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Preface 

The present textbook provides prerequisite material for courses in Physics, 
Electrical Engineering, Operations Research, and other fields of applied science 
where probabilistic models are used intensively. The emphasis has therefore 
been placed on modeling and computation. 

There are two levels of modeling: abstract and concrete. 
The abstract level is relative to the axiomatization of Probability and pro­

vides a general framework that features an archetype of all concrete models, 
where the basic objects (events, probability, random variables), the basic con­
cepts (independence, expectation), and the basic rule (countable additivity of 
probability) are given in abstract form. This moderately small axiomatic 
equipment, establishing Probability as a mathematical theory, suffices to 
produce a theorem called the strotig law of large numbers that says in parti­
cular that in tossing coins "the average number of heads tends to t as the 
number of independent tosses tends to infinity, if the coin is fair." This result 
shows that the axioms of probability are consistent with empirical evidence. 
(From a mathematical point of view, this a posteriori check of the relevance 
of the axioms is not necessary, whereas from the point of view of the modeler, 
it is of course of paramount importance.) 

In the present book, the abstract framework is immediately introduced 
and a number of examples showing how this framework relates to the daily 
concerns of physicists and engineers is provided. The strong law of large 
numbers where the abstract framework culminates is proved in the last 
chapter. 

The other level of modeling consists of fitting a given situation into the 
conceptual framework of the axiomatic theory when it is believed that random 
phenomena occur. This is a difficult exercise at the beginning, and the art of 
modeling can be acquired only through examples. Supplementary readings-
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entitled lilustrations- provide examples in which probabilistic models have 
been successfully developed. 

They include, in particular, topics in stochastic processes and statistics as 
shown in the following list: 

I. A Simple Model in Genetics: Mendel's Law and Hardy-Weinberg's 
Theorem 

2. The Art of Counting: The Ballot Problem and the Reflection Principle 
3. Bertrand's Paradox 
4. An Introduction to Population Theory: Galton - Watson's Branching 

Process 
5. Shannon's Source Coding Theorem: An Introduction to Information 

Theory 
6. Buffon's Needle: A Problem in Random Geometry 
7. An Introduction to Bayesian Decision Theory: Tests of Gaussian Hy­

potheses 
8. A Statistical Procedure: The Chi-Square Test 
9. Introduction to Signal Theory: Filtering. 

The first chapter introduces the basic definitions and concepts of probability, 
independence, and cumulative distribution functions. It gives the elementary 
theory of conditioning (Bayes' formulas), and presents finite models, where 
computation of probability amounts to counting the elements of a given 
set. The second chapter is devoted to discrete random variables and to the 
generating functions of integer-valued random variables, whereas the third 
chapter treats the case of random vectors admitting a probahilitv density. The 
last paragraph of the third chapter shows how Measure and Integration 
Theory can be useful to Probability Theory. It is of course just a brief summary 
of material far beyond the scope of an introduction to probability, emphasiz­
ing a useful technical tool: the Lebesgue convergence theorems. The fourth 
chapter treats two topics of special interest to engineers, operations researchers, 
and physicists: the Gaussian vectors and the Poisson process, which are the 
building blocks of a large number of probabilistic models. The treatment 
of Gaussian vectors is elementary but nevertheless contains the proof of 
the stability of the Gaussian character by extended linear transformations 
(linear transformations followed by passage to the limit in the quadratic 
mean). The Gaussian vectors and the Poisson process also constitute a source 
of examples of application of the formula of transformation of probability 
densities by smooth transformations of random vectors, which is given in 
the first paragraph and provides unity for this chapter. The last chapter 
treats the various concepts of convergence: in probability, almost sure, in 
distribution, and in the quadratic mean. 

About 120 exercises with detailed solutions are presented in the main text 
to help the reader acquire computational skills and 28 additional exercises 
with outlines of solutions are given at the end of the book. 

The material of the present textbook can be covered in a one-semester 
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undergraduate course and the level can be adjusted simply by including or 
discarding portions of the last chapter, more technical, on convergences. The 
mathematical background consists of elementary calculus (series, Riemann 
integrals) and elementary linear algebra (matrices) as required of students in 
Physics and Engineering departments. 

Gif-sur-Yvette, France PIERRE BRIOMA UD 
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CHAPTER 1 

Basic Concepts and 
Elementary Models 

1. The Vocabulary of Probability Theory 

In Probability Theory the basic object is a probability space (Q,!F, P) where 

Q is the collection of all possible outcomes of a given experiment; 
!F is a family of subsets of Q, called the family of events; and 
P is a function from ,~ into [0, 1] assigning to each event A E!F its prob­

ability P(A), 

The mathematical objects !F and P must satisfy a few requirements, called 
the axioms of Probability Theory, which will be presented in Section 2,1. 

Although it is quite acceptable from a mathematical point of view to present 
the axioms of Probability without attempting to interpret them in terms of 
daily life, it is preferable to start by showing what reality they are supposed 
to symbolize and to give the formal definitions later. In this respect, a small 
lexicon of the terms used by probabilists will be usefuL 

Trial, The confusion between an experimental setting and actual trials is often 
made. The term experimental setting refers to the general conditions under 
which various trials are performed. For instance, the Michelson-Morley 
experimental setting consists of a method (interferometry) and of an apparatus 
for measuring very small relative variations in the velocity of light. Michelson 
and Morley performed several trials in this experimental setting. In Statistics, 
the experimental setting consists of the conditions under which data are 
collected, and a trial might consist, for instance, of the actual conduct of a poll. 

Outcome, Sample, In Probability, one considers trials performed in a given 
experimental setting. Any experiment has an outcome, or result. It has been 
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a great conceptual advance to abandon the idea of capturing the notion 
of experiment in mathematical terms; experiment, like experience, is too 
deeply rooted in the physical and psychological world. Instead the mathe­
maticians have chosen to consider the outcome because it is more amenable 
to mathematics. 

Indeed, only a writer can convincingly describe the wicked "coup de main" 
of the croupier, the whimsical motion of the ball on the wheel, and the ensuing 
torments in the player's soul. For conciseness, a mathematician prefers to deal 
with the possible outcomes: 0, 1, ... ,37. Another term for outcome is sample. 

I .-------. 

I The sample space 0 is the collection of all possible outcomes w. 
_____ . I 

An Event. For an cxperiment being performed and its outcome w being 
observed, one can tell whether such and such an event has occurred. An event 
is best described by a subset of the sample space. For instancc, in the game 
of roulette the set of outcomcs {a, 2, 4, ... , 36} is an event. One can use a 
picturesque name for this event, such as "even," or any other name, depending 
on one's imagination. But an event is nevertheless just a collection of out­
comes, i.e., a subset A c O. 

An event is a collection of outcomes, i.e., a subset A of the sample space O. I 

If w E A, one says that outcome w realizes event A. : 

This is a temporary definition; the complete definition will be given in Section 
2.1. 

The Logics of Evel1ts. If subset A is containcd in subset B(A c B), this is 
expressed by evel1t A implies B (Fig. 1). Two events A and B are incompatible 
when there exists no outcome w that realizes both A and B, i.e., A n B = 0, 
where 0 is the empty set. Consider now a family of events AI' ... , A k • The set 
equality 0 = U~~l Ai means that at least one of the events AI' ... , Ak is 
realized. Indeed either WE AI' or WE A 2, ... , or WEAk' It is clear now that any 
relation or equality between subsets of 0 is the formal transcription of a logical 
relation between events. Another example is the set equality 0 = I~~l Ai (i.e., 
n = U~=l Ai al1d Ai n Aj = 0 when i -# j), which tells that the events A l' ... , 
Ak are exhaustiue and mutually il1compatible. In other words, one and only one 
among the events AI' ... , Ak will happen. When event A is not realized, event 
Ais realized where Ais the complement of A. For obvious reasons, 0 is called 
the certail1 event and 0, the impossible event. 

It is now time for the formal definition of a probability space, which will be 
given in Section 2.1, followed by illustrative examples in Section 2.2. 
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Picture Set theoretical Logical meaning 
language notation in terms of events 

A 

0 w€A w reaJizesA 

Od A nB=/fJ A and B are incompatible 

B 

@ ACB A impliesB 

OJ A nB A and B are both realized 

.. AIlB One and only one of the events 
A and B is realized 

n 

6] A2 n =AI +A2 +A3 One and only one of the events 

A3 
A I , A 2' A 3 is realized 
by any sample w. 

Figure I. A probabilist's view of sets. Note that the symbol I can be used in place 
of U only if the sets in the union are disjoint. 



4 I. Basic Concepts and Elementary Models 

2. Events and Probability 

2.1. Probability Space 

A probabilistic model (or probability space) consists of a triple (Q, %, P) where 

Q is the sample space, a collection of outcomes w . 
. ~ is a collection of subsets of Q; a subset A E:IF is called an event. 
P is a set function mapping.? into the interval [0, I]: with each event A E.?, 

it associates the prohahility PtA) of this event. 

The collection .~ and the mapping P are required to satisfy the following 
axioms. 

Axioms ReLative to the Events. The family :IF of events must be a IJ-JieLd on 
Q, that is, 

(i) QE~ 

(ii) if A E ¥, then X E.¥ (where A is the complement of A) 

(iii) if the sequence (An' n ~ 1) has all its members in .?, then the umon 
Unx~1 A"E.¥. 

Axioms Relative to the Probability. The probability P is a mapping from .? 
into [0, I] such that: 

(0:) P(Q) = I 
un for any sequence (An' n ~ I) of disjoint events of.?, the following property, 

called IJ-additiuity, holds: 

(I) 

An event A such that P(A) = 1 is called an aLmost certain event. Similarly, 
if PtA) = 0, A is called an aLmost impossible event. Two events A and B such 
that P(A n B) = 0 are said to be probabilisticalLy incompatible. 

Note that A = 0 implies from the axioms [see Eq. (3)] that P(A) = 0, but 
the converse is not true: an event can be logically possible and, nevertheless, 
ha ve no chance of happening. 

Immediate Properties of Probability. A few properties follow directly from the 
axioms. First, since Q E:IF, its complement n = 0 also lies in :IF, by (ii). 
Second, if (An' n ~ I) is a sequence of events, then the intersection n~1 An is 
also an event. The latter assertion is proven by applying de Morgan's formula 

nOI An = CVI Xn), 

and using successively axioms (ii), (iii), and (ii). 
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From axioms (11) and (fJ) we obtain 

I P(A) = 1-~. (2) 

Indeed, 1 = PIn) = PIA + A) = PIA) + PIA). By specializing this equality to 
A = fl, we have P(0) = O. Summarizing this result and previous relations 
from the set of axioms, we have for any event A 

1 P(0) = 0 ;;;; PIA) ;;;; 1 = PIn) I· (3) 

If A logically implies B, i.e., A c B, the set B - A is well defined and A + 
(B - A) = B. Therefore, by the a-additivity axiom, PIA) + P(B - A) = PCB), 
or 

I A c B = PCB - A) = PCB) - PIA) I· (4) 

In particular, since P(B - A) ); 0, the mapping P is monotone increasing: 

1 A c B = PIA) ;;;; PCB) I· (5) 

El Exercise. Let (An, n ); 1) be an arbitrary sequence of events. Prove the 
following property, called sub-a-additivity: 

(6) 

Hint: Use the set identity U~I An = 2:.'."'=1 A~, where A'I = AI' A~ = An -
An n (Uj~t A) for n ); 2 (Fig. 2). 

Figure 2. 
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E2 Exercise. Let A, B, C be three arbitrary events. Show that 

P(A u B) = P(A) + PCB) - peA n B), 

and 

P(A u B u C) = P(A) + PCB) + P(C) - peA n B) - peA n C) 

- P(B n C) + peA n B n C). 

The above formulas are particular instances of a general formula, called the 
inclusion-exclusion formula, which will be given in Eq. (29) of Chapter 2. 

We shall now give a very useful consequence of the u-additivity axiom. 

Sequential Continuity of Probability. Consider a sequence of events (B., n ~ 1) 
such that 

(7) 

Then 

(8) p(u Bn) = lim i P(B.) 
n=1 nt 00 

This property is the sequential continuity of probability because U~l Bn is 
called the (increasing) limit of the (increasing) sequence (Bn' n ~ t) and is 
denoted limnt "- iBn' so that Eq. (8) reads P{limnt 00 iBn) = limnt 00 i P(B.}. 

PROOF OF EQ. (8). Observe that 

P p-l 

Bp = U Bn = B\ + L (B.+l - Bn) 
"=1 n=l 

and 

x. ;x.. 

U Bn = Bl + L (Bn+l - Bn)· 
"=1 n=1 

Therefore, (u-additivity) 
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P (Q B.) = P(B!) + .~1 P(Bn+1 - Bn) 

= lim (P(Bd + Pf P(Bn+1 - Bn») 
pt 00 .=1 

Similarly, if (Cn , n ~ 1) is a decreasing sequence of events, i.e., 

(n ~ 1) I, (9) 

then 

(10) 

D 

PROOF OF EQ. (10). Apply the previous r~sult to B. = en. By de Morgan's 

rule and property (2), p(n:'=1 Cn) = P(U:'=1 C.) = 1 - P(U:'=1 C.) = 1 -
limnf,.:, P(Cn) = 1 - limntoo (l - P(Cn» = lim.too P(Cn )· D 

2.2. Two Elementary Probabilistic Models 

Before proceeding further into the examination of the consequences of the 
probability axioms, we will give two examples of probability models. 

EXAMPLE 1 (Choosing a Point at Random in the Unit Square). Here the point 
will be supposed to be "completely randomly" chosen in [0, IJ x [0,1]. The 
following model is proposed. 

First, n = [0, IJ x [0, IJ, that is to say: any outcome ill has the form ill = 

(x,y), where 0:::;; x :::;; I and 0:::;; y:::;; 1 (Fig. 3). 
We will be rather vague in the description of the collection :!l' of events, 

calling an event any subset A of n = [O,IJ x [0, IJ for which one can define 
the area S(A). For instance, any set A of the form A = [X I ,X2J x [Yl'Y2], in 
which case S(A) = (X2 - X1)(Y2 - yd. There are many more sets in:!l'. How­
ever, the description of some ofthem is not easy. This matter will be discussed 
later since it is of minor interest at this stage. 

The probability P(A) is just the area of A, S(A). The mapping A -+ S(A) is 
indeed a mapping from :!l' into [0, 1], and the first axiom (IX) is satisfied since 
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w = (x,y) 
y ----, 

I 
I 

i 
o x 

Figure 3. The sample space Q relative to the experiment of choosing at random a point 
in the unit square. 

prO) = S([O, IJ2) = 1. The axiom of u-additivity is also satisfied, in accor­
dance with the intuitive notion of area. But we are not able to prove this 
formally here, having not yet properly defined the u-field of events'!'. 

EXAMPLE 2 (Three-Dice Game). The probabilistic description of a roll of three 
dice can be made as follows. The sample space 0 consists of the collection of 
all triples w = (i,), k) where i,), k are integers from 1 to 6. In abbreviated 
notations, 0 = (l,2,3,4,5,6}3. The dice are supposed to be distinguishable, 
and i is the outcome of the first die and) and k are the outcomes of the second 
and third dice, respectively (Fig. 4). 

w = (4, 2, 1) 

First die Second die Third die 

Figure 4. The event "odd sum"' is realized by this particular outcome. 

The choice of:!i' is the trivial one: :!i' is the collection of all subsets of 0 (it 
is obviously a u-field). As for P, it is defined by P( {w}) = (i)3 for all w. Here 
{w} is the set consisting of the unique element w. This suffices to define P for 
all subsets A of 0 since by the u-additivity axiom we must have PtA) = 

LWEA P( {w}), this quantity being taken by convention to be 0 if A is empty. 
In summary, 

where I A I is the cardinality of A, that is, the number of elements in A. From 
this, a-additivity is obvious and prO) = 1 since 0 contains 63 elements. 

This type of model where the probability of an event is proportional to its 
cardinality will be considered in more detail in Section 6 of the present chapter. 
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3. Random Variables and Their Distributions 

3.1. Random Variables (LV.) 

The single most important notion of Probability Theory is that of random 
variable. A random variable on (n, .9'") is any mapping X: n --> IR such that 
for all a E R 

I {wIX(w): a}~.iF l· (11 ) 

Here IR is the set of real numbers, and IR is the extension of IR consisting of IR 
plus the two infinite numbers +J) and -J). The notation {wIX(w):;;; a} 
represents the collection of w's such that X(w) :;;; a. It will usually be abbre­
viated as {X :;;; a}. 

Req uirement (11) ensures that one can compute the probability of events 
[X :;;; a:, since the probability P is defined only for subsets of n belonging 
to .F. 

EXAMPLE 3. The setting is as in Example 1, where all outcomes have the form 
(I) = (x, y). One can define two mappings X and Y from n into [0, 1 J by 

X(w) = x, Y(m) = y. 

Both X and Yare random variables since in the case of X, for instance, and 
when aErO, IJ, the set {X:;;; a} is the rectangle [O,aJ x [0, IJ, a member of 
F. For a ~ 1, {X:;;; a} = n, and for a < 0, {X:;;; a} = 0, so that Eq. (II) is 
also verified. 

E3 Exercise. In the setting of Example 3, show that the mapping Z = X + Y 
(i.e., Z(w) = X(w) + Yew»~ is a random variable. Compute for all a E IR the 
probability of event {Z:;;; a}. 

EXAMPLE 4. Consider the three-dice game of Example 2. Here an outcome OJ 

has the form w = (i,j, k). We can define three mappings Xl' X 2, X 3 from n 
into {1,2,3,4,5,6} by 

The verification that Xl' X 2' X J are random variables is immediate since, in 
this particular probabilistic model, .F contains all subsets of n. 

3.2. Cumulative Distribution Function (c.dJ.) 

The cumulative distribution function of the random variable X is the function 
F mapping IR into [0, IJ defined by 
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;;(~): P(X.~~. ( 12) 

The notation P(X ~ x) is an abbreviation of P( {X ~ x} ). 
A cumulative distribution function F is monotone increasing since whenever 

x 1 ~ X 2, {X ~ Xl} c {X ~ X 2} and therefore, by the monotonicity property 
(5), P(X ~ Xl) ~ P(X ~ x 2 ). 

We will see below that F is a right-continuous function. This property 
depends very much on the "less than or equal to" sign in Eq. (12). Had we 
chosen to define F(x) as P(X < x) with a "less than" sign, F would have been 
left-continuous. (This convention is seldom adopted.) 

Any right-continuous increasing function F admits a left-hand limit at all 
points x E IP:, denoted by F(x -). We will see in a few lines that if we define 

F( +::.0) = lim F(x), F( -oc) = lim F(x), (13) 
xt +C:O x,j,-oc 

then 

I_I - F( +oc) = P(X= +oc)_, __ F_(_-_c_t:;-_) _=_P_(_X_=_-_OC_J---.J) I· (14) 

PROOF OF THE RIGHT CONTINUITY OF F. Let x E IP: and let (c", n ~ 1) be a 
sequence of strictly positive real numbers decreasing to 0. Define for each 
n ~ I, C" = {X ~ x + e,,}. Then (C", n ~ 1) is a decreasing sequence of events 
and n,::01 C" = {X ~ x}. By Eq. (10), P(X ~ x) = lim"t ex; 1 P(X ~ x + en), i.e., 
F(x) = Iimnt > 1 F(x + /-;n), qed. 0 

PROOF OF Eo. (14). Define Bn = {X ~ n} and en = {X ~ -n}. Then 
U:;"j B" = {X < oc} and n~l C" = {X = -oc}, and Eq. (14) follows from 
Eqs. (8) and (10). 0 

EXAMPLE 5. We consider the probabilistic model of Examples 1 and 3 (choos­
ing a point at random in the unit square). The cumulative distribution function 
of X has the graph shown in Fig. 5. Indeed, if x ~ 1, then {wIX(w) ~ x} = 0 
and therefore P(X ~ x) = P(O) = I, and if x < 0, then {wIX(w) ~ x} = 0 
and therefore P(X ~ x) = P(0) = 0. Also, when x E [0, 1], the set {X ~ x} is 
the rectangle [0, x] x [0,1] of area x. 

Random Variables with a Probability Density (p.d.). In the general case, a 
random variable X may take the values +oc and/or -::.0. Hit takes only finite 
values, X is called a real random variable. 

lf a real random variable X admits a cumulative distribution function F 
such that 

x 

F(x) = S fly) dy ( 15) 
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for some nonnegative function f. then X is said to admit the probability density 
.r It must be pointed out that f then satisfies 

+00 

f f(y)dy = 1 (16) 
-00 

The above equality follows from Eqs. (15) and (14). 

EXAMPLE 6 (Continuation of Example 5). The random variable X with the 
cumulative distribution function F of Fig. 5 admits a probability density f 
(Fig. 6) where 

F(x) 

if x < a 
if XE [0, I] 

if x> I. 

Figure 5. A cumulative distribution function. 

o x 

Figure 6. The uniform density over [0. I]. 

x 

The distribution pictured in Fig. 5 or 6 is the uniform distribution over [0, I]. 
The corresponding random variable is said to be uniformly distrihuted over 
[0.1]. 

E4 Exercise. Find the c.dJ. and the p.d. of the random variable defined in 
Exercise E3. 

Discrete Random Variables. Let X be a random variable taking only integer 
values, i.e., values in the set f\I = {a. 1,2 .... }, and denote Pn = P(X = n). In 
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this special case, since {X :::::; x} = Ln,n";x{X = n}, we have by the u-additivity 
axiom the following expression for the c.d.f.: 

F(x) = LPn' 
n.n~x 

The function F is then purely discontinuous, as shown in Fig. 7. 

F(x) 

r---- ... 

---r-fi r----r1i i I 
~ I I I I I 

I I I I I I 

o 3 4 5 6 7 • , • x 

Figure 7. The c.dJ of an integer valued random variable. The jump of F at x = n is of 
magnitude Pn' 

A random variable X taking only a denumerable set of values (an, n ~ 0) is 
called a discrete random variable. Its distribution is the sequence (Pn' n ~ 0) 
where 

(17) 

The numbers Pn are nonnegative, and they verify 

I fr.-II n=O 
(18) 

This relation is obtained from n = L:'=o {X = an} and the u-additivity axiom. 

E5 Exercise. Consider the three-dice game of Examples 2 and 4 and the 
discrete random variable X = Xl + X 2 + X 3 • Compute PiS = P(X = 18) 
and P6 = P(X = 6). 

4. Conditional Probability and Independence 

4.1. Independence of Events 

Conditional Probability. Let B be an event of strictly positive probability. For 
any event A, one defines the symbol P(AIB) by 
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peA n B) 
P(AIB)= PCB) (19) 

The quantity P(AIB) is called the probability of A given B. It admits an 
interesting interpretation which makes it one of the fundamental concepts of 
Probability Theory. Suppose that n experiments have been performed and 
that the occurrences of events A and B have been recorded as follows: nA 

among the n experiments have resulted in the realization of event A, nB in the 
realization of B, and nAnB in the joint realization of A and B. The frequency 
interpretation of probability, which will be given a firm mathematical basis 
with the law of large numbers, suggests that if all experiments have been 
performed "independently," the frequency nA/n is close to the probability peA) 
when n is large. Similar statements hold for PCB) and peA n B), so that the 
quantity P(AIB) is by Eq. (19) close to nAnB/n: nB/n = nAnB/nB. Now nAnB/nB 
is the relative frequency of A among the realizations of B. Just as nA/n 
measured our expectation of observing event A, nAnB/nB measures our ex­
pectation of seeing A realized knowing that B is realized. 

As an illustration, imagine that a sample of n = 10,000 individuals have 
been selected at random in a given Irish town. It is observed that among them, 
nA = 5,000 have blue eyes, nB = 5,000 have black hair, and nAnB = 500 have 
blue eyes and black hair. From these data, we must expect that, with a 
probability approximately equal to nA/n = t. the first person to be met in the 
street has blue eyes. But what if this citizen wears dark glasses hiding his eyes 
and has black hair? We then expect that his eyes are blue with a probability 
approximately equal to nAnB/nB = 1/10. What we have done here is to replace 
the "a priori" probability peA), by the "conditional" probability of A given B, 
P(AIB). 

I ndependence. Let us continue with the above population sample and suppose 
that nc = 1,000 citizens among the n = 10,000 have a name starting with one 
of the first seven letters of the alphabet. We have the feeling that eye color 
and initials are "independent." For this reason, we believe that the proportion 
of blue eyes among the citizens with a name beginning with one of the first 
seven letters of the alphabet is approximately the same as the proportion of 
blue eyes in the whole population, i.e., nA/n ~ nAnC/nC or, in the probabilistic 
idealization, peA) = peA I C). Now, from the definition of peA I C), the latter 
relation is simply peA n C) = P(A)P(C). One is therefore led to adopt the 
following definition: two events A and B are said to be independent iff 

l peA n B) = P(A)P(B) ]. 
-------- --- - - ~ 

(20) 
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E6 Exercise. Consider the following table: 

r-

PIA) P(B) P(AuB) 
_ .. _ .... __ .... f--

Case 1 0.1 0.9 0.91 

Case 2 0.4 0.6 0.76 

I Cas~} 0.5 0.3 0.73 

For which cases are events A and B independent? 

The definition of independence extends to the case of an arbitrary family of 
events as follows. Let ~' be an arbitrary family of events (finite, countable or 
uncountable). This family C6 is said to be a family of independent events iff, 
for all finite subfamilies {A I' ... , An} of ({j, 

(21) 

E7 Exercise. Let {A I' ... , Ak } be a family of independent events. Show that 
[AI' A 2"'" Ad is also a family of independent events. 

The above exercise shows that in an arbitrary family of independent events, 
one can replace an arbitrary number (finite, countable, or uncountable) of 
events by their complement and still retain the independence property for the 
resulting family. 

The next exercise points out a beginner's mistake. 

E8 Exercise. Let Q = [WI' W Z , W3' w 4 } be a sample space with just four points, 
and!#' be the family of all subsets of n. A probability P is defined on .~ by 
P( {Wi}) = i( 1 ~ i ~ 4), Let A, B, C be the following events: 

Show that ~ = {A, B, C} is not a family of independent events, although A is 
independent of B, A is independent of C, and B is independent of C. 

Remark. Another beginner's mistake: disjoint events are independent. This is 
wrong. Indeed, if it were true, then for every pair of disjoint events A and B, 
at least one of them would be of probability zero, in view of 0 = P(0) = 
PIA n B) = P(A)P(B). As a matter of fact, two disjoint events are strongly 
dependent since "disjoint" means "incompatible": if one of them is realized 
then you know that the other is not. 
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Conditional Independence. Let C be an event of strictly positive probability. 
Define Pc, a mapping from the family of events :F into /R, by 

I PdA)=P(AIc) I· (22) 

E9 Exercise. Show that Pc is a probability on (Q, :F). 

Two events A and B that are independent relatively to probability Pc are 
said to be conditionnally independent given C. The defining formula is 

[ peA nEIC) = P(AIC)P(BIC)-j. (23) 

This fundamental concept of Probability Theory will be illustrated by Exercise 
E14 of Section 5. 

EIO Exercise. Let e and D be two events such that P(C n D) > O. Verify that 
for any event A 

PdAID) = p(Ale,D) 

where peA I e, D) = peA len D). 

4.2. Independence of Random Variables 

The concept of independence of events extends to random variables in a 
natural way. Two random variables X and Y defined on (Q,y,P) are said to 
be independent iff for all a, bE IR, 

(24) 

Here the notation P(X ~ a, Y ~ b) is an abbreviation of P({X ~ a} n 
{Y ~ b}). 

EXAMPLE 7. The two random variables X and Y defined in Example 3 are 
independent. Indeed, for a and b in [0, IJ, for instance, P(X ~ a, Y ~ h) is the 
area of [0, aJ x [0, b J, i.e., ab, and P(X ~ a) = a, P( Y ~ b) = b (see Fig. 8). 

In the case where X and Yare discrete random variables taking the values 
(an, n ? 0) and (bm, m ? 0), respectively, requirement (24) for all a and h is 
equivalent to the requirement that for all n ? 0, m ? 0, 
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y 

A = {X"';a) 

a x 

Figure 8. The unit square and its coordinate random variables. 

(25) 

The verification of this assertion is left to the reader. 
The extension to several random variables of the notion of independence 

is straightforward. 
A family .rr of random variables is said to be independent if for any finite 

subfamily { Y1 ' ••. , Yn } c .Yf the relation 

(26) 

holds for all aj E 1R(1 ~ j ~ n). 
In the case of discrete random variables, a simpler definition is available: 

just replace Eg. (26) with 

(27) 

where aj ranges over the set of values of lj. 

E 11 Exercise (The Binomial Distribution). Let Xl' ... ' X n be n discrete ran­
dom variables taking their values in to, I} and with the same distribution 

(28) 

Suppose, moreover, that they are independent. Defining 

r~::~~~~~~nJ 
~----- ~-~- ---

(29) 
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(a random variable taking integer values from 0 to n), show that 

, , 

P(S" = k) = - n . . pk(J ~ p .. ).". -k.(O";; k,.;; n) I' 
k'(n ~ k)! ~ 

(30) 

The probability distribution (Pk' 0 ,.;; k ,.;; n) given by 

(31 ) 

is called the binomial distribution of size n and parameter p (see Fig. 9). Any 
discrete random variable X admitting this distribution is called a binomial 
random variable (of size n and parameter pl. This is denoted by X ~ ~(n. pl. 

256 Pk 70 

56 56 

28 28 

I ill 
012345678 

n=R,p=! 

252 

210 210 

120 120 

45 45 

110 I 1 110 I 

o 1 2 3 4 5 6 7 8 9 10 
I 

n= IO,P=2 

Figure 9. The binomial law. 

5. Solving Elementary Problems 

5.1. More Formulas 

This section is devoted to the illustration of the notions and concepts pre­
viously introduced. However, before proceeding to the statement and solution 
of a fcw classic exercises, we will start a collection of simple formulas of 
constant use in this type of exercise (and in many other situations). 

Bayes' Retrodiction Formula. Thc data of a given statistical problem some­
times consist of the probabilities of two events A and B and of the conditional 
probability P(A I B). It is then asked that the conditional probability P(BI A) 
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be computed. The corresponding formula is easily obtained from the defini­
tion of conditional probability since PIA n B) = P(BIA)P(A) = PIA IB)P(E). 
We therefore have Bayes' retrodiction formula 

(32) 

which allowed Bayes to compute the probability of the "cause" B given the 
"consequence" A (hence the terminology). Of course, in the above equalities 
we have implicitly assumed that PIA) and P(B) are strictly positive so that we 
can speak of quantities such as P(BIA) and P(AIB). In practice, the problem 
of retrodiction arises whcn A and Bare probabilistically compatible, i.e., 
PIA n B) > 0, in which case PIA) and P(B) are actually strictly positive. 

Bayes' Sequential Formula. Let AI"'" An be events such that PIA 1 n ... 
nAn) > O. Then 

Here, notation PIA 1"'" An) is equivalent to p(nZ~1 Ak)' Similarly, 
P(BIA1 ... ·.Ad = P(BI(JJ~l A). 

PROOF OF EQ. (33). Thc proof is by induction: for n = 2, formula (33) is just 
the definition of conditional probability. and if Eq. (33) is true for some n ~ 2, 
it is also truc for n + 1. since 

D 

Formula (33) has an appealing intuitive interpretation if one identifies an 
index n with a time. Thus AI. A z, A] .... are events happening (or not 
happening) in sequence. at times 1,2,3 •... , respectively. 

In the case where at each time k(2 ,,:; k ,,:; n) the conditional probability 
P(AkIA1 .... ,Ak1 ) is equal to P(AkIA k - 1). the sequence (Ak,1 ,,:;k":;n) is 
called a M arkouian chain of events. Equality P(Ak I A j, ...• Ak- 1) = P(Ak I Ak- 1 ) 

expresses the fact that event Ak is conditionally independent of AI' ... , Ak - 2 

given Ak 1 [see Eq. (23)]. 

The Formula of Incompatible and Exhaustive Causes. Let A be some event. 
and let (Bn • n ~ 1) be an exhaustive sequence of mutually incompatible events. 
By this we mean that whenever i i= j, Hi n Bj = 0 (incompatibility) and that 
Un'~1 Hn = Q (exhaustivity). In other words. one and only one among the 
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events Bn must happen. We then have the important formula, which we quote 
together with its condition of application, 

cYj 

PiA) = I P(AIBn)P(Bn) 
n=l 

where t Bn =ol 
n=\ :J (34) 

To be correct, since P(A I Bn) is defined only when P(Bn) > 0, we must 
agree by convention that in the above formula, PiA I BnlP(Bn) = ° whenever 
P(Bn) = 0. 

PROOF OF EQ. (34). One writes the set identity 

A = A nO = A n (JI Bn) = nt\ A n Bn· 

By the O"-additivity axiom, PtA) = I~=l PiA n Bn). Now if P(Bn) = 0, 
PtA n Bn) = ° since Bn cAn Bn' And if P(Bn) > 0, PtA n Bn) = PtA IBn)P(Bn) 
by definition of the symbol P(A IB). 0 

EXAMPLE 8. In a digital communications system, one transmits O's and l's 
through a "noisy" channel that performs as follows: with probability p the 
transmitted and the received digits are different. It is called a binary symmetric 
channel (see Fig. 10). Suppose that a ° is emitted with probability no and a 1 
with probability n l = 1 - no' What is the probability of obtaining 1 at the 
receiving end? 

1 -p 
o ~----'.--- 0 

p 

1 -p 

Figure 10. The binary symmetric channel. 

Solution. Call X and Y the input and output random variables. Then 

P(Y = I) = pry = IIX = O)P(X = 0) + pry = IIX = l)P(X = I) 

that is 
P(Y= 1)=p·no +(1-p)·n\. 

5.2. A Small Bestiary of Exercises 

The Intuitive Attack on Probabilistic Problems. One sometimes feels that a 
complete formalization of a probabilistic problem in the (0, .F, P) framework 
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is not necessary and that the steps leading to the construction of the proba­
bilistic model can be a voided when a direct formulation in terms of events is 
adopted. We will give an instance of this kind of "elementary" problem, which 
is usually stated in everyday language. 

EXAMPLE 9 (The Bridge Problem). Two locations A and H are linked by three 
different paths and each path contains a number of mobile bridges that can 
be in the lifted position with a probability indicated in Fig. 11. The bridges 
are lifted independently. What is thc probability that A is accessible from H, 
i.c .. that thcre exists at least one path with no bridge lifted? 

-B 

figure 11. All bridges up. 

Solution. The usual (and efficient) approach to this type of problem is to forget 
about the formal (Q,.:;;, P) model and directly define the events of interest. For 
instance, Ut will be the event "no bridge lifted in the upper path." Defining 
similarly U2 and U.l' we see that the probability to be computed is that of 

- - -

[it u U2 U U3 ' or by de Morgan's law, that of Ut n U2 nUl' i.e., 1 - P(U1 n 

U2 n UJ ) = 1 - P(Ut )P(U2 )P(U3)' where the last cquality is obtained in view 
of the independence of the bridges in different paths. Letting now ui = 

"bridge one in the upper path is not lifted" and U? = "bridge two in the upper 
path is not lifted". we have U t = ui n U~. therefore. in view of the indepen­
dence of the bridges. P(Ot) = 1 P(Ut ) = 1 - p(UilP(Un. We must now 
use the data P( Ui) = 1 - 0.25, P( U ~) = I - 0.25 to obtain P( U t ) = 

1 .. (O.7W. Similarly P( U2 ) = 1 - 0.6 and P( U3 ) = 1 (0.9)·1. The final result 
is I - (0.4375)(0.4)(0.271) = 0.952575. 

We now proposc a series of exercises stated in nonmathematicallanguage. 
The reader will havc to interpret the statements and introduce hypotheses of 
independence and conditional independcnce when they are missing and if they 
are plausible. 

El2 Exercise. To detect veineria (an imaginary disease of the veins). doctors 
apply a test. which. if the patient suffers from such disease. gives a positive 
result in 99()o of the cases. However. it may happen that a healthy subject 
obtains a positive result in 20

0 of the cases. Statistical data show that one 
paticnt out of 1,000 "has it." What is thc probability for a patient who scored 
positive on the test to be veinerious') 

E 13 Exercise. Professor Nebulous tra vels from Los Angeles to Paris with stop 
overs in New York and London. At each stop his luggage is transferred from 
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one plane to another. In each airport, including Los Angeles, chances are 
that with probability p his luggage is not placed in the right plane. Pro­
fessor Nebulous finds that his suitcase has not reached Paris. What are the 
chances that the mishap took place in Los Angeles, New York, and London, 
respectively? 

E14 Exercise. Two factories A and B manufacture watches. Factory A pro­
duces on the average one defective item for every \00 items, whereas B 
produces only one for every 200. A retailer receives a case of watches from 
one of the two above factories, but he does not know from which one. He 
checks the first watch and it works. What is the probability that the second 
watch he will check is good? 

E15 Exercise. Two numbers are selected independently at random in the 
interval [0, 1]. You are told that the smaller one is less than t. What is the 
probability that the larger one is greater than i? 

E16 Exercise. There are three cards identical in all respects but the color. The 
first one is red on both sides, the second one is white on both sides, and the 
third one is red on one side and white on the other (see Fig. 12). A dealer 
selects one card at random and puts it on the table without looking. Having 
not watched these operations, you look at the exposed face of the card and 
see that it is red. What is the probability that the hidden face is also red? 

First card Second card Third card 

IDD side I 

First card Second card Third card 

I D I~·' 
Figure 12. Three cards. 

6. Counting and Probability 

A number of problems in Probability reduce to counting the elements in a 
finite set. The general setting is as follows. The set n of all possible outcomes 
is finite, and all outcomes WEn have the same probability p(w) = P(: w}), which 



22 1. Basic Concepts and Elementary Models 

must be equal to l/cardO* since LWEOP(W) = 1. An event A is a collection of 
"favorable" outcomes, and its probability is P(A) = LWEA P( {w}), so that 

cardA 
P(A)=-dA car .. 

(35) 

Therefore, onc must count the elements of A and O. The art of counting is 
called Combinatorics and is a rich area of mathematics. We shall now give the 
first elements of Combinatorics and apply them to simple situations. 

Counting Injections (Ordered Arrangements without Repetition). Let E and F 
be two finite sets, and denote P = card E, n = card F. Also suppose, without 

2 

2 3 

3 4 

4 

6 

(a) An injection from E = (l, 2, 3, 4, 5) into 
F={l, 2,3,4,5,6, 7}. 

2--"';:"",..---7""--- 2 

3 3 

4 4 

(b) A permutation of E= {I, 2, 3,4, 5}. 

DCD0DD0CIJ 
D0DJDCIJ[D0 

(e) The same unordered arrangement. 

Figure 13. Arrangements. 

* If t; is a set. card E is the cardinality of E. that is. when t; is finite. the number of clements of E. 
Another notation is I tl 
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loss of generality, that E = {l,2, .. . ,p}. We are going to count the functions 
f: E -> F, which are injections, i.e., such that there exists no pair i, j E E, i =1= j, 
with f(O = f(j). Clearly, if p > n, there is no such function. If p :( n, the number 
of injections from E into F is 

n! 
A~=n(n-l) ... (n-p+ 1)=----:­

(n - p)! 
(36) 

PROOF. To construct an injection f: E -> F, one must first select f(l) in F. 
There are n possibilities. Now, once f( 1) is chosen, there are only n - 1 possible 
choices for f(2) sinee f(2) must differ from f(I), etc. until we choose f(p) among 
the (n - p + I) remaining possibilities, i.e., in F - U(I), ... ,f(p - In. In 
summary, we have n(n - 1) ... (n - p + 1) possibilities for f. D 

Permutations. A special case of interest occurs when n = p. In this case, from 
Eq. (36), we see that A~ = n!. Now, if card E = card F, an injection of E into F 
is necessarily a bijection. Recalling that by definition a permutation of E is a 
bijection of E into itself, we see by specializing to the case E == F, that the 
number of permutations of a set with n elements is 

(37) 

Counting Subsets of a Given Size. Now let F be a finite set with n = card F 
elements. We ask the question, How many different subsets of p elements 
(p :( n) are there? If we had asked, How many ordered subsets of F with p 
elements are there?, the answer would have been A~ because such an ordered 
subset 

(XiE F) 

is, since i =1= j implies Xi =1= Xj' identifiable with an injection f: {l, ... , p} -> F 
defined by f(i) = Xi. But for our problem, we have been counting too much. 
Indeed, all permutations of the ordered subset {x l' ... ,Xp} represent the same 
(unordered) subset. Therefore, the number of different subsets of F with p 

elements is A~ divided by the number p! of permutations of a set with p 
elements. 

In summary, let F be a set with card F = n elements, and let p :( n. The 
number of subsets of F with p elements is 

(38) 

where (;) is a symbol defined by the right-hand side of Eq. (38). 
Let now F be a finite set with card F = n elements. How many subsets of 
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F are there? One could answer with I;=o (~), and this is true if we use the 
convention that (3) = I (or equivalently O! = 1). [Recall that the void set 0 
is a subset of F, and it is the only subset of F with 0 elements. Formula (38) 
is thus valid for p = 0 with the above convention.] 

We will prove now that the number of subsets of F is 2", and therefore 

2" = f (n). 
p=O p 

(39) 

Let Xl' X 2,' .. , XII be an enumeration of F. To any subset of F there corresponds 
a sequence of length n of O's and l's, where there is a I in the i lh position if 
and only if Xi is included in the subset. Conversely, to any sequence of length 
n of O's and 1 's, there corresponds a subset of F consisting of all x;'s for which 
the ith digit of the sequence is 1. Therefore, the number of subsets of F is equal 
to the number of sequences of length n of O's and l's, which is 2n. 

The Binomial Formula. Formula (39) is a particular case of the binomial 
formula 

" (n) (x + y)" = I xPy"-P 
p=O P 

(X, Y E IR). (40) 

It suffices to let X = Y = 1 in Eq. (40) to obtain Eq. (39). 

PROOF OF EQ. (40). Let Xi' Yi (I 0( i 0( n) be real numbers. The product 
[17=1 (Xj + yJ is formed of all possible products Xi Xi ... Xi YJ' ••• YJ' where 

1 2 pin p 

h, ... ,ip} is a subset of {I, ... ,n}, and Ul, ... ,j"-p} is the complement of 
{ij, ... ,ip} in {I, ... ,n}. Therefore, 

n " 
[1 (Xi + y;) = I ,. I I 

;=t p=O (ll •... f p ) 

{i l ••• i p ] c[l. .... n: 

The second I in the right-hand side of this equality contains (~) elements, 
since there are (;) different subsets {i j' ... , ip} of p elements of { I, ... , n}. Now 
letting Xj = X, .Vi = Y (1 0( i 0( n), we obtain the binomial formula. D 

In view of the symmetric roles of x and Y in Eq. (40), 

(41) 

Another important formula is Pascal's formula (Fig. 14): 

(42) 

I t is obtained by selecting an element Xo E F and observing that the subsets of 
p elements either contain Xu or do not contain Xu. 
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p 
n 0 2 3 4 5 6 7 8 9 10 

0 1 
1 1 1 
2 1 2 1 
3 1 3 3 1 
4 1 4 6 4 1 
5 1 5 10 10 5 1 
6 1 6 15 20 15 6 1 
7 1 7 21 35 35 21 7 I 
8 1 8 28 56 70 56 28 8 I 
9 1 9 36 84 126 126 84 36 9 1 

10 1 10 45 120 210 252 210 120 45 10 

Figure 14. Pascal's array. The entry (n, p) is (;). Pascal's array is constructed as follows: 
first fill the first column and the diagonal with 1'5, and then fill the rest of the lower 
triangle by applying formula (42). 

An "Urn Problem." There is an urn containing Nl black balls and N2 red balls. 
You draw at random n balls from the urn (n ~ Nt + Nz) (Fig. 15). What is the 
probability that you have k black balls [0 ~ k ~ inf(N1 , n)J? 

'

kblaCk 
<. n - k red 

Nl black 
N2 red 

Figure 15. The urn problem. 

