

F(u,e®)=0 (VIL49)

and is given by

X X CcoS S
[y] = [Y] = S[Sin s] =X, s=o() (VIL50)
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Small disturbances § = x2 + y? — ¢2 of (VIL50) satisfy ¥ = 262 F, (su(s?), e ).
The solution x? + y* = 2 is stable (unstable) if F,(u(s?), e?) < 0 (> 0).
It is of interest to formulate a Floquet problem for the stability of the bi-
furcating solution (VI1.50),

We find that small disturbances &(1) = e"T(s), s = w(ed)t of (I11.50) are
governed by

=y + #(eI = 0, I'(s) = T'(s + 2n), (VIL51)

where
F©) = —ot) L 4 Je)
ds :

.
COs™ s Sin § Co$ §
J(e) = 262Fy(u, 63 | oS
SN 5 CO8 § sm- s

i oS § sin? s ¢ —1
 azayeny| SRS © )
( )[ —cos’s  —sinscos s +ale) 1 o

dw(e?)
de?

w'(s?) =

It is easy to verify that X = dX/ds is a solution of (VIL51) with y = 0. This
solution and X, = dX/ds are independent.
The problem

—T* + FAT* =0,  T*s) = (s + 2n), (VIL52)

where
d
— 2 *
FHE) = o)) o + I,

cos’s  sin s cos
sinscoss sin?s

i —cos? 0 1
() [sm 5 COs 5 cos? s ] N w(gz)[ ]

sin®s —sin 5 ¢os s -1 0

J¥e) = 26°F, (u, 52)[

is adjoint to (VIL51),
Since (VIL47) satisfies all the conditions for Hopf bifurcation, the
factorization applies. We may write the factorization as follows:

r, 2ew' [ X X, g1
RN o

We?) = 267 Fy (u(e?), £2) = —ep, F (u, £2). (VIL54)

and
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Inserting (VI1.53) and (VIL54) into (VIL51), we find that
—(9X, + F(u, e9)X) + 2e{—yq + F(e)g} = 0. (VIL55)

Equation (VIL55) may be simplified by putting X = eX,.

We next note that when & # 0 is small, y(e?) is a simple eigenvalue of
(VIL51). (This foilows from local analysis of Hopf bifurcation.) It follows
from Fredholm theory that (VIL55) is uniquely solvable on a supplementary
space of the null space of the operator —y + #(e) if and only if

irn
(5 + eF (1, £2)) J. (T*coss + ¥ sins)ds = 0. (VIL56)
0

Morcover, it is readily verified that
T COs §
= V .
[rg] Cl[sin s] (VIL5T)

? = —SF#(,LI(EZ), 62)

and all solutions of (VILS5) with y = 2¢2F).(y1, ¢%) are proportional to
I'andg, = g, =0.

Returning now to (VILS3) withy = —p.eF (1. &%) = — 2u'(e2)e* F (i, €%),
we have

if (VIL.54) holds. Hence

[Fl] _ —w(E [X ] + HF, [X]
| e/w? ¥ p?F2 Y] Jo? +u°F; Y.
_ @D [osins] | wE, oS S] (VILS8)
\/w,z + u"*f‘i COS § \/cu”' + p?Fi[sins
where y'F, = p(e})F (u(e?), €%).
It is of interest to consider the stability of (VIL.50) from a different point

of view involving the monodromy matrix and its eigenvalues, the Floquet
multipliers. A small disturbance ¢ of X satisfies

—b+ JEp =0, (VIL59)

There are two and only two independent solutions of (VIL59), ¢* and s
We choose ¢'? and ¢ so that the fundamental solution matrix

¢t ¢‘f’(t)]
¢ $P©

satisfies ®(0) = I, where I is the unit matrix. We find that

OO = — 7 (1 =€) [‘S‘“ S] - [“’S S]evf, s = o,
v

COS § sin §

o(t) = [
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where y satisfies (VII.54), and

—sin §
COS §

&) :[ ] = }1 X(s), s= wt

The Floquet multipliers 4 are the eigenvalues of the monodromy matrix
®(2n/w), that is, of the matrix

27 2n
¢(11)(Z;) ¢(12>(E) R 0

2n 2n\ | T ' ‘
(i = (2 = - _ pluyle
P (a)) oY (w) FV(I € y 1
Itfollowsthat A = land 4 = ¥*® are algebraically simple eigenvalues of the
monodromy matrix whenever e>™' # | and are algebraically double when-
ever y = 26°Fy, = 0. If y = 0 there are still two fundamental solutions of
(VIL59): ¢® and

$(e) = 2gzw'(sz)t[_5i“ s] + [COS s}

Cos § sin s

Of these, only ¢'*) is a proper 2n-periodic eigenvector. Since o2 = X/e,
F(X) = 0 when y = Oand #(X,/w,) = X. Hence when ¥ = 0, we have a two-
link Jordan chain in the frame of a theorem which will be stated and proved
at the end of §VIII 4.

The example exhibits the following properties.

—

. It undergoes Hopf bifurcation at ¢ = 0,

2. The factorization theorem hoids for all values of ¢ for which w and F
and its first derivatives are defined.

3. F(u, £%) and w(e?) are independent functions. In general, y'(e?) and w'(e?)
do not vanish simultaneously.

4. y = 0 is always an eigenvalue of F(e). It is geometrically simple and
algebraically double when w'(¢?) # 0 at points at which y(g) = 0. If
w'(¢*) = 0 where y(g) = 0, then 7 = 0 may be geometrically and alge-
braically double eigenvalues. (See §VIIL4.)

5. For suitably chosen functions F(u, V), we get secondary and repeated
bifurcation of T(g)-periodic solutions in ¢ (2m-pertodic solutions in s)
of constant radius & In fact, (VIL48) shows that the study of such bi-
furcation may be reduced to an equation in R' whose bifurcation prop-
erties were characterized completely in Chapter II.

6. Let X be the column vector with components (x, y). In the example, X(1) is

4 “rotating wave”; that is,

X(2) = R, X(0) (VIL60)

where Ry is the 2 x 2 matrix of rotations of the plane with cos @ on the
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diagonal and —sin 6 and sin 6 off-diagonal. The right-hand side of (VIL47)
has the property that f(z, RyX) = R, f(u, X) because

cosf —sind nd 0 -1

sin@  cosf| "0 {1 O
commute. More general results about rotating waves are given in Chapter
VIIL.




CHAPTER VIII

Bifurcation of Periodic Solutions
in the General Case

In this chapter we shall show that the analysis of bifurcation of periodic
solutions from steady ones in B2, which was discussed in Chapter VII, also
applies in R” and in infinite dimensions; say, for partial differential equations
and for functional differential equations, when the steady solution loses
stability at a simple, complex-valued eigenvalue. The mathematical analysis
is framed in terms of the autonomous evolution equation (VL.45) reduced to
local form and the analysis of the loss of stability of the solution u = 0
given in §VIL9 is valid for the present problem.

VIIL.1 Eigenprojections of the Spectral Problem

We write (VL45) as

= £, u) = f0uu) + N, u), (VIIL1)
where N(u, u) = O(juf?). A small disturbance v = €™ of u = 0 satisfies
66 = 1,(u]8). (VIIL2}
The adjoint problem is (see §VI.7)
of* = £} (u|T*) (VIIL3)

and, very often in applications, there are a countably infinite number of
eigenvalues {o,} which are arranged in a sequence corresponding to the size
of their real parts:

i2éz 28,20,

156
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clustering at — oo (see Fig. VL1). To each eigenvalue there corresponds, at
most, a finite number of eigenvectors £, and adjoint eigenvectors LF. As
indicated in Appendix IV.1, in the case of a semi-simple eigenvalue o, we
may choose the eigenvectors of f,(x|-} and f¥(¢|-) such that they form bi-
orthonormal families:

Cier o> = Ojp k=1, (VIIL4)

m, being the multiplicity of the eigenvalue o, (assumed to be semi-simple).
Taking now the scalar product of (VIIL1) with {¥ we obtain

4 ey = CAgulo E + NG, T
<o, £X(uIEN> + (N(u, w), 53
a,<u, G + (N(u, ), §F. (VIILS)
When u is small the linearized equations lead to
Qu(e), Gy = <u(0), Lyt e,

so that if £ (u) < 0, the projection {u(t), ¥ decays to zero. In fact, for the full
nonlinear problem there is a coupling between different projections, and if
some of these do not decay, this last result is no longer true. Nevertheless,
the important part of the evolution problem (VIIL1) is related to the part of
the spectrum of f,(¢}-) for which ELw) = 0.

In the problem of bifurcation studied in this chapter we shall assume that
the real part of two complex-conjugate simple eigenvalues o(u), @(u) changes
sign when p crosses 0 and the remainder of the spectrum stays on the left-
hand side of the complex plane. Suppose § and C* are the eigenvectors of
£,(;t|-), £¥(u|-) belonging to the eigenvalue o(u). Then, the equation governing
the evolution of the projection

I

d
i (u, ¥ = o(u)u, £ + (N(u, w), £*), {(VIIL6}
is complex-valued, that is, two-dimensional. So our problem is essentially
two-dimensional whenever
u— <u9 §*>C - <“s ‘g*>z

is an “extra little part,” as in §VL.5.

VIIL.2 Equations Governing the Projection and
the Complementary Projection
Now we shall delincate the sense in which the essentially two-dimensional

problem is strictly two-dimensional. We first decompose the bifurcating
solution u into a real-valued sum

w(t) = a()§ + a(@)l + wie), (VIILT)
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where

w0 =& =< -1 =0 (VIILS)
Substituting (VIIL7) into (VIIL1) we find, using (VIIL2), that

[ = oGO+ [d = G0RTE + 5 = fulw) + NGu w. (VIILO)

Projecting (VIIL9) with £* leads us to an evolution problem for the “little
part” w on a supplementary space of the space spanned by { and {:
dw o
2 = BB + (NGe, w) — (NG, ), 2958 — (N, w), E%3D). (VIILIO)

and to an evolution equation for the projected part

&~ ao(i)a = (N(y, u), {*. (VIIL11)

In deriving (VIH.11) we made use of the relations
dw d *
[ = — = 0
<dt,f;> 7 W e

CRLuIW), B = (w, E3(uIE*)) = odw, §*) = 0.

Equation (VIIL10) now follows easily from (VIIL.9) and (VIIIL.1 1).

In sum, (VIIL.11) governs the evolution of the projection of the solution u
into the eigensubspace belonging to the eigenvalue o 1(#) = a(p),and (VIIL.10)
governs the evolution of the part of the solution which is orthogonal to the
subspace spanned by {* and C*.

In bifurcation problems the complementary projection w plays a minor
role; it arises only as a response gencrated by nonlinear coupling to the
component of the solution spanned by £ and €. To see this we note that

(NQ, w), 8% = K(Fuleelufu) + O(jul3), ¢+,
FLu(ululw), §* = a(wa® + 28(w)|al + y(u)a*
+ 208 (1I8IW), £ + 2a( £, (1T w), £*>
+ Ll wiw), E%,
o) = $Eaulg)19), ¢+,
Bluy = 3<8.11E18). &,

and

(VIILi2)

and

W) = L. (TIT), £,
It follows that amplitude equation (VIIL.11) may be written as

d — ou)a = a(ua® + 28()|al® + y(w)a?
+ O(al® + la||w] + [w]?). (VIIL13)
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Returning now to (VIIL.10) with (VII.12) we find that after a long time
w = O(|a|?) and dramatize the two-dimensional structure of Hopf bifurca-
tion in the general case by comparing (VIIL.13) with the equation (VIL5)
which governs the stability of the strictly two-dimensional problem.

VIIL.3 The Series Solution Using the
Fredholm Alternative

It is possible to construct the time-periodic solution which bifurcates from
u = 0 at criticality (¢ = 0) as a power series in some amplitude &, as in
(VIL44). In this construction we would compute the coefficients of the series
as solutions of differential equations which arise by identification after
substituting the series into (VII1.10) and (VIIL11). The strategy in this case*
is to project (get (VIIL10) and (VIIL11)) and then expand. An alternative
strategy, expand and then project, given below, is cleaner and easier to
implement.

In the constructions, we evaluate quantities associated with the spectral
problems (VIIL.2) and (VIIL3) at 4 = 0

[E, H, é(nu')! 11(}1), a(,u), C(,U), g*(ﬂ)] - [Os 0; 0’ Wo, iw(}& cﬂv Cg]

We assume that =+ iw, are simple, isolated eigenvalues of f,(01-), i.e., i, Lo =
£,0018,), —iwoGo = £,(018,); and that all other eigenvalues of f,(0]+) have
negative real parts. It is also assumed that the loss of stability of w = 0 is
strict when £,(0) > 0. Noting next that the equation for the first derivative
with respect to g at g = 0 of (VIIL2),

GM(O)QO + iwﬂ C,u = fu(olg_u) + fuu(olc(})v

is solvable if and only if
a,(0) = <{£,.(0180), E&»- (VIIL14)

our assumption about the strict loss of stability implies that the real part of
(VIIL14) is positive.

We are going to construct the periodic solution which bifurcates from
u = 0 at criticality. There are two independent periodic solutions of the
linearized problem ¥ = £,(01¥) at criticality: v(t} = 2oL, and ¥(r). We write
wot = s and set Z(s) = "Gy = ¥(s/wg). Now we introduce a space of 2n-
periodic functions.t We call this space of 2z-periodic functions P,,. Then

* This is done for partial differential equations in the paper by G. Iooss, Existence et stabilité
de la solution périodique secondaire intervenant dans les problémes d’évolution du type Navier
Stokes. Arch. Rational Mech. Anal., 47, 301-32% (1972).

*+ Naturally, we are assuming that the functions in P, have the smoothness required in our
calculations. The precise degree of smoothness is specified in the references of this chapter and
will not be specified here.
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zand Zarein P,,. We also define a scalar product in e,

[a,b] & ! J‘ZK
1= o) {a(s), b(s)) ds

and an operator

Jy = —wodis + £(0]-) (VIIL15)
in whose null space are z = ", and z ¢ P,_
Joz = JyZ = 0. (VIIL16)
We define an adjoint operator J¥ acting on arbitrary fields a(s), b(s) € Pi..
[Joa, b] = [a, JFb] (VIIL17)
and find that
J§ = wod—‘i + A¥0), (VIIL18)
where A*(0) is defined in (V1.48) and
J¥z* = Jiz* = 0, (VIIL19)
where
* =Mk eP,, (VIIL20)

(€3 satisfies (VIIL.2)). We may rewrite {VIII.14) as
o,{0) = {£,.01C%)e™ %, £
= (£,.(0|2), z*)
= [f..0[z), z*]. (VIIL.21)

We are now ready to construct the periodic bifurcating solutions of
U = f(y, u) in a series of powers of the amplitude

& = [u z*]. (VIIL.22)

Different definitions of the amplitude are possible. For example, we can set
¢" = /[u] where £[u] is 2 homogeneous functional of degree n so that if
u = gv then 1 = #[v]. It is usually best to choose the amplitude suggested
by the application. For example, in nonlinear problems involving heat
transfer with boundary temperature prescribed it would be useful to define
&in terms of the integrated heat flux.

We seck 2n-periodic solutions of s = (&)t in the form

us, &) = u(s + 2m, ),  we), (e,
where
U(S, 0) = 0! ﬂ(O) = Oa O‘)(O) = Wy.
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and
w(e) %‘ = f(p(e), u). (VIIL.23)

We can find this solution by the method of power series using the Fredholm
alternative

u(s, £) _— u,(s)
ule) =3 S| (VIIL24)
wi(g) — wg =L w,

Insert (VIIL24) into (VIIL23) and (VIIL.22) to find the equations governing
the coefficients on the right of (VIIL24). To keep the definition (VIIL.22)
of ¢ we must have

u,z*] - 1=[u,2*]=0, n>2 (VIIL.25)
Equation (VIIL23) will be satisfied if
Jou; =0, (V1IL.26)

Jou; — 20, % + 2p,£,00lu,) + 1,,0lu, Juy) = 0, (VIIL27)

du du
Jou; — 3wy —d‘f + 3u,£,(0(u;) — 3w, 'a?l

+ 3u2fuu(0|“1) + 3u1fuup(0‘“1 |“1)
+ 31“'% fuuu(oiul) + 3ful.:(o‘“l |u2)

+ f.,(0l0; [0 |uy) = 0, (VIIL.28)
and, in general,

Jouw, — nw,_, % + ny, £, 0lu;)) + R, , =0. (VIIL.29)
where R, _, depends on terms of order lower than n — L.

Now we must solve equations (VII1.25-29). Our assumption that *iw,
are simple eigenvalues of f,(0|-) implies that zero is a semi-simple double
eigenvalue of Jo, with two linearly independent solutions z and Z. Any other
vector annihilated by J, say u,, can be expressed as a linear combination
of the independent solutions. Since u, is real

u, = cz + &7 = ce’fy + ée "L,.

Now the origin of 5 is indeterminate, so we may just as well use another
s~ s + o, where a can be selected so that ce” = ¢ is real-valued. Then,
without losing generality,

W =cz+I=z+1 (VIIL30)
where ¢ = 1 is implied by (VIIL.25),.
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Equations (VIIL27-29) are of the form
(Jou)(s) = g(s) = g(s + 2n). (VIIL31)

We want to find u(s) = u(s + 2m) solving (VIIL31). There are no solutions
we Py, of (VIIL31) unless g satisfies certain compatability conditions which
are usually framed as a Fredholm alternative:

Theorem. Equation (V1I1.31) is solvable forueP,, ifand only if
[gz*] = [g 2*] = 0. (VIIL32)
1f g is real-valued, one complex condition (two real conditions)

(82]=[27"]=0 (VIIL33)
suffices for solvability.

The “only if " part of the Fredholm alternative is easy to prove because
(8 2] = [Jou, z*] = [u, J4z*] = 0.

For the “if ” part we refer the reader to standard works which use elementary
results from functional analysis not considered in this book.*

We can select w,_, and u,_, so that the equations (VIII1.29) are solvable.
Using (VIIL30) and (VIIL33) we find that (VIIL.29) is solvable if

_w([j_: z*] + [?D + ity 1 ([£,(012), 2]

+ [£..0|2), z*]) + [R,_,,2*] = 0.

Now the equation ({, {*> = 1 implies [z, 2*] = 1. Furthermore, [z,7*] =
[2.2*] = [£,,(0/2), 2] = 0, for example, [1,,(02), 2*] = [e~ 24, (0|), T*]
= 0 after integration on s. So using the results just listed and (VII1.21) we
get one complex equation

n{wiwn—l +ﬂ'nvlau} + [Rn—Z:Z*]zos n22)
or two real equations
ng,_1&, + Re[R,_,,2%¥]1 =0 (VIIL34),
and
A~y + tyym,} + m[R,_,,2¢1 =0,  (VIIL34),
* For example, see D. D. Joseph and D. H. Sattinger, Bifurcating time-periodic solutions and
their stability, Arch. Rationat Mech. Anal., 45, 79-108 (1972); or D. . Sattinger, Topics in
Stability and Bifurcation Theory, Lecture Notes in Mathematics 309 (Berlin-Heidelberg-

New York: Springer-Verlag, 1972); or V. I. ludovich, Appearance of self-oscillations in a fluid
(in Russian), Prikl. Mat. Mekk., 35, 638-655 (1971).
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We can solve (VIIL34), foru,_, if €, # 0(£, > Oby virtue of the assumption
about strict loss of stability). Then (VIIL.34), can be solved for w,_,. When
n=2,

[R{)a z*] = [fuu(oluliul)s Z*} = 09
so that w, = gy = 0 and
Jou, = — 1,0z + Z|z + Z), [u;,z*] =0
When n = 3, we find that

3 —iw, + py0,} + 3[£0z + Z|uy), 2]
+ (£, 0|z +2lz+zlz+72),2]=0 (VIIL3))

We can show, by mathematical induction,* that
Ju2n+1;w2n+l=03 n=0;1:25"'!

so that u(g) and w(e) are even functions. The bifurcating solution which was
just constructed reduces to that computed in Chapter VII when the problem
is specialized to a two-dimensional one. In fact, the formulas giving p(e) and
w(e) are identical for the general problem and the two-dimensional one
through terms of second order in ¢.

Remark. 1t may happen that p,, = 0 for all n. In the case of the Van der Pol
equation
dx
dt - y’
dy

T = YT
ir x4+ uly — ¥

+i are simple eigenvalues and p is a factor of all the other terms. In this case,
u=0, X = £COSt, y = —gsint,

which means that we obtain an infinite set of periodic solutions for sz = 0. We shall say
that Hopf bifurcation is degenerate in such a case.

In fact, in the Van der Pol case, a change of scale allows us to enter into the standard
frame of nondegenerate Hopf bifurcations: Let us define (x’, y') = ﬁ (x, y) then

ax’
a0
dy’ . Py
o= X oy %
and the computation leads to
x' coswt|  &*| sin3ewt
= , — + O(e%),
¥ —sinewt|  32|3cos3wt =)

p=3e2 4+ 0%, w=1+0¢

* Joseph and Sattinger (1972), op. cit.
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VII1.4 Stability of the Hopf Bifurcation in
the General Case

We are interested in solution V(t} of the autonomous problem V= f(y, V).
Let V.=u(s, ) + v(1), s = w(elt, 4 = p(e), where ¥(¢) is a small disturbance
of u. Using wit = f(g(z), u) we find, after linearizing, that

V=10, 0+ v) — f(u, w) ~ £,(u(e), u(s, &)|v). (VIIL.36)
We may study (VIIL36) using the method of Floquet (see §VIT.6).

V(1) = e"{(s), 5= ),
where

Q(S) = ;(S + 27[)! QE PZR:
and

3+ 006) % = £, ul0),

It is useful to define an operator

)

) () = ~w(e) &t f.(u(e), uis, £)|),
Then
y8 = J¢, (VIIL37)
Differentiating w(e)i(s, £) = f(u(e), u(s, &) first with respect to s we get
J(ey = 0, (VIIL38)
and then with respect to ¢ we get
welt = g, £,(u(e), uls, )) + Ju,. {(VIIL39)

We are of course assuming that (VIIL.24) is convergent on an interval
1,(g) around ¢ = 0. Now we combine (VIIL37-39) to prove the following
result.

Factorization Theorem (General case). The following representations hold:

Y = nle)i(e),
E(s, &) = c(s){% u(s, &) + u(s, £} + eu, qfs, 8)}, (VIIL.40)

T = wye) + pleli(e),

where c(¢) is a normalizing factor and t(e) and 9 and q(-, €) € P, satisfy the
equation
f + u, + £,(u(e) u(-, £) + e{yqg — Iq} = 0
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and are smooth functions in I, & I, containing the point & = 0. Moreover,
#(c) and §(e)/e are even functions and such that

940) = —&[0), 20} = —n.(0). (VIIL41)

The interpretation of the stability results for the general case is exactly

the one given in §VILY for the strictly two-dimensional problem. In particular,

it shows that y(¢) changes sign at every point at which 2(e) # 0 and p,le)

changes sign. (In R', such points are called regular turning points; see

§I1.8). Let us designate such points as & = & and suppose c(g) to be chosen so
that c(g) ~ u,(z) as € — &. Then

w,(2)
He)

If wfeo) # 0, then (s, &) = w,(£0)W(s, £0)/$(eo) is an eigenfunction of
J(&,). The following theorem holds.*

&(s, &) ~ (s, &) + 10,05, &) + epl(eX(s, €). (VIIL42)

Theorem. Assume that at ey # 0, (¢g) = 0 and (&) # 0; then the eigenvalue
zero of J(eo) has at least the algebraic multiplicity 2; (s, £q) is a proper eigen-.
vector of J(ep),

J(eo)a(:, £0) = 0, (VII1.43)
and when @ (£) # 0 then u(s, &) is a generalized eigenvector of Jeg):
[z (-, £0)(s) = w,(&0)i(s, £o). (VIIL44)

Ifw(eg) = 0, then the geometric multiplicity of zero is at least two and & and u,
are both proper eigentectors of J(&g).

The proof of this theorem follows from the identity
‘ﬂ(s)uz = wel.l - nucf,u(.u(s)s l.l),

where we recall that p(g;) = 0.
Some of the results given in Example VIL1 of bifurcation and stability of
periodic solutions can be viewed as applications of the foregoing theorem.

VIIL5 Systems with Rotational Symmetry

A system which satisfies (VIIL1) is said to be rotationally symmetry (SO(2)
invariant} if there is a one-parameter family of linear operators R,, 0 € R,such

* See D. D. Joseph and D. A. Nield, Stability of bifurcating time-periodic and steady solutions
of arbitrary amplitude. Arch. Rational Mech. Anal, 49, 321 (1973). Also see D. D. Joseph,
Factorization theorems, stability and repeated bifurcation. Arch. Rational Mech. Anal, 99-118
(1977).
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that
R,=R,, =1 (periodicity), (VIIL45)
Ry 15, = R, "Ry, (exponential property), (VIIL.46)
which commutes with the system

{1, Ryu) = Ryf(u, u). (VIIL47)
A simple example of a system with rotational symmetry was discussed under
property 6 of Example VIL1. Properties (VIILA45) and (VII1.46) are satisfied,

for example, by R, = ™, I € Z, or by the orthogonal matrix
cosf) —sinf
sin ¢ cosf

Hopf bifurcation of rotationally symmetric problems leads to rotating
waves

u(wt, &) = Rou(0, ¢), (VIIL48)

where 6 = wt/l. To explain and Justify (VIIL48), we enter the frame of Hopf
bifurcation in §VIIL3 and observe that

Ryl = ™, (VILL49}

for some integer / € Z. Equation (VIIL.49) follows from the fact that Ry, is
also an eigenfunction of f,(0|-) with stmple eigenvalues +iw, and the prop-
erties (VIIL45) and (VIIL.46).

Property (VII1.49) extends to the solution which bifurcates in the following
precise sense (see Tooss [1984]):

(i) =0, then
Rou(wt, &) = uiwt, &); (VIIL50)
(i) I+ Q, then the linear relation
Rge"“"Co — eim(tﬂﬂ,'w)co, (VIH.51)

has the following nonlinear extension:
Rpu(wi, €) = u(wt + 16, ¢). (VIIL52)

Equation (VIII1.48) follows from (VIIL52). We have a rotating wave with !
waves in one turn.

We may always reduce the study of bifurcation of the rotating waves to a
steady problem in a coordinate system which rotates with the wave, The same
remark applies to wave systems which are invariant to translations and plane
waves. This reduction Jeads to a big simplification of the study of stability
because the study of wave solutions in a frame in which they are steady does
not require Floquet theory.

We now explore a mathematics setting for the remarks just stated. Let

def d

L* R, (VIIL53)
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be a linear operator called the generator of

R, = ¢ (VIIL54)
The eigenvalue problem

LS, = ill, (VIIL55)
now follows (VIIL.49), using (VIIL53) and the identity

d
;E(an“o) = f(.us Rm“o)

leads to
QLRQJ“O = Rﬂlf(.us uO)!
which is equivalent to a steady bifurcation problem in R”
f(y, uy) — QLuy = 0. {(VIIL56)

The linear operator
Wy
£,0]) - T L (VIIL57)

has a double semi-simple eigenvalue 0 with eigenvectors {, and Lo-

EXERCISE
Construct the bifurcating time-periodic (Hopf) solution, given in §VIIL.3 by (VIIL57),

and methods appropriate for the calculation of steady bifurcating solutions.

ExampLE VIIL1 (Periodic solutions of partial differential equations.) Let us
consider the following partial differential system:
U, o*U,

& T ol + (n? + p)U, — Uy)

1 [/eU,\* U, \*
_ 2 . H¥Ea v
ofereu= 2 [() - () T

oU U (VIIL.58),
2 =" 22 4 () (U,y + Uy)

ot Ox?
1 [feU,\? U, \?
_ 2 2, (Xt Z~2
oot vt 5[5+ () 1

where U, i = 1, 2 are real functions defined for ¢ > 0, 0 < x < 1, satisfying
the boundary conditions

U, )y =Ug. =0, i=1,2 (VITL.58),
In this example (as in Example VIL2) we choose H = [L3*(0, )} =
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{(uy, u2):u; € L2(0, 1)}, with the scalar product
1
@ = [ WA + V0Phwld, vy
0

where we use the notation u = (U, (-), U,(0 v = (M), V3( ). The system
(VIIL.58) may be written in H as:

W 1w = L) + N, (VIIL60)

where the linear operator f.(u]-) and the nonlinear operator N(u, +) are
defined in the subspace of H which consists of u = (U4(-), Ux(-)}y such that
oU() 22U

7 A are in L*(0, 1),

Ui(’)&

and U0y = U (1) = 0.

The evolution equation (VIIL60) in H is a Hilbert space realization of
(VIIL.58) provided that

fu(lui') = fu(Or) + J“fuu(ol)v
N(, ) = C(u, w u) = I, (Ofu(ulu),

82U1(X)

a2
L0l = ( ax? + 72U (x) — U,(x)), OU,x)

dx?

+ﬂw®+vmﬂ,
L0101 = (U4(x) ~ U, Ur) + U,
[Clu, u, W)](x) = “{Uf(x) + U0 + lz_ [(5U1(X))2 N (6U2(x))2]}
n 0x Ix

x (U1(x), Us(x)).

The spectrum of the operator f,(u|-) may be computed exactly: it is the
set of eigenvalues {4 = —k?z> + (1 % i)(z? + u) where k is any positive
integer. The eigenvector belonging to A7 is

E9(x) = sin (kmx)}(i, 1).

The eigenvalue with the largest real part is the one with k = 1. When g=0
this largest real part vanishes: +in? are simple eigenvalues of £(0|-);

Eo(x) = sin (rx){i, 1) {VIIL61)
is the eigenvector for in” and Lo(x) is the eigenvector for —in?. So we have
2

Wy = W, g,=1+i (VII1.62)

and the loss of stability is strict, £, =1>0
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The adjoint of f,(i|) with respect to the scalar product in H is £ (ul-) &f

[f(u]-)]*. It is easily verified that

2
w100 = (To 4 @ 4 WU+ U

02U2(x)
ox?

The reader should verify that {; = {§ where

froIg = —in’tg, &, 85> =1,

+ (7% + wU,(x) — U,(x)]). (VIIL63)

and
{018, 8> =1+ i=0,

To obtain the bifurcated periodic solution we follow the method of power
series used in the text. In the present case the Fredholm conditions of solva-
bility (VII1.35) becomes

Uz 0, — iwy = —6{C(Lo. Lo, go), §3> = 8.
Hence,
fy = ;=8
and
[u(s, £)](x) = 2& sin 7x {—sin s, cos 5) + 0(e%),

p(e) = 4e* + 0(e%), (VIIL64)

o(e) = n? + 4e? + 0%,
give the bifurcated periodic solution. In fact the higher-order terms of (V111.64)

vanish identically and the remaining explicit part is an exact solution of
(VIIT.58).

ExampLt VIIL2 (Bifurcation for functional differential equations.) Let us
consider the following functional differential equation

d[c;ft) =T (% - “)U(f - DI+ U, (VIIL6S)

called the Hutchinson-Wright equation. (A systematic study of this equation
may be found in J. K. Hale, Functional Differential Equations (New York-
Heidelberg-Berlin: Springer-Verlag, 1977.) U(¢) is an unknown real function
depending on the values of U(s) for t — 1 < s < t. So we may regard U(s)
as an ¢lement of the space

C = {continuous functions on [ —1, 0]}
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and the operators on this space corresponding to (VIIL.65) may be defined as

_ jd(B)/ab, if -1<8<0, VIIL66
[L.0:1))6) = {‘—(ﬂﬂ e -0 = 0. (VIILG6)
n 0, ir-1<8<o,
(NG, $))0) = (5 + u) x {_ M1}, I8 0 (VIIL67)
Equation (VIIL.65) may be written as
du/dt = f{u|u) + N(y, u), (VII1.68)

where
def

[u(©)}6) = Ut + 6).
This definition implies that (VII1.68) may be written as

au(t + 6) {dU(t + 6)/d0, if —1 <6 <0,
dt =2 + WU~ DA + U), if8=0,

The spectrum of the linear operator f.(u(-) is composed uniquely with eigen-
values ¢ of finite muitiplicities, satisfying

o+ (g + ,u)e"’ -0, (VIIL69)

For i = 0, we obtain two eigenvalues +iw,, wg = m/2, the other eigen-
values being of negative real part. Differentiating (VIIL.69) with respect to u
at 4 = 0, we find that

T

) T 2y -1
6,(0) = ( i+ -2-)(1 + T) , (VIILT0)

so the Hopf condition £, > 0 is satisfied.
To study bifurcation we need to define an adjoint operator with respect
to a duality product (see J. K. Hale, op. cit.)

@. ¥ = $OFO) - f BOUE + Dde  (VIILTY)

between all elements ¢ € C and all elements
¥ € C* = {continuous functions on [0, 113.
It then follows that the adjoint of £,(y| ) with respect to (VIIL.71) is given by

—dy(8)/ab, if0<f <,

L3 ¥)1(0) = {_(n/z + w(l), if8 =0

(VIIL.72)
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We therefore have dual eigenvalue problems
£01%) = i5 Co,

£018) = — i385,
G T =1

which are satisfied by
Lol0) = exp iZo
2
and

L0 = exp tﬁe

( /2)

The reader may wish to verify that

<£,[018). 85> = 6,(0).

i
(1 + i(m2)

We now use the Fredholm alternative to compute the series (VIIL 24)
giving the time-periodic solution which bifurcates from the null solution of
(VII1.32). We find that g, = 0, =0,

[u,(s)1(0) = Go(B)e™ + Eo(B)e ™™,
fuu(olc()'go) =0
d z 2is - 2
Wy di = f(0]u,) + 21,0150 180) + ™ ¥ 01501 o)s
[“z(S)](G) §2(Be** + Ly(B)e 2

ao =l —1<0<0

Hence, i 42+
_ — 1) ine 2is Do e —2is
[u,()1(&) = —an ¢ +— e e

and (VIIR35) may be written as
2—1i .
MG, — in = _4<fuu(0|z0| 57 emﬂ’ €3>
_2Br-2+10(6 + )]

Su(l + (njd)y

4G3n - 2)
M= T

>0,

8

@2 = T




172 VIII Bifurcation of Periodic Solutions in the General Case

Coliecting our results we find that the principal part of the bifurcating solution
is given by

n=ct s 06
w =g+ 82%+ O(*),

and

U(t) = [w(wtyI(0) = 2¢ cos wt + 4e2 Re {2—511—1 92“‘”} + O(e%).

ExampLe VIIL3 (RBifurcation for equations which have not been reduced to
local form).

¥+ wix = f(x, x, p), {VIIL.73)

. def - . ..
where X = dx/dt and J1s as smooth as we wish in its arguments when the
arguments are small. Moreover we assume that

£(0,0,0) = £(0,0,0) = £,(0,0,0) = 0, (VIIL74)
and utilize the decomposition
S, gy = 3 pPufudf,. .. (VIIL75)
P.g1. 42

where fo00 = fo10 = foo; = 0, and the decomposition is carried out to the
order allowed by the smoothness of f. Equation (VIIIL.73) may be written in
R? in the following way. We define

o[ [er

2 = AU + F, U) (VIIL76)

Then

with

0 1 O
Ao = [—wé 0] and Fu U) = [f(ul,uz.#)]'

Here U = 0 is not in general a steady solution of (VIIL.76), except for p = 0.
But the existence of a steady solution with u # 0 can be guaranteed by the
implicit function theorem in R? and it can be computed by identification using
the series representations for

Up) = ¥ U, (VIIL77)

p1
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and

F(i, Uy = ¥ wF,(U,...,U), Foo=Fo =0, (VIILTY)
r.q

where F,, is g-linear in U, and symmetric. We obtain
AOUl + F10 = 0,
AgU, + Fyg + Fyy(Uy) + Fou(Up, U = 6,

0
Fro = [fpm]’

0
Fy,;(U, V) = [ )],

Sozottity + Ho11(uiv2 + u20)) + foozUa¥2

0
Fully= [fuolh + f1o1u2]‘

_foo/w%
b= 2

where

Hence

and so on.

Since the eigenvalues of A, are +iw,, we need to consider the possibility
of Hopf bifurcation into periodic solutions. In the theoretical part of this
chapter we first reduced the problem to local form (see §1.3) and applied the
assumption that the loss of stability of the solution u = 0, that is, of U, was
strict. Here, U = 0 is not a solution for all u near zero, and we need to re-
formulate the condition that U(u) loses stability strictly as p is increased past
zero. First we linearize

A + Fulp, UG)|-) = Ag + ulF1,() + 2Fox(Uy, )] + O™, (VIILTY)

The eigenvectors belonging to the eigenvalues +iw, are §o = (1, img) and §,.
In the same way the adjoint eigenvectors are

1 i -
w |- - *
Co (2 + 20)0) and gO

The eigenvalue o{y) which perturbs the eigenvalues iw, satisfies (VIIL14);
hence,

Uu(o) = {F1(&) + 2F2(Uy, L), S8

= - Z“f)“o‘[fuo + fro1itwe + 2f020(m) + ifou(fmo)]- (VIIL80)

pl
Wo Wy
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The Hopf condition is

2Re6,(0) = f1o1 + f‘&?’_" > 0. (VIIL81)
Uy
We now assume that (VIIL.81)} is realized and
= pe",
n21
w=wy+ Y o, (VIIL82)
nx1

U= Z Y, &, V.(s) = V(s + 2n).

nx1

Identifying independent powers of ¢ in the equation

“)% ~ AU = F(u, U),
we find that
JoVy = uFyy. (VIIL83)
Hence
Vi =Goe* +8pe ™ + p U,
JoV; + o % = 12 Fio + Foo Vi, V) + 1, F, (V) + piF,,,
(VIIL84)
and, using (VIIL.80),
v, = u,6,(0).
We find that
w, =y =0,
Vi=Coe” + Lye™, (VIIL8S)

V; =Jg 'FolVy, Vi) + pa Uy

where J5 ' is the inverse of J,, on the subspace orthogonal to Cre™ Che™ ™.
We next determine w, and u, by applying (VI11.80) to the equation

dv
JoV3 + w, _c# = 3F 0 + 2F0,(V, V) + 1, F, (V)

+ Fos(V,, V, V) (VII1.86)

Hence V, and V; are functions of p,. Iterating this process, we obtain the
series (VIIL.82) giving the Hopf bifurcation, where as usual # and w are even
ine
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NoTES

Several problems of Hopf bifurcation in special circumstances have been studied and are
well understood (Figure VIIL1):

(i) Four simple eigenvalues, two conjugate pairs, cross the imaginary axis simul-
taneously. This problem is treated by G. Iooss, Direct bifurcation of a steady solution
of the Navier-Stokes equations into an invariant torus, in Turbulence and Navier Stokes
Equations, Lecture Notes in Mathematics, No. 565 (New York-Heidelberg-Berlin:
Springer-Verlag, 1975}, pp. 65-84.

