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Introduction

When I was in high school, in the late thirties, I was fascinated by what
was then, and had been since the late nineteenth century, called “modern
geometry.” This was in fact a type of algebra, so thoroughly known that
actual calculations with coordinates had become almost unnecessary, and
“pure-thought” reasonings sufficed. I was impressed by such statements as:

e If a line has at least three points in common with a conic, it belongs to
the conic, which is the union of two lines.

e A conic having a double point is degenerate, as is a cubic having two
and a quartic having four double points.

e The intersection of a quadric with a plane tangent to it is the union of
two lines, and this defines two partitions of the quadric into families of
lines.

And so it went with polarity, cubics, quartics, etc., up to the Villarceau
circles on the torus. Just at the end we were introduced (without proof)
to Bezout’s theorem: “two plane curves of degree p and ¢ have pg common
points, real or imaginary, distinct or coincident, at finite distance or at
infinity.”

So it’s not surprising that, a few years later, I specialized in algebraic
geometry and, more exactly, in intersection theory. I did so in spite of
(or perhaps because of) warnings from my friend Laurent Schwartz against
the possibility of one’s getting carried away and abusing principles like
“a one-to-one algebraic correspondence (between lines, conics, and so on;
sometimes even the adjective ‘algebraic’ is omitted) is a projective trans-
formation”.

Indeed, he would point out, let’s take on the plane two complex conjugate
lines D and D’; they intersect at a real point P. Every real line intersects
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D at a point M and D’ at its conjugate M’, so this establishes between
D and D' a one-to-one algebraic correspondence. Since the point P is in
correspondence with itself, a well-known theorem (see section 2.5) says that
all lines joining pairs of homologous points M, M’ contain a fixed point.
We have proved that all real lines of the plane pass through the same
point!

This warning, plus the influence of my professor Claude Chevalley, who
stressed the importance of finite fields and fields of characteristic p, made
me pay particular attention to the choice of the field of scalars. The fal-
lacy in the preceding argument, for example, is that the correspondence
between M and M’ is R-rational, but not C-rational. Furthermore, as
I quickly found out, in characteristic p # 0 bijectivity is not a sufficient
condition for a rational map to be a projective transformation. But, once
the terminology has been made precise (and this involves a certain amount
of algebra), all the beauty of the old “modern geometry” subsists. In any
case, recent developments in algebraic geometry have shown that the old
and the new blend quite harmoniously if one but sets up the necessary
algebraic apparatus, whether the occasion be correspondences on a curve
in characteristic p # 0 (André Weil), the proof of the Mordell conjecture
(Gerd Faltings) or the formalization of old results of Halphen’s on twisted
curves (Gruson-Peskine).

* * *

On a more elementary and didactic note: I often had the occasion to use
profitably what I had learned in school, sometimes spiced up with a bit of
algebra, in preparing lessons for the candidates to the Aggrégation on the
topics of projective geometry, conics and quadrics, and Mdbius transfor-
mations. I had been considering the task of systematizing those somewhat
scattered notes, made of bits and pieces, when my friend Francis Hirsch
presented me with a good opportunity to do so by asking me to teach at
the ENSET a course in algebra and geometry, primarily designed to ex-
pound the parts of the program that the prospective teachers knew less
well, while at the same time enlarging their horizons. And the parts of
the program that caused them most trouble were exactly those where al-
gebra was applied to geometric situations that they were not very familiar
with: projective, and sometimes affine, geometry; projective transforma-
tions, cross-ratios, conics, quadrics, and other curves or surfaces. The for-
mer situation had been reversed (following Jean Dieudonné’s “down with
Euclid”), and it seemed that geometry was no longer taught in high school
(even to those preparing for the Ecole Polytechnique), or even in college.
Thus I tried to share with those students the fun I had had in school, and
to systematize the lectures I had been giving.

The present book is the result of this effort, and I very much enjoyed
writing it. I decided to take the book a bit further than I had taken the
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course at the ENSET, where I had lots of things to teach that had nothing
to do with projective geometry.

* * *

The prerequisites for reading this book are fairly limited: a good com-
mand of linear algebra, some knowledge of quadratic forms and field ex-
tensions, and a few notions about the irreducibility of polynomials and
factorization in rings of polynomials.

While I tried to maintain the exposition on an elementary level, I de-
cided not to limit it to R and C. Except for characteristic two, where the
classification of conics and duality with respect to conics requires special
care, there is no extra effort involved in studying characteristic p, and the
results obtained can sometimes be unexpected (see section 3.4, for example)
or amusing.

The figures, drawn over R (one hopes), are there just to help the reader
grasp the relationships among points, lines and curves that appear in state-
ments, and the reasonings which, in general, hold over (more or less) ar-
bitrary fields. To simplify the drawing, all conics appear as circles; this is
not a problem in general because we are discussing projective properties
and every conic can be mapped onto a circle by a projective transforma-
tion.
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CHAPTER 1

Projective Spaces

1.1. Projective Spaces and Projective Bases

Consider, in the plane, two non-parallel lines D and D’, and a point P
not contained in either line. To each point M of D associate the point
M’ = p(M) where the line PM intersects D':

Notice that p(M) is not defined when PM is parallel to D’; on the other
hand, the point A’ where D’ intersects the parallel to D containing P is not
in the image of p. There’s something “missing” in D and D’; the right thing
to work with seems to be the set of projecting lines, or lines containing the
center P of projection. This motivates the following definition:

Definition 1. Given a vector space F over a field K, the projective space
associated with F is the set P(FE) of (vector) lines in E.
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In this book the term “field” will include skew fields as well as commutative
ones, except where we indicate otherwise (see index for a list of such sections). If
K is a skew field we assume for concreteness that E is a left vector space over K.

One can also see P(E) as the quotient of the set E'\ 0 of non-zero vectors
modulo the equivalence relation “c ~ y if and only if y = az for some
a € K” (naturally, a # 0). Thus we have a canonical map p : E\0 — P(FE)
that associates to each vector z the vector line Kz it spans.

Definition 2. The dimension of P(FE) is the integer dim E — 1, which we
denote by dimP(E).

The projective space P(K"*!) is denoted by P, (K); its dimension is n.
Projective spaces of dimension one and two are called projective lines and
planes, respectively.

Notice that P(0) is empty; by definition 2, its dimension is —1. A zero-
dimensional projective space reduces to a point.

Definition 3. A (projective) linear subvariety, or linear subspace, of P(E)
is the image L = p(V') of a vector subspace V of E.

This definition embodies an abuse of notation: to be precise we should write
L=p(V\O0).

Notice that a projective linear space L = p(V') is the projective space P(V)
associated with V.

An intersection of projective linear spaces is a (possibly empty) projective
linear space. Given a subset A C P(F), there exists a smallest projective
linear space containing A; we call it the projective linear space generated
by A, and denote it (for the time being) by v(A). It corresponds to the
vector subspace spanned by p~1(A4).

Theorem 1. If L and L' are projective linear spaces in P(E), the following
dimension formula holds:
dimL + dimL' = dim(L N L') + dim(v(L U L')).

Proof. This is a direct translation, via definition 2, of the well-known
formula for vector subspaces:

dimV +dimV’ =dim(V N V') + dim(V + V). 0O
Corollary. IfdimL +dim L’ > dimP(E), the intersection LN L' is non-
emply.

Proof. In fact, theorem 1 gives dim(L N L’) > 0, and the only empty
projective linear space has dimension —1. O
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We say that a subset A C P(F) is projectively independent if it is the
image under p of a linearly independent subset of E.

Homogeneous coordinates

We assume from now on that E is finite-dimensional.

Given a basis (eg, €1, ...,€en) for E, we can associate to each point A €
P(FE) certain (n + 1)-tuples of elements of K, namely, the coordinates of
the vectors £ € E such that A = p(z). By definition, these (n + 1)-tuples
are all non-zero (that is, they have at least one non-zero component) and
proportional to one another: if (zo,&1,...,%n) is one (n + 1)-tuple, all
others will be of the form (azo, azy,...,az,), where a € K is non-zero.
The set of such (n+ 1)-tuples is called the homogeneous class of A € P(FE),
and each representative of this class is a set of homogeneous coordinates for
A. The mapping thus defined from P(FE) into the set of projective classes
is called a projective coordinate system.

Projective coordinate systems can be characterized intrinsically in terms

of P(E):

Theorem 2. Let K be commutative.

(a) A projective coordinate system on an n-dimensional projective space
P(FE) is uniquely determined by the n +2 points with homogeneous co-
ordinates (1,0,...,0), (0,1,...,0), ..., (0,0,...,1), (1,1,...,1). Any
n + 1 of these points form a projectively independent set.

(b) Conversely, for each (n+2)-tuple (Po, Py, ..., Pny1) of points in P(E)
all of whose (n+ 1)-subtuples are projectively independent, there exrists
a projective coordinate system assigning the coordinates (1,0,...,0) to
Py, ..., (0,0,...,1) to P, and (1,1,..., 1) to Pny1.

Proof. The n + 1 points Py, ..., P, are not enough to determine the ba-
sis of E from which the projetive coordinate system derives, because if
(eo,€1,...,€n) is such a basis, so is (ageo, aiey, ..., ane,) for any non-zero
ag,...,an € K. But if both bases assign to P,4+1 the homogeneous coordi-
nates (1,...,1) we see that Pn4 is the image of both eg+e;+---+ e, and
ageg +are1 + - - -+ anen, which implies that all the a; are equal to the same
non-zero scalar a. Thus the two bases are proportional, (eg, €1, ..., €e,) and
(aeq, aey, ..., ae,).

Now if M € P(F) comes from a point £ € E whose coordinates in the
first basis are (2o, £1, ..., Zn), the coordinates of z in the second basis will
be (zoa™1,z1a7!,...,zpa™!): the two sets of coordinates are proportional
(that is, left-proportional) because K is commutative.

To prove part (b), lift Po,..., P, to any basis (eg,...,en) of E, and
consider the coordinates (bo,...,bn) of a vector u € p~1(Pn41) in this
basis. All the b; are different from zero, so we just change our basis to

(boeo,...,b,,e,.). O
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Part (b), and the last assertion in part (a), hold even if K is a skew field.

Definition 4. An (n + 2)-tuple (Po, P1, ..., Pay1) of points in P(E) is
called a (projective) frame (or projective base) of P(FE) if, for some pro-
jective coordinate system, the homogeneous coordinates of Py, ..., P, are
(1,0,...,0), (0,1,...,0), ..., (0,0,...,1), respectively, and those of P, ;
are (1,...,1). The points Py,..., P, are called the vertices, and Py, the
unit point, of the frame.

Corollary. An (n + 2)-tuple (Po, Py, ..., Pay1) of points in an n-dimen-
sional projective space is a projective frame if and only if any n+ 1 points
among them are projectively independent. O

It amounts to the same to say that no (n — 1)-dimensional projective
linear space, or hyperplane, contains n + 1 of these points.

This corollary holds even if K is a skew field.

Examples

(1) A frame for a projective line is formed by any three distinct points
(“pairwise distinct”, as purists would have it).

(2) In a projective plane, a frame is formed by four points, three of which
form a non-degenerate triangle and the fourth of which does not belong
to any of the sides of the triangle. In this way no three points are
collinear.

¢ .0
¢ .0
0

Homogeneous coordinates can be used to write equations for projective
linear spaces of P(E). Namely, given a basis (eo,...,e,) for the vector
space E, a hyperplane H has equation

(1) zobo + 216y + -+ -+ 2,0, =0, with b; € K not all zero,
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which expresses the condition that the point with coordinates (zo,...,zn)
be on H. The same equation (1) also expresses the condition that a point
of P(E) with homogeneous coordinates (zo, ..., zn) lies in the projective
hyperplane p(H); notice that any other set (azq, ..., azr,) of homogeneous
coordinates for this point also satisfies (1).

As an intersection of hyperplanes, a projective linear space is defined
by a system of homogeneous equations of the form (1). More precisely, if
a projective linear space L has codimension d, that is, if its dimension is
n — d, the space can be defined by a system of d equations whose left-hand
sides are linearly independent linear forms.

Notice that in (1), the coefficients are written to the right of the variables. In
fact, if f is a linear form having H as its kernel, we have f(zoeo + -+ + Znen) =
:vof(eo) + -+ znf(cn) =0.

If K is commutative, one defines an algebraic subset of E to be any
subset given by a system of polynomial equations

(2) Fj(zo,z1,...,2n) =0 forj=1,...,q,

in some fixed basis of E. A change of basis alters these equations, but not
their property of being polynomial, nor their degrees.

In translating this to the projective case, it’s best to assume that the
polynomials Fj are homogeneous. Then a system of equations of the form
(2), if satisfied by one set of homogeneous coordinates of a point of P(E)
in a given projective frame, is satisfied by the whole homogeneous class of
the point. The equations are said to define an algebraic subset of P(E).

Cardinality over finite fields
Let K be the field F, with ¢ elements. If P(E) has dimension n, its
characterization as a quotient space of E \ 0 immediately shows that

"t —1 1
3) #P(E)=T=(I"+q"' +--+q+1.

1

Thus a projective line over Fy has ¢ + 1 points (at least three, since
g > 2), and a projective plane ¢% + ¢ + 1 points.

The number of bases of E is (¢"t! —1)(¢g"t1 —¢)-- - (¢"*! —q"), since we
can start by choosing any non-zero vector, then any vector not proportional
to the first, and so on. Since a projective frame is determined, up to a non-
zero scalar factor, by a basis of E' (theorem 2), we conclude that the number
of frames of P(F) is

(4) (@ =" -9 (@ ="
For lines and planes, respectively, the number of frames is q(q% — 1) =
9(g - 1)(g+1) and ¢*(¢® = 1)(¢® = ) = ¢*(¢ = )* (¢ + 1)(¢® + ¢ + 1).
P(FE) has as many d-dimensional projective linear spaces as E has (d+1)-
dimensional vector subspaces. The number of such subspaces is the number
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of sets of d + 1 linearly independent vectors in F, divided by the number
of such sets as span the same subspace. This shows that the number of
d-dimensional projective linear spaces of P(F) is

(5) (" -1 —q) (" — ¢%)
(g1 —1)(g+! —q) -~ (¢! —¢9)

For ¢ large this number is asymptotically ¢(¢+1)(n=9),

In particular, the number of lines in P(F) is

("' =1)(¢" - 1)
(a—-1)%g+1)

1.2. Projective Transformations and the
Projective Group

Let u be a linear map from a vector space F into a vector space F. Since u
preserves vector lines, it defines a map between the quotient spaces P(E)
into P(F), as long as non-zero vectors are mapped into non-zero vectors,
that is, u is one-to-one. The map P(u) : P(E) — P(F) thus obtained is
called a projective map, and a projective transformation if it is bijective,
that is, if dimP(FE) = dim P(F). Projective transformations are sometimes
called homographies.

When u is not one-to-one we obtain a map defined on the complement of

p(ker(u)).

