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Preface

The present textbook provides prerequisite material for courses in Physics,
Electrical Engineering, Operations Research, and other fields of applied science
where probabilistic models are used intensively. The emphasis has therefore
been placed on modeling and computation.

There are two levels of modeling: abstract and concrete.

The abstract level is relative to the axiomatization of Probability and pro-
vides a general framework that features an archetype of all concrete models,
where the basic objects (events, probability, random variables), the basic con-
cepts (independence, expectation), and the basic rule (countable additivity of
probability) are given in abstract form. This moderately small axiomatic
equipment, establishing Probability as a mathematical theory, suffices to
produce a theorem called the strotig law of large numbers that says in parti-
cular that in tossing coins “the average number of heads tends to 1 as the
number of independent tosses tends to infinity, if the coin is fair.” This result
shows that the axioms of probability are consistent with empirical evidence.
(From a mathematical point of view, this a posteriori check of the relevance
of the axioms is not necessary, whereas from the point of view of the modeler,
it is of course of paramount importance.)

In the present book, the abstract framework is immediately introduced
and a number of examples showing how this framework relates to the daily
concerns of physicists and engineers is provided. The strong law of large
numbers where the abstract framework culminates is proved in the last
chapter.

The other level of modeling consists of fitting a given situation into the
conceptual framework of the axiomatic theory when it is believed that random
phenomena occur. This is a difficult exercise at the beginning, and the art of
modeling can be acquired only through examples. Supplementary readings—
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entitled Ilustrations— provide examples in which probabilistic models have
been successfully developed.

They include, in particular, topics in stochastic processes and statistics as
shown in the following list:

1. A Simple Model in Genetics: Mendel's Law and Hardy Weinberg’s
Theorem

2. The Art of Counting: The Ballot Problem and the Reflection Principle

. Bertrand’s Paradox

4. An Introduction to Population Theory: Galton-Watson’s Branching
Process

5. Shannon’s Source Coding Theorem: An Introduction to Information
Theory

6. Buffon’s Needle: A Problem in Random Geometry

7. An Introduction to Bayesian Decision Theory: Tests of Gaussian Hy-

potheses

A Statistical Procedure: The Chi-Square Test

9. Introduction to Signal Theory: Filtering.

(98]

o0

The first chapter introduces the basic definitions and concepts of probability,
independence, and cumulative distribution functions. It gives the elementary
theory of conditioning (Bayes’ formulas), and presents finite models, where
computation of probability amounts to counting the elements of a given
set. The second chapter is devoted to discrete random variables and to the
generating functions of integer-valued random variables, whereas the third
chapter treats the case of random vectors admitting a probability density. The
last paragraph of the third chapter shows how Measure and Integration
Theory can be useful to Probability Theory. It is of course just a brief summary
of material far beyond the scope of an introduction to probability, emphasiz-
ing a useful technical tool: the Lebesgue convergence theorems. The fourth
chapter treats two topics of special interest to engineers, operations researchers,
and physicists: the Gaussian vectors and the Poisson process, which are the
building blocks of a large number of probabilistic models. The treatment
of Gaussian vectors is elementary but nevertheless contains the proofl of
the stability of the Gaussian character by extended linear transformations
(linear transformations followed by passage to the limit in the quadratic
mean). The Gaussian vectors and the Poisson process also constitute a source
of examples of application of the formula of transformation of probability
densities by smooth transformations of random vectors, which is given in
the first paragraph and provides unity for this chapter. The last chapter
treats the various concepts of convergence: in probability, almost sure, in
distribution, and in the quadratic mean.

About 120 exercises with detailed solutions are presented in the main text
to help the reader acquire computational skills and 28 additional exercises
with outlines of solutions are given at the end of the book.

The material of the present textbook can be covered in a one-semester
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undergraduate course and the level can be adjusted simply by including or
discarding portions of the last chapter, more technical, on convergences. The
mathematical background consists of elementary calculus (series, Riemann
integrals) and elementary linear algebra (matrices) as required of students in
Physics and Engineering departments.

Gif-sur-Yvette, France PIERRE BREMAUD
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Abbreviations and Notations

Abbreviations

as. almost surely

cd.f. cumulative distribution function

cf. characteristic function

iid. independent and identically distributed

p.d. probability density

q.m. quadratic mean

r.v. random variable

Notations

A(n, p) the binomial law of size n and parameter p (p. 47)

“%(p) the geometric law of parameter p (p. 48)

P(4) the Poisson law of mean 4 (p. 49)

M (n,k, p;) the multinomial law of size (n, k) and parameter (p,....,p,) (p. 49)
U([a,b]) the uniform law over [a, b] (p. 86)

&(4) the exponential law of parameter A (p. 86)

A (m, a?) the Gaussian law of mean m and variance ¢ (p. 87)

y(2, B) the gamma law of parameters « and f (p. 88)

x2 the chi-square law with n degrees of freedom (p. 88)

X~ the random variable X is distributed according to ... (Example:

“X ~ &(4)" means “X is distributed according to the exponential law
of parameter 4)

R the set of real numbers

R the set of n-dimensional real vectors
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Abbreviations and Notations

the Borelian sets of R”, that is: the smallest ¢-field on R" containing all
the n-dimensional “rectangles”

the set of non-negative integers

transpose of the matrix A4

line vector, transpose of the column vector u



CHAPTER 1

Basic Concepts and
Elementary Models

1. The Vocabulary of Probability Theory

In Probability Theory the basic object is a probability space (Q, #, P) where

Q is the collection of all possible outcomes of a given experiment;

Z is a family of subsets of Q, called the family of events; and

P is a function from % into [0, 1] assigning to each event A € % its prob-
ability P(A).

The mathematical objects # and P must satisfy a few requirements, called
the axioms of Probability Theory, which will be presented in Section 2.1.

Although it is quite acceptable from a mathematical point of view to present
the axioms of Probability without attempting to interpret them in terms of
daily life, it is preferable to start by showing what reality they are supposed
to symbolize and to give the formal definitions later. In this respect, a small
lexicon of the terms used by probabilists will be useful.

Trial. The confusion between an experimental setting and actual trials is often
made. The term experimental setting refers to the general conditions under
which various trials are performed. For instance, the Michelson—Morley
experimental setting consists of a method (interferometry) and of an apparatus
for measuring very small relative variations in the velocity of light. Michelson
and Morley performed several trials in this experimental setting. In Statistics,
the experimental setting consists of the conditions under which data are
collected, and a trial might consist, for instance, of the actual conduct of a poll.

Outcome, Sample. In Probability, one considers trials performed in a given
experimental setting. Any experiment has an outcome, or result. It has been
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a great conceptual advance to abandon the idea of capturing the notion
of experiment in mathematical terms; experiment, like experience, is too
deeply rooted in the physical and psychological world. Instead the mathe-
maticians have chosen to consider the outcome because it is more amenable
to mathematics.

Indeed, only a writer can convincingly describe the wicked “coup de main”
of the croupier, the whimsical motion of the ball on the wheel, and the ensuing
torments in the player’s soul. For conciseness, a mathematician prefers to deal
with the possible outcomes: 0, 1, ..., 37. Another term for outcome is sample.

o .
| The sample space Q is the collection of all possible outcomes w.

An Event. For an experiment being performed and its outcome w being
observed, one can tell whether such and such an event has occurred. An event
is best described by a subset of the sample space. For instance, in the game
of roulette the set of outcomes {0,2,4,...,36} is an event. One can use a
picturesque name for this event, such as “even,” or any other name, depending
on one’s imagination. But an event is nevertheless just a collection of out-
comes, i.c., a subset 4 < Q.

An event is a collection of outcomes, i.e., a subset 4 of the sample space Q. |
If we A, one says that outcome w realizes event A.

This is a temporary definition; the complete definition will be given in Section
2.1

The Logics of Events. If subset A is contained in subset B(4 < B), this is
expressed by event A implies B (Fig. 1). Two events A and B are incompatible
when there exists no outcome w that realizes both 4 and B, ie., A N B = (J,
where & is the empty set. Consider now a family of events 4, ..., 4,. The set
equality Q = J¥_, A4, means that at least one of the events A, ..., A, is
realized. Indeed either we 4,,orwe A,,...,or we A,. Itisclear now that any
relation or equality between subsets of Q is the formal transcription of a logical
relation between events. Another example is the set equality Q = Y ¥_, 4, (ie,
Q= )i, A,and A; A; = & when i # j), which tells that the events 4. ...,
A, are exhaustive and mutually incompatible. In other words, one and only one
among the events 4,, ..., 4, will happen. When event A is not realized, event
A is realized where A is the complement of 4. For obvious reasons, Q is called
the certain event and ¢, the impossible event.

It is now time for the formal definition of a probability space, which will be
given in Section 2.1, followed by illustrative examples in Section 2.2.
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Picture Set theoretical Logical meaning
language notation in terms of events
A
weA w realizes A
A B
Q ANB=¢ A and B are incompatible
B
@ ACB A implies B
A

@ ANB A and B are both realized
AAB One and only one of the events
A and B is realized

A
Q

B
B
A4,
A, Q2=A4,+A,+A; | Oneand only one of the events
A Ay, Ay, Ay is realized
3
by any sample w.

Figure I. A probabilist’s view of sets. Note that the symbol Z can be used in place
of () only if the sets in the union are disjoint.
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2. Events and Probability

2.1. Probability Space
A probabilistic model (or probability space) consists of a triple (Q, %, P) where

Q is the sample space, a collection of outcomes .

Z# 1s a collection of subsets of (; a subset 4 €% is called an event.

P is a set function mapping .# into the interval [0, 1]: witheach event A€ .7,
it associates the probability P(A) of this event.

The collection .# and the mapping P are required to satisfy the following
axioms.

Axioms Relative to the Events. The family .# of events must be a g-field on
Q, that s,

() Qe 7 -

(i) if Ae #, then A€.# (where A4 is the complement of A)

(i) if the sequence (A,,n = 1) has all its members in %, then the union
Uici A, e 7.
n=1 n

Axioms Relative to the Probability. The probability P is a mapping from #
into [0, 1] such that:

() P(Q)=1
(#) for any sequence (A4,,n = 1)of disjoint events of #, the following property,
called o-additivity, holds:

x |
P(n; An> = 2 Pl4) ‘ (1)

An event A4 such that P(4) = 1 is called an almost certain event. Similarly,
if P(A) = 0, A is called an almost impossible event. Two events 4 and B such
that P(4 n B) = 0 are said to be probabilistically incompatible.

Note that A = & implies from the axioms [see Eq. (3)] that P(A) = 0, but
the converse is not true: an event can be logically possible and, nevertheless,
have no chance of happening.

Immediate Properties of Probability. A few properties follow directly from the
axioms. First, since Qe %, its complement Q = & also lies in .#, by (ii).
Second, if (4,,n > 1) is a sequence of events, then the intersection [ },Z, A4, is
also an event. The latter assertion is proven by applying de Morgan’s formula

A\ 4, = <U E,,).
n=1 n=1

and using successively axioms (ii), (iii), and (ii).
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From axioms (&) and (f) we obtain

P(A)=1— P(A) |. (2)

Indeed, 1 = P(Q) = P(A + A) = P(A) + P(A). By specializing this equality to
A = Q, we have P(J) = 0. Summarizing this result and previous relations
from the set of axioms, we have for any event A

P(Z)=0<P(A)<1=PQ | 3)

If A logically implies B, i.e., A = B, the set B — A is well defined and 4 +
(B — A) = B. Therefore, by the g-additivity axiom, P(A4) + P(B — A) = P(B),
or

A< B= P(B — A) = P(B) — P(A) |. 4)

In particular, since P(B — A4) = 0, the mapping P is monotone increasing:

A c B=P(A) < P(B) | (5

E1 Exercise. Let (4,,n > 1) be an arbitrary sequence of events. Prove the
following property, called sub-c-additivity:

P(D A,,) <3 P, | (6)

Hint: Use the set identity ( J2, 4, =Y. 2, A,, where Ay = A, A, = A4, —
A, (|)1=1 A;) for n > 2 (Fig. 2).

A,

D 4
@ 4
O 4

Pl
N

Figure 2.
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E2 Exercise. Let A, B, C be three arbitrary events. Show that
P(A U B) = P(A) + P(B) — P(A n B),
and
P(AUBUC)= P(A)+ P(B)+ P(C) — P(AnB)— P(An C)
— P(BNnC)y+ P(AnBNC(C).

The above formulas are particular instances of a general formula, called the
inclusion—exclusion formula, which will be given in Eq. (29) of Chapter 2.

We shall now give a very useful consequence of the g-additivity axiom.

Sequential Continuity of Probability. Consider a sequence of events (B,,n = 1)
such that

BB (=) )
Then
’ P(D B,,) = liTm TP(B,) |. (®)

| —

This property is the sequential continuity of probability because | )2, B, is
called the (increasing) limit of the (increasing) sequence (B,,n = 1) and is
denoted lim, 1, T B,, so that Eq. (8) reads P(lim,4 ,, T B,) = lim,4 ,, T P(B,).

PrOOF OF EQ. (8). Observe that

p p—1
Bp = U Bn = Bl + (Bn+l - Bn)

n=1 n=1

and
x

U Bn = Bl + Z (Bn+1 - Bn)

n=1 n=1

Therefore, (o-additivity)
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P(U B"> — P(B) + S P(B,,, — B,)
1 n=1

= lim (P(Bl) +5 P, - B,,))
n=1

pTx

= lim P(B,).

pt

Similarly, if (C,,n > 1) is a decreasing sequence of events, i.c.,

Cn+1 < Cn (Yl ; 1) s (9)
then
P(ﬁ c") = lim LP(C,) | (10)
n=1 nT oo
O

ProOF OF EqQ. (10). Apply the previous result to B, = C,. By de Morgan’s
rule and property (2), P("%,C,) =Pz, C)=1-P(Jz,C)=1-

2.2. Two Elementary Probabilistic Models

Before proceeding further into the examination of the consequences of the
probability axioms, we will give two examples of probability models.

ExaMPLE | (Choosing a Point at Random in the Unit Square). Here the point
will be supposed to be “completely randomly” chosen in [0, 1] x [0, 1]. The
following model is proposed.

First, Q = [0, 1] x [0, 1], that is to say: any outcome w has the form v =
(x,y), where 0 < x < 1and 0 < y < 1 (Fig. 3).

We will be rather vague in the description of the collection % of events,
calling an event any subset 4 of Q = [0,1] x [0, 1] for which one can define
the area S(A). For instance, any set 4 of the form 4 = [x,,x,] x [y,,y,],1n
which case S(A4) = (x, — x;)(y, — y1)- There are many more sets in %. How-
ever, the description of some of them is not easy. This matter will be discussed
later since it is of minor interest at this stage.

The probability P(A) is just the area of 4, S(A). The mapping 4 — S(A) is
indeed a mapping from # into [0, 1], and the first axiom () is satisfied since
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Figure 3. The sample space Q relative to the experiment of choosing at random a point
in the unit square.

P(Q) = S([0,1]%) = 1. The axiom of ¢-additivity is also satisfied, in accor-
dance with the intuitive notion of area. But we are not able to prove this
formally here, having not yet properly defined the o-field of events #.

ExaMPLE 2 (Three-Dice Game). The probabilistic description of a roll of three
dice can be made as follows. The sample space Q consists of the collection of
all triples @ = (i,j, k) where i, j, k are integers from 1 to 6. In abbreviated
notations, Q = {1,2,3,4,5,6}*. The dice are supposed to be distinguishable,
and i is the outcome of the first die and j and k are the outcomes of the second
and third dice, respectively (Fig. 4).

First die Second die Third die

Figure 4. The event “odd sum™ is realized by this particular outcome.

The choice of .# is the trivial one: # is the collection of all subsets of Q (it
is obviously a o-field). As for P, it is defined by P({w}) = (})* for all w. Here
{w} is the set consisting of the unique element w. This suffices to define P for
all subsets 4 of Q since by the c-additivity axiom we must have P(A4) =
Y wea P({w}). this quantity being taken by convention to be 0 if A is empty.
In summary,

P(A) = (§)°-14],

where |A4] is the cardinality of A, that is, the number of elements in 4. From
this, o-additivity is obvious and P(Q) = 1 since Q contains 6 elements.

This type of model where the probability of an event is proportional to its
cardinality will be considered in more detail in Section 6 of the present chapter.



3. Random Variables and Their Distributions 9
3. Random Variables and Their Distributions

3.1. Random Variables (r.v.)
The single most important notion of Probability Theory is that of random
variable. A random variable on (Q, #) is any mapping X: Q — R such that

forallaeR,

{w|X(w)<a}e,9:!, (11)

Here R is the set of real numbers, and R is the extension of R consisting of R
plus the two infinite numbers +cc and —oc. The notation {w|X(w) < a}
represents the collection of w’s such that X(w) < a. It will usually be abbre-
viated as {X < a}.

Requirement (11) ensures that one can compute the probability of events
X < ajf, since the probability P is defined only for subsets of Q belonging
to .#.

ExAMPLE 3. The setting is as in Example 1, where all outcomes have the form
@ = (x,y). One can define two mappings X and Y from Q into [0, 1] by
X(w) = x, Y(w) = y.

Both X and Y are random variables since in the case of X, for instance, and
when ae [0, 1], the set {X < a} is the rectangle [0,a] x [0, 1], a member of
F.Foraz l,{X<a}=Qand fora <0, {X <a} = &, so that Eq.(11)is
also verified.

E3 Exercise. In the setting of Example 3, show that the mapping Z = X + Y
(ie., Z(w) = X(w) + Y(w)) is a random variable. Compute for all ae R the
probability of event {Z < a}.

ExaMPLE 4. Consider the three-dice game of Example 2. Here an outcome o
has the form o = (i,j. k). We can define three mappings X, X, X5 from Q
into {1,2,3,4,5,6} by

X, (w) =1, X,y(w) =, Xi(w) = k.

The verification that X, X,, X are random variables is immediate since, in
this particular probabilistic model, .# contains all subsets of Q.

3.2. Cumulative Distribution Function (c.d.f)

The cumulative distribution function of the random variable X is the function
F mapping R into [0, 1] defined by
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l F(x) = P(X <x) |. (12)

The notation P(X < x) is an abbreviation of P({X < x}).

A cumulative distribution function F is monotone increasing since whenever
x; € x5, {X € x;} © {X < x,} and therefore, by the monotonicity property
(3), P(X < x;) < P(X < x,).

We will see below that F is a right-continuous function. This property
depends very much on the “less than or equal to” sign in Eq. (12). Had we
chosen to define F(x) as P(X < x) with a “less than” sign, F would have been
left-continuous. (This convention is seldom adopted.)

