
Springer 
New York 
Berlin 
Heidelberg 
Barcelona 
Budapest 
Hong Kong 
London 
Milan 
Paris 
Santa Clara 
Singapore 
Tokyo 

Undergraduate Texts in Mathematics 

Editors 

S. Axler 
F.W. Gehring 

K.A. Ribet 



Undergraduate Texts in Mathematics 

Anglin: Mathematics: A Concise History 
and Philosophy. 
Readings in Mathematics. 

AngIinlLambek: The Heritage of 
Thales. 
Readings in Mathematics. 

Apostol: Introduction to Analytic 
Number Theory. Second edition. 

Armstrong: Basic Topology. 
Armstrong: Grotlps and Symmetry. 
Axler: Linear Algebra Done Right. 
Beardon: Limits: A New Approach to 

Real Analysis. 
BakINewman: Complex Analysis. 

Second edition. 
BanchotTIW ermer: Linear Algebra 

Through Geometry. Second edition. 
Berberian: A First Course in Real 

Analysis. 
Bremaud: An Introduction to 

Probabilistic Modeling. 
Bressoud: Factorization and Primality 

Testing. 
Bressoud: Second Year Calculus. 

Readings in Mathematics. 
Brickman: Mathematical Introduction 

to Linear Programming and Game 
Theory. 

Browder: Mathematical Analysis: 
An Introduction. 

Buskeslvan Rooij: Topological Spaces: 
From Distance to Neighborhood. 

Cederberg: A Course in Modem 
Geometries. 

Childs: A Concrete Introduction to 
Higher Algebra. Second edition. 

Chung: Elementary Probability Theory 
with Stochastic Processes. Third 
edition. 

CoxILittleJO'Shea: Ideals, Varieties, 
and Algorithms. Second edition. 

Croom: Basic Concepts of Algebraic 
Topology. 

Curtis: Linear Algebra: An Introductory 
Approach. Fourth edition. 

Devlin: The Joy of Sets: Fundamentals 
of Contemporary Set Theory. 
Second edition. 

Dixmier: General Topology. 
Driver: Why Math? 
EbbinghauslFlumlfhomas: 

Mathematical Logic. Second edition. 
Edgar: Measure, Topology, and Fractal 

Geometry. 
Elaydi: Introduction to Difference 

Equations. 
Exner: An Accompaniment to Higher 

Mathematics. 
FineIRosenberger: The Fundamental 

Theory of Algebra. 
Fischer: Intermediate Real Analysis. 
FlaniganlKazdan: Calculus Two: Linear 

and Nonlinear Functions. Second 
edition. 

Fleming: Functions of Several Variables. 
Second edition. 

Foulds: Combinatorial Optimization for 
Undergraduates. 

Foulds: Optimization Techniques: An 
Introduction. 

Franklin: Methods of Mathematical 
Economics. 

Gordon: Discrete Probability. 
HairerlWanner: Analysis by Its History. 

Readings in Mathematics. 
Halmos: Finite-Dimensional Vector 

Spaces. Second edition. 
Halmos: Naive Set Theory. 
HiimmerlinlHotTmann: Numerical 

Mathematics. 
Readings in Mathematics. 

Hijab: Introduction to Calculus and 
Classical Analysis. 

HiltonIHoltonIPedersen: Mathematical 
Reflections: In a Room with Many 
Mirrors. 

IoosslJoseph: Elementary Stability and 
Bifurcation Theory. Second edition. 

Isaac: The Pleasures of Probability. 
Readings in Mathematics. 

(continued after index) 



George E. Martin 

The Foundations of Geometry­
and the Non-Euclidean Plane 

Springer 



George E. Martin 
Department of Mathematics and Statistics 
State University of New York at Albany 
1400 Washington Avenue 
Albany, New York 12222 
U.S.A. 

Editorial Board 

s. Axler 
Department of 

Mathematics 
Michigan State University 
East Lansing, MI 48824 
U.S.A. 

F.W. Gehring 
Department of 

Mathematics 
University of Michigan 
Ann Arbor, MI 48109 
U.S.A. 

Mathematics Subject Classification (1991): 51-01,51-03. 

K.A. Ribet 
Department of 

Mathematics 
University of California 

at Berkeley 
Berkeley, CA 94720 
U.S.A. 

This book was originally published by Intext Educational Publishers. 

Library of Congress Cataloging in Publication Data 

Martin, George Edward, 1932-
The foundations of geometry and the non-Euclidean 

plane. 

(Undergraduate texts in mathematics) 
Reprint. Originally published: New York: Intext 

Educational Publishers, 1975. 
Includes index. 
1. Geometry-Foundations. 2. Geometry, Non-Euclidean. 

I. Title. II. Series. III. Series: Intext series in 
mathematics. 
QA681.M34 1982 516' .1 82-728 

© 1975 by Springer-Verlag New York, Inc. 
Softcover reprint of the hardcover 1st edition 1975 

All rights reserved. No part of this book may be translated or reproduced in any form 
without the written permission from Springer-Verlag, 175 Fifth Avenue, New York 
10010, U.S.A. 

9 8 7 6 5 4 (Corrected fourth printing, 1998) 

ISBN-I3: 978-1-4612-5727-1 e-ISBN-I3: 978-1-4612-5725-7 
001: 10.1007/978-1-4612-5725-7 



To Margaret 



Contents 

Preface xiii 

Foreword to the Student xv 

INTRODUCTION 

1 EQUIVALENCE RELATIONS 2 

1.1 Logic 2 
1.2 Sets 4 
1.3 Relations 5 
1.4 Exercises 8 

Graffiti 9 

2 MAPPINGS 10 

2.1 One-to-One and Onto 10 
2.2 Composition of Mappings 15 
2.3 Exercises 17 

Graffiti 19 

3 THE REAL NUMBERS 20 

3.1 Binary Operations 20 
3.2 Properties of the Reals 26 
3.3 Exercises 31 

Graffiti 33 



viii CONTENTS 

4 AXIOM SYSTEMS 

4.1 Axiom Systems 
4.2 Incidence Planes 
4.3 Exercises 

Graffiti 

PART ONE ABSOLUTE GEOMETRY 

5 MODELS 

5.1 Models of the Euclidean Plane 
5.2 Models of Incidence Planes 
5.3 Exercises 

Graffiti 

6 INCIDENCE AXIOM AND RULER POSTULATE 

6.1 Our Objectives 
6.2 Axiom 1: The Incidence Axiom 
6.3 Axiom 2: The Ruler Postulate 
6.4 Exercises 

Graffiti 

7 BETWEENNESS 

7.1 Ordering the Points on a Line 
7.2 Taxicab Geometry 
7.3 Exercises 

Graffiti 

8 SEGMENTS, RAYS, AND CONVEX SETS 

8.1 Segments and Rays 
8.2 Convex Sets 
8.3 Exercises 

Graffiti 

9 ANGLES AND TRIANGLES 

9.1 Angles and Triangles 
9.2 More Models 
9.3 Exercises 

Graffiti 

34 

34 
36 
45 
47 

50 

50 
55 
61 
64 

65 

65 
66 
68 
70 
72 

73 

73 
77 
81 
82 

84 

84 
89 
92 
93 

95 

95 
100 
109 
110 



CONTENTS ix 

10 THE GOLDEN AGE OF GREEK MATHEMATICS 111 
(Optional) 

10.1 Alexandria 111 
10.2 Exercises 119 

11 EUCLID'S ELEMENTS (Optional) 121 

11.1 The Elements 121 
11.2 Exercises 129 

Graffiti 130 

12 PASCH'S POSTULATE AND PLANE 
SEPARATION POSTULATE 131 

12.1 Axiom 3: PSP 131 
12.2 Pasch, Peano, Pieri, and Hilbert 137 
12.3 Exercises 140 

Graffiti 142 

13 CROSSBAR AND QUADRILATERALS 144 

13.1 More Incidence Theorems 144 
13.2 Quadrilaterals 149 
13.3 Exercises 152 

Graffiti 153 

14 MEASURING ANGLES AND THE PROTRACTOR 
POSTULATE 155 

14.1 Axiom 4: The Protractor Postulate 155 
14.2 Peculiar Protractors 166 
14.3 Exercises 169 

15 ALTERNATIVE AXIOM SYSTEMS (Optional) 172 

15.1 Hilbert's Axioms 172 
15.2 Pieri's Postulates 175 
15.3 Exercises 180 

16 MIRRORS 182 

16.1 Rulers and Protractors 182 
16.2 MIRROR and SAS 184 
16.3 Exercises 189 

Graffiti 191 



X CONTENTS 

17 CONGRUENCE AND THE PENULTIMATE 
POSTULATE 192 

17.1 Congruence for Triangles 192 
17.2 Axiom 5: SAS 195 
17.3 Congruence Theorems 198 
17.4 Exercises 201 

Graffiti 202 

18 PERPENDICULARS AND INEQUALITIES 204 

18.1 A Theorem on Parallels 204 
18.2 Inequali ties 207 
18.3 Right Triangles 211 
18.4 Exercises 213 

Graffiti 215 

19 REFLECTIONS 216 

19.1 Introducing Isometries 216 
19.2 Reflection in a Line 219 
19.3 Exercises 223 

Graffiti 225 

20 CIRCLES 226 

20.1 Introducing Circles 226 
20.2 The Two-Circle Theorem 230 
20.3 Exercises 236 

Graffiti 238 

21 ABSOLUTE GEOMETRY AND SACCHERI 
QUADRILATERALS 239 

21.1 Euclid's Absolute Geometry 239 
21.2 Giordano's Theorem 248 
21.3 Exercises 252 

Graffiti 253 

22 SACCHERI'S THREE HYPOTHESES 255 

22.1 Omar Khayyam's Theorem 255 
22.2 Saccheri's Theorem 260 
22.3 Exercises 266 

Graffiti 267 



CONTENTS xi 

23 EUCLID'S PARALLEL POSTULATE 269 

23.1 Equivalent Statements 269 
23.2 Independence 281 
23.3 Exercises 286 

Graffiti 289 

24 BIANGLES 292 

24.1 Closed Biangles 292 
24.2 Critical Angles and Absolute Lengths 295 
24.3 The Invention of Non-Euclidean Geometry 302 
24.4 Exercises 314 

Graffiti 316 

25 EXCURSIONS 317 

25.1 Prospectus 317 
25.2 Euclidean Geometry 320 
25.3 Higher Dimensions 323 
25.4 Exercises 328 

Graffiti 330 

PART TWO NON-EUCLIDEAN GEOMETRY 
26 PARALLELS AND THE ULTIMATE AXIOM 334 

26.1 Axiom 6: HPP 334 
26.2 Parallel Lines 338 
26.3 Exercises 344 

Graffiti 346 

27 BRUSHES AND CYCLES 347 

27.1 Brushes 347 
27.2 Cycles 351 
27.3 Exercises 356 

Graffiti 358 

28 ROTATIONS, TRANSLATIONS, AND 
HOROLATIONS 360 

28.1 Products of Two Reflections 360 
28.2 Reflections in Lines of a Brush 365 
28.3 Exercises 368 

Graffiti 370 



xii CONTENTS 

29 THE CLASSIFICATION OF ISOMETRIES 371 

29.1 Involutions 371 
29.2 The Classification Theorem 378 
29.3 Exercises 382 

Graffiti 384 

30 SYMMETRY 386 

30.1 Leonardo's Theorem 386 
30.2 Frieze Patterns 392 
30.3 Exercises 397 

Graffiti 400 

31 HOROCIRCLES 402 

31.1 Length of Arc 402 
31.2 Hyperbolic Functions 415 
31.3 Exercises 417 

Graffiti 419 

32 THE FUNDAMENTAL FORMULA 421 

32.1 Trigonometry 421 
32.2 Complementary Segments 434 
32.3 Exercises 439 

Graffiti 443 

33 CATEGORICALNESS AND AREA 444 

33.1 Analytic Geometry 444 
33.2 Area 450 
33.3 Exercises 459 

Graffiti 463 

34 QUADRATURE OF THE CIRCLE 464 

34.1 Classical Theorems 464 
34.2 Calculus 474 
34.3 Constructions 479 
34.4 Exercises 490 

• Hints and Answers 494 

Notation Index 503 

Index 504 



Preface 

This book is a text for junior, senior, or first-year graduate 
courses traditionally titled Foundations of Geometry and/or Non­
Euclidean Geometry. The first 29 chapters are for a semester or 
year course on the foundations of geometry. The remaining chap­
ters may then be used for either a regular course or independent 
study courses. Another possibility, which is also especially suited 
for in-service teachers of high school geometry, is to survey the 
the fundamentals of absolute geometry (Chapters 1 -20) very 
quickly and begin earnest study with the theory of parallels and 
isometries (Chapters 21 -30). The text is self-contained, except that 
the elementary calculus is assumed for some parts of the material 
on advanced hyperbolic geometry (Chapters 31 -34). There are 
over 650 exercises, 30 of which are 10-part true-or-false questions. 

A rigorous ruler-and-protractor axiomatic development of the 
Euclidean and hyperbolic planes, including the classification of the 
isometries of these planes, is balanced by the discussion about this 
development. Models, such as Taxicab Geometry, are used exten­
sively to illustrate theory. Historical aspects and alternatives to the 
selected axioms are prominent. The classical axiom systems of 
Euclid and Hilbert are discussed, as are axiom systems for three­
and four-dimensional absolute geometry and Pieri's system based 
on rigid motions. 

The text is divided into three parts. The Introduction (Chapters 
1 -4) is to be read as quickly as possible and then used for ref­
erence if necessary. The formal axiomatic development begins in 
Chapter 6 of Part ·One, Absolute Geometry (Chapters 5- 25). Chap­
ter 5 contains a list of 15 models that are used throughout Part 
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One in discussing the relative consistency and independence of the 
axioms used in building our system. Isometries are introduced as 
soon as they are useful. In fact, the existence of the reflections is 
shown to be equivalent to the familiar SAS axiom. Chapter 25 
shows that our five axioms for absolute geometry together with 
one of the equivalents of Euclid's Parallel Postulate (Theorem 23.7 
gives 26 such equivalents) form a categorical system. Section 25.1 
contains a detailed survey of the contents of Part Two, Non-Euclid­
ean Geometry (Chapters 26-34). Although Part Two concentrates 
on hyperbolic geometry, many of the results have direct application 
to Euclidean geometry as well. 

The classification of the isometries of the hyperbolic plane 
and, as a corollary, the classification of the isometries of the Eu­
clidean plane appear in Chapter 29 of Part Two. In order to be sure 
of covering this important material in a one-semester or a two­
quarter course it is suggested that Chapter 20 be finished halfway 
through the course. Chapters 10, 11, 15, and even 25 might be 
assigned as outside reading, postponed, or omitted. On the other 
hand, Chapter 30 should be included in such a course if time 
allows. (For a semester course meeting three times a week, the 
author uses the following schedule where exam days and reading 
days are omitted: 1-3,4,5,6,7,8,9,9, 12, 13, 14, 16, 16, 17, 18, 
19,19,20,21,21,22,22,23,23,23,24,24,26,26,27,27, 28, 28, 28, 
29,29,29.) 

Special acknowledgment is heartily granted to my colleague 
Hugh Gordon, who made many very helpful suggestions when he 
was teaching from the preliminary version of this book. I am grate­
ful to Mary Blanchard, who typed the manuscript. Finally, I wish to 
express appreciation to the Cambridge University Press for per­
mission to quote the statements of the definitions, axioms, and 
theorems of Book 1 from its definitive publication on Euclid: The 
Thirteen Books of Euclid's Elements by T. L. Heath. 



Foreword to the Student 

"Thales, well known for his control of oil through a monopoly on 
the olive presses, today announced the invention of a means for 
obtaining knowledge. He calls the process deduction." So began 
the front page story of the Miletus Times dated July 3, 576 B.C. 
An accompaning article reported the reactions of Oracle Joe to the 
invention. The utterances of Oracle Joe were deemed mysterious, 
as usual, and were quoted verbatim as follows: "Lines. O.J. sees 
parallel lines. Some seem more parallel than others in the hyper­
bolic plane. That's Non-Euclidean geometry. Just last week O.J. 
predicted that in a couple hundred years in a city near Egypt a guy 
named Euclid would make a big deal about parallel lines in a book 
that will endure as long as the storie" of Homer. Euclid will use 
deduction. This deduction thing will hurt the oracle business, but 
the advice of oracles will be sought even into the Age of Aquarius. 
O.J. now sees tables, chairs, and beer mugs. Yes, it will be well 
over two thousand years and in worlds yet to be discovered before 
the implications and limitations of deduction begin to be fully 
realized. Non-Euclidean geometry will play an important role in all 
this. O.J. is never wrong-and is now open on Saturnday." With 
that we end the fantasy in this book but not, perhaps, the fantastic. 
(We shall see rectangles relegated to the domain of unicorns and 
pentagons with five right angles.) 

There are many ways to distinguish between Euclidean and 
non-Euclidean geometry. The business about parallel lines is only 
one of the interrelated aspects whose totality is called the theory of 
parallels. To understand the theory of parallels we must begin our 
geometry almost from scratch. Thus we shall avoid the various 
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traps that have ensnared mathematicians of the greatest genius. 
Also, the dynamics of building an axiom system very similar to but, 
in the end, vastly different from Euclid's are as exciting as any 
mystery novel. The story behind non-Euclidean geometry is one of 
the fascinating chapters in man's search for knowledge. In this text 
you will learn something of this story as well as the mathematical 
theory itself. For an appreciation of either, some understanding of 
the other is required. For those of you who may become teachers 
and feel non-Euclidean geometry is irrelevant, we quote the geom­
eter Felix Klein: "After all, it is in order for the teacher to know a 
little more than the average pupil." 

The following method is suggested for a quick, rough self­
evaluation of your mastery of a particular chapter. After you have 
studied a chapter, answer each part of the True-or-False exercise 
in turn without allowing yourself to look ahead or to change an 
answer. Then score yourself, using the Hints and Answers section 
in the back of the book. If you missed a question because you 
forgot a definition from the theory, the Index will help you find the 
definition. 

The author hopes that you enjoy your study of the theory of 
parallels. 



INTRODUCTION 
The Introduction contains the prerequisites to our study of the foundations 
of geometry. In order to begin Part One, it is sufficient that the following 
questions be understood and answered: What is an equivalence relation 
on a set? What is a one-to-one mapping from one set onto another? 
What does it mean to say that an axiom system is consistent, indepen­
dent, or categorical? The Introduction answers these specific questions 
and contains enough additional material so that almost every reader 
will encounter something new. It is recommended that these first four 
chapters be read as quickly as possible and then used for reference 
later if necessary. 



CHAPTER 1 

Equivalence Relations 

1.1 LOGIC 

We agree that a statement is either true or false (Law of the Excluded 
Middle) but not both (Law of Noncontradiction). Our use of "not," 
"and," "or," "if ... then ... ," and "iff" in relation to arbitrary state­
ments p and q is explained by the truth tables in Table 1.1, where 
"T" stands for true and "F" for false. In mathematics "or" is always 
used in the inclusive sense. The conditional p ~ q may be read in any 
one of the following equivalent ways: 

1 If p then q. 
2 q if p. 
3 p only if q. 
4 q or not p. 
5 p is a sufficient condition for q. 
6 q is a necessary condition for p. 

The sentence "p implies q" means that the conditional "if p then q" is 
true. To say "(if p then q) and (if q then p)," we merely say "p if and 
only if q" and write "p iff q" or "p qq." 

Related to the conditional "if p then q" are its converse "if q 
then p" and its contrapositive "if not q then not p." It should be easy to 
think of a conditional which is true but whose converse is false. On 
the other hand, a conditional is true if and only if its contrapositive is 
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TABLE 1.1 

P q not p p or q p and q if P then q p iff q 

T T F T T T T 
T F F T F F f 
F T T T F T F 
F F T F F T T 

true. One way of convincing yourself of this is to observe that the fol­
lowing are all equivalent: (1) If not q, then not p. (2) (Not p) or not 
(not q). (3) (Not p) or q. (4) q or not p. (5) If p, then q. Another way is 
to check the truth table in Table 1.2, where the numbers at the bot­
tom indicate the order in which the columns were entered in con­
structing the table. 

You intuitively know the meaning of the two quantifiers that 
are used in basic logic. One is the existential quantifier, which may be 
denoted by anyone of the following: there exists, there exist, there is, 
there are, for some. The other is the universal quantifier, which may 
be denoted by anyone of the following: for any, for all, each, every. 
Actually, the universal quantifier may be logically defined in terms 
of the existential quantifier and negation. For example, if p denotes 
some proposition about the integers, then "for all integers, p" means 
the same thing as "there does not exist an integer such that not p." 
One thing to look out for is that the little words a, an, and the are often 
hidden quantifiers in English. For example, "The diameters of a circle 
intersect at a point" contains three quantifiers and means that for 
any circle there exists a point such that each diameter of that circle 
passes through that point. 

Consider the statement "If N is a positive integer, then N2-
79N + 1601 is a prime." To prove this statement it would not be suf­
ficient to show that N2 - 79N + 1601 is a prime for several values of N. 
Even to show that you get a prime for the first seventy-nine positive 
integers is not a proof of the statement. Actually, the statement is 
false as N2 -79N + 1601 = 412 when N = 80. Note that one case where 
the statement is false proves that the statement is false! In other 
words, it only takes one counterexample to disprove a statement. 

TABLE 1.2 

P q (p :::}q) iff «not q) :::} (notp)) 

T T T T F T F 
T F F T T F F 
F T T T F T T 
F F T T T T T 

2 3 7 4 6 5 
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1.2 SETS 

Most of us have heard that a set is a collection of elements. "x E A" 
means that x is an element of set A; "x fF. A" means that x is not an 
element of set A. The statement that set A is a subset of set B is writ­
ten "A C B" and means x E A only if x E B. The set of all positive in­
tegers is a subset of the set of all integers. Some sets can be exhibited 
explicitly. For example, the set of odd digits is {I, 3, 5, 7, 9}. Often 
it is impractical or impossible to list the elements of a set. If R is the 
set of all real numbers, we may denote the set of all positive reals by 
"{xix E R, x> O}" and read "the set of all elements x such that x is a 
real number and x is greater than zero." 

Let A and B be sets. The union, intersection, difference, and Car­
tesian product of A and B are defined, respectively: 

A UB={xlx EA or x EB}, 

AnB={xlxEA and xEB}, 

A \ B= {xix E A but x ~ B}, 

AxB={(x,y)lxEA, yEB}. 

Since "but" means "and" in mathematical logic, we see that A \ B is 
the set of all elements of A that are not also elements of B. Note that 
A X B is just the set of all ordered pairs such that the first element is 
in A and the second element is in B. 

If A and B are sets with no element in common, then A and B 
are disjoint. In this case we write "A n B=0." So 0 is the set which 
contains no elements and is called the empty set or null set. The emp­
ty set is a subset of every set. Two sets intersect if they are not dis­
joint. 

If Land R are sets, then L = R iff L c Rand R C L. One may ex­
ercise his ability to use "and" and "or" by proving the following dis­
tributive laws, where A,B, C are sets: 

(A U B) n C= (A n C) U (B n C), 

(A n B) U C= (A U C) n (B U C). 

We may wish to speak of a set of sets. In this case the elements of 
the set are subsets of some other set. For example, {{I, 2, 3}, {3, 4, 5, 6}} 
is a set with exactly the two elements {I, 2, 3} and {3, 4, 5, 6}. Note 
that for general element S, we have S oF {S}. In particular, 0 oF {0} 
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since {0} has one element. Although 

{{(x,y)lxER, yER, ax+by+c=O}la,b,cER, a2 +b2 ,.c0} 

is a rather formidable looking set, it is really something familiar. First 
of all, note that it is a set of sets. "a2 + b2 ,.c 0" is a short way of saying 
real numbers a and b are not both zero. Thus, element {(x, y) Ix E R, 
Y E R, ax + by + c = O} is the set of all ordered pairs (x, y) of real num­
bers that satisfy the nondegenerate real linear equation ax + by + c = 
O. Geometrically, an element is the set of all points on some line in the 
Cartesian plane. Thus, thinking of a line as a set of points, our for­
midable looking set is the set of all lines in the Cartesian plane. 

1.3 RELATIONS 

If D and C are sets and G cD x C, then the ordered triple (D, C, G) is 
a relation between D and C. The letters stand for domain, codomain, 
and graph. If D=C=S, then we say "relation on S" rather than "re­
lation between Sand S." For an example of a relation, if D is the set 
of points of a plane, C is the set of lines in the plane, and G is the set 
of all ordered pairs (P, l) such that point P is on line I, then (D, C, G) 
is the relation called incidence between the points and lines of the 
plane. For another example, containment is a relation on 2s, where 
2s is the set of all subsets of set S. Here D = C = 2s and (A, B) E G iff 
A c B for subsets A and B of S. 

Given set S, we shall define a very important type of relation on 
S. Relation (D,C,G) such that D=C=S is an equivalence relation 
on S iffor all elements a, b, c in S: (a) (a, a) E G, (b) (a, b) E G =? 
(b,a) EG,(c) (a,b), (b,c) EG=?(a,c) EG.Perhapsthiswilllook 
more familiar if we let - = (D, C, G) and write "a - b" and say "a wig­
gle b" iff (a, b) E G. Then, - is an equivalence relation on S iff for all 
a, b, c E S the following axioms are satisfied: 

R: (Reflexive Law) 

S: (Symmetric Law) 

T: (Transitive Law) 

a - a, 

a- b=?b - a, 

a - b, b - c =? a-c. 

For a simple example of an equivalence relation on S, let S = 

{I, 2, 3} and G= {(I, 1), (2,2), (3, 3)}. Since a - b iff a= b in this ex­
ample, the axioms are easily checked. The example shows that the 
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set of the three axioms for an equivalence relation is consistent, that 
is, no contradiction can be derived from this set of axioms. 

When - is an equivalence relation on a set, "a - b" is generally 
read "a is equivalent to b." However, in specific cases a more special­
ized phrase may be used, such as "is parallel to," "is congruent to," or 
"is similar to." We shall give several examples of equivalence re­
lations. 

Example 1 Equality is the most familiar equivalence relation. Let 
8 be an arbitrary nonempty set and G={(a,a)la E 8}. For the rela­
tion of equality, an element is equivalent only to itself. 

Example 2 Let 8 be an arbitrary nonempty set and G = 8 X 8. This is 
the other extreme from equality. In this equivalence relation any 
element is equivalent to every element. These first two examples are 
said to be the trivial equivalence relations on a set 8. 

Example 3 Let Z be the set of integers. Define an equivalence rela­
tion on Z by a - b if a- b is even. So (a, b) E G iff a and b are either 
both even or both odd. 

Example 4 Let Z be the set of integers. Define an equivalence rela­
tion on Z by a - b iff a = b = 0 or ab > O. 

Example 5 Parallelness is an equivalence relation on the set of lines 
in the Euclidean plane, i.e., a - b iff a II b when a and b are lines. (A 
line is parallel to itself and any other line which it does not intersect.) 

Example 6 Congruence is an equivalence relation on the set of tri­
angles in the Euclidean plane. 

Example 7 Similarity is an equivalence relation on the set of tri­
angles in the Euclidean plane. (Recall that two triangles are similar 
if they have corresponding angles congruent.) 

We have already noted that the set of axioms for an equivalence 
relation is consistent. Let's show that the set of axioms is also inde­
pendent, that is, no one of the three axioms is a consequence of the 
other two. We can do this by constructing three relations on a set 8 
where a ~iven axiom does not hold but the remaining two axioms do 
hold. Let 8= {l, 2, 3} and 

G1 ={{1,1), (2,2), {1,2), (2,1)}, 

G2 = {(I, 1), {1, 2), {1, 3), (2,2), (2,3), (3,3)}, 

G3 = (8 x 8) \ {{1, 2), (2, I)}. 
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Although the relation on S defined by GI is symmetric and transitive, 
the relation is not reflexive as (3,3) tt. G I . Although the relation on 
S defined by G2 is reflexive and transitive, the relation is not symmet­
ric as (1,2) E G2 but (2,1) tt. G2 • Although the relation on S defined 
by G3 is reflexive and symmetric, the relation is not transitive as 
(1,3), (3,2) E G3 but (1,2) tt. G3 . These three relations show that the 
set of axioms for an equivalence relation is independent. 

When proving a given relation is an equivalence relation, it is 
sufficient to prove that the relation is reflexive, symmetric, and satis­
fies the rule: if a, b, c are distinct, a - b, and b - c, then a-c. To see 
that the transitive law always holds under these assumptions, we 
have only to prove that the transitive law holds when the three ele­
ments are not distinct. But this is a trivial observation. (In case a= b: 
a - a, a - c implies a - c trivially. In case a = c: a - band b - a implies 
a - a by the reflexive law. In case b = c: a - c, c - c implies a - c triv­
ially.) 

Suppose - is an equivalence relation on nonempty set S. For 
each element a in S we define the equivalence class of a to be [a) where 
[a) = {xix E S, x - a}. Obviously, an equivalence class is a subset of S. 
Since a - a, we have a E [a) and [a) =F- 0. So every element in S is in 
some equivalence class. We want to show that no element of S is in 
two distinct equivalence classes, that is, two distinct equivalence 
classes are disjoint. We shall prove [a) n [b) =F- 0 implies [a) = [b). 
By hypothesis we let c E [a) n [b]. Then c E [a) and c E [b). So 
c - a and c - b by definition of [a) and of [b). But then a - c and c - b 
by the symmetric law. Thus, by the transitive law a - b and, by the 
symmetric law, b - a. Now we are ready to prove [a) = [b). We shall 
first show [a) C [b). Suppose x E [a), then x - a by definition of [a). 
But, since x - a and a - b, we have x - b by the transitive law and 
x E [b) by definition of [b). Hence, [a) C [b). Similarly, if y E [b), 
then y - b. But y - band b - a implies y - a or y E [a). Hence, [b) C 
[a). Thus [a) = [b], as desired. Altogether we have shown: The set of 
equivalence classes of an equivalence relation on a nonempty set S is 
a partition of the set S into disjoint nonempty subsets. Every element of 
S is in exactly one equivalence class. 

Letting Pi be the set of equivalence classes under the equivalence 
relation given in Example i above, you should obtain the following 
results. PI is the set of all one element subsets of S; PI = {{a} la E S}. 
P2 contains exactly one element S itself; P2 = {S}. P3 has two elements: 
the set of even integers and the set of odd integers. P4 has three ele­
ments: {O}, the set of all positive integers, and the set of all negative 
integers. The elements of P s are called parallel pencils. So a parallel 
pencil consists of all the lines parallel to a given line. In the Euclid­
ean plane, there are of course an infinite number of parallel pencils, 
one corresponding to every line through some fixed point. 
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1.4 EXERCISESt 

• 1.1 Construct counterexamples to show that the following are 
not valid arguments: (a) If q is true andp implies q, thenp is true. (b) If 
p is false and p implies q, then q is false. 

• 1.2 Assume the following three statements are all true and prove 
the converse of each one where a, b, c, d are real numbers: (i) If c= d, 
then a= b. (ii) If c > d, then a> b. (iii) If c < d, then a < b. 

1.3 Define two nontrivial equivalence relations on {l, 2, 3, 4}. 

• 1.4 If a and b are integers such that 5 divides a- b, then number 
theorists say that a is congruent to b modulo 5. Show that congruency 
modulo 5 is an equivalence relation on the set of integers and describe 
the equivalence classes. 

• 1.5 True or False? 

(a) "not (p or q)" means "(not p) or q." 

(b) "not (p or q)" means "(not p) and (not q)." 

(c) "not (p and q)" means "(not p) and (not q)." 

(d) AU B=B U A. 

(e) AnB=BnA. 

(f) A \ B = B \ A. 

(g) AxB=BxA. 

(h) An B=A iff A U B=B. 

(i) Containment is an equivalence relation on the set of all 
subsets of a set. 

(j) In the Euclidean plane two parallel pencils are disjoint. 

• 1.6 Describe {(x,y) Ix,y E R, Ox+ Oy+ 0= O} and {(x,y) Ix,y E R, 
OX + Oy + 2 = O} as sets of points in the Cartesian plane. 

1.7 Show "p and q" is equivalent to "not «not p) or (not q»." 

1.8 Show "not (if p then q)" is equivalent to "p and not q." 

tThe bullet. before an exercise indicates that there is some reference to that 
exercise in the Hints and Answers section. The starred exercises throughout the book 
range from those that might be difficult for some students to those that will be very 
difficult for any student or any instructor. 
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1.9 If n is a nonnegative integer and set S has exactly n elements, 
then how many elements does 2s have? 

1.10 Show that every partition of a nonempty set into disjoint non­
empty subsets determines an equivalence relation on the set. 

*1.11 How many equivalence relations are there on a set of n ele­
ments"? 

*1.12 Consider the statement "All Cretans are liars," made by the 
Cretan philosopher Epimenides in the sixth century B.C. 

GRAFFITI 

A pride of lions. A school of fish. A knot of toads. A gaggle of geese. 
A labor of moles. A gam of whales. A leap of leopards. 
An exaltation of larks. 

This statement is false. 

The Greek alphabet 

Letters Names Letters Names Letters Names 
A a alpha I iota P p rho 
B f3 beta K K kappa I (T~ sigma 
r 'Y gamma A A. lambda T T tau 
a I) delta M JL mu y v upsilon 
E E epsilon N " nu cp cf> phi 
Z , zeta - ~ X chi - Xl X -
H 71 eta 0 0 omicron 'I' .p psi 
e (J theta n 1T pi n CI) omega 



CHAPTER 2 

Mappings 

2.1 ONE-TO-ONE AND ONTO 

Recall that a rational number is a real number of the form alb where 
a and b are integers with b # O. A complex number is of the form x + yi 
where x and yare real numbers and i2 = -1. (More on complex num­
bers in Section 3.1.) Many mathematicians use the following symbols, 
given with their meanings: 

V for any, for every, for all 
3 there exists, there exist 
3 such that 

unique 
z the integers 
Q the rationals 
R the reals 
c the complex numbers 

Let p be some statement about the elements of sets A and B. 
Note that "V x E A 3y E B 3 p" and "3y E B 3 V x E A, p" mean dif­
ferent things. (For example, let p be "y=x+ I" and A=B=z.) The 
negation of "V x E A, p" is "3 x E A 3 not p." It follows that the ne­
gation of "3 x E A 3 p" is "V x E A, not p." Hence the negation of 
"Vx E A3y E B 3 f(x) =y" is "3x E A 3 Vy E B,f(x) #y." 

If D and C are sets, then f is a function or mapping from D into 
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C if for every element x in D there is a unique element {(x) in C. If { 
is a mapping from D into C and for each element y in C there is an 
element x in D such that {(x) = y, then {is said to be onto or surjective. 
If {is a mapping and ((x) = fey) implies x= y, then fis said to be ane­
ta-one or injective. 

Perhaps you have noticed that a mapping is another type of re­
lation: if D and C are sets and G C D x C, then the relation (D, C, G) 
is called a mapping {rom D into C if every element of the domain D 
occurs exactly once as the first element of an ordered pair in the graph 
G. Before looking at the next sentence below, try your hand at using 
the symbols introduced above to express the condition that relation 
(D, C, G) be a mapping. You should convince yourself that each of 
the following expresses the condition: 

(a) \Ix E D3!y E C 3 (x,y) E G. 

(b) D= {xI3!y E C 3 (x,y) E G}. 

For { as a mapping from D into C write "{:D ~ C" and read "{ 
maps D into C." If (a, b) is in the graph of mapping f, we do not write 
"a{b" as we did for an equivalence relation but rather "{:a ~ b" or 
"((a) = b" and say that {maps a to b, that b is the image of a under f, 
that the value of {at a is b, or that {of a is b. Note the difference be­
tween {and {(a): {is a mapping while {(a) is an element in the co­
domain of f You are probably most familiar with mappings from R 
into R where the function is defined by a formula in a variable element 
of the domain, e.g., {(x) = x2 or {(x) = cos x. 

The square function from R into R demonstrates that an element 
of the codomain may be the image of more than one element of the 
domain, as {(x) =x2 implies ((2) =4={(-2). We have several equiva­
lent ways of saying that this sort of thing does not happen for function 
{with graph G: 

1 {is one-to-one. 
2 {is injective. 
3 {is an injection. 
4 {(x) = {(y) implies x = y. 
5 Distinct elements have distinct images. 
6 (x,z), (y,z) E G-:?x=y. 

Associated with mapping {:D ~ C is its range R where R = 
{yl 3 xED 3 {(x) = y} = {{(x) Ix E D}. The range of a mapping is a 
subset of the codomain of the mapping. The square function from R 
into R demonstrates that every element of the codomain need not be 
an element of the range, as there is no real number x such that {(x) = 
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x2 = -1. We have several equivalent ways of saying that this sort of 
thing does not happen for function {with range R where {= (D, C, G): 

1 {is onto. 
2 {is surjective. 
3 {is a surjection. 
4 R=C. 
5 Every element in C is the image of some element in D. 
6 C={y\3xE D 3 (x,y) E G}. 

Clearly there is an over-abundance of language used to describe 
mappings. However, you should be familiar with all of it. Some people 
prefer the function: one-to-one: onto language while others prefer the 
mapping: injection: surjection language. We shall use both inter­
changeably. 

Let's practice using our symbols and review the definitions. If D 
and C are sets and G c D x C, then (D, C, G) is a relation. If 'v' xED 3! 
y E C 3 (x, y) E G, then the relation is a {unction with range R where 
R = {y\3x ED 3 (x, y) E G}. Further, if 'v' Y E R 3!x ED 3 (x, y) E 
G, then the function is an injection; if 'v' Y E C 3 xED 3 (x, y) E G, 
then the function is a surjection. 

When the domain and codomain of a function {are both R, we 
have a nice way of picturing a function using the Cartesian plane. We 
let the x-axis represent the domain and the y-axis represent the co­
domain. The graph consists of all points (x, ((x) ). The range consists 
of all numbers {( x). See Figure 2.1, illustrating {: R ~ R, {:x +-+ eX. 
Also, in the case {:R~ R, we can give a geometric interpretation of 

y 
Graph of f 

(x, f(x» 

----------~~-+---------*---D--om--a-in-o-f-f----·x 

o 

FIGURE 2.1 

s::: .OJ 
8 o 
'0 o 
C,) 

f(x) = eX 
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an injection and of a surjection. Function fis one-to-one if every line 
parallel to the x-axis intersects the graph at most once; function {is 
onto if every line parallel to the x-axis intersects the graph at least 
once. 

Examples of formulas defining functions f: R ~ R where {is nei­
ther an injection nor a surjection: {(x) =X2, {(x) =2, ((x) =coshx= 
1/2 (eX + e-x ). 

Examples of formulas defining functions {: R ~ R where {is an 
injection but not a surjection: ((x) =ex,{(x) =arctanx,{(x) =tanhx= 
(eX - e-x ) / (ex + e-x ) . 

Examples of formulas defining functions {: R ~ R where {is a sur­
jection but not an injection: {(x) = x (x - 1) (x + 1), {(x) = x3/ (1 + X2) , 
{(xl =x sin x. 

Examples of formulas defining functions {: R ~ R where {is both 
an injection and a surjection: {(x)=2x+3, {(x)=x\ {(xl=sinhx= 
1/2 (eX - e-x ). 

The functions sinh, cosh, and tanh defined in the examples above 
are called hyperbolic trig {unctions. If x = cosh () and y = sinh () for any 
real number (), then x2 - y2 = 1. Further properties of the hyperbolic 
trig functions can be found in any calculus text or Section 31.2. 

Let {:Z~R, {:x+-'>x+3 and g:z~z, g:x+-'>x+3. Although { 

y 

y = 1 

----------------------~~------------------~x 

'/ 
/ ..................... / ...... . 

I 
I 

FIGURE 2.2 

/ 
I 

/ 

y = -1 
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y=~ 
2 

y 

y = X 3/ /y = x(x - l)(x + 1) 

/ / 
I I ···········i····/·················· 

I 
/ 

------------~--~~~----~~----------------~x 

I 
I I .......... / .. 1" ........ . 

I I 
/ I 
I I 

FIGURE 2.3 

and g have the same domain Z and the same graph G where G = 
{ (x, x + 3) Ix E z}, we note that {# g as { and g have different codo­
mains. Observe that g is a surjection while {is not a surjection. 

A mapping that is both an injection and a surjection is called a 
bijection. We shall use this word often! A bijection is a mapping that is 
both one-to-one and onto. If Sand T are sets, saying that there is a 
one-to-one correspondence between Sand T means that there exists a 
bijection from S onto T. For example, to see that there is a one-to-one 
correspondence between all the integers and the even integers, con­
sider the mapping {from Z into the even integers defined by ((x) =2x. 
For another example, the existence of the mapping g from the set of 
positive integers into the set of all integers defined by g(x) = 1f2X if 
x is even and g(x) =_1/2(X-l) if x is odd proves that there is a one-to­
one correspondence between the set of positive integers and the set of 
all integers. Only for infinite sets is it possible that there exists a one­
to-one correspondence between a set and a proper subset of the set. 

Occasionally one wants to consider what a mapping does to some 
particular subset of its domain. If {:D ~ C and A cD, then the re­
striction o{ (to A is g:A ~ C defined by g(x) = {(x) for x in A. Loosely 
speaking, g just copies {for a smaller domain. Of course g and {may 
have different properties since they are different mappings when 
A#D. 

Associated with a mapping {from set D into set C is a certain 
mapping f. .. which maps subsets of D to subsets ofC, namely, f" :2D ~ 2(' 
where ( (T) = {{( t) It E T} if TeD. In particular, f:, (D) is the range 
of ( and f,(0) = 0. Although { and f:, are clearly different functions, 
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we shall follow the customary abuse of language and write "(" in place 
of "f/' This convention is possible because there is no likelihood of 
confusion. To illustrate where this convention is used in geometry, 
suppose (is a mapping from the points into the points of the Euclidean 
plane and T is some set of points such as a line or a triangle. It is 
probably clear what "((T)" should mean; ((T) is the set of all points 
((t) such that t is a point of T. For example, a translation (of the 
Euclidean plane is really a mapping from the points onto the points. 
Associated with (is f:, which maps, say, line I to line m. Our conven­
tion allows us to say that (maps I to m; we write "((l) = m" rather than 
the more formal "f, (I) = m." 

2.2 COMPOSITION OF MAPPINGS 

Given mappings (:D -'> C and g:B -'> A such that the range of (is a 
subset of the domain of g, we can define mapping g(:D -'> A by g(:x ~ 
g(((x»). So g((x) =g(((x). The reason for the requirement ((D) C B 
is clear, as otherwise g(((x») is not defined. This mapping g(is called 
the product or composition o( (followed by g. See Figure 2.4. For ex­
ample, suppose f:z-'> Z is defined by ((x) =X2; g:R-'> R is defined by 
g(x) = sin x; and k: R -'> R is defined by k (x) = x2 • Then, g( is the map­
ping g(:Z -'> R defined by g((x) = sinx2 , but (g is not even defined (e.g., 
(g (1 ) = (( sin 1) is not defined since sin 1 is not an integer). The order 
of (and gin "g(" is important! In our example gk and kg are mappings 
from R into R where gk(x) =sinx2 =sin (x2 ) and kg(x) =sin2 x= 
(sin X)2. Since sin x2 and sin2 x are not equal for every real number x, 
we have gk #- kg. 

It is a simple exercise to prove once and for all that composition 
o( mappings is associative, i.e., mappings h(gf) and (hg)( are equal 
when they are defined. Both mappings have the domain of (and the 
codomain ofh. So, to show that the mappings are equal, we must show 

gf 

x g(f(x» 

f(x) 

FIGURE 2.4 
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that the two mappings also have the same graph. That is, we must 
show [h(g!)] (x) = [(hg)f] (x) for each x in the domain of f Indeed, 
for each x in the domain of f, we have 

[h(gf)] (x) = h(g{(x» = h(g({(x») 

= hg({(x» = [(hg) f] (x). 

We have the desired result. (The first equality follows from the defini­
tion of the composition of gffollowed by h. The second equality follows 
from the definition of the composition of {followed by g. The third 
equality follows from the definition of the composition of g followed 
by h. The last equality follows from the definition of the composition 
of (followed by hg.) 

If ( and g are both injections and g{ is defined, then g{ is also an 
injection. To show this we must prove g{(x) = grey) only if x= y. But, 
gf(x) = grey) implies g({(x» = g({(y» by definition of gf Then, {(x) = 
{(y) since g is an injection. Finally, since {is an injection, x = y and 
we are done. 

A bijection from a set S onto itself is often called a permutation 
on S. The least exciting permutationonS is £:S-S, £:x~x,called the 
identity mapping on S. (Note that ''t'' is not really "i" with a dot miss­
ing but is the Greek letter iota.) It is quickly observed that £ is the 
unique permutation on S such that fi = {= £{ for every permutation 
tonS. 

Is the product of two permutations on set S always a permuta­
tion on S? Yes! Since permutations on S are injections, we have al­
ready seen that their product is an injection. To show the product of 
two permutations ( and g on S is also a surjection, we must show that 
for every y in S there is an x in S such that g{(x) = y. Since g is onto, if 
yES there exists tin S such that get) = y; since {is onto there exists 
x in S such that {(x)=t. Hence, g{(x) =g({(x»=g(t) =y. We have 
shown that the product of two permutations on set S is a permutation 
onS. 

Suppose {is a relation and {= (S, S, G). An element of G is an 
ordered pair (x, y) with x and y in S. Now {is a mapping iff every ele­
ment of S appears exactly once as a first element of an ordered pair 
in G. Mapping {is a permutation on S iff every element of S appears 
exactly once as a second element of an ord,ered pair in G (onto iff at 
least once, and one-to-one iff at most once). Hence, if {is a permu­
tation on Sand {= (S, S, G), then f' is a permutation on S where 
{' = (S, S, G'), G' C S xS, and (y, x) E G' iff (x,y) E G. Then,ff'(y) = 
{(f'(y» =((x) =y=£(y) and ('{(x) =f'({(x» =f'(y) =x=£(x). We 
see that if {is a permutation on S, then {' is the unique permuta-
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tion on S such that ff' = L = f' {where L is the identity mapping on S. 
For easy reference, we list the results that we have obtained 

about permutations on a set S: 

1 The product of two permutations on S is a permutation on S, 
and products of permutations on S are associative. 
2 There is a unique permutation L on S such that fi = {= L{ for 
each permutation {on S. 
3 If (is a permutation on S, then there exists a unique permuta­
tion f' on S such that ff' = L = f'f 

2.3 EXERCISES 

• 2.1 Which of the following functions are injections and which are 
surjections? 

I;:R- R, l;:x~2x; 

~:Z-Z, ~:x~2x; 

fa:Z- R, fa:x~ 2x; 

":R- R, ":x~r; 

fs: Z - Z, fs:x~r; 

fs: Z - R, fs:x~r. 

• 2.2 Let f,g, h be mappings from R into R where {(x) =x-l,g(x) = 
2x, and h(x) = r. Find (g(x) , gf(x) , (gh(x) , hgf(x) , and gfh(x) . 

• 2.3 Fill in the missing words: If {:D- C, then {is a mapping 
__ D __ C. That {(a) = b may be expressed in several ways: (1) the 
value __ { __ a is b, (2) {maps a __ b, (3) b is the image of a -- f 
If {(D) =C, then (is _. If D=C={(D) and {is _, then {is a 
permutation __ D. 

• 2.4 Find a counterexample to: If V x E B 3y E A 3 (x, y) ED 
where DcA X B, then (B, A, D) is a mapping. 

2.5 Give an example where function g is a restriction of function f, 
g is an injection, and {is not an injection. 
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• 2.6 True or False? 
Assume only that f is a mapping from D into C. 

(a) V xED 3! y E C 3 fix) = y. 

(b) VxED3yEC3f(x)=y. 

(c) V y E C 3 xED 3 f(x) = y. 

(d) V y E C 3! xED 3 fix) = y. 

(e) V y ED 3 x E C 3 f(x) = y. 

CD f:a~bifff(a)=b. 

(g) g:A ~B iffg(A) =B. 

(h) "One-to-one" is short for "one-to-one correspondence." 

(i) A permutation is a bijection. 

(j) A bijection is a permutation. 

• 2.7 Let set Shave n elements, where n is a positive integer. How 
many mappings are there from S into S? How many of these are in­
jections? How many are surjections? How many are bijections? 

2.8 Let S be a finite set and f:S ~ S. Show that fis an injection iff 
f is a sUljection. 

• 2.9 Letf:D~ C have graph G. Find a counterexample to: (x,y) E 
G implies (y, x) E G only if fis a permutation on D. 

• 2.10 Let f:D~D have graph G. Prove: (x,y) E G implies (y,x) E 
G only if f is a permutation on D. Give an example where f is not the 
identity on D. 

2.11 Give examples of three distinct functions having the same 
graph. 

• 2.12 Define three functions from Z into Z which are onto but not 
one-to-one. 

2.13 State the negative of the following where - is any relation 
between sets A and B: (a) V x E A 3!y E B 3 x - y. (b) 3! x E A 3 x­
Y V Y E B. (No fair just adding "not" in front.) 

*2.14 When is (D, C, 0) a mapping? 

*2.15 Show that f:R~ R where fix) =r-2x is a surjection but not 
an injection, while g: Z ~ Z where g(x) = r - 2x is an injection but 
not a surjection. 
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I have no fault to find with those who teach geometry. That 
science is the only one which has not produced sects; it is founded 
on analysis and on synthesis and on the calculus; it does not 
occupy itself with probable truth; moreover it has the same meth~d 
in every country. 

Frederick the Great 

In my opinion a mathematician, in so far as he is a 
mathematician, need not preoccupy himself with philosophy - an 
opinion, moreover, which has been expressed by many philosophers. 

Lebesgue 

Motto of the Pythagoreans: 

Number rules the universe. 

This skipping is another important point. It should be done 
whenever a proof seems too hard or whenever a theorem or a whole 
paragraph does not appeal to the reader. In most cases he will be 
able to go on and later on he may return to the parts which he 
skipped. 

Statement 
notp 
pandq 
porq 
q or notp 
ifp, then q 
if not q, then not p 
V x, P(x) 
3x 3 P(x) 
V x, if P(x), then Q(x) 
3 x 3 if P(x), then Q(x) 

Negation 
p 
[notp] or [not q] 
[notp] and [not q] 
p and not q 
p and not q 
p and not q 
3x 3 not P(x) 
"Ix, not P(x) 
3 x 3 P(x) and not Q(x) 
V x 3 P(x), [not Q(x)] 

Artin 



CHAPTER 3 

The Real Numbers 

3.1 BINARY OPERATIONS 

Let A, B, C, D, and S be sets. If the relation (D. C, G) is a mapping and 
D = A X B, then the relation is a binary operation from A and B into 
C. We shall have use here only for the special case where A = B = C. 
Thus, for our purposes, a binary operation on set S is simply a mapping 
from S X S into S. If binary operation .••. maps (a, b) to c, then we write 
"a·:<·b=c." 

Example 1 Perhaps the most familiar binary operation is addition 
on Z, the integers. For every ordered pair (a, b) of integers there is a 
unique integer a + b. 

Example 2 Another very familiar binary operation is multiplication 
on R, the reals. For every ordered pair (a, b) of real numbers there is 
a unique real number abo As "+" always denotes ordinary addition 
on subsets of R, "." always denotes ordinary multiplication on sub­
sets of R. However, the symbol denoting multiplication is often sup­
pressed, so that instead of "a . b" we write "ab." 

Binary operation " on set S is associative if" satisfies the associa­
tive law and is commutative if ':' satisfies the commutative law: 

Associative Law: a':' (b "c) = (a' b) c for all a, b, c in S. 

Commutative Law: a':' b = b " a for all a, b in S. 
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Addition on the integers and multiplication on the reals are both 
associative and commutative binary operations. 

Example 3 Subtraction on Z is a binary operation that is neither as­
sociative nor commutative. If a and b are integers, then a - b is a 
unique integer. One counterexample is sufficient to demonstrate that 
subtraction is not associative: 1- (2 - 3) = 2, (1- 2) - 3 = -4, but 
2 ¥- -4. One counterexample demonstrates that subtraction is not 
commutative: 1-2 = -1,2-1= 1, but -1 ¥- 1. 

Example 4 For real numbers a and b, let a':' b = a2 + b2• Then ", is an 
example of a binary operation on R that is commutative but not as­
sociative. 

Example 5 Define binary operation ", on R by a'" b= lalb. Then ", is a 
binary operation that is associative but not commutative. (Exercise 
6.2.) Recall that I al = a if a ~ 0 but I al = -a if a < O. So I ai, called the 
absolute value of ai is always nonnegative. 

Example 6 Another example of an associative binary operation that 
is not commutative is composition of permutations on a set A where 
A has at least three elements. Notice that the binary operation of 
composition is not on the set A itself but rather on the set of permuta­
tions on A. 

A definition is an agreement to substitute a simple term or sym­
bol for more complex terms or symbols. This is precisely how we are 
going to treat the word "group." To say that ordered triple (S, "', e) is 
a group means: 

1 ", is an associative binary operation on set S. 
2 e is the unique element of S such that a'" e = a = e ", a for all a 
inS. 
3 If a is in S, then there exists unique a' in S such that a ", a' = 
e=a'", a. 

We call ", the multiplication of the group. The element e is called the 
identity of the group and a' is called the inverse of a. 

Note that group multiplication need not be commutative. If the 
multiplication does satisfy the commutative law, then the group is 
said to be a commutative group (or an Abelian group). In passing we 
might also note that the English language is not commutative. For 
example, (3) above states "Ya E S 3! a' E S :3 a ", a' = e= a' ", a" and 
not "3!a' E S:3 a"'a'=e=a' ','aYa E S." 
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Example 7 The most familiar example of a group is (Z, +, 0). Here 
the group multiplication is ordinary addition on the integers, 0 is the 
additive identity, and the additive inverse of a is -a. Check axioms 1, 
2, and 3 above with S= z," =+, e= 0, and a' = -a. Likewise, (Q, +,0) 
and (R, +, 0) are groups where in each case the inverse under ordinary 
addition of a is -a. 

z'\ Q'\ and R':' are the nonzero elements ofZ, Q, and R, respective­
ly. (The star used as a superscript should not be confused with a star 
used to denote a binary operation.) Z+, Q+, and R+ are the positive ele­
ments of Z, Q, and R, respectively. 

Example 8 (Z,', 1) is not a group as 2 does not have a multiplicative 
inverse in Z since 1/2 is not an integer. (R, " 1) is not a group since 0 
does not have a multiplicative inverse in R. (Z+, -, 0) is not a group 
as subtraction is not even a binary operation on Z+. 

Example 9 It should be easy to check that each of (Q+, " 1) , (Q*, " 1) , 
(R+, " 1), and (R*, " 1) is a group. In each case the inverse of a is 
1/a. 

Example 10 The last thing we did in Section 2.2 was to show that 
(P, 0, t) is a group where P is the set of all permutations on a nonempty 
set S, 0 is composition of mappings, and t is the identity mapping 
on S. 

Let's prove one theorem about groups. The Left Cancellation Law 
states that if (S,:, e) is a group and a '.' x = a" y for a, x, y in S, then 
x= y. To prove this statement, we first note that since a is in S there 
exists a' in S such that a'" a= e. Then a'" (a ':' x) = a' '.' (a ':' y). Using 
the associative law, we obtain (a'" a) "'X= (a',., a) '.' y. Since a'" a=e, 
we now have e '" x= e '.' y. Because e is the identity, we are left with 
x= y, as, desired. The Right Cancellation Law states that if (S,", e) is 
a group and x '.' a = y '.' a for a, x, y in S, then x = y. We leave the proof 
of this fact to Exercise 3.3. 

We might observe that in just a few lines we have proved the left 
cancellation law for all groups. There are more groups than anybody 
knows about. Yet for each group the left cancellation law holds. Al­
though our little result is not earthshaking, it does demonstrate the 
power of modern abstract mathematics. 

There are volumes and volumes written about groups. How­
ever, our use of this group theory is limited to the definition and the 
cancellation laws. The word "group" now has a technical meaning 
and should no longer be used as a general collective noun. A mathema-
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tician might possibly refer to a gaggle of geese as a group of geese, 
since geese are not usually considered mathematical objects, but a 
mathematician would never be caught referring to the collection of 
odd integers as the group of odd integers. 

A rational number is any number of the form alb where a and b 
are integers but b #- O. The words "ratio" and "reason" come from the 
same stem. Q is the set of all rational numbers. When we add or multi­
ply rational numbers together we always obtain a rational number. 
We know (Q, +, 0) and (Q*, " 1) are groups. The binary operations of 
addition and multiplication on Q are related to each other through the 
left distributive law and the right distributive law: 

L: a' (b+c)=(a·b)+(a·c) for all a,b,c in Q. 

R: (a + b) . c = (a . c) + (b . c) for all a, b, c in Q. 

The number system (Q, +, ',0,1) is called the field of rationals. 
The very early Greeks thought that all numbers had to be ration­

al numbers. The whole of religion and philosophy of the early Pythag­
orean school was based on this supposed fact. It came as quite a shock 
to find that the diagonal of a square with sides of length 1 could not be 
expressed as a quotient of in~ers. In other words, there do not exist 
integers a and b such that V 2 = al b. To prove this fact, one begins by 
assuming Y2=alb where a and b are integers and alb has already 
been reduced to its lowest terms. Then a and b are not both even. After 
squaring the equation, one goes on to deduce that a and b are both 
even. The contradiction proves that the original assumption must 
be false. The details of this historically famous proof are left for Ex­
ercise 3.l. 

Considering the set of all real numbers and the usual operations, 
we know that (R, +, 0) and (R*, " 1) are commutative groups. The 
binary operations of addition and multiplication on R are related to 
each other through the distributive laws. The number system (R, +, 
" 0, 1) is called the field of reals. 

Generalizing the idea of the field of rationals and the field of 
reals, we say (8, +, ',0,1) is a field iff 

1 (8, +,0) is a commutative group. 
2 (8*,', 1) is a commutative group. 
3 a·(b+c)=(a·b)+(a·c) foralla,b,cin8. 

The group in 1 is called the additive group of the field, and the identi­
ty of this group is called the zero. The group in 2 is called the multipli-
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cative group of the field where S,,: = S \ {O}, and the identity of this 
group is called the unity. Statement 3 is called the left distributive 
law. That (b +c) . a= (b· a) + (c' a) for all a, b, c inS, follows immedi­
ately from the left distributive law and the commutativity of multi­
plication. 

Obviously, the field of rationals (Q, +, . , 0, 1) and the field of reals 
(R, +, ',0,1) are fields. Two other fields, given in Examples 11 and 12 
below, enter into later discussions. 

Example 11 The Field of Complex Numbers A complex number is 
a number of the form x + yi where x and yare real numbers and 
Xl + y l i=x2 + Y2i iff Xl =x2 and YI = Y2' C is the set of all complex num­
bers. Addition and multiplication are defined on C as follows: 

(Xl + yli) + (x2 + Y2 i ) = (Xl + x2) + (YI + Y2) i, 

(Xl + yli) (X2 + Y2 i ) = (X IX2 - Y IY2 ) + (XI Y2 + X2Y I ) i. 

(c, +,0) is a commutative group where 0= 0+ Oi and the additive in­
verse of X+ yi is (-x) + (-y)i. (C*, " 1) is a commutative group where 
c* = C \ 10}, 1 = 1 + Oi, and the multiplicative inverse of X + yi is 
(xl (x2 + y2) ) + (-yl (x2 + y2) ) i. The distributive laws hold. If you are 
not already familiar with the complex numbers, it is sufficient for our 
purposes to know that they exist and that (c, +, ',0,1) is a field. As 
the field of reals contains the field of rationals, so the field of complex 
numbers contains the field of reals where real number r is identified 
with the complex number r + Oi. 

Let (S, +, ',0,1) and (S', +', ",0', 1') be fields F and F', respec­
tively. If f:S - S' is a bijection from S onto S' such that fpreserves 
addition, meaning f( a + b) = f( a) +' f( b) for all a and b in S, and such 
that fpreserves multiplication, meaning f(a· b) = f(a) .' f(b) for all a 
and b in S, then fis called an isomorphism from F onto F'. It follows 
necessarily that f( 0) = 0' and f( 1) = 1'. As a bijection, f determines a 
one-to-one correspondence between the elements of the fields. The 
existence of an isomorphism from F onto F' means that F and F' are 
abstractly the same. When F and F' are actually the same, the iso­
morphism is called an automorphism. The field of complex numbers 
provides an example of a nonidentity automorphism. Define f:c - C 
by f(x + yi) =x + (-y)i. The mapping fis called the conjugate map, and 
f(z) is usually denoted by z for z in C. That the conjugate map is a bi­
jection on C is quickly checked. That the conjugate map is an auto­
morphism on C then follows from the easily proved identities Zl + Z2 = 
Zl + Z2 and Z l Z2 =Zl Z2 for all ZI and Z2 in C. 
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The square root of zz is called the modulus or absolute value of 
complex number z and is denoted by Izl. So Ix+yil = (X2+y2)1/2 when 
x and yare real. 

The equation Z2 = -1 has no solution in R but has a solution i 
in C where i = 0 + Ii. Complex numbers are usually introduced in high 
school algebra so that all quadratic equations with real coefficients 
have solutions. A complex number x + yi with y¥-O is often called an 
imaginary number. As the very words "rational" and "irrational" indi­
cate an earlier view of numbers, so the words "real" and "imaginary" 
indicate how numbers were considered in the last century. These 
words have a technical meaning today, independent of the insight 
they provide into the history of mathematics. As we would not ques­
tion the rationality of a person just because that person used an irra­
tional number such as v'2, we should be aware that 1 + 2i is no more 
real or imaginary, in the everyday use of these words, than is -3. 
Since negative numbers are no longer called fictitious numbers as 
they once were, since negative numbers are introduced in grade 
school, and since imaginary numbers are not introduced until high 
school if at all, today's college student is usually surprised to learn 
that negative numbers and imaginary numbers were widely accepted 
at about the same time. 

The requirements for a field demand that a field must contain 
at least two elements, namely, the zero and the unity. For our fourth 
example of a field, we see t-hat there is a field with only these two 
elements. 

Example 12 The Field of Two Elements The entire addition and 
multiplication tables for a field with exactly two elements is given in 
Table 3.1. For this unity 1 and this addition +, we have the some­
what peculiar fact that 1 + 1 = o. So -1 = 1 in this little field. The mul­
tiplicative group contains only the one element 1. Although the tables 
in Table 3.1 can be logically deduced from the requirements for a 
field and the assumption that S= {O, I}, there is no need for us to do 
so. It takes just a minute to check that the three requirements for a 
field are satisfied. The sky will not fall if we consider this field only 
as an amusing toy. 

TABLE 3.1 

+ 0 

0 0 

1 1 

1 

1 

0 

§ffi0 1 

000 

1 0 1 
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3.2 PROPERTIES OF THE REALS 

For our purposes, we may consider the real numbers to be the (positive, 
negative, or zero) infinite decimals. Since a rational number is a quo­
tient of two integers, it follows from the algorithm for long division 
and the formula for the sum of an infinite geometric series that, of 
the real numbers, it is exactly the rationals that have a repeating in­
finite decimal. (Rationals of the form 10na, where a and n are integers 
with a 01= 0, have two infinite decimal representations, one terminating 
in repeating 9 and one terminating in repeating O. So, if each real 
number is to have exactly one infinite decimal representation, we 
discard all the infinite decimals that terminate in repeating 9.) An 
irrational is a real number that does not have a repeating infinite 
decimal representation. Every real number is either rational or ir­
rational. 

It is almost certain that Pythagoras, who was born about 572 
B.C., was not aware that \1'2- is irrational. One legend attributes the 
discovery of the irrationality of V2 to Hippasus about 470 B.C.; another 
legend tells that Hippasus was drowned by his fellow Pythagoreans 
for disclosing this secret outside the brotherhood. In any case, the 
scandal within logic caused by the incommensurables (irrationals) 
which jeopardized the theory of proportion was resolved by Eudoxus 
about 370 B.C. Eudoxus' work is preserved in Book V of Euclid's Ele­
ments. The Pythagorean idea that all (real) numbers eventually de­
pend on the integers for their definition was vindicated by the work 
of Richard Dedekind in 1872. Dedekind (1831-1916), following in the 
footsteps of Eudoxus, was among those who first gave a rigorous defini­
tion of the real numbers. A thorough understanding of the real num­
bers is only a hundred years old! 

Dedekind defined an infinite set to be any set such that there is a 
one-to-one correspondence between the set and some proper subset 
of the set. Another way of saying this is that set S is an infinite set 
iff there is a mapping f:S ~ S which is one-to-one but not onto. The 
set z+ of positive integers is an infinite set since f:z+ ~ Z+, f:n ~ n2 

is such a mapping. The existence of this one-to-one correspondence 
between the set of positive integers and its proper subset consisting 
of the squares was actually observed by Galileo (1564-1642). How­
ever, the possibility of making some important use of Galileo's obser­
vation was not realized for two hundred and fifty years. 

If there is a one-to-one correspondence between sets A and B, 
then A and B are said to have the same cardinality. So two sets have 
the same cardinality iff there is a bijection from one onto the other. 
By Galileo's observation mentioned above, the set of all positive inte-
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gers and the set of all the squares of the positive integers have the 
same cardinality. A set Sand Z+ have the same cardinality iff there is 
an infinite sequence of terms from S such that each element of S 
occurs exactly once as a term of the infinite sequence. (An infinite 
sequence is, after all, only a mapping whose domain is Z+.) That Z 

and Z+ have the same cardinality is proved by reference to the infinite 
sequence 0, 1, -1, 2, -2, 3, -3, .... That is, f:z+ ---+ Z defined by 
f(2n) = nand f(2n + 1) = -n is a bijection. 

TABLE 3.2 

Iii; 
1/2, 21t; 
1/3,2/2, 3i1; 
1/4, 2/3, 3/2, 41t; 
1/5 ,2/4 , 3/3, 4/2 , Sit; 
1/6 ,2/5 , 3/4 , 4/3 , 5/2 , 61t; 

To show Z+ and Q+ have the same cardinality, first think of the 
infinite array suggested by Table 3.2, where in the nth row are listed 
all the fractions p/q with p and q positive integers such that p + q = 
n + 1. Since every positive rational number has a unique representa­
tion p/q in reduced form and appears in some row of the array, an in­
finite sequence of positive rationals where each occur& exactiy once 
can be constructed by taking the rows of the array in turn but omitting 
those fractions that are not reduced. The infinite sequence is 

Defining g(m) to be the mth term of this infinite sequence gives a 
bijection g from Z+ onto Q+. (Giving a formula for g is not easy and is 
left for students of the theory of numbers; we are quite happy to know 
that g exists.) Sandwiching in zero and the negative rationals, we 
obtain an infinite sequence of all the rationals where each rational 
occurs exactly once. More formally, h: Z+ ---+ Q where h (1) = 0, h (2m) = 
g(m), and h(2m+l)=-g{m) is a bijection from Z+ onto Q. Hence 
Z+ and Q have the same cardinality. 

Dedekind's friend, the great Georg Cantor (1845-1918), studied 
infinite sets and developed transfinite arithmetic. This was the be­
ginning of what is now called set theory. We cannot go into the astound­
ing results of this work here. However, stemming from Cantor's work 
there eventually arose contradictions in mathematics. It was again a 
scandalous matter for logic, this time leading to the establishment of 
the several modern mathematical schools of thought. Although the 
resulting problems have not been totally resolved to this day, the 
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effect of the scandal was to leave mathematics greatly enriched. 
Mathematics is truly a phoenix. Cantor may be compared with his 
contemporary Sigmund Freud (1856-1939); for although much of 
their early groundwork has been discarded, each of these giants 
opened radically new worlds for others to explore. 

One of Cantor's results is that the set of positive integers and the 
set of real numbers do not have the same cardinality. It was shocking 
to the Pythagoreans to learn that \1'2- is not rational; it was almost as 
shocking to mathematicians at the end of the last century to learn that 
not all infinite sets have the same cardinality. Suppose there were a 
bijection g from Z+ onto R, thenf:Z+ - I with fen) = 112 {I + tanhg{n» 
would be a bijection from Z+ onto I, where I is the set of real numbers 
between 0 and 1. We shall show that Z+ and R do not have the same 
cardinality by showing that there does not exist any mapping from 
Z+ onto 1. Assume the contrary, that f is some mapping from Z+ onto 
1. We shall now obtain a contradiction. Let fen) have digit d':,. in its 
mth place as a nonterminating infinite decimal. See Table 3.3. Let d 
be the infinite decimal 0.d1d 2d3d 4 ••• where d ll = 2 if d: ¥- 2 and 

TABLE 3.3 

f(1) = O.d~d~d~d~ ... 

f(2) =o.cF,~~d!··· 

f(3) = O.d~d~d~d:· .. 

f(n) = o.d~~d;cP. ... ct: ... 

dn = 3 if d~= 2. Since d and fen) differ in their nth places,{{n) ¥- d for 
every positive integer n. Then, since d is in I, it follows that f is not 
onto. This proof, due to Cantor, is one of the most famous proofs in 
mathematics. 

We know Z+ and Q have the same cardinality. Assuming Q and 
R had the same cardinality, it would follow that Z+ and R have the 
same cardinality, which contradicts Cantor's theorem. Hence, there 
does not exist a one-to-one correspondence between Q and R. 

The properties of order for the field of real numbers are con­
sidered next. In general, a field is ordered if there exists a subset P 
of elements satisfying the following three properties. 

01 a and b in P implies a+ bin P. 
02 a and b in P implies ab in P. 
03 For each element a in the field, exactly one of the following 
holds: a= 0, a E P, -a E P. 
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Since -1 = 1 ¥- 0 in the field of two elements, contrary to (03), it fol­
lows that the field of two elements cannot be an ordered field. Taking 
P to be the set of positive real numbers, it is easily seen that the field 
of real numbers is an ordered field. For this reason, given any field 
with a subset P satisfying the three requirements, the elements of 
P are said to be positive. You should be able to guess what Ixl means 
where x is an element of any ordered field; Ixl = x if x is positive or 
zero, and Ixl = -x if -x is positive. 

For an ordered field with given set P of positive elements, rela­
tion> is defined on the elements of the field by a> b iff a- b is posi­
tive. In particular, x> 0 iff x is positive. Also, relation < is defined by 
b < a iff a> b, where "<" is read less than and ">" is read greater 
than. Ten properties of the relation> follow (Exercise 3.4): 

1 For elements a and b, exactly one of the following holds: 
a> b, a= b, or b > a. 

2 a> band b > C implies a > c. 
3 a> 0 and b > 0 implies ab > O. 
4 a> b implies a + c > b + c for every element c. 
5 a > 0 iff -a < 0; a < 0 iff -a > o. 
6 a> band c > d implies a+ c > b + d. 
7 a > 0 and b > c implies ab > ac. 
8 a < 0 and b > c implies ab < ac. 
9 a¥-O implies a2 > O. 

10 I tl < a iff -a < t < a. 

For the field of complex numbers, we have +1= 12 and -1 = i2 • 

So (9) contradicts (03) for complex numbers, as +1 and -1 can't both 
be positive. Hence the field of complex numbers is not an ordered field. 
This explains why it is senseless to ask which of 2 + 3i and 3 + 2i is 
greater than the other. 

An ordered field mayor may not have the following property: 
If B > 0 and t> 0, then there is a positive integer n such that nt> B. 
(For any field, nt means the sum t+ t+· .. + t with n terms.) This 
property is called Archimedes' axiom and is named after Archimedes 
(287 - 212 B.C.). The axiom was probably known to Eudoxus. Anyway, 
before Archimedes, Euclid had expressly stated the axiom in con­
sidering the ratio of two magnitudes. The import of the axiom is 
that no matter how big B is and no matter how tiny t is there is an 
integer n such that nt is greater than B. This is a simple idea but very 
subtle. An ordered field that does not satisfy Archimedes' axiom is 
said to be non-Archimedian. Although admittedly fascinating, these 
fields with infinitely small and infinitely large elements are not 
essential to our work. 
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The field of real numbers is an Archimedean ordered field. Think­
ing of Band t as positive infinite decimals, there is an integer n such 
that nt > B where n is an integral power of 10. In this case n has the 
effect of moving the decimal point in t far enough to the right to obtain 
a real number greater than B. Similar arguments show that for any 
real number a there exist integers nand m such that n < a < m. Also 
the set of rationals is dense in the set of reals, meaning that between 
any two real numbers there is a rational number. This last property 
together with Cantor's theorem that the reals and the rationals do not 
have the same cardinality may point out the necessity of having more 
than an intuitive definition of the real numbers. 

A field is Pythagorean if 1 + a2 is a square for every element a; 
an ordered field is Euclidean if every positive element is a square. Un­
like the field of rationals, the field of reals is Pythagorean and Eu­
clidean as well as Archimedean. However, there is one property that 
distinguishes the reals from all other ordered fields. This is the least 
upper bound property that you mayor may not remember from 
calculus. 

Let F be the set of elements from an ordered field, and let S be 
a nonempty subset of F. If there is an element b in F such that x ~ b 
for all x in S, then b is an upper bound of S. Further, if b is less than 
any other upper bound of S, then b is called the least upper bound of 
S or the supremum of S and we write b = lub S. An ordered field is 
complete if every nonempty set of elements having an upper bound has 
a least upper bound. There is also the corresponding idea that if c ~ x 
for every x in nonempty subset T of F, then c is a lower bound of T. 
Further, if c is greater than any other lower bound of T, then c is called 
the greatest lower bound of T or the infimum of T and we write c= 
glb T. If T is a nonempty set of elements from a complete ordered field 
and T has a lower bound, then glb T = -lub R where R = {-xix E T}. 
Of course, the greatest lower bound must be less than or equal to the 
least upper bound when they both exist. Considering the set of all 
rationals whose square is less than 2, we see that the ordered field of 
rationals is not complete. 

Let's show that a complete ordered field is necessarily Archi­
medean. Assume, to the contrary, that some complete ordered field has 
positive elements t and B such that nt ~ B for every integer n. Then 
B is an upper bound of the set S of all elements nt with n an integer. 
Since the field is assumed to be complete, we may let b = lub S. Then 
(m + 1) t ~ b for every integer m. So mt ~ b - t for every integer m. 
Hence b - t is an upper bound of S. Thus b ~ b - t and t > 0, a contra­
diction. Therefore, our assumption was incorrect, and every complete 
ordered field is Archimedean. 

Every real number is the least upper bound of a set of rationals. 
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For if c is a real number, let S be the set of all rationals r such that 
r < c. Then c is certainly an upper bound of S. Also, since between any 
two reals there is a rational, it follows that c is the least upper bound of 
S. This is the whole idea behind Dedekind's definition ofa real number. 
A Dedekind cut is a nonempty proper subset C of the rationals such 
that (1) x E Q, c E C, x < c implies x E C and (2) x E C implies there 
exists y E C such that x < y. Starting with the rationals and defining 
the real numbers to be the Dedekind cuts, one can go on to define +, 
" and < to obtain a complete ordered field. This is not easy. 

We might also mention Cantor's definition of a real number. A 
Cauchy sequence of rationals is a sequence {an} of rational numbers 
such that for every positive rational e there is an integer N such that 
lam - ani < e whenever nand m are both greater than N. Cauchy se­
quences {an} and {bn} of rationals are said to be equivalent if for 
every positive rational e there is an integer N such that Ian - bnl < e 
whenever n > N. Starting with the rationals and defining the real 
numbers to be the equivalence classes of Cauchy sequences of ration­
als, one can go on to define +, " and < to obtain a complete ordered 
field. This is not easy. 

It is not terribly difficult to argue that the ordered field of real 
numbers is complete, if you consider the real numbers to be defined 
as infinite decimals. What is somewhat difficult to show is that the 
infinite decimals form a field in the first place. Whether you start with 
infinite decimals, Dedekind cuts, or equivalence classes of Cauchy 
sequences of rationals, a rigorous development of the real numbers 
is not trivial. One knows that these approaches give the same abstract 
result since it can be shown that any two complete ordered fields are 
isomorphic. So, up to isomorphism, there is one complete ordered 
field, the reals. 

3.3 EXERCISES 

3.1 Show that v'2 is irrational. 

3.2 Let '" and # be the binary relations defined on the set of real 
numbers by a':: b=a2 + b2 and a # b= lalb. Show that ,,: is commutative 
but not associative, while # is associative but not commutative. 

3.3 Prove the right cancellation law for groups. 

• 3.4 Prove the ten properties listed in the text for ordered fields . 

• 3.5 True or False? 

(a) If a, x, yare in a field and ax= ay, then x= y. 
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(b) A group may have exactly one element. 

(c) labl = lal . Ibl for all real numbers a and b. 

(d) If p, U, T are elements of group (8, ., t) such that pu= T and 
p2 = t, then U = pT. 

(e) If 8 is a subset of T and 8 is an infinite set, then T is an in­
finite set. 

(f) If two sets have the same cardinality, then the sets are 
infinite sets. 

(g) If two sets are infinite sets, then the two sets have the 
same cardinality. 

(h) 0 < x < y < 1 < z implies y2 < X2 < 1 < Z2 for real x, y, z. 

(i) Both the ordered field of rationals and the ordered field of 
reals are Archimedean. 

(j) Both the ordered field of rationals and the ordered field of 
reals satisfy the least upper bound property. 

• 3.6 The set of rooms ofa rather large motel has the same cardinali­
ty as Z+. One night all the rooms were full when one more customer 
pulled up to the manager's office. Without turning anyone out or mak­
ing people double up, the manager rearranged the guests to accom­
modate the newcomer. How? 

3.7 For the real numbers, there is only one possible set P that satis­
fies the three requirements for a field to be ordered. 

3.8 Show that if > is any relation on the elements of a field and if > 
satisfies the first four of the ten properties listed in the text, then the 
field has a set P satisfying 01,02, and 03. 

3.9 Show (z, ':', 0) and (Q'\ #, 1) are non-Abelian groups where 
m,:, n=m+ (-l)mn,x# y=xyifx > 0, and x # y=x/yifx < o. 
• 3.10 Is the English language associative? 

3.11 Show that all the real numbers of the form a + bv2 where a 
and b are rational form a field under the usual operations of addition 
and multiplication. 

3.12 Prove that between every two real numbers there is a rational 
number and that between every two rational numbers there is an ir­
rational number. 

• 3.13 Let «a, b), c) be in the graph of some relation. Why do we 
write" (a, b) '" c" if", is an equivalence relation, "", (a, b) = c" if'" is a 
mapping, but "a ':' b = c" if ':' is a binary operation? 
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3.14 Show that the only automorphism of the field of the reals is the 
identity mapping. Explain why a mathematician might say "a group 
of autos over a field" not thinking about a collection of cars parked in 
some country lot. 

3.15 Prove la+ bl ~ lal + Ibl for reals a and b. 

3.16 Prove an ordered field is Archimedean iff x> 0 implies there is 
an integer n such that nx> 1; prove an ordered field is Archimedean 
iff a;::; 0, b> 0, and na ~ b for every integer n implies a= O. 

3.17 For a study of the process of evolution in mathematics with par­
ticular attention to the concept of number, see Evolution of Mathemati­
cal Concepts: an Elementary Study by R. L. Wilder (Wiley, 1968). A 
thorough study of the foundations of the real numbers may be found 
in the second edition of Wilder's Introduction to the Foundations of 
Mathematics (Wiley, 1965). 

*3.18 Show that Rand C have the same cardinality. 

*3.19 Prove any two complete ordered fields are isomorphic. 

*3.20 Show that if two infinite decimals are equal, then they are 
equal to 10na for some integers a and n. 

*3.21 Do there exist ordered fields which are Pythagorean but not 
Euclidean? 

*3.22 Find a field besides the reals which is both Euclidean and 
Pythagorean. 

GRAFFITI 

Z: The German word for integer is Zahl. 

No one shall expel us from the paradise which Cantor has 
created for us. 

HUberl 

He is unworthy of the name of man who is ignorant of the 
fact that the diagonal of a square is incommensurable with its side. 

Plato 



CHAPTER 4 

Axiom Systems 

4.1 AXIOM SYSTEMS 

An axiom system or postulate system consists of some undefined terms 
and a list of statements, called axioms or postulates, concerning the 
undefined terms. One obtains a mathematical theory by proving new 
statements, called theorems, using only the axioms and previous 
theorems. Definitions are made in the process in order to be more 
concise. Aesthetically it may be preferable to give the list of axioms 
all at once. This may be impractical, however, as some of the axioms 
often depend on definitions and theorems resulting from earlier 
axioms. Usually one does not construct an axiom system from scratch. 
It is common to assume at least a language, a logic, and some set 
theory. 

In order to point out a language convention used in this text, 
consider the following four sentences: 

1 P and Q are points. 
2 P and Q are two points. 
3 P and Q are two distinct points. 
4 P and Q are distinct points. 

The meanings of (1), (3), and (4) should be clear. Statements (3) and 
(4) say the same thing, assuming one can count to 2. Unlike (3) and 
(4), statement (1) allows for the two possibilities that either P and Q 
are distinct or else P= Q. Now, does (2) mean the same thing as (1) 
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or as (3)? Unfortunately, different mathematicians will give differ­
ent answers. What is worse, and totally inexcusable, is to use (2) for 
both (1) and (3). Without further ado, we declare that (2) and (3) mean 
the same thing. Statement (3) will be used in place of (2) only for 
emphasis. 

"There are three letters in the English alphabet" is a true state­
ment. If you want "three" to mean "exactly three" rather than "at 
least three," you must say so. We have already mentioned that "or" 
is always used in the inclusive sense in mathematics. Another modern 
mathematical convention is the use of "equals" only in the sense of 
"is exactly the same thing as." The old fashion use of "equal" for 
"equivalent (in some sense)" should be avoided. When we write "a= b" 
we mean that "a" and "b" are names for the same object. 

The logic and set theory that we shall assume as prerequisites 
are given in Chapter 1. 

Some concepts that are applicable in general to an axiom system 
are given next. We have already encountered some of these. They are 
listed below for easy reference but are best learned from seeing them 
used in context. 

An axiom system is consistent if there is no statement such that 
both the statement itself and its negation are theorems of the axiom 
system. One of the ways of showing that an axiom system is consistent 
is to assign meanings to the undefined terms of the axiom system in 
such a way that the axioms then become true statements. This may 
not be easy as true statements are hard to come by in this world. If 
the undefined terms of a given axiom system are assigned meanings 
from a second axiom system (e.g., Euclidean geometry or the real 
number system) such that the axioms of the first axiom system are 
theorems of the second axiom system, then the result is a model of 
the first axiom system. In this case we say that the first axiom system 
is relatively consistent with the second, as any inconsistency in the 
first axiom system would be reflected as an inconsistency in the second 
axiom system. Often relative consistency is all we can hope for, as 
Godel has shown that there is no internal proof of consistency for a 
system tpat involves infinite sets. See Exercise 4.12. 

In an axiom system, an axiom is independent ifit is not a theorem 
following from the other axioms. Whereas consistency or relative con­
sistency is an absolute requirement for any worthwhile axiom system, 
independence is not. For obvious pedagogical reasons, a simple look­
ing theorem that has a long and difficult proof is often taken as an 
axiom in an elementary text. 

Models of an axiom system are isomorphic if there is a one-to-one 
correspondence between their elements which preserves all relations. 
That is to say the models are abstractly the same, only the notation 
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is different. If every two models of an axiom system are isomorphic, 
then the axiom system is categorical. It must not be assumed that 
categoricalness is always desirable. Indeed, there is great economy 
in proving theorems in a noncategorical axiom system because the 
theorems are then true statements for every model of the axiom sys­
tem. As an example, once you have shown that the three axioms of a 
group are true statements for a set with a binary operation, then you 
immediately know literally thousands and thousands of true state­
ments since all the theorems of group theory hold without further 
proof. 

4.2 INCIDENCE PLANES 

If (9, 2', ~) is a relation such that [jJ and 2' are disjoint, then the 
relation is an incidence plane. If this doesn't look like a geometric 
axiom system, let's start again. We take "point" and "line" as unde­
fined terms. We have four axioms. Axiom A: The class of all points is 
a set 9; Axiom B: The class of all lines is a set 2'; Axiom C: 9 n 2' = 
0; Axiom D: ~ C 9 X 2'. Axiom C requires that a point and a line 
be different. For specific types of incidence planes (9, 2',~), further 
requirements are made on the graph .'7. Incidence planes have their 
own notation to express the fact that an ordered pair is in the graph. 
Since we are doing geometry, it ought to sound like geometry! (Is 
that backwards?) Thus, the following are equivalent for an incidence 
plane (9, 2', ~): 

1 (P, I) E~. 
2 (P, l) is a flag. 
3 Point P and line l are incident. 
4 Point P is on line l. 
5 Line I is on point P. 
6 Line I passes through point P. 
7 Line I is through point P. 

So, if (9, 2', ~) is an incidence plane, then 9 is the set of points, 2' 
is the set of lines, and ~ defines incidence between points and lines. 
We shall frequently use "off" for "not on." Further, if land m are lines 
such that there is no point incident with both lines or if 1= m, then we 
say that I is parallel to m or III m. Obviously, III m implies mill. 

For illustrative purposes only, consider (9, 2' ~) where 9= 
{A, B, C, D}, 2'= {k, I, m, n}, and ~= {(B, k), (C, l), (D, I)}. See Fig­
ure 4.1. This incidence plane has the peculiarity of having a point 
which is not on any line and lines which pass through no point. Also, 
all the lines are parallel. Passing from the ridiculous to the sublime, 
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we leave this example to consider an example from analytic geometry. 
If £= {{ (x, y) lx, y E R, ax+ by+ c=O}la, b, c E R, a2 + b2,~ O}, 

!}J= {(x, y) lx, y E R}, and g; is defined by set inclusion, meaning 
«x, y), l) E fF for l E £' iff (x, y) E l, then (JIJ, Sf, fF) is the familiar 
incidence plane called the Real Cartesian Incidence Plane. In this 
description, line {(x, y) lx, y E R, ax+ by+ c= O} is a set of points satis­
fying a nondegenerate real linear equation in x and y. The plane is 
named after Rene Descartes (1596-1650). The Real Cartesian Inci­
dence Plane is an example of the first of three types of incidence 
planes that we shall consider. 

Axiom System I An affine plane is an incidence plane such that 

AXIOM 1 If P and Q are two points, then there exists a unique 
line through P and Q. 

AXIOM 2 If P is any point off line l, then there exists a unique 
line through P that is parallel to l. 

AXIOM 3 There exist four points such that no three are on 
any line. 

Considering only incidence and with the usual interpretation 
of "point" and "line," the Euclidean plane is an affine plane. Thus 
the axiom system for affine planes is relatively consistent with 
Euclidean plane geometry. Any inconsistency that could be deduced 
from the axiom system for affine planes would give an inconsistency 
in the Euclidean plane. For this simple looking axiom system we can 
actually prove consistency by giving a finite model (9, Sf, fF), where 
9={A,B, C,D}, 2= {{A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}}, 
and fF is determined by set inclusion, i.e., P on l iff P in l. See Figure 
4.2. In this geometry there are exactly four points and exactly six 
lines! Is the line {A, C} perpendicular to the line {B,D}? This is a trick 
question. The word "perpendicular" is a technical word that has not 
been defined. At this point the question makes as much sense as to 
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FIGURE 4.2 

ask whether the point A is blue. Actually, since lines {A, C} and {B,D} 
have no point in common, the two lines are parallel by definition. If 
you thought the two lines were perpendicular, it is probably because 
you were misled by Figure 4.2. Beware: Figures help, but they may 
mislead! Since you may quickly check that this four point geometry 
is an affine plane, no inconsistency can be deduced from the axioms 
for an affine plane. 

Geometers have their own word, collineation, for an isomorphism 
between incidence planes. A collineation from incidence plane (.9\,21' 
,~) onto incidence plane (92, 2 2, ~2) consists ofa bijectionf: 9 1 ~ [/>2 

and a bijection g: 21 ~ 22 such that (P, l) E ~1 iff (f(P), g(l)) E ~2. 
Since there is obviously no one-to-one correspondence between all 
the points of the Euclidean plane considered as an affine plane and the 
points of the affine plane with just four points, we see that not all 
models of an affine plane are isomorphic. Therefore, the axiom system 
for affine planes is not categorical. 

If one line in an affine plane has exactly n points then so does 
every line and the total number of points in n2 • Determining the pos­
sible values for n has been an open problem for many years. 

Each of the axioms for an affine plane is independent of the 
other two. To show that Axiom 1 is independent, we need an incidence 
plane (9, 2, ~) such that Axiom 2 and Axiom 3 hold but Axiom 1 
fails. For such a model take 9 to be the set of points in Cartesian three­
space, 2 to be all planes perpendicular to an axis, and ~ given by the 
usual incidence of Cartesian three-space. Once you get over any prej­
udice you might have that a plane in one geometry cannot be a line 
in some other geometry, it is trivial to check that this model has the 
desired properties. 

Skipping Axiom 2 for the moment, Axiom 3 is seen to be inde­
pendent by considering (9, 2, ~) where 9 is an arbitrary set, 2= 
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{9}, and !Ji = PJ! X:£. Since there is exactly one line (which passes 
through every point), Axiom 1 must hold but Axiom 3 necessarily fails. 
The purpose of Axiom 3 is to omit trivial incidence planes. Note that 
Axiom 2 says if point P is off line 1 then something happens. Since 
there are no points off the only line in this geometry, Axiom 2 is never 
denied. We say that Axiom 2 holds vacuously. 

We now turn to the important Axiom 2: If point P is off line 1, 
then there exists a unique line through P that is parallel to 1. You 
have no doubt seen it before. We shall have much more to say about 
this postulate later. For the moment, we want to show that the axiom 
is independent in our axiom system for affine planes. We need an inci­
dence plane where there are at least four points of which no three are 
on one line and where every two points are on a unique line but such 
that Axiom 2 fails. The negation of Axiom 2 merely requires the 
existence of some particular point Po off some particular line 10 such 
that there is not a unique line passing through Po and parallel to Zo. 
So there must be either no line through Po that is parallel to 10 or there 
must be at least two lines through Po that are parallel to 10 • Let 9 1 = 
{A, B, C, D, E, F, G}':£1 = {{A, B. F}, {A, C, E}, {A, D, G}, {B, C, D}, 
{B, E, G}, {C, F, G}, {D, E, F}}, and g;.\ determined by point P in 9\ 
is on line Z in :£\ iff P is in 1. See Figure 4.3. It is quickly checked that 
Axiom 1 and Axiom 3 hold in incidence plane (91' :£1' ~\). In this 
seven point and seven line geometry, Axiom 2 fails because there are 
no parallel lines. Every two lines intersect in a unique point! We 
have now shown that the three axioms for affine planes are inde­
pendent. We also have a model of our second type of incidence plane, 
defined next. 

B 

A ~--------:::--... ...::::;..----____ C 
E 

FIGURE 4.3 
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Axiom System 2 A projective plane is an incidence plane such that 

AXIOM 1 If P and Q are two points, then there exists a unique 
line through P and Q. 

AXIOM 2' If 1 and m are two lines, then there exists a unique 
point on 1 and m. 

AXIOM 3 There exist four points such that no three are on 
any line. 

The existence of the finite projective plane (.9'\'2"1' gil) given 
above demonstrates that the axiom system for projective planes is 
consistent. There should be no question that Axiom 2' is independent. 
To show that this axiom system is not categorical, we give a model 
(.9'2,2"2' gi2) of a projective plane which is not isomorphic to a finite 
projective plane. Let 0 be any fixed point in Euclidean three-space. 
The elements of .9'2 are the Euclidean lines through O. The elements 
of 2"2 are the Euclidean planes through O. For P E fY2 and 1 E 2"2' 
define (P,l) E gi2 iff in Euclidean three-space P is in 1. Once you have 
suppressed any prejudice of what a point and a line should be, it is 
easily seen that (fY2' 2"2' gi2) is a projective plane. For, if P and Q 
are two points, then P and Q lie on a unique line, since in Euclidean 
three-space two lines through 0 determine a unique plane through O. 
Also, if 1 and m are two lines, then 1 and m pass through a unique 
point, since in Euclidean three-space two planes through 0 determine 
a unique line through O. Any difficulty you might have in comprehend­
ing this model is psychological (it's dumb to say a line is a point!) or 
semantical ("line" is used with two meanings, as elements of fY2 

and as elements of 2"2)' A common way around this is to use the ad­
jectives "old" and "new." Then a new point is an old line, and two new 
points lie on a unique new line since two old lines through 0 determine 
a unique old plane through O. Any geometry isomorphic to (fY2, 

2"2' gi2) is the real projective plane. 
The real projective plane (.9'2' 2"2' gi2) contains a copy of the 

incidence structure of the Euclidean plane. Consider the geometry 
determined by throwing away some fixed new line 1 and all the new 
points that were on 1. See Figure 4.4. Admittedly, the resulting 
geometry does not look like a Euclidean plane at first glance. Let E 
be any Euclidean plane parallel to 1 and off O. The subgeometry is 
isomorphic to E. There is an obvious one-to-one correspondence be­
tween the remaining new points and all the Euclidean points of E 
and a one-to-one correspondence between the remaining new lines 
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PointP 

and all the Euclidean lines in E. These correspondences are deter­
mined by set intersections as in Figure 4.4. 

It is a fact that every affine plane can be extended to some pro­
jective plane. Let any affine plane (g;,.2, g;) be given. We shall con­
struct a projective plane (g;3' .23 , g;3) that contains (g;, .2,~) as a 
sub geometry. For each n E.2 define P n = {lll E .2, til n}, and let 
l-x = {Pnln E .2}. Since parallelism is an equivalence relation on the 
set of lines in an affine plane (Exercise 4.1), Pn =P miff n II m. So l-x is 
the set of all parallel pencils P n of (g;, .2, g;), where P n consists of all 
the old lines parallel to n. Let 

and 

Thus, all the old points are new points, and all the old lines are new 
lines. The set of new points consists of all the old points and all the 
old parallel pencils. To the set of old lines we have added only one new 
line 1£ For each old line n, we have added one new point P n on n, and 
all the new points that are not old points have been put on the one new 
line loc' To understand this model requires intellectual powers stronger 
than any old prejudices about what a point and a line are; there is no 
reason that a set of parallel lines in one geometry can't be a point in 
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some other geometry. The verification of the fact that (93 , 2 3 , ~3) is 
actually a projective plane is left as Exercise 4.3. If (9, 2, ~) is a 
Euclidean plane, then (93 , 2 3 , ~3) is the real projective plane, i.e., 
isomorphic to (92 , 2 2 , ~2) above (Exercise 4.8). 

Axiom 2 for an affine plane requires that there be exactly one 
line that is parallel to line 1 and passes through point P when P is 
off 1. Axiom 2' for a projective plane requires that there be exactly zero 
lines that are parallel to line 1 and pass through point P when P is 
off 1. Axiom 2" below requires that there be two lines that are parallel 
to line 1 and pass through point P when P is off 1. Axioms 2, 2', and 2" 
are called parallel postulates. 

Axiom System 3 A hyperbolic plane is an incidence plane such that: 

AXIOM 1 If P and Q are two points, then there exists a unique 
line through P and Q. 

AXIOM 2" If P is any point off line 1, then there exist two lines 
through P that are parallel to 1. 

AXIOM 3' There exist four points such that no three are on 
any line; every line has a point on it. 

If a person were marooned for many many years on the proverbial 
uninhabited desert island, then it is conceivable that he might possib­
ly consider verifying that (9, 2,~) is a hyperbolic plane when9,2, 
and ~ are defined as follows. The ten digits are the points: 9= {O, 1, 
2, 3, 4, 5, 6, 7, 8, 9}. The set 2 of lines consists of the twenty-five 
numbers 10, 15, 16,20,23,24,36,39,45,47,59,67,78,80,89,128, 
137, 149, 257, 269, 340, 358, 468, 560, and 790. ~ is defined by say­
ing that point P is on line 1 iff P occurs as a digit of 1. This is an example 
of a finite hyperbolic plane. In general, an incidence plane (9, 2,~) 
is said to be finite if both 9 and J have a finite number of elements. 

If 9= {(x, y) Ix,y E R, x > O,y > O}, 2= {{(x,y)l(x,y) E 9, ax+ 
by+c= O} la, b, c E R, a2 + b2 ~ O} \ {ell, and ~ is defined by set in­
clusion, then (9, 2, ~) is the subgeometry of the Real Cartesian 
Incidence Plane obtained by restricting ourselves to the first quadrant. 
We shall call this the Quadrant Incidence Plane or Q1 (see Figure 4.5a). 
Replacing 9 by {(x, y) lx, y E R, Y > O} we have Q2' the Halfplane In­
cidence Plane (see Figure 4.5b); replacing 9 by {(x, y) lx, y E R, x> 0 
or y> O} we have Q3' the Missing-Quadrant Incidence Plane (see 
Figure 4.5c). 

You should quickly convince yourself that the Quadrant Inci-



INCIDENCE PLANES 43 

(oJ 

FIGURE 4.5 

dence Plane Q1 is a hyperbolic plane. See Figure 4.6. Using the points 
on the axes of the Real Cartesian Incidence Plane, even though these 
are not points in Q1 itself, it is seen that if P is a point in QI' l is a line 
in QI' but (P, l) is not a flag in QI' then there are actually an infinite 
number of lines through P that are parallel to l. Since Axiom 2" re­
quires only that there be two such lines, the axiom is certainly sat­
isfied. 

The Halfplane Incidence Plane Q2 is not a hyperbolic plane be­
cause in Q2 there exists point P off line l such that there is a unique 
line through P that is parallel to l. See Figure 4.7. However, Q2 is 
not an affine plane either since there exists point P off line l such that 
there are two lines through P that are parallel to l. In fact, if in Q2 

point P is off line l, then there is either exactly one or else an infinite 
number of lines passing through P that are parallel to l. 

The Missing-Quadrant Incidence Plane Qa is neither a hyper­
bolic plane nor an affine plane. See Figure 4.8. Of course, neither Q2 

nor Q:J is a projective plane as distinct parallel lines exist in each. To 
see that Qa is not isomorphic to Q2' we need to find some incidence 
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FIGURE 4.6 
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FIGURE 4.8 
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FIGURE 4.9 

property of one plane that does not hold for the other. In Q3 there exists 
a point P off a line [ such that there are exactly two lines through P 
that are parallel to l. See Figure 4.9. If there were a collineation from 
Q3 onto Q2' then P and l would have to be mapped, respectively, to 
point P' in Q2 and line [' in Q2 such that there would be exactly two 
lines in Q2 passing through P' that were parallel to ['. Since we have 
already noted that in Q2 there is either exactly one or an infinite num­
ber of lines that are parallel to a given line and pass through a point 
off the given line, it follows that there can be no collineation from Q3 

onto Q2' None ofthe incidence planes Qp Q2' or Q3 is isomorphic to the 
other. 

4.3 EXERCISES 

4.1 Show that parallelism is an equivalence relation on the set of 
lines of an affine plane but parallelism is not an equivalence relation 
on the set of lines of a hyperbolic plane. 

• 4.2 Show that Axioms 1,2', and 3 are independent in the axiom 
system for projective planes. 

• 4.3 Show that the incidence plane (:1P3 ' 2'3' ~3) constructed in 
the text from any affine plane (.9', 2',~) is actually a projective plane. 

• 4.4 True or False? 

(a) The set {l, 2,3, 4} has three elements. 
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(b) If P and Q are two points, then possibly P= Q. 

(c) 8/2=4. 

(d) "8/2"="4." 

(e) Today, "postulate" and "axiom" mean the same thing. 

(D A point may be a star, a rock, a flower, or a bird. 

(g) Any two models of a consistent axiom system are iso­
morphic. 

(h) Any worthwhile axiom system must be consistent. 

(i) Any worthwhile axiom system must be categorical. 

(j) If a statement is true for one model of an affine plane, then 
the statement is a theorem for any affine plane. 

4.5 Read "Modern Axiomatic Methods and the Foundations of 
Mathematics" by Jean Deudonne (pages 251-266) in Great Currents 
of Mathematical Thought Vol. II, Edited by F. LeLionnais (Dover, 
1971) . 

• 4.6 Give an example of a categorical axiom system . 

• 4.7 Give a model of an incidence plane where three points deter­
mine a line. 

• 4.8 Show that (g3' £"3' '~3) is isomorphic to (,9'2' £"2' §2) when 
(g3' £"3' §3) is derived, as in the text, from a Euclidean plane. 

4.9 Let l be a fixed line in any projective plane (g, £", §). Show that 
(g4' £"4' §4) is an affine plane where g4 = g \ {PIP on l}, £"4 =£" \ {l}, 
and§4=§\ {(P,l)IPonl}. 

4.10 Show that if (.9', £", §) is a projective plane, then (£", g, §') 
is a projective plane where (l, P) E §' iff (P, l) E §. 

4.11 Discussion questions: What is a point? What is a line? 

*4.12 Read Godet's Proof by Ernest Nagel and James R. Newman 
(New York University Press, 1958), or read "Goedel's Proof" in The 
World of Mathematics by James R. Newman (Simon and Schuster, 
1956). 

*4.13 Given any incidence plane (g, £", §), show that (g, £"', §') 
is isomorphic to (g, £", §) iff for no two lines in (g, £", §) is the set 
of points on one line equal to the set of points on the other where 
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2" = {{PI (P, I) E ff} II E 2'} 

and 

ff'={(P,l')!PE l',l' E 2"}. 

So, if different lines of an incidence plane have different sets of points 
on them, we may assume 2' C 2.1' without loss of generality. 

*4.14 Show that if an affine plane has a finite number of points, then 
there exists an integer n such that the number of points is n2, the num­
ber of lines is n(n + 1) , there are exactly n points on every line, and 
there are exactly n + 1 lines through every point. 

*4.15 Read "The Role of the Axiomatic Method" by R. L. Wilder in 
The American Mathematical Monthly Vol. 74 (1967), pp. 115-127. 

GRAFFITI 

A mathematical point is the most indivisible and unique thing 
which art can present. 

John Donne 

A line is not made up of points. 
Aristotle 

Why are you so sure parallel lines exist? 

Believe nothing, merely because you have been told it, or 
because it is traditional, or because you have imagined it. 

Gutama Buddha 



Part One 

ABSOLUTE GEOMETRY 
Our study of the foundations of geometry begins with an examination 
of the common ground between non-Euclidean geometry and Euclidean 
geometry. This common ground is called absolute geometry and is inde­
pendent of any assumption about parallel lines. In constructing this part 
of non-Euclidean geometry, we necessarily learn about the structure of 
Euclidean geometry as well. Throughout Part One we are most concerned 
with the actual development of an axiom system for the absolute plane. 
In building our structure, we are as much interested in the absence of 
certain propositions in the theory as the presence of others. We are 
never in the position of pretending we do not know something! Many 
models, including the Cartesian plane, are used to illustrate the growth 
of our axiom system. After selecting our five axioms for the absolute 
plane, we are forced to consider the theory of parallels. 



CHAPTER 5 

Models 

5.1 MODELS OF THE EUCLIDEAN PLANE 

The words "point" and "line" are usually undefined when studying 
the Euclidean plane in high school. Later every point is named in the 
usual fashion by a unique ordered pair of real numbers, called coordi­
nates, and every ordered pair of real numbers is the name of some 
point. See Figure 5.1. The lines are then shown to be exactly the sets 
of all points with coordinates (x, y) that satisfy an equation ax+ by+ 
c = 0 for real numbers a, b, c with not both a and b zero. This introduc­
tion of coordinates enables one to use algebraic methods to solve geo­
metric problems. 

Now, taking a different approach, we construct a geometry by 
defining a point to be an ordered pair of real numbers and every or­
dered pair of real numbers to be a point. Before, (2,3) was the name of 
a point; now, (2,3) is a point. Further, lines are defined to be exactly 
the sets of all points (x, y) such that x and y satisfy an equation ax + 
by+c=O for real numbers a, b, c with not both a and b zero. At this 
point we have the Real Cartesian Incidence Plane. Then, distance 
from (xl' y,) to (x2, Y2) is defined to be the real number [(x2-x,)2+ 
(Y2 - y,)2],/2. We'll forego actually going on to define angle and angle 
measure. The result of all this is the geometry called the Cartesian 
plane. There are no geometric axioms here; one can immediately start 
proving theorems based on the axioms and theorems of the real num­
bers. Saying there is no difference between the high school Euclidean 
plane and the Cartesian plane is almost correct. Indeed, the whole 



MODELS OF THE EUCLIDEAN PLANE 51 

y 

(-1, 2) • (2, 2) • 

• (-3,1) (2, 1). (4,1) • 

(- 3,0) (0,0) 
e-------------------t-----------------~~--~~x 

(-1,-1). • .....•......••••.•.... .•• (x, y) 

FIGURE 5.1 

idea is that the Cartesian plane is a model of the Euclidean plane! 
It is no exaggeration to state that the Cartesian plane is the most use­
ful model ever devised by man. 

The Cartesian plane is named after Rene Descartes (1596-
1650), the founder of modern philosophy. Descartes' La Geometrie 
appeared in 1637 as the third appendix of his Discours (A Discourse on 
the Methods of Correct Reasoning and Seeking Truth in the Sciences.} 
Algebra and geometry were directly combined for the first time in a 
published work. Actually Pierre de Fermat (1608-1665) had ac­
complished the same thing a c01-lple of years earlier, but Fermat did 
not publish the work. As Fermat and Descartes independently began 
the development of analytic geometry, so Newton and Leibniz inde­
pendently began the development of the calculus. Gottfried Wilhelm 
Leibniz (1646-1716) first published work on the calculus, but Isaac 
Newton (1647 -1727) did his work earlier. An intelligible account of 
Newton's methods of calculus finally appeared in 1704 as an appendix 
to his Opticks. The same book contained a second appendix on enumer­
ating curves of third degree. It is in this second appendix that the use 
of negative numbers, as well as positive numbers, for coordinates first 
appears in any systematic way. Negative numbers have been called 
absurd numbers, false numbers, and fictitious numbers at various 
times. An explicit presentation of the material usually found in the 
first dozen pages of any modern book on analytic geometry finally 
appeared in 1797 in the text Traite de calcul by Sylvestre Francois 
Lacroix (1765 -1843). Certainly the fundamental assumption that 
associates the geometry of Euclid and the algebra of the real numbers 
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is the one-to-one correspondence between the points on a Euclidean 
line and the set of real numbers. The real numbers were not placed 
on a logical foundation until 1872, two hundred and thirty-five years 
after Descartes' initial work. The Cartesian plane, as we know it, did 
not appear overnight, as do mushrooms. 

In the following chapters we are not going to pretend ignorance 
of the Cartesian plane! Nor are we going to be so ignorant as to pretend 
knowledge about things we do not know. If we were pressed to give 
some definition of the Euclidean plane now, we could say the Eu­
clidean plane is anything that is isomorphic to the Cartesian plane. 

Another model of the Euclidean plane is the Gauss plane. Here 
the set of points is the set of all complex numbers. For example, 1- i, 
2, i, and 2 + 3i are points. For the lines we take the sets of all points 
Z that satisfy an equation BZ + BZ + C = 0 where Band C are complex 
numbers with B oF- 0 and C real. If z, = x, + Y, i and Z2 = x2 + y 2i with 
x" x2 ' Y" Y2 real, then the distance from z, to Z2 is defined to be IZ2 - zJ 
The Gauss plane is a model of the Euclidean plane because the Gauss 
plane is isomorphic to the Cartesian plane. The mapping which takes 
(x, Y) to x + yi for all real x, y is a bijection from the set of points of the 
Cartesian plane onto the set of points of the Gauss plane. It can be 
checked that this mapping induces a collineation, taking the line in 
the Euclidean plane with equation ax + by + c = 0 to the line in the 
Gauss plane with equation BZ + BZ + C = 0 where B = a - bi and 
C = 2c. Since this mapping also preserves distance, it follows that 
the Cartesian plane and the Gauss plane are isomorphic. 

The Gauss plane, which is obviously named after Carl Friedrich 
Gauss (1777-1855), is sometimes called the Cauchy plane after 
Augustin Louis Cauchy (1787 -1857), who popularized complex num­
bers. The plane is also known as the Argand diagram as Jean Robert 
Argand (1768-1823) had previously noted in 1806 that the complex 
number x + yi can be represented by the point (x, y). This supposedly 
concrete representation of a complex number was very influential 
in the acceptance of the so-called imaginary numbers. By historical 
accident, this plane of complex numbers is not called the Wessel 
plane, although Caspar Wessel (1745-1815) had published the cor­
respondence between complex numbers and points of the Euclidean 
plane in 1798. 

The next model of the Euclidean plane is described quite in­
formally. This model, as well as all the remaining models in this 
section, is given for the sole purpose of stretching your imagination. 
Once looked at, these models may be safely forgotten. We start with 
a rectangular sheet of paper. Let's agree that the paper approximates 
a piece of the Euclidean plane. (That should be amusing, considering 
that the Euclidean plane was devised to be a system which described 
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reality.) On the paper we draw a line I through two points A and B 
which are six units apart (see Figure 5.2). We then stand the paper on 
a desk so that a longer side touches the desk in an arc of a parabola. 
The surface in space represented by our sheet of paper is a Euclidean 
plane provided we interpret "point," "line," "distance," and "angle 
measure" exactly as they were before we bent the paper. For example 
the distance from A to B in Figure 5.3 is still defined to be 6. 

For another model of the Euclidean plane, we start by observing 
that f(x) = e.r defines a bijection from the set of all reals onto the set 
of positive reals. Using this fact, we can map all the points of the 
Cartesian plane in a one-to-one fashion onto the points of the first 
quadrant of the Cartesian plane by the mapping a which sends (x, Y) 
to (e.r, ell). The points of this model are defined to be the ordered pairs 
of positive real numbers. The lines of this model are defined to be 
exactly those sets of points that are the images of the lines of the 
Cartesian plane under the mapping a. 

So lines in our model have equations x = & or y = xmeb coming from 
the lines of the Cartesian plane with equations x= a or y= mx + b, 
respectively. For example, the set of all points (x, y) in the model 

FIGURE 5.4 
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such that xy= 1 is a line in this model. See Figure 5.4. Of course, for 
the model to be a model of the Euclidean plane we copy the distance 
and angle measure as well. So the distance from (Xl' YI) to (x2, Y2) 
in our model is the real number [ln2 (x2/xl ) + In2 (y2/yl ) )1/2 as can be 
checked by observing that a sends (In X, In y) to (x, y). Without being 
told about the map a, it might take some time to recognize that this 
model is indeed isomorphic to the Cartesian plane. 

Finally, we indicate four more models of the Euclidean plane 
that might appeal to those who really like to get their hands on things. 
We shall need to know that g(x) =tanhx and hex) = (2/rr) arctan X 

each define bijections from the set of all reals onto the set of reals 
between -1 and +1. We let.9' be the set of points in the Cartesian plane 
that are in the interior of the square with equations Ix+ yl + Ix- yl = 2; 
the square has vertices (1, 1), (-1,1), (-1, -1), and (1, -1). (See 
Figure 5.5.) The mapping /3 which sends (x, y) to (tanh x, tanhy) is a 
bijection from the points of the Cartesian plane onto .9'. We define 2, 
the set of lines of our model, to be such that /3 determines a collinea­
tion. In other words, we copy lines as the images of the lines in the 
Cartesian plane under the mapping /3. If we also copy distance and 
angle measure from the Cartesian plane, then the result is a model 
of the Euclidean plane. (The equations for lines and the formulas for 
distance and angle measure are horrid.) Another model of the Eu­
clidean plane having.9' as its set of points can be oQtained by defining 
lines, distance, and angle measure such that /3' is an isomorphism 
where /3' sends (x, y) to ((2/rr) arctanx, (2/rr) arctany). 

Is the Euclidean plane rectangular? The preceding string of 
words with a question mark at the end is not a question; it doesn't 
make any sense. However, for those who like "round" models and know 
about polar coordinates, let .9' now be the points in the interior of the 
uni t circle in the Cartesian plane. The circle has equation x2 + y2 = 1. 
(See Figure 5.6.) The mapping 'Y sending the point in the Cartesian 
plane with polar coordinates (r,O) to the point with polar coordinates 
(tanh r, 0) is a bijection from the points of the Cartesian plane onto.9'. 

FIGURE 5.5 FIGURE 5.6 
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The same can be said for the mapping y' sending the point with polar 
coordinates (r, 8) to the point with polar coordinates «2/1T) arc­
tan r, 8). Then as for the previous two models, one can define lines, 
distance, and angle measure to obtain a model of the Euclidean plane 
such that y is an isomorphism from the Cartesian plane onto the 
model. Likewise, still another model is obtained by making the defini­
tions such that y' is an isomorphism. 

5.2 MODELS OF INCIDENCE PLANES 

There are several incidence planes (9, X, SF) that are referred to in 
later chapters. These are listed together for easy reference. In each 
case the elements of the set x of lines are subsets of the set g; of points. 
The graph SF is always assumed to be determined by set inclusion. So 
a line is a set of points, and point P is incident with line I iff point P 
is an element of line I. The list begins with our old friend the Cartesian 
plane, but here we are content to restrict ourselves to incidence. Later 
we shall add distances (plural!) to this incidence plane. 

Model I The Real Cartesian Incidence Plane Points are defined to 
be the ordered pairs of real numbers; g;= {(x, Y) lx, Y E R}. A line is 
the set of all points (x, Y) that satisfy some equation ax+by+c=O 
where a, b, c E R and not both a and b are zero. Conversely, every such 
set is a line. This model is certainly an affine plane. If XI #- x2 ' then the 
line thru (xl' YI) and (x2' Y2) is said to have slope (Y2-YI)/(X2 -XI). 
A line with equationy=mx+b has slope m. 

Model2 The Rational Cartesian Incidence Plane Points are defined 
to be the ordered pairs of rational numbers; 9= {(x, y) lx, y E Q}. A 
line is the set of all points (x, y) that satisfy some equation ax + by + 
c = 0 where a, b, cEQ and not both a and b are zero. Conversely, every 
such set is a line. If (xI' YI) and (x2, Y2) are two points, then the points 
determine the unique line having equation (Yz - YI)x + (XI - x2 )Y + 
(XZYI-Xly)=O. Also, as in Modell, lines with equations alx+bly+ 
c l = 0 and azx + bzY + Cz = 0 are parallel iff al b2 = azbl and otherwise 
intersect in point 

It is not improper to think of Model 2 as Model I with a lot of holes 
poked in it. 
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Model3 The Complex Cartesian Incidence Plane Points are defined 
to be the ordered pairs of complex numbers; f!lJ= {(x, y) lx, y E C}. A 
line is the set of all points (x, y) that satisfy some equation ax+ by+ 
c = 0 where a, b, c E C and not both a and b are zero. Conversely, every 
such set is a line. Model 3 should not be confused with the Gauss plane, 
which is isomorphic to Model 1. The same formulas that were given 
for Model 2 also apply here. One might even think of Modell as Model 
3 with a lot of holes poked in it. 

The first three models are all affine planes. Each of these planes 
is determined by some field. Actually every field determines an affine 
plane, formed by replacing the real numbers in Modell by elements 
from that field. The formulas given in Model 2 still apply for an arbi­
trary field. 

Model4 The Space Incidence Plane The points and lines are those 
of ordinary Euclidean three-space, where the lines are thought of 
as sets of points. If you like, think ofthe three-dimensional Cartesian 
coordinate system with the usual three axes. If you object by saying 
this is not a plane, then you are probably prejudiced by previous ex­
perience with the word plane. It can be shown that Model 4 is iso­
morphic to a subgeometry of Model. 3. Model 4 is really a very nice 
example of an incidence plane. In fact, according to our definitions, 
the Space Incidence Plane is a hyperbolic plane. 

Model5 The Quadrant Incidence Plane Points are the ordered pairs 
of positive real numbers; f!lJ = { (x, y) lx, y E R+}. A line is the nonempty 
set of all points (x, y) that satisfy some equation ax + by + c = 0 where 
a, b, c E R and not both a and b are zero. Conversely, every such set is 
a line. This model is compared with Model 6 and Model 7 at the end 
of Section 4.2. 

Model 6 The Halfplane Incidence Plane Points are the elements of 
f!lJ where f!lJ= {(x, y) Ix E Rand y E R+}. The lines are defined as in 
Model 5. This model is compared with Model 5 and Model 7 at the 
end of Section 4.2 

Model 7 The Missing-Quadrant Incidence Plane Points are the el­
ements of f!lJ where f!lJ= {(x, y) lx, y E R, and x E R+ or y E R+}. The 
lines are defined as in Model 5. This model is compared with Model 5 
and Model 6 at the end of Section 4.2 

Model8 The Missing-Strip Incidence Plane Points are the elements 
of.o/J where f!lJ= {(x, y) lx, y E R, and x ~ 1 or x > 2}. The lines are de­
fined as in Model 5. This model is like the previous three models in 
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that a set of points is removed from the Real Cartesian Incidence 
Plane. Model 8 contains all points (x, y) of Model I except those for 
which I < x ~ 2. 