Given another one-to-one linear map v from F' into a third vector space
G, we can write

(6) P(vou)=P(v) o P(u);
we also clearly have P(ldg) = [dp(E).

Theorem 3. Let F and F be vector spaces, with dimE > 2, and let
Z ={a € K |ab=ba for allb € K} be the center of K. Two one-to-one
linear maps u and v’ from E into F satisfy P(u) = P(v') if and only if
there exists a scalar a € Z such that v'(z) = au(z) for every z € E.

The cases dim £ = 0,1 are left to the reader.

Proof. The condition is obviously suflicient, since @ € Z implies that
u +— au is linear. Conversely, if P(u) = P(v’), there exists, for every non-
zero z € E, some scalar a(z) such that v/(z) = a(z)u(z). Taking z and y
linearly independent and expressing u/(z +y) in two different ways we find
a(z) = a(z + y) = a(y). This implies that a(z) = a(y) for every z and y,
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since we can find z proportional to neither z nor y. There remains to show
that a = a(z) is central.

For any b € K and non-zero ¢ € E, we have v/(bz) = au(bz) = abu(z)
and v'(bz) = bu'(z) = bau(z). Since u(z) # 0, this implies that ab = ba,
showing that a € Z. ad

Corollary. A one-to-one linear map of a vector space that transforms each
vector into a multiple of itself is of the form u — au, where a is a central
scalar. O

For K commutative this condition can also be stated in terms of eigenspaces.
A map of the form u — au is called a homothety.

It follows from (6) that the projective transformations of P(E) into itself
form a group, called the projective group of P(E) and denoted by PGL(E).
Theorem 3 can be rephrased to say that if dimP(E) > 2 we have PGL(E) =
GL(F)/Z*, where GL(E) is the linear group of E and Z the center of K.

Notice that the fixed points of a projective transformation P(u) are the
images of the (non-zero) eigenvectors of u.

Assume K commutative and fix a projective frame for P(E) (or, equiva-
lently, fix a basis of E up to a scalar factor). A projective transformation of
P(FE) can be expressed in this basis by a class of proportional non-singular
matrices, whose entries b;; are defined by the condition that

(8) ay; = jozo+bj11:1+‘--+bj,,1:,, forj=0,1,...,n,
where a € K* is arbitrary, (zo,...,2n) are the homogeneous coordinates
of an arbitrary point in E and (yo,...,yn) the homogeneous coordinates

of its image.

Theorem 4. Let P(E) and P(E"') be projective spaces of same dimension
n over a commutative field K, with projective frames (Po, . . ., Pn, Pn41) and
(Pg,---yPn, Ppyy), respectively. There erists a unique projective transfor-
mation h : P(E) — P(E') such that h(P;) = P! foralli=10,1,...,n,n+1.

Proof. Lift (P,,..., P,) to a basis (eo,...,en) of E such that p(eg + ---+
en) = Pnpy1 (theorem 2), and lift (P¢,..., P) to (eg,...,e,). If h exists
and is of the form h = P(u), each u(e;), for i = 0,...,n, must be of the
form a;e}, where a; is a non-zero scalar. Since h(Pny1) = P}, the vector
u(eo+- - -+e€,) can be written b(eg+ - - -+ e, ). Thus all the a; are equal to
b; this determines u up to a multiplicative scalar, and h = P(u) uniquely
(theorem 3). The existence of u is obvious: define u by u(e;) = e} for
i=0,1,...,n. a

If K is skew, uniqueness fails. For example, take a and bin K such that ab # ba.
If u is the linear map that takes the canonical basis (e, f) = ((1,0), (0,1)) of K?
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into (ae,af), it is easily checked that h = P(u) leaves invariant the points of the
“canonical” frame of P(K?) (those with homogeneous coordinates (1,0), (0,1)
and (1,1)). But P(u) cannot be the identity, otherwise u(e + bf) = ae + baf
would be of the form c(e + bf), which would imply ¢ = a and ab = ba.

Remark. Theorem 4 shows that, for K commutative, the number of ele-
ments of PGL(E) is equal to the number of frames of P(E). In particular,
if K is finite, this number is given by formula (4).

1.3. Projective and Affine Spaces

Recap on affine spaces

Recall that an affine space is a set E on which the additive group of a
vector space (denoted by v(E) or E) acts simply transitively. One often
says that the elements of E are points and those of v(E) are vectors, or
translations of E; and v(E) itself is called the vector space underlying E.
The image of a point a under the translation t is generally denoted by t+a,
whence the formulas

s+(t+a)=(s+1)+a,
O+a=a,

which simply translate the fact that a group is acting on a set. The unique

translation that takes a point a into a point b is denoted by b — a, or ab.
In this notation we have Chasles’s formula

9) (c=b)+(b—a)=c—a.

The commutativity of the group v(E) is equivalent to the parallelogram
rule

(10) b—a=b—d ifandonlyif a—a' =b-V".
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The choice of a point a € E allows one to identify E with its underlying
vector space v(E): each point m € E gets associated with the vector
m — a € v(E). Although this choice of an origin, or vectorialization, is
by no means intrinsic, one often performs it in order to make calculations
easier.

An affine frame of F is made up of a point ag and a basis (ey,...,en) of
v(E). The coordinates of a point m in this frame are those of the vector
m — ap in the given basis. It amounts to the same to give the n + 1 points
ap, a; = e; +agp, ..., @Gn = €n + ag.

An affine linear subspace (or subvariety) L is a subset of E that is either
empty or of the form L = V + a, where V is a vector subspace of v(E)
and a is a point in E. Since V +a = V' + a’ if and only if V = V' and
a’ —a € V, the vector subspace V is uniquely determined by L; it is called
the direction of L. Two affine subspaces are called parallel if they have the
same direction. When we choose an origin for E, affine subspaces (other
than the empty one) are simply translates of vector subspaces of v(E).
Every intersection of affine subspaces is one, so we have the notion of the
affine subspace generated by a subset A C F.

Given points my,...,my € E and scalars ay,...,a, € K such that a; +
-+++ an = 1, we define the barycenter of the m; with weights a; as the
unique point g such that

g—p=ai(m —p)+ - +ag(mg - p)

for everyp € F.

The operation of taking barycenters is “associative”: a barycenter of
barycenters of points m; is a barycenter of the m;. It can be shown that
the set of barycenters of a set of points m; is just the affine subspace
generated by the m;. In particular, if a subset S C E is invariant under
the operation of taking barycenters of sets of points, S is an affine subspace.

Remark. For K # F2 a subset invariant under the operation of taking barycen-
ters of two points is an affine subspace. But over F, the barycenters of two points
are just the two points, so all subsets are invariant under this operation.

In an affine frame, with coordinates denoted by (z1,...,z,), an affine
subspace is defined by a system of linear equations

$1aj1+"'+1«'najn=bj fOl‘jzl,...,q,

where the a;; and the b; are scalars.

One can choose the linear forms so that their left-hand sides are linearly
independent; then the dimension of the affine subspace is n — ¢. (The
dimension of an affine subspace is the dimension of its direction.)

This is only true about non-empty affine subspaces. The empty affine subspace
can be defined by the equations £; = 0 and z; = 1, for example.
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Ezample: the complement of a hyperplane in a projective space

Theorem 4. Let P be an n-dimensional projective space and H C P a
hyperplane. Denote by T the set containing the identity and the projective
transformations of P that leave invariant ezactly those points of P that
belong to H. Then T is a group isomorphic to the additive group of an
n-dimensional vector space, and it acls simply transitively on P\ H.

Proof. Write P = P(V;) and H = P(H,), where V; is a vector space over
K and H; C Vi a hyperplane. Choose z € V; such that V; is the direct
sum of H; and Kz, and consider u € GL(V;) such that P(u) € T and
P(u) # Id. Since P(u) leaves invariant all points in H, there exists a € K
such that u(z) = az for every z € H;. On the other hand, we can write
u(z) = h+bz, withhe Hy and b€ K.

A fixed point of P(u) comes from an eigenvector of u; if we write such
a vector in the form z + ¢z, with £ € H; and ¢ € K, the condition is that
u(z+cz) = d(z+cz) for some d € K, that is, that az+c(h+bz) = dz+dcz.
This is equivalent to the system

a—d)z+ch=0,
®) (@=dzteh=
cb =dec.

Thus P(u) has a fixed point outside H if and only if there exists a solution
(c,d,z) of (S) with ¢ # 0. If h = 0, there exists such a solution with ¢ = 1,
d = b and « = 0; the assumption P(u) € T then requires P(u) = 1, whence
a=2>5. If h # 0, on the other hand, (S) and ¢ # 0 together imply d = cbc~!
and (a — cbc™!)z = —ch; this has a solution unless a — cbe~! vanishes for
every non-zero c, that is, unless a and b are equal and belong to the center
of K.

Thus if P(u) € T we can normalize u so as to make a = b = 1; then
u is the identity on H; and u(z) is of the form u(z) = hy + 2z, where
hy € H, is uniquely determined by P(u). Furthermore, it’s easy to see
that hyoy = hy + hy if P(u),P(v) € T. Hence the group structure on T.
That T acts simply transitively on P\ H follows from the fact that the
translations h, act simply transitively on z + H;. a

Embeddings of an affine space in a projective space

Let E be an affine space over K, with underlying vector space v(E), and
a € E a point. The projective closure E of E is defined as

(11) E=P(v(E) x K).
We also define an injection j, : E — E by
(12) Ja(m) =p(m —a,1) forme€E.

This injection is determined, up to a translation, by the choice of a. The
image j,(E) is the complement of the hyperplane P (v(E) x 0) in E.
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Let E and F be affine spaces over K. A map f : E — F is called
an affine map if there exists a linear map v(f) : v(E) — v(F') such that
v(f)(m —m') = f(m) — f(m') for every m,m' € E. If f : E — F is affine
and one-to-one, it defines a projective map

(13) f=P(u(f) xldk) : E— F.
This map extends f in the sense that
(14) f(Ga(m)) = jpa) (F(m)) for every m € E;

this is because f(js(m)) is the canonical image in F of (f(m) — f(a),1).
With the obvious notations, we have

(15) dod =wuowv,

so there is a canonical injection from the affine group of E into the projec-
tive group of E. Its image consists of the projective transformations that
leave the hyperplane at infinity P (v(E) x 0) globally invariant.

Affine coordinates and homogeneous coordinates

Thus every affine space E can be seen as the complement P\ H of a
hyperplane in a projective space. This hyperplane and all sets lying in it
are said to be at infinity. Notice that two affine subspaces are parallel if
and only if they have the same points at infinity (more rigorously, we should
say that their projective completions have the same points at infinity, but
we won’t be so sticky).

Conversely, if we pick a hyperplane H in a projective space P and con-
centrate on the affine structure of P\ H, we’ll often say that H is the
hyperplane at infinity, or that H has been sent to infinity. We can then
choose a projective coordinate system (zg,21,...,2,) on P in such a way
that H is the hyperplane of equation £o = 0. If m € P is a point not on
H, the n-tuple (:cgl:cl, .. .,:cgl:c,.) gives the affine coordinates of m. If a
projective linear space L of P which is not at infinity is given by the system
of (homogeneous) equations

zoajo + Z1aj1 + -+ -+ Tpajn = 0 forj=1,...,q,

its intersection with P\ H is the affine subspace defined by the (affine)
equations ajo + y1@j1 + - - + Ynajn = 0. If K is commutative and L is an
algebraic subset of P, not contained in H, and defined by the homogeneous
polynomial equations

Fj(zo,...,20) =0 forj=1,...,q,

the intersection LN(P\ H) is defined by the equations F;(1,y;,...,ys) = 0.
In sum, to pass from projective to affine equations, just take z¢ = 1.

When L is at infinity, the system of affine equations obtained by this procedure
is “impossible”, that is, it has no solutions, even over the algebraic closure of K.
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Conversely, let E be an affine space with a fixed affine frame, and denote
by (¥1,-..,yn) the coordinates of a point m € E. Embed E in E=P
using the injection j, associated with the origin a of the chosen frame. By
(11) and (12), (1,1, - - -, Yn) is a set of homogeneous coordinates for ja(m),
in the corresponding projective coordinate system of K x v(E). If L is an
affine subspace of F defined by the equations

a1+ -+ Ynajn = b; forj=1,...,q,

the projective closure L of L is given by the equations i85+ -+ ZTpajn =
zob;, and we have L = (P\ H)N L, where H is the hyperplane at infinity.

Now assume that K is commutative and consider an algebraic subset A of
the affine space F, defined by a single polynomial equation F(y1,...,yn) =
0. Denote by d the total degree of F', and form the homogeneous polynomial
F}, of degree d associated with F':

(15) Fh(zo,zl,...,zn)zrgF(zl/zo,...,a:,,/zo).

The algebraic subset of P defined by the homogeneous equation Fj(zo,
z1,...,&n) = 0 is called the projective closure of A, and is denoted by A.
Since Fr(1,y1,.--,Yn) = F(y1,...,yn), the set A is the intersection of A
with P\ H. The points of A \ A are called points at infinity of A; they
make up an algebraic subset of H.

In this discussion we have limited ourselves to hypersurfaces, or algebraic sets
defined by a single equation (hypersurfaces are called curves or surfaces if n = 2
or 3, respectively). The dimension of such objects, whether affine or projective,
is n — 1, by any reasonable definition.

In treating lower-dimensional algebraic subsets of E, defined by several poly-
nomial equations, it’s not enough to homogenize the defining equations; one must
also homogenize all the polynomials in the ideal generated by them.

For example, consider in C? the circle C defined by the equations z2 +y? 4 2% —
1 =0 and 22 + y? + 22 — 2z = 0. The corresponding homogeneous equations are
22 +y?+22—1? = 0 and 22 + y2 + 22 — 2zt = 0 (where the homogenizing variable
is written t instead of zo). The algebraic set defined by these two equations is
the union of C with a curve at infinity, of equation 2 4+ y? 4+ 22 = t = 0, which is
called an umbilic. But the actual projective closure of C is smaller than that: it
has only two points at infinity, where it intersects the umbilic. The reason is that
the polynomial 2z —1, for example, is in the ideal generated by z2+y2+2%2—1 and
22 + y? + 22 — 2z, so by definition points in € must be zcros of the homogenized
polynomial 2z —¢ = 0. In this case we can get around the problem of extra points
at infinity by replacing one of the two equations of spheres that define C by the
equation 2z — 1 = 0 of their radical plane. There are cascs, however, where no
such replacement is possible.

Given a projective space P and a system of projective coordinates for it,
say (o, 21,.-.,Zn), the hyperplanes H; of equation z; = 0,fori = 0,...,n,
have empty intersection, which means that P is the union of the n + 1
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affine spaces P \ H;. The affine coordinates in P\ H; of a point whose
homogeneous coordinates are (zg,z1,...,Z,) are given by

-1 -1 -1 -1
(27 zoy . &7 " Tic1, &7 Tig1, .., ] Tn).