Any right-continuous increasing function F admits a left-hand limit at all
points x € R, denoted by F(x—). We will see in a few lines that if we define

F(+o)= lim F(x), F(—x)= ljm F(x), (13)
xT+cc Xv — 0
then
| 1 — F(+’$C') = P(X = +x0), F(—w)=PX = —0) |. (14)

PROOF OF THE RIGHT CONTINUITY OF F. Let xeR and let (g,,n > 1) be a
sequence of strictly positive real numbers decreasing to 0. Define for each
n=1,C,={X <x +¢,}. Then (C,,n = 1) is a decreasing sequence of events
and ()2, C, = {X < x}.ByEq.(10), P(X < x) = lim,4, | P(X < x + g,),1.e,
F(x) =lim,4, | F(x + &,), qed. O

PrOOF OF Eq. (14). Define B,={X <n} and C,= {X < —n}. Then
Uizt B, = {X <} and ()2, C, = {X = —oc}, and Eq. (14) follows from
Egs. (8) and (10). O

ExAMPLE 5. We consider the probabilistic model of Examples 1 and 3 (choos-
ing a point at random in the unit square). The cumulative distribution function
of X has the graph shown in Fig, 5. Indeed, if x = 1, then {w|X(w) < x} = Q
and therefore P(X < x)= P(Q) =1, and if x <0, then {w|X(w) < x} =
and therefore P(X < x) = P(Z) = 0. Also, when x€[0, 1], the set {X < x} is
the rectangle [0, x] x [0, 1] of area x.

Random Variables with a Probability Density (p.d.). In the general case, a
random variable X may take the values +oo and/or —oo. If it takes only finite
values, X is called a real random variable.

If a real random variable X admits a cumulative distribution function F
such that

Fio= | f(ndy (15)

,,,,,,
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for some nonnegative function f, then X is said to admit the probability density
f- It must be pointed out that f then satisfies

+x

[ fydy=1| (16)

—o¢

The above equality follows from Egs. (15) and (14).

ExamPLE 6 (Continuation of Example 5). The random variable X with the
cumulative distribution function F of Fig. 5 admits a probability density f
(Fig. 6) where

0 if x<0
flx)y=+<1 if xe[0,1]
0 if x> 1.
F(x)
+1
|
[
|
|
|
]
0 +1 X

Figure 5. A cumulative distribution function.

flx)

1
|
!
1 X

0

Figure 6. The uniform density over [0, 1].

The distribution pictured in Fig. 5 or 6 is the uniform distribution over [0, 1].
The corresponding random variable is said to be uniformly distributed over

[0, 17.

E4 Exercise. Find the c.d.f. and the p.d. of the random variable defined in
Exercise E3.

Discrete Random Variables. Let X be a random variable taking only integer
values, i.e,, values in the set N = {0,1,2,...}, and denote p, = P(X = n). In
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this special case, since {X < x} =), ,<, {X = n}, we have by the g-additivity
axiom the following expression for the c.d.f.:

Fx)= ) pn

nn<x

The function F is then purely discontinuous, as shown in Fig. 7.

4
F(x)
1
—.Il
1 ! ! | |
= | [ | |
| | l i [ | |
| I L1 ! | L -
0 1 2 3 4 S 6 7 e e X

Figure 7. The c.d.f of an integer valued random variable. The jump of F at x = n s of
magnitude p,.

A random variable X taking only a denumerable set of values (a,,n = 0) is
called a discrete random variable. Its distribution is the sequence (p,,n = 0)
where

p.=PX =a,) | (17)

The numbers p, are nonnegative, and they verify

(18)

This relation is obtained from Q = Y 2, {X = a,} and the ¢-additivity axiom.
E5 Exercise. Consider the three-dice game of Examples 2 and 4 and the

discrete random variable X = X, + X, + X;. Compute p,g3 = P(X = 18)
and p, = P(X = 6).

4. Conditional Probability and Independence

4.1. Independence of Events

Conditional Probability. Let B be an event of strictly positive probability. For
any event A, one defines the symbol P(A|B) by
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Pmmm!

PAIB)= ——— | 19
| (4| B) P(B) ’ (19)

The quantity P(A|B) is called the probability of A given B. It admits an
interesting interpretation which makes it one of the fundamental concepts of
Probability Theory. Suppose that n experiments have been performed and
that the occurrences of events A and B have been recorded as follows: n,
among the n experiments have resulted in the realization of event A, nyg in the
realization of B, and n,p in the joint realization of 4 and B. The frequency
interpretation of probability, which will be given a firm mathematical basis
with the law of large numbers, suggests that if all experiments have been
performed “independently,” the frequency n,/n is close to the probability P(A4)
when # is large. Similar statements hold for P(B) and P(A n B), so that the
quantity P(A|B)is by Eq. (19) close to n,g/n: ng/n = n,.g/ng. Now n 4 g/ng
is the relative frequency of A among the realizations of B. Just as n,/n
measured our expectation of observing event A, n,, z/ng Mmeasures our ex-
pectation of seeing A realized knowing that B is realized.

As an illustration, imagine that a sample of n = 10,000 individuals have
been selected at random in a given Irish town. It is observed that among them,
n, = 5,000 have blue eyes, ng = 5,000 have black hair, and n,,; = 500 have
blue eyes and black hair. From these data, we must expect that, with a
probability approximately equal to n,/n = 1, the first person to be met in the
street has blue eyes. But what if this citizen wears dark glasses hiding his eyes
and has black hair? We then expect that his eyes are blue with a probability
approximately equal to n4p/np = 1/10. What we have done here is to replace
the “a priori” probability P(A), by the “conditional” probability of A given B,
P(A|B).

Independence. Letus continue with the above population sample and suppose
that n. = 1,000 citizens among the n = 10,000 have a name starting with one
of the first seven letters of the alphabet. We have the feeling that eye color
and initials are “independent.” For this reason, we believe that the proportion
of blue eyes among the citizens with a name beginning with one of the first
seven letters of the alphabet is approximately the same as the proportion of
blue eyes in the whole population, i.e., n,/n =~ n,/nc or, in the probabilistic
idealization, P(A) = P(A|C). Now, from the definition of P(A4|C), the latter
relation is simply P(4 n C) = P(A)P(C). One is therefore led to adopt the
following definition: two events A and B are said to be independent iff

[
P(A ~ B) = P(A)P(B) . (20)
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E6 Exercise. Consider the following table:

i WPA(A) P(B) B ;’(A v B)
CCasel | 01 09 | 091
Case 2 04 0.6 0.76
Casc3 | 05 | 03 0.73

For which cases are events 4 and B independent?

The definition of independence extends to the case of an arbitrary family of
events as follows. Let ¢ be an arbitrary family of events (finite, countable or
uncountable). This family ¢ is said to be a family of independent events iff,
for all finite subfamilies {A4,,...,4,} of &,

LN
" P( N AJ) = 1] P4;) | (21)
J=1 Jj=1
E7 Exercise. Let {A4,,..., 4, be a family of independent events. Show that
tAL A, A} is also a family of independent events.

The above exercise shows that in an arbitrary family of independent events,
one can replace an arbitrary number (finite, countable, or uncountable) of
events by their complement and still retain the independence property for the
resulting family.

The next exercise points out a beginner’s mistake.

E8 Exercise. Let Q = {w,, w,,w;, w,} be a sample space with just four points,
and # be the family of all subsets of Q. A probability P is defined on # by
P({w;}) = (1 < i < 4). Let A, B, C be the following events:

A= w, W, B = {w,,w;}, C = w0}

Show that 4 = {A4, B, C} is not a family of independent events, although 4 is
independent of B, 4 is independent of C, and B is independent of C.

Remark. Another beginner’s mistake: disjoint events are independent. This is
wrong. Indeed, if it were true, then for every pair of disjoint events 4 and B,
at least one of them would be of probability zero, in view of 0 = P() =
P(A n B) = P(A)P(B). As a matter of fact, two disjoint events are strongly
dependent since “disjoint™ means “incompatible™: if one of them is realized
then you know that the other is not.
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Conditional Independence. Let C be an event of strictly positive probability.
Define P, a mapping from the family of events % into R, by

Pe(A) = P(A[C) . (22)

E9 Exercise. Show that P is a probability on (Q, %).

Two events A and B that are independent relatively to probability P, are
said to be conditionnally independent given C. The defining formula is

f

P(A ~ B|C) = P(A|C)P(B|C) |. (23)

This fundamental concept of Probability Theory will be illustrated by Exercise
E14 of Section 5.

E10 Exercise. Let C and D be two events such that P(C n D) > 0. Verify that
for any event 4

Pc(A|D) = P(A|C, D)
where P(A|C, D) = P(A|C A D).

4.2. Independence of Random Variables

The concept of independence of events extends to random variables in a
natural way. Two random variables X and Y defined on (Q, %, P) are said to
be independent iff for all a, be R,

imxsmysm=mxsmmysm. (24)

Here the notation P(X < a,Y <b) is an abbreviation of P({X <a}n
{Y < b}).
IREES

ExaMmpLE 7. The two random variables X and Y defined in Example 3 are
independent. Indeed, for a and b in [0, 1], for instance, P(X < a, Y < b)is the
area of [0,a] x [0,b], i.e., ab, and P(X < a) = a, P(Y < b) = b (see Fig. 8).

In the case where X and Y are discrete random variables taking the values
(a,.n = 0) and (b,,,m = 0), respectively, requirement (24) for all a and b is
equivalent to the requirement that foralln > 0,m > 0,
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D\

ANB={X<a, Y<b}

0 a 1 x

Figure 8. The unit square and its coordinate random variables.

.
'P(X =a, Y=b,)=P(X =a,)P(Y =b,). (25)

The verification of this assertion is left to the reader.

The extension to several random variables of the notion of independence
is straightforward.

A family # of random variables is said to be independent if for any finite
subfamily 1 Y,,..., Y,} < # the relation

CP(Y, <ay,... Y, <a,) =[] P(Y, < a) ‘ (26)
| Jj=1 ]

holds for all a;e R(1 < j < n).
In the case of discrete random variables, a simpler definition is available:
just replace Eq. (26) with

|

n [
{P(Y, =a,,....Y,=a,) =[] P(Y,=a)|, (27)

- - N

where g; ranges over the set of values of Y.

El1 Exercise (The Binomial Distribution). Let X,,..., X, be n discrete ran-
dom variables taking their values in {0, 1} and with the same distribution

BX:l):p,PW:m:] —;zj. (28)

J

Suppose, moreover, that they are independent. Defining

o= X, 4+ X, | (29)
{ . _
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(a random variable taking integer values from 0 to n), show that

P(S, = k) =

n.
Kin — kp?

K1 —py* . (0<k<n ;

The probability distribution (p,,0 < k < n) given by

P =

n.
k!(n — k)!

p (1 —p)*

17

(30)

(3D

is called the binomial distribution of size n and parameter p (see Fig. 9). Any
discrete random variable X admitting this distribution is called a binomial
random variable (of size n and parameter p). This is denoted by X ~ Z(n. p).

b 256 py

1024 p,

70 252
210 | 210
56 | 56
120 120
28 28
45 45
H i 10 10
1
1 I I 1 [S | | | }
012 345678 0123456 78 910
n=8,p= % n=10,p= %

Figure 9. The binomial law.

5. Solving Elementary Problems

5.1. More Formulas

This section is devoted to the illustration of the notions and concepts pre-
viously introduced. However, before proceeding to the statement and solution
of a few classic exercises, we will start a collection of simple formulas of

constant use in this type of exercise (and in many other situations).

Bayes’ Retrodiction Formula. The data of a given statistical problem some-
times consist of the probabilities of two events A and B and of the conditional
probability P(A|B). It is then asked that the conditional probability P(B|A)
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be computed. The corresponding formula is easily obtained from the defini-
tion of conditional probability since P(4 n B) = P(B|A)P(A) = P(A|B)P(B).
We therefore have Bayes’ retrodiction formula

P(A|B)P(B)

P(B|A) = PA)

, (32)

which allowed Bayes to compute the probability of the “cause” B given the
“consequence” A (hence the terminology). Of course, in the above equalities
we have implicitly assumed that P(A4) and P(B) are strictly positive so that we
can speak of quantities such as P(B|A) and P(A|B). In practice, the problem
of retrodiction arises when 4 and B are probabilistically compatible, i.e.,
P(A N B) > 0, in which case P(A) and P(B) are actually strictly positive.

Bayes' Sequential Formula. Let A,,..., A, be events such that P(4; N
N A,) > 0. Then

P(A,,....A,) = P(A)P(A;|A|)P(A5|A, Ay) - P(AlA,,.... A, |- (33)

Here, notation P(A,,...,A,) is equivalent to P([ )i, 4,). Similarly,
P(B|A,.....A) = P(BI[ ), 4).

ProoF OF EQ. (33). The proof is by induction: for n = 2, formula (33) is just
the definition of conditional probability, and if Eq. (33) is true for some n > 2,
it is also true for n + 1, since
A,)
j=1

P(A,,....,A,.,) = P((ﬁ AJ-)mA,,H) = P(ﬁ AJ-)P(A,,H
j=1 Jj=1

= P(A,,....A)P(Apai]Ay.... Ay, O

Formula (33) has an appealing intuitive interpretation if one identifies an
index n with a time. Thus A,, A,, A,,... are events happening (or not
happening) in sequence, at times 1, 2, 3, ..., respectively.

In the case where at each time k(2 < k < n) the conditional probability
P(AA,,...,Ax_,) is equal to P(A,|A,_,), the sequence (4,.1 <k <n)is
called a Markovian chain of events. Equality P(A,|A,,..., A1) = P(A ] A —y)
expresses the fact that event A4, is conditionally independent of 4,, ..., 4,
given A, _, [see Eq. (23)].

The Formula of Incompatible and Exhaustive Causes. Let A be some event,
and let (B,, n = 1) be an exhaustive sequence of mutually incompatible events.
By this we mean that whenever i # j, B;n B; = (J (incompatibility) and that
(Jucy B, = Q (exhaustivity). In other words, one and only one among the
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events B, must happen. We then have the important formula, which we quote
together with its condition of application,

P(A) = i P(A|B,)P(B,)  where i B,=0Q |. (34)

To be correct, since P(A|B,) is defined only when P(B,) > 0, we must
agree by convention that in the above formula, P(A4|B,)P(B,) = 0 whenever
P(B,) =0.

PROOF OF EQ. (34). One writes the set identity
A =AnQ=Am(Z B,,): Y AnB,.
n=1 n=1

By the o-additivity axiom, P(4) =), P(AnB,). Now if P(B,) =0,
P(An B,)=0since B, An B,. And if P(B,) > 0, P(A n B,) = P(A|B,)P(B,)
by definition of the symbol P(A|B). O

ExamPLE 8. In a digital communications system, one transmits 0’s and 1’s
through a “noisy” channel that performs as follows: with probability p the
transmitted and the received digits are different. [t is called a binary symmetric
channel (see Fig. 10). Suppose that a 0 is emitted with probability n, and a 1
with probability 7; = 1 — m,. What is the probability of obtaining 1 at the
receiving end?

Figure 10. The binary symmetric channel.

Solution. Call X and Y the input and output random variables. Then
PY=1)=P(Y=1|X=0P(X=0)+P(Y=1/X=1)P(X =1)

that is
PY=1)=pn,+ (1 —p)n,.

5.2. A Small Bestiary of Exercises

The Intuitive Attack on Probabilistic Problems. One sometimes feels that a
complete formalization of a probabilistic problem in the (Q,.% . P) framework
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is not necessary and that the steps leading to the construction of the proba-
bilistic model can be avoided when a direct formulation in terms of events is
adopted. We will give an instance of this kind of “elementary” problem, which
is usually stated in everyday language.

ExaMpPLE 9 (The Bridge Problem). Two locations 4 and B are linked by three
different paths and each path contains a number of mobile bridges that can
be in the lifted position with a probability indicated in Fig. 11. The bridges
are lifted independently. What is the probability that A4 is accessible from B,
i.c.. that there exists at least one path with no bridge lifted?

0.25 0.25

o // . 04 \ s
\_/‘0.1 A _0,1/

Figure 11. All bridges up.

Solution. The usual (and efficient) approach to this type of problem is to forget
about the formal (Q, %, P) model and directly define the events of interest. For
instance, U, will be the event “no bridge lifted in the upper path.” Defining
similarly U, and Us, we see that the probability to be computed is that of
U, u U, u Uy, or by de Morgan’s law, that of U nU,nU,.ie, 1 —PU N
U, nUy) = | — P(U,)P(U,)P(Uy), where the last equality is obtained in view
of the independence of the bridges in different paths. Letting now U, =
“bridge one in the upper path is not lifted” and U{ = “bridge two in the upper
path is not lifted”. we have U; = U] n U, therefore, in view of the indepen-
dence of the bridges. P(U;) =1 P(U;) =1 — P(U!"YP(U?). We must now
use the data P(U!)=1—025 PWUZ) =1-025 to obtain P(U,)=
I~ (0.75)2 Similarly P(U,) = 1 — 0.6 and P(U;) = 1 — (0.9)*. The final result
is 1 — (0.4375)(0.4)(0.271) = 0.952575.

We now propose a series of exercises stated in nonmathematical language.
The reader will have to interpret the statements and introduce hypotheses of
independence and conditional independence when they are missing and if they
are plausible.

E12 Exercise. To detect veineria (an imaginary disease of the veins), doctors
apply a test, which, if the patient suffers from such disease, gives a positive
result in 999, of the cases. However, it may happen that a healthy subject
obtains a positive result in 2°, of the cases. Statistical data show that one
paticnt out of 1,000 “has it.” What is the probability for a patient who scored
positive on the test to be veinerious?

E13 Exercise. Professor Nebulous travels from Los Angeles to Paris with stop
overs in New York and London. At cach stop his luggage is transferred from
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one plane to another. In each airport, including Los Angeles, chances are
that with probability p his luggage is not placed in the right plane. Pro-
fessor Nebulous finds that his suitcase has not reached Paris. What are the
chances that the mishap took place in Los Angeles, New York, and London,
respectively?

E14 Exercise. Two factories A and B manufacture watches. Factory A pro-
duces on the average one defective item for every 100 items, whereas B
produces only one for every 200. A retailer receives a case of watches from
one of the two above factories, but he does not know from which one. He
checks the first watch and it works. What is the probability that the second
watch he will check is good?

E15 Exercise. Two numbers are selected independently at random in the
interval [0,1]. You are told that the smaller one is less than 3. What is the
probability that the larger one is greater than 3?

E16 Exercise. There are three cards identical in all respects but the color. The
first one is red on both sides, the second one is white on both sides, and the
third one is red on one side and white on the other (see Fig. 12). A dealer
selects one card at random and puts it on the table without looking. Having
not watched these operations, you look at the exposed face of the card and
see that it is red. What is the probability that the hidden face is also red?

First card Second card Third card

side 1

First card Second card Third card

side 2

Figure 12. Three cards.

