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Foreword 

The present book is meant as a text for a course in linear algebra, at the 
undergraduate level in the upper division. 

My Introduction to Linear Algebra provides a text for beginning stu­
dents, at the same level as introductory calculus courses. The present 
book is meant to serve at the next level, essentially for a second course 
in linear algebra, where the emphasis is on the various structure 
theorems: eigenvalues and eigenvectors (which at best could occur only 
rapidly at the end of the introductory course); symmetric, hermitian and 
unitary operators, as well as their spectral theorem (diagonalization); 
triangulation of matrices and linear maps; Jordan canonical form; convex 
sets and the Krein-Milman theorem. One chapter also provides a com­
plete theory of the basic properties of determinants. Only a partial treat­
ment could be given in the introductory text. Of course, some parts of 
this chapter can still be omitted in a given course. 

The chapter of convex sets is included because it contains basic results 
of linear algebra used in many applications and "geometric" linear 
algebra. Because logically it uses results from elementary analysis (like a 
continuous function on a closed bounded set has a maximum) I put it at 
the end. If such results are known to a class, the chapter can be covered 
much earlier, for instance after knowing the definition of a linear map. 

I hope that the present book can be used for a one-term course. The 
first six chapters review some of the basic notions. I looked for effi­
ciency. Thus the theorem that m homogeneous linear equations in n 
unknowns has a non-trivial soluton if n > m is deduced from the dimen­
sion theorem rather than the other way around as in the introductory 
text. And the proof that two bases have the same number of elements 
(i.e. that dimension is defined) is done rapidly by the "interchange" 
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method. I have also omitted a discussion of elementary matrices, and 
Gauss elimination, which are thoroughly covered in my Introduction to 
Linear Algebra. Hence the first part of the present book is not a substi­
tute for the introductory text. It is only meant to make the present book 
self contained, with a relatively quick treatment of the more basic mate­
rial, and with the emphasis on the more advanced chapters. Today's 
curriculum is set up in such a way that most students, if not all, will 
have taken an introductory one-term course whose emphasis is on 
matrix manipulation. Hence a second course must be directed toward 
the structure theorems. 

Appendix 1 gives the definition and basic properties of the complex 
numbers. This includes the algebraic closure. The proof of course must 
take for granted some elementary facts of analysis, but no theory of 
complex variables is used. 

Appendix 2 treats the Iwasawa decomposition, in a topic where the 
group theoretic aspects begin to intermingle seriously with the purely linear 
algebra aspects. This appendix could (should?) also be treated in the 
general undergraduate algebra course. 

Although from the start I take vector spaces over fields which are 
subfields of the complex numbers, this is done for convenience, and to 
avoid drawn out foundations. Instructors can emphasize as they wish 
that only the basic properties of addition, multiplication, and division are 
used throughout, with the important exception, of course, of those theor­
ies which depend on a positive definite scalar product. In such cases, the 
real and complex numbers play an essential role. 

New Haven, 
Connecticut 
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CHAPTER 

Vector Spaces 

As usual, a collection of objects will be called a set. A member of the 
collection is also called an element of the set. I t is useful in practice to 
use short symbols to denote certain sets. For instance, we denote by R 
the set of all real numbers, and by C the set of all complex numbers. To 
say that" x is a real number" or that" x is an element of R" amounts to 
the same thing. The set of all n-tuples of real numbers will be denoted 
by Rn. Thus "X is an element of Rn" and "X is an n-tuple of real 
numbers" mean the same thing. A review of the definition of C and its 
properties is given an Appendix. 

Instead of saying that u is an element of a set S, we shall also fre­
quently say that u lies in S and write u E S. If Sand S' are sets, and if 
every element of S' is an element of S, then we say that S' is a subset of 
S. Thus the set of real numbers is a subset of the set of complex 
numbers. To say that S' is a subset of S is to say that S' is part of S. 
Observe that our definition of a subset does not exclude the possibility 
that S' = S. If S' is a subset of S, but S' =1= S, then we shall say that S' is 
a proper subset of S. Thus C is a subset of C, but R is a proper subset 
of C. To denote the fact that S' is a subset of S, we write S' c S, and 
also say that S' is contained in S. 

If Sl' S2 are sets, then the intersection of Sl and S2' denoted by 
Sin S 2' is the set of elements which lie in both S 1 and S 2. The union of 
S 1 and S 2' denoted by S 1 U S 2' is the set of elements which lie in S 1 or 
in S2. 
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I, §1. DEFINITIONS 

Let K be a subset of the complex numbers C. We shall say that K is a 
field if it satisfies the following conditions: 

(a) If x, yare elements of K, then x + y and xy are also elements of 
K. 

(b) If x E K, then - x is also an element of K. If furthermore x ¥= 0, 
then x - 1 is an element of K. 

(c) The elements 0 and 1 are elements of K. 

We observe that both Rand C are fields. 
Let us denote by Q the set of rational numbers, i.e. the set of all frac­

tions min, where m, n are integers, and n ¥= O. Then it is easily verified 
that Q is a field. 

Let Z denote the set of all integers. Then Z is not a field, because 
condition (b) above is not satisfied. Indeed, if n is an integer ¥= 0, then 
n -1 = lin is not an integer (except in the trivial case that n = 1 or 
n = -1). For instance! is not an integer. 

The essential thing about a field is that it is a set of elements which 
can be added and multiplied, in such a way that additon and multiplica­
tion satisfy the ordinary rules of arithmetic, and in such a way that one 
can divide by non-zero elements. It is possible to axiomatize the notion 
further, but we shall do so only later, to avoid abstract discussions which 
become obvious anyhow when the reader has acquired the necessary 
mathematical maturity. Taking into account this possible generalization, 
we should say that a field as we defined it above is a field of (complex) 
numbers. However, we shall call such fields simply fields. 

The reader may restrict attention to the fields of real and complex 
numbers for the entire linear algebra. Since, however, it is necessary to 
deal with each one of these fields, we are forced to choose a neutral 
letter K. 

Let K, L be fields, and suppose that K is contained in L (i.e. that K 
is a subset of L). Then we shall say that K is a subfield of L. Thus 
everyone of the fields which we are considering is a subfield of the com­
plex numbers. In particular, we can say that R is a subfield of C, and Q 
is a subfield of R. 

Let K be a field. Elements of K will also be called numbers (without 
specification) if the reference to K is made clear by the context, or they 
will be called scalars. 

A vector space V over the field K is a set of objects which can be 
added and multiplied by elements of K, in such a way that the sum of 
two elements of V is again an element of V, the product of an element of 
V by an element of K is an element of V, and the following properties 
are satisfied: 
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VS 1. Given elements u, v, w of V, we have 

(u + v) + w = u + (v + w). 

VS 2. There is an element of V, denoted by 0, such that 

for all elements u of V. 

VS 3. Given an element u of V, there exists an element - u in V such 
that 

u+(-u)=O. 

VS 4. For all elements u, v of V, we have 

u + v = v + u. 

VS 5. If c is a number, then c(u + v) = cu + cv. 

VS 6. If a, b are two numbers, then (a + b)v = av + bv. 

VS 7. If a, b are two numbers, then (ab)v = a(bv). 

VS 8. For all elements u of V, we have 1· u = u (1 here is the number 
one). 

We have used all these rules when dealing with vectors, or with func­
tions but we wish to be more systematic from now on, and hence have 
made a list of them. Further properties which can be easily deduced 
from these are given in the exercises and will be assumed from now on. 

Example 1. Let V = K n be the set of n-tuples of elements of K. Let 

and 

be elements of Kn. We call a 1, ••• ,an the components, or coordinates, of A. 
We define 

If C E K we define 
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Then it is easily verified that all the properties VS 1 through VS 8 are 
sa t~sfied. The zero elements is the n-tu pIe 

o = (0, ... ,0) 

with all its coordinates equal to O. 

Thus Cn is a vector space over C, and Qn is a vector space over Q. 
We remark that Rn is not a vector space over C. Thus when dealing 
with vector spaces, we shall always specify the field over which we take 
the vector space. When we write K n

, it will always be understood that it 
is meant as a vector space over K. Elements of K n will also be called 
vectors and it is also customary to call elements of an arbitrary vector 
space vectors. 

If u, v are vectors (i.e. elements of the arbitrary vector space V), then 

U + (-v) 

is usually written u - v. 
We shall use 0 to denote the number zero, and 0 to denote the ele­

ment of any vector space V satisfying property VS 2. We also call it 
zero, but there is never any possibility of confusion. We observe that 
this zero element 0 is uniquely determined by condition VS 2 (cf. Exer­
cise 5). 

Observe that for any element v in V we have 

Ov = O. 

The proof is easy, namely 

Ov + v = Ov + Iv = (0 + l)v = Iv = v. 

Adding - v to both sides shows that Ov = O. 
Other easy properties of a similar type will be used constantly and are 

given as exercises. For instance, prove that (- l)v = - v. 
It is possible to add several elements of a vector space. Suppose we 

wish to add four elements, say u, v, w, z. We first add any two of them, 
then a third, and finally a fourth. Using the rules VS 1 and VS 4, we see 
that it does not matter in which order we perform the additions. This is 
exactly the same situation as we had with vectors. For example, we have 

«(u + v) + w) + z = (u + (v + w)) + z 
= «(v + w) + u) + z 
= (v + w) + (u + z), etc. 
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Thus it is customary to leave out the parentheses, and write simply 

u + v + w + z. 

The same remark applies to the sum of any number n of elements of V, 
and a formal proof could be given by induction. 

Let V be a vector space, and let W be a subset of V. We define W to 
be a subspace if W satisfies the following conditions: 

(i) If v, ware elements of W, their sum v + w is also an element of 
W. 

(ii) If v is an element of Wand c a number, then cv is an element of 
W. 

(iii) The element 0 of V is also an element of W 

Then W itself is a vector space. Indeed, properties VS 1 through VS 8, 
being satisfied for all elements of V, are satisfied a fortiori for the ele­
ments of W 

Example 2. Let V = Kn and let W be the set of vectors in V whose last 
coordinate is equal to O. Then W is a subspace of V, which we could 
identify with K n

-
l

. 

Linear Combinations. Let V be an arbitrary vector space, and let 
V l , .•. 'Vn be elements of V Let Xl' ... ,xn be numbers. An expression of 
type 

is called a linear combination of v l , . .. ,vn • 

Let W be the set of all linear combinations of V l , .•• ,Vn • Then W is a 
subspace of V. 

Proof Let Yl' ... ,Yn be numbers. Then 

Thus the sum of two elements of W is again an element of W, i.e. a 
linear combination of V l , ... ,Vn • Furthermore, if c is a number, then 

is a linear combination of VI' ••• ,Vn , and hence is an element of W 
Finally, 

o = OV l + ... + OVn 

is an element of W. This proves that W is a subspace of V. 
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The subspace W as above is called the subspace generated by 
V l , ••• ,Vn • If W = V, i.e. if every element of V is a linear combination of 
V l , ••• ,Vn , then we say that V l , ... 'Vn generate V. 

Example 3. Let V = Kn. Let A and BE K n, A = (a l , ... ,an) and 
B = (b l' ... ,b n). We define the dot product or scalar product 

I t is then easy to verify the following properties. 

SP 1. We have A· B = B· A. 

SP 2. If A, B, C are three vectors, then 

A . (B + C) = A· B + A . C = (B + C) . A. 

SP 3. If x E K then 

(xA)·B = x(A·B) and 

We shall now prove these properties. 
Concerning the first, we have 

A·(xB) = x(A·B). 

because for any two numbers a, b, we have ab = ba. This proves the 
first property. 

For SP 2, let C = (c l , ... ,cn). Then 

and 

A·(B + C) = al(b l + cl ) + ... + an(bn + cn) 

= alb l + alc l + ... + anbn + ancn· 

Reordering the terms yields 

which is none other than A· B + A . C. This proves what we wanted. 
We leave property SP 3 as an exercise. 
Instead of writing A· A for the scalar product of a vector with itself, it 

will be convenient to write also A 2• (This is the only instance when we 
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allow ourselves such a notation. Thus A 3 has no meaning.) As an exer­
cise, verify the following identities: 

(A + B)2 = A2 + 2A· B + B2, 

(A - B)2 = A2 - 2A· B + B2. 

A dot product A· B may very well be equal to ° without either A or 
B being the zero vector. For instance, let A = (1, 2, 3) and B = (2, 1, -1). 
Then A·B = 0. 

We define two vectors A, B to be perpendicular (or as we shall also 
say, orthogonal) if A· B = 0. Let A be a vector in K". Let W be the set 
of all elements B in K" such that B· A = 0, i.e. such that B is perpen­
dicular to A. Then W is a subspace of K". To see this, note that 
o . A = 0, so that 0 is in W. Next, suppose that B, C are perpendicular to 
A. Then 

(B + C)· A = B· A + C· A = 0, 

so that B + C is also perpendicular to A. Finally, if x is a number, then 

(xB)·A = x(B·A) = 0, 

so that xB is perpendicular to A. This proves that W is a subspace of 
K". 

Example 4. Function Spaces. Let S be a set and K a field. By a func­
tion of S into K we shall mean an association which to each element of 
S associates a unique element of K. Thus if f is a function of S into K, 
we express this by the symbols 

f:S~K. 

We also say that f is a K-valued function. Let V be the set of all func­
tions of S into K. If f, g are two such functions, then we can form their 
sum f + g. It is the function whose value at an element x of S is 
f(x) + g(x). We write 

(f + g)(x) = f(x) + g(x). 

If c E K, then we define cf to be the function such that 

(cf)(x) = cf(x). 

Thus the value of cf at x is cf(x). It is then a very easy matter to verify 
that V is a vector space over K. We shall leave this to the reader. We 
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observe merely that the zero element of V is the zero function, i.e. the 
function f such that f(x) = 0 for all XES. We shall denote this zero 
function by o. 

Let V be the set of all functions of R into R. Then V is a vector 
space over R. Let W be the subset of continuous functions. If f, g are 
continuous functions, then f + g is continuous. If c is a real number, 
then cf is continuous. The zero function is continuous. Hence W is a 
subspace of the vector space of all functions of R into R, i.e. W is a sub­
space of V. 

Let U be the set of differentiable functions of R into R. If j, g are 
differentiable functions, then their sum f + g is also differentiable. If c is 
a real number, then cf is differentiable. The zero function is differenti­
able. Hence U is a subspace of V. In fact, U is a subspace of W, because 
every differentiable function is continuous. 

Let V again be the vector space (over R) of functions from R into R. 
Consider the two functions et

" e2t
. (Strictly speaking, we should say the 

two functions f, g such that f(t) = et and get) = e2t for all t E R.) These 
functions generate a subspace of the space of all differentiable functions. 
The function 3et + 2e2t is an element of this subspace. So is the function 
2et + ne2t

• 

Example 5. Let V be a vector space and let U, W be subspaces. We 
denote by U n W the intersection of U and W, i.e. the set of elements 
which lie both in U and W. Then U n W is a subspace. For instance, if 
U, Ware two planes in 3-space passing through the origin, then in gen­
eral, their intersection will be a straight line passing through the origin, 
as shown in Fig. 1. 

Figure 1 
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Example 6. Let U, W be subspaces of a vector space V. By 

U+W 

we denote the set of all elements u + w with U E U and w E W Then we 
leave it to the reader to verify that U + W is a subspace of V, said to be 
generated by U and W, and called the sum of U and W 

I, §1. EXERCISES 

1. Let V be a vector space. Using the properties VS 1 through VS 8, show that 
if c is a number, then cO = O. 

2. Let c be a number i= 0, and v an element of V. Prove that if cv = 0, then 
v = o. 

3. In the vector space of functions, what is the function satisfying the condition 
VS2? 

4. Let V be a vector space and v, W two elements of V. If v + W = 0, show that 
W= -v. 

5. Let V be a vector space, and v, w two elements of V such that v + w = v. 
Show that w = O. 

6. Let A 1, A2 be vectors in Rn. Show that the set of all vectors B in Rn such 
that B is perpendicular to both A 1 and A2 is a subspace. 

7. Generalize Exercise 6, and prove: Let A 1, ••• ,A, be vectors in Rn. Let W be 
the set of vectors B in Rn such that B· Ai = 0 for every i = 1, ... ,r. Show that 
W is a subspace of Rn. 

8. Show that the following sets of elements in R 2 form subspaces. 
(a) The set of all (x, y) such that x = y. 
(b) The set of all (x, y) such that x - y = o. 
(c) The set of all (x, y) such that x + 4y = o. 

9. Show that the following sets of elements in R 3 form subspaces. 
(a) The set of all (x, y, z) such that x + y + z = o. 
(b) The set of all (x, y, z) such that x = y and 2y = z. 
(c) The set of all (x, y, z) such that x + y = 3z. 

10. If U, Ware subspaces of a vector space V, show that U n Wand U + Ware 
subspaces. 

11. Let K be a subfield of a field L. Show that L is a vector space over K. In 
particular, C and R are vector spaces over Q. 

12. Let K be the set of all numbers which can be written in the form a + b.j2, 
where a, b are rational numbers. Show that K is a field. 

13. Let K be the set of all numbers which can be written in the form a + bi, 
where a, b are rational numbers. Show that K is a field. 
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14. Let c be a rational number> 0, and let y be a real number such that y2 = c. 
Show that the set of all numbers which can be written in the form a + by, 
where a, b are rational numbers, is a field. 

I, §2. BASES 

Let V be a vector space over the field K, and let v l' ... ,Vn be elements of 
V. We shall say that v l' ... 'Vn are linearly dependent over K if there exist 
elements a1, ••• ,an in K not all equal to ° such that 

If there do not exist such numbers, then we say that V1, ••• ,Vn are linearly 
independent. In other words, vectors V 1, •.• ,Vn are linearly independent if 
and only if the following condition is satisfied: 

Whenever a1, ••• ,an are numbers such that 

then ai = ° fot all i = 1, ... ,no 

Example 1. Let V = K n and consider the vectors 

E 1 = (1, 0, ... ,0) 

En = (0, 0, ... ,1). 

Then E 1' ... ,En are linearly independent. Indeed, let a1, ••• ,an be numbers 
such that 

Since 

it follows that all ai = 0. 

Example 2. Let V be the vector space of all functions of a variable t. 
Let f1' ... ,fn be n functions. To say that they are linearly dependent is 
to say that there exists n numbers a1, ••• ,an not all equal to ° such that 

for all values of t. 
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The two functions et
, e2t are linearly independent. To prove this, sup­

pose that there are numbers a, b such that 

(for all values of t). Differentiate this relation. We obtain 

Subtract the first from the second relation. We obtain be2t = 0, and 
hence b = O. From the first relation, it follows that aet = 0, and hence 
a = O. Hence et

, e2t are linearly independent. 

If elements v1, ••• 'Vn of V generate V and in addition are linearly inde­
pendent, then {v 1, •• ,vn} is called a basis of V. We shall also say that the 
elements v1, ••• 'Vn constitute or form a basis of V. 

The vectors E 1, ••• ,En of Example 1 form a basis of Kn. 
Let W be the vector space of functions generated by the two functions 

et
, e2t

• Then {et
, e2t

} is a basis of W 
We shall now define the coordinates of an element v E V with respect 

to a basis. The definition depends on the following fact. 

Theorem 2.1. Let V be a vector space. Let V 1, ••• 'Vn be linearly inde­
pendent elements of V. Let Xl' ... ,xn and Y1' ... ,Yn be numbers. Suppose 
that we have 

Then Xi = Yi for i = 1, ... ,no 

Proof Subtracting the right-hand side from the left-hand side, we get 

We can write this relation also in the form 

By definition, we must have Xi - Yi = 0 for all i = 1, ... ,n, thereby prov­
ing our assertion. 

Let V be a vector space, and let {v 1, ••• ,vn } be a basis of V. The ele­
ments of V can be represented by n-tuples relative to this basis, as fol­
lows. If an element v of V is written as a linear combination 
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then by the above remark, the n-tuple (Xl"" ,Xn) is uniquely determined 
by v. We call (x 1, ... ,xn) the coordinates of v with respect to our basis, 
and we call Xi the i-th coordinate. The coordinates with respect to the 
usual basis E 1, ••• En of K n are the coordinates of the n-tuple X. We say 
that the n-tuple X = (Xl' ... ,Xn) is the coordinate vector of v with respect 
to the basis {v 1, ••• ,Vn }. 

Example 3. Let V be the vector space of functions generated by the 
two functions et

, e2t
• Then the coordinates of the function 

with respect to the basis {et
, e2t

} are (3, 5). 

Example 4. Show that the vectors (1, 1) and (- 3, 2) are linearly inde­
pendent. 

Let a, b be two numbers such that 

a( 1, 1) + b( - 3, 2) = o. 

Writing this equation in terms of components, we find 

a - 3b = 0, a + 2b = O. 

This is a system of two equations which we solve for a and b. Subtract­
ing the second from the first, we get - 5b = 0, whence b = O. Substitut­
ing in either equation, we find a = O. Hence a, b are both 0, and our 
vectors are linearly independent. 

Example 5. Find the coordinates of (1, 0) with respect to the two vec­
tors (1, 1) and (-1, 2), which form a basis. 

We must find numbers a, b such that 

a(l, 1) + b( -1, 2) = (1,0). 

Writing this equation in terms of coordinates, we find 

a - b = 1, a + 2b = O. 

Solving for a and b in the usual manner yields b = -t and a = ~. 
Hence the coordinates of (1,0) with respect to (1, 1) and (-1, 2) are 
(~, - t)· 

Example 6. Show that the vectors (1, 1) and (-1, 2) form a basis of 
R2. 



[I, §2] BASES 13 

We have to show that they are linearly independent and that they 
generate R2. To prove linear independence, suppose that a, bare 
numbers such that 

a(1, 1) + b( -1, 2) = (0, 0). 

Then 

a - b = 0, a + 2b = O. 

Subtracting the first equation from the second yields 3b = 0, so that 
b = O. But then from the first equation, a = 0, thus proving that our 
vectors are linearly independent. Next, let (a, b) be an arbitrary element 
of R2. We have to show that there exist numbers x, y such that 

x(1, 1) + y( -1, 2) = (a, b). 

In other words, we must solve the system of equations 

x-y=a, 

x + 2y = b. 

