
Undergraduate Texts in Mathematics

Editors

1.R. Ewing
F.W. Gehring
P.R. Halmos

Undergraduate Texts in Mathematics

Apostol: Introduction to Analytic Number Theory.
Armstrong: Groups and Symmetry.
Armstrong: Basic Topology.
Bak/Newman: Complex Analysis.
Banchoff/Wermer: Linear Algebra Through Geometry.
Bremaud: Introduction to Probabalistic Modeling.
Bressoud: Factorization and Primality Testing.
Brickman: Mathematical Introduction to Linear Programming and Game Theory.
Cederberg: A Course in Modem Geometries.
Childs: A Concrete Introduction to Higher Algebra.
Chung: Elementary Probabalistic Theory with Stochastic Processes.
Curtis: Linear Algebra: An Introductory Approach.
Dixmier: General Topology.
Driver: Why Math?
Ebbinghaus/F1umfThomas: Mathematical Logic.
Fischer: Intermediate Real Analysis.
Fleming: Functions of Several Variables. Second edition.
Foulds: Optimization Techniques: An Introduction.
Foulds: Combinatorial Optimization for Undergraduates.
Franklin: Methods of Mathematical Economics.
Halmos: Finite-Dimensional Vector Spaces. Second edition.
Halmos: Naive Set Theory.
Iooss/Joseph: Elementary Stability and Bifuraction Theory. Second edition.
James: Topological and Uniform Spaces.
Janich: Topology.
Kemeny/Snell: Finite Markov Chains.
Klambauer: Aspects of Calculus.
Lang: A First Course in Calculus. Fifth edition.
Lang: Calculus of Several Variables. Third edition.
Lang: Introduction to Linear Algebra. Second editon.
Lang: Linear Algebra. Third edition.
Lang: Undergraduate Algebra.
Lang: Undergraduate Analysis.
Lax/Burstein/Lax: Calculus with Applications and Computing. Volume 1.
LeCuyer: College Mathematics with APL.
Lidl/Pilz: Applied Abstract Algebra.
Macki/Strauss: Introduction to Optimal Control Theory.
Malitz: Introduction to Mathematical Logic.
Marsden/Weinstein: Calculus I, II, III. Second edition.
Martin: The Foundations of Geometry and the Non-Euclidean Plane.
Martin: Transformation Geometry: An Introduction to Symmetry.
Millman/Parker: Geometry: A Metric Approach with Models.
Owen: A First Course in the Mathematical Foundations of Thermodynamics.
Peressini/SuIlivan/UhI: The Mathematics of Nonlinear Programming.
Prenowitz/Jantosciak: Join Geometrics.
Priestly: Calculus: An Historical Approach.
Protter/Morrey: A First Course in Real Analysis. Second edition.
Protter/Morrey: Intermediate Calculus.

(continued after Index)

James K. Strayer

Linear Programming
and Its Applications

With 95 Illustrations

Springer Science+Business Medi~ LLC

James K. Strayer
Department of Mathematics
Lock Haven University
Lock Haven, PA 17745
USA

Editorial Board

lH. Ewing
Department of

Mathematics
Indiana University
Bloomington, IN 47401
USA

F.W. Gehring
Department of

Mathematics
University of Michigan
Ann Arbor, MI 48019
USA

Mathematics Subject Classification (1980): t5XX, 90XX

Library of Congress Cataloging-in-Publication Data
Strayer, James K.

Linear programming and its applicationsjJames K. Strayer.
p. cm.-(Undergraduate texts in mathematics)

Bibliography: p.
Inc\udes index.

P.R. Halmos
Department of

Mathematics
Santa Clara University
Santa Clara, CA 95053
USA

ISBN 978-1-4612-6982-3 ISBN 978-1-4612-1009-2 (eBook)
DOI 10.1007/978-1-4612-1009-2
1. Linear programming. 1. Title. II. Series.

T57.74.S82 1989
519.7'2-dc 19 89-30834

Printed on acid-free paper.

© 1989 by Springer Science+Business Media New York
Originally published by Springer-Verlag New York Inc. in 1989
Softcover reprint of the hardcover 1 st edition 1989
AII rights reserved. This work may not be translated or copied in whole or in part without the
written permission ofthe publisher (Springer Science+Business Media, LLC), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc. in this publication, even if
the former are not especially identified, is not to be taken as a sign that such names, as understood
by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Phototypesetting by Thomson Press (India) Limited, New Delhi.

9 8 7 6 543 2 1

ISBN 978-1-4612-6982-3

Preface

Linear Programming and Its Applications is intended for a first course in
linear programming, preferably in the sophomore or junior year of the typical
undergraduate curriculum. The emphasis throughout the book is on linear
programming skills via the algorithmic solution of small-scale problems, both
in the general sense and in the specific applications where these problems
naturally occur.

The book arose from lecture notes prepared during the years 1985-1987
while I was a graduate assistant in the Department of Mathematics at The
Pennsylvania State University. I used a preliminary draft in a Methods of
Management Science class in the spring semester of 1988 at Lock Haven
University. Having been extensively tried and tested in the classroom at
various stages of its development, the book reflects many modifications either
suggested directly by students or deemed appropriate from responses by
students in the classroom setting. My primary aim in writing the book was
to address common errors and difficulties as clearly and effectively as I could.

The organization of the book attempts to achieve an orderly and natural
progression of topics. The first part of the book deals with methods to
solve general linear programming problems and discusses the theory of
duality that connects these problems. Chapter 1 deals with solving linear
programming problems geometrically; it is intended to constitute an intro­
duction to the general linear programming problem through familiar
geometrical concepts. At the same time, to motivate the study of a more
effective procedure, the drawbacks of the geometric method are stressed.
Chapter 2 develops the more effective procedure, the simplex algorithm of
G. Dantzig. In this respect the book differs from several others in that it uses
the condensed tableau of A.W. Tucker to record linear programming
problems rather than the classical Dantzig tableau. The smaller size of the

VI Preface

Tucker tableau makes it much more amenable to both hand and computer
calculations. Chapter 3 covers certain related problems that are not immedi­
ately solvable by the simplex algorithm, but, fortunately, can be easily
converted to a form approachable by that method. (Such conversions are
especially important in the second part of the book.) Chapter 4 concludes
the first part of the book with a treatment of duality theory, a theory that
establishes relationships between linear programming problems ofmaximiza­
tion and minimization. The Tucker tableau approach makes an elegant
presentation of this theory possible.

The second part of the book deals with several applications. These
applications, besides being important in their own right, constitute intro­
ductions to important fields related to linear programming; the partial
intention of this part of the book is the stimulation of the reader's interest
in one or more of these fields. Chapter 5 introduces game theory. The methods
applied to the games presented here are precisely those discussed in
Chapters 2-4. Chapter 6 presents transportation and assignment problems,
a large class of problems within operations research. Disadvantages of using
the direct simplex algorithm in the solution of such problems are indicated and
new algorithms related to it are developed. Finally, Chapter 7 introduces
graph theory with a treatment of various network-flow problems. Direct and
effective graph-theoretic linear programming algorithms are developed and
duality in a specific network-flow problem is discussed in detail.

Appropriately for either a text or a reference book on linear programming,
there are many examples and exercises. Virtually every definition is followed
by several examples and every algorithm is illustrated in a step-by-step
manner. The exercises range from easy computations to more difficult proofs
and are chosen to elucidate and complement the exposition. To gain and
reinforce comprehension of the material, the reader should attempt as many
of these exercises as possible. The answers to all computational exercises
appear in the back of the book; complete solutions to all exercises are in a
supplementary solutions manual.

I tried to make Linear Programming and Its Applications approachable
from as many levels (sophomore to graduate) and as many fields (mathematics,
computer science, engineering, actuarial science, and economics) as posssible.
The basic prerequisite is a knowledge of linear equations including the
graphing of lines and planes as well as the solution (without matrices) of
systems of simultaneous linear equations. Brief appendices on matrix algebra
(for Chapters 2 and 4) and elementary probability (for Chapter 5) are included.

Each chapter of the book, except the introduction, is divided into sections
(§'s). The symbol m§n is to be read as "Chapter m, section n." The numbering
of definitions, examples, and theorems proceeds sequentially throughout each
chapter (i.e., Definition 1, Example 2, Definition 3, Theorem 4, etc.). The
scheme is intended to make it easier to find any particular item. The
numbering of mathematical statements and diagrams is similar. Any linear
programming problem written in non-tableau form such as

Preface

Maximize P(x, y) = 30x + 50y

subject to 2x + y ~ 8
x + 2y ~ 10

x,y?; 0

is referred to by a single number as in

Maximize P(x, y) = 30x + 50y

subject to 2x + y ~ 8
x+2y~ 10

x,y?; O.

V11

(1)

If individual statements in such a problem need to be referred to, decimal
numbering will be used, as in

Maximize P(x, y) = 30x + 50y

subject to 2x + Y ~ 8
x + 2y ~ 10

x,y?; O.

Throughout the book, the following standard notations are used:

The statement

Z: the set of integers
Q: the set of rational numbers
R: the set of real numbers
R": n-dimensional real Euclidean space
V: "for all" or "for every."

variable +- expression

(1.1)

(1.2)
(1.3)

(1.4)

means "evaluate the expression and assign its value to the variable." Unless
otherwise stated, all variables in this book represent real numbers.

I would like to express my sincere appreciation to the reviewers of the
book as well as the fine staff of Springer-Verlag who assisted in the publication
of the book. I must also thank the many students at Penn State University
and Lock Haven University who shaped what the book was to become by
offering comments, suggestions, and encouragement; the book is dedicated
to them.

JAMES K. STRAYER

Contents

Preface... v

CHAPTER 0
Introduction

Part I: Linear Programming .. 3

CHAPTER 1
Geometric Linear Programming ... 5

§O. Introduction.. 5
§l. Two Examples: Profit Maximization and Cost Minimization..................... 5
§2. Canonical Forms for Linear Programming Problems 9
§3. Polyhedral Convex Sets.. 10
§4. The Two Examples Revisited ... 17
§S. A Geometric Method for Linear Programming.. 18
§6. Concluding Remarks ...•. 22

Exercises ... 23

CHAPTER 2
The Simplex Algorithm... 27

§O. Introduction.. 27
§l. Canonical Slack Forms for Linear Programming Problems; Tucker

Tableaus... 27
§2. An Example: Profit Maximization ... 30
§3. The Pivot Transformation... 33
§4. An Example: Cost Minimization... 36
§S. The Simplex Algorithm for Maximum Basic Feasible Tableaus................. 38
§6. The Simplex Algorithm for Maximum Tableaus .. 49

x Contents

§7. Negative Transposition; The Simplex Algorithm for Minimum Tableaus 54
§8. Cycling.. 58
§9. Concluding Remarks ... 63

Exercises ... 64

CHAPTER 3
Noncanonical Linear Programming Problems.. 70

§O. Introduction.. 70
§1. Unconstrained Variables.. 70
§2. Equations of Constraint ... 77
§3. Concluding Remarks ... 83

Exercises... 83

CHAPTER 4
Duality Theory .. 87

§O. Introduction.. 87
§ 1. Duality in Canonical Tableaus .. 87
§2. The Dual Simplex Algorithm ... 89
§3. Matrix Formulation of Canonical Tableaus... 94
§4. The Duality Equation ... 96
§5. The Duality Theorem.. 101
§6. Duality in Noncanonical Tableaus... 105
§7. Concluding Remarks ... 109

Exercises ... 109

Part II: Applications ... 115

CHAPTER 5
Matrix Games ... 117

§O. Introduction.. 117
§1. An Example; Two-Person Zero-Sum Matrix Games...................................... 117
§2. Linear Programming Formulation of Matrix Games 120
§3. The Von Neumann Minimax Theorem.. 124
§4. The Example Revisited ... 125
§5. Two More Examples ... 127
§6. Concluding Remarks ... 135

Exercises... 135

CHAPTER 6
Transportation and Assignment Problems.. 140

§O. Introduction.. 140
§ 1. An Example; The Balanced Transportation Problem 140
§2. The Vogel Advanced-Start Method (VAM).. 143
§3. The Transportation Algorithm .. 151
§4. Another Example.. 157
§5. Unbalanced Transportation Problems.. 161

Contents Xl

§6. The Assignment Problem... 164
§7. Concluding Remarks ... 177

Exercises... 178

CHAPTER 7

Network-Flow Problems.. 185

§O. Introduction.. 185
§ 1. Graph-Theoretic Preliminaries .. 185
§2. The Maximal-Flow Network Problem... 189
§3. The Max-Flow Min-Cut Theorem; The Maximal-Flow Algorithm 191
§4. The Shortest-Path Network Problem ... 205
§5. The Minimal-Cast-Flow Network Problem... 216
§6. Transportation and Assignment Problems Revisited 228
§7. Concluding Remarks ... 230

Exercises ... 231

APPENDIX A

Matrix Algebra ... 238

APPENDIX B

Probability .. 244

Answers to Selected Exercises 249
Bibliography ... 259
Index ... 261

CHAPTER 0

Introduction

Many of the problems normally encountered in the real world deal with the
maximization or minimization of certain quantities. Frequently, these quan­
tities are profit (in the case of maximization) and cost (in the case of
minimization). Linear programming is a collection of procedures for maximiz­
ing or minimizing linear functions subject to given linear constraints.
Inasmuch as the functions to be optimized are linear, the techniques of
calculus imply only that the maximums and/or minimums of these functions
lie on the boundaries of the sets determined by the constraints. In this sense,
calculus is inadequate for solving linear programming problems. The methods
to be discussed in this book take advantage of the linearity of such problems,
hence providing effective and direct solution procedures.

The procedures of linear programming have wide applications in many
fields. For example, linear programming encompasses many of the main
solution techniques in the field commonly referred to as management science
or operations research. Although the solution of typical real-life linear
programming problems requires the implementation of specific procedures on
a computer, it is not this computer programming to which the "programming"
oflinear programming refers-programming in the linear programming sense
means the development of effective algorithms for solving problems. As we will
see, the effectiveness of such algorithms is largely dependent upon the
particular applications from which the problems arise. Hence, linear pro­
gramming will not only allow us to solve many different types of problems in
many different contexts but will provide deeper insights into the fields in which
linear programming finds its utility. After having completed the book, the
reader will not only have learned a set of procedures for solving different types
oflinear programming problems but will also have a sense of the central role of
linear programming in areas of mathematics and business.

Part I

Linear Programming

CHAPTER 1

Geometric Linear Programming

§O. Introduction

This chapter is devoted entirely to the solution of linear programming
problems by graphical and/or geometrical methods. We introduce linear
programming problems, provide a rudimentary procedure for solving linear
programming problems, and motivate the need for a better, more efficient
algorithm to be discussed in Chapter 2.

§ 1. Two Examples: Profit Maximization
and Cost Minimization

Linear programming problems involve linear functions which are to be
maximized or minimized. Frequently, these functions represent profit (in the
case of maximization) and cost (in the case of minimization). We begin with
two such examples of typical linear programming problems.

EXAMPLE 1. An appliance company manufactures heaters and air condi­
tioners. The production of one heater requires 2 hours in the parts division of
the company and 1 hour in the assembly division of the company; the
production of one air conditioner requires 1 hour in the parts division of the
company and 2 hours in the assembly division of the company. The parts
division is operated for at most 8 hours per day and the assembly division is
operated for at most 10 hours per day. If the profit realized upon sale is $30 per
heater and $50 per air conditioner, how many heaters and air conditioners
should the company manufacture per day so as to maximize profits?

6 Chapter 1. Geometric Linear Programming

We begin by reformulating Example 1 mathematically. We are interested in
the number of heaters and air conditioners that the company should
manufacture per day so we put

x = # of heaters per day

y = # of air conditioners per day.

The quantity to be maximized, namely profit, is then given by P(x,y) = 30x +
SOy. The company can not manufacture an unlimited number of heaters
and/or air conditioners (and hence can not realize unlimited profits) since it is
constrained by the time availability of the parts division and the assembly
division. Each heater requires 2 hours in the parts division and each air
conditioner requires 1 hour in the parts division. Hence, the total amount of
time required from the parts division per day is 2x + y hours. Inasmuch as the
parts division is available for at most 8 hours per day, we have the constraint

2x + y ~ 8.

Similar reasoning applied to the assembly division yields the constraint

x+2y~10.

Finally, we include the implied constraints

x~O

y~O

since a negative number of heaters or air conditioners manufactured per day is
not realistic in our problem. We now have the desired mathematical
reformulation of Example 1:

Maximize P(x, y) = 30x + SOy

subject to 2x + y ~ 8

x + 2y ~ 10

x~O

y~O.

(1)

The set of points (x, y) satisfying all four constraints of (1) is the shaded region
below: y

~ x + 2y = 10

----------~~4r~~~x
4,0)

+z-2x+y=8

(2)

§ 1. Two Examples: Profit Maximization and Cost Minimization 7

This region was obtained by graphing the equalities 2x + Y = 8, x + 2y = 10,
x = 0, and y = 0, shading the solution sets of the corresponding inequalities,
and finding the mutual intersection of all such sets. In other words, the set of
points common to the four shaded regions

y

-----'~~~-- x
2x+y=8

y

x =0"4

----E====-- X
...LWWLlUW.1fWlI.W.1.W.J1L... X

y=O

is precisely the shaded region of(2). (1) now asks the following question: Which
point(s) (if any) of the shaded region of (2) maximizes P? We leave (1) until its
solution in §4 of this chapter.

EXAMPLE 2. An oil company owns two refineries, say refinery A and refinery B.
Refinery A is capable of producing 20 barrels of gasoline and 25 barrels of fuel
oil per day; refinery B is capable of producing 40 barrels of gasoline and 20
barrels of fuel oil per day. The company requires at least 1000 barrels of
gasoline and at least 800 barrels of fuel oil. If it costs $300 per day to operate
refinery A and $500 per day to operate refinery B, how many days should each
refinery be operated by the company so as to minimize costs?

We begin by reformulating Example 2 mathematically. If we put

x = # of days for refinery A

y = # of days for refinery B,

then the quantity to be minimized, namely cost, is given by C(x, y) = 300x +
500y. Note that the company must incur some positive cost since it is
constrained by the minimum petroleum requirements. Refinery A is capable of
producing 20 barrels of gasoline per day and refinery B is capable of producing
40 barrels of gasoline per day. Hence, the total amount of gasoline produced is
20x + 40y barrels. Inasmuch as at least 1000 barrels of gasoline is required by
the company, we have the constraint

20x + 40y ~ 1000.

Similar reasoning applied to the fuel oil yields the constraint

25x + 20y ~ 800.

8 Chapter 1. Geometric Linear Programming

Again, we include the implied constraints

x~O

y~O

since a negative number of days for either refinery to be operated is not realistic
in our problem. We now have the desired reformulation of Example 2:

Minimize
subject to

C(x, y) = 300x + 500y
20x + 40y ~ 1000
25x + 20y ~ 800
x~O

y~O.

(3)

The set of points (x, y) satisfying all four constraints of (3) is the shaded region
below:

This region is precisely the intersection of the four shaded regions

y

20x + 40y = 1000
y

x =0"4

---E==--x

x

y

y=O

(4)

§2. Canonical Forms for Linear Programming Problems 9

(3) now asks the following question: Which point(s) (if any) of the shaded
region of (4) minimizes C? We leave (3) until its solution in §4 of this chapter.

§2. Canonical Forms for Linear
Programming Problems

There are two natural or canonical forms taken by linear programming
problems, a maximization canonical form and a minimization canonical form.
We present these forms now along with some related standard terminology.

Definition 3. (i) The problem

Maximize f(xl,x z, ... ,Xn) = C1X l + CzXz + ... + CnXn - d
subject to allx l + alZxZ + ... + alnxn;;:; bl

aZlx l + azzx z + ... + aznxn;;:; bz

ami Xl + amzx z + ... + amnxn ;;:; bm
Xl,XZ"",xn~O

is said to be a canonical maximization linear programming problem.
(ii) The problem

Minimize g(xl,xz,,,,,xn)=C1X l +czxz + ... +cnxn-d
subject to allx l + a12xZ + ... + alnxn ~ bl

aZlx l + azzx z + .. , + aznxn ~ bz

amlx l + amzxz + ... + amnxn ~ bm
Xl' X z, ... , Xn ~ 0

is said to be a canonical minimization linear programming problem. The first m
constraints in each canonical form above are said to be main constraints; the
second n constraints in each canonical form above are said to be nonnegativity
constraints.

Note that the profit maximization example (1) and the cost minimization
example (3) of § 1 are in canonical form. The reason for the (possibly curious)
choice of minus sign in front of the constant d in Definition 3 will be made clear
in Chapter 2.

Definition 4. The linear functions f and g in Definition 3 above are said to be
objective functions.

What are the objective functions of (1) and (3) in § 1?

Definition 5. The set of all points (xl,XZ, ... ,xn) satisfying the m + n con-

10 Chapter 1. Geometric Linear Programming

straints of a canonical maximization or a canonical minimization linear
programming problem is said to be the constraint set of the problem. Any
element of the constraint set is said to be afeasible point or feasible solution.

The shaded regions of(2) and (4) constitute the constraint sets for (1) and (3)
respectively in § 1.

Definition 6. Any feasible solution of a canonical maximization (respectively
minimization) linear programming problem which maximizes (respectively
minimizes) the objective function is said to be an optimal solution.

Our immediate goal then is to find optimal solutions for (1) and (3) of §1.

§3. Polyhedral Convex Sets

This section presents the pertinent geometry of Rn for linear programming
problems, culminating in two theorems which will yield a procedure for
solving these problems. Throughout this section, the reader should strive to
understand the geometrical concepts in the smaller-dimensional spaces, i.e., in
R 1, R2, and R 3, with the understanding that these concepts have been extended
to real spaces of arbitrary finite dimension. Also, no proofs appear in this
section; indeed, the geometric linear programming procedure ultimately
developed in §5 will be abandoned in Chapter 2 in favor of a better method.
This by no means implies that the concepts presented here are not
important-they provide a crucial intuitive foundation on which to build our
knowledge of linear programming.

Definition 7. Let x=(X1,X2, ... ,xn), Y=(Y1,Y2, ... ,Yn)eRn. Then

tx + (1 - t)y, 0 ~ Y ~ 1,

is said to be the line segment between x and y inclusive.

The definition above is an extension of the usual geometric notion of a line
segment to higher dimensions. To motivate the fact that this is the usual notion
of a line segment in small dimensions, we give an example in R2.

EXAMPLE 8. Consider (2, 1), (4, - 2)eR2. The line segment between (2,1) and
(4, - 2) is, by the definition above, the collection of all points in R2 expressible
in the form

t(2, 1) + (1 - t)(4, - 2), 0 ~ t ~ 1.

If t = 0, we have

t(2, 1) + (1 - t)(4, - 2) = 0(2, 1) + 1(4, - 2) = (4, - 2).

§3. Polyhedral Convex Sets 11

If t = 1, we have

t(2, 1) + (1 - t)(4, - 2) = 1(2,1) + 0(4, - 2) = (2,1).

If t = 1/3, we have

t(2, 1) + (1 - t)(4, - 2) = 1/3(2,1) + 2/3(4, - 2) = (10/3, - 1).

By continuing this process of choosing values of t such that 0 ~ t ~ 1 and
evaluating t(2, 1) + (1 - t)(4, - 2), we obtain

y

__________ ~+-~~~--x
~t= 1/3

(10/3, -1) IC'\,./' t = 0

(4, -2)

which is the usual geometric notion of the line segment between (2,1) and
(4, - 2). Choose some other values of t and verify this for yourself!

Definition 9. Let S be a subset of Rn. S is said to be convex if, whenever
x=(Xl>X2 ,···,xn), Y=(Yl,Y2, ... ,Yn)ES, then

tx + (1 - t)YES, 0 ~ t ~ 1.

Stated quite simply, a subset of Rn is convex if the line segment connecting
any two points in the subset also lies entirely within the subset.

EXAMPLE 10.

y y

-----f~"""---x --------t------x

Convex sets in R2.

12 Chapter 1. Geometric Linear Programming

y y

--------~~~---X --------I-------X

Nonconvex sets in R2.

Definition 11. The set of points (XI' X 2 , •.. , xn)ERn satisfying an equation of the
form

alx l + a2 x 2 + ... + anXn = b

is said to be a hyperplane of Rn. The set of points (Xl> X 2 , ... , xn)ERn satisfying
an inequality of the form

or

is said to be a closed half-space of Rn.

EXAMPLE 12. (i) A hyperplane in R I is the set of points X I satisfying an equation
of the form a I X I = b. If a I is nonzero, this set is simply the point b/a I in R I and
the closed half-space a I X I :£ b or a I X I ~ b is closed ray in R I.

---~(---- Xl

(ii) A hyperplane in R2 is the set of points (XI' x 2) satisfying an equation of the
form alx I + a2x Z = b. If one of a l or az is nonzero, this set is a line in RZ and
the closed half-space a I X I + az X 2 :£ b or a I X I + az X 2 ;?: b is a closed half-plane
in R2.

X2

~,
(iii) A hyperplane in R3 is the set of points (X I ,X 2 ,X3) satisfying an equation
of the form a l XI + a2x2 + a3 x 3 = b. If one of ai' a2, or a3 is nonzero, this set
is a plane in R3 and the closed half-space alx l + a2 x 2 + a3 x 3 :£ b or alx l +
a2 x 2 + a3 x 3 ~ b is a closed half-space in R3 in the usual sense.

§3. Polyhedral Convex Sets 13

The concept of a hyperplane is an extension of the usual geometric notion of
a plane to higher dimensions. A closed half-space is thus all points "lying on
one side or the other" of a hyperplane including the hyperplane itself. One
could also define the concept of an open half-space (where the boundary
hyperplane is not included) by substituting strict inequalities for the weak
inequalities in Definition 11. We will have no need for oprn half-spaces in this
book.

The importance of closed half-spaces for linear programming may now be
made clear. Since each constraint of a canonical maximization or a canonical
minimization linear programming problem describes a closed half-space and
since the constraint set of the problem is the intersection of the solution sets of
its constraints, we have that the constraint set of a canonical maximization or a
canonical minimization linear programming problem is an intersection of
closed half-spaces. More is, in fact, true.

Theorem 13. The constraint set of" a canonical maximization or a canonical
minimization linear programming problem is convex. Such a set is said to be a
polyhedral convex set.

"Polyhedral" refers to the fact that the boundaries of the constraint set are
hyperplanes. In R2, the boundaries would be lines; in R 3 , the boundaries would
be planes.

EXAMPLE 14.

y

--------~~~~~--x

Polyhedral convex sets in R2.

14 Chapter 1. Geometric Linear Programming

Can you give an example of a convex set in R2 that is not a polyhedral
convex set?

Intuitively, there is a difference between the two polyhedral convex sets in
Example 14 above. The first set is bounded on all sides by lines whereas the
second set is unbounded. We now make these differences precise for arbitrary
polyhedral convex sets.

Definition 15. Let x = (Xl' X2"'" xn)ERn. The norm of x, denoted II x II, is

II x II = J xi + x~ + ... + x; .

Note that the norm of a point in Rn is the usual Euclidean distance of that
point from the origin.

Definition 16. Let r ~ O. The set of points x = (x I, X2' ... , Xn)E Rn such that

Ilxll ~r
is said to be the closed ball of radius r centered at the origin.

EXAMPLE 17. (i) The closed ball of radius 0 centered at the origin in Rn is simply
the origin of Rn.
(ii) The closed ball of radius r > 0 centered at the origin in R I is a line segment
including the endpoints.

------Xl r o r

(iii) The closed ball of radius r > 0 centered at the origin in R 2 is a circle and its
interior.

(iv) The closed ball of radius r > 0 centered at the origin in R3 is a sphere and
its interior.

§3. Polyhedral Convex Sets 15

The concept of a closed ball of radius r centered at the origin is an extension
of the usual geometric notion of a sphere centered at the origin and its interior
to higher dimensions. One could also define the concept of an open ball of
radius r centered at the origin by substituting strict inequality for the weak
inequality in Definition 16. We will have no need for open balls of radius r
centered at the origin in this book.

Definition 18. A subset S of R" is said to be bounded if there exists r ~ 0 such
that every element of S is contained in the closed ball of radius r centered at the
origin. A subset S of R" is said to be unbounded if it is not bounded.

EXAMPLE 19.
y

---+----~~~~_+---x

Bounded and unbounded polyhedral convex subsets in R2 (respectively).

We need but one more geometric definition before our main theorems.

Definition 20. Let S be a convex set in R". eES is said to be an extreme point of S
if there do not exist X, YES and t with 0 < t < 1 such that

e = tx + (1 - t)y.

Recall that tx + (1 - t)y, 0;£ t ;£ 1, is the line segment between x and y
inclusive. Since t = 0 implies that

tx + (1 - t)y = y

and t = 1 implies that

tx + (1 - t)y = x,

we have that tx + (1 - t)y, 0 < t < 1, is the line segment between x and y not
including the endpoints x and y. Hence, a point eES is an extreme point of S if
no line segment within S contains e except at an endpoint. Extreme points in
linear programming correspond to "corners" of polyhedral convex sets;
however, as the third diagram below shows, such an intuitive definition in
general is false.

16 Chapter 1. Geometric Linear Programming

EXAMPLE 21.

y y

---_~(££.I.~--x ----t----x

Extreme points of convex sets in R2 (in bold).

Can you give an example of a convex set in R2 that has no extreme points?
We now state the theorems which will yield a geometrical method for

solving linear programming problems.

Theorem 22. If the constraint set S of a canonical maximization or a canonical
minimization linear programming problem is bounded, then the maximum or
minimum value of the objective function is attained at an extreme point of S.

Theorem 23. (i) If the constraint set S of a canonical maximization linear
programming problem is unbounded and there exists MER such that the
objectivefunctionfsatisfiesf (Xl' x 2,···, xn) ~ Mfor all (Xl' x 2, ... , Xn)ES, i.e.,j
is bounded above (by M), then the maximum value of the objective function is
attained at an extreme point of S.
(ii) If the constraint set S of a canonical minimization linear programming
problem is unbounded and there exists MER such that the objective function g
satisfies g(Xl' X2, ... , xn) ~ M for all (Xl' X2, ... , Xn)ES, i.e., g is bounded below
(by M), then the minimum value of the objective function is attained at an extreme
point of S.

We note here that Theorem 22 and Theorem 23 only assert the existence of
optimal solutions at extreme points of the constraint set; there may be optimal
solutions at points of the constraint set other than extreme points (see
Exercise 4).

The existence of the real number M is crucial in Theorem 23 above. For
assume that such an M does not exist in (i) of Theorem 23, i.e., f is not bounded
above. Then, no matter what real number M is specified, we can find a point
(Xl' X2, ... , xn) of the constraint set S such that f(x l , X2"'" xn) > M. But this
means that f never attains a maximum value on this set since we can choose
larger and larger M. One can employ a similar argument in (ii) of Theorem 23.
In such cases, the linear programming problem is said to be unbounded. (This
should note be confused with the concept of an unbounded constraint set
which is different. See Exercise 9.) Unboundedness is a type of pathology in
linear programming problems that we will encounter and deal more
thoroughly with later.

§4. The Two Examples Revisited 17

§4. The Two Examples Revisited

Theorem 22 and Theorem 23 of §3 allow us to solve (1) and (3) of §l.

EXAMPLE 1 (Continued). Recall the profit maximization example (1) and its
constraint set (2) from § 1:

Maximize P(x, y) = 30x + 50y

subject to 2x + y;::;; 8

x + 2y;::;; 10

x,y~O

y

(0. 5)

--------~~~------x
(0,0) (4,0)

(1)

(2)

Since the constraint set (2) is bounded, Theorem 22 implies that the maximum
value of P(x, y) is attained at an extreme point in (2), namely at (0, 0),(4, 0), (0,5),
or (2,4). Hence we merely need to evaluate P at each of these points and note
which evaluation is maximum.

(x, y) P(x, y) = 30x + 50y

(0,0) 0
(4,0) 120
(0,5) 250
(2,4) 260

The maximum is attained at the point (2,4). Hence the appliance company
should manufacture 2 heaters and 4 air conditioners per day so as to obtain a
maximum profit of $260 per day.

EXAMPLE 2 (Continued). Recall the cost minimization example (3) and its
constraint set (4) from §1:

Minimize C(x, y) = 300x + 500y
subject to 20x + 40y ~ 1000

25x + 20y ~ 800
x,y~O

(3)

18 Chapter 1. Geometric Linear Programming

(0.40)

(20. 15)
(4)

(50,0)

Since the constraint set (4) is unbounded, before we use Theorem 23(ii), we
must show that C is bounded below, i.e., we must find MER such that C(x, y) =
300x + 500y ~ M whenever (x, y) is a point of the shaded region of (4). Now
any point of this shaded region, when substituted in C(x, y), will give a positive
cost. Hence we may take, for example, M = O. (There are infinitely many
different M's that one could choose here; for example, any negative M will
work.) Then Theorem 23(ii) implies that the minimum value of C(x, y) is
attained at an extreme point in (4), namely at (50,0), (0,40), or (20,15). Hence
we merely need to evaluate C at each of these points and note which evaluation
IS mllllmum.

(x,y)

(50,0)
(0,40)

(20,15)

C(x,y) = 300x + 500y

15000
20000
13500

The minimum is attained at the point (20,15). Hence the oil company should
operate refinery A for 20 days and refinery B for 15 days so as to attain a
minimum cost of $13500.

§5. A Geometric Method for Linear
Programming

The observant reader will have noticed several limitations of the procedure
developed in Theorem 22 and Theorem 23 for solving linear programming
problems. One such limitation is that Theorem 22 and Theorem 23 require a
knowledge of the extreme points of the constraint set of the problem being
considered. This knowledge may be difficult to obtain in some cases. For
example, consider the linear programming problem

§S. A Geometric Method for Linear Programming

Maximize f(x, y, z) = 2x + y - 2z
subject to x + y + z ;;:; 1

19

y+4z;;:;2 (5)
x,y,z~O.

Here, the bounding surfaces of the constraint set are planes and, although a
visualization of the constraint set is possible, it is more difficult in this three­
dimensional case than in the two-dimensional constraint sets of (2) and (4).
When we then move to higher dimensions and try to visualize the constraint
set of a four-dimensional problem such as

Maximize f(x, y, z, w) = 2x - y + z - w
subject to x + w ;;:; 1

x-y;;:;2 (6)
z - 2w;;:; 3
x,y,z, w ~ 0,

we find extreme difficulty. Can we somehow find the extreme points of the
constraint set of a linear programming problem without actually graphing the
constraint set? The answer is YES and we illustrate the method on (5).

The bounding surfaces of the constraint set of(5) are the planes x + y + z =

1, y + 4z = 2, x = 0, y = 0, and z = 0. Taking these five equations three at a
time and solving the resulting systems of linear equations, we obtain

[X;: ~: ~ IJ => (x,y,z) = (0,2/3, 1/3)
x=O

[
X + y + Z = IJ

y + 4z = 2 => (x, y, z) = (1/2,0,1/2)
y=O

[
X + y + z = IJ

y + 4z = 2 => (x, y, z) = (- 1,2,0)
z=O

[
X + y+z = IJ

x = ° => (x,y,z) = (0,0,1)
y=o

[
X + y + z = IJ

x = ° => (x,y,z) = (0,1,0)
z=O

[
X + y+z = IJ

y=O => (x,y,z) =(1,0,0)
z=o

[
y +4z = 2J

x = ° => (x,y,z) = (0,0, 1/2)
y=o

20 Chapter 1. Geometric Linear Programming

[
Y+4Z= 2J

x = ° => (x, Y, z) = (0,2,0)
z=o

[y : : ; 2J => INCONSISTENT
z=o

[~ : ~J => (x, y, z) = (0,0,0).
z=o

Some ofthese points may violate one or more of the original constraints of(5).
We tabulate each candidate point along with the constraints of(5) violated (if
any):

Candidate point

(0,2/3,1/3)
(1/2,0,1/2)
(-1,2,0)

(0,0,1)
(0,1,0)
(1,0,0)

(0,0, 1/2)
(0,2,0)
(0,0,0)

Constraint(s) of (5) violated

None
None
x~o

Y + 4z ~ 2
None
None
None

x+y+z~l

None

The extreme points of the constraint set of(5) are precisely those points above
that violated none of the original constraints. We can verify this by actually
graphing the constraint set of (5):

