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Preface

Existing texts on the mathematics of nonlinear programming seem, for the
most part, to be written for advanced students having substantial sophistica-
tion and experience in mathematics, numerical analysis, and scientific com-
puting. This is unfortunate because nonlinear programming provides an
excellent opportunity to explore an interesting variety of mathematics that is
quite accessible to students with some background in advanced calculus and
linear algebra. Linear algebra becomes alive only when it is applied outside
of its own sphere. Linear algebra is very much alive in this book.

We have endeavored to write an undergraduate mathematics textbook
which develops some of the ideas and techniques that have proved to be useful
in the optimization of nonlinear functions. This book is written for students
with a working knowledge of matrix algebra and advanced calculus, but with
no previous assumed acquaintance with modern optimization theory. We
attempt to provide such students with a careful, clear development of the
mathematical underpinnings of optimization theory and a flavor of some of
the basic methods. This background will prepare them to read the more
advanced literature in the field and to understand, at least in rough outline,
the inner workings of some of the professionally written software that is used
by practitioners to solve problems arising in such fields as engineering, sta-
tistics, and commerce. Although we have included detailed proofs we have
been careful to include plenty of informal discussion of the meaning of these
theorems, and we have illustrated their application with numerous examples
and exercises. The level of sophistication gradually increases as the text
proceeds, but we pay careful attention to the development of the reader’s
intuition for the content throughout. We have done this so that readers with
very modest backgrounds in formal mathematics can gain an understanding
of the essential content without studying all of the proofs. Indeed, when we
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teach this material in our own courses, we sometimes omit detailed proofs
and devote the time instead to the discussion of examples or to outlines of the
main ideas in these proofs. In this way, and through associated homework
exercises, we try to increase gradually the student’s appreciation of and facility
with the mathematical development.

All of the material in this book has been tested in our introductory mathe-
matics course in nonlinear programming at the University of Illinois and in
similar courses at other universities over the last ten years. The content and
mode of presentation that evolved worked well with mathematics majors as
well as with other students who represent a wide variety of majors from
economics to electrical engineering.

We begin with a study of the classical optimization methods of calculus.
This leads, in a natural way, to the study of convex sets and convex functions
in Chapter 2. Included in this chapter is a treatment of unconstrained geo-
metric programming. In Chapter 3 we consolidate our position with a discus-
sion of basic numerical methods for unconstrained minimization. There is no
attempt to be encyclopedic, but we do consider the classical techniques of
Newton’s Method and the Method of Steepest Descent, and then we proceed
to study the more modern approaches of Broyden’s Method, the Davidon-
Fletcher—Powell Method and the Broyden-Fletcher—Goldfarb—Shanno
Method in some detail. In each case, we try to convey to the student heuristic
reasons why each of these methods has advantages and, in some cases,
disadvantages. Issues from numerical analysis are identified and addressed to
some extent, but we do not pursue this important aspect of nonlinear pro-
gramming in detail. We do think we have gone far enough to make the student
aware of some of the numerical issues involved and to lay the groundwork
for a more extensive study later on.

Chapter 4 is devoted to least squares approximation. The basic problems
here are best least squares solutions to inconsistent (that is, overdetermined)
linear systems and minimum norm solutions to underdetermined linear sys-
tems. Next, in Chapter 5, the book turns to a study of the Separation Theorem
for Convex Sets and a development of the Karush—Kuhn-Tucker Theorem.
Our development makes use of the physical meaning of the Karush—Kuhn-
Tucker multipliers as a motivation for the proof of the Karush—Kuhn—-Tucker
Theorem. This theorem is then used to establish duality in convex program-
ming and the general theory of constrained geometric programming.

Penalty functions for constrained problems are the topic of Chapter 6. The
general theory is established and then we follow Duffin’s amazingly elementary
penalty function approach to the Karush—Kuhn-Tucker Theorem.

The last chapter deals with classical Lagrange multipliers and problems
with both equality and inequality constraints. Wolfe’s Algorithm for quadratic
programs is studied at the conclusion of the chapter.

The content and organization of this text allow the instructor considerable
flexibility in the presentation of the material. Our one-semester introductory
course in nonlinear programming usually covers the material in the unstarred
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sections of the first six chapters. However, we have also taught the content of
Chapters 1, 2, 3, 7, and 6 in that order in the same course with good results.

None of us has done research in nonlinear programming, but nevertheless
we have enjoyed the blend of mathematics found in this book and we hope
that you do too.

A number of friends and colleagues have helped us directly, or indirectly,
or inadvertently. Some of them are Tom Morley, Dennis Karney, Lawrence
Riddle, Robert Bartle, Tenney Peck, Donald Sherbert, Shih-Ping Han, Paul
Boggs, Horacio Porta, James Burke, and James Crenshaw. We are also
grateful for the skillful assistance of Cherri Davison, who typed the final
manuscript, as well as Mabel Jones and Sandy McGary, who typed earlier
drafts.

Urbana, Illinois A.L.P.
and Gaithersburg, Maryland F.E.S.
June 1987 J.I.U.
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CHAPTER 1

Unconstrained Optimization
via Calculus

1.1. Functions of One Variable

The object of this section is to review the fundamental results of calculus
related to the optimization of real-valued functions defined on the real
line, R, or some interval, I, of the real line. These results are based on the
following theorem from calculus, known as Taylor’s Formula or the Extended
Law of the Mean:

(1.1.1) Theorem. Suppose that f(x), f'(x), f"(x) exist on the closed interval
[a, b] = {x € R: a < x < b}. If x*, x are any two different points of [a, b], then
there exists a point z strictly between x* and x such that

f) = JO*) + /(%) (x — x*) + fz(Z)

(x — x*)2

Here is an indication why this formula is useful for optimization: If f(x) is
a function such that f”(x) is positive for all real x, and if x* is a point such
that f'(x*) = 0, then Taylor’s Formula tells us that

f(x) = f(x*) + 0 + a positive number

for all real numbers x # x*. Hence f(x) > f(x*) for all x # x*, that is, x* is
the point that minimizes the value of f(x). Essentially the same reasoning
shows that if f”(x) is always negative and f'(x*) = 0, then x* is the point that
maximizes the value of f(x). This simple observation, which is essentially the
Second Derivative Test, forms the basis for the entire development of this
chapter. Here is an example of an application.
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(1.1.2) Example. If f(x) = e*’, then f’(x) = 2xe*” and ["(x) = 4x%e** + 2e*" =
(4x? + 2)e*’. Since f”(x) > O for all real x and since f'(0) = 0, we learn that
f(0) = 1 is smaller than any other value of f(x).

Let us fix some terminology.

(1.1.3) Definitions. Suppose f(x) is a real-valued function defined on some
interval I. (The interval I may be finite or infinite, open or closed, or half-open.)
A point x* in [ is:

(a) a global minimizer for f(x) on I if f(x*) < f(x) for all xin I,

(b) a strict global minimizer for f(x) on I if f(x*) < f(x) for all x in I such that
X # x*;

(c) a local minimizer for f(x) if there is a positive number o such that f(x*) <
f(x) for all x in I for which x* — § < x < x* + §;

(d) a strict local minimizer for f(x) if there is a positive number § such that
f(x*) < f(x) for all x in I for which x* — 0 < x < x* + § and x # x*;

(e) a critical point of f(x) if f'(x*) exists and is equal to zero.

Obvious modifications of the preceding definitions yield definitions of
global maximizer, strict global maximizer, local maximizer, and strict local
maximizer of f(x). Because the maximizers of f(x) are simply the minimizers
of —f(x), we will concentrate most of our attention on minimizers.

The following theorems summarize the basic facts about minimization of
functions of one variable.

(1.1.4) Theorem. Suppose that f(x) is a differentiable function on an interval I.

If x* is a local minimizer or maximizer of f(x), then either x* is an endpoint of
Tor f'(x*)=0.

yaA
y=f® Ji
|
I I
je——71—]
| } I > x
x* x* «—— endpoint maximizer (f'(x*) # 0)

minimizer f'(x*) = 0
PROOF. Suppose x* is a local minimizer of f(x) and that x* is not an endpoint

of I. By hypothesis, f'(x*) exists; we must show that f'(x*) = 0. Recall that

P CEv ()

xox* X — x¥

(1)

Since f(x*) < f(x) for x sufficiently close to x*, the expression f(x) — f(x*) is
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nonnegative for all x sufficiently close to x*. Hence, since x — x* > 0 for
x* < x,and x — x* < 0 for x* > x, we see that

JOIZTOT) S 6 for x* < x,
X —X
X —X

provided x is sufficiently close to x*. These observations, together with (1),
show that f’(x*) > 0 and f'(x*) < 0, that is, f'(x*) = 0.

Once the critical points of a function have been identified, the following
result can be used to determine whether these points are minimizers.

(1.1.5) Theorem. Suppose that f(x), f'(x), f"(x) are all continuous on an interval
I and that x* € I is a critical point of f(x).

(@) If f"(x) = 0 for all x € I, then x* is a global minimizer of f(x) on I.

(b) If f"(x) >0 for all x €l such that x # x*, then x* is a strict global
minimizer of f(x) on I.

(c) If f"(x*) > 0, then x* is a strict local minimizer of f(x).

PRrOOF. If x € I and x # x*, then Taylor’s Formula (Theorem (1.1.1)) and the
hypothesis that f'(x*) = 0 yield

Jx) = f(x*) =

L) — o, @
2

where z is a point strictly between x* and x. Consequently, if f”(x) > O for all
x € I, then f(x) > f(x*) for all x € I since (x — x*)?/2 > 0 for all x € I. This
proves (a), and an obvious modification of this argument establishes (b).
Finally, if f”(x*) > 0, the continuity of f”(x) implies that there isa é > 0 such
that f”(x) > Ofor all x € I such that x* — § < x < x* + 6. But then (2) shows
that f(x) > f(x*) for all x € I such that x # x* x* — § < x < x* + 9, that is,
x* is a strict local minimizer of f(x).

Of course, the test for maximizers corresponding to (1.1.5) can be obtained
by replacing the conditions f”(x) > 0, f"(x) > 0, f”(x*) > 0 in (a), (b), (c) by
f"(x) <0, f"(x) <0, f"(x*) < 0, respectively. Note that in the statement of
(1.1.5) and the corresponding result for maximizers, global information about
f"(x) yields information about global minimizers and maximizers while local
information about f”(x) provides information about local minimizers and
maximizers.

(1.1.6) Examples
(a) Consider f(x) = 3x* — 4x® + 1. Since

f(x) =12x3 — 12x2 = 12x%(x — 1),
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the only critical points of f(x) are x = 0 and x = 1. Also, since
f7(x) = 36x% — 24x = 12x(3x — 2),

we see that f”(0) = 0 and f"(1) = 12. Therefore, x = 1 is a strict local mini-
mizer of f(x) by (1.1.5)(c)), but (1.1.5) provides no information about the
critical point x = 0. To analyze the behavior of f(x) near x = 0, we observe
that x* < x3for0 < x < 1so that f(x) < 1 just to the right of the origin, while
f(x) > 1 to the left of the origin. Consequently, the critical point x = 0 is
neither a maximizer nor a minimizer of f(x); rather, it is a “horizontal point
of inflection” for f(x). Note that
lim f(x)= +oo0, lim f(x) = +o0,
x—+0 X~

so f(x) has no global maximizer on R. The strict local minimizer x = 1 is also
a strict global minimizer.

xk y
/ le— f(X) = 3x4 —4x3 + 1

horizontal point strict global minimizer
of inflection

(b) The function f(x) = In(1 — x?)is defined on the interval I = (—1, +1).
Since f'(x) = —2x/(1 — x?), the function f(x) has only one critical point x = 0
on I, and this point is a strict global maximizer of f(x) on I since

(= x) (=) = (=2x)(=2x)  —2(1 +x?)

£ = . = o<

forall xeI.

strict global
maximizer fx) =In(l — x2)

fi

VAR IS -
|
|
|
|

[
_—— = =



1.2. Functions of Several Variables 5

1.2. Functions of Several Variables

The next objective is to extend the results of the preceding section to functions
of more than one variable by blending some calculus and linear algebra. We
will set the stage for this by reviewing some terminology and notation.

An n-vector or vector in R" is an ordered n-tuple x = (x,, x,, ..., X,) of real
numbers x; called the components of x. It is very convenient to think of a
function f(x,, x,, ..., x,) of n variables as a function f(x) of a single vector
variable x = (X, X5, ..., X,).

Although we have described an n-vector as a “row” vector, it is often
convenient to think of an n-vector as a “column” vector:

X1

We will make use of both these interpretations without special comment.
Often, it does not matter which interpretation is used, and when it does, the
correct interpretation is usually clear from the context.

We define addition of two vectors x = (x;, X5, ..., X,)and y = (¥, Y2, .-+
y,) in R" by

X + Y= (xl + Vi, X2 + Yas oo Xp + yn)9
and multiplication of x and a real number 4 by
AX = (AXq, 4X5, ..., AX,).

The set R" of all n-vectors is a real vector space for these definitions of addition
and scalar multiplication. We will assume some familiarity with the basic
concepts concerning the vector space R" such as linear independence and
dependence, bases, dimension, subspaces, etc.

If x =(x,, X3,..., X,) and y = (¥4, V5, .-, ¥,) are vectors in R", their dot
product or inner product x *y is defined by

X'y =Xy + X3y, + "+ Xp Y =kz X Yk
=1

The dot product is linear in both variables; that is,
(ax + By) 2 = A(x~2) + B(y*2),
x*(ay + fz) = a(x y) + f(x"2),

for all vectors x, y, z in R" and all real numbers a, 8. Two vectors x and y are
orthogonal if x+y = 0.
The norm or length | x| of a vector x = (x,, X5, ..., X,) in R" is defined by

x|l = (x7 + x3 + -+ x2)"? = (x-x)'"2.
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The norm is a real-valued function on R" with the following properties:

(1) |Ix|| = O for all vectors x in R".

(2) x|l = 0 if and only if x is the zero vector 0.

(3) llax] = |a}|||x|| for all vectors x in R" and all real numbers o.

4) Ix +yl < x|l + llyll for all vectors x, y in R" (the Triangle Inequality).

(5) |x-yl < x|l lly]l for all vectors x, y in R" with equality holding in this
inequality if and only if one vector is a multiple of the other (the Cauchy—
Schwarz Inequality).

For nonzero vectors x and y in R? or R3, the dot product x -y is usually
defined by

x-y = [Ix||lyll cos 6, (6)

where 6 is the angle in the range [0, 7] between x and y.

For vectors x and y in R" with n > 3, formula (6) for the dot product is still
correct if we define cos 6 properly. For x, y € R", define

Xy
0= .
Iyl

By the Cauchy—Schwarzinequality, —1 < cos # < 1and cos 6 = 1ifand only
if one vector is a positive multiple of the other. The Cauchy-Schwarz In-
equality is usually proved in most linear algebra courses. A proof of this result
can be found immediately after the proof of Corollary 2.6.2.

If x and y are vectors in R", the distance d(x, y) between x and y is defined
by

n 1/2
dx,y)=x -yl = (; (x; — y.-)2> :

The ball B(x, r) centered at x of radius r is the set of all vectors y in R" whose
distance from x is less than r, that is,

B(x,r)={yeR" |ly — x| <r}.

Note that in R, the ball B(x, r) is just the open interval (x — r, x + r) centered
at x of length 2r; in R?, B(x, r) is the interior of the circle centered at x of
radius r; in R3, B(x, r) is the interior of the sphere centered at x of radius r.
A point x in a subset D of R" is an interior point of D if there is anr > 0
such that the ball B(x, r) is contained in D. The interior D° of D is the set of
all interior points of D. A set G in R" is open if G° = G, that is, if all of its points
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are interior points. A set F in R" is closed if F contains every point x for which
there is a sequence {x¥'} of points in F with

lim ||x® — x| = 0.
k

It is not difficult to verify that a set F in R" is closed if and only if its
complement G = F°in R" is open.

A set D in R" is bounded if there is a constant M > 0 such that ||x|| < M
for all x € D, that is, D is bounded if and only if D is contained in some suitably
large ball B(0, M) centered at 0.

Subsets of R” that are both closed and bounded are called compact sets.
Any finite set F = {x*), x®, ..., x®} in R" is compact. Also, if F is the
set consisting of a convergent sequence {x*} and its limit x¥ (that is,
lim | x® — x@|| = 0), then F is compact. On the other hand, one of the most
important features of compact subsets of R" is embodied in the following
Bolzano—Weierstrass Property:

If D is a compact subset of R", then any sequence {x®} in D contains a
subsequence {x*?} that converges to a point X in D.

(1.2.1) Examples
(@) In R?, the set G of points inside the first quadrant, that is,

G = {x = (x1, x;) € R x; >0, x, > 0},

is open but not bounded.
(b) In R2, the set F of points with nonnegative components, that is,

F={x=(x;,x,)eR* x, >0, x, >0},

is closed but not bounded. A point x = (x;, x,) of F is an interior point of F
if and only if x; > 0, x, > 0. (Note that if x = (x;, x,) and x; >0, x, > 0,
then the ball B(x, r) is contained in F whenever r is a positive number smaller
than both x,; and x,.)

(c) In R?, any line or plane D is a closed set that is not bounded and does
not contain any interior points.

(d) In R3 the set D = {x = (x;, x,,x3) e R*:0<x;<1fori=1,2,3}is
a compact set. The interior points of D are precisely those x = (x;, x,, X3)
with 0 < x; < 1 for all i = 1, 2, 3. The following definitions are completely
analogous to those in (1.1.3).

(1.2.2) Definitions. Suppose that f(x) is a real-valued function defined on a
subset D of R". A point x* in D is:

(@) a global minimizer for f(x) on D if f(x*) < f(x) for all x € D;

(b) a strict global minimizer for f(x) on D if f(x*) < f(x) for all x € D such that
X # X*;

(c) alocal minimizer for f(x) if there is a positive number ¢ such that f(x*) <
f(x) for all x € D for which x € B(x*, §);
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(d) a strict local minimizer for f(x) if there is a positive number é such that
f(x*) < f(x) for all x € D for which x € B(x*, ) and x # x*;
(e) acritical point for f(x) if the first partial derivatives of f(x) exist at x* and

of
ox

x*)=0, i=12...,n

These definitions can be modified in an obvious way to yield definitions of
global maximizer, strict global maximizer, local maximizer, and strict local
maximizer for f(x). For the sake of simplicity, we will often limit our discussion
to minimizers and leave to the reader the minor task of interpreting the results
for maximization problems by replacing f(x) by —f(x).

The following theorem is the analog for functions of several variables of
(1.1.4). Note that the proof reduces the consideration of functions of several
variables to the case of functions of one variable.

(1.2.3) Theorem. Suppose that f(x) is a real-valued function for which all first
partial derivatives of f(x) exist on a subset D of R". If x* is an interior point of
D that is a local minimizer of f(x), then x* is a critical point of f(x), that is,
Of/ox)(x*)=0 fori=1,2,...,n

PROOF. Since x* is a local minimizer for f(x) and an interior point of D, there
is a positive number r such that the ball B(x*,r) is contained in D and
f(x*) < f(x) for all x € B(x*, r). We will show that (df/dx,)(x*) = 0, the proof
that (0f/0x;)(x*) = O for i = 2, ..., n is entirely similar.

To this end, note that the function g(x) of one variable defined by

g(x) = f(x, x3, x5, ..., x¥)

is differentiable and satisfies g(x¥) < g(x) for all x such that x} —r <
x < x¥ + r. Hence, x¥ is a local minimizer for g(x) on I = (x¥ —r, x}¥ + r).
Consequently, since x¥ is not an endpoint of I, it follows from (1.1.4) that
g'(x¥) = 0. But

o of
(x*) = * * *) —
g(xl) axl(xl,xZ,“-,xn) axl

so (0f/0x,)(x*) = 0, which is the result we set out to prove.

(x*)

The preceding proofillustrates an important idea. Often, seemingly difficult
facts about functions of several variables can be easily derived by reducing
them to corresponding facts about functions of one variable. We will make
further use of this idea.

Our minimizer test (1.1.5) for functions of one variable was based on
Taylor’s Formula:

100 = fe*) + (%) (x — x*) + %(x Y
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where z is a point strictly between x* and x. If we can determine the corre-
sponding formula for functions of several variables, then it should be possible
to use it to develop tests for minimizers of functions of several variables. We
will now show that the appropriate version of Taylor’s Formula for functions
of several variables can be obtained by reduction to the single variable case.
We begin by considering the case of a function of two variables.

Suppose that f(x) = f(x,, x,) is a function defined on R? and that x* =
(x¥, x¥) and x = (x,, x,) are fixed points. Define ¢(t) for ¢t € R by

o) = f(x* + t(x — x*)) = f(xF + t(x; — xT), x3 + t(x; — x3)).
Then ¢(¢) is a function of a single variable ¢ such that
@(0) = f(x*) = f(xT, x3);  o(1) = f(x) = f(xq, x,).

Consequently, if ¢’(t) and ¢”(t) are continuous, we can apply Taylor’s Formula
to @(t) at the points t* = 0, t = 1 to obtain

@"(s)

SX) = fx*) + ¢'(0)(1 - 0) + (1-07 ™

where s is a point between 0 and 1. Moreover, if f(x) has continuous first and
second partial derivatives, then ¢(t) has continuous first and second deriva-
tives which can be computed by the Chain Rule as follows: If t € R and
w = x* + t(x — x*), then

@(t) = f(w) = f(xT + t(x, — xT), X3 + t(x; — x¥)).
According to the Chain Rule,

of i

‘a‘x‘;(w)(xz — x%)

=V/(w)-(x — x*), ®)

where Vf(w) = ((0f/0x,) (W), (0f/0x,)(w)) is the gradient of f(x) evaluated at w.
By making use of the Chain Rule again, we obtain

)
o0 =L wx, —x) +

o= [;f L, —xr)+3f—(w)( xt)](xl —xt)
T [aifl(w)(xl Xt + 2w, - x:)] (x; — x1)
22{ (W), — x8)? + 2 ax"lzgxz W)y — x8)(x; — x8)
-f%(w)(xz x1)?

(In obtaining the last equation, we made use of the fact that the “cross partials”
(0%f/0x, 0x,)(w) and (0*f/0x, dx,)(w) are equal since f(x) has continuous
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second partial derivatives.) The preceding formula for ¢”(t) can be expressed
in matrix form as

0* 0*
o | [x -
o=t L T B
e st [\x - x
= (x = x%) (W) — X)), o)

where Hf(w) is the 2 x 2-symmetric matrix

<i(w): Lj=1, 2>

0x; 0x;

of all second-order partial derivatives evaluated at w. Hf(w) is called the
Hessian of f(x) evaluated at w.
We can use (8) and (9) to express (7) as follows:

) =f(x*) + Vf(x*)* (x — x*) + 3(x — x*)- Hf(2) (x — x*),  (10)

where z = x* + s(x — x*) and 0 < s < 1. This is Taylor’'s Formula for a
function of two variables. It is valid for any choice of x and x* in R? if f(x)
has continuous first and second partial derivatives on R?. As you can see, the
gradient Vf(x*) plays the role of the first derivative and the Hessian Hf(z) that
of the second derivative in the single-variable version of Taylor’s Theorem.
The version (10) of Taylor’s Formula persists in all higher dimensions.
More precisely, if f(x) = f(x,, ..., x,) is a function of »n variables with con-
tinuous first and second partial derivatives on R" and if the gradient Vf of f(x)

is the n-vector
Vf=(af . af>,

A LR
O0x, 0x, x,

while the Hessian Hf of f(x) is the symmetric n x n-matrix

o o
ox?  0x, 0x, 0x1 X,
*f o%f

Hf =] 0x; 0x, 6_x§

o*f o*f ﬂ

ox,0x, 0x,0x,  0x2

then Taylor’s Formula (10) is valid for all choices of x and x* in R". The proof
of (10) for functions of n variables is essentially the same as that for functions
of two variables.
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If the function f(x) is not defined on all of R", then Taylor’s Formula (10)
remains valid for given x and x* in the domain of f(x), provided that f(x) has
continuous first and second partial derivatives on some open set containing
the “line segment [x*, x] joining x* and x,” that is,

[x*, x]={w:w=x*+1(x—x*;0<t<1}

In particular, if f(x) has continuous second partial derivatives on some ball
B(x*, r) centered at x*, then Taylor’s Formula (5) is valid for all x € B(x*, r).
The following result summarizes these observations:

(1.2.4) Theorem. Suppose that x*, x are points in R" and that f(x) is a function
of n variables with continuous first and second partial derivatives on some
open set containing the line segment [x*, x] = {we R w = x* + t(x — x*);
0 <t < 1} joining x* and x. Then there exists a z € [x*, x] such that

f(x) = f(x*) + Vf(x*)* (x — x*) + 3(x — x*)- Hf () (x — x*).

Now that we are armed with Taylor’s Formula for functions of several
variables we can return to our primary objective—to develop tests for maxi-
mizers and minimizers among the critical points of a function. We begin with
a straightforward result concerning global maximizers and minimizers.

(1.2.5) Theorem. Suppose that x* is a critical point of a function f(x) with
continuous first and second partial derivatives on R". Then:

(@) x* is a global minimizer for f(x) if (x — x*): Hf(z)(x — x*) >0 for all
x € R" and all z € [x*, x];

(b) x* is a strict global minimizer for f(x) if (x — x*)* Hf(z)(x — x*) > 0 for
all x € R" such that x # x* and for all 7 € [x*, x];

(c) x* is a global maximizer for f(x) if (x — x*): Hf(z)(x — x*) <0 for all
x € R" and all z € [x*, x];

(d) x* is a strict global maximizer for f(x) if (x — x*)+ Hf(z)(x — x*) < 0 for
all x € R" such that x # x* and for all z € [x*, x].

PROOF. Since x* is a critical point of f(x), the first partial derivatives of f(x)
are zero at x* so Vf(x*) = 0. Therefore, if x is any point of R” other than x*,
(1.2.4) asserts that

fx) = f(x*) + 3(x — x*)* Hf(z) (x — x*),

where z € [x*, x]. This equation yields each of the assertions in the theorem.
For example, for (b) we note that

f(x) — f(x*) = 3(x — x*)* Hf () (x — x*) > 0,

and so f(x) > f(x*) for all x € R" such that x # x*. The remaining assertions
of the theorem are verified in a similar way.
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Theorem (1.2.5) cannot be regarded as a practical test for global maximizers
and minimizers until we have some convenient criteria for determining the
sign of

(x — x*)- Hf(z)(x — x*).

Fortunately, such criteria are available in a somewhat more general context
in linear algebra. We will now describe this context and then develop the
corresponding criteria in the next section.

We have already observed that the Hessian Hf(x) of a function f(x) of n
variables with continuous first and second partial derivatives is an n x n-
symmetric matrix. Any n X n-symmetric matrix 4 determines a function Q ,(y)
on R" called the quadratic form associated with A

O4(y) =y- Ay, y€eR"

(1.2.6) Example. If A4 is the 3 x 3-symmetric matrix

2 -1 2
A= | —1 3 01,
2 0 5

then the quadratic form Q ,(y) associated with 4 is
2 -1 2 V1
Q(yy=y-Ay=y-|| -1 3 0| »
2 0 5 Vs
= (V1> Y2, ¥3) (2y1 — y2 + 2y3, —y1 + 3y, 2y; + 5y3)
=27 + 3y + 593 — 2y1y2 + 41y

In general, Q4(y) is a sum of terms of the form c;y;y; where i,j=1,...,n
and c;; is a coefficient which may be zero, that is, every term in Q4(y) is of
second degree in the variables y, y,, ..., y,. On the other hand, any function
q(y1s---» y,) that is the sum of second-degree terms in y,, y,, ..., y, can be
expressed as the quadratic form associated with an n x n-symmetric matrix
A by “splitting” the coefficient of y;y; between the (i, j) and (j, i) entries of A4.

(1.2.7) Example. The function

(V1> Y2, ¥3) = ¥i — ¥3 + 493 — 2y, ¥, + 4y, ),

is a sum of second-degree terms in the variables y,, y,, y;. If

1 -1 0
A=| -1 -1 2 |,
0 2 4

then 4 is a 3 x 3-symmetric matrix and it is easy to check that

4(¥1, Y2, ¥3) =y Ay = Q4(y),  ye R’
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If f(x) is a function of n variables with continuous first and second partial
derivatives, and if H = Hf(z) is the Hessian of f(x) evaluated at a point z, then
H is an n x n-symmetric matrix. For x, x* in R", the quadratic form Qg
associated with H evaluated at x — x* is

Qu(x — x*) = (x — x*)- Hf(z)(x — x*).

This is precisely the expression that occurs in the statement of (1.2.5). The
following definitions introduce the types of sign restrictions on Q that occur
in that result.

(1.2.8) Definitions. Suppose that 4 is an n x n-symmetric matrix and that
Q.(y) = y* Ay is the quadratic form associated with A. Then 4 and Q, are
called:

(@) positive semidefinite if Q,(y) =y* Ay > O forally € R";

(b) positive definite if Q,(y) =y* Ay >0 forallye R" y # 0;

(c) negative semidefinite if Q,(y) = y* Ay < 0 for all y € R";

(d) negative definite if Q,(y) =y* Ay <Oforallye R y # 0;

(e) indefinite if Q,(y) =y* Ay > 0 for some y € R" and Q,(y) < O for other
ye R

With this terminology established, we can now reformulate (1.2.5) as
follows:

(1.2.9) Theorem. Suppose that x* is a critical point of a function f(x) with
continuous first and second partial derivatives on R" and that Hf(X) is the
Hessian of f(x). Then x* is:

(@) a global minimizer for f(x) if Hf(x) is positive semidefinite on R",
(b) a strict global minimizer for f(x) if Hf(x) is positive definite on R";
(c) a global maximizer for f(x) if Hf(X) is negative semidefinite on R";
(d) a strict global maximizer for f(x) if Hf(x) is negative definite on R".

1.3. Positive and Negative Definite Matrices and
Optimization
Now we take up the search for convenient ways to recognize positive and

negative definite, positive and negative semidefinite, and indefinite symmetric
matrices. Here are some examples.

(1.3.1) Examples

(a) A symmetric matrix whose entries are all positive need not be positive
definite. For example, the matrix

()



14 1. Unconstrained Optimization via Calculus

is not positive definite. For if x = (1, — 1), then

1 4 1 -3
QA(X)=(1,—1)<4 1><_l>=(l,—1)< 3>=—6<0.

(b) A symmetric matrix with some negative entries may be positive definite.
For example, the matrix
1 -1
A =

corresponds to the quadratic form
04(x) = x* Ax = x? — 2x,x, + 4x3.
Since Q,(x) = (x; — x,)* + 3x3, we see that if x = (x;, x,) # (0, 0), then
Q4(x) > Osince (x; — x,)*> > 0if x; # x, and 3x3 > 0if x, = x,.
(c) The matrix
1 00
A=(0 3 0
0 0 2
is positive definite because the associated quadratic form Q 4(x) is
Q4(x) = x- Ax = x? + 3x2 + 2x3,

and so Q,(x) > O unless x; = x, = x3 =0.
(d) A 3 x 3-diagonal matrix

d 0 0
A=|0 d, ©
0 0 d

is:

(1) positive definite if d; > O for i = 1, 2, 3;

(2) positive semidefinite if d; > 0 fori = 1,2, 3;

(3) negative definite if d; < O fori =1, 2, 3;

(4) negative semidefinite if d; < Ofori =1, 2, 3;

(5) indefinite if at least one d; is positive and at least one d; is negative for
i=1,23

For example, in case (2), if d; > 0,d, > 0, d; = 0, then
0,x)=d;x3+d,x3>0

for all x # 0 since d, > 0, d, > 0, but if x =(0, 0, 1), then Q,(x) =0 even
though x # 0.
(e) If a 2 x 2-symmetric matrix

(50
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is positive definite, then a > 0 and ¢ > 0. For if x = (1, 0), then x # 0 and so
0<Qx)=a*124+2b-1:0+c-02=a.

Similarly, if x = (0, 1), then 0 < Q,(x) = c. However, (a) shows that there are

2 x 2-symmetric matrices with a > 0, ¢ > 0 that are not positive definite. We

will see later that the size of b relative to the size of the product ac is the
determining factor for positive definiteness.

These examples show that for general symmetric matrices there is little
relationship between the signs of the matrix entries and the positive or negative
definite features of the matrix. They also show that for diagonal matrices, these
features are completely transparent. We will develop two basic tests for
positive and negative definiteness—one in terms of determinants, and in
Section 1.5 we will develop the other in terms of eigenvalues. We take up the
determinant approach now and we begin by looking at functions of two
variables.

If Ais a2 x 2-symmetric matrix

a a
am (o o)
a2 4z
then the associated quadratic form is

0.x)=xAx = a,,;x? + 2a,,%,x, + a,,x3.

Forany x # 0in R?, either x = (x;, 0) with x; # Oorx = (x,, x,) with x, # 0.
Let us analyze the sign of Q,(x) in terms of the entries of 4 in each of these
two cases.

Case 1. x = (x,, 0) with x; # 0.
In this case, Q,(x) = a,;x? so Q4(x) >0 if and only if a,, > 0, while
0.(x) < Oifand only ifa,;; <O0.

Case 2. x = (x,, x,) with x, # 0.
In this case, x; = tx, for some real number ¢t and
Q4(x) = [a;,t* + 2a,,t + a5,]1x3 = @(t)x3,

where @(t) = a;,t> + 2a,,t + a,,. Since x, # 0, we see that Q (x) > 0 for all
such x if and only if ¢(t) > O for all t € R.

Note that
@'(t) = 2ay,t + 2a,,,
©"(t) = 2a,,,

so that t* = —a,,/a,, is a critical point of ¢(t) and this critical point is a strict
minimizer if a;; > 0 and a strict maximizer ifa,; <0.Ifa,; > Oandift e R,

then
i 1
¢([)Z¢(t*)=(p<_a12>= _(112+a22= det <all 012>'

ayy a ayz; 43
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Thus, if a,;; > 0 and det (a“ a12> > 0, then ¢(t) > O for all t € R and so
a2 4z

Q.(x) > Ofor all x = (x,, x,) with x, # 0. On the other hand, if Q ,(x) > O for

all such x, then ¢(t) > Oforallt € Randsoa;; > 0and the discriminant of ¢(f)

ay; 4p
4a2, — 4a,,a,, = —4 dct(
ayx 4z,

ayy a

is negative, thatis, a,, > 0 and det < ) > 0. An entirely similar analy-

Az 433
sis shows that Q ,(x) < O for all x = (x,, x,) with x, # O ifand only ifa,; <0

a a . .
anddet( '' "'?)> 0. This proves the following result:
A2 Az

(1.3.2) Theorem. A 2 x 2-symmetric matrix
A= <a11 a12>
a2 Gz
(@) positive definite if and only if

a a
a,, >0, det< ” 12)>O;

a;x Az

is:

(b) negative definite if and only if

a;; <0,  det (a“ a12>>0.

ay> 4z

The 2 x 2 case and a little imagination suggest the correct formulation of
the general case.

Suppose A4 is an n x n-symmetric matrix. Define A, to be the determinant
of the upper left-hand corner k x k-submatrix of A for 1 < k < n. The de-
terminant A, is called the kth principal minor of A.

A Ay Ag
Ay Ay, A3 --- Qg Ay =ayy,
ay; @y Gy3 ) ... Gy, 0 a
A=\ a;; ay; as3| ... as, |, A2=det<11 12),
"""""""" . . ;2 Gz
a,, Gz, A3, -.. G, A, = det A.

The general theorem can be formulated as follows:

(1.3.3) Theorem. If Aisann x n-symmetric matrix and if A, is the kth principal
minor of A for | < k < n, then:
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(a) A is positive definite if and only if A, >0 fork=1,2,...,n;
(b) A is negative definite if and only if (— 1A, > 0 for k = 1,2,...,n(that is,
the principal minors alternate in sign with A; < 0).

Mathematical induction can be used to establish this result. However, the
formal inductive proof is somewhat complicated by the notation required for
the step from n = k to n = k + 1. It is quite illuminating to show how this
inductive step works from n = 2 (Theorem (1.3.2)) to n = 3, because this step
lays bare the essential features of the general inductive step. Consequently, we
include the proof of this special case at this point.

PROOF FOR n = 3. Suppose that
Ay 4y2 4g3
A= a;;, az a;
a3 Q43 Q33

is a 3 x 3-symmetric matrix and that x = (x,, X,, X3) is a nonzero vector in
R3. Then one of the following two cases must hold: Either x; = 0 or else
x5 # 0 and consequently x, = tx;, X, = sx; for some real numbers s, t.

Case 1. If x5 = 0, then a brief computation shows that

X*Ax = (xl’ x2)'<a11 a12><x1>
ayz Gy /\X2
and (x,, x;) # (0, 0), so (1.3.2) shows that:

(@) x*Ax > O for all x # 0 such that x; = 0 ifand only if A; > 0, A, > 0;
(b) x*Ax < O for all x # 0 such that x; = Oifand onlyif A; <0, A, > 0;

Case 2. If x5 # 0 and x, = tx3, x; = 5x; for real numbers s, ¢, then
X’AX = xg(allsz —+ a22t2 —+ a33 —+ 2012Sl + 2a133 —+ 2023t).

Consequently, since x5 # 0, it follows that x- Ax > 0 for all x # 0 such that
x5 # 0if and only if
(s, ) = ay 18 + ayyt? + ayy + 2a,,5t + 2a,35 + 2a,3t >0

for all real numbers s, t. In addition, x * Ax < O for all x # 0 such that x; # 0
if and only if ¢(s, t) < O for all real numbers s, t.

The critical points of ¢(s, t) are the solutions of the system

0
0 % _ 2a,;8 + 2a,,t + 2a,,,
0s

Op
ot

0=—=2a,,5+ 2a,,t + 2a,3,
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that is,
a; S+ a;t = —ays,
a128 + Ayt = —ds;.
This system has a unique solution (s*, t*) if and only if
A, = det <““ “”) £0,
A2 Q32

and this unique solution is given by Cramer’s Rule as

s*=Ldet<_a13 a”), t*=idet (a“ —a13>' (1
A, —dz3 a4z A, A2 —4aszs
If we multiply the equation
a1 s*+at* +a;3=0
by s*, and multiply the equation
a18* + a,t* +a,;,=0
by t* and add the results, we obtain
a1(s*)? + ay,(t*)? + 2a,,5%t* + a,35* + a3t* = 0.
Consequently,
@(s*, t*) = a,35% + a,5t* + aj,,
and so (1) implies that if A, # 0, then
1 ayy Gyy Gy3 detA A,
P(s*, 1*) = A—zdet A1z Gz dz3 | = A, = A,
i3 Qz3 Q433

2

(Just use the cofactor expansion of det A by the third column of A and basic
properties of determinants.)
Since

Hos, 1) = det 2911 2812} _gp
2a,, 2a,,

it follows from (1.3.2) and (1.2.9) that (s*, t*) is a strict global minimizer for
o(s, t) if and only if A; > 0, A, > 0. Similarly, (s*, t*) is a strict global maxi-
mizer for ¢(s, t) if and only if A; < 0, A, > 0.

IfA; >0,A, >0, Ay > 0, then the conclusion (a) of Case 1 shows that if
x # 0 and x5 = 0, then x* Ax > 0; on the other hand, the considerations in
Case 2 show that if x # 0, x5 # 0, x, = tx;, Xx; = sx;, then

x-Ax = x3o(s, 1) = x3(s*, t*) = x3— > 0.

Therefore x* Ax >0 forall x #0if A, >0,A, >0,A; > 0.
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On the other hand, if x - Ax > 0 for all x # 0, then conclusion (a) of Case 1
shows that A; > 0, A, > 0. Also, if x* = (s*, t*, 1), then (2) yields
Ay
— = @(s*, t*) = x*+ Ax* > 0,
A,
so A; > 0. This proves part (a) of (1.3.3) for n = 3. We can establish (b) by
making obvious changes in this paragraph and the preceding one.

(1.3.4) Remarks

(a) If Aisa 3 x 3-symmetric matrix such that A, > 0,A, > 0,A; = 0, then
a review of the proof of (1.3.3) for n = 3 shows that A is positive semidefinite.
The proof of (1.3.3) for the general case shows that if A; >0, A, >0, ...,
A,_; >0, A, =0, then 4 is positive semidefinite. Similarly, if (— 1)*A, > 0 for
k=1,...,n—1while A, = 0, then A4 is negative semidefinite.

(b) It is not true that if 4 is an n x n-symmetric matrix, then A is positive
semidefinite if and only if the principal minors A, ..., A, are all nonnegative.
For example, if

11 1
A=|11 1]},
11 4

then all principal minors of 4 are nonnegative but A4 is not positive semidefinite
since, for example, x+ Ax < 0 for x = (1, 1, —2).

(c) Some principal minor criteria are available for indefinite matrices. For
example, if A is a 2 x 2-symmetric matrix for which A, = det 4 <0, then 4
is indefinite. In fact, if

Q4(x) = a; X} + 2a,,X, X, + a5,x3,

and if A, = a;,a,, — a?, <0, then either a,, = a,, = 0 or at least one of the
numbers a,, d,, is nonzero. In the former case, Q,(x) = 2a,,x, X, assumes
both positive and negative values. In the latter case, say a,, # 0, we can
complete the square on x,; to rewrite the quadratic form Q ,(x) as follows:

Q4(x) = ay X} + 2a;,%,X; + az;x3

2 2

a, aiz a;; 4i
=a“<<x%+2—x1x2+7x§ +| = =53

agy aii a;;  an

1
=—[(a11 %, + a;2%;)* + Ay x3].
ai

Since A, < 0, the final expression for Q ,(x) makes it clear that Q , has opposite
signs at the points (1, 0) and (a,,, —a, ), and therefore 4 is indefinite.

Now let us get back on track and apply what we have learned to the
problems of global minimization. Here are four examples that summarize
what we now know.
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(1.3.5) Examples
(a) Minimize the function

S0, X2, X3) = X2 4+ x3 + x5 — x, X, + X3X3 — X X3.

The critical points of f(x;, x,, x3) are the solutions of the system
2x, — x, — x3=0,
—Xx; +2x, + x3=0,
—X; + X, +2x3=0.

This homogeneous system of linear equations has a coefficient matrix with a
nonzero determinant, so x; = 0, x, = 0, x; = 0 is the one and only solution.
The Hessian of f(x,, x,, x3) is the constant matrix

2 -1 -1
Hf(x19x2» x3) = -1 2 1
—1 1 2

Note that A; =2, A, = 3, A; = 4, s0 Hf(x,, x,, x3) is positive definite every-
where on R3. It follows for (1.2.9) that the critical point (0, 0, 0) s a strict global
minimizer for f(x,, x,, x3).

Since f(x,, x,, x3) is defined and has continuous first partial derivatives
everywhere on R® and since (0, 0, 0) is the only critical point of f(x,, x,, X3),
it follows from (1.2.3) that f(x, x,, x3) has no other minimizers or maximizers.

(b) Find the global minimizer of

fx,y,2) =€ + e + e + 2%
To this end, compute

eX TV — 7% 4 2xe*’

Vf(x9 ys Z) = —e* Y 4+ ¥ >
2z
and
e 7V 4 eV X 4 4x2e% + 2% —eX TV —e¥™* 0
Hf(x, y,z) = —e*X Y — ¥ e V4 0
0 0 2

Clearly, A, > 0 for all x, y, z because all the terms of it are positive. Also
Ay = (¥ + ") 4 (e¥7Y + e* ) (4x2e* + 2e¥7) — (X7 4 ¥ 7)?
= (e*7Y + ) (dx%e*” + 2e*°) >0

because both factors are always positive. Finally, A; = 2A, > 0. Hence
Hf(x, y, z) is positive definite at all points. Therefore by Theorem (1.2.9),
f(x, y, z) is strictly globally minimized at any critical point (x*, y*, z*). To
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find (x*, y*, z*), solve

*_ %k *_ % *
eX Y — "X g xxeD?
0 = Vf(x*, y*, z¥) = —eXTY 4 et
b
2z*

*

This leads to z* =0, e = ¢”" ™", hence 2x*e¢™"* = 0. Accordingly,
x* — y* = y* — x*; that is, x* = y* and x* = 0. Therefore (x*, y*, z*) =
(0, 0, 0) is the strict global minimizer of f(x, y, z).

(c) Find the global minimizers of

fx ) = e + 7

Vf(x, y) = ( e "’)

—e*Y + e."_x

To this end, compute

and

eV 4+ eV —etV — e
Hf(x y) = <—e"‘y —eV* e + e”"‘>‘
Since ¢*7¥ + €™ > 0 for all x, y and det Hf(x, y) = 0, then, by Remark
(1.3.4)(a), the Hessian Hf(x, y) is positive semidefinite for all x, y. Therefore,
by Theorem (1.2.9), f(x, y) is minimized at any critical point (x*, y*) of f(x, ).
To find (x*, y*), solve

x!_y‘ _ y!_xt
0=Vf(x*,y*)=< ¢ ¢ )

_ext_yt + eyt_xa

This gives
ex‘_yt — eyt_x!
or
x*_y*=y*_x*;
that is,

2x* = 2y*,

This shows that all points of the line y = x are global minimizers of f(x, y).
(d) Find the global minimizers of

ey = e 4 e,
In this case,
X 4 ¥t
Vilx, y) = <_e,_y +oexty
ex—y + ex+y _ex—y + ex+y
_ex—y + ex+y ex v + ex+y N

Hf(x, y) = <
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Since e*7? + e**¥ > (O for all x, y and det Hf(x, y) > 0, then by (1.3.2), Hf (x, )
is positive definite for all x, y. Therefore, by Theorem (1.2.9), f(x, y) is minimized
at any critical point (x*, y*). To find (x*, y*), write

ex*_y‘ + ex‘+y*
0= V/(x*, %) = (_ex,_y‘ N e)

Thus
e 4 e =0
and
_eF Y e ().

But e** " > 0 and ¢***** > 0 for all x*, y*. Therefore the equality e** " +
e*"** = 0 is impossible. Thus f(x, y) has no critical points and hence f(x, y)
has no global minimizers.

There is no disputing that global minimization is far more important than
mere local minimization. Still there are certain situations in which scientists
want knowledge of local minimizers of a function. Since we are in an excellent
position to understand local minimization, let us get on with it. The basic fact
to understand is the next theorem.

(1.3.6) Theorem. Suppose that f(x) is a function with continuous first and
second partial derivatives on some set D in R". Suppose x* is an interior point
of D and that x* is a critical point of f(x). Then x* is:

(@) a strict local minimizer of f(x) if Hf(x*) is positive definite;
(b) a strict local maximizer of f(x) if Hf(x*) is negative definite.

PRrROOF. (a) Define A, (x) to be the kth principal minor of Hf(x). By hypothesis,
we know A, (x*) > 0 for k=1, 2, ..., n. Now because the second partials of
f(x) are continuous, each A, (x) is a continuous function of x. Since A, (x*) > 0,
from continuity it follows that there exists for each k a number r, >0
such that A (x) >0 if |x — x*| <r. Set r = min{r,...,r,} and observe
that for all k=1, ..., n we have A, (x) > 0 if |x — x*|| < r. Therefore by
Theorem (1.3.3), the matrix Hf(x) is positive definite if ||x — x*|| < r. Now
if 0 < ||[x — x*|| < r, then according to Theorem (1.2.4), we have

) = f(x*) + Vf(x*) (x — x*) + 2(x — x*)- Hf(z) (x — x*),

where z is on the line segment from x to x*. Since |[x — x*|| < r, it follows
quickly that

lz — x*| <r.

Hence Hf(z) is positive definite. Consequently, if 0 < ||x — x*|| < r, then
f(x) = f(x*) + 0 + a positive number. Thus ||x — x*|| < r and x # x* imply
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that
f(x) > f(x*);

that is, x* is a strict local minimizer of f(x).
The proof of (b) is similar and will be omitted.

Let us briefly investigate the meaning of an indefinite Hessian at a critical
point of a function before we go on. Suppose that f(x) has continuous second
partial derivatives on a set D in R", that x* is an interior point of D which is
a critical point of f(x), and that Hf(x*) is indefinite. This means that there are
nonzero vectors y, w in R" such that

y- Hf (x*)y > 0, w- Hf(x*)w < 0.
Since f(x) has continuous second partial derivatives on D, there is an ¢ > 0
such that
y* Hf(x* + ty)y > 0, w- Hf(x* + tw)w <0
for all ¢t with |t| < &. But then if Y(z), W(t) are defined
Y(0) = f(x* +ty), W)= f(x* + tw),

then Y'(0)=0= W’'(0) and Y”"(0) = y- Hf(x*)y > 0, W”"(0) = w- Hf (x*)w
< 0. Therefore, t = 0 is a strict local minimizer for Y(t) and a strict local
maximizer for W(t).

W ()

Thus if we move from x* in the direction of y or —y, the values of f(x) increase,
but if we move from x* in the direction of w or —w, the values of f(x) decrease.
For this reason, we call the critical point x* a saddle point, that is, a saddle
point for f(x) is a critical point x* for f(x) such that there are vectors y, w for
which ¢ = 0 is a strict local minimizer for Y(t) = f(x* + ty) and a strict local
maximizer for W(t) = f(x* + tw).

The following result summarizes this little discussion:

(1.3.7) Theorem. If f(x)is a function with continuous second partial derivatives
on a set D in R", if x* is an interior point of D that is a critical point of f(x),
and if the Hessian Hf(x*) is indefinite, then x* is a saddle point for f(x).
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(1.3.8) Example. Let us look for the global and local minimizers and maxi-
mizers (if any) of the function

f(xy, x5) = x3 — 12x,x, + 8x3.

In this case, the critical points are the solutions of the system

of
0 =6_xl = 3x% — 12x2,
of
0=a—);;= —12x1 + 24X§

This system can be readily solved to identify the critical points (2, 1) and (0, 0).

The Hessian of f(x;, x,) is
6x, —12
Hf(xy, x,) = <_12 48x2>'
Since

12 48

and since A; = 12 and A, = 432, it follows that the critical point (2, 1) is a
strict local minimizer.

Now let us see whether (2, 1) is a global minimizer. Observe that Hf(x,, x,)
is not positive definite for all (x,, x,); for example,

0 —12
H/O, 1)=<—12 48)

is indefinite by (1.3.4)(c). In view of (1.2.9), this leads us to suspect that (2, 1)
may not be a global minimizer. The fact that

lim f(x;,0)= —o0

Xy = —0

HiG. 1) — (_12 —12>

shows conclusively that f(x,, x,) has no global minimizer. Moreover, since

lim f(x;,0)= +oo0,

xy =+

we see that there are no global maximizers or global minimizers.
How about the critical point (0, 0)? Well, since

0 —12
HY (0, 0>=<~12 O),

this matrix miserably fails the tests for positive definiteness and this leads us
to expect trouble at (0, 0). Remark (1.3.4)(c) and Theorem (1.3.7) tell us that
there is a saddle point at (0, 0). Alternatively, we can examine

f(x1, x5) = x3 — 12x,x, + 8x3.
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For example,

fxy,0) = x3,

which is positive for x; > 0, zero for x; = 0, and negative for x; < 0. Thus
(0, 0) is not a local minimizer of f(x,, x,).

One cautionary note is due here. If x* is a critical point of f(x) and
Hf(x*) is merely positive semidefinite, then nothing can be concluded in
general. For instance, if f(x, y) = x* — y*, then (0, 0) is the only critical point

00
and Hf(0,0) = < 0 0), which is positive semidefinite. But plainly (0, 0) is
neither a local maximizer nor a local minimizer of f(x, y).

On the other hand, if f(x, y) = x* + y*, the (0, 0) is the only critical point

00
of f(x, y) and Hf(0,0) = < 0 0), which is again positive semidefinite. This
time it is clear that (0, 0) is the global minimizer of f(x, y).

1.4. Coercive Functions and Global Minimizers

At this stage we can find global minimizers for f(x) if f(x) has a critical point
and Hf(x) is always positive definite. But what about global minimization for
f(x) in the case in which Hf(x) is not known to be always positive definite?
This short section is devoted to showing that this question sometimes has a
very simple answer. The answer depends on the following theorem from
calculus:

(1.4.1) Theorem. Let D be a closed bounded subset of R". If f(x) is a continuous
function defined on D, then f(x) has a global maximizer and a global minimizer
onD.!

Note that this theorem does not guarantee a global minimum on R", or on
any other set that is either unbounded or not closed.
Now we isolate the type of function that is easily handled.

(1.4.2) Definition. A continuous function f(x) that is defined on all of R" is
called coercive if

lim f(x) = +o0.
lIx[|—= o0
This means that for any constant M there must be a positive number R,, such
that f(x) > M whenever | x| = R,,. In particular, the values of f(x) cannot
remain bounded on a set 4 in R" that is not bounded.

! For a proof see Elements of Real Analysis by R. G. Bartle.
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(1.4.3) Examples
(@) Let f(x, y) = x2 + y* = ||x||%. Then
lim f(x)= lim [x|? = oo.

Ix]|—~o0 %] —=e0

Thus f(x, y) is coercive.
(b) Let f(x, y) = x* + y* — 3xy. Note that

3xy
)=ty ).
S, y)=*+y )< x4+y4)
If |x|| is large, then 3xy/(x* + y*) is very small. Hence

lim f(x,y)= lim (x*+ y*)-(1 —0)= +o0.

Il(x, )| =0 Il(x, ¥) | =0

Thus f{(x, y) is coercive.
(c) Let f(x, y,2) =

2 2 2
e + ¥ 4 e — x100 _ 100 _ ;100

Then because exponential growth is much faster than the growth of any
polynomial, it follows that
lim  f(x,y,z) = o0.
[[(x,y.2)]| =200
Thus f(x, y, z) is coercive.

(d) Linear functions on R? are never coercive. Such functions can be
expressed as follows:

flx,y)=ax + by + ¢,

where either a # 0 or b # 0. To see that f(x, y) is not coercive, simply observe
that f(x, y) is constantly equal to ¢ on the line

ax + by =0.

Since this line is unbounded and f(x, y) is not unbounded on this line, the
function f(x, y) is not coercive.
() If f(x, y,z) = x* + y* + z* — 3xyz — x> — y? — 22, then as

It 3, 2l = /%7 + % + 2 = o0,

the higher degree terms dominate and force limy , .- f(X, ¥, 2z) = c0.
Thus f(x, y, z) is coercive. The following example helps us avoid some
misunderstandings.

(f) Let f(x, y) = x* — 2xy + y% Then:

(i) for each fixed y,, we have lim,., f(x, yo) = o0;
(ii) for each fixed x,, we have lim, ., f(x,, y) = 0;
(i) but f(x, y) is not coercive.
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Properties (i) and (ii) above are more or less clear because in each case the
quadratic term dominates. For example, in case (i), we have for a fixed y,,

f(x, o) = x* — xyo + yb.

This function of x is a parabola that opens upward. Therefore

lim f(x, yo) = 0.

x|~ o0

To see that f(x, y) is not coercive, factor to learn
e y)=x* = 2xy + y* = (x — y)*.

Therefore if ||(x, y)|| goes to oo on the line y = +x, we see f(x,y)=
(x — x)? = 0 and hence f(x, y) = 0 on the unbounded line y = x. Therefore,
limy, ,)1-0 (X, ¥) # 00 so f(x, y) is not coercive.

The point of this last example is very important. For f(x) to be coercive, it
is not sufficient that f(x) - oo as each coordinate tends to co. Rather f(x)
must become infinite along any path for which |x|| becomes infinite. Exercise
31 contains a general result concerning functions of the sort discussed in
Example (1.4.3)(a), (f) above.

The reason coercive functions are important is that they all have global
minimizers.

(1.4.4) Theorem. Let f(x) be a continuous function defined on all R". If f(x) is
coercive, then f(x) has at least one global minimizer.

If, in addition, the first partial derivatives of f(x) exist on all of R", then these
global minimizers can be found among the critical points of f(x).

ProOF. To prove the first statement, assume lim ., f(x) = + 0. This means
that if ||x|| is large, then so is f(x). Accordingly, there is a number r > 0 such
that if |x|| > r, then

J() > f(0).

Let B(0, r) be the set {x: |x|| <r}. The function f(x) is continuous at each
point of the set B(0, r) and the set B(0, r)is closed and bounded. From Theorem
(1.4.1), it follows that f(x) takes a minimum value on B(0, r) at a point x* in
B(0, r). In other words, x € B(0, r) implies f(x*) < f(x). In particular, because
0 € B(0, r), we see that

f(x*) < £(0).
On the other hand, if x ¢ B(0, r), then
Jx) > f(0) > f(x*).

Summarizing, we have seen that x € B(0, r) implies f(x) > f(x*)and x ¢ B(0, r)
implies f(x) > f(x*). This shows x* is a global minimizer of f(x) and completes
the proof of the first statement of the theorem.



28 1. Unconstrained Optimization via Calculus

The second statement holds because global minimizers on R" are critical
points by Theorem (1.2.3). This completes the proof.

This theorem sets up a method for trying to minimize coercive functions
on R" If f(x) is coercive and the first partial derivatives of f(x) exist on R",
then its minimizers are found among the critical points. Therefore to minimize
f(x) on R", merely list the critical points x'%), ..., x'P of f(x). Then choose the
critical point x'” such that f(x'”?) is less than or equal to the other f(x") for
j=1,..., p. Theorem (1.4.4) guarantees that f(x) is a global minimizer of
f(x) on R".

(1.4.5) Example. Minimize

flx,y) = x* —4xy + y*

on R2.
To this end, compute

3 _
Vi) = (—4:): +:J;3>
and
Hf(x, y) = (12x2 —4>.
—4  12y?
Note that

3 -4
H L’ 1 — s
£(3.9) <_ ! 3>
which is certainly not positive definite since det Hf (3, 3) = 9 — 16 < 0. There-
fore the tests from the last section are not applicable. But all is not lost because
f(x, y) is coercive!
To see that f(x, y) is coercive, note that

4xy
S y) = x*+ y4<1 - m)
As [|[(x, )| = /x? + y?> > o0, the term 4xy/(x* + y*) - 0. Hence

lim f(x,y)= Ilim (x*+ y*)(1 —0)= + 0.
ll(x, p)l| =0 [l(x, ¥ =00
Thus f(x, y) is coercive. According to the last theorem f(x, y) has a global
minimizer at one of the critical points. Setting Vf(x, y) = 0, we get y = x3,
and x = y3. Hence x = x° and x(x® — 1) = 0. This produces three critical
points

0,0),(1,1), (-1, =1).
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Now
f(0,0) =0,
f,h)=1—4+1= -2,
f(=1,—-H)=1—-4+1= -2,
Therefore (— 1, — 1) and (1, 1) are both global minimizers of f(x, y).

1.5. Eigenvalues and Positive Definite Matrices

If the eigenvalues of a symmetric matrix are available, then they can easily be
used to recognize definite, semidefinite, and indefinite matrices. The goal of
this section is to see why this is so. Here is some background from linear
algebra.

If Aisan n x n-matrix and if x is a nonzero vector in R" such that Ax = ix
for some real or complex number 4, then 4 is called an eigenvalue of A. If A is
an eigenvalue of A4, then any nonzero vector x that satisfies the equation
Ax = Ax is called an eigenvector of A corresponding to A. Since A is an
eigenvalue of an n x n-matrix A if and only if the homogeneous system
(A — Al)x = 0 of n equations in n unknowns has a nonzero solution x, it
follows that the eigenvalues of A are just the roots of the characteristic
equation

det(A — AI) = 0.

