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Preface

Scope and Level

The principal objectives of this book are to define linear programming and
its usefulness, to explain the operation and elementary theory of the simplex
algorithm, to present duality theory in a simple fashion, and to give a well-
motivated account of matrix games. The required mathematical tools, beyond
arithmetic and high school algebra, are essentially limited to summation
notation, basic language of sets and functions, and elementary notions of
probability. Despite this technical simplicity, our subject has depth and sub-
tlety. The author believes that a mathematically rigorous exposition is neces-
sary to convey the underlying theory and, conversely, that learning the subject
in this way will improve the student’s understanding of mathematical reason-
ing. The exposition consists of definitions, theorems, proofs, discussions, and
examples, interwoven in mature mathematical style. Such a treatment requires
of the reader the sophistication to handle some abstraction, apply definitions
literally, follow certain logical arguments, and profit from various remarks
and examples. These abilities, as well as the more concrete tools listed above,
could be acquired from prior courses in linear algebra, calculus, or probability
theory. A few concepts from these subjects (transpose matrix, bounded func-
tion, expected value) are explained in this book when needed. The author has
used preliminary versions of the book in his undergraduate classes. Almost
all of the material can be covered in one semester.

Chapter Notes and Summaries

Certain concepts concerning simultaneous linear equations (pivoting, equiva-
lent systems, basic solution) are essential to the simplex algorithm. The exposi-
tion flows best if these concepts and a few theorems about them are made
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explicit in advance. Chapter 1 serves this function. In Chapter 2, linear
programming (LP) is introduced, with the classical production problem and
diet problem as motivating examples. Definitions are given for “LP problem,”
“primal form,” “solving an LP problem,” “objective function,” “linear con-
straints,” and other fundamental notions of LP. Then it is shown, in a precisely
specified sense, that inequality constraints can be replaced by equations. This
paves the way for applying the material of Chapter 1 and for introducing the
simplex algorithm, denoted SIMPLEX.

The algorithm SIMPLEX is the subject of Chapter 3, which is the core of
the book. The elegant condensed tableau is employed in this chapter and
throughout the book. This tableau is easiest to pivot (after a little experience),
requires the least amount of space and notational cluttering, and conveys all
the essential information clearly. Many proofs are given in a condensed
tableau format, in which they are readily grasped. Most important, condensed
tableaux make duality theory almost transparent later in Chapter 5. In a
certain specific sense, every LP problem is representable by a condensed
tableau. If, in addition, all the right-hand constants are nonnegative, the
tableau is called a simplex tableau. Problems representable by simplex tab-
leaux are the ones to which SIMPLEX is directly applicable, and the ones
studied in Chapter 3. The steps of SIMPLEX are motivated and justified,
the stopping criteria (optimality and unboundedness patterns) are estab-
lished, and the SIMPLEX flowchart is given. Finally, termination theorems
and cycling are discussed. Bland’s theorem is proved with a minimum of
computation.

Chapter 4 begins with the observation that whenever a condensed tableau
is pivoted, a closely related tableau, called the dual tableau, is automatically
pivoted also. This fact is then used to prove that a simple-to-define pivoting
algorithm will transform any condensed tableau with one or more negative
right-hand constants into either a simplex tableau or a tableau showing that
the underlying LP problem is infeasible. In the first case the solution can be
completed by SIMPLEX. It then follows that every LP problem can be solved
in one or two “phases” by pivoting. The chapter concludes with a couple of
refinements of the indicated phase I algorithm. One of these refinements is the
dual simplex algorithm.

In Chapter 5 the production problem and a closely related “entrepreneur’s
problem” are used to introduce dual LP problems. It follows easily from the
definition given that dual LP problems are representable by dual tableaux.
The results of Chapter 4 and, therefore, a simple “geometric” proof of the
important duality theorem are then available. The theorem asserts, roughly
put, that solving any LP problem automatically solves the problem
with which it is paired. Chapter 5 applications of the duality theorem in-
clude a joint-outcomes chart for dual LP problems, a proof of the com-
plementary slackness theorem, and a discussion of marginal values (shadow
prices).

Chapter 6, the final chapter, treats matrix games. The following questions

<
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are the subject of considerable informal discussion: What are the goals of the
two players? Why should they make their choices randomly? What is con-
servative play and what is the alternative? Such discussion motivates the
introduction of “mixed strategies” and helps to illuminate the fundamental
theorem of matrix games. The theorem is illustrated by several examples and
by “saddle entries,” and finally proved by duality theory. The exact role of the
LP problem used to analyze a matrix game is determined.