z

, 2/3, 1/3)

~~~---=::::..-y 
(0, 1,0) 

x 

Note that an upper bound for the number of extreme point candidates in this 



§5. A Geometric Method for Linear Programming 21 

example is given by 

(5)=~=10 3 3!2! 

since there are five constraints (considered as equations) and since three 
equations in three unknowns are needed to uniquely determine an ordered 
triple. Of these 10 candidates, only 6 were actually extreme points of the 
desired constraint set. 

We now seemingly have a geometric method in hand for solving linear 
programming problems. Unfortunately, there is a snag in our method at 
present. The snag is alluded to in Theorem 23, namely that a knowledge of the 
constraint set of a canonical linear programming problem is not sufficient to 
determine an optimal solution for the problem if the constraint set is 
unbounded. In such a problem, we must additionally show that the objective 
function on this set is bounded above in the maximization case or bounded 
below in the minimization case. But how do we know whether or not the 
constraint set of a linear programming problem is unbounded without 
graphing it? 

Proving that the constraint set of a canonical linear programming problem 
is bounded or unbounded by a purely analytical argument is largely problem­
dependent and may be quite difficult. The crux of such an analysis is to see 
whether or not one (or more) of the variables of the problem can assume 
arbitrarily large values and still satisfy all of the constraints. If so, the 
corresponding constraint set is unbounded provided it is nonempty; other­
wise, the constraint set is bounded. (A linear programming problem having an 
empty constraint set is said to be irifeasible since it has no feasible solutions. 
Infeasibility is a type of pathology in linear programming problems that we 
will encounter and deal more thoroughly with later.) In (5), we see that the 
main constraint x + y + z ~ 1 along with the nonnegativity of x, y, and z 
implies that x ~ 1, Y ~ 1, and z ~ 1. Hence the corresponding constraint set is 
bounded (as the preceding graph verifies). In contrast, we see that the modified 
linear programming problem 

Maximize 
subject to 

f(x, y, z) = 2x + y - 2z 
y + 4z ~ 2 
x,y,z ~ 0 

(7) 

has an unbounded constraint set since the constraint set is nonempty (for 
example, (x, y, z) = (0,0,0) is in the constraint set) and the variable x can grow 
arbitrarily large and still satisfy all of the constraints. 

Now, if the constraint set of a canonical linear programming problem is 
unbounded, it remains to show that the objective function on this set is 
bounded above in the maximization case or bounded below in the minimi­
zation case. Again, such as analysis is largely problem-dependent and may be 
quite difficult. We illustrate with analyses for (6) and (7). 

In (6), the constraint set is nonempty (for example, (x, y, z, w) = (0,0,0,0) is in 



22 Chapter 1. Geometric Linear Programming 

the constraint set). Let x = O. Then any nonnegative value of y satisfies all of 
the constraints. Hence the constraint set is unbounded since y can assume 
arbitrarily large values and still satisfy all of the constraints. Furthermore, 

f(x, y, z, IV) = 2x - y + z - IV = (x + IV) + (x - y) + (z - 2IV) ~ 1 + 2 + 3 = 6, 

i.e., the objective function is bounded above by 6 on the constraint set. (Of 
course, there are infinitely many upper bounds here; for example, any real 
number greater than 6 will work.) Hence, an optimal solution of (6) is attained 
at an extreme point of the constraint set by Theorem 23(i). 

In (7), we have already noted that the constraint set is unbounded since the 
constraint set is nonempty and x ...... 00 does not violate any of the constraints. 
Now, fixing any nonnegative values of y and z with y + 4z ~ 2 for the moment, 
we see that x ...... OCJ implies that f(x, y, z) = 2x + y - 2z ...... OCJ and hence the 
objective function of (7) is not bounded above on the constraint set. 

We summarize a general geometric method for linear programming. Given 
a canonical maximization or a canonical minimization linear programming 
problem having m main constraints and n nonnegativity constraints (see the 
canonical forms for linear programming problems in §2), the upper bound for 
the number of extreme point candidates is given by 

( m + n) = (m + n)!. 
n min! 

These candidates are determined by considering the m + n constraints as 
equations and solving the systems of linear equations obtained from these 
constraints by taking the equations n at a time. In general, only a portion of 
these candidates will then satisfy all of the original constraints of the problem. 
One must also determine whether the constraint set is bounded or unbounded. 
If the constraint set is bounded, Theorem 22 may be used directly to solve the 
problem by testing each of the extreme points in the objective function. If the 
constraint set is unbounded, one must additionally show that the objective 
function on this set is bounded above (in the maximization case) or bounded 
below (in the minimization case) before Theorem 23 is applied in the same 
manner. One should generally determine the boundedness or unboundedness 
of the constraint set and, in the latter case, the bounded above or bounded 
below condition on the objective function before finding the extreme points as 
described above. For if the constraint set is unbounded and the objective 
function on this set is not bounded above (in the maximization case) or not 
bounded below (in the minimization case), then the linear programming 
problem is unbounded and no extreme points need be found at all! 

§6. Concluding Remarks 

The reader has no doubt realized by now that the geometric procedure 
discussed in §5 is cumbersome to use as a general technique. There are several 
disadvantages inherent in solving canonical linear programming problems 



Exercises 23 

geometrically. Real-life linear programming problems typically involve 
hundreds of variables. Hence the geometric visualization of constraint sets is 
usually impossible. If we rely on the geometric method of §5, we have 

( m + n) = (m + n)! 
n m!n! 

as an upper bound for the number of extreme point candidates to be found and 
tested. This number is generally prohibitively large. For example, ifm = 15 and 
n = 10 (a relatively small linear programming problem by industrial stan­
dards), we have 

( m ; n) = G~) > 3200000; 

furthermore, finding just one extreme point candidate involves solving a 
system of 10 linear equations in 10 unknowns! In addition, we need analyses to 
determine whether the constraint set of the problem is bounded or unbounded 
and, in the latter case, whether the objective function on this set is bounded 
above or bounded below. There must be a better way! 

Fortunately, there is a method, the simplex algorithm, capable of finding 
optimal solutions to linear programming problems without finding and 
testing large numbers of extreme point candidates. In addition, the algorithm 
will detect pathological behavior such as empty constraint sets and objective 
functions that are not bounded above or bounded below. 

EXERCISES 

1. Draw and shade appropriate regions in R2 as described below. All regions are to be 
constrained to the first quadrant of the Cartesian plane. 

a. a bounded polyhedral convex subset 
b. an unbounded polyhedral convex subset 
c. a bounded nonconvex subset 
d. an unbounded nonconvex subset 
e. a convex subset that is not a polyhedral convex subset 
f. a convex subset having no extreme points 

g. a polyhedral convex subset having no extreme points 
h. a bounded polyhedral convex subset having exactly one extreme point 
1. an unbounded polyhedral convex subset having exactly one extreme point 
j. an unbounded convex subset having infinitely many extreme points 

2. Convert each of the linear programming problems below to canonical form as in 
Definition 3. [Note: The conversion ofa linear programming problem to canonical 
form will be crucial for the simplex algorithm to be discussed in Chapter 2.J 

a. Maximize f(x, y) = x + y 
subject to x - Y ~ 3 

2x + y ~ 12 
O~x~4 
O~y~6 



24 

b. Minimize 
subject to 

c. Maximize 
subject to 

d. Minimize 
subject to 

g(x,y) = x - Y 
2x - Y ~ -1 
0:;;x:;;2 
y~O 

J(x, y) = - 2y - x 
2x-y~-1 

3y- x:;; 8 
x,y~O 

Chapter 1. Geometric Linear Programming 

g(x,y,z) = x - 2y - z 
lOx + 5y + 2z :;; 1000 
2y+ 4z:;; 800 
x,y,z ~ 0 

3. Solve each of the problems below by sketching the constraint set and applying 
Theorem 22 or Theorem 23. 

a. Maximize J(x,y) = 5x + 2y 
subject to x+3y:;;14 

2x + y:;; 8 
x,y~O 

b. Minimize g(x,y) = 5x + 2y 
subject to x + 3y ~ 14 

2x+y~8 

x,y~O 

c. Exercise 2a above 
d. Exercise 2b above 
e. Exercise 2c above 

f. Maximize J(x,y,z) = x - 2y - z 
subject to lOx + 5y + 2z:;; 1000 

2y +4z:;; 800 
x,y,z ~ 0 

g. Exercise 2d above 
h. A publishing firm prints two magazines, the Monitor and the Recorder, each in 

units of one hundred. Each unit of the Monitor requires 1 unit of ink, 3 units of 
paper, and 4 hours of printing press time to print; each unit of the Recorder 
requires 2 units of ink, 3 units of paper, and 5 hours of printing press time to 
print. The firm has 20 units of ink, 40 units of paper, and 60 hours of printing 
press time available. If the profit realized upon sale is $200 per unit of the 
Monitor and $300 per unit of the Recorder, how many units of each magazine 
should the firm print so as to maximize profits? 

i. A furniture factory owns two lumber operations. The first lumber operation 
produces 1/2 ton of usable walnut, 1 ton of usable oak, and 1 ton of usable pine 
per day. The second lumber operation produces 1 ton of usable walnut, 1 ton of 
usable oak, and 1/2 ton of usable pine per day. The factory requires at least 10 
tons of walnut, 15 tons of oak, and 10 tons of pine. If it costs $300 per day to run 
the first lumber operation and $350 per day to run the second lumber operation, 
how many days should each operation be run so as to minimize costs? 

J. A drug company sells three different formulations of vitamin complex and 



Exercises 25 

mineral complex. The first formulation consists entirely of vitamin complex and 
sells for $ I per unit. The second formulation consists of 3/4 of a unit of vitamin 
complex and 1/4 of a unit of mineral complex and sells for $2 per unit. The third 
formulation consists of 1/2 of a unit of each of the complexes and sells for $3 per 
unit. If the company has 100 units of vitamin complex and 75 units of mineral 
complex available, how many units of each formulation should the company 
produce so as to maximize sales revenue? 

4. a. Prove that there are infinitely many optimal solutions for Exercise 3j above, 
only two of which occur at extreme points of the constraint set. [Hint: Find two 
distinct optimal solutions occurring at extreme points and show that any point 
on the line segment connecting these points is an optimal solution.] 

b. Graph all optimal solutions of part a on the constraint set diagram of 
Exercise 3j. 

5. Prove (in general) that any point on the line segment connecting two distinct 
optimal solutions of a canonical linear programming problem is an optimal 
solution. Deduce that any canonical linear programming problem has either zero, 
one, or infinitely many optimal solutions. 

6. Solve (5) of §5. 

7. Find the upper bound for the number of extreme point candidates in (6) of §5. 

8. Consider the linear programming problem below: 

Minimize 
subject to 

g(x,y,z, w) = x - 2y+ 3z- 4w 
- 5x - 4y - 3z - 2w ~ - 1 
x,y,z, w ~ O. 

a. Show that the constraint set is bounded. 
b. Find all extreme point candidates by considering the five constraints as 

equations and solving the (!) systems of linear equations obtained from these 

constraints by taking them four at a time. 
c. Solve the linear programming problem by applying Theorem 22. 

9. Consider the linear programming problem below: 

Minimize 
subject to 

g(x, y, Z, w) = x - 2y + 3z - 4w 

x + 2y + 3z + 4w ~ 5 
-y-2w~ -I 
x,y,z, w ~ O. 

a. Show that the constraint set is unbounded. 
b. Show that the objective function is bounded below on the constraint set. 
c. Find all extreme point candidates by considering the six constraints as 

equations and solving the (!) systems of linear equations obtained from these 

constraints by taking them four at a time. 
d. Solve the linear programming problem by applying Theorem 23. 

10. Show that the linear programming problem 



26 Chapter 1. Geometric Linear Programming 

Minimize g(x, y) = x - 3 Y 
subject to x + y ~ 2 

x -2y~O 
y-2x ~ 1 
x,y~O 

is unbounded. [Hint: Graph the constraint set and show that g(x, y) --> - (fJ as 
J' --> ex along the line x - 2y = O.J 

11. Label each of the following statements TR UE or FALSE and justify your answers. 

a. Any unbounded linear programming problem has an unbounded constraint 
set. 

b. Any linear programming problem having an unbounded constraint set is 
unbounded. 

12. Show that the linear programming problem 

Maximize f(x, y) = 3x + 2y 
subject to 2x - y ~ - 1 

is infeasible. 

x -2y~O 
x,y~O 



CHAPTER 2 

The Simplex Algorithm 

§O. Introduction 

In this chapter, we present the simplex algorithm, an effective method for 
solving the canonical maximization and canonical minimization linear 
programming problems of 1 §2. The simplex algorithm was developed in the 
1940's by George B. Oantzig. We will employ certain refinements in Oantzig's 
original technique developed in the 1960's by A.W. Tucker. In particular, we 
will record our linear programming problems in what is called a Tucker 
tableau, a more compact version of the original Oantzig tableau and 
considerably easier to use. 

§ 1. Canonical Slack Forms for Linear Programming 
Problems; Tucker Tableaus 

Consider the canonical maximization linear programming problem of 1 §2: 

Maximize 
subject to 

f(X I ,X2 ,··· ,Xn) = CIX I + C2 X 2 + ... + CnXn - d 
allx l + a 12 x 2 + ... + a1nXn ;;:; bl 

a2l x l + a 22 x 2 + ... + a 2n X n ;;:; b2 

am1x I + a m2 x 2 + ... + amnXn;;:; bm 

Xl,X2,···,Xn~0. 

allx 1 + a 12 x 2 + ... + alnXn + tl = bl 

a 21 x 1 + a 22 x 2 + ... + a 2n X n + t2 = b2 

(1) 



28 Chapter 2. The Simplex Algorithm 

Then 
a ll x 1 + a 12 x 2 + ... + a 1n X n - b1 = - tl 

a 21 x 1 + a 22 x 2 + ... + a 2n Xn - b2 = - t2 

and we can reformulate (1) as 

Maximize 
subject to 

f(X 1,X2 ,··· ,Xn) = C1X 1 + C2 X 2 + ... + CnXn - d 

a ll x 1 + a 12 x 2 + ... + a 1n X n - b1 = - tl 

a 21 x 1 + a 22 x 2 + ... + a 2n X n - b2 = - t2 

a m1 x 1 + a m2 x 2 + ... + amnXn - bm = - tm 

tl,t2,···,tm~O 
X 1X 2 ' ... ,Xn ~ o. 

(2) 

Similarly, consider the canonical minimization linear programming prob­
lem of 1§2: 

Then 

Minimize 
subject to 

g(Xl,X2,···,Xn)=C1Xl +C2 X 2 + ... +cnxn-d 

a ll x 1 + a 12 x 2 + ... + a 1n Xn ~ b1 

a 21 x 1 + a 22 x 2 + ... + a 2n X n ~ b2 

a m1 x 1 + a m2 x 2 + ... + amnXn ~ bm 

Xl,X2,···,Xn~O. 

a ll x 1 + a 12 x 2 + ... + a 1n X n = b1 + tl 
a 21 x 1 + a 22 x 2 + ... + a 2n X n = b2 + t2 

a ll x 1 + a 12 x 2 + ... + a 1n Xn - b1 = tl 
a 21 x 1 + a 22 x 2 + ... + a 2n X n - b2 = t2 

and we can reformulate (3) as 

Minimize 
subject to 

g(X 1,X2 ,·· .,xn) = C1X 1 + C2X2 + ... + CnXn - d 

a ll x 1 + a 12 x 2 + ... + a 1n X n - b1 = tl 
a 21 x 1 + a 22 x 2 + ... + a 2n X n - b2 = t2 

a m1 x 1 + a m2 x 2 + ... + amnXn - bm = tm 

tl,t2,···,tm~O 
Xl,X2,···,Xn~O. 

(3) 

(4) 

Definition 1. The linear programming problems (2) and (4) above are said to 



§1. Canonical Slack Forms for Linear Programming Problems 29 

be canonical slack maximization and canonical slack minimization linear 
programming problems respectively. The variables t 1 ,t2 , .•. ,tm are said to be 
slack variables. 

Slack variables are termed as such because they produce equalities from 
inequalities-they, in effect, "take up the slack" on one side of the inequality in 
each type of linear programming problem. We now develop a more concise 
notation for these canonical slack linear programming problems. 

Definition 2. The tables 

XI lS ... xn -1 

all 

a 21 

amI 

c I 

and 

-I 

a l2 ... a ln 

~2 ... a 2n 

a m2 ··· amn 

c2 ... cn 

all ~I ... 
a l2 ~2 ... 

a ln ~n ... 

b l b2 ... 

b l 

b2 

bm 

d 

amI 

am2 

amn 

bm 

= -t 
m 

=f 

c I 

c2 

cn 

d 

= tl = S. ... = tm = g 

are said to be Tucker tableaus or simply tableaus of the canonical slack 
maximization and the canonical slack minimization linear programming 
problems respectively. The variables to the north ofthe maximum tableau and 
to the west of the minimum tableau are said to be independent variables or 
nonbasic variables. The variables to the east ofthe maximum tableau and to the 
south of the minimum tableau are said to be dependent variables or basic 
variables. 

In this book, we will use the terms independent and dependent rather than 
non basic and basic respectively. 

Note how the main constraints of each of the canonical slack linear 
programming problems are recorded in the corresponding Tucker tableaus. 
The coefficients of the main constraints of (2) appear as rows of the maximum 
tableau. The ith main constraint may be reconstructed from the ith row of 
coefficients by multiplying each coefficient by its corresponding independent 
variable (or multiplying by - 1 in the case of bJ, adding all such products, and 
setting the result equal to the corresponding dependent variable. The objective 



30 Chapter 2. The Simplex Algorithm 

function of the problem is recorded by the last row of the maximum tableau in 
the same manner. Similarly, the main constraints and objective function of (4) 
are recorded in the minimum tableau above as columns instead of rows. (There 
is a reason for this difference which will be made clear in Chapter 4.) The 
reason for the choice of minus sign in front of the constant d in the problems (2) 
and (4) above is now seen to be one of convenience. Note that the 
nonnegativity constraints of a canonical slack maximization or a canonical 
slack minimization linear programming problem are not recorded in the 
corresponding Tucker tableaus. The nonnegativity of all variables in a linear 
programming problem is assumed in the remainder of this chapter. The 
consequences of relaxing this assumption will be investigated in Chapter 3. 

§2. An Example: Profit Maximization 

In this section, we present and completely solve a typical canonical maximi­
zation linear programming problem. The purpose of this discussion is twofold. 
First, we will illustrate the concepts just defined in § 1. Secondly, and more 
importantly, our method of solution will correspond to the steps taken by the 
simplex algorithm to solve the problem. As we proceed toward the solution, 
these steps will be straightforward but somewhat tedious. For now, attempt 
oply to understand the steps and do not worry about the tedium of the 
calculations. In §3 of this chapter, we will see that the calculations associated 
with the simplex algorithm solution of a canonical linear programming 
problem correspond to easy transformations on Tucker tableaus. We now 
present our problem. 

EXAMPLE 3. An electrical firm manufactures circuit boards in two configu­
rations, say configuration #1 and configuration #2. Each circuit board in 
configuration #1 requires 1 A component, 2 B components, and 2 C compo­
nents; each circuit board in configuration #2 requires 2 A components, 2 B 
components, and 1 C component. The firm has 20 A components, 30 B 
components, and 25 C components available. If the profit realized upon sale is 
$200 per circuit board in configuration #1 and $150 per circuit board in 
configuration #2, how many circuit boards of each configuration should the 
electrical firm manufacture so as to maximize profits? 

Put 
Xl = # of circuit boards in configuration #1 

X2 = # of circuit boards in configuration #2. 

Then the mathematical reformulation of the problem is 

Maximize 
subject to 

P(X I ,X2 ) = 200x l + 150X2 

Xl + 2X2 ~ 20 
2Xl + 2X2 ~ 30 
2Xl + X2 ~ 25 
X I ,X 2 ~ o. 



§2. An Example: Profit Maximization 

Put 

tA = slack variable for A components 
tB = slack variable for B components 
tc = slack variable for C components. 

Then, from §1, the canonical slack form of the problem is 

Maximize P(X I ,X2) = 200x I + 150x2 
subject to Xl + 2X2 - 20 = - tA 

2XI +2X2 -30= -tB 
2XI + X2 - 25 = - tc 
tA' tB' tC,X I ,X2 ~ O. 

(5) is recorded in a Tucker tableau as 

Xl ~ -1 

I 2 20 
2 2 30 
2 1 25 

200 150 0 =p 

31 

(5) 

(6) 

Xl and X2 are independent variables in this tableau while tA' tB' and tc are 
dependent variables. 

We now begin the steps which will ultimately lead to an optimal solution for 
the problem. Solve the main constraint 2XI + X2 - 25 = - tc for Xl to obtain 

Xl = - 1/2tc - 1/2x2 + 25/2, 
i.e., 

1/2tc + 1/2x2 - 25/2 = - Xl. 

Now replace every occurrence of X I in all other equations of (5) (including the 
objective function) by -1/2tc - 1/2x2 + 25/2. Upon simplification, (5) 
becomes 

Maximize 
subject to 

P(tc, x 2) = - lOOtc + 50x2 + 2500 
-1/2tc + 3/2x2 - 15/2 = - tA 
-tc + X 2 - 5 = - tB 

1/2tc + 1/2x2 - 25/2 = - Xl 
tA,tB,tOXI,X2~0 

with corresponding tableau 

-112 3/2 15/2 
-1 1 5 
112 112 25/2 

-100 50 -2500 =p 

(7) 

(8) 



32 Chapter 2. The Simplex Algorithm 

It is crucial at this point to notice that any feasible solution of (5) is a feasible 
solution of (7) and vice versa. No feasible solutions have been created or 
destroyed in passing from tableau (6) to tableau (8). Note also that the 
variables Xl and te of tableau (6) have exchanged places in tableau (8), i.e., Xl' 

originally independent in (6), becomes dependent in (8), and te, originally 
dependent in (6), becomes independent in (8). This exchange will be important 
in §3. 

We now repeat the above procedure with the main constraint - te + X 2 -

5 = - tB of (7). Solve this constraint for X 2 to obtain 

X 2 = te - tB + 5, 
i.e., 

-te+ tB-5= -X2 · 

Upon replacing every occurrence of X 2 in all other equations of (7) by te -
tB + 5, (7) becomes 

Maximize 
subject to 

P(te, tB) = - 50te - 50tB + 2750 
te - 3/2tB = - tA 
- te + tB - 5 = - X 2 

te- 1/2tB-1O= -Xl 

tA,tB,te'Xl,X2 ~ 0 

with corresponding tableau 

lc tB -1 

1 -3/2 0 
-1 1 5 

1 -1/2 10 

-50 -50 -2750 =p 

(9) 

(10) 

Any feasible solution of (7) is a feasible solution of (9) and vice versa. Also, the 
variables X 2 and tB of tableau (8) have exchanged places in tableau (10), X 2 

going from independent in (8) to dependent in (10) and tB going from 
dependent in (8) to independent in (10). 

At this point, the optimal solution is contained in tableau (10) and the 
simplex algorithm would terminate. We will see later that there is an easy way 
to recognize this point of termination. For now, we content ourselves with 
finding the optimal solution in (10). First, examine the objective function of 
(10), namely 

P decreases with increasing te and tB; since we are trying to maximize P, we 
would like to set te and tB equal to the smallest values possible. Since te, tB ~ 0, 
we put te = 0 and tB = 0 to obtain P(O,O) = 2750. This profit is optimal since 
any change in the independent variables te and tB decreases expected profits. 



§3. The Pivot Transformation 33 

The main constraints of (1 0) (see also (9)) then give tA = 0, X 2 = 5, and Xl = 10. 
Hence the optimal solution to our problem is 

Xl = 10, X 2 = 5, tA = tB = tc = 0, max P = 2750, 

i.e., the electrical firm should manufacture 10 circuit boards in configuration 
#1 and 5 circuit boards in configuration #2 so as to obtain a maximum profit 
of $2750. Note also that all available components will be used in this solution 
since tA = tB = tc = 0 implies no "slack" materials. This phenomenon will not 
always happen of course. After a real-life job is completed, it is reasonable to 
expect a surplus of one or more of the materials used. 

§3. The Pivot Transformation 

Recall the sequence of tableaus from Example 3 of §2: 

xl X2 -1 

1 2 20 
2 2 30 
2 1 25 

200 150 0 =p 

-112 3/2 15/2 
-1 1 5 
112 112 25/2 

-100 50 -2500 =p 

1 -3/2 0 
-1 1 5 

1 -112 10 

-50 -50 -2750 =p 

It would be advantageous to have some direct method for obtaining the 
second tableau from the first and the third tableau from the second without 
taking an equation at each step, solving it for a certain variable, and replacing 
every occurrence of this variable in the other equations of the problem by the 
resulting expression. Fortunately, there is such a method. 



34 Chapter 2. The Simplex Algorithm 

The pivot transformation is the operation by which we transform a tableau 
into a new tableau having exactly the same feasible solutions as the original. 
This transformation is crucial to the simplex algorithm, the goal of this 
chapter. Pivoting implements the cumbersome "solve and replace every 
occurrence of" procedure alluded to above. Without further ado ... 

The Pivot Transformation for Maximum 
and Minimum Tableaus 

(1) Choose a nonzero pivot entry p inside the tableau, but not in the objective 
function row/column or the - 1 column/row. (Convention: Pivot entries 
are noted by a superscripted asterisk (*).) 

(2) Interchange the variables corresponding to p's row and column, leaving 
the signs behind. 

(3) Replace p by l/p. 
(4) Replace every entry q in the same row as p by q/p. 
(5) Replace every entry r in the same column as p by - rip. 
(6) Every entry s not in the same row and not in the same column as p 

determines a unique entry q in the same row as p and in the same column as 
s and a unique entry r in the same column as p and in the same row as s. 
Replace s by (ps - qr)/p. 

Note that this algorithm does not tell us how to choose the pivot entry-it 
only tells us how to obtain a new tableau from an old tableau once a choice has 
been made. The question of best choices for pivot entries will ultimately be 
answered by the simplex algorithm. For now, we concentrate purely on the 
transformation itself given an initial choice of pivot entry. 

EXAMPLE 4. Pivot on 5 in the canonical maximum tableau below: 

1 2 3 
4 5 6 

7 8 9 =f 

We first implement steps (1) and (2) of the pivot transformation: 

xl S -1 

1 2 3 

4 5· 6 

7 8 9 =f 



§3. The Pivot Transformation 35 

By step (3), 5 gets replaced by 1/5. By step (4), 4 gets replaced by 4/5 and 6 gets 
replaced by 6/5. By step (5), 2 gets replaced by - 2/5 and 8 gets replaced by 
- 8/5. We now implement step (6) of the algorithm. To determine the entry 
replacing s = 1, find the entries q and r described in step (6): 

-1 

s = 1 r = 2 3 

q=4 p = 5' 6 

7 8 9 = f 

Now 1 gets replaced by (ps - qr)/p = ((5)(1) - (4)(2))/5 = - 3/5. Similarly, 3 
gets replaced by ((5)(3) - (6)(2))/5 = 3/5,7 gets replaced by ((5)(7) - (4)(8))/5 = 

3/5, and 9 gets replaced by ((5)(9) - (6)(8))/5 = - 3/5. Hence, pivoting on 5 
in the original tableau yields the new tableau 

Xl t2 -1 

-3/5 -2/5 3/5 

4/5 1/5 6/5 

3/5 -8/5 -3/5 =f 

Convince yourself of this before reading on! 

As stated before, the pivot transformation algorithm simplifies the proce­
dure of "solving and replacing every occurrence of" used in §2. One can verify 
by computation that the tableau transition above, namely 

Xl X2 -1 

1 2 3 

4 5' 6 

7 8 9 =f 

-3/5 -2/5 3/5 

4/5 1/5 6/5 

3/5 -8/5 -3/5 =f 

is equivalent to solving the equation 4Xl + 5x2 - 6 = - t2 of the first tableau 
for X 2 and replacing every occurrence of X 2 in the other equations by the 
resulting expression. A more general verification appears as Exercise 10. 



36 Chapter 2. The Simplex Algorithm 

We should remark that, although pivoting is a powerful tool for linear 
programming in particular, it is also a powerful tool for the entire field oflinear 
algebra in general. In fact, most of traditional linear algebra can be studied 
from the point of view of the pivot transformation. (One exception is 
eigenvalues.) For example, Exercise 11 illustrates how pivoting can be used to 
invert a matrix. 

§4. An Example: Cost Minimization 

In this section, we solve a canonical minimization linear programming 
problem using the pivot transformation of §3. We will still not see how the 
particular pivot entries are chosen, but such knowledge will follow in due time. 

EXAMPLE 5. A feed-mix company is preparing a mixture ofthree feeds, say feed 
#1, feed #2, and feed #3. Each unit of feed #1 contains 1 gram of protein, 
2 grams of fat, and costs 20 cents; each unit of feed #2 contains 2 grams of 
protein, 2 grams offat, and costs 30 cents; each unit offeed #3 contains 2 grams 
of protein, 1 gram of fat, and costs 25 cents. If the mixture of these three feeds 
must contain at least 200 grams of protein and at least 150 grams of fat, how 
many units of each feed should the company use so as to minimize costs? 

Put 

Xl = # of units of feed #1 
X 2 = # of units of feed #2 
X3 = # of units of feed #3. 

Then the mathematical reformulation of the problem is 

if 

Minimize 
subject to 

C(X l ,X 2,X3 ) = 20x l + 30x2 + 25X 3 

Xl + 2X2 + 2X3 ~ 200 
2x 1 + 2x 2 + X 3 ~ 150 
Xl' X 2 , X3 ~ 0; 

tp = slack variable for protein 
tF = slack variable for fat, 

then the canonical slack form of the problem is 

Minimize 
subject to 

C(Xl' X 2 , x 3 ) = 20xl + 30x2 + 25X 3 

Xl + 2X2 + 2X3 - 200 = tp 

2Xl + 2X2 + X3 - 150 = tF 

tp , tF , Xl' X 2 , X3 ~ O. 

(11) is recorded in a Tucker tableau as 

(11 ) 



§4. An Example: Cost Minimization 37 

I 2 20 
2 2 30 
2 I 25 

-I 200 150 0 

= tp = tF = C 

We now use the pivot transformation to determine an optimal solution to 
our canonical slack minimization linear programming problem. Verify the 
tableau transitions below! 

1 2 20 
2 2 30 
2' 1 25 

-I 200 150 0 

-112 3/2 15/2 
-1 I" 5 
112 112 25/2 -

-1 -100 50 -2500 

1 -3/2 0 
-I 1 5 

I -112 10 
(12) 

-I -50 -50 -2750 

At this point, an optimal solution is contained in tableau (12). The objective 
function of (12) is C(XI' t F , t p ) = 5tF + tOtp + 2750. C increases with increasing 
tF and tp; since we are trying to minimize C, we would like to set tF and tp equal 
to the smallest values possible. Since t F, tp ~ 0, we put tF = 0 and tp = 0 to 
obtain C(XI' 0, 0) = 2750. The main constraints of (12) then give 

Xl + 50 = X3 

- 3j2xl + 50 = X 2 . 



38 Chapter 2. The Simplex Algorithm 

Examine the first constraint above. X3 ?; ° implies that Xl + 50?; 0, i.e., Xl ?; 
- 50. Since we already know that Xl?; 0, no additional information on Xl is 
gained from this constraint. Examine the second constraint above. X z ?; ° 
implies that - 3/2xl + 50?; 0, i.e., Xl ~ 100/3. Hence ° ~ Xl ~ 100/3 and there 
are infinitely many optimal solutions to our problem, namely 

° ~ Xl ~ 100/3, 
Xz = - 3/2xl + 50, 

X3 = Xl + 50, 

tp = tF = 0, 

min C = 2750. 

A particular optimal solution (obtained by setting Xl = 0) is given by 

Xl = 0, X z = X3 = 50, tp = tF = 0, min C = 2750, 

i.e., a combination of 50 units offeed #2 and 50 units offeed #3 will produce a 
minimum-cost mixture satisfying the given nutrition requirements. This 
minimum cost is 2750 cents or $27.50. 

We conclude our discussion of this example with an interesting note. 
Compare the tableau sequence of the cost minimization linear programming 
problem above with the tableau sequence of the profit maximization linear 
programming problem of §2. Neglecting notation outside of the tableaus, the 
minimum tableaus obtained above are exactly the same as the maximum 
tableaus obtained in §2!! Furthermore, the minimum cost (in cents) above is 
equal to the maximum profit (in dollars) in §2. This suggests a relationship 
between canonical maximization and canonical minimization linear pro­
gramming problems-solving a canonical maximization linear programming 
problem also solves a related (or dual) canonical minimization linear 
programming problem and vice versa. A theoretical treatment of this "duality" 
is presented in Chapter 4. 

§5. The Simplex Algorithm for Maximum Basic 
Feasible Tableaus 

In this section, we develop the simplex algorithm for a special type of 
maximum tableau. In the succeeding sections of this chapter, we will build on 
this algorithm, culminating in a complete simplex algorithm for canonical 
maximization and canonical minimization linear programming problems. 

Definition 6. Any solution obtained by setting all of the independent variables 
of a tableau equal to zero is said to be a basic solution. 



§S. The Simplex Algorithm 39 

EXAMPLE 7. Consider the tableau sequence in Example 3 of §2: 

1 2 20 

2 2 30 

2 1 25 -
200 150 0 =p 

-112 312 1512 
-1 1 5 

112 112 2512 

-100 50 -2500 =p 

1 -312 0 

-1 1 5 

1 -112 10 

-50 -50 -2750 =p 

The basic solutions of these tableaus are as follows: 

First tableau: 

Xl = X 2 = 0, tA = 20, tB = 30, tc = 25, P = ° 
(Note that this solution is feasible since it satisfies all of the constraints of the 
original problem.) 

Second tableau: 

tc = X 2 = 0, tA = 15/2, tB = 5, Xl = 25/2, P = 2500 

(N ote that this solution is feasible since it satisfies all of the constraints of the 
original problem.) 

Third tableau: 

tc = tB = O,tA = 0,x2 = 5,x1 = 10,P = 2750 

(Note that this solution is the unique optimal solution of the linear 
programming problem.) 



40 Chapter 2. The Simplex Algorithm 

EXAMPLE 8. Consider the tableau sequence in Example 5 of §4: 

I 2 20 
2 2 30 
2 I 25 

-I 200 150 0 

-II2 3/2 15/2 
-I I 5 
II2 II2 25/2 

-I -100 50 -2500 

I -3/2 0 
-I I 5 

1 -II2 10 

-1 -50 -50 -2750 

The basic solutions of these tableaus are as follows: 

First tableau: 

Xl = x2 = X3 = 0, tp = - 200, tF = - 150, e = ° 
(Note that this solution is not feasible since tp < ° and tF < 0.) 

Second tableau: 

Xl = X2 = tp = 0, X3 = 100, tF = - 50, e = 2500 

(Note that this solution is not feasible since tF < 0.) 

Third tableau: 

Xl = tF = tp =0,x3 = 50,x2 = 50,e = 2750 

(Note that this solution is one of the infinitely many optimal solutions of the 
linear programming problem.) 



§5. The Simplex Algorithm 41 

In both examples above, the basic solution of the final tableau gives an 
optimal solution of the linear programming problem. This is, in fact, the goal 
of the simplex algorithm-to manipulate an initial tableau into a final tableau 
whose basic solution is optimal. Also, all basic solutions of the maximization 
example were feasible in direct contrast to the basic solutions of the 
minimization example. Is this true of maximum tableaus as compared to 
minimum tableaus in general? The answer is a resounding NO. (See, for 
example, Exercise 12.) The following definition characterizes those maximum 
tableaus whose basic solutions are feasible solutions. 

Definition 9. Let 

(ind. var.'s) -1 

all aI2 ... a ln b i 

a21 ~2 ... a2n b2 

= -(dep. var.'s) 

amI am2 ... amn bm 

CI C2 ... Cn d = f 

be a tableau of a canonical slack maximization linear programming problem. 
The tableau is said to be maximum basic feasible if b i , b2 , •.. , bm ~ O. 

In a maximum basic feasible tableau, the basic solution is a feasible solution. 
Indeed, upon setting all of the independent variables equal to zero, all of the 
main constraints reduce to the form 

- bi = - (dep. var.), 
I.e., 

bi = (dep. var.). 

Since bi ~ 0 for all i, we have 

(dep. var.) ~ 0 

for all dependent variables; such a solution satisfies all of the constraints of the 
original problem and is thus feasible. (What happens if some bi < O?) A similar 
argument shows the converse, namely that a maximum tableau whose basic 
solution is feasible must be a maximum basic feasible tableau. Our goal in this 
section is to determine what sequence of pivots, if any, will transform a given 
maximum basic feasible tableau into a final tableau whose basic solution is 
optimal. The answer is given by the following algorithm. 



42 Chapter 2. The Simplex Algorithm 

The Simplex Algorithm for Maximum Basic 
Feasible Tableaus 

(1) The current tableau is maximum basic feasible, i.e., of the form 

(indo var.'s) -1 

all a l2 ... a ln b l 

a 21 ~2 ... a 2n b2 

= -(dep. var.'s) 

amI a m2 ... amn bm 

c I c2 ... cn d = f 

with bl , b2, ... , bm "?, O. 
(2) If CI,C2'''''C"~0, STOP; the basic solution of the current maximum 

tableau is optimal. (This will be discussed more fully in a moment.) 
Otherwise, continue. 

(3) Choose cj > O. 
(4) If alj' a2j , ... , amj ~ 0, STOP; the maximization problem is unbounded. 

(This will be discussed more fully in a moment.) Otherwise, continue. 
(5) Compute 

min {bjaij:a;j> O} = bp/apj , 
1:$ i:5 m 

pivot on apj' and go to (1). 
(Note: There may be more than one value of p for which bp/apj is minimum. 
Choose any such p. (We will say more about this in §8.)) 

Before illustrating the algorithm above, we look more closely at steps (2) 
and (4). 

Step (2). If we STOP in step (2), the current tableau is of the form 

(ind. var.'s) -1 

<!O 

<!O 

= -(dep. var.'s) (13) 
<!O 

50 50 ... 50 d = f 

Since the tableau is maximum basic feasible, the basic solution is a feasible 
solution. The objective function given by this tableau is of the form 

f = ( ~ O)(ind. var.) + ( ~ O)(ind. var.) + ... + ( ~ O)(ind. var.) - d; 



§5. The Simplex Algorithm 43 

since we are trying to maximize j, we would like to set those independent 
variables having negative coefficients equal to the smallest values possible, 
namely zero. While zero coefficients do not force the corresponding independ­
ent variables to be zero, one can always obtain a feasible solution by setting 
such variables equal to zero anyway. Hence, the basic solution is also an 
optimal solution since any increase in those independent variables having 
negative coefficients decreases f. In general, zero coefficients here imply the 
possible existence of optimal solutions that are not basic since the correspond­
ing independent variables are not forced to be zero. Moral: (13) is the tableau 
form that terminates the simplex algorithm for maximum basic feasible 
tableaus with a basic solution that is optimal (and possibly other optimal 
solutions as well). 

Step (4). We begin by recalling (and formalizing) a definition from Chapter 1. 

Definition 10. A canonical maximization (respectively minimization) linear 
programming problem is said to be unbounded if the constraint set is 
unbounded and the objective function is not bounded above (respectively 
not bounded below) on this constraint set. 

Hence, an unbounded linear programming problem has no maximum (or 
minimum) since there are feasible solutions that make the objective function of 
the problem arbitrarily large (or small). Unboundedness in linear program­
ming problems should be viewed as pathological. Most real-life linear pro­
gramming problems will have well-defined solutions if properly posed. It is, 
however, a bonus that our algorithm recognizes such pathology and 
terminates. If we STOP in step (4), the current tableau is of the form 

x -1 

sO 2!0 

sO 2!0 

= -(dep. var.'s) (14) 

sO 2!0 

>0 d = f 

t 

Now set all of the independent variables except x equal to zero. All of the main 
constraints reduce to the form 

( ~ O)x - ( ~ 0) = - (dep. var.), 



44 Chapter 2. The Simplex Algorithm 

I.e., 

(~O)x + (~o) = - (dep. var.). 

If x is nonnegative, we have 

(~o) = - (dep. var.), 

I.e., 

(dep. var.) ~ 0; 

such a solution satisfies all of the constraints of the original problem and is 
thus feasible. But, as x ~ 00, we have 

f = (> O)x - d~ 00, 

i.e., we can make f arbitrarily large by increasing x. Moral: (14) is the tableau 
form that terminates the simplex algorithm for maximum basic feasible 
tableaus with an unbounded linear programming problem. 

We now illustrate our algorithm with two examples. 

EXAMPLE 11. Apply the simplex algorithm above to the maximum tableau 

2 I 8 

I 2 10 

30 50 0 

The parenthetical numbers below correspond to the steps of the simplex 
algorithm for maximum basic feasible tableaus. 

(1) The initial tableau is clearly maximum basic feasible. 
(2) We proceed to step (3) since C I = 30 and C2 = 50 are both positive. 
(3) We can choose either CI = 30 or c2 = 50. For definiteness, we choose 

CI = 30. 
(4) We proceed to step (5) since all = 2 and a21 = 1 are both positive. 
(5) Min {bl/al! = 8/2,b2 /a21 = 1O/1} = bl/all · 

Pivot on all: 

2" I 8 

I 2 10 

30 50 0 



§5. The Simplex Algorithm 

1/2 1/2 4 =-x l 

-1/2 3/2 6 = -~ 

-15 35 -120 =f 

Go to step (1). 

(1) The current tableau is clearly maximum basic feasible. 
(2) We proceed to step (3) since Cz = 35 is positive. 
(3) We must choose Cz = 35. 

45 

(4) We proceed to step (5) since a lZ = 1/2 and azz = 3/2 are both positive. 
(5) Min {bdalZ = 4/(1/2), bZ/a22 = 6/(3/2)} = bZ/a 22 . 

1/2 1/2 4 = -xl 

-1/2 3/2· 6 

-15 35 -120 = f 

-1 

213 -1/3 2 
-1/3 213 4 

-10/3 -70/3 -260 =f 

Go to step (1). 

(1) The current tableau is clearly maximum basic feasible. 
(2) Cl , Cz ~ 0; STOP; the basic solution of the current maximum tableau is 

optimal. This optimal solution is 

tl = t z = 0, Xl = 2, X2 = 4, max f = 260. 

Example 11 is the simplex algorithm solution of Example 1 of Chapter 1. 
The constraint set is 



46 Chapter 2. The Simplex Algorithm 

(0, 5) 

------f'-o'=::a...--- xl 
(0.0) (4.0) 

It is interesting to note what the simplex algorithm is doing geometrically here. 
Consider the Xl and X 2 values of the basic solutions of the three tableaus in 
Example 11: 

Tableau #1 
Tableau #2 
Tableau #3 

(X j ,X2) 
(0,0) 
(4,0) 
(2,4) 

We see that the basic solutions correspond to extreme points of the constraint 
set and that each pivot simulates a movement from one extreme point to an 
adjacent extreme point along a connecting edge. 

(0,5) 

----------~~~-----Xl 
(0, 0) (4. 0) 

Such facts are true in general for maximum basic feasible tableaus. Basic 
feasible solutions correspond to extreme points of constraint sets in the 
geometric sense. The simplex algorithm is designed so that the transition 
between basic feasible solutions of any two successive maximum tableaus 
(simulated by movement from one extreme point to another along a 



§s. The Simplex Algorithm 47 

connecting edge) does not decrease the value of the objective function. Hence 
each tableau transition maintains or increases the value of the objective 
function. Usually, after a finite number of tableau transitions, a maximum 
value of the objective function is reached or the simplex algorithm detects 
unboundedness. In rare instances, the objective function may maintain the 
same value repeatedly without the simplex algorithm terminating with a 
maximum value or a detection of unboundedness. This phenomenon will be 
discussed in §8. 

EXAMPLE 12. Apply the simplex algorithm above to the maximum tableau 

-1 1 1 
1 -1 3 

1 2 0 =f 

The parenthetical numbers below correspond to the steps of the simplex 
algorithm for maximum basic feasible tableaus. 

(1) The initial tableau is clearly maximum basic feasible. 
(2) We proceed to step (3) since Cl = 1 and C2 = 2 are both positive. 
(3) We can choose either C l = 1 or c2 = 2. For definiteness, we choose Cl = 1. 
(4) We proceed to step (5) since a2l = 1 is positive. 
(5) Min {b 2 /a 2l = 3/1} = b2 /a 2l (obviously!). 

Pivot on a2l : 

-1 1 1 
1· -1 3 

1 2 0 =f 

S "2 -1 

1 0 4 

1 -1 3 

-1 3 -3 =f 

Go to step (1). 

(1) The current tableau is clearly maximum basic feasible. 
(2) We proceed to step (3) since C2 = 3 is positive. 



48 Chapter 2. The Simplex Algorithm 

(3) We must choose c2 = 3. 
(4) a12 , a22 ~ 0; STOP; the maximization problem is unbounded. 

The constraint set of Example 12 is 

It is clear that the objective function !(xl , x 2 ) = Xl + 2X2 can be made 
arbitrarily large on this constraint set by considering feasible solutions farther 
and farther away from the origin. The movement within the constraint set 
given by the basic solutions of successive tableaus is illustrated below: 

Note that the unboundedness is detected at the point (3,0). The algorithm 
terminates because the objective function is not bounded above on the 
"infinite edge" of the line Xl - X2 = 3. (On the line Xl - X2 = 3, we have 

!(X I ,X 2) = Xl + 2X2 = (X2 + 3) + 2X2 = 3x2 + 3. 

Now !(XI ,X 2)--+CXJ as X2--+00.) 

We conclude this section with two important notes on the simplex 
algorithm for maximum basic feasible tableaus. First of all, this algorithm 



§6. The Simplex Algorithm for Maximum Tableaus 49 

preserves the maximum basic feasibility of a tableau, i.e., if an initial tableau is 
maximum basic feasible, then every subsequent tableau obtained via this 
algorithm will also be maximum basic feasible. This fact can be helpful in 
locating arithmetic mistakes in the b-columns of the tableaus. Secondly, when 
choosing the positive cj in step (3), it is advantageous to use some foresight and 
examine all positive c's and all a's above these c's. If you can find just one 
positive C corresponding to a column of nonpositive a's, then the linear 
programming problem is unbounded and the algorithm terminates. This is 
true even if there is some other positive c having positive a's in its column! Exploit 
the leniency built into this choice of the positive cj whenever you can! 

§6. The Simplex Algorithm for Maximum Tableaus 

So far, we have an algorithm for finding optimal solutions, if they exist, of 
canonical maximization linear programming problems having maximum 
basic feasible initial tableaus. What if the initial tableau of a canonical 
maximization problem is not maximum basic feasible? Before we can apply the 
algorithm of§5, we must convert the maximum tableau into a maximum basic 
feasible tableau. The algorithm below consists of the algorithm of §5 together 
with additional preliminary steps which perform the necessary conversion. 

The Simplex Algorithm for Maximum Tableaus 

(1) The current tableau is of the form 

(ind. var.'s) -1 

all al2 ... a ln bl 

a21 ~2 ... a2n b2 
= -(dep. var.'s) 

ami am2 ··· amn bm 

ci c2 ... cn d =f 

(2) If bl , bz, ... , bm ~ 0, go to (6). Otherwise, continue. 
(3) Choose bi < ° such that i is maximal. 
(4) If ail, aiZ ,"" ain ~ 0, STOP; the maximization problem is infeasible. (This 

will be discussed more fully in a moment.) Otherwise, continue. 
(5) If i = m, choose amj < 0, pivot on amj' and go to (1). If i < m, choose aij < 0, 

compute 

pivot on apj' and go to (1). 



50 Chapter 2. The Simplex Algorithm 

(Note: There may be more than one value of p for which bp/a pJ is minimum. 
Choose any such p. (We will say more about this in §8.)) 

(6) Apply the simplex algorithm for maximum basic feasible tableaus (§5). 

Before illustrating the algorithm above, we look more closely at step (4). 

Step (4). We begin by recalling (and formalizing) a definition from Chapter 1. 

Definition 13. A canonical maximization or canonical minimization linear 
programming problem is said to be irifeasible if it has no feasible solutions. 

Hence an infeasible linear programming problem has an empty constraint set. 
As with unboundedness, infeasibility in linear programming problems should 
be viewed as pathological. Even though most real-life problems have feasible 
solutions if properly posed, it is advantageous that our algorithm recognizes 
the existence of infeasibility and terminates. If we STOP in step (4), the current 
tableau is of the form 

(ind. var.'s) -\ 

I 
i-+ ~o ~o ~o <0 = -x (15) 

= f 

The equation given by the i tb row of this tableau is 

( ~ O)(ind. var.) + ( ~ O)(ind. var.) + ... + ( ~ O)(ind. var.) - ( < 0) = - x, 

i.e., 

( ~ O)(ind. var.) + ( ~ O)(ind. var.) + ... + ( ~ O)(ind. var.) + ( > 0) = - x. 

Since all of the independent variables are nonnegative in any feasible solution, 
we have 

-x>O, 
I.e., 

x<O 

which is impossible since dependent variables are nonnegative in any feasible 
solution. Hence the maximization problem has no feasible solutions. 
Moral: (15) is the tableau form that terminates the simplex algorithm for 
maximum tableaus with an infeasible linear programming problem. 

We now illustrate our new algorithm with two examples. 



§6. The Simplex Algorithm for Maximum Tableaus 51 

EXAMPLE 14. Apply the simplex algorithm above to the maximum tableau 

-1 -2 -3 
1 1 3 
1 1 2 

-2 4 0 =f 

The parenthetical numbers below correspond to the steps of the simplex 
algorithm for maximum tableaus. 

(1) The initial tableau is clearly a maximum tableau. 
(2) We proceed to step (3) since b l = - 3 is negative. 
(3) We must choose b l = - 3. 
(4) We proceed to step (5) since all = - 1 and a l2 = - 2 are both negative. 
(5) We can choose either all = - 1 or a l2 = - 2. For definiteness, we choose 

all = - 1. Since 1 = i < m = 3, we compute 

min ({bl/a ll = - 3/ -l} u {b 2 /a 21 = 3/1, b3 /a 31 = 2/1}) = b3 /a 31 . 

Go to step (1). 

(1) Obviously! 

-1 

1 

I" 

-2 

1 

-1 

1 

2 

-2 
1 

1 

4 

-1 

0 

1 

6 

-3 
3 

2 ---+ 

0 =f 

-1 

1 

2 

4 =f 

(2) We proceed to step (3) since b l = - 1 is negative. 
(3) We must choose b l = - 1. 
(4) We proceed to step (5) since a l2 = - 1 is negative. 



52 Chapter 2. The Simplex Algorithm 

(5) We must choose a12 = - 1. Since 1 = i < m = 3, we compute 

min ({bdaI2 = - 1/ -l} u {b 3/a32 = 2/l}) = bl /a 12 · 

Go to step (1). 

(1) Obviously! 

1 -I' 

-1 0 

1 I 

2 6 

1-1 -1 
I 
-1 0 

2 I 

8 6 

-1 

1 

2 

4 =[ 

1 

1 

1 

-2 =[ 

(2) b I, b2, b3 ~ 0, i.e., the tableau is maximum basic feasible. Go to step (6). 
(6) Apply the simplex algorithm for maximum basic feasible tableaus (§5). 

(This is left as an exercise for the reader.) 

EXAMPLE 15. Apply the simplex algorithm to the maximum tableau 

-1 -1 

I 1 

2 -4 

-3 
2 

0 

= -t 1 

= -t2 

=[ 

The parenthetical numbers below correspond to the steps of the simplex 
algorithm for maximum tableaus. 

(1) The initial tableau is clearly a maximum tableau. 