6. Counting and Probability

A number of problems in Probability reduce to counting the elements in a
finite set. The general setting is as follows. The set Q of all possible outcomes
is finite, and all outcomes w € Q have the same probability p(w) = P({w}), which
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must be equal to 1/card Q* since ) .o p(w) = 1. An event 4 is a collection of
“favorable” outcomes, and its probability is P(A) = Y, 4 P({w}), so that

_ card 4

" cardQ (35)

P(A)

Therefore, one must count the elements of 4 and Q. The art of counting is
called Combinatorics and is a rich area of mathematics. We shall now give the
first elements of Combinatorics and apply them to simple situations.

Counting Injections (Ordered Arrangements without Repetition). Let E and F
be two finite sets, and denote p = card E, n = card F. Also suppose, without

—
M —

[
w

(a) An injection from £={1, 2, 3, 4,5} into

2 2
3 3
4 4
5 5

(b) A permutation of £={1, 2, 3,4, 5}.

O EE]
OO EIEE]

(c) The same unordered arrangement.

Figure 13. Arrangements.

* If E is a set, card E is the cardinality of E, that is. when E is finite, the number of elements of E.
Another notation is | E|.
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loss of generality, that E = {1,2,..., p}. We are going to count the functions
f: E — F, which are injections, i.e., such that there exists no pair i, je E, i # j,
with f(i) = f(j). Clearly, if p > n, there is no such function. If p < n, the number
of injections from E into F is

n!

ProOF. To construct an injection f: E — F, one must first select f(1) in F.
There are n possibilities. Now, once f(1)is chosen, there are only n — 1 possible
choices for f(2) since f(2) must differ from f(1), etc. until we choose f(p) among
the (n — p 4+ 1) remaining possibilities, ie., in F — {f(1),....f(p — 1)}. In
summary, we have n(n — 1)...(n — p + 1) possibilities for f. 0O

Permutations. A special case of interest occurs when n = p. In this case, from
Eq. (36), we see that A, = n!. Now, if card E = card F, an injection of E into F
is necessarily a bijection. Recalling that by definition a permutation of E is a
bijection of E into itself, we see by specializing to the case E = F, that the
number of permutations of a set with n elements is

P,=n!|. (37)

Counting Subsets of a Given Size. Now let F be a finite set with n = card F
elements. We ask the question, How many different subsets of p elements
(p < n) are there? If we had asked, How many ordered subsets of F with p
elements are there?, the answer would have been 4% because such an ordered
subset

{x1,...,x,} (x;eF)

is, since i # j implies x; # x;, identifiable with an injection f: {1,...,p} > F
defined by f(i) = x;. But for our problem, we have been counting too much.
Indeed, all permutations of the ordered subset {x,,...,x,} represent the same
(unordered) subset. Therefore, the number of different subsets of F with p
elements is A} divided by the number p! of permutations of a set with p
elements.

In summary, let F be a set with card F = n elements, and let p < n. The
number of subsets of F with p elements is

n n!
(p) == p)lp! (38)

where (}) is a symbol defined by the right-hand side of Eq. (38).
Let now F be a finite set with card F = n elements. How many subsets of

<
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F are there? One could answer with ) 7_(}), and this is true if we use the
convention that (3) = 1 (or equivalently 0! = 1). [Recall that the void set J
is a subset of F, and it is the only subset of F with 0 elements. Formula (38)
is thus valid for p = 0 with the above convention.]

We will prove now that the number of subsets of F is 2", and therefore

()

Let x,, X,,..., X, be an enumeration of F. To any subset of F there corresponds
a sequence of length n of 0’s and 1's, where there is a 1 in the i position if
and only if x; is included in the subset. Conversely, to any sequence of length
nof 0s and 1’s, there corresponds a subset of F consisting of all x;’s for which
the ith digit of the sequence is 1. Therefore, the number of subsets of I is equal
to the number of sequences of length »n of 0’s and 1I’s, which is 2".

The Binomial Formula. Formula (39) is a particular case of the binomial
formula

(x+y =Y <n>x"y"_" (x,yeR). (40)
p=0 \P
It suffices to let x = y = 1 in Eq. (40) to obtain Eq. (39).

Proor OF Eq. (40). Let x;, y; (1 <i<n) be real numbers. The product
[17=, (x; + y;) is formed of all possible products x; x;,...x; y;, ... ¥, , where

i,...,i Yis a subset of {1,...,n}, and {j,,...,j.—,} is the complement of
1 Jl ] P
{iy,....i,}in {1,...,n}. Therefore,
n n
[T +y)=23 Y Xi oo Xi) Vi Vi,
i=1 p=0 ligyeeipf
ligaoip) S{loin]

The second Y in the right-hand side of this equality contains (3) elements,
since there are (%) different subsets {i,,...,i,} of p elements of {1,...,n}. Now
letting x; = x, y; = y (1 < i < n), we obtain the binomial formula. O

In view of the symmetric roles of x and y in Eq. (40),
0.
p n—p
Another important formula is Pascal’s formula (Fig. 14).
— -1
(-G “
p p—1 p

It is obtained by selecting an element x, € F and observing that the subsets of
p elements either contain x, or do not contain x;.
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D
n 0O 1 2 3 4 5 6 7 8 9 10
0 1

1 1 1

2 1 2 1

3113 3 1

4 1 4 6 4 1

5 1 5 10 10 S l

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

Figure 14. Pascal’s array. The entry (n, p)is (). Pascal’s array is constructed as follows:
first fill the first column and the diagonal with 1's, and then fill the rest of the lower
triangle by applying formula (42).

An“Urn Problem.” There is an urn containing N, black balls and N, red balls.
You draw at random # balls from the urn (n < N; + N,) (Fig. 15). What is the
probability that you have k black balls [0 < k < inf(N,,n)]?

Figure 15. The urn problem.

Solution. The set of outcomes Q is the family of all subsets w of n balls among
the N, + N, balls in the urn. Therefore,

N, + Nz)

card Q = (
n

Now you must count the subsets w with k black balls and n — k red balls. To
form such a set, you first form a set of k black balls among the N, black balls,
and there are (%) possibilities. To each such subset of k black balls, you must
associate a subset of n — k red balls. This multiplies the possibilities by (,¥3).
Thus, if 4 is the number of subsets of n balls among the N, + N, balls in the
urn which consist of k black balls and n — k red balls,
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wur= (1))
G

E17 Exercise. There are n points on a circumference. Two are chosen ran-
domly (Fig. 16). What is the probability p, that they are neighbors?

The answer is therefore

P(4) =

Figure 16. Illustration of Exercise E17. Here n = 8, and the pair (3, 6) has been drawn.

E18 Exercise. An urn contains N balls numbered from 1 to N. Someone draws
nballs (1 < n < N) simultaneously from the urn. What is the probability that
the lowest number drawn is k(k < N — n)?

7. Concrete Probability Spaces

Some beginners have no problem in accepting the notion of a random vari-
able. For them it is rather intuitive. When speaking of a random variable X,
they think: this is just a random number, i.e. “something” that takes random
values. And this randomness is somehow embodied in the c.df F(x)=
P(X < x), where F(b) — F(a) measures the “chance” of obtaining a value in
the interval (a, b].

Another category of students, with a different psychology, prefer to think
of “something that takes values” as a function. The (Q, %, P) formalism is made
for them, because it says that a random variable X is just a function, in the
ordinary sense, of weQ [with in addition a rather innocuous requirement,
namely (11), but that is not essential at this point of the discussion]. It is not
the function X, that is random, but the argument w; and X () is the random
number, not X.

For the student who prefers to consider X as a function of w, the nature of
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w must be made precise. If he does not like the vagueness of a phrase like “X
is a random number,” he will most probably also want to know what (Q, #, P)
really is. The discussion to follow is intended to shed some light on this point.

The manner in which Probability was introduced in Section 1 is abstract
and axiomatic: one starts with an abstract probability space (Q, %, P), which
is given but not specified, and where % and P are assumed to satisfy a few
axioms.

In Subsection 2.2 two concrete probability spaces concerning elementary
probabilistic models (the three-dice game and the random point in the unit
square) were constructed. They are called concrete probability spaces because
the sample space Q is described in terms of “concrete” mathematical objects:
in the examples of Subsection 2.2., Q was either the finite set {1,2,3,4,5, 6}3 or
the unit square in R2. Also in Illustration 2 at the end of this chapter, featuring
the famous ballot problem, Q is a finite set, a typical element of which is a
non-decreasing function f: {0,1,...,b} - {0,1,...,a} such that f(b) = a. In
each case, # and P are constructed and the axioms of probability are
verified.

When the sample space is finite, the construction of # and P is very simple:
take for & the family of all subsets of Q—and this is a o-field indeed, associate
to each w e Q a non-negative number p(w) such that .o p(w) = 1, and define
P(A) =Y, 4 p(w). This type of construction is used in the three-dice model
and in the ballot problem.

In the example of Subsection 2.2, relative to a random point in the unit
square the construction was not too difficult either, although some fine
mathematical points have been left aside and taken for intuitively clear. For
instance, Q being a unit square of R?, namely [0, 1]%, % was defined to be the
family of subsets of Q for which the area can be defined. Deep and somewhat
difficult mathematical results are hidden behind the phrase “for which the area
can be defined.” The mathematical theory behind it is the Lebesgue Theory of
Measure and Integration. It is not in the scope of the present introductory
text. As a matter of fact one can profitably study Probability Theory without
knowing Integration Theory, at least up to a certain point. Of course knowl-
edge of Integration Theory helps and sometimes it becomes a necessity, but
only in the more advanced topics.

Lebesgue theory states, in the particular case of interest to us, that there
exists a o-field # on Q = [0, 1]? for which the “area” can be defined. The
“area” of A is called the Lebesgue measure of A. Of course for rectangles and
for subsets of 4 with a familiar shape (triangles, circles, etc.) the Lebesgue
measure coincides with the area as it is defined in high school mathematics.
So why use Lebesgue theory when high school mathematics suffices? An
answer is: Lebesgue theory is able to consider sample spaces much more
complex than a square; an example will be given soon. Another answer, more
technical, is the following: the class of subsets of the square for which the
elementary area can be defined is not a g-field. This is why Lebesgue defined
Z to be the smallest o-field containing all the rectangles in the square Q. Tt
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is not difficult to show that such .# exists, but the problem with this definition
is that it is not constructive, and therefore one can define the Lebesgue measure
of a set in .# only in a nonconstructive way. Lebesgue proved the following
theorem: there exists a unique set function P: # — [0, 1] associating with each
Ae 7 its Lebesgue measure P(A), a set function that is ¢-additive and is such
that if 4 is a rectangle [a,b] x [¢,d], then P[A] = (b — a) (¢ — d), the area of
A. Moreover, the Lebesgue measure and the area are the same for “ordinary”
sets such as sets bounded by a piecewise smooth curve.

Now one can wonder: why should one insist on having a o-field of events?
Who cares to compute the probability that the random point w falls into a
pathological set that cannot even be described?

In the specific example concerning a random point in the unit square it is
true that nobody really needs to have a o-field of events. But in the abstract
definition of (Q, #, P), the o-field property of # cannot be dispensed with.
This will now be explained in one of the most interesting models of Probability
Theory from the theoretical point of view.

An Infinite Sequence of Heads and Tails Played with a Fair Coin. Here, Q is
the interval (0, 1], # is the smallest o-field on Q containing ail the segments
[a,b] of (0, 1], and for any Ae€.#, P(A) is the Lebesgue measure (“length”) of
A, that is to say the unique probability measure P on (Q, %) such that for any
A = [a,b] =(0,1], P(A) = b — a. Here again the existence and uniqueness of
such P is a theoretical result of Measure Theory that will be accepted without
proof in this book.

It is claimed that (2, .#, P), so constructed, aptly models not only a random
point on the unit segment but also infinite games of heads and tails with a fair
coin. This claim will now be examined.

Each we (0, 1] can be expressed in binary form as

w=0wwmw;... (43)

wherc w, is 0 or 1. Such development is called dyadic, and it is unique if one
requires that there be an infinity of 1’s in it for any w. For instance the number
w = § will be written not as 0.01000... but instead as 0.00111111.... Fig. 17
shows how w, is obtained from w.

0 1/8 1/4  3/8 1/2  5/8 3/4 /8 1

14 v Y I VAR, T4 /e BV |

iy BAY 5 A AN BAY T BAN 1

@1 0 s 1 1

wy 0 t ] t 0 } 1 —

w fe—te t } te +e + —
To T I 0o 1 0 1

Figure 17
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Now define for any n the random variable X, by
X,(0) = w,. (44)

That is, X,(w) is the nth term in the dyadic development of we(0, 1]. The set
{w] X,(w) = 0} is the sum Y 2"~ (2k-27",(2k + 1)2°"] with total length .
Thus P(X, = 0) = 3, and similarly P(X, = 1) = .

The event {X, = 1, X, = 0,X; = 1} is the subset of (0, 1] pictured in Fig.
18, namely (3,3].

0 1/8 1/4 3/8 1/2 5/8 34 7/8 |
| | l | ¢ @ - 1 J
AN J

w=0.101 XXXX...

Figure 18. Theevent {X, =1,X, =0,X, = 1}.

[ts probability (its length) is § and therefore P(X; = 1, X, =0,X, = 1) =
P(X,; = 1)P(X, = 0)P(X; = 1). More generally, it is seen that P(X, = a,,
X, =a,,....,X,=a,) = (&) for any sequence a,, a,, ..., a, of 0’s and 1’s.
Therefore

P(X,=ay,....X,=a,)=P(X,=a,)...P(X, =a,) | (45)

This shows that for all n > 1 the random variables X, ..., X, are independent,
with values 0 and 1, and that P(X, = 1) = P(X,=0) = 3.

Now if X, is interpreted as the result of the nth toss of a fair coin (say 0 for
“tails” and 1 for “heads”), we have a concrete probabilistic model for the game
of heads and tails with a fair coin. The concreteness of the model is, one must
admit, very relative, but the interval (0, 1] is a somewhat concrete object for
a mathematician. But even a non-mathematician should be satisfied with
such a model because it features the nth toss of the coin (the random variable
X,), the coin is fair (Pr. (heads) = Pr. (tails) = 1) and the successive tosses
are independent.

Note that once God has selected w on (0, 1] at random, the whole sequence
X (w), X;(w), ... is known to Him, but He will show it to you progressively,
toss after toss. Any other probabilistic model for an infinite game of heads
and tails must feature random variables X, which are functions of w, and
therefore w is first drawn from Q and then the values X, (). X, (), ...—the
values of the functions X, X, ... at w—are “instantly” available, although
in practice index n plays the role of time and X,(w) is shown to you only at
the nth stage of the game.

It must now be checked that this probability model is in accord with our
intuition of probability as idealization of empirical frequency. More explicitly
consider the random variable Z, defined by Z,(w) = (X,(w) + -+ + X, (w))/n.
Thic ic the emnirical frequency of heads in n tosses.



30 1. Basic Concepts and Elementary Models

It is “known from experience” that Z,(w) tends to 1 as n goes to oo.

Probabilists add “with probability 1.” They do this in order to take care of
an w such as w = 0.001111111111... that is to say w = %, and of other w’s of
a pathological kind for which Z,(w) does not tend to § as n — cc. The claim
of Probabilists is that such w’s are indeed pathological in the sense that

P({wllimZ,() = $}) =1|. (46)

This is the famous strong law of large numbers for heads and tails. It is a
physical law in some sense, but here, in the mathematical setting of Probability
Theory, it becomes a theorem, and it was proved by Borel in 1909. The proof
is given in Chapter 5.

Now, look at the subset of (0, 1], the set of @’s such that lim Z,(w) = 3. It
is not a set for which one can define a length as one would do in high school.
Borel’s strong law of large numbers states that its Lebesgue measure (length)
is 1, the length of the whole segment (0, 1]. But yet it is not the whole segment
(0,1]. A lot of w’s in (0, 1] are such that lim Z,(w) does not exist or, if it exists,
is not equal to 4. For instance any w of the form w = k/2" is such that
lim Z,(w) = 1 # %, and there are many such w’s, so many that in a segment of
arbitrarily small length there is an infinity of them. This should convince you
that high school length is out, at least for our purpose, because in elementary
length theory, sets with so many holes are not considered.

Also the set {w|lim Z,(w) = 3} is not obtainable by application of a finite
number of elementary set operations (U, n and complementation) to intervals
of Q = (0, 1], but it can nevertheless be shown to be in %, the smallest o-field
on Q containing the intervals. It is for that kind of reason that one wants to
consider abstract probability spaces (Q, #, P) for which # is a o-field. It is a
natural structure, especially when one has to consider infinite sequences of
random variables, as will be done in Chapter 5, where the convergence of such
sequences is studied.

The concrete probability space (Q, %, P) where Q =(0,1] and P is the
“length” or Lebesgue measure is just one among the probabilistic models of
an infinite game of heads and tails with a fair coin. There are many other
models available for this game. One of them will now be briefly described.

Take Q to be the set of sequences taking their values in {0,1}: w =
(w,,n = 1) where w, =0 or 1. Define X, by X,(w) = w, and let # be the
smallest o-field on Q that contains the subsets {w|w, = 1}, n = 1. Since it is
a g-field, it also contains the set {w|w, = 0} the complement of {w|w, = 1},
and the sets {w|w, = a,,...,0, = a,} for all n = 1 and any sequence a,, ...,
a, taking the values 0 or 1.

Since {w|w, = a,} = {w|X,(w) = a,}, we see that when Q is equipped with
the o-field #, the X,’s become random variables.

Now a theorem of Measure Theory will be invoked: it says that there exists
one and only one probability measure P on (Q,.# ) such that
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P({w|X (@) =ay,.... X (0) = a,}) = G)" |. 47

foralln > 1,all ay,...,a,e{0,1}.

Thus we have obtained another model for the infinite game of heads and
tails with a fair coin. This model is more natural than the previous one because
here w = (X (w), X,(w),...)i.e. w is the result of the infinite sequence of tosses.
However, we have been forced to take for granted a difficult result of Measure
Theory, namely the existence and uniqueness of P satisfying (47). In the
concrete model where Q = (0, 1] we have also taken for granted the existence
of the Lebesgue measure (“length”). The fact is that in virtually every concrete
probability space where Q is not finite or denumerable, a theorem of existence
must be invoked. Measure theory provides such existence theorems, and some
of them are so powerful that one should not worry about the existence of a
concrete probability space, at least in the probabilistic models that will be
encountered in this book.