Since det(A — AI) is a polynomial of degree n in 4, the characteristic equation
has n real or complex roots if we count multiple roots according to their
multiplicities, so ann x n-matrix A4 has nreal or complex eigenvalues counting
multiplicities.

Symmetric matrices have the following special properties with respect to
eigenvalues and eigenvectors:

(1) All of the eigenvalues of a symmetric matrix are real numbers.

(2) Eigenvectors corresponding to distinct eigenvalues of a symmetric matrix
are orthogonal.

(3) If A is an eigenvalue of multiplicity k for a symmetric matrix A4 (that is, 4
is a root of characteristic equation det(4 — AI) = 0, k times), there are k
linearly independent eigenvectors corresponding to A. By applying the
Gram-Schmidt Orthogonalization Process, we can always replace these
k linearly independent eigenvectors with a set of k mutually orthogonal
eigenvectors of unit length. (For another view of this, see Example (7.2.4).)

By combining (2) and (3), we see that if A is an n x n-symmetric matrix, then
there are n mutually orthogonal unit eigenvectors u''), ..., u™ corresponding
to the n eigenvalues 4, ..., 4, of 4 (with repeated eigenvalues listed according
to their multiplicity). If P is the n x n-matrix whose ith column is the unit
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eigenvector u” corresponding to 4;, and if D is the diagonal matrix with the
eigenvalues 1, ..., 4, down the main diagonal, then the following matrix
equation holds:

AP = PD,

because Au?” = L.u?fori = 1,...,n. Since the matrix P is orthogonal (that is,
its columns are mutually orthogonal unit vectors), P is invertible and the
inverse P~! of P is just the transpose PT of P. It follows that

PTAP = D,

that is, the orthogonal matrix P diagonalizes A. If Q ,(x) = x+ Ax is the qua-
dratic form associated with the symmetric matrix 4 and if x = Py, then

Q4(x) = x* Ax = (Py)'A(Py) = y"PTAPy
=y'Dy = 4yt + Ly + 0+ Ayi
Moreover, since P is invertible, x # 0 if and only if y # 0. Also, if y® is the

vector in R" with the ith component equal to 1 and all other components equal
to zero, and if ) = Py", then

QA(XU)) =

fori=1,2,...,n These considerations yield the following eigenvalue test for
definite, semidefinite, and indefinite matrices.

(1.5.1) Theorem. If A is a symmetric matrix, then:

(a) the matrix A is positive definite (resp. negative definite) if and only if all
the eigenvalues of A are positive (resp. negative),

(b) the matrix A is positive semidefinite (resp. negative semidefinite) if and only
if all of the eigenvalues of A are nonnegative (resp. nonpositive);

(c) the matrix A is indefinite if and only if A has at least one positive eigenvalue
and at least one negative eigenvalue.

The following example shows how the eigenvalue criteria in Theorem (1.5.1)
can be applied to an optimization problem.
(1.5.2) Example. Let us locate all maximizers, minimizers, and saddle points of
S0, x5, x3) = X3 + x5 + X3 — dx;x,.

The critical points of f(x,, x,, x3) are solutions of the system of equations

)

O=—Jf-= 2x, — 4x,,
ox,
o

026—.);;: —4X1 + 2x2,
)

O_L_ 2X3.

~ .
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It is easy to check that (0, 0, 0) is the one and only solution of this system. The
Hessian of f(x,, x,, X3) is the constant matrix

2 —4 0
Hf(xl, X2, x3) = -4 2 0
0 0 2

The eigenvalues of the Hessian are the solutions of the characteristic equation

2—-4 —4 0
0 = det -4 2-1 0 =2 - L2 - 4)?* - 16]
0 0 2-12

= Q- )2 —4i—12]

Thus, the eigenvalues are 4 = 2, 6, —2, so Theorem (1.3.7) shows that (0, 0, 0)
is a saddle point. Since f(x,, x,, X3) has continuous first partial derivatives
everywhere on R3, it follows from (1.2.3) that f(x,, x,, x;) has no other
minimizers, maximizers, or saddle points.

EXERCISES

1. Find the local and global minimizers and maximizers of the following functions:
(@) f(x) = x>+ 2x.
(b) f(x) = x2e™*".
©) flx)=x*+ 4x> + 6x? + 4x.
(d) f(x) = x + sin x.

2. Classify the following matrices according to whether they are positive or negative
definite or semidefinite or indefinite:

1 0 o0 -1 0 0
(a)(O 3 0). (b)( 0 -3 0).
0 0 5 0 0 -2
7 0 0 301 2
(c)(O -8 0). (d)(l 5 3).
0 0 5 2 3 7
-4 0 1 2 -4 0
(e)( 0 -3 2). (f)( —4 8 0).
1 2 =5 0 0 -3

3. Write the quadratic form Q ,(x) associated with each of the following matrices A:

(-2 ooa (2 -3
@A={ 3 3) ®rA=l_3 o)

1 -1 0 -3 1 2
(c)A=(—1 -2 2). (d)A=( 1 2 —1).
0 2 3 2 -1 4
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. Write each of the quadratic forms in the form x+ Ax where A is an appropriate

symmetric matrix:

(@) 3x2 — x,;x, + 2x3.

(b) x? + 2x3 — 3x3 + 2x,x, — 4x,X; + 6X,X5.
(€) 2x7 — 4x3 + x, x5 — X3X5.

. Suppose f(x) is defined on R> by

S(x) = ¢ x2 + c;x3 + c3x3 + ¢4x X, + CsX X3 + CeXpX3-

Show that f(x) is the quadratic form associated with 4 Hf. Discuss generalizations
to higher dimensions.

. Show that the principal minors of the matrix

1 -8
A=
1 1
are positive, but that there are x # 0 in R? such that x - Ax < 0. Why does this not
contradict Theorem (1.3.3)?

. Use the principal minor criteria to determine (if possible) the nature of the critical

points of the following functions:

(@) f(xy, x;) = X7 + x3 — 3x, — 12x, + 20.

(b) f(xy, x5, x3) = 3x% + 2x2 + 2x3 + 2x;x, + 2x,%3 + 2X X5.
(C) f(xlax2a XS) = x% + X% + x:25 - 4'xl'xZ'

(d) SOy, xz) =xt+ x5 —xf —xj + 1.

(&) flxy,x,) = 12x} — 36x,x, — 2x3 + 9x3 — 72x, + 60x, + 5.

. Use the eigenvalue criteria on the Hessian matrix to determine the nature of the

critical points for each of the functions in Exercise 7.

. Show that the functions

Slxy, x;) = x% + x%»
and
g(xy, x3) = x} + x3

both have a critical point at (0, 0), both have positive semidefinite Hessians at (0, 0),
but (0, 0) is a local minimizer for g(x,, x,) but not for f(x,, x,).

Find the global maximizers and minimizers, if they exist, for the following functions:
@) f(x;,x;)=x2—4x, +2x3 + 7.

(b) f(xy,x;) = e (xivd),

(©) f(x,x5) =x% — 2x1X, + $x3 — 4x,.

(d) f0xrs X2, X3) = (2% — X;3)% + (x5 — x3)% + (x5 — 1)2

(&) f(xy,x,) = x% + 16x,x, + x85.

Show that although (0, 0) is a critical point of f(x,, x,) = x} — x,x$, it is neither
a local maximizer nor a local minimizer of f(x,, x,).
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12

13.

15.

Identify the coercive functions in the following list:
(a) On R3, let

[y, 2)=x>+y>+ 23 — xy.
(b) On R3, let
fx,y,2)=x*+y* + 22 —3xy—z
(c) On R3, let
f06 3, 2) = x* + y* + 22 — Txyz2
(d) On R3, let
flx, y,2) = x* + y* — 2xy*.
(€) On R3, let
f(x,y,2) =In(x?y?z?) —x —y — z.
(f) On R3, let
S(x,y,2) = x* + y* + 2% — sin(xyz).
Define f(x, y) on R? by
f(x, y) = x* + y* — 32y2

(a) Find a point in R? at which Hf is indefinite.
(b) Show f(x, y) is coercive.
(c) Minimize f(x, y) on R2

. Let a € R" be a fixed vector. Define f(x) on R" by

fx)=a-x
Show f(x) is not coercive. Show that if £ is any positive number, then the function
g(x) = a-x +elx|*
is coercive.
Define f(x, y, z) on R? by
fl,y,0)=e + e’ + e+ 2

(a) Show Hf(x, y, z) is positive definite at all points of R>.
(b) Show (In 2/4, In 2/4, In 2/4) is the strict global minimizer of f(x, y, z) on R3.

. (a) Show that no matter what value of a is chosen, the function

S(x1, %) = x{ — 3ax,x, + x3

has no global maximizers.
(b) Determine the nature of the critical points of this function for all values of a.

. If x* is a critical point of a function f(x), then x* is a weak saddle point of f(x) if

there are points x arbitrarily close to x* where f(x*) > f(x) and other points x
arbitrarily close to x* where f(x) > f(x*).
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18.

19.

20.

21.

1. Unconstrained Optimization via Calculus

(a) Show that the function
Sy, x5) = (x; — x3)(x, — 2x})

has a critical point at (0, 0) which is a weak saddle point. (Hint: Note that
f(x,, x,) is the product of two factors so that f(x,, x,) > 0 when both factors
are positive or both factors are negative.)

(b) Show that f(x,, x,) has a strict local minimizer along every line

x, = at,
x, = bt,
through (0, 0) so that (0, 0) is not a saddle point.
(Linear Regression). Suppose that (x,, ¥,), (X3, ¥2), ..., (X,, ¥,) are n points in the
xy-plane and suppose that we want to “fit” a straight line y = a + bx to these
points in such a way that the sum of the squares of the vertical deviations of the

given points from the line is as small as possible. In other words, we want to choose
a, b so that

flab) =Y @+ bx; — y)?
i=1

is as small as possible. The resulting line is called the linear regression line for the

points (X, ¥1), -« s (Xps Yn)-
(a) Show that the coefficients a and b of the linear regression line are given by

nxy — 3. xy;
a=y—bx, b= Pl
n(x)> — ¥ x?
where =
1 I
x_;i;x” y_ni;yi

are the averages of the x- and y-coordinates of the n given points.

(a) Suppose that A is an arbitrary square matrix. Show that x* Ax > Oforall x # 0
if and only if the symmetric matrix B = (4 + A7) is positive definite. (Hint:
Use the fact that

x*Ax = ATx*x =x-ATx forall x)
. 3 4 .
(b) Show thatif A = <2 7), then x+ Ax > O for all x # 0 in R?.

Suppose that A4 is a square matrix and suppose that there is another matrix B such

that A = B"B.

(a) Show that A is positive semidefinite.

(b) Show that if B has full column rank (that is, the rank of B is equal to the number
of columns of B), then A is positive definite. (Hint: Recall that y - BTx = (By) - x
forall x,y.)

Suppose that A is a positive definite matrix. Show that the diagonal elements a;
of A are all positive. (Hint: Consider vectors with only one nonzero component.)
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22.

23.

24.

25.

26.

27.

28.

29.

30.

Suppose that f(x) is a function with continuous second partial derivatives whose

Hessian is positive definite at all points in R".

(a) Show that f(x) has at most one critical point in R".

(b) Show, by example, that f(x) may have no critical points.

(c) Show that if x* is a critical point of f(x) then x* is the unique strict global
minimizer of f(x).

(d) Show that if Vf(x") = Vf(x'?), then x'’ = x?,

Suppose that f(x) is a function with continuous second partial derivatives whose
Hessian is positive semidefinite at all points of R". Prove that any critical point of
f(x) is a global minimizer of f(x).

Suppose that A is a n x n-symmetric matrix for which a;a;; — a,?j < 0 for some
i # j. Show that A is indefinite. (See (1.3.4)(c).)

(a) Let 4 be a 3 x 3-symmetric matrix such that A, >0, A, > 0, and A; =0.
Prove A is positive semidefinite.

(b) Give an example of a 3 x 3-symmetric matrix 4 such that A, > 0,A, = 0,and
A; = 0, but such that A is not positive semidefinite.

(c) Show thatif Aisa 2 x 2-symmetric matrix with nonnegative entries such that
A, = 0and A, > 0, then A is positive semidefinite.

Show that the function

x2+y2422 6

fx,y,2)=e —x* =5~

has a global minimizer on R3.

Let A be square n x n-matrix. Show that A + AT is symmetric. Show that

A+ AT
x-Ax=x~( > >x

for all x in R". Conclude that x- Ax > O for all x in R" if and only if the symmetric
matrix A + AT is positive semidefinite.

Show that the Vandermonde matrix

x* x3 x?
x3 x* x
x2 x 1

is positive semidefinite but is not positive definite.

Let g(x) be a differentiable function on R™ with continuous first partial derivatives.
Let A be a m x n-matrix. Define f on R" by

J(y) = g(4y).
Compute Vf in terms of Vg and A.
Leta = (a;)and b = (b;) be fixed vectors in R". Let a ® b be the matrix whose entry
on the ith row and jth column is (a;b;).
(a) Show (a ® b)x = (b-x)a for all x in R

(b) Show a ® a is positive semidefinite but if n > 2, then a ® a is not positive
definite.
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31. (a) Let 4 be an n x n-symmetric matrix. Diagonalize 4 to show that
x* AX
[Ix]|?

is greater than or equal to the smallest eigenvalue of A for all x # 0 in R".

(b) Show that the quadratic form Q,(x) = x* Ax is coercive if and only if 4 is
positive definite.

(¢) Conclude from (b) that if

fx)=a+b-x + Ix-Ax

is any quadratic function where ae R, be R" and A4 is an n x n-symmetric
matrix, then f(x) is coercive if and only if A is positive definite.

32. Find a function f(x, y) on R? such that for each real number ¢, we have

lim f(x, tx) = lim f(ty, y) = o0,

X y—x
but such that f(x, y) is not coercive.
33. Consider the function f(x) defined on R? by
flx, y) = x> + 3 — 3xe’.

Show that f(x) has exactly one critical point and that this point is a local minimizer
but not a global minimizer of f(x).



CHAPTER 2

Convex Sets and Convex
Functions

The study of convexity is a richly rewarding mathematical experience. Theo-
rems dealing with convexity are invariably clean, easily understood state-
ments such as: “Any critical point of a convex function is a global minimizer
for that function.” The proofs of convexity theorems are usually not diffi-
cult and are often suggested by the intuitive, geometric character of the
concepts.

However, our interest in convexity here is not a result of its very appealing
mathematical structure. Rather, it is driven by other important considera-
tions. First, convex functions occur frequently and naturally in many optimi-
zation problems that arise in statistical, economic, or industrial applications.
Second, convexity considerations often make it unnecessary to test the Hessians
of functions for positive definiteness, a test which can be difficult in practice
as we have seen in Chapter 1. Finally, convexity will be used to establish the
entire mathematical basis for an important optimization procedure known as
geometric programming, and will be central to our approach to nonlinear
programming in general.

2.1. Convex Sets
Here is the basic definition.

(2.1.1) Definition. A set C in R" is convex if for every x and y in C, the line
segment joining x and y also lies in C.

The intuitive idea of a convex set is described in the following figures:
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Convex Not Convex

3N

In Section 1.2 of Chapter 1, we defined the line segment [x, y] joining x
and y by
[x,y]={x+ Ay —x):0<Ai<1}.
Note that this set can also be described as follows:
[x,yl={ly+(1 -AHx:0<i<1}

Therefore, a subset C of R" is convex if and only if for every x and y in C and
every A with 0 < A < 1, the vector Ax + (1 — A)y is also in C. (Since x, y are
arbitrary elements of C, they can be interchanged in the preceding statement.)
It turns out that this latter description of a convex set is the easiest to use.

(2.1.2) Examples
(a) Lines in R" can be described in a variety of ways. For example, if x and
v are vectors in R", the line L through x in the direction of v is described below.

L={x+Av:1 € R}

The line L through x
in the direction of v

0

On the other hand, if x and y are vectors in R”", the line L through x and y is
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the set described below.

L={x+ (1 —Ay:1€R}

The line L through x andy

0

Lines in R" can also be described as translates of one-dimensional linear
subspaces. More precisely, if M is a one-dimensional linear subspace of R", if
the vector b constitutes a basis for M, and if x is a given vector, then the line
obtained by translating the subspace M by the vector X is

L={x+ ib: A€ R},

that is, L is just the line through x in the direction of the basis vector b.

It is clear from any of the set descriptions given above that any line in R"
is a convex set.

(b) In our discussion of certain optimization methods in later chapters, we
will often seek to minimize a function f(x) defined on R" along rays or
half-lines in R". If x and v are given vectors in R", the ray (or half-line) H from
X in the direction of v is described below.

H={x+Av:0<1€ R}

The ray H from x in
the direction of v

Clearly, any ray in R" is a convex set.
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(c) Any linear subspace M of R" is a convex set since linear subspaces are
closed under addition and scalar multiplication.
(d) If x* € R" and if a € R, then the closed half-spaces

F* ={yeR"x*y=>ua}

F-={yeR"x*-y<a},
and the open half-spaces

G* ={yeR"x*y>u},

G ={yeR":x*y<ua},

determined by x* and « are all convex sets. For example, if y, z are in F* and
if0 < i< 1,then

x* [Ay+ (1 —Az] =Ax*y+ (1 — A)x*z> 4o+ (1 — Ha=a,
SO
Ay+ (1 —A)zeF*.
(e) If x* e R" and if r > 0, then the ball

B(x*,r)={ye R™ |y — x*|| <r}

centered at x* of radius r is a convex set. In fact, if y, z are in B(x, r), then
ly —x*l <r, Jz—x*|<r

For 0 < 4 < 1, we can apply the Triangle Inequality as follows:

2y + (1 — Az — x*|| = Ay — x*) + (1 — A)(z — x¥)]
<Aly—x*|+(Q=Az—x*|<ir+(1—-Ar=r

to conclude that Ay + (1 — )z € B(x*, r).

(f) IfC,,C,,Cs,...,GC,,...are convex sets in R”, then the intersection ﬂC,.
is also convex.! For if y, z belong to this intersection and if 0 < 2 < 1, then y,
z belong to each C;, so Ay + (1 — )z € C; for each i since C; is convex. But
then Ay + (1 — A)z € (\C; so that ()C; is convex.

(g) If A =(ay;) is an m x n-matrix and if be R™, then the set S of all
solutions x € R" of the system Ax < b of linear inequalities, that is,

A X, +a;x; + -+ ax, <b,

Ay X + AyaXy + 7 + Ay, X, < by,

A1 Xy + Am2X, + 0+ AnXn < bm?

! Of course, the intersection may be empty but the empty set is convex by default!



2.1. Convex Sets 41

is a convex set in R" (This fact is of fundamental importance in linear
programming.) In fact, if a = (a;,, a;5, ..., a;,) € R"is the ith row of 4 and if
F7 is the half-space

Fr ={xeR:a%x <b}

fori = 1,...,m, then the solution set S is just the intersection of the half-spaces
F{,F;,..., F,,so the convexity of S follows from (d) and (f).

If x, x@ ..., x® are vectors in R", then a weighted average or convex
combination of x'1), ..., x™ is any vector

k
Agx 4 Aox@ e e x® =% Ax 9,

i=1
where 1,, 4,, ..., 4, are nonnegative numbers whose sum is 1. If C is a convex
set in R" then, by definition of convexity, the set C contains any convex
combination of two of its members. The following result shows that convex
combinations of more than two vectors in a convex set also belong to
the set.

(2.1.3) Theorem. Let C be a convex set in R". Let xV, x®, ..., x® be in C. If
Als A3, ..., A are nonnegative numbers whose sum is 1, then the convex combina-
tion Y ¥_, A;xW is also in C.

The essential idea needed for a formal proof of (2.1.3) by mathematical
induction is not difficult. As we have already noted, the definition of convexity
implies that any convex combination of k = 2 vectors in a convex set C also
belongs to C. We will now show that this forces convex combinations of k = 3
vectors in C to belong to C as well.

Suppose that 4,, 4,, 4; are nonnegative numbers whose sum is 1 and that
xD, x@ x3 belong to C. We want to show that the convex combination

3
x = A x4 AoxP 4 Ayx® =) Ax®
i=1
also belongs to C. This is clear if A; = 0, since x is then a convex combination
of two vectors x'), x? in C. If 45 # 0, then

, , \ Ay A3
(%) x = A xM + (4, + /-3)|; —x? + - —x |,
Jy + Ay Ay + Ay
Since
As A5

B

Ayt Ay Ayt Ay

the expression in square brackets in (*) is a convex combination of two vec-
tors in C and so it belongs to C as well. But then, since 4, + (4, + 43) =1,
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equation (x) shows that x is a convex combination of two vectors in C and so
x e C.

The preceding argument demonstrates that if C contains any convex com-
bination of two of its vectors, then it must also contain any convex combina-
tion of three of its vectors. It also suggests the correct procedure for the
inductive step in a formal proof by mathematical induction. We will not supply
the details of the formal proof here.

Given two vectors X!, x!? in R", the set of all convex combinations of x'1,
x‘? is simply the line segment [xV, x!?)].

X2

xf])/(
[x, x@]

For three vectors xV, x? x(3 in R" the set of all convex combinations of x*’,
x'?, x¥ is the triangular region determined by x*), x®, x3.

x3

x3

x AZ 2) A}
Lt+thL Y T L

X2
A XD 4+ A,X2 4 A3x3

AMA+i,+43=01L4>0i=123.

More generally, the set of all convex combinations of k vectors x'*), x3), ...,
x® in R" is the convex polyhedral region determined by x'V, ..., x®.

Given any subset D of R”", there is a smallest convex set containing D,
namely, the intersection of all convex sets in R" that contain D. (R" itself is a
convex set containing D and (2.1.2)(f) shows that the intersection of convex
sets is convex.) The smallest convex set containing D is called the convex hull
of D and is denoted by co(D). The convex hull of two vectors x'), x® in R" is
the line segment [x'*, x'?7] joining x'" and x'?. The convex hull of k vectors
x x2 . x%in R"is the convex polyhedron determined by x'V, x?, ... x®,
These observations suggest the validity of the following result:

(2.1.4) Theorem. If D is a subset of R", then the convex hull co(D) of D coincides
with the set of all convex combinations of vectors in D.

A procedure for establishing this result is outlined in Exercise 5.
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*2.2. Some Illustrations of Convex Sets in
Economics— Linear Production Models

We will now describe a simple and very basic economic model—the linear
production model—from the point of view of the geometry of R". We will see
that convexity plays a basic role in the geometric structure of this model.
We will also see that natural economic terminology, assumptions, and con-
clusions related to the linear production model have equally natural mathe-
matical counterparts. An understanding of the relationships between the
economic and mathematical entities involved can help to shed light in both
directions.

Let us begin our discussion with the description of the economic setting of
the linear production model. Suppose that a certain commodity can be pro-
duced by n different production processes P,, P,, ..., P, that can operate
simultaneously using some or all of m different inputs I, I,, ..., I, each in
limited supply. The inputs I, might include labor, raw materials, energy,
machine time, etc., while the production processes P; can be thought of as
“recipes” for combining the inputs to produce the commodity.

The basic economic assumption that underlies the linear production model
is the so-called Law of Constant Returns to Scale which asserts that if the input
levels required by any of the production processes P; are increased or de-
creased by a certain multiple, the output level of the commodity is increased
or decreased by the same multiple. As a rule, this assumption is not satisfied
exactly by real production processes, but it is frequently a reasonable ap-
proximation to reality for limited ranges of the multipliers. As such, it provides
a basis for a “first approximation” economic model of many “real world”
production processes.

Next, we will formulate the mathematical model that corresponds to the
economic description of the linear production model given above. Suppose
that y;; units of input I; are rquired by the process P; to produce x; units of
the output commodity. The corresponding input coefficients a; are defined by

Vi = ayXx;; i=1,....m j=1,...,n

The law of constant returns to scale implies that the input coefficients a;;
depend only on the type of input I; and the production process P; and not on
the output level x; of the jth process. The total output of the produced
commodity resulting from the simultaneous operation of the n production
processes is

(O)] X=X, +X+ X, =Y X,

while the amount y; of input I; required for this production program is

Yi=Yat Yo+ o+ V= zlyij'
f=
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Then y; can be expressed in terms of the input coefficients as
(I) yi=ai1x1+ +amx _Zau p i=l"--9m’

so that the vector y = (y,, 5, ..., ) Of input levels is related to the corre-
sponding vector x = (x,, x5, ..., x,) of output levels by the matrix equation
y = Ax where A = (a;) is the matrix of input coefficients. Of course, the
number x; of output units produced by the jth process must be nonnegative,
that is,

(Po) XJZO; j=1,...,n

and, similarly, the total number of units y; of input I; consumed by the
production program must be nonnegative, that is,

(Pl) y,ZO, i=l,...,m

Finally, since the supply of the ith input I; is limited, there are constants b,
., b, such that

(B) yi<b; i=1..,m

The conditions (O), (I), (Po), (P,), (B,) constitute the mathematical formula-
tion of the linear production model. Economists use the term technology set to
describe the set of all input levels y = (y,, y,, - .-, ¥m) corresponding to pos-
sible output levels x = (x,, x,, ..., X,) satisfying conditions (I), (Py), (P,) of the
model. (Notice that the total output (O) and the limitations on the supply of
inputs (B,) do not enter into the description of the technology set of the model.)

What kind of set is the technology set T of the linear production model?
Well, first, T is obviously a subset of R™ where m is the number of distinct
production inputs. But T has a rather special geometric structure—it is a cone
in R™, that is, T is a convex set with the additional property that lye T
whenever y € T and 1 > 0. (See Exercise 6).

The geometric property that the technology set T is a cone corresponds to
two basic economic properties of linear production models—the constant
returns to scale discussed earlier and the absence of external discontinuities.
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More precisely, the fact that oy € T whenever A > 0,y e T reflects the constant
returns to scale, while the convexity of T implies that if a certain level of output
is possible using two different sets of certain inputs, that same level of output
can be maintained in infinitely many different ways by using different levels
of the same inputs—no additional inputs are necessary. This latter economic
feature—which economists refer to as the absence of external discontinuities
—merely reflects that the technology set T has the property that ly") +
(1 — A)y'® e T whenever y", y? e Tand0 < A < 1.

For a given output level X of production the production isoquant Qs is the
set of all input levels y = (y,, y,, ..., J,») in the technology set T that result in
the production level X, that is,

n
;={yeT:y=Axand>?= Y xj}.
j=1
It is straightforward to check that Qs is a convex subset of R™ (Exercise 6).
This geometric fact has its economic reflection in the absence of external
discontinuities in the linear production model.

In our linear production model, there are n production processes P,, P,,
..., P, available to produce output. Given an output level x let y* be the
input levels required to produce the output level x with the exclusive use of
the kth production process P, that is, y* = a, x for i = 1, ..., m. The input
vectors y1), ..., y" are elements of the production isoquant Qs that “gener-
ate” Q; in the sense that Qg is the convex hull of the set {y'"), y?,..., y"}
(Exercise 6).

The preceding discussion of linear production models illustrates two im-
portant points:

(1) Geometric conditions such as convexity can have economic interpreta-
tions and implications.

(2) Fancy terms from economics such as “constant returns to scale” and
“absence of external discontinuities” often have simple and familiar
mathemematical counterparts.

2.3. Convex Functions

Linear functions are very appealing because they are easy to manipulate and
their graphs are especially simple (lines in the plane for one independent
variable, planes in space for two independent variables, and so on). Anyone
who has ever used linear programming knows that linear functions are im-
portant in applied mathematics.

In this section, we will begin study of a class of functions, called convex
functions, which includes the class of linear functions but which has a much
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wider range of applications than the class of linear functions. As an added
bonus, the mathematics of convex functions is quite beautiful and has a richly
geometric and intuitive flavor. We will begin with an informal overview of
convex functions of one variable.

A function f(x) defined on an interval I of the real line is convex on I if the
chord joining any pair of points (x,, f(x,))and (x,, f(x,)) on the graph of f(x)
lies on or above the graph of f(x).

|
% f(x) convex function

> X

If all such chords lie on or below the graph of f(x), then f(x) is concave
onl.

- f(x) concave function

| 1
l ; N

]

The graphs of convex or concave functions may have “flat spots” where chords
joining pairs of points of the graph actually coincide with the corresponding
segment of the graph. If no such flat spots occur, we say that f(x) is strictly
convex or strictly concave.

Let us find a more algebraic formulation of the preceding definitions.
First, observe that if x,, x, are real numbers, then a number u lies between
x,; and x, (inclusive) if and only if there is 4 with 0 < A <1 such that
u=Ax; + (1 — A)x,.

/Ml + (l - A)Xg
|

| | |

X u X2

If we apply this observation to points on the x-axis and y-axis, then we see
that a function y = f(x) is convex on I if and only if

JOxy + [1 = A1x3) < 4f(xy) + [1 — 21 f(x,)

forall x;,x,inlandall0 < 1< 1.
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(s f(x1)
W, Af(x)) + (1 = 1) f(x2))

‘\//("'f(")) f(x) convex
~

>
T T ~< I —p X

(x2, f(x2))

If strict inequality holds in the preceding inequality whenever x, and x, are
distinct points of I and 0 < 4 < 1, then f(x) is strictly convex. The corre-
sponding descriptions of concave and strictly concave functions can be ob-
tained by reversing inequalities.

The preceding description of convex function in terms of chords on their
graphs can be used to establish the following remarkable fact:

(2.3.1) Theorem. If f(x) is a convex function defined on an open interval (a, b),
then f(x) is continuous on (a, b).

In keeping with the informal nature of our discussion of convex functions
of one variable, we shall present only an outline of the well-known and very
elegant proof of (2.3.1). To prove that f(x) is continuous from the right at a
given point s in (a, b), choose two fixed points r and u in (a, b) such that
r <s <u. Lett be a variable point in the interval (s, u) so that

r<s<t<u

The convexity of f(x) on (a, b) implies that the point (¢, f(t)) must lic above or
on the line through (r, f(r)) and (s, f(s)), but below or on the line through
(s, f(s)) and (u, f(w)).

ve

Therefore, by pinching, we see

lim f(t) = f(s).

tos+
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A similar argument shows that

lim f(v) = f(s)

VoS

so f(x) is continuous at s and hence on (a, b) since s is an arbitrary point of
(a, b). (Exercise 4 deals with the details for this proof.)

There are two other useful descriptions of convex and concave functions
that are differentiable or twice differentiable:

I. If f(x) is differentiable on an interval I, then f(x) is convex on [ if and
only if the tangent line to the graph of f(x) always lies below or on the graph
of f(x), that is, for all x,, x, in I

SOe) + f1(x ) (x5 — x1) < f(x3).

v4

y=f

y=f) + ) —x)

» X

|

|

I

|
Xy = \&xl\ /
The function f(x) is strictly convex on [ if and only if all tangent lines to the

graph of f(x) lie below the graph of f(x) and contact the graph only at the
point of tangency, that is, for all x,, x, in I with x; # x,.

SOe) + f10e)(x2 = xq) < f(x3).

Similar descriptions of concave and strictly concave functions are obtained
by making the obvious changes.

IL. If f(x) is twice differentiable on I, then f(x) is convex on I if and only
if f”(x) > Oforall x in I. If f”(x) > O for all x in I, then f(x) is strictly convex;
however, f(x) may be strictly convex on I and yet f”(x) may be zero for some
x € I. (Think of an example to illustrate this possibility!) Of course, f(x) is
concave on [ if and only if f”(x) < 0; moreover, if f”(x) < O for all x in I, then
f(x) is strictly concave on 1.

Notice on the basis of the graphs that if f(x) is a convex (resp. concave)
function defined on an interval I then any local minimizer (resp. local maxi-
mizer) of f(x) is a global minimizer (resp. global maximizer) of f(x) on I. Also,
if a strictly convex (resp. strictly concave) function has a local minimizer (resp.
local maximizer) on I, then it has only one such minimizer (resp. maximizer)
onl.
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f(x) convex

I

I

| I
1 | |
!: 1 f |

>

local and global minimizer

The preceding informal discussion of convex and concave functions can be
generalized to functions of several variables. We will now proceed to this more
general setting. Essentially all of the features of the one-dimensional case have
appropriate counterparts in R".

(2.3.2) Definition. Suppose that f(x) is a real-valued function defined on a
convex set C in R". Then:

(a) the function f(x) is convex on C if

SOx + [1 = Ay) < Af(x) + [1 = 2] f(y)
forallx,yinCandall Awith0 < i<,
(b) the function f(x) is strictly convex on C if
FOx + [1 = A]y) < Af(x) + [1 = 2] f(y)

for all x, y in C with x # y and all 1 with 0 < A < 1. If the inequalities in
the above definitions are reversed, we obtain the definitions of concave
and strictly concave functions.

Note that f(x) is convex (resp. strictly convex) on a convex set C if and only
if — f(x) is concave (resp. strictly concave) on C. Because of this close connec-
tion, we will formulate all results in terms of convex functions only. Corre-
sponding results for concave functions should be clear.

Any linear function of n variables is both convex and concave on R". More
precisely, if a € R" and b € R, then the function f(x) defined on R" by

fX)=ax+b=ax; +a,x,++a,x,+b
satisfies
SUAx + [1 = Aly) = Af(x) + [1 — A1 /(y)

for all x, y in R" and all A € R, so f(x) is convex and concave (but, of course,
not strictly convex or strictly concave) on R".
Another example of a convex function on R" is the function

f(x) = (a-x)? x € R",

where a is a fixed vector in R". To verify that f(x) is convex, let x, y be vectors
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inR"and let 0 < A < 1. Then
fOGx+[1—Aly)=[a‘-(Gx + [1 — AJy)7T?
=[AMa-x) + [1 - A(a-y)]>

Since the function ¢(t) = t? is convex on R (look at the graph or apply (1)
above), the last term in the preceding equation is less than or equal to

Aa-x)? +[1 = 2A@-y)? = Af(x) + [1 — 21 1(y).

This shows that f(x) is convex on R".

Other examples of convex functions on R" are provided by those whose
Hessians are always positive semidefinite. However, before we can verify this,
we need to establish some important properties of convex functions.

(2.3.3) Theorem. Suppose that f(x) is a convex function defined on a convex
subset C of R™. If iy, A3, ..., A are nonnegative numbers with sum 1 and if x'",
x®, ..., x® are points of C, then

k

(%) f(i /‘.,-x“’) <Y Lf(x9).

i=1

If f(x) is strictly convex on C and if all of the A;’s are positive, then equality
holds in (*) if and only if all of the x’s are equal.

Notice that for k = 2, equation (x) reduces to the definition of convex
function and the second statement of (2.3.3) follows immediately from strict
convexity. A formal proof of (2.3.3) can be obtained by mathematical induc-
tion on the number k of points of C. Rather than present such a proof here,
we will demonstrate the essential part of the inductive step by working out
the details for the case of k = 3 points of C.

To this end, let x'V, x?, x® be points of C and let 4,, 1,, 4; be nonnegative
numbers whose sum is one. If A; = 0, the conclusions of (2.3.3) follow im-
mediately from the definition of convexity and strict convexity since 4,x" +
A,xD + A;x reduces to a convex combination of two points of C. Hence,
we can assume that 4, # 0. In this case, observe that

2= 12 _yo 4 %3 x
Ay + Ay Ay + Ay

is a convex combination of two points in C and so
AxV 4+ (4, + A3)z

is also a convex combination of two points in C. Consequently, since we know
that the conclusions of (2.3.3) hold for the case when k = 2, we can proceed
as follows:

SA XD + A, xD + 1,x¥)

= f(A,xM + (4; + 43)2)
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A A
(1) 2 (2) 3 (3)
< f(x )+(/12+/1:,)f</1 +/13x +/12+/13x )

2

<A fx)y+ (A, + 13)(1 121 f(x?) + iiﬁﬂﬁ))
2 3 2

= A f(xD) + A f(x) + 23 f(xD).

This establishes the first conclusion in (2.3.3) for the case when k = 3.

To establish the second statement in (2.3.3), observe that if f(x) is strictly
convex, then equality holds in the first of the preceding inequalities precisely
when

(2 ) 3)
Bata 4k
and equality holds in the second inequality if and only if x'? = x®. It now
follows quickly that there is equality if and only if x!) = x® = x‘®, A formal
proof of (2.3.3) using mathematical induction follows very similar lines to the
step from k = 2 to k = 3 points of C that we have just discussed.

The following result shows why convex functions are of interest in op-

timization problems.

(2.3.4) Theorem. Any local minimizer of a convex function f(x) defined on a
convex subset C of R" is also a global minimizer. Any local minimizer of a strictly
convex function f(x) defined on a convex set C in R" is the unique strict global
minimizer of f(x) on C.

PROOF. Suppose that x* is a local minimizer for the convex function f(x) on
C. Then there is a positive number r such that f(x) > f(x*) whenever x e C
and ||x — x*|| <r.

Given any y € C, we want to show that f(y) > f(x*). To this end, select 4
with 0 < 4 < 1 and so small that x* + A(y — x*) € C and

Ix* + Ay — x*) — x*|| < r.

C

Accordingly,
J&x*) < f(x* + Ay — x*) = f(Ay + [1 — A]x*) < Af(y) + [1 — 4] f(x¥),
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because f(x) is convex on C. Notice that the last inequality is strict if y # x*
and f(x)is strictly convex. Now subtract f(x*)from both sides of the preceding
inequality and divide the result by A to obtain 0 < f(y) — f(x*) with strict
inequality if f(x) is strictly convex and y # x*. This establishes the desired
results.

One of our descriptions of convex differentiable functions of one variable
stated that y = f(x) is convex if and only if every tangent line to the graph of
f(x) lies on or below the graph of f(x). For a function f(x) with continuous
first partial derivatives on some convex subset C of R", the object correspond-
ing to a tangent line to the graph of a function of one variable is the tangent
hyperplane P, to the graph of f(x) at x which is the subset of R**! defined by
the equation

Py ={(y,y) € Ry = f(x) + Vf(x): (y — x)}.
For example, if f(x) is defined on R? by
f(x) = f(xq, x,) = x} + 2x3,
then the tangent hyperplane to the graph of f(x) at the point x = (2, 1) is
Poyy={yeRy;=6+4(y; —2) +4(y, — )},

which is the usual tangent plane to the graph of this function at (2, 1) as
computed in calculus.

The following result extends the tangent line characterization of the convex
functions of one variable mentioned earlier. It says that convex functions are
precisely those functions whose graphs are above their tangent hyperplanes.

(2.3.5) Theorem. Suppose that f(x) has continuous first partial derivatives on
a convex set D in R". Then:

(a) the function f(x) is convex if and only if

Jx) + V(%) (y — x) < f(y)

for all x,y in D;
(b) the function f(x) is strictly convex on D if and only if

S(x) + V() (y — x) < f(y)
for all x,y in D withx #y.

PRrROOF. Suppose that f(x) is convex on D, that x, y belong to D and that
0 < 4 < 1.Then

Jx+ Ay — x)) = f(Ay + [1 = A]x) < Mf(y) + [1 — 4] f(x),

so that

<f(x + Ay —x) — f(x)

A

) < fly) = f(x).
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The expression on the left-hand side of the preceding inequality approaches
ly — x| times the directional derivative of f(x) at x in the direction of y — x
as A approaches 0. Letting 1 — 0, we obtain

V(%) (y — x) < f(y) — f(x).
Therefore

JXx) + V() (y — x) < f(y)

for all x, y in D.
Conversely, suppose that

JX) + V(%) (y — x) < f(y) (1)

for all x,y in D. Let u, v belongto Dand 0 <A< 1. If w= Au + [1 — A]v,
then wis in D and

V=

w—/lu_w (u—w)
1—21 1—2 ’

so that

VW= — (u—w).

1-12
Consequently, if we apply (1) to the pairs w, u and w, v, we obtain

S) + Vfw): (u = w) < f(u),
-2
£ )+ Vf W)+ (0 = w) <m) < 109

Multiply the first of the preceding inequalities by 2, the second by [1 — 1],
and add the results to obtain

SOu+ [1=2]v) = f(W) < Af(u) + [1 — 21 f(¥).

It follows that f(x) is convex on D. This proves (a).

To prove (b), suppose that f(x) is strictly convex on D and that x, y are
distinct points of D. Glance at the first inequality in the proof of (a) and notice
that under the assumption of strict convexity, this inequality is strict provided
that 0 < A < 1, that is,

Jx + Ay — %) — f(x)

S = 100 > ;

Since f(x) is convex on D, part (a) implies that

Sl 30y ) =00 WO DY =0 _ gy
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By combining the two preceding inequalities, we obtain

Jx) + Vi(x)-(y — x) < f(y)

for all x,y in D with x # y.

Conversely, suppose this strict inequality holds for all x, y in D with x # y.
Ifu, vare distinct points of D and if 0 < 4 < 1,thenw = Au + [1 — A]v belongs
to D and w # u, w # v. Consequently, as in the proof of (a),

S0) + VF o) (u = w) < f(@),
—
So¥) + Vf () (a = w) (m) <10

which yields the strict inequality
SQu+ [1 = A]v) = f(w) < Af(u) + [1 = 2] f(v).

Thus, f(x) is strictly convex on D.

The following striking result is an immediate consequence of (2.3.5). It is
the most important and useful result in this chapter.

(2.3.6) Corollary. If f(x) is a convex function with continuous first partial
derivatives on some convex set D, then any critical point of f(x) in D is a global
minimizer of f(x).

PRrOOF. Suppose that x, x* belong to D and that x* is a critical point of D.
Then Vf(x*) = 0 and so (2.3.5) implies that

J(x*) = f(x*) + Vf(x*) (x — x*) < f(x).

Consequently, x* is a global minimizer of f(x) on D.

Although the definitions of convex and strictly convex functions and their
tangent hyperplane descriptions in (2.3.5) provide useful tools for deriving
important information concerning their properties, they are not very useful
for recognizing convex and strictly convex functions in concrete examples. For
instance, the function f(x) = x? is certainly a convex (even strictly convex)
function on R, yet it is cumbersome to verify this fact by using the definition
or the tangent line description of convex function. The next two theorems will
provide us with an effective means for recognizing convex functions in specific
examples.

(2.3.7) Theorem. Suppose that f(x) has continuous second partial derivatives on
some open convex set C in R". If the Hessian Hf (x) of f(X) is positive semidefinite
(resp. positive definite) on C, then f(x) is convex (resp. strictly convex) on C.

PROOF. Suppose x, y are arbitrary points of C. Since C is convex, the line
segment [x, y] joining x and y belongs to C and so (1.2.4) implies that there
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is az € [x, y] such that

Sy) = f(x) + V%) (y — %) + 3y — x)* Hf () (y — x).
If Hf(z) is positive semidefinite, this equation yields the inequality

Sy = f(x) + Vf(x)-(y — x),

and this inequality is strict if Hf(z) is positive definite and y # x. The desired
conclusions now follow from (2.3.5).

The following example illustrates how (2.3.7) can be applied to test con-
vexity.

(2.3.8) Example. Consider the function f(x) defined on R® by
f(x19 x29 x3) = 2x% + x% + x§ + 2XZX3.

The Hessian of f(x) is

4
Hfx)=|0
0

NN O
NN O

The principal minors of Hf(x) are A, = 4, A, = 8, A; = 0, so (1.3.4)(a) shows
that Hf(x) is positive semidefinite, and so f(x) is convex by (2.3.7). Since Hf (x)
is not positive definite (see (1.3.3)), it is not possible to conclude from (2.3.7)
that f(x) is strictly convex on R3. As a matter of fact, since

S(xy, X3, X3) = 2x7 + (x; + x3)%,

we see that f(x) = O for all x on the line where x; = 0 and x; = —x,, so f(x)
is not strictly convex.

(2.3.9) Remark. If f(x) is a convex function with continuous second partial
derivatives on some convex set C in R", then the Hessian Hf(x) can be shown
to be positive semidefinite on C. (See Exercise 12.) However, the corresponding
statement for strictly convex functions and positive definite Hessians is not
valid even for functions of one variable. For example, f(x) = x* is strictly
convex on R, yet its Hessian 12x2 is not positive definite at x = 0. Thus, the
converse of (2.3.7) is valid for convex but not strictly convex functions.

The discussion above shows that many of the results of Chapter 1 are
subsumed under the general heading of convex functions. But we must note
that verifying that the Hessian is positive semidefinite is sometimes difficult.
For instance, the function

f(x, y,2) = e —In(x + y) + 3%

is convex on R? but its Hessian is a mess. Fortunately, there are ways other
than checking the Hessian to show that a function is convex. The next group



56 2. Convex Sets and Convex Functions

of results points in this direction. The following theorem shows that convex
functions can be combined in a variety of ways to produce new convex
functions.

(2.3.10) Theorem.
(@) If fi(x), ..., fi(x) are convex functions on a convex set C in R", then

JX) = fi(x) + f2(x) + - + filx)

is convex. Moreover, if at least one f,(X) is strictly convex on C, then the
sum f(x) is strictly convex.

(b) If f(x) is convex (resp. strictly convex) on a convex set C in R" and if ais a
positive number, then af (x) is convex (resp. strictly convex) on C.

(c) If f(x) is a convex (resp. strictly convex) function defined on a convex set C
in R", and if g(y) is an increasing (resp. strictly increasing) convex function
defined on the range of f(x) in R, then the composite function g(f(x)) is
convex (resp. strictly convex) on C.

PROOF. (a) To show that any finite sum of convex functions on C is convex on
C, it suffices to show that the sum (f; + f,)(x) of two convex functions f,(x)
and f,(x) on C is again convex on C. If y, z belong to C and 0 < 4 < 1, then

i + )Gy + [1 = 212) = /i(Gy + [1 = 4]2) + >0y + [1 — A]2)
<ALy + 1 =A@ + A0) +11 - 4] £22)
=Afi + )y + [1 = A + f2)@).

Hence, (f, + f,)(x)is convex on C. Moreover, it is clear from this computation
that if either f, (x) or f,(x) is strictly convex, then (f; + f,)(x) is strictly convex
because strict convexity of either function introduces a strict inequality at the
right place.

(b) This result follows by an argument similar to that used in (a).

(c) Ify,z belong to C and if 0 < A < 1, then

SOy + [1 = 412) < H(y) + [1 - 21/(2)

since f(x) is convex on C. Consequently, since g is an increasing, convex
function on the range of f(x), it follows that

9(f(y + [1 — AJ2)) < g(4f(y) + [1 — 21 f(2)
< g(f(y) + [1 — 1]g(f(2)).

Thus, the composite function g( f(x)) is convex on C. If f(x) is strictly convex
and g is strictly increasing, the first inequality in the preceding computation
is strict for y # zand 0 < 4 < 1, so g(f(x)) is strictly convex on C.

(2.3.11) Examples
(a) The function f(x) defined on R? by

Slxy, xz, x3) = eXitxa*x

1s strictly convex.
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At first glance, it might seem that the most direct path to verify that f(x)
is strictly convex on R® would be to show that the Hessian Hf(x) of f(x) is
positive definite on R3. However, the Hessian turns out to be

(2 + 4x%)exf+x§+x§ (4x1x2)exf+x§+x§ (4x1x3)exf+x§+x§
Hf(x) = | (4x,X,)exi 503 (2 4 4x2)e 3053 (4x,x,)exi T3+
(4x1x3)exf+x§+x§ (4x2x3)exf+x§+x§ (2 + 4x§)exf+x§+x§
Obviously, proving that the Hessian is positive definite for all x € R® will
involve quite tedious algebra. No matter! There is a much simpler way to

handle the problem.
First, note that

h(xl’ X2, x3) = x% + x% + x%
is strictly convex since its Hessian
2 00
Hh(x,,x,,x3)={0 2 O
00 2

is obviously positive definite. Also, g(t) = €' is strictly increasing (since g'(t) =
e' > 0 for all t € R) and (strictly) convex (since ¢g"(¢) = e' > O for all t € R).
Therefore, by (2.3.10)(c), f(x) = g(h(x)) is strictly convex on R3.

(b) Suppose that a'V, a'?, ..., a® are fixed vectors in R" and that c,, c,,
..., ¢ are positive real numbers. Then the function f(x) defined on R" by

k .
J00 = Y et

is convex.
To prove this statement, first observe that the functions g;(x) on R" defined
by

g(x)=a%x, i=1,2,...,k

are linear and therefore convex on R". Since h(t) = €' is increasing and convex
on R, it follows from (2.3.10)(c) that the functions

h(gi(x) =e*"™,  i=1,2...,k

are all convex on R". Since ¢, ¢,, ..., ¢, are positive real numbers, we can
apply (2.3.10)(a), (b) to conclude that

k ,
fx) =Y et
i=1
is convex on R".

(c) The function f(x) defined on R? by

f(xq,%5) = x} —4x;x;, + 5x3 — Inx, x,

is strictly convex on C = {x € R*: x; > 0, x, > 0}.
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In fact, f(x) = g(x) + h(x) where
g(xy, X3) = x7 — 4x,x, + 5x3, h(xy, x3) = —In(x;x,),

50 (2.3.10)(a) will imply that f(x) is strictly convex once we show that g(x) and
h(x) are convex and at least one of these functions is strictly convex on C. But

the Hessian of g(x) is
2 —4
-4 10

and the principal minors of this matrix are A; = 2, A, = 4; hence, g(x) is
strictly convex on R2. Consequently, all that we need to do now is to show
that h(x) is convex on C. But

h(x,, x,) = —Ilnx; —Inx,

and the function ¢(t) = —Int (¢t > 0) is (strictly) convex since ¢”(t) = 1/t so
h(x) is convex on C by (2.3.10)(c).

2.4. Convexity and the Arithmetic—Geometric Mean
Inequality—An Introduction to Geometric
Programming

Inequalities are very useful in almost every field of mathematics, and nonlinear
programming is no exception. A number of important inequalities can be
derived by applying the fact that suitably chosen functions are convex. One
such inequality, the Arithmetic—Geometric Mean Inequality, is a very useful
tool for the solution of certain practical optimization problems that are
virtually intractable using methods based only on calculus. In fact, this in-
equality is the mathematical basis of an important formalized optimization
procedure called geometric programming which we will introduce in this
section and the next and study in greater detail in Chapter 5.

This section begins with the derivation of the Arithmetic-Geometric Mean
Inequality. The most familiar special case of this inequality states that if x,
and x, are positive numbers, then

X1X; < 3%, + 3%, (1

with equality in (1) if and only if x, = x,. The right-hand side of (1) is the
arithmetic mean and the left-hand side is called the geometric mean of the
positive numbers x, and x,. The inequality (1) is easy to verify by noting that
this inequality is equivalent to

0 < (/%) = /%2)* = %, — 2/x,/x; + x5,

which is obviously true. Note that there is equality in this inequality if and
only if x; = x,.
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A more general version of the Arithmetic—Geometric Mean Inequality
asserts that if x, x,, ..., x, are positive real numbers, then

1 1 1
XXy Xy S =Xy F =Xy + 0+ =X, (2)
n n n
with equality in (2) if and only if x; = x, = -+ = x,. A very simple proof of

this version of the inequality can be based on the fact that the rectangle of
maximum area with a given perimeter is a square. (See Exercise 20.)

Notice that the exponents of the variables on the left-hand sides of (1) and
(2) are equal positive numbers whose sum is one (that is, there are two
exponents equal to % in (1) and n exponents equal to 1/n in (2)). These
exponents, which also serve as multipliers of the variables on the right-hand
sides of (1) and (2) are called weights of the associated variables. Although the
weights of all the variables in (1) and (2) are equal, the general form of the
Arithmetic—Geometric Mean Inequality allows these weights to vary from
variable to variable so long as they are positive with sum equal to one. In the
following statement of this inequality, we use the symbol [] to denote the
product of the indexed terms that follow this symbol.

(24.1) Theorem (The Arithmetic—Geometric Mean Inequality (or (A-G)
Inequality)). If x,, x,, ..., X, are positive real numbers and if 6, 6, ..., 0,
are positive numbers whose sum is one, then

(A-G) [Ty < 3 6,

i=1 i=

with equality in (A—G) if and only if x, = x, =+ = X,,.

The product of the left-hand side of (A—QG) is called the geometric mean of
X1, X3, - -5 X, With weights 8., 6,, ..., 6, while the sum of the right of (A-G) is
the arithmetic mean of x,, x,, ..., x,, with weights &, J,, ..., d,. Notice that
inequalities (1) and (2) are both special cases of (A—G) in which the weights
are equal.

The (A—G) Inequality (2.4.1) is quite easy to establish by making use of
convexity considerations in the following way. First, observe that the function
f(x) defined for x > 0 by

f(x)= —Inx

is strictly convex since f”(x) = 1/x?> > 0. Consequently, if x,, x,, ..., x, and
04, 03, ..., 0, are positive numbers such that

(51 +52+.+5n=1
then (2.3.3) implies that

i (; 5,~xi> _ f(i

i

6ixi> = Zn: 0 f(x) = — i 0;In x;
i=1 i=1

i=
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with equality if and only if all of the x;’s are equal. The preceding inequality
is equivalent to

i=1

ln(i 5ixi> > Zn: In(x;%) = ]n<l’"] x;ii>.
i=1 i=1

Consequently, since the logarithm function is strictly increasing, we obtain

T 8x, > [] (x)"
i=1 i=1

with equality in this inequality if and only if all of the x;’s are equal. This
establishes the (A—G) Inequality (2.4.1).

As we shall see, the (A—G) Inequality is well suited for solving a fairly hefty
class of nonlinear optimization problems. Before we attempt to identify this
class of problems more precisely and formalize the optimization procedure,
let us apply (A—G) to provide alternate solutions of some standard max—min
problems from calculus.

(24.2) Examples

(a) Find the open rectangular box with a fixed surface area S, that has the
largest volume.

SoLuTION. Refer to the figure to see that

A x,
(xy, X2, X3)
/ Volume = V = x, x,x3.

» X
| ~ / : Surface Area = Sy, = x, X, + 2x; X3 + 2X,X3.

Xy

Therefore, our job is to solve the following problem:
Maximize V(xq, X, X3) = X;X,X3,
subject to  x;Xx; + 2x;x3 + 2x,x3 = S,.

In this form, the problem is a natural for solution by the (A-G) Inequality.
Let us see why. Note that

S0=x1x2+2x1x3+2x2x3=3< 3

(A-G)
> 3((x,x,) (2, X3) '3 (2x,x3) )

=343 (x2x3x})B = 3-418. Y73,

X1X, + 2%, X3 + 2x2x3>

Therefore, V is largest when there is equality in this (A—G) Inequality, that is,
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V is maximized when x; = x¥, x, = x¥, x; = x¥, where

=3

X¥x¥ = 2x¥x¥ = 2x%x%

A (very) little algebra shows that

(b) Find the open rectangular box with fixed volume ¥, that has the least
surface area.

SoLuTION. Again refer to the figure in (a) to see that we want to solve the
following problem:

Minimize S(x;, X;, X3) = X; X, + 2x; X3 + 2X,X4
subject to  x,x,x3 = V.

By proceeding exactly as in (a), we obtain

S 3<x1x2 + 2x13x3 + 2x,x5

(A-G)
«4131/72/3

Therefore, S is smallest when there is equality in the (A-G) Inequality, that
is, S in minimized when x, = x¥, x, = x¥, x; = x¥ where
x¥x¥ = 2x¥x¥ = 2x¥x% = 4BV,
A short computation shows that
416 V01/3
2

x¥ = x3 =453, x% =

are the dimensions of the box with the least surface area for a given volume
Vs, and that the minimum surface area is

So = x¥x% + 2x¥x¥ + 2x%¥x% = 3-43y B,

(2.4.3) Examples

(a) Maximize the volume of a cylindrical can of fixed cost ¢, cents if the
cost of the top and bottom of the can is ¢, cents per square inch and the cost
of the side of the can is c, cents per square inch.

SoruTiON. If r is the radius and h is the height of the can in inches, then the
volume of the can is
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r
h
l V(r, h) = nr2h

and the cost of the can is
co = 2mr’c, + 2mrhe,.
Now if we proceed as in Example (2.4.2), we obtain
2 h
co = 2mr?c, + 2mrhe, = 4<nr201 + nr202>
(A-G)

> 4(nr?cy) P (rrhe,)'? = 4nr¥? b (¢ c,)"2

Unfortunately, unlike the situation in (2.4.2), the term on the right-hand side
of the resulting inequality does not reduce to a constant multiple of a power
of the volume V, so we cannot proceed as before. What we need to do is to
“split” ¢, into a sum of terms in such a way that application of the (A-G)
Inequality yields a constant multiple of a power of V on the right-hand side.
A bit of experimentation will show that such a split can be accomplished as
follows:

2nric, + mrhc, + nrhe,

3
(A-G)
> 3(2nr?c,)P(nrhc,) P (nrhe,)'? = 3(2m)R(c, c3) PV 2R,

co = 2mr?c, + mrhe, + nrhe, = 3

Now we can see that V is largest when there is equality in this (A-G)
Inequality, that is, when

Co
2nric, = nrhc, = nrhe, = —.

We will omit the easy calculation of the maximizing values of r and h.
However, we want to point out an interesting cost analysis related to our
solution of the problem: Regardless of the values of c, and c,, the optimal
dimensions for the can will assign % of the total cost to the top and bottom and
2 of the total cost to the side.

(b) Minimize the cost of a cylindrical can of fixed volume V,, if the cost of
the top and bottom of the can is ¢, cents per square foot and the cost of the
side of the can is ¢, cents per square foot.

SoruTioN. If r and h denote the radius and height of the can, then our problem
can be formulated as follows:

Minimize c(r, h) = 2nr’c, + 2nrhe,,

subject to mrlh = V,,.
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The same split of the cost function that we used in part (a), in conjunction
with the (A-G) Inequality, yields

c(r,h) = 3<

(A-G)
> 3(2m)R (e, ¢3)' PV,

2nr?cy + mrhe, + nrhcz>
3

Therefore, the cost is smallest when there is equality in this (A—G) Inequality,
that is, when

2nr?c, = nrhe, = nrhe, = (2m)'3(c, c3) V3.

For the minimizing values of r and h that solve these equations, we see again
that the optimal cost allocation is  of the cost for the top and bottom and  of
the cost for the sides regardless of the values of ¢, and c,. We also see that the
minimum cost is

3(2m)'P(c, )P (ca) PV
Notice that if the price of the sides doubles, then the new minimum cost is
32m) Y3 (c,) P (2e,)?P VR = 223 - 0ld cost.

On the other hand, if the cost of the top and bottom is doubled, the new cost
is 2!/ times the old cost, while if the volume ¥, is doubled, the optimal cost
is increased by a factor of 22°.

The pairs of problems in (2.4.2) and (2.4.3) furnish our first examples of dual
problems. In both examples, problems (a) and (b) deal with essentially the same
functions except that the objective function in one problem is the constraint
function in the other, and one problem is a minimization problem while the
other is a maximization problem. The following example provides a further
illustration of duality.

(2.4.4) Example. Consider the following problem:
(P) Maximize f(x,, X5, X3) = X;X3X3,
subjectto  x, + x, + x3 =k,
where k > O is fixed and x,, x,, x5 are positive real numbers.
In this case, the dual problem is
(D) Minimize g(x,, X, X3) = x, + x; + x3,
subject to  x,;x3x; = ¢,
where ¢ > 0 is fixed and x,, x,, x5 are positive real numbers.