(i) Two simple conjugate eigenvalues cross at criticality, but not strictly; for
example, £(0) = &(0) = £(0) = 0, £”(0) # 0. This problem is treated by H. Kielhdfer,
Generalized Hopf bifurcation in Hilbert space, Marh. Methods in Applied Sciences,
(forthcoming).

(i) Two multiple eigenvalues cross at criticality: H. Kielhdfer, Hopf bifurcation
at multiple eigenvalues, Arch. Ratinnal Mech. Anal., 69, 53-83 (1979).

It is more general and useful for applications to treat problems in which different
eigenvalues cross the imaginary axis nearly simuitaneously. In such studies it is useful
to introduce two perturbation parameters as in the work of W. F. Langford, Periodic
and steady-state mode interactions lead to tori, STAM J. Appl. Math. 37, 22-48 (1979).
When additional symmetries are present see the results of }. Keener, Secondary bifurca-
tion in nonlinear diffusion reaction equations. Stud. Appl. Math. 55, 187-211 (1976);
P. Holmes, Unfolding a degenerate nonlinear oscillator: a codimension two bifurcation,
New York Academy of Sciences Proceedings Dec. 1979; and G. Tooss and W. Langford,

) (in) i)

" )
S
~T .
0 ¢ 0 ¢
\___, =
/"
(iv) {v)

Figure VIII.1 Hopf bifurcation in special cases
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Conjectures on the routes to turbulence via bifurcations, New York Academy of Sciences
Proceedings Dec. 1979. The authors just named treat the case (iv) in which a pair of
conjugate ¢igenvalues and a real eigenvalue, all simple, cross the imaginary axis nearly
simultaneously; and the case (v} in which two conjugate pairs cross the imaginary axis
nearly simultaneously which is also of interest.

Another interesting special class of problems is invariant under the action ofa group
and lead to wave-like solutions. In problems invariant to rotations about the axis, the
bifurcating solution depends on @ and t only in the combination 8 — wr, In Probiems
invariant to translations through periods 2r/a in x, the solution depends on x and ¢
through ax — cot, where € = w/a is the wave speed (see §X1.19).



CHAPTER IX

Subharmonic Bifurcation of
Forced T-Periodic Solutions

In this chapter, and in Chapter X, we consider the bifurcation of forced
T-periodic solutions. In thinking about the origin and structure of such
problems it would benefit the reader to reread the explanations given in
§1.2 and §1.3. Following cur usual procedure we do the theory in R, n > 2,
and show how the analysis reduces to R* or R? using projections associated
with the Fredholm alternative. There is a sense in which the problem in R®
with n finite is actually infinite-dimensional. Unlike steady problems which
involve only constant vectors, we must work with vector-valued functions
which depend periodically on time and hence take on infinitely many
distinct values. So, in this chapter the computational simplifications which
would result from considering R? rather than R" are not great. In R" we
use the same neotation we would use for an evolution equation in a Banach
space. So our results hold equally in R" and, say, for evolution problems
governed by partial differential equations, like the Navier—Stokes equations
or equations governing reaction and diffusion in chemical systems, provided
the writing of these partial differential equations as evolution problems in .
Banach space can be justified.

Notation

P,r = {w:u(t) = u(t + nT), nT-periodic continuous functions}.

J(u) is a linear operator defined in §IX.2 as

d
‘I(M) = - EE + fu(ts H, Ol')a

177
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acting in Pz, whose domain is the set of continuously differentiable T-
periodic functions. As a consequence the operator J(u) is T-periodic.
Smularly, the operator J, 0 = J(O) is T-periodic. J is a linear operator defined
in §IX.8 which has T-periodic coefficients but which is considered acting in
P, (a larger space).

o) = S(u) + in(u)
is the Floquet exponent for the stability of u = 0.

(&) = &(e) + in(e)

is the Floquet exponent for the stability of the bifurcating subharmonic
solution u(t, £) # 0. (Note. We use the same notation, ¢ and y for different
functions.)

f(t1) ¥ £,(,0,0)
is a linear operator (in R™) (see §1.6, 7).
fut]]) ¥ 1,00, 0,011
is a bilinear symmetric operator: f,,(t|u, {u;) = f,(t|u,|u,).

L2111 € £,,(2, 0, 0] |-}

is a trilinear symmetric operator:

rum.«(“:lul |“2|u3) = fuuu(”ul |“3|“2) = fuuu(”“z'“t Il.l3).

The multilinear operators arise from repeated differentiation of f(z, y, u)
with respect to u, at the point 4 = 0, u = 0. The definitions suppress the
dependence of these derivatives on the point (g, u) = (0, 0).

The work in this chapter is based on the results proved in G. Iooss and
D. D. Joseph, Bifurcation and stability of nT-periodic solutions branching
from T-periodic solutions at points of resonance, Arch. Rational Mech.
Anal., 66, 135-172 (1977).

IX.1 Definition of the Problem of
Subharmonic Bifurcation

We are interested in the nT-periodic solutions, where n € N* is a positive
integer, which bifurcate from a forced T-periodic one U(r) € P,. When the
problem is “reduced to local form™ as in §1.3 we study the bifurcation of the
solution u = 0 of the evolution problem

du
i ft, u, u) (IX.1)
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where f(t, -, -) = f(t + T,-, ) has the period T of the forced solution from
which it comes. Qur bifurcation study applies when some measure of the
amplitude of u is small and it is convenient to expand f relative tow = 0:

f(t’ u’ u) = fll(t! #3 Olu) + %fuu(ts ”! Oiulu)
1
T3 £t 1 Olujulu) + O(lul*). (IX.2}

We shall suppose f is analytic when u and u are in some neighborhood of
(0, 0). We may also expand (IX.2) in powers of y, where we have suppressed
higher-order terms which do not enter into the local analysis of stability and
bifurcation:

f(t, g, w) = £,(210) + pf,(t]6) + 376,,(¢ |u)
1
+ HEGlujw) + pf,,(t|ula)} + ifw..(tlululu)

+ O(1p? lull + g2 ful? + {ul ol + ). (AX2),

Here we omit as usual the writing of (i1, w) = (0, 0) in the argument of the
derivatives of f (see (IX.21)).
Suppose a subharmonic solution of amplitude &

wt, &) = ut + nT, e), u(t, 0) =0,

p=ue), a0 =0 (IX.3)

bifurcates from u = 0 when p is increased past zero. To study the stability of
small disturbances v of (IX.3) we linearize and find that

dv
== £z, ue), uit, €)|v),

= £.(t, u(e), O1¥) + fu(t, p(e), Olu(t, e}iv)
+ 31, 1(2), 0lu(t, £)|ult, €)[v)
+R(t, p(e), u, &)|v). (IX4)

The linear operator R will not enter into local analysis because it is at least
cubic in u, and therefore, in &.

We study (IX.4) by the spectral method of Floquet (see §VIL6.2). It is
necessary to say more about the stability theory. However, for the present
it will suffice to make a few preliminary remarks. To obtain the spectral
equations we write

¥, £) = e"y(, g), (1X.5)

where ¥(t, ¢) € P,y and

wey + 2 = 10 4, us, DY) (IX6)
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In general, y(g} is a complex number:
(&) = &) + inle). (IX.7)

In studying the stability of u = 0 we use u rather than ¢ as a parameter; we
write v = ¢ and arrive at the spectral problem

oW+ =10k 010,  LePr, (IX8)

where

a(u) = &(u) + in(u). (IX.9)

We caution the reader about the possible confusion which could result from
using the same notation for the real and imaginary part of ¢ and y. We shall
not, in fact, need the eigenvalues y(e) until §1X.13.

IX.2 Spectral Problems and the Eigenvalues o(u)
Consider the linearized evolution problem for the stability of u = 0

O e 1 OIY) = 0 + T, 1,0 (IX.10),

with initial values
v(0) = v,. (IX.10),

The solutions of (IX.10) can be expressed in terms of the special fundamental
solution matrix @®(t, x) which has unit initial values ®(0, z) = I as follows:

v(t, u} = @, 1) - v. (IX.11)
The eigenvalues of the monodromy matrix ®(T, p) are the Floquet multipliers
Mp) = "7, (IX.12)

where the complex numbers a(u) = &(z) + in(u) are Floquet exponents. The
exponents are eigenvalues of (IX.8). We say a(u) is an eigenvalue of

d
J(#) = E + fu(ts H, Ol')
so that (IX.8) may be written as
ol =JwE LePr. (IX.13)

Note that if ¢ is an eigenvalue of J(u), then ¢ + (2kni/T) is also eigenvalue
for any k in Z (the associated eigenvector is {(r) = &(t) exp (—2nkit/ T)).
We next define an adjoint eigenvalue problem

ag* = JHuR*,  L*ePy, (I1X.14)
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where

d
* = — * .

in the following way. The linear operator f2(t, ui-) is adjoint to £,(t, 1, 0[");
that is,

<a, £1(t, 1)y = <602, 1, 0fa), b). (IX.15)

In R, (¢, 1, 0|-) is the matrix A(t, p) and £X(t, p|-) is A'(z, u).t A second
scalar product which is useful for nT-periodic functions is defined by

nT
[a,b],+ & ;—T J‘ {a,b)dt (IX.16)
0

where <a, b> = (b, a)>. The linear operator J*(u) is defined by the relation
[a, JGb]y = [J*(w)a, b7 (IX.17)
We verify that
[&, 66*1r = of8, §*]r = [J(u), &1 = [ J*(W)E 17

IX.3 Biorthogonality

Eigenvectors belonging to different eigenvalues are biorthogonal:

[Ch C}‘]T =0

if i # j, as shown in Chapter V1. We equally have [{;, £}y = 0 even when
i = j, provided only that #(s) # 0.If = 0, then ¢, {, and £* are real-valued.
For each and every semi-simple eigenvalue we may choose a biorthonormal
set such that

08, 81y = 4y;- (IX.18)

IX.4 Criticality

We assume that u = 0 loses stability strictly as u increases through zero from
negative to positive value. So when u = 0 the real part £(0) of o(0} vanishes
and

o(0) = in(0) ¥ iw,

+1,(t, 1, 0]-) is the derivative of f{z, %, u) at u = 0, but we do not suggest that there is an £*(z, p, u)
with derivative . We define £* by (IX.15).
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is an eigenvalue of J(u) and J*(u) at ¢ = 0; that 18,
iwoc = ‘]Ogs
—igl* = JECY,
ef

where Jo= J(0) and J§ % J(0)*. The strict loss of stability at criticality
means that

(IX.19)

L E £(0) > 0. (1X.20)

Criticality is very important. In the perturbation solution of the bifurcation
problem all quantities are evaluated at criticality. To simplify our notation
for the derivatives of f at criticality, we write

£06,0,00) £ 1,),
fuu(ti 0= 0'_'_)‘1=ef fuu(”'l'); (IXZI)
130 01) € 1x¢) ),

and so forth.

IX.5 The Fredholm Alternative for J(u) — o(y)
and a Formula Expressing the Strict
Crossing (IX.20)

Suppose (i) is a semi-simple cigenvalue of J(u) of multiplicity [ and
CMi=1,2,..., 1) are any set of independent adjoint eigenvectors. Then the
equation

() — a(wa = by = bt + T) (1X.22)

can have solutions a in Py, (a(r) = a(r + T)) only if the prescribed vector
b(z) verifies the orthogonality relations

b, {*7 = 0. (IX.23)

Let us assume now that iw, is an algebraically simple eigenvalue of J,.
To derive a formula expressing (IX.20) we differentiate (1X.13) with respect
to pat ¢ = O and find that

o, (08 — £,(t[0) + (iwg — Jo)5, = 0, (IX.24)

where J,(0) = f,,(¢/-) in the notation of (IX.21) and {,€Pr. Applying
(IX.23) to (IX.24), we find that

7,(0) = (0} + in,0) = [£,.(¢15), $*]15. (IX.25)
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IX.6 Spectral Assumptions

It is perhaps necessary to emphasize that o(u) is here and henceforth taken to
be eigenvalue of J(u) with the largest real part. At criticality, then, there are
no eigenvalues of J, with positive real parts. If #(u) # 0 there are always at
least the two families of eigenvalues o(y) + (2kni/T) and (i) — (2kmi/T),
for any k in Z, of largest real part and if iw, is an eigenvalue of Jo s is —it,.

Now we state the basic spectral assumptions for the study of T-periodic
solutions. They are essentially the same assumptions under which we have
discussed double-point bifurcation and Hopf bifurcation. The assumptions
are framed in terms of the eigenvalues at criticality. Since we are thinking
only of problems in which the quantities vary continuously with y and the
eigenvalues are assumed to be isolated, statements about the eigenvalues at
¢ = 0hold also in a small (possibly large) neighborhood p = 0. First we state
spectral assumptions for Jg:

(D) i, is an isolated, algebraically simple eigenvaiue of Jy.

(11) + i(wy + (2mk/T)), k € Z are the only eigenvalues of J, on the imaginary
axis of the g-plane. (If § is a T-periodic eigenvector of Jy, iwe§ = Jo&, then
e 2Ty = 81y = §(t + T) is also a T-periodic eigenvector of Jo,
Job = i(wy + 2nk/T 1)C.) All the other eigenvalues of J, are on the left-hand
side of the o-plane.

(1II) Equation (1X.20) holds.

The three assumptions just laid down may also be stated relative to the
eigenvalues 4, of the monodromy operator ®(T, 0) (the multipliers).

(T) A, is an isolated, algebraically simple eigenvalue of @(T, 0).

(I) A and 1, are the only eigenvalues of ®(T, 0) on the unit circle in the
A-plane. All the other eigenvalues of ®(T, 0) are inside the unit circle.

(I11) Equation (IX.20) holds so that [4], > 0.

To make Ay = €7 a single-valued function for w, we may, without
losing generality, require that

0<wy < %if (IX.26)

IX.7 Rational and Irrational Points of the
Frequency Ratio at Criticality
Almost periodic functions are a generalization of the periodic functions which

lcave intact the property of completeness of Fourier series. An almost
periodic function on theline —oc < x < oo can wiggle more or less arbitrarily
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but in such a way that any value of the function is very nearly repeated at
least once in every sufficiently large but finite interval.

A (complex) continuous function /(1) (— ¢ < x < w0) is almost periodic
if for each & > O there exists I = K&) > 0 such that each real interval of length
i(¢) contains at least one number 7 for which | fG@ + 1) — () < & Each
such 7 is called a translation number. If ¢ = 0, then f(t) 1s a periodic function
and t is a period.

A quasi-periodic lunction of n variables is a function g(w, 1, w,1, . . ., Wt} =
J(2) containing a finite number n of rationally independent frequencies
@y, Wy, ..., w, which is periodic with period 2z in each of its variables. All
quasi-periodic functions are almost periodic; in the most general case n is .
For example, the function g(w,t, w,t) = costcos nt = f(1) is a quasi-
periodic function with two frequencies w, = 27 and w, = 2. The value
J(t) = 1 occurs when r = 0 but not again; though g(t) < 1 when t # 0, there
is always t(¢) > O such that | £(:) — f(0)| < ¢ for preassigned ¢ > 0.

The solution w(t) = Z(z)

L(t) = () = g(wo t 2?” x) (IX.27)

of the linearized equation (IX.10} at criticality (dZ/dt = f,(t|Z)) is quasi-
periodic if wo T/2x is irrational. If wy T/2n is rational, @, and 27/T are
rationally dependent and the solution is periodic with period a multiple of T.
The set of points @, on the interval (IX.26) for which w, and 2n/T are
rationally dependent are called rational points at criticality. These points
are a dense set on the interval (IX.26). The set of points for which @, and
27/T are rationally independent are called irrational points at criticality.

Rational points of the frequency ratio at criticality are necessarily in
the form

T
0<D Moy pxo (IX.28)
2n n

where m and n are integers and m/n is a fraction. A subharmonic solution is an
nT-periodic solution with n > 1. The solution (IX.27) is said to be sub-
harmonic if w, is a rational point. Every nT-periodic solution (IX.27) satisfies
the relation

el’mo(t-v-nT)g(t + I’lT) = €iw“!C(I).
Hence ¢*"T = 1 and wynT = 2mm, where w, satisfies (IX.26). Since
,13 = (eion)n — (e2m‘m,’n)n =1= ,(')!

49 and 4, are roots of unity when w, is a rational point. There are two rational
points for which 4q = A,isreal:m/n = 0/1, 4 = l;andm/n = 1/2, 4, = —1.
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When m/n = 0/1, the subharmonic solution (IX.27) is T-periodic. When
min = 1 the subharmonic solution {IX.27) is 2 T-pericdic.

IX.8 The Operator J and Its Eigenvectors

We define the operator

d
3= -2+ (1X.29)

whose domain consists of differentiable nT-periodic vectors.

Of course, the set of T-periodic vectors is smaller than the set of nT-
periodic vectors, dom J, = dom J. The spectrum of J corresponds to the
spectrum of ®(nT, 0), and since @(nT,0) = {®(T, 0)}", 1 is the only eigen-
value of @(nT, 0) on the unit circle. When rn = 1 (m/n = 0, where m and n are
as in (IX.28) and when n = 2 (m/n = 1y, this eigenvalue is simple. When
n > 3, this eigenvalue is double. Unit ecigenvalues of ®(nT, 0) correspond to
zero eigenvalues of J. The nT-periodic vector

2mimt
Z(t) = exp ( o

) &, LelPq, (1X.30)

and its conjugate Z are in the null space of J:
JZ =JZ =0. (IX.31)

When n = 2 (m/n = }) there is only one eigenvector and we can choose it to
be real.

It is useful to state a lemma about the eigenvalue zero of the operator J.
We recall that J is defined at criticality.

Lemma. Assume that hypotheses (I) and (11} about the eigenvalues of J,, (or,
equivalently, the eigenvalue A, of (T, 0)) hold. Then when

n=1, (1X.32)
zero is a simple eigenvalue of J with one real eigenvector Z = § = Z = T;when
n=2, (1X.33)

zero is a simple eigenvalue of J with one real eigenvector Z = &M = Z;
when

n> 2, (IX.34)

zero is a double eigenvalue of J and any solution v of Jv= 0can be composed as
a linear combination of the two independent vectors (Z, Z) on the null space of J.
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IX.9 The Adjoint Operator J*, Biorthogonality,
Strict Crossing, and the Fredholm
Alternative for J

We may define an adjoint operator in P, ; as foliows. Let a and b be any two
smooth vectors lying in P, ;. Then, J* is the unique linear operator satisfying
the equation

[‘-ﬂa1 b]nT = [a: \ﬂ*b]n'l"!
where the scalar product [ -, -], is defined by (IX.16) and

J* = 4 + X)) (IX.35)
dt
Of course, if zero is an eigenvalue of J it is also an eigenvalue of J* such that
2nimt
J¥Z* = 0, Z¥*2) = exp (%) E*t). (IX.36)

When n = 1 or n = 2, there is just one adjoint eigenvector Z*; when n > 2,
Z* and Z* are independent eigenvectors of J*.
The biorthogonality relations

[Z.Z%r =1, [Z,2%],; =0, (IX.37)
follow from a direct computation using (IX.18). Moreover, the relation

[£819), €1 = [£,(11Z), Z*],;
is an identity. Hence, using (IX.30) we may write (IX.25) as

0.0} = [£,.(1Z), Z*],, (IX.38)
and
[t 1Z), 2%, = [e™¥mminTe, (11E), £*],7 = O

when n > 3.
Theorem (Fredholm alternative for J). Suppose that hypotheses (I) and (11) of

§IX.6 about the simplicity of the eigenvalue iwq, of J, hold, and consider the
equation

Ju=geP,. (IX.39)

Then there exists ue P,;, unigue to within linear combinations of eigen-
vectors Z and Z of ), if and only if

[e, Z*],r = (& Z*].7 = 0. (IX.40)

In general, there are as many orthogonality relations (IX.40) as there are
adjoint eigenvectors; in the present case, as a consequence of hypotheses (I)
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and (II) we have just the two relations (1X.40) when n > 2 and just one
(Z* = Z*)whenn=lorn = 2.
If g is real-valued, then one orthogonatity relation
[9.2*Yur = [, Z*],x = 0 (IX.41)

will suffice for solvability.
It is useful to note that we get a unique u if we require that u be orthogonal
to vectors on the null space of J*; that is, {w, Z*],; = [u, Z*],; = 0.

IX.10 The Amplitude ¢ and the Biorthogonal
Decomposition of Bifurcating
Subharmonic Solutions

Now we look for real subharmonic solutions (IX.3), of amplitude &, bi-
furcating from u = 0 at points of resonance. The amplitude ¢ may be defined
in various equivalent ways consistent with the requirement that u(r, g)/e is
bounded when ¢ — 0. Moreover, we may always extract from such solutions
the part of the solution which lies on the null space o1 J and the other part:

u(t, €) = ale)Z(t) + A=)Z(t) + W(t, &), (1X.42)
where
0 =[W, Z*,r (IX.43)
and

a(ﬂ) = [u’ Z*]nT'

It is convenient to consider two cases separately, (i)n = 1 and n = 2 when
there is just one eigenvector Z = Z of J; and (ii) n > 2 when Z and Z are
independent eigenvectors.

For case (i) we define

e = a(e) = [uft, &), Z¥],¢ (IX.44)
and, as we shall see,
W(t, £) = &*w(t, g), (IX.45)

where w(z, 0)is bounded. Therefore in case (i) we may write the decomposition
(IX.42) in the form

w(t, &) = eZ + £*w(z, £). (IX.46)
For case (ii) we find it convenient to define & by requiring that

ae) = £e®® = [u, Z*],;. (IX.47)
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This definition is consistent with the fact that the principal part of any bi-
furcated solution lies in the eigenspace of the linearized operator relative to
the eigenvalue zero. For case (i) we may write the decomposition (1X.42) as

u(t, 2) = e(A(e)Z + A()Z) + £2w(t, ¢). (IX.48)

IX.11 The Equations Governing the Derivatives
of Bifurcating Subharmonic Solutions
with Respecttogate =0

We are going to compute derivatives of u(z, ¢) € P,r and p(e) with respect to &
at & = 0. When everything is analytic these derivatives are the coefficients for
the Taylor series representation

w0 _ 2 e [u0)
[ u(e) ] B ,,Z:] p! [ i, ] (I1X.49)

of the solution. The coefficients satisfy equations which arise after differentiat-
ing (IX.1) and (IX.2), using the simplified notation given by (IX.21) or by
identification using (IX.49) and (IX.2):

0 = Ju,,
0= J]“z + Z#Ifu,u(tlul) + fuu(tlul |l|1), (IXSO)

0 = ‘JJHJ + 3u1fuu,u(t,u1 I“l) + 3u:12fup,u(t|ul)
+ 38, luy) + 3,0¢|uy fuy)
+ 3, (1) + £ 0y uy |uy), (1X.51)

and, for p > 3,
0 =Jdu, + pu,. .0t luy) + plasf(tiu, ) + £0c10, ju,_ )}
+ 2D {Hzfuu(ffup—z) L,y )
+ o1l 18, 5) + 2u,6,,(t |u, [u,_,)
+ Ltlwg o) + g, f,(fuy) + Hp-2f,(tuy uy)
+ ZquPuzfuun(rInl)} + g, (IX.52)
where g, depends on lower-order terms, that 18, 8ot )l <p—2,m < p—2.

Of course, u,(z) is nT-periodic.
It is also useful to note that the expansion of (IX.48) may be written as

u, = plA, Z+ A, 21+ p(p — Dw,_,, (IX.53)
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where
x A
A & &40 = ¥ —PeP
p=0 P*
and
dr te) " "
A, = —e®¢ = i, e®° + b_e'?°,
P dﬁp =0 (bp p

where b, depends on ¢, = d'¢/de'|,~ o of lower orders | < p.

For local studies of the stability of subharmonic bifurcating solutions
near & = 0 it is useful to expand the spectral problem (IX.6} in powers of &.
We find the expansion of the right-hand side of (1X.4) which is induced by
(IX.49) and deduce that

dy

?3’+dt

= fu(tly) + S{nulruu(tly) + fuu(tlully)}

+ %Ez{fuu(t1u2 |Y) + 2ﬂlfuuu(ttul 1y) + nuZ fu_u(rly)
+ 1oy Juy 1Y) + pif,, (W)} + O(), (IX.54)

where y € P, ;.

IX.12 Bifurcation and Stability of T-Periodic
and 2T-Periodic Solutions

This is case (i) specified in §IX.10 as n =1 and n = 2. The normalizing
condition (IX.44) requires that

[u, Z*),r =1
and
[“ps Z*]nT =0, P = 2.

Since Ju, = 0 and Z satisfying JZ = 0, [Z, Z*] = 1 s unique we get
u, = Z, (IX.55)

The Fredholm alternative of J in case (i) states that we may solve Ju =
ge P (n = 1,2)ifand onlyif {g, Z] = 0. Hence, (IX.50) is solvable if

20,0,(0) + [£,(t|1Z]|Z), Z*],r = O, (IX.56)

where ¢,(0) is given by (IX.38) and is real since Z and Z* are real. When
(IX.56) holds, (IX.50) is solvable for u;, and is uniquely solvable for u; such
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that [uy, Z*],; = 0. Similarly, all the problems in the form (IX.52) are
solvable when M, is selected so that

pup-lau(0) + [fpa Z*] = O’

where f, is independent of w, and 1,,_ .
When n = 1
_ [fm.l(It [C I C)! g*]T

= - e (IX.57)

is, in general, not zero. It follows from (IX.49) that near &£ = 0 the bifurcation
of T-periodic solutions from T-periodic solutions is two-sided (transcritical),
as shown in Figure IX.1. The bifurcation of T-periodic into T-periodic
solutions is very important in nature. It is the analogue for probliems under-
going periodic forcing, of the bifurcation under steady forcing of steady
solutions into other steady solutions. In physical examples this type of
bifurcation is often associated with the breakup of spatial symmetry.

=l

3
%=#(—e)

N

(a) (b)

Figure IX.1 (a) the bifurcation of T-periodic solutions into T-periodic solutions is two-
sided. (b) the bifurcation into 27-periodic solutions is one-sided (supercritical in the
sketch)

When n = 2, a short computation using (IX.30) and (IX.36) shows that

sy = L™ L1E16), §*]37/20, = 0.

Then, (IX.50) is solvable for u, (with 4, = 0) and (IX.51) is solvable for u, if
and only if

3u20,(0) + 3[L(t1Z]03), Z*]o1 + [£uult|ZIZ)Z), Z*],7 = 0.

In general, i, # 0.
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It can be shown by mathematical induction that all odd-order derivatives
of u(e) vanish when n = 2. So for 2T-periodic subharmonic bifurcation we get

ule) = pu(—e). (IX.58)

It follows that, unlike T-periodic bifurcation with n = 1, two-sided or trans-
critical bifurcation is impossible and the bifurcation is one-sided, super-
critical if it bifurcates to the right and subcritical if it bifurcates to the left.

Now we demonstrate that advancing the time origin by T in the 2T-periodic
solution is exactly the same as changing the sign of amplitude ¢. This means
that the direction of u(z, £) changes each period T. Ifuis interpreted as a motion
it goes one way for one-half of the period 2T and the other way for the other
half. To prove this we write

o0

we) = 3 ;—jup(t).

p=1
Now u, is a polynomial whose terms are the composition of vectors in Pr
with exponentials of the form

it
exp ”IT" Lk, (1X.59)

where 7, is an odd integer when p is, and an even integer when p is. So

, _ T
xpm(t+T)rp={ k, if pisodd,

T k, if piseven.
Hence,
P @« — sy
wt+ T,¢e)= Zi' u(t + T)= y ( T) u,(t) = u(t, —&).
1P p=1 P:

We summarize our results so far as follows.

Theorem. When f is analytic and hypotheses (I), (II} and (I1I) of §1X.6 hold
with n = 1, 2, then there is a unique nontrivial bifurcating solution of (I1X.1).
When n = 1 the bifurcation is, in general, two-sided: when n = 2 it is one-
sided. To leading order

u(t, &) = ef()e® + 0(e?),

(0 =t O(e?) whenn=1, (IX.60)
s = g2, + O(e*) whenn = 2,

where 6 = Qifn = 1,0 = n/T if n = 2. Moreover, in the case n = 2, y is an
analytic* function of £2 and u(t + T, &) = u(z, —¢).

* i f is analytic in (g, ).
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We conclude this section with another factorization theorem.

Theorem (Stability of the subharmenic bifurcating solutions when n = I and
n = 2). Referring to (1X.6), we claim that

M O]

¥(2. &) = b(a)[

de de (IX.61)
g(’! 5) € PHT)
and
_ du(z)
ye) = I P, (1X.62)
where b(e) is a normalizing factor and () and g(t, &) sarisfy
aulz, ) _ ) dg
?—65 + fy(t, M, u(rv S)) - - (/g + (?[“)
+ L.z, u(e), u(t, )| g). (IX.63)

When ¢ is small
?(S) = *G#(O)E + O(Ep)e

where p=2whenn = landp = 3 whenn = 2.

We leave the proof of this factorization theorem as an exercise for the
reader. The proof follows exactly along the lines laid out in §VILS. The
factorization theorem shows that subcritical solutions are unstable and
supercritical solutions are stable when & is small, and it implies the change
of stability at regular turning points if no other eigenvalue than y(¢) {possibly
complex) crosses the imaginary axis when ¢ increases from the bifurcation
point to the turning point.

IX.13 Bifurcation and Stability of nT-Periodic
Solutions with n > 2

nT-periodic solutions with n > 2 fall under case (ii) specified in §1X.10. The
normalizing condition (IX.47) requires that

ei¢0 = [uh Z*:IHT'
So we may take uy satisfying Ju, = 0 as

u, = 97 4 ¢ 1#Z

= exp i(qbo + (?—f))é(r) + exp ( —i(qbo + (%)))C(I)- (IX.64)
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Application of the Fredholm alternative to (1X.50), using (IX.41), shows that
(IX.50) is solvable provided that

2u [ 10y), Z¥],r + [fu(r]0y{uy), 6], = 0. (IX.65)

To facilitate the computation of integrals like those in (IX.65) we recall that

(a0, 2400y = o || 80, 220

nT
_ ;1? J e—2m’mr/nT<a(t)’ ;*(t)> dt
[}

= [e 2" M Ta(e), C¥(t)]ar
because <a, b> = ¢b, a>. It follows then that
£, Z), Z*],r = [e *™ " TE,(010), £*7,, = 0
when m/n # 2,4, and m/n < 1. We therefore have (IX.65), using (IX.64), in
the form
20,6, (0 + 2L ™M, (115]0), £ ar
+ 2L T (1T1E), §¥Dar
+ g™ 2oL OxmITE (1|C18), §*)ur = 0. (IX.66)

Since §, {* € Prand 0 < m/n < 1,n > 2, the three scalar products appearing
in (IX.66) vanish except when n = 3. Soifn > 3, p; = 0.

When y, = 0, ¢, is not determined by (IX.66). In these cases we may
determine u, and ¢, from the solvability condition for (IX.51):

3443 0,00 + 3[0u(t10, [uy), Z¥T,p + (e 10y [0, {0, Z¥]r = O (IX.67)
where u, is given by (IX.50).

1X.14 Bifurcation and Stabulity of
3T-Periodic Solutions

Whenn = 3, mcan be 1 or 2 {50 m/3 < 1)and (IX.66) reduces to

. . 1A
20,6, (e + Ae 20 =0, p = 3 >0,  (IX.68)

u

where
Al = [eﬁ erimlfow(I |§|z)9 “;*]31“

When (IX.68) holds we may solve (IX.50) for w, € P37 where, using the
decomposition (IX.48),

w,(t) = 2ig,e9°Z — i e L + 2w(r). (IX.69)
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The Fredholm alternative, without normalization, determines the part of u,
which is orthogonal to Z*, Z* (that is, 2wy, Ju, = 2Jw,) and leaves the
second term ¢, in the expansion ¢(c) = ¢y + e, + O(£%), undetermined.
To determine ¢, we apply the Fredholm alternative to (IX.51) and find that

3us (Mt 0y), Z*]5 7 + 31,42, u, uy), VAN TYS
+ 3u;[f,,(¢|uy), Z*]5; + terms independent of x, and u,
= 31, (2i¢,£')6,(0) — 3(2igh e~ HPNA,
+ 3p,€'%°6,(0) + terms independent of 1, and ¢, = 0.
When this last relation is combined with (IX.68) we get
%o, (0Wp, + 6id,} = h(uy, uy, wy), (IX.70)

where h(;, u,, wo)is known. Since e**°5,(0) is never zero we may always solve
this complex-valued equation for u, and ¢,. Exactly the same type of equation
(IX.69) appears at higher orders and determines, sequentially, the values of
H, and ¢n— 1

If we tried to solve this problem using the implicit function thecrem we
would come up with an equation determining u(¢) and ¢(e) of the form (IX.70).
In other words we get the same information from the Fredholm solvability
condition at higher order and from the implicit function theorem for a
system of two equations in two unknown functions x and ¢ of one variable ¢
(see Appendix V.1). So the series solution we construct is unique. There are
no other small solutions which bifurcate.

We now summarize our results so far and state a few new implications of
the equations.

Theorem. Suppose that the hypotheses (I), (II) and (111) of §IX.6 hold and
Ay # 0. Then there is a unique nontrivial 3T-periodic solution of (1X.1) bi-
furcating when u is close to zero. The bifurcation is two-sided and is given to
lowest order by

u(t, &) = eexp i (qa(e) + (2§i;’t))g(t)

+ gexp ( —i(qb(e) + (2m’mt))) U+ 0(EY), m=1,2,

ir
IX.71)
A
u(e) = euy + O(e?), = t_Tp(—E)) s
1 A\ 2kn _
d)(ﬁ) = § arg (— m) + T + 0(8), k= O, 1, 2,

where u, ¢, 1 are analytic* in € in g neighborhood of zero, and k = 0, 1,2
corresponds to translations of the origin in t: 0, T, 2T if m=1and 0, 2T, T
if m = 2, and where A, is defined by (IX.68).

*If fis analytic in (i, u).
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Equation (IX.71); solves (IX.68). From our construction and the de-
composition (IX.48) it is suggested that u(t, £) depends on t through two
times, t(t) and t:

wt, &) = B(r(r), t) = U(z(t), t + T).
4 is T-periodic in its second argument. This T-periodicity has its origin in the
T-periodicity of §(¢). In the first argument of (-, +} we pose

2mmt
(t) = ¢le} + ( 3T )

and

2mm 2nmt
(t + T)—-qb(e)+—3~+ T

From this property the last statement in the theorem may be proven.*
We turn next to the study of stability of the 3T-periodic solutions and
expand y(e) and ¥(-, £) € Py:

y(e) = y.& + o(e)

and
¥t &) = yolt) + &y1(t) + ofe).
Inserting these expansions into (IX.54) we find that
Jy, =0, Yo € Par>
and
Y1¥o = ‘J]yl + ulfu_u(tly0) + l.lm(tll‘ll IyO) (IX72)
where ¥, € Pyr. Hypotheses (I) and (II) about the eigenvalues zero of J
imply that
yO = AZ + BZ':
where A and B are to be determined. Recalling that w; = a,Z + @, Z where
ap = €"*° we may write (IX.72) as
1(AZ + BZ) = By, + p (AL, ((\Z) + BE(t, Z)}
+ aOAfuu(tlzlz) + aOBfuu(rlzlz)
+ Gy Af,(t|Z|Z) + @ Bf,, (11 Z1 Z). (IX.73)
To solve (IX.73) we must make the inhomogeneous terms orthogonal to
Z* and Z*. Both projections are required here because the inhomogeneous
terms are complex-valued. Writing (1X.73) as Jy, = g, we find, using (1X.68)
that the two equations [g, Z*];r = [g, Z*]3r = 0 may be written as
714 = o, (0A + aoBA,
and
}']_B = aoAKI + ,ul&u(())B.

* For a rigorous proof see G. Jooss and D. D. Joseph, Arch. Rational Mech. Anal., 6, 135-172
(1977).




196 IX Subharmonic Bifurcation of Forced T-Periodic Solutions

It follows that y{" and y{?' are eigenvalues of the matrix

My o“(O) e i%At]
M = L, _ N
[ e®Ay  p,6,00)

where
W+ 9 = tr M = 2 Reo(0) = 20,6,(0) > 0,  (IX.74)
because y; > 0 and £,(0) > 0, and

YYD = det M = 2|6, (0)] — |A 2 (IX.75)
But (IX.67) shows that | A, |* = 4u?]0,|? so that
WY = —3ulla (0 <0 (IX.76)

and one of the two eigenvalues is positive and the other is negative. Since
1" # 71, the two eigenvalues y!)(s) and ye) are regular functions of &.
It follows that one of the two eigenvalues

(1) (1)
2]

is positive on both sides of criticality, that is, for both positive and negative g,
as in Figure 1X.2.