There are problems to be worked at the end of each chapter. Doing so will
enhance the student’s understanding of the theory, develop the necessary
computational skills, and sharpen mathematical reasoning. Also, some of the
problems significantly extend the treatment in the text.
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CHAPTER 1

Simultaneous Linear
Equations

In order to establish notation, we begin by describing the most general system
of simultaneous linear equations. Explanations and many examples come
immediately afterward. Let m and n be positive integers, and let us consider
the following system of m equations in n variables x, x5, ..., X,:

Ay Xy + A%, + 00+ a3,x, = by,

A1 Xy + azy%; + 0+ a3,X, = by,

(1)

A1 Xy + ApaXy + ° + AppX, = by,

The coefficients a,,, a, ,, and so on, are distinguished by double subscripts, the
first giving the equation number, and the second indicating the variable being
multiplied. We shall refer to b,, ..., b, as the constants of system (1). All
coefficients and constants are assumed to be real numbers, as are the values
sought for the variables x,, ..., x,.

We shall almost always have 2 < m < n, so that the smallest system likely
to be considered would have the form

{a“xl + ay3X; + ay3X3 = by,
azlxl + a22x2 + az3x3 = b2.

Specializing further, we consider the system

2x; — 3x, +4x, =0,
{ 1 2 3 (2)

x1+ Xs =7.

Here a;y = 2, ayj, = —3, ay3 = 4, ayy = l, Ayy = l, az3 = 0, bl = O, and b2 =
7. The ordered triple (1, 6, 4) is called a solution of system (2) because if 1, 6,
and 4 are substituted for x, x,, and x, respectively, then both (all) equations
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of the system are satisfied. Indeed,

2(1) — 3(6) + 4(4) = 0,
1+6 =17

The word “equation” is used both for variable expressions such as 2x, —
3x, + 4x; = 0, and also for numerical expressions, for instance, 2(1) — 3(6) +
4(4) = 0. There is, however, a fundamental difference: The latter happens to
be true, whereas the former is neither true nor false; the expression 2x; —
3x, + 4x; = 0 becomes capable of truth or falsity only after the variables x;,
X,, and x5 are replaced by numbers.

We remark without proof that a system of simultaneous linear equations
with fewer equations than variables (m < n) never has a unique solution.
For instance, besides (1, 6, 4), the reader can easily check that (0, 7, 4') and
(7,0, —%) are solutions of (2). The reader should therefore learn to say “a
solution,” not “the solution.” It can be shown that linear systems withm < n
either have no solution or infinitely many solutions. Later in the chapter we
shall determine all the infinitely many solutions of (2). An example of a system
with no solution is

{x1+ X, + x3=11,
2xy + 2x5 + 2x3 = 23.

This assertion can easily be proved by assuming the existence of a solution
(51, S2, s3) and then using simple algebra to reach a contradiction. Such a
system is called inconsistent.

Let us now define solution formally.

Definition 1. An n-tuple of real numbers (sy, ..., s,) is a solution of system (1) if
it satisfies all the equations of (1), that is, if

ayysy + ay35; + 0+ ays, = by,

ay151 + a3, + + ay,5, = by,

A1 Sy + Sy + 200+ S, = by

The set of all such n-tuples is called the solution set of (1).

It is important to realize that s,, ..., s, are numbers and that the m equations
just written are true statements. On the other hand, x,, ..., x, are variables,
and the equations in (1) are neither true nor false.

The next important definition is that of equivalence of two systems.

Definition 2. Two systems of equations with the same variables are equivalent
if every solution of either system is also a solution of the other system. In other
words, both systems have the same solution set.

An example of two equivalent systems is (2) and the following system,
denoted (2).
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2x1 - 3x2 + 4X3 = 0,
xl + XZ = 7, (2’)
3X1 - 2x2 + 4X3 = 7

The first two equations of (2') are the same as those of (2), and the third
equation is the sum of the first two equations. To prove equivalence, let
(s1, S2, 53) be an arbitrary solution of (2). Then we have the (true) equations

25y — 35, + 453 =0,
5.+ s, =17

Adding these equations, we obtain
381 - 252 + 4S3 = 7

Thus, all the equations of (2') become true when s,, s,, 55 are substituted for
X1, X, X3, respectively. This means, by definition, that (s, s,, 53) is a solution
of (2'). Conversely, let (t,, t,, t3) be an arbitrary solution of (2). Then all three
equations of (2') are true when x, = t,, x, = t,, x5 = t3. In particular, the first
two equations become true. Thus, (¢4, t,, t3) is a solution of (2), and the
equivalence of (2) and (2’) has been established.

