Undergraduate Texts in Mathematics

Editors

S. Axler
F.W. Gehring
K.A. Ribet

Springer
New York
Berlin
Heidelberg
Barcelona
Budapest
Hong Kong
London
Milan

Paris

Santa Clara
Singapore
Tokyo



Undergraduate Texts in Mathematics

Anglin: Mathematics: A Concise History
and Philosophy.
Readings in Mathematics.

Anglin/Lambek: The Heritage of
Thales.
Readings in Mathematics.

Apostol: Introduction to Analytic
Number Theory. Second edition.

Armstrong: Basic Topology.

Armstrong: Groups and Symmetry.

Axler: Linear Algebra Done Right.

Beardon: Limits: A New Approach to
Real Analysis.

Bak/Newman: Complex Analysis.
Second edition.

Banchoff/Wermer: Linear Algebra
Through Geometry. Second edition.

Berberian: A First Course in Real
Analysis.

Brémaud: An Introduction to
Probabilistic Modeling.

Bressoud: Factorization and Primality
Testing.

Bressoud: Second Year Calculus.
Readings in Mathematics.

Brickman: Mathematical Introduction
to Linear Programming and Game
Theory.

Browder: Mathematical Analysis:
An Introduction.

Buskes/van Rooij: Topological Spaces:
From Distance to Neighborhood.

Cederberg: A Course in Modern
Geometries.

Childs: A Concrete Introduction to
Higher Algebra. Second edition.
Chung: Elementary Probability Theory
with Stochastic Processes. Third

edition.

Cox/Little/O’Shea: Ideals, Varieties,
and Algorithms. Second edition.

Croom: Basic Concepts of Algebraic
Topology.

Curtis: Linear Algebra: An Introductory
Approach. Fourth edition.

Devlin: The Joy of Sets: Fundamentals
of Contemporary Set Theory.
Second edition.

Dixmier: General Topology.

Driver: Why Math?

Ebbinghaus/Flum/Thomas:
Mathematical Logic. Second edition.

Edgar: Measure, Topology, and Fractal
Geometry.

Elaydi: Introduction to Difference
Equations.

Exner: An Accompaniment to Higher
Mathematics.

Fine/Rosenberger: The Fundamental
Theory of Algebra.

Fischer: Intermediate Real Analysis.

Flanigan/Kazdan: Calculus Two: Linear
and Nonlinear Functions. Second
edition.

Fleming: Functions of Several Variables.
Second edition.

Foulds: Combinatorial Optimization for
Undergraduates.

Foulds: Optimization Techniques: An
Introduction.

Franklin: Methods of Mathematical
Economics.

Gordon: Discrete Probability.

Hairer/Wanner: Analysis by Its History.
Readings in Mathematics.

Halmos: Finite-Dimensional Vector
Spaces. Second edition.

Halmos: Naive Set Theory.

Hiammerlin/Hoffmann: Numerical
Mathematics.

Readings in Mathematics.

Hijab: Introduction to Calculus and
Classical Analysis.

Hilton/Holton/Pedersen: Mathematical
Reflections: In a Room with Many
Mirrors.

Iooss/Joseph: Elementary Stability and
Bifurcation Theory. Second edition.

Isaac: The Pleasures of Probability.
Readings in Mathematics.

(continued after index)



George E. Martin

The Foundations of Geometry
and the Non-Euclidean Plane

4€)) Springer



George E. Martin

Department of Mathematics and Statistics
State University of New York at Albany
1400 Washington Avenue

Albany, New York 12222

U.S.A.

Editorial Board

S. Axler F.W. Gehring K.A. Ribet

Department of Department of Department of
Mathematics Mathematics Mathematics

Michigan State University University of Michigan University of California

East Lansing, MI 48824 Ann Arbor, MI 48109 at Berkeley

US.A. US.A. Berkeley, CA 94720

USA.

Mathematics Subject Classification (1991): 51-01, 51-03.

This book was originally published by Intext Educational Publishers.

Library of Congress Cataloging in Publication Data

Martin, George Edward, 1932—
The foundations of geometry and the non-Euclidean
plane.

(Undergraduate texts in mathematics)

Reprint. Originally published: New York : Intext
Educational Publishers, 1975.

Includes index.

1. Geometry—Foundations. 2. Geometry, Non-Euclidean.
I. Title. II. Series. III. Series: Intext series in
mathematics.
QA681.M34 1982 516'.1 82-728

© 1975 by Springer-Verlag New York, Inc.
Softcover reprint of the hardcover Ist edition 1975
All rights reserved. No part of this book may be translated or reproduced in any form

without the written permission from Springer-Verlag, 175 Fifth Avenue, New York
10010, U.S.A.

9 8 7 6 5 4 (Corrected fourth printing, 1998)

ISBN-13: 978-1-4612-5727-1 €-ISBN-13: 978-1-4612-5725-7
DOI: 10.1007/978-1-4612-5725-7



To Margaret



Contents

Preface

Foreword to the Student

INTRODUCTION

1 EQUIVALENCE RELATIONS
1.1  Logic
1.2  Sets
1.3  Relations
1.4 Exercises

Graffiti

2 MAPPINGS
2.1 One-to-One and Onto
2.2  Composition of Mappings
2.3 Exercises

Graffiti

3 THE REAL NUMBERS

3.1
3.2
3.3

Binary Operations
Properties of the Reals
Exercises

Graffiti

Xiii

). 4%

O© TN N

10

10
15
17
19

20

20
26
31
33



Viii CONTENTS

4

AXIOM SYSTEMS

4.1 Axiom Systems

4.2 Incidence Planes

4.3 Exercises
Graffiti

PART ONE ABSOLUTE GEOMETRY

5

MODELS

5.1 Models of the Euclidean Plane
5.2  Models of Incidence Planes

5.3 Exercises
Graffiti

INCIDENCE AXIOM AND RULER POSTULATE

6.1  Our Objectives
6.2 Axiom 1: The Incidence Axiom
6.3 Axiom 2: The Ruler Postulate
6.4 Exercises

Graffiti

BETWEENNESS

7.1 Ordering the Points on a Line
7.2  Taxicab Geometry
7.3  Exercises

Graffiti

SEGMENTS, RAYS, AND CONVEX SETS

8.1 Segments and Rays
8.2 Convex Sets
8.3 Exercises

Graffiti

ANGLES AND TRIANGLES

9.1 Angles and Triangles
9.2 More Models
9.3 Exercises

Graffiti

34

34
36
45
47

50

50
55
61
64

65
66
68
70
72

73

73
77
81
82

84

84
89
92
93

95

95
100
109
110



10

1"

12

13

14

15

16

THE GOLDEN AGE OF GREEK MATHEMATICS
(Optional)

10.1 Alexandria
10.2 Exercises

EUCLID’S ELEMENTS (Optional)

11.1 The Elements
11.2 Exercises
Graffiti

PASCH’S POSTULATE AND PLANE
SEPARATION POSTULATE

12.1 Axiom 3: PSP
12.2 Pasch, Peano, Pieri, and Hilbert
12.3 Exercises

Graffiti

CROSSBAR AND QUADRILATERALS

13.1 More Incidence Theorems
13.2 Quadrilaterals
13.3 Exercises

Graffiti

MEASURING ANGLES AND THE PROTRACTOR
POSTULATE

14.1 Axiom 4: The Protractor Postulate
14.2 Peculiar Protractors
14.3 Exercises

ALTERNATIVE AXIOM SYSTEMS (Optional)

15.1 Hilbert’s Axioms
15.2 Pieri’s Postulates
15.3 Exercises

MIRRORS

16.1 Rulers and Protractors
16.2 MIRROR and SAS
16.3 Exercises

Graffiti

CONTENTS iX

111

111
119

121

121
129
130

131

131
137
140
142

144

144
149
152
153

155

155
166
169

172

172
175
180

182

182
184
189
191



X CONTENTS

17 CONGRUENCE AND THE PENULTIMATE

POSTULATE 192
17.1 Congruence for Triangles 192
17.2 Axiom 5: SAS 195
17.3 Congruence Theorems 198
17.4 Exercises 201
Graffiti 202

18 PERPENDICULARS AND INEQUALITIES 204
18.1 A Theorem on Parallels 204
18.2 Inequalities 207
18.3 Right Triangles 211
18.4 Exercises 213
Graffiti 215

19 REFLECTIONS 216
19.1 Introducing Isometries 216
19.2 Reflection in a Line 219
19.3 Exercises 223
Graffiti 225

20 CIRCLES 226
20.1 Introducing Circles 226
20.2 The Two-Circle Theorem 230
20.3 Exercises 236
Graffiti 238

21 ABSOLUTE GEOMETRY AND SACCHERI

QUADRILATERALS 239
21.1 Euclid’s Absolute Geometry 239
21.2 Giordano’s Theorem 248
21.3 Exercises 252
Graffiti 253

22 SACCHERI'S THREE HYPOTHESES 255
22.1 Omar Khayyam’s Theorem 255
22.2 Saccheri’s Theorem 260
22.3 Exercises 266

Graffiti 267



23

24

25

EUCLID’S PARALLEL POSTULATE

23.1
23.2
23.3

Equivalent Statements
Independence
Exercises

Graffiti

BIANGLES

24.1
24.2
24.3
244

Closed Biangles
Critical Angles and Absolute Lengths
The Invention of Non-Euclidean Geometry

Exercises
Graffiti

EXCURSIONS

25.1
25.2
25.3
25.4

Prospectus
Euclidean Geometry
Higher Dimensions
Exercises

Graffiti

PART TWO NON-EUCLIDEAN GEOMETRY
26 PARALLELS AND THE ULTIMATE AXIOM

27

28

26.1
26.2
26.3

Axiom 6: HPP
Parallel Lines

Exercises
Graffiti

BRUSHES AND CYCLES

271
27.2
27.3

Brushes
Cycles
Exercises
Graffiti

ROTATIONS, TRANSLATIONS, AND
HOROLATIONS

28.1
28.2
28.3

Products of Two Reflections
Reflections in Lines of a Brush
Exercises

Graffiti

CONTENTS Xi

269

269
281
286
289

292

292
295
302
314
316

317

317
320
323
328
330

334

334
338
344
346

347

347
351
356
358

360

360
365
368
370



X

29

30

31

32

33

34

CONTENTS

THE CLASSIFICATION OF ISOMETRIES

29.1 Involutions
29.2 The Classification Theorem
29.3 Exercises

Graffiti

SYMMETRY

30.1 Leonardo’s Theorem
30.2 Frieze Patterns
30.3 Exercises

Graffiti

HOROCIRCLES

31.1 Length of Arc
31.2 Hyperbolic Functions
31.3 Exercises

Graffiti

THE FUNDAMENTAL FORMULA

32.1 Trigonometry
32.2 Complementary Segments
32.3 Exercises

Graffiti

CATEGORICALNESS AND AREA

33.1 Analytic Geometry
33.2 Area
33.3 Exercises

Graffiti

QUADRATURE OF THE CIRCLE

34.1 Classical Theorems
34.2 Calculus

34.3 Constructions

34.4 Exercises

o Hints and Answers

Notation Index

Index

371

371
378
382
384

386

386
392
397
400

402

402
415
417
419

421

421
434
439
443

444

444
450
459
463

464

464
474
479
490

494

503

504



Preface

This book is a text for junior, senior, or first-year graduate
courses traditionally titled Foundations of Geometry and/or Non-
Euclidean Geometry. The first 29 chapters are for a semester or
year course on the foundations of geometry. The remaining chap-
ters may then be used for either a regular course or independent
study courses. Another possibility, which is also especially suited
for in-service teachers of high school geometry, is to survey the
the fundamentals of absolute geometry (Chapters 1-20) very
quickly and begin earnest study with the theory of parallels and
isometries (Chapters 21-30). The text is self-contained, except that
the elementary calculus is assumed for some parts of the material
on advanced hyperbolic geometry (Chapters 31-34). There are
over 650 exercises, 30 of which are 10-part true-or-false questions.

A rigorous ruler-and-protractor axiomatic development of the
Euclidean and hyperbolic planes, including the classification of the
isometries of these planes, is balanced by the discussion about this
development. Models, such as Taxicab Geometry, are used exten-
sively to illustrate theory. Historical aspects and alternatives to the
selected axioms are prominent. The classical axiom systems of
Euclid and Hilbert are discussed, as are-axiom systems for three-
and four-dimensional absolute geometry and Pieri’s system based
on rigid motions.

The text is divided into three parts. The Introduction (Chapters
1-4) is to be read as quickly as possible and then used for ref-
erence if necessary. The formal axiomatic development begins in
Chapter 6 of Part One, Absolute Geometry (Chapters 5-25). Chap-
ter 5 contains a list of 15 models that are used throughout Part
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One in discussing the relative consistency and independence of the
axioms used in building our system. Isometries are introduced as
soon as they are useful. In fact, the existence of the reflections is
shown to be equivalent to the familiar SAS axiom. Chapter 25
shows that our five axioms for absolute geometry together with
one of the equivalents of Euclid’s Parallel Postulate (Theorem 23.7
gives 26 such equivalents) form a categorical system. Section 25.1
contains a detailed survey of the contents of Part Two, Non-Euclid-
ean Geometry (Chapters 26-34). Although Part Two concentrates
on hyperbolic geometry, many of the results have direct application
to Euclidean geometry as well.

The classification of the isometries of the hyperbolic plane
and, as a corollary, the classification of the isometries of the Eu-
clidean plane appear in Chapter 29 of Part Two. In order to be sure
of covering this important material in a one-semester or a two-
quarter course it is suggested that Chapter 20 be finished halfway
through the course. Chapters 10, 11, 15, and even 25 might be
assigned as outside reading, postponed, or omitted. On the other
hand, Chapter 30 should be included in such a course if time
allows. (For a semester course meeting three times a week, the
author uses the following schedule where exam days and reading
days are omitted: 1-3, 4,5,6,7,8,9,9, 12, 13, 14, 16, 16, 17, 18,
19, 19, 20, 21, 21, 22, 22, 23, 23, 23, 24, 24, 26, 26, 27, 27, 28, 28, 28,
29, 29, 29.)

Special acknowledgment is heartily granted to my colleague
Hugh Gordon, who made many very helpful suggestions when he
was teaching from the preliminary version of this book. | am grate-
ful to Mary Blanchard, who typed the manuscript. Finally, | wish to
express appreciation to the Cambridge University Press for per-
mission to quote the statements of the definitions, axioms, and
theorems of Book 1 from its definitive publication on Euclid: The
Thirteen Books of Euclid’s Elements by T. L. Heath.



Foreword to the Student

“Thales, well known for his control of oil through a monopoly on
the olive presses, today announced the invention of a means for
obtaining knowledge. He calls the process deduction.” So began
the front page story of the Miletus Times dated July 3, 576 B.C.

An accompaning article reported the reactions of Oracle Joe to the
invention. The utterances of Oracle Joe were deemed mysterious,
as usual, and were quoted verbatim as follows: ‘“‘Lines. O.J. sees
parallel lines. Some seem more parallel than others in the hyper-
bolic plane. That’s Non-Euclidean geometry. Just last week O.J.
predicted that in a couple hundred years in a city near Egypt a guy
named Euclid would make a big deal about parallel lines in a book
that will endure as long as the stories of Homer. Euclid will use
deduction. This deduction thing will hurt the oracle business, but
the advice of oracles will be sought even into the Age of Aquarius.
0.J. now sees tables, chairs, and beer mugs. Yes, it will be well
over two thousand years and in worlds yet to be discovered before
the implications and limitations of deduction begin to be fully
realized. Non-Euclidean geometry will play an important role in all
this. O.J. is never wrong—and is now open on Saturnday.” With
that we end the fantasy in this book but not, perhaps, the fantastic.
(We shall see rectangles relegated to the domain of unicorns and
pentagons with five right angles.)

There are many ways to distinguish between Euclidean and
non-Euclidean geometry. The business about parallel lines is only
one of the interrelated aspects whose totality is called the theory of
parallels. To understand the theory of parallels we must begin our
geometry almost from scratch. Thus we shall avoid the various
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traps that have ensnared mathematicians of the greatest genius.
Also, the dynamics of building an axiom system very similar to but,
in the end, vastly different from Euclid’s are as exciting as any
mystery novel. The story behind non-Euclidean geometry is one of
the fascinating chapters in man’s search for knowledge. In this text
you will learn something of this story as well as the mathematical
theory itself. For an appreciation of either, some understanding of
the other is required. For those of you who may become teachers
and feel non-Euclidean geometry is irrelevant, we quote the geom-
eter Felix Klein: “After all, it is in order for the teacher to know a
little more than the average pupil.”

The following method is suggested for a quick, rough self-
evaluation of your mastery of a particular chapter. After you have
studied a chapter, answer each part of the True-or-False exercise
in turn without allowing yourself to look ahead or to change an
answer. Then score yourself, using the Hints and Answers section
in the back of the book. If you missed a question because you
forgot a definition from the theory, the Index will help you find the
definition.

The author hopes that you enjoy your study of the theory of
parallels.



INTRODUCTION

The Introduction contains the prerequisites to our study of the foundations
of geometry. In order to begin Part One, it is sufficient that the following
questions be understood and answered: What is an equivalence relation
on a set? What is a one-to-one mapping from one set onto another?
What does it mean to say that an axiom system is consistent, indepen-
dent, or categorical? The Introduction answers these specific questions
and contains enough additional material so that almost every reader
will encounter something new. It is recommended that these first four
chapters be read as quickly as possible and then used for reference
later if necessary.



CHAPTER 1

Equivalence Relations

1.1 LOGIC

We agree that a statement is either true or false (Law of the Excluded
Middle) but not both (Law of Noncontradiction). Our use of “not,”
“and,” “or,” “if . . . then. . .,” and “iff” in relation to arbitrary state-
ments p and ¢q is explained by the truth tables in Table 1.1, where
“T” stands for true and “F” for false. In mathematics “or” is always
used in the inclusive sense. The conditional p = q may be read in any
one of the following equivalent ways:

If p then q.

q if p.

p only if q.

q or not p.

p is a sufficient condition for q.
q is a necessary condition for p.

SO WO

The sentence “p implies ¢” means that the conditional “if p then q” is
true. To say “(if p then ¢) and (if ¢ then p),” we merely say “p if and
only if ¢” and write “p iff ¢” or “p & q.”

Related to the conditional “if p then q” are its converse “if q
then p” and its contrapositive “if not q then not p.” It should be easy to
think of a conditional which is true but whose converse is false. On
the other hand, a conditional is true if and only if its contrapositive is
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TABLE 1.1
p q not p porq p and q if p then g piffq

mm 44
m4TA
— <47
mH4 44
Mmoo
<474
™M

true. One way of convincing yourself of this is to observe that the fol-
lowing are all equivalent: (1) If not g, then not p. (2) (Not p) or not
(not q). (3) (Not p) or q. (4) q or not p. (5) If p, then q. Another way is
to check the truth table in Table 1.2, where the numbers at the bot-
tom indicate the order in which the columns were entered in con-
structing the table.

You intuitively know the meaning of the two quantifiers that
are used in basic logic. One is the existential quantifier, which may be
denoted by any one of the following: there exists, there exist, there is,
there are, for some. The other is the universal quantifier, which may
be denoted by any one of the following: for any, for all, each, every.
Actually, the universal quantifier may be logically defined in terms
of the existential quantifier and negation. For example, if p denotes
some proposition about the integers, then “for all integers, p” means
the same thing as “there does not exist an integer such that not p.”
One thing to look out for is that the little words a, an, and the are often
hidden quantifiers in English. For example, “The diameters of a circle
intersect at a point” contains three quantifiers and means that for
any circle there exists a point such that each diameter of that circle
passes through that point.

Consider the statement “If N is a positive integer, then N?—
79N + 1601 is a prime.” To prove this statement it would not be suf-
ficient to show that N2— 79N + 1601 is a prime for several values of N.
Even to show that you get a prime for the first seventy-nine positive
integers is not a proof of the statement. Actually, the statement is
false as N2— 79N + 1601 =412 when N = 80. Note that one case where
the statement is false proves that the statement is false! In other
words, it only takes one counterexample to disprove a statement.