¢ 37-periodic bifurcation

4
L4

T-periodic f e

’ “ #
o
”,
”

Figure 1X.2 The 3T-periodic bifurcating solution is unstable on both sides of criticality

IX.15 Bifurcation of 47-Periodic Solutions

4T-periodic solutions fall under case (i1) with n = 4 and m = 1, 3 specified
in §IX.10. The normalizing condition (IX.47) requires that

e = [uy, Z*]),;.

So we may take , satisfying Ju, = Qin the form given by (IX.64). We already
decided, in §IX.13, that g, = 0 when n = 4. With #y =0, we can solve
(IX.50), not for u,, but for w, in the decomposition (IX.69) of u,. The terms
proportional to ¢, in u; = 2ig,e'%°Z — 2id,e~"%°Z + 2w,(t) vanish after
integration and

[Laltluy [wp), Z*0, 7 = 2[f, (¢t |0y | wo), Z*], ;. (IX.77)



IX.15 Bifurcation of 4 T-Periodic Solutions 197

(In fact, (IX.77) holds when u, is replaced by u, and 2w, is replaced by
n(n — Dw,_, (see IX.53)))

To get p, and ¢, we need to work out the integrals in (IX.67) and (IX.77)
and to solve the reduced equations for i, and ¢,. As a preliminary for re-
duction we note that with g, = 0, (IX.50) may be written as

\112“’0 = —fuu(t1ul |“1)
= - {ezwofuu(t | Z | Z)
+ 2, (t1Z|Z) + e 3%, (t|Z| 1)}, (IX.78)
where w, contains no terms proportional to eigenvectors of J; that is,

[Wo, Z*]ar = 0. In fact, the solutions of (IX.78) which are orthogonal to
Z* (and Z*) are unique and in the form

2wo(t) = wyo(t) + exp i(2¢o + (m_;f)) Wo (1)

mmt

+ exp (—i(2¢o + (T))) Woi(t), Wo;€Pr. (IX.79)

Returning now to (1X.67) with (IX.64), (IX.77), and (IX.79) we find that many
terms integrate to zero and that
py0,(0)e + A€t + Aje 3% = (, (IX.80)
where
Ay = [£u(t18]woyr), 87 + [Lu(t181Wo2), E¥]r
+ [Lu(t1E181E), T* ],
Ay = [e72mITE (1| wo1), §*]7
+ 4L T, (1 GITIT), £¥1r,
andm = 1 or 3.
We may write (IX.80) as
Cvige_ b2+ (A0

e IX.81
Ao, (X381
Since the modulus of e~ *° is unity we have
A; A,
= |+ 3 (1X.82)
Real values of p, solving (IX.82) can, of course, exist only if
At s Az, (IX.83)
Gy Oy

Suppose (IX.83) holds; then, squaring each side of (IX.82) we find and solve

a quadratic equation for u,
2 2172
A [Im ﬁ] } | 1]. (X 84)
6, -1

G e

m




198 IX Subharmonic Bifurcation of Forced T-Periodic Solutions

For each of the values 4 and uf? we get four values of ¢, solving (IX.80)

1 A kn

PP = - arg {— — } + (——)
4 @ + A \2 (IX.85)
=12 k=0123

To determine ¢, and 4u,., it is necessary to consider the solvability
condition [(IX.52), Z*],; for (IX.52):

Phip-10,€% + plp — D{p,[L, (1w, _,), 2%, 7
+ [futug|u, ), Z*],,
+ Of,. (|0, |u, fu,_5), Z¥] 1}
+ P =D~ 2)[Lutlu 1w, _3), Z*T4p + [g,, Z*]4r =0, (IX.86)

where ¢, ; enters (IX.86) through u,_; defined by (IX.53). It is possible, by
mathematical induction, to establish that

Hap—y =¢3,-1 =0 forp>1. (IX.87)

The solvability of the equations at higher order is equivalent to a solution
of the bifurcation problems by the implicit function theorem (see remark at
the conclusion of Appendix V.1). The regularity of the solution as a function
of & depends on the regularity of f(-, -) and is analytic if f is.

We summarize the results about 4T-periodic subharmonic bifurcating
solutions which have been proved so far.

Theorem. Suppose that the hypotheses (I), (1) and (111 of §1X.6 hold with
n = 4, the coefficients, 6,(0), A,, and A, being defined by (IX.38) and under
(IX.80). Thenif |Im Asjo,| > {Asfe,|, there isno small-amplitude, 4 T-periodic
bifurcated solution of (IX.1), for u near zero. If |As/o,| > |Im (A,/a,)], two
nontrivial 4 T-periodic solutions of (IX.1) bifurcate, each on one side of criticality.
If |A;] < |A;l, one solution exists only for u > 0; the other exists only for
u <0 If|A;| > | Az the two solutions bifurcate on the same side of =10
#=0ifRe(Ay/o,) <0, 1 < 0ifRe (Az/0,) > 0. The principal parts of the
bifurcating solutions are given by

uf, g) = ¢ exx:i[¢“’(82) - (’%t)] &)

+ SCXP(—I'[¢“"(82) - (m;%)]) &8 + 0%,

HUE) = i + O, W =0 if|A;] = |A4l, (IX.88)

. 1 A kn
o) = e - s+ (5) + o0

m=13 j=12
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The values k = 0, 1, 2, 3 correspond to translations of t through period T:
0, T,2T, 3T if m = 1; 0, 3T, 2T, T if m = 3. The functions u¥ are analytic*
in €2, and " is analytic in €.

The recursive construction of our solution in series shows that the in-
variance properties of u(z, £) with respect to period T translates of ¢ can be
deduced from the transformation properties of the coefficient

ei(¢g + (ame/ T} def eieu:

in the expression for eu,(f) = ee®®(t) + ee (1), &(-) € Pr. This ex-
pression; and the coefficients u,(f) which depend on u,(t) recursively, are
unchanged under the first group of translates ¢, ¢ + (n/2), t—>1t —
T(m = Dandt—t + T (m = 3). On the other hand, the group of translates
Gor=s Py + m, t1t — 2T (m = 1 or 3) induces the transformation eu,(t) —
en,(t — 2T) = (—e)u,(t). This transformation is equivalent to u(t, &)—
u(t — 27, &) = u(t, —&) because the ¢ translate changes the sign of the odd-
order coefficients u,,_,(¢) which is the same as changing the sign of ¢ in the
expansion of u(t, ).

IX.16 Stability of 47-Periodic Solutions

To determine the stability of the 4T-periodic solutions near ¢ = 0 we consider
the spectral problem (IX.54) and determine the coefficients in the expansion't
of

We) = 116 + 7728 + of&?) (IX.89),
and
¥(t, ) = ¥o(1) + y1(D)e + 3¥2(1)e? + o(e®) & Pyr (IX.89),
for each of the two independent bifurcating solutions. We find y; = 0, so that
stability is determined by the sign of y,.

We proceed in the usual way by combining (IX.89) and (IX.54), identifying
independent powers of &, and find that

Jyo=0, ¥o€P,r, (IX.90)
1Yo = Jy, + 0wy, ¥y €Pyr, (I1X.91)

and

29,¥; + 72¥0 = Jya + 20,00, |yy)
+ {#2fw1(t|YO) + fuu(tluz |y0)
+ faaltlog [y 1¥o)}s ¥2()€Pyr. (1X.92)

* If £ is analytic in (g, u).
¥ We find that 3(0) = 0 is semi-simple, y; = 0 and y(g) is well separated at order ¢>.
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On the other hand, we may decompose
¥(t, &) = A(e)L + B(e}L + e\u(1, &), (IX.93)
where A, B and ¥ are complex-valued and
. Z*1ar = [V, Z*]4T =0.
It follows from (I1X.90}) and (I1X.93) that
Yo=AoZ + BoZ,  [A,)* + |By(* # 0, (1X.94)
and
Yi = A Z + BiZ + Yo (0) (IX.95)
Now, the following identity holds:
[(Lu(tlui1¥e), Z*]ar = 0, (IX.96)

because {f,(t|1Z,|Z;),Z}],r = 0 where I, j, k = 1 or 2 and Z,=7,=17,
L% = Z} = Z*. The Fredholm alternative applied to (IX.91) leads to:

71do = ¥1Be =0 and 7y, =0.
Returning now to (IX.91) with y, = 0 and (IX.95), we find that

“U‘I’O + AO eitﬁofu"(t | Z | Z) + BO e - I.d’ﬂfuu(t | Zl Z)
+ (Boe'y + Age N, (t{Z|Z) = 0. (IX.97)

Comparing (IX.97) with (IX.78), we find that

“,0([) — Aﬂei¢oeimnt/Tw01(I) + BOeAiq&uefimm/TWO]([)
+ 3(Age ™' + Boe'®wo, (1), {IX.98)

where m = 1, 3 and wy,; € Py are the functions defined in (IX.79).

Turning next to the conditions [Jy;, Z*],;r =0 where I =1, 2 and
Z¥ = % = Z* for the solvability of (I1X.92) we find, using (IX.95), (1X.96),
and (IX.98), that

Hat oy [y1), Z¥]4r
= [Lultluy o), Z*], 1
= HAp + Boe®)f,(t15|wo,), ¥ 7 + Ao[fuft18)wo,), E¥1r
+ Boe™ 2 27 mITE (131 W,,), §¥1r. (IX.99)

This same expression, (IX.99), holds when (Z*, A4,, B,) are replaced by
(Z*, By, A,) and all the other quantities are replaced by their conjugates:

[Lu(eluily,), Z¥]ar = HBo + Age 201, (t181wy,), T¥)r

+ Bo[f.u(t18]%,,), §¥17
+ Age? [ ™I (118 | wo,), E¥]r.

LT e
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Similarly, using (IX.69), (IX.79), and (IX.94), we find that
[fuu(t |“2 | YO)s Z*]4T = [fuu(t | 2W0 |Y(})s Z*]4T
= Ao[f.(t|wo2 ), ¥

+ By [, (t|wo, 1), C*]7
+ BO e 2i¢u[e B Zﬂimzfrfuu(l !‘_"’01 | z)! g*]T

and
[f.(t1us1¥0), Z¥)ur = BolF.u(t|Woz 10, £¥1r

+ Age 2oL, (| W0, 18), T*1r
+ AO eZie‘m[le:imt,’Tfuu(tlel Ig)s a*]T

In the same way, we find that

[t 0y [0y 1Y0), Z¥]ay = 240[£ud¢1GIEIE), £*1s
+ BOeZi¢O[fuuu(I|§|C|z)! Q*]T
+ Boe™ 2ol 21mITE, (18I T10), §¥Tr

and

[fuuu(tlul |“1 IYO)s Z*]m" = ZBO[fmm(tlilgli), t*]_r
+ Age” H%[f,,(e18IC1E), T*]r
+ Age” [ ™, (t1C1818), ]y

Finally, we use (I1X.38) to compute

[fuu(HYO)s Z*l‘”—- = GHAO
and

[fuu(t”o), Z*]q.r = &uBO-

Putting all these results together, we find that the two solvability condi-
tions for (IX.92) are

V2 Ao = (0uttz + 2A)A0 + BolA2 €M7 + 3A;e7 %)
and
y2Bo = (G, 4, + 2A,)Bg + A{Aje 2% + 3A, e2i%0),
So v, are the eigenvalues of the matrix
S d;f _ #2 a,u + 2[_\2 ‘ AZ ezw’o + 3A3_€72i¢0 , (IX.].OO)
A28—2I¢0 + 3A3 e2l¢o Uy EF + 2A2
where 1,6, + A; + Aze” 4% = 0. The eigenvalues 75" and 9% of (IX.100)
satisfy
OGP + 7Py =1trS = 2Auy &, + 2Re Ay)
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and

Py = det S = |20, + 20517 — A, + 3A e 4i%0)2

o2 { 2A, 2A, 2}
In

— % -3 + —=
iy + 7 ~ j13) 7
A
‘8#2|0}¢|2{Hz + Re —2}.
Ty
If|A;| < |A3| we know from the theorem in §I1X.15 that #"4?" < 0 and we
note that for pf"! < 0 < p@

2

A A
p+ Re—2 = —u® — Re 22 <.
Ty Oy
Hence y{"y < 0 for each of the two bifurcating solutions. This means that
the two 4T-periodic bifurcating solutions are unstable. On the other hand, if
[Az| > [A;z] and |Im (A/6,)| < |As/o,|, then uPuP >0, and Y942 is

(a) =l

(b)

Figure IX.3  4T-periodic bifurcating solutions at small amplitude. 4 T-periodic solu-
tions bifurcate when |Im (Aj/a,)| < {As/a,|. (@) [A;] < |A;]. Two 4T-periodic
solutions bifurcate and both are unstable. (b) [A;| > [A,], Re (Az/o,) < 0. Two
solutions bifurcate, one is unstable and the stability of the other depends on the problem.
If Re (A,/o,) > O, the two solutions bifurcate to # < 0 and one of them is unstable
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negative for one of the two bifurcating solutions. For the other solution
Y@ > 0 and stability is determined by the sign of 1, £, + 2 Re A, (stable
if <0, unstable if >0}. (See Figure 1X.3.)

I1X.17 Nonexistence of Higher-Order Subharmonic
Solutions and Weak Resonance

We now suppose that n > 5. Analysis of (IX.66) shows that u, = 0 so that y;
and ¢, are to be determined by (IX.67), with u, given by (IX.64) withn > 5,
m < n, and u, given by (IX.69). A short calculation of a now familiar type
shows that

U0, + Ay =0, (IX.101)

where A, is given under (1X.80). In general (IX.101) is not solvable because j,
is real-valued and Im (A,/s,) # 0.

Subharmonic solutions with » > 5 can bifurcate in the special case in
which p, = —A,/0,, ¢ may be determined by higher-order solvability
conditions, and in fact two nT-periodic solutions with » > 5 may bifurcate.
If n = 5, the condition Im (A,/5,) = 0 is in general a sufficient condition
for the existence of these two 5T-periodic solutions. It may be shown that this
bifurcation is one-sided; both solutions are unstable when they are sub-
critical, one solution is stable when they bifurcate supercritically (see Figure
IX.4).

Subharmonic solutions with n > 5 require special conditions (the
vanishing of certain scalar products) beyond the ones required for the
strongly resonant cases n = 1, 2, 3, 4, These exceptional solutions are called
weakly resonant (terminology due to V. I. Arnold). Detailed analysis of weak
resonance is given in G. Iooss, Bifurcation of Maps and Applications (Amster-
dam: North-Holland, 1979), Chapter IIL

& Az
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7 \
—————— - Y U
By /'l
\\ ’I F}
., - /
"\,_. - /
. /’
-
-
(a) (b

Figure [X.4 Weak resonance: (a) supercritical, weakly resonant bifurcation; {b) sub-
critical, weakly resonant bifurcation
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IX.18 Summary of Results About
Subharmonic Bifurcation

Suppose the hypotheses (1), (I1), and (IIT) of §1X.6 hold.

(i) When n = 1 a single, one-parameter (&) family of T-periodic solutions
of (IX.1) bifurcates on both sides of criticality. When n = 2 a single, one-
parameter (&} family of 2T-periodic solutions of (IX.1) bifurcates on one side
of criticality. Supercritical (u(e) > 0) bifurcating solutions are stable;
subcritical (u(e) < 0) bifurcating solutions are unstable.

(i) When n = 3 a single, one-parameter family of 3T-periodic solutions of
(IX.1) bifurcates and is unstabie on both sides of criticality.

(iii) When n = 4 and |A;/o,] > |Im (Ay/o, ), A; and A; being defined
under (IX.80), two one-parameter (¢) families of 47-periodic solutions of
(IX.1) bifurcate. If |A, | < |A,|, one of the two bifurcating solutions bifurcates
on the subcritical side (u(e?) < 0) and the other on the supercritical side
(#(¢%) > 0), and both solutions are unstabie. If IA,| > |A;] the two solutions
bifurcate on the same side of criticality and at least one of the two is unstable;
the stability of the other solution depends on the details of the problem.

(iv) When »n = 5 and Im (Az/e,) # 0, A, being defined under (IX.80),
there is in general no small-amplitude nT-periodic solution of (IX.1) near
criticality.

IX.19 Imperfection Theory with a
Periodic Imperfection

We are going to perturb steady bifurcating solutions with a T-periodic
imperfection. We frame the mathematical problem for this study as follows:

% = F(u,m 40, (IX.102)

F(u,u0,1) = f(e, u) is independent of ¢,
F,wd,t) = F(uudt+ T) whend #0, (IX.103)
F1,0,0,1) =0

We also assume that zero is a simple eigenvalue of £(0)-); the other ones have
negative real parts. We recall that £,(0(5,) = 0, £P*0|2) = 0, Lo 85> =1,
and note that the assumption that u = 0 loses stability is a condition on £

0,(0) = <£,,(015), &3> > 0. (IX.104)

These assumptions are enough to guarantee the existence of steady bi-
furcating solutions (u(g), u(e)) which may be computed by the methods of
Chapter VL
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Now we regard the steady bifurcating solution as a T-periodic one (for
any T) and we look for a T-periodic solution of (IX.102) close to zero. We
again define

d
3 = =+ R,

where J is defined only when it operates on T-periodic vectors u(t) = wt + T).
By virtue of our assumptions about f(0|-) the imaginary eigenvalues of J,
are all simple and, except for the eigenvalues (Floquet exponents) ¢(0) =
+ 2nki/ T, k € Z, all have negative real parts. Condition (IX.104) holds for the
eigenvalue o(u) of J(u) satisfying o(0) = 0, and &, and {¥ are steady and such
that JoGo = JFCE = 0, [Lo, 8817 = 1.

We can use the methods for studying imperfections given in §V1.10 if the
analogue

T
[#0,0,0, 1), &81r dg% f (F0,0,0,1), 8> dr # 0 (IX.105)
o}

of (VL.71) holds. Then we may compute the series
d=¢ Z Spnqup-l'l,q’

ptqz=0

u(t) =elo + & 3 B, (007K (IX.106)
ptaz1
where the u,, () are T-periodic.
When & # 0 the bifurcation picture for steady solutions is broken when
(IX.105) holds and is replaced by two nonintersecting branches of T-periodic
solutions, close to the steady bifurcating one, as in Figure IIL.5.

EXERCISES

IX.1

d

£=yu—u2+5(a+cost), ue R
Prove that the bifurcation curves for & = 0 are split into nonintersecting branches of
2r-periodic solutions assuming that a # 0. Find a series for u(t, &/e) where e and 8/ are
both small which is valid when a # 0 and when « = 0. Repeat the exercise when u?
is replaced by .

IX.2 Consider evolution problems of the form & = f(z, », 3, u), where f(g, 1, 8,0) =0,
depending on a parameter & perturbing the problem of this chapter. Suppose further
that we have a Floquet multiplier A = ¢"™*7T, where o(u, 8) = ig + po, + 8o,
+ 0[|u® +18/*1and Re g, # 0.

(1) Compute o, and o, in terms of scalar products.
(2) Assume A(0, 0) is simple and real. Show that A0, 0) = 1 or —1. Then show that
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Alp, 8} is still real when |u| + |8/ is small. Compute the critical values {5) =
duy + 0(6%) for which A['8), 61 = 1 or — 1. Show that when p crosses u“{(8), &
being fixed, A(y, 8) crosses the unit circle through 1 or — 1, respectively.

(3) Assume that A0, () is simple and w, = 2zm/nT with 0 < m/n < | (as in this
chapter) and » > 3. Compute the critical values HNS) = du, + 0(5%) for which
[A[#%8), 81| = 1. What is the value of A[4“(8), 5] on the unit circle? Show that the
condition [A(0, 0)]" = 1 does nat persist for & # 0. Answer:

arg ALuNd) 8] = wy + & (Im o, Re a, ~ Im % Re ds)

O(5%),
Re a, + 069

IX.20 Saddle-Node Bifurcation of
T-Periodic Solutions

We are going to treat a T-periodic problem with a regular turning point as
a saddle-node bifurcation. The result is shown in Figure IX.5.

To construct the bifurcating solution, we start again with the system (IX.1).
Since u = 0 is to be eliminated as a possibility, we shall assume that f (w0
is zero if w = 0. We proceed as in §V.10 looking now for T-periodic solutions
of the form (1X.49) where

Jou; + £, (1) =0, {IX.107)

Ttz + 136,08 + 12,0 + 2,8, (tu,) + £ (t)uy |u,) = 0. (IX.108)
If [f,, {*]; # 0, then (IX.107) is solvable if H#y =0, u; = {(t), and (IX.108) is
solvable if
LfultI010), 2%1,

(£, *1r

and is uniquely soivable under the normalization [u,, {*]; = 0. Higher-order
coefficients may be computed in the same way.

Ha =

¥

L

I
=

Figure IX.5 Saddle-node bifurcation of T-periodic solutions
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The stability of the T-periodic solution passing through the turning point
of Figure IX.5 may be deduced from the factorization theorem for the Floquet
exponent which perturbs the eigenvalue zero J, (§1X.12). Fora fixed u > O one
branch of the solution is stable, the other unstable. We can prove a formula
like (VI.25) by taking the scalar product of (IX.63) with {*(t, €) in Py

IX.21 General Remarks About
Subharmonic Bifurcations

We cannot possibly know if a real physical system gives rise to rational or
irrational values of w, T/27. In fact, we can know only that m, T/2n is very
close to some rational number m/n in the sense that any other rational number
m'/n’ closer to w, Ty2n will be such that n’ > n. For subharmonic bifurcations
with # > 3 it seems better to develop a theory with two rather than one
parameter. A good choice for two parameters is g and a “detuning parameter”

dfj on E
Y n
This leads us to a different kind of analysis from which we can understand

some of the mysteries of dynamics near criticality which are revealed in
Chapter X.




CHAPTER X

Bifurcation of Forced 7T-Periodic
Solutions into Asymptotically
Quasi-Periodic Solutions

In Chapter IX we determined the conditions under which subharmonic
solutions, nT-periodic solutions with integers n > 1, could bifurcate from
forced T-periodic solutions. That is to say, we looked for the conditions
under which nonautonomous, T-periodic differential equations give rise
to subharmonic solutions when the Floquet exponents at criticality lie in the
set of rational points (w, = 2mm/nT,0 < m/n < 1) or, equivalently, when the
Floquet multipliers at criticality are the nth roots of unity, A% = (e/*Ty" = I.
We found that unless certain very special (weak resonance) conditions were
satisfied such subharmonic solutions could bifurcate only whenn = 1,2, 3, 4.
(The case n = 4is special in that there are in general two possibilities depend-
ing on the parameters; see §I1X.15.) So we now confront the problem of
finding out what happens for all the values of wg, 0 < @, < 2n/T such that
@l ol 1213
2n 273 3 44

We shall show that, unless highly exceptional conditions are satisfied,
the solutions which bifurcate lie on a torus and are asymptotic to periodic or
quasi-periodic solutions near criticality. The subharmonic solutions which
bifurcate when the exceptional conditions hold are also on the stable {super-
critical) torus. The exceptional subharmonic solutions bifurcate in pairs; ong
solution is stable and the other one is unstable.

208
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X.1 Decomposition of the Solution and
Amplitude Equation

We start with an evolution equation with T-periodic coefficients reduced to
local form, as in (I.21). In fact, we consider the same problem as studied in
Chapter IX, assuming that w, 7/2% # 1, 1. An analysis in the spirit of Chapter
IX, using the method of power series and the Fredhoim alternative together
with two times is given in Appendices X.1 and X.2. In this chapter we prefer
another type of analysis again using the Fredholm alternative to obtain
amplitude equations in what is called a normal form.
We start by writing (1.21) in the form

C;_‘t‘ = £,(t, plu) + NGz, g w), X0

where
N{t, p, u) = f(z, p, u) — £,(¢, pgju)

are the nonlinear terms, and, of course, u = 0 is a solution. The assumptions
made on the linear part are described at §1X.8, and since we are including the
cases where w,T/2n = 1 or 4, all the Floquet multipliers ¢*" and all ex-
ponents o(y) corresponding to the critical ones are complex.

Without loss of generality, we may decompose

u=zly 2l + W, (X.2)

where {, = £(0, 8) = {(0, t + T} is an eigenfunction of the spectral problem
(IX8). To define z, we project using the adjoint eigenfunction {* satisfying
(IX.14) and the orthogonality properties of the time-dependent scalar product
¢+, *», which are established in Exercise X.1.

EXERCISE

X.1 Assume that ¢ is a simple eigenvalue of the linear operator
d
a7 £t ul-)

in the space of T-periadic vector functions. Let &(-) be the eigenfunction belonging to o,
and £*(.) the eigenfunction belonging to & for the adjoint operator. Show that

&), CX(6)) = constant independent of 1,

L&, THOY = Ce® ™™ C is constant.
Deduce that we can choose £(t) and {*(r) such that

G, 8> = 1
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and that if § — o # 2kni/T, k € Z, then
G0, Ty = 0.

Show that this condition is realized in our frame for y close to 0 (verify it at g = D and
perturb).

We have aiready observed in Chapter VI, VI, and VIII, in analogous
decompositions with a dominant part and an extra little part W, that the part
W becomes a “slave” of the other part in the limit t — oc, and is of higher
order. This is a strong mathematical result, known as the center manifold
theorem (e.g., Marsden and McCracken (1976) or G. [ooss (1984)). It says that,
asymptotically in time, all the dynamics near u = 0 are attracted to a manifold
of equation

W = @([, #9 z’ E)! (X3)

where @ is T-periodic in ¢ and is of higher order than O(|z|). As a consequence,
when ¢ goes to infinity, the system (X.1) will be completely characterized once
we know its trace on the manifold (X.3). This is the so-called amplitude
equation.

dz

—=glt, 1, z, 2). X.4

=0k 22) X4
In fact, we can choose @ so that g can be written in the simplest way

possible. This gives rise to a new g, called “the normal form.” Tt arises after a

suitable (nonlinear) choice of variables in the space spanned by ¢ and .

X.2 Derivation of the Amplitude Equation

The idea is to replace (X.2), (X.3), (X.4) into (X.1) and to identify powers of g,
z, and Z. We shall choose @ so as to obtain the simplest possible g.
Let us define the Taylor expansions.
Oit, p,z,7) = 3 O),,u"z7,
1

g+r=
ptgtr=2

glt, i 2,2) = Y g(t)pgit?2?7,
g+r=1

(X.5)
(6w = 3 wLy(ou,

Nt gy = 3 N, (tlulu...|u),

g=2 gtimes

where L, (i) is linear and N (t) is g-linear symmetric in the g last arguments.
Now we may identify independent products of powers of y, z, and = in the
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identity

+——+
0z

o] o0 diy  dby
ot zdt Zdt

o S —-
g(t’ #’ z, E) [CO + az:l + g(ts .ua Zy E{CO +

=1{,[t, plzlo + Tho + © + N[t, i, 2o + 2{o + D] (X.6)

At the order z, we get

= d
Fo10 o + Foor (Do + Mdgtg =

Lo(t){o,  Lo() =15 001), (X7)
and since we have —dl,/dt + Lg(t){, = Jo{o + iwol,, this leads to

door = 0 do10 = 0. (X.8)

At the order pz, we obtain

.= d
F110C0 + Fro180 + iwePyo + aq’no = Lo(t)®; 10 + Li(0)lo, (X9)

which leads to

g110 = L1 (0{o(t), £5(0) 17, G101 = O, (X.10)

since J,, — im, has a one-dimensional kernel spanned by {4(t), and @, (7) is
uniquely determined once we impose the condition

[®,16(0), L3} = 0. (X.11)

At the orders z* and zz, we obtain

R . d .
Joz20lo + Goo2bo + (21“)0 + i Lo(f))q)ozo = N2t {o1d0)s

J (X.12)
For18o + Jorrlo + (dt - Lo(t))q’ou = 2Nga(tl{olo)-
It is then clear that this system is solvable for @g,, and @4, with
Jo20 = Jooz = do11 =0, (X.13)

provided that 0 and + 2iw, are not eigenvalues of J, in P;. Since we have
assumed that w, # 2n/T and #/T, the only cases for which we cannot choose
{(X.13) are

n 47 :
=— — X.14
3wg = — or T (X.14)
that is,
T
Dol lori
2n
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In these cases, the solvability condition for (X.12), gives

_ - 2knit 2kt
Fooz = [Noa(t|{e]Lo), S‘EXP(— T ):, exp(— )9
T

k=1or2, respectively for et

Joz0 = go11 = 0.
At cubic order, we obtain

s . d
Josolo + Fo03to + Goo2Poor + (31690 + EE - Lo(t)) Py
= Noa(t{olL0l{0) + 2Nga(t Lo Po20)

_ = _ . d
Jo2100 + Go12¢0 + 28002 P02 + (1(90 + i Lo(f))(bozl

= 3Nos(t1C61¢080) + 2Noy(t)Lo1 Doy ) + 2N 2 (81| Do 50)-
Then (X.16), is solvable for ®,,, provided that

Joa1 = [3N03(E|C0|C0|ZO) + 2N, (t{o1 gy )
+ 2N02(5|Eo|q)ozo) = 2002Pyo2, (&7,

and we can choose g,,, = 0.
Equation (X.16), is solvable for ®,, with

Fo30 = Goaz = 0

provided that the nonresonance condition

If we have a resonance w, 7/2% = 1 or %, then we need
Joos = [Nos(f|ColC0|‘:0)

- 2krit 2kmit
+ 2N, (t[ {5 Do), CS‘(E)CXP(— T )] BXP(——F)a
T

with k = 1 or 3 depending on w, T/27n = 1 or 3, and Jo30 = 0.
At every order, we must solve an equation of the form

_ . d
gpqrco + gprqgo + l:(q - r)lwo + E - LO(t}:I q)pqr = qur(t)

(X.15)

(X.16)

(X117

(X.18)

(X.19)

(X.20)

(X.21)
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for @, where R, (¢} depends only on lower-ordertermsp’ < p,¢' +r' <g+r.
As a consequence, there will be no coefficient of p"z9z" in the right-hand side

of (X.4) provided that

) . 2kmi
(g — Niwg #iwy + ——,
T
that is, if
(g —r— l)wLT is not an integer. (X.22)

So, if, for n = 3, we have

weT m

, (X.23)

n n
then the remaining terms in (X.4) have the form
277 withg=r+ 1+ In, I positive or negative integer.

There are two sorts of terms

iimt

@ zt(zzy exp(—zn;m ) 1=0,
, Wil

(ii) z‘"-l(zz)qexp(_ ”'T'”t), Il

The results stated above allow us to rewrite (X.4) in a global form, which
is correct up to an arbitrarily high fixed order.

dz 2 2mimt
£ 25

2mi 2mimt
+z! exp( “’T'”‘) é {u, |ztz,z"exp( = )} (X.24)

where ¢, and ¢, are polynomials in their arguments. If «, 7/2n is irrational,
then the form of (X.4) is extremely simple,

dz

= = 2ol 12, (X.25)

But, even in the case when (X.23) is satisfied, we can choose a new variable x
such that

x = ze to (X.26)
leads to an autonomous equation (up to an arbitrary order)

‘;—): = x[gol, |x[%, x") — io] + X" by (1 1x1% X7) + O(x[Y), (X.27)
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where we can write the lower-order term as

N 2g+1=<N
X = pll(u) +id(w)lx + Y x|x|*a,
g1
2g—-1+kn<N
+ Yy > x|t *rq .+ 7 la, (X.28)
k=0 g0
where we have set
o = iwy + u[&u) + id(w)], (X.29)

where £(0) > 0 because we have assumed that the loss of stability of the null
solution is strict. Many of the properties of bifurcation of solutions of (X.1)
may be determined from (X.28), or even from the lowest-order truncation of
(X.28):

% = ul&() + id()]x + |x|%xay + |x[*xa; + - -
+ R gy (X.30)

X.3 The Normal Equations in Polar Coordinates

Our goal now is to derive analytical expressions for the torus shown in Figure
X.1, whose cross section is given by p = p(8), where (p, 0) are polar co-
ordinates related to x and z by

iwel

z = ei®lx, x = pe®, (X.31)

To convert the equation (X.25) governing the evolution of z in the case in
which r is irrational and the equation (X.24) governing the evolution of yin
the case in which r = m/n is rational, into polar coordinates, we introduce
(X.31) and the relation

F=1[p +iwyp + iflp]ei®roo, (X.32)

Then, in the rational case, we get

. 2q+1<gN
p= p{#é(u) + 3 Relag o]
qz1
2g+1+hkn<N )
+ Z Z p2q+kn Rc [aq‘k(#)e:kne]
k>0 q20
2g-1+kn=< N ]
+ Z Z p24—2+kn Re [aq' _k(#)e—rknﬂ]}
k>0 gz0

+ Ry(t. 4, p, 0) (X.33)
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@ 4

Figure X.1 Schematic sketch of the bifurcating torus T2, (a) The torus T (a limit cycle
corresponding to the forced T-periodic solution U{g) = Uz + 7). {b) The torus T2 {in
top view) may be visualized as a tube around the limit cycle. A cross section of this torus
is in R”. (c) Cross section of the torus T? of mean radius ¢ for small ¢ when (i) the Floguet
multiplier is not a root of unity and (ii) the Floquet muitiplier is a root of unity with
n = 5. (d) The two-dimensional torus T? and a period segment of a trajectory which
winds repeatedly around the torus

and

2¢+1<N
pé = p{mﬁ(ﬂ) + Y Im[ago(wp*Q]

gz1
2g+1+knsN
+ Z z qu+lm Im [aq‘k(“)exknﬂ]
k>0 qz0
2g-1+knsN )
+ Z Z p2qfl+krr Im [aq'_k(u)e—aknﬂ]
k>0 qz0

+ Ry, 1, p, 9), (X.34)
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When r is irrational we put
Ggi = Gy = 0, (X.35)

so that the terms in the double summations on the right-hand side of (X.33)
and (X.34) vanish. In both cases of rational and irrational r we have the
estimates

R,=0(p™Y), I=1,2 (X.36)

X.4 The Torus and Trajectories on the
Torus in the Irrational Case

The analysis is least complicated when r is irrational, so we use this case to
introduce the notion of a torus and of an asymptotically quasi-periodic
solution on the torus. We observe that the systems (X.33, 34) are autonomous
up to the terms R; which may be neglected in the first approximation. For
autonomous problems in R? solutions of permanent form are fixed points or
closed curves corresponding to limit cycles. In fact, we will find a closed curve
p(0) for the system approximating (X.33, 34, 35) when R, and R, are set to
zero. And we show that the approximating problem gives rise to a periodic
solution with a frequency depending on the amplitude, where the amplitude
is the mean radius of the closed curve p(#). The solution of the original
problem, more precisely, the approximation to that solution through terms of
order p¥, is a composition of T-periodic functions through (X.2) and (X.3) and
of the afore-mentioned periodic solutions with a period t which depends on
the average value ¢ of p(8).

To visualize what is meant by a two-dimensional torus, it is convenient
to proceed in steps. We first recall that the basic problem (X.1) has been
reduced to local form; the solution u = 0 of (X.1) corresponds te a forced
T-periodic solution U(t) = U(r + T). This solution may be represented by a
circle in the n + 1-dimensional phase space whose coordinates are the com-
ponents of u and the time 1. The “circle” is identified by w = 0 in B” and the
set of numbers t € [0, T), where ¢ + T is identified with the point ¢ € [0, T)
(because U(t + T) = U(r)). The interval [0, T) and identification rule for
t + T is called a one-dimensional torus T'. Identification means that we
“join™ the ends of the interval [0, T) and form a circle T! x 0in R"*!. This
circle is a limit cycle for the forced periodic problem which may be visualized
on a true circle of any radius with angle ¢ = 2rt/T, where ¢ € [0, 27) and
¢ + 2n is identified with ¢, as indicated in Figure X.1.

A two-dimensional torus T2 of mean radius & bifurcates from T' at ¢ = 0.
The radius of the cross section of the torus is p(8) = p(0 + 27). A trajectory
is a curve

=000, p=p60) =— (X.37)
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on the torus. Trajectories wind around the torus repeatedly. They cut a
particular cross section, say A in Figure X.1, each time ¢ is advanced through
a period T (and ¢ through an angle 2r). If, after a certain number of circuits,
say n, in which the angle ¢ increases by 2mn, the angle 8 is also periodically
repeated,

Bt + nT) = (1), {(X.38)

the solution on the torus is periodic. If the solution is quasi-periodic, it has
two rationally independent frequencies 2r/T and w(g), with 8 = w(e)t. In the
quasi-periodic case the solution trajectories are dense on the surface of the
torus T2 and are said to be ergodic.

The curious reader may now ask why we speak of an approximating
problem through terms of order p" when N is arbitrary? Why not pass to the
Jimit? The answer here is that the solutions we obtain are asymptotic (for
g — 0} and, in general, diverge (see remarks closing this section). It is fre-
quently the case with divergent approximations that there is an optimal N(e)
depending on ¢ such that approximations for a certain ¢ become better and
betteras N < N(g)is increased and worse and worseas N > N(g)isincreased.
So we are well advised to think of an approximation of a fixed, but arbitrary,
order.