Another system equivalent to (2) is
Xy — 3%, +2x3=0,
Xy + X, =17

2"

Here the first equation is obtained by multiplying the first equation of (2) by
1, and the second equation is identical to that of (2). If (¢, t,, t3) is an arbitrary
solution of (2”), we have the equations

ty — 31, + 2t3 =0,
tl + t2 = 7
Multiplying the first of these by 2, the reciprocal of 1, we obtain
2[1 - 3t2 + 4t3 = 0,
tl + t2 = 7
Thus (¢4, t,, t3) is a solution of (2). Similarly, it is easy to see that any solution
of (2) must also be a solution of (2”). Hence (2) and (2”) are equivalent, as
asserted. Instead of multiplying by 3 to get system (2”) from (2), we could have

used any multiplier except 0, and an equivalent system would have resulted.
If 0 had been used, the new system would have been

0Ox; + Ox, + 0x;3 =0,

Xl + x2 = 7
This system is not equivalent to (2) because (1, 6, 0), for example, is a solution
here, but not of (2). Incidentally, since (2) is equivalent to both (2') and (2"), it
follows that (2') and (2"”) are equivalent. This is a special case of the following

simple theorem, which we record for repeated future use. We omit the easy
proof. (Equivalent systems have equal solution sets.)
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Theorem 1. Let S,, S,, ..., S,, (m = 3) be systems of simultaneous linear
equations, and let S, be equivalent to S,., forr=1,...,m— 1. Then S, is
equivalent to S,,.

Next we state a very useful theorem that describes two equivalence-
preserving operations for linear systems of equations. (Manipulating equa-
tions that are neither true nor false, maintaining equivalence all the while, is
an undertaking that is best guided by a theorem.) The notation in the theorem
saves much writing. Also, it shows that the theorem is valid even for systems
of “nonlinear” equations, that is, systems not of form (1).

Theorem 2. Each of the following operations on a system of simultaneous linear

equations produces an equivalent system:

(i) Replace any equation of the system by any nonzero constant multiple of
itself, and keep the other equations intact.

(ii) Denoting the equations by
fl(xl"“’xn) = bl""’fm(xl,'-', xn)= bm,

or more briefly f| = by, ..., f,, = b, choose any two equations, f, = b, and
f; = b, and any number c. Replace f; = b, by

fi+cf,=b,+ cbh,

(add c times the rth equation to the ith equation). All other equations,
including f, = b,, remain unchanged.

Proof. The idea of the proof for (i) occurred in our discussion of the equivalence
of (2) and (2”); the key is that any nonzero number has a reciprocal. Let us
therefore turn to operation (ii). We denote the original system f; = b,, ...,
Jm = b, by (1) and the modified system by (1'). Suppose (s;,...,s,) is a
solution of (1). Then fi(s;, ..., Ss) = byy -5 fru(S15 .-+ S,) = b, In particular,
f(sys...,8,) = b, and fi(sy, ..., s,) = b;. Therefore ¢f,(s,, ..., s,) = cb,, and by
addition we obtain

fi(S1s ooy Sp) + fi(Sy5 -5 Sy) = by + ¢cb,.
In other words, the equation
Si(x1s oo X)) + cfi(Xy, ..., X,) = b; + cb,

of (1') becomes correct for x, = s,,..., x, = s,. All other equations of (1) also
occur in (1). These, therefore, are also satisfied for x, = s,, ..., x, = s,. Thus,
any solution (s,, ..., s,) of (1) is also a solution of (1').

Conversely, let (tq, ..., t,) be an arbitrary solution of (1’). In particular,
filty, ..., t,) =b,and fi(ty,..., t,) + cf,(ty, ..., t,) = b; + cb,. Multiplying the
first of these equations by ¢ and subtracting from the other, we obtain
fi(ty, ..., t,) = b,. In other words, the equation fi(x,, ..., x,) = b; of (1) be-
comes true for x, =t,, ..., x, = t,. All other equations in (1) are also in (1)
and hence are correct for x; =t,, ..., x, = t,. Therefore, (t,,...,¢,) is a
solution of (1), and we conclude that (1) and (1’) are equivalent. []
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We make repeated use of Theorems 1 and 2 in the remainder of this chapter
and later mainly in the simplex algorithm. Let us illustrate the use of (i) and
(i) in producing equivalent systems beginning with