Consider a point in P\ (HoU H;), and let its affine coordinates in P\ Ho
be (y1,-..,yn); by assumption, y; # 0. The homogeneous coordinates of
this point are (1,y1,...,Yn), so its affine coordinates in P \ H; are

(16) (yi—lyyi—lyly'")yi_lyt'—lvy;‘_lyii—l)'-')yi_lyn)-

In practice we allow ourselves some abuses in notation. For example, if
we start from the affine curve C defined by z3 + zy + 1 = 0 and denote
by z the homogenizing variable, the projective closure C of C is given by
23 — zyz 4+ 23 = 0; in order to study the point (z,y, z) = (0, 1,0), the only
point at infinity of the closure, we can make y = 1, obtaining the equation
23 + z3 — 2z = 0 for the “affine piece” of C that lies in the affine space
y # 0. Obviously the letters z,y, z don’t have the same meaning in the
three equations.

Simple and multiple points

Here we assume that K is commutative and infinite. Let V' be an affine
hypersurface with equation F(yi,...,yn) = 0. We will write the polyno-
mial F in the form

F(Y)=Fo+ Fy(Y)+ -+ Fa(Y),

where Y = (Yi,...,Ys), Fj is homogeneous of degree j and Fyq # 0. The
integer d is called the degree of F. Let D be the affine line defined by
yi = a; +b;t, wherei=1,...,n and t € K is a parameter; D goes through

the point A = (a4,...,a,). The parameter values at the intersections of D
with V are the roots of the equation
(18) F(al +blt,...,a,,+b,,t) =0.

This equation is identically satisfied if and only if V' contains D, since we
assumed K infinite; from now on we exclude this case. Otherwise (18) has
degree at most d, so D has at most d distinct common points P, ..., P,
with V. Let t;,...,t, be their parameters. The multiplicity m; of the root
tj of (18) depends only on the point P;; it remains the same if we change
frames or if we change the parameter along D (by an affine transformation).
This number m; is called the intersection multiplicity of V and D at P;.
If the point A = (ay,...,a,) ison V, (18) has a root at t = 0. This root
is simple if and only if the coefficient of ¢ in (18) is non-zero. By Taylor’s
formula, this coeflicient is F{(a)b; + - - - + F.(a)bn, where F/(a) is the i-th
partial derivative of F at (ay,...,a,). If at least one partial derivative at
A is non-zero, we say that A is a simple point of V. Then the root t = 0 is
simple unless the vector (b1,...,b,) satisfies F{(a)b; + ---+ Fl(a)b, = 0;
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this condition amounts to saying that the tip (y1,...,¥n) of the vector is
on the hyperplane

(19) Fi(a)(y1 —a1) + -+ F(a)(yn — an) = 0,

called the tangent hyperplane to V at A. The lines of this hyperplane that
go through A and whose intersection multiplicity with V' at A is at least
two are said to be tangent to V at A.

A point A = (ay,...,an) of V such that F{(a) = --- = F}(a) = 0 is said
to be multiple (or singular); such points form an algebraic subset of V/,
defined by n + 1 equations. To study such a point more closely, we make
it the origin; then Fo = F; = 0 in (17). Let m be the smallest integer
such that the homogeneous polynomial Fy, is non-zero; m is called the
multiplicity of A on V. Equation (18) becomes

(20) Fm(bl,...,bm)tm+-'~+Fd(b1,...,bm)td=0;

thus the intersection multiplicity of V and D at A is m unless D lies in the
tangent cone of equation Fy,(y1,...,ym) = 0.

Assume now that all the roots of (18) are in K (for example, if K is
algebraically closed). If (18) has maximal degree, namely d, we can say
that D and V have d common points, where each point P; is counted with
its intersection multiplicity m;. But if (18) has degree less than d, because
its highest coefficient Fy(by, ..., b,) vanishes, it’s no longer true that V and
D have d common points. Where are the other points gone? To infinity,
of course. Indeed, the relation Fy(by,...,b,) = 0 implies that the point at
infinity of D is in V (or rather, in V); we say then that the direction of D
is an asymptotic direction of V.

Examples. The intersection of the plane curve z* — y* — ry = 0 with the line
y = bz is determined by the equation (1 — b*)z* — bz? = 0. This equation has
z = 0 as a double root, that is, the origin is a double point. The degree drops
to 2 for b =1,—1,1, —¢, which are the slopes of the asymptotic directions of the
curves.

The surface 2 + y> + 2° = 0 has only one multiple point in affine space, the
origin: if the partial derivatives 2z, 3y?, 5z* all vanish we havez =y = 2 =0 in
characteristic # 2, 3,5, and in characteristic 2, 3 or 5 two of the coordinates are
zero, hence so is the third because of the equation of the surface. Its asymptotic
directions, those along which the highest-degree term vanishes, are the directions
contained in the plane z = 0. The intersection z =t = 0 of this plane with the
plane at infinity is the part at infinity of the projective closure of the surface.
All points in this intersection are singular (in the closure); to see this, one can
observe that the degree of (18) drops by 2 in all directions such that z = 0, or
else write the equation of the surface in the affine patches r # 0 and y # 0, say,
and take partial derivatives (the equation in the patch y # 0, for example, is
2+t 4+2° = 0).
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Thus we’re led to consider, in a projective space P, the intersection of a
hypersurface V of homogeneous equation G(zo, ...,z,) = 0 with a line D
of parametric equation

zi = ¢iu + d;v fori=0,...,n,

where the “parameter” (u,v) in K2 is to be understood projectively, that
is, (u,v) # (0,0), and two proportional pairs parametrize the same point.
The intersection of V and D is governed by the equation

(21) G(cou +dov,...,cnu+dyv) =0.

This is a homogeneous equation of degree d = deg G in u and v. Replacing
K, if necessary, by an algebraic extension, we can write the left-hand side
of (21) as a product of linear factors in (u, v), as follows: factor out u¥, for
k > 0 maximal, then solve the equation obtained by making u = 1; each
root e; of this equation yields a factor v —e;u of (21). Counting each factor
with its exponent, we obtain d solutions (u,v), each of which can be put
in the form (0, 1) or (1, ¢j). Thus we obtain exactly d points common to V
and D. In the old literature this is expressed by saying that V and D have
d common points, “real or imaginary” (replace K by its algebraic closure),
“distinct or not” (count multiplicities), “at finite distance or at infinity”
(replace the affine hypersurface by its closure).

Thus we see where the “disappearing” intersection points go when equa-
tion (18) drops from degree d to degree d — k. The idea is to take G above
to be the homogeneous polynomial associated with F, and the ¢; and d;
(i = 1,...,n) to describe the same line D whose affine representation is
¥i = a; +b;t: writing z¢o = u and z; = a;u+b;v, for example, we get ¢ = 1,
do = 0, ¢; = a;, d; = b;. Then (21) becomes

(22) G(u,a1u+ byv,...,apu+byv) = 0.

Upon setting v = tu this equation becomes u*G(1, a1 +bit, ..., an +bnt) =
0, which reduces to (18) if u # 0. The d — k roots t; € K of (18) account
for the d — k factors v —tju in the left-hand side of (22); but there are also
k factors u, corresponding to the point at infinity of D, counted k times.
Notice that the intersection multiplicities are the same in the affine and
the projective cases.

Finally, let’s spell out the projective version of the notions of simple
points and tangent hyperplanes. Assume that a point A, with homogeneous
coordinates (¢, .-, ¢n), lies on V, so that the coefficient of u? in the left-
hand side of (21) is zero. D and V intersect at A with multiplicity one if
and only if v is a simple factor in the left-hand side of (21), if and only if
the coefficient of u4~1v is non-zero. By Taylor’s formula, this coefficient
is doGp(c) + - - - + dn Gl (c), where Gi(c) is the i-th partial derivative of G
evaluated at (cg,...,¢cn).

Now A is a simple point of V if any line intersecting V at A does so with
multiplicity one; by the previous paragraph, this happens if and only if at
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least one of the G/(c) is non-zero. Thus the multiple points of V' are defined
by the n + 2 equations G(z) = Gi(z) = 0. If A is a simple point of V' the
tangents to V at A (that is, the lines whose intersection with V' at A has
multiplicity at least 2) are characterized by belonging to the hyperplane of
equation

(23) zoGp(z) + z:Gi(z) + - -+ .G, (2) = O,
the tangent hyperplane to V at A.

Remark. By Euler’s formula doGg(c)+- - -+dnGp(c) = dG(z), a point where all
the partial derivatives of G vanish is on V if d is not a multiple of the characteristic
of K.

If G(zo,...,%n) is obtained by homogenizing F(y1,...,yn), it is easy to see
that Gi(1,y1,...,yn) = F{(y1,...,yn) fori=1,...,n, whence

Go(1,91,..-,9n) = dF(y) =01 Fi(y) =+ = ynFa(y)-

Applying this formula to a simple point A = (1,41,...,an) of V wesee that, since
F(a) = 0, equation (23) reduces to the affine equation for the tangent hyperplane

(19).

Three important theorems.

We will often use phrases borrowed from elementary geometry, such as

“draw the line passing through two points”, “collinear points”, “concurrent

lines”, “coplanar lines”, and so on. The line passing through two (distinct)

points of an affine or projective space will be denoted by Dgj or simply ab.

Theorem 5 (Desargues). In a projective space P, let D, D' and D"
be distinct lines having a common point O. If A/B € D, A'",B' € D'
and A",B" € D" are poinis distinct from one another and from O, the
three intersection points I = Daar N Dgpry, J = Dpgan N Dgpgn and K =
Djrgn N Dpigu are collinear.

Proof. These intersection points are well-defined: D and D’, for example,
lie on the same plane, so D44 and Dpp: also line on that plane; the two
being distinct we can apply theorem 1 (section 1). To show collinearity,
start with the case when the three lines D, D’ and D” are not coplanar.
Then they generate a three-dimensional projective linear space, which con-
tains the planes AA’A"” and BB’ B”. Again by theorem 1, these two planes
must have a line in common, which contains I, J and K.

The case when D, D' and D’ are coplanar follows by projection, but
we will give a direct proof. In the plane of the three lines, let the line
at infinity be Dys, and assume first that O ¢ Dyy. Let the origin be O.
Looking at A, B, ..., B"” as vectors, we can find scalars a,a’,a” € K such
that B = aA, B’ = a’A’ and B"” = a” A”. Since I is at infinity, AA’ and
BB’ are parallel, so there exists ¢ € K such that B’ — B = ¢(A4’ — A), that
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is, /A’ — aA = cA’ — cA; this implies a’ = a = ¢ because A and A’ are
linerarly independent. Similarly a = a”. But then B” — B’ = a(A" — A'),
which shows that D4 4» and Dpg:gn are parallel, that is, their intersection
K is on the line at infinity Dyjy.

Finally, if O € Dyj, all three lines D, D’ and D" are parallel and ABB’ A’
and ABB'"' A" are parallelograms. The translation B— A takes A’ to B’ and
A" to B, so Dgign and Dpgign are parallel, and again K is at infinity. O

A B

A
Vo,

Ma fe
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Theorem 6 (Pappus). Let P be a projective plane over a field K. The
following conditions are equivalent:

(1) For any two distinct lines D, D’ and any points A,B,C € D and
A',B',C' € D', all distinct, the points I = Dag N Dpar, J = Dcar N
Djci and K = Dgcr N Degr are collinear.

(2) K is commutative.

Proof. Notice first that in an affine plane two points with coordinates (p, ¢)
and (p',¢') are collinear with the origin I if and only if p~lqg=p'"1¢.

c
D’
A J
A
B U b
K —p C
k B

| b a

Now take I, C and C’ as vertices of a projective frame, Dcc: as the
line at infinity and U = D N D’ as the unit point. All points in D have
second coordinate 1; write A = (a,1) and B = (b, 1). Since A, B’ and I are
collinear and B’ has first coordinate 1, we have B’ = (1,a~!). Similarly,
the coordinates of A’ are (1,b!). Thus J has coordinates (a,b~!) and
K has coordinates (b,a~1); they are collinear with the origin if and only
if a=1b~1 = b~'a~!, if and only if ab = ba. Since a,b # 0 are arbitrary
I,J, K are always collinear if and only if K is commutative. a

Theorem 7 (fundamental theorem of projective geometry). Let P = P(V)
and P' = P(V') be two projective spaces of same dimension n > 2 over
fields K and K’'. If f : P — P' is a bijection that takes collinear points
into collinear points, f is induced on P by a bijection g : V — V' that is
additive and satlisfies g(az) = s(a)g(z), where s : K — K' is a fized field
isomorphism.

A bijection taking collinear points into collinear points is called a collineation.
An additive map g : V — V"’ such that g(z) = s(a)g(z) for some field isomor-
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phism s : K — K' is called semilinear (with respect to to s). It is clear that a
bijective semilinear map preserves linear dependence, and that it induces a map
f:P(V) — P(V'); thus the converse of theorem 7 is trivially true.

We could have restricted the theorem’s hypothesis to sets of three collinear
points, because for (fixed) a,b € A and a variable £ € Dgs, the image f(z) is on
the line Df(a),f(b)-

Corollary. A collineation from a projective space of dimension at least
two into itself is a composition of an automorphism of the field of scalars
with a projective transformation. a

The fields Q, R and F,, for p prime, have no non-trivial automorphisms, so
for such field collineatious and projective transformations are equivalent.

Proof of theorem 7. Let ag,...,a, be projectively independent points
in P. For j = 0,...,n, denote by L; the projective linear space gen-
erated by ao,...,a; and by L} the projective linear space generated by

f(ao),...,f(aj).

aj

P Lj—1

First we see, by induction on j, that f(L;) C Lj: indeed, for every
m € L;j, the line ajm intersects L;j_; at a point p; since f(m) is collinear
with f(a;) and f(p), which lies in L!_, C L}, we obtain f(m) € L}. This
also implies that f(ag),..., f(an) are projectively independent, because
P’ = f(P) = f(Ln) C L, by surjectivity.

On the other hand we have f(L;) D L}, because f is surjective, and
points m € P\ L; are mapped outside L} (complete the set (ao,...,a;,m)
into a set of n + 1 projectively independent points; by the previous para-
graph f(ao),..., f(a;j), f(m) will be projectively independent). Thus we
conclude that f(L;) = Lj. ‘

Now choose in P an origin O and a hyperplane at infinity H. Then f(H)
is a hyperplane H' of P’, which we also take to be at infinity; and we take
O’ = f(O) as the origin. In this way we get a bijection, also denoted by f,
between the vector spaces E = P\ H and E' = P'\ H'; we’ll be done if we
show that f is semilinear with respect to some field automorphism s, since
then g = f x s will be the desired map from V = Ex K into V! = F' x K'.

The map f : E — E' takes lines into lines and parallel lines into parallel
lines. Since f(O) = O, the parallelogram rule shows that f(z + y) =
f(z) + f(y) when z and y are linearly independent.
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X +y
y
Otherwise we have y € Kz and, since we assumed dim E > 2, we may
we take a point z ¢ Kz, which will be linearly independent of z, y and
z +y. In addition, y + 2 is linearly independent of z. In this case, too, the
additivity of f is verified, because

fe+y+2)=f((z+y) +2)=fz+y)+ f(z) = f(z+ (y+2))
= f(z) + f(y + 2) = f(z) + f(v) + f(2).