(2) We proceed to step (3) since bl = - 3 is negative. 
(3) We must choose b l = - 3. 
(4) We proceed to step (5) since all = -1 and al2 = -1 are both negative. 



§6. The Simplex Algorithm for Maximum Tableaus 53 

(5) We can choose either all = - 1 or a12 = - 1. For definiteness, we choose 
all = - 1. Since 1 = i < m = 2, we compute 

min({b l /a 11 = -3/-1}u{bz/aZl = 2/1}) = bZ/a 21 · 

Pivot on aZl: 

Go to step (1). 

(1) Obviously! 

-1 -1 -3 
I' 1 2 

2 -4 0 

S Xi -1 

1 0 -1 

1 1 2 

-2 -6 -4 

=f 

=f 

(2) We proceed to step (3) since b l = - 1 is negative. 
(3) We must choose b l = - 1. 
(4) a11 ,a1Z ~O; STOP; the maximization problem is infeasible. 

Hence the constraint set of this canonical maximization linear program­
ming problem is empty. This can be seen without graphing by looking at the 
main constraints of the original problem, namely 

-xl-xz~3 

xl+xz~2. 

Multiplying both sides of the first constraint by -1, we obtain 

Xl + X z ~ 3 
xl+xz~2. 

Since a quantity can never by greater than or equal to 3 and less than or equal 
to 2 simultaneously, this canonical maximization problem is infeasible. 

We conclude this section with two important notes on step (3) of the simplex 
algorithm for maximum tableaus. The choice of bi < 0 with maximal i in this 
step assures that all nonnegative b's below bi remain nonnegative in the new 
tableau after pivoting. This can be helpful in locating arithmetic mistakes in 
the b-columns of the tableaus. Note, though, that the maximality of i is 
unimportant for the determination of infeasibility in step (4). Any row as in (15) 



54 Chapter 2. The Simplex Algorithm 

implies an infeasible canonical maximization linear programming problem, 
regardless of its row index. Hence, do not apply step (3) blindly; if you can find 
just one negative b corresponding to a row of nonnegative a's, the linear 
programming problem is infeasible and the algorithm terminates. This is true 
even if there is some other negative b (possibly with maximal i) having negative a's 
in its row! Exploit the fact that the determination of infeasibility is independent 
of the choice of maximal i in step (3) whenever you can! 

§7. Negative Transposition; The Simplex Algorithm 
for Minimum Tableaus 

To obtain a simplex algorithm for canonical minimization linear program­
ming problems, we use a simple trick to convert minimum tableaus into 
maximum tableaus whence the algorithm of§6 can be implemented. This trick 
is called negative transposition. 

Definition 16. The negative transpose of the minimum tableau 

all 
a l2 

: 

a ln 

-1 bl 

is the maximum tableau 

XI x2 

-all -a 12 
-a21 -a22 

and vice versa. 

~I ... 
~2 ... 

~n ... 

b2 ... 

xn 

-a In 
-~n 

-c n 

ami ci 
am2 c2 

amn cn 

bm d 

-1 

-bl = -11 
-b2 = -12 

-b =-1 m m 

-d = -g 

(16) 

(17) 

Note that every column of the minimum tableau becomes a negated row in 
the maximum tableau except for the column outside ofthe tableau containing 



§7. Negative Transposition 55 

the independent variables and - 1 which becomes a row but is not negated. By 
looking at the equations represented by these tableaus, we see that every 
equation of the minimum tableau has been multiplied by -1 in the maximum 
tableau. This is the only difference effected by this tableau transition­
multiplication of each equation of the minimum tableau by - 1 simply gives 
the form we are accustomed to seeing in a maximum tableau, namely the 
negated dependent variables to the east. 

Now we can solve (17) by using the simplex algorithm for maximum 
tableaus in §6. (17) maximizes the objective function - g; the original 
minimization problem of(16) was to minimize the objective function y. Is there 
a relationship between the two quantities max ( - g) and min g7 The answer is 
(not surprisingly) YES-min 9 is the negative of max (- g). Hence we have 

The Simplex Algorithm for Minimum Tableaus 

(1) The initial tableau is of the form 

all ~I ... ami ci 
a l2 ~2 ... am2 c2 

(ind. var.'s) 

a ln ~n ... amn cn 

-\ bl b2 ... bm d 

= (dep. var.'s) = g 

(2) Take the negative transpose of the tableau to obtain a maximum tableau. 
(3) Apply the simplex algorithm for maximum tableaus (§6). 
(4) Miny = - max( -g). 

A remark is in order here. Algorithms for minimum tableaus not involving 
negative transposition exist. (F or example, go back and look at the solution of 
the cost minimization problem in §4; negative transposition was not used.) We 
postpone a discussion of these algorithms until Chapter 4. Until then, our 
approach to solving canonical minimization linear programming problems 
will be negative transposition to maximum tableau form and the application of 
the simplex algorithm for maximum tableaus. 

EXAMPLE 17. Apply the simplex algorithm above to the minimum tableau 

20 25 300 
40 20 500 

-\ 1000 800 0 



56 Chapter 2. The Simplex Algorithm 

The parenthetical numbers below correspond to the steps of the simplex 
algorithm for minimum tableaus. 

(1) The initial tableau is clearly a minimum tableau. 
(2) 

20 25 300 
40 20 500 

-1 1000 800 0 

-20 -40 -1000 

-25 -20 -800 

-300 -500 0 = -g 

(3) 

-1 

-20 -40 -1000 

-25 -20' -800 

-300 -500 0 = -g 

-1 

30' -2 600 

5/4 -V20 40 

325 -25 20000 = -g 

-1 

V30 -V15 20 
-V24 V30 15 

-65/6 -10/3 13500 = -g 

-

-

The optimal solution to the maximization problem is 

tj = t2 = O,Xj = 20,X2 = 15,max( - g) = -13500. 



§7. Negative Transposition 57 

(4) The optimal solution to the original minimization problem is 

t 1 = t2 = 0, Xl = 20, X 2 = 15, min g = - max ( - g) = 13500. 

Example 17 is the simplex algorithm solution of Example 2 of Chapter 1. 
The constraint set is 

(0, 40) 

(20,15)-r/-'f'"<L'h 

(50, 0) 

Consider the Xl and X 2 values of the basic solutions of the three maximum 
tableaus in step (3) above: 

Tableau #1 
Tableau #2 
Tableau #3 

(X l ,X2 ) 

(0,0) 
(0,40) 

(20, 15) 

The movement exhibited by these basic solutions in the constraint set diagram 
is illustrated below: 

(20, IS) 



58 Chapter 2. The Simplex Algorithm 

Note that the basic solutions of the second and third tableaus of step (3) are 
feasible while the basic solution of the first tableau is not feasible. There is a 
good reason for this-only the second and third tableaus of step (3) are 
maximum basic feasible tableaus! Recall that, in general, the simplex 
algorithm transition between maximum basic feasible tableaus is designed so 
that the objective function ( - 9 in this particular case) is not decreased. Hence 
each such transition maintains or increases the value of the objective function, 
usually until either a maximum value is reached or the algorithm detects 
unboundedness. In rare cases, a phenomenon known as cycling occurs; we 
discuss this phenomenon now. 

§8. Cycling 

We begin with an example due to E.M.L. Beale ([B2J). 

EXAMPLE 18. Consider the linear programming problem 

Maximize 
subject to 

f(x 1 , X 2, X 3, x4 ) = 3/4x1 - 20x2 + 1/2x3 - 6x4 

1/4xl - 8x2 - X3 + 9x4 ~ 0 
1/2xl - 12x2 - 1/2x3 + 3x4 ~ 0 
X3 ~ 1 
Xl,X2,X3,X4~O. 

Six simplex algorithm pivots are performed below. While it is not intended 
that you verify these computations, make sure that you see that all pivots have 
been made in accordance with the simplex algorithm. 

1/4" -8 -1 9 0 

1/2 -12 -112 3 0 

0 0 1 0 1 --
3/4 -20 1/2 -6 0 = f 

4 -32 -4 36 0 

-2 4 3/2 -15 0 

0 0 1 0 1 --
-3 4 712 -33 0 = f 



§8. Cycling 

-12 8 8" -84 0 

-1/2 114 3/8 -15/4 0 

0 0 1 0 1 

-1 -1 2 -18 0 

-1 

-3/2 1 l!8 -2112 0 

1116 -1/8 -3/64 3/16" 0 

3/2 -1 -1/8 2112 1 

2 -3 -114 3 0 

2" -6 -512 56 0 

1/3 -2/3 -1/4 16/3 0 

-2 6 512 -56 1 

1 -1 1/2 -16 0 

1/2 -3 -5/4 28 0 

-1/6 1/3" 116 -4 0 

1 0 0 0 1 

-1/2 2 7/4 -44 0 

-1 9 114 -8 

-1/2 3 1/2 -12 

1 0 0 0 

1/2 -6 3/4 -20 

= f 

=-"2 
= -~ 

=f 

= -~ 

=f 

= f 

0 

0 

1 

0 = f 

59 

-



60 Chapter 2. The Simplex Algorithm 

Note that the seventh tableau above is the same as the initial tableau up to a 
rearrangement of the first four columns. Hence the seventh tableau is no closer 
to an optimal solution than the initial tableau!! (Needless to say, this is quite 
frustrating!!) Since transitions between maximum basic feasible tableaus 
maintain or increase the value of the objective function, it is not surprising that 
the basic solutions of successive tableaus above have not increased the value of 
the objective function at all-it remains at 0 in all seven tableaus. 

The phenomenon in the example above is known as cycling. Cycling is rare; 
in fact, until quite recently, it was thought that cycling never occurred in 
practical problems, all of the pertinent examples having been artificially 
constructed. Then, in 1977, Kotiah and Steinberg ([KIJ) discovered a 
nonartificial class oflinear programming problems involving queueing theory 
which cycled. Hence, in this section, we give rules which prevent cycling. 
Inasmuch as cycling is a rare phenomenon, we make no guarantee of constant 
adherence to these rules in this book. While anticycling rules should certainly 
be a part of any computer implementation of the simplex algorithm, we treat 
cycling as an unfortunate infrequent occurrence rather than something that 
warrants constant special attention. 

In each tableau of Example 18, the pivot choice is not uniquely determined 
by the simplex algorithm. (For example, 1/2 and 1 are acceptable alternate 
pivot entries in the initial tableau, 3/2 is an acceptable alternate pivot entry in 
the second tableau, 3/8 is an acceptable alternate pivot entry in the third 
tableau, etc.) In a sense, our particular pivot choices contributed to the cycling! 
We can remedy the phenomenon of cycling by placing additional require­
ments on the choice of pivot entries in those instances when more than one 
entry meets the pivoting requirements of the simplex algorithm. These 
pivoting rules are due to R.G. Bland ([B3J). 

Simplex Algorithm Anticycling Rules 

List all variables, both independent and dependent, appearing in the initial 
tableau. (The ordering of the variables in the list is not important as long as the 
rules below are implemented in a manner consistent with this list.) Any pivot 
entry is determined uniquely by a pivot row and a pivot column. The rules 
below determine this row and column. 

Rule #1 (Determination of pivot row). Whenever there is more than one 
possible choice of pivot row in accordance with the simplex algorithm, choose 
the row corresponding to the variable that appears nearest the top (or front) of 
the list. 

Rule #2 (Determination of pivot column). Whenever there is more than one 
possible choice of pivot column in accordance with the simplex algorithm, 
choose the column corresponding to the variable that appears nearest the top 
(or front) of the list. 



§8. Cycling 61 

A reminder. Don't get too engrossed in the application of these rules­
before proceeding with any choice of pivot row or pivot column, examine the 
tableau for infeasibility or unboundedness. 

We now illustrate how the anticycling rules eliminate the problem of cycling 
in Example 18. 

EXAMPLE 19. Apply the simplex algorithm with anticycling rules to the initial 
maximum tableau of Example 18 below: 

V4 -8 -I 9 0 

1/2 -12 -1/2 3 0 

0 0 1 0 I 

3/4 -20 1/2 -6 0 = f 

We choose XI,XZ,X3,x4,tl,tZ,t3 as our list of variables. In the initial 
tableau, we have two choices for a pivot column, namely the first column 
(corresponding to C l = 3/4) and the third column (corresponding to C3 = 1/2). 
Since the first column corresponds to the variable x I and the third column 
corresponds to the variable X 3 , we choose the first column as our pivot column 
in accordance with Rule #2 of the anticycling rules. We now have two choices 
for the pivot row, namely the first row (bda ll = 0/(1/4) = 0) and the second 
row (bz/a ZI = 0/(1/2) = 0). Since the first row corresponds to the variable t I 

and the second row corresponds to the variable t z, we choose the first row as 
our pivot row in accordance with Rule #1 of the anticycling rules. Hence we 
pivot on 1/4 as in Example 18 to obtain the second tableau 

4 -32 

-2 4" 

0 0 

-3 4 

-4 36 

3/2 -15 

1 0 

7/2 -33 

0 

0 

1 

0 

= -~ 

= -~ 

=f 

In this new tableau, we have two choices for a pivot column, namely the second 
column (corresponding to Cz = 4) and the third column (corresponding to 
C3 = 7/2). Since the second column corresponds to the variable X z and the third 
column corresponds to the variable X 3 , we choose the second column as our 
pivot column in accordance with Rule #2 of the anticycling rules. The choice 
for the pivot row is then determined by the simplex algorithm and we pivot on 
4 as in Example 18 to obtain the third tableau 



62 Chapter 2. The Simplex Algorithm 

-12 8 8 -84 0 

-1/2 1/4 318 -15/4 0 

0 0 1 0 1 

-I -1 2 -18 0 = f 

In this new tableau, the choice for the pivot column is determined by the 
simplex algorithm but there are two choices for the pivot row, namely the first 
row (b l /a 13 = 0/8 = 0) and the second row (b 2 /a 23 = 0/(3/8) = 0). Since the first 
row corresponds to the variable XI and the second row corresponds to the 
variable X 2 , we choose the first row as our pivot row in accordance with 
Rule #1 of the anticycling rules. Hence we pivot on 8 as in Example 18 to 
obtain the fourth tableau 

1., 
~ 

-3/2 1 1/8 

1/16 -118 -3/64 

3/2 -1 -118 

2 -3 -1/4 

-21/2 

3/16 

2112 

3 

-1 

0 

0 

1 

0 

=-JS 
= -t.J 

= f 

In this new tableau, we have two choices for a pivot column, namely the first 
column (corresponding to c i = 2) and the fourth column (corresponding to 
C4 = 3). Since the first column corresponds to the variable t I and the fourth 
column corresponds to the variable X 4 , we choose the fourth column as our 
pivot column in accordance with Rule #2 of the anticycling rules. The choice 
for the pivot row is then determined by the simplex algorithm and we pivot on 
3/16 as in Example 18 to obtain the fifth tableau 

-1 

2 -6 -5/2 56 0 

1/3 -2/3 -1/4 16/3 0 

-2 6 5/2 -56 1 

1 -1 112 -16 0 = f 

In this new tableau, we have two choices for a pivot column, namely the first 
column (corresponding to C I = 1) and the third column (corresponding to 
C3 = 1/2). Since the first column corresponds to the variable tl and the third 
column corresponds to the variable X I' we choose the third column as our 
pivot column in accordance with Rule #2 of the anticycling rules. (Note that 
the first column was chosen as the pivot column at this point in Example 18.) 



~9. Concluding Remarks 63 

The choice for the pivot row is then determined by the simplex algorithm and 
we pivot on 5/2 (instead of 2 as in Example 18) to obtain the sixth tableau 

-1 

0 0 1 0 1 

2/15 -1/15 1/10 -4/15 1/10 

-4/5 \2/5 2/5 -112/5 2/5 

7/5 -11/5 -1/5 -24/5 -1/5 = f 

The pivot in this new tableau is uniquely determined by the simplex algorithm 
so that no anticycling rules are necessary. The reader should verify that a pivot 
on a21 = 2/15 results in a tableau whose basic solution is optimal. Hence, the 
cycling problem of Example 18 has been remedied. 

§9. Concluding Remarks 

We have now developed the simplex algorithm with anticycling rules, a 
complete procedure for solving canonical maximization and canonical 
minimization linear programming problems. Canonical maximization and 
canonical minimization linear programming problems fall into four classes: 

(i) infeasible linear programming problems, 
(ii) unbounded linear programming problems, 

(iii) linear programming problems having bounded constraint sets for which 
the optimal values of the objective functions are attained at extreme 
points, and 

(iv) linear programming problems having unbounded constraint sets for 
which the optimal values of the objective functions are attained at extreme 
points. 

The simplex algorithm with anti cycling rules effectively handles all four classes 
above. In classes (i) and (ii), the algorithm terminates with a tableau indicating 
the infeasibility or unboundedness; in classes (iii) and (iv), the algorithm 
terminates with a tableau whose basic solution is optimal irrespective of the 
boundedness or unboundedness of the constraint set. In addition, the simplex 
algorithm is much more efficient than the geometric approach of Chapter 1. 
For example, the geometric approach of Chapter 1 applied to a canonical 
linear programming problem with 15 main constraints and 10 variables would 
involve finding and testing up to 

(~~) > 3200000 

candidates for extreme points. The simplex algorithm, on the other hand, 



64 Chapter 2. The Simplex Algorithm 

would only require between about 13 and 50 pivot steps. The simplex 
algorithm is also easily implemented on a computer. 

EXERCISES 

1. Consider the canonical maximum tableau below: 

x y -1 

1 2 3 

4 5 6 

7 8 9 =[ 

a. In the notation of (1) of § 1, state the canonical maximization linear program­
ming problem represented by the tableau above. 

b. Explain why the initial tableau for the simplex algorithm solution of the linear 
programming problem 

Maximize 
subject to 

is not the tableau above. 

f(x,y) = 7x + 8y-9 
x + 2y ~ 3 
4x + 5y ~ 6 
x,y~O 

c. Pivot on 4 in the tableau above. 
d. Describe the tableau transition of part c in terms of the "solving and replacing 

every occurrence of" procedure demonstrated in §2. 

2. Consider the canonical minimum tableau below: 

x I 2 3 

y 4 5 6 

-I 7 8 9 

a. In the notation of (3) of § 1, state the canonical minimization linear program­
ming problem represented by the tableau above. 

b. Explain why the initial tableau for the simplex algorithm solution of the linear 
programming problem 

Minimize 
subject to 

is not the tableau above. 

g(x,y) = 3x + 6y - 9 
x + 4y ~ 7 
2x + 5y ~ 8 
x,y~O 

c. Pivot on 4 in the tableau above. 
d. Describe the tableau transition of part c in terms of the "solving and replacing 

every occurrence of" procedure demonstrated in §2. 



Exercises 65 

3. a. Describe the tableau transitions in Example 5 in terms of the "solving and 
replacing every occurrence of" procedure demonstrated in §2. 

b. Interpret the condition tp = tF = 0 in the optimal solutions of Example 5. 

4. Solve each of the linear programming problems in Exercise 3 of Chapter 1 by using 
the simplex algorithm. In each problem, illustrate the movement in the constraint 
set diagram exhibited by the basic solutions of successive tableaus. [Note: When 
illustrating the movement in a minimization problem, ignore the negative 
transposition step to maximum tableau form.] 

5. Solve each of the canonical linear programming problems below by using the 
simplex algorithm. 

a. Maximize f(x, y) = x 
subject to x + Y ~ 1 

x-y;:;;l 
y-2x;:;;1 
x,y;:;;O 

b. Minimize 
subject to 

g(x, y) = y - 5x 
x-y;:;;l 

c. Minimize 
subject to 

y~8 

x,y;:;;O 

g(x, y, z) = - x - Y 

3x + 6y + 2z ~ 6 
y+z;:;;l 
x,y,z;:;;O 

d. 
x y -1 

1 -1 3 

-2 1 2 

2 -1 0 =f 

e. 
x -2 1 -3 
y 1 -2 -2 

-I I 0 0 

x y -1 
f. 

-1 -1 -2 
1 -2 0 

-2 I 1 

-1 3 0 =f 



66 Chapter 2. The Simplex Algorithm 

6. a. Solve the canonical linear programming problem below by using the simplex 
algorithm with anticycling rules corresponding to the list x, y, t 1,(2, t3. 

X Y -I 

3 2 I 

-9 -2 0 

3 I 0 

3 2 I =[ 

b. Sketch the constraint set corresponding to the problem in part a and illustrate 
the movement in the constraint set diagram exhibited by the basic solutions of 
the successive tableaus in part a. 

7. The canonical programming problem below (due to H.W. Kuhn and given in [Bl]) 
will cycle after six particular simplex algorithm pivots. (The ambitious reader is 
invited to find these pivots and confirm this.) Solve the problem by using the 
simplex algorithm with anticycling rules. 

Xl X2 X3 X4 -I 

-2 -9 I 9 0 

V3 I -1/3 -2 0 

2 3 -I -12 2 

2 3 -I -12 0 = f 

8. Each of the canonical linear programming problems below has infinitely many 
optimal solutions. Solve each of the linear programming problems by using the 
simplex algorithm and find all optimal solutions. [Note: In the exercises of 
Chapter 3 and Chapter 4, an increasing emphasis will be made on finding all 
optimal solutions oflinear programming problems having infinitely many optimal 
solutions. For this reason, complete discussions of the problems below may be 
found in the answers section in the back of this book.] 

X Y z w -I 
a. 

0 I I -I 3 

I I I -I 3 

I 2 2 -4 0 = f 

b. 
x -I -I -I 
y -I I -I 

-I -2 I 0 



Exercises 67 

9. Solve each of the linear programming problems below. 

a. A nut company makes three different mixtures of nuts having the following 
compositions and profits per pound: 

Mixture 1 
Mixture 2 
Mixture 3 

Peanuts 

100% 
80% 
60% 

Cashews 

0% 
15% 
30% 

Pecans 

0% 
5% 
10% 

Profit 

$2 
$1.50 

$1 

The management of the company decides that it wants to produce at least twice 
as much of mixture 3 as of mixture 2 and at least twice as much of mixture 2 as of 
mixture 1. The company has 500 pounds of peanuts, 250 pounds of cashews, 
and 100 pounds of pecans available. If all production can be sold, how many 
pounds of each mixture should be produced so as to maximize profits? 

b. A hotel rental service needs to have clean towels for each day of a three-day 
period. Some of the clean towels may be purchased new and some may be dirty 
towels from previous days that have been washed by a laundry service. The cost 
of new towels is $1 per towel, the cost of a fast one-day laundry serice is 40¢ per 
towel, and the cost of a slow two-day laundry service is 25¢ per towel. If the 
rental service needs 300,200, and 400 clean towels for each of the next three days 
(respectively), how many towels should the rental service buy new and how 
many should the rental service have washed by the different laundry services so 
as to minimize total costs? 

10. Consider the canonical maximum tableau below: 

all a l2 bl 

a21 ~2 b2 

c l c2 d =f 

If aij #- 0, prove that pivoting on aij is equivalent to solving the ith equation of the 
tableau for the ph variable and replacing every occurrence of this variable in the 
other equations of the tableau by the resulting expression. 

11. (This problem is an application of the pivot transformation to linear algebra.) Let 
A = [a;j]nxn be a square matrix. Form the tableau 

all a l2 ... 
a 21 ~2 ... 

ani an2 ... 

0 0 ... 

a ln 

a 2n 

ann 

0 

-I 

0 

0 

0 

0 

= -I 
n 

= f 



68 Chapter 2. The Simplex Algorithm 

Then it is a fact that it is. possible to transform the tableau above into the tableau 

-1 

, , 
a ln 

, 
0 all a l2 ... 

a 21 
, 

a 22 
, ... a 2n 

, 
0 =-lS 

, 
a n2 

, 
ann 

, 
0 anI ... 

0 0 ... 0 0 = f 

via a sequence of pivot transformations and possibly a rearrangement of rows 
and/or columns if and only if A'=[a;j]nxn=A- 1. Use this fact to invert the 
matrices below if possible. [Note: Do not use the simplex algorithm here to 
determine pivot entries; choose pivot entries that will move the x's from north to 
east and the t's from east to north. Also, since the last row and the last column of all 
tableaus will always be zero, they may be deleted without any harm.] 

'H 1 :J 0 

b[~ 
-1 

n 1 

0 

{ 
2 

~l 2 3 

3 2 

2 1 

12. a. Find a necessary and sufficient condition for the minimum tableau 

all ~I ... amI c I 

a l2 ~2 ... a m2 c2 

a ln ~n ... '\nn cn 

-1 b l b2 ... bm d 

to have a feasible basic solution. 
b. Does the tableau satisfying the condition in part a but viewed as a maximum 

tableau necessarily have a feasible basic solution? 
c. Find a necessary and sufficient condition for the tableau 



Exercises 

y 

y 
I 

2 

y m 

1 

x I 

all 

~I 
: 

amI 

cI 

-

x 2 

a l2 

~2 
: 

am2 

c2 

-

69 

... -1 

... aln b l = 

... ~n b2 = 

: 

... amn bm = 

... cn d = f 

- = 

viewed as a maximum tableau to have a feasible basic solution and viewed as a 
minimum tableau to have a feasible basic solution. 

13. In the simplex algorithm for maximum basic feasible tableaus, the choice of 
positive C j in step (3) is unrestricted. It is shown in [R2] that restrictions on the 
choice of positive C j in this step effectively reduce the number of pivoting 
operations required in the simplex algorithm, especially for large linear program­
ming problems. Two such restrictions are discussed below. 
a. Replace step (3) of the simplex algorithm for maximum basic feasible tableaus 

with 

(3') Choose the most positive cj > O. 

Apply this new simplex algorithm for maximum basic feasible tableaus to the 
linear programming problem of Example 11. Illustrate the movement in the 
constraint set exhibited by the basic solutions of successive tableaus above and 
compare this movement with the movement exhibited in Example 11. 

b. Replace step (3) of the simplex algorithm for maximum basic feasible tableaus 
with 

(3') For each cj > 0, compute 

J1.j = min {bJai/aij> O}. 
l~i~m 

Choose the cj for which J1.jCj is most positive. 
Apply this new simplex algorithm for maximum basic feasible tableaus to the 
canonical linear programming problem below: 

x y z -I 

1 2 1 4 

2 1 5 5 

3 2 0 6 

1 2 3 0 =f 



CHAPTER 3 

Noncanonical Linear 
Programming Problems 

§o. Introduction 

The simplex algorithm discussed in Chapter 2 solves canonical maximization 
and canonical minimization linear programming problems. The important 
properties that characterize a canonical linear programming problem (in this 
book at least) are the nonnegativity of the initial independent variables and the 
inequality form of the main constraints. However, easy modifications of the 
algorithms of Chapter 2 enable the solution of certain noncanonical linear 
programming problems. The concern of this chapter is the formalization of 
these modifications. Our linear programming solution procedure will conse­
quently apply to a broader class of problems. In addition, the solution of 
the noncanonical problems here will be crucial to our first application in 
Chapter 5. 

§ 1. Unconstrained Variables 

Definition 1. A real variable in a linear programming problem is said to be 
unconstrained if there is no nonnegativity constraint on the variable. 

The first type of noncanonicallinear programming problem has canonical 
maximization or canonical minimization form except that there may not be 
nonnegativity constraints on all of the independent variables, i.e., some of 
these variables may be unconstrained. Fortunately, such a problem is easily 
transformed into an equivalent linear programming problem in canonical 
form plus a number of filed equations. We illustrate with several examples. 



§1. Unconstrained Variables 

EXAMPLE 2. 
Maximize f(x,y) = x + 3y 
subject to x + 2y ~ 10 

-3x- y~ -15. 

71 

In this problem, both x and yare unconstrained. Before we illustrate the 
solution procedure, we sketch the constraint set of this problem: 

y 

-----T~'lii~~ x + 2y = 10 

On the basis of this constraint set, can you guess the outcome of the problem? 
We begin by recording the problem in a Tucker tableau as usual. To record 

the fact that x and yare unconstrained, we circle those variables. 

00 -I 

I 2 10 

-3 -I -15 

I 3 0 = f 

Note that slack variables are always constrained to be nonnegative. Our goal 
now is to pivot each unconstrained independent variable down to the east. 
Since the tableau represents a noncanonicallinear programming problem, the 
simplex algorithm of Chapter 2 is not used for this. The simplex algorithm only 
applies to canonical linear programming problems! The acceptable pivot 
entries are all' a 12 , a 2l , and a22; in a noncanonical maximum tableau (or 
canonical maximum tableau for that matter), never pivot on any entry in the 
- 1 column or the objective function row. The most convenient of these pivots 
for our purposes is all = 1 or a22 = - 1 since all tableau entries will remain 
integral after pivoting. We choose all = 1 for definiteness; pivoting on 1 moves 
x down to the east: 



72 Chapter 3. Noncanonical Linear Programming Problems 

00 -1 

1· 2 10 

-3 -1 -15 

1 3 0 

to 1 -1 

1 2 10 
3 5 15 

-I 1 -10 

=f 

--+ 
pivot 

x 
down 

=-0 
= -~ 

= f 

Since x is unconstrained, the equation represented by the first row of the new 
tableau represents no constraint on tl or y. Notice, however, that this equation 
will enable us to solve for x if we know tl and y. We hence file the equation 
corresponding to the x row (for future use) and delete that row from the 
tableau: 

---+ 
file equation 

tl + 2y - 10 = -x; 
delete x row 

t 0 -1 1 

~=-~ 

~=f 

To pivot y down to the east, we must use a12 = 5: 

to 1 
-1 

3 5· 15 = -~ ---1 1 -10 = f pivot 
y 

down 

-1 

3/5 1/5 3 =-0 
-8/5 -1/5 -13 = f 

Since y is unconstrained, the equation represented by the first row of the new 
tableau represents no constraint on tl or t 2. Notice, however, that this 



§1. Unconstrained Variables 73 

equation will enable us to solve for y if we know t1 and t2. We hence file the 
equation corresponding to the y row (for future use) and delete that row from 
the tableau: 

-1 --file equation 
/-8/5 -V5 -13) =f 

3/5t[ + V5t2 - 3 = -y; 
delete y row 

This tableau is now in canonical form since all independent variables are 
constrained to be nonnegative. (Remember: slack variables are always 
constrained to be nonnegative!) At this point, we would ordinarily use the 
simplex algorithm to manipulate this canonical tableau into basic solution 
optimal form. However, the basic solution of the final tableau above is clearly 
optimal since any change in t1 or t2 would decrease f. Hence, the optimal 
solution to the noncanonical maximization linear programming problem is 
given by 

t 1=t2 =0, maxf=13, 

y = 3 (from second filed equation), 

x = 4 (from first filed equation). 

In view of the constraint set for this problem, this seems like a natural answer 
since the only extreme point is located at (4,3). But one must be careful with 
predictions as the following example illustrates. 

EXAMPLE 3. 
Maximize f(x,y) = x + 3y 
subject to x + 2y ~ 10 

3x + y ~ 15. 

As in Example 2, both x and yare unconstrained. The constraint set of this 
problem is sketched below: 

y 

x + 2y = 10 

Can you guess the outcome of this problem? 



74 Chapter 3. Noncanonical Linear Programming Problems 

Again, we record the problem in a Tucker tableau, pivot on a convenient 
entry that moves an unconstrained independent variable to the east, file the 
equation corresponding to the row of the unconstrained variable pivoted, and 
delete that row from the tableau: 

00 -I 

I" 2 10 

3 I 15 

I 3 0 =f 
-­pivot 

x 
down 

t 0 -I , 
I 2 

-3 -5 

-I 1 

10 =-0 
-15 = -~ 

-10 =f 

t 0 -1 , 

~ 

file equation 
t, + 2y - 10 = -x; 

delete x row 

~=-~ 

~=f 

Now pivot y down to the east, file the equation corresponding to the y row, and 
delete that row from the tableau: 

t, 0 -1 

-3 -5" -15 =-~ --
-1 1 -10 =f 

pivot 
y 

down 

-1 

3/5 -1/5 3 =-0 
-8/5 1/5 -13 = f ---file equation 

3/5t, - 1/5t2 - 3 = -y; 
delete y row 



§ 1. Unconstrained Variables 75 

~ -1 

1-8/5 1/5 I - 13 1 = f 

The final tableau above is in canonical form since all independent variables 
are constrained to be nonnegative. (Remember: Slack variables are always 
constrained to be nonnegative!) As in Example 2, we would ordinarily use the 
simplex algorithm at this point to manipulate this canonical tableau into basic 
solution optimal form. But the objective function f can clearly be made as 
large as we please by putting t1 = 0 and letting t2 --+ 00. Hence, the noncanon­
ical maximization linear programming problem is unbounded. This may be a 
surprise in view of the constraint set. The linear programming problem does 
not have an optimal solution at the lone extreme point of the constraint set 
as in Example 2. How could one move in the constraint set so as to force 
f(x, y) = x + 3y to get arbitrarily large? One answer is sketched below: 

y 

Since we are moving on the line x + 2y = 10, we have x = 10 - 2y and 

f(x,y) = x + 3y = (10 - 2y) + 3y = 10 + y. 

Now, if we move as above, we have y --+ 00 whence f(x, y) --+ 00. 

EXAMPLE 4. Solve the following modification of Example 3 above: 

Maximize f(x, y) = x + 3y 
subject to x + 2y ~ 10 

3x+y~15 

x~O. 

Here, only y is unconstrained. The constraint set of the problem is sketched 
below: 



76 Chapter 3. Noncanonical Linear Programming Problems 

y 

x + 2y = 10 

On the basis of Example 3, the outcome of this problem should be obvious. By 
requiring that x be nonnegative, we have effectively removed the unbounded­
ness from Example 3 since points having larger and larger y values have been 
removed from the constraint set. Hence, in view of the movement which 
produced unboundedness in Example 3, we would conjecture that this 
modified problem should now have an optimal solution at the extreme point 
(0,5). We now substantiate our conjecture. 

1 
3 

1 

-5 -2 
3 1 

-8 -3 

-1 

2 10 
1· 15 

3 0 

-20 
15 

-45 =f 

=f 

-pivot 
y 

down 

-file equation 
3x + t2 - 15 = -y; 

delete y row 

X 12 -1 

PM=-t1 

~=f 
Note that the final tableau above is in canonical form since all independent 
variables are constrained to be nonnegative. Hence, we apply the simplex 
algorithm: 



§2. Equations of Constraint 77 

X t2 -1 

-5 -2· -20 = -t1 

~ 

-8 -3 -45 = f simplex 
algorithm 

(Note that there are two pivot choices in the tableau above. What pivot choice 
would we have made if we were using the anticycling rules with corresponding 
list x, t1, t2?) 

X t1 -1 

5/2 -1/2 10 = - t2 

-1/2 -3/2 -15 = f 

The basic solution of the tableau above is optimal. Hence the optimal solution 
of the noncanonical maximization linear programming problem is given by 

x = t1 = 0, t2 = 10, max f = 15, 
y = 5 (from filed equation) 

and our conjecture is proved. 

Minimization linear programming problems with unconstrained independ­
ent variables are handled similarly. Each unconstrained independent variable 
in the minimum tableau is pivoted down to the south and corresponding 
columns are filed and deleted. Once a canonical minimum tableau is obtained, 
the simplex algorithm is applied. 

§2. Equations of Constraint 

The second type of noncanonicallinear programming problem has canonical 
maximization or canonical minimization form except that there may be some 
equality constraints among the initial variables instead of inequality con­
straints only. When we say equality constraints, we mean equations prior to 
the introduction of slack variables. Such equations of constraint are assigned 
slack "variable" 0 when written in slack form; this 0 is then exploited to obtain 
an equivalent linear programming problem in canonical form. We illustrate 
with several examples. 

EXAMPLE 5. 
Maximize f(x,y,z) = 2x + y - 2z 
subject to x + y + z ~ 1 

y + 4z = 2 
x,y,z ~ O. 



78 Chapter 3. Noncanonical Linear Programming Problems 

Note the equation of constraint y + 4z = 2. This equation can be rewritten 
in the form 

y+4z-2 = -0; 

this form corresponds to the usual slack form of a main constraint of a 
canonical maximization linear programming problem except that the slack 
"variable" is O. It is highly recommended that the sign in front of the 0 be 
included; as with the sign of any other slack variable, this sign will stay behind 
when variables are interchanged during pivoting. We now record the problem 
in a Tucker tableau: 

x y z -1 

1 1 1 1 = -t1 

0 1 4 2 = -0 

2 1 -2 0 = f 

We wish to pivot the 0 up to the north. As with unconstrained variables, the 
simplex algorithm of Chapter 2 is never applied to a noncanonical tableau. 
Hence, we merely need to choose the most convenient pivot for our purposes. 
The acceptable pivot entries are a22 and a23 ; again, never pivot on any entry in 
the - 1 column or the objective function row of any maximum tableau. The 
most convenient of these pivots is a22 = 1 since all tableau entries will remain 
integral after pivoting: 

x y z -1 

1 1 1 1 = -t 1 

0 I" 4 2 = -0 

2 1 -2 0 = f 

x 0 z -1 

1 -1 -3 -1 

0 1 4 2 

2 -1 -6 -2 

--­pivot 
o 
up 

= -t 1 

= -y 

= f 

Now the second column of the new tableau above never enters into the main 
constraints or objective function of this tableau since every entry is multiplied 
by o. We may then delete this column without any loss of information: 



§2. Equations of Constraint 

~ 

delete 
o 

column 

x z 

1 -3 
0 4 

2 -6 

-1 

-1 
2 

-2 

= -t l 

= -y 

=f 

79 

This tableau is now in canonical form since all ° slack "variables" have been 
removed from the tableau. Hence, we apply the simplex algorithm: 

x z -1 

1 -3" -1 

0 4 2 

2 -6 -2 

-1/3 -1/3 
4/3 4/3 

0 -2 

= -t l 

= -y -----+ 

simplex 
= f algorithm 

1/3 = -z 
2/3 = -y 

0 = f 

The basic solution of the final tableau above is optimal. Hence an optimal 
solution of the noncanonical maximization linear programming problem is 
given by 

x = t 1 = 0, Z = 1/3, Y = 2/3, max f = 0. 

The constraint set (which is a bounded region in the plane y + 4z = 2) and the 
basic optimal solution of this problem are sketched below: 

z 

)----~--.......;::::...-y 

x 



80 

EXAMPLE 6. 

Chapter 3. Noncanonical Linear Programming Problems 

Maximize f(x,y,z)=x+4y+2z 

subject to x + 2y + 3z ~ 6 
4x -7y = 28 

x,y,z~O. 

We record the problem in a Tucker tableau, pivot on the most convenient 
entry that moves the slack "variable" 0 to the north, and delete the column 
corresponding to this 0: 

x y z -1 

1 2 3 6 

4' -7 0 28 

1 4 2 0 

o y z 

-114 15/4 3 

114 -7/4 0 

-114 23/4 2 

= f 

-1 

-1 

7 

-7 =f 

-­pivot 
o 

up 

~ 

delete 
o 

column 

y z -1 

15/4 3 -1 

-7/4 0 7 

23/4 2 -7 =f 

The final tableau above is in canonical form since all 0 slack "variables" have 
been removed from the tableau. The simplex algorithm applied to this tableau 
immediately yields infeasibility by the first row. Hence, the noncanonical 
maximization linear programming problem is infeasible. The constraint set 
(which must be empty since the linear programming problem has no feasible 
solutions) is sketched below: 

z 

>----y 

x 



§2. Equations of Constraint 81 

Minimization linear programming problems with equations of constraint 
are handled similarly. Each equation of constraint in the minimum tableau is 
associated with an = 0 column; each such slack "variable" 0 is pivoted up to 
the west and corresponding rows are deleted. Once a canonical minimum 
tableau is obtained, the simplex algorithm is applied. 

We conclude this section with an example of a noncanonical linear 
programming problem which combines the two types of noncanonical 
behavior discussed in this chapter. 

EXAMPLE 7. 
Maximize f(x,y,z) = x + 2y + z 
subject to x + y + z = 6 

x+y~1 

x, z;?; o. 

In this problem, we have an equation of constraint given by x + y + z = 6 
and an unconstrained independent variable y. Not surprisingly, we simulta­
neously use both of the methods that have been developed in this chapter. 
Recording the problem in a Tucker tableau, we obtain 

1 1 1 
1 1 0 

1 2 1 

-1 

6 

1 

0 

= -0 
= -t l 

=f 

Now, our goal is to pivot the unconstrained independent variable y down to 
the east and the slack "variable" 0 up to the north. We can accomplish both of 
these at the same time by choosing the correct pivot, namely a12 = 1. (Under 
what circumstances would we not be able to pivot an unconstrained 
independent variable down to the east and a slack "variable" 0 up to the north 
at the same time?) Then the filing and deletion of the y row and the deletion of 
the 0 column proceed as before. The complete solution of the noncanonical 
maximization linear programming problem follows. 

x 0 z -1 

1 1· 1 6 

1 1 0 1 

1 2 1 0 

= -0 
= -t l 

=f 

-pivot y down; 
pivot 0 up 



82 Chapter 3. Noncanonical Linear Programming Problems 

x 0 z -1 

1 1 1 6 =-0 
o -1 -1 -5 

-1 -2 -1 -12 

x z -1 

=f 

--. 
file equation 

x + Z - 6 = -y; 
delete y row; 

delete 0 column 

~-1. -5 =-t ----. 

I simplex 
-1 -1 -12 =f algorithm 

X ~l -1 

~=-z 

~=f 

The basic solution of the final tableau above is optimal. Hence the optimal 
solution of the noncanonical maximization linear programming problem is 
given by 

x = tl = 0, Z = 5, max f = 7, 
Y = 1 (from filed equation). 

The constraint set (which is an unbounded region in the plane x + y + Z = 6) 
and the optimal solution of this problem are sketched below: 

z 

y 



Exercises 83 

§3. Concluding Remarks 

We summarize the crucial ideas of § 1 and §2. 
(i) Unconstrained independent variables in noncanonical tableaus always get 
pivoted down-from north to east in maximum tableaus and from west to 
south in minimum tableaus. (Remember: Never pivot on any entry in the - 1 
column/row or the objective function row/column of any tableau.) 
(ii) Slack "variables" of 0 (corresponding to equations of constraint) in 
non canonical tableaus always get pivoted up-from east to north in 
maximum tableaus and from south to west in minimum tableaus. (Again, never 
pivot on any entry in the - 1 column/row or the objective function 
row/column of any tableau.) 
(iii) In noncanonical maximum tableaus, rows corresponding to pivoted 
unconstrained variables are filed and deleted. In noncanonical minimum 
tableaus, columns corresponding to pivoted unconstrained variables are filed 
and deleted. 
(iv) In noncanonical maximum tableaus, columns corresponding to slack 
"variables" of 0 are deleted. In noncanonical minimum tableaus, rows 
corresponding to slack "variables" of 0 are deleted. 
(v) Never apply the simplex algorithm until the noncanonical tableau has been 
transformed into a canonical tableau. A canonical tableau is a tableau having 
no unconstrained independent variables and no slack "variables" of O. 

EXERCISES 

1. Solve each of the noncanonicallinear programming problems below. If a linear 
programming problem has infinitely many optimal solutions, find all optimal 
solutions. 

a. Maximize f(x, y, z) = x - y + z 
subject to x + Y ~ 2 

z-y~3 

2x+z~8 

b. Maximize f(x, y, z) = x + y + z 
subject to x - y - z ~ 2 

y-z~l 

c. Minimize g(x, y, z) = 3x + y + 2z 
subject to x + 2y + 3z ~ 24 

2x + 4y + 3z = 36 
x,y,z ~O 

d. Minimize g(x, y, z) = 3x + y + 2z 
subject to x + 2y + 3z ~ 24 

2x + 4y + 3z = 36 
y,z~O 



84 Chapter 3. Noncanonical Linear Programming Problems 

e. Maximize f(x, y, z) = x + y + z 
subject to x+y+z~3 

x+y~l 

y+2z=2 
x,y~O 

f. Maximize f(x,y,z) = 3x - 2y + 3z 
subject to x-y+2z=6 

x+2z=8 
y+2z~2 

y,z~O 

g. Minimize g(x,y,z) = - 5x + y - 2z 
subject to 2x+z=O 

x-y~l 

3x- y+z~ 3 

h. Maximize f(x,y) = x + y 
subject to 2x+y=5 

x-y= -2 

x + 3y = 6 
x,y~O 

2. Label each of the following statements TRUE or FALSE. If the statement is FALSE, 
provide a counterexample. 

a. A noncanonical linear programming problem with more unconstrained inde­
pendent variables than constraints is unbounded. (See, for example, part b of 
Exercise 1 above.) 

b. A noncanonicallinear programming problem with more equations of constraint 
than independent variables is infeasible. (See, for example, part h of Exercise 1 
above.) 

3. The noncanonicallinear programming problem of Example 5 has infinitely many 
optimal solutions. Find all optimal solutions and graph these optimal solutions on 
the constraint set diagram of Example 5. 

4. Show that the noncanonicallinear programming problem 

Maximize f(x, y, z) = 2x + y - 2z 
subject to x + y + z = 1 

y+4z~2 

x,y,z ~ 0 

has the same optimal solution as that of (5) in Chapter 1. Sketch the constraint set 
and indicate this optimal solution. 

5. Sketch the constraint set for each noncanonicallinear programming problem below. 
On the basis of this constraint set, formulate a conjecture as to whether or not the 
solution of the given problem is the same as the solution of the associated canonical 
linear programming problem where all independent variables are constrained to be 
nonnegative. Verify your conjecture by solving both linear programming problems. 



Exercises 85 

a. Maximize f(x,y) = x + y 
subject to x+4y;£ 12 

x-4y;£ -4 

b. Minimize g(x,y) = x + 2y 
subject to x+y;:::;1 

4x-4y;:::;1 

c. Maximize f(x,y) = -x+2y 
subject to -x+y;£-1 

2x-y;£-2 

d. Minimize g(x, y) = - x - y 
subject to -x + 2y;:::; 1 

x-y;:::;1 

6. An alternate method for transforming a linear programming problem with 
unconstrained independent variables into canonical form is to replace every 
unconstrained independent variable by the difference of two independent variables 
constrained to be nonnegative. This produces an equivalent canonical linear 
programming problem which is solved by using the simplex algorithm. For 
example, the linear programming problem of Example 4, namely 

Maximize f(x,y) = x + 3y 
subject to x + 2y;£ 10 

3x+ y;£ 15 
x;:::;o, 

(1 ) 

is non canonical since the variable y is unconstrained. Put y = y+ - y- with 
y +, y- ;:::; 0. Replacing every y in (1) by y + - Y -, we obtain the equivalent canonical 
linear programming problem 

Maximize f(x,y+,y-) = x + 3y+ - 3y­
subject to x + 2y+ - 2y- ;£ 10 

3x+y+-y-;£15 
x,y+ ,y- ;:::; 0, 

which is solved by using the simplex algorithm. 

a. Solve (2) above. 

(2) 

b. Use the solution of (2) along with y = y+ - y- to solve (1). Compare your 
solution with that obtained in Example 4. 

7. An alternate method for transforming a linear programming problem with 
equations of constraint into canonical form is to replace every equation of 
constraint by two inequality constraints. This produces an equivalent canonical 
linear programming problem which is solved by using the simplex algorithm. For 
example, the linear programming problem of Example 5, namely 

Maximize f(x, y, z) = 2x + y - 2z 
subject to x + y + z;£ 1 

y + 4z = 2 
x,y,z;:::; 0, 



86 Chapter 3. Noncanonical Linear Programming Problems 

is noncanonical due to the equation of constraint y + 4z = 2. Replacing this 
equation by the two inequality constraints y + 4z ~ 2 and y + 4z:?: 2, we obtain the 
equivalent canonical linear programming problem 

Maximize f(x, y, z) = 2x + y - 2z 
subject to x + y + z ~ 1 

y +4z ~ 2 
y+ 4z:?: 2 
x,y,z:?: 0 

(3) 

which is solved by using the simplex algorithm. Solve (3) by using the simplex 
algorithm and compare your solution with that obtained in Example 5. 

8. Solve Example 7 by using the methods of Exercise 6 and Exercise 7 above. 

9. Discuss some disadvantages of the methods of Exercise 6 and Exercise 7 above. 



CHAPTER 4 

Duality Theory 

§O. Introduction 

The concept of duality is of fundamental importance in linear programming. 
This chapter is devoted to a theoretical treatment of duality with the goal of 
gaining a greater understanding of the relationships that exist between dual 
linear programming problems. These relationships, although interesting from 
a purely mathematical viewpoint, are crucial to many applications, some of 
which are investigated more deeply in Chapter 5, Chapter 6, and Chapter 7. 
The treatment of duality presented here is, in large part, due to A.W. Tucker. 

§1. Duality in Canonical Tableaus 

Recall that the canonical maximization linear programming problem of 2§2 
had initial tableau 

1 2 20 

2 2 30 

2 1 25 

200 150 0 =p 

and that the canonical minimization linear programming problem of 2§4 had 
initial tableau 



88 Chapter 4. Duality Theory 

1 2 20 
2 2 30 
2 1 25 

-1 200 150 0 

Furthermore, exactly the same pivot steps solved both linear programming 
problems (although, at this point, we would use a different procedure than that 
in 2§4 to solve the minimization problem) and max P was equal to min C. This 
suggests an intimate relationship between these two linear programming 
problems. Do similar relationships exist in general? The answer to this 
question is a resounding YES; it is the purpose of this chapter to examine these 
relationships. 

Any canonical tableau can be interpreted both as a canonical maximization 
linear programming problem and a canonical minimization linear program­
ming problem. For example, the canonical tableau 

XI x2 Xu -1 

YI all a l2 a ln b l = -II 

Y2 ~I ~2 ~n b2 = -~ 

Ym ami am2 ... amn bm = -1m 

-1 c i c2 ... cn d =f 

= sl = 52 ... =s n =g 

represents the canonical slack maximization linear programming problem 
given by the variables to the north and east (ignoring the variables to the west 
and south) and the canonical slack minimization linear programming problem 
given by the variables to the west and south (ignoring the variables to the north 
and east). 

Definition 1. Any pair of canonical maximization and canonical minimization 
linear programming problems corresponding to the same tableau as above are 
said to exhibit duality or be duals of one another. The tableau of dual canonical 
linear programming problems is said to be a dual canonical tableau. 

Questions concerning the behavior of dual canonical linear programming 
problems instantly arise; we conclude this section with some questions that 
will be answered in forthcoming sections. Consider an arbitrary canonical 
maximization linear programming problem and its dual canonical minimi­
zation linear programming problem. If one of these linear programming 



§2. The Dual Simplex Algorithm 89 

problems has an optimal solution, must the other linear programming 
problem also have an optimal solution? More generally, what combinations 
are possible? (For example, a given canonical maximization linear program­
ming problem can have an optimal solution, be infeasible, or be unbounded. 
The same is true for a given canonical minimization linear programming 
problem. Now, how many of the 32 = 9 different combinations are possible?) If 
both linear programming problems have optimal solutions, does the optimal 
value of the maximum objective function have to equal the optimal value of the 