{@ 3x, + 4x3 = 0 @

X+ X,

At the same time we circle the term 2x, and introduce the notion of pivoting.
We first use (i) to multiply the first equation of system (2) by 4. This produces
coefficient 1 in the pivot term and leads to the system

xl——x2+ZX3—0
X, + X, ="

(2")

We now wish to eliminate x, from every equation (just one equation this time)
except the pivot equation. Using (ii), we multiply the first equation by (—1)
and add the resulting equation to the second. This eliminates x, in the second
equation and produces the equivalent system

X, —3x, +2x3 =0,
@_ ZX3 = 7.

Finally, we choose $x, as the pivot term, multiply the second equation by %
(vielding x, — % x; = &), multiply this new equation (mentally) by 3, and add
the result (physically) to the previous top equation. All this leads to the system
X1 + gx3 = ZTI "
R

—$xy =4
We have now reached a system having a special form, which we shall define
and exploit shortly. First we define “pivoting” formally and state its basic
properties as Theorem 3.

Definition 3. In a linear system of simultaneous equations, f; = b,, ..., f,, =
b,., let a,, be the coefficient of x, in the equation f, = b,, and let a,; # 0. Then
pivoting at a, consists of the following sequence of operations:

(i) Replace the equation f, = b, by a;; f, = a;!h,.
(i) For every i # r, replace the ith equation, fi = b;, by

fi——f,=b ——b,.
rs rs
(Here a;, is the coefficient of x, in the ith equation.) For this sequence of
operations the coefficient a,, is called the pivot or the pivot coefficient.

Theorem 3. The system obtained by pivoting at a,, as described is equivalent to
the original system. Moreover, in the new system the coefficient of xis 1 in the
equation replacing f, = b,, and 0 in every other equation.

Proof. By Theorem 2 each operation involved in pivoting preserves equi-
valence. Thus the equivalence assertion above follows from Theorem 1. It is
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clear from (i) of Definition 3 that the coefficient of x; in the rth equation of
the new system is 1. The rest follows from a study of (ii). We leave this to the
reader and consider the proof complete. []

Let us now return to system (2”). The equations of (2”) are all but solved
for x, and x, in terms of x3, and the system is said to be in {x,, x, }-basic
Sform. We also say that x,; and x, are the basic variables, whereas x; is called
nonbasic. In larger systems there can, of course, be several nonbasic variables.
Suppose now that (s,, s,, s3) is an arbitrary solution of (2”). Then

— 21 4 — 14 4
5y =% — 3953, 53 =5 + 353,
or equivalently,
— (21 4 14 4
(51582, 83) = (%5 — 553,°5 + 553, 53)-

Conversely, if s5 is an arbitrary real number, direct substitution shows that
such an ordered triple is a solution of (2”). Thus, the infinity of such ordered
triples is the complete solution set of (2”). (Similarly, it will be clear that one
can immediately write down all the solutions of any system in basic form. See
Problem 2 at the end of the chapter.) Furthermore, since (2) and (2”) are
equivalent, we have also found all the solutions of (2). The special solution
obtained by letting the nonbasic variable x; have the value Qs (&, &, 0). This
solution is called the basic solution or, if greater clarity is needed, the {x, x, }-
basic solution. In a basic solution every nonbasic variable is given the value
0; this forces the value of each basic variable to be the constant on the
right-hand side of the appropriate equation. We shall find that basic solutions
play a crucial role in linear programming,.

Let us now make formal definitions concerning basic form. For this it will
be convenient to denote the number of equations by m and the number of
variables by m + p. The notation following is somewhat heavy, but subsequent
examples will promote understanding.

Definition 4. We suppose that m > 2 and p > 1. Let S be a system of m linear
equations in m + p variables x,, ..., x,,4,. Let ji, ..., j, be distinct numbers
from the set of subscripts {1, 2,..., m + p}, and letk,, ..., k, be the remaining
elements. Then S is in {x; , ..., x;_}-basic form if the equations of S can be
written in the following form (where, for the first time, the order of terms is
not dictated by the natural ordering of the subscripts of the variables):

P
x;, + Zx Oy g Xk, = By,
=
: ©)]
x; + f‘l Umg X, = Pon-
=

[The equations m + p = n and a;, = Ay, reconcile some of the notation of (1)
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and (3).] We also say that x; , ..., x; are basic variables or that {x; , ..., x; }
is a basis for S. The variables x,, ..., x, not in the basis are then called
nonbasic variables. We shall say simply that S is in basic form if S has some
unspecified basis.