Of course, (P) is also the dual problem for (D).
To solve both problems, we need to split x, + x, + x3 in such a way that
application of the (A—G) Inequality will yield a constant multiple of a suitable
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power of (x,x3x;) at the lower end of the inequality. A bit of thought will
show that this can be accomplished as follows:

X X X X X X
“+M+£=f+f+f+f+f+f+£
Xy Xy Xz X3 X3 o Xy 5
B e e R
; 272 4 4 4 4 3
N 7
(A—G)

= 1) (G (xy x3x3)".
Equality holds in this inequality precisely when

X, X, , k
—_=—=X = -,
2 4 7
To maximize x, x2x; subject to the constraint x, + x, + x3 = k, we choose
the optimal values x¥, x¥, x¥ that force equality in the (A—G) Inequality with
the upper end of the inequality equal to k, that is,

2k 4k k
A A

X3 = =
3 7
To minimize x, + x, + x3 subject to the constraint x, x2x, = ¢, choose the
optimal values x¥, x¥, x% that force equality in the (A—G) Inequality with the
lower end of the inequality equal to (1/2)%7(1/4)*7¢?", that is,

=297V, xp=2xf, xt= /It

x¥=

The (A—G) Inequality can also be used to solve some unconstrained mini-
mization problems. The trick is to split the objective function in such a way
that application of the (A—G) Inequality yields a constant at a lower end of
the inequality. The following examples illustrate the procedure.

(2.4.5) Examples
(a) Find the values of x > 0 that minimize the function

C
‘f('x)= clx3 +;2’

where ¢, ¢, are positive constants.
To solve this problem with the (A—G) Inequality, we proceed as follows:

;. G 3 0 lep ey e,
= -t = +o
Jo)=ext U=t g Ty

lc lc lc

3, 2, "2, T2

@1x +3x+3x+3x

4

=4

A8 3 e3
1 4 1 4
> 4(3)¥4citced,
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To minimize f(x), force equality in (A—G). This amounts to choosing x* so
that

lc
() =3 5 = ()M et
This yields

x* — (%)1/4(:1_1/46'5/4

as the minimizer.

Actually, the preceding example could have been solved easily as a calculus
problem. The next example is not easy to do with calculus methods, but it is
quite easy as an application of the (A-G) Inequality.

(b) Find the minimizers of

X 4x
flxp,x0) =dxy + 5+
X2 X

forx; >0,x,> 0.
This problem can be solved by the (A—G) Inequality in the following way:

X, 2x2 2%,

4x, + P + . X
flxy, x,) =4 : ! .
4
(A-G) 2,2711/4
> 4(41/4)(22/4)[x~;x§] =38
X2 X7

If we force equality in the preceding inequality, we see that the values x¥ and
x% that minimize f(x,, x,) are given by

* *
axt = xt  2x3 P
*)2 * ’
(x3) 1
that is,
1 _1
x,lk =2 x; =2

and that the minimum value is 8.
Note that this example is not easily attacked by the methods of Chapter 1.
Indeed, the critical points are solutions of the system

of 1 4x,

I g4 P2
0x, +x§ x2

) 2 4

o 2 4,

0x, x3 0 x,
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Solving this system is by no means easy and examination of the Hessian

8x, 2 4
3 —37 2
X1 X2 X7
Hf(x,, x;) =
v 2 4 6x,
x3  x} x3

is a frightening prospect!

The examples discussed in this section certainly indicate that the (A—G)
Inequality can be an important tool for the solution of optimization problems.
The only part of our approach that was not completely straightforward was
“splitting” the function appropriately at the upper end of the (A—-G) Inequality.
We did this easily by inspection in the examples considered here because the
functions under consideration involved three or fewer variables. However, it
is apparent that the splitting process might be difficult to apply for com-
plicated functions of a large number of variables. The other point in our
approach that is a bit hazy at the moment is the scope of the method, that is,
we have yet to identify precisely the types of optimization problems that are
tractable via the (A—G) Inequality. We will address both of these issues in
Section 2.5. In particular, we will develop a formal setting and a systematic
procedure called geometric programming for applying the (A—G) Inequality to
optimization problems. In geometric programming, the splitting process
which was accomplished by inspection in the examples of this section is
replaced by the solution of a certain system of linear equations determined by
the problem at hand. This replacement results in a systematic, practical
procedure that applies routinely to a wide class of problems. However, the
essence of geometric programming is already contained in our informal solu-
tions of the problems considered in this section—the rest is just a matter of
making the procedure systematic and routine.

2.5. Unconstrained Geometric Programming

This section presents a systematic procedure for handling unconstrained
geometric programming problems. As we demonstrated in the last section, it
1s often possible to solve these problems directly from the (A—G) Inequality
and inspection. However, some problems are too complicated to be done in
this way, and the procedure we are about to discuss then comes to the rescue.

We also have another objective in mind for this section. The alert student
has already noted that we never proved that it was always possible to force
equality in the (A—-G) Inequality in the problems of the last section. Once we
have established our systematic procedure for unconstrained geometric pro-
gramming problems, we prove that it is always possible to force this equality.
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(2.5.1) Definition. A function ¢(t) defined for all t = (¢, ..., t,) in R™ with
t;>0forall j=1,...,mis called a posynomial if g(t) is of the form

g = ;

where the ¢;’s are positive constants and the a;; are arbitrary real exponents.

IIU

u:s

Thus, a posynomial is a linear combination with nonnegative coefficients
of terms that are products of real powers of the nonnegative variables ¢, ...,
t,.. For example,

b= 3 4 8+
is a posynomial defined on the interior of the first quadrant in R

The goal of unconstrained geometric programming is to solve the following
primal geometric program:

2
£,

M:
.:5

(GP) Minimize the posynomial ¢(t) =

i

(4
1 J

1
wheret, > 0,...,¢t, > 0.

By a solution to (GP) we simply mean a global minimizer t* for g(t) on the set
of vectors t in R™ with positive components.

We begin our attack on the program (GP) by observing that g(t) can be
rewritten as

. c; l_[ tf
g(t) = Z o; =,
i=1 o;

where each ¢; is assumed to be a positive number (the Positivity Condition).
If we add the restriction that

Y &=1 (the Normality Condition),

we can apply the (A—G) Inequality to this new expression for g(t) to obtain

m
(A-G) Ci l_[ t

t T =
gty > Dl 3

1) (1)

Therefore, if we impose the additional rectriction that

...

Il
>|L

Il
—

Y a6 =0; j=1,....,m (the Orthogonality Condition),
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then the preceding inequality yields
Thus, if we define

then the preceding computations show that
g(t) = v(d) (the Primal—-Dual Inequality)

for any t € R™ with positive components and any 8 € R" that satisfies the
Positivity, Normality, and Orthogonality Conditions.

These considerations lead us to consider the following dual geometric
program:

n 2\ %
(DGP) Maximize v(8)= (C—> :
subjectto 6, >0,...,6,>0 (the Positivity Condition),

Y é&=1 (the Normality Condition),

a;6, = 0; allj (the Orthogonality Condition).
1

A vector 8 € R" that satisfies the Positivity, Normality, and Orthogonality
Conditions is a feasible vector for (DGP). The dual program is consistent if
the set of feasible vectors for (DGP) is nonempty. Finally, by a solution for the
dual program (DG P) we mean a vector &* € R" that is a global maximizer for
v(8) on the set of feasible vectors for (DGP).

Note that if t* is a solution to the primal program (G P) and if 8* is a solution
to the dual program (DGP), then

g(t*) = v(8%)

by the Primal-Dual Inequality. We will now show, among other things, that
g(t*) is actually equal to v(8*) and that this equality yields a straightforward
procedure for computing solutions of (GP) and (DG P) when these programs
have solutions.

(2.5.2) Theorem. If t* = (t%, ..., t¥) is a solution to the primal geometric pro-
gram (GP), then the corresponding dual geometric program (DGP) is consistent.
Moreover, the vector 8* = (6%, ..., 6F) defined by

5% — u,(t*)

* = s i=1,...,n
g(t*)
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(Where u,(t) = c;t§...t%m is the ith term of g(t)) is a solution for (DGP) and
equality holds in the Primal—Dual Inequality, that is,

g(t*) = v(8%).

PROOF. A typical term of g(t) is
u;(t) = c;tfir .. thim.

Partial differentiation of u,(t) with respect to t; has a very simple effect on
u;(t)—it simply multiplies u,(t) by «; and reduces the exponent of ¢; by 1. This
means that the following equation holds:

oy,
— = U
’ o g
Since t* = (¢}, ..., t¥) is a minimizer for g(t), it follows that
6g n
0= L(t*), i=12,...,m
a," Z /

I

But then the observation in the first paragraph in the proof shows that
0= Zaij“i(t*), j=12,...,m
i=1

Since g(t*) > 0 (Why?), we can divide both sides of the last equation by g(t*)
to obtain

Consequently, if we set
(t*
&=”%% i=1,....n,
g(t%)
then &* = (0}, ..., 8F) satisfies the Orthogonality Condition for the dual
program (DGP). Also, ¥ > 0 for i = 1,..., n so the Positivity Condition is

satisfied. Finally,
z Lo (u(t)) _g(t*)
5 §< )= e~

so the Normality Condition holds. We conclude that the vector 8* is feasible
for the dual program, so the dual program (DGP) is consistent. Also

g(t*¥) = g(t*)?T+ 9% = (g(t%))%T - (g(t*))*
3 <u1 (t*))"’ - (m.(t*))"*
RN 5*
2! JT... Cn 6:_ *
=(;) (5—) = v
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so equality holds in the Primal-Dual Inequality. This implies that 6* is a
solution of the dual program (DGP). Since
. WiltY)
()

i=1,2...,n,
the proof is complete.

With the preceding theorem in hand, we can formulate the following
approach to geometric programming.

(2.5.3) The Geometric Programming Procedure. Given a primal geometric
program

(DP) Minimize the posynomial g(t) = Y u(t),
i=1

where u;(t) = ¢c;t§"...tfmand t; > 0,...,t,>0;¢; >0
we proceed as follows:

Step 1. Compute the set F of feasible vectors for the dual geometric program
(DGP), that is, the set of all vectors 8 in R" such that

6,>0,...,6,>0 (the Positivity Condition),

Y =1 (the Normality Condition),
i=1

o;:0; = 0; j=1,....,m (the Orthogonality Condition).
= ijvi J

Step 2. If the set F of feasible vectors for (DGP):

(a) is empty, then stop. The given program (G P) has no solution in this case;

(b) consists of a single vector 8*, then 6* is a solution of (DGP). Proceed to
Step 4;

(c) consists of more than one vector, then proceed to Step 3.

Step 3. Find a vector 8* that is a global maximizer for the dual function

n \ %
v(d) = ];[1 <%>

on the set F of feasible vectors for (DGP). Then &* is a solution of (DGP).
Proceed to Step 4.

Step 4. Given a solution 8* of (DGP), a solution t* of the primal program is
obtained by solving the equations
£ _ u;(t*)
i 0(8*)’

i=1,...,n,

for t¥, ..., t¥. The minimum value g(t*) of g(t) is equal to the maximum value
v(6*) for the dual function v(d).
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(2.5.4) Remarks. Some comments are in order concerning the preceding
systematic procedure for solving geometric programming problems.

(1) To find the set F of feasible vectors for the dual program, we first solve
the system of linear equations consisting of the Normality and Orthogonality
Conditions, and then impose the Positivity Condition on the resulting
solutions.

(2) The statement in Step 2(a) that (GP) has no solution if the set F of
feasible vectors for the dual program is empty follows from Theorem (2.5.2).
For if (GP) has a solution t*, then (2.5.2) asserts that the dual program is
consistent, that is, F is nonempty.

(3) The “difficult” alternative in Step 2 is (c), because we are required to
find a maximizer 6* for v(8) on the set F of feasible vectors for (DG P) by some
means. As Example (2.5.5)(c) illustrates, the systematic procedure outlined in
(2.5.3) can still be regarded as an effective method for solving (GP).

(4) The solution of the system of equations prescribed in Step 4 appears
complicated because the equations are not linear in the variables ¥, ..., t}.
However, because

u(t*) = ¢, (e (),
we can obtain t¥, ..., t¥ by solving the system of linear equations
o logt + -+ + ay, logtk =logdF — logc; + log v(d*), i=1...,n
Thus, the systematic procedure for geometric programming described in
(2.5.3) is a highly linear process.
(5) The ith component 6 of the solution 8* of the dual program (DGP)
specifies the relative contribution of the ith term u;(t*) to the minimum value

g(t*) of (GP). (See Example (2.5.5)(a) for an illustration of this interpretation
for 6.)

(2.5.5) Examples
(a) Let ¢y, c,, 3, ¢4 and V be positive constants. Consider the following
geometric program:

o oV
Minimize g(t) = ; ; + 2c,t,t3 + 2c5t ty + cqtyts,
1%2°%3
where t; >0,t,>0,t;>0.

Here is the dual problem

L (53 3 d4
Maximize V(8) = <c_61_v> <%C—2> <25ﬁ> <§i> :
1 2 3 4

subjectto 6, + 6, + 93+, =1 (the Normality Condition),
6 >0, i=1234 (the Positivity Condition),
-0+ +03+0,=0
-0, + 6, +d,=0 (the Orthogonality Condition).

—8, + 0, + 0, =0
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If we apply Step 1 of (2.5.3), we find that the vector

is the only feasible vector for the dual, so we follow alternative (b) in Step 2.
Therefore, we can find the solution ¥, t%, t3 by solving the system:

4
ez

= 5fv(8*) = $0(8%),

2c,t31% = 63 v(8%) = 5v(8%),
2,115 = 03 v(8%) = 5v(8%),
catTey = 6Fv(8*) = $v(8*).

We will omit the remaining computational details. Note that the relative

contributions of the four terms in g(t*) are %, 1, L, 1 regardless of the values

of ¢y, ¢, C3, C4.
(b) Consider the geometric program

s 2
Minimize g(t,,t,) = L +tyt, +tq,
1l2

where t; >0,t,>0.

The dual program is

2\ (12 /1%
Maximize v(d) = <5—> (6—> <6—> ,
1 2 3

subject to 6, 9,,9; >0,
0, +0, +d3=1,
—51 +52+63=0,
_51 + 52 = 0.
Solving these equations, we find that the only solution is 6, = 1, §, = 4, and
05 = 0. This vector is not feasible for the dual (because , = 0) and hence there
are no vectors feasible for the dual. Consequently, alternative(a) in Step 2 tells

us the given program has no solution.
(c) Consider the geometric program

S 1
Minimize g(tq,t,) = e + bty + it + 8y,
12

where t; >0,t,>0.
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The dual program is

1 9y 1 23 1 d3 1 b4
Maximize v(d) = <5—> (5—> <5—> <5—> ,
1 2 3 4

subject to 4y, 0,, 03, 0, > O,
0y +0,+03+0,=1,
—0, + 05+ 03 =0,
—0; + 0, + 0, =0.
A little work shows that this system is equivalent to the following:
0, =0, >0,
0, =306, —1>0,
6, =1-—26, >0,
0,=1—26, >0,

and these inequalities restrict J, to the range § < §; < 4. Thus maximizing
v(6) amounts to maximizing

1\ 1 1-2s 1 1-2s 1 3s—1
i) = <E> <1 - 2s> <1 - 2s> <3s - 1)

on the interval § < s < 1. Taking logs, we maximize

In f(s) = —slns — 2(1 — 2s)In(1 — 2s) — (3s — 1)In(3s — 1),

which is easily maximized with one of the numerical routines from Chapter 3.

*2.6. Convexity and Other Inequalities

In Section 2.4, the Arithmetic—Geometric Mean Inequality was derived on
the basis of convexity considerations. Convexity can be exploited to prove a
wide variety of other important inequalities that arise in many parts of pure
and applied mathematics. Some of these inequalities including the Cauchy—
Schwarz Inequality, Holder’s Inequality, and Minkowski’s Inequality are
derived in this section.

The following inequality, which follows from the Arithmetic-Geometric
Mean Inequality, is fundamental to our derivations of the other inequalities
mentioned above.

(2.6.1) Theorem (Young’s Inequality). Suppose that p and q are real numbers
both greater than 1 such that p~' + q~* = 1. If x, y are positive real numbers,
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then
xl’ p
xy<—+ y_'
p q
Equality holds precisely when x? = y4.
PROOF. If s = x” and t = y4, then s, ¢ are positive numbersand p™! + ¢! =1
so that the Arithmetic—Geometric Mean Inequality can be applied as follows:
(A-G) p q
xy=sirpta < 2 syt v
P q p q

Moreover, (2.4.1) asserts that equality holds in the preceding inequality if and
only if s = ¢, that is, if and only if x? = y4.

(2.6.2) Corollary (Holder’s Inequality). Suppose that p and q are real numbers
both greater than 1 such that p™' +q ' =1. If x=(x;,...,X,) and y =
(Y1, ---» Va) are vectors in R", then

n n 1p [/ n 1/q
Zi Ix; y:] < <Z1 |xi|p> <; |Yi|q> .

PRrOOF. If x = Q0 or y = 0, the inequality surely holds since both sides are equal
to zero. If neither x nor y is 0, write

n 1/p n 1/q
||X||p=<z |X:|”> , ||Y||q=<2 ‘J)i‘q) .
i=1 i=1

From Young’s Inequality, we have

[x; il < 1 x| l [yil?
Ixllylly, — plUxl;  qlylg

fori=1,2,...,n Summing these incqualities overi=1,2,..., nyields
1

| lyl‘-— | |y1| = _=1'
IIx[Z 1yl HyII" Z || (= Z qII = Z q

Now multiply the extremes of the preceding inequality by ||x|| »l¥ll, to obtain

n n Yp/ n 1/q
Y byl < Ixl vl = <Z |X.~|”> <Z |)’.-|q>
i i=1 i=1

as promised.

Note that if we take p = g = 2 in Holder’s inequality, then x|, and |y],
reduce the usual norms ||x|| and |y|, and so we obtain the Cauchy—Schwarz
Inequality

Ix-yl < x| lIyll, xeR", yeR",

as a corollary.
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q

In Section 1.2, we observed that the norm ||x|| on R" has the following
properties:

(1) |Ix|l = O for all vectors x in R".

(2) x|l = 0 if and only if x is the zero vector 0.

(3) llax|l = |a||x]| for all vectors x in R" and all real numbers a.

4) IIx + yll < lIx|| + |ly|l for all vectors x, y in R" (the Triangle Inequality).

Note that for any real number p > 1, the function defined on R" by

n 1/p
Ixl, = <Zl |xi|p>

obviously shares properties (1), (2), and (3) of the usual norm |x|| on R". The
following inequality asserts that | x||, also satisfies the Triangle Inequality.

(2.6.3) Theorem (Minkowski’s Inequality). If x = (x;, X,,..., X,) and y =
(¥1, Y25 ---» Ya) are vectors in R" and if p > 1, then

n 1/p n 1/p n 1/p
(Z |Xi+Yi|p> S(Z |x,.|"> +<Z |)’.-|p> ,
i=1 i=1 i=1

Ix+yll, < lxl, + Iyl

that is,

Proor. If either x or y is the zero vector, then the two sides of the inequality
are actually equal so the stated inequality surely holds. Hence, we can also
suppose that x # 0 and y # 0.

If p = 1, then, since | x; + y;| < |x;| + |y;| for each i, we can sum over i from
1 to n to obtain the desired inequality. Consequently, we can also suppose
that p > 1.

Now consider the function ¢ defined for t > 0 by

o(t) =P
This function is (strictly) convex for t > 0 since
@"(t)=p(p— 1)t*2 >0
because p > 1. Consequently, since

I, Iyl,  _
Ixll, + lyll, — lIxl, + 1yll,

>

it follows that

< IIxIl, [x;| 4 Iyll, il )p
I, + Nyll, Ixi, A, + lyll, Ix1,

< lIx1, <|xi| >"+ Iy, (lyil >"'
Ixl, + lyl, \Iixll, Ixl, + lyll, \IIxIl,
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Therefore,

n -+ 14 n x| + i p

Z( %, + i )<z(' J |y|>

= \Ixl, + 1yl =, + Nyl
< Ixll, <le> lyll, <|y.~| )")

+
I, + lyll, \MIxIl Ix1l, + lyll, \Iyl,

< IxIl, i<|x,~|> N lyl, i(lm )"
Ixll, + lyl, & \xll, Ixl, + lyl, = \lyl,

PN S L P 7
IXT, + Iyl X0z T, + Iyl lyls

||[\/]=

and so
Y lxi+ yilP < (UIxll, + 1yl,)"
i=1

If we take the pth root of both sides of the preceding inequality, we obtain the
desired result.

So far, we have made use of convexity to derive some important inequali-
ties. Now we will turn the tables and show that these inequalities can help us
to verify the convexity of certain functions.

(2.6.4) Example. If a, ..., a,, are fixed vectors in R" and if c,, ..., c, are
positive numbers, then the function

f(x)=1In <i cie“"‘>

is convex on R".

The Hessian of f(x) is complicated. Although it is possible to prove that it
is positive semidefinite with a great deal of work and clever observation, it is
much easier to prove that f(x) is convex by making use of Hélder’s Inequality.

We have to show that

Slax + By) < of (x) + Bf(y),

or equivalently that
eJEx+bY) < eI — (ef(X))a(ef(y))ﬁ

forall x,yin R"and all &, § > O with « + 8 = 1. This amounts to showing that

m B
c;e® X < <Z c;e® ) <Z cie""y> ,
i=1

which is the same as

it
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The form of the desired inequality suggests that this is a job for Holder’s
Inequality! Just let

s; = (c;e™™), t; = (c;e™)P

foralli=1,...,mandleta = 1/p, B = 1/q. (This is a natural choice for p and
g since we want p~! + g~ = 1.) With these choices, the inequality we want is
just Holder’s Inequality

m m 1p [/ m 1/q
Yositi<| ) sk ) .
i=1 i=1 i=1

EXERCISES

1. Determine whether the given functions are convex, concave, strictly convex, or
strictly concave on the specified intervals:
@) f(x)=InxonlI = (0, +00).
(b) f(x)=e*onl = (—o0, +0).
(©) fx)=|xlonI=[—1,1].
(d) f(x)=|x3lonl = (—00, +00).

2. Show that each of the following functions is convex or strictly convex on the
specified convex set:
(@) f(xy,x3) =5x} +2x;x, + x3 — x; +2x, + 3on D = R2
(b) f(xy, x5) = x3/2 + 3x3/2 + /3x;x, on D = R~
(€) flxy, x3) = (x; + 2x, + 1)® — In(x,x;)* on D = {(x,, x,) € R%: x; > x, > 1}.
(d) f(x,, x,) = 4e317*2 4 5¢%i*x3 on D = R2.
(€) f(x1, x3) = ¢ Xy + €3/Xy + €3X2 + C4fx, on D ={(x;,x,)eR* x;>0,

X, > 0} where ¢; is a positive number fori = 1, 2, 3, 4.

3. A quadratic function in n variables is any function defined on R" which can be
expressed in the form

fx)=a+b:x + x- Ax,

where ae R,be R", and A4 is an n X n-symmetric matrix.
(a) Show that the function f(x) defined on R? by

S(x1, %) = (X1 — x,)% + (x; + 2%, + 1) — 8x,x,

is a quadratic function of two variables by finding the appropriate a € R, b € R?,
and the 2 x 2-symmetric matrix A4.

(b) Compute the gradient Vf(x) and the Hessian Hf(x) of the quadratic function
in (a) and express these quantities in terms of the ae R, be R?, and the
2 x 2-symmetric matrix A computed in (a).

(c) Show that a quadratic function f(x) of n variables is convex if and only if the
corresponding n x n-symmetric matrix A is positive semidefinite, and is strictly
convex if A is positive definite.

(d) If f(x) is a quadratic function of n variables such that the corresponding matrix
A is positive definite, show that 0 = 24x + b has a unique solution and that
this solution is the strict global minimizer of f(x).
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. Theorem (2.3.1) asserts that a convex function f(x) defined on an open interval

(a, b) is continuous. In the outline of a proof that follows that assertion, the

following statements are used but are not verified:

(a) If r < s < t, then the point (¢, f(t)) must lie above or on the line through (r, f(r))
and (s, f(s)).

(b) lim, .- f(1) = f(s).

(©) lim,,- f(v) = f(5).

Supply proofs for these statements and thereby complete the proof of (2.3.1).

. Suppose that D is a subset of R". Show that the set C of all convex combinations of
vectors in D coincides with the convex hull co(D) of D by the following procedure:
(a) Show that C is a convex set containing D.

(b) Show that if B is a convex set containing D then B contains C. (Hint: Use
Theorem (2.1.3).)
(c) Apply the conclusions of (a) and (b) to verify that co(D) = C.

. The following exercises refer to the linear production model discussed in Section
2.2
(a) Show that the technology set of a linear production model is a cone.

(b) Show that the production isoquant Q; corresponding to a given output level
X is a convex set.

(c) Ify™ is a vector of input levels required to produce the output level x with the
exclusive use of the kth producing process P, for k = 1,2, ..., n, show that the
production isoquant Qy is the convex hull of {y'*, y, ..., y™}.

. Consider the function f(x) defined on the set
D={xeR¥»x;>0,x,>0,x3>0}
by
J(x) =0y + (x2) + (x3)",

wherer, > Ofori=1,2,3.
(a) Show that f(x) is strictly convex on D if r, > 1 fori =1, 2, 3.
(b) Show that f(x) is strictly concaveon Dif0 <r, < 1 fori=1,2,3.

. () Show that

3y e~
+ TS In <T + %eY’>

B %

for all positive numbers x and y. (Hint: The desired inequality follows from the
convexity of an appropriate function.)

(b) Show that
x oy oz oow\* o,
—_— —_ — JR— <7
(2+3+12+12>—2x+

W=
<
>
+
o
N
»
+
Sk
<
>

with equality ifand only if x =y =z = w.

. Suppose that f(x) and g(x) are convex functions defined on a convex set C in R"
and that

h(x) = max { f(x), g(x)}, xeC.

Show that h(x) is convex on C.
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10.

12.

13.

14.

Suppose that f(x) is a convex function with continuous first partials defined on a
convex set C in R". Prove that a point x* in C is a global minimizer of f(x) on C
if and only if Vf(x*)-(x — x*) > 0 for all x in C.

. Suppose that f(x) is a function defined on a convex subset D of R". The epigraph

of f(x) is the set in R"*! defined by
epi(f) = {(x,a): x e D, € R, f(x) < a}.
(a) Sketch the epigraph of the function
f(x) =e* for xeR.
(b) Sketch the epigraph of the function
f(xy, x5)=x? +x3 for x =(x, x,) € R~

(c) Show that f(x) is convex if and only if the epigraph of f(x) is convex.
(d) Prove Theorem (2.3.3) by using part (c) and Theorem (2.1.3).
(e) Show that the epigraph of a continuous convex function on R" is a closed set.
(Hint: Show that if (x,, «,) € epi(f) and x, - x*, «, — a, then (x*, 2) € epi( f).
(f) Give an alternative derivation of the result in Exercise 9 by showing that
epi(max{f(x), g(x)}) = epi(f(x)) N epi(g(x)).

Suppose that f(x) is a function with continuous second partial derivatives on R".
Show that if there is a z such that the Hessian Hf(z) of f(x) at z is not positive
semidefinite, then f(x) is not convex.

Suppose that f(x) is a function with continuous second partial derivatives on R".
Denote by Vf(x) ® Vf(x) the n x n-matrix whose (i, j)th entry is

o o
é}—i(X) é;j(X),

that is, Vf(x) ® Vf(x) is just the matrix product
(column vector Vf(x)-(row vector Vf(x)).

(a) Show that Vf(x) ® Vf(x) is always positive semidefinite.
(b) Show that if « is a positive number the function e*™ is convex on R" if

Hf(x) + a(Vf(x) ® V/(x))
is positive semidefinite for all x in R"™.

Show that the matrix
4 3 2

x* x3 x
Ax)=|x> x* x
x2 x 1

is positive semidefinite for all x € R. (Hint: Show that there is a column vector
u(x) € R? such that u(x)u(x)T = A(x), that is, u(x) ® u(x) = A(x).) (See Exercise 13.)

. Use the Arithmetic—Geometric Mean Inequality to solve the following optimiza-

tion problem:
(a) Minimize x2 + y + z subject to xyz = 1 and x, y, z > 0.
(b) Maximize xyz subject to 3x + 4y + 12z =1and x, y,z > 0.
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16.

18.

20.

21.
22.
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(c) Minimize 3x + 4y + 12z subject to xyz = 1 and x, y,z > 0.
(d) Maximize xy?z3 subject to x> + y2 + z=39and x, y, z > 0.
(¢) Minimize x3 + y? 4 z subject to xy%z3 = 39.
Suppose that ¢,, ¢,, c5 are positive constants and that

SO, ) = ¢x 4+ ¢x72y 73 + cypt.

(a) Minimize f(x, y) over all x, y > 0.
(b) Find the relative contributions of each term to the minimum.

. Solve the following “classical” calculus problems by making use of the Arithmetic—

Geometric Mean Inequality.

(a) Find the largest circular cylinder that can be inscribed in a sphere of a given
radius.

(b) Find the smallest radius r such that a circular cylinder of volume 8 cubic units
can be inscribed in the sphere of radius r.

(a) Show that if ¢,, c,, c5, ¢, are positive numbers, then
g(x1, X3, X3, X) = €1 X530 + €3%58x2 + c3x3x2 + ¢y x7 x%3x3x3
has no minimum on the set
D = {(xy, X5, X3, x4): x; > O0fori=1,2,3,4}.
(b) Set up the log-linear equations whose solution produces the minimizer of
glty, ta, t3, ty) = €131, 72 4+ o153 ° + c3tit] + cut 130515

over all t,, t,, t5, t, > 0. Give the relative contributions of each term to the
minimum.

. Find necessary and sufficient conditions for equality in:

(a) Young’s Inequality;

(b) Holder’s Inequality;

(c) the Cauchy—Schwarz Inequality;
(d) Minkowski’s Inequality.

Prove the special case (2) in Section 2.4 of the Arithmetic—-Geometric Mean
Inequality. (Hint: Show that for a fixed p the solution of the maximization
problem.)

Maximize [ [;-; v, subject to v, >0, Y v, =pisv,=p/nfork=1,...,n
(Hint: Suppose that v,, v,, ..., v, are positive and that Y k_, v, = p. Show that if
vy # v,, then setting v, = 0, = (v, + v,)/2 makesv, + v, + v3 + -** + v, = p and
V10, < V0,.)

Let f(x, y, z) = x2 + y — 3z. Show f{(x, y, z) is convex on R3. Is it strictly convex?

(a) Let g(x) be a convex function on R" and suppose g(x) > 3 for all x in R". Show

S(x) = (g(x) — 3)
is convex on R".

(b) Give an example of a convex function g(x) on R! such that (g(x) — 3)? is not
convex.
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23.

24.

25.

26.

27.

28.

Let f(x) be a continuously differentiable function on R". Show that if f(x) is strictly
convex, then Vf(x) = Vf(y) if and only if x = y.

Let f(x) be a convex function on R'. Let a be a fixed vector on R" and let o be a
fixed real number. Define g(x) on R" by

g(x) = fa-x + ).

Show g(x)is convex on R" but that if n > 2, then g(x) is not strictly convex. Deduce
that

g(x, y,z) = (4x + 5y — 8z + 17)8

is convex but not strictly convex on R3. State why this does not follow from
Theorem (2.3.10)(c).

Let f(x) be a strictly convex function on R". Suppose x and y are distinct points
in R" such that f(x) = f(y) = 0. Show that there is a z in R" such that f(z) < 0.

(Calculator Exercise). Use geometric programming to solve the following program:
- 1000
Minimize g(x,y)=——+ 2x + 2y + xy
Xy
over all x, y > 0. (Note: The set of feasible vectors for the dual contains more than

one vector.)

Consider the function defined for x > 0 by

f(x)=x+l.
X

(a) Show that x* = 1 is a strict global minimizer of f(x) for x > 0.
(b) Use the result of (a) to minimize the function g defined on R? by

g(Xl, XZ) = ZX% + X% + m
(c) Use the result of (a) to minimize the function h defined on R3 by

h(Xl, X, X3) — ex,—x2+X3 + e—x|+x2—x3‘

Let f(x) be a convex function defined on R". Show that if f(x) has continuous first
partial derivatives and if ¢ > 0, then

g(x) = f(x) + &[x||*

is both strictly convex and coercive.



CHAPTER 3

lterative Methods for
Unconstrained Optimization

Chapters 1 and 2 developed the theoretical basis for the solution of optimiza-
tion problems. In this chapter, we confront the problem of finding numerical
methods to solve optimization problems that arise in practice. Briefly put, we
want iterative methods suitable for computer implementation that will permit
us to compute minimizers for a given function f(x) on R". By an iterative
method, we mean a computational routine that produces a sequence {x¥'} in
R" that we can expect to converge to a minimizer of f(x) under reasonably
broad conditions on f(x). To be of practical interest, the routine should
produce an approximating sequence {x*} that is numerically reliable and
that is not too costly to compute.

The need for iterative methods derives from the fact that it is usually not
practical and often impossible to locate the critical points of f(x) by attempting
to find the exact solutions of the system

Vf(x) = 0.

It is even more difficult in practice to numerically analyze the Hessian Hf(x)
to test the nature of the critical points. Instead, iterative methods are used to
search out the minimizer x* by means of an approximating sequence {x*}
whose points are generated in some computationally acceptable way from
f(x). The value of such a method is measured in terms of the computational
cost of obtaining the successive terms of the corresponding sequence {x*},
the convergence rate, and the convergence guarantees of this sequence.

The obvious practical importance of solving unconstrained optimization
problems has spawned the development of an extensive variety of iterative
methods. Research and practice continue to refine and improve these methods.
In this presentation, we will begin by investigating two methods that are
historically important and convey general principles from which new methods
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can be derived. We will then develop newer techniques based on these general
principles that are now “methods of choice” in practical applications.

We will not discuss the mechanics of the computer implementation of the
methods we describe. However, we will be vitally interested in the mathe-
matics that underlies these computer implementations. Those readers who are
interested in the details of computer implementation of iterative minimization
methods are advised to master the ideas in this chapter, and then proceed to
amore advanced text such as Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations by J. E. Dennis and R. B. Schnabel (Prentice-
Hall, Englewood Cliffs, NJ, 1983).

Virtually every successful method for unconstrained minimization has its
origins in one or both of the classical methods known as Newton’s Method
and the Method of Steepest Descent. Both of these methods have features that
are desirable enough to retain, and both have features that are to be avoided
in more practical and modern methods. For this reason, the study of Newton’s
Method and the Method of Steepest Descent is an ideal way to set the stage
for our discussion of the more modern methods in this chapter.

3.1. Newton’s Method

Given a differentiable function f(x) on R", we know from (1.2.3) that any
minimizers of f(x) will be found among the solutions of the system of equations

Vf(x) = 0. (1)

Since this system of equations is in general nonlinear, it is usually not easy to
find exact solutions even when the number of variables is small. Instead, it is
usually more effective and practical to use some iterative method to find
“zeros” of (1), that is, solutions of Vf(x) = 0, to any desired degree of accuracy.

Newton’s method is such a “zero-finder.” It actually applies more generally
to any system of the form

g(x) =0,

where g(x) is a differentiable function on R” with values in R". It seeks to find
solutions of g(x) = 0. When applied to g(x) = Vf(x), it therefore seeks out
zeros of Vf(x) = 0. Newton’s Method for the single variable case is often
discussed in introductory calculus. We will begin our presentation of the
method at that point.

For a given real-valued differentiable function g(x) defined on R, Newton’s
Method seeks solutions of the equation

g(x)=0

by beginning with an initial guess x'® and generating successive terms of a
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sequence {x¥} according to the formula

g(x®)
xk+1) — (k) _ W‘T)’ > 0. )

The geometric basis for the iteration formula (2) is easy to describe: The point
x**1 is merely the x-intercept of the tangent line to y = g(x) at the point
(x®, g(x®)).

yA
‘/’—“y = g(x)

Tangent line
y —gx®) = g/ (x¥)(x — x¥)

(X(k), g(_x(k)))

/'\

x-intercept = xk + b

» X

The equation of this tangent line is
y = g(x®) = g'(x*¥) (x — x*).

If we find the x-intercept of this line by setting y = 0 and solving for x, the
solution x**1) is given by the iterative formula (2).

Most texts in numerical analysis show that the sequence {x*®} produced
by Newton’s Method can be trusted to converge to a solution x* of g(x)
provided that:

(1) the initial guess x‘? is not too far from x*;
(2) the graph of y = g(x) is not too wobbly.

(A precise statement of one sufficient condition for convergence of {x®} is
given in Exercise 1.) It is not hard to come up with a function that will
fool Newton’s Method (see Exercise 1) but for most well-behaved functions
Newton’s Method works very well.

The idea underlying Newton’s Method for solving the equation

g(x)=0

for a differentiable function g(x) of n variables with values in R" is basically
the same as the single variable case. The tangent line at (x*), g(x®)) of the
single variable case is replaced by the tangent hyperplanes at x* to the graphs
of the n component functions g,(x), ..., g.(x) of g(x). (See the discussion
preceding (2.3.5).) More precisely, if x* is the current point, the next term
x**D of the sequence produced by Newton’s Method is the solution of the
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system
g,(x®) + Vg, (x*¥)+ (x —x®) =0,

gn(x¥) + Vg,(x¥) - (x — x¥) =0,

where g;(x) is the ith component function for g(x). This system can be
expressed in matrix notation as

g(x®) + VE()(x = x) = 0,

where Vg(x) is the Jacobian matrix for g(x) at x, that is, Vg(x) is the n x n-
matrix whose (i, j) entry is

0g;

0x;

(%)

fori,j=1,2,..., n This yields the following iteration formulas for Newton’s
Method in the n-variable case.

(3.1.1) Newton’s Method for Solving Equations. Suppose that g is a differenti-
able function of n variables with values in R" and that x® e R". Then the
Newton’s Method sequence {x®} (with initial point x'© for solving g(x) = 0) is
defined by the following recurrence formula:

(A) [Vg(x(k))] (x(k+1) _ x“‘)) — _g(x(k)) for k>0,
or alternatively by
(B) x**D = x® _ [vg(x®)] 1g(x®) for k> 0.

A few words of caution and explanation are in order in conjunction with
the definition (3.1.1):

(@) The recurrence formula (B) reduces to the classical formula (2) when g is
a real-valued differentiable function of a single variable.

(b) In general, the system of linear equations in (A) may not have a unique
solution for some value of k. In that case, the Newton’s Method sequence
is undefined.

(c) Even if the Newton’s Method sequence is defined, it may not converge to
a solution of g(x) = 0.

(d) Recurrence formula (B) provides a clear, explicit description of x**V in
terms of x*® which is quite useful for theoretical purposes. However,
formula (A) is better for computation than (B) since it does not require the
explicit calculation of the inverse of the Jacobian matrix. In practice, we
always solve the linear system (A).

Let us have a look at the iteration process prescribed by Newton’s Method
for the solution of a nonlinear system of three equations in three unknowns.
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(3.1.2) Example. Consider the nonlinear system of equations
x4+ y?+22=3,
x24+y2—z =1,
x +y +z =3

Since solutions of this system are precisely the points of intersection of
the sphere x2 + y? + z2 = 3, the paraboloid x> + y?> — z = 1, and the plane
X + y + z = 3, it is easy to see that the system has one and only one solution:
x=1lLy=1z=1
This system can be expressed in the form
g(x) =0,
provided that g is taken to be the function with domain and range in R?
defined by
gy, ) =02 +y*+22 =3, x> +y*—z—Lx+y+z-3)

Let us compute the first three terms of the sequence produced by Newton’s
Method for the initial point x'® = (1, 0, 1). The Jacobian matrix of the system
is

2x 2y 2z
Vgx)=12x 2y —1
1 1 1

Therefore, given that x(® = (1, 0, 1), we can find x‘!) by solving the system (A),
that is,

2(x — 1) +2z—-1)=1,
2(x — 1) — (z=D=1,
x—D+y+ (z—-1=1

It is easy to check that this system has a unique solution x =3,y =4,z =1,
sox = (3,4, 1)

We compute x'? from x‘! using (A) again, that is, x'® is the solution of the
system

3(x—=D+(y—5+20z—-1)= -3,
=P+ -H- -h=-4
x=P+-H+ -n=0

This system has the unique solution x =32, y=32, z=1s0 xX?¥ = (3,3
A similar computation shows that x* = (3, Z, 1).

, 1).



3.1. Newton’s Method 87

Suppose that we had started with the initial point x = (0, 0, 0). Then the
system (A) would be:
Ox +0y + 0z =3,

Ox +0y— z=1,
X+ y+ z=3,

which has no solution. Thus, the Newton’s Method sequence is undefined for
that choice of initial point.

A general technique for proving convergence for Newton’s Method was
devised by the Soviet mathematician L. V. Kantorovitch.! He first observed
that the Newton’s Method sequence {¢*'} with any initial point t© for the
quadratic real-valued function of a single variable

1 c

=42 1. €
g(t)—zt bt+b

always converges to the unique solution

t*=a—1b(1—,/l — 2abc)

of g(t) = 0 provided that the constants a, b, c satisfy abc < 4. He then used
this rather special one-dimensional result to obtain a convergence theorem
for Newton’s Method in the n-dimensional case. More precisely, he showed
that if g(x) is a differentiable function of n variables, and if the initial point x®)
is chosen so that constants a, b, ¢ exist for which abc < 1, and if:

(1) I[VE™)]7!| < b;
) IV 'gx )| < ¢;
(3) thereis a 6 > 0 so that

IVe(x) — Vel < alx —yl,
whenever |x — x9|| <6, |y — x9|| < §;
then the Newton’s Method sequence {x*} with initial point x® converges to
a solution x* of g(x) at a rate governed by the inequality
Ix® — x|l < e® — ¥,

and t®), t* correspond to the quadratic function g of one variable as indicated
earlier. Thus, when the initial point x!” can be chosen so that (1), (2), and (3)
are satisfied for constants a, b, ¢ with abc <1, then the convergence of
Newton’s Method for the quadratic function g(t) majorizes the convergence
of Newton’s Method for the function g(x) of n variables.

! See Section 5.3 of Numerical Methods for Unconstrained Optimization and Nonlinear Equations
by J. E. Dennis and R. B. Schnabel (Prentice-Hall, Englewood Cliffs, NJ, 1983.)
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The preceding convergence theorem of Kantorovitch and Example (3.1.2)
show that the choice of a “good” initial point x' is crucial to the success of
Newton’s Method. If x'? is too far away from a solution x* of g(x) = 0, the
Newton’s Method sequence {x¥} with initial point x‘® may not be defined
or it may not converge to x*.

It is usually not practical to attempt to choose x'? so that the hypotheses
of a convergence theorem such as the Kantorovitch Theorem are satisfied.
Instead, a choice of x'© is made on the basis of educated guesswork and
calculations begin. If these calculations with Newton’s Method do not pro-
duce a suitably accurate approximation to a solution of g(x) = 0, we try to
make a “better” choice of the initial point x‘© and try again. The role of
convergence theorems in this process is that they assure us that the successive
refinement of the choice of x© will eventually lead to a Newton’s Method
solution of g(x) = 0 if such a solution exists and g(x) is a “reasonable” function.

We were led to Newton’s Method for solving the equation g(x) = 0 because
of our interest in finding a minimizer x* for a real-valued, differentiable
function f(x) defined on R". The connection between these two problems is
that if x* is a minimizer of f(x) then x* is necessarily a solution of the equation
g(x) = 0 where g(x) = Vf(x) for x € R". Thus, when Newton’s Method is
applied to function minimization, the function whose zeros we seek is actually
the gradient of the function to be minimized. We will now investigate how the
special features of a gradient function are reflected in Newton’s Method when
it is applied to function minimization.

If f(x) is the function on R" to be minimized and g(x) = Vf(x), then the
Jacobian matrix Vg(x®’) which appears in the defining equations for Newton’s
Method (see (3.1.1)) is the matrix whose ith row is the gradient of the ith
component Jf/dx; of Vf(x). If we think about that for a moment, we see that
this Jacobian matrix is just the Hessian matrix of f(x), that is,

Vg(x®) = Hf (x).

This observation leads to the following statement of Newton’s Method for
function minimization.

(3.1.3) Newton’s Method for Function Minimization. Suppose that f(x) is a
twice continuously differentiable, real-valued function of n variables and
suppose that x/¥ € R". Then the Newton’s Method sequence {x®'} with initial
point x'® for minimizing f(x) is defined by the following recurrence formula:

(A)I [Hf(x(k))](x(kﬂ) _ x(k)) — _Vf(x(k)) for k > 0,
or alternatively by
(BY x® D = x® — THf(x*)]7Vf(x®) for k > 0.

Note that, unlike the situation in (1.3.1), the matrices that appear in the
defining equations (A) and (B)' are necessarily symmetric since the Hessian
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matrix for a twice continuously differentiable function on R" is always
symmetric.

There is another approach to the definition (3.1.3) of Newton’s Method
for function minimization that is quite illuminating. According to Taylor’s
Theorem (1.2.4), the function

00 = ) + V) (x = x) + 3(x = x©) HF () (x = x)

is the quadratic function that “best fits” the function f(x) at the current point
x® in the sense that f,(x) and f(x), as well as their first and second derivatives,
agree at x®.

Given that x® is the kth term of a sequence that we hope will converge to
a minimizer x* of the given function f(x), it would be a reasonable strategy
to take as the next term of this sequence the point x**!) that represents the
minimizer of the quadratic function f,(x) provided that f,(x) has such a
minimizer. Let us see how this strategy works out.

If the quadratic function f,(x) has a minimizer y*, then y* must be a critical
point of f;(x), that is,

0= VA(Y*) = Vf(x®) + Hf(x®)- (v* — x®).

Moreover, if the Hessian Hf(x) of the function f(x) to be minimized is positive
definite at the current point x%, then the function f,(x) is strictly convex and
does have a strict global minimizer at the unique solution y* of the equation
Vf.(y*) = 0. This latter equation can be written as

[Hf(x®)](y* — x¥) = —Vf(x®),

which is exactly the recurrence formula (A if we replace y* by x**1). Thus,
the Newton’s Method sequence {xV} for minimizing f(x) can be looked at in
the following way: Given the current point x¥) of this sequence the next point
x®*1 js just the critical point of the quadratic function f,(X) that best fits f(x)
at x®,

The preceding observation yields the following interesting result concern-
ing the application of Newton’s Method to minimize quadratic functions.

(3.1.4) Theorem. Suppose that A is a positive definite n x n-matrix, thatb € R",
x'® e R" and that a € R. Then the quadratic function f(X) of n variables defined
by

fX)=a+b-x +ix-Ax
is strictly convex and has a unique global minimizer at the point x* that is the
unique solution of the system

Ax = —b.

Moreover, the Newton’s Method sequence {x®} with initial point x'© for
minimizing f(X) reaches x* in one step, that is,

xD) = x*,
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Proor. Note that
Vf(x) =b + Ax, Hf(x)= A

for any x € R™. Hence, since A4 is positive definite, (2.3.4) and (2.3.7) imply that
f(x)is strictly convex and has a unique global minimizer at the unique solution
x* of the system

Ax = —b.

To prove that Newton’s Method reaches x* in just one step from any initial
point x'?, we simply note that

xV = x© — [Hf(x) 17 Vf(x'¥)
=x — 47[b + Ax'?]
= xO _ 471 = Ax* 4+ AX©]
=x? + x* — x@ = x*

Thus, x'¥ = x*, so the proof is complete.

For nonquadratic functions f(x) of n variables, the Newton’s Method
sequence {x®} for f(x) does not usually converge in a single step or even a
finite number of steps. In fact, it may not converge at all even when f(x) has
a unique global minimizer x*, and the initial point x‘ is arbitrarily close but
not coincident with x*. (See Exercise 2 for a one-dimensional example of this
sort.)

The hypotheses of (3.1.4) require that the Hessian of the quadratic function
f(x) is positive definite, and this requirement is crucial to the conclusion that
f(x) has a unique global minimizer x* and that Newton’s Method reaches x*
in a single step starting from any initial point x‘©). For instance, if 4 is negative
definite, then Newton’s Method finds the unique global maximizer x* of the
quadratic function f(x). The method simply does not discriminate among
maximizers, minimizers, or mere saddle points of a function f(x) whether it is
quadratic or not.

For an arbitrary (that is, not necessarily quadratic) function f(x), the
assumption that Hf(x) is positive definite does yield the conclusion that
Newton’s Method at least heads in the direction of decreasing function values.

(3.1.5) Theorem. Suppose that {x®} is the Newton’s Method sequence for
minimizing a function f(x). If the Hessian Hf(x¥) of f(x) at x™® is positive
definite and if Vf(x*®)) # 0, then the direction

p® = —[Hf(x*)]7'Vf(x®)

from x® to x**V s g descent direction for f(x) in the sense that there is an
& > 0 such that

SO + 1p%) < f(x)
for all t such that 0 <t <e.
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ProoF. Define ¢(t) on R by

o) = f(x® + 1p®).

Note that ¢(t) is the restriction of f(x) to the line through x* in the direction
of p*. Then

@'(t) = Vf(x© + tp®) - p®,
and so
@'(0) = Vf(x*)-p®
= —V/(x")[Hf(x*)]'Vf(x*¥) <0,

since [Hf (x*)]7! is positive definite and Vf(x*') # 0. Therefore, there is an
¢ > 0 such that ¢(t) < ¢(0) for all ¢ for which 0 < t < ¢, that is,

S+ 1p%) < f(x©)
for all t such that 0 < t < ¢. This completes the proof.

The following example illustrates the Newton’s Method iteration procedure
for a simple nonquadratic function.

(3.1.6) Example. Let us construct a Newton’s Method sequence {x*} for
minimizing the function
f(xy, x5) = xt + 2xix} + x3.

We will take advantage of the symmetry of f(x,, x,) with respect to the
variables x,, x, by computing the next iterate for a current point of the form
(a, a). Note that

VI(xy, x,) = (4x3 + 4x,x2, 4x3x, + 4x3),

12x2 + 4x32 8
Hf(xl,x2>=< et S )

8x,x, 4x? + 12x3
so that
16a>  8a?
Vf(a, a) = (84> 8a),  Hf(a,a) = < 842 16a2>'

Therefore, equation (A) takes the following form at the current point (a, a):
16a%(x; — a) + 8a(x, — a) = —8a’,
8a%(x, — a) + 16a*(x, — a) = —8a’.
This system reduces to
2x, + 1x, = 2a,

Ix; + 2x, = 2a,
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which has the solution (x,, x,) = (%4, %a). Thus, for example, the Newton’s
Method sequence with initial point x® = (1, 1) for minimizing f(x,, x,) is
given by

x¥ = (3, 3P

Evidently, this sequence converges to x* = (0, 0) which is the global minimizer
of this function since

Sy, x5) = (x7 + x3)%

The symmetry and simplicity of the objective function in the preceding
example allowed us to compute the general term of the Newton’s Method
sequence for minimizing the function. It is usually neither possible nor
necessary to compute this general term in practice. Rather, we proceed from
one iterate to the next by computing the solution or approximate solution of
the system (A)' of linear equations. We terminate this iteration process when
the current iterate satisfies the equation Vf(x) = 0 to within some acceptable
error bound. In this connection, we point out that the alternate formula (BY
is never used for computing iterates in Newton’s Method because it is
computationally too expensive to compute the inverse of the Hessian matrix
as (B)' requires.

Several problems can occur in the implementation of Newton’s Method.
One of the most obvious is that the sequence of iterates may converge to a
point that is not a global minimizer for the function. This can occur if the
objective function is “wobbly” as the one-dimensional example pictured below
illustrates.

y=f

\‘_/

I
|
y*

global minimizer

|
| |
| |

X
» x

\ I \ / Y2 l

local minimizer inflection points :

It seems rather clear (and it can be proved) that if we choose an initial point
x'© < y,, then the Newton’s Method sequence with initial point x© will
converge to the local minimizer y* of f(x). On the other hand, if we choose
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an initial point x'© > y,, then the corresponding Newton’s Method sequence

will find the global minimizer x* for f(x). If the stopping condition for
Newton’s Method simply measures the accuracy with which the current
iterate satisfies the critical point condition f’(x) = 0, y* and x* appear to be
equally good limits for a Newton’s Method sequence even though we really
want to find x* and not y*. Of course, the way to avoid y* is to pick x© as
close to x* as we can. Thus, if we find that a given initial point leads to a local
rather than global minimizer, the remedy is to pick a new initial point and try
again.

Newton’s Method can also produce a sequence of iterates that diverges.
For example, if we apply Newton’s Method to minimize the function f(x) =
2|x|¥? starting with the initial point x® = 1,

Ay

y = }lx[*?

® ® » x
—1 = x% for k odd +1 = x% for k even

it is a routine matter to check that the corresponding Newton’s Method
sequence {x*} is given by

x® = (= 1)k = {

+1 if kiseven,
—1 if kis odd.

Thus, the Newton’s Method sequence with initial point x!© = 1 never comes
close to the true global minimizer x* = 0.

More trouble can occur with Newton’s Method when the Hessian Hf(x)
fails to be positive definite or even invertible because the Newton’s Method
sequence may fail to be defined (cf. (3.1.2)) or it may wander away from the
global minimizer. The following example illustrates this latter phenomenon.

(3.1.7) Example. The function of a single variable
f(x) = x* — 32x?

can readily be shown to have two global minimizers at x = +4, no global
maximizers, and a local maximizer at x = 0.

If we begin with the initial point x'® = 1 and construct the first few
terms of the Newton’s Method sequence for minimizing f(x), we find that
x' = —0.153846, x' = 0.000629, and that x> is zero to six decimal places.
Thus, instead of approaching the nearest global minimizer at x = +4, the
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minimizing sequence {x*'} appears to (and in fact does) converge to the local
maximizer at x = 0. The problem here is that the Hessian

Hf(x) = 12x%* — 64
is negative on the interval [—4/ﬁ, 4/\/5] which includes the initial point
x(®,

The apparent rapidity with which the Newton’s Method sequence {x*®}
converges to the critical point x* = 0 of f(x) in the preceding example is not
an accidental feature of the example. One can show that if x* is a critical point
of a function on R" and if {x®} is the Newton’s Method sequence for

minimizing f(x) starting from the initial point x'®, then there is a constant
C > O such that

(*) [x**D — x*| < Clx® — x*||?

under suitable conditions on f(x) and {x}. (See, for example, page 156 of
Introduction to Linear and Non-Linear Programming by D. G. Luenberger.
(Addison-Wesley, Reading, MA., 1973).) The inequality (x) shows that if a
given x® is sufficiently close to x*, then x**V is much closer since the square
of a small positive number is much smaller than the given number.

Now a final word about computation. To compute the successive terms of
the Newton’s Method sequence, we solve the system of linear equations

(AY Hf(x"")(x"‘“’ _ x(")) — —Vf(x"")

for x**V given the current x*. Now, the matrix Hf(x¥) of this system
1s symmetric if f(x) has continuous second partials so the computational
problem involved with solving (A)' is that of solving a system

(*) Ay =b,

where A4 is an n x n-symmetric matrix and b is a fixed vector in R".

Of course, Gaussian elimination provides one means to compute solutions
to a system (). However, there is a more efficient procedure that can be used.
Suppose that the matrix A has a factorization

A=LU,

where L is a lower triangular matrix (that is, L = (I;;) where [;; = 0 for j > i)
and U is an upper triangular matrix and the diagonal elements of both L and
U are nonzero. Then if z € R" is a solution of the system

Lz =b,
and y is a solution of

Uy =z,
it follows that y is a solution of () since

Ay=LUy=Lz=h.
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Because the matrices L and U are triangular and have nonzero diagonal
elements, the solution procedure for the systems

Lz = b, Uy=1z
is especially simple. In fact, if we write Lz = b as a system of linear equations
12 =b,,

L1z + 1532, =b,,

lnlzl + anZ2 + o+ lnnzn = bn’

then obviously z, = b,/l;;, we can solve for z, by substituting z, into the
second equation, then we substitute z,, z, into the third equation to find z,,
and so on. This solution procedure is referred to as forward-substitution. Once
a solution z to Lz = b has been computed, we proceed to solve the upper
triangular system Uy = z, that is,

Uy + Uy + ot Uy, =2y,

Uzzy2 + e+ UzpVn = 22,

unnyn = Zn'

This system is solved by back-substitution, that is, we use the last equation to
find y,, then substitute into the next to last to find y,_,, and so on, until we
find y, from the first equation. The fact that the diagonal elements of L and
U are nonzero assures us that the forward- and back-substitution procedures
can be carried to completion (that is, without encountering divisors that are
Zero.)

In the above discussion, we have assumed that the given symmetric matrix
A has a factorization

A=LU, 3)

where L is a lower triangular matrix and U is an upper triangular matrix and
the diagonal elements of L and U are nonzero. We will now discuss some
conditions that assure the existence of such a factorization as well as a
procedure for computing L and U.

If A is a positive definite matrix (a case of special interest for Newton’s
Method in view of (3.1.5)), it can be shown that 4 has a unique factorization
of the form

A=LDLT, )

where L is a lower triangular matrix with diagonal entries equal to 1 and
D is a diagonal matrix with positive diagonal entries. If D'? is the square
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root of the matrix D, that is, D'? is the diagonal matrix whose diagonal
elements are just the square roots of the corresponding elements of D, then
clearly D'?-D? = D so

A=LD"D"LT = (LD'"?)(LD"?)".

Therefore, if L = LD'?, then L is lower triangular with positive diagonal
entries and

A=LL"

This factorization of a positive definite matrix 4 is called the Cholesky
factorization of A. It clearly provides a factorization of the sort we need to
solve the system Ax = b by forward- and back-substitution since U = LT is
upper triangular with positive diagonal elements.

The matrix L in the Cholesky factorization of a positive definite matrix A4
can be computed directly by equating the corresponding elements on the two
sides of the matrix equation 4 = LLT

a;y Ay ... Gy Ly 0 .. 0O\ [l L, ... I,
a1 Az - Gny| Iy L ... O 0 1L, ... I,
Ay (3 App lnl ln2 lnn 0 0 lnn

For the elements of the first columns, this yields
ay; =1y, ayy =il oo gy = iy,

which allows us to compute the elements of the first column of L since we
know that [;; # 0. Next, we see that

_ 2 2
a, = I3, + 13,

so we can compute [,, since [,; is now known. If we equate the remaining
elements of the second column, we obtain

ays = I3l + 135055, -0 a0 = Ly + Ll

so the elements of the second column of L can now be computed. Evidently,
we can continue in this way until all elements of L are determined.
There are numerical advantages associated with solving the system

Ax=Db
by first computing the Cholesky factorization
A=LL"
and then solving the systems
Lz =b, L'y =1z,

by forward- and back-substitution rather than solving the given system by
Gaussian elimination. One such advantage is computational accuracy. It
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turns out that the Cholesky factorization procedure, coupled with forward-
and back-substitution, is less influenced by round-off error than Gaussian
elimination.

For more information concerning triangular factorizations of matrices and
the solution of systems of equations by triangular factorization, see, for
example, Introduction to Matrix Computations by G. W. Stewart (Academic
Press, New York, 1973).

3.2. The Method of Steepest Descent

This classical iteration method for minimizing functions on R" is just one of
many contributions of the French mathematician Augustin-Louis Cauchy.
After its discovery in 1847, it became the minimization method most fre-
quently used by mathematicians and scientists because it is relatively easy to
implement by hand for small-scale problems.

With the advent of the electronic computer, the Method of Steepest
Descent and Newton’s Method were eclipsed by iterative methods that were
algorithmically more complicated but computationally more efficient than
these classical methods. This was due to the fact that high-speed computers
made it possible to attack large-scale applications that were previously
considered intractable. This, in turn, stimulated the development of a new
generation of computer-based algorithms that were more effective than these
classical algorithms. New algorithms often evolved from efforts to remedy
undesirable characteristics of these classical methods.