TABLE 1.2

P q | (p>q) iff ((notq) =  (notp))
T T T T F T F
T F F T T F F
F T T T F T T
F F T T T T T
12 ' 3 7 4 6 5
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1.2 SETS

Most of us have heard that a set is a collection of elements. “x € A”
means that x is an element of set A; “x € A” means that x is not an
element of set A. The statement that set A is a subset of set B is writ-
ten “A C B” and means x € A only if x € B. The set of all positive in-
tegers is a subset of the set of all integers. Some sets can be exhibited
explicitly. For example, the set of odd digits is {1,3,5,7,9}. Often
it is impractical or impossible to list the elements of a set. If R is the
set of all real numbers, we may denote the set of all positive reals by
“{x|]x €ER,x>0}” and read “the set of all elements x such that x is a
real number and x is greater than zero.”

Let A and B be sets. The union, intersection, difference, and Car-
tesian product of A and B are defined, respectively:

AUB={xlx€A or x € B},
ANB={x|[x€A and x € B},
A\B={x|x EA but x €& B},
AXB={(x,y)|lx € A, y € B}.

Since “but” means “and” in mathematical logic, we see that A \ B is
the set of all elements of A that are not also elements of B. Note that
A X B is just the set of all ordered pairs such that the first element is
in A and the second element is in B.

If A and B are sets with no element in common, then A and B
are disjoint. In this case we write “A N B=.” So J is the set which
contains no elements and is called the empty set or null set. The emp-
ty set is a subset of every set. Two sets intersect if they are not dis-
joint.

If L and R are sets, then L=R iff L C R and R C L. One may ex-
ercise his ability to use “and” and “or” by proving the following dis-
tributive laws, where A, B, C are sets:

AuB)yNC=ANC)U BNCQO),
(ANB)yuC=AUC)N (BUO).

We may wish to speak of a set of sets. In this case the elements of
the set are subsets of some other set. For example, {{1, 2, 3}, {3, 4, 5,6}}
is a set with exactly the two elements {1,2,3} and {3,4,5,6}. Note
that for general element S, we have S # {S}. In particular, & # {J}
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since {J} has one element. Although
{{(x,y)|lx ER, yER, ax+by+c=0}|a,b,c ER, a2+ b%# 0}

is a rather formidable looking set, it is really something familiar. First
of all, note that it is a set of sets. “a®>+ b* # 0” is a short way of saying
real numbers a and b are not both zero. Thus, element {(x,y)|x € R,
Y € R, ax+ by +c=0} is the set of all ordered pairs (x, y) of real num-
bers that satisfy the nondegenerate real linear equation ax-+ by+c=
0. Geometrically, an element is the set of all points on some line in the
Cartesian plane. Thus, thinking of a line as a set of points, our for-
midable looking set is the set of all lines in the Cartesian plane.

1.3 RELATIONS

If D and C are sets and G C D X C, then the ordered triple (D,C,G) is
a relation between D and C. The letters stand for domain, codomain,
and graph. If D=C=S, then we say “relation on S” rather than “re-
lation between S and S.” For an example of a relation, if D is the set
of points of a plane, C is the set of lines in the plane, and G is the set
of all ordered pairs (P,[) such that point P is on line /, then (D,C,G)
is the relation called incidence between the points and lines of the
plane. For another example, containment is a relation on 25, where
25 is the set of all subsets of set S. Here D=C=25 and (4,B) € Giff
A C B for subsets A and B of S.

Given set S, we shall define a very important type of relation on
S. Relation (D,C,G) such that D=C=S is an equivalence relation
on S if for all elements a, b,¢cin S: (a) (a,a) € G, (b) (a,b) €G>
(b, a) € G, (c) (a, b), (b,c) €G> (a, ¢) € G. Perhaps this will look
more familiar if we let ~= (D, C, G) and write “a ~ b” and say “a wig-
gle b” iff (a,b) € G. Then, ~ is an equivalence relation on S iff for all
a,b,c € S the following axioms are satisfied:

R: (Reflexive Law) a~a,
S: (Symmetric Law) a~b=>b~a,
T: (Transitive Law) a~bb~c>a~c.

For a simple example of an equivalence relation on S, let S=
{1,2,3}and G={(1,1), (2,2), (3, 3)}. Since a ~ b iff a=b in this ex-
ample, the axioms are easily checked. The example shows that the
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set of the three axioms for an equivalence relation is consistent, that
is, no contradiction can be derived from this set of axioms.

When ~ is an equivalence relation on a set, “a ~ b” is generally
read “a is equivalent to b.” However, in specific cases a more special-
ized phrase may be used, such as “is parallel to,” “is congruent to,” or
“is similar to.” We shall give several examples of equivalence re-
lations.

Example 1 Equality is the most familiar equivalence relation. Let
S be an arbitrary nonempty set and G={(a,a)|a € S}. For the rela-
tion of equality, an element is equivalent only to itself.

Example 2 Let S be an arbitrary nonempty set and G=S8 X S. This is
the other extreme from equality. In this equivalence relation any
element is equivalent to every element. These first two examples are
said to be the trivial equivalence relations on a set S.

Example 3 Let Z be the set of integers. Define an equivalence rela-
tionon Zby a~ b if a— b is even. So (a,b) € G iff a and b are either
both even or both odd.

Example 4 Let Z be the set of integers. Define an equivalence rela-
tionon Zbya~b iffa=b=0 or ab > 0.

Example 5 Parallelness is an equivalence relation on the set of lines
in the Euclidean plane, i.e., a~ b iff a||b when a and b are lines. (A
line is parallel to itself and any other line which it does not intersect.)

Example 6 Congruence is an equivalence relation on the set of tri-
angles in the Euclidean plane.

Example 7 Similarity is an equivalence relation on the set of tri-
angles in the Euclidean plane. (Recall that two triangles are similar
if they have corresponding angles congruent.)

We have already noted that the set of axioms for an equivalence
relation is consistent. Let’s show that the set of axioms is also inde-
pendent, that is, no one of the three axioms is a consequence of the
other two. We can do this by constructing three relations on a set S
where a given axiom does not hold but the remaining two axioms do
hold. Let S={1, 2,3} and

Glz{(la 1)7 (2,2)’ (1’2)7 (27 1)})
G,={(1,1),(1,2),(1,3),(2,2),(2,3), (3,3)},
G,=(Sx8)\{(1,2),(2,D}.
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Although the relation on S defined by G, is symmetric and transitive,
the relation is not reflexive as (3,3) & G,. Although the relation on
S defined by G, is reflexive and transitive, the relation is not symmet-
ric as (1,2) € G, but (2,1) & G,. Although the relation on S defined
by G, is reflexive and symmetric, the relation is not transitive as
(1,3), (3,2) € G, but (1,2) & G,. These three relations show that the
set of axioms for an equivalence relation is independent.

When proving a given relation is an equivalence relation, it is
sufficient to prove that the relation is reflexive, symmetric, and satis-
fies the rule: if a, b, ¢ are distinct, a ~ b, and b ~ ¢, then a ~ c. To see
that the transitive law always holds under these assumptions, we
have only to prove that the transitive law holds when the three ele-
ments are not distinct. But this is a trivial observation. (In case a= b:
a ~ a,a ~ cimplies a ~ c trivially. In casea=c: @ ~ b and b ~ a implies
a ~ a by the reflexive law. In case b=c: a ~ ¢, ¢ ~ c implies a ~ ¢ triv-
ially.)

Suppose ~ is an equivalence relation on nonempty set S. For
each element a in S we define the equivalence class of a to be [a] where
[a]l={x|x € S, x ~ a}. Obviously, an equivalence class is a subset of S.
Since a ~ a, we have a € [a] and [a] # . So every element in S is in
some equivalence class. We want to show that no element of S is in
two distinct equivalence classes, that is, two distinct equivalence
classes are disjoint. We shall prove [a] N [b] # & implies [a] = [b].
By hypothesis we let ¢ € [a] N [b]. Then ¢ € [a] and ¢ € [b]. So
¢ ~ a and ¢ ~ b by definition of [a] and of [b]. But thena ~candc ~ b
by the symmetric law. Thus, by the transitive law a ~ b and, by the
symmetric law, b ~ a. Now we are ready to prove [a]=[b]. We shall
first show [a] C [b]. Suppose x € [a], then x ~ a by definition of [a].
But, since x ~a and a ~ b, we have x ~ b by the transitive law and
x € [b] by definition of [b]. Hence, [a] C [b]. Similarly, if y € [b],
then y ~ b. But y ~ b and b ~ a implies y ~ a or y € [a]. Hence, [b] C
[a]. Thus [a]=[b], as desired. Altogether we have shown: The set of
equivalence classes of an equivalence relation on a nonempty set S is
a partition of the set S into disjoint nonempty subsets. Every element of
S is in exactly one equivalence class.

Letting P, be the set of equivalence classes under the equivalence
relation given in Example i above, you should obtain the following
results. P, is the set of all one element subsets of S; P, ={{a}|a € S}.
P, contains exactly one element S itself; P,={S}. P, has two elements:
the set of even integers and the set of odd integers. P, has three ele-
ments: {0}, the set of all positive integers, and the set of all negative
integers. The elements of P, are called parallel pencils. So a parallel
pencil consists of all the lines parallel to a given line. In the Euclid-
ean plane, there are of course an infinite number of parallel pencils,
one corresponding to every line through some fixed point.
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1.4 EXERCISESt

® 1.1 Construct counterexamples to show that the following are
not valid arguments: (a) If ¢ is true and p implies q, then p is true. (b) If
p is false and p implies q, then q is false.

® 1.2 Assume the following three statements are all true and prove
the converse of each one where a, b, ¢, d are real numbers: (i) If c=d,
then a=5b. (i1) If c>d, then a > b. (iii) If c < d, then a < b.

1.3 Define two nontrivial equivalence relations on {1, 2, 3, 4}.

® 1.4 If a and b are integers such that 5 divides a— b, then number
theorists say that a is congruent to b modulo 5. Show that congruency
modulo 5 is an equivalence relation on the set of integers and describe
the equivalence classes.

® 1.5 True or False?

(a) “not (p or g)” means “(not p) or q.”

(b) “not (p or @)” means “(not p) and (not q).”
(c) “not (p and @)” means “(not p) and (not q).”
(d AUB=BUA.

e/ ANB=BNA.

() A\B=B\A.

(g) AXB=BXA.

(h) ANB=AiffAU B=B.

(i) Containment is an equivalence relation on the set of all
subsets of a set.

() In the Euclidean plane two parallel pencils are disjoint.
® 1.6 Describe {(x,y)|x,y € R, 0x+0y+0=0} and {(x,y)|x,y E R,
0x+ 0y+2=0} as sets of points in the Cartesian plane.
1.7 Show “p and q” is equivalent to “not ((not p) or (not q)).”
1.8 Show “not (if p then @)” is equivalent to “p and not q.”

1The bullet ® before an exercise indicates that there is some reference to that
exercise in the Hints and Answers section. The starred exercises throughout the book
range from those that might be difficult for some students to those that will be very
difficult for any student or any instructor.
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1.9 If n is a nonnegative integer and set S has exactly n elements,
then how many elements does 25 have?

1.10 Show that every partition of a nonempty set into disjoint non-
empty subsets determines an equivalence relation on the set.

*1.11 How many equivalence relations are there on a set of n ele-
ments?

*1.12 Consider the statement “All Cretans are liars,” made by the
Cretan philosopher Epimenides in the sixth century B.c.

GRAFFITI

A pride of lions. A school of fish. A knot of toads. A gaggle of geese.
A labor of moles. A gam of whales. A leap of leopards.
An exaltation of larks.

This statement is false.

The Greek alphabet

Letters Names Letters Names Letters Names
A « alpha I iota P p rho
B B  beta K «  kappa 2 os sigma
r vy gamma A A lambda T T tau
A b delta M # mu Y v upsilon
E € epsilon N v nu ® ¢ phi
Z ¢ zeta E ¢ xi X x chi
H 7 eta O o omicron v ¢y psi
0 6 theta I = pi ) ® omega



CHAPTER 2

Mappings

2.1 ONE-TO-ONE AND ONTO

Recall that a rational number is a real number of the form a/b where
a and b are integers with b # 0. A complex number is of the form x+ yi
where x and y are real numbers and i =—1. (More on complex num-
bers in Section 3.1.) Many mathematicians use the following symbols,
given with their meanings:

for any, for every, for all
there exists, there exist
such that

unique

the integers

the rationals

the reals

the complex numbers

<

ABON—

Let p be some statement about the elements of sets A and B.
Note that “Vvx € AIy€E B3 p” and 3y € B3 Vx € A, p”’ mean dif-
ferent things. (For example, let p be “y=x+1” and A=B=2Z.) The
negation of “Vx € A, p” is “Jx € A D not p.” It follows that the ne-
gation of “Ix € A D p” is “Vx € A, not p.” Hence the negation of
“Vx€EAJyEBDflx)=y"is“IxEADVYE B, f(x) #y.”

If D and C are sets, then fis a function or mapping from D into



ONE-TO-ONE AND ONTO 11

C if for every element x in D there is a unique element f(x) in C. If f
is a mapping from D into C and for each element y in C there is an
element x in D such that f(x) =y, then fis said to be onto or surjective.
If fis a mapping and f(x) = f(y) implies x=y, then fis said to be one-
to-one or injective.

Perhaps you have noticed that a mapping is another type of re-
lation: if D and C are sets and G C D X C, then the relation (D, C, G)
is called a mapping from D into C if every element of the domain D
occurs exactly once as the first element of an ordered pair in the graph
G. Before looking at the next sentence below, try your hand at using
the symbols introduced above to express the condition that relation
(D, C, G) be a mapping. You should convince yourself that each of
the following expresses the condition:

(a) VxeDIye (> (x,y) €EG.
(b) D={x|3y € C 3> (x,y) € G}.

For f as a mapping from D into C write “f:D — C” and read “f
maps D into C.” If (a, d) is in the graph of mapping f, we do not write
“afb” as we did for an equivalence relation but rather “f:a — b” or
“f(a) = b” and say that f maps a to b, that b is the image of @ under f,
that the value of f at a is b, or that f of a is b. Note the difference be-
tween f and f(a): fis a mapping while f(a) is an element in the co-
domain of f. You are probably most familiar with mappings from R
into R where the function is defined by a formula in a variable element
of the domain, e.g., f(x) =x? or f(x) =cos x.

The square function from R into R demonstrates that an element
of the codomain may be the image of more than one element of the
domain, as f(x) =x? implies f(2) =4=f(—2). We have several equiva-
lent ways of saying that this sort of thing does not happen for function
f with graph G:

f is one-to-one.

fis injective.

fis an injection.

f(x) =f(y) implies x=y.

Distinct elements have distinct images.
(x,2), (y,2) €EG>x=y.

AU R WD -

Associated with mapping f:D — C is its range R where R=
{y|3x € D 3 f(x) =y} ={f(x)|x € D}. The range of a mapping is a
subset of the codomain of the mapping. The square function from R
into R demonstrates that every element of the codomain need not be
an element of the range, as there is no real number x such that f(x) =
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x2 = —1. We have several equivalent ways of saying that this sort of
thing does not happen for function f with range R where f= (D, C, G):

f is onto.

f is surjective.

fis a surjection.

R=C.

Every element in C is the image of some element in D.
C={y|3x€ D 3 (x,y) € G}.

UL W -

Clearly there is an over-abundance of language used to describe
mappings. However, you should be familiar with all of it. Some people
prefer the function:one-to-one:onto language while others prefer the
mapping:injection:surjection language. We shall use both inter-
changeably.

Let’s practice using our symbols and review the definitions. If D
and C are sets and G C D X C, then (D, C, G) is a relation. If Vx € D 3!
y € C 3 (x,y) € G, then the relation is a function with range R where
R={y|3x €D > (x, y) € G}. Further,if Vy€E R3I'x €D 3 (x,y) €
G, then the function is an injection; if Vy€ Cix€ D 3 (x, y) € G,
then the function is a surjection.

When the domain and codomain of a function f are both R, we
have a nice way of picturing a function using the Cartesian plane. We
let the x-axis represent the domain and the y-axis represent the co-
domain. The graph consists of all points (x, f(x)). The range consists
of all numbers f(x). See Figure 2.1, illustrating f:R — R, fix — e=
Also, in the case f:R— R, we can give a geometric interpretation of

y
A Graph of f

(%, f(x))

\

Domain of f

f(x)= &*

Codomain of f

FIGURE 2.1
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an injection and of a surjection. Function fis one-to-one if every line
parallel to the x-axis intersects the graph at most once; function fis
onto if every line parallel to the x-axis intersects the graph at least
once.

Examples of formulas defining functions f:R— R where f'is nei-
ther an injection nor a surjection: f(x) =x2, f(x) =2, f(x) =coshx=
Ya(e*+ e 7).

Examples of formulas defining functions f:R— R where fis an
injection but not a surjection: f(x) =e*, f(x) =arctanx, f(x) =tanhx=
(e*—e*)/(eT+e 7).

Examples of formulas defining functions f:R— R where fis a sur-
jection but not an injection: f(x) =x(x—1)(x+1), flx) =%/ (1+x?),
f(x) =xsin x.

Examples of formulas defining functions f:R — R where f'is both
an injection and a surjection: f(x) =2x+3, f(x) =x% f(x)=sinhx=
Ya(ex—e=7).

The functions sinh, cosh, and tanh defined in the examples above
are called hyperbolic trig functions. If x=cosh 6 and y=sinh 6 for any
real number 0, then x?—y?=1. Further properties of the hyperbolic
trig functions can be found in any calculus text or Section 31.2.

Let f:1Z—R, fix+>x+3 and g:Z—Z, g:x+—>x+3. Although f

FIGURE 2.2
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FIGURE 2.3

and g have the same domain Z and the same graph G where G=
{(x, x+3)|x € Z}, we note that f# g as f and g have different codo-
mains. Observe that g is a surjection while fis not a surjection.

A mapping that is both an injection and a surjection is called a
bijection. We shall use this word often! A bijection is a mapping that is
both one-to-one and onto. If S and T are sets, saying that there is a
one-to-one correspondence between S and T means that there exists a
bijection from S onto 7. For example, to see that there is a one-to-one
correspondence between all the integers and the even integers, con-
sider the mapping f from Z into the even integers defined by f(x) = 2x.
For another example, the existence of the mapping g from the set of
positive integers into the set of all integers defined by g(x) = Yax if
xis even and g(x) =—Y2(x—1) if x is odd proves that there is a one-to-
one correspondence between the set of positive integers and the set of
all integers. Only for infinite sets is it possible that there exists a one-
to-one correspondence between a set and a proper subset of the set.

Occasionally one wants to consider what a mapping does to some
particular subset of its domain. If f:D — C and A C D, then the re-
striction of fto A is g: A — C defined by g(x) =f(x) for x in A. Loosely
speaking, g just copies f for a smaller domain. Of course g and f may
have different properties since they are different mappings when
A#D.

Associated with a mapping f from set D into set C is a certain
mapping f, which maps subsets of D to subsets of C, namely, f.. : 27 — 2¢
where f (T) ={f(t)|t € T} if T C D. In particular, £, (D) is the range
of fand f. () =. Although f and f.. are clearly different functions,
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we shall follow the customary abuse of language and write “f” in place
of “f,.” This convention is possible because there is no likelihood of
confusion. To illustrate where this convention is used in geometry,
suppose fis a mapping from the points into the points of the Euclidean
plane and T is some set of points such as a line or a triangle. It is
probably clear what “f(T)” should mean; f(T) is the set of all points
f(t) such that t is a point of T. For example, a translation f of the
Euclidean plane is really a mapping from the points onto the points.
Associated with fis f,, which maps, say, line [ to line m. Our conven-
tion allows us to say that f maps [ to m; we write “f(/) = m” rather than
the more formal “f, (1) =m.”

2.2 COMPOSITION OF MAPPINGS

Given mappings f:D — C and g:B — A such that the range of fis a
subset of the domain of g, we can define mapping gf:D — A by gf :x +
g(f(x)). So gf(x) =g(f(x)). The reason for the requirement f(D) C B
is clear, as otherwise g(f(x)) is not defined. This mapping gf is called
the product or composition of f followed by g. See Figure 2.4. For ex-
ample, suppose f:Z— Z is defined by f(x) =x? g:R— R is defined by
g(x) =sinx; and k:R— R is defined by k(x) =x% Then, gf is the map-
ping gf:Z — R defined by gf(x) = sin x2, but /g is not even defined (e.g.,
fg(1)=f(sin 1) is not defined since sin 1 is not an integer). The order
of fand gin “gf”’is important! In our example gk and kg are mappings
from R into R where gk(x)=sinx?=sin (x?) and kg(x)=sin?2x=
(sin x)2. Since sin 2% and sinZ x are not equal for every real number x,
we have gk # kg.