minimum objective function? On the basis of your knowledge at present, 
formulate answers to these questions. Your intuition may prove to be correct! 

§2. The Dual Simplex Algorithm 

The simplex algorithm of Chapter 2 views all canonical linear programming 
pro blems from the perspective of canonical maximization linear programming 
problems, i.e., canonical maximization linear programming problems are 
handled directly and canonical minimization linear programming problems 
are transformed into equivalent canonical maximization linear programming 
problems by negative transposition. It is possible, however, to view all 
canonical linear programming problems from the perspective of canonical 
minimization linear programming problems and transform canonical max­
imization linear programming problems into equivalent canonical minimi­
zation linear programming problems by negative transposition. What follows 
is this dual form of the simplex algorithm of Chapter 2. It is not suggested that 
this dual simplex algorithm be committed to memory. It does, however, have 
certain important theoretical ramifications as we will see. For now, be content 
with noticing the obvious similarity and duality of the algorithms. 

Definition 2. Let 

all a l2 ... a ln b l 

a21 ~2 ... a 2n b2 

(ind. var.'s) : 

ami a m2 ··· amn bm 

-1 Cl C2 ... Cn d 

= (dep. var.'s) = g 

be a tableau of a canonical slack minimization linear programming problem. 
The tableau is said to be minimum basic feasible if c l' c2 , ... 'Cn ~ o. 

In a minimum basic feasible tableau, the basic solution is a feasible solution 
(see Exercise 12a in Chapter 2). 



90 Chapter 4. Duality Theory 

The Dual Simplex Algorithm for Minimum Tableaus 

(1) The current tableau is of the form 

all a l2 ... a ln b l 

a 21 ~2 ... a 2n b2 

{ind. var.'s} : 

ami a m2 ... amn bm 

-I CI C2 ... Cn d 

= (dep. var.'s) = g 

(2) If Cl , C2"" Cn ~ 0, go to (6). Otherwise, continue. 
(3) Choose ci > ° such that j is maximal. 
(4) If ali' a2i, ... , ami ~ 0, STOP; the minimization problem is infeasible. 

Otherwise, continue. 
(5) Ifj = n, choose ain > 0, pivot on aim and go to (1). Ifj < n, choose aij > 0, 

compute 

pivot on a ip, and go to (1). 
(6) The current tableau is minimum basic feasible, i.e., of the form 

all a l2 ... a ln b l 

a 21 ~2 ... a 2n b2 

{ind. var.'s} : 

ami a m2 .•• amn bm 

-1 c i c2 ... cn d 

= (dep. var.'s) = g 

with Cl' c2 , ••• , Cn ~ 0. 
(7) If b l , b2 , ... , bm ;?; 0, STOP; the basic solution of the current minimum 

tableau is optimal. Otherwise, continue. 
(8) Choose bi < 0. 
(9) If ail' ai2,"" ain;?; 0, STOP; the minimization problem is unbounded. 

Otherwise, continue. 
(10) Compute 

pivot on aip, and go to (6). 



§2. The Dual Simplex Algorithm 

The Dual Simplex Algorithm for Maximum Tableaus 

(1) The current tableau is of the form 
(ind. var.'s) -1 

all al2 ... a ln bl 
a21 ~2 ... a2n b2 

: : : = -(dep. var.'s) 

ami am2 ... amn bm 

ci c2 ... cn d = f 

91 

(2) Take the negative transpose of the tableau to obtain a minimum tableau. 
(3) Apply the dual simplex algorithm for minimum tableaus. 
(4) Max f = - min( - g). 

In some sense, it would be foolish to spend time learning the dual simplex 
algorithm above, primarily since it is simply a restatement of the simplex 
algorithm of Chapter 2 in dual form. However, the dual simplex algorithm is of 
prime theoretical significance. Assume that we have a pair of dual canonical 
linear programming problems recorded in a dual canonical tableau. Note that 
any single pivot transformation transforms the maximization problem into an 
equivalent maximization problem having the same feasible solutions as the 
original and transforms the minimization problem into an equivalent 
minimization problem having the same feasible solutions as the original. 
Assume that the maximization problem is not infeasible or unbounded. If the 
simplex algorithm of Chapter 2 is applied to this maximization problem and 
we make sure that variables corresponding to pivot entries are interchanged in 
the dual minimization problem as well as the maximization problem, the 
algorithm terminates in a basic optimal solution for the maximization 
problem with the tableau in the form 

(ind var.'s) -1 
....... 

~O 

~O 

(ind. var.'s) - -(dep. var.'s) -
~O 

1 sO sO ... sO d =f 

= (dep. var.'s) = g 

But the basic solution of the minimization problem is also optimal since the 
dual simplex algorithm terminates with the tableau in the same form! Hence 
the existence of an optimal solution for a canonical maximization linear 
programming problem implies the existence of an optimal solution for its dual 
canonical minimization linear programming problem. The converse is true; 



92 Chapter 4. Duality Theory 

simply "dualize" the above argument. (Assume that we have a pair of dual 
canonical linear programming problems recorded in a dual canonical tableau 
and assume that the minimization problem is not infeasible or unbounded. If 
the dual simplex algorithm is applied to this minimization problem and we 
make sure that variables corresponding to pivot entries are interchanged in 
the dual maximization problem as well as the minimization problem, the 
algorithm terminates in a basic optimal solution for the minimization problem 
with the tableau in the form above. But the basic solution of the maximization 
problem is also optimal since the simplex algorithm of Chapter 2 terminates 
with the tableau in the same form! Hence the existence of an optimal solution 
for a canonical minimization linear programming problem implies the 
existence of an optimal solution for its dual canonical maximization linear 
programming problem.) Hence, the existence of an optimal solution for one 
canonical linear programming problem implies the existence of an optimal 
solution for its dual linear programming problem. Now assume that we have a 
pair of optimal solutions of dual canonical linear programming problems. 
Since all optimal solutions of a linear programming problem yield the same 
objective function value (otherwise, some of the solutions would not be 
optimal!) and since one such pair of optimal solutions for the maximization 
and minimization problems arises from the basic solutions of a dual canonical 
tableau in the form above, we have f = g = d. We have just proven the 
following theorem. 

Theorem 3. If a canonical maximization linear programming problem has an 
optimal solution, then the dual canonical minimization linear programming 
problem has an optimal solution and vice versa. Furthermore, dual canonical 
linear programming problems with optimal solutions have f = g at these 
solutions. 0 

As an additional consequence of the agreement of the tableau forms that 
terminate both the simplex algorithm of Chapter 2 and the dual simplex 
algorithm of this chapter in optimal solutions, we note that canonical 
minimization linear programming problems with optimal solutions can be 
solved directly by applying the simplex algorithm of Chapter 2 to the dual 
canonical maximization linear programming problem-no negative transpo­
sition is required. Two linear programming problems are being solved for the 
price of one! Nice! 

EXAMPLE 4. The tableau sequence 

y 

y 

y 

I 

2 

3 

1 

x I 

1 

2 
2-

200 

= 

x 2 

2 
2 
1 

150 

= 

-

20 
30 
25 

0 = f 

= g 



§2. The Dual Simplex Algorithm 93 

3 
-1 

-1/2 3/2 15/2 = 1 

-1 1· 5 = 
112 1/2 25/2 = 1 --

1 -100 50 -2500 = 
- - -

2 

1 -3/2 0 = 1 

-1 1 5 = 2 

1 -1/2 10 = 1 

1 -50 -50 -2750 = 
-

solves the linear programming problems of 2§2 and 2§4 simultaneously 
without negative transposition. (Note the notation change from 2§2 and 2§4.) 
Verify for yourself that the simplex algorithm of Chapter 2 is being implement­
ed in the maximization linear programming problem. 

EXAMPLE 5. Solve the dual canonical linear programming problems below: 

1 
y 

y 
2 

1 

x ~ -1 1 

20 25 300 = 
40 20 500 = 

1000 800 0 = f 

We apply the simplex algorithm of Chapter 2 to the maximization linear 
programming problem, making sure that variables corresponding to pivot 
entries are interchanged in the dual minimization problem as well as the 
maximization problem. 

x ~ -1 1 

20 25 300 = 
40· 20 500 = 

1 1000 800 0 = 
- -



94 Chapter 4. Duality Theory 

1 

s 

s 

-1/2 15· 50 = 

1/40 1/2 25/2 = 

-25 300 -12500 = f 

-1 

2 -1130 1115 1013 

1 1124 -1130 65/6 

1 -15 -20 -13500 

=Y2 =Yl =g 

= 

= 

= f 

The basic solution of each linear programming problem in the final tableau 
above is optimal: 

t2 = tl = 0, X 2 = 10/3, Xl = 65/6, max! = 13500, 
S2 = Sl = 0, Y2 = 15, Yl = 20, ming = 13500. 

A remark is in order here. The minimization linear programming problem 
above is the same as that in 2§7. (Note the notation change from 2§7.) The 
simplex algorithm for minimum tableaus applied there required negative 
transposition and only solved one linear programming problem. In contrast, 
we have solved two linear programming problems above and have eliminated 
the negative transposition step. More solutions with less work! 

A consequence of the fact that the existence of an optimal solution for a 
canonical linear programming problem implies the existence of an optimal 
solution for its dual canonical linear programming problem is that, if a 
canonical linear programming problem is infeasible or unbounded, then the 
dual canonical linear programming pro blem must be infeasible or unbounded. 
Are all four combinations of pathology possible? Experiment with some 
examples and formulate some conjectures! 

§3. Matrix Formulation of Canonical Tableaus 
Consider the dual canonical tableau 

I Y 

Y 2 

Y m 

I 

x I 

all 

~I 

ami 

CI 

= 

x 2 

a l2 

~2 

am2 

C2 

= 

... -1 

... a ln b l 

... ~n b2 
: 

... amn bm 

... Cn d =f 

= = 

(1) 



§3. Matrix Formulation of Canonical Tableaus 95 

Letting 

[" a12 

A= ar a22 

aml a m2 

en], D = Ed], 

we have that (1) becomes 

x -

y A B = -T 
(2) 

I C D =f 

=s =g 

We can now reformulate the dual canonical linear programming problems of 
(2) in terms of matrix equations: 

Matrix reformulation of canonical maximization linear programming 
problem of (2): 

Maximize f = cxt - D 
subject to AX' - B = - T 

X,T~O. 

Matrix reformulation of canonical minimization linear programming 
problem of (2): 

Minimize 
subject to 

g= ytB-D 
ytA-C=S 
Y,S~O. 

Here, I denotes the transpose of a matrix. Also, a matrix being greater than or 
equal to zero is to be interpreted as every entry of that matrix being greater 
than or equal to zero. These matrix reformulations allow concise and accurate 
representations of dual canonical linear programming problems which are 
useful in the theory of duality that follows. Before continuing, make sure that 
you can clearly see how these matrix equations represent the canonical slack 
forms of the maximization and minimization linear programming problems 
of (1). Substitute the relevant matrices and perform the indicated operations! 



96 Chapter 4. Duality Theory 

(For example, f = ext - D if and only if 

f= [cl Cl Cn] [Xl Xl XnJ - [d] 

= [Cl Cl 
"r:r[~ 

which is the maximization objective function of (I). Also, AXt - B = - T if 
and only if 

... alnj 

... aln [Xl Xl 
amn 

... x.l'- fn ~ -f] 
if and only if 

alnjfXlj fblj ftlj aln X 2 b2 tl 
· . - . = - . · . . . · . . . 

... amn Xn bm tm 

if and only if 

allxl + a 12 x l + ... + alnxn - b l = - tl 
allxl + a22 x l + ... + a2n x n - bl = - tl 

which are the main maximization constraints of (1}.) 

§4. The Duality Equation 

Much of the theory of duality presented in this book relies on the following 
theorem due to A.W. Tucker known as the duality equation. In what follows, 
we assume all notation developed in §3. 

Theorem 6 (The Duality Equation). For any pair offeasible solutions of dual 
canonical linear programming problems, we have 

g - f = SXt + ytT. 

Before proving this theorem, we illustrate it with an example. 

EXAMPLE 7. Consider the dual canonical tableau 



§4. The Duality Equation 

I y 

y 2 

1 

97 

x x -1 
I 2 

1 2 3 

4 5 6 

7 8 9 =f 

- - -- 51 - 52 - g 

We first construct a feasible solution to the canonical maximization linear 
programming problem. Let Xl = 1 and X 2 = 1/3 (for example). Then t1 = 4/3 
by the first row of the tableau and t2 = 1/3 by the second row of the tableau. 
Since all of Xl' X 2, t 1, and t2 are nonnegative, this solution to the canonical 
maximization linear programming problem is feasible. The value of J at this 
feasible solution is 2/3 from the third row of the tableau. Next, we construct a 
feasible solution to the canonical minimization linear programming problem. 
Let Y1 = 1 and Y2 = 2 (for example). Then 8 1 = 2 by the first column of the 
tableau and 82 = 4 by the second column of the tableau. Since all of Y1' Y2' 81, 
and 82 are nonnegative, this solution to the canonical minimization problem is 
feasible. The value of g at this feasible solution is 6 from the third column of the 
tableau. Now 

and 

I.e., 

g - J = 6 - 2/3 = 16/3 

=[2 4][1~3J+[1 
= 2 + 4/3 + 4/3 + 2/3 

= 16/3, 

g- J= SXt + ytT!! 

2][4/3J 
1/3 

We now prove Theorem 6. 

PROOF (of Theorem 6). From the matrix reformulations of the canonical 
maximization and the canonical minimization linear programming problems 
in §3, we obtain the equations 

Now 

J=CXt-D 

B=AXt + T 

g = ytB-D 

C=ytA-S. 

g - J = (ytB - D) - (CX t - D) 

= ytB_ cxt 



98 Chapter 4. Duality Theory 

= Y'(AX' + T) - (Y'A - S)X' 

= Y'AX'+ Y'T- Y'AX'+SX' 

= Y'T+SX' 

=SX'+ Y'T o 
Note that only the matrix forms of the objective function and the main 
constraints were used in the proof of the duality equation above; the 
nonnegativity constraints were not used. Hence the duality equation is also 
true for solutions to dual canonical linear programming problems that are 
infeasible in terms of the nonnegativity constraints only, i.e., solutions which 
satisfy all main constraints but which violate one or more nonnegativity 
constraints. The duality equation does not hold if an infeasible solution 
violates a main constraint! 

The duality equation has several corollaries which begin to address the 
questions at the end of § 1. 

Corollary 8. For any pair of feasible solutions of dual canonical linear 
programming problems, we have 

g"?,j. 

(Note that this is certainly true for Example 7!) 

PROOF. Since the solutions of the dual canonical linear programming problems 
are feasible, every entry of S, X', Y', and T is nonnegative. Hence, SX' + 
Y'T"?, o. Since 

g - f = SX' + Y'T 

by the duality equation, we have g - f "?, 0 or g "?, j. o 

Corollary 9. (i) If a canonical maximization linear programming problem is 
unbounded, then the dual canonical minimization linear programming problem is 
infeasible. 
(ii) If a canonical minimization linear programming problem is unbounded, then 
the dual canonical maximization linear programming problem is infeasible. 

PROOF. (i) Assume, by way of contradiction, that the maximization linear 
programming problem is unbounded and that the dual minimization linear 
programming problem has a feasible solution. By Corollary 8, this feasible 
solution must yield a value for g that is greater than or equal to the value of f 
for any feasible solution to the maximization problem. But since the 
maximization problem is unbounded, feasible solutions for this problem exist 
for which f --+ 00. Hence no such feasible solution corresponding to a value for 
g can exist and the minimization linear programming problem is infeasible. 
(ii) The proof is similar to (i). 0 



§4. The Duality Equation 99 

Note that Corollary 9 rules out the possibility of ever encountering dual 
unbounded canonical linear programming problems. 

Corollary 10. Any pair offeasible solutions of dual canonical linear programming 
problems for which f = g are optimal solutions. 

PROOF. No other feasible solution can increase the value of f since, if it could, 
we would have f > g, contradicting Corollary 8. Similarly, no other feasible 
solution can decrease the value of g. Hence the given feasible solutions are 
optimal solutions. 0 

A caution is in order here. Corollary 10 does not say that, if a canonical 
linear programming problem has an optimal solution, then the dual canonical 
linear programming problem also has an optimal solution. It does not even 
guarantee that dual canonical linear programming problems both having 
optimal soluions will necessarily have f = g at these solutions. Both of these 
statements are, however, true by Theorem 3. Corollary 10 only assures the 
converse of this latter statement, namely that any pair of feasible solutions of 
dual canonical linear programming problems which yield the same values at 
the canonical maximization and the canonical minimization objective func­
tions must be optimal solutions. 

We conclude this section with a brief discussion of the topic of complemen­
tary slackness. Complementary slackness is an important consideration in 
sensitivity analysis (not discussed in this book; see, for example, [R2]) and has 
played an important role in the development of many algorithms in the field of 
linear programming. 

Definition 11. Any pair of feasible solutions of the dual canonical linear 
programming problems 

x -

y A B = -T 

-1 C D =[ 

=s --g 
(notation as in §3) for which 

(i) Xj # ° = Sj = 0, j = 1,2, ... , n, and 
(ii) Yi # ° = ti = 0, i = 1,2, ... ,m, 

are said to exhibit complementary slackness. 

EXAMPLE 12. Consider the pair of optimal solutions of the dual canonical 
linear programming problems of Example 4 in §2. The dual tableau 



100 

I y 

y 

y 
2 

3 

I 

x I 
I 

2 
2 

200 

= 

Chapter 4. Duality Theory 

x 2 -1 

2 20 
2 30 
1 25 

150 0 =f 

= --g 

has optimal maximization solution Xl = 10, X 2 = 5, t 1 = t2 = t3 = 0, max f = 
2750 and optimal minimization solution y! = 0, Y2= Y3 = 50, Sl = S2 = 0, 
min g = 2750. Whenever Xj is not equal to zero, Sj is equal to zero and similarly 
for Yi and t i . Hence complementary slackness is exhibited in these optimal 
solutions. 

EXAMPLE 13. Consider the pair of optimal solutions of the dual canonical 
linear programming problems of Example 5 in §2. The dual tableau 

I y 

y 2 

I 

20 25 
40 20 

1000 800 

300 = 
500 = 

0 = 
=g 

has optimal maximization solution Xl = 65/6, X 2 = 10/3, t1 = t2 = 0, max f = 
13500 and optimal minimization solution Y1 = 20, Y2 = 15, Sl = S2 = 0, 
ming = 13500. Whenever Xj is not equal to zero, Sj is equal to zero and 
similarly for Yi and ti• Hence complementary slackness is exhibited in these 
optimal solutions. 

The examples above motivate two questions. First of all, does every pair of 
optimal solutions of dual canonical linear programming problems exhibit 
complementary slackness? Secondly, is it possible for a feasible nonoptimal 
pair of solutions of dual canonical linear programming problems to exhibit 
complementary slackness? The answers to these questions are provided by the 
following theorem. 

Theorem 14. A pair of feasible solutions of dual canonical linear programming 
problems exhibit complementary slackness if and only if they are optimal 
solutions. 

(So the answers to the questions above are yes and no respectively.) 



§5. The Duality Theorem 101 

PROOF. (=» Assume that a pair of feasible solutions of dual canonical linear 
programming problems exhibit complementary slackness. Then 

and 

Now 

and 

SjXj=O, j= 1,2"", n, 

Yiti = 0, i = 1,2, ... , m. 

n 

L SjX j = 0, 
j= 1 

i.e., SXt + ytT = 0. But 9 - f = SXt + ytT by the duality equation so 
9 - f = 0, i.e., f = g. By Corollary 10, the given feasible solutions are 
optimal solutions. 
(<=) Assume that we have a pair of optimal solutions of dual canonical linear 
programming problems. Then f = 9 at these solutions by Theorem 3. Hence 
SXt + ytT = ° by the duality equation. Now, since every entry of the matrices 
S, xt, yt, and T must be nonnegative, we have SXt = ytT = 0, i.e., 

and 

n 

SXt = L SjXj=O 
j= 1 

m 

ytT= L Yiti=O' 
i= 1 

Again, since Sj' Xj' Yi' and ti are nonnegative for all i andj, we have that at least 
one of the factors in every term of each summation must be zero. This is 
equivalent to complementary slackness. D 

§5. The Duality Theorem 

At the end of §1, we asked the following question: Since a given canonical 
maximization or canonical minimization linear programming problem can 
have an optimal solution, be infeasible, or be unbounded, how many of the 
32 = 9 combinations are possible for dual canonical linear programming 



102 Chapter 4. Duality Theory 

problems? Below we give a chart containing the nine combinations and a 
summary of our knowledge at present. 

Maximization problem Minimization problem Possible? 

Optimal solution Optimal solution Yes 
Optimal solution Infeasible No (see §2) 
Optimal solution Unbounded No (see §2) 

Infeasible Optimal solution No (see §2) 
Infeasible Infeasible ? 
Infeasible Unbounded Yes (see Corollary 9) 

Unbounded Optimal solution No (see §2) 
Unbounded Infeasible Yes (see Corollary 9) 
Unbounded Unbounded No (see Corollary 9) 

The following theorem, known as the duality theorem, provides an exhaustive 
list of the possible behaviors of dual canonical linear programming problems, 
hence completing and summarizing the chart above. 

Theorem 15 (The Duality Theorem). Given dual canonical linear programming 
problems, exactly one of the following is true: 

(i) both problems have optimal solutions; for these solutions, f = g; 
(ii) the maximization problem is unbounded and the minimization problem is 

infeasible; 
(iii) the minimization problem is unbounded and the maximization problem is 

infeasible; 
(iv) both problems are infeasible (such problems exist; see Example 17). 

PROOF. We have essentially already proved this theorem. If a canonical 
maximization linear programming problem has an optimal solution, then the 
dual canonical minimization linear programming problem also has an 
optimal solution and f = g at these solutions by Theorem 3. This is (i). If a 
canonical maximization linear programming problem is unbounded, then the 
dual canonical minimization linear programming problem is infeasible by 
Corollary 9. This is (ii). If a canonical maximization linear programming 
problem is infeasible, then the dual canonical minimization linear program­
ming problem does not have an optimal solution by Theorem 3 and, therefore, 
must be infeasible or unbounded. This is (iv) and (iii) (respectively). 0 

If the simplex algorithm of Chapter 2 is applied to the canonical maximi­
zation linear programming problem of dual canonical linear programming 
problems and if the maximization problem has an optimal solution or is 
unbounded, then the dual canonical minimization linear programming 
problem is immediately solved (it has an optimal solution in the former case 
(Theorem 3) and is infeasible in the latter case (Corollary 9)). However, if the 



§5. The Duality Theorem 103 

canonical maximization linear programming problem is infeasible, you only 
know that the dual canonical minimization linear programming problem is 
infeasible or unbounded. To detect which type of pathology is displayed by the 
minimization problem, one must either resort to negative transposition or use 
the dual simplex algorithm of §2. We will use negative transposition. We 
conclude this section with two examples. 

EXAMPLE 16. Solve the dual canonical linear programming problems below: 

x "2 -1 1 

Y = -t1 1 -1 -1 -3 
Y = -t2 2 1 1 2 

1 2 -4 0 =f 
- - -

1 -1 -1 -3 

2 I" 1 2 
---+ 

1 2 -4 0 =f 

2 "2 -1 

1 1 0 -1 y = -t 1 ..... max infeasible 

s 1 

1 

1 1 2 

-2 -6 -4 =f 

-1 -1 
o -1 

1 -2 

i 
min 

unbounded 

2 
6 

4 

---+ 
neg. trans. 

for min 

= -g 



104 Chapter 4. Duality Theory 

EXAMPLE 17. Solve the dual canonical linear programming problems below: 

Y I 
s 2 

1 

, Y 

Y 2 

1 

x, "2 -I 

Y = -t, I -I 1 -1 
Y = -t2 2 1 -1 -I 

1 1 1 0 =[ 

= - -

x x -I , 2 

-I 1 -I 

1 -I" -1 

1 1 0 =f 

x S -I , 
0 1 

-1 -1 

2 1 
- -

0 1 

-1 1 

2 -1 

-2 
1 

-1 
-

-2 
-I 

1 

= -t, <- max infeasible 

=-x2 --

neg. trans. 
= [ for min 

= -s, <- min infeasible 

= -Y2 

= -g 

In both examples above, the dual canonical minimization linear program­
ming problem was immediately solved after negative transposition. This will not 
happen in general-it may be necessary to perform pivots on the transposed 
tableau in order to determine the type of pathology exhibited by the 
minimization problem. 



§6. Duality in Noncanonical Tableaus 105 

§6. Duality in Noncanonical Tableaus 
The duality theory presented in the preceding sections can be extended to 
accommodate dual noncanonical tableaus corresponding to the noncanonical 
linear programming problems of Chapter 3. Although we will not reprove any 
of this theory here (but see Exercise 14), this theory does remain true and is the 
foundation for the solution procedure applied to such tableaus. We will be 
content in this section with giving the form of a dual noncanonical tableau and 
illustrating, via examples, the solution procedure for reducing it to a dual 
canonical tableau. 

Definition 18. A dual noncanonical tableau is a noncanonical tableau of the 
form 

® (S) xj +! ~ -1 

® all alj a lj+1 a ln b l = -0 

® ail a. '1j+! 
ain bi = -0 

1J 

Yi+1 ai+1 1 '1+ I j '1+1 j+1 ai+1 n bi + 1 = -t i+1 

Ym ami amj amj+1 amn bm = -tm 

-1 c i cj cj +! cn d = f 

=0 =0 = Sj+1 = sn =g 

Note that each unconstrained independent variable in the maximization linear 
programming problem corresponds to an equation of constraint in the dual 
minimization linear programming problem and each unconstrained inde­
pendent variable in the minimization linear programming problem corre­
sponds to an equation of constraint in the dual maximization linear 
programming problem. These unconstrained variables and 0 slack "variables" 
lie opposite each other in the tableau. This property is crucial and allows one 
to solve dual noncanonical linear programming problems by using the 
techniques developed in Chapter 3. We illustrate with two examples. 

EXAMPLE 19. Solve the dual noncanonical linear programming problems 
below: 

6)6) JS -1 

® =-0 1 -1 2 1 

Y2 = -tl 2 0 2 -1 

Y3 =-S 0 1 -1 -1 

1 -1 3 0 -1 = f 

= 0 = 0 = sl = g 



106 Chapter 4. Duality Theory 

We apply the techniques of Chapter 3 to the dual noncanonical tableau, 
making sure that unconstrained independent variables and 0 slack "variables" 
are handled accordingly in both problems. 

@@ 'S -1 

® =-0 )' -1 2 ) 

Y2 = -tl 2 0 2 -1 

0 I -I -1 = -~ 

-I I -1 3 0 =f 

-- 0 = 0 = sl = g 

o cg 'S -1 

o ) -I 2 I 
-2 2 -2 -3 

0 I -I -1 = -~ 

) -) 0 I -I =f 

(\j"'\=0 =s =& 1 
=g 

6) X -1 
3 

2 -2 -3 

I' -I -1 

--max: pivot Xl down; pivot 0 up 
min: pivot Yl down; pivot 0 up 

--max: file -x2 + 2x3 - I = -Xl; 

delete X 1 row; delete 0 column 
min: file -2Y2 + 1= Yl ; 

delete Y 1 column; delete 0 row 

--max: pivot ~ down 
I 0 ) -1 = f min: pivot 0 up 

-= 0 = 51 - g 

~ X -) 3 

Y 2 -2 0 -I 

0 I -I -I -max: file t2 - x3 + I = -x2; 
I 0 1 -1 =f delete x2 row 

min: delete 0 row 



§6. Duality in Noncanonical Tableaus 

y 2 
-2· 

1 0 

3 

1 

-1 

0 -1 

1 -1 =f 

-1/2 0 1/2 

0 1 -1 

i 
max 

unbounded 
:. min 
infeasible 

--+ 
simplex 

algorithm 

= 

= f 

107 

EXAMPLE 20. Solve the dual noncanonical linear programming problems 
below: 

@ ~ 1C.3 -1 

® =-0 0 -1 -1 -1 
Y2 = -t1 -1 -3 4 0 

Y3 =-~ -1 2 -3 0 

-1 0 0 0 -1 =f 

Again, we apply the techniques of Chapter 3 to the dual noncanonical 
tableau, making sure that unconstrained independent variables and 0 slack 
"variables" are handled accordingly in both problems. Since the un­
constrained independent variable Xl and the 0 slack "variable" can not be 
interchanged at the same time in the maximization problem (similarly, the 
unconstrained independent variable Yl and the 0 slack "variable" in the 
minimization problem), we must perform two separate pivots to implement 
this interchange. 



108 Chapter 4. Duality Theory 

s 

y 

y 

, 
2 

3 

1 

s , 

1 

6> Xi l':J -1 

® =-0 , 0 -I" -1 -1 
y 

y 
2 

3 

1 

-1 -3 
-1 2 

-1 0 

@o 
0 -1 1 

-1 -3 7 

-1 2 -5 

-1 0 0 

= 0 N."\= s 
= & 2 

s 

Y 

Y 

, 
2 

3 

1 

®x 3 

0 1 
-1 7 

-1* -5 

-1 0 

4 

-3 

0 

-1 

1 
3 

-2 

0 

=g 

-1 

1 
3 

-2 

0 

= 0 = S2 = g 

s x 3 

0 1 
-1 12 

-

1 
5 

= -x2 

= -t, 

0 

0 

0 

=f 

--max: pivot 0 up 

=f 
min: pivot Y, down 

-max: delete 0 column 
min: file -s, - 3Y2 + 2Y3 = Y,; 

delete Y, column 

= -t2 ------. 
max: pivot x, down 

=[ 
min: pivot 0 up 

-1 5 2 =- C9 ~ 

max: file -t2 + 5X3 - 2 = -x,; 
delete x, row -1 5 2 =[ 

- - -- Y3 - S2 - g 

s , 0 1 

Y 2 
-1 12" 

1 -1 5 

1 

5 

2 =[ 

min: delete 0 row 

-simplex 
algorithm 



Exercises 109 

-1 

s I 1/12 -1/12 7/12 

s 2 -1/12 1/12 5/12 

1 -7/12 -5/12 -1/12 =f 

=Y3 =Y2 =g 

The basic solution of each linear programming problem in the final tableau 
above is optimal: 

t z = tl = 0, X z = 7/12, X3 = 5/12, max! = 1/12, 

Xl = - 1/12 (from second filed equation), 

Sl = Sz = 0, Y3 = 7/12, Yz = 5/12, min g = 1/12, 

Yl = - 1/12 (from first filed equation). 

§7. Concluding Remarks 

The concept of duality occurs throughout mathematics. Being seekers of 
patterns by nature, mathematicians are interested in the relationships that 
exist between structurally similar problems. Duality sometimes provides the 
needed connection. The theoretical and computational significance of duality 
in the area of linear programming is (hopefully) clear and will be exploited 
again and again in forthcoming chapters. 

EXERCISES 

1. Consider the canonical maximization linear programming problem below: 

Maximize !(X"Xl) = x, + X2 

subject to x, + 2X2 ~ 4 

3x, + Xl ~ 6 

X"X2~O. 

a. State the dual canonical minimization linear programming problem. 
b. Sketch the constraint sets for both problems above. 
c. Solve both problems above by applying the simplex algorithm to a dual tableau. 

Indicate the movement in both constraint set diagrams exhibited by the basic 
solutions of successive tableaus. 

d. Is complementary slackness exhibited in the solutions above? Why or why not? 

2. Consider the canonical minimization linear programming problem below: 

Minimize g(Y"Yl) = - Yl 
subject to y, - Yl ~ 1 

- y, + Yl ~2 

Y"Yl~O. 



110 Chapter 4. Duality Theory 

a. State the dual canonical maximization linear programming problem. 
b. Sketch the constraint sets for both problems above. 
c. Solve both problems above. (Be clever-the simplex algorithm is unnecessary 

here.) 

3. Consider the canonical maximization linear programming problem below: 

Maximize !(XI,X2}=X, 

subject to Xl + X2 ~ 1 

x,-x2~1 

X 2 - 2x, ~ 1 

X"X 2 ~ o. 
a. State the dual canonical minimization linear programming problem. 
b. Sketch the constraint sets for both problems above. 
c. Solve both problems above. (Be clever-the simplex algorithm is unnecessary 

here.) 

4. a. Solve Example 5 of Chapter 2 by using the dual simplex algorithm. 
b. Solve Example 3 of Chapter 2 by using the dual simplex algorithm. 
[Note: The intent of this exercise is to familiarize the reader with the dual simplex 
algorithm. As stated before, it is not suggested that this algorithm be used in general 
since the techniques of this chapter applied to the simplex algorithm of Chapter 2 
suffice.] 

5. Solve each of the dual canonical linear programming problems below. If a linear 
programming problem has infinitely many optimal solutions, find all optimal 
solutions. 

a. 

b. 

I 

I y 

y 2 

I 

-1 

1 -1 -1 
-1 -1 -1 

1 -2 0 

-2 1 -2 
I -1 -1 

I 1 0 

= 51 = 52 = g 

c. XI Xz -1 

I Y 

Y 2 

I 

2 

-I 

2 

-2 -1 
1 -1 

I 0 

=f 

=f 

=f 



Exercises 111 

d. 

e. 

f. 

-I 

1 y 

y 
2 

I 

1 y 

y 

y 
2 

3 

I 

x x 1 2 
-1 

9 -2 0 

3 2 1 

3 1 0 

3 2 0 =[ 

- - -

-I 

2 -I I -3 

-I 2 I I 

0 -I 2 0 =f 

= Sl = S2 = S3 = g 

x x 1 2 
-1 

-1 0 -2 
-2 I 1 

-I -I -3 

1 -I 0 =[ 

6. a. Find hi' h2 , C I , and C2 such that the maximization problem of the dual canonical 
tableau 

Xl X2 -I 

Y1 = -t 1 1 0 b1 

Y2 = -t2 0 2 ~ 

c 1 c2 3 -I = f 

= sl = s2 = g 

is in basic solution optimal form and such that both the maximization and 
minimization problems have infinitely many solutions. 

b. Characterize all such hi, h2, CI , and C2 for which the conditions of part a hold. 

7. a. Prove (ii) of Corollary 9. 
b. Label the following statement TRUE or FALSE and justify your answer. 

If a canonical minimization linear programming problem is infeasible, then 
the dual canonical maximization linear programming problem is unbounded. 

8. Prove that no dual canonical linear programming problems of the form 



112 Chapter 4. Duality Theory 

-I = f 

= SI = S2 = S3 = g 

have the optimal solutions 

Xl = 0, X2 = 2, X3 = 1, t1 = 0, t2 = 0, max! = 2. 

Y1=1, Y2=0, 81 =1, S2=0, s3=1, ming=2. 

9. a. Prove that any feasible solutions of dual canonical linear programming 
problems for which! = g exhibit complementary slackness. 

b. Does part a remain true if we replace "feasible solutions" by "solutions which 
satisfy all main constraints but violate one or more nonnegativity constraints"? 
If so, prove it. If not, explain. 

c. Prove that any feasible solutions of dual canonical linear programming 
problems exhibiting complementary slackness have! = g. 

d. Does part c remain true if we replace "feasible solutions" by "solutions which 
satisfy all main constraints but violate one or more nonnegativity constraints"? 
If so, prove it. If not, explain. 

10. Consider the dual canonical tableau below: 

x x -1 1 2 

a -a b 

-a a b 

I c c 0 =[ 

Assume, without loss of generality, that a> O. 

a. If b > 0 and c > 0, which of the four types of behavior for dual canonical linear 
programming problems as given by the duality theorem is exhibited above? 
Prove your assertion. 

b. Repeat part a under the assumptions that b > 0 and c < O. 
c. Repeat part a under the assumptions that b < 0 and c > O. 
d. Repeat part a under the assumptions that b < 0 and c < O. 

11. Consider the noncanonical maximization linear programming problem below: 

Maximize !(x1, X 2, x 3) = Xl + X2 - X3 

subject to Xl - X 2 + X3 = - 1 
- Xl - X 2 + X3 = 1 

- Xl + X 2 + x 3 ;;;; 1 

X2,X 3 f:; O. 

(1) 



Exercises 113 

a. State the dual noncanonical minimization linear programming problem. 
b. Solve both problems above by using a dual noncanonical tableau. If either 

problem has infinitely many optimal solutions, find all optimal solutions. 
c. Is complementary slackness exhibited in the solutions above? Why or why not? 
d. If Xl were constrained to be nonnegative in (1), would the solution to (1) be the 

same as that obtained in part b? Explain. 

12. Consider the noncanonical minimization linear programming problem below: 

Minimize g(Yl,YZ,Y3) = Yl + 2yz + 3Y3 

subject to Yl + Yz + Y3 ~ 1 

2yz + Y3 = 1 

Yl+Y3~1 

Yl'Y3~0. 

a. State the dual noncanonical maximization linear programming problem. 

(2) 

b. Solve both problems above by using a dual noncanonical tableau. If either 
problem has infinitely many optimal solutions, find all optimal solutions. 

c. Is complementary slackness exhibited in the solutions above? Why or why not? 
d. If Yz were constrained to be nonnegative in (2), would the solution to (2) be the 

same as that obtained in part b? Explain. 

13. Solve each of the dual noncanonicallinear programming problems below. If a 
linear programming problem has infinitely many optimal solutions, find all 
optimal solutions. 
a. 

-1 
2 

2 -1 -1 = -0 

-I 1 -1 

I 2 I 0 =f 

= 0 = s2 = g 

b. -1 
2 

1 2 2 = -0 

-1 -2 -2 

I -I -2 0 =f 

= 0 = s2 = g 

c. -1 2 

I -I -2 = -0 

-2 2 -1 

I 0 1 0 =f 

= 0 = s2 = g 



114 Chapter 4. Duality Theory 

d. 6) 6) ~ -1 

® 1 1 -1 1 -1 = -0 

y 2 -1 -1 1 1 

y 3 
-1 1 1 1 

1 1 1 -1 0 =f 

= 0 = 0 = s2 = g 

14. State and prove the analogue of Corollary 8 for dual noncanonical linear 
programming problems. 



Part II 

Applications 



CHAPTER 5 

Matrix Games 

§o. Introduction 

Our first application oflinear programming occurs in the area of game theory, 
specifically, two-person zero-sum matrix games. Although we barely scratch 
the surface of the broad field of game theory, the matrix games discussed here 
serve as a more than adequate introduction to the subject. In addition, we see 
firsthand how the analysis of a matrix game leads to dual noncanonicallinear 
programming problems, culminating in optimal strategies for the players of 
the game. 

§ 1. An Example; Two-Person Zero-Sum 
Matrix Games 

We begin with a typical example of a matrix game along with a preliminary 
analysis leading to a simplification of the game. 

EXAMPLE 1. Two players, sayan "even" player and an "odd" player, each secret­
ly think of an integer between 1 and 3 inclusive. Both players reveal their 
numbers simultaneously. If the sum of the numbers is even, the "even" player 
wins a number of dollars from the "odd" player equal to the difference of the 
numbers provided that the numbers are distinct. If the numbers are the same 
(in which case the sum is also even), the "even" player wins a number of dollars 
from the "odd" player equal to the sum of the numbers. If the sum of the 
numbers is odd, the "odd" player wins $3 from the "even" player. 

Given this game, which player (if any) has the advantage? How much of an 



118 Chapter 5. Matrix Games 

advantage (if any) does this player have? Is there an optimal strategy for each 
player, i.e., does each player have a strategy whereby he can maximize his 
winnings or minimize his losses? We will obtain the answers to these questions 
in forthcoming sections. For now, formulate your own conjectures! 

Note that, in any round ofthe game, each player has three choices, a 1, a 2, or 
a 3. By using a matrix to tabulate all of the possible combinations of choices by 
the players as well as the payoffs associated with these choices, we can obtain a 
payoff matrix for the game. This payoff matrix, in terms of winnings for the 
"even" player (i.e., negative entries in the matrix are interpreted as losses for the 
"even" player or, equivalently, winnings for the "odd" player), is given by 

"ODD" 
PLAYER'S 
CHOICE 

1 2 3 
"EVEN" H -3 -n PLAYER'S 2 4 
CHOICE 3 -3 

For example, if the "even" player chooses 1 (first row) and the "odd" player 
chooses 1 (first column), the "even" player wins $2 from the "odd" player since 
1 + 1 = 2. This is recorded as a 2 (since the "even" player wins $2) in the first 
row and first column of the payoff matrix. If the "even" player chooses 1 (first 
row) and the "odd" player chooses 2 (second column), the "odd" player wins $3 
from the "even" player since 1 + 2 = 3 is odd. This is recorded as a - 3 (since 
the "even" player loses $3) in the first row and second column of the payoff 
matrix. If the "even" player chooses 1 (first row) and the "odd" player chooses 3 
(third column), the "even" player wins $2 from the "odd" player since 3 - 1 = 

2. This is recorded as a 2 (since the "even" player wins $2) in the first row and 
third column of the payoff matrix. This completes the computation of the 
entries of the payoff matrix in the first row; the other entries of the payoff 
matrix are computed similarly. Before reading further, make sure that you 
verify all entries ofthe payoff matrix above. Also, study this matrix and make a 
guess as to which player (if any) is favored by this game. 

The 3 x 3 payoff matrix above can be reduced somewhat. Notice that the 
"even" player should never choose 1 since he can always do as well or better by 
choosing 3 no matter what number the "odd" player chooses. In other words, the 
first row of the payoff matrix is term-by-term less than or equal to the third row 
of the payoff matrix. Hence, we delete the first row from the payoff matrix: 

"ODD" 
PLAYER'S 
CHOICE 

1 2 3 
"EVEN" 2 [-: 4 

-:J PLAYER'S 
CHOICE 3 -3 



§1. An Example; Two-Person Zero-Sum Matrix Games 119 

Now, by applying similar reasoning to the reduced payoff matrix, the "odd" 
player should never choose 3 since he can always do as well or better by 
choosing 1 no matter what number the "even" player chooses. In other words, 
the third column of the reduced payoff matrix is term-by-term greater than or 
equal to the first column of the reduced payoff matrix. Hence, we delete the 
third column from the reduced payoff matrix: 

"EVEN" 2 
PLAYER'S 
CHOICE 3 

"ODD" 
PLAYER'S 
CHOICE 

1 2 

[-3 4J 
2 -3 

We now leave our game until its solution in §4. Do you care to revise your 
prediction as to which player (if any) is favored by this game? 

The game of Example 1 above is a typical example of a two-person zero-sum 
matrix game (hereafter referred to simply as a matrix game). The terminology is 
obvious except perhaps for "zero-sum" which refers to the fact that one 
player's loss is the other player's gain. In a matrix game, we have an m x n 
payojJmatrix, a row player, and a column player. In each round of the game, the 
row player chooses a row ofthe payoff matrix and the column player chooses a 
column of the payoff matrix. These choices are then cross-indexed to find the 
payoff for the round. In this book, the payojJs in the matrix are always listed as 
winningsfor the row player; winnings for the column player appear as negative 
entries in the payoff matrix. Hence, the row player wishes to maximize the 
payoff and the column player wishes to minimize the payoff. By an optimal 
strategy for a player of a matrix game, we mean a strategy whereby a player 
can maximize his winnings or minimize his losses, assuming that the other 
player will have perfect knowledge of this strategy and also play so as to 
maximize his winnings or minimize his losses subject to this strategy. In other 
words, an optimal strategy for a player of a matrix game assumes an 
omniscient opponent. This is a crucial assumption and will be used repeatedly. 

The procedure used to simplify the matrix game of Example 1 is called 
domination. 

Domination in a Matrix Game 

Whenever one row of a payoff matrix is term-by-term less than or equal to 
another row, delete the smaller row from the game (since the row player is 
trying to maximize the outcome). Whenever one column of a payoff matrix is 
term-by-term greater than or equal to another column, delete the larger 
column from the game (since the column player is trying to minimize the 
outcome). Continue deleting rows and/or columns until no row or column 
"dominates" another. 



120 Chapter 5. Matrix Games 

§2. Linear Programming Formulation 
of Matrix Games 

The purpose of this section is to formulate the determination of the optimal 
strategies of a matrix game as dual noncanonical linear programming 
problems to which the methods of 4§6 can be applied. Such a formulation 
depends on a careful analysis which we begin now. 

Definition 2. Let A = [aij]m x n be an m x n matrix game. A mixed (or 
probabilistic) strategy for the row player is a column vector 

such that Pi ~ 0 for all i and 

A mixed (or probabilistic) strategy for the column player is a row vector 

Q=[ql qz ... qn] 

such that qj ~ 0 for all j and 

Any mixed strategy containing an entry of 1 (whence all of the other entries are 
necessarily 0) is said to be a pure strategy. 

The interpretation ofthe mixed strategy for the row player is that, if the row 
player uses strategy P, he will choose row i of the matrix with probability Pi' 
Similarly, the interpretation of the mixed strategy for the column player is that, 
if the column player uses strategy Q, he will choose columnj of the matrix with 
probability qj" If a player uses a pure strategy, he will constantly choose the 
same row or column, namely the row or column corresponding to the 
probability 1. 

Note that neither of the optimal strategies of the players in the game of 
Example 1 will be a pure strategy. To see this, recall the payoff matrix for the 
game of Example 1: 

"EVEN" 2 
PLAYER'S 
CHOICE 3 

"ODD" 
PLAYER'S 
CHOICE 

2 

[-3 4J 
2 -3 



§2. Linear Programming Formulation of Matrix Games 121 

Now put yourself in the position of one of the players, say the "even" player. 
Would you ever playa pure strategy? If you constantly choose the first row of 
the matrix, the "odd" player is going to constantly choose the first column of 
the matrix (remember that the "odd" player knows your strategy!) and you will 
lose $3 per round of the game. Likewise, if you constantly choose the second 
row of the matrix, the "odd" player is going to constantly choose the second 
column of the matrix and you will again lose $3 per round of the game. 
Certainly the "even" player can do better than this! Similar reasoning applies 
to the wisdom of the column player using a pure strategy. In fact, similar 
reasoning applies to any strategy that is predictable. In general, any player 
who can predict with certainty what his opponent will do in a matrix game has 
a decided advantage. Hence the optimal strategies of both players in the game 
above will be mixed strategies. Each row and column of the matrix will be 
assigned a probability- the players will then choose their rows or columns 
consistent with these probabilities. Our goal is to determine the optimal 
assignment of probabilities to the rows and columns of this matrix game and, 
more generally, an arbitrary matrix game. 

Let A = [aiJm x n be an m x n matrix game. Assume, for the moment, that the 
column player always chooses columnj of the matrix, i.e., the column player is 
using the pure strategy 

Q=[O o 1 0 

i 
j 

If the row player uses mixed strategy 

0]. 

then the expected value of his winnings, denoted E/P), is 

E/P) = Plalj + P1a1j + ... + Pmamj 

by elementary probability theory. Now the row player's optimal strategy 
would assure that the expected value of his winnings is maximal no matter what 
column the column player chooses. Stated a bit differently, the row player's 
optimal strategy would assure that his minimum expected winnings are as 
large as possible. Hence, the optimal strategy for the row player is to choose 
strategy P such that 

min EJ{P) is maximal. 
l~j~n 

Similarly, assume, for the moment, that the row player always chooses row i of 
the matrix, i.e., the row player is using the pure strategy 



122 

o 

o 
p= 1 +-i 

o 

o 
If the column player uses mixed strategy 

Q = [ql q2 q.], 

Chapter 5. Matrix Games 

then the expected value of his losses (remember that matrix game entries are in 
terms of winnings for the row player!), denoted Fi(Q), is 

Fi(Q) = qlail + q2ai2 + ... + qnain 

by elementary probability theory. Now the column player's optimal strategy 
would assure that the expected value of his losses is minimal no matter what 
row the row player chooses. Stated a bit differently, the column player's optimal 
strategy would assure that his maximum expected losses are as small as 
possible. Hence, the optimal strategy for the column player is to choose 
strategy Q such that 

max Fi(Q) is minimal. 
l~i~m 

The expected winnings of the row player per round of the game provided that 
both players play their optimal strategies is 

u = max min EiP). 
P 1 ;£j;£n 

The expected losses of the column player per round of the game provided that 
both players play their optimal strategies is 

v = min max Fi(Q). 
Q l;£i;£m 

Notice the "duality" present in the optimal strategies above. It is perhaps 
not surprising then that these strategies are obtained for a given matrix game 
by solving dual linear programming problems. Since the optimal strategy for 
the row player is essentially a maximization problem and the optimal strategy 
for the column player is essentially a minimization problem, one might expect 
that the row player's optimal strategy appears as the maximization problem of 
the tableau and that the column player's optimal strategy appears as the dual 
minimization problem. In fact, exactly the opposite is true as we see now. 

Theorem 3. Let A = [aiJm x n be an m x n matrix game. Then the mixed strategies 



§2. Linear Programming Formulation of Matrix Games 123 

and 
Q = [ql q2 ... qn] 

obtainedfrom the solution of the dual noncanonicallinear programming problems 

0 q1 

0 -1 -1 

-I 

-1 

-1 

-I -1 0 0 

n 

... -1 

A 

... 0 

-1 

-1 

0 

0 

0 

0 

=g 

= -0 

= -t1 

= -~ 

= f 

are optimal for the row and column player respectively. The dual non canonical 
tableau above is called the game tableau for A. 

PROOF. We show that the maximization problem ofthe game tableau yields the 
optimal strategy for the column player; the proof that the minimizatio'l 
problem yields the optimal strategy for the row player is similar. The first 
equation of the maximization problem is 

n 

L qj= 1; 
j= 1 

along with qj ~ 0 for all j, we have that 

Q=[ql q2 ... qn] 

is a mixed strategy. The next m equations of the maximization problem are 

-V+Fi(Q)= -ti, i= 1,2, ... ,m; 

in non-slack form, these m equations become the inequalities 

Fi(Q)~V, i=1,2, ... ,m. 

Finally, the last equation of the maximization problem says to maximize f = 
- v or, equivalently, to minimize v. Hence, the maximization problem of the 
game tableau finds the mixed strategy Q so that the maximum value of Fi(Q), 
i = 1,2, ... , m, is minimal; this is precisely the optimal strategy for the column 
~~ D 

Theorem 3 gives us a procedure for solving a matrix game-having reduced 
the determination of optimal strategies to dual noncanonical linear pro­
gramming problems, we simply apply the techniques and theory of Chapter 2, 
Chapter 3, and Chapter 4 to solve the problem. Notice that Theorem 3 does 
not guarantee the existence of a pair of optimal solutions for the dual 



124 Chapter 5. Matrix Games 

noncanonicallinear programming problems arising from a matrix game. (For 