For a € K and z # O, the points O, z and az are collinear, hence so
are O, f(z) and f(az). Thus there exists s(a,z) € K’ such that f(az) =
s(a,z)f(z). If z and y are linearly independent, so are f(z) and f(y), and
we see, by calculating f(a(z + y)) in two ways, that s(a,z) = s(a,y) =
s(a, z+y); this can be checked for z and y linearly dependent as well, using
an auxiliary vector z as in the previous paragraph. Thus s(a,z) does not
depend on z, and we denote it by s(a).

For z # O, hence h(z) # O, the formulas f((a + b)z) = f(az) + f(bz)
and f(a(bz)) = f((ab)z) immediately give s(a + b) = s(a) + s(b) and
s(ab) = s(a)s(b). Since f(Kz) = K'f(z), we conclude that s : K — K’ is
surjective, hence an isomorphism. a

Remark on the affine analogue of theorem 7.

Let f : A — A’ be a bijection taking triples of collinear points into triples
of collinear points, where A and A’ are affine spaces of same dimension
n > 2, over K and K’, respectively. When K = F,, this assumption is
vacuous, because lines have only two elements. However, if K # F3, one
can show that f is semilinear (as a map from the vectorialization of A at
an arbitrary point O to the vectorialization of 4 at O’ = f(O)).

The proof is very similar to that of theorem 7. One takes affinely in-
dependent points ao,...,an € A, and, denoting by L; and L} the affine
subspaces generated by ao,...,a; and f(ao),..., f(a;j), respectively, one
shows by induction over j that f(L;) C L;. For m € Lj, there is no
difficulty if the line ma; intersects Lj_;. If not, ma; is parallel to some
direction in L;j_y; one then takes an auxiliary point p € D4, so the line
a;p is not parallel to L;_;. Setting ¢ = ajpN Lj_1, one concludes from the
collinearity of a;, p and ¢ that f(p) € L}, and from the collinearity of m,
p and ao that f(m) € L}.

There follows from the surjectivity of f, asin theorem 7, that f(L;) = L}
for every j, and that f takes lines into lines and parallel lines into parallel
lines. An application of the parallelogram rule and the same calculations
as in theorem 7 complete the proof.
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4o

1.4. Axiomatic Presentation of Projective and
Affine Planes

Incidence azioms: projectlive case

The fundamental theorem of projective geometry (theorem 7) hints that
it is possible to reconstruct projective geometry from the notion of colline-
arity. That’s just what we’re going to do, axiomatically, in the case of the
plane.

Consider a set P of points, called a plane, and a non-empty family of
proper, non-empty subsets of P, called lines. Assume that the following
incidence axioms are satisfied:

(A1) Two distinct points in P belong to ezactly one line.
(A2) Two distinct lines in P have exactly one common point.

Remarks

(1) Notice the symmetry of the two assertions, which can be rephrased to say
that “two points determine a unique line” and “two lines determine a unique
point”. We will come back to this topic in section 5, when we discuss duality.
Notice also that A1l by itself already implies that two distinct lines have at
most one common point, and similarly for A2.

(2) An axiomatic definition of n-dimensional projective spaces would involve n—1
families of non-empty, proper subsets of P, the j-dimensional projective linear
subspaces of P for j = 1,...,n — 1, satisfying the following conditions: any
J + 1 points not contained in an (j — 1)-dimensional projective linear space
determine a unique j-dimensional projective linear space; any intersection of
projective linear spaces is one; and the dimension of the intersection of two
projective linear spaces is given by the formula in theorem 1, the notion of
the projective linear space generated by a set making sense by the previous
condition. This is all quite easy to write down explicitly in the case n = 3.

The following are immediate consequences of axioms Al and A2. (We
denote the line going through a and b by D,y or ab.)
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(1)

2)

3)

(4)

(%)

(6)

1. Projective Spaces

Since P has non-emply proper subsets, P has at least two points. Fur-
thermore, since all lines are distinct from P, A1l implies that P has at
least three points.

No line consists of only one point. Otherwise, by A2, every line would
go through that point, say a; taking distinct points b, c # a we'd have
ab = bc (by Al), so ab would actually be the whole plane.

Is the union D U D' of two lines distinct from P? Denote by a the
common point of D and D’. If there are two points b,¢ € D distinct
from a, and two points ¥,¢’ € D’ distinct from a, the common point
of bb’ and cc’ is outside D and D’. Thus P = DU D’ can only happen
when D, for example, has exactly two points a and b, and D’ is the
complement of b. Such a plane is declared uninteresting and excluded
from further consideration.

Any two lines D and D' are in bijection with one another. Take p ¢
DU D' and project D onto D’ through p, that is, associate with each
m € D the unique point m’ € D’ where pm intersects D’. This map is
clearly invertible, hence a bijection.

p D

If the lines have finite cardinality ¢ + 1, the plane contains ¢2 + q + 1
points and the same number of lines. Take a line D and a point a ¢ D.
All lines in a are in bijection with the points in D, so there are ¢ + 1
of them. Each line contains ¢ points distinct from a, whence #(P) =
(¢ + 1)g + 1. In order to count the lines we notice that, except for D,
there are ¢ lines going through each of the ¢ + 1 points of D, hence a
total of 1 + ¢(g + 1) lines.

We have ¢ > 2, and consequently #(P) > 7. If ¢ = 1 all lines have two
points and all two-point sets in P are lines (by A1); this can’t happen
if #(P) > 4 because we’d have disjoint lines, contradicting A2, and if
#(P) = 3 it means the plane is uninteresting.

A projective plane is said to be desarguesian if it satisfies the following
axiom:
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(A3) (Desargues’s ariom). For any distinct concurrent lines D, D’, D"
and any points a,b € D, o', b/ € D' and a",b" € D", distinct from
one another and from the common point of D, D' D", the points
Dgar N Dyyry Dggr N Dypir and Dgigrn N Dyipe are collinear.

Incidence azioms: affine case

Let P be a (not uninteresting) projective plane. Let A = P\ Dg be the
complement of a line Dy of P, which will be called the line at infinity. Call
a subset of A a line if it is the intersection of A with a line of P distinct from
Dy; the lines of A are non-empty, by consequence (2) above, and distinct
from A, by consequence (3). Call two lines of A parallel if the lines of P
that they come from meet at infinity. Axiom A1l becomes:

(A’1) Two distinct points in A determine a unique line.

It follows that two distinct lines in A have at most one common point.
By A2, two lines without a common point are parallel. Applying Al to a
point in A and a point at infinity (that is, in Dp), we get:

(A’2) Through each point in A we can draw a unique line parallelto a given
line.

If ¢ + 1 is the cardinality of the lines of P, all the lines in A have ¢ elements
(recall that ¢ > 2, by consequence (6) above). The affine plane A contains ¢°
points and ¢2 + ¢ lines.

Conversely, we call an affine plane any set A of points with a non-empty
set of non-empty, proper subsets, called lines, that satisfy axioms A’l and
A’2. Tt follows from A’1 that two distinct lines have at most one common
point. We say that two lines are parallel if they coincide or have no points in
common. Parallelism is an equivalence relation: reflexivity and symmetry
are obvious, and, if D is parallel to D’ and to D", either D’ and D" are
disjoint, or, if they have a common point a, they coincide (by A’2 applied
to a and D). A direction is an equivalence class of lines; let Dy be the set
of directions.

By adjoining Dy to A we obtain a set P. By definition, the lines of P are
Dy and the subsets D obtained by adding to each line of A its direction (also
called its point at infinity); these subsets are all non-empty and distinct
form P. One sees immediately that P is a projective plane: A1l follows
from A’1 and A’2, and A2 from the fact that two disjoint lines in A share
a point at infinity. Furthermore this projective plane is not uninteresting.

Otherwise it contains a line £ whose complement is a point a, by (3) above.
We have E # Do because A, which contains non-empty, proper subsets, cannot
have only one point. Thus E comes from a line D of A; let b be a point in D.
The point at infinity of ab lies outside F; furthermore it cannot be a, otherwise
A = D. This gives two points outside F, a contradiction.
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Thus, if we disregard uninteresting planes, the study of affine planes and
that of projective planes are interchangeable. This situation is analogous
to the one encountered in section 3.

An affine plane is called desarguesian if it satisfies the following axiom
(a particular case of A3):

(A’3) Let D, D', D" be distinct concurrent or parallel lines in A, and a,b €
D, a',b € D', a”,b" € D" points distinct from one another and from
the common point of D, D', D", if it exists. If Dgaqr is parallel to Dyy
and Dggn is parallel to Dypi, then Dgign s parallel to Dyipn.

The fundamental theorem

We say that two projective (or affine) planes are isomorphic if there
exists a bijection between the two that maps the family of lines of the first
onto the family of lines of the second.

Theorem 8.

(a) Every desarguesian projective plane P is isomorphic to a plane P(V),
where V is a three-dimensional vector space over a field.
(b) Every desarguesian affine plane E is isomorphic 1o an affine plane over

a field.

Proof. It is enough to show (b), because, if P is a projective plane and Dy is
aline in P, we can apply (b) to P\ Dy, which gives (a) by the considerations
in section 3. Notice that, because of theorem 5, the particular case A’3 of
Desargues’s axiom implies the more general axiom A3.

The proof of part 8(b) is long. It will comprise the following steps:

e a direct analysis of the “small” affine planes (¢ = 2 or 3), where the
difficulties arising from the collinearity of certain points in the proof are
not as easy to get around as when the plane is bigger;

e the definition of an equivalence relation on pairs of points of E, the
equivalence classes of which are called vectors;

o the definition of a group structure on the set V' of these equivalence
classes and of a group action of V on E by so-called translations;

o the definition of certain endomorphisms of V, called homotheties, and
the proof that they form a field K.

The small planes

If ¢ = 2, E has four points, and lines are just two-element subsets. Thus
E is isomorphic to the affine plane over Fs.

If ¢ = 3, choose two intersecting lines D and D’, and name the points
of each 0, 1 and 2, where 0 is common to both. Consideration of the six
lines parallel to either D or D’ shows that we can list the points of E by
the pairs (i, 5), for ¢, =0,1,2.
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Any other line intersects each line parallel to either D or D’ in a unique
point, so its points are of the form (i, s(i)), where s is an element of the
symmetric group Ss, that is, a permutation of {0,1,2}. Since there are
six such lines—because g% 4+ ¢ = 12—the set of lines parallel to neither D
nor D' is in one-to-oné correspondence with S3. But this is exactly the
situation for F3 x F3: the lines non-parallel to the coordinate axes are of
the form y = az + b, for a,b € F3 and a # 0, and so correspond also to the
six permutations of F3 = {0, 1,2}.

The equivalence relation

Given two distinct, non-collinear points a, b, a’, b’, we set

ey (a,b) ~ (a’: b’)

if Dgrps is parallel to Dgp and Dypy is parallel to Dgqs. The relation (a, b) ~
(a’,b’) is equivalent to (b,a) ~ (b/,d’), to (a,a’) ~ (b,b’) and to (a’,a) ~
(b’,5). It is also equivalent to (a’,b’) ~ (a,b), that is, ~ is a symmetric
relation. Any three points determine the fourth.

Lemma 1. If the lines Dgy, Dgaryr and Dgnyn are distinct, ~ is transitive:
(a,b) ~ (d',¥’) and (d’, V') ~ (a”,b") imply (a,b) ~ (a”,b").

Proof. This follows from Desargues’s axiom A’3: D,q parallel with Dy
and Dgrgn parallel with Dy imply that Dggn is parallel with Dy, O

Now, if a, b, a’, b’ are on the same line D, with a # b, we set

(In) (a,b) ~ (d',b')

if there exist points u,v ¢ D such that (a,b) ~ (u,v) and (u,v) ~ (a’, V).
This relation is reflexive and symmetric. If u is given, v is uniquely
determined.
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Lemma 2. Ifa,b,a' b are collinear, the relation ~ defined by (II) is
independent of u.

Proof. Assume we also have (a,b) ~ (u/,v') and (¥/,v') ~ (a’,b}). If v’ is
outside D and D,,, we apply lemma 1 and obtain 4] = b’. Otherwise we
take u” outside D and D,,, which is possible because ¢ > 3, and define
v" by (u”,v") ~ (u,v); an application of lemma 1 to (a,b), (u,v), (u”,v")
and to (u”,v"), (v/,v'), (a’,b}) shows again that b’ = b}.

Corollary. For any given points a,b,a’ on a line D, there exists a unique
b’ € D such that (a,b) ~ (a’,V’). a

Lemma 3. The relation ~ between pairs (a,b) and (a/,V’) of distinct
points(a # b, a’ # V') defined by (I) and (II) is an equivalence relation.
Any three of the points determine the fourth.

Proof. Symmetry has been shown. Reflexivity follows form lemma 1 if Dy,
Dgipr and Dgnpe are distinct; otherwise we call in an extra pair (u, v) lying
on a parallel line distinct from the previous three (again possible because
q>3). a

Finally, for a = b, we set
(av a) ~ (al» b’)

if and only if @’ = ¥'. This completes the definition of the relation ~ on
the set of ordered pairs (a, b); it is clear that ~ is and equivalence relation.

Vectors and translations

A vector is a ~-equivalence class of ordered pairs of pointsin E. The class
of a pair (a, b) is denoted by b—a, and we say that (a, b) is a representative of
b—a. A vector z has a unique representative (a, b) with given origin a, since
any point is determined by the other three in the relation (a,b) ~ (a’,d).
The class of pairs (a, a) is called the zero vector, and is denoted by 0. For all
representatives (a, b) of a given non-zero vector, the lines D, are parallel;
their direction is called the direction of z.

The sum of two vectors z,y is the vector z defined as follows: take a
point a, let (a,b) be the representative of z with origin a and (b,c) the
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representative of y with origin b, and set z = ¢ — a. To show that z is
independent of a, consider this construction for some other point a’: the
lines Dgq¢, Dyy and D, are parallel, and, if D4, is not parallel to Dy,
Dy, or Dy, Desargues’s axiom A’3 shows that ¢’ — a’ = ¢ — a. Otherwise
we introduce an auxiliary point a”: since ¢ > 4, the plane has five distinct
directions, and we can choose two that are not those of Dyp, D,., or Dy,
and make them the directions of aa” and a’’a’.

—
—

The sum of two vectors z and y will be called z + y. Clearly + is
associative. To show commutativity, we use the parallelogram rule (I) and
the definition of ~ when the directions of £ and y are distinct; otherwise
we set y = 3y’ +y”’, where the directions of ¢ and y”’ are distinct from that
of z, and write

z+y=r+(yl+yll)=(z+yl)+yll=(yl+z)+yll
=yY+(+y)=vV+@" +z)=y+z.

o) y’

The zero vector is obviously the identity element, and b—a is the negative
of a — b. This shows that the set V of vectors is a commutative group.