It is a simple exercise to prove once and for all that composition
of mappings is associative, i.e., mappings h(gf) and (hg)f are equal
when they are defined. Both mappings have the domain of fand the
codomain of A. So, to show that the mappings are equal, we must show

erf

R g(f(x))

f(x)
FIGURE 24
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that the two mappings also have the same graph. That is, we must
show [h(gf)](x) =[(hg)f](x) for each x in the domain of f. Indeed,
for each x in the domain of f, we have

(R (gf)1(x) = h(gf(x)) =h(g(f(x)))
=hg(f(x)) =[(hg)f](x).

We have the desired result. (The first equality follows from the defini-
tion of the composition of gf followed by A. The second equality follows
from the definition of the composition of f followed by g. The third
equality follows from the definition of the composition of g followed
by h. The last equality follows from the definition of the composition
of f followed by hg.)

If fand g are both injections and gf is defined, then gf is also an
injection. To show this we must prove gf(x) =gf(y) only if x=y. But,
gf(x) =gf(y) implies g(f(x)) =g(f(y)) by definition of gf. Then, f(x) =
f(y) since g is an injection. Finally, since f is an injection, x=y and
we are done.

A bijection from a set S onto itself is often called a permutation
on S. The least exciting permutation on Sis¢:S — S, ¢:x + x, called the
identity mapping on S. (Note that “.” is not really “i” with a dot miss-
ing but is the Greek letter iota.) It is quickly observed that ¢ is the
unique permutation on S such that fi=f=f for every permutation
fonS.

Is the product of two permutations on set S always a permuta-
tion on S? Yes! Since permutations on S are injections, we have al-
ready seen that their product is an injection. To show the product of
two permutations f and g on S is also a surjection, we must show that
for every y in S there is an x in S such that gf(x) =y. Since g is onto, if
y € S there exists ¢ in S such that g(¢) =y; since fis onto there exists
x in S such that f(x) =¢ Hence, gf(x) =g(f(x))=g(t) =y. We have
shown that the product of two permutations on set S is a permutation
on S.

Suppose f is a relation and f= (S, S, G). An element of G is an
ordered pair (x, y) with x and y in S. Now fis a mapping iff every ele-
ment of S appears exactly once as a first element of an ordered pair
in G. Mapping fis a permutation on S iff every element of S appears
exactly once as a second element of an ordered pair in G (onto iff at
least once, and one-to-one iff at most once). Hence, if f is a permu-
tation on S and f=(S, S, G), then f' is a permutation on S where
f'=(S,S8,G'),G' C SXS,and (y,x) € G' iff (x,y) € G.Then, ff'(y) =
fif'(y) =fx)=y=u(y) and f'flx)=f"(fx)) =f"(y) =x=(x). We

see that if f is a permutation on S, then f’ is the unique permuta-
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tion on S such that ff'=¢=f'f where ¢ is the identity mapping on S.
For easy reference, we list the results that we have obtained
about permutations on a set S:

1 The product of two permutations on S is a permutation on S,
and products of permutations on S are associative.

2 There is a unique permutation ¢ on S such that fi=f=.f for
each permutation fon S.

3 If fis a permutation on S, then there exists a unique permuta-
tion ' on S such that ff'=c=f"f.

2.3 EXERCISES

® 2.1 Which of the following functions are injections and which are
surjections?

fi:R—=R,  flix+2x;
LZ—=Z, fix+2x
f:Z—R, fiix+2x
fiR—=>R, firx+x3
fZ—Z,  fixe a3
fi:Z—R,  fox+> a3

® 2.2 Let f, g, h be mappings from R into R where f(x) =x—1, g(x) =
2x, and h(x) =x* Find fg(x), gf(x), fgh(x), hgf(x), and gfh(x).

® 2.3 Fill in the missing words: If f:D— C, then f is a mapping
___D__ C.That f(a) =b may be expressed in several ways: (1) the

value____f____ais b, (2)fmapsa b, (3) b is the image of a f
If AiD)=C, then fis __. If D=C=f(D) and fis __, then fis a
permutation ____ D.

® 24 Find a counterexample to: If vxE Biye AS (x, y) €D
where D C A X B, then (B, A, D) is a mapping.

2.5 Give an example where function g is a restriction of function f,
g is an injection, and f is not an injection.
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® 2.6 True or False?
Assume only that fis a mapping from D into C.

(a) Vxe€D3Iye C> flx)=y.
(b) Vxe€DIye C>3 f(x)=y.
(c0 VyeC3Ixe€ D> f(x)=y.
d VyeCilxe D> f(x)=y.
(e) VyeDIxe CS f(x)=y.
® f:a+—bifffla)=0>.
(g) g:A—Biffg(A)=B.
(h) “One-to-one” is short for “one-to-one correspondence.”
(i) A permutation is a bijection.
() A bijection is a permutation.
® 2.7 Let set S have n elements, where n is a positive integer. How

many mappings are there from S into S? How many of these are in-
jections? How many are surjections? How many are bijections?

2.8 Let S be a finite set and f:S — S. Show that fis an injection iff
f is a surjection.

® 2.9 Letf:D— C have graph G. Find a counterexample to: (x,y) €
G implies (y, x) € G only if fis a permutation on D.

® 2,10 Letf:D— D have graph G. Prove: (x,y) € G implies (y,x) €

G only if fis a permutation on D. Give an example where f is not the
identity on D.

2.11 Give examples of three distinct functions having the same
graph.

® 2,12 Define three functions from Z into Z which are onto but not
one-to-one.

2.13 State the negative of the following where ~ is any relation
between sets A and B: (a) Vx€ A3lyEB3x~y. (b)IIxEADx~
yVy € B. (No fair just adding “not” in front.)

*2.14 When is (D, C, &) a mapping?

*2.15 Show that f:R— R where f(x) =x*— 2x is a surjection but not
an injection, while g:Z— Z where g(x) =x*—2x is an injection but
not a surjection.
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I have no fault to find with those who teach geometry. That
science is the only one which has not produced sects; it is founded
on analysis and on synthesis and on the calculus; it does not _
occupy itself with probable truth; moreover it has the same method

in every country.

Frederick the Great

In my opinion a mathematician, in so far as he is a
mathematician, need not preoccupy himself with philosophy—an
opinion, moreover, which has been expressed by many philosophers.

Motto of the Pythagoreans:

Lebesgue

Number rules the universe.

This skipping is another important point. It should be done
whenever a proof seems too hard or whenever a theorem or a whole
paragraph does not appeal to the reader. In most cases he will be
able to go on and later on he may return to the parts which he

skipped.

Statement

not p

pandq

porg

gqornotp

if p, then ¢

if not q, then not p
Vx, P(x)

dx 3 P(x)

V x, if P(x), then Q(x)
Jx 3 if P(x), then Q(x)

Artin

Negation

p

[not p] or [not q]
[not p] and [not q]

p and not q

p and not ¢

p and not ¢

Jx 3 not P(x)

V x, not P(x)

dx 3 P(x) and not Q(x)
Vx 3 P(x), [not Q(x)]



CHAPTER 3

The Real Numbers

3.1 BINARY OPERATIONS

Let A, B, C, D, and S be sets. If the relation (D, C,G) is a mapping and
D= A XB, then the relation is a binary operation from A and B into
C. We shall have use here only for the special case where A=B=C.
Thus, for our purposes, a binary operation on set S is simply a mapping
from S X S into S. If binary operation + maps (a, b) to ¢, then we write
“a+b=c”

Example 1 Perhaps the most familiar binary operation is addition
on Z, the integers. For every ordered pair (a, b) of integers there is a
unique integer a + b.

Example 2 Another very familiar binary operation is multiplication
on R, the reals. For every ordered pair (a, b) of real numbers there is
a unique real number ab. As “+” always denotes ordinary addition
on subsets of R, “-” always denotes ordinary multiplication on sub-
sets of R. However, the symbol denoting multiplication is often sup-
pressed, so that instead of “a - b” we write “ab.”

Binary operation : on set S is associative if * satisfies the associa-
tive law and is commutative if : satisfies the commutative law:

Associative Law: a®(b*c)=(a*b)* ¢ for alla, b,cin S.

Commutative Law: a*b=b*a for all @, bin S.
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Addition on the integers and multiplication on the reals are both
associative and commutative binary operations.

Example 3 Subtraction on Z is a binary operation that is neither as-
sociative nor commutative. If ¢ and b are integers, then a—b is a
unique integer. One counterexample is sufficient to demonstrate that
subtraction is not associative: 1—(2—3) =2, (1—2) —3=—4, but
2 #—4. One counterexample demonstrates that subtraction is not
commutative: 1—2=—1,2—1=1, but —1# 1.

Example 4 For real numbers a and b, let a = b=a?+ b2 Then * is an
example of a binary operation on R that is commutative but not as-
sociative.

Example 5 Define binary operation + on R by a * b= |a|b. Then *is a
binary operation that is associative but not commutative. (Exercise
6.2.) Recall that |a|=a if a= 0 but |a|=—a if a < 0. So |a|, called the
absolute value of a; is always nonnegative.

Example 6 Another example of an associative binary operation that
is not commutative is composition of permutations on a set A where
A has at least three elements. Notice that the binary operation of
composition is not on the set A itself but rather on the set of permuta-
tions on A.

A definition is an agreement to substitute a simple term or sym-
bol for more complex terms or symbols. This is precisely how we are
going to treat the word “group.” To say that ordered triple (S, =, e) is
a group means:

1 : is an associative binary operation on set S.
2 e is the unique element of S such that a::e=a=e = aforall a

in S.
3 Ifaisin S, then there exists unique @’ in S such that a =a'=
e=a's a.

We call # the multiplication of the group. The element e is called the
identity of the group and a’ is called the inverse of a.

Note that group multiplication need not be commutative. If the
multiplication does satisfy the commutative law, then the group is
said to be a commutative group (or an Abelian group). In passing we
might also note that the English language is not commutative. For
example, (3) above states “Va € S3la’ €S D a*a'=e=a'#a” and
not“Ja' €S Da+ra' =e=a v aVa €S
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Example 7 The most familiar example of a group is (zZ, +, 0). Here
the group multiplication is ordinary addition on the integers, O is the
additive identity, and the additive inverse of a is —a. Check axioms 1,
2, and 3 above with S=1Z, =+, e=0, and a¢’' = —a. Likewise, (Q, +, 0)
and (R, +, 0) are groups where in each case the inverse under ordinary
addition of a is —a.

Z* Q% and R* are the nonzero elements of Z, Q, and R, respective-
ly. (The star used as a superscript should not be confused with a star
used to denote a binary operation.) Z*, @+, and R* are the positive ele-
ments of Z, Q, and R, respectively.

Example 8 (Z,-, 1) is not a group as 2 does not have a multiplicative
inverse in Z since Y2 is not an integer. (R, -, 1) is not a group since 0
does not have a multiplicative inverse in R. (Z+, —, 0) is not a group
as subtraction is not even a binary operation on Z*.

Example 9 It should be easy to check that each of (@*,-,1), (@%,-,1),
(R*, -, 1), and (R*, -, 1) is a group. In each case the inverse of a is
1/a.

Example 10 The last thing we did in Section 2.2 was to show that
(P, e, 1) is a group where P is the set of all permutations on a nonempty
set S, o is composition of mappings, and ¢ is the identity mapping
on S.

Let’s prove one theorem about groups. The Left Cancellation Law
states that if (S,:, e) is a group and a x=a =y for a, x, y in S, then
x=y. To prove this statement, we first note that since a is in S there
exists a’ in S such that a’+ a=e. Thena'= (a=x)=a’= (a*y). Using
the associative law, we obtain (a’= a) *x=(a’+ a)+ y. Since '+ a=e,
we now have e x=e: y. Because e is the identity, we are left with
x=y, as desired. The Right Cancellation Law states that if (S,=*,e) is
a group and x za=y =a for @, x, y in S, then x=y. We leave the proof
of this fact to Exercise 3.3.

We might observe that in just a few lines we have proved the left
cancellation law for all groups. There are more groups than anybody
knows about. Yet for each group the left cancellation law holds. Al-
though our little result is not earthshaking, it does demonstrate the
power of modern abstract mathematics.

There are volumes and volumes written about groups. How-
ever, our use of this group theory is limited to the definition and the
cancellation laws. The word “group” now has a technical meaning
and should no longer be used as a general collective noun. A mathema-
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tician might possibly refer to a gaggle of geese as a group of geese,
since geese are not usually considered mathematical objects, but a
mathematician would never be caught referring to the collection of
odd integers as the group of odd integers.

A rational number is any number of the form a/b where a and b
are integers but b # 0. The words “ratio” and “reason” come from the
same stem. Q is the set of all rational numbers. When we add or multi-
ply rational numbers together we always obtain a rational number.
We know (@, +,0) and (@%, -, 1) are groups. The binary operations of
addition and multiplication on Q are related to each other through the
left distributive law and the right distributive law:

L: a (b+e)=(a-b)+(a-c) foralla, b, cin Q.
R: (a+b)-c=(a-c)+(b-c) forall a, b, cin Q.

The number system (Q, +, -, 0, 1) is called the field of rationals.

The very early Greeks thought that all numbers had to be ration-
al numbers. The whole of religion and philosophy of the early Pythag-
orean school was based on this supposed fact. It came as quite a shock
to find that the diagonal of a square with sides of length 1 could not be
expressed as a quotient of integers. In other words, there do not exist
integers a and b such that V2=a/b. To prove this fact, one begins by
assuming V2=a/b where a and b are integers and a/b has already
been reduced to its lowest terms. Then a and b are not both even. After
squaring the equation, one goes on to deduce that a and b are both
even. The contradiction proves that the original assumption must
be false. The details of this historically famous proof are left for Ex-
ercise 3.1.

Considering the set of all real numbers and the usual operations,
we know that (R, +, 0) and (R*, -, 1) are commutative groups. The
binary operations of addition and multiplication on R are related to
each other through the distributive laws. The number system (R, +,
-,0, 1) is called the field of reals.

Generalizing the idea of the field of rationals and the field of
reals, we say (S, +, -, 0, 1) is a field iff

1 (S, +, 0) is a commutative group.
2 (8% -, 1) is a commutative group.
3 a (b+c)=(a-b)+(a-c) foralla, b, cinS.

The group in 1 is called the additive group of the field, and the identi-
ty of this group is called the zero. The group in 2 is called the multipli-
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cative group of the field where S*=S\ {0}, and the identity of this
group is called the unity. Statement 3 is called the left distributive
law. That (b+c¢) -a=(b-a)+ (c-a)foralla,b,cinsS, follows immedi-
ately from the left distributive law and the commutativity of multi-
plication.

Obviously, the field of rationals (@, +, -, 0, 1) and the field of reals
(R, +,-,0,1) are fields. Two other fields, given in Examples 11 and 12
below, enter into later discussions.

Example 11 The Field of Complex Numbers A complex number is
a number of the form x+yi where x and y are real numbers and
x, +y,i=x,+y, iff x, =x, and y, = y,. € is the set of all complex num-
bers. Addition and multiplication are defined on € as follows:

(x, + 3,0 + (x,+3,0) = (x,+x,) + (¥, +,) 1,
(x,+3,0) (x,+5,0) = (x0,—y,5,) + (x,5,+x,5,) L.

(€, +, 0) is a commutative group where 0= 0+ 0i and the additive in-
verse of x +yi is (—x) + (—y)i. (€%, -, 1) is a commutative group where
¢* =c \ [0}, 1 =1 + 0i, and the multiplicative inverse of x + yi is
(x/(x2+y?%)) + (—y/(x*+?))i. The distributive laws hold. If you are
not already familiar with the complex numbers, it is sufficient for our
purposes to know that they exist and that (€, +, -, 0, 1) is a field. As
the field of reals contains the field of rationals, so the field of complex
numbers contains the field of reals where real number r is identified
with the complex number r+ 0i.

Let (S, +,-,0,1) and (S’,+',-',0',1") be fields F and F’, respec-
tively. If f:S— S’ is a bijection from S onto S’ such that f preserves
addition, meaning f(a+ b) =f(a) +' f(b) for all a and b in S, and such
that f preserves multiplication, meaning f(a - b) =f(a) -’ f(b) for all a
and b in S, then fis called an isomorphism from F onto F'. It follows
necessarily that f(0)=0" and f(1) =1'. As a bijection, f determines a
one-to-one correspondence between the elements of the fields. The
existence of an isomorphism from F onto F’ means that F and F’ are
abstractly the same. When F and F' are actually the same, the iso-
morphism is called an automorphism. The field of complex numbers
provides an example of a nonidentity automorphism. Define f:€ — €
by f(x +yi) =x+ (—y)i. The mapping fis called the conjugate map, and
f(z) is usually denoted by z for z in €. That the conjugate map is a bi-
jection on € is quickly checked. That the conjugate map is an auto-
morphism on € then follows from the easily proved identities z, +z,=
z,+2z, and z;2,=2,2, for all z, and z, in C.
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The square root of 2z is called the modulus or absolute value of
complex number z and is denoted by |z|. So |x + yi| = (x® + y2) /2 when
x and y are real.

The equation 22=-—1 has no solution in R but has a solution i
in € where =0+ 1i. Complex numbers are usually introduced in high
school algebra so that all quadratic equations with real coefficients
have solutions. A complex number x + yi with y # 0 is often called an
imaginary number. As the very words “rational” and “irrational” indi-
cate an earlier view of numbers, so the words “real” and “imaginary”
indicate how numbers were considered in the last century. These
words have a technical meaning today, independent of the insight
they provide into the history of mathematics. As we would not ques-
tion the rationality of a person just because that person used an irra-
tional number such as V2, we should be aware that 1+ 2i is no more
real or imaginary, in the everyday use of these words, than is —3.
Since negative numbers are no longer called fictitious numbers as
they once were, since negative numbers are introduced in grade
school, and since imaginary numbers are not introduced until high
school if at all, today’s college student is usually surprised to learn
that negative numbers and imaginary numbers were widely accepted
at about the same time.

The requirements for a field demand that a field must contain
at least two elements, namely, the zero and the unity. For our fourth
example of a field, we see that there is a field with only these two
elements.

Example 12 The Field of Two Elements The entire addition and
multiplication tables for a field with exactly two elements is given in
Table 3.1. For this unity 1 and this addition +, we have the some-
what peculiar fact that 1 +1=0. So —1 =1 in this little field. The mul-
tiplicative group contains only the one element 1. Although the tables
in Table 3.1 can be logically deduced from the requirements for a
field and the assumption that S= {0, 1}, there is no need for us to do
so. It takes just a minute to check that the three requirements for a
field are satisfied. The sky will not fall if we consider this field only
as an amusing toy.

TABLE 3.1
+ 0 1 : 0 1
0 0 1 0 0 0
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3.2 PROPERTIES OF THE REALS

For our purposes, we may consider the real numbers to be the (positive,
negative, or zero) infinite decimals. Since a rational number is a quo-
tient of two integers, it follows from the algorithm for long division
and the formula for the sum of an infinite geometric series that, of
the real numbers, it is exactly the rationals that have a repeating in-
finite decimal. (Rationals of the form 10"a, where a and n are integers
with a # 0, have two infinite decimal representations, one terminating
in repeating 9 and one terminating in repeating 0. So, if each real
number is to have exactly one infinite decimal representation, we
discard all the infinite decimals that terminate in repeating 9.) An
irrational is a real number that does not have a repeating infinite
decimal representation. Every real number is either rational or ir-
rational.

It is almost certain that Pythagoras, who was born about 572
B.C., was not aware that V2 is irrational. One legend attributes the
discovery of the irrationality of V2 to Hippasus about 470 B.C.; another
legend tells that Hippasus was drowned by his fellow Pythagoreans
for disclosing this secret outside the brotherhood. In any case, the
scandal within logic caused by the incommensurables (irrationals)
which jeopardized the theory of proportion was resolved by Eudoxus
about 370 B.c. Eudoxus’ work is preserved in Book V of Euclid’s Ele-
ments. The Pythagorean idea that all (real) numbers eventually de-
pend on the integers for their definition was vindicated by the work
of Richard Dedekind in 1872. Dedekind (1831-1916), following in the
footsteps of Eudoxus, was among those who first gave a rigorous defini-
tion of the real numbers. A thorough understanding of the real num-
bers is only a hundred years old!