example, isn't it possible that dual problems arising from a matrix game could 
display one ofthe combinations of infeasibility and unboundedness as given in 
(ii)-(iv) of the duality theorem in Chapter 4? Ifso, what does each combination 
say about the matrix game itself or about the strategies of the players 
involved?) Theorem 3 only implements the analysis undertaken prior to its 
statement and assumes that this analysis makes mathematical "sense." This 
matter will be reconciled completely in §3. Notice, however, that if a pair of 
optimal solutions for the dual noncanonicallinear programming problems of 
Theorem 3 exists, then f = g at these solutions whence u = v since f = - v and 
g = - u. This value u = v will be important in §3. 

A few additional remarks are in order. Always use domination to reduce a 
given matrix game as far as possible before forming the game tableau. This 
reduction does not affect the optimal strategies ofthe players and it is desirable 
to have as small a game tableau as possible. Also, note that to transform the 
noncanonical game tableau into canonical form, we must pivot v down to the 
east and 0 up to the north in the maximization problem and pivot u down to 
the south and 0 up to the west in the minimization problem. Unfortunately, 
this can not be accomplished in a single pivot since 0 is not an acceptable pivot 
entry. However, we can obtain a maximum basic feasible carionical maximi­
zation problem in only two pivots if the pivots are chosen carefully: 

(1) Find the maximum entry in each column of the matrix game A. 
(2) Choose the minimum of these maximum entries, say it is the entry aij of A. 
(3) Pivot on * and ** (in either order) as given below: 

-1 

-1· =-0 

-1·· ~j 

1 =f 

=0 --g 

Check that you have a maximum basic feasible tableau after pivoting on * and 
** as above. If not, an error has been made-locate it before continuing! 

§3. The Von Neumann Minimax Theorem 

As stated before, Theorem 3 of §2 assumes implicitly that it makes 
mathematical "sense" to speak of optimal strategies for players in a matrix 
game. But isn't it possible that the dual noncanonical linear programming 



§4. The Example Revisited 125 

problems of Theorem 3 arising from a matrix game could display one of the 
combinations of infeasibility and unboundedness as given in (ii)-(iv) of the 
duality theorem in Chapter 4? And, if so, what does each combination say 
about the matrix game itself or about the strategies of the players involved? 

Fortunately, an important theorem of game theory called the von Neumann 
minimax theorem (in honor of John von Neumann who was a pioneer in the 
field of game theory) rules out the possibility of a game tableau ever displaying 
pathological behavior. The von Neumann minimax theorem is an existence 
theorem; it assures the existence of optimal strategies for both players of a 
matrix game. Theorem 3 of §2, on the other hand, gives a procedure whereby 
these optimal strategies are constructed while implicitly assuming the 
existence of such strategies. The statement of the von Neumann minimax 
theorem is given without proof (see, for example, [Wi] for a proof). 

Theorem 4 (Von Neumann Minimax Theorem). Let A = [aiJrn x n be an m x n 
matrix game. Then there exist optimal mixed strategies P* and Q* for the row 
player and the column player respectively. Furthermore, 

min E/P*) = max min Ej(P) = min max FJQ) = max FJQ*); 
1 ~j~n P 1 ~j~n Q 1 ;£i;£m 1 ~i~m 

i i 
u v 

this common value is said to be the von Neumann value of the game. 

The von Neumann value of a matrix game is the expected winnings of the 
row player and the expected losses of the column player per round of the game 
provided that both players play their optimal strategies. A positive von 
Neumann value hence indicates that the game favors the row player, a 
negative von Neumann value indicates that the game favors the column 
player, and a von Neumann value of 0 indicates that the game is fair. 

§4. The Example Revisited 

We now solve the matrix game in Example 1 of §1. 

EXAMPLE 1 (Continued). Recall the matrix game from §i: 

"EVEN" 2 
PLAYER'S 
CHOICE 3 

"ODD" 
PLAYER'S 
CHOICE 

2 

[-3 4J 
2 -3 



126 Chapter 5. Matrix Games 

According to Theorem 3, we must solve the dual noncanonical linear 
programming problems 

I -I 

0 -I· -I -1 o =-0 
-I -3 4 0 PI = -tl 

-1·· 2 -3 0 ~ =~ 

-1 0 0 0 -I = f 

= 0 = SI = s2 = g 

The pivots * and ** (in either order) yield a maximum basic feasible tableau as 
discussed in §2. In fact, the entire solution of these dual linear programming 
problems can be found in Example 20 of Chapter 4. Note that the notation 
used there is slightly different from the notation used here. In any event, the 
optimal solutions (with the notation changed from Example 20 to coincide 
with the notation of the game tableau above) are 

t2 = tl = 0, ql = 7/12, q2 = 5/12, maxf = 1/12, 

minv=min-f= -maxf= -1/12, 

Sl = S2 = 0, P2 = 7/12, Pl = 5/12, ming = 1/12, 

maxu = max -g= -ming= -1/12. 

This game favors the "odd" player since the von Neumann value of the game is 
negative (u = v = - 1/12); on the average, the "odd" player will win $1/12 
(~ 8¢) per round of the game provided that both players play their optimal 
strategies. (Note that it is impossible for the "odd" player to win $1/12 in any 
single round of the game. Remember that the von Neumann value of a game is 
an expected value, i.e., a value which measures the benefit of the game to one of 
the players after many rounds of the game. For example, after 1200 rounds of 
the game, we would expect that the "odd" player would be winning 
approximately ($1/12)(1200) = $100.) The optimal strategy for the "even" 
player is given by 

p* = [Pl J' = [5/12J 
P2 7/12' 

i.e., the "even" player should choose the first row of the matrix (choose the 
number 2) with probability Pl = 5/12 and choose the second row of the matrix 
(choose the number 3) with probability P2 = 7/12. The "even" player should 
never choose the number 1. The optimal strategy for the "odd" player is given 
by 

Q* = [ql q2] = [7/12 5/12], 

i.e., the "odd" player should choose the first column of the matrix (choose the 
number 1) with probability ql = 7/12 and choose the second column of the 
matrix (choose the number 2) with probability q2 = 5/12. The "odd" player 



§S. Two More Examples 127 

should never choose the number 3. All of this information is summarized 
below: 

"even" 
player 

choice 

2 
3 

"odd" 
player 

2 

prob. 7/12 5/12 

~:; [-; -~J u = v = -1112 

Did you guess back in §1 that the "odd" player was favored in this game? Are 
you impressed with the power of the dual noncanonical tableau in solving 
matrix games? 

§5. Two More Examples 

We conclude our discussion of matrix games with two more examples. Both of 
these examples are simplified "poker-like" card games and, as such, differ from 
the game of § 1 in two important respects: 

(i) the games involve cards dealt from a deck of cards; the players have no 
control over the cards dealt-they can only react to the cards that they 
receive; 

(ii) the games are multiphase games, i.e., one player makes a decision in the 
game (phase 1) and then, dependent upon what that player does, the other 
player makes a decision in the game (phase 2) etc. 

These games also serve as a nice introduction to more general matrix games 
that are included in more complete discussions of game theory (see, for 
example, [01]). Without further ado, let's deal the cards! 

EXAMPLE 5. There are two players, say player I and player II, and a deck of 
three playing cards, ajack (J), a queen (Q), and a king (K). The ranking ofthese 
cards, from lowest to highest, is J, Q, and K; the suits of these cards are 
irrelevant. Each player antes a quarter and is then dealt a single card face 
down. Each player looks at his card. Player I now has two options: 

FOLD-Player I loses his ante to player II 
BET - Player I adds a dime to the pot. 

If player I bets, player II has two options: 

FOLD-Player II loses his ante to player I 
SEE-Player II adds a dime to the pot. 

In the event that player II sees, both cards are revealed and the high hand wins 
the pot. The cards are then returned to the deck. 



128 Chapter 5. Matrix Games 

Given this game, which player (if any) has the advantage? What is the von 
Neumann value of this game? What is the optimal strategy for each player? 

We work toward the payoff matrix for this game. A choice for player I in any 
round of the game is a reaction to the card dealt, i.e., a decision on whether to 
fold (F) or bet (B) given a J, Q, or K. One choice for player I would be to fold no 
matter what card he receives-we denote such a strategy by FFF (fold on J, 
fold on Q, fold on K). (Is this a wise strategy?) Another choice for player I 
would be to fold if he receives a J or Q, and bet if he receives a K -such a 
strategy is denoted by FFB (fold on J, fold on Q, bet on K). Continuing in such 
a manner, we obtain eight choices for player I in any round of the game: 

Choice for player I: 

FFF FFB FBF BFF FBB BFB BBF BBB 

In each choice, the first F or B is the decision on what to do if a J is dealt, the 
second F or B is the decision on what to do if a Q is dealt, and the third F or B 
is the decision on what to do if a K is dealt. Note again that the players have no 
control over the cards dealt-this is left entirely to chance. The players can 
only react to the cards that they receive. 

Similarly, a choice for player II in any round of the game is a decision on 
whether to fold (F) or see (S) given a J, Q, or K provided player I bets. Hence: 

Choices for player II: 

FFF FFS FSF SFF FSS SFS SSF SSS 

As before, the first F or S is the decision on what to do if a J is dealt, the second 
F or S is the decision on what to do if a Q is dealt, and the third F or S is the 
decision on what to do if a K is dealt. 

We are now ready to compute entries of the payoff matrix. This payoff 
matrix tabulates the result of the interaction of any two choices from the two 
players; hence, it will be an 8 x 8 matrix. Also, since the game depends on 
chance, the entries of the payoff matrix are the expected values of each 
interaction. Furthermore, all entries will be in terms of winnings for player I, 
our row player. We illustrate with the actual computation of a matrix entry. 

Assume that player I plays strategy FBB and that player II plays strategy 
SFS. There are six possible two card hands that could be dealt from the three 
card deck, each occurring with equal probability (1/6). Now, given each of 
these hands, we can compute the outcome of the round provided that the 
aforementioned strategies are played: 

Player I plays FBB, player II plays SFS 

Hand dealt: 
Probability: 
Outcome: 
(Winnings for 
player I) 

III III III III III III 
JQ JK QJ QK KJ KQ 
1/6 1/6 1/6 1/6 1/6 1/6 

- 25 - 25 35 - 35 35 25 



§s. Two More Examples 129 

For example, if player I is dealt a J (as in the hands J Q and J K), player I folds 
and hence player II wins player I's ante of 25¢. If player I is dealt a Q (as in the 
hands Q J and Q K), player I bets and adds 10¢ to the pot. Player II sees in 
either case by adding 1O¢ to the pot; player II loses 25¢ + 10¢ = 35¢ to player I 
if player II has a J and player II wins 25¢ + 10¢ = 35¢ from player I if player II 
has a K. Finally, if player I is dealt a K (as in the hands K J and K Q), player I 
bets and is assured of winning. Player I wins 25¢ + 10¢ = 35¢ from player II if 
player II has a J (since player II sees on a J) and player I wins player II's ante of 
25¢ if player II has a Q (since player II folds on a Q). Now the expected value of 
the interaction of FBB and SFS is the sum of the products of the probabilities 
and outcomes: 

E(FBB, SFS) = 1/6( - 25) + 1/6( - 25) + 1/6(35) + 1/6( - 35) 

+ 1/6(35) + 1/6(25) 

= 1/6( - 25 - 25 + 35 - 35 + 35 + 25) 

= 5/3. 

Hence, the FBB, SFS entry ofthe payoff matrix is 5/3. Since the payoff matrix 
is an 8 x 8 matrix, we must perform computations similar to that above 
63 more times. Although it is not suggested that one actually do this in its 
entirety, one should verify at least a few of the entries of the payoff matrix 
below: 

II 
FFF FFS FSF SFF FSS SFS SSF SSS 

FFF -25 -25 -25 -25 -25 -25 -25 -25 
FFB -25/3 -25/3 -20/3 -20/3 -20/3 -20/3 -5 -5 
FBF -25/3 -55/3 -25/3 -20/3 -55/3 -50/3 -20/3 -50/3 
BFF -25/3 -55/3 -55/3 -25/3 -85/3 -55/3 -55/3 -85/3 
FBB 25/3 -5/3 10 35/3 0 5/3 40/3 10/3 
BFB 25/3 -5/3 0 10 -10 0 5/3 -25/3 
BBF 25/3 -35/3 -5/3 10 -65/3 -10 0 -20 
BBB 25 5 50/3 85/3 -10/3 25/3 20 0 

Fortunately, the matrix above reduces considerably by domination. The 
first, second, third, fourth, sixth, and seventh rows can be deleted upon 
comparison with (for example) the fifth row. Then the first, third, fourth, sixth, 
seventh, and eighth columns can be deleted upon comparison with the fifth 
column. Hence, the payoff matrix above reduces by domination to 

FBB 
I 

BBB 

II 
FFS FSS 

[ - 5/3 0 ] 
5 -10/3 

We now apply our linear programming techniques to the reduced payoff 
matrix: 



130 

0 -1 -1· 

-1·· -5/3 0 

-1 5 -10/3 

-1 -1 0 0 

(0 ql ( 

0 1 1 

-1·· -5/3 0 
-1 25/3 -103 

-1 -1 0 ~ 
=0 = SI 

=0 

1 

s2 0 1 1 
~ '" " v . ~/~ V 

~ -1 10· 10/3 

-1 -1 5/3 0 

-1 

-1 = -0 
0 = -t l 
0 = -t2 

0 =f 

-1 

1 

0 

10/3 

0 =f 

=g 

Chapter 5. Matrix Games 

--pivot 
on 
* 

-­pivot 
on 
** 

=-q 
b 
\.::J 

= -t2 

=f 

-­simplex 
algoritlun 

(Note: In game tableaus, the filed equations for u and [J need not be recorded; 
u and [J can be obtained from f and g since f = - v and g = - u.) 

-1 
..... 

s 2 1/10 -1/10 2'3 

s 1 -1/10 1/10 1/3 

1 -5/6 -1/6 -5/9 =f 

The basic solutions of the final tableau above are optimal: 

tl =t2=0,Q2=2/3,QI = 1/3,maxf=5/9, 
minv = min - f= - maxf= - 5/9, 



§S. Two More Examples 

S2 = Sl = 0, P1 = 5/6, P2 = 1/6, min g = 5/9, 
maxu=max-g= -ming= -5/9. 

131 

The von Neumann value of this game is - 5/9, i.e., this game favors player II 
who will win, on the average, 5/9¢ per round of the game provided that both 
players play their optimal strategies. These optimal strategies are summarized 
below: 

choice 

FBB 
BBB 

II 

FFS FSS 

prob. 1/3 2/3 

5/6 [-5/3 ol 
1/6 5 -lO!3J u=v=-5/9 

In other words, it is optimal for player I to bet with a J (i.e., bluff) with 
probability 1/6 and always bet with a Q or K; it is optimal for player II to 
always fold with a J, fold with a Q with probability 1/3, and always see with a 
K. 

EXAMPLE 6. There are two players, say player I and player II, and a 
standard 52-card deck of playing cards. The black suits (i.e., spades ( + 's) and 
clubs (.'s)) rank higher than the red suits (i.e., hearts ('I's) and diamonds 
( • 's)); the denominations ofthese cards are irrelevant. Each player antes $x (x 
~ 0) and is then dealt a single card face down. Each player looks at his card. 
Player I now has two options: 

P ASS-Both cards are revealed and the high hand wins the pot (if the hands 
are equal, the pot is divided equally) 

BET - Player I adds $y (y > 0) to the pot. 

H player I bets, player II has two options: 

FOLD-Player II loses his ante to player I 
SEE-Player II adds $ y to the pot. 

In the event that player II sees, both cards are revealed and the high hand wins 
the pot (if the hands are equal, the pot is divided equally). The cards are then 
returned to the deck. 

Given this game, which player (if any) has the advantage? What is the von 
Neumann value of this game? What is the optimal strategy for each player? 

This game is similar to the game of Example 5. The choices for both players 
appear below: 

Choices for player I: 

PP PB BP BB 



132 Chapter 5. Matrix Games 

Choices for player II: 

FF FS SF SS 

In each choice, the first letter represents the decision on what to do if a black 
card (denoted b) is dealt and the second letter represents the decision on what 
to do if a red card (denoted r) is dealt. Under the assumption that all hands are 
equally likely,* the entries of the payoff matrix are now computed as in 
Example 5. We illustrate with an example. 

Player I plays BP, player II plays FS 
III III III III 

Hand dealt: bb br rb rr 
Pro ba bili ty: 1/4 1/4 1/4 1/4 
Outcome: x x+y -x 0 
(Winnings for 
player I) 

E(BP, FS) = 1/4(x) + 1/4(x + y) + 1/4( - x) + 1/4(0) 

= 1/4(x + (x + y) - x) 

= (x + y)/4. 

The payoff matrix is 
II 

FF FS SF SS 
PP 

lJ~/4 
0 0 

-~/4 J PB x/2 (x - y)/4 
I BP x/4 (x + y)/4 0 y/4 

BB x (3x + y)/4 (x - y)/4 0 

(Verify a few of the entries above before continuing!) 
The payoff matrix above reduces by domination. Before we illustrate this 

reduction, it is possible to make an educated guess as to which player is 
probably favored by this game by inspecting this matrix. Notice that the first 
row of the payoff matrix consists entirely of zeros. Hence player I can force at 
least a fair game by constantly choosing strategy PP, i.e., passing no matter 
what color card is dealt to him. Given this pure strategy, the expected winnings 
of player I per round of the game (or, equivalently, the expected losses of 
player II per round of the game) is 0 no matter what strategy player II uses, i.e., 
the game is fair. But the pure strategy of choosing PP for player I may not be 
optimal, i.e., there may be a pure or mixed strategy for player I whereby 
player I can achieve an expected winnings per round ofthe game that is greater 

* All hands in this game are not equally likely. The probability of the players getting cards of 
different colors is slightly higher than the probability of the players getting cards of the same color. 
(See Exercise 5.) We assume equal likelihood of the hands for computational convenience. 



§5. Two More Examples 133 

than O. Hence, this card game probably favors player I. Our forthcoming 
analysis will corroborate this fact. In addition, however, we will obtain the 
exact expected winnings for player I per round of the game (the von Neumann 
value of the game) and the optimal strategy for each player. 

We now apply domination to our payoff matrix. The first row can be deleted 
upon comparison with the third row and the second row can be deleted upon 
comparison with the fourth row. Then the first and second columns can be 
deleted upon comparison with the third column leaving 

BP 
I BB 

We now consider two cases. 

II 

Case I. x ~ y. Domination reduces the payoff matrix even further. The second 
row can be deleted upon comparison with the first row and then the second 
column can be deleted upon comparison with the first column to obtain 

II 
SF 

I BP [0] 

Here, the von Neumann value of the game is 0, i.e., the game is fair. The optimal 
strategies for the players are pure strategies, namely BP for player I and SF for 
player II. In other words, it is optimal for player I to always bet with a black 
card and always pass with a red card; it is optimal for player II to always see 
with a black card and always fold with a red card. 

Case II. x> y. We apply our linear programming techniques to the 2 x 2 
payoff matrix above: 

-1 

0 -1 -1· -1 
-1·· 0 y/4 0 

-1 (x-y)!4 0 0 

-I -1 0 0 0 

= 0 = sl = S2 = g 

=-0 
= -t1 

=-~ 

=f 
...... 

----+ 
pivot 

on 
• 

(Note: The maximum entry in the first column ofthe payoff matrix is (x - y)/4; 
the maximum entry in the second column ofthe payoff matrix is y/4. But which 
of (x - y)/4 and y/4 is minimal? This depends on how much larger x is than y. 
The choice of y/4 as minimal works in general for Case II (as does the choice of 
(x - y)/4; see Exercise 6) and we use y/4.) 



134 

v 
..... q1 

0 1 

-I"" -y/4 

-I (x-y)!4 

-I -I 0 

=0 = SI 

S2 0 1 
~ 

v yt 

P2 -I xl4" 

-I -I y/4 

( 

1 

}4 
0 

0 

=0 

1 

yt 

y/4 

y/4 

-I 

1 

-y/4 

0 

0 

=g 

= -q 
J-..-. 

=f 

Chapter 5. Matrix Games 

~ 

pivot 
on 
** 

'V 
= -t2 

=f 

~ 

simplex 
algorithm 

(Note: The tableau above is canonical and maximum basic feasible. Since 
x> y > 0, we have x > 0; since (y/4)/(x/4) < 1, our pivot choice by the simplex 
algorithm is x/4.) 

-I 
..... 

s 2 4/x -4/x (x-y)!x 

s I -4/x 4/x y/x 

1 (y-x)/x -y/x y(x-y)/(4x) = f 
, 

The basic solutions of the final tableau above are optimal: 

tl = t2 = 0, q2 = (x - y)/x, ql = y/x, max f = y(y - x)/(4x), 

min v = y(x - y)/(4x), 

S2 = SI = O,Pl = (x - Y)/X,P2 = y/x, ming = y(y - x)/(4x), 

max u = y(x - y)/(4x). 

The von Neumann value of the game is y(x - y)/(4x); since x > y > 0, we have 
y(x - y)/(4x) > ° and hence the game favors player I who will win, on the 
average, $y(x - y)/(4x) per round of the game provided both players play their 
optimal strategies. These optimal strategies are summarized below: 



Exercises 135 

IT 

choice SF SS 

prob. y/x (x-y)!x 

I 
BP (x-y)!x ~ 0 Y/4] 
BB y/x (x-y)!4 0 u = v = y(x-y)!(4x) 

In other words, it is optimal for player I to always bet with a black card and 
bet with probability y/x with a red card; it is optimal for player II to always see 
with a black card and see with probability (x - y)/x with a red card. 

§6. Concluding Remarks 
Game theory is a dynamic and ever-widening field. While a rigorous and 
complete treatment of the subject would require a firm foundation in advanced 
calculus (at least), we have attempted in the preceding sections to introduce the 
subject through the concept of a two-person zero-sum matrix game. The 
solution procedure for such games illustrates quite graphically the power of 
linear programming (in particular, the dual noncanonical tableau) in the 
analysis of games. More advanced discussions of game-theoretic topics may be 
found in [01]. 

EXERCISES 

1. Find the von Neumann value and the optimal strategy for each player in each of 
the matrix games below. 

a. II 

[ ~i 1 4 2 

1 
2 

I 6 3 -2 
-3 5 

2 2 
b. II 

U 
0 2 -2 

~~l -2 -4 2 
-1 1 

5 4 2 

c. II [ ~: -3 1 0 

~;l -2 -1 0 

I 1 -1 1 
-2 -1 0 1 

1 -1 -1 -1 



136 

d. 

1 [=i -I 

II 

-1 

Chapter 5. Matrix Games 

2. Find the von Neumann value and the optimal strategy for each player in each of 
the games below. 

a. Player 1 and player II each have a penny and a nickel. They each choose one of 
their coins and display them simultaneously. If the coins are the same, player 1 
wins the sum ofthe coins from player II; ifthe coins are different, player II wins a 
nickel from player I. 

b. Player 1 has the two of spades (2.) and the three of hearts (3.) from a deck of 
playing cards and player II has the three of spades (3. ) and the four of hearts 
(4.). They each choose one of their cards and display them simultaneously. If 
the colors are the same, player 1 wins; ifthe colors are different, player II wins. If 
player 1 plays the 2~, the payoff consists of the difference of the numbers on the 
cards played in dollars; if player 1 plays the 3. , the payoff consists of the sum of 
the numbers on the cards played in dollars. 

c. (The excerpt below is from The Purloined Letter by Edgar Allan Poe.) 
"I knew one [student] about eight years of age, whose success at guessing in 

the game of 'even and odd' attracted universal admiration. This game is simple, 
and is played with marbles. One player holds in his hand a number of these toys, 
and demands of another whether that number is even or odd. If the guess is 
right, the guesser wins one; if wrong, he loses one. The boy to whom 1 allude won 
all the marbles of the school. Of course he had some principle of guessing; and 
this lay in mere observation and admeasurement of the astuteness of his 
opponents. For example, an arrant simpleton is his opponent, and, holding up 
his closed hand, asks, 'are they even or odd?' Our schoolboy replies, 'odd,' and 
loses; but upon the second trial he wins, for he then says to himself, 'the 
simpleton had them even upon the first trial, and his amount of cunning is just 
sufficient to make him have them odd upon the second; 1 will therefore guess 
odd;'-he guesses odd, and wins. Now, with a simpleton a degree above the 
first, he would have reasoned thus: 'This fellow finds that in the first instance 1 
guessed odd, and, in the second, he will propose to himself, upon the first 
impulse, a simple variation from even to odd, as did the first simpleton; but then a 
second thought will suggest that this is too simple a variation, and finally he will 
decide upon putting it even as before. 1 will therefore guess even;'-he guesses 
even, and wins. Now this mode of reasoning in the schoolboy, whom his fellows 
termed 'lucky,' -what, in its last analysis, is it?". 

3. Consider the game below: 
Player 1 and player II each have two pennies. Each player holds 0, 1, or 2 pennies 
in his left hand and the remainder of the pennies (2, 1, or 0 respectively) in his 
right hand. Each player reveals both hands simultaneously. If the number of 
coins in one of player I's hands is greater than the number of coins in the 
respective hand of player II, player 1 wins the difference in pennies; otherwise, 
no money is exchanged. 

a. Which player is favored in the game? (No work is required here!) 
b. Find the von Neumann value and the optimal strategy for each player in the 



Exercises 137 

4. 

game. If any player has infinitely many optimal strategies, find all optimal 
strategies. 

c. Ifplayer II owed $100 to player I, approximately how many rounds of the game 
would have to be played, on the average, to cancel the debt? 

d. Assume that player II is allowed three pennies. Repeat parts a, b, and c for this 
new game. 

e. Assume that player II is allowed four pennies. Find the von Neumann value of 
this new game. (No work is required here-be clever!) 

Find the von Neumann value of the matrix game below: 

II 
-75 -75 -75 -75 -75 -75 -75 -75 

-25 -25 -20 -20 -20 -20 -15 -15 

-25 -55 -25 -20 -55 -50 -20 -50 

-25 -55 -55 -25 -85 -55 -55 -85 

25 -5 30 35 0 5 40 10 

25 -5 0 30 -30 0 5 -25 

25 -35 -5 30 -65 -30 0 -60 

75 15 50 85 -10 25 60 0 

[Hint: Compare the matrix above to the matrix of Example 5.J 
[Note: The method motivated in this exercise can be used generally to convert 
fractional entries of matrix games to integers.J 

5. Find the actual probability of occurrence of each of the hands in Example 6, thus 
proving that the hands are not equally likely. 

6. Show that the choice of (x - y)j4 as minimal works in general for Case II of 
Example 6. 

7. Find the von Neumann value and the optimal strategy for each player in each of 
the multiphase games below. 

a. Player I and player II each secretly toss a coin. Heads ranks higher than tails. 
Each player looks at his coin. Player I now has two options: 

PASS-Both coins are revealed and the high coin wins. If player I has the 
high coin, he wins $2 from player II; if player II has the high coin, he 
wins $4 from player 1. If both coins are the same, no money is 
exchanged. 

BID-Player II has two options: 
FOLD-Player I wins $4 from player II 
SEE-Both coins are revealed and the high coin wins $12. Ifboth coins are 

the same, no money is exchanged. 

b. Player I and player II are each dealt a single card face down from a deck of three 
playing cards, ajack (J), a queen (Q), and a king (K). The ranking of these cards, 
from lowest to highest, is J, Q, and K; the suits ofthese cards are irrelevant. Each 
player looks at his card. Player I now has two options: 



138 Chapter 5. Matrix Games 

PASS-Both cards are revealed and the high card wins. If player I has the 
high card, he wins $2 from player II; if player II has the high card, he 
wins $3 from playerI. 

BET - Player I puts $1 in the pot. 

If player I bets, player II has two options: 

PASS-Player II adds $3 to the pot and player I adds $1 to the pot. Both 
cards are revealed and the high hand wins the pot. 

SEE-Player II puts $1 in the pot. 

In the event that player II sees, both cards are revealed and the high hand wins 
the pot. The cards are then returned to the deck. 

c. Player I and player II each ante $5. Each is then dealt a single card face down 
from a standard 52-card deck of playing cards. The black suits (i.e., spades (+ 's) 
and clubs (+'s)) rank higher than the red suits (i.e., hearts ('1's) and diamonds 
( • 's)); the denominations ofthese cards are irrelevant. Each player looks at his 
card. Player I now has two options: 

PASS-Both cards are revealed and the high hand wins the pot (if the hands 
are equal, the pot is divided equally) 

BET -Player I adds $1 to the pot. 

If player I bets, player II has three options: 

FOLD-Player II loses his ante to player I 
SEE-Player II adds $1 to the pot, both cards are revealed, and the high hand 

wins the pot (if the hands are equal, the pot is divided equally) 
RAISE-Player II adds $2 to the pot. 

If player II raises, player I has two options: 

FOLD-Player I loses his ante and bet to player II 
SEE-Player I adds $1 to the pot, both cards are revealed, ap.d the high hand 

wins the pot (if the hands are equal, the pot is divided equally). 

The cards are then returned to the deck. 
[Note: Assume equal likelihood of the hands for computational convenience 
(but see Exercise 5 above!).] 

8. Assume that the ante is $1 (instead of $5) in the game of Exercise 7c above. Prove 
that this new game is fair. [Hint: It suffices to show that one row and one column of 
the payoff matrix consists entirely of zeros. (Why?)] 

9. Let x, YER and consider the matrix game below: 

II 

[~ ~J 
a. Determine a necessary and sufficient condition for the matrix game above to 

reduce by domination to a single entry. 
b. Given the condition of part a, find the von Neumann value and the optimal 

strategy for each player in the matrix game above. [Hint: There are two cases.] 



Exercises 139 

10. Let x, y, zER. Find the von Neumann value and the optimal strategy for each 
player in the matrix game below: 

II 

I [; :J 
[Hint: Consider several cases and reduce by domination.] 

11. a. Let x> O. Find the von Neumann value and the optimal strategy for each player 
in the matrix game below: 

II 

{-~x++/) x:x1J 
b. Assume now that x can be any real number. For what values of x does the 

matrix game above reduce by domination to a single entry? 

12. Prove that the minimization problem of the game tableau in Theorem 3 yields the 
optimal strategy for the row player. 



CHAPTER 6 

Transportation and 
Assignment Problems 

§O. Introduction 

Transportation and assignment problems are traditional examples of linear 
programming problems. Although these problems are solvable by using the 
techniques of Chapters 2-4 directly, the solution procedure is cumbersome; 
hence, we develop much more efficient algorithms for handling these 
problems. In the case oftransportation problems, the algorithm is essentially a 
disguised form of the dual simplex algorithm of 4§2. Assignment problems, 
which are special cases of transportation problems, pose difficulties for the 
transportation algorithm and require the development of an algorithm which 
takes advantage of the simpler nature of these problems. 

§ 1. An Example; The Balanced Transportation 
Problem 

We begin with a typical example of a transportation problem. 

EXAMPLE 1. A manufacturer of widgits owns three warehouses and sells to 
three markets. The supply of each warehouse, the demand of each market, and 
the shipping cost per ton ofwidgits from each warehouse to each market are as 
follows: 



§ 1. An Example; The Balanced Transportation Problem 141 

warehouse supplies 

Market I Market 2 Market 3 1 
Warehouse I $2Iton $l/ton $2Iton 40 tons 

Warehouse 2 $9/ton $4/ton $7/ton 60 tons 

Warehouse 3 $l/ton $2Iton $9/ton 10 tons 

market demands -- 40 tons 50 tons 20 tons 110 tons ~ total demand 

T 
total supply 

How should the manufacturer ship the widgits so as to minimize total 
transportation cost? 

The problem can be solved by using the techniques of Chapters 2~4 
directly. For i,j = 1,2,3, let 

xij = # of tons of widgits shipped from warehouse i to market j. 

Then the objective is to minimize the total transportation cost, i.e., 

Minimize C(X ll , x 12 , x 13 , X 2l ' X 22 ' X 23 ' X 3l ' X 32 ' X 33 ) 

= 2Xll + X 12 + 2X13 + 9X2l + 4X22 + 7X 23 + X 3l + 2X32 + 9X33' 

What are the constraints? Note that the total supply of the three warehouses is 
110 tons and that the total demand of the three markets is 110 tons. Hence, in 
order to satisfy the demand of the markets, each warehouse will have to ship 
precisely its current supply ofwidgits. Furthermore, the amount ofwidgits sent 
to any market by the three warehouses must equal the demand of that market. 
Hence we obtain six equality constraints for our transportation problem: 

X ll + X 12 + X13 = 40 (Warehouse 1 supply constraint) 

X 2l + X 22 + X 23 = 60 (Warehouse 2 supply constraint) 

X 3l + X32 + X33 = 10 (Warehouse 3 supply constraint) 

Xl! + X 2l + X 3l = 40 (Market 1 demand constraint) 

X 12 + X 22 + X 32 = 50 (Market 2 demand constraint) 

X13 + X 23 + X33 = 20 (Market 3 demand constraint). 

Finally, we impose nonnegativity constraints on the xij's: 

The initial Tucker tableau for the solution of this problem via the techniques of 
Chapters 2~4 is 



142 Chapter 6. Transportation and Assignment Problems 

I 0 0 1 0 0 2 

I 0 0 0 1 0 1 

1 0 0 0 0 1 2 

0 1 0 1 0 0 9 

0 1 0 0 1 0 4 

0 1 0 0 0 1 7 

0 0 1 1 0 0 1 

0 0 1 0 1 0 2 

0 0 1 0 0 1 9 

- 1 40 60 10 40 50 20 0 

=0=0=0=0=0=0 =C 

WOW! A relatively small transportation problem with three warehouses and 
three markets has expanded into a lOx 7 Tucker tableau! Although we could 
use the techniques of Chapters 2--4 to solve this problem, we will opt instead 
for a more direct algorithm which operates on a smaller tableau. We leave 
Example 1 until its solution with this algorithm in §4. 

Example 1 above is an example of a balanced transportation problem. We 
now state the general balanced transportation problem. A manufacturer of a 
certain good owns m warehouses WI' W 2 , ... , Wm and sells to n markets 
M l' M 2 ,·.·, Mn" Let Si' i = 1,2, ... ,m, be the supply of Wi' let dj,j = 1,2, ... ,n, 
be the demand of M j' and let cij be the unit shipping cost from Wi to Mi. If xij is 
the number of units of the good to be shipped from Wi to M j , then the general 
balanced transportation problem is 

m n 

Minimize C = L L cijxij 
i = 1 j= 1 

subject to jt
I 

Xij = Si' i = 1,2, ... , m} Warehouse constraints 

itl xij = dj , j = 1,2, ... , n} Market constraints 

Xij ~ 0, Vi,j. 

Here, total supply is equal to total demand: 

m m (n ) m n 
total supply = i~l Si = i~l j~I xij = i~I j~I xij 

n (m ) n j~l i~I xij = j~l dj = total demand; 



§2. The Vogel Advanced-Start Method (VAM) 143 

it is, in this sense, that the transportation problem is said to be balanced. 
(Unbalanced transportation problems will be discussed in §5.) The relevant 
balanced transportation tableau is given by 

Ml M2 .,. Mn 

WI Cll C12 ... Cln 51 

Wz CZl C22 ... c2n 52 

Wm Cml Cm2 .•• cmn 5m 

d l dz ... dn m n 

L 5i = L dj 

i= I j=1 

The entries of the transportation tableau are called cells. An extremely 
important remark is in order here. The transportation tableau above is not a 
Tucker tableau. In fact, the algorithm to be developed essentially translates the 
steps of the dual simplex algorithm of 4§2 (which operates on a Tucker 
tableau) into the language of transportation problems; in so doing, we will 
obtain a disguised form of the dual simplex algorithm which operates directly 
on the transportation tableau rather than on the much larger Tucker tableau. 
The next two sections give this algorithm. Although no proofs are given, 
comments are provided to enable the reader to see the correspondence 
between the steps of the two algorithms. For further discussions of the 
relationships between the transportation algorithm and simplex algorithm 
techniques, see [L2]. 

§2. The Vogel Advanced-Start Method (VAM) 

The Vogel Advanced-Start Method (VAM), named after W.R. Vogel ([Rl]), 
implements the reduction of the minimum Tucker tableau of a transportation 
problem to minimum basic feasible form. This algorithm would hence 
correspond to the transformation of the Tucker tableau to canonical form and 
the subsequent application of steps (1)-(6) ofthe dual simplex algorithm of 4§2. 
We should remark here that VAM is not the only algorithm that implements 
this reduction. Other methods include, for example, the minimum-entry 
method and the northwest-corner method (see Exercise 6). In fact, the use of 
V AM in large transportation problems can be quite cumbersome. But V AM is 
usually considered to be superior for smaller transportation problems and is 
especially suitable for hand computations since it generally results in a feasible 
solution that is closer to being optimal than the other procedures. 



144 Chapter 6. Transportation and Assignment Problems 

VAM 

(0) Given: An initial balanced transportation tableau. 
(1) Compute the difference of the two smallest entries in every row and column 

ofthe tableau and write this difference opposite the row or column. (If there 
is only one entry in any row or column, write that entry.) 

(2) Choose the largest difference and use the smallest cost in the correspond­
ing row or column to empty a warehouse or completely fill a market 
demand. (If there is a tie for the largest difference, use the smallest entry in 
the corresponding rows and/or columns. If there is a tie for the smallest 
entry, use any such entry.) Circle the cost used and write above the circle 
the amount of goods shipped by that route. Reduce the supply and demand 
in the row and column containing the cost used. 

(3) Delete the row or column corresponding to the emptied warehouse or fully 
supplied market; if both happen simultaneously, delete the row unless that 
row is the only row remaining in which case delete the column. 

(4) If all tableau entries are deleted, STOP; otherwise, go to (1). 

We now apply V AM to Example 1 of § 1. 

EXAMPLE 1 (Continued). The parenthetical numbers below correspond to the 
steps of V AM. 

(0) Mj M2 M) 

Wj 2 2 40 
W2 9 4 7 60 

W) 2 9 10 

40 50 20 110 

The W;'s and the M/s will be suppressed computationally. 

(1) 5 4-- column 
differences 

2 2 40 
3 9 4 7 60 

2 9 10 

i 40 50 20 

row 
differences 

(2) The largest difference in the tableau above is 5 corresponding to the third 
column. Hence we use the smallest cost in the third column, namely 2, to 
empty a warehouse or completely fill a market demand. 2 denotes the unit 
cost of shipping widgits from WI to M 3; since M 3 only needs 20 tons of the 
possible 40 tons in WI' we ship 20 tons of widgits from WI to M 3 and 



§2. The Vogel Advanced-Start Method (V AM) 145 

therefore fulfill the demand of M 3' We then adjust the supply of Wi and the 
demand of M 3 accordingly, i.e., after such a shipment, the current supply of 
Wi is 40 - 20 = 20 and the current demand of M 3 is 20 - 20 = O. The entire 
transaction is recorded as follows: 

2 

3 9 4 

2 

40 50 

5 

(;\2 20 \V ,w 20 

7 

9 

J{f 

o 

60 

10 

What is the rationale behind the choice of the largest difference and the 
subsequent choice of the smallest cost in the corresponding row or 
column? The largest difference at any stage of VAM is a measure of the 
"regret" we would have for not using the smallest cost possible in the row 
or column of this difference. Referring to the tableau above, if we do not 
take advantage of the 2 in the third column, then, because of the larger 
difference, we will eventually have to use a much larger cost to fulfill the 
demand of M 3' Hence we ship as many tons of widgits as we can via the 
cost of 2 in the hope of avoiding the much larger costs in the same column. 

(3) M 3 has been fully supplied in step (2) above; hence we delete the third 
column of the tableau: 

2 

3 9 4 60 

2 10 

40 50 D 

Note that we have successfully avoided using the high costs of 7 and 9 in 
the third column! 

(4) All tableau entries have not been deleted so we go to step (1). 



146 

(1) 

Chapter 6. Transportation and Assignment Problems 

2 

5 9 

i 40 
row 

differences 
(new) 

4 

2 

50 

column 
~ differences 

60 

10 

(2) The largest difference in the tableau above is 5 corresponding to the second 
row. Hence we use the smallest cost in the second row, namely 4, to ship as 
many tons of widgits as we can from W2 to M 2 - this amount is 50 tons 
(fulfilling the demand of M 2)' The supply of W2 is adjusted to 60 - 50 = 10 
and the demand of M 2 is adjusted to 50 - 50 = 0; 

2 C D20 20 

5 9 0 50 W 10 

2 10 

40 % ~ 
0 

(3) M 2 has been fully supplied in step (2) above; hence we delete the second 
column of the tableau: 

1 

2 C p20 20 

5 9 ~ p50 10 

I 10 

40 ( ( 



§2. The Vogel Advanced-Start Method (V AM) 147 

(4) All tableau entries have not been deleted so we go to step (1). 

(1) I 

2 2 G D20 20 

~ D50 
I 
i 

9 9 10 

I 10 

40 

(Remember: If a row or column contains only one entry, write that entry 
when computing differences.) 

(2) The largest difference in the tableau above is 9 corresponding to the second 
row. Hence we use the smallest cost in the second row, namely 9, to ship as 
many tons of widgits as we can from Wz to M 1 ~this amount is 10 tons 
(emptying W2 ). The supply of W2 and the demand of M 1 are adjusted 
accordingly: 

I 

2 2 G )20 20 

9 0 10 cb50 .\.6"0 

I 10 

!W ? 
30 

(3) W2 has been emptied in step (2) above; hence we delete the second row of 
the tableau: 

2 2 
20 

20 

50 

10 



148 Chapter 6. Transportation and Assignment Problems 

(4) All tableau entries have not been deleted so we go to step (1). 

(1) 

2 2 
20 

20 

50 

10 

30 

(2) Provide your own justification for the tableau below: 

20 16" 0 

50 

10 

(3) 

20 

10 

10 



§2. The Vogel Advanced-Start Method (VAM) 

(4) Go to step (1). 

(1) 

(2) 

10 

.ur 
o 

149 

20 

10 

20 

UfO 

(3) A warehouse has been emptied and a market has been fully supplied 
simultaneously in step (2) above. Although it really does not matter at this 
point whether we delete the row or column (since all tableau entries will 
have been deleted in any event and YAM will terminate in step (4)), we 
delete the column in accordance with step (3) as stated previously: 

20 

o 



150 Chapter 6. Transportation and Assignment Problems 

(4) All tableau entries have been deleted-STOP. 

Our transportation tableau after V AM is 

(2)10 ~50 7 60 

0 10 2 9 10 

40 50 20 

Note that the solution obtained by VAM is a feasible solution. To see this, 
check that the total number of tons ofwidgits shipped from each warehouse is 
equal to the total supply of that warehouse and that the total number of tons of 
widgits shipped to each market is equal to the total demand of that market. 
This feasible solution is given by 

Xu = 20, x l2 =0, X13 = 20, 

X 2I = 10, X 22 = 50, X 23 = 0, 

X 3I = 10, X 32 = 0, X33 =0 

with corresponding total transportation cost 

C = $2(20) + $2(20) + $9(10) + $4(50) + $1(10) = $380. 

Is such a solution optimal? We postpone the answer to this question until the 
next section. The interested reader may wish to attempt the construction of a 
feasible solution having lower total transportation cost than $380. 

Definition 2. A feasible solution of a balanced transportation problem is said 
to be a basic feasible solution if at most m + n - 1 of the xij's are positive where 
m is the number of warehouses and n is the number of markets. 

Not surprisingly, the notion of Definition 2 above is completely analogous 
to the concept of a basic feasible solution of a Tucker tableau. V AM produced 
a basic feasible solution from the tableau of Example 1 of§l. Exactly five of the 
xij's are positive (namely Xll,X13,X21,X22 and X3I) and m + n -1 = 3 + 3-
1 = 5. Note though that basic feasible solutions in transportation tableaus 
need not have exactly m + n - 1 positive xij's as in this example-the 
requirement is at most m + n - 1 positive xij's. Does VAM always produce a 
basic feasible solution from a balanced transportation tableau? YES! 

Theorem 3. V AM produces a basic feasible solutionfor any balanced transpor­
tation problem. Furthermore, the basic feasible solution corresponds to exactly 



§3. The Transportation Algorithm 151 

m + n - 1 distinguished (circled) cells of the transportation tableau where m is 
the number of warehouses and n is the number of markets. These distinguished 
cells are said to constitute a basis for the basic feasible solution. 

Note particularly the "furthermore" in Theorem 3 above. VAM will always 
terminate with exactly m + n - 1 circled cells where m is the number of 
warehouses and n is the number of markets. This is crucial! Chaos may result 
later if you do not check for this immediately after using V AM. Theorem 3 
does not say that exactly m + n -1 of the x ij's will be positive-even though 
exactly m + n - 1 of the cells will be circled (and all noncircled cells will have 
xirvalue 0), it is possible for one (or more) circled cells to have xij-value O. This 
phenomenon did not happen in Example 1 above but will be illustrated later. 

§3. The Transportation Algorithm 

Definition 4. Let T be the tableau of a balanced transportation problem. A 
cycle C in T is a subset of cells of T such that each row and each column of T 
contains exactly zero or two cells of C. 



152 Chapter 6. Transportation and Assignment Problems 

By connecting the cells of a cycle using horizontal and vertical movement 
only, we may visualize cycles in transportation tableaus as usual graph­
theoretic cycles. Never use diagonal movement in this regard (even though it 
may yield a graph-theoretic cycle). The reason for disallowing diagonal 
movement is investigated in Exercise 7. 

EXAMPLE 6. The cycles of the tableaus in Example 5 above may be visualized 
as 

L.....------....JT 

and 

'-----=-----"~T 

respectively. The cycle in the final tableau above should not be visualized as 

L.....---=--"":::"'....JT 

since diagonal movement is used here. 



§3. The Transportation Algorithm 153 

We now give the transportation algorithm, the disguised form of the dual 
simplex algorithm which will solve balanced transportation problems. 

The Transportation Algorithm 

(0) Given: An initial balanced transportation tableau. 
(1) Apply V AM to obtain a basic feasible solution and a corresponding basis 

(§2). 
(2) Let b1 =0. Determine al,al, ... ,am,bl,b3, ... ,bn uniquely such that 

a i + bj = cij for all basis cells cij' 
(3) Replace each cell Cij by cij - ai - bj ; these are the new cells cij . 

(4) If cij ~ 0 for all i andj, STOP; replace all cells with their original costs from 
(0); the basic feasible solution given by the current basis cells is optimal. 
Otherwise, continue. 

(5) Choose cij < O. (Usually, the most appropriate choice is the most negative 
cij , but see Exercise 8.) Label this cell as a "getter" cell ( + ). (By convention, 
this cell is distinguished by squaring it instead of circling it.) Find the 
unique cycle C in the tableau determined by this (squared) cell and basis 
cells. Label the cells in C alternately as "giver" cells ( - ) and "getter" cells 
( + ). Choose the "giver" cell associated with the smallest amount of goods. 
(If there is a tie among certain "giver" cells for the smallest amount of 
goods, choose any such cell.) 

(6) Add the squared cell of (5) to the basis, i.e., circle it in a new tableau. 
Remove the chosen "giver" cell of(5) from the basis, i.e., do not circle it in a 
new tableau. Add the amount of goods given up by this "giver" cell to all 
amounts of goods of "getter" cells in C; subtract the amount of goods given 
up by this "giver" cell from all amounts of goods of "giver" cells in C. Go 
to (2). 

Before we illustrate the transportation algorithm, we make two remarks. 
First of all, balanced transportation problems, by their very nature, are never 
infeasible or unbounded. V AM produces an initial feasible solution ruling out 
infeasibility; the constraints force the xi/s to have finite upper bounds ruling 
out unboundedness. Secondly, recall that VAM applied to any balanced 
transportation problem results in exactly m + n - 1 basis cells. If this basic 
feasible solution is not optimal, steps (5) and (6) then determine a new basis for 
a new basic feasible solution-one of the old basis cells leaves the basis 
(namely the "giver" cell associated with the smallest amount of goods) and a 
new cell enters the basis (namely the squared cell). If all cells are replaced with 
their original costs, this new basic feasible solution generally has lower total 
transportation cost than the original V AM basic feasible solution. (In any 
event, this new basic feasible solution will not have greater transportation cost 
than the original V AM basic feasible solution. Occasionally, the cost of the 
new solution will equal the cost of the old solution (remember cycling in 2§8?); 
more on this later.) If this new basic feasible solution is not optimal, then a 



154 Chapter 6. Transportation and Assignment Problems 

second "sweep" through the transportation algorithm will be necessary to try 
to improve the solution further by determining another new basis for another 
new basic feasible solution. This process of constructing basic feasible 
solutions which successively improve the objective function is completely 
analogous to the procedure used by the simplex algorithm and usually 
terminates with an optimal solution. 

We now illustrate the transportation algorithm with the solution of 
Example l. 

EXAMPLE 1 (Continued). The parenthetical numbers below correspond to the 
steps of the transportation algorithm. 

(0), (1) These steps have already been performed in §2. The tableau obtained 
by VAM is 

~20 ~20 40 

0 10 0 50 7 60 

40 50 20 

Since the warehouse supplies and market demands are no longer needed, 
we suppress these quantities hereafter. 