Again subtract the first equation from the second. We find 

whence 

and finally 

3y = b - a, 

b-a 
y=--' 

3 

b-a 
x=y+a=-3-+ a. 

This proves what we wanted. According to our definitions, (x, y) are the 
coordinates of (a, b) with respect to the basis {(1, 1), (-1, 2)}. 

Let {v l , ... ,vn } be a set of elements of a vector space V. Let r be a 
positive integer < n. We shall say that {v l , ... ,v,} is a maximal subset of 
linearly independent elements if V l , ... ,v, are linearly independent, and if 
in addition, given any Vi with i > r, the elements V l , .•• ,v" Vi are linearly 
dependent. 

The next theorem gives us a useful criterion to determine when a set 
of elements of a vector space is a basis. 

Theorem 2.2. Let {v l , ... ,vn } be a set of generators of a vector space V. 
Let {v l , ... ,v,} be a maximal subset of linearly independent elements. 
Then {v l , ... ,v,} is a basis of V. 
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Proof We must prove that V 1 , ••• 'Vr generate V. We shall first prove 
that each Vi (for i > r) is a linear combination of V 1, ••• ,Vr • By hypothe­
sis, given Vi' there exist numbers Xl' ... ,Xr , Y not all 0 such that 

Furthermore, y i= 0, because otherwise, we would have a relation of lin­
ear dependence for Vi' ••• ,vr • Hence we can solve for Vi' namely 

Xl Xr 
Vi = - V 1 + ... + - Vr , 

-y -y 

thereby showing that Vi is a linear combination of V 1, ••• ,Vr • 

Next, let V be any element of V. There exist numbers C 1 , ••• 'Cn such 
that 

In this relation, we can replace each Vi (i > r) by a linear combination of 
V 1, ••• ,Vr • If we do this, and then collect terms, we find that we have ex­
pressed V as a linear combination of V 1, ••• ,Vr • This proves that V 1, ... ,Vr 

generate V, and hence form a basis of V. 

I, §2. EXERCISES 

1. Show that the following vectors are linearly independent (over C or R). 
(a) (1,1,1) and (0,1, -2) (b) (1,0) and (1,1) 
(c) (-1, 1,0) and (0, 1, 2) (d) (2, -1) and (1,0) 
(e) (n, 0) and (0,1) (f) (1,2) and (1, 3) 
(g) (1, 1, 0), (1, 1, 1), and (0, 1, -1) (h) (0, 1, 1), (0, 2, 1), and (1, 5, 3) 

2. Express the given vector X as a linear combination of the given vectors A, B, 
and find the coordinates of X with respect to A, B. 
(a) X = (1,0), A = (1, 1), B = (0, 1) 
(b) X = (2,1), A = (1,-1), B = (1,1) 
(c) X = (1, 1), A = (2, 1), B = (-1,0) 
(d) X = (4,3), A = (2, 1), B = (-1,0) 

3. Find the coordinates of the vector X with respect to the vectors A, B, C. 
(a) X = (1,0,0), A = (1, 1, 1), B = ( -1, 1,0), C = (1,0, -1) 
(b) X = (1, 1, 1), A = (0, 1, -1), B = (1, 1,0), C = (1,0,2) 
(c) X = (0,0, 1), A = (1, 1, 1), B = (-1, 1,0), C = (1,0, -1) 

4. Let (a, b) and (c, d) be two vectors in the plane. If ad - bc = 0, show that 
they are linearly dependent. If ad - bc # 0, show that they are linearly inde­
pendent. 
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5. Consider the vector space of all functions of a variable t. Show that the fol­
lowing pairs of functions are linearly independent. 
(a) 1, t (b) t, t 2 (c) t, t4 (d) et, t (e) tet, e2t (f) sin t, cos t (g) t, sin t 
(h) sin t, sin 2t (i) cos t, cos 3t 

6. Consider the vector space of functions defined for t > O. Show that the fol­
lowing pairs of functons are linearly independent. 
(a) t, lit (b) e" log t 

7. What are the coordinates of the function 3 sin t + 5 cos t = f(t) with respect 
to the basis {sin t, cos t}? 

8. Let D be the derivative dldt. Let f(t) be as in Exercise 7. What are the 
coordinates of the function Df(t) with respect to the basis of Exercise 7? 

9. Let A 1"" ,A, be vectors in Rn and assume that they are mutually perpen­
dicular (i.e. any two of them are perpendicular), and that none of them is 
equal to O. Prove that they are linearly independent. 

10. Let v, w be elements of a vector space and assume that v # O. If v, ware 
linearly dependent, show that there is a number a such that w = avo 

I, §3. DIMENSION OF A VECTOR SPACE 

The main result of this section is that any two bases of a vector space 
have the same number of elements. To prove this, we first have an inter­
media te res ul t. 

Theorem 3.1. Let V be a vector space over the field K. Let {v 1, ... ,vm} 
be a basis of V over K. Let w1, ••• ,Wn be elements of V, and assume that 
n > m. Then W 1, .•. ,Wn are linearly dependent. 

Proof Assume that W 1, ... ,Wn are linearly independent. Since 
{v 1, . .. ,vm} is a basis, there exist elements a1, ... ,am E K such that 

By assumption, we know that W 1 i= 0, and hence some ai i= O. After re­
numbering V 1, ••• ,Vm if necessary, we may assume without loss of generali­
ty that say a1 i= O. We can then solve for V 1, and get 

a1v1 = W 1 - a2 v2 - ••• - amvm, 
-1 -1 -1 v1=a1 w1-a1 a2 v2 -···-a1 amvm· 

The subspace of V generated by W 1, V 2, ... ,Vm contains V 1, and hence must 
be all of V since V 1, V 2 , ... ,Vm generate V. The idea is now to continue 
our procedure stepwise, and to replace successively V 2 , V3 ,... by 
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W 2 , W 3 , ••• until all the elements V 1, ••• 'Vm are exhausted, and W 1, ••• ,Wm 

generate V. Let us now assume by induction that there is an integer r 
with 1 < r < m such that, after a suitable renumbering of V1, ••• ,Vm , the 
elements W 1, ... ,Wr , V r + 1' ... ,Vm generate V. There exist elements 

in K such that 

We cannot have cj = 0 for j = r + 1, ... ,m, for otherwise, we get a rela-
tion of linear dependence between W 1, ... ,Wr + l' contradicting our assump-
tion. After renumbering vr + 1' ... ,vm if necessary, we may assume without 
loss of generality that say cr + 1 i= O. We then obtain 

Dividing by Cr + l' we conclude that vr + 1 is in the subspace generated by 
w 1, ••. ,Wr + l' V r + 2,··· ,Vm • By our induction assumption, it follows that 
W 1, ••• 'W r + 1, V r + 2 , ••• ,Vm generate V. Thus by induction, we have proved 
that W l , ... ,Wm generate V. If n > m, then there exist elements 

such that 

thereby proving that W 1, ... ,Wn are linearly dependent. This proves our 
theorem. 

Theorem 3.2. Let V be a vector space and suppose that one basis has n 
elements, and another basis has m elements. Then m = n. 

Proof We apply Theorem 3.1 to the two bases. Theorem 3.1 implies 
that both alternatives n > m and m > n are impossible, and hence m = n. 

Let V be a vector space having a basis consisting of n elements. We 
shall say that n is the dimension of V. If V consists of 0 alone, then V 
does not have a basis, and we shall say that V has dimension O. 
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Example 1. The vector space Rn has dimension n over R, the vector 
space Cn has dimension n over C. More generally for any field K, the 
vector space K n has dimension n over K. Indeed, the n vectors 

(1, 0, ... ,0), (0, 1, ... ,0), ... , (0, ... ,0, 1) 

form a basis of Kn over K. 

The dimension of a vector space V over K will be denoted by dimK V, 
or simply dim V. 

A vector space which has a basis consisting of a finite number of ele­
ments, or the zero vector space, is called finite dimensional. Other vector 
spaces are called infinite dimensional. It is possible to give a definition 
for an infinite basis. The reader may look it up in a more advanced text. 
In this book, whenever we speak of the dimension of a vector space in 
the sequel, it is assumed that this vector space is finite dimensional. 

Example 2. Let K be a field. Then K is a vector space over itself, 
and it is of dimension 1. In fact, the element 1 of K forms a basis of K 
over K, because any element x E K has a unique expresssion as x = X· 1. 

Example 3. Let V be a vector space. A subspace of dimension 1 is 
called a line in V. A subspace of dimension 2 is called a plane in V. 

We shall now give criteria which allow us to tell when elements of a 
vector space constitute a basis. 

Let V 1, ••• ,Vn be linearly independent elements of a vector space V. We 
shall say that they form a maximal set of linearly independent elements of 
V if given any element w of V, the elements w, v 1, ... ,Vn are linearly de­
pendent. 

Theorem 3.3. Let V be a vector space, and {v 1, ••• ,vn} a maximal set of 
linearly independent elements of V. Then {v 1, ••• ,vn} is a basis of V. 

Proof. We must show that V 1, ••• ,vn generates V, i.e. that every element 
of V can be expressed as a linear combination of V 1, ••• ,Vn • Let w be an 
element of V. The elements w, V 1, ••• 'Vn of V must be linearly dependent 
by hypothesis, and hence there exist numbers X o, x 1, ... ,Xn not all Osuch 
that 
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We cannot have Xo = 0, because if that were the case, we would obtain a 
relation of linear dependence among v1 , ••• ,vn • Therefore we can solve for 
w in terms of v1, ••• ,Vn , namely 

Xl Xn 
W = - - V 1 - ••• - - Vn • 

Xo Xo 

This proves that w is a linear combination of V 1, ... ,Vn , and hence that 
{v 1 , ••• ,vn } is a basis. 

Theorem 3.4. Let V be a vector space of dimension n, and let V 1,··· ,Vn 

be linearly independent elements of V. Then V 1, ... ,vn constitute a basis 
of V. 

Proof According to Theorem 3.1, {v 1, ••• ,vn } is a maximal set of lin­
early independent elements of V. Hence it is a basis by Theorem 3.3. 

Corollary 3.5. Let V be a vector space and let W be a subspace. If 
dim W = dim V then V = W 

Proof A basis for W must also be a basis for V by Theorem 3.4. 

Corollary 3.6. Let V be a vector space of dimension n. Let r be a posi­
tive integer with r < n, and let v1, •.• ,Vr be linearly independent elements 
of V. Then one can find elements vr + 1' ... ,vn such that 

is a basis of V. 

Proof Since r < n we know that {v 1, ••• ,vr } cannot form a basis of V, 
and thus cannot be a maximal set of linearly independent elements of V. 
In particular, we can find Vr + 1 in V such that 

are linearly independent. If r + 1 < n, we can repeat the argument. We 
can thus proceed stepwise (by induction) until we obtain n linearly inde­
pendent elememts {v 1 , ••• ,vn }. These must be a basis by Theorem 3.4 and 
our corollary is proved. 

Theorem 3.7. Let V be a vector space having a basis consisting of n 
elements. Let W be a subspace which does not consist of 0 alone. Then 
W has a basis, and the dimension of W is < n. 
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Proof Let W 1 be a non-zero element of W If {w l} is not a maximal 
set of linearly independent elements of W, we can find an element W 2 of 
W such that Wl' W2 are linearly independent. Proceeding in this manner, 
one element at a time, there must be an integer m < n such that we can 
find linearly independent elements Wl' W 2 , ••• ,Wm , and such that 

is a maxmal set of linearly independent elements of W (by Theorem 3.1 
we cannot go on indefinitely finding linearly independent elements, and 
the number of such elements is at most n). If we now use Theorem 3.3, 
we conclude that {w l , ... ,wm } is a basis for W 

I, §4. SUMS AND DIRECT SUMS 

Let V be a vector space over the field K. Let U, W be subspaces of V. 
We define the sum of U and W to be the subset of V consisting of all 
sums u + W with UE U and WE W We denote this sum by U + W It is 
a subspace of V. Indeed, if U l , U 2 E U and Wl' W2 E W then 

If cEK, then 

Finally, 0 + 0 E W This proves that U + W is a subspace. 
We shall say that V is a direct sum of U and W if for every element v 

of V there exist unique elements U E U and WE W such that v = U + w. 

Theorem 4.1. Let V be a vector space over the field K, and let U, W be 
subspaces. If U + W = V, and if U n W = {O}, then V is the direct 
sum of U and W 

Proof Given v E V, by the first assumption, there exist elements u E U 
and W E W such that v = U + w. Thus V is the sum of U and W. To 
prove it is the direct sum, we must show that these elements u, ware 
uniquely determined. Suppose there exist elements u' E U and w' E W such 
that v = u' + w'. Thus 

u + W = u' + w'. 

Then 

u - u' = w' - w. 
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But u - U' E U and w' - W E W. By the second assumption, we conclude 
that u - u' = 0 and w' - w = 0, whence u = u' and w = w', thereby 
proving our theorem. 

As a matter of notation, when V is the direct sum of subspaces U, W 
we write 

V=U(f)w. 

Theorem 4.2. Let V be a finite dimensional vector space over the field 
K. Let W be a subspace. Then there exists a subspace U such that V is 
the direct sum of Wand U. 

Proof We select a basis of W, and extend it to a basis of V, uSIng 
Corollary 3.6. The assertion of our theorem is then clear. In the nota­
tion of that theorem, if {v 1, ••• ,vr } is a basis of W, then we let U be the 
space generated by {vr + 1"" ,Vn}. 

We note that given the subspace W, there exist usually many subs­
paces U such that V is the direct sum of Wand U. (For examples, see 
the exercises.) In the section when we discuss orthogonality later in this 
book, we shall use orthogonality to determine such a subspace. 

Theorem 4.3. If V is a finite dimensional vector space over K, and is 
the direct sum of subspaces U, W then 

dim V= dim U + dim W. 

Proof Let {u 1, ••• ,ur } be a basis of U, and {w 1, ••• ,ws} a basis of W. 
Every element of U has a unique expression as a linear combination 
X 1U 1 + ... + XrUr ' with Xi E K, and every element of W has a unique ex­
pression as a linear combination Y1 W 1 + ... + Ys Ws with Yj E K. Hence by 
definition, every element of V has a unique expression as a linear com­
bination 

thereby proving that u1, ••• ,ur , w 1, ••• ,Ws is a basis of V, and also proving 
our theorem. 

Suppose now that U, Ware arbitrary vector spaces over the field K 
(i.e. not necessarily subspaces of some vector space). We let U x W be 
the set of all pairs (u, w) whose first component is an element u of U and 
whose second component is an element w of W. We define the addition 
of such pairs componentwise, namely, if (u 1, w1 ) E U x Wand 
(u2 , w 2 ) E U x W we define 
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If C E K we define the product C(U I , WI) by 

It is then immediately verified that U x W is a vector space, called the 
direct product of U and W When we discuss linear maps, we shall com­
pare the direct product with the direct sum. 

If n is a positive integer, written as a sum of two positive integers, 
n = r + s, then we see that K n is the direct product Kr x K S

• 

We note that 

dim (U x W) = dim U + dim W 

The proof is easy, and is left to the reader. 
Of course, we can extend the notion of direct sum and direct product 

of several factors. Let VI' ... ' v" be subspaces of a vector space V. We 
say that V is the direct sum 

n 

V= ffi~= VI E9···E9Y" 
i= 1 

if every element v E V has a unique expression as a sum 

with Vi E ~. 

A "unique expression" means that if 

V = V
/
l + ... + v~ 

then v~ = Vi for i = 1, ... ,no 
Similarly, let WI' ... ' ~ be vector spaces. We define their direct pro-

duct 
n 

n~=WIX ... X~ 
i= I 

to be the set of n-tuples (w l , ... ,wn) with Wi E~. Addition is defined 
componentwise, and multiplication by scalars is also defined compo­
nen twise. Then this direct product is a vector space. 
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I, §4. EXERCISES 

1. Let V = R 2, and let W be the subspace generated by (2, 1). Let U be the sub­
space generated by (0, 1). Show that V is the direct sum of Wand U. If U' is 
the subspace generated by (1, 1), show that V is also the direct sum of Wand 
U'. 

2. Let V = K3 for some field K. Let W be the subspace generated by (1, 0, 0), 
and let U be the subspace generated by (1, 1, 0) and (0, 1, 1). Show that V is 
the direct sum of Wand U. 

3. Let A, B be two vectors in R2, and assume neither of them is O. If there is 
no number c such that cA = B, show that A, B form a basis of R2, and that 
R 2 is a direct sum of the subspaces generated by A and B respectively. 

4. Prove the last assertion of the section concerning the dimension of U x W If 
{u 1, ••• ,ur } is a basis of U and {w 1, •.• ,ws} is a basis of W, what is a basis of 
U x W? 



CHAPTER II 

Matrices 

II, §1. THE SPACE OF MATRICES 

We consider a new kind of object, matrices. Let K be a field. Let n, m 
be two integers > 1. An array of numbers in K 

all a 12 a 13 a ln 

a21 a22 a23 a2n 

is called a matrix in K. We can abbreviate the notation for this matrix 
by writing it (aij), i = 1, ... ,m and j = 1, ... ,no We say that it is an m by 
n matrix, or an m x n matrix. The matrix has m rows and n columns. 
For instance, the first column is 

and the second row is (a 21 , a22 , ••. ,a2n). We call aij the ij-entry or ij­
component of the matrix. If we denote by A the above matrix, then the 
i-th row is denoted by Ai' and is defined to be 
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The j-th column is denoted by Ai, and is defined to be 

Example 1. The following is a 2 x 3 matrix: 

It has two rows and three columns. 

1 

4 
-2) 
-5 . 

The rows are (1, 1, - 2) and (-1, 4, - 5). The columns are 

[II, §1] 

Thus the rows of a matrix may be viewed as n-tuples, and the columns 
may be viewed as vertical m-tu pIes. a vertical m-tu pIe is also called a 
column vector. 

A vector (Xl' ... ,Xn) is a 1 x n matrix. A column vector 

is an n x 1 matrix. 
When we write a matrix in the form (a ii), then i denotes the row and 

j denotes the column. In Example 1, we have for instance all = 1, 
a23 = -5. 

A single number (a) may be viewed as a 1 x 1 matrix. 
Let (aij), i = 1, ... ,m and j = 1, ... ,n be a matrix. If m = n, then we say 

that it is a square matrix. Thus 

~) and 

are both square matrices. 

(~ 
-1 

1 

1 
-~) 
-1 
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We have a zero matrix in which aij = 0 for all i, j. It looks like this: 

000 0 
o 0 0 0 

o 0 0 0 

We shall write it o. We note that we have met so far with the zero 
number, zero vector, and zero matrix. 

We shall now define addition of matrices and multiplication of ma­
trices by numbers. 

We define addition of matrices only when they have the same size. 
Thus let m, n be fixed integers > 1. Let A = (aij) and B = (bij) be two 
m x n matrices. We define A + B to be the matrix whose entry in the 
i-th row and j-th column is aij + bij. In other words, we add matrices of 
the same size componentwise. 

Example 2. Let 

A=G -1 
~) B=G 

1 -1) 
3 

and 
1 -1 . 

Then 

A + B = (: 0 -1) 
4 3 . 

If 0 is the zero matrix, then for any matrix A (of the same size, of 
course), we have 0 + A = A + 0 = A. This is trivially verified. 

We shall now define the multiplication of a matrix by a number. Let 
c be a number, and A = (aij) be a matrix. We define cA to be the ma­
trix whose ij-component is caij. We write cA = (caij). Thus we multiply 
each component of A by c. 

Example 3. Let A, B be as in Example 2. Let c = 2. Then 

2A = (~ -2 
~) CO 2 -2) 

6 
and 2B = 4 2 -2 . 

We also have 

(-1 1 
-~) (-1)A = -A = 

-3 -2 

For all matrices A, we find that A + ( -1)A = o. 
We leave it as an exercise to verify that all properties VS 1 through 

VS 8 are satisfied by our rules for addition of matrices and multiplication 



26 MATRICES [II, §1] 

of matrices by elements of K. The main thing to observe here is that 
addition of matrices is defined in terms of the components, and for the 
addition of components, the conditions analogous to VS 1 through VS 4 
are satisfied. They are standard properties of numbers. Similarly, VS 5 
through VS 8 are true for multiplication of matrices by elements of K, 
because the corresponding properties for the multiplication of elements of 
K are true. 

We see that the matrices (of a given size m x n) with components in a 
field K form a vector space over K which we may denote by 
Matm x n(K). 

We define one more notion related to a matrix. Let A = (aij) be an 
m x n matrix. The n x m matrix B = (b ji ) such that bji = aij is called the 
transpose of A, and is also denoted by t A. Taking the transpose of a 
matrix amounts to changing rows into columns and vice versa. If A is 
the matrix which we wrote down at the beginning of this section, then l A 
is the matrix 

To take a special case: 

If 

all a21 a31 ami 
a12 a22 a32 am2 

1 

3 ~) then 

If A = (2, 1, -4) is a row vector, then 

is a column vector. 
A matrix A is said to be symmetric if it is equal to its transpose, i.e. if 

lA = A. A symmetric matrix is necessarily a square matrix. For instance, 
the matrix 

(-~ 
is symmetric. 

-1 

o 
3 ~) 
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Let A = (aij) be a square matrix. We call all' ... ,ann its diagonal com­
ponents. A square matrix is said to be a diagonal matrix if all its 
components are zero except possibly for the diagonal components, i.e. if 
aij = 0 if i =1= j. Every diagonal matrix is a symmetric matrix. A diagonal 
matrix looks like this: 

We define the unit n x n matrix to be the square matrix having all its 
components equal to 0 except the diagonal components, equal to 1. We 
denote this unit matrix by In' or I if there is no need to specify the n. 
Thus: 

I = n 

100 
o 1 0 

001 

II, §1. EXERCISES ON MATRICES 

1. Let 

A = ( 1 
-1 

2 

o ~) and B= (
-1 

2 

Find A + B, 3B, - 2B, A + 2B, 2A - B, A - 2B, B - A. 

2. Let 

5 -2) 
2 -1· 

and (-1 1) 
B = 0 -3· 

Find A + B, 3B, - 2B, A + 2B, A - B, B - A. 