Dedekind defined an infinite set to be any set such that there is a
one-to-one correspondence between the set and some proper subset
of the set. Another way of saying this is that set S is an infinite set
iff there is a mapping f:S — S which is one-to-one but not onto. The
set Z* of positive integers is an infinite set since [:Z* — Z*, f:n + n?
is such a mapping. The existence of this one-to-one correspondence
between the set of positive integers and its proper subset consisting
of the squares was actually observed by Galileo (1564 -1642). How-
ever, the possibility of making some important use of Galileo’s obser-
vation was not realized for two hundred and fifty years.

If there is a one-to-one correspondence between sets A and B,
then A and B are said to have the same cardinality. So two sets have
the same cardinality iff there is a bijection from one onto the other.
By Galileo’s observation mentioned above, the set of all positive inte-
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gers and the set of all the squares of the positive integers have the
same cardinality. A set S and Z* have the same cardinality iff there is
an infinite sequence of terms from S such that each element of S
occurs exactly once as a term of the infinite sequence. (An infinite
sequence is, after all, only a mapping whose domain is Z*.) That z
and Z* have the same cardinality is proved by reference to the infinite
sequence 0, 1, —1, 2, —2, 3, —3,. . . . That is, f:Z* — Z defined by
f(2n)=n and f(2n+ 1) = —n is a bijection.

TABLE 3.2

Y1,

Ya, ¥;

Y3, %2, 3,

Ya, Y3, ¥2, Y1

Ys, %4, %3, Y2, %1,

Ye, ¥s, Ya, Y3, 2, ¥1;

To show Z* and @* have the same cardinality, first think of the
infinite array suggested by Table 3.2, where in the nth row are listed
all the fractions p/q with p and g positive integers such that p+q=
n+1. Since every positive rational number has a unique representa-
tion p/q in reduced form and appears in some row of the array, an in-
finite sequence of positive rationals where each occurs exactly once
can be constructed by taking the rows of the array in turn but omitting
those fractions that are not reduced. The infinite sequence is

Y1, Yo, 21, Ya, %1, Ya, ¥s, ¥, Y1, Y5, 1, Ye, ¥s, Ya, Y3, %2, 1, Y2, %5, -+ - -

Defining g(m) to be the mth term of this infinite sequence gives a
bijection g from Z* onto @*. (Giving a formula for g is not easy and is
left for students of the theory of numbers; we are quite happy to know
that g exists.) Sandwiching in zero and the negative rationals, we
obtain an infinite sequence of all the rationals where each rational
occurs exactly once. More formally, 2:Z* — Q where 2 (1) =0, 2(2m) =
g(m), and Ah(2m+1)=—g(m) is a bijection from Z+ onto Q. Hence
Z* and Q have the same cardinality.

Dedekind’s friend, the great Georg Cantor (1845-1918), studied
infinite sets and developed transfinite arithmetic. This was the be-
ginning of what is now called set theory. We cannot go into the astound-
ing results of this work here. However, stemming from Cantor’s work
there eventually arose contradictions in mathematics. It was again a
scandalous matter for logic, this time leading to the establishment of
the several modern mathematical schools of thought. Although the
resulting problems have not been totally resolved to this day, the
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effect of the scandal was to leave mathematics greatly enriched.
Mathematics is truly a phoenix. Cantor may be compared with his
contemporary Sigmund Freud (1856-1939); for although much of
their early groundwork has been discarded, each of these giants
opened radically new worlds for others to explore.

One of Cantor’s results is that the set of positive integers and the
set of real numbers do not have the same cardinality. It was shocking
to the Pythagoreans to learn that V/2 is not rational; it was almost as
shocking to mathematicians at the end of the last century to learn that
not all infinite sets have the same cardinality. Suppose there were a
bijection g from Z* onto R, then f:Z* — I with f(n) =Y2(1 + tanh g(n))
would be a bijection from Z* onto I, where I is the set of real numbers
between 0 and 1. We shall show that Z+ and R do not have the same
cardinality by showing that there does not exist any mapping from
Z* onto I. Assume the contrary, that fis some mapping from Z* onto
I. We shall now obtain a contradiction. Let f(n) have digit d? in its
mth place as a nonterminating infinite decimal. See Table 3.3. Let d
be the infinite decimal 0.d,d,d,d, . . . where d,=2 if d" # 2 and

TABLE 3.3

f(1)=0.d'did!d! - - -

(2) =0.RARE - - -
f(3) =0.d:"d3d3d3 e

27374

f(n)=0.drdrdndr - - - dn - - -

d,=3 if d'=2. Since d and f(n) differ in their nth places, f(n) # d for
every positive integer n. Then, since d is in I, it follows that fis not
onto. This proof, due to Cantor, is one of the most famous proofs in
mathematics.

We know Z* and @ have the same cardinality. Assuming Q and
R had the same cardinality, it would follow that Z* and R have the
same cardinality, which contradicts Cantor’s theorem. Hence, there
does not exist a one-to-one correspondence between Q and R.

The properties of order for the field of real numbers are con-
sidered next. In general, a field is ordered if there exists a subset P
of elements satisfying the following three properties.

O1 aandbin P impliesa+b in P.

02 aq and b in P implies ab in P.

O3 For each element a in the field, exactly one of the following
holds: a=0, a€P, —a € P.
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Since —1=1 # 0 in the field of two elements, contrary to (03), it fol-
lows that the field of two elements cannot be an ordered field. Taking
P to be the set of positive real numbers, it is easily seen that the field
of real numbers is an ordered field. For this reason, given any field
with a subset P satisfying the three requirements, the elements of
P are said to be positive. You should be able to guess what |x| means
where x is an element of any ordered field; |x|=x if x is positive or
zero, and |x| = —x if —x is positive.

For an ordered field with given set P of positive elements, rela-
tion > is defined on the elements of the field by a > & iff a — b is posi-
tive. In particular, x > 0 iff x is positive. Also, relation < is defined by
b<a iff a> b, where “<” is read less than and “>” is read greater
than. Ten properties of the relation > follow (Exercise 3.4):

1 For elements a and b, exactly one of the following holds:
a>b,a=b,or b>a.
a>b and b > ¢ implies a > c.
a>0 and b > 0 implies ab > 0.
a> b implies a+c > b+ ¢ for every element c.
a>0iff —a<0; a<0iff —a > 0.
a>band c>dimpliesa+c>b+d.
a>0 and b > ¢ implies ab > ac.
a< 0 and b > ¢ implies ab < ac.
a # 0 implies a® > 0.
It| <aiff —a<t<a.

SO WD Ok WN
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For the field of complex numbers, we have +1=1% and —1=2.
So (9) contradicts (0O3) for complex numbers, as +1 and —1 can’t both
be positive. Hence the field of complex numbers is not an ordered field.
This explains why it is senseless to ask which of 2+ 3i and 3+ 2i is
greater than the other.

An ordered field may or may not have the following property:
If B> 0 and ¢ > 0, then there is a positive integer n such that nt > B.
(For any field, nt means the sum ¢+¢+- -+t with n terms.) This
property is called Archimedes’ axiom and is named after Archimedes
(287-212 B.c.). The axiom was probably known to Eudoxus. Anyway,
before Archimedes, Euclid had expressly stated the axiom in con-
sidering the ratio of two magnitudes. The import of the axiom is
that no matter how big B is and no matter how tiny ¢ is there is an
integer n such that nt is greater than B. This is a simple idea but very
subtle. An ordered field that does not satisfy Archimedes’ axiom is
said to be non-Archimedian. Although admittedly fascinating, these
fields with infinitely small and infinitely large elements are not
essential to our work.



30 THE REAL NUMBERS

The field of real numbers is an Archimedean ordered field. Think-
ing of B and ¢ as positive infinite decimals, there is an integer n such
that nt > B where n is an integral power of 10. In this case n has the
effect of moving the decimal point in ¢ far enough to the right to obtain
a real number greater than B. Similar arguments show that for any
real number a there exist integers n and m such that n < a < m. Also
the set of rationals is dense in the set of reals, meaning that between
any two real numbers there is a rational number. This last property
together with Cantor’s theorem that the reals and the rationals do not
have the same cardinality may point out the necessity of having more
than an intuitive definition of the real numbers.

A field is Pythagorean if 1+ a? is a square for every element a;,
an ordered field is Euclidean if every positive element is a square. Un-
like the field of rationals, the field of reals is Pythagorean and Eu-
clidean as well as Archimedean. However, there is one property that
distinguishes the reals from all other ordered fields. This is the least
upper bound property that you may or may not remember from
calculus.

Let F be the set of elements from an ordered field, and let S be
a nonempty subset of F. If there is an element b in F such that x = b
for all x in S, then b is an upper bound of S. Further, if b is less than
any other upper bound of S, then b is called the least upper bound of
S or the supremum of S and we write b=1ub S. An ordered field is
complete if every nonempty set of elements having an upper bound has
a least upper bound. There is also the corresponding idea that if c = x
for every x in nonempty subset T of F, then c is a lower bound of T.
Further, if ¢ is greater than any other lower bound of T, then c is called
the greatest lower bound of T or the infimum of T and we write c=
glb T.If T is a nonempty set of elements from a complete ordered field
and T has a lower bound, then glb 7= —lub R where R = {—x|x € T}.
Of course, the greatest lower bound must be less than or equal to the
least upper bound when they both exist. Considering the set of all
rationals whose square is less than 2, we see that the ordered field of
rationals is not complete.

Let’s show that a complete ordered field is necessarily Archi-
medean. Assume, to the contrary, that some complete ordered field has
positive elements ¢ and B such that nt = B for every integer n. Then
B is an upper bound of the set S of all elements nt¢ with n an integer.
Since the field is assumed to be complete, we may let 5=1ub S. Then
(m+1)t=0b for every integer m. So mt = b—t for every integer m.
Hence b—t¢ is an upper bound of S. Thus b = b—¢ and ¢ > 0, a contra-
diction. Therefore, our assumption was incorrect, and every complete
ordered field is Archimedean.

Every real number is the least upper bound of a set of rationals.
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For if ¢ is a real number, let S be the set of all rationals r such that
r < c. Then c is certainly an upper bound of S. Also, since between any
two reals there is a rational, it follows that c is the least upper bound of
S. This is the whole idea behind Dedekind’s definition of a real number.
A Dedekind cut is a nonempty proper subset C of the rationals such
that 1) x € @, c € C, x < c implies x € C and (2) x € C implies there
exists y € C such that x < y. Starting with the rationals and defining
the real numbers to be the Dedekind cuts, one can go on to definé +,
-, and < to obtain a complete ordered field. This is not easy.

We might also mention Cantor’s definition of a real number. A
Cauchy sequence of rationals is a sequence {a,} of rational numbers
such that for every positive rational e there is an integer N such that
la,,— a,| < e whenever n and m are both greater than N. Cauchy se-
quences {a,} and {b,} of rationals are said to be equivalent if for
every positive rational e there is an integer N such that |a,—b,| <e
whenever n > N. Starting with the rationals and defining the real
numbers to be the equivalence classes of Cauchy sequences of ration-
als, one can go on to define +, -, and < to obtain a complete ordered
field. This is not easy.

It is not terribly difficult to argue that the ordered field of real
numbers is complete, if you consider the real numbers to be defined
as infinite decimals. What is somewhat difficult to show is that the
infinite decimals form a field in the first place. Whether you start with
infinite decimals, Dedekind cuts, or equivalence classes of Cauchy
sequences of rationals, a rigorous development of the real numbers
is not trivial. One knows that these approaches give the same abstract
result since it can be shown that any two complete ordered fields are
isomorphic. So, up to isomorphism, there is one complete ordered
field, the reals.

3.3 EXERCISES

3.1 Show that V2 is irrational.

3.2 Let = and # be the binary relations defined on the set of real
numbers by a : b=a2?+ b? and a # b= |a|b. Show that :: is commutative
but not associative, while # is associative but not commutative.

3.3 Prove the right cancellation law for groups.
® 3.4 Prove the ten properties listed in the text for ordered fields.
® 3.5 True or False?

(a) Ifa,x,yarein a field and ax=ay, then x=y.
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(b) A group may have exactly one element.
(¢) |ab|=]al - |b| for all real numbers a and b.

(d) If p, o, 7 are elements of group (S, -, ¢) such that po=7 and
p?=1,then o =pr.

(e) IfSis asubset of T and S is an infinite set, then 7T is an in-
finite set.

(f) If two sets have the same cardinality, then the sets are
infinite sets.

(g) If two sets are infinite sets, then the two sets have the
same cardinality.

(h) 0<x<y<1l<zimplies y>?<x2<1<2z2forrealx,y,-z.

(1) Both the ordered field of rationals and the ordered field of
reals are Archimedean.

(j) Both the ordered field of rationals and the ordered field of
reals satisfy the least upper bound property.

® 3.6 The set of rooms of a rather large motel has the same cardinali-
ty as Z*. One night all the rooms were full when one more customer
pulled up to the manager’s office. Without turning anyone out or mak-
ing people double up, the manager rearranged the guests to accom-
modate the newcomer. How?

3.7 For the real numbers, there is only one possible set P that satis-
fies the three requirements for a field to be ordered.

3.8 Show that if > is any relation on the elements of a field and if >
satisfies the first four of the ten properties listed in the text, then the
field has a set P satisfying O1, 02, and 03.

3.9 Show (Z,:, 0) and (@*, #, 1) are non-Abelian groups where
m=n=m+ (—1)"n,x #y=xyifx > 0,and x # y=x/yifx <O0.

® 3.10 Is the English language associative?

3.11 Show that all the real numbers of the form a+ bV2 where a
and b are rational form a field under the usual operations of addition
and multiplication.

3.12 Prove that between every two real numbers there is a rational
number and that between every two rational numbers there is an ir-
rational number.

® 3.13 Let ((a, b), c) be in the graph of some relation. Why do we
write “(a, b) == ¢” if = is an equivalence relation, “: (a, b) =c” if = is a
mapping, but “a: b=c” if = is a binary operation?
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3.14 Show that the only automorphism of the field of the reals is the
identity mapping. Explain why a mathematician might say “a group
of autos over a field” not thinking about a collection of cars parked in
some country lot.

3.15 Prove |a+ b| = |a| + |b| for reals a and b.

3.16 Prove an ordered field is Archimedean iff x > 0 implies there is
an integer n such that nx > 1; prove an ordered field is Archimedean
iffa= 0, 5> 0, and na = b for every integer n implies a=0.

3.17 For a study of the process of evolution in mathematics with par-
ticular attention to the concept of number, see Evolution of Mathemati-
cal Concepts: an Elementary Study by R. L. Wilder (Wiley, 1968). A
thorough study of the foundations of the real numbers may be found
in the second edition of Wilder’s Introduction to the Foundations of
Mathematics (Wiley, 1965).

*3,18 Show that R and € have the same cardinality.
*3.19 Prove any two complete ordered fields are isomorphic.

*3.20 Show that if two infinite decimals are equal, then they are
equal to 10"a for some integers a and n.

*3.21 Do there exist ordered fields which are Pythagorean but not
Euclidean?

*3.22 Find a field besides the reals which is both Euclidean and
Pythagorean.

GRAFFITI

Z: The German word for integer is Zahl.

No one shall expel us from the paradise which Cantor has
created for us.

Hilbert

He is unworthy of the name of man who is ignorant of the
fact that the diagonal of a square is incommensurable with its side.

Plato



CHAPTER 4

Axiom Systems

4.1 AXIOM SYSTEMS

An axiom system or postulate system consists of some undefined terms
and a list of statements, called axioms or postulates, concerning the
undefined terms. One obtains a mathematical theory by proving new
statements, called theorems, using only the axioms and previous
theorems. Definitions are made in the process in order to be more
concise. Aesthetically it may be preferable to give the list of axioms
all at once. This may be impractical, however, as some of the axioms
often depend on definitions and theorems resulting from earlier
axioms. Usually one does not construct an axiom system from scratch.
It is common to assume at least a language, a logic, and some set
theory.

In order to point out a language convention used in this text,
consider the following four sentences:

1 P and Q are points.

2 P and @ are two points.

3 P and @ are two distinct points.
4 P and Q are distinct points.

The meanings of (1), (3), and (4) should be clear. Statements (3) and
(4) say the same thing, assuming one can count to 2. Unlike (3) and
(4), statement (1) allows for the two possibilities that either P and @
are distinct or else P=@Q. Now, does (2) mean the same thing as (1)
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or as (3)? Unfortunately, different mathematicians will give differ-
ent answers. What is worse, and totally inexcusable, is to use (2) for
both (1) and (3). Without further ado, we declare that (2) and (3) mean
the same thing. Statement (3) will be used in place of (2) only for
emphasis.

“There are three letters in the English alphabet” is a true state-
ment. If you want “three” to mean “exactly three” rather than “at
least three,” you must say so. We have already mentioned that “or”
is always used in the inclusive sense in mathematics. Another modern
mathematical convention is the use of “equals” only in the sense of
“is exactly the same thing as.” The old fashion use of “equal” for
“equivalent (in some sense)” should be avoided. When we write “a = b"
we mean that “a” and “b” are names for the same object.

The logic and set theory that we shall assume as prerequisites
are given in Chapter 1.

Some concepts that are applicable in general to an axiom system
are given next. We have already encountered some of these. They are
listed below for easy reference but are best learned from seeing them
used in context.

An axiom system is consistent if there is no statement such that
both the statement itself and its negation are theorems of the axiom
system. One of the ways of showing that an axiom system is consistent
is to assign meanings to the undefined terms of the axiom system in
such a way that the axioms then become true statements. This may
not be easy as true statements are hard to come by in this world. If
the undefined terms of a given axiom system are assigned meanings
from a second axiom system (e.g., Euclidean geometry or the real
number system) such that the axioms of the first axiom system are
theorems of the second axiom system, then the result is a model of
the first axiom system. In this case we say that the first axiom system
is relatively consistent with the second, as any inconsistency in the
first axiom system would be reflected as an inconsistency in the second
axiom system. Often relative consistency is all we can hope for, as
Godel has shown that there is no internal proof of consistency for a
system that involves infinite sets. See Exercise 4.12.

In an axiom system, an axiom is independent if it is not a theorem
following from the other axioms. Whereas consistency or relative con-
sistency is an absolute requirement for any worthwhile axiom system,
independence is not. For obvious pedagogical reasons, a simple look-
ing theorem that has a long and difficult proof is often taken as an
axiom in an elementary text.

Models of an axiom system are isomorphic if there is a one-to-one
correspondence between their elements which preserves all relations.
That is to say the models are abstractly the same, only the notation
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is different. If every two models of an axiom system are isomorphic,
then the axiom system is categorical. It must not be assumed that
categoricalness is always desirable. Indeed, there is great economy
in proving theorems in a noncategorical axiom system because the
theorems are then true statements for every model of the axiom sys-
tem. As an example, once you have shown that the three axioms of a
group are true statements for a set with a binary operation, then you
immediately know literally thousands and thousands of true state-
ments since all the theorems of group theory hold without further
proof.

4.2 INCIDENCE PLANES

If (2, #, #) is a relation such that # and .¥ are disjoint, then the
relation is an incidence plane. If this doesn’t look like a geometric
axiom system, let’s start again. We take “point” and “line” as unde-
fined terms. We have four axioms. Axiom A: The class of all points is
a set #; Axiom B: The class of all lines is a set .%; Axiom C: # N ¥ =
&; Axiom D: & C X ¥. Axiom C requires that a point and a line
be different. For specific types of incidence planes (£, ., &%), further
requirements are made on the graph #. Incidence planes have their
own notation to express the fact that an ordered pair is in the graph.
Since we are doing geometry, it ought to sound like geometry! (Is
that backwards?) Thus, the following are equivalent for an incidence
plane (2, %, #):

(P]) e Z.

(P, 1) is a flag.

Point P and line / are incident.
Point P is on line [

Line [ is on point P.

Line [ passes through point P.
Line [ is through point P.

OO A WN -

So, if (2, %, %) is an incidence plane, then £ is the set of points, ¥
is the set of lines, and .# defines incidence between points and lines.
We shall frequently use “off” for “not on.” Further, if [ and m are lines
such that there is no point incident with both lines or if /= m, then we
say that [ is parallel to m or l||m. Obviously, /|| m implies m || L.