Illustration 1. A Simple Model in Genetics:
Mendel’s Law and Hardy—
Weinberg’s Theorem

In diploid organisms (you are one of them!) each hereditary character is
carried by a pair of genes. We will consider the situation in which each gene
can take two forms called alleles, denoted a and A. Such was the case in the
historical experiments performed in 1865 by the Czech monk Gregory Mendel
who studied the hereditary transmission of the nature of the skin in a species
of green peas. The two alleles corresponding to the gene or character “nature
of the skin” are a for “wrinkled” and A for “smooth”. The genes are grouped
into pairs and there are two alleles, thus three genotypes are possible for the
character under study: aa, Aa (same as aA), and AA. With each genotype is
associated a phenotype which is the external appearance corresponding to the
genotype. Genotypes aa and AA have different phenotypes (otherwise no
character could be isolated), and the phenotype of Aa lies somewhere between
the phenotypes of aa and AA4. Sometimes, an allele is dominant, e.g., 4, and
the phenotype of Aa is then the same as the phenotype of 4A4.

During the reproduction process, each of the two parents contributes to the
genetic heritage of their descendant by providing one allele of their pair. This
is done by the intermediary of the reproductive cells called gametes (in the
human species, the spermatozoid and the ovula) which carry only one gene of
the pair of genes characteristic of each parent. The gene carried by the gamete
is chosen at random among the pair of genes of the parent. The selection
procedure for the genotype of the descendant is summarized in Fig. 19. The
actual process occurring in the reproduction of diploid cells is called meiosis.
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Parent 1| Parent 2

has genotype has genotype
Aa AA
Gamete 1 Gamete 2
carries allele carries allele
a A

(it had the *‘choice” (it had no

between A and a) other choice)

Gametes 1 and 2 unite
and provide
descendant with
genotype
Aa

Figure 19. The selection of a genotype.

A given cell possesses two chromosomes. A chromosome can be viewed as
a string of genes, each gene being at a specific location in the chain (Fig. 20).

M Chromosome

Location of
the gene

(here under the form, or allele, 4)
Figure 20. A schematic representation of a chromosome.

The chromosomes double and four new cells are formed for every chromo-
some (Fig. 21).

J

One parent cell

S

> Four gametes

|
i

/TN
OO O ®

-

Figure 21. Meiosis.
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Let us start from an idealistically infinite population where the genotypes
are found in the following proportions

AA Aa aa
x 12z:y.
Here x, y, and z are numbers between 0 and 1, and
x+2z+y=1

The two parents are chosen independently (random mating), and their gamete
chooses an allele at random in the pair carried by the corresponding parent.

E19 Exercise. What is the genotypic distribution of the second generation?

Numerical applications: x =y =2z=%x=y=z=hLx=4 y=12:=1,
—y =1 5

x=y=35,2z=0.

E20 Exercise. Show that the genotypic distributions of all generations, starting
from the third one, are the same. (This result was discovered by Hardy and
Weinberg.) Show that the stationary distribution depends only on the propor-
tion ¢ of alleles of type A in the initial population.

Illustration 2. The Art of Counting: The Ballot
Problem and the Reflection Principle

In an election, candidates I and IT have obtained a and b votes respectively.
Candidate I won, that is, a > b. What is the probability that in the course of
the vote counting procedure, candidate I has always had the lead?

Solution. The vote counting procedure is represented by a path from (0, 0) to
(b, a) (Fig. 22). Therefore, we shall identify an outcome w of the vote counting
procedure to such a path. The set of all possible outcomes being Q, we shall

prove later that
card Q = (a + b) = (a * b>. (48)
a b

Let A be the set of paths of Q that do not meet the diagonal. This represents
the set of favorable outcomes, i.c., the outcomes for which A has the lead
throughout the vote-counting procedure. The path @ of Fig. 22(i) is not a
favorable path, whereas that of Fig. 22(ii) is a favorable path.

We must now evaluate card A to find P(A4) according to Eq. (35). The
following trick is proposed. We consider three disjoint subsets of Q (Fig. 23):

A has already been defined.
B is the set of unfavorable paths that start well for candidate L, i.e., the first
ballot out of the box bears the name of 1.
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N
ch——————x_

i) (i)

Figure 22. A schematic representation of the vote counting procedure (in (i1), candidate
I leads throughout).

|
|
|
|
|
|
|
|
1

0 b 0 b 0 I b
a pathin A4 a path in B apathinC

Figure 23. In cases B and C, I does not lead throughout. In case B the first vote is
favorable to I, whereas in case C it is favorable to I1.

C is the set of unfavorable paths that start well for candidate I1.
Clearly,
card Q = card 4 + card B + card C. 49)

If we admit Eq. (48), card C is easy to evaluate. It is the number of paths
from (1, 0) to (b, a) or, equivalently, the number of paths from (0,0) to (b — 1, a),

1.e.,
b—1 —1
cardC= (%7 (a1, (50)
b—1 a
It turns out (and we shall prove it below) that
card B = card C. (51)

Therefore, in view of Egs. (49) and (51),
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card A card C
card Q card Q’
and in view of Eqs. (48) and (50),
(a +b— l)
card A a (a+b—1)alb!
(4) card Q a+b (a + b)al(b — 1)
a
Finally,
p(ay=2"" (52)
Ta+b

The proof will be complete if we show that Eqgs. (48) and (51) are indeed true.

ProOF OF EQ. (51) (The “Reflection Principle”). The proof consists in finding
a bijection between B and C since a bijection between two sets exist if and
only if the two sets have the same cardinality. The bijection f: B — Cis defined
as shown in Fig. 24. A path we B must meet the diagonal. Let (u,u) be the
first point at which @ € B meets the diagonal. Then f(w) and w are the same
from (u, u) to (b, a), and f(w) and w are symmetric with respect to the diagonal
from (0,0) to (u,u). The mapping f is clearly onto and into, i.e., bijective.

O

by

e

Figure 24. A path and its reflection.

PROOF OF EQ. (48). A vote-counting procedure is representable by a sequence
of length a + b of I’s and II'’s, with a I's and b II’s. The interpretation of such
a sequence is that you find I in position i if and only if the ith ballot is in favor

of I. The positions occupied by the I's in a given such sequence is {iy,...,i,} <
{1,...,a + b}. Hence, Eq. (48) in view of Eq. (38).
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[llustration 3. Bertrand’s Paradox

A random chord CQis drawn on the unit circle. What is the probability that
its length exceeds /3, the length of the side of the equilateral triangle inscribed
in the unit circle (see Fig. 25)?

L5

C

Figure 25. The random chord.

This is a famous example of an incompletely specified problem. One must
tell what “random chord” means. How is it “randomly”chosen? The French
mathematician Bertrand proposed three different answers, and this is the so-
called Bertrand’s paradox. The different answers correspond to actually dif-
ferent probabilistic models, i.e different concrete probability spaces (Q, #, P).

First Model. Take for Q the unit disk with the o-field % of “subsets for which
area is defined,” and let for any A€ #, P(A) = area of A divided by the area
of the unit disk. This is indeed a probability since P(€2) = 1,and P is a multiple
of the Lebesgue measure (see Section 7) on the disk. Now C and D are
constructed as Fig. 26 indicates, i.c CD is perpendicular to Ow. The length of
CD is called X () since it is a function of w. This defines a random variable,
and we want to compute P(X > \/3). But the event {w|0w > 3} is the shaded
domain of Fig. 26(b). Thus P(X > \/3) = 3. Therefore (first answer) the prob-
ability asked by Bertrand is 3.

C

(a)

Figure 26. First construction of a random chord.

Second Model. Take for Q the unit circle with the o-field # of “subsets for
which length can be defined,” and for any 4 € %, P(4) = length of A divided
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by 2r (note that P(Q) = 1 as required). The random sample w is a point of the
circle. C being fixed, take D = w (see Fig. 27). Thus CD is indeed a random
chord (depending on w) with a random length X (w). The set {w| X (w) > \/5}
is the portion of the unit circle enhanced in Fig. 27(b), and the second answer
to Bertrand’s problem is therefore $.

D=w
C
c ‘ ]
(a) (b)

Figure 27. Second construction of a random chord.

Third Model. Take Q = [0, 1] (see Figure 28) with the o-field .# of “subsets
for which the length can be defined,” and let P(A4) = length of 4. Define CD
to be the chord passing through w and perpendicular to the Ox axis. It is clear
that the length X (w) of CD exceeds \/3 if and only if w € [, 1]. Thus the third
answer to Bertrand’s problem is 1.

c
'} 1 1
D
(a) (b)

Figure 28. Third construction of a random chord.

Thus we have obtained 3 answers: 3, 4, and 4! There is however nothing
really surprising about this, since the concrete probability models corre-
sponding to the above answers are different. Which one is the “good” one is
another question. The correct model depends on the device used to throw a
chord at random. The three devices used above are purely intellectual, and
most likely, do not correspond to any physical device. In order to discriminate
between competing probabilistic models one must resort to statistical analysis
which is essentially based on two results of Probability Theory: the strong lav
of large numbers and the central limit theorem. This will be discussed i
Chapter 5.
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SOLUTIONS FOR CHAPTER |

El. From the g-additivity axiom, P(| )i, 4,) = P iz, A,) = Y iy P(4}). Also
Al = A,, and therefore by the monotonicity property (5), P(4;) < P(4,).

E2. We do the second formula only. If we write P(4) + P(B) + P(C) and compare it
with P(4 U B U C), we see that we have counted the striped area twice and
the dotted area three times. The dotted area is P(4 n B C), and the striped
area is P(An B) + P(An C) + P(B~ C) minus three times the dotted area.
Finally, P(AUBuU C)= P(4)+ P(B)+ P(C) —2P(AnBAC)— (P(An B) +
P(A~C)+ P(Bn C)—3P(An Bn (), which gives the desired result after sim-
plification. Comment: Try formalizing the above proof.

E3. Ifa>2{Z<a)=QIfa<0,{Z<a}= Ifae[0,2]:

Y

0 l+a x
Casea €1, 2] Casea € (0, 1]

This figure shows that the set {Z < a} is indeed a set for which the area is well
defined.

az?2, P({Z<a}))=PQ)=1
a<0, P{Z<a})=P(F)=0

a?
ae[0,1], P{Z <a})=—.
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E4. (o if x<0
2
% if xe[0,1]
F(x) = < p ,
_CE e e
2
L1 if x=2
(0 if x<0
dF(x) X if xe[0,1]
flx) = =< ,
dx 2—x if xe[l1,2]
L0 if x>2
4 f(x)
|
|
.'
|
|
|
0 1 2 X

E5. The only way to obtain X = 18 is X, = X, = X; = 6. The corresponding  is
w = {6,6,6,}. Therefore,

P(X = 18) = P({w| X (0) = 18}) = P({w}) = ()’.
There are 10 different ways of obtaining X = 6:
X, =1, X,=1, X,=4 w, =(1,1,4)
X, =1, X,=4, X;=1 w, = (1,4,1)

X, =4, X,=1, Xy=1 w3 =(4,1,1)
X, =2 X,=1 X,= w, =(2,1,3)
X, =1, X,=2, X;= ws =(1,2,3)
X, =2, X,=3, X;=1 =231
X, =3 X,=1 X,;= w,=(3,1,2)

X,=1, X,=3 X,=2 wg = (1,3,2)
X, =3 X,=2 Xy=1 we = (3,2, 1)
X, =2, X,=2 Xy=2  w;0=1(222)

Therefore, P(X =6)=P({w]|X()=6})=P({®,,0,,...,0,0})=Y 1% P(lw;})=
10. (L)°.
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E6. Apply the inclusion - exclusion formula (see E2) to obtain P(4 n B) and compare

E7.

ES.

EO9.

E10.

Elt.

it to P(A)P(B).

| P(AmBj } P(A)P(B) | Independence |

Case | 0 09 | 0.09 Yes \
Case2 0. 74 024 Yes |
. t . RS S— —— ﬁ

Case 3 0()7 ; 0.15 No

We must check. for instance, that P(4, n A, N A;) = P(4,)P(A4,)P(4;). But
P(A,mnA,nA))=P(A,nAy) - P(A,nA,nA;) since A, nA,nA;=
A,n Ay — A, n Ay, Ay, Therefore, P(A,nA,n A, ) P(A,)P(A;) —
P(A)P(A;)P(A3) = (1 — P(A))P(A,)P(A;) = P(A,)P(A;) P(A;).

P(A) = P({w,,m,}) = P(lw,} + {w,}) =L + § = 1. Similarly, P(B) = P(C) =
4. Therefore. P(A " B C) = P(F) = 0 # P(A)P(B)P(C). However, P(4 " B) =
P(lm,}) =} = P(A)P(B) and similarly for 4 ~n C and B~ C.

Clearly P(A) = 0. Also

P(AnC)
Ped) = < |

since P(A n C) < P(A).

pigy - MROO PO
TPy PO

Let (A,.n = 1) be a sequence of disjoint events. Then

P(A, ) P(A,D|C)

PAA|D) = =]
R X1 TR e
P(A,C,D)/P(C) P(A,C,D
_ ( ) ()= ( )=P(A|C,D).
P(C,D)/P(C) P(C,D)
One way of obtaining S, =k is X; =1,.... X; =1 where | <i; <i, < <
i <nand X; =0forj #i,,i,...., 1. The probability of such an event is, by the
independence assumption, P(X; =1)...P(X, = DP(X; =0)...P(X; ,=0)
[where {j;...., Jaox) is the set 11,2,...,n} — liy,... i} ] e, p*(1 — p)"*. Now

the event S, = k is the sum of all the above events {X; =1,..., X, =1LX; =
0..... X;, . =0 for all sets of indices }i;,..., iy} such that I <i, <i, < <
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E12.

E13.

i, < n.There are n!/[k!(n — k)!] such sets of indices. Therefore. by the g-additivity
axiom

P(S,=k)= Z P(X; =1,....X, =1LX;, =0,....X; =0

1<iy<— <ip<n

!
= X pl-prt=g T pl -

1<iy < <ip<n (n — k)!p

Let M be the event “patient is ill,” and + and — be the events “test is positive”
and “test is negative,” respectively. We have the data

P(M) = 0.001, P(+|M) = 0.99, P(+|M) = 0.02,
and we must compute P(M| +). By the retrodiction formula (32),

P(M|+) = P(+IM)P(M)
P(+)
By the formula of incompatible and exhaustive causes [Eq. (34)].
P(+) = P(+|M)P(M) + P(+|M)P(M).
Therfore,

(0.99)(0.001) 1
P(M|+) = ~
(0.99)(0.001) + (0.02)(0.999) ~ 20

Comment: This is a low probability indeed. The important thing is not to miss a
case. In this respect, the test should have a high value for P(+ | M) (here 0.99, but
for 0.99999 we would still have P(M|+) ~ &). The test is probably inexpensive
and perhaps this is why such a large P(+ | M) (here 0.02) is accepted. In medical
practice, if a patient has a positive test, he or she is subjected to another test with
a smaller P(+ |M). The second test will probably be much more expensive than
the first one, otherwise it would have been used in the first place. Using the
expensive test only as a second test “to be sure” is cost-effective because only a
few people obtain a positive result on the first test. Indeed, with the data in the
statement, P(+) = 0.99 x 0.001 + 0.02 x 0.99 ~ 0.021. You see that it is the
quantity P(+ | M) which is crucial in the computation of P(M| + ). For instance,
if we take 0.002 instead of 0.02, we obtain P(M| +) ~ 0.33, and with 0.0002, we
obtain P(M|+) =~ 99/119.

Think of the misplacement procedure as follows: a demoniac probabilist throws
three coins independently and denotes 1 for heads and O for tails. This results in
three random variables X,, X, and X, with values in {0,1}, and with
P(X,=1)=P(X,=1)=P(X;=1) =p. If X, = |, the misplacement happened
in Los Angeles. If X; = 0 and X, = 1, it happened in New York, and if X, =0
and X, =0 and X; = 1, it happened in London. The event M = “the luggage
has been misplaced” is the sum of these three disjoint (incompatible) events and
its probability is therefore P(M)= P(X, =1)+ P(X, =0,X, = 1)+ P(X, =
0,X, =0,X; = 1). It is natural to assume that the staff in different airports
misbehave independently of one another, so that P(M)= P(X, = 1) +
P(X, =0)P(X, = 1) + P(X; = O)P(X, = OP(X; = 1)=p + (1 —pp +
(1 —p)*p=1— (1~ p)®. This result could have been obtained more simply:
PM)y=1—-PM)=1—-P(X,=0,X,=0,X,=0=1— P(X, =0)P(X, =
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E14.

E15.
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0)P(X; =0)=1— (1 — p)®). We want to compute the probabilities x, y, and z
for the luggage to be stranded in Los Angeles, New York, and London, respec-
tively, knowing that it does not reach Paris: x = P(X, = 1|M), y = P(X, =0,
X, = 1|M),z = P(X, =0, X, = 0,X; = 1|M). One finds

p

x = PO, = LMYP(M) = PO, = D/P(M) = 57 s

1 —
Y= PO, = 0.0, = LMYP(M) = POC =0, = 7P = 20 P
z=P(X,=0,X,=0,X;=1,M)/P(M) = P(X, =0,X, = 0,X; = 1)/P(M)

_ = )’
1—-(1—p?
Let X, be the state of the n'® watch in the case, with X, = 1 ifit works and X, = 0

if it does not. Let Y be the factory of origin. We express our a priori ignorance
as to where the case comes from by

P(Y=A)=P(Y=B)=}.
Also, we assume that given Y = A (respectively, Y = B), the states of the succes-
sive watches are independent. For instance,
P(X,=1,X,=0]Y = A) = P(X, = 1]Y = A)P(X, =0|Y = A).
We have the data
P(X,=0]Y = A) =001, P(X, =0]Y = B) = 0.005.
We are required to compute P(X, = 1|X; = 1), that is, P(X; = 1, X, =1)/
P(X, = 1). By the formula of exclusive and exhaustive causes, P(X, = 1, X, =
D=PX,=1L,X,=1Y=AP(Y=A)+PX,=LX,=1Y=BP(Y =
B) = $(99/100)% + £(199/200)%, and P(X, = 1)= P(X, = 1|Y = A)P(Y = A) +
P(X, = 1|Y = B)P(Y = B) = £(99/100) + 3(199/200). Therefore,
99 \? 199\?
— + _
100 200
99 N 199
100 200

P(X,=1|X,=1)=

Comment: We see that the states of two successive watches are not independent,
otherwise P(X, = 1|X, = 1) = P(X, = 1) = 1(99/100) + 4(199/200). However,
the states of two successive watches were supposed to be conditionnally indepen-
dent given the factory of origin.