For a second example of basic form, we consider the system

3y + x5, — x5 =2,
2x, + 3x, +x5=0,
Xy + x4 =17

In the notation of Definition 4, we have m =3, p = 2. Let {j, j,, j3} =
{2, 5,4}, and {k,, k,} = {1, 3}. Changing the order of addition in the three
equations, we can write

xZ+3X1 - x3=2,
xs + le + 3X3 = 0,
x4+ Xl =7.

It is now completely clear that the structure is a special case of (3) and that
{x,, x5, x4} is a basis.

Instead of (3), a verbal description of a system in {x; , ..., x; _}-basic form
can be given: Each of the variables x; , ..., x; has coefficient 1 in one equation
of the system and coefficient 0 in every other equation. Conversely, in each
equation of the system one of the variables x; , ..., x; has coefficient 1 while
all the others have coefficient 0.

In the example

xZ - X3 = 2,
3x, + x5 =0,
Xy + x4 =1,

either {x,, x5, x4} or {x,, xs, x, } is a basis. We shall return to this example
after the next theorem and definition. The proof of the theorem is clear
from (3).

Theorem 4. Any linear system in basic form has the following property. For each
assignment of arbitrary real values to the nonbasic variables, there is one and
only one solution of the system in which the nonbasic variables have these values.
In particular, there is a unique solution in which each nonbasic variable has the
value 0. The value of each basic variable is then the constant in the unique
equation containing that variable.

As a consequence of Theorem 4, the following definition is meaningful.
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Definition 5. In a linear system with basis {x; , ..., x; },the {x; ..., x;_}-basic
solution or the basic solution with respect to {x; , ..., x; } is that solution in
which every variable other than x; , ..., x; has the value 0. Less precisely, we
say that a solution of a system is a basic solution if the system has a basis with
respect to which the solution is the basic solution.

For example, for the system

Xy — X3 = 2,
3x, + x5 =0,
xl + X4 = 7,

considered earlier, the {x,, x,, x5 }-basic solution is given by
x, =0, x3=0, X, =2, X, =1, xs =0,

or formally,
0,2,0,7,0).

On the other hand the {x,, x,, x5 }-basic solution is (7, 2, 0, 0, 0). Note that a
basic variable can have the value 0 in a basic solution; the latter is then called
a degenerate basic solution. (Such solutions can be an annoyance in applica-
tions of the simplex algorithm of Chapter 3.)

The following theorem asserts a uniqueness property of basic form. The
theorem is both generally interesting and relevant to linear programming.

Theorem 5. If both of two equivalent systems are in basic form and both have
the same basis, then the two systems are identical—except possibly for the order
in which the equations are written and the order of the terms within the equations.

Proof. Let us translate our assertion into symbols. Since (3) is a completely
general system in basic form, we may assume that one of our two equivalent
systems is (3). The other system, which we shall denote by (3'), must then also
have x; , ..., x;_as basic variables and x; , ..., X, as nonbasic variables. Let
us, if necessary, rewrite the equations of (3’) so that the order of the equations
and of the terms corresponds to that of (3). Thus we write the equation
containing x;, first, that containing x;, second, and so on; within each equation

x;, will precede x,,, and so on. Then (3') has the form
14
x;, + qzl X, = Bi,
(3
)4
x; + qz,l UmgXie, = Bon-

Having taken into account the exception noted in the statement of the theorem,
we must now prove f; = f; and a;; = o foralliands(1 <i<m,1 <s <p).
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Now, the {x;, ..., x;, }-basic solution of (3) is given by
xkl=..'=xkp=0; le=Bl9""xj,,,=Bm'

Since (3) and (3') are assumed to be equivalent, this solution of (3) must also
be a solution of (3'). Substituting these values of the variables into (3'), we
obtain

ﬂl = B{»

Bn = Bn
To finish the proof, we choose the integer s arbitrarily, 1 < s < p. Then the
following assignment of values gives a (nonbasic) solution of (3):

xe, =1, X, =0 for g #s; X, =By — gy X, = B — U
These values must also satisfy (3'). Substitution yields

Bl — oy F alls = ﬂ{’

ﬂm — Uy + ar’ns = Br:l

Hence
’
als = als,

ams = ams b

as required. [

The final topic of the chapter is a special tableau representation for systems
in basic form. This representation will be quite convenient later on, when we
shall need to pivot systems in basic form, changing repeatedly from one basis
to another.