The Method of Steepest Descent rests on the following important property
of the gradient of a differentiable function on R":

At a given point x'9, the vector v = — Vf(x'?) points in the direction of most
rapid decrease for f(x) and the rate of decrease of f(x) at x' in this direction
is — | Vf(x)l.

This result is a simple consequence of the Chain Rule. For if u is a given
vector of unit length and if
ot = (X +tu), 20,

then ¢,(t) is the restriction of f(x) to the ray from x‘® in the direction of u (see
(2.1.2)(b)). By the Chain Rule, we obtain

@u(t) = Vf(x? + tu)-u,
so that
@u(0) = VA(x?)-u
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measures the rate of change of f(x) at x'? in the direction of u. For this reason,
@,(0) is usually called the directional derivative of f(x) at x'? in the direction u
and is denoted by

Vu f(x).

The question we want to answer is: Which direction u makes V,, f(x')) as small
as possible? The direction u that answers this question is the direction of
greatest instantaneous decrease of f(x) at x'?; in plain language, the direction
of steepest descent of f(x) at x?.

Computing the direction of steepest descent is easy. By the Cauchy—
Schwarz Inequality,

(*) — IV )l

— IV )l lull < VA(x)-u = Vo f(x)
IV lall = [V (x)]l.

Consequently, the directional derivative V, f(x'?) is as negative as possible
when there is equality in the leftmost inequality in (). This happens when u
is the unit vector

IA

_ Vf(x‘o’)
V)

Moreover, for this choice of u, we see that the directional derivative of f(x) at
x(® in this direction is precisely — || Vf(x'?)|.

The Method of Steepest Descent can now be described very simply as
follows: At each stage of the iteration, the method searches for the next point
by minimizing the function in the direction of the negative gradient at the
current point. More precisely, the method can be formulated as follows:

(3.2.1) The Method of Steepest Descent. Suppose that f(x) is a function with
continuous first partial derivatives on R" and that x'® € R". Then the Steepest
Descent sequence {x®} with initial point x'® for minimizing f(x) is defined by
the following recurrence formula:

x(k+1) — x(k) _ thf(x(k)),
where ¢, is the value of ¢t > 0 that minimizes the function

o) = f(x® —tVf(x®)), >0

(3:2.2) Example. Let us compute the first three terms of the Steepest Descent
sequence for

f(x,y) = 4x? — dxy + 2y2,
with initial point x(® = (2, 3). Note that
Vf(x, y) = (8x — 4y, —4x + 4y).
Consequently, Vf(2, 3) = (4, 4) and so
0o(t) = f2 — 41,3 — 4p).
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But then
@o(t) = —Vf(x'® — tVf(x'?)- VA(x'?)
—Vf(2—4t,3 —41)-(4,4)
—([82—4t)—43 —4n]4 +[—4(2 —41) + 43 —4n]4)
= —16(2 — 41),

so that ¢,(t) has but one critical point at t = { and this critical point is a
global minimizer because ¢g(3) = 64 > 0. It follows that t, = %, and that
xM = x(® —IVf(x'?) = (2,3) - 34,4 =0, 1).

We proceed to compute the second term x!® in the Steepest Descent
sequence in a similar way. Because Vf(x'!") = (—4, 4), we see that

@1(t) = f(x — tVf(x'))
= f(4t, 1 — 41).

Consequently,

@1(t) = = V(XD — tVf(x)) - Vf(x)
= —([8(4t) — 4(1 —40)](—4) + [—4(41) + 4(1 — 4] (4)
= —16(2 — 20).
Thus, t = {5 is the unique critical point of ¢,(t) and this critical point is a
minimizer because (i) = 320 > 0. We conclude that t, = 1%, and that
x?@ = x(1 — Lvix1) = (0, 1) — #5(— (7%, 55). Another iteration of

,4) =
the above procedure shows that x"’ = (0, ).
Note that

[l y) =2(x* + (x — »)?),

so that x* = (0, 0) is the global minimizer of f(x, y). If we plot the progress of
x@ xM x(2) x3) toward this minimizer, we see that the Method of Steepest
Descent is following a zigzag path toward x* with the right angles at each turn

x© = (2, 3)

0, 1) = x»
X® = (G, )
(0,%) = x3

S 1 1 1 » x
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This feature is not an accident of this particular example, but rather it is a
general characteristic of the Method of Steepest Descent as the following result
shows.

(3.2.3) Theorem. The Method of Steepest Descent moves in perpendicular steps.
More precisely, if {x®} is a Steepest Descent sequence for a function f(x), then,

for each k € N, the vector joining x® to x**1) is orthogonal to the vector joining
x*+D) po xk+2).

ProoF. The recurrence formula in (3.2.1) for the Method of Steepest Descent
shows that

(x®D — x®) - (x®*2 — xED) = 1 6,V (xW) - VAXED),
Consequently, it suffices to show that Vf(x®)- Vf(x**V) = 0.

X (k)

k;thf(x“")

*k+1)
X —tkHVf(xtkn))

Xk+D
Since x**V = x® — 1,V f(x¥) where t, minimizes

@) = f(x® — tVf(x®))
for t > 0, it follows from the Chain Rule that

0= @(t) = —Vf(xY — 1, Vf(x*)) - Vf(x¥)
= —Vfx* ) Vi),
which completes the proof.
The preceding theorem helps us to understand the geometry of the Method

of Steepest Descent. Since the gradient vector Vf(x**V) is perpendicular to
the level surface

fx) = f(x**D)
at x**1 and since
Vf(x"") . Vf(x"‘“’) =0
by (3.2.3), we see that Vf(x'*") is parallel to the tangent plane to this level surface

at x**D The diagram below describes this situation for functions of two
variables
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Level curves of f(x, y)

Point of tangency
X k)

v

N T———

In spite of its appealing proof, the preceding theorem highlights the major
drawback of the Method of Steepest Descent. In view of the remarks preceding
(3.2.1), the direction of the negative gradient is the most promising direction
of search for a minimizer of a function f(x) at a given point, and that is precisely
the direction prescribed by the Method of Steepest Descent at a given x*.
However, as soon as we move in that direction, the direction ceases to be the
best and continues to get worse until it is actually perpendicular to the best
direction of search for a minimizer as (3.2.3) shows. This feature of the Method
of Steepest Descent forces it to be inherently slow and hence computationally
inefficient. To get a feeling for this problem, let’s consider the following
example.

(3.2.4) Example. Fix a constant a > 1 and let
S, y) = x>+ ay%

This function is strictly convex on R? and has a unique global minimizer at
(0, 0). Note that

Vf(x, y) = (2x, 2a%y).

We will start the Method of Steepest Descent at a point x'© on the
level curve f(x, y) = 1 and then estimate geometrically how fast the Steepest
Descent sequence {x*} proceeds toward the minimizer x* = (0, 0). We will
select the initial point x® on the level curve f(x, y) = 1 so that Vf(x?’) makes
an angle of 45° with the x-axis. Then x = ay and a little algebra shows that

x‘°’=< a . ! )
\/1 + a? a\/l + a?

Note that |x@| < 1 (so that the initial point x'* is within one unit of the
global minimizer x* = (0, 0)) and that

Vi(x'?) = (

2a 2a )
\/T+a2’\/l +at)
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Let us find a lower bound for the number of iterations of the Steepest
Descent algorithm that are required to move from x' to within a distance
of 2\/5/412 of the global minimizer at (0, 0).

First, since the Method of Steepest Descent proceeds in orthogonal steps
and since Vf(x'?’) makes an angle of 45° with the positive x-axis, the Steepest
Descent sequence for f(x, y) with initial point x® follows an ever-narrowing
zigzag path toward (0, 0) with the slopes of successive segments of the path
alternating between +1 and — 1. The segment from x® to x**!) is perpen-
dicular to the level curve f(x) = f(x*) and tangent to the level curve f(x) =
f(x**D), The decreases in the components of successive terms of the Steepest
Descent sequence are always smaller than those for the first step. The diagram
below helps us to estimate the (biggest) decrease in the x-component that
occurs in the first step from x© to xV).

X0 = a s !
N Vit+ta a/l+a

The decrease in the x-component between x'® and x'!) is the length of the
segment BC, which is certainly less than the length of

2
DE=AE=7<£.

a/1+a® @

Also, since a > 1, the x-component of x© is

a a

~/1+a2> 2a?

il

Hence, since

aZ

=2\/§,

at least a2/2\/§ iterations are necessary to bring the Steepest Descent sequence
to within a distance \/5(2/a2) of (0, 0). For example, if a = 20, then at least
400/ 2\/5 = 141 iterations are required to bring the Steepest Descent sequence
to within a distance of 2\/5/400 = 0.0071 of the true minimum. (Actually,

Ul -
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many more iterations are required for this accuracy because our estimation
procedure is very rough.)

Thus, the Method of Steepest Descent pays a high penalty for moving in
perpendicular increments. Actually, the main problem is that the steps it takes
are too long, that is, there are points y* between x* and x**! where — Vf(y™®)
provides a better new search direction than Vf(x**V). In a sense, the very
greed implicit in the construction of the Steepest Descent sequence for f(x, y)
prevents it from converging quickly.

On a more positive note, the following theorem shows that the Method of
Steepest Descent succeeds in reducing the value of the function with each
iteration. This very desirable feature of a minimization method is often lacking
in applications of Newton’s Method.

(3.2.5) Theorem. If {x*'} is the Steepest Descent sequence for f(x) and if
Vf(x®) # 0 for some k, then f(x**V) < f(x®).
PRrOOF. Recall that

x*+D = xh _ ¢ vf(x®),
where ¢, is the minimizer of

@) = f(x® — tVf(x))
over all t > 0. Hence

J&ED) = o) < @it
for all t > 0. Also, by the Chain Rule,

@0) = = Vf(x® — 0-Vf(x))- Vf(x©)
= —Vf(x®) - Vf(x¥) = — |Vf(x*¥)> < 0

because Vf(x*®) # 0 by hypothesis. But ¢;(0) < 0 implies that thereisat > 0
such that ¢, (0) > ¢, (t) for 0 < ¢ < t. Consequently,

SED) = (1) < oult) < @ (0) = f(x©),

which is exactly what we wanted to prove.

Iterative minimization methods that produce a sequence {x¥'} with the
property described in Theorem (3.2.5) are called descent methods.

Another very appealing feature of the Method of Steepest Descent is
that it has very strong convergence guarantees as the following theorem
demonstrates.

(3.2.6) Theorem. Suppose that f(x) is a coercive function with continuous first
partial derivatives on R". If x'© is any point in R™ and if {x®} is the Steepest
Descent sequence for f(x) with initial point x'®), then some subsequence of {x¥}
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converges. The limit of any convergent subsequence of {x®} is a critical point

of f(x).

PROOF. Because f(x) is continuous and coercive, Theorem (1.4.4) ensures that
f(x) has a global minimizer x*. Also, by Theorem (3.2.5) and the definition of
the Steepest Descent sequence, we see that { f(x®)} is a decreasing sequence
that is bounded below by f(x*). It follows that {x*®} is a bounded sequence
because f(x) is coercive and therefore cannot be bounded on an unbounded
set. The Bolzano—Weierstrass Property implies that {x¥} has at least one
convergent subsequence, which completes the proof of the first assertion.
Now let {x*} be a convergent subsequence of {x¥’} and let y* be its limit.
Suppose, contrary to the second assertion of the theorem, that y* is not a
critical point of f(x), that is, that Vf(y*) # 0. If we define ¢(t) for t > 0 by

o) = f(y* — tVf(y¥),
then we can see (as in the proof of (3.2.5)) that
@' (0) = —IVf(y*)I* < 0.

Also, if t* is a global minimizer for t > 0 of ¢(t), then (again as in the proof
of (3.2.5)) we can see that

Jy* = t*VI(y*) = o(t*) < 9(0) = f(y*) (1)
The continuity of f(x) and its first partial derivatives implies that
lim f(x*» — t*Vf(x*#))) = f(y* — t*Vf(y*)). (2

p

By combining (1) and (2), we conclude that
Sx*P) — e*Vf(x*P)) < f(y*) ©)

for a sufficiently large integer p.
Because { f(x¥)} is-a decreasing sequence and because

lim f(x*») = f(y*)
p
by the continuity of f(x), it follows that
lim f(x®) = f(y*).
k

Therefore,
fly*) < f(x¥*) = f(x"P) — 4, Vf(x*P)) 4
and the definition of ¢, yields
S — 1, Vf(x*)) < f(x*?) — e*Vf (x*?)). &)

If we combine (3), (4), and (5), we obtain the contradiction f(y*) < f(y*) so
our supposition that Vf(y*) # 0 must be false. Therefore, y* is a critical point
of f(x), which completes the proof of the theorem.
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(3.2.7) Corollary. If f(x) is a strictly convex, coercive function with continuous
first partial derivatives on R", then for any initial point x'®), the Steepest Descent
sequence with initial point x'°) converges to the unique global minimizer of f(x).

PROOF. Because f(x) is coercive and continuous, it has a global minimizer x*
by Theorem (1.4.4) and x* is a critical point of f(x) and the only global
minimizer of f(x) by (2.3.4).

Suppose that the Steepest Descent sequence {x*} does not converge to x*.
Then there is an r > 0 and a subsequence {x*?'} of {x®} such that

Ixhe) — x*] = 7 ©)

for all p. But the sequence {x¥'} is bounded because f(x) is coercive, so {x*»}
is a bounded sequence in its own right. The Bolzano—Weierstrass Property
implies that {x*»} has a convergent subsequence which is in turn a sub-
sequence of {x*®}. Theorem (3.2.6) asserts that the limit of this subsequence
must be a critical point of f(x). Since x* is the unique critical point of f(x), we
have obtained a contradiction to (6). Therefore, the Steepest Descent sequence
{x®} converges to the global minimizer x* of f(x).

3.3. Beyond Steepest Descent

In the last section, we saw that the Method of Steepest Descent has strong
convergence guarantees but that it may move laboriously slowly to a mini-
mizer. The mathematical theorems dealing with this method are clean and
appealing. Yet, as happens all too often in numerical work, solid mathematical
theorems do not always translate into effective practical procedures. In fact,
the Method of Steepest Descent has computational drawbacks so severe that
it has fallen out of favor even though it was at one time a very popular
technique. Let us look at this method with a critical eye.

One serious drawback is at the heart of the method. Recall that the constant
t, in the defining recurrence relation for the method

xk+1) = x 0 _ ¢, yr(x )
is set by minimizing

@) = f(x¥ — tVf(x1))

over all t > 0. Significant computational time may be needed to compute ¢,.
Finding ¢, might take a lot of effort and is only one step of the real n-
dimensional problem.

A second drawback to the Method of Steepest Descent is its movement by
perpendicular steps (see Theorem (3.2.3) and Example (3.2.4)). The perpen-
dicular steps force the method to be inherently slow in converging; hence it is
not computationally efficient.
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What can we do? We could fall back to Newton’s Method but then, as we
know from Section 3.1, real trouble can occur if the Hessian is not always
positive definite. This seems to exhaust our options. However, as in most
matters scientific, a better understanding of the problem can lead to better,
more effective methods.

One approach to the development of a practical iterative method for
unconstrained minimization that is free of the drawbacks of the Method of
Steepest Descent and Newton’s Method is to list criteria that a good method
should satisfy to avoid these drawbacks, and then attempt to define an
iterative method that meets these criteria. As we shall see, the criteria discussed
below will do nicely.

For a given function f(x) with continuous first partial derivatives on R"
and a given initial point x'?, we want a method that produces a sequence x*
defined by a recurrence formula

X6 = x® 4 p®, 1, > 0.

For each k, we insist that the vector p*¥ and the parameter ¢, are generated
such that the following requirements are satisfied:

Criterion 1. f(x**V) < f(x®) whenever Vf(x*) # 0.

Criterion 1 simply specifies that a “good” method should be a descent
method. The Steepest Descent Method has this property while Newton’s
Method does not in general.

The following condition will assure that a “good” method must move in a
promising direction for minimization at each step of the iteration process.

Criterion 2. p"™-Vf(x*) < 0.
If this condition is satisfied, then the restriction
@) = f(x* + tp*)
of f(x) to the line through the current point x*) parallel to p* has the following
property
@i(0) = Vf(x®)- p* < 0.

Hence, for positive values of ¢ that are sufficiently small, it is true that

SO 4+ 1p®) = @ (1) < @(0) = f(x¥).

It follows that if Criterion 2 is satisfied and if ¢, is positive and sufficiently
small, then f(x**V) = f(x® + £,p*) < f(x*), that is, Criterion 1 is also
satisfied.

If we continue to take t, to be very small and positive, then it may be
impossible for the x*”s to move very rapidly toward the minimizer x* because
the successive steps are too small. To avoid excessively small steps, we also
insist that a “good” iteration method satisfy:
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Criterion 3. Thereis a f with 0 < § < 1 such that
pY VI kD) > Bp- VF(x),

Let us see how Criteria 2 and 3 in tandem prevent arbitrarily small choices
for t,. Assume that f is fixed in the range 0 < < 1 and that ¢, is chosen to
satisfy Criterion 3. Then

PR VA® + 1,p™) > pp® - VI(x®) > p® - VF(x®),
since B < 1 and p* - Vf(x*®) < 0 by Criterion 2. Accordingly,
(%) pY VI(x® + £ p®) — p¥ - VA(x®) > (B — 1)p* - VF(x¥) > 0,

and this means that ¢, cannot be arbitrarily small. For if we let ¢, approach 0
in (*), the left-hand side of the inequality approaches O while the right-hand
side remains constant at (8 — 1)p® - Vf(x*®) > 0, which is impossible. Thus,
Criteria 2 and 3 together prevent arbitrarily small choices of ¢,.

But what about excessively large ¢,? A very large ¢, will result in a large
step from x* to x**1, However, as we saw in Example (3.2.4), one of the
problems inherent in the Method of Steepest Descent is that it tends to set
too large a value for ¢, even when a much smaller value would achieve nearly
the same reduction in the value of the objective function f(x). We should be
willing to make ¢, large only if it results in a correspondingly large decrease
in the value of f(x). We quantify this requirement of a “good” iteration method
as follows:

Criterion 4. There is an a with 0 < a < < 1 such that
SED) < f(x D) + anp® - V(x®).

To understand how this requirement achieves the desired result, note that
the stated inequality can be written as

Sx®) — f(x* D)

> a[ —p® - Vf(x*)].
Ly

The left-hand side of the preceding inequality represents the relative decrease
in the value of f(x) with respect to the increase in t-values between x* and
x**1D The term

[—p®-V/(x*)]

on the right-hand side, which is a positive number by Criterion 2, is a multiple
of the magnitude of the rate of decrease in the direction p* of f(x) at x*). (See
the discussion of Criterion 2.) Consequently, the meaning of Criterion 4 is that
the decrease in the values of the objective function f(x) relative to the size of
t, should exceed a preassigned fraction of the magnitude of the rate of decrease
of f(x) at x® in the direction to x**").
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A slightly different perspective on Criterion 4 is also enlightening. If we set
B /)
T
then Criterion 4 yields the inequality
SO = fxD) _fe) — fxD)

[x® — x®* )| tlp®| N
We see from this that
(*) S®) = f(x**D) > M Jx® — x** ).

Thus, if the step from x* to x**1 is large (that is, | x® — x**V)|| is large), then
the decrease in objective function value f(x*) — f(x**!)) between x* and
x**Y must be proportionately large. Note that () shows that Criterion 1 (that
is, f(x**V) < f(x™)) is automatically satisfied when Criteria 2 and 4 are in
force.

Our description of a “good” iteration method

X6+ = x® 4 pp® k>

for minimizing a function f(x) can be recapitulated as follows: Given a, f
with 0 < a < B < 1, we want to select p** and ¢, > 0 so that Criteria (1)—(4)
are satisfied. Happily, it is always possible to make such a selection as the
following theorem demonstrates.

(3.3.1) Theorem (Wolfe). Suppose that f(x) has continuous first partial deriva-
tives and is bounded from below on R". Let o, B be fixed numbers with
0 <o < B<1If p* and x* are vectors in R" satisfying

p(k) . Vf(x"") <0,
then there are real numbers a, and by such that 0 < a, < b, and

(i) Criterion 4 is satisfied for any choice of t, in (0, b);
(i) Criterion 3 is satisfied for any choice of t, in (a,, by).

Consequently, both Criteria 3 and 4 are satisfied for any choice of t, in (ay, by).

ProOF. Define fort > 0

o(t) = f(x® + 1p®).
As we have noted earlier,

0> p(k) .Vf(x(k)) — (P’(O) —1im f(x(k) + tp(k)) _ f(x(k)) .

-0 t

Also because p® - Vf(x®¥) < 0 and a < 1, we see

k) Wy _ f(x®
ap® - Vf(x®) > p®- Vf(x®) = lim J&E +1p™) — flx )'

t—=0 t
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Consequently, there is an € > 0 such that

SO® + 1) — f(x)

ap® -+ VF(x¥) > t

for 0 <t < ¢. Hence, for 0 < t < ¢, we have
() SO+ 1p™) < f(x) + top® - Vf (V)

Let t* be the largest such &. Notice that there will be a largest such ¢, since
otherwise

SO+ 1p%) < f(x) + tap®- V(x¥)

for all ¢t > 0. This is impossible because f(x) is bounded from below and
F(x®) + tap® - Vf(x*) tends to —oo as t tends to +o0o0. This proves t* is a
finite real number and shows that Criterion 4 is in force for any choice of ¢
in (0, t*).

Next, note that

B) SO 1) = f(x®) + t¥op® - Vf (x)
because, if not, then by continuity there is a 6 > 0 such that
SO+ 1p®) < f(x) + tap®- V()

for t* — 0 <t < t* + 6. It follows that ¢ = t* + J > t* works in (A), which
contradicts the fact that t* is the largest ¢ for which (A) works.
Rewrite (B) as follows:

© SO 4 22p®) — f(x) = rop® - VY (x),
and apply the Mean Value Theorem to the function
o(t) = f(x* + tp®)
on the interval [0, t*] to learn
(D) Sx® + t*p®) — f(x¥) = o(t*) — @(0) = ¢'(t**)(t* - 0)
for some t** in (0, t*). Now
@' (t**) = Vf(x® + t*x*pk) . po),

Hence, (D) becomes
(E) FX5 4 t2p®) — f(x®) = p*p®) . VF(x®) 4 F*ph)).
Combining (C) and (E) gives

at*p) - VA(x®) = (*Vf(x® + pr+phy. pk
and because 0 < a < f, it follows that

(F) BB - V() < Vf(x® + rp®) -
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Recall now that because 0 < t** < t* we have from (A) that
(G) f(x"" + t**p(k)) < f(x“") + at**p"‘"Vf(x"").

By the continuity of the functions involved, there is an interval (a,, b,) with
0 < g, < t** < b, < t* such that

SO® 4+ 1p®) < f(x¥) + arp® - VI (x®),
and
Bp(k) . Vf(x(")) < Vf(x“" + tp"") . p(k)

for all ¢ in (a,, b,). Therefore, any choice of ¢, in (a,, b,) satisfies Criteria 3 and
4. This proves (ii) of the theorem. To prove (i) notice that 0 < b, < t* and
Criterion 4 is in force for any ¢, in (0, t*); therefore, it is in force for any ¢, in
(0, b,). This completes the proof.

Wolfe’s Theorem guarantees that it is always possible to set ¢, such that
Criteria 1, 3, and 4 are in force provided p™ satisfies Criterion 2. The science
of mathematics via the last proof has made this indisputable. But in practice,
how do we find ¢,?

Finding a numerically efficient, reliable method for setting ¢, in practice
involves a substantial amount of numerical art as well as science. In most
routines, we begin by setting t = 1 and then we apply a “backtracking”
procedure to reduce ¢ until we reach a value for which Criteria 3 and 4 are
satisfied. One prescription for doing this is to check for failure of Criterion 4;
in other words, determine whether

SO+ 1p) > f(x) + atp®- VY (x®),

and if this inequality holds, we replace ¢ by st for some appropriate s < 1.
Making an appropriate choice for s is an interesting problem in its own right.
For more detail on this subject, see Section 6.3.2 in Numerical Methods for
Unconstrained Optimization and Nonlinear Equations by J. E. Dennis and
R. B. Schnabel (Prentice-Hall, Englewood Cliffs, NJ, 1983).

Finally, we examine the possibilities for the choice of the search direction
p™. As we have already noted, we want

(*) pP-vix®) <0

so that the values of f(x) will decrease, at least at first, as we leave x* in
the direction p®. Of course, the easiest choice of p* to accomplish this is
p® = —Vf(x), the search direction of the Method of Steepest Descent, but
we know that choice may result in very slow convergence of the resulting
iteration method. However, note that if Q(x) is any function on R" whose
values are positive definite matrices, then the choice

pY = —0(x)- Vf(x¥)

still forces (x). This allows considerable latitude in the choice of p®. In
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particular, it includes the search directions for the Method of Steepest Descent
(where Q(x) is the identity matrix) and, if Hf(x) is positive definite, for
Newton’s Method (where Q(x) = Hf(x)"!). We have seen in Example (3.1.7)
that the latter choice is not very useful if Hf(x) is not positive definite.
However, even when Hf(x) is not positive definite, it is possible to perturb
Hf(x) by a positive multiple g, of the identity matrix I so that the resulting
matrix

Q(x) = Hf(x) + w1

is positive definite, and so that the corresponding choice of p* produces an
acceptable iteration method.
To determine the size of y,, observe that for any positive number u

X (Hf(x) + puh)x = x- Hf(x)x + p|/x].
Define

i, = max |x- Hf (x*®)x]|.
IIxil=1

(It can be shown (see Exercise 13) that j, is the absolute value of the eigenvalue
of largest absolute value of Hf(x), means are available for computing an upper
bound for jz,.) Note that if u, > 1, and x # 0

X+ (Hf(x) + wDx = x- Hf (x)x + p, |Ix]|?

X X _
= IIXIIZ[——‘Hf(X“")— + #k] > 1X1%(— & + ) > 0,
Il lIxl

so Hf(x®) + p, I is positive definite.
In view of the conclusion of the preceding paragraph, we can proceed as
follows even if the Hessian Hf(x) is not positive definite at all points of R™:

(1) Given x™.
(2) Compute g, such that

Hf(x®) + 1

is positive definite.
(3) Solve for p*®

(Hf(x®) + m Hp® = —Vf(x®).

(4) Set t, by backtracking.
(5) Update

XKD = x4 [kl’(k)-
(6) Iterate.

For most well-behaved functions, the preceding procedure works fine.
However, if x¥ is in a region for which the p* computed from Step 3 is too
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large to be numerically helpful, then this algorithm must be modified. We will
discuss this modification in Section 5.4.

The features of “good” iterative methods that we have discussed in this
section are incorporated in much of the professionally written optimization
software. These packaged routines are carefully written to be reliable and
robust and therefore are to be preferred over most “homemade” programs
that a user might write. Although it is certainly instructive to write simple
programs to implement the minimization techniques discussed in this text,
there is no doubt that the reader interested in applying optimization methods
to the solution of practical problems will find it far more useful to learn to
use and evaluate a variety of the commercially prepared programs that are
available.

3.4. Broyden’s Method

Every computation has an associated cost. The main computational costs of
the iterative methods we have studied so far derive from repeated evaluations
of functions, gradients, Hessians, and Jacobians. Of these, the most costly and
error-prone are the calculations of Jacobian and Hessian matrices. This
section is devoted to a discussion of Broyden’s Method, which like Newton’s
Method is a zero-finder but is designed specifically to avoid the computation
of Jacobian matrices.

To get a feeling for Broyden’s Method, it is helpful to recall Newton's
Method for solving a system

gx)=0 (M

of n (usually nonlinear) equations in n unknowns where the component
functions of g: R" — R" are assumed to have continuous first partial deriva-
tives. At the current point x* in the Newton iteration, we evaluate the
Jacobian

Vg(x®) = (%:i,j= 1,...,n). (2)

j /
Then we construct the linear approximation
Li(x) = g(x¥) + Va(x“)(x — x*) (©)

to g(x) at x* and take x***!) to be the solution of L,(x) = 0. The fact that it
is necessary to compute the n? partial derivatives involved in the Jacobian
Vg(x™*) at each iteration of Newton’s Method forces the computational cost
of this method to be too high to be of practical value. Essentially, the same
situation exists when Newton’s Method is applied to function minimization.
In that case, the function g(x) in (1) is taken to be the gradient Vf(x) of the
function f(x) to be minimized while the Jacobian matrix becomes the Hessian
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matrix Hf(x), and this latter matrix must again be computed at each iteration.
Note that the modification of Newton’s Method discussed in the last section
also shares this drawback.

Broyden’s Method is a direct relative of Newton’s Method but it avoids
repeated evaluations of the Jacobian or Hessian matrices. To motivate the
construction of Broyden’s Method for solving systems (1) of equations, it is
helpful to recall the construction of Newton’s Method for solving g(x) = O for
a differentiable function g(x) of one variable as indicated in the figure below:

1

xk+2 xtk+1 xtk)

In the single variable case, the Jacobian matrix of g is just (dg/dx) and so
X1 = ) — [Vg(x)] " g(x") @
simply identifies the zero x**V of the tangent line to the graph of g(x)
at (x®, g(x™)).
Broyden’s Method retains the idea of linear approximation but replaces

the potentially complicated and computationally expensive Jacobian matrix
with a simpler choice. More precisely, we define a linear function

L(x) = g(x©) + Dy(x — x©),
where D, is an n x n-matrix possibly different from Vg(x¥’). Observe that
L(x®) = g(x¥),
and we can compute x**1) by solving the linear system [,(x) = 0 to obtain
XD = x® — D tg(x®) ©)

But how do we choose the matrix D, so that the linear approximation [,(x) is
reasonable (that is, fairly close to the Newton approximation L,(x)) and yet
relatively simple to compute? And then how do we choose the next “update”
matrix D, ,, needed to continue the iteration?

A return to the case of functions of one variable can help us to answer these
questions. There, an alternative to Newton’s Method for solving g(x) = 0 is
the Secant Method. The geometry of that method is pictured as follows:
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4

¢ e x

—~ xk+h  xtk xtk =1

Here, D, is a number selected so that the linear approximation
L(x) = g(x®) + Dy(x — x*)

passes through (x*~1, g(x*~1)) and (x™®, g(x*)), and we solve 0 = [,(x) for
x**1) and update to a new linear approximation

lesr () = g(x(k“)) + Dyyy(x — x(kﬂ))’

where D,,, is selected so that this linear approximation passes through
(x®, g(x®)) and (x**V, g(x**1)). Then we iterate.

For Broyden’s Method for functions g: R" — R", we retain this basic feature
of the Secant Method in one dimension: We insist that the matrix D,,, in
linear approximation

levr (%) = g(x**D) + Dyyy (x — x**1)

is selected so that [, ,,(x®) = g(x*) (and that /,,,(x**V) = g(x**1), but this
automatically follows from the definition of /, ,,). Thus, we insist that D, is
selected so that the secant condition

Dy (1) — x) = g(x*) — g(x) ©)

is satisfied. Note that equation (6) alone allows considerable latitude in the
choice of D,,, since (6) prescribes only one image vector for the matrix
transformation D, ., on R", so we have n — 1 “degrees of freedom” to use to
meet our other objective for D, ,—that D, should be easy to compute.

It is useful to think of the process of going from the matrix D, to the matrix
D, as follows. Write

D,y = Dy + (Dyyy — Dy)

and call(D,,, — D,) = U, the kth update matrix. Our objective will be to make
the kth update matrix U, as simple to compute as possible.

One way to achieve the desired simplicity in the computation of U, is to
define this matrix in such a way that it is completely defined by prescribing
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two vectors in R". Let us take a close look at matrices of this type before we
go on with our discussion of Broyden’s Method.

Suppose that a and b are two nonzero vectors in R". The outer product or
tensor product a @ b is the n x n-matrix U = (u;;) defined by

u;=ab; for i,j=12,...,n

For example, ifa = (2,3, —1)and b = (—1, 4, —5) then

2 -2 8 -10
a@b=| 3|(-1,4 —-5={-3 12 —15|.
—1 1 -4 5

The action of a ® b on vectors x in R" is easy to describe. The outer product
a® b is just the ordinary matrix product of a and b" when a, b are regarded
as column vectors. If x is a (column) vector in R", then

(a® b)x = (b-x)a.

Thus, the range of a ® b is the one-dimensional subspace of R" spanned by a,
and the rank of a® b is one. If a-b # 0, then the matrix a ® b has only one
nonzero eigenvalue b+ a and 0 is an eigenvalue of multiplicity n — 1. Also, note
that (a ® b)T = b ® a; in particular, for any nonzero vectorain R, a®aisa
symmetric positive semidefinite n x n-matrix.

Now let us return to our discussion of Broyden’s Method. For the sake of
computational simplicity, we will choose the update matrices

U= Dk+1 - Dk
to be rank-one matrices of the form
U, =a® @b

for appropriate choices of a® and b* in R". But how do we choose a® and
b®? Recall that we have already imposed the secant condition on D, ,,:

Dy (x* 1 — x®) = g(x**D) — g(x). (6)
Since D,,, = D, + a® ® bW, this means that
D,,(X“‘H) _ xlk)) + (a(k) ® blk))(xlkﬂ) _ x“‘)) — g(x("“)) _ g(x"").
Rewrite this equation as
[b%) - (xk+1) — x®)]a® = g(x*+1)) — g(x®) — D, (x**D — x®),
It follows that once b has been chosen, then a™® is determined by the equation

* _ g(X(k+1)) _ g(xlk)) _ Dk(x"‘“’ _ x"")
a’ = bik).(x(kﬂ) _ X(k)) . (7)
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To help us to understand the significance of the choice of b%, let us do a
little algebra with the linear approximations /,(x) and [, ,,(x). Note that
Ler (%) = L(x) = g**D) + Dy, (x — x**D) — g(x®) — D,(x — x¥)
= g(x*) = g(x¥) + Dy [(x — x) + (x — x*+1)]
— D (x — x®)
= g(x*) — g(x¥) — Dy (4D — x¥) + Uyfx — x),

where U, = D,,, — D, is the kth update matrix a® ® b%®, But the secant
condition (6) asserts that

BXH*1) = g(x) — Dy (x4 — x) = 0,
SO
Lo (x) — L(x) = [b® - (x — x®)Ja®. ®)

Because a® is determined from b by equation (7), we see from equation (8)
that the difference between the linear approximations [, ,,(x) and [(x) is
completely determined by b'®.

Broyden’s Method fixes b*) by requiring that no “white noise” be allowed
to have any influence. After all, we have information only at x* and x%*",
Hence, it is not possible to obtain better information about how g(x) is
changing in directions very different from that of x¥ to x**!). Thus, we insist
that if x is a vector in R" such that x — x® is orthogonal to x**1 — x®,
then I, ,(x) = l,(x) that is, the change in g(x) predicted by D,,, should be
the same as that predicted by D, in directions orthogonal to x**! — x®),
According to equation (8) this requirement amounts to

0 =1l (x)— L(x)= [b®-(x — x*)Ja®),

whenever (x — x®)-(x**) — x®) = 0. We see from this that the choice
b® = x**1 — x® will do. Thus, the kth update matrix U, = a® ® b® is
completely determined. We have shown that if we define

Dyyy = D, + a® @ b¥),
where

bk = xk+1) _ x®)
and

g(x*“!) — g(x®) — D,b®

" —
= b - p®

then, in the presence of the secant condition

Dy, M = g(x**V) — g(x),
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the white noise condition
Li+1(x) = L(x) whenever (x —x®):b® =0

is satisfied. This completely defines the famous Broyden rank-one update.
We can now summarize the entire preceding discussion with a statement
of the resulting method.

(3.4.1) Broyden’s Method for Solving Systems of Equations. Suppose that the
function g: R" —» R" has component functions with continuous first partial
derivatives, that x'© € R" and that D, is an n x n-matrix. Then the Broyden’s
Method sequence {x"®} (with initial point x'© for solving the system g(x) = 0)
is defined by the following recurrence formula:

k+1 k -1 k
xk*D = x 0 _ p1g(x®),

where we

(1) Solve D,(x — x®) = —g(x®) for x and set x**1) = x,
(2) Set d® = x**1) _ x® apd yb = g(x*k+1) — g(x®),
(3) Update

(v — D,@d") @ d®

Dyiy =Dy + d® . q®

There are many possibilities for choosing the matrix D, needed to start
Broyden’s Method. One obvious possibility is to allow a single evaluation of
the Jacobian matrix Vg(x'®) and use this for D,. Other strategies can be
found in Chapter 8 of Numerical Methods for Unconstrained Optimization
and Nonlinear Equations by J. E. Dennis and R. B. Schnabel (Prentice-Hall,
Englewood Cliffs, NJ, 1983).

To develop a feel for the mechanics of Broyden’s Method, let us return
to a system of equations considered earlier in conjunction with Newton’s
Method.

(3.4.2) Example. As we observed in (3.1.2), the system of equations
x2+ y? + 22 =3,

(*) x4+ 92—z =1,
X +y +z =3,

has the unique solution (1, 1, 1). If we take the initial point x'® to be (1, 0, 1)
and the initial matrix D, for Broyden’s Method to be the Jacobian matrix
Vg(1, 0, 1) of the function g: R®> - R3 corresponding to (%)

g, »,2)=(x* 4+’ +22 -3, x*+y’ —z—Lx+y+z-23),

then the first step of Broyden’s Method is identical to the first step of Newton’s
Method in (3.1.2) so xV = (3, 4, 1).
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To prepare for the second iteration, we compute the update D; of D, as
follows:

d(0)=x(l)_x(0)=(%a%’0)a
yO = gxV) — gx@) =30 - (=1, -1, =)= (3,3, D).
Then
20 o fil 8
¥O -Dd®={3| —[2 o —1|{3]=14].
1 1 1 1/ \0 0
)
(yio) _ Dod(o)) ® 4@
Dy =D, + 4. 4©@
2 0 2 1 $ 1 2
=12 o —1+2l3|aho={3 3 -
1 1 1 0 1 1 1
We can now compute x? by solving the system D,(x — x!)) = —g(xV),
that is,
$ob o\ fx-3 [
30 —Ily—i=—|3
1 1 1/ \z—1 0

The solution is readily checked to be x? = (3, 2, 1).

The primary objective in the development of Broyden’s Method was
to avoid the expensive computation of the Jacobian matrix (required by
Newton’s Method) by employing a matrix D, that was relatively inexpen-
sive to update at each iteration. We have already seen that there is at
least one sense in which the matrix D,,, is a simple perturbation
of D, when we constructed the update matrix U, as a matrix of rank one.
There is another very interesting sense in which D, is a small pertur-
bation of D,. We will show that the matrix D,,, is the “closest” matrix
to D, that satisfies the secant condition (6). However, before we can state
and prove this result, we need to make the meaning of “closest” precise
for matrices, that is, we need to develop a measure of distance between
matrices.

(3.4.3) Definition. If A, B are n x n-matrices, the distance d(A, B) between A
and B is
d(A, B) = max{||Ax — Bx||: x| < 1}.

It is often convenient to write |4 — B]| in place of d(A, B).
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(3.4.4) Examples
(a) If I is the n x n-identity matrix and O is the n x n-zero matrix, then
d(1,0) = max{||lx —0|: x| <1} =1

sod(l,0) = ||I| = 1.
(b) If a and b are nonzero vectors in R" and if ||x| < 1, then by the
Cauchy-Schwarz Inequality,
Ib-x| < [b]

with equality holding for ||x|| = 1 when x is a multiple of b. Therefore, the
distance between the outer product a ® b and the zero matrix 0 is given by

d(a®b, 0) = max{||(b-x)al|: x| < 1} = |la] [|b]|.
that is, la ®@ bl| = ||a]| ||b].
The distance d(A4, B) = |A — B|| between two matrices A4, B has a number

of properties that are similar to those of the usual distance d(x, y) = ||x — y|
between vectors in R". For example,

(1) d(A, B) = d(B, A) for all n x n-matrices A and B.

(2) d(A, B) =0if and only if A = B.

(3) d(A4, B) < d(A, C) + d(C, B) for all n x n-matrices A, B, C (the Triangle
Inequality).

4) |AB]|| < |4l ||B]l for all n x n-matrices 4 and B.

The proofs of these results are straightforward.

Now that we have made precise the concept of distance between matrices,
we are ready to establish the following description of the Broyden Method
update matrices. Note that the secant condition (6) assumes the form

Dk+1d(k) =y

in the notation established in (3.4.1).

(3.4.5) Theorem. Suppose that D is an n x n-matrix that satisfies the secant
condition DA™ = y"®, Then
d(Dy+1> Dy) < d(D, Dy),

that is, D,,, is as close to D, as any n x n-matrix that satisfies the secant
condition.

PrOOF. If Dis an n x n-matrix satisfying the secant condition Dd* = y®, then
by (3.4.1) we see that

d(Dk+1’ Dk) = ”Dk+1 - Dk” =

H (ytk) _ Dkd"") ® P (L)

d® . qw
(Dd("’ _ Dkd(k)) ® d(k) d(k) ® dtk)
= ‘ 4. q® (D —Dy) TRIE

dw aw
| vgo || g || = 4. 20

< [ID = D
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where the inequality follows from Property (4) of the matrix distance
d(A, B)= |4 — B| and

d® d®
TR

by Example (3.4.4)(b). This completes the proof of the theorem.

The preceding theorem reveals the following striking feature of Broyden’s
Method. Even though the matrix D, ., is easily computed from the matrix D,,
the theorem states that no other matrix D (no matter how complicated its
relation to D,) with the required secant property is any closer to D, than D, ,,.

Some important questions remain concerning Broyden’s Method for
solving systems g(x) = 0 for g: R" —» R". For example:

(1) Does Broyden’s Method actually work? In other words, if we make a
reasonably good choice of an initial point x(®, does the Broyden Method
sequence {x*} converge to a point x* such that g(x*) = 0?

(2) What happens to the matrices D, in the long run? Does D, eventually
approximate the Jacobian Vg(x®)? If so, in what sense?

The answers to these questions are interconnected. Under reasonable
hypotheses, it can be shown that the Broyden steps d® = x**1 — x® =
—D;'g(x™) act a lot like the Newton steps—[Vg(x*)]~'g(x*). In fact, if x*
is a solution of the system g(x) = 0 and if x© is not too far from x*, then it
can be shown that

1o 1D = VEx®)(x® — x*)]
k X — x|

= 0. 9)

This connection between the Broyden’s Method steps and the Newton’s
Method steps is the chief theoretical fact needed to prove that the method
works in the sense explained in Question 1 above. Detailed proofs of (9) and
the resulting convergence theorem can be found in the Dennis and Schnabel
text cited after (3.4.1).

The answer to Question 2 posed above is provided in part by (9) since that
result guarantees that, in the long run, D,(x*) — x*) acts like Vg(x*)(x® — x*).
This does not mean that the matrices {D, } necessarily converge to the Jacobian
Vg(x*). In fact, they might not. It is one of the beauties of this method that
even though the matrices {D,} might not converge to Vg(x*), the action of D,
on the “important” vectors x'¥) — x* does approximate the action of Vg(x*)
on these vectors. Thus, Broyden’s Method has the essential reliability of
Newton’s Method once x® is close enough to x*.

Just as with Newton’s Method we can adapt Broyden’s Method to
minimize a function f: R® —» R. The technique is simple: We simply take

g(x) = Vf(x)
and use Broyden’s Method to find a critical point of f(x).
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Also, just as with Newton’s Method, we can modify Broyden’s Method by
introducing a parameter ¢, in the formula for the kth iterate

X1 = x® — ¢, DIIVS(x®),

and use this parameter to speed convergence of the method. One problem
with this approach is that the search directions prescribed by Broyden’s
Method are not always descent directions. However, the Broyden search
directions are usually descent directions for f(x) and in this case line search
methods such as those discussed in Section 3.3 can identify values of ¢, that
will speed the search for solutions of Vf(x) = 0. Modern computer codes often
incorporate line searches for precisely this purpose.

3.5. Secant Methods for Minimization

This section will present two very effective minimization methods, the
Broyden—Fletcher—Goldfarb—Shanno (BFGS) Method and the Davidon-
Fletcher—Powell (DFP) Method. Both methods require no evaluation of the
Hessian matrix and retain the secant feature of Broyden’s Method.

At the end of the last section, we mentioned that Broyden’s zero-finding
method could be used to minimize a function f(x) on R" by applying the
method to find a zero of the gradient Vf(x). If we follow this approach,
we encounter the problem that the Broyden search direction — D, }(Vf(x*))
at x* need not be a descent direction for f(x) because there is no guarantee
that D, is positive definite. Our objective in this section is to develop a
Broyden-like method for which the D,’s are all positive definite. This will allow
us to apply Criteria 1—4 of Section 3.3 to prescribe an iterative sequence {x*}
that will head toward a minimizer of f(x) under reasonably general conditions
on f(x).

Here is a list of features that we want for our iterative method
x**D = x® _ ¢, D7IV(x®)
for minimizing f(x) on R":

(1) Each D, should be posit.ve definite.
(2) The Secant Condition relative to Vf(x) should be satisfied

Dy (1) — x) = VF(x**1) — V/(x¥),

that is, D,;(d¥) == y® where d® = x**D — x® and y® = Vf(x**1) —
v (x®).

(3) The update from D, to D,,, should be as simple and computationally
inexpensive as possible.

As we shall see, all of this can be accomplished.
The underlying theoretical tool is the following fact from linear algebra.
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(3.5.1) Theorem. Let a, b be vectors in R" such that a-b > 0. Then there is
a positive definite matrix A such that Aa = b.

PrOOF. Since any two vectors in R" lie in a two-dimensional subspace M of
R", we can visualize these vectors in R? as follows:

where the angle 6 between a and b satisfies 0 < 0 < n/2 since 0 <a‘*b =
Ila]l |Ib]| cos 6. We shall consider two cases:

Case 1.0 < 0 < 7/2.
In this case, choose orthogonal vectors a'V and b in M such that the

following picture is realized:

8,, 8, both positive

al)
8,

8,
bMm

It is evident from this picture that there exist positive numbers s, s,, ty, ¢,
such that

a= Sla(l) + [Ib(l),
b=s,a®) + £,b").

Then the matrix

2

S
A1=1t
0o 2
9

defines a linear transformation of M relative to the basis a‘), b’ by

Ay (sa) + b)) = s<s—2>a“’ + t<t—2)b‘”

Sy ty



3.5. Secant Methods for Minimization 123

and A4,(a) = b. Pick vectors ¢V, ..., ¢""~? such that {a®), b)), ¢, ... ¢~}
is an orthogonal basis of R". The matrix

2 0
$q
o 20 . o
A= tl
1
Lo 0
0 0 0 1

defines a transformation of R" relative to this basis. Note that A4 is positive
definite and that 4A(a) = b as required.

Case 2.0 =0.

In this case, b = la where 1 = (a-b)/||a] > 0. The construction of the
required positive definite matrix A such that Aa = b is left to the reader as an
exercise. This completes the proof.

Suppose that D, is positive definite, that p® = — D, ' Vf(x®) and that ¢,
has been selected so that Criteria 1-4 of Section 3.3 are satisfied. Then, if
d® = x®+D _ x® and y® — Vi(x**D) — Vf(x®),

d® - y® = ¢ p® . y®) — ¢ p®) . (Vf(x*+D) — Vf(x®))
= tk(p(k). Vf(x“‘“’) — p(k) . Vf(x""))
> t,(Bp™ - Vf(x®) — p® - Vf(x®)) (by Criterion 3)
= (8 — Hp*- Vf(x"¥)
= (B — (=D ' Vf(x®)) - Vf(x¥) > 0,

since D, is positive definite, f < 1 and ¢, > 0. Because d® - y® > 0, there is a
positive definite matrix A, such that

A, d® = y®

by Theorem (3.5.1). This tells us that if we take D,,; = A,, then features (1)
and (2) prescribed in the remarks preceding (3.5.1) for a suitable iterative
minimization method are present. If we can now find a simple and economical
way to compute a positive definite matrix A, such that 4,d* = y®, then
the choice D,,,; = A4, will also have the remaining feature (3) that we have
prescribed for our method.

As we saw in Section 3.4, the Secant Condition, which reduces to

Dy, (d®) = A,d® = y®

in our present setting, does not determine A, = D,,, uniquely and, in fact,
allows considerable flexibility in the choice of this matrix. To find a simple
and economical update from D, to D, ,,, we will mimic the approach that we
took with the Broyden zero-finding method in Section 3.4.
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For Broyden’s Method, we set
Dy, = D + a® @ bW

and then we chose a% and b%® so that the Secant Condition was satisfied.
This will not work if we also want D,,, to be positive definite and hence
symmetric. For the rank-one update a® ® b*® is not symmetric unless a®), b
are multiples of one another, and a® ® b® is indefinite unless a®, b* are
positive multiples of one another. If we must choose a® = 1,b® for 4, > 0,
we no longer have enough flexibility to obtain the Secant Condition. To get
around this difficulty, we set

Dysy = D, + 0 (a® ® a®) + B,(b® @ b)),

where the real numbers o, B, and the vectors a®, b® are yet to be determined.
The Secant Condition

D, (@) = y®
forces
y® = D, (A%) + a,(a®-d®)a® + B, (b% - d®)b.
If we set a® = y® and b*® = D,(d*), then the preceding equation yields
y® — DA%) = a, (y® - d®)y® + B (D d®-d®)D,d%.
This equation is satisfied if we set
6 (y*-d®) =1,  B(DA®-dP) = —1;

that is,

1 1

o = y® - d®” B = T D" ™"

Thus our proposed update is

YYey© (D4 ® (DdY)
Divy =Dy + yO-d® (D d™-d®) (+)

This update is simple. The new matrix D,,,; automatically satisfies the
Secant Condition and, as we will now see, D,,; fulfills our remaining
expectations.

(3.5.2) Theorem. Suppose that D, is positive definite and that x' has been set.
If t, > 0 is selected so that

XD = x® — 1, D (Vf(x®)

satisfies Criterion 3 of Section 3.3, then the matrix D, ., defined by (x) is positive
definite.
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Proor. We have already seen in the computation following (3.5.1) that if
Criterion 3 is satisfied then d®« y® > 0. But then, by Theorem (3.5.1), there
is a positive definite matrix 4, such that 4,(d%®) = y®. Thus

4,4% ® 4,dY DA @ D,d®

Disy =Dy + 9. 4,4%  ~  g®.pd®

For x # 0, the preceding formula gives

(4% x)? (DA% x)?

XDy x=xD,x + - .
d®. 4,49  d®.p,a®

Since D, is a positive definite matrix, it has a positive definite square root D}/
(see Exercise 7). Therefore

(A,,d“" . x)2 (Dk1/2d(k) . Dkl/zx)z

X' Dy x = x-D2DIPx + -2 o T Al i
. . (k
A0 4,40 pi2g®. pirgh

(4,d% - x)?

DAY DI — (DY DX + 3

= ID2d%) 2 Cll

The Cauchy—Schwarz Inequality guarantees that the bracketed expression is
nonnegative, and the second term is nonnegative since A4, is positive definite,
o)

XD, x>0
whenever x # 0. Moreover, if x* D, ,; x = 0, then we must have
D2d™-D/2x = | D2dW|2 | D2 x| 1%,
and
A d®-x = 0.

But if the first of these equations holds (that is, equality holds in the
Cauchy—Schwarz Inequality), there must be a 4 # 0 such that

D}2d® = iD}2x.
This yields d*¥ = 1x since D} is invertible and so
0=A4,d" -x = 4,(Ax)'x =Ax*4,x # 0,
a contradiction. Therefore, x - D, ,;x > 0 if x # 0, which completes the proof.

The method that we have just arrived at is the famous Broyden—Fletcher—
Goldfarb—Shanno (BFGS) Method. Here is a recapitulation.

(3.5.3) The BFGS Method. To minimize f(x) on R", select an initial point x'®
and an initial positive definite matrix D,. If x* and D, have been computed,
then:
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(1) Set t, > 0 such that
X0 = X — (D (VS ()
satisfies Criteria 1-4 of Section 3.3.
(2) Update
Y9 ®y® Dd®® D,d®

Dy = Dy + - )
k+1 LT gw.ym d®.p,d»

where d® = x*+1) _ x®_yh — yf(x*+1) _ yf(x®),

Criteria 1-4 and Theorem (3.5.2) show that the BFGS Method has a
number of very desirable theoretical characteristics. However, the real test of
a minimization method is its performance on concrete problems. The BFGS
Method has proven to be remarkably reliable and efficient. In fact, J. E. Dennis
and R. B. Schnabel flatly state (Numerical Methods for Unconstrained Optimi-
zation and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, NJ, 1983))
that the BFGS Method is the “best” Hessian update currently known. The
reader should consult this text for a wealth of additional information on the
BFGS Method. Of particular interest is their derivation of the BFGS update
which reveals that if

Diyy = Lyyy LkT+1’ D, = LkLZ
are the Cholesky factorizations of D, ,, and D, then L, ., is the lower triangular
matrix satisfying
[Lirr — Lyl < 1L — Lyl
for any lower triangular matrix L such that LLTd® = y®. This illustrates

another way in which the BFGS Method is a close relative of Broyden’s
Method (cf. (3.4.5)).

Another famous method, which has been used for nearly twenty years,
is the Davidon—Fletcher—Powell (DFP) Method. Instead of updating the
matrices D, in

XD = x® — (DI (V/(xW))

as in the BFGS Method, the DFP Method updates their inverses and yet
retains the features of a secant method. More precisely, the DFP Method

x®* = x® — 1, D(Vf(xV))
is defined to achieve the following objectives:

(1) The parameter ¢, is set so that Criteria 1-4 of Section 3.3 are satisfied.
(2) Each D, is positive definite.
(3) The Inverse Secant Condition

Dy i (y®) = d®

is satisfied where y* = Vf(x**V) — Vf(x®) and d® = x*+1 — x®,
(4) The update from D, to D, ,, is simple and computationally economical.
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To arrive at the method, we will use the same strategy as we did with the
BFGS Method. We write

Dy = Dy + 4,a® @ a® + B,b% @ b¥,

where the numbers «,, , and the vectors a®, b® are to be determined. The
Inverse Secant Condition prescribes that

d% = Dy® + o, (a® - y®)a® 1 B, (b® - y®)p®),
This equation holds if we set a® = d* and b = D,y provided that we set

1 -1

M= qoo. g b= y®O . D y®"

With this choice, the update becomes

4% @ d® (Dky(k)) ® (Dky(k))

D =D, + —
k+1 k y“" d® y"" . Dky""

This is the well-known Davidon-Fletcher—Powell (DFP) update. It provides
the basis for the following:

(3.5.4) The DFP Method. To minimize f(x) on R", select an initial point x‘©)
and an initial positive definite matrix D,. If x*’ and D, have been computed,
then:

(1) Set t, > 0 such that
x® D = x® — ¢, D (Vf(x®))

satisfies Criteria 1-4 of Section 3.3.
(2) Update
d(k) ® d(k) Dky(k) ® Dky(k)
y® - g® y® - D, y®

where d® = x**D — x®) yk = yf(x**+D) — Vf(x®),

Dy, =Dy +

Using techniques very similar to those employed for the BFGS updates in
Theorem (3.5.2), one can show that the DFP updates are positive definite. (See
Exercise 19.)

A comparison of the BFGS update formula in (3.5.3) and the DFP
update formula in (3.5.4) shows a duality in the roles of y*® and d®. This
duality reflects the fact that the BFGS Method satisfies the Secant Condition
D, ,(d®) = y®_while the DFP Method satisfies the Inverse Secant Condition
Dy, (y"®) = d®. One apparent advantage of the DFP Method over the BFGS
Method is that the BFGS search direction p*® = D, !(Vf(x'¥)) for the latter
must be computed by solving the system D,p® = Vf(x®) while the search
direction p* = D,(Vf(x*)) can be computed directly.

It turns out that this advantage is offset by some computational advantages
of the BFGS Method over the DFP Method. For example, although the D,’s
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produced by both methods are positive definite in theory, the DFP Method
has a tendency to produce D,’s that are not positive definite because of
computer round-off error, while the BFGS Method does not seem to share
this defect. Thus, although the DFP Method was applied very successfully to
many problems for many years using professionally written programs, the
method has been displaced in recent years by BFGS routines.

The reader can learn more about the BFGS, DFP, and other unconstrained
minimization methods by consulting, for example, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations by J. E. Dennis and
R. B. Schnabel (Prentice-Hall, Englewood Cliffs, NJ, 1983) and Introduction to
Linear and Non-Linear Programming by D. G. Luenberger (Addison-Wesley,
Reading, MA, 1973).

EXERCISES

1. Suppose that g(x) is a twice differentiable real-valued function that changes sign
on the interval [a, b], that is, g(a)g(b) < 0. Suppose further that there exist positive
constants m and M such that

lg')l=m,  |g"(x) <M

for all x € [a, b].

(a) Prove that the equation g(x) = 0 has one and only one solution r in [a, b].
(Hint: Apply the Intermediate Value Theorem and Rolle’s Theorem.)

(b) If x¥ belongs to [a, b] and if x**V is defined in terms of x*> by Newton’s
Formula

(k)

k) _ a9
- 5
g'(x®)

show that
M
X — | < a2,
2m

where r is the unique solution to g(x) = 0 in [a, b]. (Hint: Apply Taylor’s
Formula for g(x) at the point x = x®.)

(c) Use the inequality obtained in part (b) to identify a subinterval (r — ¢, r + ¢)
of [a, b] with the property that the sequence {x*} produced by Newton’s
Method always converges to r provided that x! belongs to (r — ¢, 7 + ¢).

(d) Show that if x'® s 0, the sequence {x*’} produced by Newton’s Method does
not converge to the unique solution r = 0 of the equation

x13 =0.
2. Show that the function f(x) defined on R' by
S(x) = x*?

has a unique global minimizer at x* = 0 but that, for any nonzero initial point
x'9, the Newton’s Method sequence {x*'} with initial point x'© for minimizing
f(x) diverges.



Exercises 129

3. (a) Compute the quadratic approximation g(x) for
flxy, x,) = 8x%2 + 8x2 —xt —x% — 1

at the point (4, 1).
(b) Compute the minimum x* of the quadratic approximation

ax) at (3 7%).

4. Compute the first two terms x*), x'? of the Newton’s Method sequence {x*'} for
minimizing the function

(¢, X5) = 2x% + x2 — 4x,x, + 5x,
1 2 1 2

with initial point x© = (0, 0).
5. Prove that if A is a positive definite matrix, then 4! exists and is positive definite.

6. (a) Find a factorization A = LU of the matrix
1 1 2
A= 2 4 1,
-1 1 3

where L is a lower triangular matrix, U is an upper triangular matrix and the
diagonal elements of L and U are nonzero. (Hint: Use row reduction to
compute U from A.)

(b) If a square matrix A4 has a factorization A = LU of the sort described in part
(a), show that A also has a factorization of the form

A=L,DU,,

where L, is a lower triangular matrix, U, is an upper triangular matrix, L, and
U, have diagonal entries equal to 1, and D is a diagonal matrix with nonzero
diagonal elements. (Hint: If you get stuck, try to find the required factorization
for the 3 x 3-matrix in part (a).)