Lemma 4. The relationsb—a = b —a’ anda’ —a = b’ — b are equivalent.

Proof. This has been seen when the four points a, b, a’, b’ are not collinear.
In the general case, b —a = b’ — a’ implies, by the definition of the sum of
two vectors and its commutativity:

ad—a=(ad-b+0b-a)=(0b"—-a)+(a -b)=b-b. a
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Finally, let  be a vector. For every point m € E, denote by T;(m) the
unique point m’ such that m’ — m = z. By the definition of the sum of two
vectors, we have Ty (T;(m)) = Toyy(m) = Ty4z(m); in addition we have
T, = Idg if and only if £ = 0. Thus each T} is a bijection of E, which
we call the translation by z. The discussion above shows that V acts on
E by translations, and that this action is simply transitive: the unique
translation that takes a to b is Ty_,.

The field of homotheties

Choose a point O € P, and identify each point a € E with the vector
a — O. This identifies F with the commutative group V, the sum of two
points non-collinear with O being given by the parallelogram rule. Notice
that every line going through O is a subgroup of F, because the sum of
two vectors of same direction has the same direction as the two.

xX+y

o)

Now fix a line A through O and a point 1 on A, distinct from O. For
every a € A and every z € A, consider the parallel to Dy, going through a;
it intersects the line Oz at a point which we call hq(z). We have ho(z) = O
and hy(z) = z for every z ¢ A. Temporarily fixa # O on A and set h = h,.

h(y)
hix)

0] 1 a

Lemma 5. Ifz,y ¢ A are distinct, Dy(z)n(y) is parallel to Dgy.
Proof. This is obvious if Dy contains O or 1. Otherwise it follows from

Desargues’s axiom A’3. a

Corollary. If D C F is any line, h transforms points on D into points on
a line parallel to D, with the possible exception of points in DN A. a
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Lemma 6. Ifz, y and z + y lie outside A, we have
h(z +y) = h(z) + h(y).

Proof. If z and y are not collinear with O, we apply lemma 5 and the
parallelogram rule. If y is on D = Dy, we take a point u ¢ D such that
u,z+y+u,y+u ¢ A (this is possible because ¢ > 4: we must avoid D
and three parallels to A, so we take u on a fourth parallel to A, and avoid
its intersection with D). Then, since z,y,z+y € D, we havey+ u ¢ D,
z+y+u¢ D, which gives

h(z +y+u) = h(z + ) + h(w),
h(z +y + u) = h(z) + h(y + u) = h(z) + h(y) + h(u),

as we wished to prove.

a

We will now define h(z) for z € A. Take u ¢ A and consider d(u) =
h(z+u)—h(u). Forv ¢ A, the difference d(u)—d(v) equals h(z+u)—h(v) =
h(z + v) — h(u), which is zero if z + u+ v ¢ A, since both sides equal
h(z+u+v). If £+ u+ v € A we use an auxiliary point w such that
z+u+w¢ Aand z+v+wé A; we just have to avoid two parallels to
A. This shows that d(u) is independent of u, and we set

(I1Im) h(z) = h(z + u) — h(u) for any u ¢ A.

Lemma 7. The map h thus defined is an endomorphism of the group E.

Proof. The relation h(z + y) = h(z) + h(y), which holds outside A by
lemma 6, still holds by (III) if one of the pointsison A. If z, yand z + y
all lie in A we use the old trick: computing h(z + y + u) in two ways, for
ug A a

Lemma 8. We have ho(z)+ ho(z) = hays(z) for every a,b € A and every
zekE.

Proof. By bringing in an auxiliary point if necessary, we can assume z ¢ A.
By construction, hs(z) — a and hy(z) — b have the same direction as z — 1,
hence so does their sum hq(z) + hs(z) — (a +b). Thus ha(z) + hs(z) is the
intersection of Do, with the parallel to D;, going through a + b; but this
intersection is hg4s(z). a

Lemma 9. Let a € A. Then h, is the unique endomorphism of E taking
every line into a parallel line and taking 1 to a. If a is non-zero, h, is an
automorphism.

Proof. We first show that if such an endomorphism exists it is unique. If
z ¢ A, its image h,(z) = y is uniquely determined as the intersection of
Dy, with the parallel to D;, through a, because Dy  is invariant under h;.
For z € A, uniqueness follows from (III).
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Now we show that h, has the right properties. We have seen that, if
D # A is a line through O, the image of D is contained in D; hence for
every parallel u+ D to D, we have hy(u+ D) = hg(u)+ ho(D) C ha(u)+ D.
The corollary to lemma 5 shows that, for every parallel v + A to A, with
v & A, the image h,(v + A) is contained in a parallel to v + A, which is
then necessarily hq(v) + A. Since h, is an endomorphism, we deduce that
ha(A) C A, showing that the image of any line is a line parallel to it.

ha x)

0 1 a A

In particular, for £ ¢ A, the image hq(D;) is contained in the parallel
to Dy, going through hs(z). This parallel contains h,(1) and, by the
definition of hs(z), also a; this, together with a € A, implies h,(1) = a.

Finally, if a # 0, every point y € E'\ A is in hy(FE), being the image of
the point £ where the parallel to D,y through 1 intersects Do,. By using
an auxiliary point we see this is true for y € F, that is, h, is surjective,
and maps every line onto a parallel line. To show injectivity, notice first
that a point £ ¢ A maps outside the origin, by construction; and a point
0 # u € A, in turn, maps to the intersection of A with the parallel to D,,
passing through h,(z), which is non-zero. a

hyix)

S
u

-
h_(u)

We’re now practically done. For a and bin A, the composition hgohy is an
endomorphism of E' which maps each line into a parallel line; by lemma 9,
haohy = h, for some ¢ € A. Set ab = c; this clearly defines a group law on
A, with 1 as the identity. Since ab = hqp(1) = hqa(hs(1)) = hq(b), we get
a(b + b') = ab + ab’ by the additivity of h,. From lemma 8 if follows that
(a+a’)b = ab+a’b, so that A is aring. Finally, for a # 0, the automorphism
h7! takes every line into a parallel line, whence, by lemma 9, h7! = hy
for some a’ € A; since aa’ = a’a = 1, we have shown that A is a field.

The formulas above show that, setting az = hy(z) fora€ Aand z € E,
we make E a left vector space over A. Every line D through O is a one-
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dimensional vector subspace, because, if we fix a non-zero u € D, the map
a +— au is a bijection between A and D (the projection parallel to Dy1). By
the parallelogram rule, two points of E non-collinear with O form a basis
for E, which is consequently two-dimensional over A. As translates of lines
through O, the lines of E are simply the one-dimensional affine spaces of
E. This completes the proof of theorem 8. a

Comments on Desargues’s aziom

(1) Desargues’s axiom is independent of axioms A’l and A’2. Here’s an
example of an non-desarguesian affine plane: Let a “line” in R? (notice
the quotation marks) be either
e an ordinary line of slope zero, infinity or negative;

e a broken line of the form

© e EIE e

/

For a,b € R2, axiom A’l is clearly satisfied if the slope of the segment
ab is zero, infintity or negative. If its slope is positive, let (z/,y’) and
(2"”,y") be the coordinates of a and b, respectively. If y and y have
the same sign, A’l is still satisfied: draw the line joining a and b as
far as the z-axis, then extend it to the other half-plane by doubling
or halving its slope. Finally, for ¥ < 0 and ¥’ > 0, (IV) can only be
satisfied if y” /(2" —t) = 2y /(2' —t) (since £’ < z’’), and this equation
has a unique solution

z’y” _ 2ylzll
Yy — 2y/ :

t=

To verify Euclid’s axiom A’2, we can limit ourselves to the case of
broken “lines”. If D,D’ are two such “lines”, given by (m,t) and



32 1. Projective Spaces

(x7y")

/ Ix,y’)

(m’,t’) in (IV), any intersection point (z,y) of D and D’ must satisfy
m(z —t)=m/(z' —t') if y <0, and 2m(z —t) = 2m'(z' — t') if y > 0.
Both of these equations reduce to

(m —m')e = mt — m't’.

Thus D and D’ have a unique common point if m # m/, and they are
parallel if m = m’, that is, if they are obtained from one another by a
translation along the z-axis. This clearly implies A’2.

\\a
N
b
o]
1 ¥
~
/

Finally, we show that this plane is not desarguesian. Denote the
unique “line” through a and b by D/,. Consider the points a = (0, 1),
b= (0,0), @’ = (1,0), ¥ = (1,-1), a” = (2,1) and ¥” = (2,0), lying
on the vertical “lines” D = Dyy, D' = Dgp and D" = Dgupi. One
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(2)

©)

(4)

immediately sees that D/, and Dj,, are ordinary and parallel, and so
are D/, and Dj,,; but D,, , and Dj,,, cannot be parallel, since they
have different values of m in (IV).
The study of finite (affine or projective) planes is connected with ques-
tions of statistics and combinatorics. Let ¢ be the cardinality of the
affine lines of a plane. If the plane is desarguesian, ¢ is the order of
a finite field (theorem 8), hence ¢ = p” for some prime p. Since every
finite field is commutative, Pappus’s theorem (theorem 6) is satisfied.
There exist finite non-desarguesian fields. For instance, for p an odd
prime and r > 2, consider on Fyr the twisted multiplication

;c-o y= -;-(u(z)u(y)” + u(z)pu(y))»

where u(z) = 1(z + zP). This multiplication law, which is bi-additive,
makes Fpr into a skew algebra, which yields a non-desarguesian projec-
tive plane. There is an analogous construction for ¢ = 2" with r > 4.
For q prime and ¢ = 4, 8 all projective planes are desarguesian.

Little is known about other values of ¢. Combinatorial arguments
show that there is no projective plane with ¢ = 6,14, 21,22. The case
¢ = 10 seems to be still open.

For more details see [Ha, chapter 20] and [Pi].

If a projective plane can be embedded, as a projective linear space,
into a higher-dimensional projective space, it must be desarguesian.
Indeed, every plane Desargues configuration in the plane can be seen
(cf. the proof of theorem 5) as the “projection” of a configuration in
space, where the points I, J and K necessarily lie on the line common
to the planes AA’A” and BB’ B"”. The converse is clear by theorem 8.
Another characterization of desarguesian planes is by saying that they
have enough automorphisms (or collineations). For example, consider
the following assertion:

(A”3) For any line D and any three collinear points O,u,v & D such that

u # O and v # O, there ezists an automorphism of P firing O and
D(pointwise) and taking u to v.

o

This is true for desarguesian planes: if D is sent to infinity and O is
the origin, P\ D becomes a vector space over a field K (theorem 8),
and the desired automorphism is just the homothety f(z) = az, for
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a € K, that takes u into v. (This homothety is semilinear only if K is
non-commutative, because, for b € K, we have f(bz) = (aba=!)f(z) =
s(b)f(z), where s is an inner automorphism of K.)

Conversely, if P satisfies A”3 and F, E’, E” are concurrent lines in P
with points u,v € E, u’,v’ € E’ and u”,v"” € E” as in the hypothesis
of axiom A3, let O be the common point of E, E’, E” and D the line
joining I = Dyyr N Dyyr with J = Dyyn N Dyyn. The automorphism f
that takes u into v takes Dyy: into Dy, since it leaves I fixed; since,
for every z € P, the points O, z, f(z) are collinear, we see that f(u')
is equal to v/ = E’ N Dy,. Similarly, f(u") = v", so f takes Dyiyn to
Dy1yn. This implies that the third intersection point K = DyiynNDyryn
is fixed, and consequently lies on Dyj, because K # 0.

An elegant axiomatization of affine planes, based on the incidence
axioms A’l and A’2 and on the existence of enough automorphisms,
was developed by Emil Artin [Ar].

1.5. Projective Spaces of Hyperplanes and Duality

Linear systems of hyperplanes

Recall that, if F is a (left) vector space over K, the set E* of linear
forms on E is a (right) vector space over K, called the dual of E. In finite
dimension we have

(24) dimE* = dimE.

To every linear form f associate its kernel ker f. If f is non-zero, ker f is
a hyperplane of E. Two linear forms f, f’ have the same kernel if and only
if they are proportional, that is, f/ = fc for some ¢ € K. Thus the set of
hyperplanes of E (or of P(E), which is the same), can be identified with
the projective space P(E*). We will assume P(E) has finite dimension n.

If we’re given a projective coordinate system on P(E)—coming, say, from
a basis B of E—the hyperplane of equation zoug+- - -+, u, = 0, considered
as a point in the projective space P(E*) with the homogeneous coordinates
coming from the basis of E* dual to B, has coordinates (ug, ..., up).

A projective linear space S of P(E*) is called a linear system of hyper-
planes, or a pencil of hyperplanes if dimS = 1.

Theorem 9. Given a linear system S of hyperplanes of P(E), there ezists
a projeclive linear space B(S), called the base of S, such that S is the set of
hyperplanes containing B(S). We have dim B(S) = dimP(F)—dimS - 1.

Proof. We think in terms of vector spaces. Recall that, if W is a vector
subspace of a vector space V, the set W' of linear forms that vanish on
W is a subspace of V*, which can be identified with the dual of V/W;
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hence dim W’ = codim W by (24). We apply that to the subspace T of E*
from which S comes. Observe that each element zo € E defines a linear
form on Fy (the evaluation map), so that, by (24), F can be identified
with the dual of F*; this is sometimes called biduality. Thus the subspace
T' of E is the set of zeros common to the linear forms f € T, that is,
the intersection of their kernels. The set (T”)’ of linear forms that vanish
on T' obviously contains T'; since dim(7") = codimT’ = dim T, we have
(T")Y = T. Setting B(S) = p(T"), we see that the hyperplanes in S are
exactly those containing B(S). Since

dim B(S) =dimT' —1=codimT — 1 =dimE —dimT -1,

the formula about dimensions is proven. a

Examples. A pencil of hyperplanes is formed by all hyperplanes containing a
projective linear space of codimension 2. In a three-dimensional space, a pencil
of planes is the set of planes that pass through a given line; a two-dimension
linear system of planes is the set of planes that pass through a given point. In
the plane, a pencil of lines is formed by all lines going through a point; in the
affine plane, we can talk about pencils of concurrent lines and pencils of parallel
lines, those whose base point is at infinity.

Duality

Every theorem on projective linear spaces applies, of course, to linear
systems of hyperplanes. To the notion of the projective linear space gen-
erated by a set of points a; there corresponds the notion of the smallest
linear system containing the hyperplanes H;, which is, by theorem 9, the
intersection of the H;. Conversely, to an intersection of projective linear
spaces there corresponds an intersection of linear systems S; and the base
of this intersection is the projective linear space generated by the bases
B(S;), again by theorem 9. Thus we can establish a “dictionary” to trans-
late to the language of linear systems of hyperplanes all general statements
about projective linear spaces. Here is the dictionary in the case of the
plane:

Point Line

Line Pencil of lines, or its base point
Collinear points Concurrent lines

Line containing two points Intersection of two lines

Because of biduality, this table can be read both ways.
As an example, let’s translate the theorems of Pappus and Desargues
(theorems 5 and 6):

Let D, D', D" be concurrent lines. Let a, a’, @’ be collinear points.
Y
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Take points a,b € D, a’,b € D’ and
a", b € D".