We can take the model of drawing a point at random in the unit square, since
then the random variables taking their values in [0,1], X and Y, are indepen-
dent (Example 7) and uniformly distributed (Example 6). We have to com-
pute P(sup(X,Y) > 3|inf(X,Y) < 1), that is, P(sup(X,Y) >3, inf(X,Y) = })/
P(inf(X, Y) < }). The sets {sup(X, Y) = 3, inf(X, Y) < 1} and {inf(X, Y) < }} are
pictured in the figure below and have the probabilities (areas) 1/6 and 5/9,
respectively. Hence, the result (1/6)/(5/9) = 3/10.
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y ¥
1 It
7 (1777
4 g
8778 i b7
3 3| s
7 7
0 1 1 x 0 1 31 x
3 3 3
(inf (X, Y) <3} {(sup (X, Y)>3,inf (X, Y) <3}

E16. Call the cards RR, WW, RW. The experiment features two random variables: X

E17.

E18.

E19.

is the card selected at random and Y is the color of the exposed face. We must
compute P(X = RR|Y = R). The reasonable data consists of P(X = RR) =
P(X=WR)=P(X=WW)=%and P(Y=R|X=RR)=1,P(Y=R|X =RW)=
1, P(Y = R|X = WW) = 0. Now,

P(X =RR|Y=R)=P(X =RR,Y = R)/P(Y = R) = P(X = RR)/(P(Y = R)
and
P(Y=R)=P(Y=R|X =RR)P(X =RR) + P(Y=R|X = WW)P(X = WW)
+ P(Y = R|X = WR)P(X = WR)
=134+05+535=2¢=1%

Therefore, P(X = RR|Y = R) = 1:1 = % (not } as some people guess).

For n=2, p, = 1. For n > 3, there are n pairs of points which are neighbors.
Also, in general, there are (3) pairs. The probability to be found is therefore
n/(3)=2/n—1

There are (V) subsets of n balls among N balls. If ball & is in the subset and if it
is the ball with the lowest number, the remaining n — 1 balls must be chosen
among N — k balls (i.e,, k + 1,..., N). This leaves (¥-F) choices. The probability
to be found is therefore (¥ -F)/(}).

The first task consists in providing a probabilistic model. We propose the
following one. The sample space Q is the collection of all quadruples w =
(xy,X3,1,y2) where x; and x, take their values in {44, aA, aa}, and y, and y,
take their values in {4, a}. The four coordinate random variables X,, X,, Y,, Y,
are defined by X, (w) = x,, X,(w) = x;, Y;(w) = y,,and Y,(w) = y,. We interpret
X, and X, as the pairs of genes in parents 1 and 2 respectively. Y, is the allele
chosen by gamete 1 among the alleles of X, with a similar definition for Y,. The
data available are

P(X, = AA) = P(X, = AA)=Xx
P(X, =aa) = P(X, =aa) =y p choice of parents
P(X, = Aa) = P(X, = Aa) = 2z
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P(Y, = A|X, = AA)= 1,P(Y, =a|X, = AA) =0
P(Y, = AlX, =aa)=0,P(Y, =alX, =aa) =
P(Y, = A|X, = Aa) = §,P(Y, = a|X, = Aa) =

choice of allele by
gamete 1

N —

and the similar data for the choice of allele by gamete 2.

One must also add the assumptions of independence of X, and X, and of Y,
and Y,. We are required to compute the genotypic distribution of the second
generation, i.c.,

p=PY, =AY, =A)
qg=P(Y,=a,Y, =q)
2r=P(Y,=AY,=ao0r Y =aY, = A)

We start with the computation of p. In view of the independence of Y, and Y,,
p = P(Y, = A)P(Y, = A). By the rule of exclusive and exhaustive causes,
P(Y, = A) = P(Y, = A|X, = AA)P(X, = AA) + P(Y, = A|X, = A)P(X, =
A+ P(Y, = A|X, = aa)P(X, =aa) = 1-x + 122 + 0y = x + z. Therefore,

p=(x+2>
and symmetry,
a=(y+2"

Now 2r = P(Y, = A, Y, =a) + P(Y, = a,Y, = A), and therefore by symmetry,
r=P(Y, = A, Y, = a). In view of the independence of Y; and Y,, r = P(Y; =
A)P(Y, = a). Finally, in view of previous computations,

2r =2(x + 2)(y + 2).

Numerical Applications.

3 4 3
| Lo, 9 25 30
= — ) = — = - = —, —, po=
Ep YTy TP T 1T 64
1 . Lo
rEY=3 EE =P= 4= =y

E20. Define the functions f|, f,, and f; by

fix,p,2) = (x + 2)*
fix,y,2) = (y + 2)?
f3(x,p,2) = (x + 2)(y + 2).
To be proven: for all nonnegative numbers x, y, z such that x + y + 2z = 1,
filx,y,2) = fillfix,y,2), folx 3,2 [l y,2)) =123,

The third equality, for instance, is
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x+2y+2)=[x+22++2x+2IUy+2° +(y+2x+2)]

It holds since (x +z)2 + (y +2)(x + z2) =(x + 2)(x + 2z + y) = x + z and
(y+22+(y+2)(x+2)=(y+2)(y+ 2z + x) = y + z. The ratio c of alleles of
type A in the initial population is x + z. Now y + z = 1 — ¢. Therefore, the
stationary distribution is

p=c% qg=(1—c¢)?, 2r = 2¢(1 — o).



CHAPTER 2

Discrete Probability

1. Discrete Random Elements

1.1. Discrete Probability Distributions

Let E be a denumerable set (i.e., finite or countable) and let (Q, %, P) be a
probability space. Any function X mapping Qinto E and such that forall xe E,

(Wl X(w)=x}eF l (1

is called a discrete random element of E. When E < R, one would rather refer
to X as a discrete random variable.
Requirement (1) allows us to define

mn=mX=mL %)

The collection [ p(x), x € E] is the distribution of X. It satisfies (see Eq. (18),
Chapter 1)

0<px)<1, Yy px)=1 3)

xeE

ExaMPLE 1 (Single Toss of a Coin). The coin tossing experiment of a single
coin with bias p(0 < p < 1) is described by a discrete random variable X
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taking its values in E = {0, 1} with the distribution
PX=1)=p, PX=0=q=1-p.

EXAMPLE 2 (A Finite Succession of Coin Tosses). Consider the probabilistic
model (Q, #, P) of Chapter 1, Section 7. The sequence (X,,,n > 1) is a sequence
of independent random variables of the type described in Example 1 above.
For each n, one can define a random element with values in E = {0, 1}",
namely, X = (X,,..., X,).

E1 Exercise. What is the distribution of the random element X in Example 2?

ExXAMPLE 3 (The Binomial Distribution). The setting is the same as in Example
2. The discrete random variable

Sn:Xl+”'+Xn (4)

takes its valuesin E = {0, 1,...,n}. Its distribution was obtained in Chapter 1,
Exercise E11, and it was found that P(S, = k) = p, (0 < k < n) where

n!

— k n—k <
Kin —in? 4 O<k<n). (5)

Dk

Distribution (5) is called the binomial distribution of size n and parameter p.
Any discrete random variable Z with values in E = {0,...,n} and admit-
ting this distribution is called a binomial random variable (of size n and
parameter p). This is denoted by Z ~ %(n, p).

EXAMPLE 4 (The Geometric Distribution). Using the same definitions and
notations as in Examples 2 and 3 above, define the random variable T to be
the first time n for which X, = 1 (Fig. 1). If no such nexists, T = oc. Formally,

T = inf{n|X, =1}if{n|X, =1} # &
" | + o0 otherwise.

(6)

The random variable T therefore takes its values in N, .

0o 0 0 0 0 0 1 1 0 1 1
timesn=1 2 3 4 5 6 7 8 9 10 I

For this w, T(w)=7

Figure 1. The geometric random variable.
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E2 Exercise. Show that

Prove that P(T = 5«¢) = 0 or | according to whether p > O or p = 0.

One says that T admits a geometric distribution of parameter p, or equiva-
lently. T is a geometric random variable of parameter p (see Fig. 2). This is
symbolized by T ~ 4(p).

Py
1/2
=1
P=3
1/4
1/8
1/16
1/32
l l 1/64 .-
I n

0 1 2 3 4 5 6 .

Figure 2. A geometric distribution.

E3 Exercise. Show that the geometric distribution has no memory. i.e., for all
ng =1,

P(T=ny+ kI T>ng)=P(T=k | (k=1 @)

ExaMPLE 5 (The Multinomial Distribution). Suppose you have k boxes in
which you place n balls at random in the following manner. The balls are
thrown into the boxes independently of one another, and the probability that
a given ball falls in box i is p; (Fig. 3). Of course,

O<p <1, Zm=lw 9

Let X; be the number of balls found in box i at the end of this procedure. The
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Kg

Figure 3. Placing balls at random in boxes.

random element X = (X,,..., X;) takes its values in the finite set E consisting
of the k-tuples of integers (m,, ..., m,) satisfying

mo4cAme=n | (10)

E4 Exercise. Show that P(X, = m,,..., X; = m) = p(m,,...,m;) where

n!
pimy,....m) = —————pT...pe™* |- (11)
m!...m/!

Examine the case k = 2.

The probability distribution defined by Egs. (9), (10), and (11) is the multi-
nomial distribution of size (n,k) and of parameters (p,,...,p,). Notation
(Xy,---,Xi) ~ M(n,k, P) expresses that (X, ..., X;) is a multinomial random
variable, i.e., admits a multinomial distribution.

ExXAMPLE 6 (The Poisson Distribution). A random variable X that takes its
value in E = N and admits the distribution

k

PX=K=e*t | (>0) (12)

where 4 is a nonnegative real number, is called a Poisson random variable with
parameter A. This is denoted by X ~ %(1). We recall the convention 0! =1
so that P(X = 0) = e * (see Fig. 4).
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P(X = k)e*
9,2 9)2
3 27/8
81/40 A=3
| 81/80
243/560
o 1 2 3 4 5 6 7 . k

Figure 4. A Poisson distribution.

1.2. Expectation

The Real Case. Let X be a random element taking its values in E, with
distribution (p(x),x € E), and let f be a function from E into R. Suppose
moreover that

2. 1fG)lp(x) < co. (13)

xeE

One then defines the expectation of f(X), denoted E[ f(X)], by

ELf(X)]= ZEf(X)P(X) . (14)

ExAMPLE 7. Let X be a Poisson random variable with parameter 4, and let f
be the identity, i.e., f(x) = x. We have

© lk

E[X] = Z ke *—

K=0 k!

W Al.k
E[X*]= ¥ kel
k=0 k!

ES Exercise. Show that if X ~ 2(4), E(X) = Aand E[X?] = 4 + A%
ExaMPLE 8. Let X = (X,..., X,) be the random element of Example 5, admit-

ting the multinomial distribution described by Egs. (9), (10), and (11). Take f
to be the “projection” f(x) = x; where | < i < k. Then

EL/X)]=EX]= Y m- "
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where E is the set of k-tuples of integers (m,,...,m,) such that Y%, m;, = n.
We will not carry out the computation at this point (see Exercise E21).

Condition (13) is not the weakest one under which E[ f(X)] can be defined.
When f is nonnegative, for instance, the series in the right-hand side of Eq.
(14) has a meaning whether or not Eq. (13) is satisfied. However, if Eq. (13) is
not required, E[ f(X)] can be infinite. When Eq. (13) is satisfied, E[ f(X)] is
finite.

The Complex Case. Now let f be a function from E into C (the complex
numbers) of the form

f(x) = g(x) + ih(x) (15)

where i = ,/—1 and g and h are real valued functions such that
Y cerlg(x)|p(x) < oo and Y, g |h(x)|p(x)dx < o0, or, equivalently

ZEIf(X)Ip(X)dx < 0.

The expectation of f(X) is then defined by

E[f(X)] = E[¢(X)] + iE[h(X)] . (16)

EXAMPLE 9. Let X be a Poisson random variable with parameter A, and let
f(x) = s* for some s € C. We have

k

@ ys
E[f(X)] = E[s*] = k;) s"e"ﬁ.

E6 Exercise. Carry out the computation in the Example 9 above to find
E[sX] = e*s™1 (This is the “generating” function of the Poisson distribution.
More details in Section 3.)

Remark (A Question of Consistency). Consider a function f mapping E into
R, and define

Y = f(X). (17)

Random variable Y is a discrete random variable taking its value in F = f(E).
Indeed {w| Y(w) = y} = {0| (X (@) = y} = Usea, {0 X (@) = x} where A4, is
the set of x € E such that f(x) = y, and therefore, since {w|X (w) = x} e Z for
all xeE, {w|Y(w) = y}eZ. Suppose that condition (13) is satisfied. The
question is, can we define E[Y] by formula E[Y] = Y, . yq(y) where [q(y),
ye F] is the distribution of Y, and do we have

2 xp(x) = ZF ya(y) (18)

ye

xeE

as expected?
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E7 Exercise. Prove that the above question has a positive answer.

Properties of Expectation. One of the main properties, linearity, is obvious
from the definitions. It says that if f; and f, are functions from E into C such
that condition (13) is satisfied for f = f; and f = f,, and if A, and 4, are two
complex numbers, then

ELZfi(X) + 24, /,(X)] = LE[/1(X)] + LE[f,(X)]T |. (19)

The other important property of expectation is monotonicity. It says that if
/1 and f, above are restricted to take real values, and if

i) < folx)  (x€E), (20
then

EL/i(X)] < E[f2(X)] | (21)

The reader will easily provide the proof, and will see that Eq. (20) is required
to hold only for those x € E such that p(x) > 0.
By the extension of the triangle inequality to series, we have

ZE f)p(x)| < 3 1f(x)p(x)] = ZEIf(X)IP(X),

xekE

that is,

(22)

[ELA(X)]] < EL1/(X)[]

an inequality frequently used.

Remark. The linearity property of expectation usually appears in the following
form. For two discrete random variables X, and X,

E[X, + X,1=E[X,]+ E[X,] (23)

There is nothing new here; it suffices to consider the random discrete element
X = (X,, X,) and the functions f; and f, defined by f(x) = x; and f,(x) = x,
for all x = (x,, x,). Then Eq. (23) is just

EL£i(X) + f2(X)] = E[fi1(X)] + E[/2(X)].

There is alittle trick often used in computations that is worthwhile mentioning
at this point. Consider a random element X taking its values in E, and let C
be a subset of E. The indicator function of C, denoted 1, is a function from
E into R defined by
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1 if xeC
]C(X)z{o if x¢C. (24)

Applying definition (14) to f = 1., one obtains
E[1c(X)] = Y 1c(x)p(x) = Y p(x).
xekE

xeC

But

Y p= Y P(X:x):P(Z {XzX})zP(XeC).
xeC

xeC xeC

Therefore,

E[lcm] = P(XeC) | (25)

The above remark and the linearity and monotonicity properties of expec-
tation will now be applied to derive a famous inequality.

Markov’s Inequality. Let f be a function from E into R satisfying Eq. (13).
Then,

ELI/X)I]

a

P(1f(X)| = a) <

(a > 0). (26)

ProOF OF EqQ. (26). Let C = {x| f(x)| = da}. Then |f(x)| = l~(x)|f(x)| +
1&(x)] f(x)] = 1o(x)] f(x)] = lo(x)a where the last inequality is obtained by
noting that if x € C then | f(x)| > a, by definition of C. Therefore, using succes-
sively the monotonicity, the linearity, and the trick of Eq. (25),

ELIA(X)]] = E[a"1o(X)] = aE[1(X)] = aP(X € C) = aP(| f(X)| = a),
since X € C is equivalent to | f(X)| = a by definition of C. O

The indicator function trick (25) can be generalized as follows. Let (Q, #, P)
be a probabilistic model and let A4 be some event. The indicator function 1,
is a function from Q into {0, 1} defined by

1 if weA
1‘(“’):{0 if wéA 7

Clearly X = 1, is a discrete random variable taking its values in E = {0, 1},
and since the events {w|X(w) =1} and A are identical, P(X = 1) = P(A).
Similarly, P(X = 0) = P(A) = 1 — P(A). The expectation of X is

E[X]=1P(X=1)+0P(X =0)=P(X =1)= P(A),
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that is,

E[1,] = P(A) (28)

Identity (25) is a particular case of Eq. (28) with A = {X e C}.

ES8 Exercise (Inclusion—Exclusion Formula). Let 4, ..., A, be n arbitrary
events. Then

n n

: P(U Ak) = Z P(A;) — Zl IP(AimAl-)
k=1 i=1 i=1 j=
{ i<j

DL

i

Il

(29)
+ o+ (—1)"*1P( Ak>

k=1

where the general term is

(— 1)+ i i P(A;, N0 A ).

i, =1 im=1
ll<i2<<1m

Prove this formula using indicator functions. Hint: You will have to use the
following identities:

1.3. Independence

The Product Formula. Let X and Y be two random elements with values in
the denumerable spaces E and F respectively. Another random element Z
taking its values in the denumerable space G = E x F can be constructed from
Xand Yby Z =(X,Y).

Let (p(x), x € E), (q(y), y € F) and (r(z), z € G) be the distributions of X, ¥, and
Z, respectively. The random elements X and Y are said to be independent if
and only if

r(z) =r(x,y) = p(x)q(y)  (x€E,yeF,z=(x))) (30)

that is,

| PX=x,Y=y)=P(X =x)P(Y =y) (xeE,yeF). (31)

Now let f and g be two functions from E to C and from F to C respectively
such that ), ¢ [f(x)[p(x) < o0 and ), rlg(y)lq(y) < oc.
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E9 Exercise. Show that E[ f(X)g(Y)] can be defined and that

E[f(X)g(Y)] = EL/(X)]E[4(Y)] |. (32)

Equality (32) is called the product formula.

The Convolution Formula. Suppose that X and Y are discrete random vari-

ables taking their values in N and admitting the distributions
PX=k=p, PY=k=¢q, (k=0

If X and Y are independent, the random variable S = X + Y admits the
distribution

PS=k=r, (k=0

defined by the convolution formula

k
n= Z Pidx-j |- (33)
=0

PROOF OF EQ. (33). Since {S=k} =) _o{X =), Y=k —j},n=3F o P(X =},
Y = k — j). But X and Y are independent and therefore

P(X =j, Y=k —j)=P(X =j)P(Y =k — ). d

E10 Exercise. Let X and Y be two independent Poisson random variables
with parameters 4 and u respectively. Show that S = X + Y ~ 2(4 + pu).

The independence concept can be generalized in a straightforward manner
to an arbitrary number of discrete random elements X, ..., X, taking their
values in E, ..., E,, respectively. They are said to be independent if and
only if

P(X, =xy,...,X,=x,) = P(X, =x;)... P(X,, = x,,) (34)
(x;eE, 1 <i<n).
The product formula then takes the following form
E[l:! ﬁ(Xa)] = I_]l E[f(X)] | (35)

where for each i, f; is a mapping from E; into C such that X, _. | fi(x)| P(X; =
x;) < oo. The proof is the same as in Exercise E9.
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2. Variance and Chebyshev’s Inequality

2.1. Mean and Variance

If X is a discrete random variable, the quantities

m= E[X] (36)

and

’70; = E[(X —m)*] (37)

are called (when they are defined) the mean and the variance of X, respectively,
and ¢ (o = 0) is the standard deviation of X.