Now we shall derive the form of the function p(8), the trajectories 6(t), and
show that the approximate solution

u™M() = ZM(, L™, 0 + ZW(, 8N, 0 + WV &) (X39)

is quasi-periodic, with two frequencies when r = wo T/2n is irrational,
0 < r < 1.1n this case we find that p¥X(@) = £is a constant independent of .
To show this we solve (X.33) in the approximation with R, =0 for steady
solutions

2g+1<N

pé(wy + Y Re(afuyp®) =0 (X.40)

gz1

It is generally convenient to solve for i in powers of p2. For steady solutions
we put p = ¢ and develop (X.40) in powers of ¢ assuming that a, () and
&(y) can be developed in powers of p. After identifying the coefficients of the
independent powers of ¢, we find that u = u™\e),

oo [(RE al(O))sz) Otet
H(e) (——T—i(O) + 0(")

= u™M(—e), M =e. (X.41)

Moreover, in the same approximation, neglecting R, we find that the solution
(X.34) is in the form

g™ = g28W (e, (X.42)
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where

2g+1 <N

eV = MEOUM@] + Y Im @ u™@]e.  (X43)

gz1

After tracing back through the changes of variables, we find that the
approximate solution, up to N {arbitrary) terms, of (X.1) is (X.39), with

ZW(t, £) = & exp i(wgy + 28Ny (X.44)
and
W e = 3 0™ expl(p — qi[wg + 20N ()],
7 i";i?é 2 (X.43)

where ¢®™\(g) and ™(c?) are defined by (X.41) and (X.43). We assert without
proof that solutions on the torus satisfy

He) — u™e) = 0N+,

W, 1) — W1 g) = 0N+,
Z(t, @) — Z™(t 8y = O(M ),
S, 1) — (™, 1) = O(eM+2),

where W™ and Z® are obtained by replacing £20™ (%) by 6(r) in the expres-
sions (X.44) and

B(t) — 20"y = y(1, £).

These estimates are uniforraly valid in 1, even if x(t, &) contains secular
terms which, like terms which are linear in t, are unbounded. However,
|2(¢, &)l = O(e™). The functions {(u™, £) and ®,.(t) are all T-periodic.

We now claim that the vector

u™t) = U™z, (1), 15(c) {X.46)
given by (X.39) is a doubly periodic, vector-valued function with

() =1t and () = [wy + e20M(})]e (X.A47)
and that

UM, 1) =UN(, + T, 1) = N (1, 1, + 2m).
So we say that the flow is asymptoticall ¥ quasi-periodic with two fundamental
frequencies

W, = my + 28%2),

The second frequency is a polyromial in &2, but the series for it which arises
formally as N — oo is divergent in general. There is as yet no direct proof
of divergence, but convergence would contradict certain slightly exotic
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mathematical theorems which are outside the scope of an elementary book
(see G. looss, Bifurcation of Maps and Applications (Amsterdam: North-
Holland, 1979)). Note that u™ is quasi-periodic for values of & such that
Ti2m(wy + ¢26(e2)) is irrational. In the rational case it is periodic; but the
strong fact is that the linear dependence in (X.47) of 1,, 7, ontis not in general
true of the true solution u(¢) for all values of ¢.

X.5 The Torus and Trajectories on the Torus
When w,T/2n Is a Rational Point of
Higher Order (n > 5)

The interesting fact is that when there is an n > 5 such that A3 =1, we geta
torus and the solutions on it are asymptotically quasi-periodic. So the basic
physical results implied by analysis of bifurcation of periodic solutions are
qualitatively independent of whether r is rational or irrational. But the analysis
is more delicate in the rational case and the formulas for the torus and the
trajectories on it are different.

Suppose now that r = m/n is an irreducible fraction and n = 5. Qur first
goal is to determine an approximation py(f) to the cross section of the
torus p(6). The equation governing this approximation can be obtained by
dropping R, and R, in (X.33}and (X.34):

d R 2g+1<N
—p=p[ué+ Y, e

dt e
2g—~1+kueN
+ Z 2 (aqkeiknﬂ + &qke—iknﬂ)p2q~2+kuj|’ (X.48)
k>0 PEY
and
2g+1<N
‘2—9 =ud+ 3 B
t gz 1
2g—1+knzN
+ z Z (ﬁqkeiknﬂ + Bpke—iknﬂ)p2q—2+hn’ (X49)
k>0 gz0

where all coefficients £, &, o, f,, 24, By are functions of p, as smooth as
we wish,

Ew=Co+ud+ 2o+, L>0,
D) = b + pdy + Wy + e,
ap) = tgo + H%y + progy + o
O alf) = Ygro + MUp T+ Pogy + o 0s
Bp) = Bpo + uhy + Nzﬁqz +
Bult) = Baeo + Wby + ﬂlﬁqkz + -
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and where by construction
%, + i, = a, o,

def

Oy = %(arl‘k +d, _y), G- «=0 if g=0, (X.50)
1 _
By = 3 (@g-1.5x ~ g, —)-

To solve (X.48) and (X.49), we introduce an amplitude ¢, defined as the mean
radius of the cross section of the torus, as in Figure X.1:

e 1 27 of _
o e, a0 5, (X5
2 0
The equation governing p(8, 1) can be deduced from the relation
dp _ dp 4p
dr 4o des (X.52)

where dp/dr and d8/dt are given by (X.48) and (X.49). To solve (X.52) we
develop p and p in powers of &

N
u= Z HpEP + O(eNH ),
p=1
N
p= 2 pl0)" + OV, (X.53)
pr=1

=1 Pp,=0 for p=2

Identification of the coefficient of 2 in (X.52) gives

éoﬂlpl(‘g) = 1@ pi(0). (X.54)
Taking the mean value on (0, 2r), we find that oty = 0; hence
#y = 0.

Identification of the coefficient of & in (X.52) gives:
PO oz + %10p30)] = pi(O) s Do + Brop?®)].  (X.55)
Taking the mean value of (X.55) on (0, 2r), we find that
Eotta + 2,472 = 0. (X.56)

Now it is not hard to show from (X.55) and (X.56) that any periodic solution
= _ =

of mean value | must satisfy p2** = p_lpi‘ for all integers v > 0. Hence,
for any integer p > 1,

1 2 s 1/p 1 2r 5 =
— » =— e = p?,
[21:'[) lp1] d@] ' fo ray Pi




X.6 The Form of the Torus in the Casen = 5 221

and since p, is continuous,

1 2n 1/p 5
I:ﬁ"I‘ |P1|2pd9] — lub. [p(8)]".

2 Jo P7% gelo,2n)
So p2 = Lub. |p,(6)]; that is, | p,(6)| = 1 and
/=1 (X.57)
b= = (X.58)
0

We stop the general analysis here. Further results depend on the value of
n = 5 for which Aj = L.

X.6 The Form of the Torus in the Case n =5

We now suppose that A3 = 1. Identifying the coefficient of £* in (X.52) we
find that

Eoluy + 1z p2(8)) + 3a10p2(0) + o108 + Horoe Y

= p3(0) (120 + B1ol (X.59)
After taking the mean value of (X.59) we find that &, 15 = 0, hence
My =0 (X.60)
and
p2(0) = g1€%° + §1e7%, (X.61)
where g, is a complex constant satisfying _
g1[20,0 — 5i(u; Do + B10)] + %10 = 0. (X.62)

We can compute g, from (X.62) provided that the coefficient of g, does not
vanish. Since (X.58) shows that y, = 0 when a4 = 0, we conclude that (X.62)
may be solved for g, except for the exceptional case in which e, = B0 = C.
In this exceptional case bifurcation into an invariant torus need not occur.
We shall not consider such exceptional cases.

Procecding as before we identify the coefficient of ¢° in (X.52) and find that

Eolitg + H2p3] + Ed + 3u0p3 + 3“10‘93 + &y s
+ 059 + 4py(000,0€7" + Zo10€ ")
= o2 ®g + Bro) + P2(2B10p2 + Boroe®™® + Boroe™ ).
(X.63)
The mean value of (X.63) is

Eobty = (51'61@010 — SigyBo10) — #1091 + For091)
- M%ﬁl - 6“10|Q’1|2 — Oyl — %0 (X.64)
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and (X.63) and (X.64) imply
p3) = g;e'%% + g, 10%

where g, may be computed as g, if a0 and fi,, are not both zero.
Turning next to the coefficient of £® we find that

30#5 + 20oygps 4+ Fye' 4 Foem15% F,e’® 4 F e=5%
= pa(t; Oo + B10). (X.65)

Hence
MS = 0; 66
0 = 1568 — -15i8 5i0 = ~5if (X' )
P40) = gspe + gszpe€ + g31€7" + gy 7Y

where g5, g5, are determined by identification in (X.65) and F;, F; may be
computed easily in terms of known coefficients.
More generally, it can be shown by mathematical induction that

H =0,
A (X.67)

2p
_ 5(p— 2q)ie = 5(2¢- pif
Pp+;(9) — nge P~ 2q) + Tpg€ (2q9 p)t,
gz0

where @, = (p — 1)/2 if p is odd and 0, =(p/2) - 1if p is even. All the
numbers g,,, like g, and g,, may be determined by identification.

X.7 Trajectories on the Torus When n = 5

We next turn to the problem of trajectories on the torus. In particular, we
seek & = 0(t, ¢) solving (X.49). To solve this problem, we define
N-1
G=0+ Y (@ (X.68)

=1

and construct periodic functions h{8) = h{f + 27) of mean value zero, hzf =
0, in such a way that 8(r) is constant up to order &, It turns out that these
functions h(8) are 2n/5-periodic; that is

h(6) = h,(a + %) iy = 0. (X.69)

The differential equation satisfied by 8(t) is

1

df

N

where d8/dt is given by (X.49) with n = 5. After expanding the right-hand side

46
e’h}(@)} - (X.70)

1
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of (X.49) in powers of g,

p=ppe? + paet + pee® +

(X.71)
p(8) = & + e2p,(8) + 3p3(0) + epa(0) + -,
we find that
dG 2 3 4 5
i Qoe? + ©,(0e® + 0,(0)* + O(0)e” + -+, (X.72)
where
Qy = 1, @ + Bros (X.73)

©,(8) = 2B10p2(0) + fo10€™ + Boroe™ ",
0,(0) = pa®o + p3 B, + p2 P11 + 2B10p3(0) + B1o03(0) + Bao
+ 3p,(0)(Bosoe® + Boroe™ ),
©3(0) = 28,00:(pa(0) + 213 B11p2(0) + 420 p2()
+ 3[p30) + P38 [Bor0€™® + Boroe™ ]
+ 2811P4(0) + [B110€* + Br10e "]
+ u20Bo11€*® + Borie ],

and so on. Here, and in general

®,#0 and 8;.,=0, Ix1, (X.74)
and
2n
QL8) = @,(9 + (?)) {X.75)
Equations (X.71) and (X.72) imply that
dé , - .
i [1 + ehy(0) + e2hy(0) + e*hy() + - - -1 [Qo* + ©,(0)e?
+ O,(0)* + O4(8)e® + - -] + OEM). {(X.76)
Now we shall construct periodic functions h(6) to simplify (X.81). We
seek
2n
with

F=0 (X.78)
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for all { > 1 such that

% = e2Q(e?) + O™, (X.79)

where Q(&?) is a polynomial independent of ¢+ and 0. Our method of selec-
tion is as follows. First we arrange the right-hand side of (X.76) in powers
of e

7= Qo + (Qohy + O + (Qh) + @, + O, k)
+ (Qohs + O3 + O,k + OH)E + -
+ (Qohi + O, + O h, + -+ + O,k e
bt O, (X.80)

Assuming that Q, # 0, we choose h,(#) sequentially so that each cocfficient is
replaced by its average value. For the first coefficient we put

Q()hfl + @] = (?)1,

where
0, =0,e" + @,,¢7%%, O, =0
So
910 550 610 - 5i@
=506 Tt

For the second coefficient we find that
Qohy + ©, + Ok, = B, + O, # 0, (X.81)

We eusily calculate h,(0) satisfying (X.81), (X.77), and (X.78). For the third
coeflicient we have

Qohy + Oy + O, + O, = B, + O,k + O,k

0,
and so on. The average values of the coefficients of odd orders vanish and

1 =~ AT = ~ I ’
E—zd—d? =Q + [0, + O,11 + [0, + O3k + O,k + O,hy]e*

+ 4 O
QY + 06N 2). (X.82)
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When 45 = 1, the trajectories on the torus are given in general by an
asymptotic expression of the form

Qe = 0 + ehy(0) + e2h(0) + - + Ny (0) + x(t8),  (X.83)

where h(8) is 2r/5-periodic in 8, of mean value zero, N is unrestricted, and
i, €) = OCE").

The fundemental assumption in all the preceding is that Q, given by (X.73)
does not vanish. We shall see in §X.12 that if Q, = 0, then we enter the frame
of weak resonance with two subharmonic bifurcating periodic solutions on
the torus. One of the two is attracting and the solution is asymptotically
periodic.

X .8 The Form of the Torus When n > 5

We return now to the rational case with n > 5 and consider (X.52) with

= gR(H, ¢),
p = eR(E: <) (X.84)
pu = &*fie),
where
R(9, s)] [R,(G)] I .
- = - |Es = , R, = , X85
[ ) ‘g,o i By = Hie2 1= P ( )
- %10
R, =1, = — =,
0 Ho %

We find that the approximation (X.48) and (X.49) of the solution satisfies

2¢+3=N
BL{p)R + 2 2424+ 3()R29+3

qz0
2g-1+kn<N

+ ¥ Y geerhLeb gR¥MTI =0, (X.86)

k>0 qz0
where
R d
L(p) = &(u) — O(p) 70’
Bari)d
2q+3 — _ 4 7
Lq (#)_mq+1(“) 2q+3d9’
and

L<2“"‘>(,u, 9) — aqk(#)eiknﬁ + &qk(M)e“iknﬁ

1

- o d
s iknd — iknf
- 2q 1+ kn [qu(#)e + qu(ﬂ)e ]—dg.
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The first nonzero term in the last summation of (X.86) is the one for which
g=0k=1and

2g~4 +kn n—4

& =&

So we may identify the coefficients of successive powers &, I <n— 4,
without considering the last summation of (X.86). These coefficients may be
computed by writing

R™(0.¢) = ¥ [R™(0)], ¢,

p=0

Rle)L(e*i(e)) = Zo[ﬁL(#)]pa", (X.87)
p=
LIS = § LA D],
p=0

After identification, we find that
2 [ALGIR, + T [L*D))[R¥G)) =0 (x.88)

v=l+p v=29+p+!

forv=0,1,...,n -5, g =0,p=0,1>0. This problem is in fact identical
to (X.40) through terms of O(e"~%). Hence R, = 1,

R(8) =0, O<i<n-—4, (X.89)
and
fizi-y =90, A—-1<n-35, X90)
Hz—1 =0, 20-1<n-3
Now we demonstrate that
R, i) = p,3(0) = g,0€™ + gige ™, (X.91)

where g,, is a constant depending on the resonance number . To prove
(X.91) we identify the coefficient of ¢* with v > n — 4 in (X.86) and find that

> [AL@LR, + ¥ [L2 D)L IR 2(6)],

v=Il+p v=2g4p+i

+ Y LSRRI <0, (x92)

2g+kn—4+14+p=v

There are two cases to consider.

(iynisevenandv=n — 4. Then, using (X.89), we may write (X.92) as
Lial()]a-4 Ry + [ﬁL(#)]oRn—4 + [L<3)(H)}0[R3]r4

+ Y LT O)L[R¥*3], + [L P, )[R '], = 0,
n-4=2g+1
! (X.93)
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where
[ﬁ’L(.u)]n—tt = ﬁn~4 Lo + I.O.t.,
. I d
R, = [R"_l]o =1, LaL(u)]o = Po(éo — @ @),
[L<3>(#)]0[R3]n—4 = 3,oR,_ 4 — BioRa-4,
[L<0.1>(#’ 8] [Rn—l]o = L<°'1>(0, 6) = %weina + &ome—ine’
and
i = 2

Hence

Ha-260 + Lot + (42 Eo + 3a0)Rp—s — (Bro + #2Do)Rp—s
+ Z [Laﬁa)(ﬂ)]z + aowi’m + 0‘0103—‘"8 =0, (X-94}

n=2q+i+4
where the operator [L¢2%*¥ ()], acts on the constant unit function 1. The
average value of (X.94) is
ty_afo +lot.+ Y [LEP(w], =0. (X.95)
n=2g+i+4
This determines ,_, in terms of lower order. It then follows from (X.94) that
R,_,(#) is in the form given by (X.91).
(ii) n is odd and v = n — 4. Here the second two terms of (X.95) vanish
because iy = 0for 2/ — 1 <n— 2,50 that u,_, also vanishes.

We next establish that when n is even (n = 6)
Rym+1(0) = p2n(0) = 0 (X.96)

for all m such that 2m < N (recall that N is unrestricted so that the even &
derivatives of p(f, &) all vanish in every approximation). This follows from
the fact that when n is even only even powers of £ appear in {X.86). The same
observation establishes that
Ham-1 =0 (X.97)

when n is even.

Equation (X.97) also holds when n is odd (n = 5). Assume g, = Owhenl < v
and / is odd. Then all odd-order derivatives with respect to ¢ of functions of g
must vanish and the average of (X.92) may be written as

ﬁ‘.éo + Z [L<2q+3>(”)]2![R24+3]2p+1

v=2g+wlt+2p+1

+ > [L240(, 01, [RH 1], = 0. (X98)

2q+kn—dt 2+p=v
Now R(0), { > 0is an even (odd) polynomial in harmonics of ™ if | is even
(odd) and R, = 0. Then [R™(6)]{m > 1) is also a polynomial in ™ and
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R™ = 0if [ 1s odd. Similarly [L%¥(y, §)], [R24**~ '], is a polynomial in
the harmonics of e™* of mean value zero when k + pis odd. Since v and n are
odd kn + p is odd when k + p is. It follows that the average terms in (X.98)
vanish and g, = 0 when v is odd.
In general, we have

IpEN

B= ) pa,e™ 4+ 0N (X.99)
p=1
and, when 43 = 1,n = 5, and n is odd,
p(6, &) = & + &' Hg, o™ + d108™) + & Hgye®™ + Gaoe 2"

+ en-l(g3oe3fn8 + 5303_3i"8 + galeinﬂ + gale—inﬂ) + O(E")

k<N+a—-p k—2g>0
=&t X TN [gi, exp nk — 2g)if
k=1 ¢=0
+ Gig €Xp (—nk — 29)i6)] + O ). (X.100)

When n = 2v is even, we have

PO, &) =& + £™ " Hgoge™ + Goge 2)
+ET T gy et gy e 0 g e Groe 4
+ 68 Ngy,2 4 Gyye B0 4 92:€*"" + gy e
+ G206 + Gage™O) 4 0@
20h+)N+3 K
=g+ 2 TN (gexp vk + 1 — q)id
k=0 g=0

+ Gig €xp (= 2v(k + | — q)if)) + O(¥+1), (X.101)

The verification of the forms (X.100) and (X.101) is left as an exercise for the
reader.

X.9 Trajectories on the Torus When n > 5

The procedure we use to find the trajectories on the torus is exactly the one
used in §X.7 to study the case in which n = 5.

We have first to express p(é, ¢) in (X.48), (X.49) with the explicit asymptotic
expressions (X.100) and (X.101). We find that when 7 is odd

1d
?d_f = Qo + 028" + et + o+ Po oy (0)

T Ty + WSO + -+ OV, (X.102)
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where Q, = u, @, + B, is assumed to be nonvanishing, and

WE T e, FrEo,
$2I+1 = 0:
¥0) =0 forl<n-—4,
I—-2q>0

Yo (0) = 3 [0, 4 Gemn¢ 20,
q=0

and 6, are all constants. (For example, ¥ 4(8) = B0 + O0e™™

where 6,6 = 2810910 + Bo1o-)
When n = 2v is even

1 40

?I=Qo+$282+$454+“‘

+ e s + YE e + -+ OEVTY), (X.103)
where i, = §, + ¥¥(8), as before, and

Ware ) =0 foralll>0,
Wal0) =0 for2l < 2v —4,

and

1
WA a2l = ¥ (O exp 20 + 1 — @)i0 + B exp (~2u(! + 1 ~ )if)].

q=0
To solve (X.102) and (X.103) we proceed as in §X.7 and introduce

=0+ "%h_,(0)+ & 3h,_y(@) + -+ & Thy 1(0), (X.104)

where h(f) is a to-be-determined function satisfying
2n =
h{8) = {6 + s (B = 0. (X.105)
It follows that

do
dt’

1 df

=3 (X.106)

(4O + O+ o+ OGN

where df/dt is given by (X.102) when # is odd and by (X.103) when n=2v
is even. Let C(¢?) be all of the mean terms in (X.102) and (X.103). Then, in
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either case,

1 di
?£=aﬁ+ﬂ4w&w+owx (X.107)

where (T)*(H, &) =0 and C(0) = Q,. Combining (X.106) and {X.107) we can
generate an ordered sequence of equations for h,(6) satisfying {X.105) by
identifying the independent coefficients of ¢ in

C?) - ol0) + ehy_y(0) + -} + (6, 0)
+ 00, ) th, - o(6) + ek, 5(6) + )
= & 5040, &) (H,_(6) + ek _(0) + -}
=& a0k, (0) + -, (X.108)

The hy(8) are given by

hy=0 forl<n-35,
p-21>0

hoosep@) = T D€ 4 5,0 0] s g (X 109)
=0

when n is odd, and
h{#) =0 forl<2y—35,
h21+ 1(9) =0,

?
Ry avzp = Y [vpexpi2v(p + 1 — Do {(X.110)
10
+ Vpexp(—i2v(ip+ 1 -08)], p=0,

when n = 2y is even.
Using (X.108), we may reduce (X.106) to

1d —
?’?i? = C(e®) + e BYr kg + -+ O 2)
= Qe*) + O(e¥ %), OCILD
and, as a consequence of (X.111), (X.104) may be written as
U™ = 0 + & *h,_ () + &3, 3(0) + - + X1, £)s
where | j(t, £)| = O(e") and the h(6) are given by (X.114) and are such that

() = ht(B + 27“) hi(8) = 0.

Here, we have assumed that Q, « 0.



X.10 Asymptotically Quasi-Periodic Solutions 23t

X.10 Asymptotically Quasi-Periodic Solutions

We summarize the results given in this chapter up to now. The solution is
decomposed into a sum

u(t) = ZOL, O + Z(O%w 1) + W), (X.112)

where {(y, t) is the eigenfunction belonging to eigenvalue o(y) of largest
real part of the operator —d/di + (¢, ul-),

Z(1) = <), L)

= p(t) exp ifwyt + (1)) + OE™) (X.113)
and
Wi(t) = +Z>1 @, (O Loy expi(p — Dilwot + OO} + 0™,
e (X.114)

The truncation number N is unrestricted and p(z), 6(t), and p are parametrized
by

_ 1 2r
== L o(8) df, X.115)

the mean radius of the torus. In all cases gz, ; =0,

po= a8 4 gt + s + o+ OET), (X.116)
and
p8) =&+ £ 3p a(B) + & 2pa(O) + - + OEYTY),  (X11T)

where the number n is the one for which 4§ = 1, the p(6) are defined by
(X.100) when n is odd and (X.101) when n = 2v is even, and g, = 0 when
k > 1. For 8(t) we have the relation

8(1) + & *h,_ 4 (B0 + "3k, 5(B(D) + -+
= 2QeHt + x(t, &), %l = OE™), (X.118)

where the 1,(6) are given by (X.109)and (X.1 10) and satisfy hy(@ + (2=/n)) = h(6}
and h, = 0.

The formulas given in the previous paragraph hold when the ratio
w,/(2n/T) of frequencies at criticality is rational. We may obtain the results
for the irrational case by letting n — co, or more simply, merely by setting
all terms involving n to zero.

Since the approximate solution through terms or order & (N unrestricted)
is a composition of T-periodic functions (S(#. 1), ®,,.(1)) and polynomials of
harmonics of ¢7®, 1{t} = wet + B(1), the solution is in the form

u(t) = 2(t, (1))
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with 1(t) = wyt + O(z). The function (-, -)is T-periodic in its first argument
and 2r-periodic in its second argument. In fact, it is not hard to show that
) = F(t, wot + 2 Ne?)), Ft + T, ') = F(u, ' F(t, ' + 2m) = 2n +
F(t, t'), where F is the function solving the following functional equation
inmgt + 0:

wol + 0 + & H, _(t, wot + 0) + e H, _4{t, gt + 0) + .-

= (oo + 2N,

and H, ,(t, oot + )= H, ,(t + T, wot + 8) = h,_,(8) where h,_,(6)
is a polynomial in exponentials and

exp iknfl = exp ik[n(wor + ) — negt

2rimk
exp (— mr_z) exp ik[n(wqet + 8)],

because wg = 2mm/nT, So
u(t) = AU, (1) = Vi, [wg + 22,

where V, like %, is T-periodic in its first argument and 2n-periodic in its
second argument. We have therefore shown that each and EVEry approxi-
mation (every N) of the solution is a doubly periodic function, quasi-periodic
when [w, + £*Q(e2)] T/27 is irrational, provided that Q, =0,

X.11 Stability of the Bifurcated Torus

It is necessary to draw attention to the fact that in the present case the
bifurcating object is not a unique trajectory, but is a one-parameter family of
trajectories lying on a torus in the phase space. Our understanding of stability
here is the attracting or repelling property of the torus itself, instead of the
stability of a single trajectory on it.

We saw in §X.1 that the dynamics near U = 0 is attracted by the center
manifold, given by (X.2) and (X.3). The projection in R? of the dynamics on
this manifold is given in terms of coordinates (p, 0) defined by (X.31), by
equations (X.33) and (X.34). This fact has been established as a consequence
of the center manifold theorem (see O. Lanford I, Bifurcation of periodic
solutions into invariant tori: the work of Ruelle and Takens, in Nonlinear
Problems in the Physical Sciences and Biology, Lecture Notes in Mathematics
No. 322, (New York—Heidelberg—Berlin: Springer-Verlag, 1973), pp. 159-192
or G. looss, Bifurcation of Maps and Applications, op. cil.).

Our differential equations are satisfied by flows on the torus

p(t) = eR(6(2), &),
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where R may be computed up to terms of () as in §§X.4-9:
R(0,)=1+eRy() + .
To study stability, we perturb the torus and set
p=c¢cR(B, &+ p, (X.119)

where 8 € [0, 2n) is any one of the solutions of (X.48) (X.49) on the torus.
Combining (X.119) with equation (X.98), we find that p’ satisfies

P = eXuado + Iuiodp’ + O + O}, (X.120)

We recall that p, &y + 30,0 = — 240, g,. and &, > 0 by virtue of the as-
sumption of strict loss of stability of u = 0. It then follows that [p'(t}| = 0
as t — oo if 4, > 0 and |p(0)} is small enough; that is, we get stability if the
torus bifurcates supercritically. And if y, < 0 the torus is repelling. Small
perturbations of the torus are attracted to the supercritical torus and are
repelled by the subcritical torus.

X.12 Subharmonic Solutions on the Torus

To understand what happens to trajectories on and near the supercritical
torus it is necessary to consider the properties of subharmonic solutions
on the torus which arise as a result of frequency locking. A brief discussion
of this is given in §X.14. For now, it will suffice to develop the properties of
subharmonic solutions on the torus which bifurcates at criticality when the
Floquet exponent is a rational point.

Assume that @q = 2mm/nT, n > 3. If x is a steady solution of (X.28),
z(f) = e''x is nT-periodic and u(f) = 2(0)5o () + Z(0 8 (D) + Bt . 2(2), Z(1))
are the compositions of T-periodic and nT-periodic functions. So we get an
approximation to subharmonic solutions of O()x|¥*1) from steady solutions
of (X.28).

Consider the cases n = 3 and n = 4 of strong resonance:

n=3 %= péx+ xlx|%a, + ¥ae -y + O(|x|*),
n=4 %= ubx + xixPa; + ag, -, + Ox[).

We find steady solutions x in the form given by (IX.68)and (IX.80). Following
the ansatz used in Chapter IX, we define an amplitude & (formerly ¢ which here
is defined as the mean radius of p(f)) and set x = 5™ and p = pé +
pD§2 4 ™53 + ...  When n = 3, we find the leading balance

pMggeitr + e Mgy =0 (X.121)

corresponding to (IX.68). One 3T periodic solution u of (X.1} bifurcates on
both sides of criticality and both solutions are unstable when & is small
(81X.14).
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And when n = 4 we get u'" = 0 and
(P80 + a,)e'* + e 3%q, | =0 (X.122)

corresponding to (IX.80). We find that two 4T-periodic solutions u of (X.1)
bifurcate, provided that a certain inequality implied by (X.122) (see (IX.83))
is satisfied.

When n > 5 we enter into the case of weak resonance and find that
subharmonic solutions are possible only when exceptional conditions hold.
At order & we find that 4" = 0 and, at order &2,

¥y + a; =0, (X.123)

It is not possible to solve (X.123) for a real-valued ¢ unless a, /é, is real-
valued. This is the first exceptional condition; it is the same as (IX.101)
and it holds for all n > 5. When n = 5 we have

X = ubx + x|x|%a; + ¥ag._, + O(|x]%). (X.124)
At order &% we get
ué, + e g, | =0 (X.125)
And when n = 6,
X = péx + x|x{a; + x[x|*ay + %05, _, + O(|x|7),  (X.126)
and pV = pu® = "D = 0, PG, + a, = 0, and
WMy + ay + e %, | =0, (X.127)

When n > 6, we get u'V = 4'» = 0 and, besides (X.123), we have a second
exceptional condition arising from the equation

¥y + a; = 0. (X.128)
Supposing now that both exceptional conditions are satisfied ; then we get
¥y + e Tibog, | =0
when n = 7, and when n = 8, ' = 0 and
w9 + ay + e¥ioa, | =0

In deriving the equations for n > 6 we have assumed for simplicity that
8,4y, ay, - are independent of z. The analysis shows that the results for sub-
harmonic bifurcation require exceptional conditions; a new condition
is added at cach odd value of n, starting with n = 5. When n > S is odd, the
computation of bifurcation is like that given when n = 3 with the following
differences. Since p'" =0, 1? % 0 and " 2 £ 0 when n> 5 is odd,
the bifurcation is one-sided but u(5) is not even, so that there are two solutions
with the same g but different amplitudes 8. (It is perhaps necessary here
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to caution the reader against confusing the amplitude 6 with the amplitude ¢,
used earlier.)

When n > 6 is even, the computation of bifurcation is like that given
when n = 4and two nT-periodic solutions bifurcate when a certain additional
inequality which guarantees solvability is satisfied,

Now we shall show that the subharmonic solutions which bifurcate when
n > 5 lic on the torus. We first note that we may always compute the cross
section p(#) unless conditions even more exceptional than the ones required
for subharmonic bifurcation with n > 5 are satisfied. In fact, u® # 0 is
sufficient for the existence of p(6). For subharmonic bifurcation we must
have p = § = 0. Under these conditions the equation p = o' ()0 is satisfied
identically and the subharmonic solutions lie on the torus

N
p(8.8) = Y py(@)ef + O,

where p, satisfies (X.100) or (X.101). Piercing points of the periodic solution
on the closed curve p(8, £) are determined by roots for which § = 0;that is for
roots # such that (X.102) or (X.103) vanishes. Since there are no disposable
parameters left, the equation & = 0 determines 2n piercing points 8(g) on the
closed curve p(d, £).

It is useful to show how this calculation proceeds at the lowest significant
order when n = 5. We first note that

p() = & + &2py(0), p2=0, 1€ + 010 =0, (X.129)
where p,(#) is given by (X.61) and (X.62). Now 6 = 0 implies that

Qo = ,u.Z(DO + ﬁlo = O. (X.130)
Then
Xor0 s Bo10  _s;
9 —_ _ 5i8 5i0
p2(0) 21 € 2, €
= M cos (56 + arg ay, o). (X.131)
#2¢o

The first approximation (0) = 8, of 6(s} is obtained from = 0 by requiring
that = 0 through O(&%):

0,(f) = 2B1002(80) + Boroe™™ + PBooe ¥ = 0. (X.132)

We now show that (X.132) determines the first approximation to the ten
piercing points #(¢) on the closed curve p(d, ). We note first that (X.50)
says that ag, + ifi,, = 0; hence, B4, = i%g,, and

| ) L ——
©,0) = E_ (m'o%lo‘f'su3 — g%y 0€ 518)
0

2 .
=-r |Go0o10] SN (50 + arg gy + arg o). (X.133)
0
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Hence
50q + arg ay,¢ + arg &, = km, k=0,1,2,...,9, (X.134)

and there are ten values of f,. Returning now to (X.131) with (X.134) we
find that there are two values of

p2(60) = 12210] cos (n - arg 6,)
Mz &g
%10l y cos (arg &,), fork=0,2,4,6,8,
Tk, —cos (arg é,), fork=1,3579 (X135

Since &, = £, > 0,04 = w,,8, =0,aty = Owehave —n/2 < arg &, < n/2,
and since p, > 0 (we are considering the stable, that is, supercritical torus),
p2(80) > 0 when k is even and p,(f,) < 0 when k is odd. The largest and
smallest values of p,(0) are attained when &, = arg 6, = 0. So the position
of the piercing points on the closed curve p(8) = ¢ + £2p,(0), ¢ > 0 are
rotated through an angle arg &, from troughs and crests.

Finally we note that the ten piercing points on the closed curve in the cross
section of the torus are exactly the same as the ones determined by (X.125).
The relation between the amplitude é > 0 used in (X.125) and ¢ can be deter-
mined at lowest order from the relation

x = de'® = [& + £2p,(0,)]e".
It follows that there are two values 4, 8,, and J, of

3 = ¢+ e2py(6y), $o = b,
corresponding to the two values of p,(6,) and

wo(e)) = p8* + 8> + -
= uPe? + [2u%p,(05) + 116> + O(*).
The odd powers ¢ in the expansion u(8(e)) = u(e) = puy &2 + pge* +---,
vanish. For example, by identification we find that u'®» = pu, and (X.125)
shows the u® = —2u®p,(6,).

X.13 Stability of Subharmonic Solutions
on the Torus

The supercritical torus (u, > 0) is stable when ¢ is small. But one of the two
subharmonic solutions on the torus is unstable. To study the stability of these
solutions we set p = (B, &) = ¢ + £2p,(0) + O(®), u = ;% + O(*) in
(X.72) and find that

8 = £20,(0) + 0(cY),
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where @,(6) is given by (X.133). Now we perturb 6,, 6 =8, + ¢ and
linearize, using (X.132), to get

& = [20)(8,) + 010 + O(|8]), (X.136)
where 8, is given by (X.134), 8,,/2,0 = @0/50, Bo1o = ittg o and

Bro

281002(80) = 5i 2 [~y 0€%® + ag 00 3],

10
After some easy manipulations, using the relations just cited, we reduce
(X.136) to

. 5¢3

g = —[?—lé'ol |0ty 10] COS k1 + [O(e“)]] & + 0(#1%).
L

So the 5T-periodic solution with the 5 piercing points (k = 0, 2, 4, 6, 8)

nearer to the crests is stable and the other 5T-periodic solution with piercing

points near troughs (k = 1, 3, 5, 7, 9) is unstable (see Figure X.2).

ol
L &+ &py(f)

Figure X.2 Bifurcation and stability of 5T-periodic solutions on the torus. There are
two 5T-periodic solutions, each with 5 piercing points in the cross section. The solution
with positive values of p,(f,,) is stable and the one with negative values is unstable. If
arg ¢, =0 then &, = ®,{0) = 0 and the Floquet multiplier i = ¢°7 = g*@eTgn%T
crosses the unit circle along a ray from the origin. In this case the stable solutions are
the 5 points on the crests where p'(6;) = 0 and the unstable solutions are the 5 points in
the trough where p'(8y) = 0

The stability results for subharmonic solutions with n > 5 are like the one
just given, There are two distinct periodic solutions on the torus, each with
n piercing points; half of these are unstable, the other half are stable, and the
stable and unstable solutions separate each other. (Details for these stability
calculations can be found in G. Iooss, Bifurcation of Maps and Applications,
op. cit.). The conditions for the existence of these two periodic solutions with
n > 5 were given already in §IX.17. We may also write these conditions in
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terms of the parameters appearing on the right-hand side of (X.102):

0190:'4{:’2:‘;4:'”:‘;:1—5 (n 1s odd), (X.137),
or _ _ _
0=0=y,=Ys="""=ths
= v v v (n is even), {(X.137),
‘lt!ln-ttl <c¢

where the inequality is like (IX.83) and c¢ is determined by . ,(f). The
condition Q, = 0 gives a relation between £, and g through (X.56} and (X.73).

Similarly, ¥, implies a relation between &, and &, ..., §,, = 0, a relation
between ¢, and ¢, etc. Therefore, when p varies, the Floquet exponent
HE() + il + pd(p)) (X.138)

describes a curve in the comvlex plane passing through the point iw, =
2imm/nT, We can interpret the conditions (X.137) by noting that we enter into
the case of weak resonance (n > 5) when we enter into an “Arnold tongue”
shown in Figure X.3, defined by its tangent (€, = 0), its curvature (i, = 0),
and higher derivatives if n > 9 {Arnold [1982], op. cit.). In fact, the conditions
{X.137) define oniy the central curve I of the tongue, the tongue itself is
defined by

€24 + Va8 + o F U eB? O+ 82T = gy, gl < et (X.139)

if n = 2v. In the case for which n = 2v + 1, we have ce>*? on the right-hand
side of (X.139).

The limiting curves, which are given by the equality (X.139), correspond to
a situation in which the two subharmonics coalesce; the two families of
piercing points on the section of the torus form only one family. When the
inequality is strict, then the two families separate; when the inequality is
reversed, the two families disappear.

iwu/

i \

Figure X.3 Arnold tongues for weak resonance at iw, = 2inm/n'T



X.14 Frequency Locking 239

X.14 Frequency Locking

Frequency locking may be said to occur in a dynamical system when oscilla-
tions with two independent frequencies influence one another in such a way
as to produce synchronization of the two oscillations into a periodic oscilla-
tion with a common longer period (a subharmonic oscillation). This pheno-
menon is ubiquitous and very complicated.