Solution. The set of outcomes n is the family of all subsets w of n balls among 
the Nl + N2 balls in the urn. Therefore, 

cardn = (N\ : N2). 

Now you must count the subsets w with k black balls and n .- k red balls. To 
form such a set, you first form a set of k black balls among the N\ black balls, 
and there are C1') possibilities. To each such subset of k black balls, you must 
associate a subset of n - k red balls. This multiplies the possibilities by (.N_'d. 
Thus, if A is the number of subsets of n balls among the Nl + N z balls in the 
urn which consist of k black balls and n - k red balls, 
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The answer is therefore 

E17 Exercise. There are n points on a circumference. Two are chosen ran­
domly (Fig. 16). What is the probability Pn that they are neighbors? 

Figure 16. Illustration of Exercise E 17. Here n = 8, and the pair (3, 6) has been drawn. 

E18 Exercise. An urn contains N balls numbered from 1 to N. Someone draws 
n balls (1 ,,:; n ;( N) simultaneously from the urn. What is the probability that 
the lowest number drawn is k(k ;( N - n)? 

7. Concrete Probability Spaces 

Some beginners have no problem in accepting the notion of a random vari­
able. For them it is rather intuitive. When speaking of a random variable X, 
they think: this is just a random number, i.e. "something" that takes random 
values. And this randomness is somehow embodied in the c.dJ. F(x) = 

P(X ;( x), where F(b) - F(a) measures the "chance" of obtaining a value in 
the interval (a,b]. 

Another category of students, with a different psychology, prefer to think 
of "something that takes values" as a function. The (n,!Ii', P) formalism is made 
for them, because it says that a random variable X is just a function, in the 
ordinary sense, of WEn [with in addition a rather innocuous requirement, 
namely (11), but that is not essential at this point of the discussion]. It is not 
the function X, that is random, but the argument W; and X(w) is the random 
number, not X. 

For the student who prefers to consider X as a function of w, the nature of 
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w must be made precise. If he does not like the vagueness of a phrase like "X 
is a random number," he will most probably also want to know what (0,5', P) 
really is. The discussion to follow is intended to shed some light on this point. 

The manner in which Probability was introduced in Section 1 is abstract 
and axiomatic: one starts with an abstract probability space (0,5', P), which 
is given but not specified, and where 5' and P are assumed to satisfy a few 
axioms. 

In Subsection 2.2 two concrete probability spaces concerning elementary 
probabilistic models (the three-dice game and the random point in the unit 
square) were constructed. They are called concrete probability spaces because 
the sample space 0 is described in terms of "concrete" mathematical objects: 
in the examples of Subsection 2.2., 0 was either the finite set {l, 2, 3, 4, 5, 6}3 or 
the unit square in ~2. Also in Illustration 2 at the end of this chapter, featuring 
the famous ballot problem, Q is a finite set, a typical element of which is a 
non-decreasing function f: {O, l, ... ,b} -* {O, l, ... ,a} such that feb) = a. In 
each case, 5' and P are constructed and the axioms of probability are 
verified. 

When the sample space is finite, the construction of g; and P is very simple: 
take for g; the family of all subsets ofQ-and this is a O'-field indeed, associate 
to each W E Q a non-negative number pew) such that Lroen pew) = I, and define 
peA) = LWE A pew). This type of construction is used in the three-dice model 
and in the ballot problem. 

In the example of Subsection 2.2, relative to a random point in the unit 
square the construction was not too difficult either, although some fine 
mathematical points have been left aside and taken for intuitively clear. For 
instance, 0 being a unit square of /R 2 , namely [0, 1]2, g; was defined to be the 
family of subsets of 0 for which the area can be defined. Deep and somewhat 
difficult mathematical results are hidden behind the phrase "for which the area 
can be defined." The mathematical theory behind it is the Lebesgue Theory of 
Measure and Integration. It is not in the scope of the present introductory 
text. As a matter of fact one can profitably study Probability Theory without 
knowing Integration Theory, at least up to a certain point. Of course knowl­
edge of Integration Theory helps and sometimes it becomes a necessity, but 
only in the more advanced topics. 

Lebesgue theory states, in the particular case of interest to us, that there 
exists a O'-field g; on Q = [0, 1 Y for which the "area" can be defined. The 
"area" of A is called the Lebesgue measure of A. Of course for rectangles and 
for subsets of A with a familiar shape (triangles, circles, etc.) the Lebesgue 
measure coincides with the area as it is defined in high school mathematics. 
So why use Lebesgue theory when high school mathematics suffices? An 
answer is: Lebesgue theory is able to consider sample spaces much more 
complex than a square; an example will be given soon. Another answer, more 
technical, is the following: the class of subsets of the square for which the 
elementary area can be defined is not a O'-field. This is why Lebesgue defined 
ff to be the smallest O'-field containing all the rectangles in the square Q. It 
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is not difficult to show that such $' exists, but the problem with this definition 
is that it is not constructive, and therefore one can define the Lebesgue measure 
of a set in .'#7 only in a nonconstructive way. Lebesgue proved the following 
theorem: there exists a unique set function P: $' ~ [0, 1] associating with each 
A E $' its Lebesgue measure P(A), a set function that is a-additive and is such 
that if A is a rectangle [a, b] x [c, d], then peA] = (b ~ a) (c ~ d), the area of 
A. Moreover, the Lebesgue measure and the area are the same for "ordinary" 
sets such as sets bounded by a piecewise smooth curve. 

Now one can wonder: why should one insist on having a a-field of events? 
Who cares to compute the probability that the random point w falls into a 
pathological set that cannot even be described? 

In the specific example concerning a random point in the unit square it is 
true that nobody really needs to have a a-field of events. But in the abstract 
definition of (n, .'#7, P), the (J-field property of $' cannot be dispensed with. 
This will now be explained in one of the most interesting models of Probability 
Theory from the theoretical point of view. 

An Infinite Sequence of Heads and Tails Played with a Fair Coin. Here, n is 
the interval (0, 1], .'#7 is the smallest (J-field on n containing all the segments 
[a, b J of (0, 1 J, and for any A E .'F, P(A) is the Lebesgue measure ("length") of 
A, that is to say the unique probability measure P on (n,$') such that for any 
A = [a, bJ c (0, IJ, PIA) = b ~ a. Here again the existence and uniqueness of 
such P is a theoretical result of Measure Theory that will be accepted without 
proof in this book. 

I t is claimed that (n, .'F, P), so constructed, aptly models not only a random 
point on the unit segment but also infinite games of heads and tails with a fair 
coin. This claim will now be examined. 

Each OJ E (0, 1 J can be expressed in binary form as 

(43) 

wherc OJn is a or 1. Such development is called dyadic, and it is unique if one 
requires that there be an infinity of 1 's in it for any w. For instance the number 
OJ = ± will be written not as 0.01000 ... but instead as 0.00111111. ... Fig. 17 
shows how OJn is obtained from OJ. 

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 

( J( J( ]( ]( ]( ]( ]( 

WI - 0 f-4 

W2--0 I- I- 0 I- 1-----1 

W] III I- I .. I- I- I .. I- I-
0 0 0 0 

Figure 17 
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Now define for any n the random variable XII by 

XII(w) = w .. 

29 

(44) 

That is, Xn(w) is the nth term in the dyadic development of WE(O, I]. The set 
{wIXII(w) = O} is the sum I}:~I-I (2k' r n,(2k + 1)2 "] with total length 1· 
Thus P(Xn = 0) = t and similarly P(XII = I) = t· 

The event {X I = 1, X 2 = 0, X 3 = I} is the subset of (0, 1] pictured in Fig. 
18, namely {i,n 

o 1/8 1/4 3/8 1/2 

I 

5/8 3/4 7/8 
w 

w = 0.101 XXXX ... 

Figure 18. The event {Xl = 1, X 2 = 0, X3 = 1}. 

Its probability (its length) is t and therefore P(X I = I, X 2 = 0, X 3 = 1) = 
P(XI = I)P(X2 = 0)P(X3 = 1). More generally, it is seen that P{XI = ai' 
X 2 = a 2"",XII = an) = (t)" for any sequence ai' a 2 , •.. , an of O's and l's. 
Therefore 

This shows that for all n ): I the random variables X I"'" Xn are independent, 
with values 0 and 1, and that P(XII = 1) = P(XII = 0) = t. 

Now if XII is interpreted as the result of the nth toss of a fair coin (say ° for 
"tails" and 1 for "heads"), we have a concrete probabilistic model for the game 
of heads and tails with a fair coin. The concreteness of the model is, one must 
admit, very relative, but the interval (0, I] is a somewhat concrete object for 
a mathematician. But even a non-mathematician should be satisfied with 
such a model because it features the nth toss of the coin (the random variable 
XII)' the coin is fair (Pr. (heads) = Pr. (tails) = tl and the successive tosses 
are independent. 

Note that once God has selected w on (0, IJ at random, the whole sequence 
Xj(w), X2(W), ... is known to Him, but He will show it to you progressively, 
toss after toss. Any other probabilistic model for an infinite game of heads 
and tails must feature random variables Xn which are functions of w, and 
therefore W is first drawn from n and then the values Xj(w), X 2 (w), .. . -the 
values of the functions X j, X 2, ... at (})-are "instantly" available, although 
in practice index n plays the role of time and X,,(w) is shown to you only at 
the nth stage of the game. 

It must now be checked that this probability model is in accord with our 
intuition of probability as idealization of empirical frequency. More explicitly 
consider the random variable £" defined by L,,(w) = (X j (w) + ... + Xn(w))/n. 
Thio i~ thf' pmnirical frequency of heads in n tosses. 
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It is "known from experience" that Zn(w) tends to t as n goes to 00. 

Probabilists add "with probability 1." They do this in order to take care of 
an w such as w = 0.001111111111. .. that is to say w = t, and of other w's of 
a pathological kind for which Zn(w) does not tend to t as n -+ 00. The claim 
of Probabilists is that such w's are indeed pathological in the sense that 

1 P({wilimZn(w) = t}) = I I· (46) 

This is the famous strong law of large numbers for heads and tails. It is a 
physical law in some sense, but here, in the mathematical setting of Probability 
Theory, it becomes a theorem, and it was proved by Borel in 1909. The proof 
is given in Chapter 5. 

Now, look at the subset of (0,1], the set of w's such that lim Z.(w) = t. It 
is not a set for which one can define a length as one would do in high school. 
Borel's strong law of large numbers states that its Lebesgue measure (length) 
is 1, the length of the whole segment (0,1]. But yet it is not the whole segment 
(0, I]. A lot of w's in (0,1] are such that lim Zn(w) does not exist or, if it exists, 
is not equal to t. For instance any w of the form w = kl2n is such that 
lim Zn(w) = 1 # t, and there are many such w's, so many that in a segment of 
arbitrarily small length there is an infinity of them. This should convince you 
that high school length is out, at least for our purpose, because in elementary 
length theory, sets with so many holes are not considered. 

Also the set {wilim Zn(w) = t} is not obtainable by application of a finite 
number of elementary set operations (u, n and complementation) to intervals 
of 0 = (0, I], but it can nevertheless be shown to be in §, the smallest a-field 
on 0 containing the intervals. It is for that kind of reason that one wants to 
consider abstract probability spaces (0, §, P) for which § is a a-field. It is a 
natural structure, especially when one has to consider infinite sequences of 
random variables, as will be done in Chapter 5, where the convergence of such 
sequences is studied. 

The concrete probability space (O,§,P) where 0 = (0, I] and P is the 
"length" or Lebesgue measure is just one among the probabilistic models of 
an infinite game of heads and tails with a fair coin. There are many other 
models available for this game. One of them will now be briefly described. 

Take 0 to be the set of sequences taking their values in {O, I}: w = 

(wn, n ~ 1) where wn = 0 or 1. Define Xn by Xn(w) = W. and let § be the 
smallest a-field on 0 that contains the subsets {wiwn = I}, n ~ 1. Since it is 
a a-field, it also contains the set {wlwn = O} the complement of {wlwn = I}, 
and the sets {wiwI = al, ... ,wn = an} for all n ~ 1 and any sequence aI' ... , 
an taking the values ° or I. 

Since {wlwn = an} = {wIXn(w) = an}, we see that when 0 is equipped with 
the a-field :7, the X;s become random variables. 

Nowa theorem of Measure Theory will be invoked: it says that there exists 
one and only one probability measure P on (O,Y) such that 
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(47) 

for all n ~ 1, all a1, ... ,anE{0, I}. 
Thus we have obtained another model for the infinite game of heads and 

tails with a fair coin. This model is more natural than the previous one because 
here w = (X 1 (w), X 2 (w), ... ) i.e. w is the result of the infinite seq uence of tosses. 
However, we have been forced to take for granted a difficult result of Measure 
Theory, namely the existence and uniqueness of P satisfying (47). In the 
concrete model where n = (0,1] we have also taken for granted the existence 
of the Lebesgue measure ("length"). The fact is that in virtually every concrete 
probability space where n is not finite or denumerable, a theorem of existence 
must be invoked. Measure theory provides such existence theorems, and some 
of them are so powerful that one should not worry about the existence of a 
concrete probability space, at least in the probabilistic models that will be 
encountered in this book. 

Illustration 1. A Simple Model in Genetics: 
Mendel's Law and Hardy­
Weinberg's Theorem 

In diploid organisms (you are one of them!) each hereditary character is 
carried by a pair of genes. We will consider the situation in which each gene 
can take two forms called alleles, denoted a and A. Such was the case in the 
historical experiments performed in 1865 by the Czech monk Gregory Mendel 
who studied the hereditary transmission of the nature of the skin in a species 
of green peas. The two alleles corresponding to the gene or character "nature 
of the skin" are a for "wrinkled" and A for "smooth". The genes are grouped 
into pairs and there are two alleles, thus three genotypes are possible for the 
character under study: aa, Aa (same as aA), and AA. With each genotype is 
associated a phenotype whieh is the external appearance corresponding to the 
genotype. Genotypes aa and AA have different phenotypes (otherwise no 
character could be isolated), and the phenotype of Aa lies somewhere between 
the phenotypes of aa and AA. Sometimes, an allele is dominant, e.g., A, and 
the phenotype of Aa is then the same as the phenotype of AA. 

During the reproduction process, each of the two parents contributes to the 
genetic heritage of their descendant by providing one allele of their pair. This 
is done by the intermediary of the reproductive cells called gametes (in the 
human species, the spermatozoid and the ovula) which carry only one gene of 
the pair of genes characteristic of each parent. The gene carried by the gamete 
is chosen at random among the pair of genes of the parent. The selection 
procedure for the genotype of the descendant is summarized in Fig. 19. The 
actual process occurring in the reproduction of diploid cells is called meiosis. 
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Parent 1 
has genotype 

Aa 

Gamete 1 
carries allele 

a 

Parent 2 
has genotype 

AA 

Gamete 2 
carries allele 

A 
(it had the "choice" 
between A and a) 

(it had no 
other choice) 

Gametes 1 and 2 unite 
and provide 

descendant with 
genotype 

Aa 

Figure 19. The selection of a genotype. 

A given cell possesses two chromosomes. A chromosome can be viewed as 
a string of genes, each gene being at a specific location in the chain (Fig. 20). 

~ Chromosome 

I 
Location of 
the gene 

(here under the form, or allele, A) 

Figure 20. A schematic representation of a chromosome. 

The chromosomes double and four new cells are formed for every chromo­
some (Fig. 21). 

o 
One parent cell V 
~ / 
8 @~----® ~ - A_/. 
.~ ~ ----... 

a 0 
~ 

Four gametes 

Figure 21. Meiosis. 
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Let us start from an idealistically infinite population where the genotypes 
are found in the following proportions 

AA Aa aa 
x : 2z: y. 

Here x, y, and z are numbers between 0 and 1, and 

x + 2z + y = 1. 

The two parents are chosen independently (random mating), and their gamete 
chooses an allele at random in the pair carried by the corresponding parent. 

E19 Exercise. What is the genotypic distribution of the second generation? 
Numerical applications: x = y = 2z = 1; x = y = z = t; x = t y = t, 2z = t; 
x = y = t, z = o. 

E20 Exercise. Show that the genotypic distributions of all generations, starting 
from the third one, are the same. (This result was discovered by Hardy and 
Weinberg.) Show that the stationary distribution depends only on the propor­
tion c of alleles of type A in the initial popUlation. 

Illustration 2. The Art of Counting: The Ballot 
Problem and the Reflection Principle 

In an election, candidates I and II have obtained a and b votes respectively. 
Candidate I won, that is, a > h. What is the probability that in the course of 
the vote counting procedure, candidate I has always had the lead? 

Solution. The vote counting procedure is represented by a path from (0,0) to 
(b, a) (Fig. 22). Therefore, we shall identify an outcome w of the vote counting 
procedure to such a path. The set of all possible outcomes being n, we shall 
prove later that 

(48) 

Let A be the set of paths of n that do not meet the diagonal. This represents 
the set of favorable outcomes, i.e., the outcomes for which A has the lead 
throughout the vote-counting procedure. The path w of Fig. 22(i) is not a 
favorable path, whereas that of Fig. 22(ii) is a favorable path. 

We must now evaluate card A to find peA) according to Eq. (35). The 
following trick is proposed. We consider three disjoint subsets of Q (Fig. 23): 

A has already been defined. 
B is the set of unfavorable paths that start well for candidate I, i.e., the first 

ballot out of the box bears the name of I. 
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o b 

(i) (ii) 

Figure 22. A schematic representation of the vote counting procedure (in (ii), candidate 
J leads throughout). 

a path in A a path in B a path in C 

Figure 23. In cases Band C, J does not lead throughout. In case B the first vote is 
favorable to J, whereas in case C it is favorable to II. 

C is the set of unfavorable paths that start well for candidate II. 

Clearly, 

card n = card A + card B + card C. (49) 

If we admit Eq. (48), card C is easy to evaluate. It is the number of paths 
from (1,0) to (b, a) or, equivalently, the number of paths from (0, 0) to (b - 1, a), 
I.e., 

car C = = . d (a + b - 1) (a + b - 1) 
b - 1 a 

It turns out (and we shall prove it below) that 

card B = card C. 

Therefore, in view of Eqs. (49) and (51), 

(50) 

(51) 
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card A = I _ 2 card C, 
card n card n 

and in view of Eqs. (48) and (50), 

cardA (a+!-I) (a+b-I)!a!b! 
PIA) = -- = I - 2 = I - 2---,-c--cc--~ 

card n (a: b) (a + b)!a!(b - I)! 

Finally, 

a-b 
peA) =--b· 

a+ 

35 

(52) 

The proof will be complete if we show that Eqs. (48) and (51) are indeed true. 

PROOF OF EQ. (51) (The "Reflection Principle"). The proof consists in finding 
a bijection between Band C since a bijection between two sets exist if and 
only if the two sets have the same cardinality. The bijectionf: B -> C is defined 
as shown in Fig. 24. A path WEB must meet the diagonal. Let (u, u) be the 
first point at which wEB meets the diagonal. Then f(w) and ware the same 
from (u, u) to (b, a), and few) and ware symmetric with respect to the diagonal 
from (0,0) to (u, u). The mapping f is clearly onto and into, i.e., bijective. 

o 

a --------

I 
I 
I 
~ 

/1 
,/ I 

w / I 

) I 
/ I 

u I 
/ f(w) I 

/ I / , / I 
/ I 

Ii b 

Figure 24. A path and its reflection. 

PROOF OF EQ. (48). A vote-counting procedure is representable by a sequence 
of length a + b of I's and II's, with a I's and b II's. The interpretation of such 
a sequence is that you find I in position i if and only if the ith ballot is in favor 
of I. The positions occupied by the I's in a given such sequence is {i 1' ... , ia} C 

{I, . .. ,a + b}. Hence, Eq. (48) in view of Eq. (38). 
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Illustration 3. Bertrand's Paradox 
A random chord CD is drawn on the unit circle. What is the probability that 
its length exceeds j3, the length ofthe side of the equilateral triangle inscribed 
in the unit circle (see Fig. 25)? 

Figure 25. The random chord. 

This is a famous example of an incompletely specified problem. One must 
tell what "random chord" means. How is it "randomly"chosen? The French 
mathematician Bertrand proposed three different answers, and this is the so­
called Bertrand's paradox. The different answers correspond to actually dif­
ferent probabilistic models, i.e different concrete probability spaces (O,~, Pl. 

First Model. Take for 0 the unit disk with the cr-field.7i' of "subsets for which 
area is defined," and let for any A E~, P(A) = area of A divided by the area 
of the unit disk. This is indeed a probability since P(O) = 1, and P is a multiple 
of the Lebesgue measure (see Section 7) on the disk. Now C and Dare 
constructed as Fig. 26 indicates, i.e CD is perpendicular to Ow. The length of 
CD is called X(w) since it is a function of w. This defines a random variable, 
and we want to compute P(X ;,: j3). But the event {w I Ow ;,: t} is the shaded 
domain of Fig. 26(b). Thus P(X ;,: j3) = l Therefore (first answer) the prob­
ability asked by Bertrand is ;l. 

c 

(a) (b) 

Figure 26. First construction of a random chord. 

Second Model. Take for 0 the unit circle with the cr-field ~ of "subsets for 
which length can be defined," and for any A E .7i', PtA) = length of A divided 
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by 2n: (note that prO) = 1 as required). The random sample w is a point of the 
circle. C being fixed, take D = w (see Fig. 27). Thus CD is indeed a random 
chord (depending on w) with a random length X(w). The set (wIX(w) ~ J3} 
is the portion of the unit circle enhanced in Fig. 27(b), and the second answer 
to Bertrand's problem is therefore t. 

c 

(al (b) 

Figure 27. Second construction of a random chord. 

Third Model. Take 0 = [0,1] (see Figure 28) with the (T-field .~ of "subsets 
for which the length can be defined," and let P(A) = length of A. Define CD 
to be the chord passing through wand perpendicular to the Ox axis. It is clear 

that the length X (w) of CD exceeds J3 if and only if w E [t, 1]. Thus the third 
answer to Bertrand's problem is 1. 

D 

(a) (b) 

Figure 28. Third construction of a random chord. 

Thus we have obtained 3 answers: t t, and t! There is however nothing 
really surprising about this, since the concrete probability models corre­
sponding to the above answers are different. Which one is the "good" one is 
another question. The correct model depends on the device used to throw a 
chord at random. The three devices used above are purely intellectual, and 
most likely, do not correspond to any physical device. In order to discriminate 
between competing probabilistic models one must resort to statistical analysif 
which is essentially based on two results of Probability Theory: the strong lav 
of large numbers and the central limit theorem. This will be discussed i 
Chapter 5. 
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SOLUTIONS FOR CHAPTER I 

E 1. From the a-additivity axiom, P(U~l A.) = P(I;:'=l A~) = I;;o~l P(A~). Also 
A~ c An' and therefore by the monotonicity property (5), P(A~) ~ P(A.). 

E2. We do the second formula only. If we write PiA) + P(B) + p(e) and compare it 
with PiA u B u C), we see that we have counted the striped area twice and 
the dotted area three times. The dotted area is PiA n B n C), and the striped 
area is PiA n B) + PiA n C) + P(B n e) minus three times the dotted area. 
Finally, PiA u B u C) = PiA) + P(B) + PiC) - 2P(A n B n C) - (P(A (\ B) + 
PiA (\ C) + P(B n C) - 3P(A (\ B n e)), which gives the desired result after sim­
plification. Comment: Try formalizing the above proof. 

C 

B 

E3. Ifa ~ 2, {Z ~ a} = n. Ifa < 0, {Z ~ a} = 0. Ifae[0,2]: 

y y 

+a 

+a x 

Case a E [1, 2) Case a E [0. 1) 

This figure shows that the set {Z ~ a} is indeed a set for which the area is well 
defined. 

a ~ 2, 

a < 0, 

ae [0, 1J, 

ae [1, 2J, 

P({Z ~ a}) = Pin) = 1 

P({Z ~ a}) = P(0) = ° 
a2 

P({Z ~ a}) = 2' 

(2 - a)2 
P( {Z ~ a}) = 1 - --. 

2 
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E4. o if x < 0 

2 
if XE [0, IJ 

F(x) = 
(2 - xf 

1----
2 

if xE[I,2J 

if x ~ 2 

fIx) ~ dF(x) ~ r if x<O 

if xE[O,IJ 

dx 2-x if XE [1,2] 

0 if x ~ 2. 

[(x) 

2 x 

E5. The only way to obtain X = 18 is XI = X 2 = X3 = 6. The corresponding W is 
w = {6,6,6,}. Therefore, 

P(X = 18) = P({wIX(w) = 18}) = P({w}) = CAY 
There are 10 different ways of obtaining X = 6: 

XI = I, X 2 = I, X3 =4 WI = (1, 1,4) 

XI = 1, X 2 = 4, X3 = 1 w 2 = (1,4, 1) 

XI =4, Xl = I, X3 = 1 W3 = (4,1,1) 

XI =2, Xl = I, X3 = 3 W4 = (2,1,3) 

XI = I, X 2 = 2, X3 = 3 Ws = (1,2,3) 

XI =2, X 2 = 3, X3 = 1 W6 = (2,3,1) 

XI = 3, X 2 = 1, X3 = 2 W7 = (3, 1,2) 

XI = 1, X 2 = 3, X3 = 2 Wg = (1,3,2) 

XI = 3, X 2 = 2, X3 = 1 W9 = (3,2, I) 

XI = 2, X 2 = 2, X3 = 2 WIO = (2,2,2) 

Therefore, P(X =6)=P( {wIX(w)= 6})= P( {WI' W2 , ••• ,w IO }) = LJ21 P( {w}})= 
10. (1)3. 
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E6. Apply the inclusion exclusion formula (see E2) to obtain PIA n B) and compare 
it to P(A)P(B). 

P(A)P(B) IIn~~C~jl 
~0t=t Yes 

0.24 Yes 
---- ~-

0.15 No 

1_~(An~ 
Case 1 0.09 

Case 2 0.24 

Case 3 0.07 
.. _. ____ , __ . __ ~ .. __ i ___ .. 

E7. We must check. for instance. that P(AI n A2 n A 3) = P(AdP(Az)P(A3). But 
P(AI n Az n A 3) = P(Az n A 3) - P(AI n Az n A 3) since AI n A2 n A3 = 

Az n A3 - AI n A z n A 3 . Therefore. P(AI n A2 n A 3 ) = P(A z)P(A 3)­

PIA I )P(A z )P(A 3) = (1 - PIA d)P(A 2 )P(A]) = P(AI )P(A z)P(A 3 )· 

EH P(A)=P({wI>Wz ))=P«(w I ) + :wz])=!+!=!' Similarly, P(B)=P(C)= 

1. Therefore. PIA n B n C) = P(0) = 0 oF P(A)P(B)P(C). However, PIA n B) = 

P( :w 2 ]) = ! = P(A)P(B) and similarly for A n C and B n C. 

E9. Clearly PdA) ~ O. Also 

EIO. 

PIA n C) 
Pe(A) = ,,; 1 

PIC) 

since PIA n C) ,,; PIA). 

PIn n C) PIC) 
p. (n) - -- - - - 1 
(' - PIC) - PIC) - . 

Let (A n .11 ~ 1) be a sequence of disjoint events. Then 

, P(A"n C) , 
= L = L PdA") . 

• -1 PIC) "-I 

PdA.D) PIA,DIC) 
Pc(AID) = Pc·(D)- = P(DIc) 

_ P(A,C,D)/P(C) _ P(A,C,D) _ P(AIC D) 
- P(C,D)/P(C) - P(C,D) - ,. 

Ell. One way of obtaining S. = k is Xi, = 1, ... , Xi. = 1 where I ,,; i l < i2 < ... < 
ik ,,; 11 and X; = 0 for j oF i I. i z, ... , ih . The probability of such an event is, by the 
independence assumption. P(Xi , = 1) ... P(Xi, = 1 )P(Xil = 0) ... P(X; • • = 0) 
[where lil, ... ,j"-d is the set {1,2, ... ,n} - {il, ... ,id] i.e., ph(1 - p)"-k. Now 
the event S" = k is the sum of all the above events {Xi, = 1, . .. ,X;, = I,Xj, = 
O ..... Xi• k = 0: for all sets of indices:il, ... ,id such that I,,; i l < i2 < ... < 



Solutions for Chapter I 41 

ik ,,:; n. There are n!/[k!(n - k)!] such sets of indices. Therefore, by the a-additivity 
axiom 

PIS. = k) = L P(Xi , = 1"",Xik = I, Xi. = O"",Xi" k = 0) 
I ~il<"'<ik~n 

E 12. Let M be the event "patient is ill," and + and - be the events "test is positive" 
and "test is negative," respectively. We have the data 

P(M) = 0.001, P(+ 1M) = 0.99, P( + 1M) = 0.02, 

and we must compute P(MI +). By the retrodiction formula (32), 

P(+IM)P(M) 
P(MI+)= . 

P(+) 

By the formula of incompatible and exhaustive causes [Eq. (34)], 

P( +) = P( + IM)P(M) + P( + IM)P(M). 

Therfore, 

(0.99) (0.00 I) I 
P(MI +) = (0.99)(0.001) + (0.02)(0.999) "" 2()' 

Comment: This is a low probability indeed. The important thing is not to miss a 
case. In this respect, the test should have a high value for P( + I M) (here 0.99, but 
for 0.99999 we would still have P(MI +) "" to). The test is probably inexpensive 
and perhaps this is why such a large P( + I M) (here 0.02) is accepted. In medical 
practice, if a patient has a positive test, he or she is subjected to another test with 
a smaller P( + I M). The second test will probably be much more expensive than 
the first one, otherwise it would have been used in the first place. Using the 
expensive test only as a second test "to be sure" is cost-effective because only a 
few people obtain a positive result on the first test. Indeed, with the data in the 
statement, P( +) = 0.99 x 0.001 + 0.02 x 0.99 "" 0.021. You see that it is the 
quantity P( + 1M) which is crucial in the computation of P(MI +). For instance, 
if we take 0.002 instead of 0.02, we obtain P(M 1+) "" 0.33, and with 0.0002, we 
obtain P(MI +) "" 99/119. 

E 13. Think of the misplacement procedure as follows: a demoniac probabilist throws 
three coins independently and denotes t for heads and 0 for tails. This results in 
three random variables X" X 2 and X], with values in {O, I~, and with 
PIX, = 1) = P(X2 = I) = PIX} = \) = p. If X, = 1, the misplacement happened 
in Los Angeles. If X, = 0 and X 2 = I, it happened in New York, and if X, = 0 
and X 2 = 0 and X3 = I, it happened in London. The event M = "the luggage 
has been misplaced" is the sum of these three disjoint (incompatible) events and 
its probability is therefore P(M) = P(X, = I) + P(X, = 0, X 2 = I) + P(X! = 
0,X 2 = O,X} = I). It is natural to assume that the staff in different airports 
misbehave independently of one another, so that PI M) = PI X, = I) + 
PIX, = 0)P(X2 = I) + PIX, = 0)P(X2 = O)P(X] = I) = P + (I - p)p + 
(1 - p)2 P = I - (1 - p)3 This result could have been obtained more simply: 
P(M) = I - P(M) = I - PIX! = 0,X2 = 0, X, = 0) = 1- PIX! = 0)P(X 2 = 
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O)P(X, = 0) = I - (1 - p)3). We want to compute the probabilities x, y, and z 

for the luggage to be stranded in Los Angeles, New York, and London, respec­
tively, knowing that it does not reach Paris: x = P(X! = II M), y = PiX I = 0, 
X 2 = 11M), z = P(X 1 = 0, X 2 = O,X} = 11M). One finds 

p 
x = P(X 1 = 1, M)/P(M) = PiX! = I)jP(M) = I _ (I _ p)3 

p(l - p) 
y = PiX! = 0, X 2 = I,M)/P(M) = P(XI = 0'X2 = l)/P(M) = I _ (\ _ p)3 

c = P(X 1 = 0, X 2 = 0'X3 = I, M)/P(M) = PiX! = 0'X2 = 0'X3 = I)/P(M) 

p(1 _ p)2 
I--~-(!~'::::- p)3 . 

E 14. Let X. be the state of the nth watch in the case, with Xn = I ifit works and X. = 0 
if it does not. Let Y be the factory of origin. We express our a priori ignorance 
as to where the case comes from by 

prY = A) = PlY = B) = 1. 
Also, we assume that given Y = A (respectively, Y = B), the states of the succes­
sive watches are independent. For instance, 

PiX! = I, X 2 = 01 Y = A) = P(X l = IIY = A)P(X2 = 01 Y = A). 

We have the data 

P(Xn = 01 Y = A) = 0.01, P(Xn = 01 Y = B) = 0.005. 

We are required to compute P(X2 = IIX, = I), that is, PiX! = I,Xl = 1)/ 
PIX 1 = 1). By the formula of exclusive and exhaustive causes, P(X! = 1, X 2 = 
I) = PiX, = I,X2 = IIY = A)P(Y = A) + PiX, = I,X2 = IIY = B)P(Y = 

B) = 1<99/100)2 + W99/200)2, and PiX! = I) = P(X, = II Y = A)P(Y = A) + 
PIX, = II Y = B)P(Y = B) = ~(99/IOO) + W99/200). Therefore, 

(~;oy +G~Y 
P (X 2 = 11 X 1 = 1) = --'-----'-99-----'1 '--99---'--

-10-0 + -2(-)0 

Comment: We see that the states of two successive watches are not independent, 
otherwise P(X2 = IIX 1 = I) = P(X2 = 1) = t(99/100) + t(199/200). However, 
the states of two successive watches were supposed to be conditionnally indepen­
dent qiven the factory of origin. 

E IS. We can take the model of drawing a point at random in the unit square, since 
then the random variables taking their values in [0, I], X and Y, are indepen­
dent (Example 7) and uniformly distributed (Example 6). We have to com­
pute P(sup(X, Y) ;;. ilinf(X, y) ~ t), that is, P(sup(X, Y) ;;. i, infiX, Y) ;;. t)/ 
P(inf(X, Y) ~ t)· The sets {sup(X, Y);;' t infiX, Y) ~ t} and {infiX, y) ~ t} are 
pictured in the figure below and have the probabilities (areas) 1/6 and 5/9, 
respectively. Hence, the result (1/6)/(5/9) = 3/10. 
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y y 

1 x x 
"3 

{inf (X. Y)";; ~ } {sup (X. Y):;;' i . inf (X. Y)";; ~ } 

E16. Call the cards RR, Ww, RW. The experiment features two random variables: X 
is the card selected at random and Y is the color of the exposed face. We must 
compute PIX = RRI Y = R). The reasonable data consists of PIX = RR) = 
PiX = WR)=P(X= WW1=1and P(Y=RIX=RR)= 1, P(Y=RIX =RW)= 
t, pry = RIX = WW) = O. Now, 

PiX = RRI Y = R) = P(X = RR, Y = R)IP(Y = R) = PIX = RR)/(P(Y = R) 

and 

pry = R) = prY = RIX = RR)P(X = RR) + pry = Rlx = WW)P(X = WW) 

+ prY = Rlx = WR)P(X = WR) 

Therefore, PIX = RRI Y = R) = 1: t = ~ (not! as some people guess). 

E 17. For n = 2, P2 = 1. For n ;;?: 3. there are n pairs of points which are neighbors. 
Also. in general, there are (~l pairs. The probability to be found is therefore 
nlW = 21n - 1. 

E 18. There are (~) subsets of n balls among N balls. If ball k is in the subset and if it 
is the ball with the lowest number, the remaining n - 1 balls must be chosen 
among N - k balls (i.e., k + 1, .. . ,N). This leaves (~~n choices. The probability 
to be found is therefore (~~t)/(~). 

E 19. The first task consists in providing a probabilistic model. We propose the 
following one. The sample space n is the collection of all quadruples w = 

(X I ,X2,YI,Y2) where XI and X 2 take their values in {AA,aA.aa}. and YI and Y2 
take their values in {A, a}. The four coordinate random variables Xlo X 2 , YI , Y2 

are defined by XI (w) = XI' X 2 (w) = X 2 • Y1 (w) = YI. and Y2 (wl = Y2. We interpret 
X I and X 2 as the pairs of genes in parents 1 and 2 respectively. Y1 is the allele 
chosen by gamete I among the alleles of X I. with a similar definition for Y2 • The 
data available are 

P(XI=AA)=P(X2=AA)=X} 

PIX I = aal = PIX 2 = aa) = Y choice of parents 

P(X 1 = Aa) = P(X2 = Aa) = 22 
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P(Y1 =AIX1 = aa) = O,P(YI =a1X 1 =aa) = I choice of allele by 
gamete 1 

P(Y1 = AIX1 = AA) = 1, pry, = alX, = AA) = O} 
pry, = AIX 1 = Aa) = !,P(Y1 = alX 1 = Aa) = t 

and the similar data for the choice of allele by gamete 2. 
One must also add the assumptions of indepc!ndence of X I and X 2 and of Y, 

and Yl . We are required to compute the genotypic distribution of the second 
generation, i.e., 

p = pry! = A, Y2 = A) 

q = P(Y1 = a, Y2 = a) 

2r = P( Y1 = A, Y2 = a or Y1 = a, Y2 = A). 

We start with the computation of p. In view of the independence of Y, and Y2 , 

p = P( Y, = A)P( Y2 = A). By the rule of exclusive and exhaustive causes, 
PlY, = A) = P(Y1 = AIX1 = AA)P(X, = AA) + P(Y1 = AIX 1 = A.)P(X, = 
Au) + P(Y1 = AIX1 = aa)P(X, = aa) = 1· x + t· 22 + O· y = x + z. Therefore, 

p = (x + z)z, 

and symmetry, 

q=(Y+Z)2. 

Now 2r = P(Y1 = A, Y2 = a) + P(Y1 = a, Y2 = A), and therefore by symmetry, 
r = P(Y1 = A, Y2 = a). In view of the independence of Y! and Y2 , r = P(Y1 = 
A)P( Y2 = a). Finally, in view of previous computations, 

2r = 2(x + z)(y + z). 

Numerical Applications. 

1 
x=y=2z=-

3 

1 
2r =-

2 

1 
x = y = 2' z = 0 

E20. Define the functions f" f2' and f3 by 

fl (x,y, z) = (x + Z)2 

f2(X,y,z) = (y + Z)2 

f3(X, y, z) = (x + z)(y + z). 

To be proven: for all nonnegative numbers x, y, z such that x + y + 2z = 1, 

,(;(x, y, z) = .t;Lfdx, y, Z),.f2(X, y, Z),.f3(X, y, z)], i = 1,2,3. 

The third equality, for instance, is 
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(x + z)(y + z) = [(x + Z)2 + (y + Z)(X + z)] [(y + Z)2 + (y + Z)(X + Z)]' 

It holds since (x + zf + (y + z)(x + z) = (x + z)(x + 2z + y) = x + z and 
(y + z)2 + (y + z)(x + z) = (y + z)(y + 2z + x) = y + z. The ratio c of alleles of 
type A in the initial population is x + z. Now y + z = I-c. Therefore, the 
stationary distribution is 

2r = 2c(l - c). 



CHAPTER 2 

Discrete Probability 

1. Discrete Random Elements 

1.1. Discrete Probability Distributions 

Let E be a denumerable set (i.e., finite or countable) and let (O,:F, P) be a 
probability space. Any function X mapping 0 into E and such that for all x E E, 

(1) 

is called a discrete random element of E. When E c IR, one would rather refer 
to X as a discrete random variable. 

Requirement (1) allows us to define 

li(~~~(X = x) I· (2) 

The collection [p(x), x E E] is the distribution of x. It satisfies (see Eq. (18), 
Chapter 1) 

I 0 ~ p(x) os: 1, I p(x) = 1 . 
XEE 

(3) 

EXAMPLE J (Single Toss of a Coin). The coin tossing experiment of a single 
coin with bias p(O os: p os: J) is described by a discrete random variable X 
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taking its values in E = {O, I} with the distribution 

P(X = 1) = p, P(X = 0) = q = 1 - p. 

EXAMPLE 2 (A Finite Succession of Coin Tosses). Consider the probabilistic 
model (n,:IF, P) of Chapter 1, Section 7. The sequence (Xn' n ~ 1) is a sequence 
of independent random variables of the type described in Example 1 above. 
For each n, one can define a random element with values in E = {O, 1 }n, 
namely, X = (X1, ... ,Xn ). 

El Exercise. What is the distribution of the random element X in Example 2? 

EXAMPLE 3 (The Binomial Distribution). The setting is the same as in Example 
2. The discrete random variable 

(4) 

takes its values in E = {O, 1, ... , n}. Its distribution was obtained in Chapter 1, 
Exercise Ell, and it was found that P(Sn = k) = Pk (0 ~ k ~ n) where 

n! k n-k 

Pk = k!(n - k)!P q (0 ~ k ~ n). (5) 

Distribution (5) is called the binomial distribution of size n and parameter p. 

Any discrete random variable Z with values in E = {O, ... , n} and admit­
ting this distribution is called a binomial random variable (of size nand 
parameter pl. This is denoted by Z - 3B(n, pl. 

EXAMPLE 4 (The Geometric Distribution). Using the same definitions and 
notations as in Examples 2 and 3 above, define the random variable T to be 
the first time n for which Xn = 1 (Fig. 1). Hno such n exists, T = 00. Formally, 

T = {inf{nIXn = l}if{nlXn = I} -# 0 (6) 
+00 otherwise. 

The random variable T therefore takes its values in N +. 

0 0 0 0 0 0 1 I 0 I I 
• • • • • • • • • • • 

times n =0 1 2 3 4 5 6 7 8 9 10 II 

I 
For this w, T(w) =0 7 

Figure I. The geometric random variable. 
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E2 Exercise. Show that 

I P(T = k) = pqk-1 (k ~ 1). (7) 

Prove that P( T = 'X) = 0 or I according to whether P > 0 or p = O. 

One says that T admits a geometric distribution of parameter p, or equiva­
lently, T is a geometric random variable of parameter p (see Fig. 2). This is 
symbolized by T '" rs(p). 

Pn 
1/2 

I P = 11 
1/4 

1/8 

11(6 
172 1/64 ..... 

'I 
n 

0 2 3 4 5 6 

Figure 2, A geometric distribution. 

E3 Exercise. Show that the geOl)1etric distribution has no memory. i.e., for all 
no ~ I, 

(k ~ 1). (8) 

EXAMPLE 5 (The Multinomial Distribution). Suppose you have k boxes in 
which you place n balls at random in the following manner. The balls are 
thrown into the boxes independently of one another, and the probability that 
a given ball falls in box i is Pi (Fig. 3). Of course, 

(9) 
-- -- ~ 

Let Xi be the number of balls found in box i at the end of this procedure. The 
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Figure 3. Placing balls at random in boxes. 

random element X = (Xl' ... , Xk) takes its values in the finite set E consisting 
of the k-tuples of integers (m l , ... , m",) satisfying 

m l + ... + mk = n I. (10) 

(11) 

Examine the case k = 2. 

The probability distribution defined by Eqs. (9), (10), and (11) is the multi­
nomial distribution of size (n,k) and of parameters (Pl' .. . ,PI.). Notation 
(Xl' ... ,Xt) '" JI(n,k,P;) expresses that (Xl' ... ,X,,) is a multinomial random 
variable, i.e., admits a multinomial distribution. 

EXAMPLE 6 (The Poisson Distribution). A random variable X that takes its 
value in E = I'\,J and admits the distribution 

(k ~ 0) (12) 

where A. is a nonnegative real number, is called a Poisson random variable with 
parameter A.. This is denoted by X '" 9(1). We recall the convention O! = 1 
so that P(X = 0) = e-J. (see Fig. 4). 



50 2. Discrete Probability 

P(X = k)e' 

9/2 9/2 

3 27/8 

81/40 

o 2 3 4 6 7 ..... k 

Figure 4. A Poisson distribution. 

1.2. Expectation 

The Real Case. Let X be a random element taking its values in E, with 
distribution (p(x), x E E), and let f be a function from E into ~. Suppose 
moreover that 

L If(x)lp(x) < 00. (13) 
XEE 

One then defines the expectation of f(X), denoted E[f(X)], by 

E[f(X)] = I f(x)p(x) (14) 
X€E 

EXAMPLE 7. Let X be a Poisson random variable with parameter l, and let f 
be the identity, i.e., f(x) = x. We have 

E5 Exercise. Show that if X - 9(l), E(X) = land E[X2] = l + l2. 