Model 9 The Cubic Incidence Plane Points are the same as for Mod­
ell; 9= {(x,y) Ix,y E R}. A line is either the set of all points (x,y) that 
satisfy some equation y = (ax + b)3 with a, bE· R or else the set of all 
points (x, y) that satisfy some equation x = c with c E R. Conversely, 
every such set is a line. Some of the lines of this geometry are cubic 
curves in ModelL Nevertheless, they are lines here. Some lines are 
indicated in Figure 5.7. That two points determine a unique line is 
left for Exercise 5.7. 

ModellO The Moulton Incidence Plane Points are the same as for 
Modell; 9= {(x, y) lx, y E R}. A line is the set of all points (x, y) that 
satisfy one of the following three types of equations where a, b, mER: 

x=a, 

y=mx+b 

{mx+b 
y= li2mx+b 

with m ~ 0, 

if 
if 

x~O 

x>o with m> o. 

Conversely, every such set is a line. So those lines of Model I that have 

y =-2 

FIGURE 5.7 
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either no defined slope, negative slope, or zero slope are lines in this 
model. The points of such a line satisfy some equation of the first two 
types. The remaining lines of Model 10, given by some equation ofthe 
third type, might be called bent lines in ModelL However, these are 
lines for this model. (See Figure 5.8.) Note that the set of all points 
(x, Y) satisfying equation y= 3x+ 4 is not a line! This model, which is 
always encountered in the study of projective planes, was given in 
1902 by the American mathematician Forest R. Moulton. 

Do distinct points (xl' Yl ) and (x2 , Y2 ) lie on a unique line in the 
Moulton Incidence Plane? We may suppose Xl ~ X2 • If Xl =X2 or Y2 ~ Yl' 
then the unique line through the two points has the same equation as 
in ModelL If Xl and x2 are either both positive or both negative, then 
it should not be difficult to find the equation of the unique line through 
the two points. Suppose now that Xl < 0 < x2 and Yl < Y2• Then a line 
through the two points must have an equation of the third type and 
pass through (0, b) for some b. Borrowing the idea of slope from Model 
1, we see that it is necessary and sufficient to have m= (b- yl)/(O-Xl ) 
and 1/2m=(y2-b)/(x2 -O). From these equations it follows that m 

and b are uniquely determined. Thus, when Xl < 0 < x2 and Yl < Y2 ' 

the unique line through (xl' Yl ) and (X2 , Y2) has equation of the third 
type where m=2(y2 -yl )/(x2-2xI ) and b= (X2YI-2xIY2)/(X2-2xl). 
Hence two points always determine a unique line. A moment's reflec­
tion will show that, given point P and line l, there is a unique line 
parallel to l that passes through P. Therefore, the Moulton Incidence 
Plane is an affine plane. 

FIGURE 5.8 
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Model 11 The Poincare Incidence Plane Points are the elements of 
f!lJ where g; = { (x, y) lx, y E Rand X2 + y2 < I}. A line is either the set 
of all points (x, y) that satisfy some equation (x - a) 2 + (y - b)2 = 

a2 + b2 - 1 with a, b E R such that a2 + b2 > 1 or else the set of all 
points (x, y) that satisfy some equation ax+ by= 0 with a, bE R such 
that a2 + b2 =;f O. Conversely, every such set is a line. So the points are 
exactly those points we think of as being in the interior of the unit cir­
cle in the Cartesian plane. In the Cartesian plane, equation (x - a) 2 + 
(y - b)2 = a2 + b2 - 1 describes the circle with center (a, b) and radius 
r where 12 + r2 = a2 + b2 • Recalling that two circles are orthogonal in 
the Cartesian plane iff their tangents are perpendicular at a point of 
intersection, it follows (see Figure 5.9) that the circle described by 
the equation is orthogonal to the unit circle. In the Cartesian plane, 
equation ax + by= 0 describes a line through (0,0). Therefore, a line 
in the Poincare Incidence Plane is either the set of all points in the 
Cartesian plane that lie in the interior of the unit circle and on a circle 
orthogonal to the unit circle or else the set of all points in the Car­
tesian plane that lie in the interior of the unit circle and on a Cartesian 
line through (0,0). See Figure 5.10. The Poincare Incidence Plane 
is a very important example of a hyperbolic plane and is named after 
the great mathematician Henri Poincare (1854-1912). 

Model 12 The Poincare Halfplane Incidence Plane Points are the 
same as for Model 6; 9= (x, y)lx E R, y E R+I. However, here a line 
is either the set of all points (x,y) that satisfy some equation (x- a)2 + 
y2=r2 with a E Rand r E R+ or else the set of all points (x, y) that 
satisfy some equation x = a with a E R. Conversely, every such set is 
a line. See Figure 5.11. Model 12 is a hyperbolic plane . 

...... . 
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FIGURE 5.9 
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.J 

FIGURE 5.10 

Model 13 The Cayley-Klein Incidence Plane Points are the same 
as for Model 11; f!IJ = {(x, y) lx, y E R, X2 + y2 < 1}. However, here a line 
is the nonempty set of all points (x, y) that satisfy some equation 
ax+by+c=O with a, b, c E R but not both a and b zero. Conversely, 
every such set is a line. See Figure 5.12. It is very easy to see that this 
model is a hyperbolic plane. The model is named after both Arthur 
Cayley (1821-1895) and Felix Klein (1849-1929). We shall see a 
lot more of this particular model. 

Model 14 The Sphere Incidence Plane The points are the Euclidean 

............... 0 ............... . 
: e. :.. . . .. . :. 

FIGURE 5.11 
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FIGURE 5.12 

points on a Euclidean sphere, and the lines are the great circles 
thought of as sets of points. (A great circle is a circle on the sphere 
whose center is the center of the sphere.) This model is different from 
all others that have been considered in that here it may take three 
points to determine a line. There are an infinite number of great 
circles passing through both the north pole and the south pole. Such 
opposite points on a sphere are called antipodal points. 

Model 15 The Riemann Incidence Plane The set of points is the 
set of all pairs of antipodal points of the Euclidean unit sphere. Taking 
the sphere to be the unit sphere in Cartesian three-space, a point is 
then a pair {(x, y z), (-x, -y, -z)} where x2 + y2 + Z2= 1. A line is the 
set of all pairs of antipodal points which lie on a fixed great circle, 
and for each great circle such a set is a line. Although this model is 
related to Model 14, here two points do determine a unique line. This 
model, named after Bernard Riemann (1826-1866), is a real pro­
jective plane (Exercise 5.10). 

Henceforth M1, M2, ... , and M15 will stand for Modell, Mod­
el 2, ... , and Model 15, respectively. 

5.3 EXERCISES 

• 5.1 For the incidence plane determined by the field of two ele­
ments, the points are defined to be the ordered pairs of elements 
of the field. A line is the set of all points (x, y) that satisfy some 
equation ax+ by+ c= 0 where a, b, c are elements of the field but 
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not both a and bare O. Conversely, every such set is a line. Now, 
find all the points and all the lines. Have you seen this geometry 
before? 

• 5.2 Is the following incidence plane isomorphic to a familiar inci­
dence plane? The set of points is exactly the same as the set of points 
of M8, the Missing-Strip Incidence Plane. A line is the set of all points 
(x, y) that satisfy anyone of the following two types of equations 
where a, b, mER: 

x=a with a·~ lor a> 2; 

{mx+ b if x ~ 1 
y= mx+b-m if x> 2. 

Conversely, every such set is a line. 

5.3 Show that M13, the Cayley-Klein Incidence Plane, is a hyper­
bolic plane. 

• 5.4 In M10, the Moulton Incidence Plane, find the equations of the 
six lines determined by the four points (-1, -1), (1, -1), (2, 1), and 
(1,3). 

• 5.5 True or False? 

(a) In the Gauss plane the distance from 2 + 3i to 7 - 9i is 13. 

(b) In M1, the Real Cartesian Incidence Plane, the line with 
equation y=x intersects the set of points (x, y) such that 
X2+y2=1. 

(c) In M2, the Rational Cartesian Incidence Plane, the line 
with equation y=x intersects the set of points (x, y) such that 
x2+r=1. 

(d) In M1, the Real Cartesian Incidence Plane, the line with 
equation y= 5 intersects the set of points (x, y) such that X2 + 
r=l. 

(e) In M3, the Complex Cartesian Incidence Plane, the line 
with equation y= 5 intersects the set of points (x, y) such that 
x2+r=1. 

(f) In M1, the line with equation 2x - 8y + 3 = 0 has slope 4. 

(g) In M8, the Missing-Strip Incidence Plane, the lines with 
equation y = x and y = 3x - 4 are parallel. 
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(h) MI0, the Moulton Incidence Plane, is an affine plane. 

(i) In MI0, the line through (-1, -1) and (1, 1) contains (0,0). 

(j) In MI0, the line through (-1,1) and (1, -1) contains (0,0). 

5.6 Read "The Heroic Age in Geometry," which is Chapter 24 of 
Carl B. Boyer's excellent book A History of Mathematics (Wiley, 
1968). 

• 5.7 Show that M9 is an affine plane. 

• 5.8 Why is M2 not isomorphic to any of the other fourteen models 
in Section 5.2? 

5.9 Check that M2 and M3 are affine planes. 

• 5.10 Show that M15 is a projective plane. 

5.11 Show that Mll and M12 are hyperbolic planes. 

5.12 For information on Dedekind, Poincare, and Cantor read the 
last three chapters ofE. T. Bell's classic Men of Mathematics. 

5.13 In M8 find two lines II and l2 and a point P off each such that 
through P there are exactly two lines parallel to both II and l2. 

5.14 For each of M5 and Mll, find two lines II and l2 and a point P 
off each such that through P there is exactly one line parallel to both 
II and l2· 

5.15 Show that M4 is not isomorphic to either M5 or MIL 

5.16 In M8 find two lines II and l2 and a point P off each such that 
through P there are exactly three lines parallel to both 11 and l2. 

5.17 For each of M5 and Mll, find two lines 11 and 12 and a point P 
off each such that through P there are exactly two lines parallel to 
both 11 and l2. 

*. 5.18 Find a model isomorphic to Ml such that the set of points is 
the set of real numbers. 

*5.19 Read "A Simple Non-Desarguesian Plane Geometry" by F. R. 
Moulton in Transactions of the American Mathematical Society 
Vol. 3 (1902), pp. 192-195. 

*5.20 Show that Ml and M9 are isomorphic. Show that Mll, M12, 
and M13 are isomorphic. 

*5.21 Show that all the isomorphisms between any two of the fifteen 
models are given by the previous exercise. 
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The truth is that other systems of geometry are possible, yet 
after all, these other systems are not spaces but other methods of 
space measurements. There is one space only, though we may 
conceive of many different manifolds, which are contrivances or 
ideal constructions invented for the purpose of determining space. 

Paul Carus 

Think of the image of the world in a convex mirror . ... A 
well-made convex mirror of moderate aperture represents the objects 
in front of it as apparently solid and in fixed positions behind its 
surface. But the images of the distant horizon and of the sun in 
the sky lie behind the mirror at a limited distance, equal to its 
focal length. Between these and the surface of the mirror are found 
the images of all the other objects before it, but the images are 
diminished and flattened in proportion to the distance of their 
objects from the mirror . ... Yet every straight line or plane in the 
outer world is represented by a straight line or plane in the image. 
The image of a man measuring with a rule a straight line from the 
mirror, would contract more and more the farther he went, but 
with his shrunken rule the man in the image would count out 
exactly the same number of centimeters as the real man. And, in 
general, all geometrical measurements of lines and angles made 
with regularly varying images of real instruments would yield 
exactly the same results as in the outer world, all lines of sight in 
the mirror would be represented by straight lines of sight in the 
mirror. In short, I do not see how men in the mirror are to discover 
that their bodies are not rigid solids and their experiences good 
examples of the correctness of Euclidean axioms. But if they could 
look out upon our world as we look into theirs without overstepping 
the boundary, they must declare it to be a picture in a spherical 
mirror, and would speak of us just as we speak of them; and if two 
inhabitants of the different worlds could communicate with one 
another, neither, as far as I can see, would be able to convince the 
other that he had the true, the other the distorted, relation. Indeed 
I cannot see that such a question would have any meaning at all, 
so long as mechanical considerations are not mixed up with it. 

Helmholtz 



CHAPTER 6 

Incidence Axiom and Ruler 
Postulate 

6.1 OUR OBJECTIVES 

Our goal in this text is to learn something about the foundations of 
Euclidean geometry. We shall accomplish this by studying non­
Euclidean geometry! Although this may strike you as strange at first, 
there are two good reasons for this approach. The principal reason is 
that you know too much about Euclidean geometry. It really is more 
difficult to study something that is very familiar because it is hard 
to keep in mind the distinction between the mathematical system 
that has been developed at any given time and what you feel has to 
be true. Of course, the second reason for this approach is to learn some­
thing about non-Euclidean geometry itself. The celebrated man-in­
the-street has heard about non-Euclidean geometry, and every stu­
dent of mathematics should know something about the subject. 

Our aim is to develop that geometry that is very like the Euclidean 
plane except that the usual parallel postulate fails. The axioms we add 
to our system will be motivated by what we think the Euclidean plane 
should be but restricting ourselves to avoiding a parallel postulate for 
as long as is reasonably possible. 

It is reasonable to ask why we shall be limiting ourselves to 
consideration of planes. Why not study systems motivated by our idea 
of Euclidean three-space? It turns out not to make much difference. 
The deep problems that arise involve consideration of only one plane 
at a time anyway. So to make matters easier we consider only planes 
in the beginning. Later, the extension from a plane to three-space is 
surprisingly easy. 
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Before starting the development of the axiom systems that are 
the topic of this book, we emphasize that it is the formation of a sys­
tem that should have most of our attention in the beginning. As the 
system grows, our attention will be diverted more and more to the 
theory itself. 

Excluding exercises, the theory consists of those paragraphs 
that are headed Undefined terms, Axiom, DEFINITION, Theorem, 
Corollary, or Proof. Everything else should be considered discussion. 
In the discussion we talk about the theory. Your life will be much hap­
pier if you keep in mind the distinction between the theory itself and 
the discussion about the theory. To aid you in doing this, the end of a 
proof is marked •. The exercises add to the theory and to the dis­
cussion of the theory. 

Italics in the discussion are used either for emphasis or to call 
attention to the fact that we are using words in an informal way. 
Definitions that occur in the theory are always in bold-face italic. 

6.2 AXIOM 1: THE INCIDENCE AXIOM 

We announce the setting for our axiom system by declaring our pre­
liminary assumptions to be language, logic, set theory, and the real 
n~mbers. 

The theory begins: 

Undefined terms: 9,2', d, m. 

Axiom 1 Incidence Axiom 

a 9 and 2' are sets; an element of 2' is a subset of 9. 
b If P and Q are distinct elements of 9, then there is a unique 
element of 2' that contains both P and Q. 
c There exist three elements of 9 not all in any element of 2'. 

We are going to call the elements of 9 points and the elements 
of 2' lines. By (a) of the Incidence Axiom, we are taking the point of 
view that a line is a set of points. Thus, we automatically have an 
incidence relation for points and lines given by set membership. Be­
cause of (b), the Incidence Axiom might be called the Straightedge 
Axiom. We need (c) to get our plane off the ground, as without this 
there might be no points or lines at all or there might be just exactly 
one line. 
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DEFINITION 6.1 An element of :!J' is called a point; an element 
of 2 is called a line. If point P is in line I, then we say that P is on I, 
I is on P, I passes through P, or that P and I are incident. Off means not 
on. If P is a point in each of two or more sets, then the sets intersect 
at P. We say that line I is parallel to line m and write III m if either I 
and m do not intersect or I = m. A set S of points is collinear if S is a 
subset of a line. Two or more sets of points are collinear if their union 
is collinear. If two or more lines intersect at one point, then the lines 
are said to be concurrent. "Two points determine a line" means (b) of 
the Incidence Axiom. The unique line determined by distinct points 

~ 

P and Q is PQ. 

~ 

It is a good habit to read the symbol "PQ," just defined, as "line 
P Q" since we are reserving the symbol "PQ" for something else. We 
are ready to prove our first theorem. 

~ ~ .... 
Theorem 6.2 If Rand S are distinct points on PQ, then RS = PQ. In 

~ ~ 

particular, QP=PQ. 

Proof Corollary of (b) in the Incidence Axiom. • 

Theorem 6.3 If I is a line, then III I. If I and m are lines, then III m 
implies mill. 

Proof The statements follow immediately from the definition of 
parallel lines. • 

Note that parallelism is a reflexive, symmetric relation on 2. 
We do not know that parallelism is an equivalence relation on the 
lines as we have no way of proving that parallelism is transitive. 

Theorem 6.4 Two lines intersect in at most one point. Two non­
parallel lines intersect in exactly one point. There exist three lines 
not all on one point. 

Proof Two distinct lines cannot intersect in two distinct points by 
Theorem 6.2. If two lines are not parallel, then their intersection is 
not empty and, hence, must contain exactly one point. Requirements 
(b) and (c) of the Incidence Axiom imply the existence of three noncon­
current lines. • 

Our first three theorems are necessarily simple and deal only 
with incidence. This must be so as we have only one axiom and that 
deals solely with incidence. We cannot infer the existence of non­
parallel lines from Theorem 6.4. That theorem just says that if there 
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are two nonparallel lines then they intersect in a unique point. Even 
though a parallel axiom would deal only with incidence, we inten­
tionally do not state such an axiom. Recall our aim stated in Sec­
tion 6.1. 

At any given time our axiom system is called ~. In the discus­
sion "a model of ~" means any interpretation of the axiom system as 
we have developed it up to that time. Thus the meaning of "~" and 
"a model of~" changes as we progress. This not unlike your own name 
which may stay the same even though you yourself change as time 
passes. 

6.3 AXIOM 2: THE RULER POSTULATE 

Letting 9= {A, B, C} and 2'= {{A, B}, {A, C}, {B, C}, 0}, we have an 
uninteresting model of~. We want a line to have some points on it­
lots of them! Any respectable line ought to suggest Figure 6.1, where 
there is a one-to-one correspondence between the points on the line 
and the real numbers. So for every line I there should be a bijection 
from I onto R which assigns a real number to every point on I. If point 
P is associated with real number p and point Q is associated with 
real number q, then the distance from P to Q should be Iq- pI. Loosely 
speaking, a line is something like the edge of a long ruler! But what is 
distance? We don't have a distance yet! This is where the undefined 
term d enters the picture; d will give us distance. Our second axiom 
declares d to be a mapping that assigns to each ordered pair (P, Q) of 
points some real number PQ. Further, the mapping d determines one­
to-one correspondences between the points on any particular line and 
the real numbers. The axiom is an attempt to make precise the idea 
conveyed by Figure 6.1. 

Axiom 2 Ruler Postulate d:9 X 9 --'? R, d: (P, Q) ~ PQ is 
a mapping such that for each line I there exists a bijection 
f:I--'?R,f:P~f(P) where 

PQ= If(Q) - f(P) I 

for all points P and Q on I. 

DEFINITION 6.5 Mapping d is the distance function, and PQ is 
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FIGURE 6.1 

the distance from point P to point Q. If for line l, bijection f: l- R is 
such that PQ = If( Q) - f(P) I for all points P and Q on l, then f is a 
coordinate system for land f(P) is a coordinate for P with respect 
to land f 

You should spend some time thinking about what the Ruler 
Postulate says and what it does not say. Certainly the distance from 
P to Q ought to be a positive real number unless P= Q. Also, the 
distance from P to Q ought to be equal to the distance from Q to P. 

Theorem 6.6 If P and Q are points, then 

(DJ PQ"iE;. O. 

(D2 ) PQ=O iff P=Q. 

(D3) PQ=QP. 

Proof Exercise 6.1. • 

Another property often associated with distance is the famous 
triangle inequality for points P, Q, and R: 

This is one of the things that the Ruler Postulate does not say. Re­
read the Ruler Postulate. Nothing prevents us from thinking of a mod­
el of I where distance is measured along some lines in inches while 
distance is measured along all other lines in feet. (Take k = 12 in 
Exercise 6.5.) With this in mind, it is not surprising that the triangle 
inequality is false for some models of I. Subsequent axioms will have 
to make demands on d so that d behaves nicely. 

The Ruler Postulate requires that every line have a coordinate 
system determined by the distance function d. A coordinate system 
for a given line is not unique, however. Our next theorem says that 
we can slide the ruler along the line or we can turn the ruler around. 
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Theorem 6.7 If f is a coordinate system for line I, then g and hare 
coordinate systems for line I when for all points P on l, g(P) = f(P) + a 
and h(P) = -f(P) where a is any fixed real number. 

Proof Clearly g and h are bijections from I into R since f is. Al­
so, Ig(Q) - g(P) 1= If(Q) - f(P) + (a - a) 1= If(Q) - f(P) I =PQ and 
Ih(Q) -h(P) I = 1-(f(Q) -f(P)) I=PQ .• 

Theorem 6.8 Ruler Placement Theorem Let P and Q be two points 
on line l, then l has a coordinate system f such that f(P) = 0 and 
f(Q) > O. 

Proof By the Ruler Postulate line l has some coordinate system g. 
So there exist real numbers a and b such that g(P) = a, g (Q) = b, and 
a ~ b. By the previous theorem, h is also a coordinate system for l 
where heX) =g(X) -a for every point X on l. So h(P) =0 and h(Q) = 
b- a. If b > a, let f= h; if a > b, let f= -h. In either case,fis a coordi­
nate system for l, f(P) = 0, and f(Q) = Ib - al > o. • 

Although our preconceived concepts motivate us in formulating 
the axioms, we know nothing more about points, lines, and distance 
than what the axioms and theorems tell us. The undefined term m 
will not surface until Chapter 14. 

6.4 EXERCISES 

Henceforth the introductory phrases "Prove" or "For any model of I 
prove" are to be understood where they are lacking. 

6.1 Theorem 6.6. 

• 6.2 For each line in the Cartesian plane, find a coordinate system 
for that line. 

• 6.3 The Ruler Postulate is independent of the Incidence Axiom. 

6.4 If k > 0 and d 2 : g; X g; ~ R is defined by d 2 (P, Q) = kPQ, then d 2 

also satisfies the Ruler Postulate. 

6.5 Let I be a fixed line and assume k > o. If da: g; x g; ~ R is defined 
by da (P, Q) = kPQ when P and Q are on I and da (P, Q) = PQ other­
wise, then da satisfies the Ruler Postulate. 

• 6.6 The triangle inequality is not valid for every model of ~. 
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• 6.7 True or False? 

(a) PQ is a number. 

(b) If lines I and m intersect, then they intersect in a unique 
point. 

(c) Two intersecting lines determine a point. 

(d) A line is parallel to itself. 

(e) A line is the shortest distance between two points. 

(f) There are an infinite number of lines. 

(g) Every line has three points. In fact, every line has an in­
finite number of points. 

(h) Parallelism is transitive for each model of!'. 

(i) Parallelism is an equivalence relation for each model of!.. 

(j) Every real number is a coordinate for point P. 

6.8 There does not exist a d such that (M2, d) is a model of!., where 
M2 is the Rational Cartesian Incidence Plane. 

6.9 Which of the models in Section 5.2 satisfy the Incidence Axiom? 

6.10 If S is any nonempty set and d4 :S X S - R is defined by 
d 4 (P, Q) = 0 when P=Q and d4 (P, Q) = 1 when P ¥- Q, then d 4 satis­
fies the properties Dp D2 , D3 , and D4• 

6.11 The Ruler Postulate does not follow from the Incidence Axiom 
and the existence of a mapping d:9 X 9- R satisfying Dl through D4 • 

6.12 Let S be any nonempty set. Suppose k > 0 and ds:S X S - R 

satisfies Dl through D4 . If ds:S X S - R is defined by ds(P, Q) = 0 when 
P=Q and ds(P, Q)=k+ds(P, Q) when P¥-Q, then ds satisfies Dl 
through D4 • 

6.13 Mapping {is a bijection from the set of all reals between 0 and 
positi ve number a onto the set of all reals where {(x) = In (xl (a - x) ). 

~ *. 6.14 Although "PQ E PQ" is usually absurd, find a model of!. 
where it is not. *. 6.15 For which of the models in Section 5.2 does there exist a d 
satisfying the Ruler Postulate? 

*6.16 If {is a coordinate system for a line, find all coordinate sys­
tems for that line. 



72 INCIDENCE AXIOM AND RULER POSTULATE 

GRAFFITI 

Every teacher certainly should know something of 
non-euclidean geometry. Thus, it forms one of the few parts of 
mathematics which, at least in scattered catch-words, is talked 
about in wide circles, so that any teacher may be asked about it at 
any moment . ... Imagine a teacher of physics who is unable to 
say anything about Rontgen rays, or about radium. A teacher of 
mathematics who could give no answer to questions about non­
euclidean geometry would not make a better impression. 

On the other hand, I should like to advise emphatically 
against bringing non-euclidean into regular school instruction 
(i.e., beyond occasional suggestions, upon inquiry by interested 
pupils), as enthusiasts are always recommending. Let us be 
satisfied if the preceding advice is followed and if the pupils learn 
to really understand euclidean geometry. After all, it is in order for 
the teacher to know a little more than the average pupil. 

The most suggestive and notable achievement of the last 
century is the discovery of Non-Euclidean geometry. 

Klein 

Hilbert 

"Why," said the Dodo, "the best way to explain it is to do it." 
Lewis Carroll 

Astronomy was thus the cradle of the natural sciences and the 
starting point of geometrical theories. The stars themselves gave 
rise to the concept of a "point"; triangles, quadrangles and other 
geometrical figures appeared in the constellations; the circle was 
realized by the disc of the sun and the moon. Thus in an essentially 
intuitive fashion the elements of geometrical thinking came into 
existence. 

Lanczos 



CHAPTER 7 

Betweenness 

7.1 ORDERING THE POINTS ON A LINE 

Looking at Figure 7.1 below, we say that the circle is to the left of 
the other curve. However, this describes our position with respect to 
the figure rather than the position of the circle with respect to the 
other curve. Although we shall not hestitate to use such words as 
left, right, above, and below in the discussion, we realize that such 
words have no place in our theory at this time. These words simply 
haven't been defined, for the very good reason that it is impossible 
to give any reasonable definitions. 

Is point B between points A and C for the curves in Figure 7.1? 
Of course, any answer would have to depend on the meaning of the 
word between. Certainly, given three points on a line, one point ought 
to be between the other two. We shall give a definition so that this is 
the case. Only in grade school is it almost as foolish to define obvious 

FIGURE 7.1 
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terms as it is to prove obvious theorems. Even Euclid overlooked the 
necessity of stating any axioms that would give him betweenness; he 
tacitly assumed the necessary properties as they were needed. It took 
a long time in history before it was realized that between is a tech­
nical word and that the betweenness properties for points must either 
follow from other axioms or else be explicitly stated as axioms. The 
initial work in developing axioms for betweenness was done by 
Moritz Pasch (1843-1930). 

Point B ought to be between points A and C if for some long 
~ 

ruler (coordinate system) along AC, the coordinate of B is between the 
coordinates of A and C. Note the two distinct uses of the word between 
in the last sentence. We know that real number b is between real num­
bers a and c iff either a < b < cor c < b < a. In the theorems below, we 
shall be able to translate this known 'type of betweenness (for real 
numbers) into the new type of betweenness (for points). We shall de­
fine between in terms of distance, being motivated by Figure 7.2. The 
powerful Ruler Postulate will give us the desired results. 

DEFINITION 7.1 We say point B is between points A and C and 
write A-B-C if (1) A, B, C are three distinct points, (2) A, B, Care 
collinear, and (3) AB+BC=AC. 

One of the conventions of mathematics is that any statement 
labeled definition is always assumed to be an if-and-only-if-statement 
even when not explicitly expressed as such. For example, the "if" in 
Definition 7.1 does carry the weight of "iff." So, if A - B - C, then state­
ments (1), (2), and (3) in the definition must hold. 

Theorem 7.2 If A-B-C, then C-B-A. 

Proof The hypothesis A-B-C means that A, B, and C are three 
distinct collinear points and AB + BC = AC. Hence, for the conclusion, 
we have only to observe that CB+BA=BC+AB=AB+BC=AC= 
CA. So C -B -A by definition. • 

Is the method of proof in the last theorem obvious? Another proof 
might be: A and C are symmetric in Definition 7.1 because PQ=QP 
for any points P and Q and x + y = Y + x for any real numbers x and y. 
In any case, we had to use Definition 7.1. This was the only recourse 
as all we knew about between was what Definition 7.1 told us. Now 
we know two things, the definition and one theorem. 

FIGURE 7.2 

A 
• 

B 

• 
c 
• 
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Theorem 7.3 Suppose a line has coordinate system ( and contains 
points A, B, and C. If feB) is between {(A) and {(C), then A-B-C. 

Proof If {(C) < ((B) < f(A), then AC= I{(C) - ((A) I =f(A) - fCC) = 
rCA) - fCB) + ((B) - (CC) = I{(A) - ((B) I + I{CB) - f(C) I =AB + BC. If 
((A) < f(B) < {(C), then AC=AB + BC by interchanging "A" and "C" 
in the previous sentence. Hence, if ((B) is between (CA) and {( C), then 
AB + BC = AC. A, B, C are collinear by hypothesis. A, B, C are distinct 
since fis a one-to-one mapping and f(A), ((B), (CC) are distinct .• 

Theorem 7.4 If A-B-C, then neither A-C-B nor C-A-B. 

Proof Suppose A-B-C andA-C-B. From AC=AB +BC andAB= 
AC+CB, we have AB=AC+CB=(AB+BC)+CB=AB+2BC. So 
BC = 0 and B = C, contradicting A -B -C. 

Suppose A-B-C and C-A-B. From AC=AB+BC and CB= 
CA + AB, we have BC = CB = CA + AB = (AB + BC) + AB = BC + 
2AB. So AB=O and A=B, contradicting A-B-C .• 

Theorem 7.5 If A-B-C, then feB) is between f(A) and (CC) for 
every coordinate system f of the line containing A, B, C. 

Proof Let (be any coordinate system of the line containing the three 
points A, B, C. Exactly one of the three numbers rCA), ((E), (CC) is 
between the other two. If fCC) is between the other two numbers, then 
A-C-B; if {(A) is between the other two numbers, then C-A-B. 
However, since A-C-B and C-A-B are each inconsistent with the 
hypothesis A-B-C (Theorem 7.4), we must have feB) between f(A) 
andf(C). • 

By the middle of the nineteenth century, analysts were facing 
the problem of giving a precise answer to the question "What is a 
real number?" Solutions to this problem given in 1872 by Cantor and 
Dedekind were motivated by the idea that there is an order preserv­
ing, one-to-one correspondence between the points on a line and the 
real numbers. Here, line is to be understood as the intuitive concept 
of a Euclidean line. In particular, there should be a distinct real 
number for each distinct point on the line. That the correspondence 
be order preserving requires that betweenness for one system cor­
responds to betweenness for the other. After having served as a moti­
vation for the definition, the geometry is then entirely excluded from 
the formal definition of the real numbers. (For example, see the defi­
nition of a Dedekind cut in Section 3.2). With the definition of the 
real numbers and their natural order in hand, one then turns around 
and defines a Cartesian line so that there is an order-preserving, 
one-to-one correspondence between the points of the line and the real 
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numbers. We define a Euclidean line to be isomorphic to a Cartesian 
line. Thus, Descartes' arithmetization of Euclidean geometry could 
not be completed until 1872. 

That one intuitive idea can motivate the formal definition of a 
second which, in turn, is used to define the first is not uncommon in 
mathematics. (You probably defined area in calculus by the definite 
integral, whose definition was motivated by the idea of area in the 
first place.) The statement that there is an order-preserving, one-to­
one correspondence between the points on a Euclidean line and the 
real numbers is known as the Cantor-Dedekind Axiom. Of course, 
for the Cantor - Dedekind Axiom to make sense, one has to know about 
the real numbers in the first place or else know exactly what a Eu­
clidean line is. In the axiomatic development of our geometry, we 
have assumed knowledge of the field of real numbers. With the 
combination of the Ruler Postulate and our definition of betweenness 
for points, we can prove the Cantor - Dedekind Axiom. 

Theorem 7.6 Cantor-Dedekind Axiom There is an order-pre­
serving, one-to-one correspondence between the set of points on a line 
and the set of real numbers. 

Proof Let l be a line with coordinate system f Since {is a bijection 
from l onto the reals, {defines a one-to-one correspondence. LetA, B, C 
be points on l. Then B is between A and C iff {(B) is between {(A) 
and {(C), (Theorems 7.3 and 7.5). Thus {is order preserving. • 

So a line in our geometry is isomorphic to a Euclidean line. The 
remaining theorems in this section are a consequence of that fact. 
However, it is important to note that just because every line in our 
plane is isomorphic to a Euclidean line, there is absolutely no justi­
fication in jumping to the conclusion that our plane is necessarily a 
Euclidean plane. 

Theorem 7.7 For any three points on a line, exactly one is between 
~ 

the other two. If point P is on AB, then exactly one of the following 
holds: P-A-B, P=A, A-P-B, P=B, or A-B-P. 

Proof Exercise 7.1. • 

Theorem 7.8 If A and C are two points, then there exist points J 
and D such that A -B -C and A -C -D. 

~ 

Proof By the Ruler Placement Theorem (Theorem 6.8), AC has a 
coordinate system (such that (CA) = 0 and {( C) = c > o. By the Ruler 
Postulate, there exist points Band D such that (CB) = c/2 and {(D) = 
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2c. Since 0 < c/2 < c and 0 < c < 2c, we have A-B-C and A-C-D 
(Theorem 7.3). • 

Theorem 7.9 If A-B-C and A-B-D, then C=D, B-C-D, or 
B-D-C. 

Proof A, B, C are distinct and collinear; A, B, D are distinct and 
~ 

collinear. Hence A, B, C, D are on AB. By Ruler Placement Theorem, 
~ 

AB has a coordinate system f such that f(A) = 0 and f(B) > O. Since 
A-B-C and A-B-D, we havef(A) < feB) < f(C) andf(A) < feB) < 
fCD). So either fCC) = fCD), feB) < f( C) < f(D), or fCB) < fCD) < 
f( C). The conclusion follows. • 

DEFINITION 7.10 A-B-C-D iff A-B-C, A-B-D, A-C-D, and 
B-C-a . 

Theorem 7.11 If A-B-C and B-C-D, then A-B-C-D. 

Proof Exercise 7.2. • 

Theorem 7.12 Any four collinear points can be named A, B, C, D 
such that A-B-C-D. 

Proof Suppose four points on line 1 have coordinates w, x, y, z with 
respect to coordinate system f for I where w < x < Y < z. Since f is a 
bijection, the original four points are A, B, C, D where f(A) = w, 
feB) =x, f(C) = y, and f(D) =z. Since w < x < y, x <y < z, and fis or­
der preserving, A-B-C and B-C-D. So A-B-C-D .• 

7.2 TAXICAB GEOMETRY 

Let's go back for a closer look at the definition of "point B is between 
points A and C." If A=B, then AB+BC=O+AC=AC. Since we 
don't really want "A is between A and C," it is reasonable to require 
that A, B, C be distinct for A -B -C. The idea behind the definition was 
using distance in the requirement 

(:,,) AC=AB+BC. 

But why did we also require that A, B, C be collinear? 
For discussion only, we make the following definition: pointB is 
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star-between points A and C iff A, B, C are three distinct points such 
that AC = AB + BC. Also, for convenience of notation, kBC iff point 
B is star-between points A and C. Clearly A - B - C implies kR:'C. 
Does A,H:,C imply A-B -C? If the answer were "Yes," then we would 
have done nothing terribly wrong. It's just that there would be a re­
dundancy in the definition of between. The geometry that we are about 
to describe will show that the answer is "No." 

In the Real Cartesian Incidence Plane Ml, we shall assume be­
low that P= (xl' YI ) and Q= (x2 ' Y2 ). We all know that Ml satisfies 
the Ruler Postulate where 

However, Euclidean distance function d is not the only distance func­
tion that satisfies the Ruler Postulate. Consider t: g; X g; ~ R de­
fined by 

Ml together with t is the Taxicab Geometry. Taxicab Geometry has 
the practical application of being the real geometry involved in getting 
from point P to point Q in a city where the streets are parallel, the 
avenues are parallel, and the streets are perpendicular to the avenues. 
See Figure 7.4. 

If XI = x2 or YI = Y2 (P and Q are on the same street or on the same 
avenue), then t(P, Q) = d(P, Q); otherwise, t(P, Q) "" d(P, Q). See Fig­
ure 7.5. Assume XI "" X 2 and YI "" Y2 ' and let A = (x2 , YI ). Then P, A, Q 
are three distinct points that are not collinear. We do not have 
P-A-Q. Nevertheless PAQ as 

t(P, Q) = Ix2 -xl l + ly2 - yll =d(P,A) + dCA, Q) =t(P,A) + teA, Q). 

So PA Q does not imply P-A -Q! Anyone who has walked in such 

Avenues 

Q 

p 

FIGURE 7.4 FIGURE 7.5 
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a city will know that the points that are star-between P and Q when 
Xl "" Xl and Yl "" Y2 consists of all the points, except P and Q, that are 
either on or else inside a particular rectangle with opposite vertices 
P and Q. See Figure 7.6. It follows that the points that are between 
two points P and Q in Taxicab Geometry are exactly those points that 
are between P and Q in the Cartesian plane. 

We have yet to show that t satisfies the Ruler Postulate. Lines 
parallel to the axes (streets and avenues) have the usual Euclidean 
coordinate systems. Suppose I is a line through P and Q and that I is 
not parallel to an axis. So Xl "" x2 and Y1 "" Y2 • If line I has slope m, then 
m= (y2-y1)/(X2-X1). It is a simple exercise in algebra to show that 

t(P, Q) 
l+lml 
~~d(P,Q). 
vl+m2 

This equation tells us that Taxicab distance along any line is some 
positive constant multiple of Euclidean distance along the same line. 
The Taxicab ruler for any line is a scaled Euclidean ruler; the Taxicab 
rulers for different lines may have different scales! Every line has a 
coordinate system with respect to t. Taxicab Geometry is a model of I. 

Does Taxicab Geometry satisfy the triangle inequality? If P and 
Q are not on the same street or avenue, then there are many ways of 
walking from P to Q traversing only the distance t(P, Q). However, 
the triangle inequality does hold. Let R = (x3' Y3) and recall that 
la+ bl ~ lal + Ibl for real numbers a and b. Then 

t(P,R) = Ix3 -x1 1 + ly3 -y1 1 

= I (X3 -X2 ) + (X2 -X1 ) I + I (Y3 -Y2 ) + (Y2 - Y1 ) I 
~ Ix3 -x2 1 + Ix2 -x1 1 + ly3 -y2 1 + ly2 -y1 1 

= (lx2 -x11 + ly2 -y11) + (lx3 -x21 + ly3 -y2 1) 

= t(P, Q) + t(Q,R). 

FIGURE 7.6 
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(0,1) 

(-1,0) (1,0) 

(0, -1) 

FIGURE 7.7 

Since we have shown t(P, Q) + t(Q, R) ~ t(P, R) for arbitrary points 
P, Q, and R, we see that the triangle inequality does hold in Taxicab 
Geometry. 

Everyone knows a circle is the locus (i.e., set) of all points equi­
distant from a fixed point. With R= (x, y) and 0= (0, 0), the unit 
circle is the set of all points R such that the distance from 0 to R is 1. 
So the unit circle has the equation 1 = Ixl + Iyl in Taxicab Geometry. 
Strangely enough, the unit circle is a square! See Figure 7.7. To con­
firm this result, consider the equation in only one quadrant at a time: 
all (x, y) in the first quadrant such that 1 = x + y, all (x, y) in the sec­
ond quadrant such that 1 = -x + y, all (x, y) in the third quadrant such 
that l=-x-y, all (x, y).in the fourth quadrant such that l=x-y. 

Everybody knows the locus of all points equidistant from two 
points P and Q is a line. If P and Q are on the same street or on the 

(a) (hi (c) 

FIGURE 7.8 
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same avenue, this is true. In general the locus has equation Ix - xII + 
ly-yl l=lx-x2 1+ly-y2 1. The locus of all points equidistant from 
(3,2) and (7,4) is not a line but looks like Figure 7.Sb. Even more 
surprising is the fact that the locus of all points' equidistant from (3,2) 
and (7, 6) looks like Figure 7. Sc. This last set of points is certainly not 
a line in MI! Perhaps not everything that everybody knows is al­
ways true. 

Taxicab Geometry is only one plane with weird rulers. Starting 
with MI, let d be Euclidean distance function and IL be any mapping 
from the set of lines in MI into the set of positi ve real numbers. For dis-

~ 

tinct points P and Q, define w(P, P) = 0 and w(P, Q) = IL(PQ)d(P, Q). 
Then MI together with w is a model of I. 

7.3 EXERCISES 

7.1 Theorem 7.7. 

7.2 Theorem 7.11. 

7.3 Give a coordinate system for the line with equation y= mx+ b 
in Taxicab Geometry. 

• 7.4 Find the set of all points equidistant from (2,3) and (4, 7) 
in Taxicab Geometry. 

• 7.5 (M9, d), the Cubic Incidence Plane together with Euclidean 
distance, is not a model of I. 

7.6 If A and B are points, give a reasonable definition of "the mid­
point of A and B" and prove it exists. 

• 7.7 True or False? 

(a) A-B-C iffC-B-A. 

(b) A-B-C iff AC=AB+BC. 

(c) If A-B-C andB-C-A, then C-A-B. 

(d) In Taxicab Geometry, every circle is a square. 

(e) In Taxicab Geometry, every square is a circle. 

(f) A-B-D and A-C-D only if A-B-C-D. 

(g) A-B-D andB-C-D only if A-B-C-D. 

(h) A-B-C and A-C-D only if A-B-C-D. 

(i) A-B-C and A-B-D only if A-B-C-D. 
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(j) A-C-D andB-C-D only if A-B-C-D. 

7.8 Find the set of all points equidistant from (2, 7) and (6, 3) in 
Taxicab Geometry. 

7.9 If line 1 makes an acute angle of measure 0 with the x-axis, then 
for any points P and Q on l in the Taxicab Geometry we have t (P, Q) = 
(cosO+sinO) d(P, Q). 

7.10· To see how Taxicab Geometry might be used to enrich a high 
school geometry course, read "Taxicab Geometry-a Non-Euclidean 
Geometry of Lattice Points" by D. R. Byrkit in The Mathematics Teach­
er Vol. 64 (1971), pp. 418-422. 

7.11 M1 together with r is a model of I where 

gives the distance from point P to point Q when P= (xl' Y1) and Q= 
(X2'Y2)· 

7.12 For a comparison of the geometry of Exercise 7.11 and Taxicab 
Geometry read "A Geometric Duality for Two Metrics for the Co­
ordinate Plane" by F. Rhodes in The Mathematical Gazette Vol. 54 
(1970), pp. 19-23. 

7.13 M1 together with h is a model of I where 

gives the distance from point P to point Q when P= (xl' Y1) and Q= 
(x2 , Y2 )· 

7.14 There exist exactly two ways of renaming four points on a line 
A, B, C, D such that A-B-C-D. 

*7.15 What is the locus of all points equidistant from two given 
points in Taxicab Geometry? Generalize Exercises 7.4 and 7.8. 

GRAFFITI 

Mathematics is an obscure field, an abstruse science, 
complicated and exact; yet so many have attained perfection in it 
that we might conclude almost anyone who seriously applied 
himself would achieve a measure of success. 

Cicero 
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we must first base such words as "between" upon clear 
concepts, a thing which is quite feasible but which I have not seen 
done. 

Gauss 

There is no rigorous definition of rigor. 

So far as the theories of mathematics are about reality, they 
are not certain; so far as they are certain, they are not about 
reality. 

Einstein 

Reductio ad absurdum, which Euclid loved so much, is one 
of a mathematician's finest weapons. It is a far finer gambit than 
any chess gambit: a chess player may offer the sacrifice of a pawn 
or even a piece, but a mathematician offers the game. 

Hardy 



CHAPTER 8 

Segments, Rays, and Convex 
Sets 

8.1 SEGMENTS AND RAYS 

Our definition of segment and ray will be motivated by Figure 8.1. It 
seems reasonable to say that a segment with endpoints A and B should 
contain all the points between A and B. Should A and B be included? 
This is initially a matter of choice! The reader of a textbook is some­
times unaware that the author has made several rather arbitrary 
decisions about his definitions. The author can decide whether he 
wants the endpoints included in a segment or not; he makes the de­
cision for himself and his reader. Once that decision is made, the 
defined word must be used consistently. Weare stuck with the choice. 

Two thousand years of usage of the word line for today's word 
curve required the phrase straight line to distinguish what we now call 
a line from other curves. This usage has been almost completely 
abandoned. If the phrase straight line is so ingrained in your thoughts 
that you can hardly say "line" instead of "straight line," then at least 
be aware that you are using an old fashioned term that means no more 
and no less than line. 

B 

V 
FIGURE 8.1 
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It is interesting that Euclid used straight line for what we would 
call a segment. This partially explains the usage of the phrase "a 
straight line is the shortest distance between two points." Although 
this phrase is known to almost every person on the street, it is still 
an anachronism. In modern usage of technical terminology the 
phrase is absurd since neither a line nor a segment is a distance. By 
universal usage, the whole phrase has come to have a meaning in the 
common language, although that meaning is not discerned from the 
individual words. We are powerless to keep this phrase off the streets, 
but we should keep it out of our geometry. 

Although we'll have twenty-one definitions and theorems in this 
chapter, the first seventeen of these merely say that segments and rays 
behave as they should. It is hopeless to try to memorize all of our 
theorems and proofs. If you insist on memorizing something as a se­
curity blanket, then memorize the definitions. You do have to know the 
definitions to understand what you're talking about. 

Let's say a few words about rigor, a word that strikes fear into 
the hearts of many undergraduates. The author would advise against 
cluttering up your proofs with trivial reasons, as they tend to obscure 
the principal ideas. For example, in " . . . So A and B are distinct 

~ +7 

points. AB exists because two points determine a line. Hence, AB in-
tersects ... ," the second sentence is really unnecessary to anyone 
who has been following the development of our theory. It is by no 
means easy for the beginning student to distinguish the unnecessary. 
The only way to learn how to write a proof is to write proofs and then 
have someone criticize your efforts. A void meaningless phrases such 

+7 

as "extend line to C" or "draw AB." Another common error is not in-
troducing points and lines in a proof before using them, even though 
the points and lines are indicated in your figure. Figures may accom­
pany a proof as a mnemonic device to aid in reading the proof; they 
are not actually a part of the proof. Your proofs should look very much 
like those in the text, excluding those parenthetical references to pre­
vious theorems by number inserted to aid the reader. An excellent test 
is to read your proof aloud and ask yourself if it would be a convincing 
argument to everyone in the class. 

DEFINITION 8.1 Let A and B be two distinct points. Then, AB= 
~ ~ -

{A,B} U {PIA-P-B} andAB= {PIP E AB but notP-A-B}. AB is a 
~ 

segment with endpoints A and B. AB is a my with vertex A. If T is 

FIGURE 8.2 

A 
• 

B 
• 
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an arbitrary set of points containing point P, then P is on T and T 
passes through P. 

Theorem 8.2 Given two points A and B, 

(a) AB=BA, 
~ ~ 

(b) AB ~BA, 
~ -

(c) AB=AB U {PIA-B-P}, 
- -+ ~ 

(d) AB~AB~AB. 

Proof (a) SinceA-P-B iffB-P-A, the definition ofAB is symmetric 
in "A" and "B." (b) There exists P such that P-A-B (Theorem 7.8). 

-+ -+ ~ 

If P-A-B, then P is not in AB but is in BA. (c) If P is on AB, then 
exactly one of the following holds: P-A-B, P=A, A-P-B, P=B, or 
A-B-P. So 

~ -
AB= {A,B} U {PIA-P-B} U {PIA-B-P}=AB U {PIA-B-P}. 

(d) The containments follow from (c). The existence of points C and 
D such that D-A-B-C (Theorem 7.8) shows that the containments 
are proper. • 

For emphasis we repeat the notation: 

AB is a real number. 
~ 

AB is a line. 

AE is a ray. 

AB is a segment. 

+-+ -+ -
Thus AB, AB, and AB are sets of points-in fact, three different sets 
of points. AB is not a set of points. The four symbols are not inter­
changeable! 

~ ~ ~ ~ ~ 

Theorem 8.3 AB = AB n BA; AB = AB U BA. 

Proof Exercise 8.1. • 

Theorem 8.4 Let A and B be distinct points. Then AB = CD iff 
{A, B} = {C, D}. 

Proof If {A, B} = {C, D}, then either A = C and B =D or else A =D --
and B = C. In either case, we have AB = CD by definition of a segment. 



SEGMENTS AND RAYS 87 

Now suppose AB = CD, A ~ C, and A ~ D. Then, since A is on CD as 
A is on AB, we must have C-A-D. Also, since C and D are distinct 
points on AB different from A, at least one of C or D is between A and 
B. So either B-C-A or B-D-A. If B-C-A and C-A-D, then 
B-C-A-D; if B-D-A and C-A-D, then B-D-A-C (Theorem 
7.11). In either case, B is not in CD, contradicting AB = CD. Hence 
A = C or A = D. By symmetry B must be either C or D. Since A ~ B, we 
have {A,B}={C,D} .• 

DEFINITION 8.5 If for AB and CD we have AB = CD, then AB = -- --- -
CD. AB is congruent to CD iff AB = CD. The length of AB is AB. 

Theorem 8.6 Congruence of segments is an equivalence relation on 
the set of all segments. 

-- ----
Proof (R): AB = AB, since AB =AB. (S): AB = CD implies CD = AB, 
since AB = CD implies CD = AB. (T): AB "'" CD and CD = EF implies --
AB =EF, since AB=CD and CD=EF implies AB=EF. Thus con-
gruence is an equivalence relation on the set of segments because 
equality is an equivalence relation on the real numbers. • 

~ 

Theorem 8.7 Ray-Coordinatization Theorem Given VA there is 
~ ~ 

a unique coordinate system f for V A such that f(V) = 0 and VA = 
{Plf(P) ~ OJ. 

~ 

Proof By the Ruler Placement Theorem, V A has a coordinate system 
fsuch that f(V) =0 andf(A) > O. Since 0= f(V) < f(A), for any point 

~ ~ 

P on VA the following are equivalent: (i) P is off VA, (ii) P- V -A, 
(iii) f(V) is between f(P) and f(A), (iv) f(P) < f(V) < f(A), (v) f(P) < 

----+ o. Hence VA = {Plf(P) ~ O}. Suppose g is another coordinate system 
~ -> 

for V A such that g(V) = 0 and VA = {Plg(P) ~ O}. Then for any point 
~ 

Q in VA, we have Ig(Q)I=lg(Q)-g(V)I=VQ=If(Q)-f(V)I= 
-~ ~ 

If(Q) I· If Q is on VA, then g(Q) =f(Q) ~ o. If Q is off VA, we have 
g(Q) < 0, f(Q) < 0, and Ig(Q) 1 = If(Q) I· SO g(Q) = f(Q) for all points 

~ 

Q on VA. Thus g= f and fis unique. • 
~ 

Theorem 8.8 Segment-Construction Theorem Given AB and VC, 
----+ --

there exists a unique point D in VC such that AB "'" VD. 
~ 

Proof By the Ray-Coordinatization Theorem VC has a coordinate 
----+ 

system f such that VC= {Plf(P) ~ O} and f(V) = o. For any point D 
----+ ~ 

in VC, we have fCD) = VD. However, there is a unique point Din VC 
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--> 
such that reD) =AB. So there is a unique point D in VC such that 
AB=VD .• 

There is a one-to-one correspondence between the set of rationals 
and the points on the x-axis of M2, the Rational Cartesian Incidence 
Plane. Since the rationals cannot be put in one-to-one correspondence 
with the reals, there does not exist any distance function d such 
that (M2, d) is a model of I because the Ruler Postulate can never 
be satisfied. However, for discussion, we define distance d on M2 by 
the usual Cartesian formula. We also apply the definitions in the 
theory to the geometry (M2, d). This provides an example ofa geome­
try where Theorem 8.8 fails. Let A=V= (0,0), B= (1,1), and C= 

(1, 0). Then AB = V2, but there is no point D on VC such that VD = 
AB since (0, v'2) is not a point in M2. 

Theorem 8.9 Segment-Addition Theorem If A-B-C, D-E-F, 
-- -- --
AB = DE, and BC = EF, then AC = DF. 

Proof From the hypothesis we have AB+BC=AC, DE+EF=DF, 
AB=DE, and BC=EF. Thus AC=AB+BC=DE+EF=DF, as re­
quired .• 

Theorem 8.10 Segment-Subtraction Theorem If A-B-C, D-E-F, 

AB = DE, and AC = DF, then BC = EF. 

Proof Exercise 8.2. • 

--> - -Theorem 8.11 Point B is on V A and B ~ V iff VB = VA. 
~ 

Proof By the Ray-Coordinatization Theorem, V A has a unique coor-
-> 

dinate system r such that reV) = 0 and VA = {Plr(p) ~ O}. Suppose 
--> -point B is on VA and B ~ V. Then, r(B) > 0 and VB = {Plr(p) ~ O} by 
~ ~ ~ ~ ~--+ 

definition of VB. Hence VB = V A. Conversely, B on VB and VB = VA 
--> 

implies B on V A and B ~ V. • 

- --> Theorem 8.12 If VA= WB, then V= W. 
- --> --> 

Proof Suppose VA = WB and V ~ W. Since W is on V A and V is on 

C 

FIGURE 8.3 

D .... E 
• 
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~ ~ ~ ----+ ~ 

WB, we apply the last theorem twice to get VW = VA = WB = WV, a 
contradiction (Theorem 8.2b). • 

Corollary 8.13 Every ray has a unique vertex. 

8.2 CONVEX SETS 

DEFINITION 8.14 If A-M-B and AM=MB, then M is a mid­
point of AB; point M is a midpoint of A and B if A=M=B or M is a 

----> ----> 
midpoint of AB. If A - V - B, then V A is an opposite ray of VB 

Theorem 8.15 Midpoint Theorem Every segment has a unique mid­
point. If A and B are points, then there exist unique points M and N 
such that M is a midpoint of A and B while B is a midpoint of A and N. 

Proof If A=B, then clearly M=N=A. Suppose A ¥-B. Let fbe a 
~ 

coordinate system for AB such that fCA) = 0 and fCB) = b > o. M is a 
midpoint of A and B iff fCM) =AM=MB=AB-AM=b-fCM); B is 
a midpoint of A and N iff b = AB = BN = AN - AB = fCN) - b. Our 
theorem follows from the existence of unique points M and N such 
that fCM) = li2b and fCN) = 2b. • 

----> 
Theorem 8.16 Every ray has a unique opposite ray. If VA is an op-

---> ---> ---> 
posite ray of VB, then VB is an opposite ray of VA. 

Proof Exercise 8.3. • 

~ 

Theorem 8.17 If P and Q are points on AB such that AP=AQ and 
BP=BQ, then P=Q. 

~ 

Proof Let AB have coordinate system f such that fCA) = 0 and fCB) = 
b > o. From IfCP) 1 =AP=AQ= IfCQ) I, we have fCP) = ±fCQ). If 
fC Q) = fCP) , then P = Q and we are done. Suppose fC Q) = -fCP). From 
IfCP)-bl=BP=BQ=lfCQ)-bl, we have fCP)-b=±CfCQ)-b). In 
case fCP) - b= +CfCQ) -b), we have fCP) =fCQ) = -fCP). ThenfCP) = 
fCQ) =0 and P=Q=A. In the other case, fCP)-b=-CfCQ)-b)= 
fCP) + b. Here we have the contradiction b = o. Therefore, P = Q in all 
possible cases. • 

DEFINITION 8.18 int CAB), the interior of AB, is AB \ {A, B}; 
---> ---> ---> 

int CVA), the interior of VA, is VA \ {V}. A halfline is the interior 

A 
• 

FIGURE 8.4 

M 
• 

B 
• 

N 
• 
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FIGURE 8.5 

of a ray. If T is a set of points such that AB is a subset of T for every 
two points A and B in T, then T is a convex set. 

None of the regions in Figure 8.5 is a convex set in Euclidean 
geometry. To prove that a set T is not a convex set we must find 
three points A, B, C such that A and B are in T, C is not in T, and 
A -C -B. To prove that a set T is a convex set it is sufficient to show 
that Q is in T whenever P and R are in T and P-Q-R. 

Theorem 8.19 The intersection of two (or more) convex sets is a 
convex set. 

Proof If A and B are distinct points in the intersection, then A and 
B are distinct points in each of the convex sets. Since AB is a subset 
of each convex set by definition, AB is a subset of the intersection. • 

Theorem 8.20 If A and B are distinct points, then each of 0, {A}, 
- ---+ --+ ~ 

AB, int (AB), AB, int (AB), AB, and 9 is a convex set. 

Proof The set 9 of all points is a convex set since any segment is a 
~ - ~ ~ 

set of points. If P and Q are distinct points of AB, thenPQ C PQ=AB. 
~ ~ 

So AB is a convex set. Let f be a coordinate system for AB such that 
--+ --+ 

f(A) = 0 and f(B) > O. Then AB = {Plf(P) ~ O} and int (AB) = 
--+ 

{Plf(P) > O}. If P and R are distinct points of AB and P-Q-R, then 
--+ --+--+ 

f(Q) is positive. Therefore, Q is in both AB and int (AB). So AB and 
--+ 

int (AB) are convex sets. Applying the previous theorem, we see that 
- - --+ --+ - --+ 
AB and int (AB) are convex sets as AB n BA=AB and int (AB) n 

--+ --+ --+ -
int (BA) = (AB n BA) \ {A, B} = int (AB). Both 0 and {A} are con-
vex sets since neither contains two points. • 

Theorem 8.21 Line-Separation Theorem For every point V in line l 
there exist convex sets HI and H2 such that (i) I \ {V} =HI U H2 and 
(ii) if P E Hi' Q E H 2 , and P oF Q, th~n PQ n {V} oF 0. 
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~ 

Proof Let A- V -B with l=AB. Then HI and H2 clearly satisfy the - -requirements where HI = int (VA) and H2 = int (VB). • 

To get the Moulton Incidence Plane MIO, we took the Cartesian 
Incidence Plane but bent the Cartesian lines having positive slope. 
If we bend the rulers for these lines also, then we have a model of~. 
More precisely, (MIO, s) is a model of ~ where s is the distance func­
tion given by Euclidean arclength along Moulton lines. Let A = 
(-2, -1), B= (2,2), C= (0,1/2 ), and W= (0,1). See Figure 8.6. The 
Moulton line through A and B contains W but not C; the Euclidean 
line through A andB contains C but not W. Then s(A,B) =d(A, W) + 
deW, B) =2\12+ v'5 and seA, C) +s(C, B) =d(A, C) +d(C, B) = 
d(A. B)=5. In (MIO, s) the triangle inequality fails as seA. C)+ 
s(C,B) < s(A,B). 

A segment in (MID, s) is a Euclidean segment unless the seg­
ment is the union of two noncollinear Euclidean segments each having 
an endpoint on the y-axis. The region above the Moulton line through 
the points A and B in Figure 8.6 is certainly not a convex set in Eu­
clidean geometry. However, this region is a convex set in (MIO, s). 
To see that there is nothing special about this particular line, we 
generalize the situation and suppose l is the line with all points (x, y) 

such that y = mx + b if x ~ 0 and y = 1f2mx + b if x ~ 0. The line contains 
(0, b). The line in Figure 8.6 is the special case m=b=l. LetP and 
Q be any two points above line l. If P and Q are not on opposite sides 
of the y-axis, it is easy to see that all points between P and Q are 

'"{ 
x +c 1, x<O 

", 
lx+ 2 ' 1, x > 0 

FIGURE 8.6 
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above l. Assume P= (xi' Yl ) and Q= (x2, Y2) where Xl < 0< x2. The 
Moulton line through P and Q passes through the point (0, k) on the 
y-axis where k= (X2Yl-2xIY2)/(X2-2xl). Since P and Q are above l, 
we must have Yl > mXl + band Y2 > 1f2mx2 + b. So X2Y l > x2 (mxl + b) 
and (-2xl )(y2) > (-2xl ) (1f2mx2+b). Then x2y l -2xly2> (x2-2x1)b. 
Since x2 - 2Xl is positive, we have k > b. Therefore, the segment inter­
sects the y-axis at a point above l, and every point between P and Q 
is above l. Thus by checking the definition of a convex set, we have 
shown that the region above l is a convex set in (M10, s). Replacing 
"above" by "below" and ">" by "<" in the argument shows that the 
region below such a line l is a convex set in (M10, s). 

8.3 EXERCISES 

8.1 Theorem 8.3. 

8.2 Theorem 8.10. 

8.3 Theorem 8.16. 

• 8.4 In the Line-Separation Theorem (Theorem 8.21), the sets HI 
and H2 are unique except for order. 

• 8.5 Find a set of points in the Cartesian Incidence Plane that is 
a convex set in Euclidean geometry but not in (M10, s). 

• 8.6 True or False? 

(a) AB=CD only if A=C or A=D. 

(b) If AB = CD, then A=C or A=D. 

(c) If AB = CD, then {A, B} = {C, D}. 

(d) AB = CD only if AB = CD. 

(e) The definition of "segment" depends on distance. 

(D The endpoints of a segment. are unique. 

(g) If M is the midpoint of A and B, then A - M - B. 
~ 

(h) A point on AB is uniquely determined by its distance' from 
A and from B. 

(i) If A and B are points, then {A, B} is a convex set. 

(j) The union of two convex sets is a convex set. 

8.7 Let l be a line in (MIO, s) with equation x= a. The region to the 
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right of I and the region to the left of I are convex sets in (Ml 0, s). 

• 8.8 What are the segments and rays in Taxicab Geometry? 

• 8.9 Find a counterexample to AB= {PIAP+PB=AB} in Taxi­
cab Geometry. 

---'> 

8.10 Equation VC= {PIPC= IVC- VPI} holds in (Ml, d) but not 
in Taxicab Geometry. 

• 8.11 Equation AM = MB = 1/2AB does not imply that M is the 
midpoint of A and B for a model of!'. 

8.12 Read "What is a convex set?" by V. Klee in The American 
Mathematical Monthly Vol. 78 (1971), pp. 616-631. 

*8.13 In (MI0, s) what is the unit circle? What is the equation for 
the set of all points of distance 2 from (-1, O)? 

*8.14 In (MI0, s) find all points P such that AP+ PB =AB where 
A = (-2, -1) and B = (2,2). 

*8.15 In (MI0, s) find all points M such thatAM=MB= 1/2AB when 
A= (-2,-1) andB= (2, 2). 

GRAFFITI 

The Greeks made Space the subject-matter of a science of 
supreme simplicity and certainty. Out of it grew, in the mind of 
classical antiquity, the idea of pure science. Geometry became one 
of the most powerful expressions of that sovereignty of the intellect 
that inspired the thought of those times. At a later epoch, when the 
intellectual despotism of the Church, which had been maintained 
through the Middle Ages, had crumbled, and a wave of scepticism 
threatened to sweep away all that had seemed most fixed, those 
who believed in Truth clung to Geometry as to a rock, and it was 
the highest ideal of every scientist to carryon his science "more 
geometrico. " 

Weyl 

I should rejoice to see . .. Euclid honourably shelved or 
buried" deeper than did ever plummet sound" out of the schoolboys' 
reach; morphology introduced into the elements of algebra; 
projection, correlation, and motion accepted as aids to geometry; 
the mind of the student quickened and elevated and his faith 
awakened by early initiation into the ruling ideas of polarity, 
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continuity, infinity, and familiarization with the doctrines of the 
imaginary and inconceivable. 

Sylvester 

The critical mathematician has abandoned the search for 
truth. He no longer flatters himself that his propositions are or can 
be known to him or to any other human being to be true; and he 
contents himself with aiming at the correct, or the consistent. The 
distinction is not annulled nor even blurred by the reflection that 
consistency contains immanently a kind of truth. He is not 
absolutely certain, but he believes profoundly that it is possible to 
find various sets of a few propositions each such that the 
propositions of each set are compatible, that the propositions of 
each set imply other propositions, and that the latter can be deduced 
from the former with certainty. That is to say, he believes that there 
are systems of coherent or consistent propositions, and he regards it 
his business to discover such systems. Any such system is a branch 
of mathematics. 

Keyser 

The essence of mathematics lies in its freedom. 
Cantor 

Mathematicians are like Frenchmen: whatever you say to them 
they translate into their own language and forthwith it is 
something entirely different. 

Goethe 



CHAPTER 9 

Angles and Triangles 

9.1 ANGLES AND TRIANGLES 

Our idea of an angle is simply a set of points which is the union of 
two noncollinear rays with the same vertex. See Figure 9.1. Note that -this is not saying the same thing as the union of any two rays V A and -VB. If V -A-B, the union is just a ray; if A- V -B, the union is a line. 
We choose to have our angles distinct from rays and lines. Otherwise 
when making statements, we would always have to keep making 
exceptions for these cases. They would be more bother than they would 
be worth. Perhaps you are shocked that this eliminates the so-called 
straight angle from the class of angles. Well, what is a straight angle 
anyway? If it is just a line, who needs it? Should it be a flag-an 
ordered pair (P, i) with point P on line l? If so, then it is certainly dif­
ferent from a set of points. Perhaps it should be an angle of 180 or 
540 degrees or, maybe, a special kind of rotation or a special equiva­
lence class of rotations. Fortunately, because life is simpler for us, 

V' 

VF-----......... ~ 
B 

FIGURE 9.1 
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these ideas are not presently available as we have no such things as 
degrees or rotations. We do confess that perhaps it would be nice to 
use "elementary angle" where we shall use "angle" to allow for a more 
sophisticated use of the latter term later. We abstain from doing so 
mainly because we are too lazy to keep using the longer term. 

DEFINITION 9.1 If A, V, B are three noncollinear points, then 
--> --> 

LAVB=VA U VB. LAVB is an angle having vertex V and sides 

VA and VB. 

Theorem 9.2 If A, B, C are three noncollinear points, then 

LABC=LCBA"" LACB. 
~ -~ --------;J> -~ 

Proof Since BA U BC=BC U BA, we have LABC= LCBA. Let D 
~ ~ ~ ~ ~ 

be such that C-D-A. Then we have DA=AC=DC, BA "" AC, and 
<E-? <E--4> ~ +4 ~ ~ ---3> 

AC "" BC. But D in BA implies AB = AD = AC, and D in BC implies 
~ ~ ~ -~ ---':* 

BC = DC = AC. Hence, since D is in neither BA nor BC, point D is not 

in LABC. However, since D is in CA, point D is in LACB. Therefore, 
LABC"" LACB .• 

--> 
Theorem 9.3 Given LAVB, point C in int (VA), and point D III 

--> 
int (VB), then LAVB=LCVD. 

~ --------;J> --------;J>------;' 

Proof Since VC = V A and VD = VB by hypothesis (Theorem 8.11) 
and V, C, D are not collinear as V, A, B are not collinear, the result fol­
lows from the definition of an angle. • 

---'» ----;.. ~ ---?> 

Theorem 9.4 If LA VB = LCVD, then either VA = VC or VA = YD. 
--> --> 

Proof Since A is in LAVB, point A must be in VC or YD. Since 
--> --> 

A"" V, point A. must be in either int (VC) or int (VD). Hence either 
---3> ---3> ---'» ~ 

VA=VC or VA=VD (Theorem 8.11) .• 

Theorem 9.S If LAVB=LAWB, then V=w. 
--> 

Proof We know V is in LAWB. Assume V is in int (WA). Then V 
--> 

is off WB and there exists D such that V -D-B. So D is in LAVB. 
Since V, D, B are collinear and V, W, A are collinear, we must have D 

---3> -"-7 

off both W A and WB as otherwise A, V, B are collinear. Hence D is 
off LAWB but on LAVB, contradicting the hypothesis. Our as sump-

--> 
tion must be false; point V is not in int (W A). By symmetry, point V 
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y 

----------~------------------------------__ x 

FIGURE 9.2 

~ 

is not in int (WB). Therefore, sinc~ V is in LAWB, there is only one 
remaining possibility V = W. • 

~ --+ 
Theorem 9.6 If LA VB = LCWD, then V = Wand either VA = VC 

--+ --+ 
or VA=VD. 

~ ~ 

Proof Not all points of LCWD are on VA nor are they all on VB. 
~ ~ 

So there exist point P in int (WC) and point Q in int (WD) such that 
--+ ~ ~ 

either P is in int (VA) and Q is in int (VB) or else P is in int (VB) 
--+ 

and Q is in int (VA). In either case, (by Theorem 9.3) we have LPVQ= 
LAVB = LCWD = LPWQ. Therefore, (by Theorem 9.5) we have V = W. 

~ ~ ~ 

So LAVB = LCVD and (by Theorem 9.4) either VA = VC or VA = 
~ 

VD .• 
Even though it may seem intuitively obvious that an angle has 

a unique vertex, we still had to prove the fact for every model of~. In 
--+ 

Figure 9.2, representing (MIO, s), point Vis on the side WA of LAWB 
and not a vertex of LAWB. In this figure LAVB is not illustrated and 
"LAVW" is meaningless as A, V, W are collinear. 

DEFINITION 9.7 Given LAVB, A-V-A', and B-V-B', then 
LA VB and LA'VB' are vertical angles. Also, LAVB and LA'VB 
are a linear pair of angles. 
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FIGURE 9.3 

- - -Theorem 9.8 Given LAVB, if VA' is the opposite ray of VA and VB' -is the opposite ray of VB, then 

(a) LAVB and LA'VB' are vertical angles, 

(b) LAVB' and LBVA' are vertical angles, 

(c) LAVB and LBVA' are a linear pair, 

(d) LAVB and LAVB' are a linear pair, 

(e) LBVA' and LA'VB' are a linear pair, 

(f) LA'VB' and LB'VA are a linear pair. 

Proof Exercise 9.1. • 

How shall we choose to define a triangle? A few of the reasonable 
possibilities that are open to. us are suggested by Figure 9.4. We make 
the following choice. 

DEFINITION 9.9 If A, B, C are three noncollinear points, then 
- --

b.ABC=AB U BC U CA. We say b.ABC is a triangle with vertices -- -
A,B, and C and with siciesAB,BC, andAC. The angles LBAC, LABC, 

FIGURE 9.4 
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B 

A--------------------------~_C 
FIGURE 9.5 

and LACB are angles of l::,.ABC and are called LA, LB, and LC, re­
spectively, when no confusion is likely. 

Theorem 9.10 If A, B, C are three noncollinear points, then 

~ 

l::,.ABC=l::,.CBA=l::,.ACB and AB = l::,.ABC nAB. 

Proof The first statement follows immediately from the definition 
of a triangle. For the second part 

~ ~ 

l::,.ABC n AB= (AB U BC U CA) nAB 
~ ~ ~ 

=(AB nAB) U (BC nAB) U (CA nAB) 

=AB U {B} U {A} 

=AB .• 

Theorem 9.11 If l::,.ABC = l::,.DEF, then {A, B, C} = {D, E, F}. 

Proof Assume D is neither A, B, nor C. If we reach a contradiction, 
then the theorem follows from the symmetry stated in the first part 
of the previous theorem. Since there are certainly four points on DE, at 
least two of these four points must be on the same side AB, BC, or 
CA of l::,.ABC. By the symmetry stated in the first part of the previous 

~ 

theorem, we may say that these two points are on AB. Then DE= 
~ - ~ ~ -

AB.SoDE=l::,.DEF n DE=l::,.ABC n AB=AB.Hence {D,E}= {A,B} 
(Theorem 8.4). Therefore, D=A or D=B, contradicting our assump­
tion and proving the theorem. • 

Corollary 9.12 The three vertices, the three sides, and the three 
angles of a triangle are unique. 

If Figure 9.6 represents the Moulton plane with Euclidean arc 
length along lines defining distance, then it is nonsense to talk about 
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c 

A 

(-1,0) 

FIGURE 9.6 

~ ~ 

6.ABC as B is on AC. In this figure, since D is off AC, D is a vertex of 
6.ACD and B is on a side of 6. ACD. 

Surely a line cannot intersect a triangle in each of its three 
sides and not pass through a vertex. In other words (see Figure 9.7), 
does 6.ABC, A-D-B, B-E-C, and A-G-C imply that D-G-E is 
impossible? It would be a fine exercise to try to prove this; in making 
the attempt, you would review all the previous definitions and 
theorems. Any proof obtained should be examined with the utmost 
scrutiny. 

9.2 MORE MODELS 

We want to talk about the interior of an angle and the interior of a 
triangle. What we have in mind is Figure 9.8. Ifwe can define the in­
terior of an angle, then it will be easy to define the interior of a tri­
angle as the intersection of the interiors of its angles. Consider defining 

~ 

the interior of LA VB to be the intersection of the side of VA that 
~ 

contains B with the side of VB that contains A. That seems reasonable. 
However, it only seems reasonable! What is a side of a line? Any fool 
knows that a line divides a plane into two sides. However, we are not 
basing our geometry on what any fool knows. We must have a defini­
tion in terms of the theory we have already developed or else introduce 
a new axiom. 

One solution to our problem is to either introduce as an axiom 
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B 

A'-________ ~_c ______________ ~ 

FIGURE 9.7 

or prove PSP, the Plane-Separation Postulate, which says that for any 
line l there exist convex sets HI and H2 (these will be the desired half­
planes or sides of line l) such that every point off l is on HI or H2 and 
such that point P in HI and point Q in H2 with Q ¥- P implies PQ inter­
sects l (so intuitively you can't go from one side to the other without 
crossing the line). Requiring that HI and H2 be convex is some attempt 
to assure that lines are what we think of as straight. Now we are not 
defining "straight," but we do admit to some intuitive motivation be­
hind the axioms. Given PSP the interior of an angle can be defined as 
the intersection of certain halfplanes of the lines containing the sides 
of the angle. Then, in turn, Crossbar makes sense, where Crossbar is 
the harmless looking statement, "If point P is in the interior of LAVB, 

~ 

then VP intersects AB." See Figure 9.9. Beware of what fools know! 
Of course, a good question is whether it is necessary to introduce PSP 
as an axiom. Possibly PSP is already a theorem of I that we just 
haven't proved; 

Returning to Figure 9.8 and our idea of the interior of an angle, 
Crossbar suggests another attack. Although Crossbar is meaningless 
without a definition of "interior," we can turn things around and use 

B 

V 

FIGURE 9.8 
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v~--------------------------~--__________ ~ 
B 

FIGURE 9.9 

the idea of Crossbar to define shade. (We are cautiously keeping "in­
terior" in reserve.) The shade of LAVB is the set of all points exclud-

~ 

ing V that are on anyone of the rays VP where P is in int (AB). Draw 
a little picture to see that this seems reasonable. Perhaps you are 
suspicious; rightfully so. Let's examine the so-called definition of 
shade more closely. Considering Figure 9.10, if LA VB = LAVD, then 
certainly the shade of L AVB is equal to the shade of LA VD. Is this 
the case? In other words, is "shade" well-defined? If our term is not 
well-defined, then it is less than useless! The question is whether 

v~----------~~----------~------~ 

FIGURE 9.10 
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every ray with vertex V which intersects int (AB) also intersects 
- ~ 

int (AD) and conversely. Put in other words, if line VE intersects a 
~ 

side of !:::.ABD not at a vertex, then does VE intersect another side of 
~ 

!:::.ABD? What else can VE do? Not being able to imagine any other 
possibility is hardly a proof. We have arrived at another statement 
which either must be proved or adopted as an axiom: If a line inter­
sects a side of a triangle not at a vertex, then the line intersects 
another side of the triangle. This statement is known as Pasch's Pos­
tulate. 

It is time we turned to some models of I to clear the air. The 
Missing-Stri p Incidence Plane M8 obviously satisfies the Incidence 
Axiom. We can define a distance function e on M8 such that (M8, e) 
is a model of I. The easy way to define e is to use Euclidean distance 
d but so that a ruler has a blank space inserted where it crosses the 
missing strip. The details are left for Exercise 9.9, but the idea should 
be clear from the examples in Figure 9.11 where e(A, G) =d(A, G) 
but e(V, A) = d(V,E) + d(R, A) ande(V,B) =d(V,B) -1. We can use 
the real number d(R, A) even though R is not a point in M8. 

Figure 9.11 points out that there is something shady about our 
so-called definition of shade. Point G is in the shade of LAVB but G 
is not in the shade of LAVD even though LAVB = LAVD. Since the 
angles are equal but have different shades, we do not have a definition 
for "shade" that is independent of the notation for the angle. Since 
"shade" is not well-defined, it must be relinquished to the trash heap. 

FIGURE 9.11 
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~ 

Pasch's Postulate fails in (M8, e) because VG intersects l:::.ABD only 
at G where A -G-B. Although it is somewhat difficult to actually 

~ 

prove, sides HI and H2 of VB cannot be defined such that PSP holds. 
Model (M8, e) shows that both PSP and Pasch's Postulate are 

independent in I, which now contains only the Incidence Axiom and 
the Ruler Postulate. Recall that our aim is to develop that geometry 
which is like the Euclidean plane but without any parallel postulate. 
It .is clear that another axiom is needed. We certainly want PSP and 
Pasch's Postulate to hold in our geometry. Should they both be listed 
as axioms? Later we shall see that this would be unnecessary as each 
follows from the other under our present two axioms. 

Shade of LAVB had to be discarded because its supposed defini­
tion was not independent of the particular notation for the angle. The 
idea can be saved, however, as follows. 

DEFINITION 9.13 Point P is in the ray-interior of LA VB if there 
---> ---> 

exist C in int (VA), D in int (VB), and E in int (CD) such that Pis 

in int eVE). If P is in the ray-interior of LAVB, then VP is an interior 
ray of LA VB. Point P is in the inside or segment-interior of LAVB if 

there exist C in int (VA) and D in int eV1n such that P is in int (CD) . 

The ray-interior and inside of an angle are certainly well-defined. 
Is the ray-interior of an angle different from the inside of the angle? 
We shall soon give a model of I where the ray-interior is not contained 
in the segment-interior of an angle. However, the following theorem 
is a trivial result of the definition. 

Theorem 9.14 The inside of LAVB is contained in the ray-interior 
of LAVB. 

Model (M4, d), the Space Incidence Plane with Euclidean dis­
tance d, is a model of I. Perhaps it has not occurred to you that our 
two axioms do not restrict models to what we usually think of as a 
plane. In (M4, d) the ray-interior and inside of an angle are equal. 
Pasch's Postulate and PSP fail for (M4, d), but the following modified 
form of Crossbar does hold: If P is a point in the ray-interior of LAVB, 

---> 
then VP intersects AB. 

The mapping ( from {xix E R, 0 < x < s} onto R defined by 
(x) = 1f21n [xl (s - x)] is a bijection for each positive real number s. 
See Figure 9.12. That {is onto follows from {(e2ts/(1 +e2t » =t for tin 
R. The bijection (also has the property of being order preserving, since 
0< Xl < x2 < s implies {(Xl) < {(x2 ). Thus there is an order-preserving 
one-to-one correspondence between the set of points in the interior of 
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y x = s 

--------------4-----~~--~--------------.x 

FIGURE 9.12 

any Euclidean segment and R. Therefore, for each line [in the Cayley­
Klein Incidence Plane M13, there is a bijection t; from l onto R. For 

~ 

example, if [=PQ in Figure 9.13, then 

(P)-1 I d(P,T) -1 d(P,T) 
t; - 12 n d(S, T) _ d(P, T) - hln d(P, S) 

defines such a bijection. Interchanging the Cartesian points Sand T, 
which are not in the model, would only change the sign of t;(P). For 

........ 

(8) 

v 

... 
FIGURE 9.13 
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each line I in M13, we suppose t; is defined this way. Then define dis­
tance function h on M13 by h (P, P) = 0 and 

I I 11 d(P,S) d(Q,T)1 
h(P, Q) = t;(Q) - t;(P) =2" In d(P, T) d(Q, S) 

~ 

where 1= PQ with Sand T the Cartesian points on the unit circle 
determined by l. So t; is a coordinate system for I. Although h (P, Q) 
can be expressed in terms of only the coordinates of P and Q, we shall 
postpone this calculation until it is needed in Chapter 23. For the pres­
ent we observe that (MI3, h) is a model on: having the property that 
A-B-C in (MI3, h) only if A-B-C in (Ml, d). In Figure 9.13 we see 
that E is in the ray interior of LAVB but not in the inside of LAVB. 
Hence the ray-interior of an angle is not necessarily contained in the 
inside of the angle in a model of I. 

The methods of the last paragraph can be generalized. If set 9 
of points and set 2' of lines satisfy the Incidence Axiom and if for 
each line I in 2' there exists some fixed bijection t;: I ~ R, then there 
exists a distance function d such that (9, 2', d) is a model of I. All 
we have to do to obtain such a model is to define d (P, Q) for points P 
and Q on line m by d(P, Q) = Ifm(Q) -: fm(P) I· 

We shall now look at a model which emphasizes that in I the 
definitions of triangle, angle, ray, segment, and between all rely on 
distance as given by the Ruler Postulate. We start sanely enough with 
Ml, the Real Cartesian Incidence Plane. So the points and lines are 
the familiar ones. We shall distort the usual Euclidean distance d 
however. Define bijections hand k from R into R by h (x) = k (x) = x 
if x is not an integer; but if x is an integer then h (x) = x + 2 and 
k (x) = -x. Next, define distance d' on Ml by 

d' ((x!,y) ,(x2,y» = Ih(x2) - h(x!) 1 

d'((x,y!),(X'Y2» =lk(Y2) -k(y!)1 

for all y, 

for aU x, 

So we have the usual distance between two points that are not on 
lines parallel to one of the axes but rather peculiar distances other­
wise. Lines parallel to the x-axis have a coordinate system f where 
f( (x, y) ) = h (x). Lines parallel to the y-axis have a coordinate system 
f where f( (x, y) ) = k (y). Lines intersecting both axes have the usual 
Euclidean coordinate systems. Therefore, (Ml, d') is a model of I. 

What makes (Ml, d') interesting is that the weird distance 
function d' gives a betweenness for points that is essentially different 
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from the usual Euclidean case (Ml, d). For example, by the definition 
of between it follows that (5f2, 0) is between (0,0) and (1, 0). We have 
not moved any of the points! The points and lines are in their usual 
places! It is just that the betweenness relation for points in (Ml, d') 
is so very different from Euclidean betweenness. Since segments and 
rays are defined in terms of betweenness, the segments and rays in 
(Ml, d') are rather bizarre. Picking out the endpoints of the nine 
segments and the vertices of the nine rays pictured in Figure 9.14 
will test your knowledge of the definitions. Don't tell your roommate 
that Figure 9.15 depicts an angle while Figure 9.16 depicts two trian­
gles, because he just may move out on you. All we know about such 
things as angles and triangles is what the axioms, definitions, and 
theorems tell us. If nothing else, this model demonstrates that the 
theorems we have proved so far may not be quite as trivial as they 
might appear. The model is called the weird plane. 

Check back to Figure 7.2 and Definition 7.1. Probably most of us 
see a lot more in the figure than the definition actually states. Figure 
7.2 might illustrate that A is between Band C in such weird planes 
as the one just considered. In order for our usual ideas of ruler and 
betweenness to be consolidated into the theory, the Ruler Postulate 
must be accompanied by another axiom such as PSP or Pasch's Pos-

y 

• • • • • I I I I I 
I I I I I 
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tulate. We shall add a new axiom to our system in Chapter 12, which 
can be read next without loss of continuity. 

We shall usually abbreviate such a phrase as "if !:::.ABC exists" 
to "if !:::.ABC." Obviously, !:::.ABC exists iff A, B, and C are three non­
collinear points. Thus we frequently use the concise phrase "if !:::.ABC" 
in place of the longer phrase "if A, B, and C are three noncollinear 
points," even though the concept of noncollinearity is more primitive 
than that of a triangle. 

.~L I 

! 0--0 

FIGURE 9.16 
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9.3 EXERCISES 

9.1 Theorem 9.8. 

• 9.2 In the weird plane sketch the triangle with vertices (0, %), 
(1/2, IJ2), (1/2, -2), the triangle with vertices (6, -1), (6, -3), (5, -3), 
and LA VB where A = (0, -2), V = (0, -1), and B = (1/2, -1). 

9.3 What are the endpoints of the segments and the vertices of the 
rays pictured in Figure 9.14? 

• 9.4 Give an example where a line intersects the three sides of a 
triangle but does not pass through a vertex. 

• 9.5 What is the ray-interior of the angle in Exercise 9.2? The in­
side of this angle is not the ray-interior of the angle. 

• 9.6 True or False? 

(a) A line intersects an angle in at most two points. 

(b) ,0, ABC = ,0,ACB = ,0,BAC= ,0,BCA= ,0, CAB = ,0,CBA. 
--> ~ 

(c) AB=AB n LABC. 
~ 

(d) AB=AB n ,0, ABC. 

(e) A triangle is the union of three angles. 
~ ~ ~ 

(f) If ,0, ABC, then AB U BC U CA = LA U LB U LC. 
~ ~ ~ 

(g) If ,0, ABC, then AB U BC U CA is the union of twelve angles. 

(h) If ,0, ABC, then LA n LB=AB. 

(i) ,0, ABC = (LA n LB) U (LB n LC) U (LC n LA). 

(j) ,0,ABC= (LA U LB) n (LB U LC) n (LC U LA). 

9.7 Pasch's Postulate does not hold in (M!, d' ). 

9.8 A line off the vertex of an angle intersects the angle in at most 
two points. 

9.9 Give formulas for distance function e in (M8, e). 
~ ~ 

9.10 Give an example where ,0, ABC, A -D -B, B -E -C, and AE II DC. 

9.11 Find a set of points that is convex in (M8, e) but not in (M!, d'). 
---? ~ ---? ~ ---? 

9.12 If VB is the opposite ray of V A, then int (VB) = VA \ VA. 

*9.13 What is the inside of the angle in Exercise 9.2? 



110 ANGLES AND TRIANGLES 

*9.14 PSP fails for both (M8, e) and (MI, d'). 

*9.15 Find distance functions satisfying the Ruler Postulate for 
M5, M6, and M7. 

GRAFFITI 

As lightning clears the air of impalpable vapours, so an 
incisive paradox frees the human intelligence from the lethargic 
influence of latent and unsuspected as~umptions. Paradox is the 
slayer of Prejudice. 

Sylvester 

"When I use a word," Humpty-Dumpty said, "it means just 
what I choose it to mean-neither more nor less." 

Lewis Carroll 

Geometrical axioms are neither synthetic a priori conclusions 
nor experimental facts. They are conventions: our choice, amongst 
all possible conventions, is guided by experimental facts; but it 
remains free, and is only limited by the necessity of avoiding all 
contradiction . ... In other words, axioms of geometry are only 
definitions in disguise. 

That being so what ought one to think of this question: Is the 
Euclidean Geometry true? 

The question is nonsense. One might as well ask whether the 
metric system is true and the old measures false; whether Cartesian 
co-ordinates are true and polar co-ordinates false. 

Poincare 

Some persons have contended that mathematics ought to be 
taught by making the illustrations obvious to the senses. Nothing 
can be more absurd or injurious: it ought to be our never-ceasing 
effort to make people think, not feel. 

Coleridge 



CHAPTER 10 

The Golden Age of Greek 
Mathematics 

10.1 ALEXANDRIA 

The Academy opened its gates at Athens in the year 387 B.C. The 
marvelous list of accomplishments that we call the Greek Miracle was 
still growing. This was four centuries after Homer had recited his 
poems and two centuries after Thales had introduced deduction as a 
means of obtaining truth. The Golden Age of Pericles, which saw high 
achievement in art and literature, had recently passed, and ancient 
Greece would soon be threatened by Macedonia. The century-old 
Pythagorean idea that the earth was round (spherical) was an obvious 
fact, but there was much discussion about which heavenly bodies re­
volved about what. Theatetus was laying the foundation for the study 
of irrationals that would later appear in Book X of Euclid's Elements. 
Theatetus was also the first to determine that there are exactly five 
regular solids, which are usually named after his student, colleague, 
friend, and founder of the Academy, Plato. 

The Academy was the first institution of higher learning. Above 
its gateway was the admonishment, "Let no one ignorant of geometry 
enter here." Plato did not produce any significant mathematics, but 
he did produce significant mathematicians. Of these, Eudoxus (circa 
408-355 B.C.) ranks as one of the greatest mathematicians of all time. 
He is also called the father of scientific astronomy. From the so-called 
Archimedes' axiom, Eudoxus developed the geometric aspect of the 
integral calculus, known as the method of exhaustion. Of even more 
significance, Eudoxus solved the great quandary of the Pythagoreans 
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by developing a theory of proportion that included the irrationals. 
This theory, which leads directly to the work of Dedekind, is pre­
served in Book V of Euclid's Elements. 

Menaechmus, a student of Eudoxus, introduced the conics (the 
parabola, the ellipse, the hyperbola) into mathematics. As a tutor to 
the young man who would become Alexander the Great, Menaechmus 
informed his student that there are no royal roads to geometry. Alex­
ander was, in turn, also the student of, the friend of, and the protector 
of another member of the Academy, Aristotle. Like Plato (circa 430-
349 B.C.), Aristotle <384-322 B.C.) had a high regard for mathematics, 
although not a mathematician himself. Aristotle's work influenced 
mathematics, as it did all branches of learning. From the numerous 
mathematical examples in Aristotle's writing, the extent of pre­
Euclidean mathematics can be gleaned. Aristotle's student Eudemus 
wrote a History of Geometry, but it is unfortunately lost. 

Philip II of Macedonia conquered Greece, and his son Alexan­
der III conquered most of the world. Setting out to Hellenize the world, 
Alexander ended up trying to harmonize it. Men still strive toward 
Alexander's dream of a united world. Alexander became king of 
Macedonia at the age of twenty in 336 B.C. and died of malaria at the 
age of thirty-three at Babylon in 323 B.C. His death, together with 
the death of Aristotle the next year, marks the end of the Hellenic 
Age of Greek Civilization. The next period is called the Hellenistic 
Age or the Alexandrian Age. 

With Alexander dead, his empire fell apart and Egypt went to 
one of Alexander's leading generals and best friends since childhood, 
Ptolemy, son of Lagos. (In fact, he may also have been a half-brother 
since his mother had been a concubine of Philip II.) Declaring him­
self King Ptolemy I, called Soter (savior), in 306 B.C. he established 
the Ptolemaic dynasty. Ptolemy I was succeeded by Ptolemy II, called 
Philadelphus (sister-loving), and then by Ptolemy III, called Ever­
getes (benefactor), who died in 221 B.C. When there is doubt about the 
identity of a particular Ptolemaic king, we shall simply call him King 
Ptolemy. The fifth century B.C. had seen the zenith of Greek literature, 
the fourth witnessed the flowering of philosophy, and, under the direc­
tion of these three kings, the third century would see the Golden Age 
of Greek Mathematics and Science. 

Before departing for Persia, the ancient enemy of the Greeks, 
Alexander in Egypt in the winter of 332 -331 B.C. established Alex­
andria-near-Egypt. Of the seventeen or more cities named after 
Alexander, this is the Alexandria and the capital of the Ptolemaic 
dynasty. Cooled by sea breezes and located between Lake Mariout 
and the Mediterranean Sea, the city was directly connected by canal 
to the Canopic branch of the Nile and from the Nile to the Red Sea by 
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canal. By both land and sea, Alexandria was at the crossroads of 
Asia, Mrica, and Europe and soon became the most important city of 
the world. The architect of this truly cosmopolitan city was Dinocrates, 
builder of the Temple of Diana at Ephesus. All the buildings were 
made of stone, and most public buildings were faced with marble. The 
two principal avenues were illuminated at night by oil lamps. Alex­
andria was created as one of the most beautiful cities the world has 
ever known. 

At the center of Alexandria stood the Soma, containing the 
body of Alexander. The highest spot in the city was occupied by the 
Serapium, which contained the Temple of Sera pis. (Later, some would 
say that the magnificance of the Serapium was excelled only by the 
Capitol at Rome.) Serapis was a composite figure of Greek and Egyp­
tian gods constructed by a committee at the direction of King Ptolemy 
with the political aim of providing the population with a common 
cult. This committee was more than successful. The cult of Serapis 
and his consort Isis spread through the Mediterranean world and 
was one of the last to hold out against Christianity. Six hundred 
years later a memorial to the Roman Emperor Diocletian would be 
built near the Serapium. This eighty-four foot column is (incorrectly) 
called Pompey's Pillar and is the only structure from ancient Alex­
andria that still stands in place. 

The most famous of Alexandria's buildings is the Pharos, one of 
the Seven Wonders of the Ancient World. With its gleaming white 
marble united with molten lead, the lighthouse was about five hun­
dred feet tall, perhaps even taller. Left unattended in later years, the 
lantern and statue of Poseidon that topped the Pharos fell about 
700 A.D. (This was a thousand years after the clever architect Sos­
tratos had inscribed his name in the stone and then covered it with 
plaster bearing the royal inscription of King Ptolemy.) The circular 
third story with its helical staircases and the octagonal second story 
fell as a result of an earthquake about 1100. Finally, the square first 
story, which could have housed three hundred attendants, was 
destroyed by another earthquake during the fourteenth century. The 
Pharos was also a fort. Since its demise, several forts have been built 
and destroyed on the location. 

The Museum and the Library at Alexandria were organized 
under the direction of Ptolemy I by Demetrius of Phaleron. Because 
of these institutions, Alexandria became. the intellectual capital of 
the world from the third century B.C. until the Middle Ages. At Deme­
trius' instigation, Ptolemy II had the Holy Scriptures of the Jews trans­
lated into Greek. This version, which is called the Septuagint, became 
the major source for the Old Testament since the original sources 
were lost. The name comes from the fact that some seventy Jewish 
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scholars were called to Alexandria to make the translation. According 
to legend, the scholars were segregated into separate cells to make 
separate translations but all translations were identical, proving they 
were inspired by God. The Alexandrian Jews produced an enormous 
religious literature during the last two centuries B.C., including Ec­
clesiastes, part of the Psalms, and most of the Apocrypha. 

The third century B.C. was the Silver Age of Greek literature. 
Mter its foundation by Demetrius, the Library was directed by 
Zenodotus of Phesus. We owe to him the editing and preservation of 
Homer's works. Theocritus of Syracuse, the only Alexandrian poet 
still read for pleasure, founded pastoral or idyllic poetry. The elegy 
and epigram were established as major forms for poetic expression. 
Poetry was written about everyday things. Romantic love between 
men and women, darts, hearts, etc., were introduced into literature. 
On the avant-garde side, poems were written in the shape of a bird, 
and whole books were written without the letter "s." The systematic 
study of grammar was introduced. Apollonius of Rhodes was a director 
of the Library. This Apollonius is the author of the Argonauts, the 
familiar tale about Jason, Medea, and the Golden Fleece. Perhaps 
the best known director of the Library is Eratosthenes of Cyrene. He 
was an intellectual giant who excelled in every field. His calculation 
of the diameter of the earth was off by only fifty miles! In mathematics 
classes today, he is best known for his sieve for isolating prime 
numbers. 

The Library housed the largest collection of books assembled be­
fore the printing press, as well as being the center of research and 
production in the humanities. It probably never exceeded a million 
rolls. (A roll was ten inches by an average of thirty-five feet.) The 
Library grew by direct purchases, such as that of Aristotle's library. 
Also, all travelers to Alexandria had to surrender their books and, if 
they were not in the Library, they would be kept with copies on cheap 
papyrus given to the owners. Fearing the growth of the library at 
Pergamum, the export of papyrus from Egypt was made illegal. King 
Ptolemy borrowed the original manuscripts of Aeschylus, Sophocles, 
and Euripides from libraries at Athens to have copies made and 
deposited a certain sum to guarantee their return. Upon obtaining the 
works, he considered them more valuable than his large deposit and 
returned the copies. The Library was soon so large that most of the 
collection spilled over to the "daughter Library" in the Serapium. 

The direction of the Museum was determined by Straton of Lamp­
sacos, whom Ptolemy I called to tutor Ptolemy II. Straton was a physi­
cist, and so the Museum became a court institution for the investiga­
tion of mathematics and science. (The living part of any museum today 
that deserves the name is its research staff; a proper museum is a col-
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lection of people and not a collection of things.) Aristarchus of Samos, 
one of Straton's students, calculated that the sun is larger than the 
earth and proposed that the sun, not the earth is the center of the 
universe. Herophilus of Chalcedon, the founder of anatomy, discovered 
the circulation of the blood. By dissecting (perhaps live) subjects at 
the Museum, he determined that the brain is the seat of intelligence, 
contrary to Aristotle's idea that it was the heart. Mathematics, geog­
raphy, astronomy, and medicine all grew to maturity at the Museum 
within a short time. The third century B.C. was the greatest period of 
scientific growth that civilization has known. The Golden Age of Greek 
Mathematics was a part of this and was dominated by three giants, 
Euclid, Archimedes, and Apollonius. 

Euclid was probably educated at the Academy. He was in Alex­
andria about 300 B.C. Other than his works, the only other things we 
know about Euclid are two stories, both of which may be apocryphal. 
One is that he assured King Ptolemy that there were no royal roads 
to geometry. (Shades of Menaechmus and Alexander.) The other is 
that in response to the beginning student's eternal question, "What 
shall I gain from learning these things?" Euclid directed that the 
student be given a small coin. Although there is no record that Euclid 
was at the Museum/Library, it is difficult to imagine otherwise. Euclid 
wrote many books on several subjects. His Optics is still extant; the 
Conics itself is lost but is preserved in the first three books of Apolloni­
us' Conics; and the Elements of Music is completely lost. Euclid would 
have to be listed as a first class mathematician, even without the work 
that is synonymous with his name and with geometry itself, the 
Elements. 

There was no other book like the Elements before. The Elements 
placed mathematics on an axiomatic basis! Euclid's method was so 
successful that the works of his predecessors were discarded (unfor­
tunately, for the historian). The Elements does not contain all of 
mathematics that was known at the time; for example, the conics are 
not treated. The Elements is not only about geometry; several of its 
Books deal with irrational numbers and arithmetic (i.e., the theory 
of numbers). Euclid's Elements became the standard against which 
all mathematical and scientific writing was compared for two thousand 
years. There will never be another book like the Elements. 

The second mathematical giant of the Golden Age is Archimedes 
of Syracuse (287 -212 B.C.). After studying at Alexandria, he returned 
to Sicily to live under King Hieron II and his son Gelon II. He was on 
intimate terms with these Greek kings, if not related to them. The 
very short Sand-reckoner, which is a part of every mathematician's 
baggage, is addressed to King Gelon. All of Archimedes' works are 
short. The Method, which is addressed to Eratosthenes at Alexandria 
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and was lost until 1906, explains how he derived his theorems. The 
historian W. W. R. Ball claims that Archimedes deliberately misstated 
some of his results to ensnare poachers. Everyone knows the "Eureka 
story," the many stories about his mechanical inventions, and that 
Archimedes was slain when Syracuse fell to the Romans. Archimedes 
attached no importance to his mechanical inventions but prided him­
self on his mathematics. As he had directed, his tomb was decorated 
only with a cylinder (with ends) enscribed about a sphere with his dis­
covery that the ratio of the surface areas of the solids and the ratio of 
the volumes are both 3/2. (Cicero later found and repaired the tomb, 
but its location is now lost.) The theorems on the tomb were results 
that appear in Archimedes' greatest masterpiece, On the Sphere and 
Cylinder. 

The third mathematical giant of the Golden Age is Apollonius 
of Perga. Apollonius, who was twenty-five years younger than Archi­
medes, studied in Alexandria and stayed there. His Tangencies dis­
cusses what is known as the Problem of Apollonius: Given three 
things, each of which is either a point, a line, or a circle, determine 
the circles tangent to the three. Apollonius' reputation as "the Great 
Geometer" rests on a single book, the Conics. The first seven of its 
eight Books are extant. From the dedication of the last five Books of 
the Conics to King Attalus I of Pergamum, we might infer that Apol­
lonius and the new king, Ptolemy IV, were not on the best of terms. 
The Conics is the last Greek mathematical work that is an unquali­
fied masterpiece. 

The end of the third century B.C. saw the end of the Golden Age 
of Greek Mathematics. After the death of Ptolemy III in 221 B.C., the 
fortunes of the Museum/Library waxed and waned, but mostly waned. 
The vicissitudes of peace and turmoil within the city of Alexandria 
(and everywhere else) did not provide the environment for creation. 
Of the mathematicians from the next three centuries, only one made 
a significant contribution, and he was a mathematician by necessity. 
In order to do his work, Hipparchus of Nicaea (circa 180-125 B.C.), 

one of the great astronomers, founded trigonometry. 
After Ptolemy III, the Ptolemaic dynasty degenerated. However, 

the last member of the dynasty to rule was certainly an exception. 
Brilliant, daring, ruthless, unscrupulous, totally charming, and 
equally ambitious, she was Cleopatra VII. This pure Macedonian 
Greek queen was the first of the Ptolemaic dynasty to speak the 
language of the Egyptians. She had many accomplishments. Even 
after her plan to rule the world with Julius Caesar came to an abrupt 
end on 15 March 44 B.C., Rome feared Cleopatra-and with good rea­
son. The story of her second plan, this time with Mark Antony, belongs 
to poetry. She committed suicide in 30 B.C. 
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Cleopatra plays a role in two chapters of the history of the Li­
brary. The first incident may be best known from Shaw's Caesar and 
Cleopatra. "Horror unspeakable! ... Oh, worse than the death of ten 
thousand men! Loss irreparable to mankind! . . . The fire has spread 
from your ships. The first of the seven wonders of the world perishes. 
The library at Alexandria is in flames." A few of the 700,000 rolls 
may have been destroyed at the harbor by the fire set by Caesar, but 
these would have been those that Cleopatra had given to Caesar as a 
gift (investment). The marble library itself could hardly have been 
"in flames," and its contents did not perish in 47 B.C. In the next 
episode, the Library is compensated by the addition of 200,000 rolls 
in 41 B.C. For it was then that Antony packed up the second most 
prominent library in the world, the library at Pergamum, and sent 
it off to Cleopatra as a token of his affection. 

With the end of the Ptolemaic dynasty and the creation of the 
Roman Empire by Augustus, Rome became the center of art and litera­
ture but would never excel the glory that was Greece. The roman con­
tribution to mathematics and science was nil. The advances in these 
fields still came from Alexandria. 

Menelaus of Alexandria made advances in geometry and spher­
ical trigonometry at the end of the first century. Galen, the supreme 
authority of medicine, lived in the second century as did Claudius 
Ptolemy of Alexandria, who is the Ptolemy and is not related to the 
earlier rulers. The work started by Hipparchus in the second cen­
tury B.C. culminated in Ptolemy's Mathematical Synthesis. This Greek 
work is better known by its Arabic title Almagest (The Greatest). 
The Almagest and his Geography became the standard textbooks in 
their fields for at least fourteen centuries. Ptolemy's modest estimate 
of the size of the earth encouraged Columbus to undertake his voyage. 
In Ptolemy's defense, it should be added that the so-called Ptolemaic 
theory fit the available data better than the so-called Copernican 
theory. Hard as it is to believe, the author of the Almagest is the same 
Ptolemy that wrote the famous Tetrabiblos on astrology. 

The Silver Age of Greek Mathematics is the century from A.D. 250 
to 350. Although his dates are uncertain, we may place Heron of Al­
exandria at the beginning of this revival. Heron wrote on almost 
every area of mathematics and physics, including a commentary on 
the Elements. Nothing seems to have come of his invention of the 
steam engine. Diophantus of Alexandria is more important to the 
history of mathematics. In his Arithmetica we see the beginnings of 
of modern algebra. Today Diophantine analysis is a branch of the 
theory of numbers. The Silver Age ends with the last giant of Greek 
mathematics, the geometer Pappus of Alexandria. Pappus made 
several significant contributions to mathematics in his Synagoge, 
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which is usually called the Collection. (See Section 34.1 for one of 
them.) Only a fragment of his commentaries on the Elements and the 
Almagest are extant. In the history of geometry, Pappus (circa 320 
A.D.) is followed by Descartes (circa 1637). In fact, Descartes invented 
analytic geometry in trying to solve a problem posed in the Collection. 

Theon of Alexandria (circa 365 A.D.) edited the Elements and 
wrote a commentary on the Almagest. These were probably discussed 
less than Philostratus' century-old biography of Apollonius of Tyana 
(circa 30 A.D.), which describes Apollonius' divine birth, miracles, 
and ascension into heaven. Alexandria had turned to philosophy and 
theology. Much of the theological debate centered on the nature of 
Jesus of Nazareth. The great schisms among the Christian sects and 
the power politics that established Christian doctrine do not concern 
us here. The struggle between the Christians and the pagans does. 
The patriarchs of Alexandria became the real rulers of the city. Hav­
ing the opportunity in 391 A.D., the patriarch roused the mob to destroy 
the contents of the Serapium, which housed the daughter branch of the 
Library. Certainly the god Sera pis and all his trappings were de­
stroyed. Exactly how much of the Library was destroyed is not known 
- opinions vary from only a few of the books to almost all of the books. 

Hypatia of Alexandria, the daughter of Theon, was a mathema­
tician and philosopher of some fame. She wrote commentaries on the 
works of Apollonius, Ptolemy, and Diaphantus. Hypatia was an ardent 
devotee of pagan learning and culture. The Christian persecution of 
the pagans and of the Jews that resulted in the destruction of a part 
of the Library in 391 A.D. was still going on. For her defense of things 
Greek, Hypatia was literally torn limb from limb by the fanatic 
Christian mob in 415 A.D. To Hypatia goes the honor of being the 
first known woman mathematician, one of the first martyrs of science, 
and the last mathematician to lend glory to the Museum. 

After studying at Alexandria, Proclus Lycius (A.D. 410-485) 
went to Athens and became the greatest director ofthe Academy in the 
last century of its existence. Proclus was more of a philosopher than 
a mathematician. However, his Commentary on Book I of the Elements 
is invaluable since it contains a large proportion of all the available 
information on the history of pre-Euclidean geometry. (A new English 
translation of this interesting commentary is available; see Exercise 
11.5.) The traditional date of the "fall" of Rome is 476 A.D. Proclus was 
writing about this time and had before him all the great mathematical 
works from Eudemus' History of Geometry to Pappus' Commentary on 
the Elements. The last director of the Academy was Damascus. His 
student Simplicius of Cilicia wrote a commentary on Book I of the 
Elements. Simplicius' work is valuable because it preserves the work 
of others, including much of Aristotle and some of Eudemus. 
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In 529 A.D., Justinian closed the Academy because its pagan and 
(supposedly) perverse learning was a threat to Christianity. If the 
fall of Rome in 476 marks the beginning of the Middle Ages and some 
part of the Middle Ages is to be called the Dark Ages, then the year 
529 is a best choice for the beginning of the Dark Ages. Even the 
Dark Ages were not completely black, of course. Also in 529, St. Bene­
dict founded the monastery at Monte Cassino (later destroyed by Al­
lied bombings in 1944). An unsung hero of this time is King Chosroes 
of Persia. When Justinian closed the schools, Damascus and Simplicius 
were among those from the Academy who escaped to Baghdad. King 
Chosroes extracted from Justinian that those members of the "Acad­
emy-in-Exile" who wished to return be exempt from the laws against 
pagan subjects of the empire. 

The Byzantine rule of Alexandria was interrupted by the Per­
sians for the decade beginning with 618 A.D. Little is known about 
the Persian Interlude except that it was a peaceful period, unusual 
for Alexandria since the days of Ptolemy III. Also, the Library was 
used for research, mostly in theology and medicine. 

The second city of the Empire fell not with a bang but with a 
whimper. Amidst the struggles among the bishops for power, among 
the successors to the emperor for power, and between the two, Alex­
andria simply surrendered to a small army of Arabs led by Amr ibn 
al As in 641 A.D. The terms of the surrender provided for an eleven­
month armistice, during which time anyone could leave Alexandria 
by sea with movable property. On these generous terms, what gems 
in the form of precious stones and in the form of priceless manu­
scripts left the city? What fragments of a thousand years of Greek 
civilization were evacuated? Amr sent a letter to the Caliph Omar 
asking what to do with the Library. Omar answered that if the books 
contain what is in the Koran then they are superfluous and may be de­
stroyed, but if they contain things contrary to the Koran then they 
are pernicious and should be destroyed. The books were burned. Ac­
cording to one legend, the Library furnished fuel for the four thousand 
baths in the city for a period of six months. With its intellectual light­
house gone, the earth became flat and the Dark Ages of Western civ­
ilization would last six more centuries. 

10.2 EXERCISES 

10.1 Place the names of the following ten mathematicians in chrono­
logical order: Apollonius, Archimedes, Euclid, Eudoxus, Hypatia, 
Pappus, Proclus, Ptolemy, Pythagoras, Thales. 
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• 10.2 There exist exactly five regular (convex) solids. 

• 10.3 True or False? 

(a) The Library at Alexandria was one of the Seven Wonders 
of the World. 

(b) The scholars at the Museum were paid by the rulers of 
Alexandria. 

(c) Everyone at the Museum knew the earth was round. 

(d) Although mice, mold, and termites must have taken their 
toll, the three recorded incidents of destruction of the books at 
the Library were due to military operations, religious fanaticism, 
and simple ignorance. 

(e) The Elements placed mathematics on axiomatic basis. 

(f) Aristotle was a tutor to Alexander the Great. 

(g) Euclid's Elements is a summary of all geometry that was 
known by 300 B.C. 

(h) The Academy, which lasted a millenium, was founded by 
Euclid. 

(i) Euclid alone looked on beauty bare. 

(j) The Golden Age of Greek Mathematics was approximately 
from 300 to 200 B.C. 

10.4 What is the method in Archimedes' The Method? 

10.5 For the history of Greek mathematics, read the two volume A 
History of Greek Mathematics by T. L. Heath (Oxford, 1921). For the 
history of Greek science, read the two-volume Norton paperback A 
History of Science by George Sarton (Harvard, 1952). However, if you 
can take only small doses of history, then the short paperback Ancient 
Science and Modern Civilization by Sarton (U. Nebraska, 1954) is 
for you. 

10.6 If you like your history in story form, read the two volume 
Alexandria, The Golden City by H. T. Davis (Principia of Illinois, 
1957), Hypatia by Charles Kingsley (in Everyman's Library), or 
Cleopatra's Children by Alice Desmond (Dodd, Mead, 1971). 

10.7 For a history of Alexandria or of the Library read, respectively, 
The Golden Age of Alexandria by John Marlowe (Gollancz, 1971) or 
The Alexandrian Library by E. A. Parsons (Elsevier, 1952). 



CHAPTER 11 

Euclid's Elements 

11.1 THE ELEMENTS 

The trivium, consisting of grammar, logic, and rhetoric, was added 
to the quadrivium to form the seven arts of the medieval curriculum. 
The quadrivium consists of the mathemata or subjects of study that 
go back at least to Archytas of Taras, one of the last of the Pythag­
oreans. Of course, the word mathematics no longer means all learning, 
as it once did. Of the seven liberal arts, the original four that were 
deemed worthy of study were the mathemata called arithmetica, 
harmonica, geometria, and astrologia. Today the quadrivium is 
usually listed as arithmetic, music, geometry and astronomy. This is 
somewhat misleading and especially so for Americans who don't 
realize that the subjects they call arithmetic and theory of numbers 
go by the opposite names in the rest of the world. An American stu­
dent would better understand the content of the quadrivium if it were 
listed as theory of numbers, mathematical theory of music, geometry, 
and mathematical astronomy. 

Euclid wrote on each of the mathemata of the quadrivium. His 
Elements of Music is completely lost, but the Phaenomena on spherical 
geometry for astronomy is extant. Needless to say, Euclid wrote a book 
on arithmetic and geometry that is called the Elements. No other 
secular book has circulated more widely over the world or has been 
more edited or studied. Very little development of the mathematical 
method took place after Euclid until modern times! It is only in our 
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own century that the Elements has been universally replaced as the 
high school geometry textbook. 

It is always fun for little men to point out the flaws of a work that 
superseded all of its predecessors and stood as a standard for two 
millennia. Although the Elements does have flaws, it has most of the 
necessary virtues. We shall give below a small amount of commentary 
in which some of Euclid's flaws are indicated. We do so, however, 
humbled by the knowledge that it is unlikely a book having the sig­
nificance of the Elements will ever be written again. 

We shall now look at the contents of the first Book of the Ele­
ments. The theory from Book I that is quoted below is taken from The 
Thirteen Books of Euclid's Elements by Thomas L. Heath with the kind 
permission of the publisher, the Cambridge University Press. Heath 
is the source in English on the Elements. Heath's three volume book 
oftext and commentary is reprinted in paperback by Dover. 

As do most of the thirteen books, Book I begins with Definitions, 
which is just a list without any discussion. The first items in the list 
are not actually definitions but are descriptions to let the reader, who 
is just beginning the study of geometry, know in what sense the words 
are being used. It will be seen that Euclid uses the word line as we 
would use the word curve, Euclid's straight line would be our segment, 
Euclid's circle would be our disc, and Euclid's triangle would be our 
triangular region (our triangle together with its interior). (Look at 
Figure 9.4 again.) While rhombus is defined, the word is not used in 
the Elements. On the other hand, some technical words that are used 
are not defined at all. For example, Euclid would suppose that every­
one knew the circumference of a circle is the line bounding a circle. 
(We would say that a circle is the curve bounding a disc. However, 
even Euclid occasionally confused his terms circle and circumference 
of a circle.) These are just a few of the things you might look for in 
reading the Definitions of Book I. 

Euclid's Definitions of Book I 1. A point is that which has no part. 
2. A line is breadthless length. 3, The extremities of a line are points. 
4. A straight line is a line which lies evenly with the points on itself. 5. A 
surface is that which has length and breadth only. 6. The extremities 
of a surface are lines. 7. A plane surface is a surface which lies evenly 
with the straight lines on itself. 8. A plane angle is the inclination to one 
another of two lines in a plane which meet one another and do not lie 
in a straight line. 9. And when the lines containing the angle are 
straight, the angle is called rectilineal. 10. When a straight line set up 
on a straight line makes the adjacent angles equal to one another, each 
of the equal angles is right, and the straight line standing on the other 
is called a perpendicular to that on which it stands. 11. An obtuse angle 
is an angle greater than a right angle. 12, An acute angle is an angle less 
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than a right angle. 13. A boundary is that which is an extremity of 
anything. 14. A figure is that which is contained by any boundary or 
boundaries. 15. A circle is a plane figure contained by one line such that 
all the straight lines falling upon it from one point among those lying 
within the figure are equal to one another. 16. And the point is called the 
centre of the circle. 17. A diameter of the circle is any straight line drawn 
through the centre and terminated in both directions by the circum­
ference of the circle, and such a straight line also bisects the circle. 
18. A semicircle is the figure contained by the diameter and the circum­
ference cut off by it. And the centre of the semicircle is the same as that 
of the circle. 19. Rectilineal figures are those which are contained by 
straight lines, trilateral figures being those contained by three, quadri­
lateral those contained by four, and multilateral those contained by 
more than four straight lines. 20. Of trilateral figures, an equilateral 
triangle is that which has its three sides equal, an isosceles triangle that 
which has two of its sides alone equal, and a scalene triangle that which 
has its three sides unequal. 21. Further, of trilateral figures, a right­
angled triangle is that which has a right angle, an obtuse-angled triangle 
that which has an obtuse angle, and an acute-angled triangle that which 
has its three angles acute. 22. Of quadrilateral figures, a square is that 
which is both equilateral and right-angled; an oblong that which is 
right-angled but not equilateral; a rhombus that which is equilateral 
but not right-angled; and a rhomboid that which has its opposite sides 
and angles equal to one another but is neither equilateral nor right­
angled. And let quadrilaterals other than these be called trapezia. 
23. Parallel straight lines are straight lines which, being in the same 
plane and being produced indefinitely in both directions, do not meet 
one another in either direction. 

The Postulates and the Common Notions (or Axioms) appear next 
in Book I. In reading these you might well wonder what most of these 
items actually mean. As the philosopher Schopenhauer has pointed 
out, it is surprising that the fourth axiom was not the subject of attack 
rather than that stroke of genius, the fifth postulate. 

Euclid's Postulates Let the following be postulated: 1. To draw a 
straight line from any point to any point. 2. To produce a finite straight 
line continuously in a straight line. 3. To describe a circle with any 
centre and distance. 4. That all right angles are equal to one another. 
5. That, if a straight line falling on two straight lines make the interior 
angles on the same side less than two right angles, the two straight 
lines, if produced indefinitely, meet on that side on which are the angles 
less than the two right angles. 

Euclid's Common Notions 1. Things which are equal to the same 
thing are also equal to one another. 2. If equals be added to equals, the 
wholes are equal. 3. If equals be subtracted from equals, the remainders 
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are equal. 4. Things which coincide with one another are equal to one 
another. 5. The whole is greater than the part. 