Let i (resp. j, k) be the intersec-
tion point of the lines aa’ and
b’ (resp. aa” and bb”, a’a” and
by,

Then 1, j, k are collinear.

Assume K commutative.

Let D, D’ be two lines, a,b,c € D
and da’,b,c’ € D' points.

Let ¢ (resp. j, k) be the intersec-
tion point of the lines abd’ and
ba’ (resp. ac¢’ and ca’, bc’ and
cb’).

Then ¢, j, k are collinear.

1. Projective Spaces

Take lines D, F > a, D', E’' 5 a’ and
D" E">ad".

Let I (resp. J, K) be the line joining
the points DN D' and ENE’
(resp. DND” and ENE", D'N
D" and E' N E").

Then I,J, K are concurrent.

Assume K commutative.

Let a,a’ be two points, A, B,C 3 a
and A’, B’,C’' 5 a’ lines.

Let I (resp. J, K) be the line joining
the points AN B’ and B N A’
(resp. ANC’ and CnA', BNC’
and C N B').

Then I,J, K are concurrent.

The duality between points and lines led to a controversy amongst the geome-
ters of the early nineteenth century. Some, like Gergonne, saw at its origin the
parallelism between the linear equations of points and lines; for example, joining
two points and intersecting two lines involve the same manipulations on the re-
spective equations. In modern terms, this amounts to saying that the projective
spaces of points and lines have the same structure: it’s the point of view presented
here. Poncelet, on the other hand, based the duality on the idea of polarity with
respect to a conic (cf. section 4.3), which essentially boils down to choosing an
isomorphism between a vector (or projective) space onto its dual, by means of a
non-degenerate quadratic form. Since Poncelet was a general and the head of the
Ecole Polytechnique, and Gergonne was a mere captain in the French artillery,
it was the former’s point of view that prevailed, at least among their French
contemporaries. Although not going as deep into the nature of things as Ger-
gonne’s, Poncelet’s point of view is suitable for the solution of metric problems
(section 4.4).

1.6. The Projective Space of Circles

Affine and homogeneous coordinates

Given an orthonormal frame, a circle in a real Euclidean affine plane
E has an equation of the form z2 + y?> + bz + cy + d = 0. In order to
take into account circles without real points, like 22 + y2 +1 = 0, it is
well to complexify E into a complex affine space Ec. Also, in order to
study transformations that involve points at infinity, like inversions, it is
well to take the projective closure of Ec, which is essentially P,(C), and
to homogenize the coefficients of the equations of circles. Thus we’ll call a
circle the set of points in P3(C) whose homogeneous coordinates (z, y,t)
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satisfy an equation of the form
(24) a(z? 4+ y?) + bzt + cyt + dt? = 0,

where (a,b,¢c,d) # (0,0,0,0). Two equations of this form define the same
set if and only if they are proportional. More generally:

Theorem 10. Two quadratic homogeneous equations F(z,y,t) = 0 and
G(z,y,t) = 0 define the same subset C of a projective plane over an
algebraically closed field if and only if they are proportional.

Proof. If F is the square of a linear form, C'is a line (“counted twice”), and
this determines the linear form up to a scalar. Otherwise C contains three
non-collinear points, which we can take as base points of P. The equations
of F and G are then of the form

uzy + vyt + wiz = 0,
urzy +v'yt + w'tz = 0.

If at least one of u, v, w vanishes, C is the union of two lines (the equation
of F factors), and the assertion follows. Otherwise, for all points of C “at
finite distance” (t # 0), we have the affine relations y = —wz/(uz + v) =
—w'z(u'z + v'); this implies that v’//u = v/ /v = v’ /w, because

(wu' — uv)z? + (wv' —vw')z =0

for infinitely many values of . O

We will see in chapter 3 under what conditions this conclusion still holds over
an arbitrary field. Literally speaking the conclusion doesn’t hold for equations
of degree > 3, since z?y = 0 and zy? = 0 define the same union of two lines; but
see also section 8.

Thus a circle is characterized by the point of homogeneous coordinates
(a,b,c,d)in a projective space Pg, so that circles form a three-dimensional
projective space. In this statement we have included, under the name of
circles,

e true circles, for which a # 0;

e unions of the line at infinity with some other line, for which a = 0 and
(5,¢) # (0,0);

e the line at infinity counted twice, when (a,b,¢) = (0,0,0) and d # 0.

A conic is the set of points in a projective plane whose points satisfy an
equation of degree two.

Theorem 11. A conic C of P2(C) is a circle if and only if it contains the
points (z,y,t) such that z2+y%? =t =0, i.e., the points with homogeneous
coordinates (1,4,0) and (1, —4,0).
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Proof. Let az? + bry + cy? + dzt + eyt + ft2 = 0 the equation of C.
Its intersection with the line at infinity ¢ = 0 is defined by the equation
az? 4 bzy+ cy? = 0; the roots (in y/z) of this equation are i and —i if and
only if =0 and a = c. a

The points (1,1,0) and (1, —1,0), common to all circles, are called cyclic
points. Their characterization shows that they are independent of the
orthonormal frame chosen in the affine plane. Lines whose point at infinity
is a cyclic point, and vectors parallel to such lines, are called isotropic (for
vectors this is the same as isotropy in the sense of quadratic forms, since
the form z2 + y? vanishes on such vectors). The isotropic lines stemming
from the center of a true circle are tangent to the circle at the cyclic points;
we can say they’re the circle’s asymptotes.

Inversions

Given a point A in a real Euclidean plane E and a real number k # 0,
the inversion of pole A and power k is the map which associates to every
point M # A of the plane the point M’ € Dgp such that AM - AM' = k.
Clearly an inversion of pole A is an involution of P \ A.

.. . _— k. — .
The explicit expression of AM’ is ————AM. Thus, with respect to

— 2
|aM||
an orthonormal frame with origin A, the inversion is given by the formulas
kz ky
25 = —— = .
(25) R R y 22442

We extend this map to P3(C) by homogenizing z’ and y/, associating to a
point with homogeneous coordinates (z,y,t), whenever possible, the point
with homogeneous coordinates (z’,y’,t’) given by

(26) z' = kzt, v = kyt, t'=z%+4°.

The map is now defined on the complement of the pole A and of the cyclic
points I, J. Every other point of the line at infinity Dy; maps to A, every
point of Dar \ {A, I'} maps to I and every point of Day \ {A, J} maps to
J. On the complement of these three lines the inversion is an involution.
Its fixed points are the points on the circle 2 4+ y2 = k; the existence of
real fixed points is equivalent to k > 0. Since this circle characterizes the
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inversion, we sometimes talk about the the inversion with respect to a given
circle.

Let us study how a circle behaves under inversion. By plugging into (24)
the values of z’, ¢/, t’ (instead of (z,y,t)) given by (26), we obtain

ak?t?(z? + y?) + (bkxt + ckyt)(z? + y?) + d(z2 + y?)2 = 0.

We eliminate the makeweight factor z2 + y? (which corresponds to the
points on the isotropic lines, whose images are the cyclic points), to obtain
the equation

(27) d(z? + y?) + bkat + ckyt + ak?t® = 0.

Theorem 12. An inversion with pole at the origin and power k transforms
the circle with homogeneous coordinates (a,b,c,d) into the circle with ho-
mogeneous coordinates (d, kb, kc, k2a). a

Thus inversion gives rise to an involutive projective transformation of
the space of circles. An analysis of (24) and (27) shows that:

e a true circle not going through A (a # 0, d # 0) maps to a true circle
not going through A;

e a true circle going through A (a # 0, d = 0) maps to the union of the
line at infinity with another line, and conversely;

o the line at infinity counted twice (a = b = ¢ = 0, d # 0) maps to the
union z2 4+ y? = 0 of the isotropic lines of A, which is the “circle of radius
zero” centered at A, and conversely.

The second line corresponding to a circle C through A is orthogonal to the
line that joins A with the center of C. The calculation to show this is easy, but
easier yet is to observe that the figure is symmetric with respect to that line.

M
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Orthogonality

A circle whose affine equation is 22 4 y?2 — 2uz — 2vy + w = 0 has center
(u,v) and radius (u? 4+ v2 — w)!/2. Saying that this circle is orthogonal to
another circle of equation 2 + y2 — 2u'z — 2v'y + w’ = 0 is saying that the
square of the distance between the centers is the sum of the squares of the
radii, that is,

(u—u')2+(v—v')2=u2+v2—w+u'2+v'2—w',

or again that 2(uu’+vv')— (w+w’) = 0. Thus, for two circles whose homo-
geneous coordinates in the space of circles are (a,b,¢,d) and (d’,¥', ¢, d'),
orthogonality is expressed by

(28) BY + ¢’ — 2(ad’ + da’) = 0

(take u = —b/2a, v = —c/2a, w = d/a, etc., and multiply by aa’.)
Turning to the degenerate cases, (28) has the following consequences:

(1) a circle of radius zero C and an arbitrary circle C’' # 2D, (where Do
denotes the line at infinity) are orthogonal if and only if the center of
C is on C';

(2) a true circle C and D + Dy are orthogonal if and only D goes through
the center of C;

(3) D+ Do and D’ + Dg are orthogonal if and only D and D’ are;

(4) C is orthogonal to 2Dy if and only if C is of the form D + Dy.

All of this, and especially (2) and (3), is quite reasonable. One can say that the

center of a “circle” of the form D + Do is at infinity, in the direction orthogonal
to D.

The left-hand side of (28) is a symmetric bilinear form. Its associated
quadratic form is b2 + ¢2 — 4ad, which is non-degenerate. Its isotropic
vectors, where this form vanishes, correspond to circles of radius zero (u? +
v2 — w = 0 in our original notation).

Remark. If one is only interested in true circles and their real points, one
can associate to the circle of equation z2 + y2 — 2ur — 2vy + w = 0 the point
(u, v, w) € R3. Its projection (u,v) is the center of the circle. Circles of radius
zero correspond to points on the paraboloid of revolution w = u? + v?, circles
without real points to points inside the paraboloid and ordinary circles to those
outisde. Orthogonality between circles is given by polarity with respect to the
paraboloid (see chapter 4).

Pencils of circles

A pencil of circles is a line in the projective space P3(C) of circles. A
(two-dimensional) linear system of circles is a plane in the same space.
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If F(z,y,t) =0 and G(z,y,t) = 0 are equations of two (distinct) circles
in a pencil, the general equation of the circles in the pencil is

(29) uF(z,y,t) + vG(z,y,t) =0,

where (u,v) # (0,0) and two proportional pairs (u, v) yield the same circle.
The points common to F = 0 and G = 0 are common to all the circles in
the pencil; we call them the base points of the pencil. The cyclic points I
and J are base points of all pencils.

Theorem 13. Every point (zo, yo,%0) that is not a base point of a pencil
of circles is contained in exactly one circle in the pencil.

Proof. If F(zo,yo,t0) # 0, for example, take u = G(xo, y0,t0) and v =
—F(Io, yo,to) in (29) ad

The bilinearity of the orthogonality relation (28) immediately shows that,
if a circle is orthogonal to two circles in a pencil, it is orthogonal to all circles
in the pencil. More precisely, the classical results on the orthogonality of
vector subspaces with respect to a non-degenerate bilinear form take the
following aspect:

Theorem 14.

(a) The set of circles orthogonal to all the circles of a pencil F is a pencil
F', called the pencil orthogonal to F. The pencil orthogonalto F' is F.
(b) The set of circles orthogonal to a given circle forms a two-dimensional
linear system of circles. Conversely, every such system is oblained in
this way. O

For a circle of the form D + Dy, this linear system consists of the circles with
centers on D (plus lines orthogonal to D); for a circle C of radius zero it consists
of the circles that go through the center of C.

We now study the classification of pencils of circles. If a pencil F contains
two degenerate circles, t factors out in equation (29); all points at infinity
are base points and the rest of the pencil is a pencil of (concurrent or
parallel) lines.

Otherwise, exactly one linear combination in (29) makes the coefficient
of £2 4+ y? vanish, and F contains a unique degenerate circle D + Dy; the
line D is called the radical axis of the pencil. Thus a pencil of this type is
determined by its radical axis and one true circle.

The circle with homogeneous coordinates (a, b, ¢, d) has as its center the
point with homogeneous coordinates (b, ¢, —2a); this triple is a linear func-
tion of the quadruple (a, b, ¢, d). This means that if C runs through a pencil
F, its center draws a line L, or else is fixed. If it is fixed, we’re dealing
with a pencil of concentric circles, whose general equation is

u((z — zot)? + (y — yot)?) +vt2 =0
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and whose radical axis is the line at infinity.

Otherwise L is called the central line of the pencil. It is orthogonal to
the radical axis D because the “center” of D + Dy is at infinity, in the
direction perpendicular to D. In order to classify pencils of circles with
real coefficients, we take L and D to be the z- and y-axes. After this
normalization a pencil F is determined by one of its circles, say the one
centered at the origin, which may, however, be imaginary. Together with
D, this circle gives for F the affine equation

(30) 224+ y? —k - 2wz =0.

The center of a circle C,, with parameter value w is (w, 0), and the square
of its radius is k + w?. Three cases are possible, depending on the sign of
k:

e k > 0: the circle Cp is real, of radius Vk. It intersects the radical axis
at two points A and B, of coordinates (0,vk) and (0, —v/k), which are
the (non-cyclic) base points of the pencil. The pencil F is formed of all
circles that contain A and B (it’s easy to see that (30) is the general
equation of such circles); we say that F is a pencil with base points.
Such a pencil has no circle with real center and zero radius.

e k < 0: the circle Cp is imaginary. The base points of the pencil are
complex conjugate. The power of the origin with respect to the circles
of the pencil is the positive constant —k, so that the origin lies outside
the circles. The circle C,, has real points if and only if w > v/—k. The
circles of radius zero and centered at (v/—k,0) and (—v/—k, 0) belong to
F; they are called the Poncelet points of F, and F is said to be a pencil
with Poncelet points.

e k = 0: in this case (30) is the general equation of the circles tangent to
the radical y-axis at the origin. The only non-cyclic base point is the
origin, counted twice (sometimes one counts the origin together with an
“infinitely close point in the y-direction”). If F is of this type we say
that F is a pencil of tangent circles.

Let’s study the pencils orthogonal to those of each of the types above.
If F is degenerate things are pretty easy:

Concurrent lines going through A Concentric circles centered at A
Parallel lines Parallel lines orthogonal to the first

If F is given by equation (30), the central line (the z-axis) and the circle
z2 + y? + k = 0 are orthogonal to every circle in F; thus the orthogonal
pencil has general equation

(31) 224+ +k-2w'y=0.