3. In Exercise 1, find tA and t B. 

4. In Exercise 2, find tA and t B. 

5. If A, B are arbitrary m x n matrices, show that 
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6. If c is a number, show that 

7. If A = (aij ) is a square matrix, then the elements aii are called the diagonal 
elements. How do the diagonal elements of A and tA differ? 

8. Find teA + B) and tA + tB in Exercise 2. 

9. Find A + tA and B + tB in Exercise 2. 

10. Show that for any square matrix A, the matrix A + tA is symmetric. 

11. Write down the row vectors and column vectors of the matrices A, B in 
Exercise 1. 

12. Write down the row vectors and column vectors of the matrices A, B In 
Exercise 2. 

II, §1. EXERCISES ON DIMENSION 

1. What is the dimension of the space of 2 x 2 matrices? Give a basis for this 
space. 

2. What is the dimension of the space of m x n matrices? Give a basis for this 
space. 

3. What is the dimension of the space of n x n matrices of all of whose com­
ponents are 0 except possibly the diagonal components? 

4. What is the dimensison of the space of n x n matrices which are upper­
triangular, i.e. of the following type: 

a 12 
... 

a

l

") a22 
... 

a~n ? 

0 ann 

5. What is the dimension of the space of symmetric 2 x 2 matrices (i.e. 2 x 2 
matrices A such that A = tA)? Exhibit a basis for this space. 

6. More generally, what is the dimension of the space of symmetric n x n ma­
trices? What is a basis for this space? 

7. What is the dimension of the space of diagonal n x n matrices? What is a 
basis for this space? 

8. Let V be a subspace of R 2 • What are the possible dimensions for V? 

9. Let V be a subspace of R 3 . What are the possible dimensions for V? 
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II, §2. LINEAR EQUATIONS 

We shall now give applications of the dimension theorems to the solu­
tion of linear equations. 

Let K be a field. Let A = (a ij), i = 1, ... ,m and j = 1, ... ,n be a matrix 
in K. Let bl , ... ,bm be elements of K. Equations like 

are called linear equations. We shall also say that (*) is a system of lin­
ear equations. The system is said to be homogeneous if all the numbers 
bl , ... ,bm are equal to O. The number n is called the number of un­
knowns, and m is called the number of equations. We call (a ij) the ma­
trix of coefficients. 

The system of equations 

a lX l + ... + a x = 0 m mn n 

will be called the homogeneous system associated with (*). 
The system (**) always has a solution, namely, the solution ob­

tained by letting all Xj = o. This solution will be called the trivial solu­
tion. A solution (Xl' ... ,xn) such that some Xi =1= 0 is called non-trivial. 

We consider first the homogeneous system (**). We can rewrite it in 
the following way: 

or in terms of the column vectors of the matrix A = (aij), 

A non-trivial solution X = (Xl' ... ,xn ) of our system (**) is therefore 
nothing else than an n-tuple X =1= 0 giving a relation of linear depen­
dence between the columns A l, ... ,An. This way of rewriting the system 
gives us therefore a good interpretation, and allows us to apply Theorem 
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3.1 of Chapter I. The column vectors are elements of K m
, which has 

dimension mover K. Consequently: 

Theorem 2.1. Let 

be a homogeneous system of m linear equations in n unknowns, with 
coefficients in a field K. Assume that n > m. Then the system has a 
non-trivial solution in K. 

Proof. By Theorem 3.1 of Chapter I, we know that the vectors 
A 1, ... ,An must be linearly dependent. 

Of course, to solve explicitly a system of linear equations, we have so 
far no other method than the elementary method of elimination from ele­
mentary school. Some computational aspects of solving linear equations 
are discussed at length in my Introduction to Linear Algebra, and will 
not be repeated here. 

We now consider the original system of equations (*). Let B be the 
column vector 

Then we may rewrite (*) in the form 

or abbreviated in terms of the column vectors of A, 

Theorem 2.2. Assume that m = n in the system (*) above, and that the 
vectors A1, ... ,A n are linearly independent. T hen the system (*) has a 
solution in K, and this solution is unique. 
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Proof. The vectors AI, ... ,An being linearly independent, they form a 
basis of Kn. Hence any vector B has a unique expression as a linear 
combination 

with Xi E K, and X = (x l' ... ,xn) is therefore the unIque solution of the 
system. 

II, §2. EXERCISES 

1. Let (**) be a system of homogeneous linear equations in a field K, and as­
sume that m = n. Assume also that the column vectors of coefficients are 
linearly independent. Show that the only solution is the trivial solution. 

2. Let (**) be a system of homogeneous linear equations in a field K, in n un­
knowns. Show that the set of solutions X = (x l' ... ,xn) is a vector space over 
K. 

3. Let A 1, ... ,An be column vectors of size m. Assume that they have coefficients 
in R, and that they are linearly independent over R. Show that they are 
linearly independent over C. 

4. Let (**) be a system of homogeneous linear equations with coefficients in R. 
If this system has a non-trivial solution in C, show that it has a non-trivial 
solution in R. 

II, §3. MULTIPLICATION OF MATRICES 

We shall consider matrices over a field K. We begin by recalling the dot 
product defined in Chapter I. Thus if A = (a 1, ••• ,an) and B = (b 1, ••• ,bn) 
are in K n

, we define 

This is an element of K. We have the basic properties: 

SP 1. For all A, B in K n, we have A· B = B· A. 

SP 2. If A, B, C are in K n
, then 

A·(B + C) = A·B + A·C = (B + C)·A. 

SP 3. If xEK, then 

(xA) . B = x( A . B) and A . (xB) = x( A . B). 
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If A has components in the real numbers R, then 

A 2 = ai + ... + a; > 0, 

and if A =1= 0 then A2 > 0, because some af > 0. Notice however that 
the positivity property does not hold in general. F or instance, if K = C, 
let A = (1, i). Then A =1= 0 but 

A . A = 1 + i2 = 0. 

For many applications, this positivity is not necessary, and one can use 
instead a property which we shall call non-degeneracy, namely: 

If AEKn
, and if A·X = ° for all X EKn then A = o. 

The proof is trivial, because we must have A· Ei = ° for each unit vector 
Ei = (0, ... ,0, 1, 0, ... ,0) with 1 in the i-th component and ° otherwise. 
But A· Ei = ai' and hence a i = ° for all i, so that A = o. 

We shall now define the product of matrices. 
Let A = (aij), i = 1, ... ,m and j = 1, ... ,n, be an m x n matrix. Let 

B = (b jk)' j = 1, ... ,n and k = 1, ... ,s, be an n x s matrix. 

We define the product AB to be the m x s matrix whose ik-coordinate is 

n 

L aijbjk = ailblk + a i2 b 2k + ... + ainbnk · 
j= 1 

If A l , ... ,Am are the row vectors of the matrix A, and if B l
, ... ,Bs are the 

column vectors of the matrix B, then the ik-coordinate of the product 
AB is equal to Ai· Bk. Thus 

Multiplication of matrices is therefore a generalization of the dot prod­
uct. 



[II, §3] MULTIPLICATION OF MATRICES 

Example 1. Let 

A=G 
1 

3 B=(-! ~). 
Then AB is a 2 x 2 matrix, and computations show that 

AB=G 1 ~)( -! ~)=C! 3 

Example 2. Let 

C = ( 1 
-1 -~). 

Let A, B be as in Example 1. Then 

and 

A(BC) = G 1 

3 (-1 5) 
~) -~ -~ = (-~ 

Compute (AB)C. What do you find? 

15) 
12 . 

3~) 
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Let A be an m x n matrix and let B be an n x 1 matrix, i.e. a column 
vector. Then AB is again a column vector. The product looks like this: 

where 

n 

Ci = L aijb j = ai1b 1 + ... + ainbn· 
j= 1 
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If X = (Xl' ... ,Xm) is a row vector, i.e. a 1 x m matrix, then we can 
form the product X A, which looks like this: 

where 

In this case, X A is a 1 x n matrix, i.e. a row vector. 

Theorem 3.1. Let A, B, C be matrices. Assume that A, B can be mul­
tiplied, and A, C can be multiplied, and B, C can be added. Then 
A, B + C can be multiplied, and we have 

A(B + C) = AB + AC. 

If X is a number, then 

A(xB) = x(AB). 

Proof. Let Ai be the i-th row of A and let Bk, Ck be the k-th column 
of Band C, respectively. Then Bk + Ck is the k-th column of B + C. 
By definition, the ik-component of AB is Ai· Bk, the ik-component of AC 
is Ai· Ck, and the ik-component of A(B + C) is Ai· (Bk + Ck). Since 

our first assertion follows. As for the second, observe that the k-th col­
umn of xB is XBk. Since 

A.· XBk = x(A .. Bk) 
l l' 

our second assertion follows. 

Theorem 3.2. Let A, B, C be matrices such that A, B can be multiplied 
and B, C can be multiplied. Then A, BC can be multiplied. So can 
AB, C, and we have 

(AB)C = A(BC). 

Proof. Let A = (aij) be an m x n matrix, let B = (b jk) be an n x r ma­
trix, and let C = (Ck1 ) be an r x s matrix. The product AB is an m x r 
matrix, whose ik-component is equal to the sum 
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We shall abbreviate this sum using our I notation by writing 

n 

I aijbjk · 
j= 1 

By definition, the ii-component of (AB)C is equal to 

The sum on the right can also be described as the sum of all terms 

where j, k range over all integers 1 <j < nand 1 < k < r respectively. 

35 

If we had started with the jl-component of BC and then computed the 
ii-component of A(BC) we would have found exactly the same sum, 
thereby proving the theorem. 

Let A be a square n x n matrix. We shall say that A is invertible or 
non-singular if there exists an n x n matrix B such that 

Such a matrix B is uniquely determined by A, for if C is such that AC = 

CA = In, then 

B = BIn = B(AC) = (BA)C = InC = C. 

(Cf. Exercise 1.) This matrix B will be called the inverse of A and will be 
denoted by A - 1. When we study determinants, we shall find an explicit 
way of finding it, whenever it exists. 

Let A be a square matrix. Then we can form the product of A with 
itself, say AA, or repeated products, 

A···A 

taken m times. By definition, if m is an integer > 1, we define Am to 
be the product A··· A taken m times. We define AO = I (the unit matrix 
of the same size as A). The usual rule Ar+s = Ar AS holds for integers 
r, S > o. 

The next result relates the transpose with multiplication of matrices. 
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Theorem 3.3. Let A, B be matrices which can be multiplied. Then tB, tA 
can be multiplied, and 

Proof. Let A = (a ij) and B = (b jk). Let AB = C. Then 

n 

Cik = L aijbjk · 
j=l 

Let tB = (b~j) and tA = (ali). Then the ki-component of tBtA is by defini­
tion 

n 

L b~jali· 
j= 1 

Since b~j = bjk and ali = aij we see that this last expression is equal to 

n n 

L bjkaij = L aijbjk · 
j=l j=l 

By definition, this is the ki-component of tc, as was to be shown. 

In terms of multiplication of matrices, we can now write a system of 
linear equations in the form 

AX = B, 

where A is an m x n matrix, X is a column vector of size n, and B is a 
column vector of size m. 

II, §3. EXERCISES 

1. Let I be the unit n x n matrix. Let A be an n x r matrix. What is I A? If A 
is an m x n matrix, what is AI? 

2. Let D be the matrix all of whose coordinates are O. Let A be a matrix of a 
size such that the product AD is defined. What is AD? 
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3. In each one of the following cases, find (AB)C and A(BC). 

(a) A = G 

(b) A = G 

(c) A = G 

~}B=(-~ ~}c=G 

~ -~}B=O 

~ _~}B=G 

37 

4. Let A, B be square matrices of the same size, and assume that AB = BA. 
Show that (A + B)2 = A2 + 2AB + B2, and 

(A + B)(A - B) = A2 - B2, 

using the properties of matrices stated in Theorem 3.1. 

5. Let 

Find AB and BA. 

6. Let 

Let A, B be as in Exercise 5. Find CA, AC, CB, and BC. State the general 
rule including this exercise as a special case. 

7. Let X = (1, 0, 0) and let 

What is XA? 

1 

° 1 

8. Let X = (0,1,0), and let A be an arbitrary 3 x 3 matrix. How would you 
describe X A? What if X = (0,0, I)? Generalize to similar statements con­
cerning n x n matrices, and their products with unit vectors. 

9. Let A, B be the matrices of Exercise 3(a). Verify by computation that 
t(AB) = tBtA. Do the same for 3(b) and 3(c). Prove the same rule for any 
two matrices A, B (which can be multiplied). If A, B, C are matrices which 
can be multiplied, show that t(ABC) = tCtBtA. 
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10. Let M be an n x n matrix such that tM = M. Given two row vectors in n­
space, say A and B define (A, B) to be AM t B. (Identify a 1 x 1 matrix with 
a number.) Show that the conditions of a scalar product are satisfied, except 
possibly the condition concerning positivity. Give an example of a matrix M 
and vectors A, B such that AM t B is negative (taking n = 2). 

11. (a) Let A be the matrix 

1 

o 
o 

Find A 2
, A3. Generalize to 4 x 4 matrices. 

(b) Let A be the matrix 

Compute A 2 , A 3 , A4. 

1 

1 

o 

12. Let X be the indicated column vector, and A the indicated matrix. Find AX 
as a column vector. 

(a) X = G)' A = G 0 

-D 0 

0 

(b) X=(~}A=G 1 

~) 1 

(c) X=(::}A=(~ 1 
~) 0 

(d) X = (::) A = G 0 
~) 0 

13. Let 

A =(! 1 

~} 1 

Find AX for each of the following values of X. 

(a) X=(~) (b) X=(!) (c) X=(D 
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14. Let 

MULTIPLICATION OF MATRICES 

A=G 
7 

-1 

1 

Find AX for each of the values of X given in Exercise 13. 

15. Let 

and 

What is AX? 
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16. Let X be a column vector having all its components equal to 0 except the 
i-th component which is equal to 1. Let A be an arbitrary matrix, whose size 
is such that we can form the product AX. What is AX? 

17. Let A = (a i), i = 1, ... ,m and j = 1, ... ,n, be an m x n matrix. Let B = (b jk ), 

j = 1, ... ,n and k = 1, ... ,s, be an n x s matrix. Let AB = C. Show that the 
k-th column C k can be written 

(This win be useful in finding the determinant of a product.) 

18. Let A be a square matrix. 
(a) If A 2 = 0 show that I - A is invertible. 
(b) If A 3 = 0 show that I - A is invertible. 
(c) In general, if An = 0 for some positive integer n, show that I - A is in­

vertible. 
(d) Suppose that A 2 + 2A + I = o. Show that A is invertible. 
(e) Suppose that A 3 - A + I = o. Show that A is invertible. 

19. Let a, b be numbers, and let 

A=G ~) and B=G 
What is AB? What is An where n is a positive integer? 

20. Show that the matrix A in Exercise 19 has an inverse. What is this inverse? 

21. Show that if A, Bare n x n matrices which have inverses, then AB has an 
inverse. 

22. Determine all 2 x 2 matrices A such that A 2 = o. 
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(

COS 8 
23. Let A = . () 

sIn 

MATRICES 

- sin 8) 2 (COS 28 
() . Show that A = . 2() 

cos sIn 

Determine An by induction for any positive integer n. 

-sin 28). 
cos 2() 

24. Find a 2 x 2 matrix A such that A2 = _/ = (-1 0). 
o -1 
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25. Let A be an n x n matrix. Define the trace of A to be the sum of the 
diagonal elements. Thus if A = (a i)' then 

n 

tr(A) = L aii· 
i= 1 

F or instance, if 

A=G ~} 
then tr( A) = 1 + 4 = 5. If 

A=G 
-1 

1 

-4 

then tr(A) = 9. Compute the trace of the following matrices: 

(a) (- ~ ~ ~) 
2 3-4 

-2 4) (-2 
4 1 (c) 3 

-3 -3 -5 

26. Let A, B be the indicated matrices. Show that 

tr(AB) = tr(BA). 

(a) A =(: 
-1 

~}B= ( ~ 
1 

n 4 1 

0 1 -1 2 

(b) A = ( -: 
7 

~} B = ( ~ 
-2 

D 5 4 

3 -4 -7 -3 

27. Prove in general that if A, B are square n x n matrices, then 

tr(AB) = tr(BA). 

28. For any square matrix A, show that tr(A) = trCA). 

4 

2 
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29. Let 

(
1 0 0) 

A= 0 2 0 . 

003 

30. Let A be a diagonal matrix, with diagonal elements a 1, •.. ,an. What is 
A 2

, A 3
, Ak for any positive integer k? 

31. Let 

(
0 1 6) 

A= 0 0 4 . 

000 
Find A3. 

32. Let A be an invertible n x n matrix. Show that 

We may therefore write tA -1 without fear of confusion. 

33. Let A be a complex matrix, A = (a i), and let A = (aij)' where the bar means 
complex conjugate. Show that 

We then write simply t A. 

34. Let A be a diagonal matrix: 

A= 

If a i "# 0 for all i, show that A is invertible. What is its inverse? 

35. Let A be a strictly upper triangular matrix, i.e. a square matrix (aij) having 
all its components below and on the diagonal equal to O. We may express 
this by writing aij = 0 if i ~ j: 

o a 12 a 13 a 1n 

o 0 a 23 a 2n 

A= 

o 0 o o 

Prove that An = o. (If you wish, you may do it only in case n = 2, 3 and 4. 
The general case can be done by induction.) 
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36. Let A be a triangular matrix with components 1 on the diagonal: 

1 al2 aln 

0 1 a2n 

A= 
0 0 1 

0 0 0 1 

Let N = A - In. Show that N n+ 1 = O. Note that A = I + N. Show that A 
is invertible, and that its inverse is 

(I + N)-l = I - N + N 2 - ••• + (-l)"Nn. 

37. If N is a square matrix such that N r + 1 = 0 for some positive integer r, show 
that I - N is invertible and that its inverse is I + N + ... + N r

• 

38. Let A be a triangular matrix: 

o 

... a ln) 

... a
2n . . 

ann 

Assume that no diagonal element is 0, and let 

o 

B= 

o 

Show that BA and AB are triangular matrices with components 1 on the 
diagonal. 

39. A square matrix A is said to be nilpotent if A r = 0 for some integer r ~ 1. 
Let A, B be nilpotent matrices, of the same size, and assume AB = BA. 
Show that AB and A + B are nilpotent. 



CHAPTER III 

Linear Mappings 

We shall define the general notion of a mapping, which generalizes the 
notion of a function. Among mappings, the linear mappings are the 
most important. A good deal of mathematics is devoted to reducing 
questions concerning arbitrary mappings to linear mappings. For one 
thing, they are interesting in themselves, and many mappings are linear. 
On the other hand, it is often possible to approximate an arbitrary map­
ping by a linear one, whose study is much easier than the study of the 
original mapping. This is done in the calculus of several variables. 

III, §1. MAPPINGS 

Let S, S' be two sets. A mapping from S to S' is an association which 
to every element of S associates an element of S'. Instead of saying that 
F is a mapping from S into S', we shall often write the symbols F: S ---+ S'. 
A mapping will also be called a map, for the sake of brevity. 

A function is a special type of mapping, namely it is a mapping from 
a set into the set of numbers, i.e. into R, or C, or into a field K. 

We extend to mappings some of the terminology we have used for 
functions. For instance, if T: S ---+ S' is a mapping, and if u is an element 
of S, then we denote by T(u), or Tu, the element of S' associated to u by 
T. We call T(u) the value of T at u, or also the image of u under T. 
The symbols T(u) are read "T of u". The set of all elements T(u), when 
u ranges over all elements of S, is called the image of T. If W is a subset 
of S, then the set of elements T(w), when w ranges over all elements of 
W, is called the image of Wunder T, and is denoted by T(W). 
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Let F: S ---+ Sf be a map from a set S into a set Sf. If x is an element 
of S, we often write 

X 1---+ F(x) 

with a special arrow 1---+ to denote the image of x under F. Thus, for 
instance, we would speak of the map F such that F(x) = x 2 as the map 
x 1---+ x 2

• 

Example 1. Let S and Sf be both equal to R. Let f: R ---+ R be the 
function f(x) = x 2 (i.e. the function whose value at a number x is 
x 2 ). Then f is a mapping from R into R. Its image is the set of 
numbers > o. 

Example 2. Let S be the set of numbers > 0, and let Sf = R. Let 
g: S ---+ Sf be the function such that g(x) = X

1
/
2

• Then g is a mapping 
from S into R. 

Example 3. Let S be the set of functions having derivatives of all 
orders on the interval 0 < t < 1, and let Sf = S. Then the derivative 
D = d/dt is a mapping from S into S. Indeed, our map D associates the 
function df/dt = Df to the function f. According to our terminology, 
Df is the value of the mapping D at f. 

Example 4. Let S be the set of continuous functions on the interval 
[0, 1] and let Sf be the set of differentiable functions on that interval. 
We shall define a mapping cI: S ---+ Sf by giving its value at any function 
f in S. Namely, we let clf (or cI(f)) be the function whose value at x is 

(/f)(x) = s: f(t) dt. 

Then cI(f) is differentiable function. 

Example 5. Let S be the set R 3, i.e. the set of 3-tu pIes. Let 
A = (2,3, -1). Let L: R3 ---+ R be the mapping whose value at a vector 
X=(x,Y,z) is A·X. Then L(X)=A·X. If X=(I,I,-I), then the 
value of L at X is 6. 

Just as we did with functions, we describe a mapping by giving its 
values. Thus, instead of making the statement in Example 5 describing 
the mapping L, we would also say: Let L: R3 ---+ R be the mapping 
L(X) = A . X. This is somewhat incorrect, but is briefer, and does not 
usually give rise to confusion. More correctly, we can write X 1---+ L(X) 
or X 1---+ A . X with the special arrow 1---+ to denote the effect of the map 
L on the element X. 
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Example 6. Let F: R2 --+ R2 be the mapping given by 

F(x, y) = (2x, 2y). 