The variance o2 can be obtained from the mean m and the second moment
E[X?] as follows:

62 =E[X?] —m? | (38)

Indeed, by linearity, E[(X —m)?] = E[X?] — 2mE[X]+ m® = E[X?*] —
2m? + m>.

E11 Exercise. Using the results of Exercise ES, show that the variance of a
Poisson random variable of parameter 4 is 4.

E12 Exercise. Show that the mean and variance of a geometric random
variable of parameter p > 0 are 1/p and g/p?, respectively. (See Exercise E2
for the distribution of such a random variable.)

E13 Exercise. Let X be a discrete random variable with values in N =
{0,1,2,...}. Show that

E[X] = i PX =n) | (39)
n=1

E14 Exercise. Let X, ..., X,, be m independent random variables with values
in N and with a common distribution P(X; = k) = p,(k = 0). Define r, =
Y 22 P Using Eq. (39), show that
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E[min(X,,...,X,)] = i rm

n=1

Apply this to the case X; ~ 4(p) (geometric).

Some Elementary Remarks. From the linearity of expectation it is clear that
if X is a discrete random variable with mean m and variance o2, then the mean
and variance of the random variable aX (where aeR) are am and 4?02,
respectively. Also if X has a vanishing variance (62 = 0) then P(X = m) = 1.
Indeed, Y .. p(x — m)>p(x) = O implies that if x # m, p(x) = 0. Therefore,
PX=m=1—-P(X#m)=1-3 ., p(x). We shall see later that this prop-
erty extends to arbitrary random variables (not necessarily discrete).

The Variance of a Sum of Independent Random Variables. Let X,, ..., X, be
n discrete random variables with variances 67, ..., 67, respectively. In the case
where X, ..., X, are independent, the variance a2 of the sum

S=X, + +X,

is equal to the sum of the variances:

dt=0l+--4a2| (40)

PROOF OF EQ. (40). Let m; be the mean of X;. Then E[S] =", m; and
o® = E[S?] — (1, m)>. Also E[SZJ‘E[(Z; 1 X2 =Y E[X) +
2 I ELX X1 = Y1 E[X2] +2Y 2,5 mm; where we have used

1<] i<j
the independence assumption. Now 2)7 %", mm; Orim) =
— iy m}. Therefore, * = Y7 (E[X2] — m?) = Y7, o? O

E15 Exercise. Use Eq. (40) to show that the mean and variance corresponding
to the binomial distribution of size n and parameter p are np and npq,
respectively.

E16 Exercise. Let X, ..., X, be independent discrete random variables with
common variance 6. Show that the standard deviation of the empirical mean
(X, + -+ X,)/nis a/\/;z.

2.2. Chebyshev’s Inequality

When specialized to f(x) = (x — m)? and a = ¢ where ¢ > 0, Markov’s in-
equality (26) yields one of the most frequently used tool of Probability Theory,
Chebyshev’s inequality:
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2
MX—m>as% (mwﬁ. @41)

The Weak Law of Large Numbers. Let (X,,n = 1) be a sequence of discrete
random variables, identically distributed with common mean m and common
variance ¢2. Suppose, moreover, that they are independent (i.e., any finite
collection X; , ..., X; forms a collection of independent random variables).
Consider the empirical mean

S, X, 4+ X,
SRt S L (42)

The mean of S,/n is m, and as we saw in Exercise E16, its variance is ¢2/n.
Application of Chebyshev’s inequality to S,/n yields

S, a?
P12 m|>e)< . 43)
n ne
Therefore, for all ¢ > 0,
. S,
llmP(«—m'>s>=0 . (44)
ntw n

This is the weak law of large numbers. It says that the empirical mean converges
in probability to the probabilistic mean, according to the following definition
of convergence in probability. A sequence of random variables (X,,n > 1) is
said to converge in probability to a random variable X iff for all¢ > 0

' lim P(X,— X|=¢=0 l (45)

ntw

In Chapter 5, various notions of convergence will be introduced: conver-
gence in quadratic mean, convergence in law, convergence in probability,
and almost-sure convergence. In the hierarchy of convergence, almost-sure
convergence implies convergence in probability. The strong law of large
numbers states that the convergence of S,/n to m takes place almost surely.
The precise statement for this is as follows: for all w €Q, apart from those in
a set (event) N such that P(N) = 0, lim 1, [S,(w)/n] = m. (The latter limit is
in the ordinary sense.) The proof of the strong law of large numbers is not
within our grasp at this point; it will be given in Chapter 5. However, it is
interesting to note that Chebyshev’s inequality will play a decisive role.

E17 Exercise. Using some physical apparatus, you measure a quantity, the
actual value of which is unknown to you. Each measurement you make is
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equal to the actual value plus a random error (which can be negative). The
errors in successive measurements are independent and have the same distri-
bution. All you know about the error in a given experiment is that it has
mean 0 and a standard deviation bounded by 10™*. As usual, you perform n
experiments, yielding n values (approximating up to errors the actual value),
and you take the arithmetic mean to be the experimental value of the measured
quantity. You want the difference between the experimental and the actual
value to be less than 107* with probability larger than 0.99. What number »n
of experiments do you suggest?

E18 Exercise. Prove Bernstein’s polynomial approximation of a continuous
function f from [0, 1] into R, namely,
f(x)=1lim P(x)  (xe[0,1]) (46)
nlo

where

n!
P,,(x) Z f( )ﬁxk(l — X)"*k’ (47)

and the convergence in Eq. (46) is uniform in [0, 1]. Hint: Consider a sequence
(X,,n = 1) of random variables independent and identically distributed ac-
cording to P(X,, = 1) = x, P(X, = 0) = 1 — x, and compute E[ f(S,/n)] where
Sn:Xl ++Xn

3. Generating Functions

3.1. Definition and Basic Properties

The concept of generating function applies to discrete random variables with
values in E = N and to discrete random elements with values in E = N* for
some k > 1. We begin with the univariate case E = N.

Univariate Generating Function. Let X be a discrete random variable taking
its values in N and admitting the distribution
P(X =k)=p, (keN).

The generating function of X is the function from the closed unit disc of C into
C defined by

g(s) = E[s*] (seC,ls| < 1), (48)

that is,
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X el

gs) = > s*P(X =k) =Y s*p,. (49)
k=0 k=0
Inside the unit disc, the power series Y p,s* is uniformly absolutely convergent
since for [s] < 1

oC 20
Z Pk|5k| < Z p= L
k=1 k=1

One can therefore handle such series quite freely inside the unit disk (|s| < 1),
for instance, add term by term and differentiate term by term. We will soon
see how to make use of such possibilities.

The generating function characterizes the distribution in the following
sense. If two random variables X, and X, taking their values in E = N have
the same generating function:

gi(s) =ga(s) (sl < 1), (50)
then they have the same distribution:
P(X,=k) =P(X,=k) (ke N). (51)

Indeed Eq. (50), is simply

8

P(X, = k)s* = i P(X, = k)s* (Is] < 1),
1 k=1

k

and two power series that are convergent and identical in a neighborhood of
0 must have their corresponding coefficients equal.

E19 Exercise. Let X be a discrete random variable distributed according to
the binomial distribution of size n and parameter p[ X ~ #%(n, p)]. Show that
the generating function of X is g(s) = (ps + q)".

E20 Exercise. Show that the generating function of a geometric random
variable X[ X ~ 4(P)] is g(s) = ps/(1 — gs).

Multivariate Generating Function. Let X1, ..., X, be k discrete random vari-
ables taking their values in N and let
P(X, =i,.... X,y =1i) = Pi,.. ..

be the distribution of the discrete random element (X, . .., X, ). The generating
function g of (X4, ..., X,) is a mapping from C* into C defined by

g(sy,....8) = E[s{...s8] |, (52)

that is,
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g(Sir...n8) = Z c Y ST SEP(X =0y, X =) (53)

i =1 =1

or

g(sl"'-ssk) = i
t

_nMB

e ¢]
i i
Y sise b
1 =1

Since when |s;| < 1 for all i(1 < i< k),

S oY s s P(X, =y X = i)
=1 =1
<Y .Y PXy =i, X =0) =1
iy =1 =1
the domain of definition of g contains the subset of k-tuples (s,,...,s,) such
that
s < Lo sl < 1. (54)
Ifs,==5,=1,
E[s{'s32...s¥] = E[s{'] = g,(s1)

where g, is the generating function of X, . Therefore,

g9(s1,1,...,1) = g4(sy) |- (55)

Similar relations hold for X, ..., X,.

E21 Exercise. Find the generating function of (X, X,,..., X;) ~ #(n, k, p,).
Show that X; ~ %(n, p;). Also, show that the variance of X, + - + X, is not
equal to the sum of the variances of the X;’s, as would be the case if the X,’s
were independent.

Differentiation of Generating Functions and Moments. Since the power series
Y -0 pis* converges absolutely when |s| = 1 (Y320 pils* = Y0 pi = 1), its
radius of convergence is larger than or equal to 1, and inside the unit disk
(i.e., for |s| < 1) one can differentiate term by term, at any order. Thus, for
instance,

g'(s) = i kpes*™ (s < 1),

When s = 1, the right-hand side of the above equality ism = E[X] = Y i, kp,.
Therefore, by Abel’s lemma
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m=g) (56)

where ¢'(1) is the limit of g(s) when s tends to 1 with the constraint |s| < 1,
se R. Differentiating once more, one obtains g”(s) = Y i, k(k — 1)p,s* "2 and
invoking Abel’s lemma, g”(1) = E[X2] — m, or, in the case where m < oo, in
view of Eq. (38),

(Uz=9”(1)+g’(1)—9’(1)21‘. (57)

J

Here, ¢”(1) admits an interpretation similar to g'(1).

E22 Exercise. Compute the mean and variance of a binomial random variable
X[X ~ %(n,p)] using generating functions and the result of Exercise E19.

E23 Exercise. Compute the mean and variance of a Poisson random variable
X[X ~ 2()] using generating functions and the result of Exercise E6.

3.2. Independence and Product of Generating Functions

Let X,,..., X, be n discrete random variables with values in N. Suppose that
they are independent. Then by the product formula (35),
E[s¥r...s¥] = E[s¥]... E[sX],

that is,

4 Q(Sl,---,s,.)=g1(51)-~-gn(sn)4], (58)

where g, is the generating function of X; and g is the generating function of
(Xi....,X,).Nowtakes, = =s, =sinEq.(58):g(s,....s) = [ [}=1 9:(s). But

g(s,...,s) = E[sX1...s%n] = E[s¥1*"+%],

therefore g(s, .. ., s) is the generating function of X, + -+ + X,. We have thus
obtained two results: if X, ..., X, are independent, Eq. (58) is true, and the
generating function of the sum X, + -+ + X, is equal to the product of the
generating functions of X, ..., X,.

E24 Exercise. Using generating functions, show that if X, and X, are indepen-
dent Poisson random variables, X, ~ #(4,)and X, ~ #(4,), then X, + X, ~
Py + 4y).
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Wald’s Equality. Let(X,,n = 1) beasequence of independent discrete random
variables with values in N and identically distributed with the common
generating function gy. Now let T be a discrete random variable, with values
in N and generating function g,. Suppose, moreover, that T is independent
of the X,’s. We are going to compute the generating function g, of

Y=X, + "+ X, (59)

using the various tricks that we have gathered along the way.
First we write the definition

gy(s) = E[s"] = E[s"1*7*¥7].
From the identity Q =Y 2, {T = n}, (or, in terms of indicator functions,
1= Z:;l I{T=n})’

E[s%1+ %] = E[ ) (1{T=,}s"'*“'“‘f)]
n=1

— E[ Z 1{T="}SX‘+---+X,,:|,
n=1

where we have observed thatif T=n, X, + - + X = X, +--- + X,. Now

(We must confess that we have been abusing the linearity property, having
used it for infinite sums. Later, in Chapter 3, you will find an excuse for
this: it is called Lebesgue’s dominated convergence theorem.) In view of the
independence assumptions,

E[17ops™ %] = E[l (o 1E[s* 5]
= E[l{z=n1E[s*']... E[s*"] = P(T = n)gx(s)".
Finally
E[s"] = 3, P(T = mgx().

that is,

gy(s) = grlgx(s)] |- (60a)

E25 Exercise. Under the above assumptions on (X,,n > 1) and T, prove
Wald’s equality:
|

i

x{l = E[X,]-E[T] |. (60b)
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Illustration 4. An Introduction to Population
Theory: Galton—Watson’s
Branching Process

The English statistician Galton is considered to be the initiator of the theory
of branching processes. He studied the transmission of family names through
generations and was particularly interested in estimating the survival prob-
ability of a given branch in a genealogical tree. A particularly simple model
of the situation he investigated is the following one.

All the individuals of a given colony (e.g., the male population of a noble
family) give birth in their lifetime to a random number of descendents (e.g.,
the male descendents in the particular example of interest to Galton). Each
individual of the colony procreates independently of all other members of the
colony. If X, denotes the size of the nth generation,

Xn
zZO i X, > 1
Xn+1 = i; (61)

0 if X,=0,

where (Z?,i > 0,n > 0) are identically distributed independent random vari-
ables, integer valued, with common generating function

0209) = 3. PZ = )" (©)

with finite mean m and finite variance . In this model, the number X, of
ancestors is naturally supposed to be independent of the random variables
(ZY,i = 0,n = 0). This simple model is a particular case of branching process
(Fig. 5 motivates the terminology) and was studied by the probabilist Watson,
who gave the following analysis.

E26 Exercise. Denote by ¢, the generating function of X,
$a(s) = Y P(X, = k)s". (63)
k=0

Show that

¢n+1(s) = ¢n(gl(s)) . (64)

Deduce from the above relation that if X, = 1 (one ancestor),
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Pas1(5) = 92(9a(s)). (65)

Compute the mean and variance of X,, in the case where X, = 1, and then in
the case where X, = k > 1.
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Figure 5. A typical realization w giving rise to a genealogical tree when there is one
ancestor (X, (w) = 1). In this example, there is extinction of the family name at the 18th
generation.

An extinction occurs if for some n > 1, X, = 0, since in this case X,,; = 0
for all j > 0. Therefore, denoting P, as the probability of extinction,

P, = P(U {X, = 0})
n=1

But ({ X, = 0},n = 1) is an increasing sequence of events since X, = 0 implies

X.+1 = 0,s0 that, by the sequential continuity property [ Eq. (8) of Chapter 1],

P, =1lim1P(X, = 0).
nloc
Now, from Eq. (63), P(X,=0)=¢,(0), and therefore by Eq. (65),
P(X,;, =0) = g,[P(X, = 0)]. Letting nT oo in the latter equality yields

E= 9z(Fe) |- (66)

To find P, we must therefore study the equation x = g,(x), x€ [0, 1]. Clearly
gz(x) =Y, nP(Z=n)x""'>0 for xe[0,1] and therefore g, is non-
decreasing in [0, 1]. If we exclude the trivial case where P(Z =0) =1, g3 is
strictly positive in (0, 1]. Also g;(0) = P(Z = 1) and g,(1) = E[Z] = m.
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Differentiating once more, we see that gz(x) = ) * ,n(n — 1)P(Z = n) x
x""2 = 0in [0, 1], so that g, is a U-convex function in [0, 1].

gz(x) gz(x)
slopem > 1
- — - -
: slopem < 1 |
|
P(Z =0) : :
| Pz=0) ! !
|
| |
| i |
|
! ! !
0 1 X 0 o 1 X

(a) (b)

Figure 6. The two cases.

P(Z = 0)p—="""

— o ——— e

Figure 7. The iteration leads to n,.

In summary, when P(Z = 0)e(0, 1), two cases arise. If E[Z] < 1 (Fig. 6a),
P, = 1 since this is the unique solution to Eq. (66) with P,e [0,1]. If E[Z] > 1
(Fig. 6b), Eq. (66) has two solutions in [0, 1], 1 and =, < 1. We will see that 1
must be excluded. Indeed, letting x, = P(X, = 0), we have shown previously
that x,,, = gz(x,)(n = 0) where x, = P(X, = 0) = 0. It is clear from Fig. 7
that the iteration scheme leads to n,, not 1. The formal proof of this is an
exercise in calculus, which is left to the reader.

E27 Exercise. Denote by P, , the probability of extinction when X, =k
(k ancestors). What is the relation between P, , and P, , = P,?
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Before closing this [llustration, let us mention that the theory of branching
processes is a very fertile area of Applied Probability and that it finds applica-
tions not only in Sociology, but also in Epidemiology, Physics, and many
other fields. For instance, consider a nuclear reactor in which heavy particles
(neutrons) collide with molecules, extracting more particles at each step or
being absorbed. This is a typical branching process. It is interesting to be able
to find conditions that prevent extinction of the pile, and branching process
theory has provided some answers to this problem.

Illustration 5. Shannon’s Source Coding Theorem:
An Introduction to Information
Theory

The American telecommunications engineer Claude Shannon discovered
in 1948 an entirely new area of Applied Mathematics: Information Theory.
The following is a guided introduction to this theory. We shall prove and use
Shannon’s source coding theorem which, together with Huffman’s coding
theorem, enables one to compress data (e.g., in digital form) using previous
knowledge of the statistical distribution of such data.

Quantity of Information. Let X, ..., X, be discrete random elements taking
their values in the finite set E, called an alphabet, with the generic element, or
letter, ay:

E={a,... 0}

Denote X = (X,,..., X,). Therefore, X is a random element taking its values
in the finite set E", the set of words of length n written in the alphabet E. For
any random element Y taking its values in a finite set F, with the distribution

P(Y =y) = p(y)

one defines the average quantity of information H(Y) contained in Y by

H(Y) = —E[logp(Y)] |. (67)

The base of the logarithm will be specified only when needed. By convention,
Olog0 = 0.

E28 Exercise. Compute H(X,) when P(X, = ;) = p;. Also, compute H(X) =
H(X,,....,X,)when X, ..., X, are iid.
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E29 Exercise (Gibbs’ Inequality). Using the well-known inequality
logz<z—1 (z>0)

with equality if and only if z = 1, prove Gibbs’ inequality

—

k
— 2, pilogp; < —_Zl pilogg; (68)

i=1

Ed

where (p;, 1 < i< k)and(q;,1 <i < k) are arbitrary discrete probability dis-
tributions. Show that equality takes place if and only if

Pi = g; (I <igk)
Deduce from Gibbs’ inequality the inequality

E—
| H(X,) < logk (69)

where equality holds if and only if
1

P(X1=°‘i)=PiEE (1<igkh).

Show that

mxl) 20 (70)

with equality if and only if for some je {1,2,...,k}, P(X, = a;) = 1.