The phenomenon of phase locking on the torus T? occurs when all the
trajectories on the torus are captured by a periodic one as u increases. To
understand the phenomenon of capture it is useful to introduce the Poincaré
map and the rotation number. The Poincaré map (first return map) is defined
by a monotone function f(-):

8 f(6), 0<8<2nm,
where @ and f(6) are real numbers, f is such that

S0 + 2m) = f(8) + 2m,

and f maps the starting point of a trajectory on the curve p = eR(0, £} on the
torus into the intersection of the trajectary with this curve after time 7,
the curve being parameterized by 6. So we may suppose that the trajectory
starts at the place 8 = 6, on the closed curve p = eR(8, ¢). The first return
pierces the closed curve at 8 = 6, ; that is 8, = f(8). The trajectory winds
around the torus again and after an increase in time of T it hits the closed
curve at 8 =0, = f(0,) = f*(6,), and so on. The angular increment
between successive hits is given by £(8). So we get the sequence f,, f(6,) = 8,,
THB) = f(6y) = 8,,....f"B) = f" '(6,)) = -~ = f(B,_,) = 0,. Suppose
that @ = 8, + wt. Then f(B,) = b, + oT = 8,, f3(8,) = 0o + 20T, ...,
17(8,) = 0, + nwT. We note that if @ = 2zm/nT, then the trajectory on the
torus will be nT-periodic.
We next introduce the rotation number §(f) of f:

A . 1 o

Py = lim S L0) - 6] (X.140)
Poincaré, who first introduced this number, proved that this limit exists
and is independent of 8. If the rotation number j(f) is an irrational number r,
then it may be shown that the solutions on the torus are quasi-periodic and
that a change of variable in 8 leads to f(0) = 6 + wT,0 = 2ar/T,0 <r < L,
which is just a rotation on the closed curve (Denjoy, Bohl). Since f*(8) — f=
2nvr we get 5(f) = r. In the irrational case each iteration of the map produces
a new point on the curve p = ¢R(6, £) and no point is ever repeated, so that
piercing points of any trajectory are dense on the curve p = eR(9, &) in the
cross section of the torus. Hence any trajectory on the torus eventually fills
up the entire torus.
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For quasi-periodic solutions on a torus the rotation number p=r=
w/(2n/T) is the ratio of frequencies. If the rotation 5( f) is a rational number,
r = m/n, then there is a 6, such that /*(0,) = 8, modulo 2z, and the cor-
responding trajectory is nT-periodic. In this case there are, in general, two
nT-periodic trajectories, one being attractive (stable) and the other repelling
{unstable), as, for example, in Figure X.2. Trajectories near to the attracting
torus will eventually be trapped by the stable trajectory on the torus.

The approximate doubly periodic solutions which are asymptotic to true
solutions up to terms of order ¥, N arbitrary, are of the form

u(t) = V(t, [wy + £*Qe*)]0) (X.141)

with V({t + T, 1) = V{1, t' + 2m) = V(1, ') (see the remarks concluding
Appendix X.2). This type of behavior corresponds to a rotation number

_ [wp + 2Q(eH]T

oe) (X.142)
2n
which is a polynomial in &. For this rotation number, most of the values of ¢
correspond to irrational values of () whenever §(e?) # 0.

It is necessary to distinguish between the rotation number ple) of (X.142)
for the asymptotic representation of the flow on the torus and the true

rotation number 5( f,), where
5(0) = 0+ wy + 2Qe?) + £¥h(0, o),
where N is arbitrary and h(8, £) is not known. The gth iterate of the true map is
JHO) = 6 + glwo + £2Qe)) + Vi (8, e). (X.143)

The function j(e) is analytic. Unlike the true rotation number, discussed
below, it cannot have the steps required when the solution locks frequencies
{see Figure X.4).

The true map f, need not be analytic in ¢; even if the map [, is analytic,
the rotation number j( f.) need not be smooth in e, though Poincaré has
shown that j(f,) is at least continuous in ¢. In fact, the foilowing argument
might be interpreted as suggesting that the function 4( ) is not smooth but,
instead. takes on constant values on an interval of ¢ at the rational points
#(f.} = p/q. This leads to a continuous curve containing steps as in Figure
X.4. Suppose that p = p/q when ¢ = ¢, and that 6, is a fixed point of order g
of the map 61— f,(#) when & = ¢,, that is,

Ji(0y) — by =0. (X.144)

This fixed point corresponds to a periodic solution of period gT of our
original problem and the ratio 0 < p/q < 1 plays the role of m/n of Chapter
IX. To prove that the rotation number j( f,) remains constant on an interval
containing &y, it is enough to show that

def

g0y = f{0) —-6=0 (X.145)
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P

Quasi-periodic solutions
~— - atirrational values of p

ple) — Ke¥

Frequency locking
at a rational
value of g

Figure X4 Rotation number of the Poincaré map. The rotation number seems smooth
ase¢— 0

holds for (g, 8) close to (gy, 8,). Here g is the integer muitiple corresponding
to the gT-periodic solution and p/g is determined by the continuity of
A(£). The implicit function theorem guarantees that (X.145) holds if (X.144)
holds and 2 o0

E%ﬂ =5t #0 (X.146)
when (&, 0) = (&g, 8,). Then there is an interval of & containing &, for which
there is a solution A(e) of (X.145) with rotation number p(f,) = p/g. This
leads to the flat scgments, the steps, shown in Figure X.4. The proof of the
implicit function theorem shows that a lower bound for the size of steps is of
order &.

We have shown that for every N the flow on the torus is at least approxi-
mated by a quasi-periodic flow. For all such, &, = 0 and the implicit function
theorem does not give frequency locking. The function j(e) is analytic for all
these approximations.

The implication of the fact that the truncation number N is arbitrary is as
follows. The norm of the difference of truncated approximation u*(e) and
the true selution u(e) is of the form

fiu(e) — u™(Ee)| = £"dn(e),
where in general a finite N = N(¢) may give a smaller error &% On(2) than a
larger N and the best N = N{¢) is such that
lim N(eg) — .

=0
So at the very least we may assert that the lengths of the intervals on which
P(f,) is constant must tend to zero faster than any power of &




242 X Forced T-Periodic Solutions into Asymptotically Quasi-Periodic Solutions

M. Herman has shown (Mesure de Lebesgue et nombre de rotation,
in Geometry and Topology, Lecture Notes in Mathematics No. 597 {New
York-Heidelberg-Berlin: Springer-Verlag, 1977), pp. 271-293) that if ( 1)
is not identically constant then the set of points £ for which p( £.) is irrational
has a positive measure. The set of ¢'s corresponding to frequency-locked
solutions is of positive measure if there are points (o, 8,) satisfying (X.146),
but intervals of ¢ around g, are small when ¢ is small, so that it might be
difficult to observe frequency-locked subharmonic solutions when ¢ is small.
But for larger values of & asymptotically quasi-periodic solutions and
frequency-locked subharmonic periodic solutions are expected and observed
in applications.

Recent experiments suggest that the bifurcation of periodic solutions into
invariant tori is common in fluid mechanics. The quasi-periodic solutions
are detected in experiments by examination of a Fourier analysis of some
time-dependent observable in the flow, for example, a velocity component.
In the analysis of the spectrum of a quasi-periodic motion there are a large
number of spikes corresponding to periodic components in the oscillation
plus smaller-amplitude noise. If the motion is quasi-periodic with two
frequencies it is possible to identify all the sharp spectral features as given by
the sums and differences of harmonics of the two frequencies. The ratio of
the two frequencies gives the rotation number just mentioned. In experiments
this ratio appears to be a smooth function of g near the point of bifurcation.
For larger values of p the solutions can lock into a subharmonic one in which
the ratio of the two frequencies is constant and rational on intervals. (See
Figure X.4.) Another way to understand Figure X.4 is by following the
trajectory of the Floquet exponent (). If it does not directly enter into weak
resonance it will in general cross infinitely many tongues (see Figure X.5)

o(u)

fwy |

Figure X.5 The curve o(u) crosses infinitely many tongues in the neighborhood of
the imaginaty axis. Each tongue corresponds to a weak resonance for which wo T/2%
is rational. When o(u) belongs to a tongue, the flow is periodic, frequency locked
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Appendix X.1 Direct Computation of
Asymptotically Quasi-Periodic Solutions
Which Bifurcate at Irrational Points Using
the Method of Two Times, Power Series, and
the Fredholm Alternative

Now we shall solve (X.1) when the ratio of frequencies at criticality wo T/2n
is irrational. We seek a doubly periodic solution u(t, s, €)

u(-, -, £} € Pr 1y, (X.147)

which is T-periodic in ¢ and 2zn-periodic in s and such that

s=ole)t, o0 w, us0)=0.

The amplitude & of u is defined by the projection (X.162).
First we expand the solution

u(z, s, &) o o [ 8)
o(e) — we| = —=| o, {X.148)
ORI ™

and identify independent powers of &. To simplify the writing of the perturba-
tion equations which arise from identification, we note that

u(e) and o(e) are even functions.

We can prove this again using the present method at a cost of a longer, but
not more difficult analysis (see D. D. Joseph, Remarks about bifurcation and
stability of quasi-periodic solutions which bifurcate from periodic solutions
of the Navier-Stokes equations in Nonlinear Problems in the Physical
Sciences and Biology, Lecture Notes in Mathematics No. 322 (New York-
Heidelberg-Berlin: Springer-Verlag, 1973)). Noting now that the two times
imply that
du on o

@ a Ve

we identify the perturbation equations. These equations are nearly the same
as (IX.50), (IX.51), and (1X.52), except that odd derivatives of 4 and w are
zero, the perturbation of the product term must be taken into account, and
an operator

e @

a
Lo = —wogg—a‘i'fu(ﬂ')— —wogg"‘-]o’ (X.149)
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whose domain is doubly periodic functions of ¢ and s (dom &, = Py ,,)
replaces J. The operator J,, is exactly as defined in §IX.4, except that we write
/0t in recognition of the fact that when Jy, operates on functions in Prza
the second variable s is held constant. In particular

Jo& =iwo &,
where iw, is a simple eigenvalue so that
z=¢"f and z (X.150)

are the only eigenfunctions on the null space of Zo, that is, ¥z = £,z
= 0. To show this we express the null vectors of £y as Fourter series and
identify the coefficients of ¢**. Then, on taking account of the fact that
wo T/2n is irrational, we get

2mik
tiwmy + —;L # iwgk’ forany k 5 0 and k',

The adjoint of £, in Py ,, is computed using the scalar product
aer 12"

[ -1 =§;J‘O [, Irds, (X.151)

where [+, -]7 is an integral as in Chapter [X. We have
[Zoa,b] = [a, £3b]
foralla,bin P, ,, and
$3=w0£+£+ fX(t| )=w0£+Jg, (X.152)
ds ot cs

where J¥ is as in §IX.2-4.
We next define z*(z, s) = *%*(¢) and suppose that

Zoy(t,5) = b, 5),  h(-,-) € Pr 4. (X.153),

Then there exists a solution y(t, s), y(-, -) € Py, 2. only if

[h, z*] = [h, 2*] = 0. (X.153),

(Equations (X.153), are also sufficient for solvability when h(, s) is expres-
sible in a finite Fourier series in s. In the general case there is a “problem
of small divisors” in (X.153), and solvability can be guaranteed when
stronger conditions are required for h(-, ) and w, satisfies a diophantine
condition. Equations (X.153) form a Fredholm alternative for the solvability
of the perturbation equations which are listed below. If h(t, s) has real values,
then one of the equations (X.153), implies the other,
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Identification of powers of ¢ in (X.1) leads to

0= Zou,, (X.154)
0= Zouy + ftIuy|uy), (X.155)

du
3(,02 'F; = gﬂu3 + 3luzfu,u(r|u1) + 3fuu(t|u11u2) + fm.m(tll"lll'll |u1)’ (X]56)

and, for p > 3,

Ju
pmp—l E;l— = ‘SFO“;- + p.up—lfuu(t]“l) + pfuu(tlullup—l) + gp! (X157)

where g,(¢, 5) depends on terms of order lower than p — 1. We solve each
equation for uy(t, 5), (-, ) € Py 20, @p_1, and p,_,.
The Fredholm alternative (X.153), for .%, implies that (X.155) is solvable
if
ﬂ:fuu(tlul Iul)’ Z*]] = 0’ (XISS}

We recall that [, -] is given by (X.151) as an integral over ¢ and s. Equation
(X.156) is solvable if

ou,

3w2|[3;, Z*:“ = 3“2|Ifu_u{t|“1)s Z*]

+ [35.00 1y [ug) + fCting fu ug)}, 241 (X159)
and (X.157) is solvable if

i
Pw_p— 1[[_(;%! Z*in = P.Up— ilIfuu(t]ul): zt]] + [{pfuu(tlul |“p‘“1) + gp}: Z*]]'

(X.160)

]
ds (X.161)

[f,(t1u), 2] = 6,(0),  Reo,(0)#0,

Now we shall show that

and that u,, Uy, Uy, .-, fy, g, . --s Mgy Oy, ... MAY DE computed sequentiaily.
In fact {X.161) shows that (X.159) and (X.160) can be salved for p,, and o,
if the u,’s can be computed.

We shall again determine u(z, s, £) in a decomposition

u(z, s, €) = e[zt 5) + Kt )] + w(t, s, €), (X.162),
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where
& = Tu, z¥], [w.z*] = [w, 2*] = 0, (X.162),

and w = (£2/2)w, + (£%/3Dw; + ---. We may choose ¢ to be real because
if the coeflicient of z in (X.162) were complex we could redefine z given by
(X.150) by transiation of the origin of s so that the coefficient of the new z in
{X.162) would be real. The decomposition (X.162) reduces (X.161) and (X.154)
to identities and (X.155) may be written

30“’2 + ruu(rlullul) = 0. (XI63)

It is easy to verify that when u, =z + Z the solvability equation (X.138) is
satisfied and we may find w,. In fact, the function wy(-, ) P, ,, may be
decomposed into Fourier series

Wy(t, 5) = Z Wi (£)e™,
ke Z

which together with (X.163) and u, = ¢*¢ + e~ gives
(Jo — 2iwg)w, 5 + (11518 = 0,
(Jo + Ziwg)w , 5 + £,:18I10) = 0, {X.164)
Jowao + 20,(t1518) =0,

and wy,(t) = Oforallke Z, k # 0, +2.
Turning next to the equation (X.159), using (X.161} and (X.162), we find
that

31”'2 au(o) - 3‘1:(‘[)2 + [3fuu(t|“1 [w2) + fuuu(tlul i“l Iul)= Z*]] =0 (X-165)
Hence

#20-;1(0) - iwz + [fuu(rl C|w2.0) + fuu([ lt!“’z,z) + fuuu(rl ;l gl g)! C*]T = 01
(X.166)

and since Rea,(0) # 0 we may solve the complex-valued equation (X.166)
for p, and w,.
When p, and w, are given we may solve (X.156) for w, and we find that

Wi, 5) = w3 5(0)e* + wy ((D)e + W3 1(De ™ + 3 3(De ™", (X.167)

where
[wsy, E*]r = 0.

We leave the computation of w; , and higher-order terms as an exercise for
the reader.
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Appendix X.2 Direct Computation of
Asymptotically Quasi-Periodic Solutions Which
Bifurcate at Rational Points of Higher Order
Using the Method of Two Times

Now we shall solve (X.1) when the ratio of the frequencies at criticality
woT/2n = m/n is rational and n > 5. We saw in §X.10 that the solutions on
the bifurcated torus have the form

ut) = Y Rt [wo + 20 "¢

ptrgzi
x exp (i(p — @)[wo + E2OEN] + H(e, 1, [wo + e2O(E")1))
X Wyt p(eD) (X.168)

up to terms of higher order. Here R(s, t, s) and H(g, ¢, 5) are T-periodic in
t, 2n/n-periodic in s, while u,, is T-periodic in ¢t and exp (i(p — q)s) is 2n-
periodic in s. This solution suggests that we can find solutions of the form
u(t, s) where u is doubly periodic, T-periodic in ¢, 2n-periodic in s, and where
s = (g + £20(?))t. In the notation of (X.168} we have

R(et,s) =€ + & Ry_5(t,s) + -+,

H(Es & S) = En—4Hn—4(t9 S) +

Oe?) = Qq + 0(e?),

X.169
() = “—2232 + 0(h), (X.169)
u;olt, #(eH] = §(0) + 06D,
Uy = Uyp-

We remark that any doubly periodic function u in Py ,, may be written as
u(t, ) = Gt sy = u(t’, s + wet'). (X.170)

Hence # is in P,r_,,. But, on the contrary, functions in P, ,, are not neces-
sarily in Py ,, even after a change of variables. This little remark is neverthe-
less useful in the construction of the Fredholm alternative in P ;4.

We defing the operator

8
Fo= —woz +Jo (X.171)

in the space P ;.. In the present case the kernel of &, is infinite-dimensional.
To see this we decompose u(t, s) into a Fourier series in s:

u(t, 5) = Y w(2)e"™.

ked
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Then #yu = 0 implies that
(Jo - kiwo)“k = 0,
and w, can differ from zero only if k = +1 + In, I € Z. Hence w has the form

u(t,s) = Y u,, exp (1 + In)is — ilnewq t) E(1)
!
+ XU mexp (=1 + Indis — ilnw, 1) L.
{

So the general form of the kernel (or null space) of ¥, is
ut, 5) = eals — weN4(t) + e h(s — wo (1), (X.172)

where o and # are arbitrary 2n/n-periodic functions of s,
To prepare the Fredholm alternative for Zoin P, we introduce the
new variables

t =, 5'=8— wyt,

and write u(t, s) = G(t', 5°), where now i is in Pr. 2. We wish to solve

FLou=heP, ,,, (X.173)
which may now be written as
Ji=heP,,, (X.174)
because
d a &
Ca T T a

The linear operator J is the same as the one used in Chapter X, except that
s’ appears as a parameter in (X.174). Hence the compatibility conditions are:

[h(:, s, Z*,; = [h(-, 5, 2%],; = 0, (X.175)
where we recall that
Z) = ¢, ZM = e,

are null vectors of J, J* in 2, . We know that (X.174) has solutions i ¢ Pur. 22
which may be made unique by imposing supplementary conditions of the
form

[ﬁ('v S’)! Z*]nT = [ﬁ(s Sr)! z*]rlfl"‘ = 0' (X]76)
The conditions (X.175) imply that the coefficients of the Fourier series

bt s) = T hy(r)ers

keZ
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satisfy orthogonality conditions of the form

(b, ¥y =0 fork=1+InleZ,
and
[h,B*ly =0 fork=—1+InleZ.

Now we must verify that the solution i of (X.174) is such that @(t', s') =
ii(t, s — wot) is T-periodic in t. In this case, {X.173) will be solved.

In fact it is easy to see that (' + T, s’ — w,T) is a solution of (X.174)
with the same h because

h(t,s) =h(t + T.s) = h(t' + T8 — woT) = b, s),

and because J has T-periodic coefficients. Moreover, sinceii(t’ + T,s — weT)
satisfies (X.176) uniquely,

it + 5 — o, T) =¥t 5)

and u(t, s — wet)isin Pr ;..
We now seek a solution of (X.1) in the form

£? g
ult, s, £) = ewy(t, 5) + X u,(t, 5) + 31 ust, s) + -y

Mo HMea
e)=Zye + e (X177}
82 54’
CZ)(E):(UO'FE(DZ—I—E(D‘-F...’

where u; € Py 5., &, and @ are even in & and @,/2 = €, is assumed to be
nonvanishing to avoid subharmonic bifurcation, as in §X.12. To save writing,
we have asserted that the odd coefficients vanish in the expansion of u(e) and
@(¢). The assertion is easy to prove. To solve (X.1) we set s = @(e}t inu(t, s, g)
and obtain the function

t—u(t, (e}, 8)

solving (X.1) in the form (X.168). Identification of powers of ¢ in the equation

dm_ oo
A + w5§ = f{t, u, ) (X.178)
then leads to
Lou,y =0, (X.179)
go“z + fuu(tlu] |“1) = 09 (XISO)

_ du
Fouy — 300, —(‘3?‘ + 3, f,(tu,) + M (tlugfuy) + £ (t|ugfuyjug) =0,
(X.181)

. ou
Louy — 6; 2 + Gjiafy(t[0) + Hafelw fus)

+ 3f, (t[uzfuy) + 6f,..(t|u; fuy[0y)
+ 6“2fuu,u(t‘u1 |u1) = 0’ (X182)
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and, for p > 4,

du;  p(p j[a‘) o, _, o auzJ

B e e L A
+ p.upflfuu(tlul) + pfuu([lul |up—l)
-1
#2D  thy) by ) (X.183)

+ fuu(£|“2|“p-2) + .Up—zfuu(”“z)
+ lupfzfuuu(tlul |“1)] + g = 0,

where g, depends on terms of order lower than P — 2. We want to solve this
system of equations in sequence for Dy, ty, Uy € Py 5. To show how this
works, we begin by solving the first few equations.

The compatibility conditions (X.175) applied to (X.180-1 82) leads to:

.18, @), Z*()]),, = 0 {integrate on t'), (X.184)
ol
3032 [—6_11'! Z*(t’)] = 3#2[fu,u(t’[ﬁ1): Z*(t’)]nT
5 nT
+ [3rlllt(t' l l-il “12) + fuuu(‘t' , lnil fﬁl |ﬁ1 )e Z*(tr)]nTs
(X.185)
ol - ,
632 22, Z4W) | = 6, (1 li), Z5()]ur
as aT
+ [46,(0]8,103) + 3,0t |, 6,)
+ 6fuuu(t' I lTll ] I.il ,ﬁZ)s Z*(t’)]nT
+ 61”'2 [flut,u(tJ I ﬁl |ﬁ1)9 Z*(t’)]nT' (X 186)
In these equations we used the convention
u(t, s) = &t 5°)

witht =t s = s + w,t', for anyuwin Py,
We determine u, € Py ,, in the following decomposition:

u("-: 5,6) = B[C’isa(s —wyts E)C(t) + e*is&(s — Wyt E)E(f)],

+ &?w(t, s, 2), (X.187)
where « is 2n/n-periodic in its argument, and where
[w(t', 5", &), Z¥(t),r 1= 0 (integrate on t'), (X.188)

Note that
i, 5, &) = e(e™ (s, EYE(Y) + e ™ g(s, eYZ(1)) + e2W(t, 5, g), (X.189)
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and that
Gt 5) = plea,_ (VL) + ¢ ¥, (HZN + plp — D¥p-als s,
(X.190)
where all «, are 2n/n-periodic in ',
The decomposition is made unique by requiring that
1 2" i
£ = —— f [t 5, €), Z*(t)Jare™ * ds', (X.191)
2TI 0

as is suggested by the form of the kernel of 2% This leads to

1 2n
5 J:) als’, ) ds’ = L.

Hence,
1 2n 2w
— I oo{s) ds’ = 1, J‘ a(s)ds =0, p=1i (X.192)
2n Jo 0

Returning to the systems (X.179-1 83)and (X.184—186) we find the solution
of (X.179) in the form

i, (t, 5) = oo(s)e* L) + Zo(she I, {X.193)

where a, is of mean value 1 and 2m/n-periodic and equation (X.184) is auto-
matically satisfied because n # 1, 3 {see Chapter IX). Hence the Fredholm
alternative guarantees a solution u, € Pr 2, of (X.180), up to terms in the
kernel of Z,, i.e. Wy is determined. We have found that, in P,z 2,.

J2W, + ad(s)) exp 20(s' + wot) Lult'IEEDIEED)
+ @(s") exp (~ 205" + wot")) Lt 1T
+ 2] og(8) | 2Lt | EE)ITEN) = O, (X.194}

s0
20, = ad(s) exp 2i(s’ + wot) Wou
+ @3(s")y exp —2i(s" + wot’) Wy, + log(s) | *Woy,  (X.195)

where Wy, (1), Wo,(t") are T-periodic,
J(Wore®™) + Lu(t' 1§10 = 0
J(woz) + 20,1510 =0,

and w,, and w,, are exactly the T-periodic functions which appear in
(IX.79). We observe that wp € Py 3,
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We turn next to (X.185). For the computation we shall need the following
identities:

i d »
[Es?’ Z*] Nl > (- 1(s)™)
= pe“',:@{p—;;(—s—) + io, 1(3’)], (X.196)

[fuu(t"ﬁp)s Z*JHT = pau(o)ap— l(S’)eiS' + P(P - 1)[fuu(['|ﬁ’p—2)3 Z*]nT!
(X.197)

Rt 10, [8,), Z* 1,7 = plp — 1)[F,(¢ |8, IWy_2), Z*],7.  (X.198)
Now (X.185) may be written as:

do, .
30, = + iy ) = 3u, 0. (D) + e U3 (i, | 2w
2(ds 0) H2 y( ot [3L..(1] 112%,) (X.199)

+ fuuu(r’ I iil ! ﬁl ' I‘jl)’ Z*(t’)]n'f' .
We aiso have the identities
[fuu(t’]ﬁz + Bz I 2W0)s Z*]n'f = ﬁlaO l z[fuu(t’ IC'WO2)’ g*(t,)]]"
= Ea(z)ens'[fuu(t' I zi wO 1 )z C*(E’)]T * (X200)
[fmuu(Ir I |"‘il I lTll IﬁZ + ﬁz)a Z'*]
= 2Blog|* + Baf ™) £ (0’1 51E1T), ¥y (X.201)
and (X.199) leads to

da .
sz(zsg + f%) = 120,000 + Asogfagl? {X.202)

where A, is the scalar product in Py defined by (IX.80). The only possible
periodic solution «, of mean value 1 of (X202)is

2o = 1, (X.203)
and this implies that
i, = p,0,(0) + A,, (X.204)

which determines i, and &,.

EXERCISE

X.3 Multiply {X.202) by o, and add the conjugate equation to prove that Ja,|? = con-
stant. Then integrate (X.202) over a period, to find a relationship between coefficients
necessary ta get a nonzero periodic solution. Then, conclude that oo = 1 is the only
possibility of mean value one.
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Note that if we impose &, = 0, we cannot, in general, solve (X.204). In
(IX.101)we used this fact to show that bifurcation into subharmonic solutions
at rational points (n > 5) is not possible except under exceptional circum-
stances.

When (X.185) is satisfied we have

i,(r,s) = &“Z(t) + e L),
6,07, 8') = 2[e" o (HZ(E) + ™ &, (VZ(E)] + 2We(t, 5),
" , (X.205)
W, = exp 2i(s’ + wot') Wou(t)
+ exp (= 2i(s" + wot') Wo,(¥) + Wwoa(1"),

where u,, @, are known, and w,; are known T-periodic functions. «, is a
to-be-determined 2z/n-periodic function of zero mean value. Returning to
(X.181), we obtain

J6%, + 6f, (t'|i, 1" o ($HZ(L) + e q,(sHZ(tY) + R =0, (X.206)
with

di o e e i s
R = 3u,f,,(t'|§;) + 30, *as—,l + 36,,(1') 1, ) 2%,) + £t &, |d,|d,).
Hence
6Wl = 6&1(5’) e}(p 21‘(5’ + ﬂ)o t’) Wm(t')

+ 6&,(s") exp (—2i(s" + wpt') Wy ()
+ 3[a () + %, ()W) — J7R. (X.207)

Now, the compatibility condition (X.186) allows us to determine a,(s').
For this computation we use the identities

[fuuu(t’ |ﬁ1 Iﬁl)s Z*(t,)]n'r = 0’ (Xzog)

[4E,(¢' |8,6%,) + 3f,(¢' |1, 1H,) + 66, 10,0, ]T,), Z*(t)]ar
= 12A, €% [20,(s) + a,(s)] - 4T, (¢}, [ 'R), Z*(t) ]y
+ 1206 |Wo | Wo) + £t |88 {Wo), Z*(t)]ar- {X.209)

Then (X.186) leads to

d
wz(% + ial) = 20, Oy + ARy +3) + P(),  (X210)

with

P(s') = e = [t |WolWo) + £t/ |8, 8y [Wo), Z*(W))ur

83 (£t i, |37 R), Z*()]ar-
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A careful examination of P(s’) using (X.205-207) shows that

=Pse " ifn=35,
P(s X211
(S}{Eo ifn> s, (x21)

that is, P is 2x/n-periodic of mean value zero. Now (X.204) allows us to
simplify (X.228), which becomes

d
@, dis,‘ = Ao, + &) + P(s). (X.212)

-

EXERCISE

X.4 Show that(X.212) has a unique solution oy, 2n/n-periodic in §°, of zero mean value,
{Hint: Appendix X.1. Deduce that u, and w, are therefore completely and uniquely
determined and are in P ,,. (Hint: See (X.207).) Prove that at cach and every step in
the sequential computation of U,, i, B3, it is necessary to solve a differential equation
of the form (X.212) for %, p > 1, whose second member is 2n/n-periodic with a zero
mean value.

NoTEs

The results proved in this chapter describe the dynamics of problems in R" and much
of the observed behavior of continuum of solutions in infinite-dimensional spaces
(Banach spaces), which are such that the dynamics really occur in 1wo-dimensional
spaces formed under projection. (Here, in fact, we work in a three-dimensional space
where the time ¢ is the third dimension.) Such problems arise, for example, in the fluid
dynamics of small systems where the “small” serves to separate the eigenvalues in the
spectrum of the governing linear operator. Some of these problems are reviewed in the
volume on fluid mechanics edited by H, Swinney and J. Gollub {(Hydrodynamic fn-
stabilities and the Transition to Turbulence, Topics in Current Physics (New York-
Heidelberg-Berlin: Springer-Verlag, 1980)). In general, we get sequences of bifurcations
into steady symmetry-breaking solutions, into time-periodic solutions and into
subharmonic and asymptotically quasi-periodic solutions on a torus. Frequency locking
is also observed in some experiments involving fluid motions, as well as in classical
experiments with tuning forks and electric circuits.

We acknowledge A. Chenciner for many valuable discussions about the nature of
flow on T2,

Historical note: It seems that J. Neimark was the first to announce the theorem about
invariant two-dimensional tori which bifurcate from a periodic solution (or invariant
circles which bifurcate from fixed points of maps, such as the Poincaré map). He gave
no proof of his result and he gave no result about periodic solutions at points of strong
resonance. He does exclude the points n = 1,2, 3,4 of strong resonance (43 = 1) by an
assumption of weak attractivity of the origin at criticality. R. J. Sacker gave the first proof
of the existence of the invariant tori under conditions clearly excluding the points of
strong resonance. He also gave some partial indications that subharmonic solutions
might be expected at such tesonant points. Sacker’s results were rediscovered by D.
Ruelle and F. Takens, who mistakenly included n = 5 in the excluded set of points of
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strong resonance. The paper of Ruelle and Takens is best known for the basic idea that
“turbulence” is a property of attracting sets which can already be associated with
dynamics typical of differential equations in R™ with m small; for their paper m = 4.
This idea is very important because it means that even after a few bifurcations one
may see chaotic dynamics. The main results about bifurcating subharmonic solutions
at points of strong resonance were proved in the formulation of Chapter 1X by looss and
Joseph (1977), op. cit. Poincaré treated the case of subharmonic bifurcation with n = 1.
Y. H. Wan proved that a torus bifurcates when 13 = 1 and there is no 4T-periodic
bifurcation. All the resonant cases are treated in an original way by V. L Arnold. Amold
introduces two parameters and develops some conjectures, based on the two-parameter
analysis, to explain frequency locking.

V. 1. Arnold {1982), op. cit.

V. L. Arnold, Loss of stability of self-oscillations close to resonance and versal defor-
mations of equivariant vector fields, Funk. Anal. Ego. Prilog. 11, 1-10 (1977).

J. Neimark, On some cases of periodic motions depending on parameters, Dokl. Akad.
Nauk. SSR, 736-739 (1959).

H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Gauthier—Villars, Paris
1892 (see §§37, 38).

D. Ruelle and F. Takens, On the nature of turbulence, Com. Math. Phys. 20, 167-192
(1971).

R. J. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary
Differential Equations, New York Univ. IMM-NYU 333 (1964).

Y. H. Wan, Bifurcation into invariant tori at peints of resonance, Arch. Rational
Mech. Anal. 68, 343-357 (1978).




CHAPTER X1

Secondary Subharmonic and
Asymptotically Quasi-Periodic
Bifurcation of Periodic
Solutions (of Hopf’s Type) in
the Autonomous Case

In Chapters IX and X we considered the problems of stability and bifurcation
of the solution u = 0 of the evolution problem reduced to local form,
U=1f(t,puy=1(+ T uu). In §1.3 we showed how the reduced problem
arises from the study of forced T-periodic solutions U(r) = U(r + T) of
evolution problems in the form

U=F(,uU)=F1+ T u U, (XL1),
where U = 0 s not a solution because
F(t, 1, 0) = F(t + T, 4, 0) 2 0. (XL1),

In this type of problem the outside world communicates with the dynamical
system governed by (XI.1), through the imposed data (XI.1),. The dynamical
system sees the outside world as precisely T-periodic and it must adjust its
own evolution to fit this fact.

Now we want to consider the bifurcation of periodic solutions in a
different class. We suppose that we have a T(e)-periodic (T(s) = 2m/uxe))
solution U(ew(g)z, &) = Ufw(e)t + 2m, &), of an autonomous problem

dv
— = F(u, V).
dr F(u, V)

Hence
U
le) %{ = FLu(e), Uls, 9]

In fact, the functions w(m(e)t, &), w(e) and pie) which define the periodic

256
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bifurcating solution (Hopf’s solution) studied in Chapters VIT and VIII enter
into the frame of this chapter. We are interested in the loss of stability and
bifurcation of the solution Ulw(e)t, &).

The problem now under study, bifurcation of periodic solutions of auton-
omous problems, is very close to the problem of bifurcation of forced T-
periodic problems which was studied in Chapters IX and X. We wili show that
the qualitative properties of bifurcation of periodic solutions of autonomous
problems and the properties of bifurcation of forced T-periodic problems are
nearly the same. In both problems we find subharmonic bifurcation into
nT-periodic solutions at rational points with* n =1, 2, 3, 4 and, at other
points, we get bifurcation into asymptotically quasi-periodic solutions, or
when very special weak resonance conditions are satisfied, into subharmonic
solutions with periods corresponding to integers n = 5, and the distributions
of stability of the bifurcating solutions are the same in both problems.

But the two problems are not identical. In the autonomous problem, the
outside world imposes data of “*maximum symmetry,” that is, steady data,
so that solutions are indifferent to the choice of the time origin. In the forced
T-periodic problem a definite pattern of temporal symmetry, T-periodicity,
is imposed from the outside and the solutions are only indifferent to a shift
in the origin of time by a period T. One consequence of this difference is that
the subharmonic solutions which undergo bifurcation have definite periods
which (1} change with amplitude and (2} which are close to, but not exactly
the same as the periods nT(e) (n = 1,2,3,4) of the periodic solution when
le| # 0 is small. In the forced T-periodic problem the subharmonic solutions
are exactly t = nT-periodic (n = 1,2,3,4), where 7 is independent of the
amplitude &.

A second consequence of this difference is technical and is associated
with the fact that (s, &) is always a solution with eigenvalue zero of the
spectral problem (VIIL.36), (VII1.38), for the stability of the Hopf solution.
This property has the following significance. The bifurcating solutions
{u(s + 8, &), e), w(e)} and {u(s, £), i), w(e)} are equivalent to within a
translation & of the time origin. We call d the phase of the bifurcating solution.
The difference between two bifurcating solutions

O(s, &, 6) = u(s + 8, &) — u(s, &)
satisfies
w(£)® = F(u(e), uls + &, &) — Flule), uid, &)
= F,(u(e), u(s, £)| @) + 0(10]?)
andasd —» 0
O(s, & 8) ~ us, £)0.

* Here, n is the same as in Chapter 1X.
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So we can always go the other way and, starting with u(s, &), construct a
“bifurcating” solution u(s + 4, &) by pretending y(g) = 0 is an algebraically
simple eigenvalue of J(&) with eigenvector (s, ¢). In treating true bifurcation
problems it is necessary to avoid computing these phase shifts and the way
we do it is to require it mathematically by insisting that true subharmonic
bifurcating solutions should differ from phase shifts of u(s, ¢). The mathe-
matical condition for this, (X1.48), is most efficiently explained after establish-
ing the first of two methods we use to construct bifurcating solutions: The
method of amplitude expansions ($8X1.6—16) and the method of amplitude
equations (normal forms, §§XI.1 7-22).

Notation

The notation for this chapter has much in common with the notation of
Chapter IX. Some slight differences arise from the definitions

A ukt =5 (see §XI.1)
and

Ot =5 (see §XL8),

which require that we compute frequencies & and Q. Some of the symbols
which are aiso used in Chapter IX but have a slightly different meaning here
are

Jo and J¥ in §X1.2,

J and J* in §X[.4.
The amplitude « of the bifurcating solution is defined by (X1.45).

n .

(')n = % at H = Hg,
()™ = é:;;—;) ate =0,

(ktlo) = known terms of lower order.