Describe the image under F of the points lying on the circle x 2 + y2 = 1. 
Let (x, y) be a point on the circle of radius 1. 
Let u = 2x and v = 2y. Then u, v satisfy the relation 

(U/2)2 + (V/2)2 = 1 

or in other words, 

Hence (u, v) is a point on the circle of radius 2. Therefore the image 
under F of the circle of radius 1 is a subset of the circle of radius 2. 
Conversely, given a point (u, v) such that 

let x = u/2 and y = v/2. Then the point (x, y) satisfies the equation 
x2 + y2 = 1, and hence is a point on the circle of radius 1. Furthermore, 
F(x, y) = (u, v). Hence every point on the circle of radius 2 is the image 
of some point on the circle of radius 1. We conclude finally that the im­
age of the circle of radius 1 under F is precisely the circle of radius 2. 

Note. In general, let S, S' be two sets. To prove that S = S', one fre­
quently proves that S is a subset of S' and that S' is a subset of S. This 
is what we did in the preceding argument. 

Example 7. Let S be a set and let V be a vector space over the field 
K. Let F, G be mappings of S into V. We can define their sum F + G 
as the map whose value at an element t of S is F(t) + G(t). We also de­
fine the product of F by an element c of K to be the map whose value 
at an element t of S is cF(t). It is easy to verify that conditions VS 1 
through VS 8 are satisfied. 

Example 8. Let S be a set. Let F: S --+ K n be a mapping. For each 
element t of S, the value of F at t is a vector F(t). The coordinates of 
F(t) depend on t. Hence there are functions 11' ... ,In of S into K such 
that 

F(t) = (11 (t), ... ,In(t)). 
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These functions are called the coordinate functions of F. For instance, if 
K = R and if S is an interval of real numbers, which we denote by J, 
then a map 

is also called a (parametric) curve in n-space. 

Let S be an arbitrary set again, and let F, G: S ---+ K n be mappings of S 
into Kn. Let 11' ... ,In be the coordinate functions of F, and g1'.·· ,gn the 
coordinate functions of G. Then G(t) = (g 1 (t), ... ,gn(t)) for all t E S. 
Furthermore, 

(F + G)(t) = F(t) + G(t) = (/1(t) + g1(t), ... ,In(t) + gn(t)), 

and for any c E K, 

(cF)(t) = cF(t) = (C!1(t), ... ,cln(t)). 

We see in particular that the coordinate functions of F + G are. 

Example 9. We can define a map F: R ---+ Rn by the association 

Thus F(t) = (2t, lOt, t 3), and F(2) = (4, 100, 8). The coordinate functions 
of F are the functions 11,/2'!3 such that 

!1(t) = 2t, and 

Let U, V, W be sets. Let F: U ---+ V and G: V ---+ W be mappings. Then 
we can form the composite mapping from U into W, denoted by G 0 F. 
It is by definition the mapping defined by 

(G 0 F)(t) = G(F(t)) 

for all t E U. If I: R ---+ R is a function and g: R ---+ R is also a function, 
then go I is the composite function. 
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The following statement is an important property of mappings. 

Let U, V, W, S be sets. Let 

F: U ---+ V, G: V ---+ W, and H:W---+S 

be mappings. Then 

Ho(GoF) = (HoG)oF. 

Proof. Here again, the proof is very simple. By definition, we have, 
for any element u of U: 

(H 0 (G 0 F))(u) = H((G 0 F)(u)) = H( G(F(u))). 

On the other hand, 

((H 0 G) 0 F)(u) = (H 0 G)(F(u)) = H( G(F(u))). 

By definition, this means that 

H 0 (G 0 F) = (H 0 G) 0 F. 

We shall discuss inverse mappings, but before that, we need to men­
tion two special properties which a mapping may have. Let 

f: S ---+ S' 

be a map. We say that f is injective if whenever x, YES and x =1= y, then 
f(x) =1= fey). In other words, f is injective means that f takes on distinct 
values at distinct elements of S. Put another way, we can say that f is 
injective if and only if, given x, YES, 

f(x) = fey) implies x = y. 

Example 10. The function 

f: R---+R 

such that f(x) = x 2 is not injective, because f(l) = f( -1) = 1. Also the 
function x ~ sin x is not injective, because sin x = sin(x + 2n). How­
ever, the map f: R ---+ R such that f(x) = x + 1 is injective, because if 
x + 1 = y + 1 then x = y. 
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Again, let f: S ---+ S' be a mapping. We shall say that f is surjective if 
the image of f is all of S'. 

The map 

f: R ---+ R 

such that f(x) = x 2 is not surjective, because its image consists of all 
numbers > 0, and this image is not equal to all of R. On the other 
hand, the map of R into R given by x ~ x 3 is surjective, because given a 
number y there exists a number x such that y = x 3 (the cube root of y). 
Thus every number is in the image of our map. 

A map which is both injective and surjective is defined to be bijective. 
Let R + be the set of real numbers > O. As a matter of convention, 

we agree to distinguish between the maps 

and 

given by the same formula x ~ x 2
• The point is that when we view the 

association x ~ x 2 as a map of R into R, then it is not surjective, and it 
is not injective. But when we view this formula as defining a map from 
R + into R +, then it gives both an injective and surjective map of R + 

into itself, because every positive number has a positive square root, and 
such a positive square root is uniquely determined. 

In general, when dealing with a map f: S ---+ S', we must therefore al­
ways specify the sets Sand S', to be able to say that f is injective, or 
surjective, or neither. To have a completely accurate notation, we should 
write 

fs,s' 

or some such symbol which specifies Sand S' into the notation, but this 
becomes too clumsy, and we prefer to use the context to make our 
meaning clear. 

If S is any set, the identity mapping Isis defined to be the map such 
that I s(x) = x for all XES. We note that the identity map is both injec­
tive and surjective. If we do not need to specify the reference to S (be­
cause it is made clear by the context), then we write I instead of Is. 
Thus we have I(x) = x for all XES. We sometimes denote Is by ids or 
simply ide 

Finally, we define inverse mappings. Let F: S ---+ S' be a mapping from 
one set into another set. We say that F has an inverse if there exists a 
mapping G: S' ---+ S such that 

Go F = Is and 
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By this we mean that the composite maps G 0 F and FoG are the iden­
tity mappings of Sand S' respectively. 

Example 11. Let S = S' be the set of all real numbers > O. Let 

f: S --+ S' 

be the map such that f(x) = x 2
• Then f has an inverse mapping, namely 

the map g: S --+ S such that g(x) = Jx,. 

Example 12. Let R>o be the set of numbers > 0 and let f: R --+ R>o 
be the map such that f(x) = eX. Then f has an inverse mapping which is 
nothing but the logarithm. 

Example 13. This example is particularly important in geometric ap­
plications. Let V be a vector space, and let u be a fixed element of V. 
We let 

~: V--+ V 

be the map such that ~(v) = v + u. We call ~ the translation by u. If S 
is any subset of V, then Tu(S) is called the translation of S by u, and con­
sists of all vectors v + u, with v E S. We often denote it by S + u. In the 
next picture, we draw a set S and its translation by a vector u. 

s u 

o 
Figure 1 

As exerCIses, we leave the proofs of the next two statements to the 
reader: 

If u1, U 2 are elements of V, then ~1 +U2 = ~1 0 ~2· 

If u is an element of V, then ~: V --+ V has an inverse mapping which is 
nothing but the translation T - U. 
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Next, we have: 

Let 
f:S~S' 

be a map which has an inverse mapping g. Then f is both injective and 
surjective, that is f is bijective. 

Proof. Let x, yE S. Let g: S' ~ S be the Inverse mappIng of f. If 
f(x) = f(y), then we must have 

x = g(f(x) = g(f(y) = y, 

and therefore f is injective. To prove that f is surjective, let z E S'. Then 

f(g(z) = z 

by definition of the inverse mapping, and hence z = f(x), where x = g(z). 
This proves that f is surjective. 

The converse of the statement we just proved is also true, namely: 

Let f: S ~ S' be a map which is bijective. Then f has an inverse map­
ping. 

Proof. Given z E S', since f is surjective, there exists XES such that 
f(x) = z. Since f is injective, this element x is uniquely determined by z, 
and we can therefore define 

g(z) = x. 

By definition of g, we find that f(g(z) = z, and g(f(x) = x, so that g is 
an inverse mapping for f. 

Thus we can say that a map f: S ~ S' has an inverse mapping if and 
only if f is bijective. 

III, §1. EXERCISES 

1. In Example 3, give Df as a function of x when f is the function: 
(a) f(x) = sin x (b) f(x) = eX (c) f(x) = log x 

2. Prove the statement about translations in Example 13. 

3. In Example 5, give L(X) when X is the vector: 
(a) (1, 2, - 3) (b) (-1, 5, 0) (c) (2, 1, 1) 



[III, §2] LINEAR MAPPINGS 51 

4. Let F: R --+ R2 be the mapping such that F(t) = (e t
, t). What is F(l), F(O), 

F( -I)? 

5. Let G: R --+ R2 be the mapping such that G(t) = (t, 2t). Let F be as in Exer­
cise 4. What is (F + G)(l), (F + G)(2), (F + G)(O)? 

6. Let F be as in Exercise 4. What is (2F)(O), (nF)(l)? 

7. Let A = (1, 1, -1, 3). Let F: R4 --+ R be the mapping such that for any vec­
tor X = (Xl' x 2 ' x 3 , x 4 ) we have F(X) = X . A + 2. What is the value of F(X) 
when (a) X = (1,1,0, -1) and (b) X = (2, 3, -1, I)? 

In Exercises 8 through 12, refer to Example 6. In each case, to prove that the 
image is equal to a certain set S, you must prove that the image is contained in 
S, and also that every element of S is in the image. 

8. Let F: R2 --+ R2 be the mapping defined by F(x, y) = (2x, 3y). Describe the 
image of the points lying on the circle x 2 + y2 = 1. 

9. Let F: R2 --+ R2 be the mapping defined by F(x, y) = (xy, y). Describe the im­
age under F of the straight line X = 2. 

10. Let F be the mapping defined by F(x, y) = (eX cos y, eX sin y). Describe the 
image under F of the line X = 1. Describe more generally the image under F 
of a line X = c, where c is a constant. 

11. Let F be the mapping defined by F(t, u) = (cos t, sin t, u). Describe geo­
metrically the image of the (t, u)-plane under F. 

12. Let F be the mapping defined by F(x, y) = (x13, xI4). What is the image 
under F of the ellipse 

III, §2. LINEAR MAPPINGS 

x2 y2 
-+-=1? 
9 16 . 

Let V, V' be the vector spaces over the field K. A linear mapping 

F:V~V' 

is a mapping which satisfies the following two properties. 

LM 1. For any elements u, v in V we have 

F(u + v) = F(u) + F(v). 

LM 2. For all c in K and v in V we have 

F(cv) = cF(v). 
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If we wish to specify the field K, we also say that F is K-linear. Since 
we usually deal with a fixed field K, we omit the prefix K, and say 
sim pI y that F is linear. 

Example 1. Let V be a finite dimensional space over K, and let 
{V1' ... ,vn } be a basis of V. We define a map 

by associating to each element v E V its coordinate vector X with respect 
to the basis. Thus if 

We assert that F is a linear map. If 

with coordinate vector Y = (Yl'··· ,Yn), then 

whence F(v + w) = X + Y = F(v) + F(w). If cEK, then 

and hence F(cv) = cX = cF(v). This proves that F is linear. 

Example 2. Let V = R3 be the vector space (over R) of vectors in 3-
space. Let V' = R2 be the vector space of vectors in 2-space. We can 
define a mapping 

by the projection, namely F(x, y, z) = (x, y). We leave it to you to check 
that the conditions LM 1 and LM 2 are satisfied. 

More generally, let r, n be positive integers, r < n. Then we have a 
projection mapping 

defined by the rule 

It is trivially verified that this map is linear. 
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Example 3. Let A = (1,2, -1). Let V = R3 and V' = R. We can de­
fine a mapping L = LA: R 3 ~ R by the association X ~ X . A, i.e. 

L(X) = X·A 

for any vector X in 3-space. The fact that L is linear summarizes two 
known properties of the scalar product, namely, for any vectors X, Y in 
R3 we have 

(X + Y)·A = X·A + Y·A, 

(cX)·A = c(X·A). 

More generally, let K be a field, and A a fixed vector in Kn. We have 
a linear map (Le. K-linear map) 

such that LA(X) = X· A for all X E Kn. 
We can even generalize this to matrices. Let A be an m x n matrix in 

a field K. We obtain a linear map 

such that 

for every column vector X in Kn. Again the linearity follows from prop­
erties of multiplication of matrices. If A = (aij) then AX looks like this: 

This type of multiplication will be met frequently in the sequel. 

Example 4. Let V be any vector space. The mapping which associates 
to any element u of V this element itself is obviously a linear mapping, 
which is called the identity mapping. We denote it by id or simply I. 
Thus id(u) = u. 

Example 5. Let V, V' be any vector spaces over the field K. The 
mapping which associates the element 0 in V'to any element u of V is 
called the zero mapping and is obviously linear. It is also denoted by O. 
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As an exercise (Exercise 2) prove: 

Let L: V ~ W be a linear map. Then L(O) = O. 

In particular, if F: V ~ W is a mapping and F(O) 1= 0 then F is not lin 
ear. 

Example 6. The space of linear maps. Let V, V' be two vector spaces 
over the field K. We consider the set of all linear mappings from V into 
V', and denote this set by .P(V, V'), or simply .P if the reference to V, V' 
is clear. We shall define the addition of linear mappings and their mul­
tiplication by numbers in such a way as to make .P into a vector space. 

Let T: V ~ V' and F: V ~ V' be two linear mappings. We define 
their sum T + F to be the map whose value at an element u of V is 
T(u) + F(u). Thus we may write 

(T + F)(u) = T(u) + F(u). 

The map T + F is then a linear map. Indeed, it is easy to verify that the 
two conditions which define a linear map are satisfied. For any elements 
u, v of V, we have 

(T + F)(u + v) = T(u + v) + F(u + v) 

Furthermore, if C E K, then 

= T(u) + T(v) + F(u) + F(v) 

= T(u) + F(u) + T(v) + F(v) 

= (T + F)(u) + (T + F)(v). 

(T + F)(cu) = T(cu) + F(cu) 

= cT(u) + cF(u) 

= c[T(u) + F(u)] 

= c[(T + F)(u)]. 

Hence T + F is a linear map. 
If a E K, and T: V ~ V' is a linear map, we define a map aT from V 

into V' by giving its value at an element u of V, namely (aT)(u) = aT(u). 
Then it is easily verified that aT is a linear map. We leave this as an 
exerCIse. 

We have just defined operations of addition and scalar multiplication 
in our set!l'. Furthermore, if T: V ~ V' is a linear map, i.e. an element 
of !l', then we can define - T to be (- 1) T, i.e. the product of the 
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number - 1 by T. Finally, we have the zero-map, which to every ele­
ment of V associates the element 0 of V'. Then !l' is a vector space. In 
other words, the set of linear maps from V into V'is itself a vector 
space. The verification that the rules VS 1 through VS 8 for a vector 
space are satisfied is easy and left to the reader. 

Example 7. Let V = V' be the vector space of real valued functions of 
a real variable which have derivatives of all order. Let D be the deriva­
tive. Then D: V ~ V is a linear map. This is merely a brief way of sum­
marizing known properties of the derivative, namely 

D(f + g) = Df + Dg, and D(cf) = cDf 

for any differentiable functions f, g and constant c. If f is in V, and I is 
the identity map, then 

(D + I)f = Df + f· 

Thus when f is the function such that f(x) = eX then (D + I)f is the 
function whose value at x is eX + eX = 2e X. 

If f(x) = sin x, then (D + I)f)(x) = cos x + sin x. 

Let T: V ~ V' be a linear mapping. Let u, v, w be elements of V. Then 

T(u + v + w) = T(u) + T(v) + T(w). 

This can be seen stepwise, using the definition of linear mappings. Thus 

T(u + v + w) = T(u + v) + T(w) = T(u) + T(v) + T(w). 

Similarly, given a sum of more than three elements, an analogous prop­
erty is satisfied. For instance, let u I' ... ,Un be elements of V. Then 

The sum on the right can be taken in any order. A formal proof can 
easily be given by induction, and we omit it. 

If aI' ... ,an are numbers, then 

We show this for three elements. 

T(alu + a2 v + a3 w) = T(aIu) + T(a 2 v) + T(a 3 w) 

= al T(u) + a2 T(v) + a3 T(w). 
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The next theorem will show us how a linear map is determined when 
we know its value on basis elements. 

Theorem 2.1. Let V and W be vector spaces. Let {v l' ... ,vn} be a basis 
of V, and let W l , ... ,Wn be arbitrary elements of W Then there exists a 
unique linear mapping T: V ~ W such that 

If Xl' ... ,Xn are numbers, then 

T(X1Vl + ... + XnVn) = X1W l + ... + XnWn· 

Proof. We shall prove that a linear map T satisfying the required 
conditions exists. Let v be an element of V, and let Xl' ... ,xn be the 
unique numbers such that v = X1V l + ... + xnvn. We let 

We then have defined a mapping T from V into W, and we contend that 
T is linear. If v'is an element of V, and if v' = Y1V l + ... + Ynvn, then 

By definition, we obtain 

= T(v) + T(V'). 

Let c be a number. Then cv = CX1V l + ... + CXnVn' and hence 

T(cv) = CX1W l + ... + cXnwn = cT(v). 

We have therefore proved that T is linear, and hence that there exists a 
linear map as asserted in the theorem. 

Such a map is unique, because for any element X1V l + ... + XnVn of V, 
any linear map F: V ~ W such that F(v i) = Wi (i = 1, ... ,n) must also 
satisfy 

This concludes the proof. 
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III, §2. EXERCISES 

1. Determine which of the following mappings F are linear. 
(a) F: R3 ~ R2 defined by F(x, y, z) = (x, z) 
(b) F: R4 ~ R4 defined by F(X) = -x 
(c) F: R3 ~ R3 defined by F(X) = X + (0, -1, 0) 
(d) F: R2 ~ R2 defined by F(x, y) = (2x + y, y) 
(e) F: R2 ~ R2 defined by F(x, y) = (2x, y - x) 
(f) F: R2 ~ R2 defined by F(x, y) = (y, x) 
(g) F: R2 ~ R defined by F(x, y) = xy 
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(h) Let U be an open subset of R3
, and let V be the vector space of dif­

feren tiable functions on U. Let V' be the vector space of vector fields on 
U. Then grad: V ~ V'is a mapping. Is it linear? (For this part (h) we 
assume you know some calculus.) 

2. Let T: V ~ W be a linear map from one vector space into another. Show 
that T(O) = o. 

3. Let T: V ~ W be a linear map. Let u, v be elements of V, and let Tu = w. If 
Tv = 0, show that T(u + v) is also equal to w. 

4. Let T: V ~ W be a linear map. Let U be the subset of elements u EV such 
that T(u) = o. Let WE Wand suppose there is some element Vo E V such 
that T(vo) = w. Show that the set of elements v E V satisfying T(v) = w is 
precisely Vo + U. 

5. Let T: V ~ W be a linear map. Let v be an element of V. Show that 
T(-v) = -T(v). 

6. Let V be a vector space, and f: V ~ R, g: V ~ R two linear mappings. Let 
F: V ~ R2 be the mapping defined by F(v) = (f(v), g(v). Show that F is lin­
ear. Generalize. 

7. Let V, W be two vector spaces and let F: V ~ W be a linear map. Let U be 
the subset of V consisting of all elements v such that F(v) = o. Prove that U 
is a subspace of V. 

8. Which of the mappings in Exercises 4, 7, 8, 9, of §1 are linear? 

9. Let V be a vector space over R, and let v, WE V. The line passing through v 
and parallel to W is defined to be the set of all elements v + tw with t E R. 
The line segment between v and v + w is defined to be the set of all elements 

v + tw with 0 ~ t ~ 1. 

Let L: V ~ U be a linear map. Show that the image under L of a line seg­
ment in V is a line segment in U. Between what points? 

Show that the image of a line under L is either a line or a point. 

Let V be a vector space, and let Vi' v2 be two elements of V which are 
linearly independent. The set of elements of V which can be written in the 
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and 

is called the parallelogram spanned by V1' v2 • 

10. Let V and W be vector spaces, and let F: V ~ W be a linear map. Let V 1, V2 

be linearly independent elements of V, and assume that F( v 1)' F( v2 ) are 
linearly independent. Show that the image under F of the parallelogram 
spanned by V 1 and V 2 is the parallelogram spanned by F(v 1), F(v2 ). 

11. Let F be a linear map from R 2 in to itself such that 

and F(E2 ) = (-1, 2). 

Let S be the square whose corners are at (0,0), (1, 0), (1, 1), and (0, 1). Show 
that the image of this square under F is a parallelogram. 

12. Let A, B be two non-zero vectors in the plane such that there is no constant 
c#-O such that B = cA. Let T be a linear mapping of the plane into itself 
such that T(E 1) = A and T(E 2 ) = B. Describe the image under T of the rec­
tangle whose corners are (0, 1), (3, 0), (0, 0), and (3, 1). 

13. Let A, B be two non-zero vectors in the plane such that there is no constant 
c#-O such that B = cA. Describe geometrically the set of points tA + uB for 
values of t and u such that 0 ~ t ~ 5 and 0 ~ u ~ 2. 

14. Let Tu: V ~ V be the translation by a vector u. For which vectors u is Tu a 
linear map? Proof? 

15. Let V, W be two vector spaces, and F: V ~ W a linear map. Let W 1, ... ,Wn be 
elements of W which are linearly independent, and let v 1 , ••• ,Vn be elements of 
V such that F(vi ) = Wi for i = 1, ... ,no Show that v1 , ••• ,vn are linearly inde­
pendent. 

16. Let V be a vector space and F: V ~ R a linear map. Let W be the subset of 
V consisting of all elements v such that F(v) = O. Assume that W #- V, and 
let Vo be an element of V which does not lie in W. Show that every element 
of V can be written as a sum W + cVo, with some W in Wand some number 
c. 

17. In Exercise 16, show that W is a subspace of V. Let {v 1 , ••• ,vn} be a basis of 
W. Show that {vo, v1, ... ,vn} is a basis of V. 

18. Let L: R2 ~ R2 be a linear map, having the following effect on the indicated 
vectors: 
(a) L(3, 1) = (1, 2) and L( -1, 0) = (1, 1) 
(b) L(4, 1) = (1, 1) and L(l, 1) = (3, -2) 
(c) L(l, 1) = (2, 1) and L( -1, 1) = (6, 3). 
In each case compute L (1, 0). 