Definition 6. The condensed tableau representation of system (3) (the general
system in basic form) is the following, also denoted (3):

Subscripts of basic Subscripts of
variables \ ky  ky oo k,,‘/nonbasic variables
J

1 | %y G oy, | By
Ja |21 0t oag, | By
5 : . . . \ (3)
% Umy  Oma """ Oyp B \
Functions as “+” Functions as “=" for

for every equation. every equation.



10 1. Simultaneous Linear Equations

Although we have used the definite article “the” in the phrase “the condensed
tableau,” any tableau differing from (3) by a permutation of the columns is
equally acceptable provided that the column headings k,, ..., k, are kept
together with their columns. Such a difference between tableaux corresponds
only to a difference in the order of addition in the linear system (3). We also
accept a permutation of the rows of the tableau (3), row headings j;, ..., jm
staying with their rows. In constructing the condensed tableau (3), one
places the subscripts of the basic variables along the left side of the tableau
and those of the nonbasic variables across the top. The left edge of the
tableau can be thought of as a plus sign for each of the m equations. The
vertical line separating the coefficients from the constants serves as an equal
sign.

Let us illustrate Definition 6 by pairing two previously considered systems
with their condensed tableau representations.

3

X, +Eix=% 1| $|%
s 4|14’

xz—%x3=15— 2| -5|%

1 3
3xl+X2— X3 =2 2 3 —1 2

@ +3x; +x=0 o 5|@ 30|

X4 + X4 =17 411 017

Let us also pivot the last system at 2 as indicated. (This takes x5 out of the
basis and replaces it by x,.) We then pair the resulting system with a condensed
tableau representation.

5 3
X, —xy —3x5= 2| -3 -4
Xy +3x, +3x=0 o 1| 3 3|0
—3X3+ Xy —3x5= 4 -3 -3 |7
We wish to learn, however, how to go directly from
1 3
2(3 —-1|2
5@ 30 @
411 0
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to
5 3
2[-1 -¥
1y 3 3|04, )
4| -4 -3

that is, how to pivot a condensed tableau. This is completely answered by the
next theorem. The theorem will be extremely useful in future chapters.

Theorem 6. Let the linear system with condensed tableau

K, k,
Pl B,

: : : 3)
Gl ow o | B

be pivoted at a,, (o,; # 0). Then the resulting system is again in basic form and
represented by the tableau

k, Jr
k rq 1 B
S
aFS ars ars
: : : (3)
. .. aisarq als aisﬂr
Ji %y — - Bi———
al’S ars ars

[We are determining the replacements, in (3'), of the following entries of (3): the
pivot, any other coefficient in the pivot row, any other coefficient in the pivot
column, an arbitrary coefficient in neither the pivot row nor the pivot column,

the constant in the pivot row, and any other constant.]

MNEMONIC DIAGRAM

k J
. 1 b
—
b
c d _< d—f
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Expressed verbally:

(i) The pivot [in (3)] is replaced [in (3')] by its reciprocal (in the corresponding

tableau position).

(ii) The other elements in the pivot row (in (3)) are divided by the pivot (and the
quotients placed in (3') in the corresponding positions).

(ili) The other elements in the pivot column (in (3)) are divided by the negative
of the pivot.

(iv) The pivot and any element in a different row and column lie at opposite
corners of a rectangle [in (3), with sides parallel to those of (3)]. The
replacement for any such element is

. roduct of elements at other two corners
itself — P f .

pivot

(v) The numbers heading the row and column of the pivot are interchanged.

Proof. The equation represented by the pivot row of (3) is
x;, + ; Oyg X, + OpsXy, = B,
q#s

The first step (see Definition 3) in pivoting at a,, is to divide this equation
by a,,. This yields

which is exactly the equation represented by the corresponding row of (3).
Next, for every i # r, we multiply the equation of the pivot row by —a; /o,
and add the resulting equation to

X, + ) Uig Xy, + UisXie, = B
qZs

This eliminates x,_ and gives

aisarq Oy aisBr
X, + Z(“iq— o xkq—a_xir=Bi— :

q#s rs rs Oys

The appropriate row of (3') represents this equation, and the proof is
complete. []

We conclude the chapter by applying rules (i) through (v) to pivot (4) and
obtain (4'). The workings of (i), (ii), (iii), and (v) are clear (do you agree?), so
we illustrate only (iv):

3)(3) q 9 1

1o —1-"22= 12

2 2° 2

©G) _
2—*2—7—2,
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@M _ 3
00— 2=,
(1) _
7—-»7——2——7.