The forty-eight propositions of Book I follow the Common No­
tions. The existence of points is tacitly assumed. The existence of 
straight lines and circles is then assured by the postulates. Beyond 
this, the existence of any entity must be proved. Euclid knew very 
well that the definition of a thing does not imply its existence. The 
first three propositions are problems rather than theorems. Following 
the statement of a problem, Euclid proves the existence of some de­
sired entity. For example, we would state the first proposition as 
follows: Given AB, there exists an equilateral triangle with side AB. 
Euclid argues that if point C is the intersection of the circumference 
of the circle with center A and radius AB and of the circumference 
of the circle with center B and radius AB then b,ABC is equilateral. 
This is fine. However, Euclid asserts the existence of such a point C. 
This is a major flaw! There is nothing in the postulates to verify this 
assertion. Here and in some other cases, it seems clear that Euclid 
resorts to arguing from a figure. Euclid's postulates and axioms are 
not adequate to describe what we call Euclidean geometry. 

At the end of some of the statements of the propositions from 
Book I that are listed below, there is a parenthetical note indicating 
where that proposition occurs in our development. Even with our 
powerful axioms, the proof of the existence of the point C for the first 
proposition is by no means trivial. In fact, Euclid's Proposition 1.1 is 
among the last of his propositions that we shall be able to prove. Clear­
ly, Euclid should have had some additional postulates. 

In arguing that b,ABC in the proof of his first proposition is equi­
lateral, Euclid would say that AC and AB are equal by his fifteenth 
definition. Euclid's use of the word equal is not a flaw. Of course, it 

- -
would be wrong for us to say that AC and AB are equal. (We would 
say AC and AB are congruent.) However, Euclid uses the one word 
equal for several different relations. It is not Euclid's fault that the 
meaning of the word in modern mathematics is restricted to is exactly 
the same as. It is the burden of the modern reader to distinguish the 
various meanings from the context, just as it is the burden of the 
reader to distinguish the several meanings of our word side from its 
context. As is always the case in reading mathematics, in order to 
make proper sense of what is being read, the reader must keep in 
mind the definitions and use of terminology. 

The attentive reader of the Elements has the additional burden 
of compensating for the gaps left by Euclid. The only postulate that 
explicitly deals with the relation of betweenness is the second. Other-
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wise, it did not occur to Euclid that such an obvious idea needed any 
explanation. We infer from the Definitions that Euclid tacitly assumes 
a relation on the set of straight lines that he denotes by the word 
equal. However, given two straight lines which are not radii of the 
same circle, how can we tell whether they are equal or not? (In our 
terminology, the problem is to determine when two segments are 
congruent.) 

We would state Euclid's second proposition as follows: GivenBC 
and point A, there exists a point L such that AL = BC. From this re­
sult, we can derive an answer to the question of determining when 
two straight lines are equal. The second proposition has another ap­
plication. To say that a proof of the existence of some entity is con­
structive means that the proof tells you how to find the entity, which 
is very different from knowing only that the entity exists. Euclid's 
solutions to his problems are constructive existence proofs, which give 
rise to the ruler and compass game of Euclidean constructions (Sec­
tion 34.3). In regard to this, the second proposition extends the use of 
the compass. By Euclid's proof (see our Theorem 21.2), to describe a 
circle we need to be given only its center and a straight line that is 
equal to a radius, rather than its center and a radius as the third 
postulate requires. 

Euclid's Propositions 1.1 through 1.4 1. On a given finite straight line 
to construct an equilateral triangle. (Theorem 21.1) 2. To place at a 
given point (as an extremity) a straight line equal to a given straight 
line. (Theorem 21.2) 3. Given two unequal straight lines, to cut offfrom 
the greater a straight line equal to the less. (Theorem 8.8) 4. If two tri­
angles have the two sides equal to two sides respectively, and have the 
angles contained by the equal straight lines equal, they will also have 
the base equal to the base, the triangle will be equal to the triangle, 
and the remaining angles will be equal to the remaining angles respec­
tively, namely those which the equal sides subtend. (Axiom 5) 

Proposition 1.4 is Euclid's first theorem and does not depend on 
the three problems that precede it. The proposition is called the Side­
Angle-Side Theorem for obvious reasons. There might be a question 
about the meaning of the statement. In particular, when are two plane 
angles equal? We infer, from the Definitions that Euclid tacitly as­
sumes, an undefined relation on the set of plane angles that he denotes 
by the word equal. (It is not until after Proposition 18, which is called 
the Side-Side-Side Theorem, that we have a criterion for determining 
whether two angles are equal or not. In essence, Proposition 18 de­
fines the meaning of Euclid's word equal as a relation on the set of 
plane angles.) Of course, rather than using Euclid's equal, we would 
use is congruent to, which is how the symbol = is to be read below in 
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all cases. Euclid's Proposition 1.4 is usually replaced by the following 
statement, which is called SAS: Given b.ABC and b.DEF, if AB = 
- -- --
DE, LA = LD, and AC = DF, then LB = LE, BC = EF, and LC = 
LF. The statement SAS covers the content of the proposition except for 
the part that says "the triangles will be equal to the triangles." In 
what will be our terminology, the hypothesis of SAS must also imply 
that the interiors of b.ABC and b.DEF are congruent (Exercise 19.2). 

Euclid's proof of Proposition 1.4 illustrates one more gap in his 
system. Euclid tacitly assumes that a given line has two sides. As in 
our development in the other chapters, some axioms such as PSP and 
Pasch's Postulate are necessary to rule out such weird planes as we 
considered at the end of Section 9.2. This necessity was not realized 
until the nineteenth century. Euclid's proof is based on the idea of 
superimposing one triangle onto another and seeing that they fit. 
That Euclid realized he was on shaky ground is indicated by his 
reluctance to use this method. The method is called superposition and 
is supposedly valid by the fourth common notion. Actually, some sort 
of converse of the fourth common notion would be more relevant. The 
idea of superposition is a good one. The difficulty is in making the idea 
precise. One way of overcoming this difficulty is to assume SAS as a 
postulate. In Chapters 16 and 17, we shall discuss this as well as an 
alternative method. 

Euclid's Propositions 1.5 through 1.7 5. In isosceles triangles the 
angles at the base are equal to one another, and if the equal straight 
lines be produced further, the angles under the base will be equal to 
one another. (Theorem 17.5) 6. If in a triangle two angles be equal to 
one another, the sides which subtend the equal angles will also be equal 
to one another. (Theorem 18.7) 7, Given two straight lines constructed 
on a straight line (from its extremities) and meeting in a point, there 
cannot be constructed on the same straight line (from its extremities), 
and on the same side of it, two other straight lines meeting in another 
point and equal to the former two respectively, namely each to that 
which has the same extremity with it. (Exercise 17.8) 

We would state Proposition 1.7 as follows: Given b.ABC, if point 
~ - - --

P is on the same side of AB as C, AP = AC, and BP = BC, then P= C. 
This is called the Hinge Theorem, as it is an abstraction of the idea 
that hinging three rods together gives a rigid configuration. Closely --
related to this is the Hinge Axiom: Given b.DEF and AB = DE, there 

~ --
exists a unique point C on a given side of AB such that AC = DF and 
BC=EF. 

We claim (without prooO that the following system is a cate­
gorical axiom system for Euclidean plane geometry. We take 



(a) Our theory in Chapters 6 through 9. 

(b) Pasch's Postulate as an axiom. 
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(c) The following definition, which is based on Euclid's Proposi­
tion 1.8: LA VB is congruent to LCWD if there exist segments --------- ---VE on VA, VF on VB, WG on WC, and WH on WD such that 
-- ---- -- ----
VE = WG, VF = WH, and EF = GH. 

(d) The Hinge Axiom as an axiom. 

(e) SAS as an axiom. 

(f) And Euclid's Parallel Postulate as an axiom. 

Our approach in succeeding chapters will be somewhat different. 

Euclid's Propositions 1.8 through 1.28 8. If two triangles have the 
two sides equal to two sides respectively, and have also the base equal 
to the base, they will also have the angles equal which are contained 
by the equal straight lines. (Theorem 17.14) 9. To bisect a given recti­
lineal angle. (Theorem 14.8) 10. To bisect a given finite straight line. 
(Theorem 8.15) 11. To draw a straight line at right angles to a given 
straight line from a given point on it. (Theorem 14.18) 12. To a given 
infinite straight line, from a given point which is not on it, to draw a 
perpendicular straight line. (Theorem 18.1) 13. If a straight line set up 
on a straight line makes angles, it will make either two right angles or 
angles equal to two right angles. (Theorem 14.9) 14. If with any straight 
line, and at a point on it, two straight lines not lying on the same side 
make the adjacent angles equal to two right angles, the two straight 
lines will be in a straight line with one another. (Theorem 14.10) 15. If 
two straight lines cut one another, they make the vertical angles equal 
to one another. (Theorem 14.11) 16. In any triangle, if one of the sides 
be produced, the exterior angle is greater than either of the interior 
and opposite angles. (Theorem 17.9) 17. In any triangle two angles taken 
together in any manner are less than two right angles. (Exercise 17.5) 
18. In any triangle the greater side subtends the greater angle. (Theorem 
18.10) 19. In any triangle the greater angle is subtended by the greater 
side. (Theorem 18.11) 20. In any triangle two sides taken together in 
any manner are greater than the remaining one. (Theorem 18.12) 
21. If on one of the sides of a triangle, from its extremities, there be con­
structed two straight lines meeting within the triangle, the straight 
lines so constructed will be less than the remaining two sides of the 
triangle, but will contain a greater angle. (Theorem 18.16) 22. Out of 
three straight lines, which are equal to three given straight lines, to 
construct a triangle: thus it is necessary that two of the straight lines 
taken together in any manner should be greater than the remaining 
one. (Theorem 20.15) 23. On a given straight line and at a point on it 
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to construct a rectilineal angle equal to a given rectilineal angle. 
(Theorem 14.3) 24. If two triangles have the two sides equal to two sides 
respectively, but have the one of the angles contained by the equal 
straight lines greater than the other, they will also have the base greater 
than the base. (Theorem 18.18) 25. If two triangles have the two sides 
equal to two sides respectively, but have the base greater than the base, 
they will also have the one of the angles contained by the equal straight 
lines greater than the other. (Theorem 18.19) 26. If two triangles have 
the two angles equal to two angles respectively, and one side equal to 
one side, namely, either the side adjoining the equal angles, or that 
subtending one of the equal angles, they will also have the remaining 
sides equal to the remaining sides and the remaining angle to the re­
maining angle. (Theorems 17.12 and 17.13) 27. If a straight line falling 
on two straight lines make the alternate angles equal to one another, 
the straight lines will be parallel to one another. (Corollary 21.6) 28. If 
a straight line falling on two straight lines make the exterior angle 
equal to the interior and opposite angle on the same side, or the in­
terior angles on the same side equal to two right angles, the straight 
lines will be parallel to one another. (Corollary 21.7) 

The part of Book I that is independent of the fifth postulate is 
called absolute geometry. Euclid's absolute geometry ends with his 
Proposition 1.28. The controversial postulate on parallels is used for 
the first time in the proof of Proposition 1.29. 

Euclid's Propositions 1.29 through 1.48 29. A straight line falling on 
parallel straight lines makes the alternate angles equal to one another, 
the exterior angle equal to the interior and opposite angle, and the in­
terior angles on the same side equal to two right angles. 30. Straight 
lines parallel to the same straight line are also parallel to one another. 
31. Through a given point to draw a straight line parallel to a given 
straight line. 32. In any triangle, if one of the sides be produced, the 
exterior angle is equal to the two interior and opposite angles, and the 
three interior angles of the triangle are equal to two right angles. 33. The 
straight lines joining equal and parallel straight lines (at the extremi­
ties which are) in the same directions (respectively) are themselves also 
equal and parallel. 34. In parallelogrammic areas the opposite sides and 
angles are equal to one another, and the diameter bisects the areas. 
35. Parallelograms which are on the same base and in the same parallels 
are equal to one another. 36. Parallelograms which are on equal bases 
and in the same parallels are equal to one another. 37. Triangles which 
are on the same base and in the same parallels are equal to one another. 
38. Triangles which are on equal bases and in the same parallels are 
equal to one another. 39. Equal trIangles which are on the same base 
and on the same side are also in the same parallels. 40. Equal triangles 
which are on equal bases and on the same side are also in the same 
parallels. 41. If a parallelogram have the same base with a triangle and 



EXERCISES 129 

be in the same parallels, the parallelogram is double of the triangle. 
42. To construct, in a given rectilineal angle, a parallelogram equal to a 
given triangle. 43. In any parallelogram the complements of the paral­
lelograms about the diameter are equal to one another. 44. To a given 
straight line to apply, in a given rectilineal angle, a parallelogram equal 
to a given triangle. 45. To construct, in a given rectilineal angle, a paral­
lelogram equal to a given rectilineal figure. 46. On a given straight line 
to describe a square. 47. In right-angled triangles the square on the 
side subtending the right angle is equal to the squares on the sides 
containing the right angle. 48. If in a triangle the square on one of the 
sides be equal to the squares on the remaining two sides of the triangle, 
the angle contained by the remaining two sides of the triangle is right. 

Thus Book I ends with the Pythagorean theorem and its converse. 
(It's the converse that is sometimes more useful.) The equal in Proposi­
tion 1.47 is the same equal that is introduced without warning by 
Euclid in Proposition L35. This equal is not our equal, nor is it our 
congruent either! In high school this equal is usually replaced by equal 
in area, which is an exaggerated oversimplification of Euclid's usage. 
(Many high school students can prove the Pythagorean formula 
c2 = a2 + b2 , but few of their teachers can prove Euclid's Proposition 
L47.) Propositions L35 through 1.48 deal with the idea of piecewise 
congruence. Loosely speaking, regions Rand S are piecewise con­
gruent if each can be cut up into n regions R j and Sj, respectively, such 
that R j is congruent to Sj for i= 1,2, ... , n. (For a more precise for­
mulation of the idea and to see how one can extend the idea of area of 
a triangle to area of a polygonal region in Euclidean geometry, see 
Section 33.2, which can be read now.) If you think about all this for a 
moment, you will have to admit that Euclid's Book I is still a tour de 
force! 

11.2 EXERCISES 

11.1 Euclid's Proposition 1.1 does not hold on a sphere. 

11.2 List the different meanings of the word equal in Book I of the 
Elements. (Don't forget the only meaning that is allowed in modern 
mathematics.) 

11.3 What is the content of Euclid's Porisms? 

11.4 Which of Euclid's proofs would be followed by "Q.E.F." and 
which by "Q.E.D."? 

11.5 Read Proclus, A Commentary on the First Book of Euclid's 
Elements by G. R. Morrow (Princeton, 1970). 
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GRAFFITI 

As to writing another book on geometry, the middle ages 
would as soon have thought of composing another New Testament, 

De Morgan 

It would be foolish to give credit to Euclid for pangeometrical 
conceptions; the idea of geometry different from the common-sense 
one never occurred to his mind. Yet, when he stated the fifth 
postulate, he stood at the parting of the ways, His subconscious 
prescience is astounding. There is nothing comparable to it in the 
whole history of science. 

Sarton 

As to the need of improvement there can be no question whilst 
the reign of Euclid continues. My own idea of a useful course is to 
begin with arithmetic, and then not Euclid but algebra. Next, not 
Euclid, but practical geometry, solid as well as plane; not 
demonstration, but to make acquaintance. Then not Euclid, but 
elementary vectors, conjoined with algebra, and applied to geometry, 
Addition first; then the scalar product. Elementary calculus should 
go on simultaneously, and come into the vector algebraic geometry 
after a bit. Euclid might be an extra course for learned men, like 
Homer. But Euclid for children is barbarous. 

HeavisUh 

Euclid avoids it [the treatment of the infinite]; in modern 
mathematics it is systematically introduced, for only then is 
generality obtained. 

Cayley 

The science of figures is most glorious and beautiful. But how 
inaptly it has received the name geometry! 

Frischlinus 



CHAPTER 12 

Pasch's Postulate and Plane 
Separation Postulate 

12.1 AXIOM 3: PSP 

Neither the Plane-Separation Postulate (PSP) nor Pasch's Postulate 
(PASCH) have been formally introduced into our theory. Neither can 
be a theorem for L at this time. Which one shall we take as a new 
axiom? It turns out not to make any difference! We shall first show 
that PASCH implies PSP. The proof is quite long and may even be 
omitted without loss of continuity because we shall actually take PSP 
as our third axiom. Then PASCH later turns up as a theorem. 

DEFINITION 12.1 Pasch's Postulate or PASCH: If a line inter­
sects a triangle not at a vertex, then the line intersects two sides of 
the triangle. Plane-Separation Postulate or PSP: For every line l there 
exist convex sets HI and H2 whose union is the set of all points off l 
and such that if P and Q are two points with P in HI and Q in H2 then 
PQ intersects l. 

You should recognize that the following three statements are 
equivalent to PASCH: (1) If a line intersects the interior of a side of a 
triangle, then the line intersects another side of the triangle. (2) If a 
line intersects a triangle, then the line intersects two sides of the 
triangle. (3) If a line does not intersect either of two sides of a triangle, 
then the line does not intersect the third side of the triangle. Of course, 
a line may intersect all three sides of a triangle. For example, given 
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~ 

,6,ABC and B-E-C, then AE intersects all three sides of ,6,ABC as 
~ 

doesAB. 

Theorem 12.2 If PASCH, then PSP. 

Proof Let l be any line. Let L be a point on l. Let A and B be points 
off l such that A - L - B. Let HI be the set consisting of A and all points 
P such that l does not intersect AP. Let H2 be the set consisting of B 
and all points Q such that l does not intersect BQ. 

To show HI is convex, assume P and R are distinct points in HI 
and P-S-R. We must show S is in HI' If A,P, R are not distinct, then 
S is in HI by definition of HI' If A, P, R are distinct and collinear, then 
S is in AP or AR. In this case S is in HI by definition of HI as AS is 
contained in AP or AR. If ,6, APR, then l cannot intersect PR by 

- -
PASCH applied to ,6, APR. Then, since PS is contained in PR, line l 
cannot intersect AS by PASCH applied to ,6, APS. So S is in HI in all 
possible cases. HI is convex. Likewise, to show H2 is convex replace 
"H/' by "H2 " and "A" by "B" in the argument. 

Before proving every point off l is in HI or H 2, we shall show that 
l cannot intersect all three sides of ,6,ABV when V is a point off both 
land AB. Assuming otherwise, we suppose A - M - V and B - N - V 
wi th M and N on l. Since L, M, N are distinct and collinear, one of the 

~ 

points must be between the other two. If L - M - N, then A V intersects 
,6,BLN only at M which is an interior point of side LN. If L - N - M, 

~ 

then BV intersects ,6,ALM only at N which is an interior point of side 
- ~ 

LM. If M - L - N, then AB intersects ,6, VMN only at L which is an in-

terior point of side MN. Since each of the possibilities of one of L, M,N 
being between the other two contradicts PASCH, line l cannot inter­
sect the interior of each side of .6.ABV. 

~ 

If point T is in int (LA), then T is in HI and off H 2; if point T 
~ ~ 

is in int (LB), then T is in H2 and off HI' If point T is off l and off AB, 
then l cannot intersect both AT and BT since l cannot intersect the 
interior of each side of ,6,ABT. Thus T is in HI or H2. Hence fJjJ \ l = 

HI U H 2· 
Finally, suppose P is a point in HI' Q is a point in H 2 , and P 7" Q. 

~ ~ - ~ 

If P is in LA and Q is in LB, then l intersects PQ at L. If P is in LA and 
~ -

Q is off LB, then l intersects PQ by PASCH applied to ,6,BPQ; if Pis 
~ ~ 

off LA and Q is in LB, then l intersects PQ by PASCH applied to 
~ -

,6,APQ. If P and Q are both off AB, then l intersects int (PB) by PASCH 
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applied to b"ABP. Thus 1 intersects PQ by PASCH applied to b"BPQ. 

Therefore 1 intersects PQ in all cases. So HI and H2 satisfy PSP. • 

Axiom 3 PSP 'VlE5£' 3 convex sets HI and H2 :3 

1 Y'\l=HI UH2 , 

2 PEHI'QEH2,p""Q-::9PQn1""0. 

DEFINITION 12.3 The sets HI and H2 in Axiom 3 are halfplanes -of line 1, and 1 is an edge of each halfplane. A halfplane of AB is a 
~ -

halfplane of AB and a halfplane of AB. 

We now set out to prove that these half planes have the properties 
we think a side of a line should have. 

Theorem 12.4 If AB n l"" ° where A and B are two points off line 
l, then A and B are not in the same half plane of 1. 

Proof Assume A and B are two points in half plane H of line l. Then 
AB is a subset of H since H is convex. Because a halfplane of 1 does 
not contain a point of 1 by PSP, we then have AB n 1 = 0, contradict­
ing the hypothesis. Thus both A and B cannot be in H. • 

Theorem 12.5 If HI and H2 are a pair of half planes of line 1 as given 
in PSP, then HI"" 0, H2 "" 0, but HI n H2 = O. 

Proof Since HI U H2 = H2 U HI and PQ = QP, we see that PSP is sym­
metric in "Ht" and "H2." So, if point A is off line 1, we may assume A 
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is in HI without loss of generality. Let L be any point on land B be 
any point such that A -L -B. Then B is in H2 (Theorem 12.4), proving 
neither HI nor H2 is empty. Assume A is also in H2. Since A and B 
are distinct points in convex set H 2 , then L must be in H 2 , a contradic-
tion. Hence no point is in both HI and H 2 • • 

Theorem 12.6 If HI and H2 are a pair of half planes ofline l as given 
in PSP, then 9 is the union of the three mutually disjoint sets HI' 
H2 , and l. Also, H2 =;}lJ \ (HI U l) = (.9' \ l) \ HI' 

Proof Follows directly from .9' \ l=HI U H2 and Theorem 12.5. • 

Theorem 12.7 The halfplanes of a line are unique (except for order). 
If A is any point off line l, then the halfplanes of l are 

{PIP E .9' \ land AP n l;6 0}, 

{A} U {QIQ E.9' \ land AQ n l= 0}. 

Proof Let HI and H2 be a pair of half planes ofline l as given in PSP. 
Assume H; and H; are another such pair. We may suppose point A is 
in HI n H; (Theorem 12.5). If A and Pare two points off line l, then 
A and P are in different half planes of l iff AP intersects l (PSP and 
Theorem 12.4). Thus H2 and H; each consists of exactly those points 
P in .9' \ l such that AP intersects l. With H2 = H;, it follows that 
HI = H; as each of HI and H; must be (.9' \ l) \ H2, (Theorem 12.6). • 

As a result of our first theorems, we see that we could have as­
sumed the stronger axiom: If l is a line then there exists a unique 
pair HI and H2 of disjoint, nonempty convex sets such that (1) .9' \ l = 

HI U H2 and (2) P E HI' Q E H2 ~ PQ n l;6 0. 
The exception with respect to order in Theorem 12.7 is expected 

since there is no way to distinguish between halfplanes HI and H2 
of line l without reference to some point off l. Theorem 12.7 states that 
a line has unique halfplanes. We must show that conversely a half­
plane determines a unique line. 

Theorem 12.8 No two lines have the same halfplanes; the edge of a 
halfplane is unique. 

Proof Let line l have the two halfplanes Hand H2(l); let line m have 
the two half planes Hand H2(m). (Although l U H2(l) = m U H2(m), 
we need to show l = m to prove the theorem.) Assume there exists a 
point A on l \ m. Since A is off Hand m, point A is in H2 (m). Let B be 
any point of H. Then m intersects AB at some point M by PSP. Since 
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A - M - B and A is on 1, points Band M are in the same halfplane of 1 
(Theorem 12.7). So M is in H, a contradiction since M cannot be both 
a point of m and in a halfplane of m. Hence 1 \ m = 0 and 1 = m. • 

- -DEFINITION 12.9 A halfplane of AB is a side of AB, a side of 
---+ 

AB, and a side of AB. Each of the two half planes of a line is the opposite 
side of the other. Points P and Q are on opposite sides of line 1 if P is in 
one halfplane of land Q is in the other halfplane of l. 

Theorem 12.10 Let A and B be points on opposite sides of line l. 
Then A and B are not on the same side of l. If Band C are points on 
opposite sides of l, then A and C are on the same side of l. If Band D 
are points on the same side of l, then A and D are on opposite sides 
ofl. 

Proof Trivial. • 

We have followed the popular convention of having two words 
"half plane" and "side" with one meaning. A good argument against 
this is that "side" already had two different meanings. So now "side" 
has three meanings! There is little likelihood of confusion however. 
In fact, these meanings are so much a part of our culture that, unless 
it were pointed out, most students would not notice that "side" is used 
in two different ways in the next proof. 

Theorem 12.11 If line 1 contains no vertex of f1ABC, then 1 cannot 
intersect all three sides of the triangle. 

Proof Assume line 1 contains no vertex of f1ABC, but 1 intersects 
each side of f1ABC. Then A and B are on opposite sides of l, and B 
and C are on opposite sides of l. Hence A and C are on the same side 
of l, contradicting the assumption that 1 intersects the side AC of 
f1ABC .• 

Theorem 12.12 PASCH. 

c 

A'---~---~ I..-------~B 

FIGURE 12.2 
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Proof Exercise 12.1. • 

The shortest proof of Theorem 12.12 is very much like the proof 
of Theorem 12.11. The assertion that PSP and PASCH are equivalent 
under our first two axioms has now been demonstrated. 

Theorem 12.13 Peano's Postulate If t,ABC,B-C-D, andA-E-C, 
~ 

then there exists point F on DE such that A - F - B. 
~ ~ 

Proof Since D is off t,ABC and off AE, line DE exists and does not 
~ ~ 

pass through A. Also DE cannot intersect BC because E is off BC. Then 
~ 

DE must intersect the interior of AB in some point F by PASCH. • 

Theorem 12.14 If t,ABC, B-C-D, and A-F-B, then there exists 
~ 

Eon DF such that A-E-C and D-E-F. 
~ 

Proof The proof that DF is a line containing E such that A-E-C 
is quite similar to our proof of Peano's Postulate (Exercise 12.2). We 
must show D-E-F. Points D, E, F are clearly distinct and collinear. 

~ 

Since Band D are on opposite sides of AC and Band F are on the same 
~ ~ 

side of AC, it follows that D and F are on opposite sides of AC. Then, 
~ 

sinceE isonAC, we haveD-E-F .• 

Theorem 12.15 If t,ABC, then every point lies on a line that inter­
sects the triangle at two points. 

Proof Let P be an arbitrary point. Let Q be any point different from 
~ ~ 

P such that A-Q-B. If PQ=AB, the result is trivial. Otherwise the 
result foll(lws from PASCH. • 

The next theorem is included only because it is an interesting 

A 

B D 

FIGURE 12:3 
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curiosity. First conjectured by J. J. Sylvester in 1893, the statement 
remained a conjecture for the Euclidean plane until proved by T. Gal­
lai forty years later. 

Theorem 12.16 Sylvester's Theorem If n points are not all collinear, 
then there exists a line containing exactly two of the points. 

Proof Let PI' P2 ' Pa be three of the given n points such that PI is 
~ ~ ~ 

off P2Pa. Let Q be any point on P2Pa such that PIQ contains none of the 
~ 

given points except PI' Let R be the unique point in int (PIQ) such 
that R is on a line I through two of the given }Joints but no line con­
taining two of the given points intersects int (PIR). Possibly R = Q; 
in any case, R is not one of the given points. If I contains exactly two 
of the given points, we are done. Otherwise we may assume I contains 
three of the given points P4 , PS' P6 such that R -P4 -Ps and P6 is off 
--- ---
RPs' If one of the given points is in int (PIPS), then the line through 

this point and P6 intersects int (PIR); if one of the given points is in 
~ --- ---
PIPS \ PIPS' then the line through this point andP4 intersects int (PIR) 
(Theorem 12.13 and 12.14). Since no line containing two of the given 

~ 

points intersects int (PIR), we have that PIPS is a line containing 
exactly two of the given points. • 

12.2 PASCH, PEANO, PIERI, AND HILBERT 

From Proclus we learn Pappus (circa 300) had added some axioms to 
those of Euclid: (1) All parts of the plane and of the line coincide with 
each other; (2) a point divides a line; (3) a line divides a plane; (4) a 
plane divides a solid; and (5) for any segment there is another segment 
whose length is greater and one whose length is less. These great in-
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sights were dismissed by Proclus as unnecessary with the claim that 
they follow from Euclid's definitions. Proclus shared the human prob­
lem of distinguishing between the obvious and that which only ap­
pears to be obvious. 

By the sixteenth century Euclid's deductive system of geometry 
had been reduced to the science of space based on selfevident truths, 
The following two centuries saw the axiomatic method applied to 
social, political, and philosophical theories. Mathematics, strangely 
enough, was a Johnny-come-lately in appreciating its potential. 
The axiomatic method, which would be so fruitful in mathematics, 
blossomed anew in geometry in the nineteenth century. This was out 
of necessity. Mathematicians were beginning to hear about non­
Euclidean geometry. It was time for geometers to put their house in 
order. Algebraists and analysts were busy doing the same thing. 

Moritz Pasch (1843 -1930) stated that pure geometry must be 
formal in the strict sense that everything necessary to deduce the 
theorems must be found in the axioms. His Vorlesungen uber neuere 
Geometrie (1882) is the first rigorous axiomatic development of 
Euclidean geometry. For the first time betweenness for points is treated 
axiomatically. To realize the necessity of doing so is a great intellec­
tual achievement. (We obtained our betweenness from the Ruler Pos­
tulate.) Pasch gives a complete set of axioms for the real projective 
plane described in Section 4.2. He requires that the theorems be inde­
pendent of any figure and, further, that the theorems be independent 
of any particular meaning assigned to the technical terms in the 
axioms. However, Pasch regarded his axioms, which he called nuclear 
propositions, as truths that could be verified by observation. 

Giuseppe Peano (1858 -1932) brought the substance of Pasch's 
work across the Alps with two important differences, First, Pasch's 
empiricism is gone. In I principii di geometria, logicamente esposti 
(1889) Peano begins with an arbitrary set of points, emphasizing that 
"point" is undefined and may be thought of as any entity. The modern 
view of axiomatic geometry is firmly established; no longer are 
axioms necessarily limited to experience. The second important dif­
ference is unfortunate. The geometry is expressed as a symbolic 
calculus. Peano invented many of the symbols, and some are still in 
use today. However, this made the work difficult to follow. Hence 
this important book was not popular, even ridiculed by Poincare, 

Soon many books on the foundations of geometry appeared. In 
1891 Giuseppe Veronese (1854-1917) produced the first geometries 
where Archimedes' axiom fails. This means that there are two seg­
ments of length t and b, respectively, such that nt < b for every posi­
tive integer n. In 1892 Gino Fano (1871-1952) and, four years later, 
the American Eliakim H. Moore (1862 -1950) produced the first finite 
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geometries (Section 4.2). The non-Archimedean geometries and the 
finite geometries are contrary to all intuition regarding space. That 
geometry is only the science of space is no longer tenable. 

Mario Pieri (1860-1913) wrote Della geometria elementare come 
sistema ipotetico deduttivo in 1899. This axiomatic development of 
the Euclidean plane was not widely accepted at the time and is not 
as well known now as it might be. Pieri reduces the number of unde­
fined terms down to two, point and motion. The motions are mappings 
on the set of points that satisfy certain axioms. (Think of things like 
translations and rotations.) For example, one axiom states that ifthere 
is a nonidentity motion which fixes three points A, B, C, then every 
motion which fixes A and B must also fix C. In this case A, B, Care 
defined to be collinear. Then a line is defined by saying, in our nota-

~ 

tion, that AB consists of A, B, and all points C such that A, B, Care 
collinear. This beautiful treatment is very modern in flavor and will 
be described in more detail in Section 15.2. In succeeding years both 
Pieri and Peano gave developments using only point and distance as 
undefined terms. For example, Pieri's axioms involve a ternary re­
lation I on the points such that I(A, B, C) iff the distance from A to B 
equals the distance from A to C. Also both Pieri and Alessandro Padoa 
(1868 -1937) gave developments using only point and congruent as 
undefined terms. Congruent is a relation on pairs of points and was 
considered preferable to using motion because a motion is a relation 
on infinite sets of points. 

The idea of motion is of fundamental importance in geometry. 
(The automorphisms of any mathematical system are always offunda­
mental importance in the study of that system.) It turns out that the 
motions for the Euclidean plane and for the non-Euclidean planes 
can be expressed as products of reflections in lines. Based on ideas 
from Neue Begriindung der ebenen Geometrie (1907) by Johannes 
Hjelmslev (1873 -1950), an axiomatic development of plane geometry 
can be given where the number of undefined terms is just one, reflec­
tion. Since this is one less than Pieri's two, the game of one-downman­
ship comes to an end. Chances are that you cannot think how to define 
a point without knowing any more about the system. This problem can 
be solved once we have studied motions. In this century there have 
been hundreds of new axiomatic systems for plane geometry. They 
continue to appear as plane geometry is still one of the most fascinat­
ing games known to mankind. 

The capstone to the nineteenth century efforts of ax iomati zing 
geometry is the ninety-two page Grundlagen der Geometrie (1899) 
by David Hilbert (1862 -1943). Most of the mathematical systems 
then known had been axiomatized in the last half of the century. Con­
trary to what is often reported, Hilbert's Foundations of Geometry is 
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not the first systematic development of Euclidean geometry free of 
intuition. The credit for this must go to Pasch, regardless of his re­
striction of the axioms to those motivated by experience. Certainly 
Peano and Fano had previously specified that points were an arbi­
trary set of elements. Peano and Padoa had already demonstrated 
the idea of independence of axioms by constructing counterexamples 
using different interpretations of the undefined terms. In the Grund­
lagen, Pasch is cited in a footnote with reference to PASCH but Peano 
is never even mentioned. Disputes over priorities concerning the ideas 
in this book continue to this day (see Exercise 12.6). 

Besides the axiomatic development, which is described fully in 
Section 15.1, Hilbert's Grundlagen der Geometrie discusses theory of 
proportion, plane area, and geometric constructions. Also the sig­
nificance of the theorems of Desargues and Pappus is thoroughly 
examined, thus consummating the union of algebra and geometry 
begun by Descartes. The first example of a non-Desarguesian plane 
is replaced in later editions by the simpler Moulton Incidence Plane 
MI0 of Section 5.2. With other alterations and the addition of appen­
dices and supplements, the eleventh edition (1972) as edited by P. Ber­
nays is twice as long as the original. The tenth edition has been 
translated into a second English edition (Open Count, 1971). 

The first International Congress of Mathematicians, held in 
Zurich in 1897, was followed by the second in Paris in 1900. At the 
Paris congress Hilbert made his famous speech on the future problems 
of mathematics. The philosophers held their first international 
congress in Paris in 1900. Knowledge of Hilbert's Grundlagen der 
Geometrie was soon widespread. This book, more than any other, has 
been the basis for the modern view of geometry and influencing mathe­
matics' turn toward axiomatics in the twentieth century. Grundlagen 
der Geometrie has been the third most influential book in geometry, 
even more influential than those describing non-Euclidean geometry 
for the first time. A book called Elements must rank first. The con­
temporary view of axiomatic systems for geometry is typified by a 
remark made by Hilbert in 1891 but not published until 1935: "One 
must be able to say at all times- instead of points, straight lines, and 
planes- tables, chairs, and beer mugs." Geometry is happily freed of 
the infamous "A point is that which has no part." 

12.3 EXERCISES 

12.1 Theorem 12.12. 

12.2 Supply the missing part of the proof of Theorem 12.14. 
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• 12.3 In Peano's Postulate as stated in Theorem 12.13, we have 
D-E-F. 

12.4 Our first two axioms and Peano's Postulate together do not 
imply PSP. 

• 12.5 True or False? 

(a) There exist nonempty convex sets HI and H2 such that for 
every line 1 a point off 1 is in HI or H 2. 

(b) There exist nonempty convex sets HI and H2 such that for 
every line 1 if P and Q are two points with P in HI and Q in H 2, 

then PQ intersects l. 

(c) There exist nonempty convex sets HI and H2 such that for 
every line 1 a point off 1 is in HI or H2 and, if P and Q are two 
points with P in HI and Q in H 2, then PQ intersects l. 

Cd) Although PSP and PASCH are both dependent on the first 
two axioms for their meaning, both PSP and PASCH are inde­
pendent of the first two axioms. 

(e) If A, D, V are three points on one line and V, B, C are three 
~ ~ 

points on another line, then AB intersects CD. 

(f) 6ABC, A -C' -B, B -A' -C, C -B' -A ~ 6A'B'C'. 

(g) If a line intersects a triangle, then the line intersects two 
sides of the triangle. 

(h) If a line does not intersect two sides of a triangle, then the 
line contains a vertex of the triangle. 

(i) A line can intersect a triangle at three points. 

(j) A halfplane can have two edges. 

12.6 Read "The Origins of Modern Axiomatics: Pasch to Peano" by 
H. C. Kennedy in The American Mathematical Monthly Vol. 79 (1972), 
pp. 133 -136. 

• 12.7 (M10, s), the Moulton Incidence Plane together with distance 
function s given by Euclidean arclength along Moulton lines, is a 
model of I. 

12.8 (M2, d), the Rational Cartesian Incidence Plane together with 
Euclidean distance, is not a model of I but does satisfy PSP. 

• 12.9 Does (M2, d) also satisfy PASCH? 
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12.10 In the proof of Sylvester's Theorem, possibly {P2, P3 } and {P4 , 

Ps, P6 } are not disjoint. 

12.11 The union of a halfplane and its edge is a convex set. 

12.12 If n is a positive integer, then a set of n + 1 points is not a con­
vex set. 

12.13 Do our first two axioms together with Theorem 12.11 imply 
PSP? 

12.14 Let 1 be a line. Find at least three pairs of convex sets HI and 
H2 such that every point off 1 is in HI or H2, such that if P and Q are 

two points with P in HI and Q inH2 thenPQ intersects l, and such that 
neither HI nor H2 is a halfplane . 

• 12.15 It is not possible to arrange any finite number of points so 
that a line through every two of them shall pass through a third, un­
less all the points lie on one line. 

*12.16 Is there a d such that (M5, d) is a model of}:? Is there a d 
such that (M6, d) is a model of!'? Is there a d such that (M7, d) is a 
model of!'? 

~ ~ 

*. 12.17 If l:::.ABC and line 1 intersects AB, then 1 intersects BC or 
~ 

AC? 

*12.18 Under our first two axioms, Peano's Postulate and Theorem 
12.15 together are equivalent to our Axiom 3. 

*12.19 Give properties of h : ::t' ~ 21' such that the existence of his 
equivalent to Axiom 3, assuming our first two axioms. 

GRAFFITI 

"Would you tell me please, which way I ought to go from 
here?" 

"That depends a good deal on where you want to get to," said 
the Cat. 

Lewis Carroll 

The axioms of geometry are - according to my way of thinking 
- not arbitrary, but sensible, statements, which are, in general, 
induced by space perception and are determined as to their precise 
content by expediency. 

Klein 
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I once knew an otherwise excellent teacher who compelled his 
students to perform all their demonstrations with incorrect figures, 
on the theory that it was the logical connection of the concepts, not 
the figure, that was essential. 

It is true that a mathematician, who is not somewhat of a 
poet, will never be a perfect mathematician. 

Mach 

Weierstrass 

But in the present century, thanks in good part to the influence 
of Hilbert, we have come to see that the unproved postulates with 
which we start are purely arbitrary. They must be consistent, they 
had better lead to something interesting. 

Coolidge 

The quote from Kant that begins Hilbert's Foundations of Geometry: 

All human knowledge thus begins with intuitions, proceeds 
thence to concepts, and ends with ideas. 



CHAPTER 13 

Crossbar and Quadrilaterals 

13.1 MORE INCIDENCE THEOREMS 

Before thinking about adding any new axioms to our system, we shall 
prove several more incidence theorems that follow from the three 
axioms we already have. Among these is the very useful little theorem 
mentioned in Section 9.2 that is known as Crossbar. Crossbar can be 
stated as a theorem only after a formal definition of the interior of an 
angle has been given. We begin by extending the definition of in and 
on so that our theory encompasses such phrases as "b,ABC is on a side 

of line l" and "CD is in the ray-interior of LA VB." Also, for example, 
we shall be able to talk about two segments being on opposite sides 
of line l. 

DEFINITION 13.1 If Sand Tare nonempty sets of points and 
SeT, then S is on Tor S is in T. 

Theorem 13.2 Let each of A, B, C, D be either a point or a nonempty 
set of points. Let A and B be on opposite sides of line l. Then A and B 
are not on the same side of l. If Band C are on opposite sides of l, then 
A and C are on the same side of l. If Band D are on the same side of l, 
then A and D are on opposite sides of l. 

Proof Trivial (Definition 12.9, Definition 13.1, and Theorem 
12.10). • 
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Theorem 13.3 If S is a nonempty convex set which does not inter­
sect line l, then S is on one side of l. 

Proof Let A be a point of S on side HI of line 1. Assume there exists 
a point B of S on the opposite side of HI' Then AB intersects 1 by PSP. 
So, since S is a convex set (Definition 8.18), we have the contradiction 
that S intersects l. Hence all the points of S are on HI' • 

Corollary 13.4 If x is a line, ray, or segment which does not intersect 
~ 

line l, then x is on one side of l. If line 1 intersects AC only at point V 
--+ -

such that A-V -C, then int (VA) and int (VA) are on the same side 
--+ --+ 

of las isA but int (VA) and int (VC) are on opposite sides of l. 

DEFINITION 13.5 The interior of LAVB is the intersection of 
~ ~ 

the side of V A that contains B and the side of VB that contains A; 
int (LAVB) is the interior of LAVB. 

The interior of LAVB is illustrated in Figure 13.1. That the in­
terior of an angle is well-defined follows from Corollary 13.4. From 
the definition and the corollary preceding it, we have several immedi­
ate results that are lumped together as the next theorem. 

Theorem 13.6 Point P is in int (LAVB) iff points A andP are on the 
~ ~ 

same side of VB and points Band P are on the same side of V A. Given 
LAVB, if A-P-B, then P is in int (LAVB). Given b:.ABC, then 

int (AB) is on int (LACB). 

FIGURE 13.1 
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~ ~ 

Theorem 13.7 If P is in int (LAVB) and AP intersects VB at D, 
then A-P-D. 

Proof Either A-P-D or A-D-P. Assume A-D-P. Then A and P 
~ ~ ~ 

are on opposite sides of YD. Since VD= VB, P is not on the side of 
~ 

VB that contains A. Thus P is not in int (LAVB), a contradiction. So 
A-P-D .• 

~ 

Theorem 13.8 Crossbar If point P is in int (LAVB), then VP inter-

sects int (AB). 

Proof Let C be any point such that B - V -C. (See Figure 13.2.) Since 
~ 

P and B are on the same side of V A and since Band C are on opposite 
~ ~ ----> 

sides of VA, then P and C are on opposite sides of V A. So int (VP) 
~ ~ 

and int(AC) are on opposite sides of VA. Thus VP cannot intersect 
~ ~ 

AC. Then, since int (AC) is on the same side of VC as P, we know VP 
~ 

cannot intersect AC. So VP intersects int (AB) at some point Q by 
PASCH applied to to.ABC. Finally, sinceP and Q are on the same side 
~ ~ 

of VB, point Q must be on VP .• 

~ 

Theorem 13.9 Given LAVB, if VP intersects int CAB), then P is in 
int (LAVB). 

~ 

Proof Let VP intersect int (AB) at Q. (Possibly P= Q.) Then A and 
~ 

Q are on the same side of VB, and Q and P are on the same side of 
~ ~ 

VB. Hence P is on the side of VB that contains A. Likewise, since 
~ ~ 

P, Q, B are on the same side of VA, P is on the side of VA that contains 
B. Therefore P is in int (LA VB). • 

~ 

Theorem 13.10 If points Band P are on the same side of V A, then P 

A 

C v 
FIGURE 13.2 



MORE INCIDE'JCE THEOREMS 147 
<H> 

is in int (LA VB) iff points A and B are on opposite sides of VP. If 
A - V - C, then point P is in int (LA VB) iff point B is in int (LCVP). 

<H> -> -> 
If points Band P are on the same side of V A, then either VB = VP, P 
is in int (LAVB), or B is in int (LAVP). 

-> 
Proof If point P is in int (L A VB), then VP intersects int (AB) by 

<H> 

Crossbar. Hence A and B are on opposite sides of VP. Conversely, sup-
<H> 

pose that Band P are on the same side of V A and that A and B are on 
<H> <H> -

opposite sides of VP. Then VP intersects int (AB) by PSP. Since 
<H> -> 

int (AB) and P are on the same side of VA, then VP must intersect 
int (AB). So P is in int (LAVB) by the preceding theorem. We have 
now proved the first statement in the theorem. Suppose A - V-C. Since 

<H> <H> <H> 

V A = VC and since points Band C are on the same side of VP iff points 
<H> 

A and B are on opposite sides of VP, it follows that the second state-
ment is only a restatement of the first (Theorem 13.6). If points Band 

<H> -> -> 
P are on the same side of V A, A - V - C, and VB ¥ VP, then P is in 
either int (LA VB) or int (LCVB). However, P in int (LCVB) implies 
B is in int (LAVP) by the second statement in the theorem. Therefore 
the third statement follows from the second. • 

-> 
Theorem 13.11 If LA VB = LCVD and VE intersects int (CD), then 
-> 

VE intersects int (AB). 
--) 

Proof Since VE intersects int (CD), then E is in int (LCVD), (Theo-
-> 

rem 13.9). Thus E is in int (LA VB), and VE intersects int (AB) by 
Crossbar. • 

Theorem 13.12 Given LAVB, the following are equivalent: 

(a) Point P is in int (LA VB) . 
-> 

(b) VP intersects int (AB). 

(c) Point P is in the ray-interior of LAVB. 
--> 

(d) VP is an interior ray of LA VB. 

Proof That (a) implies (b) follows from Crossbar; (b) implies (c) by 
Definition 9.13; and (c) implies (a) by Theorem 13.9. So the first three 
statements are equivalent. Since (c) is equivalent to (d) by Definition 
9.13, all four statements are equivalent. • 

Corollary 13.13 The ray-interior of LAVB is the interior of LAVB. 
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Theorem 13.11 confirms that in the presence of our third axiom 
shade from Section 9.2 is well-defined. However, there is no reason to 
introduce shade now as it is the same thing as ray-interior. In fact, we 
can do without ray-interior as well in the light of Corollary 13.13. 
Can we also dispose of the inside of an angle? Is the inside of an angle 
just the interior of the angle? No. (M13, h), the Cayley-Klein Inci­
dence Plane with distance h of Section 9.2 (see Figure 9.13) is still a 
model of I as PASCH and PSP hold (Exercise 13.3). We know the 
inside of an angle is contained in the interior of the angle (Theorem 
9.14), but the converse does not necessarily hold. 

We leave as an exercise the proof of the following statement 
which is famous as a tacit assumption made by Euclid in proving his 
Proposition 1.16. 

Theorem 13.14 If f::..ABC, B-C-D, A-E-C, and B-E-F, then F 
is in int (LACD). 

Proof Exercise 13.1. • 

DEFINITION 13.15 The interior of f::..ABC or int (f::..ABC) is the 
~ 

intersection of three sets: (1) the side of AB containing C, (2) the side of 
~ ~ 

BC containing A, and (3) the side of AC containing B. For those who 
like a lot of concise notation, if line l is off point A, define H A (l) to be 

~ ~ 

the side of l containing A and int (f::..ABC) =HA(BC) n HB(CA) n 
~ 

Hc(AB). The exterior of an angle is the set of all points that are nei-
ther on the angle nor on the interior of the angle; the exterior of a 
triangle is the set of all points that are neither on the triangle nor on 
the interior of the triangle. The outside of an angle is the set of all 
points that are neither on the angle nor on the inside of the angle. 

Theorem 13.16 int (LAVB) and int (f::..ABC) are convex sets. 

'it/ 

/' 
FIGURE 13.3 
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B D c 
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Proof Each is defined as an intersection of convex sets and must be 
a convex set (Theorem 8.19). • 

Theorem 13.17 Given l:::.ABC, then int (liABC) = int (LA) n 
int (LB) =int (LA) n int (LB) n int (LC). 

Proof Exercise 13.2. • 

Theorem 13.18 Line-Triangle Theorem If a line intersects the in­
terior of a triangle, then the line intersects the triangle exactly twice. 

Proof Let point P be on line l and in int (l:::.ABC). (See Figure 13.4). 
-> 

So P is in int (LA) and in int (LB)'. By Crossbar AP intersects 
- ~ 

int (BC) at some point D. Then A-P-D (Theorem 13.7). If l=AD, 
~ 

then l intersects l:::.ABC at least twice. Suppose l # AD. SoA andD are 
- -

both off l. Then l intersects AB or BD by PASCH applied to 6ABD, 
- -

and l intersects AC or DC by PASCH applied to l:::.ACD. Thus, in any 
case, l intersects l:::.ABC at least twice. A line that intersects a triangle 
in three points must contain a side of the triangle (Theorem 12.11) 
and does not intersect the interior of the triangle. Therefore l inter­
sects l:::.ABC exactly twice. • 

13.2 QUADRILATERALS 

At a quick glance the next definition looks horrendous. Actually we 
are only introducing the common terms regarding a quadrilateral. 
See Figure 13.5. 

DEFINITION 13.19 Let DABCD=AB U BC U CD U DA if 
A, B, C, D are four points such that no three are collinear and such 

- - - -
that no two of int (AB) , int (BC), int (CD), and int (DA) intersect 
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each other. Then DABCD is a quadrilateral with vertices A, B, C,.D; ---- --
sides AB, BC, CD, DA; and diagonals AC and BD. Also, LDAB, 
LABC, LBCD, LCDA are angles of DAB CD, and they may be denoted 
by LA, LB, LC, LD, respectively. The endpoints of a diagonal are 
opposite vertices. If two sides intersect each other, they are adjacent 
sides; otherwise two sides are opposite. If the intersection of two angles 
contains a side, then the angles are adjacent; otherwise two angles 
are opposite. 

Theorem 13.20 Given DABCD, then DABCD=DDCBA and 
DABCD = OBCDA = DCDAB = ODABC. If DABCD and DABDC 
both exist, then they are not equal. 

Proof The first part follows from the symmetry of Definition 13.19. 
The second part follows from the fact that int (AC) does not intersect 
DABCD but is contained in DABDC. • 

Theorem 13.21 The four vertices, the four sides, the two diagonals, 
and the four angles of a quadrilateral are unique. 

Proof Suppose OABCD=OA'B'C'D'. Since A'B' has at least five 
points, we may assume two of them are on AB by symmetry (Theorem 

- -
13.20). Then A' and B' are onAB. Neither A' nor B' can be in int (AB) 
as that would leave A orB offDA'B'C'D'. So {A', B'}={A,B}. We 
may assume A' = A and B' = B by symmetry. (We have now exhausted 
all the symmetry of Theorem 13.20.) Now neither C' nor D' can be in 
either int (BC) or int (DA) as this would leave C or D offDA'B'C'D'. 
Neither C' nor D' can be in int (CD) as this would leave C or Doff 
DA'B'C'D'. Hence {C',D'}= {C,D}. ButC'=D andD'=Cisimpossi­
hIe as OABCD ¥- DABDC. Hence C'=C and D'=D. Hence DABCD 
and OA'B'C'D' have the same vertices and the same sides. The rest 
of the theorem then follows immediately. • 

DEFINITION 13.22 A convex quadrilateral is a quadrilateral with 
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the property that each side of the quadrilateral is on a halfplane of 
the opposite side of the quadrilateral. 

In Figure 13.5 DA'B'C'D' is not a convex quadrilateral in the 
Euclidean plane. Note that "convex" has two totally different mean­
ings in mathematics. In Figure 13.5, DABCD is a convex quadrilateral 
in the Euclidean plane but is certainly not a convex set. While we 
are talking about language, why do you suppose "side" was not used in 
place of "halfplane" in Definition 13.22? 

Theorem 13.23 A quadrilateral is a convex quadrilateral iff the 
vertex of each angle of the quadrilateral is in the interior of its op­
posite angle. 

Proof Given DABCD, if A is in int (LBCD) , then A and B are on 
~ 

the same halfplane of CD. Since a half plane is a convex set, then AB is 
on a side of CD. Likewise, if B is in int (LCDA) , then BC is on a side 

- --
of DA; if C is in int (LDAB) , then CD is on a side of AB; and if Dis 

- -
in int (LABC) , then DA is on a side of BC. Hence (Definition 13.19), 
if the vertex of each angle of the quadrilateral is in the interior of its 
opposite angle, then the quadrilateral is a convex quadrilateral. Con­
versely, suppose DABCD is a convex quadrilateral. Because of the 
symmetry (Theorem 13.20), it is sufficient to show that C is in int (LA) 

~ 

in order to complete the proof. With C and D on the same side of BA 
~ 

and with C and B on the same side of AD, it follows that C is in 
int (LBAD) .• 

Theorem 13.24 The diagonals of a convex quadrilateral intersect 
each other. Conversely, if the diagonals of a quadrilateral intersect 
each other, then the quadrilateral is a convex quadrilateral. 

~ 

Proof Suppose OABCD is a convex quadrilateral. Then AC inter-
~ 

sects BD at some point P such that B-P-D by Crossbar. AlsoBD in-
tersects AC at some point Q such that A-Q-C by Crossbar. Since 
~ ~ ~ ~ 

AC # BD but each of P and Q is on both AC and BD, then P = Q. SO P 
is on both BD and AC. Hence the diagonals intersect at L 

Conversely, suppose DABCD is such that AC and BD intersect 
~ ~ 

at V. It follows that A-V -C, B-V -D, and AC # BD. Since V is an 
~ ~ 

interior point of LBCD (Theorem 13.6) and CV=CA, then A is in 
int (LBCD). By exactly the same reasoning, it is shown that B is in 
int(LCDA), C is in int(LDAB), and D is in int(LABC). Thus 
OABCD is a convex quadrilateral (Theorem 13.23). • 
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13.3 EXERCISES 

• 13.1 Theorem 13.14. 

13.2 Theorem 13.17. 

• 13.3 (M13, h) of Section 9.2 is a model of I. 
~ ~ 

• 13.4 Fano's Axiom: Given DABCD with point Eon AB and CD, 
~ ~ ~ ~ 

point F on AD and BC, and point G on AC and BD, then E, F, G are 
not collinear. 

• 13.5 True or False? 

(a) Two lines are parallel iff each is on a side of the other. - -(b) If point C is in int (LA VB), then VA U VC is an angle. 

(c) Each side of a triangle except for its endpoints is in the in­
terior of the opposite angle. 

(d) The interior of a triangle is the intersection of the interiors 
of any two of its angles. 

(e) The exterior of an angle may be a convex set. 

(f) The interior of an angle is on the inside of the angle. 

(g) If C is in int (LBAD) , then DABCD is a convex quadri­
lateral. 

(h) If C and D are points on opposite sides of AB, then DABCD 
does not exist. 

(i) If AB is on a side of CD and BC is on a side of AD, then 
DABCD is a convex quadrilateral. 

(j) A convex quadrilateral is a convex set. 

13.6 If int (LABC) =int (LDEF) , then LABC= LDEF. 

13.7 Let 1= {PI3D 3 B-D-C and A-P-D}, given ~ABC. Show 
that I is independent of any permutation of the letters "A," "B," and 
nc." 
13.8 If a line I does not intersect ~ABC, then ~ABC is on a side of 
I and int (~ABC) is on the same side. 

13.9 The union of an angle and its interior is a convex set; the 
union of a triangle and its interior is a convex set. 
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13.10 The inside of an angle is a convex set. 

13.11 The set of all points that are interior but not inside an angle 
is a convex set. 

~ 

13.12 If A and C are on the same side of VB and Band C are on op-
~ ~ 

posite sides of V A, then A and B are on the same side of VC. 

13.13 Given four points such that no three are collinear, then the 
four points are either the vertices of exactly one convex quadrilateral 
or else the vertices of exactly three quadrilaterals none of which is 
a convex quadrilateral. 

13.14 What is a quadrangle? What is a trilateral? What is a tetragon? 

13.15 If land m are parallel lines, then a halfplane of 1 is contained 
in a halfplane of m. 

13.16 If a line intersects the interior of an angle, does the line inter­
sect the angle? 

*13.17 Give a reasonable definition of the interior of a quadrilateral. 
Is the interior of DABCD a convex set iffDABCD is a convex quadri­
lateral? 

*13.18 Does the inside of an angle contain a ray? 

GRAFFITI 

Euclid always contemplates a straight line as drawn between 
two definite points, and is very careful to mention when it is to be 
produced beyond this segment. He never thinks of the line as an 
entity given once for all as a whole. This careful definition and 
limitation, so as to exclude an infinity not immediately apparent to 
the senses, was very characteristic of the Greeks in all their many 
activities. It is enshrined in the difference between Greek 
architecture and Gothic architecture, and between Greek religion 
and modern religion. The spire of a Gothic cathedral and the 
importance of the unbounded straight line in modern Geometry are 
both emblematic of the transformation of the modern world. 

Whitehead 

The nineteenth century which prides itself upon the invention 
of steam and evolution, might have derived a more legitimate title 
to fame from the discovery of pure mathematics. 

Russell 
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The moving power of mathematical invention is not reasoning 
but imagination. 

De Morgan 

What Vesalius was to Galen, what Copernicus was to Ptolemy, 
that was Lobatchewsky to Euclid. There is, indeed, a somewhat 
instructive parallel between the last two cases. Copernicus and 
Lobatchewsky were both of Slavic origin. Each of them has brought 
about a revolution in scientific ideas so great that it can only be 
compared with that wrought by the other. And the reason of the 
transcendent importance of these two changes is that they are 
changes in the conception of the Cosmos. . . . And in virtue of 
these two revolutions the idea of the Universe, the Macrocosm, the 
All, as subject of human knowledge, and therefore of human 
interest, has fallen to pieces. 

Clifford 

The chair of"mathematics" [held by Galileo in 1592] then 
covered the teaching of geometry, astronomy, military engineering, 
and fortification. 

Santillana 

Angling may be said to be so like the mathematics, that it can 
never be fully learnt. 

Walton 



CHAPTER 14 

Measuring Angles and the 
Protractor Postulate 

14.1 AXIOM 4: THE PROTRACTOR POSTULATE 

In 1733 a geometry book by a Jesuit priest named Saccheri appeared. 
Although the book caused some stir at the time, soon it was almost 
completely forgotten. We shall learn a great deal about this book later. 
In 1832 there appeared a geometry text containing a short appendix 
written by the son of the author of the text. This appendix has been 
described by G. B. Halsted as ". . . the most extraordinary two dozen 
pages in the whole history of thought!" The author of the Appendix 
was John Bolyai, a name that will live as long as any advanced form 
of human civilization exists. It is Bolyai and Lobachevsky that are 
recognized as the cofounders of non-Euclidean geometry. More on 
Bolyai and Lobachevsky later. We now jump one more century to 
1932. That year saw the publication of A Set of Postulates for Plane 
Geometry Based on Scale and Protractor written by George David Birk­
hoff. Although nobody -would suggest this paper is as important as 
Bolyai's Appendix, the paper is significant to the reader of this book. 
Our approach to axiomatizing plane geometry is based on Birkhoff's 
axiom system as given in that paper. 

G. D. Birkhoff (1884-1944) was an American mathematician 
noted for his work in differential equations, dynamics, and relativity. 
His 1932 paper can be traced back to his The Origin, Nature, and In­
fluence of Relativity (Macmillan, 1925), written for the layman. In 
this book we find "The facts concerning geometry in the plane can be 
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taken to repose upon the following four assumptions: I. Measurement 
of distance in a line can be made by means of the ruler; II. Measure­
ment of the angle between lines can be made by means of the pro­
tractor; III. One and only one straight line contains two given points; 
IV. The plane is alike and even similar to itself in all its parts." Each 
of the assumptions was accompanied by a figure to help explain the 
meaning. See Figure 14.1. It would be unfair to stop and criticize these 
assumptions from a mathematical point of view, since the book was 
aimed at the general reader. You may wonder about the lack of some 
sort of parallel postulate. However, as you will learn later, there is 
no such lack. The parallel axiom is hidden, but it is there. 

In 1929 Birkhoffteamed up with educator Ralph Beatley to write 
an article for The Teaching of Geometry, the Fifth Yearbook of the 
National Council of Teachers of Mathematics. The article, A New 
Approach to Elementary Geometry, expanded only slightly on the as­
sumptions above and gave some advice to high school teachers. The 
article is still worth reading (Exercise 14.9). The two Harvard pro­
fessors experimented with using this approach to teach geometry. The 
result was the text Basic Geometry (Scott Foresman, 1941; Chelsea, 
1959). The book deserved to be more popular than it was; it was too 
revQlutionary in its outlook. The approach has been growing in pop­
ularity, popularized today by such eminent mathematicians as Edwin 
Moise and such influential organization as the School Mathematics 
Study Group. 

In this text we are undertaking the axiomatic development of 
Euclidean geometry and the non-Euclidean geometry of Bolyai and 
Lobachevsky. We are following G. D. Birkhoff's idea of using axioms 
that are motivated by the ruler and the protractor. The ruler for any 
line is given to us by the distance function d in the Ruler Postulate. 
Given d, the theorems involving order (i.e., betweenness) on a line 
follow directly from the properties of the real numbers. In analogous 
fashion we are about to postulate an angle measuring function m. 
The idea is that we can place a protractor in a halfplane with edge 
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A 

V A so that there is a one-to-one correspondence between the set of -real numbers between 0 and 180 and the set of all rays VP with P in 
the halfplane. Besides being in a one-to-one correspondence the num­
bers should increase as we go around. Although the last remark is 
hardly precise (Around what? In fact, what is around?), there is an 
idea there that should be made precise in our axiom. Can you think 
how this might be done? In Figure 14.2, which illustrates the idea of a 
protractor, the numbers increase uniformly. Here is a third require­
ment that might be made precise and then be incorporated into our 
axiom. _ 

In the notation above we would have VP in Figure 14.2 corre­
spond to the real number mLAVP, the measure of LAVP. In the same 
figure, mLAVB + mLBVC should be equal to mLAVC, and 
mLAVP+mLPVD is probably 180. "Why 180?" Because 180 is half 
of·360. "Then why 360?" Why not?! This snide answer will have to do 
because the truth is that nobody knows for sure why 360. The number 
goes back at least as far as ancient Babylonia. (Perhaps a year had 
three hundred and sixty days.) Actually, 120 would do just as well 
for elementary geometry. (Then one could construct with straight­
edge and compass an angle of unit measure.) You can probably think 
of a good reason to use 1 in place of 360. In the author's mind, 4 would 
be a nice replacement for 360, as then an angle of unit measure would 
be a right angle. The whole point is that it doesn't make much differ­
ence which positive real number is picked for mLA VP + mLPVD in 
Figure 14.2. Only when one starts to use calculus is it seen that anoth­
er best choice is 21T in place of 360-for reasons that have nothing to 
do with the geometry itself but rather to make formulas and calcula­
tions easier. Since we shall be doing some calculations in later chap­
ters, we shall be consistent and use this so-called radian measurement 
in the theory throughout the book. If you want a definition of the num­
ber 1T independent of geometry, you may take Leibniz' formula: 



158 MEASURING ANGLES AND THE PROTRACTOR POSTULATE 

'1T/4= 1-1/3 + 1/5-1/7 + 1/9-1/11 + .... 

We are ready for the statement of our next axiom, which determines 
some properties of the undefined term m. 

Axiom 4 Protractor Postulate m is a mapping from the set of 
all angles into {xix E R, 0 < x < 7T} such that 

-a if VA is a rayon the edge of halfplane H, then for every r -such that 0 < r < '1T there is exactly one ray VP with Pin H such 
that mLAVP= r; 

b if B is a point in the interior of LA VC, then mLA VB + 
mLBVC=mLAVC. 

You should stop and examine the Protractor Postulate in detail. 
As well as deciding what the axiom says, you should think about what 
it does not say. How close does Axiom 4 come to incorporating all that 
you see when you look at a protractor? 

DEFINITION 14.1 Mapping m is called the angle measure func­
tion. The measure of LAVB is mLAVB. If an angle has measure k7T, 
then the angle is said to be of 180k degrees. LA VB = LCWD iff 
mLA VB = mLCWD, in which case we say that LA VB is congruent 
to LCWD. 

Since people are generally reluctant to give up something with 
four thousand years seniority, we have included degrees in the formal 
definitions by popular demand. However, we insist that neither LAVB 

D 
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nor mLAVB is ever equal to, say, sixty degrees. Remember LA VB 
is a set of points and mLA VB is a number. 

As congruence of segments is defined in terms of length given 
by d, so congruence of angles is defined in terms of measure given by 
m. Congruence of angles must be an equivalence relation since 
equality of real numbers is an equivalence relation. 

Theorem 14.2 Congruence of angles is an equivalence relation on 
the set of all angles. 

Proof (R): LAVB = LAVB, since mLAVB=mLAVB. (S): LAVB = 
LCWD implies LCWD= LAVB, since mLAVB=mLCWD implies 
mLCWD = mLAVB. (T): LA VB = LCWD and LCWD = LEXF im­
plies LA VB = LEXF, since mLAVB = mLCWD and mLCWD = 
mLEXFimplies mLAVB = mLEXF .• 

~ 

Theorem 14.3 Angle-Construction Theorem Given LAVB, WC, 
~ ~ 

and halfplane H of WC, then there exists exactly one ray WD such that 
D is in Hand LAVB = LCWD. 

~ 

Proof By the Protractor Postulate there is exactly one ray WD with 
D in H such that mLCWD = mLAVB. • 

Combining the Segment-Construction Theorem with the Angle­
Construction Theorem, we have a result that will often be useful: 

Corollary 14.4 Angle-Segment-Construction Theorem If 0 < a < 1T, 
~ 

o < r, and H is a halfplane of AB, then there is a unique point C in H 
such that mLABC=a and BC=r. 

Theorem 14.5 Angle-Addition Theorem Suppose C is a point in 
int (LA VB), C' is a point in int (LA'V'B'), and LAVC = LA'V'C'. 
Then LAVB = LA'V'B' iff LCVB = LC'V'B'. 

Proof Exercise 14.1. • 

~ 

Theorem 14.6 If Band C are two points on the same side of V A and 
mLAVB < mLAVC, then B is in int (LAVC). 

Proof Assume B is not in int (LAVC). Since B is on the same side of 
~ ~ ~ 

V A as C, either B is on VC or else B and A are on opposite sides of VC. 
~ ~ ~ 

That B is on VC is impossible as then VB = VC and mLA VB = 
~ 

mLAVC. So B and A are on opposite sides of VC, and C is in 
int (LAVB), (Theorem 13.10). Then, by the Protractor Postulate, 
mLAVC+mLCVB=mLAVB. So mLAVC < mLAVB, contradict-
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ing the hypothesis that mLAVB < mLAVC. Therefore B is in 
int (LAVC) .• 

Should an angle bisector be a ray or a line? There seems to be a 
choice to be made. Why don't the other two terms in the next definition 
involve a choice? 

DEFINITION 14.7 If mLAVB=mLBVC andB is in int (LAVC), 
~ 

then VB is an angle bisector of LAVC. If mLAVB+mLCWD=7T, 
then LAVB and LCWD are supplementary; if mLAVB+mLCWD= 
7T/2, then LAVB and LCWD are complementary. 

Theorem 14.8 Every angle has a unique angle bisector. 

Proof Follows from (a) of the Protractor Postulate. • 

By the Rational Cartesian Plane we mean (M2, d, m) where d 
and m are the restrictions of the usual Cartesian distance and angle 
measure to the Rational Cartesian Incidence Plane M2. LetA = (1,0), 
V = (0, 0), and B = (1,1). In the Cartesian plane LAVB has an aggle 
bisector which is contained in the line with equation y= (-1 +V2)x. 
Since there is no such line in M2, it follows that not every angle in the 
Rational Cartesian Plane has an angle bisector. Of course, (M2, d, m) 
satisfies neither the Ruler Postulate nor the Protractor Postulate. 

Theorem 14.9 Euclid's Proposition 1.13 If two angles are a linear 
pair, then the two angles are supplementary. 

+-+ 
Proof Let B be on halfplane H of VC. Let C- V -A. Letx=mLAVB 
and y= mLBVC. Our task is to prove that x + y= 7T. Assume x + y < 7T. 

~ 

Then there exists unique VD with Don H such that mLAVD=x+y. 
Since mLAVB =x < x + y, we have Bin int (LAVD), (Theorem 14.6). 
Then D is in int (LCVB), (Theorem 13.10). Thus, by the Protractor 

A 
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Postulate, it follows that x + mLBVD = x + y and mLCVD + mLDVB 
= y. So mLCVD = 0, a contradiction. Now assume x + y > 7T. Then there 

-+ -exists a unique VE with E on the same side of VB as C such that 
mLBVE=7T-X. Since 7T-x<y=mLBVC, we have E is in int 
(LBVC). So (Theorem 13.10), we have B is in int (LAVE). Thus 
mLAVE= (x) + (7T-X) =7T, a contradiction. Therefore X+y=7T. • 

Theorem 14.10 Euclid's Proposition 1.14 If points A and C are on -opposite sides of VB, then mLAVB+mLBVC=7T implies A-V-C. 

Proof Exercise 14.2. • 

Theorem 14.11 Euclid's Proposition 1.15 Vertical angles are con­
gruent. Also, if A-V -C and points Band D are on opposite sides of -AC, then LAVB = LCVD implies B-V-D. 

Proof The first statement follows from the fact that x + y = 7T and x + 
Z = 7T implies y = z. The second statement follows from the same reason­
ing as the proof of Theorem 14.10. • 

DEFINITION 14.12 If the measure of an angle is 7T/2, the angle is 
right. If the measure of an angle is less than 7T/2, the angle is acute; 
if the measure of an angle is greater than 7T/2, the angle is obtuse. 

Theorem 14.13 If two congruent angles are a linear pair, then each 
of the angles is a right angle. 

Proof Follows directly from the fact that x + y = 7T and x = y implies 
x=y=7T/2 .• 

Theorem 14.14 Four-Angle Theorem If A'-V -A, B'-V -B, and 
LAVB is a right angle, then each of LAVB', LA'VB, and LA'VB' 
is a right angle. 

Proof Follows directly from three applications of the fact that 
x + y = 7T and x = 7T/2 implies y = 7T/2. • 

Theorem 14.15 If mLAVB+mLBVC=mLAVC, then B is in int 
(LAVC). -Proof If Band C are on the same side of V A, then we are done (Theo--rem 14.6). Assume Band C are on opposite sides of VA. LetA'-V-A. -Now A and C cannot be on the same side of VB as then (by Theorem 
13.10) point A would be in int (LBVC), contradicting the hypothesis 
mLBVC < mLAVC. Therefore, we must suppose A' and C are on thp. 
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~ 

same side of VB. SoA' is in int (LBVC). Then mLBVC=mLBVA' + 
mLA'VC. Hence, since mLAVB+mLBVA'=1T (Theorem 14.9), 
we have mLAVC=mLAVB+mLBVC=mLAVB+mLBVA'+ 
mLA'VC=1T+mLA'VC. So mLAVC > 1T, a contradiction .• 

DEFINITION 14.16 If I and m are two lines whose union contains 
a right angle, then we write I ..l m and say that I is perpendicular to 
m. We agree that the following are equivalent: 

~ ~ ~ - ~ 

AB..l CD, AB..l CD, AB..l CD, - ~ - - -AB..l CD, AB..l CD, AB..l CD, 
~ -AB..lCD, AB..l CD, AB..lCD. 

Theorem 14.17 If a is a segment, ray, or line and b is a segment, 
ray, or line, then a ..l b implies b ..l a. 

~ ~ ~ ~ 

Proof Let a be on AB and b be on CD. Then a ..l b iff AB ..l CD. How-
~ 

ever, by the symmetry in the first part of the definition above, AB ..l 
~ ~ ~ 

CD iff CD ..l AB. Hence a ..l b iff b ..l a. • 

Theorem 14.18 If P is a point on line I, then there exists a unique 
line through P that is perpendicular to I. 

~ 

Proof Let 1= P A. Let H be a halfplane of I. By the Protractor Pos--tulate, there exists a unique ray PB with B in H such that mLAPB = 
~ 

1T/2. So PB is a line through P and perpendicular to I. Suppose m is a 
line through P and perpendicular to I. Since m intersects I and is 
distinct from I, there is a point C that is on both m and H. Since m ..ll, 
then LAPC is a right angle by the Four-Angle Theorem. So mLAPC = - - -1T/2. By the uniqueness of PB above, we have PC=PB. Therefore 

~ ~ 

m=PB, and PB is the unique line through P and perpendicular 
to I . • 

If to Taxicab Geometry of Section 7.2 we add the usual Cartesian 
angle measure function m, then we have that (Ml, t, m) is a model 
of I. Since betweenness in (MI3, h) of Section 9.2 corresponds to 
Euclidean betweenness in the Cartesian plane, by taking m to be 
the usual angle measure function restricted to M13, we see that 
(MI3, h, m) is a model of I. 

The Cartesian plane (Ml, d, m) with the usual distance func­
tion d and angle measure function m is a model of I. If a proposition 
is false for any model of I, then the proposition is necessarily not a 
theorem of I. However, it must be emphasized that, since the Car-
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tesian plane is only one model of k, a proposition which holds for this 
model might not be a theorem of k. 

The Moulton Incidence Plane with distance function s given by 
Euclidean arclength along the Moulton lines satisfies the Incidence 
Axiom and the Ruler Postulate. The argument in Section 8.2 shows 
that (MIO, s) also satisfies PSP. To find m z such that (MIO, s, m z) is 
a model of k, we only need an angle measure function mz for (MIO, s) 
that satisfies the Protractor Postulate. Since some angles in (MIO, s) 
are lines in the Cartesian plane, it is clear that the Cartesian angle 
function m will not work. However, the only time that m and the 
Protractor Postulate are incompatible is when V, as it appears in 
Axiom 4, is on the y-axis. Thus, given LA VB in (MIO, s) with V 
off the y-axis and assuming without loss of generality (Theorem 
9.3) that A and B are on the same side of the y-axis as V, we define 
mzLAVB for LAVB in (MIO, s) to be mLAVB for LA VB in the 
Cartesian plane. That m 2 is well-defined for all angles LA VB in 
(MIO, s) with V off the y-axis follows from the fact that each halfplane 
of the y-axis in (MIO, s) is indistinguishable from a halfplane of the 
y-axis in (Ml, d). It also follows that m z satisfies the Protractor Pos­
tulate as long as V, as it appears in Axiom 4, is off the y-axis. There 
remains the task of defining mzLAVB when V is on the y-axis. This 
is accomplished by using the construct that MIO is obtained from 
Ml by bending that part of certain lines that is on the right side of 
the y-axis. The idea is to have used m to measure the angles before 

~ 

doing the bending. See Figure 14.5, where the Cartesian line P'Q 

y 

Pea, 2c - b) .. ' 

FIGURE 14.5 



164 MEASURING ANGLES AND THE PROTRACTOR POSTULATE 

1r/2 

(2, 1) 

FIGURE 14.6 

~ 

was bent to form the Moulton line PQ. For any number b and point P 
with P= (x, y), define Ph to be (x, 2y- b) if x> ° and y > b but Ph =P 
otherwise. Then, for V = (0, b) , define m 2LA VB to be mLAh VBh • Since 
m satisfies the Protractor Postulate for the Cartesian plane, it fol­
lows that m2 satisfies the Protractor Postulate for (MI0, s, m2 ). Figure 

---+ 
14.6 illustrates a protractor with initial ray VA on the halfplane con-
taining (-1, 1) when V= (0,0) and A= (2, 1). 

In forming the definition of m 2 we used the construct that MI0 
is obtained from Ml by bending that part of some lines which is on 
the right side of the y-axis. We might just as well have taken the view 
that the bending was done on the left side of the y-axis. Then, by a 
construction analogous to the one giving m 2 , we would obtain a dif­
ferent angle measure function m3 such that (MI0, s, m 3) is a model 
of I. By the way, although it may seem unorthodox, we can consider 
that Ml is formed by bending some of the lines in MI0! 

Looking at Figure 14.7, we observe some peculiar properties of 
~ ~ 

the plane (MI0, s, m 2). First note that V is on AB and on CD. Since 
m 2 LAVC=7T/2, we conclude that LAVC, LAVD, LBVC, and LBVD 
are all right angles. (Perhaps the Four-Angle Theorem (Theorem 

~ ~ 

14.14) is not really trivial.) In particular, DV .1 AB. If H = (4/5, 2/5), 
~ ~ ~ ~ ~ 

then H is on AB, H # V, and DH .1 AB. So DV and DH are two distinct 
~ 

lines throughD that are perpendicular toAB. However, ifG= (-1, 312), 
~ 

then there is no line through G that is perpendicular to AB. Shocking! 
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FIGURE 14.7 

We might notice that 6, VDH has two right angles. Excessive, to say 
the least! Also, looking at 6,BVE and 6, BVF, we note that Euclid's 
Proposition 1.4, the Side-Angie-Side Theorem, fails for this plane: 
--- ---- --
BV = BV, LBVE = LBVF, and VE = VF but L VBE f- L VBF, BE f-
BF, and LBEV f- LBFV. Totally unacceptable! 

Before stating Axiom 4, we had in mind three requirements 
for any respectable protractor. (See the fourth paragraph of this 
chapter.) Condition (a) of the Protractor Postulate gives the corre­
spondences we were after, and condition (b) makes precise the require­
ment that the numbers on a protractor "increase as we go around." 
However, we have not incorporated into the axiom the third require­
ment, that for any protractor these numbers should increase "uni­
formly." (For example, in Figure 14.2 we expect that RS = ST since 
LRVS and LSVT have the same measure. Cf. Exercise 14.7.) You 
might say our fourth axiom should have a third condition. Rather than 
calling such a condition part (c) of Axiom 4, the author has decided 
to label the condition Axiom 5. The numbering of axioms is an arbi­
trary game anyway. For example, condition (b) of the Protractor 
Postulate could just as well have been listed as a separate axiom. So 
we are in somewhat the same situation as we were after introducing 
the Ruler Postulate. Either PSP or PASCH was required to complete 
the full intent of our motivation behind the Ruler Postulate. Now, we 
need another axiom to complete the full intent of our motivation be­
hind the Protractor Postulate. As you may have guessed, Euclid's 
Side-Angle-Side Theorem is itself one possibility for this axiom. 
Another important possibility is the subject of Chapter 16. 
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14.2 PECULIAR PROTRACTORS 

In this section, the development of our axiom system is examined a 
little more thoroughly. There is an essential difference between the 
present situation and the situation after the introduction of the Ruler 
Postulate. The Ruler Postulate was independent of the previous axiom. 
We shall show below that the Protractor Postulate is not independent 
of our first three axioms. Axiom 4 is only a prologue to Axiom 5. Our 
fourth and fifth axioms could be replaced by axioms that do not di­
rectly involve the real numbers. (Some suggestions appear in Sec­
tion 15.1.) With these axioms, the proofthat there is an angle measure 
function m satisfying our fourth and fifth axioms is tedious and not 
very informative. The only penalty for having stronger axioms than 
necessary is that there is more work in checking that a given model 
satisfies all the axioms. In our case, this is outweighed by having the 
angle measure function handed to us. As was the Ruler Postulate, 
the Protractor Postulate is somewhat of a shortcut. Accepting the 
Protractor Postulate is certainly in complete accord with our aim as 
expressed at the beginning of Section 6.1. 

Suppose (9, 2, d) is any model that satisfies our first three 
axioms. We shall construct an angle measure function m such that 
(9,2, d, m) is a model of I. In fact, let LAVT be any angle in the 
model; we shall construct m such that LAVT is a right angle. If this 
seems impossible, remember that all we know about right angles or 
anything else in our theory is what the axioms, definitions, and 
theorems tell us. A right angle is simply an angle whose measure 
is 1T/2. The following definition will make the discussion more concise. 

A' v A 

FIGURE 14.8 
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- -We say m determines a protractor on H with initial ray V A if V A is 
a rayon the edge of halfplane H and if m is a mapping on the angles 
such that 

(a) for every r such that 0 < r < 1T there is exactly one ray -VP with P in H such that mLAVP= r; 

(b) if Band C are points on H with B in int (LAVC), then 
mLAVB + mLBVC = mLA VC. 

In any model satisfying our first three axioms, suppose A - V -A' 
~ 

and point T is in halfplane H of VA. If A-P-T, define mLAVP to be 
(1T/2) (AP/AT); define mLAVT to be 1T/2; and, ifT-Q-A', define 
mLAVQ to be (1T/2) + (1T/2) (TQ/TA'). See Figure 14.8. By the Ruler 
Postulate, it follows that m has property (a) above. If Band C 
are points on H with B in int (LAVC), then define mLBVC to be 
mLAVC-mLAVB. Hence, m determines a protractor on H with -initial ray V A. So far we've had a lot of leeway. If our efforts to con-
struct m are successful, it is clear that there are infinitely many dif­
ferent angle measuring functions that can be imposed on any model 
satisfying our first three axioms to form a model of!,. We shall see 
that the measure of all angles with vertex V is now determined. In -other words, one protractor with initial ray VA determines all the 
protractors with initial ray having vertex V. 

Now, for point P in H, define mLA'VP to be 1T-mLAVP. We --claim that m determines a protractor on H with initial ray VA'. Prop-
erty (a) is obvious. Let Band C be on H with B in int (LA 'VC). Then 
C is in int (LAVB) by Theorem 13.10. See Figure 14.9. Then property 
(b) follows from the calculation 

c 

A' A 

FIGURE 14.9 
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mLA'VB + mLBVC = (rr - mLAVB) + (mLAVB - mLAVC) 

=rr-mLAVC 

=mLA'VC. 

Since m is to satisfy the Protractor Postulate, the definition of 
mLA'VP above is forced by the fact that the angles of a linear pair 
must be supplementary (Theorem 14.9). 

~ 

Let H' be the side of V A opposite H. For any points Band C in H 
but not collinear with V, let B' - V -B and C' - V -C. Since vertical 
angles must be congruent (Theorem 14.11), we are forced to make 
the following definitions. Define mLAVB' to be mLA'VB; define 
mLA'VB' to be mLAVB; and define mLB'VC' to be mLBVC. Then 

-> 
m determines a protractor on H' with initial ray VA, and m deter-

-> 
mines a protractor on H' with initial ray VA'. 

So mLPVQ has been defined for LPVQ except when P and Q 
~ 

are on opposite sides of V A, in which case exactly one of A or A' is in 
int (LPVQ). If A is in int (LPVQ), define mLPVQ to be mLPVA + 
mLAVQ; if A' is in int(LPVQ), define mLPVQ to be mLPVA'+ 
mLA'VQ. This definition is forced on us by property (b) of Axiom 4. 
It now takes very little calculation to show that, if P is any point ex-

~ 

cept V and if K is either halfplane of VP, then m determines a pro-
-> 

tractor on K with initial ray VP. 
The game we have just played with point V can be played with 

any other point in the model. (To avoid having the definition of m 
depend on any infinite number of choices, we could set up a list of rules 
to follow so that no more choices would be necessary.) Thus, we may 
suppose that if V and P are any two points and if K is either halfplane 
~ 

of VP then m is defined so that m determines a protractor on K with 
-> 

initial ray VP. It follows that (.9', X, d, m) satisfies the Protractor 
Postulate. Hence, the Protractor Postulate is not independent of our 
first three axioms. 

To end this section, we discuss one more question. Why not con­
sider the possibility of an angle measure function that has arbitrarily 
large values? After all, the distance function has arbitrarily large 
values. Thus, we might examine what we shall call the Big-Protractor 
Postulate or BPP, which is identical with Axiom 4 except that "0 < 
r < rr" is replaced by "0 < r." However, as we shall see, the Big-Pro­
tractor Postulate is inconsistent with our first three axioms. For this 
discussion we are assuming only our first three axioms and BPP. Let 
LBVA and LBVC be a linear pair. Let mLAVB=x and mLBVC=y. 

~ 

By (a) of BPP there exists point D on the same side of V A as B such 
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that mL A VD = x + y. Since A - V - C we have D is off VC. Also (Theo-
rem 14.6), B is in int (LAVD). "But, but, but Theorem 14.6 comes after 
the assumption of the Protractor Postulate in our theory," you protest. 
Good point! However, checking back, we see that the proof of Theorem 
14.6 is valid under BPP. Continuing, by (b) ofBPP we have mLAVB + 
mLBVD=x+ y. Sincex+ y= mLAVB+ mLBVC, we have mLBVD= 

~ ~ ~ 

mLBVC. Hence, VD= VC by (a) of BPP. So D is on VC, and D is off 
~ 

VC. The axiom system is inconsistent. Exit BPP. 

14.3 EXERCISES 

14.1 Theorem 14.5. 

14.2 Theorem 14.10. 

14.3 One angle of a linear pair is acute iff the other angle is obtuse. 

• 14.4 The mappin~on the points of (Ml, d) that sends any point 
P to P' where P' = (V3x, y) if P= (x, y) is a collineation that preserves 
betweenness but is not an isomorphism. (Ml, d, m') is a model of I 
where m' is given by defining m'LABC to be mLA'B'C'. 

• 14.5 For (Ml, d, m') of Exercise 14.4: Euclid's Proposition 1.4 fails, 
through any point there is a unique line perpendicular to any given 
line, and the sum of the measures of the three angles of any triangle 
is 7T. 

• 14.6 True or False? 

(a) 180=7T. 

(b) 0 < mLAVB < 180. 

(c) If mLAVB < mLAVC, then B is in int (LAVC). 
~ 

(d) If mLAVC=mLCVB, then VC is the angle bisector of 
LAVB. 

(e) If two angles are supplementary, then the two angles are a 
linear pair. . 

(D The union of two right angles is a subset of the union of 
two lines. 

(g) If the union of two lines contains a right angle, then the 
union contains three right angles. 

(h) Perpendicularity is a reflexive relation on lines. 

(i) Perpendicularity is a symmetric relation on lines. 
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(j) Perpendicularity is a transitive relation on lines . 

• 14.7 For the plane in Exercise 14.4, sketch the protractor on half-
~ 

plane H with initial ray VA where (i) V = (0,0), A = (1,1), andH con-
tains (-1,1), and (ii) V = (0, 0), A = (-1, -1), andH contains (-1,1). 

14.8 Does the Rational Cartesian Plane satisfy the Segment-Con­
struction Theorem or the Angle-Construction Theorem? 

14.9 Read "A New Approach to Elementary Geometry" in The Teach­
ing of Geometry, the Fifth Yearbook of the National Council of Teach­
ers of Mathematics, or as reprinted in volume three of George David 
Birkhoff, Collected Mathematical Papers (American Mathematical 
Society, 1950; Dover, 1968). 

~ ~ ~ 

14.10 If VA 1. VB, then points A and C are on opposite sides of VB 
iff LAVC is obtuse or A-V -C. 

14.11 Those who have not heard about an American legislature 
passing a bill 67 - ° in favor of making 1T rational should read "The 
Modern Circle-Squarers," Chapter 17 of A History of 1T by P. Beck­
mann (Golem Press, 1970). 

14.12 The mapping that sends (x, y) to (x, y'l) is a collineation from 
Ml onto M9. Define d' and m' such that (M9, d', m') is isomorphic 
to the Cartesian plane. 

14.13 Let I be the line through (0,0) and (2, 1) in (MI0, s, m2 ). What 
are the loci of all points P on zero, one, or two perpendiculars to I, 
respectively? 

14.14 What is the smallest measure of an angle in (MI0, s, m2 ) that 
is a line in (Ml, d, m)? 

14.15 Let A= (-1, -1), B= (0, 0), and C= (1, 1). Find the measure 
of each angle of b..ABC in (MI0, s, m2 ). 

14.16 (MI0, s) is not isomorphic to (Ml, d). 

14.17 Is BPP consistent with our first two axioms? 

14.18 Read "What is an Angle?" by H. Zassenhaus in The American 
Mathematical Monthly Vol. 61 (1954), pp. 369-378. 

14.19 Give a reasonable definition of a right triangle. 
~ 

14.20 Give a reasonable definition for the statement "VB is between 
~ ~ 

V A and VC." What properties does this new betweenness have? 

14.21 Give some reasonable definitions for the statement, "Line I 
is between lines m and n." 
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*14.22 Read "A Set of Postulates for Plane Geometry Based on Scale 
and Protractor" by Birkhoff in Annals of Mathematics Vol. 33 (1932), 
pp. 329-345 or as reprinted in the same volume of Birkhoff's collected 
works mentioned in Exercise 14.9. 

*14.23 Read "Metric Postulates for Plane Geometry" by S. MacLane 
in The American Mathematical Monthly Vol. 66 (1959), pp. 543~555. 

*14.24 Suppose m and m' both satisfy Axiom 4. If m' = gm, what 
can be said about the function g? 

*14.25 In Euclidean geometry an angle of three degrees can be con­
structed with straight-edge and compass but not an angle of two 
degrees. 



CHAPTER 15 

Alternative Axiom Systems 

15.1 HILBERT'S AXIOMS 

This chapter is a digression. We pause in the development of our axiom 
system to take a quick look at some other axiom systems for geometry. 
It is intended that this chapter be read rather quickly and not studied 
in detail at this time. Most imperative, the reader should understand 
that none of the postulates, definitions, notation, or theorems is to be 
assumed in the other chapters! 

The first rigorous axiom system for Euclidean geometry is due to 
Pasch in 1882, when the order of points on a line was axiomatized for 
the first time. Following the tradition of Pasch and Peano, Oswald 
Veblen (1880-1960) gave a system based on the two undefined terms 
point and order in "A system of axioms for geometry" in Transactions 
of the American Mathematical Society Vol. 5 (1904), pp. 343-384. Veb­
len's revised system of 1917 may be found in the reference given in 
Exercise 15.1. Many different axiom systems for geometry have been 
and are still being invented. References for eight of these may be found 
in Exercise 15.1 through 15.8. This chapter focuses on two other sys­
tems, one due to Hilbert and one due to Pieri. 

The most famous of the axiom systems for Euclidean geometry 
is due to David Hilbert (1862-1943). Based on lectures at the Uni­
versity of Gottingen during the winter semester of 1898-99, the first 
edition of Grundlagen der Geometrie was presented as a memorial 
address published in connection with the unveiling of the Gauss-
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Weber monument at Gottingen in June 1899. The material below is 
based on the original 1899 edition. 

The undefined terms in Hilbert's system denote three sets and 
five relations. The three sets are 9, 2, and Fff. The elements of these 
sets are called points, lines, and planes, respectively. A relation be­
tween 9 and 2 is denoted by the word on. A relation between 9 and 
Fff is also denoted by the word on. The first of five sets of axioms deals 
with these two undefined relations. 

1. Hilbert's Axioms of Incidence: (1) Any two points are on at 
least one line. (2) Any two points are on at most one line. (3) Any three 
points not all on one line are on at least one plane. (4) Any three points 
not all on one line are on at most dne plane. (5) If two points on a line 
are on a plane, then every point on the line is on the plane. (6) If a 
point is on each of two planes, then there is another point on each of 
the two planes. (7) There are at least two points on each line; there are 
at least three points on each plane; and there are four points not all 
on one plane [and not all on one line]. 

Remark. Hilbert's axiom 1.6 assures that the geometry is at most 
three-dimensional. Axiom 1.7, including our bracketed addition, as­
sures that the geometry is at least three-dimensional. Without our 
addition, there is no assurance that any planes exist at all since the 
axioms would be satisfied if all points were on one line. An incidence 
relation between lines and planes can then be defined in the obvious 
way. The usual phrases denoting incidence are now assumed. It fol­
lows that a line and a point off the line determine a plane. 

Hilbert's second set of axioms, which he noted was first studied 
in detail by Pasch, concerns the third undefined relation. This is a 
ternary relation on the set of points and is denoted by the word be­
tween. Hilbert explicitly states that the puints in a triple satisfying the 
relation are collinear and tacitly assumes they are also distinct. We 
have augmented the original axiom ILL Further, we have omitted 
the original II.4, which is our Theorem 7.12 with Definition 7.10, since 
E. H. Moore proved the postulate to be not independent in 1902. Ac­
tually, the axioms given below can be further weakened. For example, 
it is easy to prove the existence ofpointB in II.2 in the presence ofII.5. 

II. Hilbert's Axioms of Order: (1) If point B is between points A 
and C, then A, B, C are three collinear points and B is between C and 
A. (2) If A and C are two points, then there is at least one point B that 
is between A and C and there is at least one point D such that C is be­
tween A and D. (3) Among any three points on a line, exactly one is 
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between the other two. (5) Let A, B, C be three points not on a line. 
Let I be a line off A, B, C but in the plane containing A, B, C. Let I con­
tain a point that is between A and B. Then I contains either a point 
between A and C or a point between Band C. 

Remark. In order to list the axioms in the second set together, 
we have stated II.5 in terms of betweenness rather than in terms of 
"a point of a segment," as does Hilbert. Hilbert's definitions of "seg­
ment" and "a point of a segment" are unfortunate. The set of points of 
a segment is occasionally confused with the segment itself, although 
the meaning is always clear. (Anyone who reads the English transla­
tions should be aware that some ambiguities have been translated 
into inconsistencies.) All the definitions needed for the statement of 
the remaining axioms can now be given. An equivalent definition of 
"ray" is given below; otherwise, the definitions are due to Hilbert. 
Among the theorems that then follow are PSP with respect to any 
plane and the three-dimensional analog ofPSP. We shall suppose half­
plane has been defined in a fashion analogous to that of our Theo­
rem 12.2. 

Definition. Let A, B, C be three points not all on one line. The set 
{A, B} is a segment, which is denoted by either AB or BA. IfpointP is 
between points A and B, then P is a point of the segment AB. The set 
{AB, BC, CAl is a triangle, which is denoted by ABC. The set of all 
points P such that A is between Band P is a ray with vertex A. If h 
and k are two rays with vertex C on different lines, then the set {h, k} 
is an angle with vertex C; further, if A is on hand B is on k, then the 
angle is denoted by LACB. 

III. Hilbert's Axiom of Parallels: If point P is off line I, then there 
exists exactly one line in the plane containing P and I that does not 
intersect I. 

Remark. The fourth set of axioms is concerned with the remain­
ing two undefined relations. Each is denoted by is congruent to. The 
first is a relation between segments, and the second is a relation be­
tween angles. 

IV. Hilbert's Axioms of Congruence: (1) Given segment AB and 
a ray with vertex A', there exists one and only one point B' on the ray 
such that segment AB is congruent to segment A'B'; every segment is 
congruent to itself. (2) If segment AB is congruent to segment A'B' 
and to segment A"B", then A'B' is congruent to A"B". (3) If point B is 
between points A and C, point B' is between points A' and C', AB is 
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congruent to A'B', and BC is congruent to B'C', then AC is congruent 
to A'C'. (4) Given angle {h, h}, ray h', and a halfplane H of the line 
containing h' , then there exists one and only one ray h' on H such that 
angle {h', h'} is congruent to angle {h, h}; every angle is congruent 
to itself. (5) If angle {h, k} is congruent to angle {h', k'} and to angle 
{h", h"}, then {h', h'} is congruent to {h", h"}. (6) Given triangles ABC 
and A'B'C' such that AB is congruent to A'B', LBAC is congruent 
to LB'A'C', andAC is congruent to A'C', then LABC is congruent to 
LA'B'C'. 

Remark. Hilbert's fifth and final set of axioms originally con­
tained only Archimedes' axiom. This assures that there are not too 
many points on a line. However, Archimedes' axiom alone is not suf­
ficient to give a categorical axiom system, as Hilbert pointed out. In 
order to assure that there are enough points on a line to have a cate­
gorical axiom system with Cartesian three-space as a model, one 
more axiom is required. Hilbert's own completeness axiom, added 
in other editions as V.2, takes the somewhat awkward form ofrequir­
ing that it be impossible to properly extend the sets and relations satis­
fying the other axioms so that all the other axioms still hold. 

V. Hilbert's Axiom of Continuity: (1) If points Al is between 
points A and B, then there exist points A 2 , A 3 , • •• ,An such that (i) Ak 
is between A k_1 and Ak+l for h = 1, 2, ... , n -1 with Ao = A, (ii) seg­
ment AkAk+l is congruent to segment AAI for h= 1, 2, ... ,n-l, and 
(iii) point B is between A and An. 

15.2 PIERI'S POSTULATES 

Mario Pieri (1860 -1913), a student of Peano, gave several axiomatic 
systems for Euclidean geometry. The first appeared in 1896. The paper 
we are going to consider is dated April 1899 and was approved at the 
14 May 1899 meeting of the Royal Academy of Science at Torino. The 
full title is "Della geometria elementare come sistema impotetico 
deduttivo, Monografia del punto e del moto." The paper appears in 
Memorie della Reale Academia delle Scienze di Torino Vol. 49 (1899), 
pp. 173 - 222. The idea is to start with two undefined terms: point and 
motion. The motions are the mappings that are motivated by physical 
motions in space, considering only the initial and final positions. (Map­
pings motivated by reflections in planes are not rigid motions and are 
not included among Pieri's motions.) The twenty postulates stated 
below are as Pieri gave them, using his alternative form for Postulate 
17. The definitions are essentially the original definitions. However, 
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the notation does not follow that used by Pieri. The theorems stated 
below are only a selection of those stated and proved by Pieri. Pieri's 
system now follows. 

Undefined terms. 9,.1(. 

Postulate 1. 9 and .I( are sets. 

Definition. The elements of 9 are called points, and the elements 
of .I( are called motions. A figure is a set of points. 

Postulate 2. There exists at least one point. 

Postulate 3. If P is a point, then there exists a point different 
fromP. 

Postulate 4. A motion is a bijection on the set of points. 

Postulate 5. If p. is a motion, then p.-l is a motion. 

Postulate 6. If p. and v are motions, then vp. is a motion. 

Postulate 7. If A and B are two points, then there exists a non-
identity motion fixing both A and B. 

Postulate 8. If a nonidentity motion fixes three points A, B, C, 
then every motion that fixes both A and B also fixes C. 

Remark. Pieri's fifth and sixth postulates together state that the 
motions form a group under composition if there exist any motions at 
all. The seventh postulate assures.l( is not-empty and the geometry is 
at least two dimensional. The eighth postulate assures the geometry is 
at most three-dimensional. 

Definition. Points A, B, C are collinear if there exists a nonidenti­
ty motion that fixes each of A, B, C. If A and B are two points, then the 

+-+ 
line AB is the set of all points collinear with A and B. The words on, 
through, etc., have their usual meaning. If A, B, Care noncollinear 
points, then the union of the three sets (i) the set of all points collinear 

+-+ 
with A and a point of BC, (ii) the set of all points collinear with Band 

+-+ 
a point of AC, and (iii) the set of all points collinear with C and a point 

+-+ 
of AB is a plane. If A and B are points, then the sphere B A with center A 
is the set of all points P for which there is a motion fixing A and send­
ing P to B. 

Theorem. Two points determine a line. There exist three non­
collinear points. The motions form a group under composition. A mo­
tion preserves the set of lines and the set of planes. 
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Postulate 9. If A, B, Care noncollinear points and D is a point on 
~ 

BC other than B, then a plane through A, B, D exists and is a subset 
of a plane through A, B, C. 

Theorem. Three noncollinear points determine a plane. If a line 
intersects a plane at two distinct points, then the line is a subset of 
the plane. Point A is on B A iff A = B, in which case B A = {A}. If point 
C is on B A' then B A = CA' A motion preserves the set of spheres. A mo­
tion that fixes point A fixes every sphere with center A. If A and Bare 
two points and C is a point such that CA and CB intersect only at C, 
then A, B, C are collinear. 

Postulate 10. If A and B are distinct points, then there exists a 
~ 

motion fixing A and sending B to a point on AB different from B. 

Postulate 11. If A and B are distinct points and f.L and v are mo-
~ 

tions fixing A and sending B to a point on AB different from B, then 
JLB=vB. 

Postulate 12. If A and B are distinct points, then there exists a 
~ 

motion sending A to B and fixing some point of AB. 

~ 

Definition. If AB intersects B A at a point C different from B, then 
A is a midpoint of Band C. Point A is the midpoint of A and A. 

Theorem. Let A and B be distinct points. Then a midpoint of A 
and B exists, is unique, and is the midpoint of B and A. If motion f.L 

~ 

fixes A and sends B to point B' on AB, then JLB' = B. If point M is on 
~ 

AB and motion f.L fixes M and interchanges A and B, then any motion 
interchanging A and B must fix M. If f.L is a motion sending A to Band 

~ 

fixing some point M onAB, then M is the midpoint of A and B. The 
~ 

midpoint of A and B is the unique point 9n AB that is the center of a 
sphere through both A and B. A motion preserves midpoints. There 

~ ~ 

exists a motion sending A to B, fixing AB, but fixing no point of AB; 
if v is such a motion, then B is the midpoint of A and vB while A is 
the midpoint of Band v-lAo 

Remark. Postulates 10, 11, and 12 deal with motions that fix a 
line. Postulates 10 through 14 are motivated by the revolutions that 
fix a plane. 

Postulate 13. If A, B, Care noncollinear points, then there exists 
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a motion fixing A and B but sending C to a point different from C on 
the plane through A, B, C. 

Postulate 14. If A, B, Care noncollinear points and D and E are 
points on the plane through A, B, C that are different from C but com­
mon to CA and CB , then D=E. 

Definition. A circle with center A is the intersection of a plane 
through A and a sphere with center A. If land m are intersecting lines 
and there exists a motion that fixes 1 pointwise and fixes m but not 
pointwise, then we say 1 is perpendicular to m and write l ..1 m. 

Theorem. Let A, B, C be noncollinear points on plane z. There are 
exactly two points on z that are both on C A and C B' A line intersects 
a sphere in at most two points. If D is a point on z and if f.L and v are 
nonidentity motions fixing A, B, and z, then tJ-D=vD and f.L2D=D. If 

~ 

a motion fixes both A and B and sends C to a point on AC different from 
C, then this point is on Cw If D is a point on CB and A is the midpoint 

~ ~ ~ ~ ~ 

of C and D, then AB ..1 AC. If AB ..1 AC, then AB intersects AC only at 
~ 

A. If point D is on CA , CB, and z and pointE is on AB, thenD is on CEo 
If line 1 is perpendicular to line m, then m is perpendicular to l. Ifpoint 

~ 

P is off line l, then there exists a unique point Q on 1 such that PQ ..1 l. 
~ 

If motion p fixes A, sends B to a point on AB different from B, and' 
~ 

sends C to a point on AC different from C, then A is the midpoint of 
P and pP for every point P on z; further, such a motion p exists. A 
motion preserves perpendicularity. 

Postulate 15. If points A, B, C are not collinear, then there exists 
a point off the plane through A, B, C. 

Postulate 16. If points A, B, C, D are not in the same plane, then 
there exists a motion fixing A and B and sending D to a point on the 
plane through A, B, C. 

Definition. Two points Band C are equidistant from point A if 
both are on a sphere with center A. 

Theorem. Let A, B, C be noncollinear points on plane z. There 
~ 

exists a motion sending A to B, sending B to a point of AB other than 
B, and sending C to a point on z. There exists a point Q on z such that 
~ ~ 

AQ ..1 AB. The set of all points on z that are equidistant from A and B 
~ 

is a line perpendicular to AB at the midpoint of A and B. If A, B, E are 
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three collinear points and D is an arbitrary point, then any point on 
two of the spheres D A' DB' DE is also on the third. If D is on z, then 
D A' DB' Dc intersect only at D. A line through a point off z that is per-

~ ~ 

pendicular to both AB and AC is perpendicular to every line on z that 
passes through A. 

Definition. The polar sphere of two points A and B is the sphere 
through A and B with center the midpoint of A and B. A point is in 
the interior of a sphere if the point is the midpoint of two points on 

~ 

the sphere. Point P is between two points A and B if P is on AB and 
in the interior of the polar sphere of A and B. If A and B are two points; 
then segment AB is the union of {A, B} and the set of all points be-

~ 

tween A and B while ray AB is the union of AB and all points P such 
that B is between A and P. 

Remark. By Postulate 15 the geometry is at least three-dimen­
sional. Postulate 16 is motivated by the rotation of a plane onto anoth­
er plane about a common line. The next three postulates deal with 
betweenness. 

Postulate 17. If A, B, C, D are four collinear points, then D can­
not be in exactly one of the segments AB, AC, BC. 

Postulate 18. If point C is between points A and B, then no point 
can be both between A and C and between Band C. 

Postulate 19. Given noncollinear points A, B, C on plane z, if 
line l is on z and contains a point between A and B, then l contains 
a point between A and C or a point between Band C provided l is 
off A, B, C. 

Definition. If A, B, Care noncollinear points, then angle LBAC 
~ -

is the union of all rays AP with P on BC and triangle !::::.ABC is the 
union of all segments AP with P on BC. Figures hand k are congruent 

- - -
if there is a motion IJ- such that IJ-h = k. Given AB and CD, we say AB 

- --
is shorter than CD and write AB < CD if there is a motion sending A 
to C and sending B to a point between C and D. 

Remark. Among the terms Pieri defines next is halfplane. PSP 
is proved. Indeed, at this point it is possible to prove all of the theorems 
in the first and third books of Euclid that are independent of Euclid's 
Parallel Postulate, with one exception! Euclid's Proposition 1.22 cannot 
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be proved without a new axiom. Pieri's final axiom is an axiom of 
continuity, which is taken from Peano's Principii di Geometria. 

Postulate 20. If A and B are distinct points and k is a figure con­
taining a point between A and B, then there exists a point X which is 
either equal to B or between A and B such that no point of k is be­
tween X and B and such that if point Y is between A and X then there 
exists a point of k which is either equal to X or between Y and X. 

Remark. Finally, Pieri proves Archimedes' axiom and then Eu­
clid's Proposition 1.22. Pieri's twenty postulates describe three­
dimensional absolute geometry, so called because Euclid's Parallel 
Postulate is independent of the twenty postulates. Although it is not 
obvious, if we add Euclid's Parallel Postulate to Pieri's system, we 
then obtain a categorical axiom system for three-dimensional Eu­
clidean geometry. 

15.3 EXERCISES 

• 15.1 For Veblen's axiom system based on the undefined terms 
point and order see Section 29 of Volume II of Projective Geometry 
by o. Veblen and J. W. Young (Ginn, 1946). 

15.2 For an axiom system formed by selecting axioms from those 
systems by Hilbert and Veblen, see Chapter 5 of The Foundations of 
Geometry by G. de B. Robinson (University of Toronto Press, 1959). 

15.3 For E. V. Huntington's axiom system based on the undefined 
terms sphere and inclusion see Appendix I of the book in Exercise 15.2. 

15.4 For H. G. Forder's axioms see Chapter XIII of his The Founda­
tions of Euclidean Geometry (Dover, 1958). 

15.5 For Pieri's axiom system based on the undefined terms point 
and congruence (a relation on the set of ordered pairs of points) see 
Chapter XIV of the book in Exercise 15.4. 

15.6 For an axiom system based on the undefined terms point and 
distance, see Chapter 5 of A Modern View of Geometry by L. M. Blu­
menthal (Freeman, 1961). 

15.7 For a totally different approach, see pages 7 through 24 of Linear 
Algebra and Geometry by J. Dieudonne (Houghton Mifflin, 1969). 

15.8 If you can read just a little German, begin to read Aufbau der 
Geometrie aus dem Spiegelungsbegriff by F. Bachmann (Springer­
Verlag, 1959). 
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15.9 Which of Pieri's postulates excludes the reflections in planes 
from the set of motions? 

15.10 In Pieri's axiom system, two points determine a line. 

15.11 Hilbert's axiom V.2 is independent of his other axioms but is 
inconsistent without axiom V.l. 

GRAFFITI 

A Model of the Elliptic Plane (9, Ii', d, m): 

A point is a Euclidean line through (0,0,0) in R3. Set 9 is the set 
of all points. 

For each Euclidean plane through (0,0,0) in R3, the set of all 
(elliptic) points (euclidean) on the plane is a line. Set Ii' is the set of all 
lines. 

Distance function d : 9 x 9 ---+ R is such that d(P, Q) is the 
Euclidean angle measure between the Euclidean lines P and Q. 

Angle measure m : Ii' x Ii' ---+ R is inherited as the Euclidean 
dihedral angle measure between Euclidean planes in R3. 



CHAPTER 16 

Mirrors 

16.1 RULERS AND PROTRACTORS 

Figuratively, we can slide a ruler along its line and turn the ruler 
around. This is the idea behind the Ruler-Placement Theorem (Theo­
rem 6.8). Figuratively, we can slide a protractor around a point and 
turn the protractor over. We don't have a Protractor-Placement Theo­
rem because this idea is already contained in the Protractor Postulate. 

-> 
(We can start our protractor with any ray VA and use either half plane 
~ 

of V A.) Our intuition may be galloping ahead of our theory. Nothing 
has been said about picking up a ruler for line l and putting the ruler 
down on line m if m ¥- l; nothing has been said about picking up a pro-

-> -> 
tractor with initial ray V A and putting the protractor down on WB if 
W ¥- V. Nothing has been said about such things for a very good reason. 
The Ruler Postulate concerns itself with only one line at a time; the 
Protractor Postulate concerns itself with only one point at a time. 

Suppose (.9',2, d, m) is a model of I. Let l be any line in this 
model. Let (be a coordinate system for l. Let h be any bijection on the 
reals which is strictly increasing. So h is one-to-one, onto, and h(xl ) < 
h(x2 ) when Xl < x2• Define distance d' on (.9',2) by d' (P, Q) = d(P, Q) 
unless P and Q are distinct points on l in which case d' (P, Q) = 
Ih(f(Q)) - h(f(P)) I. Then (.9', 2, d') satisfies the Ruler Postulate. 
Lines different from l have their old coordinate systems, and l now has 
coordinate system hf. Since h is strictly increasing, we have A-B-C 
in (.9',2, d') iff A-B-C in (.9',2, d). Thus the segments, rays, an-
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gles, and triangles of one plane coincide with those of the other. It 
follows that (fI>, 2, d', m) is a model of I. 

To illustrate the last construction, we start with the Cartesian 
plane (MI, d, m). Let I be the x-axis. Then f is a coordinate system for 
I where f(x, 0) =x. Let h be defined on the reals by h(x) =r. So 
hf(x, 0) =r. If P= (xl' YI ) and Q= (x2 , Y2 ), then define d'(P, Q) = 
I~-~I ifYI =y2 =0 and d'(P, Q) =PQ otherwise. Then (MI, d') satis­
fies the Ruler Postulate and (MI, d', m) is a model of I. For a less 
spectacular example take h(x) = 2x instead of h(x) =r. Then we 
could think of the x-axis as just having a different scale than the 
other lines. 

Recalling Taxicab Geometry (Section 7.2), we see that this whole 
idea of obtaining a model of I from a given model of I by defining a 
new distance function determined by altering coordinate systems for 
the lines is not new to us. It is clear that our axiom system is not 
strong enough to relate distance on two distinct lines. 

The same sort of game can be played with the protractors as with 
---+ 

the rulers. Suppose (fI>, 2, d, m) is a model of I. Let VA be some ray 
+-+ 

in the model. Let H be a halfplane of V A. Let g be any real function 
such that g(O) = 0, g(7T) = 7T, and g(xl ) < g(x2 ) when 0 < Xl < x2 < 7T. 

For example, let g(x) =X2/7T, g(x) = XN7T2 , or g(x) = 7T sin 1f2X. We shall 
find a new angle measure function m' by altering the measure of those 
angles with vertex V. Let m' LCWD = mLCWD when W ¥ V. Define 
m' LAVB = g(mLAVB) if B is in H. By the nature of g we have a new 

--+ 

protractor on H with initial ray V A. There remains to define m' so 

FIGURE 16.1 
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~ --> 
that we always have a protractor on a side of VP with initial ray VP. 
We know from Chapter 14 that this can be done by defining m'LPVQ 
under the assumption of (b) in the Protractor Postulate and the as­
sumption that the angles in a linear pair are supplementary. It fol­
lows that (flJ, 2, d, m') is a model of I. We see that our axiom system 
is not strong enough to prevent such tinkering with an angle measure 
function. 

16.2 MIRROR AND SAS 

One conclusion to be drawn from the remarks made so far is that there 
is no provision for symmetry in our axiom system. We shall next con­
sider an axiom to overcome this lack of symmetry. Put briefly we want 
every line to be a mirror. How can we make this idea precise? In Figure 
16.2 point P' is the mirror image of P in line m. Every line m should 
determine a mapping on the points. This mapping should be a per­
mutation on the points that sends lines to lines. In other words, the 
mapping should be a collineation. In Figure 16.2 we should have AB = 
A'B' and mLABC= mLA'B'C'. So the collineation should preserve 
distance and angle measure. A point on m should be its own image, 
but the image of a point off m and the point should be on opposite 
sides of m. Anything else? One might think to require that P' be de­
fined such that m is the perpendicular bisection of PP' in Figure 16.2. 
The difficulty is that given point P offline m we have no theorem tell­
ing us that there exists a unique perpendicular from P to m. In fact, 
the model (MI0, s, m2 ) from Section 14.1 shows that there can be no 
such theorem. This difficulty will melt away as a consequence of the 
requirements we have already listed. We have enough properties to 
make precise the idea that every line is a mirror. 

A m A' 

B B' 

P' p •............• 

FIGURE 16.2 
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DEFINITION 16.1 Mirror Axiom or MIRROR: For every line m 
there exists a collineation that preserves distance and angle measure, 
fixes m pointwise, and interchanges the halfplanes of m. 

We shall see that, if accepted as our next axiom, MIRROR would 
allow us to make precise the idea of picking up a triangle and putting 
it down without deformation. This idea, known as superposition, has 
been a problem in the foundations of geometry from the beginning. 
Schopenhauer wrote that Euclid's Common Notion 4, which supposed­
ly allowed superposition, was more to be questioned than the parallel 
postulate. Euclid obviously had deep reservations about the method 
as he used it only twice, once for the fundamental Proposition 1.4, 
the Side-AngIe-Side Theorem, and then again for Proposition 1.8, the 
Side-Side-Side Theorem. Since the use of superposition in Euclid's 
Proposition 1.8 can be avoided (by Philo's proof of our Theorem 17.13), 
our attention is necessarily focused on Euclid's Side-AngIe-Side 
Theorem. 

DEFINITION 16.2 Side-Angle-Side or SAS: Given 6.ABC and 
6.A'B'C', if AB = A'B', LA = LA', and AC = A'C', then LB = LB', 
--
BC=B'C', and LC= LC'. 

In some model of I suppose A, B, C, A', B', C' are six distinct 
points such that 6.ABC and 6.A'B'C' satisfy the hypothesis of SAS 
as stated in Definition 16.2. Then we can tinker with distance along 
~ 

BC and angle measure for angles with vertex B and for angles with 
vertex C to produce a model of I having two triangles that satisfy the 
hypothesis of SAS but none of the conclusions. Yet, given our aim 
(Section 6.1), SAS is certainly a reasonable statement. Indeed, SAS 
is such an obvious fact that the proposition is often taken as an axiom. 

We now have two desirable propositions, MIRROR and SAS, that 
are not theorems of our axiom system. Each has the very important 
property of making requirements on distance d and angle measure m 
together. We might say that each would make d and m behave and 
cooperate. If you suspect that we are in the same relative position as 
we were when deciding between PASCH and PSP, you are correct. 

B B' 

A~AL\c 
FIGURE 16.3 
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FIGURE 16.4 

Under our four axioms, MIRROR and SAS are equivalent! In this chap­
ter we shall show that MIRROR implies SAS. In the next chapter we 
shall take SAS as our fifth axiom. Of course, after taking SAS as an 
axiom, we shall not be able to use MIRROR until it is later proved as 
a theorem. In a more elementary approach both MIRROR and SAS 
could be taken as axioms. 

Although the proof that MIRROR implies SAS is rather long, 
the idea behind the proof is simple. Consider Figure 16.4. Suppose 
AB=DE, mLBAC= mLEDF, and AC=DF. How can we move b:.ABC 
onto b:.DEF to show the remaining parts of the two triangles fit? This 
is accomplished by three mappings, placing one vertex at a time. 
First get A to D by using m1 as a mirror. This sends B to Bl and C to 
C1• Then, using m2 as a mirror, get Bl to E leaving D fixed. This sends 
C1 to C2• Finally get C2 to F by using m3 as a mirror, leaving D and E 
fixed. Now b:.ABC has been moved on top of b:.DEF and all the parts 
fit. Easy enough! The first part of the proof shows that mirrors move 
triangles and how to find the desired mirrors. In the second part we 
carry out the moving just as we have described. Of course we don't 
actually move any triangle. What we do is consider a triangle and its 
image under a mapping. The colorful language employed in talking 
about mappings should not be interpreted too literally. 

Theorem 16.3 If MIRROR, then SAS. 

Proof For a given line m, a collineation given by MIRROR for that 
line will be called a mirror map in m. Before getting to the main part 
of the proof, we make three preliminary observations. 