For illustrative purposes only, consider (£, ¥ %) where #=
{A,B,C, D}, ¥={k,I,m,n},and #={(B, k), (C,1), (D,1)}. See Fig-
ure 4.1. This incidence plane has the peculiarity of having a point
which is not on any line and lines which pass through no point. Also,
all the lines are parallel. Passing from the ridiculous to the sublime,



INCIDENCE PLANES 37

e A

FIGURE 4.1

we leave this example to consider an example from analytic geometry.

If ={{(x, y)|x, y ER, ax+by+c=0}|a, b, c ER, a2+ b2 0},
P={(x, y)|lx, y ER}, and # is defined by set inclusion, meaning
((x,y),l) € F forl € ¥ iff (x,y) € [, then (#, ¥, #) is the familiar
incidence plane called the Real Cartesian Incidence Plane. In this
description, line {(x, y) |x, y € R, ax+ by+ c¢=0} is a set of points satis-
fying a nondegenerate real linear equation in x and y. The plane is
named after René Descartes (1596-1650). The Real Cartesian Inci-
dence Plane is an example of the first of three types of incidence
planes that we shall consider.

Axiom System | An affine plane is an incidence plane such that

AXIOM 1 If P and @ are two points, then there exists a unique
line through P and Q.

AXIOM 2 If P is any point off line /, then there exists a unique
line through P that is parallel to L

AXIOM 3 There exist four points such that no three are on
any line.

Considering only incidence and with the usual interpretation
of “point” and “line,” the Euclidean plane is an affine plane. Thus
the axiom system for affine planes is relatively consistent with
Euclidean plane geometry. Any inconsistency that could be deduced
from the axiom system for affine planes would give an inconsistency
in the Euclidean plane. For this simple looking axiom system we can
actually prove consistency by giving a finite model (2, ¢, #), where
P?={A,B,C, D}, ¥={{A,B}, {A,C},{A,D}, {B,C}, {B,D}, {C,D}},
and % is determined by set inclusion, i.e., P on [ iff P in [. See Figure
4.2. In this geometry there are exactly four points and exactly six
lines! Is the line {A, C} perpendicular to the line {B, D}? This is a trick
question. The word “perpendicular” is a technical word that has not
been defined. At this point the question makes as much sense as to
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FIGURE 4.2

ask whether the point A is blue. Actually, since lines {A,C} and {B,D}
have no point in common, the two lines are parallel by definition. If
you thought the two lines were perpendicular, it is probably because
you were misled by Figure 4.2. Beware: Figures help, but they may
mislead! Since you may quickly check that this four point geometry
is an affine plane, no inconsistency can be deduced from the axioms
for an affine plane.

Geometers have their own word, collineation, for an isomorphism
between incidence planes. A collineation from incidence plane (#,,.7,,
& ,) onto incidence plane (#,, &£,, #,) consists of a bijection f:#, — &,
and a bijection g: ¥, — %, such that (P, ) € # iff (f(P),g(l)) € #,.
Since there is obviously no one-to-one correspondence between all
the points of the Euclidean plane considered as an affine plane and the
points of the affine plane with just four points, we see that not all
models of an affine plane are isomorphic. Therefore, the axiom system
for affine planes is not categorical.

If one line in an affine plane has exactly n points then so does
every line and the total number of points in n2. Determining the pos-
sible values for n has been an open problem for many years.

Each of the axioms for an affine plane is independent of the
other two. To show that Axiom 1 is independent, we need an incidence
plane (2, ¥, %) such that Axiom 2 and Axiom 3 hold but Axiom 1
fails. For such a model take £ to be the set of points in Cartesian three-
space, - to be all planes perpendicular to an axis, and & given by the
usual incidence of Cartesian three-space. Once you get over any prej-
udice you might have that a plane in one geometry cannot be a line
in some other geometry, it is trivial to check that this model has the
desired properties.

Skipping Axiom 2 for the moment, Axiom 3 is seen to be inde-
pendent by considering (2, .£, %) where £ is an arbitrary set, ¥ =
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{2}, and F=2X_¥¢. Since there is exactly one line (which passes
through every point), Axiom 1 must hold but Axiom 3 necessarily fails.
The purpose of Axiom 3 is to omit trivial incidence planes. Note that
Axiom 2 says if point P is off line / then something happens. Since
there are no points off the only line in this geometry, Axiom 2 is never
denied. We say that Axiom 2 holds vacuously.

We now turn to the important Axiom 2: If point P is off line [,
then there exists a unique line through P that is parallel to I. You
have no doubt seen it before. We shall have much more to say about
this postulate later. For the moment, we want to show that the axiom
is independent in our axiom system for affine planes. We need an inci-
dence plane where there are at least four points of which no three are
on one line and where every two points are on a unique line but such
that Axiom 2 fails. The negation of Axiom 2 merely requires the
existence of some particular point P, off some particular line /, such
that there is not a unique line passing through P, and parallel to [,
So there must be either no line through P, that is parallel to [, or there
must be at least two lines through P, that are parallel to [, Let 2,=
{A,B,C,D,E,F, G}, #,={{A,B,F},{A,C E}, {A D, G}, {B,C, D},
{B,E, G}, {C, F,G},{D,E, F}}, and #, determined by point P in 2,
is on line [ in .#| iff P is in l. See Figure 4.3. It is quickly checked that
Axiom 1 and Axiom 3 hold in incidence plane (£,, £,, #,). In this
seven point and seven line geometry, Axiom 2 fails because there are
no parallel lines. Every two lines intersect in a unique point! We
have now shown that the three axioms for affine planes are inde-
pendent. We also have a model of our second type of incidence plane,
defined next.

B

A c

FIGURE 4.3
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Axiom System 2 A projective plane is an incidence plane such that

AXIOM 1 If P and @ are two points, then there exists a unique
line through P and Q.

AXIOM 2’ 1If Il and m are two lines, then there exists a unique
point on / and m.

AXIOM 3 There exist four points such that no three are on
any line.

The existence of the finite projective plane (#,, £, #,) given
above demonstrates that the axiom system for projective planes is
consistent. There should be no question that Axiom 2’ is independent.
To show that this axiom system is not categorical, we give a model
(2,, Z£,, #,) of a projective plane which is not isomorphic to a finite
projective plane. Let O be any fixed point in Euclidean three-space.
The elements of %, are the Euclidean lines through O. The elements
of %, are the Euclidean planes through O. For P € #, and [l € .Z,,
define (P, l) € #, iff in Euclidean three-space P is in /. Once you have
suppressed any prejudice of what a point and a line should be, it is
easily seen that (#,, .%,, #,) is a projective plane. For, if P and @
are two points, then P and @ lie on a unique line, since in Euclidean
three-space two lines through O determine a unique plane through O.
Also, if [ and m are two lines, then [ and m pass through a unique
point, since in Euclidean three-space two planes through O determine
a unique line through O. Any difficulty you might have in comprehend-
ing this model is psychological (it’s dumb to say a line is a point!) or
semantical (“line” is used with two meanings, as elements of 2,
and as elements of .%,). A common way around this is to use the ad-
jectives “old” and “new.” Then a new point is an old line, and two new
points lie on a unique new line since two old lines through O determine
a unique old plane through O. Any geometry isomorphic to (£,
Z,, F,) is the real projective plane.

The real projective plane (#,, .Z,, #,) contains a copy of the
incidence structure of the Euclidean plane. Consider the geometry
determined by throwing away some fixed new line [ and all the new
points that were on [. See Figure 4.4. Admittedly, the resulting
geometry does not look like a Euclidean plane at first glance. Let E
be any Euclidean plane parallel to [ and off O. The subgeometry is
isomorphic to E. There is an obvious one-to-one correspondence be-
tween the remaining new points and all the Euclidean points of E
and a one-to-one correspondence between the remaining new lines
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Point P

E

FIGURE 4.4

and all the Euclidean lines in E. These correspondences are deter-
mined by set intersections as in Figure 4.4.

It is a fact that every affine plane can be extended to some pro-
jective plane. Let any affine plane (£, .#, #) be given. We shall con-
struct a projective plane (#,, %,, #,) that contains (£, ¥, #) as a
subgeometry. For each n € % define P,={l|l €.%, | n}, and let
[,={P,In € #}. Since parallelism is an equivalence relation on the
set of lines in an affine plane (Exercise 4.1), P,=P,, iff n||m. So [_is
the set of all parallel pencils P, of (#,.#, %), where P, consists of all
the old lines parallel to n. Let

P=2Ul, L=FU{l},
and
F,=F U{(P,n)lne L}U{(P,l )|neE L}

Thus, all the old points are new points, and all the old lines are new
lines. The set of new points consists of all the old points and all the
old parallel pencils. To the set of old lines we have added only one new
line /_. For each old line n, we have added one new point P, on n, and
all the new points that are not old points have been put on the one new
line /_. To understand this model requires intellectual powers stronger
than any old prejudices about what a point and a line are; there is no
reason that a set of parallel lines in one geometry can’t be a point in
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some other geometry. The verification of the fact that (#,, £,, #,) is
actually a projective plane is left as Exercise 4.3. If (2, ¥, %) is a
Euclidean plane, then (Z,, Z,, #,) is the real projective plane, i.e.,
isomorphic to (%,, %£,, #,) above (Exercise 4.8).

Axiom 2 for an affine plane requires that there be exactly one
line that is parallel to line [ and passes through point P when P is
off I. Axiom 2’ for a projective plane requires that there be exactly zero
lines that are parallel to line [ and pass through point P when P is
off I. Axiom 2" below requires that there be two lines that are parallel
to line [ and pass through point P when P is off . Axioms 2, 2’, and 2"
are called parallel postulates.

Axiom System 3 A hyperbolic plane is an incidence plane such that:

AXIOM 1 If P and @ are two points, then there exists a unique
line through P and Q.

AXIOM 2" If P is any point off line /, then there exist two lines
through P that are parallel to I.

AXIOM 3’ There exist four points such that no three are on
any line; every line has a point on it.

If a person were marooned for many many years on the proverbial
uninhabited desert island, then it is conceivable that he might possib-
ly consider verifying that (£, ¥, %) is a hyperbolic plane when 2, %,
and & are defined as follows. The ten digits are the points: 2= {0, 1,
2,3,4,5, 6,7, 8, 9}. The set .# of lines consists of the twenty-five
numbers 10, 15, 16, 20, 23, 24, 36, 39, 45, 47, 59, 67, 78, 80, 89, 128,
137, 149, 257, 269, 340, 358, 468, 560, and 790. % is defined by say-
ing that point P is on line [ iff P occurs as a digit of /. This is an example
of a finite hyperbolic plane. In general, an incidence plane (£, ¥, %)
is said to be finite if both # and .7 have a finite number of elements.

If 2={(x,y)|x,y ER,x>0,y>0},L={{(x,y)|(x,y) €E P, ax+
by+c=0}|a, b, c ER, a2+ b2 # 0} \ {J}, and F is defined by set in-
clusion, then (£, ., %) is the subgeometry of the Real Cartesian
Incidence Plane obtained by restricting ourselves to the first quadrant.
We shall call this the Quadrant Incidence Plane or Q, (see Figure 4.5a).
Replacing 2 by {(x, y)|x, y € R, y> 0} we have Q,, the Halfplane In-
cidence Plane (see Figure 4.5b); replacing 2 by {(x, y)|x,y ER, x>0
or y> 0} we have Q,, the Missing-Quadrant Incidence Plane (see
Figure 4.5¢).

You should quickly convince yourself that the Quadrant Inci-
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FIGURE 4.5

dence Plane @, is a hyperbolic plane. See Figure 4.6. Using the points
on the axes of the Real Cartesian Incidence Plane, even though these
are not points in @, itself, it is seen that if P is a point in @,, [ is a line
in @, but (P, !) is not a flag in @,, then there are actually an infinite
number of lines through P that are parallel to /. Since Axiom 2" re-
quires only that there be two such lines, the axiom is certainly sat-
isfied.

The Halfplane Incidence Plane @, is not a hyperbolic plane be-
cause in @, there exists point P off line / such that there is a unique
line through P that is parallel to /. See Figure 4.7. However, @, is
not an affine plane either since there exists point P off line / such that
there are two lines through P that are parallel to [ In fact, if in @,
point P is off line [, then there is either exactly one or else an infinite
number of lines passing through P that are parallel to /.

The Missing-Quadrant Incidence Plane €, is neither a hyper-
bolic plane nor an affine plane. See Figure 4.8. Of course, neither @,
nor @, is a projective plane as distinct parallel lines exist in each. To
see that @, is not isomorphic to @,, we need to find some incidence
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FIGURE 4.6

FIGURE 4.7

FIGURE 4.8



EXERCISES 45

FIGURE 4.9

property of one plane that does not hold for the other. In @, there exists
a point P off a line [ such that there are exactly two lines through P
that are parallel to [ See Figure 4.9. If there were a collineation from
Q, onto @,, then P and / would have to be mapped, respectively, to
point P’ in @, and line I' in @, such that there would be exactly two
lines in @, passing through P’ that were parallel to /. Since we have
already noted that in @), there is either exactly one or an infinite num-
ber of lines that are parallel to a given line and pass through a point
off the given line, it follows that there can be no collineation from @,
onto @,. None of the incidence planes @, @,, or @, is isomorphic to the
other.

4.3 EXERCISES

4.1 Show that parallelism is an equivalence relation on the set of
lines of an affine plane but parallelism is not an equivalence relation
on the set of lines of a hyperbolic plane.

® 4.2 Show that Axioms 1, 2', and 3 are independent in the axiom
system for projective planes.

® 4.3 Show that the incidence plane (#,, .¥;, #,) constructed in
the text from any affine plane (%, ¥, %) is actually a projective plane.

® 44 True or False?

(a) The set {1, 2, 3, 4} has three elements.
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(b) If P and @ are two points, then possibly P=@Q.

(o) 8/2=4.

(d) “8/27="4."

(e) Today, “postulate” and “axiom” mean the same thing.
() A point may be a star, a rock, a flower, or a bird.

(g) Any two models of a consistent axiom system are iso-
morphic.

(h) Any worthwhile axiom system must be consistent.
(i) Any worthwhile axiom system must be categorical.

(j) If a statement is true for one model of an affine plane, then
the statement is a theorem for any affine plane.

4.5 Read “Modern Axiomatic Methods and the Foundations of
Mathematics” by Jean Deudonné (pages 251 -266) in Great Currents
of Mathematical Thought Vol. II, Edited by F. LeLionnais (Dover,
1971).

® 46 Give an example of a categorical axiom system.

® 4.7 Give a model of an incidence plane where three points deter-
mine a line.

® 4.8 Show that (#,, £,, #,) is isomorphic to (#,, £,, #,) when
(P, £y, F,) s derived, as in the text, from a Euclidean plane.

4.9 Let/be a fixed line in any projective plane (#,.%#, % ). Show that
(2,,%,, F,) is an affine plane where #,= 2\ {P|Ponl}, ., =%\ {l},
and #,=% \ {(P,l)|Ponl}.

4.10 Show that if (2, .#, %) is a projective plane, then (&, #, #')
is a projective plane where ([, P) € 7' iff (P,]) € #.

4.11 Discussion questions: What is a point? What is a line?

*4,12 Read Gédel’s Proof by Ernest Nagel and James R. Newman
(New York University Press, 1958), or read “Goedel’s Proof” in The
World of Mathematics by James R. Newman (Simon and Schuster,
1956).

#4,13 Given any incidence plane (2, ¢, %), show that (#, %", #')
is isomorphic to (2, ¥, %) iff for no two lines in (2, £, #) is the set
of points on one line equal to the set of points on the other where
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Z'={{P|(P,]) € #}|l€ ¥}
and
F'={(P,I')IPel'\l' e £'}.
So, if different lines of an incidence plane have different sets of points

on them, we may assume .¥ C 27 without loss of generality.

*4,14 Show that if an affine plane has a finite number of points, then
there exists an integer n such that the number of points is n2, the num-
ber of lines is n(n+1), there are exactly n points on every line, and
there are exactly n+ 1 lines through every point.

*4,15 Read “The Role of the Axiomatic Method” by R. L. Wilder in
The American Mathematical Monthly Vol. 74 (1967), pp. 115-127.

GRAFFITI

A mathematical point is the most indivisible and unique thing
which art can present.

John Donne

A line is not made up of points.
Aristotle

Why are you so sure parallel lines exist?

Believe nothing, merely because you have been told it, or
because it is traditional, or because you have imagined it.

Gutama Buddha



Part One

ABSOLUTE GEOMETRY

Our study of the foundations of geometry begins with an examination
of the common ground between non-Euclidean geometry and Euclidean
geometry. This common ground is called absolute geometry and is inde-
pendent of any assumption about parallel lines. In constructing this part
of non-Euclidean geometry, we necessarily learn about the structure of
Euclidean geometry as well. Throughout Part One we are most concerned
with the actual development of an axiom system for the absolute plane.
In building our structure, we are as much interested in the absence of
certain propositions in the theory as the presence of others. We are
never in the position of pretending we do not know something! Many
models, including the Cartesian plane, are used to illustrate the growth
of our axiom system. After selecting our five axioms for the absolute
plane, we are forced to consider the theory of parallels.



CHAPTER 5

Models

5.1 MODELS OF THE EUCLIDEAN PLANE

The words “point” and “line” are usually undefined when studying
the Euclidean plane in high school. Later every point is named in the
usual fashion by a unique ordered pair of real numbers, called coordi-
nates, and every ordered pair of real numbers is the name of some
point. See Figure 5.1. The lines are then shown to be exactly the sets
of all points with coordinates (x, y) that satisfy an equation ax+ by+
¢=0 for real numbers a, b, ¢ with not both a and b zero. This introduc-
tion of coordinates enables one to use algebraic methods to solve geo-
metric problems.

Now, taking a different approach, we construct a geometry by
defining a point to be an ordered pair of real numbers and every or-
dered pair of real numbers to be a point. Before, (2, 3) was the name of
a point; now, (2, 3) is a point. Further, lines are defined to be exactly
the sets of all points (x, y) such that x and y satisfy an equation ax +
by+c=0 for real numbers a, b, ¢ with not both a and b zero. At this
point we have the Real Cartesian Incidence Plane. Then, distance
from (x,, y,) to (x,, y,) is defined to be the real number [ (x,—x,)%+
(v,—,)%]"2. We’ll forego actually going on to define angle and angle
measure. The result of all this is the geometry called the Cartesian
plane. There are no geometric axioms here; one can immediately start
proving theorems based on the axioms and theorems of the real num-
bers. Saying there is no difference between the high school Euclidean
plane and the Cartesian plane is almost correct. Indeed, the whole
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FIGURE 5.1

idea is that the Cartesian plane is a model of the Euclidean plane!
It is no exaggeration to state that the Cartesian plane is the most use-
ful model ever devised by man.

The Cartesian plane is named after René Descartes (1596 —
1650), the founder of modern philosophy. Descartes’ La Géométrie
appeared in 1637 as the third appendix of his Discours (A Discourse on
the Methods of Correct Reasoning and Seeking Truth in the Sciences.)
Algebra and geometry were directly combined for the first time in a
published work. Actually Pierre de Fermat (1608-1665) had ac-
complished the same thing a couple of years earlier, but Fermat did
not publish the work. As Fermat and Descartes independently began
the development of analytic geometry, so Newton and Leibniz inde-
pendently began the development of the calculus. Gottfried Wilhelm
Leibniz (1646-1716) first published work on the calculus, but Isaac
Newton (1647 -1727) did his work earlier. An intelligible account of
Newton’s methods of calculus finally appeared in 1704 as an appendix
to his Opticks. The same book contained a second appendix on enumer-
ating curves of third degree. It is in this second appendix that the use
of negative numbers, as well as positive numbers, for coordinates first
appears in any systematic way. Negative numbers have been called
absurd numbers, false numbers, and fictitious numbers at various
times. An explicit presentation of the material usually found in the
first dozen pages of any modern book on analytic geometry finally
appeared in 1797 in the text Traité de calcul by Sylvestre Francois
Lacroix (1765-1843). Certainly the fundamental assumption that
associates the geometry of Euclid and the algebra of the real numbers
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is the one-to-one correspondence between the points on a Euclidean
line and the set of real numbers. The real numbers were not placed
on a logical foundation until 1872, two hundred and thirty-five years
after Descartes’ initial work. The Cartesian plane, as we know it, did
not appear overnight, as do mushrooms.