Coding and Kraft's Inequality for Prefix Codes. A binary code for E is a
mapping ¢ from E into {0, 1}* the set of finite sequences (including the empty
one) of 0’s and 1’s. In this context c(a;) is the code word for a;. Let [;(c) be
the length of this code word. Code c is said to be a prefix code if there exists
no pair (i,j) with i # j such that c(a;) is the beginning of c(«;).

EXAMPLES. E = {x,,%,,a3,u,}. The code
oy = c(ay)=0
%y = clay) =1
oy = c(ey) = 10
2y — clog) =11

is not a prefix code since ¢(z,) is the beginning of both ¢(x) and ¢(a,). But
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o, — c(ay) =00
o, = c(a,) = 01
oy — clog) =10
ay > cla,) =11

is a prefix code.

Prefix codes are uniquely decodable, i.e., if a finite sequence of 0’s and 1's is
obtained by encoding a finite string of letters from E, the original string of
letters can be unambiguously reconstructed. For instance, the encoding of
a, 0, using the first code yields 10, but this result is also obtained by encoding
a5 using the same code. Thus, the first code is not uniquely decodable.

Represent any binary code on the binary tree. For instance, the first code
can be represented as in Fig. 8(a) and the second as in Fig. 8(b).

(a)

Figure 8. Two codes on a tree.

E30 Exercise. From the representations shown in Figs. 8(a) and 8(b) deduce
that if ¢ is a prefix code

k
Yy 2o g
i=1

Conversely, if a set of integers ([;, | < i < k) satisfies Kraft’s inequality

k
Y2ttt |, (71)

then there exists at least one binary prefix code ¢ for E with [,(c) = [;(1 <i < k).
(Note: You can solve Exercise E31 using the answer to this question if you
want to progress and go back to Exercise E30 later.)
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E31 Exercise. Denote by .# the set of binary prefix-codes for E. Define for any
binary code ¢ for E its average length L(c) by

k
L@ =} piie) | (72)
Show that
H,(X,) < inf L(c) < H,(X,) +1—' (73)
ce.p

where H,(X,) is a notation for H(X,) when the base of the log used in
definition (67) is 2. (Hint: Solve a minimization problem under Kraft’s con-
straint and remember that the lengths /;(c) must be integers.)

Huffman’s Code.

E32 Exercise. Suppose that p, > -+ = p,. Let ¢ be a binary prefix code for E
with [;(¢) = I;. Consider the two following properties

(2)) L <<,
(//z) lk = Ik—l

Show that if they are not both satisfied by ¢, there exists a binary prefix code
not worse than ¢ that satisfies both of them (not worse = with smaller or equal
average length).

Assuming (%, ) and (%, ), show that there exists a code not worse than ¢ with
the configuration shown in the figure below for the code words corresponding
tok — 1 and k.

Deduce from the above remarks an algorithm for constructing a binary
prefix code for E with minimal average length (Hint: Consider the set

[ (v | ’ 1
E'=FE —{o o0 + [y} = {0, 0. %y

with the probability distribution
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P15 P2s -5 Pk—25 Pk1 = Px—1 + Dx

and apply the above remarks to an optimal code for E”.) (Note: Exercise E34
requires the knowledge of Huffman’s procedure.)

Block Encoding. Instead of encoding E we will encode E", the set of blocks
of length n. Let the letters of the “words” (of length n) of E" be chosen
independently of one another and drawn from the alphabet E according to

P(Xj:ai):pi I1<j<nl<<i<k).

E33 Exercise. Let ¢™ be an optimal binary prefix code for E”. Show that

. L(c("))
lim

ntTeo

= H,(X,) |. (74)

In other words, H,(X,) is asymptotically the smallest average number of
binary digits needed per symbol of E.

E34 Exercise. Consider a source that emits an infinite sequence (X,,n > 1) of
{0, 1}-valued iid random variables with P(X, = 1) = p = 2 at the rate of one
binary symbol every unit of time. Compute H,(p, 1 — p). Suppose that this
sequence is transmitted via a channel that accepts only 0.83 binary symbol
every unit of time. Give an explicit means of adaptation of the source to the
channel.

The Questionnaire Interpretation. Suppose that one among k “objects” «;, ...,
o, is drawn at random according to the probability distribution p,, ..., p,.
This object is not shown to you and you are required to identify it by asking
questions that can be answered by yes or no. Of course the k objects are
distinguishable. What is the best you can do if you are allowed to ask any yes
or no questions? What is the least average number of such questions needed
to identify the object?

Clearly, since a yes or no question is associated with a partition into two
classes, the first question will be associated with a partition of E = {a,,...,a,}
into two classes E; and E, (E,nE, = ¢ and E, + E, = E). Suppose the
answer is yes, i.c., “the object is in E,.” The next question will concern only
E, for otherwise you lose time and your questionnaire is not optimal. This
question will be associated with a partition E, = E,, + E,,. The same would
have been true if the answer to the first question had been no, i.e., “the object
is in E,.” The second question would then have been associated with a
partition E, = Eqq + E,, .

Of course Ey, E{, Ey, Eg, - - . must be nonempty otherwise your question-
naire is not optimal. From the above argument, we see that a questionnaire
which is a candidate to optimality results in a tree (Fig. 9). This tree is not
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Eyoo Eoor Eorwo Forr Ero Eron Frio Emn

AVAVAVAVAVAVAWA

Figure 9. A questionnaire tree.

infinite: we stop the dichotomic procedure when a set at a node contains just
one object because we then have identified the said object.

As you now see, a good questionnaire is associated with a prefix code for
E = {a,,...,%}. Therefore, to find an optimal questionnaire, you have to
construct the Huffman prefix code for E associated with the distribution

(Pys--- Pi)

ExampLE (The Coin Problem). Suppose you have 15 coins identical in all
respects, except that one and only one among them has a weight slightly
different from the others. The only means you have to identify the odd coin
is a scale. Find an optimal weighing strategy.

We propose the following analysis. The coins are laid down in front of you
(Fig. 10). You will call this configuration # 11 because the odd coin is the 11th
from the left. Now you must identify a configuration among the 15 possible
equiprobable configurations. The scale is a yes or no answering device because
it has three positions: balance, left, and right, but from the point of view of
our search, left and right are the same because we do not know whether the
odd coin is lighter or heavier than the others.

OO0O0CO0O0000O0O0X00O0O0

Figure 10. Coins.

We will therefore find the optimal yes or no questionnaire and then check
that its partition procedure is implementable by the scale. If yes, we will
certainly have found the best weighing strategy.

The binary Huffman code for 15 equiprobable objects is summarized in
Fig. 11. The first yes or no question must discriminate between configurations
1.2,3,4,5,6,7,8 and configurations 9,10, 11,12, 13,14, 15. How can we achieve
this with the scale? One possible answer is to weigh the four leftmost coins
against the next four coins. If there is balance, the odd coin must be in position



Solutions for Chapter 2 73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 11. Optimal search for the slightly different coin among 15 coins.

9,10, 11, 12, 13, 14, or 15. If not, it is in position 1, 2, 3, 4, 5, 6, 7, or 8. Note,
however, that if the scale is unbalanced, one cannot determine whether the
odd coin is in position 1, 2, 3, or 4 or if it is in position 5, 6, 7, or 8 because
one does not know whether it is heavier or lighter than the ordinary coins.

The other steps are analogous to the first step except for the last one in case
we have to make a final decision about two coins. In this situation, we just
weigh one of the two coins against one of the coins that we have eliminated
in the previous steps because such coins arec normal.

In summary, the Huffman search strategy is in this case implementable.

E35 Exercise. There are six bags containing coins. All of them, except one, are
filled with “good” coins. One of them, unknown to you, contains % “bad”
coins (slightly heavier or slightly lighter). You draw one coin from each bag
and you want to determine if there is a bad coin among the six and if there is
one, which one. Find an optimal search strategy.

SOLUTIONS FOR CHAPTER 2.

El. For X =(xy,X3,...,%,)€{0,1}", PX=x)=P(X,=x;,....X,=x,) =
[ 1= P(X; = x;) (independence). Since P(X; = x;) = pifx; = I, P(X; = x;) = qif
x; =0,

P(X =x)= p,.:il "'q"’.g xi (xe{0,1}").

E2. P(T=k)=P(X,=0, ..., X-, =0,X, = 1) = P(X, =0) ... P(X,_, =0) x
P(X,=1)=¢g""'p.Since P{T =1} + {T=2} +---+ {T = o0}) = 1,we have
PT=0)=1—-Pe {T=k})=1-Y7 P(T=k=1-37 pg"" But
g <1 when p >0, and therefore Y -, pg*™' = p/(1l —q)=p/p=1.1f p=0,
P(T = k) = 0, and therefore P(T = o0) =1 — Y5, P(T = k) = 1.

E3. The case p = 0 is easy and without interest. We therefore suppose p > 0. For all
mz1L,P(T2zm=p—q"'(1+q+q*>+---)=pg™ /(1 —q)=q™". There-
fore for k=21, P(T>=ny,+ k|T > ng)=P(T = ny + k, T > ny)/P(T > n,) =
P(T =2 ny + k)/P(T = ny + 1) = g™** Ygmo = g* ' = P(T = k).
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E4. If the balls are distinguishable (for instance, they are numbered from 1 to n), there

ES.

E6.

E7.

ES.

aren'/(m,!...m,!)different possibilities of obtaining the configurationm,, ..., m,
(i.e., m, balls in box 1, ..., m balls in box k), for instance, the m, first balls in I,
the m, following in 2, etc. Each possibility has probability pT" ... p/™ since the
balls are placed independently of one another. Therefore, by the additivity axiom,
the probability of configuration (my,...,m)is [n!/(m,!...m)]pT" ... pT™~.

In the case where k = 2, we have X, =n — X, p, = 1 — p; = gq,. Therefore
P(X, =m)=P(X, =m X, =n—m)=[nl/m!(n —m)!]pTqi"™, where
0 < m, < n. This is the binomial distribution.

x X /Lk] z d A"k
E[X] = '—— e’ Tk
[X]= 3 ke S k:,d,1<k!)
d (g i* 24

1k k © 1k

- v
Skik — e oo+ Y ke 4o
K=1 k! k=1

E[X*] =Y Ko
k=0

X ;'.k o0 d2 j’k
kik — e = 22e™ ) ——| ) =
&Mk ety & di (k!)

kv

4> [ = A
—-A
di? (k;, !>

|
~
~

2

22,2 Ay — 32, A,k _
= Ao t——(e*) = Ate et = A2

Lot —AI("S) A, Ms1

Y ske =e E =¢ et = M)

The distribution of Y is
P(Y =yp)=q(y) = Y px),

xeAd,

since { ¥ =y} =) .. 4 {X = x}. Therefore,

‘_;Iqu(y) =3 (Iyl )y p(x)) =3 ( Y Iylp(X))-

yeF xe A, yeF \xe 4,

Since x € A, is equivalent to y = f(x), for fixed y, qu, IyIp(x)=) ,c 4, 1/ (X)I p(x).
Therefore, using indicator functions [1,(x)=1 if xeA, 0 otherwise],
Z)'EF Iqu(y) = Z&EFZXEA |f(x |P(x ZyeFerE 1A (x)lf(x)lp(x)

S rer Yyer Lo CNPE) = Yeer (Tyer L, (DI p(x). But ¥yep 1y
Iy | 4,(x) = 1g(x) = L. Therefore,

Y iylaly) =Y 1f ()| p(x) < 0.

One then proves in the same way that
Y. ya(y) = Y. f(x)p(x).
yeF xekE

First observe that 1. = 1, 1~ and that 13 = 1 — 1,. Therefore, the indicator
function of | Ji_, A, is 1 minus the indicator function of (=1 Ay, that is, by de
Morgan’s rule, 1 minus the indicator function of ()j_; 4. or 1 —[]i-; 15, =
I — [Tz, (1 — 1,,). Therefore, by Eq. (28) P({i-, A) = E[1 — [Ti—, (1 = 1,)1.
Letting X, = 1, . we have
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(="YX X+ +(—1)"x,...xn]

=; X]—ZIZE[X "

(— 1" Z Z E[X, ... X, ]+ +(=1VE[X,...X,]

But
E[X;, .. X; 1=E[l,, ...15, 1= E[ly, nns, 1=P(A;; NN A4,

E9. In order to show that E[f(X)g(Y)] is defined, one must prove that
Y erlh(2)|r(z) < oo, where h(z) = f(x)g(y) and z = (z, y). But

Y 1hIr(z) =Y Y 1 fg»p(x)g(y)

= <Z If(x)lp(x))(z Ig(y)lq(y)) < o

Now

E[/(X)g(Y)] =3 Y f(x)g(y)p(x)q(y)

and by the same manipulations as above, this quantity is found to be
(Zf(x)p(X)> (Z g(y)q(y)) = E[f(X)]E[g(Y)].
x hd

E10. Apply the convolution formula (33) to the case p, = e *i%/k!, q, = e “u*/k! to
find
ko ik

o jitk =)

r= e (AFTm
and apply the binomial formula to get
k - 1 X k!

k
= - J k=j k
Z T i P TR A

and therefore

e*(iﬂtl()' + u)k
k'

ho=

El1. 0?=E[X*]—m? =i 4+ i—it=i
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E12.

E14.

E15.

El6.

E17.

bl

2. Discrete Probability

x x d
E[X]1=Y kpg*'=p Y kq* ' =p 3 E(q“)
k=1
1

—p@qu =Pi—ap

And

E[Xz] - Z kzqu'l - Z k(k _ l)qu I+ Z kqufl
k=1 k=1 k=1

R R TAR R
- lpg" ' = =pq—|——]=pa2—75 =25
= K=o dg*\1 —¢q e
Therefore,
1 29+
E[x?]=23 42T 7F
PP p P
and by Eq. (38),
2_2q+1:)_1_2¢1+p—l_(q+p)+q—1_]+q—l_q
pZ pZ pZ pZ pZ pZ'

3. Since {(X=n={X2n—-{X2n+1}, PX=n=PX2n-PX2

n + 1). Therefore, E[X] =Y 7onP(X =n)= YoomPXZzn)—(n+ DP(X =
n+D+PX2n+1D)]=)Y0PX2n+1)=) 2 P(X =n)

Let Y = min(X,,...,X,,). By Eq. (39), E[Y] =) 7, P(Y = n). But P(Y > n) =
P(min(X,.....X,)=n=PX,=2n,.... X, 2n=P(X,2n).. P(X,Zn=r"

Case X;~%(P). r,=P(X;2n) =Y, pg" ' =pg" (1 +q+)=pg"" x
(1)1 — q)=q" ", and therefore Y ;= " =37, (™)' = 1/(1 — g™). Note that
min(X,,...,X,,) ~ %1 —q™).

Let X be any of the X,;'s. Then E[X] = p and the variance of X is E[ X?] — p? =
p — p* = p(1 — p) = pq. Therefore, E[S,] = 3", E[X,] = np, and since the X|’s
are independent, the variance of S, is the sum of the variances of the X;’s, that

is, npq.
The variance of X, + - + X, is no? and that of (X, + -~ + X,)/nis(1/n?)(nc?) =
o?/n. The standard deviation of (X, + --- + X,)/n is therefore o/ﬁ.

Let X, be the result of the ith experiment: X; has mean m and variance 1078,
where m s the actual value of the measured quantity. By Eq. (43), taking e = 1074,

X, + + X, 107 1
P<‘———l * > 10" ) =-.
n

n1078% n
Therefore, the left-hand side of the above inequality is less than 1 — 0.99 = 1072
if n = 100.

E{ ( ﬂ kzof()"“ =4 Z @Wnn%k— k(1 — xyrk
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E19.

E20.

since S, ~ B(n, p) (see Example 3). The function f is continuous on [0, 1] and
therefore uniformly continuous on [0, 1]. Therefore to any ¢ > 0, one can asso-
ciate a number &(¢) such that if |y — x| < 6(¢), then |f(x) — f(y)| < & Being
continuous on [0, 1], f is bounded on [0, 1] by some finite number, say M. Now

1P — £ = ’E[f(%)] - /)
Jel(2) -0 ] <l () - 0]
- E[ f(%) e 1,,] + E['f(;) ~ 1) 1;]

where A is the set of @’s such that |(S,(w)/n) — x| < &(e). Since | f(S,/n) — f(x)|13 <
2M 14, we have
> 6(6)).

E[ f(S;) — £

Also, by definition A and 4(g),

A 5) -

IP(x) — f0)] < & + 2MP< :} _

13] < 2MP(A) = 2MP(‘§ —x
n

IA:|<8
x 25(5)).

But x is the mean of S, /n, and the variance of S,/n is nx(1 — x) < n/4. Therefore,

( n,l > d(e < —"
>0l )< ”[5(8)]2 ’

Therefore

Finally
4
n[8(e)1*’

and this suffices to prove the convergence in Eq. (46). The convergence is uniform
since the right-hand side of the latter inequality does not depend on x [0, 1].

/() = P(x)| s &+

g(s) = E[s¥] = Z G S L

& & am

; k), (ps)q"™* = (ps + q)".
g(s) = k; pg*'s* = ps kil (gs)~!

=ps Y. (gs) = ps/(1 — gs).
k=0
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E21.

E22.

E23.

E24.

E25.

E26.

2. Discrete Probability

n n Yl!

G515 58 = 2 oo 2 P pST s
mi=1 me=1 M. Myl
my+-tme=n

n n

!
Z . Z —n;k_!(plsl)m""(pksk)mk

m =1 m=1 ml'
m;+-+m=n

=(pisi + o+ pes)”
gi(sy) =g(sy, 1,.... 1)

=(psy+p2+tp)

=(pys; + (L —p))

Therefore, X, ~ @(n,p,). Similarly X; ~ #(n,p;) for all i, 1 < i< n. Therefore
of =np,q;, Y o =nYy *,(pig). But X, +--- + X, = n and therefore has vari-
ance 0, being a constant.

g(s) = (ps + @)" g'(s) = np(ps + q"*, g"(s) = n(n — 1)p*(ps + q)"~ . Therefore,
g'(1)=np(p+ g =np and g"(1)=n(n — Dp*(p + q)"~ > = n(n — 1)p*. By
Eq. (56) m = E[X] =np. And by Eq. (57), 6% =n(n — 1)p* + np — n?p? =
np(1 — p) = npq.

g(s) = e*D, g'(s) = Ae*CD, g"(s) = i2e**™ V. Therefore, g'(1) = 4, g"(1) = A%
By Eq. (56), m = E[X] = 4. By Eq. (57), =1 +i-A=4

gi(s) = E[sM] = eM¢™D, g,(s) = E[s**] = "¢V and g¢(s) = E[s""":] =
E[s¥:s%2] = E[s%1]- E[s¥2] = %1742~ Therefore, since the generating func-
tion characterizes the distribution, X, + X, ~ P(4, + 4,).