XI.1 Spectral Problems

In our analysis of bifurcation of periodic solutions of autonomous problems
we start with the autonomous evolution equation
dv

= = F V), (X1.2)
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where F(, -) is assumed to be smooth enough to allow what we do and
F(y, 0) need not vanish. We shall study the bifurcation of periodic solutions
of (XI.2). These solutions are of the form

v = T@d@, 1) = Ots, ) = Ols + 27, ), (XL3)
where &(p) is the frequency. For example,

U(s, 1y = O + (s, 1)

may be the Hopf solution of Chapter VIII: (s, u) = u(s, &), &(p) = a(e)
when p = p(e). This solution satisfies

U N
) %; — F(u, 0) (XL4)

Note that the solution (X1.3) is parametrized with p rather than e

Our aim is now to find the conditions under which subharmonic solutions
or tori bifurcate from (XL.3). To study bifurcation we need to analyze the
spectral problem associated with the linearized theory of stability of (XL3).
This problem, reduced to local form, was studied in §VIIL4.

To obtain the spectral problem we linearize (X1.2) around (X1.3):

V=U6w+ ), s=out
where

d
d—: = F,,(.un G(S, “)l\’)

Floguet theory then implies that we may ascertain the stability of Uts, 1)
by study of the exponents y(u) = &g} + in(x) in the representation

¥(t) = ¢"'T(s), I'(s) = I'(s + 2n).

The exponents are eigenvalues of the spectral problem
dr’
T = =G + Fi(u, Us, (T, (XL5)
We also have an adjoint ¢igenvalue problem
. dar+* .
I = 0 = + Fite, O, 0T (XL6)
associated with the scalar product

1 2w
[ Jan = 35 |, €
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where F*(u, U(s, p)|-) is the unique linear operator satisfying
(Fo(p, UCs, )]8), by = (a, F¥(, O(s, 1) |b)>

for arbitrary vectors a and b. Recall that for vectors in C", {a,b> =a-b.

XI1.2 Criticality and Rational Points

Here we put u = u, at criticality (starting from §XI.17 we put g, = 0)

f(.uo) =0,
def
ntio) = #g,
Aptp) = wy,
UGs. 16) = Ug(s),

(XL7)

c d
JO d=f —a)o% + Fu(JuO! UO(S)!.)’

e« d
72 o, g oG, Ug(s)1),

where J, and J§ act on 2r-periodic functions of s. The spectral problems at
criticality are
ey = JoI'y (XL.8),
and
—ino Iy = JETS. (XI.8),

If the Floquet exponent in, is an eigenvalue of J, at criticality, then
{no + lwy), 1€ Z, is also an eigenvalue with eigenvector F(s) = e~ y(s)
= I'(s + 27). The Floquet multiplier at criticality

4o = exp W o) T(1g)

iy + lwy)2m
T e
o

= exp (2’”"") (X1.9)

Wy

maps repeated points on the imaginary axis of the complex y-plane into
unique points of the complex A-plane. We may cover the unit circle of the
A-plane by restricting our considerations to the principal branch

o<t o (XL.10)

of the complex y-plane.
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We say that
Jo 0 (XL11)
Wy N
satisfying (XI.10) is in the set of rational points if m and n are integers and
m = 0 when n = |; otherwise m # 0. The Floquet multiplier at criticality
is that nth root of unity when #,/w, = m/n is a rational point:

Xy = (&¥mmy = 1, (XL12)

X1.3 Spectral Assumptions About J,

The simplest and most typical situations which lead to subharmonic bi-
furcation into self-excited solutions of autonomous problems are similar to
those leading to subharmonic bifurcations of forced T-periodic problems
which were described in Chapter IX. In the autonomous case, however, it is
necessary to accomodate for the fact that T' = Ugs, p) satisfies (X1.5) for
all 4 whenever (i) = 0. We showed, in the last theorem proved in §VIIL4,
that (¢} = 0 cannot always be an algebraically simple eigenvalue.

We may therefore formulate the simplest hypotheses about the eigenvalues
o) = ing of J4 as follows:

1. iny = 0 is an isolated double eigenvaiue of J,; or
I1. in, # O1is an isolated simple eigenvalue of J,,.

If we assume that /0y = m/n, m # 0, we have (X1.8) in the form

iwgm

T, =J,T, (XL13),

and
- ia)o m

T'* = JETE. (X1.13),

The solution ¥(t) of the linearized problem (XL.5) at criticality is then given by
V(t) _ e}'(uu)Iro(s) = ei(m}n)woxl—-o(s)

_ ei(m/n)sro (S) def Z(S) = Z(s + 27tn), (XI.14)

X1.4 Spectral Assumptions About J in
the Rational Case

The vector Z(s) satisfies the equation JZ = 0, where

. d
E 7+ Fulto, Uo@)l)




262  XI Subharmonic and Asympiotically Quasi-Periodic Bifurcation of Periodic Solutions

is a ligear operator which acts on 2rn-periodic functions of s, ne N, and
Uy(s) = U(s, po). The linear operator
d
J* = @o 1 + F3 (1o, Ug(s)]+)

is adjoint to J relative to [-, -];,,; i€, [Ja, b],,, = [a, J*b],,, for arbitrary
2nn-periodic vectors a(s) and b(s).

Assuming the validity of hypotheses (I) or (II) about J,, there is at least
the 2nn-periodic, real-valued eigenfunction

Zo(s) = Uy(s) = Zofs + 2n). (X1.15),
If ny # 0, or if y(ug) = 0 is geometrically double, then
Z,(s5) = ¢™™T(s) = Z,(5 + 2nn) (X1.15),

belongs to the eigenvalue zero of J; thatis JZ, = JZ, = 0.1f Z,(s)is complex
then

Zy(s) = Zy(s) (X1.15),

is also an eigenfunction of J belonging to the eigenvalue zero, The arguments
given in §§1X.7 and IX.8 apply here. Z,(s) may be assumed to be real-valued
when the multiplier 4, is; that is, when

m 0
A =1 —_=_,
4] 3 " 1
or
m 1
Ag = —1, - = _,
0 no 2

In all other cases, 4, is complex-valued.

In §IX.8 we wrote a lemma about J in the forced T-periodic problem.
Now we wish to state the corresponding lemma about the awtonomous
problem. This lemma accounts for the fact that in the autonomous problem
U, = Z, is always in the null space of J, JZ, = 0.

Assume that the hypotheses (I) or (II) about the eigenvalue of J, hold.
Then, we may distinguish the following cases.

(a) n =1 and zero is an index-one double (semi-simple) eigenvalue of
J = J,. In this case we can find 2n-periodic vectors verifying the following
equations:

Zy(s) = Ugls) = To(s), 25 = I'fo(s),
Zi(s) =Tosls).  Z}(s) = T§i(s),
so that JZ;, = J*Z}¥ = 0,
[Z:. Z%])5, = Oi, Lm=1,2 (X1.16),

(X1.15),
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The loss of stability of the solution U(-, ) under conditions specified
in (a) is rather special. For example, in the case of Hopf bifurcation treated
in §VII1.4 case (a) cannot occur unless w,(u,) = 0 and some additional
conditions (specified under X1.27) are realized.

(b) n=1 and zero is an index-two (not semi-simple) eigenvalue of
J = J, with one proper eigenvector Z, = Iy,, one generalized eigenvector
Z, = Ty, corresponding proper adjoint eigenvector Z¥ = I'§,, and general-
ized adjoint eigenvector Z¥ = I'§, satisfying (X1.29) and (X1.30).

In §VIIL4 we gave some sufficient conditions, associated with w,(110) # 0
for the realization of case (b). This case is a typical one associated with
a turning point of periodic solutions, a saddle-node bifurcation of closed
orbits.

() n =2, zero is a semi-simple double eigenvalue of J with two real
4n-periodic eigenvectors

Zo(s) = Ugls) = Zo(s + 27) (XL16),
and
Z,(s) = eI y(s) = Z,(s) = Z(s + 4m)s (XL16),

Zy(s + 2m) = —Z,(s),

satisfying (X1.16),.

(d) n > 2, zero is a semi-simple triple eigenvalue of J with one real
2n-periodic eigenvector Zy(s) = U(s) and two complex-valued 2zan-periodic
eigenvectors

Z\(sy = e™™Ty(s),  Tols) = Tols + 2m), (XL.16),
and Z, = Z,. In this case the eigenvectors satisfy biorthogonality conditions
[Z;, ZX]2rn = Sim> Im=0,1,2

X1.5 Strict Loss of Stability at a Simple
Eigenvalue of J,

In all the problems of bifurcation which we have studied, a condition of
strict loss of stability implies the existence of double-point bifurcation. The
same type or strict crossing condition will suffice to guarantee the existence of
subharmonic bifurcation of 2m/¢(y) periodic solutions.

In the present derivation of formulas expressing strict crossing we assume
that y, = iy = i(m/n)wy, is a simple eigenvalue of J,. This assumption is
typical when n # 1; when n =1, m = 0 and y, = 0 is a double eigenvalue
of J,. By a strict crossing we mean that the eigenvalue y(u) = {(p) + in(w),
whose real part changes sign at ,, satisfies

£ io) = Re (1) = Rey, = & > 0.
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The equation governing 7, can be obtained by differentiating (XL.5) with
respect to pat fiy:

1100 + @ Lo + 3T, = JoTy + 4T, Fy(s) =Ty(s + 2m), (XI1.17),

where
def

)=

Equation (X1.17) is solvable for I',(s) if the terms involving Iy are orthogonal
to eigenvectors I'} solving

F,(tto, UolU, 1) + Folug, Upl). (XL17),

(‘]3 - yO)r‘?}‘ = 01 r;(s) = FE;(S + 27!)3
where

d
J3 = w()% + Fi(ug, Ugl-).

Since y, is a simple eigenvalue of J, there is one eigenvector T',, belonging to
7o and one I’y belonging to 7,. Similarly I'* belongs to o and T} to y, and
Mo, T8l — 1 = (T, Tg]z:: =0 (XL18}

Equation (XI.17) is solvable if the inhomogeneous terms are orthogonal
toTg:
Nt CE)1[1“0: 312 = LA, T80
Recalling that Z, = ¢TI, and Z} = ™"}, we compute
r* % — [T pilmins % _ J tm *
[ o:ro]znn—[roe s 1]2,1m“ [(Zl _Zl)azl]
h 2nn
im
=20, 2%y — -
and find that

im N
(’Yl - ? (Dl) + wl[zl‘ ZT]ZRH = [jzla ZT]ZEH‘ (XI]Q)

Equation (XI.19) applies when n # 1. When n = 2, m/n = }, Z, and Z*
are real-vajued, and

m @
my=Imy, =—a, =1
n 2
and
&+ 2, 2}y, = [FL,, Lt )4 (X1.20)

It can be shown, in fact, that
W = 2 .
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X1.6 Strict Loss of Stability at a Double
Semi-Simple Eigenvalue of J,

We now suppose that y, = 0 is an algebraically double, semi-simple, double
eigenvalue of J,. Then there are two independent eigenfunctions T'ye = Ug(s)
and Ty, satislying J,I'y; = 0 and two independent adjoint eigenfunctions
I'¥, and '}, such that

[Toos T§olzn = [To1, T8 1o =1 (X121}
and
[Too: T&il2n = [Fo1, Tolzn = 0. (X1.22)

Every eigenvector in the null space of J, may be formed as a linear combina-
tion of the independent ones

T, = ATy, + BTy, (X1.23)

To compute y, in {X1.17), it is necessary to determine A and B. The values of
A and B can be determined by the biorthogenality conditions required
for the solvability of (X1.17).
Using (X1.23) we may write (XI.17) as
71(ACog + BLoy) + @1(ATgq + BEg,) = JoT'y + #(ATg0 + BLgy).
(X1.24)

There is a special solution of (X1.24) which may be identified by dif-
ferentiating (XI.5) with respect to p at pg. This gives rise to (X1.24) with y,
=B=0and A = 1. Then

& X = JoT; + FFgo
is solvable if
d’1|T00- rgj]Zu = [#T 0, rgj]Zm j= 0, 1. (XL25)

and, using (XI1.25) we find that (X1.24) is solvable if y, is an eigenvalue of the
matrix

(X1.26)
0 [frm - c‘blr()l! r31]2ﬂ:

One eigenvalue is 7{!) = 0; the other is then
=LAy — d>1ro1= | B2 P (X1.27)

In the present case our assumption that the loss of stability is strict implies
that »'2* > 0. We remark that in the present case of a double semi-simple
eigenvalue, the loss of stability of the bifurcated Hopf solution treated in
§VIIL.4 is associated with the special values

@1 = [frooa rgo]zu = [froo, Fgl]n =0.

[0 [#To: — &1, rgO]Zn:l
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X1.7 Strict Loss of Stability at a Double
Eigenvalue of Index Twot

This case arises at turning points (see §VIIL4) and it can lead to a “saddle
node” bifurcation (Exercise X1.2). At a double eigenvalue of index two we
have two branches of eigenvalues 7(u) with eigenfunction I'(g) and () with
eigenfunction I'(4) coming together at y, in such a way that Y(ptp) = Flpg) =0
and T, = T = Uy(s). In other words 7 = 0 is a double eigenvalue of J, but
there is only one eigenvector U, in the null space of J,. We start at the point
of degeneracy and seek to separate the cigenvalues by perturbing with .
In fact we know from the start that one of the eigenvalues y(x) = 0 for i near
#o and the other one, which is smooth in g, controls stability.
At criticality w(uo) = v = 0,

Foo = Uo,
JoTLoo =0,
JoTo; = Coo, (X1.28)
J3rg =0,
J3TE = T3, 125
(Coo. T8ol2n = [Fo1, IE112e = 1, (X1.30),
and
[Toy Iolzz = [(Too. T§112r = 0. (XL.30),

We may assert that

O, i) = Ols, 1), () = 0.

is the branch which is neutral with regard to stability. Stability of the Hopf
solution is then determined by the sign of the second eigenvalue $(u) with
eigenfunction I'(-, x). Of course, (o) = #po) = 0 and T(s, po) = (s, py)
= I'yo. The derivatives of $(u) and ['(-, u) at criticality satisfy

#1T00 + @K g0 = Jo T, + Flo0, (XL31),
5000 + 25,0 + ®, Ty + 20,1, = JoT, + 22T + m(I,,),

(XI.31),
where

mM(To0) = Fiulito, Ul UsTo0) + Fi (o, UplTo)
+ 2F (40, Ug|U  Tg0) + Fopupto, Ugl U [U; [Fog),

T See §IV.44.2.
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and all functions of s are 2a-periodic. The derivatives of the neutrally stable
solution satisfy

cz’11--100 = JoI'y + #T%0, (XI1.32),
@, 000 + 20,1y = Jo Ty + 22T + m(Tgp). (X1.32),

Application of the orthogonality condition (XI1.30) to (XL31) and (X1.32),
using (X1.28) and (XL.29), leads at first order to

1 + @1[Fo0, Tlolsn = [(T.T% 1, + [FTo0. [30lz,,  (XL33)
@1[roo, r31]2u = [froo, r31321r= (XI-34)
@1[r00: rgo]zn = [ru 31321: + [froo, rf)‘o]zn- (XI-35)

We may decompose the first derivatives of I'(s, y), and I'(s, p) uniquely as
follows:

[(s) = A Tgols) + B Ty, (s} + x(s) (X1.36),
and
T'y(s) = AiToo(s) + B Tos(s) + #(s), (XL.36),
where [y, IT'%]1:. = (%. T2, = 0fori = 0, 1. The relation
5,=8B, - B, = [ T4, — T, T8 ):n (X1.37)

1s implied by (X1.30, 33, 35, 36).

To complete the derivation of the strict crossing condition we must
evaluate the constants on the right-hand side of (XI.37) using conditions for
the solvability of (X1.31), and (X1.32),. As a preliminary to this evaluation
we derive the relation

Jolx — %) = 0. (X1.38),

To derive (X1.38);, we subtract (X1.32), from (X1.31), and find that
Jo(fy, = T)) = §,Tgo. Then we use the decompositions (XI.36); and
(X1.36), and simplify using (XI1.28) and (X1.37). It follows from (XI.38), and
the uniqueness of the decompositions that

1 =1 (X1.38),

We next form the scalar product of (XI.31), and (XI.32), with I'§, and
eliminate terms common to the two equations. After applying the bi-
orthogonality conditions we get

25,8, + 20,((Fy — £y), T8 12x — 2LAC, — T,), T30, = 0. (X139)
Upon application of (XI1.36, 38, 32) this reduces to
7.8, + (B, = B{®[Lo1, T112e — LFT01), T81 124} = 0. (X1.40)
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It now follows from {X1.37) that
By + &Ly, T8112. — LFA(T01), T 12, = 0 (X1.41)

provided that B, # B,. The possibility that B, = B, may be excluded since
it implies that the solution y; = 0 belongs to the neutral branch. Combining
(X1.37) and (XI1.41) we find that

:}-’1 = ""Cal[rOI: rgl]Zn + [f(rm)s r31]2u - By,

where
B, = [Fb rgl]u

may be written as .
B, = [Ul, rgl]Zn
because ['(-, u) = U(‘, ). By strict loss of stability we understand here that
0<§ =[fg — &, 5. T 1 — [0y, | P P (XL42)
where, using (X1.35),
[ﬁh I§. 1. = [froo — &Ly, rgﬂn-

Equation (X1.42) holds, not only in the present case of an index-two eigen-
value, but also for the semi-simple case treated in §X1.6. In the semi-simple
case the second term of (X1.42) vanishes as a consequence of (XI1.25).

XI.8 Formulation of the Problem of Subharmonic
Bifurcation of Periodic Solutions of
Autonomous Problems

In formulating the problem of subharmonic bifurcation of the Hopf solution
(XL3) it is convenient to map the periods of the Hopf solution and the sub-
harmonic bifurcating solution into the same fixed domain. To explain this
important point of convenience we note that the Hopf solution is given by
(X1.3) as

V=0Gp=0s+2mp, s=aoW,
and we seek a subharmonic bifurcating solution of (XI.2)
V=, ) =W+ 2nn, ), s = O,

which is strictly 2zn-periodic (n € N) in the reduced variable s, and is such
that

Uo(s) = Ts, 10 = Vs, o)
with .
(py) = we = Qi) = Q.
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We shall find that, in general, &(x) # Q(x) so that W(s, u) = W), p) is
not generally 2nn/d(u)-periodic in t. The functions p(s, w=0@+ 2m, p)
and &(p) satisfy (X1.3) and the functions (s, ) = (s + 27nn, p) and y)
satisfy

Q) ‘;—? = F(u, W(s, w)). (X1.43)
The difference
Vs, ) = OGs, 1) — ¥(s, 1) = Y(s + 27n, ) (X1.44)

is 2nn-periodic in s, even though the functions defining this difference

C@(ut, py and (e, 1)

have different periods in t.
In the autonomous problem the ratio of the period T{}) of the bifurcated
subharmonic solution to the period T(d) of the given periodic solution is

TQ) _ nd(u) A
T®) -~ 0 Bpg) = Qpto).

Hence in general T($) does not equal nT (&),

XI1.9 The Amplitude of the Bifurcating Solution

We may define an amplitude o for the bifurcating solution by any good linear
functional of the difference ¥(s, u). Our choice is exactly the one used to
study bifurcation of forced T-periodic solutions treated in §IX.10; that is,

a(@) = [¥(s, 1 ZHS)zam: (X145),
where Z¥(s) = Z}(s + 2nn) is given by (X1.15), (X1.16} where
JZ¥ =
and

(X145),

H

— o
[\S

n
ala) = o when W =

or

. 01
a(®) = 0e*® for - # -, 2. (XL45),

n 12
It is better to parameterize the bifurcating solution with a than with .
The expansion of ¥(s, u) proceeds in powers of /|u — yo| whenever
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du(0)/da = 0 and d*1(0)/dx? # 0. In this case, as in the one in which dp(0)/do
# 0, the series expansions of

u= o),
UGs, 2) = 0(s, plw)),
(o) = Ou(a)),
Wis. @) (s, (o)), (X1.46)
Q) E O(u(x)),
Y(s, o) = Fs. ul@)),
are in integral powers of o. We adopt the following notation to distinguish
between derivatives:
() = 70) at u =y,
oy

()= %O(;;) atx =0,

and seek a series solution for the functions (s, a) = (s + 2nn, «), a),
and Y(s, 2) = Y(s + 2nn, o). On the other hand, the functions U(s, u) and
@Xp) are given; they are assumed to be known from a previous computation
of Hopf bifurcation. It follows, for example, that

ol =y D@, (X1.47)

etc., so that ()" may be calculated when p, ... 4™ are known.
To insure that Y«(s, 2) is not merely a phase shift of U(s, @), we require
that Y(s, «) should contain no part proportional to Uy(s) = Z(s); that is,

LY(s, 2), Z§ 155 = 0. (X1.48)

(A discussion of the principle behind (X1.48) is given in the introduction to
this chapter.)

XL10 Power-Series Solutions of the
Bifurcation Problem

We turn next to the construction of the functions W(s, «), () and () in a
series of powers of a:

[UGs, ) — Uy(s)] [U™(s)
W(s, x) — Uy(s) Y"(s)
Y(s, o) _y oY) , (X1.49)
w(e) — w, am1 AL L o
Qo) — wy om
| @) —po [ 4"
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where
U(s, &) = U(s + 27, a),
(s, o) = P(s + 27, o), (X1.50)
Y(s, a) = Y(s + 2m, o),

and

am = [YU)’ Z?]Zﬂn:
0 = [YU), Za‘]Zrzm I > 0

The coefficients in (X1.49) may be obtained by solving equations which arise
from (X1.4) and (X1.43) by differentiation. The derivatives of the Hopf
solution satisfy

(X1.51)

m(l)UO = J]U(l) + #(”Fu(ﬂo’ UO)’ (XISZ)I
@@V, + 2000
= \BU(:“ + 2“(1)Fuv(“03 UO |U(1))
+ Fuu(#o’ UOIU(”IU(”)
+ (VPFlpo, Ug) + HPF (po, Ug),  (XL52),
U, + 302U + 30UR
= JU(Z’!) + 3#(2)Fuu(nu05 U0|U(“) + 3Fuv(nu09 UOIU(I)IU(z))
+ Fu(o, U lUMTUM U + pF (p1, Up)
+ nu(l){:;Fvu(p'O’ UO |U(2}) + kﬂO}, (XI52)3

where ktlo = known terms of lower order,

@0y = JU® + uOF (g, Ug) + I~ VF (g, U [UD) + (ktlo),
(X1.52),

where UY(s) = U¥s + 2x) and J(-) = —wq d/ds + F(tg, Upl-). The deri-
vatives of the subharmonic bifurcating solution satisfy

Q(“Ub = JI‘I’(” + #(IJFF(#Oa UO)’ (XIS3)I
QDU + 20D = I + 2UIF (o, Upl YY)
+ Fuoltto, Ug W WD) + (uV)?F (1o, Uo)
+ #3F (1o, Up), (X1.53),
QI + 3QEND 4 3QUIR)

= J"’(SJ + 3u‘2)Fvu(#0’ UO“I’(U) + 3Fuv(#09 Uol‘h(l)ilb(Z))
+ Foolito, Up WV IO W) + u®F (g5, Ug)

+ 1, {3F (1o, Ug [¥W'?) + ktlo}, (XL.53),
QU = W + 1u ™ F,, (1, Ug WD) + 49F (g, Up) + (ktlo),
(X1.53),

where $(s) = Y + 2zn).
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Equations governing Y™ = U™ — §™ may be formed by subtraction.
Recalling that U, = Z,, we find, using (X1.52), and (X1.53),, that

(0 — QMZ, = JYW, (X1.54)
Since [JY', Z§] 30 = (Y, J*Z8] 5., we get
(@0 — QD) [Zo, Zi]pen = & — QP = 0 (X155)

whenever J*Z§ = . Since this last equation holds except when zero is a
double eigenvalue of J, of index two we have w'!? = Q) in almost all the
cases. In the exceptional case when n = 1 and zero is an index-two eigenvalue
of J, we have, using (X1.51), witha' = 1, Zy = Ty, Z& = T'%,, Z* = T2,
that

(0P — QM) = [YD, J*TE] = [YO, TE] =1 (XL.56)

does not vanish.
It follows that in the general cases the bifurcating solutions are strictly
subharmonic through terms of order a, and Y’ satisfies

JYW = 0, (XL57)
It is useful to replace y'V in (X1.53), with Ut — Y;

Fvu(lul)a UO"I’(Ul‘l‘(”) = Fuv(u()! UOlU(”|U“))
- 2Fvu(lan UOIU(HlY'”)

+ Foulpto, Up [ Y IYD), (XL.58)

Then, atter subtracting (X1.53), from (XL.52), using (XL.55), we get

(w(Z) —- Q(Z))ZO + 2ty

= JY? + 2V, (so, UplY') + 2F,(pto, Ug UM | Y)
— Fou(pto, Up | YV YD), (X1.59)
Equations (XI.57) and (X1.59) do not hold in the exceptional case (n = 1)

of a double eigenvalue zero of index two; the correct equations for this case
are given in §XI1.13.

XI1.11 Subharmonic Bifurcation When n = 2

We are going to reduce this problem to the problem of bifurcation of 27T-
periodic solutions in the case of T-periodic forcing. The forced problem was
studied in §IX.12. The problem with n = 1 which was also treated in the
forced case in §X1.12 has some new features which will be treated in §XI1.13
and XI.14, The subharmonic sclutions for the autonomous problem are
strictly subharmonic in the reduced variable s (se¢ §X1.8). The computation
of periodicity of this subharmonic solution

(s, o) = Y(s + 2rn, @), s = Qa),
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in real time t requires an ancillary computation to determine a new frequency
Qo).

When n =2, m=1 and JZ, = JZ, = 0 (see §X1.15). It follows that
we may find Y(s, o) in the decomposed form

Y(s, &) = aZ(5) + (s, ®), (X1.60)

where (X1.48) is satisfied,

[x(C, o), Z¥]4 = 0,
and

LY(, o), Z3]ar = o
It then follows from (XI.51), and (XI1.45), that

(Y, ZY]s, = 1

and from (XI.57) that

YV =1Z,. (XL.61)
To solve (X1.59) it is necessary that
[WY? Z¥],, =0 (X1.62),
and
[JY Z¥,, = 0. (XL62),
We apply (X1.62) to (X1.59) and after setting
U = 490, and o™ = pV0, (X1.63)

we find, using (XI.16), that
VFLy — L)), L) — [Foslito, UolZy|Zy), Z¥]sr = 0, (XL64),
where ¢ is defined by (XI.17),. Using {X1.20), we find that
2uV8) — [Fuypo, UolZy|Z1), Z¥]4e = 0. (X1.64);

Since &, > 0, (X1.64), determines the value of ). In fact the second term of
(X1.64), is in the form
[eis,’lFW('uo, UO | r{] |r0)9 r3]4n = 0!
so that
1 =, Uts) = p"0,(s) = 0,
K (s) = U, (5) (XL65)
OO = oV = gV, =0, o = @,

and
Y= Y = 7 (X1.66)
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It is convenient for a later application to write the equations for the present
application with n = 2 in terms of Y'V rather than Z,. The same equations
hold when n > 2, but then Y is a linear combination of Z, and Z,.

Using (X1.65) and (X1.66) we may simplify (X1.59):

Uy ~ ALy = IYP = Foulpio, Up YOIYD). (XL67),
Equation (XL.67), is solvable provided (X1.62); holds.
0(2) = ﬂ(Z)d)l + [Fuv(nu()a UolY(”lY(l]), Z3]4fl' (X167)2

To compute u'® and Q% we note that with the simplifications implied
by (X1.65) and (X1.66), (X1.52), may be written as

Wy = JUD + u®F, (yg, Ug) (XI1.68)
and (X1.53), may be written as
Q3Z, — 302y, = JP3 — 3‘1(2)1:,‘0#(#0’ UolYU))
~ 3F.(jto, Up | Y| UP — Y)
- Fvvv(.an UolY(nlY“)lY(l))
+ M(J)F“(ﬂo, UO)' (XI'69)
Note next that
U@ = @70, (s) (X1.70)
and the difference between (XI.68) and (X1.69) becomes
(@ ~ QNZy + 3[F, (1o, Up| YV YD), Z8],, Y
= JY® 4+ 3,(1‘2){fY‘” _ CD1Y‘”}
- 3Fvu(ru05 UO|Y(1)|Y(2))
+ FI)HU(MOJ UOJY{I)IY(I)’Y(U)‘ (XI‘71)
Applying (X1.62), to (XI.71) we find, setting Z, = Y™, that
#3E) = [Foltto, UolZ, | Y®), Z¥],,

+ [Fo(tto. Upl Z,1Z,), ZE[Zy, Z4 ]

- %[va(#01 UU 1 Z1 | Zl |Z1)9 ZT]41: . (XI72)
In general, u® # 0. Finally we note that Y?Xs) determined by the equation
(X1.67), is 2n-periodic, as well as 4rn-periodic; this fact follows from the
fact that Zus) = Zo(s + 2n) and £(s) &' F,(ug, Us(s)| Z,(5)| Z,(s)) =
e“F, (1o, Ug(s)|To(s)|To(s)) = f(s + 2m). Hence when (X1.72) holds (XI.71)
is solvable when (X1.62), holds. Ali the inhomogeneous terms in (X1.71) are
of the form

€ 2(s) = e *%(s),  {(s) = Us + 2m),
and the 4n-scalar products of these terms vanish. Thus
[Y®, Z¥],, = o' — Q3 = 0. (X1.73)
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The computation of higher-order terms is carried out in an identical fashion.
At each step we need the strict crossing condition £; # 0 so we can solve for

k
u®,

XI1.12 Subharmonic Bifurcation When n > 2
When n # 1, 2 we have (see (XL.15)) JZ, = JZ, = JZ, = 0. It follows that
we may find Y(s, ) in the decomposed form
Y(s, 2) = of ®@Z,(s) + e WL ()] + xls, @), (X1.74)

where (X1.48) is satisfied,

[, ), Z1]zme = 0
and

[YC, 2), Z3]gny = €'

It then follows from (XI.51), and (XL.45); that

[Y®, Z£],,, = €%,
and from (XI1.57) that

Y = g7, + e L,

= exp i(gbo + —’3—3) I, + exp (—i(¢0 + 1;) s) T,. (XL7%)
To solve (X1.59) it is necessary and sufficient that

[JY(2>5 Z?]Znn = [Y(Z)o ‘H*ZT]ZKH = 0’ l = 0’ 1’ 2 (X176)

We first apply (XL.76) to (XL.59) for I = 1. Since Y is real-valued we auto-
matically have (X1.76) for [ = 2. Then using (X1.63) we find

ZH(I)UYl - cﬁlYI), ZY)znn — [Fotg, UglY 1Y), ZY]2m = 0. (XL77)

We may simplify (XI.77) by noting that if & is any linear, 2n-periodic operator
and Z; = ™™y (s), ZF = ™ T3(s), then

[FZ,, 23]y = [e7 2™ LTy, T2 = 0. (X1.78)

We next replace YV in (X1.77) with the decomposition (XI.75) and utilize
equation (XI.19) to reduce (XI1.77) to

im ; i
zp'u)(’)h - 7 @1) ei¢0 - ezwu[Fm}(:uO» U0|Z1 lzl)! Zf]Zml

- ZEFHU(#O! UOlZl |Zl)9 ZT]ZM
- e_Zim[Fuv(”Os U0|Zl |Zl): ZT]ZNH = 0 (X179)1
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The second two terms in (X1.79), vanish,
L™ Fp(ito, Up|To|To), [§]2en = 0,
[e™ ™™ F (1o, UoIToIT5), T 2mn = 0,
and the last term vanishes unless n = 3

[e” 3i(mmstr;(.uo, Uy | 1=‘0 ’1_—‘0), I82mn = A10,3.
Hence

2;1“’(})1 - i%dbl) — g™ 5 =0, (X1.79),

which is essentially the same as (IX.66). It gives u'") = 0 except in the case
in which n = 3. The 6n-periodic solutions (s, «) = W(s + 6, &) which
bifurcate from U(s, u(a)) = U(s + 2=, p(a)), where a = 0, have exactly the
same properties as the 3T-periodic solutions derived under §IX.14.

To compute the behavior of the bifurcating solutions in real time we
must find the frequency Q(z). The second derivative Q, of this frequency
may be determined from (X1.59} using the condition that [JY'?, Z¥],,, = 0
The scalar products of the terms which are linear in Y, are in the form
[eti™m34(5)] ;.. = O, where a(s) is 2m-periodic and

£Fuu(nu'05 Uo,Y“)lY(”), Zg]ZEn
= 2[Fvv(nu0s UOl Z’l Izl)v Zg]Zrm

= 2[Fw(,£l0, Uo|ro |T0)’ Za‘]bm' (XISO)
It follows that for ne N, n # 1, 2 we have
o — QP = —[Foto, U0|r0|l_"0), Y /.4 Py (XI1.81)

We now assert that, apart from the calculation of the frequency Q(«) the
6n-periodic (n = 3) subharmonic solution of the reduced time s has all of the
properties, including the stability properties (no stability for u near i) of
the 3T-periodic solutions computed under §IX.14.

We therefore turn our attention to the cases of subharmonic bifurcation
mwhichan # 1, 2, 3. Forall such cases we have uV = Ut = QU = 1) =,
Equation (X1.71) also holds here, but with Y = ¢%°Z, + ¢~ "%oZ  This
equation is solvable if (XI.76) holds for Y**' with ! = 0 and ! = 1. These bi-
orthogonality conditions lead first with [ = 0 to

o — Q3 = Q. (X1.82)
The derivation of (X1.82) is similar to the derivation of (X1.73).
The second and third conditions [JY®, Z¥),,, = [J¥Y®), Z¥],,, = O for
the solvability of (XI.71) lead to
lu(z)[{jY”) - d,IY(”}s ZT:IZﬂ:n
= [Fooltto, UoITo1Tg), Z8] 5[ Y, Z3] 20
+ [Foltto, Uo | Y YD), Z81,,,
- %[qu(lu'ﬂs UO |Y(1)|Y“)|Y“))s Zf]hm' (XI83)
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We next introduce (X1.75) into (X1.67) and find, using (XI1.82),
JY? + [F,, (1o, Uo|To|L0), Z8]2nZo
— exp 2i(¢o + (m/n_)s) F,.(1t0, Uol T To)
- 2Fvu(1u0 3 UO |r0 | FO) N
- exp (_ 2I(¢)O + (m/n)s)) Fuv(.uos UO |r0 ITO) = 0.
The decomposition (X1.74) now implies that
YO = 2igpNeZ, — eT L)) + £ @,

The solution of this equation which is orthogonal to Z§, Z¥, and 2% is of
the form

XD = Lofs) + exp 2i(do + (m/m)s)o(s) + exp (=2ildo + (m/m)s) i),
(XL84)

where §(s) = s + 27), | = 0,1 are periodic, to-be-determined, functions.
Many terms in (X1.83) integrate to zero. Suppose

g = &*™(s), where k = +m, +3m.
Then

(g, Zt]s0n = [exp(—i(%—%)s)g, rg]z ~0 (X189

unless k — m = rn, wherg reZ and 0 <m/n <1, n > 4. The only values
k= +m, £3mleadingtore Z are

k = m,n unrestricted
and
=-3m, n=4, m=13
We may therefore compute

[Y®, Z4],, = e {i L o rslz,,},

4]

[F oo, Up| YY), ZE] 30
= [F, (1o, Uol YO X, Zt]22m
= ¢~ Mo HOMF_ (1o, UgiT5[81), T8]2en
+ [Foulitg, UgiTy81), T§1zn
+ [Fulpo, Ul Fol&ol), T8127,

and
[Fuuo(tio, Ug YV YIYD), ZE],,
= e *%[e ~HEDTE o Uoifo|rotro)= | i1 PP
+ 3[F,,(120, Upi T To1Ta), T8 2ms
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Using these relations for the terms on the right-hand side of (X1.83) and
simplifying the left-hand side with (XL.19), we find that
u‘z’(yl - i% d‘)l)e"“’“ = A% =0, nz=s, {X1.86)
and
,u(z’(yl - i% obl)e"”“ = e + Jie™¥0  p—4  (XI8T)
where

m
j’2 = [Fuv(ﬂo, U()ererI)s 23]21{! ; + [roa ra‘]ht}

+ [Fultto, Uo|To1£1), T¥T2r + [Foulito, UsITy)8o), TX],,
= (Foul#to, Uofrolrofro)s 8124
A3 = [e™™F 1o, UpITo|T,), T4,
= 3[e™ ™ Fylug, Up|To Ty To), T3], = 1, 3.
Equation (XI.87) is in the form (IX.80), and (XL.86) is in the form (IX.101),

XI.13 Subharmonic Bifurcation When n = 1
in the Semi-Simple Case

We are now in the frame of case (a) of §X1.4. Zero is an index-one doubie
(semi-simple) cigenvalue of J = J, with two independent eigenvectors Ty,
and T'y; and two independent adjoint eigenvectors '}, and I'}, satisfying
the biorthogonality conditions (XI1.21). We seek z subharmonic solution
(s, 2) = Y(s + 2r,2) and a frequency Q(«) in the series form given by
(X1.49), where a = [Y(s, «), T¥,],, is the amplitude. Proceeding as in
§XI1.10, we find (X1.54) in the form

(0™ — QN = J, YO (XL8®)
Since [J, YV, T¥,1,, = O and [Loo. T% s = 1, we find that
QY = o = g, (X1.89)

Moreover, since J, Y"' = 0 and Tyq and Iy, are independent eigenvectors
of Jo, we have Y as linear combination C,\ Ty + C;Ty,. However,
(XL51); (with Z§ = T'%,) implies that C, = 0; (XL.51), and (XL45), (with
Z} = T'},) imply that C, = 1. Hence

YO =1, (X1.90)

Following again the line of equations in §XI.10, using (X1.63), (X1.89),
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and (X1.90), we find (X1.59) in the form _
(0 — Qg = JoY® 4+ 24V gL, — @®:Fo1)
— F,(to, Up Y01 [To1).