Suppose P-Q-R and P, Q, R have images P', Q', R' under a 
mirror map. Then P', Q', R' are distinct and collinear because a mirror 
map is a collineation. Since a mirror map preserves distance, we have 
P'R'=PR=PQ+QR=P'Q'+Q'R'. So P'-Q'-R'. Hence a mirror 
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map preserves betweenness. We observe that any product of mirror 
maps preserves betweenness and, hence, must preserve segments, 
rays, angles, and triangles as well as distance and angle measure. 

Our second observation is that if m is perpendicular to ST at 
the midpoint of ST, then T is the image of S under any mirror map in 

~ 

m. To prove this, suppose MN is perpendicular to ST at M, the mid-
point of ST. (See Figure 16.5.) Let S' be the image of S under the mir-

~ -ror map in MN. Then S' and T are on the same side of MN. Since the 
mapping fixes M and N and preserves right angles, we must have S' 
~ 

on MT. Since MS' = MS = MT, we have S' = T, as desired. 
~ 

If line m contains angle bisector VI of L GVH and VG = VH, then 
H is the image of G under the mirror map in m. This third observation 
follows from the Angle-Segment-Construction Theorem as H is on the 

~ 

opposite side of VI from G and mLIVH = 1/2mLGVH. 
Now suppose fj.ABC and fj.DEF are any triangles such that AB = 

DE, mLA=mLD, and AC=DF. To prove our theorem we need to 
show mLB= mLE, BC=EF, and mLC= mLF. 

If A = D, then let CT1 = L, the identity map on the set of all points. 
If A # D, then let CT1 be a mirror map in the unique line perpendicular 
to AD at the midpoint of AD. By our second observation, D=CT1A in 
in either case. Let Bl = CT1B and C1 = CT1C. 

Since CT1 preserves distance, we have DBI =AB=DE. So, if Bl 
~ 

is on DE, then Bl = E. In this case let CT2 = L. Also, if Bl is on the op-
~ 

posite ray of DE, then D is the midpoint of B1E. In this case let CT2 be 
the mirror map in the line perpendicular to BIE at D. If LBpE, then 
let CT2 be the mirror map in the line containing the angle bisector of 
LB1DE. By our second and third observations, D=CT2D andE=CT2B1· 
Let C2 = CT2C1 = CT2CT1C. 

Now D=CTP=CT2CT1A, E=CT~1 =CT2CT1B, and C2=CT2C1 =CT2CT1C. 
Since CT 2CT 1 preserves distance and angle measure, it follows that DC2 = 
AC = DF and mLCpE = mLCAB = mLFDE. So, if C2 is on the same -side of DE as F, then C2 = F. In this case let CT3 = L. Also, if C2 is on the 
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~ ~ 

opposite side of DE as F, then DE contains the angle bisector of 
~ ~ ~ 

LC,pF or DE 1.. C,ji'. In this case let 0"3 be the mirror map in DE. In 
either case D=O"P, E=O"aE, and F=0"3C2' 

We now have D=O"P=0"30"20"IA, E=0"3E=0"30"20"IB, and F= 
0" 3C2 = 0"30"20" IC, Finally, since 0"30"20"1 preserves distance and angle 
measure, it follows that mLDEF= mLABC,EF=BC, and mLDFE= 
mLACB, as desired. • 

SAS brings to mind the so-called congruence theorems such as 
ASA, the Angle-Side-Angle Theorem, which you probably encountered 
in high school. Suppose we write down the eight possible three letter 
words using only "A" and "S." Each of these words suggests a propo­
sition. We can cross SAS off our list as that has already been defined. 
We can cross off AAS because the AAS proposition is the same thing 
as the SAA proposition. Likewise SSA is a repetition of ASS. The defi­
nition of each of the five remaining words is left as an exercise. All 
that has to be done is to imitate Definition 16.2 in each case. We are 
not claiming that all these propositions will turn out to be theorems. 

DEFINITION 16.4 ASA, SAA, ASS, SSS, AAA: (Exercise 16.1). 

Our next theorem shows that ASA implies SAS. It is also true 
(Exercise 16.2) that SAS implies ASA. Hence ASA is equivalent to 
SAS and, we claim, is equivalent to MIRROR. Although this result is 
of some interest, for our purpose the importance of the theorem is in 
its proof. If we don't have mirror maps to move triangles about, how 
do we get at the idea of superposition? The solution is elementary. We 
simply build a copy of a given triangle where we want it. For example, 
in the next proof we build t::.ABE as a copy of t::.A'B'C'. This method 
of superposition will be used frequently. Note that the statement of 
the next theorem is actually of the form: If (if p then q), then (if r 
then s). To prove such a proposition assume both (r) and (ifp then q) 
in order to deduce (s). 

D 

C' 

A B 

FIGURE 16.6 
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Theorem 16.5 If ASA, then SAS. 

Proof Let t6.ABC and t6.A'B'C' be such that AB=A'B', mLA= 
mLA', and AC=A'C'. Assume mLB ¥- mLB'. Without loss of gen­
erality we may suppose mLB' < mLB. Let D be a point on the same 

~ 

side of AB as C such that mLABD= mLA'B'C'. Then D is in int - -(LABC), (by Theorem 14.6). So BD intersects int (AC) by Crossbar, 
say at E. Hence A-E-C. Applying ASA to t6.ABE and t6.A'B'C', we 
obtain AE=A'C'. Since A'C'=AC, we now have AE=AC and 
A-E-C, a contradiction. Hence mLB= mLB'. Then, applying ASA 
to t6.ABC and t6.A'B'C', we also have BC=B'C' and mLC=mLC'. 
Therefore SAS, as desired. • 

We have previously remarked that our Incidence Axiom could 
just as well be called the Straightedge Axiom. Our third axiom, PSP, 
could be called the Scissors Axiom since the idea is that a line cuts the 
points off a line into two halfplanes. If we were to take MIRROR in­
stead of its equivalent SAS as our fifth axiom, then the first five axioms 
would be (1) STRAIGHTEDGE, (2) RULER, (3) SCISSORS, (4) PRO­
TRACTOR, and (5) MIRROR. 

16.3 EXERCISES 

In doing the exercises below it must be remembered that we now have 
only four axioms. We shall not assume SAS until the next chapter. 
Of course we cannot use MIRROR (or any theorem remembered from 
high school) until we have actually proved it. 

16.1 Complete Definition 16.4. 

• 16.2 SAS implies ASA. 

16.3 ASS is false for every model of I. 

16.4 Prove the following postulate of Hilbert implies SAS: Given 
--- ----

t6.ABC and t6.A'B'C', if AB =A'B', LA = LA', and AC =A'C', then 
LB = LB'. 

• 16.5 There does not exist a mirror map for the line with equation 
y=2x in the Taxicab Plane (Ml, t, m) where m is the Cartesian angle 
measure function. 

• 16.6 True or False? 

(a) If P and Q are distinct points, then there exists a line I 
- -

perpendicular to PQ at the midpoint of PQ. 
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(b) If point P is off line I, then there exists a line perpendicular 
to I through P. 

(c) SAS is independent of our four axioms. 

(d) SAS holds for some model of I. 

(e) SAS holds for every model of I. 

CD MIRROR implies ASA. 

(g) ASA implies SAS. 

(h) AAA. 

(i) SAS implies AAA. 

(j) (If (if p, then q), then (if r, then s)) iff (if (r) and (if p, 
then q), then (s)). 

16.7 Do there exist any lines in the Taxicab Plane of Exercise 16.5 
for which a mirror map does exist? 

• 16.8 Paper-Pencil-Pin Problem: Starting with f:,.ABC on a piece 
of paper, reproduce Figure 16.4 using only a pencil to draw segments 
and a pin to locate points. No other tools allowed. 

16.9 Relate the following shopping list to our study: Flag, Ruler, 
Knife, Protractor, Mirror . 

• 16.10 Is a collineation of a model of I necessarily distance pre­
serving? A distance preserving map on the points of a model of I is 
not necessarily a collineation. 

16.11 Give a model of I where AAA fails. 

16.12 Give a model of I such that the sum of the measures of the 
three angles of some triangle is'TT/6 and of some other triangle is 27T. 

16.13 Use Taxicab Geometry to show that each of the proposi­
tions AAA, ASA, SAA, SAS, and SSS is independent of our first four 
axioms. 

*16.14 Does SAA imply SAS? 
Does SSS imply SAS? 
Does AAA imply SAS? 

*16.15 Can "angle measure" be replaced by "perpendicularity" in 
Definition 16.1 and still have Theorem 16.3? 
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GRAFFITI 

Bolyai, when in garrison with cavalry officers, was provoked 
by thirteen of them and accepted all their challenges on condition 
that he be permitted after each duel to playa bit on his violin. He 
came out victor from his thirteen duels, leaving his thirteen 
adversaries on the square. 

Halsted 

In most sciences one generation tears down what another has 
built and what one has established another undoes. In Mathematics 
alone each generation builds a new story to the old structure. 

The advancement and perfection of mathematics are 
intimately connected with the prosperity of the State. 

Hankel 

Napoleon 

To Thales . . . the primary question was not What do we 
know, but How do we know it. 

Aristotle 

"Then you should say what you mean," the March Hare went 
on. 

"I do," Alice hastily replied; "at least - at least I mean what I 
say-that's the same thing, you know." 

"Not the same thing a bit!" said the Hatter. "Why you might 
as well say that r I see what I eat' is the same thing as r I eat what 
I see'!" 

"You might just as well say," added the March Hare, "that r I 
like what I get' is the same thing as r I get what I like'!" 

Lewis Carroll 



CHAPTER 17 

Congruence and the 
Penultimate Postulate 

17.1 CONGRUENCE FOR TRIANGLES 

It is time to launch into a discussion of congruence for triangles. This 
turns out to be not as trivial as one might suppose. The standard 
conventions are somewhat misleading. There are many comments to 
make about the next two definitions. 

DEFINITION 17.1 Suppose ~ABC and!:::'DEFexist. Then~ABC = 
~DEF if all six of the following relations hold: 

AB=DE, 

LA=LD, 

BC=EF, 

LB= LE, 

AC=DF, 

LC=LF. 

DEFINITION 17.2 We say ~ABC and ~DEF are congruent if at 
least one of the following six statements holds: 

~ABC=~DEF, 

~CBA=!:::'DEF, 

~BCA=~DEF, 

~ACB=~DEF, 

!:::'CAB=~DEF, 

!:::'BAC=~DEF. 

Notice that the two definitions are indeed different. Referring 
to Figure 17.1, where the represented sides and angles that look con­
gruent are assumed to be congruent, "!:::,ABC = !:::,DEF" is a false 



CONGRUENCE FOR TRIANGLES 193 

B E 

~~ 
CAD F 

FIGURE 17.1 

statement because AB is not congruent to DE. However 6ABC and 
6DEF are congruent because 6ABC = 6FED. 

You may have to write out some of the six statements in Defi­
nition 17.2 (using Definition 17.1) to convince yourself that these six 
statements are different. Doing this will give you a better idea of what 
each definition says and what it does not say. You should also convince 
yourself that it is these six statements in Definition 17.2 that we 
want, as the triangles represented in Figure 17.1 are still congruent 
no matter how the letters "A," "B," and "c" are permuted in the 
figure. 

You may have noticed that congruence (Definition 17.2) is defined 
in terms of congruence. This is not a cyclic definition, however, as it is 
the previously defined congruence of segments and the previously de­
fined congruence of angles that are used to define a new kind of con-
gruence. This could even be avoided by writing "AB = DE" for "AB = 

DE," "mLA = mLD" for "LA = LD," etc. Although using the word 
congruent in several contexts doesn't help an already confusing situa­
tion, it really shouldn't be a bother. 

There is no short notation to say that 6ABC and 6DEF are con­
gruent; as in Definition 17.2 we must write out the words. There is 
little need for any symbolism because the congruence of Definition 
17.2 is of such a general nature that it is hardly ever used. The idea of 
Definition 17.2 might be ignored in elementary texts. What is used­
and used often - is Definition 17.l. 

In Definition 17.1 you are not told how to read the statement 
"6ABC = 6DEF." This causes no problem at all in the written 
language. What happens when one wants to use the spoken language? 

--
We read "AB = DE" aloud as "Segment A B is congruent to segment 
D E." If you have not been told otherwise, chances are that you are 
reading the statement in question aloud as "Triangle ABC is con­
gruent to triangle D E F." Indeed everyone does just that, including 
the author. Then one has to agree that the two statements "6ABC is 
congruent to 6DEF" and "6ABC and 6DEF are congruent" mean 
different things. There is nothing wrong with that. (Compare "Joe is 
opposed to Jim" with "Joe and Jim are opposed.") Since we shall have 
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a generalized definition of congruent which applies to arbitrary sets 
.of P.oints and enc.ompasses .our present three uses (Definiti.ons 8.5, 
14.1, and 17.2), we shall n.ot formally attach the word congruent to 
Definition 17.1. 

The pr.oblem with "6.ABC = 6.DEF" is not h.oW to read it but that 
it can be misleading in other ways. From 6.CAB = 6.DEF and the ob­
vious fact that 6. ABC = 6.CAB, we cann.ot conclude by simple sub­
stitution that 6.ABC = 6.DEF. (This substitution W.ould be somewhat 
anal.ogous t.o concluding that 72 + 63 = 672+ 111 from 783= 672 + 111 
and 2 + 6 = 8.) Hence "6.ABC = 6.DEF" should be viewed as one sym­
b.ol. Alth.ough Definiti.on 17.1 looks like it defines an equivalence re­
lation on the set of triangles, the fact is that the definition does not 
even define a relation on the set of triangles! The definition not only 
involves triangles but also inv.olves s.ome ordering of the vertices of 
these triangles. 

Perhaps in a m.ore advanced text an author would introduce 
~ 

ordered triangles, say den.oted by 6.ABC, which could be defined as 
~ ~ 

an ordered 4-tuple (6.ABC, A, B, C). Then 6.ABC ~ 6.CBA in general. 
The six relations in Definition 17.1 would then be used to define 
~ ~ 

6.ABC = 6.DEF, giving an equivalence relation on the set .of all 
.ordered triangles. This, after all, is really the wh.ole idea behind 
Definiti.on 17.1. The symb.oI "6.ABC = 6.DEF" would then be free 
for use in Definition 17.2 if desired. H.owever, this author has ch.osen 
to stick with the standard n.otation and conventi.ons. 

Theorem 17.3 The following are equivalent: 6.ABC = 6.DEF, 
6.BCA = 6.EFD, 6.CBA = 6.FED, and 6.DEF = 6.ABC. 

Proof Follows directly from Definition 17.1. • 

The previous discussi.on shows that Theorem 17.3 is n.ot com­
pletely trivial. The next the.orem has the form it has because = is 
not a relation on the set of all triangles. 

Theorem 17.4 Congruence .of triangles is an equivalence relation 
on the set of triangles. Further, 

(a) 6.ABC = 6.ABC; 

(b) if 6. ABC = 6.DEF, then 6.DEF = 6.ABC; 

(c) if 6.ABC = 6.DEF and 6.DEF = 6.GHI, then 6.ABC = 
6.GHI. 

Proof The second part foll.oWS from Definiti.on 17.1 and the fact that 
congruence of segments and congruence of angles are each equivalence 
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relations. The first part then follows from the second part by Defini­
tion 17.2 .• 

17.2 AXIOM 5: SAS 

Recall Taxicab Geometry (M1, t) from Section 7.2. From the coinci­
dence of betweenness for points in Taxicab Geometry with between­
ness for points in the Cartesian plane follows the coincidence of seg­
ments, halfplanes, rays, angles, and triangles in the two planes. There­
fore, where m agrees with the angle measure function ofthe Cartesian 
plane, (M1, t, m) is a model of I. This model satisfies the triangle in­
equality, which is not yet one of our theorems. Whatever its interest 
or use for practical applications, this geometry should be excluded 
by an axiom system developed with our aim (see Section 6.1). In 
(M1, t, m) there are equilateral right triangles and right triangles 
where the length of the hypotenuse equals the sum of the lengths of 
the other two sides. In Figure 17.2, b,.ABC and b,.DEF are two trian-

-- --
gles in (M1, t, m) such that AB = DE, LA = LD, and AC = DF, but --
b,.ABC =f b,.DEF because BC =f EF. Hence (M1, t, m) does not satisfy 
Euclid's Proposition 1.4, the Side-Angle-Side Theorem. If two sides and 
the included angle of one triangle are respectively congruent to two 
sides and the included angle of another triangle, then certainly the 
two triangles are congruent. (See Figure 17.3.) This proposition makes 
strong requirements on both the distance function and the angle 
measure function together. We shall use Euclid's 1.4 to formulate our 
next to the last axiom, Axiom 5. 

Axiom 5 SAS Given b,.ABC and b,.DEF, 
- - ---

if AB = DE, LA = LD, and AC = DF, 
then b,.BAC ~ b,.EDF. 

With the new axiom at hand, it is only fitting that the next theo-

B 

D 
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FIGURE 17.2 
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FIGURE 17.3 

rem be Euclid's Proposition I.5, the famous Pons Asinorum or Bridge 
of Asses. 

Theorem 17.5 Pons Asinorum Given /:)'.ABC, if AB = AC, then 
LB=LC. 

Proof (Pappus) Since AB = AC, LA = LA, and AC = AB, it fol­
lows that 6..BAC = 6..CAB by SAS. Hence LB = LC. • 

According to Proclus this beautiful proof is due to Pappus. The 
proof is based on the fact that nowhere in the statement of SAS in 
Definition 17.1 is it required that the triangles be distinct. Those 
readers who dropped out before the Pons Asinorum have been labeled. 
To those still with us, Congratulations! 

A hundred years ago Pappus' proof of the Pons Asinorum might 
have been stated in terms of picking up the triangle, turning it over, 
and replacing it on top of itself. For the wrong reasons, such a proof 
would not have been accepted at Oxford in the classes taught by the 
minor mathematician Charles Lutwidge Dodgson (1832-1897). 
Dodgson, better known to the world as Lewis Carroll, author of Alice 
in Wonderland, would have pointed out that since there is only one 
triangle in the first place, when you pick it up it is no longer there to 
be put back on itself. Remember that triangles were then considered 
to be actual physical entities. Also, given two points A and B, one had 
to draw AB or otherwise AB somehow didn't seem to exist. Dodgson's 
Euclid and his Modern Rivals (1879), which has been reissued recent­
ly by Dover, is a long defense for using only Euclid's Elements as a 
beginning textbook and contains a sophisticated discussion of the 
parallel postulate. In particular Dodgson exposes those geometers 
who use the word direction without definition or axiom. He also wrote 
A New Theory of Parallels (1888), which proposes a substitute for the 
parallel postulate of Euclid. In this work Dodgson makes tacit as­
sumptions about area, without defining the word. 

Theorem 17.6 Given 6..ABC and A-C-D, then mLBCD > mLB. 
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Proof Let E be the midpoint of BC. By the Midpoint Theorem (Theo­
rem 8.15) there exists a unique point F such that A-E-F and AE= 
--

EF. So AE = FE, LAEB = LFEC since vertical angles are congruent, 
--

and EB = EC. Thus 6AEB = 6FEC by SAS. So LABE = LFCE. 
Therefore mLB=mLBCF. ~ 

Since A-C-D, points A andD are on opposite sides of BC. Since 
~ 

A-E-F and B-E-C, points A and F are on opposite sides of BC. So 
~ 

D and F are on the same side of BC. Also B, E, and F are on the same 
~ 

side of CD. Hence F is in the interior of LBCD. Then, by the Protractor 
Postulate, mLBCD > mLBCF. This last result, together with mLB = 
mLBCF, gives mLBCD > mLB. • 

DEFINITION 17.7 If 6ABC and A-C-D, then LBCD is an ex­
terior angle of 6ABC with remote interior angles LA and LB. If 

- -
6ABC, then LA is the angle opposite BC and BC is the side opposite 
L A. If two sides of a triangle are congruent, then the triangle is 
isosceles. The angles opposite the congruent sides of an isosceles tri­
angle are base angles. A triangle that is not isosceles is scalene. If 
all three sides of a triangle are congruent, then the triangle is equi­
lateral; if all three angles of a triangle are congruent, then the tri­
angle is equiangular. 

There should be no surprises in the definition above. However, 
note that in Figure 17.4, if AB ¥- BC but AB = AC, then L B is a base 
angle of 6ABC but LA is not a base angle of 6ABC. The position of 
the figure is immaterial. We can restate the Pons Asinorum: The base 
angles of an isosceles triangle are congruent. The next definition intro­
duces two relations on the set of angles by using angle measure in 
the obvious way. (In writing be careful to distinguish between "L" 
and "<.") 

DEFINITION 17.8 We say LABC is larger than LDEF and write 
LABC> LDEF if mLABC> mLDEF; we say LDEF is smaller 

B 
F 

A 

FIGURE 17.4 
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than LABC and write LDEF< LABC if mLDEF< mLABC. 

Theorem 17.9 Euclid's Proposition 1.16 An exterior angle of a tri­
angle is larger than either of its remote interior angles. 

Proof Suppose b.ABC and A-C-D. We must prove LBCD is larger 
than LA and larger than LB. LetFbe such thatB-C-F. Then, by the 
previous theorem, we immediately have LBCD> LB and also 
LACF> LA. Since LACF and LBCD are vertical angles, it follows 
that LBCD > LA. • 

The last theorem is the first of the three theorems on exterior 
angles which we shall eventually obtain. The importance of this key 
theorem cannot be overemphasized. 

Theorem 17.10 The base angles of an isosceles triangle are acute. 

Proof Suppose b.ABC with AB=BC and A-C-D. By the Pons Asi­
norum mLA = mL C. By the previous theorem mLBCD> mLA. 
So mLBCD> mLC. But LBCD and LC are a linear pair. Hence 
LBCD is obtuse and LC is acute. Therefore LA and LC are acute. • 

17.3 CONGRUENCE THEOREMS 

The SAS axiom suggests other possible propositions which mayor 
may not be theorems of our axiom system. Anyone who has passed 
over the Pons Asinorum can figure out the derivation of the names 
ASA, SAA, ASS, SSS, and AAA and what each stands for. Each of the 
names is read by pronouncing its three letters in order. Axiom 5 can -- --
be restated: If AC==DF, LACB== LDFE, and CB==FE, then t-,ACB== 
t-,DFE. The best restatement of SAS: Given t-,ABC and t-,DEF, if 
- - - --
AB == DE, LB == LE, and BC == EF, then t-,ABC == t-,DEF. These re-
statements follow a certain convention. For example, "b.BAC == b.EDF 
by SAS" indicates that the congruence follows from BA == ED, LA == 
LD, and AC == DF and not from some other combination of side-angle­
side. Likewise, "b. CAB == b.FED by ASA" will tell us that the con---
gruence follows from LC == LF, CA == FE, and LA == LE. In this way 
the notation is extremely effective in giving maximum information. 
To test your understanding of this convention see if you can write 
down the hypotheses of ASA, SAA, and ASS when the conclusion is 
b.ABC == b.DEF. Then check with the following definition. 

DEFINITION 17.11 ASA: Given b.ABC and b.DEF, if LA == LD, --
AB == DE, and LB == LE, then b.ABC == b.DEF. 
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SAA: Given t,ABC and t,DEF, if AB = DE, LB = LE, and LC = 
LF, then t,ABC = t,DEF. 

ASS: Given t,ABC and t,DEF, if LA = LD, AB = DE, and --
BC = EF, then t::,ABC = t,DEF. 

- ----
SSS: Given t,ABC and t,DEF, if AB = DE, BC = EF, and CA = 

FD, then t::,ABC = t,DEF. 
AAA: Given t,ABC and t,DEF, if LA = LD, LB = LE, and 

LC = LF, then t::,ABC = t,DEF. 

Theorem 17.12 ASA. 

Proof Suppose t,ABC and t,DEF are such that LA = LD, AB = 

DE, and LB = LE. If BC # EF, then we may assume without loss of 
generality that BC > EF. Then there exists C' such that B - C' - C and 
BC' = EF. So t,ABC' = t::,DEF by SAS. Hence mLBAC' = mLEDF. 
But, since C' is in int (LBAC), mLBAC' < mLBAC. Then mLD < 
mLA, contradicting the hypothesis LA = LD. So BC=EF. Therefore 
BC = EF, and t::,ABC = t::,DEF by SAS. • 

Theorem 17.13 SAA. 

Proof Suppose t::,ABC and t::,DEF are such thatAB = DE, LB = LE, 
and LC = LF. If BC # EF, then we may assume without loss of gen­
erality that BC>EF. Then there exists C' such that B-C'-C and 
BC'=EF. So t,ABC' =t,DEF by SAS. Hence mLAC'B=mLDFE. 
Since mLDFE = mLACB by hypothesis, we have mLAC' B = mLACB. 
However, looking at t,ACC', we see that LAC'B is an exterior angle 
with remote interior angle LACC'. Hence mLAC'B> mLACC'. 
Then mLACB> mLACC', a contradiction. So BC=EF. Therefore 
--
BC = EF, and t,ABC = t,DEF by SAS. • 

Euclid combined ASA and SAA into Proposition 1.26. Our proofs 
follow those of Euclid. The idea is to make t,ABC' a copy of t,DEF so 

c F 

FIGURE 17.5 
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that the copy can be compared with l:::.ABC. Euclid's Proposition I.8 
is SSS. In proving SSS, we shall not follow Euclid but rather follow a 
proof which, according to Proclus, is due to Philo. Again the idea is 
to make l:::.ABC' a copy of l:::.DEF. (In Figure 17.6l:::.DEF is not shown.) 
Showing that l:::.ABC' is also a copy of l:::.ABC implies that l:::.ABC and 
l:::.DEF are copies of each other. 

Theorem 17.14 SSS. 

Proof (Philo) Suppose l:::.ABC and l:::.DEF are such that AB = DE, 
-- --
BC = EF, and CA = FD. By the Angle-Segment-Construction Theo-
rem, let C' be the unique point such that C and C' are on opposite 

~ -- --
sides of AB, LABC' = LDEF, and BC' = EF. Then l:::.ABC' = l:::.DEF 
by SAS. Suppose we can show LACB = LAC'B. Then l:::.ACB = 
l:::.AC'B by SAS. So l:::.ABC = l:::.ABC' (Theorem 17.3). Then, since 
l:::.ABC' = l:::.DEF, we would have l:::.ABC = l:::.DEF (Theorem 17.4) as 
desired. Therefore to complete the proof we need only show that 
LACB = LAC'B. 

~ 

Since C and C' are on opposite sides of AB, let point H be the 
~ ~ 

intersection ofCC' withAB. So C-H -C' withH onAR. The remainder 
of the proof depends on the order of A, B, and H. If H = A, then LACB = 
LAC'B follows from application of the Pons Asinorum to l:::.CBC'. 

c c 

H = A 1-----...-+ B A~---+-----~B 

c· c· 

c 

A~----"';;;"~--~H 

c· 
FIGURE 17.6 
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If H=B, then LACB = LAC'B follows from application of the Pons 
Asinorum to .6.CAC'. Now suppose H is distinct from A and from B. 
Applications of the Pons Asinorum to .6.CAC' and .6.CBC' give 
LHCA = LHC'A and LHCB = LHC'B. If A-H-B, then LACB = 
LAC'B by the Angle-Addition Theorem (Theorem 14.5) as H is in 
int (LACB) and int (LAC'B). There remain only the cases H-A-B 
and A-B-H to consider. However, as in the case A-H-B, again 
LACB = LAC'B follows from the Angle-Addition Theorem (Exer­
cise 17.1). • 

Three of the five propositions of Definition 17.11 have been 
proved. Neither ASS nor AAA can be a theorem at this time since each 
fails for the Euclidean plane. However, it should not be assumed that 
each is false for every model of I. 

17.4 EXERCISES 

17.1 Give the details proving the last sentence in the proof of Theo­
rem 17.14. 

17.2 Theorem 17.3 implies there are twelve ways to express the 
fact that .6.ABC is congruent to .6.DEF. List them. 

• 17.3 An equilateral triangle is equiangular. 

• 17.4 State and prove the converse of the Pons Asinorum. 

17.5 Prove Euclid's Proposition 1.17: Given .6.ABC, mLA + mLB < 'IT. 

• 17.6 True or False? 

(a) The first four axioms and the triangle inequality imply SAS. 

(b) SAS is independent of our first four axioms. 

(c) AB = DE iff BA = DE. 

(d) .6.ABC = .6.DEF iff .6.BAC = .6.DEF. 

(e) .6.ABC = .6.BCA. 

CO The converse of SAS is ASA. 

(g) An equilateral triangle is an isosceles triangle. 

(h) LA < LB iff LB > LA. 

(i) If neither LA> LB nor LB > LA, then LA= LB. 

(j) "Penultimate" means "next to the last." 
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• 17.7 Does the strict triangle inequality (if /::,.ABC, then AB+ 
BC > AC) imply SAS under our first four axioms? 

17.8 Prove Euclid's Proposition 1.7 using SSS. 

• 17.9 If P is a point off line 1, then there is a unique line through P 
that is perpendicular to 1. 

17.10 Given /::,.ABC, mLA + mLB+ mLC < 371"/2. 

17.11 Assume the statement of SAS requires the triangles be dis­
tinct. Then prove SAS as we have it. 

17.12 Read "The Mathematical Manuscripts of Lewis Carroll" by 
W. Weaver in the Proceedings of the American Philosophical Society 
Vol. 98 (1954), pp. 377 -381. 

• 17.13 Give a geometric interpretation of the model (MI, p, m) 
where m is Cartesian angle measure function and p is the distance 
function defined by having the distance from (Xl' Yl) to (X2, Y2) be 
V(X2-Xl)2+5(Y2-Yl)2. Use this model to prove the independence 
ofSAS. 

*17.14 Use (MI3, h, m), where m is the Cartesian angle measure 
function restricted to (MI3, h) of Section 9.2, to prove the inde­
pendence of SAS. 

*17.15 Under our first four axioms is SAS equivalent to the follow-
--

ing property? If LABC and LDEF are right angles, AB == DE, and 
--
BC == EF, then /::,.ABC == /::"DEF. 

GRAFFITI 

Newton had so remarkable a talent for mathematics that 
Euclid's Geometry seemed to him" a trifling book," and he wondered 
that any man should have taken the trouble to demonstrate 
propositions, the truth of which was so obvious to him at the first 
glance. But, on attempting to read the more abstruse geometry of 
Descartes, without having mastered the elements of the science, he 
was baffled, and was glad to come back again to his Euclid. 

James Parton 

It is the glory of geometry that from so few principles, fetched 
from without, it is able to accomplish so much. 

Newton 
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God ever geometrizes. 
Plato 

The proof of self-evident propositions may seem to the 
uninitiated, a somewhat frivolous occupation. To this we might 
reply that it is often by no means self-evident that one obvious 
proposition follows from another obvious proposition; so that we are 
really discovering new truths when we prove what is evident by a 
method which is not evident. But a more interesting retort is, that 
since people have tried to prove obvious propositions, they have 
found that many of them are false. Self-evIdence is often a mere 
will-o'-the-wisp, which is sure to lead us astray if we take it as our 
guide. 

Russell 

We already know. . . that the behavior of measuring-rods 
and clocks is influenced by. . . the distribution of matter. This in 
itself is sufficient to exclude the exact validity of Euclidean geometry 
in our universe. 

Einstein 



CHAPTER 18 

Perpendiculars and 
Inequalities 

1B.1 A THEOREM ON PARALLELS 

There are many theorems to prove, here and in the next several 
chapters, in order to fully understand the implications of adding the 
powerful SAS to our axiom system. We begin with a theorem moti­
vated by Euclid's Proposition 1.11 and Proposition 1.12. 

Theorem 18.1 Given pointP and line I, there is a unique line through 
P that is perpendicular to I. 

Proof We know the theorem holds when P is on I (Theorem 14.18). 
~ 

Suppose P is off I and 1= AB. By the Angle-Segment-Construction 

p 

A 

Q 

FIGURE 18.1 
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p 

J 

FIGURE 18.2 

Theorem there is a unique point Q such that P and Q are on opposite 
--

sides of l, LBAP = LBAQ, and AP =AQ. If B-A-C, then LCAP = 
LCAQ. Let PQ intersect 1 at point H. If H = A, then LBHP and LBHQ 
are a linear pair of congruent angles and PH .il (Theorem 14.13). If 
H yf A, then b.HAP = b.HAQ by SAS. Hence LPHA is congruent to 
LQHA. Since these two angles are a linear pair, each must be a right 

~ 

angle. Thus PH .i l. In any case, we have PH is perpendicular to l, 
establishing the existence of the desired line. For the uniqueness 

~ 

assume PI is also perpendicular to 1 with I distinct from H and on l. 
Let H -I -J. Then b.HIP has exterior angle LPIJ congruent to its 
remote interior angle LPHI, a contradiction (Theorem 17.9). There-

~ 

fore, PH is the unique line through P that is perpendicular to l. • 

If you have the feeling that you have seen the existence part of 
the last proof before, you are correct. It is almost a repetition of Philo's 
proof of SSS. 

Theorem 18.2 If two lines are perpendicular to the same line, then 
the two lines are parallel. 

Proof Exercise 18.1. • 

Theorem 18.3 If P is a point off line l, then there is a line through 
P that is parallel to l. 

Proof Let h be the line through P that is perpendicular to l, and let 
m be the line through P that is perpendicular to h (Theorem 18.1). 
Then m and 1 are parallel (Theorem 18.2) with m through P. • 

There is an inevitable sequence from Philo's proof of SSS to 
Theorem 18.3. This last theorem should be a surprise! Following our 
aim to develop that geometry that is very much like Euclidean geom­
etry but avoiding a parallel postulate, we still have obtained a theorem 
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that excludes the possibility of no parallel lines (Axiom 2' of Section 
4.2). If we are eventually to have a geometry that is different from 
the Euclidean plane we had better analyze our present position very 
carefully. It is by no means obvious that we have not gone too far al­
ready! It seems quite possible that the parallel line in Theorem 18.3 
is always unique and that our five axioms form a categorical system. 
The only reason you have to expect that this is not the case is that the 
author has promised you non-Euclidean geometry. 

We shall now give the obvious definition of a perpendicular bi­
sector and then prove a fundamental theorem. In this theorem, as in 
every other theorem where it occurs the word locus may be replaced 
by the word set. 

DEFINITION 18.4 If P and Q are distinct points, then the perpen­
dicular bisector of PQ or the perpendicular bisector of P and Q is 
the line perpendicular to PQ that passes through the midpoint of 
PQ. (Existence and uniqueness are consequences of the Protractor 
Postulate and the Four-Angle Theorem.) 

Theorem 18.5 The locus of all points equidistant from distinct points 

P and Q is the perpendicular bisector of PQ. 

Proof As for every locus theorem there are two things to prove. Here 
we must show (1) every point equidistant from P and Q is on the per­
pendicular bisector of PQ and, conversely, (2) every point on the 
perpendicular bisector of PQ is equidistant from P and Q. Let M be 

- ~ 

the midpoint of PQ. We first show (1). The only point on PQ that is 
equidistant from P and Q is M (Theorem 8.17), which is certainly on 

- ~ 

the perpendicular bisector of PQ. Suppose point A is off PQ and is 
equidistant from P and Q. Then 6. AMP = 6.AMQ by SSS. So LAMP = 
LAMQ. Hence LAMP and LAMQ are right angles since they are a 
linear pair of congruent angles. Therefore A is on the perpendicular 
bisector of PQ. Now we need to prove (2). The only point common to the 

~ 

perpendicular bisector and PQ is M which is certainly equidistant from 
~ 

P and Q. Suppose B is off PQ and is on the perpendicular bisector of 
PQ. Then LBMP = LBMQ as each of the angles is a right angle. So 
6.BMP = 6.BMQ by SAS. Therefore BP=BQ, as desired. • 

Theorem 18.6 If point P is off line l, then there exists a unique point 
Q such that l is the perpendicular bisector of PQ. 

Proof Any such point Q must be on a line through P and perpen­
dicular to l. There is a unique line m satisfying these two conditions 



INEQUALITIES 207 

(Theorem 18.1). Let I and m intersect at M. There is a unique point 
Q on m such that M is the midpoint of P and Q by the Midpoint Theo­
rem .• 

A way to remember the distinction between the Pons Asinorum 
and its converse is to remember that Pappus' proof of the Pons Asi­
norum uses the axiom SAS. The next theorem is the converse of the 
Pons Asinorum, Euclid's Proposition 1.6, which is proved by imitating 
Pappus' proof of the Pons Asinorum but using the theorem ASA. 

Theorem 18.7 Given ~.ABC, if LB == LC, then AB == AC. 
--

Proof 6BCA == 6CBA by ASA. So AB == AC. • 

Theorem 18.8 A triangle is equilateral iff the triangle is equi­
angular. 

Proof That an equilateral triangle is equiangular follows directly 
from the Pons Asinorum. That an equiangular triangle is equilateral 
follows directly from the converse of the Pons Asinorum. • 

18.2 INEQUALITIES 

We already have an important inequality for triangles, namely Theo­
rem 17.9 which states that an exterior angle of a triangle is larger 
than either of its remote interior angles. After a definition analogous 
to Definition 17.8, we shall prove Euclid's Proposition 1.18 and Proposi­
tion 1.19. For the proofs of these two theorems we follow Euclid. 

DEFINITION 18.9 We say AB is longer than CD and write AB > 
CD if AB > CD; we say AB is shorter than CD and write AB < CD if 
AB < CD. 

Theorem 18.10 If two sides of a triangle are not congruent, then 
the angle opposite the longer side is larger than the angle opposite 
the shorter side. 

Proof Given 6ABC withAC > AB, we wish to show LB > LC. There 
--

exists a point D such that A - D - C and AD == AB by the Segment-
Construction Theorem. Then LBDA > LC because LBDA is an ex­
terior angle of 6BDC with remote interior angle LC. Also LDBA == 
LBDA by application of the Pons Asinorum to 6 BAD. So LDBA > 
LC. Since D is in int (LB), LB> LDBA. Hence LB> LC, as de­
sired. • 
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Theorem 18.11 If two angles of a triangle are not congruent, then 
the side opposite the larger angle is longer than the side opposite the 
smaller angle. 

Proof ~uppose !::::.ABC with LB> LC. By the Pons Asinorum, if 
AC = AB, then LB = LC, a contradiction. By the previous theorem, 
if AC < AB, then LB < LC, a contradiction. The only possibility re­
maining is AC > AB, as desired. • 

Theorem 18.12 In any triangle the sum of the lengths of any two 
sides is greater than the length of the third side. 

Proof Given !::::.ABC we wish to show AB + BC > AC. Let D be the 
point such that A - B - D and BD = BC. Then AD = AB + BD = AB + 
BC. Also, since B is in int (LACD), mLACD > mLBCD. Since 
mLBCD= mLBDC by application of the Pons Asinorum to !::::.BCD, 
then mLACD> mLBDC. Hence AD> ACby application of the previ­
ous theorem to !::::.ADC. Therefore AB + BC > AC, as desired. • 

Theorem 18.12, which is Euclid's Proposition 1.20, is sometimes 
called the triangle inequality. We have been calling the first statement 
in the next theorem the triangle inequality. This discrepancy in con­
ventions of nomenclature makes little difference now as they are 
equivalent. Our next theorem tells the full story. 

Theorem 18.13 Triangle Inequality AB + BC ~ AC for any points 
A, B, C. Also, AB + BC = AC iff point B is on AC or A = B = C. Further, 
!::::.ABC iff AB + BC > AC, AC + CB > AB, and BA + AC > BC. 

Proof If B=A or B=C, then AB+BC=AC trivially. If A=C but 

D 

A 

FIGURE 18.3 
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A ¥- B, then AB + BC > AC trivially. Now suppose A, B, C are distinct 
points. If ~ABC, then AB + Be> AC, AC + CB > AB, and BA + 
AC > BC by the previous theorem. If A - B -C, then AB + BC = AC 
by definition. If B is off AC, then ~ABC, B-A-C, or A-C-B. For 
each of these cases, we have AB + BC > AC. Therefore AB + BC ~ AC 
for any points A, B, C. Also, if A, B, C are distinct, then AB + BC = AC 
iff A-B-C. Therefore, AB+BC=AC iff B is on AC or A=B=C. If 
AB+BC>AC, AC+CB>AB, and BA+AC>BC, then A, B, Care 
distinct points such that none of A-B-C, A-C-B, or B-A-C holds. 
Thus, in this case, we have ~ABC. • 

Corollary 18.14 If AR=BR= 1/2AB, thenR is the midpoint of A and 
B. Further, if A and B are distinct points, then 

AB= {PIAP+PB=AB} and -AB= {PIBP= IAP-AB/}. 

Prool Exercise 18.2. • 

Corollary 18.15 Polygon Inequality If PI' P2 , ••• , Pn are points, 
then PI P" ~ PI P2 + P2 P3 + P3 P4 + ... + P"-l P" for n ~ 2. 

Prool Exercise 18.3. • 

Is there an m' such that (M10, s, m') is a model of I where 
(M10, s) is the Moulton Incidence Plane with distance function s giv­
en by Euclidean arc length along Moulton lines? The fact that we can­
not think of any function that would work might only prove a lack of 
omniscience on our part. However, in this case, we can show that such 
a function actually does not exist. We need to find some property of 
(M10, s) that is necessarily false for a model of I. Because Triangle 
Inequality is a theorem, the existence of a triangle having one side 
whose length is greater than the sum of the lengths of the other two 
sides is such a property. (AB > AC + CB for 6ABC in Figure 8.6.) 
Therefore, there does not exist any m' such that (M10, s, m') is a 
model of I. 

Theorem 18.16 Euclid's Proposition 1.21 If point D is in int (aABC), 
then BD + DC < BA + AC and LBDC > LBAC. -Prool (Euclid) By Crossbar letBD intersectAC atE. ThenA-E-C 
and B-D-E. (See Figure 18.4.) Applying the Triangle Inequality 
to ~BAE and ~DEC, we obtain BA + AE > BE and DE + EC > DC. 
Substituting AE=AC-EC and DE=BE-BD in the inequalities, 
we obtain BA + AC > BE + EC and BE + EC > BD + DC. Hence BA + 
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AC > BD + DC, as desired. Since b.DEC has exterior angle LBDC 
with remote interior angle LBEC, we have LBDC> LBEC. Since 
b.BAE has exterior angle LBEC with remote interior angle LBAC, 
we have LBEC > LBAC. Therefore LBDC > LBAC. • 

Theorem 18.17 If b.ABC, A-D-B, and BC ~ AC, then CD < BC. 

Proof Since BC ~ AC, we have mLCAB ~ mLCBD (Theorem 17.5 
and 18.10). (See Figure 18.5.) Since b.CDA has exterior angle LCDB 
with remote interior angle LCAD, then mLCDB > mLCAB. Hence 
mLCDB > mLCBD. So CB > CD (Theorem 18.11). Therefore CD < 
BC .• 

Theorem 18.17 might be stated in words as follows. Any seg­
ment with one endpoint the vertex of an angle of a triangle and the 
other endpoint in the interior of the side opposite the angle is shorter 
than the longer of the other two sides of the triangle. Try to state the 
next theorem in your own words. 

Theorem 18.18 Euclid's Proposition 1.24 Suppose b.ABC and 
- -- - -

b.DEF are such that AB = DE, AC = DF, and LA > LD, then BC > 
EF. 

Proof Without loss of generality we may suppose DE ~ DF. Let G 
~ 

be the point such that G and E are on the same side of DF, mLFDG = 
mLCAB, and DG=AB. Then b.FDG = b.CAB by SAS. So GF=BC. 
Also LDGE = LDEG by the Pons Asinorum. 

-> 
Since E is in int (LFDG), let DE intersect FG at H. Then 

F-H-G. Since DG=DE ~DF, by the previous theorem we know 
DH < DG=DE. Hence D-H -E. (See Figure 18.6.) Now Hand F 
are in int (LDGE), implying LFGE < LDGE. Also, since Hand D 
are in int (LGEF) , then LDEG < LGEF. Since LDGE = LDEG, we 

A A 

B 

FIGURE 18.4 FIGURE 18.5 
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B G 

A-------~C D~------...JIIF 

FIGURE 18.6 

have LFGE < LGEF. Therefore (Theorem 18.11), FE < GF. Finally 
since GF=BC, then FE < BC and BC > EF. • 

Theorem 18.19 Euclid's Proposition I.2~ Suppos~~ABC and 
~DEF are such that AB = DE, AC = DF, and BC > EF, then 
LA>LD. 

Proof We can't have LA = LD as then BC = EF by SAS. We can't 
--

have LD > LA as then EF > BC by the previous theorem. Hence 
LA>LD .• 

18.3 RIGHT TRIANGLES 

Theorem 18.20 A triangle has at most one right angle. If a triangle 
has a right angle or an obtuse angle, then the other two angles of the 
triangle are acute. 

Proof Let ~ABC be such that mLC ~ 11'/2. Let B-C-D. Then 
mLACD ~ 11'/2. Since LA and LB are the remote interior angles of 

A 

D 

FIGURE 18.7 
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the exterior angle LACD of f}.ACB, then LA and LB are acute 
(Theorem 17.9). • 

DEFINITION 18.21 A triangle having a right angle (necessarily 
unique) is a right triangle. The side opposite the right angle of a right 
triangle is the hypotenuse, and a side opposite an acute angle of a 
right triangle is a leg. If perpendicular lines land m intersect at F, 
and P is any point on l, then F is the foot of the perpendicular from P 
to m. 

Theorem 18.22 The hypotenuse of a right triangle is longer than 
either leg. The shortest segment joining a point to a line is the per­
pendicular segment. 

Proof Let point A be off line l. Let C be the foot of the perpendicular 
from A to l. Let B be any point on l other than C. Then f}.ABC is a right 
triangle with LC a right angle. By the previous theorem LA and LB 
are acute. The theorem now follows from the fact that the longest side 
of b.ABC must be opposite the largest angle (Theorem 18.11). • 

Think of all the machinery that is required to prove the following 
simple theorem. 

Theorem 18.23 Let F be the foot of the perpendicular from A to 
~ 

BC. If BC is a longest side of f}.ABC, then B-F-C. 

A A 

c 

A 

B 
FIGURE 18.8 
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Proof If either F=B or F=C, then either LB or LC is a right angle 
and BC is not a longest side of t:,ABC by the previous theorem. Sup­
pose F is off BC. Then either F-B-C or B-C-F. Using the previous 
theorem we have, in the first case, BC < FC < AC and, in the second 
case, BC < BF < AB. So, in either case, BC is not a longest side of 
t:,ABC. The theorem follows as we have proved its contrapositive. • 

If the hypotenuse and an acute angle of one right triangle are 
respectively congruent to the hypotenuse and an acute angle of 
another right triangle, that the two triangles are congruent follows 
as a special case of SAA. If the two legs of one right triangle are 
respectively congruent to the two legs of another right triangle, that 
the two triangles are congruent follows as a special case of SAS. 

Theorem 18.24 Hypotenuse-Leg Theorem If the hypotenuse and 
a leg of one right triangle are respectively congruent to the hypotenuse 
and a leg of another right triangle, then the two triangles are con­
gruent. 

Proof Suppose t:,ABC and t:,DEF are such that mLC=mLF= 
~ 

7r 12, AB = DE and AC= DF. Let B' be on CB such that CB' = FE. Then 
t:,ACB' = t:,DFE by SAS. So AB' =DE=AB > AC. Thus C-B-B' 
and C-B' -B are impossible (Theorem 18.17). It follows that B' =B 
and t:,ACB = t:,DFE. • 

18.4 EXERCISES 

18.1 Theorem 18.2. 

18.2 Corollary 18.14. 

18.3 Corollary 18.15. 

• 18.4 There does not exist any angle measure function m' such that 
(Ml, t, m'), Taxicab Geometry together with m', is a model of I . 

• 18.5 True or False? 

(a) If 11.. nand n 1.. m, then 11.. m. 

(b) If point P is on line 1, then there exists a unique line through 
P that is parallel to 1. 

(c) If P is a point and 1 is a line, then there exists a line through 
P that is parallel to 1. 
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(d) If P is a point off line l, then there exists a line through P 
that is parallel to l. 

(e) The difference of the lengths of any two sides of a triangle 
is less than the length of the third side. 
-- -- --

(f) If AB > CD and CD > EF, then AB > EF. 

(g) Exactly one of the following holds, given AB and CD: 
-----

AB>CD, AB=CD, AB<CD. 

(h) AB + BC > AC iff t,ABC. 

(i) AB+BC=ACiffA-B-C. 

(j) If each leg of one right triangle is congruent to a leg of 
another right triangle, then the triangles are congruent. 

18.6 The converse of Theorem 18.23 is false. 

18.7 A triangle is isosceles iff the perpendicular bisector of some side 
contains the angle bisector of some angle of the triangle. 

~ 

18.8 If F is the foot of the perpendicular from A to BC and B - C - F, 
thenAB >AC. 

~ 

18.9 If F is the foot of the perpendicular from A to BC and F ¥- B, 
~ 

then there exists a unique point D on BC such that D ¥- B but 
AD=AB . 

• 18.10 Given t,ABC with mLC=7T/2 and B-E-C, there exists 
Din int (t,ABC) such that BD + DE> BA + AC. 

18.11 If there exist two distinct lines through P that are parallel 
to line I, then there exist infinitely many such lines. 

18.12 If LA> LB, LA = LC, and LB = LD, then LA > LD, 
LC> LB, and LC> LD. 

18.13 Give reasonable definitions of a median and of an altitude of 
a triangle. Then prove that if any two of the following are collinear 
for a triangle then the triangle is isosceles: the perpendicular bisector 
of some side, the angle bisector of some angle of the triangle, the 
median to some side, the altitude to some side. 

18.14 If there existD,E,Fsuch thatE is in int (t,ABC),A-D-F-C, 
and DE + EF=AB + BC, then there exists Gin int (t,ABC) such that 
DG + GF > AB + BC. Compare this with Theorem 18.16 and Exercise 
18.15. 

*18.15 Given t,ABC in the Euclidean plane such that AC > AB ~ 
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BC, find D, E, F such that E is in int (b.ABC),A-D-F-C, andDE+ 
EF=AB+BC. 

*18.16 If you would like to read about geometries where there are 
lines land m such that l is perpendicular to m but m is not perpen­
dicular to l (i.e., perpendicularity oflines is not a symmetric relation), 
then see The Geometry of Geodesics by H. Busemann (Academic Press, 
1955). 

GRAFFITI 

The study of "non-Euclidean" Geometry brings nothing to 
students but fatigue, vanity, arrogance, and imbecility . 
. . . "Non-Euclidean" space is the false invention of demons, who 
gladly furnish the dark understandings of the "non-Euclideans" 
with false knowledge . ... The "Non-Euclideans," like the ancient 
sophists, seem unaware that their understandings have become 
obscured by the promptings of the evil spirits. 

Matthew Ryan (1905) 

Gauss' motto: 

Pauca sed matura. 

If we consider him [Euclid] as meaning to be what his 
commentators have taken him to be, a model of the most 
unscrupulous formal rigour, we can deny that he has altogether 
succeeded, though we admit that he made the nearest approach. 

De Morgan 



CHAPTER 19 

Reflections 

19.1 INTRODUCING ISOMETRIES 

Isometry literally means same-distance-measuring. 

DEFINITION 19.1 An isometry is a mapping from the set of points 
into itself that preserves distance. The set of all isometries is J. The 
identity mapping on the set of points is I. 

Let 01.:9-9, a:P~P'. Then, by definition, a is an isometry 
iff P'Q' =PQ for all points P and Q. Suppose a is any isometry. Just 
what kind of an animal is a? We shall discover several facts before 
stating any theorems. In the development, P' is always aP for any 
point P. 

If A'=B' for points A and B, then O=A'B'=AB. Since AB=O 
implies A=B, we have A'=B' implies A=B. Thus, by definition, a 
is a one-to-one mapping. In other words, for our first fact we have: 

1 An isometry is an injection. 

If A-B-C, then AB+BC=AC. Since A'B'=AB, B'C'=BC, 
and A'C'=AC, we have A'B' +B'C'=A'C'. Since A', B', C' are dis­
tinct by (1), then A' -B' -C' by the Triangle Inequality. Conversely, 
if A'-B'-C', then A'B'+B'C'=A'C', AB+BC=AC, andA-B-C. 
Hence: 
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2 A-B-C iff A'-B'-C'; an isometry preserves betweenness. 

(To say a preserves betweenness means only that A-B-C implies 
A'-B'-C'.) 

The sum of any two of AB, BC, CA is greater than the third iff 
the sum of any two of A'B', B'C', C'A' is greater than the third. 
Therefore, by the Triangle Inequality: 

3 6.ABC iff 6.A'B'C'; an isometry preserves triangles. 

Given any angle LABC we have 6.ABC and 6.A'B'C' by (3). 
Since 6.A'B'C' = 6.ABC by SSS, then mLA'B'C' = mLABC. There­
fore: 

4 An isometry preserves both d and m. 

An isometry preserves d by definition. That a preserves m means 
only that mLA'B'C' = mLABC. This last equation should not be mis­
understood; it does not mean what it might seem to mean. It is true 
that if LABC, then LA'B'C' and the two angles are congruent. How­
ever, the equation does not say that a preserves angles. Even though 
a preserves betweenness, it is not yet clear that a preserves rays or 
lines. (The function f given by f(x) = eX preserves betweenness on the 
real line but does not preserve rays on the real line.) The trouble is 
that we do not yet know that a is a sUljection on the points. We remedy 
this situation next. 

Suppose P is a point. We wish to show that P is the image of some 
point under a. Take any 6.ABC. Since P cannot be on all three sides 
of 6.A'B'C', we may suppose 6.PA'B' without loss of generality. Let 
mLB'A'P= a and A'P= b. By the Angle-Segment-Construction Theo­
rem, there exist a unique pair of points Q1 and Q2' one on each side 
~ 

of AB, such that mLBAQ1=mLBAQ2=a and AQ1=AQ2=b. (See 
Figure 19.1.) Hence, by (4), mLB'A'Q~=mLB'A'Q~=a and A'Q~= 
A'Q~ = b. Q~ #- Q~ by (1). By the Angle-Segment-Construction Theorem 
it follows that either P=Q~ or P=Q~. In either case, P is the image 
of some point and a is onto. So an isometry is a sUljection. This fact 
together with (1) can be summarized: 

5 An isometry is a bijection on f!i'. 

If [ is a line, let [' = {P'lpoint P is on l}. The points in [' are 
~ ~ 

collinear by (2). If [=AB, then every point on A'B' is on [' by (2) and 
~ 

(5). Also no point off A'B' is in [' by (3). Hence [' is a line. So a induces 
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p A 

B' 
~ B 

A' 

FIGURE 19.1 

a mapping from .Y into .Y. That this mapping is a surjection follows 
immediately from the fact that a is a surjection on the points. To see 
that this mapping is also an injection, assume [' = m' where [ and m 
are lines. There are two points P' and Q' on l'. Then P and Q are two 
points on both [ and m. Hence [= m. So [' = m' implies [= m, proving 
a induces an injection on the lines. The results of this paragraph can 
be summarized: 

6 An isometry induces a bijection on .Y. 

Since a line in our geometry is always a set of points, that point 
P is on line l iff point P' is on line [' follows from the definition of ['. 
So a is a collineation. In other words, (5) and (6) together say that an 
isometry is an isomorphism of the incidence structure (9,2). This 
together with (4) means that an isometry is an isomorphism of the 
whole ball game (9,2, d, m). (Everything in our geometry can be 
traced back to incidence, distance, and angle measure.) Because 
mathematicians call an isomorphism from a mathematical system 
onto itself an automorphism (auto means self), we may summarize 
(4), (5), and (6) by saying that an isometry is an automorphism of our 
geometry (9,2, d, m). 

Theorem 19.2 An isometry is an automorphism. Conversely, an 
automorphism is an isometry. 

Proof Since an automorphism must preserve distance in particular, 
an automorphism is necessarily an isometry. That every isometry is 
also an automorphism follows from the long argument above. • 

Theorem 19.3 The isometries form a group (.fl, 0, ,). The group of all 
isometries is the group of all automorphisms. 
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Proof We must verify that (f, 0, L) satisfies the three axioms of a 
group (see Section 3.1). The second statement in the theorem then 
follows from the previous theorem. 

1. Composition is an associative binary operation on f, the set 
of isometries: Since isometries are special cases of permutations on 
the set 9, composition of isometries is associative. We must show that 
{3a is an isometry when {3 and a are isometries. (We write {3a for 
{3oa.) Let a:P-P' and {3:P' +-+P" for any point P. Then (3a:P-P" 
as (3a(P) = (3(aP) = (3(P') =P" by definition of composition. Now 
{3a is an isometry as P"Q" =PQ for any points P and Q because 
P"Q" =P'Q', since {3 is an isometry, and P'Q' =PQ, since a is an 
isometry. 

2. L is an isometry such that La = a = OIL for any isometry 01: The 
identity permutation on 9 is trivially an isometry by definition. 

3. If a is an isometry, then there exists isometry 01-1 such that 
01- 101 = L= 0101- 1: Let a be an isometry and 01-1 its inverse permutation. 
So 01-1 (P) = P' iff a (P' ) = P, for any point P. Since a is an isometry, 
PQ=P'Q'. SoP'Q'=PQ and 01-1 is an isometry .• 

19.2 REFLECTION IN A LINE 

Although we know the isometries form a group, we know about the 
existence of only one - namely the trivial isometry L. After all the work 
above, you have every right to expect that there are more. 

DEFINITION 19.4 The reflection in line 1 is the mapping PI:9~ 9 
such that PIP=P if point P is on 1 and PIP=P' where 1 is the perpen­
dicular bisector of PP' if point P is off l. Line 1 is called the center of Pl' 

The reflection in line 1 is unique and well defined (Theorem 18.6). 
In this book PI is always the reflection in line l. The following defini­
tions are standard. 

A = A' F 

FIGURE 19.2 
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DEFINITION 19.5 Let CT be any mapping on 9. Let T be any set 
of points. Then CT fixes point P if CT (P) = P; CT fixes set T if CTT = T where 
CTT= {CTPIP is a point in T}; and CT fixes set T pointwise if CTP=P for 
every point P in T. Further, CT is an involution if CT # L but CT2 = L where 
CT2 is CTCT. 

Theorem 19.6 PI is an involution that interchanges the half plane 
of l. Further, PI fixes line m pointwise iff m = l, and PI fixes line m iff 
m=l or m .il. 

Proof From the definition of PI it follows that PI is an involution 
which fixes 1 pointwise, fixes every line perpendicular to l, and inter­
changes the halfplanes of 1 (Theorem 18.1 and Theorem 18.6). Now 
suppose PI fixes line m with m ¥-1. Let P be a point on m but off l. ---Since PI fixes m, then P' must be on m where P' = PIP. So m = PP' , 
and m.il by definition of PI. • 

Let 1 and m be lines. Then the second sentence of Theorem 19.6 
can be restated in symbols by 

(1) PI=Pm iff l=m; 

(2) Plm= m iff 1= m or l.i m. 

We have yet to prove the fact that PI is an isometry. 

Theorem 19.7 A reflection is an involutary isometry. 

Proof We already know a reflection is an involution. To show PI 
is an isometry let P' = PIP and Q' = PIQ where P and·Q are any two 
points. We need to prove P'Q' =PQ. There are four cases. 

1. Suppose P and Q are both on 1. Then P'Q' =PQ since P' =P 
and Q'=Q. 

2. Suppose exactly one of P or Q is on 1, say Q is on l. Then Q 
is equidistant from P and P' since Q is on the perpendicular bisector 
of PP' (Theorem 18.5). -3. Suppose PQ is perpendicular to 1 at L. Let fbe any coordinate -system for PQ such thatf(L) =0. Iff(P) =p andf(Q) =q, thenf(P') = 
-p and f(Q') = -q by the definition of PI. Hence, by the Ruler Pos-
tulate, P'Q'= Iq-pl =PQ. _ 

4. Suppose P and Q are both off 1 with PQ not perpendicular 
- -- -to 1. Let 1 bisect PP' at M and QQ' at N. Then M # N as PQ is not 

perpendicular to 1. So b"PMN = b"P'MN by SAS. Then PN=P'N and 
mLPNM=mLP'NM. It follows that mLPNQ=mLP'NQ'. (See 
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Q 

Q' 

FIGURE 19.3 

Figure 19.3 for the case P and Q on the same side of l and Figure 19.4 
for the case P and Q on opposite sides of l.) Hence !::'PNQ = !::,P'NQ' 
by SAS. Therefore PQ=P'Q' .• 

For obvious reasons we might call a reflection a mirror map. The 
previous theorem completes the proof of the assertion that MIRROR 
and SAS are equivalent under our first four axioms. 

Theorem 19.8 If an isometry fixes two points on a line, then the 

Q' 

Q 

FIGURE 19.4 



222 REFLECTIONS 

isometry fixes that line pointwise. If an isometry fixes three non­
collinear points, then the isometry is t. 

~ ~ 

Proof Suppose (J' fixes two points A and B. So (J'AB=AB as (J'A=A 
~ ~ 

and (J'B=B. Let P be any point on AB and (J'P=Q. Then Q is on AB, 
AP=AQ, and BP=BQ. Hence P=Q (Theorem 8.17). Therefore (J' 

~ 

fixes every point on AB. 
Suppose (J' fixes three noncollinear points A, B, C. Then (J' fixes 

every point on t::,.ABC by the first result. Let P be any point. Let Q 
be a point on the interior of a side of t::,.ABC but different from P. 

~ 

Then PQ intersects t::,.ABC at a point R different from Q. Since (J' ..... 
fixes Q and R, then (J' fixes QR pointwise by the first result. So (J' 

fixes P. Since (J' fixes every point, (J' must be the identity isometry. • 

For a picture of what is going on in the next proof look at Figure 
16.4. The next proof imitates the proof of Theorem 16.3. 

Theorem 19.9 If t::,.ABC = t::,.DEF, then there exists a unique isom­
etry (J' such that (J'A=D, (J'B=E, and (J'C=F. 

Proof If A = D, let (J', = t; if A ~ D, let (J', be the reflection in the 
perpendicular bisector of AD. In either case, (J',A=D. Let (J',B=B, 
and (J',C=C,. If B, ~E, then D is on the perpendicular bisector of 
B,E (Theorem 18.5) as DE=AB=DB, since (J', is an isometry. If 
B, =E, let (J'2 = t; if B, ~ E, let (J'2 be the reflection in the perpendicular 
bisector of B,E. In either case, (J'P=D and (J'~, =E. Let (J'P, =C2. 
If C2 ~ F, then D and E are on the perpendicular bisector of CJ 
(Theorem 18.5) as DF=AC=DC, =DC2 and EF=BC=B,C, =EC2 

since (J', and (J'2 are isometries. If C2 =F, let (J'3=t; ifC2 ~F, let (J'3 be 
the reflection in the perpendicular bisector of CJ. In either case, 
(J'P=D, (J'~=E, and (J'3C2=F. Letting (J'=(J'3(J'2(J', we have (J'A=D, 
(J'B=E, and (J'C=F. We have demonstrated the existence of the de­
sired isometry. For the uniqueness suppose (J' and Tare isometries 
sending A,B, C respectively toD,E,F. Then T-'(J'A = T-'D=A,T-'(J'B = 
T-'E=B, and T-'(J'C=T-'F=C. So T-'(J'=t by the previous theorem. 
Therefore, T(T-'(J') =n and (J'=T, proving the uniqueness of (J'. • 

The proof of Theorem 19.9 is very important. (It is also quite 
lovely, and you should make every effort to understand it.) Our next 
result is a corollary of the proof of Theorem 19.9 more than a corollary 
of the theorem itself. Theorem 19.10 will be essential later when we 
look at the isometries in considerable detail. 
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Theorem 19.10 Every isometry is a product of at most three reflec­
tions. If an isometry fixes a point, then the isometry is either a reflec­
tion or a product of two reflections. An isometry fixes two points on a 
line iff the isometry is the reflection in that line or the identity. 

Proof Let U' be an isometry. Let A, B, C be three noncollinear points. 
Let U'A=D, U'B=E, and U'C=F. Then f:::,ABC = f:::,DEF. Hence U' is 
a product of at most three reflections by the proof of Theorem 19.9. 
If U' fixes a point, let A be that point. In this case U' is a product of at 
most two reflections by the proof of Theorem 19.9 as then U'= U'3U'2U'1 = 
U'3U'2 since U'I = L. If U' fixes two points, letA andB be those points. Then 
U' = U'3 in the proof of Theorem 19.9. • 

Theorem 19.11 If isometry U' interchanges two points A and B, then 
U' fixes the midpoint of A and B. 

Proof Let M be the midpoint of A and B. Let M' = U'M. Since AM = 
BM = lhAB, we have BM' = AM' = 1f2AB and M' is the midpoint of A 
and B (Corollary 18.14). Hence U'M = M. • 

We are now in a position to see why it is quite natural that the 
one word congruence be used to describe three different relations, one 
on each of the set of segments, the set of angles, and the set of tri­
angles. 

Theorem 19.12 Two segments, two angles, or two triangles are 
congruent iff there is an isometry taking one onto the other. 

Proof Exercise 19.1. • 

DEFINITION 19.13 If TI and T2 are sets of points, then TI and T2 
are congruent if there exists an isometry U' such that U'TI = T2. 

19.3 EXERCISES 

• 19.1 Theorem 19.12. 

19.2 If f:::,ABC ~ f:::,DEF, then int (f:::,ABC) and int (f:::,DEF) are 
congruent. 

• 19.3 Give a collineation of the Cartesian plane that preserves m 
but is not an isometry. 

• 19.4 How many isometries are there that map f:::,ABC onto con-
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gruent triangle 6.DEF if each triangle is scalene, isosceles, or equi­
lateral, respectively? 

19.5 Congruence is an equivalence relation on the set of all subsets 
of points. 

• 19.6 True or False? 

(a) Every isometry is a collineation. 

(b) Every collineation is an isometry. 

(c) An isometry preserves perpendicularity. 

(d) An isometry preserves parallelness. 

(e) If 0' E~, O'A=A', O'B=B', thenAA'=BB'. 

(f) P a = Pb iff a = b, where a and b are lines. 

(g) Pab= b iff a= b, where a and b are lines. 

(h) L is a product of two reflections. 

(i) Isometry 0' fixes three points iff 0' = L. 

(j) A product of four reflections is an isometry. 

• 19.7 The mapping of the Cartesian plane sending (x, y) to (x', y') 
is the reflection in the line with equation Ax + By + C = 0 iff 

x' =x- (Ax+By+C) (2A/(A2+B2», 

y'=y- (Ax+By+C)(2B/(A2+B2». 

19.8 Three noncollinear points (and their images) completely deter­
mine an isometry. 

19.9 Any two rays are congruent. 

19.10 Congruence is an equivalence relation on the set of all convex 
quadrilaterals. 

19.11 The Cartesian reflection in the line with equation y= 2x is 
not an isometry in Taxicab Geometry. 

*. 19.12 Find all collineations of the Cartesian plane. 

*. 19.13 Find all isometries of the Cartesian plane. 

*19.14 What are the reflections in Taxicab Geometry? 

*19.15 What are the isometries in Taxicab Geometry? 
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GRAFFITI 

There is no branch of mathematics, however abstract, which 
may not some day be applied to phenomena of the real world. 

Lobachevsky 

How can it be that mathematics, being after all a product of 
human thought independent of experience, is so admirably adapted 
to the objects of reality? 

Einstein 

[Euclid's Elements] has been for nearly twenty-two centuries 
the encouragement and guide of that scientific thought which is 
one thing with the progress of man from a worse to a better state. 
The encouragement; for it contained a body of knowledge that was 
really known and could be relied on, and that moreover was 
growing in extent and application. For even at the time this book 
was written- shortly after the foundation of the Alexandrian 
Museum-Mathematics was no longer the merely ideal science of 
the Platonic school, but had started on her career of conquest over 
the whole world of Phenomena. The guide; for the aim of every 
scientific student of every subject was to bring his knowledge of 
that subject into a form as perfect as that which geometry had 
attained. Far up on the great mountain of Truth, which all the 
sciences hope to scale, the foremost of that sacred sisterhood was 
seen, beckoning for the rest to follow her. 

Clifford 

The full impact of the Lobatchewskian method of challenging 
axioms has probably yet to be felt. It is no exaggeration to call 
Lobatchewsky the Copernicus of Geometry [as did Clifford], for 
geometry is only a part of the vaster domain which he renovated; 
it might even be just to designate him as a Copernicus of all 
thought. 

E. T. Bell 



CHAPTER 20 

Circles 

20.1 INTRODUCING CIRCLES 

The first of the following definitions may be new to you. The second 
says, in the light of Theorem 18.22, that the distance from point P 
to line 1 is defined to be the shortest distance from P to 1 when P is 
off l. The remaining definitions should be no surprise. As usual, radius 
has two meanings-one meaning as a segment and another as a num­
ber. Likewise the diameter of a circle is the length of a diameter. 

DEFINITION 20.1 Line 1 is a line of symmetry for set T of points 
if PIT= T. The 4istance from point P to line 1 is the length of the 
perpendicular segment from P to 1 when P is off land 0 when P is on 
l. If C is a point and r a positive number, then the locus of all points 
P such that CP= r is a circle with center C and radius r. Let A and B 
be two points on circle W with center C and radius r. Then CA is a 
radius of W with outer end A; AB is a chord of W; if A-C-B, then -AB is a diameter of W; 2r is the diameter of W; AB is a secant of W; 
a line which intersects W in exactly one point is a tangent of W; the 
locus of all points Q such that CQ < r is the interior ofW, denoted by 
int (W); and the locus of all points Q such that CQ > r is the exterior 
of W. Two or more circles having a common center are concentric. 

Now we are going to prove some of the elementary theorems 
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about circles. Perhaps these theorems will be more exciting if you 
consider which of them are valid in Taxicab Geometry and which 
hold in Moulton Geometry. (Recall that in Taxicab Geometry a circle 
is a square!) In doing this you may be convinced that the theorems are 
not really trivial. In mathematics, as in life in general, there are 
many cases where a fact seems obvious only because in our ignorance 
we are unable to conceive alternative possibilities. 

Theorem 20.2 Each of the center and the radius of a circle is unique. 
The perpendicular bisector of a chord of a circle passes through the cen­
ter of the circle. The segment joining the center of a circle to the mid­
point of a chord which is not a diameter is perpendicular to the chord, 
and the perpendicular from the center of a circle to a chord of the 
circle bisects the chord. Three points on a circle determine the circle. 
Two circles intersect in at most two points. A line intersects a cir­
cle in at most two points. 

Proof Let P, Q, R be three distinct points on some circle. Such points 
exist since every line through a center of any circle contains exactly 
two points on the circle by the Segment-Construction Theorem. Let 
I and m be the perpendicular bisectors of PQ and QR, respectively. 
Since any center of a circle containing P, Q, R must be equidistant 
from P, Q, and R, such a center must be on both land m (Theorem 

- -
18.5). Now 1 =I'm as otherwise Q and the midpoints of PQ an<;l QR are 
the vertices of a triangle with two right angles, a contradiction. So 
I and m intersect in exactly one point, which must be the unique cen­
ter of the unique circle containing the three noncollinear points 
P, Q, R. Surprisingly, each statement in the theorem follows from this 
argument .• 

The preceding theorem says that three points on a circle deter­
mine the circle. It is not true that three points determine a circle as 
three collinear points do not. (Lines land m would be parallel in the 
proof above.) The theorem also does not make the rash statement that 
three noncollinear points determine a circle! 

Theorem 20.3 If P is a point on a circle with center C, then every 
point on the circle is the image of P under some reflection in a line 
through C. Conversely, any point which is the image of P under some 
reflection in a line through C is on the circle. Every line through the 
center of a circle is a line of symmetry for the circle. Conversely, every 
line of symmetry for a circle passes through the center of the circle. 

Proof Let rc be a circle with center C and containing point P. So rc 
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~ 

has radius CPo Clearly, P = PIP if l = CPo Also, if Q is a point on 'fI dif-
ferent from P, then Q = PIP where l is the perpendicular bisector of 
chord PQ. Then l must pass through C (Theorem 20.2), proving the 
first statement in the theorem. If R = PIP where l is a line through C, 
then CR = CP since C = pp and PI is an isometry. So R is on 'fI by the 
definition of a circle, proving the second and third statements in the 
theorem. Finally, suppose l is any line of symmetry for 'fl. Let Q= 
PIP where P is any point on 'fI but off l. Then Q ¥- P and l is the perpen­
dicular bisector of PQ. Since l is a line of symmetry for 'fI, then Q is 
on 'fI and PQ is a chord of 'fl. So l passes through C by the previous 
theorem .• 

Theorem 20.4 If a line is perpendicular to a radius of a circle at its 
outer end, then the line is a tangent of the circle. Conversely, every 
tangent of a circle is perpendicular to a radius of the circle containing 
the point of intersection. Every point of a circle lies on a unique tan­
gent of the circle. A tangent of a circle contains no interior points of 
the circle. 

Proof Let 'fI be a circle with center C and containing point P. Let t 
be the perpendicular to CP at P. Suppose t intersects 'fI at some other 

~ 

point Q with Q ¥- P. Let l = CP and R = PI Q. Since l is a line of sym-
metry for both t and 'fI (Theorem 19.6, Theorem 20.3), then P, Q, Rare 
three distinct points on both t and 'fI, a contradiction (Theorem 20.2). 
Hence t intersects 'fI only at P, and t is a tangent. Now suppose s is a 
tangent of 'fI containing point P. Let F be the foot of the perpendicular 
from C to S. (See Figure 20.2.) By the Midpoint Theorem there exists 
S such that F is the midpoint of P and S.1f P ¥- F, then 6.PFC = 6. SFC 
by SAS. Then CP=CS, and S is on 'fI, contradicting s is a tangent. 
Therefore, F=P and s=t. The third statement in the theorem follows 

FIGURE 20.1 
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from the first two, and the last statement follows from the fact that 
radius CP is the shortest distance from C to t. • 

Theorem 20.5 If AB is a chord of a circle with radius r, then AB ~ 2r 
and AB = 2r iff AB is a diameter. 

Proof Let AB be a chord of a circle with center C and radius r. 
By the Triangle Inequality, AB ~ AC + CB = 2r with equality iff 
A-C-B .• 

Theorem 20.6 If t is a tangent of circle 'f? with center C and (T is 
an isometry, then O"£is a circle with center O"C and O"t is a tangent of 
(T'f? Two circles are congruent iff they have the same radius. 

Proof Exercise 20.1. (Of course radius in the statement of the theo­
rem means a number and not a segment.) • 

Theorem 20.7 In the same circle or congruent circles, any two con­
gruent chords are equidistant from the center, and conversely. 

Proof Let AB be a chord of a circle with center C and radius r; let 
DE be a chord of a circle with center F and radius r. Let G be the 

- -
midpoint of AB; let H be the midpoint of DE. Now CG = 0 iff AB = 2r, 
and FH = 0 iff DE = 2r (Theorem 20.5). So suppose t::,.ABC and t::,.DEF. 
(See Figure 20.3.) Then t::,.CGA and t::,.FHD are right triangles with 
congruent hypotenuses. Hence CG = FH iff AG = DH (Theorem 18.24). 
Since AG=DH iff AB=DE, we have CG=FH iff AB=DE. as de­
sired. • 
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FIGURE 20.3 

Theorem 20.8 The interior of a circle is a convex set. 

Proof Let ~ be a circle with center C and radius r. Suppose A and 
~ -

B are distinct points in int (~). If C is on AB, then AB is in int (~) 
since the interior of any diameter of ~ is in int (~). Suppose LABC 
and A-P-B. We need to show P is in int (~). Now either CP < CA 
or CP < CB (Theorem 18.17). In either case, since CA < rand CB < r, 
we have CP < rand P is in int (~). • 

20.2 THE TWO-CIRCLE THEOREM 

We now come to some theorems that might seem even more obvious 
than ~hose we have already proved. Certainly, if a line intersects 
the interior of a circle, then the line intersects the circle. This result 
is actually quite deep. If we look at the Rational Cartesian Plane 
(M2, d, m), where d and m are taken from the Cartesian plane, we 
see some peculiar things happening. The line with equation y=x 
does contain the point (0,0) which is in the interior of the circle with 
equation x2 + y2 = 1. Yet this line does not intersect the circle! From 
this example we see that the existence of the intersection of a line and 
a circle or of two circles is not trivial. The proof of the next theorem 
uses the intermediate-value theorem from calculus. An alternative 
proof using the ,greatest lower bound (see Section 3.2) is indicated in 
Exercise 20.3. 

---+ 
Theorem 20.9 Compass-Construction Axiom If PQ 1 CP and CP < 

---+ 
r, then there exists a unique point Ton PQ such that CT = r. 

~ 

Proof Let f be a coordinate system for PQ such that f(P) = 0 and 
f(Q) > O. Without loss of generality we may suppose f(Q) =PQ=r 
(Theorem 8.11). Then CQ > r as the hypotenuse of a right triangle is 
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longer than either leg. For each real number x there is a unique point 
~ 

X on PQ such that f(X) =x; we then define g(x) = CX. So g is a func-
~ 

tion from the reals into the reals. For distinct points X and Y on PQ 
we have ICX - CYI < XY by the Triangle Inequality. Then Ig(x)­
g(y) 1< Ix- yl for all distinct real numbers x, y. So G is a continuous 
real function. Since g(O) = CP < rand g(r) = CQ > r, there exists a 
real number t such that 0 < t < rand g(t) = r by the intermediate­
value theorem. Letting f(T) = t, we have CT= g(t) = r with T in 

PQ. The uniqueness of point Ton fiQ such that CT= r follows from 
~ 

the fact that if A and B are two points on PQ such that P-A -B then 
CA < CB (Theorem 18.17). • 

Theorem 20.10 If S is a point in the interior of a circle and Q is a 
point in the exterior of the circle, then SQ intersects the circle. 

Proof Let ~ be a circle with center C and radius r. Suppose CS < r 
~ 

and CQ > r. If C is on SQ, then the theorem is trivial by the Segment-
~ 

Construction Theorem. Suppose 6.CSQ. (See Figure 20.5.) If SQ inter-
sects ~, then necessarily SQ intersects ~ (Theorem 18.17). We shall 

~ 

now show that SQ does intersect ~. Let P be the foot of the perpen-
~ 

dicular from C to SQ. Since Cp:::§i CS (Theorem 18.22), then CP < r 
~ 

and P is in int (~). Since int (~) is a convex set, SQ intersects ~ iff 
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~ ~ 

PQ intersects Cff. We know PQ intersects Cff by the previous theorem. 
~ -

Therefore SQ intersects Cff and SQ intersects Cff. • 

Theorem 20.11 Line-Circle Theorem If a line intersects the interior 
of a circle, then the line intersects the circle exactly twice. 

Proof Suppose point S is on line 1 and in the interior of circle Cff with 
center C and radius r. If C is on l, the theorem is trivial. Suppose C 
is off l. Let P be the foot of the perpendicular from C to l. (See Figure 
20.6.) Then CP;a CS < rand P is in int (Cff). Let Q1 and Q2 be points 
on 1 such that QI-P-Q2 and QIP=PQ2=r. SO Q1 and Q2 are in the 

~ ~ 

exterior of Cff. Thus both PQI and PQ2 intersect Cff (Theorem 20.9 or 

FIGURE 20.6 
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20.10). Hence 1 intersects ~ at least twice. Since a line intersects a 
circle in at most two points, line 1 intersects the circle exactly 
twice .• 

Theorem 20.12 A point in the exterior of a circle is on exactly two 
~ ~ 

tangents of the circle. Further, if PQ and PR are tangents to a circle 
--

with Q and R on the circle, then PQ = PRo 

Proof Let point P be in the exterior of the circle ~ with center C 
and radius CQ'. Without loss of generality we may suppose C -Q' -Po 
(See Figure 20.7.) Since Q' is in the interior of the circle ~2 with cen-

~ 

ter C and radius CP, the perpendicular to CP at Q' must intersect 
~2' say at point P', by the Line-Circle Theorem. Let m be the per­
pendicular bisector of PP'. Then m contains C since PP' is a chord of 

~ 

~2' Sq pmC=C and PJ"=P. Let pmQ'=Q. Then, since P'Q' is a 
~ 

tangent of ~ (Theorem 20.4), PQ must be a tangent of ~ with Q on ~ 
~ 

(Theorem 20.6). If R is the image of Q under the reflection in CP, 
~ 

then PR is also a tangent of ~ and PR = PQ. That P lies on at most 
two tangents is left as Exercise 20.2. • 

Theorem 20.13 If t:,ABC has a right angle at C, t:,A'B'C' has a 
right angle at C', AB=A'B', andAC >A'C', then BC <B'C'. 

Proof Let D be such that C - D - A and CD = C' A'; let E be the 1>oint 
~ 

on CB such that CE=C'B'. Then t:,DCE = t:,A'C'B' by SAS. Thus 
DE=A'B'=AB and EC=B'C'. Now B#E, as otherwise t:,ABC= 

..... ---f....!----~p 

FIGURE 20.7 
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!:::.DEC by Hypotenuse-Leg Theorem and AC=DC. Assume B-E-C. 
Then (Theorem 18.17) we have DE < BD < AB, a contradiction. Hence 
E-B-C and BC <EC=B'C' . • 

Theorem 20.13 is used to prove that of two chords of a circle the 
one closer to the center is the longer. 

Theorem 20.14 If chords PR and QS of a circle with center C and 
radius r are perpendicular to a diameter of the circle at X and Y, re­
spectively, such that C-X-Y, then r>PX> QY. 

Proof !:::.CQY has a right angle at Y, and !:::.CPX has a right angle 
at X. Since CQ = CP and CY > CX, we have QY < PX by the preceding 
theorem .• 

If 0 < s < a, then there exist right triangles with hypotenuse of 
length a and a leg of length s. This result, which is used in the next 
proof, is a restatement of Theorem 20.9. From this, one can prove 
directly the existence of isosceles triangles having sides of length 
r, r, and c when 2r> c > 0 (Exercise 20.4). When c= r we have a proof 
of the existence of equilateral triangles with sides of length r for any 
positive real r, which is Euclid's Proposition 1.1. The existence of 
particular isosceles triangles is a special case of our next theorem, 
which is Euclid's Proposition 1.22. 

Theorem 20.15 Triangle Theorem Positive real numbers a, b, care 
the lengths of the sides of some triangle iff each of the numbers is less 
than the sum of the other two. 

Proof From the Triangle Inequality we already know that the 
length of any side of a triangle is less than the sum of the lengths 
of the other two sides. We now prove the converse. Without loss of gen­
erality we may suppose a ~ b ~ c. Let A and B be any two points such 

+-+ 
that AB = c. Let f be a coordinate system for AB such that f(A) = 0 
and f(B) =c. Let ~A be the circle with center A and radius a; let ~B be 
the circle with center B and radius b. Let f( G) = c - band f(H) = a. 
Then G on ~ B' H on ~ A' and 0 ~ c - b < a ~ c. (See Figure 20.8.) 

If 0 ~ x <~nd f(X) =x, then define g(x) =XP;r where P;r is on 
£A and XPx 1 AB. Such a point Px exists by the Line-Circle Theorem 
since X is an interior point of ~ A. Further, we know g is a strictly de­
creasing function for 0 ~ x < a by the previous theorem. Define 
g(a) = o. We also know that if 0 < s < a then there exists point X 
such that O<f(X)=x<a and g(x)=s (Theorem 20.9). Thus g is a 
strictly decreasing function defined for x such that 0 ~ x ~ a, and g 
takes on all values v such that a 6; v 6; o. In particular, g is a continu-
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ous function defined for x when c-b ~ x ~ a and such thatg(c- b) > 0 
and g(a) =0. 

Paralleling the construction of g, if c - b < x ~ c and f(X) = x, 
- -

define h(x) =XQx where Qx is on rg'B and XQx.l AB. Define h(c- b) = 
O. Following through with the same reasoning, we see that h is a con­
tinuous (increasing) function defined for x when c - b ~ x ~ a and 
such that h (c - b) = 0 and h (a) > O. 

Now define k (x) = g(x) - h(x) for c - b ~ x ~ a. Then k is con­
tinuous, k(c-b) >0, and k(a)<O. By the intermediate-value 
theorem there is a real number t such that c- b < t < a and k(t) = O. 
Then g (t) = h (t). Letting f( T) = t, we see that the perpendicular to 
AB at T must contain a point C on both rg' A and rg' B' So AC = a, BC = b, 
and AB = c. Therefore, b.ABC has the desired properties. • 

Theorem 20.16 Two-Circle Theorem Ifrg'A is a circle with center A 
and radius a, rg'B is a circle with center B and radius b,AB = c, and each 
of a, h, c is less than the sum of the other two, then rg'A and rg'B inter-

~ 

sect in exactly two points, one on each side of AB. 

Proof By the Triangle Theorem there exists b.PQR such that a=PR, 
b=RQ, and c=PQ. There exist two points C l and C2 , one on each side 
~ 

of AB, such that LBACI and LBAC2 are congruent to LQPR and 
such that ACI and AC2 are congruent to PR. Thus Cl and C2 are on 
rg',4. Further, b.BACI = b.QPR and b.BAC2 = b.QPR by SAS. So 
BCI = band BC2 = b. Thus Cl and C2 are on rg' B' Since two circles inter­
sect in at most two points, Cl and C2 are the unique points of inter sec-
tion of rg'.4 and rg' B' • 
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20.3 EXERCISES 

20.1 Theorem 20.6. 

20.2 Finish the proof of Theorem 20.12 . 

• 20.3 Write out an alternative proof of Theorem 20.9 using the 
following outline: Define g(x) as in the proof of the theorem. Let t be 
the greatest lower bound of all x such that g(x) > r. Assume get) > r. 
Let get) = r+ hand s + h= t. Then g(s) + h > g(t), giving contradic­
tion g(s) > r. Assume get) < r. Let get) + h= rand s= t+ h. Then 
g(s) < r. If 0 < x < s, then g(x) < r. So s is a lower bound, a contradic­
tion. Hence get) = r. 

20.4 Prove the existence of an isosceles triangle having sides of 
length r, r, and c when 2r > c > 0 directly from Theorem 20.9 . 

• 20.5 True or False? 

(a) There do not exist two concentric congruent circles. 

(b) The set of all circles is fixed under any isometry. 

(c) The exterior of a circle is a convex set. 

(d) If a point off a circle is on a tangent of the circle, then the 
point is in the exterior of the circle. 

~ 

(e) If two points A and B are on the same side of CD, then C and 
~ 

D are on the same side of AB. 

(D Line l is a line of symmetry for line m iff l = m or l -1 m. 

(g) If line l is a line of symmetry for each of two circles, then th~ 
circles are concentric. 

(h) Three distinct points lie on some circle. 
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(i) Three points on a circle determine the center and the 
radius of the circle. 

(j) If line l intersects a circle, then the foot ofthe perpendicular 
from the center of the circle to l is in the interior of the circle. 

20.6 Read "Mathematics and Creativity" by A. Adler in the February 
19, 1972 issue of The New Yorker magazine (pp. 39-45). Don't miss 
the cartoon on page 38! 

20.7 Give a different proof of Theorem 20.12 using Theorem 20.4 
and Theorem 20.9. 

20.8 A circle with radius r has a chord of length x iff 0 < x ~ 2r. 

• 20.9 Let 'i§" A be the circle with center A and radius a, 'i§" B be the 
circle with center B and radius b, and AB = c. Find necessary and 
sufficient conditions on a, b, c for the two circles (i) to be disjoint, (ii) to 
intersect in exactly one point, (iii) to intersect in exactly two points, 
and (iv) to intersect in three points. 

20.10 Two circles intersect in exactly two points iff one (and hence 
each) of the circles contains points in the interior and points in the 
exterior of the other circle. 

20.11 Two circles intersect in exactly one point iff the two circles 
have a common tangent . 

• 20.12 Let x, y, U, v be numbers. If x < y implies u> v, x> y implies 
u < v, and x= y implies u= v, then x < y iff u > v, x=y iff u= v, and 
x> yiffu < v. 

~ 

20.13 A-C-B iff point C is on AB and there exists a line l contain-
ing C such that A and B are on opposite sides of l. 

20.14 The union of a circle and its interior is a convex set. 

20.15 Which of the statements in Theorems 20.2, 20.4, and 20.5 
fail to hold in the Taxicab Plane (Ml, t, m)? Which statements in the 
theorems of this chapter hold for the Rational Cartesian Plane 
(M2, d, m)? . 

20.16 If the vertices of two congruent triangles are all on one circle, 
then any isometry that maps one of the triangles to the other is a prod­
uct of at most two reflections. 

*20.17 Which statements in the theorems of this chapter hold for 
the Taxicab Plane (Ml, t, m)? 

*20.18 Answer Exercise 20.9 for the Rational Cartesian Plane. 
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GRAFFITI 

Our Geometry is an abstract Geometry. The reasoning could 
be followed by a disembodied spirit who has no idea of a physical 
point; just as a man blind from birth could understand the 
Electromagnetic Theory of Light. 

Fortier 

Among them [the Greeks] geometry was held in highest honor: 
nothing was more glorious than mathematics. But we have limited 
the usefulness of this art to measuring and calculating. 

Cicero 

What distinguishes the straight line and circle more than 
anything else, and properly separates them for the purpose of 
elementary geometry? Their selfsimilarity. Every inch of a straight 
line coincides with every other inch, and of a circle with every 
other of the same circle. Where, then, did Euclid fail? In not 
introducing the third curve, which has the same property- the 
screw. The right line, the circle, the screw- the representations of 
translation, rotation, and the two combined-ought to have been 
the instruments of geometry. With a screw we should never have 
heard of the impossibility of trisecting an angle, squaring the 
circle, etc. 

De Morgan 

. when Gauss was nineteen, she [Gauss' mother] asked his 
mathematical friend Wolfgang Bolyai whether Gauss would ever 
amount to anything. When Bolyai exclaimed "The greatest 
mathematician in Europe!" she burst into tears. 

E. T. Bell 

It is evident to everyone that the equilateral is the most 
beautiful of triangles and most akin to the circle. 

Proclus 



CHAPTER 21 

Absolute Geometry and 
Saccheri Quadrilaterals 

21.1 EUCLID'S ABSOLUTE GEOMETRY 

Euclid's proof of his first proposition in Book I of the Elements is as 
follows. 

Theorem 21.1 Euclid's Proposition 1.1 Given AB, there exists an 
equilateral triangle with side AB. 

Proof (Euclid) Let AB = r. Let C be a point of intersection of the 
circle with center A and radius r and the circle with center Band 
radius r. (Such a point C exists by the Two-Circle Theorem.) Since 
AC=BC= r, fj,ABC is an equilateral triangle. • 

The parenthetic note that such a point C does exist has been 
added to Euclid's proof. Of course, the existence ofC is essential! With­
out the Two-Circle Theorem or some axiom other than those we sup­
pose were given by Euclid, the proof falls apart. That this flaw is not 
easily repaired can be seen by considering the rather difficult argu­
ments, such as the proof of Theorem 20.9, that are needed to prove 
the Two-Circle Theorem. 

Although Euclid's second proposition follows directly from the 
Segment-Construction Theorem, we give Euclid's proof for later 
reference. 
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Theorem 21.2 Euclid's Proposition 12 Given BC and point A, there 
exists a point L such that AL = BC. 

Proof (Euclid) If A=B, the result is trivial. Suppose A #B and 
pointD is such that b..ABD is equilateral (Theorem 21.1). SoDA = DB. 
(See Figure 21.1.) Let the circle with center B and radius BC intersect 
~ 

DB at point G such thatD-B-G. ThenBG=BC andDG=DB+BG. 
~ 

Let the circle with center D and radius DG intersect DA at point L. 
So DL=DG. Since DL=DG>DB=DA, we have D-A-L and DL= 
DA + AL. Since DL = DG, we have DA + AL = DB + BG. Finally, since 
DA=DB and BG=BC, we have AL=BC. Hence AL=BC, as de­
sired. • 

~ ~ ~ 

DEFINITION 21.3 Let AB, CD, and FG be three distinct lines such 
~ ~ 

that A-F-B and C-G-D. Then AB and CD are cut by transversal 
~ 

FG such that LAFG is an interior angle (as are LBFG, LCGF, and 
~ 

LDGF) and, if A and D are on opposite sides of FG, then LAFG and 
LDGF are a pair of alternate interior angles (as are LBFG and 
LCGF). Further, if x and yare a pair of alternate interior angles and 
y and z are a pair of vertical angles, then x and z are a pair of cor­
responding angles. 

Theorem 21.4 If two lines are cut by a transversal, then the follow­
ing are equivalent: 

FIGURE 21.1 
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FIGURE 21.2 

(a) The angles in a pair of alternate interior angles are con­
gruent. 
(b) The angles in a pair of corresponding angles are congruent. 
(c) Each of the four pairs of corresponding angles is a pair of 
congruent angles. 
(d) Each of the two pairs of alternate interior angles is a pair 
of congruent angles. 
(e) The interior angles intersecting the same side of the trans­
versal are supplementary. 

Proof Since vertical angles are congruent and a linear pair of angles 
are supplementary, the result follows from the previous definition. • 

Theorem 21.5 If two lines are cut by a transversal such that a pair 
of alternate interior angles are congruent, then the two lines have a 
common perpendicular. 

Proof If a pair of alternate interior angles are right angles, the result 
is trivial. Also, if one pair of alternate interior angles are obtuse, then 
another pair is acute. Therefore, suppose A andD are on opposite sides 
~ 

of FG and L AFG and L DGF are congruent and acute. We must show 
~ ~ 

AF and DG have a common perpendicular. Let M be the midpoint of 
- ~ 

FG. Let P be the foot of the perpendicular from M to AF. Since L AFM 
~ 

is acute, P and A are on the same side of FG. Let Q be the foot of the 
~ 

perpendicular from M to DG. Since LDGM is acute, Q and D are on 
~ 

the same side of FG. Then, since LMFP = LMGQ, we have !:::.MFP = 
!:::.MGQ by SAA. So LFMP= LGMQ. Therefore, since F-M-G and 
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~ 

P and Q are on opposite sides of FG, LFMP and LGMQ must be 
~ 

vertical angles. Thus P, M, Q are collinear and PQ is perpendicular 
~ ~ 

to both AF and DG. • 

Theorem 21.5 is stronger than the two corollaries below since 
we have not proved that two parallel lines have a common perpen­
dicular. 

Corollary 21.6 Euclid's Proposition 1.27 If two lines are cut by a 
transversal such that a pair .of alternate interior angles are con­
gruent, then the two lines are parallel. 

Proof By the hypothesis, the two lines have a common perpendicular 
(Theorem 21.5). Hence, the two lines are parallel (Theorem 18.2). • 

Corollary 21.7 Euclid's Proposition 1.28 If two lines are cut by a 
transversal such that a pair of corresponding angles are congruent or 
such that the interior angles intersecting one side of the transversal 
are supplementary, then the two lines are parallel. 

Proof Follows from Theorem 21.4 and Corollary 21.6. • 

We can now say that we have proved all of Euclid's first twenty­
eight propositions. A geometry that satisfies our five axioms is called 
the absolute plane. The "the" is meant to imply that no other axioms 
are allowed and not that the axiom system is categorical! It can truly 
be said that Euclid was the first to write a treatise on absolute ge­
ometry. His first twenty-eight propositions comprise such a treatise. 

Because of Theorem 21.4, Euclid's Proposition 1.27 and Proposi­
tion 1.28 can be summarized in one sentence: If A and D are on the 

~ ~ ~ 

same side of BC and mL ABC + mL BCD = 7T, then AB II CD. Also, 
since Euclid's Proposition 1.29 states all the converses of 1.27 and 
1.28, we can state 1.29 succinctly as follows: If A and D are on the same 

B A 

C D 

FIGURE 21.3 



EUCLID'S ABSOLUTE GEOMETRY 243 
~ ~ ~ 

side of BC and ABIICD, then mLABC+mLBCD=1T. In order to 
prove this proposition Euclid uses for the first time his parallel pos­
tulate. 

Euclid's Parallel Postulate: If A and D are on the same side of 
~ ----> ----> 

BC and mLABC + mLBCD < 1T, then BA and CD intersect. This 
postulate, which certainly has been one of the most controversial 
statements ever made, is exactly what is needed to prove Proposition 
1.29. The argument runs as follows. Suppose two parallel lines are 
cut by a transversal. Let x and y be the measures of the interior angles 
intersecting one side of the transversal, and let u and v be the mea­
sures of the interior angles intersecting the other side of the trans­
versal. Since the two lines are parallel, from Euclid's Parallel Pos­
tulate we have x+ y ~ 1T and u + v ~ 1T. However, since x+ u + y+ v= 
21T, it follows that x + y = 1T and u + v = 1T as desired. 

Probably the most familiar parallel axiom is Euclid's Proposi­
tion 1.31: If point P is off line l, then there exists a unique line through 
P that is parallel to l. 

This proposition has come to be known as Playfair's Parallel 
Postulate since the work of John Playfair (1748-1819) was influ­
ential in having Euclid's Parallel Postulate replaced by this proposi­
tion in most geometry textbooks. The proposition follows from the 
theorems of absolute geometry and Euclid's Proposition 1.29. Let F 
be the foot of the perpendicular from P to l. Then, by Proposition 1.29, 

~ 

for any line PQ parallel to l we must have mLQPF=1T/2. Therefore 
(Theorems 18.1 and 18.3) there is a unique line through P that is 
parallel to l, as desired. 

To show that Playfair's Parallel Postulate is equivalent to Eu­
clid's Parallel Postulate, we now prove Euclid's Parallel Postulate 
using only the theorems of absolute geometry and Playfair's Parallel 

~ 

Postulate. Suppose A and D are on the same side of BC and mLABC + 
~ 

mLBCD < 1T. Let E be on the same side of BC as A and such that 
~ ~ 

mLABC + mLBCE = 1T. Then BA II CE by Euclid's Proposition 1.28, 
which is a theorem of absolute geometry. By Playfair's Parallel Pos-

~ ~ 

tulate CE is the only line through C that is parallel to BA. Since 
~ <E:--+ ~ ~ 

mLBCD < mLBCE, then CD # CE and CD must intersect BA. Since 
~ ~ ~ 

CE II BA, A and D are on the same side of CE, and A and D are on the 
~ --~ ~ 

same side of BC, then it follows that CD and BA must intersect, as 
desired. 

By the arguments above, each of Euclid's Parallel Postulate, 
Euclid's Proposition 1.29, and Playfair's Parallel Postulate is equiva­
lent to the other. We shall avoid the useless discussions about which 
of these is the most self-evident. Playfair's Parallel Postulate does 
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have the advantage of being a simple incidence property. Other such 
statements that can be added to the list of equivalents are Euclid's 
Proposition I.30, which states that lines parallel to a given line are 
parallel, and its contrapositive, which states that a third line inter­
secting one of two parallel lines intersects the other (Exercise 21.1). 

The introduction of the parallel postulate into Euclid's Elements 
was a stroke of pure genius, probably unparalleled in the history of 
human thought. Yet, from the beginning, the commentators con­
sidered the postulate a flaw. It must be remembered that until a 
little over a hundred years ago a postulate was supposed to be a self 
evident truth. If one can put emotions and previous indoctrination 
aside, it is clear that Euclid's Parallel Postulate is not selfevident. 
However, since the postulate was deemed to be necessarily true, there 
was the problem of showing that the postulate is a theorem. Perhaps 
more genius man-hours have been spent on the problems of the paral­
lel postulate than any other human intellectual endeavor. The 
mathematical study of the whole problem of the parallel postulate in 
absolute geometry is aptly called the theory of parallels. It may have 
taken two thousand years for Euclid to be vindicated, but vindicated 
he was! We now know that any argument given to prove Euclid's 
Parallel Postulate in absolute geometry is necessarily circular, wheth­
er the argument is given by a mathematician, a philosopher, or a the­
ologian. 

The problems of the parallel postulate became tied up with the 
quandary What is truth? The ramifications of the theory of parallels 
have had as important implications on man's view of his relation to his 
universe and his gods as have either the Copernican theory of helio­
centricity or the Darwinian theory of evolution. Because the theory 
of parallels cannot be intelligently discussed in any depth without 
assuming a technical vocabulary and an understanding of absolute 
geometry, the subject is seldom mentioned by general historians. Even 
though the theory of parallels is inaccessible to most educated people, 
their modes of thought have been influenced by its development. 

The oldest known proof of Euclid's Parallel Postulate is that 
which Proclus attributes to Ptolemy. Ptolemy proves the equivalent 

~ ~ 

Euclid's Proposition I.29 as follows: Suppose AB and CD are two 
~ 

parallel lines cut by transversal FG such that A-F-B and C-G-D. 
~ ~ ~ 

(See Figure 21.4.) Now AF and CG are no more parallel than FB and 
~ 

GD. Therefore, assuming mLAFG+ mLCGF > n, then mLBFG+ 
mLDGF>n; and, likewise, assuming mLAFG+mLCGF<n, then 
mLBFG+ mLDGF < n. However, each assumption leads to a con­
tradiction since the sum of the measures of the four interior angles 
is 2n. Hence the sum of the measures of the interior angles intersect-
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c D 

FIGURE 21.4 

~ 

ing one side of the transversal FG is 1f. Proclus correctly points out 
Ptolemy's error in assuming that whatever is true about the interior 
angles intersecting one side of a transversal cutting two parallel lines 
is necessarily true of the interior angles intersecting the other side 
of the transversal. 

After pointing out the error in Ptolemy's proof of Euclid's Parallel 
Postulate, Proclus gives his own proof by first showing that a third 
line intersecting one of two parallel lines intersects the other. We have 
previously observed that this proposition is equivalent to Euclid's 
Parallel Postulate, since it is the contrapositive of the equivalent Eu-

~ ~ 

clid's Proposition 1.30. For Proclus' proof, let AB and CD be two parallel 
~ ~ ~ 

lines such that FG intersects AB at F with G on the same side of AB 
~ ~ ~ 

as CD. (See Figure 21.5.) Let r be the distance between AB and CD. 
~ 

Let H be a point on FG such that, if H' is the foot of the perpendicular 
~ 

from H to AB, then HH' > r. Hence Hand F are on opposite sides of 
~ ~ ~ 

CD. Thus FG intersects CD as desired. 
Let's examine Proclus' argument in some detail. Does there 

~ 

actually exist an H on FG such that HH' > r? To verify the existence 
of H, Proclus cites an axiom from Aristotle. Aristotle's Axiom: Given 

~ 

r> 0 and LBFG, then there is a point H on FG such that the distance 

c D 

A 

FIGURE 21.5 
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F Bl Ba 
FIGURE 21.6 

~ 

from H to BF is greater than r. This statement certainly seems reason-
able. However, as Proclus says, quoting Geminus, we must not pay 
attention to plausible imaginings in deciding what propositions are 
to be accepted. To support his claim that Euclid's Parallel Postulate 
ought to be struck from the postulates-altogether since it is a theorem, 
Proclus should either prove Aristotle's Axiom or admit that he is in­
troducing a new postulate. 

Aristotle's Axiom holds if LBFG is a right angle and is true for 
obtuse angles if true for acute angles. Looking at Figure 21.6, since 
LBl'Gj is acute, it follows (see Theorem 21.8) that GIBI < G2B2 < 
G:l3a < .... Does this imply Gj3n> r for some n? After noting that 
although implausible and paradoxical there do exist curves that 
approach each other indefinitely but never meet, Proclus then asks 
whether this may not be possible for lines as well. The question is 
excellent; an answer is lacking! Since the hyperbola with equation 
xy= 1 is asymptotic to the x-axis in the Cartesian plane, we have 
GIBI < G~2 < G:l3a < ... in Figure 21.7 but Gj3n < 1 for all n. Of 
course a hyperbola is not a line in the Cartesian plane, but the situa­
tion is analogous. However, we shall later see that Aristotle's Axiom 
is a theorem of absolute geometry. 

Assuming Aristotle's Axiom is a theorem of absolute geometry, 
where does Proclus' proof fall apart? The trouble is in letting r be the 

~ ~ 

distance between parallel lines AB and CD. Is r defined? Proclus was 
tacitly assuming a property of parallel lines that is equivalent to 
Euclid's Parallel Postulate. Proclus was probably not the first to fall 
into this pit since he informs us that Posidonius, in the first cen­
tury B.C., had defined two lines to be parallel if all the points of one 
line are equidistant from the other line. We can only wonder how 
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FIGURE 21.7 

Posidonius tried to show that two distinct lines are parallel if and 
only if the lines do not intersect. Nor was Proclus the last to be trapped 
by this pitfall in the theory of parallels. Two thousand years after 
Posidonius we find in an American journal an article supposedly 
proving Playfair's Parallel Postulate by using the lemma that parallel 
lines are equidistant. Ironically, this article is next to another on non­
Euclidean geometry. The argument for the lemma is as follows. Let - - - -PQ be perpendicular to MN at M; let RS he perpendicular to MN at -N. (See Figure 21.8.) Let B any point on PQ. Let A be the foot of the -perpendicular fromB toRS. LetDbe such thatA-N-D andAN=ND. - --Let C be such that C is on the same side of RS as B, CD 1. AD, and - - -CD=BA. Now the reflection in MN fixes PQ and RS (Theorem 19.6) 
and sends A to D. Since a reflection preserves distance and angle -measure, the reflection must take B to C. Hence C is on PQ and CD= -BA. The conclusion is that, since B is any point on PQ, then all the 

p B M c Q 

Lf-l 

rh 
R A N D s 
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~ ~ 

points of PQ are equidistant from RS. Before reading about the flaws 
given in the next paragraph, try to find the errors yourself. 

The first error is the most subtle. Supposedly we are showing 
~ ~ ~ ~ 

that PQ II RS implies all the points of PQ are equidistant from RS . ...... 
Where does MN come from? We are tacitly assuming that two parallel 
lines have a common perpendicular. It can be shown (Corollary 24.14) 
that this assumption itself is equivalent to Euclid's Parallel Postulate! 
(We do know that two lines having a common perpendicular are 
parallel (Theorem 18.2), but we do not know that two parallel lines 
have a common perpendicular.) The case B = M is not considered in 
the argument, but this is minor. The most obvious error is assuming 

~ ~ 

that CD=BA implies PQ is equidistant from RS. What is actually 
~ ~ 

proved is that for each point B on PQ and on one side of MN there 
~ ~ 

exists at least one point C on PQ and on the opposite side of MN such 
~ 

that Band C are equidistant from RS. 

21.2 GIORDANO'S THEOREM 

One after another the geometers of Africa, Asia, and Europe followed 
Posidonius and Proclus into the pitfall of trying to identify the locus 
of all points equidistant from a line and on one side of the line with a 
line. The first significant result in this aspect of the theory of parallels 
does not come until 1680 in an attempt by Giordano Vitale (1633-
1711) to prove Euclid's Parallel Postulate. Giordano, as Omar 
Khayyam (circa 1050 -1123) before him, anticipated the first few 
theorems of Gerolamo Saccheri (1667 -1733). 

Theorem 21.8 If DABCD has right angles at A and D, then DABCD 
is a convex quadrilateral. Further, AB < CD iff LB > LC, AB = CD --
iff LB = LC, and AB > CD iff LB < LC. 

Proof Suppose DABCD has right angles at A and D. AD and BC can­
not intersect by definition of a quadrilateral. BC cannot intersect 
~ -

AD at a point E off AD as otherwise one of t::,AEB or t::,DEC has two 
angles of measure at least 7T/2, a contradiction (Theorem 18.20). So 

~ 

B, C, and BC are on the same side of AD. Then, AD cannot intersect 
~ 

BC at a point F as otherwise one of t::,AFB or t::,DFC has two angles 
- ~ ~ ~ 

of measure at least 7T/2. So AD is on a half plane of BC. Since AB II CD 
(Theorem 18.2), each side of DABCD is on a halfplane of the opposite 
side. Thus DABCD is convex. 
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Suppose AB=CD. Then t::,.ADC = t::,.DAB by SAS and AC=DB. 
So t::,.ABC = t::,.DCB by SSS and LABC = LDCB. Hence, AB=CD 
implies LB = LC. Now suppose AB < CD. LetE be such that C-E-D 
and DE=AB. Then E is in int (LABC). So mLABC > mLABE. Since 
mLABE= mLDEB by the result above and since mLDEB > mLDCB 
(Theorem 17.9), we have mLABC> mLDCB. Hence, AB < CD im­
plies LB > LC. By symmetry, AB > CD implies LC < LB. The theo­
rem follows by the three implications and their contrapositives. • 

DEFINITION 21.9 If DABCD has right angles at A and D with 
AB = CD, then the quadrilateral is denoted by [§jABCD and called a 

Saccheri quadrilateral. [§jABCD has legs AB and CD, lower base 
- -
AD, upper base BC, and upper base angles LB and LC. A quadrilateral 

~ ~ - -
having four right angles is a rectangle. If AB II CD, then AB and CD are 
said to be parallel. Line I is equidistant from line m if every two points 
of I are equidistant from m. 

Although [§jABCD= [§jDCBA by the symmetry of the defini­
tion, it would be a mistake to infer that [§jABCD implies [§jBCDA. 
The order of the letters as they appear in the notation is important. 
Further, we must avoid having the words lower and upper lead us 
astray. For [§jRSPQ in Figure 21.9, QR is the lower base and LP and 
LS are the upper base angles. 

We shall usually abbreviate such a phrase as "if [§j ABCD exists" 
to "if [§jABCD." Likewise, we shall frequently use the concise phrase 
"so [§jABCD" in place of the longer phrase "so A, B, C, D are points 
such that [§jABCD exists." Thus, the symbol "[§jABCD" has the 
double duty of serving as the name of a particular set of points and 
as an abbreviation for a statement that the points A, B, C, D are in a 
special relation to each other. This same sort of convention will be 
applied to the notation for Lambert quadrilaterals, which are intro­
duced in the next chapter. 

Theorem 21.10 A Saccheri quadrilateral is a convex quadrilateral. 

B.---------....,C LR 

Ah r D p '---------...... S 

FIGURE 21.9 
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The upper base angles of a Saccheri quadrilateral are congruent. The 
diagonals of a Saccheri quadrilateral are congruent. The opposite 
sides of a rectangle are congruent. 

Proof The first, second, and last statements are special cases of 
Theorem 21.8. If i§]ABCD, then !::"BAD = !::"CDA by SAS and BD = 

CA. • 

We have defined rectangles and even proved a property rec­
tangles must have if they exist, but we do not know that a rectangle 
exists. We can define a unicorn and describe properties such an ani­
mal must have, but this does not imply that unicorns exist. 

Theorem 21.11 The line through the midpoints of the bases of a 
Saccheri quadrilateral is perpendicular to each base. 

Proof Suppose i§]ABCD with M and N the midpoints of BC and 
AD, respectively. Then !::"BAN = !::"CDN by SAS, and !::"ABM = 
!::"DCM by SAS. So BN = CN and AM = DM. Hence N is on the perpen-

- -
dicular bisector of BC, and M is on the perpendicular bisector of AD 

~ 

(Theorem 18.5). Thus MN is the perpendicular bisector of each 
base .• 

Corollary 21.12 The perpendicular bisector of one base of a Saccheri 
quadrilateral is the perpendicular bisector ofthe other base. The bases 

~ 

of a Saccheri quadrilateral are parallel. If two points on PQ are on 
~ ~ ~ ~ 

the same side of RS and are equidistant from RS, then PQ II RS. The 
line through the midpoints of the legs of a Saccheri quadrilateral is 
perpendicular to the line through the midpoints of the bases. 

Proof Only the last statement is not a direct consequence of the 
theorem. If i§] ABCD with F and G the midpoints of AB and CD, re­
spectively, then i§]AFGD. So the last statement in the corollary fol­
lows from the first. • 

Theorem 21.13 Giordano's Theorem If three points of line l are 
equidistant from line m, then [ is equidistant from m. 

Proof If [= m, the result is trivial. Suppose [ and m are distinct 
lines such that A, B, C are three points on [that are equidistant from 
m. Since two of these points must be on the same side of m, then 
[II m (Corollary 21.12). Thus A, B, C are on the same side ofm. Suppose 
A-B-C. Let A', B', C' be the feet of the perpendiculars to m from 
A, B, C, respectively. Then i§]A'ABB', i§]B'BCC', and i§]A'ACC'. 
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So LB'BA, LA'AB, LC'CA, and LB'BC are all congruent (Theorem 
21.10), and, since LB'BA and LB'BC are a linear pair, the four 
angles are right angles. Hence !§lA'ACC' is a rectangle. 

Suppose P is any point such that A-P-C. Let P' be the foot of 
the perpendicular from P to m. We wish to show PP' =AA'. Assume 
LP'PA is acute. So PP' > AA' =CC' (Theorem 21.8) and LP'PC is 
obtuse. Since LP'PC is obtuse, then CC' > PP' (Theorem 21.8). There­
fore PP' > PP', a contradiction. Likewise, the assumption that LP'PA 
is obtuse leads to the contradiction PP' < PP'. Hence L P' PA is a right 
angle. Thus DA'APP' is a rectangle and PP' =AA', as desired. We 
also note that we have shown the lemma that if three points are equi­
distant from a line and a fourth point is between two of the three 
points, then the four points are equidistant from the line. 

Finally, suppose Q is on I but off AC. Let Q' be the foot of the per­
pendicular from Q to m. (See Figure 21.10.) We wish to show QQ' = -AA'. Let R be the image of Q under the reflection in AA'; let S be -the image of Q under the reflection in CC'. Since these two reflections 
are isometries that fix both I and m (Theorem 19.6), we haveR-A-Q 
and Q, R, S are three points equidistant from m. By the lemma, we 
must have AA' = QQ', as desired. Therefore I is equidistant from 
m .• 

Theorem 21.14 If line I is equidistant from line m, then m is equi­
distant from I. 

Proof Exercise 21.2. • 

Given line I it is easy to find a different line m such that two 
points of m are equidistant from I. All we have to do is construct a 
Saccheri quadrilateral with lower base on I and let m be the line con­
taining the upper base. Giordano has shown that if we are to find a 
line m different from line I such that every two points of m are equi­
distant from I, then it is sufficient to find three collinear points on the 
same side of I that are equidistant from I. 

A B P C R s A C Q 

A' B' P' C' 

FIGURE 21.10 
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21.3 EXERCISES 

21.1 The following are equivalent in absolute geometry: (i) Playfair's 
Parallel Postulate. (ii) Lines parallel to a given line are parallel. 
(iii) If a third line intersects one of two parallel lines, then the third 
line intersects the other. 

21.2 Theorem 21.14. 

• 21.3 If I§]ABCD with M and N the midpoints of BC and AD, re­
spectively, then MN is shorter than, congruent to, or longer than 
AB as, respectively, LB is acute, right, or obtuse. 

• 21.4 The following is not a theorem of absolute geometry: If 
A, B, C, D are four points such that LBAD and LCDA are right angles, 
then AB < CD iff LABC > LDCB. 

• 21.5 True or False? 

~ 

(a) If A and D are points on opposite sides of BC and LABC = 
~ ~ 

LBCD, then AB II CD. 
~ 

(b) If A and D are points on the same side of BC and mLABC + 
~ ~ 

mLBCD = 7r, then AB II CD. 
~ 

(c) If A and D are points on the same side of Be and mLABC + 
~ ~ 

mLBCD < 7r, then BA intersects CD. 
~ 

(d) If A and D are points on the same side of BC and mLABC + 
~ ~ 

mLBCD > 7r, then AB intersects CD. 
~ 

(e) If A and D are points on opposite sides of BC and mLABC + 
~ ~ 

mLBCD > 1T, then AB intersects CD. 

(f) If two lines are parallel, then the lines have a common 
perpendicular. 

(g) If two distinct points A and B are equidistant from line l, 
~ 

then AB Ill. 

(h) If lines land m are parallel, then there are two points on 
1 that are equidistant from m. 

(i) If lines land m intersect, then there are two points on 1 
that are equidistant from m. 

(j) Euclid's Proposition 1.28 is equivalent to Euclid's Parallel 
Postulate. 
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• 21.6 Find the flaw in Aganis' proof of Euclid's Parallel Postulate: 
~ 

Suppose A and D are on the same side of BC, LABC is acute, and 
~ 

LBCD is right. Let E be foot of perpendicular from A to BC, and sup-
pose B-E-C. Let F be such that B-F-E and BC=2nBF for some 

---+ 
integer n. Let the perpendicular to BC at F intersect BA at G. Let H 

---+ ---+ 
be such that B-G-H and BH=2nBG. Then BA intersects CD at H. 

21. 7 DABCD is a rectangle iff I§] ABCD and I§] BCDA. 

21.8 DABCD is a rectangle iff I§]ABCD and I§]CDAB. 
~ ~ ~ 

21.9 If two lines AB and CD have a common perpendicular BC and 
M is the midpoint of BC, then every pair of corresponding angles of a 
transversal through M is a pair of congruent angles. 

21.10 If land m are distinct common perpendiculars to distinct 
lines a and b, then l is equidistant from m and a is equidistant from b. 