(c) Show that if a square matrix A has a factorization of the sort described in (b),
then it has only one such factorization. (Hint: If L, D, U; = L,D,U,, show that
L;! and U;"! exist and have the same triangularity properties as L; and U,
respectively, for i = 1, 2; then reduce the equation L, D, U, = L, D, U, to the
form: upper triangular matrix = lower triangular matrix.

(d) Show that if A is a symmetric matrix that has a factorization A = L, DU, of
the sort described in part (b), then U, = LT and so

A=L,DLT,

where D is a diagonal matrix with nonzero diagonal entries and L, is a lower
triangular matrix with ones on the main diagonal.

7. (a) Show thatif 4 is a positive definite n x n-matrix, then there is a unique positive
definite matrix S such that S = A. The matrix S is called the square root of A
and is denoted by A'2. (Hint: Diagonalize A with an orthogonal matrix P and
observe that a diagonal matrix with positive diagonal entries has an obvious
square root.)
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8.

10.

13.

(b) Construct the square root of the matrix
4 2 2
A=12 4 2}.
2 2 4

Compute the first two terms x), x'® of the Steepest Descent sequence {x¥} for
the function f(x,, x,) and the initial point x‘* in Exercise 4.

. In Section 3.1, we specialized Newton’s Method for solving the system g(x) =0

for g: R* —> R" to the problem of minimizing a function f(x) on R" by taking
g(x) = Vf(x). It is possible to reverse matters and seek a solution of the system
g(x) = 0 by minimizing the function

G(x) = Sllg®)lI* = sg(x)-g(x).

(a) Compute the function G(x) for the system in Example (3.1.2).
(b) Show that the Hessian of G(x) is given by

HG(x) = [Vg(x)]"g(x).
(c) Show that the Newton direction
xk+D) _ xk) — ——Vg(x"")*g(x"‘))
for minimizing G(x) is a direction of decreasing function values.

Compute the first two iterates x'*, x® of the Newton’s Method sequence and the
modified Newton’s Method sequence (that is, the function is minimized in the
direction of the Newton step Hf(x®) ' Vf(x®) at x¥) for

4
X1
Sxy, x3) =Z +x§

with x@ = (1, 0).

. Compute the first two iterates x', x? in the Steepest Descent sequence {x*'} for

Slxy, x;) = 2x} + x5 — x,x,

starting with the initial point x'©’ = (1, 4).

. Suppose that f(x) is a quadratic function of n variables

fx)=a+b-x +1ix-Ax,

where ae R, be R", and A is a positive definite n x n-matrix.

(a) Show that f(x) has a unique global minimizer.

(b) Show that if the initial point x‘©’ is selected so that x/®) — x* is an eigenvector
of A, then the Steepest Descent sequence {x’} with initial point x® reaches
x* in one step, that is, x'!) = x*.

(a) Show that if 4 is a symmetric matrix, then
A =max{x-Ax:xe R", |x| =1},

where 4 is the largest eigenvalue of A. (Hint: Diagonalize A with an orthogonal
matrix.)
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(b) Show that
max{|x-Ax|: x € R", |x| = 1}

is equal to the absolute value of the eigenvalue of 4 with the largest absolute
value.

(c) Show that if u is a number greater than the absolute value of all eigenvalues
of a symmetric matrix A, then

A+ ul

is positive definite.
(d) For each of the following symmetric matrices A4 find a positive number u such
that A + ul is positive definite:

37 0 1 0 o
@A=7 5 o] Ga=| o0 -3 ol
0 0 1 0 0 -4

. Compute the first two iterates x), x'® using the Broyden’s Method for the initial

point x@ and function in Exercise 11 with
(@) Dy =1I.
(b) Dy = Hf(x'”).

. Show that in Broyden’s Method (3.4.1), the vector y*® — D,(p®) is just g(x**V).

Explain why this means that it is not necessary to evaluate y* explicitly.

. Show that if the variables in the function f(x, y) = x*> + a?y? in Example (3.2.4)

are “rescaled” by the change of variables

{x’ = X,
y = ay,
then the convergence rate of the Method of Steepest Descent improves dramati-

cally. More precisely, show that for any initial point x'?, the Steepest Descent
sequence for f(x’, y’) converges in one step, that is, x!) = 0.

. Suppose that A4 is a positive definite matrix. Modify the recurrence formula defining

the Method of Steepest Descent as follows:
XD = x® _p AVf(xD),
where ¢, is the value of ¢ that minimizes
@(t) = f(x® —tAVf(x¥)), >0

(a) Show that if Vf(x®) # 0, then f(x**V) < f(x*) so that this modified Method
of Steepest Descent is a descent method.

(b) Show that a proper choice of 4 can force this modified Method of Steepest
Descent to converge in a single step to the minimizer for the function and initial
point in Example (3.2.4). (Hint: See Exercise 16.)

(c) Prove the analogs of Theorem 3.2.6 and Corollary 3.2.7 for this method.
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18. (a) Show that if D, ,, is the BFGS update from D, (see (3.5.3)) then

(Dy+14%) ® (D4, d%)  (DAY) ® (D dY)
d®.p,, d® T g, D,d®

(b) Show that if D, ,, is the DFP update from D, (see (3.5.4)), then

(Dk+1y(k)) ® (Dy44 y(k)) _ (Dky(k)) ® (Dky(k))
y® D, y® y®. D, y®

Dyyy =Dy +

Dyyy =D +

19. Prove that the DFP updates D, are positive definite under the same hypotheses as
Theorem (3.5.2) for the BFGS updates.

20. Compute the first two terms of the BFGS sequence and the first two terms of the
DFP sequence for minimizing the function

Sx,x,) = xf — XX + %x%

starting with the initial point x‘* = (1, 2) and D,, = I. For each case, choose ¢, > 0
to be the exact minimizer of f(x) in the search direction from x®.

21. Discuss why it is possible to pick ¢, in the BFGS and DFP Methods so that Criteria
1-4 are satisfied.



CHAPTER 4

Least Squares Optimization

The techniques of least squares optimization have their origins in problems
of curve fitting, and of finding the best possible solution for a system of linear
equations with infinitely many solutions. Curve fitting problems begin with
data points (¢, s,), ..., (t,, S,) and a given class of functions (for example,
linear functions, polynomial functions, exponential functions), and seek to
identify the function s = f(t) that “best fits” the data points. On the other
hand, such problems as finding the minimum distance in geometric contexts
or minimum variance in statistical contexts can often be solved by finding the
solution of minimum norm for an underdetermined linear system of equations.
We will consider the least squares technique that derives from curve fitting in

Section 4.1, and then proceed to develop minimum norm methods in Sections
4.2 and 4.3.

4.1. Least Squares Fit

Suppose that in a certain experiment or study, we record a series of observed
values (t;, 5;), (5, S3), - - -, (t,, S,) Of two variables s, ¢t that we have reason to
believe are related by a function s = f(t) of a certain type. For example, we
might know that s and ¢t are related by a polynomial function

pt) = xo + Xyt 4+ + x,t*

of degree < k, where k is prescribed in advance, but we do not know the
specific values of the coefficients x4, x, ..., x, of p(t). We are interested in
choosing the values of these coefficients so that the deviations

|Si - p(tl)L
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between the observed value s; at t; and the value p(t;) of p(¢) at ¢;, are all as
small as possible.
One reasonable approach to this problem is to minimize the function

(p(xo»xla-"9 2 p([)

k 2
si— 3y, Xt
i=1 ji=0

over all (xq, X4, ..., X;) in R¥*1. Although the use of the “square deviation”
(s; — p(t;))? in place of the raw deviation |s; — p(t;)] can be justified purely in
terms of the convenience afforded by the resulting differentiability of ¢, this
choice has some theoretical advantages that will soon become evident.

Recall that the customary approach to the minimization of the function
@(xg, X1, - - -, X;) 1S to set the gradient of ¢ equal to zero and solve the resulting
system for x,, x,, ..., X, (cf. Exercise 18 of Chapter 1). This produces the
minimizers of ¢ because ¢ is a convex function of x4, x4, ..., x, (Why?) and
so any critical point of ¢ is a global minimizer. Our approach to this mini-
mization problem is similar but somewhat more refined.

We first observe that the function ¢(x,, x4, ..., X;) can be expressed con-
veniently in terms of the norm on R**!, Specifically, if we set

[
=

1 ¢, 8 t* 5 Xo
1 ¢, 13 tk s x

A — 2 .2 2 : b — 2 : X = '1 ,
1 ¢, t2 t Sn X,

then
O(Xg, X15+--, %) = |b— Ax||2 = (b — Ax)-(b — Ax)
=b-b—2b-Ax + Ax- Ax
=b'b—24"b-x + x- AT Ax.
Therefore, the gradient and Hessian of ¢ are given by
Vo(x) = —24"b + 24" Ax; Ho(x) = 24" A.

Now here is the pertinent observation: Since the numbers ¢4, ¢,, ..., t, are
distinct values of the independent variable ¢, the columns of the matrix A4 are
linearly independent. This means that if Ax = 0 then x = 0 since Ax is simply
a linear combination of the column vectors of 4. But then, because

xATAx = Ax- Ax = || Ax|?,

we see that He(x) is positive definite. It follows from (2.3.7) that ¢(x) 1s strictly
convex on R¥*! and so ¢(x) has unique global minimizer at the point x* for
which Vo(x*) = 0. Since Vo(x) = —2A4"b + 24T Ax, we see that the minimizer
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x* of ¢ is characterized by the so-called normal equation
ATAx* = Ah. (1)

The matrix AT A is invertible because it is positive definite, so x* is also given
by

x* = (ATA)"1ATb. (2)
If x* = (x¥, x¥, ..., x¥), then the polynomial
pt) = x¥ + x¥t + - + xFt*
is called the best least squares (kth degree polynomial) fit for the given data.
In the special case when k = 1, the least squares procedure fits a line
p(t) = x¥ + x¥t

to the given data points (¢, s,), (¢, S3), - - -, (t,, S,)- This line is called the linear
regression line for the given data.

(4.1.1) Example. Convenient formulas that enable one to compute the coeffi-
cients x&, x¥ for the linear regression line from the given data are easy to
obtain. Since

1 ¢t 54
a=|" 2 b=
1 ¢, Sy

it follows that

wa=(s, sa) =)

where each summation extends from i = 1 to i = n. If we solve the normal
equation ATAx = A"b by Cramer’s Rule for x*, we obtain

ny st —(Qs)QE )

ny 7 — (Y )’
If we set £, 5 to be the means of the component data, that is,
n n
“akl ST
then x¥ can be expressed in the convenient form
1 —
—Z Siti - IS
n

1

;Z 7 —(t)

x¥ =

1
n

El'—'

x¥ =
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The coefficient x§ is then given by
x¥ =5— x¥r

as can be seen from the first equation in the system ATAx = A"b. These
formulas allow one to compute the coefficients x§, x} of the linear regres-
sion line directly from the data points (¢, s,), (t;, S;), -.., (¢, S,) wWithout
constructing the matrix 4. In fact, many hand-held calculators do this
computation with a single keystroke after the data points have been
entered.

Our development of least squares curve fitting actually made no use of the
specific entries of the matrix A. The only fact about 4 that was important to
our derivation of the normal equation (1) and the corresponding equation (2)
for x* was that the columns of 4 must be linearly independent. Consequently,
the same analysis proves the following theorem.

(4.1.2) Theorem. Suppose that A is a m x n-matrix whose columns are linearly
independent and that b € R™. Then the vector x* given by

x* =(AT4)7'4A™D
satisfies
[Ax* — bll < [|Ax — b]|
for all x e R™.

The vector x* = (4¥4) ' ATb is called the best least squares solution of the
(possibly inconsistent) system

Ax = b.

The matrix (ATA4) 1 A" is called the generalized inverse of the matrix 4 and is
denoted by A", This choice of terminology is reasonable because if 4 is an
invertible square matrix then

AT — (ATA)—IAT — A—I(AT)—IAT =A"1

Although the best least squares solution x* of the system Ax = b is most
conveniently described by x* = A'b, the vector x* is computed by solving the
normal equation

ATAx = ATb

because the calculation of A" requires the inversion of the matrix ATA4, a
relatively expensive computational procedure.

The following example presents a simple illustration of the general least
squares procedure.
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(4.1.3) Example. Find the best least squares solution to the inconsistent linear
system

X+ y=2,
x+2y=13,
x +3y=3.
In this case, the coefficient matrix 4 and the vector b are given by
11 2
A=|1 2]; b=1{3],
1 3 3

so the best least squares solution x* is the solution of the system

s 90)-(2)-

From this we see that
).

It would appear from the presentation up to this point that least squares
computations are simple and problem-free. All that we need to do to find x*
is to solve the system of linear equations

Nj—=

X =G,

ATAx = A™b.

Unfortunately, the solution of this system is often fraught with numerical
difficulties. The basic problem from the mathematical point of view is that
although A" A is always positive definite in theory, the matrix that is actually
computed may not be positive definite because of round-off error. The follow-
ing example, which is found in Introduction to Matrix Computations by
G. W. Stewart (Academic Press, New York, 1973), illustrates this point.

(4.1.4) Example. If

1.000 1.020
A =[1.000 1.000
1.000 1.000

then ATA is given by

A4 — 3.000 3.020
“\3.020 3.040

to three decimal places. Note that 474 as computed is indefinite since

det(ATA) < 0.
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This example points out a difference that often exists between mathematical
theory and actual computation where round-off error can eliminate the rele-
vancy of the computation to the problem at hand. Numerical experience has
shown that, even with the use of double precision, the numerical solution of
the system

ATAx = A™b

may not be numerically reliable.

Fortunately, there is a way around this difficulty. The key idea depends on
a little geometry. Let us begin by recalling the Gram—Schmidt Process from
linear algebra. Given m linearly independent vectors a‘*), ..., a™ in R", we
define m vectors u', ... u'™ as follows:

(1) el = atl),
u =e'/e];
(2) e?) = g2 _ (u(lj.a(Z))u(I)
b
u? = e‘z’/||e‘2)||;

(m) elm — qm _ M-y ... (gD gem)ymh)
9
u™ = e™/||e™].

At the (k + 1)st step, this process constructs a unit vector u**!) perpendicular
to the previously constructed mutually perpendicular vectors u®*), ..., u®,
Consequently, the subspace spanned by u'), ... u® isidentical to the subspace
spanned bya'!), ..., a® ateach stage. The resulting set of vectors {u®, ..., u™}
is orthonormal, that is,

(@ | =1fori=1,2,..., m
(b) u?-u=0fori#j,i,j=1,...,m

Any orthonormal set is automatically linearly independent.

Now suppose that 4 is an m x n-matrix whose column vectors a‘''), a?),
..., a" are linearly independent. Let u®), u®, ..., u” be the corresponding
orthonormal set of vectors in R™ obtained by applying the Gram-Schmidt
Process to a''’, a'® ... a™ and let Q be the m x n-matrix with u'” as the ith
column for i = 1, ..., n. Because the columns of Q are orthonormal, we see
that QTQ = I. Moreover, the Gram-Schmidt Process can be viewed as a
“column reduction” process that transforms A4 into Q by subtracting multiples
of columns to the left of the pivot column. Consequently, we can obtain Q
from A by right multiplication by an n x n-upper triangular matrix L, that is,

0= AL.
The matrix L is invertible since Q has linearly independent columns, so
A = OR,

where R = L™' is an upper triangular n x n-matrix.
This proves the following very useful theorem:
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(4.1.5) Theorem. If A is an m x n-matrix whose columns are linearly indepen-
dent, then there exists an m x n-matrix Q whose columns are orthonormal and
an n x n-invertible upper triangular matrix R such that

(%) A= QR
We refer to (x) as the QR-factorization of the matrix A.
Now return to our possibly inconsistent linear system
Ax=Db

for which we assume that A4 has linearly independent columns. Then the best
least squares solution of this system is

x* = (ATA)"1A™D
=((QRQR) T (QR)"b
= (RTQTQR)'RTQ™b
= RTQTQ)THRT)T'RTQ™D
=R '-IQ™  (since Q"Q = 1)
= R™'Q"b.

This computation of the best least squares least squares answer x* involves
only the multiplication QTb followed by a quick and easy back-substitution
to solve the triangular system

Rx* = QTb.

(4.1.6) Example. Let us find the best least squares solution to the inconsistent

linear system
1 1
01 <x> =[1].
1) Y
Here a't) = (1,0, 1) and a® = (0, 1, 1) so

u® = a2 = <\/» \[>

e = a@ _ (a®. gy

1 1 1
=0,1,1) — ——,0,—
@40 ﬁ<ﬁ ﬁ>
(011) 2»09%)
= (-

1
2>

NI'—‘
-
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and
oo Cpbd _(=nlY
\/m (/3/2)
_<~¢£;>
NONENG)
Now
OR = 4,
or
o
J2 6 .
0 ﬁ <r11 "12): 0 1
| \{E 0 1 {1
NG
which gives
Ny
NG
N2 2 _
NN
%22

Hencer,, = \/5 Fypy = f/ﬁ andr,, = (1/\/— )ry, = l/f Thus, the QR-

factorization of A4 is

1

J2 /e 1

1o f Vel (2 L

N 2

A=10 1] =]l 0o M= = QR

11 3, V3

IR R RN
V2 e

The best least squares solution (x*, y*) is given by

1

’() =]
y* 1
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that is,

/2

\”%’“‘
N [\®)

— 0
() Qﬁ
NCINE

SISl

By applying back-substitution, we see that

* — 3 * _ 5
y_4’ X - 8-

For small problems, the computational procedure used in the preceding
example is practical and probably easier than using Gaussian elimination to
solve ATAx* = ATb. However, if A has four or more columns, then round-off
error can create trouble for either approach. Since most nontextbook prob-
lems are not small, a more sophisticated procedure is needed. Thankfully there
is a numerically stable way called “orthonornal triangulation,” used for find-
ing the factorization A = QR which is available in most software libraries.
This numerical routine is based on an idea called Householder transforma-
tions. For more on this, see Chapter 5 of Introduction to Matrix Computations
by G. W. Stewart (Academic Press, New York, 1973).

4.2. Subspaces and Projections

This section is devoted to the problem of finding the best approximation of a
vector x in R™ by a member m of a subspace of R™ Specifically, let M be a
subspace of R™ and let x be a vector not in M. We are going to find a way to
select a vector m* in M such that

[x —m*| < |x —m]

for all other m in M. Let us recall some terminology and results from linear
algebra.

(4.2.1) Definition. A subset M of n-dimensional space R™ is a subspace
if yV 4+y®eM and 1y’ e M whenever yV), y? e M and 1 is any real
number.

Less formally, a subset M of R™ is a subspace if it contains the sum of any
two of its members and if it contains all scalar multiples of any of its members.
In particular, since 0 = 0- x for any x € M, any subspace of R™ contains 0. It
follows readily that if M is a subspace of R™, then M contains all linear
combinations of its members, that is, if x*, ..., x'” belong to M and if 4,, ...,
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A, are scalars, then the linear combination
llx(l) 4+ -+ lpx“’)
belongs to M.

The prime example of a subspace of R™ is the range of an m x n-matrix.
(4.2.2) Definition. Let 4 be an m x n-matrix. Then the range of A is the
subspace #(A) of R™ defined by

R(A) = {y € R™: y = Ax for some x € R"}.

Actually, any subspace of R™ can be regarded as the range of an appropriate
m x n-matrix as the following theorem demonstrates.

(4.2.3) Theorem. If M is a subspace of R™ of dimension n, then there is an
m X n-matrix A whose columns are linearly independent such that

M = R(A).
PROOF. Since M is a subspace of R™, M has a basis a'', ..., a®, that is, there
is a linearly independent set {a'", ..., a"} such that each me M is a linear

combination of vectors in this set

n
m=) xa?.
j=1
If we write x = (x,, ..., X,), we see that another way of saying this is that
m € M if and only if there is x = (x,, ..., X,) in R" such that

n
m=Ax =) x;a,
Jj=1

where A is the matrix whose jth column is a¥. This shows M = %(A) which
completes the proof.

Given a subspace M of R™, the orthogonal complement M* of M is defined
by
M!' ={yeR™ x-y=0forall xe M}.

It is readily seen that the orthogonal complement M~ of a subspace M of R™
is itself a subspace of R™.
This next theorem is the basic result of this section.

(4.2.4) Theorem. If M is a subspace of R™ and if x € R™, then there is a unique
m* € M such that
[x —m*|| < [x —m]

for allm € M. The point m* of M is characterized by x — m* ¢ M.
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The content of this theorem is summarized by the following diagram
in R2:

!

PrOOF OF THEOREM (4.2.4). If the dimension of M is n, then Theorem (4.2.3)
assets that there is an m x n-matrix A such that M = #(A4). Observe that
Ix — m*| < |x —m| forallm e M if and only if || x — Ay*|| < ||x — Ay| for
all y € R". According to Theorem (4.1.2), the vector y* € R" that satisfies the
latter inequality is given by

y* = A'x = (4T4) ' A",

som* = Ay* = AA'x* is the required vector.
Note that x — ne M* if and only if

(*) (x—n'm=0
for all m € M. Equation (*) holds if and only if

(x—n):-Ay =0
for all y e R". But n = Az for some z € R", so (x) is satisfied if and only if

0=(x — Az)- Ay = AT(x — Az)-y
=(A"x — ATAz)-y

for all y € R", that is, if and only if

ATx — ATAz = 0.

Thus, we arrive at the conclusion that x — ne M* ifand only if n = Az where
z is the unique solution of the normal equation

ATAz = A™x.

Therefore x — ne M ! if and only if n = m* where m* = Ay* = 44"x.
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The following result is a corollary of the proof of the preceding theorem.

(4.2.5) Theorem. Suppose that M is a subspace of R™ of dimension n. Then there
is an m x m-matrix Py, such that P,yx € M for all x € R™ and

x = Pyx| < [x —ml]|

for all me M. Specifically, P,y = AA" where A is an m x n-matrix whose
columns constitute a basis for M.

The matrix P, is called the orthogonal projection of R™ onto M. For each
x € R™, then, according to (4.2.5), P,,x is the closest vector to x in the subspace
M. Although the matrix A in (4.2.5) varies with the choice and order of the

basis vectors for M, the matrix P,, does not. The following example illustrates
this point.

(4.2.6) Example. Let us construct the orthogonal projection P,, of R® onto
the subspace
M={meR*m; +m, +my=0}

In this case, a basis for M is provided by the vectors

-1 -1
uV = 1], u?® = 01,
0 1
so the associated matrix A4 is
-1 -1
A= 1 0
0 1
and
2 _1 _1
3 3 3
Py=AA"AAT=| -5 3 4
_1 _1 2
3 3 3

If we use the basis

-1 -2
v = 14, v2 = 1
0 1
for M, then
-1 =2
A= 1 14,
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but the matrix P,, = A(AT4) ' AT is identical to the one constructed above
for the basis {u'", u®} for M.

(4.2.7) Theorem. If M is a subspace of R™, then (M*)* = M.

PROOF. If x € M, thenx*y = O for ally e M*, and so x € (M 1)* by definition
of (M*)*. Therefore, M = (M*)". On the other hand, if x € (M ')*, then

0 =x+(x — PyX),
since x — P,,x € M by (4.2.4) and (4.2.5). Also
0= P,x-(x — PyXx),
because x — Py,x € M* and P,,x e M. Consequently,
0=x-(x — Pyx) — Pyx*(x — PyXx)
= (X — Pyx)*(x — Pyx) = [|x — Pyx]|?,

so x = Py,x € M. We conclude that M = (M*)* which completes the proof.

4.3. Minimum Norm Solutions of Underdetermined
Linear Systems

Suppose that A is an m x n-matrix and that b € R™ The system
Ax =Db

of m linear equations in n unknowns is underdetermined if it has more than
one solution. The goal of this section is to find an effective procedure for
computing the solution of an underdetermined system that has minimum
norm.

The following theorem from linear algebra will be basic to our consid-
erations.

(4.3.1) Theorem. Suppose that
Ax =b (1)

is an underdetermined system of m linear equations in n unknowns and that x'©
is a fixed solution of this system. Then x is a solution of (1) if and only if

x=x9—y,
where y is a solution of the corresponding homogeneous system

Ay = 0. )

PRrROOF. If x = x© — y where y is a solution of (2), then

Ax = AX? —y) = Ax©O — Ay=b—-0=h.
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Therefore, x 1s a solution of (1). On the other hand, if x is any solution of (1),
then

AXO —x) = Ax® — Ax=b—-b=0.

Consequently, y = x!® — x is a solution of (2).

With this result in mind, let us begin our search for the solution x* of
minimum norm for a given underdetermined system Ax = b of m linear
equations in n unknowns. If x© is a fixed solution of Ax = b, then by (4.3.1)
x is a solution of Ax = b if and only if

x=x9—y,

where y is a solution of the associated homogeneous system Ay = 0. Thus, the
minimum norm solution x* of 4x = b can be written as

x¥ = x(0) _ y*’

where y* is the solution of Ax = 0 that satisfies
X — y*|| < [x9 —y]|

for all solution y of Ay = 0.
By definition of matrix multiplication, the set

M = {ye R™" Ay = 0}
of all solutions of the associated homogeneous system (2) has the following
alternate description:
M={yeR"a;, y=0fori=1,...,m},
where a;, is the ith row vector of the matrix 4. But a, is the ith column vector
of the transpose AT of 4, so we conclude that
M = #(4")",

that is, the set of all solutions of Ay = 0 is simply the orthogonal complement
of the range #(A") of A™.

Suppose that the row vectors a,), ..., a,, of 4 are linearly independent.
(This is not a severe restriction on the system of linear equations Ax = b; it
simply requires that there are no redundant equations in the system.) Then
the column vectors of AT are linearly independent. Consequently, since the
minimum norm solution

x* = x(0) _ y*
is characterized by the fact that
Ix*[ =[x — y*|| < [x@ —y] 3)

for all y € M, it follows from (4.2.4) that x* is the minimum norm solution
of Ax = b if and only if x* = x(® — y* e M*. But we observed above that
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M = Z(AT)*, and Mt = (R(AT)1)! = #(A7) by (4.2.7). Consequently, we
have established the following result.

(4.3.2) Theorem. Suppose that A is an m x n-matrix with linearly independent
row vectors, that b € R™ and that the system Ax = b is underdetermined. Then
a solution x* of Ax = b is the minimum norm solution of this system if and only
ifx*e #A(AT).

Although (4.3.2) provides a clear description of the solution x* of minimum
norm for an underdetermined linear system Ax = b, we need to do a bit more
work to obtain an effective computational procedure for x*. First, we note
that since x* € #(A") and the columns of AT are the (linearly independent)
TOWS a(y), ..., 4, Oof A, there is a unique vector w = (w;, w,, ..., w,) in R™
such that

* — AT
X" = Wla“) + Wza(z) + + Wma(m) =A'w.

Second, we observe that since x* is a solution to the system Ax = b, we must
have

b = Ax* = A(A™w) = (AA")w.

Thus, we have established the following computational procedure for x*.

(4.3.3) The minimum norm solution x* of the underdetermined system of m
linear equations in n unknowns can be computed as follows:

Step 1. Solve the m x m-system
AA™w=0Db
for its unique solution w* = (w¥, w¥, ..., wk).
Step 2. Let
x* = wifa,, + wia,, + - + wiag,,
where a;, is the ith row vectorof Afori=1,2,...,m.

The matrix G = AA" is often called the Gram matrix of the row vectors of
A. The Gram matrix is symmetric and, since the row vectors of A are linearly
independent, G is positive definite. (See Exercise 12.)

Let us illustrate the minimum norm procedure (4.3.3) by solving the follow-
ing simple geometry problem.

(4.3.4) Example. Find the point on the line L of intersection of the two planes
x+y+z=1, —-x—y+z=0,

that is nearest the origin.
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SoLUTION. A point (x, y,z) is on L if and only if it is a solution of the
underdetermined system

x+y+z=1,
—x—y+z=0

Consequently, the point on L that is nearest the origin is the solution of
this system of minimum norm. In the notation of (4.3.3), we see in this case

that
1 1 1 1
(o ()

and so the Gram matrix G is given by

3 -1
=AAT = :
¢ <—1 3)

The system AA™w = b has the unique solution
w, = %’ w, = é»

so the minimum norm solution (x*, y*, z*) of the system Ax = b is given by

x* 1 ~1 4
yl=g| 1) +s|-1|=|%
z* 1 1 1

Thus, the nearest point to the origin on the line L of intersection of the two

planes is (%, 3, 7).

4.4. Generalized Inner Products and Norms;
The Portfolio Problem

Although the results of the preceding three sections were stated and proved
for R™ equipped with the usual (Euclidean) norm

1/2
IxI =( )
1

X'y= XiYis

M=z

and inner product

s

[}
-

these results are actually valid for any norm and inner product on R™ that is
associated with an m x m-positive definite matrix. More precisely, if H is an
m x m-positive definite matrix and if we define:
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(1) the H-inner product x4y of x and y in R™ by
Xy = x-Hy;
(2) the H-norm ||x||y of x € R™ by
Il = [xux]" = [x-Hx]"?;

(3) x and y to be H-orthogonal vectors in R™ (written x L, y) if

0=x+yy=x-Hy;
(4) the H-orthogonal complement (M)} of a subspace M of R™ as

(M)z = {xe R™: xym=0forallme M};

then (4.1.2), (4.2.4), (4.3.1), and (4.3.2) remain valid when the usual norm, inner
product, and orthogonal complement are replaced with the H-norm, H-inner
product, and H-orthogonal complement associated with an m x m-matrix H
which is positive definite. This is due to the fact that these results do not depend
on the defining formulas for the usual norm and inner product, but rather on
the fact that the usual inner product is linear and symmetric in its two variables
and that the usual norm and inner product have the following properties:

(1) x|l = Ofor all x € R™;

(2) |Ix]l = 0if and only if x = 0;

(3) llax|| = |a] ||x|| for all x € R™ and all real numbers a;
@) Ix +yl < x|l + llyll for all x, y in R™;

) Ix-y] < |Ix|lllyll for all x, y in R™

These properties are valid for any H-norm. For example, (1) and (2) are
immediate consequence of the fact that H is positive definite while (3) follows
from the computation

lex | = (ax) - H(ax) = a®x - Hx = o®|Ix| 7.

A good exercise is to verify that properties (4) and (5) hold for any H-inner
product and the associated H-norm (see Exercise 18).

Given that (4.1.2) remains valid when the Euclidean inner product is
replaced with the H-norm and H-inner product associated with a positive
definite matrix H, it is an easy matter to formulate the least squares criterion
corresponding to (4.2.4) and the corresponding generalized inverse formula.

(4.4.1) Theorem. Suppose that H is an m x m-matrix that is positive definite,
that A is an m x n-matrix with linearly independent columns and that b € R™.
Then x* € R" minimizes || Ax — b||4 over all x € R" if and only if

ATHAx* = ATHb.
Also,
x* = (AN, Hb,
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where (A")y is the H-generalized inverse of A defined by
(ANy = (ATHA) AT,
Theorem (4.3.2) remains valid when the orthogonal complement is replaced

by the H-orthogonal complement. It follows that the minimum norm criterion
(4.3.2) has the following generalization to H-norms.

(4.4.2) Theorem. Suppose that H is an n x n-matrix that is positive definite,
that A is an m x n-matrix and that b is a vector in R™ for which Ax = b is an
underdetermined system. Then the minimum H-norm solution x* of Ax =b is
the solution of Ax = b that lies in the range Z(H ' A") of H ' A".

The procedure (4.3.3) for computing the minimum norm solution of Ax = b
can now be generalized to H-norms on the basis of (4.4.2).

(4.4.3) Suppose that H is an n x n-matrix that is positive definite, that A4 is
an m x n-matrix with linearly independent row vectors ay, ..., a,,, and that
b is a vector in R™ for which Ax = b is an infinitely many solutions. Then the
solution x* of Ax = b of minimum H-norm is

x* = H ' (wyag, + * + Weagm),
where w = (wy, ..., w,,) is the unique solution of the system
b=AH 'A"w.
The following example provides a simple illustration of the procedure
described in (4.4.3).
(4.4.4) Example. Minimize
flx, y) = 5x% + 4xy + y?,
subject to
3x + 2y =5.

SoLuTiON. In this case, the function f(x, y) is the square of the H-norm
associated with the positive definite matrix

H_sz
“\2 1)

and A = [3, 2],b = (5). The matrix AH ! A" reduces to the scalar(5)so w = (1)
is the unique solution of the system

b=AH 'A™w.
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Since

it follows that

cemees( -

is the minimum H-norm solution of Ax = band hence x = — 1,y = 4 provides
the desired minimum of f(x, y).

The following example provides a more substantial illustration of the
application of minimum H-norm solutions of underdetermined linear systems.

(4.4.5) Example (Portfolio Management). A young urban professional, Jodi
Hardy, has C dollars to invest in the stock market. After some consultation
with a stockbroker, she selects n stocks S, ..., S, for investment consideration.
On the basis of historical data for these stocks, she estimates the expected
annual return r; and the variance s;; on each dollar invested in stock S; as well
as the covariance s; of the returns r;, r;. Given this information, she could
maximize the expected return by simply investing all of the money in the stock
with the largest rate of return. However, this strategy would disregard market
risk. A more conservative investment strategy would be to invest in several
stocks with the objective of achieving a total return of at least R dollars per
year while minimizing the total variance of her entire stock portfolio. We will
now develop a mathematical model to implememt this latter investment
strategy.

Suppose that x; is the number of dollars Jodi invests in the stock S; for
i=1,...,n Then since she intends to invest a total of C dollars in her entire
stock portfolio, it follows that

X4+ x,+ 0 +x,=C.

The return on x; dollars invested in stock S; is x;7; so that the requirement that
the total return on the entire stock portfolio should be at least R dollars is
expressed by the inequality

Xy Py + Xary + 0+ X1 = R

The variance V of the total return on the stock portfolio can be expressed in
terms of the variances s; and covariances s;; of the rates of return by

n n
V = Z Z Sijxin.
i=1 j=1

Consequently, the conservative portfolio management strategy described
above can be formulated as follows:

Minimize V =

M=

n
> S5ijXi X
1 j=1

3
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subject to the constraints

x; =C, (1)
i=1
Z Xt > R, (2)
i=1
x; =20 fori=12,...,n 3)

Stated in this form, we see that Jodi’s portfolio management problem
reduces to the minimization of a quadratic function of n variables subject to
linear equality and inequality constraints and nonnegativity constraints on
the variables. As such, the problem is ideally suited to the application of a
special “quadratic programming” technique that we will discuss in detail in
Chapter 7.

The technique developed in this section does permit us to solve the portfolio
management problem in the special case when the desired total return is
specified to be some attainable value R. In this case, the problem assumes the
form

Minimize V = x-Hx,
subject to Ax = b,
where H is the covariance matrix for ry, ..., r, and
1 1 -1 C
= ) v-(&)
ST CUNRELE & R

If the joint probability distribution of ry, ..., r, is nondegenerate, H is positive
definite and so the total variance of the portfolio is the square of the associated
H-norm. Consequently, if the expected returns and the variances and co-
variances of these returns are specified, we can apply (4.4.3) to solve the
corresponding portfolio problem.

EXERCISES

1. Find the least squares solution of the inconsistent linear system

X+ X+ x3=3,

x; =1,

X, + Xx3=2,
2x, + 5x3 =8,
—7x; + 8x, =0,

X, +2x; — x3=1.
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2. Find the minimum norm solution of the underdetermined linear system
2x; + X, + X3+ 5x, =8,
—X; — X +3x3 +2x,=0.

3. A surveyor, Cletus Hawkeye, of the Rezek Engineering Co. is assigned the task
of determining the heights above sea level of three hills, H,, H,, H;. He stands at
sea level and measures the heights of H,, H,, H; as 1236 ft., 1941 ft., 2417 ft.,
respectively. Then to check his work the surveyor climbs Hill H, and measures the
height of H, above H, as 711 ft. and the height of H; above H, as 1177 ft. After
noting that the latter measurements are not consistent with those made at sea level,
he utters a mild expletive and climbs Hill H, and measures the height of H, to be
475 ft. above H,. Again, he notes the inconsistency of this measurement with those
made earlier. Cletus knows that his boss, Joe Rezek, is a perfectionist who is certain
to be displeased with a report containing inconsistent data so he worries about
preparing his report as he drives back to the office. Suddenly he remembers the
good old days in Math 384 and Mr. Rezek’s fondness for things mathematical
(Why, some of his best friends are mathematicians!), so he decides to compute the
least squares estimates based on his data on the heights above sea level of H,, H,,
H, and enter these in his report. Compute these estimates for him so that he can
keep both hands on the steering wheel.

4. Find the vector v in R3 of the form
v=oa(l,1,2) + B2, —1,1)
that is closest to (1, 1, 1).
5. Find the minimum norm solution of the system
X, + X+ 5x3 —Txy =1,
X, —3x, — X3+ x,=2.
6. Find the point on the plane
x+2y+3z=6
that is closest to the origin in R3.

7. Compute the equation of the linear regression line corresponding to the data in
the table below:

x | =2| =11 0 1 2 3

y | 12| 11| 8| 5| 2|-3

8. (a) Suppose that the variable y is known to be a quadratic function of the variable
x; that is,
y=ax?® +bx +c,
but that the coefficients a, b, ¢ are not known. Estimates of the coefficients a,

b, ¢ might be obtained by conducting an experiment in which values y,, ..., y,
of the variable y are measured for corresponding values x,, ..., x,, of the
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10.

12.

variable x. Find formulas for the coefficients a, b, ¢ of the best least squares
quadratic polynomial fit

y=ax?+bx + ¢

in terms of the data: (x,, ,), (X2, ¥2), - > (Xm> Ven)-
(b) Apply these formulas to the data provided in the table below:

x | =2 —-1] 0 1 2 3 4

y | =5| 1] 4|76/ 5s |-t

. Compare the solutions of
1 4 4y /x 0
Py Ay =10]
y ol o
and of
1 43 3\ /x 0
b4y |=[o
LT AR YA 0.01
I
The matrix | § 4 % |is called the Hilbert matrix and is a prime example of an
11
3 4

W=

ill-conditioned matrix. The answers to the above computations highlight the
extreme sensitivity of some matrices to round-off and other errors. For an in-depth
look at ill-conditioned matrices, see Chapter 5 of Introduction of Matrix Computa-
tions by G. M. Stewart (Academic Press, New York, 1973).

(a) Find the linear regression line for the three data points
(—1,2), (0, 1), (1, 0).
(b) Find the linear regression line for the four data points
(—1,2), (0,1), (1,0), (7, 8).

Graph both lines on the same set of axes and comment.

. (a) Compute the generalized inverse A" of

A=

N - O
w N -

(b) Compute Pg ).
(¢) Use the Gram-Schmidt Process to find #(A4)* and then compute Py 4.
(d) Show that Py 4 = I — Pg4L.

Suppose that x'V), ..., x™ are vectors in R™ and that G is the Gram matrix of the
vectors {x'"), ..., x"}, thatis, G = {g;;} where

gy = x® . x(
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14.

15.

16.

17.

19.

fori, j = 1,...,n. Show that the set of vectors {x'"), ..., x”} is linearly independent
if and only if G is invertible.

. Let A be a matrix whose columns are linearly independent. Prove:

(i) AA'A = 4;

(i) A'A =(4t4);
(iii) P4, is symmetric;
(V) P3ay= Pacay

Let A be a m x n-matrix whose columns a'”, a'? ..., a™ are orthonormal. Show
that A" = AT and Py, x = Y1, (@?-x)a" for all x in R".

1.000 1.00t1 1.000 1.001
Let A, = 1.000 1.000 and A, =1 1.000 1.000

1.000 1.000 1.000 1.001

Compute Pg4,) and Py, . It might be helpful to find Pg 4,1 and use the result
of Exercise 16.

Let M be a subspace of R" and let M* be its orthogonal complement.
(a) Show that Py, = I — Py, (here I is the identity matrix).
(b) Show that

X = Py(x) + Py(x),
and
[x)12 = [ Pyx]|? + || Pyox]?

for all x in R".
(c) Show that if x € R”, then x - Py,x > 0 unless Py (x) = 0.

(a) Let M be a subspace of R". Prove that the orthogonal complement M+ of
M is closed.
(b) Use the fact that M = (M1)! to prove M is closed.

. Suppose that H is an n x n-matrix which is positive definite and that x+4;y and

|Ix||y are associated H-inner product and H-norm on R".

(a) Verify that |x+4y| < |x]lgllylly for all x, y in R" (the Cauchy—Schwarz In-
equality). (Hint: The quantity (x — Ay)+, (x — Ay) expands to a quadratic func-
tion of the real variable A and this function is nonnegative for all real 2. What
does this say about the discriminant of this quadratic function?)

(b) Verify that ||x + yllg < [Ix|lg + llyll4 for all x, y in R" (the Triangle Inequality.)
(Hint: Expand ||x + y||Z = (x + ¥) 5 (x + y) and apply the Cauchy—Schwarz
Inequality.)

(c) Verify that equality holds in the Cauchy-Schwarz Inequality in (a) if and only
ifx=Ayory=20.

(a) Let f(x) be a function on R" with continuous first partial derivatives and
let M be a subspace of R". Suppose x* € M minimizes f(x) on M. Show
Vf(x*) e ML, (Hint: Take any x € M and consider ¢(t) = f(x* + tx).)

(b) If, in addition, f(x) is convex, then show that any x* € M such that Vf(x*) e
M+ is a global minimizer of f(x) on M.



CHAPTER 5

Convex Programming and
the Karush—Kuhn—Tucker
Conditions

Many optimization problems of substantial practical interest involve the
maximization or minimization of a function of several variables subject to
one or more constraints. These constraints may be nonnegativity or interval
restrictions on some of the variables, or they may be expressed as equations or
inequalities involving functions of these variables. Such optimization problems
will be referred to as constrained optimization problems.

Many constrained optimization problems can be expressed in the following
form:

Minimize f(x) subject to

g](x) < bl’ gZ(X) < b27 ey gm(x) < bm»

where f(x), g,(x), ..., gn(x) are convex functions on R" and b, ..., b,, are
fixed constants. Any such problem is called a convex program. All linear
programming problems and the least squares problems considered in the last
chapter either are or can be reformulated as convex programs.

The key to understanding convex programs is the Karush—Kuhn-Tucker
Theorem. This result associates with a given convex program a system of
algebraic equations and inequalities that often can be used to develop effec-
tive procedures for computing minimizers, and also can be used to obtain
additional information about the sensitivity of the minimum value of the
program to changes in the constraints.

There are at least three possible approaches to the development of the
Karush—Kuhn-Tucker Theorem. One is based on separation and support
theorems for convex sets, another on the use of penalty functions, and a third
parallels the classical theory of Lagrange multipliers. Each of these approaches
provides its own special insights concerning this important result so that it
will be worth our while to consider all three as the story in this book unfolds.
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In this text, we chose to begin with the development of the Karush—-Kuhn—
Tucker Theorem based on separation and support theorems for convex sets
because it is the most geometric and intuitive of the three and therefore,
the best place to start. In Chapter 6, we will reconsider the Karush—-Kuhn-
Tucker Theorem from the point of view of penalty functions and in Chapter 7
we will look at the result again within the context of the classical theory of
Lagrange multipliers. Both of these alternative approaches will yield a rich
harvest of additional insights and results.

The first section of this chapter provides the geometric tools for the develop-
ment and understanding of the Karush—Kuhn—Tucker Theorem. This result
is formulated and proved in Section 5.2. The remaining three sections of the
chapter consider several important applications of this result including dual
programs, quadratic programming, and constrained geometric programming.

5.1. Separation and Support Theorems
for Convex Sets

The content of the two main results in this section on convex sets in R" is
described in the diagrams in R that are given below:

® «— A point y not in C

A closed
convex
set C

7

A plane separating
yand C

The Basic Separation Theorem

A boundary point y of C

A convex set C
with interior
points

A plane through y
supporting C

The Support Theorem
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Any plane H in R can be written as
H={xeR»@a-x=q}

for a suitable choice of nonzero a € R® and « € R, since the vector equation
a*x = o simply reduces to the scalar equation

alxl + a2x2 + a3X3 =0
in that case. More generally, a hyperplane® H in R" is any set of the form
H={xeR"ax=u}

for fixed 0 # a € R", a € R. Note that a hyperplane in R? is a plane, in R?
it is a line, and in R! it is a point.

The Basic Separation Theorem says that if C is a closed convex set in R"
and if y € R" does not belong to C, there is a hyperplane

H={xeR"ax=u}

oy

a*x = a/

in R" such that C is in the closed half-space
H ={xeR:a'x <a},
and y is in the open half-space
H*={xeR":a-x>a}
determined by a and a (see (2.1.2)(d)); that is, there exist a € R", a € R such that
arx<oa<avy

forall x € C.

A point z is a boundary point of a set C in R" if for each ¢ > 0, the ball B(z, ¢)
centered at z of radius ¢ contains a point of C as well as a point that is
not in C. The Support Theorem guarantees that if C is a convex set with
interior points in R" and if z is a boundary point of C, then there exists a
hyperplane

H={xeR"ax=u}

! Although the term hyperplane sounds like a word borrowed from science fiction, precisely the
opposite is true—science fiction writers borrowed it from mathematics!
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that contains z such that C is contained in the closed half-space
F ={xeR“a'x <a}
determined by a and «, that is, there exist a # 0 and « € R such that
a*x<a=a-z

forall x e C.

In R", the Support Theorem remains valid even if the hypothesis that the
given convex set has interior points is dropped. However, the result as stated
is adequate for the applications we have in mind so we will not pursue full
generality here.

Both the Basic Separation Theorem and the Support Theorem are easy to
believe because they square so well with our geometric intuition. Formal
proofs of these results will require a substantial effort because the intuitive
geometric pictures must be translated into statements of an algebraic or
analytic nature. We shall now proceed to these derivations.

On the first time through this material, the reader may find it helpful to
concentrate on the meaning and application of the main results and to
postpone a detailed study of the proofs until a second reading of the chapter.

The first step is to extend to convex sets our earlier characterization (see
(4.2.4)) of closest vectors to subspaces. The intuitive idea is very simple. Let
C be a convex set in R" and let y € R" be a vector that is not in C. Observe
that x* € C should be the closest vector in C to y if and only if the angle 6,
in the following figure

satisfies /2 < 0, < = for all x € C. The requirement that /2 < 6, < = is the
same as cos(fy) < 0 and this, in turn, is equivalent to

(y — x*)-(x — x*) = [ly — x*|||x — x*|| cos 6, < 0.
Thus, our intuition tells us that x* is the closest vector in C to y if and only if

(y—x(x—x%)<0
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for all x € C. This characterization of x* does in fact hold for arbitrary convex
sets in R". Of course, to verify this, it will be necessary for us to proceed from
the intuitive discussion in R? that led us to a correct formulation of this
characterization to a formal proof.

(5.1.1) Theorem. Suppose that C is a convex set in R" and that y is a vector in
R" that is not in C. Then x* € C is the closest vector in C to y (that is,
ly — x*|| < |ly — x|| for all x € C) if and only if

(Y —x¥(x—-x%<0

forallx e C.

PRrOOF. Suppose x* € C has the property that
(y — X*)(x — x*) <0

for all x € C. To show that x* is the unique closest vector in C to Yy, it suffices
to show that x* is the strict global minimizer on C for the function

SO =y —xiI? =(y — x)-(y — x).
To this end, we note that
Vi(x) = —2(y — x),
Hf(x) = 2I,
so f(x) is strictly convex. Consequently, if x € C and x # x*, then
Sx) > f(x*) + Vf(x*)-(x — x*) = f(x*) — 2(y — x*)-(x — x*) > f(x¥),

since (y — x*)-(x — x*) < 0. Hence, x* is the closest vector in C to y.
Conversely, suppose that x* is the closest vector in C to y. For a given
x € C, define a function ¢(t) for 0 <t < 1 by

p(t) =y — (x* + t[x — x*])|%

The vector x* + t[x — x*] is on the line segment [x*, x] joining x* to x
whenever 0 <t < 1, so any such vector is in C since x* € C, x € C, and C is
convex. Since x* is the closest vector in C to vy, it follows that ¢{0) is the
minimum value of ¢(t) on 0 < t < 1. Therefore, ¢'(0) > 0 (Why?). But

@) = —2(y — (x* + t(x — x¥)))*(x — x*),
so that
0<¢'(0)= —2(y — x*) (x — x¥).
This proves that (y — x*)-(x — x*) < 0, which completes the proof.

The following corollary shows that the preceding theorem is a genuine
extension of (4.2.4).



5.1. Separation and Support Theorems for Convex Sets 161

(5.1.2) Corollary. Suppose that M is a subspace of R" and that 'y € R" is a vector
not in M. Then x* € M is the closest vector in M toy if and only if y — x* € ML,

Proor. If we apply (5.1.1) with C = M, we see that x* € M is the closest vector
in M toy if and only if
(y —x*)-(x—x*<0

for all x e M. However, since M is a subspace, both x + x* and —x + x*
belong to M whenever x € M, so the preceding inequality reduces to

(y—x¥'x<0 (y—x%(-x<0
for all x e M. These inequalities are in turn equivalent to
(y —x*x=0
for all x € M, which implies the desired result.
The preceding result begs the question of whether or not the closest vector
in a given convex set to a given vector in R" necessarily exists. The next

theorem tells us that a closest vector always exists if C is closed. Closest vectors
need not exist for arbitrary convex sets.

(5.1.3) Theorem. If C is a closed (convex or not) subset of R" and if 'y € R" does
not belong to C, then there is a vector x* € C that is closest toy, that is,

ly — x*| < lly — x|
for all x € C.
ProoF. Let a be the largest number such that o < ||y — x| for all x € C. Then
there is a sequence {x*} of elements of C such that

a = lim |y — x®|.

k

Because the sequence {|ly — x®|} is a convergent sequence of real numbers,
it must be bounded, that is, there is a positive number M such that

ly —x® <M
for all k. But then
Ix®) = [(x® =y} + ylt <y — x| + |yl
<M+ |yl

for all k. Hence {x*} is a bounded sequence in C. The Bolzano—Weierstrass
Property yields a subsequence {x*} that converges to a point x* and x* € C
because C is closed and all terms of the subsequence belong to C. Moreover,

Iy = x*li = lim iy — x| = «
J
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so |ly — x*|| = « < ||y — x|/ for all x € C. This proves that x* is a closest vector
inCtoy.

(5.1.4) Corollary. Suppose that C is a closed convex subset of R" and that y is
a vector in R" that is not in C. Then there is one and only one vector x* that is
closest toy in C.

ProOF. We have just shown in (5.1.3) that there is at least one such vector x*.
Suppose that z* € C is also closest to y in C. If we apply the criterion of (5.1.1)
successively to x* and z*, we obtain the inequalities

0> (y — x¥):(z* — x*¥) = y-2* — x*: 2% — y-x* 4 x*:x*
0> (y —z%) (x* — 2*%) = y-x* — z*¥:x* — y-z* 4 7% 7%
If we add these inequalities, we obtain
0> x*-x* — 2x*-z* + z* - 2% = |x* — z*||?,
which implies that x* = z*. Thus, there is precisely one vector in C that is

closest to y.

(5.1.5) The Basic Separation Theorem. Suppose that C is a closed convex set
in R" and that y is a vector in R" that is not in C. Then there are a nonzero vector
a € R" and a real number o such that

arx<a<a-‘y
for all x e C.

Ye

Two-Dimensional Diagram for the Basic Separation Theorem

PRrOOF. Let x* be the closest vector in C to y (cf. (5.1.4)). Then, by (5.1.1),
(y —x*(x—x*)<0
for all x € C. Therefore, if we set a = y — x*, then a # 0 and
a*(x —x*)<0
for all x € C, that is,

a-xSa.x*
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for all x e C. Let « = a-x* and compute
ary—a=a(y—x¥=al’>0.
Hence,
a*x<a<ary

for all x € C. This completes the proof.

Although the conclusion of the Basic Separation Theorem is stated in the
useful form of an inequality, it is important to keep in mind the geometric
meaning of this inequality: The point y and the closed convex set C are
separated by the hyperplane

H={xeR"a'x=a}
in the sense that C lies in the closed half-space
H ={xeR"a'x<a}
while y is in the opposite open half-space
H*={xeR"a'x>a}
determined by this hyperplane. This geometric interpretation of the Basic

Separation Theorem immediately yields the following corollary.

(5.1.6) Corollary. A closed convex set in R" is the intersection of all closed
half-spaces containing it.

For an arbitrary set A in R, the closure A of A is the set of all points x in
R" for which there is a sequence {x*'} of points of 4 with

lim || x® — x| = 0.
k

Thus, if F is a closed set in R”, then F = F, and if A4 is an arbitrary subset of
R" then A is always a subset of its closure A.

The next theorem shows that the closure operation on sets preserves
convexity.

(5.1.7) Theorem. If C is a convex set in R", then the closure C of C is also
convex.

PrOOF. We must show that Ax + (1 — A)y € C for any x, y in C and any choice
of 2 with 0 < 4 < 1. Choose {x*}, {y¥} in C so that

lim |x* —x|| =0,  lim |y® —y|| = 0.
k k
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Then, since
IAx® + (1 = Hy®] — [Ax + (1 = Dy]ll
= [A[x% = x] + (1 = H[y* - y1I
< AIx® — x| + (1 = Hly® -y,
it follows that

lim [[[Ax® + (1 = )y®] — [Ax + (1 — Yyl =0,
k
so that Ax + (1 — A)y € C as required.

Recall that a point x is an interior point of a subset A of R" if there is
an r > 0 such that the ball B(x, r) centered at x of radius r is contained in A.
The interior A° of A is the set of all interior points of 4. Of course, A° = 4
but it may happen that the interior of 4 is empty even though A4 is not empty.
For example, if M is a subspace of R" and if M # R", then the interior M° of
M is empty. (See Exercise 1.)

The following result, which is the technical basis for the proof of the Support
Theorem, has a proof that is quite geometric and intuitive in character.
As you read the computational details of the proof, you should study the
accompanying diagrams to understand the motivation and intuition behind
these computations.

(5.1.8) The Accessibility Lemma. Suppose that C is a convex set with a nonempty
interior in R™. If x € C® and y € C, then the “half-open” line segment from x to y

xy=x+(1-Dy:0<1<1}

consists entirely of interior points of C.

PROOF. Suppose that z® = Ayx + (1 — 4,)y is a fixed point of [x, y). We need
to show that 2 e C° If 1, = 1, then ¥ = x € C° so we can restrict our
attention to the case when 0 < 4, < 1.

Since x is an interior point of C, there is an r, such that the ball B(x, r,)
centered at x of radius r, is contained in C. Now the function ¢ defined on
R" by

1
p(w) = 2 (29 — Aow]
0

1 —
has the property that

4o

1_)“0

(W) — o(x)ll = lw — x|

and that ¢(x) =y. Therefore, ¢ establishes a one-to-one correspondence
between the points of B(x, r,) and those of B(y, [4,/(1 — A¢)]r,)- Since y is in
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the closure of C, the ball B(y, [4,/(1 — 4,)]7,) must intersect C; in particular,
there must be a w € B(x, r,) such that ¢(w) e C 1 B(y, [10/(1 — A¢)]r,). Note
that

Z(O) = low + (l - Ao)(p(w).

The function ¥ defined on R" by
Y(u) = Aou + (1 — 4o)(W)
has the property that
(*) () — (Wl = Zollu — wil
and that y(w) = z'%. Since w € B(x, r,), there is an r; > 0 such that
B(w,r) < B(x, 1) = C.

Equation (*) implies that i establishes a one-to-one correspondence between
the points of B(w, r,) and those of B(z'?, A,r,). Butifu € B(w, r;) theny/(u) e C
since ue C, ¢(w) e C, and 0 < A, < 1. Therefore, B(z®, 1,r,) = C so that
2 e C.

This completes the proof.
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We now have the tools available to establish the Support Theorem.
(5.1.9) Support Theorem. Suppose that C is a convex set with interior points in

R" and that z is a boundary point of C. Then there is a nonzero vector a € R"
such that

forallx e C.

Two-Dimensional Diagram of the Support Theorem

ProoF. Let y be an interior point of C and, for each s > 1, let
Z,=y+s(z—Yy)

First note that z, ¢ C for all s > 1. For if z, € C then the Accessibility Lemma
implies that the line segment

[y.z)={y+tz—y):0<t<s}

consists entirely of interior points of C; in particular, z=1y + (z — y) € C°,
contrary to the fact that z is a boundary point of C.

Since z, ¢ C foreach s > 1, the Basic Separation Theorem implies that there
exist by # 0 such that

b,-x < b, -z,

for all x € C and for all s > 1. Since this inequality persists if we replace b, by
b,/||b,||, we can require that ||b|| = 1.

Let {s,} be any sequence for which s, > 1 and lim, s, = 1 and let a, = b,,.
Then ||a,|| = 1 for all k, so the Bolzano—Weierstrass Theorem implies that
some subsequence {a, } of {a,} converges to some a € R"; moreover, since
1 =lim, lae, Il = lal, it follows that a # 0. Also, for all x € C,

a‘x=lim(a, ‘x)<lim(a, *z, )=a-z
14 p kp
p P
This shows that a has the required properties.

The next result paves the way for the Karush—-Kuhn-Tucker Theorem. It
is a close relative of an old friend from Chapter 2—the “tangent plane below”
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characterization of convex functions. More precisely, we proved in (2.3.5) that
a function with continuous first partial derivatives on a convex set C in R"
is convex if and only if

(*) Jx) = fly) + VA(y)- (x — y)

for all x, y in C. If the differentiability hypothesis for f(x) is dropped, the
inequality (*) may not make sense since the gradient Vf(x) may not be defined.
However, we will now show that all is not lost when this differentiability
hypothesis on f(x) is dropped provided that C has a nonempty interior.

(5.1.10) Theorem. Suppose that f(x) is a convex function defined on a convex
set C with nonempty interior in R". If x© is an interior point of C, there is
a vector d in R" such that

fx) = f(x'9) + d-(x — x19)
forallx e C.

’/‘/‘y = f(X0) + d+(x — x)
I
I

! € '

)

>
-

Proor. Consider the set
epi(f) = {(x,r)e R"*';xe C,re R, r > f(x)}.

In Exercise 11 of Chapter 2, we called this set the epigraph of f(x) and we
observed that epi(f) is convex when f(x) is convex. Moreover, since C has
interior points in R", epi( ) has interior points in R**!; for example, if x'%’ € C°,
then (x'%, f(x®) + 1)) is an interior point of epi(f). Moreover, if x* e C°,
then (x'?, f(x'?)) clearly belongs to epi(f) but it is not an interior point of

epi(f).

(x10>’f(x<0>) + 1)
|
-7 ///

|/ //ePi(f)' -
l/////
~

|
i (X‘O’, f(x«])))
| ¢ |

v
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Thus epi(f) is a convex set with nonempty interior and (x©, f(x®)) is a
boundary point of epi( f) whenever x‘' is an interior point of C. Consequently,
for a given x'® € C°, we can apply the Support Theorem to obtain a vector
in R"*!, say a = (b, ¢) with b € R", c € R, such that

b-x +cr=a-(x,r) <a-(x?f(x?) =b-xO + ¢f(x?)

for all (x, r) in epi( f).