The central line and the radical axis have exchanged roles. Since k has
become —k, the three types above are interchanged:

Pencil with base points Pencil with Poncelet points
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y y
A
(o) .4
O x
B
Pencil with Poncelet points Pencil with base points
Pencil of tangent circles Pencil of tangent circles

The base points of one pencil are the Poncelet points of its orthogonal.

Finally, since inversions are projective transformations of the space of
circles, they transform pencils into pencils, and this allows us to simplify
the study of pencils by reducing them to “standard forms”. Orthogonality
(28) is preserved under inversion (theorem 12), so orthogonal pencils are
taken into orthogonal pencils. If F is a pencil with base points A and B,
an inversion j with pole A takes F into the pencil of lines going through
j(B). By orthogonality, a pencil with Poncelet points A and B is taken
under j into the pencil of concentric circles centered at j(B). Finally, the
pencil of circles tangent to some line D at the origin is taken, under an
inversion whose pole is the origin, into the pencil of lines parallel to D.
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1.7. The Projective Space of Conics

Irreducibility

Let the field of scalars K be commutative. A conic is the set of points
on a projective plane P whose homogeneous coordinates (z, y,t) satisfy a
homogeneous quadratic equation:

(32) F(z,y,t) = az? + by’ + ct’ + a'yt + b'at + c'zy = 0.

The set of points of the conic determines the quadratic form F' up to a
scalar when K is algebraically closed (theorem 10) and in many other cases
(section 3.1).

A conic is said to be irreducible or non-degenerate if F is irreducible
over the algebraic closure of K. Otherwise F is the product of two linear
forms, so the conic is either the union of two distinct lines, or a single line
“counted twice” (if F is proportional to a square).

Theorem 15. A conic C is non-degenerale if and only if all of ils poinis
are simple.

Proof. If C splits into two lines, distinct or not, a point in the intersection
of the two lines is double (section 3). Conversely, if C has a multiple point
A, the line that joins it with another point of C has at least three points
in common with C, so it is entirely contained in C; the rest of C is a line
as well. |

Thus C is non-degenerate if and only if the equations F; = Fy = F{ =0
and F = 0 have a common non-trivial solution. This implies that the
determinant of the three derivatives, which are linear, is zero, that is

2a ¢V
(33) ¢ 20 d|=0.
¥ a2

By Euler’s formula, this condition is enough in characteristic # 2; inci-
dentally, it expresses that the quadratic form F is degenerate (that is, of
rank 1 or 2).

In characteristic 2, the three derivatives F}, Fg and F/ automatically vanish for
(z,y,t) = (a’,¥’,c’), and one sees without much trouble those are the only values
of (z,y,t) (up to a scalar factor) for which this happens, unless a’ = b’ = ¢’ =0,
in which case F is a square over the algebraic closure of K. Thus C is degenerate
if and only if F(a',b’,¢’') =0, that is,

aa'? 4+ 0% +cc’?+a'bc =o.

The point (a’, b’, ¢’} is equally interesting when the conic C (still in character-
istic 2) is irreducible: then all the tangents to C go through this point! To see
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this, recall from section 3 the formula (23) for the tangent to an algebraic curve:
a'Fi+ b Fy+c'F/ =a'(c'y +b't) +b'(c's + a't)+c'(b'z +d'y)
=2a'c'y+2b'c'z + 2b'a’'t = 0.

Intersection of two conics

Theorem 16. Let C and C' be conics not having a line in common.
There are at most four points common to C and C', and ezactly four if K
is algebraically closed and we count multiplicities.

Proof. This is clear if at least one of the conics is degenerate. Otherwise,
take A, B € C such that A ¢ C’ and A # B. Choose a projective coordinate
system in which A is the point (0,1,0), the tangent at A is the line at
infinity, B is the point (0,0,1) and the intersection of the line at infinity
with the tangent at B is (1,0,0). Write the equation of C in the form (32).

A (0,10)

B(o,0,1

Intersecting (32) with the line at infinity ¢ = 0 we see that b = ¢’ = 0;
similarly, observing that y = 0 is tangent to C at (0,0,1), we see that
¢ = b = 0. The equation of C then reduces to az? +a’yt = 0. Since C and
C’ have no common point at infinity, we can work in affine coordinates,
where, replacing y by —a’y/a, the equation of C is y = z? (the most simple-
minded of parabolas!). Plugging this into the equation of C’, we obtain
an equation in z that is exactly of degree four, since the term uy? of the
equation of C’ is non-zero (recall that (0, 1,0) is not on C’).

In elementary geometry one learns that two circles have at most two common
points (of multiplicity one). The other two are the cyclic points (section 6); but
they’re invisible, being at infinity and imaginary, to boot.

Theorem 17. Five distinct points in a projective plane, no four of which
are collinear, uniquely determine a conic.

Proof. The requirement that each point (z;,y;,t) (: = 1,2,...,5) is con-
tained in the conic is expressed by five homogeneous linear equations in the
six coefficients a, b, ¢, a’, b, ¢’ of a general conic (32). These equations have
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a non-trivial solution but it is not a priori clear that the solution is unique
up to a scalar (that is, that the equations are independent). Suppose there
are two distinct conics C and C’ containing the five points. By theorem 16,
they have a line D in common. By assumption, D contains at most three
of the five points; the others, of which there are at least two, are enough
to determine the second line of C and of C’. This shows that C =C’. O

If four of the five points lie on a line D, the union of D with any line going
through the fifth is a solution to the problem.

Linear systems of conics

If we call the six coefficients (a, b, c,a’,¥’,¢’) of a conic (equation (32))
its homogeneous coordinates, we see that conics form a five-dimensional
projective space. The projective linear subspaces of this space are called
linear systems of conics, or pencils when one-dimensional. Circles form
a three-dimensional linear system of conics, containing all conics that go
through the cyclic points I and J.

In order to study the conics that go through two fixed points of a projective
plane, it may be convenient to apply a projective transformation and map them
to the cyclic points. The problem is then reduced to the study of circles.

A pencil of conics has a general equation of the form
(33) uF(z,y,t) + vG(z,y,t) =0,

where F and G are non-proportional homogeneous degree-two polynomials,
u and v are no both zero, and two proportional pairs (u,v) generate the
same conic. A pencil is uniquely determined by two conics belonging to
it. The set where F(z,y,t) = G(z,y,t) = 0 belongs to all conics in the
pencil; we call it the base of the pencil. As in the case of circles (theorem
13) we see that every point that is not in the base is contained in exactly
one conic in the pencil.

We will rule out the case when the base of the pencil contains a line
D, because in this case the linear form defining D is a factor in (33), and
every conic in the pencil is the union of D with some other line D’ that
runs through a pencil of lines. Apart from this case, every pencil of conics
has at most four base points (theorem 16).

The most general case is when a pencil has four distinct base points
p,q,7,5. No three of them can be on the same line D, for if they were,
D would have three common points with every conic in the pencil, hence
would be contained in them, a case that has been ruled out. Thus the
degenerate conics of the pencil can only be Dyq + D,,, Dp, + D,, and
Dp, + Dy If we take p,q,7,s, in this order, as elements of a projective
frame, the general equation of the pencil reduces to the form

(34) ur(y—t)+vy(z —t) =0.
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Conversely, we have the following result:

Theorem 18. The set of conics containing four points no three of which
are collinear is a pencil.

Proof. Consider a projective frame formed by the four points. The conics
containing the three vertices have equations of the form azy+byt +czt = 0,
so they form a two-dimensional linear system. The condition of passing
through (1,1,1) is that a + b+ ¢ = 0, which gives us (34) with u = —c and
v =—b. a

For another proof, take two conics F' = 0 and G = 0 containing the four points
(two degenerate conics, for instance). Any conic C that goes through the four
points belongs to the pencil F of equation uF + vG = 0, for if m is a fifth point
on C, the unique conic C’ € F containing m (cf. section 6) coincides with C, the
two having five points in common (theorem 16).

If a pencil has three base points p, ¢, r, they are non-collinear (otherwise
we’re in the excluded case). At one of the points, say p, any two conics of
the pencil must have an intersection with multiplicity two; since the only
conic of the pencil having p as a double point is Dpg + Dy, , the other conics
are tangent to one another at p, and thus all tangent to the same line T 3 p.
There is only one more degenerate conic in the pencil, namely T + D, . If
we choose a projective frame so that p = (0,0, 1), ¢ = (0,1,0), » = (0,0, 1)
and (1,1,1) € T, the general equation of the pencil takes the reduced form

uzy + vi(y —z) = 0.

Example. A pencil of tangent circles, where p is the tangency point and ¢, r are
the cyclic points.

If a pencil has two base points p,q, two cases can occur: either the
conics intersect one another with multiplicity two at both p and ¢, or they
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intersect with multiplicity one at p and three at q. Consider the first case.
The pencil has a unique conic with a double point at p, otherwise we’re in
the excluded case; and this conic must be of the form 2D,, or Dy, + D'.
Similarly for ¢q. Now the pencil cannot afford both Dy, + D' and Dyq + D",
with D' 3 p and D" 3 q, because that would create a third base point,
DN D". Thus 2D, is the only conic to have double points at p or ¢. All
others conics are tangent at p to a fixed line T, and at ¢ to a fixed line U;
we’re dealing with a pencil of bitangent conics. The only other degenerate
conicis T+ U. If we choose a projective frame consisting of p, ¢, a point in
T and a point in U, in this order, the general equation of the pencil takes
the reduced form

(35) uzy + vt = 0.
|
lp
T
V)
q

Example. A pencil of concentric circles, since they’re all tangent at the cyclic
points to the isotropic lines emanating from their center.

Now let’s take the case of multiplicites 1 and 3. Since a conic cannot
have triple points, the only degenerate conic in the pencil must be Dpq + T,
where T is the common tangent at p to the conics in the pencil. We have
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T

/N

to express the condition that they intersect with multiplicity three at p;
this is an affine question

Let p be the origin, ¢ the point at infinity on the z-axis and T the y-
axis. The affine equation of a conic tangent to T at p and going through
q can be written z + czy + dy? = 0, or (1 + cy)z + dy? = 0. The common
points to this conic and to another one, say (1 + c'y)z + d'y? = 0, satisfy
(1 + cy)d’'y? — (1 + ¢'y)dy? = 0. The (double) solution y = 0 gives z = 0,
which is p. There remains (d¢/ — ¢d’')y = d’ — d. But cd’ — dc’ # 0, because
otherwise the two conics would have the same points at infinity, for a total
of three base points. If d —d’ # 0, we’d have a solution with y # 0 at finite
distance, hence distinct from p; this is impossible. Thus d’ = d and all
the conics in the pencil have the same y? coefficient in z + czy + dy? = 0.
Replacing z by z/d and homogenizing, we get the general equation

(36) u(zt + y?) + vzy = 0.

Finally, let’s examine the poor pencils who only have one base point
p. The conics of such a pencil have an intersection of multiplicity four at
p. Those that are degenerate are necessarily the unions of two lines going
through p. If the pencil contains two such unions, say F(z,y) = 0 and
G(z,y) = 0, where we have assumed p to be the origin and F and G are
homogeneous quadratic polynomials, the general equation of the pencil is

(37) uF(2,y) + vG(z,y) = 0
and all its elements degenerate into two lines going through p.

If the pencil contains two double lines, its equation becomes uz? + vy? = 0.
Then there are no other double lines, except in characteristic 2, where all conics
are double lines.

Now, if the pencil contains at most one degenerate conic, two non-
degenerate conics intersect with multiplicity four at p (we say that they are
superosculating), and in particular they’re both tangent at p to a line T
By making p the origin and T the y-axis the affine equations of two conics
in the pencil can be written z + F(z,y) = 0 and z + G(z,y) = 0, where
F and G are homogeneous polynomials of degree two. By subtraction the
conic G(z,y) — F(z,y) = 0 is in the pencil, and it is necessarily degenerate,
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hence of the form 2T; thus G = F + kz2. The general equation of the
pencil is then

(38) u(zt + F(z,y)) + vz? = 0.

One cannot normalize the quadratic form F(z,y) because the points at infinity
of the conics in the pencil vary.

To summarize, the only pencils containing only degenerate conics are:

o those whose elements are unions of a fixed line and a line that rotates
around a point; and
o those whose elements are unions of two lines going through a fixed point.

The only pencils whose elements have multiple points that vary are pencils of
double lines of the form uz? + yv? = 0 in characteristic 2.

All other pencils have at most three degenerate elements, because saying
that a conic is degenerate is saying that a certain polynomial of degree three
in its coefficients vanishes (equation (33) and following note concerning
characteristic 2). Thus the condition for a conic uF(z, y,t)+vG(z,y,t) =0
of a pencil to be degenerate is expressed by a homogeneous cubic equation
H(u,v) =0 (and H = 0 if all the conics in the pencil are degenerate).

This yields a geometric explanation for the fact that the problem of solv-
ing of a quartic equation can be reduced to solving cubics and quadratics.
Leaving aside the case of characteristic two for the sake of simplicity, a
quartic can be reduced to the form z* + az? + bz + ¢ = 0. If we set y = z2
this is equivalent to the system y — 22 = 0, y2 + ay + bz + ¢ = 0, which
is the intersection of two pararabolas. These two parabolas belong to the
pencil whose general affine equation is

Y +ay+bzr+c+v(y—z?) =0.

A short calculation applied to (33) shows that the parameter values of
degenerate conics in this pencil are the roots of v(v + a)? + 2cv + b2 = 0.
Let vo be such a parameter value. The double point of the corresponding
degenerate conic is a rational function of vy, because its coordinates are
the solutions of a linear system. The slopes of the two lines that make up
the conic are solutions of a quadratic equation. Finally, their intersections
with the parabola y = z2, that is, the base points of the pencil, are also
given by quadratic equations.

Since equations of degree two and three are soluble by radicals (the latter
by Cardano’s formula, for instance), the same is true about quartics.
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1.8. Projective Spaces of Divisors in
Algebraic Geometry

We have seen in section 3 that is was worthwhile to count intersection
points with their multiplicities. We have also called conics whose equation
is a square “double lines”. And we have noticed that two non-proportional
equations, like 2y = 0 and zy? = 0, can define the same algebraic subset.

We say that a (projective or affine) hypersurface is irreducible if its
defining polynomial is irreducible. And we define a divisor in an affine or
projective space to be a formal linear combination, with integer coefficients,
of irreducible hypersurfaces. Thus a divisor can be written ny Hy + --- +
nH,.

This idea has already crept in, when we wrote D + D' and 2D.

Now let K be an algebraically closed field and F(zo,...,z,) a homoge-
neous polynomial of degree d over K. Since the ring of polynomials in n+1
variables over K is a unique factorization domain, F' can be decomposed
in an essentially unique way into a product F = FJ''F2?... Fy*¢ of (nec-
essarily homogeneous) irreducible polynomials, where the Fj are pairwise
non-proportional. If we denote by H; the hypersurface Fj(zo,...,zs) =0,
we define the divisor of F as

(39) (F)=n1H1+-~-+anq.