21.11 Prove Corollary 21.7 directly from Theorem 17.9. 

21.12 Find several statements equivalent to "AAA is false." 

21.13 Read Proclus' commentary on Euclid's Definition 23, Postulate 
5, and Propositions 28 through 32 in Proclus: A Commentary on the 
First Book of Euclid's Elements by G. R. Morrow (Princeton, 1970). 

21.14 To see how an angle can be equal to a right angle but not be 
a right angle read Proclus' commentary on Euclid's Postulate 4 (see 
Exercise 21.13). 

*21.15 Compare Aristotle's I.5 of De caelo with Archimedes' The 
Sand-Reckoner. 

*21.16 "Two parallel lines have a common perpendicular" is equiva­
lent to Euclid's Parallel Postulate. 

*21.17 Euclid's Proposition I.32 is equivalent to Euclid's Parallel 
Postulate. 

GRAFFITI 

Genius is a willingness to test the strangest alternatives. 

A new scientific truth triumphs, not because it convinces its 
opponents and makes them see the light, but because the opponents 
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eventually die, and a new generation that is familiar with it 
grows up. 

Max Planck 

Lagrange, in the belief that he had settled the problem in the 
theory of parallels, was giving a lecture on the subject. In the 
middle of the talk he broke off with the comment, rr Il faut que )'y 
songe encore!" 

Mathematics, considered as a science, owes its origin to the 
idealistic needs of the Greek philosophers, and not as fable has it, 
to the practical demands of Egyptian economics. . . . 

Not until rigour was recaptured in the 19th century did 
people understand the essence of Greek mathematics. 

Hankel 

Freudenthal 



CHAPTER 22 

Saccheri's Three Hypotheses 

22.1 OMAR KHAVVAM'S THEOREM 

The role played by Gerolamo Saccheri's book Euclid Vindicated of all 
Flaw (1733) in the development of the history of the theory of parallels 
will be discussed in Section 24.3 after we have learned something of 
its contents. In this chapter the earlier propositions from this famous 
book on absolute geometry are examined. Saccheri's Proposition I is 
our Theorem 21.10, which states that the upper base angles of a 
Saccheri quadrilateral are congruent. This leads to three hypotheses 
of which one, two, or all three might be true. 

DEFINITION 22.1 Hypothesis of the Acute Angle: There exists a 
Saccheri quadrilateral with acute upper base angles. Hypothesis of 
the Right Angle: There exists a Saccheri quadrilateral with right 
upper base angles. Hypothesis of the Obtuse Angle: There exists a 
Saccheri quadrilateral with obtuse upper base angles. 

Saccheri's Proposition II is our Theorem 21.11, stating that the 
line through the midpoints of the bases of a Saccheri quadrilateral is 
perpendicular to each base. Besides using what we have called 
Saccheri quadrilaterals, Saccheri also used quadrilaterals with three 
right angles to study the theory of parallels. Since Lambert later 
used such quadrilaterals, these are usually called Lambert quadri­
laterals. 
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DEFINITION 22.2 If OABCD has right angles at A, B, and D, then 
the quadrilateral is denoted by [gABCD and called a Lambert quad­
rilateral. A rectangle with adjacent sides congruent is a square. 
OABCD = OEFGH iffOABCD and OEFGH are such that LA = LE, 

- -- ---
LB = LF, LC = LG, LD = LH, AB = EF, BC = FG, CD = GH, and 
- -
DA=HE. 

By the symmetry of the definition, [g ABCD = [g ADCB. How­
ever, the order of the letters in "[g ABCD" is important as we do not 
know that [gABCD implies [gDCBA. Of course the order of the 
letters in "OABCD = OEFGH" is also important. We always have 
OABCD = OBCDA but not necessarily OABCD = OBCDA. It is as­
sumed that Definition 22.2 determines the obvious meaning of 
"[gABCD = [gEFGH" and "[§JABCD = [§JEFGH." 

Theorem 22.3 If [§JABCD, M is the midpoint of BC, and N is the 

midpoint of AD, then [gNMBA and [gNMCD. If [gNMBA, then there 
exist unique points C and D such that [§J ABCD with M the midpoint 
of BC and N the midpoint of AD. 

~ 

Proof For the first statement, since NM is perpendicular to both 
bases of [§JABCD (Theorem 21.11), then [gNMBA and [gNMCD 
by definition. Suppose [g NMBA. By the Midpoint Theorem there 
are unique points C and D such that M is the midpoint of BC and N 
is the midpoint of AD. Since C and D are, respectively, the images of 
B and A under the reflection in tik we have [§JABCD .• 

We shall need to know that if the lower bases and legs of two 
Saccheri quadrilaterals are respectively congruent then the Saccheri 
quadrilaterals are congruent. This is covered by (1) in the next 
theorem which contains all the absolute congruence theorems for 
Saccheri quadrilaterals and Lambert quadrilaterals. Parts (2), (3), 
and (4) may be omitted at this time. 

B c B M c 
..J L..J 

.., r r"l r 
A D A N D 

FIGURE 22.1 



OMAR KHAYYAM'S THEOREM 257 

Theorem 22.4 If [h]NMBA and [gN'M'B'A' such that either 
(1) AB=A'B' and AN=A'N', (2) MB=M'B' and MN=M'N', 
(3) NA=N'A' and NM=N'M', or (4) BA=B'A' and BM=B'M', 
then [h]NMBA = [gN'M'B'A'. If [§lABCD and [§lA'B'C'D' with 
M, M', N, N' the midpoints of BC, B'C', AD, A'D', respectively, are 
such that either (1) AB=A'B' and AD=A'D', (2) BC=B'C' and 
MN=M'N', (3) AD=A'D' and MN=M'N', or (4) AB=A'B' and 
BC=B'C', then !§JABCD = [§lA'B'C'D'. 

Proof Suppose [gNMBA and [gN'M'B'A'. If (1), then 6. BAN = 
6.B'A'N' by SAS and so 6.BNM = 6.B'N'M' by SAA. If (2), then 
6.BMN = 6.B'M'N' by SAS and so 6.BNA = 6.B'N'A' by SAA. If (3), 
then 6.ANM = 6.A'N'M' by SAS and so 6.AMB = 6.A'M'B' by ASA. 
In each of these three cases the desired result follows easily. Now sup-

--> 
pose (4). Let R be on NA such that NR=N'A'. If R=A, then we are 

~ 

done by (1). Assume R ,e A and let S be on the perpendicular to NA 
~ 

at R such that Sand B are on the same side of NA and RS=A'B'. 

Let T be the foot of the perpendicular from S to ilk Then [g NTSR = 
[h]N'M'B'A' by (1). So SR=B'A'=BA and ST=B'M'=BM. Now 
T ,e M as otherwise S = Band R = A. Hence !§J ABSR and I§] MBST. 
Let V be the midpoint of AR and W the midpoint of MT. Since the 
perpendicular bisector of the upper base of a Saccheri quadrilateral 
is the perpendicular bisector of the lower base, we have the perpen-

- -
dicular bisector of BS is perpendicular to NV at V and also perpen-
dicular to NW at W. Thus 6.NVW has three right angles, a contra­
diction. Therefore R=A and [gNMBA = [gN'M'B'A'. These results 
for the Lambert quadrilaterals imply the corresponding results for 
the Saccheri quadrilaterals by the previous theorem. • 

Theorem 22.5 If [g ABCD, then BC is longer than AD iff LC is acute, 
BC is congruent to AD iff LC is right, and BC is shorter than AD iff 
L C is obtuse. 

Proof Special case of Theorem 21.8. • 

Theorem 22.6 Omar Khayyam's Theorem If !§JABCD, then BC > 
AD iff LB is acute, BC = AD iff LB is right, and BC < AD iff LB 
is obtuse. 

Proof Follows directly from Theorems 22.3 and 22.5. • 

Saccheri's Proposition III and its converse Proposition IV are 
contained in Omar Khayyam's Theorem. (More on Omar Khayyam 
in the next chapter.) Then Saccheri has our Theorems 22.5 and 21.8 
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as corollaries. As does Saccheri, we next turn to the problem ofwheth­
er two or all three of the hypotheses regarding the upper base angles 
of a Saccheri quadrilateral can hold. For example, it certainly seems 
possible to have I§]ABCD with LB acute and I§]EFGH with LF ob­
tuse. Theorem 22.10 will answer this problem. 

Theorem 22.7 If I§]ABCD, B-P-C, A-Q-D, and PQ.l AD, then 
PQ < AB iff LB is acute, PQ = AB iff LB is right, and PQ > AB iff 
LB is obtuse. 

Proof Since [§jABCD, then AB=CD and LB = LC. Suppose PQ < 
AB. So PQ < CD. Then mLABC < mLQPB and mLDCB < mLQPC 
(Theorem 21.8). Since LQPB and LQPC are supplementary and 
mLABC= mLDCB, it follows that 2mLABC < 7T. As a first result 
we have PQ < AB implies LB is acute. If PQ=AB, then mLABC= 
mLQPB and mLDCB = mLQPC (Theorem 21.8). In this case 
2mLABC==7T. As a second result we have PQ=AB implies LB is 
right. Suppose PQ > AB. Then mLABC> mLQPB and mLDCB> 
mLQPC (Theorem 21.8). Thus 2mLABC> 7T. As a third result we 
have PQ > AB implies LB is obtuse. The theorem follows from the 
three results and their contra positives. • 

Theorem 22.8 If I§]ABCD, B-C-R, A-D-S, and RS .lAD, then 
RS > AB iff LB is acute, RS = AB iff LB is right, and RS < AB iff 
LB is obtuse. 

Proof Since I§]ABCD, then AB=CD and LB = LC. Suppose RS > 
CD. Let J be such that S -J - Rand SJ = DC. So [§j DCJS and I§] ABJS. 
(See Figure 22.2.) Since B is in int (L SJC) and the upper base angles 
of a Saccheri quadrilateral are congruent, we have mLDCJ = 
mLSJC> mLSJB= mLABJ. Then, since mLJCR > mLJBC (Theo-

I 

B 
~~--------~--______ ~ ________ ~R 

J 

A D s 
FIGURE 22.2 
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rem 17,9), we have mLDCR=mLDCJ+mLJCR>mLABJ+ 
mLJBC= mLABC= mLDCB. Therefore, LDCB is acute as LDCR 
and LDCB are a linear pair. Thus LABC is acute. 

If RS=CD, then i§]ABRS and it follows from the previous 
theorem that LABC is a right angle, Now suppose RS < CD. Let I 
be such that S-R-I and SI=DC. So i§]DCIS and i§]ABIS. Hence 
mLDCI = mLSIC < mLSIB = mLABI. Then, since mLICR > 
mLIBC, we have mLDCR = mLDCI - mLICR < mLABI - mLIBC = 
mLABC= mLDCB. Since LDCR and LDCB are a linear pair, it fol­
lows that LDCB is obtuse. Thus LABC is obtuse. 

We have RS > AB only if LB is acute, RS=CD only if LB is 
right, and RS < AB only if LB is obtuse. These three results with 
their contrapositives complete the proof. • 

The next theorem brings some of the previous results together. 
What is particularly interesting is that in Figure 22.3 LQPM and 
LSRM are either both acute, both right, or both obtuse. 

Theorem 22.9 Suppose [hlNMPQ, [hlNMRS,M-P-R,andN-Q-S. 
Then, the following are equivalent: (1) LSRM is acute, (2) PQ < RS, 
(3) LQPM is acute, and (4) MN < PQ. Also, the following are equiva­
lent: (1) LSRM is right, (2) PQ=RS, (3) LQPM is right, and (4) MN= 
PQ. Further, the following are equivalent: (1) LSRM is obtuse, 
(2) PQ > RS, (3) LQPM is obtuse, and (4) MN> PQ. 

~ 

Proof Let the images of P, Q, R, S under the reflection in MN be 
P', Q', R', S', respectively. Since i§]S'R'RS and R' -P-R with PQ 1. 

S'S, (1) and (2) are equivalent in each case by Theorem 22.7. Since 
i§]Q'P'PQ and P' -P-R with RS 1. Q'Q, (2) and (3) are equivalent 
in each case by Theorem 22.S. Since [hlNMPQ, (3) and (4) are equiva­
lent in each case by Theorem 22.5. • 

Theorem 22.10 Saccheri's Propositions V, VI, and VII If there 
exists one Saccheri quadrilateral with acute upper base angles, then 

R' p' M p R 
L -1 

h r h r .., r h r 
S' Q' N Q s 
FIGURE 22.3 
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F L G F L G 

FIGURE 22.4 

every Saccheri quadrilateral has acute upper base angles. If one 
Saccheri quadrilateral is a rectangle, then every Saccheri quadri­
lateral is a rectangle. If there exists one Saccheri quadrilateral with 
obtuse upper base angles, then every Saccheri quadrilateral has 
obtuse upper base angles. 

Proof Suppose I§]ABCD with M the midpoint of BC and N the mid­

point of AD; suppose I§]A'B'C'D' with M' the midpoint of B'C' and 
N' the midpoint of A'D'. Without loss of generality suppose M'N' ~ 

---> 
MN. Let E be on N A such that 2NE = A' D'. Let F be on the same side 
~ --

of AD as B and such that FE 1.. AD and EF=A'B'. Let L be the foot 
~ 

of the perpendicular from F to NM. Then [g NLFE. Let G and H be 

the unique points such that I§]EFGH with iN the perpendicular 
bisector of each base (Theorem 22.3). (See Figure 22.4.) Since 
[gNLGH = [gN'M'C'D' and I§]EFGH = I§]A'B'C'D' (Theorem 
22.3), the theorem follows if we can show upper base angle LDCM 
of I§]ABCD and upper base angle LHGL of I§]EFGH are either both 
acute, both right, or both obtuse. ~ 

Since LN=M'N' ~ MN, either G is on BC or G and H are on 
~ -> 

opposite sides of BC. So we may let MC intersect GH at point K. Since 
[gNMCD and [gNMKH, then LDCM and LHKM are either both 
acute, both right, or both obtuse by the previous theorem. Also, since 
[gNHKM and [gNHGL, LHKM and LHGL are either both acute, 
both right, or both obtuse by the previous theorem. Therefore, LDCM 
and LHGL are either both acute, both right, or both obtuse. • 

22.2 SACCHERI'S THEOREM 

We have just seen that Saccheri's three hypotheses are mutually 
exclusive (Theorem 22.10). Hence exactly one of the hypotheses must 
hold for any particular model of~. We know the Hypothesis of the 
Right Angle is one possibility. However, this does not deny the possi-
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bility of absolute planes for which one of the other hypotheses holds. 
In this section we shall see that one of these hypotheses is in fact im­
possible. 

Theorem 22.11 Saccheri's Proposition VIII Given [§]ABCD, then 
LABD < LBDC iff LB is acute, LABD = LBDC iff B is right, and 
L ABD > L BDC iff L B is obtuse. 

Proof Follows directly from Euclid's Propositions I.24 and I.25 
(Theorems 18.18 and 18.19) and Saccheri's Propositions III and IV 
(Theorem 22.6). • 

Theorem 22.12 Saccheri's Proposition IX Let !::::.ABC have a right 
angle at C. Under the Hypothesis of the Acute Angle, mLA + mLB < 
7T/2. Under the Hypothesis of the Right Angle, mLA+mLB=7T/2. 
Under the Hypothesis of the Obtuse Angle, mLA + mLB > 7T/2. 

Proof There is a unique point E such that [§]CAEB. Since mLABE + 
mLCBA = 7T/2, the result follows from the previous theorem. • 

Corollary 22.13 Under the Hypothesis of the Acute Angle, the sum 
of the measures of the angles of a triangle is less than 7T. Under the 
Hypothesis of the Right Angle, the sum of the measures of the angles 
of a triangle is 7r. Under the Hypothesis of the Obtuse Angle, the sum 
of the measures of the angles of a triangle is greater than 7T. 

Proof Exercise 22.1. • 

Corollary 22.14 Saccheri's Proposition XV If the sum of the mea­
sures of the angles of one triangle is, respectively, less than, equal to, 
or greater than 7T, then the sum of the measures of the angles of any 
triangle is, respectively, less than, equal to, or greater than 7r. 

Proof Let s be the sum of the measures of the angles of !::::.ABC. Let t 
be the sum of the measures of the angles of any other triangle. If 
s < 7T, then neither the Hypothesis of the Right Angle nor the Hy­
pothesis of the Obtuse Angle can hold (Corollary 22.13). So t < 7r (Cor­
ollary 22.13). By analogous reasoning S=7r implies t=7r and s> 7r 

implies t > 7r. • 

DEFINITION 22.15 If !::::.ABC, then 8!::::.ABC is the defect of !::::.ABC 
where mLA + mLB + mLC + 8!::::.ABC = 7r. If DABCD is convex, then 
8DABCD is the defect of DABCD where mLA + mLB + mLC + 
mLD + 8DABCD = 27r. 

Since 8!::::.ABC=7T- (mLA+mLB+mLC), every statement 
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about the sum of the measures of the angles of some triangle can be 
translated to a statement about the defect of the triangle and converse­
ly. As with the words irrational and imaginary, we should not allow 
the nontechnical usage of the word defect to prejudice our thinking. 
To say a triangle has nonzero defect does not mean there is something 
wrong with the triangle. 

Theorem 22.16 If t::.ABC and A-D-C, then Bt::.ABC=Bt::.ABD+ 
Bt::.BDC. If DABCD is convex, then BDABCD = Bt::.ABD + Bt::.BDC. 
If DABCD is convex and C-E-D, then BDABCD=Bt::.BCE+ 
BDABED. 

Proof Suppose t::.ABC and A-D-C. Then D is in int (LABC) and 
mLABD+mLDBC=mLABC. Also LADB and LBDC are a linear 
pair. So adding equations mLA+mLABD+mLADB+Bt::.ABD=7T 
and mLC + mLDBC + mLBDC + Bt::.BDC = 7T, we have the first state­
ment of the theorem (Definition 22.15). 

Suppose DABCD is convex. Then D is in int (LABC) and B is 
in int(LADC), (Theorem 13.23). So mLABD+mLDBC=mLABC 
and mLADB+mLBDC=mLADC. The second statement of the 
theorem now follows from the definitions. The third statement follows 
from the first two. • 

The Hypothesis of the Acute Angle is equivalent to the existence 
of any triangle with defect greater than zero. Likewise, the Hypothesis 
of the Right Angle is equivalent to the existence of any triangle with 
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defect zero, and the Hypothesis of the Obtuse Angle is equivalent to 
the existence of any triangle with defect less than zero. The Theorem 
of Thales, stating that an angle inscribed in a semicircle is a right 
angle, is certainly one of the oldest theorems in mathematics. We 
shall now see that the Theorem of Thales is equivalent to the Hypothe­
sis of the Right Angle. 

Theorem 22.17 Saccheri's Proposition XVIII Let C be a point off 
- -
AB but on the circle with diameter AB. Then LACB is an acute angle 
iff the Hypothesis of the Acute Angle holds, L ACB is a right angle iff 
the Hypothesis of the Right Angle holds, and LACB is an obtuse 
angle iff the Hypothesis of the Obtuse Angle holds. 

Proof Let M be the midpoint of AB. By the Pons Asinorum 
mLMAC=mLMCA and mLMBC=mLMCB. So 6i:lMAC=7T­
(mLAMC+2mLACM) and 6i:lMBC=7T- (mLBMC+2mLBCM). 
Since 6i:lABC=6i:lMAC+6i:lMBC and LAMC and LBMC are a 
linear pair, it follows that 6i:lABC=7T-2mLACB. Hence mLACB= 
7T/2 - 1126i:lABC. • 

Theorem 22.18 The lower base of a Saccheri quadrilateral is not 
longer than the upper base. 

Proof Suppose I§]AoBoBlAl and l=A;;Al' Let n be any positive inte­
ger. Let AI' A 2 , ••• ,An be the n distinct points on l such that Ai is 
the midpoint of A j_J and Ai+J' So AjAi+J =AOAJ. LetBj be the point on 

the same side of las Bo such that BjAj is perpendicular to l at Aj and 
BjAj=BoAo' (See Figure 22.7. We do not know all theBj are collinear.) 
Since i:lBjAjAi+J = i:lBoAOAJ by SAS, we have BjAj+! =BoAl and 
mLBjAi+lAj= mLBOAJAo' So mLBjAi+!Bi+l = mLBoAlBp for i= 
1,2, ... , n-1, and i:lBjAi+!Bi+J = i:lBOAJBJ by SAS. Thus BjBj+! = 
BoBl' Now, from these equalities and the Polygonal Inequality, we 
have 

FIGURE 22.6 
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FIGURE 22.7 

nAoAl =AoAn ~ AoBo + (BOBl + BlB2 + ... + Bn_lBn) + AnBn 

= 2AoBo + nBoB l . 

So n(AoAl- BoBl) ~ 2Afio for arbitrarily large positive integer n. 
This is a contradiction if AOA! - BOB! > 0 (Archimedes' axiom). Hence 
AoAl - BOB! ~ 0 and AoAl ~ BoBl' • 

Suppose I§jABCD. We have just shown BC ~ AD. From Omar 
Khayyam's Theorem we know LB is obtuse iff BC < AD. Hence, as a 
corollary of the previous theorem, we have the Hypothesis of the Obtuse 
Angle leads to a contradiction. It would be a pity not to state this 
important result in Saccheri's own colorful words: 

Corollary 22.19 Saccheri's Proposition XIV The Hypothesis of the 
Obtuse Angle is absolutely false because it destroys itself. 

For any model of absolute geometry either the Hypothesis of 
the Acute Angle must hold or else the Hypothesis of the Right Angle 
must hold. Of the many corollaries that follow, one in particular 
should be called Saccheri's Theorem. 

Corollary 22.20 Saccheri's Theorem If l:::"ABC, then mLA + mLB + 
mLC ~7T. 

Corollary 22.21 0 ~ 6l:::"ABC < 7T. 0 ~ 6DABCD < 27T. If I§jABCD, 
then mLB=mLC~7T/2 and BC~AD. If [gABCD, then mLC~ 
7T/2, BC ~ AD, and CD ~ AB. 

Corollary 22.22 Absolute Exterior Angle Theorem The measure 
of an exterior angle of a triangle is greater than or equal to the sum 
of the measures of the remote interior angles, 

Proof Exercise 22.2. • 

Theorem 22.23 Saccheri's Propositions XIX and XX Let l:::"ABC 
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have a right angle at C. Let M be the midpoint of AB and N the foot 
of the perpendicular from M to AC. Then the Hypothesis of the Acute 
Angle implies AC < 2AN but BC > 2MN, and the Hypothesis of the 
Right Angle implies AC = 2AN and BC = 2MN. 

~ ~ ~ 

Proof Since A and B are on opposite sides of MN and MN II BC, we 
have A-N-C and AC=AN+NC. Let L be such that L-M-N and 
LM = MN. Then !:::'BML = !:::,AMN by SAS. So BL = AN and LBLM 
is a right angle. Hence [hi NLBC. Under the Hypothesis of the Acute 
Angle we have NC < BL = AN and BC > LN. Then AC < 2AN and 
BC> 2MN. However, under the Hypothesis of the Right Angle, we 
have NC = BL =AN andBC = LN. Then AC = 2AN and BC = 2MN. • 

Referring to Figure 22.8 in Euclidean geometry, we have 
sinmLA=BC/AB=MN/AM, cosmLA=AC/AB=AN/AM, and 
tan mLA=BC/AC=MN/AN. However, under the Hypothesis of the 
Acute Angle, we find BC/AB > MN/AM, AC/AB < AN/AM, and 
BC/AC> MN/AN. 

Theorem 22.24 Saccheri's Proposition XXI; Aristotle's Axiom Giv-
~ 

en r> 0 and LBFG, there exists H on FG such that the distance from 
~ 

H to BF is greater than r. 
~ 

Proof Let D be the foot of the perpendicular from G to BF. Let n 
be a positive integer such that 2nGD> r (Archimedes' axiom). Let HI 
be such thatF-G-HI andFG=GHI. LetH2 ,H3 , • •• ,Hn be such that 
F-Hj_I-Hj andFHi _ 1 =Hi_1Hi . Let E j be the foot of the perpendicular 

Ha 

F~ 
B D El E2 Ea 

FIGURE 22.9 
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~ 

from Hi to BF. (See Figure 22.9.) Then, by the previous theorem (or 
trivially if D=F'), we have HnEn 6'; 2Hn_)En_I' ••• ,H3E3 6'; 2H2E 2 , 

H2E2 6'; 2H)EI' and H)E) 6'; 2GD. Hence H~n ~ 2nGD > r. With H =Hn 
~ 

the distance from H to BF is greater than r. • 

22.3 EXERCISES 

22.1 Coronary 22.13. 

22.2 Corollary 22.22. 

22.3 Define p.b.ABC and p.OABCD to be the sum of the measures 
of the angles of b.ABC and convex DABCD, respectively. Restate 
Theorem 22.16 using this notation. 

• 22.4 Saccheri's Proposition XVII: Playfair's Parallel Postulate 
does not hold under the Hypothesis of the Acute Angle. 

• 22.5 State and prove some theorems about equiangular quadri­
laterals. (A quadrilateral that is both equiangular and equilateral is 
called a Gersonides quadrilateral.) 

• 22.6 True or False? 

(a) An equilateral quadrilateral is a Gersonides quadrilateral. 
(See Exercise 22.5) 

(b) If ~ABCD and [gNMCD, then M, B, C are collinear. 

(c) If ~ABCD and [gNMCD, then N, A, D are collinear. 

(d) The defect of a triangle is positive. 

(e) An angle inscribed in a semicircle is a right angle. 

(£) If [gPQRS, then PQ 6'; RS. 

(g) If ~ABCD and [gPQRS, then ~DCBA and [gPSRQ. 

(h) If [gABCD and ~PQRS, then [gDCBA or ~PSRQ. 

(i) The Hypothesis of the Acute Angle is absolutely false be­
cause it destroys itself. 

(j) Playfair's Parallel Postulate implies the Hypothesis of the 
Right Angle. 

• 22.7 Saccheri's Proposition X: If A-B-M and DB .1 AB, then 
DM>AD iffBM> BA. 
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• 22.8 Saccheri's Proposition XI: If P and Q are points on the same 
~ ~ ~ 

side of AB, LPAB acute, and LABQ right, then AP intersects BQ 
under the Hypothesis of the Right Angle. 

22.9 Saccheri's Proposition XII: If P and Q are points on the same 
~ ~ ~ 

side of AB, LPAB acute, and LABQ right, then AP intersects BQ 
under the Hypothesis of the Obtuse Angle. 

22.10 Saccheri's Proposition XIII: Under the Hypothesis of the Right 
Angle or the Hypothesis of the Obtuse Angle, Euclid's Parallel Pos­
tulate holds. 

22.11 Saccheri's Proposition XVI: Let DABCD be convex. Then 
8DABCD > 0 iff the Hypothesis of the Acute Angle, 8DABCD = 0 
iff the Hypothesis of the Right Angle, and 8DABCD < 0 iff the Hy­
pothesis of the Obtuse Angle. 

• 22.12 If LPQR is a right angle, then Q is either on the circle 
with diameter PR or in the interior of the circle. 

22.13 Show that the hypothesis N - Q - S can be omitted from Theo­
rem 22.9. 

• 22.14 Draw the figures, other than those in Figure 22.4, that 
could accompany Theorem 22.10. 

22.15 All the possible congruence theorems for Saccheri quadri­
laterals and Lambert quadrilaterals in absolute geometry are con­
tained in Theorem 22.4. 

• 22.16 The line through the midpoints of two sides of a triangle is 
parallel to the third side. 

22.17 Theorem 22.17 could have followed Definition 21.9. Why didn't 
it? Would this rearrangement have saved any work? 

*22.18 Saccheri's Proposition XXII: If DABCD, AB 1.. AD, AD 1.. 
~ ~ 

CD, LABC acute, and LBCD acute, then BC and AD have a common 
perpendicular intersecting BC. 

GRAFFITI 

The nature of absolute truth cannot be but one and the same 
same at Maros-Vasarhely as at Kamschatka and on the Moon, or, 
in a word, anywhere in the world; and what one reasonable being 
discovers, that can also quite possibly be discovered by another. 

Bolyai 
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How shall a man know there be strait lines which shall 
never meet though both ways infinitely produced? 

Hobbs (1655) 

From Edward FitzGerald's translation The RUbaiyat of Omar 
Khayyam: 

A Book of Verses underneath the Bough, 
A Jug of Wine, a Loaf of Bread- and Thou 

Beside me singing in the Wilderness­
Ah, Wilderness were Paradise enow! 

For "Is" and "Is-not" though with Rule and Line, 
And, "Up-and-Down" without, I could define, 

I yet in all I only cared to know, 
Was never deep in anything but- Wine_ 

The treatise itself [Bolyai's The Science of Absolute Space], 
therefore, contains only twenty-four pages - the most extraordinary 
two dozen pages in the whole history of thought! 

Halsted 

On 20 October 1983 the International Bureau of Weights and 
Measures defined the speed of light to be 229,792,458 meters per 
second_ Thus the meter, a unit of distance, is now defined in terms of 
the second, a unit of time_ The change was made in large part 
because time-measuring methods are far more precise than those 
applied to distances. The speed of light is now a constant, and any 
change in the experimental determination of the duration of the 
second automatically entails a change in the length of the meter. At 
least for very precise measurements, scientist now measure distance 
with clocks instead of rulers. 



CHAPTER 23 

Euclid's Parallel Postulate 

23.1 EQUIVALENT STATEMENTS 

We know several statements equivalent to Euclid's Parallel Postulate 
(Chapter 21), and we know several statements equivalent to Saccheri's 
Hypothesis of the Right Angle (Chapter 22). We shall now confirm 
your expectation that the two propositions are themselves equivalent. 

Theorem 23.1 Playfair's Parallel Postulate implies Saccheri's Hy­
pothesis of the Right Angle. 

Proof Suppose I§] ABCD. Let BE -L JB. SO Be II Jb and BE II Jb. By 
~ ~ 

Playfair's Parallel Postulate, we have BE=BC and LB is right. • 

Saccheri showed that Euclid's Parallel Postulate holds under 
either the Hypothesis of the Right Angle or the Hypothesis of the 
Obtuse Angle by following the idea of Aganis in Exercise 21.6 and 
using Theorem 22.4 (see Exercises 22.7 through 22.10). In this way, 
he proved the converse of the preceding theorem and demonstrated 
the impossibility of the Hypothesis of the Obtuse Angle. Taking a 
different approach we shall prove the converse of Theorem 23.1 from 
the next theorem. 

Theorem 23.2 If r> 0 and PQ -L QR, then there exists a point Son -QR such that mLPSQ < r. 
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Proof Suppose mLABC = r < 7T/2. By Aristotle's Axiom we may 
--

suppose AC.l BC and AC > PQ. Let D be such that Q-P-D and 
---> 

and QD=AC. Let S be on QR such that QS=CB. SO mLQSD=r 
since !::.DQS = !::.ACB by SAS. (See Figure 23.1.) Since P is in 
int (LDSQ), we have mLPSQ < r .• 

Theorem 23.3 Saccheri's Hypothesis of the Right Angle implies 
Playfair's Parallel Postulate. 

~ --
Proof Let point P be offQR. We may supposePQ .1 QR. It is sufficient 

~ ~ ~ ~ 

to show PT intersects QR unless PT .1 PQ. We may suppose T and R 
~ 

are on the same side of PQ and LQPT is acute. Let r= 7T/2 - mLQPT. 
---> 

By the previous theorem there exists a point S on QR such that 
mLQSP< r. (See Figure 23.2.) Since mLQPS+mLPSQ=7T/2 under 
the Hypothesis of the Right Angle, then mLQPS> mLQPT. Hence 

---> 
T is in int (LQPS) and PT intersects QS by Crossbar. Thus the per-
pendicular to PQ at P is the only line through P that is parallel 
~ 

to QR .• 

Corollary 23.4 Euclid's Parallel Postulate is equivalent to Saccheri's 
Hypothesis of the Right Angle. 

Since Saccheri's great book was published in 1733, we might 
assume there are exactly two thousand years between Euclid and 
Saccheri. During all this time there was little advancement in the 
theory of parallels. 

The Hejira, Mohammed's flight from Mecca to Medina in 622, 
marks the beginning of the Mohammedan era. In 641 Alexandria fell 
to the Arabs who went on to conquer the lands from southern Spain 
to India. After a century of upheaval, the Muslim world was stable 
enough to become interested in the civilizations it had overrun. 
Baghdad became a new Alexandria. This center of learning had its 

D 

p 
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FIGURE 23.1 
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House of Wisdom, which could be compared to Alexandria's famed 
Museum. Here al-Khowarizmi wrote the Al-jabr about 825. Cen­
turies later Europe would learn about algebra. 

At the time of the height of the Muslim empire. Gerbert, who was 
born in France about 940, was teaching calculation with Hindu-Arabic 
numerals in Europe - a couple hundred years before such numerals 
would be widely accepted there. As the early Mohammedans had not 
needed the Alexandrian Library because they had the Koran, so most 
European Christians did not need any Arabic knowledge because 
they had the Gospel. However, Gerbert, who was a distinguished 
statesman and the most accomplished European scholar of his age, 
had taken some of the first steps in stimulating the transmission of 
learning from the East to the West. Among the books written by 
Gerbert was his Geometria, where we find "Two straight lines distinct 
from each other by the same space continually, and never meeting 
each other when indefinitely produced, are called parallel, that is, 
equidistant." From 999 until his death in 1003, Gerbert was Pope 
Sylvester II. 

In mathematics the Arabs excelled in algebra, arithmetic, and 
trigonometry. The theory of parallels was studied but not significantly 
advanced. Ibn-al-Haitham (circa 965 -1039), known as Alhazen in 
the West, gave a proof of Euclid's Parallel Postulate by first showing 
that all four angles of what we have called a Lambert quadrilateral 
are right angles. To do this he assumed the collinearity of the locus 
of a point that moves so as to remain equidistant from a given line. 
Alhazen had followed many of his predecessors into the equidistance­
trap. 

To the Arab world Omar Khayyam (circa 1050-1123) is known 
for his accomplishments in astronomy and mathematics. Omar's 
significant contributions to mathematics were in algebra. In geometry 
he criticized Alhazen's work on the grounds that Aristotle had for­
bidden the use of motion in geometry. Omar's own efforts in the theory 
of parallels may be found in "On the Truth of Parallels and Discussion 
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of the Famous Doubt," which is Part I of his Discussion of the Diffi­
culties in Euclid. Here we find eight propositions. The first two prove 
that the upper base angles of a Saccheri quadrilateral are congruent 
and that the perpendicular bisector of the lower base of a Saccheri 
quadrilateral is the perpendicular bisector of the upper base. Over six 
hundred years later Saccheri would have the same first two proposi­
tions. Had Saccheri's work not been so extensive we might be calling 
a Saccheri quadrilateral an Omar Khayyam quadrilateral. Omar's 
third proposition states that a Saccheri quadrilateral is a rectangle. 
In the rather circuitous argument for the third proposition he does 
establish Saccheri's Proposition III. For this reason, we called Theorem 
22.6 Omar Khayyam's Theorem. Omar then denies the Hypothesis 
of the Acute Angle and the Hypothesis of the Obtuse Angle on the 
grounds that distance between parallel lines "does neither expand nor 
contract." To this he adds the enticing comment "This indeed is what a 
philosopher believes." His third proposition follows. The remaining 
propositions lead to the last, which is Euclid's Parallel Postulate. As 
does Proclus, Omar makes the inexplicable statement "If we are satis­
fied with a proposition or its converse but not both, then that propo­
sition is not proved." 

Omar Khayyam lived during the time of the first Crusade, when 
Arab science and mathematics were already entering a state of de­
cline. Mter his several accomplishments in scientific areas, Omar took 
up philosophy. To most people in the West he is not known for his work 
on quadrilaterals but rather for his work on quatrains. Rubai means 
quatrain, and Omar Khayyam is the celebrated author of the Rubaiyat. 

Nasir Eddin (1201-1274) was the astronomer to Hulagu Khan, 
brother of Kublai Khan and grandson of Genghis Khan. In Nasir 
Eddin's Elements of Euclid between Euclid's Proposition I.28 and I.29, 
we find aproofofEuclid's Parallel Postulate. He assumed our Theorem 
21.8 and incorrectly assumed that, if DABCD has right angles at 
A and D, then the angle at B is acute iff the angle at C is obtuse and, 
further,AB > CD when the angle at B is acute. (See Figure 23.3.) 
Since the assumptions deny both the Hypothesis of the Acute Angle 
and the Hypothesis of the Obtuse Angle, Nasir Eddin could go on to 
prove Euclid's Parallel Postulate. He would not be the last to assume 
a line cannot approach and then diverge from another line without 
crossing. 

By the twelfth century the Arabic excellence in learning had run 
its course. Fortunately, at the same time, the Renaissance in Europe 
was getting under way. Adelard of Bath (circa 1075 -1160) translated 
Euclid's Elements from Arabic into Latin about 1142. Levi ben Gerson 
(1288-1344), a rabbi from Avignon and known as Gersonides, was 
probably the first person in the West to discuss the parallel postulate. 
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He considered quadrilaterals that are both equilateral and equiangu­
lar, known today as Gersonides quadrilaterals (see Exercise 22.5). Eu­
clid's Elements was first translated into English in 1570 by Sir Henry 
Billingsley, later Lord Mayor of London. Descartes and Saccheri 
learned their geometry from Euclid's Elements as edited by Christoph 
CJavius (1537 -1612). By an argument similar to that of Nasir Eddin, 
Clavius demonstrates Euclid's Parallel Postulate by first arguing that 
a curve equidistant from a line is a line. In 1680, Giordano Vitale 
(1633-1711) failed to give an accurate proof of Euclid's Parallel Postu­
late but did make the significant contribution we have called Giorda­
no's Theorem (Theorem 21.13). 

John Wallis (1616-1703) translated Nasir Eddin's commentary 
on the theory of parallels into Latin. Being aware of the equidistance­
trap, Wallis proves Euclid's Parallel Postulate by assuming a new 
axiom: To every figure there exists a similar figure of arbitrary mag­
nitude. In a scholium following his Proposition XXI Saccheri pointed 
out that Wallis could have proved Euclid's Parallel Postulate by as­
suming only the existence of two similar but noncongruent triangles. 

DEFINITION 23.5 If 6.ABC and 6.DEF are such that LA = LD, 
LB = LE, and LC = LF, then 6.ABC - 6.DEF. We say 6.ABC and 
6.DEF are similar if 6.ABC - 6.DEF, 6.BCA - 6.DEF, 6.CAB-
6.DEF, 6.CBA - 6.DEF, 6.ACB - 6.DEF, or 6.BAC - 6.DEF. 

Theorem 23.6 Euclid's Parallel Postulate follows from the existence 
of two similar but noncongruent triangles. 
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Proof Suppose t.J.ABC - !:::,DEF but not !:::,ABC = !:::'DEF. Then AB ¥­
DE by ASA. We may suppose AB > DE. Let G be such that A - G - B 

~ 

and AG = DE. Let H be on AC such that AH = DF. Then !:::,GAH = 
!:::'EDF by SAS. (See Figure 23.4.) So LAGH = LABC and LAHG = 

LACB. Then GHIIBC by Euclid's Proposition 1.28 (Corollary 21.7). 
Hence A -H -C and OBCHG is convex. Since mLBGH = 1f' - mLGBC 
and mLCHG=1f'-mLHCB, then 8DBCHG=O. So 8!:::'BCG= 0 
(Theorem 22.16). Hence the Hypothesis of the Right Angle holds, and 
Euclid's Parallel Postulate must hold. • 

The major contribution of Gottfried Wilhelm Leibniz (1646-
1716) to the theory of parallels was to add confusion by using the idea 
of direction. The problem is one of definition. Supposedly two lines 
would have the same direction if they can be cut by a transversal so 
that corresponding angles are congruent. The trap comes from as­
suming that if two lines have the same direction then the correspond­
ing angles are congruent for any transversal to the two lines. This 

means assuming Euclid's Proposition I!29. Suppose ~ ABCD. Since 
~ ~ ~ ~ ~ 

AD is perpendicular to both AB and CD, then AB and CD have the 
~ ~ ~ 

same direction. However, assuming BD cuts AB and CD so that L ABD 
and LBDC are congruent is equivalent to assuming the Hypothesis of 
the Right Angle (Theorem 22.11). Although same direction, as de­
fined above, has its intuitive meaning in Euclidean geometry, it turns 
out that under the Hypothesis of the Acute Angle the intuitive mean­
ing is given only by defining two lines to have the same direction if 
they are parallel but there does not exist a transversal to the two lines 
such that corresponding angles are congruent. 

Adrian Marie Legendre (1752 -1833) was a mathematician of 
great prominence and perhaps the most indefatigable pursuer of a 
proof of Euclid's Parallel Postulate. His various attempts appear in 
the twelve editions of his influential Elements de geometrie from 1794 
to 1823. A final monograph Reflexions sur differentes manieres de 
demontrer la theorie des paralleles ou Ie theoreme sur la somme des 
trois angles du triangle appeared in 1833, exactly one hundred years 
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E 
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after the publication of Saccheri's book. Although Saccheri's work 
had created some excitement when it first appeared, most mathema­
ticians of Legendre's time were unaware of its contents! Thus we find 
Legendre rediscovering theorems already proved by Saccheri. Our 
proof of Theorem 22.18, which had as a corollary the elimination of 
the Hypothesis of the Obtuse Angle, imitates one of Legendre's proofs 
that 86ABC ~ O. This is why Saccheri's Theorem (Corollary 22.20) 
came to be known as Legendre's First Theorem. Later, Legendre gave 
a different proof of Saccheri's Theorem (Exercise 23.10). That the 
existence of one triangle such that the sum of the measures of its 
angles is 7T implies the sum of the measures of the angles of any tri­
angle is 7T came to be known as Legendre's Second Theorem. Of course 
this result is contained in Saccheri's Proposition XV (Corollary 22.14). 
In proving our Theorem 23.3, Legendre gave a different proof (Exer­
cise 23.11) for our Theorem 23.2. If Legendre could have proved 
86ABC:;§ 0 for any 6ABC, he would have had a proof of Euclid's 
Parallel Postulate. We shall be interested in one of Legendre's flawed 
proofs that occurs in the third through eighth editions. (Another at­
tempt from the twelfth edition is indicated in Exercise 23.12.) You 
should study the following argument carefully and discover the flaw 
for yourself 

Legendre's proof of Euclid's Parallel Postulate: Assume 6ABC 
is such that 86 ABC = t > O. Let n be an integer such that 2nt> 7T. 

If we like we may suppose mLA:;§ 7T/3 by taking LA to be a smallest 
angle of 6ABC. In any case, let D be the point such that A and Dare 

~ 

on opposite sides of BC, LDBC = LACB, and BD=AC. (See Figure 
~ ~ ~ ~ 

23.5.) So 6ACB = 6DBC, BD II AC, and AB II CD. Let l be a line 
----> ----> 

through D, off A, but intersecting AB at Bl and AC at Cl' Assume 
~ ~ ~ 

A-Bl-B. Then A and Bl are on the same side of BD. Since AC IIBD, 
~ 

then A, C, C l are on the same side of BD. Thus Bl and C l are on the 
~ 

same side of BD, contradicting Bl-D-Cl. Therefore, since Bl #- B, we 
must have A-B-Bl. Similarly, A-C-Cl. Since 86ABC=t and 

FIGURE 23.5 
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6b.DCB = t, we must have 6b.ABPl > 26b.ABC. Repeating the argu­
ment, we have 6b.AB2C2> 26b.ABPr So 6b.ABP2> 22t. After n 
steps we have 6b.ABnCn > 2nt. Hence 6b.ABnCn > 7T, a contradiction. 
Therefore, 6b.ABC ~ O. Since we know 6b.ABC ~ 0, we must have 
6b.ABC= 0 and Euclid's Parallel Postulate follows. (Give the argu­
ment a careful second reading if you did not catch the flaw.) 

Here is a proof of Playfair's Parallel Postulate: Let point P be 
off line land F the foot of the perpendicular from P to l. We wish to 

~ ~ 

show P A intersects 1 whenever L APF is acute. Let m = PF and 
~ ~ ~ ~ 

p,,? A = PE. So 1 intersects PA iff 1 intersects PB. Let n be any line 
~ --> 

through F, off P, but intersecting PA at C and PB at D. Then C - F - D 
- - ~ 

and 1 intersects PC or PD by PASCH. Hence PA intersects l. We have 
proved Playfair's Parallel Postulate under the same tacit assumption 
made by Legendre in the preceding paragraph. 

Another argument of Legendre runs as follows. Given b.ABC, 
it follows from ASA that mLA is a function of mLB, BC, and mLC. 
Unless mLA depends on mLB and mLC alone and is independent 
of BC, we would have BC is a function of mLA, mLB, and mLC. Since 
BC is simply a number, this is impossible provided we assume that 
no unit of length can be associated with some unit of angle measure. 
In that case mLA depends only on mLB and mLC. Letting C' be 

- -
the midpoint of BC and A' on AB such that LBC'A' = LBCA, it then 
follows that LBA'C' = LBAC. Thus we have Wallis' assumption of 
two similar triangles that are not congruent, and Euclid's Parallel 
Postulate follows. 

The literature ofthe theory of parallels is not without its amusing 
aspects. While Legendre was still trying to eliminate Euclid's Parallel 
Postulate in 1833, Thomas Perronet Thompson was busy eliminating 
all the axioms in his Geometry without Axioms. 

The following theorem lists many propositions that are equiva­
lent to Euclid's Parallel Postulate. It cannot be overemphasized that 
no one of these propositions will be proved without assuming another 
one of the propositions. 

Theorem 23.7 The following propositions are equivalent: 

Proposition A. Euclid's Parallel Postulate: If A and D are points 
~ 

on the same side of BC such that mLABC + mLBCD < 7T, then 
~ ~ 

BA intersects CD. 

Proposition B. Euclid's Proposition 1.29: If A and D are points 
~ ~ ~ 

on the same side of BC and BA II CD, then mLABC + mL BCD = 7T. 
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Proposition C. Euclid's Proposition 1.30: til m and mil n implies 
til n for lines t, m, n. (Lines parallel to a given line are parallel.) 

Proposition D. A third line intersecting one of two parallel lines 
intersects the other. (Contrapositive of Euclid's Proposition 1.30.) 

Proposition E. Euclid's Proposition 1.31; Playfair's Parallel Pos­
tulate: If point P is off line l, then there exists a unique line 
through P that is parallel to l. 

Proposition F. A line perpendicular to one of two parallel lines 
is perpendicular to the other. 

Proposition G. til m, r .1 t, and s .1 m implies r II s for lines t, m, r, s. 

Proposition H. The perpendicular bisectors of the sides of a tri­
angle are concurrent. 

Proposition I. There exists a circle passing through any three 
noncollinear points. 

Proposition J. There exists a point equidistant from any three 
noncollinear points. 

Proposition K. A line intersecting and perpendicular to one ray 
of an acute angle intersects the other ray. 

Proposition L. Through any point in the interior of an angle 
there exists a line intersecting both rays of the angle not at the 
vertex. 

Proposition M. Euclid's Proposition 1.32: The sum ofthe measures 
of the angles of any triangle is 7T. The measure of an exterior 
angle of a triangle is equal to the sum of the measures of the 
remote interior angles. 

Proposition N. Theorem of Thales: If point C is off AB but on 

the circle with diameter AB, then LACB is right. 

Proposition O. If LACB is right, then C is on the circle with 
diameter AB. 

Proposition P. The perpendicular bisectors of the legs of a right 
triangle intersect. 

Proposition Q. 1.1 r, r.l s, and s.l m implies I intersects m for 
lines I, m, r, s. 

Proposition R. There exists an acute angle such that every line 
intersecting and perpendicular to one ray of the angle intersects 
the other ray. 
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Proposition S. There exists an acute angle such that every point 
in the interior of the angle is on a line intersecting both rays of 
the angle not at the vertex. 

Proposition T. There exists one triangle such that the sum of the 
measures of the angles of the triangle is 1T. 

Proposition U. There exists one triangle with defect zero. 

Proposition V. Saccheri's Hypothesis of the Right Angle: There 
exists a rectangle. 

Proposition W. There exist two lines land m such that l is equi­
distant from m. 

Proposition X. If three angles of a quadrilateral are right, then 
so is the fourth. 

Proposition Y. There exists some line l and there exists some 
point P off l such that there is a unique line through P that is 
parallel to l. 

Proposition Z. There exists a pair of similar, noncongruent tri­
angles. 

Proof From Section 21.1 we already know that Propositions 
A, B, C, D, and E are equivalent. We continue by showing each 
proposition implies the next. Since Proposition F follows easily from 
Proposition D and E and since Proposition D is equivalent to Proposi­
tion E, it follows that Proposition E implies Proposition F. Proposition 
F implies Proposition G by Euclid's Proposition 1.28 (Corollary 21. 7). 
Since we have not shown Proposition G implies any of the previous 
propositions, in proving Proposition G implies Proposition H we can 
assume only Proposition G and any of our previous theorems. 

Proposition G implies Proposition H: Suppose land m are the 
-- --

perpendicular bisectors of sides AC and BC, respectively, of l:,ABC. 
~ ~ 

Let r=AC and s=BC. By Proposition G, III m implies the contradic-
tion r II s. Hence land m intersect at point P which is equidistant from 
A and C and is equidistant from Band C (Theorem 18.5). So P is also 
on the perpendicular bisector of AB. 

Proposition H implies Proposition I trivially; Proposition I im­
plies Proposition J trivially. 

Proposition J implies Proposition K: Suppose LABC is acute 
~ ~ -

and DC .1 BC. Let Rand S be such that R is the midpoint of BC and 
C is the midpoint of RS. Let T be the image of R under the reflection 
~ 

in AB. Then, by Proposition J, there exists a point P equidistant from 
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~ ~ 

R, S, and T. Since P must be on both AB and CD (Theorem 18.5), it 
~ ---+ 

follows that CD intersects BA. 
---+ 

Proposition K implies Proposition L: Given LABE, let BC be 
the angle bisector. So LABC and LEBC are acute. By Proposition K, 

~ 

the perpendicular from any point in int (LABE) to BC intersects 
---+ ---+ 

both BA and BE. 
Proposition L implies Proposition M: Did you find the flaw in 

Legendre's proof that 8,6, ABC = O? Legendre tacitly assumed Proposi­
tion L. Under this assumption Legendre's proof is valid. Our Proposi­
tion M contains two statements because Euclid put them together in 
his Proposition 1.32. The two statements are themselves equivalent 
as if LACD is an exterior angle of ,6,ABC, then mLACD=mLA+ 
mLB+ 8,6,ABC. 

Proposition M implies Proposition N since each is equivalent to 
the Hypothesis of the Right Angle (Theorem 22.17). Since the Hy­
pothesis of the Right Angle implies Euclid's Parallel Postulate, we 
know at this time that propositions A through N are equivalent. How­
ever, we have not proved anyone of these propositions! We do know 
that if anyone holds, then all of them hold. It also follows that if any 
one is false then all of them are false! 

Proposition N implies Proposition 0: Suppose LfiCB is right. 
- ---+ 

Let D be the midpoint of AB. Let DC intersect the circle with diameter 
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AB at point E. Then LAEB is right by Proposition N. Since LACB 
is also right, both D-E-C and D-C-E are impossible (Theorem 
18.16). Therefore, we must have C=E. 

Proposition 0 implies Proposition P: If t,ABC has a right angle 
at C, then the hypotenuse AB is the diameter of a circle through C 
by Proposition O. Thus the perpendicular bisector of the legs of a 
right triangle must intersect at the midpoint of the hypotenuse. 

Proposition P implies Proposition Q: If l = s or m = r, then the 
result is trivial. So suppose L, C, M distinct points where {L} = l n r, 
{C} = r n s, and {M} = m n s. Let A and B be such that L is the mid­
point of AC and M is the midpoint of BC. Then I and m are the per­
pendicular bisectors of the legs of right triangle t,ABC. Therefore, 
l intersects m by Proposition P. 

Proposition Q implies Proposition R: We shall prove the contra­
positive, the negation of Proposition R implies the negation of Propos i­
tion Q. The negation of Proposition Q states that there exist four lines 
l, m, r, s such that l1- r, r 1- s, s 1- m, and III m. The negation of Propos i­
tion R states that for every acute angle there exists some line intersect­
ing and perpendicular to one ray of the angle but parallel to the 
other ray. (Note the negation of Proposition K merely says that there 
exists some acute angle such that there exists some line intersecting 
and perpendicular to one ray of the angle but parallel to the other 
ray.) By the negation of Proposition R, we may suppose LACN has 

-~ 

measure rr/4 and l is a line perpendicular to CA at A but parallel to 
~ ~ 

CN. Let r=AC, so l1- r. Let m and s be the images of 1 and r, respec-
~ 

tively, under the reflection in NC. So s 1- m. Also, since mLANC= 
~ 

rr/4, we have r 1- s. Further, since l is on one side of NC and m must 
~ 

be on the other side of NC, we have III m. Thus, l1- r, r 1- s, s 1- m, and 
III m, as desired. 

Proposition R implies Proposition S trivially. Proposition S im­
plies Proposition T by using Legendre's proof again. We know from 
Chapter 22 that Propositions T and U are each equivalent to Proposi­
tion V. That each of Propositions W, X, and Y is equivalent to Propo­
sition V is left for Exercise 23.1. Since Proposition V implies Proposi­
tion A (Corollary 23.4), it follows that the first twenty-five propositions 
are equivalent. Since Proposition Z implies Proposition A (Theorem 
23.6), there only remains to show Proposition Z follows from any of 
the other propositions. 

Suppose t,ABC has a right angle at C. Let F be the foot of the 
perpendicular from C to AB. By Proposition M, mLACF= rr/2-
mLCAF= mLABC. Sc 0,ACF and LABC are similar right triangles 
but not congruent siner AC ~ AB. • 
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One of the first things a child learns to say is NO. However, 
stating the negation of a proposition often gives students trouble. In 
Exercise 23.2 you are asked to state the negation of each of the twenty­
six propositions in Theorem 23.7. These negations are important 
because they will be theorems once we deny Euclid's Parallel Postulate. 

By the beginning of the nineteenth century the theory of parallels 
was not in much better shape than in antiquity. The advancement 
can be summarized by the statement "[jf).ABC ~ 0." In 1832 John 
Bolyai published what the mathematical historian G. B. Halsted called 
"the most extraordinary two dozen pages in the whole history of 
thought!" It would take a couple generations for the world to learn 
about the invention of non-Euclidean geometry by Bolyai and Loba­
chevsky. In the meantime there were many so-called proofs of Euclid's 
Parallel Postulate. Legendre's 1833 Reflections contains some half 
dozen itself. The Graffiti section in this chapter contains some of the 
more interesting attempts at proving Euclid's Parallel Postulate. 
Some of these require the definition of a biangle. We follow Legendre 
for the next definition. 

+-+ 
DEFINITION 23.8 If A and D are points on the same side of BC such 
~~ --7 ----> 

that BA II CD, then uABCD=BA U BC U CD. uABCD is a biangle 
- -7 ----3> 

with vertices Band C, angles LABC and LBCD, sides BA and CD, 

and base BC. The interior of a biangle is the intersection of the 
interiors of its two angles; int (uABCD) = int (LABC) n int 
(LBCD). If P is a point in the interior of a biangle with vertexB, then 
---> 

BP is an interior ray of the biangle. If uABCD and B -C -E, then 
LDCE is an exterior angle of the biangle with remote interior angle 

--
LABC. If uABCD and uPQRS are such that LB = LQ, BC = QR, 
and LC = LR, then uABCD = uPQRS. 

+-+ 
Suppose point B is off CD. Under the Hypothesis of the Acute 

---> 
Angle, there exist many rays BA such that uABCD. Under the Hy-

---> 
pothesis of the Right Angle, there is exactly one ray BA such that 
uABCD. 

23.2 INDEPENDENCE 

In this section we shall show Euclid's Parallel Postulate can never 
be deduced from the axioms for absolute geometry. This is accom­
plished by producing a model that satisfies all the axioms for absolute 
geometry and for which Saccheri's Hypothesis of the Acute Angle 



282 EUCLID'S PARALLEL POSTULATE 

holds. Such a model is called a hyperbolic geometry. You will hardly 
have to think to read this section. Unlike the preceding section, there 
are no subtleties here. Everything is placed before you except the 
verification of four simple substitutions, which require only ninth 
grade algebra but are very, very long and tedious. 

In Section 9.2 we added a distance h to the Cayley-Klein Inci­
dence Plane M13 such that (MI3, h) satisfies our first two axioms and 
A-B-C in (MI3, h) only if A-B-C in the Cartesian plane. It follows 
that (MI3, h) must also satisfy PSP, our third axiom. The half planes 
of the line with equation Ax + By + C = 0 are given by Ax + By + C > 0 
and Ax + By + C < O. Let P and Q be distinct points in M13 where 

~ 

P= (xi' Yl) and Q= (x2, Y2)' ThenPQ has an equation Ax+By+C= 0 
where A=Yl-Y2' B=x2-xP and C=X1Y2-X~1' The Cartesian line 
with this equation intersects the Cartesian unit circle at two Car­
tesian points Sand T which are 

(-AC±B(A2+B 2_ C2)1/2 -BC=i=A(A2+B2_C2)1/2) 
A2+B2 ' A2+B2 . 

In general, Ax+By+C=O is an equation of a line in M13 iff A2+ 
B2 > C2, and (x, y) is a point in M13 iff X2 + y2 < 1. By simple substitu­
tion the formula for h(P, Q) from Section 9.2 now becomes 

I-xx -yy +[(x -x )2+(y -y )2-(xy -x_v )2]1/2 
h(PQ)=1f2In 12 12 2 1 2 1 12 2-'1 

, l-X1X2-Y1Y2- [(X2-x1)2+ (Y2-Yl)2- (X1Y2-x~I)2]t/2 

when P= (xl' Yl) and Q= (x2, Y2)' 

For each line I in M13 with equation Ax + By + C = 0, define 
mapping (1', on the points of M13 by (1', (x, y) = (x', y') where 

(A2 + B2-C2)X- 2A (Ax + By+ C) 
x'=~------------------~---

(A2+B2-C2) +2C(Ax+By+C) , 

(A2 +B2-C2)y- 2B(Ax+By+C) 

y'= (A2+B2-C2) +2C(Ax+By+C)' 

Since (N + B2 - C2) + 2C(Ax + By + C) = (A + xC) 2 + (B + yC)2 + 
0(1- X2 - y2), then (x', y') is a Cartesian point. That (1', is a mapping 
into the points of M13 follows from 
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By simple substitution, U"/(x', y') = (x, y). So U"/ is an involution and 
must be a bijection on the points of M13. 

From the identity h( (x;, y;), (x~, y~» = h( (xl' YI)' (X2'Y2»' estab­
tablished by simple substitution, it follows that U"/ is a collineation of 
(M13, h) that preserves distance. That U"/ fixes l pointwise and inter­
changes the halfplanes of l follows from the identities 

2(A + xC) (Ax+ By+ C) 

x'=x- (A2+B2-C2) +2C(Ax+By+C)' 

2(B+ yC) (Ax+ By+ C) 

y'=y- (A2+B2-C2) +2C(Ax+By+C) , 

A2+B2-C2 
Ax' + By' + C=-(Ax+ By+ C) (A + xC) 2+ (B+ yC)2+ C2(1-x2- y2) 

An angle measure function n for (M13, h) is introduced next. 
Because betweenness in (M13, h) depends on betweenness in the 
Cartesian plane, LPVQ in (M13, h) determines the angle LPVQ in 
the Cartesian plane in the obvious way. There should be no confusion 
in using "LPVQ" for the two different angles. If V= (0, 0), let 
nLPVQ= mLPVQ; so angles in (M13, h) that have vertex (0, 0) 
inherit their measure from the Cartesian plane. Because Protractor 
Postulate holds in the Cartesian plane where m is the usual Euclidean 
angle measure function given by 

cos mL POQ = ( 2 + 2) 1/2 ( 2 + 2) 1/2 
XI YI x2 Y2 

when 0= (0, 0), P= (xl' YI)' and Q= (x2' Y2)' the Protractor Postulate 
as stated in Section 14.1 holds for (M13, h, n) when V is (0,0) and 
"m" is replaced by "n". Now suppose V= (xo' Yo) ¥ (0, 0) with V in 
M13. Then there is a unique line t in M13 with equation Ax+ By+ 
C=O such that A=xo' B=yo' and C=-1+ (1-x~_y~)1/2. The map­
ping U"t interchanges (xo' Yo) and (0,0). Hence, defining nLPVQ= 
mLP'V'Q' where V'=U"tV, P'=U"tP, and Q'=U"tQ, it follows that n 
also satisfies the Protractor Postulate when V ¥ (0,0). So (M13, h, n) 
satisfies our first four axioms. Model (M13, h, n) is called the Cayley­
Klein Model. 

Finally, consider the formula 

cosnLPVQ= 
(XI - xo) (x2 - xo) + (YI - Yo) (Y2 - Yo) - (xlyo - ylxo) (x~o - Y2XO) 



284 EUCLID'S PARALLEL POSTULATE 

when V= (xo' Yo), P= (xl' y l ), and Q= (x2 ' y2 ). The formula is easily 
seen to be correct when (xo' Yo) = (0,0). To show that the formula is 
also correct when (xo' Yo) # (0, 0) and, at the same time, to show that 
for any line 1 in M13 the mapping (F/ preserves angle measure n, call 
the right-hand side of the equation g(xo' Yo' xl' Yl' x2 ' Y2 ) and verify by 
simple substitution that this is equal to g(x~, y~, x;, Y;, x;, y;) when 
(x~, y~) = (F/(xo, Yo), (x~, y~) = (F/(x l , y l ), and (x;, y~) = (F/(x2 , y2 ). The 
Cayley-Klein Model is completely determined by M13, the formula 
for h(P, Q) above, and the formula for cos nLPVQ above. 

For any line 1 in the Cayley-Klein Model, we have shown (F/ is 
a collineation that preserves distance and angle measure, fixes 1 point­
wise, and interchanges the halfplane of 1. Thus (MI3, h, n) satisfies 
the Mirror Axiom of Section 16.2 and so satisfies SAS by Theorem 
16.3. Therefore the Cayley-Klein Model satisfies all the axioms for 
absolute geometry. Further, it is obvious that Euclid's Parallel Pos­
tulate does not hold for the Cayley-Klein Model, verifying the result 
whose proof consumed two thousand years of effort: EUCLID'S 
PARALLEL POSTULATE IS INDEPENDENT OF THE AXIOMS 
FOR ABSOLUTE GEOMETRY. 

The Cayley-Klein Model is a model of hyperbolic geometry, 
since (MI3, h, n). satisfies the axioms for absolute geometry and 
Saccheri's Hypothesis of the Acute Angle. Hence the existence of the 
Cayley-Klein Model also confirms the fact that THE AXIOMS FOR 
HYPERBOLIC GEOMETRY ARE AS CONSISTENT AS THE 
AXIOMS FOR EUCLIDEAN GEOMETRY. 

The angle measure function for the Cayley - Klein Model is 
related to an incidence property of the Cartesian plane as follows. 
If 1 is a line in the Cayley-Klein Model with equationAx+ By+ C=O 
and C # 0, then (-AIC, -BIC) is not a point of the model but is a 
Cartesian point. It turns out that the lines in the Cayley-Klein Model 
that are perpendicular to 1 are exactly those that are subsets of the 
Cartesian lines through the Cartesian point (-AIC, -BIC). This and 
the situation for C=O are illustrated in Figure 23.7. 

Other models frequently used to show the independence of Eu­
clid's Parallel Postulate and the consistency of hyperbolic geometry 
can be obtained from the Cayley-Klein Model. For abbreviation we 
suppose below that t is (1- X2 - y2) 1/2. The mapping from the Cayley­
Klein Incidence Plane M13 onto the Poincare Incidence Plane Mll 
that sends (x, y) to (xl(1 + t), yl(l + t» is an isomorphism (a collinea­
tion) from M13 onto MIL If distance function hI and angle measure 
function n l are defined for Mll such that the collineation is an iso­
morphism from (MI3, h, n) onto (Mll, hI' n l ), then (Mll, hI' n 1) is 
called the Poincare Model. The collineation above can be obtained as 
the composite of the following four mappings. (1) Imbed M13 into 
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Cartesian three-space such that (x, y) goes to (x, y, 0). (2) By a pro­
jection parallel to the z-axis send (x,y, 0) onto the northern hemisphere 
of the unit sphere. So (x, y, 0) goes to (x, y, t). The lines of M13 have 
now been mapped to the semicircles on the northern hemisphere that 
are orthogonal to the equator. (3) Then from the south pole (0,0, -1) 
project (x, y, t) to the x-y-plane. In Figure 23.8, P2 goes to P3 • Just from 
similar triangles we see that (x, y, t) goes to (x', y', 0) where x' = 
xl(1 + t) and y' = y/(1 + t). (4) Finally, we get back to subsets of the 
Cartesian plane by sending (x', y', 0) to (x', y'). 

The Poincare Halfplane, another model of hyperbolic geometry, 
is obtained from the Cayley - Klein Model in analogous fashion. This 
is the model (MI2, h2 , n2 ) defined such that the collineation from M13 
onto the Poincare Halfplane Incidence Plane M12 given by sending 
(x, y) to (x', y') where x' =xl(1- y) and y' = tl(1- y) is an isomorph­
ism from (MI3, h, n) onto (MI2, h2 , n2 ). This collineation can also 
be obtained as the composite of four mappings. The first two are the 
same as (1) and (2) above. For the third, this time project from (0, 1,0) 
to the x-z-plane, thus sending (x, y, t) to (xl(l- y), 0, t/(l- y». Final­
ly, to get back to subsets of the Cartesian plane, send (xl(1- y), 0, 
tl(l-y» to (xl(l-y),tl(l-y». 

In general, lines do not have linear equations in either of the 
Poincare models of hyperbolic geometry. However, each of these two 
models does have the property of being conformal, which means angle 
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FIGURE 23.8 

measure is Euclidean in the following sense. If two intersecting lines 
of one of the models are considered as two intersecting curves in the 
Cartesian plane, then the hyperbolic measure of the angles between 
the intersecting lines of the model is the same as the Euclidean mea­
sure of the angles between the curves in the Cartesian plane. The 
Cayley-Klein Model arises in a natural way from the study of real 
projective. geometry and the Poincare models from the study of in­
versive geometry (the geometry of complex numbers). 

23.3 EXERCISES 

• 23.1 Propositions V, W, X, and Y of Theorem 23.7 are equivalent. 

23.2 State the negation of each of the propositions of Theorem 23.7. 

• 23.3 Where is a parallel axiom hidden in Birkhoff's axioms in 
Section 14.1? 

• 23.4 True or False? 
~ 

(a) If LABe and line I is perpendicular to Be, then I intersects 
~ 

BA under the Hypothesis of the Right Angle. 
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(b) There exists an acute angle such that there exists a line 
perpendicular and intersecting one ray of the angle and inter­
secting the other ray. 

(c) For every angle there exists a point P in its interior such 
that every line through P intersects one ray. 

(d) A line through a point in the interior of an angle intersects 
at least one ray of the angle. 

(e) For every angle there ,exists a point P in its interior such 
that there exist two lines through P that each intersect both rays. 

<D For every angle and for any point P in its interior there 
exists a line through P that intersects both rays. 

(g) For any angle and any point P in its interior there exist 
two lines through P that each intersect both rays. 

(h) If l§]ABCD, then LJABCD, LJBADC, and LJDABC. 

(i) If LJABCD and LJPQRS such that LB == LQ and BC == 

QR, then LJABCD is congruent to LJPQRS. 

(j) If l§]ABCD and A-D-E, then int (LCDE) is a proper sub­
set of int (LBAD) and is congruent to int (LBAD). 

23.5 Read "Euclid, Omar Khayyam, and Saccheri" by D. E. Smith 
in the journal Scripta Mathematica, Vol. 3 (1935) pp. 5-10. 

23.6 The following are equivalent to Euclid's Parallel Postulate: 

(a) The diagonals of a Saccheri quadrilateral bisect each 
other. 

(b) Any three lines have a common transversal. 

(c) There do not exist three lines such that each two are on the 
same side of the third. 

(d) If t::.ABC with M the midpoint of AB and N the midpoint 
of AC, then MN = 1f2BC. 

23.7 The diagonals of a Saccheri quadrilateral intersect on the line 
joining the midpoints of the bases. 

• 23.8 Does the point of intersection of the diagonals of a Saccheri 
quadrilateral bisect the segment joining the midpoints of the bases? 

23.9 Nasir Eddin's assumptions deny the Hypothesis of the Acute 
Angle and the Hypothesis of the Obtuse Angle. 
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23.10 Complete Legendre's second proof that DLABC ~ 0 given the 
following outline. Assume DLABC < O. Suppose LA a smallest angle. 
Let MI be midpoint of BC and of ACI. Then oLABCI = oLABC and 
LABCI has a smallest angle of measure at most 1f2mLCAB. Repeat­
ing the construction, eventually obtain a triangle which has the same 
defect as LABC and a smallest angle of measure less than -DLABC, 
a contradiction. 

23.11 Complete Legendre's proof of Theorem 23.2 given the follow-
---+ 

ing outline. Let Rl be on QR such that PQ= QR1• Let R; be midpoint of 
Q and R i+ l . By Pons Asinorum and Absolute Exterior Angle Theorem, 
2mLQRi+ IP ~ mLQRiP. So 2"mLQRnP ~ 71' when 2"r> 71' • 

• 23.12 Find the flaw in another of Legendre's arguments that 
DLABC ~ 0 as outlined ~:low. Suppose ~f! ~ AC ~ BC with DI mid­

point of BC. Let Cion ADI and BI on AB such that ACI =AB and 
AB 1 =2AD 1• Then DLABPI=oLABC, ABI ~ACI ~BPI' and 
2mLB I AC I < mLBAC. Repeating, oLABIICIl=oLABC,AB II ~ACn ~ 
BnC", and 2"mLBnACn < mLBAC. Since mLCnABn and mLAB"C" 

+--> 
approach 0, Cn approaches AB. So mLACnBn approaches 71'. So 
DLABnCn approaches O. Thus oLABC= O. 

23.13 Legendre's argument that all the points equidistant from a 
line and on one side of the line are collinear may be found in his Re­
flections. Almost all of the Reflections is reproduced and translated 
into Interlingue in Le Axiome de Paralleles edited by C. E. Sjostedt, 
(lnterlingue-Fundation, 1968). 

23.14 Read Omar Khayyam's proof of Euclid's Parallel Postulate 
in his "Discussion of Difficulties in Euclid" as translated by A. R. Amir­
Moez in Scripta Mathematica Vol. 24 (1959) pp. 275-303. 

23.15 C (x2 + y2) + 2Ax + 2By + C = 0 is an equation of a line in 
MIl iff A 2 + B2 > C2, and every line has such an equation. 

23.16 (C+B)(X2+y2)+2Ax+(C-B)=0 is an equation ofa line 
in M12 iff A2 + B2 > C2, and every line has such an equation. 

23.17 Ax+ By+ C= 0 is an equation of a line in M13 iff A2+ B2 > C2, 
and every line has such an equation. 

23.18 The mapping that sends (x, y) to (xl (1 + (1- x2 - y2) 1/2), yl 
(1 + (1- X2 - y2) 1/2)) is a collineation from M13 onto MIL 

23.19 The mapping that sends (x, y) to (xl(l-y), (1-x2_y2)1/21 
(1- y)) is a collineation from M13 onto M12. 

23.20 That two parallel lines have two common perpendiculars is 
equivalent to Euclid's Parallel Postulate. 



GRAFFITI 289 

*23.21 That each two parallel lines have a common perpendicular 
is equivalent to Euclid's Parallel Postulate. 

*23.22 Given D,.ABC there exists D,.DEF such that each vertex of 
D,.ABC lies on exactly one side of D,.DEF. 

*23.23 That any four points lie in the interior of some triangle is 
equivalent to Euclid's Parallel Postulate. 

GRAFFITI 

Some of the attempts at proving Euclid's Parallel Postulate are 
amusing. Perhaps you will find the following selection interesting. 

In the "Notes" to the edition of his Elements of Geometry written 
in 1813, Playfair gives a proof of Euclid's Parallel Postulate. 
Playfair's actual wording of his parallel postulate is "Two straight 
lines which intersect one another, cannot be both parallel to the 
same straight line." Playfair, like C. L. Dodgson (Lewis Carroll) 
and many others, wished to improve Legendre's proofs because the 
proofs were deemed too difficult for students just beginning to 
study geometry and not because the proofs were wrong! The idea of 
Playfair's proof was anticipated by B. F. Thibaut in 1809. The 
argument runs as follows. 

Suppose D,.ABC with B-A-D, A-C-E, and C-B-F. See Figure 
~ ~ ~ 

23.9. At A rotate AB to AC through LDAC; then at C rotate AC to 
~ ~ ~ 

BC through LECB; and, finally, at B rotate BC to AB through 
~ 

LFBA. Since AB has returned to itself (but, we might add, 
~ 

translated along itself), AB has been rotated through four right 
angles. So adding up the measures of the angles we have the 
formula (7T-mLA) + (7T-mLC) + (7T-mLB) =4(7T/2).Hence 
8D,.ABC = 0 and Euclid's Parallel Postulate follows. 

D 

F 
FIGURE 23.9 
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Of course one problem is that we do not yet have a definition of a 
rotation. Suppose we can give a reasonable definition. Even so 
there is the tacit assumption that we can ignore the translation of 
~ 

AB and add the rotations at A, C, and B as if all three rotations 
were about A. To give a flawless proof we would have to find a 
justification for these assumptions. Some intuition of the difficulty 
is easily obtained by testing the proof with a triangle on a sphere, 
where the sum of the measures of the angles is greater than rr. 

Louis Bertrand gave the following argument in 1778 where 
A, B, C, Ai> Bi are as in Figure 23.10 with BiBi+' = BB,. The area 
within LABC is a finite fraction of the area of the entire plane, in 
fact, (mLABC)/(2rr). However, the area within LJABB,A, is an 
infinitesimal fraction of the whole plane since for no positive 
integer n does the union of the interiors of n biangles congruent to 
LJABB,A, cover the plane. It follows that int (LABC) cannot be 

-> ----> 
contained in int (LJABB,A,). Thus BC must intersect B,A" and 
Euclid's Parallel Postulate follows. 

Legendre picks up Bertrand's argument in his Reflections using 
the language that int (LABC) cannot be contained in 
int (LJABB,A,) because the first is infinite of the second order and 
the second is only infinite of the first order. Another of Legendre's 
arguments based on infinite areas refers back to Figure 23.9 again. 
Since the area of the entire plane equals the area within four right 
angles and since the finite area of D.ABC can be disregarded when 
considering infinities of the second order, it follows that the sum of 
the measures of the three indicated exterior angles must equal four 
times rr/2, giving the same formula obtained by Playfair. 

In 1850 Victor Bunaikovskij criticized the proofs of Bertrand and 
Legendre. He gave the following direct stab at Euclid's Parallel 

A 

FIGURE 23.10 
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Postulate. Suppose uABCD with AB.l BC and B-C-E. Assume 
LBCD is acute. Then, since LDCE > LABC, the infinite sector 
int (LDCE) is of greater area than the infinite sector int (LABC). 
However, the infinite sector int (LDCE) is of less area than the 
infinite sector int (LABC) because the first is wholly contained 
within the second. The contradiction gives the desired result. 

All these arguments based on infinite areas are nonsense, however 
interesting. Further, even arguments based on finite areas should 
be scrupulously examined to see what assumptions are made 
concerning the meaning of the word area. 

Legendre's attempt at proving that a Lambert quadrilateral is a 
rectangle is most interesting. The following is based on an 
argument in the Reflections. Suppose [jABCD. Let other points 
be as in Figure 23.11 where 6AQP = 6DQC and 6PCB = 6RCE. 
Since 6AQP = 6DQC, then int (uMPCL) is piecewise congruent to 
int (uMADL). Roughly speaking, int (uMPCL) can be cut up by 
chopping off int (6AQP) and the pieces put back together again to 
form int (uMADL) by superimposing int (6AQP) on int (6DQC). 
The idea of piecewise congruence, which can be made precise, gets 
around having to talk nonsense about infinite areas. Since 6PCB = 
6RCE, we also have that int (uMPRN) is piecewise congruent to 
int (uMBEN). Further, int (uMPCL) and int (uLCRN) are 
piecewise congruent since they are congruent. So int (u MBEN) is 
piecewise congruent to int (uMPRN), which is piecewise congruent 
to two disjoint copies ofint (uMPCL). Thus int (uMBEN) is 
piecewise congruent to two disjoint copies of int (uMADL). Hence 
int (uMBEN) is piecewise congruent to the interior of a biangle 
with two right angles and a base of length 2AD. Therefore (?), 
BE=2AD. Since BE=2BC, we have AD=BC. So ~ADCB with 
LD and LC right angles. Hence [jABCD is a rectangle. 

E R N 

L 

p A B M 

FIGURE 23.11 



CHAPTER 24 

Biangles 

24.1 CLOSED BIANGLES 

A biangle is defined in Definition 23.8. For Euclidean geometry every 
interior ray of a biangle intersects both sides of the biangle. However, 
this is not the case under the Hypothesis of the Acute Angle. For ex­
ample, if LJPQRS has right angles at Q and R, the negation of Play-

fair's Parallel Postulate implies that some interior ray QT is parallel 
~ ~ -~ 

to RS and so does not intersect RS. If every interior ray BE of LJABCD 
does intersect CD, we shall say the biangle is closed from B. We shall 
prove that a biangle closed from one vertex is necessarily closed from 
the other vertex. Although trivially true for Euclidean geometry, this 
result is not trivial for absolute geometry. 

DEFINITION 24.1 If every interior ray BE of LJABCD intersects 
-> 

CD. then the biangle is closed from vertex B. If a biangle is closed 
from both vertices, then the biangle is closed. If LJABCD with LB = 

-4 -> 
LC, then the biangle is isosceles. AB is equivalent to PQ if either 
~ ~ ~ ~ ~ -4 

AB contains PQ or PQ contains AB, in which case we write AB ~ PQ. 
--+ ~ ~ ~ 

If LJABCD, BA ~ QP, and CD ~ RS, then LJABCD is equivalent to 
LJPQRS, in which case we write LJABCD - LJPQRS. 

Theorem 24.2 If LJABCD is isosceles and equivalent to LJAQRD 
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<-> 
where Q and R are on the same side of BC with BQ = CR, then 
~AQRD is isosceles. 

Proof Let M be the midpoint of BC. (See Figure 24.1.) !::.MBQ = 
- -

!::.MCR by SAS. So LBQM = LCRM and MQ = MR. Then LMQR = 
LMRQ by the Pons Asinorum. It follows that LBQR = LCRQ and 
~AQRD is isosceles. • 

Theorem 24.3 If ~ABCD is closed from B, then the biangle is equiva­
lent to an isosceles biangle with vertex B. 

Proof Since ~ABCD is closed from B, the angle bisector of LB inter­

sects CD at some point E. Then the angle bisector of LC intersects 
BE at some point P by Crossbar. Let Q, R, S be the feet of the per-

<-> <-> ...... 
pendiculars from P to AB, CD, BC, respectively. Q, R, and S are on 
~ABCD since the foot of the perpendicular from a point on one side 
of an acute angle to the line containing the other side is on the other 
side of the angle. By SAA, !::.PBQ = !::.PBS and !::.PCS = !::.PCR. So 
PQ=PS=PR. Without loss of generality, suppose A and D are such 
that B-Q-A and C-R-D. If P is on QR, then ~AQRD is isosceles. 
Otherwise LPQR = LPRQ by the Pons Asinorum, which implies 
LBQR = LCRQ. SO, in either case, ~AQRD is isosceles. By the pre-...... 
vious theorem there is a point C' on CD such that ~ABCD is equiva-
lent to isosceles ~ABC'D. • 

A 

D 
FIGURE 24.2 
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In proving that a biangle closed from one vertex is closed, we 
shall use the following lemma. 

~ 

Theorem 24.4 Given LOCD and given point P off AB, there exists 
~ 

a point E on AB such that mLPEA < mLOCD. 

Proof By the Absolute Exterior Angle Theorem, this theorem is 
only a restatement of Theorem 23.2. • 

Theorem 24.5 A biangle is closed iff the biangle is closed from one 
vertex. 

Proof We need to show only that a biangle closed from one vertex 
is also closed from the other vertex. To do this, we shall prove the 
contrapositive: a biangle not closed from one vertex is not closed from 
the other vertex. Suppose LJABCD is not closed from C. Then LJABCD 

~ ~ 

has an interior ray CE that does not intersect BA. (See Figure 24.3.) 
By the lemma, we may suppose mLBEC < mLECD without loss of 

~ ~ 

generality. Hence, if B-E-F, then EF and CD cannot intersect by 
~ ~ 

the Absolute Exterior Angle Theorem. So BE and CD do not intersect. 
Hence, LJABCD is not closed from B. • 

~ ~ 

Theorem 24.6 If QD - CD and uABCD is closed from B, then 
uABQD is closed from B. 

~ 

Proof If Q is on CD, then the result is trivial. If Q-C -D, then the 
result follows from Crossbar. • 

Theorem 24.7 A biangle equivalent to a closed biangle is closed. 
~ ~ --.,.. ~ 

Proof It is sufficient to show that if PA - BA, QD - CD, and uABCD 
is closed, then uAPQD is closed. Since uABCD is closed from B, 
then uABQD is closed from B by the previous theorem. So uABQD 

B __ ~ ____________________ ~A~ ____ ~ 

FIGURE 24.3 
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is closed from Q. Hence, LJAPQD is closed from Q by the previous 
theorem. Therefore, LJAPQD is closed. • 

We finish the section with a congruence theorem for closed bi­
angles. The proof is quite like the proof of ASA. The idea is to copy 
one figure onto the other. In the proof below, the isometry (J" merely 
plays the role of an express copying machine. 

Theorem 24.8 Angle-Base Theorem If LJABCD and LJPQRS are --
closed, LABC = LPQR, and BC = QR, then LJABCD = LJPQRS. 

Proof We need to show LBCD = LQRS. Without loss of generality 
- -

suppose AB = PQ. Since bABC = bPQR by SAS, then there exists 
an isometry (J" such that (J"P=A, (J"Q=B, and (J"R = C. Let (J"S=E. Since 
(J" preserves incidence, we must have u ABCE is closed. Since LJ ABCD 
and LJABCE are both closed from C, it follows from the definition of a 

~ --> 
biangle closed at a vertex that CD=CE. Thus LBCD = LQRS .• 

24.2 CRITICAL ANGLES AND ABSOLUTE LENGTHS 

We first show that each segment can be associated with an angle of 
some particular measure. Under the Hypothesis of the Right Angle 
this association is less than exciting as the angle associated with any 
segment is always a right angle. However, under the Hypothesis of 
the Acute Angle, a segment is associated with an acute angle of some 
particular measure, and this association is critical. 

- - ~ 

Theorem 24.9 If BC .1 CD, then there exists unique BA such that 
LJABCD is closed. 

Proof Let S be the set of all positive real numbers mLCBP where P 

C 

FIGURE 24.4 
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---is a point in int (CD). Certainly S is not the empty set as mLCBD 
is in S. Further, every element of S is less than rr/2 since the per-

- ~ 

pendicular to BC at B is parallel to CD. Since S is a bounded, non-
empty set of real numbers, then S has a least upper bound mo' So 0 < 

~ 

mo ~ rr/2. Let A be on the same side of BC as D such that mLABC= 
--- ---mo' Assume BA intersects CD at some point F. Let C-F-G. Then 

mLCBG is in Sand mLCBG> mo' contradicting mo = lub S. Hence 
--- --- ---BA does not intersect CD, and we have LJABCD. Now assume BE is 

--- ---an interior ray of LJABCD that does not intersect CD. Since int (CD) 
is contained in int (LCBE) , every element of S is less than mLCBE. 
This contradicts mo= lub S since mLCBE < mo' Hence LJABCD is 

closed at B. BA is necessarily unique by the definition of closure 
from B .• 

~ ---Corollary 24.10 If point P is off AB, then there exists unique PQ such 
that LJABPQ is closed. 

Proof Exercise 24.1. • 

In the proof of Theorem 24.9 the number mo depends on BC. As 
an application of the Angle-Base Theorem, then mo depends on at 
most BC. (Note BC ¥- BC.) It is quite possible that mo is even inde­
pendent of BC, as in the Euclidean case where mo is always rr/2 re-
gardless of the length of BC. In any case, Theorems 24.8 and 24.9 as­
sure the next definition is well-defined. 

DEFINITION 24.11 n, the function from the positive reals into the 
positive reals defined by n(BC) = mLABC if LJABCD is closed with 
LC right, is called the critical function. LPQR is a critical angle for 
ST and mLPQR is the critical value of ST if mLPQR = n(ST). 

The critical function is aptly named, as in Figure 24.5 the lines 

IY 

FIGURE 24.5 
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~ ~ ~ 

BA and BA' are the bounds for the parallels to CD that pass through 
B. Of course these lines coincide under the Hypothesis of the Right 
Angle. 

Theorem 24.12 If II(xo) =rr/2 for some positive real xo' then ~(x) = 
rr/2 for every positive real x and Euclid's Parallel Postulate holds. 
If II (xo) < rr/2 for some positive real xo' then II (x) < rr/2 for every posi­
tive real x and the Hypothesis of the Acute Angle holds. 

Proof Exercise 24.2. • 

The next theorem and its corollary are a slight digression to 
settle a matter introduced back in Section 21.1. 

~ 

Theorem 24.13 If II (BC) = mL ABC < rr/2 = mL BCD, then AB and 
~ 

CD do not have a common perpendicular. 
~ 

Proof We may suppose A and D are points on the same side of BC. 
Then LJABCD is closed by definition of the critical function. Assume 
- ~ ~ 

QR is perpendicular to AB at Q and perpendicular to CD at R. Let 
~ ~ ~--+ 

QP ~ BA and RS ~ CD. So LJPQRS is equivalent to LJABCD. Since 
LJABCD is closed, then LJPQRS is closed (Theorem 24.7). Hence 

~ ~ 

II(QR) =rr/2, contradicting II(BC) < rr/2. So AB and CD have no 
common perpendicular. • 

Corollary 24.14 That every two parallel lines have a common per­
pendicular is equivalent to Euclid's Parallel Postulate. 

Proof That Euclid's Parallel Postulate implies every two parallel 
lines have a common perpendicular is trivial. The converse is not 
trivial! However, from the theorem above, the Hypothesis ofthe Acute 
Angle implies there exist two parallel lines that have no common 
perpendicular. The contrapositive of this is the missing implica­
tion .• 

Theorem 24.15 Under the Hypothesis of the Right Angle, the critical 
function is constant. Under the Hypothesis of the Acute Angle, the 
critical function is strictly decreasing. 

Proof Since we already know the first statement (Theorem 24.12), 
suppose the Hypothesis of the Acute Angle holds. We must show 
do < d! implies II(d!) < II(do) where do and d! are any two positive 
real numbers. Suppose B-E-C with BE=do and BC=d!. Let CD J.. 

BC, EF J.. BC, and mLABC=II(BC) with A, D, and F on the same 
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~ 

side of BC. Let G be such that LJFECG is closed. Since mLGCE = 
---+ ---+ 

II (EC) < 7T/2, CG is an interior ray of LJABCD intersecting BA at 
~~---+ -

some point H. Because EF II CG, EF must intersect BH by PASCH. 
---+ ---+ 

Hence BA intersects EF and mLABC < ll(BE). So ll(BC) < ll(BE), 
and ll(d1) < ll(do)' _ 

Suppose the Hypothesis of the Acute Angle holds. Then Theorem 
24.15 implies segments of different lengths are associated by the 
critical function with acute angles of different angle measure, since a 
strictly decreasing function is necessarily one-to-one. Thus some acute 
angles determine segments of unique length! We shall now show that 
every acute angle determines a segment under the Hypothesis of the 
Acute Angle. 

Theorem 24.16 Under the Hypothesis of the Acute Angle, if 0 < mo < 
7T/2, then there exists unique positive number do such that ll(do) = mo' 

Proof The uniqueness of such a number do follows from the pre­
ceding theorem. We must show do exists. Suppose mLABE=mo' 
Since the Hypothesis of the Acute Angle holds, we may suppose with-

~ 

out loss of generality that the perpendicular to BE at E does not inter-
---+ 

sect BA (Theorem 23.7, Proposition R). (See Figure 24.7.) 
Let S be the set of all positive real numbers BF where F is the 

~ ~ 

foot of the perpendicular to BE from a point P in int (BA). Certainly 
~ ---+ 

S is not empty as the perpendicular to BE from every point on BA in-
---+ ~ 

tersects BE. If line 1 is perpendicular to BE at point L such that 
---+ 

B -E -L, then 1 and BA do not intersect as they are on opposite sides 
~ 

of the line perpendicular to BE at E. So every number in S is less than 
BE. Since S is a bounded, nonempty set of real numbers, then S has a 

B 

.. ' 

FIGURE 24.6 
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B 

do 

B F M eEL C D 
FIGURE 24.7 

-> 
least upper bound do. So do > o. Let C be on BE such that BC = do. 
-- ...... --> 

Let CD ..l. BC with A and D on the same side of BC. Assume CD inter-
--> 

sects BA at some point H. Let B -H -I, and let J be the foot of the 
...... ...... ...... 

perpendicular from 1 to BE. Since CHIIIJ and B-H-I, we have 
B-C-J. So BJ is in Sand BC <BJ, contradicting do=lubS. There­
fore, uABCD with BC ..l. CD. 

--> 
We now show uABCD is closed from C. Let CK be an interior 

--> --> 
ray of uABCD. Assume CK does not intersect BA. Let M be the foot ...... 
of the perpendicular from K to BE and M-K-N. So B-M-C, and 

--> ...... 
MK does not intersect BA as M and K are on the same side of BA. Also, 

--> --> ...... 
int (KN) and BA do not intersect as they are on opposite sides of CK. 

--> --> 
Thus MN and BA do not intersect. It follows that every number in S 
is less than BM with BM < BC, contradicting BC = lub S. Thus 
uABCD is closed from C. Since we are fortunate enough to know that 
a biangle closed from one vertex is closed from the other vertex, we 
now have uABCD is closed with LC right. Hence mL ABC = TI (BC) = 

TI(do)· -

Corollary 24.17 Under the Hypothesis of the Acute Angle, TI is a 
strictly decreasing, continuous function such that limx ~()+ TI (x) = rr/2 
and limx~oc TI(x)=O. 

DEFINITION 24.18 If LPQR is a critical angle for ST, then ST is 
the absolute length for LPQR. 

In 1305 Edward I standardized units of length in England by 
decreeing "three grains of barley dry and round make an inch; twelve 
inches make a foot; three feet make a yard." It was understood the 
barley corn was to come from the middle of the ear and was to be laid 
end to end. The king's official yard then became the end-to-end meas­
ure of an iron bar, which differed from today's yard by at most 0.1%. 
By 1878 the Imperial Standard Yard was accepted. This was the dis-
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tance at 62°F between two fine lines on gold plugs in a bronze bar at 
Westminster, England. Should this standard be destroyed, the yard 
was regained as the length of a pendulum beating seconds at sea level 
in the latitude of London. It was learned that this bronze bar was 
shrinking about one part in a million every twenty-three years. In 
1866 the United States Congress defined a yard to be 3600/3937 me­
ters. Today a yard is defined to be exactly 0.9144 meters; so an inch 
is now exactly 2.54 centimeters. 

A meter was originally intended to be one ten-millionth of the 
distance from the earth's equator to a pole measured along a meridian. 
From 1889 to 1960 a meter was the distance between two lines on a 
platinum-iridium bar preserved at atmospheric pressure and O°C 
at the International Bureau of Weights and Measures near Paris. 
All lengths were compared with this International Prototype Meter. 
The National Bureau of Standards in Washington, D.C. maintained 
a copy. As technology improved there was a demand for a more pre­
cise definition. Presently* a meter is defined as exactly 1,650,763.73 
wavelengths of the orange-red radiation line of krypton 86 under 
certain conditions. Now, no national or international bureau keeps a 
standard right angle tucked away in its archives. Shouldn't there be 
an International Prototype Right Angle against which all other 
angles could be compared? Why not? 

Suppose the Hypothesis of the Acute Angle holds. Then there 
exists a do such that fl (do) = 7T/4. Hence do or some fraction of do could 
be defined as the standard length against which all other lengths 
could be compared. We can multiply all distances in our theory by 
some positive constant t without changing the content of the theory. 
In other words, if (.9',2', d, m) is a model of~, then so is (.:l', 2', td, m) 
when t is a positive constant. We would say that we had just changed 
the scale for distance. For reasons that are not at all apparent now, it 
turns out to be mathematically convenient to pick a scale such that 
fl (1) is 2 arctan e-1 • In applying this to the physical world, there is 
little difficulty in determining A, B, C such that LABC has measure 
quite close to 2 arctan e- 1. However, how long is a segment of length 1? 
That is, how many meters long is it? Since a meter has nothing to do 
with the axioms of our geometry, the question is a valid one. Although 
it may be really neat to have a geometry that provides for a standard 
angle determining a standard length, all physical experiments indi­
cate that fl (x) could noticeably differ from 7T/2 only for very large 
astronomical distances x. So a physical segment of length 1 would be 
very, very long indeed. The Hypothesis of the Acute Angle cannot be 
verified by an experiment devised to determine the measure of a 
critical angle because this would involve a physical proof that two 
lines never meet. Any verification that one hypothesis or the other 

• See page 268 for the subsequent definition. 
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applies to physical space must depend on experiments with finite 
objects, such as triangles. 

Each acute angle of an isosceles right triangle with legs oflength 
d must have angle measure less than II(d). See Figure 24.S. By 
pasting two such triangles together we can obtain a triangle such that 
the sum of the measures of its angles is less than 4II(d). Suppose II 
is not constant. Then, by taking d big enough, we have a triangle with 
the sum of the measures of its angles as close to 0 as we like. In other 
words, we can obtain a triangle whose defect is as close to 1T as we like. 

Theorem 24.19 Under the Hypothesis of the Acute Angle, if 0 < 
t < 1T, then there exists 6.ABC such that li6.ABC > t. 

Proof Since 1T>t, let d be such that II(d)=1/4(1T-t). Let AD..l 
~ 

BC with D the midpoint of BC and AD = BD = DC = d. Since AC inter-
~ 

sects DC, it follows that each of the congruent angles LDAC, LDAB, 
LDCA, and LDBA has measure less than II(d). Hence li6.ABC > 1T-

4II (d) = t. • 

In order to draw a figure of a triangle with defect close to 1T so 
that the angle measures look correct, we must draw something like 
the right-hand part of Figure 24.S. This is necessary because the sides 
are just too long to get on paper. The largest physical triangles that 
can be accurately measured are astronomical. Let E stand for the 
Earth, S for the Sun, and V for the brilliant blue star Vega. LSEV 
can be measured from the Earth when LESV is right. Using this 
measurement and the fact that li6.SEV is less than 1T/2 - mLSEV, one 

A 

A 
A 

FIGURE 24.8 
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E 

FIGURE 24.9 

obtains 8!:::.SEV < 0.0000004. Hence, assuming the Hypothesis of 
the Acute Angle, the defect of what most of us would consider a large 
physical triangle would be very small. It follows (Exercise 24.10) 
from the proof of the next theorem t.hat if all the sides of a triangle 
are short enough then the defect of the triangle is close to O. EV above 
or any physical segment may be short enough so that any difference 
between 0 and the measured defect of a physical triangle can be at­
tributed to error in measurement. Since measurement of physical 
angles can never be exact, this brings home the impossibility of 
proving the applicability of the Hypothesis of the Right Angle to 
physical space. 

Theorem 24.20 If 0 < t < 1T, then there exists !:::.ABC such that 
8!:::.ABC< t. 

Proof Suppose !:::.ADE with LD right. Let El be the midpoint of DE, 
and let Ei+l be the midpoint of DEi' (See Figure 24.9.) Let 8!:::.AEEI = Xl 
and 8!:::.AE;Ei+l =xi+l' So Xl + x2 + ... + xn < 8!:::.ADE (Theorem 22.16). 
Assume t ~ xn for each positive integer n. Then nt < 8!:::.ADE for each 
positive integer n, contradicting Archimedes' axiom. Hence, for some 
n, t>xn. So 8!:::.AEn_lEn<t. With B=En _ 1 and C=En, we have 
8!:::.ABC< t .• 

Our theory of the hyperbolic plane continues at the beginning 
of Chapter 26. 

24.3 THE INVENTION OF NON-EUCLIDEAN GEOMETRY 

About 300 B.C. Euclid was the first to abolish the petitio principii 
involving parallels by formulating the famous Postulate 5 in his Ele­
ments (see Section 11.1). Although the postulate created controversy 
for the next two millennia (see Section 23.1), there was little progress 
in the theory of parallels until 1733. It was then that Euclides ab Omni 
Naevo Vindicatus by Gerolamo Saccheri (1667 -1733) appeared. In 
the second of the two books in this work, Saccheri proves a tacit as­
sumption made by Euclid in his proof of Proposition V.18 on the 
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theory of proportion. In Book I, Saccheri apparently proves Euclid's 
fifth postulate. Ironically, had Saccheri actually succeeded in proving 
that Euclid's Parallel Postulate is a theorem of absolute geometry, 
then his efforts would not have vindicated Euclid of all fault. On the 
contrary, Euclid is vindicated by the existence of hyperbolic geometry, 
which demonstrates the independence of Euclid's Parallel Postulate! 

Where did Saccheri go wrong? In the third corollary to his 
Proposition XXVI, Saccheri uses a point at infinity (i.e., a limit point 
not in the plane) as if it were a point in the plane. In fact, he even talks 
about a point "beyond" the limit point. However, he then adds that the 
corollary is unnecessary! Is the superfluous corollary with its blatant 
error simply a mistake, or is it a signal to pay careful attention to the 
sequel? The answer to this question is the key to Saccheri's attitude 
toward non-Euclidean geometry. By Proposition XXXII, Saccheri 
has proved many of the theorems of elementary hyperbolic geometry. 

In particular, he has proved that if I1(BC) =mLABC as in Figure 
24.10 then mLBAD approaches rr/2 and AD approaches 0 as CD ap­
proaches infinity. Thus having "disproved the hostile hypothesis of 
acute angle by a manifest falsity, since it must lead to the recognition 
of two straight lines which at one and the same point have in the same 
plane a common perpendicular," Saccheri states his Proposition 
XXXIII: The hypothesis of acute angle is abolutely false, being re­
pugnant to the nature of the straight line. Then Part I of Book I ends 
with the following scholium, which we quote from G. B. Halsted's 
translation "Euclid Freed of Every Fleck" in his Girolamo Saccheri's 
Euclides Vindicatus (Open Court, 1920). "And here I might safely 
stop. But I do not wish to leave any stone unturned, that I may show 
the hostile hypothesis of acute angle, torn out by the very roots, con­
tradictory to itself. However, this will be the single aim of the sub­
sequent theorems of this Book." 

In Part II of Book I, Saccheri investigates the properties of an 
~ 

equidistant curve, which is the locus of all points on one side of AB and 

B 

C 
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of distance r from AB. See Figure 24.11 and suppose s is the length 
of the arc from C to D on the equidistant curve. Based on an incorrect 
use of infinitesimals, Saccheri's Proposition XXXVII states that 
s = AB under the Hypothesis of the Acute Angle. Interestingly enough, 
the "proof" contradicts Corollary III of Proposition III, which essential­
ly states that Omar Khayyam's Theorem holds even when considering 
infinitesimals and which is followed by a separate paragraph stating 
"this indeed ought opportunely to be noted in remaining subsequent 
propositions." Following the "proof" of Proposition XXXVII Saccheri 
adds, "But perchance [the proof] will seem to some one by no means 
evident" and then goes on to give two more proofs in two scholia. The 
"proof" in the first scholium implies the circumferences of any two 
circles are equal, and the second scholium gives a false physical argu­
ment involving time and motion. All three arguments are fallacious. 
Nowhere else does Saccheri do anything like this. 

Saccheri's Proposition XXXVIII states "The hypothesis of acute 
angle is absolutely false because it destroys itself." The proof involves 
correctly showing that s > AB, which contradicts the previous propo­
sition. The next, and last, proposition is Euclid's Parallel Postulate. 
In recapitulation Saccheri points out that the refutation of the Hy­
pothesis of the Obtuse Angle is "clear as midday light" but the demise 
of the Hypothesis of the Acute Angle depends on the proof of Proposi­
tion XXXVII and its two scholia. 

Saccheri's book, which has the full title Euclid Vindicated of all 
Flaw or A Geometric Endeavor in which are Established the Funda­
mental Principles of Universal Geometry, received the imprimatur 
of the Inquisition on July 13, 1773 and of the Provincial of the Jesuits 
on August 16, 1773. Saccheri died October 25, 1773. Had Saccheri 
practiced the motto of George Washington (1732-1799)-the result 
justifies the deed-and implied what he certainly would not have been 
allowed to print? Is Halsted correct in saying that Saccheri's work 
"may be looked upon as something like the stucco for the king's in­
spection with which the immortal architect [Sostratos] in Egypt cov­
ered the stone bearing his own name"? In any case, by being the first 
to investigate the logical conclusions that follow from denying Eu­
clid's Parallel Postulate - the method that would eventually settle 
the whole problem-Saccheri invented non-Euclidean geometry. To 
what extent he was aware of his invention is still debated. 

Saccheri's work attracted considerable attention at the time of 
its publication, and mention of it is made in German and French 
histories of mathematics during the eighteenth century. Neverthe­
less, it was soon forgotten in France and Italy, but, as we shall see, 
not in Germany. However, most mathematicians were ignorant of 
this early masterpiece until it resurfaced in 1899. 
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The number 7T was first proved to be irrational in 1761 by Johann 
Heinrich Lambert (1728-1777). Five years later, in 1766, he wrote 
the paper Theorie der Parallellinien. Since it is almost certain that 
Lambert was familiar with the work of Saccheri, we cannot credit 
Lambert with the invention of non-Euclidean geometry. Lambert did 
not progress very far beyond Saccheri's results and did not publish 
the paper, which was edited and published posthumously in 1786. 

Saccheri had proved that given do> 0 there exists a unique mo 
such that II (do) = mo' Lambert proved that, conversely, given 0 < mo < 
7T/2 there exists a unique do such that II (do) = mo' Lambert explicitly 
mentions that the Hypothesis of the Acute Angle implies the existence 
of an absolute unit of length. This also follows directly from the fact 
that the angles of one equilateral triangle cannot be congruent to the 
angles of another equilateral triangle with sides of different length, as 
Saccheri pointed out in his lengthy commentary on the work of Wallis. 
Lambert also went a step beyond Saccheri's observation that defect is 
additive (Theorem 22.16) and argued that the area of a polygonal re­
gion must be proportional to its defect under the Hypothesis of the 
Acute Angle. It follows that area must be proportional to excess under 
the Hypothesis of the Obtuse Angle, as it is on a sphere. Lambert then 
makes the astoundingly prescient remark "From this I must almost 
conclude that the third hypothesis must occur on an imaginary 
sphere." (The "third hypothesis" is the Hypothesis of the Acute Angle; 
a sphere, looked at from an algebraic point of view, with radius i where 
i2 = -1 is an "imaginary sphere.") Perhaps it was this remark that 
caused Lambert to study the trigonometric functions of iO where 0 is 
real. This led to the first comprehensive presentation of the hyperbolic 
functions. 

Between 1776, the year the Declaration of Independence was 
adopted, and 1803, the year President Jefferson made the Louisiana 
Purchase, the three principal characters in the next part of our story 
were born. They are Gauss (Carl Friedrich Gauss, 1777 -1855), Lo­
bachevsky (Nicolai Ivanovitch Lobachevsky, 1792-1856), and Bolyai 
(Bolyai Janos, 1802-1860). Gauss was recognized during his own 
lifetime as one of the greatest mathematicians to have ever lived. Most 
of the events that precede the publications of Nicholas Lobachevsky 
and John Bolyai are told in the correspondence of Gauss. 

Wolfgang Bolyai (Bolyai Farkas, 1775-1856), the father of 
(John) Bolyai and whom Gauss called "the rarest spirit I ever knew," 
proved that Euclid's Parallel Postulate is equivalent to the assumption 
that three noncollinear points lie on a circle. On December 16, 1799, 
Gauss wrote to Wolfgang Bolyai that he was sorry they had not dis­
cussed the theory of parallels during their student days together 
(1796-1798). Concerning the parallel postulate, Gauss added, "It is 
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true I have found much which most would accept as proof but which 
in my eyes proves as much as Nothing; for example, ifit can be shown 
that there is a triangle whose area is greater than that of any given 
surface, then I can rigorously establish the whole of geometry." The 
example given by Gauss is obvious from Lambert's conclusions, since 
the defect of a triangle is less than 7T. We know Gauss was familiar 
with the results of Sac cheri and Lambert. Marginalia in his books show 
Gauss paid particular attention to passages on the theory of parallels 
that quoted the works of Saccheri and Lambert. Further, Gauss 
checked Lambert's work out of the library in 1795 and again in 1797. 

In 1813 Gauss wrote, "In the theory of parallels we have ad­
vanced no farther than Euclid." Without reference to Saccheri or 
Lambert, Gauss wrote in 1816 to his student, the astronomer C. L. 
Gerling, "It is easy to prove that, if Euclid's geometry is not the true 
one, then there are absolutely no similar figures. . . . It would even 
be desirable that Euclid's geometry should be false, because we would 
then have a priori a universal unit of length .... " In the same year, 
Gauss gave a critical review of the pseudo proofs contained in two 
papers on the parallel axiom. For this he was "subjected to vulgar 
attack." 

Friedrick Ludwig Wachter (1792-1817), another student of 
Gauss, called the geometry obtained by denying Euclid's Parallel 
Postulate anti-Euclidean geometry. In a letter written to Gauss in 
December of 1816, Wachter proves the very remarkable result that 
the surface to which a sphere through a given point tends as its radius 
approaches infinity is not a plane in anti-Euclidean geometry but that 
the geometry of this surface is identical with a Euclidean plane. (This 
surface is called a horosphere and is the three-dimensional analogue 
of the horocircle, which we shall study later.) Wachter had great in­
sight into the theory of parallels and must have greatly influenced 
Gauss. On April 3, 1817, Wachter took his customary evening walk 
but never returned. The riddle of the sudden disappearance of thiA 
young man who might very well have become the "inventor of non­
Euclidean geometry" has never been solved. In 1817, Lobachevsky was 
giving his students "proofs" of the parallel postulate in his lectures. 
On April 28 of the same year, Gauss wrote to the astronomer H. W. M. 
Oblers, "I am becoming more and more convinced that the necessity 
of our geometry cannot be proved, at least not by human intellect nor 
for the human intellect." 

By 1816 Ferdinand Karl Schweikart (1780-1859) had advanced 
further than the stage Gauss reached in 1817. Schweikart, a profes­
sor of law, summarized the work he had done earlier in a one-page 
Memorandum in December 1818 and asked his colleague Gerling at 
Marburg to send it to Gauss for comment. Schweikart's Memorandum 
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begins, "There exists a two-fold geometry, -a geometry in the strict 
sense-the Euclidean geometry; and an astral geometry." Although 
the remainder follows from the work of Saccheri, with which he also 
was familiar, the Memorandum is an important document in that it is 
probably the first pronouncement of the actual existence of a non­
Euclidean geometry. (Schweikart's astral geometry is hyperbolic 
geometry and gets its name from the fact that a segment having a 
critical angle of measure 7T / 4 would have to be astronomically long.) 
Gauss replied to Gerling, "Professor Schweikart's Memorandum has 
given me the greatest pleasure, and I ask that you convey to him 
my hearty congratulations. To me it is as if almost all my innermost 
thoughts have been put on paper." Schweikart did not publish any 
of his results on astral geometry. 

In 1820 Bolyai informed his father that he was interested in the 
theory of parallels. Wolfgang Bolyai advised John Bolyai, "Don't 
waste an hour on that problem. Instead of reward, it will poison your 
whole life. The world's greatest geometers have pondered the problem 
for hundreds of years and not proved the parallel postulate without 
a new axiom. I believe that I myself have investigated all the possible 
ideas .... [Gauss] affirmed that he had meditated fruitlessly about 
it." However, Bolyai did not follow his father's advice. The twenty-one 
year old Hungarian artillary officer wrote to his father on November 
3, 1823, "I have resolved to publish a work on the theory of parallels 
as soon as I have arranged the material and my circumstances allow 
it. I have not completed the work, but the path I have followed makes 
it almost certain that the goal will be attained, if that is at all possible; 
the goal is not yet reached, but I have made such wonderful discoveries 
that I have almost been overwhelmed by them, and it would be the 
cause of constant regret if they were lost. When you see them, my dear 
father, you too will understand. At present I can say nothing except 
this: I have created a new universe from nothing. All that I have sent 
to you till now is but a house of cards in comparison with a tower. I'm 
fully persuaded that this will bring me honor, as if I had already -com­
pleted the discovery." In reply, W. Bolyai now advised his son to finish 
the work and publish as soon as possible " ... first because ideas pass 
easily from one to another, who can then publish them, and, secondly, 
there is some truth in the fact that many things have an epoch in 
which they are discovered at the same time in several places, just as 
the violets appear on every side in spring." At the time, Wolfgang was 
working on his Tentamen Juventutem Studiosam in Elementa Mathese­
os (Essays on the Elements of Mathematics for Studious Youths) and 
invited John to include his results in the Tentamen. 

By 1823, Bolyai had invented non-Euclidean geometry and de­
termined the formula for the critical function, which is the key to all 



308 BIANGLES 

of hyperbolic geometry. At this time, Lobachevsky, who would be the 
first to publish, had not even started on the path that would lead him 
to success. Although Gauss may have found non-Euclidean geometry 
in the work of others more than actually inventing it himself, Gauss 
also held the key to the problem and was acutely aware that the 
very foundations of nineteenth century mathematics, science, and 
philosophy were at stake. The fullest information on Gauss' views is 
contained in a letter to Taurinus on November 8, 1824. After pointing 
out the error in Taurinus' proof of the parallel postulate, Gauss says, 
"the assumption that the sum of the three angles of a triangle is less 
than 1800 leads to a peculiar geometry completely different from ours, 
a completely self-consistent geometry that I have developed for my­
self perfectly satisfactorily, so that I can solve any problem in it with 
the assumption of a value for a constant that cannot be ascertained 
a priori. The greater this constant is assumed to be the closer Eu­
clidean geometry is approached .... All my efforts to find a contra­
diction, an inconsistency in this Non-Euclidean geometry have been 
fruitless ... in any case, please regard this as a private communica­
tion, of which no public use or use leading to publicity is to be made 
in any way. If at some time I have more leisure than now, I may pub­
lish my investigations." 

Franz Adolf Taurinus (1794-1874) was encouraged by his uncle, 
Schweikart, to study the theory of parallels. Taurinus was always 
convinced of the absolute truth of Euclid's Parallel Postulate. His 
Geometriae Prima Elementa, published in 1826, discards the Hy­
pothesis of the Acute Angle on the grounds that an absolute unit of 
length is impossible. Although Taurinus did not progress beyond 
Wallis in his thinking, his work completely develops Lambert's idea 
of studying the trigonometry of an imaginary sphere. Because log­
arithms appear so often in his calculations, Taurinus called this 
analytic geometry the logarithmic-spherical geometry. In retrospect, 
the logarithmic-spherical geometry provides a proof of the relative 
consistency of hyperbolic geometry. However, the Elementa attracted 
no attention, and Taurinus burned the remaining copies in disgust. 

Also in 1826, on February 12, Lobachevsky presented a paper 
which is unaccountably lost and which had the title Exposition suc­
cincte des principes de la geometrie avec une demonstration rigoureuse 
du theoreme des paralleles. In spite of the ominous "rigorous proof of 
the theorem on parallels," it is likely that the lecture did present the 
beginnings of hyperbolic geometry. 

In 1829, Gauss wrote to the astronomer F. Bessel that he would 
not publish his extensive investigations on the theory of parallels 
" ... since I fear the cry of the Boeotians were I to completely express 
my views." Although Bolyai had sent out abstracts of his work in 
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1825, his manuscript was not delivered to his father until 1829. Wolf­
gang Bolyai did not understand why John's formulas contained an 
indeterminate constant, but it was agreed that the new theory of 
space would be an appendix to the first volume of his Tentamen. The 
Kasan Messenger for the year 1829 contains Lobachevsky's On the 
foundations of geometry, the first published work that presents a non­
Euclidean geometry. This monumental paper is in Russian and had 
no impact, even though it contains the complete development of 
hyperbolic geometry, which Lobachevsky unfortunately named 
imaginary geometry. 

After many delays, the first volume ofW. Bolyai's Tentamen was 
finally published in 1832. It contains the forever famous Appendix by 
John Bolyai with the title "The science of absolute space with a 
demonstration of the independence of the truth or falsity of Euclid's 
parallel postulate (which cannot be decided a priori) and, in addition, 
the quadrature of the circle in case of its falsity." Hyperbolic geometry 
is simply called S in the Appendix. 

An advance copy of Bolyai's Appendix was sent to Gauss in June 
1831 but did not reach its destination. A month earlier, Gauss had 
written to the astronomer H. C. Schumacher, "In the past few weeks 
I have begun to write down some of my own meditations [on the theory 
of parallels] .... I wished that they should not perish with me." A 
second copy of the Appendix was sent in January of 1832. On February 
14, Gauss wrote to Gerling, "Let me add further that I have this day 
received from Hungary a little work on the Non-Euclidean geometry, 
in which I find all my own ideas and results developed with greater 
elegance, although in a form so concise as to offer great difficulty to 
anyone not familiar with the subject. . . . I regard this young geom­
eter Bolyai as a genius of the first order." On March 6, 1832, Gauss 
wrote to W. Bolyai, " ... Now a word about your son's work. If I be­
gin by saying that I cannot praise it you will be surprised for a moment, 
but I cannot do otherwise. To praise it would be to praise myself, for 
the content of the work, the approach your son has taken, and the 
results to which he is led coincide almost exactly with my own medita­
tions which I partly carried out thirty to thirty-five years ago. In fact, 
I'm extremely surprised by it .... " 

The only influence Gauss has on the inventions of Lobachevsky 
and Bolyai was that each author knew that Gauss had failed earlier 
at the problem of proving the parallel postulate. Bolyai and Loba­
chevsky each made his momentous invention independent of anyone 
else. Although Bolyai did not publish further, Lobachevsky, in an 
effort to make his invention more widely known, published the French 
paper Geometrie imaginaire in Crelle's journal in 1837 and a little 
German book Geometrische Untersuchungen in 1840. A year before 
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his death in 1856, the now blind Lobachevsky dictated and published 
in both Russian and French his complete exposition Pangeometrie. 
Lobachevsky's new name pangeometry was certainly more attractive 
than his earlier, self-deprecating name imaginary geometry. In 1842, 
Gauss saw to it that Lobachevsky became a member of the Royal Soci­
ety at GOttingen. Apparently Lobachevsky seems never to have 
heard of Bolyai, although Bolyai learned in 1848 that he had to share 
the honor of his invention with Lobachevsky. However, there was very 
little honor to share on his part. Just a line or two from Gauss in any 
scientific journal would have made Bolyai famous. The ungenerous 
Gauss, the so-called "Prince of Mathematicians," never gave Bolyai 
any public mention. Bolyai died long before his work received the 
recognition it deserved. 

Certainly, Euclid invented absolute geometry. Certainly, Sac­
cheri invented hyperbolic geometry. However, since each of Bolyai 
and Lobachevsky independently invented hyperbolic geometry and 
each published a work claiming the consistency of hyperbolic ge­
ometry, the credit for the invention of the Saccheri-Lambert-Wachter­
Schweikart-Gauss-Taurinus-Bolyai-Lobachevsky geometry is usually 
divided between John Bolyai and Nicholas Lobachevsky. 

For a century the invention of non-Euclidean geometry was a 
recurring event! Only the highlights of the long struggle the mathe­
matical community had in discovering the existence of and, in par­
ticular, the significance of the invention will be told next. Compared 
to the story of its invention, the story of the discovery of non-Euclidean 
geometry is far more complicated. Bolyai and Lobachevsky had de­
clared, "Here it is!" The question "But what is it?" now had to be 
tackled. 

For thirty-five years the works of Bolyai and Lobachevsky were 
essentially ignored. Thought was dominated by the Kantian theory 
that space exists intuitively in the human mind and the axioms of 
Euclidean geometry are a priori judgments imposed on the mind with­
out which no consistent reasoning about space is possible. The great 
change started about 1866. The expository papers of Jules Hoiiel 
(1823-1886) that followed his translations of the works of Lobachev­
sky (in 1866) and Bolyai (in 1867) were paramount in focusing atten­
tion on the new geometry. Expository articles and translations in other 
languages quickly followed. Most influential were the paper On the 
facts that underlie the foundation of geometry (in German, dated May 
22, 1866) and subsequent expository articles by Herman von Helm­
holtz (1821-1894). The results of Helmholtz were essentially antici­
pated by Bernhard Riemann (1826-1866). Riemann's lecture on dif­
ferential geometry, On the hypotheses that underlie the foundation of 
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geometry (in German), which is rather vague because of its intended 
general audience, was delivered on January 10, 1854, but first pub­
lished in 1866. Both Helmholtz and Riemann begin by considering 
space as a coordinate geometry. However, Riemann's paper does not 
mention non-Euclidean geometry and was overshadowed by the 
work of Helmholtz for many years. 