Condensed tableaux and our mechanical rules (i) through (v) for manipulat-
ing them are used extensively throughout the book. The reader will therefore
eventually become proficient in the use of these rules. It isimportant, however,
not to be become too mechanical: Keep in mind the system of equations
represented by a given tableau, and remember that the five pivoting rules
produce an equivalent system with a different basis.

PROBLEMS
1. Without using any theorems from the text, show that the system
Xy +2x, — 4x3+ x,= 3,
2x; — 3%, + X3+ Sx,= —4,
Tx, —10x3 + 13x,= O,

has no solution.
Suggestion: Assume a solution, insert it into the system, and produce a
contradiction.

2. Find all solutions of the system
2xy — Xp 4+ 2X3— X+ 3x5= 14,
Xy 4+ 2x5 4+ 3x3 + x4 = 5
Xy — 2x,4 —2x5 = —10,

by first constructing an equivalent system with basis {x,, x4, x, }. Also find the
{x3, x4, X, }-basic solution.
Answer: (—10 + 2s + 2t,49 — 115 — 9t, s, —83 + 17s + 16t, t) and (—10, 49,
0, —83,0).
3. From the system
2x; —3x; + 4x, =0,
) { 1 2 3
X+ X =1,
of the text, form a new system with the same first equation but with the second
equation replaced by its square, (x; + x,)*> = 49. (Do not be concerned about the

nonlinearity.) Show that the new system is not equivalent to (2). More specifically,
every solution of (2) is a solution of the new system, but not conversely.

4. Let the two systems

(1) {allxl +ag3x; +ay3x3 =by,
Ay1X1 + A33X; + ay3x3 = by,
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C11X; + €%y + C13X3 =dy,
2 C21X1 + Xy + C3X3 = dy,

€31X1 + €33X; + C33X3 =dj,

be equivalent. Form two new systems by deleting from each of (1) and (2) all terms
containing the variable x;. Prove that the two new systems, in the variables x,
and x,, are also equivalent.

. Prove that the system

2x, + X, — 2x5 = 17,
(1) { 1 2 3

b — x3= 1,

is not equivalent to any system in {x,, x, }-basic form.

Note: You cannot rigorously prove this by stating that there is no way to pivot
(1) to obtain the basis {x,, x5 }. This is not the definition of “not equivalent,” nor
do we have a theorem to justify this reasoning. You can give a correct proof as
follows. Write down a general system with variables x,, x,, x, and basis {x,, x5 }.
Then specify a solution of this system that is not a solution of (1).

. Prove there is no system with basis {x,, x5, X3} equivalent to the system repre-

sented by the tableau below.

1 3
213 —-1]2
5(2 3]0
411 017

. Consider all possible systems in basic form with three equations and with variables

Xy,..., X5.(One such system is that of Problem 6.) Show that there are ten possible
choices of bases. In other words, show that the set {x,, ..., x5) has ten subsets with
three elements. [A symbol for the number of such subsets is (3).] Next, for a given
system of the type described, explain why there are at most nine other bases
obtainable by repeated pivoting, arbitrarily many times. Use Theorem 5 to con-
clude that there are at most nine other systems so obtainable.

For the tableau in Problem 6, there are exactly eight other tableaux obtainable
by repeated pivoting. Find all of them. (Tableaux differing by only a permutation
of the rows or columns, together with headings, are considered identical.)

Give your own proof of the pivoting rules of Theorem 6 for the special case
indicated below.

s a; #0.
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10. For certain numbers a, b, ¢, and d, the two systems

x; + 5x, =6,

1
M { Tx, + x3 =38,
@ X, + ax, = b,
cxy + x5 =d,

are equivalent. Using the fact that certain specific solutions of (1) must also be
solutions of (2), prove that a = 5 and b = 6. (Do not merely observe that this is a
special case of Theorem 5.)