In the following chapters we are not going to pretend ignorance
of the Cartesian plane! Nor are we going to be so ignorant as to pretend
knowledge about things we do not know. If we were pressed to give
some definition of the Euclidean plane now, we could say the Eu-
clidean plane is anything that is isomorphic to the Cartesian plane.

Another model of the Euclidean plane is the Gauss plane. Here
the set of points is the set of all complex numbers. For example, 1 —i,
2, 1, and 2+ 3i are points. For the lines we take the sets of all points
Z that satisfy an equation BZ + BZ + C =0 where B and C are complex
numbers with B# 0 and C real. If z,=x, +y,i and z,=x,+y,i with
X, %,, ¥,, Y, real, then the distance from z, to z, is defined to be |z,— z,].
The Gauss plane is a model of the Euclidean plane because the Gauss
plane is isomorphic to the Cartesian plane. The mapping which takes
(x,y) to x+yi for all real x, y is a bijection from the set of points of the
Cartesian plane onto the set of points of the Gauss plane. It can be
checked that this mapping induces a collineation, taking the line in
the Euclidean plane with equation ax+by+c=0 to the line in the

Gauss plane with equation BZ+BZ+C=0 where B=a—bi and
C=2c. Since this mapping also preserves distance, it follows that
the Cartesian plane and the Gauss plane are isomorphic.

The Gauss plane, which is obviously named after Carl Friedrich
Gauss (1777-1855), is sometimes called the Cauchy plane after
Augustin Louis Cauchy (1787-1857), who popularized complex num-
bers. The plane is also known as the Argand diagram as Jean Robert
Argand (1768-1823) had previously noted in 1806 that the complex
number x + yi can be represented by the point (x, y). This supposedly
concrete representation of a complex number was very influential
in the acceptance of the so-called imaginary numbers. By historical
accident, this plane of complex numbers is not called the Wessel
plane, although Caspar Wessel (1745-1815) had published the cor-
respondence between complex numbers and points of the Euclidean
plane in 1798.

The next model of the Euclidean plane is described quite in-
formally. This model, as well as all the remaining models in this
section, is given for the sole purpose of stretching your imagination.
Once looked at, these models may be safely forgotten. We start with
a rectangular sheet of paper. Let’s agree that the paper approximates
a piece of the Euclidean plane. (That should be amusing, considering
that the Euclidean plane was devised to be a system which described
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FIGURE 5.2 FIGURE 5.3

reality.) On the paper we draw a line [ through two points A and B
which are six units apart (see Figure 5.2). We then stand the paper on
a desk so that a longer side touches the desk in an arc of a parabola.
The surface in space represented by our sheet of paper is a Euclidean
plane provided we interpret “point,” “line,” “distance,” and “angle
measure” exactly as they were before we bent the paper. For example
the distance from A to B in Figure 5.3 is still defined to be 6.

For another model of the Euclidean plane, we start by observing
that f(x) =e” defines a bijection from the set of all reals onto the set
of positive reals. Using this fact, we can map all the points of the
Cartesian plane in a one-to-one fashion onto the points of the first
quadrant of the Cartesian plane by the mapping o which sends (x, y)
to (e*, e¥). The points of this model are defined to be the ordered pairs
of positive real numbers. The lines of this model are defined to be
exactly those sets of points that are the images of the lines of the
Cartesian plane under the mapping «.

So lines in our model have equations x = e® or y = x™e® coming from
the lines of the Cartesian plane with equations x=a or y=mx+b,
respectively. For example, the set of all points (x, y) in the model

FIGURE 5.4
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such that xy=1 is a line in this model. See Figure 5.4. Of course, for
the model to be a model of the Euclidean plane we copy the distance
and angle measure as well. So the distance from (x,, y,) to (x,, ,)
in our model is the real number [In?(x,/x,) +1n?(y,/y,)]"* as can be
checked by observing that « sends (In x, In y) to (x,y). Without being
told about the map «, it might take some time to recognize that this
model is indeed isomorphic to the Cartesian plane.

Finally, we indicate four more models of the Euclidean plane
that might appeal to those who really like to get their hands on things.
We shall need to know that g(x) =tanh x and A(x) = (2/7) arctan x
each define bijections from the set of all reals onto the set of reals
between —1 and +1. We let Z be the set of points in the Cartesian plane
that are in the interior of the square with equations |x + y| + |x—y| = 2;
the square has vertices (1, 1), (—1, 1), (-1, —1), and (1, —1). (See
Figure 5.5.) The mapping 8 which sends (x, y) to (tanh x, tanhy) is a
bijection from the points of the Cartesian plane onto . We define .%,
the set of lines of our model, to be such that 8 determines a collinea-
tion. In other words, we copy lines as the images of the lines in the
Cartesian plane under the mapping B. If we also copy distance and
angle measure from the Cartesian plane, then the result is a model
of the Euclidean plane. (The equations for lines and the formulas for
distance and angle measure are horrid.) Another model of the Eu-
clidean plane having £ as its set of points can be ohtained by defining
lines, distance, and angle measure such that B8’ is an isomorphism
where B’ sends (x, y) to ((2/7) arctanx, (2/7) arctany).

Is the Euclidean plane rectangular? The preceding string of
words with a question mark at the end is not a question; it doesn’t
make any sense. However, for those who like “round” models and know
about polar coordinates, let 2 now be the points in the interior of the
unit circle in the Cartesian plane. The circle has equation x*+y?=1.
(See Figure 5.6.) The mapping y sending the point in the Cartesian
plane with polar coordinates (r, ) to the point with polar coordinates
(tanh r, 6) is a bijection from the points of the Cartesian plane onto 2.

s

FIGURE 5.5 FIGURE 5.6
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The same can be said for the mapping y’ sending the point with polar
coordinates (r, 6) to the point with polar coordinates ((2/m) arc-
tanr, ). Then as for the previous two models, one can define lines,
distance, and angle measure to obtain a model of the Euclidean plane
such that vy is an isomorphism from the Cartesian plane onto the
model. Likewise, still another model is obtained by making the defini-
tions such that v’ is an isomorphism.

5.2 MODELS OF INCIDENCE PLANES

There are several incidence planes (£, ., %) that are referred to in
later chapters. These are listed together for easy reference. In each
case the elements of the set .# of lines are subsets of the set 2 of points.
The graph # is always assumed to be determined by set inclusion. So
a line is a set of points, and point P is incident with line [ iff point P
is an element of line I. The list begins with our old friend the Cartesian
plane, but here we are content to restrict ourselves to incidence. Later
we shall add distances (plural!) to this incidence plane.

Model 1 The Real Cartesian Incidence Plane Points are defined to
be the ordered pairs of real numbers; Z={(x, y)|x, y € R}. A line is
the set of all points (x, y) that satisfy some equation ax+ by +c=0
where a, b, c € R and not both a and b are zero. Conversely, every such
set is a line. This model is certainly an affine plane. If x, # x,, then the
line thru (x,, y,) and (x,, y,) is said to have slope (y,—y,)/(x,—x,).
A line with equation y= mx+ b has slope m.

Model 2 The Rational Cartesian Incidence Plane Points are defined
to be the ordered pairs of rational numbers; 2= {(x, y)|x, y € @}. A
line is the set of all points (x, y) that satisfy some equation ax + by +
¢=0 where a, b, c € Q and not both a and b are zero. Conversely, every
such set is a line. If (x,,y,) and (x,, y,) are two points, then the points
determine the unique line having equation (y,—y,)x+ (x,—x,)y+
(x,¥,—x,5,) =0. Also, as in Model 1, lines with equations a,x+ b,y +
¢,=0 and ax+b,y+c,=0 are parallel iff a,b,=a,b, and otherwise
intersect in point

( bc,— by, a,c,— alcz)
, .
a,b,—a,b," a,b,—a,b,

It is not improper to think of Model 2 as Model 1 with a lot of holes
poked in it.
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Model 3 The Complex Cartesian Incidence Plane Points are defined
to be the ordered pairs of complex numbers; 2= {(x, ¥)|x, y € €}. A
line is the set of all points (x, ¥) that satisfy some equation ax + by +
c¢=0 where a, b, c € € and not both a and b are zero. Conversely, every
such set is a line. Model 3 should not be confused with the Gauss plane,
which is isomorphic to Model 1. The same formulas that were given
for Model 2 also apply here. One might even think of Model 1 as Model
3 with a lot of holes poked in it.

The first three models are all affine planes. Each of these planes
is determined by some field. Actually every field determines an affine
plane, formed by replacing the real numbers in Model 1 by elements
from that field. The formulas given in Model 2 still apply for an arbi-
trary field.

Model 4 The Space Incidence Plane The points and lines are those
of ordinary Euclidean three-space, where the lines are thought of
as sets of points. If you like, think of the three-dimensional Cartesian
coordinate system with the usual three axes. If you object by saying
this is not a plane, then you are probably prejudiced by previous ex-
perience with the word plane. It can be shown that Model 4 is iso-
morphic to a subgeometry of Model. 3. Model 4 is really a very nice
example of an incidence plane. In fact, according to our definitions,
the Space Incidence Plane is a hyperbolic plane.

Model 5 The Quadrant Incidence Plane Points are the ordered pairs
of positive real numbers; 2= {(x, y)|x,y € R*}. A line is the nonempty
set of all points (x, y) that satisfy some equation ax + by + c¢=0 where
a, b, ¢ € R and not both a and b are zero. Conversely, every such set is
a line. This model is compared with Model 6 and Model 7 at the end
of Section 4.2.

Model 6 The Halfplane Incidence Plane Points are the elements of
2P where 2={(x, y)|x € R and y € R*}. The lines are defined as in
Model 5. This model is compared with Model 5 and Model 7 at the
end of Section 4.2

Model 7 The Missing-Quadrant Incidence Plane Points are the el-
ements of 2 where Z={(x, ¥)|x, y € R, and x € R* or y € R*}. The
lines are defined as in Model 5. This model is compared with Model 5
and Model 6 at the end of Section 4.2

Model 8 The Missing-Strip Incidence Plane Points are the elements
of #? where 2= {(x,y)|x,y €R, and x =1 or x > 2}. The lines are de-
fined as in Model 5. This model is like the previous three models in
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that a set of points is removed from the Real Cartesian Incidence
Plane. Model 8 contains all points (x, y) of Model 1 except those for
which 1 <x = 2.

Model 9 The Cubic Incidence Plane Points are the same as for Mod-
el 1; Z={(x,y)|x,y € R}. Aline is either the set of all points (x, y) that
satisfy some equation y= (ax+b)? with a, b € R or else the set of all
points (x, y) that satisfy some equation x=c¢ with ¢ € R. Conversely,
every such set is a line. Some of the lines of this geometry are cubic
curves in Model 1. Nevertheless, they are lines here. Some lines are
indicated in Figure 5.7. That two points determine a unique line is
left for Exercise 5.7.

Model 10 The Moulton Incidence Plane Points are the same as for
Model 1; Z={(x, y)|x, y € R}. A line is the set of all points (x, y) that
satisfy one of the following three types of equations where a, b, m € R:

x=a,
y=mx+b with m=0,
mx+b if x=0 .
a {1/2mx+ b if x>0 with - m >0.

Conversely, every such set is a line. So those lines of Model 1 that have

FIGURE 5.7
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either no defined slope, negative slope, or zero slope are lines in this
model. The points of such a line satisfy some equation of the first two
types. The remaining lines of Model 10, given by some equation of the
third type, might be called bent lines in Model 1. However, these are
lines for this model. (See Figure 5.8.) Note that the set of all points
(x, y) satisfying equation y=3x+4 is not a line! This model, which is
always encountered in the study of projective planes, was given in
1902 by the American mathematician Forest R. Moulton.

Do distinct points (x,, y,) and (x,, y,) lie on a unique line in the
Moulton Incidence Plane? We may suppose x, = x,. If x, =x, ory, = y,,
then the unique line through the two points has the same equation as
in Model 1. If x, and x, are either both positive or both negative, then
it should not be difficult to find the equation of the unique line through
the two points. Suppose now that x, <0 <x, and y, <y,. Then a line
through the two points must have an equation of the third type and
pass through (0, b) for some b. Borrowing the idea of slope from Model
1, we see that it is necessary and sufficient to have m= (b—y,)/(0—x,)
and Y2m= (y,—b)/(x,—0). From these equations it follows that m
and b are uniquely determined. Thus, when x, <0 <x, and y, <y,,
the unique line through (x,, y,) and (x,, y,) has equation of the third
type where m=2(y,—y,)/(x,—2x,) and b= (x,y, — 2x,y,)/ (x,—2x,).
Hence two points always determine a unique line. A moment’s reflec-
tion will show that, given point P and line /, there is a unique line
parallel to [ that passes through P. Therefore, the Moulton Incidence
Plane is an affine plane.

(0, d)
(*1,51)
(0, 0)

o

7

FIGURE 5.8
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Model 11 The Poincaré Incidence Plane Points are the elements of
P where = {(x, y)|x, y € R and x>+ 32 < 1}. A line is either the set
of all points (x, y) that satisfy some equation (x—a)?+ (y—b)%=
a?+b*—1 with a, b € R such that a?+ 562> 1 or else the set of all
points (x, y) that satisfy some equation ax + by=0 with a, b € R such
that a? + b*> # 0. Conversely, every such set is a line. So the points are
exactly those points we think of as being in the interior of the unit cir-
cle in the Cartesian plane. In the Cartesian plane, equation (x—a)2+
(y—b)2=a?+ b?—1 describes the circle with center (a, b) and radius
r where 12+ r2=a?+ b2. Recalling that two circles are orthogonal in
the Cartesian plane iff their tangents are perpendicular at a point of
intersection, it follows (see Figure 5.9) that the circle described by
the equation is orthogonal to the unit circle. In the Cartesian plane,
equation ax + by=0 describes a line through (0, 0). Therefore, a line
in the Poincaré Incidence Plane is either the set of all points in the
Cartesian plane that lie in the interior of the unit circle and on a circle
orthogonal to the unit circle or else the set of all points in the Car-
tesian plane that lie in the interior of the unit circle and on a Cartesian
line through (0, 0). See Figure 5.10. The Poincaré Incidence Plane
is a very important example of a hyperbolic plane and is named after
the great mathematician Henri Poincaré (1854-1912).

Model 12 The Poincaré Halfplane Incidence Plane Points are the
same as for Model 6; = {(x, y)|x € R, y € R*|. However, here a line
is either the set of all points (x,y) that satisfy some equation (x—a)?+
y*=r? with a € R and r € R* or else the set of all points (x, y) that
satisfy some equation x=a with a € R. Conversely, every such set is
a line. See Figure 5.11. Model 12 is a hyperbolic plane.

FIGURE 5.9
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<

FIGURE 5.10

Model 13 The Cayley—-Klein Incidence Plane Points are the same
as for Model 11; Z={(x, y)|x,y € R, 22+ y% < 1}. However, here a line
is the nonempty set of all points (x, y) that satisfy some equation
ax + by+c=0 with a, b, c € R but not both a and b zero. Conversely,
every such set is a line. See Figure 5.12. It is very easy to see that this
model is a hyperbolic plane. The model is named after both Arthur
Cayley (1821-1895) and Felix Klein (1849-1929). We shall see a
lot more of this particular model.

Model 14 The Sphere Incidence Plane The points are the Euclidean

FIGURE 65.11
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FIGURE 5.12

points on a Euclidean sphere, and the lines are the great circles
thought of as sets of points. (A great circle is a circle on the sphere
whose center is the center of the sphere.) This model is different from
all others that have been considered in that here it may take three
points to determine a line. There are an infinite number of great
circles passing through both the north pole and the south pole. Such
opposite points on a sphere are called antipodal points.

Model 15 The Riemann Incidence Plane The set of points is the
set of all pairs of antipodal points of the Euclidean unit sphere. Taking
the sphere to be the unit sphere in Cartesian three-space, a point is
then a pair {(x,y z), (—x,—y, —z)} where x> +y?+22=1. A line is the
set of all pairs of antipodal points which lie on a fixed great circle,
and for each great circle such a set is a line. Although this model is
related to Model 14, here two points do determine a unique line. This
model, named after Bernard Riemann (1826-1866), is a real pro-
jective plane (Exercise 5.10).

Henceforth M1, M2, . . . , and M15 will stand for Model 1, Mod-
el 2,. . ., and Model 15, respectively.

5.3 EXERCISES

® 5.1 For the incidence plane determined by the field of two ele-
ments, the points are defined to be the ordered pairs of elements
of the field. A line is the set of all points (x, y) that satisfy some
equation ax+ by+c=0 where a, b, ¢ are elements of the field but
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not both a and b are 0. Conversely, every such set is a line. Now,
find all the points and all the lines. Have you seen this geometry
before?

® 5.2 Is the following incidence plane isomorphic to a familiar inci-
dence plane? The set of points is exactly the same as the set of points
of M8, the Missing-Strip Incidence Plane. A line is the set of all points
(x, y) that satisfy any one of the following two types of equations
where a, b, m € R:

x=a with a=1ora>2;

__{mx+b if x=1
Y= lmx+b—m if x> 2.

Conversely, every such set is a line.

5.3 Show that M13, the Cayley-Klein Incidence Plane, is a hyper-
bolic plane.

e 54 In M10, the Moulton Incidence Plane, find the equations of the
six lines determined by the four points (—1,-1), (1,-1), (2, 1), and
(1, 3).

® 5.5 True or False?

(a) In the Gauss plane the distance from 2+ 3i to 7—9i is 13.

(b) In M1, the Real Cartesian Incidence Plane, the line with
equation y=x intersects the set of points (x, y) such that
x2+y?=1.

(¢ In M2, the Rational Cartesian Incidence Plane, the line

with equation y=x intersects the set of points (x, y) such that
2+y*=1.

(d) In M1, the Real Cartesian Incidence Plane, the line with
equation y=15 intersects the set of points (x, y) such that x2+

=1

(e) In M3, the Complex Cartesian Incidence Plane, the line
with equation y=5 intersects the set of points (x, y) such that
2+ y2=1.

(f) In M1, the line with equation 2x— 8y + 3 =0 has slope 4.

(g) In M8, the Missing-Strip Incidence Plane, the lines with
equation y=x and y=3x—4 are parallel.
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(h) M10, the Moulton Incidence Plane, is an affine plane.
(1) In M10, the line through (—1,—1) and (1, 1) contains (0, 0).
() In M10, the line through (—1, 1) and (1,—1) contains (0, 0).

5.6 Read “The Heroic Age in Geometry,” which is Chapter 24 of
Carl B. Boyer’s excellent book A History of Mathematics (Wiley,
1968).

® 5.7 Show that M9 is an affine plane.

® 58 Why is M2 not isomorphic to any of the other fourteen models
in Section 5.2?

5.9 Check that M2 and M3 are affine planes.
® 5.10 Show that M15 is a projective plane.
5.11 Show that M11 and M12 are hyperbolic planes.

5.12 For information on Dedekind, Poincaré, and Cantor read the
last three chapters of E. T. Bell’s classic Men of Mathematics.

5.13 In MBS find two lines /, and /, and a point P off each such that
through P there are exactly two lines parallel to both /, and I,

5.14 For each of M5 and M11, find two lines /, and /, and a point P
off each such that through P there is exactly one line parallel to both
l, and [,

5.15 Show that M4 is not isomorphic to either M5 or M11.

5.16 In MS find two lines /, and /, and a point P off each such that
through P there are exactly three lines parallel to both /, and /,.

5.17 For each of M5 and M11, find two lines /, and /, and a point P
off each such that through P there are exactly two lines parallel to
both [/, and I,

*e 5.18 Find a model isomorphic to M1 such that the set of points is
the set of real numbers.

*5.19 Read “A Simple Non-Desarguesian Plane Geometiry” by F. R.
Moulton in Transactions of the American Mathematical Society
Vol. 3 (1902), pp. 192-195.

*5.20 Show that M1 and M9 are isomorphic. Show that M11, M12,
and M13 are isomorphic.

*5.21 Show that all the isomorphisms between any two of the fifteen
models are given by the previous exercise.
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GRAFFITI

The truth is that other systems of geometry are possible, yet
after all, these other systems are not spaces but other methods of
space measurements. There is one space only, though we may
conceive of many different manifolds, which are contrivances or
ideal constructions invented for the purpose of determining space.