We shall now show that the component ¢ of the vector a must be nega-
tive. For if ¢ > 0, then b-x + cr cannot have b x© + ¢f(x'?) as an upper
bound for all (x, r) in epi(f) since (x, s) € epi(f) whenever (x, r) € epi(f) and
s>r. Also, if c =0, then b-x < b-x'? for all x e C. Moreover, b # 0 since
a=(b,c)#0. Since x© e C° there is a t > 0 such that x = x® + the C.
But then

b-x =b-x? + ¢|b|2 < b-x?,

which is impossible. This proves that ¢ # 0 and hence ¢ < 0.
Since ¢ < 0 and

b-x + cr <b-x? + ¢f(x?)

for all (x, r) € epi( f), it follows that

<1b>°x +r> <1b>°x‘°’ + f(x?)
¢ c

for all (x, r) € epi(f); in particular,

<1b>*x + f(x) > <1b>'x‘°’ + f(x©)
c ¢

for all x € C. Consequently, if we set d = —(1/c)b, then we obtain
fx) > f(x) + d-(x — x9)

for all x e C, which is the desired conclusion.

The geometric content of (5.1.10) can be simply stated as follows: Even if
a convex function f(x) is not differentiable, there are planes that play the role
of tangent planes to the graph of f(x) (more precisely, tangent hyperplanes
supporting epi f(x)).

A vector d € R" with the stated property of (5.1.10) is called a subgradient
of f(x) at x' and the set of all subgradients of f(x) at x), that is,

{deR™ f(x) = f(x?) + d-(x — xP) for all x € C}

is called the subdifferential of f(x) at x'®. It can be shown that the subdiffer-
ential of f(x) at x‘® reduces to a single vector d if and only if the first
partial derivatives of f(x) exist at x'?; in this case, d = Vf(x*). (See Exer-
cise 12).
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5.2. Convex Programming; The Karush—Kuhn-
Tucker Theorem

One of the most highly developed areas of study in nonlinear optimization
is convex programming which is concerned with the minimization of convex
functions subject to inequality constraints on other convex functions. The
whole area of linear programming falls under this heading, as does all of
the theory of least squares optimization. The basic tool for the development
of convex programming is the subgradient support theorem (5.1.10) for the
epigraph of a convex function, a result which rests in turn on the Support
Theorem.

Let us begin by defining the context of convex programming. Suppose that
f(x), g1(X), ..., g..(x) are real-valued functions defined on a subset C of R".
We are interested in the following program:

Minimize f(x) subject to
(P) 9:1(x) <0, g,(x)<0,..., gn(x) <0,
where xe C < R".

The function f(x) is called the objective function of (P) and the function
inequalities g,(x) <O, ..., g,.(x) < 0 are called the (inequality) constraints for
(P). A point x € C that satisfies all of the constraints of the program (P) is
called a feasible point for (P), and the set F of all feasible points for (P) is
the feasibility region for (P). If the feasibility region for (P) is not empty, we
say that (P) is consistent. If there is a feasible point x for (P) such that g,(x) < 0
fori=1,..., m, then (P) is superconsistent and the point x is called a Slater
point for (P). If (P) is a consistent program and if x* is a feasible point for
(P) such that f(x*) < f(x) for all feasible points x for (P), then x* is a solution
for (P).

We call (P) a convex program if the objective function f(x), the constraint
functions g,(x), ..., g.(x), and the underlying set C are all convex. In this case,
the feasibility region F for (P) is a convex set since

G, ={xeC:g(x) <0}

is easily seen to be convex fori=1,..., m and

F= ﬁl G,
The following example should help to clarify these concepts.
(5.2.1) Example. Consider the program
Minimize f(x, y) = x* + y*
subject to the constraints
x2—-1<0, y>—-1<0, e —-1<0,

where (x, y) e R%
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The feasibility region F for (P) is given by
F={(x,y)eR:x+y<0x| <1y <1}

so (P) is consistent. Moreover, there are many Slater points for (P); in fact,
any point interior to the triangular region bounded by the lines y = —x,
y = —1, x = —1 is a Slater point. In particular, (P) is superconsistent. Since
the objective and constraint functions are easily seen to be convex, (P) is
a convex program. It is easy to see that (0, 0) is the unique solution of (P).

To proceed with our study of convex programs, we need to explore two
concepts from real analysis—the supremum and infimum of a real-valued
function defined on a subset of R".

(5.2.2) Definitions. Suppose that f(x) is a real-valued function defined on
a subset C of R". If there is a smallest real number f§ such that f(x) < f for
all x € C, then f is called the supremum of f(x) on C and we write

sup f(x) = B.

xeC

If there is a largest real number a such that f(x) > « for all x € C, then a is
called the infimum of f(x) on C and we write

inf f(x) = a.

xeC

(5.2.3) Examples and Remarks
(a) Note that if x* is a global maximizer of f(x) on C, then

sup f(x) = f(x*).

xeC

Similarly, if x* is a global minimizer of f(x) on C, then

inf f(x) = f(x*).

xeC

(b) For a real number f to be the supremum of f(x) on C, it must be true
that f is an upper bound for f(x) on C, that is,

fx)< B

for all x € C. Consequently, if there are no upper bounds for f(x) on C then
the supremum of f(x) on C cannot exist. For example, if

C={(x,y))eR:0<x<1,0<y<1},
and if

flx, y) =

x+y

then the value of f(x, y) can be made as large as desired by choosing x and y
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to be sufficiently small positive numbers. Thus, there are no upper bounds
for f(x, y) on C.

Similarly, if there are no lower bounds for f(x) on C, then the infimum of
f(x) on C does not exist.

(c) If f(x) is a real-valued function defined on a subset C of R" and if there
are upper bounds for f(x) on C, then the supremum of f(x) on C exists
even though there may not be a global maximizer for f(x) on C. For example,
the function f(x) defined on R! by

f(x) = arc tan x

has all of its values in the open interval —n/2 < y < /2.

4y

\y = arc tan x

14

2

I
2

Moreover, sup, . g f(x) = /2 and yet f(x) has no global maximizer on R. Also
note that

inf f(x) = ——,

xeR 2

even though f(x) has no global minimizer on R.
(d) Consider the function defined on R? by

fx, y) = 7=

The graph of f(x, y) is a bell-shaped wave cresting at a height of 1 above the

line y = —x with the wave tails approaching the xy-plane from above. In
this case,
inf f(x,y) =0, sup f(x,y) =L
(x,y)€ R2 (x,y)€ R?
Any point on the line y = — x is a global maximizer but there are no global

minimizers for f(x, y).

The preceding examples should serve to clarify the meaning of supremum
and infimum of a function on a set. We now return to a discussion of convex
programming.
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Given a program (P), denote the infimum, if it exists, of the objective
function f(x) on the feasibility region F for (P) by M P, that is,

MP = inf {f(x)}.
xeF
This infimum exists whenever f(x) has a lower bound on the feasibility region
for (P). If we use the symbol g(x) for the vector function (g, (x), g(X), . - ., gm(X))
and if we agree that the notation

g(x)<0

means ¢g,(x) < 0,g,(x) <0, ..., g.(x) <0, then the following more suggestive
description of M P results:
MP = inf {f(x)}.
g <0
Note that if x* is a global minimizer for the objective function f(x) on the
feasibility region F for (P), then x* is a solution of (P) and MP = f(x*).

It may happen, even for convex programs, that the objective function
f(x) has a lower bound on the feasibility region for (P) (so that M P exists)
and yet (P) has no solution. This situation is illustrated by the following
example.

(5.2.4) Example. Consider the convex program

P) Minimize f(x) = e* subject to
gi(x)=x<0 for xeR'.

In this case, the feasibility region F for (P) is the set of nonpositive real numbers
and so
MP = inf {e*} =0
x<0

but there is no feasible point x* for which f(x*) = 0, because ¢* > 0 for all real
numbers x.

Linear programming is one of the most important areas in the field of
constrained optimization. Its mportance stems in part from the wide range
of applied problems in which linear programs arise, and in part from the
effectiveness of the mathematical methods that have been developed to solve
linear programs. The following example will show how linear programming
fits into the context of convex programming. We shall return to this example
later to apply results on convex programming such as the Karush—Kuhn-
Tucker Theorem to derive conclusions concerning the solution of linear
programming problems.
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(5.2.5) Example (Linear Programming). The familiar minimum standard
form for a linear programming problem is formulated as follows: Given
am x n-matrix A = (a;) and constants b, , ..., b,; ¢, ..., C,, We seek to

(Minimize b, x, + byXx, + - + b

x'l
subject to the constraints
11Xy + ayXy + 000+ ay,X, 2 €y,

(LP) - Ay1Xy + AgaXy + " + 95,X, = €y,

A1 X1 + Xy + 7+ ppXy = Cpps

(where x;, >0, x,>0,..., x,>0.

An illustration of a concrete problem that can readily be described in terms
of a linear program in minimum standard form is the classical Diet Problem.
Suppose that we seek to plan a diet using n foods F,, ..., F, that will provide
the minimum daily requirements of m nutrients N, ..., N,, at minimum cost.
If we let

b, = cost (in cents per ounce) of food F; fori=1,...,n,

Cj

minimum daily requirement (in milligrams) of nutrient N;
forj=1,...,m,

a; = number of milligrams of nutrient N; in one ounce of food F;
fori=1,...,nandj=1,...,m,

x; = number of ounces of food F; in a given diet fori =1, ..., n,

then (LP) is precisely the mathematical formulation of the Diet Problem.

If we agree that u > v means that u; > v; for all i, then we can use vector
notation to write the minimum standard form of a linear program in
the following compact form: Given an m x n-matrix A and vectors b € R",
ce R™

{Minimize b-x subject to the
lconstraints Ax>¢c, x>0.

(LP)
If the ith row vector of A is denoted by a'”, then the constraints Ax > ¢ can be
written as
a¥-x > ¢, i=1,2...,m

The functions f(x) = b-x and g;(x) = ¢; —a?”+x,i =1, 2,..., m, are linear
and therefore convex. Also, the set C = {x € R™: x > 0} is convex, so (LP) can
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be reformulated as a convex program as follows:
(Minimize f(x)=b-x
subject to the constraints

g1(x) =¢c; —aVx <0,

gm(x) =Cy — a("l)'x < 0»

 where xeC={yeR:y>0}

Thus, every linear program is also a convex program.

Our first objective in our study of the general convex program,

Minimize f(x) subject to

(P) gl(x) SO,..., gm(x) SO,
where x e C < R"and f(x), g,(x), ..., gu(x) are convex functions
defined on a convex set C,

is to investigate the sensitivity of the value of

MP = inf {f(x)}
xeF
to slight changes in the constraints. For this purpose, we define for each z € R™
a program (P(z)) as follows:

Minimize f(x) subject to

(P(2)) Gi(X) <245ty GulX) < 2

where x e C < R" and f(x), g,(x), - .., gm(x) are convex functions
defined on a convex set C.

Since the function g;(x) = g;(x) — z; is convex (Why?) for i =1, ..., m, it is
an easy matter to rewrite (P(z)) in the standard form (P) for a convex program.
Also, note that (P) is identical to (P(0)) and that (P(z)) can be thought of as
a “perturbation” of (P).
Suppose that we denote the feasibility region of (P(z)) by F(z) and set
MP(z) = inf {f(x)}.
xe€ F(z)

We are interested in investigating questions of the following sort: If z is a
vector in R™ that is close to 0, how close is MP(z) to MP(0) = MP? Which
of the constraints g;(x) < z; have the greatest effect on the value of MP(z) as
z varies? which have the least effect? Are there any constraints g;(x) < z;
that have no effect at all on MP(z) as z varies near 0? As we will see, the
answers to these and other related questions will flow from the convexity
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of the function
z—> MP(z)

on its domain in R™.

It is convenient to regard the domain of the function M P(z) to be the set
of all ze R™ for which the feasibility region for (P(z)) is not empty. This is
a somewhat unconventional choice because the objective function f(x) may
have no lower bound on the feasibility region for (P(z)); in this case, we assign
the value —oo to M P(z). Of course, if f(x) does have a lower bound on the
feasibility region for (P(z)) and this region is nonempty, then M P(z) is a finite
real number. Thus, M P(z) is either equal to —oo or to a finite real number at
any point z in its domain.

(5.2.6) Theorem. If (P) is a convex program and if (P(z)) is the perturbation of
(P) by z € R™, then the function M P(z) is convex and its domain is a convex

subset of R™. If (P) is superconsistent, then 0 is an interior point of the domain
of MP(z).

PROOF. Suppose that z'V, z® belong to the domain of MP(z) and that
0 < 1 < 1. Then, in terms of the vector function notation g(w) < u for the
constraints g,(w) < u,, ..., g.(W) < u,, we see that Ax" + [1 — A]x? is
feasible for (P(1z'V + [1 — 1]z'?)) whenever x'V, x'? are feasible for (P(z'")),
(P(z'?)), respectively, because

g(Ax® + [1 — 2]x?) < Ag(xV) + [1 — A]g(x?)
< iz + [1 — A]22.

Thus, the domain of MP(z) is a convex subset of R™. Also, if MP(Az'" +
[1 — A]z®) is a finite real number, then

MPQzZV + [1 — A]2P) = inf{f(x): x e C, g(x) < 1z'V + [1 — A]z2¥}

= inf{ f(x): x = AxY + [1 — 1]x® where
x, x® e C and g(x) < 1zV + [1 — A]z?}

< inf{ f(x): x = AxV + [1 — A]x® where
xM, x® e C and Ag(xV) + [1 — A]g(x?)
<Az + [1 — A]z?}

< inf{f(Ax" + [1 — A]x®): xM, x? € C and
g(xV) < 2V, g(x?) < 2

< inf{Af(x) + [1 — 211 (x?): x*), x» e C and
g(x1) < 21, g(x?) < 22}

= AMP(@zV) + [1 — AJMP@z?).
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On the other hand, if MP(1z") + [1 — 1]z'?) = —oo, then surely M P(1z") +
[1—1]2®) < AMP(zV) + [1 — 2]JMP(z®). Consequently, M P(z) is convex
on its domain.

Now suppose that (P) is superconsistent, that is, suppose that there is a
w € R" such that g,(w) <O0fori=1,...,m. Let

r=min{—g;w): 1 <i<m},

then r > 0, and for any z in the ball B(0, r) centered at 0 of radiusr, —r < z; <r
for all i so that

gw < —r<z, i=12...,m

Therefore, (P(z)) is a consistent program for all z € B(0, r). This shows that 0
is an interior point of the domain of M P(z).

(5.2.7) Remarks. The following comments are in order with regard to the
conclusion of (5.2.6).

(1) Ifz" and z» are points in the domain of MP(z) and if MP(z!) = —o0,
then M P(z) is equal to —oo on the entire half-open line segment

[z, 2?) = {42V + [1 — A]2P: 0 < A < 1}
joining z'V to z». This follows at once from the inequality
MP(QZY + [1 — 112®) < AMPEY) + [1 — A]JMP(E?).

Thus, if MP(z) assumes the value —oo at any point of its domain, it is
identically equal to —oo except possibly at boundary points of its domain.

(2) If MP(z'?) is finite at an interior point of the domain of M P(z), then
MP(z) is finite on its entire domain. For if MP(z'V) = —oo at some point z!)
in the domain of MP(z), then there exist z'? in the domain of MP(z) and /,
such that 0 < 1, < 1 and

29 = oz + [1 — 45122

Thus, z® is on the half-open line segment [z‘V), z?) joining z'" to z'?, so
MP(z'®) = —co by (1) above. This contradicts the assumption that M P(z!?)
is finite, so M P(z) must be finite on its entire domain.

In combination with (5.2.6) and (5.1.10), Remark (5.2.7)(2) yields the fol-
lowing result.

(5.2.8) Theorem. If (P) is a superconsistent convex program such that MP =
MP(0) is finite,then M P(z) is finite on its entire domain and there exists a vector
A € R™ such that » > 0 and

MP(z) > MP(0) — \-z
for all 7 in the domain of M P(z).
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Ay
Qx\«LMm

e
Y=MP - Az

Y = MP(z)

PRrOOF. The first assertion is an immediate consequence of (5.2.6) and (5.2.7)(2)
in the paragraph preceding the statement of this theorem. Moreover, these
results show that 0 is an interior point of the domain of M P(z) and that M P(z)
is a convex real-valued function on this domain so Theorem (5.1.10) implies
that there is a vector — A € R™ such that

MP(z) > MP(0) — Lz

for all z in the domain of M P(z).

All we have left to do is to prove that A > 0. To this end, suppose that some
component A; of A is negative. Since 0 is an interior point of the domain of
MP(z), there is a positive number r such that the ball B(0, r) centered at 0
radius r is contained in the domain of M P(z). In particular, if 2 is the vector
with r/2 at the ith component and O’s elsewhere, then z™ is in the domain of
M P(z) and

MP(z?) > MP(0) — A2 = MP — %A,..

But z¥ > 0, so MP(z") < MP(0) = MP, which contradicts the preceding
inequality since 4; < 0. Therefore, A > 0 and the proof is complete.

If (P) is a convex program for which MP is finite and for which there is
a A € R™such that A > 0 and

MP(z) > MP(O) — Az

for all z in the domain of M P(z), then A is called a sensitivity vector for (P).
Theorem (5.2.8) simply guarantees that superconsistent convex programs
always have sensitivity vectors.

Keep in mind that if M P(z) is differentiable at z = 0, then the vector A in
(5.2.8) can be taken to be VM P(0) since M P(z) is a convex function. However,
the following examples show that M P(z) may fail to be differentiable at z = 0.

(5.2.9) Examples
(a) Consider the following convex program:

(P) Minimize ./x*+ y* subjectto x+y <O.
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In this case, it is evident that the corresponding perturbation

(P(z)) Minimize ./x?>+ y* subjectto x+y <z
is minimized at (0, 0) for z > 0 and at (z/2, z/2) for z < 0. Therefore MP(z) =0
for z> 0 and MP(z) = —z/ﬁ for z < 0, so MP(z) is not differentiable at
z=0.

ry

L— MP(2)

/

(b) Consider the linear program
P Minimize —2x —y subject to
x+y<l, 0<x<1, 0<y.
We will investigate the variation in MP(z) for z that vary the constraint
x + y — 1 < 0 but hold the constraints 0 < x < 1,0 < y fixed. The feasibility
region F and the level lines for the objective function are displayed in the
following diagram:

4

\ D\ \ level lines for —2x — y
\ O, He
AT
Y R\
VRN N
|\ R - \ » x
(1’ 0)

If we replace the constraint x + y — 1 <0 by x + y — 1 < z and hold the
other constraints fixed (which amounts to perturbing (P) by the vector
z = (z, 0,0, 0) (Why?)), we obtain the feasibility regions displayed below:

b Y
v\ 4‘\)’ \ \\ (z=0) \ \ \\ ﬂ\ (1<2=0)
\ VD \‘\\‘,___ level lines for ==\ \
\ SN e (L D)
A EARERIR O\ \
NRN N X \ > x
NI e \ >
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The objective function is minimized at (1, z) for z > 0 and at (z + 1, 0) for
—1 <z <0. Therefore, MP(z) = —2(1) —z= —2 — zforz > 0 and MP(z) =
—2(z+1)= —2z—2for —1 <z <O0. It follows that the “cross section” of
the graph of M P(z) in the direction of these z at 0 looks like

Ay

cross section of the
f— graph of MP(z)

Evidently, M P(z) is not a differentiable function at z = 0.

The next example gives a convex program (P) such that M P(z) is not even
continuous at 0.

(c) (Duffin) Consider the convex program

Minimize e~” subject to
(P)

VX2 +y? —x<0.

Note that the given constraint implies that y =0 and x > 0 because
x? 4 y* > x for all x and y. Consequently, MP(0) = ¢ ° = 1. On the other

hand, if z > 0, then
VX2 +yP —x<z

implies that y? < 2zx + z?2 so the feasibility region for (P(z)) has the following
form:

4y
o T s T
-

//{///@

_%K/ <
A

////
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Therefore, MP(z) = inf,_ge™ =0, so MP(z) is the discontinuous convex
function defined for z > 0 by

1 ifz=0,
0 if z>0.
In particular, M P(z) is not differentiable at z = 0.

The following diagram for the single constraint case suggests the general
situation:

MP(z) = {

N* y
/' 0. MP) y = MP()
-~k

y = MP

Note that M P(z) is a decreasing function of z. In fact, it is true in general that
if zV, z® are in R™ and if z" < z®, then MP(z'?) < MP(z'V).

The following example suggests the rationale for the term “sensitivity
vector” for A.

(5.2.10) Example. Suppose that for a given convex program with three
constraints

@) {Minimize f(x) subject to
gl(x) < 0’ gZ(x) < 0’ g3(x) < 09

we find a sensitivity vector to be A = (100, 1, 0). Then if z = (z,, z,, z3) is in
the domain of M P(z) we have

() MP(@) > MP(0) — A+z = MP — 100z, — z,.

The inequality (x) shows that if the first constraint g,(x) < 0 is relaxed to
g:(x) < 1 while the other two constraints are held at 0, then

MP(1,0,0) > MP — 100.

Thus, there is a potential improvement of 100 in the infimum of the objective
function if we relax the first constraint. On the other hand, if we relax the
second constraint g,(x) < 0 to g,(x) < 1 and hold the first and third constraints
at zero, then

MP(©O,1,0) > MP — 1.

Therefore, the relaxation of the second constraint by 1 can result in an
improvement of at most 1 in the infimum of the objective function. Finally, if
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g;(x) < 0is relaxed to g5(x) < 1 while the first two constraints are held fixed,
then

MP(0,0,1) > MP,

that is, there is no potential improvement in the infimum of the objective
function.

In general, the sizes of the components of a sensitivity vector A for (P)
provide a measure of the sensitivity of the infimum of the objective function
to small relaxations in the corresponding constraints. Large components
correspond to the constraints that are the most important for the value of this
infimum and the smallest components to the constraints that are the least
important. Relaxations of constraints corresponding to zero components have
no effect at all on this infimum.

With the help of the next theorem, we will see that if (P) is a superconsistent
convex program, then (P) can be replaced with an equivalent unconstrained
minimization problem.

(5.2.11) Theorem. Suppose that
Minimize f(x) subject to
(P) g:1x)<0,..., gu(x)<0,
where xeC

is a convex program for which there is a sensitivity vector . Then

MP = inf { fx + i iigi(X)}-

xeC

ProoF. For each z in the domain of M P(z), we know that
MP(z) > MP — \-z

In particular, if x € C, then z = (g,(x), ..., g.(x)) = g(x) is in the domain of
MP(z), so

MP(g(x)) + Zm‘i 2:gi(x) = MP.

It follows immediately from the definition of M P(g(x)) that f(x) > M P(g(x)).
Consequently,

fx) + 21 2:gi(x) > MP

for all x € C and so

inf {f(x) + i /l,.g,.(x)} > MP.
i=1

xeC
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On the other hand, because 4, > 0fori=1,...,m,

inf{ 00+ 3 hgx):xe c} < inf{ f00 + 3 Agix):xeC gx) < o}
i=1 i=1

<inf{f(x):x € C, g(x) < 0} = MP.
We conclude that

MP = inf { f(x) + i iigi(X)},
i=1

XeC

which completes the proof.

Of course, if (P) is a superconsistent convex program such that M P is finite,
then (5.2.8) implies that there is a sensitivity vector A for (P) so the conclusion
of (5.2.11) holds in this case.

To pursue the connection established in (5.2.11) between constrained and
unconstrained problems a bit further, it is useful to introduce the Lagrangian
function.

(5.2.12) Definition. The Lagrangian L(x, 1) of a convex program
Minimize f(x) subject to
(P) g:1x)<0,..., g.(x)<0,
where xeC

is the function defined by

Lix,3) = /09 + 3. Zx)

forxeCand A > 0.

Notice that the Lagrangian L(x, A) is a function of m + n variables where
m is the number of inequality constraints and n is the number of variables
involved in the objective and constraint functions. Also note that if (P) is
a superconsistent convex program such that MP is finite, then a sensitivity
vector A exists and

MP = inf {L(x, 1)}
xeC

by (5.2.11).

The following theorem is the central result in the theory of convex
programming.

(5.2.13) The Karush—Kuhn—Tucker Theorem (Saddle Point Form). Suppose
that (P) is a superconsistent convex program. Then x* € C is a solution of (P)
if and only if there is a A\* € R™ such that:
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() A*=>0; .
(2) L(x*, &) < L(x*, A*) < L(x, A*) for all x e C and all & > 0;
(3) M*g(x*)=0fori=1,2,...,m.

Proor. If x* is a solution of (P), then x* € C, g(x*) < 0 and f(x*) = MP.
According to (5.2.8), there is a sensitivity vector A* > 0 in R™, consequently,
(5.2.11) asserts that

f(x*) = inf L(x, A*).

xeC

Also, since A* > 0 and g;(x*) < Ofori=1,..., m, it follows that
SOx*) = f(x*) + ), A¥gi(x*) = L(x*, 1*).
i=1
Consequently,
L(x*, A*) < L(x, A*)
for all x e C and A¥g,(x*)=0fori=1,2,...,m.

To prove the left-hand inequality in (2) we note that for any A > 0 in R™,

Lix*, 4% = L, 3) = 3 (GF = g

= -3 Agi(x*) =0
i=1
because 1¥g;(x*) =0, 4; = 0 and g,(x*) <Ofori=1,2,..., m Therefore
L(x*, A*) — L(x*,2) >0

forall A > 0in R™. This completes the proof of (1), (2), and (3) when x* is given
to be a solution of (P).
On the other hand, suppose x* € C and A* > 0in R™ satisfy (2) forall x e C
and all A > 0in R™ For a given i such that 1 <i <m, let
AF if j # 1,
T+ =i
Then A = (A?) > 0 and (2) implies that

0 > L(x*, A7) — L(x*, A*) = g,(x*),

M —

so that x* is feasible for (P). Moreover, (2) also implies that
S(x*) = L(x*,0) < L(x*, M%) = f(x*) + ) A¥gi(x*).
i=1
But A* >0, g;(x*) <Ofori=1,2,..., m,so that

fx*) + 2 Egix*) < f(x%).
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We conclude that
Jx*) = f(x*) + ), AFgix*) = L(x*, 1¥)
i=1
and also that Afg;(x*) =0 fori=1, 2, ..., m. If we apply (2) and use the
following simple facts about the infima of functions on sets:

(@) if A = B, theninf, .z {h(x)} < inf, ., {h(x)};
(b) if h(x) < k(x) for all x € A4, then

inf {h(x)} < inf {k(x)},
Ye A XeA
we see that
f(x*) = L(x*, A*) = inf{L(x, A*): x € C}
<inf{L(x,A*):x€ C, g,(x) <0,..., gn(x) < 0}

= inf{f(x) + i Afgi(x):xeC,g,(x) <0,...,g.(x) < 0}
i=1

<inf{f(x):xe C,g,(x) <0,...,gn(x) <0} = MP.

We conclude that x* is a feasible point for (P) such that f(x*) = MP, that is,
x* is a solution of (P).

A point (x*, A*) such that x* € C, A* > 0 and that satisfies the inequality
(1) L(x*,2) < L(x*,A*) < L(x, A*)forallxe C,A > 0
is called a saddle point for the Lagrangian of (P). Condition (3), in (5.2.13).
3) AMgi(x*=0,i=1,2,...,m

is referred to as the complementary slackness condition. The Karush—Kuhn—
Tucker Theorem (5.2.13) asserts that if (P) is a superconsistent convex program,
then x* € C is a solution for (P) if and only if there is a = > 0 in R™ such that
(x*, A*) is a saddle point of the Lagrangian of (P) and such that the comple-
mentary slackness condition is satisfied. However, the proof of (5.2.13) yields
even more information. It shows that if (x*, A*) is a saddle point of the
Lagrangian of any convex program (P), then:

(1) MP is finite and x* is a solution of (P).
(2) The complementary slackness condition
A¥gi(x*) =0, i=12....,m
is satisfied.

If we impose the restriction that the objective and constraint functions have
continuous first partial derivatives in (P), we obtain the following version of
the Karush—Kuhn-Tucker Theorem.
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(5.2.14) The Karush—Kuhn-Tucker Theorem (Gradient Form). Suppose that
(P) is a superconsistent convex program such that the objective function f(x) and
the constraint functions g,(X), ..., g,.(x) have continuous first partial derivatives
on the underlying set C for (P). If x* is feasible for (P) and an interior point of
C, then x* is a solution of (P) if and only if there is a A* € R™ such that:

(1) A¥*=0fori=1,2,...,m;
2) A¥g,(x*)=0fori=1,2,...,m;
(3) Vf(x*) + Y1, A¥Vgi(x*) = 0.

Proor. If x* is a solution of (P), then (5.2.13) asserts that there is a A* in R™
satisfying (1) and (2) for which (x*, A*) is a saddle point of the Lagrangian of
(P). But then

L(x*, A*) < L(x, 1*)

for all x € C, so x* is a global minimizer for h(x) = L(x, A*) on C. Since x* is
an interior point of C and since h(x) has continuous first partial derivatives
on C, it follows that Vh(x*) = 0, that is, the gradient condition (3) holds.

Conversely, suppose that x* € C and A* € R™ satisfy conditions (1), (2), and
(3). If x is any feasible point for (P), then

160> 109 + 3 2900

> [f(x*) + Vf(x*) - (x — x*)] + 2 AFLgi(x*) + Vgi(x*) - (x — x*)]

because A¥ >0, g;(x) <0 fori=1,..., mand because f(x), g;(X), ..., gn(X)
are convex functions (cf. (2.3.5)). It follows that

00 > [f(X*) +3 /li*g.-(X*)] + [Vf(x*) +3 z.*ng(x*)]-(x —~ x¥)
= f(x*)

because of (2) and (3), so x* is a global minimizer for f(x) on the feasibility

region for (P), that is, x* is a solution for (P).

The following example illustrates how the gradient form of the Karush—
Kuhn-Tucker Theorem can be applied to help locate solutions of convex
programming problems.

(5.2.15) Example. Consider the program
Minimize f(x;, X,) = x3 — 2x, + x3 + 1
p subject to the constraints
®) g1(x1, X3) =Xy + x5 <0,

ga(xq, X3) = x% —-4<0.
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It is evident that (P) is a superconsistent convex program satisfying the
differentiability conditions of (5.2.14). To find a solution x* = (x¥, x%) for (P),
we note that there must be a A* = (4¥, 1%) such that
) AF=0,A2=0;
@ AT +x3)=0,

Bl —41=0;
(B) 2xF — 2+ A¥ + 2%x, =0,

2x% + A% =0.
It is not difficult to check that the system (1), (2), and (3) has only two
solutions

X

0, =0, =0,

i, =1, =0

1, X

X

s X

[l N
I

[N

DX ¥

The first of these must be discarded as a possible solution because x* = (1, 0)
is not feasible for (P). On the other hand, x* = (3, —3) is feasible so (5.2.14)
implies that this is the one and only solution of (P).

The following result shows that the vectors A* produced in the Karush—
Kuhn-Tucker Theorem are precisely the same as the sensitivity vectors
introduced in the remarks following (5.2.8).

(5.2.16) Theorem. Suppose that (P)is a convex program and that x* is a solution
of (P). If M* is a vector in R™ such that (x*, A*) satisfy the K arush— Kuhn— Tucker
Theorem conditions:

() A*>0;
(2) L(x*, A) < L(x*, A*) < L(x, A*) forall x e C and all \. > 0
3) Mg (x¥)=0fori=1,2,...,m;

then \* is a sensitivity vector for (P); that is,
MP(z) > MP — \A*-2
for all z in the domain of M P(z).

ProOF. First, we note that M P is finite because x* is a solution to (P). If z
is in the domain of MP(z), then there is an x € C such that g,(x) < z; for
i=1,2,..., m By virtue of (3), we see that

MP = f(x*) = f(") + 3. A7,x")

= L(x*, A¥%),
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and (2) yields
L%, 3% < L(x, k%) = f00 + 3. 42g,(x).

Therefore, because Y ™, 1¥g,(x) < A* -z, it follows that
MP < f(x) + A*-z
for any x that is feasible for P(z). But
MP(z) = inf{f(x): xe C, g,(X) < zy,..., gn(X) < 2,,)
so we conclude that
MP < MP(z) + A*:z

for all z in the domain of M P(z) so A* is a sensitivity vector for (P).

The components A, ..., A¥ of a vector A* > 0 satisfying (1), (2), and (3)
of (5.2.13) are often referred to as Karush—Kuhn—Tucker multipliers for the
corresponding convex program (P). The connection established in (5.2.16)
between vectors of the Karush—Kuhn-Tucker multipliers and sensitivity
vectors provides us with a two-edged sword. On the one hand, the theoretical
existence of the Karush—Kuhn-Tucker multipliers sets up the transfer from
a given constrained problem to the corresponding unconstrained problem

Minimize [f(x) + Y i}"gi(x)]
xeC i=1

via (5.2.11). On the other hand, if we use the Karush—Kuhn-Tucker Theorem

to find A*, then A* provides information about the sensitivity of (P) to its

constraints (cf. (5.2.10)). For instance, the convex program

Minimize f(x;, x;) = x} — 2x; + x3 + 1

) subject to the constraints
P
g1(x1, x3) = x; + x, <0,

ga(x1, %) = x; —4 <0,
solved in (5.2.15) produced the Karush—Kuhn—Tucker multipliers AF = 1,
A% = 0. Therefore, according to (5.2.11), the minimum MP of (P) is also the
minimum of the unconstrained problem
Minimize h(x,, x;) = x? — x; + x3 + x, + L.

Also, by virtue of our interpretation of sensitivity vectors in (5.2.10) we see
that relaxations of the constraint x? — 4 < 0 have no effect on this minimum.
Note that these two observations are just two ways of describing the same
feature of this problem.
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5.3. The Karush—Kuhn—Tucker Theorem and
Constrained Geometric Programming

In Section 2.5, we saw how the Arithmetic-Geometric Mean Inequality can
be used to solve unconstrained geometric programs; that is, programs in which
we seek to minimize a posynomial

3

g = g C;

Fij
L
1

J
over all t=(t,,...,t,) such that t; >0 for j=1, ..., m, where ¢; >0 for
i=1,...,nand o;eR for all i, j. This technique extends to constrained
problems in which we seek to minimize a posynomial objective function
subject to posynomial constraints. Again, the Arithmetic—Geometric Mean
Inequality is the star of the show, but we will see that the Karush—Kuhn-
Tucker Theorem plays a strong supporting role by providing the theoretical
justification that the technique works in general.

Our development of constrained geometric programming begins with the
following useful variant of the Arithmetic—Geometric Mean Inequality (2.4.1).

(5.3.1) Theorem (Extended Arithmetic—Geometric Mean Inequality). Suppose
that x4, ..., x, are positive numbers. If 8,, ..., b, are numbers that are all positive
orall zeroand if A =6, + -+ + 6,, then

(5 (1))

under the conventions 0° = 1 and (x;/0)° = 1.
Equality holds in this inequality if and only if 6; =6, =-"-=86,=0o0r

(&
%= I(é "f)

ProOF. Suppose first that all of the §,;’s are positive numbers. Note that §;/4 is
positive fori = 1,2, ..., n and that

fori=1,...,n

5, 5 5,
% T
ATt

Consequently, if we apply the Arithmetic—Geometric Mean Inequality (2.4.1)
to (Ax;)/6; and 6;/A fori = 1,2, ..., n, we obtain

n n (8 [Ax; no(Ax\ o
E=5 ()00
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with equality holding if and only if

But then

that is,

so the equality condition holds.
Finally, note that if all of the ¢,’s are equal to zero, then both sides of the
prescribed inequality are equal to 1. This completes the proof.

The next definition describes the context of constrained geometric
programming,.

(5.3.2) Definition. Suppose that g,(t), g,(t), ..., g.(t) are posynomials in m
positive real variables t = (¢, ¢,, ..., t,,). Then the program

Minimize g,(t) subject to the constraints
(GP) gi)<1, gM<1.. gl
where ¢, >0, ¢t,>0,..., ,>0

is called a constrained geometric program.

We will now show how the Arithmetic—Geometric Mean Inequalities
(2.4.1) and (5.3.1) can be used to solve concrete geometric programs.

(5.3.3) Example. The following simple problem is discussed in Geometric
Programming: Theory and Applications by R. J. Duffin, E. L. Peterson, and
C. Zener (Wiley, New York, 1967), a book by the founders of geometric
programming which provided the first systematic treatment of the subject.

“Suppose that 400 cubic yards of gravel must be ferried across a river.
Suppose the gravel is to be shipped in an open box of length ¢, width ¢,, and
height t;. The sides and bottom of the box cost $10 per square yard and the ends
of the box cost $20 per square yard. The box will have no salvage value and
each round trip of the box on the ferry will cost 10 cents. What is the minimum
total cost of transporting 400 cubic yards of gravel?
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As stated, this problem can be formulated as the unconstrained geometric
program

Minimize + 40t,t5 + 20t,t5 + 102, t,

1l2t3
where ¢, >0, t,>0, t;>0.

We urge you to solve this unconstrained problem by the methods developed
in Section 2.5 just to refresh your memory of the unconstrained case. You
should come up with a minimum total cost of $100 and optimal dimensions
of the box as t¥ = 2 yards, t¥ = 1 yard, t¥ = { yard.

Suppose that we now consider the following variant of the above problem
(which was also discussed by Duffin, Peterson, and Zener in their book): It is
required that the sides and bottom of the box should be made from scrap
material but only 4 square yards of this scrap material are available.

This variation of the problem leads us to the following constrained geo-
metric program:

Minimize

+ 40t ,t
Lttty 20

subject to  2t,t5 + t;t, < 4,
where ¢, >0, t,>0, t;>0.

If we divide the constraint inequality by 4, we obtain a geometric program
in the standard form of (5.3.2) with

golty, L, t3) = + 401,13,
Lylyls
Lty 11l
tioty,ty) = =2 4 L2
g1(ty, ta, t3) 2 4

Now proceed as follows: For any 4 > 0, [g,(t)]* < 1so forany é; > 0,5, > 0,
we have

40
9o = go()[9,(0]* = <t 0 + 40[2'5)(91(‘))/1

_ 40 401,14
B <51 (51[1f2f3> " 62( 128 ))wl(ml‘

If we now impose the restriction that §; + §, = 1 and apply the Arithmetic—
Geometric Mean Inequality (2.5.1), we obtain

40  \21/40¢t,t5\% 4
gO(t)Z<<51[1tzt3> < 0, > ><gl(t)>

40\ (40
=<<5—1> <5_2> (tl)_a'(tz)(_6l+62)(t3)(—61ﬂm)(gl(t))l-

Next, we focus on the factor [g¢,(t)]* in the last expression and apply the
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Extended Arithmetic—Geometric Mean Inequality (5.3.1) to it to obtain

tits  tit )\t
o = (ffs Ll
g:(t) < 2 + 4
S o () (L)
= 25, ) \4s,
(@) e
3 4

provided that 1 = 8, + J,. If we combine the conclusions of the preceding
calculations, we see that

40\ (40\%2( 1 \>( 1 \% vor
oa=((5)' (2) (s (as) o -

= 0(Jy, 95, 63, 04)
provided that

o, + 6, =1,

O3+ 0, =4,

-0, + 03+ 6, =0,

—0; + 0, + 0, =0,

—0; + 0, + & =0,
6,>0,0,>0,6,>0,0, > 0.

(The last three equations result from equating the exponents of ¢, t,, t; to
zero.) This system has the unique solution

ot=3 er=4  or=4  or=
and the corresponding value of v(d,, 8,, 03, 8,) 1s
v(, 3, 3, 3) = 60.

Thus, 60 is a lower bound for the value of g,(t) subject to the constraint
g,(t) < 1. To find the minimum value of g,(t) and a mlmmlzer t* = (¢}, 1%, %)
yielding this minimum value, we seek those values t¥, t, t* that force equahty
in the Arithmetic—Geometric Mean Inequalities (2.4. 1) and (5.3.1) and simul-
taneously in the constraint g, (t) < 1. If we can find such t¥, t%, t%, then we will
know that the minimum of g,(t) subject to this constraint is actually 60 and
that t* = (¢t¥, t%, t%) is the minimizing point.

The equality conditions for the Arithmetic—Geometric Mean Inequalities
(2.4.1) and (5.3.1) imply that

40 403y

2k ek 1
L FRZ1ES 3

W=

>

ey tfex

2 4
3 3
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(Why are the two terms in the first equation equal to 60?) Since 6%, 6} are
positive, equality must hold in the constraint g,(t) < 1 so

1 =8,K + 8,K = 2K,

and hence K = 3. These considerations lead us to the following system of
equations:

gy =1,
2%t% =1,
=1,
t¥ty =

We can convert this system to a system of linear equations in log t¥, log t%,
log % by taking logarithms

log t¥ + log t% + log t¥ = 0,
logt¥ + logt¥ = —log?2,

log t¥ +logt¥ =0,

log t¥ + log t% = log 2.

It is easy to check that t* = 2, t¥ = 1, t¥ =} is the unique solution of this
system. Consequently, the minimum cost for ferrying the gravel is $60 and
the optimal dimensions of the box are

t¥ =2, =1, =

N

We solved the geometric program in the preceding example by applying
the Arithmetic—Geometric Mean Inequality (2.4.1) to the objective function
go(t) and the Extended Arithmetic—Geometric Mean Inequality (5.3.1) to the
constraint g,(t) < 1. What if we had applied (2.4.1) to both functions? This
would have resulted in the following system of equations for d,, d,, d3, 0,:

o + 9, =1,
S+ 08, =1,

-4, +03+0,=0,
— 04+ 0, +0,=0,
— 8y + 85 + 6 =0.

This is an inconsistent system of equations. In other words, if we use (2.4.1)
on both the objective and the constraint functions, and if we then add the
equations resulting from setting the exponents of t,, t,, t; equal to zero, we
have imposed too many restrictions on 6,, d,, 05, J,.

It would seem from this that our solution of the constrained geometric
program in (5.3.3) was a stroke of good fortune, a lucky break in a special
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situation. However, with the help of the Karush—Kuhn-Tucker Theorem, we
can show that the technique applied there actually works in general. We will
now develop this technique in the context of the general constrained geometric
program (GP) defined in (5.3.2).

Because each of the k + 1 posynomials in the standard constrained geo-
metric program (GP) (see (5.3.2)) may consist of several terms, we need to
arrange all of the terms so that the resulting notation is simple and descriptive.
One reasonable way to do this is to begin by counting the terms of the
objective function g,(t) from left to right, listing them from 1 to say n,, and
then continuing by counting the terms of the first constraint posynomial g, (t)
from left to right, listing them from n, + 1 to say n,, and so on until we count
the terms of the last constraint posynomial g,(t) from left to right, listing them
from n,_, + 1 to n, = p. The jth term in this counting scheme will be denoted
as follows:

u(t) = c;t{esiz. .ty

With this notational scheme, we can rewrite the standard constrained geometric
program (GP) as

(Minimize go(t) = u,(t) + =+ + u,(t)
subject to the constraints
G1() = thyg oy () + -+ + uy () < 1,
(GP) {4 oreeeeme

GO =u, O+ +u, () <1,

(where ¢, >0, t,>0,..., t,>0, and n =p.

Application of the Arithmetic-Geometric Mean Inequalities (2.4.1) and
(5.3.1) to the functions g, (t), g,(¢), . - -, gi(t) just as in Example (5.3.3) leads us
to consider the following program:

Maximize v(8) = <ﬁ ( ) j) f] 3)H®

~

subject to the constraints

61+'“+ 4, =1,

no

(06P) | a0+ + 4,0, =0,

Xm0y + 00 + a0

pmYp
where 6, >0fori=1,...,n,, and for each k > 1, either
6, > Oforalliwithn,_, + 1 <i<nkor5 =O0Oforall i
(withn_, + 1 <i<n. Here, 4,(8) =9, 1+ +9,.
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The program (DGP) is called the dual program of (GP), the function v(8)
is the dual objective function and the constraints in (DG P) are the dual con-
straints. If 8,, 6,, ..., 6, are numbers that satisfy the dual constraints in (DGP),
then & = (6,, ..., 8,) is a feasible vector for (DGP) and (DGP) is said to be
consistent. A vector 8* = (6F, ..., oF) that maximizes v(8) on the set of feasible
vectors for (DGP) is a solution to (DGP).

For the constrained geometric program considered in Example (5.3.3),
there are four dual variables d,, J,, 05, 0, because the objective function and
the single constraint function each contain two terms. There is one and only
one vector & = (4,1, 1, 1) that is feasible for (DGP) so it is automatically a
solution for (DGP).

In general, the number of dual variables in (DGP) is equal to the total
number p (=n,) of terms in the objective and constraint functions for (GP).
Note that the constraint equations in (DGP) are linear, so the problem of
identifying feasible vectors for (DGP) reduces to that of finding the solutions
of a linear system of equations that have nonnegative components. Also note
that 4,(8) is simply the sum of the components of 8 that correspond to terms
of the ith constraint function g;(t) fori = 1,2, ..., k.

Before we proceed to the development of the relationship between the
solutions of the program (GP) and the corresponding dual program (DGP),
we will work out the dual of another concrete geometric program.

(5.3.4) Example. Consider the geometric program
(Minimize t,t5't

subject to the constraints

J 3,5 < 1,

L7 4 g2 4 L <,

(Where t;, >0, t,>0, t3>0.

The objective function and the two constraints contain a total of five terms
so there are five dual variables. The dual constraints are

5, =1,

01 + 30, — 16,4 =0,
-6+ 0, — 30, =0,
28, — 6, +65=0,

where

6, >0, 6, >0, 6, >0, 0, =0, d5 >0,
and the dual objective function is

IN /1N LN NS/ 1N srsrs
N=[— _ - _ _ 2 3+d,+ds
v0) (5) <252> (4%) <464> <4és> (02)7(02 % 04 +25)
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The given program is consistent; in fact, it is even superconsistent because,
for example, the valuest; = 1,¢, = 1,¢; = 1 satisfy both constraints with strict
inequalities.

The dual program is consistent; in fact, it is a routine matter to verify that
the general solution of the four dual constraint equations is

6,=1, 6, =—-3+%ir, 6,=r, 8,=—-%+1%r, 65=—-F+1ir,

where r is an arbitrary real number. The requirement that §; > 0 fori = 1, 2,
3, 4, 5 adds the further restriction that r > 14. Thus, the set of points feasible
for the dual program is

F={(L[-3+&Lr[-3+31[-3+&r]):r> 14}

The Karush—Kuhn-Tucker Theorem would not seem to be applicable to
geometric programs because posynomials need not be convex functions. For
example, the posynomial in one variable

gy =1, >0,

is not convex. However, any posynomial g(t) can be transformed into a convex
function h(x) by the change of variables

(%) =e5, j=12,..,m

More precisely, if the change of variables (x) is applied to the posynomial
g(t) = _il citfity. . tyim, ¢; >0,
the corresponding function of x = (x{, x5, ..., X,,) is

and h(x) is convex on R™ by virtue of (2.3.10).
This observation enables us to transform the standard constrained geometric
program

Minimize g,(t) subject to the constraints
(GP) g1, g,0<1,...,g(0) <1,
where ¢, >0, ¢,>0,..., ¢,>0
into an associated convex program
Minimize hy(x) subject to the constraints
(GP)* hi(x) —1<0, hyx)—1<0,...,h(x)—1<0,
where x e R™,

via the change of variables t; = e* fori = 1,2,...,m. Moreover, because t = e*
is a strictly increasing function, the programs (GP) and (GP)* are equivalent
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in the sense that t* = (¢t¥, t%,...,t¥) is a solution to (GP) if and only if
* .
Xx* = (x¥,..., x}¥) is a solution to (GP)* where t¥ = e*i fori=1,2,...,m.

We are now prepared to state and prove the central result in the theory of
constrained geometric programming.

(5.3.5) Theorem.

) If tis a feasible vector for the constrained geometric program (GP) and if
& is a feasible vector for the corresponding dual program (DGP), then

go(t) = v(8) (the Primal-Dual Inequality).

(2) Suppose that the constrained geometric program (G P) is superconsistent and
that t* is a solution for (GP). Then the corresponding dual program (DGP)
is consistent and has a solution 8* which satisfies

go(t*) = v(8%),
and
u,(t*)
5% = < 9o(t*)’
A;(8%)u,(t*), i=m+1,...,n;

jo

i= l,...,no,

j=1,.. k

PROOF. (1) The Primal-Dual Inequality follows immediately from the definition
of the dual program (DGP) and the Arithmetic—Geometric Mean Inequalities
(2.4.1) and (5.3.1).

(2) Since (GP) is superconsistent, so is the associated convex program (GP)*.
Also since (GP) has a solution t* = (tf, t%, ..., t¥), the associated convex
program (GP)* has a solution x* = (x¥, x%, ..., x¥) given by

x¥ =Int¥, i=12,....m

According to the Karush—Kuhn-Tucker Theorem (5.2.14), there is a vector
A* = (4%, ..., A¥) such that:

(a) A¥>0fori=1,2,...,k;
(b) l*(h(x*)— l)—Ofori= 1,2,...,k;

(0 +Z/1 x*) Oforj=1,...,m

Because t; = e*i fori = 1, ..., m, it follows thatfori =0,1,..., k
ahi _ ah, d[] _ agiexj
ox; ot dx; ot

J

so condition (c) is equivalent to

©) (t*)+z,1* g‘(t* i=1,2,....m

J
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since e’ > Oforj=1,...,m Butt} > Oforj=1,2,...,m,so (c') is equivalent
to

) 0 (t%) + Z i 0 i=1m

1]6

Because the terms of g;(t) are of the form

6

uy(t) = c tiattzez.. . tyam,

it is clear that

09g; .
)= Y uut*),  j=1,...,m,

.l
6t q=ni-+1

so (c)” implies that

0= Z oy Uy (t*%) + Z Z AF o jug(t*).

r=1 q=n,_;+1

If we divide the last equation by

olt") = 3t

mo ())& m ()
0= ) . .
qgl tai <g0(t*)> " r;l q="rz—l+1 th,< go(t*) >

Define the vector 8* by
u, (t*)

we obtain

B 1727' 7n0’
%
6";= ji(t ()*)
Fug(t
s gq=n,_,+1,....,n, r=1,...k
go(t*) '

Note that 6f > O0forq =1,2,..., ny and that, for each r > 1, either 6 > 0 for
alliwithn,_; + 1 <i<n,oro} =0foralliwithn,_, + 1 <i < n,according
as the corresponding Karush—Kuhn—Tucker multiplier 2} is positive or zero.
Also observe that the vector &* satisfies all of the m exponents constraint
equations in (DGP) as well as the constraint

no no )
qz‘l 6 Z o(t*

Therefore, 8* = (6%, ..., 67) is a feasible vector for (DGP).
The Karush—Kuhn-Tucker multipliers ¥ are related to the corresponding
2,(6*) in (DGP) as follows:

I Ly

Ar 6* = r - r
( ) q=n,_;+1 qq=n,._‘+1 go(t*) gO(t*)
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forr =1,..., k. The Karush—Kuhn-Tucker condition (b) yields
(b') gt —1)=0, r=1,..k

so A¥g,(t*) = A¥forr = 1,..., k. Therefore,forr=1,...,kand g =n,_, + 1,
..., n,, we see that

Aug(t*)  AFg,(tF)u,(t*)
* 6* = 1 = 1 p—4 1 6* * .
®) T go(t¥) go(t*) Bl

The fact that 8* is feasible for (DGP) and that t* is feasible for (GP) implies
that

go(t*) = v(8%)

because of the Primal-Dual Inequality (1). Moreover, the values of 8} for
qg=1,2, ..., p are precisely those that force equality in the Arithmetic—
Geometric Mean Inequalities (2.4.1) and (5.3.1) that were used to obtain the
Duality Inequality. Finally, equation (b’) shows that either g,(t*) =1 or
A=0forr=1,2,..., k and equation (*) shows that 1* = 0 if and only if
2,(0%) =0 for r =1, ..., k. This means that the values of 6 actually force
equality in the Primal-Dual Inequality. This completes the proof.

The second statement of the preceding theorem implies that if (GP) is a
superconsistent geometric program for which the dual (DG P) is not consistent,
then (GP) has no solution. It can also be shown that if (GP) and (DGP) are
both consistent, then (GP) (and hence (DGP)) must have a solution. (For a
proof of this latter result, see Geometric Programming: Theory and Applications
by R. J. Duffin, E. L. Peterson, and C. Zener. (Wiley, New York, 1967))

Some philosophical comments concerning the last theorem and its proof
are in order. First of all, the theorem itself is a very practical result since it
justifies the computational procedure used to solve constrained geometric
programs. More precisely, the theoretical existence of the Karush—Kuhn-
Tucker multipliers is all that is needed to prove that the very practical
calculation of the solution 8* of (DGP) and hence the solution t* of (GP)
can be made. This illustrates how in mathematics theoretical facts can have
very practical implications. Second, the proof of Theorem (5.3.5) shows that
the Karush—Kuhn-Tucker multipliers 4} are related to the numbers 4,(6*)
prescribed in (DG P) by the formula

A*
2,(8%) = 2. ()
’ go(t®)
Since the Karush—Kuhn-Tucker multiplier A*¥ measures the sensitivity of the
solution of the associated convex program to changes in the rth constraint,
the formula (1) shows that the size of 1,(8*) gives a qualitative measure of
the sensitivity of the solution of the constrained geometric program to its rth
constraint. In short. the laroer the value of 1.(§%), the greater the decrease of
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the minimum value of the geometric program that results from relaxation of
the kth constraint.

The constrained geometric program considered in Example (5.3.3) was
particularly simple to solve because the dual had a unique feasible vector and
so that vector is necessarily the solution of the dual program. On the other
hand, the set of feasible vectors for the dual of the geometric program considered
in Example (5.3.4) is

{(1’ [_% + %rl r, [_% + %I‘], [—'% + %r]): r= 14}

Since this program is superconsistent, we know from the remark after (5.3.5)
that both the program and its dual have solutions t* and 6*, but calculation
of these solutions is not quite as easy as the program in Example (5.3.3). If we
replace the variables in the dual objective function v(8) by

Sy=1, 6,=—%+4¢r, d3=r, O,=—-5+3r, 65=—F+%r

then we reduce the problem of finding a solution §* of (DGP) to that of
maximizing the function of one variable v(r) on the interval r > 14.

The Primal-Dual Inequality provides a means for estimating the minimum
value of the program (G P) (or the maximum value of the dual program (DG P)).
In fact, if t is a feasible vector for (GP) and é is feasible for (DGP), then

g0(t) = min(GP) = max(DGP) = v(9).

5.4. Dual Convex Programs

In this section, we will associate with a given convex program (P) a new program
(DP) called the dual of (P). The dual program (DP) is an unconstrained
program which is sometimes easier to solve than the given (primal) program
(P) and yet the solutions of (DP) can be used to generate solutions of (P).
Thus, the consideration of the dual program (D P) provides one approach to
the solution of the primal program (P). Moreover, if the given program (P)
arises from some economic or physical context, then it is often possible to
interpret the dual program (DP) in economic or physical terms and this
interpretation may provide new insights into the context of (P).
To set the stage, recall our formulation of the general convex program

Minimize f(x) subject to

(P) gl(x)SO»--" gm(x)SO’ XEC,
where f(x), g,(X), ..., g.(x) are convex functions
defined on a convex set C.

The quantity MP is defined for (P) as follows:
MP =inf{f(x): xe C,g,(x) <0, ..., gn(x) <0},
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that is, M P is the infimum of the objective function f(x) on the set F of feasible

points for (P). If x* € F and f(x*) = MP, then x* is a solution of (P). If f(x)

is not bounded below on F, then MP = —oo and (P) has no solutions.
Suppose that x* is a solution to (P) and that there is a vector A* = (1%, ..., 1¥)

of Karush—Kuhn-Tucker multipliers associated with x* as in the statement

of the Saddle Point Form of the Karush—Kuhn-Tucker Theorem (5.2.13),

that is,

N rA*=0;

(2) L(x*, L) < L(x*,A*) < L(x, A*)forallx e Cand all A > 0;

(3) A¥g(x*)=0fori=1,2,...,m.

Let us concentrate, for the moment, on the implications of the saddle point
condition (2). For any given A > 0, it is clear from (2) that

inf L(x, }) < L(x*, L) < L(x*, L*).

xeC

Consequently,
sup {inf L(x, l)} < L(x*, L¥*).
A>0 (xeC
On the other hand, since L(x*, A*) < L(x, A*)for all x € C by (2), it follows that

L(x*, A*) < inf L(x, A*) < sup {inf L(x, ).)}.

xeC A>0 (xeC
We conclude that
L(x*, A*) = sup {inf L(x, l)}.
A>0 (xeC

But now observe that (3) yields
MP = f(x*) = f(x*) + ). 2Fgi(x*) = L(x*, 1*),
i=1

SO

A>0 (xeC

MP = sup {inf L(x, }.)}.
These considerations lead us to the following definitions.

(5.4.1) Definitions. Given the convex program

Minimize f(x) subject to

(P) gl(X)SO,., g,,,(X)SO;
where f(x), g,(x), ..., g.(x) are convex functions with
continuous first partial derivatives on a convex set C
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define the dual program

Maximize h(h) = inf L(x, A),
(DP) XeC
where A > 0 and L(x, A) is the Lagrangian of (P).

The value of

sup {inf L(x, l)}
A>0 (xeC

will be denoted by MD. A vector L > 0 in R™ is feasible for (DP) if h(A) =
inf, . L(x, &) > —o0. The dual program (DP) is consistent if there is at least
one feasible vector. If A* is a feasible vector for (DP) such that h(A*) =
supy ¢ h(A), then A* is a solution of (DP).

The computations preceding the definition of the dual program (DP) for
(P) show that if x* is a solution to (P) and if A* is a corresponding vector
of the Karush—Kuhn-Tucker multipliers, then A* is a solution of (DP) and
MD = MP. In particular, if a superconsistent convex program (P) has a solu-
tion x*, then there is a vector A* of the Karush—Kuhn—Tucker multipliers
that is a solution of the dual program (D P). Thus, the Karush—Kuhn-Tucker
vectors for the primal program (P) are solutions of the dual program (DP).
Moreover, if A* is a Karush—Kuhn-Tucker vector for (P) and if (P) is known
to have a solution x*, then since

f(x*) = MP = L(x* A*) = inf L(x, L*)
XeC
it follows that x* can be found by minimizing L(x, A*) over C. Thus, at least
in theory, the duality approach to the solution of a given convex program is
quite simple:

Step 1. Given a convex program (P), construct its dual (DP).
Step 2. Find the solutions A* of (DP).
Step 3. Find the corresponding solutions to (P) by minimizing L(x, A*) on C.

Of course, this approach is only useful if the dual program (DP) is easier to
solve than (P). Although this is not always the case, it happens often enough
to make the approach worthwhile.

We will now illustrate the duality approach to the solution of convex
programs with some examples, beginning with the important special case of
linear programs.

(5.4.2) Example (Linear Programming Revisited). In Example (5.2.5), we
demonstrated that if 4 is an m x n-matrix, if b € R", and if ¢ € R™, then the
general linear program

(LP) {

Minimize b:x subject to
Ax>c¢ where x>0
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can be reformulated as a convex program (P) by setting
fx)=b-x, C={xeR"x>0}
gi(x)=c;—a?-x where a® =ithrowofAdfori=1,2,...,m

In this case, the Lagrangian of (P) is given by

L(x,A)=b'x+ i Aic; — a¥-x)
=

= <b -y Aia“)>-x + 3 A
i=1 i=1
—(b—ATA) X+ Aec.

To construct the dual of (LP) we begin by identifying the set of feasible
points for the dual, that is, the set of all A > 0 for which

inf L(x, A) > —oo0.
XxeC

To this end, we note that if b, — (A"A);, < 0 for an i, and if x is defined for
t <O0by

O = {t(bio —(A™h),) if j =i,
I 0 if j # iy,
then x® > 0 for t < 0 and
L(X®, %) = t(b, — (ATA),)? + A-c.
Thus L(x", A) » —o0 as t - —o0 and so

inf L(x,A) = —o0.