19. Let L be as in (a), (b), (c), of Exercise 18. Find L(O, 1). 
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III, §3. THE KERNEL AND IMAGE OF A LINEAR MAP 

Let V, W be vector spaces over K, and let F: V ~ W be a linear map. 
We define the kernel of F to be the set of elements v E V such that 
F(v) = o. 

We denote the kernel of F by Ker F. 

Example 1. Let L: R3 ~ R be the map such that 

L(x, y, z) = 3x - 2y + z. 

Thus if A = (3, - 2, 1), then we can write 

L(X) = X·A = A·X. 

Then the kernel of L is the set of solutions of the equation 

3x - 2y + z = 0. 

Of course, this generalizes to n-space. If A is an arbitrary vector in Rn
, 

we can define the linear map 

such that LA(X) = A· X. Its kernel can be interpreted as the set of all X 
which are perpendicular to A. 

Example 2. Let P: R3 ~ R2 be the projection, such that 

P(x, y, z) = (x, y). 

Then P is a linear map whose kernel consists of all vectors in R3 whose 
first two coordinates are equal to 0, i.e. all vectors 

(0, 0, z) 

with arbitrary component z. 

We shall now prove that the kernel of a linear map F: V ~ W is a 
subspace of V. Since F( 0) = 0, we see that 0 is in the kernel. Let v, w 

be in the kernel. Then F(v + w) = F(v) + F(w) = 0 + 0 = 0, so that 
v + w is in the kernel. If e is a number, then F(ev) = eF(v) = 0 so that 
ev is also in the kernel. Hence the kernel is a subspace. 
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The kernel of a linear map is useful to determine when the map is in­
jective. Namely, let F: V ~ W be a linear map. We contend that follow­
ing two conditions are equivalent: 

1. The kernel of F is equal to {o}. 

2. If v, ware elements of V such that F(v) = F(w), then v = w. In other 
words, F is injective. 

To prove our contention, assume first that Ker F = {O}, and suppose 
that v, ware such that F(v) = F(w). Then 

F(v - w) = F(v) - F(w) = O. 

By assumption, v - w = 0, and hence v = w. 
Conversely, assume that F is injective. If v is such that 

F(v) = F(O) = 0, 

we conclude that v = o. 

The kernel of F is also useful to describe the set of all elements of V 
which have a given image in Wunder F. We refer the reader to Exercise 
4 for this. 

Theorem 3.1. Let F: V ~ W be a linear map whose kernel is {Ole If 
v l , ... ,Vn are linearly independent elements of V, then F(v l ), ... ,F(vn) are 
linearly independent elements of W. 

Proof. Let Xl' ... ,xn be numbers such that 

By linearity, we get 

Hence XlVl + ... + XnVn = O. Since v l , ... ,Vn are linearly independent, it 
follows that Xi = 0 for i = 1, ... ,no This proves our theorem. 

Let F: V ~ W be a linear map. The image of F is the set of elements 
w in W such that there exists an element of v of V such that F(v) = w. 

The image of F is a subspace of W. 
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To prove this, observe first that F(O) = 0, and hence 0 is in the im­
age. Next, suppose that WI' W2 are in the image. Then there exist ele­
ments VI' v2 of V such that F(v l ) = WI and F(v2 ) = W 2 • Hence 

thereby proving that WI + W2 is in the image. If c is a number, then 

Hence CW I is in the image. This proves that the image is a subspace of 
W. 

We denote the image of F by 1m F. 

The next theorem relates the dimensions of the kernel and image of a 
linear map with the dimension of the space on which the map is defined. 

Theorem 3.2. Let V be a vector space. Let L: V ~ W be a linear map 
of V into another space W. Let n be the dimension of V, q the dimen­
sion of the kernel of L, and s the dimension of the image of L. Then 
n = q + s. In other words, 

dim V = dim Ker L + dim 1m L. 

Proof. If the image of L consists of 0 only, then our assertion is triv­
ial. We may therefore assume that s > O. Let {wI, ... ,ws} be a basis of 
the image of L. Let VI' ••• ,vs be elements of V such that L(vi) = Wi for 
i = 1, ... ,so If the kernel of L is not {O}, let {u I , ... ,uq } be a basis of the 
kernel. If the kernel is { O}, it is understood that all reference to 
{u l , ... ,uq } is to be omitted in what follows. We contend that 
{VI' ••• 'vs ' U I , ... ,uq } is a basis of V. This will suffice to prove our asser­
tion. Let V be any element of V. Then there exist numbers Xl' ... ,xs such 
that 

because {WI' ... ,Ws } is a basis of the image of L. By linearity, 

and again by linearity, subtracting the right-hand side from the left-hand 
side, it follows that 
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Hence v - XlVl - ... - XsVs lies in the kernel of L, and there exist 
numbers Yl' ... ,Yq such that 

Hence 

is a linear combination of v l , ... ,vs'u l , ... ,uq • This proves that these 
s + q elements of V generate V. 

We now show that they are linearly independent, and hence that they 
constitute a basis. Suppose that there exists a linear relation: 

Applying L to this relation, and using the fact that L(uj ) = 0 for 
j = 1, ... ,q, we obtain 

But L(v l ), ... ,L(vs) are none other than wl , ..• 'ws' which have been as­
sumed linearly independent. Hence Xi = 0 for i = 1, ... ,so Hence 

But U l , ... ,uq constitute a basis of the kernel of L, and in particular, are 
linearly independent. Hence all Yj = 0 for j = 1, ... ,q. This concludes the 
proof of our assertion. 

Example 1 (Cont.). The linear map L: R3 --+ R of Example 1 IS given 
by the formula 

L(x, y, z) = 3x - 2y + z. 

Its kernel consists of all solutions of the equation 

3x - 2y + z = o. 

Its image is a subspace of R, is not {O}, and hence consists of all of R. 
Thus its image has dimension 1. Hence its kernel has dimension 2. 

Example 2 (Cont.). The projection P: R3 --+ R2 of Example 2 is ob­
viously surjective, and its kernel has dimension 1. 

In Chapter V, §3 we shall investigate in general the dimension of the 
space of solutions of a system of homogeneous linear equations. 
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Theorem 3.3. Let L: V --+ W be a linear map. Assume that 

dim V= dim W 

If Ker L = {O}, or if 1m L = W, then L is bijective. 

Proof. Suppose Ker L = {O}. By the formula of Theorem 3.2 we con­
clude that dim 1m L = dim W By Corollary 3.5 of Chapter I it follows 
that L is surjective. But L is also injective since Ker L = {O}. Hence L 
is bijective as was to be shown. The proof that 1m L = W implies L bi­
jective is similar and is left to the reader. 

III, §3. EXERCISES 

1. Let A, B be two vectors in R2 forming a basis of R2. Let F: R2 -+ Rn be a 
linear map. Show that either F(A), F(B) are linearly independent, or the im­
age of F has dimension 1, or the image of F is {O}. 

2. Let A be a non-zero vector in R2. Let F: R2 -+ W be a linear map such that 
F(A) = O. Show that the image of F is either a straight line or {O}. 

3. Determine the dimension of the subspace of R4 consisting of all X E R4 such 
that 

and 

4. Let L: V -+ W be a linear map. Let w be an element of W. Let Vo be an ele­
ment of V such that L(vo) = w. Show that any solution of the equation 
L(X) = w is of type Vo + u, where U is an element of the kernel of L. 

5. Let V be the vector space of functions which have derivatives of all orders, 
and let D: V -+ V be the derivative. What is the kernel of D? 

6. Let D2 be the second derivative (i.e. the iteration of D taken twice). What is 
the kernel of D2? In general, what is the kernel of Dn (n-th derivative)? 

7. Let V be again the vector space of functions which have derivatives of all 
orders. Let W be the subspace of V consisting of those functions f such that 

f" + 4f= 0 and f(n) = O. 

Determine the dimension of W. 

8. Let V be the vector space of all infinitely differentiable functions. We write 
the functions as functions of a variable t, and let D = d/dt. Let a1 , ••• ,am be 
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numbers. Let g be an element of V. Describe how the problem of finding a 
solution of the differential equation 

can be interpreted as fitting the abstract situation described in Exercise 4. 

9. Again let V be the space of all infinitely differentiable functions, and let 
D: V -+ V be the derivative. 
(a) Let L = D - I where I is the identity mapping. What is the kernel of L? 
(b) Same question if L = D - aI, where a is a number. 

10. (a) What is the dimensison of the subspace of K n consisting of those vectors 
A = (a 1, ••• ,an) such that a1 + ... + an = o? 

(b) What is the dimension of the subspace of the space of n x n matrices (ai) 

such that 
n 

a 11 + ... + ann = L au = o? 
i= 1 

[For part (b), look at the next exercise.] 

11. Let A = (aij) be an n x n matrix. Define the trace of A to be the sum of the 
diagonal elements, that is 

n 

tr(A) = L au· 
i= 1 

(a) Show that the trace is a linear map of the space of n x n matrices into 
K. 

(b) If A, Bare n x n matrices, show that tr(AB) = tr(BA). 
(c) If B is invertible, show that tr(B- 1 AB) = tr(A). 
(d) If A, Bare n x n matrices, show that the association 

(A, B) ~ tr(AB) = (A, B) 

satisfies the three conditions of a scalar product. (For the general defini­
tion, cf. Chapter V.) 

(e) Prove that there are no matrices A, B such that 

AB - BA = In. 

12. Let S be the set of symmetric n x n matrices. Show that S is a vector space. 
What is the dimension of S? Exhibit a basis for S, when n = 2 and n = 3. 

13. Let A be a real symmetric n x n matrix. Show that 

tr(AA) ~ 0, 

and if A "# 0, then tr(AA) > O. 
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14. An n x n matrix A is called skew-symmetric if tA = -A. Show that any 
n x n matrix A can be written as a sum 

A = B + C, 

where B is symmetric and C is skew-symmetric. [Hint: Let B = (A + tA)j2.]. 
Show that if A = Bl + C l , where Bl is symmetric and C l is skew-symmetric, 
then B = Bl and C = Cl. 

15. Let M be the space of all n x n matrices. Let 

P:M-+M 

be the map such that 

A+tA 
P(A) = . 

2 

(a) Show that P is linear. 
(b) Show that the kernel of P consists of the space of skew-symmetric ma­

trices. 
(c) What is the dimension of the kernel of P? 

16. Let M be the space of all n x n matrices. Let 

be the map such that 

(a) Show that F is linear. 

F:M-+M 

A-tA 
F(A) = 2 

(b) Describe the kernel of F, and determine its dimension. 

17. (a) Let U, W be the vector spaces. We let U x W be the set of all pairs 
(u, w) with UE U and WE W If (u l , Wl)' (u 2 , w2 ) are such pairs, define 
their sum 

If c is a number, define c(u, w) = (cu, cw). Show that U x W is a vector 
space with these definitions. What is the zero element? 

(b) If U has dimension nand W has dimension m, what is the dimensison of 
U x W? Exhibit a basis of U x W in terms of a basis for U and a basis 
for W 

(c) If U is a subspace of a vector space V, show that the subset of V x V 
consisting of all elements (u, u) with U E U is a subspace. 
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18. (To be done after you have done Exercise 17.) Let U, W be subspaces of a 
vector space V. Show that 

dim U + dim W = dim(U + W) + dim(U n W). 

[Hint: Show that the map 

L: U x W-+ V 
given by 

L(u, w) = u - w 

is a linear map. What is its image? What is its kernel?] 

III, §4. COMPOSITION AND INVERSE OF LINEAR 
MAPPINGS 

In §1 we have mentioned the fact that we can compose arbitrary maps. 
We can say something additional in the case of linear maps. 

Theorem 4.1. Let U, V, W be vector spaces over a field K. Let 

F: U --+ V and G: V--+ W 

be linear maps. Then the composite map G 0 F is also a linear map. 

Proof. This is very easy to prove. Let u, v be elements of U. Since F 
is linear, we have F(u + v) = F(u) + F(v). Hence 

(G 0 F)(u + v) = G(F(u + v)) = G(F(u) + F(v)). 

Since G is linear, we obtain 

G(F(u) + F(v)) = G(F(u)) + G(F(v)) 
Hence 

(G 0 F)(u + v) = (G 0 F)(u) + (G 0 F)(v). 

Next, let c be a number. Then 

(G 0 F)(cu) = G(F(cu)) 

= G(cF(u)) 

= cG(F(u)) 

(because F is linear) 

(beca use G is linear). 

This proves that Go F is a linear mapping. 
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The next theorem states that some of the rules of arithmetic concern­
ing the product and sum of numbers also apply to the composition and 
sum of linear mappings. 

Theorem 4.2. Let U, V, W be vector spaces over a field K. Let 

F:U~V 

be a linear mapping, and let G, H be two linear mappings of V into W 
Then 

(G + H)oF = GoF + HoF. 

If c is a number, then 

(cG)oF = c(GoF). 

If T: U ~ V is a linear mapping from U into V, then 

G 0 (F + T) = G 0 F + GoT. 

The proofs are all simple. We shall just prove the first assertion and 
leave the others as exercises. 

Let u be an element of U. We have: 

(G + H) 0 F)(u) = (G + H)(F(u)) = G(F(u)) + H(F(u)) 

= (G 0 F)(u) + (H 0 F)(u). 

By definition, it follows that (G + H) 0 F = Go F + H 0 F. 

It may happen that U = V= W Let F: U ~ U and G: U ~ U be two 
linear mappings. Then we may form FoG and G 0 F. It is not always 
true that these two composite mappings are equal. As an example, let 
U = R3. Let F be the linear mapping given by 

F(x, y, z) = (x, y, 0) 

and let G be the linear mapping given by 

G(x, y, z) = (x, Z, 0). 
Then 

(G 0 F)(x, y, z) = (x, 0, 0), 
but 

(F 0 G)(x, y, z) = (x, Z, 0). 
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Let F: V --+ V be a linear map of a vector space into itself. One some­
times calls F an operator. Then we can form the composite F 0 F, which 
is again a linear map of V into itself. Similarly, we can form the compo­
site 

of F with itself n times for any integer n > 1. We shall denote this com­
posite by Fn. If n = 0, we define FO = I (identity map). We have the 
rules 

Fr+s = F r 
0 FS 

for integers r, s > 0. 

Theorem 4.3. Let F: U --+ V be a linear map, and assume that this map 
has an inverse mapping G: V --+ U. Then G is a linear map. 

Proof. Let VI' v2 E V. We must first show that 

Let u i = G(vI) and U 2 = G(V2). By definition, this means that 

and 

Since F is linear, we find that 

By definition of the inverse map, this means that G(VI + v2) = U I + u2, 
thus proving what we wanted. We leave the proof that G(cv) = cG(v) as 
an exercise (Exercise 3). 

Corollary 4.4. Let F: U --+ V be a linear map whose kernel is {O}, and 
which is surjective. Then F has an inverse linear map. 

Proof. We had seen in §3 that if the kernel of F is {O}, then F is 
injective. Hence we conclude that F is both injective and surjective, so 
that an inverse mapping exists, and is linear by Theorem 4.3. 

Example 1. Let F: R2 --+ R2 be the linear map such that 

F(x, y) = (3x - y, 4x + 2y). 
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We wish to show that F has an inverse. First note that the kernel of F 
is {O}, because if 

3x - y = 0, 

4x + 2y = 0, 

then we can solve for x, y in the usual way: Multiply the first equation 
by 2 and add it to the second. We find lOx = 0, whence x = 0, and then 
y = ° because y = 3x. Hence F is injective, because its kernel is {O}. By 
Theorem 3.2 it follows that the image of F has dimension 2. But the im­
age of F is a subspace of R2, which has also dimension 2, and hence this 
image is equal to all of R2, so that F is surjective. Hence F has an in­
verse, and this inverse is a linear map by Theorem 4.3. 

A linear map F: U --+ V which has an inverse G: V --+ U (we also say 
invertible) is called an isomorphism. 

Example 2. Let V be a vector space of dimension n. Let 

be a basis for V. Let 

L: Rn 
--+ V 

be the map such that 

Then L is an isomorphism. 

Proof. The kernel of L is {O}, because if 

then all Xi = ° (since VI' •.• ,Vn are linearly independent). The image of L 
is all of V, because V l' ... ,Vn generate V. By Corollary 4.4, it follows that 
L is an isomorphism. 

Remark on notation. Let 

F: V --+ V and G: V--+ V 

be linear maps of a vector space into itself. We often, and even usually, 
write 

FG instead of FoG. 
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In other words, we omit the little circle 0 between F and G. The distri­
butive law then reads as with numbers 

F(G + R) = FG + FR. 

The only thing to watch out for is that F, G may not commute, that is 
usually 

FG i= GF. 

If F and G commute, then you can work with the arithmetic of linear 
maps just as with the arithmetic of numbers. 

Powers I, F, F2, F 3
, ••• do commute with each other. 

III, §4. EXERCISES 

1. Let L: R2 --+ R2 be a linear map such that L =1= 0 but L2 = Lo L = O. Show 
that there exists a basis {A, B} of R2 such that 

L(A) = B and L(B) = o. 

2. Let dim V> dim W. Let L: V --+ W be a linear map. Show that the kernel of 
L is not {O}. 

3. Finish the proof of Theorem 4.3. 

4. Let dim V = dim W Let L: V --+ W be a linear map whose kernel is {O}. 
Show that L has an inverse linear map. 

5. Let F, G be invertible linear maps of a vector space V onto itself. Show that 

(FoG)-1 = G- 1 of-I. 

6. Let L: R 2 
--+ R 2 be the linear map defined by 

L(x, y) = (x + y, x - y). 

Show that L is invertible. 

7. Let L: R2 --+ R2 be the linear map defined by 

L(x, y) = (2x + y, 3x - 5y). 

Show that L is invertible. 

8. Let L: R3 --+ R3 be the linear maps as indicated. Show that L is invertible in 
each case. 
(a) L(x, y, z) = (x - y, x + z, x + y + 2z) 
(b) L(x, y, z) = (2x - y + z, x + y, 3x + y + z) 



[III, §4] COMPOSITION AND INVERSE OF LINEAR MAPPINGS 71 

9. (a) Let L: V ~ V be a linear mapping such that L2 = o. Show that I - L is 
invertible. (I is the identity mapping on v.) 

(b) Let L: V ~ V be a linear map such that L2 + 2L + I = O. Show that L is 
invertible. 

(c) Let L: V ~ V be a linear map such that L3 = O. Show that I - L is in­
vertible. 

10. Let V be a vector space. Let P: V ~ V be a linear map such that p 2 = P. 
Show that 

V= KerP + ImP and KerPnlmP={O}, 

in other words, V is the direct sum of Ker P and 1m P. [Hint: To show V is 
the sum, write an element of V in the form v = v - Pv + Pv.] 

11. Let V be a vector space, and let P, Q be linear maps of V into itself. Assume 
that they satisfy the following conditions: 
(a) P + Q = I (identity mapping). 
(b) PQ = QP = o. 
(c) p 2 = P and Q2 = Q. 
Show that V is equal to the direct sum of 1m P and 1m Q. 

12. Notations being as in Exercise 11, show that the image of P is equal to the 
kernel of Q. [Prove the two statements: 

Image of P is contained in kernel of Q, 
Kernel of Q is contained in image of P.] 

13. Let T: V ~ V be a linear map such that T2 = I. Let 

P = i(I + T) and Q = i(I - T). 
Prove: 

P + Q = I; p 2 = P; PQ = QP = O. 

14. Let F: V ~ Wand G: W ~ U be isomorphisms of vector spaces over K. 
Show that Go F is invertible, and that 

15. Let F: V ~ Wand G: W ~ U be isomorphisms of vector spaces over K. 
Show that Go F: V ~ U is an isomorphism. 

16. Let V, W be two vector spaces over K, of finite dimension n. Show that V 
and Ware isomorphic. 

17. Let A be a linear map of a vector space into itself, and assume that 

A2 - A + 1=0 

(where I is the identity map). Show that A - 1 exists and is equal to I-A. 
Generalize (cf. Exercise 37 of Chapter II, §3). 
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18. Let A, B be linear maps of a vector space into itself. Assume that AB = BA. 
Show that 

(A + B)2 = A 2 + 2AB + B2 
and 

19. Let A, B be linear maps of a vector space into itself. If the kernel of A is 
{O} and the kernel of B is {O}, show that the kernel of AB is also {O}. 

20. More generally, let A: V --+ Wand B: W --+ U be linear maps. Assume that the 
kernel of A is {O} and the kernel of B is {O}. Show that the kernel of BA is 
{O}. 

21. Let A: V --+ Wand B: W --+ U be linear maps. Assume that A is surjective and 
that B is surjective. Show that BA is surjective 

III, §5. GEOMETRIC APPLICATIONS 

Let V be a vector space and let v, u be elements of V. We define the line 
segment between v and v + u to be the set of all points 

v + tu, o < t < 1. 

This line segment is illustrated in the following figure. 

v+u 

v+tu 

v 

Figure 2 

For instance, if t = t, then v + tU is the point midway between v and 
v + u. Similarly, if t = t, then v + tu is the point one third of the way 
between v and v + u (Fig. 3). 

v+u v+u 

v+!u 
v+!u 

v+tU 

v v 

(a) (b) 

Figure 3 
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If v, ware elements of V, let u = w - v. Then the line segment be­
tween v and w is the set of all points v + tu, or 

v + t(w - v), o < t < 1. 

w 

v+t(w-v) 

v 

Figure 4 

Observe that we can rewrite the expression for these points in the form 

(1) (1 - t)v + tw, o < t < 1, 

and letting s = 1 - t, t = 1 - s, we can also write it as 

sv + (1 - s)w, o <s< 1. 

Finally, we can write the points of our line segment in the form 

(2) 

with t 1, t2 > 0 and t1 + t2 = 1. Indeed, letting t = t 2, we see that every 
point which can be written in the form (2) satisfies (1). Conversely, we 
let t1 = 1 - t and t2 = t and see that every point of the form (1) can be 
written in the form (2). 