Necessary and sufficient conditions for the solvability of (XI.91) are that

(XL91),

oY, Tolar = o Y, T8112z = 0. (XL91),
The second of these conditions gives
2092 — [F, (o, UplTo11Tg1), T8112e = 0; (X1.92)
where, according to (X1.27),
P2 = [#lo; — @01, T¥ 12, > 0. (X1.93)

So (X1.92) gives p'*". On the other hand, the other solvability condition leads
to
' — Q= —[F (4o, UplTo11To1), | Py P

+ 20Ty, — &, 04, Téolan-
To compute (2! we need the value of
@'? = 1o, + (@), (X1.94)

We leave the specification of the algorithm for the computation of 4’ from
the equation governingY'® as an exercise for the reader.

We noted already in §X1.4 that bifurcation at a double semi-simple zero
is not typical. This type of bifurcation can occur in cases with symmetry which
are analyzed in §XI1.21.

X1.14 “Subharmonic” Bifurcation When n =1
in the Case When Zero Is an Index-Two
Double Eigenvalue of J,
We turn next to case (b) of §X1.4. Zero is an index-two double eigenvalue of
J = J, with proper and generalized eigenvectors and adjoint eigenvectors
satisfying (X1.28-30). We again seek a 2n-periodic bifurcating solution
(s, o) and z) in the series form given by (X1.49). The amplitude o is

defined by
a = [¥(s, ), T112x- (X195)

Equation (X1.88) again governs at first order, but now
(R Q) = [JOY“’, 80)2n = LY, J8T 0]z
= [Y, Tz = L. (XL96)
Since (XI.51), requires that [Y®, T'§,]1,, = 0 we have
Qb = uthey, — 1 (X1.96)




280  XI Subharmonic and Asymptotically Quasi-Periodic Bifurcation of Periodic Solutions

and .
YO =T, = UM _ Y = O, — i, (X1.97)
The equation governing Y@ is now formed by subtracting (X1.53), from
(X1.52), using (X1.96, 97) and (X1.63):
(@ = Qo0 + 29 = JoY® + 244y, — 6,1,)
—~ F,.(u,, UolTgy|Ty,y). (X1.98)
This equation is solvable provided that [J,Y'®, I't,],, = 0. Using (X1.97)
and (X1.42) we find that
240, I8 120 — 2[00, T 150 = 200G, + [0, | I P
— [Foultto, U Ty, [To,), - SY PV
Hence
2#“)?1 = [Fvu(.lan UO IFOI ||r01)a ra‘l]Zn’ - 2[r013 r;fl]Zrz- (Xlgg)

Since §; > 0 by hypothesis, (X1.99) is solvable for utt
We compute the value of o2 — Q@ by projecting (X1.98) with I'%,.
Using (X1.95), we find that

[Jo Ym, rgo]zn = [Y(z)a Jg Fgo]zn = [Ym, r(‘)‘1]2n = 01

o — Q) 4 2.“(“[U1a IEolee — 2[F0,, T P
= 2#(1)[{fF01 - @1r01}; 8012
— [Foulpo, Uy To11Tg4), | I PP (XL.100)
Q2 cannot be calculated from (XL100) unless 0® = p20, + (uV)20,
is known. So we need to determine u?,
To find u®, we first form the equation for Y by subtracting (XL.53),
from (XI.52),, using (X1.97):
(@ = QONFoy + 3w — QUM 4 3007,
+ 3(0_,(1) _ Q(U)U(ZJ + QY@
= Jo Y + 3uDF, (1o, UplITy,) + 3F (o, Up | Ty, |URY)
+ 3F, (1o, Ug UM Y®) — 3F, (15, Uy Iy, | Y®)
+ 3F,, (1o, Ug [UPIUD|Tg,) — 3F,, (1o, Ul UM Ty, ITy,y)
+ Fooultto, Uo[To1 ITo, T,) + 3V, (1o, Up Y
+ 3 MYF,, (1o, UolTor) + 66F,, (1, UpiTg, UM
- 3“[1)qu(u0’ U |Ty, [Toy) (X1.101)
The unknowns in this equation are Q*, Y, and 4. To identify the co-
efficient of u'? we note that

o — QN =1, UD = @0, 4 400,
Q2 = yDg 4 (ktlo),
=3 — QMUP - 30O, + 3uDF, (4, Uy [Ty,)

+ 3F, (1, Ug [T, |UP) = 3uP gy, — ﬁl - ‘-ﬁlrm} + (ktlo).
(XL102)
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We may therefore write (X1.101} as
(CU(3) - 0(3))r00 = JoY(s) + 3,11(2){}1—‘01 - 61 - @lrol} + (ktlo);
(X1.103)

Equation (XL103) is solvable if [J oY, I'%,1;, = 0. Hence, using (X1.42)
we find that

3uD3, + [(ktlo), T8 12, = 0.
On the other hand, (X1.95) implies that
(o Y, T)se = [YO T8 12 = 0,
so that
o™ — Q¥ = 3UP[{FTo, — Uy = &:T 01}, Tolas + [(ktlo), T8ol:r.

The computation of higher-order terms follows along similar lines.

XI.15 Stability of Subharmonic Solutions

The stability properties of the subharmonic solutions in the present auton-
omous case are the same as in the forced T-periodic case. When n = 1 and
n = 2, subcritical bifurcating solutions are unstable and supercritical
solutions are stable when || is small. The 6m(n = 3)-periodic solution is
locally unstable on both sides of criticality and the various possibilities for
n = 4 which were discussed in IX.16 apply here as well. The proofs of these
results are slightly more complicated than those given in Chapter IX. But
all the results have been established in the more general context of maps by
G. looss (Bifurcation of Maps and Applications, Amsterdam: North-
Holland, 1979)). Here we shall indicate how these results may be obtained
by a direct analysis of stability similar to the one given in Chapter IX.

Let ¢(t) be an arbitrarily small disturbance of (s, @). Then V = (s, o)
+ &), s = Q(o)t, satisfies (X1.2) and the linearized equation for the dis-
turbance ¢{t) is

o _

d "
Since Y(s, @) € P, we may use Floquet theory to form a spectral probiem
for stability. Setting

(Vi)  u=p)

¢ =els,  LEPm,
we find that

B =— 02 4 F DL, (XL104)

5

1d
d
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where

0 = ~00) 5 + Fy(ue), ¥6s, )1,

domain j(x) = P,,,,
and since (C(a), (s, 2), w2)} = (wy, Us(s), pg) when o = 0,

§(0) = 0.
We are interested in perturbing the eigenvalues such that
WD) = (0,

We note that \il(s, «) is a nullvector (an eigenvector with eigenvalue zero) of
i (=) for all &:

jlonr = 0. (XL105)

We shall solve (X1.104) (find  and v) by perturbation theory. The eigen-
function {(s, @) may be decomposed into a part Y(s, o) lying on the null
space of the operator j(x) and is neutral with respect to stability and another
part &(s, o) which determines the eigenvalues v(a} which change with «
and determine stability:

s ) = C@) {C(s, 9 + 22U, a)}. (XL106)
The decomposition (X1.106) is not unique since (1) we have not yet required
that &(s, «) should have no part proportional to (s, o) and (2) () and C(x)
are arbitrary. To specify the decomposition more precisely we shall require
that

86s, 0) Fgo(s)
should contain no part proportional to
(s, 0) = Uy(s) = Z,.
We may realize this requirement by requiring that
(& Z&T2m = 0. (XL.107)

We may specify the decomposition (XI.106) completely if, in addition to
(XL107), we specify another condition fixing the amplitude of (s, @). We
may then find v(e) and (a) by perturbation analysis. Since (s, o) satisfies
a linear equation the normalizing function C(«) is indeterminate and may
be selected arbitrarily.

We find the equation for € by substituting (XL.106) into (XI1.104):

W+ W=t (- a)eP,,,. (X1.108)



X1.15 Stability of Subharmonic Sclutions 283

When o = 0, (XL.104) reduces to

Jg, = 0.
Then (X1.108) reduces to
1o Uy = J&o. (X1.109),
The first two derivatives of (XI.108) with respect to a at & = 0 are
U, + 1P + v, = JE + j PG, (X1.109),

and

T, + 20D 4 1o + VG, + g
= Jg® 4 2§00 + g, (X1.109),

where c(n(')a cu](') € lpz::us

. d(-

o) = —00 %) R, (o, Ul + Fust, Uol¥1)
and

oy = —a® &) 4 Lo, g, Ual) + () Fnlitar ol
+ 2UOF o, Uo W1 + Fulito, Upl W21
+ Fonlito, Ug W ).

We recall that Ug(-) = Z, and [Zg, Z¥]2m = 0.

Let us consider the stability problem when n = 2. Then
ut =0, O = V) = ‘u(l)@l =0, Uts) = ﬂm01(5) =0,
Yy(s) = —YNs) = —Zy(s), Q@ = Mo, + [(F,(it0, Uol Z11Zy), Z4xs
UP(s) = 120 (s), 7o =0.
The condition (X1.107) plus a normalizing condition [Lo, Z1] = 1 gives
Gols) = Zy(s) and JHG, = —F i, UplZy | Zy).

Equation (X1.109), is solvable if [JCY, 24 ]an = [IEM, 2814, = O. The first
of these gives (se¢ equation below (X1.64),)

v = ~[F, (o, UglZ11Zy), ZE]an = 0
and the second gives
w0 = —[F, (o, Uol Z,1Z,), Z8)ax = 0/ — Q2.
Then (X1.109), may be reduced to
B = oo, UolZ4124) — [Fulbios Uol Zu1Z4), Z8henZo.  (XLLIO)
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Comparing (XI.110) with (X1.67), we conclude that
(Y = Y@, (XL11D)

We may now rewrite (X1.109), using the relations specified in the para-
graph above:

T(Z)ZO + B[Fuv(nuOS UOIZI ’Zl): Z(‘)'lhtzl + V(Z)Zl
= JgP 3F, (¢, Up|Z,{Y?) + #m{le - 6)121}
+ Fuvv(nu()s UOIZI | Zl !Zl) (XIll2)

Projecting (X1.112) with Z* and comparing the result with (XL72) we find
that

v(2) — ‘_2#(2)51
and
vo) = —pPEu? + O(a*). (XL.113)

Equation (XI.113) shows that subcritical solutions are unstable and super-

critical solutions are stable when « is smail. Projecting (XI.112) with Z2 we

find, after a short computation like that leading to (XL.73), that ©® = 0,
Turning next to the subharmonic with n = 3 we note that

QY = o = 4o, U = 40 (s),
l]!‘”(s) = u(ll(jl(s) _ Y(II, Y — ei¢oZ1 + e*"""zl,
Z,="Ty(s), Tys)ePy,, m=1 or 2, and 7y = 0.
The vector {, is a combination of independent nullvectors of J and the

condition (XI1.107) implies that there are complex constants C, and C, such
that

So=CoZ, + C,Z,. (XL114)
We may simplify (XI1.109),, using the relations specified above:

™™WZo + VOIC,Z, + e, Z,
= + Cou"™(FZ, — @,2,} + C,{#Z, — & Z,}
— CoFyolitg, Uple®Z, + e %Z,|Z))
- Cvav(nuos Uolei¢ozl + e_i.tozllzl)'

Projecting this first with Z¥, and then with Z} we find, using (X1.19) and
(X1.79), that

im

V“)Co = Co#m(}’l - 3

@1) - C111eif¢oa

- im -
vC, = Clﬂm(?; + ?@1) = Co¥1e*.
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So v{!? and v{"? are the eigenvalues of the matrix
im .
u‘”(vl -3 651) — AT
= ,
. _ im
— 4y #(”('}’1 Y d)l)

where u'!) is given by (X1.79),,
21““)(?1 - ?@1) = A3,

with the same 4, as given there. The analysis of stability is exactly the same
as in the forced case studied in §IX.14 (see (IX.74)):

v 4+ v =t = 208, > 0
because

(1y %l’lli

= 6 >0,
|71 — (im/3),| '

and

2
W = ()

; 2
im
?1-“3_@11 _|A-1|2

2

= =3y <0,

im
71— ?@1

and one of the eigenvalues of th is positive and the other is negative. It follows
that one of the two eigenvalues

(1)
[::8] - a[:;”] + O(?)

is positive on each side of criticality. So the 6z-periodic (in s) bifurcating
solution is unstable for both positive and negative values of « when || is
small.

We leave the demonstration of the other stability results asserted in
§X1.14 as a demanding exercise which will test the understanding of devoted
students.

XI.16 Summary of Results About Subharmonic
Bifurcation in the Autonomous Case

Suppose one of spectral assumptions (I) and (II) of §X1.3 holds with 5o/,
= m/n along with the strict crossing conditions of §X1.5-7.

i. When n =1 a single, one-parameter (g) family of 2rn/Q(e)-periodic
solutions of (XI.2) bifurcates on both sides of criticality. Whenn =2a
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single, one-parameter (&) family of 4n/C¥e)-periodic solutions of (X1.2)
bifurcates on one side of criticality. Supercritical (u(c) > 0) bifurcating
solutions are stable; subecritical (u(s) < 0) bifurcating solutions are
unstable.

ii. When n = 3 a single, one-parameter family of 6z/Q(e)-periodic solutions
of (XI.2) bifurcates and is unstable on both sides of criticality.

iil. When n =4 and |4;| > |y, — 3imd, ||Im{A,/(y, — }im®,))|, 4, and
A3 being defined under (X1.87),m = 1 or 3,y, — $imd, satisfying (X1.19),
then two one-parameter (g) families of 8r/Q(e)-periodic solutions of
(X1.2) bifurcate. If |4;| < [A;], one of the two bifurcating solutions
bifurcates on the subcritical side (¢ < 0) and the other on the super-
critical side (u > 0), and both solutions are unstable, If |4,| > |4,] the
two solutions bifurcate on the same side of criticality and at least one of
the two is unstable. The stability of the other solution depends on the
details of the problem.

iv. When n > 5 and Im(4,/(y, — (im/n)®,)) # 0, A, being defined under
(XL.87) or when n = 4 and the inequality of (iii) is not realized, there is in
general no small-amplitude 2nn/Q(e)-periodic solution of (XI.2) near
criticality. In all cases (g) is such that Q) = w,, so the bifurcating
solutions have periods close to a multiple of 2m/d(y).

X1.17 Amplitude Equations

Up to now we have treated the problem of bifurcation of T(x)-periodic
solutions of autonomous problems using power series in the amplitude « and
the Fredholm alternative. Now we shall consider another method, the method
of amplitude equations. Without loss of generality, we put u, = 0. Then when
1 1s close to zero, all the dynamics in the neighborhood of the closed orbit U,
in the phase space is attracted by a center manifold. On this manifold we may
reduce our problem to one or two dimensions plus an equation relating
the phase s of the bifurcated solutions to real time.

The position on the manifold of any point parametrized by x and s may
be represented as follows. When n = 1

V = Uy(s) + xTy,(s) + D(s, g, x), xe R (XL.115)
Whenn =2
V =Uys) + xZ,;(s) + O, o, x). (XI.116)

The sccond terms in (X1.115) and (XI.116) are tangent to the manifold when
# = 0. In both cases we use the real-valued eigenvectors T'y,(s) and Z,(s) to
begin the construction of V. When n > 3 or when #,/w, is irrational we have

V =Uy(s) + zly(s) + z0(s) + ®(s, i, 2,2), zeC. (XL117)



X1.t8 Amplitude Equations for the Cases n = 3 or 1/, Irrational 287

The differential equations which govern the phase s(¢) and amplitudes x(s)
and z(s) are

5 )
RE = 0)0 + g(s, Hy X),
X _ s, 0, (XL118)
ds

where ¢ and f are 2n-periodic in s when n = 1 and 4=-periodic when n = 2.
When n = 3 or #14/w, 1s irrational, we have

- wo + gis, i1, 2, Z)
dt - Q g £ .ua 3 'y
dz  ng _
— =i—z+ f(s, 2, 7). (X1.119)
ds Wy

The linear parts on the right-hand side of these equations are obtained from
linearizing (X1.2) at p = 0, using (X1.8), or JZ, = O when n = 2.

To get amplitude equations we substitute (XI.118) and (XL.115) or (XI.116}
into (X1.2) and identify the independent powers of u and x. Amplitude
equations for the cases with n > 3 or when no/w, is irrational are obtained
in the same way by substituting (X1.119) and (XL.117) into (X1.2) followed by
identification of independent powers of g, z, and Z. The substitutions just
mentioned lead to differential equations for the eigenvectors multiplying x or
z. The conditions for solvability of these equations place restrictions on the
unknown functions g, f, and ® appearing in the amplitude equations.

The method of amplitude equations is more general than the method of
power series in the amplitude. The first method works well for computing
bifurcating solutions of a preassigned type, say subharmonic bifurcating solu-
tions. Amplitude equations are not so constrained, the nature of the solutions
which are allowed is just that which satisfies the amplitude equations. The
generality is especially valuable when the bifurcating objects are invariant
sets with complicated dynamics, like tori and strange attractors. Another
advantage is that the reduced form of the amplitude equations, differential
equations of first order with periodic coefficients of fixed period, are of the
type already studied in Chapters IX and X.

XI1.18 Amplitude Equations for
the Cases n > 3 or 5/, Irrational

We are considering the case in which (XI.2) has a periodic solution Ug(s),
s = wyt for 4 = 0, and the operator J, defined at (XL.7) has eigenvalues £ iffo
in addition to zero; hence

JOZO = 09 ZO = I.-IOs (Jo - ”’]0)1—‘0 = 0. (XIIZO)
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Moreover, we shall assume, without losing generality, that

1 01
o<t cq, Mo, (m 0 1Y (XL121)
g wy 2 n 12
as in (X1.10).
After substituting V given by (X1.117) into (XL.2), using (XL1 19), we find

that
o dl, 7di‘o o o
(CUO +g){U0+zI+zE\7+ (E'l‘ rg)(w—oz + f

74 R ng_ -\ 0@
~(en)(r ) )
=FLu, Uy +zly + 2T, + @]. (X1.122)

We next expand the function F and the unknown functions @, f,and g in
powers of y, z, and Z. The form of these expansions is given below

F(u, Ug(s) + u) = F[0, Uy(s)] = F,[0, Ug(s)|u]
#E, [0, Ug(s)] + pF,, [0, Uy(s)u)
+ 3F,,[0, Ug(s)ulu] + 142F,,[0, Uy(s)] + -, (XL123)

O, u,2,2) = Y O, (s)u'27z", (XI.124)
prgtr=1

gl 2. Z)= Y o, (s)uriz, (X1.125)
ptq+r>1

where a,,, = &,

femzd) = Y  a,.lurz7, (X1.126)

ptgtr>1

where @,y = Dy, = 0 and @y, = agy; = 0, since ® and £ contain no term
linear in z or z. The coefficients in the expansions of @, g, and f will be
determined by the Fredholm alternative.

The coefficients of degree zero and one in z and 7 are

Uy = F[0, Uy(s)],
. drT, .
910U + wO?i".SE + ingIy = F,[0, Uy, ]
This system is solvable for T}, if and only if ag, o = %y, = 0.
The coefficient of u is
o100 Ug + @olarg6ly + Gio0 + Tp] = Jo®@ 100 + F,[0, Uyl

This equation is solvable if

190 = [F,[0, Uyl Z&],,,

o0 = 0. (X1.127)
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The solution for @, ¢, is uniquely determined by the normalizing condition

[®100, Z8)2e = 0.
At order uz we obtain

x1,0Uo + @olag0T0 + @101T0)
= {(Jo — o) P130 + F,uu[O! Uil + F..[0, U0|ro\¢)100]-

This equation is solvable if
1
d110 = c—o_[F“”[O’ Uoilo] + Fo[0, UglTo |1 ®Py00T: T 2ns
0

01 = 05
%10 = Aoy = 0. {X1.128)

We get a unique @, subject to the normalizing condition [@; g9, [$]2, = 0.
At order |z|? we obtain

0€011Uo + wglagsTo + Go1110) = Jo®o1y + Ful0, Ul 1],
which is solvable if ao,; = 0 and
fo11 = [F,.(0, Uyl Fo“:o), ZLE] 30 (X1.129)
At order z2 we find that

OEoonn + woldg20To + dooz + To) = (Jo — 2ing)Pgz0 + 1[F, (0, Uo| 15115}
(X1.130)

To apply the Fredholm alternative, we must first determine whether iy, is
an eigenvalue of J, in PP,,. This is the case if there is an integer k such that
one of the three possibilities

2ing = {ine + ikwg, —ifg + ikwo, ik}
holds. The eigenvectors belonging to these three choices are
e s,  Tye ™,  Uge ™.

It is not possible that 2in, is an eigenvalue of J, if ng/w, is irrational or if
fo/0g = m/n with n > 4. In this case, the Fredholm alternative requires that

%o20 = ooz = do20 = ooz = 0- (XL.131)

On the other hand, if no/we = m/3 (hence m =1 or m = 2), then 2Zin, =
—ing + imw, and Tge ™™ is an eigenfunction of Jo — 2ine. We write

o020 = (@g02¢™){Toe ™).
Then, after multiplying (X1.131) by [*e™™ and integrating, we find that

ag20 =0,

ooz = .0, Uy 5 1T0), rgeiim]ue_im{ (X1.132)




290 XI Subharmonic and Asymptotically Quasi-Periodic Bifurcation of Periodic Solutions

®,,, is uniquely determined subject to a normalizing condition
[Dg20, r(?‘e_ims]zn =0

More generally, at order p?z9z" we obtain %0 Ug + wWo(ap, Iy + @, T,) =

(Jo — inglg — MNP, + R,,,(s) where R, (s) is known from computation at
lower orders. If there is an integer k such that one of the three posstbilities

Molg — 1) = {ing + ikwy, —ing + ikayy, ik, }
holds, then iny(g — r) is an eigenvalue of Jy with eigenvectors
roe*-iks, I:Oe_f"s, ['joe*:'ks‘

The three possibilities may be written as
_ Yo
k=—{g—r—-1Lg—r+1,qg—r).
Wy

Hence, if /w,, is irrational, we deduce that
Aper 70 onlyif g=r,
e #0 onlyif g=r+ 1.
On the other hand, if 774/, = m/n, n > 3, and ! s any integer, we have
Upye #0 onlyil g—r=1n,
Qpe #0 onlyif g —-r—1=1In
Finally, we note that the terms remaining in f and g are of the following form:
X piin b (ZZ) 2 Ems,
Up 4. g+ttt P(2T) e HMS,
Gy piiner, HP(ZT) 2L g ims
Ay g atin—y HP(2Z)ZI"1giims

Hence (X1.119) takes the form

ds . .
— =@, + P(,u, lle’ Z"é""s, Z"e ams),

dt
d . . .

=i 20y 122, 2 ) - g ([P ™) (XL.133)
ds

where P is a real-valued polynomial and Qo. Q, are complex-valued poly-
nomials of their arguments, after truncation at arbitrary order N.

Equation (XI.133), is the same as (X.24). If #o/wy is irrational, there is no
term Qy, and the last factors z"™™ "™ in P, 0, do not appear. Equation
(XI.133), can be regarded as an evolution equation for the phase.

The @, are not unique, but may be made unique by imposing the following
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orthogonality conditions:
[@,,, T #],, =0 il g-—r= L+, =0

pqr’
[®@,,. T3e™ ], =0 if r—g=h-1, 1>0,

[D,,, Zse ™1 =0 if g—r=In leZ,

with [ = 0 only in the irrational case. Other ways of normalizing the ®,,,
would lead to somewhat different amplitude equations on the center manifold.
This corresponds to other ways of writing (X1.133), using different variables,
with a nonlinear change of variables close to the identity. The form (X1.133)
is the simplest that we can obtain and it is called the normal form of the
amplitude equations.

We draw attention to the fact that (X1.133) is an asymptotic expression
with error proportional to (|z| + |uly¥, where N is the arbitrary order of
truncation. We noted already in Chapter X that the asymptotic approxima-
tion may become worse as the truncation number is increased. The larger
the value of N, the smaller is the domain of validity for (X1.133).

Just as in §X.2, the change of variables

z = e'osioy (X1.134)
transforms (X1.133) into an autonomous problem

ds
==yt P(H, |x|25 X", x")s

dt

dx _
7 xQo(p, 1x12, x™) + 710 (s, 1x[2 X"). (X1.135)

X1.19 Bifurcating Tori. Asymptotically
Quasi-Periodic Solutions

Consider the case for which g/, is irrational or equal to m/n with n = 5.
Since equation (X1.135), is the same as (X.28) except that £ is replaced by s,
with functions of s of period 2z, we may apply the results derived in §§X.3
to X.14. In this way we find a bifurcating torus in the form x = p(#)e™ where
p(6) is computed as in §§X.5, X.6, and X.8. We may express these tori in terms
of V¥ (see X1.117)

V = Upls) + e¥p(0)To(s) + e #p(@)Tols) + Vs, w, e?p(0), e”#p(8)),

where ﬂd=°[ i(@ + #o5/wo). In the irrational case p is independent of . When
Ho/we = m/n, then p(@ + 2n/n) = p(f). The coordinates on the torus are s
and 6.

Trajectories on a torus may be computed as in §X.7 or §X.9, leading to
the representation p(s) and 8(s). To obtain the evolution of the phase on
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trajectories, it is necessary to consider (X1.135),,

d ) R
= 0y + Pt p¥(s), phls)e ™, pos)einin] (XL136)

In fact, using the result (X.11 1} of §X.9, it is possible to state that
ZTOS T 86) = 85 + 677G, 45, Bs + 1,00+ + 145, 8), (XL137)
0

where f!d:dryo/wo + 2Qfe?), the G, are 2m-periodic with respect to both
arguments and

= O(e").

dx (s, £)
Y10 = 1(0,8), \%(S—

In the same way, we find that
psy=¢+ " 3R,_, (s, n—aji + B(S)) + o+ 06N, (X1138)
0

where the R, are 2n-periodic with respect to both arguments. We next replace
p(s} and {ny/we}s + 8(s) by their expressions (X1.138), (XI.137) in (X1.136},
which may then be expressed as
ds L No 20(02 N+l
S =OLuE) + Y T s, e Ue) Is 4 x40 | + Ofe P+ 1205, &),
dt KE1 Wy
(X1.139)

where the T’s are 2m-periodic with respect to both arguments and
(9%2(s, €}/0s| = O(&™*!). In general, there are sccular terms in y,, but the
1i’s have finite Fourier decompositions* (same proof as for the G,s), all
higher harmonics going into the terms O(e¥*+ 1),

It is also not hard to see that

- N
':d}[u(e)] + f s"’ﬂ(s,ﬁ(gz)s]:l =o' + 3 e*5,(5,8(e%)s) + 0N,
k=1 k=1
(X1.140)

where §, are 2n-periodic with respect to both variables and
O 10 4 2002,
Wy

When s = 0(1), the secular terms in %2 are bounded, and [y,| = O(¥ ),
(X1.139) may then be integrated:

N T -
wols + Y s"Jv Sils, Qe?)s)ds + ya(s,8) = ¢ — 1, (XI.141)
k=1 Yo

*In the second argument.
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where | X;| = OV (1 + 5 + 5%)). To compute the integrals we may write

Sels, e?)s) = Z S, €Xp il + Qly)s,

i,

and if ; + €4, # Ofor all I, [, in the summation, then

; & . Sktyts . ~ _
'[OSk(s, Qs) ds = Ez PR, (exp i(l; + Qly)s — 1), (X1.142)
If, for some [, and I,, !, + QI = 0, then (XI.142) is not valid and the integra-
tion in (XI.141) has to be done in another way. Since the summation over I,
in (X1.142) is finite, we may compute the integrals as in (X1.142) provided
only that {, + Qi # 0. For infinite summation we could expect to encounter
small denominators and divergent series even when {¥e?) is irrational.
Equations (X1.141) and (X1.142) show that truncated solutions which
suppress higher-order terms (which may be secular) are in the form

V =~ V(owt, ofdt), (X1.143)

where V is 2n-periodic with respect to both arguments. To determine , we
change variables to transform the right-hand-side of (X1.139) into a function
which is constant through terms of order £¥**. Of course w = w,y + O(¢),
and

a="T0 4 20
Wy

The rotation number of the Poincaré map (see §X.15) is given here by

A =10+ 20 + OE").
Wy

For approximate solutions (X1.143) the number j is given by the ratio of
frequencies. The comments of §X.14 do not have the same force here because
an irrational p is not enough to guarantee that the solutions on the torus
are quasi-periodic. We do get quasi-periodic solutions when 5 is not too well
approximated by rationals. Fortunately most numbers (* most” defined in
the sense of Lebesgue measure) have the required property and for these the
discussion of Chapter X is valid.

X1.20 Period Doubling, n = 2

We have shown already in §XI.11 that the period almost doubles near criticality
when the Floquet multiplier escapes the unit circle at 4 = —1. This is an
important and common form of bifurcation, sometimes called a flip bifurca-
tion. This type of bifurcation is also associated with repeated period doubling
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sequences of bifurcations known as Feigenbaum-Coullet—Tresser sequences
which may lead to chaos. There are many experiments on problems with
steady forcing, like Rayleigh—Bénard convection, in which peried doubling
sequences of bifurcations are reported. In fact, a strict doubling is impossible,
except at criticality where it would be impossible to observe. Because of the
importance of this type of bifurcation, it is useful to treat it from several points
of view. The amplitude equation approach is developed below.

We suppose that (XI.2) has a periodic solution Ugl(s), s = wyt for y = 0 and
that 24, = wy. Hence

hZo=0, Z,=U,,

JZ,=0 inP,, (X1.144)

where Z, (s + 21) = —Z, (s). The adjoint eigenvectors are defined in §X1.14.
First, we obtain the identity

. . 50 oD
(o + g){Uo +xZ, + (E + Zl)f + E} =F(i, Uy + xZ, + ®),
(X1.145)

by substituting (XL.116) into (XI.2) using (XI.118). We expect to find a 4x-
periodic function ® of s and in fact shall show that

D(s + 27, u, —x) = D(s, u, x), (X1.146)
which results from the property
—xZ;(s+ 2n) = xZ,(s).
We next expand F, @, g, f
Dls,pu,x) = ) D, (s)ux?,

pHiz1

g(s, H, x) = Z apqﬂpxq:
ptgz1

S mx) =3  a,(s)urx, (X1.147)
ptg=1

where @, = 0, a5, = 0, and F satisfies (X1.123). The expansions (XI.147) are
substituted into (XI.145) and independent powers of i and x are identified.
At lowest order

woUgy = F[0,Uy(s)],
%JUO + wOZI =F,[0,U,Z,].

Since Jz, = 0, this system is solvable if and only if otg; = 0. At order p we find
that ]
210Uy + woayoZy = J®,4 + F,[0|U,],

which can be solved provided that

a1 = [F,[0, U], 23], (X1.148)
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which in general does not vanish. Moreover,
ay0 = @' [F,[01Uo], Z¥]4 = 0, (X1.149)
since F, is 2n-periodic while Z¥(s + 2r) = — Z*(s). For uniqueness
[®10,Z3]2: =0, ® o€ Py,
At order x? we find that
ooz Up + Wolgr Zy = J®g; + 3F,, [0, Ul Z,{Z,].
This equation can be solved uniquely for @, e Py, provided that
[®o2, Z§]2e = 0,
1
doz = 270— [F.[0,UplZy|Z,], ZY]4x = 0 (XL.150)
0
{see (X1.64),) and
gy = 3[F,.[0, Ul Z1 1 Z, ], Z81sr (XL.151}

is not zero in general.
At order px we find that

oy, Ug + t0Z, + woay, Z, = I, + F [0, Uy|Z,] + F.[0,UpiZ,|®,,].
The Fredholm alternative implies that

o, =0 (X1.152}
1

@1 = _[va[O,U0|Z1]
@o

+ F,[0,Ug|Z, Py — 051021,ZT]4:: (XL.153)
which does not vanish in general. We get a unique ®,, such that

D,y (s +21) = —0y,(s) (X1.154)
provided that [@;,,Z¥],, = 0.
It follows now by induction that
ap, =0 if gis odd,
a,, =0 ifgiseven,
while @, is uniquely determined by the conditions
[P,..25]:. =0, ©,,eP,, ifgiseven,
[P, 2114, =0, @, (s + 2m) = — @, (s5) ifg is odd.
The preceding calculation leads finally to autonomous amplitude equations
%§= wo + P, X2) = W + ayopt + doax” + -,

dx

ds xQ(t, x?) = @y px + ag3x> + 7, (XL.155)
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where

i 1 .
o3 = w_[Fvv[O’ Ul Z,|®g,] + EEJW[O»UO'Z1|Z1 |Z,] — 0oy Z,, Z¥ ],
o
(X1.156)

The “strict crossing condition” here is expressed by a,, # 0 where iy, 1s given
by (XI.153). The null solution x = 0 of (XI.155) is

V =Uys) + D(s, 41,0y € Py,
where 5 = w(y)t,
(i) = wo + P(1,0)

The null solution corresponds to a persisting 2n-periodic solution of s of
(X1.2) whose stability changes as u crosses zero if a;, #0.
Equation (X1.153), gives rise to a pitchfork bifurcation:

p= = OW), s= Q0L Q0 =00 + Plux?)
and x? is a functipn of u provided that ap3 # 0. The period 4r/Q(u) of the
bifurcating solution is not in general twice the period 27/a( 1) of the basic flow.
The stability of the bifurcating solution can be determined by perturbing the
amplitude equation at the bifurcating solution. Supercritical solutions are
stable, subcritical solutions are unstable.

XL.21 Pitchfork Bifurcation of Periodic Orbits
in the Presence of Symmetry, n = 1

We are now working in the frame of §X1.13 with n = 1, a double semi-simple
eigenvalue. Here we examine the mathematical consequences of a physical
symmetry, leading to a pitchfork bifurcation with u(e) = u(—¢) and Q(e) =
Q(—e). This type of bifurcation is ordinarily associated with the breaking of
symmetry as in the case studied in §V1.14.

We introduce the notation

Zy = Ugy(s) = Ty,
Z =T, (XL157

relating the present analysis to the one given in §X1.13. We say that (XL.2) is
invariant under the action of a linear operator $, a symmetry operator like
the one defined in §VI.14, which satisfies

§2=1, S#1.
F(u,8V) = SF (i, V) foranyp, V.
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We assume now that the basic periodic solution U, is invariant under S,
hence

SUs(s) = Upls),
and
SZy(s) = Zy(s) for any 5. (X1.158)

The symmetry breaking bifurcation here, as in §V1.14, is associated with an
action which changes the sign of the eigenvector Z; = T,

$Z, = —Z,. (X1.159)

This implies that Z, is not a generalized eigenvector satisfying JoZ, = aZ,
for & # 0. If Z, were a generalized eigenvector, then

SJOZ] = J()SZI = _J()Zl = aSZO = O!ZO - JOZI.
Hence & = 0. It follows that zero is a double semi-simple eigenvalue of J; with
eigenvector Z, and Z, and adjoint Z§ and Z? defined in §XI.4 such that
[Z,,Z}] = &;and
S*ZX = 7} and S*Zr = —Z%. (X1.160)

With these preliminaries aside, we turn next to the derivation of the
amplitude equations. First, we apply S to (XL.115) and find that

SV = Uy(s) — xZ () + SO(s, , x). (X1.161)
Comparing (X1.145) with Iy, = Z,; and (XL.161), we are led to expect that
S®(s, p, x) = O(s, , —x). (X1.162)

The computation which must be carried out next is identical to the one
developed in §X1.20, except that we replace the shift s —s + 27 by the action
of § and replace P,, by P,,. In this way we obtain autonomous amplitude and
phase equations

dx

i XQ(. x3) = @y X + a3 x> + 77,
ds

7= 9o 4+ P, x3) = wg + ot + 0gaX? + 00, (X1.163)

with the same expressions for the coefficients as in §X1.20.
Finally, we consider solutions of (XI.163). The null solution x =0 is a
persistent family of symmetric-periodic solution.

V= UD(S) + (D(Sa He 0}'
A bifurcating family of steady solutions x = ¢, g = p(z), of (X1.163) leads to
new periodic solutions s = Q(e)t, Q(e} = wo + Pu(e),£?), and ufe) = p(—e)

This is clearly a pitchfork bifurcation of symmetry-breaking periodic orbits;
¢ —» —¢corresponds to the symmetry S. The stability of these solutions may be
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determined by the classical method of lincarization, perturbing the amplitude
equation (XI.163),.

EXERCISES

XL1 Use (XI.135), to reduce the study of subharmonic bifurcating solutions for
No/wq = mfn withn > 3 to the one considered in §§X.12 and X.13. Show that the results
{ti) to (iv) in §X1.16 follow from the amplitude equation and the steady solutions of
equation (XI.135),.