EXAMPLE 8. Let X = (X 1" •• , X,,) be the random element of Example 5, admit­
ting the multinomial distribution described by Eqs. (9), (10), and (11). Take f 
to be the "projection" f(x) = Xi where 1 ~ i ~ k. Then 
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where E is the set of k-tuples of integers (ml , ... ,mk ) such that L~=l mi = n. 
We will not carry out the computation at this point (see Exercise E21). 

Condition (13) is not the weakest one under which E[f(X)] can be defined. 
When f is nonnegative, for instance, the series in the right-hand side of Eq. 
(14) has a meaning whether or not Eq. (13) is satisfied. However, if Eq. (13) is 
not required, E[f(X)] can be infinite. When Eq. (13) is satisfied, E[f(X)] is 
finite. 

The Complex Case. Now let f be a function from E into C (the complex 
numbers) of the form 

f(x) = g(x) + ih(x) (15) 

where i = .,j=l and g and h are real valued functions such that 
LXEE Ig(x)lp(x) < 00 and LXEE Ih(x)lp(x)dx < 00, or, equivalently 

L If(x)lp(x)dx < 00. 
XEE 

The expectation of f(X) is then defined by 

1 E[f(X)] = E[g(X)] + iE[h(X)] I· (16) 

EXAMPLE 9. Let X be a Poisson random variable with parameter A, and let 
f(x) = SX for some SEC. We have 

E6 Exercise. Carry out the computation in the Example 9 above to find 
E[sX] = el(s-l). (This is the "generating" function of the Poisson distribution. 
More details in Section 3.) 

Remark (A Question of Consistency). Consider a function f mapping E into 
IR, and define 

Y =f(X). (17) 

Random variable Y is a discrete random variable taking its value in F = f(E). 
Indeed {wi Yew) = y} = {wlf(X(w» = y} = UXEAy {wIX(w) = x} whereAyis 
the set of x E E such that f(x) = y, and therefore, since {w I X (w) = x} E jO for 
all x E E, {wi Yew) = y} E jO. Suppose that condition (13) is satisfied. The 
question is, can we define E[Y] by formula E[Y] = LYEF yq(y) where [q(y), 
y E F] is the distribution of Y, and do we have 

L xp(x) = L yq(y) (18) 
xeE YEF 

as expected? 
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E7 Exercise. Prove that the above question has a positive answer. 

Properties of Expectation. One of the main properties, linearity, is obvious 
from the definitions. It says that if fl and f2 are functions from E into C such 
that condition (13) is satisfied for f = fl and f = f2' and if A.l and )'2 are two 
complex numbers, then 

The other important property of expectation is monotonicity. It says that if 
fl and f2 above are restricted to take real values, and if 

(XE E), (20) 

then 

(21) 

The reader will easily provide the proof, and will see that Eq. (20) is required 
to hold only for those x E E such that p(x) > O. 

By the extension of the triangle inequality to series, we have 

I X~E f(x)p(x) I ~ X~E If(x)p(x) I = X~E If(x)lp(x), 

that is, 

IE[f(X)] I ,;;; E[lf(X)I] , (22) 

an inequality frequently used. 

Remark. The linearity property of expectation usually appears in the following 
form. For two discrete random variables XI and X 2 , 

(23) 

There is nothing new here; it suffices to consider the random discrete element 
X = (XI' X 2) and the functions fl and f2 defined by fl (x) = XI and .f2(X) = X 2 

for all x = (X I ,X2 ). Then Eq. (23) isjust 

E[fI(X) + f2(X)] = E[fdX)] + E[f2(X)]. 

There is a little trick often used in computations that is worthwhile mentioning 
at this point. Consider a random element X taking its values in E, and let C 
be a subset of E. The indicator function of C, denoted Ie, is a function from 
E into IR defined by 



1. Discrete Random Elements 

if XEC 

if x rt c. 

Applying definition (14) to f = Ie, one obtains 

E[Ic(X)] = L Idx)p(x) = I p(x). 
XEE XEC 

But 

I p(x) = I P(X = x) = P (I {X = X}) = P(X E C). 
XEC XEC XEC 

Therefore, 

53 

(24) 

(25) 

The above remark and the linearity and monotonicity properties of expec­
tation will now be applied to derive a famous inequality. 

Markov's Inequality. Let f be a function from E into ~ satisfying Eq. (13). 
Then, 

I P(lf(~" aJ " ErL~XIIJ (a> 0). (26) 

PROOF OF EO. (26). Let C = {x Ilf(x)1 ~ a}. Then If(x11 = Idx1If(x)1 + 
1(,(x)lf(x)1 ~ Iclx)lf(x11 ~ Idx)a where the last inequality is obtained by 
noting that if x E C then If(x)1 ~ a, by definition of C. Therefore, using succes­
sively the monotonicity, the linearity, and the trick of Eq. (25), 

E[lf(X)I] ~ E[a' Ic(X)] = aE[ldX)] = aP(X E C) = aP(lf(X)1 ~ a), 

since X E C is equivalent to If(X)1 ~ a by definition of C. D 

The indicator function trick (25) can be generalized as follows. Let (n, ff, P) 
be a probabilistic model and let A be some event. The indicator function IA 
is a function from n into {O, I} defined by 

if WEA 

if wrt A. 
(27) 

Clearly X = 14 is a discrete random variable taking its values in E = {O, I}, 
and since the events {wIX(w1 = 1} and A are identical, P(X = I) = PtA). 
Similarly, P(X = 0) = P(A) = I - P(A). The expectation of X is 

E[X] = I·P(X = I) + O'P(X = 0) = P(X = I) = P(A), 
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that is, 

(28) 

Identity (25) is a particular case of Eq. (28) with A = {X E C}. 

E8 Exercise (Inclusion-Exclusion Formula). Let AI' ... , An be n arbitrary 
events. Then 

p(V
I 

Ak) = i~ PtA;) ~ i~ it! P(AinAj ) 

i<j 

(29) 

where the general term is 

n n 

( ~ l)m+l L L P(A i , n ... n AiJ. 
i 1 =1 i.-n=l 
il<i2< ··<im 

Prove this formula using indicator functions. Hint: You will have to use the 
following identities: 

k k n lA; = TI lA;, 
i=l i=l 

1.3. Independence 

The Product Formula. Let X and Y be two random clements with values in 
the denumerable spaces E and F respectively. Another random element Z 
taking its values in the denumerable space G = E x F can be constructed from 
X and Y by Z = (X, Y). 

Let (p(x), x E E), (q(y), y E F) and (r(z), z E G) be the distributions of X, Y, and 
Z, respectively. The random elements X and Yare said to be independent if 
and only if 

r(z) = r(x, y) = p(x)q(y) (XEt;,YEF,z = (x,y)), (30) 

that is, 

I----~-· 

t P(X = x, Y = y) = P(X = x)P(Y = y) (xEE,YEF). (31 ) 

Now let f and 9 be two functions from E to I[ and from F to I[ respectively 
such that LXEE I.f(x)lp(x) < 00 and LVEF Ig(y)1 q(y) < OC:. 
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E9 Exercise. Show that E[f(X)g(Y)] can be defined and that 

1 E[f(X)g(Y)] = E[f(X)]E[g(Y)] I· (32) 

Equality (32) is called the product formula. 

The Convolution Formula. Suppose that X and Yare discrete random vari­
ables taking their values in f\J and admitting the distributions 

P(X = k) = Pk, P(Y = k) = qk (k ~ 0). 

If X and Yare independent, the random variable S = X + Y admits the 
distribution 

peS = k) = rk 

defined by the convolution formula 

k 

(k ~ 0) 

rk = I Pjqk-j 
]=0 

(33) 

PROOF OF EQ. (33). Since {S = k} = IJ=o {X = j, Y = k - j}, rk = L7=o P(X = j, 
Y = k - j). But X and Yare independent and therefore 

P(X =j, Y= k - j) = P(X =j)P(Y = k - j). o 
EIO Exercise. Let X and Y be two independent Poisson random variables 
with parameters A. and p, respectively. Show that S = X + Y ....., t3P(A. + p,). 

The independence concept can be generalized in a straightforward manner 
to an arbitrary number of discrete random elements Xl' ... , Xn taking their 
values in E l' ... , En' respectively. They are said to be independent if and 
only if 

(XjEEj , 1 ~ i ~ n). 
(34) 

The product formula then takes the following form 

E [D J;(X;lJ = D E[J;(Xj)] , (35) 

where for each i, /; is a mapping from Ej into IC such that l:.x,EE, 1/;(xJI P(Xj = 
x;) < 00. The proof is the same as in Exercise E9. 
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2. Variance and Chebyshev's Inequality 

2.1. Mean and Variance 

If X is a discrete random variable, the quantities 

(36) 

and 

(37) 

are called (when they are defined) the mean and the variance of X, respectively, 
and (J «(J ~ 0) is the standard deviation of X. 

The variance (J2 can be obtained from the mean m and the second moment 
E[X2] as follows: 

(38) 

Indeed, by linearity, E[(X - m)2] = E[X2] - 2mE[X] + m2 = E[X2] -

2m2 + m2 • 

Ell Exercise. Using the results of Exercise E5, show that the variance of a 
Poisson random variable of parameter A is X 

EI2 Exercise. Show that the mean and variance of a geometric random 
variable of parameter p > 0 are lip and qlp2, respectively. (See Exercise E2 
for the distribution of such a random variable.) 

E13 Exercise. Let X be a discrete random variable with values III N = 
{O, 1,2, ... }. Show that 

(39) 

E 14 Exercise. Let X I' ... , X m be m independent random variables with values 
in N and with a common distribution P(Xj = k) = Pk(k ~ 0). Define rn = 

L~n Pk' Using Eq. (39), show that 
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ex) 

E[min(X» ... ,X.,)] = L r::'. 
n=1 

Apply this to the case Xi - C5(p) (geometric). 

Some Elementary Remarks. From the linearity of expectation it is clear that 
if X is a discrete random variable with mean m and variance u 2 , then the mean 
and variance of the random variable aX (where a E~) are am and a 2 u2 , 

respectively. Also if X has a vanishing variance (u 2 = 0) then P(X = m) = 1. 
Indeed, LXEE(X ~ m)2p(x) = 0 implies that if x # m, p(x) = O. Therefore, 
P(X = m) = 1 ~ P(X # m) = I ~ IxlomP(X). We shall see later that this prop­
erty extends to arbitrary random variables (not necessarily discrete). 

The Variance ofa Sum of Independent Random Variables. Let XI' ... , Xn be 
n discrete random variables with variances u~, ... , u;, respectively. Tn the case 
where X I' ... , X. are independent, the variance u 2 of the sum 

is equal to the sum of the variances: 

1 u2 = ut + . . . + u; I· (40) 

PROOF OF EQ. (40). Let mi be the mean of Xi' Then E[S] = I?=I mi and 
u 2 = E[S2] ~ (D'=I mY. Also E[S2] = E[(Ii'=1 XY] = Li'=1 E[X;]2 + 
2D'=ILJ=1 E[XiXj] = Li'=1 E[Xn + 2 Li'=ILJ=1 mimj where we have used 

i~ i~ 

the independence assumption. Now 2 Li'=1 LJ=I mimj ~ (Li'=l mY = 

~ D'=l m? Therefore, u2 = Li'=l (E[Xn ~ mf) = Ii=l u? 0 

EIS Exercise. Use Eq. (40) to show that the mean and variance corresponding 
to the binomial distribution of size n and parameter pare np and npq, 
respecti vel y. 

EI6 Exercise. Let X I, ... , Xn be independent discrete random variables with 
common variance u 2 • Show that the standard deviation of the empirical mean 
(XI + ... + Xn)/n is u/Jn. 

2.2. Chebyshev's Inequality 

When specialized to f(x) = (x ~ mf and a = [;2 where e > 0, Markov's in­
equality (26) yields one of the most frequently used tool of Probability Theory, 
Chebyshev's inequality: 
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(e > 0) . (41) 

The Weak Law of Large Numbers. Let (Xn,n ~ 1) be a sequence of discrete 
random variables, identically distributed with common mean m and common 
variance (f2. Suppose, moreover, that they are independent (i.e., any finite 
collection Xi" ... , Xi, forms a collection of independent random variables). 
Consider the empirical mean 

Sn Xl + ... + X. 
(42) 

n n 

The mean of S./n is m, and as we saw in Exercise E16, its variance is (f2/n. 
Application of Chebyshev's inequality to Sn/n yields 

p(l; -ml ~ e) ~ :22, (43) 

Therefore, for all E > 0, 

(44) 

This is the weak law of large numbers. It says that the empirical mean converges 
in probability to the probabilistic mean, according to the following definition 
of convergence in probability. A sequence of random variables (Xn , n ~ 1) is 
said to converge in probability to a random variable X iff for all E > 0 

(45) 

In Chapter 5, various notions of convergence will be introduced: conver­
gence in quadratic mean, convergence in law, convergence in probability, 
and almost-sure convergence. In the hierarchy of convergence, almost-sure 
convergence implies convergence in probability. The strong law of large 
numbers states that the convergence of S./n to m takes place almost surely. 
The precise statement for this is as follows: for all WEn, apart from those in 
a set (event) N such that P(N) = 0, lim.foo [S.(w}/n] = m. (The latter limit is 
in the ordinary sense.) The proof of the strong law of large numbers is not 
within our grasp at this point; it will be given in Chapter 5. However. it is 
interesting to note that Chebyshev's inequality will playa decisive role. 

E17 Exercise. Using some physical apparatus, you measure a quantity, the 
actual value of which is unknown to you. Each measurement you make is 
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equal to the actual value plus a random error (which can be negative). The 
errors in successive measurements are independent and have the same distri­
bution. All you know about the error in a given experiment is that it has 
mean ° and a standard deviation bounded by 10-4 . As usual, you perform n 
experiments, yielding n values (approximating up to errors the actual value), 
and you take the arithmetic mean to be the experimental value of the measured 
quantity. You want the difference between the experimental and the actual 
value to be less than 10-4 with probability larger than 0.99. What number n 
of experiments do you suggest? 

E18 Exercise. Prove Bernstein's polynomial approximation of a continuous 
function f from [0, 1] into IR, namely, 

fIx) = lim Pn(X) (xE[O,l]) (46) 
ni'" 

where 

~ (k) n! k n-k 
Pn(x) = ~ f - k'( _ k)' x (1 - x) , 

k-O n . n . 
(47) 

and the convergence in Eq. (46) is uniform in [0, 1]. Hint: Consider a sequence 
(Xn , n ~ 1) of random variables independent and identically distributed ac­
cording to P(Xn = 1) = x, P(Xn = 0) = 1 - x, and compute E[f(Sn/n)] where 
Sn = Xl + ... + X n· 

3. Generating Functions 

3.1. Definition and Basic Properties 

The concept of generating function applies to discrete random variables with 
values in E = N and to discrete random elements with values in E = N k for 
some k > 1. We begin with the univariate case E = N. 

Univariate Generating Function. Let X be a discrete random variable taking 
its values in N and admitting the distribution 

PIX = k) = Pk (k EN). 

The generating function of X is the function from the closed unit disc of IC into 
IC defined by 

[9(8) = E[sX] I 
- - ~---

(s E IC, I s I ,,:;; 1), (48) 

that is, 



60 2. Discrete Probability 

rX 00 

g(s) = I Skp(X = k) = I Sk pk . (49) 
k=O k=O 

Inside the unit disc, the power series I PkSk is uniformly absolutely convergent 
since for 151 < 1 

a. 70 

I Pklskl e( I Pk = 1. 
k=1 k=1 

One can therefore handle such series quite freely inside the unit disk (lsi < 1), 
for instance, add term by term and differentiate term by term. We will soon 
see how to make use of such possibilities. 

The generating function characterizes the distribution in the following 
sense. If two random variables X I and X 2 taking their values in £ = N have 
the same generating function: 

gl(S) = 92(5) 

then they have the same distribution: 

(151 < I), 

P(XI = k) = P(X2 = k) 

Indeed Eq. (50), is simply 
:x.- If_, 

I P(XI = k)Sk = I P(X2 = k)Sk 
k=1 k=1 

(kE N). 

(151 < 1), 

(50) 

(51) 

and two power series that are convergent and identical in a neighborhood of 
o must have their corresponding coefficients equal. 

E19 Exercise. Let X be a discrete random variable distributed according to 
the binomial distribution of size n and parameter p[X ~ i?l(n, p)1. Show that 
the generating function of X is g(s) = (ps + qt. 

E20 Exercise. Show that the generating function of a geometric random 
variable X[X ~ ~§(P)J is g(5) = ps/(I - qs). 

Multivariate Generating Function. Let XI"'" X k be k discrete random vari­
ables taking their values in N and let 

P(XI = i1"",Xk = id = Pi, ... i k 

be the distribution of the discrete random element (X l' ... , X d. The generating 
function 9 of (X 1"", X k ) is a mapping from i[k into i[ defined by 

[ g(SI'" '~k) = £[5;' .. . ~kJ j, (52) 

that is, 
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x, '" 

Y(Sl,· .. ,Sk) = L ... L S~' ... S~kP(Xl =i1,···,Xk=ik) (53) 
i l =1 ik =l 

or 

Since when Is;I :::; I for all i(1 :::; i:::; k), 

<Xl CXJ 

L ... L Is~' ... s~kIP(XI = i1"",Xk = ik) 
i,=l ik=l 

0() 0() 

:::; L .,. L P(XI =i1,···,Xk=id= I 
i t =l ik =l 

the domain of definition of 9 contains the subset of k-tuples (s 1, ... , sd such 
that 

If S2 = ... = Sk = I, 
E[sf'sf2 ... stk ] = E[sf'] = gl(sd 

where 9 1 is the generating function of Xl' Therefore, 

Similar relations hold for X 2, ... , X k• 

(54) 

(55) 

E21 Exercise. Find the generating function of (Xl' X 2, ..• , X k) - ..H(n, k, pJ 
Show that Xi - &I(n, pJ Also, show that the variance of Xl + ... + Xn is not 
equal to the sum of the variances of the X/s, as would be the case if the Xi'S 
were independent. 

Differentiation of Generating Functions and Moments. Since the power series 
Lk=OPkSk converges absolutely when lsi = 1 (Lk=oPklslk = Lk=OPk = 1), its 
radius of convergence is larger than or equal to I, and inside the unit disk 
(i.e., for lsi < I) one can differentiate term by term, at any order. Thus, for 
instance, 

00 

g'(s) = L kpkSk - 1 (lsi < I). 
k=l 

When s = I, the right-hand side of the above equality is m = E[X] = Lk;"t kpk' 
Therefore, by Abel's lemma 
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I I 
1 m = g'(I) i (56) 

where g'(I) is the limit of g(s) when s tends to 1 with the constraint lsi < 1, 
SE IR. Differentiating once more, one obtains g"(s) = Lk"=1 k(k - I)Pksk-2 and 
invoking Abel's lemma, g"(1) = E[X2] - m, or, in the case where m < 00, in 
view of Eq. (38), 

l (J2 = g"(I) + g'(I) - g'(1)2 I· (57) 

Here, g"(1) admits an interpretation similar to g'(I). 

E22 Exercise. Compute the mean and variance of a binomial random variable 
X [X ~ /JI(n, p)] using generating functions and the result of Exercise E19. 

E23 Exercise. Compute the mean and variance of a Poisson random variable 
X [X ~ .?I(A)] using generating functions and the result of Exercise E6. 

3.2. Independence and Product of Generating Functions 

Let X I' ... , Xn be n discrete random variables with values in N. Suppose that 
they are independent. Then by the product formula (35), 

E[sft ... s;"] = E[sft] ... E[s;n], 

that is, 

(58) 

where Yi is the generating function of Xi and 9 is the generating function of 
(X I'" ., Xn). Now take s I = ... = Sn = sin Eq. (58): g(s, . .. , s) = TIi=1 g;(s). But 

g(s, ... ,s) = E[sX t ... SXn] = E[sXt+"'+x n ], 

therefore g(s, ... , s) is the generating function of X I + ... + X n. We have thus 
obtained two results: if XI' ... , Xn are independent, Eq. (58) is true, and the 
generating function of the sum XI + ... + Xn is equal to the product of the 
generating functions of Xl' ... , Xn-

E24 Exercise. Using generating functions, show that if Xl and X 2 are indepen­
dent Poisson random variables, XI - 8P(AI) and X 2 - &'(A2 ), then X I + X 2 -

2l'P-l + }'2)' 
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Wald'sEquality. Let (X .. , n ~ 1) be a sequence of independent discrete random 
variables with values in I\J and identically distributed with the common 
generating function gx. Now let T be a discrete random variable, with values 
in I\J and generating function gT. Suppose, moreover, that T is independent 
of the X .. 's. We are going to compute the generating function gy of 

Y=Xl + ... +XT' (59) 

using the various tricks that we have gathered along the way. 
First we write the definition 

gy(s) = E[sY] = E[sx,+···+XT ]. 

From the identity n = L::'=l {T = n}, (or, in terms of indicator functions, 
1 = L::'=l 1 (T= .. }), 

= E[ ~ 1 SXI+ ... +XnJ L.... {T= .. } , 
n=l 

where we have observed that if T = n, Xl + ... + XT = Xl + ... + X". Now 

E[ ~ 1 XI+ ... +XnJ = ~ E[l x,+ ... +xn] L.... {T=n}S L.... {T=n}S • 
n=O n=O 

(We must confess that we have been abusing the linearity property, having 
used it for infinite sums. Later, in Chapter 3, you will find an excuse for 
this: it is called Lebesgue's dominated convergence theorem.) In view of the 
independence assumptions, 

E[l X,+ .. ·+Xn] = E[l ]E[ X,+···+Xn] {T=n}s {T=,,} s 

= E[1{T=,,}]E[sX 1 ] ••• E[sXn] = peT = n)gx(s)". 

Finally 
00 

E[sY] = L peT = n)gx(sf, 
n=O 

that is, 

(6Oa) 

E25 Exercise. Under the above assumptions on (X .. ,n ~ 1) and T, prove 
Wald's equality: 

(6Ob) 
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Illustration 4. An Introduction to Population 
Theory: Galton-Watson's 
Branching Process 

The English statistician Galton is considered to be the initiator of the theory 
of branching processes. He studied the transmission of family names through 
generations and was particularly interested in estimating the survival prob­
ability of a given branch in a genealogical tree. A particularly simple model 
of the situation he investigated is the following one. 

All the individuals of a given colony (e.g., the male population of a noble 
family) give birth in their lifetime to a random number of descendents (e.g., 
the male descendents in the particular example of interest to Galton). Each 
individual of the colony procreates independently of all other members of the 
colony. If X. denotes the size of the nth generation, 

(61) X.+
1 

= {i~ Z~i) if X.;;;': 1 

o if X. = 0, 

where (Z~i), i ;;;,: 0, n ;;;,: 0) are identically distributed independent random vari­
ables, integer valued, with common generating function 

00 

gz(s) = L P(Z = n)s', (62) 
n=Q 

with finite mean m and finite variance (fl. In this model, the number Xo of 
ancestors is naturally supposed to be independent of the random variables 
(Z~i), i ;;;,: 0, n ;;;,: 0). This simple model is a particular case of branching process 
(Fig. 5 motivates the terminology) and was studied by the probabilist Watson, 
who gave the following analysis. 

E26 Exercise. Denote by ifJn the generating function of X.: 
00 

ifJ.(s) = L P(X. = k)Sk. (63) 
k~O 

Show that 

[i;l(S) =!n(gz(s)) I· (64) 

Deduce from the above relation that if Xo = 1 (one ancestor), 
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(65) 

Compute the mean and variance of X. in the case where Xo = I, and then in 
the case where Xo = k > I. 