Let L: V --+ V' be a linear map. Let S be the line segment in V be­
tween two points v, w. Then the image L(S) of this line segment is the 
line segment in V' between the points L(v) and L(w). This is obvious 
from (2) because 

We shall now generalize this discussion to higher dimensional figures. 
Let v, w be linearly independent elements of the vector space V. We 

define the parallelogram spanned by v, w to be the set of all points 

for i = 1, 2. 

This definition is clearly justified since t 1 v is a point of the segment be­
tween 0 and v (Fig. 5), and t2 w is a point of the segment between 0 and 
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w. For all values of tb t2 ranging independently between 0 and 1, we see 
geometrically that t 1 V + t 2 W describes all points of the parallelogram. 

v+w 

Figure 5 

At the end of §1 we defined translations. We obtain the most general 
parallelogram (Fig. 6) by taking the translation of the parallelogram just 
described. Thus if u is an element of V, the translation by u of the paral­
lelogram spanned by v and w consists of all points 

for i = 1, 2. 

u+u+w 

Figure 6 

As with line segments, we see that if L: V --+ V' is a linear map, then 
the image under L of a parallelogram is a parallelogram (if it is not de­
generate), because it is the set of points 

with 

for i = 1, 2. 
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We shall now describe triangles. We begin with triangles located at 
the origin. Let v, w again be linearly independent. We define the triangle 
spanned by 0, v, w to be the set of all points 

(3) and 

We must convince ourselves that this is a reasonable definition. We do 
this by showing that the triangle defined above coincides with the set of 
points on all line segments between v and all the points of the segment 
between 0 and w. From Fig. 7, this second description of a triangle 
does coincide with our geometric intuition. 

V~~3=~==----------------~W 

o 

Figure 7 

We denote the line segment between 0 and w by Ow. A point on Ow 
can then be written tw with 0 < t < 1. The set of points between v and 
tw is the set of points 

(4) sv + (1 - s)tw, o <s< 1. 

Let t1 = sand t2 = (1 - s)t. Then 

t1 + t2 = S + (1 - s)t < s + (1 - s) < 1. 

Hence all points satisfying (4) also satisfy (3). Conversely, suppose given 
a point t1 v + t2 w satisfying (3), so that 

Then t2 < 1 - t 1. If t1 = 1 then t2 = 0 and we are done. If t1 < 1, then 
we let 

Then 
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which shows that every point satisfying (3) also satisfies (4). This justifies 
our definition of a triangle. 

As with parallelograms, an arbitrary triangle is obtained by translating 
a triangle located at the origin. In fact, we have the following descrip­
tion of a triangle. 

Let V1, v2, V3 be elements of V such that V1 - V3 and V2 - V3 are lin­
early independent. Let v = V1 - V3 and w = V2 - v3. Let S be the set 
of points 

(5) o <ti for i = 1, 2, 3, 

t1 + t2 + t3 = 1. 

Then S is the translation by V3 of the triangle spanned by 0, v, w. (Cf. 
Fig. 8.) 

Figure 8 

Proof. Let P = t1v1 + t2v2 + t3v3 be a point satisfying (5). Then 

and t1 + t2 < 1. Hence our point P is a translation by V3 of a point sat­
isfying (3). Conversely, given a point satisfying (3), which we translate by 
V3, we let t3 = 1 - t2 - t 1, and we can then reverse the steps we have 
just taken to see that 

This proves what we wanted. 

Actually, it is (5) which is the most useful description of a triangle, be­
cause the vertices V1, V2, V3 occupy a symmetric position in this defini­
tion. 
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One of the advantages of giving the definition of a triangle as we did 
is that it is then easy to see what happens to a triangle under a linear 
map. Let L: V --+ W be a linear map, and let v, w be elements of V which 
are linearly independent. Assume that L( v) and L( w) are also linearly in­
dependent. Let S be the triangle spanned by 0, v, w. Then the image of 
Sunder L, namely L(S), is the triangle spanned by 0, L(v), L(w). In­
deed, it is the set of all points 

with 
and 

Similarly, let S be the triangle spanned by v 1, v2 , v3. Then the image 
of Sunder L is the triangle spanned by L(v 1), L(v2 ), L(V3) (if these do 
not lie on a straight line) because it consists of the set of points 

The conditions of (5) are those which generalize to the fruitful con­
cept of convex set which we now discuss. 

Let S be a subset of a vector space V. We shall say that S is convex if 
given points P, Q in S the line segment between P and Q is contained in 
S. In Fig. 9, the set on the left is convex. The set on the right is not 
convex since the line segment between P and Q is not entirely contained 
in S. 

Convex set Not convex 

Figure 9 

Theorem 5.1. Let P l' ... ,P n be elements of a vector space V. Let S be 
the set of all linear combinations 

with 0 < ti and t1 + ... + tn = 1. Then S is convex. 
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Proof. Let 

and 

Q =SP +···+SP 1 1 n n 

t +···+t =1 1 n' 

S1 + ... + Sn = 1. 

Let 0 < t < 1. Then: 

(1 - t)P + tQ 

= (1 - t)t 1P 1 + ... + (1 - t)tnPn + ts 1P 1 + ... + tSnPn 

= [(1 - t)t1 + ts1]p 1 + ... + [(1 - t)tn + tsn]Pn· 

We have 0 < (1 - t)ti + tSi for all i, and 

(1 - t)t 1 + ts 1 + ... + (1 - t)tn + tSn 

= (1 - t)( t 1 + ... + tn) + t( S 1 + . .. + Sn) 

= (1 - t) + t 
= 1. 

This proves our theorem. 

From Theorem 5.1, we see that a triangle, as we have defined it ana­
lytically, is convex. The co~vex set of Theorem 5.1 is therefore a natural 
generalization of a triangle (Fig. 10). 

Ps 

Figure 10 
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We shall call the convex set of Theorem 5.1 the convex set spanned by 
P 1"" ,Pn • Although we shall not need the next result, it shows that this 
convex set is the smallest convex set containing all the points P 1'··· ,Pn • 

Theorem 5.2. Let P l' ... ,P n be points of a vector space V. Any convex 
set S' which contains P l' ... ,P n also contains all linear combinations 

with 0 < ti for all i and t1 + ... + tn = 1. 

Proof. We prove this by induction. If n = 1, then t1 = 1, and our as­
sertion is obvious. Assume the theorem proved for some integer n - 1 > 1. 
We shall prove it for n. Let t l' ... ,tn be numbers satisfying the condi­
tions of the theorem. If tn = 1, then our assertion is trivial because 

t1 = ... = tn- 1 = o. 

Suppose that tn i= 1. Then the linear combination t 1P 1 + ... + tnPn IS 

equal to 

Let 
tn 

s·=--
l 1 - t 

n 

for i = 1, ... ,n - 1. 

Then Si > 0 and S1 + ... + Sn-1 = 1 so that by induction, we conclude 
that the point 

lies in S'. But then 

lies in S' be definition of a convex set, as was to be shown. 

Example. Let V be a vector space, and let L: V ~ R be a linear map. 
We contend that the set S of all elements v in V such that L(v) < 0 is 
convex. 

Proof. Let L(v) < 0 and L(w) < O. Let 0 < t < 1. Then 

L{tv + (1 - t)w) = tL(v) + (1 - t)L(w). 
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Then tL(v) < 0 and (1 - t)L(w) < 0 so tL(v) + (1 - t)L(w) < 0, whence 
tv + (1 - t)w lies in S. If t = 0 or t = 1, then tv + (1 - t)w is equal to v 
or wand thus also lies in S. This proves our assertion. 

F or a generalization of this example, see Exercise 6. 
For deeper theorems about convex ·sets, see the last chapter. 

III, §5. EXERCISES 

1. Show that the image under a linear map of a convex set is convex. 

2. Let S 1 and S2 be convex sets in V. Show that the intersection S 1 (\ S2 is con­
vex. 

3. Let L: Rn ~ R be a linear map. Let S be the set of all points A in Rn such 
that L(A) ~ O. Show that S is convex. 

4. Let L: Rn ~ R be a linear map and c a number. Show that the set S consist­
ing of all points A in Rn such that L(A) > c is convex. 

5. Let A be a non-zero vector in Rn and c a number. Show that the set of 
points X such that X· A ~ c is convex. 

6. Let L: V ~ W be a linear map. Let Sf be a convex set in W Let S be the set 
of all elements P in V such that L(P) is in Sf. Show that S is convex. 

Remark. If you fumbled around with notation in Exercises 3, 4, 5 then show 
why these exercises are special cases of Exercise 6, which gives the general princi­
ple behind them. The set S in Exercise 6 is called the inverse image of Sf under 
L. 

7. Show that a parallelogram is convex. 

8. Let S be a convex set in V and let u be an element of V. Let ~: V ~ V be 
the translation by u. Show that the image ~(S) is convex. 

9. Let S be a convex set in the vector space V and let c be a number. Let cS 
denote the set of all elements cv with v in S. Show that cS is convex. 

10. Let u, w be linearly independent elements of a vector space V. Let F: V ~ W 
be a linear map. Assume that F(v), F(w) are linearly dependent. Show that 
the image under F of the parallelogram spanned by v and w is either a point 
or a line segment. 



CHAPTER IV 

Linear Maps and Matrices 

IV, §1. THE LINEAR MAP ASSOCIATED WITH A MATRIX 

Let 

be an m x n matrix. We can then associate with A a map 

by letting 

for every column vector X in Kn. Thus LA is defined by the association 
X t--+ AX, the product being the product of matrices. That LA is linear is 
simply a special case of Theorem 3.1, Chapter II, namely the theorem 
concerning properties of multiplication of matrices. Indeed, we have 

A(X + Y) = AX + A Y and A(cX) = cAX 

for all vectors X, Y in K n and all numbers c. We call LA the linear map 
associated with the matrix A. 

Example. If 

A = ( 2 
-1 !) and x=G} 
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then 

Theorem 1.1. If A, Bare m x n matrices and if LA = L B , then A = B. 
I n other words, if matrices A, B give rise to the same linear map, then 
they are equal. 

Proof By definition, we have Ai· X = B i · X for all i, if Ai is the i-th 
row of A and Bi is the i-th row of B. Hence (Ai - Bi)· X = 0 for all i 
and all X. Hence Ai - Bi = 0, and Ai = Bi for all i. Hence A = B. 

We can give a new interpretation for a system of homogeneous linear 
equations in terms of the linear map associated with a matrix. Indeed, 
such a system can be written 

AX = 0, 

and hence we see that the set of solutions is the kernel of the linear map 

LA· 

IV, §1. EXERCISES 

1. In each case, find the vector LA(X). 

(a) A = G 
(c) A = G 

~}x=(_~) 

~}x=G) 

(b) A = G 
(d) A = (~ 

~}x=G) 

~}x = (_~) 

IV, §2. THE MATRIX ASSOCIATED WITH A LINEAR MAP 

We first consider a special case. 

Let 

be a linear map. There exists a unique vector A in K n such that 
L = LA' i.e. such that for all X we have 

L(X) = A·X. 
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Let E1, ... ,En be the unit vectors in Kn. If X = x 1E1 + ... + xnEn is any 
vector, then 

L(X) = L(X1E1 + ... + xnEn) 

= x 1L(E1) + ... + xnL(En)· 

If we now let 

we see that 

This proves what we wanted. It also gives us an explicit determination 
of the vector A such that L = LA' namely the components of A are pre­
cisely the values L(E 1), ... ,L(En), where Ei (i = 1, ... ,n) are the unit vec­
tors of Kn. 

We shall now generalize this to the case of an arbitrary linear map 
into K m

, not just into K. 

Theorem 2.1. Let L: K n 
---+ K m be a linear map. Then there exists a 

unique matrix A such that L = LA. 

Proof As usual, let E1, ... ,En be the unit column vectors in K n, and let 
e1, ... ,em be the unit column vectors in Km. We can write any vector X 
in K n as a linear combination 

where Xj is the j-th component of X. We view E1, ... ,En as column vec­
tors. By linearity, we find that 

and we can write each L(Ej) in terms of e1, ... ,em. In other words, there 
exist numbers aij such that 
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or in terms of the column vectors, 

Hence 

L(X) = xl(alle l + ... + amlem) + ... + xn(alne l + ... + amnem) 

= (allx l + ... + alnxn)e l + ... + (amlx l + ... + amnxn)em. 

Consequently, if we let A = (aij), then we see that 

L(X) = AX. 

Written out in full, this reads 

Thus L = LA is the linear map associated with the matrix A. We also 
call A the matrix associated with the linear map L. We know that this 
matrix is uniquely determined by Theorem 1.1. 

Example 1. Let F: R3 ---+ R2 be the projection, in other words the 
mapping such that F(Xl' X2 , x 3) = (Xl' X 2 ). Then the matrix associated 
with F is 

(
1 0 0). 
010 

Example 2. Let I: Rn ---+ Rn be the identity. Then the matrix associated 
with I is the matrix 

100 0 

010 0 

000 1 

having components equal to 1 on the diagonal, and 0 otherwise. 
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Example 3. According to Theorem 2.1 of Chapter III, there exists a 
unique linear map L: R4 ---+ R2 such that 

According to the relations (*), we see that the matrix associated with L 
is the matrix 

3 

-1 
-5 

4 

Example 4 (Rotations). We can define a rotation in terms of matrices. 
Indeed, we call a linear map L: R2 ---+ R2 a rotation if its associated ma­
trix can be written in the form 

R( ) = . e (
COS e 
SIn e 

-sin e). 
cos e 

The geometric justification for this definition comes from Fig. 1. 

We see that 

Figure 1 

L(E1) = (cos e)E1 + (sin e)E2, 

L(E2) = (-sin e)E1 + (cos e)E2. 

Thus our definition corresponds precisely to the picture. When the ma­
trix of the rotation is as above, we say that the rotation is by an angle e. 
For example, the matrix associated with a rotation by an angle n/2 is 
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We observe finally that the operations on matrices correspond to the 
operations on the associated linear map. For instance, if A, Bare m x n 
matrices, then 

and if c is a number, then 

This is obvious, because 

(A + B)X = AX + BX and (cA)X = c(AX). 

Similarly for compositions of mappings. Indeed, let 

and 

be linear maps, and let A, B be the matrices associated with F and G 
respectively. Then for any vector X in K n we have 

(G 0 F)(X) = G(F(X)) = B(AX) = (BA)X. 

Hence the product BA is the matrix associated with the composite linear 
map GoF. 

Theorem 2.2. Let A be an n x n matrix, and let A 1, ... ,An be its col­
umns. Then A is invertible if and only if A 1, ... ,An are linearly indepen­
dent. 

Proof. Suppose A 1, ... ,An are linearly independent. Then {A 1, ... ,An} 
is a basis of K n, so the unit vectors E 1 

, ... ,En can be expressed as linear 
combinations of A 1, ... ,An. This means that there is a matrix B such 
that 

for j = 1, ... ,n, 

say by Theorem 2.1 of Chapter III. But this is equivalent to saying that 
BA = I. Thus A is invertible. Conversely, suppose A is invertible. The 
linear map LA is such that 

Since A is invertible, we must have Ker LA = 0, because if AX = 0 then 
A -1 AX = X = O. Hence A 1, ... ,An are linearly independent. This proves 
the theorem. 
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IV, §2. EXERCISES 

1. Find the matrix associated with the following linear maps. The vectors are 
written horizontally with a transpose sign for typographical reasons. 
(a) F: R4 --+ R2 given by F(t(Xl' X2 , X3 , x 4 )) = t(Xl' x 2 ) (the projection) 
(b) The projection from R4 to R3 
(c) F: R2 --+ R2 given by F(t(x, y)) = t(3x, 3y) 
(d) F: Rn 

--+ Rn given by F(X) = 7 X 
(e) F: Rn 

--+ Rn given by F(X) = -X 
(f) F: R4 --+ R4 given by F('(x t , X2 , X3 , x 4 )) = t(Xl' X2 , 0, 0) 

2. Find the matrix R(e) associated with the rotation for each of the following 
values of e. 
(a) n/2 (b) n/4 (c) n (d) -n (e) -n/3 
(f) n/6 (g) 5n/4 

3. In general, let e > O. What is the matrix associated with the rotation by an 
angle - e (i.e. clockwise rotation bye)? 

4. Let X = t(l, 2) be a point of the plane. Let F be the rotation through an 
angle of n/4. What are the coordinates of F(X) relative to the usual basis 
{Et,E2}? 

5. Same question when X = t( -1, 3), and F is the rotation through n/2. 

6. Let F: Rn --+ Rn be a linear map which is invertible. Show that if A is the 
matrix associated with F, then A - 1 is the matrix associated with the inverse 
of F. 

7. Let F be a rotation through an angle e. Show that for any vector X in R 3 

we have ,IXII = IIF(X)II (i.e. F preserves norms), where II(a, b)11 = J a2 + b2
• 

8. Let e be a number, and let L: Rn 
--+ Rn be the linear map such that L(X) = 

eX. What is the matrix associated with this linear map? 

9. Let Fo be rotation by an angle e. If e, <p are numbers, compute the matrix 
of the linear map Fo 0 F cp and show that it is the matrix of Fo+cp. 

10. Let Fo be rotation by an angle e. Show that F 0 is invertible, and determine 
the matrix associated with F (; 1. 

IV, §3. BASES, MATRICES, AND LINEAR MAPS 

In the first two sections we considered the relation between matrices and 
linear maps of Kn into Km. Now let V, W be arbitrary finite dimensional 
vector spaces over K. Let 

and 

be bases of V and W respectively. Then we know that elements of V and 
W have coordinate vectors with respect to these bases. In other words, if 
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V E V then we can express v uniquely as a linear combination 

Thus V is isomorphic to Kn under the map Kn ---+ V given by 

Similarly for W. If F: V ---+ W is a linear map, then using the above 
isomorphism, we can interpret F as a linear map of Kn into Km, and 
thus we can associate a matrix with F, depending on our choice of bases, 
and denoted by 

This matrix is the unique matrix A having the following property: 

If X is the (column) coordinate vector of an element v of V, relative to 
the basis 81, then AX is the (column) coordinate vector of F(v), relative 
to the basis 81'. 

To use a notation which shows that the coordinate vector X depends 
on v and on the basis 81 we let 

X 8iJ(v) 

denote this coordinate vector. Then the above property can be stated in 
a formula. 

Theorem 3.1. Let V, W be vector spaces over K, and let 

F: V---+ W 

be a linear map. Let 81 be a basis of V and 81' a basis of W If v E V 
then 

Corollary 3.2. Let V be a vector space, and let 81, 81' be bases of V. 
Let v E V. Then 

The corollary expresses in a succinct way the manner in which the 
coordinates of a vector change when we change the basis of the vector 
space. 
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If A = M:,(F), and X is the coordinate vector of v with respect to 84, 
then by definition, 

This matrix A is determined by the effect of F on the basis elements 
as follows. 

Let 

Then A turns out to be the transpose of the matrix 

all a2l aml 

a12 a22 am2 

Indeed, we have 

Using expression (*) for F(v l ), ..• ,F(vn) we find that 

and after collecting the coefficients of W l , ... ,Wm , we can rewrite this ex­
pression in the form 

This proves our assertion. 

Example 1. Assume that dim V = 2 and dim W = 3. Let F be the lin­
ear map such that 

F(v l ) = 3w l - W2 + 17w3 , 

F(v 2 ) = W l + W 2 - W 3 , 



90 LINEAR MAPS AND MATRICES 

Then the matrix associated with F is the matrix 

equal to the transpose of 

( 
3 1) 

-1 1 

17 -1 

-1 
1 

[IV, §3] 

Example 2. Let id: V ~ V be the identity map. Then for any basis fIJ 
of V we have 

where I is the unit n x n matrix (if dim V = n). This is immediately veri­
fied. 

Warning. Assume that V = W, but that we work with two bases fIJ 
and fIJ' of V which are distinct. Then the matrix associated with the 
identity mapping of V into itself relative to these two distinct bases will 
not be the unit matrix! 

Example 3. Let fIJ = {v 1, ... ,vn} and fIJ' = {W1' ... ,wn} be bases of the 
same vector space V. There exists a matrix A = (aij) such that 

Then for each i = 1, ... ,n we see that Wi = id(wi). Hence by definition, 

On the other hand, there exists a unique linear map F: V ~ V such that 

F(v 1 ) = w 1, ••• , F(vn) = wn • 

Again by definition, we have 
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Theorem 3.3. Let V, W be vector spaces. Let PA be a basis of V, and PA' 
a basis of W. Let f, g be two linear maps of V into W. Let M = M:,. 
Then 

M(f + g) = M(f) + M(g). 

If c is a number, then 

M(cf) = cM(f)· 

The association 

is an isomorphism between the space of linear maps 5l'(V, W) and the 
space of m x n matrices (if dim V = n and dim W = m). 

Proof. The first formulas showing that fl-+ M(f) is linear follow at 
once from the definition of the associated matrix. The association 
fl-+ M(f) is injective since M(f) = M(g) implies f = g, and it is surjec­
tive since every linear map is represented by a matrix. Hence fl-+ M(f) 
gives an isomorphism as stated. 

We now pass from the additive properties of the associated matrix to 
the multiplicative properties. 

Let U, V, W be sets. Let F: U --.. V be a mapping, and let G: V --.. W 
be a mapping. Then we can form a composite mapping from U into W 
as discussed previously, namely Go F. 

Theorem 3.4. Let V, W, U be vector spaces. Let PA, PA', PA" be bases for 
V, W, U respectively. Let 

F: V--.. W and G: W--.. U 

be linear maps. Then 

(Note. Relative to our choice of bases, the theorem expresses the fact 
that composition of mappings corresponds to multiplication of matrices.) 

Proof. Let A be the matrix associated with F relative to the bases PA, 
PA' and let B be the matrix associated with G relative to the bases PA', 
PA". Let v be an element of V and let X be its (column) coordinate vec­
tor relative to PA. Then the coordinate vector of F(v) relative to PA' is 
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AX. By definition, the coordinate vector of G(F(v)) relative to PA" is 
B(AX), which, by §2, is equal to (BA)X. But G(F(v)) = (G 0 F)(v). 
Hence the coordinate vector of (G 0 F)( v) relative to the basis PA" is 
(BA)X. By definition, this means that BA is the matrix associated with 
G 0 F, and proves our theorem. 