(2) Given b1 =0, we wish to find a1 ,a2 ,a3 ,b2 , and b3 uniquely such that 
a i + bj = cij for all basis cells cij' 

Now 

a1 +b 1 =C 11 =2 => a1 =2 
a2 + b1 = e21 = 9 => a2 = 9 
a3 +b 1 =c31 =1 => a3 =1 
a2 + b2 = C22 = 4 => b2 = - 5 
a1 +b3 =c13 =2 => b3 =0. 



§3. The Transportation Algorithm 155 

Hence we have 

o -5 o 

2 0 20 0 20 

9 0 10 0 50 7 

(DIO 2 9 

(3) Every cell cij gets replaced by a new cost, namely the old cost less the ai 

indexing the row of the cost less the b j indexing the column of the cost. 
Note that all basis cells will necessarily have cost ° after this replacement; 
for basis cells, the a/s and b/s satisfy ai + bj = cij forcing cij - ai - bj = ° 
for these cells. The new cells are given below: 

(4) Since C23 < 0, we continue with the transportation algorithm. 

(5) 

chosen 
"giver" 

cell 

8 

Note that the unique cycle must involve the squared cell but, in general, 
will not involve all of the current basis cells. Answer the following 
questions before continuing: 
(i) Why does the cycle above not involve the basis cell @ 50 as in 



156 

(6) 

(2) 

Chapter 6. Transportation and Assignment Problems 

? 

(Hint: Look at Definition 4.) 

(ii) Which cell above will enter the basis in step (6)? 
(iii) Which cell above will leave the basis in step (6)? 

20+10 

~--~/--------~/ 
-~ I" 

20-10 

(2)30 4 (2)10 0+10 
/ 

.1 
(2)50 @ 10 o 

Here, C23 (the squared cell of step (5)) has entered the basis and C2l (the 
chosen "giver" cell of step (5)) has left the basis. In addition, goods have 
been redistributed around the cycle of step (5)-the "getter" cells Cll and 
C23 have increased their amounts by 10 and the "giver" cells c13 and C2l 

have decreased their amounts by 10. Inasmuch as C2l leaves the basis, we 
do not record the superscripted 0 amount of goods here. Go to step (2). 

(b I) (~) (b) 

0 2 0 

(a l ) 0 (2)30 4 (2)10 

(a2 ) -2 0 (2)50 @ 10 

(a3) 0 (2)10 6 8 



§4. Another Example 157 

(3) 

(4) Since cij ~ ° for all i andj, we STOP. Replacing all cells with their original 
costs from step (0), we obtain 

~30 1 ~10 

9 0 50 0'0 I 

10'0 2 9 i 

and corresponding optimal solution 

§4. 

Xli = 30, X 12 = 0, X13 = 10, 
X2I = 0, X 22 = 50, X 23 = 10, 
X 3I = 10, X32 = 0, X33 = 0, 

min C = $2(30) + $2(10) + $4(50) + $7(10) + $1(10) = $360. 

Another Example 

EXAMPLE 7. Solve the transportation problem below: 

Ml M2 M3 M4 

Wj 5 12 8 50 26 

W2 11 4 10 8 20 

W3 14 50 9 30 

15 20 26 15 

The parenthetical numbers below correspond to the steps of the transpor­
tation algorithm. 

(0) Total supply is equal to total demand (76 in each case). 



158 

(1 ) 

Chapter 6. Transportation and Assignment Problems 

6 8 

3 5 12 

4 II 4 

8 14 50 

15 20 

6 8 

7 5 

5 14 

15 

9 

7 5 

15 

12 

50 

w 
o 

38 

12 

50 

o 

50 26 

1 0 8 20 

JO'4 

2< 15 

50 26 

20 

26 
9 4 

15 

41 

20 

11 

We pause here for a moment. In the first tableau above, 8 is the largest 
difference; since 8 corresponds to a row and a column, the smallest cost 
among the entries of both the row and the column is chosen in accordance 
with step (2) of V AM. In the second tableau above, a warehouse was 
emptied and a market was fully supplied simultaneously. The row was 
deleted in accordance with step (3) of V AM. In the third and last tableau 
above, three of the deleted cells have been circled and three cells remain; 
since V AM results in exactly m + n - 1 = 3 + 4 - 1 = 6 circled cells for this 



§4. Another Example 159 

(2) 

(3) 

problem by Theorem 3, we know that the final basic feasible solution 
obtained by V AM must be 

@11 26 

8 20 

14 50 

15 20 26 15 

It is crucial that the superscripted 0 on the cost of C12 = 12 be recorded as 
we will see later in the transportation algorithm. This is the phenomenon 
alluded to at the end of §2. 

0 7 37 45 

5 (D15@0 8 ® 11 

-3 1 1 0 20 10 8 

-36 14 50 CD26 0 4 

®15 ®O -34 ®11 

114 c§iO -24 -34 

50 79 ®26 ®4 

(4) Since there are several negative c;/s, we continue with the transportation 
algorithm. 

(5) chosen 
"giver" 

cell 



160 

(6) 

(2) 

(3) 

Chapter 6. Transportation and Assignment Problems 

Note that there are three choices for a negative cij here. Our choice 
corresponds to the most negative cij but, more importantly, emphasizes 
the importance of including the superscripted 0 cell as a basis cell. The 
ambitious reader is invited to solve the problem by using the other two 
choices. (See also Exercise 8.) 

o 

fr::\ 9 (;).3 1 1 
14 \Q; -24 \.::J 

50 79 

Go to step (2). 
o o -34 -34 

o 

o 14 ®9 -24 

34 50 79 

34 

14 

16 45 

(4) Since cij ~ 0 for all i andj, we STOP. Replacing all cells with their original 
costs, we obtain 

11 

14 



§5. Unbalanced Transportation Problems 

and corresponding optimal solution 

Xu = 15, X 12 = 11, X13 = X 14 = 0, 
X 21 = 0, X22 = 9, X23 = 0, X 24 = 11, 
X 31 = X32 = 0, X33 = 26, X 34 = 4, 

min C = 5(15) + 12(11) + 4(9) + 8(11) + 1(26) + 9(4) = 393. 

161 

We conclude this section with some general remarks on transportation 
problems. Sometimes, transportation problems are such that no desirable 
routes exist between certain warehouses and certain markets. For example, a 
certain warehouse and market may be separated by a steep mountain or wide 
river making travel from warehouse to market difficult. Such routes can 
usually be eliminated from active consideration by placing very high 
transportation costs on those routes. The costs of 50 in Example 7 accom­
plished exactly this. Even though one of the 50's was involved in the V AM 
basic feasible solution, none of the 50's were involved in the optimal solution. 
Similarly, if one wishes to force certain routes between warehouses and 
markets to be used, one can place very low transportation costs on these 
routes. In fact, even negative costs could be placed on particular routes; 
negative costs can be viewed as subsidy payments from the markets to the 
warehouses for using routes that are advantageous to the markets. 

§5. Unbalanced Transportation Problems 

In this section, we consider transportation problems with tableaus as follows: 

Ml M2 ... Mn 

WI Cll c l2 ... Cln Sl 

W 2 C21 Cn C2n S2 

Wm Cml Cm2 ... Cmn Sm 

d l d2 ... dn m n 

.L Sj * .L dj 
j=i j= 1 

Such transportation problems are said to be unbalanced. We consider two 
cases. 

Case I. Li"= 1 Si < Lj= 1 dj • 

Here, the current demand of the markets exceeds the current supply of the 
warehouses. This is a rationing problem where goods must be allocated 
among the markets. We introduce a fictitious warehouse Wm+ 1 with supply 



162 Chapter 6. Transportation and Assignment Problems 

Sm+ 1 such that 
m+l n 

I Si = I dj , 
i=l j=l 

i.e., the m + 1st warehouse supplies the excess demand. This creates a balanced 
transportation problem. When a market receives goods from the fictitious 
warehouse, it doesn't really receive any goods at all. The transportation cost of 
such non-shipment will be assumed negligible compared to other transpor­
tation costs and assigned a value ofO. (In reality, the assigned cost would reflect, 
for example, loss in sales as well as costs associated with expediting the 
shipment of the goods from another source.) 

Case II. 2::~= 1 Si > 2::1= 1 dj • 

Here, the current supply of the warehouses exceeds the current demand of 
the markets. This is usually the case in well-managed inventory situations. We 
introduce a fictitious market Mn+1 with demand dn + 1 such that 

m n+ 1 

I Si = I dj , 
i=l j=l 

i.e., the n + 1 st market demands the excess inventory. This creates a balanced 
transportation problem. When a warehouse is instructed to ship goods to the 
fictitious market, it "ships to itself", i.e., it retains the goods. The transpor­
tation cost of such self-shipment will be assumed negligible compared to other 
transportation costs and assigned a value of O. (In reality, the assigned cost 
would include, for example, spoilage costs (if the good is perishable) and 
storage costs.} 

We illustrate unbalanced transportation problems with two examples. 

EXAMPLE 8. Solve the transportation problem below: 

Ml M2 M3 

WI 2 I 2 40 

W2 9 4 7 60 

W3 2 9 10 

50 60 30 

Note that the transportation problem is unbalanced since 

3 3 

110= I Si< I dj = 140. 
i= 1 j= 1 

Always check this-the transportation algorithm only works with balanced 
transportation problems! Since demand exceeds supply (Case I), we add a 
fictitious warehouse W4 (with associated transportation costs of O) to supply 
the excess demand of 30: 



§5. Unbalanced Transportation Problems 163 

M, M2 M3 

Wj 2 1 2 40 

W2 9 4 7 60 

W3 1 2 9 10 
W4 0 0 0 30 

50 60 30 

The transportation algorithm is now applied to this balanced transportation 
problem. As an exercise, verify that V AM yields the basic feasible solution 

0 40 0 0 40 

9 0 60 7 60 

(DI0 0 0 9 10 

0 0 ®30 30 

50 60 30 
and that such a shipping schedule is optimal. (You owe it to yourself to 
perform this verification. If you are observant, you will notice some strange 
behavior. Although this behavior does not usually occur with transportation 
problems, it will occur repeatedly with assignment problems in §6 and is the 
primary reason behind the development of a new algorithm for such 
problems.) In this optimal solution, notice that M 3 does not receive any goods 
since it receives all of its 30 units from the fictitious warehouse W4 . Notice also 
that Example 8 is precisely Example 1 (solved in §3) where each market is 
assumed to require 10 more units of the good than indicated. Of the two 
problems, we would expect a lower total shipping cost in Example 8 since the 
use of higher cost transportation routes can probably be lessened or avoided 
by not fully satisfying certain markets along these routes. This is indeed the 
case-the total transportation cost in Example 1 was 360 as compared to the 
total transportation cost of 330 in Example 8. 

EXAMPLE 9. Solve the transportation problem below: 

M j M2 M3 

WI 2 1 2 50 
W2 9 4 7 70 

W3 2 9 20 

40 50 20 



164 Chapter 6. Transportation and Assignment Problems 

Note that the transportation problem is unbalanced since 

3 3 

140= L 8i > L dj = 110. 
i= 1 i= 1 

Again, always check this-the transportation algorithm only works with 
balanced transportation problems! Since supply exceeds demand (Case II), we 
add a fictitious fourth market M4 (with associated transportation costs of 0) to 
demand the excess inventory of 30: 

MI M2 M3 M4 

WI 2 2 0 50 

W2 9 4 7 0 70 

W3 2 9 0 20 

40 50 20 30 

The transportation algorithm is now applied to this balanced transportation 
tableau. As an exercise, verify that V AM yields the basic feasible solution 

~20 CI)10 ~20 0 50 

o 20 

40 50 20 30 

and that such a shipping schedule is optimal. In this optimal solution, notice 
that W2 retains 30 units of the good since it has been instructed to ship 30 units 
to the fictitious fourth market M 4. Notice also that Example 9 is precisely 
Example 1 (solved in §3) where each warehouse is assumed to have 10 more 
units of the good than indicated. Ofthe two problems, we would expect a lower 
total shipping cost in Example 9 since lower cost transportation routes can 
probably be used more effectively. This is indeed the case-the total 
transportation cost in Example 1 was 360 as compared to the total transpor­
tation cost of 270 in Example 9. 

§6. The Assignment Problem 

The assignment problem is a special type of transportation problem. We will 
consider only balanced assignment problems in this section; the treatment of 
unbalanced assignment problems is analogous to the treatment of unbalanced 



§6. The Assignment Problem 165 

transportation problems and is investigated in Exercise 13. The general 
balanced assignment problem is the general balanced transportation problem 
in which m=n and si=d j = 1, i,j= 1,2, ... , n, i.e., 

n n 

Minimize C = L L cijxij 
i= 1 j= 1 

n 

subject to L xij= l,i= 1,2, ... ,n 
j= 1 

n 

L Xij= l,j= 1,2, ... ,n 
i= 1 

Xu ~ 0, Vi,j. 

From the statement of the general assignment problem above, it can be proven 
(but is by no means obvious) that each x ij is either ° or 1 in any optimal 
solution. We will not provide such a proof here (see, for example, [L2] for a 
proof). 

In balanced assignment problems, i indexes a set ofn persons andj indexes a 
set of n jobs; C ij is the cost of assigning person i to job j. It is desired to assign 
each person to exactly one job and each job to exactly one person so that the 
total cost of assignment is minimized. Here, 

x .. = {I, if person i is assigned to job j 
I} 0, otherwise. 

Now, since the balanced assignment problem is a special case of the balanced 
transportation problem, we should be able to use the transportation algorithm 
to solve balanced assignment problems. However, due to the notoriously 
degenerate nature of balanced assignment problems, the transportation 
algorithm becomes inefficient and tedious to use. We illustrate with an 
example. 

EXAMPLE 10. Solve the assignment problem below by using the transportation 
algorithm. 

Gobs) 

11 12 13 

PI 8 7 10 

(persons) P2 7 7 8 

P3 8 5 7 

(Can you solve this problem by inspection?) 

The parenthetical numbers below correspond to the step of the transpor­
tation algorithm. 



166 Chapter 6. Transportation and Assignment Problems 

(0) The assignment problem is balanced (m = n = 3). 

(1) 

8 

o 7 

8 

2 

7 

7 

% 

o 

10 

8 

o 2 

7 10 

1 

o % 
o 

Since V AM results in exactly m + n - 1 = 3 + 3 - 1 = 5 circled cells, the 
V AM basic feasible solution is 

0 1 C2/ @O 

7 7 0 1 

8 Gi 7 



§6. The Assignment Problem 

(2) 

8 

6 

6 

(3) 

(4) C33 < 0; continue. 

(5) 

(6) 

° -1 2 

®1 (j)0 @O 

7 7 ®1 

8 0 1 7 

®1 ®O ®O 

2 ®1 

2 ®1 -1 

chosen 
"giver" 

cell 

®1+ 

2 

®1 ®O ° 
2 ®1 

2 ®1 ED ° 

167 



168 Chapter 6. Transportation and Assignment Problems 

Go to step (2). (In the meantime, ponder this question: Did the distribution 
of ° goods around the cycle really change anything?) 

(2) 0 0 -1 

(3) 

o @1 @O 0 

2 ®1 

o 2 ®1 @O 

(4) STOP; replacing all cells with their original costs from step (0), we obtain 

®l (})O 10 

7 7 ®1 

8 G/ (})O 

and corresponding optimal solution 

Xl! = 1, X12 = X13 = 0, 
X 21 = X 22 = 0, X 23 = 1, 
X 31 = 0, X 32 = 1, X33 = 0, 
min C = 8 + 8 + 5 = 21. 

Now, you may ask, what was so inefficient about that? Well, exactly this­
the VAM basic feasible solution has a cost of21 (verify this!) and is hence also 
an optimal solution. Look at all of the extra work that we did! An efficient 
algorithm would have recognized the optimality of the V AM basic feasible 
solution immediately and halted; the transportation algorithm, on the other 
hand, failed to recognize this optimality. This happens quite frequently when 



§6. The Assignment Problem 169 

applying the transportation algorithm to assignment problems and was 
alluded to in §3. In fact, the transportation algorithm applied to assignment 
problems may cycle (remember 2§8?) without ever reaching an optimal 
solution! The culprit in both cases is the large number of superscripted O's in 
the VAM basic feasible solution of an assignment problem. (There are exactly 
two in Example 10.) In fact, Exercise 17 shows that, in an n x n assignment 
problem, exactly n -1 of the basis cells will have superscripted O's. This large 
number of superscripted O's in assignment problems is referred to as 
degeneracy. Degeneracy causes behavior as in step (6) above where 0 goods 
are distributed around a cycle causing no change in assignments or total 
assignment cost. The algorithm recommended for assignment problems is the 
Hungarian algorithm which we develop now. This algorithm takes advantage 
of the simpler nature of assignment problems as compared to transportation 
problems. 

Definition 11. Let T be the tableau of a balanced assignment problem. A 
permutation set o/zeros Z is a subset ofzero cells of T such that every row and 
every column of T contains exactly one zero cell of T. 

EXAMPLE 12. 

o O· 

O' 0 

O' 
'---__ -J T 

The cells distinguished by superscripted asterisks form a permutation set of 
zeros in T above (in fact, this permutation set of zeros in T is unique). 

O' 

O' I O' 

o 
T 

The cells distinguished by superscripted asterisks do not form a permutation 
set of zeros in T above (in fact, there is no permutation set of zeros in T above). 

O' 0 

o O' 0 

o O' 

T 



170 Chapter 6. Transportation and Assignment Problems 

The cells distinguished by superscripted asterisks form a permutation set of 
zeros in T above. (Find two other permutation sets of zeros in T above.) 

We now give the Hungarian algorithm. This algorithm was developed in 
1955 by H.W. Kuhn ([K2]) and is so named because it was based on the work 
of two Hungarian mathematicians, Konig and Egervary. Several comments 
on certain steps of the algorithm will be made after the complete statement of 
the algorithm. 

The Hungarian Algorithm 

(0) Given: An initial balanced (n x n) assignment tableau. 
(1) Convert all Ci/S to nonnegative integers if necessary by application of one 

or both of the following steps: 
(i) (Nonnegativity) If Cij < 0 for some i and j, compute 

kl =max{lciJCij<O}, 
i,j 

and add kl to every entry of the tableau. 
(ii) (Integrality) If cij¢Z and CijEQ for some i and j, form the set 

S = {cij = Pij/qij:Cij¢Z, CijEQ,Pij' %EZ, qij > O}, 

and compute 

k2 = 1cm {%:cij = Pij/%ES}. 

(Here, 1cm denotes the least common multiple.) Multiply every entry of the 
tableau by k2 • 

(2) Subtract the smallest entry in each row from every entry of the row to 
obtain a new tableau. Subtract the smallest entry in each column of the 
new tableau from every entry of the column to obtain (what will be called) 
the reduced tableau. 

(3) Draw a minimum number k of horizontal and/or vertical lines (extending 
the length and width of the tableau respectively) to cover all zero entries of 
the reduced tableau. 

(4) If k = n, STOP; a permutation set of zeros can be found among the zero 
entries of the reduced tableau; the optimal solution corresponds to this 
permutation set of zeros when all cells are replaced with their original 
entries from (0). If k < n, choose the smallest uncovered entry. Subtract 
this entry from all uncovered entries (including itself) and add this entry to 
all covered entries corresponding to intersections of horizontal and 
vertical lines (all other covered entries remain unchanged), hence obtain­
ing a new reduced tableau. Go to (3). 

Several comments are in order. The following numbers correspond to the 
steps of the Hungarian algorithm. 



§6. The Assignment Problem 171 

(1) (i) In other words, this step says that if there are negative entries in the 
tableau, then choose the most negative entry, take its absolute value (called k1 ), 

and add this quantity to every entry of the tableau. 
(1) (ii) In other words, this step says that if there are nonintegral rational 

entries in the tableau, then write each such entry as a quotient of integers with 
positive denominator, find the least common multiple of these denominators 
(called k2 ), and multiply every entry of the tableau by this quantity. This step 
clears all rational numbers of their denominators. What if there are irrational 
entries in the tableau? It is reasonable to assume that irrational ci/s do not 
occur in assignment problems. After all, the cij's represent costs and irrational 
costs are not usually appropriate in practical situations. (When is the last time 
you paid $n for something?) Furthermore, any irrational entries could be 
approximated within any positive degree of accuracy by rational numbers if 
necessary. 

(1) The optimal assignment plan is unaffected by the conversion to 
nonnegative integers since the same positive quantity is added to or multiplied 
with every entry. 

(3) The crucial word in this step is minimum. Incorrect answers usually 
result if the zero entries are covered with more horizontal and/or vertical lines 
than necessary. Note thatthe minimum number kmust satisfy k ~ n(onecould 
delete all entries of the tableau by drawing, for example, n horizontal lines!). 

We now illustrate the Hungarian algorithm with several examples. 

EXAMPLE 13. Illustrate step (1) (ii) of the Hungarian algorithm by converting 
the assignment tableau below to nonnegative integers. 

11 12 13 

PI 0.5 2 1 

P2 1.2 1/6 7 
P3 5/9 0 3.14 

We first write all rational numbers in the tableau as quotients of integers 
with positive denominators. In the tableau below, all fractions have been 
reduced. Although this is not necessary, it will result in a smaller value of k2• 

1/2 2 1 
6/5 116 7 

5/9 0 157/50 

Then k2 = 1cm {2, 5,6,9, 50} = 450; multiplying every entry of the tableau 
above by k2 = 450, we obtain 



172 Chapter 6. Transportation and Assignment Problems 

225 900 450 
540 75 3150 
250 0 1413 

as desired. 

EXAMPLIf 14. Solve the assignment problem of Example 10 below by using the 
Hungarian algorithm. 

1 1 12 1) 

P l 8 7 10 

P2 7 7 8 

P3 8 5 7 

The parenthetical numbers below correspond to the steps of the Hungarian 
algorithm. 

(0) The initial tableau is balanced. Note that the supplies and demands are 
really unnecessary in an assignment tableau (each supply and demand is 
1 !). Hereafter, all supplies and demands will be suppressed in assignment 
problems. 

(1) Each cij is a nonnegative integer already! 

(2) 

8 7 10 

778 
857 

1 0 3 

001 
302 

o 2 
000 
3 0 

reduced tableau 



§6. The Assignment Problem 

(3) 

fIR 
~ 

(The minimum k is 2 here.) 
(4) 2 = k < n = 3: 

Go to step (3). 
(3) 

ld=i 
lW-!J 

o 0 
o 0 
200 

reduced tableau 

(The minimum k is 3 here.) 

173 

(4) k = n = 3; hence, a permutation set of zeros can be found among the zero 
entries of the reduced tableau. In fact, there are two such permutation sets 
of zeros in the tableau, denoted by * and ** below: 

o· 0·· 

0·· o· 
2 o· 0·· 

Replacing all cells with their original entries, we obtain 



174 Chapter 6. Transportation and Assignment Problems 

8· 7". 10 

7·· 7 8· 

8 5· 7". 

and corresponding optimal solutions 

*. {Xl! = X Z3 = X32 = 1, all other xi/s 0, 
. min C = 8 + 8 + 5 = 21 

**. {X12 = XZ I = X33 = 1, all other xij's 0, 
. min C = 7 + 7 + 7 = 21. 

Remember that xij = 1 in assignment problems is to be interpreted as meaning 
that person i gets assigned to jobj. Write out the optimal assignment plans of* 
and ** above in words. 

EXAMPLE 15. A company wishes to assign five of its workers to five different 
jobs (one worker to each job and vice versa). The rating of each worker with 
respect to each job on a scale of ° to 10 (10 being a high rating) is given by the 
following table: 

WI 
W2 

(workers) W3 

W4 

W5 

(jobs) 

11 12 13 14 15 

5 4 2 8 5 
7 6 4 6 9 

5 5 3 3 2 

4 3 5 5 4 

3 6 4 10 2 

If the company wishes to maximize the total rating of the assignment, find the 
optimal assignment plan and the corresponding maximum total rating. 

There is a slight difficulty here. The problem as stated above is a maximiza­
tion problem. But the Hungarian algorithm solves assignment problems which 
are minimization problems! The difficulty is eliminated by transforming the 
maximization problem into an equivalent minimization problem to which the 
Hungarian algorithm can be applied. This is easy-maximizing the assign­
ment of the given tableau is equivalent to minimizing the assignment of the 
tableau consisting of the negatives of the given tableau entries. As long as we 
are careful to interpret the optimal solutions in terms ofthe entries of the given 
tableau, the Hungarian algorithm is "fooled" into solving a maximization 
assignment problem. Hence, we begin with the altered tableau 



§6. The Assignment Problem 175 

-5 -4 -2 -8 -5 
-7 -6 -4 -6 -9 
-5 -5 -3 -3 -2 
-4 -3 -5 -5 -4 
-3 -6 -4 -10 -2 

The Hungarian algorithm is now applied to this tableau. The parenthetical 
numbers below correspond to the steps of the algorithm. 

(0) The tableau above is balanced. (One need only check that there is the same 
number of workers as jobs!) 

( 1 ) ( i) k 1 = I - 1 0 I = 10: 

-5 -4 -2 -8 -5 
-7 -6 -4 -6 -9 
-5 -5 -3 -3 -2 --4 -3 -5 -5 -4 
-3 -6 -4 -10 -2 

5 6 8 2 5 

3 4 6 4 1 

5 5 7 7 8 

6 7 5 5 6 

7 4 6 0 8 

(2) 

5 6 8 2 5 
3 4 6 4 1 
5 5 7 7 8 --6 7 5 5 6 
7 4 6 0 8 

3 4 6 0 3 
2 3 5 3 0 

0 0 2 2 3 
1 2 0 0 I 
7 4 6 0 8 

reduced tableau 



176 

(3) 

Chapter 6. Transportation and Assignment Problems 

Note that no reduction in the columns is necessary above since every 
column contains a 0 after reduction in the rows. 

3 4 6 3 
~ 

<- oJ oJ v 

" " " 
., 

v v .. oJ 

" " I .. V I 

7 4 6 8 

(The minimum k is 4 here. We note that the covering of the zeros with four 
horizontal and/or vertical lines above is not unique. The interested reader 
is invited to find the other covering and proceed from this covering to the 
optimal solution.) 

(4) 4 = k < n = 5: 

3 4 6 3 
" r 
<- oJ oJ v 

" " " 
., 

v v .. oJ -" " . .. v 

7 4 6 ( 8 

0 1 3 0 0 
2 3 5 6 0 
0 0 2 5 3 

2 0 3 I 
4 3 0 5 

reduced tableau 

Go to step (3). 
(3) 

" . 
2 3 ( 
1\ 1\ 
v v 

I 2 
4 I 

(The minimum k is 5 here.) 



§7. Concluding Remarks 177 

(4) k = n = 5; hence, a permutation set of zeros can be found among the zero 
entries of the reduced tableau. The unique such permutation set of zeros 
(verify the uniqueness!) is given below: 

o· 1 3 0 0 

2 3 5 6 o· . 
0 0 2 5 3 . 
1 2 0 3 1 

4 1 3 o· 5 

Replacing all cells with their original entries in the statement of the 
problem, we obtain 

5· 4 2 8 5 

7 6 4 6 
. 

9 . 
4 5 3 3 2 

5 3 5· 5 4 

3 6 4 10· 2 

and corresponding optimal solution 

X 11 = X25 = X32 = X43 = X 54 = 1, all other xi/s 0, 

maximum rating = 5 + 9 + 5 + 5 + 10 = 34. 

§7. Concluding Remarks 

There is no denying the importance of transportation and assignment problems 
as a class of problems that arise quite frequently in a variety of real-world 
applications. We wish to emphasize a more subtle and mathematical 
importance, namely that transportation and assignment problems highlight 
limitations of the linear programming solution procedures of Chapters 2-4, 
forcing the development of new algorithms. Even though the solution 
procedures of Chapters 2-4 will usually solve transportation and assignment 
problems, the size of the initial Tucker tableaus and the specialized nature of 
the problems suggest that perhaps alternate and easier algorithms exist. The 
intent and goal, then, is to develop new specialized algorithms for these 
specialized problems. In the case of transportation problems, which are special 
types of noncanonical linear programming problems, the new algorithm is 



178 Chapter 6. Transportation and Assignment Problems 

essentially a mimic of a known algorithm, unrecognizable as such since it 
operates on a structurally different (and smaller!) tableau. In the case of 
assignment problems, which are special cases of transportation problems, yet 
another new (but related) algorithm is developed. Since specialized algorithms 
are usually dependent upon a given problem structure, such algorithms would 
generally not be valid for problems not possessing the required structure. (For 
example, the Hungarian algorithm is not valid for transportation problems in 
general and the transportation algorithm is not valid for noncanonicallinear 
programming problems in general.) The development and analysis of effective 
algorithms is crucial in all areas of mathematics; at this point, the reader is 
hopefully impressed with such development and analysis as it pertains to 
linear programming. 

EXERCISES 

1. Solve each of the transportation problems below. 

a. 
7 2 4 10 

10 5 9 20 

7 3 5 30 

20 10 30 

bE] 4 5 5 

3 2 7 

6 3 9 

7 5 4 

14 11 

em30 
2 5 9 75 

40 30 50 

d. 12 10 8 28 

8 9 11 62 

20 38 22 

e. 8 2 3 7 42 

9 4 5 6 17 

7 6 5 17 

9 14 24 29 



Exercises 179 

f. 3 8 5 5 

2 7 3 14 

4 4 2 8 

6 5 8 7 

8 10 18 

g. 6 5 4 10 

3 7 2 16 

5 10 8 10 

4 6 3 12 

10 7 6 

h. 5 9 10 6 4 

10 7 5 4 5 

4 5 5 4 2 

6 5 7 5 3 

3 4 4 3 

1. 10 20 15 6 0 15 

26 30 30 20 16 10 

28 29 25 13 8 15 

15 20 25 5 5 16 

9 15 9 15 8 

2. Solve the transportation problem below where x denotes a prohibitively high cost. 

6 9 -1 20 

3 9 11 15 

9 1 x 20 

x 6 7 15 

20 20 30 

3. It is shown in [G2] that a transportation problem has a unique optimal solution if 
and only if all non basis cells at the point of termination of the transportation 
algorithm are strictly positive (not zero). 

a. Which of the transportation problems in Exercise 1 above have unique optimal 
solutions? 

b. Find an alternate optimal solution for each transportation problem in 
Exercise 1 above that does not have a unique optimal solution. 

4. Let iEZ, 0 ~ i ~ 30. Show that there exists an optimal solution to the problem of 
Example 8 for which M 1 is not supplied i units of the good and M 3 is not supplied 
30 - i units of the good. 



180 Chapter 6. Transportation and Assignment Problems 

5. Formulate Exercise 9b from Chapter 2 as a transportation problem and solve. 
[Hint: The "warehouses" are new towels, dirty towels from day I, and dirty towels 
from day 2.J 

6. Two alternate methods for obtaining initial basic feasible solutions in transpor­
tation problems are given by the algorithms below. 

The Minimum-Entry Method 

(0) Given: An initial balanced transportation tableau. 
(1) Use the smallest cost in the tableau to empty a warehouse or completely fill a 

market demand. (If there is a tie for the smallest entry, use any such entry.) 
Circle the cost used and write above the circle the amount of goods shipped by 
that route. Reduce the supply and demand in the row and column containing 
the cost used. 

(2) Delete the row or column corresponding to the emptied warehouse or fully 
supplied market; if both happen simultaneously, delete the row unless that row 
is the only row remaining in which case delete the column. 

(3) If all tableau entries are deleted, STOP; otherwise go to (I). 

The Northwest-Corner Method 

(0) Given: An initial balanced transportation tableau. 
(I) Use the northwest-most cost in the tableau to empty a warehouse or 

completely fill a market demand. (The northwest-most cost is that cost in the 
top left position ofthe tableau.) Circle the cost used and write above the circle 
the amount of goods shipped by that route. Reduce the supply and demand in 
the row and column containing the cost used. 

(2) Delete the row or column corresponding to the emptied warehouse or fully 
supplied market; if both happen simultaneously, delete the row unless that row 
is the only row remaining in which case delete the column. 

(3) If all tableau entries are deleted, STOP; otherwise go to (1). 

a. Apply the minimum-entry method and the northwest-corner method to 
Exercise la above. Compare the basic feasible solutions so obtained with the 
V AM basic feasible solution. 

b. Apply the minimum-entry method and the northwest-corner method to 
Exercise Ib above. Compare the basic feasible solutions so obtained with the 
V AM basic feasible solution. 

7. Assume that a transportation problem has the V AM basic feasible solution below 
(the costs are irrelevant): 



Exercises 181 

Furthermore, assume that the transportation algorithm determines that the 
squared cell below should enter the basis: 

a. Prove that the visualization of the cycle as 

5 

and the subsequent application of steps (5) and (6) of the transportation algorithm 
would not result in a new basic feasible solution for the problem. 
b. Would the visualization of the cycle as 

5 

result in a new basic feasible solution for the problem? [After answering this 
question, consult the answers section in the back of this book for an important 
note.] 

8. An anticycling rule for the transportation algorithm is given below. 

Transportation Algorithm Anticycling Rule 

Whenever there is more than one possible choice of negative Cij in step (5) of the 
transportation algorithm, choose the northwest-most negative Cij, i.e., choose the 
negative cij with minimal i and, if more than one such cij has minimal i, choose 
the Cij among those cells with minimal j. 



182 Chapter 6. Transportation and Assignment Problems 

Solve Example 7 by using the transportation algorithm with the anticycling rule 
above. 

9. Consider the assignment problem below: 

2 I 2 
947 

2 9 

a. Solve the problem by using the transportation algorithm. 
b. Solve the problem by using the Hungarian algorithm. 
c. Which algorithm is preferable here? 

10. Solve each of the assignment problems below. 

a. 

b. 

c. 

d. 

38 21 34 

41 14 36 

28 20 25 

2 3 2 4 

5 8 4 3 

595 2 

7 674 

4 

10 

6 

9 

5 

7 
10 

13 

7 11 

12 13 

8 13 
12 17 

8 6 3 5 10 

2 4 3 5 4 

5 7 5 4 3 

6 9 2 4 2 

4 6 5 3 6 

11. The optimal assignment in the assignment problem below is not unique. Find all 
optimal assignments. 

I 6 2 7 5 

2 4 3 6 5 

3 6 4 8 6 

4 5 4 7 7 

5 8 6 9 6 



Exercises 183 

12. Solve the assignment problem below where x denotes a prohibitively high cost. 

6 8 -I x 
3 8 6 4 

7 I x -I 

x 6 7 2 

13. Balance each of the unbalanced assignment problems below by using the 
techniques of §5 and then use the Hungarian algorithm to solve the problems. 
Interpret each of the optimal assignment plans in words. 

a. 9 7 8 6 8 

10 8 7 9 6 

9 6 9 7 8 

8 9 10 7 6 

b. 10 6 8 8 

9 8 10 7 
8 9 7 6 
9 7 9 9 
8 10 8 10 

14. A company wishes to assign six of its workers to six different jobs (one worker to 
each job and vice versa). The rating of each worker with respect to each job on a 
scale of 0 to 10 (10 being a high rating) is given by the following table: 

(jobs) 

J I J2 J 3 J4 Js J6 

8 9 6 3 7 5 

4 3 9 7 5 6 

(workers) 
7 3 2 1 9 7 

4 6 5 4 8 5 

7 6 1 2 8 7 

4 4 5 4 5 7 

If the company wishes to maximize the total rating of the assignment, find the 
optimal assignment plan and the corresponding maximum total rating. 

15. A group of five men and five women live on an island. The amount of happiness 
that the ilh man and the lh woman derive by spending a fraction Xij of their lives 
together is CijXij where Cij is given in the table below: 



184 Chapter 6. Transportation and Assignment Problems 

2 

(men) 3 

4 

5 

4 

4 

4 

2 
3 

(women) 

2 3 4 5 

2 4 5 2 
5 4 1 3 

4 3 3 5 

2 6 4 5 

5 7 5 2 

Find the living arrangements that maximize the total happiness of the islanders. 

16. Label the following statement TRUE or FALSE. If the statement is FALSE, 
provide a counterexample. 

The Hungarian algorithm applied to an assignment problem terminates after at 
most two occurrences of step (3). 

17. Let T be an n x n assignment tableau. Prove that V AM applied to T results in 
exactly n - 1 distinguished (circled) cells with xij-value O. 

18. Consider the diagram below. (Such a diagram will be called a weighted directed 
network in Chapter 7.) 

Interpret the arrows as one-way routes between the lettered nodes and interpret 
the numbers as the distances between these nodes. Formulate and solve an 
assignment problem for which the optimal solution will yield the shortest distance 
from node A to node F as well as the actual route from node A to node F which 
achieves this shortest distance. 



CHAPTER 7 

Network-Flow Problems 

§o. Introduction 

Our final application of linear programming occurs in the graph-theoretic 
domain. In fact, we will see that the transportation and assignment problems 
of the previous chapter can be reformulated as a certain type of network-flow 
problem. In view of this, network-flow problems encompass a wide range of 
linear programming problems. As with the transportation and assignment 
problems, the network-flow problems of this chapter are solvable by using 
the techniques of Chapter 2~4 directly. We, however, opt for easier and 
more direct graph-theoretic algorithms, one of which has its roots in duality 
theory. 

§ 1. Graph-Theoretic Preliminaries 

This section develops the notation and terminology used in the remainder of 
the chapter. 

Definition 1. A directed network (or directed graph) N = [V, E] is a finite 
nonempty set V of elements called vertices and a set E of ordered pairs of 
distinct elements of V called edges. N is said to be capacitated if, to each edge 
(Vi' v)EE, there corresponds a real number cij ~ 0 called its capacity. Aflow in a 
capacitated directed network is an assignment of a real number xij to each edge 
(Vi' Vj)E E such that 0 ~ xij ~ cij' 

EXAMPLE 2. An example of a capacitated directed network is given below: 



186 Chapter 7. Network-Flow Problems 

3 V3 
). 

~ /'." 
5 

2 

) . 
5 Vs 

Note that vertices are represented as points and that edges are represented as 
directed lines between these points. The sets V and E for the directed network 
above are 

V = {VI' V2, V3, V4, vs , V6} 

E = {(VI' V2), (VI' V4), (V2' V3), (V2' Vs ), (V3' Vs ), 

(v 3, v6), (V4' v2), (V4' V3), (V4' Vs ), (Vs, V6)}· 

Edges only occur between distinct elements of V by definition; hence loops 
such as (v, v), i.e., 

.0 
v 

are not permitted. The capacity cij of each edge (Vi' Vj) is also given. We now 
produce a flow in the capacitated directed network above by assigning 
numbers xij (distinguished by circles) to the edges subject to 0 ~ xij ~ cij : 

V2 30 V3 

7· ) . 
50 ~ 

".~ 
4 • v6 

CD ~ 9® . 2 

Cij @ ) . 
V4 50 Vs 

We can imagine the capacitated directed network and flow above as a picture 
of anyone of a number of real-life situations-for example, a system of oil 
pipelines, a display of railroads between cities, or a network of communication 
cables. 



§ 1. Graph-Theoretic Preliminaries 187 

Definition 3. Let N = [V, EJ be a capacitated directed network with a given 
flow. If VjE V, then the net input flow at vertex Vj' denoted cp(v), is 

If cp( v) < 0, then v j is said to be a source; if cp( v) > 0, then v j is said to be a sink; if 
cp(v) = 0, then Vj is said to be an intermediate vertex. 

In other words, the net input flow at a vertex is the sum of all flow numbers 
on edges into the vertex minus the sum of all flow numbers on edges out of the 
vertex. 

EXAMPLE 4. Consider the capacitated directed network and given flow of 
Example 2: 

V2 30 V3 

7," 
) . 

50 ~ 
",.~ CD ~"". 

90 . 2 90 
~ . Cij ~ 

V4 50 V5 

What is cp(v4 )? The sum of all flow numbers on edges into V4 (namely X 14 ) is 6 
and the sum of all flow numbers on edges out of V4 (namely X42 + X 4 3 + X45) is 
3 + 1 + 4 = 8; hence 

and V4 is a source. Similar computations for the other vertices yield the 
following table (verify!): 

cp(V;) Type of vertex 

1 -10 source 
2 0 intermediate vertex 
3 0 intermediate vertex 
4 -2 source 
5 3 sink 
6 9 sink 

In Example 4 above, we notice that what comes out of the sources (namely 



188 Chapter 7. Network-Flow Problems 

10 + 2 = 12 net units of flow-this value is negative in the table because cP is 
net input flow) goes into the sinks (3 + 9 = 12). Such a fact is true in general and 
is termed conservation of flow. 

Theorem 5 (Conservation of Flow). Any flow in a capacitated directed 
network N = [V, E] satisfies 

PROOF. 

LCP(Vj) = O. 
j 

4: cp(vj ) = 4: (4: Xij - ~ Xji) (by Definition 3) 
J J' , 

Now every flow number of the network is represented exactly once in each of 
the double summations above (albeit in a different order) and hence 

as desired. D 

We conclude this section with an important discussion. The claim is this: 
Any flow in a capacitated directed network can be transformed into a flow 
having a unique source and a unique sink by augmenting the structure of the 
network; furthermore, this augmentation can be implemented so that there are 
no edges into the source and no edges out of the sink. The augmentation 
procedure in general is simple. Vertices representing the desired unique source 
and desired unique sink are added to the network. Edges from the desired 
unique source to each of the previous sources and edges from each of the 
previous sinks to the desired unique sink are then added to the network. Each 
of these added edges is assumed to have infinite capacity. The flow numbers 
assigned to the added edges are finally computed so that the previous sources 
and sinks become intermediate vertices. All ofthis is illustrated for the network 
and flow of Example 2 below: 

I, 
Desired • 
unique 
source 

Cij (9 



§2. The Maximal-Flow Network Problem 189 

Make sure that you see that the flow above has all the properties expressed in 
the claim. 

Now assume, for the moment, that we are given a capacitated directed 
network and that we specify certain vertices of the network as sources and 
sinks. The network-flow problems in the forthcoming sections are concerned 
with asking different questions about the collection of flows through the 
network having these specified sources and sinks. In view of the above 
discussion, we can augment the structure of the network and ask equivalent 
questions about the collection of flows through the augmented network 
having a unique source, a unique sink, no edges into the source, and no edges 
out of the sink. Hence, in what follows, we restrict our attention to flows having 
a unique specified source and a unique specified sink as well as the edge properties 
as above. Due to the augmentation process described previously, this 
restriction is without loss of generality and hence is really no restriction at all. 
The unique specified source and unique specified sink in such a network are 
denoted Vs and Vd respectively (s for source and d for sink (drain) if you will). 

§2. The Maximal-Flow Network Problem 

Given a capacitated directed network with unique fixed source and unique 
fixed sink, no edges into the source, and no edges out of the sink, our first 
network problem is to find the maximal flow through the network. Note, first 
of all, that what comes out of the source (namely - <p(vs) since <p(vs) is net input 
flow) must go into the sink by conservation of flow. Hence 

- <p(vs) = <p(vd ); 

this is the quantity to be maximized: 

Maximize f = - <p(vs ) = <p(vd ) = ~>id -L Xdi 
i i 

= L:Xid (Lixdi = 0 since there are no 
i edges out of Vd by assumption). 

Now there are two constraints. The first constraint says that every vertex 
except the source and the sink should be an intermediate vertex; the second 
constraint says that the flow numbers should be nonnegative and not exceed 
the given capacities of the edges: 

<p(V) = LXij - LXji = 0, VVjEJI,j 1= s,d 
i i 

Definition 6. Let N = [V, E] be a capacitated directed network with unique 
fixed source and unique fixed sink, no edges into the source, and no edges out 
of the sink. The maximal-flow network problem is (as above) 



190 Chapter 7. Network-Flow Problems 

Maximize f = L X id 
i 

subject to :l>ij - :l>ji = 0, VVjE V,j #- s, d 
i i 

o ~ xij ~ cij' Vi,j. 

(1) 

Note that the zero flow (i.e., xij = 0 for all i andj) is a feasible solution to (1). 
Also, the xij's have finite upper bounds since xij ~ cij for all i and j. Hence the 
maximal-flow network problem is never infeasible or unbounded. Not 
surprisingly, the maximal-flow network problem can be solved by using the 
techniques of Chapters 2-4. We illustrate the setup of such a problem with an 
example. 

EXAMPLE 7. If the maximal-flow network problem below is to be solved by the 
techniques of Chapters 2-4, find the initial Tucker tableau for the solution. 

The desired tableau is 

xsI xs3 xl2 Xl4 X24 XlI Xl2 Xl4 ~d x4d -I 

I 0 -I -I 0 I 0 0 0 0 0 
0 0 I 0 -1 0 1 0 -1 0 0 
0 1 0 0 0 -1 -1 -1 0 0 0 
0 0 0 1 1 0 0 1 0 -1 0 
1 0 0 0 0 0 0 0 0 0 8 

0 1 0 0 0 0 0 0 0 0 9 

0 0 1 0 0 0 0 0 0 0 3 

0 0 0 1 0 0 0 0 0 0 5 
0 0 0 0 1 0 0 0 0 0 4 
0 0 0 0 0 1 0 0 0 0 3 

0 0 0 0 0 0 1 0 0 0 2 
0 0 0 0 0 0 0 1 0 0 5 
0 0 0 0 0 0 0 0 1 0 10 

0 0 0 0 0 0 0 0 0 1 9 

0 0 0 0 0 0 0 0 1 1 0 

= -0 
= -0 

= -0 

= -0 

= -ts I 

= -ts3 

= -t12 

= -t14 

= -t24 

= -t J I 

= -t32 

= -t J4 

= -t2d 

= -t4d 

=f 



§3. The Max-Flow Min-Cut Theorem; The Maximal-Flow Algorithm 191 

WOW! The first four rows of the tableau record the intermediate vertex 
constraints for V1 , V2' V3 , and V4 respectively while the next ten rows of the 
tableau record the upper capacity restrictions xij ~ C;j for all i andj. The final 
row of the tableau records (of course) the objective function. Verify these facts! 

Do we really want to solve general maximal-flow network problems using 
the techniques of Chapters 2-4 on Tucker tableaus such as that of Example 7? 
To say the very least, such an approach appears to be a rather unwieldy 
procedure. We therefore opt instead for a more direct graph-theoretic 
algorithm. This algorithm relies heavily on duality; it is this reliance that is 
emphasized in the next section where we actually derive the algorithm 
theoretically. 

We conclude this section with a brief discussion of the dual problem of the 
maximal-flow network problem. The dual minimization linear programming 
problem to the maximal-flow network problem (1) is 

Minimize 9 = L cijYij 
(vj,vj)eE 

subject to JJ.j + Ysj ~ 0, V(v., v)EE 
- JJ.; + JJ.j + Yij ~ 0, V(v;, v)EE, i #- s,j #- d (2) 
- JJ.; + Y;d ~ 1, V(v;, Vd)EE 
Yij ~ 0, V(v;, V)EE. 

This fact is motivated further in Exercise 6; the interested reader is immedi­
ately referred there. If we put JJ.. = ° and JJ.d = - 1, (2) simplifies: 

Minimize 9 = L cijYij 
(vi,vj)eE 

subject to - JJ.; + JJ.j + Yij ~ 0, V(v;, v)EE 
Yij ~ 0, V(v;, vj)EE 
JJ.. = 0, JJ.d = - 1. 

(3) 

To see this, note that i = s in the first constraint of(3) yields the first constraint 
of(2) and thatj = d in the first constraint of(3) yields the third constraint of(2); 
the first constraint of(3) is identical to the second constraint of(2) for all other 
(v;, V)EE. This simplified minimization problem is intimately connected to the 
concept of a cut to be discussed in the next section; in fact, the minimum cut 
shares a strong relationship with the desired maximal flow (as might be 
expected since they are dual problems), ultimately leading to the maximal-flow 
algorithm. 

§3. The Max-Flow Min-Cut Theorem; The 
Maximal-Flow Algorithm 

Definition 8. Let N = [V, E] be a capacitated directed network with unique 
fixed source and unique fixed sink, no edges into the source, and no edges out 
ofthe sink. A cut C = (Vl' V2 ) in N is a partition of all elements of V into two 



192 Chapter 7. Network-Flow Problems 

disjoint subsets VI and V2 such that Vs E VI and Vd E V2. The cut-set of the cut 
C = (VI' V2 ) is the set 

{(Vi' v)EE: ViE VI' VjE V2}' 

The capacity of the cut C = (VI' V2), denoted C(VI' V2), is 

C(VI' V2) = L cij' 
Vi EV 1,VjEV 2 

EXAMPLE 9. Consider the capacitated directed network N below: 

Then 

C = (VI = {V., VI' V3}, V2 = {V2' V4, vd}) 

is a cut in N. The cut-set of C consists of all edges in E having initial vertex in VI 
and terminal vertex in V2 • Hence the cut-set of Cis 

{(VI' v2), (VI' v4), (V3' V2), (V3' V4)}' 

The capacity of C is the sum of the capacities of the edges in the cut-set: 

C(VI,V2)= L cij=3+5+2+5=15. 
Vi EV 1,Vj EV 2 

The cut C, its cut-set, and its capacity may be diagrammed as follows: 



§3. The Max-Flow Min-Cut Theorem; The Maximal-Flow Algorithm 193 

Another cut in N, its cut-set, and its capacity are diagrammed below: 

Note that the edges (Vl' v2 ) and (V3' v2 ) are not cut-set edges since their initial 
vertices are in V2 (not Vd and their terminal vertices are in V1 (not V2 ). 

We note immediately from Example 9 above that the capacities of cuts in a 
given capacitated directed network may vary greatly. These capacities relate 
to the minimization problem (3) of§2 as follows. Given a cut C = (Vl' V2 ) in a 
capacitated directed network, put Jli = 0 if ViE V1 and Jlj = - 1 if VjE V2 . (Note, 
in particular, that Jls = 0 and Jld = - 1 in accordance with (3).) For every edge 
(Vi' V) of the cut-set of C, put Yij = 1; otherwise, put Yij = O. Then these values 
give a feasible solution to (3) and the value of the objective function g is the 
capacity of C. Conversely, given a capacitated directed network and any 
feasible solution to (3) with Jl-values equal to 0 or -1 and y-values determined 
by Yij = max {O, Jli - Jlj} (so that - Jli + Jlj + Yij ~ 0 and so that Yij is equal to 0 
or 1; see Exercise 7), put ViE V1 if Jli = 0 and VjE V2 if Jlj = - 1. Then C = (Vl' V2 ) 

is a cut in the network and the edge (Vi' Vj) is in the cut-set of C if and only if 
Yij = 1. Hence all cuts in a capacitated directed network are mathematically 
modeled by (3). We illustrate with an example. 

EXAMPLE 10. Consider the first cut diagrammed in Example 9: 



194 

Then 

J1s = J11 = J13 = 0 

J12 = J14 = J1d = - 1 

Chapter 7. Network-Flow Problems 

Y12 = Y14 = Y32 = Y34 = 1 

Ysl = Ys3 = Y24 = Y2d = Y31 = Y4d = o. 
One can now easily check that all constraints of(3) are satisfied (check this!). 
Furthermore, 

g = I CijYij = C 12 + C14 + C32 + C34 = 3 + 5 + 2 + 5 = 15 
(Vi,Vj)EE 

as desired. Conversely, consider the capacitated directed network N of 
Example 9; we wish to construct a feasible solution to (3) with J1-values equal 
to 0 or -1 and y-values equal to 0 or 1. Let 

(for example). Then 

J1s = J12 = 0 

J11 = J13 = J14 = J1d = - 1 

Ysl = max {O, J1s - J11} = Ysl = 1 

Ys3 = max {O,J1s - J13} = Ys3 = 1 

Y12=max{0,J11-J12} = Y12=0 

YI4=max{0,J11-J14} = Y14=0 

Yz4 = max {0,J12 - J14} = Y24 = 1 

Yzd=max{0,J11-J1d} = Yzd=1 

Y31=max{0,J13-J11} = Y31=0 

Y32=max{0,J13-J12} = Y31=0 

Y34 = max {O, J13 - J14} = Y34 = 0 

Y4d = max {0,J14 - J1d} = Y4d = 0 

and the J1'S and the y's form a feasible solution to (3). The cut in N given by this 
feasible solution is C = (VI' V2) where VI = {v" v2} (from the J1'S equal to 0) and 
V1 = {VI' V3,V4,Vd} (from the J1'S equal to 1); since the edge (Vi' vJ is in the cut­