-f'f")f'f")I.I"".I\OV lr)tnNr----° 00°0\ \Ort') -NO 

II II II II II II II " II II II II II II II II II II II 
0_4""1""'''' Vl\Ot'-OOOloO _1NIf"l..,VlI 'Gt-CIO 

~~~~~~~~~~~~~~~~~~~ 

Figure 5. A typical realization w giving rise to a genealogical tree when there is one 
ancestor (Xo(w) = I). In this example, there is extinction ofthe family name at the 18th 
generation. 

An extinction occurs iff or some n ~ I, X. = 0, since in this case X.+ j = 0 
for all j ~ O. Therefore, denoting Pe as the probability of extinction, 

But ({ X. = O}, n ~ I) is an increasing sequence of events since X. = 0 implies 
X.+ 1 = 0, so that, by the sequential continuity property [Eq. (8) of Chapter I], 

Pe = lim i P(X. = 0) . 
• 100 

Now, from Eq. (63), P(X. = 0) = ;.(0), and therefore by Eq. (65), 
P(X.+I = 0) = gz[P(Xn = 0)]. Letting n i 00 in the latter equality yields 

(66) 

To find Pe we must therefore study the equation x = gz(x), XE [0, I]. Clearly 
y~(x) = I:=I nP(Z = n)x"c-1 ~ 0 for x E [0,1] and therefore gz is non­
decreasing in [0, I]. If we exclude the trivial case where P(Z = 0) = 1, g~ is 
strictly positive in (0, 1]. Also g~(O) = P(Z = I) and g~(I) = E[Z] = m. 
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Differentiating once more, we see that g~(x) = .L::;"2 n(n - I)P(Z = n) x 
x"- 2 ~ 0 in [0, I], so that fh is a u-convex function in [0, I]. 

gz(x) 

P(Z = 0) 

o 

(a) 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

gz(x) 

slope m';;; 1 

x 

Figure 6. The two cases. 

gz(X) 

P(Z = 0) 

Xo = 0 

Figure 7. The iteration leads to no. 

slope m > I 

lTo x 

(b) 

x 

In summary, when P(Z = O)E(O, I), two cases arise. If E[Z] ~ 1 (Fig. 6a), 
Pe = 1 since this is the unique solution to Eq. (66) with Pe E [0, 1]. If E[Z] > 1 
(Fig. 6b), Eq. (66) has two solutions in [0, I], 1 and no < 1. We will see that 1 
must be excluded. Indeed, letting Xn = P(Xn = 0), we have shown previously 
that X n + 1 = gz(xn)(n ~ 0) where Xo = P(Xo = 0) = O. It is clear from Fig. 7 
that the iteration scheme leads to no, not I. The formal proof of this is an 
exercise in calculus, whieh is left to the reader. 

E27 Exercise. Denote by Pe . k the probability of extinction when Xo = k 
(k ancestors). What is the relation between Pe,k and Pe,l = Pe? 
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Before closing this Illustration, let us mention that the theory of branching 
processes is a very fertile area of Applied Probability and that it finds applica­
tions not only in Sociology, but also in Epidemiology, Physics, and many 
other fields. For instance, consider a nuclear reactor in which heavy particles 
(neutrons) collide with molecules, extracting more particles at each step or 
being absorbed. This is a typical branching process. It is interesting to be able 
to find conditions that prevent extinction of the pile, and branching process 
theory has provided some answers to this problem. 

Illustration 5. Shannon's Source Coding Theorem: 
An Introduction to Information 
Theory 

The American telecommunications engineer Claude Shannon discovered 
in 1948 an entirely new area of Applied Mathematics: Information Theory. 
The following is a guided introduction to this theory. We shall prove and use 
Shannon's source coding theorem which, together with Huffman's coding 
theorem, enables one to compress data (e.g., in digital form) using previous 
knowledge of the statistical distribution of such data. 

Quantity of Information. Let Xl' ... , X. be discrete random elements taking 
their values in the finite set E, called an alphabet, with the generic element, or 
letter, (Xi: 

Denote X = (X I' ... ,X.). Therefore, X is a random element taking its values 
in the finite set E·, the set of words of length n written in the alphabet E. For 
any random element Y taking its values in a finite set F, with the distribution 

P(Y = y) = p(y), 

one defines the average quantity of if!formation H(Y) contained in Y by 

1 H(Y) = - E[logp(Y)] I· (67) 

The base of the logarithm will be specified only when needed. By convention, 
OlogO = O. 

E28 Exercise. Compute H(Xd when P(X1 = ac;) = Pi' Also, compute H(X) = 
H(X I ,·· .,Xn) when Xl"'" Xn are iid. 
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E29 Exercise (Gibbs' Inequality). Using the well-known inequality 

logz ~ z - 1 (z > 0) 

with equality if and only if z = I, prove Gibbs' inequality 

k k 

- L p;logp; ~ - L p;logq; (68) 
;=1 ;=1 

where (p;, 1 ~ i ~ k) and (qi, 1 ~ i ~ k) are arbitrary discrete probability dis­
tributions. Show that equality takes place if and only if 

(1 ~ i ~ k). 

Deduce from Gibbs' inequality the inequality 

I H(Xd ~ logk I (69) 

where equality holds if and only if 

(1 ~ i ~ k). 

Show that 

I H(Xd ~ 0 I (70) 

with equality if and only if for some j E {l, 2, ... , k}, P(X 1 = IXj ) = 1. 

Coding and Kraft's Inequality for Prefix Codes. A binary code for E is a 
mapping c from E into {O, 1}* the set of finite sequences (including the empty 
one) of O's and 1 's. In this context c(a;) is the code word for ai. Let Ii (C) be 
the length of this code word. Code C is said to be a prefix code if there exists 
no pair (i,j) with i i= j such that C(IX;) is the beginning of C(IXJ 

EXAMPLES. E = (1X1,1X2,1X3,1X4}. The code 

IXI -+ c(lXd = 0 

(.(2 -+ C(1X2) = 1 

(.(3 -+ C(1X3) = to 

(.(4 -+ C(1X4) = 11 

is not a prefix code since r(a2) is the beginning of both c(a3 ) and C(1X4). But 
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is a prefix code. 

OC 1 ---> c(oc 1 ) = 00 

oc 2 ---> c(oc 2 ) = 01 

oc 3 ---> C(~3) = 10 

0:4 ---> C(~4) = 11 

69 

Prefix codes are uniquely decodable, i.e., if a finite sequence of O's and l's is 
obtained by encoding a finite string of letters from E, the original string of 
letters can be unambiguously reconstructed. For instance, the encoding of 
0: 2 oc 1 using the first code yields to, but this result is also obtained by encoding 
~3 using the same code. Thus, the first code is not uniquely decodable. 

Represent any binary code on the binary tree. For instance, the first code 
can be represented as in Fig. 8(a) and the second as in Fig. 8(b). 

a 4 

014 

a2 
0 

a3 0 

0 al 0 a 1 

(a) (b) 

Figure S. Two codes on a tree. 

E30 Exercise. From the representations shown in Figs. 8(a) and 8(b) deduce 
that if e is a prefix code 

k L r1;(C) ~ 1. 
i=1 

Conversely, if a set of integers (Ii, 1 ~ i ~ k) satisfies Kraft's inequality 

(71) 

then there exists at least one binary prefix code e for E with life) = Ii (1 ~ i ~ k). 
(Note: You can solve Exercise E31 using the answer to this question if you 
want to progress and go back to Exercise E30 lateL) 
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E31 Exercise. Denote by /fJ the set of binary prefix-codes for E. Define for any 
binary code e for E its average length L(e) by 

[L(C) = it PJ;(~. 
L._____ L 1-' 

(72) 

Show that 

H 2 (Xd ~ inf L(c) ~ H 2 (Xd + 1 (73) 
c E.:I 

where H 2 (X I ) is a notation for H(Xd when the base of the log used in 
definition (67) is 2. (Hint: Solve a minimization problem under KrafCs con­
straint and remember that the lengths lire) must be integers.) 

HUffman's Code. 

E32 Exercise. Suppose that PI ~ ... ~ Pk' Let c be a binary prefix code for E 
with /;(c) = Ii' Consider the two following properties 

(.cjPd II ~ ... ~ Ik 

(.cjP2) lk = Ik-I 

Show that if they are not both satisfied by c, there exists a binary prefix code 
not worse than e that satisfies both ofthem (not worse = with smaller or equal 
average length). 

Assuming (.0/\) and (,"51'2), show that there exists a code not worse than c with 
the configuration shown in the figure below for the code words corresponding 
to k - I and k. 

OI.k-l 

Deduce from the above remarks an algorithm for constructing a binary 
prefix code for E with minimal average length (Hint: Consider the set 

with the probability distribution 
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PI' P2, ... , Pk-2' P~-1 = Pk-I + Pk 

and apply the above remarks to an optimal code for E':) (Note: Exercise E34 
requires the knowledge of Huffman's procedure.) 

Block Encoding. Instead of encoding E we will encode E", the set of blocks 
of length n. Let the letters of the "words" (of length n) of E" be chosen 
independently of one another and drawn from the alphabet E according to 

(l ~ j ~ n, \ ~ i ~ k). 

E33 Exercise. Let c(") be an optimal binary prefix code for E". Show that 

(74) 

In other words, H 2 (Xd is asymptotically the smallest average number of 
binary digits needed per symbol of E. 

E34 Exercise. Consider a source that emits an infinite sequence (X"' n ~ \) of 
{O, 1 }-valued iid random variables with P(X" = 1) = P = ~ at the rate of one 
binary symbol every unit of time. Compute H2(P, I - pl. Suppose that this 
sequence is transmitted via a channel that accepts only 0.83 binary symbol 
every unit of time. Give an explicit means of adaptation of the source to the 
channel. 

The Questionnaire Interpretation. Suppose that one among k "objects" (XI"'" 

IXk is drawn at random according to the probability distribution PI' ... , Pk' 
This object is not shown to you and you are required to identify it by asking 
questions that can be answered by yes or no. Of course the k objccts are 
distinguishable. What is the best you can do if you are allowed to ask any yes 
or no questions? What is the least average number of such questions needed 
to identify the object? 

Clearly, since a yes or no question is associated with a partition into two 
classes, the first question will be associated with a partition of E = {IX I" .. , IXk } 

into two classes EI and Eo (Eo n EI = 0 and Eo + EI = E). Suppose the 
answer is yes, i.e., "the object is in E I ." The next question will concern only 
E1 for otherwise you lose time and your questionnaire is not optimaL This 
question will be associated with a partition E 1 = E 10 + E II' The same would 
have been true if the answer to the first question had been no, i.e., "the object 
is in Eo." The second question would then have been associated with a 
partition Eo = Eoo + Eo I' 

Of course Eo, E I' Eoo, E OI , ... must be nonempty otherwise your question­
naire is not optimal. From the above argument, we see that a questionnaire 
which is a candidate to optimality results in a tree (Fig. 9). This tree is not 
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Figure 9. A questionnaire tree. 

infinite: we stop the dichotomic procedure when a set at a node contains just 
one object because we then have identified the said object. 

As you now see, a good questionnaire is associated with a prefix code for 
E = {Cl I' ... , Clk }. Therefore, to find an optimal questionnaire, you have to 
construct the Huffman prefix code for E associated with the distribution 
(Pl,···,pd· 

EXAMPLE (The Coin Problem). Suppose you have 15 coins identical in all 
respects, except that one and only one among them has a weight slightly 
different from the others. The only means you have to identify the odd coin 
is a scale. Find an optimal weighing strategy. 

We propose the following analysis. The coins are laid down in front of you 
(Fig. to). You will call this configuration # 11 because the odd coin is the 11 th 
from the left. Now you must identify a configuration among the 15 possible 
equiprobable configurations. The scale is a yes or no answering device because 
it has three positions: balance, left, and right, but from the point of view of 
our search, left and right are the same because we do not know whether the 
odd coin is lighter or heavier than the others. 

,I, 
o 0 0 0 0 0 0 0 0 O:;.q. 0 0 0 0 

I" 

Figure 10. Coins. 

We will therefore find the optimal yes or no questionnaire and then check 
that its partition procedure is implementable by the scale. If yes, we will 
certainly have found the best weighing strategy. 

The binary HulTman code for 15 equiprobable objects is summarized in 
Fig. t 1. The first yes or no question must discriminate between configurations 
1,2, 3,4,5,6, 7, 8 and configurations 9, 10, 11, 12, 13, 14, 15. How can we achieve 
this with the scale? One possible answer is to weigh the four leftmost coins 
against the next four coins. If there is balance, the odd coin must be in position 
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 11. Optimal search for the slightly different coin among 15 coins. 

9, 10, II, 12, 13, 14, or 15. If not, it is in position 1,2,3,4,5,6, 7, or 8. Note, 
however, that if the scale is unbalanced, one cannot determine whether the 
odd coin is in position 1,2, 3, or 4 or if it is in position 5, 6, 7, or 8 because 
one does not know whether it is heavier or lighter than the ordinary coins. 

The other steps are analogous to the first step except for the last one in case 
we have to make a final decision about two coins. In this situation, we just 
weigh one of the two coins against one of the coins that we have eliminated 
in the previous steps because such coins are normal. 

In summary, the Huffman search strategy is in this case implementable. 

E35 Exercise. There are six bags containing coins. All of them, except one, are 
filled with "good" coins. One of them, unknown to you, contains t "bad" 
coins (slightly heavier or slightly lighter). You draw one coin from each bag 
and you want to determine if there is a bad coin among the six and if there is 
one, which one. Find an optimal search strategy. 

SOLUTIONS FOR CHAPTER 2. 

E1. For X = (X I ,X2 ,···,Xn)E{0,l}n, P(X=x)=P(X 1 =x1, ... ,Xn=xn)= 
ni~1 P(X; = x;)(independence). Since P(Xi = x;) = p if Xi = 1, P(X; = x;) = q if 
Xi =0, 

P(X = x) = Pit. Xiqn- i~ Xi (n {O, In 

E2. peT = k) = P(XI = 0, ... , X k- I = O,Xk = 1) = P(X1 = 0) ... P(Xk-I = 0) X 

P(Xk = 1) = qk-l p. Since P({T = l} + {T = 2} + ... + {T = OX)}) = 1, we have 
peT = OX) = 1 - p(DXO~1 {T = k}) = 1 - Ik~1 peT = k) = 1 - Ir~1 pqk-l. But 
q < 1 when p > 0, and therefore Ik~1 pqk-I = p/(1 - q) = pip = 1. If p = 0, 
peT = k) = 0, and therefore peT = OX) = 1 - Ik~1 peT = k) = 1. 

E3. The case p = ° is easy and without interest. We therefore suppose p > 0. For all 
m ~ 1, P(T~ m) = p - qm-I(1 + q + q2 + ... ) = pqm-I/(t _ q) = qm-I. There­
fore for k ~ 1, peT ~"o + kiT> "0) = peT ~"o + k, T > "oj/peT > "0) = 
peT ~ "0 + k)/P(T ~"o + 1) = qnoH-I/qno = qk-l = PIT ~ k). 
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E4. 

E5. 

E6. 

2. Discrete Probability 

If the balls are distinguishable (for instance, they are numbered from 1 to n), there 
are n!/(m I' ... mk!) different possibilities of obtaining the configuration m l ,···, mk 
I i.e., m I balls in box I, ... , mk balls in box k), for instance, the m l first balls in I, 
the mz following in 2, etc. Each possibility has probability P~' ... Pk" since the 
balls are placed independently of one another. Therefore, by the additivity axiom, 
the probability of configuration (m l , ... , mk ) is [n!j(ml!'" mk!)]p~' ... p;,'k. 

In tbe case where k = 2, we have X z = n - XI' pz = 1 - PI = ql' Therefore 
P(X I = m l ) = P(XI = ml,Xz = n - m l ) = [n!/ml!(n - ml)!]p~lq~-mt, where 
o :s; m l :s; 11. This is the binomial distribution. 

£[X] = t ke i.~ = Ae- i tA~ I , = ),e- A f ~(A:) 
k~1 k! k~1 (k I). k~1 dA k. 

leA = i .. 

, 
L k(k 

k -\ 

E7. The distribution of Y is 

pry = y) = q(y) = L pix), 
XEAy 

since ~ Y = y: = Lxc A, {X = x}. Therefore, 

J, Iylq(y) = Jf (IYI X~y PiX)) = Y~F C!-;, IYIP(X)). 

Since x E Ay is equivalent to Y = f(x),for fixed y, LXEAy lyl pix) = Lx E A)f(x)1 pix). 
Therefore, using indicator functions [IA(x) = I if xEA, 0 otherwise], 
L,.CF Iylq(y) = LvEF LEA)f(x)lp(x) = LvoF LEE IA,(x)lf(x)1 pix) = 

LxcGLvu lA,ix)Lf(x)lp(x) = LXOH(LvEF I.1,(x))lf(x)lp(x). But LvEF I.1)x) = 

12.. .. , A,(X) = 1 H(X) = I. Therefore, 

L Iyl q(y) = I If(x)! pix) < CD. 

One then proves in the same way that 

L yq(y) = L f(x)p(x). 
YEF XEE 

D~. First observe that 18nC = lB' I c and that 1 A =; 1 - I A" Therefore, the indicator 
function of U~~I Ak is I minus the indicator function of D~~I Ako that is, by de 
Morgan's rule, 1 minus the indicator function of n~~1 A k , or I - n~~1 I A • = 

1 - nZ-1 (1 - I A ). Therefore, by Eq. (28) p(Ur~1 Ak ) = £[\ - nZ~1 (I - 1.1)]. 
Letting X k = 104 ,. we have 
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pCv\ Ak) = E[I - kD (1 - Xk)] 

But 

= E Lt Xi - it it X;Xi + ... + 
i<j 

• • n 

= I E[X;] - I I E[X;XJ + ... + 
i""'l i=l j=1 

i<j . . 
(_l)m I I E[X;, ... Xd+···+(-I)nE[X\ ... X.]. 

i l =1 im:=l 
il<"'<i rn 

E[X; ... Xi ] = E[IA ... IA ] = E[IA ""'nA ] = PtA; n'" n Ai ). 
I nI 11 1m 11 lm I m 
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E9. In order to show that E[f(X)g(Y)] is defined, one must prove that 
IzeF Ih(z)1 r(z) < 00, where h(z) = f(x)g(y) and z = (z, y). But 

I Ih(z)lr(z) = I I If(x)llg(y)lp(x)q(y) 
z x y 

= (~lf(x)lP(X»)(~ 19(Y)lq(y») < oc. 

Now 

E[f(X)g(Y)] = I If(x)g(y)p(x)q(y) 
x y 

and by the same manipulations as above, this quantity is found to be 

(~f(X)P(X) )(~ g(y)q(y») = E[f(X)]E[g(Y)]. 

EIO. Apply the convolution formula (33) to the case Pk = e~)').k/k!, qk = e~~I·l/k! to 
find 

k A.i k~i 
_ ~(!.+~)" /.l rk - e L.. 

i=oj!(k - j)! 

and apply the binomial formula to get 

k )J /.lk~j I k k! . . I 
I 'I(k _ ')1 = -k' I 'I(k _ ')' ).//.lk~} = k,(i. + /.l)k, }=oj. j. . }=oj· j. . 

and therefore 

Ell. 
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E12. 
X "1 J._ d 

£[XJ = I kpqk-I = p I kqk-l = P I __ (qk) 
k~1 k~l k~O dq 

d ~ k 1 1 I 
=Pd- I q =P-(I )2 =P-Z=-· 

q k~O - q P P 

And 

x X J:. 

£[X'] = I k'pqk-1 = I k(k - I)pqk I + I kpqk-l. 
1.:=1 k-1 k=l 

" f d 2 d 2 ( I ) I q I k(k-l)pqk-1 =pq I - 2(qk)=pq-2 -- =pq2-~3 =2- 2 , 
k~1 k~odq dq l-q (I-q) p 

Therefore. 

and by Eq. (38), 

2 2q + p 2q + p - 1 (q + p) + q - 1 1 + q - I q 
(J = ~ - p2 --pi ~ p2 p2 pi . 

E13. Since [X = II) = [X:? II) - {X :? II + I), P(X = n) = P(X :? n) - P(X :? 
II + I). Therefore, £[X] = L;;'~o nP(X = n) = L~~o [nP(X :? n) - (n + I)P(X :? 
11 + 1) + P(X:? II + I)J = I;;"~oP(X:? n + 1) = L~~l P(X:? n). 

E14. Let Y = min(X1, ... ,Xm ). By Eq. (39), £[Y] = I~~l P(Y:? 11). But P(Y:? n) = 
P(min(X 1 .... , Xm):? II) = P(XI :? 11, . .. ,Xm:? 11) = P(Xl:? 11) ... P(Xm :? 11)= r;:'. 

Case X; ~ <§(P). r. = P(Xi :? n) = D:~~npqk-1 = pq.-I(1 + q + ... ) = pq.-l x 
(1;1 - q) = q. I, and therefore L~~l r;:' = I;;'~I (qm)"-l = 1/(1 - qm). Note that 
min(X 1 , . .. ,Xm) _ ~(I _ qm). 

E15. Let X be any of the Xi'S. Then E[XJ = P and the variance of X is E[X 2J _ p2 = 

P - p2 = p(l - p) = pq. Therefore, E[S.J = I7~1 E[XJ = np, and since the X;s 
arc independent, the variance of Sn is the sum of the variances of the Xis, that 
IS.l1pq. 

E16. The varianccof Xl + ... + X.is 11(J2 and that of (Xl + ... + XnJ/nis(1/n2)(na 2 ) = 

(J2 !Il. The standard deviation of (X 1 + ... + XnJ/n is therefore (J/ In. 
E 17. Let Xi be the result of the ith experiment: Xi has mean m and variance 10- 8 , 

where m is the actual value of the measured quantity. By Eq. (43), taking E = 10- 4 , 

1 S. 

P - m :? 10 ~ --- = -. ( I
X1+'''+Xn I -4) 10-8 1 

n 11' 10- 8 n 

Therefore, the left-hand side of the above inequality is less than 1 - 0.99 = 10- 2 

if II :? 100. 
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E19. 

E20. 

since S. ~ B(n, p) (see Example 3). The function f is continuous on [0, 1] and 
therefore uniformly continuous on [0,1]. Therefore to any e > 0, one can asso­
ciate a number <'ire) such that if Iy - xl,;;; <'ire), then If(x) -- f(y)1 ,;;; e. Being 
continuous on [0, I],f is bounded on [0, I] by some finite number, say M. Now 

1P.(x) - f(x) I = IE[f(~) 1- f(x) I 
= IE[f(~) - f(X)ll ~ E[k(~) -f(X)11 

= E[k(~) - f(X)II A 1 + E[k(~) - f(X)II A 1 
where A is the set of w's such that I(S.(w)/n) - xl ~ <'ire). Since If(S.ln) - f(x)11A ,;;; 
2M lA, we have 

Also, by definition A and <'i(s), 

Therefore 

But x is the mean of S.ln, and the variance of S.ln is nx(1 - x) ~ n14. Therefore, 
by Eq. (43), 

Finally 

4 
If(x) - p.(x) I ~ e + n[<'i(e)]2' 

and this suffices to prove the convergence in Eq. (46). The convergence is uniform 
since the right-hand side of the latter inequality does not depend on x E [0, I]. 

• n! 
= L (pS),q·-k = (ps + q) •. 

k=O kiln - k)! 

co 00 

g(s) = L pqk-I Sk = ps L (qslk-I 
k=1 k=1 

ro 

= ps L (qslk = ps/(! - qs). 
k=O 
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E21. 
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= (PISI + ... + Pksdn 

91(Stl = g(SI' I, ... , 1) 

= (PISI + (1 - PI»". 

Therefore, XI ~ £!B(n,PI). Similarly Xi ~ £!B(n, Pi) for all i, I ~ i ~ n. Therefore 
(Ji2 = nPiqi, I (Ji2 = n I~~1 (Piq;). But XI + ... + X k = n and therefore has vari­
ance 0, being a constant. 

E22. g(s) = (ps + q)", g'(s) = np(ps + qrt, g"(s) = n(n - l)pl(ps + qrl. Therefore, 
(/'(1) = np(p + qr1 = np and g"(l) = n(n - l)pl(p + qr1 = n(n - l)p2. By 
Eq. (56) m = E[X] = np. And by Eq. (57), (J2 = n(n - l)p2 + np - n2p2 = 

np(1 - p) = npq. 

E23. (/(5) = eArS-I), g'(s) = }.e}.(S-I), g"(s) = A2e A(s-Q Therefore, g'(I) = A, g"(I) = le 2. 
By Eq. (56), m = E[X] = A. By Eq. (57), (J2 = A2 + Ie - P = ) .. 

E24. gl(s) = E[SX1] = eA11S-l), g2(S) = E[SX1] = e l,(S·I) and g(s) = E[SX1+X2] = 

E[S X1 SX1] = E[SX1] . E[SX2] = e(A, +).,)(S-1). Therefore, since the generating func­
tion characterizes the distribution, Xl + X 2 ~ peAl + A2). 

E25. By Eq. (57), E[Y] = (gTogx)'(l) = gr(gx(1»)g,~(1). Also by Eq. (57), g~(l) = 

E[X I ] and gr(l) = E[T]. Now gx(1) = 1 and therefore E[Y] = g;(I)g~(l) = 

E[T]E[Xll 

E26. The equality "n+l (s) = "n(gz(s)) is just a special case of Eq. (60a). Iteration of 
this relation yields 

"n+l (s) = "o(gz(gz(·· ·(gz(s» ... »). 
'~ __ -'Y J 

n+l times 

When Xo = I, "0(5) = E[sXo] = E[s'] = s, and therefore 

"n+l(S) = g.(g.( .. ·(gz(s)) ... )), qed. 
l J 

Y 
n+1 times 

We now use Eqs. (56) and (57), which gives mn = ,,~(I) = g~["n-l (1)]"~_1 (1) = 
q~(1)' "~-l (1) = m' mn 1 (n ~ 1). If Xo = 1 then mo = 1, so that mn = mn (n ~ 0). 
Also Vn = ,,~(1) + mn - m;. (J2 = g;(1) + m - m2. But ,,:(1) = g;["nl(1)] 
"~_1(1)2 + g~["n-I(1)]";-I(1) = g:(1)"~-I(lf + g;(l)"~'_I(l). therefore Vn = 
(J2m 2n - 2 + mVn- 1 (n ~ 1). If Xo = 1 then Vo = (Jg = 0, therefore, for n ~ 0, 
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if m of- 1 

if m = 1. 

If Xo = k, we have k independent branching processes so that 

if m of- I 

if m = 1. 

E27. If Xo = k, extinction occurs when the k independent branching processes become 
extinct. Therefore, 

E28. H(Y) = -E[logp(Y)] = - LYEFP(y)logp(y). Therefore, 

k 

H(X.) = - L PilogPi' 
i=l 

With obvious notations, 

n 

= -E[logp(X.) + ... + 10gp(Xn)] = - L E[logp(X)] 

n 

= L H(Xj) = nH(X.) 
j=. 

since H(Xj ) = H(X'> for al\j. 

j=1 

E29. Assume without loss of generality that Pi> 0 (1 ~ i ~ k). Since logq;/pi ~ 
(q;/p;) - 1 with equality if and only if Pi = q" we have 

with equality if and only if Pi = qi (1 ~ i ~ k). Hence, Gibbs' inequality. Take 
qi = 11k (1 ~ i ~ k) in Gibbs' inequality to obtain 

H(P.,,,,,Pk) ~ logk. 

The equality holds if and only if Pi = 11k (1 ~ i ~ k). Clearly H(X.l ;. O. It is 
equal to 0 if and only if Pi log Pi = 0 (1 ~ i ~ k), i.e., Pi = 0 or 1 (l ~ i ~ k). Now 
L~=. Pi = 1 and therefore there exists one and only one j such that Pj = 1. 

E30. Look at the subtree with ® as a root, and look at the 2m nodes of the binary 
tree at level m where m = suP. <i"<i'k l,(e). (See figure below for an expla­
nation of the terms.) 
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level 0 level m 
I I I 
I I I 
I I 
I I I 

R~t of i /'/<:-::=:K~' :}2 m - [iCC) nodes 
the binary r ...... , I I 

tree I ", __ -1 

I ',<-- i I 
I ~~_ I I 
I ~-, I 
I I I 
I I I r---- [iCc) .,. m - [i(c)--I 

I i 
I. m ~ 

Since (" is a prefix code, there is no other @2)0n the subtree originating from ®. 
Therefore, clearly 2m ~ L~~I 2m - 1i(c). 

Suppose II ,,;; [2 ,,;; ... ,,;; Ik = m. Look at the nodes at level m. Starting from the 
top, reserve 2m - I , nodes for @, then the next 2m - 12 nodes for e, etc. There are 
enough nodes since L~~I 2"'· I, ,,;; 2m. Now obtain the code word for ati as the 
following figure shows. 

01.; 
m -Ii 

2 nodes reserved for 01.; 

------ I 
root r--- I 

I I 

E31. 

I I 
I 1 
I I 
I I I 
I" I;---... ~+I .... ---m -1;--........ 
I I 
I I 

~I·-----------m----------~~I 

{
min it :,1, 
where L r ', = 1 

• -1 

and (I,,;; j,,;; k) . 

(Why can we take equality in Kraft's inequality?) Use Lagrange multipliers, i.e., 
define 
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j(A'/I'·"'/k) = i~ Pili + ;{~ e-I, loS 2 - I). 

(where log is natural log), and set 

i.e., 

f· { 

aj = 0 (1 ~ i ~ k) 

a; = 0 
a ... 

{
Pi - "'Iog~.rl' = 0 

L r l , = 1. 
j:::ol 

(1 ~ i ~ k) 
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The solution is Ii = -log2Pi (I.,:; i.,:; k) and A = 1/log2. But these f;'s are in 
general not admissible since they are not in general integers. Therefore, take 
instead Ii equal to the smallest integer larger than -log2 Pi. Then clearly 

k k k k 

- L Pi log2 Pi ~ L PJi ~ L Pit -log2 Pi + 1) = - L Pi log2 Pi + 1. 
i=1 i=1 i=1 i=l 

E32. The first part is easy: simply interchange nodes in the tree. As for Huffman's 
procedure, an example will suffice: 

P = (p I, ... ,P8) = (0.05,0.05,0.05,0.1,0.1,0.2,0.2,0.25). 

Take the two smallest probabilities (in our example, we may choose PI' P2 or 
Pl' P3)· For graphical reasons, it is better to choose the first two probabilities in 
the lexicographical order. Do this: 

PI + P2 = 0.1 

A 
PI =0.05 P2=0.05 P3=0.05 P4=0.1 Ps=O.1 P6=0.2 P7=0.2 P8=0,25 

Now select among (PI + P2,P3'··.' P8) the two smallest numbers. Here PI + P2, 
P3. Do this: 

0.1 0.1 0.2 0.2 0.25 

And the procedure continues 
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0 

PI 

0.1 

0.05 

PI 

0.15 

0.05 

P2 

0.35 

0.05 0.1 

P4 

0.1 

Ps 

0.2 

P6 

2. Discrete Probability 

1.0 

0.2 0.25 

Pg 

Make this graph look more like a decent tree, and call 0 a branch going to the 
left, 1 a branch going to the right: 

root 

0 

0 

0 

0 

0 0 

P2 P3 P4 Ps Ps P7 P6 

The code for Ct. i is obtained by reading the branches when going from the root 

to Pi' 

PI: 00 0 0 0 

P2: 0 0 0 01 

P3 : 0 001 

P4: 0 010 

Ps : 001 1 

P6: 1 1 

P7: 1·0 

Ps : 0 1. 
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E33. H2(Xt"",Xn)~L(c(nl)~H2(Xt"",Xn)+ 1. But H2(X t ,· .. ,Xn) = nH2 (Xt!, 
therefore 

E34. It suffices to encode the source by blocks of three. The statistics of 3-blocks are 
easily computed. After rearrangement in the order of increasing probability, 

000 Po = 1/64 

001 Pt = 3/64 

010 P2 = 3/64 

100 P3 = 3/64 

o I I P4 = 9/64 

1 0 1 Ps = 9/64 

1 1 0 P6 = 9/64 

I I 1 P7 = 27/64. 

A Huffman code for 3-blocks is constructed: 

3 3 3 9 9 9 

I II II 11 I I 0 I 1101 II 100 I I 0 101 100 

The average length per symbol is 

27 

o 

t· ih(l x 5 + 3 x 5 + 3 x 5 + 3 x 5 + 9 x 3 + 9 x 3 + 9 x 3 + 27 x 1) 

= : ~~ '" 0.822. 

(With blocks of length 2, the average length per symbol after Huffman encoding 
is 27/32 '" 0.843.) 

E35. Place the coins in line, and name seven configurations: configuration 7 has no 
bad coin. For 1 ~ i ~ 6, i is the configuration for which the bad coin is in position 
i. The probability for configuration 7 is ~. For each configuration i, 1 ~ i ~ 6, 
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the probability is 1· t. The Huffman code for this set of probabilities is shown in 
the figure below. 

Probabilities 

Configurations 

I 
18 

1 
18 

2 

I 
18 

3 

1 
18 

4 

1 
18 

5 

1 
18 
6 

12 
f8 
7 

To discriminate between 7 and 1,2,3,4,5, or 6, weigh the first three coins against 
the last three coins. The rest of the procedure is easy. 

Remark. With seven bags, the Huffman search procedure is not implementable 
with a scale. 



CHAPTER 3 

Probability Densities 

1. Expectation of Random Variables with a Density 

1.1. Univariate Probability Densities 

Let X be a real random variable defined on (0, F, P) with the cumulative 
distribution function (c.dJ.) (see Chapter 1, Section 3.2) 

[ ;(~) = P(X >( x) [. (1) 

If there exists a non-negative function f such that 

~(X) ~ t {(y)dy , (2) 

then f is called the probahility density (p.d.) of X. Recall (Chapter 1, Section 
3.2) that 

+00 

S f(y)dy = 1. (3) 

The following are a few classic probability densities. 

The Uniform Density on [a, b]. This is certainly the simplest probability density 
(Fig. I). 
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j 
o a b x 

Figure 1. The uniform probability density on [a, b]. 

I {I 
I 

-- if xE[a,b] 
f(x) = b - a 

L 0 otherwise. J (4) 

A random variable X with the probability density of Eq. (4) is said to be 
uniformly distributed on [a, b]. This is denoted by 

X ·~Jlt([a, b]). 

The Exponential Density of Parameter i, > 0 (Fig. 2). 

j(x) 

x 

Figure 2. The exponential p.d. 

{ J.e- Ax if x ~ 0 
f(x) = 0 otherwise. (5) 

The corresponding cumulative distribution function is (Fig. 3): 

{
I - e- i.x if x ~ 0 

F(x) = . o otherwIse. 
(6) 

A random variable with the probability density of Eq. (5) is an exponential 
random variable. This is denoted by 

x ~ 6"(i.). 
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F(x) 

x 

Figure 3. The exponential c.dJ. 

The Gaussian Density. This is the most famous probability density. It is 
defined for mE~, O'E ~+ - {O} (Fig. 4) by 

f(x) 

m x 

Figure 4. The Gaussian p.d. 

f(x) = _1_e -(1/2)[(X-m)/U]2 

0'$ 
(7) 

We shall soon give the probabilistic interpretation of the parameters mE ~ 
and 0'2 E ~+. If X admits such density, then we note 

X -- JV(m,0'2), 

and say that X is a Gaussian random variable. When X - .AI·(O, 1) we say that 
X is a standard Gaussian random variable. 

El Exercise. Verify that the function f of Eq. (7) satisfies Eq. (3). 

E2 Exercise. Show that if X is a standard Gaussian random variable and 0' > 0, 
then Y = O'X + m -- JV(m,0'2). Conversely, show that if Y - JV(m,0'2), then 
X = (Y - m)/O' - JV(O, I). 

The Gamma Density. Let IX and f3 be two strictly positive real numbers and 
define 
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{ 
p. X.- 1 e-{Jx 

f(x) = [(a) 

o otherwise 

where the gamma function r is defined by 

if x> 0 

Integration by parts yields the functional equation 

[(a) = (a - I)[(a - I) (a > 1). 

Since r(l) = 1, it follows that, if n is a strictly positive integer, 

[(n) = (n - 1)1 

E3 Exercise. Check that f is a probability density. 

(8) 

(9) 

(10) 

(11 ) 

Density (8) is called the gamma probability density of parameters a and [3. If 
X admits such density, we note 

X ~ y( a, [3), 

and say that X is a gamma distributed random variable (Fig. 5). 
When a = 1, the gamma distribution is simply the exponential distribution 

)i( 1, [3) == tff(fi). 

When a = nl2 and [3 = !, the corresponding distribution is called the chi­
square distribution with n degrees of freedom. When X admits this density, this 
is denoted by 

X ~ X~. 

EXpectation. Let X be a random variable with the probability density .f. Let 
g be a function from IR: into IR1 for which the quantity S~~ g(x)f(x)dx has a 
meaning (as a Riemann integral, for instance). Then such a quantity is called 
the (mathematical) expectation of g(X) and is denoted by E[g(X)J. 

1.2. Mean and Variance 

When they are defined, the quantities 

!.. .~ 
! +00 

I m = E[X] = L Xj~X)~ (12) 
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[(x) 

o x 

[(x) 

x 

[(x) 

x 

(J 

Figure 5. Aspects of the gamma p.d. 

and 

+ro 
(T2 = E[(X - m)2] = S (x - m)2f(x)dx (13) 

-00 

are called, respectively, the mean and the variance of X. The standard deviation 
of X is (T, the nonnegative square root of the variance. By the linearity of the 
integral 

+00 +co +00 +00 

S (x - m)2f(x)dx = S x 2f(x)dx - 2m S xf(x)dx + m2 S f(x)dx 
-00 -00 -00 -00 

and therefore, in view of Eqs. (13) and (3) 
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Also, again using the linearity of the integral, 

+00 +00 +00 

J (ax + b)f(x)dx = a J xf(x)dx + b J f(x)dx, 
-00 

so that by Eq. (3), 

E[aX + b] = aE[X] + b, 

that is, if one adopts the notation my = E[Y], 

With a similar notation for the variance, one has 

-<X) 

(14) 

(15) 

(16) 

Indeed, a;X+b = E{[(aX + b) - maX+b]2} = E[(aX + b - amx - W] = 
E[a2(X - mx )2] = a2E[(X - mx )2] = a2a;. 

E4 Exercise. Show that if X", y(a,p), then mx = alP and a; = a/p2 . 

E5 Exercise. Compute the mean and variance of X when X - '¥/([a,b]), 
X - ~(A) and X - %(0,1). 

From the solution of the above exercise we shall extract 

1 
mx =-

). 
LX - "(Al] ( 17) 

and 

1 mx = 0, a; = 1 [X - %(0,1)] I. (18) 

From Exercise E2, we know that if X - %(m, ( 2 ), then X = a Y + m where 
YE JV(O, 1). Therefore, from Eqs. (15), (16), and (18) follows the interpretation 
of the parameters m and a 2 in the % (m, (12) probability density of Eq. (7): 

(19) 



1. Expectation of Random Variables with a Density 91 

A Case Where the Mean and Variance Do Not Exist. The nonnegative function 

1 1 
f(x) = - ._-

n 1 + x 2 
(x E IR) (20) 

is such that S ~ ~ f(x) dx = 1. It is therefore a probability density. The quantity 
S~ ~ xf(x) dx is not defined as a Riemann integral since it leads to the un­
defined form + 00 - 00. Indeed, by definition of a proper Riemann integral, 
S~~xf(x)dx = limA+-c<,Bt+aUxf(x)dx = limA,J.-ooS~xf(x)dx + limBt<' 
Sg xf(x) dx. Note, however, that the extended Riemann integral, defined to be 
equal to limNta. S~Z xf(x) dx, exists and equals O. Although in view of the 
symmetry off (see Fig. 6) it is natural to define its mean to be 0, the convention 
among proba bilists is that the mean does not exist in this case because of the 
nonexistence of S~ ~ xf(x) dx as a proper Riemann integral. Of course, if m is 
not defined, (J2 is not defined. 

The function f in Eq. (20) is called the Cauchy probability density (Fig. 6), 
and any random variable with such a probability density is a Cauchy random 
variahle. 

1 I f(x) =--­
IT I + x 2 

Figure 6. The Cauchy p.d. 

x 

One could find it exaggerated to insist that a Cauchy random variable has 
no mean when it is graphically obvious that it has one. However, it is not only 
illicit but also dangerous to maintain that a Cauchy random variable has mean 
0, for the following reason. In Chapter 5, the strong law oflarge numbers states 
that if (Xn , n ;?: 1) is a sequence of independent and identically distributed 
random variables with mean m, the empirical frequency (Xl + ... + Xn)/n 
tends "almost-surely" (this phrase will be explained in Chapter 5) towards m. 
At the end of Chapter 5, there is a remark concerning the case where the 
Xn's are Cauchy random variables and it is shown that in this case, the em­
pirical frequency does not tend to O. This of course does not imply that 
the strong law of large numbers is false, but only that it does not apply to 
Cauchy random variables. Indeed the strong law of large numbers con­
siders random variables Xn with a mean, and this implies, by definition, that 
EIXnl < 00. 
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1.3. Chebyshev's Inequality 

Basic Properties of Expectation. We will take as intuitively obvious the 
following fact. If the probability of event {wi X(w) ~ Y(w)} is one, which is 
written X ~ Y P-as, then E[X] ~ E[Y]. This is the monotonicity property of 
expectation. It is true in all situations where E [X] and E [Y] are defined. Also 
the linearity property E[aX + bY] = aE[X] + bE[Y] holds whenever the 
expectations in both sides of the equality have a meaning. 

At the end of this chapter, we sketch the general theory of expectation for 
random variables that are not necessarily discrete or that do not admit a 
probability density, but for now, we cannot produce a rigorous proof, even in 
the particular case of the existence of a probability density. 

Another basic property of expectation is the following one: IE[X] I ~ 
E[IXI]' In the case where X admits a density, this is simply 

II Xf(X)dXI = 11. xf(x)dx + I4(X) dX I 

= 1-Joc Ixlf(x)dx + I Ixlf(x)dx I 
+'x 

~ S Ixlf(x)dx. 

In view of future reference, the above properties will be recapitulated: 

X ~ Y, P-as = E[X] ~ E[Y]. 

E[aX + bY] = aE[X] + bE[Y]. 

IE[X]I ~ E[IXI]' 

(21) 

(22) 

(23) 

These elementary properties will now be used to derive two famous inequali­
ties already encountered in Chapter 2 for discrete random variables. 

Markov's Inequality. Let X be a random variable and let fbe a function from 
IR into IR+. Then 

P[f(X) ~ a] ~ E[f(X)] (a> 0). (24) 
a 

PROOF OF EQ. (24). Observe that for all x E IR, 

(x E IR) 

where Ij;~a(x) is equal to 1 if f(x) ~ a and to 0 otherwise, i.e., If;>. is the 
indicator function of the set C = {xlf(x) ~ a} (Fig. 7). 

From the above inequality, we deduce the inequality between random 



1. Expectation of Random Variables with a Density 93 

--I -al,,.. 

____ ~--~------~-------L--~----------.x o 

Figure 7. The function aln , •. 

variables 

a' IdX(m» ~ f[X(m)] (men). 

Since IdX(m» = 1.(m) where A = {mlf(X(m» ~ a}, the last inequality reads 

a·l.( ~ f(X) 

(where the m dependency is no longer explicit). By the monotonicity property 
(21), 

E[al.(] ~ E[f(X)]. 

By the linearity property E[al.(] = aE[I.(], and since E[I.(] = P(A) = 
P(f(X) ~ a), Eq. (24) follows. D 

Chebyshev's inequality applies to random variables X for which the mean 
m and variance (12 are defined. It is a special case of Markov's inequality with 
f(x) = (x - m)2 and a = 6 2 where 6 > 0: 

(6) 0). (25) 

Remark. In the proof of Markov-Chebyshev's inequalities, only properties 
(21) and (22) have been used. Since such properties are true for any type of 
random variables (discrete, with a density, etc.), inequalities (24) and (25) also 
hold in the general case (see Section 4). Note also that Eqs. (14), (15), and (16) 
also hold in the general case since the only property of expectation used in 
proving them was linearity. 

Null Variance and Almost Constant Random Variables. A random variable X 
is said to be P-almost surely null (notation: X = 0, P-as) if and only if the 
event {mIX(m) = O} has probability 1. Now 
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{wIIX(w)l> 1} = nQ {wIIX(W)1 ~ n 
since for I X I to be strictly positive, it is necessary and sufficient that I X I be 
larger than lin for some n ~ 1. In more concise notation, 

{IXI > O} = Dl {IXI ~ H· (26) 

By the sub-a-additivity property of probability [Eq. (6) of Chapter 1], 

P(IXI > 0) ~ n~l P(IXI ~~). (27) 

Let now X = Y - my where Y is a random variable with zero variance: 
a~ = O. By Chebyshev's inequality 

P(IXI ~~) = P(IY - my I ~~) ~ n2a~ = O. 

Therefore, from Eq. (27), P(I Y - my I > 0) = 0, i.e., P(I Y - my I = 0) = 1. In 
summary, 

I a; = 0 => Y = my, P~J. (28) 

A random variable Y with null variance is therefore P-as equal to a deter­
ministic constant. One can also say that Y is almost-surely constant. 

1.4. Characteristic Function of a Random Variable 

The definition of expectation is readily extended to the case where X is a 
complex random variable, that is, 

(29) 

where Xl and X 2 are real random variables. The symbol E[X] is defined, if 
and only if both E[X1 ] and E[X2 ] are defined and finite, by 

(30) 

Properties (22) and (23) remain valid when X, Y, a, and b are complex. 
Therefore, for any real random variable X with a probability density ix, the 
characteristic function ¢Ix : IR -> IR given by 

+00 
¢lx(u) = E[e iuX ] = J eiuYx(x)dx (31) 

-00 



1. Expectation of Random Variables with a Density 95 

is defined since E[cos(uX)] and E[sin(uX)] are finite. Indeed, for instance, 
IE[cos(uX)] I :::::; E[lcos(uX)I] :::::; E[l] = 1. 

E6 Exercise. Show that 

and 

.l. 
tPx(u) = -, -. 

A -IU 

E7 Exercise. Show that 

tPx(u) = (1 - i ~ ) -0 

(32) 

[X '" %(0,1)] I. (33) 

[X '" )1(0(, P)] . (34) 

Let X be a real random variable with the characteristic function tPx. Then, for 
any real numbers a and b, the characteristic function tPaX+b of aX + b is given 
by 

(35) 

Indeed, 

E8 Exercise. Show that 

(36) 

Remark. Equation (35) is true in general, as one can check by looking at the 
proof where only the linearity property of expectation was used. 

The characteristic function tPx of the real random variable X admitting the 
probability density Ix is the Fourier transform of Ix. From the theory of 
Fourier transforms, we know that if 

+00 

J ItPx(u)1 du < 00, 
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the inverse formula 

holds. A rigorous statement would be as follows: the two functions x -> .f~(x) 

and x -> (1/2nlS~~ e-iux!)Ix(u)du = hex) are "almost equal" in the sense that 
for any function g: IR -> IR, J~~ g(xlfx(X) dx and J~~ g(x)h(x) dx are both de­
fined and are equal when either one is defined. 

Suppose now that !)I(u) is known to be the characteristic function of two 
random variables X and Y with a probability density. Then P(X ~ x) = 

P( Y ~ y). Indeed, from what we just stated, f'·x fx(z) dz = J:.", fy(z) dz. It turns 
out (and we will admit this) that requirement (*) and the existence of a prob­
ability density are superfluous. The general statement is: Let X and Y be two 
real random variables such that 

then 

P(X ~ x) = P( Y ~ y) 

and [this is in fact equivalent to Eq. (3R)] 

(lfu E IR) 

(If x E IR) 

E[g(X)] = E[g( Y)] 

for any function g for which E[g(X)] is defined. 

(37) 

(38) 

(39) 

One can also say that the characteristic function uniquely determines the 
law of a random variable. 

E9 Exercise. Compute the Fourier transform of e-a1xl when a> O. Deduce 
from the result that the characteristic function of the Cauchy distribution 
is e- 1ul• 

Remark. It should be emphasized at this point that two random variables 
with the same distribution function are not necessarily identical random 