X=0
Hence, A is not feasible for the dual. On the other hand, if b — ATA > 0, then
Lx, ) )=(b—A™):x+Arc=>h-c
for all x > 0, so the set of feasible vectors A for the dual of L is precisely
F={LeR™X>0and ATA < b}.
Next, we note that if A € F, then
h(A) = inf L(x,A) = A-¢

x>0
because L(0, A) = A-cand L(x, &) > A -cforall x > 0. Consequently, the dual
program for (LP) can be formulated as
Maximize h(Ah) = A-c

L
(DLP) {subjcct toA"A <b, L=>0,

which is a linear program in standard maximum form.
This discussion sets up
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(5.4.3) Theorem (Linear Programming Duality). If (LP) is superconsistent
and if x* is a solution for (L P), then the dual program (D L P) has a solution \* and

b-x* = f(x*) = h(A*) = ¢+ A%,

Moreover, if x is any feasible vector for (LP) and ) is any feasible vector for
(DLP), then
b:x>Mk-c

Proor. The first statement is already established in the discussion on the
previous two pages. The second statement follows from the inequalities

b:x = f(x) > f(x*) = h(A*) = h(A) =c- .
This completes the proof.

The theorem above is not the end of the story of duality in linear program-
ming. In fact, the following stronger result is known:

The Duality Theorem of Linear Programming. If either (LP) or (DLP) has a
solution, then the other has a solution and the corresponding values of the
objective functions are equal.

The preceding theorem is true whether (L P) is superconsistent or not. Thus
if a linear program has a solution then it also has a sensitivity vector which
is nothing but a solution of the dual linear program. One popular proof of
the Duality Theorem of Linear Programming is based on Farkas’s Lemma.
The latter result is discussed in Exercise 2.

The theorem above represents the best we can do by specializing the
nonlinear methods of this chapter to the linear case. The full truth can be
best uncovered by the use of purely linear methods. For more on this, see
Introduction to Linear and Nonlinear Programming by D. G. Luenberger
(Addison-Wesley, 1973). For another view of how nonlinear theory can estab-
lish another special case of this theorem, see the version of the Karush—Kuhn—
Tucker Theorem studied in Remarks (7.2.6) of Chapter 7.

In Example (5.2.5), we pointed out that the classical Diet Problem provided
an illustration of a linear program (LP) in minimum standard form. Recall
that this problem asks that we plan a diet using n foods F,, ..., F, that will
provide at least the minimum daily requirements of m nutrients N, ..., N,
at minimum cost. In the notation of (LP), we let

b, = cost per unit of food F, fori=1,...,n,
¢; = minimum number of units of nutrient N; needed per day forj = 1,...,m,

a; = number of units of nutrient N; in one unit of food F;fori=1,...,n
andj=1,...,m,

Xx; = number of units of food F; in a given dietfori = 1,..., n.
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What is the economic interpretation of the dual program of the Diet
Problem? One way to think of it goes like this: Suppose that a manufacturer
of nutrient pills proposes that we use his products to meet our nutritional
needs instead of a diet consisting of the foods Fi, ..., F,. Even though we find
the idea of using pills instead of food to be revolting, we ask the manufacturer
to send us a price list for his pills so that we can compare the cost of the
cheapest adequate pill diet to that of the cheapest adequate food diet. The
manufacturer agrees to “sharpen his pencil and come up with some really
attractive prices.” Of course, his notion of “attractive prices” is different from
ours. He intends to set his price per unit of a given nutrient as high as he can
so that he can maximize his revenue from us. However, he realizes that if he
sets these prices so high that there is a cheaper adequate food diet, he will lose
our business. How should he set the price 4; of a unit of nutrient N; so that
he will maximize his revenue for an adequate pill diet and yet be sure that no
adequate food diet is cheaper? In terms of the notation we have introduced,
his problem can be formulated as follows:

(Maximize A,¢; + 4,65 + = + AnCp
subject to

Ay A+ ay A+ + A Ay < by,

alnll + aZn)LZ + -+ amn"{m < bn?

_ where 1, >0,...,4,>0.
The typical constraint
alill + a2,~/12 + -+ amilm < bi

simply requires that the “value” of a unit of the food F;, in terms of the prices
A1s ..., Ay that he assigns to the nutrients contained in it, does not exceed the
actual cost per unit of that food.

Observe that this maximization problem for the pill manufacturer is precisely
the dual of the Diet Problem. Using this fact, the Duality Theorem for Linear
Programming, and the Karush—-Kuhn-Tucker Theorem, we can enjoy the
cheapest possible food diet without doing the work necessary to figure out
the diet ourselves. We simply let the pill manufacturer do most of the work
for us! When he submits the price list 1¥, A%, ..., A* per unit for the nutrients
Ny, N, ..., N,,, we will know from the Duality Theorem that the cheapest
adequate food diet x¥, x%, ..., x¥ made up of the foods F,, F,, ..., F, satisfies

byx¥ + -+ bx¥=Afc, + - + Ak,
and for any price A¥ which is positive, we know that
Ay Xt + apxd + -+ aEx¥ =¢;

by the Karush—Kuhn—-Tucker Theorem. We are able to use these relation-
ships to solve for x¥, ..., x¥ without going to all of the trouble of solving
the primal Diet Problem by some technique such as the Simplex Method.
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Before we leave the special case of linear programs, let us work out a concrete
example.

(5.4.4) Example. Consider the linear program

(Minimize 4x, + 15x, + 12x; + 2x,,
subject to the constraints

(LP) j 2x, +3x3 + x4 > 1,

X, +3x,+ x3—x,>1,

(where x;, >0, x,>0, x3>0, x,>0.
In terms of the notation of the preceding example, we see that
b=(4,15,12,2), 0 2 3 1
A= ,
c=(1,1), <1 3001 —1>
and the dual program is
(Maximize 4, + 4,
subject to
A< 4,
(DLP) < 24, + 31, <15,
34, + 4, <12
M= A< 2
Lwhere A1 =0, 4,=0.

Notice that (LP) is a superconsistent linear program; for example, x, = 0,
x, =1, x5 =0, x, = 0 yield strict inequalities in both constraints.
The dual program (DLP) can be solved graphically:

IA

A IA
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The solution of (DLP) is easily seen to be A¥ = 3, 1% = 3 and the maximum
of the dual objective function is ¥ + A¥ = 6 = MD.

The Karush—Kuhn—-Tucker Complementary Slackness Condition can be
written as

3(1 — 2%, —3x3—x,) =0,
3(1 —x; — 3x, — X3+ x4)=0,

and the Duality Theorem for Linear Programming tells us that
4x; + 15x, + 12x3 + 2x, = 6.
This leads us to the system of equations
X+ x4+ x3— x4=1,
2%, + 3x34+ x4=1,
4x; + 15x, + 12x3 + 2x, = 6,

which has the solution

<o

_ _ 2,10 _1
X, = —2Xx,, Xy =%+ 5 X,, X3 =7 — 3X4.

Since any solution of (LP) must have nonnegative components, we conclude
that

— —2 -1 *
x¥ =0, x¥ =2 x¥ =3, x¥=0

2
is the unique solution to the given linear program (LP).

Next, we consider a class of quadratic programs for which the duality
approach is both straightforward and fruitful.

(5.4.5) Example. Suppose that Q is an n x n-positive definite matrix and that
0 # a € R", c € R. Consider the quadratic program

) {Minimize f(x) = ix-0x

subjectto a*x <c.

If g(x) = a*x — ¢, then g(x) is convex on R" and the constraint requires that
g(x) < 0. Also, f(x) is convex on R" because Q is positive definite. Therefore,
(P) is a convex program; moreover, (P) is superconsistent since a # 0 allows
us to find x witha-x — ¢ < 0.

Of course, if ¢ > 0, then x* = 0 1s feasible for (P) and x* = 0 is the unique
solution to (P) because it is the global minimizer of f(x) on R". For this reason,
we restrict further consideration of (P) to the case when ¢ < 0.

The Lagrangian of (P) is given by

L(x, ) =3x"0x + A(a-x — ¢),

where x € R", 1 > 0. Notice that for any fixed A > 0, the Lagrangian L(x, 1)
is a strictly convex function of x. Hence, the unique minimizer x* of L(x, A)
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is determined by equating the gradient of L(x, A) to zero, that is, x* satisfies
0 =QOx* + Ja.

Therefore,

(*) x* = —AQ“a

is the minimizer of L(x, 1) for fixed 4 > 0. We conclude that all 1 > 0 are
feasible for (DP). Also, because

L(x*, 2) = L(— Q" 'a, 2)
=3(—4Q07'a) Q(—1Q7'a) + i[a*(—1Q'a) — ]

22

i
2

12
= —<—a-Q“a + Alc),
2
we see that

}.2
MD = sup { inf L(x, A)} = max [—(—(a-Q‘la) + lc>:|.
A>0 (xeRn" A=0 2

To maximize

a-Q'a—i%a-Q'a—c

/12
o) = —[?(a-Q'la) + }Lc:|.

we compute

¢ (A)=—((2a-Q7'a) + o),

¢'())= —a-Q7'a.
Note that A* = —c/(a- Q7 'a) > 0 is the critical point of ¢(4) and this critical
point is a strict maximizer of ¢(4) since ¢”(4*) < 0. Therefore, A* is a solution
of the dual program. The solution x* of the primal program (P) is the
minimizer of L(x, A*¥) for x € R". Equation (x) shows that this minimizer is
given by
cQ7la

a-Q'a’

x* = —1*Q7'a=

This completes the solution of the given class of quadratic programs.
In (5.4.2), we discussed duality in linear programming and its relation to
the Karush—Kuhn-Tucker conditions. We shall now derive the corresponding

duality result for general convex programs.

(5.4.6) Theorem (The Duality Theorem). Suppose that f(x), g(X), ..., g.(X) are
convex functions with continuous first partial derivatives defined on a convex
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subset C of R". If'y is a feasible vector for the program (P) and X is a feasible
vector for the dual program (DP), then

f(y) = h(r) = inf L(x, ).

xeC

Consequently, if (P) and (DP) are both consistent, then MP and MD are both
finite and

MP > MD (the Primal—Dual Inequality).
Proor. Because y is feasible for (P) and A is feasible for (DP), it follows that

ﬂwZﬂw+§wa=uxm

since 4; > 0 and g;(y) < Ofori=1,2,..., m. But then it is certainly true that

f(y) = h(») = inf L(x, A)

xeC

which is precisely the first assertion. This inequality also shows that

MD = sup {inf L(x, l)} < fly)

A>0 (xeC

and that
MP =inf{f(x):xe C,gi(x) <0,i=1,...,m} = h(}),

whenever y is feasible for (P) and A is feasible for (DP). This shows that, if (P)
and (DP) are both consistent programs, then MP and MD are finite and
MP > MD. This completes the proof.

(5.4.7) Corollary. Suppose that x* is a feasible vector for a convex program (P)
and that \* is a feasible vector for the dual program (DP). If
S(x*) = h(A*)

then x* is a solution of (P) and \* is a solution of (DP).
PRrOOF. According to the Primal-Dual Inequality and the definitions of MP
and MD, we know that

f(x*) = MP > MD = h(\*).
By our hypothesis, equality holds in each of these inequalities, so

f(x*) = MP, h(A*) = MD
which implies that x* and A* are solutions to (P) and (DP), respectively.

The discussion following Definition (5.4.1) shows that the duality approach
to the solution of a convex program (P) works only if MP and MD are finite
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and M P = MD. Therefore, it is of some interest to know when this condition
holds. The following example shows that it does not hold in general.

(5.4.8) Example (Duffin’s Duality Gap). Consider the convex program
) {Minimize f(x,y) = e subject to
g(x,y) = /x> +y* —x <0; (x,y)e R

This program was discussed in (5.2.9)(c) where it was shown that M P(z) is
a discontinuous function of z at z = 0. The corresponding dual program is

Maximize h(4) = inf{e™ + Ag(x, y):(x, y)e R?},
(DP) .
subject to 4 > 0.

Note that . /x? + y? > x for all (x, y) in R? so the constraint g(x, y) < 0in (P)
1s satisfied if and only if x > 0 and y = 0. Therefore

MP=infle”:x>0,y=0} =e°=1.

On the other hand,
MD = sup [inf{e™ + A[/x* + y* — x]: (x, y) € R*}].
iAz=>0

For afixed 1 > 0,

e?+ A/XP+y? —x]1=0

for any (x, y) € R?; moreover, since

lim [\/x*+y*—x]=0

X +00

for any fixed y, it follows that

lim lim {e7 + A[/x*+ y? — x]}

[
= lim {e-y + 24 lim [/x*+)? — x]} = lim ¢ =0.
y= oo x4 y
Hence, for any fixed 4 > 0,
h(2) = inf{e™ + Ag(x, y): (x, y) € R*} =0,
and so

MD = sup h(4) = 0.

iz0

Thus, MP =1> 0= MD.

(5.4.9) Definition. If (P)is a convex program with dual (DP) and if MP > MD,
then we say that (P) has a duality gap.
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We have shown earlier (see the remarks after (5.4.1)) that if a convex
program (P) is superconsistent and has a solution, then (P) does not have
a duality gap, and therefore the duality approach might be useful for finding
the solution of (P). In Chapter 6, we will find other conditions under which
we can be certain that a convex program (P) has no duality gap.

*5.5. Trust Regions

This section is meant to be read in conjunction with Section 3.3 on methods
of minimization of functions on R". In that section, we discuss iterative
methods for finding minimizers of a given function f(x) with continuous
second partial derivatives on R". In particular, the following iterative scheme
was studied:

(1) Given x®.
(2) Compute g, > 0 such that

Hf(x®) + I

is positive definite.
(3) Solve for p®:

(Hf(x®) + wDp® = —Vf(x®).

(4) Set t, > 0 by backtracking.
(5) Update

xHD = g 4 g plo,
(6) Iterate.

This iterative procedure is based on the following approximation: At the
point x| we approximate f(x) by the quadratic function

Q) = f(x¥) + Vf(x®¥)+ (x — x) + 3(x — x¥) A,(x — x¥),

where A, = Hf(x®) + w,I where u, >0 is chosen so that A, is positive
definite. The direction p® pointing from x® toward x**1) is just the Newton
direction

—AC(Vf(xY)

for the approximation Q,(x) of f(x). For most well-behaved functions this is
quite satisfactory. However, situations occasionally arise in which

pY = — A7 (Vf(x®))

might be very large and therefore not numerically helpful in the search for
a minimizer of f(x). If this happens, then we keep the step-length

L= lltp®|l
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computed by backtracking, and modify 4, by adding an appropriate multiple
J, of the identity. Then we compute a new x**1) by solving

XD — X = (A + 2D (V)

where |[x**1 — x®|| = |, that is, we keep the same step-length.
That this can be done is a consequence of the Karush—Kuhn-Tucker
Theorem.

(5.5.1) Theorem. Suppose that f(x) has continuous second partial derivatives on
R", that x® € R" and that

Qu(x) = f(x) + Vf(x®)(x — x¥) + 3(x = x)- Ay(x — x¥).

There exists a nonnegative number A, such that the minimizer x**1) of Q,(x)
subject to the constraint

Ix —x®| <
is a solution x**1) of the system
Ay + L) (x — xP) = —Vf(x®¥).
If the Newton direction
p¥ = — A (VY (x¥))

satisfies |p®|| < I, then we can take J, = 0; otherwise, J, is a positive number
such that |x**V — x®|| = |,.

Proor. Let p, be a Karush—Kuhn-Tucker multiplier for the constrained
minimization (superconsistent) program

Minimize Q,(x) subjectto |[x —x¥| <|,.
The associated Lagrangian is
L(x, p) = f(x®) + VA(x®)+ (x — x®) + 3(x — x¥)- 4,(x — x¥)
+ m(lx — x©)12 = 1)

By the Karush—-Kuhn—-Tucker Theorem (5.2.13), L(x, y,) has a global mini-
mizer at the solution x**1) of the constrained problem. Hence,

0 = V,L(x**Y 1)
= Vf(x®) + A, (x**D — x®) 4 2, (x**D — x®),
Therefore,
(A + 2u) (K41 = x¥) = —Vf(x®),
Set 4, = 2y, and observe that
(A + A (D — x®) = —vf(x®).
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Now, if the constraint is inactive, then 4, = 0; otherwise, 4, = 2y, > 0, which
is just what the statement of the theorem promises.

Now let us see how this theorem is to be interpreted: Let 4, = Hf(x®) + p, I
where y, > 0 is computed to make A4, positive definite. If

¥ = AN (VA(xW))
is too large, we compute [, = ¢, p*| and compute a different x**V by solving
(HFXD) + ]+ 2D = x®) = —Vf(x®).

In this case we have the extra assurance that the new x**? is the constrained
minimizer of the quadratic approximation Q,(x). Also note that if 4, =0,
then we do not make the modification. If /, is small, then 4, is large and
x*+1 — x® ig close to the steepest descent direction — Vf(x'¥).

Also, this theorem says that if somehow we know the desired step-length

o= X — X,

then we can solve directly for 4, and the new x**!) without backtracking.

EXERCISES

1. Prove that if M is a subspace of R" such that M # R", then the interior M° of M
is empty.

2. Let C be a closed convex subset of R™. If y is not in C, show x* e C is the closest
vector to y in C if and only if (x — y) - (x* — y) > |x* — y|? for all xe C.

3. Suppose that C, and C, are convex sets in R" such that C, has interior points and
C, does not contain any interior points of C,. Prove that there is a hyperplane H
in R" such that C, and C, lie in the opposite closed half-spaces determined by H,
that is, there exist an a # 0 in R" and an « € R such that

xra<a<y-a

forall x e C, and all y € C,. (Hint: Consider the set C = C{ — C,. Apply (5.1.9) to
obtain the desired result when C; n C, # . Use (5.1.5) to handle the case when
aGnG =9

4. Suppose that A is an m x n-matrix and that b € R". Prove that the system
ATx =b
has a solution x > 0 if and only if
b:y >0 whenever Ay >0.

(This result, which is known as the Farkas Lemma, has a number of interesting
and important consequences including the Karush—Kuhn-Tucker Theorem.) The
Farkas Lemma can be proved by completing the following steps:
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(a) Show that the statement of the Farkas Lemma is equivalent to the following:
The system

Ay >0, by <0
has a solution if and only if b does not belong to the closed convex set
C={ATx:x >0}

(b) Apply the Basic Separation Theorem (5.1.5) to conclude that if b does not
belong to C then there exist an a # 0 in R" and an a € R such that

arb<a<a-ATx

forall x > 0in R™

(c) Show that o < 0 by making a special choice of x in the inequality in (b). Then
show that Aa > 0 by making special choices of x in the same inequality.
Conclude that if b does not belong to the closed convex set C in (a), then the
system

Ay > 0, b-y<O

has a solution.
(d) Show that if ATx = b has a solution x such that x > 0 and if Ay > 0, then
b-y>0.

5. Apply the Karush—Kuhn—Tucker Theorem to locate all solutions of the following
convex programs:

(a) Minimize f(x,, x,) = e~ ™1+
subject to
e + e*2 <20,
x, = 0.
(b) Minimize f(x,, x,) = x? + x3 — 4x, — 4x,

subject to the constraints
x?—x,<0,
Xy +x, <2
6. Consider the geometric program:
Minimize f(t,,t,) = t{'t5’
subject to the constraint
o +3t, <1 t,>0, t,>0.

(a) Convert this program to an equivalent convex program and solve the resulting
program by applying the Karush—Kuhn-Tucker Theorem.
(b) Solve the given geometric program by the method of Section 5.3.

7. Find the dual of the linear program:

(LY Minimize b-x subjectto Ax>c.
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8.

10.
11.

12.

13.

14.

15.

Solve the following constrained geometric programming problems:
(a) Minimize x'? 4 y~2z7!

subject to the constraint
x4 xTlz2 <,
where x>0, y>0, z>0.
(b) (Minimize x'Y2 4 y=2
subject to the constraints
< xlz4ex'wgl,

yzl +wzl <1,

(where x>0, y>0, z>0, w>0.

. Let M be a subspace of R". From the definitions, it is clear that M = (M*)*. Use

the Basic Separation Theorem to show (M1)* © M, thus giving another proof
that M = (M4)L.

For a convex program P, show that MP(z,) < MP(z,) whenever z, > z,.
Let A, B, C be nonempty closed convex sets in R" such that

A+ C=B+C,
prove that A = B.

Let f(x) be a differentiable function on R'. Suppose x‘* is fixed and there is a
number o such that

f(x) = f(x9) + a(x — x9)
for all x € R'. Show that a = f’(x,).

Recall that a cone C in R" is a convex set such that txe C provided xe Candt > 0
(see p. 44). For a cone C in R", define

C*={yeR" x-y>O0forall xeC}.
Show that if C is a closed cone in R", then C* is a cone in R" and (C*)* = C.

Let A be an m x n matrix and let be R™ be a fixed vector. Suppose the convex
program

Minimize |x||?

subjectto Ax <b
is superconsistent and has solution x*. Use the Karush—Kuhn-Tucker Theorem

to show that there is a vector y in R™ such that x* = ATy. Compatre this result with
Theorem 4.3.2.

Say why the gradient form of the Karush-Kuhn-Tucker Theorem is not applicable
to finding solutions of all superconsistent linear programs in minimal standard
form while the saddlepoint form is applicable.



CHAPTER 6

Penalty Methods

6.1. Penalty Functions

One way to solve the inequality-constrained minimization problem
) {Minimizc f(x) subject to
9:1x) <0, g,x)<0,..., g,(x)<0; x € R",
is to approximate this problem with an unconstrained minimization problem
(P') Minimize F(x) for x e R",
where the objective function F(x) for the unconstrained problem is con-

structed from the objective function f(x) and the constraints for the given
constrained problem in such a way that:

(1) F(x)includes a “penalty” term which increases the value of F(x) whenever
a constraint g;(x) < 0 is violated with larger violations resulting in larger
increases.

(2) The unconstrained minimizer x} of F(x) is near the feasibility region and
x¥ is near a constrained minimizer for the given constrained problem.

Using this approach, we hope that, as the size of the penalty term in F(x)
increases, the minimizer x} of F(x) will approach a point x* that is feasible
and a minimizer for the given constrained problem.

In this chapter, we will show that this strategy works in very general
circumstances. We will begin by discussing the construction of a penalty
function for the given constrained minimization problem in this section.

For a given constraint g(x) < 0, note that the function g*(x) defined by

. f0 if g <0,
97 =00 if g0 > 0,
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is zero for all x that satisfy the constraint and that it has a positive value
whenever this constraint is violated. Moreover, large violations in the con-
straint g(x) < O result in large values for g*(x). Thus, g*(x) has the penalty
features we want relative to the single constraint g(x) < 0. Before we go on,
let us look at the graphs of g*(x) for some simple choices of the given

constraint.

(6.1.1) Examples

(@) Ifg(x) = x — 1 < Ofor x € R is the given constraint, then g*(x) has the

graph displayed below:

4y

g (x)

6. Penalty Methods

‘) = x—1 ifx=1,
& 0 if x<1.

(b) If g(x) = x3 for x € R, then g*(x) has the following description:

A

[

g+ (x) ~

0 if x<O0,

x3 if x=0.

(©) If g(x, y) = x> + y* — 1, then the graph of g*(x, y) is the “truncated

paraboloid” depicted below:

Y—2z=8%*,y)

0 if x2+y2<1l,

+ =
g*(x,y) {x2+y2—1

otherwise.

y
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Examples (a) and (c) show that g*(x) need not have continuous derivatives
even when g(x) is a very smooth function.

If we now return to the original constrained minimization problem

P) Minimize f(x) subject to
9:1(x) <0, g,(x)<0,..., gn(x)<0; xeR"

we see from our discussion of the basic features of the function g*(x) that one
reasonable definition for the objective function for an approximating un-
constrained program (P’) for (P) is

Fx) = S0 + k 3 g7

where k is a positive integer. The penalty term Y T, gi' (x) is often called the
Absolute Value Penalty Function because it is equal to Y |g(x)| where the
summation extends over all constraints violated at x.

The role of the positive integer k is obvious: As k increases, so does the
penalty associated with a given choice of x that violates one or more of the
constraints g;(x) < Ofori =1, 2,..., m. For this reason, we call k the penalty
parameter.

Our hope is that, for large k, the value of

kY g d)

at a minimizer x;f for Fi(x) should be small, x§¥ should be near the feasibility
region for (P), and F,(x{) should be near a minimum for (P). This leads us to
hope that there might be at least a subsequence of {x}} that converges to a
minimizer x* for (P).

One might feel that this penalty function approach to the solution of (P) is
too naive to be successful and that the hopes and expectations expressed in
the preceding paragraph will simply not be fulfilled in most realistic problems.
However, it turns out that this method or one of its close relatives can be
effective for the solution of constrained minimization problems and that it is
often the method of choice because of its simplicity.

As we have already observed in Example (6.1.1), the function g*(x) does
not in general inherit differentiability properties from g(x). Thus, even if the
objective function f(x) and the constraint functions g,(x), g,(X), ..., gm(X) in
the constrained problem (P) have continuous first partial derivatives on R",
the same may not be true of

R = f00 + k ¥ g7 (%)

Thus, to locate the minimizer xj of F,(x), we would be limited to methods that
do not require the objective function to be smooth. This is certainly not
sufficient reason to abandon penalty functions such as the Absolute Value
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Penalty Function used in the definition of F,(x); in fact, this penalty function
can be quite useful in spite of this apparent disadvantage (see (6.2.2)). However,
it is also very useful from the standpoint of the development of the Penaity
Function Method to know that continuity of the first partial derivatives can
be maintained through a suitable modification of the penalty term. To see
how this might be accomplished, let us take a closer look at the functions in

(6.1.1)(a), (c).

(6.1.2) Examples
(a) If g(x) = x — 1, then

g (x) = {

x—1 if x>1,
0 if x<1,

fails to have a derivative at x = 1. However,

(x—1)2 if x>1,
0 if x <1,

h(x) = [¢*(x)]* = {
has a continuous derivative everywhere; in particular, h'(1) = 0.

4

1

(b) If g(x, y) = x2 + y?* — 1, then the first partial derivatives of

. x2+yP—1 if x2+yr>1,
g (x,y) = e 2 2
0 if x*+y°<1,

do not exist for (x, y) on the unit circle x> + y* = 1. However,

h(x, y) = [g*(x, y)1?
has the property that
oh oh
lim —(x, y) = 0 = lim —(x, y)
x—a ax x—a ay
y—b y—b

for any (a, b) on the unit circle x2 + y? = 1. Itis then a routine matter to verify
that h(x, y) has continuous first partial derivatives on R2,

The following result shows that the situation described in the preceding
example holds quite generally.
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(6.1.3) Lemma. If g(x) has continuous first partial derivatives on R", the same
is true of h(x) = [g*(x)]2. Moreover,

Oh 0
(%) = 2" (x)

) 0x 0x;

(x), i=12..,n,
for all x € R".

Proor. If g(z) > 0, then g*(x) = g(x) for all x in some ball B(z, r) centered at
z. Hence h(x) has continuous first partial derivatives throughout B(z, r) and
the formula

oh ., 0g
o, (2) = 297 (2) ox,

(@)
holdsfori=1,2,...,n
If g(z) < 0, then g*(x) = O for all x in some ball B(z, r) centered at z and so

oh

fori=1,...,n But 2g*(z)(0g/0x;}(z) =0 for i =1, 2,..., n since g*(z) = 0.
Consequently, the formula (x) is valid if either g(z) > 0 or g(z) < 0.
If g(z) = 0O, then a careful limit argument shows that

oh - Tag .. .
5= 2[ o (z)]g () =0

fori=1,2,..., nto complete the proof.

It is now evident how the penalty term should be altered to preserve
smoothness. If the objective function f(x) and the constraint functions g,(x),

..., gm(x) in (P) have continuous first partial derivatives, then the same is true
of

P(x) = f(x) + k 21 [o7 (]2

and P,(x) serves as a suitable objective function for the penalty approach to
the solution of (P). The penalty term in P,(x) is sometimes called the Courant—
Beltrami Penalty Function.

6.2. The Penalty Method

We are now ready to provide a more precise description of the penalty
approach to constrained minimization problems, first for the Courant-
Beltrami Penalty Function.
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(6.2.1) The Penalty Function Method. Suppose that f(x), g,(x), g2(X), .. ., gm(X)
have continuous first partial derivatives on R" To solve the constrained
minimization problem

P) Minimize f(x) subject to
9:1x) <0, g,(x) <0,..., gn.(x)<0; xeR"

we proceed as follows:

(1) For each positive integer k, suppose x} is a global minimizer of

RO = f(x) +k 3. [6 (0]
(2) Show that some subsequence of {x}} converges to a solution x* for (P).

We will show later that the Penalty Function Method is guaranteed to
produce a solution x* of (P) under relatively mild additional restrictions on
(P). However, before we do this, let us try this method on a concrete problem.
The program in the following example is quite simple but yet it is general
enough to reveal most of the features of the method.

(6.2.2) Examples. Consider the program

P) Minimize f(x) = x?> subject to
gx)=1—-x<0; x € R.

Since this program simply asks us to minimize x2 for x > 1, it is obvious that
the solution to (P) is x* = 1 and the minimum value of (P)is MP = 1. Let us
see how the Penalty Function Method produces this result. In this case,

P(x) = x? + k[(1 — x)*]?
3 {xz + k(1 —x)? forx <1,

x? for x > 1.

The graph of P,(x) is pictured below
Ay

y =x2 + k(1 — x)2 y=x

We know from (6.1.3) that P,(x) is continuously differentiable everywhere. It
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is an increasing function at x = 1 and it has a unique minimizer xj to the left
of x = 1; in fact, x¥ is obviously the unique solution of the equation

0=Pi(x)=2x — 2k(1 — x) = (2 + 2k)x — 2k

for x < 1. Thus,
X§=—.

Notice the following features of the sequence {xj}:

(1) x§ < 1for all k so the sequence {xj} consists of points that are not feasible
for (P).

(2) lim, x} = 1 = x*, that is, the sequence {x{} converges to the solution of
(P); moreover, the higher the value of the penalty parameter k, the closer
xi¥ = k/(k + 1) is to being feasible for (P).

Kk \? kK \\?
*) — k(1 —-(——
(3) Pe(x5) <k+ 1) + <1 <k+ 1))
kK \? 1 \?
—<m) +"(m>
k k
=~ (k+1)=—"<1=MP.
kPt V=37<
Thus P(x{) < MP for all k and
lim B,(xt) = MP.

It turns out that all of the features (1), (2), and (3) of the Penalty Function
Method in the preceding example are present in most well-behaved programs.
The following theorem and its corollaries tell us why.

(6.2.3) Theorem. Suppose that f(x), g,(x), ..., gm(X) are continuous on R" and
that f(x) is bounded from below in R" (that is, there is a constant ¢ such that
¢ < f(x) for all x € R™). If x* is a solution of the program

P) {M inimize f(x) subject to
gl(x) < 07 g2(x) < 09“'9 gm(x) SO,
and if, for each positive integer k, there is an x, € R" such that

Pi(x,) = min Py(x),

x € R"

then:
(1) Pe(x4) < Pyy(Xs1) < f(x*) = MP

for each positive integer k, and
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@ lim 3, [g7 (%)% = 0.

k—oo i=1
Consequently, if {x,} is any convergent subsequence of {x,} and if
lim x, = x**,
P p
then x** is a solution of (P).

PRroOOF. To prove that P(x,) < P, (Xx+1), Simply note that

Bixy) = min B0 < Plteer) = [%01) + K 3 [g7 00)?

XeR"

< fxart) + (k + 1) z [g7 (%es1)12 = Pesy(Xery).

Since x* is a solution of (P), we know that x* is feasible, so that g;"(x*) =0
fori=1,..., m. Therefore,

Pyii(Xe4q) = mi}? P (x) < Py (x¥)
X€R"

=fx*) + (k+ 1) ) [g](x*)]* = f(x*) = MP.
i=1
This proves statement (1).
Next, we shall prove that
lim 3 (g (x))* = 0.
k

i=1

To this end, choose a number ¢ such that f(x) > ¢ for all x € R". Then, for
each positive integer k,

e+ k 3 [7(x)17 < f00) + k 3 Lot (x)]2

= P(x;) < MP
so that kY™ [g7(x,)]* < MP — c for each positive integer k. It follows that
MP — ¢
k

and so lim, Y7, [g7 (x,)]* = 0, which completes the proof of statement (2).
Finally, assume that x** is the limit of some subsequence {x, } of {x}.
Then since each g;(x) is continuous on R", it follows that

0< Z [97 ()1 <

0< Y [gf®x*))* =lim ' [47(%,)]* =0
i=1 p i=1
by virtue of the conclusion obtained in the preceding paragraph of the proof.
We conclude that g;(x**) = 0fori =1, 2,..., m; in particular, x** is feasible
for (P).
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To complete the proof that x** is a solution to (P), it is only necessary to
show that f(x**) < MP, since MP is the constrained minimum of f(x) and
x** is feasible for (P). But this is an immediate consequence of the continuity
of f(x)and g,(x), ..., g,.(X) since

10 = 1) + 3 [ ()
= lim [f(x,) + 3 o7 (%))

< lim [f(x,) + &, 3 07 (x,)1°]
=lim P, (x,,) < MP.

A careful review of the proof of the preceding theorem shows that it remains
valid if the Courant—Beltrami penalty term is replaced by the Absolute Value
Penalty Function

i gi (x).

that is, if P,(x) is replaced by F,(x). More generally, if

0ux) = S0 + k 3. G(x)
where

(1) G;(x) is continuous on R" provided g;(x) is continuous on R" for i =
1,...,m

(2) G(x) >0forallxe R"andi=1,...,m;

(3) Gi(x)=0fori=1,2,...,mif and only if x is feasible for (P);

then the proof of (6.2.3) is valid when P,(x) is replaced by Q,(x).

Given a constrained minimization problem

P) Minimize f(x) subject to
gl(x) < 0’ g2(x) < 0’”'3 gm(x) SO; XERn’

we call any function

where the G,(x)fori = 1, ..., m have properties (1), (2), (3), a generalized penalty
function for (P) and the function Q,(x) is called the generalized penalty method
objective function for (P). Not only does (6.2.3) remain valid when P,(x) is
replaced by Q,(x), but the same is also true of the following useful corollary.
In particular, this corollary holds for the Absolute Value Penalty Function.
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(6.2.4) Corollary. Suppose that f(x), g,(x), ..., g.(X) are continuous functions
on R" and suppose that

P) Minimize f(x) subject to
91(x)<0,..., ¢,(x)<0;  xeR",

has a solution x*. If f(x) is coercive, and if

Px) = f(x) + k 2 Lot (]2

then:

(1) For each k, there is a point x, in R" such that

P.(x,) = min Py(x).
x€R"
(2) The sequence {x,} is bounded and has convergent subsequences, all of which
converge to solutions of (P).

PrOOF. Since

lim f(x)= +o0
[x]|—=+o0
and since f(x) is continuous on R", it follows that f(x) is bounded from below
on R" by (1.4.4).
Next, we shall show that each P,(x) has an (unconstrained) minimizer on
R". To this end, simply note that for each positive integer k,

R = S0+ k 3 L6 (0] > f(x)
for all x € R", so that

lim P (x) = +o0.
lx}|— +o0
Therefore, by (1.4.4), P,(x) has an unconstrained minimizer x,.

We will now show that the sequence {x,} is bounded. Suppose, to the
contrary, that {x,} is not bounded. Then {f(x,)} contains arbitrarily large
terms since

lim f(x) = +oco0.
Ix ]|~ +o0
But f(x,) < P.(x,) < f(x*) for all k, which contradicts the statement that
{ f(x,)} contains arbitrarily large terms. Consequently, {x, } must be a bounded
sequence.

The Bolzano—Weierstrass Property guarantees that {x,} has convergent
subsequences and (6.2.3) implies that the limit of any convergent subsequence
of {x,} must be a solution of (P). This completes the proof.
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The following simple examples illustrate not only the Penalty Function
Method but also some practical problems related to the application of this
method.

(6.2.5) Example. Consider the program

) {Minimize f(x,y)=x2 + y* subject to

gx,»)=1—-x—-y<0; (x,y)eR%

It is quite easy to see from the graph of f(x, y) and the feasibility region for
(P) that the unique solution of this program is (x*, y*) = (3, ). However, let
us apply the Penalty Function Method to see what happens. In this case,

P.(x. y) = x? + y? ifx+y>1,
ROV = e 4y 4 k(1 —x—y)P it x+y<l,
has its minimizer in the region where x + y < 1. In fact, in this region
oP,
0=a—xk=2x—2k(l —x—Y),
0P,
0=—=2y—2k(1 —x —y).
Y (I=x—y)
If we solve these equations for the critical points, we find that
L _ k
iy P Tiyak

Note that the sequence {(x;, y;)} is outside of the feasibility region for (P) and
that it converges to the solution (3, %) for (P).

Because of problems related to computational accuracy, it is not in general
practical to attempt to compute an approximate value of the solution x* to
(P) by computing the minimizer x, of P, to within a preassigned accuracy for
a single large value of the penalty parameter k. (See Section 6.2.1 in Practical
Optimization by P. E. Gill, W. Murray and M. H. Wright (Academic Press,
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New York, 1981).) Rather, a sequence of computations of approximations to
X, with increasing values of k is required to implement the Penalty Function
Method for the Courant—Beltrami Penalty term.

(6.2.6) Example. Let us look at the Penalty Function Method again applied
to the simple example in (6.2.2)

) Minimize f(x) = x? subject to
gx)=1—-x<0; x € R,

this time using the objective function F,(x) with the Absolute Value Penalty
term

x4+ k(1 —x) for x <1,
x2 for x > 1.

F(x) = {

The minimizer x¥ of F,(x) is at x = § for k = 1 and at x = 1 for all positive
integers k > 2. Thus the solution x* = 1 of (P) is actually the minimizer of
Fi(x)for all k > 2.

Surprisingly enough, the apparent very special feature of Example (6.2.6)
obtains under quite general conditions when the Absolute Value Penalty
Function is used, that is, the solution x* of a constrained program (P) is the
unconstrained minimizer x} of F, for all sufficiently large k. Penalty functions
with this property are referred to as exact penalty functions in the literature.
Example (6.2.5) shows that the Courant—Beltrami Penalty Function is not
exact.

6.3. Applications of the Penalty Function Method
to Convex Programs

We will now use the Penalty Function Method to study duality in convex
programming. In particular, we will obtain a new derivation of the Karush-
Kuhn-Tucker Theorem that is independent of the abstract methods of
Chapter 5 and identify conditions under which convex programs do not have
duality gaps.

Consider the convex program

P) Minimize f(x) subject to
gl(x)so’”" gm(x)SO; XERn9

where f(x), g,(x), ..., g.(x) are convex functions on R". In Chapter 5, we
defined the Lagrangian L(x, A) for (P) by

L(x,}) = f(x) + 2 21gi(x).
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where x € R" and A > 0 in R™ and the dual program

Maximize h(r) = inf{L(x, L): x € R"}
subject to A > 0.

(DP) {

We showed that the quantities
MP = inf{f(x): gi(x) <0,i=1,...,m;x € R"},
and
MD = sup{h(L): L = 0; L € R"}
are related by the Primal-Dual Inequality
MP > MD

whenever both (P) and (DP) are consistent. We also gave an example of a
convex program (P) for which strict inequality holds in the Primal-Dual
Inequality, that is,

MP > MD.

Such programs are said to have a duality gap. Convex programs with a duality
gap are intractable by the Duality Method discussed in Chapter 5. Conse-
quently it is useful to find conditions on a convex program that assure that it
does not have a duality gap, that is, that MP = MD. The next theorem uses
the Penalty Function Method to identify a class of convex programs with this
desirable feature.

(6.3.1) Theorem. Suppose that f(x), g(X), ..., g.(X) are convex functions with
continuous first partial derivatives on R" and suppose that f(x) is coercive; that
is,

lim f(x) = +oo0.

x|~ +e0

If the convex program

P) Minimize f(x) subject to
g:1(x) <0, ¢g,x)<0,..., g.(x)<0; X € R",

is consistent, then its dual program (DP) is consistent and MP = MD.

Proor. Use the objective function

R = fx) + k 3. [g7 0T

with the Courant—Beltrami Penalty term. According to (6.2.4), there is a vector
X, such that

P (x,) = min{P,(x): x € R"}
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for each positive integer k; moreover, {x,} is a bounded sequence and all of
its convergent subsequences have limits that are solutions of (P).

Suppose that {x, } is a convergent subsequence of {x, }. By virtue of Lemma
(6.1.3),

VA®X) = V() + k 3 267(x)Vg,(x),

Since x,, is a minimizer for P, (x), it follows that
(*) 0= Vij(xkj) = Vf(xkj) + Zl 2kjgi+(xhj)Vgi(xkj)'

Let A = 2k;g;" (x; ) fori = 1,...,m and all j, and let
A0 = (AP, 2Y), . 2Y)
for all j. Then AY > 0 and (*) shows that
VL(%,, A) = 0

for each positive integer j. But, for each j, L(x, AY) is a convex function on
R" since f(x), g,(X), ..., gm(x) are convex functions and A% > 0; so Xy, is an
unconstrained global minimizer of L(x, AY”) on R". Thus,

L(xy, A) = min{L(x, A?): x € R"} > —co0.

This shows that the vector A is feasible for the dual program (DP).
Since (P) is consistent and f(x) is coercive, that is,

lim f(x)= 4+

Ix[|— +o0

it follows that (P) has solutions and that MP > —oo. Theorem (6.2.3) shows
that the limit x** of the convergent subsequence {x, } is a solution of (P).
Observe that for each j,

J0) < Pofxe) = f05) + 3 kL7 (5)12 < fixe) + 3 2hL07 ()7
= J,) + 3 g7 (% )gixe)  (WhyD

= 1) + 3 1)

= L(xy, A”) = min{L(x, A?): x € R"} < MD.

Hence, f(x,,) < MD for all j. Since f(x) is a continuous function on R" and
{x,} converges to x**, it follows that

MP = f(x**) = lim f(x,)) < MD.
j

Since MP > MD by the Primal-Dual Inequality, it follows that MP = MD,
which completes the proof.
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Note that in the preceding proof, the assumption that (P) is a consistent
program is not needed to establish the consistency of the dual program (DP);
the consistency of (DP) follows from the assumption that f(x) is a coercive
function (apply (1.4.4) instead of (6.2.4)) and the smoothness condition on f(x)
and the constraint functions.

If the objective function f(x) in the convex program

P) Minimize f(x) subject to
g1(x) <0, ¢g,x)<0,..., g.(x)<0; x € R",
is not coercive, it is always possible to perturb f(x) so that this condition is
satisfied. More specifically, for each ¢ > 0, define
o) = f(%) + ellx| %
Then f¢(x) is a convex function because f(x) and ||x||? are convex and & > 0.
We will now show that f(x) is also coercive; that is, that

lim f%x) = +o0.

Ix]— +o0
First, note that there is a vector d € R" such that
Jx) = f(0) +d-x

for all x € R™. In fact, if f(x) has continuous first partial derivatives, we can
take d = Vf(0) by (2.3.5). In the general case, d can be taken to be the
subgradient of f(x) at 0. (See (5.1.10) and the discussion following that result.)
Next, observe that

o) = f(x) + elix||* = f(0) +d-x + el|x|?
= f(0) — (—d-x) + ¢l|x|*.
By the Cauchy—-Schwarz Inequality,
—d-x < || d| x|

SO
£200) = £(0) — 1] [Ix]| + ellx]|?
= f(0) + IIx|iElx] — ld).
As ||x|| = +o0, it is clear that (¢]x|| — ||d||) > +o0 so

lim f*(x) = +o0.

x| = +o0
Hence, f*(x) is coercive.
Now suppose that we are given a program

P) Minimize f(x) subject to
gl(X)SO, gZ(x)Soa"'9 gm(x)SO; XGRn,

where f(x), g,(x), ..., g.(X) are convex functions with continuous first partial



230 6. Penalty Methods

derivatives on R" but f(x) is not coercive. Then, for each ¢ > 0, the program
(P) Minimize f*(x) subjectto
g,(x) <0, ¢g,x)<0,..., g.(x)<0; x € R",
is convex, its objective and constraint functions have continuous first partial
derivatives on R" and f*(x) is coercive. Obviously, (P,) is consistent if and only
if (P) is consistent because both programs have the same constraints. There-

fore, the program (P*) satisfies the hypotheses of (6.3.1) whenever (P) is
consistent.

The Lagrangian L%(x, A) for (P?) is related to the Lagrangian L(x, A) for (P)
as follows:

L2 = 109 + elxI? + 3 Agi(

= L(x, ) + ¢||x||>.
Thus, the dual (DP®) of (P?) is
(DP) Maximize h*(4) = inf{L(x, A) + ¢|x|*: x € R"}
subjectto A >0 inR™

In keeping with our notation for the given program (P) and its dual (DP), we
define

MP? = inf{f*(x): g,(x) <0, ..., g(x) < 0; x € R"},

MD*® = sup{h*(A): 0 <X e R™}.
Note that if 0 < & < 8, then f%(x) < f°(x) for all x € R" and also L%(x, A) <
L3(x,2)forallx e R"and 0 < A € R™,so MP* < MP? and MD* < MP°.

The preceding considerations and (6.3.1) now yield the following result.

(6.3.2) Lemma. Suppose that f(x), g,(X), - .., g..(X) have continuous first partial
derivatives on R" and that the program
P) {Minimize f(x) subject to
9:1(x) <0, ¢g,(x)<0,..., gn(x)<0; x€eR
is consistent. Then for each ¢ > 0, the programs (P?) and (D P?) are consistent and

MD* = MP°.

Before we proceed to use the programs (P¢) and (D P®) to obtain a new proof
of the Karush—Kuhn-Tucker Theorem by way of the Penalty Function
Method, let us look at these programs in a simple example.

(6.3.3) Example. Note that the objective function in the program
P) Minimize f(x, y) =x + y subject to
gix, ) =x>+y*—-2<0; (x,y)eR?

is not coercive; for example, the value of f(x, y) approaches —oo along the
negative x-axis or negative y-axis.
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A glance at the level curves of f(x, y) and the feasibility region for (P) shows
that (P) has the unique solution (x*, y*) =(—1, —1) and that MP = —2.
The program (P) is obviously superconsistent and MD = MP = —2.(See the
remarks following (5.4.1).)

AN
N \\\\\ﬁ‘y
ANAN NN N\ level curves of f(x, y)
NN NN\ \2/
NN\ N ¥
\\\K\ O
AN AN .

N\
OO AN N
> NN feasibility region
(-1 = —= A
NN

N\ N

For each ¢ > 0, the objective function f*(x, y) can be expressed as follows:

1 1
fi(x, y) =x + y + &(x? +y2)=.s<x2 +;x>+s<y2 +Ey>

)02

Thus, the level curves for f*(x, y) are circles centered at (—1/2¢, — 1/2¢).
Consequently, we see that, for &£ > 1, the constrained minimum value of

Sfe(x, y)is
1

2

and that this value is assumed at the point (— 1/2¢, — 1/2¢). On the other hand,
if 0 < ¢ <1, the constrained minimum value of f*(x, y) is

MP®=2¢—2

and that this value is assumed at (— 1, —1). The graph of M P¢ as a function
of ¢ is pictured below.

MP® =

A MP:

-+ o

—14

_2-4
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Of course, since (P) satisfies the hypotheses of (6.3.2), we see that MD® = M P*
for all e > 0.

Note that, in the preceding example, the infimum of MD*® over all ¢ > O is
—2whichin turnisequal to M P for that example. The following lemma shows
that this equality holds under rather general circumstances.

(6.3.4) Lemma. Suppose that f(x), g,(X), ..., gm(X) have continuous first partial
derivatives on R". If the program
P) Minimize f(x) subject to
9:x) <0, ¢g,x)<0,..., g.(x)<0; x € R",
is consistent and if MP > oo, then:
(1) The program (DP®) is consistent for all ¢ > 0.
(2) MP = inf{MD*: ¢ > 0}.

Proor. For a given ¢ > 0, f(x) < f*(x) for all x € R" so MP < MP* because
(P) and (P?) have the same constraints. But M P* = MD*® and (D?) is consistent
for each ¢ > 0 by Lemma (6.3.2). Therefore

MP < inf{MD*: ¢ > 0} = inf{MP*: ¢ > 0}
inf [inf{f(x) + el|x||*: g;(x) < 0,i=1,...,m}]

>0

= inf{inf [fx)+elx||?):9:x)<0,i=1,..., m}
>0

= inf{f(x): gi(x) <0,i=1,2,...,m} = MP

which completes the proof.

Remark. It is not true, in general, under the hypotheses of (6.3.4) that
(*) MD = inf{MD*: ¢ > 0}.

In fact, if (*) holds, then (6.3.4) implies that MP = MD, that is, the program
(P) does not have a duality gap. The example in (5.3.5) shows that programs
satisfying the hypotheses of (5.4.8) can have duality gaps.

The next theorem allows us to mesh the work of this section with that of
Section 5.2. This theorem should be studied together with Theorems (5.2.13)
and (5.2.16).

(6.3.5) Theorem. Suppose that f(x), g,(X), ..., gu(X) are convex and have con-
tinuous first partial derivatives on R". If the program

P) Minimize f(x) subject to
9:(x) <0, ¢g,x)<0,..., g.(x)<0; x € R",
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is superconsistent and MP > —oo, then:

(1) the dual program (D) is consistent;
(2) MP = MD, that is, (P) does not have a duality gap;
(3) there is a vector L* € R™ which is a solution of the dual program

P Maximize h(\) = inf{L(x, A): x € R"}
subjectto A > 0.

If there is a solution x* of (P), then
J(x*) = L(x*, &*) = h(0%).
Moreover,
AFg(x*)=0 fori=1,2,....m
and \* is a sensitivity vector for (P).
PRrOOF. According to Lemma (6.3.4), the dual program (D P?) of (P°) is consis-
tent for all ¢ > 0 and
MP = inf{MD*: ¢ > 0}.
Because

MD* = sup inf (L(x, A) + | x]|?),

A>0 xeR"

and because M D* decreases as ¢ > 0 decreases, it follows that for each positive
integer k there is a positive integer m, such that

1 1
MP < sup( inf <L(x, A+ — ||x||2>> < MP + -,
A>0 \xeRn m k

and m, > m, when k > p. But then, for each positive integer k, we can choose
A® e R™ with A% > 0 such that

X€R" k

1 2
(%) MP < inf <L(x ARy — - ||x||2> +-< MP + w
k
We shall now show that {A¥} is a bounded sequence. Let y be a Slater
point for (P); that is, gi(y) <0 for i =1, 2,..., m. Choose a >0 so that
gily) < —afori=1,2,..., m. Then by virtue of (),

1 1
MP < L(y, A®) + — |IylI* + -
my k

1
<ﬂw+ZN’w+—MW+E

<SS = a3+ Iy L
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and so
m 1
Y, M < (S + IyI* + 1= MP)
i=1

for all k. This latter inequality, together with the fact that A% > 0 for all k and
alli=1,2,..., m,yields the boundedness of the sequence {A®} in R™.
The Bolzano—Weierstrass Property assures us that some subsequence of
{A™} converges to a vector A* € R™ Clearly, A* > 0 and (*) implies that
MP < L(x, %)
for all x € R™. Therefore, L* is a feasible vector for (D) and

MP < inf {L(x, %)} < sup inf {L(x,.)} = MD.

X €eR" 0 xeR"

Since the Primal-Dual Inequality assures us that MP > MD, we conclude
that
MP = MD = inf {L(x,A*)} = h(0¥),

xe R

which completes the proof of assertions (1), (2), and (3) of the theorem.
If x* is a solution to (D), then by (2),

f(x*) = MP = MD = inf {L(x,**)}.

x€R"

But, because A* > 0 and g;(x*) < Ofori=1,2,..., m, it follows that
SOx*) = f(x*) + ), 2¥gi(x*) = L(x*, A*) = h(h*) = MD.
i=1
Consequently,
S(x*) = L(x*, &%) = h(r*)

and

m

3 2ax) =

The last equation implies that
Argix*) =0, i=12..m,

because 4; > 0, g;(x*) < Ofori=1,2,...,m
Finally, to show that A* is a sensitivity vector for the program (P), we note
from (5.2.16) that we need only show that

L(x*, L) < L(x*, A¥)

for all A > 0 in R™. To this end, we observe that

Lo, 4%) = et 3) = 3 (2 = )gix")

= - Zl A:igi(x
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because A > 0, g;(x*) < 0, and A¥g;(x*) =0fori =1, 2, ..., m. This yields the
desired inequality and we conclude that A* is a sensitivity vector for (P). The
proof of the theorem is now complete.

The preceding result actually includes the Karush—-Kuhn—Tucker Theo-
rem (5.2.13). For if x* is a solution to a program (P) satisfying the hypotheses
of (5.2.13), then MP = f(x*) > —oo and so (6.3.5) asserts that there is a vector
A* in R™ such that:

(1) A¥* >0fori=1,2,...,m;
(2) A¥g;(x*)=0fori=1,2,...,m.

Moreover, because L(x*, A*) = f(x*) and (2) holds, we see that
L(x*, A*) < L(x, A¥)

for all x € R". Thus, x* is a global minimizer of L(x,A*) on R" and so
VL(x*, A*) = 0. Consequently,

() VI(x¥) + 3 2V x%) = 0.

Conversely, if x* is feasible for (P) and if A* € R™ satisfies (1), (2), and (3),
then the calculation in the second part of the proof of (5.2.14) shows that x*
is a solution to (P).

The point of these observations is that (6.3.5) provides a new way to
establish the Karush—Kuhn-Tucker necessary conditions (1), (2), and (3) that
is independent of the abstract methods of Chapter 5. The sufficiency of these
conditions, which is quite elementary and completely independent of these
abstract methods, is established just as in (5.2.14).

One final comment: All of this chapter has dealt with programs of the form

P) Minimize f(x) subject to
9:1x) <0,..., gn,(x)<0; xeR",
We can replace the domain R” for (P) by any closed convex subset of R" and

establish all of the results of this chapter by the same methods with a little
extra care at appropriate places.

EXERCISES
1. Consider the following program:

) Minimize f(x) = x* — 2x
subjectto 0<x < 1.

(a) Sketch the graphs of the Absolute Value and Courant—Beltrami Penalty Terms
for (P).

(b) For each positive integer k, compute the minimizer x, of the corresponding
unconstrained objective function P,(x) with the Courant—Beltrami Penalty
Term.

(c) For each positive integer k, compute the minimizer x, of the corresponding
unconstrained objective function Fy(x) with the Absolute Value Penalty Term.
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2. (a) Use the Penalty Function Method with the Courant—Beltrami Penalty Term
to solve the problem

Minimize f(x,, x,;) = x; + X,
subject to  x? — x, < 2.

(b) Show that the objective function F(x) corresponding to the Absolute Value
Penalty Term has no critical points off the parabola

x2—x,=2
for k > 1 and compute the minimizer of F(x).
3. Use the Penalty Function Method with the Courant-Beltrami Penalty Term to
minimize
flx,y)=x*+y?
subject to the constraint x + y > 1.
4. Consider the program:
(P) Minimize f(x) subjectto g(x) <0,

where f(x) and g(x) have continuous first partial derivatives on R" and f(x) is
convex and coercive.
(a) Prove that the associated unconstrained program

Minimize F(x) = f(x) + kg*(x)

has a minimizer x, for each positive integer k.
(b) Prove that if the gradient of

o(x) = f(x) + kg(x)

is nonzero for all nonfeasible points for (P), then x, must be feasible for (P).
(c) Show by example that {x,} may converge to a point x* that is not a solution
of (P). (Hint: Try a simple inconsistent program (P).)

5. Suppose f(x), g,(X), ..., 9..(x) are continuous functions on R". Suppose the Penalty
Function Method is used to minimize f(x) subject to g,(x) < 0, ..., g.(x) < 0.If x,
is the global minimizer of P,(x) on R" and g;(x,) < Oforalli = 1,..., m, then show
that x, also minimizes f(x) subject to g,(x) <0, ..., g.(x) < 0.

6. Let g(x) be a differentiable function on R! and suppose g(x,) = 0.
(a) Show g*(x) is differentiable at x, if and only if g'(x,) = 0.
(b) Show carefully that (g*(x))? is differentiable at x, and that its derivative at x,
is zero.

7. Let f(x), g,(X), ..., gm(X) be continuous functions on R". Suppose there is a vector
y € R" such that g;(y) <0 for all i = 1, ..., m. Also suppose there is an i, with
1 < iy < msuch that g; (x) is coercive. Prove:
(a) For each k there is a point x, in R" such that
Pi(x,) = min P(x).

xeR"

(b) The sequence (x,) is bounded.
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10.
11.

12.

13.

(c) The sequence (x,) has at least one convergent subsequence.
(d) If x** is the limit of any convergent subsequence of (x,) then x** minimizes
f(x)subjectto g;(x) <0,i=1,...,m.

. Suppose f(x), g,(X), ..., g.(x) are all differentiable convex functions defined on R".

Suppose also that f(x) is coercive. Let (x, ) be the sequence produced by the Penalty
Function Method with the Courant—Beltrami Penalty Term. Prove

m

lim k Y. (g7 (x,))? = 0.

k=0  i=1

(Hint: See the proof of Theorem 6.3.1.)

. Let € > 0. Show that if a vector A is feasible for the dual (D) of a convex program

(P), then A is also feasible for the program (D?).
Find a convex program (P) that is not superconsistent and yet MP = MD.

Let f(x), g,(X), - .., gm(x) be differentiable convex functions defined on R". Assume
f(x) is coercive and assume the dual (D) of the convex program

P) Minimize f(x)
subjectto g¢,(x) <0,..., g.(x)<0,

is consistent and MD < oo. Prove (P) is also consistent and MD = MP. In fact,
show that there is a vector x* feasible for (P) such that f(x*) = MP.

Let (P) be a convex program and suppose that for some ¢ > 0 the program (DP®) is
consistent. Prove (P) is also consistent. Show that if lim,_, ,, MD® < oo, then MP =
MD. (Hint: Refer to the preceding exercise.)

Suppose that f(x), g,(x), ..., gm(X) are continuous functions on R". Suppose that

P) Minimize f(x) subject to
g,(x)<0,..., gn(x)<O0; xeR"

has solution x*. Suppose f(x) is bounded from below on R" and suppose that g; (x)
is coercive for some i, with 1 < iy < m. Show that for each k, P,(x) has an un-
constrained minimizer x, and that the sequence {x,} is bounded. Show any con-
vergent subsequence of (x,) converges to a solution of P. (Hint: Mimic the proof
of (6.2.4).)



CHAPTER 7

Optimization with Equality
Constraints

Many optimization techniques of practical interest include equality con-
straints, that is, constraints of the form

gx) =0, x € R". (0))]

For example, the classical Lagrange Multiplier Method for constrained op-
timization deals exclusively with equality constraints. On the other hand,
some very useful methods such as the Wolfe Algorithm for quadratic pro-
gramming (see Section 7.3) are based on the solution of optimization problems
that include both equality and inequality constraints.