set of C if and only if Yij = 1, the cut-set of Cis {(vs, vd, (vs, v3 ), (v 2, v4), (v1, Vd)}. 
Note that the cut just produced is the second cut diagrammed in Example 9. 

We are interested primarily in the minimum possible cut capacity in a given 
network for the following reason. 

Theorem 11 (Max-Flow Min-Cut Theorem). Let N = [V, EJ be a capacitated 
directed network with unique fixed source and unique fixed sink, no edges into the 
source, and no edges out of the sink. Then the value of the maximalflow from Vs to 

Vd is equal to the minimal cut capacity in N. 



§3. The Max-Flow Min-Cut Theorem; The Maximal-Flow Algorithm 195 

Theorem 11 is perhaps the single most important result in elementary graph 
theory. Notice the blatant display of duality here! If we accept the fact that the 
dual minimization problem of the maximal-flow problem mathematically 
models the concept of cuts in networks (see Example 10), then this theorem 
simply says that f = g at the optimal solutions to the maximal-flow network 
problem (objective function f) and minimal-cut network problem (objective 
function g), something we know already from Chapter 4. We, however, will 
provide a completely new graph-theoretic proof of this theorem since such a 
proof is the basis for a graph-theoretic algorithm for solving maximal-flow 
network problems. This proof also illustrates again the importance of duality 
as a theoretical tool in linear programming. We first give a definition. 

Definition 12. Let N = [V, E] be a capacitated directed network with unique 
fixed source and unique fixed sink, no edges into the source, and no edges out 
of the sink. A finite nonempty set P of ordered pairs of elements of V ofthe form 

P= {(Va,Vl),(Vl,V2)"",(Vn-l,Vn)} 

is said to be an ex-path in N from Va to Vn if 

(i) the vertices Va, Vl , ... , Vn are distinct and 
(ii) (Vi' V)EP implies that (v;, vj)EE or (Vj' v;}EE. 

If (Vi' Vj)EP and (Vi' v)EE, then (Vi' Vj) is said to be a forward edge of Pin N; if 
(Vi' V)EP and (vj, v;}EE, then (Vi' V) is said to be a backward edge of P in N. 

EXAMPLE 13. Consider the capacitated directed network N below: 

Then 

/ 
" .. ~ 

3 

5 

2 

e _____ --+ 

v3 5 

P = {(vS) v3), (v3, v4), (V4' v2), (V2' vd )} 

is an ex-path in N from Vs to Vd • (vS) v3), (V3' v4), and (V2' vd ) are forward edges of P 
in N since they respect the direction of the original edges of N; (v4 , v2 ) is a 
backward edge of Pin N since it traverses an original edge of N in the opposite 
direction. 



196 Chapter 7. Network-Flow Problems 

In the proof of the max-flow min-cut theorem, we will have occasion to refer 
to the objective function and constraints of the maximal-flow network 
problem (1). We recall that this problem is given by 

Maximize f = I Xid 
i 

subject to I Xij - I Xji = 0, VVjE V,j # s, d 
i i 

° ~ Xij ~ Cij , Vi,j. 

We now present the proof of the max-flow min-cut theorem. 

(1.1) 

(1.2) 

(1.3) 

PROOF (of Theorem 11). The proof consists of two parts. In the first part, we 
show that the value of the maximal flow is less than or equal to the minimal cut 
capacity. In the second part, we then show that a cut exists whose capacity is 
equal to the value of the maximal flow. These two parts are sufficient to prove 
the theorem. 

Part 1. Consider any feasible flow in N with flow numbers xij and flow value f 
and let C = (Vl' Vz) be any cut in N. Now 

f = (VjEV~j*d ° ) + f 

VjEV~j* d ( ~>ij - ~Xji) + ~ X id (by (1.2) and (1.1) respectively) 

I. (~Xij- ~Xji)+ ~Xid- ~Xdi 
VjEV2,)'1=d l 1 I I 

Vj~2 ( ~Xij - ~Xji) 

Vj~2 [ (V'~l Xij + V'~2 Xij ) - (V'~l Xji + V'~2 X ji ) ] 

I Xij + I Xij - I X ji - I X ji 
VjEVt,VjEV2 VjEV1,VjEV2 VjEVt,VjEV2 ViEV2,VjEV l 

I Xij - I X ji + I Xij - I X ji 
VjEVl,VjEVl ViEVt,VjEVl VjeVl,VjEV2 Vj EV 2. VjE V 2 

I Xij - I X ji' (the last two I's above cancel since 
V,EV1,VjE V 2 V, EV 1,Vj EV 2 i andj range over the same set) 

I.e., 

(4) 

Then 



§3. The Max-Flow Min-Cut Theorem; The Maximal-Flow Algorithm 197 

i.e. f ~ C(VI' V2 ). Since the feasible flow value f and the cut C = (VI' V2 ) were 
arbitrary, we have 

(5) 

Part 2. Since the maximal-flow network problem is never infeasible or 
unbounded, a maximal flow exists; let the value of this maximal flow be l' 
corresponding to flow numbers x;j' We now construct two disjoint subsets V'I 
and V~ of V as follows: 

Construct V'I by putting Vs into V'I and then by putting Vj into V'I if and only 
if 

(i) ViEV'I, (Vi,V)EE, and X;j < cij or 
(ii) ViEV'I, (vj,v;)EE, and XJi>O. 

After V'I has been constructed, put V~ = V - V~. 

We wish to show that (V'I' V~) is a cut in N.H suffices to show that VdEV~. 
Assume, by way of contradiction, that Vd ¢ V~, i.e., Vd E V'I' Then Vd was put into 
V'I by virtue of a sequence of steps (i) and (ii) above. In other words, there exists 
an a-path P in N from Vs to Vd such that, for every forward edge (Vi' V) of P, we 
have 

(i) cij - X;j > 0 

and, for every backward edge (Vi' V) of P, we have 

(ii) Xli> O. 

Define 

q = min { min {cij - X;j}, min Xli} > O. 
(ri'Vj) (Vi,Vj) 

a fwd. a bwd. 
edge edge 
of P of P 

Define a new flow in N by adding q to the flow numbers on all forward edges of 
Pin N and by subtracting q from the flow numbers on all backward edges of P 
in N. This new flow has value l' + q, contradicting the maximality of 1'. Hence 
VdEV~ whence (V'I' V~) is a cut in N. Note that we must necessarily have 

(i) X;j = cij if (Vi' V)EE, ViE V'I' and VjE V~ and 
(ii) Xli=O if(vj,v;)EE,vjEV~, and ViE V'I 

by the constructions of V'I and V~. Then 

(6) 
(7) 



198 Chapter 7. Network-Flow Problems 

I.e., 

as desired. o 

The validity of the maximal-flow algorithm comes directly from the proof of 
the max-flow min-cut theorem above. The idea of the maximal-flow algorithm 
is to begin with any feasible flow and successively increase the value of this flow 
to the maximal flow value by finding IX-paths from Vs to Vd until no such paths 
exist. Each IX-path increases the flow value by the quantity q of the proof above. 
We claim that when this procedure terminates, the maximal flow has been 
found. Why? Since no IX-paths from Vs to Vd exist in the network, the cut (V'i, V~) 
of the proof above can be constructed (note that it is a true cut by the proof!) 
and its capacity will be equal to the current flow value. (Before reading further, 
make sure that you see the truth of these facts; go back to the proof of the max­
flow min-cut theorem if necessary for verification.) Now assume, by way of 
contradiction, that the current flow is not maximal. Then 

max! > C(V'l, V~), 

contradicting the fact that the maximal flow value is equal to the minimal cut 
capacity. Hence, the current flow is indeed maximal. Stated a bit differently, 
any time a flow value in a network agrees with a cut capacity in the same 
network, one simultaneously has the maximal flow and the minimal cut of the 
network. 

We now state the maximal-flow algorithm. The algorithm is due to L.R. 
Ford, Jr., and D.R. Fulkerson ([Fl]). The notation has been changed slightly 
from that used in the proof of Theorem 11. 

The Maximal-Flow Algorithm 

(0) Given: A capacitated directed network N = [V, E] with unique fixed 
source and unique fixed sink, no edges into the source, and no edges out of 
the sink. 

(1) Find an initial feasible flow in N. We may, for example, begin with the zero 
flow in N, i.e., xij = 0 for all i and j. 

(2) Find an IX-path P in N from Vs to Vd such that 

(i) each forward edge (Vi' V) of P satisfies xij < cij and 
(ii) each backward edge (Vi> v) of P satisfies xji > o. 

If no such IX-path exists, go to (4). 
(3) Compute 

q = min{ min {cij - xiJ, min Xji} > o. 
(Vj,Vj) (Vi,Vj) 

a fWd. a bwd. 
edge edge 
of P of P 



§3. The Max-Flow Min-Cut Theorem; The Maximal-Flow Algorithm 199 

Add q to the flow numbers on all forward edges of P in N and subtract q 
from the flow numbers on all backward edges of P in N. Go to (2). 

(4) STOP; the current flow is maximal. 
(Note: The minimal cut (V1, V2 ) corresponding to this maximal flow by the 
proof of Theorem 11 is constructed as follows: 

Construct V1 by putting Vs into V1 and then by putting Vj into V1 if and 
only if 

(i) ViE V1, (Vi' v)EE, and xij < cij or 
(ii) ViE V1,(v j, Vi)EE, and xji>O. 

After V1 has been constructed, put V2 = V - V1. 
Any edge (Vi' V)EE ofthe cut-set satisfies xij = cij by (6); any edge (Vj, v;}EE 
such that VjE V2 and ViE V1 satisfies Xji = 0 by (7).) 

The actual construction of the cut in the note of step (4) above is not 
necessary for producing the maximal flow of the network. However, the 
construction of this cut does offer the advantage of providing a check that no 
mistakes were made in the basic algorithm. For example, after finding the 
maximal flow of a network, one can check that the capacity of the constructed 
cut agrees with the value of this flow (validating the maximality of the flow) 
and that pertinent edges display the properties of (6) and (7) as remarked 
above. More fundamentally, the construction of the cut illuminates the 
presence of duality in our graph-theoretic setting and serves as a reminder of 
the theoretical importance of duality. We conclude this section with two 
examples of maximal-flow network problems. 

EXAMPLE 14. Solve the maximal-flow network problem below. Display the 
corresponding minimal cut and cut-set as constructed in the proof ofthe max­
flow min-cut theorem. 

Vl 3 v2 . 

/ 
'."~ 

~ 
/."" 

• 
v3 5 

The parenthetical numbers below correspond to the steps of the maximal­
flow algorithm. 

(0) The given maximal-flow network problem is of the desired form. 
(1) We begin with the zero flow in N: 



200 Chapter 7. Network-Flow Problems 

vI 30 V2 

7 
. 

"~ 5@ 

' .. ~ @ ~'" 
9® 2 

Cij fjp . ~ . 
v3 5@ v4 

(2) Our choice for an a-path from Vs to Vd is P = {(v" VI), (VI' v2 ), (V2' vd )} or, 
more concisely, P: VS --> VI --> V 2 --> Vd• (There are many other choices for a­
paths here and hence many other ways to solve this problem; this leniency 
of choice for a-paths is characteristic of step (2) in general.) For this a-path, 
only forward edges have been used; note that Xij < cij for these edges (each 
xij is currently 0). 

(3) Since no backward edges were used in the a-path of step (2) above, we have 

q = min {cij- x;J = min {8 - 0,3 -0, 10-0} = 3. 
(Vi.Vj) 

a fwd. 
edge 
of P 

Hence 3 is added to the flow numbers on all edges of the a-path Vs --> VI --> 

V 2 --> Vd: 

VI 30 V2 

7' ) . 
5@ ~ 

~'~ @ ~." 
\~ 

2 

Cij ~ • ) . 
V3 50 V4 

Go to step (2). 
(2) We choose the a-path P: Vs --> V3 --> V4 --> vd • For this a-path, only forward 

edges have been used and xij < C;j for these edges. 
(3) q = min {cij - xij} = min {9 - 0, 5 - 0, 9 - O} = 5; 

(Vi.Vj) 

a fwd. 
edge 
of P 



§3. The Max-Flow Min-Cut Theorem; The Maximal-Flow Algorithm 201 

hence 5 is added to the flow numbers on all edges of the (X-path Vs --+ V3 --+ 

V4 --+ Vd: 

Cij @ 

Go to step (2). 
(2) We choose the (X-path P: VS --+ V3 --+ V1 --+ V4 --+ vd • For this (X-path, only 

forward edges have been used and xij < cij for these edges. 
(3) q = min {cij - xij} = min {9 - 5,3 - 0, 5 - 0,9 - 5} = 3; 

(V;.Vj) 

a fwd. 
edge 
of P 

hence 3 is added to the flow numbers on all edges of the (X-path Vs --+ V3 --+ 

V1 --+ V4 --+ Vd: 

VI 30 V2 

~ 
• ~ . 

50) ~ 
' .. ~ 4 • Vd 

/:9) ~ 9® 
Cij § . ~ . 

V3 50 V4 

Go to step (2). 
(2) We choose the (X-path P: VS --+ V 1 --+ V4 --+ vd • For this (X-path, only forward 

edges have been used and xij < cij for these edges. 
(3) q = min {cij - xij} = min {8 - 3,5 - 3,9 - 8} = 1; 

(Vj,Vj) 

a fwd. 
edge 
of P 



202 Chapter 7. Network-Flow Problems 

hence 1 is added to the flow numbers on all edges of the a-path Vs -+ V 1 -+ 

V4 -+Vd: 

Cjj @ 

Go to step (2). 
(2) We choose the a-path P: VS -+ V 1 -+ V3 -+ V2 -+ Vd' Note that a backward edge 

has been used! For this a-path, xij < cij for the forward edges of P and 
Xji > 0 for the backward edge of P. 

(3) q = min{ min {cij-xiJ, min Xji} = min {min{8 -4, 2-0, 10-3}, 
(v;,Vj) (V;,Vj) min {3}} 
afwd. abwd. 
edge edge 
of P of P 

= min {2, 3} 

=2; 

hence 2 is added to the flow numbers on all forward edges of P and 
subtracted from the flow number on the backward edge of P: 

Vt 30 V2 

~ 
• .. ~ 

Vs. 3 4 • Vd 

~ ~ 9@ 
Cjj @ • 50 

~ . 
V3 V4 

Go to step (2). 
(2) There is no a-path from Vs to Vd that meets the edge criteria (i) and (ii). 

(Convince yourself of this!) Go to step (4). 



§3. The Max-Flow Min-Cut Theorem; The Maximal-Flow Algorithm 203 

(4) STOP; the current flow is maximal. Hence 

max! = LXid = X 2d + X 4d = 5 + 9 = 14; 
i 

the xij's appear on the final network above. 

Before we construct the corresponding cut and cut-set, some remarks are in 
order. The succession of five IX-paths made above is not the most efficient way 
to solve the problem. One could solve the problem by choosing a succession of 
four IX-paths (see Exercise 4). In fact, it is rare that a backward edge ever has to 
be used in such a succession. The succession of five IX-paths above was chosen 
precisely to illustrate the use of a backward edge. Also, while any maximal flow 
in the example above must have a value of 14, the corresponding flow numbers 
are not unique. 

We now construct the corresponding minimal cut and cut-set as in the proof 
of Theorem 11. Put VsEV1. Since VsEV1' (V"Vl)EE, and Xs1 =6<8=cs1 , we 
have V1 E V1 by (i). Similarly, since V1 E V1, (v 1, V4)EE, and X 14 = 4 < 5 = C14' we 
have V4EV1 by (i). Since V4EV1, (V 3,V4)EE, and X34 = 5 > 0, we have V3EV1 by 
(ii). This concludes the construction of V1; no other vertices may be admitted 
into V1 by virtue of (i) or (ii). Hence, V1 ={Vs,V1,V3,V4} and V2=V­
V1 = {V2,Vd}. The cut (Vl' V2) and its cut-set are diagrammed below: 

Note that the capacity of this cut agrees with the maximal flow value obtained 
previously. Returning to the last step (3) above, note also that every edge of the 
cut-set is saturated, i.e., satisfies xij = cij' and that every edge (v j, v;}EE such 
that VjE V2 and ViE V1 (there is only one such edge, namely (V2' v4)) satisfies 
Xjj=O. 

EXAMPLE 15. Solve the maximal-flow network problem below. Display the 
corresponding minimal cut and cut-set as constructed in the proof of the max­
flow min-cut theorem. 



204 Chapter 7. Network-Flow Problems 

This example is purposefully sketchy. Provide all necessary details and 
verifications for yourself. The a-paths used to solve this problem (other choices 
possible!) are listed below along with the corresponding q values: 

Vs --+ VI --+ V2 --+ V3 --+ Vd (q = 3) 
Vs --+ Vs --+ Vs --+ V7 --+ Vd (q = 6) 
Vs --+ VI --+ V4 --+ V3 --+ Vd (q = 2) 
Vs --+ Vs --+ V6 --+ V7 --+ Vd (q = 2) 
Vs --+ Vs --+ V6 --+ V4 --+ V3 --+ Vd (q = 3). 

Note that each a-path consists entirely of forward edges. The corresponding 
maximal flow is given by 

Hence, max f = 16. The corresponding minimal cut (VI' V2 ) and cut-set are 
diagrammed below: 



§4. The Shortest-Path Network Problem 

§4. The Shortest-Path Network 
Problem 

205 

Definition 16. Let N = [V, E] be a directed network. N is said to be weighted if, 
to each edge (v;, v)EE, there corresponds a real number wij (not necessarily 
nonnegative) called its weight. 

A weighted directed network is simply a generalization of a capacitated 
directed network-negative edge numbers are allowed in the former but not 
in the latter. 

Definition 17. Let N = [V, E] be a directed network. A finite nonempty set P of 
edges of E of the form 

P = { (vo, VI), (v 1, v2), ... , (Vn - 1, Vn) } 

is said to be a path in N from Vo to Vn" If Vo = Vn> then the path is said to be a 
cycle. 

Note that paths in networks differ from IX-paths in networks in two 
important ways: (i) paths consist of edges of E, i.e., paths must respect the 
direction of the edges of the original network and (ii) the vertices va' VI'···' vn 
traversed in a path need not be distinct (permitting cycling as in the path 
P = {(Vo, VI)' (VI' V2), (V2' V3), (V3' vd, (VI' V4)} of the- network below): 

Vo VI V4 
~ . ~ . 
/~ 

•• 
V3 V2 



206 Chapter 7. Network-Flow Problems 

Cycles are paths that begin and end at the same vertex (as in 
{(VI' V2 ), (V2' V3 ), (V3' VI)} above). 

The intuitive formulation of the shortest-path network problem is simple. 
Consider a weighted directed network N and interpret the weights of the edges 
as distances between corresponding vertices. (You may wish to view the 
network as a map with the vertices representing cities and the directed edges 
representing one-way roads between these cities.) The shortest-path network 
problem is concerned with finding the path of shortest distance from one 
vertex, called the derivation, to another vertex, called the destination. By abuse 
of notation, we denote the derivation by Vs and the destination by Vd. The 
mathematical formulation of this problem follows. 

Definition 18. Let N = [V, E] be a weighted directed network with no edges 
into the derivation and no edges out of the destination. Furthermore, assume 
that no cycle in N has a net negative weight, i.e., no cycle in N consists of edges 
the sum of whose weights is negative. The shortest-path network problem is 

Minimize d = L wijxij 
(Vi.Vj)EE 

subject to L X id = 1 
i 

LXij-LXji=O, VVjEV, j#s,d 
i i 

0':;;: xij':;;: 1, Vi,j. 

(8) 

We now show how the intuitive formulation of the shortest-path network 
problem coincides with Definition 18 above. From the statement of(8) above, 
it can be proven (but is by no means obvious) that each xij is either 0 or 1 in any 
optimal solution. We will not provide such a proof here (see, for example, [Dl] 
for a proof). The consequences of such a fact are extremely important however. 
Assume that we have an optimal solution to (8). Then exactly one edge into the 
destination Vd will have x-value equal to 1 by the first constraint-all other 
edges into the destination will have x-value equal to O. The second constraint 
of (8) says that, if a vertex other than the derivation and the destination has an 
outgoing edge with x-value equal to 1, then that vertex also has an incoming 
edge with x-value equal to 1. By repeated application ofthis second constraint, 
we see that those edges having x-value equal to 1 will form a path through the 
network from the derivation to the destination-the objective function is then 
the minimum sum of the weights (or distances) of those edges. We should 
remark that the shortest-path network problem may be infeasible. For 
example, there is no shortest path through a network from the derivation to 
the destination if there is no path through the network from the derivation to 
the destination! If there is at least one path through the network from the 
derivation to the destination, then the shortest-path network problem is not 
infeasible. In either case, the shortest-path network problem is never 
unbounded. 



§4. The Shortest-Path Network Problem 207 

We note that the restriction that there be no edges into the derivation Vs and 
no edges out of the destination Vd in a shortest-path network problem is 
without loss of generality. For assume that a shortest-path network problem 
has an edge e into Vs and that a shortest path P through the network from Vs to 
Vd utilizes e. Then P must exit Vs via one edge and return to Vs via e. In other 
words, there is a cycle in P that begins and ends at vs' This cycle must have net 
zero weight. (Cycles with net negative weight in shortest-path network 
problems are disallowed by Definition 18. If the cycle has a net positive weight, 
a shorter path from Vs to Vd is obtained by eliminating the cycle from P, 
contradicting the minimality of P.) Hence, by eliminating the cycle from P, we 
obtain a path of equal value from Vs to Vd not utilizing e. Such a procedure is 
repeated until a shortest path is obtained utilizing no edges into Vs' A similar 
argument handles edges out of the destination Vd (see Exercise 11). 

The shortest-path network problem (8) is solvable by using the techniques of 
Chapters 2-4. Not surprisingly, such an approach is cumbersome. We give 
instead two more direct shortest-path algorithms. The first algorithm is a 
standard algorithm due to Dijkstra ([D2J); unfortunately, it applies only to 
directed networks having nonnegative weights. The second algorithm handles 
the general shortest-path problem (8) and can be found in [AI]. The reader is 
referred to the relevant literature for further discussions of the graph-theoretic 
motivations behind these algorithms. 

Shortest-Path Algorithm I (Dijkstra) 

(0) Given: A weighted directed network N = [V, EJ with no edges into the 
derivation, no edges out of the destination, and wij ~ 0 for all i and j. 
N ate: In what follows, Ij is to be interpreted as a "label" given to the vertex 
VjE V. 

(1) Put Is = O. Circle this O. If j # s, put Ij = wsj ' (If wsj does not exist, put Ij = 
wsj = 00.) Put P = {vs} and T = V - P. 

(2) Compute 

Ik = min Ij • 
VjET 

Circle this minimum value. Put P +- P U {vk } and T = V - P. If T = 0, 
STOP; the value of Ij is the value of the shortest path from Vs to vj -

in particular, the value of Id is the desired value of the shortest path from 
Vs to Vd . Otherwise, continue. 

(3) VVjET, put Ij+-min{/j,lk+wkj}. (IfWkj does not exist, put Wkj= 00.) Go 
to (2). 

Note that Dijkstra's algorithm does not directly address the shortest-path 
network problem (8). On the one hand, Dijkstra's algorithm gives the values of 
the shortest path frbm the derivation to all other vertices when we are 
interested only in the value of the shortest path from the derivation to a 
particular vertex, namely the destination. In this sense, the algorithm produces 



208 Chapter 7. Network-Flow Problems 

more than we expect in (8). On the other hand, Dijkstra's algorithm only gives 
the values ofthese shortest paths; it does not give the shortest paths themselves. 
In this sense, the algorithm produces less than we expect in (8). Fortunately, the 
actual shortest paths are easily constructed from the labeling of the vertices 
during the algorithm. We illustrate with an example. 

EXAMPLE 19. Solve the shortest-path network problem below by using 
Dijkstra's algorithm. Give both the value of the shortest path from the 
derivation to the destination and the shortest path itself. 

VI 6 v2 yO' 
2 ~ 

"'O~ 2 /.0" 
4 

" . 
3 v4 

The parenthetical numbers below correspond to the steps of Dijkstra's 
algorithm. 

(0) The given shortest-path network problem is of the desired form. 

(1 ) Is II 12 13 14 Id P T 

@ 3 00 2 rf) rf) { v.} {V I ,V2,V3,V4,Vd } 

(2) Ik = min Ij = 13 = 2; Vk = V3 
VjET 

Is II Iz 13 14 Id P T 

@ 3 rf) @ rf) rf) { vs} {VI,VZ,V3,V4,Vd} 

{vs, v3} {v I ,VZ'V4,Vd} 

T #- 0, so continue. 

(3) IJ ...... min{II,13 +w3d=min{3,2+2}=3 

12 ...... min {/z, 13 + W 32 } = min { rf), 2 + rf)} = 00 

14 ...... min {/4, 13 + W 34 } = min { rf), 2 + 4} = 6 

Id ...... min {Id, 13 + W3d} = min {oo, 2 + rf)} = rf) 



§4. The Shortest-Path Network Problem 209 

Hence: 

Is 11 12 13 14 Id P T 

® 3 oo@ 00 00 { v s } {Vl,V2,V3,V4,Vd} 

3 00 6 00 {V., V3} {v 1, V2, V4, Vd} 

Go to step (2). 

(2) Ik=minlj=ll=3;vk=vl 
VjET 

Is 11 12 13 14 Id P T 

® 3 00 @ 00 00 { v s } {V 1,V2,V3,V4,Vd} 

® 00 6 00 {V., v 3} {Vi' V2, V4, Vd} 

{Vs' V1, V3} {V2,V4,Vd} 

T"# 0, so continue. 

(3) 12 .-min {120 11 + w12 } = min {oo, 3 + 6} = 9 

14'- min {I4' 11 + W 14} = min {6, 3 + oo} = 6 

Id.- min {Id' 11 + W 1d} = min {oo, 3 + oo} = 00 

Hence: 

Is 11 12 13 14 Id P T 

® 3 00 @ 00 00 {vs} {V 1,V2,V3'V4,Vd} 

® 00 6 00 {V., v 3 } {v 1, V2, V4 , vd} 

9 6 00 {V., V1, v 3 } {V2,V4,Vd} 

Go to step (2). 

(2) Ik = min Ij = 14 = 6; Vk = V4 
vjET 

Is 11 12 13 14 Id P T 

® 3 00 @ 00 00 { v s } {Vl,V2,V3,V4,Vd} 

® 00 6 00 {V., V3} {v 1, V2, V4 , vd} 

9 ® 00 {V"V1,V3} {V2'V4 ,Vd } 

{V., Vl, V3, v 4 } {v 2, Vd} 

T"# 0, so continue. 

(3) 12 .-min {12, 14 + W42 } = min {9, 6 + I} = 7 

Id .-min {Id, 14 + W4d} = min {oo, 6 + 5} = 11 



210 Chapter 7. Network-Flow Problems 

Hence: 

Is II 12 13 14 Id P T 

® 3 000 00 00 { vs} {VI> V2, V3, V4, v d } 

CD 00 6 00 {vs, v 3 } {VI' V2, V4 , v d} 

9 ® 00 {vs,V I ,V3 } {v 2, V4, v d } 

7 11 {vS' VI' V3, v 4 } {V 2,Vd} 

Go to step (2). 

(2) Ik = min Ij = 12 = 7; Vk = V2 
VjET 

Is II 12 13 14 Id P T 

® 3 00 0 00 00 { vs} {V I ,V2,V3,V4'Vd} 

CD 00 6 00 {vs' v 3 } {VI' Vl> V4 , Vd} 

9 ® 00 {vS' VI' v 3 } {Vl> V4 , Vd} 

(j) 11 {Vs' VI' V3, V4} {V 2, Vd} 

{VS' VI' V2, V3, V4 } {Vd} 

T¥ 0, so continue. 

(3) Id +-min {Id' 12 + W2d} = min {II, 7 + 3} = 10 

Hence: 

Is II 12 13 14 Id P T 

® 3 00eI) 00 00 { vs} {VI' Vl> V3, V4, Vd} 

G) 00 6 00 {vs, V3 } {VI' V2, V4 , v d} 

9 ® 00 {vS' VI' v 3 } {V 2,V4 ,Vd } 

(j) 11 {vS' VI' V3, v 4 } {v 2, Vd} 

10 {v" VI' V2, V3, V4} {Vd} 

Go to step (2). 

(2) Ik = min Ij = Id = 10; Vk = Vd 
VjET 

Is II 12 13 14 Id P T 

® 3 00 @ 00 00 { vs} {V I ,V2 ,V3'V4 ,Vd } 

® 00 6 00 {v" v 3 } {V I ,V2,V4 ,Vd} 

9 ® 00 {vS'V I ,V3} {V2,V4,Vd } 

(j) 11 {v" VI' V3, v 4 } {V 2,Vd} 

@ {v" VI' V2, V3, v 4 } {Vd} 
{V"V I ,V2,V3,V4 ,Vd} 0 

T=0; STOP. 



§4. The Shortest-Path Network Problem 211 

The circled entry in each column above is the final label attached to each 
vertex. We reproduce the original network along with this labeling of the 
vertices: 

0) 0) 
VI 6 v2 •• /"' 

2 1~""@ @)vs • 3 2 

~ /. 4 
(!j) ... 

• C v4 v3 3 

CD @ 

Hence, the value of the shortest path from Vs to Vd is Id = 10. (Note that we also 
have the values of the shortest paths from Vs to all of the other vertices.) The 
actual shortest path is now obtained by working backward through the 
network from the destination to the derivation. Start at Vd. The vertex visited 
immediately before Vd in the shortest path must be V2 or V4' But the value of the 
shortest path from Vs to V4 is 14 = 6; if V4 is the vertex visited before Vd in the 
shortest path, this would imply that the value of the shortest path from Vs to Vd 

is 6 + 5 = 11 which is a contradiction. Hence V2 is the vertex visited before Vd in 
the shortest path. (Note how the label 12 = 7 and the weight W2d = 3 are 
consistent with the label Id = 10, i.e., 7 + 3 = 10.) Now, the vertex visited 
immediately before V2 in the shortest path must be VI or v4 . By considerations 
similar to those above, we find that V4 is the desired vertex (the choice of V4 

leads to 6 + 1 = 7 whereas the choice of VI leads to 3 + 6 = 9 which is not 
consistent with 12 = 7). The vertex visited immediately before V4 in the shortest 
path must be V3. Finally, the vertex visited immediately before V3 must be Vs or 
VI; we rule out VI (since 3 + 3 = 6 is not consistent with 13 = 2) and choose Vs' 

Hence the desired shortest path from Vs to Vd in the network above is 

{(vS' v3), (V3' v4 ), (V4' v2), (v 2, vd)} 

or, more concisely, 

The optimal solution would be recorded in the shortest-path network problem 
(8) as 

Xs3 = X 34 = X 42 = X 2d = 1, all other xu's 0, 

mind = 10. 



212 Chapter 7. Network-Flow Problems 

The significance of the notations P and T for the sets in Dijkstra's algorithm 
may now be clear. At any stage of the algorithm, the vertices in P have 
(p)ermanent labels and the vertices in T have (t)emporary labels. Every time 
step (2) of the algorithm is encountered, one vertex is removed from T and 
placed in P, i.e., one vertex receives a permanent label. The labels on the 
remaining vertices in T are then revised in step (3) of the algorithm. The 
algorithm terminates when all vertices of the network have permanent labels, 
i.e., when T = 0 (or, equivalently, P = V). P initially has the derivation only 
(since we know that the distance from the derivation to the derivation must be 
0, i.e., Is = 0). 

The next example shows that Dijkstra's algorithm fails in general for 
networks containing negatively weighted edges. 

EXAMPLE 20. Apply Dijkstra's algorithm to the shortest-path network prob­
lem below. Note, however, that the network has a negatively weighted edge 
and hence step (0) of the algorithm is violated. 

Dijkstra's algorithm (minus step (0)) yields the following (verify this!): 

Is 11 12 13 14 Id P T 

® 3 00 0 00 00 { v s} {v 1, V2, V3, V4 , Vd} 

® 00 6 00 {vs' V3} {V1, V2, V4 , v d} 

9 ® 00 {vs' V 1, v 3 } {v 2, v 4, v d} 

® 11 {V., v 1, v 3, v 4 } {V 2,Vd } 

@ {vs' v 1, v 2, v 3, v 4 } {Vd} 

{vs' v 1, v 2, v 3, v 4, v d } 0 
STOP 

Hence the value of the shortest path from Vs to· Vd in the network above 
according to Dijkstra's algorithm is Id = 11. But the path Vs -+ V 1 -+ V2 -+ V3-+ 

V4 -+ Vd has value 8! (Which path in the network has value II?) 

Example 20 above illustrates quite vividly that Dijkstra's algorithm fails in 
general for networks containing negatively weighted edges. We now give an 
algorithm which will solve the general shortest-path network problem (8). 



§4. The Shortest-Path Network Problem 213 

Shortest-Path Algorithm II 

(0) Given: A weighted directed network N = [V, EJ with no edges into the 
derivation, no edges out of the destination, and such that no cycle in N has 
a net negative value. 
N ate: In what follows, lj is to be interpreted as a "label" given to the vertex 
VjE V. 

(1) Put Is = O. Circle this O. If j i= s, put lj = WSj ' (If wsj does not exist, put 
lj= Wsj= 00.) Put P = {vs} and T= V - P .. 

(2) Compute 

lk =minlj' 
VjET 

Circle this minimum value. Put P +- Pu {vk } and T = V - P. If T = 0, 
STOP; the value of lj is the value of the shortest path from Vs to vj-in 
particular, the value of Ict is the desired value of the shortest path from Vs to 
Vct. Otherwise, continue. 

(3) VVjE V, put lj +- min {Ij' lk + Wkj}. (If wkj does not exist, put wkj = 00.) For 
each lj that changes during this process, put P +- P - {vj} and T = V - P. 
Go to (2). 

Note that the algorithm above differs from Dijkstra's algorithm only in step 
(3). In this step, all vertices of the network get revised labels. Furthermore, any 
time the label on a vertex Vj changes, it is removed from set P (if it is in P) and 
placed back in T. Hence, the set P loses some of its notational significance 
here-membership in P does not necessarily imply a permanent labeling since 
vertices in P may return to T. In fact, it is precisely this feature of the set P 
which makes the algorithm above more general than Dijkstra's algorithm. We 
now illustrate our new shortest-path algorithm with an example. 

EXAMPLE 21. Apply shortest-path algorithm II to the shortest-path network 
problem of Example 20 below. (Recall that Dijkstra's algorithm failed for this 
problem.) Give both the value of the shortest path from the derivation to the 
destination and the shortest path itself. 

Vl 6 v2 

• .. ~ / 
".~ 

-10 

/.,. 
v3 4 v4 



214 Chapter 7. Network-Flow Problems 

Working through the algorithm and recording information as in Example 20, 
we obtain 

is il i2 i3 i4 id P T 

® 3 00 @ 00 00 { vs} {Vl,V2,V3,V4,Vd} 

CD 0 CD 00 2 6 00 {vs' V3} {V 1,V2,V4,Vd} 

° 3 9 2 ® 00 {vs' V 1, v3 } {V 2,V4 ,Vd } 

° 3 ® 2 6 11 {V., V 1, V3, V4} {V2' Vd} 

~ 0 3 98 6 11 {VS'Vl'V2'~~~d} 
0 3 9-1CD11 {V.,V 1,V2,V3,@} {Vd} 

0 3 9 -1 3 ® {vs' V 1, V2, V3, v4 } {Vd} 

{V.,Vl,V2,V3,V4,Vd} 0 
STOP 

More detailed explanations of step (2) and step (3) of the algorithm applied to 
the lines marked CD and ~ follow. 

Line CD. (The parenthetical numbers below correspond to the steps of the 
algorithm.) 

(2) Ik = min ij = 11 = 3 
VjET 

and hence Vk = V 1• v1 is added to P and removed from T (see the line 
following line CD). T =I 0 so continue. 

(3) is +- min {is' 11 + w1s} = min {O, 3 + oo} = 0 

il +-min {il,11 + w11 } = min {3, 3 + oo} = 3 

12 +-min {12, 11 + w12 } = min {oo, 3 + 6} = 9 

13 +- min {13' 11 + w13 } = min {2, 3 + oo} = 2 

14 +- min {14' 11 + w14} = min {6, 3 + 10} = 6 

Id +- min {Id' 11 + W1d} = min {oo, 3 + oo} = 00 
(See the line following line OJ.) 
The only label that has changed during this process is 12 (from 00 to 9); 
hence V2 is removed from P and placed in T. Since V2 is not in P (and hence 
is already in T), this effects no change in P or T. 

Line rn. (The parenthetical numbers below correspond to the steps of the 
algorithm.) 
(2) Notice that T = {V3' vd } here. 

Ik = min Ij = i3 = - 1 
VjET 

and hence Vk = V3. V3 is added to P and removed from T (see the line 
following line rn). T =I 0 so continue. 



§4. The Shortest-Path Network Problem 

(3) Is <-- min {IS' 13 + w3s} = min {O, -1 + oo} = 0 

11 <-- min {11, 13 + W 3 d = min {3, - 1 + 00 } = 3 

Iz <-- min {Iz, 13 + W3Z} = min {9, - 1 + oo} = 9 

13 <-- min {13' 13 + W 33 } = min { - 1, - 1 + oo} = - 1 

14 <--min {l4, 13 + W 34 } = min {6, - 1 + 4} = 3 

Id <-- min {Id' 13 + W 3d} = min { 11, - 1 + 00 } = 11 

(See the line following line 11J.) 

215 

The only label that has changed during this process is 14 (from 6 to 3); hence 
V4 is removed from P and placed in T. 

The last circled entry in each column of the chart above (or simply the last 
row of the chart above) is the final label attached to each vertex. Hence the 
value of the shortest path from Vs to Vd is Id = 8 (not 11 as in Example 20!). By 
working backward through the network from the destination to the deriva­
tion, it is easy to verify that the actual shortest path is (concisely) 

The optimal solution would be recorded in the shortest-path network problem 
(8) as 

X s1 = X 1Z = X23 = X 34 = X 4d = 1, all other xij's 0, 

mind = 8. 

EXAMPLE 22. Solve the shortest-path network problem below. Give both the 
value of the shortest path from the derivation to the destination and the 
shortest path itself. 

V2 

Since the given network contains a negatively weighted edge, we use 
shortest-path algorithm II. (The reader may wish to verify that Dijkstra's 
algorithm fails for this problem.) Working through the algorithm and 
recording information as in Example 20, we obtain 



216 Chapter 7. Network-Flow Problems 

Is II Iz Id P T 

@ 2 CD 00 { vs} {vI,VZ,Vd} 
0 CD 1 2 {v"vz } ~'Vd} 
0 2 ® 2 {v"v l ,@?)} Vd} 
0 2 0 CD {v"vl,VZ} {Vd} 

{v" VI' vz, vd} 0 
STOP 

Hence the value of the shortest path from Vs to Vd is Id = 1. By working 
backward through the network from the destination to the derivation, it is 
easy to verify that the actual shortest path is (concisely) 

The optimal solution would be recorded in the shortest-path network 
problem (8) as 

Xsi = XIZ = XZd = 1, all other xij's 0, 
mind = 1. 

One final remark is in order here. Both of the shortest-path algorithms in 
this section will terminate with a vertex label of 00 if there is no path through a 
given network from the derivation to that vertex. Such behavior is demon­
strated in Exercise 12. Consequently, the detection of an infeasible shortest­
path network problem is built into both algorithms. 

§5. The Minimal-Cast-Flow Network Problem 

Definition 23. Let N = [V, EJ be a capacitated directed network with unique 
fixed source and unique fixed sink, no edges into the source, and no edges out 
of the sink. Assume that to each edge (v;, vJEE, there also corresponds a real 
?umber C;j to be interpreted as a cost. The minimal-cast-flow network problem 
IS 

Minimize C = I C;jX;j 
(vi,vj)eE 

subject to ~ X;d = F ~ 0 

I Xij - I X j ; = 0, \fVjE V,j;6 s,d (9) 
j j 

o ~ Xij ~ Cij' \fi,j. 

F is a given specified flow value. 

The three constraints of (9) above say that we are interested in finding a flow 
of specified value F in a given capacitated directed network. But each edge of 



§5. The Minimal-Cost-Flow Network Problem 217 

the network is also associated with a cost clj-the goal is to produce a flow of 
value F having minimal total cost. Notice immediately that the minimal-cost­
flow network problem may be infeasible. For example, if the flow value F 
exceeds the maximal flow through the network (in the sense of(1)), then there is 
no way to achieve such a flow much less minimize the associated cost. If F is 
less than or equal to the maximal flow value of the network, then the minimal­
cost-flow network problem is not infeasible. In either case, the minimal-cost­
flow network problem is never unbounded. The observant reader will notice 
something more. Compare the minimal-cost-flow network problem (9) with 
the shortest-path network problem (8). If we put F = 1 and cij = 1 for all i andj 
in (9), and if we interpret the network of (9) as a weighted directed network by 
using the costs Clj as weights, then (9) becomes (8). In other words, (8) is a 
special case of (9). (In fact, the transportation and assignment problems of 
Chapter 6 can be reformulated as minimal-cost-flow network problems-this 
connection will be studied in §6 ofthis chapter.) There is a good reason why we 
developed algorithms for the shortest-path network problem separately rather 
than consider the shortest-path network problem as a special case of the 
minimal-cost-flow network problem. In the course of the minimal-cost-flow 
algorithm, we will need to use a shortest-path algorithm-inasmuch as we 
have developed shortest-path algorithms distinctly from the minimal-cost­
flow algorithm, we can use these shortest-path algorithms in the minimal-cost­
flow algorithm without fear of self-reference. (Such algorithmic self-reference, 
termed recursion, is sometimes advantageous; recursive algorithms occur 
frequently in mathematics and are crucial in many areas of computer science.) 

We now give the minimal-cost-flow algorithm. A further discussion of this 
algorithm may be found in [B4]. As with all of the other network-flow 
problems of this chapter, the minimal-cost-flow network problem (9) is 
solvable using the techniques of Chapters 2-4 but such an approach is ill­
advised. 

The Minimal-Cost-Flow Algorithm 

(0) Given: A capacitated directed network N = [V, E] with unique fixed 
source and unique fixed sink, no edges into the source, no edges out of the 
sink, and such that to each edge (Vi' v)EE, there corresponds a real number 
Clj (in addition to the capacity cij). 

(1) Let xij = 0 for all i and j. 
(2) If 

cp(Vd ) = LXid = F, 
i 

STOP; the current flow is optimal. Otherwise, continue. 
(3) Form the weighted directed network N tp(Vd) = [V, Etp(Vd)] as follows: 

(i) (Vi' v)EEtp(Vd) if and only if xij < cij; put wij = c lj 
(ii) (Vj' V;) E Etp(Vd) if and only if xij > 0; put wji = - Clj' 



218 Chapter 7. Network-Flow Problems 

(4) Apply a shortest-path algorithm to the network N <p(Vd) to find a shortest 
path from Vs to Vd. If there is no path from Vs to Vd in the network, STOP; 
there is no flow of value F in the network and the minimal-cost-flow 
network problem is infeasible. Otherwise, continue. 

(5) Find the a-path P in N corresponding to the shortest path of(4). Compute 

q = min {min {cij - Xij}, min Xji' F - <P(Vd)} 
(Vi. Vj) (Vi. Vj) 

a fwd. a bWd. 
edge edge 
of P of P 

Add q to the flow numbers on all forward edges of P in N and subtract q 
from the flow numbers on all backward edges of Pin N. Go to (2). 

Note that the minimal-cost-flow algorithm is a combination of the 
maximal-flow algorithm of §3 and the shortest-path algorithms of §4. The 
basic idea of the algorithm is easy. Step (4) applies a shortest-path algorithm to 
an augmented network which essentially has costs as weights. Hence the 
shortest path corresponds to a minimal cost path. Then step (5) determines the 
maximal amount of flow (q) that can be accommodated along this minimal 
cost path and increases the flow along the path accordingly. Such a procedure 
is repeated until the desired flow F is attained or the algorithm detects 
infeasibility. We stress that this is a simplified view of the minimal-cost-flow 
algorithm and that a more detailed analysis appears in [B4]. We now illustrate 
the algorithm with two examples. 

EXAMPLE 24. Solve the minimal-cost-flow network problem below with F = 

12. Here, the ordered pair associated to each edge is to be interpreted as 
(c ij' c;), i.e., the first component is the capacity of the edge and the second 
component is the cost of the edge. 

Vl (5,3) V2 

7 
•• 

(5,2) ~ 
Vs • (2, 6) (3,2) .vd 

~ ~ 
• • • (c;j, C;j) 

v3 (5,3) v4 

The parenthetical numbers below correspond to the steps of the minimal­
cost-flow algorithm. All shortest-path algorithm implementations (in step (4) 
ofthe minimal-cost-flow algorithm) are omitted for the sake of brevity. In each 



§5. The Minimal-Cast-Flow Network Problem 219 

occurrence of step (4), the reader should verify the resultant shortest path with 
a careful inspection of the associated network. 

(0) The given minimal-cost-flow network problem is of the desired form. 

(1) 
Vl (5,3) ® v2 

) . 

(2,6) 
(5,2) 

® (3,2) 
v· ® A'""' .~ (5,2) 

® 
(8, 1) (c;j' C;j) 

v3 (5,3) @ v4 ® 

(2) cp(vd)=O# 12=F so continue. 
(3) N q>(Vd) = No: 

Every Xij satisfies (i); no xij satisfies (ii). 
(4) The shortest path in No above is (concisely) Vs -+ V 1 -+ V4 -+ Vd• 

(5) The a-path P in N corresponding to the shortest path in No above consists 
of only forward edges. Hence 

q = min I min {c ij - xiJ, F - cp(vd ) I 
(Vi. Vj) 

a fwd. 
edge 
of P 

= min {min {7 - 0, 5 - 0, 8 - O}, 12 - O} 

= 5. 

Hence 5 is added to the flow numbers on all edges of the a-path Vs -+ V 1 -+ 

V4 -+ Vd in N: 



220 Chapter 7. Network-Flow Problems 

vI (5,3)@ v2 
) . 

0 
(5, 2) ~ (7, 1) 

(3,2) ®. Vd (2,6) CD Vs· ® 

~ (S~ 0) 
(8, 1) (ell' (,;) 

~ . 
v3 (5,3) @ v4 6V 

Go to step (2). 
(2) qJ(vd) = 5 #- 12 = F so continue. 
(3) N",(Vd) = Ns: 

VI 3 
v2 

P' 
) . 

-2 ~ 
".'~ .,dd'" 

v3 3 v4 

Every x ij except x 14 satisfies (i); only Xs1 ' X 14 ' and X 4d satisfy (ii). 
(4) The shortest path in N 5 above is (concisely) vs ...... v1 ...... v2 ...... Vd . 

(5) The e<-path Pin N corresponding to the shortest path in N 5 above consists 
of only forward edges. Hence 

q = min {min {c ij - xij},F - qJ(Vd)} 
(Vi. Vj) 

a fwd. 
edge 
of P 

= min {min {7 - 5,5 - 0, 5 - O}, 12 - 5} 

=2. 

Hence 2 is added to the flow numbers on all edges of the e<-path Vs ...... V 1 ...... 

V 2 ...... Vd in N: 



§5. The Minimal-Cost-Flow Network Problem 

Vj (5,3) G) 
• 

(7~ (5,2) 
(2,6) CD 

Vs' @ 

(5~ 
v3 (5,3)@ 

Go to step (2). 
(2) cp(vd ) = 7 #- 12 = F so continue. 
(3) N ",(Vd) = N 7: 

-3 

v2 
~ . 

(5, 1) 

0 

~.", 
CD 

(ell' <) (8, 1) 
~ . e v4 

221 

Every x ij except Xs1 and x 14 satisfies (i); every x ij except Xs3' X 24, X 31 ' and 
X 34 satisfies (ii). 

(4) The shortest path in N 7 above is (concisely) Vs --+ V3 --+ V4 --+ vd. 
(5) The IX-path P in N corresponding to the shortest path in N 7 above consists 

of only forward edges. Hence 

q=min {min {Cij-XiJ,F-CP(Vd)} 
(Vi. Vj) 

a fwd. 
edge 
of P 

= min {min{5 - 0,5 -0,8 - 5}, 12-7} 

=3. 

Hence 3 is added to the flow numbers on all edges of the IX-path Vs --+ V3 --+ 

V4 --+ Vd in N: 



222 

(7, I) G) 
(2,6) 

Vs· ® 
(~ \:l) 

-'-'G)~ 

Chapter 7. Network-Flow Problems 

(5,2) 

CD 

Go to step (2). 
(2) cp(vd ) = 10 #- 12 = F so continue. 
(3) N <p(Vd) = N 10: 

Every Xij except X s1 , x 14, and X 4d satisfies (i); every Xij except X 24 and X 31 

satisfies (ii). 
(4) The shortest path in N 10 above is (concisely) Vs -+ V3 -+ V4 -+ V 1 -+ V 2 -+ Vd • 

(5) The IX-path P in N corresponding to the shortest path in N 10 above 
consists of forward edges and one backward edge ((v4 , v1 )). Hence 

q = min {min {cij - xij}, min xji,F - CP(Vd)} 
(Vi,Vj) (Vi,Vj) 

a fwd. a bwd. 
edge edge 
of P of P 

= min {min {5 - 3,5 - 3,5 - 2, 5 - 2}, min {5}, 12 - 10} 

=2. 

Hence 2 is added to the flow numbers on all forward edges of the IX-path 
Vs -+ V3 -+ V4 -+ V 1 -+ V 2 -+ Vd in N and subtracted from the flow number on 
the backward edge (v 4 , vd of this IX-path: 



§5. The Minimal-Cast-Flow Network Problem 223 

CD (5,2) 
(7, 1) 

(2,6) CD 
Vs· ~ 

(5~ ~ 
'-~0~ 

Go to step (2). 
(2) <p(vd ) = 12 = F so we STOP; the current flow is optimal. Hence 

min C = L C;jXij 
(Vi, Vj)EE 

= C~lXsl + C~3Xs3 + C'12 X 12 + C'14 X 14 + C~4X24 
+ C~dX2d + C~lX31 + C~4X34 + C~dX4d 

= 1(7) + 2(5) + 3(4) + 2(3) + 2(0) 

+ 1(4) + 6(0) + 3(5) + 1(8) 

=62; 

the optimal xu's appear on the final network above. Note that any flow of 
value 12 is a maximal flow in the network above since the capacities on the 
edges out of the source total 12; these edges are saturated (i.e., the flow 
numbers on these edges are equal to the edge capacities) in the minimal 
cost maximal flow above. Is there another maximal flow in the network 
above with total cost greater than 62? 

EXAMPLE 25. Solve the minimal-cost-flow network problem below with F = 9. 
Here, the ordered pair associated to each edge is to be interpreted as (c ij , C;j), 

i.e., the first component is the capacity ofthe edge and the second component is 
the cost of the edge. 

VI Vd 

~",7 
(3,4) • 

~)~ 
(6,2) 

) . (Cij, C;j) 
Vs (5, 5) v3 



224 Chapter 7. Network-Flow Problems 

The parenthetical numbers below correspond to the steps of the minimal­
cost-flow algorithm. All shortest-path algorithm implementations (in step (4) 
of the minimal-cost-flow algorithm) are omitted for the sake of brevity. In each 
occurrence of step (4), the reader should verify the resultant shortest path with 
a careful inspection of the associated network. 

(0) The given minimal-cost-flow network problem is of the desired form. 

(1) 

®® 
(3,4) 
~

2'3) V7,5) 
v2 (6,2) 

® . @ 

4~ >. 
Vs (5,5)@ v3 

(2) <p(vd ) = 0"" 9 = F so continue. 
(3) N ",(Vd) = No: 

~,,/ 
4 . 

/~ 
• -+ • 
lis 5 v3 

Every xij satisfies (i); no xij satisfies (ii). 

(Cij' cij) 

fJ 

2 

(4) The shortest path in No above is (concisely) Vs --> V2 --> V3 --> Vd . 

(5) The ex-path P in N corresponding to the shortest path in No above consists 
of only forward edges. Hence 

q = min {min {c ij - xij}, F - <P(Vd)} 
(v" Vj) 

a fwd. 
edge 
of P 

= min {min { 5 - 0, 3 - 0, 6 - O}, 9 - O} 

= 3. 



§5. The Minimal-Cost-Flow Network Problem 225 

Hence 3 is added to the flow number~ on all edges of the IX-path Vs -+ V2 -+ 

V3 -+Vd in N: 

• • 

@@ ~2' 3) #/7,5) 

(3,4) v2 (6,2) 

@~·~0 00 
(5,2) (3, 2) 

• II • 
V. (5,5)@ v3 

Go to step (2). 
(2) cp(vd ) = 3 =I- 9 = F so continue. 
(3) N ",(Vd) = N 3: 

~",/ 
4 

p'~ 
) . 

Vs S v3 

-2 

Every xij except X 23 satisfies (i); only Xs2, X23' and X3d satisfy (ii). 
(4) The shortest path in N 3 above is (concisely) Vs -+ V2 -+ Vd or Vs -+ V3 -+ Vd . For 

definiteness, we choose Vs -+ V 2 -+ Vd . 

(5) The IX-path P in N corresponding to the shortest path in N 3 above consists 
of only forward edges. Hence 

= min {min {5 - 3, 7 - O}, 9 - 3} 

=2. 



226 Chapter 7. Network-Flow Problems 

Hence 2 is added to the flow numbers on all edges of the IX-path Vs -> V2 -> Vd 

in N: 

o • 

~2'3) ;P'7,5) 
@ (22 

(3,4) v2 (6,2) 

@ A? ° 0) 

A~~ . ) . 
Vs (5,5) @ v3 

Go to step (2). 
(2) cp(vd ) = 5 #- 9 = F so continue. 
(3) N CP(Vd) = N 5: 

VI Vd 

.~,p.. 

4~.~ 
-2 

. ,. . 
Vs 5 v3 

Every xij except Xs2 and X 23 satisfies (i); every xij except Xsl , Xs3 , and X l2 

satisfies (ii). 
(4) The shortest path in N 5 above is (concisely) Vs -> V3 -> Vd • 

(5) The IX-path Pin N corresponding to the shortest path in N 5 above consists 
of only forward edges. Hence 

q = min { min {c ij - xij},F - CP(Vd)} 
(v;. V}) 

a fwd. 
edge 
of P 

= min {min {5 - 0,6 - 3}, 9 - 5} 

=3. 

Hence 3 is added to the flow numbers on all edges of the IX-path Vs -> V3 -> Vd 

in N: 



§5. The Minimal-Cost-Flow Network Problem 

.~,~ ~,~y" 
(3, 4) ~V2~ (6,2) 

@ . @ 

4~ . ~ . 
Vs (5,5) CD v3 

Go to step (2). 
(2) cp(vd ) = 8 #- 9 = F so continue. 
(3) Nrp(Vd) = Ns: 

227 

Every xij except X s2 ,X23 , and X3d satisfies (i); every Xij except Xsl and X 12 

satisfies (ii). 
(4) The shortest path in N s above is (concisely) Vs -+ V3 -+ V2 -+ Vd . 

(5) The a-path P in N corresponding to the shortest path in N s above consists 
of forward edges and one backward edge ((v 3 , v2 )). Hence 

q = min {min {cij - Xij}, min Xji' F - CP(Vd)} 
(Vi. Vj) (Vi. Vj) 

a fwd. a bwd. 
edge edge 
of P of P 

= min {min {5 - 3, 7 - 2},min {3},9 - 8} 

=1. 
Hence 1 is added to the flow numbers on all forward edges of the a-path 
Vs -+ V3 -+ V 2 -+ Vd in N and subtracted from the flow number on the back­
ward edge (V3, v2 ) of this a-path: 



228 Chapter 7. Network-Flow Problems 

. . 
~2'3) r7,5) 

@G) 
(3,4) v2 (6,2) 

@ . 0 

4~ . ) . 
Vs (5,5) 0 V3 

Go to step (2). 
(2) cp(vd ) = 9 = F so we STOP; the current flow is optimal. Hence 

min C = L C;jXij 
(Vi,Vj)EE 

= 4(0) + 2(5) + 5(4) + 3(0) + 2(2) + 5(3) + 2(6) 

= 61; 

the optimal xij's appear on the final network above. Is the flow of value 9 
constructed above a maximal flow in the network? Why or why not? 

§6. Transportation and Assignment Problems 
Revisited 

The transportation and assignment problems of Chapter 6 can be refor­
mulated as minimal-cost-flow network problems. We illustrate this reformu­
lation with an example. The reformulation of transportation and assignment 
problems is investigated further in Exercise 17 and Exercise 18. 

EXAMPLE 26. Reformulate the (balanced) transportation problem below as a 
minimal-cost-flow network problem. 

M j M2 M3 

Wj 2 2 40 

W2 9 4 7 60 

W3 2 9 10 

40 50 20 



§6. Transportation and Assignment Problems Revisited 229 

Each warehouse and each market is represented by a vertex; directed edges 
connect each warehouse vertex with each market vertex. Each such edge is 
associated with an ordered pair of real numbers. The first component of this 
pair is the corresponding warehouse supply; the second component of this pair 
is the unit shipping cost from the corresponding warehouse to the correspond­
ing market. All of this is illustrated below: 

Now, to make this network into a minimal-cost-flow network problem, we 
need (i) a unique fixed source and a unique fixed sink with no edges into the 
source and no edges out of the sink and (ii) a specified flow value F. (i) is 