variables. For instance, take X ~ jV(O, 1) and Y = - X. Then Y ~ ~,1I"(O, 1), 
since P( Y ~ y) = P( - X ~ y) = P(X ): - y) and P(X): - y) = P(X ~ y) 
whenever X admits a density Ix that is an even function, i.e., fx(x) = fx( - x) 
for all x E IR. 

2. Expectation of Functionals of Random Vectors 

2.1. Multivariate Probability Densities 

Let Xl' ... , Xn be real valued random variables. The vector X = (X 1' ... ' Xn) 
is then called a real random vector of dimension n. The function Fx : IR" -> IR+ 
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defined by 

FX(x1,···,Xn) = P(XI ~ Xl"",Xn ~ Xn) 

is the cumulative distribution function of X. If 

-00 -C() 
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(40) 

(41) 

for some nonnegative function fx : IRn -> IR, fx is called the probability density 
of X. It satisfies 

+::;G +00 

S ... S f~(Xt"",xn)dxt···dxn=l. (42) 
-'1.- -cx:..' 

It is sometimes convenient to use more concise notation such as Fx(x) = 
P(X ~ x) instead of Eg. (40), or S~nfx(.x)dx = I instead of Eq. (42). On the 
contrary, the notation can be more detailed. For instance, one can write 
Fx, ..... xn instead of Fx, or fx, .... xn instead offx. 

EtO Exercise. Recall the probabilistic model of Examples I and 3 of Chapter 
I, where Q = [0,1]2, PtA) = S(A) (area of A) and X and Yare defined in 
Fig. 8. What is the probability density of the two-dimensional random vector 
Z = (X, Y)? 

o X(w) 

Figure 8. A random point in the unit square. 

Marginal Density. Let X = (Xt, ... ,Xn ) be an n-dimensional random vector 
with a probability density fx. Let I and m be two integers such that I + m = n, 
and define 

Z = (XI+1, ... ,XI+ m). 

The I-dimensional random vector Y admits the distribution 

Fy(Yt"",y,) = P(Yj ~ Yl,"" 1'; ~ YI) = P(X j ~ Yt,· .. , XI ~ yd. 
and therefore 

YI y, +'XJ +a.l 

FY(Yl"",Yl) = S ... S S ... S Ix(tj.···,II,II+t,···,{n)dt1···dtn· 
-(1) -C(: -;'(., 
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In view of Fubini's theorem, the above equality can be written 

FY(Yl"'" YI) 

= ~( ... I [I··· I fX(tl, ... ,tl,tl+l, ... ,tn)dt,+l ... dtn]dtl ... dt/. 

From this it is clear that the probability density fy of Y = (XI" .. , X,) is 

I +00 +'" 
fY(Yl"",YI)= J ... J fX(Yl"",y"tl+!, ... ,tn)dt,+! ... dtn (43) 

-00 -00 

The density fy is called the marginal density of Y. 

Remark. The qualification "marginal" is not very meaningful, and one might 
as well call fy the density of Y. It is in fact Y that is a "marginal" of X, i.e., a 
"subvector" of X. 

Ell Exercise. Consider the probabilistic model of Chapter 1, Example 12, 
where 0 = {(x,y)lx 2 + / ~ l}, P(A) = (t/n)S(A) and X and Yare defined as 
in Fig. 9. What is the probability density of the two-dimensional random vec­
tor Z = (X, Y)? What is the (marginal) density of X? Define U = J X 2 + y2 

and 8 = Arg(X + iY) (see Fig. 9). What is the density of (U, 8)? 

+1 

8(w) 

-I +1 

Figure 9. A random point in the unit disk. 

Remark. A density probability fx can always be modified in such a way that 
whenever j~(Yl'" ., y,) = 0, then fX(Yl" .. , YI, t l +1 ,· .. , tn) = 0 for all t,+1 , ... , 

tn E R Although this result cannot be proved without recourse to measure 
theory, it is a technical subtlety that is not of great practical importance since 
all probability densities occurring in specific calculations will exhibit this 
property. 

t:.xpectatinn. Let 9 : fRn -> fR be a function such that J:':~' ... J:': ~'. g(x 1" .. , X n ) 

f~(x 1 •..•• Xn) dx 1 ... dXn has a meaning. The expectation of the random vari-
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+00 +00 

E[g(Xl>""Xn)] = J ... J g(Xl"",Xn)!X(Xl"",xn)dxl···dxn . (44) 
-00 -00 

2.2. Covariance, Cross-Covariance, and Correlation 

Mean Vector and Covariance Matrix. Let X = (X1, ... ,Xn ) be an n-dimen­
sional random vector. Its mean m is the vector 

(45) 

and its covariance matrix is the square matrix 

(46) 

where 

(J'ij = E[(Xi - m;)(Xj - m)]. (47) 

In vector notation, denoting transposition by a "prime" symbol, 

1 m = E[X], r = E[(X - m)(X - mY] I· (48) 

It is clear from Eq. (47) that the covariance matrix r is symmetric. We will 
now show that it is nonnegative (notation: r ~ 0) in the sense that, for all 
vectors u = (u 1 , •.• , un) E ~n, 

1 uTu~O I· (49) 

The Cross-Covariance Matrix of Two Random Vectors. Let X = (Xl" .. , Xn) 
and Y = (Y1 , •• . , Y,,) be two random vectors of mean mx and my, respectively. 
The cross-covariance matrix of X and Y is, by definition, the n x p matrix 

(50) 

where 

(51) 
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In abridged notation, 

jl:XY = E[(X - mx)(Y - my)'] \. (52) 

In particular l:xx = rx, the covariance matrix of X. Obviously 

(53) 

We will now see how affine transformations on random vectors affect their 
mean vectors and cross-covariance matrix. 

Let A be an k x n matrix, C be a I x p matrix, and band d be two vectors 
of dimensions k and I, respectively. A straightforward computation shows that 

I mAX+b = Amx + b (54) 

and that 

(55) 

In particular, 

(56) 

Correlation. Two random vectors are said to be uncorrelated ifl: Xy = O. When 
this is the case, the covariance matrix rz of Z where Z' = (X', Y') == 
(X 1" •. , X n , Y1,· • • , 1;,) takes the block diagonal form 

rz = (~!~l-~-) = (E'~1_0_). (57) 
o : l:yy 0 : ry 

The Coefficient of Correlation of Two Random Variables. Let X and Y be two 
random variables with means mx and my and finite variances oJ and (1i. The 
covariance of X and Y is, by definition, the number 

(1XY = E[(X - mx)(Y - my)]. 

If (1i > 0 and (1i > 0, one also defines the coefficient of correlation PXy of 
X and Y: 

(1XY 
PXy =-­(1x(1y 

(58) 
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When either Ux = 0 or Uy = 0, one sets PXy = O. The correlation coefficient 
PXy satisfies 

I - 1 ~ Pxr ~ + 1 ,. (59) 

If PXy = 0, X and Yare said to be uncorrelated. If IPxyl = 1, there exist real 
numbers a and b, not both null, such that 

a(X - mx) = b(Y - my), P-as. (60) 

PROOF OF EQ. (59). Consider for all .1.E IR the random variable Z;. = (X - mx) + 
.1.(Y - my). We have E[Zi] = ul + 2A.uxy + .1.2U; ~ O. This being true for all 
A. E IR, necessarily L\ = uly - ula; ~ 0, i.e., I pxrl ~ 1. Suppose now that 
Ipxrl = 1. If al = 0, then X - mx = 0, P-as, so that Eq. (60) holds with a = 1, 
b = O. Therefore, suppose without loss of generality that al > 0 and a~ > O. 
From IPxyl = 1, we obtain L\ = O. This implies the existence of a double root 
.1.0 E IR for al + 2.1.uxy + .1.2a;. Therefore, for such .1.0 , E[Z}o] = 0, which 
implies Z;'o = 0, P-as, that is, (X - mx ) + .1.o(Y - my) = 0, P-as. 0 

Ell Exercise. Let e be a random variable uniformly distributed on [0,2n]. 
Show that X = sin e and Y = cos e are uncorrelated. 

El3 Exercise. Consider the probabilistic model of Ell. Compute the coeffi­
cient of correlation of X and Y. 

El4 Exercise. Show that for all random variables X and Y with finite variance, 
and for all real numbers a, b, c, d 

PaX+b,cY+d = Px, y sgn(ac) (61) 

where sgn(ac) = 1 if ac > 0, -1 if ac < 0, and 0 if ac = O. 

Standardization of a N ondegenerate Random Vector. Let X = (X 1, ... , X.) be 
a random vector with mean m and covariance matrix ~xx = r. We say that 
X is nondegenerate iff 

r>o, (62) 

that is, iff u E IRn and u'ru = 0 imply u = O. It is proved in Linear Algebra 
courses that there exists an invertible n x n matrix B such that 

r=BB'. (63) 

Taking A = B-1 and b = B-1mx in Eq. (56) we see that the vector Y = 
B-1(X - mx) is such that ry = B-1 BB'(B-1 )' = I. where In is the (n x n) 
identity matrix. Also the mean of Y is my = A -1 (mx - mx ) = O. In summary, 

X=BY+mx (64) 

where Y is an n-dimensional vector with mean 0 and covariance matrix In. 
Such a vector Y will be called a standard random vector. 
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The standardization operation in the case of a random variable X with mean 
Inx and finite variance 0'; > ° reduces to X = O'x Y + Inx where 

X -Inx y=--- (65) 

Standardizat ion in the Degenerate Case. In the general case, where X might 
be degenerate, we know from Linear Algebra that there exists a unitary (11 x n) 
matrix C, i.e., a matrix describing an orthonormal change of basis in IR', or 
equivalently, an invertible matrix such that 

C- I = Co, (66) 

such that 

0'2 
1 0 

. 2 

rx = C 
0', 

C', 

° 
(67) 

0 ° 
where r is the rank of rx and 0'; > ° (1 ~ i ~ r). This decomposition is possible 
because rx is symmetric and nonnegative. 

Remark. From Algebra, it is known that 0'( is an eigenvalue of rx for all i, 
1 ~ i ~ r, and that if r < n, ° is also an eigenvalue. Moreover, in Eq. (67) one 
can take O'~ ~ 0'; ~ ... ~ ° and for the matrix C a matrix of eigenvectors of 
r,.. with the following arrangement: if O'l-I > O'l = 0'[+1 = O't-I > a}, the col­
umns of C numbered from i to k - 1 consist of vectors forming an ortho­
normal basis of the null space of rx - O'tI. Note that B in Eq. (63) can be 
taken to be C diag{ 0'1'"'' O'n} (if rx > 0, r = n). 

By Eqs. (66) and (67), if we define 

Z = C-1(X - mx), 

we see using Eq. (56) that Z = (ZI'"'' Zn) is an n-vector with mean ° and 
covariance matrix 

. 2 
(J, 

o. 

In particular, Z,+i = 0, P-as, for all i, 1 ~ i ~ n - r, or Z = (ZI" .. , Z., 0, 
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... ,0), or equivalently, 

o 

o ------

00···0 

Now Y = (Y1 , ••• , Y,.) defined by 

Y= 

is a standard r-vector. Therefore, 

(

1 0 
1 

X=C ... 

~o~.~d 
where Y is a standard vector of dimension r, the rank of r x, and C is a unitary 
n x n matrix. In summary 

x = BY+mx (68) 

where Y is a standard vector of dimension r, and B is an n x r matrix of 
rank r. 

Remark. If the rank ofrx is strictly less than n, the samples X(w) of the random 
vector X lie almost surely in an affine hyperplane of dimension r of the affine 
space ~n. We shall call r the true dimension of the random vector X (see 
Fig. 10). 

Figure 10. A 3-vector with true dimension 2. 
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E 15 Exercise. Let X = (X 1> X 2, X 3) be a random 3-vector with mean 0 and 
covariance matrix 

'1 1 2) r=( 1 2 3 . 
. 2 3 5 

Find a representation of X as X = BY where Y is a standard vector of 
appropriate dimension. 

2.3. Characteristic Function of a Random Vector 

The characteristic function of a random vector X = (Xl"" ,X.) is the function 
rPx : IR. -+ C defined by 

(69) 

that is, if X admits a density ix, 

(70) 
-00 -ex:; 

Note that for any i (1 ~ i ~ n), the characteristic function of the random 
variable Xi is obtained as follows: 

~Xi(U) = rPx(O,O, ... ,O,u, ... ,O) [, (71) 

where the U is in the ith position. More generally, 

EI6 Exercise. Show that 

As we already saw in the univariate case, the characteristic function deter­
mines the distribution function. 

When formally differentiating under the integration sign in Eq. (70) one 
obtains 

+:x.. +x, 

= f ... f (i)kx~' ... x:nei(U'X'+ OO+UnXnJiX(Xl,,,,,xn)dxl .. ·dxn 
-7..' --r::t., 
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where k = kl + ... + kw Therefore 

ckr/Jx ---- ---. -k ---k k-I 
k k (O, ... ,O)=(z)E[XI'···Xnn] au I' ... CUn n 

(73) 

This formula will be justified in Section 4 and is valid whenever I::[IX1Ik, ... 
IXnlkn] < CfJ. 

E17 Exercise. Compute E[X"] when X ~ gp.). 

Characteristic functions are very useful in asserting or disproving indepen­
dence as we will see in the next section. 

3. Independence 

3.1. Independent Random Variables 

Product of Densities. The real random variables Xl •...• X n are said to be 
independent iff for all x I' ... , x" E IR 

P(XI ~ x1, ... ,Xn ~ x") = P(XI ~ XI)'" P(Xn ~ x"). (74) 

Suppose, moreover, that each Xi admits a density .r;. Then, letting X = 

(XI, ... ,X"J, we have 

Fx(xl ... ·,x") = (IIdYIJdYI) .. ·(I f"(Y")dY") 

= T .. ·1" fl(YI)" ·f,,(Yn)dYI .. ·dYn 
-:y:: -':f.. 

where we have used Fubini's theorem. Tn other words, X admits a density Ix 
which is the product of the (marginal) densities 

n 

fx(x 1,· .. , XII) = n };(xi ) (75) 
i=l 

The converse is also true: if the density Ix of X = (X I' ... , X") factors as in Eq. 
(75) where j~, ... , j~ are univariate probability densities, then X I- ... , XII are 
independent random variables admitting the probability densities II, ... , j~, 
respectively. Indeed, by Fubini, 
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X +cx +X! ='f s .. · S j~(ydj~(Y2) .. ·fn(Yn)dYldY2 .. ·dYn 
- '.r) - ex' - :1J 

= (Ifl(Yl)dy1)(If2(Y2)dY2) ... (Ifn(Yn)dYn) 

= xI' j~(Yl)dYl' 
c'" 

and therefore j; is the density of X l' Similarly, for all i (1 ~ i ~ n), f. is the 
density of Xi' Now, again by Fubini, 

-7) -av 

= P(Xj ~ Xj)",P(Xn ~ xn), 

which proves the independence of the X/so 

Product of Expectations. Let Xl" .. , Xn be independent real random variables 
admitting the probability densities j;, ... , fn' respectively. Then, for any 
functions Y 1, ... , gn from IR into IR 

,----------------------, 

I E[I] Yj(XJj = iI] E[Yj(Xj)] (76) 

as long as the expectations involved have a meaning. This is a general result 
that is valid even when no probability density is available for the X;'s (see 
Section 4). 

PROOF. The proof in the density case is a straightforward application of 
Fubini's theorem: 

+ f_ + x, 

l ... I gl(xd .. ·gn(xn)fdxl) .. ·fn(xn)dxl,,·dxn 

n +,x 

= TI I g;(x;)j;(x;) dx j • D 
i=l -if) 

EI8 Exercise (Ell continued). Show that U and e are independent and that 
X and Yare not independent. 

Product of Characteristic Functions. The product formula (76) is also true 
when the g;'s arc complex functions, as can be readily checked. In particular, 



3. Independence 107 

if X I' ... , X n are independent 

n 

I,6x, ..... xJul,···,un l = II I,6x,(uJ. (77) 
i=l 

The converse is also true, but we cannot prove it at this stage. If Eq. (77) holds 
for all u = (ul, ... ,unlElRn, then Xl' ... , Xn are independent. 

E19 Exercise. Let X \' ... , Xn be n independent Cauchy random variables. 
Recall (see Exercise E9) that the characteristic function of a Cauchy random 
variable is l,6(u) = e- 1ul. Show that Zn = (XI + ... + Xn)/n is also a Cauchy 
random variable. 

E20 Exercise. Let X \ and X 2 be two independent random variables such that 
X\ - ')(:/.\,13) and X 2 - y(rt. z,j3) where :/.\ > 0, rt.2 > 0, 13 > 0. Show that 
XI + X z ~ y(rt.\ + rt.2,fi). (Hint: Use the result of Exercise E7.) 

Variance of a Sum of Independent Random Variables. Let XI' ... , Xn be 
random variables with means ml , ... , mn and variances af, ... , a;, respectively. 
Let m and a 2 be the mean and variance of Z = Xl + ... + Xn' We already 
know that m = ml + ... + mn (and this is true whether the Xi'S are indepen­
dent or not). If in addition X \, ... , Xn are independent, then 

I a2 = a? + ... + a; J (78) 

E21 Exercise. Prove Eq. (78). 

The Convolution Formula. Let X and Y be two independent real random 
variables with the probability densities fx and fy, respectively. Then, Z = 

X + Y admits a density j~ given by 

In other words, fz is the convolution of j~ and f~. This is denoted by 
.tz = fx * fr. 
PROOF. P(Z:s: z) = P(X + Y:s: z) = PtA) = E[lA] where A = {wi X(w) + 
Y(w) :s: z}. But lA = g(X, Y) where g(X(w), Y(w» = lc(X(w), Y(w» and C = 
{(x,y)lx + y ~ z}. Therefore, E[IA] = E[g(X, Y)] = S~~S+~g(x,y)· 
fx(x)fy(y) dx dy = S~~ S~'~ lelx, y)fx(x)fy(y) dx dy = Hcf~(x)fY(Y) dx dy = 
S~~ U=--?U~(y) dy)fx(x) dx = S~.;: (S=-"Jy(y - x) dy)fx(x) dx = S=- x U~c;.: j~(y­
x)fx(x) dx] dy. Therefore, fAz) defined by Eg. (79) verifies P(Z::;: z) = 

S:.,.Jz(y)dy. D 



lOS 3. Probability Densities 

E22 Exercise. Let X and Y be two independent random variables uniformly 
distributed over [a, hJ and [c, d], respectively. Show that Z = X + Y has the 
following probability density in the case where b - a ,,;; d - c (Fig. 11). 

fz(z) 

a+c b+c a+d b+d z 

Figure II. The p.d. of the sum of two random variables uniformly distributed on 
intervals. 

3.2. Independent Random Vectors 

F or notational case, we shall state the results for two vectors X = (X 1'" ., Xn) 
and Y = (Y1 , ... , t;,). In complete analogy with the univariate case, we say that 
X and Yare independent if and only if for all x E ~n, y E ~p 

,-.. --~ 

i P(X";; x, Y ,,;; y) = PIX ,,;; x)P( Y ,,;; y) !. (SO) 

[Recall that when x, a E ~\ x ,,;; a means Xl";; a1, . .. , Xk ,,;; ak]. If, moreover, X 
and Y admit the probability densities Ix andIy, then Z = (X, Y) = (X 1>"" X., 
Y1 ,· .• , t;,) admits a probability density Iz given by 

I ~-;::l 
0(x,y) =fx(~~. (SI ) 

Conversely, if X and Yare two vectors such that Z = (X, Y) admits a density 
fz that can be factored as 

where II and I2 are probability densities, then X and Yare independent and 
admit the probability densities f~ = 11 and Iy = 12, respectively. The proof is 
exactly the same as in the univariate case. Similarly, a necessary and sufficient 
condition for vectors X and Y to be independent is that for all u E ~n, V E IW, 

E[ei(U'x+v'y)] = E[eiu'x]E[eiv'Y], 

or, in obvious notations, 

I ¢x.~(u, v) = ¢x(u)¢>. y(v) I· 
L ____________ _ 

(S2) 
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Also, if 9 and h are functions from IR· and W, respectively, into IR, and if X 
and Yare independent, then 

I E[g(X)h(Y)] = E[g(X)]E[h(Y)] I (83) 

provided the quantities featured in the above equality have a meaning. From 
this, it is not hard to see that when the covariance and cross-covariance 
matrices exist, and if X and Yare independent, 

(84) 

In particular, the covariance matrix of Z = (X, Y) = (X 1"'" X •• Yl ..... ~) 
takes the block diagonal form 

(85) 

It follows from the product theorem that if Xl"'" X. are independent random 
vectors of dimensions kl .... , k •• respectively, then for all C1 E~kl, ...• C. EJ8kn. 

and therefore that this statement is equivalent to independence. 

E23 Exercise. Prove Eq. (86). 

Now for I ~ i ~ n, let Yj be a function from IRk, into IRm, and let 

(1 ~ i ~ n). (87) 

The random vectors YI •...• y" are then independent. To prove this. it 
suffices to show that, for all Dj E ~mi (t ~ i ~ n), 

P( YI EDI , .... Y.ED.) = P(YI E Dd ... P( Y. ED.). 

Since {Yj(Xj)EDd = {XjE gil (Dj) }(I ~ i ~ n), thetast statement is equivalent 
to Eq. (86) with Cj = Yil(D;) (l ~ i ~ n). 

4. Random Variables That Are Not Discrete 
and Do Not Have a Probability Density 

This textbook is an introduction to the basic concepts of Probability Theory. 
As such it avoids the most technical aspects of the theory since the mathe­
matical notions required for a complete and rigorous treatment are generally 
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taught at the graduate level. This is a minor inconvenience for many applica­
tions of Probability Theory in the applied sciences. However, recourse to a 
mathematically more sophisticated approach cannot always be avoided. One 
objective of this section is to motivate the reader to further study, especially 
of Integration Theory, which is the foundation of Probability Theory. Another 
objective is to fill a few gaps that we have been forced to leave open and that, 
in some cases, may have disturbed the reader. 

Virtually no proof of the results stated in this section will be provided for 
that is the object of a full course in Mathematics of intrinsic interest. We have 
chosen two themes, the general definition of expectation and Lebesgue's 
theorems, because they allow us to prove a few results that we previously had 
to accept on faith. 

4.1. The Abstract Definition of Expectation 

First it must be said that not all random variables are either discrete or have 
a probability density. It is not difficult to produce a counterexample: indeed, 
let U and Y be two independent random variables with Y - %(0, 1) and 
P( U = 0) = P( U = 1) = 1. The random variable X = U Y does not admit a 
probability density since P(X = 0) = P(U = 0) =1, and it is not discrete 
since P(XE[a,b] ~ {0})=t(1/fo)S:exp(~x2/2)dx for all a, bEIR such 
that a ~ b. 

The above counterexample cannot be called pathological, and in fact, the 
most general random variables have distribution functions that do not allow 
a definition of expectation as simple as in the case of random variables which 
are either discrete or with a probability density. One must therefore resort to 
a more general (and more abstract) definition of expectation if the theory is 
not to be unacceptably incomplete. 

Such a definition is available. More precisely, let X be a nonnegative 
random variable. Its expectation, denoted E[X], is defined by 

Of course, this definition coincides with the special definitions in the discrete 
case and in the case where a probability density exists. In the probability 
density case, for instance, Eq. (88) reads 

"2"-1 k (k+l)/2" 00 

E[X] = lim L 2" J f(y)dy + n S f(y)dy 
"t, k=O k/2" " 

x. {n2"-1 k } 
= lim S I 2-;; l[k/2".(k+I)/2")(Y) + nl[n.O(,)(Y) f(y)dy. 

"t·, 0 k=O 
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If f is continuous, or piecewise continuous, it can be directly checked that the 
latter expression is just SO' yf(y) dy. (It is also a consequence of Lebesgue's 
monotone convergence theorem, to be stated in Section 4.2.) 

For a random variable X that is not nonnegative, the procedure already 
used to define E[X] in the discrete case and in the probability density case is 
still applicable, i.e., E[X] = E[X+] - E[X-] if not both E[X+] and E[X-] 
are infinite. If E[X+] and E[X-] are infinite, the expectation is not defined. 
If E[IXI] < 00, X is said to be integrable, and then E[X] is a finite number. 

The basic properties of the expectation so defined are linearity and mono­
tonicity: if Xl and X2 are random variables with expectations, then for all A. I , 

A2 E IR, 

(89) 

whenever the right-hand side has a meaning (i.e., is not a 00 - 00 form). Also, 
if XI ~ X 2 , P-as 

E[XI ] ~ E[X2l 

Also from definition (88) applied to X = lA' 

peA) = E[lAl 

(90) 

(91) 

The definitions of the mean, the variance, and the characteristic function of a 
random variable are the same as in the discrete case and the probability 
density case when written in terms of the E [ ... ] symbolism: 

(92a) 

(92b) 

(92c) 

where in Eq. (92c), E[e iuX ] = E[cos uX] + iE[sin uXl In Section 1.3, a proof 
of the Chebyshev's inequality 

(93) 

was given in terms of the E["'] symbolism, only using properties (89), (90) 
and (91). Therefore, Eq. (93) is also true of any random variable with mean 
mx and variance ui. 

As a direct consequence of Eq. (88) we see that if EIXI < 00 

+00 

E[X] = S xdF(x) (94a) 
-00 

where F(x) = P(X ~ x) is the distribution function of X and where the integral 
in the right-hand side is the Riemann-Stieitjes integral: 

TxdF(x)=lim L ~(F(k~t)_F(~)). (*) 
-00 ntao kEZ 2 2 2 

]k] ';;n2"-1 
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More generally, we have the formula: 

+>:> 

E [g(X)] = J g(x) dF(x) (94b) 
-C1j 

for any function 9 such that E[lg(X)I] < 00. 

At this point, we shall quote without proof a formula that is true whenever 
X is a nonnegative random variable: 

Erxl ~ I [I - F(x)] "x 1 
------- - ._----- ---

A heuristic proof can be based on Fig. 12. 

OL-~~~~~ __ ~ 
k2-n (k + 1)2-· 

(a) 

OL-____ -Lx ______ ~ 

(b) 

Figure 12. Proof offormula (95). 

(95) 

The shaded area in Fig. 12(a) is just krn(F«k + l)rn) ~ F(k2- n», and 
therefore, from Eqs. (*) and (94a), we see that E[X] is the shaded area in Fig. 
12(b), which can also be expressed as J~~ (l ~ F(x»dx. 

I t was shown in Chapter 1, Section 3.2, that the c.dJ. F of a random variable 
is nondecreasing, right-continuous, with a left-hand limit at each point x E IR, 
denoted F(x~). Moreover F( ~oo) = 0 and F( +00) = 1. A point XE IR is 
called a discontinuity point of F if AF(x) > 0 where AF(x) = F(x) ~ F(x ~ ). 

Exercise. The discontinuity points of F form a set which is either finite or 
denumerable. 

Let (xn , n ~ 1) be an enumeration of the discontinuity points of F. It must 
be noted that the x;s may have a (denumerable) infinity of accumulation 
points. The continuous part of F, denoted Fe' is defined by 

f~(x) = F(x) ~ L ~F(xn)' 
Xn~X 
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The function Fe is continuous, but in general it may not be written as an 
integral 

x 

FAx) = J !c(u)du. 
-00 

However if this is the case 
+00 

E[g(X)] = J g(x)!c(x)dx + L g(xn)AF(xn)· 
-00 n~l 

In Engineering texts, especially in Signal Theory, it is then said that X 
admits a mixed density 

f(x) = !c(x) + L Pnb(x - xn) 
n~l 

where 
Pn = AF(x.) = P(X = x.) 

and {) is the so-called Dirac "function" formally defined by its action on any 
function 9 : IR --+ IR: 

+00 

J g(X}b(x - xo) dx = g(xo)· 
-00 

This notation is consistent with the following definition of expectation using 
the mixed density f: 

+00 

Eg(x) = J g(x)f(x) dx. 
-00 

Indeed 

+00 +00 

J g(x)f(x) dx = J g(x) [!c(x) + L p.b(x - x.)] dx 
-00 -00 n~l 

+00 

= J g(x)!c(x) dx + L g(x.)AF(xn)· 
-00 n;?;l 

The mixed densities are graphically represented as a mixture of "Dirac 
functions" and of ordinary functions (Fig. 13). 

[(xl 

----~--------~~--------~--_+X 
Xl 

Figure 13. A mixed density. 
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We will now mention a difficulty that we have tried to conceal in the 
definition of expectation in the case of a random vector X = (Xl" .. , Xn) with 
a probability density fx. For instance, we have defined for Y = g(X 1"'" Xn) 
the expectation E[Y] by 

+00 +c,L 

E[Y] = S ... S g(Xj"",xn)fx(Xl"",xn)dxl···dxw 
oc --r:/:..! 

But now, suppose that Y admits a probability density fy. Expectation E[ Y] 
could be computed by means of 

+", 

E[Y] = S yfy(y)dy. 

The unavoidable question is: are the last two definitions consistent? Without 
the help of abstract Integration Theory, such a question cannot be answered 
in general. Fortunately, the answer is yes. The theory tells us that all the special 
definitions of expectation given in the present textbook are consistent with 
Eq. (88). 

4.2. Lebesgue's Theorems and Applications 

The most important technical results relative to expectation are the celebrated 
Lebesgue theorems, which give fairly general conditions under which the limit 
and expectation symbols can be interchanged, i.e., 

(96) 

Monotone Convergence Theorem (MC). Let (Xn' n ? I) be a sequence of random 
ruriables such that for all n ? 1, 

(97) 

Then Eq. (96) holds. 

Dominated Convergence Theorem (DC). Let (Xn, n ? I) be a sequence of random 
variables such that for all w outside a set AI' of null probability, there exists 
limntx, Xn(w)* and such that for all n ? 1 

(98) 

where Y is some integrable random variable. Then Eq. (96) holds. 
A simple counterexample will show that Eq. (96) is not always true when 

limnt 1: Xn exists. Indeed, take the following probabilistic model: n = [0, I], 
and P is the Lebesgue measure on [0,1]. Thus, w is a real number in [0, 1 J, 

* One then says that (Xn , n ? I) converges almost surely. We shall spend more lime on almosl­
sure convergence in Chapter 5. 
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IR 
2n n 

~--~y~---' 

n 

Figure 14. A counterexample for Lebesgue's theorems. 

and a random variable can be assimilated to a real function defined on [0,1]. 
Take for Xn the function depicted in Fig. 14. Clearly, limntoo Xn(w) = 0 and 
E[XnJ = J6 Xn(x)dx = 1, so that E[limntoo XnJ = 0 #limntoo E[XnJ = 1. 

We shall now harvest a few applications of Lebesgue's theorems. The 
monotone convergence theorem yields the following result concerning a se­
quence of nonnegative random variables (Sn, n :;:;:; 1): 

E [JI Sn J = n~l E[Sn]. (99) 

It suffices to apply Lebesgue's MC theorem, with Xn = Li:=l Sk' This result 
has repeatedly been used without proof in the previous chapters. 

Differentiation Under the Expectation Sign (DUE) 

Let (X" t E [a, b J) be a family of integrable real random variables such that for 
each w, t -+ X,(w) admits a derivative in (a, b) denoted X,(w). Suppose, moreover, 
that there exists an integrable random variable Y such that I Xt I ,,;; Y, P-as,for 
all t E (a, b). Then 

[t E (a, b)]. (100) 

PROOF. We have by definition of derivative X t = limnt 00 n(Xt+(1/n) - Xt). Since 
n(X'+(l!n) - Xt) = XtH(I/n) for some 8E(0, 1), and since IXtl ,,;; Y, P-as, for all 
t E (a, b), DC is applicable. Therefore, 

lim E[n(X,+(I/n) - Xt)] = E[Xtl 
nt GC 

But, using linearity and the definition of (djdt)E[X,J, 

lim E[n(X'+(1/n) - X,)] = lim n(E[Xt+(1/n) - E[XtJ) = ~ E[Xt]. 0 
ntoo ntoo dt 
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Application. Let X be a random variable with the characteristic function r/lx. 
Suppose that E[IXI] < 00. Then 

dt/Jx . x 
-(u) = iE[Xe'U ] (lOla) 
du 

and in particular 

d1: (0) = iE[X]. (lOtb) 

The proof of Eq. (lOt) is a simple application of DUE after noticing that 
(djdu)e iUX = iX eiuX. [In the notations of Eq. (100), Xu = eiuX, Xu = iX eiuX, and 
therefore IXul ~ IXI. Thus, DUE is applicable with Y = IXI.] Iteration of the 
differentiation process yields, under the condition E[IXl k ] < 00, 

dk'{" 

d:: (u) = (itE[Xke iuX ], (102a) 

and therefore 

(t02b) 

Remark. The condition E[IXlk] < 00 implies that E[IXn < 00 for all I 
o ~ I ~ k. Indeed if I ~ k, and a> 0, al ~ 1 + ak and therefore IXII ~ 1 + 
IXIk, so that E[IXII] ~ t + E[IXlk] < 00. This remark is necessary to per­
form the successive steps that lead to Eq. (t02a). 

The Product Formula 

As another illustration of the monotone convergence theorem we shall now 
prove the product formula 

[ E[XY] = E[X]E[Y] I (t03) 

which is true when X and Yare independent integrable random variables. Such 
a formula was proved in Section 3.2 using Fubini's theorem, for couples (X, Y) 
admitting a density. It was also proved in Chapter 2 in the discrete case using 
"elementary" arguments concerning series. However, a close look at the proof 
of the validity of such arguments would show that Lebesgue's theorems are 
already there. 

The proof of Eq. (t03) will be given here only in the case where X and Y 
are nonnegative. The rest of the proof is left to the reader. 

First, notice that for any nonnegative random variable Z, if we define 



Illustration 6. Buffon's Needle: A Problem in Random Geometry 117 

n2"~1 k 
Zn = L 2" 1{(kI2")";Z«k+l)/2"} + nl{z""J 

k=O 
(104) 

then limnt if, i Zn = Z, P-as. Thus, by Lebesgue monotone convergence theo­
rem, limnte" £ [Zn] = £[Z]. With obvious notations, Xn Y" i XY and there­
fore limnh £[Xn Yn] = £[XY]. Also, limnteLl £[Xn]£[Y,,] = £[X]£[Y]. It 
is then clear that Eq. (103) will be proved if 

is shown to be true for all n ;:, 1. But then, this verification amounts to 
observing that for all i, j, 

£ [1 ((j/2") < x,,; U+l 112"} 1 «iI2") < Y"; (i+1l12"}] 

= £ [1{U/2") < X ";(j+l )12":]£ [1 (i/2") < Y '" (;+1)/2")]. 

That is, in view of Eq. (91), 

P ( X E (1n J ; I} Y E Gn' i ~n I J) 
= P XE - - P YE - -- . ( ( j j + IJ) ( (i i + IJ) 

2n' 2n 2n' 2n 

The latter equality is an expression of the independence of X and Y, and the 
proof is completed. 

Illustration 6. Buffon's Needle: A Problem in 
Random Geometry 

The French naturalist Buffon gave his name to the famous problem of com­
puting the probability that a needle of length 1 intersects a regular grid of 
parallel straight lines separated by a distance a, where a > I (Fig. 15). 

We will consider a more general problem, that of computing the average 
number of intersections of a "regular" plane curve Ali Here the length I of 
the curve and the grid's characteristic distance a are not restricted (Fig. 16). 

The original problem's solution immediately follows from that of the more 
general problem, since if we call N the (random) number of intersections of 
the needle with the array, we have, when a > I, N = 0 or 1, and therefore 

i 
_L ____ _ 

a .... 
-f-----

Figure 15. A needle on a grid. 
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a~ 

Figure 16. A piece of wire on a grid. 

Figure 17. The piece of wire and its referential. 

Ll 
HI 

-Lo 17 
Ho 

Figure 1 S. A referential of the grid. 

E[NJ = O' P(N = 0) + I· P(N = I) = P(N = I). (105) 

But P(N = 1) is simply the probability that the needle intersects the grid. 
Before solving the general Buffon's problem, one must describe in mathe­

matical terms the operation of tossing a plane line "at random" on a plane 
surface. We propose the following model. The curve AB must be thought of 
as a piece of wire stuck on a transparent sheet of plastic with an orthonormal 
referential Oxy drawn on it (Fig. 17). Two consecutive lines of the array are 
selected, e.g., Lo and L 1 , as well as two points Ho and HI on Lo and L I, 
respectively, such that segment HoHI is perpendicular to the lines of the grid. 
Also let i1 be a fixed vector, e.g., parallel to the lines and from left to right, as 
in Fig. 18. Let M be a random point on HoH I such that, if we call X the 
random variable HoM, 

P(X E [c, dJ) = (d ~ e)la (106) 

for all ° ~ e ~ d ~ a. In other words, X is uniformly distributed on [0, aJ. 
We place the transparent plastic sheet on the rectangular array in such a 

manner that ° coincides with the random point M, and we give to Ox a random 
direction, i.e., the angle from direction i1 to direction OX is a random variable 
® such that 
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LI 

:~iE -Lo 
U 

Ho 

Figure 19. Random placement of the piece of wire. 

(107) 

for all 0 ~ ()l ~ ()2 ~ 2rr. The angle ® is uniformly distributed between 0 and 
2rr (Fig. 19). We will assume that X and ® are independent, i.e., 

P(X E [c, d], ® E [01, ()2J) = P(X E [c, dJ)P(® E [el , ezJ). (108) 

This placement procedure of the transparent sheet, and therefore of the 
piece of wire AB, may not appear very random because of the particular 
choices of lines Lo, L[ and of points Ho, HI' However, the reader will agree 
that the distribution of the random number of intersections N of the line AB 
with the array does not depend on such a choice. 

The reader may not agree on the choice of Eqs. (106), (107), and (108) for 
the joint distribution of ® and X. There is nothing we can say in favor of 
this choice except that it seems to be a reasonable model. Other models are 
mathematically acceptable. We are unable to determine which model repre­
sents accurately the actual throwing of the piece of wire if no description is 
available of the physical apparatus designed to throw the piece of wire. We 
will consider only those tossing machines that achieve Eqs. (106), (107), and 
(108), and we will be content with them. 

We now proceed to the solution of Buffon's needle problem in three steps. 

Step 1. The average number of intersections of a segment of length I with the 
array is a function of I, say f(l), to be determined. Consider any such segment 
AB and let C be some point on AB. Calll[ and Iz the length of AC and CB, 
respectively. Clearly the number of intersections of AB with the grid is equal 
to the sum of the number of intersections of its constituents AC and CB, so 
that f(l) = f(l[) + f(lz)· We have just obtained for f the functional equation 

(109) 

Therefore, 

f(l) = kl (110) 

where k is a constant which will be computed in Step 3. 

Step 2. Now let Mo, MI' .. Mn be a broken line approximating AB (Fig. 20), 
and let 11"'" In be the lengths of MoM I , ... , Mn-! MM' respectively. Ifwc call 
Nn and XI"'" Xn the number of intersections of MoM! ... Mn and MOM!, ... , 
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Ml~O=A 
M2 

M3 M" =B 

M4 ·· .Mn - 1 

Figure 20. A polygonal approximation of the piece of wire. 

t 
a 

---,?-~:-----"'.......-<'-- ~ 
t 
a 

-+------+---- ~ 

Figure 21. A particular case of Buffon's problem. 

Mn-\ Mn, respectively, with the grid, then since N" = XI + ... + X"' 

E[N,,] = E[X\] + ... + E[X,,] 

and therefore, from the previous results 

E[Nn] = kin (III) 

where In is the total length of the broken line MoM I'" M". We will call line 
An regular if there exists a sequence of broken lines indexed by n ~ 1 and 
such that, for all w, Iimntx N,,(m) = N(m) and N,,(w) remains bounded, and 
Iim"t c In = I. Under these circumstances, limntT E[N,,] = t:[N] (Lebesgue's 
dominated convergence theorem; see Section 4.2), and therefore 

E[N] = kl. ( 112) 

SCt:jJ 3. It now remains to determine thc multiplicative constant k. For this we 
consider a special line AB consisting of a circle of diameter a (Fig. 21). In this 
case N is not random; it is always 2. Therefore, E[NJ = 2. Also I = ITa, so that 
by Eg. (112), 2 = kna, i.e., k = 2lna. Finally, 

a surprisingly simple result. 

SOLuTIONS FOR CHAPTER 3 

2 1 
E[N]=--, 

ITa 

E 1. By the change of variables (x - m)/O' = y, we just have to show that 

1 +J 

i~ J e -(1/21Y' dy = 1. 
v' 2][ -7 

( 113) 
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Now, by Fubini's theorem, 

( +00 )2 (+00 ) (+00 ) )00 e-(I/2)y2 dy = -t e-(1/2)x2 dx -t e-(I/2)y2 dy 

-00 -00 

Passing from Cartesian coordinates to polar coordinates, and using Fubini again, 
we obtain 

+00 +00 21t 00 J J e-(I/2)(,,2+y2) dx dy = J J pe-(1/2)p2 dp dO 
-co -co 0 0 

Hence, J~~ e-(1/2)y2 dy = ~, qed. 

00 
= 2n J e-Udu = 2n. 

o 

( y-m) E2. P(Y:;:';; y) = P(uX + m :;:.;; y) = P X:;:.;; -u-

1 (y-m)/" 1 y = -- J e-(1/2)x2 dx = -- J e-(1/2)[(z-m)/u]' dz 
~ -00 u~-oo 

( z- m) change of variables x = -u- . 

( Y-m ) P(X :;:.;; x) = P -u-:;:';; x = P(Y:;:';; ux + m) 

1 nx+m 1 x = -- J e-(1/2)[(y-m)/uJ2 dy = -- J e-(1/2)z2 dz 
u~ -00 ~-oo 

( y-m ) change of variables -u- = z . 

E3. 
+00 p' 00 1 00 qlX) J f(x)dx = - J x·-1e-P"dx = - J y.-le-Ydy = - = 1 
-00 qlX) 0 qlX) 0 r(lX) 

where the second equality has been obtained with the change of variables y = px. 

E4. 
+00 p' <Xl 1 <Xl 

mx = J xf(x) dx = - J x'e-Px dx = -- J y'e-Y dy 
-00 qlX) 0 Pr(IX) 0 

1 qlX + 1) IX 

{J qlX) fJ 

where identity (to) has been used. Similarly, 

+JOO x 2'f(x)dx = ~ qlX + 2) = IX(IX + 1) 
-00 {J2 r(1X) /32 ' 
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so that 

ES. Case X - '11( [a, bJ): 

E6. 

1 b 1 b2 - a2 a + b 
m = ~- S X· 1 dx = ---- 2 

h-a. h-a 2 

Using Eq. (14) 

_ 1 h3 - a3 (a + b)2 
- h - a --3- - ~2-

(a - b)2 
12 

Case X - ~(ic): 

, x I I 
m = S xi.e-!·x dx = (integration by parts) S e- h dx - (xe-h)~ = -::- - ° = -;-. 

[) [) I. I. 

Using Eq. (14) 

·X 

tTl = S x 2 ice-AX dx - m2 

[) 

"-
= (integration by parts) - (x2e-AX)~ + S 2i.xe-.!x - m2 

[) 

2 2), - I 
= ° + 2m - m = --­~2 . 

Case X - .A '(0,1): 

(by symmetry). 

I I t, 

= (integration by parts) - - ~(xe-(112)X2)~~ + -~ S e (1.2)x'dx 
v' 21t v 2n:- y 

x x 
X - ~(;.): ¢x(u) = S eiuxAe),xdx = S i,e-1A-;u)Xdx. 

[) [) 

Formally, 

SI. " -\J,-iU)Xd,v = __ )_, _(e-O.-iu)X)", I.e. " [) 
[) II. - lU 

I. 

ic - iu 

A rigorous computation involves contour integration in the complex plane. 
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E7. 

x ~ ,1"(0, 1): 

1 +'0 
- -u'/2 S -(1/2)(x-;u)' d - e --, e x. 

j2n-~ 

Formally, 
1 +c<, 1 +w 

-,-. S e (1/2)(x-;u)' dx = ~ S e-y'12 dy = 1. 
j2n -m V 2n -'J;' 

Here again, contour integration can be used to justify this computation. 

where the second equality has been obtained after a purely formal change of 
variable y = ([3 - iu)x, which can be fully justified by contour integration in the 
complex plane. 

E8. From E2, X = aY + m where Y ~ %(0,1). Therefore, by Eq. (35), r/Jx(u) = 

eiumr/Jy(a2u2). And the result follows by Eq. (33). 

+00 oc 0 
E9. S e-alxleiux dx = S ex(-a+iu) dx + S ex(a+iu) dx 

o 

= (formally) . ex(-a+,u) + __ . ex(a+,u) ( 1 ,)OC (1 ' )0 
- a + IU 0 a + IU _'" 

1 1 2a 
= -- + -- = ---. 

a - iu a + iu a2 + u2 

In particular, 2/(1 + u2 ) is the Fourier transform of e- 1xl• By the InverSIOn 
formula, 

1 +00 ,1 1 +"', 1 
e-!xl = - S e-,ux---2 du = - S e,ux---2 duo 

n -'" 1 + u n -00 1 + u 

Therefore, exchanging the roles of x and u, 

+00 ,(I 1 ) S e lUX - ---2 dx = e- 1ul • 
-'x n 1 + x 

EIO. F(x, y) = p (X :( x, Y:( y) is the probability of the event A = {wi X(w) :( x, 
Y(w) :( y}. Reasoning as in Example 6 of Chapter 1, we see that 

F(x,y) ~ ( ; 

if x ~ 1 and y~l 

if O:(x:(l and y ~ 1 

if x ~ 1 and O:(y:(1 

xy if O:(x:(1 and O:(y:(l 

0 if either x < 0 or y < O. 
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Ell. 

Taking 

f(x,y) = {~ 

3. Probability Densities 

if 0,,; x ,,; 1 and 0,,; y ,,; 1 

otherwise, 

[more concisely,f(x, y) = I[O.l]x[O.l](x, y)], we see that 

-I 

If Ixl ,,; I, 

If Ixl > 1, j~(x) = O. 

x y 

F(x,y) = f f flu, v)dudv. 

y 

-I 

x 

iz(x,y)=I/rr 

I 
I-iz (x, y) = 0 
I 

otherwise. 

For 0,,; u ,,; 1 and 0,,; () ,,; 2n, 

shaded area 1 8 1 
P(U ,,; u,e,,; 8) = = -nu' - = -u28, 

n n 2n 2n 

y 

+1 

-1 +1 x 

-1 
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E12, 

and therefore, in the range of values of (U, 0), i.e., for (u, O)E [0,1] x [0,2n], 

1 
Jiu,e)(u,O) = ;-u. 

1 2" 1 2" 
mx = - $ sin 0 dO = 0, my = - $ cos 0 dO = O. 

2n 0 2n 0 

Un = E[(X - mx)(Y - my)] = E[XY] = E[cos 0 sin 0] = EDsin20 ] 

1 1 2" 
= - - J sin 20 dO = O. 

2n 2 0 

El3. From Exercise Ell, we know that mx = my = 0 since the densities of X and Y 
are symmetric around the origin. Therefore, 

Un = E[XY] = E[Ucos0Usin0] 

[ 1 J' 2 .. 1 U = E - U2 sin 20 = J J -2 u2 sin 20 - du dO 
2 0 0 n 

l' 2" 
= - J u3 du $ sin 20 dO = O. 

2n 0 0 

X and Yare therefore uncorrelated. 

E14. Since (aX + b) - m.X +b = a(X - mx)and(cY + d) - mcY +d = c(Y - my), we see 
that if ac #' 0, 

E16. 

E17. 

E18. 

U.X"Y acuXY 
P.X+b,cy+a = -- = I I I I = sgn(ac)Pn· 

U.XUcY a Ux c Uy 

If ac = 0, the result is trivial since by convention Pn = 0 when Ux = O. 

tPx(O, ... , 0, A.jU, 0, ... ,0, A.kU, 0, ... ,0) 

{
I 1 
-u = 2u- = I, (U)/2(0) 

lu,e(u,O) = n 2n 

o otherwise 

if UE[O, 1], OE[0,2] 