Theorem 19. Two homogeneous polynomials F and G have the same
divisor if and only if they are proportional.

Proof. Sufficiency is obvious. To prove necessity one must show that, if
two irreducible homogeneous polynomials P and Q define the same hyper-
surface, they are proportional. Now an elementary theorem of algebraic ge-
ometry, the Hilbert Nullstellensatz, says that (over an algebraically closed
field) if a polynomial @ vanishes on every zero common to polynomials
Py,..., P, there is a power Q* of @ in the ideal generated by Py,..., P,
in the ring of polynomials. We will not prove this theorem, but its use is
straightforward: if P and Q define the same hypersurface, some power Q*
is a multiple of P, and in fact @ itself divides P because of unique factor-
ization and the irreducibility of Q. Similarly, P divides Q. Thus Q/P is a
unit in the ring of polynomials, hence a non-zero constant.

Notice that, by definition, every divisor of P,(K) is the divisor of a ho-
mogeneous polynomial, determined up to a scalar factor; we let the degree
of this divisor be the degree of this homogeneous polynomial. Since homo-
geneous polynomials of degree d in n+ 1 variables form a vector space over

K, of dimension ("}%), we see that divisors of degree d form a projective

space, of dimension ("}9) — 1.

Thus, over P, and P3, divisors of degree d form a projective space of dimen-
sion 3(d+2)(d+1)—1 = Ld(d + 3) and }d(d® + 6d + 11), respectively. The
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divisors of P, are formal linear combinations of points; in degree d, they form
a d-dimensional projective space. The homogeneous coordinates of such a divi-
sor are the coefficients of the corresponding (degree-d) homogeneous polynomial
F(u,v), which in are elementary symmetric functions of the homogeneous co-
ordinates of the points on the divisor. For example, the sum P + P’ of points
(z,y) and (z’, y') has homogeneous coordinates (zz’, —(zy’' + yz'), yy') (take the
product of the linear forms vz — uy and vz’ — uy’).



CHAPTER 2

One-Dimensional Projective Geometry

2.1. Cross-ratios and Rational Maps

Throughout this chapter we assume that the field of scalars is commuta-
tive. Recall that a projective line is a one-dimensional projective space,
that a projective frame on a projective line D is made up of three distinct
points (a, b, ¢) (section 1.1) and that there exists a unique projective trans-
formation taking a projective frame into another (1.2); in particular, the
projective group of a projective line D acts simply transitively on the set
of triples of distinct points of D.

The standard projective line

Given a projective line D and a projective frame for it, each point in
D corresponds to a homogeneous class, with all its proportional pairs of
homogeneous coordinates (z,y). When z # 0, these pairs are uniquely
determined by the ratio ¢ = y/z; on the other hand, when ¢ = 0, the
coordinate class is also uniquely determined, and we write t = oo, where
00 is a symbol not in K. Thus we have a correspondence between points
in D and their values t € K U {oo}. This correspondence is bijective, and
canonically so when D = P;(K). Theset K = KU{oco}, with the projective
structure transferred from P;(K), is called the standard projective line,
and the frame {00, 0,1} on it is the standard projective frame. The element
t associated with a point of D is sometimes called its projective coordinate
ratio (in the coordinate system being considered).
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When K has a non-discrete absolute value f, we give K the topology whose
basis consists of all open subsets of K (in the topology induced by f) together
with all sets of the form C U {oo}, where C is the complement of a ball in K.
When K is locally compact, K is the Alexandroff compactification of K. For
K =R (resp. K = C) this set is the circle (resp. the sphere).

Let h : D — D’ be a projective transformation from a projective line
onto another. If D and D’ are given projective frames, the homogeneous
coordinates (z’,y’) of the image h(m) of a point m of D are linear functions
of the homogeneous coordinates (z,y) of m (section 1.2):

' =dz+cy, ¥y =bz+ay (ad — be # 0).

Thus the projective coordinate ratio ¢ = y’/z’ of h(m) is given, as a
function of t = y/z, by the formula

(40) t' = (at + b)/(ct + d),

which holds, a priori, for t finite and ¢t +d # 0. If ¢t + d = 0, we have
z’ = dz + cy = 0, whence t = oo, which leads us to assign the value oo
to a fraction whose denominator vanishes. For t = oo, we have z = 0,
whence ¥ /2’ = afcif ¢ # 0 and ¢/ = ¥y /2’ = oo if ¢ = 0. With these
conventions, formula (40) defines a bijective map from (all of) K onto
itself, which is the translation of the projective transformation h in terms
of projective coordinate ratios. Conversely, any map K — K of the form
t' = (at + b)/(ct + d), for ad — bc # 0, can be interpreted as a projective
transformation.

If K has an absolute value and K has the topology above, every projective
transformation on K is continuous, since it extends by continuity the ordinary
function f(t) = (at + b)/(ct + d) defined on K \ {—d/c} (or on K, if ¢ = 0).

Cross-ratios

Definition 5. Let a,b,¢,d be points on a projective line D, the first
three of which are distinct. The cross-ratio of the four points, denoted
by (a,b,¢c,d) or (a,b; ¢,d), is defined as h(d) € K, where h is the unique
projective transformation D — K that takes a, b and ¢ to oo, 0 and 1,
respectively.

Theorem 20. Let D and D’ be projective lines, a, b, c,d points on D and
a' ¥, ¢, d' distinct points on D'. There exists a projective transformation
u: D — D' taking a,b,c,d into ', V', c',d', respectively, if and only if the
cross-ratios (a,b,c,d) and (a’,b’,¢',d") are equal.

Proof. Let h (resp. h') be the unique projective transformation of D
(resp. D’) onto K that takes a,b,c (resp. a’,¥,¢’') to 00,0,1. If u is the
projective transformation from D onto D’ that takes a,b,c to a’, ¥, ¢/, we
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have h(m) = h'/(u(m)) for every m € D, by uniqueness. If u(d) = d’, we
deduce that
(a,b,c,d) = h(d) = h'(d') = (a’, ¥, ', d").

Conversely, if the two cross-ratios are the same, we have h(d) = h'/(d’),
hence also h(d) = h’/(u(d)); this implies u(d) = d’, since k' is injective. O

Theorem 21. Leta, b, ¢, d be elements of K, the first three of which are
distinct. With the usual conventions about operations withO and oo, the
cross-ratio (a,b,c,d) is given by

(41) (a,b,¢,d) = %}

For example, if ¢ = oo, the expression (¢ — a)/(c — b) evaluates tol; if d = a,
we get (a,b,¢,d) = oo.

Proof. The projective transformation h : K — K that takes a,b, ¢ into
00,0,1 has a as a pole and b as a zero, so it must be of the form h(t) =
k(t — b)/(t — a). Since h(c) = 1, we must have k = (¢ — a)/(c — b), which
proves (41). a

Corollary. The cross-ratio (a,b,c,d), seen as a function of a, b, c or d
separately, is of the form(40), and hence a projective transformation. 0O

Rational maps

A rational fraction on a field K is an element r(T') of the field of fractions
K(T) of the ring K[T] of polynomials in one variable. Thus r(T') can be
written as the quotient r(T") = p(T")/q(T) of two polynomials; for simplicity,
we can assume that p(T) and ¢(T) are relatively prime, in which case we
say that the expression r(T) is reduced. If we in addition require that
the denominator ¢(T) be a monic polynomial, 7(T") has a unique reduced
expression.

Theorem 22. Every rational fraction r(T) = p(T)/q(T) defines a map
K — K eztending the usual evaluation map t — p(t)/q(t)(which is only
defined on K minus the zeros of q(T)).

Proof. Assume r(T') = p(T)/q(T) is in reduced form. For t € K such that
q(t) # 0, take r(t) = p(t)/q(t). Fort € K such that ¢(t) = 0 (which implies
p(t) # 0, since p and ¢ are relatively prime) we set r(t) = oco. Finally,
r(00) is calculated by setting T = 1/U and s(U) = r(1/U), and by forming
s(0), with the following results: 0 if d°(p) < d°(q); a/b if d°(p) = d°(q),
where a and b stand for the highest-degree coeflicients of p and ¢; and oo
if d°(p) > d°(q). o
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If K has an absolute value and K has the topology above, the map given
by theorem 22 is the extension by continuity of the ordinary rational function

t— p(t)/q(t).

A map as given by theorem 22 is called a rational map from K into itself.

Theorem 23. If r(T) = p(T)/q(T) is a non-constant rational fraction in
reduced form, K(T) is a finite extension of the subfield K(r(T)) generated
by K and r(T), and

(42) [K(T): K(r(T))] = max(d°p, d%).

Proof. Set r = r(T). We show first that r is transcendent over K, that
is, that it is not the root of a non-zero polynomial with coefficients in K.
Otherwise we would have a,r” +---+a;r+ao = 0 with a, # 0 and ag # 0,
whence anp® + an_1p" "¢+ --+a1pg” "1 +aog™ = 0, so that p divides ¢”.
But p and ¢ are relatively prime, so p must be constant; similarly, ¢ and
r are also constant, a contradiction. This shows that the subring K[r] is
isomorphic to the ring of polynomials over K.

Let X be another indeterminate. The polynomial ¢(X) — rp(X) over
K(r) has T as a roct and has degree max(d°p, d°q): there are no simpli-
cations because r is transcendent. There remains to show that this poly-
nomial is irreducible over K(r), and, a fortiori, over K[r]. Now K([r][X]
can be seen as the ring K[r, X] of polynomials in two variables, which can
also be written K[X][r]. As a polynomial in r over K[X], ¢(X) — rp(X) is
irreducible over K[X] (being of degree one) and primitive over K[X] (since
¢(X) and p(X) are relatively prime). The irreducibility of ¢(X) — rp(X)
now follows from standard results on the decomposition of polynomials over
factorial rings. O

The number max(d®p,d%q) is called the degree of the (non-constant)
rational fraction r(T'). It is denoted by d°r. If K is algebraically closed, the
corresponding rational map from K into itself is onto, and its fibers (inverse
images of points) all have the same cardinality d°r, counting multiplicities.

For a given a € K, the fiber of a is made up of the (finite or infinite, cf. section
1.3) roots of the equation ¢(X) — ap(X) = 0.

Rational fractions of degree one are exactly those of the form »(T) =
(aT +b)/(cT + d), with ad — bc # 0. The rational maps derived from them
are bijective, but in characteristic p # 0 they are not the only ones with
that property (think of 7(T) = T?, for example.)

If »(T') and s(T') are non-constant rational fractions, we can replace T
by s(T) in s to form the composition s(r(T)), denoted by sor. Its rational
map is the composition of the rational maps of s and r.

Theorem 24. If r(T) and s(T) are non-constant rational fractions, the
degree of s or is the product of the degrees of r and s.
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Proof. Since r(T) is transcendent over K (theorem 23), there is a K-
isomorphism f : K(T) — K(r(T)) such that f(T) = r(T). This isomor-
phism takes s(T) to s(r(T)), so that

[K(T): K(s(T)] = [K(r(T)): K(s(r(T)))]-

The theorem now follows from theorem 23 and the multiplicativity of de-
grees of extension fields, applied to K (s(r(T))) C K(r(T)) C K(T). O

Corollary. If a rational map from K into itself is invertible and its inverse
is a rational map, they are both projective transformations.

Proof. The condition d°rd®s = 1 implies d°> =1 and d°s = 1,so r and s
are both of the form (40). O

It follows also from theorem 24 that the degree of a rational map does
not change if we compose it (at the right or at the left) with a projec-
tive transformation. Since base changes on a projective line correspond
to projective transformations, the notion of a rational map from one pro-
Jjective line into another is well-defined, as is the degree of such a map.
Projective transformations are the degree-one rational maps, and degrees
get multiplied under composition (theorem 24).

The translation of the corollary to theorem 24 into the language of fields
is the following: every K-automorphism of the field of rational fractions
K(T) takes T into a rational fraction of degree 1.

2.2. Cross-ratios and permutations

Given four (distinct) points ay, a2, as, a4 on a projective line D and a per-
mutation s € S4, can one calculate the cross-ratio (a,(1), as(2), @s(3), @s(4))
as a function of (a1, as, as, as)? The answer is yes, because we have:

Lemma. If (a1, a2,as,as) = (a}, a%, af, a}y) then

(@s(1)s @s(2)) @s(3)s @s(4)) = (@5(1)) Cs(2)r Lo(3)) To(a))-

Proof. The unique projective transformation that takes a; to a{ (theorem
20) takes a,(;) to a’s('.). O

Thus the cross-ratio (a,(1), @s(2), @s(3), @s(4)) is uniquely determined by
t = (a1, a2, a3, a4) and the permutation s. We will denote it by R,(t). We
obviously have
(43) Rys(t) = R, (Ry(2)), for s,5' € Ss4.

To compute R,(t) for t € K, recall that t = (c0,0,1,t) and apply the
permutation s: for example, if s is the transposition (2, 3) we have R,(t) =
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(00,1,0,t) = 1 — ¢, by theorem 21. Since the cross-ratio, as a function of
each of its variables, is given by a rational map of degree one, we deduce
the following result:

Theorem 25. The “permuted cross-ratio” R,(t) is a rational function of
degree one of t, and the map s — R, is a homomorphism of the symmetric
group Sy into the projective group of K( = PGL(K?)). a

Here’s the actual calculation of R,(t):

e By inspection of (41), we see that the cross-ratio remains unchanged
under the permutations (1,2)(3,4), (1, 3)(2,4) and (1,4)(2,3). Together
with the identity, these permutations form an index-six subgroup H of
S4. Thus there exist at most 24/4 = 6 distinct projective transformations
R,.

e For s = (1,2), the same formula shows that R,(t) = 1/t. For s’ = (2, 3),
we get Ryi(t) = (00,1,0,8) = (t-1)/(0-1)=1-1.

e By composing the projective transformations R, and R, above, we ob-
tain the six projective transformations R(t) =t,1/t,1-¢,1/(1-1),1—

1/t,t/(t - 1).

We can summarize this in the following result:

Corollary. The homomorphism s — R, of S4 into the projective group
has as its image the order-siz subgroup G made up of
1 1 t—1 t
44 t, =, 1-—t .
(44) ’ A T A R |

It kernel is the indez-siz subgroup H above, which is consequently normal.

O

Notice that the six projective transformations in (44) are distinct, even
over F5. They act freely on the set {00,0,1} C K; thus G = S4/H is
isomorphic to the symmetric group Ss.

Since F3 only has the three elements o0,0,1, the group PGL(F3) is
isomorphic to Sj.

2.3. Harmonic Division

We will now study the orbits of the action of the order-six group G on K.
They have six elements, except for the values of ¢ that make at least two
of the expressions in (44) equal. To find out what these values are, notice
that we can restrict ourselves to the equations

t=t, t=-, t=1-t, t=; t=——
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since we’re discussing a group action. We find:
(a) t = 1; the other values given by (44) are then co and 0.
(b) t = —1; the other values ar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>