X1.2 Saddle-node bifurcation of closed orbits. Suppose we are at a turning point
(&, 1, e} = (0,0,0) of periodic solutions Uls, &), s = w(e)t, u = u(e). Show that Z, = U,
is an eigenvector of J, and that Z, = T, proportional to U,(s,0) is a generalized
eigenvector belonging to J,. We have J,Z, = 0, J,Z, = Zy, JFZY =0, J¥Z, = 7%,
[Z;,Z}],, = &;. Derive the autonomous amplitude equations

ds 2 2

PP Wo + X+ dyop + UgaX® + oty px + ayop’ + 0,

dx 2 2
Is Dol T GoaXT F g px + gt 4 e,

Ao = [FH[O, U,1. Z§1,
1

o = "[F,ul:o? Uyl ZY1,
Wo

%2 = 3[F,.[0. Uy Z,|Z,] — Z,,28],.,
11 .

gy = — < [F,[0,Ug| Z,|Z,] — Z2,.7%] ;.
Wy 2

fxll = [Hn Z(')I]Zm

1
ayy = E)_[H’ ¥/ P
0

where dd .
H = [F,[0,U|Z,] + E,[0,Uy|Z, [®,,] — —22 — &, Z,,
t120 = [ja Zg]lm
a ! [J,2%] !
=—1d — —a0d49,
20 wo 1 mo 10%10
where

J = 1F,[0,Us] + F,,[0,Ug[®,0] + 1F,,[0, Ug|®,,|®,,].
Show thatif a,o # 0, then it = —(ag,/a,0)e> + O(e*) where x = & and
Qey = wy + ¢ + (aM - "":&) e + 0(ed).
10

If p close to zero is given, there are no solutions or two periodic solutions of period
27/Q#) in 1, of opposite stability, near a turning point (see Figure I1.1),
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X1.22 Rotationally Symmetric Problems

We are going to derive some special properties which follow when F is
rotationally symmetric; it commutes with a family of linear operators R, as
introduced in §VIILS. First, we show that the bifurcation of a rotationally
symmetric solution Ug(s) leads to a quasi-periodic solution with two fre-
quencies on a torus. Then we show how the symmetry may be broken by
a rotating wave.

Suppose Ug(s) is rotationally symmetric; that is,

R, Uo(s) = Uy(s}) (X1.164)

for all # and S. We are working in the general frame of (XI1.117) which includes
all the cases exceptn = lorn=2.

According to the argument used to derive (VIIL49), we find that rotational
invariance of F implies that

R, T, (s) = e™T(s), {X1.165)

where | # 0 corresponds to the breaking of symmetry. Applying R, to (XI.117),
we get

R,V = Uy(s) + 2e™T(s) + Ze "Tp(s) + Re®(s,11,2,2).  (X1.166)

The form of (X1.166) suggests that the relation (X[.165) ought to induce
a similar representation of (XI.124); that is,

R, D, (s} = et (s). (X1.167)
We could say that the group action, leading to (X1.166) and (XI.167) is the
same as replacing (z, z, ) with (¢#%z, e ™z, s)in (X1.117) and (X1.124). This leads

to the following simplification of the amplitude equations (XI.119) which must
commute with this action:

=it (2P,
d
d—j = wg + P(|2?) (XL168)

where P is real-valued. These amplitude equations are consistent with the
requirements expressed by (XI.164) and (X1.165). The coefficients for P and
0 are deduced by the same techniques which were used on (XL.133). The
coefficient a,o, defined in (X1.132) is zero. By using R, in the scalar product
with I # 0, we can show that a,,,, = 0 where g #r + 1.

Equation (X1.168) is standard for Hopf bifurcation. The function p = (&)
is obtained by putting

RCQ = Re{61021|2|2 + luallo + "'} = 0, (X1169)
provided that Rea, o # 0.
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We then obtained two frequencies

(&) = wg + P(ule?), e?),

Q) = 27" + Im O(u(e?), &), (XL.170)
0
and
V(@) = Ug(t) + eTy(wn)e™™@® 4 eTofw)e @ 4 Wwt, 0, &),
(XL171)

where ¥ = O(c?), is 2n-periodic jointly in wt and wQt. This is a *quasi-
periodic” solution with two frequencies, a doubly periodic solution without
phase locking.

The second common case falling into the frame of bifurcation in the
presence of rotational symmetry is bifurcation from a rotating wave

Uglwot} = R, Uo(0),  Qy = wy/l, (X1.172)

where ! is a nonzero integer. The rotating wave is a special periodic solution
of (X1.2). We could proceed to the results of this section using the theory
already developed, but it is simpler to use the rotational invariance directly
with ¥V decomposed as follows:

V = R,(Uy(0) + Y(s)), (X1.173),

where s plays the role of a phase and Y(s) is a polar representation of the
transverse coordinate. We can choose Y(s) such that

<Y (s), Up(0)) = 0. (X1.173),

Let the operator L be the generator of the rotation group R, = exp(Ls). Then
dR(-

dss( ). R,L(-). (X1.174)

To understand the relation between L and R,, let us consider the case of
dim 3, where R, may be represented by the matrix

coss -—sins 0
R,= | sins coss O
0 0 1
We see that
iR, —sins —Cf)ss 0 0 -1 0
i coss —sms 0 )=11 0 0]-R,
s 0 0 0 0 0 0
= LR, =R.L.

By convention, we write R, = exp(Ls), because R, = 1. The differential
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equation satisfied by R, implies the group property
R:, : Rs; = Rsl+sza

but the property R,, =1 is due specifically to the generator L, whose
eigenvalues are +i and 0. After substituting (XI1.173}, in (XI1.2)

ds dR,(Uo + Y(s))

pA— = F(1, R,(Us(0) + Y(5)),

%RS{L(Uo(O) + Y() + Y(s)} = R,F (1, U (0) + Y(s)).

Hence

%{L(Uo(o) + Y(s)) + Y(s)} = F(1, Uo(0) + Y(5)). (X1.175)

Recalling now that Uj,(s) satisfies (XI.2) we find in the same way, using (X1.172)
and (X1.174), that

Q,LU,(0) = F(0, U, (0)). (X1.176)

This shows that LU,(0) is proportional to U,(0). We take the scalar product
of (X1.175) with U,(0) and note that

o d .
Y5}, Uol0)) = 5= <Y (). Up(0)p = 0, (XL177)

where we have used (X1.173),.
Hence

d . .
d—:@(Uo(O) + Y(5)), Ug(0)> = <F(1, Up(0) + Y(5)), Ug(®)>.  (XL.178),

Comparing (X1.178), with (XL.176), we observe that
ds

e Q, + hiw, Y). (X1.178);
After returning to (XI1.175) with (X1.178), we find that
dy -

where F is explicitly determined by the substitution and is such that
_ (R0, Uq| ") = QoL()Ug(0))

7,0,01) = (0, Uy} ) — QoL() (LUo(0)Ug>

LU,(0).
(X1.180)
The cigenvalue problem for F, is

E(0,01¢) = 14, (X1.181)
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where
(., Upl0)) = 0. (X1.182)

The eigenvalues of Fy(O, 0|-) are the same as for the operator F,(0, U(0)] ) — Q,L
except for the eigenvalue zero with eigenvector LU(0). Since this is propor-
tional to Uy(0), it cannot satisfy (XI.182). If zero is an eigenvalue of E(0,0i ),
it will necessarily be at least a double eigenvalue for F,0,U©) ) - Q,L
since we have added a new eigendirection along LU,,.

We have reduced the problem to the study of the autonomous system
(X1.179). The periodic solution which loses stability at u = 0 corresponds to
the null solution Y = 0. Loss of stability in the case n > 3 is associated with
a pair of conjugate eigenvalues +in, of the operator on the left of (XI.180);
that is,

i

F,(0,0120) = ingls.
We also may decompose the solution as before, writing

Y= ZCO + EE(} + d)(‘u, Z, E);

dz _ing X 2

=t el

ds

i~ Qo + g(u |2[%) (X1.183)

We compute @, f, and ¢ as was done for (XI.168). The periodic solution Y(s)
of (X1.183) corresponds to a strictly quasi-periodic solution V() on a torus,
without phase locking

V(e) = R[Us(0) + 2(5)p + Z(5)p + D(pt, 2(s), 2(s)],

with s = Q¢ and R is 2n-periodic in s, and z is 2x/w periodic in 5.
_ Mo 2
® = +1Imf(gz|%),
0

Q=90+ g(nlz|*).

This is just a Hopf bifurcation in R” plus a phase equation.

EXERCISE

X1.3 Show that if / = | in (XI.172) and if n = 1, then zero is a simple eigenvalue of
F,{0,0]"). Hint: Start with (XI.115) and (X1.172), and show that R_,[,, (s} is constant.
Problem (X1.179) then gives a classical Hopf bifurcation, as studied in Chapter VIIL



CHAPTER Xl

Stability and Bifurcation in
Conservative Systems

In many physical systems the dissipation of energy is small and it is convenient
to neglect it altogether. In this case we call the system conservative because
the energy is conserved and not dissipated. The concept of asymptotic stability
does not apply in a conservative system because a stable conservative system
cannot be driven back to equilibrium by the dissipation of the energy of a
disturbance; if put into oscillation it will oscillate forever (see Exercise V.5 for
one example). Examples of such conservative systems are systems in thermo-
dynamic equilibrium, elastic bodies, fluid flow of inviscid fluids, motion of
systems of particles with energy conserving collisions, and many others. The
study of the dynamics of such systems requires special techniques not treated
in this book. However, smail amounts of dissipation will drive conservative
systems without dynamical forcing to static equilibria. There is a huge litera-
ture on static stability of conservative systems which is usually based on
minimizing some well-defined energy in the sense of the calculus of variations.
The equilibria are defined as critical points of the energy in the sense of the
catculus of variations. The critical points can be determined by Euler’s varia-
tional equations which are necessary, but not sufficient for minimizing the
energy. The Euler equations give rise to governing differential equations on
smooth solutions. In delicate cases a separate investigation based on analysis
of the second variation of the energy is used to determine if the equilibrium
minimizes the energy. :
Systems with dissipation are different from conservative systems. In dis-
sipative systems there is an energy flux, the energy which is transferred in from
the outside is dissipated. The balance between energy flux and dissipation can
take form in motions of various types; steady motion, time-periodic motions,
etc. Though steady motions are sometimes called equilibria, they are not true
equilibria in the sense of conservative systems. They are far from equilibrium,
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defined as “at rest.” A Hopf bifurcation of an elastic system, under steady
loading, is unthinkable. There is no energy flux to support motion.

In many dissipative systems a “thermodynamic energy” plays no role in the
dynamics, whereas in conservative systems such energies determine every-
thing. There are systems in which equilibrium energies and dissipation are
relevant for dynamics. An example of this is the interfacial energy in the
problem of two fluids in relative motion which is discussed briefly in §X11.3.

Bifurcation theory was first applied to conservative systems; dissipation
was added only later. The buckling of an elastic column by an axially compres-
sive thrust was one of the first bifurcation problems to be studied. The theory,
which is called the elastica, was derived and analyzed by Euler in the eighteenth
century and will be discussed briefly in §XIL.2. The word “bifurcation” was
iniroduced by Poincaré in his (1885) treatise on rotating figures of equilibrium
to describe how one figure of equilibrium, balancing a gravitational New-
tonian potential against the potential associated with conserved angular
momentum, exchanges stability with another. The important monographs of
Krasnoselski(1964) and Vainberg and Trenogin (1967) mentioned in the notes
to Chapter 1 are strongiy tied to variational methods.

There is actually no difference in the mathematical theory of bifurcating
equilibria in conservative and dissipative systems, despite the huge difference
in what one understands by equilibrium in the two cases. Both theories relate
more or less to the aigebraic structure of problems of the form F(i, V) =10
with y a real parameter and V suitably defined, say a vector in R”, in a Banach
space, a velocity field, a displacement field, etc. The difference is in the concept
of stability in the two problems; it is a genuine difference which ought to be
understood.

XIL.1 The Rolling Ball

The easiest way to explain some elementary concepts which arise in the study
of stability of conservative systems is through the example of a ball rolling
over a smooth corrugated surface without friction, as in Figure XII.1. There
are three equilibrium positions for the ball, A, B, and C. If the ball is at either
of the three points initially and the initial velocity is zero, the ball will stay
put. Obviously B is an unstable equilibrium. If we perturb the equilibrium at
A or C, it will oscillate around either respective equilibrium. These points are
Lyapounov stable but not asymptotically stable.

In real systems there is always a little friction, so that the balls will even-
tually come to rest at A or C. The action of friction on the bead which rides the
rotating hoop in Example V1.7 is such as to bring the balls into an equilibrium
position. In the unsymmetric situation of Figure XIL1 a finite perturbation
strong enough to take the ball out of A’s basin can be too weak to get it out
of C’s basin; C is more stable. This difference is acknowledged by one conven-
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lg

C

Figure XTI.1 A ball rolls {or slides) without friction under gravity. There are three
equilibrium positions, 4, B, and C

tion in saying that C is globally stable and A is metastabile. If the rolling surface
is bounded away from minus infinity, there will be a position of global stability,
which is C in the figure. Another way, perhaps more precise, to describe the
“metastable” states in Figure X111 is to say that there are multiple states of
stable equilibria, each with its own basin of attraction.

Now we may again do away with friction and say that the ball is globally
stable at the position of absolute minimum potential energy, is metastable at
other minima, and is stable at relative maxima. The globally stable position
of the ball is the most stable, but it is in fact unstable to a sufficiently large
disturbance which will put it into a metastable configuration. We did away
with friction and began to discuss stability in terms of the minima of the
potential energy.

We may study the stability of the equilibria 4, B, C by using linear theory.
When perturbed, the stable states execute undamped oscillations with certain
characteristic frequencies, while in the unstable states small initial perturba-
tions grow exponentially.

The picture in Figure X11.1 does not exhibit a bifurcation. For this we need
a loss of stability of the equilibrium. We can imagine that Figure XIL.1 shows
the section of surface in three dimensions. We could look at other sections and
imagine many ways new minima could appear.

XII.2 Euler Buckling

The simplest case of buckling of an inextensibke elastic column of length I by
an axially compressive thrust P is the case of pinned ends shown in Figure
XT1.2. In this case, it is assumed that the axis of the column is a straight line
before the application of the thrust. The axis remains straight until the thrust
reaches a critical value that is called the Euler buckling load. The column
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Figure XI1.2 Buckling of a thin rod under a compressive end thrust P. The ends of
the rods are constrained to move in a straight line and the column which is jointed at
the pinned ends is free to rotate

bends into a buckled equilibrium state when the thrust exceeds this critical
value. We assume that the curve describing the shape of the beam is a plane
curve in the XY plane.

The equations for the shape of the column may be derived from balancing
moments on a smail segment of the column of length ds

dM — Pdssinf + Tdscos8 =0, (XII.1)

where M is the z component of the moment at the center of the section, (— P, T}
are the force resultants in the (X, Y) directions, and dssin € and dscos # are
their moment arms, where s is the arc length, s € (0,1). Since only P is applied,
T must arise as a force of reaction at the supports, and if the ends are not
prevented from rotating, as is the case of pinned ends, then

T=0
The elastic behavior of the column is governed by

M= Elﬁ, (XI1.2)
ds
where [ is the inertial moment of the section of the beam with respect to the
z axis, E is Young’s modulus, and d8/ds is the curvature.
We now introduce dimensionless variables
P2
X, A, ¢(x), s=lIx, A= e #(x) = B(s). (XIL3)
After combining (XTI.1), (XII.2), and (XI1.3) we find a self-contained eigenvalue
problem

¢+ ising=0, F0)=g()=0. (XIL.4)

The horizontal and vertical displacements u(x) and w(x) can be determined
by quadratures once the angle ¢ is known

u =cos¢ — 1, u(0) =0, (XIL5)
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and
w' = sing, w(0) = w(l) = 0. (XIL.6)

The problem (XTI.4) can be understood as onc in the class
fig, ) =0, (XIL7)

where ¢ lies in the infinite-dimensional space
E={¢e C0,1]; ¢'(0) = ¢'(1) = 0}.

Clearly, f(0,4) =0 and f(—¢,4) = —f(#, A).

We may calculate the bifurcating branches as a power series in ¢, using the
same methods we have used repeatedly for the dissipative problems in the
previous eleven chapters (Exercise XIL1).

The solutions of (XI1.4) can be expressed by elliptic functions (Love, 1944,
§263). The straight column ¢ = u = w = 0 is a solution for all 4 > 0. Buckled
states, symmetric in ¢(0), bifurcate supercritically at the buckling loads
i = A, = (nn)® which arise from (XIL.4) under linearization. A, is the Euler
buckling load and the associated branch has the smallest energy when
A=A

The problem of buckling may also be formulated without differential
equations as 2 minimum problem in the calculus of variations. The energy 4
of an unbuckled state ¢ = 0 is zero. The energy of a buckled state is propor-
tional to

V= Jl [¢% + 2iu']dx = jl [¢'2 + 2i(cos¢ — 1)]dx.  (XILB)
0 0

This energy may be computed from an examination of the virtual work of the
applied load (Love, 1944; Stoker, 1968).

The working hypothesis in the variational formulation is that realized
solutions minimize (XIL8). This hypothesis appears to be valid locally near
points of bifurcation, but the hypothesis need not hold globally when large
disturbances may kick the solution into a state of higher energy. Perhaps this
situation is not so different from the case of dissipative systems with multiple
steady states, each with its own basin of attraction. Equations (XIL.4) are the
strong form of Euler’s variational equations.

The notion of static stability of conservative systems is a useful one for
systems in equilibrium, thermodynamic systems with a Gibbs free energy
defined on the rest configuration of the body. Elastic systems are a good
example. There are other kinds of problems which neglect dissipation for
which the notion of static stability is useless. This is largely the case for
problems of motion of fluids without viscosity. For these cases it is necessary
to study dynamics and in the linearized case one is again led to spectral
problems (see, for example, van der Meer, 1985).
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EXERCISES

XILT Let us write the linearization of f{(g, 1) = 0, given by (XIL7) in the usual way

Ll0Alg] =¢" + ig =0, peE. (XI1.9)
There is one function proportional to
¢ =cosmx, A=n? (X11.10)
solving £,[0, A]¢] = 0. Find the equations for #,(x) and 1, satisfying
¢= 2 &%¢,(x), =g+ ¥ gPi(x), (XIL11)
Pzl rzl
where
L 1
_[ d(x)g,(x)dx = 3 (XI1.12)
0
Show that
1
@, = cos nx, ¢, =0, @y = —Ecos 3nx,
TEZ
A,=0, 12=§, Ay =0,.... (X1L.13)

Show that the energy (XI1.8) of the bifurcated solution is smaller than the energy V =0
of the unbuckled solution.

XIL2 (Perturbed (“imperfect”) bifurcation). If we apply a moment M = — EI§/ at
the left, fixed end of the pinned rod, the null solution ¢ = 0 will not be possible. In fact,
we prescribe

#FM=48 D=0 (XIL.14)

There is now vertical force of reaction so that the constant T in {XII.1) does not vanish.
The equilibrium equation is then given by

. dcos ¢
i - =0 XII.15
4+ dsing + {4 cos d{s)ds ( )
When § = 0 we recover the resulits of Exercise XIL1.
We may solve (XI1.14) and (XII.15) by perturbations
45 = Z Z .upququ(x), H = i— nza
¢=0 p=0
o= Z > HFEYByg,
q=0 p=0
1
e= f Plx)o 1 (x) dx, (XIL16)
1]

where ¢,, € C?[0,1], ¢, ,(1) = 0, $5.4(0) = 1if (p,q) = (1, 1), otherwise zero. Show that
doy = COS TIX, to=0,

1 n?
3y = 83 = ——

17
e (XH.17)
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and
f{] + 752¢11 + COS X +4i= 0,
¢:0) =4  #(H)=0. (X1L.18)
Hence
1 1
b= —5 F+5- (- x)sin ZX + 0COS TX. (X1L.19)

Find the value of &. Show this solution gives rise to the topmost picture in Figure II1.9.

XI1.3 Some Remarks About Spectral Problems
for Conservative Systems

The dynamical equations for conservative systems, as for dissipative systems,
can be used to define a spectral problem. The characteristic signature of
conservative problems is that eigenvalues for the stable case are purely imag-
inary. In the variational approach to stability a discussion of the spectral
problems associated with conservative dynamics is circumvented. It is desirable
to understand dynamics, even in the context of the incomplete approximation
given to dissipative dynamics by conservative dynamics.

The simplest type of comparison between dissipative and conservative
dynamics is embodied in the comparison of the following two problems: In
the dissipative case

dv

== flu,v); (XI1.20)
in the conservative case

d2v

<7 = Jwo) (XI1.21)

For example in Exercise V.7, f(p, v) = piegt + o,40°. The spectral problems
for v =10 can be obtained in the usual way; lincarize around v =0,
flu, e} — f,(u|v") for small v” and set v’ = exp(ct)v

ov = f,(uv) (X11.22)

in the dissipative case, and
a?v = f,(plv) (X11.23)
in the conservative case. For the simplest problems in R, (i, v) = f,(1)v, and
6 = f(y) (XI1.24)

in the dissipative case, and
o2 = f,(p) (XI1.25)

in the conservative case. In the dissipative case the condition f,(u) < 0 gives
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asympltotic stability; and the dissipative case f,(i) > 0 leads to growth. In
the conservative case the eigenvalues come in pairs,

o= +iJ|f) (X11.26)

in the stable case f, < 0, whilst

6=+ \/fv (XI1.27)

in the unstable case, one eigenvalue associates with stability, the other with
instability, as at a saddle in a homoclinic orbit (Figure V.12). In problems of
higher multiplicity the eigenvalues also come in pairs.

The same general differences between conservative and dissipative systems
apply for problems governed by partial differential equations and can be
treated by projections. In the buckling problem we could write

(A, ¢)y=¢" + Asing = 0, (X11.28)
together with the boundary conditions (XI1.4), which govern equilibrium and
Sildgy=¢" + Ap =0. (XI1.29)

Realistic dynamical formulations* for the elastica are certainly more com-
plicated than (XIL.21) but may, for the present limited purpose, be falsely
imagined to follow (XI1.21) with (XI1.20) or any other dissipative formulation
excluded.

It is easy to see that

oy =4 — (nm)?,

¢, = cosnmx,

soives the linearized problem (XI1.29). The straight rod goes unstable when
the buckling load exceeds the Euler buckling load n2.

Suppose we linearize around the buckled solution and y is the associated
eigenvalue. By using the factorization theorems, or other equivalent methods,
we could show that y2 < 0 for 4 > =% The dynamically stable solution of our
ersatz problem corresponds to the one that minimizes the energy. The static
and dynamic approaches give the same result. It would be interesting to see
how all this works for a good dynamic model of an elastica.

The last remark to be made in our comparison of dissipative and conserva-
tive systems is about the “strict crossing” or “Hopf condition” for bifurcation.
This condition was expressed by ¢,(0) # 0 at criticality in the simplest case.
The analysis of §11.9 showed that this apparently linear condition is actually
a condition on the second derivative of f, say for (XIL.24)

o1 = f0a(0)- (XI1.30)

* One such formulation is given by Caflish, R. E. and Maddocks, §. H. Nonlinear dynamical
theory of the elastica, Proc. Roy. Soc. Edinburgh, 99A, 1-23 (1984). They show that equilibrium
solutions that are stable in the static sense of minimizing the potential energy are stable in the
dynamic sense of Lyapounov (not asymptotically stable),
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So the strict crossing is a nondegeneracy for nonlinear terms, second derivatives
of f, which are required for double point bifurcation. It is quite clear then that
in our model (XI1.21) of conservative dynamics we could still use a trans-
versality in which (o?),; # 0. Instead of “strict crossing” we get a conjugate
pair of imaginary cigenvalues to collide at the origin at criticality, then to
split, one to the positive, the other to the negative part of the complex plane,
strictly.

XI1.4 Stability and Bifurcation of Rigid Rotation
of Two Immiscible Liquids

Two immiscible viscous liquids are in a container which rotates with constant
angular velocity around a fixed axis with gravity, but nothing else, neglected.
The analysis* gives rise to an energy, from mechanical considerations aione,
without thermodynamics, which can be interpreted as free energy plus the
potential of the body force. More precisely, the energy is the surface area times
the surface tension, plus a part associated with the angular momentum of the
system, The problem is very interesting in the present context because it shows
how minimization arises out of dynamics. More precisely, we shall show that
rigid rotation of the two fluids is unconditionally stable and that the “stable”
configuration minimizes the energy locally, near an equilibrium. Some issues
regarding the global minimization of the energy are raised. Finally, we shall
discuss some particular features controiling bifurcation of the interfacial shape,
arguing from considerations related to minimization of the energy.

The problem of rotating figures of equilibrium held together by interfacial
tension, which is associated with the problem under consideration, is like the
celebrated problem of bifurcating figures of equilibrium which was considered
by Jacobi, Poincaré, Lyapounov, and many others. The only difference is that
in their problem the potential for Newtonian gravity replaces surface tension.
An indication that the concept of stability for such problems can be elusive is
apparent in the following citationt about the pear-shaped figures which
bifurcate from the Jacobi ellipsoids as the angular velocity is increased. “Poin-
caré concluded that these pear-shaped figures were stable, and Lyapounov
conclude they were unstable .... Lyapounov, because he had reached a
congclusion opposite to that of Poincaré—the greatest mathematician in those
days—reconsidered the problem with great carc. Between 1904 and 1914,

* (1) Joseph, D. D., Renardy, Y., Renardy, M., and Nguyen, K. Stability of rigid motions and
rollers in bicomponent flows of immiscible liquids, J. Fiuid Mech., 153, 151165 (1985) (JRRN).

(2) Joseph, D. D., and Preziosi, L. Stability of rigid motiens and coating films in bicomponent
flows of immiscible liquids, J. Fiuid Mech., 185, 32335 (1987) (IP).

t Hagihara, Y., Theories of Equilibrium Figures of a Rotating Homogeneous Fluid Mass. NASA,
U.S. Government Printing Office, Washington, D.C., 1969.
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he published a rigorous proof of the instability in a series of papers in
which he confirmed his previous conclusion that a pear-shaped figure is
unstable. However, it was necessary to prove a certain inequality, which he
did not prove, but thought most probably true.”

Steady Rigid Rotation of Two Fluids

Rigid motions of a fluid are possible provided that the fluid rotates steadily
about a fixed axis. Drops, bubbles, different types of fluids in all types of
containers may rotate rigidly. Various kinds of perturbations of rigid motion
are also of interest.

A single liquid which fills a container rotating steadily around some fixed
axis will eventually rotate with the container. But in the case of two fluids it
is necessary to determine the places occupied by the two fluids and the shape
of the interfaces.

We shall consider the special case in which the two liquids occupy the
region

G={x=(r0 xR, <r<R,,0<80<2n, —A<x<Al

between two coaxial cylinders of radius R, and R, which rotate with a

common angular velocity €. The reader will see that this special choice of

domain is required for only some of our results. Liguid one is in G, and two

is in G,, G, v G, = G. The interface between G, and G, is called Z. It may

be of disjoint parts. Jumps across T are designated by [-] = (+); — (*),.
Candidates for rigid motions, with gravity neglected, are

(149, o) = (Qreyg, 3pQ%r? + ¢). (XIL.31)

The velocity is continuous across £ no matter what X, and the excess stress
vanishes, We call (XI1.31) a candidate because it need not satisfy the normal-
stress condition

[po]l = —2HT onZ, (XT1.32)
[po] = [P]3¥*R? + [c], (X11.33)

where R is the value of r at a point on X and 2H is the sum of the principal
curvatures. Candidates which fit the normal stress condition (XI1.32) will be
called equilibrium solutions.

The dynamical effects of gravity are negligible whenever secondary motions
induced by gravity are small. We may absorb gravity into ¢ = p + pgrsinf
in the equation of motion. There will be no secondary motions if ¢ is indepen-
dent of #. Of course, p must then depend on 8, at least like sin @. This is
compatible with the normal stress condition

—[¢#] + [p]gRsiné + [S,,] + 2HT =0
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if [4] = [Po]. [Sm] = O and

[pol =£ﬁ‘i
lpgd] 29

where F is a Froude number and d = R is the mean value of R(6, x) = R{x).
The effects of terrestrial gravity are dominated by centrifugal “gravity” when
the Froude number is large.

There is another situation in which the dynamical cffects of gravity are
negligible which is easier to understand as the rigid motion of thin coating
films of very viscous liquids. In this case, it is p that is independent of 6 and
secondary motions are suppressed by the fact that the force of gravity is not
sufficient to make a thin viscous liquid flow. The criterion for this, derived for
thin films rotating in ait, is

=F*»1, (X11.34)

gb;
TS« IL.
oy « 1, (X11.35)
where D, is the maximum film thickness and v is the kinematic viscosity of
the liquid.
We shall now proceed with g = 0. Set
u= uo + ﬁ,
(XI1.36)
{p =pot ﬁ,}
Then
ot _ LA

i —5+u-Vu0+u0-Vﬁ+ﬁ-Vﬁ = —Vp + div§, (X11.37)

where fi is solenoidal and satisfies the no-slip condition on the cylinder walls.

At the interface

(6] =0
{—[ﬁ]“ + [g]] ‘n= [[po]]“ + ZHTI'I}' (XH38)

For any integrable function f which is equal to f, in G, and f; in Gy,
we define

{fr= J-G fidx + L fodx. (X11.39)

For any g defined on £ we define

P =J gdz. (XIL.40)

Since the total volume of each incompressible fluid in conserved, we deduce
that

[u-mjs =0 (XTL41)
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If X is given by F(x(1),1) = 0, then
dF 0F
dt &t

where we have assumed that the normal component of the velocity dx/dr of
the surface  and the particles of fluids on either side of T are the same. In
fact, the velocity u is continuous across Z. When F = r — R(8,x, 1), we get

VF 1 éRrR

+u-VF =0, (XIL.42)

=0 —_— = X11.43
T WNVE T IVE & (XI143)
The disturbance equations just given imply that
d&
2 1 200] = <a-n((p,] + 2HT));, (XIL44)
where
&) = L pa*> (X11.45)
is the energy and
Z[a] = Q2uD[a]: D[a]> (XIL.46)

is the dissipation. Moreover, making use of the transport theorem for surface
areas, we may write

<0-n([po] + 2HT))5 = Cu-n]po] 35 — Cug n([po] + 2HT));

d|Z)

+ T{—l-i-f U-rdt}, (XIL47)
dt o

where |Z| is the area of Z, 7 is the outward normal to 0Z, lying on X, and U
is the velocity of a point of the contact line @Z. Under certain circumstances
we can express (XI1.47) as the time derivative of some potential 2, that is,

d?

<-n{[po] + 2HT))y = — (XT1.48)
We may then write (X11.44) as
%(g + P = -2 (XIL49)

The condition U-t = 0 is sufficient (but not necessary; sce (J P)) for the
existence of an interface potential 2 We get U-t = 0 when the contact lines
are stationary, U = 0, when the interface has a tangent contact U-1 = 0,
or when there is no contact, as in the case of rotating drops and bubbles.
The tangent contact is a VEry common occurrence in coating flows with
viscous oils in air, where the oil spreads all over the rod. For simplicity,
let us say that Ut = 0. In this case {see (JRRN) and (JP)), we find that

# =T{[R* + R + R? + R21"?)) — [ p] Q*([R? — d2]?)), (XT1.50)
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where T is the interfacial tension [ p] = p, — pa, Where p, is the density of the
inner fluid, Q is the angular velocity of the two fluids, d? is the spatial average
of R?

((R%)) = ((d%)),

where

2nlz 2=
dx j (-)de, (XIL51)

0o

n=|

1]

and 2n/a is the wavelength in the x direction.

Let v belong to a space X of square integrable solenoidal vectors defined
in G which vanish on the solid parts of the boundary of G, or are periodic in
x, with period 2A, if the cylinders are infinitely long. Suppose further that the
gradients of such functions are also square integrable in G where integration
is in the sense (XI1.39). Such functions are s¢id to lie in H'(G) and they are
automatically continuous in G, even across Z, [v] = 0. Each such v satisfies
Korn's inequality

vi2y < 2k(IDV]1* (XIL.52)
for some positive constant k. Since
24DV = (Vi) + ldivy|®),

and divy = 0, the constant k is Poincaré’s constant.
Using (X11.52), we may establish that

g[v] = 2i6[v], VveX, {XI1.53)
where

5 _ minlpy, f) (XI1.54)
kmax(py, p2)

The inequality (X11.53) holds for connected configurations as well as for
bubbles, drops, and emulsions.
It now follows from (XIL.53) and (XI1.41) that
d =
E(é’ + P) < — 24 (XIL53)
Integrating (XIL.55) from ¢ = O to ¢, we find that
t i
&(1) + P(t) = &(0) + #(0) — j F(r)dr < &(0) + P(0) — le &(1) dt.
0 0
1t follows that
t
21 j. &(z)dt < &(0) + 2(0} — &) + P(0). {X11.56)

0

Let us suppose that 2(-) is bounded below on the set of allowed interfaces.
In fact, if G is a bounded region, 2(*) is bounded from below. In unbounded
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domains #(-) need not be bounded below. In a bounded domain we could
centrifuge all the heavy fluid to the outer cylinder wall. In an unbounded
domain we would centrifuge a certain amount of liquid of the inner rod before
reaching some equilibrium in which the potential is bounded.
If 2(*) is bounded below as a functional on the set of interfaces, &(¢} and

2(t) are integrable, and

lim [£(1) + 2(t)] < +0.

t—+o0

We proved that &(¢) tends to zero in the sense of integrability and we assume
that &(w0) = 0.

Let us consider the limit configuration [&(c0), P(0)]; since £(oc) = 0, this
is a rigid motion and

P(0) — P(0) = £(0) - f ’ F(1) dr. (XIL57)
[1]

Clearly # decreases in every transformation for which the right-hand side of
(XIL.56) is negative. Ultimately, every disturbance of rigid motion decays and
Z is stationary, d#/dt = 0. Every solution of the dynarnical problem in which
the two fluids rotate as rigid bodies satisfies the normal stress conditions
(XI1.32). We have defined these solutions as equilibria.

Now we prove that critical point R = R(8,x) of the functional P[R]
defined by (XII.50) corresponds to equilibria. The proof is that the Euler
equation for #[R],

39[13 + £R] (XIL58)
88 z=0

for all admissible functions R and R, is the normal stress equation (XIL.32).

This means we have a rigid motion, R satisfying (X11.32), which is an equilib-

rium. So critical points of 2 correspond to equilibria.

We next prove that stable equilibria give rise to a local minimum for % in
the class of initial disturbances in which fluid particles are displaced without
velocity. For such disturbances £(0) = 0 and (XII.57) shows 2 decreases if
Z # 0. However, if the displacement of particles without velocity is such that
R(8, x,0) is not an equilibrium, a motion must develop which decays to rigid
motion with an equilibrium R(8, x, o), satisfying the normal stress condition
{XI1.32). The potential of nonequilibrium states with no velocity £(0) = O must
decrease. It follows that [ R] is the smallest value that 2 can take in some
neighborhood of this point in function space.

Now we consider possible metastable states with different basins of attrac-
tion and ask if it is possible to find a disturbance of a metastable stable which
drives the system into a state of lower energy. Suppose now that £(0) # 0 and
that 2(0) 0 as a condition of compatibility. We can then write that

Dty = 2(0)6(1), (X11.59)
where
80y =1, B(o0) = 0, 8(t) > 0.
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We may write (XIL57) as
a0 (=
@mn-mm:am%—gj mm*, (XIL60)
#0) Jo
where P(w0) = #[R] is an equilibrium. Since there are uy € H' with large
gradients, we can choose u, such that
2(0)
£(0)
This almost shows that the right-hand side of (XII.60) can always be made
negative. However, 8(t} also depends on u,, 50 our proof, which requires that

is as large as we wish. (XILe61)

[e+]
! 8 dt > &, (X11.62)
0

on a sequence of u, is such that 2/& - 0, is not complete. Supposing for the
moment that we can arrange for an initial condition for which the right-hand
side of (XIL.60) is negative, we could assert that a disturbance could always
be found to drive a metastable equilibrium into the lowest possible energy
state.

Can we find a disturbance of the state of lowest energy which will put the
system into a metastable state? Certainly we can do this for the rolling ball of
Section XIL.2. In this case, the system is not unconditionally stable. We would
get unconditional stability if the right-hand side of (XIL60) were always
negative, no matter what; that is, if

@ £(0)
Lsmm>ﬁa (XIL63)

Since
0 1
2(0) ~ 24

we have unconditional stability if
0 1
6(t)dt > —. XI1.64
Jo ® 24 ( )

Of course, nothing is known about 8(z), which is a functional of the solution.
However, if we prescribe nonzero velocities with zero displacements initially,
holding R to its value R at the global minimum, then the system will either
go to a metastable state or returnto a globally stable state. In the latter case,
of course,

20) J‘ ® _

20 ), o(t)dt = 1,

precisely, so that (XIL.64) could not hold universally.
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When ali is said and done, the only way to determine the shape of the
interface between the liquids is to study equilibrium solutions for the potential,
cither by minimizing the functional Z[R] or by looking at the Euler equations
for this minimizer. Such studies were carried out by Joseph and Preziosi
(1987). The potential problem has a rich bifurcation structure closely related
to the bifurcation of rotating drops and bubbles.

The problem of the rigid motion of two fluids is a special one because the
dynamics drive the system to an essentially static equilibrium. In more general
cases there can be a different prescription of the data which prevents rigid
body rotation. In one example, we might rotate the two cylinders at different
rates of rotation, preventing rigid motions. The interface which forms in such
asituation has a complex dynamics in which forces associated with the relative
motion and the equilibrium energy compete. In a second example, we might
think about what happens in a rapidly rotating rimming flow in which the
heavy fluid in centrifuged uniformly to the cylinder wall when the motion of
the system is perturbed slightly by high-frequency perturbations (external
vibration, the motor does not deliver a uniform speed, the axis of rotation is
slightly off center, etc.). If the perturbing frequencies are greatly in excess
of the reciprocal of the diffusion time for the two fluids, the system wilt
exhibit Hamiltonian dynamics in which Hopf bifurcations and other more
complicated motions are possible.

Love, A. E. H. Mathematical Theory of Elasticity, New York: Dover, 1944,

Stoker, J. Nonlinear Elasticity, New York; Gordon and Breach, 1968.

Jan-Cees van der Meer, The Hamiltonian Hopf Bifurcation. Lecture Notes in Mathe-
matics, Vol. 1160, Berlin—Heidelberg-New York: Springer Verlag, 1985,
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