The whole perspective was changed in 1868 by Essay on the in­
terpretation of non-euclidean geometry (in Italian), a paper by Eugenio 
Beltrami (1835-1900). To understand Beltrami's result we shall need 
some background from differential geometry. (See Exercise 24.16.) 
The geodesics on a surface in Euclidean space are the curves of shortest 
length that connect two given points. The intrinsic geometry of the 
surface is the geometric interpretation of the surface as a plane where 
the geodesics are used to define lines and distance. Angle measure is 
the Euclidean angle measure on the surface. We can see that these 
intrinsic geometries provide many models of planes that are not Eu­
clidean. For example, in the intrinsic geometry of a sphere, the lines 
are the great circles on the sphere and the Hypothesis of the Obtuse 
Angle holds. For another example, in the intrinsic geometry of a cir­
cular cylinder, the Hypothesis of the Right Angle holds but the 
geometry is quite different from the Euclidean plane. Wachter had 
shown that the Euclidean plane is the intrinsic geometry of a horo­
sphere in hyperbolic three-space. That the hyperbolic plane can never 
be the intrinsic geometry of a surface in Euclidean three-space would 
not be discovered until the twentieth century. A pseudosphere is the 
Euclidean surface obtained by revolving a tractrix about its asymp­
tote. (A tractrix with x-axis as asymptote has the differential equation 
(dy/ dx) 2 = y2 / (a2 - y2) .) Certain regions of a pseudosphere are iso­
morphic to regions of the hyperbolic plane. See Figure 24.12. This is 
the result given by Beltrami in his Essay. This partial representation 
of the hyperbolic plane on a familiar Euclidean surface is what con­
vinced many that the hyperbolic plane is consistent. For this reason, 
it is often stated that the (relative) consistency of the hyperbolic plane 

FIGURE 24.12 
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was proved in 1868 by Beltrami. Since a proof is a convincing argu­
ment, that today we would be convinced by the algebraic models that 
go back to Taurinus, Bolyai, and Lobachevsky is irrelevant. 

Surprisingly, Beltrami's Essay contains a proof that the hyper­
bolic plane is isomorphic to the Cayley-Klein Model. But, Beltrami 
draws no conclusion from this fact! It was the construction of the new 
system as a "geometry" that carried the day. The Cayley-Klein Model 
also appeared in an 1859 paper by Arthur Cayley (1821-1895). How­
ever, it was Felix Klein (1849-1925) who in his On the so-called 
noneuclidean geometry of 1871 and subsequent papers pointed out that 
the Cayley-Klein Model is actually a representation of the hyper­
bolic plane. Although the hyperbolic plane is consistent, it was thought 
that hyperbolic three-space might (must) be impossible. Bolyai, who 
had greater insight into hyperbolic geometry than Lobachevsky, con­
sidered this and even thought he had found an inconsistency until 
he found his error. Klein's three-dimensional analogue of the Cayley­
Klein Model showed that hyperbolic three-space is also (relatively) 
consistent. 

The names hyperbolic geometry, parabolic geometry, and elliptic 
geometry are due to Klein and are taken from the context of projective 
geometry. Parabolic geometry is Euclidean geometry. The elliptic 
plane, which is also called the Riemann plane, is really due to Klein. 
Riemann had pointed out that we must distinguish between the un­
boundedness of lines and the infinite extent of lines. For example, a 
line has infinite extent but is bounded in the intrinsic geometry of a 
sphere. That the geometry of a sphere is a sort of non-Euclidean ge­
ometry would not even have surprised Euclid. (Circles and spheres 
were a Greek specialty.) Klein's ingenious contribution was essen­
tially to deduce our M15, the Riemann Incidence Plane, from our M14, 
the Sphere Incidence Plane. By identifying antipodal Euclidean points 
on a sphere as one point, Klein obtained a model such that two points 
determine a line. (To see how this relates to projective geometry, con­
sider how we defined the real projective plane in Section 4.2.) To ob­
tain the elliptic plane, we add distance and angle measure as follows. 
If P= {PI' P2 } and Q = {QI' Q2} are two points of M15, define the dis­
tance PQ from P to Q to be the minimum of the measures of the Eu­
clidean angles LPPQ, and LPPQ2 where 0 is the center of the 
sphere. See Figure 24.13. Angle measure between lines in the elliptic 
plane is inherited from Euclidean angle measure on the sphere. So 
Tr/2 is an upper bound for the distance between any two points in the 
elliptic plane. Projective geometry also provides higher dimensional 
analogues of the elliptic plane. The Hypothesis of the Obtuse Angle 
holds in elliptic spaces. 

As a result of the efforts of Hoiiel, Helmholtz, Beltrami, Klein, 
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and others, knowledge of non-Euclidean geometry became widespread. 
Confusion was still the order of the day, however. It was not easy to 
think that the words space and geometry could have a plural. The 
models of Klein did not diminish the confusion. On the contrary, they 
further obscured the logic of geometry. Mathematicians, including 
Klein, did not then understand the logical function of a model. It was 
not clear how hyperbolic geometry and elliptic geometry could be 
shown to be "true" because they could be demonstrated by Euclidean 
geometry. Of course, only a few asked, "Is Euclidean geometry true?" 
To add more confusion to the scene, the idea of n-dimensional space 
for n> 3 was now abroad. Both four-dimensional space and non­
Euclidean geometry became the domain of crackpots and mystics. 

Soon there was a plethora of not-Euclidean geometries. (The name 
non-Euclidean geometry started out to mean only hyperbolic geom­
etry. Its meaning was then extended by many to include elliptic ge­
ometry. Since the elliptic plane is not the result of denying the parallel 
postulate alone among Euclid's postulates, some use the name non­
Euclidean geometry to describe any geometry in which Playfair's 
Parallel Postulate fails; others use this name to describe any geom­
etry other than Euclidean geometry. In general, you must rely on the 
context.) The non-Archimedean geometries of Veronese provide ex­
amples of non-Legendrian geometry where the Hypothesis of the Ob­
tuse Angle holds although through a point off a given line there are 
infinitely many lines parallel to the given line and examples of semi­
Euclidean geometry where the Hypothesis of the Right Angle holds 
although through a point off a given line there are infinitely many 
lines parallel to the given line. Even more startling were the finite 
geometries of Fano and Moore. The realization that an axiom should 
be a stated assumption rather than some supposedly self-evident truth 
was slow in developing. There was a great deal written about the 
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nature of the axioms of geometry without stating just what "the 
axioms" were. Even Pasch's great achievement of 1882 was clouded 
by his expository papers on the nature of axioms. Gradually it be­
came evident that geometry is not only the mathematical theory of 
physical space. Although the Italian phalanx of Peano, Pieri, Padoa, 
and Fano placed geometry on an absolutely axiomatic basis, it was 
Hilbert's Grundlagen der Geometrie that was most influential in 
spreading the axiomatic viewpoint. In one sense, geometry, not only 
non-Euclidean geometry, was discovered at Paris in 1900. (See Sec­
tion 12.2.) 

Poincare asserted that the laws of physics would be changed, if 
necessary, in order to preserve Euclidean geometry as the model of 
physical space. The assertion has proven to be false. Non-Euclidean 
geometry became a necessary tool for the scientist, beginning with 
Einstein's work of 1916. Einstein later wrote, "The axioms are volun­
tary creations of the human mind. . . . To this interpretation of 
geometry I attach great importance because if! had not been acquaint­
ed with it, I would never have been able to develop the theory of 
relativity." 

We must terminate our story here, with suggestions for further 
reading. Bibliophiles will be interested in Bibliography of Non­
Euclidean Geometry by D. M. Y. Sommerville (Chelsea, 1970). The 
history in English of non-Euclidean geometry is Non-Euclidean Geom­
etry by Roberto Bonola. The Dover paperback of Bonola's history is an 
exceptionally good buy since it also contains English translations of 
The Science of Absolute Space by Bolyai and The Theory of Parallels 
by Lobachevsky. The coffeetable book for the theory of parallels is 
not inexpensive (about U.S. $40) but also deserves special mention. 
Edited by C. E. Sjostedt and published in 1968 by Interlingue-Funda­
tion (Sweden), this book can be enjoyed by anyone who can under­
stand its full title, Le Axiome de Paralleles de Euclides a Hilbert, Un 
Probleme Cardinal in le Evolution del Geometrie, Excerptes in fac­
simile ex le principal ovres original e traduction in le lingue inter­
national auxiliari Interlingue. 

24.4 EXERCISES 

24.1 Corollary 24.10 . 

• 24.2 Theorem 24.12. 
~~~~ ~~ 

24.3 If AB II CD, CD II EF, and A - C - E, then AB II EF. 

24.4 If LJABCD is closed, then LJABCD is equivalent to an isosceles 
closed biangle with vertex B. 
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• 24.5 True or False? 

~~ ~~ ~~ 

(a) AB II CD and CD II EF implies AB II EF. 

(b) If LJABCD is closed, then LB = LC. 

(c) That there exist two parallel lines without a common per­
pendicular is equivalent to the Hypothesis of the Acute Angle. 

(d) That a biangle closed from one vertex must be closed from 
the other vertex is equivalent to the Hypothesis of the Right 
Angle. 

(e) That every biangle is closed is equivalent to Euclid's Paral­
lel Postulate. 

(0 Under the Hypothesis of the Right Angle, any two biangles 
are equivalent. 

(g) If LJABCD is closed, then every ray in int (LABC) inter-
~ 

sects CD. 

(h). If LJABCD, then LJCDAB and LJABDC. 

(i) If LJABCD is closed, then LJBADC is closed. 

(j) If 0 < t < 11", then there exists d such that 8!:::,ABC > t when 
AB, BC, and AC are each greater than d. 

24.6 Read "The main trends in the foundations of geometry in the 
19th century" by H. Freudenthal in Logic, Methodology and Phi­
losophy of Science edited by E. Nagel et al. (Stanford, 1962). 

24.7 Read "The Copernicus of Geometry," Chapter 16 of E. T. Bell's 
classic Men of Mathematics. 

24.S Equivalence of rays is an equivalence relation on the set of all 
rays; equivalence of biangles is an equivalence relation on the set of 
all biangles . 

• 24.9 If sand t are positive numbers, then there exists a right tri­
angle with one leg of length greater than s and with defect less than t. 

24.10 If 0 < t < 11", then there exists positive number d such that 
8!:::'PQR < t for any !:::'PQR with all sides of length less than d. 

24.11 State and prove some theorems regarding the sum of the 
measures of the angles of a closed bia~gle. 

24.12 If the angle bisector of one angle of LJABCD intersects both 
sides of the biangle, then LJABCD is equivalent to an isosceles biangle 
with vertex C. 



316 BIANGLES 

24.13 That a biangle is equivalent to an isosceles biangle with right 
angles is equivalent to Euclid's Parallel Postulate. 

24.14 Read "Traveling on Surfaces" and "Space Curvature," Chap­
ters II and XIV of Famous Problems of Mathematics by H. Tietze 
(Graylock, 1965). 

24.15 Read the articles by Helmholtz and Clifford in Volume I of 
The World of Mathematics, edited by J. R. Newman (Simon and 
Schuster, 1956). 

24.16 A closed biangle may have an obtuse angle. 

24.17 Does Euclid's Proposition 1.1 hold in the Riemann plane? 

*24.18 The "squaring of the circle" is not impossible in the Riemann 
plane. 

GRAFFITI 

Il: The German word for plane is Ebene. 

The space constant may be different in different places. It may 
also vary with time. 

Riemann 

But neither thirty years, nor thirty centuries, affect the 
clearness, or the charm, of Geometrical truths. Such a theorem as 
"the square of the hypotenuse of a right-angled triangle is equal to 
the sum of the squares of the sides" is as dazzlingly beautiful now 
as it was in the day when Pythagoras first discovered it, and 
celebrated its advent, it is said, by sacrificing a hecatomb of oxen­
a method of doing honor to Science that has always seemed to me 
slightly exaggerated and uncalled-for. One can imagine oneself, 
even in these degenerate days, marking the epoch of some brilliant 
scientific discovery by inviting a convivial friend or two, to join one 
in a beefsteak and a bottle of wine. But a hecatomb of oxen! It 
would produce a quite inconvenient supply of beef. 

229,792,458 m/sec 
IT'S THE LAW. 

c. L. Dodgson 



CHAPTER 25 

Excursions 

25.1 PROSPECTUS 

Our objective from the beginning has been to develop that geometry 
that is very like the Euclidean plane but avoiding any parallel pos­
tulate for as long as is reasonably possible. After the last two chap­
ters you may think we have already stretched the bounds of reason­
ableness. It is becoming a nuisance to begin most of our theorems with 
something equivalent to either "Under the Hypothesis of the Right 
Angle" or else "Under the Hypothesis of the Acute Angle." It is time 
to decide to accept one or the other of the two hypotheses. In the next 
section of this chapter, we look at what would happen if we were to 
choose the Hypothesis of the Right Angle. You may not be surprised 
to learn that this path leads to the familiar Euclidean plane. Hope­
fully you are curious about the other path - where you can be sure 
there are vistas totally different from what you are used to. This new 
path is explored in Part Two, which begins with the next chapter. For 
those who would like a preview of Part Two, a summary of its nine 
chapters follows. 

In Chapter 26 the Hyperbolic Parallel Postulate is taken as our 
last axiom. The resulting axiom system is called the Bolyai-Loba­
chevsky plane. (The rr the" is meant to imply only that no other axioms 
are allowed and not that the axiom system is necessarily categorical, 
in much the same way we talk about the absolute plane. The names 
"the Bolyai - Lobachevsky plane" and "the hyperbolic plane" are inter-
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changeable.) The results in the chapter are mostly a consolidation of 
results already obtained in Chapters 22, 23, and 24. In particular, the 
material on biangles is used to distinguish two types of parallelness 
for lines. Essentially, of all the lines through a given point P that are 
parallel to a given line l off P, the two lines that bound all the others 
will be said to be horoparaZZel to l while those lines that are over one 
of these two boundaries will be hyperparaZZel to l. (The prefixes horo 
and hyper will be used often.) We need two names to distinguish these 
two very different types of parallelness. 

Chapter 27 deals with things called brushes and cycles. The 
brushes in the Euclidean plane are the pencils (set of all lines through 
a given point) and the parallel pencils (set of all lines parallel to a 
given line). Since there are two types of parallelness for lines, we can 
expect three types of brushes in the Bolyai - Lobachevsky plane, name­
ly the pencils, the horopencils, and the hyperpencils. Associated with 
each type of brush is a family of curves. These curves are the cycles. 
Specifically, a cycle is the set of all points obtained by reflecting a point 
in the lines of a given brush. In particular, the circles are associated 
with the pencils, horocircles are associated with the horopencils, and 
hypercircles are associated with the hyperpencils. We might mention 
that a hypercircle is also called an equidistance curve since it is the 
set of all points on one side of and equidistant from a given line. 

Chapter 28 and Chapter 29 are, in some sense, the two most im­
portant chapters in this book. To fully understand any mathematical 
system the automorphisms of that system must be studied. The isom­
etries of the Bolyai - Lobachevsky plane are studied in these two short 
chapters, and a classification of all the isometries is determined. Fur­
ther, with only a few minor changes, the results are applicable to the 
Euclidean plane as well. So while learning about the isometries of 
the Bolyai - Lobachevsky plane, it is also possible to formalize a rigor­
ous approach to the isometries of the Euclidean plane. 

Chapter 30 is a pleasant digression into some applications ofthe 
material on isometries. The chapter deals with two aspects of sym­
metry. From a result obtained by Leonardo da Vinci in studying the 
possible floor plans for a building, the finite groups of symmetries are 
related to groups of symmetries for polygons. Secondly, although there 
is infinite variety in the possible subject matter for the frieze of a 
building, it is established that any frieze design that repeats a basic 
pattern must fall into exactly one of seven different classes. The 
results of the chapter are applicable to the Euclidean plane as well as 
to the Bolyai - Lobachevsky plane. 

Chapter 31 is mostly concerned with showing that a bounded arc 
on a horocircle has a finite length. This is done rigorously without as­
suming knowledge of advanced calculus. (You may wish to read only 
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the statements of the definitions and of the theorems, skipping the 
proofs, in order to get on to the more exciting aspects of hyperbolic 
geometry.) Then, the existence of a constant k, called the distance 
scale, is established. For any positive number k there exists a model of 
the Bolyai-Lobachevsky plane having k as its distance scale. Hence, 
a numerical value of the distance scale k cannot be determined in 
the theory. 

In Chapter 32 the formula TI(x) = 2 arctan e-x /k is established, 
where TI is the critical function and k is the distance scale. Also, the 
trigonometric formulas for the Bolyai - Lobachevsky plane are de­
termined. To mention the hyperbolic analogue of the Pythagorean 
theorem, suppose the distance scale is 1 and a right triangle has hy­
potenuse of length c and legs of length a and b. Then these lengths 
are related by the equation cosh c = cosh a cosh b. (Recall that cosh x 
is (eX + e-x ) /2. For other trig formulas see Corollary 32.13 where the 
distance scale is assumed to be 1 and the notation refers to Figure 
32.12.) Further, the Euclidean plane is shown to be a limiting case of 
the Bolyai - Lobachevsky plane. 

Chapter 33 contains two mutually independent sections, one 
on analytic geometry and another on area. Once the analytic geometry 
for the Bolyai - Lobachevsky plane is developed, the question of 
categoricalness can be considered. It turns out that the axiom system 
we are calling the Bolyai - Lobachevsky plane is not categorical. Two 
models are shown to be isomorphic iff they have the same distance 
scale. However, any two models are similar in that the distance scale 
of a model can be arbitrarily changed merely by multiplying all dis­
tances by the same positive constant. (To obtain a categorical axiom 
system it is only necessary to add an additional axiom such as "The 
distance scale is 1.") In the second section of the chapter it is shown 
that area must be defined to be proportional to defect. We also prove 
Bolyai's theorem that two polygonal regions are equivalent by tri­
angulation iff the regions have the same area. The theory behind dis­
section puzzles is a consequence of our results on area and is also ap­
plicable to the Euclidean plane. 

Chapter 34 contains three mutually independent sections. In 
the first section the hyperbolic analogues of the classical theorems of 
Menelaus, Ceva, Desargues, and Pappus are proved. In the second 
section the techniques of the calculus are applied to problems in the 
Bolyai - Lobachevsky plane. Finally, in the third section, we look at 
the ruler and compass game of Euclidean constructions as it is played 
in the Bolyai - Lobachevsky plane. Several construction problems are 
posed and some are solved. For example, the construction of a tri­
angle given only angles congruent to its angles is considered, as is the 
old problem of "squaring the circle." 
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If it is assumed that area is defined to be proportional to defect, 
then Chapter 34 depends on Chapter 33 only to the extent that the 
end of Section 34.1 uses the similarity of models of the Bolyai - Loba­
chevsky plane. Therefore, the sections after Chapter 32 are essentially 
independent of each other-excluding the Exercises, of course. 

25.2 EUCLIDEAN GEOMETRY 

For this section, in addition to the axioms for the absolute plane, we 
assume the Hypothesis of the Right Angle. Unless the real number 
system is itself inconsistent, this augmented axiom system cannot be 
inconsistent due to the existence of the Cartesian plane. Any model of 
this axiom system is called a Euclidean plane. It is certainly conceiv­
able that there are nonisomorphic models of a Euclidean plane as just 
defined. However, this is not the case. After proving the Pythagorean 
theorem, we shall introduce coordinates in order to show that any two 
models of a Euclidean plane are isomorphic. We will then know that 
we have a categorical axiom system for the Euclidean plane. 

We begin with a special case of a theorem stating that the pro­
jections of congruent collinear segments are congruent. See Figure 
25.1. Suppose LLVL" is acute and V-L-M-N with LM=MN. Sup­
pose L", M', N' are, respectively, the feet of the perpendiculars from 

~ 

L, M, N to VL". Let N' be the foot of the perpendicular from L to 
~ ~ ~ 

NN'. Let M' be the intersection of LN' and MM'. Under the Hypothesis 
of the Right Angle, LL"LN' and LM'M'N' are right angles. Hence, 
by Theorem 22.23, we have LM' = M' N'. Also, since opposite sides of a 
rectangle are congruent, we have L"M'=M'N'. 

The result above is used to show VA/VB = VC/VD where 
V, A, B, C, D are points as in Figure 25.2. This will follow if it can 

N 

V 

FIGURE 25.1 
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v 
FIGURE 25.2 

be shown that the numbers VBIVD and VAIVC are equal or, equiva­
lently, that their difference is O. Since 0 is the only nonnegative num­
ber less than every positive real number, it is sufficient to prove the 
absolute value of the difference of these numbers is less than every 
positive real number. Suppose c is any positive number. Let n be an 

~ 

integer such that nc > 2. Now let P be the point on VD such that VD = 
n VP. Then there exist a point R on VB and an integer m such that 
VB = m VP + RB where 0 < RB ~ VP. Let Q and S be the feet of the 
perpendiculars from P and R, respectively, to VA. It follows from the 
previous paragraph that VC = n VQ and VA = m VQ + SA where 0 < 
SA ~ VQ. By substitution, we have the result 

So VAIVB = VCIVD, as desired. In general, since the acute angles of a 
right triangle are complementary under the Hypothesis of the Right 
Angle, it then follows that the lengths of the sides of a right triangle 
are proportional to the lengths of the corresponding sides of any simi­
lar right triangle. 

Now suppose t,.ABC has a right angle at C. Let D be the foot of 
~ 

the perpendicular from C to AB. Then A-D-B. From the last result 
above, we have ADIAC=ACIAB and BDIBC=BCIBA. Hence, 

(AC) 2 + (BC) 2 = (AB) (AD + BD) = (AB) 2, 

proving the Pythagorean theorem for right triangles in a Euclidean 
plane. 

Point coordinates are introduced next. Let land m be two fixed 
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lines that are perpendicular. Let g and h be fixed coordinate systems 
for I and m, respectively. For any point P, let P' and P' be the feet of 
the perpendiculars from P to I and m, respectively. If g(P') = x and 
h(P') = y, then P is said to have coordinates (x, y). So every point has 
a unique pair of coordinates. Conversely (Exercise 25.2), every or­
dered pair of real numbers is the coordinates of a unique point. For 
fixed real number a, under the Hypothesis of the Right Angle, the set 
of all points with coordinates (a, y) is a line. We say such a line has 
equation x = a. Every line parallel to m has such an equation. In par­
ticular, m has equation x= O. Further (Exercise 25.3), every line that 
intersects m only at a point with coordinates (0, b) has an equation 
y = sx + b, and conversely. Therefore, every line has an equation of 
the form Ax+ By+ C= 0, and every such equation is an equation of 
some line provided A 2 + B2 oF O. A line with equation x = a is per­
pendicular to a line with equation y= b for every a and b. Let points 
P and Q have coordinates (XI' YI) and (x2 , Y2) , respectively. We claim 

To prove this, let R be the point with coordinates (Xl' Y2)' If P, Q, R 
are collinear, then the result is trivial. Otherwise, !::"PQR has a right 
angle at R and the result follows from the Pythagorean theorem. 

Weare now prepared to show that any two models of a Euclidean 
plane are isomorphic. It is sufficient to show that any model of a Eu­
clidean plane is isomorphic to the Cartesian plane. We suppose we 
have any model of a Euclidean plane and that this model is coordina­
tized as above. Let {be the mapping from the set of points of the 
model into the set of the points of the Cartesian plane that sends the 
point with coordinates (x, y) to the point (x, y). (In the model, (x, y) is 
the name of a point; in the Cartesian plane, (x,y) is a point.) The map­
ping {is obviously a bijection that preserves lines. Further,fpreserves 
distance. (The distance formula in the preceding paragraph is a theo­
rem applicable to our arbitrary model of a Euclidean plane; the dis­
tance formula for the Cartesian plane is a definition.) Since {preserves 
distance, then {preserves betweenness. So {preserves segments, rays, 
angles, and triangles. Since {preserves congruence between segments, 
then {preserves congruence between triangles by SSS. Hence, {pre­
serves congruence between angles. Since the lines I and m used in 
coordinatizing the arbitrary model are perpendicular, then { pre­
serves right angles. So {must preserve angles of measure rr/2n , where 
angle measurement in the Cartesian plane is assumed to be radian 
measurement. Therefore (Exercise 25.4), it follows that {must pre­
serve angle measure. Hence {is an isomorphism from the arbitrary 
model onto the Cartesian plane. We have achieved our purpose. 



HIGHER DIMENSIONS 323 

IF TO OUR FIVE AXIOMS FOR THE ABSOLUTE PLANE WE 
ADD ANY AXIOM EQUIVALENT TO EUCLID'S PARALLEL POS­
TULATE, THEN WE HAVE A CATEGORICAL AXIOM SYSTEM 
FOR THE EUCLIDEAN PLANE. 

25.3 HIGHER DIMENSIONS 

In this section, we give a set of axioms for absolute three-space and a 
set of axioms for absolute four-space. This is surprisingly easy to do. 
Starting with our axioms for the absolute plane, we need only to re­
state PSP and to augment the Incidence Axiom. We begin by defining 
an incidence three-space to be an ordered triple (9, 2, g') satisfying 
the Three-Space Incidence Axiom as defined next. 

Three-Space Incidence Axiom: 9,2, and g' are sets, the elements of 
which are respectively called points, lines, and planes. A line is a set 
of points, containing at least two points. A plane is a set of points, 
containing at least three points not all in one line. Two points deter­
mine a line. Three points not in one line determine a plane. If two 
points are in a plane, then the line containIng these points is a subset 
of that plane. If two planes have a point in common, then their inter­
section is a line. There exist four points that are not all in one plane 
and not all in one line. 

The usual language denoting incidence is assumed for any 
incidence three-space. However, by convention, lines land m are de­
fined to be parallel if either l = m or else land m are coplanar lines 
that do not intersect. Nonintersecting lines that are not coplanar are 
skew to each other. Planes E and F are parallel if either E = F or else 
E and F do not intersect. Line l and plane E are parallel if either l is 
on E or else land E do not intersect. 

Among others, the following theorems can be proved for any in­
cidence three-space: (1) Neither 9, 2, nor g' is empty. (2) A plane is 
not a line. (3) Two lines intersect in at most one point. (4) If a line 
intersects a plane not containing the line, then the line and the plane 
intersect at exactly one point. (5) If line l is on plane E, then there 
exists a point in E that is oft'l. (6) If point P is in plane E, then there 
exists a line on E that is oft' P. (7) A line and a point oft'the line deter­
mine a plane. (8) Two parallel lines determine a plane. (9) Two inter­
secting lines determine a plane. (10) Given a plane, there exists a 
point oft'that plane; given a point, there exists a plane oft'that point. 
(11) If point P is on line l, then there exists a plane that intersects l 
only at P. (12) There exist two planes through a given line. (13) If 
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plane E intersects both of two parallel planes F and G, then the 
intersections of E with F and with G are parallel lines. (14) If land 
m are two parallel lines and point P is off the plane containing land 
m, then there exists a unique line through P that is parallel to both l 
and m. (15) If each of two intersecting lines is parallel to a third line, 
then the three lines are coplanar. 

Of the theorems just mentioned, the last three are probably the 
most interesting. The last of these deserves special attention. Assum­
ing there are such things as parallel lines, we can deduce from (15) 
that if there is anything exciting in regard to the theory of parallels 
then all the excitement concerns what takes place in a plane! It is for 
this reason that we have not bothered to carry a three-space structure 
throughout the development of our geometry in the other chapters. 

Our Ruler Postulate together with our definitions of between and 
segment make sense when applied to an incidence three-space. How­
ever, our PSP then becomes an absurd statement. One consequence 
(Theorem 12.15) of our PSP was to limit our geometry to what would 
conventionally be called a plane. Except for this aspect, we maintain 
the original intent of PSP in a statement called the Spatial PSP as 
defined next. 

Spatial PSP: If line l is on plane E, then there exist convex sets HI 
and H2 such that E \ l is the union of HI and H2 and such that if P and 
Q are two points with P in HI and Q in H2 then PQ intersects l. 

We are now in a position to state a set of axioms for absolute three­
space with undefined terms 9, 2', if, d, m. Assuming the necessary 
definitions from our theory of the absolute plane, the axioms are: 
(I) Three-Space Incidence Axiom, (II) Ruler Postulate, (III) Spatial 
PSP, (IV) Protractor Postulate, and (V) SAS. 

That's all there is to it! It might be emphasized that II, IV, and 
V above refer to the exact statements for our axioms for the absolute 
plane. For example, "SAS" above means the statement of our Axiom 5 
exactly as it is given in Section 17.2. Therefore "SAS" in the context 
of absolute three-space does not require that the triangles involved 
be in the same plane. Of course this is intentional and makes absolute 
three-space homogeneous. 

All of our definitions and theorems for the absolute plane hold 
for absolute three-space provided the phrase "In a plane" is tacitly 
assumed to begin each definition and theorem. In some cases we can 
remove this tacit assumption. Most notably, we define "l:::.ABC = 
l:::.DEF' exactly as before (Definition 17.1) with no reference to tri­
angles being in the same plane. Then it seems we must give new proofs 
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for all the congruence theorems (Section 17.3) for triangles when 
the triangles are in different planes. However, the old proofs are still 
valid for absolute· three-space, and the old congruence theorems still 
hold in the new context. In general, the tacit assumption is necessary. 
For example, our Theorem 18.2 states "If two lines are perpendicular 
to the same line, then the two lines are parallel." This statement is 
hardly true in absolute three-space unless it is assumed the three 
lines are in a plane. 

A three-dimension analogue of PSP need not be included among 
the axioms for absolute three-space. Imitating the proof of Theorem 
12.7, we can prove the Three-Space Separation Theorem: For any 
plane E there exist convex sets HI and H2 such that &J\E is the union 
of HI and H2 and such that if P and Q are two points with P in HI and 
Q in H2 then PQ intersects E. Such sets HI and H2 are called sides or 
halfflats of the plane E. 

Since the real Cartesian three-space exists, the set of axioms for 
absolute three-space is consistent if the real number system is consis­
tent. Using Euclidean spheres, we can extend the models of Section 
23.2 to provide a model of absolute three-space in which Euclid's 
Parallel Postulate fails. Such examples of hyperbolic three-space 
demonstrate that the set of axioms for absolute three-space is not 
categorical. 

We say line 1 is perpendicular to plane E if 1 intersects E at a 
point P such that every line on E that passes through P is perpen­
dicular to 1. Among others, the following theorems can be proved: 
(1) If two points of a line are equidistant from two given points, then 
every point of the line is equidistant from the two points. (2) If a 
line is perpendicular to each of two intersecting lines at their point 
of intersection, then the line is perpendicular to the plane containing 
the two lines. (3) All the lines peFpendicular to a given line at a given 
point are in one plane. (4) The locus of all points equidistant from two -points A and B is a plane perpendicular to AB at the midpoint of A 
and B. (5) Given a point and a line, there is a unique plane through 
the point that is perpendicular to the line. (6) Given a point and a 
plane, there is a unique line through the point that is perpendicular 
to the plane. (7) Two lines perpendicular to the same plane are paral­
lel, and two planes perpendicular to the same line are parallel. (8) If 
m and n are coplanar lines each perpendicular to a line on plane E 
and m is perpendicular to E, then n is perpendicular to E. 

A dihedral angle with edge 1 is the union of line 1 and two half­
planes of 1 that are not coplanar. A plane angle of a dihedral angle is 
the intersection of the dihedral angle with a plane perpendicular to 
its edge. It is well known that any two plane angles of a given dihedral 
angle are congruent in Euclidean three-space. Since the usual proof 
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of this fact involves the Euclidean theory of parallels, we shall indi­
cate how the theorem can be proved for absolute three-space. Suppose 
LAPC and LBQD are two plane angles of a given dihedral angle. We 
may suppose the points are taken as labeled in Figure 25.3 where 
LLMN is the plane angle containing the midpoint of P and Q. From 
[§JPABQ = [§JPCDQ we conclude AL, LB, CN, ND are all equal, 
~ ~ ~ ~ ~ ~ 

AB 1.. ML, and CD 1.. MN. By (8) above, each of AB and CD is per-
~ 

pendicular to the plane containing LLMN and, hence, to LN. Then 
[§JLACN= [§JLBDN. So AC=BD. Hence LAPC=LBQD by SSS, 
and the desired result follows. 

We now define two planes to be perpendicular if their union con­
tains a dihedral angle having a right plane angle. Et cetera, et cetera, 
et cetera. 

The existence of Euclidean n-space is accepted today by most 
students of linear algebra without a moment's hesitation. What was 
fantastic less than a century ago is now held to be commonplace. By 
employing hyperspheres from Euclidean (n + 1) -space, we can ex­
tend models of hyperbolic n-space to models of hyperbolic (n + 1)­
space. From this we deduce the existence of absolute n-space. Abso­
lute four-space by itself should make an excellent subject for a seminar 
or for an independent study course. (See Exercise 25.10.) Teachers of 
high school mathematics would surely benefit from a detailed study 
of the isometries of Euclidean four-space. The introduction to absolute 
four-8'Jace below goes no further than to parallel the introduction to 
absolute three-space above. We begin with an incidence axiom. 

Four-Space Incidence Axiom: 9, :£, it, and :fi are sets, the elements 
of which are respectively called points, lines, planes, and flats. A line 
is a set of points, containing at least two points. A plane is a set of 
points, containing at least three points not in one line. A flat is a set 
of points, containing at least four points that are neither all in one 

c N D 
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P 

FIGURE 25.3 
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plane nor all in one line. Two points determine a line. Three points 
not in one line determine a plane. Four points not in one plane deter­
mine a fiat. If two points are in one plane, then the line containing 
the two points is a subset of that plane. If three points are in one fiat 
but not in one line, then the plane containing the three points is a 
subset of that fiat. If two planes in the same fiat have a point in com­
mon, then their intersection is a line. If a plane and a fiat have a point 
in common, then their intersection contains a line. There exist five 
points that are neither all in one line, all in one plane, nor all in 
one fiat. 

Assuming the necessary definitions from the absolute plane, a 
set of axioms {or absolute {our-space is: (I) Four-Space Incidence 
Axiom, (II) Ruler Postulate, (III) Spatial PSP, (IV) Pro~ractor Pos­
tulate, and (V) SAS. 

The usual language denoting incidence is assumed for absolute 
four-space. By convention, line 1 and plane E are parallel if either 1 
is on E or else land E are cofiat and nonintersecting. A line and a plane 
that are neither co fiat nor intersecting are skew. Planes El and E2 
are parallel if either El =E2 or else El and E2 are cofiat planes that 
do not intersect. Two planes that are neither cofiat nor intersecting 
are skew. Line 1 and fiat { are parallel if either 1 is on {or else land 
{do not intersect. Plane E and fiat {are parallel if either E is on {or 
else E and {do not intersect. Flats {l and h are parallel if either t;. = h 
or else t;. and h do not intersect. 

Among others, the following theorems can be proved for absolute 
four-space: (1) If two points of a line are on a fiat, then the line is 
on the fiat. (2) A plane and a point off that plane determine a fiat. 
(3) Three concurrent noncoplanar lines determine a fiat. (4) Two planes 
with a common line determine a fiat. (5) Two skew lines determine 
a fiat. (6) Two planes not in a fiat have at most one point in common. 
(7) There exist two planes that intersect at exactly one point. (8) If 
two fiats have a point in common, then their intersection is a plane. 
There is also a Four-Space Separation Theorem, the statement of 
which is left for Exercise 25.7. 

We say line 1 is perpendicular to fiat {if 1 intersects {at a point P 
such that every line on {that passes through P is perpendicular to l. 
(As before, two planes are perpendicular if their union contains a di­
hedral angle having a right plane angle.) Two planes having a pointP 
in common are absolutely perpendicular at P if every line through P 
on one plane is perpendicular to every line through P on the other 
plane. A plane E and a fiat {intersecting at point P are perpendicular 
atP if there exist a plane in {that is absolutely perpendicular toE atP. 

Among others, the following theorems can be proved: (1) If line 1 
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intersects flat ( at point P and l is perpendicular at P to each of three 
noncoplanar lines on f, then l is perpendicular to f (2) Two lines per­
pendicular to a flat are parallel. (3) Given point P and flat f, there 
exists a unique line through P that is perpendicular to f (4) Given 
point P and line l, there exists a unique flat through P that is per­
pendicular to l. (5) The intersection of two absolutely perpendicular 
planes is a point. (6) If two planes are absolutely perpendicular, then 
the two planes are not perpendicular. (7) Given a point P and a plane 
E, there exists a unique plane through P that is absolutely perpendic­
ular to E. (8) If line l is on plane E, then all the planes absolutely per­
pendicular to E at points on l are in one flat. (9) If planes El and E2 
are absolutely perpendicular at point P and E is a plane through P 
that is perpendicular to E 1 , then E is perpendicular to E2. (10) A third 
plane having a line in common with each of two absolutely perpendic­
ular planes is perpendicular to each of the two planes. (11) If a plane is 
perpendicular to a flat at one point of their intersection, then the 
plane is perpendicular to the flat at every point on the line of their 
intersection. (12) If two flats are perpendicular to a plane E at point 
P, then the two flats intersect in a plane that is absolutely perpendic­
ular to E at P. (13) If line l is not perpendicular to flat f, then there 
exists a unique plane through l that is perpendicular to f (14) If line 
l is not in a plane absolutely perpendicular to plane E, then there 
exists a unique flat through l that is perpendicular to E. (15) Two lines 
not in the same plane have a common perpendicular line. 

A diflat angle with {ace E is the union of a plane E with two half­
flats of E that are not coflat; these two halfHats of E are the sides of 
the diflat angle. If P is any point on the face E of a diflat angle and 
points A and B are on different sides of the diflat angle such that 
~ ~ 

AP and BP are perpendicular to E, then LAPB is a plane angle of 
the diflat angle. So the intersection of a diflat angle with the plane 
absolutely perpendicular to the face of the diflat angle at any point 
on the face is a plane angle of the diflat angle. It can be shown that 
any two plane angles of a given diflat angle are congruent. We then 
define two flats to be perpendicular if their union contains a diflat 
angle having a right plane angle. Et cetera, et cetera, et cetera. 

Et cetera. 

25.4 EXERCISES 

• 25.1 What would be the difficulty in replacing the proof of the 
Pythagorean theorem in Section 25.2 by one of the simpler area proofs 
known to high school students? 
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25.2 For the coordinatization in Section 25.2, every ordered pair of 
real numbers is the coordinates of a unique point. 

25.3 For the coordinatization in Section 25.2, every line that inter­
sects m only at one point has an equation y = sx + b, and, conversely, 
a line with an equation y = sx + b intersects m at exactly one point. 

• 25.4 The mapping f in Section 25.2 preserves angle measure. 

• 25.5 What happens if we omit the last six words in the statement 
of the Three-Space Incidence Axiom? 

25.6 Prove directly from the Three-Space Incidence Axiom that if 
each of two intersecting lines is parallel to a third line, then the 
three lines are coplanar. 

25.7 State a Four-Space Separation Theorem. 

25.8 Suppose the vertices of l::.ABC together with the vertices of 
l::.A'B'C' are six noncoplanar points of absolute three-space. Suppose 
~ -AB and A'B' are either parallel or else intersect at point C". Suppose 
~ -AC and A'C' are either parallel or else intersect at point B". Sup-

pose Be and iFC' are either parallel or else intersect at point A". Then 
<E----> <E----> <E----> 

AA', BB', and CC' are either concurrent or else mutually parallel. 
Further, if A", B", C" all exist, then they are collinear. 

25.9 Two lines are Clifford parallel if the lines are in different planes 
and each is equidistant from the other. Show that the existence of two 
lines that are Clifford parallel implies the Hypothesis of the Obtuse 
Angle. (Such lines exist in elliptic geometry.) 

25.10 Read "The Geometry of Four Dimensions," which is Chapter 3 
of Foundations of Geometry by C. R. Wylie (McGraw-Hill, 1964). For 
more on absolute four-space read the book Geometry of Four Dimen­
sions by H. P. Manning (Dover, 1956). 

25.11 Flatland (A romance of many dimensions, By the author A 
Square) was written by E. A. Abbot, a Shakespearean scholar having 
mathematics as a hobby. Read this short classic, which was published 
in 1884 and is still in print (Dover). Read Sphereland (A Fantasy 
About Curved Spaces and an Expanding Universe) by D. Burger 
(Crowell, 1965). 

25.12 "If two planes in the same flat have a point in common, then 
their intersection is a line" can be omitted from the Four-Space Inci­
dence Axiom in the axioms for absolute four-space. 
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GRAFFITI 

Suppose, for example, a world enclosed in a large sphere and 
subject to the following laws: The temperature is not uniform; it is 
greatest at the center, and gradually decreases as we move towards 
the circumference of the sphere, where it is absolute zero. The law 
of this temperature is as follows: IfR be the radius of the sphere, 
and r the distance of the point considered from the center, the 
absolute temperature will be proportional to R2 - r. Further, I shall 
suppose that in this world all bodies have the same coefficient of 
dilatation, so that the linear dilatation of any body is proportional 
to its absolute temperature. Finally, I shall assume that a body 
transported from one point to another of different temperature is 
instantaneously in thermal equilibrium with its new environment. 
There is nothing in these hypotheses either contradictory or 
unimaginable. A moving object will become smaller and smaller 
as it approaches the circumference of the sphere. Let us observe, in 
the first place, that although from the point of view of our ordinary 
geometry this world is finite, to its inhabitants it will appear 
infinite. As they approach the surface of the sphere they become 
colder, and at the same time smaller and smaller. The steps they 
take are therefore also smaller and smaller, so that they can never 
reach the boundary of the sphere. If to us geometry is only the study 
of the laws according to which invariable solids move, to these 
imaginary beings it will be the study of the laws of motion of solids 
deformed by the differences of temperature alluded to. 

No doubt, in our world, natural solids also experience 
variations of form and volume due to differences of temperature. 
But in laying the foundations of geometry we neglect these 
variations; for besides being but small they are irregular, and 
consequently appear to us to be accidental. In our hypothetical 
world this will no longer be the case, the variations will obey very 
simple and regular laws. On the other hand, the different solid 
parts of which the bodies of these inhabitants are composed will 
undergo the same variations of form and volume. 

Let me make another hypothesis: suppose that light passes 
through media of different refractive indices, such that the index of 
refraction is inversely proportional to R2 - r2. Under these conditions 
it is clear that the rays of light will no longer be rectilinear but 
circular. To justify what has been said, we have to prove that 
certain changes in the position of external objects may be corrected 
by correlative movements of the beings which inhabit this 
imaginary world; and in such a way as to restore the primitive 
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aggregate of the impressions experienced by these sentient beings. 
Suppose, for example, that an object is displaced and deformed, not 
like an invariable solid, but like a solid subjected to unequal 
dilatations in exact conformity with the law of temperature 
assumed above. To use an abbreviation, we shall call such a 
movement a non-Euclidean displacement. 

If a sentient being be in the neighborhood of such a 
displacement of the object, his impressions will be modified; but by 
moving in a suitable manner, he may reconstruct them. For this 
purpose, all that is required is that the aggregate of the sentient 
being and the object, considered as forming a single body, shall 
experience one of those special displacements which I have just 
called non-Euclidean. This is possible if we suppose that the limbs 
of these beings dilate according to the same laws as the other 
bodies of the world they inhabit. 

Although from the point of view of our ordinary geometry 
there is a deformation of the bodies in this displacement, and 
although their different parts are no longer in the same relative 
position, nevertheless we shall see that the impressions of the 
sentient being remain the same as before; in fact, though the 
mutual distances of the different parts have varied, yet the parts 
which at first were in contact are still in contact. It follows that 
tactile impressions will be unchanged. On the other hand, from the 
hypothesis as to refraction and the curvature of the rays of light, 
visual impressions will be unchanged. These imaginary beings 
will therefore be led to classify the phenomena they observe, and to 
distinguish among them the" changes of position," which may be 
corrected by a voluntary corrective movement,just as we do. 

If they construct a geometry, it will not be like ours, which 
is the study of the movements of our invariable solids; it will be 
the study of the changes of position which they will have thus 
distinguished, and will be" non-Euclidean displacements," and 
this will be non-Euclidean geometry. So that beings like ourselves, 
educated in such a world, will not have the same geometry as ours. 

Poincare 



Part Two 

NON-EUCLIDEAN GEOMETRY 
We now center our attention on the hyperbolic plane of Bolyai and Loba­
chevsky. However, many of our results, such as the classification of 
the isometries, have an immediate application to the Euclidean plane 
as well. A summary of each chapter in Part Two appears in Section 
25.1. 



CHAPTER 26 

Parallels and the Ultimate 
Axiom 

26.1 AXIOM 6: HPP 

Let's do it! 

Axiom 6 HPP If point P is off line l, then there exist two lines 
through P that are parallel to l. 

Our axiom system, now called the Bolyai-Lobachevsky plane, 
is as consistent as the Euclidean plane or the real numbers (Section 
23.2). 

Axiom 6, the Hyperbolic Parallel Postulate, could be weakened 
to require only the existence of nonincident point Po and line lo such 
that there exist two lines through Po that are parallel to lo. This fol­
lows from Proposition Y of Theorem 23.7. On the other hand, Axiom 6 
could be replaced by our next theorem. 

Theorem 26.1 If point P is off line l, then there exist an infinite 
number of lines through P that are parallel to l. 

Proof Let F be the foot of the perpendicular from P to l. By HPP there 
~ ~ 

exist two lines PA and PB parallel to l where A and B are on the same 
~ ~ 

side of PF. The result follows from the fact that PE is parallel to l 
whenever mLFPE is between mLFPA and mLFPB .• 



Theorem 26.2 

(a) There does not exist a rectangle. 
(b) AAA. 
(c) If !:::"ABC, then mLA + mLB + mLC < rr. 
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(d) If !:::,.ABC and A-C-D, then mLBCD > mLA + mLB. 
(e) 8!:::,.ABC> 0; 8DABCD > O. 
<D If point C is off AB but on the circle with diameter AB, then 
LACB is acute. 

(g) If [§jABCD, then mLB = mLC < rr/2 and BC > AD. 
(h) If [jABCD, then mLC < rr/2, CB > AD, and CD> AB. 
(i) No line is equidistant from a second line. 
(j) The critical function is strictly decreasing. 

Proof From our study of the equivalents of Euclid's Parallel Pos­
tulate, we know each of the ten statements is actually equivalent 
to HPP .• 

Any theorem of the Euclidean plane that is false under the as­
sumption of Axiom 6 must be equivalent to Euclid's Parallel Postulate. 
Also, any theorem that we now prove and that is false for the Eu­
clidean plane must be equivalent to HPP. For either parallel postulate, 
the list of statements equivalent to that postulate is endless. 

That AAA, the negation of Proposition Z in Theorem 23.7, is a 
theorem has an amusing consequence. In a hyperbolic world one could 
not build exact small scale models, say of a building. The angles would 
have to be distorted in any model or otherwise the model would be 
congruent to the building. Of course, due to the limitations of mea­
surement, it is impossible to build an exact model in any kind of a 
physical world. 

The next two theorems are mostly for shock value. Certainly 
one must depend more on his head than his emotions to feel secure in 
the Bolyai - Lobachevsky plane. 

Theorem 26.3 There exist four lines l, m, r, and s such that l .1 r, 
r .1 s, s .1 m, and III m. The inside of any angle is a proper subset of the 
interior of the angle. The interior of any angle contains two perpendic­
ular lines. 

Proof The first statement follows from Proposition Q of Theorem 
23.7. (To find such lines, see Figure 26.1 where TI(PQ) =TI(QR) = 

~ 

rr/4.) Suppose LAVB. Let VD be the angle bisector of LA VB where 
TI (VD) = 1/2mLAVB (Theorem 24.16). Let p be the perpendicular to 
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p 

D 

v __ -=~----------~~----------~~ 

FIGURE 26.1 

-VD at D. By the definition of the critical function, since n(VD) = - -mLDVA = mLDVB, then p is parallel to VA and to VB. So D is in the 
interior of LAVB but not in the inside of LAVB. Let E be the unique 
point such that V -D-E and n(DE) =7T/4. Let F and G be points on -opposite sides of VD such that mLDEF=mLDEG=7T/4. Then - - - -EF and EG are both parallel to p and EF 1. EG. Since V and E are on - -opposite sides of p, then EF and EG are two perpendicular lines in 
int (LAVB) .• 

Theorem 26.4 For any positive integer n, there exist n + 1 distinct 

-° 0 = .0° 

0 •••••• 0:', •••••• 

~ 
.... 

,0 • ", 

.0' : '0. . . . 
FIGURE 26.2 
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lines such that any n of the lines are on the same halfplane of the 
remaining line. 

Proof Exercise 26.1. • 

Theorem 26.5 An exterior angle of a closed biangle is larger than its 
remote interior angle. 

Proof Suppose LJABCD and B-C-E. Assume LABC = LDCE. 
Then AB and CD have a common perpendicular (Theorem 21.5). So 
LJABCD is equivalent to a closed biangle with two right angles, con­
tradicting Il(x) < 7T/2 for all positive numbersx. Now assume LABC > 
LDCE. By Euclid's Proposition 1.28 there is a point F such that 
LJFBCD with LFBC = LDCE. (See Figure 26.3.) Since LABC> 

--> 
LFBC, then Fis in int (LABC). ThusBFis an interior ray of LJABCD 

that does not intersect cD, contradicting LJABCD is closed from B. 
Therefore, LABC < LDCE. • 

Corollary 26.6 The sum of the measures of the angles of a closed bi­
angle is less than 7T. The angles of an isosceles closed biangle are acute. 

Theorem 26.7 Angle-Angle Theorem If LJABCD and LJPQRS are 
closed, LB = LQ, and LC = LR, then LJABCD = LJPQRS. 

Proof The result follows by symmetry if we can show the assumption 
BC > QR leads to a contradiction. Since L ABC is the image of L PQR 
under an isometry, we may suppose P=A, Q=B, and B-R-C. (See 

--> 
Figure 26.4.) LJSRCD by Euclid's Proposition 1.28. If CE intersects 

----?> ~ --)0 ~ 

BA, then CE intersects RS since C and BA are on opposite sides of 
~ -->--> 

RS. Thus, if E in int (LJSRCD), then CE intersects RS because 

B A 

F 

D 

E 
FIGURE 26.3 
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A 

s 

D 
C~----------------------~ 
FIGURE 26.4 

LJABCD is closed from C. Hence LJSRCD is closed from C. We now 
have LJSRCD is closed with exterior angle LBRS congruent to its 
remote interior angle, contradicting the preceding theorem. • 

Theorem 26.8 Suppose I§jABCD and I§jA'B'C'D'. If (1) AD=A'D' 
and BC=B'C', (2) AB=A'B' and mLB=mLB', (3) AD=A'D' and 
mLB=mLB', or (4) BC=B'C' and mLB=mLB', then I§jABCD= 
I§jA'B'C'D'. 

Proof (1) Assume I§jAQRD = I§jA'B'C'D' withA-Q-B or A-B-Q. 
Let M and T be the midpoints of BC and QR, respectively. Then 
I§jTQBM. If A-Q-B, then LTQA and LTQB are a linear pair of 
acute angles; if A-B-Q, then LMBA and LMBQ are a linear pair 
of acute angles. In either case we have a contradiction. (2) Assume 
I§j ABRS = I§j A' B'C'D' with B -R - Cor B -C -R. Then 8DSRCD = 0, 
a contradiction. (3) Assume I§jAQRD = I§jA'B'C'D' with A-B-Q 
or A-Q-B. Then 8DBQRC= 0, a contradiction. (4) Assume 
I§jPBCS = I§jA'B'C'D' with B-P-A or B-A-P. Then l>DAPSD= 0, 
a contradiction. • 

26.2 PARALLEL LINES 

Parallelism is not an equivalence relation on the set of lines. By 
Proposition C of Theorem 23.7 there exist lines l, m, n such that 
111 m, m II n, but 1,/1' n. Suppose point P is off line m. If 1 and n are two 
lines through P that are parallel to line m, then 1 and n are certainly 
not parallel. We know there are two lines that are the bounds for the 
lines through P that are parallel to m. These bounds are of critical 
importance. (Horos means "boundary" in Greek.) 

~ ~ 

DEFINITION 26.9 If AB and CD are equivalent or the sides of a 



PARALLEL LINES 339 

closed biangle, then we say the rays are horoparallel or critically 
~ ~ 

parallel and write AB I CD. If a rayon line l is horoparallel to a ray 
on line m, then we say the lines are horoparallel or critically parallel 
and write II m. 

~~ ~ ~ ~----:. 

So AB I CD iff either AB ~ CD or uBACD is closed. AB I CD im-
~ ~ 

plies AB II CD, but not conversely. Critical parallelism for lines is of 
secondary importance to critical parallelism for rays. A comparison of 
the next theorem with the following statement should suggest the 
importance of critical parallelism for rays. Playfair's Parallel Pos-

~ ~ 

tulate: If point P is off AB, then there exists unique PQ such that 
~ ~ 

PQIIAB. 

~ ~ 

Theorem 26.10 If point P is off AB, then there exists unique PQ such 
~ ~ 

thatPQ lAB. 
~ ~ 

Proof If P is on AB the result is trivial. For P off AB the result is a 
restatement of Corollary 24.10. • 

Corollary 26.11 If point P is off line l, then there exist exactly two 
lines through P that are horoparallel to l. 

A glance back at Figure 26.2 should show that the following 
theorem does have some content. 

~ ~ ~ --?> ---?> 

Theorem 26.12 If AB, CD, EF are three lines such thatAB I CD and 
---> ---> 

AB I EF, then there exists a fourth line which intersects the three 
lines. 

~ ~ ~ 

Proof Since CE intersects both CD and EF, we may suppose C and 
~ ~ ~ 

E are on the same side of AB as otherwise CE also intersects AB by 
~ 

PSP. Then there exists AH with H in int (LBAC) and in int (LBAE) 
by the Protractor Postulate. Since LJBACD and LJBAEF are both 

---?> ~ ~ ~ 

closed, AH must intersect CD and EF. Hence AH is a desired fourth 
line .• 

---?>~ ---?>---?> ~--;) 

That AB I AB and that AB I CD implies CD I AB are trivial ob-
servations from Definition 26.9. We shall use these facts in proving 
the following nontrivial theorem, which states the remaining require­
ment for critical parallelism to be an equivalence relation on the set 
of all rays. 

~ --;) ~ --;) ---?>--;) 

Theorem 26.13 If AB I CD and CD I EF, then AB I EF. 
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----> ----> ----> 
Proof We may suppose no two of AB, CD, EF are equivalent as 
otherwise the result follows immediately from the fact that a biangle 

~ ~ ~ 

equivalent to a closed biangle is closed. So AB, CD, EF are three lines, 
uBACD is closed, uDCEF is closed, and we want to show uBAEF 
exists and is closed. Since the three lines have a common transversal 
by the preceding theorem and since a biangle equivalent to a closed 
biangle is closed, we may suppose A, C, E are collinear without loss 
of generality. There are three cases. ~ ~ 

First suppose A -C -E. (See Figure 26.5.) Then AB and EF are on 
~ ----> 

opposite sides of CD. So LJBAEF. Let AG be any interior ray of L BAC. 
----> ----> 

Since LJBACD is closed from A, then AG intersects CD at some point 
----> ----> 

H. Let I and J be such that A -H -I and HJ - CD. So LJJHEF-
----> ----> 

uDCEF and uJHEF is closed from H. Hence HI intersects EF. So 
----> ----> 

AG intersects EF. So uBAEF is closed froJll A. Therefore, LJBAEF 
----> ----> 

is closed and AB I EF. 
----> 

Now suppose A-E-C. Let AK be the unique ray (Theorem 
--:l> ~ --:l> ~ ----310 ~ 

26.10) such that AK I EF. Then AK I EF, EF I CD, and A - E - C. This 
is exactly the situation of the first case (only with different letters). 

~--:l> --:»----?- ~---4-

Hence AK I CD: Then, since AB I CD, we must have AK=AB. There-
----> ----> 

foreAB IEF. 
----> 

Finally, suppose E-A-C. Let EL be the unique ray such that 
~~ ~~~~ 

EL lAB. Then EL lAB, AB I CD, and E-A-C. Again, this is exactly 

C D D 
FIGURE 26.5 
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~ ~ ~ ~ 

the situation of the first case. Hence EL I CD. Then, since EF I CD, we 
~ ---+ ---+ ---+ ---+---+ 

must have EL=EF. Therefore EF I AB and AB I EF. • 

Corollary 26.14 Critical parallelism is an equivalence relation on 
the set of all rays. 

Two distinct horoparallel lines cannot have a common per­
pendicular because a critical angle is always acute. Of course, two 
parallel lines can have at most one common perpendicular because 
rectangles do not exist. 

DEFINITION 26.15 If lines 1 and m have a common perpendicular 
then we say the lines are hyperpamllel. 

Our next theorem shows that two parallel lines must be either 
horoparallel or hyperparallel. (Hyper means "over" in Greek.) One 
could write "1111 m" as a blackboard shorthand for "1 hyperparallel 
to m." An historical argument against this is that Bolyai used this 
notation to denote critical parallelism. (We have been more conserva­
tive than Bolyai by two bars.) The notation was selected by Bolyai 
to express the fact (Theorem 26.19) that horoparallels are asymptotic. 
We now show that there are only the two kinds of parallelism in our 
geometry. The theorem and its corollary are equivalent to Saccheri's 
Proposition XXIII. 

Theorem 26.16 If two lines are parallel but not horoparallel, then 
the two lines are hyperparallel. 

Proof Suppose lines m and n are parallel but not horoparallel. So 
~ 

m ¥- n. Let n=PQ and let A be a point on m. (See Figure 26.6.) LetB 
-~ -4 --+---+ 

and C be such that AB I QP and AC I PQ (Theorem 26.10). Since m is 
not horoparallel to n, then Band C are two points on the same side of 

p N Q 

FIGURE 26.6 
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~ 

m as n. If AB .1 m, let D = A; otherwise, let D be on m such that 
+-+ 

mLBAD = [l(AD) (Theorem 24.16). If AC 1 m, let E = A; otherwise, 
--> --> 

let E be on m such that mLCAE = n (AE). D # E because AB # AC. 
--> 

Let F and G be points on the same side of m as n such that DF .1 m 
~ ~ ~ ~----+ 

and EG.l m. Then DF I AB and EG I AC (Definition 24.11). Since 
-----:. ~ ~ ~ ~----+ 

DF I AB and AB I QP, then QP I DF (Corollary 26.14). Likewise 
--> --> 

PQIEG. 
Let M be the midpoint of DE. Let N be the foot of the perpendic-

----+ ----+ ---+---+ 

ular from M to n. Let K and L be such that MK I QP and ML I PQ. 
Now LNMK = LNML because LNMK and LNML are critical angles 

-- ---+ ---+ ---+ ----)0 ----+----+ 
for MN. Since MK I QP and QP I DF, then MK I DF. Since L MDF is 

-> -> 
right, then LKMD is a critical angle for DM. Likewise, ML I EG and 
LLME is a critical angle for ME. From DM = ME, it follows that 
LKMD = LLME. Hence LNMD and LNME are a linear pair of con-

~ 

gruent angles. So LNMD is a right angle. Therefore MN is perpendic-
ular to both m and n. • 

Corollary 26.17 If land m are distinct lines, then exactly one of the 
following holds: (i) land m intersect, (ii) land mare hyperparallel, 
(iii) land mare horoparallel. 

If two lines m and n intersect at point C, then the distance from 
a point P on m to line n increases without limit as CP increases 
(Aristotle's Axiom). Now suppose m and n are two hyperparallellines 

~ 

with common perpendicular MN where M is on m and N is on n. Then 
MN is the shortest distance from a point on m to line n, and the dis­
tance from a point P on m to line n increases as MP increases (Theo­
rem 22.9). We shall now show this distance increases without limit. 
Thus two hyperparallel lines are often described as converging 
toward their common perpendicular and then diverging. 

Theorem 26.18 If t > 0 and [gNMAB, then there exists a pointP on 
-> ~ 

MA whose distance to NB is greater than t. 

-> -> 
Proof Let NE I MA. So LBNE is acute. (See Figure 26.7.) By Aris-

--> ~ 

totle's Axiom, let R be a point on NE whose distance to NB is greater 
~ 

than t. Let Q be the foot of the perpendicular from R to NB. Let 
~ ~ 

N-R-S and Q-R-T. Since RQIIMN, then T is in int (LMRS). 
--> 

Since uSNMA is closed, then uSRMA is closed and RT intersects 
-> 

MA at some point P. So P-R-Q with RQ > t. Therefore PQ > t .• 
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FIGURE 26.7 

- -Finally, suppose AB and CD are two horoparallel lines with 
~~-- --

BA I CD, BC 1.. CD, and AD 1.. CD. (See Figure 26.8.) Since critical 
angles are acute, then LCBA is acute and LDAB is obtuse. So BC > 
AD (Theorem 21.8). It follows that the distance from a point S on 
~ +-+ 

AB to line CD increases as AS increases. That this distance increases 
without limit is proved in much the same way as Theorem 26.18. In 

~ -the other direction, if P is on BA, then the distance from P to CD de-
creases as BP increases. It seems quite possible that this distance is 
always greater than some constant. However this is not the case. Two 
horoparallellines are asymptotic (Saccheri's Proposition XXV)! 

Theorem 26.19 Let t be any positive real number. If m and n are two 
horoparallel lines, then there exists a unique point P on m whose dis­
tance to line n is t. 

Proof Suppose LJABCD is closed with BC 1.. CD. (See Figure 26.8.) 
~ ~ 

Let R be such that CR I AB. So LBCR is acute (Corollary 26.6). By -Aristotle's Axiom we may suppose the distance from R to CD is greater -than t. Let T be the foot of the perpendicular from R to CD. So RT > t. 
By the same reasoning as in the proof of the preceding theorem, we 

~ ~ 

know TR must intersect AB at some point Sand ST > t. 
LetE be such that S-E-Twith TE=t. (See Figure 26.9.) LetF 

---. ~ ---+ ---+ ~ ---+ ---+---+ 
and G be such that EF I DC and EG I CD. Since EG I CD and CD I SA, 

s B A m 

D n 
FIGURE 26.8 
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T C I Q D 

FIGURE 26.9 

- -then uGESA is closed from E. So FE intersects SA at some point H. 
--

Let P be the point such that S - H - P and PH = EH. Let I be the foot of -the perpendicular from H to CD. LIHE = LIHP because LIHE and 
LIHP are both critical angles for HI. Hence 6. PHI = 6.EHI by SAS. -With Q the foot of the perpendicular from P to CD, it follows that --
6.PIQ = 6.EIT by SAA. So PQ = ET. Therefore PQ= t. Thus P is a -point whose distance to CD is t. -P is unique as otherwise AB contains the upper base of a Saccheri - --quadrilateral whose lower base is on CD. In that case AB and CD 
would be both hyperparallel and horoparallel, a contradiction (Corol­
lary 26.17). • 

Although every line in the Bolyai - Lobachevsky plane is iso­
morphic to a Euclidean line, the plane has properties quite different 
from those of the Euclidean plane. 

26.3 EXERCISES 

• 26.1 Theorem 26.4. 

• 26.2 There exist three lines with no common transversal. 

• 26.3 Is it true that lines m and n are hyperparallel iff the lines 
contain equivalent rays or the lines contain the sides of a biangle that 
is not closed? 

26.4 If LABC and LPQR are any angles, then int (LABC) contains 
an angle congruent to LPQR. 

• 26.5 True or False? 

-- -- --(a) AB I CD and CD I EF implies AB I EF. -- -- --(b) AB" CD and CD "EF implies AB "EF. 
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~~ ~~ ~~ 

(c) AB I CD and CD I EF implies AB II EF. 
~~ ~~ ~~ 

(d) AB I CD and CD I EF implies AB I EF. 

(e) If LJABCD is closed, then n(BC) = mLABC. 

CD If LJABCD is closed, then LB or LC is acute. 

(g) If LJABCD is closed, then LB and LC are acute. 

(h) The perpendicular bisectors of the sides of a triangle are 
concurrent. 

(i) The angle bisectors of the angles ofa triangle are concurrent. 

(j) Any three points not on a line are on some circle. 

~ ~ 

26.6 If AB and CD are two horoparallel lines, then exactly one of 
~ ~~ ---?o~ ~---+---+ 

the following holds: AB I CD, AB I DC, BA I CD, BA I DC. 

26.7 Every biangle is equivalent to an isosceles biangle. 

26.8 If a biangle is not closed, then its interior contains a line. 

26.9 If a line intersects the interior of a closed biangle, then the 
line intersects the biangle. 

26.10 If LJABCD is not closed, then int (LJABCD) contains two 
~ ~ 

perpendicular lines each of which is hyperparallel to both AB and CD. 

26.11 The Angle-Base Tp.eorem and the Angle-Angle Theorem both 
fail for biangles in general. 

~ ~ 

• 26.12 Define AB to be hyperparallel to CD if the rays are equiva-
lent or the sides of a biangle equivalent to an isosceles biangle with 
right angles. This hyperparallelism is not an equivalence relation on 
the set of all rays. 

26.13 Two Saccheri quadrilaterals with the same defect need not 
be congruent. 

26.14 If 0 < s < 7T/2 and LJABCD is closed, then the biangle is equiva­
lent to a biangle with one angle right and the other of measure s. 

26.15 Draw the figure for Theorem 26.16 that covers the case when 
LBAH is obtuse where H is on m and Hand P are on opposite sides of 
~ 

AB. Show that this case is possible. 

26.16 A line in the interior of an angle does not intersect the in-
side of the angle. ' 

26.17 Give a reasonable definition for direction. 
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• 26.18 If P, Q, R, S are, respectively, the midpoints of sides AB, 
---
BC, CD, DA of OABCD, then DPQRS. We call OPQRS a Varignon 
quadrilateral, since Varignon showed that in the Euclidean plane 
such a quadrilateral is a parallelogram. State as many results about 
Varignon quadrilaterals as you can. 

*26.19 Can SAS and HPP be replaced by AAA in the axioms for the 
Bolyai - Lobachevsky plane? 

GRAFFITI 

Either for the data from Figure 26.10 or for the data from 
Figure 26.11, with Definitions 31.1 and 32.18 it follows that 

Il(l) + Il(e+ m) = Il(b), 

Il(l+ b) + Il(m-a) = Il(O), 

Il(l) + Il(b) = Il(e- m). 

Further, 

Il(m) + Il(e+ l) =Il(a), 

Il(m+a) + Il(l-b) =Il(O), 

Il(m) + Il(a) = Il(e-l), 

FIGURE 26.10 

Also, 

Il(e) + Il(m+ b*) = Il(a), 

lI(e) + Il(a) =lI(m-b*), 

Il(l) + Il(a*+ b*) = Il(m*), 

lI(l) + lI(m*) = Il(a*- b*), 

lI(e) + Il(l+a"') =lI(b), 

lI(b+e) +lI(a*-m*) =Il(O), 

lI(e) +Il(b) =lI(l-a*). 

c 

m* 

a 

FIGURE 26.11 

lI(O) =Il(e+a) +lI(b*-l*), 

lI(O) =Il(c-a) +lI(b*+l*), 

Il(O) =Il(a*-e*) +lI(m+l*), 

lI(O) =Il(a*+e*) +lI(m-l*). 



CHAPTER 27 

Brushes and Cycles 

27.1 BRUSHES 

In Euclidean geometry the set of all lines passing through a point is 
called a pencil. (The term comes from the former use of the word for 
an artist's paintbrush.) The set of all lines parallel to a given line in 
the Euclidean plane is called a parallel pencil. To be useful this second 
idea must be refined for the Bolyai - Lobachevsky plane where we have 
two distinct types of parallelism. 

DEFINITION 27.1 The set of all lines through a point C is a pencil 
wrth center C. The set of all lines perpendicular to a line c is a hyper­
pencil with center c. The set b of all lines containing a ray horoparallel 
to a given ray is a horopencil with center b. A brush is anyone of a 
pencil, a hyperpencil, or a horopencil. 

The center of a pencil is obviously unique. The center of a hyper­
pencil is also unique since there do not exist rectangles. Since pencils 
and hyperpencils have natural centers, it would seem unfair for a 
horopencil not to have a unique center too. Because horoparallelism is 
an equivalence relation for rays, no particular ray or line could be 
designated as the unique center of a horopencil. Thus we have defined 
the center of a horopencil to be itself. Although this may seem a little 
odd at first, the convention will make the statement of some theorems 
easier. 
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p 

c 

FIGURE 27.1 

Every brush has a unique center. The center of a pencil is a point. 
The center of a hyperpencil is a set of points, namely a line. The cen­
ter of a horopencil is a set of lines, namely the horopencil itself. We 
shall frequently use the phrase "point P is off the center of brush b." 
If b is a pencil with center C, then this means P #- C. If b is a hyperpen­
cil with center c, then the phrase means P is off c. If b is a horopencil, 
then the phrase places no restriction on P since the center of a horo­
pencil does not contain any points but is a set of lines. 

Theorem 27.2 If point P is off the center of brush b, then there is a 
unique line through P that is in b. Any two distinct lines are in a 
unique brush. 

~ 

Proof If b is a pencil with center C, then PC is the unique line 
through Pin b by the Incidence Axiom. If b is a hyperpencil with cen­
ter c, then the perpendicular from P to c is the unique line through P 
in b (Theorem 18.1). If b is the horopencil of all lines containing a ray 

~ ~ ~ ~ 

horoparallel to AB and PQ I AB, then PQ is the unique line through 
Pin b (Theorem 26.10). The second statement in the theorem is essen­
tially a restatement of Corollary 26.17. • 

Theorem 27.3 Any two horopencils have a unique line in common. 

Proof Exercise 27.4. • 
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Other theorems concerning the intersection of two brushes are 
relegated to the exercises. We shall turn to some theorems that will 
be more useful later. 

Theorem 27.4 If uBACD is closed and isosceles, then the perpendic-
~ ~ 

ular bisector of the base AC is in the same horopencil as AB and CD. 
- -Proof Let M be the midpoint of AC. Let MN be the unique ray such 

---:;.. -~ --.,. ~ ~ ~ 

that MN I AB. (See Figure 27.2.) Hence MN I CD as AB I CD. Thus 
~ ~ ~ 

AB, CD, and MN are in the same horopencil. Also, uBAMN and 
- -

uDCMN are closed. Since AM"" MC and LA = LC, we have 
uBAMN = uDCMN by the Angle-Base Theorem (Theorem 24.8). So 

~ 

LAMN and LCMN are a linear pair of congruent angles. Thus MN is 
the perpendicular bisector of AC. • 

Theorem 27.5 If three distinct lines have a common transversal 
and each of the three lines is horoparallel to the other two, then the 
three lines are in one horopencil. 

~ ~ ~ ~ 

Proof Suppose A - C - E, AB I CD, and EF is horoparallel to both AB 
~ ~ ~ ~ 

and CD. We wish to show that AB, CD, and EF are in a horopencil. - -Let B'-A-B and D'-C-D. (See Figure 27.3.) If either EF I AB or 
~ ~ ~ ~ ~ 

EF I CD, then each of AB, CD, and EF is horoparallel to the other two 
and the three lines are in one horopencil by definition. Assuming 

~ ~ ~ ------+ ~------+ 

otherwise, we must have EF I AB' and EF I CD'. So AB' I CD'. Hence 
~ 

uBACD and uB'ACD' are both closed from A. Therefore, AB is the 
~ 

only line through A parallel to CD, contradicting HPP .• 

We know the perpendicular bisectors of the sides of a triangle 
are not necessarily concurrent (Proposition H of Theorem 23.7). How-

A 

M N 

C 
FIGURE 27.2 
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B' 

D' 

F2 

FIGURE 27.3 

A 

c 

E 

B 

D 

ever, if the perpendicular bisectors are not in a pencil, then they must 
be in either a hyperpencil or a horopencil. 

Theorem 27.6 The three perpendicular bisectors of the sides of a 
triangle are in a unique brush. 

Proof Let a, b, c be the perpendicular bisectors of the three sides of 
b..ABC opposite A, B, C, respectively. Now a, b, c are distinct as other­
wise there is a triangle with two right angles. Let b be the unique 
brush containing a and b. We must show c is in b. If b is a pencil with 
center Q, then Q is equidistant from A, B, C. Then Q must be on c. 
Thus c is in b if b is a pencil. 

Suppose b is a hyperpencil with center l. Let D and E be the mid-
- -

points of BC and AC, respectively. A, B, C, D, E are off 1 since a tri-
angle has at most one right angle. Let A', B' , C' , D' , E' be the feet of the 
perpendiculars to 1 from A, B, C, D, E, respectively. (See Figure 27.4.) 
Again, since a triangle has at most one right angle, A', B', C', D', E' 

c 

AF---~---+--':----+-----~B 

A' 

FIGURE 27.4 

E' B' 
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A 

~ 
B K L C 

FIGURE 27.5 

~~~~~ 

are distinct. AA',BB', CC', DD', EE' are inb. SoA-E-C andC-D-B 
implies A'-E'-C' and C'-D'-B'. Thus A is in int (LA'E'E), B is 
in int (LB'D'D), and C is in both int (LC'E'E) and int (LC'D'D). 
By SAS, t:::.AEE' = t:::.CEE' and t:::.CDD' = t:::.BDD'. Then, by SAA, 
t:::.AE'A'=t:::.CE'C' and t:::.CD'C'=t:::.BD'B'. So AA'=CC'=BB'. 
Hence I§] A' ABB', and c, the perpendicular hisector of AB, must be the 

~ 

perpendicular bisector ofA'B'. Since l=A'B', we have c 1.1. Therefore, 
c is in b if b is a hyperpencil. 

Finally, suppose b is a horopencil. By the previous cases, c must 
be horoparallel to both a and b. To show c is in b, it is sufficient to show 
a, b, c have a common transversal (Th~orem 27.5). Suppose BC is a 
longest side of t:::.ABC. Then mLA s;;; mLB and mLA s;;; mLC. So there 
exist points K and L on BC such that LBAK = LB and LCAL = LC. 
(See Figure 27.5.) It follows that K is on the perpendicular bisector 

- -
of AB and that L is on the perpendicular bisector of AC. Hence BC in­
tersects a, b, and c. Therefore, c is in b if b is a horopencil. • 

27.2 CYCLES 

Each brush can be used to define a particular relation on the set of all 
points. 

DEFINITION 27.7 If P and Q are points, then P is equivalent to 
Q with respect to brush b if there is a line 1 in b such that PIP = Q. That 
point P is equivalent to point Q with respect to a given brush is writ­
tenP-Q. 

The following restatement of the definition is designated as a 
theorem for emphasis. 

Theorem 27.8 If P and Q are two distinct points, then P - Q with re­
spect to brush b iff the perpendicular bisector of PQ is in h. P - P with 
respect to brush b for any point P. 
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Proof Follows from the definition of a reflection (Definition 19.4). • 

Theorem 27.9 If P, Q, R are three distinct points on line c such that 
P - Q and Q - R with respect to brush b, then b is the hyperpencil 
with center c and P - R with respect to b. 

---
Proof Let I, m, n be the perpendicular bisectors of PQ, QR, PR, re-
spectively. Since P, Q, R are distinct and on c, then I, m, n are distinct 
lines perpendicular to c. Since P - Q with respect to brush b, then 1 is in 
b. Since Q - R with respect to brush b, then m is in b. Hence b is the 
hyperpencil with center c (Theorem 27.2). Further, P - R with respect 
to b because n is in b. • 

Theorem 27.10 Equivalence of points with respect to a given brush 
is an equivalence relation on the set of all points. 

Proof Equivalence of points with respect to a given brush b is reflex­
ive and symmetric (Theorem 27.8). We need to show that if P, Q, R 
are distinct points such that P - Q and Q - R with respect to b, then 
P - R with respect to b. If P, Q, R are collinear, then this transitivity 
is given by the preceding theorem. If ~PQR, then the perpendicular 
bisectors of PQ and QR are in b (Theorem 27.8). Hence the perpendic­

ular bisector of PR is in b because the perpendicular bisectors of the 
sides of a triangle are in one brush (Theorem 27.6). Therefore, P - R 
with respect to b. • 

Theorem 27.11 If 1 and m are in the horopencil band pointP is on I, 
then there exists a unique point Q on m such that P - Q with respect 
tob. 

Proof If 1 = m, then P - Q iff P = Q since the perpendicular bisector 
of a segment on a line of b cannot be in b. (Two lines of a horopencil 
are parallel and cannot be perpendicular.) Suppose I,t. m. By the hy-

~ ~ 

pothesis we may suppose I=PA, m=QD, and LJAPQD is closed. We 
may further suppose LJAPQD is isosceles since a closed biangle with 
vertex P is equivalent to an isosceles closed biangle with vertex P 
(Theorem 24.3). Hence the perpendicular bisector of PQ is in b (Theo­
rem 27.4). So P - Q with respect to b. Assume Q2 is a second point on 
m corresponding to P. Then ~PQQ2 with the perpendicular bisector 
of PQ2 in b. Since the perpendicular bisectors of the sides of a triangle 
are in one brush (Theorem 27.6), we have the contradiction that the 
perpendicular bisector of QQ 2 is in horopencil b and perpendicular to 
a line of b. Therefore, Q is the unique point on m such that P - Q with 
respect to horopencil b. • 
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Q D m 
FIGURE 27.6 

~ ~ 

Theorem 27.12 If AP and BQ are in the hyperpencil b with center 

JB, then P - Q with respect to b iff I§jAPQB. If land m are in the hy­
perpencil b and point P is on l, then there exists a unique point Q on m 
such that P - Q with respect to b. 

~ ~ ~ 

Proof Suppose AP and BQ are in the hyperpencil b with center AB 
and P - Q with respect to b. Then the perpendicular bisector of 
- ~ 

PQ is perpendicular to AB (Theorem 27.8), say at point N. Let M be 
the midpoint of PQ. Then A -N - B follows from P - M - Q. Further, 
[QNMPA and [QNMQB implies I§jAPQB. Conversely, if I§jAPQB, 
then P - Q with respect to b since the perpendicular bisector of the 
lower base of a Saccheri quadrilateral is the perpendicular bisector 
of the upper base. The second statement in the theorem follows from 
the first when land m are distinct. When l = m, P - Q iff P = Q be­
cause the perpendicular bisector of a segment on a line cannot be 
hyperparallel to that line. • 

Theorem 27.13 P - Q with respect to the pencil with center C iff 
CP=CQ. 

Proof If P= C, then P - Q iff Q= C. If P 0;6 C, then P - Q iff C is on 
the perpendicular bisector of PQ (Definition 27.7). Hence P - Q iff 
CP=CQ (Theorem 18.5) .• 
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Let b be the pencil with center C. Then point C is equivalent only 
to itself with respect to b. Thus {C} is an equivalence class (see Section 
1.3) for the relation of equivalence with respect to b. This set, which 
contains just one point, could be considered a degenerate circle. The 
equivalence classes determined by b that contain a point off the center 
of b are the circles with center C. 

Theorem 27.14 Let b be a pencil with center C. The equivalence 
classes for the relation of equivalence with respect to b are the con­
centric circles with center C and {C}. 

Proof The theorem follows from the preceding theorem and the defi­
nition of a circle. • 

The first two statements in the next· definition are analogous to 
the following: If P is a point off the center C of pencil b then the set of 
all points Q such that P - Q with respect to b is a circle with center C. 

DEFINITION 27.15 If P is a point off the center c of hyperpencil b 
then the set of all points Q such that P - Q with respect to b is a hyper­
circle with center c. If P is a point and b is a horopencil, then the set of 
all points Q such that P - Q with respect to b is a horocircle with cen­
ter b. A cycle is anyone of a circle, a hypercircle, or a horocircle. Cycles 
having the same center are concentric. A cycle and a brush having the 
same center are also said to be concentric. If A and B are distinct 
points on a cycle, then AB is a chord of the cycle. 

b 

FIGURE 27.7 
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------------------c ------Concentric hypercirc1es Concentric horocircles 

From Definition 27.15 we immediately have two theorems analo­
gous to Theorem 27.14. 

Theorem 27.16 Let b be a hyperpencil with center c. The equivalence 
classes for the relation of equivalence with respect to b are the con­
centric hypercircles with center c and the line c. 

Theorem 27.17 Let b be a horopencil. The equivalence classes for the 
relation of equivalence with respect to b are the concentric horocircles 
with center b. 

Suppose C is a point, c is a line, and b is a horopencil. Every point 
P with P ~ C is on a unique circle with center C. Every point P off c 
is on a unique hypercircle with center c. Every point P is on a unique 
horocircle with center b. All these statements are contained in the 
following theorem. 

Theorem 27.18 Every point off the center of a brush is on a unique 
cycle concentric with the brush. 

Proof Equivalence classes are either identical or disjoint. (See 
Section 1.3.) • 

Theorem 27.19 Three distinct noncollinear points are on a unique 
cycle. Two cycles intersect in at most two points. No three points of a 
cycle are collinear. A cycle is exactly one of a circle, a hypercircle, or a 
horocircle. 

Proof Suppose P, Q, R are distinct points. We can have P - Q and 
Q - R with respect to one and only one brush since two lines deter­
mine a unique brush (Theorem 27.2) and the perpendicular bisectors 
-- --

of PQ and QR are in the brush (Theorem 27.8). Hence, if P, Q, Rare 
not collinear, then the three points lie on a unique cycle (Theorem 
27.18). If P, Q, R are on line c, then the brush is the unique hyperpencil 
with center c (Theorem 27.9), but c is not a cycle by definition. • 
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In Euclidean geometry a set of points is said to be concyclic if 
the points lie on one circle. Of course, any three noncollinear points are 
concyclic in the Euclidean plane. For the hyperbolic plane, we know 
that three noncollinear points do not necessarily lie on a circle. How­
ever, such points do lie on a cycle. So, in our geometry, any three non­
collinear points are concyclic provided the word means that the points 
lie on a cycle. Because of the possible confusion, we shall avoid the word 
concyclic altogether in the theory. 

Theorem 27.20 The locus of all points equidistant from line c and 
on one side of c is a hypercircle with center c. 

Proof Restatement of Theorem 27.12. • 

Because of Theorem 27.20, a hypercircle is often called an equi­
distant curve. A hypercircle is also called an ultracircle or a hypercycle. 
A horocircle is also called a limiting curve, a critical circle, or a horo­
cycle. 

27.3 EXERCISES 

• 27.1 There exists a pentagon with five right angles. 

• 27.2 Describe the brushes in the Cayley-Klein Model. 

27.3 If land m are lines and fF is an isometry, then fFl and fFm inter­
sect iff land m intersect, are hyperparallel iff land mare hyper­
parallel, and are horoparallel iff land mare horoparallel. 

• 27.4 Any two horopencils have a unique line in common. 

• 27.5 True or False? 

(a) Two lines cannot have two common perpendiculars. 

(b) Each of the set of all pencils, the set of all hyperpencils, the 
set of all horopencils, the set of all circles, the set of all hyper­
circles, and the set of all horocircles is fixed under any isometry. 

(c) If LJABCD is closed and isosceles, then n (1f2BC) = mLABC. 

(d) A hyperpencil is not a pencil. 

(e) A pencil is a brush, but a brush may not be a pencil. 

(f) A line intersects a cycle in at most two points, and two cycles 
intersect in at most two points. 
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(g) If l is a line and b is a brush, then P1b = b iff l is in b. 

(h) The perpendicular bisector of a chord of a cycle concentric 
with brush b is in b. 

(i) Two concentric cycles are disjoint. 

(j) If each of three lines is horoparallel to the other two, then 
the three lines are in a horopencil iff the three lines have a com­
mon transversal. 

27.6 Let land m be two hyperparallellines. All the transversals to 
land m that form congruent corresponding angles with land m lie 
in a pencil. 

27.7 Each of the three cases in the proof of Theorem 27.6 is possible. 

27.8 If land m are in the pencil b with center C and point P is on l 
with P ¥- C, then there exist exactly two points on m that are equiva­
lent to P with respect to b. 

27.9 Let land m be distinct lines in brush b. LetP and Q be points on 
~ 

land m, respectively. Then, P - Q with respect to b if P= Q or PQ is 
a transversal to land m such that the interior angles intersecting one 

~ 

side of PQ are congruent . 

• 27.10 Give the exact value of n for each of the following state­
ments, but write "00" for "an infinite number of." 

(a) If two lines intersect, there are n lines horoparallel to both. 

(b) If two lines are hyperparallel, there are n lines horoparallel 
to both. 

(c) If two lines are horoparallel, there are n lines horoparallel 
to both. 

(d) There are n circles through two distinct points. 

(e) There are n hypercircles through two distinct points. 

(f) There are n horocircles through two distinct points. 

(g) There are n lines common to two pencils. 

(h) There are n lines common to two hyperpencils whose centers 
are hyperparallel. 

(i) There are n lines common to two hyperpencils whose cen­
ters are not hyperparallel. 

(j) There are n lines common to two horopencils. 
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e27.11 What is the intersection of two brushes? 

27.12 Describe the brushes in the Poincare Model. 

27.13 If the vertices of DABCD are on a cycle, then mLA + mLC= 
mLB+mLD. 

27.14 Through any point P on a circle there is exactly one line that 
intersects the circle only at P. Through any point P on a hypercircle 
there are an infinite number of lines that intersect the hypercircle 
only at P. 

27.15 Through any point P on a horocircle there are exactly two 
lines that intersect the horocycle only at P. 

27.16 Suppose point P is on a cycle concentric with brush b. Let 1 
be the line in b through P. Let t be the perpendicular to 1 at P. Then 
every point of the cycle except P is on the same side of t. Further, t 
is the unique line with this property. 

27.17 Why would an etymologist prefer either ultracircle or hyper­
cycle to hypercircle? 

*27.18 Are the three medians of a triangle concurrent? Are the three 
altitudes of a triangle concurrent? 

*27.19 Let AB be a longest side of !J.ABC. Then A, B, C are on a cir­
cle, a horocircle, or a hypercircle iff mLC is respectively less than, 
equal to, or greater than n(AC/2) + n(BC/2). 

*27.20 Find the cycles in the Poincare Model. 

GRAFFITI 

The most frequently told story about Janos Bolyai concerns the 
succession of duels he fought with thirteen of his brother officers. As 
a consequence of some friction, these thirteen officers simultaneously 
challenged Janos, who accepted with the proviso that between duels 
he should be permitted to playa short piece on his violin. The 
concession granted, he vanquished in turn all thirteen of his 
opponents. What is seldom told is what happened very shortly after 
the batch of duels. Janos was promoted to a captaincy on the 
condition that he immediately retire with the pension assigned his 
new rank. The government felt bound to consult its interests, for it 
could hardly suffer the possibility of such an event recurring. 

Howard Eves 
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Hypercircles and horocircles have many properties in common 
with circles. Whether one verifies the result (Exercise 2720) or not, 
it is interesting to see the cycles in the Poincare Model. 
Surprisingly, the circles are the Euclidean circles in the model, and 
conversely. (The Euclidean center and the hyperbolic center coincide 
only when both are at the origin.) Every cycle is a subset of a 
Euclidean circle or of a Euclidean line. Concentric cycles are 
illustrated in Figure 27.9. 

•••• ° 0 

Concentric circles 

FIGURE 27.9 
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Concentric hypercirc1es 
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Concentric horocircles 



CHAPTER 28 

Rotations, Translations, and 
Horolations 

28.1 PRODUCTS OF TWO REFLECTIONS 

In this chapter we consider products of reflections in lines from one 
brush. In particular, such isometries fix those cycles that are concen­
tric with the brush. Check Definition 20.1 if you don't recall what a 
line of symmetry is. 

Theorem 28.1 If cycle J<f and brush b are concentric, then l is a line 
of symmetry for d iff l is in b. 

Proof If l is a line of symmetry for d, then l is the perpendicular 
bisector of a chord of d and hence (Theorem 27.8) is in b. Conversely, 
if l is in b, then l is a line of symmetry for d by the definition of d. • 

Figure 28.1 should explain the statement of the next theorem. 
If b is a pencil with center C, then every line in b intersects a circle 
with center C at two points. (Compare this with Theorems 27.11 and 
27.12.) This explains the necessity of some additional hypothesis in 
the theorem when b is a pencil. 

Theorem 28.2 Let s1 and f!IJ be two cycles concentric with brush b. 
Let m and m' be two lines in b such that m intersects d and f!IJ at A 
and B, respectively, and m' intersects s1 and f!IJ at A' and B', respec-
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B 

c 

A' B' 

b 

FIGURE 28.1 

tively. If b is a pencil with center C, suppose A-B-C and A' -B' -C. 
Then AB=A'B' and the perpendicular bisector 'of AA' is the per­
pendicular bisector of BB'. 

Proof Let l be the perpendicular bisector of AA'. So PIA = A', and l -is in b (Theorem 27.8). Then, since land m are in b with m=AB, we 
have P1m is the line in b through A'. Thus Plm = m' and PIB is on m'. 
Further, since p/liJ = YJ by the preceding theorem, we have PIB is on YJ. 
Hence PIB=B'. Therefore, l is the perpendicular bisector of BB' and 
AB=A'B' .• 

Complete familiarity with Theorem 19.10 will be assumed with­
out further mention throughout our study of isometries. Let's recall 
the three important statements from this theorem: Every isometry is a 
product of at most three reflections. If an isometry fixes a point, then the 
isometry is either a reflection or a product of two reflections. If an isom­
etry fixes two points on line l then the isometry is either the reflection in 
l or the identity. 

If a is a line, then PaPa is the identity. We now consider PbPa 

where a and b are distinct lines. Remember PbPa is Pa followed by Pb' 
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There are three cases depending on which type of brush is determined 
by a and b. The next definitions are crucial. Everything depends on 
knowing the meaning of the words we use. 

DEFINITION 28.3 Let a and b be two distinct lines in brush b. 
If b is a pencil with center C, then PbPa is a rotation with center C. 
If b is a hyperpencil with center c, then PbPa is a translation with 
center c. If b is a horopencil with center b, then PbPa is a horolation 
with center b. 

If a and b are two intersecting lines, then PbPa is a rotation. If 
a and b are two hyperparallel lines, then PbPa is a translation. If a 
and b are two horoparallellines, then PaPa is a horolation. A transla­
tion may also be called a hyperlation. A horolation may also be called 
a criticallation or a parallel displacement. (Pronouncing the "h" in 
"horolation" is optional.) By our choice of definitions, the identity isom­
etry is neither a rotation, a translation, nor a horolation. 

At present all we know about rotations, translations, and horo­
lations is their definitions! The terms rotation and translation are 
familiar. Do not fall into the intellectual trap of assuming these isom­
etries have properties that are associated with the words in Euclidean 
geometry. Of course, they do or we would use different names! How­
ever we must prove this. Pedagogically it might be preferable to use 

a 
b 

P bP a is a rotation. 

a b 

c 

P bP a is a translation. PbPa is a horolation. 

FIGURE 28.2 
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b 

P P' 

FIGURE 28.3 

hyperlation instead of translation, to call rotations by some other 
name such as pencillations, and then to discover the properties of 
these mappings. 

Let's see that our definitions of rotation and translation are rea­
sonable in relation to the Euclidean plane. Suppose a and b are two 
lines intersecting at point C in the Euclidean plane. Let P be any point, 
PI = P"P, and P' = Pb (PaP) = PbPaP, From Figure 28.3 it might be seen 
that PbPa moves point P about C through twice the directed angle from 
a to b. (Figure 28.3 is something of a hoax in that P is nicely situated 
unlike Figure 28.4.) In any case, PbPa does what a rotation should do. 
How do you define a rotation for the Euclidean plane in the first place? 
Now you have a very nice definition, namely a rotation is the product 
of the two reflections in two intersecting lines. 

a 

FIGURE 28.4 
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P1(Xl, y) P(x, y) P'(x',y) .. 
(Xa, y) (Xb, y) 

a b 

I h 
(Xa'O) (xb'O) 

FIGURE 28.5 

Suppose a and b are two lines perpendicular to line c in the Eu­
clidean plane. We may suppose c is the x-axis without loss of gener­
ality. Let a intersect c at (xa , 0); let b intersect c at (xb, 0). Let P= 
(x, y), PI =PaP= (xl' YI)' and P' =PbPuP= (x', Y'). SO y= YI =y'. See 
Figure 28.5. Since (xu' Y) must be the midpoint of P and PI we have 
xa = 1/2 (XI + x). SO XI = 2xa - x. Since (xb' Y) must be the midpoint of 
PI and P', we have Xb=lj2(XI+X'). So x'=2xb-XI=X+2(xb-xa). 
ThusPbPasends (x,y) to (x+h,y) whereh=2(xb-xa ).SoPbPa isthe 
translation that moves any point through twice the directed distance 
from a to b. In Euclidean geometry a translation is the product of the 
two reflections in two parallel lines. This last statement is either a 
definition or a theorem of Euclidean geometry depending on how one 
chooses the definitions. 

As the theory of isometries develops, you should keep an eye out 
to see which theorems are valid for the absolute plane and, hence, for 
the Euclidean plane. This way you will be learning about isometries 
for two geometries at the same time! 

All of the discussion since Definition 28.3 has not advanced our 
theory one bit. We have only shown that our choice of terminology is 
not unreasonable. All we know about rotations, translations, and 
horolations is their definitions. The next theorem follows as an im­
mediate consequence of the definitions. 

Theorem 28.4 If b is a pencil with center C, then a rotation with 
center C or any product of reflections in lines of b is an isometry that 
fixes C, b, and every circle with center C. If b is a hyperpencil with 
center c, then a translation with center c or any product of reflections 
in lines of b is an isometry that fixes c, b, and every hypercircle with 
center c. If b is a horopencil, then a horolation with center b or any 
product of reflections in lines of b is an isometry that fixes b and every 
horocircle with center b. 
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28.2 REFLECTIONS IN LINES OF A BRUSH 

If you think about it, you will realize that we do not know that rota­
tions, translations, and horolations are necessarily distinct. An impor­
tant method in studying mappings is to distinguish them by their fixed 
points and fixed lines. We shall use this approach in studying the 
isometries. 

The first of the following algebraic techniques is used in the 
next theorem. PaP=PbQ follows from PbPaP=Q since PbQ=Pb(Q) = 
Pb(PbPaP ) =PbPbPaP=paP. Note PbPb=t and pt;l=Pb since Pb is an in­
volution. Further, if PbPu=cr, then Pa=Pbcr follows from mUltiplying 
both sides of the equations PbPa = cr by Pb on the left and Pb = crPa fol­
lows from multiplying both sides of the equation PbPa=cr by Pa on 
the right. 

Theorem 28.5 A rotation fixes exactly one point, its center. Neither 
a translation nor a horolation fixes a point. 

Proof Suppose a and b are distinct lines and PbPa fixes point P. Then 
PbPaP=P, So PbP=Pb(PbPaP)=PaP. Let P'=PaP=PbP. We must 
have P' = P, as otherwise a and b are two distinct lines each of which 
is the perpendicular bisector of PP'. Thus P is on both a and b. The 
theorem now follows from the definitions. • 

If we replace the second sentence of Theorem 28.5 by "A transla­
tion does not fix a point," then the theorem and its proof are valid for 
the Euclidean plane. The center of translation PbPa in the Euclidean 
plane is the parallel pencil of all lines perpendicular to a and, hence, 
also to b. The Euclidean analogue for the next theorem states that the 
lines fixed by a translation are exactly those in its center. 

Theorem 28.6 A translation fixes exactly one line, its center. A 
horolation does not fix a line. 

Proof Let b be the unique brush containing distinct parallel lines 
a and b. Let cr = PbP u and assume cr fixes line l. If b is a hyperpencil 
with center c, we also assume l =t= c as we already know (Theorem 28.4) 
that cr fixes c. To prove the theorem we shall obtain a contradiction. 
Let P be a point on l, and let d be the unique cycle concentric with 
b that passes through P (Theorem 27.18). Let pI = crP. Since cr fixes 
no point (Theorem 28.5) and since cr fixes both land d, we have P' =t= P 
and P' is on both land d. For the same reasons, it follows that crPI = P 
as a line intersects a cycle in at most two points. Hence cr interchanges 
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P and P'. Therefore, CT fixes the midpoint of P and P' (Theorem 19.11), 
a contradiction (Theorem 28.5). • 

Theorem 28.7 A horolation fixes exactly one brush, its center. 

Proof Any isometry fixing a brush must fix the unique center of that 
brush. Let CT be a horolation. Since CT fixes no points or lines, then CT 

cannot fix a pencil or a hyperpencil. Further, CT cannot fix two horo­
pencils since CT would then have to fix the unique line common to the 
two horopencils (Theorem 27.3). Hence, the only brush fixed by CT is 
the horopencil that is the center of CT. • 

Theorem 28.8 The product of the two reflections in two distinct lines 
is exactly one of the following: a rotation, a translation, a horolation. 
The center of the product of the two reflections in two distinct lines is 
unique. 

Proof Follows directly from the previous three theorems. • 

Theorem 28.9 An isometry fixes exactly one point iff the isometry is 
a rotation. 

Proof Suppose isometry CT fixes exactly one point. Since CT fixes at 
least one point, CT is a reflection or a product of two reflections. Since 
CT fixes at most one point, CT is neither the identity nor a reflection. 
Hence CT must be the product of two distinct reflections. Since CT can 
be neither a translation nor a horolation (Theorem 28.5), CT must be a 
rotation. Conversely, a rotation fixes exactly one point (Theorem 
28.5). • 

Although the next theorem is only a summary of previous results 
(Theorem 19.10 and Theorem 28.9), the theorem is important because 
it gives a classification of all the isometries that have fixed points. 

Theorem 28.10 If an isometry fixes a point, then the isometry is 
either a rotation, a reflection, or the identity. 

In the phrase "a product of n reflections," the "n" refers to the 
number of terms in the product counting repetitions. For example, 
PaPa is a product of two reflections, and PaPbPu is a product of three 
reflections. Of course, a product of m reflections could equal a product 
of n reflections when m =1= n. For example, PaPaPa=P" but 3 =1= 1. 

Theorem 28.11 The product of two reflections is not a reflection. 

Proof Let a and b be lines. If a= b, then PbPa fixes every point and is 
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B' 

A' 

n 

FIGURE 28.6 

not a reflection. If a oF b, then PbPa fixes at most one point and is not a 
reflection .• 

Theorem 28.12 The product of three reflections in lines of a brush is 
a reflection in a line of that brush. 

Proof Suppose l, m, n are lines in brush b. Let A and B be distinct 
points on 1 and off the center of b. Let .91 and f!I1 be the unique cycles 
concentric with b that pass through A and B, respectively. (See Figure 
28.6.) Let CT= PnPmP" A' = CTA, and B' = CTB. If A' oF A, let p be the per­
pendicular bisector of AA'; if A' =A, let p= l. Since A' is on .91, we 
know p is in b in either case. Also, PpCT fixes A. Since PpCT fixes both A 
and b, then PpCT fixes l. If b is not a pencil, in which case land f!I1 inter­
sect only at B, then PpCT fixes B since PpCT fixes both land f!I1. If b is a 
pencil with center C, then Py_CT fixes the two points A and C. In any case, 
PpCT fixes two points on l. Hence, either P"CT = P, or PpCT = L. However, 
PpCT = PI implies Pp = PnPw contradicting the preceding theorem. There­
fore, CT=Pp withp in b .• 

For a proof of Theorem 28.12 in the Euclidean plane, the cycles 
in the proof above degenerate to lines when the brush is a parallel 
pencil. 

Corollary 28.13 If l, m, n are lines in brush b then there exist unique 
lines p and q in b such that PmP,=PnPp=PqPn' Conversely, if PmP,= 
PnPp or, equivalently, PnPmP, = Pp' then the lines l, m, n, p are all in one 
brush. 

Proof By the theorem there exist linesp and q in b such thatpnPmP,= 
Pp and PmP'Pn = Pq' The lines p and q are necessarily unique :>ince 
Pa = Pb implies a = b. The first part of the corollary follows. Since two 
distinct brushes cannot have the same center, the second part is es­
sentially a restatement of Theorem 28.8. • 

If CT1 and CT2 are isometries, what is the inverse of the isom­
etry CT2CT1? Since (CT2CT1 ) (CT11CT2"I) =L and (CT11CT;I) (CT2CT1) =L, it follows 
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that (0'20)-1 =0'110';1. Likewise, (0'30'20'1) (0'110';10';1) =£ implies 
(0'30'20'1)-1=0'1 10';10';1. In fact, for any group, it follows that the in­
verse of a product is the product of the inverses in reverse order. Com­
bining this fact with Theorem 28.12, we can prove the next theorem. 

Theorem 28.14 If 1, m, n are lines in a brush, then PIPmP.~ = PnPmP!, 

Proof There exists a line p such that PnPmPI = Pp' Then PnPmPI = 
Pp = p;1 = (PnPmPI) -1 = p"ilp;/p;1 = PIPmPn, • 

Theorem 28.15 An isometry fixes a cycle concentric with brush b 
iff the isometry is a product of reflections in lines of b. 

Proof We already know that any product of reflections in lines of a 
brush fixes the cycles concentric with that brush (Theorem 28.4). 
Conversely, suppose isometry 0' fixes cycle d. Let A, B, C be three 
points on d. Then bABC. (The (nondegenerate) cycles in the Eu­
clidean plane are the circles.) Let D=O'A, E=O'B, and F=O'C. Then 
D, E, F are on d, and bABC === bDEF. Let 0'= 0'30'20'1 where 0'1' 0'2' 0'3 
are as in the proof of Theorem 19.9, which showed that 0' is the unique 
isometry such that O'A=D, O'B=E, and O'C=F. Following through 
that proof (which we shall not repE:)at here), we see that each of 
0'1' 0'2' 0'3 is either the identity or the reflection in some line of b, 
since the perpendicular bisector of any chord of d is in b (Theorem 
27.8) and a line of symmetry for d (Theorem 28.1). Thus 0' is a product 
of reflections in lines of b. • 

28.3 EXERCISES 

• 28.1 For each of the theorems in Section 28.2, state the analogous 
theorem for the Euclidean plane. 

• 28.2 If 0' is a bijection on the set of all points and preserves angle 
measure, then 0' is an isometry. 

• 28.3 Every rotation is the product of two translations, and every 
horolation is the product of two translations. 

• 28.4 Let P and pi be distinct points. Then there exist an infinite 
number of rotations taking P to pi, there exist an infinite number of 
translations taking P to pi, but there exist exactly two horolations 
taking P to P'. 

• 28.5 True or False? 

(a) If S is a set of points, then 1 is a line of symmetry for S iff 
plSC S. 
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(b) A rotation with center C may be expressed as PbPa where 
either one of the lines a or b is an arbitrarily chosen line through 
C and the other is then uniquely determined. 

(c) A translation with center c may be expressed as PbPa where 
either one of the lines a or b is an arbitrarily chosen line per­
pendicular to c and the other is then uniquely determined. 

(d) A horolation with center b may be expressed as PbPu where 
either one of the lines a or b is an arbitrarily chosen line in band 
the other is then uniquely determined. 

(e) The perpendicular bisector of a chord of a cycle is a line of 
symmetry for the cycle. 

(f) A rotation is determined by a point and its image. 

(g) A translation is determined by a point and its image. 

(h) A horolation is determined by a point and its image. 

(i) If a and b are two lines perpendicular to line c, then PcPbPa 
is a translation. 

(j) A translation fixes a line pointwise but a horolation does 
not fix a line. 

28.6 If a rotation with center C takes point P to Q with P -# Q, then 
the perpendicular bisector of PQ is in the pencil with center C. If a 
translation with center c takes point P to Q, then the perpendicular 
bisector of PQ is in the hyperpencil with center c. If a horolation with 

center b takes point P to Q, then the perpendicular bisector of PQ is 
in b. 

28.7 Each of a rotation, a translation, and a horolation is determined 
by two points and their images. 

28.8 Every translation is a product of two rotations, and every horo­
lation is a product of two rotations. 

28.9 Every rotation is a product of two horolations, and every trans­
lation is a product of two horolations. 

28.10 Possibly.xi = f!IJ in the proof of Theorem 28.12. 

28.11 Why does a mirror interchange right and left but not above 
and below? 

28.12 The rotations with a given center together with the identity 
isometry form a group. 
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28.13 The translations with a given center together with the identity 
form a group. The horolations with a given center together with the 
identity form a group. 

28.14 Find the equivalence classes for the relation on the set of 
capital roman letters where letters are equivalent iff they have the 
same number of lines of symmetry. (ABCDEFGHIJKLMNOPQRSTU 
VWXYZ) 

28.15 Let l, m, and n be the perpendicular bisectors of AB, BC, and 
AC, respectively. Then PnPmP I is the reflection in a line through A. 

28.16 If lines a, b, c are not in a brush, then PcPbPa is not a reflection. 

28.17 How is a point of symmetry defined? 

*28.18 Find the necessary and sufficient conditions for the product 
of two translations to be a translation or the identity. 

*28.19 Converse of Theorem 28.14. 

*28.20 What are the involutory isometries? 

GRAFFITI 

The meridians of a globe pass through the north pole and 
are perpendicular to the equator. From this simple observation we 
can deduce some facts about the Riemann plane. We suppose we 
are now considering elliptic geometry. Since there exists a unique 
line perpendicular to all the lines of a given pencil, every pencil is a 
hyperpencil. Conversely, since the perpendiculars to a given line are 
concurrent, every hyperpencil is a pencil. In the elliptic plane, 
every brush is a pencil. Every rotation fixes at least one point and 
at least one line. The involutory rotation with center P is called 
the halfturn about P and is denoted by 111" (Such rotations "of 180 
degrees" are studied in Chapter 29.) If all the lines perpendicular 
to line p pass through point P, then pIJ = 111" Every isometry is the 
product of two half turns; every isometry is the product of two 
reflections. In the elliptic plane, every nonidentity isometry is a 
rotation. 



CHAPTER 29 

The Classification of 
Isometries 

29.1 INVOLUTIONS 

Before continuing with our results on isometries that apply to the ab­
solute plane and, hence, to the Euclidean plane as well as the Bolyai­
Lobachevsky plane, we have a definition and a theorem that are rele­
vant only to the hyperbolic plane. These complement the absolute 
theorem that two circles are congruent iff they have the same radius 
(distance). 

DEFINITION 29.1 If P is a point on hypercircle $ with center c 
and PQ is perpendicular to c at Q, then PQ is a radius of $ and PQ is 
the radius of $. 

Theorem 29.2 Two hypercircles are congruent iff they have the 
same radius (distance). However, any two horocircles are congruent. 

Proof We leave the proof ofthe first statement as Exercise 29.1. So 
suppose $1 is the horocircle through point A and with center bl , the 

~ 

horopencil of all lines containing a ray horoparallel to AB. Suppose $2 
is the horocircle through point C and with center b2 , the horopencil of 

-~ 

all lines containing a ray horoparallel to CD. Let u be either one of 
~ ~ 

the two isometries such that u(AB) = CD. It follows that u(A) = C 
and u(bl ) = b2 • Thus U($I) is the horocircle through C and with center 
b2 (Theorem 27.18). Therefore, U($I) =$2' as desired. • 
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An isometry th~t is a product of an even number of reflections is 
said to be even, and ,an isometry that is a product of an odd number of 
reflections is said to be odd. There is an intellectual trap here that is 
used to advantage by politicians and the advertising industry. If a 
thing is called by a familiar name, it is fairly natural to assume the 
thing has the properties we otherwise associate with the name. Al­
though admittedly natural, this is not logical. The definition above of 
even and odd for isometries is given in terms of even and odd as applied 
to the integers. Although an integer cannot be both even and odd, it 
would be a logical error to assume without proof that an isometry 
cannot be both even and odd. 

DEFINITION 29.3 An isometry that is a product of an even number 
of reflections is even; an isometry that is a product of an odd number 
of reflections is odd. 

The even isometries are also calledproper,posltive, or direct. The 
odd isometries are also called improper, negative, indirect, or opposite. 

The trick of replacing PmPI by PmPnPnPI is used so often in study­
ing isometries that this trick should be regarded as a method, analo­
gous to the method of multiplying by 1 in some particular form that 
is used so often in elementary algebra. The next proof depends on us­
ing this trick twice. When reading the proof from top to bottom it 
seems that the lines I, m, n appear out of the sky for no good reason. 
However, if you look at the proof from bottom to top, you will see that 
the mysterious lines have been purposefully selected. 

Theorem 29.4 A product of four reflections is equal to a product of 
two reflections. 

Proof We wish to show PdPcPbPa is a product of two reflections. Let 
P be any point on line a. Let I be a line through P in a brush containing 
band c. (Line I is unique if band c are two lines not both on P. See 
Figure 29.1.) Since I, b, c are in a brush, there is a line m such that 
PcPbPI = Pm (Theorem 28.12). Let n be a line through P in a brush con­
taining d and m. Now 

PdPcPbPa = Pd(PcPbPI)P1Pa 

=PdPmPIPa 

= (PdPmPn) (PnPIP). 

Since a, I, n are in the pencil with center P, then PnPIPa is a reflection. 
Since n, m, d are in one brush, then PdPmPn is also a reflection. There­
fore, PdPcPbPa is equal to a product of two reflections. • 
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a 

n b 

m 

FIGURE 29.1 

Theorem 29.5 Neither a reflection nor a product of three reflections 
is equal to a product of two reflections. 

Proof We already know a reflection is not equal to a product of two 
reflections (Theorem 28.11). Assume PcPbPa = Pm PI' Then PmPcPbPa = PI' 
Thus, by the preceding theorem, PI is a product of two reflections, a 
contradiction (Theorem 28.11). • 

Theorem 29.6 An even isometry is a product of two reflections. An 
odd isometry is a reflection or a product of three reflections. No 
isometry is both even and odd. 

Proof The statements follow from the preceding two theorems, since 
a product of n reflections is equal to a product of n - 2 reflections 
whenever n ~ 4. • 

Corollary 29.7 An even isometry is exactly one of the following: 
the identity, a rotation, a translation, or a horolation. 

Proof Restatement of Theorem 28.8 • 

For the Euclidean plane, an even isometry is exactly one of the 
identity, a rotation, or a translation. 

The next theorem introduces the handy equation Pua = apaO'-1 

Pa 

n ...... . 
:'".~ 
..... 

FIGURE 29.2 
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for line a and isometry (T. Let's see what this equation says. Since (T 
is an isometry and a is a line, then (Ta is a line and Pua is simply the 
reflection in line (Ta. Thus the equation tells us that reflecting in line 
(Ta is the same thing as first undoing (T, then reflecting in line a, and 
finally doing (T. Perhaps following the "6" in Figure 29.2 will give you 
a feeling that the equation at least makes sense. 

Theorem 29.8 If (T is an isometry and a is a line, then Pua = (TPa(T-I. 

Proof Isometry (TPa(T-l is not the identity because Pa ¥- t. Suppose 
P' is any point on (Ta and (TP=P'. ThenP must be on a. So (TPa(T-lP'= 
(TPaP=(TP=P'. Since (TPa(T-l is not the identity but fixes line (Ta 
pointwise, it follows (Theorem 28.10) that (TPa(T-l is the reflection 
in (Ta. • 

The equation above and Theorem 28.14 are used to prove a 
theorem that gives further insight into Corollary 28.13. Check back 
to see what Corollary 28.13 and Theorem 28.14 are. Also, recall that 
(PmP/) -I = p/Pm' 

Theorem 29.9 If (T is a product of an even number of reflections in 
lines of brush b such that (Ta = c and (Tb = d for lines a and b in b, then 
PbPa=PdPc' 

a b a b c d 

d 1:1 h 

:~ 

FIGURE 29.3 
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Proof We may suppose that u=PmP, where 1 and m are lines in 
b (Theorem 29.6). By the previous theorem, Pc=Prra=uPau-l= 
PmP'PaP'Pm and Pd=PmP'PbP,Pm. Thus, we have (Theorem 28.14) 

PdPc = (PmP'PbP'Pm) (pmp,pap,Pm) 

= (PmP,Pb) (pap,Pm) 

= (PbP,Pm) (pmp,Pa) 

=PbPa· • 

When do two reflections commute? Which even isometries are 
involutions? These questions are answered by our next theorem. Re­
call (Theorem 19.6) that a = Pba for line a iff a = b or a 1. b. 

Theorem 29.10 For lines a and b, PbPa=PaPb iff a=b or a 1. b. Fur­
ther, PbPa is an involution iff lines a and b are perpendicular. 

Proof Suppose a=b or a 1. b. Then a=Pba. Let U=Pb· So Pa=Prra = 
upau- 1 = P~aP" (Theorem 29.8). Hence PbPa = PaPb. Conversely, if 
PbPa=PaPb' then Pa=PbPap,,=Prra where U=Pb. So a=ua=Pba. Hence 
a=b or a 1. b. Finally, by definition, P"Pa is an involution iff PbPa= 
(PbPa)-l = PaPb =F t. Therefore, P"Pa is an involution iff a 1. b. • 

DEFINITION 29.11 A half turn about point P is an involutory rota­
tion with center P. 'TIp always denotes a half turn about P. 

Theorem 29.12 The half turn about point P is unique and is the 
product of the two reflections in any two perpendicular lines through 
P. For any point A, the midpoint of A and 'TI pA is P. 

Proof Since PbPa is an involution iff lines a and b are perpendicular, 
the rest of the theorem follows if we prove the last statement. Let 
'TIp be a half turn aboutP. So 'TIpP=P by definition. Suppose point A is 

~ 

distinct from P and 1 = AP. Then there exists line m through P such 
that 'TIp=PmP, (Corollary 28.13) and 11. m (Theorem 29.10). Hence 
'TIpA=PmP,A =PmA. So m is the perpendicular bisector of the segment 
with endpoints A and 'TIpA. Therefore the midpoint of A and 'TIpA 
isP .• 

We could have used the last statement in Theorem 29.12 to 
define a half turn and then proved Definition 29.11 as a theorem along 
with the rest of Theorem 29.12. In this -case it would be natural to 
call a half turn about P the reflection in point P. We shall not use this 
language to avoid possible confusion between a reflection and a re­
flection in a point. 
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Since we have certainly not considered all the possible isometries, 
it is a pleasant surprise to find that we do know all the involutory 
isometries. 

Theorem 29.13 An isometry is an involution iff the isometry is a 
reflection or a half turn. 

Proof The identity isometry is not an involution by definition. Sup­
pose cr is an involutory isometry that does not fix some point A. Let 
crA=B. Since crA=B and crB=cr2A=A, we have crM=M where M is 
the midpoint of AB (Theorem 19.11). If cr is not a reflection, then cr 
must be a rotation with center M (Theorem 28.10). In this case, since 
cr is an involution, cr=T/M' Therefore an involutory isometry is either 
a reflection or a half turn. Conversely, reflections and half turns are 
involutions by definition. • 

A half turn is the product of the two reflections in two perpendic­
ular lines. What is the product of two half turns? The answer is not 
at all clear from looking at Figure 29.4. However, a glance at Figure 
29.5 should make everything crystal clear. 

Theorem 29.14 The product of two distinct half turns is a translation. 
Conversely, every translation is the product of two half turns. 

~ 

Proof Given half turns T/A and T/B with A =;f B, let l=AB, a be the 
perpendicular to l at A, and b be the perpendicular to l at B. So a and 
b are distinct and hyperparallel. Further, T/BT/A = (PbP/) (p/Pa) = 
PbPa, Therefore, T/BT/A is a translation. Conversely, if PbPa is a transla­
tion, then a and b are distinct hyperparallel lines having a common 
perpendicular l. Let l intersect a at A and intersect b at B. Then 
PbPa = PbP/p/Pa = T/BT/A' • 

a 

A b ___ -+"--__ c 

B ___ +'-___ d 

FIGURE 29.4 
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b 

FIGURE 29.5 

Our next theorem does not hold in the absolute plane. In the Eu­
clidean plane, the product of three half turns is always a half turn, and, 
if A, B, C are not collinear and TJCTJBTJ A =TJD' then DABCD is a parallel­
ogram. It follows that any product of half turns in the Euclidean plane 
is the identity, a translation, or a halfturn. We have a different result 
for the Bolyai - Lobachevsky plane. 

c 

FIGURE 29.6 
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Theorem 29.15 Every even isometry is a product of half turns. 