Paul Carus

Think of the image of the world in a convex mirror. . . . A
well-made convex mirror of moderate aperture represents the objects
in front of it as apparently solid and in fixed positions behind its
surface. But the images of the distant horizon and of the sun in
the sky lie behind the mirror at a limited distance, equal to its
focal length. Between these and the surface of the mirror are found
the images of all the other objects before it, but the images are
diminished and flattened in proportion to the distance of their
objects from the mirror. . . . Yet every straight line or plane in the
outer world is represented by a straight line or plane in the image.
The image of a man measuring with a rule a straight line from the
mirror, would contract more and more the farther he went, but
with his shrunken rule the man in the image would count out
exactly the same number of centimeters as the real man. And, in
general, all geometrical measurements of lines and angles made
with regularly varying images of real instruments would yield
exactly the same results as in the outer world, all lines of sight in
the mirror would be represented by straight lines of sight in the
mirror. In short, I do not see how men in the mirror are to discover
that their bodies are not rigid solids and their experiences good
examples of the correctness of Euclidean axioms. But if they could
look out upon our world as we look into theirs without overstepping
the boundary, they must declare it to be a picture in a spherical
mirror, and would speak of us just as we speak of them; and if two
inhabitants of the different worlds could communicate with one
another, neither, as far as I can see, would be able to convince the
other that he had the true, the other the distorted, relation. Indeed
I cannot see that such a question would have any meaning at all,
so long as mechanical considerations are not mixed up with it.

Helmholtz



CHAPTER 6

Incidence Axiom and Ruler
Postulate

6.1 OUR OBJECTIVES

Our goal in this text is to learn something about the foundations of
Euclidean geometry. We shall accomplish this by studying non-
Euclidean geometry! Although this may strike you as strange at first,
there are two good reasons for this approach. The principal reason is
that you know too much about Euclidean geometry. It really is more
difficult to study something that is very familiar because it is hard
to keep in mind the distinction between the mathematical system
that has been developed at any given time and what you feel has to
be true. Of course, the second reason for this approach is to learn some-
thing about non-Euclidean geometry itself. The celebrated man-in-
the-street has heard about non-Euclidean geometry, and every stu-
dent of mathematics should know something about the subject.

Our aim is to develop that geometry that is very like the Euclidean
plane except that the usual parallel postulate fails. The axioms we add
to our system will be motivated by what we think the Euclidean plane
should be but restricting ourselves to avoiding a parallel postulate for
as long as is reasonably possible.

It is reasonable to ask why we shall be limiting ourselves to
consideration of planes. Why not study systems motivated by our idea
of Euclidean three-space? It turns out not to make much difference.
The deep problems that arise involve consideration of only one plane
at a time anyway. So to make matters easier we consider only planes
in the beginning. Later, the extension from a plane to three-space is
surprisingly easy.
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Before starting the development of the axiom systems that are
the topic of this book, we emphasize that it is the formation of a sys-
tem that should have most of our attention in the beginning. As the
system grows, our attention will be diverted more and more to the
theory itself.

Excluding exercises, the theory consists of those paragraphs
that are headed Undefined terms, Axiom, DEFINITION, Theorem,
Corollary, or Proof. Everything else should be considered discussion.
In the discussion we talk about the theory. Your life will be much hap-
pier if you keep in mind the distinction between the theory itself and
the discussion about the theory. To aid you in doing this, the end of a
proof is marked M. The exercises add to the theory and to the dis-
cussion of the theory.

Italics in the discussion are used either for emphasis or to call
attention to the fact that we are using words in an informal way.
Definitions that occur in the theory are always in bold-face italic.

6.2 AXIOM 1: THE INCIDENCE AXIOM

We announce the setting for our axiom system by declaring our pre-
liminary assumptions to be language, logic, set theory, and the real
numbers.

The theory begins:

Undefined terms: £,.%,d, m.

Axiom 1 Incidence Axiom

a £ and .% are sets; an element of . is a subset of 2.

b If P and Q are distinct elements of 2, then there is a unique
element of .# that contains both P and Q.

¢ There exist three elements of £ not all in any element of .Z.

We are going to call the elements of # points and the elements
of .Z lines. By (a) of the Incidence Axiom, we are taking the point of
view that a line is a set of points. Thus, we automatically have an
incidence relation for points and lines given by set membership. Be-
cause of (b), the Incidence Axiom might be called the Straightedge
Axiom. We need (c) to get our plane off the ground, as without this
there might be no points or lines at all or there might be just exactly
one line.
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DEFINITION 6.1 An element of 2 is called a point; an element
of .# is called a line. If point P is in line [, then we say that P is on [,
lis on P, | passes through P, or that P and [ are incident. Off means not
on. If P is a point in each of two or more sets, then the sets intersect
at P. We say that line [ is parallel to line m and write [| m if either [
and m do not intersect or /=m. A set S of points is collinear if S is a
subset of a line. Two or more sets of points are collinear if their union
is collinear. If two or more lines intersect at one point, then the lines
are said to be concurrent. “Two points determine a line” means (b) of
the Incidence Axiom. The unique line determined by distinct points

P and Q is I(’_)Q

<>
It is a good habit to read the symbol “PQ,” just defined, as “line
P @ since we are reserving the symbol “PQ” for something else. We
are ready to prove our first theorem.

Theorem 6.2 If R and S are distinct points on 13—22, then Ié_.)S=I% In
<> <>

particular, QP = PQ.

Proof Corollary of (b) in the Incidence Axiom. W

Theorem 6.3 If [ is a line, then /||l If [ and m are lines, then /|| m
implies m || .

Proof The statements follow immediately from the definition of
parallel lines. W

Note that parallelism is a reflexive, symmetric relation on -Z.
We do not know that parallelism is an equivalence relation on the
lines as we have no way of proving that parallelism is transitive.

Theorem 6.4 Two lines intersect in at most one point. Two non-
parallel lines intersect in exactly one point. There exist three lines
not all on one point.

Proof Two distinct lines cannot intersect in two distinct points by
Theorem 6.2. If two lines are not parallel, then their intersection is
not empty and, hence, must contain exactly one point. Requirements
(b) and (c) of the Incidence Axiom imply the existence of three noncon-
current lines. M

Our first three theorems are necessarily simple and deal only
with incidence. This must be so as we have only one axiom and that
deals solely with incidence. We cannot infer the existence of non-
parallel lines from Theorem 6.4. That theorem just says that if there
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are two nonparallel lines then they intersect in a unique point. Even
though a parallel axiom would deal only with incidence, we inten-
tionally do not state such an axiom. Recall our aim stated in Sec-
tion 6.1.

At any given time our axiom system is called X. In the discus-
sion “a model of £” means any interpretation of the axiom system as
we have developed it up to that time. Thus the meaning of “X” and
“a model of ” changes as we progress. This not unlike your own name
which may stay the same even though you yourself change as time
passes.

6.3 AXIOM 2: THE RULER POSTULATE

Letting #={A, B, C} and .¥ = {{A, B}, {A, C}, {B, C}, &}, we have an
uninteresting model of 3. We want a line to have some points on it—
lots of them! Any respectable line ought to suggest Figure 6.1, where
there is a one-to-one correspondence between the points on the line
and the real numbers. So for every line [ there should be a bijection
from / onto R which assigns a real number to every point on L If point
P is associated with real number p and point @ is associated with
real number g, then the distance from P to @ should be |¢ — p|. Loosely
speaking, a line is something like the edge of a long ruler! But what is
distance? We don’t have a distance yet! This is where the undefined
term d enters the picture; d will give us distance. Our second axiom
declares d to be a mapping that assigns to each ordered pair (P, @) of
points some real number PQ. Further, the mapping d determines one-
to-one correspondences between the points on any particular line and
the real numbers. The axiom is an attempt to make precise the idea
conveyed by Figure 6.1.

Axiom 2 Ruler Postulate d:?XP—R, d: (P, Q)  PQ is
a mapping such that for each line [/ there exists a bijection
f:l—R, f:P+ f(P) where

PQ=1f(Q)—f(P)]

for all points P and @ on [

DEFINITION 6.5 Mapping d is the distance function, and PQ is
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the distance from point P to point Q. If for line /, bijection f:/— R is
such that PQ=|f(Q)—f(P)| for all points P and Q on [, then fis a
coordinate system for [ and f(P) is a coordinate for P with respect
to !l and f.

You should spend some time thinking about what the Ruler
Postulate says and what it does not say. Certainly the distance from
P to @ ought to be a positive real number unless P=@. Also, the
distance from P to @ ought to be equal to the distance from @ to P.

Theorem 6.6 If P and @ are points, then

(D,) PQ=0.
(D,) PQ=0 iff P=Q.
(D,)  PR=QP.

Proof Exercise 6.1. W

Another property often associated with distance is the famous
triangle inequality for points P, @, and R:

(D,) PQ+QRzPR.

This is one of the things that the Ruler Postulate does not say. Re-
read the Ruler Postulate. Nothing prevents us from thinking of a mod-
el of 3 where distance is measured along some lines in inches while
distance is measured along all other lines in feet. (Take =12 in
Exercise 6.5.) With this in mind, it is not surprising that the triangle
inequality is false for some models of 3. Subsequent axioms will have
to make demands on d so that d behaves nicely.

The Ruler Postulate requires that every line have a coordinate
system determined by the distance function d. A coordinate system
for a given line is not unique, however. Our next theorem says that
we can slide the ruler along the line or we can turn the ruler around.
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Theorem 6.7 If fis a coordinate system for line /, then g and A are
coordinate systems for line / when for all points P on [, g(P) =f(P) +a
and A(P) = —f(P) where a is any fixed real number.

Proof Clearly g and h are bijections from [ into R since f is. Al-
so, |g(Q) —g(P)| =|f(Q) — f(P) + (a—a)| = |(Q) — f(P)| =PQ and
|h(Q) —h(P)|=I-(f(Q)—f(P))|=PQ. W

Theorem 6.8 Ruler Placement Theorem Let P and @ be two points
on line [, then [ has a coordinate system f such that f(P)=0 and

f(@) >0.

Proof By the Ruler Postulate line / has some coordinate system g.
So there exist real numbers a and b such that g(P) =a, g(Q) =5, and
a # b. By the previous theorem, A is also a coordinate system for [
where h(X)=g(X) —a for every point X on l. So h(P)=0 and A(Q) =
b—a.lf b>a,let f=h, if a > b, let f=—h. In either case, fis a coordi-
nate system for [, f(P) =0, and f(Q)=|b—a|>0. N

Although our preconceived concepts motivate us in formulating
the axioms, we know nothing more about points, lines, and distance
than what the axioms and theorems tell us. The undefined term m
will not surface until Chapter 14.

6.4 EXERCISES

Henceforth the introductory phrases “Prove” or “For any model of %,
prove” are to be understood where they are lacking.

6.1 Theorem 6.6.

® 6.2 For each line in the Cartesian plane, find a coordinate system
for that line.

® 6.3 The Ruler Postulate is independent of the Incidence Axiom.

64 If k>0 and d,:? X2 — R is defined by d,(P, Q) =kPQ, then d,
also satisfies the Ruler Postulate.

6.5 Let/be a fixed line and assume k£ > 0. If d,;:# X # — R is defined
by d,(P, Q) =kPQ when P and Q are on [/ and d,(P, @) =PQ other-
wise, then d, satisfies the Ruler Postulate.

® 6.6 The triangle inequality is not valid for every model of =.
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® 6.7 True or False?
(a) PQ is a number.

(b) If lines [ and m intersect, then they intersect in a unique
point.

(¢) Two intersecting lines determine a point.

(d) A line is parallel to itself.

(e) A line is the shortest distance between two points.
(f) There are an infinite number of lines.

(g) Every line has three points. In fact, every line has an in-
finite number of points.

(h) Parallelism is transitive for each model of X.
(i) Parallelism is an equivalence relation for each model of X.
(j) Every real number is a coordinate for point P.

6.8 There does not exist a d such that (M2, d) is a model of %, where
M2 is the Rational Cartesian Incidence Plane.

6.9 Which of the models in Section 5.2 satisfy the Incidence Axiom?

6.10 If S is any nonempty set and d,:SXS—R is defined by
d,(P, ) =0 when P=Q and d,(P, @) =1 when P # Q, then d, satis-
fies the properties D,, D,, D,, and D,.

6.11 The Ruler Postulate does not follow from the Incidence Axiom
and the existence of a mapping d:# X £ — R satisfying D, through D,.

6.12 Let S be any nonempty set. Suppose £ >0 and d,:SXS— R
satisfies D, through D,. If d;:S X S — R is defined by dg(P, @) = 0 when
P=@Q and d (P, Q)=k+d,(P, @) when P+ Q, then d; satisfies D,
through D,.

6.13 Mapping f is a bijection from the set of all reals between 0 and
positive number a onto the set of all reals where f(x) =1n (x/(a—x)).

*® 6.14 Although “PQ € P(_é” is usually absurd, find a model of
where it is not.

*® 6.15 For which of the models in Section 5.2 does there exist a d
satisfying the Ruler Postulate?

*6.16 If fis a coordinate system for a line, find all coordinate sys-
tems for that line.
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GRAFFITI

Every teacher certainly should know something of
non-euclidean geometry. Thus, it forms one of the few parts of
mathematics which, at least in scattered catch-words, is talked
about in wide circles, so that any teacher may be asked about it at
any moment. . . . Imagine a teacher of physics who is unable to
say anything about Rontgen rays, or about radium. A teacher of
mathematics who could give no answer to questions about non-
euclidean geometry would not make a better impression.

On the other hand, I should like to advise emphatically
against bringing non-euclidean into regular school instruction
(i.e., beyond occasional suggestions, upon inquiry by interested
pupils), as enthusiasts are always recommending. Let us be
satisfied if the preceding aduvice is followed and if the pupils learn
to really understand euclidean geometry. After all, it is in order for
the teacher to know a little more than the average pupil.

Klein

The most suggestive and notable achievement of the last
century is the discovery of Non-Euclidean geometry.

Hilbert

“Why,” said the Dodo, “the best way to explain it is to do it.”

Lewis Carroll

Astronomy was thus the cradle of the natural sciences and the
starting point of geometrical theories. The stars themselves gave
rise to the concept of a "point”; triangles, quadrangles and other
geometrical figures appeared in the constellations; the circle was
realized by the disc of the sun and the moon. Thus in an essentially
intuitive fashion the elements of geometrical thinking came into
existence.

Lanczos



CHAPTER 7

Betweenness

7.1 ORDERING THE POINTS ON A LINE

Looking at Figure 7.1 below, we say that the circle is to the left of
the other curve. However, this describes our position with respect to
the figure rather than the position of the circle with respect to the
other curve. Although we shall not hestitate to use such words as
left, right, above, and below in the discussion, we realize that such
words have no place in our theory at this time. These words simply
haven’t been defined, for the very good reason that it is impossible
to give any reasonable definitions.

Is point B between points A and C for the curves in Figure 7.17
Of course, any answer would have to depend on the meaning of the
word between. Certainly, given three points on a line, one point ought
to be between the other two. We shall give a definition so that this is
the case. Only in grade school is it almost as foolish to define obvious

FIGURE 7.1
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terms as it is to prove obvious theorems. Even Euclid overlooked the
necessity of stating any axioms that would give him betweenness; he
tacitly assumed the necessary properties as they were needed. It took
a long time in history before it was realized that between is a tech-
nical word and that the betweenness properties for points must either
follow from other axioms or else be explicitly stated as axioms. The
initial work in developing axioms for betweenness was done by
Moritz Pasch (1843 -1930).

Point B ought to be between points A and C if for some long

ruler (coordinate system) along A%, the coordinate of B is between the
coordinates of A and C. Note the two distinct uses of the word between
in the last sentence. We know that real number b is between real num-
bers a and c iff either a < b < c or ¢ < b < a. In the theorems below, we
shall be able to translate this known type of betweenness (for real
numbers) into the new type of betweenness (for points). We shall de-
fine between in terms of distance, being motivated by Figure 7.2. The
powerful Ruler Postulate will give us the desired results.

DEFINITION 7.1 We say point B is between points A and C and
write A-B-C if (1) A, B, C are three distinct points, (2) A, B, C are
collinear, and (3) AB+BC=AC.

One of the conventions of mathematics is that any statement
labeled definition is always assumed to be an if-and-only-if-statement
even when not explicitly expressed as such. For example, the “if” in
Definition 7.1 does carry the weight of “iff.” So, if A -B -C, then state-
ments (1), (2), and (3) in the definition must hold.

Theorem 7.2 If A-B-C, then C-B-A.

Proof The hypothesis A-B-C means that A, B, and C are three
distinct collinear points and AB + BC = AC. Hence, for the conclusion,
we have only to observe that CB+BA=BC+AB=AB+BC=AC=
CA. So C-B-A by definition. H

Is the method of proof in the last theorem obvious? Another proof
might be: A and C are symmetric in Definition 7.1 because PQ = QP
for any points P and @ and x+ y=y+ x for any real numbers x and y.
In any case, we had to use Definition 7.1. This was the only recourse
as all we knew about between was what Definition 7.1 told us. Now
we know two things, the definition and one theorem.
A B C

&
-9

<
<

FIGURE 7.2
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Theorem 7.3 Suppose a line has coordinate system f and contains
points A, B, and C. If f(B) is between f(A) and f(C), then A-B-C.

Proof If f(C) <f(B) <f(A),then AC=|f(C)—f(A)|=f(A)—f(C)=
f(A) —f(B) +f(B) —f(C)=|f(A) — f(B)| + |f(B) — f(C)|=AB + BC.If
f(A) <f(B) <f(C), then AC=AB + BC by interchanging “A” and “C”
in the previous sentence. Hence, if f(B) is between f(A) and f(C), then
AB+BC=AC. A, B, C are collinear by hypothesis. A, B, C are distinct
since f is a one-to-one mapping and f(A), f(B), f(C) are distinct. W

Theorem 7.4 If A-B-C, then neither A-C-B nor C-A-B.

Proof Suppose A-B-C and A-C-B. From AC=AB+BC and AB=
AC+ CB, we have AB=AC+CB=(AB+BC)+CB=AB+2BC. So
BC=0 and B=C, contradicting A-B-C.

Suppose A-B-C and C-A-B. From AC=AB+BC and CB=
CA + AB, we have BC=CB =CA + AB= (AB + BC) + AB=BC +
2AB. So AB=0 and A=B, contradicting A-B-C. B

Theorem 7.5 If A-B-C, then f(B) is between f(A) and f(C) for
every coordinate system f of the line containing A, B, C.

Proof Let fbe any coordinate system of the line containing the three
points A, B, C. Exactly one of the three numbers f(A), f(B), f(C) is
between the other two. If f(C) is between the other two numbers, then
A-C-B; if f(A) is between the other two numbers, then C-A-B.
However, since A—C-B and C-A-B are each inconsistent with the
hypothesis A—B-C (Theorem 7.4), we must have f(B) between f(A)
and f(C). A

By the middle of the nineteenth century, analysts were facing
the problem of giving a precise answer to the question “What is a
real number?” Solutions to this problem given in 1872 by Cantor and
Dedekind were motivated by the idea that there is an order preserv-
ing, one-to-one correspondence between the points on a line and the
real numbers. Here, line is to be understood as the intuitive concept
of a Euclidean line. In particular, there should be a distinct real
number for each distinct point on the line. That the correspondence
be order preserving requires that betweenness for one system cor-
responds to betweenness for the other. After having served as a moti-
vation for the definition, the geometry is then entirely excluded from
the formal definition of the real numbers. (For example, see the defi-
nition of a Dedekind cut in Section 3.2). With the definition of the
real numbers and their natural order in hand, one then turns around
and defines a Cartesian line so that there is an order-preserving,
one-to-one correspondence between the points of the line and the real
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numbers. We define a Euclidean line to be isomorphic to a Cartesian
line. Thus, Descartes’ arithmetization of Euclidean geometry could
not be completed until 1872.

That one intuitive idea can motivate the formal definition of a
second which, in turn, is used to define the first is not uncommon in
mathematics. (You probably defined area in calculus by the definite
integral, whose definition was motivated by the idea of area in the
first place.) The statement that there is an order-preserving, one-to-
one correspondence between the points on a Euclidean line and the
real numbers is known as the Cantor-Dedekind Axiom. Of course,
for the Cantor — Dedekind Axiom to make sense, one has to know about
the real numbers in the first place or else know exactly what a Eu-
clidean line is. In the axiomatic development of our geometry, we
have assumed knowledge of the field of real numbers. With the
combination of the Ruler Postulate and our definition of betweenness
for points, we can prove the Cantor - Dedekind Axiom.