where I, (u) = 2u verifies $A/, (u) du = (U2)~ = 1 and 12«() = 1/2n verifies 
J5" Iz«()dO = 1. Therefore, U and 0 are independent and/e «() = (1/2n)~0,2"1«()' 
lu(u) = 2ul(0, l](u) duo X and Yare not independent since we do not have the 
factorization Ix,r(x, Y) = Ix(x)/r(Y), 
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E19. 

E20. ( iU)-" (iU)-" <Px,(u)= 1- 73 ,<Px,(u)= 1- 73 
and therefore, since Xl and X 2 are independent, 

<PX,+x,(U) = <PX,(U)<PX,(U) = (I -70 
E21. (12 = E[(2 - mil] = El (~ Xi - i~ mYl = E {L~ (Xi - milT} 

E22. 

" 
= L E[(Xi - m;)l] + 2 L L E[(Xi - m;)(Xj - mj )] 

i=t i-I j=l 
i<j 

" = L (J"(- + 0 since if i -# j, E[(Xi - m;)(Xj - mj )] 
j=l 

= E[Xi - m;] E[Xj - mJ = O. 

fx(x) fx(-x) 

-b x 

tx(Z - x) 

b -a -

- b - a 0 -b + Z -a + Z x 

Therefore, J +~Jx(z - x).fy(x) dx = 0 if - a + z ~ c or - b + z ); d, that is, 
f~(z) = 0 if z ~ a + c or z ); b + d. Suppose (without loss of generality because 
of the symmetric roles of X and Y) that b - a ~ d - c. Then from z 1 given by 
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E23. 

c = -h + 2\ to 22 given by d = -a + 2 2 , i.e., from 21 = h + c to Z2 = a + d, 
j+ ; j~(2 - x)f~(x) dx = fz(z) remains constant and equal to (lIb - a)/( I /b - c) x 
(d - u) = 1/(d - c). Between a + c and z \ = h + c, fz(z) increases linearly. Be­
tween 22 = (/ + d and h + d, it decreases linearly. 



CHAPTER 4 

Gauss and Poisson 

1. Smooth Change of Variables 

1.1. The Method of the Dummy Function 

This section is devoted to the computation of the probability density of a 
random vector Z = (ZI" .. , Zp) that can be expressed as a sufficiently smooth 
function of another random vector X = (X t , ... , X.) of known probability 
density. The basic tool for doing this is the formula of smooth change of 
variables in integrals, a result that will be recalled without proof. 

Let g be a function from an open set U c: [R' into [R'. This function defines 
a change of variables x = (x t ..... x.) -> Y = (Yl"" ,y.) by means of y = g(x). 
or more explicitly. 

{
Yt = gt(x 1 ,· .. ,x.) 

~. = g.(x 1 ... ·,x.). 

(1) 

It will be assumed that the partial derivatives 8g;/8xj exist and are continuous 
in U for all i.j (l .::; i,j .::; n) and that IJgl > 0 on U, where Jq is the determinant 
of the Jacobian of g. i.e .. 

Jix) = det{:~; (X)}. (2) 

With these assumptions the following formula holds: 

J u(y)dy = J v(g(x»IJg(x)1 dx. (3a) 
g(U) U 
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g continuous 

g-I continuous 

Figure 1. Recapitulation of the conditions on (g, U). 

whenever v is a nonnegative or integrable function from V = g( V) c IRn into IR. 
Under the above assumptions V = g(V) is an open set of IR1n and g admits 

an inverse g-I: V -> V. Moreover Jq I exists and is continuous on V, and 
IJg II > 0 on V. Therefore, g-I satisfies the same requirements as g (Fig. 1). 
Hence. the formula 

J u(x)dx = S u(g-I(Y))IJg l(y)1 dy (3b) 
U g(U} 

where u is now any nonnegative or integrable function from V c IRn into IR. 
The formula of change of variables in Eq. (3b) will be applied to the com­

putation of the probability density Iy of the vector Y = (Yt , ••• , Yo) = g(X), 
when the probability density Ix of X = (XI"'" X.) is null outside V. For this, 
let us compute, for any nonnegative function h (the dummy function) from 
V = g(V) c IRn into IR, the quantity E[h(Y)]: 

E[h(Y)] = E[h(g(X))J = S h(g(x)) fx(x)dx. 
~n 

Since fx = 0 on 0, 
E[h(Y)] = S h(g(x))fx(x)dx. 

U 

Now, applying Eq. (3b) to the function u(x) = h[g(x)] fx(x) yields 

E[h(Y)] = S h(y) fx[g-l(y)]IJgl(y)1 dy. 
g(U} 

(4) 

This suffices to determine the probability density of Y. Indeed, if for all non­
negative functions h: IRn -> IR, and for some ¢J: IRO -> IR+, 

E[h( Y)] = S h(y)¢J(y) dy, (5) 
~n 

then ¢J is the probability density of Y. To see this, take h(y) = 1 if y :;;; x, 
h(y) = 0 if Y > x. Then Eq. (5) becomes 

P(Y:;;; x) = l' ... xI" ¢J(YI, ... ,y.)dYI ... dYn, 

and therefore by definition, ¢J is the probability density of Y. 
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Therefore, from Eq. (4), 

(6) 

andfy == 0 on V. 

1.2. Examples 

EXAMPLE 1 (Invertible Affine Transformation). Let Y and X be linked by an 
affine relation 

Y = AX + h (7) 

where A is an n x n invertible matrix and bE [R". Here g(x) = Ax + band 
y-I(y) = A-I(y - b), so that 

Therefore, 

1 . 
fy(y) = IdetAlfx[A-'(Y - h)] (8) 

EXAMPLE 2. Let XI and X z be two independent random variables uniformly 
distributed over [0, 1]. Find the probability density of XI/XZ' 

Solution. Take X = (Xl' Xl)' Y = (Xl/Xl' Xl)' The situation is therefore that 
described above with U = (0,1) x (0,1), YI = gl(XI,Xl ) = XI/XZ' Yl = yz(x l , 
Xz) = Xz' The inverse transformation g-l is described by XI = YIYZ, Xl = Yz. 
so that 

IJg-l(Y)1 = Idet{; ~I}I = IYzl· 

Also, V = g(U) = {(YI,h)IYI > 0,0 < Yz < inf(I.I/yd} (Fig. 2). Also, 

Therefore, by Eq. (6), 

. {Y2 
jY(YI'Yz) = 0 

if YI > 0, 

otherwise. 

if XE U 

if x¢ U. 

° < Yz < inf(I,;J 



I. Smooth Change of Variables 131 

V=g(U) 

YI 

Figure 2 

But the problem was to find the probability density /y, of Y1 = X \ / X 2' To 
find it, /y must be integrated with respect to its second argument: 

inf(1.I/y,J 

/y,(yd = S /y(YI,yz)dY2 = S yz dyz· 
~ 0 

Finally, 

(y\ > 0). 

A Word of Caution. One should be aware that on many occasions. the 
computation of the probability density of Y = g(X) can be done "by hand" 
without resorting to a formula, as in the exercises that follow. 

El Exercise. Let X be a real random variable with a distribution function F. 
Show that Y = F(X) is a random variable uniformly distributed over [0, 1]. 

E2 Exercise. Show that if X is a Gaussian random variable with mean 0 and 
variance I [X ~ .. ;\f"(0, 1)], then Y = X 2 has the probability density 

I /y(y) = __ y-I/Z e-Y/2 

J2; 
(y > 0). 

E3 Exercise. Show that if X I' ... , X. are independent Gaussian random vari­
ables with mean 0 and variance I, Y = X~ + ... + X; is a chi-square random 
variable of size n. (Hint: Use Exercise E20 of Chapter 3 and E2 above.) 

We will have opportunities to apply the general formula of smooth change 
of random variables in the next sections. 

Important Remark. Under the above stated conditions for 9 (especially IJql > 0 
on the domain of definition U), 9 is a 1-1 mapping from U onto V = g(U). 
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Figure 3. Noninvertible case. 

There are cases of pratical interest where the transformation 9 does not admit 
an inverse but where its domain U can be decomposed into disjoint open sets 
(say 2): U = U1 + Uz, such that the restrictions of 9 to U1 and Uz, respectively 
gl and gz, satisfy the conditions of smoothness and ofinjectivity of the begin­
ning of this section (see Fig. 3). In this case, the same method as above applies, 
but one must now dissociate the integral: 

J h(g(x»fx(x)dx = J h(gl(X»fx(x)dx + J h(9z(x»fx(x)dx 
U u, U2 

and apply the formula of change of variables to each part separately. This 
gives 

and therefore, 

2. Gaussian Vectors 

2.1. Characteristic Function of Gaussian Vectors 

A slight extension of the definition of a Gaussian random variable will be 
necessary for our purpose, namely: a random variable is said to be Gaussian 
if its characteristic function is 

t,6(u) = eirllu -(1/Z).,.2u2 (9) 

where mE IR and a E IR+. If a > 0, this definition corresponds to the former 
definition of Chapter 2, section 1.1, and X admits the probability density 

f(x) = _1_e-(1/2)[(X-m)2/.,.21. 

afo 
(10) 
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If (J = 0, then X is almost surely a constant, more precisely X = m, P-as [see 
Eq. (28) of Chapter 3J. A Gaussian random vector is defined as follows: 

D1 Definition. Let X = (Xl"'" Xn) be a random vector of dimension n. It is 
said to be Gaussian if and only if the affine combination ao + LI=l ajXj is a 
Gaussian random variable, for all ao, ... , an E IR. 

The characteristic function of such a vector is 

(11) 

where mx and rx are the mean vector and the covariance matrix of X, 
respectively. To see this, it suffices to apply the definition of rPx, 

rPx(u) = E[eiu'XJ = E[e{~ u;x;h 
and to observe on this expression that rPx(u) = rPy(1) where rPy is the char­
acteristic function of Y = LJ=l UjXj . But by definition, Yis a Gaussian random 
variable, and therefore 

where my and (Ji are the mean and variance of Y, respectively. Now, 

my = E[f UjXj ] = f ujmXj = u'mx' 
j=l j=l 

and, remembering a computation in Section 2.2 of Chapter 3, 

(Ji = var (i UjXj ) = i f (Jijuiuj = uTxu, 
j=l ;=1 j=l 

where {(Jij} = rx is the covariance matrix of X. Combination of the above 
computations yields Eq. (11). 

A standard n-dimensional Gaussian vector is a n-dimensional Gaussian 
vector with mean ° E IR" and covariance matrix I, the (n x n) identity matrix. 
Therefore, if X is a standard n-dimensional Gaussian random vector 

Uncorrelated Jointly Gaussian Random Vectors. 

T2 Theorem. Let X = (Y1 , ... , ~,Zl" .. ,Z,)' be a n-dimensional Gaussian 
random vector with n = k + l. The two random vectors Y = (Yl , ... , ~)' and 
Z = (Zl'" ., Z,)' are independent if and only if they are uncorrelated. 
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Comments. In view of Definition D I, it is clear that Y and Z, being subvectors 
of a Gaussian vector X, are also Gaussian vectors. A common mistake is to 
interpret Theorem T2 as follows: if two Gaussian vectors Y and Z are un­
correlated, they are independent. This is wrong in general, as Exercise E4 will 
show. In the statement of Theorem T2, it is required that the "big" vector X 
obtained by concatenation of Yand Z be also Gaussian. Another way of 
stating this is: Z and Yare jointly Gaussian. 

E4 Exercise. Let Y and U be two independent random variables, with Y", 
. qo, \) and P(U = -I) = P(U = 1) = i. Let Z = UY. Show that Z "" %(0, I) 
and that Y and Z are uncorrelated. Show that Y and Z are not independent. 

PROOF OF THEOREM T2. Recall the notations of Section 2.2 of Chapter 3, in 
particular 

LXY = £[(X - mx)(Y - my)'] 

so that 

that is, 

(
fy 

fx = ° 
since Lyy = fy, Lzz = fz, Lxx = fx and LXY = 0, LyX = 0, according to the 
hypothesis of uncorrelation. Hence, for all u = (v', w')' = (VI"'" Vk' WI"'" 

WI)' E IRn, 

that is, 

<Pr,z(V I "", Vk ; WI"'" WI) = <py(v I ,·,·, vd<Pz(w" ... , wd· 
But this is a necessary and sufficient condition of independence of Y and Z 
(Chapter 3, Section 3.2). 0 

An immediate corollary of Theorem T2 is that an n-dimensional random 
vector X = (X I"'" X.) is a standard Gaussian vector if and only if the 
random variables X I' ... , X n are iid and Xi'" .¥ (0, 1). 

2.2. Probability Density of a Nondegenerate Gaussian Vector 

A Gaussian vector X is said to be nondegenerate ifits covariance matrix fx is 
positive. In other words, it is nonnegative, that is, 
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(UE IW), (12a) 

and moreover (positivity), 

u'rxu = o=>u = O. (l2b) 

Recall that property (12a) is shared by all covariance matrices. Also recall 
that any covariance matrix is symmetric. From Algebra it is known that a 
strictly positive symmetric matrix r is invertible and can be put into the form 

r=A·A' ( 13) 

where A is an invertible matrix of the same dimension as r. Note that such a 
decomposition is not unique. 

Now let X be a nondegenerate Gaussian vector with mean m and covariance 
matrix r. It then admits the probability density 

(14) 

PROOF OF EQ. (14). Consider the vector 

Z = A-I. (X - m) (15) 

where A is any n x n invertible matrix such that r = A . A'. Clearly Z is a 
Gaussian vector. Indeed, any affine combination of its components is also an 
affine combination of the components of X and is therefore a Gaussian 
random variable. We have 

{~:: ~-lrcA-l)' = A- 1AA'(A-1 ), = I 

where I is the n x n identity matrix. Therefore, 

n 
A.. ( ) - n -(1/2)"2 
'l'Z Ul'"'' Un - e J. 

j=1 

In view of Eq. (71) of Chapter 3, 

A.. ( ) - A.. (0 0 0 0) _ -(1/2)"' V'Zj Uj - 'f'Z , ... , ,Uj , , ... , - e J, 

that is, Zj -,AI' (0, 1). Moreover, the random variables Zj (1 ",;;, j ",;;, n) are 
independent since 

The density.f of Z is therefore 

_ ~l~ -(\ /2) i::t 
iZ(ZI"",Zn) - e~, . 

(2nt12 j 

The density of X is obtained by Eq. (8): 
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f· (x) = ~_~l~. e-(1,2)(A l(x-m)],A '(X-m)ldet A -II . 
. x (2n)"!2 

The result follows by observing that (A-I(x ~ m)),A-I(x ~ m) = (x ~ m)' 
r-I (x - m) and det A -I = (det 1)-1/2. 0 

ES Exercise (Two-Dimensional Gaussian Vector). Let X = (X l' X 2) be a two 
dimensional Gaussian vector with mean m = 0 E [R2 and with the covariance 
matrix 

What is the relation between 0'12 and 0'21? Give a necessary and sufficient 
condition for r to be nondegenerate in terms of the correlation coefficient p. 
Find a 2 x 2 invertible matrix A such that Z = A-I X is a standard two­
dimensional Gaussian vector, i.e., Z = (ZI' 2 2 ), ZI independent of Z2, and ZI, 
22 ~ .1' (0, I). 

Remark. Let fix 1. x 2 ) be the probability density of the two-dimensional 
Gaussian vector of Exercise E5. The shape of the equidensity lines fix 1. X2) = I, 
is givcn by Fig. 4. 

Figure 4. An ellipse of equidensity of a 2-dimensional Gaussian p.d.f. 

E6 Exercise (The Degenerate Case). Consider an n-dimensional Gaussian 
vector X with mean m = 0 and a possibly degenerate covariance matrix r. 
Use the decompositions (67) and (68) of Section 2.2. Chapter 3 to prove that 
if the rank of r is r ~ n, there exists a r-dimensional standard Gaussian vector 
Y and an (n x r) matrix D of rank r, such that X = D Y. Thus, a degenerate 
n-dimensional vector X lies in a hyperplane n of [R •. The dimension of n is 
equal to the rank of the covariance matrix. 

2.3. Moments of a Centered Gaussian Vector 

We shall now give without proof two useful formulas concerning the moments 
of a centered (O-mean) n-dimensional Gaussian vector X = (X 1 •••• ' X.) with 
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the covariance matrix r = {od. First, we have 

L (1hh(1hi4'" (1hk-,hk (16) 
(j' ... ·'hk) 

it <i21 ···.j2k-1 <ilk 

where the summation extends over all permutations (jl"" ,hk) of {il'"'' i2d 
such that jl < h, ... , hk-l <hk' There are 1·3·5 ... (2k - 1) terms in the 
right-hand side of Eq. (16). The indices i1 , ... , i2k are in {I, ... , n} and they 
may occur with repetitions. A few examples will help understand how to use 
Eq. (16): 

E[XiXjXkXa = (1ij(1kl + (1ik(1jl + (1i/(1jk 

E[X?k] = 1·3 .... (2k - 1)(1?k. 

The computations leading to Eq. (16) are tedious and use Eq. (73) of Chapter 
3. They would also show that any odd moment of a centered Gaussian vector 
is null, that is, 

(17) 

E7 Exercise. Let X - ..!V (0,1) and let (Xl 'X2 ) be a two-dimensional standard 
Gaussian vector. Compute E[x?xD and E[X4]. 

2.4. Random Variables Related to Gaussian Vectors 

Empirical Mean and Empirical Variance of a Gaussian Sample. A Gaussian 
sample of size n is, by definition, a random vector X = (Xl"'" Xn) where the 
X;'s are iid with the common distribution ..!V(m, (12). Any random variable of 
the form f(X l,"" Xn) where f: ~n -+ ~, is called a statistic of the sample 
(X l" .. , Xn). The two main statistics are the empirical mean 

and the empirical variance 

- X +,,·+X X = 1 n 

n 

1 n _ 

S2 = -- L (Xi - x)2 
n - 1 i=1 

(18) 

(19) 
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T3 Theorem. Ina Gaussian sample (X l' ... , X n) of mean m and variance (J2, 
the empirical mean X and the empirical variance S2 are independent, and 
[(II - 1 )/(J2]S2 has a chi-square distribution with n - 1 degrees of freedom. 

PROOF OF THEOREM T3. Take the case of m = 0, (J2 = 1. We shall rely on the 
following lemma of Linear Algebra. which we admit without proof. There 
exists a n x n unitary matrix C such that if x = (x l' ...• xnJ' E [Rn and y = 

(Y l' ...• Yn)' E [Rn are related by 

then 

where 

Y = Cx. 

!x= ~.(Xl + ... + Xn) 

1 n 
.~.2 = __ L (x; - X)2. 

n - 1 ;~1 

(20) 

(21) 

(22) 

Consider the random vector Y = CX where C is as in the above lemma. It is 
a Gaussian vector since X is Gaussian. It is, moreover, a standard Gaussian 
vector since 

ry = cryc = CIC = CC = I 

where we have used the fact that the transpose of a unitary matrix is also its 
inverse. According to Eqs. (21) and (22). 

{
X = Yn/Jn 

S2 = __ I __ (yI2 + ... + Y,.~I)' 
n-l 

The independence of X and S2 follows from the independence of Yn and 
I Y1 ..... Yn - I ). The rahdom variable (n - 1)S2 is the sum of n - 1 squared 
independent standard Gaussian random variables and is therefore chi-square 
distributed, with n - 1 degrees of freedom (see E3). 

The general case follows from the case m = 0, (J2 = 1 by considering the stan­
dard Gaussian random variables X; = (X; - m)/(J (l ~ i ~ n) and by observing 
that)(' = (l/n)L7=1 X; = (X - m)/(J and (S')2 = (n - 1)-1 L7=1 (X; - X')Z = 
S2/(J2 D 

Slali.~rics of Fisher, Snedecor. and Student. Let Sl and Si be the empirical 
variances of two independent Gaussian samples of size n1 and nz• respectively, 
with the same variance (Jf = (Ji = (J2 and with possibly different means. 

The Fisher statistic is. by definition. the random variable 
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sf 
F=2' 

S2 

The two following exercises will give the probability density of F. 

E8 Exercise. Let X and Y be two independent random variables with 

Y '" X~. 

139 

(23) 

Compute the probability density of(Z, Y) where Z = X/Yo Deduce from this 
result the probability density of Z. 

A Fisher random variable of parameters Cl > 0 and 13 > 0, is a random 
variable with the probability density 

(24) 

r (Cl +2 13) Cl al2 131m 
X~/2-' 

f(x) = r (~) r (i) --c( f3::-+-ClX-)<;---",+C7."{I)=/2 
(x;. 0) 

E9 Exercise. Show that F given by Eq. (23) is a Fisher random variable with 
parameters n, - 1 and n 2 - 1. 

A Fisher-Snedecor random variable of parameters Cl > 0 and 13 > 0 is a 
random variable with the probability density 

(25) 

(x;' 0) 

EIO Exercise. For the random variable F being defined by Eq. (23) show that 
FI/2 = J(n, - 1)/(n2 - 1)(ISII/IS21) is a Fisher-Snedecor random variable 
with parameters nl - I and n2 - I. 

A Student random variable with the parameter Cl > 0 is a random variable 
with the probability density 

( :x + I) 
r -2- ( x2)-<a+I'12 

f(x) = 1+-

(Cln)1!2r(~) ex 

(26) 

- -----------
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The Student statistic T of a Gaussian sample of size n ~ 2 defined by 

n- 112 (X - m) 
T =------. (27) 

lSI 

E II Exercise. Show that T is a Student random variable with parameter n - I. 

Remark. The Cauchy density 

1-- 1 1 I 

I fIx) = - -- J 
n 1 + x 2 

L _______ _ 

is obtained by setting ::J. = 1 in Eq. (26). Its shape is shown in Fig. 5. 

[(x) 

1T 

x 

Figure 5. The Cauchy density. 

3. Poisson Processes 

3.1. Homogeneous Poisson Processes Over the Positive 
Half Line 

(28) 

Let us consider a sequence of positive real valued random variables (Tn, 11 ~ 1) 
that is strictly increasing: 

(29) 

The random variable T. can be thought of as the arrival time of the 11th 
customer requiring service in a given service system (freeway toll, movie 
theater, etc). The random variable To is conventionally taken to be O. The 
interarrival sequence associated to (Tn, n ;-;, 1) is (5n, 11 ~ 1) where 

(11 ~ 0). (30) 

The CO u 111 illq process associated with (Tn' 11 ;-;, 1) is the family of N-valued 
random variables (N(t), t ;-;, 0) defined by 

N(t) = n (11 ;-;, 0). (31) 

Thus, N (t) is the number of arrivals during the time interval (0, t]. Figure 6 
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summarizes these definitions. The sequence (T", n ;::: 1) is also called a "point 
process" over IR+, and T" is the nth random "point" of the point process. 

N(t) 

4 .--- ... 
3 , 
2 ~ 

I • I 
I I 

o TI T2 T3 T4 
~ 

SI S2 S3 S4 

Figure 6. A point process and its associated counting process. 

D4 Definition. The point process (T", n ~ 1) over R+ is called a homogeneous 
Poisson process of intensity ). > 0 iff its associated counting process (NU), t ~ 0) 
verifies the following: 

(i) for all a, b E IR+ such that a ~ b, N(b) - N(a) is a Poisson random variable 
of mean (b - a)). i.e., 

P(N(b) - N(a) = k) = e-fb-ap.<b - 4i..k 

k! 
E-(-l---------- -----~-~ 

(kE Nl; (32) 

(ii) (N(tl, t ~ 0) has independent increments, that is, for all 0 ~ t I ~ t 2 ~ .•. ~ 

tm , the random variables N(t 2 ) - N(td, N(t3) - N(t2),···, N(tm) - N(tm-l) 
are independent. 

If(T",n;::: 1) is a Poisson process with the intensity;' > 0, the distribution 
of T,,(n ~ 1) is easily obtained from the following remark: 

T" ~ t.-N(t) ~ n. 

Therefore, if we denote by FTn the cumulative distribution function of T", 

FTJt) = P(T" ~ t) = P(N(t) ~ n) = 1 - P(N(t) ~ n - 1), 

that is, in view of (i) of Definition 04, 

n-l -;'t (i..t)k 
FT (t) = I - L e -

n k=O k! 
(n ~ 1, t ~ 0). 

The probability density fTn of T" is obtained by differentiation of FT .. : 

{

• -;'t U.t)n-I if t ~ O. 
frJt) = I.e (; - I)! 

o otherwise 

(33) 

(34) 
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In particular, for n = I, 

(t ~ 0). (35) 

In otherwords, TI is an exponential random variable with mean I/X. 
If we take a closer look at expression (34), we recognize a familiar density 

probability: the gamma density with parameters IX = nand (J = A [see Eq. (8) 
of Chapter 3]. 

E 12 Exercise. Let X I, ... , X n be iid random variables with Xi ~ 8(A). Show 
that 

We have 

(36) 

Exercise E 12 and Eq. (36) tell us that everything is "just as if" SI' ... , Sn were 
iid with Si ~ #(1). In fact, this is true, as shown in the following exercises. 

E13 Exercise. Let C7;" n ~ 1) be a homogeneous Poisson process over IR+ with 
intensity I. > o. Compute the pd of (T1 , ... , 1k) for any kEN+. Apply the 
formula of smooth change of variables to obtain the pd of (S1' ... ' Sd and 
conclude that S1' ... , Sk are iid with Si ~ #(1), as announced. 

E14 Exercise. Let (T", n ~ 1) be a sequence of nonnegative real valued random 
variables such that 0 < TI :( T2 :( T) :( ... and define for each tE IR+, N(t) to 
be the cardinality of the set {n E N + I Tn E (0, tJ }. Suppose that (i) and (ii) of 
Definition 04 are satisfied. Show that for almost all w, there is no finite 
accumulation point of the sequence (T,,(w), n ~ 1), and that (T,,(w), n ~ 1) is 
a strictly increasing sequence. 

Exercise E 14 tells us that the strict inequality signs in (29) were superfluous 
in thc definition of a homogeneous Poisson process. 

3.2. Nonhomogeneous Poisson Process Over the Positive 
Half Line 

D5 Definition. Let (T", n ~ 1) be a point process over IR+ and let ;.: IR+ -+ IR 
be a nonnegative function such that 

I 

J },(s) ds < 'Xi (t ~ 0). (37) 
o 

Ifthe counting process (N(t), t ~ 0) associated with (T", n ~ 1) verifies 
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(i) for all a, bE IR+ such that a :::;; b, N(b) - N(a) is a Poisson random variable 
of mean f: A(S) ds, and 

(ii) (N(t), t ~ 0) has independent increments [see (ii) of D4], 

then (T,., n ~ 1) is called a nonhomogeneous Poisson process with intensity 
A( t). 

E15 Exercise. What is the probability density of T,. when (T,., n ~ 1) is a 
Poisson process with intensity A(t)? What is the distribution function of TI? 
Show that since TI < 00, necessarily f~ A(s)ds = 00. 

E16 Exercise (Campbell's Formula). Let (T,., n ~ 1) be a Poisson process with 
intensity A{t). Let (Xno n ~ 1) be an iid sequence with P(X1 :::;; x) = F(x). Sup­
pose that (T,., n ~ 1) and (Xn , n ~ 1) are independent. Show that for any 
nonnegative bounded function 9 : IR x IR ~ IR 

E[n~l g(T,.,Xn)I{Tn':;,)] = l E[g(s,Xd]A(S)ds. (38) 

(You may suppose that Xl admits a pd although the formula is true without 
this assumption.) 

E17 Exercise (M/G/(X) Service System). The notation "M/G/(X)" symbolizes a 
service system in which the arrival times of customers (T,., n ~ 1) form a homo­
geneous Poisson process with intensity A > 0, and the time spent by customer 
# n (arriving at T,.) is a random variable X n • The sequences (T,., n ~ 1) and 
(Xn' n ~ 1) are supposed to be independent, and (Xn' n ~ 1) is an iid sequence 
with P(Xn :::;; x) = F(x) (Fig. 7). 

Let X(t) be the number of customers present in the system at time t > 0, with 
the assumption that the system is empty at time t = O. Compute E[X(t)] using 
the result of Exercise E16. Using the formula E[X] = f~ [1 - G(x)] dx valid 
for any nonnegative random variable X with P(X :::;; x) = G(x), show that 

lim E[X(t)] = AE[XI ]. 

'joo 

What is the explicit form of E[X(t)] when Xl '" tff(J-l)? 

XU) 

o 

Figure 7. Evolution ofthe queueing process in a M/G/oo system. 
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3.3. Homogeneous Poisson Processes on the Plane 

A point process on the plane is a probabilistic model for random points 
scattered in the plane. It is described by a collection of random variables 
: N(A); A E fJll} indexed by the borelian sets of 1R1, where N(A) is the (random) 
number of (random) points in A. It will be assumed that if A is bounded, i.e., 
if it is contained in a rectangle, then N(A, w) is finite for P-almost all w. Also, 
there are no "multiple points," that is, for all a E [R2, N( {a}) = 0 or 1, P-almost 
surely, where {a} is the set consisting of the element a only. 

It is then said that "N is a simple point process." 

06 Definition. A homogeneous Poisson process on [R2 with intensity;. > 0 is 
a simple point process where in addition: 

(0:) For any finite sequence AI' ... , An of disjoint bounded Borel sets of [Rl, 

the random variables N(Ad, ... , N(An) are independent. 
(/1) For any bounded borelian set A of [R2, 

(kEN) (39) 

where S(A) is the area of A. 

E18 Exercise. Let N be a homogeneous point process on [R2 with intensity 
I, and let ;.: [R+ --> [R be a nonnegative continuous function such that 
J~ ;.(x) dx < ex; for all t E IR+. Define the random variable N(t) for each t E IR+ 
as the number of points of the process N in the set A, = {(X,Y)EIR 2 )XE(O,t], 
o ~ y ~ ).(x)} (Fig. 8). Show that (N(t), t E [R+) verifies (i') and (ii') of Definition 
D5 of a nonhomogeneous Poisson process over the positive half-line. 

y 

y '" X(x) 

x Here Nt(w) = 4 

Figure 8. Points below a curve. 

The Poisson Approximation. Consider the square SD centered on 0, with sides 
parallel to the coordinate axes and of size D (Fig. 9). Let K be, for the time 
being. a fixed integer, and consider K independent couples of random vari-
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Figure 9 

abIes (Xi' Yi), i = 1, ... , K such that the point Mi = (Xi' Yi) is uniformly 
distributed on SD' Le., 

S(A) 
P«Xi , Yi) E A) = D2 (40) 

This models K points independently thrown at random uniformly onto the 
square SD' 

Consider now a sequence of disjoint bounded sets AI"'" An of /R 2 all 
contained in SD' The joint distribution of N(Ad, ... , N(An} (the respective 
number of points in AI, ... , An) is computed as follows: 

P(N(A 1 } = kl' ... , N(An} = kn} = P(N(Ao} = ko, ... , N(An} = kn} 

where Ao = SD - Ij=l Aj and ko = K - Ij=l kj' and since each point Mi has 
the probability Pi = [S(Ai)]/D2 of falling in Ai' we obtain the multinomial 
distribution of size (K, n) [see Chapter 2, Section 1.1 and Eq. (11)]. 

K' 
P(N(Ad = k1 , ... , N(An} = kn) = ko! .. : kn!P~o ... p!". (41) 

E19 Exercise. Show that if D and K tend simultaneously toward 00, in such 
a manner that K/D2 = A. > 0 for a fixed A. > 0, then the right-hand side of 
Eq. (41) tends to 

(42) 

Since Eq. (42) is the distribution of N(Ad, ... , N(An) when N is a homo­
geneous Poisson process over jR2 of intensity A. > 0, we have obtained an 
intuitive interpretation for the statistical distribution of the points of a homo­
geneous Poisson process. 

The above result can be used as follows: if you have a very large area 
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(say SD) on which many points (say K) have been thrown independently at 
random uniformly into this area, and if you want to compute the quantity 

when k) + ... + kn is much smaller than K, and when AI, ... , An are far from 
the boundaries of SD' then you can use the "Poisson approximation" (42). 

4. Gaussian Stochastic Processes 

4.1. Stochastic Processes and Their Laws 

The counting process (N(t), t ~ 0) of a point process (7;., n ~ 1) is an example 
of stochastic process, a notion that will now be introduced more formally. 

D7 Definition. A (real valued) stochastic process defined on (0, %", P) is a 
family [X(t), t E lr] of (real valued) random variables on CO, %", P) where the 
index set lr is an interval of R 

Thus, for each t E lr, W ---+ X(t, w) is a random variable. Another way of 
looking at the function of two arguments (t, w) ---+ X(t,w) consists of observing 
that for each WE 0, t ---+ X (t, w) is a (real valued) function defined on lr. When 
adopting the latter point of view, a stochastic process is also called a random 
function. 

If for P-almost all WE 0 the function t ---+ X(t, w) is continuous on lr, the 
stochastic process (X(t), t E lr) is said to be continuous. Similar notions are 
available, such as right-continuous stochastic process, increasing stochastic 
process, etc. For instance, the counting process of a point process over IR+ is 
a right-continuous increasing stochastic process. 

The statistical behavior of a stochastic process (X(t), t E lr) is described 
by its law. To give the law of such a stochastic process consists in giving 
for all n E N +, and all t 1, ... , t. E lr the distribution of the random vector 
(X (t I)'" ., X (t.)). Recall that the distribution of a random vector is equiva­
lently described by its cumulative distribution function, its characteristic 
function, or its probability density when such density exists. For instance, 
the law of the counting process (N(t), t E IR+) associated with a homogeneous 
Poisson process over IR+ with intensity A. > 0 is described by the data 

P(N(td = k 1 , ... , N(tn) = kn) 

(At )k, pet - t W2 - k , (A(t - t »kn-kn , = e-.l.r, _1_ . 2 1 ... n n-I 

k)! (k z - kd! (k. - kn-tl! 

forallt).tz, ... ,t.EIR+ suchthatt) ~ t2 ~ ... ~ t.andforallk1,kz, .. ·,k.EN 
such that k) ~ k2 ~ ... ~ kn • 



4. Gaussian Stochastic Processes 147 

4.2. Gaussian Stochastic Processes 

The most famous example of continuous stochastic process is the Wiener 
process or Brownian motion first studied by Einstein in view of modeling 
diffusion phenomena. 

D8 Definition. A real valued continuous stochastic process (W(t). t E ~+) is 
called a Wiener process if W(O) = 0, P-as and if for all t l' t 2, ... , tn E ~+ such 
that t1 ~ t2 ~ ... ~ tn' the random variables W(t 2 ) - W(td, ... , W(t.)­
W(t._ 1 ) are Gaussian and independent, with mean 0 and respective variances 
t z - t 1 , ... , tn - tn- 1 • 

The probability density of (W(td, W(t 2 ) - W(td, ... , W(t.) - W(tn-d) 
where 0 < t1 < ... < tn is therefore 

1 {I (xi x~ x; )} --z exp -- - + --- + ". + . 
(2n)n/ 2 t1 t2 - t1 tn - tn- 1 

E20 Exercise. Show that the probability density of (W(td, ... , W(tn» where 
o < t 1 < ... < t. is 

1 {I (xi (X2 - xdz (x. - x._dZ )} -----n)2exp -- - + + ... + . 
(2n) 2 t1 t 2 -t1 tn-t.-1 

(43) 

The Wiener process is a particular case of Gaussian process. 

D9 Definition. A real valued stochastic process (X(t), t E lr) is called Gaussian 
if for all t 1, ... , tn E lr, the random vector (X (t 1), ... , X (tn» is Gaussian. 

Therefore, if we define 

mx(t) = E[X(t)J 

rx(t, s) = E[(X(t) - mx(t»(X(s) - mx(s))], 

(44) 

(45) 

A Gaussian processes is very special in many respects. For instance, its law 
is entirely described by its mean function mx : lr --+ ~ and its autocorrelation 
function rx : lr x 1" --+ IR given by Eqs. (44) and (45), respectively. For most 
stochastic processes the data mx and rx are not sufficient to write down their 
law. 

In Signal theory, Gaussian processes (called "Gaussian signals") are appre­
ciated because if they serve as inputs into a linear filter, the outputs are also 
Gaussian signals. [The definition of a linear filter and the stability property 
just mentioned are the object of one of the illustrations of Chapter 5.J 
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Illustration 7. An Introduction to Bayesian 
Decision Theory: Tests of 
Gaussian Hypotheses 

Noisy Distance Measurements. Telemetry is the art of measuring the distance 
between you and inaccessible objects. There are many ways of perfonning 
such measurements depending on the available technology and the medium 
between you and the target. Let us consider sonar telemetry. The basic 
principle of a distance measurement underwater is the following. 

A sonar emits an acoustic pulse and waits for the return of the echo. 
Dividing the time of return by twice the speed of acoustic waves in the water 
yields the distance from the emitter (the sonar) to the target. Figure to depicts 
an ideal situation: first, the echo looks exactly like the original pulse (i.e., there 
is no distorsion), and second, the ambient noise of the sea is null. 

o 

/ Emitted bip 

-aCt) 

Echo (delayed bip) 

/ 
""'- a( t - T) 

·~-----------T----------~ 

Figure 10. The emitted pulse and its return. 

Time 

For the time being, it will be assumed that the emitted bip returns to the 
sonar unaltered (this is grossly unrealistic, but we shall provide means of 
treating more realistic situations later). However, the ambient noise will be 
taken into consideration. 

Denoting ((J(t), t E [0, a]) as the emitted bip and T as the echo return time, 
the received signal takes the form 

X(t) = (J(t - T) + B(t) (t ~ 0) (47) 

where B(t) is for each t a real valued random variable with mean O. Here we 
have implicitly assumed that the noise is additive. 

The received waveform will appear as in Fig. II. The problem is to decide 
where the return pulse is. This decision process must be performed auto­
matically. The corresponding signal processing operation (extracting a return 
time) is performed in several steps. First, as in virtually all signal processors, 
the received signal is reduced to a form suitable for automatic computations: 
it must be sampled, i.e., (X(t), t ~ 0) is reduced to a sequence (Xn , n ~ 1) of 
"samples," where Xn is the sample at time n~, I/~ being the sample rate: 

Xn = X(nM (n ~ I). 
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Figure 1 \. A typical waveform at the receiver. 

• • 
Figure 12. The sampled pulse. 

The time extension a of the emitted bip can be so chosen that a = LA for some 
integer L. The pulse samples (fn = (f(nA) are therefore null for n > L (Fig. 12). 
It will be supposed that the return time Tis of the form iA where i is unknown. 
This hypothesis is innocuous if the energy of the bip contained in an interval 
of length A is small, as is always the case. 

Defining Bn = B(nA) for n ~ 1, the sampled data is therefore 

XI =BI 

X 2 = B2 

X;_I = B;_I 

X; = B; + (fo 

returning bip 

X N = BN • 

Here we stop at N with N = M + L, which means that we are interested 
in targets at a distance such that the return time of the echo is less than M A 
(Fig. 13). 

The mathematical situation after sampling is described by a random vector 
X = (X 1'" .• X N)' which is the sum of another random vector B = (B 1 ,· •• , BN ) 
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) ~ 
I I 

O~------------~~~I~~ 
: MANA=MA+LA 
I ; 
141.-----Explored region-------+-i>I 

Figure 13 

and of a "deterministic" vector mi = (0,0, ... ,0,0"0"'" O"v 0, ... ,0) where 0"0 
is in the ith position. Thus, 

x = mi + B. (48) 

Equality (48) is valid if the return time is ill. But the return time is not known, 
i.e., i is not known. Since it is not known and since any situation can occur 
a priori, it is wise to consider that the return time is random, or equivalently, 
that i is the actual value of a random variable E> with range {I, 2, ... , M}. 

The observation vector X is therefore of the form 

X=me+B (49) 

where peE> = i) = I/M (i = 1, ... ,M) (the target could be anywhere in the 
region explored). Our problem is to extract an estimate e of E> based on 
the observation X and on statistical information concerning the "noise" B. 
It is often realistic to model the ambient noise (B(t), t ;;::: 0) by assuming that 
the sampled version of it, i.e., vector B, is a Gaussian vector with mean 0 and 
covariance matrix 0"2 I where I is the N x N identity matrix. This means that 
the samples B1 , •.. , BN are iid with common distribution %(0,0"2). Such a 
noise is called an additive white Gaussian noise. 

The random elements E> and B are independent because the position of 
the target and the ambient sea noise are independent. Therefore we have 

P(X EAIE> = i) = PCB + meEAIE> = i) = PCB + miE A) 

i.e., 

P(X E AlE> = i) = (2n-:2t IZ l exp { - 2:2 Ilx - mdl Z} dx. 

Recall for later reference, that 
1 

P(E>=i)=-. 
M 

(50) 

(51) 

Testing Bayesian Hypotheses. The telemetry problem has now been trans­
formed into a probabilistic problem for which a theory is available, namely 
the theory of bayesian tests of hypotheses. As we are going to present it, the 
theory of bayesian tests of hypotheses has a range of application extending 
beyond the telemetry problem, and therefore the objects such as X and E> will 
be of a slightly more general form than what is needed to accommodate the 
special situation of interest to us right now. 
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The framework is as follows. There are two random elements, X and 0. 
The random variable 0 is discrete and takes its values in {I, 2, ... , M}, called 
the space of hypotheses (or "states of Nature"). When 0 = i, one says that 
hypothesis i is in force (or that Nature is in state 0. The state of Nature 0 is 
not directly observed. Instead, a random vector X of dimension N, called the 
observation, is divulged, and on the basis of this information, the statistician 
(you) must guess in which state nature is. More explicitly, the goddess of 
chance draws an OJ, and as a consequence, 0(OJ) and X(OJ) are determined. 
You are informed about the value of X(OJ) and you must make your guess 
8(OJ) in terms of X (OJ), i.e., 8(w) = s(X(OJ)) where s is a function from IRn into 
{l, ... ,M}. 

Of course, you cannot expect to guess correctly all the time, unless X 
contains all the information about 0. If 0(w) =I 8(m), you make a mistake. 
Since you are generally required to perform this guess work over and over, 
the important parameter is the probability of error 

(52) 

Now PE depends on the guessing strategy, i.e., the mapping s : IRn -> {I, ... , M}. 
This dependence will be taken into account in the notation. Thus, 

(53) 

One seeks the best strategy, i.e., the strategy s* that minimizes PEeS). The best 
strategy s* is called the optimal Bayesian test of the hypotheses {1, ... , M} 
based on the observation of X. 

If one is to compute a quantity such as P(0 =I seX)) for a given strategy s, 
one must know the joint probability law of the pair (0, X), which is described 
in the following terms. There exists a set of probability densities on 1Rn, 
{fJx), 1 ~ i ~ M}, and a probability distribution n = (n(i), 1 ~ i ~ M) over 
{t, ... , M} such that 

P(0 = i) = n(i) (1~i~M) (54) 

and 

P(X EAI0 = i) = J h(x)dx (55) 
A 

The function h is the pd of observation X when hypothesis i is in force. The 
law of (8, X) is determined by Eqs. (54) and (55) since, by the rule of exhaustive 
and incompatible causes, 

P(X E A, 8 = i) = n(i) J hex) dx. 
A 

In the telemetry example, we have [Eqs. (50) and (51)] 

I 
neil = " 

M 
1 {I 2} h(x) = ----exp --llx - m·11 , (2n0'2 tl2 20'2 ,. (56) 
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The computation of PEtS), the probability of error associated with strategy s, 
is now feasible. Before performing it, it is useful to observe that any function s 
from [R;n into {I, 2, ... , M} is bijectively associated with a partition {A I"'" AM} 
of [R;n. Indeed, if s is such a function, it suffices to set Ai = {x E [R;/lls(x) = i} to 
obtain such a partition, and if the partition is given, it suffices to define s by 
sIx) = i if x E Ai to obtain a strategy. 

We shall work with the representation {A I'" . , AM} of a strategy s. By the 
theorem of exhaustive and incompatible causes, 

M M 
P(0 "* 0) = I P(0 "* 010 = i)P(0 = i) = I n(i)P(0 "* il0 = i). 

i=1 i=l 

Since strategy s = i A I"'" AM} decides for i if and only if X E Ai (i.e., sIX) = i), 

P(0"* il0 = i) = P(XEAd0 = i) = 1 - P(XEA iI0 = i) 

Therefore, 
~1 

PE = 1 - I PIX E Ail0 = i)n(i). (57) 
i=i 

But, from Eq. (55), P(X E Ail0 = i) = SA);(X) dx. Therefore, 

M 

Pf = 1- I n(i) S.t;(x)dx, 
;=:1 A, 

equivalently, 

(58) 

where IA(x) = I if XE A, =0 if x1: A. 
Recall our goal of minimizing PF. as a function of the partition { A I , ... , AM}' 

From Eq. (58) this amounts to maximizing 

We ~hall see that we arc fortunate enough to be able to find a partition that 
maximizes Ii'!I I A,(x)n(i)t;(x) for each x E [R;n, and this partition will do. 

Let us see how this partition {Ai, ... ,Aif} is constructed. First we show 
that 

Ai = {xE[R;/lln(I).f~(x) ~ max(n(2)f2(X), ... ,n(M).f:U(x»)}. (59) 

More precisely, if a strategy s is such that S-I (1) = A 1 and if A 1 is not identical 
to Ai, one can find another strategy s with s-I(I) = Ai which is at least as 
qood as s. 

Indeed, suppose that there exists U E A I' U 1: A 1'- Since U If Ai, there exists 
io "* 1 such that n(io ).t;o(u) > n(1 )fl (u). Clearly, the strategy s obtained from 
s = {A" ... ,AM} by transporting u from Al to Aio ' i.e., s= {AI - {u}, 
A 2 , ... , Ai" + {u}, AM}' is at least as good as s. Therefore, we can assume that 