Proof We know every translation is a product of two half turns. The 
theorem follows if we show every rotation is a product of translations 
and every horolation is a product of rotations. Suppose PbP is a rota-_ _ ~ a 

tion with center C where a=CA and b=CB. Let CD be the angle bi­
sector of LACB and n(CD) = 1f2mLACB. (See Figure 29.6.) Let E be -such that C-D-E. Let land m be the perpendiculars to CD atD and 
E, respectively. Then m is parallel to both a and b. Further, m is not 
horoparallel to either a or b since n(CE) < 1f2mLACB. Thus m is 
hyperparallel to both a and b. Hence PbPm and PmPa are both transla­
tions, and PbPa = (PbPm) (pmpa), as desired. Now suppose PaPc is a horo--lation. Let P be any point on c, Q any point on d, and n=PQ. Then 
PaPn and PnPc are both rotations, and PaPc = (PaPn) (PnPc)' • 

29.2 THE CLASSIFICATION THEOREM 

We know that every isometry in the absolute plane is a product of at 
most three reflections. There remains to consider PcPbPa where a, b, c 
are three lines not in one brush. Lines a and b might intersect, might 
be hyperparallel, or might be horoparallel. Suppose a and b are in the 
hyperpencil with center l. Now c can intersect a, be hyperparallel to a, 
or be horoparallel to a. Likewise, c can intersect b, be hyperparallel 
to b, or be horoparallel to b. All possible combinations have to be con­
sidered. Further, we have not even considered the relation between 
c and l. Even ifthere are not a "thousand" cases, it seems that there are 
so many that the task ahead is overwhelming. Undaunted, we begin 
with a very special case where a and b are in the hyperpencil with 
center c. 

a b 

____ ~~----------~~--------c 

FIGURE 29.7 



THE CLASSIFICATION THEOREM 379 

DEFINITION 29.16 If a and b are distinct lines perpendicular to 
line e, then PcPbPa is a glide reflection with center e. 

To see where the name comes from, write the glide reflection 
above as Pc(PbPa), The translation PbPa contributes the "glide" while 
Pc contributes the "reflection." Figure 29.8 might suggest a common 
glide reflection. The next theorem says the "gliding" and the "re­
flecting" may be done in either order. 

Theorem 29.17 Pc(PbPa ) = (PbPa)Pc if e is a common perpendicular 
to lines a and b. 

Proof Since e is perpendicular to both a and b, then Pc commutes with 
both Pa and Pb (Theorem 29.10). Hence PcPbPa = PbPcPa = PbPaPc' • 

Some authors allow a reflection to be a special case (a = b) of a 
glide reflection. We have not done so. 

Theorem 29.18 The center of a glide reflection is unique. A glide 
reflection fixes exactly one line, its center. A glide reflection is not a 
reflection. 

Proof Suppose U'=PcPbP a where e is perpendicular to the two lines 
a and b. Each of Pa, Pb' and Pc fixes e. So U' fixes e. If I is a line parallel 
to e, then U'I # I because I and U'I are on opposite sides of e. If line I in­
tersects e exactly once, say at point P, then U'I # I as U'P=PbPaP # P 
(Theorem 28.5) but U'e = e. Hence U' fixes exactly the one line e. The 
rest of the statements in the theorem follow from this. • 

Theorem 29.19 A glide reflection is a reflection in some line I fol­
lowed by a half turn whose center is off I. A glide reflection is a halfturn 
about some point P followed by a reflection in a line off P. Conversely, 
if U' = T/ I'P1 where point P is off line I, then U' and U'-I are two glide re­
flections and U'-I = PIT/ 1" 

Proof Suppose U' is a glide reflection. Then there exist three lines 
a, b, e such that U' = PcPbPa where e 1.. a and e 1.. b. Let e intersect a and 
b at A andB, respectively. (See Figure 29.9.) Since b 1.. e, we have U'= 
PbPcPa (Theorem 29.10). Thus U'= (PbPc)Pa=T/BPa and U'=Pb(PcPa) = 
PbT/A' proving the first two statements of the theorem. 

<JD <JD <JD 
•.......••....•..........•.•....................... 

aD 
FIGURE 29.8 
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a b 
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FIGURE 29.9 
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Now suppose point P is off line land (J' = YJ I'Pr Let n be the per­
pendicular from P ~o l, and let m be the perpendicular to n at P. Then 
n is the common perpendicular to the two lines I and m. So (J'=YJPPI= 
PnPmPI and (J'-I = PIYJ p = PIPmPn' Hence (J' and (J'-I are glide reflections. 
Since glide reflection (J' is an odd isometry that is not a reflection, then 
(J' is not an involution (Theorem 29.13). Therefore (J' ¥- (J'-I. • 

Let's take a peek at one of the remaining "999" cases men­
tioned at the beginning of this section. Suppose two lines m and care 
on point P but line l is not, as in Figure 29.10. Consider PcPmPr Letting 
p be the perpendicular from P to l, there is a line q through P such 
that PcPm=PqPp' (See Corollary 28.13.) So PcPmPI=PqPpPI=PqYJF' We 
recognize PqYJF is a glide reflection. This observation says we can re­
place "half turn" by "rotation" in Theorem 29.19. That's interesting, 
but there is a much more important consequence. 

Given PcPbPa with a, b, c not in a brush, we can always replace 
PbPa by PmPI where m is chosen to intersect c as in Figure 29.11. 
(Corollary 28.13 again.) Thus we are back to considering PcPmPI as in 
the last paragraph. In other words, when we put all this together we 
should have a proof that PcPbPa is a glide reflection! The "999" cases 
that seemed so overwhelming will just melt away. 

p 

m 

q 

F 

FIGURE 29.10 
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m 

-----b 

------Q 
FIGURE 29.11 

Theorem 29.20 Any product of the three reflections in three lines 
not in a brush is a glide reflection. 

Proof Suppose a-=PePbPu where a, b, c are not in a brush. Let b be 
the unique brush containing a and b. Let P be any point on c, and let 
p be the pencil with center P. Let m be the unique line common to b 
and p (i.e., the line in b through P). We have m"':' c as c is not in b. 
(See Figure 29.12.) Since a, b, m are lines in b, there is a line l in b 
such that Pm PI = PbPu with l,.,:. m. Let p be in p and perpendicular to 
I at point F. We have F ,.,:. P as I is not in p. Since m, c, p are in p, there 
is a line q in p such that PePm = PqPI' with p"':' q. Since q is on P and 
q ,.,:. p, we have F is off q. Now 

Since F is off q, then a- is a glide reflection. • 

Corollary 29.21 An odd isometry is either a reflection or a glide re­
flection but not both. 

Theorem 29.20 and its corollary are a little surprising. Besides 
the identity isometry, the even isometries for the Euclidean plane are 
the rotations and the translations. For the Bolyai - Lobachevsky plane 
we pick up the horolations as even isometries, but we do not pick up 

p 
m 

-b 

b 

F ----Q 

FIGURE 29.12 
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any new types of odd isometries. The theorem and its corollary hold 
for both geometries. 

Combining Corollary 29.7 and Corollary 29.21, we have a com­
plete classification of all the isometries for the Bolyai - Lobachevsky 
plane. 

Theorem 29.22 An isometry is exactly one of the following: the 
identity, a rotation, a translation, a horolation, a reflection, or a glide 
reflection. 

29.3 EXERCISES 

• 29.1 Theorem 29.2. 

• 29.2 A line is hyperparallel to its image under a half turn. 

29.3 If a rotation fixes a line, then the rotation is a half turn about 
some point P and fixes exactly those lines that are in the pencil with 
center P. 

• 29.4 'T/C'T/B'T/ A is a half turn iffpointsA,B, C are collinear. 

• 29.5 Let P and P' be distinct points. There exist exactly two in­
volutory isometries taking P to pI, but there exist an infinite number 
of glide reflections taking P to P' . 

• 29.6 True or False? 

(a) If isometry Pc'T/BPa is an involution, then the isometry is a 
half turn. 

(b) If isometry 'T/cPb'T/A is an involution, then the isometry is a 
half turn. ! 

(c) PcPbPa is a reflection iff lines a, b, c are in a brush. 

(d) PcPbPa = PaPbPc iff lines a, b, c are in a brush. 

(e) A glide reflection and its inverse have different centers. 

(£) The square of a horolation is a horolation. 

(g) The square of a translation is a translation. 

(h) The square of a rotation is a rotation. 

(i) The square of a glide reflection is a translation. 

(j) Every even isometry other than the identity is the product of 
two half turns. 
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29.7 Fill in the table which has columns headed Fixed Points, Fixed 
Lines, Lines Fixed Pointwise, Fixed Brushes, Brushes Fixed Line­
wise, and Fixed Cycles and which has rows headed Half turn about C, 
Noninvolutory Rotation with Center C, Translation with Center c, 
Horolation with Center b, Reflection in 1, Glide Reflection with Cen­
ter c. 

~ ~ ~ ~ 

• 29.8 If [JABCD, a=AB, b=BC, c=CD, and d=DA, then 
PdPcPbPa and PdPbPcPa are translations . 

• 29.9 If CT is an isometry and A is a point, then T/crA =CTT/ACT-1. 

29.10 Let A, B, C be points and a, b, c be lines. Express each of the 
following equations in an equivalent form that does not involve 
isometries. 

1 PbPa=PaPb· 2 T/BT/ A = T/AT/B· 
3 PbPa=PcPb· 4 T/BT/ A = T/CT/B· 
5 PbT/A = T/BPb· 6 T/BPa = PbT/B· 
7 PaT/A =T/APa· 8 T/BPa = PaT/B· 

29.11 If CT is a noninvolutory rotation with center C, then there exists 
a positive number r such that, if P is any point different from C, then 
m LPCP' = r where P' = CTP. If CT is a translation, then there does not 
exist a positive number s such that PP' = s for every point P where 
P'=CTP. 

29.12 If T is a translation, then there exist A and B such that T= 
T/BT/A. Is either A or B arbitrary? 

29.13 Every even isometry is the product of two rotations; every even 
isometry is the product of two translations; and every even isometry 
is the product of two horolations. 

29.14 Every translation is a product of two glide reflections. Every 
isometry is a product of glide reflections. 

29.15 Isometry CT commutes with PI iff CT fixes line 1; isometry CT com­
mutes withT/p iff CT fixes point P. 

29.16 Find three noncollinear points A, B, C (1) such that T/CT/BT/A is 
a rotation, (2) such that T/CT/BT/A is a translation, and (3) such that 
T/CT/BT/A is a horolation. 

29.17 Every even nonidentity isometry is the product of three half­
turns. 

29.18 Argue that the three perpendicular bisectors of the sides of a 
triangle are in one brush because the product of the three reflections 
in these three lines fixes a point. 
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29.19 If a, b, c, d are lines in some brush other than the pencil with 
center P and PbPaP=PdPcP, then PbPa=PdPc' 

• 29.20 Hjelmslev's Theorem: If land m are lines and u is an isom­
etry such that m = ul, then there exists a line n such that n contains 
the midpoint of P and uP for every point P on l. 

~ 

*29.21 Suppose .6.ABC, Tl is the translation with center AB that 
~ 

takes A to B, T2 is the translation with center BC that takes B to C, 
~ 

and T3 is the translation with center CA that takes C to A. Then 
T3T2Tl is a rotation. Further, the value of r in Exercise 29.11 for this 
rotation is 5.6.ABC. 

*29.22 Is every glide reflection the producf; of the three reflections in 
the three lines containing the sides of some triangle? 

*29.23 The product, in any order, of the four reflections in the four 
lines containing the sides of a Lambert quadrilateral is a transla­
tion. 

*29.24 What can be said about the products of the four reflections in 
the four lines containing the sides of a Saccheri quadrilateral? 

*29.25 A bijection a on the set of all points which is a collineation 
having the property that al is parallel to 1 for every line 1 is called a 
dilatation. (The dilation sending (x, y) to (2x, 2y) is a dilatation for 
the Cartesian plane.) What are the dilatations for the Bolyai-Loba­
chevsky plane? 

GRAFFITI 

For the Euclidean plane, every isometry is exactly one of the 
following: the identity, a rotation, a translation, a reflection, or a 
glide reflection. The involutory isometries are the reflections and 
the halfturns. If a.n isometry fixes a point, then the isometry is 
either the identity, a reflection, or a rotation. A rotation fixes exactly 
one point. A rotation fixes a line iff the rotation is a halfturn about 
some point P, in which case only the lines through P are fixed. A 
translation fixes each line in some unique parallel pencil. A glide 
reflection fixes exactly one line. A product of two distinct halfturns 
is a translation. Conversely, every translation is a product of two 
halfturns. A product of three halfturns is a halfturn. A product of 
two translations is a translation or the identity. A noninvolutory 
rotation is not a product of halfturns. A product of three reflections 
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in lines through point P is a reflection in a line through P; a 
product of three reflections in lines parallel to line 1 is a reflection 
in a line parallel to 1; and a product of three reflections in lines 
that are neither concurrent nor parallel is a glide reflection. 

Still considering the Euclidean plane, let C be a point and 
r > O. A stretch of ratio r about C is the mapping that fixes C and 

-+ 
otherwise sends point P to P' where P' is the unique point on CP 
such that CP' = rCP. (We allow the identity to be a stretch.) A 
dilation about point C is a stretch about C or a stretch about C 
followed by the half turn about C. Then a dilatation (see Exercise 
2925) is either a translation or a dilation. A stretch reflection is 
defined to be a nonidentity stretch about some point C followed 
by the reflection in some line through C; a stretch rotation is 
defined to be a nonidentity stretch about some point C followed 
by a rotation about C. Then every similarity is exactly one of the 
following; an isometry, a nonidentity dilation other than a 
half turn, a stretch rotation, or a stretch reflection. 

REFLECTION l10ITJ3J~3S1 
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(Theorem 29.12.) 



CHAPTER 30 

Symmetry 

30.1 LEONARDO'S THEOREM 

All the theorems of this chapter hold for the absolute plane. The proofs 
and results are applicable to the Euclidean plane as well as the 
Boly.ai - Lobachevsky plane. 

The symmetries of a set S of points are the isometries that fix S. 
So isometry a is a symmetry of set S of points iff as = S. The identity 
isometry , is a symmetry of every set of points. If a and p are sym­
metries of S, then a-I and pa are also symmetries of S. So the symme­
tries of a set S of points form a subgroup of the group of all isometries. 
All of the finite groups of isometries are determined in this section. 
The principal result, Theorem 30.17, was proved by Leonardo da Vinci 
(1452-1519). Two types of groups will playa central role in our study. 
These are defined below. 

DEFINITION 30.1 Let S be a set of points. If1]p S=S, then P is a 
point of symmetry for S. If a is an isometry such that as=S, then a 
is a symmetry of S. If group 0 has exactly n elements, then 0 is finite 
and n is the order of 0; if group 0 does not have a finite number of ele­
ments, then 0 is infinite. If every element of group 0 is a product of 
the elements a, p, . . . , -y in 0, then 0 is generated by a, p,. . . , -y 
and we write 0= (a, p, ... ,-y). A group generated by one of its ele­
ments is a cyclic group. If group 0 is of order 2n, has a cyclic sub-
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group H of order n generated by (T, and has an element P not in H such 
that both P and (TP are involutions, then G is a dihedral group. 

Suppose (T is an element of any group G with identity element L. 

If (Till = (Til for integers m and n with m > n, then (Tin-II = L. If there is a 
smallest positive integer r such that (Tr= L, then the elements (T, (T2, 
. . . , (Tr are distinct and form a cyclic subgroup of order r. The identity 
element generates the trivial cyclic subgroup of order 1. If there is no 
positive integer r such that (Tr = L, then the elements (Tm and (Tn are 
distinct for distinct integers m and n. In this case, «(T), the subgroup 
generated by (T, is an infinite cyclic group. So every element of a group 
G generates a cyclic subgroup of G. Since (Tm(Tn = (Tn(Tm for any integers 
m and n, a cyclic group is necessarily abelian, that is, any two elements 
of a cyclic group commute. Suppose (T and P are distinct elements of 
group G and P is an involution. Then p(T-1=p-1(T-1 = ((Tp)-I. Hence, 
(TP is an involution iff (TP = p(T-1 when P is an involution and P ¥- (T. 

Theorem 30.2 If P and (TP are involutions and P is not a power of (T, 
then (Tmp and p(Tm are involutions for every integer m. 

Proof Since (Tp=p(T-I, then (T-I(Tp(T=(T-Ip(T-l(T and P(T = (T-Ip . From 
(Tp=p(T-I and (T-Ip=p(T it follows that (Trp=p(T-r for every integer r. 
Hence (Tmp and p(Tm are involutions or the identity. • 

Theorem 30.3 Let C be any point and m be an integer greater than 
2. Suppose mLACB is 27T/m and CA = CB. Let (T be the rotation with 

~ 

center C that takes A to B. Let p be the reflection in CA. Let C 1= (L) , 
C2 =( 71c)' and Cm=«(T)· Let D 1 =(p), D2=(71c' p), and Dm=«(T, p). 
Then for every positive integer n, Cn is a cyclic group of order nand 
D n is a dihedral group of order 2n. 

Proof The result for Cn is easy to see. We shall prove the result for 
Dn' For n equal to 1 or 2, take (T to be L or 71c' respectively. For n > 2, 
let n = m. Now p and (Tr are distinct since p is odd and (Tr is even. Both 
p and (TP are involutions since they are reflections (Theorem 28.12). 
So (Tp=p(T-I. Hence ever element of Dn can be uniquely written pi(Ti 
where i is 1, 2, ... , or n and) is 1 or 2. Therefore Dn is a dihedral 
group of order 2n. • 

DEFINITION 30.4 For any positive integer n, let Cn and Dn denote 
the groups in Theorem 30.3. 

For n > 1, Cn is generated by a rotation and Dn is generated by a 
rotation and a reflection. Dl and C2 are isomorphic since each is gen­
erated by an involution. 
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Theorem 30.5 If n > 1, then a dihedral group of order 2n is not cyclic. 

Proof Let p and (1' be as in the definition of a dihedral group G of 
order 2n. Let ex be any element of G. Then ex=pj(1'i. Ifj= 1, then (ex) 
has order 2. Ifj=2, then (ex) is a subgroup of «(1') and has order at 
most n. Hence no element of G generates G. • 

Cn and Dn are groups of isometries for each positive integer n. It 
may not be obvious that each of these groups is the group of sym­
metries of some polygon. 

DEFINITION 30.6 Let n be an integer greater than 2. Let AI' A 2, 
... ,An be n distinct points, An+1 =AI' and A n+2=A2. If the interiors 
of the n segments A;AHI are mutually disjoint, then the union of 
these segments is a polygon with vertices A;, sides A;A;+I' and angles 
LA;AHIAH2' A polygon with n sides is also called an n-gon. If, for 
each side s of n-gon P, P \ s is on one halfplane of the line containing 
s, then P is convex and the intersection of these n halfplanes is the 
interior of P. The interior of n-gon P is int (P). A regular polygon is 
a convex polygon with all its sides congruent and all its angles con­
gruent. 

The Greek cross in Figure 30.1 illustrates that a polygon with 
all its sides congruent and all its angles congruent may not be a 
regular polygon. (Greek crosses exist in both the Euclidean plane 
and the Bolyai - Lobachevsky plane.) 

Let n be an integer greater than 2. Suppose mL VCVI = 21T/n and 
CVI = CV. Let (1' be the rotation with center C that takes V to VI' Let 

~ 

p be the reflection in CV. Then (1' generates a group Cn' Also, p and (1' 

generate a group Dn' Let V; = (1'iV. So V= Vo= Vn. The union of the n 

\.. 

1\ 

FIGURE 30_1 
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V3~--------~~--------~V6 

FIGURE 30.2 

segments VYi+1 is a regular n-gon P inscribed in the circle with cen­
ter C and radius CV. So P is fixed by both p and (T. Let G be the group 
of symmetries of P. Then G contains at least the 2n isometries in Dn' 
Under any isometry of PI VI can go to any of the n verticies Vi' How­
ever, then V 2 can go to only one of the two vertices Vi_lor V i+1' In 
general, an n-gon has at most 2n symmetries. So P has the maximum 
number of symmetries possible for an n-gon. Therefore G=Dn . 

Let n, V, C, and (T be as above. Suppose C - V - W. Let Wi = (TiW. 

The union of all the segments ViWi and WiV i+1 is a 2n-gon Q, called a 
ratchet polygon. See Figure 30.3. Let H be the group of symmetries 
of Q. Then H contains Cn' the cyclic group of order n generated by (T. 
Since any symmetry of Q fixes C, the only possible nonidentity ele­
ments of H are rotations with center C and reflections in lines through 
C. Since W must go to some Wi' we already have all the possible rota­
tions. Assume H contains some reflection p fixing C and sending W 2 

to Wi' Then (T2-ip is a reflection fixing C and W2 • This reflection also 
sends W2 V3 to W 2 VI' We have a contradiction since W2 V3 is on Q but 
W2V I is not. Therefore H=Cn. 

~-+--... ~-+:..-~w 

FIGURE 30.3 
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Theorem 30.7 If n is a positive integer, then there exist polygons 
with a symmetry group en and there exist polygons with a symmetry 
groupDn· 

Proof The case n > 2 has been considered above. The case n ~ 2 is 
left for Exercise 30.1. • 

Theorem 30.8 If a and b are two parallel lines, then (PbPa) is in­
finite cyclic. 

Proof Let a=PbPa=PcPb=PdPc=PePd=··· (Corollary 28.13). The 
lines c, d, e, ... are in the same brush as a and b and are on the same 
halfplane of a as b. Also, a 2 =pcPa, a 3 =PdPa, a 4 =pepa, .... It follows 
that a r is never the identity for positive integer r. So am "F an for dis­
tinct integers m and n, as otherwise a"-III and alii-II would be the 
identity. The group generated by a is cyclic by definition but does not 
have a finite number of elements. • 

Corollary 30.9 The ·only even isometries in a finite group of isom­
etries are rotations and the identity. 

Theorem 30.10 The square of a glide reflection with center c is a 
translation with center c. If T is a translation with center c, then there 
exists a unique glide reflection,), with center c such that ')'2 = T. 

Proof Let a be a line perpendicular to c. For every translation T 

with center c, there exists a unique line b perpendicular to c and dif­
ferent from a such that T=PbPa. So, for every glide reflection,), with 
center c, there exists a unique line x perpendicular to c and different 
from a such that')' = pcP;rPa. Then (Theorems 29.17 and 29.8), ')'2 = 
PzPa where z=P;ra. Both statements in the theorem now follow. • 

Corollary 30.11 A glide reflection generates an infinite cyclic group. 
A finite group of isometries does not contain a glide reflection. 

The only odd isometries in a finite group of isometries must be 
reflections. Further, by Theorem 30.8, these reflections must be in 
lines of one pencil. 

Theorem 30.12 A group of isometries containing rotations with dif­
ferent centers necessarily contains a translation. 

Proof Suppose group G of isometries contains rotations at with cen­-ter A and a 2 with center B where A "F B. Let l=AB. There exist lines 
m and n such that at =P1Pm and a 2 =P1Pn. Group G must also contain 
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<T;1<T~1<T2<T1' which is (pn plpm)2. Since m, l, and n are not in one brush, 
then PnPIPm is a glide reflection. So G contains the square of a glide 
reflection. Therefore, G contains a translation. • 

Summarizing most of the preceding three theorems and their 
corollaries, we have the next theorem. 

Theorem 30.13 A finite group G of isometries can contain only ro­
tations, reflections, and the identity. Also, all the rotations in G must 
have the same center, and all the reflections in G must be in lines of 
one pencil. Further, if G contains both rotations with center C and re­
flections in lines in pencil p, then C is the center of p. 

Corollary 30.14 Every finite group of isometries fixes some point, 
which is unique if the order of the group is greater than 2. 

Theorem 30.15 If a finite group G of isometries contains only rota­
tions and the identity, then G is a cyclic group Cn. 

Proof Suppose G has n elements. If n is 1 or 2, the result is trivial. 
Suppose n> 2 and all the rotations have center C (Theorem 30.13). 
Let PI' P2 , ••• 'Pn be all the distinct images of some point P different 
from C. Since n > 2, not all the Pi are collinear with C. So, without 
loss of generality, we may suppose mLppP2 is the minimum of all 
possible numbers mLppPi" If aP=PI and {3P=Pp then {3a-1 is an ele­
ment of G taking PI to Pj. So each Pi is the image of PI under some 
element of G. Let <T be an element of G that takes PI to P2• There is a 
smallest positive integer m such that <Tm is the identity. So <T, u2, ... , 
<Tm are distinct elements in G. We wish to show these are the only ele­
ments in G. Let Vi+I=<TiPI. Then VI=PI, V2 =<TPI=P2 , and the m 
points Vi are among the n points Pi" So mLVpVi+1' m<Ti- 1LPPP2 , 

and mLPICP2 are equal. By the minimality of mLP1CP2 , no Pj can 
be in int (L VPV i+ I ). Since the Vi are the vertices of a regular m-gon 
inscribed in the circle with center C and radius CPI' it then follows 
that each Pi must be a Vi" Hence n = m and G is the cyclic group gen-
erated by <T. • 

Theorem 30.16 If a finite group G of isometries contains a reflec­
tion, then G is a dihedral group Dn. 

Proof Suppose G has n even isometries and m odd isometries. The 
n even isometries by themselves form a subgroup H of G. Since H 
contains only rotations and the identity; H must be cyclic of order n. 
Suppose H is generated by <T and G contains the reflection p. Since 
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each of the odd isometries multiplied by P on the left is an even isom­
etry, then m ~ n; since each of the even isometries multiplied by P 
on the left is an odd isometry, then n ~ m. Hence n = m and G has 
order 2n. Since ap is a reflection (Theorems 30.13 and 28.12), then P 
and ap are involutions. Therefore G is a dihedral group Dn' • 

Theorem 30.17 Leonardo's Theorem The only finite groups of 
isometries are the cyclic groups Cn and the dihedral groups Dn' 

Proof Summary of Theorems 30.13, 30.15 and 30.16. • 

Corollary 30.18 Every finite group of isometries is the group of sym­
metries of some polygon. 

Hermann Weyl has pointed out (see Exercise 30.10) that Leonar­
do da Vinci systematically determined the symmetries of a building 
floorplan in studying how to add chapels and niches without destroy­
ing the symmetry of the nucleus. Leonardo's results are essentially 
what we have called Leonardo's Theorem. 

30.2 FRIEZE PATTERNS 

From the preceding section only Definition 30.1 and Theorems 30.2, 
30.8, and 30.10 are required for this section. We begin with some ele­
mentary theorems for the absolute plane. All the theory in this sec­
tion holds for the absolute plane. 

Theorem 30.19 If A, B, C are points on line l, then T/CT/BT/ A is a half­
turn about some point on l. 

Proof Let a, b, c be the lines perpendicular to l at A, B, C, respec­
tively. Then there exists a line d perpendicular to l at a point D such 
that PcPbPa=Pd' Then T/CT/BT/A =PcPbPaPI=PdPI=T/D' • 

Coronary 30.20 If A, B, C are collinear points, then T/CT/BT/A =,T/AT/BT/C' 

Proof T/CT/BT/A=T/D=T/,/=T/AT/BT/C for some point D collinear with 
A,B,C .• 

Theorem 30.21 The translations with center c together with the 
identity form an abelian group. 

Proof Suppose 71 and 72 are translations with center c. Then there 
exist points A, B, C, D, E on c such that 71=T/BT/A' 72=T/DT/C' and 
T/CT/BT/A =T/E' Since 7il =T/AT/B and 7271 =T/ET/D' then the translations 
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with center c together with the identity form a group. By the preceding 
corollary, T2TI =TJDTJCTJBTJA =TJDTJATJBTJC=TJBTJATJDTJC=TIT2. SO the group 
is abelian. • 

Corollary 30.22 If (T is a glide reflection with center c and T is a trans­
lation with center c, then (TT = T(T. 

Theorem 30.23 If T is a translation with center c, line l is perpendic­
ular to c at P, and (T is any isometry, then 

(a) TTJ p is the half turn about the midpoint of P and TP 

(b) TPI is the reflection in the perpendicular bisector of P 
and TP 

(c) CTTJp(T-I is the half turn about (TP. 

Proof Let line m be perpendicular to c at M, the midpoint of P and 
TP. (a) Since T=TJMTJp, then TTJP=TJM. (b) Since T=PmPI' then TPI=Pm• 

(c) (TTJp(T-I is an involutory, even isometry fixing (TP. • 

Around the frieze of a building there is often a pattern formed 
by the repetition of some figure over and over again. The essential 
property of an ornamental frieze pattern is that it is invariant under 
some "smallest translation." Other symmetries are often evident as 
well. Of course, there is an infinite variety in the subject matter for 
such patterns. However, by discounting the subject matter and con­
sidering only the symmetries under which such patterns are invari­
ant, we shall see that there are essentially only seven possible types 
of ornamental frieze patterns. 

DEFINITION 30.24 A group of isometries that fix line c and whose 
translations, together with the identity, form an infinite cyclic group 
is a frieze group with center c. 

Let T be a translation with center c. We shall determine all frieze 
groups F with center c and whose translations, together with the 
identity, form the cyclic group generated by T. There will be seven of 
them. For each group we shall have a frieze pattern having that group 
as its group of symmetries. We shall also state in italics criteria which 
will distinguish those patterns with the given group of symmetries. 
The following notation will be used throughout. Suppose A is a point 
on c. For the moment A is arbitrary, but we shall be more specific in 
some cases. Let Ai = T iA. So Au = A. Since T nAi = T i + nA, every transla­
tion in F must take Ai to some Ap Let M be the midpoint of A and Al 
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and Mi = TiM. So Mi is the mid point of Ai and AH I and the mid point of 
Ao and A 2i+ 1• One possibility for F is just the group generated by T. 

Let Fl = (T). A frieze pattern having Fl as its group of symmetries has 
no point of symmetry, has no line of symmetry, and is not fixed by a 
glide reflection. See Figure 30.4. 

• 
Ao 

o 

FIGURE 30.4 
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The only even isometries that fix c are the identity, the transla­
tions with center c, and the halfturns with center on c. Suppose Fcon­
tains a half turn. In this case we suppose A is picked to be the center of 
a half turn in F. Since T and 'Y/ A are in F, then Tn'Y/ A is in F for each inte­
ger n. Hence (Theorem 30.23a), F contains T21n'Y/A' which is the half­
turn about Am' and F contains T2m+1'Y/A' which is the halfturn about Mm' 
Now suppose P is the center of some half turn in F. Then the transla­
tion 'Y/P'Y/A is in F. So 7)p7)AA =An for some n. Then 7)pA =An, and Pis 
the midpoint of A and An' Hence F contains exactly those half turns 
that have center Am and those that have center Mm' Let F2= (T, 'Y/A)' 
Since T'Y/ A is an involution, then T'"f/A ='Y/AT-1. SO every element in F2 is 
of the form Ti or 'Y/ATi. Every element in F2 is of the form 7)~Ti. Also, 
F 2= (7)A' 7)M) since 7)MT=7)A' A frieze pattern having F2 as its group of 
symmetries has a point of symmetry but no line of symmetry. See Fig­
ure 30.5. 

L-
• o • o • o • o • --, ~ ~ ~ 
FIGURE 30.5 

If F contains only even isometries, then F must be one of Fl or 
F 2. In general, F must contain Fl or F 2. The other possibilities for F 
are obtained by augmenting Fl or F2 with odd isometries. We first 
consider adding reflections. A reflection in line 1 fixes c iff 1 = c or 1 .1 c. 
Let F~=(T, Pc>. Since TPc=PcT (Theorem 29.17), then F: is abelian 
and every element is of the form p~Ti. If n ~ 0, then FJ contains the 
glide reflection PcTn, which takes A to An' A frieze pattern having 
F: as its group of symmetries has no point of symmetry and the center 
is a line of symmetry. See Figure 30.6. 

L- L- L- L-
• 0 • 0 • 0 • 0 • 
~ ~ ~ ~ 

FIGURE 30.6 
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Let F~= (T, 'Y/A' Pc)' Since Pc commutes with both T and 'Y/A' then 
every element of F~ is of the form P~'Y/~Ti. If n ¥- 0, then F~ contains the 
glide reflection Tnpc' which takes A to An' Also (Theorem 30.23b), 
F~ contains T2m'Y/APC ' which is the reflection in the line perpendicular 
to c at Am' and F~ contains T2m+l'Y/APC' which is the reflection in the line 
perpendicular to c at Mm' If a is the line perpendicular to c at A, then 
F~= (T, Pa, Pc)' A frieze pattern having F~ as its group of symmetries 
has a point of symmetry and the center is a line of symmetry. See Fig­
ure 30.7. 

L.-~'-~L-~L.-~ .0.0.0.0. 
~~~~~~~~ 

FIGURE 30.7 

Suppose F does not contain a half turn but does contain the re­
flection in a line a that is perpendicular to c. In this case, we suppose 
A is on a. Then (Theorem 30.23b), F contains T 2mpa, which is the re­
flection in the line perpendicular to c at Am' and F contains T2m+ l pa , 

which is the reflection in the line perpendicular to c at Mm' Assume 
F contains another reflection PI' Then l ¥- c since the halfturn PcPa 

is not in F. So l.l c. Then F contains the translation PIPa' which must 
take A to An for some n. So PIA = An for some n with n ¥- 0, and l is 
perpendicular to c at some Am or at some Mm' Therefore, F must con­
tain exactly those reflections in lines perpendicular to c at Am for each 
m and those reflections in lines perpendicular to c at M m for each m. 
We have now considered all possible cases of adding reflections to 
Fl' Let F~= (T, PU> where a is perpendicular to c at A. Since TP a = 
PaT-I, every element of ~ is of the form p~Ti. ~ does not contain Pc 
but does contain the reflections in the lines that are perpendicular 
to c at Am or Mm' A frieze pattern having Ff as its group of symmetries 
has no point of symmetry, has a line of symmetry, but the center is not a 
line of symmetry. See Figure 30.8. 

L.-~L-~L-~L.-~ .0.0.0.0. 
FIGURE 30.8 

Now suppose F does contain a half turn and the reflection in a 
line p. If p = c, p is perpendicular to c at Am' or p is perpendicular to 
cat M m, then we are back to F~. To obtain something new, we must 
suppose p is off each Am and off each Mm' Let p be perpendicular to c 
at P. Since Tnpp and T-npp with n> 0 are the reflections in the lines 
perpendicular to c at the two points on c that are of distance nAM from 
P (Theorem 30.23b), we may suppose A-P-M without loss of general­
ity. F contains the half turn Pp'Y/APp about ppA (Theorem 30.23c). Since 
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the only permissible centers of half turns are the Am and the Mm and 
since A - P - M, then we must have pyA = M. Hence F contains Pp where 
p is the perpendicular bisector of A and M. If line a is perpendicular to 
c at A, then F cannot contain both P and Pa as the translation PpPa 
would take A to M, which is impossible. Also, since PpPa=PpPc7lA' F 
cannot contain both Pp and pc' We have now considered all possible 
cases of adding reflections to F 2' Let F1 = (T, 71 A' P /I> where p is the per­
pendicular bisector of A and M. F1 contains the glide reflection PP7lA 
which takes A to M. Let Y=PP7lA' Since T=y2 and Pp=Y7I, .. then F1= 
(y, 7IA>' F1 does not contain Pc' A frieze pattern having F1 as its group of 
symmetries has a point of symmetry, has a line of symmetry, but the 
center is not a line .of symmetry. See Figure 30.9, but ignore the dots. 

• o • o • o • o • 
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FIGURE 30.9 

We have considered all possibilities for F that do not necessarily 
contain a glide reflection. Now suppose F contains the glide reflection 
(I. Then (I has center c and (I2 is a translation with center c. We have 
two cases: (I2 = T2n and (I2 = T2n+ 1 for some integer n. Suppose (I2 = T2n. 
Since (I and T commute (Corollary 30.22), then (T- n(I)2 is the identity. 
So the odd, involutory isometry T-n(I must be Pc' Hence (I=Tnpc' In 
this case F contains Pc and PcTm for each integer m. If F does not con­
tain a half turn, then we are back to F:; if F contains a half turn, then 
we are back to F~. Now suppose (I2=rn+l. Then (T- n(I)2 is T. Let y= 
T-n(I. Then Y is an odd isometry whose square is T. Hence Y must be 
the unique glide reflection with center c that takes A to M (Theorem 
30.10). Since y 2m =Tm and y2m+l=Tmy, the glide reflections in Fare 
exactly those of the form Tmy. Let ~ = (y > where y is the glide reflec­
tion with center c such that y2 = T. A frieze pattern having ~ as its 
group of symmetries has no point of symmetry, has no line of symmetry, 
but is fixed by a glide reflection. See Figure 30.10, but ignore the dots. 

'--• o • o • o • o • 
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FIGURE 30.10 

Suppose F contains isometries in addition to those generated by 
the glide reflection y with center c where y2=T. Since the square of 
the translation Pc y is T, then Pc y is not in (T >. So Pc cannot be in F. If 
F contains PI with l .1 c, then F contains the half turn PlY' IfF contains 
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a half turn, then F must contain TJ A. In this case, F contains TJ A and the 
glide reflection -y such that -y2 = T. Hence F is Fi. We have now run out 
of possibilities. F must be one of the seven groups given above. 
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FIGURE 30.11 
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Theorem 30.25 Let F be a frieze group with center c whose transla­
tions, together with the identity, form the group generated by the 
translation T. If F contains a half turn, suppose F contains TJ A; if F con­
tains a reflection in a line perpendicular to c, suppose F contains Pa 

with a 1. c. Let -y be the (unique) glide reflection with center c such that 
-y2 = T. Then F is exactly one of the seven groups defined as follows: 

F 1 =(T), F:=(T,pc)' Fi=(T'Pa)' Ft=(-y), 

F 2 =(T,TJ), F~=(T,TJA'PC>, l'1=(-Y,TJ). 

The seven types of ornamental frieze patterns are illustrated in 
Figure 30.11. 

If P is a point and T 1 and T 2 are translations such that P, TIP, and 
T 2P are not collinear, then a group of isometries whose translations 
are exactly those in (Tp T2 ) is called a wallpaper group. In the sense 
that there are exactly seven frieze groups, there are exactly seventeen 
wallpaper groups for the Euclidean plane. (See the references cited 
in Exercises 30.10, 30.20, and 39.21.) Patterns corresponding to many 
of these groups were known to ancient Egyptians and Chinese. How­
ever, all seventeen of the groups were known to the Moors as is shown 
by the ornamental patterns decorating the Alhambra in Granada. 
This has been considered one of the greatest mathematical achieve­
ments of ancient times. The study of wallpaper groups makes a nice 
topic for independent study or for a seminar. 

30.3 EXERCISES 

30.1 Theorem 30.7. 

30.2 A nonempty set of points in the interior of a circle cannot have 
two points of symmetry. 
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• 30.3 U sing the notation in the text for a regular polygon with 
~ 

group of symmetries D n , show that the reflection in CVi is (T2ip. What 
is (T2i+l p? 

30.4 What is the group of symmetries for the Greek cross of Fig­
ure 30.1? 

• 30.5 Find all possible groups of symmetries that fix a given line 
but do not contain a translation. What could be on the frieze of a build­
ing that corresponds to each of these groups? 

• 30.6 Two mathematicians looking at the frieze of a building dis­
agree on the frieze group. Give an example of such a frieze pattern. 

30.7 Find the frieze group for each of the following patterns: 

(a) DDDDDDDD (b) E E E E 
DDDDDDDD' E E E E' 

(c) XXXXXXXX (d) ZZZZZZZZ 
XXX XXX XX , ZZZZZZZZ' 

(e) 
XXXXXXXX 

If) 
XZXZXZXZ 

ZZZZZZZZ' ZXZXZXZX' 

(g) X X X X (h) Z Z Z Z 
X X X X' Z Z Z Z' 

(i) 
X X X X 

(j) 
yyyyyyyy 

Z Z Z Z' yyyyyyyy' 

• 30.8 True or False? 

(a) No letter in the alphabet has exactly one point of symmetry 
and exactly one line Of symmetry. 

(b) There exists a nonempty set of points with two lines of sym­
metry but no point of symmetry. 

(c) An n-gon has exactly 1, exactly n, or exactly 2n symmetries. 

(d) A dihedral group of order greater than 2 is generated by 
two reflections. 

(e) A finite cyclic group of isometries is generated by a rota­
tion or by the identity. 

(f) If a and f3 are isometries and a 2 = f32, then either a = f3 or 
a=f3-I. 

(g) If P is a point of symmetry for set S of points, then P is in S. 
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(h) Given translation T, in the Euclidean plane there are many 
glide reflections whose square is T but in the Bolyai - Lobachev­
sky plane there is exactly one. 

(i) If T is a translation with center I and line m is perpendic­
ular to I at P, then 771 p is the half turn about TP and TPm is the 
reflection in Tm. 

(j) An ornamental frieze pattern having no point of symmetry, 
having a line of symmetry, and which is fixed under a glide re­
flection has a frieze group Fl as its group of symmetries. 

30.9 Find the frieze group for each of the following patterns: 

(a) DDDD, 

(e) 8888, 

(i) QQQQ, 

(b) XXXX, 

(f) UUUU, 

(j) AAAA, 

(c) ZZZZ, 

(g) 0000, 

(k) BBBB, 

(d) YYYY, 

(h) 1111, 

(1) CCCC. 

30.10 Read Symmetry by Hermann Weyl (Princeton, 1952). 

30.11 Read Paper Folding for the Mathematics Class by Donovan A. 
Johnson (National Council of Teachers of Mathematics, 1957) or Geo­
metric Exercises in Paper Folding by 8undara Row (Dover, 1966). 

30.12 If S is the set of images of point A under the elements of some 
group G of isometries, then G may be a proper subgroup of the group 
of symmetries of S. 

30.13 Give an example of a rotation U' such that (U') is an infinite 
cyclic group. 

30.14 What is the group of symmetries for the curve in the Cartesian 
plane with equation: (i) y=cosX, (ii) y=coshx, (iii) y=tanx, (iv) y= 
tanh x? 

30.15 What is the group of symmetries for the set of all points (x, 0) 
in the Cartesian plane with x rational? 

30.16 A. frieze group F1 is generated by two involutions; a frieze 
group F~ is generated by three involutions. 

30.17 Frieze groups FI and F1 are isomorphic. Frieze groups F 2 , 

Fi, and F1 are isomorphic. Frieze groups Fl and F~ are not isomorphic. 

30.18 If a and f3 are involutions such that (f3a) is finite, then (a, f3) 
is a dihedral group. Conversely, every dihedral group contains such 
involutions. 
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30.19 If group G of isometries contains an odd isometry, then there 
exists a one-to-one correspondence between the set of even isometries 
in G and the set of odd isometries in G. 

30.20 Read Chapter II of Geometry and the Imagination by D. Hilbert 
and S. Cohn-Vossen (Chelsea, 1956). 

*30.21 Read Part One of Regular Figures by L. Fejes Toth (Per­
gamon, 1964). 

*30.22 Give an example of a group G generated by a and 13, but every 
element of G is not of the form t3 i a i • 

*30.23 What are the polygons with all sides congruent and all angles 
congruent that are not regular polygons? 

*30.24 Find all groups of isometries that fix a given line. 

*30.25 Is every group of isometries the group of symmetries for some 
set of points? 

*30.26 What are the finite groups of isometries in Euclidean three­
space? 

*30.27 Establish that there are exactly seventeen wallpaper groups 
for the Euclidean plane. 

• *30.28 What are the wallpaper groups for the Bolyai - Lobachev­
sky plane? 
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CHAPTER 31 

Horocircles 

31.1 LENGTH OF ARC 

For our proof of the fundamental formula of Bolyai - Lobachevsky 
geometry we shall need a lemma concerning ratios of lengths of cer­
tain arcs of horocircles. After extending the domain of definition for 
the critical function TI to the set of reals, the rest of this section is de­
voted to proving this lemma, our Theorem 31.17. For this extension, 
TI (0) will be defined to be 1T/2 since TI (x) approaches 1T/2 as x approach­
es O. Then (0, 1T /2) will be made a point of symmetry for the graph of 
TI in the Cartesian plane. So the midpoint of (x, TI(x» and (-x, TI(-x» 
will be (0, 1T/2). See Figure 31.1. Then for all real x, we will have 
TI(x) + TI(-x) =1T. 

DEFINITION 31.1 TI(O) =1T/2, and TI(-x) =1T- TI(x) for x > O. 

Theorem 31.2 TI is a strictly decreasing, continuous function on the 
reals. TI(0)=1T/2, limx~xTI(x)=O, and limx~_xTI(x)=1T. 

Proof Corollary 24.17. • 

DEFINITION 31.3 If 1 and m are two parallel lines and S is either a 
point or a set of points, then S is between 1 and m if S is on the half­
plane of 1 that contains m and on the halfplane of m that contains 1. 

----If A and B are two points of horocircle '{5 with center b, then AB is the 
union of {A, B} and the points of'{5 that are between the line in b 
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y 

y==1T ..................................... 

---------------------1----------------------~x 
y==O 

FIGURE 31.1 

through A and the line in b through B, int (AB) = AB \ {A, B}, AB is 

the chord of '1;' subtended by AB, and AB is the arc of '1;' subtended by 

AB. The interior of As is int (AB). If b is the horopencil determined 
--> ---> 

by AC and '1;' is the horocircle through A with center b, then AC is a 
radius of '1;'. If line t intersects any set S of points such that S \ t is on 
a halfplane of t, then t is a tangent of S. 

----The notation "AB" is somewhat inadequate since two points A 
and B lie on exactly two horocircles (determined by opposite rays on 
the perpendicular bisector of AB). However, we shall assume that the 
reader always makes the correct choice of meaning. For example, in 

the next theorem it is tacitly assumed that AI>, PB, and AB are arcs 
of the same horocircle. 

FIGURE 31.2 
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Theorem 31.4 Let AH be on horocircle Cfj'. If point P is in int CAB), 
then Xp n PH = {P} and Xp U PH =AH. 

--> --> --> 
Proof Let Cfj' have center b. Let AC, BD, and PQ be radii of Cfj'. Then 
~ ~ ~ ~~ ~ 

PQ lies between AC and BD. Since AC, PQ, and BD are also three 
~ ~ 

lines in b, then the set of points between AC and BD is the union of 
~ ~ 

the three mutually disjoint sets: PQ, the set of points between AC and 
~ ~ ~ 

PQ, and the set of points between PQ and BD (Exercise 31.1). The 
theorem now follows from the definition of an arc of a horocircle. • 

We are not bothering to state formally all the obvious conse­
quences that follow from our definitions and theorems, particularly 
those consequences that are almost restatements of previous results. 
(For example, if point A is on horocircle Cfj', then the radius ofCfj' through 
A is unique.) Of course, we must avoid using any theorem that is 
obviously true but whose proof is not immediate. (For example, if 
~ --> --> -

AB is on a horocircle with radii AC and BD, then DE intersects 

XiJ when E-A-C.) There are two principal reasons for this self­
imposed avoidance. Mathematicians have learned that some of the 
so-called obvious theorems are the most difficult to prove while others 
turn out to be, in fact, false. 

Let Cfj' be a horocircle with center b. We know that any line inter­
sects Cfj' in at most two points, that every line of h contains exactly one 
point of Cfj', and that every point of Cfj' is on exactly one line of b. The 
next theorem is another elementary fact that we shall use again and 
again without reference. 

Theorem 31.5 Let.tiC be a radius of horocircle Cfj'. If point B is off 
~ 

AC, then B is on Cfj' iff mLCAB = TI(AB/2). 

Proof Let Cfj' have center b. Let M be the midpoint of AB. Then AM = 
1f2AB. Also, by definition of TI, mLCAB = TI (AM) iff the perpendicular 
bisector of A.B is in h. Further, by definition of Cfj', point B is on Cfj' iff 
the perpendicular bisector of AB is in b. • 

In particular, if B is on Cfj' in the preceding theorem, then LCAB 
is necessarily acute. 

Theorem 31.6 Let A, B, P be three points on horocircle Cfj' with radius 
--> ~ ~ 

AC. Then, P is in int (AB) iff P and C are on opposite sides of AB. Also, 
~ ~ 

AB is the set of all points on Cfj' that are off the halfplane of AB contain-
ing C. 
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FIGURE 31.3 

~ ~ 

Proof Let BD and PQ be radii of rc. (See Figure 31.4.) Assume Pis 
~ ~ 

in int (AB) but P and C are on the same side of AB. Then 27T is the 
sum of mLQPA, mLQPB, and mLAPB. This is a contradiction since 
LQPA and LQPB are both acute. Conversely, assume P and Care 

~ ~ 

on opposite sides of AB but P is not in int (AB). If A and P are on op-
~ 

posite sides of BD, then the sum of mLABD and mLDBP is greater 
~ 

than 7T; if Band P are on opposite sides of AC, then the sum of mL BAC 
and mLCAP is greater than 7T. In either case, we have a contradiction 
since the sum of the measures oftwo acute angles is less than 7T. There-

~ ~ 

fore, P is in int (AB) iff P and C are on opposite sides of AB. The last 
statement in the theorem now follows. • 

Theorem 31.7 Let A, B, P be three points on horocircle rc with radius 
--7 <E--+_ 

AC such that Band P are on the same side of AC. Then, P is in int (AB) 

iff mLCAP > mLCAB. Also, P is in int (AB) iff AP < AB. 

Q 

c 
A 

FIGURE 31.4 
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Proof Each of the following statements is equivalent to the next. 
,-.. ~ 

(1) P is in int (AB). (2) P and C are on opposite sides of AB. (3) mLCAP 
is greater than mLCAB. (4) ll(AP/2) > ll(AB/2). (5) AP<AB .• 

---> 
Theorem 31.8 Let '?f' be a horocircle with radius AC. Then every 
circle with center A intersects '?f' in exactly two points, one in each 

~ 

halfplane of AC. 

Proof Suppose r> O. Point P is on '?f' and on the circle with center A 
and radius riff mLCAP= ll(AP/2) and AP= r. By the Angle-Segment 
Construction Theorem, there are exactly two points satisfying the 

~ 

conditions, one on each side of AC. • 

The little theorem just proved can be used to parameterize a 
horocircle by the use of lengths of chords. 

---> 
Theorem 31.9 Let AC be a radius of horocircle '?f'. Let H be a half-

~ . 
plane of AC. Let Po =A. For positive real number r, let Pr be the point 
on'?f' such that PoPr=r and Pr is in H, and let P-r be the point on '?f' 
such that PaP -r = rand P is off H. Then the mapping (: R ---> '?f', where 

~ 

((x) =Px' is a bijection and PuPb = {Pxla ~ x ~ b} when a < b. Fur-
ther, given real numbers rand r with r> 0, there exists a positive 
real 8 such that Ir-xl < 8 implies PrPx < r. 

Proof Mapping (is a bijection (Theorem 31.8), and P- r is the image 
~ ~ 

of P r under the reflection in AC. Suppose 0 < c < d. Then PoPe is 

{PxIO ~ x ~ C}, and ~ is {PxIO ~ x ~ d} (Theorem 31.7). Since Pe 

Po t-+-----t--~ 

FIGURE 31.5 
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--.... ...--.... ~ 

is in int (PoPd), then the intersection of PoPe and i'cPd is {Pc} and the 
--.... ..--... 

union is PoPd (Theorem 31.4). Hence PcPd must be {P.rlc ~x ~ d}. It 
--.... 

follows that, for any two real numbers a and b, int (P aPb) is the set 
of all points P.r such that x is between a and b. 

(If Pr is close to P.r' then r is close to x as Ir-xl ~ PrPz by the Tri­
angle Inequality. The last statement in the theorem is the converse 
of this. That is, we are to prove that r close to x implies P r is close to 
Pz . Recall that Ir-xl < 8 iff r-8 < x < r+8.) 

The last statement in the theorem holds for r=O (Theorem 31.7 
with 8 = e). The statement holds for all r by symmetry if it holds for 
positive r. We may suppose e < r. Now let Pc and Pd be the two points 
on ri that are on the circle with center Pr and radius e such that Pc 
is on Ji)J, .. (See Figure 31.6.) Let a be the minimum ofn(c/2) - n(r/2) 
and n(r/2) - n(d/2). Then a > o since a is the minimumofmLPcPoPr 
and mLPrPoPd' Now since the function n is continuous at r, there 
exists a positive 8 such that Ir-xl < 8 implies In(r/2) - n(x/2) 1< a . ..--... 
Then n(c/2) > n(x/2) > n(d/2) and c < x < d. So P z is on PcPr or 

P)d' In either case, we have Ir-xl < 8 implies PrPz < e. • 

We next prove a couple qftheorems about the tangents of a horo­
circle. The first is an analogue of Theorem 20.4. 

Theorem 31.10 If a line is perpendicular to a radius of a horocircle 
at its vertex, then the line is a tangent of the horocircle. Conversely, 
every tangent of a horocircle is perpendicular to some radius at its 
vertex. A tangent of a horocircle contains exactly one point of the 
horocircle. 

C 
Po&---~------------------------~ 
FIGURE 31.6 
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-~ ~ 

Proof Let AC be a radius of horocircle (fj with center b. Certainly AC 
~ 

is not a tangent of (fj, since AC is a line of symmetry for (fj. Let line n 
~ 

be perpendicular to AC at A. Let P be any point on ~ except A. Since 
LCAP is acute, then P and C are on the same side of n. Thus n is a 
tangent of ~ and contains exactly one point of (fj. 

~ 

Let 1 be any line through A different from AC and from n. We 
~ 

may suppose 1 = AE where LCAE is acute. There is a unique point P 
~ 

on AE such that ll(AP/2) = mLCAE. Thus P is on ~. So 1 intersects '(;' 
in exactly the two points A and P. Let sand t be positive reals such 
that s < AP < t. Let Sand T be the points on (fj and on the same side of 
~ 

AC as P such that AS=s and AT= t. (See Figure 31.7.) Since ll(AP/2) 
is between ll(s/2) and ll(t/2) , we have mLCAP is between mLCAS 
and mLCAT. Hence Sand T are points of (fj on opposite sides of l. 
Therefore, 1 is not a tangent of '(;', and n is the unique tangent of (fj 
through A .• 

Theorem 31.11 Let A and B be two points on horocircle (fj. The tan­
gents of(fj at A and B intersect iff ll(AB/2) > 1T/4 and are horoparallel 
iff ll(AB/2) =1T/4. If the two tangents do intersect at a point Q, then 

""" 
int (AB) is on int (.6AQB). 

~ --,.. 
Proof Let AC and BD be radii of (fj. Let M be the midpoint of AB. Let - ~ the perpendicular bisector of AB intersect (fj at N. Let AE and BF be 

~ 

tangents of (fj with E and F on the same side of AB as N. (See Figure 

E 

T 

A c 
FIGURE 31.7 
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-> -> 
31.8.) Now, mLMAE=7T/2- n(AM). Hence AEIMN iff n(AM) = 

~ ~ ~ 

7T/4, andAE intersects MNiffn(AM) > 7T/4. SinceMNis a line ofsym-
-~ ----:'I> ~ 

metry for rt, it follows that AEIBF iff n (AM) = 7T/4 and that AE inter-
~ 

sects BF iff n (AM) > 7T/4. 
~ ~ -> 

Suppose AE does intersect BF at point Q. Then AE must inter-
-~ ~..-. 

sect BF at Q. SO Q and N are on the same side of AB. Thus int (AB) 
~ ~ ~ 

is on the same side of AB as Q. Since AQ and BQ are tangents of rt, 
--.. ~ 

then int (AB) is on the same side of AQ as B and on the same side of 
~ --.. 

BQ as A. Therefore int (AB) is on int (.6..AQB). • 

We want to talk about the length of an arc of a horocircle. Of 
course we must define length first. Then there will be the problem of 
showing that the length exists, i.e., the length is a finite number. We 
must avoid the kind of nonsense of comparing infinite numbers that 
is illustrated in Section 23.4. A nice Euclidean curve that points out 
some of the difficulties is the Snowflake Curve of Exercise 31.18. As 
we have said before, the definition of a unicorn does not imply the 
existence of a unicorn. 

DEFINITION 31.12 Let AB be on horocircle rt with center b. 

Then IABI is the least upper bound of all numbers };1~:TiTi+1 where 
{To' T n+l } = {A, B}, Ti is on rt, and Ti is between the line in b through 
T i_1 and the line in b through Ti+1 for i=l, 2, ... ,n. If IABI exists, 

then IABI is called the length of AB. We say An is longer than CD 
when IABI > leDl. 

FIGURE 31.S 
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We first show that if chord AB of a horocircle is short enough, 

then IABI exists. In particular, if IT(AB/2) > 'TT/4, then IABI exists. 

Theorem 31.13 If the tangents at two points A and B on a horocircle 

intersect at a point Q, then IABI ;§i AQ + QB. 

Proof Let IAnI be on horocircle ~ with center b. We suppose the 
tangents at A and B intersect at Q. Let n be any positive integer. Let 
To=A, Tn+1 =B, and Qo=Q. For i=l, 2, ... , n let T j be on ~ such 
that T j is between the line in b through T i _ 1 and the line in b through 
Ti+ 1 • ______ 

Since T1 is on int (ToB), then T1 is in int (b.ToQoB) , (Theorem 
~ --

31.11). So, by Crossbar, ToT1 intersects QoB at a point Q1 such that 
------Qo-Q1-B and To-T1-Q1. Likewise, since T2 is in int (T1B), then 

~ 

T1 is in int (b.T1Q1B). So, by Crossbar, T1T2 intersects Q1B at a point 
Q2 such that Q1-Q2-B and T 1-T2-Q2. (Note that the last two sen­
tences are obtained from the previous two by adding 1 to each sub­
script. See Figure 31.9.) We continue to define points Qi in the same 
fashion for i=3, 4, ... , n such that Qi_1-Qj-B and Ti_1-Tj-Qj. 
Finally, let Qn+1 =B. Now the following inequalities follow from the 
Triangle Inequality: 

ToT1 + (T1Q1) < ToQo + QoQl' 

T IT2+ (T2Q2) < (TIQI) +QIQ2' 

T2Ta + (TaQa) < (T2Q2) + Q2Qa' 

Tn_I Tn + (TnQn) < (Tn_IQn_l) + Qn-IQn' 

TnT n+1 + 0 < (TnQn) + QnQn+l· 

Adding the inequalities, we obtain 

I TjTi+1 < ToQo + QoQn+1 = AQ + QB. 

Therefore, IABI exists and IABI ;§iAQ+QB. • 

When n = 1, the proof above reduces to Euclid's Proposition 1.21, 
our Theorem 18.16. It is true that IABI is strictly less than AQ + QB 
in the theorem. However, we shall not need this result to show that 

lAB I always exists. 
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A = To B 

B = Tn + 1 = Qn + 1 

FIGURE 31.9 

Theorem 31.14 If A and B are any two points on horocircle~, then 

IABI exists and IABI > AB. Congruent chords of one or more horo­
circles subtend congruent arcs. The longer of two noncongruent chords 
of one or more horocircles subtends a longer arc. 

Proof Since any two horocircles are congruent (Theorem 29.2) and 
since the perpendicular bisector of a chord of a horocircle is a line of 
symmetry for that horocircle, it follows that there is an isometry (in 
fact, exactly two) mapping point P' on horocircle ~' to point P on horo­
circle ~ with ~' going to ~. Thus all the statements in the theorem 
follow immediately once it is established that every arc has a length. 

Suppose AB is on horocircle ~ with center b. Let II(r/2) =7T/3. 

If AB ~ r, then II(AB/2) > 7T/4 and IABI exists by the preceding theo­

rem. So suppose AB > r. Let Bo be on iil and on the circle with center 
A and radius r. Define the sequence of points Bn for n= 1,2,3, ... by 
letting Bn be the image of A under the reflection in the line of b through 



412 HOROCIRCLES 

B Il _ I • Now B" is on ri and AB Il _ I < ABn because Bn_1 is in int (11B,,). 
Further, IAnni = 2n1ABol. So IAnI exists if there is some integer m 

such that B is on ARm' In other words, we are done if ABm > AB for 
some m. (It is conceivable that the numbers ABn remain bounded even 

though the numbers IABnl do not.) Assume the set of all numbers 
AB n has least upper bound s. There is a point S on ri such that AS = s 
with Band S on the same side of the radius through A. Also, there is a 

point T on AS such that ST = r. Now, if some Bn is on Ts, then S is on 

ARn+i' contradicting the fact that s is an upper bound. Also, if no Bn 
is on Ts, then s is an upper bound but not the least upper bound. In 
either case, we have a contradiction, and IABI always exists. • 

Now that we know every arc on a horocircle has a length, we wish 
to show every positive real is the length of some arc. 

Theorem 31.15 Given point A on horocircle ri and s > 0, there exists 

a point P on ri such that IAPI = s. 
Proof We shall use the notation of Theorem 31.9. So A =Po' Let ---g(O) =0, and let g(x) = IPoPxl for nonzero real x. Since g is an un-
bounded function on the reals and g (0) = 0, the theorem follows from 
the intermediate value theorem provided g is continuous. 

Suppose e > O. To show g is continuous at 0, we need to find a ---positive 8 such that 0 < Ixl < 8 implies I~Pxl < e. Let Q be a point 
such that AQ 1- AC and AQ = e/4. Then AQ is a tangent of ri. Let B 
be the image of A under the reflection in the line through Q lying in 

~ 

the center ofri. ThenB is on ri, QB is a tangent ofri, and QB=e/4. So 

AQ+QB=e/2. Also, IABI ~AQ+QB. Further, for 0< Ixl <AB, we --- ---have IPoPxl < IABI since PoPx <AB. Therefore, taking 8=AB, we ---have 0 < Ixl < 8 implies IPoP xl < e. ___ 
Suppose e> 0 and r ~ O. Then Ig(r) -g(x) 1= IPrPxl. To show g 

is continuous at r we need to find a positive 8 such that Ir-xl < 8 im-----plies IPrPxl < e. By the preceding paragraph, there exists a positive ---'T1 such that 0 < PrPx < 'T1 implies IPrPxl < e. However, for 'T1 > 0 there 
exists a positive 8 such that Ix- rl < 8 implies PrPx < 'T1 (Theorem ----31.9). Therefore, Ix- rl < 8 implies IPrPxl < e. So g is a continuous 
function. • 

DEFINITION 31.16 Let ri be horocircle with center b. Point P is in 
int (ri), the interior of ri, if P is in the interior of some radius of ri. 
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The exterior of 'fl is the set of points off both 'fl and int ('fl). Let 'fl' be 
a horocircle concentric with 'fl. Let A and B be two points on 'fl. Let 
the lines in b through A and B, respectively, intersect 'fl' at A' and B', 
respectively. Then, with respect to 'fl and 'fl', point A corresponds to 

point A', AB corresponds to A'B', An corresponds to A-B' and AA' is 
the distance between 'fl and 'fl'. 

That the distance between concentric horocircles is well defined 
is included in Theorem 28.2. 

Theorem 31.17 There is a positive constant k such that if'fl and 'fl' 

are any concentric horocircles with 'fl' on int ('fl), AB on'fl corresponds 
~ ~ 

to A' B' on 'fl', and x is the distance between 'fl and 'fl', then lA' B' I = 

IABle- X /k • 

Proof Suppose point Con 'fl corresponds to point C' on 'fl' where B 
..-... ,-..., ---- ....-....."......-...... 

is in int (AC). We first show that IACI / IABI is equal to IA'C'I /IA'B'I 
by providing the absolute value of the difference of these numbers is 
less than every positive number. Suppose e> o. Let n be any positive 

---integer such that 2ne > 1. There exists a point P on AB such that 

lAB I = 2n IAPI. There exists a point Q in int cAen such that IAcI = 
mlAPI + IQCI with IQCI ~ IAPI for some integer m (Theorem 31.15). 
Let P' and Q' be the points on 'fl' that correspond to P and Q, respec­
tively. (See Figure 31.10.) Then (Exercise 31.3), we have 

~ ~ ~ 

IA'C'I =mIA'P'1 + IQ'C'I, 
and 
~ ~ 

IQ'C'I ~ IA'P'I· 

Then, 

,.-.......-.... ..-.""'-"" 

IACI IA'C'I 1 IQCI IQ'C'I 1 
--;::::::-- ~ = - ~- -:::=:::.-- < - < e. 
IABI IA'B'I 2n IAPI IA'P'I 2n 

lAC I IA-C'I 
SO, lAB 1= liGh' therefore, 

lAB I lAC I 
-- --
IA!B'I 1.4'C'I· 

It follows from the last equation that, given two concentric horo­
circles 'fl and 'fl' with 'fl' on int ('fl), the ratio of the length of an arc 
on 'fl to the length of the corresponding arc on 'fl' can depend only on 
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A 

y 
A" 

B~------~----------~B~"------~~ 

C' 

FIGURE 31.10 

the distance between Cfi' and Cfi". If x is the distance between Cfi' and Cfi", 
we denote this ratio by rCx). 

For positive numbers x andy, we may supposeAA' =x andA'A"= 
y where A-A' -A". Let Cfi''' be the horocircle through A" that is concen­
tric with Cfi' and Cfi". Then Cfi''' is on int (Cfi') and on int (Cfi") , and the dis­
tance between Cfi' and Cfi''' is x + y. (See Figure 31.10.) Let B" on Cfi''' cor­
respond to B on Cfi'. Then 

IABI 
r(x)= ~, 

IA'B'I 

------IA'B'I 
r(y) = --::=::-, 

IA"B"I 
and 

IABI 
rcx+y)= ~. 

IA"B"I 

Since 1f2A'B' > 1/2 A"B" , then r(x+y) > rex). Thus f is a strictly in­
creasing function such that rcx + y) = rCx) rCy) for positive x and y. 

Let r(l) = a. So a> 1. Computing r(lIn + lin + ... + lin) once 
where there are n terms in the sum and again where there are m terms 
in the sum, we obtain r(mln) =am/n for positive integers m and n. 
Hence rCr) = aT for all positive rationals r. Since ris strictly increasing, 
we must have r(x) = aX for all positive reals x. To finish the proof and 
follow standard notation, we let a=e1/k • • 

DEFINITION 31.18 The distance scale is the positive constant k 
in Theorem 31.17. 

By Theorem 31.17 each model of I has associated with it a posi­
tive constant k. Ifwe multiply all distances of a given model by a posi­
tive constant t, we obtain a model of I, but the constant associated 
with this new model would be tk. CReplacing x by tx in the theorem 
requires replacing k by tk.) All we would be doing is changing the 
scale for distance. That is, if (9, 2, d, m) is a model of I with distance 
scale k, t is a positive constant, and d'(P, Q) =td(P, Q) for all points 
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P and Q, then (.9>,2, d', m) is a model of I with distance scale tk. If 
we take t= 11k, then (.9>,2, d', m) is a model of I with distance scale 
1. Using the Cayley - Klein Model and varying the value of t, we see 
that there exist models of I with any given positive distance scale. 
So, in the theory, the numerical value of the distance scale is not 
determined by the axioms. 

31.2 HYPERBOLIC FUNCTIONS 

Combinations of 1f2(e.r-e-.r) and 1f2(eX+e-.r) appear so often in 
analysis that these expressions have been given the special names in 
our next definition. 

DEFINITION 31.19 For a real number x 

. eX- e-.r 
smhx 2' 

eX + e-.r 
coshx= 2 ' t h sinh x an x=-­

cosh x' 

sinh x csch x = cosh x sech x = tanh x coth x = 1 if x ~ o. 

Also, arcsinh x = y if sinh y = x; arccosh x = y if cosh y = x and y ~ 0; 
arctanh x = y if tanh y = x. 

The first six of the nine functions defined above are called the 
hyperbolic functions. Although the geometric connection between the 
hyperbolic functions and a hyperbola is slight (Exercise 31.16), this 
is the reason for the name. The name and notation for these functions 
is due to Lambert. The usual trig functions are often called the cir­
cular functions because of their close connection with circles. There 
is a good deal of algebraic similarity between the hyperbolic func­
tions and the usual trig functions. For this reason, the hyperbolic 
functions are often called the hyperbolic trig functions. The full name 
of the function sinh is hyperbolic sine, and the other hyperbolic func­
tions are similarly named. 

The hyperbolic functions are often omitted from a calculus course 
because one can do without them. They are, after all, only abbre­
viations. From a practical point of view, we shall find these abbre­
viations indispensable for studying hyperbolic geometry. (Hyper­
bolic geometry was so named after the hyperbolic functions were 
so named.) 

Graphs of sinh, cosh, tanh, and arctanh may be found in Figures 
2.2 and 2.3. 
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Theorem 31.20 Let x and y be real numbers. Then 

(a) cosh2 x- sinh2 x= 1, 

(c) coshx+sinhx=eX, 

(b) 1- tanh2 x= sech2 x, 

(d) cosh x- sinhx=e-x , 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 

(k) 

(l) 

sinh (x + y) = sinh x cosh y + cosh x sinh y, 

sinh (x - y) = sinh x cosh y - cosh x sinh y, 

cosh (x + y) = cosh x cosh y + sinh x sinh y, 

cosh (x-y) = cosh x coshy-sinhx sinhy, 

tanh x + tanh y 
tanh (x+ y) 

1 + tanh x tanh y' 

x+y x-y 
sinhx+sinhy=2 sinh-2-cosh-2-, 

x+y x-y 
sinh x - sinh y = 2 cosh -2- sinh -2-' 

x+y x-y 
cosh x + cosh y = 2 cosh 2 cosh -2-' 

x+y x-y 
(m) cosh x - cosh y = 2 sinh -2-sinh -2-' 

(n) 

(p) 

(q) 

. h X +VcOShX-1 SIn -=_ . 
2 2 ' 

tanh~=± /coshx-1 
2 Vcoshx+ 1 

( ) h~- /OOshx + 1 
o cos 2- y- 2 ' 

coshx-1 
sinh x 

sinh x 
coshx+ l' 

sechx 
1 + tanh x 

1-tanhx 
sechx ' 

(r) arcsinhx=ln (x+Yx2 +1), 

(s) arccoshx=ln (x+Yx2 -1), x~ 1, 

(t) 
l+x 

arctanh x = 1f21n -1-' -x Ixl < 1. 

Proof Each of the twenty formulas can be proved independently by 
simple substitution, using Definition 31.19. Of course, only (a), (c), 
(e), (g) and the two identities sinh-x=-sinhx and cosh-x = +cosh x 
should be proved this way. The others of the first seventeen follow 
from these. It is easy to derive the last three formulas. For example, 
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suppose arccosh x=y. Then cosh y=XE;;; 1. So ell +e-II = 2x. Multiply­
ing both sides of this equation by ell, we obtain a quadratic equation 
in eY. S~ving for eY by the quadratic formula, we obtain the solution 
eY=x± x2-1. Then y=±ln (x+Yx2-1) and (8) follow by taking 
the logarithm of both sides of the solution. • 

31.3 EXERCISES 

~ ~ ~ ~ 

31.1 If AC, PQ, and BD are in a horopencil and P is between AC and 
~ ~ ~ 

BD, then the set of all points between AC and BD is the union of the 
~ ~ 

three mutually disjoint sets: PQ, the set of all points between AC and 
~ ~ ~ 

PQ, and the set of all points between PQ and BD. 

• 31.2 Every point on a tangent of a cycle hut off the cycle is on 
another tangent of the cycle. No point off a set of points can be on three 
tangents of that set. 

,.-.. .-.... 
31.3 Let AB on horocircle ~ correspond to A'B' on horocircle ~'. If 
point P is in int (AB), lAB I =2IAPI, and P' on~' corresponds to P, 
then IFB'I=2IAP'I. Now verify the step indicated in the proof of 
Theorem 31.17. 

• 31.4 Given two nonperpendicular lines, there exists a third line 
perpendicular to one of the two lines and horoparallel to the other. 

• 31.5 True or False? 

(a) If point A is on horocircle ~, then there exists a unique point 
~ 

C such that AC is a radius of~. 

(b) Line 1 intersects horocircle ~ at exactly one point iff 1 is a 
tangent of ~. 

(c) If point B is in int (Ac), then LABC is acute. 

(d) If point A is in int (Be), then LABC is acute. 

(e) The tangents at two points A and B on a horocircle are 
hyperparallel iff ll(AB/2) < 1T/4. 

(f) coth2 x - csch2 X = 1 for nonzero real x. 

(g) sinh -x = -sinh x but cosh -x = +cosh x for all real x. 

(h) Two points determine a horocircle. 

(i) If horocircle ~' is on the interior of horocircle ~, then a 
chord of ~ does not intersect ~' . 
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~ ~ 

(j) If AB on horocircle ~ corresponds to A'B' on horocircle ~', 
~ -----then IABI ~ IA'B'I. 

31.6 If AB and ifF are equal arcs on horocircle ~, then {A, B} = 
{E,F}. 

31.7 Analogue of Theorem 31.10 for hypercircles. 

31.8 Suppose AB is a longest side of !::::.ABC. The A, B, C are on a 
circle, a horocircle, or a hypercircle iff mLA is respectively greater 
than, equal to, or less than TI(AC/2) - TI(AB/2). 

31.9 Formulas (e) and (g) of Theorem 31.20. 

31.10 sinh (a + b) + sinh (a - b) = 2 sinh a cosh b, 

sinh (a+ b) -sinh (a- b) =2 cosh a sinh b, 

cosh (a + b) + cosh (a - b) = 2 cosh a cosh b, 

cosh (a + b) - cosh (a- b) = 2 sinh a sinh b . 

• 31.11 Formulas (j), (k), (1), and (m) of Theorem 31.20 . 

• 31.12 Formulas (n), (0), and (p) of Theorem 31.20 

31.13 Formulas (r) and (t) of Theorem 31.20. 

31.14 A line can be hyperparallel but cannot be horoparallel to 
each of the three lines that contain a side of a given triangle. 

31.15 Let i, m, n be three lines. If n is between i and m and i is be­
tween m and n, then m is between i and n. 

31.16 Let (x', y') be a point in the first quadrant of the Cartesian 
plane. Let i be the x-axis and m the line through (0,0) and (x', y'). 
If (x', y') is on the circle with equation X2 + y2 = 1, then x' = cos () and 
y' = sin fJ where () is twice the area of the region bounded by i, m, and 
the circle. If (x' , y') is on the hyperbola with equation X2 - y2 = 1, then 
x' = cosh () and y' = sinh () where () is twice the area of the region 
bounded by i, m, and the hyperbola. 

31.17 The interior of a horocircle is a convex set. 

31.18 A snowflake curve, due to Helge von Koch (1870-1924), is de­
fined as the limit of the following sequence of curves. Co is an equi­
lateral triangle. For positive integer n, Cn+! is obtained from Cn by 
constructing an equilateral triangle (not intersecting the interior of 
Cn) on the middle third of each side of Cn and then deleting those 
middle thirds. If Co has perimeter 3s, the resulting snowflake curve 
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bounds an area of 2\13 82/5. However, what can be said about arc­
length with respect to a snowflake curve? 

*31.19 Generalize Euclid's Proposition 1.21 for a finite number of 
points in the interior of a triangle. 

GRAFFITI 

sin (x+ y) = sin x cosy+ cos x siny, 

sin (x- y) = sin x cosy- cos x siny, 

cos (x + y) = cos x cos y - sin x sin y, 

cos (x- y) =cosx cosy+ sin x siny . 

. ~_+.vl-COSX 
sm 2-- 2' 

x Sinx 
tan-= . 

21+cosx 

x+y x-y 
sinx+ siny= 2 sin-2-cos-2-, 

. . . x-y x+y 
smx-slny=2 sm-2-cos-2-, 

x+y x-y 
cos x + cos y = 2 cos -2-cos-2-, 

. x+y . x-y 
cosx-cosy=-2 sm-2-sm-2-. 
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jP dx=l 
x ' 

'" 1 
e= L -= lim (1 + lin)". n l 11~", 

I 

'" X2n+1 

sinhx= L (2 1) I' 
n=O n+ . 

'" x2n 

coshx= L -(2 )1' 
n=O n. 

'" X 2n+1 

arctanh x = L -2--' 
n=O n+ 1 

eiZ-e- iz 
sinz=---

2i 

n=O • 

'" X 2 •H1 

sinx= L (-l)n (2 )1' 
n=O n+ 1 . 

'" x2n 

cosx= L (-1)n_(2 )1' 
n=O n . 

'" X2n+1 
arctanx= L (-l)n--. 

n=O 2n+ 1 

eiz+e- iz 
cosz= 

2 

eiz = cos z + i sin z, 

eiTr + 1 =0. 



CHAPTER 32 

The Fundamental Formula 

32.1 TRIGONOMETRY 

A certain constant 8 is useful in developing the trigonometry. 

DEFINITION 32.1 If n (p) = 7T/4, then 8 is the constant such that 
chords of length 2p subtend arcs of length 28 on a horocircle. 

---In Figure 32.1, AB has length 8. Figure 32.2 is essentially the 
same as Figure 32.1 but from a different perspective. Since longer 
chords of a horocircle subtend longer arcs, the next theorem is just a 
restatement of Theorem 31.11. 

Theorem 32.2 Let A and B be two points on horocircle ~. Then the 

b 

B 
FIGURE 32.1 
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b 

FIGURE 32.2 

tangent to ~ at A .and the line containing the radius of ~ through B 

intersect iff IABI < 8 and are horoparallel iff IABI =8. 

Suppose n (p) = TT/4. A change in the distance scale k would 
change the value of p. (See Figure 32.3.) So p depends on k. Since 8 
is defined above in terms of p, then the value of 8 also depends on k. As 
it turns out, in developing the formulas for trigonometry the constant 
8 always nicely cancels out at the end. So we don't really care what 
the actual value of 8 is. However, the distance scale k is not so oblig­
ing. In fact, k pops up all over the place, especially as a denominator. 
Weare going to avoid this nuisance by assuming k = 1. In other words, 
we are going to develop the trigonometry for the special case k = 1. 
From the special case we will be able to deduce the desired results for 
arbitrary distance scale. 

DEFINITION 32.3 Unless specifically stated otherwise, we assume 

FIGURE 32.3 
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1 

FIGURE 32.4 

the distance scale is 1. Thus, "Suppose the distance scale is I" is tacit­
ly assumed to be a part of the statement of each of the remaining theo­
rems that contain no other reference to the distance scale. 

We have tentatively assumed the distance scale is such that a 
ratio of the lengths of corresponding arcs on two horocircles is the 
number e when the distance between the horocircles is 1. (See Fig­
ure 32.4). The number 7T is involved in our choice of scale for angle 
measure, and the number e is now involved in our choice of scale for 
distance. We are presently in somewhat the same situation as the stu­
dent of high school trigonometry who fails to understand why radian 
measurement may be preferred over degree measurement. Of course, 
using radian measurement avoids having the constant 7T/180 appear­
ing all over the place in calculus. It is not obvious we have picked the 
best scale for distance. Since distance and angle measure are related 
by the critical function, it might seem more natural to pick the scale 
such that p is 1 when II (P) = 7T/4. Indeed, many earlier geometers did 
exactly that. However, in that case, the constant arcsinh 1, which 
equals In (1 + Y2), is ubiquitous. Later, with the advantage of hind­
sight, it will be clear that we have made the most convenient choice 
for the distance scale. 

eU = cosh w 

s = S sinh w 

t=Stanhw 

FIGURE 32.5 
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The content of the next theorem is contained in Figure 32.5. 

Theorem 32.4 Let AD on horocircle re have length s. Let C be the foot 

of the perpendicular from B to the radius of re through A. Let CD cor­

respond to AD and AC=u. Then eU=coshBC, IABI =8 sinh BC, and 

I CDI = 8 tanh BC. 
--- --. ~ 

Proof Let lAB 1= s, ICD 1= t, and BC = w. Let re have center b. AC 
~ --. 

and BD are radii of re and BD = u. Let CD be on horocircle re'. Since 
+-+ +-+ 

BC is tangent to re' at C and intersects BD, we have t < 8, (Theorem 
32.2). Let E and F be the points on re' such that ICEI = 1@'1=8 with 
Don CE. Then IDEI =8-t and IDFI =8+ t. (See Figure 32.6.) 

From mLBDC=1T-n(CD/2) , we know LBDC is an obtuse 
+-+ 

angle of b.BDC. So w > u. Let G and H be the two points on BD such 
that BG=BH=w with Don BG. Then DG=w-u andDH=w+u. 

Let I and J be the points such that ill corresponds to 5F and 
-.. -.. ~ ,-. 

HJ corresponds to DE. Since BC is tangent to re' at C and ICFI = 
,-.... ~ ~ ~ ~ 

ICEI =8, then BClIF and CBIEJ by definition of 8. Let b2 be the 
+-+ +-+ 

horopencil containing BC and IF; let b3 be the horopencil containing 
+-+ +-+ -

BC and EJ. Since mLCBD=n(w), then the perpendicular to BG at 

b 

FIGURE 32.6 
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A 
A 

~ 
c a B a B 

FIGURE 32.7 

G is in b2 and the perpendicular to BH at H is in b3• So we have I GIl = 
IHJI=8. 

Now, applying the fundamental lemma on the ratio of lengths 
of corresponding arcs of concentric horocircles, we have 

8+t=IDFI = I GIlew-u=8e-uew, 
8 - t = IDEI = IHJle-<w+U) = 8e-ue-w, 

t= ICDI= IABle-u=se-u. 

Adding the first two equations, we obtain eU = cosh w. Then, subtract­
ing the first two equations, we obtain t=8 tanh w. Finally, from the 
third equation, we have s = 8 sinh w. • 

Corollary 32.5 A chord of length 2w of a horocircle subtends an 
arc of length 28 sinh w. If II (p) = 1T / 4, then p = arcsinh 1 = arccosh Vi 
=In (1+\12). 

Proof The first statement follows directly from the theorem. If 
we take w=p, then we must have 28=28 sinhp. So sinhp=1 and 
coshp=v'2. Adding these two equations, we have eP = 1 + v'2. • 

Given b.ABC, you are probably used to having a be the length 
of the side opposite LA. Also, in Euclidean geometry, a is often sup­
posed to be mLA. In hyperbolic geometry a different notation is usual­
ly used. We still have a=BC, but a is II(a) while mLA is X. See Fig­
ure 32.7. 

DEFINITION 32.6 Given b.ABC, we say we are using standard 
notation if we suppose 

a=II(a) =II(BC), 

,B=II(b) =II(AC), 

y=II(c) =II(AB), 

X=II(l)=mLA, 

f.L= II(m) = mLB, 

v= II(n) = mLC, 
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and 8 = (a + b + c) /2, regardless of the value of the distance scale. 

Using standard notation for /::;.ABC, we have v = 1T/2 and n = 0 
when LC is right. Further, n < 0 iff LC is obtuse (Definition 31.1). 
So there exists a segment of length n iff LC is acute. 

Theorem 32.7 If /::;.ABC has a right angle at C, then, with standard 
notation, 

(a) cosh c = cosh a cosh b, (b) cosh c = sinh I sinh m, 

(c) sinh c = sinh a cosh I, (c') sinh c = sinh b cosh m, 

(d) tanh b = tanh c tanh I, (d') tanh a = tanh c tanh m, 

(e) sinh b = tanh a sinh I, (e') sinh a = tanh b sinh m, 

(t) cosh a = cosh m tanh I, (f') cosh b = cosh I tanh m. 

---+ 
Proof Let b be the horopencil determined by CA. Let 1&'1 be the horo-

~ 

circle through B with center b. Let CA intersect 1&'1 at R. Since LC is 
right, we have R-C-A. Let RC=r. Let L be such thatB-A-L and 
AL=I. Let 1&'~e the horocircle through L with center b. Since II(I) = 

mLA, then BL is tangent to 1&'2 at L. Let points P and Q on 1&'2 corre­
spond to B andR, respectively, on 1&'1. LetAQ=q. Then BP=r+ b+ q. 

(See Figure 32.8.) Let 8 1 = IBRI, 82= IPQI, and 8 3 = IQLI. We have 
(Theorems 31.17 and 32.4) 

(i) 8 1 = 8 2er+b+Q , (ii) er=cosha, 

(iii) 8 1 =8 sinha, (iv) &=coshl, 

(v) 83 =8 tanh I, (vi) er+b+q = cosh (c + 1), 

(vii) 82 + 83 = 8 tanh (c + 1). 

From (i), using (iii) to substitute for 81, using (v) and (vii) to 

B 
r + b + q 

p 

FIGURE 32.8 
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substitute for S2' and using (vi) to substitute for er+b+q, we obtain (c). 
(The actual computations are left for Exercise 32.1.) Equation (c') fol­
lows from (c) by symmetry. 

Now eb = [cosh (c+ l) ]/[cosh a cosh l] by (ii), (iv), and (vi). Then, 
using (c) and substituting for eb in cosh b= 1f2(eb +e-b ) and tanhb= 
(e2b -1)/(e2b+ 1), after some time we obtain (a) and (d), respectively. 
By symmetry, we also have (d'). Using (c) and (d') to substitute in the 
expression cosh l tanh m, we obtain cosh b by (a). Thus (f) and (f') 
hold. Dividing (c) by (a), we have an expression for tanh c which when 
substituted in (d) gives (e). So (e') also holds. Finally, using (f) and 
(f') to substitute in (a), we obtain (b). • 

In Euclidean geometry the famous equation c2 = a2 + b2 gives 
the relation between the lengths of the hypotenuse and the legs of a 
right triangle. Here we have cosh c = cosh a cosh b. Equations (c) 
through (f') in Theorem 32.7 are also analogues of familiar formulas 
from Euclidean geometry. Of course (b) has no analogue in Eu­
clidean geometry. Why? We now derive our first hyperbolic analogues 
of the Euclidean law of sines and law of cosines. 

Theorem 32.8 With standard notation for 6ABC, 

sech l sech m sech n 
sinh a sinh b sinh c 

and 

cosh c = cosh a cosh b - sinh a sinh b tanh n. 
~ 

Proof Let D be the foot of the perpendicular from A to BC. Let AD = 
h. If LC is not obtuse, then sinh b = sinh h cosh n (by (c) of Theorem 
32.7). If LC is obtuse, then sinh b = sinh h cosh t where n (t) = 7T­

n(n). (See Figure 32.9.) For the second case, t=-n. Since cosh n= 
cosh -n, we have sinh b = sinh h cosh n in any case. Likewise, whether 
LB is obtuse or not, we have sinhc=sihhh coshm. So 

sinh b coshn 
sinhc coshm 

sechm 
sechn' 

The first equation in the theorem now follows by symmetry. 
Let CD = d. If neither LB nor LC is obtuse, then cosh DB = 

cosh (a-d) and tanh d= tanh b tanh n. If LB is obtuse, then cosh DB 
= cosh (a-d) and tanhd=tanhb tanhn. If LC is obtuse, then 
cosh BD = cosh (a + d) and tanh d = tanh b tanh -n = -tanh b tanh n. 
Since cosh c = cosh h cosh DB and cosh b = cosh h cosh d, we have 
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A 
A 

c D 

A 

c B D 

FIGURE 32.9 

coshc cosh b cosh DB 
coshd 

cosh b cosh (a± d) 
coshd 

= [cosh b] [cosh a cosh d ± sinh a sinh d] I [cosh d] 

= cosh a cosh b ± sinh a cosh b tanh d 

= cosh a cosh b - sinh a cosh b tanh b tanh n 

= cosh a cosh b - sinh a sinh b tanh n. • 

B 

Theorem 32.9 Hyperbolic Pythagorean Theorem Given t:o.ABC with 
standard notation, LC is right iff cosh c = cosh a cosh b. 

Proof Each of the following is equivalent to the next: cosh c = 
cosh a cosh b, sinh a sinh b tanh n = 0, tanh n = 0, n = 0, lJ = mLC = 
Tr/2. • 

Suppose mLBAC=A= n(l) < Tr/2. By (d) of Theorem 32.7, for 
Figure 32.10 we have tanhs=tanhx tanhl. It follows that slx= 

--.,. 
[arctanh (tanh x tanh l) ] Ix. As point P moves along int (AB) we know 
six does not remain constant (Theorem 22.23). Since the defect of 
small triangles is close to 0, it seems that the hyperbolic trigonometry 
must be close to Euclidean trigonometry for such triangles. One might 
hope that the limit of six as x approaches ° be cos A. If you remember 
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A c 
FIGURE 32.10 

L'Hospital's rule from calculus, you can easily check that the limit is 
actually tanh I. So as a good guess we might have cos A = tanh I. If 
this is correct, then A= arccos (tanh II-I (A)). This explains the first 
line in the proof of our next theorem, where we prove our guess is 
correct. (As usual, r= arccos s iff cos r= sand 0 ~ r ~ 71'.) 

Theorem 32.10 The Fundamental Formula For all real x, 

cos II (x) = tanh x. 

Proof Let f(A) = arccos tanh TI-I (A) for 0 < A < 71'. The range of f 
coincides with its domain. Since f is a composite of three continuous 
functions, f is itself continuous. Further, f(7I'/2) = 71'/2. If A= TI(I) for 
real number I, then COSf(A) = tanh I. It follows that then sinf(A)= 
sech l. We shall prove f(A) = A. 

First, suppose A and /L are each positive numbers less than 71'/2. 
Let TI(I) =A and TI(m) =/L. Let h be any positive number less than 1 
and less than m. Let C and D be any two points such that CD = h. 

~ 

Let A and B be points on opposite sides of CD such that mLDCB = A 
and mLDCA = /L. Since TI(h) > A and TI(h) > /L, the perpendicular to 
~ ~ ~ ~ 

CD at D intersects both CA and CR. So we may suppose AB is per-

c 

A D B 

FIGURE 32.11 
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~ 

pendicular to CD at D. (See Figure 32.11. Note we are not using the 
standard notation for !J.ABC.) Let AD=q and DB=r. So AB=r+q. 
Since 0 < A + " < 1T, there is a real t such that n (t) = A + ". Then, 
since cosh (r+ q) = cosh a cosh b- sinh a sinh b tanh t, we have 

cosh a cosh b- cosh (r+ q) 
cosf(A+,,)=tanht . h . hb 

sm aSIn 

cosh rcosh q 
= coth a coth b . h . h b SIn a sIn 

sinh rsinhq 

sinh a sinh b' 

We shall evaluate the last three terms separately. From tanh h= 
tanh a tanh 1 = tanh a cos f( A) and tanh h = tanh b tanh m = 
tanh b cosf(,,) , we have coth a coth b=coth2 h COSf(A) cos f(,,). 

cosh r cosh r cosh h From --= -=-=.::..:.:....:.--=-===-.:..:.. 
sinh a sinh a cosh h 

tanhh 

cosh a 
sinha cosh h 

tanh 1 cos f(A) 

tanh a sinh h sinh h sinh h 

cosh q cos f(,,) 
and the similar equation --=--­

sinh b sinh h ' 

cosh rcosh q 
we have csch2hcosf(A) cosf(,,). 

sinh a sinh b 

sinhr 
From 

sinha 
sinh r . 

. h hi sechl=smf(A) SIn rcos 

sinhq 
and the similar equation --:---h b = sin f(,,), 

SIn 

sinhrsinhq 
we have . h . h b sinf(A) sinf(,,)· 

SIn a sIn 

So cos f(A + ,,) = cos f(A) cos f(,,) - sin f(A) sin f(,,) 

= cos (f(A) + f(,,)). 

Hence f(A + ,,) = f(A) + f(,,) when 0 < A < 1T/2 

and 0 < " < 1T/2. 

Let f(l) =c. Let sand t be positive integers such that sit < 1T. 
So s/2t < 1T/2. Evaluating f(l/2t+ 1/2t+· .. + 1/2t) when there are 
2t terms in the sum and again when there ares terms in the sum, we 
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obtain f(s/2t)=sc/2t. Then f(s/2t+s/2t)=sc/t. So f(A)=AC for all 
positive rationals A less than 1T. Since f is continuous, then f(A) = AC 
for all positive real A less than 1T. Finally, since f( 1T/2) = 1T/2, we have 
C = 1 and f(A) = A for all A in the domain of f. • 

Corollary 32.11 For any nonzero real number x, 

sin II (x) = sech x, 

csc II (x) = cosh x, 

cos II (x) = tanh x, 

sec II (x) = coth x, 

tan II (x) = csch x, 

cot II (x) = sinh x. 

Proof sin II (x) = + (1 - cos2 II (x) ) 1/2 = sech x for all x, since 0 < 
II (x) < 1T. The remaining equations follow easily from the first two. • 

Corollary 32.12 For any real number x, 

tan II (x) = e-.r 
2 

and II (x) = 2 arctan e-.r 

Proof By the preceding corollary, we have 

t II(x) 
an 2 

sin II(x) 
1 + cos II (x) 

sechx e-.r.. 
l+tanhx 

Corollary 32.13 If b..ABC has a right angle at C, then, with stan­
dard notation, 

(a) cosh c= cosh a cosh b, (b) cosh C = cot A cot JL, 

(c) . A_sinha (c') sinhb 
sm - . h ' sin JL =-'-h-' SIn C sIn C 

(d) A tanhb (d') tanh a 
cos =th' COSJL=--

an C tanhc' 

(e) tanh a (e') tanhb 
tanA=~, tan JL=-'-h-' SIn sIn a 

(£) 
cos A (f') _cos JL cosha=-.-, coshb- . A' 
smJL sm 

(g) 1 a b tan - 8b..ABC = tanh - tanh-
2 2 2' 

(h) sinSb..ABC 
sinha sinh b 

1 + cosh a cosh b' 
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A 
A 

~ 
CaB 

FIGURE 32.12 

Proof Except for the last two, the equations follow directly from 
Theorem 32.7. Then, using only (f), (f'), and identities for tanh (x/2) 
and tan (x/2), we have 

tanh2 ~ tanh2 E. = (cosh a) - 1 
2 2 (cosh a) + 1 

(cosh b) -1 
(cosh b) + 1 

1 - sin (A + JL) 

1 + sin (A + JL) 

1-cos8b.ABC 
1+cos8b.ABC 

= tan2 1128b.ABC. 

cos (A-JL) 

cos (A-JL) 

Finally, from formulas (c), (c'), (d), and (d'), we have 

sin 8b.ABC = cos A cos JL - sin A sin JL 

= (sinh a sinh b) (cosh c-1)/ (sinh2 c) 

= (sinh a sinh b) / (1 + cosh c). • 

Corollary 32.14 Hyperbolic Law of Sines With standard nota­
tion for b.ABC, 

sin A sin JL sin" 
--=--=--
sinh a sinh b sinh c· 

Proof Theorem 32.8 and sechx=sin ll(x) .• 

Corollary 32.15 Hyperbolic Law of Cosines With standard nota­
tion for b.ABC, 

cosh a = cosh b cosh c - sinh b sinh c cos A, 

cosh b = cosh a cosh c - sinh a sinh c cos JL, 
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cosh c = cosh a cosh b - sinh a sinh b cos II. 

Proof Theorem 32.8 and tanhx=cosn(x} .• 

Because AAA is a theorem in hyperbolic geometry, we can expect 
to find an equation that gives the length of a side of a given triangle 
in terms of the measures of the angles of the triangle. This is done in 
the next theorem, where only one of three similar formulas is stated. 

Corollary 32.16 With standard notation for ~ABC, 

coshc 
cos A cos iL + cos II 

sin A sin iL 

Proof By the Hyperbolic Law of Sines and the Hyperbolic Law of 
Cosines, we can obtain the following identity: 

sin A sin iL (sinh a sinh b sinh2 c) 

= (sin A sinh c) (sin iL sinh c) (sinh a sinh b) 

= sinh2 a sinh2 b sin2 II 

= sinh2 a sinh2 b - (sinh a sinh b cos 11)2 

= (-1 + cosh2 a) (-1 + cosh2 b) - (cosh a cosh b-coshc)2 

= 1- cosh2 a - cosh2 b - cosh2 C + 2 cosh a cosh b cosh c. 

Now, solving for each of cos A, cos iL, and cos II in the three equations 
of the Hyperbolic Law of Cosines and then substituting these solutions 
in the expression cos A cos iL + cos II, we obtain the desired equation 
from the identity above. • 

Suppose ~ABC has a right angle at C. With standard nota­
tion and distance scale 1, we have cosh c = cosh a cosh b and sin A = 
(sinh a) I (sinh e). Now suppose the distance scale is k. Dividing all 
distances by k has the effect of changing the distance scale to 1. (See 
the remarks following Definition 31.18.) So, with distance scale k, it 
follows that 

cosh (elk) = [cosh (alk) ][cosh (blk)] 

and 

sinA= [sinh (alk)]/[sinh (elk)] 

The other trigonometric formulas are obtained in the same way. 
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Theorem 32.17 Let the distance scale be k. Then with standard 
notation for !::,.ABC 

cos II (x) = tanh (x/k) for all real x, 

_ [cosh (alk)][cosh (b/k)]- [cosh (elk)] 
cos v- [sinh (a/k)][sinh (blk)] , 

h (Ik) cos A cos JJ- + cos v 
oos c = . 

sin A sin JJ-

Proof Suppose uABCD is closed with LC right and a=BC. Regard­
less of the distance scale, we have II(a) = mLABC by the definition 
of II, (Definition 24.11). If the distance scale is 1, then mLABC= 
2 arctan e-a (Corollary 32.12). By the definition of II, it follows that 
mLABC=2 arctane-a/k when the distance scale is k. So II(a) =2 arc­
tan e-a/k and cos II(a) = tanh (a/k) for a> O. The first formula in the 
statement of the theorem now follows by the symmetry in the defini­
tion of II for negative values (Definition 31.1). The remaining two 
formulas in the theorem follow immediately from the Hyperbolic 
Law of Cosines (Corollary 32.15) and its "dual" (Corollary 32.16). • 

The formulas in Theorem 32.17 have some interesting implica­
tions. Let the terms involving sinh and cosh be replaced by their in­
finite power series (Section 31.4). Then taking the limit as k approach­
es infinity, we obtain the following three equations: 

a2 + b2 -C2 

cos v= 2ab II(x)=rr/2, 

These are equations for Euclidean geometry. So Euclidean geometry 
is a limiting case of hyperbolic geometry. To be flippant, "The Eu­
clidean plane is a Bolyai-Lobachevsky plane with infinite distance 
scale." From a different perspective, we can conclude that Euclidean 
trigonometry is a very good approximation for small triangles. For 
example, if v = rr/2 and the ratio elk is small, then e2 = a2 + b2 is a very 
good approximation to the relation of the lengths of the sides of the 
right triangle. Further, as we might guess from the remarks preced­
ing the proof of the Fundamental Formula (Theorem 32.10), sin 11.= ale 
and cos 11.= blc are very good approximations for small right tri-
angles. 

32.2 COMPLEMENTARY SEGMENTS 

The definitions of complementary segments and the involutory map-
~ ~ 

ping star are each motivated by Figure 32.13 with AD I CEo In gen-
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D 

B 
FIGURE 32.13 

eral, the star mapping is dependent on the distance scale, as is II. 

- - ~ 

DEFINITION 32.18 If AB ..L BC and the perpendicular to AB at A 
~ 

is horoparallel to the perpendicular to BC at C, then AB and BC are 
complementary segments. For any positive real x the positive real 
x* is defined by II (x*) + II (x) =1f'/2, regardless of the value of the dis­
tance scale. 

Theorem 32.19 If AB ..L BC, then AB and BC are complementary 
segments iff BC = (AB) *. 

------ --Proof Suppose AB ..LBC, AD ..LAB, EC ..LBC, and ADIBF with 
D, E, Fin int (LABC). Then each of the following conditions is easily 
seen to be equivalent to the next: 

(i) AB and CD are complementary segments, 
~ ~ --(ii) CEIAD, (iii) CEIAD, - -(iv) CEIBF, 

(v) II(BC)=1f'/2-II(AB), (vi) BC= (AB)*. • 

Theorem 32.20 For positive real x: 

sinh x* = csch x, cosh x* = coth x, tanh x* = sech x, 

tanh (x*/2) =e-x , and x* = 2 arctanh e-X • 

Proof sinh x* = cot II (x*) = tan II (x) = csch x and cosh x* = esc II (x*) 
= sec II (x) = coth x. The remaining equations follow immediately from 
these and the identity tanh (y/2) = (sinhy)/(1 +coshy). • 

The trigonometry for Lambert quadrilaterals is considered next. 
See Figure 32.14. 

Theorem 32.21 Given [jABCD, let u=AD, v=AB, w=CD, z=BC, 
and cf> = mLC. Then, 
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z 

u 
FIGURE 32.14 

B 

w 

(a) sinh w = sinh v cosh z, 

(b) tanh w=cosh u tanh v, 

(c) sin 4> = cosh v = cosh u 
cosh w cosh z' 

z c 

(a') sinh z = sinh u cosh w, 

(b') tanhz= cosh v tanh u, 

(d) cos 4> = sinh u sinh v = tanh w tanh z, 

(e) cot 4> = tanh u sinh w = tanh v sinh z. 

Proof Let 8=mLCAD and r=AC. Then, sinhw=sin8 sinhr= 
cos (-rr/2 - 8) sinh r = tanh v cosh r. Replacing cosh r in this equation 
by cosh v cosh z or by cosh u cosh w, we obtain (a) and (b), respectively. 
Equation (a') and (b') follow by symmetry. Then, 

sin 4> 
sinhBD 

sin mLBDC cos mLADB 
sinhz sinhz 

So, by (a') we have 

tanhu 
tanhBD sinhz' 

• .J.. _ tanh u cosh BD tanh u cosh u cosh v cosh v 
sm 'I' - sinh z sinh u cosh w cosh w' 

Equations (c) now follow by symmetry. _ 
Since z> u, let Q be the intersection of DC and the circle with 

center A and radius z. SO l::.AQD has a right angle at D. By (a'), (b'), 
and (c), respectively, we have 

. sinh u 
smmLAQD=--:--nh =sechw, 

SI z 

cosmLQAD 

coshQD 

tanhu 
t h sech v = tanh v*, 
an z 

= cosh z = esc <fl. 
coshu 
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Hence mL AQD = II (w ) , mLQAD = II (v*), and II (QD) = cf>. Equations 
(d) and (e) now follow from the formulas for a right triangle. (In par­
ticular, (d) follows from (e') and (d) of Theorem 32.7, and (e) follows 
from (e) and (c') of Theorem 32.7.) • 

Corollary 32.22 Given [QNMAB and t > MN, there is a unique point 
~ -P on MA whose distance to NB is t. 

Proof By (a) of the theorem, it follows that P is uniquely determined 
~ 

on MA by coshMP= (sinh t)/(sinhMN). • 

Corollary 32.23 Suppose point A is off line t. Let B be the foot of the -perpendicular from A to I and BC = t. Let m be the line perpendicular -to AB at A. Let D be the foot of the perpendicular from C to m. Then 
the circle with center A and radius BC intersects CD at a point Q 

~ ~ 

such that AQIBC. 

Proof In the notation use~ in the ~roof of the theorem, we have 
II (CD) < cf> = II (QD) since BC and AD are hyperparallel. So Q is on 
CD. Also, since mLQAD=II(v*), then mLQAB=II(v) = II (AB). 

~ ~ 

Since LABC is right, we have AQIBC .• 

~ 

The circle in the preceding corollary intersects CD in another - -point R such that AR and AQ are the two lines through A that are -horoparallel to BC. See Figure 32.15. Therefore, we have a construc-
tion for horoparallels. 

Looking back at Figure 32.14, we can see that b.AQD exists iff 
[QABCD exists. Now let's change the notation as follows: Let u=a, 
v=m*, w=t, z=c, and cf>=II(b). Then b.AQD of Figure 32.14 is 
labeled as in Figure 32.16, and [QABCD of Figure 32.14 is labeled as 
in Figure 32.17. Therefore, there exists a right triangle having the 

FIGURE 32.15 



438 THE FUNDAMENTAL FORMULA 

A M c P 

.J neb) \.. 

* m 

.., r 
B a N a Q 

FIGURE 32.16 FIGURE 32.17 

parameters indicated in Figure 32.16 iff there exists a Lambert quad­
rilateral having the parameters indicated in Figure 32.17. 

We have just shown that the existence of right triangle bABe 
having the parameters in the first row of Table 32.1 is equivalent to 
the existence of [hi NMPQ having the param~ters in the first row of 
Table 32.2. Suppose we have written down a list of rules by which one 
obtains the first row of one table from the first row of the other. Note 
that the columns of each table are arranged so that reading a row back­
wards determines a congruent figure. Now applying our rules to the 
first row of the second table read backwards, we obtain the second row 
of the first table. So the existence of the second triangle is equivalent 
to the existence of the first Lambert quadrilateral. Next apply the 
rules to the second row of the first table read backwards. Continuing 
in this fashion until we return to the original triangle (read back­
wards), we shall obtain both tables. (Although this may sound con­
fusing, the actual computation is not difficult.) The following corol­
lary is then established. 

Corollary 32.24 The existence of a triangle having the parameters 
of any row in Table 32.1 implies the existence of a triangle having 
the parameters of any other row in Table 32.1 and the existence of a 
Lambert quadrilateral having the parameters of any row in Table 
32.2. Further, the existence of a Lambert quadrilateral having the 
parameters of a row in Table 32.2 implies the existence of a triangle 
having the parameters of any row in Table 32.1. 

It follows that the equations in Theorem 32.7 and Corollary 32.13 
apply to the Lambert quadrilateral illustrated in Figure 32.17. 

TABLE 32.1 

~ABC 
TABLE 32.2 

mLC=1T/2 BC mLB AB mLA AC [YNMPQ NM MP mLP PQ 

(1) a D(m) c D(I) b (1) m* c D(b) 
(2) m* D(a*) / D(c) b (2) c* / H(m") a* 
(3) c* D(b*) a* D(I) m* (3) /* a* D(c*) b* 
(4) /* D(m) b* D(a*) c* (4) a b* D(/*) m 
(5) a D(c) m D(b*) /* (5) b m D(a) c 

QN 

a 
b 
m* 
c* 
/* 
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32.3 EXERCISES 

The distance scale is assumed to be 1. 

32.1 Carry out the computation needed in the proof of Theorem 32.7. 

32.2 For all real x and y, 

tan (ll(x+ y)/2) = tan (ll(x)/2) tan (ll(y)/2). 

• 32.3 For all real x and y, 

sinn(x±y) 
sin n(x) sin n(y) 

1 ±cos n(x) cos n(y)' 

cos n(x) ± cos n(y) 
cos n(x±y) = . 

1 ± cos n (x) cos n (y) 

• 32.4 Lobachevsky's equations for l::,.ABC in standard notation: 

. n( ) sin n(t) sin n(m) 
SIn c = 

cos n(t) cos n(m) + cos n(n) 

sin n (a) sin n ( b ) 
I-cos n(a) cos neb) cos n(n)" 

• 32.5 With standard notation for l::,.ABC and M the midpoint of 
AB, coshCM= (cosh a+ cosh b)/(2 coshc/2). 

• 32.6 Restate Theorem 32.10 and Theorem 32.20 without the as­
sumption that the distance scale is 1. 

• 32.7 True or False? 

(a) If line m is between the two horoparallellines 1 and n, then 
m is in the horopencil containing 1 and n. 

(b) For all positive x, sinhx=cschx* and tanhx=sechx*. 

(c) For all positive x, tanh2 x + tanh2 x* = 1. 

(d) If x"# 0, then tan n(2x) = V2 sin n(x) tan n(x). 

(e) For all x, tan n (x/2) = e-X • 

(f) For all x, cos n(x/2) = (cos n(x»/ (1 + sin n (x». 

(g) For all positive x, sinh x* = tan n (x) and tan x* = sin n (x). 

(h) n(l) < nOn (1 + \1'2» =1T/4. 
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(i) For !:.ABC in standard notation with mLC= 'TT/2: 

sin n (c) = sin n (a) sin n ( b ) , 

cos n(a) = cos n(m) cos n(c). 

(j) With standard notation for !:.ABC: 

cosh c = cosh a cosh b - sinh a sinh b cos v, 

cos v = -cos A cos JL + sin A sin JL cosh c. 

32.8 f sechxdx='TT/2-n(x). 

32.9 In the Cartesian plane, sketch the graph of {if ((x) =x*. 

32.10 A regular n-gon inscribed in a circle of radius R has sides of 
length a where sinh (a/2) =sinhR sin ('TT/n). 

32.11 The radius of the circle inscribed in a regular n-gon with sides 
of length a is r where tanh (a/2) = sinh r tan ('TT/ n) . 

• 32.12 The distance from the center of symmetry to a side of any 
regular 4-gon is always less than 1. 

32.13 The circumference of a circle with radius r is 2'TT sinh r. 

32.14 Let AB be a longest side of !:.ABC. Then A, B, C are on a circle, 
a horocircle, or a hypercircle iff sinh 1/2AB is respectively less than, 
equal to, or greater than sinh 1f2BC + sinh 1f2CA. 

32.15 Let I and m be the tangents at points A and B of a cycle. If the 
cycle is a circle with radius r, then I and m intersect, are horoparallel, 
or are hyperparallel iff sinh (AB/2) is respectively less than, equal to, 
or greater than tanh r. If the cycle is a horocircle, then I and m inter­
sect, are horoparallel, or are hyperparallel iff sinh (AB/2) is re­
spectively less than, equal to, or greater than 1. If the cycle is a hyper­
circle with radius r, then I and m intersect, are horoparallel, or are 
hyperparallel iff sinh (AB/2) is respectively less than, equal to, or 
greater than coth r . 

• 32.16 A circle whose diameter is at least In 3 cannot be the in­
scribed circle of any triangle. 

32.17 . Using L'Hospital's rule, prove 

I. arctanh (tanh I tanh x) 
1m 

.1"-.0 x 
tanh I. 
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32.18 If i§]ABCD, AB = r, and AD = q, then the length of the arc with 
~ 

endpoints Band C on the hypercircle with center AD is q cosh r. What 
is the length of an arc on the hypercircle subtended by a chord of 
length c? 

32.19 If dy/dx=cosy with Iyl < 7T/2 andy= ° whenx= 0, then tany= 
sinh x. The function gd defined by gd x = arctan sinh x for real x is 
called the Gudermannian. Sketch the graphs of gd and {where ((x) = 
7T/2-gdx. 

32.20 A chord of length In 1f2(3 + v5) subtends an arc of length 8 
on a horocircle. 

32.21 Given l:::.ABC in standard notation with n= 0, a= 1, and n(Z) = 
7T/4, find b, c, and m. 

32.22 n (x/2) =i' n (x) /2 for all x; (x/2) '" =i' x'" /2 for x > o. 
32.23 With reference to Figure 32.14, 

cos n (u ) = sin n (u) cos n (z ) , 

sin n (r) = sin n (u) sin n (w ) = sin n (u) sin n (z ) , 

tanh2 u + tanh2 u = tanh2 r. 
~ 

32.24 Let AB be a chord of horocircle '6'. Let AC be a tangent of '6' 
withB and C on the same side of the radius through a. IfmLBAC= 0, ____ -4 

then IABI = 28 tan o. If CB contains a radius of '6' and mLACB = cP, 
then IABI = 28 cos cP· 
• 32.25 Use an isosceles right triangle with legs of length 2 to show 
that (one-half) the product of the length of a side of a triangle and the 
length of the altitude to that side depends, in general, on which side 
of the triangle is chosen. 

• 32.26 One half the product of the hyperbolic sine of the length of 
a side of a triangle and the hyperbolic sine of the length of the altitude 
to that side is independent of which side of the triangle is chosen. (Why 
should this constant be called H, the Heron of the triangle?) 

32.27 Using the formulas in the next exercise, find the constant of 
the preceding exercise in terms of the sides of l:::.ABC in standard 
notation. 

32.28 With standard notation for l:::.ABC, 

. A ~sinh (s-b) sinh (s-c) 
sm 2= sinh b sinh c 
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and 

A .jsinhs sinh (s-a) cos-= . 
2 sinh b sinh c 

32.29 If r is the radius of the inscribed circle of f}.ABC in standard 
notation, then tanh r= tan 1/2A sinh (s- a). 

32.30 For f}.ABC in standard notation, ll(s- b) is greater than, 
equal to, or less than 1f2( 7T- v) iffll(s- c) is respectively greater than, 
equal to, or less than 1f2(7T-p,). 

32.31 A cycle other than the inscribed circle of a given triangle that 
is tangent to the three lines containing the sides of the triangle is 
called an escribed cycle of the triangle. A triangle has three escribed 
cycles. Let ~ be the escribed cycle in int (LA) of f}.ABC in standard 
notation. Let q = tan 1/2A sinh s. Then ~ is a circle, a horocircle, or a 
hypercircle iff q is respectively less than, equal to, or greater than l. 
If~ is a circle with radius ra, then tanh ra = q; if~ is a hypercircle with 
radius da, then coth da = q. 

32.32 A triangle with two escribed horocircles is isosceles. If f}.ABC 
has three escribed horocircles, then the triangle is equilateral with 
cosh AB = 3/2, cos mLA= 3/5, tanh r= 1/4, and tanhR= 1/2 where r 
and R are the radii of the inscribed and circumscribed circles, respec­
tively. 

32.33 Gauss' equations for f}.ABC with standard notation: 

A+p, c v a-b 
sin --cosh -= cos - cosh--
2222' 

A+p, c v a+b 
cos --cosh -= sin - cosh--

2 2 2 2 ' 

A-p, c v a-b 
sin --sinh -= cos - sinh--

2 2 2 2' 

A-p, c v a-b 
cos --sinh -= sin - sinh --. 

222 2 

32.34 Analogues of Heron's formula for f}.ABC with standard no­
tation: 

. 8f}.ABC 
sm 2 

Vsinhssinh (s-a) sinh (s-b) sinh (s-c) 
abc 

2 cosh 2" cosh 2" cosh 2" 



t S~ABC 
an 4 

~ s s-a s-b s-c tanh 2 tanh -2- tanh-2- tanh-2-· 
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32.35 If ~ABC in standard notation is inscribed in a circle of radius 
R, then 

tanh R sin 1f2S~ABC = tanh 1f2a tanh 1f2b tanh 1/2C. 

*32.36 Mukhopadhyaya's pentagon: Given ~ABC in standard no­
tation, there exists a pentagon with sides, in order, having length 
l, b*, c, a*, m. 

*32.37 S= 1. 

• *32.38 Are there any hyperbolic Pythagorean triples? 

GRAFFITI 

Some Euclidean formulas for ~ABC where K is area, R is 
circumradius, r is inradius, r a is radius of escribed circle with 

~ 

center in int (LA), and ha is the distance from A to BC: 

K = Vs(s-a) (s- b) (s-c) = rs= ra(s- a) 

,r---- abc 
= v r r r r = -= 1/2a h abc 4R a' 

l=l.+l.+l.=~+~+~ 
r ra rb rc ha hb he' 

ra + rb + rc= r+4R. 

Formulas for ~ABC from Euclidean spherical trigonometry: 

sin A sin /.t sin /I 
--=--=--
sin a sin b sin c' 

cos c = +cos a cos b + sin a sin b cos /I, 

cos /I = -cos A cos /.t + sin A sin /.t cos c. 

If /I = 7T/2, then cos c = cos a cos b = cot A cot /.t, 
. \ sin a \ _ tan b t \ _ tan a SIn 1\ = -.-, cos 1\ - , an 1\ - • b. 

smc tanc sm 

If z is a complex number, then sin iz = i sinh z and cos iz = 
cosh z. 



CHAPTER 33 

Categorical ness and Area 

33.1 ANALYTIC GEOMETRY 

Noone of the distance function d, the angle measure function m, or 
the distance scale k determines another of the three. For example, 
knowing m, we can determine whether AB is congruent to CD or not 
from AAA, but we cannot find the length of AB without knowing k. 
Likewise, knowing d, we can determine whether LABC is congruent 
to LDEF or not from SSS, but we cannot find the measure of LABC 
without knowing k. Any two of d, m, k completely determines the 
third by the formulas in Theorem 32.17. In particular, since k is a 
constant, the distance scale is determined by any single equation 

cos mLPVQ=tanh (VP/k) where LPVQ is a critical angle for VP. See 
Figure 33.1. We shall use this fact to show the Cayley-Klein Model 
has distance scale 1. 

The Cayley-Klein Model (Section 23.2) has distance function 
h and angle measure function n. Let 0 < a < 1. Let P= (0, 0), V= 

~ ~ 

(0, a), Q= (1/2, a/2), and R = (1/2,0). See Figure 33.2. Then VQIPR. 
From the formula for angle measure we have cos nL VPR = 0 and 
cos nLPVQ = a. So L VPR is right. Then LPVQ is a critical angle for 
VP. Thus, the model has distance scale 1 iifa=tanhh(V, P). From 
the formula for distance, we have h(V, P)=112In[(1+a)/(1-a)]. 
So tanh h(V, P) = a, as desired. (See equation (t) of Theorem 31.20. 
Note the seemingly superfluous 1/2 in the definition of the distance 
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v 

P R 
FIGURE 33.1 

function h in Section 9.2 is just what is needed here.) The Cayley­
Klein Model has distance scale 1. 

Coordinatization of a Bolyai - Lobachevsky plane is considered 
next. Because a Lambert quadrilateral is not a rectangle, the intro­
duction of coordinates in a Bolyai-Lobachevsky plane is a little more 
interesting than the introduction of coordinates in the Euclidean 
plane. In Figure 33.3 the distance scale is assumed to be 1. 

- -DEFINITION 33.1 Let k be the distance scale. Suppose OX .1 OY, 
~ 

OX has coordinate system f such that f( 0) = 0 and f(X) > 0, and 
~ 

OY has coordinate system g such that g(O) = 0 and g(Y) > O. For 
arbitrary point P: let U and V be the feet of the perpendiculars from 

~ ~ 

P to OX and OY, respectively; let u=f(U) and v=g(V); let r=OP; 
let () be a number such that -1T < () ~ 1T, tanh (u/k) = cos () tanh (r/k), 
and tanh (v/k) = sin () tanh (r/k); and let w be the real number 
such that tanh (w/k) = cosh (u/k) tanh (v/k). Then the ordered pair - - ~ ~ {OX, OY} is a frame with axes OX and OY. With respect to this frame, 
point P has axial coordinates (u, v) ,polar coordinates (r, (), andLoba­
chevsky coordinates (u, w). 

In the definition, () is uniquely determined if r "" O. If v > 0, then 
()= mLXOP, but ()=-mLXOP if v < O. If 0, Pi' P2 are three points, 

V(O, a) 

L..L..----..... ----~(l, 0) 
P(O,O) R(1/2,0) 

FIGURE 33.2 
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y 

FIGURE 33.3 

then cos (62 - 61 ) =±1 iff the points are collinear and, otherwise, 
cos (62 -61 ) = cos mLP10P2• Although the coordinates are defined 
for arbitrary distance scale k, to save space in what follows below, we 
consider only the case k = 1. 

Every point has a unique ordered pair of Lobachevsky coordi­
nates, and, conversely, every ordered pair of real numbers is the pair 
of Lobachevsky coordinates for some unique point. If a is a nonzero 
real, then u = a is an equation of a line but w = a is an equation of a 
hypercircle. Further (Exercise 33.9), e-U = tanh w is an equation of 
the line in the first quadrant that is horoparallel to both axes. Thus, 
in general, a line does not have a linear equation in Lobachevsky 
coordinates. 

Every point has a unique ordered pair of axial coordinates. How­
ever, not every ordered pair of real numbers is a pair of axial coordi-

~ ~ 

nates. Let U and V be points on OX and OY, respectively, with V¥- O. 
By the definition of complementary segments, the perpendiculars to 
the axes at U and V will intersect iff lui < Ivl*, which holds iff 
tanh2 u < tanh2 1 vi *. It follows that (u, v) are the axial coordinates of a 
point iff tanh2 u + tanh2 v < 1. 

We shall now derive a formula for distance between points. Sup­
pose 0, P, Q are distinct points. Let P have axial coordinates (u, v) 
and polar coordinates (OP, 6); let Q have axial coordinates (u2 , v2 ) 

and polar coordinates (OQ, 62 ), From the definition of 6, we have 
tanh2 u + tanh2 v = tanh2 OP, (Theorem 32.21). Thus 
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1 
coshOP= . 

(1- tanh2 u-tanh2 v) 1/2 

Also, 

cos (82 - 8) = cos 8 cos 82 + sin 8 sin 82 

tanh u tanh u2 + tanh v tanh v2 

tanh OP tanh OQ 

Suppose 0, P, Q are collinear. Then cos (82 - 8) = -1 and PQ = OP+ 
OQ iff P-O-Q, but cos (82 - 8) = 1 and PQ = IOP- OQI otherwise. 
From cosh PQ = cosh (OP±OQ), we obtain 

coshPQ=cosh OPcosh OQ-sinh OP sinh OQ cos (82 - 8) 

= [cosh OP cosh OQ] [1- tanh OP tanh OQ cos (82 - 8)]. 

This last result also holds when 0, P, Q are not collinear by the Hyper­
bolic Law of Cosines. Substitution now gives the desired formula. If 
point PI has axial coordinates (up VI) and point P2 has axial coordi­
nates (u2' v2 ), then 

DEFINITION 33.2 If point P has axial coordinates (u, v) with re­
spect to a given frame, then P has Beltrami coordinates (x, y) with 
respect to that frame where k is the distance scale, x = tanh (u/ k) , 
and y= tanh (v/k). 

We can now restate the two results obtained above in terms of 
Beltrami coordinates. Since there is no statement to the contrary, 
the hypothesis of the next theorem includes the assumption that the 
distance scale is 1 by Definition 32.3. 

Theorem 33.3 With respect to a given frame: 

(a) Every point has a unique ordered pair of Beltrami coordi­
nates, and (x, y) is an ordered pair of Beltrami coordinates iff 
X2+y2 < l. 

(b) If point PI has Beltrami coordinates !x!, YI) and point P2 

has Beltrami coordinates (x2, Y2)' then the distance PIP2 is given 
by the following equivalent formulas: 
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(c) Ax+ By+ C= 0 is an equation of a line in Beltrami coordi­
nates iff A 2 + B2 > C2, and every line has such an equation_ 

(d) Given LPVQ, if the Beltrami coordinates of P, V, and Q 
are respectively (xl' YI)' (xo' Yo), and (X2, Y2)' then 

cosmLPVQ= 

(XI - xo) (x2 -xo) + (Y I - Yo) (Y2 - Yo) - (xIyO - YIXO) (x2 yO - Yro) 

(e) If Alx+Bly+CI=O and A~+B~+C2=O are equations 
of two intersecting lines in Beltrami coordinates and IjJ is the 
measure of an angle in the union of these two lines, then 

cos 1jJ=+ (A2+ B2-C2) 1/2(A2+ B2_0)1/2-
I I 1 2 2 2 

In particular, the two lines are perpendicular iff A I A2 + BIB 2 = 

CP2-

(D If (XI' YI) and (X2, Y2) are the Beltrami coordinates of two 
distinct points, let tl = (1- xi - yi) 1/2 and t2 = (1- x~ - yV 1/2_ 
Then the midpoint of the two points has Beltrami coordinates 

(Xlt2 + X2tl y lt2 + Y2tl) 

tl + t2 ' tl + t2 

and the perpendicular bisector of the two points has an equation 

(g) If c is the distance from the point with Beltrami coordinates 
(a, b) to the line with equation Ax+By+C=O, then 

_ IAa+Bb+CI 
smh c= (A2+ B2- C2)1/2(1-a2- b2)1/2-
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Proof The first two results are restatements of previous results that 
we obtained above in terms of axial coordinates. By result (a), the 
mapping a that sends the point with Beltrami coordinates (x, y) to 
the point (x, y) in the Cayley-Klein Model is a bijection. (In our 
plane, the Beltrami coordinates (x, y) are the name of a point; in the 
Cayley-Klein Model (x, y) is a point.) Since the distance scale is as­
sumed to be 1, then a preserves distance by the third equation of re­
sult (b) and the formula for the distance function h in the Cayley'­
Klein Model. That is, PQ=h(aP, aQ). It follows that a is a collinea­
tion from ([IP,.2') onto MI3. Result (c) then follows from our knowledge 
about equations of lines in the Cayley - Klein Model. Since the dis­
tance scale is assumed to be 1 and since a is a collineation that pre­
serves distance, then a must preserve angles and angle measure 
(Corollary 32.15). Hence, a is an isomorphism onto the Cayley-Klein 
Model. Result (d) then follows from the formula for the angle measure 
function n in the Cayley-Klein Model. Since (Yj-Yo)x- (xj-xo)y+ 
(xV'o - y,xo) = 0 is an equation for the line through the two points with 
Beltrami coordinates (xo' Yo) and (XI' YI)' then result (e) follows di­
rectly from result (d). With the observation that (B+ bC)x­
(A +aC)y+ (bA -aB) = 0 is an equation of the line through the point 
with Beltrami coordinates (a, b) and perpendicular to the line with 
equation Ax + By + C = 0, the proof of results (f) and (g) is left for Ex­
ercise 33.1. • 

From the proof above, we conclude that every model of I with 
distance scale 1 is isomorphic to the Cayley-Klein Model. So any two 
models of I with distance scale 1 are isomorphic. It follows that any 
two models of I with the same distance scale are isomorphic. In par­
ticular, every model of I with distance scale k is isomorphic to (MI3, 
kh, n) where (MI3, h, n) is the Cayley-Klein Model. Suppose f3 is an 
isomorphism from (MI3, kh, n) onto (MI3, h, n). Let !::::.ABC be an 
equilateral triangle in (MI3, h, n). Then this triangle is also an equi­
lateral triangle in (MI3, kh, n) with the same vertices. Since f3 pre­
serves distance, then k h(A, B) =h(A', B') and !::::.A'B'C' is an equi­
lateral triangle in (MI3, h, n) where A' = f3A, B' = f3B, and C' = f3C. 
Since f3 preserves angle measure and the angle measure is the same 
for both models, then !::::.ABC is congruent to !::::.A'B'C' in (MI3, h, n) 
by AAA. So h(A', B') =h(A,B). Thus k= 1. It follows that if two mod­
els of I are isomorphic, then the two models must have the same dis­
tance scale. TWO MODELS OF I ARE ISOMORPHIC IFF THE TWO 
MODELS HAVE THE SAME DISTANCE SCALE. 

Given any two models of the Bolyai - Lobachevsky plane there 
is a collineation from the first onto the second that preserves between­
ness, congruence of segments, and congruence of angles. In fact, if 
(.9'1'.2'1' dl' m 1) and (.9'2' .2'z, dz, mz) are models of I, then there exists 
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a positive constant t such that (.9\,21 , tdl , ml ) and (.9'2,22, d2, m2) 
are isomorphic. So any two models of I are almost isomorphic. If a 
categorical axiom system is desired, we have only to add "The Nor­
malization Axiom," which fixes the value of the distance scale in the 
theory. This is the only independent axiom that can be added and still 
have a consistent system. (There is such an axiom for each positive 
real number.) In applying our theory to physical space, the distance 
scale k would have to be an exceedingly large number in order to have 
a segment of length 1 correspond to a meter (or even a light year). On 
the other hand, it is convenient to suppose k = 1 in order to simplify 
formulas and calculations. By Definition 32.3, we are tacitly assuming 
The Normalization Axiom that states the distance scale is 1. However, 
we allow ourselves the opportunity of discarding this supposition and 
considering the general case whenever we like. 

Three more coordinate systems will be mentioned. The distance 
scale is assumed to be 1. If point P has Beltrami coordinates (x, y), t= 
1+ (1-x2_y2) 1/2, p=x/t, and q=y/t, then (p, q) are the Poincare 
coordinates of P. Of course the Poincare coordinates correspond to the 
Poincare Model of the hyperbolic plane. Calculations using Poincare 
coordinates can be simplified by using complex numbers. If point P has 
Poincare coordinates (p, q) and z is the complex number p + qi, then 
(z) is the Gauss coordinate of P. As is true for Euclidean geometry, 
different coordinate systems are suited for different purposes. If point 
P has Beltrami coordinates (x, y) and x2 + y2 = tanh2 r, then (x cosh r, 
y cosh r, cosh r) are the Weierstrass coordinates of P. With the notation 
of Figure 33.3, point P has Weierstrass coordinates (sinh z, sinh w, 
cosh r). So (a, b, c) are the Weierstrass coordinates of a point iff a2 + 
b2 -C2 = -1 and c ~ 1. Lines have linear equations in Weierstrass 
coordinates. If points PI andP2 have Weierstrass coordinates (al' bl' cl ) 

and (a2, b2, c2 ), respectively, then cosh P 1P 2 = C1C2 - a la2 - bl b2. It is 
the Weierstrass coordinates that are most often employed in ad­
vanced work. 

33.2 AREA 

In three-dimensional Euclidean geometry there exist solid tetrahe­
drons P and Q with equal altitudes and bases of equal area such that 
it is impossible to cut up P into solid tetrahedrons that can be reas­
sembled to form a solid congruent to Q. In the Euclidean plane the 
analogous situation is quite different. The following result holds there: 
If P and Q are triangular regions of equal area, then P can be cut up 
into triangular regions that can be reassembled to form a triangular 
region congruent to Q. We shall say such regions are equivalent by 
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triangulation. The result above is a special case of Bolyai's Theorem 
for Absolute Geometry (Theorem 33.16). 

In this section we first make precise the "equality" of polygonal 
regions that was tacitly introduced by Euclid in his Proposition 1.35. 
(See Section 11.1. His "equality" is our "equivalent by triangulation.") 
Secondly, it is shown that in any reasonable application of the word 
"area" to the Bolyai - Lobachevsky plane the area of a polygonal re­
gion must be proportional to the defect. Finally, Bolyai's Theorem for 
Absolute Geometry is proved. 

The definitions and theorems of this section hold for the Eu­
clidean plane provided: (1) The word "defect" is replaced throughout 
by the word "area," (2) The first sentence in Definition 33.4 is omitted, 
and (3) All the material after the statement of Theorem 33.14 through 
the statement of Definition 33.15 is replaced by the trivial proof of 
Theorem 33.14 that is applicable to the Euclidean plane. 

DEFINITION 33.4 The defect of a convex polygon P with n sides is 
the posi ti ve difference between (n - 2) 7T and the sum of the measures 
of the n angles of P. The union of a convex polygon and its interior is a 
convex polygonal region having the same vertices, sides, interior, and 
defect as the convex polygon. If Q is a convex polygon or a convex 
polygonal region, then int (Q) and SQ are the interior of Q and the 
defect of Q, respectively. The union of a triangle and its interior is a 
triangular region. A polygonal region R is the union of a positive num­
ber of triangular regions T 1, T 2 , • •• , Tn such that int (Ti ) and int (T) 
are disjoint for i ¥- j; further, if T = { T l' T 2" . . , Tn} and ST is the sum 
of the defects of the triangular regions in T, then the set T is a triangu­
lation of R and the number ST is the defect of the triangulation T. 
If Sand T are triangulations of the same polygonal region such that 
each triangular region in S lies in some triangular region of T, then 
S is a sub triangulation of T. 

Since a triangle is a convex polygon, a triangular region is a con­
vex polygonal region. The sides of a convex polygonal region and any 
point in the interior determine triangular regions that can be used to 
show a convex polygonal region is indeed a polygonal region. See Fig­
ure 33.4, where we note the defect of such a star triangulation is equal 
to the defect of the convex polygonal region itself. In general, a poly­
gonal region can be quite complicated. See Figure 33.5. Since poly­
gonal regions do not have unique triangulations, we cannot define 
the defect of an arbitrary polygonal region to be the defect of some par­
ticular triangulation until it is shown that all the triangulations of a 
polygonal region have the same defect. Figure 33.6 illustrates three 
different triangulations of one polygonal region. Studying the figure, 
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FIGURE 33.4 

we see that the triangular regions of the third triangulation can be 
combined in one way to form the triangular regions of the first and in 
another way to form the triangular regions of the second. That is, the 
third triangulation is a subtriangulation of the others. After stating 
a lemma that has an obvious proof, we shall show that every two tri­
angulations of a given polygonal region have such a common subtri­
angulation. 

Theorem 33.5 If line I with halfplanesH andK intersects the interior 
of convex polygonal region R, then R n (H U I) and R n (K U 1) 
are convex polygonal regions whose union is R and whose defects add 
up to BR. 

Theorem 33.6 Any two triangulations of a polygonal region have a 
common subtriangulation. Any two triangulations of a polygonal re­
gion have the same defect. 

Proof LetA= {TI , T 2 ,· •• , Tn}, B= {Tn+!' T n+2 ,· •• , Tn+m}, andL= 
{ll' 12 , • •• , 1r} where A and B are two triangulations of polygonal re­
gion Rand L is the set of all lines containing the sides of the tri-

FIGURE 33.5 
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FIGURE 33.6 

angular regions in A and B. (r<3n+3m.) For i=l, 2, ... , n+m, 
if II has halfplanes Hand K and intersects Ti , replace the convex 
polygonal region Ti in A or B by the two sets Ti n (H U I) and Ti n 
(K U I). We now have sets Al and BI' each of which has the property 
that it is a set of convex polygonal regions whose union is R and whose 
interiors are disjoint. Further, by the preceding theorem, the sum of 
the defects of the conVex polygonal regions in Al is equal to cSA, and 
the sum of the defects of the convex polygonal regions in BI is equal 
to cSB. (In general, Al and BI are not triangulations.) In the same way, 
starting with Al and BI and using line 12, we obtain sets A2 and B2 
having these same properties. Continuing in the same fashion for 
each of the lines inL in turn, we have setsA r andB r with these proper­
ties. By the definition of L, it follows thatAr=B r • Therefore, cSA = cSB. 
Let Ar = {C l' C2,· .. , Cs} and Pi be a point in int (Ci). Suppose convex 
polygonal region Ci has t sides. Then Ci has a (star) triangulation 
{Cil' Ci2 ' ... , Cit} where each of the triangular regions Cij has a 
vertex Pi and a side in common with Ci. Let T be the union of all such 
sets Cij for 1 ~ i ~ s. Then T is a subtriangulation of A and of B. • 

Because of this theorem, we are now in a position to define the 
defect of any polygonal region. Also, the definition of the defect of a 
convex polygonal region is consistent with the following definition. 
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DEFINITION 33.7 If R is a polygonal region with triangulation T, 
then the defect of R is 8T; 8R is the defect of R. 

The next definition gives a special case of piecewise congruence. 
This is the essence of the popular decomposition puzzles: Given two 
figures, can one be cut up and reassembled to form the other? 

DEFINITION 33.8 If {T 1 , T2, ... , Tn} and {Sl' S2' ... , Sn} are 
triangulations of polygonal regions Rl and R2, respectively, such that 
T j is congruent to Si for i= 1,2, ... , n, then we say Rl and R2 are 
equivalent by triangulation and write Rl == R2. 

Theorem 33.9 Equivalence by triangulation is an equivalence rela­
tion on the set of polygonal regions. 

Proof Let RI' R2, R3 be polygonal regions. That Rl == Rl and that 
Rl == R2 implies R2 == Rl are trivial observations. Suppose Rl == R2 
and R2 == R3· .We need to show Rl == R3· Since Rl == R2, then Rl and R2 
have triangulations {PI' P2,· .. , Pn} and {SI' S2" .. , Sn}' respective­
ly, such that Pi is congruent to Sj; since R2 == R3, then R2 and R3 have 
triangulations {Sn+!' Sn+2" .. , Sn+m} and {QI' Q2" .. , Qm}' respec­
tively, such that Sn+i is congruent to Qj" Let T be a common subtri­
angulation of these triangulations of R2. Suppose T is {TI' T2, ... , 
T t}. It follows that Rl has a triangulation {P;, P~, ... ,P;} such that 
P; is congruent to T j • Likewise, it follows that R3 has a triangulation 
{Q;, Q~, . .. , Q;} such that Q; is congruent to T j. Since congruence of 
triangles is a transitive relation, we must have P;' is congruent to 
Q; for i= 1,2, ... , t. Hence Rl == R 3 • • 

Corollary 33.10 If two polygonal regions are equivalent by tri­
angulation, then the polygonal regions have the same defect. In par­
ticular, two triangular regions that are equivalent by triangulation 
have the same defect. 

So if a triangular region with defect do is cut up and reassembled 
to form another triangular region, the new triangular region also has 
defect do. Conversely, given two triangular regions with the same de­
fect, can each be cut up and reassembled to form the other? As we shall 
see in the next three theorems, the answer is "yes." 

Theorem 33.11 Given 6.ABC, let D and E be the midpoints of AB and 

AC, respectively. Let G and H be the feet of the perpendiculars to 

DE from Band C, respectively. Then !§JGBCH. Further, if T is the 
union of 6. ABC and its interior and S is the union of !§JGBCH and its 
interior, then T== S. So 8!§JGBCH=86.ABC. 
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A 

B c 
FIGURE 33.7 

.....,. 
Proof Let F be the foot of the perpendicular from A to DE. Either 
D, G, F are distinct or coincident. If D, G, F are distinct, then 6.BDG = 
6.ADF by SAA. In either case, BG=AF and DG=DF. Either E, H, F 
are distinct or coincident. If E, F, H are distinct, then 6.AEF = 6.CEH 
by SAA. In either case, AF=CH and EF=EH. Then BG=AF=CH 
and [§JGBCH. (See Figure 33.7.) Also, TJDTJEH = TJDF= G. So GH = 2DE. 
Since one of LB or LC must be acute, we may suppose LB is acute 
without loss of generality. Let Do be such that E is the midpoint of 
D and Do' Then define Di+1 to be such that G-Di+I-Di and Di+1D j = 
GH. So Dl =D. (See Figure 33.S.) By Archimedes' axiom, there is an 
integer n such that Dn+1 =H or G- Dn+l - H. Let Qi be the polygonal 
region determined by OBDi+Pp. Since 6.ADE == 6.CDoE, we have 
T == Qo' BDI = CDo, and mLGD1B = mLGDoC, SO 6.BDP2 == 6.CDoDI' 
and we have Qo == Qp BD2 = CDI' and mLGD2B = mLGD1C. Likewise, 
Qi == Qi+1 for i= 1, 2, ... , n-l. (A triangular region is chopped off 
one side of Qi and replaced on the other to form Qi+I') It follows that 
T == Qn' However, Qn == S since 6.BGDn+1 == 6.CHDn. Therefore, T == S 
and so T and S have the same defect. • 

B c 
FIGURE 33.8 
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Theorem 33.12 Given b.ABC and x> AB, there exists a point P 
such that PB = x and the union of b.PBC and its interior is equiva­
lent by triangulation to the union of b.ABC and its interior. 

Proof Let T be the triangular region determined by b.ABC. Let 
D, E, G, H be as in the preceding proof. Let S be the polygonal region 
determined by I§] GB CH. Then T == S. Since 1/2X > BD ~ BG, there 

~ 

exists a point M on DE such that BM = 1f2X. Let P be the point such 
that M is the midpoint of P and B. So PB=x. Let N be the midpoint 
of P and C. Let R be the triangular region determined by b.PBC. By 

~ 

the preceding theorem, since MN is the unique line through M that 
- ~ ~ 

is perpendicular to the perpendicular bisector of BC, then MN=DE 
and R == S. Therefore T == R. • 

Theorem 33.13 Triangular regions with the same defect are equiva­
lent by triangulation. 

Proof Since triangular regions determined by congruent equilateral 
triangles are obviously equivalent by triangulation, suppose Rand S 
are the triangular regions determined by b.ABC and b.DEF, respec­
tively, where DE> AB. Suppose Rand S both have defect do. By the 
preceding theorem, there exists a triangular region T determined by 
b.PBC such that PB=DE and R == T. So 13T=do. Now each of T and 
S is equivalent by triangulation to a polygonal region determined by a 
Saccheri quadrilateral with defect do and upper base of length DE 
(Theorem 33.11). Since any two such Saccheri quadrilaterals are 
congruent (Theorem 26.8), then T == S. Therefore R == S. • 

Suppose there is an area function a defined on the set of polygonal 
regions. If R is a polygonal region, then an is the area of R. There are 
two essential properties a must have if area is to have any sort of 
meaning that agrees with our usual connotation. First, an must be 
a positive real numbers. So we suppose a is a positive function. Sec­
ondly, if polygonal region R has triangulation {Tt , T 2 , • •• , Tn}, then 
aR must be the sum of the aT;. So we suppose a is additive. Then a is 
determined once we know aT for every triangular region T. For con­
venience of notation, if T is the triangular region determined by 
b.ABC, we define ab.ABC to be aT. (Defining ab.ABC to be one-half 
the base times the height is out of the question, since, in general, there 
are three different such numerical products, one for each "base" of 
b.ABC.) Since we know triangular regions with the same defect are 
equivalent by triangulation, then triangles with the same defect must 
have the same area. We shall use this fact to show that area must be 
directly proportional to defect. We shall also use the following lemma. 
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Theorem 33.14 Given 6.RST and 0 < x < 86.RST, there exists a 
unique point P on ST such that 86.RSP=x. 

Proof If LACB is right, then tanh 1/2AC tanh 112BC = tan 1/286.ABC. 
The theorem follows from at most two applications of this formula. • 

Let 6.ABC and 6.PQR be any triangles. Suppose, first, 86.PQR 
is less than 86.ABC. Then there is a unique point D on BC such that 
6.ABD has defect 86.PQR. Let c be any positive number. Let n be 
any positive integer such that 2n- 1c> 1. Then there exist points S 
and T on BC and positive integer t such that 86.ABD = 2n86.ABS and 
86. ABC = t86.ABS + 86.ATC with 86.ATC ~ 86.ABS. So we must 
also have a6.ABD=2na6.ABS and a6.ABC=ta6.ABS+a6.ATC 
with a6.ATC ~ a6.ABS. With these equations, we then have 

la6.ABC _ 86. ABCI_la6.ABC 86. ABC I <l.. 
a6.PQR 86.PQR - a6.ABD 86.ABD = 2n (1 + 1) < c. 

Since the only nonnegative real number less than every positive real 
is 0, then 

a6.ABC 86.ABC 
a6.PQR 86.PQR 

and 
a6.ABC _ a6.PQR 
86.ABC - 86.PQR· 

If 86. ABC < 86.PQR, then we obtain the same result by interchanging 
letters. Hence, in any case, 

(a6.PQR) 
a6.ABC = 86.PQR 86.ABC. 

Let g = (a6.PQR) / (86.PQR). Then for triangular region T defined 
by any triangle, we have aT= g8T. Hence area must be directly pro­
portional to defect. Since in any practical sense area ought to be re­
lated to the distance scale k and, to make certain calculations easier, 
it is convenient to choose g to be k 2 • Therefore, not only have we shown 
that the following definition is reasonable, we have also shown that 
it is the only possible definition up to a constant of proportionality! 

DEFINITION 33.15 The area aR of polygonal region R is k28T 
where k is the distance scale. 

In Euclidean geometry every polygonal region is equivalent by 
triangulation to a triangular region. This cannot be the case in the 
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Bolyai - Lobachevsky plane since the defect of a polygonal region may 
be arbitrarily large but the defect of a triangular region is less than 11'. 

Suppose A = {AI' A 2 ,· •• , Am} and B = {B l' B 2 ,· •• ,Bn} where 
A and B are triangulations of polygonal regions P and Q, respectively, 
and SP=SQ. SO the sum of the SA j is equal to the sum of the SBj. 
Bouncing back and forth and using Theorem 33.14, we can chop up the 
triangular regions in each of A and B to obtain subtriangulations C 
and D of A and B, respectively, such that C= {C1' C2 ' • •• ,Cr }, D= 
{DI' D2 , ••• , Dr}, and SCj=SD j for i= 1,2, ... , r. Figure 33.9 il­
lustrates this for the case m=5 and n=4 with r=8. (In the figure, 
D1 and D2 are cut off B1 but there is not enough left to cut off a tri­
angular region with defect SAa. So Da is cut off A a, etc.) With this ob­
servation, we can now prove Bolyai's Theorem for Absolute Geom­
etry, which is attributed to Wolfgang Bolyai. 

Theorem 33.16 Bolyai's Theorem for Absolute Geometry Two poly­
gonal regions are equivalent by triangulation iff the polygonal re­
gions have the same area. 

Proof Let 8= {81' 8 2 , ••• ,8m} and T= {TI' T 2 , ••• , Tn} where 

FIGURE 33.9 
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s 

FIGURE 33.10 

Sand T are triangulations of Dolygonal regions P and Q, respectively. 
Suppose o:P=aQ. Then BP=i)Q. By the observation above, we may 
suppose m = nand BS j = BTi without loss of generality. Then, although 
Si and T; may not be congruent, we do know Sj is equivalent by tri­
angulation to T;, (Theorem 33.13). From Sj == Ti for all i, it follows that 
Sand T have subtriangulations S' and T', respectively, such that S' = 
{SIj} , T' = {Tij} , and S;j is congruent to Tij for all i and}. Hence P == Q. 
SO o:P=aQ impliesP == Q. Conversely, if P == Q, then BP=BQ ando:P= 
aQ, (Corollary 33.10). Therefore,P == Q iffo:P=aQ .• 

In Figure 33.10, the triangular regions A, B, C, D are supposed 
to be congruent. Then, since T = A U Band S = CUD, we have T is 
equivalent by triangulation to S. However, in cutting up T to form S 
the "hypotenuses" of A and B are superimposed and the vertex of the 
right angle of A has to be "split" to form two vertices of S. This comes 
about because A and B are not disjoint and C and D are not disjoint. 
With this in mind, you might be led to the following definition. Set 
T of points is equivalent by set decomposition to set S of points if T is 
the union of disjoint sets Ti and S is the union of disjoint sets Si such 
that Ti is congruent (Definition 19.13) to S; for i= 1, 2, ... ,n. This is 
a whole new ball game! See Exercises 33.25, 33.31, and 33.32. Can it 
be true in Euclidean geometry that a sphere the size of the sun is 
equivalent by set decomposition to a sphere the size of a pea? 

33.3 EXERCISES 

The distance scale is assumed to be 1. 

33.1 Results (f) and (g) of Theorem 33.3 . 

• 33.2 If Ax + By + C = 0 with C # 0 is an equation of line 1 in Bel­
trami coordinates, then no point has Beltrami coordinates (-AIC, 
-BIC) but (x, y) = (-AIC, -BIC) is an algebraic solution to anyequa­
tion of any line perpendicular to I . 

• 33.3 If A1x+B1y+C1=0 and A 2x+B2 y+C2 =0 are equations 
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of two lines in Beltrami coordinates and A,B2 = A2Bl' then the two 
lines are hyperparallel. 

33.4 If A,x+B,y+C,=O and A 2x+B2 y+C2 =O are equations of 
two lines in Beltrami coordinates, then the two lines intersect, are 
horoparallel, or are hyperparallel iff 

Al CI 2 B, CI 2 Al B, 2 

+ 

is respectively less than, equal to, or greater than O. 

• 33.5 If Aix+Biy+Ci=O, i= 1, 2, 3, are equations of three lines in 
Beltrami coordinates, then the lines are in a brush iff 

Al B, C I 

A2 B2 C2 =0. 
A3 B3 C3 

• 33.6 True or False? 

(a) Points with Beltrami coordinates (xo' Yo), (xl' YI)' and 
(x2' Y2) are collinear iff 

Xo Yo 1 
XI YI 1 = O. 
x2 Y2 1 

(b) Ax + By + C > 0 describes one halfplane of the line having 
equation Ax + By + C = 0 in Beltrami coordinates. 

(c) A,x+B,y+C,=O and A 2x+B2y=O are equations in Bel­
trami coordinates of two perpendicular lines if the equations are 
those of two perpendicular lines in the Cartesian plane. 

(d) Given point P, then (x2 + y2) 1/2 = tanh OP and (1- x2 - y2) 1/2 
= sech OP iff P has Beltrami coordinates (x, y). 

(e) X2 + y2 = tanh 1 is an equation of the unit circle in Beltrami 
coordinates. 

(D (x2/12) + (y2Jtanh2 d) = 1 is an equation of the locus of all 
~ 

points of positive distance d from Ox. 

(g) cosh x - sinh x cos () ;;:; e- X for real x and () when x> O. 

(h) cosh arctanh x = (1 - X2) -1/2 for real x. 
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(i) A point with Beltrami coordinates 

(tanh u, (tanh w ) / (cosh u) ) 

has Lobachevsky coordinates (u, w). 

0) A point with Lobachevsky coordinates 

(arctanh x, arctanh [( 1 - X2) -1/2y] ) 

has Beltrami coordinates (x, y). 

33.7 Exhibit the triangulations in the proof of Theorem 33.11 for 
the case H-D-E-F when HD <DE and when DE <HD < GH. 

33.8 Triangulate the Greek cross, Figure 30.1, with all angles of 
measure (J, to form the polygonal region determined by a Gersonides 
quadrilateral. 

33.9 e-U = tanh wand eU = cosh ware, respectively, equations in 
Lobachevsky coordinates of the line in the first quadrant horoparallel 

~ 

to both axes and of the horocircle with radius OX. 

33.10 Give an algebraic description of the pencil with center 0 hav­
ing Beltrami coordinates (xo Yo) and of the horopencil determined by 
--'> 

OP where P has Beltrami coordinates (Xl' Yl)' 

33.11 Using Beltrami coordinates, find an equation of the circle with 
radius r and center with coordinates (xo' Yo), and find an equation of 
each hypercircle with center having equation Ax+By+C=O and of 
distance d from its center .. 

33.12 Find an equation in Beltrami coordinates of the horocircle 
~ 

with radius PQ where P and Q have coordinates (xo' Yo) and (Xl' Yl)' 
respectively. 

33.13 (1- x~ - y~) 1/2> e-t ( 1-x~ - yi) 1/2 if (xo' Yo) and (Xl' Yl) are, re­
spectively, the Beltrami coordinates of two points P and Q with t=PQ. 

33.14 Every cycle has an equation in Beltrami coordinates that is 
of the form (1 - X2 - y2) 1/2 = ax + by + c. The cycle is a circle iff -1 < a2 + 
b2 - c2 < 0 and c > O. The cycle is a horocircle iff a2 + b2 - c2 = 0 and 
c> O. The cycle is a hypercircle iff 0 < a2 + b2 - c2. What sets of points 
have an equation obtained by squaring both sides of the equation 
above? 

33.15 C(p2+ q2) + 2Ap+ 2Bq+C= 0 is an equation of a line in Poin­
care coordinates iff A 2 + B2 > C2, and every line has such an equation. 
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33.16 Every cycle has an equation in Poincare coordinates that is of 
the form (c+ 1) (p2+q2) +2ap+2bq+ (c-l) =0 where a, b, c are as 
in Exercise 33.14. 

33.17 Verify the result indicated in Figure 27.9 for the Poincare 
Model. 

33.18 If (1- X2 - y2) 1/2 = c.[I - (-alc)x- (-blc)y] is an equation of a 
cycle in Beltrami coordinates, what algebraic significance do (-alc, 
-blc) and ax+by+c=O have? 

33.19 Reflect on our various uses of the words "center" and "con­
centric." 

33.20 A distance formula in Gauss coordinates is 

POP1 I ZI- Z 0 I tanh--= _ . 
2 1- ZI Zo 

33.21 Find an equation in Beltrami coordinates of the locus of all 
points equidistant from a nonincident point and line and an equation 
of the locus of all points such that the sum (difference) of the distances 
from two fixed points is a constant. Now consider a focus-directrix-curve 
analogous to a conic in the Cartesian plane. 

33.22 Find an equation in Beltrami coordinates of the locus of all 
points P such that LAPB is right where A and B are two fixed points. 

33.23 The set of the sets of all points satisfying an equation in Bel­
trami coordinates of the form Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 is 
fixed under the isometries. 

33.24 If Sand T are the polygonal regions determined by I§] ABCD 
and I§]EFGH, respectively, where LB = LF and BC= 2FG, then give 
triangulations of Sand T that show Sand T are equivalent by tri­
angulation. 

33.25 Read" 'A Paradox, A Paradox, A Most Ingenious Paradox'" 
by L. M. Blumenthal in The American Mathematical Monthly, Vol. 47 
(1940), pp. 346-353. 

33.26 Read Recreational Problems in Geometry, Dissections and How 
to Solve Them by H. Lindgren (Dover, 1972). 

*33.27 Find a trisection point of OT where T has Beltrami coordi­
nates (t, 0). 

*33.28 Are (MI3, h) and (MI3, kh) isomorphic for k > O? 

*33.29 What are the equations of the sets of points that are equi­
distant from two cycles? 
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*33.30 Read Part One (83 pages) of Theory of Functions of a Complex 
Variable by C. Caratheodory (Chelsea, 1964). 

*33.31 Read "On the Congruence of Sets and their Equivalence by 
Finite Decomposition" by W. Sierpinski in Congruence of Sets and Oth­
er Monographs (Chelsea, n.d.). 

*33.32 Read Unsolved and Unsolvable Problems in Geometry by 
H. Meschkowski (Oliver and Boyd, 1966). 

*33.33 Read The Banach-Tarski Paradox by Stan Wagon (Oxford 
University Press, 1985). 

GRAFFITI 

Suppose the distance from an equidistant curve in the 
absolute plane to a center of the equidistant curve is r. Since the 
ratio of the arclength of an arc on this curve to the length of the 
projection of the arc onto this center depends only on r, denote this 
ratio by E, .. Let 0,. denote the circumference of a circle with radius 
r. In 1878 Joseph deTilly gave the following formulas for .6ABC in 
standard notation when LC is right: 

E =COSA 
u sin IL' 

All of absolute trigonometry can be obtained from de Tilly's formulas. 
In particular, the Absolute Pythagorean Theorem can be expressed 
by the equation 

for .6ABC in standard notation when LC is right. The Absolute 
Law of Sines was given earlier by Bolyai: 

sin A sin IL sin /I 
--=--=--

0u 0b Oc 

for .6ABC in standard notation. 



CHAPTER 34 

Quadrature of the Circle 

34.1 CLASSICAL THEOREMS 

About 100 A.D. Menelaus of Alexandria extended a then well-known 
lemma to spherical triangles in his Sphaerica, which is extant in an 
Arabic translation. In plane geometry this lemma is known as Mene­
laus' Theorem. The well-known lemma that is now called Pappus' 
Theorem may be found in Pappus' Collection. It is quite likely that 
both Menelaus' Theorem and Pappus' Theorem were known to Euclid, 
since both appear in the Collection as lemmas that are useful for an 
understanding of the now lost book Porisms by Euclid. 

In 1639 the book Brouillon Project by Girad Desargues (1591-
1661) unsuccessfully introduced projective geometry. Written in bi­
zarre language and employing methods that thoroughly broke with 
tradition, the great book was not accepted by the mathematical com­
munity-even labeled "dangerous and unsound." Desargues' Theorem, 
which is the cornerstone of the foundations of projective geometry, 
does not actually appear in the Brouillon Project. Desargues published 
his famous theorem on perspective triangles in an appendix to a book 
on perspective by his friend, the engraver Abraham Bosse, in 1648. 
The significance of Desargues' Theorem and Pappus' Theorem to 
projective geometry was recognized only in the nineteenth century. 

In 1678 Giovanni Ceva published the forgotten Menelaus' Theo­
rem along with the theorem that now bears his name. Ceva's Theorem 
and Menelaus' Theorem are twins. Why two thousand years separates 
the formulation of these two theorems is a mystery. 
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Statements and proofs of the theorems mentioned above are indi­
cated later in this section, where we prove the hyperbolic analogues of 
these classical theorems. 

DEFINITION 34.1 Given !:::.ABC, if (i) D, B, C are three collinear 
points, (ii) E, A, C are three collinear points, and (iii) F, A, B are three 
collinear points, then we say "D, E, F are Menelaus points for !:::.ABC ," 
noting that the order of the letters in the phrase is significant. A line 
through a vertex of a triangle is a Cevian for that triangle. 

Theorem 34.2 Suppose D, E, F are Menelaus points for !:::.ABC. If 
D, E, F are collinear, then 

sinh AF sinh BD sinh CE . . 
sinh FB sinh DC sinh EA 

1. 

Proof Let [P, Q, R] denote (sinhPQ)f(sinh QR) for any three points 
P, Q,R. SupposeD,E,F are on line 1. LetA',B', C' be the feetofthe per­
pendiculars to 1 from A, B, C, respectively. Then (Corollary 32.13c or 
trivially when 1 is perpendicular to a side of !:::.ABC) , each of the fol­
lowing equation holds: [A', A, F] = [B', B, F], [B', B, D] = [C', C, D], 
and [C', C, E] = [A', A, E]. The desired equation now follows by ele­
mentary algebra from multiplying these three equations together. • 

D 

A B F 

c 

A F 

FIGURE 34.1 
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We should note that if "sinh" is consistently deleted from the 
statement of Theorem 24.2 and its proof, then we have a theorem and 
its proof for the Euclidean plane. The next theorem is a special case 
that shows the converse of the theorem above does not hold. 

Theorem 34.3 Suppose D, E, F are Menelaus points for t:..ABC. If 
+-+ +-+ +-+ 

Cevians AD, BE, CF are concurrent, then 

sinh AF sinh BD sinh CE ===..::..=.... • 

sinh FB sinh DC sinh EA 
1. 

Proof Suppose the Cevians are concurrent at point P. (See Figure 
34.2.) By hypothesis, we have that C, P, F are Menelaus points for 
t:..ABD and that E, P, B are Menelaus points for t:..DCA. The desired 
equation now follows by elementary algebra from two applications of 
the previous theorem. • 

For the statement of the theorems of Menelaus and Ceva we shall 
need the idea of directed distance. 

DEFINITION 34.4 Let F be a fixed set of coordinate systems that 
contains exactly one coordinate system for each line. If P is a point on 

+-+ +-+ 
AB and fis the coordinate system in F for AB, then AP is the directed 
distance from A to P whereAP= f(P) - f(A). (Which particular choice 

B F 

A E C A c E 

B 

P F 
FIGURE 34.2 



CLASSICAL THEOREMS 467 

is made for F is immaterial as all of our results will be independent of 
the choice.) 

So AP = ±AP and AP = -PA for any points A and P. Our use of 
directed distance will be restricted to expressions of the form that 
occur in the following lemma. 

Theorem 34.5 If (P, Q, R) denotes (sinhPQ)/(sinhQR) for any 
three collinear points P, Q, R, then (P, Q, R) is positive iff P-Q-R 
and, further, (P, Q, R) = (P, Q', R) implies Q=Q'. 

Proof By hypothesis, (P, Q, R) = (sinh (q- p)) /(sinh (r- q)) where 
P, Q, R have coordinates p, q, r, respectively, with respect to some 
coordinate system. So each of the following is equivalent to the next: 
(P, Q, R) is positive; q-p and r-q have the same sign; q is between 
p and r; and P-Q-R. Further, since P ¥- R, it then follows (Theorem 
31.20m) that each of the following implies the next: (P, Q, R) = 
(P, Q', R) = cosh (PQ+Q'R) -cosh (PQ-Q'R) = cosh (PQ'+QR)­
cosh (PQ' -QR); PQ+Q'R=±(PQ' +QR); q=q'; and Q=Q' .• 

It is easy to check that the lemma above holds for the Euclidean 
plane if "sinh" is consistently deleted from its statement. (The second 
part follows from the fact that (p - r) (q - q') = 0 and p ¥- r implies 
q=q'.) Then, by consistently deleting "sinh" from the statement of 
our next theorem and its proof, we obtain the statement of Menelaus' 
Theorem for the Euclidean plane with its proof! 

Theorem 34.6 Hyperbolic Menelaus' Theorem If D, E, F are Mene­
laus points for D.ABC, then D, E, F are collinear iff 

sinh AF . sinh BD . sinh CE -1 
sinh FB sinh DC sinh EA . 

Proof Suppose D, E, F are on line I. Then (Theorem 34.2) the left­
hand side of the equation is equal to +1 or -1. Since I intersects 
D.ABC exactly twice or not at all by PASCH, then exactly one or else 
each of the three terms in the left-hand side of the equation is nega­
tive. In either case, the product of three terms must be -1. 

Conversely, suppose the equation holds. Since exactly one or 
else each of the three terms on the left-hand side is negative, then 
either exactly two or none of the points D, E, F are on D.ABC. In either 

~ ~ ~ 

case, it follows that at least one of DE, EF, or DF intersects each of the 
three lines that contains a side of D.ABC. By symmetry, we may sup-

~ ~ 

pose DE intersects AB at a point F' without loss of generality. So, 
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in the notation of the lemma, the product of (A, F', B), (B, D, C), and 
(C, E, A) must be -1 by the first part of the theorem. Thus (A, F', B) = 

~ 

(A, F, B), and F=F' by the lemma. Therefore, F is on DE. • 

Theorem 34.7 Hyperbolic Ceva's Theorem If D, E, F are Menelaus 
~ ~ ~ 

points for f'::lABC, then the Cevians AD, BE, CF are concurrent iff each 
pair intersect and 

sinhAF sinhBD sinh CE """'-----'---"- . . + l. 
sinh FB sinh DC sinh EA 

Proof Suppose the Cevians are concurrent at point P. Since C, P, F 
are Menelaus points for f'::lABD and since E, P, B are Menelaus points 
for f'::lDCA, then the first part of the theorem follows by two applica­
tions of the previous theorem. 

Conversely, suppose the equation holds. Since either all of the 
three terms on the left-hand side of the equation are positive or else 
exactly one of the terms is positive, then either D, E, F are all on 
f'::lABC or else exactly one of D, E, F is on f'::lABC. By symmetry, we 

~ 

may suppose D is on f'::lABC without loss of generality. Suppose BE 
~ 

intersects CF at a point P. Since either E and F are both on or else 
both off f'::lABC, it follows that P is either in int (LBAC) or else in 

~ 

the interior of the vertical angle of LBAC. In either case, AP inter-
sects BC at a point D' by Crossbar. Thus D', E, F are Menelaus points 

~ ~ ~ 

for f'::lABC such that the Cevians AD', BE, CF are concurrent. By the 
first part of the theorem (and the lemma Theorem 34.5), it then fol-

~ 

lows that D' =D. Therefore, AD is on P. • 

Ceva's Theorem for the Euclidean plane can be stated as follows: 
~ ~ ~ 

If D, E, F are Menelaus points for f'::lABC, then the Cevians AD, BE, CF 
are parallel or concurrent iff AF . BD . CE = FB . DC . EA. The proof 
of the "only if" part is left for Exercise 34.2. To prove the "if" part, we 
take the second paragraph of the proof of Theorem 34.7 just as it stands 

~ ~ 

and add the following. "Now suppose BE and CF are parallel. Let l be 
~ 

the (unique) line through A that is parallel to BE. Then l intersects 
~ 

BC at a point D". So D", E, F are Menelaus points for f'::lABC such that 
~ ~ ~ 

the Cevians AD", BE, CF are parallel. By the first part of the theorem 
~ 

(and the lemma Theorem 34.5), it follows thatD"=D. ThereforeAD= 
l, finishing the proof." After seeing Ceva's Theorem, one might con­
jecture that the proposition "If D, E, F are Menelaus points for f'::lABC, 
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~ ~ ~ 

then the Cevians AD, BE, CF are in a brush iff the equation in Theo-
rem 34.7 holds," is a theorem for the Bolyai - Lobachevsky plane. How­
ever, the conjecture is false (Exercise 34.15). 

The Hyperbolic Menelaus' Theorem gives a necessary and suf­
ficient condition for the collinearity of points. The Hyperbolic Ceva's 
Theorem gives a necessary and sufficient condition for the concurrency 
of lines. Both of these theorems relate incidence and distance. The 
remaining theorems in this section are pure incidence theorems. 

Theorem 34.8 Suppose !::::.ABC and !::::.A'B'C' have no vertex in com-
~ ~ 

mon, point A" is the intersection of BC and B'C', point B" is the inter-
~ ~ ~ 

section of AC and A'C', and point C" is the intersection of AB and 
~ ~ ~ ~ 

A'B'. If AA', BB', CC' are concurrent, then A", B", C" are collinear. 
~ ~ ~ 

Proof Let AA', BB', CC' be concurrent at point V. If V is a vertex 
of !::::.ABC or of !::::.A'B'C', then A", B", C" are not distinct and the result 
is trivial. So suppose V is off the triangles. (See Figure 34.3.) The 
collinear pointsB' ,A', C" are Menelaus points for !::::.ABV; the collinear 
points C', B', A" are Menelaus points for !::::.BCV; and the collinear 
points A', C', B" are Menelaus points for !::::.CAV. From the Hyper­
bolic Menelaus' Theorem, we have three equations which when multi­
plied together such that one side is (-1) 3 give us a fourth equation. 
Now A", B", C" are Menelaus points for !::::.ABC and, again by the Hy­
perbolic Menelaus' Theorem, are collinear iff this fourth equation 
holds .• 

Desargues' Theorem is the statement of Theorem 34.8 as applied 
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to the real projective plane. The real projective plane is obtained by 
augmenting the Euclidean plane so that every two lines intersect 
(see Section 4.2). Thus two lines in the real projective are in a unique 
pencil. Desargues' Theorem implies several theorems for the Eu­
clidean plane. One of these is the statement of our Theorem 34.S, 
which has as a proof the proof above with the word "Hyperbolic" con­
sistently deleted. Another is the so-called Little Desargues' Theorem 
in Exercise 34.4. 

Desargues' Theorem implies a theorem for the Bolyai - Lobachev­
sky plane that is more general than our Theorem 34.S. Our proof of 
this generalization is something of a tour de force in that, besides the 
Bolyai - Lobachevsky plane, the proof employs the Euclidean plane, 
the real projective plane, and real projective three-space. Real pro­
jective three-space is obtained by augmenting Euclidean three-space 
so that every two lines in a plane intersect. We may suppose, since the 
value of the distance scale is immaterial for our purposes, that a 
Bolyai-Lobachevsky plane is the Cayley-Klein Model (Section 33.1). 
This geometry is embedded in the Euclidean plane (Section 23.2). 
The Euclidean plane is embedded in the real projective plane, which 
is embedded in the real projective three-space. Utilizing the nesting 
of these geometries, we have a powerful tool for proving incidence theo­
rems for the Bolyai-Lobachevsky plane. This "nesting method" is il­
lustrated in the proof of our next theorem. 

Theorem 34.9 Hyperbolic Desargues' Theorem Suppose b,.ABC 
and b,.A'B'C' have no vertex in common, point A" is the intersection 
~ ~ ~ ~ 

of BC and B'C', and point B" is the intersection of AC and A'C'. Then 
~ ~ ~ ~ ~ ~ 

AA', BB', CC' are in a brush iff AB, A'B', A"B" are in a brush. 

Proof Let b,.ABC, b,.A'B'C', A", B", and C" be in the real projective 
plane P and satisfy all the hypotheses of the statement of Theorem 
34.S. (We are going to prove Desargues' Theorem for the real projective 
plane by using real projective three-space. The idea is that every 
Desargues' figure (Figure 34.3 in a plane) is a projection of a three­
dimensional Desargues' figure (Figure 34.3 with the plane of b,.ABC 
different from the plane of b,.A'B'C').) Let V be the point of concur-

~ ~ ~ 

rency of AA' , BB', CC'. Let S be a point in real projective three-space 
that is off the plane P. (See Figure 34.4.) Let D be any point such that 

~ ~ 

D, A, S are three collinear points. The two coplanar lines SA' and VD 
~ ~ 

intersect at a point D'. The two coplanar lines DB and D'B' intersect 
~ ~ 

at a point F. The two coplanar lines DC and D'C' intersect at a point 
G. Let Q be a plane containing the three points S, F, G. Then Q "" P 
since point S is off plane P. Now b,.BCD and b,.B'C'D' are in different 
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planes, and points A", F, G are collinear since each of A", F, G is in 
both of these planes. (Two intersecting planes intersect in a unique 
line.) Likewise, since f:::.ACD and f:::.A'C'D' are in different planes, 
the points S, F, B" are collinear; and, since f:::.ABD and f:::.A'B'D' are 
in different planes, the points S, G, C" are collinear. Therefore, since 
plane Q contains the three points F, G, S, then points A", B", C" are in 
plane Q. Since A", B", C" are also in plane P and P .,t. Q, then A", B", C" 
must be collinear as each is in the line of intersection of the planes 
P and Q. We have now proved Desargues' Theorem; that is, we have 
proved the statement of our Theorem 34.8 for the real projective plane. 

We always suppose below that f:::.ABC and f:::.A'B'C' have no 
~ <--------> 

vertex in common, that point A" is the intersection of BC and B'C', 
- <--------> and that pointB" is the intersection of AC andA'C'. We can restate the 

conclusion of Desargues' Theorem (for the real projective plane) as 
<E---7 ~ ~ ~ ~ ~ 

follows: If AA', BB', CC' are in a pencil, then AB, A'B', A"B" are in a 
pencil (see Figure 34.5, ignoring the shading). In this form it is easy 

~ <--------> <--------> 
to see that Desargue's Theorem implies its converse: If AB, A'B', A"B" 

~ ~ ~ 

are in a pencil, then AA', BB', CC' are in a pencil. To prove this we 
have only to apply Desargues' Theorem to f:::.A"BB' and f:::.B"AA' (see 
Figure 34.5 with its shading). Thus, for the real projective plane, we 

~ ~ ~ ~ ~ ~ 

have: Lines AA', BB', CC' are in a pencil iff lines AB, A' B', A"B" are 
in a pencil. Since the pencils in the real projective plane correspond 
to the pencils and parallel pencils in the Euclidean plane, then we 
have also demonstrated the following proposition for the Euclidean 

~ ~ ~ 

plane: Lines AA', BB', CC' are either in a pencil or a parallel pencil 
~ <--------> <--------> 

iff lines AB,A'B', A"B" are either in a pencil or a parallel pencil. (This 
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FIGURE 34.5 

proposition can be proved by imitating the first part of the proof but 
using only Euclidean three-space. However, such a proof would be 
very long because of all the possible cases.) Further, the pencils and 
parallel pencils in the Euclidean plane correspond to the brushes in 
the Cayley-Klein Model. (It is not difficult to show that the brushes 
in the Cayley-Klein Model are exactly the intersections of the pen­
cils and parallel pencils in the Euclidean plane with the set of subsets 
of the points in the Cayley-Klein Model. See Exercise 33.5.) Hence, 

~ ~ 

for the Cayley - Klein Model we have the conclusion: Lines AA', BB', 
~ ~ ~~ 

CC' are in a brush iff lines AB, A'B', A liB II are in a brush. This final 
result must apply to the Bolyai - Lobachevsky plane in general. • 

Theorem 34.10 Suppose A, B, C, D, E, F are six points such that 
points A, C, E are on one line, points B, D, F are on another line, lines 
~ ~ ~ ~ 

AB and DE intersect at point L, lines BC and EF intersect at point 
~ ~ 

M, and lines CD and FA intersect a point N. Further, suppose lines 
~ ~ ~ ~ 

AB and CD intersect at point P, lines CD and EF intersect at point 
~ ~ 

Q, and lines EF and AB intersect at point R. Then points L, M, N are 
collinear. 

Proof (See Figure 34.6.) The points P, Q, R are not collinear. The 
collinear points F, A, N are Menelaus points for l'::.PQR. The collinear 
points B, C, M are Menelaus points for l'::.QRP. The collinear points 
D, E, L are Menelaus points for l'::.RPQ. The collinear points D, B, F 
are Menelaus points for l'::.RQP. The collinear points E, C,A are Mene­
laus points for l'::.PRQ. From the Hyperbolic Menelaus' Theorem, we 
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FIGURE 34.6 

have five equations which when multiplied together such that one 
side is (-1)5 give us a sixth equation. Now M, L, N are Menelaus points 
for l::!.PQR and, again by the Hyperbolic Menelaus' Theorem, are 
collinear iff this sixth equation holds. • 

Rather than the proposition in Exercise 34.12, we choose the fol­
lowing theorem to be called the Hyperbolic Pappus' Theorem. Pappus' 
Theorem is the statement of Theorem 34.11 as applied to the real pro­
jective plane. See Figure 34.7. 

Theorem 34.11 Hyperbolic Pappus' Theorem If A, B, C, D, E,F are 
six points such that points A, C, E are on one line, points B, D, Fare 

~ ~ ~ 

on another line, lines AB and DE intersect at point L, lines BC and 
~ ~ ~ 

EF intersect at point M, and lines CD and FA intersect at point N, 
then L, M, N are collinear. 

F 

FIGURE 34.7 
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Proof Exercise 34.8. • 

Finally, we mention a theorem that can be proved easily by the 
nesting method. The theorem is not a classical theorem in that there 
is no analogue for the Euclidean plane! 

Theorem 34.12 There exists a collineation that maps all the points 
onto the interior of any given circle. 

Proof Exercise 34.1. • 

34.2 CALCULUS 

Elementary calculus is assumed in this section. Derivatives, definite 
integrals, and series are from the theory of functions of a real variable 
and are independent of geometry. These same tools that you applied 
to problems in the Euclidean plane will now be applied to analogous 
problems in the Bolyai - Lobachevsky plane. As in your calculus 
class, it is assumed here that the concept of area for polygonal regions 
can be generalized to apply to other regions. If you have not read Sec­
tion 33.2 on area, then replace "area" by "defect" in the sequel. We 
shall be just as informal as the average calculus book in deriving our 
results and in not questioning whether these results are independent 
of choice of coordinatization. From Section 33.1 on analytic geometry, 
only Definition 31.1 is essential since it is the Lobachevsky coordinates 
and the polar coordinates that are most useful for our applications. 
Otherwise, the necessary formulas are to be found in Chapter 32. 

Our use of series is limited to the following observation. If t is a 
very small number, then t is a very good approximation for sin t, for 
tan t, for sinh t, and for tanh t. Applying this to the formula tanh 1/2a . 
tanh 1J2b=tan 1/2M~.ABC for f:::.ABC in standard notation with LC 
right, we see that when a and b are both very small the left-hand side 
is approximately 1/4ab and the right-hand side is approximately 
1/2Sf:::.ABC. So 1J2ab is a good approximation for Sf:::. ABC. Thus, the 
Euclidean formulas for area give very good approximations for area 
when applied to very small regions in the Bolyai - Lobachevsky plane. 
(This explains why k2 is chosen for the constant of proportionality in 
Definition 33.15.) Further, as was noted at the end of Section 32.1, 
when a and b are both very small then a2 + b2 is a very good approxima­
tion for c2. 

Let s denote arc length along a curve with equation w = f( u) 
in Lobachevsky coordinates. The differential of arc length ds is a func­
tion of f, du, and dw. In Figure 34.8, when f:::.u and f:::.w are very small, 
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FIGURE 34.8 

PQ2 is a good approximation for ds2. So PF2 + QF2 is a good approxima­
tion for ds2• From the equation sinhPF=sinhAB coshAP, we deduce 
that PF is approximately AB cosh AP, that is, /:::"u cosh w. As /:::"u 
approaches 0, then QF approaches /:::"w. Putting all this together, we 
conclude that 

is the formula for differential of arc length in Lobachevsky coordinates. 
We can find the length s of the arc from P to Q on the equidistant 

curve with equation w=d whereP and Q have coordinates (0, d) and 
(q, d), respectively. See Figure 34.9. Since w is a constant, we have 
ds2 = cosh2 d du2 + O. Hence, 

s= f cosh d du= q cosh d. 

For another example, let's find the length s of the arc from 0 to 
~ 

Q on the horocircle with radius OX where 0, X, Q have coordinates 
(0,0), (b, 0), (b, a), respectively, with b > O. The horocircle has equa­
tion e" = cosh w in Lobachevsky coordinates (Theorem 32.4). So du = 
tanh w dw and ds2=cosh2 w dw2• Hence, 

s = f cosh w dw = sinh a. 

From Theorem 32.4 we know that s = S sinh a where S is the constant 
introduced in Definition 32.1. Therefore, S= 1. (In general, S= k.) 
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FIGURE 34.9 

Equations tanh u = cos (J tanh r and sinh w = sin (J sinh r relate 
Lobachevsky coordinates (u, w) with polar coordinates (r, (J). We can 
take the differentials of both sides of each equation and find (Exercise 
34.17) that 

ds2 = dr2 + sinh2 r d(J2 

is the formula for differential of arc length in polar coordinates. 
In particular, when r is a constant we have a circle. Thus, it is 

easily seen that the circumference of a circle with radius r is 21T sinh r. 
Still using polar coordinates, we then see that the length of the 

circular arc from P to Q. in Figure 34.10 is exactly D,(J sinh r. So when 
D,(J is very small, then PQ is approximately D,(J sinh r. (This result 
also follows directly from the formula sinh 1/2 PQ = sin 1f2D,(J sinh r.) 

0(0, OJ 

FIGURE 34.10 

R (r -+ At, 0 + AO} 

s 
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R (u+ Au, w + Aw} 

FIGURE 34.11 

Since PS = !::,.r, when !::,.r and !::,.() are both very small, the shaded region 
in the figure approaches the interior of a rectangle and has approxi­
mate area sinh r !::"r !::,.(). Thus, we conclude that 

dA = sinh r dr d() 

is the formula for differential of area in polar coordinates. 
In particular, if A is the area of a circle with radius r, then 

A = 4 f/2 1: sinh r dr d() = 4 f/2 (cosh r - 1) d() 

= 27T(cosh r-l) = 47T sinh2 1/2r. 

Returning to Lobachevsky coordinates, we know from our previ­
ous results that the length of the hypercircular arc from P to Q in 
Figure 34.11 is exactly !::"u cosh w. Letting !::,.U and 6w approach 0, 
we conclude by the same reasoning as above that 

dA=cosh wdwdu 

is the formula for differential of area in Lobachevsky coordinates. Thus, 
if A is the area of the region bounded by the curves with equation 
w= f(u), w= 0, u= a, and u= b where f(u) ~ 0 for a ~ u ~ b, then 

Jb fW Jb A = cosh w dw du = sinh f( u) duo 
a 0 a 

For example, returning to Figure 34.9, we see that the area A 
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FIGURE 34.12 

of the region between an arc of length q cosh d on a hypercircle of 
distance d from its center and the center is given by 

A= f sinhddu=qsinhd. 

For another example, let's use calculus to compute the area A 
of DOAPQ in Figure 34.12. The hardest part of the problem is finding 

~ ~ 

an equation for AP. Perhaps the easiest way is to check that AP has 
equation y = (1 - x) tanh a in Beltrami coordinates and so has equa­
tion tanh w = e-U tanh a in Lobachevsky coordinates. Then, du = 
-sech2 w coth w dw and 

A= f sinh wdu= {-sech wdw 

= [2 arctan e-u']~= TI(t) - TI(a). 

Further, letting t approach infinity in the result above, we have that 
the area of the region bounded by LJPAOQ is 7T/2- TI(a), as expected. 

Finally, let A be the area of the region bounded by the horocircle 
with equation eU = cosh wand the lines with equations w = 0 and 
u = a. See Figure 34.13. (We have previously shown that the length 
of the arc from 0 to Q is sinh a.) Then 

A = 1: sinh w du = f sinh w tanh w dw 

= f (cosh w - sech w) dw = [sinh w + TI (w ) ] g 

= sinh a + TI (a) -7T/2. 



0(0,0) 

FIGURE 34.13 

Q(b, a) 

R(b,O) 

CONSTRUCTIONS 479 

s 

Putting our results together, we see that the area of the region bound­

ed by the horocircle and the two radii QP and OS is equal to the length 
of the arc from 0 to Q. 

34.3 CONSTRUCTIONS 

The old games are the best games. One of the oldest is the ruler and 
compass game in Euclidean geometry. Masters of a game often give 
themselves handicaps, which they then try to overcome. Abul Wafa 
al-Buzjani (940- 998) was such a master. He played the game with the 
restriction that his compass had a fixed opening. Such a tool is known 
as a rusty compass and is no limitation in the hands of a master play­
er. In fact, a master player needs to use the rusty compass only once 
(the Ponce let-Steiner Theorem). On the other hand, a master player 
with a regular compass need not use the ruler at all (the Mohr­
Mascheroni Theorem). 

The ruler and compass game can be played on the Bolyai­
Lobachevsky plane as well as on the Euclidean plane. In either case, 
we talk about Euclidean constructions! In Table 34.1, we give lists 
of equivalent tools, one list for each playing board. (We shall not prove 
the validity of the table here. See Exercise 34.31.) Some of the ter­
minology is defined as follows. Given any two points, a ruler deter­
mines the line through the given points. Given any two points A and 
B, a compass determines the circle with center A and radiusAB. Given 
point P off line 1, a hypercompass determines the hypercircle through 
P with center 1. Given two points A and B, a horocompass determines 

the horocircle with radius Xn. A rusty compass is a compass that de­
termines only circles having one fixed radius (distance), and a rusty 
hypercompass is a hypercompass that determines only hypercircles 
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of one fixed radius (distance). (Since all horocircles are congruent, a 
rusty horocompass would be the same as a horocompass.) Given point 
P off line l, a ruler with horoparallel edges determines the lines through 
P that are horoparallel to l (see Theorem 26.19). A line is constructed 
if two points on the line are determined; a cycle is constructed if three 
points on the cycle are determined; and, with two exceptions, a point 
is constructed if it is the intersection of constructed lines and/or con­
structed circles. The exceptions are two points to begin with. You 
can't win a game you're not allowed to play. So we suppose that two 
points P and Q are given and defined to be constructed, where PQ = 1 
in the Euclidean plane and IT (PQ) = rr/4 in the Bolyai - Lobachevsky 
plane. 

A construction in geometry is a list of statements that show how 
a desired locus can be determined in a finite number of steps. It is 
totally unnecessary to illustrate or to approximate this mathematical 
construction with some physical construction in an imperfect model 
such as a sheet of paper with dots representing points. Unnecessary, 
yes, but drawing this approximation is part of the fun for both ama­
teurs and professionals. {Anyone who has carried out a long physical 

TABLE 34.1 

Equivalent Tools in Equivalent Tools In the 
the Euclidean Plane Bolyai-Lobachevsky Plane 

Ruler and compass 

Ruler and compass Ruler and hypercompass 

Ruler and horocompass 

Ruler and rusty compass 
Ruler and rusty compass 

Ruler and rusty hypercompass 

Ruler, one circle with its center, and two lines from a 
horopencil 

Ruler, one hypercircle with its center, and two lines 
Ruler and one circle with from a horopencil not containing the center of the 
its center hypercircle 

Ruler, one horocircle with a radius, and two lines 
from a horopencil not containing the line on the 
radius of the horocircle 

A ruler with parallel edges A ruler with horoparallel edges 

Compass 
Compass and horocompass 

Hypercompass 
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construction on paper need not be told the meaning of the word "ap­
proximation.") It is always necessary to refer to the mathematical 
theory to actually prove the validity of the construction. Although our 
ruler and compass are not physical tools, children and amateurs 
(should) play the game as if they were, using such language as "draw 
the line . . ." rather than such language as "let l be the line. . . ." 
If "draw the line ... " is ever to make sense in mathematical geom­
etry, it is here. In fact, many conservative master players enjoy using 
this language to illustrate the venerable heritage the game has ac­
crued throughout history, especially in the last century. These are 
matters of manners. If anyone wishes to "draw a horocircle," let her 
or him do so. 

More important matters are illustrated by the following con­
struction, due to Archimedes. Suppose we are given any acute angle 
with vertex V in the Euclidean plane. Let there be two marks on our 
ruler. With our compass, draw the circle with center V and radius 
equal to the distance between the two marks. Let the circle intersect -the angle at two points A and B, and let the circle intersect VA at 
the two points A and C. See Figure 34.14. Now slide the ruler so that 
it passes through B, so that one of the two marks determines a point 

~ 

P on A V, and so that the other mark determines a point Q on the circle. 
By considering the exterior angles of the isosceles triangles !::,.BVQ 
and !::"PQV, it is easy to see that mLAPB = l/amLAVB. This yields a 
construction for the trisection of any angle! Foul play? Yes and no. 
The construction is valid if you allow the marked ruler. However, then 
you would no longer be playing the ruler and compass game. (There 
are other games!) With a ruler we are only able to determine the points 
on the line through two given points. (It is only when you think of a 
ruler as a physical tool, which it is not, that it would make sense to 
say marking the ruler is against the rules of the game.) The ruler in 
Birkhoff's ruler and protractor (Section 14.1), upon which the axiom 
system for our geometry has been based, is very different from the 
ruler in the ruler and compass constructions. To alleviate some of the 

P 

FIGURE 34.14 
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confusion caused by the traditional terminology, some people prefer 
using the terms straightedge or unmarked ruler to the term ruler when 
talking about Euclidean constructions. 

The compass is analogous to the classical tool called a pair of 
compasses, which describes a circle but collapses when lifted off the 
paper, rather than analogous to the modern drawing tool called a 
compass, at least in the United States, and which can be used to draw 
a circle and to carry a distance. In Archimedes' construction above, 
the compass seems to be used to "carry a distance." Given points 
A, B, C with B =;6- C, say that a modern compass determines the circle 
with center A and radius BC. It is not obvious that the ruler and com­
pass is equivalent to the ruler and modern compass in absolute geom­
etry. Nevertheless, this is exactly what Euclid proves in his first two 
propositions in the Elements, as may be seen by rereading his proofs of 
our Theorems 21.1 and 21.2. 

As in any good game, you can't expect to win all the time. Let E 
be the set of real numbers that can be obtained in a finite number of 
steps by starting with the number 1 and using the operations of addi­
tion, subtraction, multiplication, division, and square root. Then E is 
a field. It can be shown that, given only a segment of length 1 in the 
Euclidean plane, we can construct with ruler and compass a segment 
of length x iff x is in the field E. (This is not too surprising when we 
recall that lines and circles have linear and quadratic equations, re­
spectively, in the Cartesian plane.) Analogously, given only a segment 
of length arcsinh 1 (i.e., a segment of length p where TI(p) =7T/4) in 
the Bolyai-Lobachevsky plane we can construct with ruler and com­
pass a segment of length r iff tanh r is in the field E. Note that sinh r 
is in E iff tanh r is in E. 

These results can be used to show that for the Euclidean plane 
the three great construction problems that were left unsolved by the 
Greeks cannot be solved. The problems are called the trisection of an 
angle, the duplication of the cube, and the quadrature of the circle. 
For the duplication of the cub€., it is required to construct with ruler 
and compass the edge of a cube having twice the volume of a given 
cube. For the quadrature of the circle, it is required to construct with 
ruler and compass a regular quadrilateral having the same area as a 
given circle; since a regular 4-gon in Euclidean geometry is a square, 
this problem is also called squaring the circle. 

The problem of the trisection of an angle by ruler and compass 
refers to arbitrary angles, since some angles can obviously be tri­
sected. The usual way of showing this problem is unsolvable is to 
show that an angle of measure 7T/3 cannot be trisected by proving that 
it is impossible to construct an angle of measure 7T/9. Considering the 
side adjacent to an angle of measure 7T/9 in a right triangle with 
hypotenuse of length 1, we see that an angle of measure 7T/9 can be 
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constructed in the Euclidean plane iff a segment of length cos 7r/9 can 
be constructed. Since 2 cos (7r /9) is a root of the equation x2 - 3x - 1 = 0 
(let ()=7r/9 in the identity cos3()=4 cos:l()-3 cos()) and since it can 
be shown that no root of this equation is in the field E, then it follows 
that an angle of measure 7r/9 cannot be constructed by ruler and 
compass. That the other two classical construction problems are also 
unsolvable by ruler and compass follows from the fact that neither the 
equation x' = 2 nor the equation x2 = 7r has a root in the field E. Ref­
erences to the proofs of the statements we have made may be found 
in Exercise 34.30. Actually proving the arguments outlined above 
is not trivial. It is no wonder that the Greeks were unable to solve 
these three problems. 

Now suppose we are given a segment of length p in the Bolyai­
Lobachevsky plane where n(p) =7r/4. So p=arcsinh 1, since we are 
assuming the distance scale is 1. Considering right triangles with a 
leg of length p, we see that an angle of measure A can be constructed 
iff a segment of length a can be constructed where tan A = tanh a. 
Since tan A is in the field E iff an angle of measure A can be constructed 
in the Euclidean plane, then an angle of measure A can be constructed 
in the Bolyai - Lobachevsky plane iff an angle of measure A can be 
constructed in the Euclidean plane. Hence, the construction of a reg­
ular n-gon in one plane is possible iff it is possible in the other. In 
particular, the trisection of an angle problem is unsolvable in the 
Bolyai - Lobachevsky plane. If that doesn't surprise you, perhaps the 
next result will. Since 2 sinh (p/3) is a root of the equation x' + 3x-
2=0 (let 3t=p in the identity sinh3t=4 sinh3 t+3 sinht) and since 
it can be shown this equation has no root in the field E, then it follows 
that a segment of length p/3 cannot be constructed by ruler and com­
pass when given a segment of length p. Therefore, the trisection of an 
arbitrary segment by ruler and compass is impossible in the Bolyai­
Lobachevsky plane! 

Henceforth, we consider only Euclidean constructions for the 
Bolyai - Lobachevsky plane. We shall not assume the results of Table 
34.1, but restrict ourselves to ruler and compass constructions. That 
we know there are unsolvable problems adds to the excitement of 
the game. Although a construction is often an outline of its own proof, 
sometimes a construction gives only the most subtle hint of its proof. 
Some geometers consider a construction to be incomplete if it does not 
incorporate a proof of its assertions. We have taken the view that the 
proof of a construction and the construction itself stand in the same 
relationship as the proof of a theorem and the theorem itself. As a 
theorem answers a question, so a construction answers a problem; and 
there is little difference between a question and a problem. The ele­
mentary constructions are the Euclidean constructions within the first 
twenty-eight proPQsitions of Euclid's Elements. We assume the ele-
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A 

FIGURE 34.15 

mentary constructions are known and begin numbering our problems 
with the following. 

Problem 1: Given point P off line 1, construct the lines through P that 
are horoparallel to 1; construct a critical angle for a given segment. 

The two problems in Problem 1 are equivalent by the elementary 
constructions. Construction 1, which answers these problems, is the 
statement of Corollary 32.23, and its proof is the proof of Corollary 
32.23. So we have already solved Problem 1. Next, we turn to the 
converse problem. 

Problem 2: Given an acute angle, construct a line perpendicular to 
one side and horoparallel to the other; construct a segment such that 
a given acute angle is a critical angle for that segment. 

Construction 2: Given acute angle LBAC, suppose C is the foot of the - -perpendicular from B to AC. Let point D be constructed on BC such 
that mLCAD=ll(AB). (See Figure 34.15.) Then LBAC is a critical 
angle for AD. 

Proof: Since AB > AC, then ll(AB) < ll(AC). So point D exists (i.e., 
can be constructed) by Construction 1. Then 

cos mLBAC tanhAC tanhAC tanh AD. 
tanh AB cos II (AB) 

So mLBAC=ll(AD), and LBAC is a critical angle for AD. Q.E.F. 

Problem 3: Construct the common perpendicular to two hyperparallel 
lines. 

By Constructions 1 and 2, our proof of Theorem 26.16 provides 
both a construction for the common perpendicular to two given hyper­
parallel lines and a proof of that construction. Let's call this con-
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FIGURE 34.16 

struction Construction 3a. So we may consider Problem 3 solved. How­
ever the following construction is of interest because it is shorter. 

~ ~ 

Construction 3b: Given two hyperparallellines PR and ST, let point 
~ ~ - ~ 

Q be constructed on ST such that PQ 1. ST. Assuming PQ is not the - ~ common perpendicu.lar to PR and ST, we suppose LQPR is acute. 
Let L.ABC be constructed such that LC is right, fI(AC) =mLQPR, 

-.~ 

and mLCAB= II(PQ). Let M be constructed on PR such that PM= 
~ ~ 

AB. Then the perpendicular to PR at M is also perpendicular to ST. 

The proof of Construction 3b follows easily from Figures 32.17 
and 32.16 with l=PQ. We shall give one more solution to Problem 3. 
The following construction is of special interest because it involves 
only elementary constructions. See Figure 34.16. However, the proof 
is not so elementary (Exercise 34.39). 

~ ~ 

Construction 3c: Given LJABCD with AB and CD hyperparallel, we 
-'> 

may suppose CD=AB. Let point E be constructed in int (BA) such 
that AE=AB. Let l be the line through the midpoints of AD and of 
- - -
BC; let m be the line through the midpoints of AC and of ED. Then 
the line through the intersection of land m that is perpendicular to - -AB is also perpendicular to CD. 

Construction 3c suggests the following problem. 

Problem 4: Construct an isosceles closed biangle with vertex B that 
is equivalent to given closed biangle LJABCD. 

A construction, hereafter referred to as Construction 4, that 
solves Problem 4 and that uses only elementary constructions can 
easily be gleaned from our proof of Theorem 24.3. 
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6t.ABC 

FIGURE 34.17 

Problem 5: Construct a triangle having angles that are respectively 
congruent to three given angles. 

By AAA a solution is essentially unique if it exists, and a solu­
tion exists iff the sum of the measures of the given angles is less than 
'TT'. See Figure 34.17. If 6. ABC is the desired triangle, then the problem 
becomes trivial once BC is constructed. Therefore, the following con­
struction solves the problem. See Figure 34.18. 

Construction 5: Given LL, LM, LN that are respectively congruent 
to the angles of some triangle, we may suppose that neither L M nor 
LN is larger than LL. Let LSRQ be constructed congruent to LL 
and such that LN is a critical angle for QR. Let P be the point con­
structed such that S-R-P and LM is a critical angle for PRo Let 

~ 

lines p and q be constructed such that p is perpendicular to PR at P 
~ 

and q is perpendicular to QR at Q. Let the common perpendicular to 
p and q intersect p and q at points Band C, respectively. Then BC is 

B 
FIGURE 34.18 

C 
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A 

FIGURE 34.19 

the side of a triangle 6.ABC such that LA = LL, LB = LM, and 
LC= LN. 

The proof of Construction 5 is not immediately evident from the 
statement of the construction. We need to verify that BC in Figure 
34.18 exists and has the correct length. The missing links are pro­
vided by Figures 34.19 and 34.20 where mLPRF=nu:') , mLQRF= 
nu:>, '\I=n(ll)' '\2=n(l2), '\='\1+'\2' lL=nCm), and v=nCn). By 
Corollary 32.24 (row 1 of Table 32.1 and row 4 of Table 32.2), each of 
these two figures determines the validity of the other. Thus, BC in 
Figure 34.20 is determined by LSRQ, m, and n. Fortunately, 
mLSRQ=7T-n(li') -n(ln =n(ll) +n(l2) =,\, and the mystery of 
Figure 34.18 disappears. 

Figure 34.21 and Corollary 32.24 can be used to give a shorter 
solution to Problem 5 when one of the three given angles is a right 
angle. In general, we have to be given the acute angles since not all 
angles can be constructed by ruler and compass. Whether we can con­
struct such triangles or not, the existence of such triangles is especial­
ly interesting in the case ,\ = 7T/n and IL = 7T/m with nand m positive 
integers. Considering that the defect of a triangle is positive, we see 
that a necessary and sufficient condition for the existence of such tri­
angles is 

c* 

FIGURE 34.20 
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FIGURE 34.21 

1 1 1 -+-<-. 
n m 2 

With n a positive integer and}" = 7T/n, the triangles are the building 
blocks for the regular n-gons with angles of measure 2f.L. (Compare 
Figures 34.21 and 34.22 when n = 4 and}" = 7T/4.) With m also a posi­
tive integer and f.L = 7T/m, these regular n-gons have angles of measure 
27T/m and can be used to tile the plane, where each vertex of an n-gon 
is the common vertex of m such n-gons. Unlike the case for the Eu­
clidean plane, there are infinitely many essentially different ways to 
tile the Bolyai - Lobachevsky plane with congruent regular n-gons. 
For example, taking n = 4 and m = 8, we see there exist regular 4-gons 
that can be used to tile the plane where each vertex of the 4-gons is 
the common vertex of 8 such 4-gons. (A figure is difficult to draw since 
the side of such a 4-gon would be very long relative to the size of the 
page.) There is something rather special about the example cited. 
Since, given any two points, we can construct angles of measure 7T/4 
and angles of measure 7T/8 by elementary constructions alone, then 
we can construct the 4-gons in the example by ruler and compass. Al­
though we have shown a lot more, in particular, we have shown that 
the following problem has a rather easy solution. 

Problem 6: Construct a regular 4-gon with angles of measure 7T/4 
(which then can be used to tile the plane). 

FIGURE 34.22 
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A 

B~--!-----------!~ 

E 

FIGURE 34.23 

The equation r=n(cJ» determines a one-to-one correspondence 
between the constructable circles (with radius r) and the construct­
able acute angles (with measure cJ>). Another one-to-one correspond­
ence is suggested by the following problem. Bolyai used the solution 
of this problem for a construction that gives this chapter its name. 

Problem 7: Given either one of an acute angle of measure 8 or else a 
segment of length r, construct the other such that tan 8 = 2 sinh 1f2r. 

The following construction only determines the segment given 
the angle. However, from this the converse construction is easily 
obtained. See Figure 34.23. 

Construction 7: Given an acute angle LABC of measure 8, let point 
D be construction such that L ABD is right, points D and C are on 

~ 

the same side of AB, and LCBD is a critical angle for BD. Let point 
E be constructed such that uCBED is closed and isosceles. If BE has 
length r, then tan 8 = 2 sinh 1/2r. 

Proof" Point D exists by Construction 2, and point E exists by Con­
struction 4. Then mLCBD=7T/2-8, mLBED=IT(1f2r), and 

tan 8= cot ll(BD) 

=sinhBD 

= (sin ll(1/2r» (sinh r) 

= (sech 1/2r ) (2 sinh 1f2r cosh 1/2r ) 

= 2 sinh 1/2r. Q.E.F. 
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FIGURE 34.24 

If you have not read Section 33.2 on area, replace "area" by "de­
fect" in the sequel. 

Either by the calculus in the preceding section or by the high 
school method of considering a circle as the limit of a regular n-gon, 
we know the area of a circle with radius r is 47T sinh~ 1/2r. Therefore, 
by Construction 7, if we can construct an acute angle with measure (J, 

then we can construct a circle with area 7T tan~ (J. In particular, since 
we can construct an angle of measure 7T/4, then we can construct a 
circle with area 7T. 

Problem 8: Construct (using ruler and compass alone) a circle and a 
regular quadrilateral that have the same area. 

By our remarks above, we can construct a circle with area 7T. 
Further, we know we can construct a regular 4-gon with area 7T, since 
we can easily solve Problem 6. Hence, we can solve Problem 8, al­
though the problem is unsolvable in the Euclidean plane. We have 
squared the circle in the Bolyai-Lobachevsky plane! 

34.4 EXERCISES 

All exercises refer to the Bolyai - Lobachevsky plane unless other­
wise indicated. The distance scale is assumed to be 1. 

34.1 Theorem 34.12. 

34.2 Finish the proof of Ceva's Theorem for the Euclidean plane. 

• 34.3 Prove the following proposition is false for each of the 
three types of brushes: If A, B, C, A', B', C' are six points such that 
~~~ ~~ ~~ ~~ 