CHAPTER 2

Linear Programming
Foundations

Linear programming (LP) definitions and other preliminaries are the subjects
of this chapter; systematic methods of solving LP problems begin in Chapter
3. The term programming here does not refer to computers, although LP
problems are widely, frequently, and almost exclusively solved on computers.
Rather, the term is a synonym for general planning or scheduling, as in the
phrase “programming of activities.” The words allocating, routing, and assign-
ing often appear in LP problems and, therefore, clarify further the meaning of
“programming” in the name of our subject. Some general examples of such
programming are the following: allocating time among users of certain equip-
ment, routing long-distance telephone calls through many cities, planning
how much fuel an aircraft will take on at various stops, and assigning quant-
ities of crude oil to several refineries. Two important LP problems, known as
the production problem and the diet problem, are formulated in detail in this
chapter. All these programming problems, and many others, are of consider-
able significance to industries such as telecommunications, airlines, petroleum,
transportation, and food. In addition, many science, economics, and military
problems involve LP. Thus, among mathematical disciplines linear program-
ming is one of extraordinary applicability. The 1988 Book of the Year of the
Encyclopedia Brittanica states that hundreds of thousands of LP problems are
solved each day! We are content to discuss a few classical problems and some
small-scale numerical examples. These problems and examples will convey
some of the flavor of applied linear programming and also serve to illustrate
the underlying theory. The theory will be our principal concern. For a modern,
more advanced treatment of LP, covering many more aspects of the subject,
the author recommends Reference [3]. See also [4] by G.B. Dantzig, the
principal developer of LP.

An LP problem of great industrial importance is the “production problem.”
In general form the problem concerns the manufacture of products P, ..., P,
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from resources Ry, ..., R,,. (Examples of resources are raw materials, labor,
equipment, and time.) There are usually limitations, for example, weekly
limitations, on the resources. With appropriate units in mind, we can let b,
(i=1,2,...,m) be the amount of resource R; available to the manufacturer.
The manufacturer knows these amounts and knows also how much of each
resource is needed in the manufacture of each product. To express the latter,
we let a;; be the number of units of R; required for one unit of P;(1 <i<m,
1 <j < n). Finally, the net profit resulting from the production of one unit of
P; is known, say c;. The manufacturer would like to determine an optimal
production schedule. More explicitly, how much of each product should be
made in order that total profits be maximized?

To express the problem precisely, we let x; be the number of units of P; to
be produced (1 < j < n). The x; must satisfy certain constraints or conditions.
First, it is clear that we should require each x; to be nonnegative. The
remaining constraints are derived as follows. Since one unit of P, requires a;;
units of R; (I < i < m), a proportionality assumption implies that x; units of
P, will require a;;x; units of R;. Therefore, all the products will require 7, a;;x;
units of R;. (We are assuming that the amount of a resource needed for all the
products is simply the sum of the amounts needed for each. Other relation-
ships are possible, but this one is by far the most natural and most useful.)
For each i the last written sum must be less than or equal to b;. This completes
the derivation of the constraints. Finally, from the definitions of c; and x; we
deduce that c;x; is the net profit resulting from the production of x; units of
P, and hence that Y 7_, ¢;x; will be the total profit. (Again we are making
certain reasonable assumptions.) Thus, the precise statement of the production
problem is to

maximize f(xy,...,x,) = Y ¢x; 1)
A

subject to the constraints

j; agx;<b,  foralli, 1<i<m, )]

and the nonnegativity constraints
x; =0, forallj, 1<j<n. (3)

The phrase “subject to the constraints” means that the domain of the
function f shall consist only of those n-tuples of real numbers obeying all the
conditions stated. The nonnegativity conditions (3) may seem trivial or inci-
dental in the production problem, but such constraints play a crucial role in
the solution of LP problems.

The constraints (2) are written very compactly, and it is important to be
aware of their expanded form:

a; xy + ayx, + 0+ ag,x, < by,

@

Ay1Xy + A33Xy + 0 + AzpX, < b,,

A1 Xy + Qm2X2 + o+ QmnXn < bm'
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A function of the form in (1) is described as “a linear function of n variables.”
Likewise, the expressions in (2) are linear. As we shall shortly see, such linearity
exists, by definition, for all LP problems. Thus, both words in the term “linear
programming” have been explained.

In the production problem just discussed, the quantities b;, c;, and a;; are
normally all nonnegative. Except for this fact, the problem defined by (1)
through (3) is the most general LP problem in what is called primal form. Such
problems will prove to be desirable and important. First of all, these are in
essence the problems that we shall learn to solve (in Chapters 3 and 4). Second,
problems in primal form lie at the foundation of “duality theory” in Chapter
5. The required definition is the following.

Definition 1. Given natural numbers m and n, and real numbers b,, ¢;, and a;;
i=1,...,m;j=1,..., n), the maximization problem defined by (1) through
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