for an optimal strategy s*, Ai is given by Eq. (59). 
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The same line of argument will show that we may assume that 

and 

More generally, the A['s are defined recursively by 

At = {xElRnlx¢A!u"'uAt_1 and 

n(i).t;(x) ~ max(n(i + 1).t;+1 (x), ... , n(M)fM(X»}. 

This amounts to 

At = {xElRnln(i).t;(x) > max (n(j)jj(x), 

n(i}t;(x)) ~ max (n(j)jj(x»}. 
(60) 

j=I ..... i-l 

j=i+l, .... M 

One can also say that the optimal decision region in favor of hypothesis i is 
the set of x E IRn such that the quantity n(i).t;(x) is strictly larger than all 
quantities n(j)jj(x), for all j i= i, 1 ,;; j ,;; M. This is not quite what Eq. (60) 
says, but it is not a problem if the set Cj of x E IRn such that n(i).t;(x) = 
maxj =i+1 ..... M n(j)jj(x) is such that k.t;(x)dx = O. Such is the case in the 
telemetry problem to which we now return. 

Gaussian Hypotheses. In the telemetry problem n(i) = constant, so that the 
optimal strategy which is 

When XEAr decide for i (61a) 

reads 

If .t;(X) > jj(X) for all j i= i, decide for i. (61 b) 

Thus, for an observed random vector X, we have to find the index i that 
maximizes .t;(X), or any nondecreasing function g of .t;(X). Or equivalently, 
we have to find the index i that minimizes any non increasing function h of 
./;(X). 

In view of the special shape of .t;(x) given by Eq. (56), we see that the optimal 
decision rule reads 

for all j i= i, decide for i. (61c) 

Since IIX - mllz = IIXll z - 2m'X + "mllz, a further simplification is possible. 

If 2m;X - /lmi ll 2 > 2mjX - Ilmjllz for all j i= i, decide for i. 
(61d) 

Recall that mj = (O,O, ... ,O,O'o'O"'''''O'L'O, ... ,O) and therefore IImdl 2 = 
0'5 + ... + at does not depend on i. The decision rule is therefore 

If m;X > miX for all j i= i, decide for i. (62) 

A mathematician may be content with such a simple and elegant solution. 
But then we must think of the sonar operator, who either did not major in 
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mathematics or has a deep a version for computing scalar products of vectors 
of size exceeding 100. Here is what can be done to make this work easier. 

Shift register 
(~ ____________ ~A ______________ ~\ 

I'" XI 

m;'X 

Figure 14 

Consider the device pictured in Fig. 14. It consists of a "shift register" in 
which you stuff the vector X. The shift register contains L + 1 boxes, and at 
each click of a clock, the content of the register is shifted to the right. As time 
runs, the situation in the shift register evolves as follows (with L = 4): 

o o o o o 

o o o o 

o o o 

x, X, X" Xs X4 X3 Xl Xl 

X,v ... Xs X7 X6 Xs X4 X3 Xl Xl 

XN Xq X8 X7 X6 Xs X4 X3 X2 Xl 

0 0 0 XiV lXIV-II X IV - 2 X V - J ... Xl 

0 0 0 0 I XiV I XI\l-1 X \'-2 Xl 

0 0 0 0 () I XN XN - l ... Xl 
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Therefore, in Fig. 14, we have the situation at time (i + L)I1. 
The content of the K th from the right box of the register is multiplied by 

ITK - 1 , and all the results are summed up to yield 

(63) 

The output of the device of Fig. 14 at time (i + L)11 is therefore m;X. It can 
be presented to the sonar operator on a screen, on which the curve i ...... m;X 
will progressively shape itself. The maximum of this curve will directly give 
the distance to be measured if the "time" axis is correctly scaled in distance 
(Fig. 15). 

m;·X 

(Estima ted return 
time is fA) 

Figure 15. The processed waveform. 

Recall that the ITn's and Xn's are samples of (IT(t), t ~ 0) and (X (t), t ~ 0). In 
particular, 

ITOXj + ... + (JLXj+L = IT(O)X(il1) + ... + IT(LI1)X«i + L)I1). 

and we see that if 11 is very small, the right-hand side of the above equality is 
an approximation of 

a +~ 

J IT(t)X(il1 + t)dt = J IT(t)X(i11 + t)dt. 
o -oc 

(Recall that a = LI1 and that IT(t) is null outside [0, al) Letting 6(t) = IT( - t), 
we see that 

+~ +~ 

J IT(t)X(i11 + t)dt = f 6(t - il1)X(t)dt. 
-x 

The purpose of obtaining this particular form is the following: there exist 
devices known as homogeneous linear filters of impulse response (h(t), t E IR) 
that transform an "input" (X (t), t E IR) into an "output" (Y(t), t E IR) given by 

+" 
Y(t) = J h(t - s)X(s)ds. 

We now see that what the sonar operator sees is the output of the homo­
geneous linear filter of impulse response IT( - t) fed by the input (X (t), t E IR) 
and sampled at time il1. This particular filter is called the filter adapted to 
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aft), and it is a notion of central importance in Detection and Communications 
theory. 

In conclusion, we shall treat the more realistic case where the return signal 
is attenuated as a function of the distance. It is not difficult to see that it suffices 
to replace mj = (0, ... ,0,0'0' ... ,a L> 0, ... ,0) by mj = h(i)mj where h(i) is a scalar 
representing the attenuation factor. If attenuation is inversely proportional to 
distance, then h(i) = ali for some constant a. The decision rule (62) must then 
be replaced by if m;X - t IImj l1 2 > m] X - !IImjl12 for all j # i, decide i. But 
IImj l1 2 = h(i)21ImdI 2 = h(i)2E" where E" is the energy of the emitted bip, i.e., 
0'6 + ... + ai. Therefore, the decision rule consists in comparing the quantities 
miX - !;h(i)E" (l :::;; i :::;; M). 

SOLUTIONS FOR CHAPTER 4 

E 1. Recall that F is an increasing function right continuous with left-hand limits, 
such that F( -'Xl) = 0, F( +co) = 1. We can therefore define the inverse function 

r!(y) = inf{xIF(x)? y} (YE(O, 1)). 

F(x) 

y --~ 

Definition of F-! (y) when F presents a step at y. 

We have F(P-!(y)) = yfor all YE(O, 1) and F(x).:; y=x':; p-I(y) for all x,yin 
the appropriate domains. Therefore, if 

YE(O, 1): P(Y':; y) = P(F(X)':; y) = PiX .:; P-I(y)) 

= F(P-!(y)) = y. 

Of course, P( Y .:; y) = 0 if y .:; 0, and = 1 if y ? 1. 

P(Y~y) 

y 
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E2. Since Y ~ 0, Fy(y) = P(Y':;; y) = 0 when y .:;; O. If y ~ 0, 

Fy(y) = p(X2.:;; y) = P(-JY.:;; X.:;; +JY) 

1 +.jY ~JY = -- S e- z2/2 dz = - S e-z2/2 dz. 
fo -.j~ 11: 0 

Therefore, for y > 0, 

dF ~ 1 f(y) = -(y) = -e-y/2 x _y-I/2. 
dy 11: 2 

E3. From E2, we see that Xl ~ y(I/2, 1/2). From Exercise E20 of Chapter 3, we get 
D~I Xl - y(n/2, 1/2) = X;· 

E4. P(Z .:;; x) = P(UY':;; x) = P(U = 1, Y':;; x) + P(U = -1, Y ~ -x) 

= P(U = l)P(Y':;; x) + P(U = -l)P(Y ~ -x) 

= tp(y.:;; x) + tp(y ~ -x) 

= P(Y':;; x) since P(Y':;; x) = P(Y ~ -x). 

E[YZ] = E[Uy2] = E[U]E[y2] = 0, i.e. Yand Z are uncorrelated. If Yand 
Z are independent, the vector (Y, Z) admits a probability density and thus Y + Z 
admits a probability density. Therefore, P(Y + Z = 0) should be null, a con­
tradiction of the fact that 

P(Y + Z = 0) = P(Y·(l + U) = 0) = P({Y = O} u {I + U = O}) 

= P(l + U = 0) = t. 

E5. 0"12 = O"ZI = E[X I X 2 ]. The nondegeneracy condition is detr = O"to"?­

O"12 O"ZI > 0, that is, ipi > 0 since p2 = O"rz/(O"fO"?)' The inverse ofr is 

and therefore, 

Let 

Then 

( XI X2)2 
0"1 - P 0"2 (Xl)2 1 1 

Q(x/> Xl) = 1 1 + - = Zl + Zl· 
- P 0"2 

Therefore, if we define 
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then (Z\, Z2) is a standard Gaussian vector. 

E6. With the notations of Eqs. (66), (67), and (68) of Chapter 3, Section 2.2, X = D Y 
where 

I 

0 0'\ 

D = c(~) 6, 

0 

0 () 

and I, is the (r x r) identity matrix. 

E7. E(X~Xn = £[X\X\X2 X 2 ] = 0'11 6 n + 6 12 0'\2 + 6 12 0'12 

E[X4] = 364 = 3. 

1::8. Ix. y(x. y) = j~(x)f;(y) 

(x? O,y? 0) 

(Z, Yi = y(X. Y) 

where 

U={x>o,y>oj. priX, y)EU) = 1. 

We have 

v = g(U) = {z > O,y > OJ, 

Therefore, 

1 t: (z, y) = - - - Z(n/2)-1 V[(m+nl/2 1-1 e-Y((1+z)/21 

£.1 2cm + n)12 rG)rC;) . (z> O,y > 0). 

The density of Z is obtained by integration of .f~. y(z, y) with respect to y. Since 

, 
S y[lm 1 n l;21 ~le-}'((\+zI/2Jdy 

o 

2In-mI12r(ll + m) 
21m +niI2 ,. 2 

= - - - - -- - J' u[lm+n):ll-1 e- U du = --~~ --~--
(I + z)lm+niil (J (1 + z)ln+mli2 ' 
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(z > 0). 

E9. With the notation of Exercise E8 (m/n)Z admits the density (n/m)fz((nlmlx), 
which is simply the Fisher density with parameters m and n. The result follows 
from this and Theorem T3. 

ElO. With the notations of Exercise E8, 

fyiz(x) = fz(x 2 )2x 

(change of variable x = fi). Therefore, 

(x:;" 0) 

2r(m;n) x.- I 

f,z(x) = r(~)r(~) (t + x 2 )(n+m)12 
(x> 0), 

and this is indeed a Fisher-Snedecor probability density. 

Ell. (lIJn)(X - m) ~ .>t"(O, \) and therefore its square is xi, (n - 1)IS12 - id-I' 
Therefore ITI- In-=tJ(xf/x;-d. By ElO, ITIJn"=I is therefore a Fisher­
Snedecor r.v. with parameters I and n - t. Since T has a symmetric distribution 
J~(t) = t1jTI(ltl), and this is the Student distribution with parameter n - I. 

E 12. From Eq. (32) of Chapter 3, if X - CIA), 

i, 
tPx(u) = -. -.' 

.-, - /U 

Therefore, since the X;'s are independent, 

" ( i, )" tPx,+ ... +x)u) = n tPx,(ul = -. -. . 
i=1 JI. -IU 

Now. from Eq. (34) of Chapter 3, [i/(;, - iu)]" is the characteristic function of 
a random variable with a gamma density with parameter ex = n, fJ = ; .. 

E13. Lettj, ... ,tk,hl, ... ,hkbesuchthat 

0< tl < tl + hi < t2 < t2 + h2 < ... < t k- I + hk- I < tk < tk + hk· 

Denote 

A = {T;E[ti + hJ,i = 1, .. . ,k}. 

Clearly 

A=:N(tj)=O.N(t,+hl)-N(t,)=l, ... ,N(tk_l+hH)-N(tk 1)=1, 

N(td - N(tk-' + hk ,) = 0, N(t. + hk ) - N(tk) :;" I}. 

Therefore, 
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P(A) = P(N(td = O)P(N(t l + hd - N(td = I) ... 

P(N(tk-1 + hk-d - N(td = O)P(N(tk + hk) - N(tk ) ~ I) 

But limk.,j.o(l - e-J.h·)/hk = 1, therefore 

11'm P(7;e[ti,ti + hJ,i = I, ... ,k) 'k -)., 
--':"~"'::":~-"':':::":'----'----':" = ), e ". 

h, ..... h.,j.O hi h2 • .. hk 

This is true under the condition 0 < tl < t2 < ... < tk . Otherwise the limit is 0 
since 0 < TI < ... < T,., P-as (give the complete argument for this). Finally, 

fT, ..... T.(tl' ... ,td = Ake-J.'"1 D(tl, .. ·,tk) 

where D = {(tl,· .. ,tdeRkIO < tl < ... < tk}. 

Now 

I.e., (SI, ... ,Sd = g(Tl , ... , T,.). Observing that g(D) = {(SI"",sk)eRkIO < 
SI""'O < Sk} and that IJit)1 = IJ9 ,(s)1 = I, the formula of smooth change of 
variables yields: 

k 

fs, .... S.(SI"", Sk) = n (Ae-J.S,), Si > 0 (I ~ i ~ k). 
;:1 

E14. Define 

A = {wI3k(w),I(w)EN+ 

A. = {wI3k(w), I(W)E N+ 

such that k(w) #- I(w) and T,.(w) = T,(w)} 

such that k(w) #- I(w) and T,.(w) = T,(w) ~ n}. 

Clearly A. c A and A. i A, so that P(A) = lim.too P(A.). It therefore suffices 
to prove P(A.) = ° for all n E N+. We will do the prooffor n = 1 to simplify the 
notations. 

Consider the event 

[ ( i + 1) ( i ). k ] Bk = N ~ - N 2k ~ 1, I = 0, ... , 2 - 1 (k ~ 1). 

Clearly Bk+1 ::::> Bk (k ~ 1) and Al c Bk (k ~ 1). Therefore, P(A I ) ~ P(Bk ) (k ~ I) 
and PIAl) ~ limkh P(Bk). Now 

2'-1 [ (i+ I) (i) ] -J.( i.)2' P(Bk ) = II P N ~ - N 2k ~ 1 = e 1 + 2k 
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and therefore limktro P(Bd = e~AeA = 1. Finally, 0 ~ peAl) ~ limktoo P(Bd = 0 
so that P(AJl = O. 

E15. FTJt) = P(T" ~ t) = P[N(t)? n] = t - P[N(t) ~ n - 1] 

n~l , U A(S)dSJ 
= 1 - f: exp {- I ).(s) dS} 0 , . 

k~O 0 k. 

So that, for t ? 0, n ? 1, 

(I' A(S) ds)n~l 
dF (t) {'} fT (t) = _T_n - = A(t) exp - I A(S) ds ~o __ -,--_ 

n dt 0 (n - I)! 

In particular, 

and 

If Tl < w P-as, then FT,( +w) = 1, i.e. I~ A(s)ds = w. 

E16. E[JI g(T",Xn)I{Tn<;t)] = .~l E[g(T",Xn )I{Tn<;'l]. 

Let fTn and IX n be the probability densities of T" and X •. Since T" and X. are inde­
pendent, the probability density of(T", X.) is fTn.X.(t, x) = fT.(t)fx.(x). Therefore, 

t 00 

E[g(T",X.)I(Tn <;tl] = J S g(s,x)frJs)fxJx)dsdx 
o 0 

t 

= J E[g(s,XdJfrJs)ds 
o 

since 

00 00 

E[g(s,Xd] = S g(s,x) fx,(x) dx = J y(s,x) fxJx)dx. 
o 0 

Therefore, 

E[.~ g(T",X.)l{Tn<;ll] =! E[g(S,XI)] (Jl fT.{S»)dS. 

But from E15, I frJt) = A(t). 
n;>-l 

E17. We have 

Therefore, applying the result of Exercise E16 with g(s, x) = l{s+X;"l' 

I 

E[X(t)] = I P(X ? t - sjA ds. 
o 

In the case where Xl - tff(/l), 
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A 
E[X(t)] = -(1 - e-~'). 

fJ. 

In the general case 

I I 

E[X(t)] = A S [I - F(t - s] ds = A f [I - F(u)] duo 
o 0 

But 

t 

S [I - F(u)] du ~ E[X I ]. 
o 

E 18. The solution follows directly from the definitions by observing that the area of 
At is Sb ).(s) ds. 

E19. Observe that ifi = 1, ... , n 

and that 

and therefore 

pfi [AS(AJ]k i [AS(AJJki 1 
k i ! k i ! (D 2 A)ki 

ko_ [1 _ f S(Ai)]K-f ki 
Po - L.... [j'I""" ,~, 

i=l 

lim p~o = e i'L SIA,I. 
Kt~) 

k i ! Kk, 

It therefore remains to prove that 

But since ko = K - L~=I ki' 

K! 

n 1 K' 
lim D--' = 1 
Ktoo i=1 Kki ko! 

K(K - 1) . .. (K - Lki + 1) 

KK ... K 

where the numerator contains L ki terms. The latter quantity obviously con­
verges to I as K i 00. 

E20. Define XI = W(td, X 2 = W(t 2 ) - W(td, ... , X. = W(t.) - I,V(tn-d and YI = 
W(t d, Y2 = W(t 2 ), ... , Y;. = W(t.). Therefore, 

The Jacobian determinant corresponding to the function g: (x I"'" x.) .... 
(x I' X I + X2,"" XI + ... + x.) is 1. Since g([R.) = [R., the densities Ix and Iy of 
(XI.···,X.) and (l;, ... , Y;.) are related by Iy(y) = IX[g-l(y)], i.e., 
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Convergences 

1. Almost-Sure Convergence 

1.1. The Borel-Cantelli Lemma 

The notion of almost-sure convergence of a sequence of random variables 
(Xn , n ~ I) toward a random variable X is a very natural one. 

Dl Definition. One says that X" ~ X (read "Xn converges to X almost surely 
when n goes to infinity") ifthere exists an event N of null probability such that 
for all w outside N, lim"too Xn(w) = X(w), where the latter limit is in the 
ordinary sense. 

Remark. Ifthe almost-sure limit of a sequence (X~, n ~ 1) exists, it is essentially 
unique, that is, if Xn ~ X and Xn ~ X', then X = X', P-as. Indeed, let N 
and N' be the events of null probability of Definition D 1 corresponding to X 
and X', respectively. Outside NuN', lim"too Xn(w) = X(w) and lim"too Xn(w) = 

X'(w), therefore, if w ¢. NuN', X(w) = X'(w). Since P(N u N') ~ P(N) + 
peN') = 0, we see that X = X', P-as. 

Now suppose that Xn ~ X and select an arbitrarily small number, say 
10- 6 . Consider the events A" = {IX" - XI ~ 1O-6 }. In view of the definition 
of almost-sure convergence, if w ¢. N, I X"(w) - X(w)1 can be larger than 10-6 

only for a finite (perhaps empty) set of indices n. In other words, 

pew E A" infinitely often) = o. 
This remark provides motivation for the study of the set {An i.o.} = {w I WE 
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An infinitely often} which we now define for an arbitrary sequence of events 
(An,n ~ I) in terms of the usual elementary set operations as follows: 

{An i.o.} = n U Ak• (1) 
n;31 k~n 

The next exercise shows that this is the relevant definition. 

El Exercise. Prove that WE {An i.o.} if and only if there are infinitely many 
integers n such that WE A •. 

The so-called Borel-Cantelli lemma is the key to many problems con­
cerning almost-sure convergence, as we shall soon see. It consists of two parts. 

T2 Theorem (Borel-Cantelli, Direct Part). For any sequence of events 
(An,n~I), 

L P(An) < 00 => P(An i.o.) = O. (2) 
n?;l 

PROOF OF EQ. (2). Define B. = Uk;;,n Ak • Clearly (B., n ~ 1) is decreasing, and 
therefore, by the sequential continuity of P and Definition 01, P(An i.o.) = 
lim.h. L P(Uk;;'. Ak)' But by the sub-a-additivity of P, P(Uk;;,n A k ) ~ 
Lk;;,n P(Ak)' The conclusion follows from the hypothesis L.;;, 1 P(An) < 00. 

o 

The converse part of Borel-Cantelli requires independence of the family 
(An' n ~ 1). 

T3 Theorem (Borel-Cantelli, Converse Part). If the events A.(n ~ 1) are 
independent 

L P(An) = 00 => P(An i.o.) = 1. 
n~ 1 

PROOF OF EQ. (3). Since the An's are independent, for all n ~ 1 

p( n Ak) = TI P(Ad = TI [1 - P(A k )]. 
k?::n k~n k;?;n 

(3) 

We can suppose, without loss of generality, that 0 < P(A.) < 1 for all n ~ 1 
(why?). Bya standard result concerning infinite products, TIk;;,n [1 - P(A k )] = 
o is equivalent to Lk;;'. P(Ak) = 00. Therefore, for all n ~ t, p(nk;;'. At) = 0, 
or equivalently (by de Morgan's rule) P(Uk;;.n Ak) = 1. But by the sequen­
tial continuity of probability P(A. i.o.) = p(n.;;, 1 Uk;;'. Ak) = lim.too L 
P(Uk;;'. Ad = 1. 0 

EXAMPLE 1. Let (X.,n ~ 1) and (Yn,n ~ t) be two independent sequences of 
random variables, each being iid. Assume that P(X 1 ~ Y1 ) > O. The events 
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An = {Xn ~ Y,,} are independent with P(An) = P(Xn ~ y,,) > 0 and therefore 
In;;, 1 P(Xn ~ y,,) = 00. Thus P(X" ~ y" i.o.) = 1. 

E2 Exercise. Let (Xn • n ~ 1) be a sequence of independent random variables 
taking the values 0 or 1. Let Pn = P(X" = 1). Prove that Xn ~ 0 if and only 
ifIn;;'IP" < 00. 

1.2. A Criterion for Almost-Sure Convergence 

T4 Theorem (Criterion of Almost-Sure Convergence). Let (X"' n ~ 1) be a 
sequence of random variables. It converges almost surely to the random variable 
X if and only if 

P(IXn - XI ~ e i.o.) = 0 for all e > O. (4) 

PROOF OF EQ. (4). The direct part was proven in Section 1.1. For the con­
verse part, assume that Eq. (4) holds and define for k ~ 1 the event Nk = 

{IX" - XI ~ 11k i.o.}. By assumption P(Nk ) = 0 so that P(N) = 0, where 
N = Uk;;' 1 Nk • If OJ rt N, then OJ rt Nk for all k ~ 1, and therefore, by definition 
of Nb the set of indices n such that IX,,(OJ) - X (OJ) I ~ 11k is empty or finite for 
all k ~ 1. This implies that if OJ rt N, lim"too X.(OJ) = X(OJ). 0 

In view of proving almost-sure convergence, criterion (4) is generally used 
in conjunction with the direct part of the Borel-Cantelli lemma, and some 
upper bound of the Markov-Chebyshev type. The idea is to prove that 

L P(lXn - XI ~ e) < 00 for all e > ° (5) 
n;'1 

which implies Eq. (4) (by Borel-Cantelli). The proof of Eq. (5) generally con­
sists in upper bounding P(IXn - XI ~ e) by the general term of a convergent 
series. 

EXAMPLE 2 (Borel's Law of Large Numbers). Consider a sequence of indepen­
dent random variables (Xn' n ~ 1) with values in {a, I} such that 

P(X" = 1) = P (n ~ 1). 

Define the empirical frequency of "1." 

- X +···+X X _ 1 n 
n- n 

As expected, Xn ~ p. To prove this result due to Borel (1909), the above 
program will be applied. We therefore seek to prove that 

I p[ISn - pi ~ eJ < 00. 
n;;'! n 
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E3 Exercise. Apply Markov's inequality to obtain the announced result. 

E4 Exercise. Let (X., n ~ 1) be a sequence of random variables, and let X be 
another random variable. Show that if P(IXn - XI ~ en) ~ o. for some non­
negative sequences (en> n ~ 1) and (0., n ~ 1) such that lim.too e. = 0 and 
L.;:,,1 on < 00, then Xn ~ X. 

A general form of the strong law of large numbers will now be proven 
by essentially the same technique as the one used to prove Borel's result 
(Example 2). 

1.3. The Strong Law of Large Numbers 

T5 Theorem. Let (Xn' n ~ 1) be a sequence of identically distributed random 
variables. Assume that their mean J1 = E[X1 ] is defined and that they have a 
finite variance (J2. Assume, moreover, that they are uncorrelated, i.e., 

if i #j. (6) 

Then, letting Sn = Xl + ... + X n , 

(7) 

PROOF OF EQ. (7). There is no loss of generality in supposing that p = O. 
Denote Zm = SUP10';;;2m+l(IXm2+1 + ... + Xm2+k1). Defining for each 

n> 1, the integer m(n) by 

we have 

m(n)2 < n ~ [men) + 1]2, 

, Sn , , Sm(n)', Zm(n) -,c -- +-­
n '"'" m(n)2 m(n)2 . 

Since limntoo m(n) = +00, it suffices to prove that 

as m ~ 00 

and 

as m ->- 00. 

For any B > 0, by Chebyshev's inequality, 

p(ISm21 ~ B) ~ Var(Sm2 ) = m2(J2 = _1_ (J2 
m2 m4 82 m4 e2 m 2 8 2 

(**) 
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(here we have used the fact that the X/s are not correlated, which implies 
Var[L~=l (XJ = L~=l Var(Xi )].) Therefore, Lm~ 1 P(lSm2/m21 ~ e) < 00, and 
the conclusion (*) follows by Borel-Cantelli's lemma and the criterion of 
almost-sure convergence, as explained in Section 1.2. 

Denote ~k = Xm2+1 + .,. + Xm2+k' Clearly, if IZml ~ m2 e, then for at least 
one k, 1 :::;;; k :::;;; 2m + 1, I~kl ~ m2e. Therefore, 

{z } 2m+1 
~ ~ e c: U {I~kl ~ m2 e} 
m k=l 

and 

p(~~ ~ e):::;;; pC~1 I~kl ~ m2 e):::;;; 2k~1 P(I~kl ~ m2 e) 

Using Chebyshev's inequality 

( Zm ) 2m+! Var(~k) 
P 2~e :::;;; L 42' 

m k=l m e 

Now Var(~k) = L~=I Var(Xm2+i) :::;;; (2m + 1)0"2 when k:::;;; 2m + 1 and 
therefore, 

This inequality implies Lm;'1 p(Zm/m2 ~ e) :::;;; 00 and Eq. (**) follows by 
Borel-Cantelli's lemma and the criterion of almost-sure convergence, as 
above. 0 

E5 Exercise. Let (N(t), t E IR+) be the counting process associated with a 
homogeneous Poisson process (T", n ~ 1) over the positive half-line. Prove 
that lim/too N(t)/t = A a.s., where A is the intensity (> 0) of the point process. 

E6 Exercise. A "pattern" is defined as a finite sequence of O's and l's, say 
(xo,""xk ). Let now (Xn,n ~ 1) be an iid sequence of random variables with 
P(Xn = 0) = P(Xn = 1) = t, that is, a Bernoulli sequence. Define Y" = 1 if 
Xn = XO, X n+l = Xl' ... , Xn+k = Xk and Y" = 0 otherwise. Show that 
(YI + ... + Y,,)/n ~ (t)k+I. 

Remark. The term (YI + ... + Y,,)/n is the empirical frequency of "pattern 
coincidences." Therefore, in a Bernoulli sequence, which is the archetype of a 
"completely random" sequence of O's and l's, the "pattern coincidence law" 
holds. However, there are some deterministic sequences ofO's and l's that are 
highly structured and "do not look random" at all and still verify the pattern 
coincidence law. This is the case, for instance, for the Champernowne sequence 

011011100101110111100010011010101111001101 ... , 
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which consists of a concatenation of the binary sequences representing 0, 1, 
2, 3, 4, 5, 6, 7, ... in base 2. (The proof is not immediate!) 

Remark. The form of the strong law of large numbers that is usually given in 
textbooks is the one due to Kolmogorov: Let (Xn' n ~ 1) be a sequence of inde­
pendent and identically distributed random variables with mean J-l. Then 
Eq. (7) holds. 

The differences with the strong law of large numbers proven above are 

(i) in Kolmogorov's law, there is no assumption of finite variance; 
(ii) however, the independence assumption is stronger than the noncorrela­

tion assumption. 

For practical purposes, the law of large numbers proven above is more in­
teresting because noncorrelation is a property easier to test than independence. 
However, Kolmogorov's version is more useful in theoretical situations where 
the assumption of finite variance is not granted. Its proof will not be given 
here, but this should be of minor concern to us since whatever version of the 
strong law oflarge numbers is available, the loop is now closed. The paradigm 
of Probability Theory has been found consistent with the intuitive view of 
probability as an idealization of empirical frequency. 

Although the principle of probabilistic modeling can now be accepted 
without discussion about its internal coherence, not all has been done. In 
practice, each model must be tested against reality and, if necessary, altered 
for a better fit with the data. This is the domain of Statistics. 

Since probability is just asymptotic frequency, clearly the statistician will 
feel comfortable with large samples, that is, data originating from many 
repeated independent experiments. However large the sample, though, a 
statistician cannot expect the empirical frequency to be precisely equal to the 
probability. Thus, one needs to discriminate "acceptable" and "unacceptable" 
discrepancies between the (measured) empirical frequency and the (guessed) 
probability. The essential tool for doing this is the theory of convergence in 
law. 

2. Convergence in Law 

2.1. Criterion of the Characteristic Function 

D6 Definition. Consider a sequence (Fn' n ~ 1) of cumulative distribution 
functions on IR and let F be another cdf on R One says that (Fn, n ~ 1) 
converges weakly to F if 

lim Fn(x) = F(x) whenever F(x) = F(x-). (8) 
ntoo 



2. Convergence in Law 169 

In other words, (Fn, n ~ 1) converges simply to F at the continuity points of 
F. This is denoted by 

Fn~F. 

D7 Definition. Let (Xn , n ~ 1) and X be real random variables with respective 
cdf (Fx,n ~ 1) and Fx. One says that (Xn,n ~ I) converges in law (or in 
distrib~tion) to X if FXn ~ Fx , that is, 

lim P(Xn :::;; x) = PIX :::;; x) whenever PIX = x) = o. (9) 
"tac 

This is denoted by 
if 

XII ---+ X or 2'(XII ) -+ 2'(X) 

where Y( Y) means the "law of Y", i.e., the "distribution of Y". 

D8 Definition. Let (XII' n ~ I) be a sequence of real random variables and let 
F be a cdf on R. Let FXn be the cdf of Xn (n ~ 1). If f'xn ~ F, one says that 
(XII' n ~ I) converges in law (or in distribution) to F. This is denoted by 

2~ 

XII ---> F or Y(XII ) --> F. 

The three above definitions are basically the same. The best thing to do 
would be to ignore the last two definitions and only use the concept of weak 
convergence of cdf's. Indeed, Definitions 07 and 08 could mislead a beginner 
who could be tempted to see in the definition of convergence in law a property 
of the random variables themselves, whereas it is only a property of their cdf's. 
This is in sharp contrast with almost-sure convergence. 

To illustrate this seemingly subtle point, let us consider the following situa­
tion. The random variables Xn (n ~ I) and X are supposed to be identically 
distributed with a common probability density f which is symmetric, i.e., 
f(x) = f( - x) for all x E R This implies in particular that - XII and - X have 
the same pd, namely f. 

Clearly, XII ~ X. If convergence in law could be treated in the same way 
as almost-sure convergence, one would expect the following consequence: 
XII - X ~ O. But this is dramatically false in general. To see this, suppose 
that (Xn,n ~ 1) and X are independent, then since X and Y = -X have 
the same distribution, XII - X = XII + Y has for pd the convolution y(x) = 

J ~~ fIx - z)J(z) dz. Also, the corresponding cdf G(x) = J ~'l y(u) du, which 
is P(X" - X :::;; x), does not in general converge weakly to 1 j,l- : 0: (x), which is 
the cdf of the null random variable. 

E7 Exercise. Let (XII' n ~ I) be a sequence of iid random variables uniformly 
distributed on [0,1]. Define Zn = min(Xj, ... ,XII ). Show that Zll/n~g(l). 
[This notation means ZII/n ~ F where F(x) = 1 - e-x ; F is the cdf cor­
responding to an exponential random variable of mean I.J 
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EXAMPLE 3 (I nteger-Valued Random Variables). For discrete random variables 
with integer values, the notion of convergence in distribution is trivial. The 
seq uencc of [\J-valued random variables (X"' n :;:, 1) converges in distribution 
to the [\J-valued random variable X if 

lim P(X" = i) = P(X = i) for all i E [\J. (10) 
'It 7 

The reader can verify that Eq. (10) implies Eq. (9). 

We can now see why. in the definition of convergence in law, the discontinuity 
points of the cdf playa special part (actually, do not play any part). If Eq. (9) 
were req uired to hold for all x E IR, then defining 

X == a. 

'/' 
we could not say that X" ---> X, because P(X" ~ a) = 0 does not converge 
toward P(X ~ a) = I. To have a definition of convergence in law sufficiently 
rich, one must therefore exclude the discontinuity points (such as a in the 
above example) of X in Eq. (9). 

E8 Exercise (Poisson's Law of Rare Events). Let (X"' n :;:, 1) be a sequence of 
independent :0.1) -valued random variables, with P(X" = 1) = p" where the 
sequence (p",11 :;:, I) verifies lim"tx, np" = ). for some positive J.. Show that 
XI + ... + X" ...l...-. .-!P(/.) where ;?P().) is the Poisson distribution with mean ) .. 

We shall now state without proof the fundamental criterion of convergence 
in law. It will be stated in terms of weak convergence of cumulative distribu­
tion functions (Definition 06) but it will be used mainly for convergence in 
law. 

T9 Theorem (Characteristic Function Criterion). Let (F", n :;:, 1) be cdrs 011 iR; 

with respectil'e characteristic junctions (¢J", n :;:, 1). Suppose that 

lim ¢J,,(u) = ¢J(u), \fu E IR, (II) 
"to". 

ji)r sume tP: IR ---> iL: that is continuous at O. Then F" ~ FIor some cdfF which 
admits tP as characteristic junction. 

In terms of random variables, the criterion reads as follows: Let (X"' n :;:, 1) 
he randum wriahles with respective characteristic junctions (tP", n :;:, 1). 

If" the sequence (tP". n :;:, I) cont'erges pointwise to some function tP: IR ---> i[ 

continuous at 0, then tP is a characteristic junction [i.e., tP(u) = f~~ e iux dF(x) 
.fin' sOlne cdf FJ and moreover, X" ~ F (in the sense of Definition 08). 

EXAMPLE 4 (DeMoivre- Laplace Central Limit Theorem). Let (X"' n :;:, 1) be 
an iid sequence of: O. 1 )-valued random variables with P(X" = 1) = p for some 
p E (0. II. We shall see (in Exercise E9) that. letting q = 1 - p. 
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Xl + ... + X. - np ...!!.. %(0, 1), 

Jnpq 
(12a) 

that is, 

I· p[XI+···+X • ....- J __ l- JX -y2/2d Irn :::::: x - e y. 
·too Jnpq fo -00 

(12b) 

E9 Exercise. Cornpute the cf ¢>. of the randorn variable (X I + ... + X. - np)1 
Jnpq and show that lirn.too ¢>.(u) = e-u2/2 [the cf of %(0,1)]. Then use 
Theorern T9 to conclude that Eq. (12) holds. 

EIO Exercise. Let (X., n ~ 1) be a sequence of independent Cauchy randorn 
variables [recall that ¢>x (u) = e- 1ul]. Does the sequence [(Xl + ... + X.)ln 2 , 

n ~ 1] converge in law?" 

Ell Exercise. Let (X., n ~ 1) be a sequence of randorn variables such that 
P(X. = kin) = lin, 1 ~ k ~ n. Does it converge in law? 

Case of Random Vectors. Definitions D6, D7, and D8 and Theorern T9 also 
apply to the case of randorn vectors, rnutatis rnutandis. For instance, a 
sequence (X., n ~ 1) of k-dirnensional randorn vectors is said to converge in 
law to the k-dirnensional randorn vector X if and only if 

lirn P(X. ~ x) = P(X ~ x) 
.too 

for all x E IRk such that P(X = x) = O. Recall that for a k-dirnensional randorn 
vector Y, P(Y ~ y) is a shorter notation for P(YI ~ YI'···' lie ~ Yk) where 
Y = (YI ,···, lie) and Y = (Yi>··· ,Yk)· 

The sarne notations as for the scalar case are used: X • ...!!.. X, X • ...!!.. F, etc. 
As for Theorern T9, it reads as follows: let (X., n ~ 1) be a sequence of 
k-dirnensional vectors with respective characteristic functions (¢>., n ~ 1) such 
that lirn.too ¢>.(u) = ¢>(u) for all u E IRk, where ¢> is continuous at 0 E IRk. Then 
¢> is the cf of sorne curnulative distribution function F on IRk and X • ...!!.. F. 

2.2. The Central Limit Theorem 

The Laplace-DeMoivre result featured in the previous subsection [see Eq. 
(12a)] is an avatar of the second rnost celebrated result of Probability Theory 
after the strong law of large nurnbers: the centrallirnit theorern, which will 
now be stated without proof. 

no Theorem (Central Lirnit Theorern). Let (X., n ~ 1) be a sequence of iid 
random variables with common mean and variance J.i and a 2 , respectively. Sup­
pose moreover that 0 < a2 < 00. Then 
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(X + ... + X ) nil 
1 n - r 2' %(0 1) r: -----i>, , 

(Jy' n 
(13a) 

that is, 

(
X + ... + X - nil ) 1 x lim P __ 1 -_. n ~ X = -- J e- y2 /2 dy. 

"teo (J In fo -00 

(13b) 

Note that the mean of Zn = (Xl + ... + Xn)/(J In is 0 and that its variance 
is 1, i.e., Zn is obtained by standardization of Xl + ... + X n. 

A SKETCH OF PROOF FOR THE CENTRAL LIMIT THEOREM. Without loss of 
generality we can assume that 11 = O. Denoting by t/J the cf of X I, the cf of 
(X 1 + ... + Xn)/(J In is [t/J(u/(J In)]n. But t/J(O) = 1, t/J'(O) = 0 (since EX = 0) 
and reO) = _(J2, and therefore, using the Taylor expansion of t/J at 0, 

t/J(_U ) = 1 - ~U2 + o(~). o-Jn 2n n 

Therefore 

lim t/J -- = lim 1 - - = e-u2 /2 . ( u)n (u2)n 
ntCG (J In ntoc 2n 

Theorem T9 yields the conclusion. o 
E12 Exercise. Use the central limit theorem to prove that 

E13 Exercise. Let F be a cdf on IR with mean 0 and variance 1. (i.e., 
J:r.~ x dF(x) = 0 and J:r.:;:: x 2 dF(x) = 1). The following assumption on F is 
made: if Xl and X 2 are two independent random variables with the same 
cdf F, then (Xl + X 2 v.j2 also admits F as cdf. Show (using the central limit 
theorem) that F(x) = (l/fo) J:.oo e-y2 /2 dy. 

Application: Gauss' Theory of Errors. Suppose that you perform n inde­
pendent experiments resulting in the data Xl' ...• X n, which are independent 
and identically distributed random numbers of mean 11 and variance (J2 
(0 < (J2 < ex). This is typically the situation when you want to obtain experi­
mentally the value 11 of some observable quantity and when the experiments 
are subjected to independent errors, i.e., Xn = 11 + en where the random 
numbers el , ... , en are iid, with mean 0 and variance 0- 2 • 

The experimental value of the (unknown) quantity J.1 is the empirical mean 
Xn = (X I + ... + Xn)/n. This "estimate" of 11 has the interesting property: 
Xn ~ 11 (strong law oflarge numbers). However, x" is not exactly 11, and one 
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would like to have some information about the distribution of X. around its 
asymptotic value f.1. For instance, one would like to have an estimate of 

(14) 

i.e., of the probability of making a mistake larger than a. If one does not know 
exactly the distribution of each Xn around its mean f.1, it is impossible to 
compute Term (14) exactly. However, maybe the central limit theorem will 
help us in obtaining a sensible estimate of Term (14), if n is "large enough." 
To do this, observe that 

P(IX. - f.11 ~ a) = p[\!l + "~y'n - nf.1\ ~ afJ 

Now suppose that n is large enough so that you can, in view of the central 
limit theorem, assimilate 

to 

You then have the approximate equality 

I +b 
I - --- S e- y2 /2 dy. $ -b 

I +a.jn/u 

P(IXn-f.1I~a)~I- r- S e- y2 /2 dy. 
V 2][ -a.jn/u 

(15) 

The right-hand side of Eq. (15) is 2Q[aJnla] where Q(x) = (1/$) x 
S~ e-y2 /2 dy is the "Gaussian tail" (Fig. I). 

o x 

Figure 1_ The Gaussian taiL 

Statistical tables for the Gaussian tail are available in all statistical hand­
books. Figure 2 is an excerpt of such a table that will be sufficient for our 
pedagogical purpose. 

EXAMPLE 5. How many experiments would you perform so that the deviation 
from the exact mean would be less than 10'>;; of the standard deviation with 
a probability larger than 0.99? Here we want 
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x 1.70 1.75 1.80 1.85 1.90 1.95 1.96 2.00 2.05 2.10 
1 - Q(x) 0.955 0.960 0.964 0.968 0.971 0.974 0.975 0.977 0.980 0.982 

x 2.15 2.20 2.25 2.30 2.326 2.35 2.40 2.45 2.50 2.55 
1 - Q(x) 0.984 0.986 0.988 0.989 0.990 0.991 0.992 0.993 0.994 0.995 

x 2.576 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 
1 - Q(x) 0.995 0.995 0.996 0.997 0.997 0.997 0.998 0.998 0.998 0.999 

Figure 2 

P(IXn - III ~ O.1a) < 0.01. 

Applying Eq. (15) with a = O.la, we see that the number of experiments n 
should be such that 

2Q(JnI1O) < 0.01. 

From Fig. 2, we see that n > (26)2 will do. Fortunately, in practice, much 
smaller n is enough. The estimate (15) is in fact not very tight and therefore 
not very useful in this particular situation. 

The Notion of Confidence Interval. Suppose X is a random variable of 
unknown mean Il and known variance a2 • One way of obtaining Il is to per­
form n identical independent experiments resulting in n iid random variables 
Xl' ... , Xn ofthe same distribution as X and to approximate Il by the empirical 
mean Xn = (Xl + ... + Xn)/n. Now fix a confidence coefficient IX (close to 1) 
and find the number a such that 2Q(a) = 1 - IX. If n is large, we can use the 
central limit approximation 

( In - ) P -a ~ --;-(Xn - Il) ~ a ~ 1 - IX. 

But the event -a ~ (Jnlo)(Xn - Il) ~ a is just Xn - aalJn ~ Il ~ Xn + 
aalJn. For this reason, the (random) interval [Xn - (aaIJn), Xn + (aaIJn)] 
is called a confidence interval for the mean Il, relative to the level of confidence 
IX. You will trust that Il is in this interval with a probability IX. 

EXAMPLE 6 (Testing a Coin). Suppose that X = 0 or 1 (e.g., a coin, where 
heads = 1), and that P(X = 1) = p is unknown. The situation is almost the 
same as above, with Il = p, except that a is unknown. In this case, one should 
take an upperbound for a. Here a = J"M < t. Therefore, the confidence 
interval for the level of confidence IX = 0.99 (a = 2.6) will be [Xn - (1.3IJn), 
Xn + (1.3IJnn For instance, if you obtain 4.950 heads in 10.000 tosses, you 
can say that the bias p of the coin is between 0.495 - 0.013 = 0.482 and 
0.495 + 0.013 = 0.508 with probability 0.99. This is compatible with a fair 
coin (p = t). 
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3. The Hierarchy of Convergences 

So far we have seen three notions of convergence: convergence in probability, 
convergence in law, and almost-sure convergence. We shall soon add the 
definition of convergence in quadratic mean to our collection. But then, what 
are the relations between these apparently different types of convergence? It 
turns out that convergence in probability, convergence in quadratic mean, and 
almost-sure convergence, although different, are closely connected, whereas 
convergence in law has an altogether different status, as we already mentioned. 

3.1. Almost-Sure Convergence Versus Convergence 
in Probability 

Let X., n ~ 1 and X be random variables. Recall that X. ~ X means that 
lim.too P(IX. - XI ~ e) = 0 for all e > 0, and that it reads: (X., n ~ 1) con­
verges in probability to X. 

Ttt Theorem. 

(a) If X. ~ X, then X. ~ X. 
(b) If X. ~ X, then there exists a strictly increasing sequence of integers 

(nk,k ~ 1) such that X.k ~ X. In other words, one can extract from a 
sequence converging in probability to some random variable X a subsequence 
converging almost surely to the same random variable X. 

PROOF OF THEOREM TIL 

(a) Xn ~ X is equivalent to IXn - XI ~ 0, and this is in turn equiva­
lent (by Theorem T4) to P(lim {I Xn - X I ~ e}) = 0 for all e > O. But 
P(lim{IX. - XI ~ en = lim.too 1 P(Uk~. {IXk - XI ~ e}, and P(Uk~.· 
{IXk - XI ~ e}) ~ P(IXn - XI ~ e). Therefore, limntoo P(IX. - XI ~ e) = 
0, for all e ~ O. 

(b) Define recursively the sequence (nk' k ~ 1) as follows: nk+1 is any index n > 
nk such that P(IXnk+1 - XI ~ l/k) ~ 1/2k. If lim.too P(IX. - XI ~ e) = 0 
such a sequence is constructible, and by Exercise E4, Xnk ~ x. 0 

A Counterexample. There exist sequences of random variables that converge 
in probability but not almost surely. Consider, for instance, (X., n ~ 1), an 
independent sequence with P(Xn = I) = 1 - P(Xn = 0) = Pn = 1 - qn' where 

lim Pn = 0, 
ntoo 

00 

I P. = 00. 
n=1 

(16) 

It was shown in Exercise E2 that such a sequence does not converge to 0 
because I;;"=l P. = 00. Similarly, it does not converge to 1 since L;;"=l q. = 00. 
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Therefore, it does not converge at all in the almost-sure sense. But for any 
Il > 0, P(Xn ~ Il) ~ Pm and therefore X. ~ 0. 

3.2. Convergence in the Quadratic Mean 

012 Definition. A sequence of random variables (Xn' n ~ 1) such that 
E[IXnI2] < 00 (n ~ 1) is said to converge in the quadratic mean to a random 
variable X such that E[IXI2] < 00 if 

lim E[IX. - X12] = 0. (17) 
·tac 

This is denoted by Xn ~ X. 

This type of convergence is not as intuitively appealing as convergence 
in law or almost-sure convergence. It plays a technical role in Probability 
Theory, especially in situations where only "second-order data" are available, 
i.e., when all the probabilistic information about a given sequence (Xn' n ;?; 1) 
of random variables consists of the mean function mx: N + -+~, where 
mx(n) = EX., and the autocorrelation function Rx: Nt -+ ~ where R(k,n) = 
E[(Xk - mx(k»(Xn - mx(n))]. In such a case, one cannot compute in general 
the cf ~.(u) = E[e iuXn ] or evaluate quantities such as P(Xn ;?; Il), which inter­
vene in the criteria of convergence in law and almost-sure convergence, 
respectively. On the contrary, second-order data are enough to determine 
whether (Xn' n ;?; 1) converges in the quadratic mean or not. Indeed, there is 
a criterion of the Cauchy type (which we shall not prove) involving only mx 
and Rx: 

TI3 Theorem. A sequence of random variables (X., n ;?; 1) such that E[IXnI2] < 
00 (n ;?; 1) converges in the quadratic mean to some random variable X if and 
only if 

lim E[IXm - Xn1 2 ] = 0. (18) 
m.ntoo 

Markov's inequality P(IXn - XI ;?; Il) ~ E[IXn - XI2]/1l2 shows that if 
Xn ~ X, then Xn ~ X. Therefore, in the hierarchy of convergences, qm is 
above Pro But we can say more: 

T14 Theorem. Convergence in probability implies convergence in law (and 
therefore convergence in the quadratic mean implies convergence in law). 

PROOF OF THEOREM T14. Let (X., n ~ 1) be a sequence of random variables 
such that Xn ~ X for some random variable X, i.e., limntoo P(IXn - XI ~ Il) 
for all e > 0. Therefore, for all e > ° and all ~ > 0, there exists N such that 
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n ~ N implies 

P(lXn-XI~E)::::;£5 

and therefore (see Exercise EI4), for all XE IR, 

177 

P(X ::::; x - e) - £5 ::::; P(Xn ::::; x) ::::; P(X ::::; x + e) + £5. (**) 

If x is a continuity point of X, i.e., P(X = x) = 0, e can be chosen such that 

P(X ::::; x - e) ~ P(X ::::; x) - £5, P(X ::::; x + e) ::::; P(X ::::; x) + £5. 

Therefore if x E IR is such that P(X = x) = 0, for alIfJ > 0 there exists N such 
that 

P(X ::::; x) - 2fJ ::::; P(Xn ::::; x) ::::; P(X ::::; x) + 2£5 

Thus, lim. too P(X. ::::; x) = P(X ::::; x), qed. 

E14 Exercise. Prove that Term (*) implies Term (**). 

(n ~ N). 

o 