Remark. In many applications, one deals with linear maps of a vector 
space V into itself. If a basis PA of V is selected, and F: V --.. V is a linear 
map, then the matrix 

is usually called the matrix associated with F relative to PA (instead of 
saying relative to PA, PA). From the definition, we see that 

where I is the unit matrix. As a direct consequence of Theorem 3.2 we 
obtain 

Corollary 3.5. Let V be a vector space and PA, PA' bases of V. Then 

In particular, M:,(id) is invertible. 

Proof. Take V = W = U in Theorem 3.4, and F = G = id and 
14" = 14. Our assertion then drops out. 

The general formula of Theorem 3.2 will allow us to describe precisely 
how the matrix associated with a linear map changes when we change 
bases. 

Theorem 3.6. Let F: V --.. V be a linear map, and let PA, PA' be bases of 
V. Then there exists an invertible matrix N such that 

I n fact, we can take 

Proof. Applying Theorem 3.2 step by step, we find that 

Corollary 3.5 implies the assertion to be proved. 
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Let V be a finite dimensional vector space over K, and let F: V --+ V 
be a linear map. A basis f!4 of V is said to diagonalize F if the matrix 
associated with F relative to f!4 is a diagonal matrix. If there exists such 
a basis which diagonalizes F, then we say that F is diagonalizable. It is 
not always true that a linear map can be diagonalized. Later in this 
book, we shall find sufficient conditions under which it can. If A is an 
n x n matrix in K, we say that A can be diagonalized (in K) if the linear 
map on Kn represented by A can be diagonalized. From Theorem 3.6, 
we conclude at once: 

Theorem 3.7. Let V be a finite dimensional vector space over K, let 
F: V --+ V be a linear map, and let M be its associated matrix relative to 
a basis f!4. Then F (or M) can be diagonalized (in K) if and only if 
there exists an invertible matrix N in K such that N - 1 M N is a diag­
onal matrix. 

In view of the importance of the map M r--. N- 1 MN, we give it a spe­
cial name. Two matrices, M, M' are called similar (over a field K) if 
there exists an invertible matrix N in K such that M' = N - 1 M N. 

IV, §3. EXERCISES 

1. In each one of the following cases, find M:,(id). The vector space in each 
case is R3. 
(a) (JI = {(I, 1,0), (-1, 1, 1), (0, 1, 2)} 

(JI' = {(2, 1, 1), (0, 0, 1), ( -1, 1, I)} 
(b) (JI = {(3, 2,1), (0, -2,5), (1,1, 2)} 

(JI' = {(I, 1,0), (-1,2,4), (2, -1, I)} 

2. Let L: V ~ V be a linear map. Let (JI = {Vi'.'. ,Vn} be a basis of V. Suppose 
that there are numbers C i , ... 'Cn such that L(vi) = CiVi for i = 1, ... ,no What is 
M:(L)? 

3. For each real number f), let Fo: R2 ~ R2 be the linear map represented by the 
matrix 

R(8) = . 
(

COS f) - sin f) ) 
sin f) cos f) 

Show that if f), f)' are real numbers, then FoFo' = Fo+o" (You must use the 
addition formula for sine and cosine.) Also show that FiJi = F -0' 

4. In general, let f) > 0. What is the matrix associated with the identity map, 
and rotation of bases by an angle - f) (i.e. clockwise rotation by 8)? 

5. Let X = t(l, 2) be a point of the plane. Let F be the rotation through an 
angle of n/4. What are the coordinates of F(X) relative to the usual basis 
{El,E2}? 
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6. Same question when X = t( - 1, 3), and F is the rotation through n/2. 

7. In general, let F be the rotation through an angle O. Let (x, y) be a point of 
the plane in the standard coordinate system. Let (x', y') be the coordinates of 
this point in the rotated system. Express x', y' in terms of x, y, and O. 

8. In each of the following cases, let D = d/dt be the derivative. We give a set 
of linearly independent functions fJl. These generate a vector space V, and D 
is a linear map from V into itself. Find the matrix associated with D relative 
to the bases fJl, fJl. 
(a) {e t

, e2t
} 

(b) {I, t} 
(c) {e t, tet} 
(d) {1,t,t2} 
(e) {1, t, et

, e2t
, te2t

} 

(f) {sin t, cos t} 

9. (a) Let N be a square matrix. We say that N is nilpotent if there exists a 
positive integer r such that N r = O. Prove that if N is nilpotent, then 
I - N is invertible. 

(b) State and prove the analogous statement for linear maps of a vector 
space into itself. 

10. Let Pn be the vector space of polynomials of degree ~ n. Then the derivative 
D: Pn ~ Pn is a linear map of Pn into itself. Let I be the identity mapping. 
Prove that the following linear maps are invertible: 
(a) I - D2. 
(b) Dm 

- I for any positive integer m. 
(c) Dm 

- cI for any number c i= O. 

11. Let A be the n x n matrix 

A= 

o 

o 

o 

o 

1 

o 

o 

o 

o 
1 

o 

o 
o 

o 

o 

1 

o 

which is upper triangular, with zeros on the diagonal, 1 just above the diag­
onal, and zeros elsewhere as shown. 
(a) How would you describe the effect of LA on the standard basis vectors 

{E1, ... ,En} of K n? 
(b) Show that An = 0 and An - 1 i= 0 by using the effect of powers of A on 

the basis vectors. 



CHAPTER V 

Scalar Products 
and Orthogonal ity 

V, §1. SCALAR PRODUCTS 

Let V be a vector space over a field K. A scalar product on V is an 
association which to any pair of elements v, W of V associates a scalar, 
denoted by (v, w), or also V· w, satisfying the following properties: 

SP 1. We have (v, w) = (w, v) for all v, WE V. 

SP 2. If u, v, ware elements of V, then 

(u, v + w) = (u, v) + (u, w). 

SP 3. If xEK, then 

(xu, v) = x(u, v) and (u, xv) = x(u, v). 

The scalar product is said to be non-degenerate if in addition it also sat­
isfies the condition: 

If v is an element of V, and (v, w) = 0 for all WE V, then v = O. 

Example 1. Let V = Kn. Then the map 

(X, Y) r-+ X . Y, 

which to elements X, Y E K n associates their dot product as we defined it 
previously, is a scalar product in the present sense. 
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Example 2. Let V be the space of continuous real-valued functions on 
the interval [0, 1]. If j, g E V, we define 

<I, g) = L1/(t)g(t) dt. 

Simple properties of the integral show that this is a scalar product. 

In both examples the scalar product is non-degenerate. We had point­
ed this out previously for the dot product of vectors in Kn. In the sec­
ond example, it is also easily shown from simple properties of the 
integral. 

In calculus, we study the second example, which gives rise to the theo­
ry of Fourier series. Here we discuss only general properties of scalar 
products and applications to Euclidean spaces. The notation < , > is 
used because in dealing with vector spaces of functions, a dot j. g may 
be confused with the ordinary product of functions. 

Let V be a vector space with a scalar product. As always, we define 
elements v, w of V to be orthogonal or perpendicular, and write v ~ w, if 
< v, w> = O. If S is a subset of V, we denote by S.l the set of all elements 
WE V which are perpendicular to all elements of S, i.e. < w, v> = 0 for all 
v E S. Then using SP 2 and SP 3, one verifies at once that S.l is a sub­
space of V, called the orthogonal space of S. If W is perpendicular to S, 
we also write W ~ S. Let U be the subspace of V generated by the ele­
ments of S. If W is perpendicular to S, and if v1, V 2 E S, then 

If c is a scalar, then 

Hence w is perpendicular to linear combinations of elements of S, and 
hence w is perpendicular to U. 

Example 3. Let (aij) be an m x n matrix in K, and let A 1, ••. ,Am be its 
row vectors. Let X = t(X 1, ... ,Xn) as usual. The system of homogeneous 
linear equations 

can also be written in an abbreviated form, namely 
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The set of solutions X of this homogeneous system is a vector space 
over K. In fact, let W be the space generated by A 1, ••• ,Am. Let U be 
the space consisting of all vectors in K n perpendicular to A l' ... ,Am. 
Then U is precisely the vector space of solutions of (**). The vectors 
A 1, ••• ,Am may not be linearly independent. We note that dim W < m, 
and we call 

dim U = dim W-L 

the dimension of the space of solutions of the system of linear equations. 
We shall discuss this dimension at greater length later. 

Let V again be a vector space over the field K, with a scalar product. 
Let {v 1, ••• ,vn } be a basis of V. We shall say that it is an orthogonal 

basis if (Vi' V j ) = 0 for all i i= j. We shall show later that if V is a finite 
dimensional vector space, with a scalar product, then there always exists 
an orthogonal basis. However, we shall first discuss important special 
cases over the real and complex numbers. 

The real positive definite case 

Let V be a vector space over R, with a scalar product. We shall call this 
scalar product positive definite if (v, v) > 0 for all V E V, and (v, v) > 0 if 
V i= O. The ordinary dot product of vectors in Rn is positive definite, and 
so is the scalar product of Example 2 above. 

Let V be a vector space over R, with a positive definite scalar product 
denoted by ( , ). Let W be a subspace. Then W has a scalar product 
defined by the same rule defining the scalar product in V. In other 
words, if w, w' are elements of W, we may form their product (w, w'). 
This scalar product on W is obviously positive definite. 

For instance, if W is the subspace of R3 generated by the two vectors 
(1, 2, 2) and (n, -1, 0), then W is a vector space in its own right, and we 
can take the dot product of vectors lying in W to define a positive defi­
nite scalar product on W We often have to deal with such subspaces, 
and this is one reason why we develop our theory on arbitrary (finite di­
mensional) spaces over R with a given positive definite scalar product, 
instead of working only on Rn with the dot product. Another reason is 
that we wish our theory to apply to situations as described in Example 2 
of §1. 

We define the norm of an element v E V by 

Ilvll = J (v, v). 

If e is any number, then we immediately get 

Ilevll = lelllvll, 
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because 

Ilevll = J <ev, ev) = Je2 <v, v) = lelllvll· 

The distance between two elements v, w of V is defined to be 

dist(v, w) = Ilv - wll. 

This definition stems from the Pythagoras theorem. For example, 
suppose V = R3 with the usual dot product as the scalar product. If 
X = (x, y, z) E V then 

This coincides precisely with our notion of distance from the origin 0 to 
the point A by making use of Pythagoras' theorem. 

We can also justify our definition of perpendicularity. Again the intu­
ition of plane geometry and the following figure tell us that v is perpen­
dicular to w if and only if 

Ilv - wll = Ilv + wll· 

Ilw - vii 

__ ....&...-_~v 

Ilw + vii IIw + vII 
o 

-v -v 

(a) 

Figure 1 

But then by algebra: 

Ilv - wll = Ilv + wll ¢> Ilv - wl12 = Ilv + wl1 2 

¢> (v - W)2 = (v + W)2 

Ilw - vii 

(b) 

¢> v2 
- 2v . w + w2 = v2 + 2v· w + w2 

¢> 4v·w = 0 

¢> V·W = O. 

This is the desired justification. 

v 
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You probably have studied the dot product of n-tuples in a previous 
course. Basic properties which were proved without coordinates can be 
proved for our more general scalar product. We shall carry such proofs 
out, and meet other examples as we go along. 

We say that an element v E V is a unit vector if II v II = 1. If v E V and 
v -# 0, then viii v II is a unit vector. 

The following two identities follow directly from the definition of the 
length. 

The Pythagoras theorem. If v, ware perpendicular, then 

The parallelogram law. For any v, w we have 

The proofs are tri vial. We give the first, and leave the second as an 
exercise. For the first, we have 

Ilv + wl12 = <v + w,v + w) = <v, v) + 2<v, w) + <w, w) 

= IIvl12 + IIwll 2 because v -1 w. 

This proves Pythagoras. 

Let w be an elelnent of V such that Ilwll -# O. For any v there exists a 
unique number c such that v - cw is perpendicular to w. Indeed, for 
v - cw to be perpendicular to w we must have 

<v - cw, w) = 0, 

whence <v, w) - <cw, w) = 0 and <v, w) = c<w, w). Thus 

<v, w) 
c= . 

<w,w) 

Conversely, letting c have this value shows that v - cw is perpendicular 
to w. We call c the component of v along w. We call cw the projection of 
v along w. 



100 SCALAR PRODUCTS AND ORTHOGONALITY [V, §1] 

As with the case of n-space, we define the projection of v along w to 
be the vector cw, because of our usual picture: 

w 

v-cw 

Figure 2 

In particular, if w is a unit vector, then the component of v along w is 
simply 

c=<v,w). 

Example 4. Let V = Rn with the usual scalar product, i.e. the dot 
product. If Ei is the i-th unit vector, and X = (Xl' ... ,xn) then the com­
ponent of X along Ei is simply 

that is, the i-th component of X. 

Example 5. Let V be the space of continuous functions on [- n, n]. 
Let f be the function given by f(x) = sin kx, where k is some integer> O. 
Then 

(f 1t )1/2 
11111 = J <I,f) = -x sin

2 
kx dx 

=In. 
In the present example of a vector space of functions, the component 

of g along f is called the Fourier coefficient of g with respect to f. If g is 
any continuous function on [- n, n], then the Fourier coefficient of g 
with respect to f is 

<g, f) 1 f1t . k d 
<1,/) = -; -x g(x) SIll X x. 

Theorem 1.1. Schwarz inequality. For all v, WE V we have 

I <v, w) I < Ilvll Ilwll· 
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Proof If w = 0, then both sides are equal to 0 and our inequality is 
obvious. Next, assume that w = e is a unit vector, that is e E V and 
Ilell = 1. If c is the component of v along e, then v - ce is perpendicular 
to e, and also perpendicular to ceo Hence by the Pythagoras theorem, 
we find 

IIvl12 = Ilv - cel1 2 + IIce,,2 

= "v - ce,,2 + c2
. 

Hence c2 < "vI1 2, so that Icl < IIvll. Finally, if w is arbitrary =f:. 0, then 
e = wj"w" is a unit vector, so that by what we just saw, 

(v, 11:11) < Ilvll· 

This yields 

I <v, w) I < "vII IIwll, 

as desired. 

Theorem 1.2. Triangle inequality. If v, WE V, then 

"v + w" < "v" + IIw". 

Proof Each side of this inequality is positive or O. Hence it will suf­
fice to prove that their squares satisfy the desired inequality, in other 
words 

To do this we have: 

(v + W)2 = (v + w)· (v + w) = v2 + 2v· w + w2 

< IIvl1 2 + 211vll Ilwll + IIw211 (by Theorem 1.1) 

= ("vII + IIwll)2, 

thus proving the triangle inequality. 

Let v1, ••• ,Vn be non-zero elements of V which are mutually perpendic­
ular, that is <Vi' Vi) = 0 if i =f:. j. Let Ci be the component of v along Vi. 
Then 

is perpendicular to v1, ••• ,vn • To see this, all we have to do is to take the 
product with vi for any j. All the terms involving <vi'Vi ) will give 0 if 
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i i= j, and we shall have two remaining terms 

which cancel. Thus subtracting linear combinations as above orthog­
onalizes v with respect to V 1, ••• ,Vn • The next theorem shows that 
c 1 v 1 + ... + cn Vn gives the closest approximation to v as a linear com­
bination of v l' ... ,Vn • 

Theorem 1.3. Let V 1, ••• ,Vn be vectors which are mutually perpendicular, 
and such that IIvill i= 0 for all i. Let v be an element of V, and let Ci be 
the component of v along Vi' Let a 1, •.. ,an be numbers. Then 

Proof We know that 

is perpendicular to each Vi' i = 1, ... ,no Hence it is perpendicular to any 
linear combination of V 1, ••• ,Vn • Now we have: 

Ilv - L ak vk l1
2 = Ilv - L CkVk + L (Ck - ak )vk l1

2 

= Ilv - L ck vk l1
2 + IlL (Ck - ak )vk l1

2 

by the Pythagoras theorem. This proves that 

and thus our theorem is proved. 

The next theorem is known as the Bessel inequality. 

Theorem 1.4. If V 1, ••• ,Vn are mutually perpendicular unit vectors, and if 
Ci is the component of v along Vi' then 

n 

L c1 < Ilv112. 
i= 1 
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Proof The elements v - L CiVb Vb'" ,Vn are mutually perpendicular. 
Therefore: 

IIvII2 = Ilv - L civdl 2 + ilL civill
2 

> ilL ci vi ll
2 

= Lcr 

by Pythagoras 

because a norm is > 0 

by Pythagoras 

because v1, ••• ,Vn are mutually perpendicular and IIvill2 = 1. This proves 
the theorem. 

V, §1. EXERCISES 

1. Let V be a vector space with a scalar product. Show that <0, v) = 0 for all v 
in V. 

2. Assume that the scalar product is positive definite. Let Vi' ... ,vn be non-zero 
elements which are mutually perpendicular, that is <Vi' v j) = 0 if i '# j. Show 
that they are linearly independent. 

3. Let M be a square n x n matrix which is equal to its transpose. If X, Yare 
column n-vectors, then 

is a 1 x 1 matrix, which we identify with a number. Show that the map 

(X, Y) ~ tXMY 

satisfies the three properties SP 1, SP 2, SP 3. Give an example of a 2 x 2 ma­
trix M such that the product is not positive definite. 

V, §2. ORTHOGONAL BASES, POSITIVE DEFINITE CASE 

Let V be a vector space with a positive definite scalar product through­
out this section. A basis {v 1, ••• ,vn } of V is said to be orthogonal if its 
elements are mutually perpendicular, i.e. <Vi' Vj) = 0 whenever i i= j. If in 
addition each element of the basis has norm 1, then the basis is called 
orthonormal. 

The standard unit vectors of Rn form an orthonormal basis of Rn, 
with respect to the ordinary dot product. 

Theorem 2.1. Let V be a finite dimensional vector space, with a positive 
definite scalar product. Let W be a subspace of V, and let {w 1,.·· ,wm } 

be an orthogonal basis of W If W i= V, then there exist elements 
wm + 1' ... ,Wn of V such that {w 1, .•• ,wn } is an orthogonal basis of v. 
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Proof The method of proof is as important as the theorem, and is 
called the Gram-Schmidt orthogonalization process. We know from 
Chapter II, §3 that we can find elements vm + 1, ... ,vn of V such that 

is a basis of V. Of course, it is not an orthogonal basis. Let W m + 1 be 
the space generated by W h ... ,Wm , Vm + 1. We shall first obtain an orthog­
onal basis of Wm + 1 • The idea is to take V m + 1 and substract from it its 
projection along W 1, ••• ,Wm • Thus we let 

Let 

Then W m + 1 is perpendicular to W 1, ••• , W m· Furthermore, W m + 1 =1= 0 
(otherwise Vm + 1 would be linearly dependent on W 1, ••• ,W m), and Vm + 1 lies 
in the space generated by W h ... ,Wm + 1 because 

Hence {w 1, ••• ,Wm + 1 } is an orthogonal basis of Wm + 1• We can now pro­
ceed by induction, showing that the space Wm + s generated by 

has an orthogonal basis 

with s = 1, ... ,n - m. This concludes the proof. 

Corollary 2.2. Let V be a finite dimensional vector space with a positive 
definite scalar product. Assume that V -=1= {o}. Then V has an orthogo­
nal basis. 

Proof By hypothesis, there exists an element V 1 of V such that V 1 -=1= o. 
We let W be the subspace generated by Vb and apply the theorem to geOt 
the desired basis. 
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We summarize the procedure of Theorem 2.1 once more. Suppose we 
are given an arbitrary basis {v 1, ••• ,vn } of V. We wish to orthogonalize it. 
We proceed as follows. We let 

Then {V'1' ... ,v~} is an orthogonal basis. 

Given an orthogonal basis, we can always obtain an orthonormal ba­
sis by dividing each vector by its norm. 

Example 1. Find an orthonormal basis for the vector space generated 
by the vectors (1,1,0,1), (1, -2,0,0), and (1,0, -1,2). 

Let us denote these vectors by A, B, C. Let 

B·A 
B'=B--A. 

A·A 

In other words, we subtract from B its projection along A. Then B' is 
perpendicular to A. We find 

B' = t(4, - 5, 0, 1). 

Now we subtract from C its projection along A and B', and thus we let 

C·A C·B' 
C' = C - - A - -- B'. 

A·A B'·B' 

Since A and B' are perpendicular, taking the scalar product of C' with A 
and B' shows that C' is perpendicular to both A and B'. We find 

C' =~(-4, -2, -7,6). 

The vectors A, B', C' are non-zero and mutually perpendicular. They lie 
in the space generated by A, B, C. Hence they constitute an orthogonal 
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basis for that space. If we wish an orthonormal basis, then we divide 
these vectors by their norm, and thus obtain 

A 1 
-=-(1101) IIAII J3 ' , , , 
B' 1 

IIB'II = j42(4, -5,0,1), 

C' 1 
IIC'II = jWs(-4, -2, -7,6), 

as an orthonormal basis. 

Theorem 2.3. Let V be a vector space over R with a positive definite 
scalar product, of dimension n. Let W be a subspace of V of dimension 
r. Let W-L be the subspace of V consisting of all elements which are 
perpendicular to W Then V is the direct sum of Wand W-L, and W-L 
has dimension n - r. In other words, 

dim W + dim W-L = dim V. 

Proof If W consists of 0 alone, or if W = V, then our assertion is ob­
vious. We therefore assume that W =1= V and that W =1= {O}. Let 
{w 1, ••• ,wr } be an orthonormal basis of W By Theorem 2.1, there exist 
elements Ur + l' ... ,Un of V such that 

is an orthonormal basis of V. We shall prove that {u r + 1' ... ,Un} is an 
orthonormal basis of W-L. 

Let u be an element of W-L. Then there exist numbers Xl' ... ,xn such 
that 

u = X1W 1 + ... + xrwr + xr+ 1ur+ 1 + ... + xnun. 

Since u is perpendicular to W, taking the product with any Wi 

(i = 1, ... ,r), we find 

Hence all Xi = 0 (i = 1, ... ,r). Therefore u is a linear combination of 
ur + 1, ... ,Un· 

Conversely, let u = Xr+ 1Ur+ 1 + ... + XnUn be a linear combination of 
ur+ 1, ... ,Un· Taking the product with any Wi yields o. Hence U is perpen­
dicular to all Wi (i = 1, ... ,r), and hence is perpendicular to W This 
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proves that Ur + b ... ,Un generate W1-. Since they are mutually perpendicu­
lar, and of norm 1, they form an orthonormal basis of W1-, whose di­
mension is therefore n - r. Furthermore, an element of V has a unique 
expression as a linear combination 

and hence a unique expression as a sum W + U with WE Wand UE W1-. 
Hence V is the direct sum of Wand W 1-. 