The Karush—Kuhn-Tucker theory, as developed for superconsistent con-
vex programs in Chapter 5, is not easily modified to cover the case in which
some or all of the constraints are equality constraints. The obvious ploy of
replacing an equality constraint (1) by two inequality constraints

g(x) < 0’ _g(x) < Oa X € Rn? (2)

is not very helpful because both g(x) and —g(x) cannot be convex unless g(x)
is linear. Also, the superconsistency hypotheses is obviously not appropriate
for programs that include equality constraints.

The development of suitable optimization methods for problems involving
some equality constraints will require a rather different approach than that
employed for convex programs in Chapter 5—an approach based on the
development of the classical Lagrange Multiplier Method. We will see that
the Karush—Kuhn-Tucker Theorem (5.2.14) survives in a modified but com-
pletely recognizable form and that the new version of this theorem yields
methods and insights that are every bit as useful as the earlier version for
superconsistent convex (inequality-constrained) programs.

To set the stage for the work in this chapter, let us consider the following
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simple constrained minimization problem

Minimize f(x,y) =y subjectto
(P) _ a 3 2 _
g(x,y) =3y —3x* —4x° + 12x* = 0.

Geometrically, the program (P) seeks the point(s) (x, y) on the curve
y=x*+%x>—4x? 3)

for which the ordinate is least, that is, the lowest point(s) on the graph of (3)
in the xy-plane.

A little calculus shows that (3) has three critical points x =0, x =1,
x = —2, and that x = 0 is a local maximizer while x = —2, x = 1 are local
minimizers for g(x) = x* + $x3 — 4x2. The graph of y = g(x), that is, of (*) is
pictured below.

e— Yy =8

-1 ©,0) 1
: T » X
1, a=9
+-8
(-2, - % T-12

It is evident from this graph that (x*, y*) = (—2, —32) is the solution to (P),
that is, (x*, y*) is the global minimizer of f(x, y) on the set F of feasible vectors
for (P)

F = {(x, y) € R%: 3y — 3x* — 4x> + 12x*? = 0}.
Note that
Vi, ) =(0,1),  Vg(x,y) = (—12x* — 12x> + 24x, 3).

Consequently, at the solution (x*, y*) = (—2, —3#) for (P), the gradient
condition

VI(x*, y*) + A*Vg(x*, y*) = (0, 0), 4

familiar from the Karush—Kuhn-Tucker theory, is satisfied if we take
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A* = —Lsince x* = —2 is a solution of
—12x — 12x? + 24x = 0. (5)

However, observe that, unlike the Karush—Kuhn-Tucker theory, A* is nega-
tive. Note further that x = 0 and x = 1 are also solutions of (3) and hence that
the gradient condition (2) is also satisfied for A* = —3J at the points (x*, y*) =
(0, 0) and (x*, y*) = (1, —3). The point (0, 0) is a local maximizer for (P) while
the point (1, —3) is a local minimizer for (P). These three points (x*, y*) and
A* = —1 are the only solutions to the gradient condition for (P). It is clear
from the graph of y = g(x) that (P) has no global maximizer.

The preceding example indicates that the gradient condition familiar from
the Karush—Kuhn-Tucker theory can be expected to play a role in the
solution of minimization problems in which equality constraints are present.
However, it also shows that this condition can only be counted on to identify
candidates for local minimizers. This condition may also turn up points that
are neither local minimizers nor local maximizers of the objective function on
the set of feasible vectors. The example also shows that we cannot expect the
gradient condition to determine which local minimizers and maximizers are
global, or indeed if global minimizers and maximizers exist. Finally, as we
have already noted, the multiplier A* associated with an equality constrained
program need not be nonnegative as in the case of inequality constraints.

Before we can begin to study minimization of functions subject to some
equality constraints, we need to develop some geometric concepts concerning
surfaces in R". We will do this in Section 7.1 and then proceed to the general
development of constrained minimization in Section 7.2.

7.1. Surfaces and Their Tangent Planes

In calculus, a surface S in space (i.e., in R?) is often described by an equation

g(x, y,2) =0, (1)

where g is a function of three variables with continuous first partial derivatives.
At any point x'?, the gradient vector Vg(x'?) is perpendicular to S because
the gradient vector points in the direction of maximum increase of g and,
according to (1), S is a “level surface” of g. Therefore, the tangent plane to S
at x'? is given by

(x — x(9)- Vg(x'?) = 0. )

Put another way, the tangent plane to S at x® consists of all vectors x® + y
where

yVg(x?) = 0. (3)
Although the set of all vectors y satisfying (3) is not normally singled out for
special attention in calculus texts, it is called the tangent space T(x'?) of the
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surface S at x'® in more advanced books. Unlike the tangent plane to S
at x'%, the tangent space T(x®') is always a subspace of R>. Moreover, the
tangent plane to S at x'© is simply the translate x'© + T(x'?’) of the tangent
space at x(?.

tangent plane to S at x

v

~— T(x") = tangent space of § at x'

(7.1.1) Definitions. Suppose that g,(x), ..., g,(x) are functions with contin-
uous first partial derivatives on some open subset of C of R".
(a) A surface S in R" is the set of points in R" satisfying

g:(x)=0, ¢,x)=0,..., g,(x)=0; xeC.

(b) Ifx©is a point of a surface S defined in (a), then the normal space N(x'®)
to S at x' is the set of all linear combinations of the vectors

Vg, (x'?), ..., Vg,(x'O),

and the rangent space T(x'®) to S at x'* is simply the orthogonal complement
N(x@)* of the normal space N(x'?) to S at x©.

(7.1.2) Examples

(a) Note that if a surfaces S in R? is described by a single function of three
variables as in (1) above and if x'® is a point of S for which Vg(x(®) # 0, then
the normal space N(x‘?’) is simply the line L through the origin consisting of
all multiples of the vector Vg(x‘?), and the tangent space T(x'?’) is the plane
through the origin that is perpendicular to L.

(b) It is important to note that the term “surface,” as defined in (7.1.1),
includes objects that are not normally called surfaces in calculus even when
n = 3. For example, let us consider the surface (in the sense of (7.1.1)) defined
by

gl(x) = 0» gl(x) = 0» (4)

where g,(x), g,(x) have continuous first partial derivatives on R3. Typically, (4)
describes the curve of intersection of the surfaces S; given by g,(x) = 0 and
the surface S, given by g,(x) = 0.
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curve of intersection of §; and S,

In this case, if x'*’ is a point on this curve S of intersection of S,, S, and if
Vg,(x'?), Vg,(x'?) are not multiples of one another, then the normal space
N(x'9) is actually the plane through the origin that is parallel to the plane
perpendicular to the curve S at x‘©. In this case, the tangent space T(x'?) is
the line through the origin that is parallel to the tangent line to the curve S
at x\©,

(c) Suppose that f(x) is a function with continuous first partial derivatives
defined on some open subset C of R". In Chapter 2 (see the discussion
preceding (2.3.5)), we introduced the tangent hyperplane Py, to the graph of
f(x) at x© to obtain a very useful characterization of convex functions. We
defined P,)(0) as follows:

Pyo = {(y, y) € R y = f(x@) + Vf(xD) - (y — x')}.

To see how this notation fits into our present discussion of surfaces, note that
if

z = f(x),
then the function g(x, z) defined on the set

CxR={(x,2:xeC,ze R}
in R"*! by
g(x,2) = f(x) — z
has the property that
Vy(x, z) = (Vf(x), —1).
Moreover, the graph of f(x) is simply the surface in R"*! defined by
g(x, z).

For any x'© e C, the point (x', f(x(®))is on the graph of f(x) and the tangent
plane to the graph of f(x) at (x'?, f(x!?)) coincides with P,«, as can be seen
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from the following computation:

{(y, y) € R™1:y = f(xO) + VAxD): (y — x9)}
={(y, y) € R": (y — x9)- Vf(x'¥) — (y — f(x'?)) = 0}
={(y, ») € R [(y, y) — (x©, f(x'?)] - Vg(x'?, f(x?)) = 0}.

If a surface S in space is described by an equation

gl(x’ Vs 2)=0’ (1)

where g, is a function of three variables with continuous first partial deriva-
tives and if x© = (x,, yo, 2o) is a point of S, then it is intuitively plausible that
the tangent space T(x'?) to S at x© can also be described as the set of all
vectors z. that are tangent vectors at x© to some curve C that lies on the
surface S and passes through x®. Once we make precise what we mean by
the phrase “a tangent vector to a curve C that lies on the surface S,” we will
see that this alternate description of the tangent space is available. This
alternate description will be very helpful in our study of minimization prob-
lems with equality constraints.

(7.1.3) Definition. If S is a surface in R", then a function

(P(t) = ((Pl (t)a (pl (t)9 LR (pn(t))
of a real variable ¢ with values in R" is a path in S if:

(a) @(¢)is defined on an open interval («, f) of the real line and ¢(t) € S for all

te(a )
(b) the component function ¢,(t), ..., @,(t) are differentiable at each point of
the interval (a, f).

(7.1.4) Examples
(a) The surface S, in R® defined by
gl(X,y,Z)=x2 +y2 —2z=0

is a paraboloid with its vertex at the origin and the positive z-axis as its central
axis. The curve in R? defined by

¢(t) = (tcos t, t sin ¢, t2), 0<t<2nm,

is a path in S since the component functions are clearly differentiable on (0, 27)
and

(tcost)> + (tsint)2 —t2=0
for all t € (0, 2m).
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X

(b) The surface S in R? defined by
gi(x,y,2) = x> +y* —z=0,
ga(x,y,2) =8 —x>—y? —z=0,
is the curve of intersection of the paraboloid in part (a) with a paraboloid with

vertex at (0, 0, 8), and opening down the z-axis. The curve in R* defined by

o(t) =(2cos t,2sint, 4), 0<t<g’

is a path in S which is a quarter circle extending from (2, 0, 4) to (0, 2, 4) in
the plane z = 4.

The next theorem allows us to identify members of the tangent space
T(x) at a given point x'* of a given surface S in R™ with tangent vectors to
paths in S passing through x‘©.

(7.1.5) Theorem. Suppose that g,(x), g,(x), ..., g,(x) are functions with con-
tinuous first partial derivatives on some open set C in R" and that S is the surface
in R" defined by

9,x) =0, ¢g,(x)=0,..., g,(x)=0.
If xX© e Sandif

{Vgl(x(O))’ Vgl(x(O))7 RN VgP(X(O))}

is a linearly independent set, then a vector y € R" is in the tangent space
T(x'?) to S at x'© if and only if there is a path ¢(t) in S such that x'© = ¢(0)
and

Yy =@ (0) = (¢1(0), ..., 9:(0)).

DiscUsSION OF THE PROOF. It is very easy to show that if @(¢) is a path in S
such that x® = ¢(0) and y = ¢'(0), then y is in the tangent space T(x'?) to S
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at x'?. For, by definition of S,

gi(@1(0), .., @u(1)) = 0

fori=1,..., pand all t in the interval of definition of @. Therefore, the Chain
Rule yields

d
0= d—gi(fpl(t), @) = Vgi(x?) 9'(0)
t t=0

= Vgi(x'¥)-y

fori=1,..., p. Hence, y is orthogonal to Vg;(x'?) fori =1, ..., p. But then y
is orthogonal to any linear combination of Vg,(x?), ..., Vg,(x'?); that is,
y e Nx@)t = T(x?).

The theorem also asserts that for any y in the tangent space T(x'?), there
is a path ¢(t) in S with @(0) = x® and ¢'(0) = y. A proof of this statement
seems to require the full power of the Implicit Function Theorem, a result
whose discussion is beyond the scope of this book. An excellent discussion of
the Implicit Function Theorem and the proof of (7.1.5) can be found in Section
4.4 of Vector Calculus by G. Marsden and T. Tromba.

Note that the main hypothesis of (7.1.5), namely that the set
{Vgl (X(O))a ng(x(o))’ EERE) Vgp(x(O))} (5)

is linearly independent, was not used in our proof that all vectors y = ¢'(0),
where @(t) is a path in S such that ¢(0) = x'?, are members of the tangent
space T(x'?) to S at x®. However, this hypothesis is essential to the proof
(omitted above) for the converse statement. For the sake of convenience, we
will call a point x'© on a surface S a regular point if the set (5) is linearly
independent.

7.2. Lagrange Multipliers and the Karush—Kuhn-
Tucker Theorem for Mixed Constraints

The general problem that we will study in this section is
Minimize f(x) subject to the constraints
(P) gl(x) =O"-" gm—l(x)=0; gm(x) SO,..., g,,(X)SO,

where f(x), g,(x), ..., g,(x) have continuous first partial
derivatives on some open subset C of R".

Note that if m = 1, the program (P) includes only inequality constraints and,
if f(x), g;(x) are convex functions, (P) is a convex program of the sort we have
already considered in Chapter S. On the other hand, if m — 1 = p, then (P)
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includes only equality constraints and fits the context of the classical Lagrange
Multiplier theory as seen in calculus. If 1 < m — 1 < p, then (P) includes both
equality and inequality constraints and we say that the constraints of (P) are
mixed.

A point x € C that satisfies all of the constraints of (P) is feasible for (P),
and (P) is consistent if the set F of feasible points for (P) is not empty. A feasible
point x* is a local minimizer (resp. a solution) for (P) if it is a local minimizer
(resp. global minimizer) of f(x) on the set F of feasible points for (P).

A feasible point x* for (P) is a regular point for (P) if the set of vectors

{Vg;(x*): je J(x)}
is linearly independent where
J(x*) = {j: 1 <j<p,g(x*) =0},
that is, J(x*) contains all of the indices corresponding to the equality con-

straints in (P) together with the indices for those inequality constraints for (P)
that are active at x*.

The following theorem provides necessary conditions for a local minimizer
for the program (P).

(7.2.1) Theorem. Suppose that x* is a regular point for (P). If x* is a local
minimizer for (P), then there exists a L* € R? such that:

(1) A*=0for j=m,...,p;
() AFgi(x*) =0 for j=m,....p;
(3) Vf(x*) + Y51 4fVg;(x) = 0.

Proor. Consider the new program (EP) obtained from (P) by replacing all of
the inequality constraints in (P) that are active at x* by the corresponding
equality constraints and deleting any remaining inequality constraints in (P).
Then (EP) can be formulated as follows:

(EP) {Minimize f(x) .subject to
gi(x) =0 for je J(x*),

and x* is a local minimizer for the program (EP).

Let S be the surface in R” defined by the constraints for (EP) and let ¢(t)
be a path in S such that x* = ¢@(0). Because x* is a local minimizer for (EP),
there is an r > 0 such that f(x*) < f(x) for all x € B(x*,r)n S

f(x*) = f(0(0)) < flo(1)

for all ¢ in some open interval containing t* = 0. But then t* = 0 is a local
minimizer of f(@(t)) so

d
(%) 0=2,fle®) =V/(90) ¢0) = V/(x*)¢'(0).

0
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But x* is a regular point for (P) so it is a regular point for S by definition of
J(x*). Consequently, by (7.1.5), every vector y in the tangent space T(x*) to S
at x* is given by y = ¢'(0) for some path ¢(t) in S. It follows from (%) that
Vf(x*) € T(x*)1. Also, by (4.2.7),

T(x*)* = (N(x*)")" = N(x*),

so we conclude that the gradient vector Vf(x*) is a linear combination of the
gradient vectors {Vg;(x*): j € J(x*)}. This means that there exists a A* € R?
such that

p
Vi(x*) + Y. A¥Vg(x*) =0,
Jj=1
and such that 2* = 0 for j¢ J(x*) and 1 < j < p. This establishes condition
(3), and condition (2) follows from the observation that
A¥gix*)=0
for je J(x*) because g;(x*) = 0, and for j¢ J(x*), 1 <j < p because A¥ = 0.
Suppose, contrary to (1), that ¥ < 0 for some j such that m < j < p. Then
jeJ(x*) since A¥ = 0 for i¢ J(x*), m < i < p. Consider the surface §; defined
by
g:(x) =0 for ie J(x*),i# ]
Then x* € §; by definition of J(x*). If T;(x*) is the tangent space to S; at x*,
then since x* is a regular point for (P), there is a y € T;(x*) such that
Vg;(x*)-y <O.

Theorem (7.1.5) asserts that there is a path ¢(¢) is S; such that ¢(0) = x* and
y = ¢'(0). But then

= Vf(x*)y

t=0

d
Ef(q’(t))

_(».;-1 AFVgi(x)-y + i l?‘Vgi(X)'y>

= —AfVg;(x*)-y <0.

This contradicts the fact that x* is a local minimizer for (P) since ¢(t) is feasible
for (P) for all t in some interval [0, ¢] with ¢ > 0.

As we mentioned in the introductory remarks of this section, the classical
Lagrange Multiplier theory is concerned with the minimization of an objective
function subject only to equality constraints. For such problems, (7.2.1) asserts
that if x* is a local minimizer for an equality constrained program (P), then
there is vector A* € R” such that (7.2.1)(3) holds:

(3) Vf(x*)+ ;pl A¥Vg;(x*) = 0.
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The other conditions (1), (2) of (7.2.1) are vacuous when only equality con-
straints are present. In this setting, we refer to the components ¥ of x* as
Lagrange multipliers and to equation (3) as the Lagrange Multiplier Condition
for (P).

Note that the Lagrange Mulitiplier Condition is also a necessary condition
for maximizers of an objective function subject only to equality constraints.
For if x* is a local maximizer of f(x) subject to equality constraints

gl(x)=07 g2(x)=09"-’ gp(x) =0’ XGC,
then x* is a local minimizer of — f(x) subject to these same constraints. Con-

sequently, by (7.2.1), there is a p* € R” such that

—Vf(x*) + 2 HFVg,(x*) = 0,

that is,
p
Vi(x*) + Zl (—uf)Vg;(x*) =0,
=
which reduces to the Lagrange Multiplier Condition (3) if we take 4} = — u*

forj=1,2,...,p.
The following simple example shows that it may happen that the Lagrange
Multiplier Condition

Vi(x) + ;pl AiVgi(x) =0

may have a solution x* € R", A* € R? for which x* is neither a local maximizer
nor a local minimizer of f(x) subject to given equality constraints.
(7.2.2) Example. Consider the following equality-constrained program:

L ) 2 2
Minimize f(x,, X, X3) = X{ + X5 + X3

2

2
. X3 X
subject to  g,(xy, X5, X3) = x7 + 72 + ?3 —1=0.

In geometric terms, this program asks us to find the points on the ellipsoid
2 2
2 X2 x3

x1+—-+-=1

409

thatare closest to the origin. Evidently, the solutions of this geometric problem
are (+1, 0, 0), which are the endpoints of the shortest axis of this ellipsoid.

Note that the Lagrange Multiplier Condition for this problem
Vi(x) + 4,Vg,(x) =0

is satisfied at precisely those points x* at which the gradient vector Vf(x*)
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is a multiple of the gradient vector Vg, (x*), which are the same as those points
where the (spherical) level surfaces of f(x) are tangent to the constraint
ellipsoid. Thus, without doing any algebra, but rather relying on the geometry,
we can see that the points x* € R for which there is a Lagrange multiplier A*
are

(£1,0,0), (0, £2,0), (0,0, £3)

We have already noted that (+1,0, 0) are local minimizers for the given
problem. It is also readily seen from the geometry that (0, 0, 4+ 3) are local
maximizers for f(x) subject to g,(x) = 0, while (0, +2, 0) are solutions of the
Lagrange Multiplier Condition (along with A¥ = —4) that are neither local
maximizers nor local minimizers of f(x) subject to g,(x) = 0. Note that at the
local minimizers (+ 1, 0, 0), the value of A% is — 1, while at the local maximizers
(0, 0, +3), the value A¥ is —9.

Although the Lagrange Multiplier Condition is only a necessary condition
for a minimizer of an equality-constrained program, it does provide a powerful
method for the solution of such problems. In practice, it is usually known from
the context or the mathematical nature of the constraints that a given problem
has a solution, that is, that the given objective function has a global minimizer
on the set of feasible points for the problem. In such cases, it is then only
necessary to identify the solution(s) among the feasible points that satisfy the
Lagrange Multiplier Condition provided that all these points are regular for
the given problem.

The main catch in this approach is finding the feasible points that satisfy
the Lagrange Multiplier Condition. In general, this requires the solution of a
system of nonlinear equations by some iterative scheme such as Newton’s
Method or Broyden’s Method. Nevertheless, the use of Lagrange multipliers
can lead to some interesting and important results as the following examples
show.

Our first example shows that Lagrange multipliers can be used to give a
new proof of the Arithmetic—Geometric Mean Inequality (2.4.1).

(7.2.3) Example. We will show thatif é,, ..., d, are positive numbers such that
d, + 6, + -** + 6, = 1, then for any positive numbers x,, ..., x,,

(A-QG) [Txt<d 6x;
i=1 i=1
with equality in (A-G) if and only if x; = x, =--- = x,,. To this end, we

consider, for a given positive number L, the program

Minimize f(x) = Y &x;
i=1

(PL) .
subject to g,(x) =[] x—L=0.
i=1
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The Lagrange Multiplier Condition for (P,) reduces to
5; + léi(x,-)é‘_l n x})j = 0, i= 1, PR (S
j#i
Since J; # 0, we can multiply the ith equation in this system by x;/d; to obtain
the equivalent system

xi+lL=O, i=1,...,n.

Thus, we conclude that if x* is a global minimizer of (P), then x¥ = x% =
-+ = x¥ = — AL for an appropriate choice of . (Why does A* exist?) But

= ljl (xi)di - ljl (—-iL)"" — (— ALY = )L,

soA=—landxf=x¥=--=x¥=L.
We conclude that

2 1) >fx*=§ =L=ljl(x,~)"".

Since L is an arbitrary positive number, this establishes the inequality (A-G)
for all positive x,, ..., x, and it shows that equality holds in (A-G) if all of
the x;’s are equal. On the other hand, if equality holds in the inequality (A-G)
for given positive numbers x,, ..., X, and if L is the common value of the two
sides of this inequality, then x,, ..., x, is a global minimizer for (P, ), so all of
the x;’s have the same value.

On a number of occasions, we have used the fact that any symmetricn x n-
matrix has n mutually orthogonal eigenvectors of unit length. For example,
this result made it possible to diagonalize any symmetric matrix with an
orthogonal change of variables, and this in turn was basic to our development
of eigenvalue criteria for positive and negative definiteness, and to the com-
putation of the square root of a positive definite matrix. Our next example
shows that this special eigenvector structure of symmetric matrices can be
derived easily and clearly by means of Lagrange multipliers.

(7.2.4) Example. Suppose that 4 is an n x n-symmetric matrix. We will show
inductively that 4 has n mutually orthogonal eigenvectors of unit length.
To produce the first such eigenvector, we consider the program

Maximize f(x) = x*Ax
(Py) . T —
subjectto g,(x) = |Ix]|* —=1=0.

Since f(x) is continuous and the set of feasible points for (P;) is not empty,
closed and bounded, (P, ) has a local maximizer x'*, so (7.2.1) implies that there
is a constant 4, such that

VI(xV) + )'IVgl(x(l)) =0
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That gives
24xD + 2, 2xM = 0.

But then AxM = — 2, xVY so x!) is an eigenvector of 4 of unit length.
Given k mutually orthogonal unit eigenvectors x'V, ..., x®, consider the
program

Maximize f(x) = x*Ax subject to
(B) g1(®) = |x||>=1=0 and
g, (x)=xx=0,..., g, x)=x-x%=0.

Again, because f(x) is a continuous function and the set of feasible points is
not empty, closed and bounded, the program (P,) must have a local maximizer
x**1)_ But then (7.2.1) asserts that there exist 4,, 4,, ..., 4,4, such that

VAx*D) + 4, Vg (x** D) + -+ + Ay Vg (x D) = 0.
Therefore,
2AxHHD 4 22 xEHD 4 x4y g x® = 0,

It follows from the fact that x*),... x**1 are mutually orthogonal unit
vectors and the last equation that

XD AxED 4 ) =0, i=1,... k
Also x® is an eigenvector of 4 for 1 < i < k so there is a y; such that
AxD = px9.

Therefore
A ) (k+1) T (i) (k+1) (i)} « y(k+1)
—2——x - Ax =(A"x")-x = (AxY)-x

= px® - xk+D = 0,
so that 4, =0for2 <i < k + 1. It follows that
24D 4 24 x*+D =

so x**1) is an eigenvector of 4. Since x**1) is of unit length and x), ..., x**V
are mutually orthogonal, this completes the proof.

Two comments are in order in regard to the proofin the preceding example.

(1) The set of feasible points for the program (P,) is not empty only as long
as 1 < k < n — 1, so the inductive process stops with x™ as expected.

(2) Although we did not explicitly check the hypothesis that {Vg, (x**1), ...,
Vg1 (x**1)} is a linearly independent set when we applied (7.2.1) to the
program (P,), note that this hypothesis is indeed satisfied because {x'"), ...,
x**D} are mutually orthogonal unit vectors.
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(7.2.5) Example. Before the advent of the Space Shuttle, our astronauts were
carried into space aboard three-stage rocket vehicles. The main advantages
and disadvantages of multistage rocket vehicles are fairly obvious. A multi-
stage rocket jettisons its stages as they become useless for further propulsion.
As a result, the engines of the upper stages are not burdened with this useless
weight so they can provide more acceleration for a given amount of fuel to
the remainder of the vehicle. On the other hand, the complexity and cost of
a rocket vehicle increases with the number of stages. But why are rockets
usually built with precisely three stages? Why not two stages, or four stages?
We will now show why three-stage rockets are the optimal choice by applying
Lagrange multipliers to solve a constrained minimization problem arising
from a simple mathematical model of multistage rocket propulsion. We begin
by developing a simple model for single-stage rocket propulsion.

For this purpose, we assume that all outside forces on the rocket (such as
gravity and aerodynamic drag) are so small in comparison with the thrust of
the rocket engine that these outside forces can be neglected. We will also
assume that the exhaust gases are expelled straight out of the back of the
rocket at a constant speed ¢ relative to the rocket, and that the rocket
consumes fuel at a constant rate. Under these circumstances, the motion of
the rocket is governed by the so-called rocket equation

dv c dM i
dt M at’ M
where v = v(t) and M = M(t) denote the velocity and mass of the rocket at
time ¢.

We will now introduce two structural parameters related to the design of
the rocket. Suppose that the mass of the rocket payload is P, that the mass of
the rocket vehicle without payload or fuel is M,, and that the mass of the fully
fueled rocket vehicle without payload is M,. Then the mass ratio R of the
rocket is defined by

P
R=— 2
e @
and the structural factor S is defined by
M
S=—. 3
M, 3)

The values of R and S depend on the design characteristics of a particular
rocket. However, typical values are R = 0.01 and S = 0.2

Since our model assumes that the rocket is consuming fuel at a constant
rate —k, we can rewrite the rocket equation as

dv ck

S 4
dt P+ My—kt’ @

where t is the length of time that the rocket engine has been operating. If we
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separate the variables in (4) and integrate, we obtain
v(t) = —cIn(P + M, — kt) + B. %)

The constant of integration B can be expressed in terms of the initial velocity
v, of the rocket by setting t = 0 in (5) to obtain

vy = —cln(P + M,) + B.
If we use the preceding equation to eliminate B from (5), we obtain
v(t) = —clIn(P + My — kt) + vy + cIn(P + M,)

o P+ M,

kt
=vy—cln|1— .
P+ M,

Since the rocket is burning fuel at a rate —k and since the mass of fuel on the
rocket initially is M, — M,, the fuel will burn out completely at time
My—M, (1—-SM,

kK k7

Therefore, the velocity increment AV imparted to the rocket by burning the
full fuel load is

(6)

ty, =

(1 - SM
AV = U(tb) — Vg = —cln<l — W)

7

Now let us consider a rocket vehicle with n stages. Let the ith stage have
total mass M;, engine exhaust speed c;, and structural factor S;. Our objective
is to minimize the total mass

M, + My + - + M, @®)

subject to the constraint that the final velocity of the rocket after burnout of
the last stage is a prescribed value v;.

If P is the mass of the payload of the n-stage rocket vehicle, then the ith
stage can be thought of as a single stage rocket with a total mass

Mi+M,'+1+°"+M,,+P.

Therefore, by equation (7), the velocity increment AV, provided by the opera-
tion of the ith stage is

AV, = —c,.ln[l - (1 = 5)M. ]

M,‘+Mi+1+"'+Mn+P
—cln M +M_ ,++M,+P
CULSM + M+ + M, + P |
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Our objective is to minimize the total mass (8) of the rocket vehicle subject to
the constraint

v — ‘; ciln[

The complexity of the constraint (9) makes it difficult to apply Lagrange
multipliers to this minimization problem in its present form. Instead, we first
make the change of variables

©)

Mi+M,'+l+"'+M,,+P -0
SiMi+M,'+1+"'+Mn+P

_ Mi+Mi+1+”'+MN+P
! SiMi+M,'+1+'”+M,,+P’

i=1,...,n

For these variables, the constraint (9) assumes the simple form

Uf— Z Cl- lI'l Ni=0‘ (10)

i=

—

The simple objective function (8) becomes quite complicated when ex-
pressed in terms of the variables Ny, ..., N,. However, if we can find a simpler
objective function of Ny, ..., N, that has its minimum value at the same place
as the one determined by (8), we can use it in place of the given one. To this
end, we note that by definition of N,

M+ +M+P [M+ - +M+P]|[My+-+M,+P
P M2+”'+Mn+P M3+'+M,,+P

M, +M,+P][M,+P
M,+ P P '

M;+ My + - +M,+P
Myy+ - +M,+P
_ (1—-S)M;+ M,y + "+ M,+P)
CSM+ (1= S)Miyy + -+ (1 = S)P — S;M;
_ (1-8)M;+-+ M, +P)
CSM;+ My 4+ M+ P —S(M; + - + M, + P)

But for each i,

(L= S)N,
=T SN
Therefore,
M+ 4 M+ P [(L=SON (L= SNy | (L= SIN |-
P - l — SINI 1 — SzNz 1 — SnNn )

Since P is fixed, minimizing the function (8) is equivalent to minimizing the
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function

M+ +M,+P
P b

which in turn is equivalent to minimizing the function

|:M1+"'+MH+P
In P

:| =Y [InN; +In(1 — §;) — In(1 — §;N)].
i=1
Thus, we are led to consider the following equivalent minimization problem:

Minimize f(N,,..., N,) = 2 [In N, + In(l — ;) — In(1 — S;N))]
i=1
(12)

subject to  g(Ny,...,N,) =v;— Y, ¢;InN; = 0.
i=1
If N§¥, ..., NJ is a solution to the problem (12) there is a A* that satisfies
the Lagrange Multiplier Condition

1 S; ¢
T E—— L i=1,...,n 13
The equations (13) can be solved for N* in terms of A* to obtain
A*c;, — 1 .
Ni*=TiSi, l=l,...,n. (14)

Substitute the values (14) into the constraint equation in (12) to obtain

n A*c; — 1
Vg = i; Ciln[m——]. (15)

In the special case in which the structural factors S; all have the same value
S and the exhaust speeds c; all have the same value ¢, we obtain from (14) and
(15) that

A¥e —1
g | = !
N; oS i=1,..,n, (14)
A*¥c —1 ,
Vg = nCln[W]. (15)

Equation (15)’ can be used to compute the common value N* of N* from (14)
as

N* = e¥ilre, (16)
If we substitute N* into (11), we obtain

M1 4+ -0 4 Mn+ P _ (l _S)ev;/m: n
P L1 — Sevne

(17)
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Equation (17) can be solved for the minimum total mass of the rocket vehicle
without payload

(1 — Sy'ev
M+ +M,=| - —1[P 1
1 + + n |:(1 _ Se"”"‘)" P ( 8)

Let us now interpret the preceding results in terms of a concrete problem.
Suppose that we wish to place a space capsule of mass P in a circular orbit at
an altitude of 100 miles above the earth’s surface by using a multistage rocket
for which each stage has the same structural factor § = 0.2, mass ratio R =
0.01, and the same exhaust speed ¢ = 6,000 miles per hour. Let us compute
the minimum total mass of the n-stage rocket vehicle required for this orbital
insertionforn=1, 2, 3, 4.

The final velocity required for the prescribed orbit is approximately 17,500
miles per hour, that is,

ve = 17,500 miles per hour.

For a single-stage rocket, the final velocity can be computed from (7) as

0.21
AV = —6,000 In (W) = 9,424 miles per hour.
Consequently, we see that it is not possible to achieve the required orbital
insertion with a single-stage rocket!

According to (18) the minimum total mass for an n-stage rocket vehicle to
achieve this orbital insertion is

0.8)" 17,500/(6000)
M1+M2+--'+M,,=[ Q.87 I]P-

(1 — (0.2)e!7:300/6000m)n —
In particular, this yields (to two decimal places)

for two stages: M,; + M, = 600.33P;

for three stages: M; + M, + M, = 89.42P;

for four stages: M,; + M, + M3 + M, = 63.48P;

for five stages: M, + M, + My + M, + M5 = 54.70P.

Of course, as the number of stages increases, the value of the minimum total
mass of the rocket vehicle decreases and approaches a positive value (which
value?), but we can see from the above computations that it is at least rea-
sonable that the cost—benefit trade-off occurs at three stages. Beyond three
stages, the decrease in total mass is offset by the increased cost, complexity,
and potential for failure.

Note that the optimal masses of the three rocket stages can be computed
by applying equation (17). These turn out to be

M, =349P, M, =1567P, M, = 70.36P.
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We conclude this section with some important observations about convex
programs and constraint qualifications.

(7.2.6) Remarks
(a) Suppose that x* is a regular point for a convex program

P) Minimize f(x) subject to
gl(x)so"‘-’ gp(x)soa XEC,

where f(x), g,(x), ..., g,(x) are convex functions with continuous first partial
derivatives on an open convex set C in R". Then (7.2.1) asserts that a necessary
condition for x* to be a local minimizer for (P) is that there exists a A* € R?
such that

(1) A¥ =0forj=1,...,p;
(2) A¥g;(x*)=0forj=1,...,p;
(3) Vf(x*) + Y 2, A*¥Vg;(x*) = 0.

However, because the objective function f(x) and the constraint g,(x), ...,
g,(x) are all convex, we can apply Theorem (2.3.4) to f(x) on the convex set
F of feasible points for (P) to conclude that any local minimizer x* for a convex
(P) is actually a global minimizer, that is, a solution for (P). Thus, we see that
the necessary conditions for x* to be a solution for (P) given by (7.2.1) are
exactly the same as those given in the gradient form of the Karush—-Kuhn—
Tucker Theorem (5.2.14) even though the hypotheses of these two results are
different (that is, (P) is superconsistent in (5.2.14) and x* is a regular point for
(P) in (7.2.1)). Moreover, although (7.2.1) states that (1), (2), and (3) are only
necessary conditions for x* to be a solution to (P), they are also sufficient
conditions when (P) is a convex program. The sufficiency of these condi-
tions follows exactly as in the proof of (5.2.14) because the superconsistency
hypothesis is not used in that part of the proof. Thus, for a convex program
(P), conditions (1), (2), and (3) are both necessary and sufficient for a point x*
to be a solution under either the hypothesis that (P) is superconsistent or the
hypothesis that x* is a regular point for (P).

(b) In this book, we have seen reasonably coherent theories emerge under
the hypotheses of superconsistency or regularity. These two conditions are
called constraint qualifications. Additional theories corresponding to other
constraint qualifications also appear in the literature. For instance, the problem

Minimize f(x) subject to

(P) gl(x)=09"" gm—l(x)=0; gm(X)SO,..., g,,(X)SO,

where f(x), g,(x), ..., g,(x) have continuous first partial
derivatives on some open subset of R",

can be studied successfully by using the Mangasarian—Fromowitz constraint
qualification. This constraint qualification at a feasible point x can be stated
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as follows:

(@) {Vgi(x);i=1,...,m — 1} is linearly independent; and
There exists a vector y in R” such that

(b) Vgi(x):y=0 fori=1,....m—1,
Vg:(x)'y<0 if g(x)=0andi=m,...,p.

In fact, in their original derivation of the Karush—-Kuhn-Tucker Theorem
in 1951, Kuhn and Tucker imposed a constraint qualification similar to
the Mangasarian—Fromowitz constraint qualification. For more on this, see
Constrained Optimization by R. Fletcher (Wiley, New York, 1981).

An excellent, although somewhat advanced, discussion of constraint quali-
fications can be found in Optimization and Non-Smooth Analysis by Frank H.
Clarke (Wiley-Interscience, New York, 1983). This book details the study of
how constraint qualifications can be used to determine the sensitivity of (P)
to perturbations in the constraints, a topic that we discussed briefly in Chapter
5. (Recall that in Chapter 5 the constraint qualification of superconsistency
actually led to the existence of sensitivity vectors in the convex programming
case.)

7.3. Quadratic Programming

Nonlinear optimization problems in which a quadratic function is maximized
or minimized subject to linear constraints and nonnegativity restrictions on
the variables, arise in a wide variety of applications including regression
analysis in statistics, economic models of optimal sales revenues, and invest-
ment portfolio analysis. Several efficient algorithms have been developed to
take full advantage of the linearity of the constraints and the quadratic
character of the objective function in such problems. This section will discuss
one such algorithm, called Wolfe’s Algorithm, which is a variant of the Simplex
Algorithm for linear programming. As we shall see, the Karush—Kuhn-
Tucker Theorem in the form (7.2.1) provides the theoretical basis for the
algorithm.

(7.3.1) Definition. The standard quadratic programming problem can be for-
mulated as follows:

Minimize f(x) =a+c¢-x + 3x-0x

(OP) subject to the constraints Ax <b, x>0,
where Q is a positive definite n x n-matrix,be R",ce R", a€e R,
and A4 is an m x n-matrix of rank m.

It is convenient to allow for equality constraints in (QP). For this pur-
pose we will assume (Ax); < b, for i =1, ..., k and that (4x); = b; for i =
k+1,...,m.
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The nonnegativity restrictions x > 0 on the variables can be incorpor-
ated as additional inequality constraints. Thus, the constraints in the
standard quadratic program (QP) can be listed in the format of Section 7.2
as follows:

a; X, ++agx, — b <0,
Xy + 0+ ax, — b <0,

Arr,1 X1 0+ Qg 0% — b =0,

Am1 X T+t Qe X, — bm =0’

-x,<0,..., —x,<0.

n =

Thus, (QP) is a constrained minimization problem (in the broad context that
allows both equality and inequality constraints), so the Karush—Kuhn—-Tucker
theory can be applied to conclude that if a regular point x* minimizes (QP),
then there are p* € R™, v* € R" such that:

() pF=0fori=1,....,k,v¥*>0forj=1,...,n
(2) ¢+ Ox* + ATu v* =0;
(3) p¥[(Ax*),—b]=0fori=1,....,m

Some explanation of the formulation of these conditions is in order. Note
that

V(a, x; + - + apx, — b,) =(a,1, ..., a,,),

so that

i £V((AX), — b) = ATp*

Also, the gradient of the inequality constraints —x; < 0 are simply the nega-
tive of the jth unit vector in R" so that the term — v* in (2) simply accounts
for these constraints.

Note that if x¥ =0, then certainly v¥x¥ = 0. On the other hand, if
xf =0, then v¥ =0 because v}’ is the Karush-Kuhn-Tucker multiplier
corresponding to the constraint — x; < 0. Therefore, the following additional
restriction on x*, v¥* is imposed:

(4) x¥v¥=0forj=1,.

The inequality constraints determined by the matrix 4 can be replaced by
introducing “slack” variables x,,; such that x,,; > 0 and

n
Zaux,+x,,+i=b'., i=1,...,k
=
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With this modification, the linear constraints in (Q P) assume the form

j;aiij+xn+i=b.~, i=1,...,k
1]
Y agxj=b, i=k+1,...,m
j=1

Conditions (2), (3), and (4) can be expressed as follows:

(I Y agxi+ Y, app— vi= —cq i=1,...,n
= =

(1) X =0,  i=1,...k

vy xv;=0 for j=1,...,n

The variables in (I) and (II) are {Xx;,..., Xp Xpi1s---s Xnsis H1s - s
Vi,...» Vu}. 2n + m + k variables altogether. However, conditions (III) and
(IV) imply that k + n of these variables must take the value 0, so that at most
n + m of these variables can have nonzero values. Thus, any solution of (I),
(II), (I11), and (IV) must be a basic solution of (I) and (II) in the sense of the
simplex algorithm for linear programming. This suggests that the simplex
algorithm can be suitably modified to solve quadratic programming problems.
Before we discuss these modifications, we will present a brief summary of the
simplex method.

(7.3.2) A Short Course on the Simplex Method. The equality standard form of
a linear program is

(Minimize b;x, + byx, + -+ + b,x,
subject to
allxl + -+ al,,x,, = Cl’

(ELP)

A1 X1 + oo+ AunXp = Cps

land x; 20, x,>0,..., x,>0.

By possibly multiplying equality constraints by — 1, we can arrange to have
¢;>0fori=1,...,m. We will always assume that this is the case.

(a) Matrix Form. If

7 I N X, b, ¢
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we can rewrite (ELP) as follows:

(ELP) Minimize b-x subjectto Ax=¢, x>0.

We will assume that n > m and that the rank of A4 is m.

(b) Conversion of Linear Programs to Equality Standard Form. Other forms
of linear programs can be converted to (ELP) as follows:

(a) Inequality constraints such as a;;x; + - + a;,x, < ¢; with ¢; >0 can
be replaced by a;;x; + *** + a@;,X, + Xn4; = ¢; Where x,,; >0 is a new
variable called a slack variable.

(b) Inequality constraints such as a;;x; + - + a;,x, = ¢; with ¢; > 0 can
be replaced by a;,x; + - + a;,x, — Xp+; = ¢; where x,,; >0 is a new
variable called a surplus variable.

(c) Maximization problems for b;x; + --* + b,x, can be replaced by mini-
mization problems for (—b;)x; + (—b,)x, + *-* + (—b,)x,,.

Using these techniques, we can convert any linear program to (ELP).

(c) Basic Solutions. Since A has rank m, A contains at least one m x m-
submatrix B of rank m. For simplicity, assume that B consists of the first
m columns of 4. Then there is a unique vector xz € R™ such that Bxy =b.
If we augment xp with n — m zero entries, we obtain a vector x € R" such
that Ax = b. Such a solution of Ax = b is called a basic solution. In addi-
tion, if x satisfies the nonnegativity constraints, x is called a basic feasible
solution.

(d) The Geometry of (ELP). Each of the equality constraints defines a
hyperplane in R" (that is, a translate of an (n — 1)-dimensional subspace of R")
and each of the nonnegativity constraints defines a half-space in R" (see
(2.1.2)(d)). Consequently, the set F of feasible points for (ELP) is the convex
set obtained by intersecting all of these hyperplanes and half-spaces. Of course,
F may be empty, in which case there are no feasible points for (ELP) and hence
no solution to (ELP).

If F is not empty, then a point e € F is an extreme point of F if e = ix +
(1 — A)y for x, ye F and 0 < 1 < 1 imply that e = x = y; that is, e is not
an any open interval (x, y) = {Ax + (1 — A)y: 0 < A < 1} joining two distinct
points x, y of F. It can be shown that the extreme points of F are precisely the
basic feasible solutions of (ELP).

The level sets of the objective function b-x for (ELP) are hyperplanes in
R" which may or may not intersect the set F of feasible points for (ELP).
Solving (ELP) amounts to finding an x'* in F that is on a level set for the
objective function and that satisfies b-x > b-x'? for all x € F, that is, F is
“supported below” by the level set through x‘©. Such a supporting hyperplane
for F may contain many points of F but the important thing is that it must
contain at least one extreme point of F. In view of the identification of extreme
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points of F and basic feasible solutions of (ELP), we obtain the so-called
Fundamental Theorem of Linear Programming:

Given a linear program (ELP), it is true that:

(a) if there is a feasible solution of the constraints, there is also a basic feasible
solution of the constraints;

(b) if there is a feasible solution of the constraints that minimizes the objective
function, there is also a basic feasible solution that minimizes this function.

Thus, if (ELP) has a minimizer, one can be found among the finitely many
extreme points of the convex set F of feasible points.

The Simplex Method provides an algorithm for deciding if a minimizer for
(ELP)exists and for finding it when it does exist. It begins with a basic feasible
solution (that is, an extreme point of F) and it decides if it is a minimizer. If it
is not, it moves to an adjacent extreme point where the objective function
value is smaller and repeats the procedure until it finds a minimizer or
determines that no minimizer exists.

(€) The Simplex Table. Given a basic feasible solution to Ax = ¢, x > 0, let
a, .. al be the columns of 4 in the m x m-submatrix B of 4 correspond-
ing to the given basic feasible solution. Let a¥ for j # i, denote the vectors of
coefficients needed to express the jth column of A4 as a linear combination of
a®_ .. a%) The simplex table for (ELP)and the given basic feasible solution
has the following form:

b, b, «— coefficient of the
c a) - a® objective function
z—b
b,  a « Table entries t;;,
i=0,....,m;j=0,....n,
. : : .
bi a('"') Zj = Z biktikj'
m k=1
Columns of B o
2z if j=0,
coefficient of objective bi=9, _p i =1 "
. —b; yeris N

function for variables
corresponding to B

(f) Pivoting Rules

(1) Find any positive entry in the z — b row and an a" column (that is, find
to; > Ofor j # 0). Call the corresponding column the pivot column. Suppose
that a" is the selected pivot column.
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(2) Form all ratio t;,/t;; for which t;; > 0, i # 0, and let the minimum of these
ratios be t,0/t,;. Then t; is called the pivot element.

(g) Constructing the Next Table. (Just like Gaussian Elimination!)

(1) Divide the numbers in the row containing the pivot element by the pivot
element to produce a new row with + 1 in the pivot position.

(2) Add multiples of the new pivot row to the other rows to make all other
entries in the pivot column equal to 0.

(3) Change the labels a»’ and b;  on the left-hand side of the pivot row to the
labels a" and b; at the top of the pivot column.

(4) If possible, select a new pivot element in this table in accordance with the
Pivoting Rules.

(h) Stopping Condition. There are basic conditions in the simplex table that
can cause the iteration described above to stop.

(1) There are no positive to; for j # 0. In this case a minimizing basic feasible
solution has been reached. It can be obtained by setting the variables
corresponding to the left-hand side labels of the table equal to the cor-
responding entries in the ¢ column, and setting the remaining variables
equal to zero.

(2) There are positive t; for j # 0 but no corresponding ¢;; for i # 0 is positive.
In this case, the objective function has no minimum.

In case (1), the minimum value of the objective function is the upper
left-hand entry in the simplex table for which the iteration stopped.

(i) Obtaining the Initial Simplex Table. If all of the constraints in the given
problem are inequality constraints, then m new slack or surplus variables must
be introduced to put the problem in the form (ELP). Then the columns of A
corresponding to these new variables form the identity matrix I. If we set these
new variables equal to the corresponding c¢; and set the remaining (old)
variables equal to zero, we have an initial basic feasible solution. The simplex
table for this solution consists of t; = a;fori=1,....,m; j=1,...,n,t50 = 0,
toj = b;.

If some or all of the given constraints are equality constraints, we can obtain
an initial basic feasible solution and the corresponding initial simplex table
by applying the Simplex Method to the problem

( Minimize y; +y, +--+ ), subject to
Ay Xy + 00+ A1 X, + Yy = Cy,

(%) N Ay X1+ + az X, + ) =Cy,

A1 x1+“'+amnxn +ym=cm‘

-
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The variables y; introduced in this way are called artificial variables. It can be
shown that (ELP) has a feasible solution if and only if the program () has
minimum value equal to zero. If (x*) has minimum value equal to zero,
the values of x; in the minimizing basic solution for () are a basic feasible
solution for (ELP), and the part of the final simplex table for () correspond-
ing to the x;’s is the initial simplex table for (ELP) corresponding to this
solution.

We are now ready to describe a modification of the simplex algorithm,
called Wolfe’s Algorithm, for solving the quadratic programming problem
(QP). The algorithm is based on the initial simplex table for the linear pro-
gramming problem

(Minimize y, + ¥, + " + Vpiin

subject to the constraints

2

< ainj + x,,+,~ = bl" i = l, ceey k,
Q=
n
J;aijxj+yi =b, i=k+1,...,m,
n n
,Zi qij%; + 21 il — Vi + Ym—i+i = —Ci> i=12,..,n
= J=

The original variables x,,..., x,, the slack variables x,,;,..., X, the
Karush—Kuhn—-Tucker multipliers u;, ..., &, v;,...,v,, and the artificial
variables y,, ..., y,, are all nonnegative variables, but the variables p 4, ...,
U, are unrestricted since they correspond to equality constraints. Conse-
quently, since the simplex algorithm is based on nonnegativity of the variables,
we write the latter u’s as differences of nonnegative variables

m=u —ps w20, w20, i=k+1....m

Once the initial simplex table is established, we proceed to apply the
simplex pivoting rules with the following modifications which result from
restrictions (IIT) and (IV) on (QP):

(ITIY y; and x,.; must never be allowed to appear together as nonzero basic
variablesfori=1, ..., k.

(IV) x; and v; must never be allowed to appear together as nonzero basic
variablesfor j=1,..., n.

The Wolfe Algorithm terminates when no further pivots are possible accord-
ing to the simplex pivoting rules with the additional restrictions (III), (IV)'.
The minimizer x* for (QP) is then given by the current values for x, ..., x,
in the final simplex table.

Before we proceed to a concrete example illustrating the application of the
Wolfe Algorithm, we will describe how the above procedure is modified if
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inequality constraints of the form
ailxl =+ - +ai”x” Zb, Whel'e bl>0

are present in a given problem. Since the simplex algorithm requires that
b; > 0, the trivial change

— QX — = Xy < — by

will not suffice to incorporate such an inequality into the Wolfe Algorithm
format. Instead, we simply use a surplus variable x,,; to rewrite the given
inequality constraint as an equality constraint

;1 Xy + 0+ QX — Xy = by

The effect of this change on the construction of the initial simplex table
for Wolfe’s Algorithm is simply that the coefficient of x,,; is —1 instead
of +1, that the corresponding Karush—Kuhn-Tucker multiplier yu; is
replaced by u; = — u;, and that the corresponding artificial variable y; is not
necessary.

(7.3.3) Example. We will apply Wolfe’s Algorithm to minimize the quadratic
function

SfOers X3) = xF — X%, + 2X5 — x; — X,
subject to the constraints

Xy — X, >3, X +x;,=4, x, =0, X, = 0.

In this case, we introduce a surplus variable x to convert the first inequality
constraint to an equality constraint. We then introduce artificial variables
Y1s> V2, V3, Va, the Kuhn—Tucker multipliers u, for the inequality constraint
and u, = p3 — p; for the equality constraint, and v,, v, for the nonnega-
tivity constraints on x,, X,, and construct the initial simplex table for the
program

(Minimize y, + y, + y3 + ya
subject to the conditions
Xp — X3 — X3 + 0 =3,
) X, + X, + ¥, =4,
2x1 — x, — Myt H; = py vy + Y3 =1,
—X; + 4x, + g+ op; —ps -V, +ya=1

Note that the pivot restrictions (IIT), (IV) imply that the pairs (x,, v,), (X5, v5),
(11, x3) cannot be nonzero basic variables at the same time.
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The following sequence of simplex tables then solves the problem:

0 0 0 0 0 0 0 o0 1 1 1 1

b x; x; X3 w W3 B3 Vi Ve Y1 V2 V3 Va
Z—c¢ 9 3 3 -1 0 2 -2—-1 -1 0 0 0 0
Vi 3 1 -1 -1 0 0 0 0 1 0 0 O
V2 4 1 1 0 0 0 O 0 0 0 1 0 O
V3 1 -1 0-1 1 -1 -1 0 0 0 1 0
Va 1 -1 4 0 1 1 1 0-1 0 0 0 1
z—e¢ | ¥ 0 $-1 3 31 -3 31 -1 0 0-3 0
2 3 03 -1 +-% %+ 3 0 1 0-% 0
Y2 z 0 3 0 + -3+ 3 3 0 0 1 -3 0
Xy 7 1 -3 0-% % -3-3 0 0 0 3 O
Va 3 0 7 0 3 3 -3 -3-1 0 0 % 1
z—c 3 0-6 -1 0-4 4 2 2 0 0 -3 -3
Y1 1 0 -4 -1 0-2 2 1 1 1 0-1 -1
V2 2 0-2 0 0 -2 2 1 1 0 1 —1 —1
X, 2 1 3 0 0 2 -2-1-1 0 0 1 1
1y 30 7 0 1 3 -3 —-1-2 0 0 1 1
Z—c 1 0 2 1 0 0 0 0 0 -2 0 —1 —1
Iy ; 0-2 -3 0-1 1 % % 5 0-3 -3
V2 1 0 2 1 0 0 0 0 0 -1 1 0 0
X, 3 1 -1—-1 0 0 O O O 1 0 0 0
M 2 01 -3 1 0 0 3 -% 3 0-% —3
z—c¢ 60 0 0 0 0 0 0 0 0 -1 —1 —1 —1
5y 3 0 0 % 0-1 1 5 3 -3 1 -} -4
X, i 0o 1t 4+ 0 0 0 O O -% L1 0 O
X, 1t 0-+ 0 0 0o o0 o0 L 1 o0 o0
1 4 0 0-2 1 0 0 % —% 2 —1 -4 -1

STOP:  xt=1  xt=1% uf=4 (Wr=%

Minimum value = + 7 « (Substitute x¥, x¥ into original objective function).

EXERCISES

1. A cylindrical tin can with a bottom and a lid is required to have a volume of 100
cubic inches. Find the dimensions of the can that will require the least metal by:
(a) expressing the surface area of the can in terms of its radius and height,
eliminating one of these variables and minimizing the resulting function of one
variable;

(b) using Lagrange multipliers;

(c) using geometric programming.
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2. Consider the problem of finding the point(s) on the parabola x? — 4y = 0 that is
nearest the point (0, 1).
(a) Use Lagrange multipliers to solve this problem.
(b) Attempt to solve the problem by using the equation x? — 4y = 0 to eliminate
x from
Jx ) =x+(y = 1)

and then minimizing the resulting function of y. What happens?
(c) Show that the problem can be solved if we eliminate y instead of x in the
function f(x, y) of part (b).

3. Maximize
foy2)=x =1 +(y =22+ (-3}
subject to
g, y,2)=x*+y* +z2—1=0
by using Lagrange multipliers.
4. Determine all maxima and minima of

1

(X X x)=—-———
f 154293 le;+x§+x:2’

subject to
hy(xy, X5, X3) =1 —x2 —2x2 —3x2 =0,
hy(xy, X3, X3) =X, + X, + x3=0.
5. Determine all maxima and minima of
S, y,2)=xz + y?
on the sphere x2 + y% 4 22 = 4.

6. Apply Lagrange multipliers to derive a formula for the distance from a point
Py(xq, Yo, Zo) to a plane

Ax+By+Cz+ D=0
not containing the point P,.
7. Show that the problem
Minimize f(x, y) = x? + y?
subjectto (x —2)3 —y2=0
admits no Lagrange multipliers and explain why. Solve this problem graphically.

8. Let f(x, y, z) be a coercive function with continuous first partial derivatives on R3.
Suppose f(x, y, z) = 1 defines a surface in R*® and suppose f(0, 0, 0) # 1. Show
that the vector from the origin to (x*, y*, z*) of minimum norm on the surface
f(x, y, z) = 1 is perpendicular to the surface at the point (x*, y*, z*).

9. Let f(x) and g(x) be coercive functions with continuous first partial derivatives on
R". Suppose the equations f(x) = 1 and g(x) = 1 define nonintersecting surfaces in
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10.

12.

13.

15.
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R". Show that the vector x* — y* of minimum norm satisfying f(x*) = g(y*) =1
is perpendicular to both surfaces.

Find the point on the ellipse
5x2 —6xy + 5y2 =4

for which the tangent line is at a maximum distance from the origin.

. Prove that of all triangles with a fixed perimeter P, the equilateral triangle has the

largest area. (Hint: The area of a triangle with sides a, b, and c is given by

A= /s(s —a)(s — b)(s — ¢),
where (a + b + ¢)/2 =s = P/2)

Let 4 be a positive definite 3 x 3-matrix. Let x* be the vector of largest norm on
the ellipsoid

x-Ax = 1.

Show that x* is an eigenvector of A and relate || x*| to the corresponding eigen-
value of 4.

Use Lagrange multipliers to prove the Cauchy—Schwarz Inequality.

. Use Lagrange multipliers to prove that if x, x,, ..., X, are positive real numbers,

then

n[\/]:

1
ni

Mx<.3%

A water main consists of two sections of pipe of fixed lengths L, and L, carrying
fixed amounts of Q, and Q, gallons per second each. For a given total loss of head
h the diameters d, and d, of the pipe sections result in a cost

Li(a + bd,) + L,(a + bd;)

L0t L,03
h=C +C ,
d; d;
where C is a positive constant. Find the ratio d, /d, for the diameters that minimizes
the cost for a given total loss of head h.

(Ans.:d,/d; = (Q,/0,)"?)

. The output of a manufacturing operation is a quantity Q which is a function

0 = Q(x, y) where x = capital equipment and y = hours of labor. Suppose the
price of labor is p and the price of investment is g in dollars and the operation is
to spend b dollars. For optimum production, we want to minimize Q subject to
qx + py =b.

Show that at the optimum, we have

Q0 _aQ
oK~ al’

where K = gx and | = py. Thus, at the optimum, the marginal change in output
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17.

18.

19.

20.

per dollar’s worth of additional capital equipment is equal to the marginal change
in output per dollar’s worth of additional labor.

The following exercises are related to multistage rocket design as discussed in

Example (7.2.5):

(a) At an altitude of 100 miles above the earth’s surface, the escape velocity (that
is, the minimum speed required for an object moving directly away from the
earth to escape the gravitational attraction of the earth) is approximately
24,700 miles per hour. A three-stage rocket vehicle is to be used to launch a
deep-space probe of mass P by achieving the required escape velocity at an
altitude of 100 miles. Compute the minimum total mass M, of a rocket vehicle
capable of this mission and the corresponding total masses of the three rocket
stages, given that all three stages have structural factors of S = 0.2 and constant
engine exhaust speeds of ¢ = 6000 miles per hour.

(b) In (7.2.5), we computed the minimum total mass of an n-stage rocket vehicle
capable of inserting a payload of mass P in a circular orbit 100 miles above the
surface of the earth for n = 2, 3, 4, 5. Discuss what happens to the value of this
minimum total mass as the number of stages approaches infinity.

Consider the quadratic program

Minimize f(x,, x,) = 5x? — 2x,x, + 5x2
subject to  x, + x, = 1; x>0, x,>0.

Compare the solutions of this problem obtained by:

(a) using the equality constraint to eliminate x, in f(x,, x,) and minimizing the
resulting function of x; on the interval 0 < x, < 1;

(b) viewing the program as a minimum Q-norm problem as in Example (4.4.4);

(c) using Wolfe’s Algorithm.

Use Wolfe’s Algorithm to solve the following quadratic program:
Minimize f(x,, x,) = 2x% + x2 — 2x,x, — 5x; — 2x,
subjectto x; >0, x,=>0,

3x, + 2x, < 20,
Sx, — 3x, > —4.

Suppose X = (x;)is an n x n-matrix and suppose that x*” is the ith row vector of
X. Prove Hadamard’s Inequality:

det(X) < [] Ix]
i=1
by using the Lagrange Multiplier Method to show that if det(X), regarded as a
function of its n” entries x;, has a maximum value subject to the constraints
IxD)2 = x3 + - + x2 =d?; i=12...,n,
then
x® = d,e®,

where e is the ith-unit vector in R".
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