achieved by using the augmentation procedure discussed in §1. Vertices 
representing the unique source and the unique sink are added to the network. 
Then edges from the desired unique source to each of the warehouses vertices 
(the current "sources") and edges from each of the markets (the current "sinks") 
to the desired unique sink are added to the network. This augmentation is 
illustrated below: 

What ordered pairs of real numbers should be associated with these added 
edges? The second component of each pair is easy-each added edge is 
assumed to have zero cost. Now we examine the first components. Consider 
the edge (vs' Wi)' Since the first warehouse has a supply of 40, the sum of the 
flows on the three edges out of Wi must be at most 40 (in fact, it must be exactly 
40; this will be handled in a moment). Since Wi is an intermediate vertex, the 
flow number on the edge into Wi must be at most 40. Hence, the first 
component on the edge (V., Wi) is 40. Similarly, the first components on the 



230 Chapter 7. Network-Flow Problems 

edges (vs , W2 ) and (vS' W3 ) are 60 and 10 respectively. Consider the edge 
(M I, Vd)' Since the first market has a demand of 40, the sum of the flow numbers 
on the three edges into M I must be at most 40 (in fact, it must be exactly 40; this 
will be handled in a moment). Since M I is an intermediate vertex, the flow 
number on the edge out of M I must be at most 40. Hence, the first component 
on the edge (M I, Vd ) is 40. Similarly, the first components on the edges (M 2, Vd ) 

and (M 3, Vd) are 50 and 20 respectively. Hence we have 

Ml 

As noted parenthetically above, however, each warehouse must ship all of its 
current supply to exactly meet the current demand of each market since the 
transportation problem is balanced. We force this full shipment of current 
supplies by specifying a flow value of F = 110 which is the common value of the 
current supplies and demands. This value of F will guarantee that the edges 
out of the source are saturated (i.e., the flow numbers on these edges are equal 
to the edge capacities) and hence that each warehouse ships all of its current 
supply (since WI, W2 , and W3 are intermediate vertices). Similarly, this value of 
F will also guarantee that the edges into the sink are saturated and hence that 
each market receives all of its current demand. This achieves (ii) and concludes 
the reformulation of the given transportation problem as a minimal-cost-flow 
network problem. 

It is not suggested that one use the minimal-cost-flow algorithm to solve 
transportation and assignment problems. The complicated nature of the 
networks arising from relatively small transportation and assignment prob­
lems makes the minimal-cost-flow algorithm prohibitively cumbersome to 
use (see Exercise 17). The intent of this section is only to show the 
interrelationships existing between these seemingly different types of linear 
programming problems. 

§7. Concluding Remarks 

In this chapter, we have seen how the mathematical field of graph theory 
allows for the formulation of more direct algorithms to solve three linear 
programming problems, namely the maximal-flow network problem, the 
shortest-path network problem, and the minimal-cost-flow network problem. 
It should be stressed that these network problems do not form an exhaustive 



Exercises 231 

list of the graph-theoretic problems in linear programming. One notable 
omission, for example, is the longest-path network problem which is extremely 
useful in many applications. The algorithms commonly referred to as CPM 
(critical-path method) and PERT (program evaluation and review technique) 
arise in this domain. More complete discussions of CPM, PERT, and other 
network-related algorithms in linear programming may be found in [G IJ and 
[B4]. 

EXERCISES 

1. Consider the capacitated directed network N = [V, E] and flow below: 

a. For each vertex VjE V, compute <p(v). Verify that conservation of flow in N 
holds. 

b. Classify each vertex v jE V as a source, a sink, or an intermediate vertex. 
c. Augment the structure of the network above to produce an equivalent flow 

having a unique source, a unique sink, no edges into the source, and no edges 
out of the sink. 

2. Construct a capacitated directed network and flow having a unique source and a 
unique sink, but with at least one edge into the source and at least one edge out of 
the sink. 

3. Solve each of the maximal-flow network problems below. Display each corre­
sponding minimal cut and cut-set as constructed in the proof of the max-flow min­
cut theorem. 

a. 

2 



232 Chapter 7. Network-Flow Problems 

b. 

3 

/ 8 '"~ 
'."~ 10 5/."" 

----to,. 
6 

c. 

"~"~"5 5 • 

5 3 2~"/3 4 6 

6 y,.~ 7 

. ,. 11 .( . 
9 8 

15 15 

d. 



Exercises 233 

4. a. Solve the maximal-flow network problem of Example 14 with a succession of 
four IX-paths, each using no backward edges. Display the corresponding 
minimal cut and cut-set as constructed in the proof of the max-flow min-cut 
theorem. 

b. Does there exist a succession of three IX-paths that solves the maximal-flow 
network problem of Example 14? If so, find such a succession. 

5. Consider the maximal-flow network problem below: 

V2 

a. What is the least number of IX-paths that solves the problem? Find such a 
succession of IX-paths. 

b. What is the greatest number of IX-paths that solves the problem? Describe such a 
succession of IX-paths. 

6. Consider the Tucker tableau of Example 7. Along the west side of the tableau, put 

the variables (in order) ®,(fY,@,@, Ysl,Ys3,YI2,YI4,Y24,Y31,Y32,Y34,Yld, 

and Y4d' Along the south side of the tableau, put the equal signs and variables 
(in order)=us!, =us3, =U I2, =UI4' =U24, U31, =u32, =U34, =2d' and =U4d' 
Show that the minimization linear programming problem so constructed takes 
the form of (2). 

7. Let N = [V, E] be a capacitated directed network with unique fixed source and 
unique fixed sink, no edges into the source, and no edges out of the sink. To each 
vertex VjE V, assign a number Jlj equal to 0 or -1. To each edge (Vi' vj)EE, assign a 
number Yij defined by Yij = max{O,Jli-Jlj}' (See the discussion immediately 
preceding Example 10.) 

a. Prove that - Jli + Jlj + Yij ~ 0 for all i and j. 
b. Prove that Yij is equal to 0 or 1 for all i and j. 
c. Prove that at least one optimal solution of (3) takes the form described above. 

[Hint: Use the max-flow min-cut theorem.] 

8. Let N = [V, E] be a capacitated directed network with unique fixed source and 
unique fixed sink, no edges into the source, and no edges out of the sink. 

a. Prove that the flow numbers corresponding to the maximal flow in N are not 
necessarily unique. 

b. Let f be the maximal flow value in N corresponding to two distinct sets of flow 
numbers, say Xij and X;j, in accordance with part a. Let C = (VI' V2) be the 
minimal cut constructed in the proof of the max-flow min-cut theorem using the 



234 Chapter 7. Network-Flow Problems 

flow numbers xij and let C' = (VI' V~) be the minimal cut constructed in the 
proof of the max-flow min-cut theorem using the flow numbers X~j. Prove that 
VI = VI and V2 = V~. 

9. Solve each of the shortest-path network problems below by using one of the 
shortest-path algorithms of this chapter. Use the final labels on the vertices to 
construct the actual shortest path(s) in the network from the derivation to the 
destination by working backward through the network from the destination to the 
derivation. 

a. Vs 4 

~/' . 
/~ 
--------+)< . 

4 Vd 

b. 

Vs 

2 

c. 



Exercises 235 

d. 

e. 

10. Change the weight on the edge (v 3 , v4 ) in Exercise 9d above from 1 to -1. The 
resulting problem is not a shortest-path network problem according to our 
definition. Why? 

11. Prove that the restriction that there be no edges out of the destination in a shortest­
path network problem (see Definition 18) is without loss of generality. 

12. Consider the shortest-path network problem below: 



236 Chapter 7. Network-Flow Problems 

a. What will the final label on U2 be after application of shortest-path algorithm II 
to the network? Why? 

b. Verify your claim of part a by applying shortest-path algorithm II to the 
network. 

13. Label each of the following statements TRUE or FALSE. If the statement is 
FALSE, provide a counterexample. 

a. Dijkstra's algorithm fails for any shortest-path network problem in which at 
least one of the edges of the network is negatively weighted. 

b. Let N = [V, E] be a weighted directed network such that every weight is 
nonnegative and let VI' V2 , V3E V. Then the value of the shortest path from VI to 
V3 is the sum ofthe values of the shortest paths from VI to V2 and from V2 to V3 • 

14. Solve each of the minimal-cost-flow network problems below with F = 8 and 
F = 10. In each network problem, the ordered pair associated to each edge is to be 
interpreted as (c;i' c;), i.e., the first component is the capacity of the edge and the 
second component is the cost of the edge. 

a. 

Us (7,4) 
• 

(8, 1)1 
• (6, 1) 

(5,3) 1 
• (Cij, cij) 

(4,2) 

b. 

• 

(3, 2/ ~ (2,3) 

/ (4,1) ~ 



Exercises 237 

c. 

I (3,2) 
(l,3) 

(3,4) (5, 2) 

""~f(l,l) (2,4) 

. 

15. Find a maximal flow in the network of Example 24 that is not of minimal cost. 

16. Find a maximal flow of minimum cost in the network of Example 25. 

17. Consider the transportation problem below: 

MI M2 

WI rl2l1 
W2~4 

2 3 

a. Solve the problem by using the transportation algorithm. 
b. Reformulate the problem as a minimal-cost-flow network problem and solve 

the problem by using the minimal-cost-flow algorithm. 
c. Which algorithm is preferable here? 

18. Reformulate the transportation problem below as a minimal-cost-flow network 
problem. Do not solve the network problem. 

MI M2 

WI rl2l1 
W2~2 

3 4 

[Hint: Note that the transportation problem is unbalanced. What is a natural first 
step?] 



APPENDIX A 

Matrix Algebra 

§O. Introduction 

In this appendix, we summarize the elementary theory of matrices necessary 
for a complete understanding of Part I. This summary is intended to be rather 
concise; more detailed discussions of the topics here may be found in any 
elementary linear algebra book. 

§ 1. Matrices 

Definition 1. A rectangular array of real numbers of the form 

denoted [aij]m x n' is said to be an m x n matrix. 

Note that an m x n matrix has m rows and n columns. The entry aij is in the 
i lh row and the ph column of the matrix. 

Definition 2. Two matrices A and B are said to be equal, denoted A = B, if A 
and B have the same size and corresponding entries are equal. 



§2. Matrix Operations 239 

§2. Matrix Operations 

Definition 3. Let A = [aiJm x nand B = [biJm x no The sum of A and B, denoted 
A + B, is the matrix [cij]m x n where cij = aij + bij for all i and j. 

Note that the sum of two matrices is defined if and only if the matrices have 
the same size. 

EXAMPLE 4. 

- 2J = [ - 1 + 3 0 + 1 2 + ( - 2)J 
o 3+2 -2-1 1+0 

=[~ -~ ~l 
Definition 5. Let A = [aiJm x n and let C be a real number. The product of C and 
A, denoted cA, is the matrix [ciJm x n where cij = caij for all i and j. 

EXAMPLE 6. 

( _ 2)[ - 31 _ O2 2J = [( - 2)( - 1) (- 2)(0) ( - 2)(2)J 
1 (-2)(3) (-2)(-2) (-2)(1) 

[ 2 0 -4J 
- -6 4 -2 . 

It is customary to denote ( - l)A by - A and to denote A + ( - B) by A - B. 

Definition 7. A = [aiJm x n is said to be the m x n zero matrix, denoted Om x n 

(or 0 if the size is understood), if aij = 0 for all i and j. 

Theorem 8. Let A, B, and C be m x n matrices and let c and d be real numbers. 
(i) A+B=B+A 

(ii) (A + B) + C = A + (B + C) 
(iii) c(A + B) = cA + cB 
(iv) (c + d)A = cA + dA 
(v) (cd)A = c(dA) 

(vi) lA = A; OA = 0 
(vii) A + 0 = 0 + A = A 

(viii) A + ( - A) = ( - A) + A = 0 

Definition 9. Let A = [aij]mXn and B = [bij]nxk' The product of A and B, 
denoted AB, is the matrix [Cij]mxk where 

n 

cij = L airbrj 
for all i and j. 

r;l 



240 Appendix A. Matrix Algebra 

Note that Definition 9 defines the product oftwo matrices while Definition 5 
defines the product of a real number and a matrix. As such, the defined products 
are different. Note further that the product oftwo matrices A and B is defined if 
and only if the number of columns in A is equal to the number of rows in B; if 
so, the product is a matrix having the same number of rows as A and the same 
number of columns as B. 

EXAMPLE 10. Find AB if 

o 2J [ 3 _ 2 1 and B = [bij]3 x 2 = 1 
-2 -n 

AB will be a 2 x 2 matrix, say [Cij]2 x 2. 

3 

Cll = L a1rbr1 = all bll + a12 b21 + a13 b31 
r= 1 

= (-1)(3) + (0)(1) + (2)( -2) = -7 

3 

C12 = L a1rbr2 = allb12 + a12b22 + a13b32 
r= 1 

= ( -1)(2) + (0)( -1) + (2)(0) = - 2 

3 

C21 = L a2rbr1 = a21 bll + a22b21 + a23b31 
r= 1 

= (3)(3) + (- 2)(1) + (1)( - 2) = 5 

3 

C22 = L a2rbr2 = a21b12 + a22b22 + a23b32 
r=l 

= (3)(2) + ( - 2)( - 1) + (1)(0) = 8. 

Hence 

In general, the entry in the ith row and the ph column of the product of two 
matrices is obtained by multiplying the ith row of A component wise by the r 
column of B and adding the results. 

Theorem 11. Let A = [aij]m x n> B = [bij]n x k' C = [CiJk x I, and D = [dij]n x k and 
let C be a real number. 

(i) (AB)C = A(BC) 
(ii) A(B+D)=AB+AD 

(iii) (B + D)C = BC + DC 
(iv) c(AB) = (cA)B = A(cB) 
(v) OA = 0; AO = 0 



§3. Square Matrices 241 

Note that the following properties are NOT true in general for matrices: 

(i) AB= BA 
(ii) AB=AD,A#O = B=D 

(For example, take 

A = [ ~ ~ ] and B = [~ ~ ] 
in (i) and 

A = [ ~ ~ J B = [~ ~ J and D = [~ ~ ] 
in (ii).) 

Definition 12. Let A = [aiJm x n' The transpose of A, denoted At, is the matrix 
[cij]nxm where cij=aji for all i andj. 

Note that the i lh row of A becomes the i lh column of At and theph column of 
A becomes the ph row of N. 

EXAMPLE 13. 

o 2Jt = L1 _ 3J -2 1 0 2. 
2 1 

Theorem 14. Let A = [aiJm x", B = [biJm x n' and C = [cij]n x k and let C be a real 
number. 

(i) (Aty = A 
(ii) (A + BY = At + Bt 

(iii) (cAY = cN 
(iv) (ACY = CAt 

§3. Square Matrices 

Definition 15. A matrix having the same number of rows as columns is said to 
be a square matrix. 

Definition 16. Let A = [aiJn x n' The entries aij with i = j are said to constitute 
the diagonal of A. 

Definition 17. Let A = [aij]n x n' A is said to be a diagonal matrix if aij = 0 for all 
i#j. 

Definition 18. Let A = [aij]n x n' A is said to be the n x n identity matrix (or the 
identity matrix if the size is understood), denoted In x n (or I), if A is a diagonal 
matrix and all diagonal entries are equal to 1. 



242 Appendix A. Matrix Algebra 

EXAMPLE 19. Consider the 3 x 3 square matrices 

[1 2 3J [0 0 OJ [1 
A = 4 5 6 , B = ° 1 ° , and C = ° 

789 002 ° 
° OJ 1 ° . 
° 1 

The diagonal entries of A are 1,5, and 9; A is not a diagonal matrix since there 
are off-diagonal entries in A which are nonzero (in fact, all off-diagonal entries 
in A are nonzero!). B is a diagonal matrix since all off-diagonal entries in Bare 
zero. C is the 3 x 3 identity matrix since it is a diagonal matrix and all diagonal 
entries are equal to 1. 

Theorem 20. Let A = [aij]n x n' Then AI = IA = A. 

In other words, any square matrix multiplied on either side by the identity 
matrix (necessarily of the same size) remains unchanged; I is the identity 
element for matrix multiplication. 

§4. Invertible Matrices 

Definition 21. Let A = [aiJn x n' A is said to be invertible if there exists an n x n 
matrix B such that 

AB=BA=I; 

B is said to be an inverse of A and is denoted A -1. If A has no inverse, then A is 
said to be noninvertible. 

In other words, a given square matrix is invertible if and only if there exists 
another matrix of the same size which when multiplied on either side by the 
given matrix results in the identity matrix (necessarily of the same size). 

Theorem 22. The inverse of a matrix is unique if it exists. 

EXAMPLE 23. The matrix 

A=[~ ~J 
is invertible since the matrix 

[ -2 
B= 3/2 

satisfies the condition of Definition 21 above (check this!). Hence B is the 
inverse of A. 



§4. Invertible Matrices 243 

Not all square matrices are invertible. (For example, the matrix 

A=[~ ~J 
is noninvertible.) Two questions arise at this point. In general, how can we tell 
whether or not a given square matrix is invertible? If a given square matrix is 
invertible, how can we find the inverse? One answer to these questions is 
provided by Exercise 11 in Chapter 2. The reader is referred to any elementary 
linear algebra book for alternate answers to these questions. 

Theorem 24. Let A = [aiJn Xn and B = [biJn x n be invertible matrices. 
(i) (A - 1) - 1 = A 

(ii) (AB)-1=B-1A- 1 
(iii) (At)-l = (A -ly 

Theorem 25. Let A be an invertible matrix. If Band C are matrices such that 
AB = AC or BA = CA, then B = C. 

Note that the following properties are NOT true in general for matrices with 
A invertible: 

(i) AB = CA = B = C 
(ii) BA=AC = B=C 

(For example, take 

A=[~ ~l B=[~ ~l and C = [~ ~J 
in (i) and 

A=[~ ~l B=[~ ~l and C = [~ ~J 
in (ii).) 



APPENDIX B 

Probability 

§O. Introduction 

In this appendix, we summarize the elementary theory of probability necessary 
for a complete understanding of Chapter 5. This summary is intended to be 
rather concise; more detailed discussions of the topics here may be found in 
any elementary probability book. 

§ 1. Random Experiments and the Assignment 
of Probabilities 

Definition 1. An experiment is the process of making an observation. 

EXAMPLE 2. The process of tossing a coin and observing heads or tails is an 
experiment. The process of rolling a die and observing 1,2,3,4,5, or 6 is an 
experiment. 

An experiment can result in one, and only one, outcome of a set of distinctly 
observable outcomes. We are interested here in random experiments, i.e., 
experiments that generate outcomes which vary in a random manner and 
which cannot be predicted with certainty. 

Definition 3. The sample space of an experiment, denoted n, is the set of all 
possible outcomes of the experiment. The individual outcomes, i.e., the 
elements of n, are said to be the sample points of the experiment. 



§l. Random Experiments and the Assignment of Probabilities 245 

EXAMPLE 4. Consider the experiment of tossing a fair coin three times and 
observing the successive results. ("Fair" means that the two outcomes, heads 
and tails, are equally likely to occur.) If H denotes heads and T denotes tails, 
then the sample space of the experiment is 

n = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}. 

There are eight sample points in n. 

Definition 5. Let Q = {Wl' W 2, ... , wn} be the sample space of an experiment. A 
real-valued function P on n is said to be a probability function on n if 
(i) P{wJ ~ 0 for all i and 

(ii) P(w 1 ) + P(w2 ) + ... + P(wn ) = 1. 
The number P{w;} is said to be the probability of Wi. 

The definition above only states the properties that a probability function 
must satisfy; it does not tell us how to assign specific probabilities to sample 
points in sample spaces. Specific assignments of probabilities must be done in a 
manner that is consistent with reality if the probabilistic model is to serve a 
useful purpose. The assignment of probability p to a sample point w is 
interpreted as meaning that, if the experiment is performed repeatedly under 
identical conditions, then the proportion of experiments with outcome w is 
approximately p. For example, if each outcome of a random experiment is 
equally likely to occur (as is the case with a fair coin or an unbiased die), then 
equal probabilities should be assigned to the sample points. 

EXAMPLE 6. Consider the experiment of Example 4. Since there are eight 
sample points in Q and since each outcome is equally likely to occur (the coin is 
fair), the probability of each outcome is 1/8. Check that this assignment of 
probabilities satisfies properties (i) and (ii) of Definition 5. 

EXAMPLE 7. Consider the experiment of Example 4. The assignment of 
probabilities to the sample points in Q given by 

P{HHH) = 1/16 
P(HHT) = 1/8 
P{HTH) = 1/128 
P{THH) = 1/32 
P{TTH) = 1/128 
P{THT) = 1/64 
P(HTT) = 1/2 
P(TTT) = 1/4 

satisfies properties (i) and (ii) of Definition 5 (check this!); hence P is a 
probability function on Q. Unfortunately, since the coin is fair, this assignment 
of probabilities does not accurately model the experiment. 



246 Appendix B. Probability 

§2. Events 

Definition 8. Let n be the sample space of an experiment. An event E is any 
subset of n. 
Definition 9. Let n be the sample space of an experiment, let P be a probability 
function on n, and let E be an event. If E = {Wil , Wi2 ' ... ' WiJ =1= 0, then the 
probability of E, denoted P(E), is 

P(E) = P(WiJ + P(Wi2 ) + ... + P(wJ. 

If E = 0, then P(E) = o. 

EXAMPLE 10. Consider the experiment of Example 4. 
(i) Let E be the event (in words) of tossing exactly two heads. Then 

E = {HHT, HTH, THH} 
and 

P(E) = P(HHT) + P(HTH) + P(THH) = 1/8 + 1/8 + 1/8 = 3/8. 

In other words, the probability of tossing exactly two heads in this experiment 
is 3/8. 
(ii) Let E be the event (in words) of tossing exactly two heads and exactly two 
tails. Since the coin is tossed only three times in this experiment, we have that 

E=0 
and 

P(E) = 0; 
E is an impossible event. 
(iii) Let E be the event (in words) of tossing a head on the first toss or tossing a 
tail on the first toss. Since the first toss of the coin must result in a head or a tail, 
we have that 

and 
P(E) = 1; 

E is a certain event. 

§3. Expected Value 

Definition 11. Let n = {Wl' w 2 , •.• , w n } be the sample space of an experiment 
with WiE R for all i and let P be a probability function on n. The expected value 
of the experiment, denoted e, is 

e = W1P(W 1) + W2P(W 2 ) + ... + wnP(wn). 

The expected value of an experiment is the average value of the experiment 
after many trials of the experiment. 



§3. Expected Value 247 

EXAMPLE 12. Consider the experiment of Example 4 and assume that we are 
interested only in the number of heads that result from the three coin tosses. 
What is the expected value of the number of heads obtained in this 
experiment? 

With the additional assumption above, the sample space for the experiment 
becomes 

n = {O, 1,2, 3}. 

We first assign probabilities to the sample points in n. The event of 0 heads is 
Eo = {TTT} and hence 

P(O heads) = P(Eo) = 1/8. 

Similarly, the event of 1 head is E1 = {TTH, THT, HTT} and hence 

P(l head) = P(E 1) = 3/8; 

the event of 2 heads is E2 = {HHT, HTH, THH} and hence 

P(2 heads) = P(E 2 ) = 3/8; 

the event of 3 heads is E3 = {HHH} and hence 

P(3 heads) = P(E3) = 1/8. 

Then the expected value of the number of heads in this experiment is 

e = OP(Eo) + 1 P(E 1) + 2P(E 2 ) + 3P(E3) = 1.5. 

Note that it is impossible for the experiment to result in 1.5 heads in any single 
trial of the experiment. The expected value measures the average number of 
heads per trial after many trials of the experiment. For example, after 1000 trials 
of the experiment, we would expect that approximately (1.5)(1000) = 1500 
heads had been tossed. 

EXAMPLE 13. On a roulette wheel there are 38 numbers: the integers from 1 to 
36 inclusive, 0, and 00. Half of the numbers from 1 to 36 are red and the other 
half are black. The numbers 0 and 00 are green. What is the expected value of 
roulette to a gambler who bets $1 on black? 

The gambler will either win $1 or lose $1; the sample space for this 
experiment is hence 

n = {l, -t}. 

We now assign probabilities to the sample points in n. The gambler will win $1 
if and only if one of the 18 black numbers comes up; since there are 38 total 
numbers on the wheel, his probability of winning $1 is 18/38. Similarly, the 
gambler will lose $1 if and only if one of20 numbers comes up, one ofthe 18 red 
numbers or one ofthe 2 green numbers. Again, since there are 38 total numbers 
on the wheel, the gambler's probability oflosing $1 is 20/38. Then the expected 



248 Appendix B. Probability 

value of the game to the gambler is 

e = (1)(18/38) + (-1)(20/38) ~ - .0526, 

i.e., the gambler can expect to lose a little over 5¢ per round of the game. For 
example, after 10000 rounds of the game, the gambler can expect to be losing 
approximately ($.0526)(10000) = $526. Not surprisingly, games with negative 
expected values are the secret behind the success of gambling casinos. 



Answers to Selected Exercises 

Chapter 1 

2. a. Maximize f(x, y) = x + y 

subject to x - y ~ 3 

2x + y ~ 12 

x~4 

y~6 

x,y~O 

b. Minimize g(x, y) = x - y 

subject to 2x - y ~ - 1 

-x~ -2 

x,y~O 

c. Maximize f(x, y) = - x - 2y 

subject to - 2x + y ~ 1 

-x+3y~8 

x,y~O 

d. Minimize g(x, y, z) = x - 2y - z 

subject to - lOx - 5y - 2z ~ - 1000 

-2y-4z~ -800 

x,y,z ~ 0 

3. a. Maxf = 20 at (x, y) = (4,0) 
b. Ming= 16 at (x,y) = (0,8) 
c. Maxf = 9 at (x, y) = (3, 6) 
d. Min g = - 3 at (x, y) = (2, 5) 
e. Maxf = 0 at (x, y) = (0,0) 



250 Answers to Selected Exercises 

f. Maxf = 100 at (x, y, z) = (100,0,0) 
g. Min g = - 425 at (x, y, z) = (0,150,125) 
h. Let x and y be the number of units of the Monitor and the number of units of the 

Recorder respectively and let P be the total profits. Then max P = 10000/3 at 
(x, y) = (20/3, 20/3); since fractional magazines are not realistic, the "rounded­
ofT" optimal solution is max P = 3333 at (x, y) = (6.66,6.67). 

1. Let x and y be the number of days for the first operation and the number of days 
for the second operation respectively and let C be the total costs. Then min 
C = 4750 at (x, y) = (10, 5). 

j. Let x, y, and z be the number of units of the first formulation, the number of 
units of the second formulation, and the number of units of the third 
formulation respectively and let R be the total sales revenue. Then max R = 475 
at (x, y, z) = (25,0,150) or at (x, y, z) = (0, 50,125). 

6. Maxf = 2 at (x, y, z) = (1,0,0) 

7. 35 

8. b. (0,0,0, 1/2), (0,0, 1/3,0), (0, 1/4,0,0), (1/5,0,0,0), (0,0,0,0) 
c. Ming = - 2 at (x,y, z, w) = (0,0,0,1/2) 

9. c. (0,0,1,1/2), (0,1,1,0), (3,0,0,1/2), (3,1,0,0), (0,0,0,5/4), (0,0,5/3,0), (0, 5/2, 0, 0), 
(5,0,0,0), (0,0,0,1/2), (0,1,0,0), (0,0,0,0) 

d. The actual extreme points of part care (0,0, 1, 1/2), (0, 1, 1, 0), (3,0,0,1/2), 
(3, 1,0,0), (0,0,5/3,0), and (5,0,0,0); min g = 1 at each of the first four of these 
extreme points. 

11. a. TRUE 
b. FALSE 

Chapter 2 

1. a. Maximize f(x,y)=7x+8y-9 

subject to x + 2y ~ 3 

4x+5y~6 

x,y?; 0 

s y -I 
c. -1/4 3/4 3/2 

1/4 5/4 3/2 

-7/4 -3/4 -3/2 

= -t, 
= -x 

=f 

2. a. Minimize g(x, y) = 3x + 6y - 9 

subject to x + 4y?; 7 

2x+5y?;8 

x,y?; 0 



Answers to Selected Exercises 251 

c. 

5. a. 
b. 
c. 
d. 
e. 
f. 

-1/4 3/4 3/2 

1/4 5/4 3/2 

-1 -7/4 -3/4 -3/2 

=y =~ =g 

Infeasible 
Unbounded 
x = 4/3, y = 0, z = 1, t1 = 0, t2 = 0, ming = - 4/3 
Unbounded 
Infeasible 
Unbounded 

6. a. x = 0, y = 0, t1 = 1, t2 = 0, t3 = 0, maxf = 1 

7. Xl = 2, X 2 = 0, X3 = 2, X 4 = 0, t1 = 2, t2 = 0, t3 = 0, maxf = 2 

8. For definiteness of pivots, the anticyc1ing rules were implemented in both problems 
below. 

a. The final tableau is 

~ x z w -1 

-1 -1 0 0 0 

1 1 1 -1 3 

-2 -1 0 -2 -6 

= -t1 

=-y 

=f 

Now t2 , x, and w must be 0 since the coefficients of these variables in the objec­
tive function are negative, i.e., any positive choice for any of these variables 
decreases f. Note, however, that the coefficient of z in the objective function is 0 
and hence z is notforced to be 0 in order forf to be optimal. To see what possible 
values z;?; 0 can assume, examine the main constraints of the final tableau 
(remembering that t2 = x = w = 0): 

0= -t 1 

z-3= - y. 

The first constraint gives t1 = O. The second equation gives y = 3 - z; since 
y ;?; 0, we have 3 - z ;?; 0, i.e., z ~ 3. Hence, all optimal solutions for this problem 
may be expressed as follows: 

t2 = x = w = 0, t1 = 0, 0 ~ z ~ 3, y = 3 - z, max f = 6. 

b. The final tableau is 
-1 

1/2 1/2 1/2 =-x 
1/2 -1/2 3/2 =-y 

-1 0 -2 =-g 



252 Answers to Selected Exercises 

Now t 1 must be 0 since the coefficient of t 1 in the objective function is negative, 
i.e., any positive choice for t 1 decreases - g. Note, however, that the coefficient of 
tz in the objective function is 0 and hence tz is not forced to be 0 in order for - g 
to be optimal. To see what possible values t z ~ 0 can assume, examine the main 
constraints of the final tableau (remembering that t1 = 0): 

1/2tz -1/2 =-x 

- 1/2tz - 3/2 = - y. 

The first equation gives x = 1/2 - 1/2t z; since x ~ 0, we have 1/2 - 1/2tz ~ o. i.e., 
tz ~ 1. The second equation gives y = 1/2tz + 3/2; since y ~ 0, we have 1/2tz 
+ 3/2 ~ 0, i.e., tz ~ - 3 which we already know. Hence, all optimal solutions for 
this problem may be expressed as follows: 

t1=0, O~tz~l, x=I/2-1/2t2, y=I/2tz +3/2, ming=-2. 

9. a. Let x, y, and z be the number of pounds of the first mixture, the number of 
pounds of the second mixture, and the number of pounds of the third mixture 
respectively and let P be the total profits. Then max P = 900 at (x, y, z) = 
(100,200,400). 

b. Let x, y, z, and w be the number oftowels purchased new, the number of towels 
washed by the one-day service after the first day, the number of towels washed 
by the one-day service after the second day, and the number of towels washed by 
the two-day service after the first day respectively and let C be the total costs. 
Then min C = 570 at (x, y, z, w) = (400,100,200,200). 

[ ~~~ -~~~ -~~~J 
-1/2 1/2 1/2 

11. a. 

b. The given matrix is noninvertible. 

c. r 1/6 
0 -1/2 2/3

J -~/2 
-1/2 1 -~/2 

1 -1/2 

2/3 -1/2 0 1/6 

12. a. b1,bz, ... ,bm~0 
b. No 
c. b1,bz, ... ,bm~0 and C1,C2,···,Cn~0 

13. b. x = 0, y = 5/3, Z= 2/3, t1 =0, tz =0, t3 = 8/3, maxf= 16/3 

Chapter 3 

1. a. t 1 = t 3 = 0, X ~ 3, y = 2 - x, z = 8 - 2x, t 2 = 3 - x, max f = 6 
b. Unbounded 
c. x = 0, y = 6, z = 4, t 1 = 0, min g = 14 
d. Unbounded 
e. t1 = 0, 0 ~ x ~ 1/2, y = 1 - 2x, z = x + 1/2, tz = x, maxf = 3/2 
f. x = 8, y = 2, Z = 0, t 1 = 0, max f = 20 
g. t 1 = 2, t z = 0, x = x, y = x - 3, Z = - 2x, min g = - 3 
h. Infeasible 



Answers to Selected Exercises 

2. a. FALSE 
b. FALSE 

3. t I = 0, ° ~ x ~ 1/2, Y = 2/3 - 4/3x, Z = 1/3x + 1/3, max! = ° 
5. a. The solutions are the same (x = 4, Y = 2, tl = 0, t2 = 0, max! = 6). 

253 

b. The solutions are not the same. Canonical solution: x = 1,y = 0, tl = 0, t2 = 3, 
min 9 = 1. Noncanonical solution: Unbounded. 

c. The solutions are not the same. Canonical solution: Infeasible. Noncanonical 
solution: x = - 3,y = - 4, tl = 0, t2 = 0, max! = - 5. 

d. The solutions are the same (unbounded). 

Chapter 4 

1. a. Minimize g(YI, Y2) = 4YI + 6Y2 

subject to YI + 3Y2 ~ 1 

2YI + Y2 ~ 1 

YI'Y2~0 
c. Max: XI = 8/5, X2 = 6/5, tl = 0, t2 = 0, max! = 14/5 

Min:Yl = 2/5'Y2 = 1/5,sl = 0,S2 = 0, ming = 14/5 
d. Yes 

2 a. Maximize !(X 1,X2) = XI + 2X2 

subject to XI - X2 ~ ° 
-xI+x2~-1 

X I ,X2 ~ ° 
c. Max: Infeasible 

Min: Infeasible 

3. a. Minimize g(YI,Y2'Y3)=YI-Y2-Y3 

subject to y! - Y2 + 2Y3 ~ 1 

YI +Y2-Y3~0 

YI,Y2,Y3 ~ ° 
c. Max: Infeasible 

Min: Unbounded 

5. a. Max:x I = OX2 = 1, tl = 0,t2 = 0, max! = - 2 
Min: S2 =O,O~SI ~ l'YI = 1/2s 1 + 3/2'Y2 = 1/2-1/2sl, ming=-2 

b. Max: Unbounded 
Min: Infeasible 

c. Max: Infeasible 
Min: Infeasible 

d. Max:x I =0,x2 =O,t l =0,t2 = 1,t3 =0, max!=O 
Min:Y2 = O'YI ~ 0,S2 ~ 0'Y3 = 2YI + S2 + 2,sl = 15YI + 3s2 + 3, ming =0 

e. Max: Infeasible 
Min: Unbounded 

f. Max: Unbounded 
Min: Infeasible 



254 Answers to Selected Exercises 

6. b. bl =cz=O,bz >0, and cl;i;O OR bz =cl =O,b l >0, and bz ;i;0. 

7. b. FALSE 

9. b. No 
d. Yes 

10. a. Type (ii) behavior 
b. Type (i) behavior 
c. Type (iv) behavior 
d. Type (iii) behavior 

11. a. Minimize g(Yl'YZ'Y3)=-Yl+YZ+Y3 
subject to Yl - Yz - Y3 = 1 

- Yl - Yz + Y3 ~ 1 

Yl + Yz + Y3 ~ - 1 
Y3 ~O 

b. Max:x l = -1,xz = 0,x3 = O,t l = 0, maxf = -1 
Min: Sl ~ 0, Sz ~ 0, Yl = 1/2sz, Yz = - 1/2s1 - 1, Y3 = 1/2s1 + 1/2s2, 

ming= -1 
c. Yes 
d. No 

12. a. Maximize f(xt. Xz, X3) = Xl + Xz + X3 

subject to Xl + x 3 ;i; 1 

Xl + 2X2 = 2 
Xl +xz + x3 ;i; 3 

Xl,X3~0 

b. Max:x l = O,xz = 1,X3 = 1,tl = O,tz = 1, maxf = 2 
Min: Yl = 1,yz = 1/2'Y3 = O,SI = 1/2,S2 = 0, ming = 2 

c. Yes 
d. Yes 

13. a. Max: Infeasible 
Min: Unbounded 

b. Max: tl = O,xl;i; 2,xz = 1- 1/2xl, maxf = - 2 
Min:s l =O'YI ~ -1,yz = Yl + 1, ming = -2 

c. Max: Infeasible 
Min: Infeasible 

d. Max: Unbounded 
Min: Infeasible 

Chapter 5 

1. a. Value: 14/9 
Optimal strategy for player I: Play first row with probability 8/9 and play third 
row with probability 1/9. 
Optimal strategy for player II: Play second column with probability 4/9 and 
play fourth column with probability 5/9. 



Answers to Selected Exercises 255 

b. Value: 4/9 
Optimal strategy for player I: Play second row with probability 4/9 and play 
fourth row with probability 5/9. 
Optimal strategy for player II: Play first column with probability 8/9 and play 
third column with probability 1/9. 

c. Value: -1 
Optimal strategy for player I: Play third row with probability p and play fifth 
row with probability 1 - p. 
Optimal strategy for player II: Always play second column. 

d. Value: - 1/4 
Optimal strategy for player I: Play first row with probability 1/4 and play third 
row with probability 3/4. 
Optimal strategy for player II: Play first column with probability 3/4 and play 
fourth column with probability 1/4. 

2. a. Value: - 5/22 
Optimal strategy for player I: Play penny with probability 15/22 and play 
nickel with probability 7/22. 
Optimal strategy for player II: Play penny with probability 15/22 and play 
nickel with probability 7/22. 

b. Value: - 5/16 
Optimal strategy for player I: Play 2. with probability 13/16 and play 3. with 
probability 3/16. 
Optimal strategy for player II: Play 3. with probability 9/16 and play 4. with 
probability 7/16. 

c. Value: 0 
Optimal strategy for guesser: Guess 'even' with probability 1/2 and guess 'odd' 
with probability 1/2. 
Optimal strategy for holder: Hold 'even' with probability 1/2 and hold 'odd' 
with probability 1/2. 

3. a. Player I 
b. Value: 1 

Optimal strategy for player I: Hold 0 pennies in left hand with probability 1/2 
and hold 2 pennies in left hand with probability 1/2. 
Optimal strategy for player II: Hold 0 pennies in left hand with probability q, 
hold 1 penny in left hand with probability 1 - 2q, and hold 2 pennies in left hand 
with probability q. 

c. 10000 
d. a. Player I 

b. Value: 1/2 
Optimal strategy for player I: Hold 0 pennies in left hand with probability 
1/2 and hold 2 pennies in left hand with probability 1/2. 
Optimal strategy for player II: Hold 1 penny in left hand with probability 1/2 
and hold 2 pennies in left hand with probability 1/2. 

c. 20000 
e. 0 

4. - 5/3 



256 Answers to Selected Exercises 

5. Probability of b b = probability of r r = 25/102 
Probability of b r = probability of r b = 26/102 

7. a. Value: 0 
Optimal strategy for player I: Always bid with a head and always pass with a 
tail. 
Optimal strategy for player II: Always see with a head and always fold with a 
tail. 

b. Value: - 1/6 
Optimal strategy for player I: Always bet with ajack or a queen and always pass 
with a king. 
Optimal strategy for player II: Always see with a jack and always pass with a 
queen or a king. 

c. Value: 23/120 
Optimal strategy for player I: Always bet and see subsequently with a black 
card, pass with a red card with probability 4/5, bet with a red card and fold 
subsequently with probability 1/6, and bet with a red card and see subsequently 
with probability 1/30. 
Optimal strategy for player II: Always raise with a black card, fold with a red 
card with probability 2/5, see with a red card with probability 13/30, and raise 
with a red card with probability 1/6. 

9. a. xy ~O 
b. Value: 0 

11. a. Value: 1/(4x + 4) 
Optimal strategy for player I: Play first row with probability (2x + 1)/(4x + 4) 
and play second row with probability (2x + 3)/(4x + 4). 
Optimal strategy for player II: Play first column with probability (2x + 1)/ 
(4x + 4) and play second column with probability (2x + 3)/(4x + 4). 

b. - 3/2 ~ x ~ - 1/2 

Chapter 6 

1. a. Min C = 360 
b. MinC=92 
c. MinC= 305 
d. MinC=678 
e. MinC= 329 
f. MinC= 107 
g. MinC=77 
h. MinC=69 
i. MinC=826 

2. MinC=185 

3. a. Parts a, b, c, d, f, and i. 



Answers to Selected Exercises 

4. 

6. a. Minimum-entry method: Cost = 370 
Northwest-corner method: Cost = 370 

b. Minimum-entry method: Cost = 104 
Northwest-corner method: Cost = 94 

7. b. Yes 

257 

[Note: Most cycles visualized as involving diagonal movement in transpor­
tation problems will result in new basic feasible solutions for the problems 
provided that the diagonal movement is "reasonable." Since there may be 
visualizations involving diagonal movement that do not result in basic feasible 
solutions, we suggest never using such visualizations.] 

9. a. MinC=7 

10. a. MinC = 76 
b. MinC= 14 
c. MinC = 37 
d. MinC= 16 

II. XII = X 22 = X33 = X 44 = X55 = I, all other Xii's 0; 

XII = X 24 = X33 = X 42 = X55 = 1, all other Xii's 0; 

X13 = X 22 = X 31 = X 44 = X55 = I, all other Xii's 0; 

X13 = X 24 = X 31 = X 42 = X55 = I, all other Xii's O. 

12. MinC=5 

13. a. Min C = 25 
b. MinC=28 

14. Maximum rating = 45 

15. The first man should live with the fourth woman, the second man should live with 
the second woman, the third man should live with the first woman, the fourth man 
should live with the fifth woman, and the fifth man should live with the third 
woman. 

16. FALSE 



258 Answers to Selected Exercises 

Chapter 7 

1. a. tp(vd = 1, tp(v2 ) = - 2, tp(V3) = - 1, tp(v4 ) = 0, tp(v s) = 1, tp(v6 ) = 0, and 
tp(v7 ) = 1. 

b. V2 and V3 are sources, V1, Vs, and V7 are sinks, and V4 and V6 are intermediate 
vertices. 

3. a. Maxf=6 
b. Maxf= 18 
c. Maxf= 35 
d. Maxf= 17 

4. a. One such succession is 

V,~Vl ~V2~Vd 

V,~V3~V4~Vd 

V,~Vl ~V4 ~Vd 

vs~V3 ~V2 ~Vd' 

b. No 

5. a. 2; for example, Vs ~ v 1 ~ Vd and v, ~ V2 ~ Vd. 

b. 2000; for example, 

9. a. Mind=4 
b. Mind=3 
c. Mind=8 
d. Mind= 1 
e. Mind= 10 

12. a. 00 

13. a. FALSE 
b. FALSE 

14. a. F = 8; Min C = 37 
F = 10; Min C = 50 

b. F = 8; Min C = 39 
F = 10; Min C = 57 

c. F = 8; Min C = 38 
F = 10; Infeasible 

16. MinC=93 

17. a. MinC = 16 

V,~Vl ~V2~Vd 

V,~V2 ~Vl ~Vd 

V,~Vl ~V2~Vd 

V,~V2~Vl ~Vd 

etc. 



Bibliography 

[AIJ A.V. Aho, lE. Hopcroft, & J.D. Ullman, "The Design and Analysis of 
Computer Algorithms," Addison-Wesley, Reading, Massachusetts, 1976. 

[BIJ M.L. Balinski & A.W. Tucker, Duality Theory of Linear Programs: A 
Constructive Approach with Applications, SIAM Review 11 (1969), 347-377. 

[B2J E.M.L. Beale, Cycling in the Dual Simplex Algorithm, Naval Research 
Logistics Quarterly 2 (1955), 269-275. 

[B3J R.G. Bland, New Finite Pivoting Rules for the Simplex Method, Mathematics 
of Operations Research 2 (1977), 103-107. 

[B4J R.G. Busacker & T.L. Saaty, "Finite Graphs and Networks: An Introduction 
with Applications," McGraw-Hill, New York, 1965. 

[DIJ G.B. Dantzig, "Linear Programming and Extensions," Princeton University 
Press, Princeton, New Jersey, 1963. 

[D2J E.W. Dijkstra, A Note on Two Problems in Connexion with Graphs, 
Numerische Mathematik 1 (1959), 269-271. 

[FIJ L.R. Ford Jr. & D.R. Fulkerson, "Flows in Networks," Princeton University 
Press, Princeton, New Jersey, 1962. 

[GIJ S.1. Gass, "Linear Programming, Methods and Applications," Fifth Edition, 
McGraw-Hill, New York, 1985. 

[G2J D.P. Gaver & G.L. Thompson, "Programming and Probability Models in 
Operations Research," Brooks/Cole, Monterey, California, 1973. 

[HIJ G. Hadley, "Linear Programming," Addison-Wesley, Reading, Massachusetts, 
1962. 

[K 1 J T.C.T. Kotiah & D.I. Steinberg, Occurrences of Cycling and Other Phenomena 
Arising in a Class of Linear Programming Models, Communications of the 
ACM 20 (1977), 107-112. 

[K2J H.W. Kuhn, The Hungarian Method for the Assignment Problem, Naval 
Research Logistics Quarterly 2 (1955), 83-97. 

[LlJ E.L. Lawler, "Combinatorial Optimization: Networks and Matroids," Holt, 
Rinehart, and Winston, New York, 1976. 

[L2J D.G. Luenberger, "Linear and Nonlinear Programming," Second Edition, 
Addison -Wesley, Reading, Massachusetts, 1984. 

[OIJ G. Owen, "Game Theory," Second Edition, Academic Press, Orlando, 1982. 



260 Bibliography 

[Rl] N.V. Reinfeld & W.R. Vogel, "Mathematical Programming," Prentice-Hall, 
Englewood Cliffs, New Jersey, 1958. 

[R2] R.I. Rothenberg, "Linear Programming," North-Holland, New York, 1979. 
[WI] N.A. Weiss & M.L. Yoseloff, "Finite Mathematics," Worth Publishers, New 

York, 1975. 



Index 

A 
a-path, 195 

backward edge of, 195 
forward edge of, 195 
in relation to path, 205 

Anticycling rules 
for simplex algorithm, 60-61 
for transportation· algorithm, 181 

Assignment problems, 164-178 
balanced, 165 
unbalanced, 164-165 

B 
Backward edge, 195 
Balanced 

assignment problem, 165 
transportation problem, 142-143 
transportation tableau, 143 

Basic feasible solutions, 41, 89, 
150 

and YAM, 150-151 
Basic solution, 38 

optimal, 43, 91-92 
Basic variables, see Dependent 

variables 
Basis, 151 
Beale, E.M.L., 58 
Bland, R.G., 60 
Bounded above, 16 
Bounded below, 16 
Bounded subset of Rn, 15 

C 
Canonical linear programming problems, 

9, 70 
Canonical slack linear programming prob­

lems,28-29 
Capacitated, 185 
Capacity 

of a cut, 192 
of edge in directed network, 185 

Cells, 143 
getter, 153 
giver, 153 

Closed ball of radius r centered at origin, 
14-15 

Closed half-space, 12-13 
importance of, for linear programming, 

13 
Column player, 119 
Complementary slackness, 99 

and optimal solutions, 100 
Conservation of flow, 188 
Constraints 

main, 9 
nonnegativity, 9 

Constraint set, 10 
Convex, 11 
CPM (critical-path method), 231 
Critical-path method, see CPM 
Cut, 191-192 

capacity, 192 
relationship to dual problem of maximal­

flow problem, 191, 193 



262 

Cut-set, 192 
Cycles 

in directed networks, 205 
in transportation tableaus, 151 

Cycling, 47, 58-63, 169 

D 
Dantzig, George B., 27 
Dantzig tableau, 27 
Degeneracy, 169 
Dependent variables (basic variables), 29 
Derivation, 206 
Destination, 206 
Dijkstra, E.W., 207 
Directed graph, see Directed network 
Directed network, 185 

capacitated, 185 
weighted, 205 

Domination, 119 
Dual 

canonical tableau, 88 
noncanonical tableau, 105 
simplex algorithm for maximum tab­

leaus, 91 
simplex algorithm for minimum tab­

leaus, 90 
Duality, 87-114 

in canonical linear programming prob-
lems, 38, 88 

equation, 96 
and negative transposition, 92, 103 
in noncanonical linear programming 

problems, 105 
theorem, 102 

Dual linear programming problems, 38, 88 
feasible solutions of, 98, 99 
infeasibility in, 98 

E 

optimal solutions of, 92, 99 
unboundedness in, 98 

Edges, 185 
Egervary, 170 
Equations of constraint, 77, 83 

alternate method for dealing with, 85-
86 

Events, 246 
Expected value, 246 
Experiment, 244 
Extreme points, 15 

in polyhedral convex sets, 15 
upper bound for number of, 20-21, 22, 

23 

Index 

F 
Feasible points, see Feasible solutions 
Feasible solutions (feasible points), 10 

of dual linear programming problems, 
98,99 

of transportation problems, 150 
Flow, 185 

conservation of, 188 
net input, 187 

Ford, L.R. Jf., 198 
Forward edge, 195 
Fulkerson, D.R., 198 

G 
Game tableau, 123 
Game theory, 117, 135 
Geometric method for linear programming, 

16,22 
disadvantages of, 18-19,21,22-23 

Graph theory, 185, 230-231 

H 
Hungarian algorithm, 170 

applied to transportation problems, 178 
Hyperplane, 12 

I 
Independent variables (nonbasic vari­

ables), 29 
Infeasible linear programming problem, 

21,50 
Intermediate vertex, 187 

K 
Konig, 169 
Kotiah, T.C.T., 60 
Kuhn, H.W., 66, 170 

L 
Linear algebra, 36, 67 
Linear programming, 1, 5 

geometric method for, 22 
inadequacy of calculus in, 

Line segment, 10 
Longest-path network problem, 231 

M 
Main constraints, 9 
Management science, 



Index 

Matrices 
equal,238 
product of, 239 
sum of, 239 

Matrix, 238 
diagonal, 241 
diagonal of, 241 
formulation of maximization linear pro­

gramming problem, 94-95 
formulation of minimization linear pro-

gramming problem, 94-95 
identity, 241 
inverse, 242 
invertible, 242 
noninvertible, 242 
payoff, 119 
product of real number and, 239 
square, 241 
transpose of, 241 
zero, 239 

Matrix games, 117-139 
domination in, 119 
dual noncanonical linear programming 

problems and, 122-124 
fair, 125 
infeasibility and unboundedness in, 

123-124,124-125 
multiphase, 127 
two-person zero-sum, 119 
von Neumann value in, 125 

Max-flow min-cut theorem, 194-195 
duality in, 195 

Maximal-flow algorithm, 198-199 
construction of corresponding minimal 

cut of, 199 
Maximal-flow network problem, 189-190 

disadvantages of Tucker tableau solution 
procedure, 190-191 

dual problem of, 191 
infeasibility and unboundedness in, 190 

Maximization 
canonical, linear programming problem, 

9 
canonical slack, linear programming 

problem, 28-29 
Maximum basic feasible tableau, 41 
Maximum tableau, canonical, 29, 30 
Minimal-cost-flow algorithm, 217-218 

applied to transportation and assignment 
problems, 230 

Minimal-cost-flow network problem, 216 
infeasibility and unboundedness in, 217 

Minimization 
canonical, linear programming problem, 

9 

263 

canonical slack, linear programming 
problem, 28-29 

Minimum basic feasible tableau, 89 
Minimum-entry method, 143, 180 
Minimum tableau, canonical, 29, 30 
Mixed strategy (probabilistic strategy) 

for column player, 120 
for row player, 120 

Multiphase matrix games, 127 

N 
Negative transpose, 54 
Negative transposition, 54-55 

consequences of duality on, 92, 103 
Net input flow, 187 
Network problem 

maximal flow, 189-190 
minimal-cost-flow, 216 
shortest-path, 206 

Nonbasic variables, see Independent 
variables 

Noncanonical linear programming prob-
lems, 70-86 

equations of constraint in, 77 
matrix games and, 122-124 
unconstrained variables in, 70 

Nonnegativity constraints, 9 
Norm, 14 
Northwest-corner method, 143, 180 

o 
Objective function, 9 
Open ball of radius r centered at origin, 15 
Open half-space, 13 
Operations research, 1 
Optimal solutions, 10 

basic, 43 
and complementary slackness, 100 
in dual linear programming problems, 

92,99 
Optimal strategy, 119 

for column player, 122 
determination of, by dual noncanonical 

linear programming problems, 
122-124 

for row player, 121 

p 
Path,205 

in relation to a-path, 205 
Payoff matrix, 119 
Permutation set of zeros, 169 



264 

PERT (program evaluation and review 
technique), 231 

Pivot transformation, 34 
application of, to linear algebra, 36, 

67-68 
Poe, Edgar Allan, 136 
Polyhedral convex sets, 13 

and extreme points, 15 
Probabilistic strategy, see Mixed strategy 
Probability 

assignment of, 245 
of event, 246 
function on sample space, 245 
of sample point, 245 

Program evaluation and review technique, 
see PERT 

Pure strategy, 120 
The Purloined Letter, 136 

R 
Reduced tableau, 170 
Row player, 119 

S 
Sample points, 244 
Sample space, 244 
Sensitivity analysis, 99 
Shortest-path algorithm I (Dijkstra), 207 

advantages of, 207-208 
disadvantages of, 207-208, 212 

Shortest-path algorithm II, 213 
Shortest-path network problem, 206 

infeasibility and unboundedness in, 
206 

as special case of minimal-cost-flow net­
work problem, 217 

Simplex algorithm, 23, 27-69 
advantages of, over geometric method, 

63-64 
anti cycling rules for, 60-61 
geometric interpretation of, 46-47 
for maximum basic feasible tableaus, 

42 
further restrictions on, 69 

for maximum tableaus, 49-50 
for minimum tableaus, 55 

Sink, 187 
uniqueness of, by augmentation, 

188-189 
Slack variables, 29 
"Solve and replace every occurrence of", 

34,35 

Source, 187 
uniqueness of, by augmentation, 

188-189 
Steinberg, D.I., 60 

T 
Tableau, see Tucker tableau 
Transportation algorithm, 153 

Index 

applied to assignment problems, 165, 
168-169 

applied to noncanonical linear program­
ming problems, 178 

relationship with dual simplex algo­
rithm, 143, 153-154 

Transportation problems, 140-164, 
177-178 

balanced, 142-143 
formulated as minimal-cost-flow net­

work problems, 228 
infeasibility and unboundedness in, 

153 
unbalanced, 161 
uniqueness of optimal solutions in, 

179 
Transportation tableau 

balanced, 143 
unbalanced, 161 

Transpose, 241 
Tucker, A.W., 27, 87, 96 
Tucker tableau, 27, 29 

maximum, 29, 30 
maximum basic feasible, 41 
minimum, 29, 30 
minimum basic feasible, 89 

Two-person zero-sum matrix game, 119 

U 
Unbalanced 

transportation problem, 161 
transportation tableau, 161 

Unbounded 
linear programming problem, 16,43-

44 
subset of Rn , 15 

Unconstrained variables, 70, 83 
alternate method for dealing with, 85 

V 
VAM (Vogel Advanced-Start Method), 

144 
advantages of, 143 



Index 

and basic feasible solutions, 150-151 
disadvantages of, 143 

Vertices, 185 
Vogel Advanced-Start Method, see 

VAM 
Vogel, W.R., 143 
Von Neumann, John, 125 

Von Neumann minimax theorem, 125 
Von Neumann value, 125 

W 
Weight, 205 
Weighted,205 

265 



Undergraduate Texts in Mathematics 

(continued) 

Ross: Elementary Analysis: The Theory of Calculus. 
Scharlau/Opolka: From Fermat to Minkowski. 
Sigler: Algebra. 
Simmonds: A Brief on Tensor Analysis. 
Singer(fhorpe: Lecture Notes on Elementary Topology and Geometry. 
Smith: Linear Algebra. Second edition. 
Smith: Primer of Modem Analysis. 
StantonfWhite: Constructive Combinatorics. 
Stillwelh Mathematics and Its History. 
Strayer: Linear Programming and Its Applications. 
Thorpe: Elementary Topics in Differential Geometry. 
Troutman: Variational Calculus with Elementary Convexity. 
Wilson: Much Ado About Calculus. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