AA',BB', CC' are in a brush,ACIIA'C', and BCIIB'C', thenABIIA'B'. 

34.4 For the Euclidean plane, prove the proposition in Exercise 34.3. 
(When the brush is a parallel pencil the proposition is called the Little 
Desargues' Theorem.) 
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34.5 For the Euclidean plane, prove the statement of Theorem 34.11 
~ ~ ~ 

assuming AB, CD, EF are parallel. 

34.6 For the Euclidean plane, prove the statement of Theorem 34.11 
~ ~ ~ 

assuming AB is parallel to CD but is not parallel to EF. 

• 34.7 For the Euclidean plane, prove the statement of Theorem 
34.11 

• 34.8 Theorem 34.11. 

34.9 The following proposition is a theorem for the Euclidean 
plane but is a false statement for the Bolyai - Lobachevsky plane: 
If A, B, C, D, E, F are six points such that points A, C, E are on one 

~ ~ 

line, points B, D, F are on another line, lines AB and DE are paral-
~ ~ <E-+ <E-+ 

leI, and lines BC and EF are parallel, then lines CD and FA are 
parallel. 

34.10 How might Desargues' Theorem be used to know where to dig 
tunnels on opposite sides of a mountain so that the tunnels will meet 
to form a straight tunnel? 

34.11 For the real projective plane, prove Pappus' Theorem. 

34.12 Given t::,.ABC and t::,.A'B'C' with no vertex in common and such 
~ ~ 

that point C is on A'B', point C' is onAB, point A" is the intersection of 
~ ~ <E-+ <E--.~ 

BC and B'C', and point B" is the intersection of AC and A'C', then 
~ +----> <-----> 

lines AB', A'B, A"B" are in a brush. 

34.13 Suppose two lines intersect off your paper in a drawing. How 
can you draw a line through a given point P that also passes through 
the inaccessible point of intersection? 

• 34.14 Let P be the set of all brushes. Define a set L whose elements 
are subsets of P such that (P, L) is a projective plane, as defined by 
Axiom System 2 in Section 4.2, with set of points P and set of lines L. 

34.15 Disprove: If D, E, Fare Menlaus points for t::,.ABC and the 
~ ~ ~ 

Cevians AD, BE, CF are in a brush, then the equation in the state-
ment of Theorem 34.7 holds. 

*34.16 In Definition 34.4, the existence of the set F does not depend 
on the axiom of choice. 

34.17 Verify the formula for ds2 in polar coordinates. 

• 34.18 In Lobachevsky coordinates, if two points P and 0 have 
coordinates (0, a) and (0, 0), respectively, what is the equation of 

~ 

the perpendicular to PO at P? 
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34.19 Use calculus to find the area of a Lambert quadrilateral. 

34.20 Suppose a horocircle passes through the center of a circle with 
radius r. What are the lengths of the intercepted arcs? What are the 
areas of the regions bounded by the two cycles? 

34.21 The area of the region bounded by each of three mutually horo­
parallel lines not in one brush is rr. What is the area of the region 
bounded by the four lines in Figure 26.2, where lines are assumed 
horoparallel when possible? Generalize. 

34.22 If mLPOQ=rr/3 and r=OP=OQ, find the areas of the re­
gions bounded by PQ and the circle through P with center O. Show 
thatPQ> r. 

34.23 In A New Theory of Parallels the author of Alice in Wonder­
land uses the following axiom in place of Euclid's Parallel Postulate: 
"In every Circle, the inscribed equilateral Hexagon is greater [in 
area] than anyone of the Segments which lie outside it." Dodgson's 
"Segments" are the smaller regions in Exercise 34.22. Show that the 
axiom is false in the hyperbolic plane. 

*34.24 Find formulas for ds2 and dA in Beltrami coordinates. 

34.25 Beginning with only two points that are defined to be con­
structed points, give a Euclidean construction for an angle of mea­
sure rr/4. 

34.26 Draw figures that illustrate the elementary constructions. 

• 34.27 Give a Euclidean construction for an angle of measure rr/6. 

• 34.28 Outline a Euclidean construction for a circle and a regular 
quadrilateral that both have area A with A¥- rr. 

34.29 Give a Euclidean construction for the point P in Corollary 
32.22, assuming a segment of length t is given. 

34.30 For the unsolvability of the classical construction problems, 
read the following two classic paperbacks written for the high school 
teacher. The new classic is N. D. Kazarinoff's Ruler and the Round 
(Prindle, Weber, and Schmidt, 1970), which contains a very interest­
ing bit on Gauss on page 30. The 1895 classic is F. Klein's Famous 
Problems of Elementary Geometry (Dover, 1956). 

34.31 For the equivalent tools in the Euclidean plane, read Chapter 
4 of H. Eves' A Survey of Geometry (Allyn and Bacon, 1972). For refer­
ences to the equivalent tools in the hyperbolic plane, see Section 15.8 
of H. S. M. Coxeter's Non-Euclidean Geometry (University of Toronto 
Press, 1957). 
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34.32 Read the 1961 Blaisdell paperbacks Geometrical Constructions 
using Compass Only by A. N. Kostovskii and The Ruler in Geometrical 
Constructions by A. S. Smogorzhevskii. 

34.33 Read Geometric Exercises in Paper Folding by T. S. Row 
(Dover, 1966). 

34.34 The mirror is the only tool needed for the Euclidean con­
structions. 

• 34.35 The ruler alone is not sufficient for the Euclidean construc­
tions. 

34.36 Give a Euclidean construction for the tangents to a given 
circle through a given point in the exterior of the circle. 

34.37 The smallest regular 4-gon that can be used to tile the plane 
WIth regular 4-gons has area 2rr/5. 

34.38 There exist exactly four noncongruent polygons that can be 
used to tile the plane with congruent polygons of area rr. 

34.39 Prove Construction 3c. 

*34.40 Give a Euclidean construction for an angle of measure rr/5. 



Hints and Answers 

CHAPTER 1 

1.1 i: p any false statement; ii: q any true statement. 
1.2 Use contrapositives, e.g.: (ii') If a ~ b, then c ~ d. 
1.4 [a] contains all integers 5k + a where k is an integer. There 

are 5 equivalence classes: [0], [1], [2], [3], [4]. 
1.5 FTFTT - FFTFT. 
1.6 All points; the empty set. 

CHAPTER 2 

2.1 AlII-I; only ft and ~ onto. 
2.2 2x-l, 2(x-l), 2x'-I, 8(X-l)3, 2(x'-l). 
2.3 from, into, of, at, to, under, onto, one-to-one, on. 
2.4 A=B={1, 2},D={(I, 1), (2,2), (1, 2)},f(1)? 
2.6 TTFFF - TFFTF. 
2.7 nn, n!, n!, n!. 
2.9 D=z, C= R,f(x) =x. 
2.10 D=R,f(x)=-x. 
2.12 e.g.: {(x) =x+ 2 if x < 0 and {(x) =x- 3 if x ~ O. 

CHAPTER 3 

3.4 1 from 03; 2 from 01, 3 is 02, 4 through 8 from definition of >; 
9 from 7 and 8; 10 from 2, 5, and 8. 
3.5 FTTTT - FFFTF. 
3.6 {(n) = n+ 1. 
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3.10 Not a or b. 
3.13 Historical precedence. 

CHAPTER 4 

4.2 ,'j'J points of Euclidean plane, Y' Euclidean lines through some 
fixed point in the Euclidean plane, usual incidence; Euclidean plane; 
Euclidean line. 

4.3 Axiom 1: old P and old Q on unique old line and both off Ix; 
Pn and Pm on lx' the only line with two old pencils on it; Pn and old Q 
on old line through Q and parallel to n. Axiom 2/: if old I parallel to 
old m then both through only PI; if old P on old I and old m, then no 
other new point on both old I and old m; Pm is only new point on old 
m and Ix' 

4.4 TFTFT - TFTFF. 
4.6 Affine plane and Axiom 4: Every line has at most two points 

on it. 
4.7 Y the set of points on a Euclidean sphere, 2' the set of circles 

on the sphere, usual incidence. 
4.8 Let (,':!"3'Y3' '~3) be derived from E in Figure 4.4. Take 1,0, E, 

P', P as in Figure 4.4. Then P', Pm' m, (in (93, :£'3' ,~) correspond, 
respectively, to P, Euclidean line in I through 0 and parallel to m, 
plane through m and 0, I. 

CHAPTER 5 

5.1 See Figure 4.2. 
5.2 (x, y) to (x, y) if x ~ 1 and (x,y) to (x-l,y) if x > 2 determines 

a collineation onto Ml. 
5.4 x= 1; y= -1; y= -2x+ 5; y=x if x ~ 0 and y= Ij2X if x> 0; 

y=4x- 3 if x ~ 0 and y= 2x-3 if x> 0; 3y= 8x+ 5 if x ~ 0 and 3y= 
4x+ 5 if x> O. 

5.5 TTFFT - FTTFT. 
5.7 (x, y) to (x, y1) gives a collineation from Ml to M9. 
5.8 Cardinalityargument. 
5.10 Compare with (92, 2'2' ~2) of Section 4.2. 
5.18 Use Gauss plane and Exercise 3.22. 

CHAPTER 6 

6.2 For y= mx+ b, take f( (x, mx+ b)) =x(1 + m2)1/2. 

6.3 First sentence of Section 6.3. 
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6.6 Use Exercise 6.5 on Ml. 
6.7 TFTTF - TTFFT. 
6.14 Taking P=2 and Q=6 in the Gauss plane, then PQ=4 and 
~ 

PQ=R. 
6.15 All except M2. 

CHAPTER 7 

7.4 Draw the streets and avenues through the two points; consider 
equation in each of the nine regions in the resulting tick-tack-toe 
figure. 

7.5 Theorem 7.7. 
7.7 TFTTF - FTTFF. 

CHAPTER 8 

~ 

8.4 Let Hl and l!..t be such sets. Let A - V - B with l = AB and A E 

Hl. Show P E int (VB) implies P ft..Hl but P E H2• So BE H2• Then, 
-~ 

Q E int (VA) implies Q ft. Hz but Q E H l • 

8.5 Cartesian line through A and B in Figure 8.6 contains A and 
B but not W. 

8.6 TFFTT - TFTFF. 
8.8 Same as Cartesian plane. 
8.9 A off PQ in Figure 7.5. 
8.11 Take M as A in Figure 7.5 with Xl =Yl and x2 = Y2• 

CHAPTER 9 

9.2 
9.4 
9.5 
9.6 

Figures 9.15 and 9.16. 
Figure 9.16. 

~ ~ 

All points off both VA and VB. (3,3) is not in inside. 
FTFTF - TTFTT. 

CHAPTER 10 

10.2 Tetrahedron, octahedron, hexahedron, icosahedron, and do­
decahedron. 
10.3 FTTTT-TFFFT. 



CHAPTER 12 

12.3 
12.5 
12.7 
12.9 
12.15 
12.17 

Use Theorem 12.14. 
TTFTF - TTFTF. 
See Section 8.2. 
Yes. 
This is Sylvester's original conjecture. 
False. 

CHAPTER 13 
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~ ~ 

13.1 A, E, F on a side of CD; Band D on opposite sides of AC as are 
B andF. 
13.3 Although distance is not Euclidean distance, betweenness for 
points in the model is the same as Euclidean betweenness. 
13.4 Use Sylvester's Theorem. 
13.5 TTTTF - FFFFF. 

CHAPTER 14 

14.4 Xl < x2 < X3 iff V3x I < V3x2 < V3x3 • 

14.5 Lines with nonzero slopes nl and n2 are perpendicular iff 
n l n2 = -3. 
14.6 FTFFF-FTFTF. 
14.7 If P= (-1,1), then m'LAVP is Tr13, 2Tr13. 

CHAPTER 15 

15.1 Veblen's axiom system is categorical, every model being 
isomorphic to the set of Cartesian points with the conventional be­
tweenness relation. However, since Taxicab geometry and Cartesian 
geometry share the same points and betweenness relation, Veblen's 
system does not fully describe what is usually called Euclidean 
geometry. 

CHAPTER 16 

---+ 
16.2 With mLA=mLA' and mLB=mLB', takeD onBC to build 
/::.ABD as a copy of /::.A'B'C'. 
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16.5 E.g., let V= (0, 0), A= (0, 5), andB= (4,3). A mirror map for 
l would take A to B, B to A, and V to V. But VA ¥- VB. 
16.6 TFTTF-TTFFT. 
16.8 Fold paper so desired points coincide. 
16.10 (x, y) to (2x, 2y) for Cartesian plane; (M10, t). 

CHAPTER 17 

17.3 See Exercise 17.6(gl. 
17.4 ASA. 
17.6 FTTFF-TTTFT. 
17.7 No: (Ml, d, m'). 
17.9 Right angles at H in Figure 17.6. 
17.13 In Cartesian three-space project distances from plane z= 2y 
to the x-y-plane. 

CHAPTER 18 

18.4 
18.5 
18.10 
18.16. 

See Theorem 18.12. 
FTTTT - TFFFF. 
A-D-E such that 2AD=AE-AC; compare with Theorem 

CHAPTER 19 

19.1 Corollary of Theorem 19.9. 
19.3 (x, y) to (2x, 2y); show slope is preserved. 
19.4 1; 2 or 6; 6. 
19.6 TFTTF - TFTFT. 
19.7 From slope argument A (y - y' ) = B (x - x' ); midpoint of (x, y) 
and (x', y') is on l; solve two equations in two unknowns. 
19.12 (x, y) to (alx+ bly+ cl' a2x+ b2y+ c2 ). 

19.13 a l = ±b2 = cos (J and a2 = +b l = sin (J in Answer 19.12. 

CHAPTER 20 

20.3 Use Triangle Inequality. 
20.5 TTFTF - TFFTF. 
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20.9 c> 0 and one (i) greater than, (ii) equal to, (iii) less than sum 
of other two; (iv): a - b = c= O. 
20.12 Use contrapositives of statements in hypothesis. 

CHAPTER 21 

21.3 Theorem 21.8. 
21.4 Not true for the Cartesian plane when Band C on opposite 

<---> 
sides of AD. 
21.5 TTFFF - FFFTF. 

----> 
21.6 Assumes congruent segments on BA have congruent projec-

--> 

tions on BC. 

CHAPTER 22 

22.4 Look at Theorem 23.1 only as a last resort. 
22.5 Convex; angles acute or right; opposite sides parallel and con­
gruent; obtained by reflecting a Saccheri quadrilateral in lower base. 
22.6 FFTFF-FTFFT. 
22.7 Theorem 18.17. 
22.8 Exercise 21.6. 
22.12 Theorem 22.17 and Theorem 18.16. 
22.14 Four cases: G=C=K; G =i' C=K; G=K,B-C-G; andG=K, 
B-G-C. 
22.16 See Theorem 33.11. 

CHAPTER 23 

23.1 
23.3 
23.4 
23.8 
23.12 

<---> 

For Y implies V use idea of Theorem 23.1. 
Theorem 23.6. 
FTTFT - TFTFT. 
Not under the Hypothesis of the Acute Angle. 
There is a positive number r such that the distance from Cn 

to AB is greater than r for all n. 

CHAPTER 24 

24.2 Proposition Y of Theorem 23.7. 
24.5 FFTFT - FFFFF. 
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24.9 In proof of Theorem 24.20, let AD=s and A-F-B such that 
mLACF=1T/2 to obtain f:::,ACF. 

CHAPTER 25 

25.1 The rub is in defining area in the first place. 
25.4 (must preserve the interior of any angle. 
25.5 Possibly no planes. 

CHAPTER 26 

26.1 See Figure 26.2. For n> 1, ll(do) =1T/(n+ 1). 

26.2 Either part of Figure 26.2. 
26.3 Consider uBADC and uABCD. 
26.5 TFFFF - TFFTF. 
26.12 LBAE critical angle for AE, A-E-C, and CD.l AC. 
26.18 Exercise 22.16. 

CHAPTER 27 

27.1 
27.2 
27.4 
27.5 
27.10 
27.11 

PQ big enough in Figure 26.1 so that 1 and mare hyperparallel. 
Figure 23.7. 
Theorem 27.2; p in proof of Theorem 26.3. 
Only g false. 
44000000 - 211 01. 
Nine cases, considering position of c. 

CHAPTER 28 

28.1 Only Theorem 28.6 is substantially different. 
28.2 AAA. 
28.3 PmPI= (PmPn) (PnPI)' 
28.4 Corollary 28.13. 
28.5 TTTTT - FFFFF. 

CHAPTER 29 

29.1 The perpendicular bisectors of two chords PQ and QR of a 
hypercircle cannot both be perpendicular to each of two lines. 
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29.2 Corollary 28.13, making a wise choice. 
~ 

29.4 With 'Y/c= PePd where d ..l AB, you also have a proof that the 
product of three half turns is a half turn in the Euclidean plane. 
29.5 Theorem 29.13; P1'Y/M with M the midpoint. 
29.6 TFTTF - TTFTF. 
29.8 PdPbPcPa = PfPdPaPe = PfPaPdPe = 'Y/Q'Y/p-
29.9 Involutory CTrJprr-1 fixes point Q iff Q= rrP. 
29.20 If rr is odd with center c, then n=c; if rr is even, then rrP= 
rrPIP for all points P on l. 

CHAPTER 30 

30.3 rriprr-i and Theorem 29.8. 
30.5 1881,1883,1961,1984, MM. 
30.6 One is colorblind. 
30.8 TTTTF - FF'l'FT. 
30.28 See Exercise 30.21. 

CHAPTER 31 

31.2 Proof of Theorem 31.15. 
31.4 Theorem 26.19. 
31.5 FFFTT-TTFFF. 
31.11 In Exercise 31.10: x=a+b,y=a-b. 
31.12 coshx=cosh (x/2+x/2). 

CHAPTER 32 

32.3 sin II (x + y) cosh (x + y) = 1. 
32.4 Use Corollary 32.11 in Corollaries 32.16 and 32.15. 
32.5 cos (7T - (J) = -cos (J. 

32.6 sinh «x*)/k) = csch (x/k). 
32.7 Only (a) and (e) false. 
32.12 By Exercise 32.5 or 32.11, less thlln In (1 + V2). 
32.16 IfII(r)=7T/3, then 2r=ln3. 
32.25 Exercise 32.12 and cosh2 2 < cosh 22. 
32.26 H is a multiple of the constant in Corollary 32.14. 
32.38 a, b, c integers: no; but if a2 + b2 < c2 < (a + b)2 then ta, tb, tc 
for some real t. 
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CHAPTER 33 

33.2 See Figure 23.7. 
33.3 Btx=Aty. 
33.5 Expand by third row. 
33.6 TTFFF - TTTTT. 

CHAPTER 34 

34.3 
34.7 
34.8 
34.14 
pencil. 

A" and B" outside Cayley-Klein Model in Figure 34.5. 
Theorem 34.10, Exercise 34.5, Exercise 34.6. 
Corollary of Exercise 34.7. 
E.g., a horopencil and all hyperpencils with center in the horo-

34.18 Theorem 32.21b with u=a. 
34.27 The hypotenuse of an isosceles right triangle with legs of 
length p is very interesting. 
34.28 Exercise 34.27. 
34.35 Midpoints cannot be constructed. 



Notation Index 

10 "I,3,3,!, Z, Q, R, C 249 [§JABCD 
21 lal 256 [jABCD, 
22 Z'\ Q"', R*, Z+, Q', R+ DABCD = DEFGH 
25 Ix + yil 261 St::.ABC, SDABCD 
30 lub, glb 273 t::.ABC - t::.DEF 
61 Ml, M2, ... , M15 281 LJABCD, 
66 fJP, 2, d, m int (LJABCD) 

~ -4 -~ 

67 lllm, PQ 292 AB-CD, 
68 "i.,PQ LJABCD - LJPQRS 
74 A-B-C 296 H(BC) 
77 A-B-C-D -4 --> 

339 AB lCD, II m 
- --> 

85 AB,VA 351 P-Q 
- -

87 AB=CD 375 'Y//, 
--> 388 int (P) with P a 89 int (AB), int (VA) 

96 LAVB convex polygon 

98 t::.ABC 402 H(x), AB, int (AB) 
145 int (LA VB) 409 IABI 
148 int (t::.ABC) , HA(l) 412 int ('6') with '6' a 
149 DABCD horocircle 
158 mLABC, 414 k 

LAVB= LCWD 421 S 
162 l1. m 435 (AB)'" 
192 t::.ABC = t::.DEF 451 oT with T a 
197 LABC>LDEF, triangulation 

LDEF< LABC 454 oR with R a polygonal - -- -
207 AB > CD, CD<AB region 
218 (Jf, c, L) 457 OIR with R a polygonal 
219 PI region 
226 int ('6') with '6' a circle 466 AP 



Index 

AAA, 188,* 199,335 
Abelian, 21 
Absolute, 

Bolyai's Theorem, 458 
Exterior Angle Theorem, 264 
four-space, 327 
geometry, 48, 128, 239, 324, 327 
length,299 
plane, 242 
Pythagorean Theorem, 443 
three-space, 324 
trigonometry, 443 
value, 21, 25 

Absolutely perpendicular, 327 
Absurd numbers, 51 
Acute angle, 161 
Adjacent, 150 
Affine plane, 37 
Alexandria, III 
Alternate interior angles, 240 
Angle, 96 

of a biangle, 281 
bisector, 160 
measure function, 158 
of a polygon, 388 
of a quadrilateral, 150 
of a triangle, 99 

Angle-Addition Theorem, 159 
Angle-Angle Theorem, 337 

Angle-Base Theorem, 295 
Angle-Construction Theorem, 159 
Angle-Segment-Construction Theorem, 

159 
Apollonius, 116 
Are, 403 

length, 409, 475 
Archimedes, 29, 115 
Archimedes' axiom, 29 
Area, 450, 456,457,477 
Aristotle's Axiom, 245, 265 
ASA, 188, 198 
ASS, 188, 199 
Associative, 15, 20 
Automorphism for a, 

field, 24 
geometry, 218 

Axial coordinates, 445 
Axiom, 34 

1,66 
2,68 
3,133 
4,158 
5,195 
6,334 

Axiom system, 34 
Axis, 445 

Base angle, 197 

*Page numbers in italics indicate an element of the theory, usually a definition 
or a theorem. 



Base of a biangle, 281 
Beer mugs, 140 
Beltrami, 311 

coordinates, 447 
Between, 73, 74, 107,402 
Biangle, 281 
Big Protractor Postulate, 168 
Bijection, 14 
Binary operation, 20 
Birkhoff, 155 
Bolyai,155,305,307,310,314,489 
Bolyai-Lobachevsky plane, 317, 334, 483 
Bolyai's Theorem for Absolute Geometry, 

458 
BPP, 168 
Brush,318,347 

Calculus, 474 
Cancellation, 22 
Cantor, 27, 28, 31, 75 
Cantor-Dedekind Axiom, 76 
Cantor's theorem, 28 
Cardinality, 26 
Carroll, 196 
Cartesian, 

line, 75 
plane, 50 
product, 4 

Categorical, 36 
Cayley, 60, 312 
Cayley-Klein Incidence Plane, 60, 105 
Cayley-Klein Model, 283, 444, 449 
Center of a, 

brush,347 
circle, 226 
cycle, 354 
frieze group, 393 
glide reflection, 379 
horolation, 362 
reflection, 219 
rotation, 362 
translation, 362, 365 

Ceva, 464 
Cevian, 465 
Ceva's Theorem, 468 
Chord, 226, 354 
Circle, 266, 318 
Cleopatra VII, 116 
Clifford parallel, 329 
Closed biangle, 292 
Closed from a vertex, 292 
Codomain, 5 
Collinear, 67 
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Collineation, 38 
Commutative, 20, 21 
Com~nstruction Axiom, 230 
Complementary angles, 160 
Complementary segments, 435 
Complete field, 30 
Complex Cartesian Incidence Plane, 56 
Complex number, 10,24 
Composition, 15 
Concentric, 226, 354 
Concurrent, 67 
Congruent, 223 

angles, 158 
segments, 87 
triangles, 192 

Consistent, 6, 35 
Constructions, 479, 480 
Contrapositive, 2 
Convex, 

polygon, 388 
polygonal region, 451 
quadrilateral, 150 
set of points, 90 

Coordinate, 69, 445 
system, 69 

Corresponding, 
angles, 240 
arcs, 413 
points, 413 
segments, 413 

cosh, 13,415 
Critical, 

angle, 296 
function, 296 
value, 296 

Critically parallel, 339 
Crossbar, 101, 146 
Cubic Incidence Plane, 57 
Cut, 31, 240 
Cycle, 318, 354 
Cyclic group, 386 

Dedekind, 26, 75 
Dedekind cut, 31 
Defect of a, 

convex polygon, 451 
polygonal region, 451, 454 
quadrilateral, 261 
triangle, 261, 262 
triangulation, 451 

Degrees, 158 
Desargues, 464 
Desargues'Theorem, 140,469 
Descartes, 37, 51, 118 
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Diagonal,150 
Diameter, 226 
Dihedral group, 387 
Dilatation, 384 
Directed distance, 466 
Disjoint, 4 
Distance, 68 

between horocircles, 413 
between lines, 246 
between points, 68 
directed, 466 
function, 68 
from point to line, 226 
scale, 319, 414, 422, 449 

Dodgson, 196 
Domain, 5 

Edge, 133 
Elements, 26, Ill, 115, 121, 244, 273, 

482 
Elliptic plane, 181, 312, 370 
Endpoint, 85 
Equiangular, 197 
Equidistance curve, 318, 356 
Equidistant lines, 249 
Equilateral, 197 
Equivalence class, 7 
Equivalence relation, 5 
Equivalent, 6 

biangles, 292 
points, 351 
rays, 292 
by triangulation, 454 

Escribed cycle, 442 
Euclid, 26, 29, 115, 121, 464 
Euclidean, 

constructions, 479, 483 
field, 30 
line, 76 
plane, 52, 320, 323 

Euclid's, 
Common Notions, 123 
Definitions, 122 
Parallel Postulate, 123, 243, 269, 276, 

284 
Postulates, 123 
Propositions, 125 

Eudoxus, 26, 29, 111 
Even isometry, 372 
Exterior, 

angle of a biangle, 281 
angle of a triangle, 197 
of an angle, 148 
of a circle, 226 

of a horocircle, 413 
of a triangle, 148 

False numbers, 51 
Fano, 138 
Fano's Axiom, 152 
Fictitious numbers, 25, 51 
Field, 23 

of complex numbers, 24 
of rationals, 23 
of reals, 23 
of two elements, 25 

Finite geometry, 42, 138 
Finite group, 386 
Fix, 220 
Flag, 36 
Flat, 326 
Foot, 212 
Four-Angle Theorem, 161 
Four-Space, 327 
Frame, 445 
Frieze group, 393, 397 
Frieze patterns, 392 
Fundamental Formula, 319, 429 

Galileo,26 
Gauss, 52, 305, 310 
Gauss plane, 52 
Generated, 386 
Gersonides, 272 

quadrilateral, 266, 273 
Giordano, 248 
Giordano's Theorem, 250 
Glide reflection, 379 
Graph,5 
Greek alphabet, 9 
Greek cross, 388 
Group, 21 
Gudermannian, 441 

Halffiat, 325 
Halfline, 89 
Halfplane, 101, 133 

Incidence Plane, 42, 56 
Halfturn, 375 
Helmholtz, 310 
Hilbert, 139, 172, 314 
Hilbert's axioms, 172 
Hinge Axiom, 126 
Hjelmslev, 139 
Hjelmslev's Theorem, 384 
Horocircle, 318, 354 
Horolation, 362 



Horoparallel, 318, 339 
Horopencil, 318, 347 
Hoiiel,310 
HPP, 334, 335 
Hypatia, 118 
Hyperbolic, 

Ceva's Theorem, 468 
Desargues' Theorem, 470 
functions, 415 
geometry, 42, 282, 284,312, 325 
Law of Cosines, 432 
Law of Sines, 432 
Menelaus' Theorem, 467 
Pappus' Theorem, 473 
Parallel Postulate, 317,334,335 
plane, 42, 317, 332 
Pythagorean Theorem, 319,428 
trig functions, 13, 415 

Hypercircle, 318, 354 
Hyperparallel, 318, 341 
Hyperpencil, 318, 347 
Hypotenuse, 212 
Hypotenuse-Leg Theorem, 213 
Hypothesis of the, 

Acute Angle, 255 
Obtuse Angle, 255, 264, 312 
Right Angle, 255, 269, 278 

Identity mapping, 16 
In, 144 
Incidence, 5 

Axiom, 66 
plane, 36, 55 

Incident, 67 
Independent, 6, 35 
Inequalities, 207 
Infinite set, 26 
Injection, 11, 12 
Injective, 11 
Inside, 104, 148 
Intersect, 4, 67 
Interior angle, 240 
Interior of, 

an angle, 100, 145 
an arc, 403 
a biangle, 281 
a circle, 226 
a horocircle, 412 
a polygon, 388 
a polygonal region, 451 
a ray, 89 
a segment, 89 
a triangle, 148 

Interior ray, 104,281 
Involution, 220, 371 
Irrational, 26 
Isometries, 216 

of the elleptic plane, 370 
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of the Euclidean plane, 384, 392, 397 
of the hyperbolic plane, 382,392,397 

Isometric models, 35, 449 
Isomorphism, 24, 35 
Isosceles biangle, 292 
Isosceles triangle, 197 

k,414 
Klein, 60, 312 

Lambert, 305, 310 
quadrilateral, 256 

trig, 435 
Larger, 197 
Least upper bound, 30 
Leg, 212,249 
Legendre,274, 281 
Length, 87, 409 
Leonardo da Vinci, 318, 392 
Leonardo's Theorem, 392 
Library at Alexandria, 113, 117, 119 
Line, 67, 84, 122 
Line of symmetry, 226 
Linear pair, 97 
Line-Circle Theorem, 232 
Line-Separation Theorem, 90 
Line-Triangle Theorem, 149 
Lobachevsky, 305, 310, 314 

coordinates, 445 
Longer, 207, 409 
Lower base, 249 

Mapping, 10 
Mathemata, 121 
Measure, 158 
Menelaus, 117,464 

points, 465 
Theorem, 467 

Midpoint, 89 
Theorem, 89 

MIRROR, 185, 221 
Mirror Axiom, 185, 221 
Missing-Quadrant Incidence Plane, 42, 56 
Missing-Strip Incidence Plane, 56, 103 
Model, 35, 55 
Modulus, 25 
Moulton, 58 

Incidence Plane, 57, 91, 140, 163,209 
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Mukhopadhyaya's pentagon, 443 
Museum, 113 

n-gon, 388 
Negation, 19 
Non-Archimedian, 

field, 29 
geometry, 138 

Non-Euclidean geometry, 313 

Obtuse angle, 161 
Odd isometry, 372 
Off,67 
Omar Khayyam, 248, 271 
Omar Khayyam's Theorem, 257 
On, 67, 86, 144 
On opposite sides, 135 
One-to-one, 11 

correspondence, 14 
Onto, 11 
Opposite, 

angle, 150, 197 
halfplane, 135 
ray, 89 
side, 135, 150, 197 
vertex, 150 

Order, 
for a field, 28 
of a group, 386 
on a line, 73 

Outer end, 226 
Outside, 148 

Pappus, 117, 137, 196,464 
Pappus' Theorem, 140,473 
Parallel, 6, 36, 67, 249, 323, 327 

pencil, 7, 347 
postulates, 42 

Pasch, 74, 138, 140, 314 
PASCH, 131, 135. 136 
Pasch's Postulate, 103,131,135,136 
Passes through, 67, 86 
Peano, 138, 140, 180, 314 
Peano's Postulate, 136 
Pencil, 318, 347 
Permutation, 16 
Perpendicular, 162, 325, 326, 327, 328 

bisector, 206 
Philo, 200, 205 
Piecewise congruence, 129, 454 
Pieri, 139, 175, 314 
Pieri's postulates, 175 
Plane-Separation Postulate, 101,131, 

133, 136 

Playfair's Parallel Postulate, 243, 269, 
277, 339 

Poincare, 59 
Halfplane, 285 
Halfplane Incidence Plane, 59 
Incidence Plane, 59 
Model, 284, 358 

Point, 67 
of symmetry, 386 

Pointwise, 220 
Polar coordinates, 445 
Polygon, 388 
Polygonal Inequality, 209 
Polygonal region, 451 
Pons Asinorum, 196, 197, 207 
Postulate system, 34 
Proclus, 118, 138, 200, 244, 246 
Projective plane, 40 
Protractor Postulate, 155, 158, 166 
PSP, 101, 131, 13~ 136 
Ptolemy, 11 7, 244 
Pythagorean field, 30 
Pythagorean Theorem, 129,321,428 

Quadrant Incidence Plane, 42, 56 
Quadrature of the circle, 482, 490 
Quadrilateral, 149, 150 
Quantifier, 3 

Radius of a, 
circle, 226 
horocircle, 403 
hypercircle, 371 

Range, 11 
Ratchet, 389 
Rational, 10, 23, 26 

Cartesian Incidence Plane, 55 
Cartesian plane, 160, 230 

Ray, 85 
Ray-Coordinatization Theorem, 87 
Ray-interior, 104, 148 
Real Cartesian Incidence Plane, 37, 50, 

55 
Real number, 26 
Real Projective Plane, 40 
Rectangle, 249 
Reflection, 219, 224 
Reflexive law, 5 
Regular polygon, 388 
Relation, 5 
Remote interior angle, 197,281 
Riemann, 61, 310 

Incidence Plane, 61, 312 



Right angle, 161 
Right triangle, 212 
Rotation, 362 
Ruler, 

and compass, 479 • 
Placement Theorem, 70 
Postulate, 68 

8,421 
SAA, 188,199 
Saccheri, 155, 248, 255, 302, 310 

quadrilateral, 249 
Saccheri's Theorem, 264, 275 
Same cardinality, 26 
SAS, 185, 186,195,221 
Scalene, 197 
Schweikart, 306, 310 
Secant, 226 
Segment, 85 
Segment-Addition Theorem, 88 
Segment-Construction Theorem, 87 
Segment-interior, 104 
Segment-Subtraction Theorem, 88 
Seven arts, 121 
Shade, 102, 148 
Shorter, 207 
Side of, 

an angle, 96 
a biangle, 281 
a line, 100, 135 
a polygon, 388 
a polygonal region, 451 
a quadrilateral, 150 
a ray, 135 
a segment, 135 
a triangle, 98 

Side-AngIe-Side Theorem, 125, 165, 185, 
186, 195, 221 

Similar, 273, 319 
sinh, 13,415 
Skew, 323, 327 
Smaller, 197 
Snowflake curve, 409, 418 
Sostratos, 113 
Space Incidence Plane, 56, 104 
Sphere Incidence Plane, 60 
Square, 256 

Squaring the circle, 482, 490 
SSS, 188, 199,200 
Standard notation, 425 
Star-between, 78 
Star triangulation, 451 
Straightedge Axiom, 66 
Subtended, 403 
Subtriangulation, 451 
Superposition, 126, 188, 295 
Supplementary, 160 
Surjection, 11, 12 
Surjective, 11 
Sylvester's Theorem, 137 
Symmetric law, 5 
Symmetry, 386 
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Tables, chairs, and beer mugs, 140 
Tangent, 226, 403 
tanh, 13,415 
Taurinus, 308, 310 
Taxicab Geometry, 77, 162, 195 
Thales, 111 

Theorem of, 263, 277 
Theory of parallels, 244 
Three-space, 324 
Transitive law, 5 
Translation, 362 
Transversal, 240 
Triangle, 98 

Inequality, 69, 208 
Theorem, 234 

Triangular region, 451 
Triangulation, 451 
Trigonometry, 421 
Two-Circle Theorem, 235, 239 

Undefined terms, 66 
Upper base, 249 

angle, 249 

Varignon quadrilateral, 346 
Vertex, 85,96,98, 150,281,388,451 
Vertical angles, 97 

VVachter, 306, 310 
VVallis, 273 
VVeird plane, 107 
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