Theorem 7.6 Cantor—Dedekind Axiom There is an order-pre-
serving, one-to-one correspondence between the set of points on a line
and the set of real numbers.

Proof Let [ be a line with coordinate system f. Since f is a bijection
from [ onto the reals, f defines a one-to-one correspondence. Let A, B, C
be points on L Then B is between A and C iff f(B) is between f(A)
and f(C), (Theorems 7.3 and 7.5). Thus f is order preserving. W

So a line in our geometry is isomorphic to a Euclidean line. The
remaining theorems in this section are a consequence of that fact.
However, it is important to note that just because every line in our
plane is isomorphic to a Euclidean line, there is absolutely no justi-
fication in jumping to the conclusion that our plane is necessarily a
Euclidean plane.

Theorem 7.7 For any three points on a line, exactly one is between
the other two. If point P is on AB, then exactly one of the following
holds: P-A-B,P=A, A-P-B,P=B,or A-B-P.

Proof Exercise 7.1. W

Theorem 7.8 If A and C are two points, then there exist points .3
and D such that A-B-C and A-C-D.

Proof By the Ruler Placement Theorem (Theorem 6.8), AC nas a
coordinate system f such that f(A) =0 and f(C) =c¢ > 0. By the Ruler
Postulate, there exist points B and D such that f(B) =c¢/2 and f(D) =
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2¢. Since 0<c¢/2<c¢ and 0<c¢<2¢, we have A-B-C and A-C-D
(Theorem 7.3). B

Theorem 7.9 If A-B-C and A-B-D, then C=D, B-C-D, or
B-D-C.

Proof A, B, C are distinct and collinear; A, B, D are distinct and
collinear. Hence A, B, C, D are on A75’. By Ruler Placement Theorem,
AB has a coordinate system f such that f(A) =0 and f(B) > 0. Since
A-B-C and A-B-D, we have f(A) <f(B) <f(C) and f(A) <f(B) <

flD). So either f(C)=f(D), f(B) <f(C) <f(D), or f(B) <f(D) <
f(C). The conclusion follows. W

DEFINITION 7.10 A-B-C-Diff A-B-C, A-B-D, A-C-D, and
B-C-D.

Theorem 711 If A-B-C and B-C-D, then A-B-C-D.
Proof Exercise 7.2. N

Theorem 7.12 Any four collinear points can be named A, B, C, D
such that A-B-C-D.

Proof Suppose four points on line / have coordinates w, x, y, z with
respect to coordinate system f for ! where w <x <y <z. Since fis a
bijection, the original four points are A, B, C, D where f(A)=w,
f(B)=x, f(C)=y,and f(D)=z. Since w<x<y,x<y<gz and fis or-
der preserving, A-B-C and B-C-D.So A-B-C-D. 1

7.2 TAXICAB GEOMETRY

Let’s go back for a closer look at the definition of “point B is between
points A and C.” If A=B, then AB+BC=0+AC=AC. Since we
don’t really want “A is between A and C,” it is reasonable to require
that A, B, C be distinct for A —B —-C. The idea behind the definition was
using distance in the requirement

(=) AC=AB+BC.

But why did we also require that A, B, C be collinear?
For discussion only, we make the following definition: point B is
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star-between points A and C iff A, B, C are three distinct points such
that AC=AB + BC. Also, for convenience of notation, A=B:C iff point
B is star-between points A and C. Clearly A-B-C implies A=B:=C.
Does A=B:C imply A-B-C? If the answer were “Yes,” then we would
have done nothing terribly wrong. It’s just that there would be a re-
dundancy in the definition of between. The geometry that we are about
to describe will show that the answer is “No.”

In the Real Cartesian Incidence Plane M1, we shall assume be-
low that P= (x,, y,) and @ = (x,, y,). We all know that M1 satisfies
the Ruler Postulate where

d(P,Q) =V (x,—x,)%+ (y,— y,)%

However, Euclidean distance function d is not the only distance func-
tion that satisfies the Ruler Postulate. Consider ¢t:# X2 — R de-
fined by

t(P,Q)=lx,— x|+ |y, — .

M1 together with ¢ is the Taxicab Geometry. Taxicab Geometry has
the practical application of being the real geometry involved in getting
from point P to point @ in a city where the streets are parallel, the
avenues are parallel, and the streets are perpendicular to the avenues.
See Figure 7.4.

If x, =x, or y,=y, (P and Q are on the same street or on the same
avenue), then ¢t(P, Q) =d(P, @); otherwise, t(P,Q) # d(P, Q). See Fig-
ure 7.5. Assume x, # x, and y, # y,, and let A= (x,,y,). Then P, A, Q
are three distinct points that are not collinear. We do not have
P-A-Q. Nevertheless P:A=Q as

tP,Q)=|x,—x,| +|y,—y|=d(P,A) +d(A,Q)=t(P,A) +t(A,Q).

So P::A#@ does not imply P-A -Q! Anyone who has walked in such

Avenues
Q(xZ, y2)
]
Q
A Q
&
S P 1Y2 —¥1 1l
P
(x1,51) lx2 — x| A(x2,¥1)

FIGURE 7.4 FIGURE 75
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a city will know that the points that are star-between P and @ when
x, #x, and y, # y, consists of all the points, except P and @, that are
either on or else inside a particular rectangle with opposite vertices
P and Q. See Figure 7.6. It follows that the points that are between
two points P and @ in Taxicab Geometry are exactly those points that
are between P and @ in the Cartesian plane.

We have yet to show that ¢ satisfies the Ruler Postulate. Lines
parallel to the axes (streets and avenues) have the usual Euclidean
coordinate systems. Suppose [ is a line through P and @ and that [ is
not parallel to an axis. So x, # x, and y, # y,. If line / has slope m, then
m=(y,—y,)/(x,—x,). It is a simple exercise in algebra to show that

1+ |m|
t(P,Q) =ﬁ—7n7d(P,Q)-

This equation tells us that Taxicab distance along any line is some
positive constant multiple of Euclidean distance along the same line.
The Taxicab ruler for any line is a scaled Euclidean ruler; the Taxicab
rulers for different lines may have different scales! Every line has a
coordinate system with respect to ¢t. Taxicab Geometry is a model of 3.

Does Taxicab Geometry satisfy the triangle inequality? If P and
@ are not on the same street or avenue, then there are many ways of
walking from P to @ traversing only the distance ¢(P, ). However,
the triangle inequality does hold. Let R= (x,, y,) and recall that
|a+b| = |a|+ |b] for real numbers a and b. Then

t(P,R)=|x,—x,|+ ly;— I
= |(x,—x,) + (x,—x) |+ [ (v, —5,) + (7, — )|
= lag— 2, + |ty — 2, |+ 1y — 3,1+ v, — 24
=(lx,— x| + |y, =3, + (25— 2,| + |y, =3,
=t(P,Q)+t(Q,R).

FIGURE 7.6
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(0,1)

(0, —1)
FIGURE 7.7

Since we have shown ¢(P, @) +¢(Q, R) = ¢t(P, R) for arbitrary points
P, @, and R, we see that the triangle inequality does hold in Taxicab
Geometry.

Everyone knows a circle is the locus (i.e., set) of all points equi-
distant from a fixed point. With R=(x, y) and O= (0, 0), the unit
circle is the set of all points R such that the distance from O to R is 1.
So the unit circle has the equation 1= |x|+ |y| in Taxicab Geometry.
Strangely enough, the unit circle is a square! See Figure 7.7. To con-
firm this result, consider the equation in only one quadrant at a time:
all (x, y) in the first quadrant such that 1=x+y, all (x, y) in the sec-
ond quadrant such that 1=—x+y, all (x,y) in the third quadrant such
that 1=—x—y, all (x, y) .in the fourth quadrant such that 1=x—y.

Everybody knows the locus of all points equidistant from two
points P and Q is a line. If P and @ are on the same street or on the

{a} (b} {43

FIGURE 7.8
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same avenue, this is true. In general the locus has equation |x—x, |+
ly—,|=|x—x,]+|y—2y,]. The locus of all points equidistant from
(3,2) and (7, 4) is not a line but looks like Figure 7.8b. Even more
surprising is the fact that the locus of all points’equidistant from (3, 2)
and (7, 6) looks like Figure 7.8c. This last set of points is certainly not
a line in M1! Perhaps not everything that everybody knows is al-
ways true.

Taxicab Geometry is only one plane with weird rulers. Starting
with M1, let d be Euclidean distance function and u be any mapping
from the set of lines in M1 into the set of positive real numbers. For dis-

tinct points P and @, define w(P, P)= 0 and w(P, Q)= ;L(P(_)Q)d(P, Q).
Then M1 together with w is a model of X.

7.3 EXERCISES

7.1 Theorem 7.7.
7.2 Theorem 7.11.

7.3 Give a coordinate system for the line with equation y=mx+b
in Taxicab Geometry.

® 74 Find the set of all points equidistant from (2, 3) and (4, 7)
in Taxicab Geometry.

® 7.5 (M9, d), the Cubic Incidence Plane together with Euclidean
distance, is not a model of 2.

7.6 If A and B are points, give a reasonable definition of “the mid-
point of A and B” and prove it exists.

® 7.7 True or False?

(a) A-B-Ciff C-B-A.

(b) A-B-Ciff AC=AB+BC.

(¢ IfA-B-C and B-C-A, then C-A-B.

(d) In Taxicab Geometry, every circle is a square.
(e) In Taxicab Geometry, every square is a circle.
(ff A-B-Dand A-C-D only if A-B-C-D.

(g) A-B-D and B-C-D only if A-B-C-D.

(hy A-B-C and A-C-D only if A-B-C-D.

(i) A-B-Cand A-B-D only if A-B-C-D.
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G) A-C-D and B-C-D only if A-B-C-D.

7.8 Find the set of all points equidistant from (2, 7) and (6, 3) in
Taxicab Geometry.

7.9 If line [ makes an acute angle of measure 6 with the x-axis, then
for any points P and @ on [ in the Taxicab Geometry we have ¢(P, Q) =
(cos0+sinf) d(P, Q).

7.10 To see how Taxicab Geometry might be used to enrich a high
school geometry course, read “Taxicab Geometry —a Non-Euclidean
Geometry of Lattice Points” by D. R. Byrkit in The Mathematics Teach-
er Vol. 64 (1971), pp. 418-422.

7.11 M1 together with r is a model of 3 where
r(P; Q) =max {|x2_x1|, |y2-—y||}
gives the distance from point P to point @ when P=(x,,y,) and Q=

(2, 5,)-

7.12 For a comparison of the geometry of Exercise 7.11 and Taxicab
Geometry read “A Geometric Duality for Two Metrics for the Co-
ordinate Plane” by F. Rhodes in The Mathematical Gazette Vol. 54
(1970), pp. 19-23.

7.13 M1 together with A is a model of 3 where

h(P,Q)=V(x,—x,+y,—y,):+ (y,—,)?

gives the distance from point P to point @ when P=(x,, y,) and Q=
(xgy yz)

7.14 There exist exactly two ways of renaming four points on a line
A, B, C, D such that A-B-C-D.

*7.15 What is the locus of all points equidistant from two given
points in Taxicab Geometry? Generalize Exercises 7.4 and 7.8.

GRAFFITI

Mathematics is an obscure field, an abstruse science,
complicated and exact; yet so many have attained perfection in it
that we might conclude almost anyone who seriously applied
himself would achieve a measure of success.

Cicero
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. we must first base such words as "between” upon clear

concepts, a thing which is quite feasible but which I have not seen
done.

Gauss

There is no rigorous definition of rigor.

So far as the theories of mathematics are about reality, they
are not certain; so far as they are certain, they are not about
reality.

Einstein

Reductio ad absurdum, which Euclid loved so much, is one
of a mathematician’s finest weapons. It is a far finer gambit than
any chess gambit: a chess player may offer the sacrifice of a pawn
or even a piece, but a mathematician offers the game.

Hardy



CHAPTER 8

Segments, Rays, and Convex
Sets

8.1 SEGMENTS AND RAYS

Our definition of segment and ray will be motivated by Figure 8.1. It
seems reasonable to say that a segment with endpoints A and B should
contain all the points between A and B. Should A and B be included?
This is initially a matter of choice! The reader of a textbook is some-
times unaware that the author has made several rather arbitrary
decisions about his definitions. The author can decide whether he
wants the endpoints included in a segment or not; he makes the de-
cision for himself and his reader. Once that decision is made, the
defined word must be used consistently. We are stuck with the choice.

Two thousand years of usage of the word line for today’s word
curve required the phrase straight line to distinguish what we now call
a line from other curves. This usage has been almost completely
abandoned. If the phrase straight line is so ingrained in your thoughts
that you can hardly say “line” instead of “straight line,” then at least
be aware that you are using an old fashioned term that means no more
and no less than line.

‘//

FIGURE 8.1
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It is interesting that Euclid used straight line for what we would
call a segment. This partially explains the usage of the phrase “a
straight line is the shortest distance between two points.” Although
this phrase is known to almost every person on the street, it is still
an anachronism. In modern usage of technical terminology the
phrase is absurd since neither a line nor a segment is a distance. By
universal usage, the whole phrase has come to have a meaning in the
common language, although that meaning is not discerned from the
individual words. We are powerless to keep this phrase off the streets,
but we should keep it out of our geometry.

Although we’ll have twenty-one definitions and theorems in this
chapter, the first seventeen of these merely say that segments and rays
behave as they should. It is hopeless to try to memorize all of our
theorems and proofs. If you insist on memorizing something as a se-
curity blanket, then memorize the definitions. You do have to know the
definitions to understand what you’re talking about.

Let’s say a few words about rigor, a word that strikes fear into
the hearts of many undergraduates. The author would advise against
cluttering up your proofs with trivial reasons, as they tend to obscure
the principal ideas. For example, in “. . . So A and B are distinct

points. /(l_ﬁ exists because two points determine a line. Hence, A% in-
tersects . . . ,” the second sentence is really unnecessary to anyone
who has been following the development of our theory. It is by no
means easy for the beginning student to distinguish the unnecessary.
The only way to learn how to write a proof is to write proofs and then
have someone criticize your efforts. Avoid meaningless phrases such

as “extend line to C” or “draw A(_)B.” Another common error is not in-
troducing points and lines in a proof before using them, even though
the points and lines are indicated in your figure. Figures may accom-
pany a proof as a mnemonic device to aid in reading the proof; they
are not actually a part of the proof. Your proofs should look very much
like those in the text, excluding those parenthetical references to pre-
vious theorems by number inserted to aid the reader. An excellent test
is to read your proof aloud and ask yourself if it would be a convincing
argument to everyone in the class.

DEFINITION 8.1 Let A and B be two distinct points. Then, AB=
— > ——

{A,B} U {P|JA-P-B} and AB={P|P € ABbutnot P-A-B}. ABisa

segment with endpoints A and B. AB is a ray with vertex A. If T is

<l
<

FIGURE 8.2

L N

B

Y
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an arbitrary set of points containing point P, then P ison T and T
passes through P.

Theorem 8.2 Given two points A and B,

(a) E=BE

(b) AB # BA,

(¢ AB=AB U {P|A-B-P},
d) ABSABSC AB.

Proof (a)Since A-P-B iff B-P-A, the definition of ABis symmetric
in “A” and “B.” (b) There ex1sts P such that P-A-B (Theorem 7.8).

If P-A-B, then P is not in AB but is in BA (c) If P is on AB then
exactly one of the following holds: P-A-B,P=A, A-P-B,P=B, or
A-B-P. So

={A,B} U {P|A-P-B} U {P|[A-B-P}=AB U {P|A-B-P}.

(d) The containments follow from (c). The existence of points C and
D such that D-A-B-C (Theorem 7.8) shows that the containments
are proper. W

For emphasis we repeat the notation:

AB is a real number.

AB is a line.
AB is a ray.

AB is a segment.

Thus A_B, A_B, and AB are sets of points—in fact, three different sets
of points. AB is not a set of points. The four symbols are not inter-
changeable!

Theorem 8.3 AB=AB N EEA A73=A§ U BA.

Proof Exercise 8.1. W

Theorem 8.4 Let A and B be distinct points. Then AB=CD iff
{A, B}={C, D}.

Proof 1If {A, B}={C, D}, then either A=C and B=D or else A=D
and B=_C. In either case, we have AB=CD by definition of a segment.
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Now suppose AB=CD, A # C, and A # D. Then, since A is on CD as
A is on AB, we must have C-A-D. Also, since C and D are distinct
points on AB different from A, at least one of C or D is between A and
B. So either B-C-A or B-D-A. If B-C-A and C-A-D, then
B-C-A-D; if B-D-A and C-A-D, then B-D-A-C (Theorem
7.11). In either case, B is not in CD, contradicting AB=CD. Hence
A=C or A=D. By symmetry B must be either C or D. Since A # B, we
have {A,B}={C,D}. R

DEFINITION 8.5 If for AL AB and ( CD ' we have AB=CD, then AB =
CD. ABis congruent to CD iff AB = CD. The length of AB is AB.

Theorem 8.6 Congruence of segments is an equivalence relation on
the set of all segments.

Proof (R): AB = AB, since AB=AB. (S): AB = CD implies CD = AB,
since AB=CD implies CD=AB. (T): AB ~ CD and CD ~EF implies

AB =EF, since AB=CD and CD=EF implies AB=FEF. Thus con-
gruence is an equivalence relation on the set of segments because
equality is an equivalence relation on the real numbers. W

Theorem 8.7 Ray-Coordinatization Theorem Given Ia there is
<> —

a unique coordinate system f for VA such that f(V)=0 and VA=

{P|f(P) z 0}.

Proof By the Ruler Placement Theorem, VA has a coordinate system

fsuch that f(V) =0 and f(A) > 0. Since 0=f(V) < f(A), for any point

P on VA the following are equivalent: (i) P is off VTA, (ii) P-V-A,
(iii) £(V) 1s between f(P) and f(A), (iv) f(P) < f(V) < f(A), W) f(P) <

0. Hence VA= {P|f(P) =z 0}. Suppose g is another coordinate system
for VA such that g(V) =0 and VA= {P|g(P) = 0}. Then for any point
Q in VA, we have lg(@)=1g(Q)—g(V)|=VQ=If(Q) —f(V)|=
f(@)]. If Q is on VA, then g(Q) =f(Q) Z 0. If Q is off VA, we have
g(Q) <0, f(Q) <0, and |g(Q)[=1f(Q)]. So g(Q)=f(Q) for all points
Q@ on VA. Thus g=fand fis unique. W

Theorem 8.8 Segment-Construction Theorem Given AB and 176,
there exists a unique point D in VC such that AB = VD.

Proof By the Ray-Coordinatization Theorem Ve has a coordinate
system f such that VC={P|f(P) = 0} and f(V)=0. For any point D
in VC, we have f(D) =VD. However, there is a unique point D in VC
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such that f(D)=AB. So there is a unique point D in VC such that
AB=VD. 1

There is a one-to-one correspondence between the set of rationals
and the points on the x-axis of M2, the Rational Cartesian Incidence
Plane. Since the rationals cannot be put in one-to-one correspondence
with the reals, there does not exist any distance function d such
that (M2, d) is a model of X because the Ruler Postulate can never
be satisfied. However, for discussion, we define distance d on M2 by
the usual Cartesian formula. We also apply the definitions in the
theory to the geometry (M2, d). This provides an example of a geome-
try where Theorem 8.8 fails. Let A=V =(0,0), B=(1,1), and C=

(1, 0). Then AB= Vf, but there is no point D on V—(),‘ such that VD=
AB since (0, V2) is not a point in M2.

Theorem 8.9 Segment Addition Theorem 1If A-B-C, D-E-F,
AB = DE, and BC = EF, then AC = DF.
Proof From the hypothesis we have AB+ BC=AC, DE + EF =DF,

AB=DE, and BC=EF. Thus AC=AB+BC=DE+EF=DF, as re-
quired. W

Theorem 8.10 SegmentSubtractzon Theorem If A-B-C, D-E-F,
AB = DE and AC = DF then BC = EF.

Proof Exercise 8.2. W

Theorem 8.11 Point B is on VA and B # V iff VB=VA.

Proof By the Ray-Coordinatization Theorem, 1(774 has a unique coor-
dinate system f such that f(V)=0 and V—A—{P|f(P = 0}. Suppose
point B is on VA and B # V. Then f(B) >0 and VB= {Plf(P) =0} by
definition of V<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>