E15 Exercise. Prove that if X. ~ X and IX.I ::::; Y with E[y2] < 00, then 
X.~X. 

Stability of the Gaussian Character. We have seen that Gaussian vectors 
remain Gaussian after an affine transformation (in fact, this was part of 
Definition 01 of Chapter 4). Gaussian random variables have another inter­
esting stability property. 

T15 Theorem. If (X.,n ~ 1) is a sequence of Gaussian random variables such 
that Xn ~ X, then X is also Gaussian. 

PROOF OF THEOREM TI5. From Theorem T14, X. ~ X and therefore, from 
Theorem T9, 

f/lx(u) = lim f/lx.<u) 
.too 

where f/lx and f/lxn are the characteristic functions of X and X., respectively. 
But 

f/lxJu) = eE[Xnlu-(1/2)(E[X~1-E[Xn12)u2. 

But (see Exercise E16), lim E[Xn] = E[X] = mx and lim E[X;] = E[X2] = 
crt + mi· Therefore, 

o 

E16 Exercise. Show that if X. ~ X and Y. ~ Y, then limm,ntoo E[X. Ym ] = 
E[X Y], and in particular, lim.too E[X;J = E[X2] and limntoo E[Xn] = E[X]. 
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3.3. Convergence in Law in the Hierarchy of Convergences 

Convergence in law ofa sequence (X., n ~ I)is relative to the cdf's of the X;s. 
This means that we can talk about convergence in law even when the X.'s are 
not defined on the same probability space! Of course, this may seem to be 
only a mathematical subtlety, and indeed it is one. But this explains why we 
cannot issue a theorem stating that convergence in law implies another type 
of convergence, unless we require that the X;s are defined on the same 
probability space. But even if we do, the situation of convergence in law is not 
brilliant. 

Et7 Exercise. Let (X.,n ~ I) be a sequence of random variables defined on 
the same probability space, and suppose that for some constant c, X. ~ c 
(meaning limntoo P(Xn ~ x) = 0 if x < c and 1 if x > c). Show that Xn ~ c. 

There is a result due to Skorokhod, which says that "if you change prob­
ability space, convergence in law is as good as almost-sure convergence." 
More precisely, let (Xn' n ~ I) be a sequence of random variables defined on 
(n, Y, P) together with some other random variable X and suppose that 
X. -..!!.... X. Then one can exhibit a probability space (n, ff', p) and random 
variables Xn (n ~ 1) and X such that 

and 

{P~X: ~ x) = P(X. ~ x) 
P(X ~ x) = P(X ~ x) 

-- ii-as 
Xn --> X. 

(n ~ l,xE~) 

(XE ~) 
(19) 

(20) 

The "converse" of Skorokhod's result is true without changing probability 
spaces. 

Tt6 Theorem. Let (X.,n ~ I) and X be random variables defined on (n,9",p) 
such that Xn ~ X. Then Xn ~ X. 

PROOF OF THEOREM T16. If X. ~ X, then eiuXn ~ eiuX. Now lei.xnl ~ t, and 
therefore (Lebesgue's dominated convergence theorem), limntoo E[e iUXn ] = 
E[e iuX ]. Hence, (Theorem T9), Xn ...!!:... X. 0 

3.4. The Hierarchical Tableau 

Here (X., n ~ I) is a sequence of random variables defined on (n, Y, P), 
together with X (Fig. 3). We shall now illustrate some of the results from the 
above hierarchical tableau. 
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(Til) X as (Tl6) 
n- X 

~-"1 

X as 
"k- X 

(ElS) 
(*) 

Pr 
X,,-X 

(Til) £ 
X,,-X 

I I (Tl4) t I 
I I 
I I 

• (Markov's inequality) f--.J (TI4) 
t 

I mq I 
I X,,_ X I 
I I 
I ** I () (E17) L ______________ --------------------~ 

_: "implies" 

-: "implies but with the subsequence restriction" (see Theorem Til) 
- - -: "implies under special conditions" 

(*): ifIX"I.;;; Y P-aswithE[y2 1<oo(seeExerciseElS) 
(**): if X" = constant 

Figure 3 

Cauchy: A Bag Full of Examples, Let (X"' n ~ 1) be an iid sequence of Cauchy 
random variables defined on (0, §', Pl. In particular, the cf of any of these 
random variables is e- 1ul, Define 

x +,·,+X 
y. = 1 " " In (21) 

X +··'+X 
Z" = 1 " (22) 

n 

(23) 

We are going to examine the convergence ofthe three sequences (Y", n ~ I), 
(Zn,n ~ 1), and (~,n ~ 1). To discuss convergence in law we need the char­
acteristic functions 

Since 

tPyJu) = e-Jn1ul 

tPz.{u) = e-1ul 

tPwJu) = e-1ul/", 

lim tPy (u) = tP(u) = {I 
ntx " 0 

if u = 0 
if u #- 0 

(24) 

(25) 

(26) 
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is not continuous at u = 0, it cannot be a cf, and therefore (Theorem T9) 
(Yn , n ~ I) does not converge in law. It cannot converge almost surely to some 
random variable X, or otherwise it would converge in law to the same X (see 
Theorem TI6). By Theorem TI4, (Yn , n ~ 1) cannot converge in probability 
or in the quadratic mean. 

By Theorem T9, and Eq. (25), Zn ~ Cauchy. Recall that if Xl is Cauchy, 
E I XII = 00, and therefore Kolmogorov's strong law oflarge numbers is not 
applicable. In fact, even if we make the "natural" choice for the mean of X I 
(which we must insist does not exist), i.e., "mxl = 0", we do not have Z. ~ 0 
because (by Theorems Til and TI4) this would imply Zn ~ 0, in contradic­
tion with Zn ~ Cauchy. 

Since Iimnt~ I/Jw (u) = 1, which is the cf of a random variable equal to 0, we 
have, by Theorem"T9, W. ~ O. By Exercise E17, W. ~ O. By Theorem Til, 
there exists a subsequence (W.., k ~ 1) such that Wnk ~ O. The notion of con­
vergence in quadratic mean is not applicable to (w., n ~ I) since E( I W. 12) = x 
for aU n ~ 1. 

Illustration 8. A Statistical Procedure: 
The Chi-Square Test 

The theory of convergence in law finds a priviledged domain of application in 
Statistics. Although the chi-square test is only one of the numerous statistical 
procedures based on a result of convergence in law, it is quite representative 
of the way statisticians think and operate when they wish to identify a 
probabilistic model, or at least to validate some hypothesis concerning this 
model. 

The problem of concern to us in this Illustration is the following. You 
observe n iid random variables X I' ... , Xn taking their values in a finite set 
E = (II"" k}, and you want to know to what extent you can believe in the 
hypothesis 

P(XI=i)=Pi (I ~ i ~ k) (27) 

where P = (PI"'" Pk) is a given probability distribution over E. 

EXAMPLE 1. A dice must be tested for unbiasedness. Here E = {t, ... , 6} and 
Pi = 1/6 (1 ~ i ~ 6). 

EXAMPLE 2. One observes n iid random variables Y1 , •.• , y" and wishes to test 
the validity of hypothesis 

P(Y ~ x) = F(x) 

where Y = YI and F is some probability distribution function over [J;\!. This 
problem can be converted to the basic problem by considering a partition 
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{.1.i' 1 ~ i ~ k} of IR and letting for each i (1 ~ i ~ k) 

and 

if 1'; E .1. i 

otherwise 

181 

If hypothesis (27) is true, one expects, in view of the law of large numbers, 
that for each i (1 ~ i ~ k) the empirical frequency 

1 (n) _ 1 f -N - - L., l{x ~.\ 
n' n j~1 j 'J 

(28) 

is close to Pi' 
The chi-square test proposes to measure the deviation to the law of large 

numbers by 

k (N(n) _ np.)2 
T,.=L:-' , 

i~1 npi 
(29) 

The random variable T,. is called the Pearson statistics of order n relative 
to the test of hypothesis P = (PI, ... ,Pk)' If P is the correct hypothesis, then, as 
we shall soon see, T.. converges in law to a chi-square distribution. Otherwise 
T,. goes to 00. Therefore, a theoretically reasonable test procedure is the 
following. First fix a (small) number CL > 0, called the level of the test. Let P 
be the probability under which Eq. (27) is true, and let to(a) be the smallest s 
such that P(T,. ;;;0 s) ~ a (Fig. 4). If the experimental value t of T,. verifies 
t ~ to(CL), hypothesis P = (PI"'" Pk) is accepted, otherwise it is rejected. 

x 

Fn is the distribution of Tn under hypothesis (27) 

Figure 4. The level of the test and the acceptation threshold. 

Although the principle of this test is intuitively appealing, its implementa­
tion is too difficult because it requires for the computation of to (a) a knowledge 
of the distribution function of T,.. Such a distribution function can in principle 
be computed, but it depends on n and on P = (Pl,' .. , Pk)' Since statisticians 
are working with statistical tables, the procedure is not applicable as such. 
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• ••••• •• • • • • • • • • • • ••• 
60 108 108 102 108 114 

Figure 5. The data. 

The chi-square test proposes to approximate P(Tn ::::; x) by limntoo P(T,. ::::; x), 
a reasonable idea if the size n of sample (Xl'" ., Xn) is large. 

The interesting feature about the Pearson statistics is that 

I 
(x "0) I' (30) 

and therefore the limiting distribution does not depend on P = (PI"'" pd, 
and of course does not depend on n. The distribution function in the right­
hand side of Eq. (30) is just the chi-square distribution with k - 1 degrees 
of freedom. The implementation of the chi-square test only requires the 
tabulation of this distribution function for various k. 

EXAMPLE 1 (continued). The dice has been tossed n = 600 times, and it was 
recorded as in Fig. 5. The experimental value of T,. is 

(60 - lOW + (108 - lOW + (108 - 1(0)2 + (102 - 1(0)' + (108 - lOW + (114 - 1(0)2 
t = ----'--'-----'---'----

100 

= 19.92. 

We want to be sure that thc dice is unbiased, so we take a small value of 
the level, say ex = 0.005. If we call Fs the chi-square distribution function with 
6 - 1 = 5 degrees of freedom, we find, using a table of F5 , that to (ex) = 0.412 
[1 - Fs(0.412) = 0.005]. Since 19.92> 0.412, we must reject the hypothesis 
Pi = (1/6) (l ::::; i ::::; 6). 

Exercise. One extracts 250 digits at ramdom from a table of ramdom digits. 
The result is 

digit o 234 567 8 9 

number of occurrences 32 22 23 31 21 23 28 25 18 27 

Test the equiprobability hypothesis with a chi-square test at level 0.1. 

It now remains to prove Eq. (30), that is, 

(31 ) 
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To do this, first consider the vector 

= (Nln) - npl N~n) - nPk) 
Zn Jnp;' ... 'Fv:. . (32) 

We will show that it converges in law toward a Gaussian distribution admitting 
the characteristic function 

(33) 

In particular, denoting by Ilxll the euclidean norm of a vector XE IR\ 

lim P(T" :::s; x) = lim P(IIZnI12 :::s; x) = P(IIZI1 2 :::s; x). (34) 
ntoo ntoo 

We will then prove the existence of a standard Gaussian vector Y of 
dimension k - 1 such that 

p(llzf :::s; x) = P(1IY11 2 :::s; x). (35) 

The proof will then be complete if we remember that the squared norm of 
a standard Gaussian vector of dimension l admits a chi-square distribution 
with l degrees of freedom. 

Let us now prove the convergence in law of Zn defined by Eq. (32) to the 
distribution F admitting the characteristic function l/Jz given by Eq. (33). We 
start by defining 

o 1 M/ = {x;=j} 

and 

We have 
n 

Zn = I Yi, 
i=l 

and therefore, since the vectors Y1 , ..• , y" are independent and identically 
distributed, 

l/Jdu) = (l/Jy,(u)t. 

Taking into account that for one index j, MP) = 1, and for all other indices 
k =I- j, M\k) = 0, 
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Therefore, 

log ¢>zJu) = n log ¢>Y1 (u) 

Now, since LY~l Pj = 1, 

From the last two equalities, one obtains the development 

log¢>du) = Lt uJ + ~Ct hUjY + 0(1) 

from which the announced convergence follows. It now remains to show that 
if a k-vector Z admits ¢>z given by Eq. (33) as its characteristic function, then 
liZ 112 is distributed according to a chi-square distribution with k - 1 degrees 
of freedom. For this, we perform a change of orthonormal basis in IRk, which 
relates the ancient coordinates u of a joint M to the new coordinates v 
according to 

v = Au, 

where A is a unitary (k x k) matrix [AA' = A' A = I where A' = transpose of 
A, and I = (k x k) identity matrix]. Therefore, 

(36) 

We shall select A in an ad hoc manner. Consider the hyperplane (II) of IRk 
admitting the Cartesian representation 

and choose the kth axis of the new referential in such a way that Vk is the 
dist~'nce from M to (II), i.e., 

(37) 

The other axes of the new referential can then be chosen arbitrarily, under 
the constraint that the new referential is orthonormal. 

From Eqs. (36) and (37) we obtain 

1 k 1 ( k )2 t k-l 

·2- ~ uJ - 2- L hUj = -2 ~ vJ. 
J~l J~l J~l 

Therefore, 
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.J.. (A'v) = e-o /2)'f vJ 
V'Z }=l 

(use the fact that A' = A -I when A is unitary). Defining 

Y=AZ, 

we find that 
'-I 

.J.. (v) = .J.. (A'v) = e-(1/2) L vJ 'l'Y 'l'Z ;'1 • 
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Hence, Y = (YI , ... , lk-I' Yk ) is a degenerate Gaussian vector with lk = 0, 
P-as, and (YI , ... , lk-l) is a standard (k - I) dimensional random vector. Also, 

IIZI1 2 = Z'JZ = Z'A'AZ = Y'Y = II ¥II 2, 

and therefore 
k-j 

IIZI1 2 = I Y?, 
j=1 

Illustration 9. Introduction to Signal Theory: 
Filtering 

Linear Filtering of a Signal. Let [X(t), t E IR] be a random signal, that is, a real 
valued stochastic process (see Section 4, Chapter 4), with mean ° and con­
tinuous autocorrelation function rx: 

E[X(t)] = 0, E[X(t)X(s)] = rx(t,s). (38) 

Let now h: IR --+ IR be a piecewise continuous function null outside some 
bounded interval [a, b]. The operation transforming the random signal 
[X (t), t E IR] into the random signal (Y(t), t E IR) defined by 

+00 
Y(t) = f h(t - s)X(s) ds (39) 

is called (linear homogeneous) filtering (Fig. 6). The function h is called the 
impulse response of the corresponding filter because if one enters the function 

x,(t) ~{~ if tE [0, 6] 

otherwise 

then the output 

+00 1 • 
y.(t) = f h(t - s)x.(s) ds = - f h(t - s) ds 

-00 60 

is nearly equal to h(t) when 6 is small (Fig. 7). 
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Input: random signal 

x(t,W) 

o 

Output: random signal 
Fixed wEn 

Y(t,w) 

o 

Figure 6. Random input and random output. 

Input 

€ 
______ Area = I 

Impulse input 

o € Time 

Output 

Impulse response 

Time 

Figure 7. Impulse response. 

A function such as XC, which is null outside [0, s] and of total area 
S+ ~ xc(t) dt = 1, is called a unit pulse at 0 when c is small. This explains the 
appelation of h. The filtering operation is called linear because it is linear in 
the input (x(t), t E IR), i.e., 
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+ao 

S h(r - S)[A.lXl(S) + X1X2(S)]ds 

~ +oc 

=)'1 S h(r-s)x 1(s)ds+X2 S h(r-s)x2(s)ds 

for all i'I' i'l E IR, and all continuous functions Xl' X2 : IR -+ IR. It is said to be 
homogeneous because it is homogeneous in time, i.e., if 

+00 

yet) = S h(t - s)x(s) ds 
-00 

then 

+00 

S h(t - s)x(s - T)ds = yet - T). 

Thus, if the input x is delayed by T time units, the output is delayed by the 
same amount of time. 

Many physical transformations can be described in terms of filtering. This 
is why filtering is a fundamental notion of signal theory. 

Autocorrelation Function of a Filtered Random Signal. Returning to the out­
put signal defined by Eq. (39), we shall prove that its mean is null, i.e., 

E[Y(t)J = 0 (40) 

and that its autocorrelation function ry(t, s) = E[Y(t) Yes)] is given by 
+CIJ +00 

ry(t, s) = S S h(t - u)h(t - v)rx(u, v) du dv. (41) 
-co -GO 

Since Eqs. (40) and (41) are particular cases of 

E[If(U)X(U)dU] =0 (42) 

E[If(U)X(U)dU I g(V)X(V)dV] = I If(u)g(v)rx(U,V)dUdV (43) 

where f, g: IR -+ IR are continuous functions, null outside some bounded 
interval (say [0, 1] for the sake of notational ease), we will prove Eqs. (42) and 
(43). It will be assumed that for each WE r, the trajectories t -+ X(t,w) are 
continuous, except on a finite set A (w) E [0, 1] (this is not a restriction in 
practice). 

Define for each n ~ 1 

(44) 
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By definition of Riemann's integral 

1 1 

Xn ~ X = J.[(s)X(s)ds, Yn ~ Y = J g(S)X (s) ds. (45) 
o o 

Suppose that we can prove that the convergences Xn ~ X and Yn ~ Yalso 
hold in the quadratic mean sense. Then Eqs. (42) and (43) follow almost 
immediately from the results of Exercise E 16 (continuity of the scalar product). 
To see this, observe that for all n ? I, m ? I 

2"-1 2"'-1 (i) (j) (i j) 1 1 
= i~O Jo f 2n 9 2m Ix 2"' 2m 2n 2m ' 

Therefore, since .f~ g, and Ix are continuous, 

11 

lim E[Xn YmJ = J J f(u)g(v)Ix{u, v) du dv. (46) 
n.mtex. 00 

On the other hand (by Exercise E16), if Xn ~ X, Yn ~ Y, then 

lim E[Xn YmJ = E[X Y] = E [J f(u)X(u) du J g(V)X(V)dV] 
n.mt.~ 0 0 

and therefore Eq. (43) is proven. As for Eq. (42), it suffices to observe that for 
alln? I 

by hypothesis (38), and therefore (by Exercise E 16, observing that the constant 
random variable 1 converges in quadratic mean to 1) 

E [J f(U)X(U)dU] = E[XJ = E[X' IJ = lim E[Xn' IJ = lim E[XnJ = O. 
o nteG nt" 

It now remains to prove that 

(47) 

and this will be done using Cauchy's criterion for convergence in quadratic 
mean (Theorem TI2). 

The same computation as that leading to Eq. (46) yields 
11 

lim E[XnXmJ == J S f(u)f(v)lx(U, v)du dv 
n.mtx 00 

and therefore, since 
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we see that 
lim E[(Xn - Xm)2] = O. 

n,mt oo 

Therefore, by Theorem T13, there exists a random variable X such that 
Xn ~ X, One must now show that X = X, P-as, a not completely obvious 
fact. Tn view of the results of Section 3 summarized in the hierarchical tableau, 
from a sequence (Xn, n ;:: I) such that Xn ~ X one can extract a subsequence 
(X'h' h ;:: 1) such that X'h ~ X. Since X'h ~ X, we must have X = X, P-as, 
qed, 

Filtered Gaussian Signals Are Gaussian, Recall that a random signal [X(t), 
teo IR] such that for all t 1, , , , , tn E IR, the vector [X (t 1)' ... , X (tn)] is Gaussian is 
called a Gaussian signal. Another way of stating this (Chapter 4, Definition 
DI) is to say that for all t 1"'" to E IR and all AI' " ',).n E IR, the random variable 
Li~1 ),i X (t;) is Gaussian, Our purpose here is to demonstratc that if the input 
signal [X (t), t E IR] is Gaussian, the output signal defined by Eq, (39) is also 
Gaussian, i.e., that for every t l' , " , tn E IR and AI, ., ., i.n E IR, 

, 
Z = I )'iy(tJ 

i=1 

is Gaussian, This is actually a consequence of Theorem T15, as we shall see. 
Recall that for any t E R, yet) is the limit in the quadratic mean of finite 

sums as in Eq, (44). Therefore, Z is the limit in the quadratic mean of finite 
linear combinations of the form L7~1 /AjX(sJ, Since [X(t), t E IR] is a Gaussian 
signal, these combinations are Gaussian. Thus, Z is the limit in the quadratic 
mean of a sequence of Gaussian random variables, and therefore, by Theorem 
TIS, Z is itself Gaussian qed, 

SOLUTIONS FOR CHAPTER 5 

El. WE nn?-l Uk?-nAk=WE Uk?-nAk for all n;::': 1 =for all n;::': 1, there exists 
.i ;::,: 1 such that mE A n+ j • 

E2. Since the X;s are independent, the direct and converse part of Borel-Cantelli's 
lemma reads 

E3. 

P(Xn = 1 io) = 0= L P(Xn = I) < eN. 
1I~1 

This proves the announced result. Indeed, take N = {Xn = I i.o.}. We just saw 
that peN) = 0 (because LPn < eN), and (m ¢ N) = [there exists K(w) such that 
n> K(w) => Xn oF 1]. But Xn oF 1 means Xn = O. 

(ISn I ) 1 [(Sn - np)41 P -;; - P ;::,: r. ~ ~4 E --n- J 

[(S - np)4j 1 n 
Ii _n~_ . = 4 L E[(Xi - p)(X) - P)(Xk - p)(X[ - p)]. 

n . n i,j,k,/=l 
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Only the terms of the type E[(Xi - p)4J and E[(Xi - pf(Xj - p)2J remain in 
the latter sum. There are n terms of the type E[(Xi - p)4J and E[(Xi - p)4J = rt 

finite. There are 3n(n - 1) terms of the type E[(Xi - pf(Xj - p)2J (i ¥- j) and 
E[(Xi - p)2(Xj - p)2J = f3 finite. Therefore, 

E[ (Sn ~ npYJ ~ na + 3:~ -1)f3. 

The right-hand side of the above inequality defines the general term of a con­
vergent series ( ~ 3f3ln2 ). 

E4. According to the direct part of Borel~Cantelli's lemma, P(IX. - XI ~ 
8n i.o. = O. Therefore, letting N = {I Xn - X I ~ en i.o.}, we have peN) = 0 and 
if w if; N, IXn(w) - X(w)1 < 8n for all n larger than some finite integer N(w), which 
implies Xn(w) -+ X(w) since limen = O. 

E5. Define Sn = T" - T,,-1 (n ~ 1). The sequence (S., n ~ 1) is iid with common mean 
II )". Therefore, by the strong law of large numbers, 

SI + ... + Sn as 1/' 
--'------ --> A. 

n 

Since SI + ... + Sn = 7~ and n = N(T.), this means N(T")/T,, ~ A, and this 
implies N(t)!t ~ A since T" ~ 00 (because T,,/n ~ II), > 0). 

E6. The sequence (Y,,(k+l)+i' n ~ 1) is iid with E[Y.(k+1)+i = IJ = P(Xn(k+I)+i = Xo, ... , 
Xn(k+l)+i+k = xk ) = (t)k+l, and therefore, by the strong law of large numbers, 

This being true for all i (0 ~ i ~ k), it is not difficult to show that (IZ~1 y")ln ~ 
(t)k+l (Do the complete proof paying particular attention to the sets of null 
probability.) 

E7. For x E [0, 1]: 

E8. 

P(Zn ~ x) = P(min(X1, ... ,X.) ~ x) = 1 - P(min(Xj,,,,,Xn) > x) 

= 1 - PiX! > x, ... , Xn > x) = 1 - (I - xl". 

Therefore, 

p(nZn~X)=P(Z.~~)= 1-(1-~)" .toc' I-e- X
• 

P(X l + ... + Xn = k) = G)p~(1 -p.rk, (0 ~ k ~ n). 

Letting PiX [ + ... + Xn = k) = fen, k), we see that f(n,O) = (I - Pn)n t-> e- A 

sincc 10g(1 - Pnl" = n 10g(1 - Pn) '" - nPn ntoe: - A. Also, n Xc 

fen, k + I) P. k + 1 I. 
= ---- = (k + l)nPn () ~t ).(k + I). fen k) 1 - P n - k k • oc 

. ,. (I - Pn) 1 - ~ 
n 
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E9. 

ElO. 

Therefore, by induction starting with Iimnt~ fin, 0) = e-\ we obtain 

i.e., tPn(u) = e- 1ul /n. Therefore, 

. {I 11m tP.(u) = tP(u) = 
_toe ° 

if u = ° 
if u * ° 

and tP is not continuous at 0, therefore (X 1 + ... + Xn)/n 2 does not converge in 
law. 

1 • 1 1 - eiu 
tPn(u) = E[e iUXn ] = _ " eiukln = _ei(u/") .. 

n kL:l n 1 - e,u/n 

Therefore, since 

lim n(l - e iU/") = - iu, 
e iu - 1 

lim tPn(u) = -.-. 
nj:;c • to: lU 

Since tP(u) = (e iu - I)/iu is the cf of the uniform density on [0, I], (X., n ~ 1) 
converges in law to the uniform distribution on [0,1]. 

= eiU,/.(P/q)(q + pei(u/-/. pq ))" = ei"-/nIP/q)[1 + p(eiU/-/npq - 1 )]". 

We do the case p = q = 1 for simplicity: 

tP.(u) = eiu-/'[I + t(eli"!';;' - I)]" 

10gtP.(u) = iuJn + {nlog[1 + 1(eliU/Jn - I)]} = -tu 2 [1 + ,,(n)] 

with lim. loc e(n) = 0. Therefore, tP.(u) ->ktoc e- I/2u2 which is the cf of. nO, 1). 

E 12. Let (X"' n ~ I) be a sequence of iid Poisson random variables with mean I and 
variance l. ThenX 1 + ... + X. is Poisson, mean n, and therefore 

• nk (X + ... + X - n ) 
e-' " ~ = PIX + ... + X >- n) = P I n >- 0 . 

L- k' 1 • >- r:.:r 
k=O . ~n 

By the central limit theorem this quantity tends to (I/~) J~ e 112yl dy = t. 
E13. Let (X.,n? 1) and (Y.,n? I) be two sequences of random variables with the 

same cdf F, and such that the family (X., Y",n? 1) is a family of independent 
random variables. Define for each n ? 1 

By induction, P(Z. ,;:; x) = F(x). By the central limit theorem (written with 2· 
instead of n), Z. ~ . t "(0, 1), hence the announced result. 
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E14. We do the first inequality only. Since X ~ x - e and IX. - XI < e imply X. ~ x, 

{X ~ x - e} - {X. <S; x - e} n {IX. - XI ~ e} c{X. <s; x}, 

and therefore, 

P(X ~ x - e) - P(X. ~ x - e,IX. - XI ~ e) ~ P(X ~ x). 

But from Term (*), 

P(X. <s; x - f., IX. - XI ~ e) <S; P(IX. - XI ~ e) <S; b. 

E15. Since X. ~ X, IX. - XI 2 ~ O. If IX.I ~ Y, P-as for all n ~ I, also IXI <S; Y, 
P-as, and therefore IX. - X 12 ~ 4 y2, P-as. The rest follows by Lebesgue's 
dominated convergence theorem. 

E16. 
E[Xm Y.J - E[XY] = E[(Xm - X)YJ + E[Xm(Y" - Y)]. 

From Schwarz's inequality 

IE[(Xm - X) YJf ~ E[y2J' E[(Xm - X)2J --> 0 as m --> 'lJ 

IE[Xm(Y" - Y)W <S; E[X;J· E(Yn - Y)2J --+ 0 as m, n --+ x, 

if E[X;J is bounded in m. This is the case because 

E[X;J ~ 2E[(Xm - X)2J + 2E(X2) 

and Iimmtoo E[(Xm - X)2J = O. Therefore, limm.ntoo E[Xm Y"J = E[X YJ, qed. 
Applying the result to X. and Y" = X. yields lim.too E[X;J = E(X2]. If Y" = 1 
(which converges in all senses to 1!), we obtain 

lim E[Xn I] = E[XIJ, 
.too 

i.e., 

lim E[XnJ = E[X]. 
ntoo 

E17. Foralle>O, 

lim P(IXn - cl ~ e) = lim P(Xn ~ c + e) + P(Xn <S; c - e)} 
nt:x ntOCl 

= 1 + lim P(Xn ~ c - f.) - P(X. < C - r,)} 
"ta:o 

= I - {O - t} = O. 



Additional Exercises 

Note: Exercises 1 to 16 are relative to Chapters 1,2, and 3. Chapters 4 and 5 
are needed for Exercises 17 to 28. 

Exercise I (A Sequence of Liars). Consider a sequence of n "liars" L 1 • .•• , L .. 
The first liar L 1 receives information about the occurrence of some event ("yes" 
or "no") and transmits it to L z , who transmits it to L 3 , etc .... Each liar 
transmits what he hears with probability prO < p < 1), and the contrary with 
probability q = 1 ~ p. The decision of lying or not lying is made indepen­
dently by each liar. What is the probability Pn to obtain the correct information 
from Ln? What happens when n increases to infinity? 

Exercise 2 (The Golden Ring). There are 2n bits of thread: 

Two people, operating independently of each other, make knots. The first one 
makes knots on the upper extremities, and the other one on the lower extremi­
ties. Each lower (resp. upper) extremity is involved in one and only one knot. 
For instance with 2n = 6, you can obtain, among other configurations: 
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or 

In the second situation, you have just one piece of thread forming a ring. What 
is the probability P2n for this event to occur in the general case? 
Hint: Find P2 and a recurrence relation between P2n and P2.- 2 . 

Exercise 3 (Shall I Get This Book?). You are looking for a book in the campus 
libraries. Each library has it with probability 0.60, but the book may have 
been borrowed by some other patron with probability 0.25. If there are 3 
libraries, what are your chances of obtaining the book? 

Exercise 4 (Winning a Game of Heads and Tails). Two players A and B with 
respective initial fortunes $a and $b (a, b strictly positive integers) playa game 
of heads and tails, betting an amount of $1 at each toss. The outcome "heads" 
has probability p(O < p < 1). Player A wins on "heads." Compute the prob­
ability for A to win (the game ends when one of the players is broke). 
Hint: You must compute the probability uta) that A starting with a fortune 
of x = a reaches fortune c = a + b without getting broke in the meantime. Of 
course x = a is of interest, but you will compute the probability u(x) for all 
integers x E [0, c]. To do this derive a recurrence relation for u(x), and solve it. 

Exercise 5 (Heads and Tails Again). A person, named A, throws an unbiased 
coin N times and obtains TA "tails." Another person, B, throws his own unbiased 
coin N + 1 times and has TB "tails." What is the probability that TA ~ TB? 
Hint: Introduce HA and HB the number of "heads" obtained by A and B 
respectively, and use a symmetry argument. 

Exercise 6 (Boys and Girls Are Independent). Let X be a Poisson random 
variable with mean ). > 0, independent of (Yn , n ~ 0), a sequence of {O, I} 
valued iid random variables with P(Y" = 1) = p. Show that U = 2:;;=1 Yn and 
V = X - U are independent Poisson random variables of mean AP and 
).(1 - p) respectively. 

Remark 1. This is generally considered a "paradoxical" result since it would 
be obviously false if X were replaced by a fixed number k. 

Remark 2. The title refers to a model where the total progeny of a couple 
consists of X boys and girls, with U boys and V girls. 
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Exercise 7 (Group Testing). N individuals must undergo a medical test which 
is somewhat expensive. Instead of analyzing a blood sample for each of them 
(a procedure which would require N separate analyses), the blood samples are 
mixed and the test is performed on this "group sample." If it is positive (i.e., 
if at least one of the patients has a positive reaction), then all N patients 
undergo an individual test. The probability of a positive reaction for a given 
patient is p, and it is assumed that, with respect to this test, the patients react 
independently of one another. What is the average number of tests required 
in the group testing procedure? Compare it to N when N = 4, P = 1/10. 

Exercise 8 (Decoding a Characteristic Function). Find the distribution of a 
random variable X with cf ~x(u) = I/(2e- iU - 1). 

Exercise 9 (The Covariance Matrix of a Multinomial Vector). Let X = 
(Xl"'" X k ) be a k-dimensional random vector where the X;'s take their values 
in N. Let g(SI"'" sd be the generating function of this vector. Show that 
E[XiXj - Dij] = (02g/0S;OS) (1, ... , 1). Apply this to vector X - .,H(n, k, Pi) (Eq. 
(11) of Chapter 2), for which it is known (E21 of Chapter 2) that g(s 1" .. ,Sk) = 
(PISI + ... + Pksdn, to compute its covariance matrix. 

Exercise 10 (The Random Pen Club). You write n personal letters to be sent 
to n of your friends and you write the addresses at random on the envelopes. 
What is the probability that at least one of the envelopes has the correct 
adress? What if n is very large? 

Exercise 11 (The Matchbox (Banach's Problem». A smoker has one matchbox 
with n matches in each pocket. He reaches at random for one box or the other. 
What is the probability that, having eventually found an empty matchbox, 
there will be k matches left in the other box? 

Exercise 12 (Infinite Expectation in the Coin Tossing Game). Two players toss 
an unbiased coin in turn until both get the same number of heads. Let 2N be 
the total number of coin tosses needed for equalization. Find P(2N = 2n) and 
give the expectation of 2N. 

Exercise 13 (Lottery Tickets). Lottery tickets have numbers going from 
o 0 0 0 0 0 to 9 9 9 9 9 9. Find the probability of purchasing a ticket with the 
sum of the first three digits equal to the sum of the last three digits. 
Hint: Use generating functions. 

Exercise 14 (The Uniform Distribution on a Disk). The following model of a 
point selected at random uniformly in the closed unit disk D of R2 centered 
at the origin is proposed: Take Q = D and let .~ be the family of subsets of 
D for which the area can be defined, and for each set of A of :F with area 
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S(A) define P(A) = S(A)/S(Q) = S(A)/n. The figure below introduces a few 
notations. 

y 

n=D 

-I +1 x 

Define Z = (X 2 + y2)1/2. Thus Z is a random variable taking its values in 
[0, t] and E> takes its values in [0,2n). Compute P(O ~ a ~ Z ~ b ~ 1, 
o ~ 81 ~ E> < 82 < 2n) and show that Z and E> are independent. 

Exercise 15 (Equation with Random Coefficients). The numbers a and bare 
selected independently and uniformly on the segment [ -1, + 1]. Find the 
probability that the roots of the equation x2 + 2ax + b are real. 

Exercise 16 (Infinum of Exponential Random Variables). Let Xl' ... , Xn be 
independent exponential random variables, with E[X;J = I/A; (1 ~ i ~ n). 

Find the pdf of Y = inf(X I' ... , Xn). 

Exercise 17 (Gaussian Vector). Let X and Y be two independent standard 
Gaussian random variables. Show that the two-dimensional random vector 
«X + Y)/fi, (X - Y)/j2) is a standard Gaussian vector, without using the 
formula of change of variables. 

Exercise 18 (Spherical Coordinates). The random variables XI' ... ' Xn are iid 
.#'(0, (52). Find the pdf of the vector R, <1>1' ... , <1>.-1 where R ~ 0, <1>; E [0, 271:) 
(1 ~ i ~ n - 1), and 

XI = Rsin <1>1 

X 2 = R sin <1>2 cos <1>1 

X3 = R sin <1>3 cos <1>2 cos <1>1 

X._ I = R sin <1>.-1 cos <1>.-2 cos <1>1 

X. = R cos <1>.-1 cos <1>.- 2 cos <1>1. 
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Exercise 19 (Integral Powers of Cauchy Random Variables). Let X be a 
random variable with the pdf (1/n)(a/a 2 + x 2 ). Find the pdf of Y = xn where 
n is a positive integer. 

Exercise 20 (Change of Variables with Exponential Random Variables). Let 
VI' ... , Vn +1 be n + 1 iid random variables with pdf I(u) = ).e- Au if u > 0, 
I(u) = 0 if u,,;; O. Define 1';,= Vj(VI + ... + Vn+d for 1 ,,;; i,,;; nand Sn = 

VI + ... + Vn+ l • Compute the pdf's of the vectors (YI,oo., Y",Sn) and (YI, ... , 
Y,,), and of the random variable n 1';. 

Exercise 21 (Poisson Process and Binomial Random Variable). Let (N(t), 
t :;::, 0) be the counting process of a homogeneous Poisson process (T", n :;::, 1) 
with intensity A > O. What is the conditional distribution of N(s) given 
N(t) = n (s ~ t)? [i.e., compute P(N(s) = kl N(t) = n)]. 

Exercise 22 (The Flip-Flop Stochastic Process). Let (N(t), t :;::, 0) be the count­
ing process of a homogeneous Poisson process (Tn' n :;::, I) with intensity). > O. 
Define for each t the random variable X(t) by X(t) = X (0)( _1)N(t) where X(O) 
is a random variable taking the values -I and + 1, independent of (N(t), 
t :;::, 0). Therefore for each WEn, t ---? X(t,w) is a function flipping from -I to 
+ 1 and flopping from + 1 to - 1 : 

X(t. w) 

X(O,w)= 1 

-1 

When P(X(O) = 1) = p, compute P(X(t) = 1) for each t:;::' O. Find 
lim,too P(X(t) = I). 

Exercise 23 (A Poisson Series). Use the central limit theorem to prove that 

Exercise 24 (Standardized Poisson Counting Process). Let (N" t :;::, 0) be the 
counting process of a homogeneous Poisson process with intensity;. > O. 
Compute the cf of (N, - At)/fi and show that the latter rv converges in 
distribution to %(0, 1) as t goes to 00. 
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Exercise 25 (Asymptotic Estimate of the Intensity of a Homogeneous Poisson 
Process). Use the strong law of large numbers to show that if (N" t ~ 0) is the 
counting process of a homogeneous Poisson process with intensity), > 0, then 
limt~y N, = x, P - as. Show that lim'~D N,/t = A, P - as. 

Exercise 26 (Feller's Paradox). Let (T.t, n ~ 1) be a homogeneous Poisson 
process over iR+, with intensity A> O. Let To = O. For a fixed t > 0, define 
U, = t - 7;'1" V, = 1~'_1 - t (see figure below). 

Note that TN, is the first random point T.t strictly to the left of t and 7;."'+1 is 
the first random point T.t after t. Find the joint distribution of V, and v,. Find 
the distribution of TN'+I - TN,. Examine the case t -? 00. 

Remark. Feller's paradox consists in observing that although the random 
variables T.t+1 - T.t (n ~ 0) have the same exponential distribution, TNI +1 - T.v, 
is not an exponential random variable. 

Exercise 27 (Sum of Sums of Gaussian Random Variables). Let (s", n ~ 1) be 
a sequence of iid standard Gaussian random variables and define the sequence 

(X",n ~ \) by: X" = G1 + ... + Gn- Show that (Xl + ... + X")/nJn ~ N(0,a2 ) 

for some () to be computed. 

Exercise 28 (Gaussian Random Variables Converging in Law). Let (V"' n ~ 0) 
be a sequence of iid random variables, Gaussian, mean 0 and variance I. 
Define (X"' n ~ 0) by Xo = Va, X,,+l = aX" + U,,+l (n ~ 0). 

(i) Show that X" is a Gaussian random variable, and that if a < 1, X" ~ 
.. 11"(0, ( 2 ) for some a 2 to be identified. 

(ii) If a > 1 show that X,,/a" converges in quadratic mean. Does it converge 
in distribution,) 
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I. P. = (1 - (p - q)n)/2, limnt 00 Pn = ~. 

2. P2 = 1, P2n = P2n-2(2n - 2)/(2n - 1). To see this, consider thread 1 and its "upper 
associate" 

Thread 1 __ Upper 
associate of 

_thread 1 

(i): (ii): 

Then either (i) or (ii) occurs. (ii) occurs with probability (2n - 2)/(2n - 1). In 
situation (ii), the piece has become one bit of thread, to be linked to the 2n - 3 
remaining pieces. Finally P2n = 2·4·6 ... (2n - 2)/1 ·3·5 ... (2n - 1). 

3. I - [(0.60)(0.25) + 0040]3 = 1 - (0.5W. 

4. If x = 0, then clearly u(O) = o. If x = c, then clearly u(c) = 1. For 0 < x < c, after 
a toss of the coin, player A has fortune x + I with probability P, and fortune x - I 
with probability q. From x + t (resp. x-I), the probability of reaching c without 
getting broke in the meantime is u(x + t) (resp. u(x - 1)), and therefore (exclusive 
and exhaustive causes) 

u(x) = pu(x + 1) + qu(x - 1). 

The solution of this recurrence equation with boundary conditions ufO) = 0, 
u(c) = I is (computations) for x = a: 
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{
a/la + h) ifp = q = 1/2 

uta) = + 
[I - (q/p)"J/[1 - (q/p)" h] if p =I q. 

5. By symmetry (since the coins are unhiased), P(TA ;;. TBl = P(HA ;;. HB). But HA = 

N - T,. and Hu = N + 1 - Tu so that HA ;;. HB= T,. < TB. Therefore P(HA ;;. 
Hsl = P(TA < TB ) = 1 - P(TA ;;. TB ) and, using the first equality, PIT,. ;;. TB) = 
1 - P(TA ;;. TB l, i.e., PIT,. ;;. Ta) = 1/2. 

6. P(U = k. V = f) = P(U = k,X = k + /) = PIX = k + /, Yt + ... + y"+1 = k) 

= PIX = k + I)P( Yt + ... + y"+1 = k) 

-A ;,HI (k + I)! k , 

=e (k+i)! Xk!i!pq 

AP(Ap)k _Aq(Aq)' 
=e - - x e -. 

k! l! 

7. 1 + (1 - (1 - p)N)N. Numerical application: 2.3756. 

8. PIX = k) = 2- k (k integer ;;.1). 

9. We do the case i = 1,) = 2. The generating function of (X t ,X2 ) is f(st,s2) = 
Y('t,s2. 1, ... ,1). Also f(St,5 2 ) = Lk,ENLk,ENP(Xt = k t ,X2 = k2)S~'S~', so that 
(i' 2f/i) s t i)sz)(l, 1) = Lk'ENLk'E~ktk2P(Xt = kt,X l = k2) = E[Xt X 2]. The 
multinomial case: E[XiX;J = n(n - I)PiP; if i =I) and Var(Xn = npi(1 - Pi) 

(Why?). Also E[X;] = np,. Therefore rx = {'ii} with )iij = -npiPj if i =lj, Iii = 
np;(1 - Pi)' 

10. A, = (k 1h envelope has the correct address). To be computed P(UZ~I Ad. But 

I (n - I)! (n - 2)! 
P(Ad = - = --, P(Ak n Aj) = P(AdP(AjIAk) = --, 

n n! 11! 

(n - 3)! (") 1 P(A k n Aj n A;) = --1-"'" P n Ak = , 11. k~l n. 

Therefore the result is (inclusion-exclusion formula) 

(n)(11 - 1)! (11)(11 - 2)! (n)(n - 3)! ... .-1 1 --- --+ --- +(-1) -. 
I n! 2 n! 3 n! n! 

That is to say 

I I n _I I 
\--+--"'+(-1) -. 

2! 3! n' 

If n is very large, this is close to I - e-'. 

(211- 2)! I 
12. P(2N = 2n) =- --'-2-': E[2N] = + Xc 

n!(n - 1)! 2 n-

y (X)"(211)! (use the equality L - -jz = (\ - xl tl2). 
FO 4 (11.) 
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13. Call XI X2X3X4XSX6 the random number. The X,'s are independent and identi­
cally distributed random variables, with PIX, = k) = p = 1/10 for k = 0, ... ,9. The 
generating functions of the X/s are identicaL equal to 

I I I _ ~IO 
-(I + s + .,. + S9) = -'---
10 101-s 

The generating function g(s) of XI + X 2 + X) is 

(I - S10)3 

103 (I - S)3 

and is equal to the gf of X 4 + X 5 + X 6' The coefficient of s' in gls) is the probability 
that the sum of the first 3 digits is r, and the coefficient of s -, in q(s I) is the 
probability that the sum of the last 3 digits is r. Therefore the coefficient of sO in 
g(S)g(S-I) is the probability that we are looking for. We have 

But 

and 

(1 - S)-6 = 1 + G) s + G) 52 + ... 

and thetefore the answer is 

1~6 (en -G)cn + c)cn) = 0.05525. 

14. Pia :( Z :( b,8 1 :( e < O2 ) = (b 2 - a 2 )(02 - 81 )/2][. Therefore P(a:( Z :( b) = 

b2 - a 2 (take 01 = 0, O2 = 2][), and P(OI :( e :( (2 ) = (02 - 01 ),2][ (take a = 0, h 
= I). 

b 

+1 

16. If r? 0,1 - PlY> y) = 1 - PIX, > r, . .. ,X" >.v) = I - e i.,y ... e-!"'- Therefore 
iy(y) = (AI + ... + An)e-IA,+·",")) (y? 0). 
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17. «X + Y)/,,/2,(X - y)/y'2) is Gaussian, because it is a linear function of the 
Gaussian vector (X, Y). (By the way, why is (X, Y) Gaussian?) (X + y)/y'2 and 
(X - Y)/y'2 are independent because they are uncorrelated, and their variance is 
I (compute). 

-(,-1)1' 

19. If n is odd: fy(Y) = ay 2 21' 
rrn(a + Y ') 

{ 

2ay-(n-I)ln 

If n is even: fy(y) = rrn(a 2 + y2ln) 

o otherwise. 

ify ~ 0 

{
'.+I. AS 'f( ) rn>,+1 dOl = A se I YI, ... ,Y"SE",,+ an ~YI+"'+Y,~ 

o otherwise 

, ={n! if(YI, ... ,Yn)EIR"+.andO~YI+···+y,~1 
fy, ..... yJY,,···,}.) 0 otherwise 

• 7 _{(I-z/n)n-l ifO~z~n 
I.y(.) - . 

, 0 otherwise. 

21. (S/t)k(1 - s/t)n-kn!/(k!(n - k)!) (k = O, ... ,n). 

22. 1/2 + (p - 1/2)e- Ht --> 1/2. 

23. If (X" n ~ 1) are iid Poisson random variables with mean 1 and variance 1, 

hm P ~ 0 =-
. (XI+ .. ·+xn)-n ) 1 

nto: In 2 
(central limit theorem). 

Observe that the sum XI + ... + Xn is Poisson with mean n, and the conclusion 
follows. 

24. The cf of (N, - At)/.j"ii is exp{At(eiUIj:\; - 1 - iu/.j"ii)} -->exp{ -tu2 } as 1--> 
+C0. 

25. From the law oflarge numbers: 

therefore 

lim N, = lim Nn = +00, P - as. 

Observe that 
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26. 

Also 

S +"'+S S +"'+S lim _1_. __ N_, = lim I n 

,-or, N, n 

since N, -> 00 as. The latter limit is E[SIJ = 1/1. (law of large numbers). The 
conclusion follows from the above remarks. 

{V, ~ u, V, ~ v} = {N, - N,_. ~ I,N,+" - N, ~ I} (0 ~ u < t, v ~ 0). 

Therefore, for 0 ~ u < t, v ~ 0, 

P(V, ~ u, V, ~ v) = PIN, - N,_. ~ I)P(N,+" - N, ~ I) = (1 - e-),U)(I - e- I ,'). 

Also for u = t, v ~ 0: 

P(V, = t, V, ~ v) = PIN, = 0, N,+,. - N, ~ I) = e A'(1 - e A'l 

Finally for u ~ 0, v ~ 0: 

P(V, ~ u, V, ~ vJ = (\:.;,ti + l: u <I:(1 - e-AU»)(I - e- A,,). 

Therefore V, and V, are independent, V, is an exponential rv of mean 1/1., whereas 
V, as the cdf given by the figure below. 

L..-___ --.l _____ U 

If t -> 00, V, converges in law to an exponential rv with mean 1/1 .. In the limit 
t -> CO, TN", - TN, is the sum of two independent exponential rv's with mean I/i .. 

27. Thecfofthe vector(X I , ... , X.) is tPx, .. ,xJul, ... ,u.) = exp{ -t[u; + (u. + u.-If + 
... + (u l + .. , + U.)2]}. The cf of (XI + ... + X.)/nJn is exp{ _!u2[I/n 3(12 + 
22 + ... + n 2 )J} and tends toexp{ -!'(u 2 /3)} as n goes to;:0; (J'l = 1/3. 

28. (i) X. is a linear combination of Va, ... , V. and (Vo, ... , Vn) is a Gaussian vector 
since Va, ... , V. are independent Gaussian vectors. Therefore Xn is Gaussian. 
EX. = 0 and therefore 

(ii) 

tPxJu) = e-(I/2)/E[X~lu2. 

But E[X;+I] = a2 E[X,D + E[V}+I J = a2 E[X,D + 1. Therefore since E[XJJ = 
E[VJ] = I, lim._,. E[X,;] = 1/(1 - all, and 

Therefore 

, y' ( 1) l.e"Xn-N 0'--2 . 
I-a 

X n +1 X. V.+ I --=--+-­a n +1 an a n+ I ' 



204 

Letting 

we have 

x. 
Z.=-, an 
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I 
1--

= a nl+1 (I + ... + Q~-l) = ~nl+l ___ QI_m_ ~ 0 as n, m ~ oc. 
I--

a 

Thus (Z., Il ;, 0) converges in quadratic mean (Theorem T13). Convergence in 
gm implies convergence in law. 
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