By Eq. (57), E[Y] = (gr°gx)'(1) = g7(gx(1))gk(1). Also by Eq. (57), gx(1) =
E[X,] and g7(1) = E[T]. Now gx(1) = 1 and therefore E[Y] = g7(1)gx(1) =
E[TIE[X,].

The equality ¢,.,(s) = #,(g.(s)) is just a special case of Eq. (60a). Iteration of
this relation yields

Pus1(5) = Go(g:(g:(. - (4:(5)-..))).

~
n+1 times

When X, = 1, ¢o(s) = E[s**] = E[s'] = s, and therefore
¢n+1 (S) = gz(gz( e (gz(s)) . ))9 qed
|G —

n+1 times

We now use Egs. (56) and (57), which gives m, = ¢,(1) = g;[¢,—1(1)]1#,-1 (1) =
gil) di_1(1) = m-m, ; (n = 1). If X, = 1 then my = 1, so that m, = m" (n = 0).
Also v, = ¢y(1) + m, —m2, o> =g;(1) + m—m? But 4;(1)=g;[4,1(1)]
br1 (12 + gi[ba—t (D]145-1 (1) = g7 (D1 (1)? + g2(1)¢,_1 (1), therefore v, =
a?m*~2 4+ my,_,(n = 1). If X, = 1 then vy = ¢ = 0, therefore, for n > 0,
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E27.

E28.

E29.

E30.

oZm" ! — if m#1

if m=1.

If X, = k, we have k independent branching processes so that

m, = km"
o, 1—-m" .
| S i T Lo — if m#1
v, = —m
k*ng? if m=

If X, = k, extinction occurs when the k independent branching processes become
extinct. Therefore,

PO = (PO,
H(Y)= —E[logp(Y)] = —Z,E,p(y) log p(y). Therefore,
k
H(X,)= — ; p;logp;.

With obvious notations,

H(X,,...,X,)= —E[logp(X,,...,X,)] = —E[logp(X,)... p(X,)]

— E[logp(X,) + - + log p(X,)] = —z E[log p(X;)]

2 H(X;) = nH(X,)

J

since H(X;) = H(X,) for all j.

Assume without loss of generality that p, >0 (1 <i < k). Since logg,/p; <
(g:/p;) — 1 with equality if and only if p; = g;, we have

x 4 _ & q; “ u
PilOg“SZP.‘——l =ZP."ZP.‘=0
i=1 Pi =1 Di i=1 i=1

with equality if and only if p; = g; (1 <i < k). Hence, Gibbs’ inequality. Take
q; = 1/k (1 < i < k) in Gibbs’ inequality to obtain

H(py,...,p) < logk.

The equality holds if and only if p; = 1/k (1 < i < k). Clearly H(X,) > 0. It is
equal to O if and only if p;logp, =0(1 < i< k),ie,p;,=00r 1 (1 <i < k). Now
Y f=1 pi = 1 and therefore there exists one and only one j such that p; = 1.

Look at the subtree with as a root, and look at the 2™ nodes of the binary
tree at level m where m = sup, ;. li(c). (See figure below for an expla-
nation of the terms.)
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E31.

2. Discrete Probability

level O level m

/’//
///K\\\\\ m— l(c)
Root of pred 2 i**J nodes
\\ ]
tree S~ -
~ -
\<\

[}

|

|

|

|

|

|

|

' -
the binary !’\

|

|

|

|

|

I

_———t

|

|

i

be——fi(¢) ——=—m — Ii(e)—~
|

|

.

|
i
!
f m

Since ¢ is a prefix code, there is no other on the subtree originating from @
Therefore, clearly 2™ > Y ¥, 2m74,

Suppose [, < I, < -+ < I, = m. Look at the nodes at level m. Starting from the
top, reserve 2™ " nodes for @), then the next 2m~1 podes for @), etc. There are
enough nodes since Y ¥_, 2" " < 2™ Now obtain the code word for a; as the
following figure shows.

m—I;
-2 nodes reserved for «;

k
min Y pl;
i=1

k
where ), 274 =1 and LeR 1<i<k).
i=1
(Why can we take equality in Kraft’s inequality?) Use Lagrange multipliers, i.e.,
define
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k k
Sl ) =Y pil; +/'~(Z eTllor2 _ 1),
i=1 i=1

(where log is natural log), and set

C)l=° (1 <i<k
5]

T _o

CA

pi—4log2-27%=0 (1<i<k)

The solution is I; = —log, p; (1 <i < k) and 4 = 1/log2. But these /s are in
general not admissible since they are not in general integers. Therefore, take
instead [; equal to the smallest integer larger than —log, p;. Then clearly

i

K X X k
_Z pilog, p; < Z pili < Z pi(—log, p; + 1) = —z pilog,p; + 1.
=1 = i=1 i=1

E32. The first part is easy: simply interchange nodes in the tree. As for Huffman’s
procedure, an example will suffice:

p=(py,....pg) = (0.05,0.05,0.05,0.1,0.1,0.2,0.2,0.25).

Take the two smallest probabilities (in our example, we may choose p;, p, or
p,. p3). For graphical reasons, it is better to choose the first two probabilities in
the lexicographical order. Do this:

pl +p2=0.1

py =005 py=005 p3=0.05 p,=0.1 ps=0.1 pg=02 p,=0.2 pg=0.25

Now select among (p; + p,.ps,...,ps) the two smallest numbers. Here p, + p,,
ps3. Do this:

Py tp,+p3=0.15

0.05 0.05 0.05 0.1 0.1 0.2 0.2 0.25

And the procedure continues
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1.0

0.05 0.05 0.05 0.1 0.1 0.2 0.2 0.25
Py 12) 14! P4 Ds Ps Py Dg

Make this graph look more like a decent tree, and call 0 a branch going to the
left, 1 a branch going to the right:

root

Py 12 P3 D4 Ps Pg 14 23

The code for «; is obtained by reading the branches when going from the root
to p;.

p,:00000
p,:00001
p3:0001
pa:0010
ps:0011
Pe:11
p,:10
ps:0 1.
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E33. Hy(X,,...,X,) < L(c"™) < Hy(X,,...,X,) + 1. But Hy(X,,...,X,) = nH,(X,),
therefore

(n)
Hy(x,) < 2

< H,(X,) + l
n
E34. It suffices to encode the source by blocks of three. The statistics of 3-blocks are
easily computed. After rearrangement in the order of increasing probability,

000 po = 1/64
001 p, = 3/64
010 p, = 3/64
100 p; =3/64
011 P = 9/64
101 ps=9/64
110 pe=09/64
111 p, =27/64.

A Huffman code for 3-blocks is constructed:

1 3 3 3 9 9 9 27
11111 11110 11101 11100 110 101 100 0

The average length per symbol is
Taa(1 x54+3x54+3x5+3x54+9x34+9x34+9x3+27x1)
=158 ~ 0.822.

(With blocks of length 2, the average length per symbol after Huffman encoding
is 27/32 ~ 0.843)

E35. Place the coins in line, and name seven configurations: configuration 7 has no
bad coin. For 1 < i < 6,iis the configuration for which the bad coin is in position
i. The probability for configuration 7 is 2. For each configuration i, 1 <i < 6,
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the probability is 4 - &. The Huffman code for this set of probabilities is shown in
the figure below.

Probabilities L 1 1 1 1 1 12
18 i8 18 18 18 18 18
Configurations 1 2 3 4 S 6 7

To discriminate between 7 and 1, 2, 3, 4, 5, or 6, weigh the first three coins against
the last three coins. The rest of the procedure is easy.

Remark. With seven bags, the Huffman search procedure is not implementable
with a scale.



CHAPTER 3

Probability Densities

1. Expectation of Random Variables with a Density

1.1. Univariate Probability Densities

Let X be a real random variable defined on (Q, F, P) with the cumulative
distribution function (c.d.f.) (see Chapter 1, Section 3.2)

F(x)=P(X <x) | (1)

If there exists a non-negative function f such that

Fo)= | f)dy @

then f is called the probability density (p.d.) of X. Recall (Chapter 1, Section
3.2) that

+00
J fdy = 1. 3)
The following are a few classic probability densities.

The Uniform Density on [ a, b]. This is certainly the simplest probability density
(Fig. 1).
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hd
I
|
a

=]
of——4

X

Figure 1. The uniform probability density on [a, b].

1
— if xela,b]
fy=4b—a @

0 otherwise.

A random variable X with the probability density of Eq. (4) is said to be
uniformly distributed on [a, b]. This is denoted by

X ~ %({a,b]).

The Exponential Density of Parameter 4 > 0 (Fig. 2).

Jx)

A€7XX

{

0 X

Figure 2. The exponential p.d.

-
: Je if x=0
! — 5
Lﬂx} {O otherwise. ©)
The corresponding cumulative distribution function is (Fig. 3):
1 —e ™ if x=0
F(x)= . 6
) {0 otherwise. ©

A random variable with the probability density of Eq. (5) is an exponential
random variable. This is denoted by

X ~ &(4).
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A F(x)

0

Figure 3. The exponential c.d.f.
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The Gaussian Density. This is the most famous probability density. It is

defined for me R, e R, — {0} (Fig. 4) by

Figure 4. The Gaussian p.d.

o./2n

f(x) = 1 e~ (W2(x=m)/a)> |

()

We shall soon give the probabilistic interpretation of the parameters me R

and o2 e R,. If X admits such density, then we note

X ~ N (m,c?),

and say that X is a Gaussian random variable. When X ~ 47(0, 1) we say that

X is a standard Gaussian random variable.

E1l Exercise. Verify that the function f of Eq. (7) satisfies Eq. (3).

E2 Exercise. Show that if X is a standard Gaussian random variable and ¢ > 0,
then Y = ¢ X + m ~ A"(m,c?). Conversely, show that if Y ~ 4(m, ¢?), then

X =(Y—m)lo ~ A(0,1).

The Gamma Density. Let a and f be two strictly positive real numbers and

define
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Bl a—1

x*lehx if x>0

fix) =< @) (8)

% 0 otherwise

where the gamma function I is defined by

(o) = Ojo u e du |. %)
4]

Integration by parts yields the functional equation
INo)=(@—HI'(e—1) (x> 1). (10)
Since I'(1) = 1, it follows that, if n is a strictly positive integer,

[(n)=(n— 1! (11)
E3 Exercise. Check that f is a probability density.

Density (8) is called the gamma probability density of parameters o and . If
X admits such density, we note

X ~ y(a, p),

and say that X is a gamma distributed random variable (Fig. 5).
When « = 1, the gamma distribution is simply the exponential distribution

(1. B) = &(P).

When o = n/2 and f = 1, the corresponding distribution is called the chi-
square distribution with n degrees of freedom. When X admits this density, this
is denoted by

X ~ y2

Expectation. Let X be a random variable with the probability density f. Let
g be a function from R into R for which the quantity ffi g(x)f(x)dx has a
meaning (as a Riemann integral, for instance). Then such a quantity is called
the (mathematical) expectation of g(X) and is denoted by E[g(X)].

1.2. Mean and Variance

When they are defined, the quantities

[

m— E[X1= | xf(x)dx (12)

— %0




1. Expectation of Random Variables with a Density 89

fx)

£

f(x)

=Y

0 a—1

B
Figure 5. Aspects of the gamma p.d.

and

0* = E[X — m?] = | (x — mPf(x)dx (13)

are called, respectively, the mean and the variance of X. The standard deviation
of X is o, the nonnegative square root of the variance. By the linearity of the

integral

T = mpfedx = | x2f()dx —2m | xf(x)dx +m? | f(x)dx

and therefore, in view of Egs. (13) and (3)
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o2 = E[X?] —m? |. (14)

Also, again using the linearity of the integral,

Tlax+bfdx=a [ f()dx+b [ flxdx,

so that by Eq. (3),
ElaX + b] =aE[X] + b,
that is, if one adopts the notation my, = E[ Y],

max+b=amx+bJ. (15)

With a similar notation for the variance, one has

Oixip = G°0% |. (16)

Indeed, 02, = E{[(@X + b} — mux,1*} = E[(aX + b — amy — b)*] =
E[a*(X —my)*] = A®E[(X — my)*] = a’a3.

E4 Exercise. Show that if X ~ y(«, ), then my = o/f and o3 = a/B>.

E5 Exercise. Compute the mean and variance of X when X ~ %([a,b]),
X ~ &(A)yand X ~ A7(0,1).

From the solution of the above exercise we shall extract

i
| 1
me=o (X~ 8] (17

and

1

}mx=0, o2 =1 [X~JV(0,1)]J. (18)

From Exercise E2, we know thatif X ~ 4"(m,d?),then X = Y + m where
Ye A47(0, 1). Therefore, from Egs. (15), (16), and (18) follows the interpretation
of the parameters m and o2 in the .4"(m, 62) probability density of Eq. (7):

my = m, 6} = o? [X ~ A (m,c2)]. (19)
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A Case Where the Mean and Variance Do Not Exist. The nonnegative function

1
fx)y= 5 (xeR) (20)
1

+ X

is such that {17 f(x)dx = 1. It is therefore a probability density. The quantity

*% xf(x)dx is not defined as a Riemann integral since it leads to the un-
defined form +o0 — co. Indeed, by definition of a proper Riemann integral,
V2% xf ) dx = limyy  groy [5xf(x)dx = lim,y  [$xf(x)dx + limgy, -
{8 xf(x)dx. Note, however, that the extended Riemann integral, defined to be
equal to limyy, [ZN xf(x)dx, exists and equals 0. Although in view of the
symmetry of f (see Fig. 6) it is natural to define its mean to be 0, the convention
among probabilists is that the mean does not exist in this case because of the
nonexistence of [*% xf(x)dx as a proper Riemann integral. Of course, if m is
not defined, 62 is not defined.

The function f in Eq. (20) is called the Cauchy probability density (Fig. 6),

and any random variable with such a probability density is a Cauchy random
variable.

troo=

2=

1 +x2

2=

0 x
Figure 6. The Cauchy p.d.

One could find it exaggerated to insist that a Cauchy random variable has
no mean when it is graphically obvious that it has one. However, it is not only
illicit but also dangerous to maintain that a Cauchy random variable has mean
0, for the following reason. In Chapter 5, the strong law of large numbers states
that if (X,,n > 1) is a sequence of independent and identically distributed
random variables with mean m, the empirical frequency (X, + -+ + X,)/n
tends “almost-surely” (this phrase will be explained in Chapter 5) towards m.
At the end of Chapter 5, there is a remark concerning the case where the
X,’s are Cauchy random variables and it is shown that in this case, the em-
pirical frequency does not tend to 0. This of course does not imply that
the strong law of large numbers is false, but only that it does not apply to
Cauchy random variables. Indeed the strong law of large numbers con-
siders random variables X, with a mean, and this implies, by definition, that
E|X,| < <.
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1.3. Chebyshev’s Inequality

Basic Properties of Expectation. We will take as intuitively obvious the
following fact. If the probability of event {w|X(w) < Y(w)} is one, which is
written X < Y P-as, then E[X] < E[Y]. This is the monotonicity property of
expectation. [tis true in all situations where E[ X] and E[ Y] are defined. Also
the linearity property E[aX + bY] = aE[X] + bE[Y] holds whenever the
expectations in both sides of the equality have a meaning.

At the end of this chapter, we sketch the general theory of expectation for
random variables that are not necessarily discrete or that do not admit a
probability density, but for now, we cannot produce a rigorous proof, even in
the particular case of the existence of a probability density.

Another basic property of expectation is the following one: |[E[X]| <
E[|X|]. In the case where X admits a density, this is simply
(0]
J

—o0

xf(x)dx + T xf(x)dx
0

C{ Ixlf () dx + :f Ix].f(x) dx

< Ixlf(dx.

In view of future reference, the above properties will be recapitulated:

X < Y, P-as= E[X] < E[Y]. (1)
E[aX + bY] = aE[X] + bE[Y]. (22)
|E[X]} < E[|X]]. (23)

These elementary properties will now be used to derive two famous inequali-
ties already encountered in Chapter 2 for discrete random variables.

Markov’s Inequality. Let X be a random variable and let f be a function from
R into R, . Then

ELf(X)]

PLAX) 2 a]l < —

(a > 0). (24)

PRrOOF OF EQ. (24). Observe that for all xe R,
al;5,(x) < f(x)  (xeR)

where 1, ,(x) is equal to 1 if f(x) > a and to O otherwise, ie., 1,5, is the
indicator function of the set C = {x|f(x) = a} (Fig. 7).
From the above inequality, we deduce the inequality between random
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alf}n

d TN e~ ____

A=A

Figure 7. The function al .

|
A\

I

variables
aleX(@) < f[X(@)] (0eQ)
Since 1¢(X (w)) = 1,(w) where 4 = {®|f(X(w)) = a}, the last inequality reads
a1, < f(X)
(where the @ dependency is no longer explicit). By the monotonicity property
(21),
E[al,] < E[f(X)]

By the linearity property Efal,] =aE[l,], and since E[1,] = P(4)=
P(f(X) = a), Eq. (24) follows. O

Chebyshev’s inequality applies to random variables X for which the mean
m and variance o2 are defined. It is a special case of Markov’s inequality with
f(x) =(x —m)? and a = &2 where ¢ > O:

N

o

P(X —m|>2¢ < el (e >0). (25)

Remark. In the proof of Markov—Chebyshev’s inequalities, only properties
(21) and (22) have been used. Since such properties are true for any type of
random variables (discrete, with a density, etc.), inequalities (24) and (25) also
hold in the general case (see Section 4). Note also that Egs. (14), (15), and (16)
also hold in the general case since the only property of expectation used in
proving them was linearity.

Null Variance and Almost Constant Random Variables. A random variable X
is said to be P-almost surely null (notation: X = 0, P-as) if and only if the
event {w| X (w) = 0} has probability 1. Now
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(@l X@) > 1} = {wllX(w)[ . %}

n=1

since for | X| to be strictly positive, it is necessary and sufficient that | X| be
larger than 1/n for some n > 1. In more concise notation,

{IX|>0} = D {IXIZE}- (26)

n=1

By the sub-g-additivity property of probability [Eq. (6) of Chapter 1],
® 1
P(X|>0< Y, P<|X|>;>. (27
n=1

Let now X = Y — m, where Y is a random variable with zero variance:
o = 0. By Chebyshev’s inequality

1 1
P<|X| >;)=P(|Y—my|>—><nza§=0.
n

Therefore, from Eq. (27), P(|]Y —my| > 0) =0, ie, P(|]Y —my|=0)=1.In
summary,

6 =0=Y=m,, P-as | (28)

A random variable Y with null variance is therefore P-as equal to a deter-
ministic constant. One can also say that Y is almost-surely constant.

1.4. Characteristic Function of a Random Variable
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