The space W 1- is called the orthogonal complement of W 

Example 2. Consider R3. Let A, B be two linearly independent vec­
tors in R3. Then the space of vectors which are perpendicular to both A 
and B is a I-dimensional space. If {N} is a basis for this space, any 
other basis for this space is of type {tN}, where t is a number i= o. 

Again in R3
, let N be a non-zero vector. The space of vectors perpen­

dicular to N is a 2-dimensional space, i.e. a plane, passing through the 
origin O. 

Let V be a finite dimensional vector space over R, with a posItIve 
definite scalar product. Let {e l , ... ,en} be an orthonormal basis. Let 
v, WE V. There exist numbers Xl' ... ,xnER and Yl' ... ,YnER such that 

and 

Then 

n 

= L xiYj<ei , e j) = XlYl + ... + XnYn· 
i,j= 1 

Thus in terms of this orthonormal basis, if X, Yare the coordinate vec­
tors of v and W respectively, the scalar product .is given by the ordinary 
dot product X· Y of the coordinate vectors. This is definitely not the 
case if we deal with a basis which is not orthonormal. If {v l , ... ,vn } is 
any basis of V, and we write 

v = XlVl + ... + XnVn 

W = YlV l + ... + YnVn 

in terms of the basis, then 

n 

<v, W) = L XiYj<Vi, Vj). 
i,j= 1 
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Hermitian products 

n 

<V, W) = L aijxixj , 
i,j= 1 

[V, §2] 

We shall now describe the modification necessary to adapt the preceding 
results to vector spaces over the complex numbers. We wish to preserve 
the notion of a positive definite scalar product as far as possible. Since 
the dot product of vectors with complex coordinates may be equal to 0 
without the vectors being equal to 0, we must change something in the 
definition. It turns out that the needed change is very slight. 

Let V be a vector space over the complex numbers. A hermitian prod­
uct on V is a rule which to any pair of elements V, W of V associates a 
complex number, denoted again by <v, w), satisfying the following prop­
erties: 

HP 1. We have <v, w) = <w, v) for all v, WE V. (Here the bar denotes 
complex conjugate.) 

HP 2. If u, v, ware elements of V, then 

< u, v + w) = < u, v) + < u, w). 

HP 3. If aEC, then 

<au,v) = (x<u,v) and <u, (Xv) = a<u, v). 

The hermitian product is said to be positive definite if < v, v) > 0 for all 
v E V, and < v, v) > 0 if v i= 0. 

We define the words orthogonal, perpendicular, orthogonal basis, or­
thogonal complement as before. There is nothing to change either in our 
definition of component and projection of v along w, or in the remarks 
which we made concerning these. 

Example 3. Let V = cn. If X = (x b ... ,xn) and Y = (Yl"" ,Yn) are vec­
tors in Cn

, we define their hermitian product to be 

Conditions HP 1, HP 2 and HP 3 are immediately verified. This product 
is positive definite because if X i= 0, then some Xi i= 0, and XiXi > O. 
Hence <X, X) > O. 
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Note however that if X = (1, i) then 

X·X = 1 - 1 = o. 

Example 4. Let V be the space of continuous complex-valued func­
tions on the interval [ - n, n]. If j, g E V, we define 

<I. g) = f/(t)g(t) dt. 

Standard properties of the integral again show that this is a hermitian 
product which is positive definite. Let fn be the function such that 

A simple computation shows that fn is orthogonal to f m if n, m are dis­
tinct integers. Furthermore, we have 

If f E V, then its Fourier coefficient with respect to fn is therefore equal to 

which a reader acquainted with analysis will immediately recognize. 

We return to our general discussion of hermitian products. We have 
the analogue of Theorem 2.1 and its corollary for positive definite hermi­
tian products, namely: 

Theorem 2.4. Let V be a finite dimensional vector space over the com­
plex numbers, with a positive definite hermitian product. Let W be a 
subspace of V, and let {w 1, ••• ,wm } be an orthogonal basis of W. If 
W i= V, then there exist elements w m + l' ••• , W n of V such that 
{w 1, ••• ,wn} is an orthogonal basis of V. 

Corollary 2.5. Let V be a finite dimensional vector space over the com­
plex numbers, with a positive definite hermitian product. Assume that 
V i= {O}. Then V has an orthogonal basis. 

The proofs are exactly the same as those given previously for the real 
case, and there is no need to repeat them. 
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We now come to the theory of the norm. Let V be a vector space 
over C, with a positive definite hermitian product. If v E V, we define its 
norm by letting 

Ilvll = J <v, v). 

Since <v, v) is real, > 0, its square root is taken as usual to be the 
unique real number > 0 whose square is <v, v). 

We have the Schwarz inequality, namely 

I<v, w)1 < IIvll Ilwll· 

The three properties of the norm hold as in the real case: 

For all VE V, we have Ilvll > 0, and = 0 if and only if v = o. 

For any complex number a, we have Ilavll = lal Ilvll. 

For any elements v, WE V we have Ilv + wll < Ilvll + Ilwll. 

All these are again easily verified. We leave the first two as exercises, 
and carry out the third completely, using the Schwarz inequality. 

I t will suffice to prove that 

To do this, we observe that 

Ilv + wl1 2 = <v + w,v + w) = <v, v) + <w, v) + <v, w) + <w, w). 

But <w, v) + <v, w) = <v, w) + <v, w) < 21<v, w)l. Hence by Schwarz, 

Ilv + wl12 < IIvl12 + 21<v, w)1 + IIwl12 

< IIvl12 + 211vll Ilwll + IIwl12 = (11vll + IIwll)2. 

Taking the square root of each side yields what we want. 

An element v of V is said to be a unit vector as in the real case, if 
II vii = 1. An orthogonal basis {v l , ... ,vn} is said to be orthonormal if it 
consists of unit vectors. As before, we obtain an orthonormal basis from 
an orthogonal one by dividing each vector by its norm. 

Let {e l' ... ,en} be an orthonormal basis of V. Let v, WE V. There exist 
complex numbers a l , ... ,an E C and Pl' ... ,Pn E C such that 
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and 

Then 
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n 

= L aiPj<ei, ej) 
i,j= 1 

- -
= alPl + ... + anPn· 

111 

Thus in terms of this orthonormal basis, if A, B are the coordinate vec­
tors of v and w respectively, the hermitian product is given by the prod­
uct described in Example 3, namely A· B. 

We now have theorems which we state simultaneously for the real and 
complex cases. The proofs are word for word the same as the proof of 
rfheorem 2.3, and so will not be reproduced. 

Theorem 2.6. Let V be either a vector space over R with a positive de-
finite scalar product, or a vector space over C with a positive definite 
hermitian product. Assume that V has finite dimension n. Let W be a 
subspace of V of dimension r. Let W1- be the subspace of V consisting 
of all elements of V which are perpendicular to W. Then W 1- has di­
mension n - r. In other words, 

dim W + dim W1- = dim V. 

Theorem 2.7. Let V be either a vector space over R with a positive de­
finite scalar product, or a vector space over C with a positive definite 
hermitian product. Assume that V is finite dimensional. Let W be a 
subspace of V. Then V is the direct sum of Wand W1-. 

V, §2. EXERCISES 

0. What is the dimension of the subspace of R 6 perpendicular to the two vec­
tors (1, 1, - 2, 3,4, 5) and (0,0, 1, 1,0, 7)? 

1. Find an orthonormal basis for the subspace of R 3 generated by the following 
vectors: 
(a) (1, 1, -1) and (1, 0, 1) (b) (2,1,1) and (1,3, -1) 

2. Find an orthonormal basis for the subspace of R4 generated by the following 
vectors: 
(a) (1,2,1,0) and (1,2,3,1) 
(b) (1,1,0,0), (1, -1,1,1) and (-1,0,2,1) 

3. In Exercises 3 through 5 we consider the vector space of continuous real­
valued functions on the interval [0, 1J. We define the scalar product of 
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two such functions j, g by the rule 

<I, g) = ff(t)g(t) dt. 

Using standard properties of the integral, verify that this is a scalar product. 

4. Let V be the subspace of functions generated by the two functions j, g such 
that Jet) = t and get) = t2

• Find an orthonormal basis for V. 

5. Let V be the subspace generated by the three functions 1, t, t 2 (where 1 is 
the constant function). Find an orthonormal basis for V. 

6. Find an orthonormal basis for the subspace of C 3 generated by the following 
vectors: 
(a) (1, i,O) and (1, 1, 1) (b) (1, -1, - i) and (i, 1, 2) 

7. (a) Let V be the vector space of all n x n matrices over R, and define the 
scalar product of two matrices A, B by 

(A, B) = tr(AB), 

where tr is the trace (sum of the diagonal elements). Show that this is a 
scalar product and that it is non-degenerate. 

(b) If A is a real symmetric matrix, show that tr(AA) ~ 0, and tr(AA) > 0 if 
A ¥= O. Thus the trace defines a positive definite scalar product on the 
space of real symmetric matrices. 

( c) Let V be the vector space of real n x n symmetric matrices. What is 
dim V? What is the dimension of the subspace W consisting of those 
matrices A such that tr(A) = O? What is the dimension of the orthogonal 
complement W.l relative to the positive definite scalar product of part 
(b)? 

8. Notation as in Exercise 7, describe the orthogonal complement of the sub­
space of diagonal matrices. What is the dimension of this orthogonal com­
plement? 

9. Let V be a finite dimensional space over R, with a positive definite scalar 
product. Let {v l' ... ,vm } be a set of elements of V, of norm 1, and mutually 
perpendicular (i.e. (Vi' Vj ) = 0 if i ¥= j). Assume that for every V E V we have 

m 

IIvI12 = L (v, Vi )2. 
i= 1 

Show that {V l' ... ,Vm } is a basis of V. 

10. Let V be a finite dimensional space over R, with a posItIve definite scalar 
product. Prove the parallelogram law, for any elements v, WE V, 
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V, §3. APPLICATION TO LINEAR EQUATIONS; THE RANK 

Theorem 2.3 of the preceding section has an interesting application to 
the theory of linear equations. We consider such a system: 

We can interpret its space of solutions in three ways: 

(a) It consists of those vectors X giving linear relations 

between the columns of A. 

(b) The solutions form the space orthogonal to the row vectors of the 
matrix A. 

(c) The solutions form the kernel of the linear map represented by A, 
i.e. are the solutions of the equation AX = o. 

The linear equations are assumed to have coefficients aij in a field K. 
The analogue of Theorem 2.3 is true for the scalar product on Kn. In­
deed, let W be a subspace of K n and let W1- be the subset of all elements 
X E K n such that 

X·Y=O for all YEW 

Then W1- is a subspace of Kn. Observe that we can have X· X = 0 even 
if X i= O. For instance, let K = C be the complex numbers and let 
X = (1, i). Then X· X = 1 - 1 = O. However, the analogue of Theorem 
2.3 is still true, namely: 

Theorem 3.1. Let W be a subspace of Kn. Then 

dim W + dim W 1- = n. 

We shall prove this theorem in §6, Theorem 6.4. Here we shall apply it 
to the study of linear equations. 

If A = (aij) is an m x n matrix, then the columns A 1, ... ,An generate a 
subspace, whose dimension is called the column rank of A. The rows 
A l , ... ,Am of A generate a subspace whose dimension is called the row 
rank of A. We may also say that the column rank of A is the maximum 



114 SCALAR PRODUCTS AND ORTHOGONALITY [V, §3] 

number of linearly independent columns, and the row rank is the maxi­
mum number of linearly independent rows of A. 

Theorem 3.2. Let A = (a ij) be an m x n matrix. Then the row rank and 
the column rank of A are equal to the same number r. Furthermore, 
n - r is the dimension of the space of solutions of the system of linear 
equations (* * ). 

Proof We shall prove all our statements simultaneously. We consider 
the map 

given by 

This map is obviously linear. Its image consists of the space generated 
by the column vectors of A. Its kernel is by definition the space of solu­
tions of the system of linear equations. By Theorem 3.2 of Chapter III, 
§3, we obtain 

column rank + dim space of solutions = n. 

On the other hand, interpreting the space of solutions as the orthogonal 
space to the row vectors, and using the theorem on the dimension of an 
orthogonal subspace, we obtain 

row rank + dim space of solutions = n. 

From this all our assertions follow at once, and Theorem 3.2 is proved. 

In view of Theorem 3.2, the row rank, or the column rank, is also 
called the rank. 

Remark. Let L = LA: K n 
---+ K m be the linear map given by 

X~AX. 

Then L is also described by the formula 

Therefore 

rank A = dim 1m LA. 
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Let bi , ... ,bm be numbers, and consider the system of inhomogeneous 
equations 

It may happen that this system has no solution at all, i.e. that the equa­
tions are inconsistent. For instance, the system 

2x + 3y - z = 1, 

2x + 3y - z = 2 

has no solution. However, if there is at least one solution, then all solu­
tions are obtainable from this one by adding an arbitrary solution of the 
associated homogeneous system (**) (cf. Exercise 7). Hence in this case 
again, we can speak of the dimension of the set of solutions. It is the 
dimension of the associated homogeneous system. 

Example 1. Find the rank of the matrix 

(~ 
1 

1 

There are only two rows, so the rank is at most 2. On the other hand, 
the two columns 

(~) and G) 
are linearly independent, for if a, b are numbers such that 

then 
2a + b = 0, 

b = 0, 

so that a = 0. Therefore the two columns are linearly independent, and 
the rank is equal to 2. 
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Example 2. Find the dimension of the set of solutions of the following 
system of equations, and determine this set in R3: 

2x + y + z = 1, 

y - z = o. 

We see by inspection that there is at least one solution, namely x = t, 
y = z = O. The rank of the matrix 

(~ 1 

1 

is 2. Hence the dimension of the set of solutions is 1. The vector space 
of solutions of the homogeneous system has dimension 1, and one solu­
tion is easily found to be 

y = z = 1, x = -to 

Hence the set of solutions of the inhomogneous system is the set of all 
vectors 

(t, 0, 0) + t( -t, 1, 1), 

where t ranges over all real numbers. We see that our set of solutions is 
a straight line. 

Example 3. Find a basis for the space of solutions of the equation 

3x - 2y + z = O. 

Let A = (3, - 2, 1). The space of solutions is the space orthogonal to 
A, and hence has dimension 2. There are of course many bases for this 
space. To find one, we first extend (3, -2,1) = A to a basis of R3. We 
do this by selecting vectors B, C such that A, B, C are linearly indepen­
dent. For instance, take 

B = (0, 1, 0) 

and 

C = (0,0, 1). 

Then A, B, C are linearly independent. To see this, we proceed as usual. 
If a, b, c are numbers such that 

aA + bB + cC = 0, 
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then 
3a = 0, 

-2a + b = 0, 

a + c = 0. 

This is easily solved to see that 

a = b = c = 0, 

so A, B, C are linearly independent. Now we must orthogonalize these 
vectors. 

Let 

B' = B _ (B, A) A = (~ ~ ~) 
(A, A) 7' 7' 7 , 

C' = C _ (C, A) A _ (C, B') B' 
(A, A) (B', B') 

= (0,0, 1) - l4(3, - 2, 1) - ls(3, 5, 1). 

Then {B', C'} is a basis for the space of solutions of the given equation. 

V, §3. EXERCISES 

1. Find the rank of the following matrices. 

(a) G 1 

~) (b) (- ~ 2 -2) 
2 4 -5 

(c) G "" -;) (d) 1 2 -3 ~ 

4 -1 -2 3 
4 8 -12 

0 0 0 

(e) G -~) (f) 

(-~ 
0 

~) 2 

0 

(g) ( -: 
0 

-D 
(h) 1 2 -3 

1 -1 -2 3 
8 4 8 -12 

1 -1 5 

2. Let A, B be two matrices which can be multiplied. Show that 

rank of AB ~ rank of A, and also rank of AB ~ rank of B. 
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3. Let A be a triangular matrix 

Assume that none of the diagonal elements is equal to O. What is the rank of 
A? 

4. Find the dimension of the space of solutions of the following systems of equa­
tions. Also find a basis for this space of solutions. 
(a) 2x + y - z = 0 (b) x - y + z = 0 

y+z=O 
(c) 4x + 7y - nz = 0 

2x- y+ z=O 
(d) x + y + z = 0 

x-y =0 
y+z=O 

5. What is the dimension of the space of solutions of the following systems of 
linear equations? 
(a) 2x - 3y + z = 0 

x+y-z=O 
(c) 2x - 3y + z = 0 

x+y-z=O 
3x + 4y = 0 

5x + y + z = 0 

(b) 2x + 7y = 0 
x - 2y + z = 0 

(d) x + y + z = 0 
2x + 2y + 2z = 0 

6. Let A be a non-zero vector in n-space. Let P be a point in n-space. What is 
the dimension of the set of solutions of the equation 

X·A=P·A? 

7. Let AX = B be a system of linear equations, where A is an m x n matrix, X is 
an n-vector, and B is an m-vector. Assume that there is one solution X = X o. 
Show that every solution is of the form X 0 + Y, where Y is a solution of the 
homogeneous system A Y = 0, and conversely any vector of the form X 0 + y 
is a solution. 

V, §4. BILINEAR MAPS AND MATRICES 

Let U, V, W be vector spaces over K, and let 

g: U x V ---+ W 

be a map. We say that g is bilinear if for each fixed U E U the map 

v ~ g(u, v) 
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is linear, and for each fixed v E V, the map 

u ~ g(U, v) 

is linear. The first condition written out reads 

g(u, VI + V2) = g(U, VI) + g(U, V2), 

g(U, CV) = cg(U, V), 

and similarly for the second condition on the other side. 

119 

Example. Let A be an m x n matrix, A = (aij). We can define a map 

by letting 

which written out looks like this: 

YI Cll a~n ) (xI,···,xm) : 

amI amn 
Yn 

Our vectors X and Yare supposed to be column vectors, so that tx is a 
row vector, as shown. Then tXA is a row vector, and tXAY is a 1 x 1 
matrix, i.e. a number. Thus gA maps pairs of vectors into K. Such a 
map gA satisfies properties similar to those of a scalar product. If we fix 
X, then the map y~tXAY is linear, and if we fix Y, then the map 
X ~ tXAY is also linear. In other words, say fixing X, we have 

gA(X, Y + Y') = gA(X, Y) + gA(X, Y'), 

gA(X, cY) = cgA(X, Y), 

and similarly on the other side. This is merely a reformulation of prop­
erties of multiplication of matrices, namely 

tXA(Y + Y') = tXAY + tXAY', 

tXA(cY) = ctXAY. 
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It is convenient to write out the multiplication tx A Y as a sum. Note 
that 

and thus 

n m n m 

tXAY= L L xiaijYj = L L aijxiYj· 
j=l i=l j=l i=l 

Example. Let 

A = G -~} 
If X = G:) and Y = G:) then 

Theorem 4.1. Given a bilinear map g: K m x Kn -+ K, there exists a 
unique matrix A such that g = g A' i.e. such that 

g(X, Y) = tXAY. 

The set of bilinear maps of Km x Kn into K is a vector space, denoted 
by Bil(Km x Kn, K), and the association 

gives an isomorphism between Matm x n(K) and Bil(Km x K n, K). 

Proof. We first prove the first statement, concerning the existence of a 
unique matrix A such that g = g A. This statement is similar to the state­
ment representing linear maps by matrices, and its proof is an extension 
of previous proofs. Remember that we used the standard basis for Kn to 
prove these previous results, and we used coordinates. We do the same 
here. Let E 1

, ••• ,Em be the standard unit vectors for K m, and let 
ui, ... ,un be the standard unit vectors for Kn. We can then write any 
XEKm as 

and any Y E Kn as 

m 

n 

Y= LyjU
j
. 

j= 1 
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Then 

g(X, Y) = g(x1E1 + ... + xmEm, Y1 U 1 + ... + Yn un). 

U sing the linearity on the left, we find 

m 

g(X, Y) = L xig(Ei, Y1 U 1 + ... + Yn un). 
i= 1 

U sing the lineari ty on the right, we find 

m n 

g(X, Y) = L L xiYjg(Ei, U j). 
i=1 j=1 

Let 

Then we see that 
m n 

g(X, Y) = L L aijxiYj, 
i=1 j=1 

which is precisely the expression we obtained for the product 

tXAY, 

where A is the matrix (aij). This proves that g = gA for the choice of aij 
given above. 

The uniqueness is also easy to see. Suppose that B is a matrix such 
that g = gR. Then for all vectors X, Y we must have 

Subtracting, we find 
tX(A - B)Y= 0 

for all X, Y. Let C = A - B, so that we can rewrite this last equality as 

for all X, Y. Let C = (c ij). We must prove that all cij = O. The above 
equation being true for all X, Y, it is true in particular if we let X = Ek 
and Y = U' (the unit vectors!). But then for this choice of X, we find 

This proves that Ckl = 0 for all k, I, and proves the first statement. 
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The second statement, concerning the isomorphism between the space 
of matrices and bilinear maps will be left as an exercise. See Exercises 3 
and 4. 

V, §4. EXERCISES 

1. Let A be an n x n matrix, and assume that A is symmetric, i.e. A = tAo Let 
g A: K n x K n --+ K be its associated bilinear map. Show that 

for all X, Y E K n
, and thus that g A is a scalar product, i.e. satisfies conditions 

SP 1, SP 2, and SP 3. 

2. Conversely, assume that A is an n x n matrix such that 

for all X, Y. Show that A is symmetric. 

3. Show that the bilinear maps of K n x K m into K form a vector space. More 
generally, let Bil(U x V, W) be the set of bilinear maps of U x V into W. 
Show that Bil( U x V, W) is a vector space. 

4. Show that the association 

is an isomorphism between the space of m x n matrices, and the space of bi­
linear maps of K m x Kn into K. 

Note: In calculus, if f is a function of n variables, one associates with f a 
matrix of second partial derivatives. 

which is symmetric. This matrix represents the second derivative, which is a 
bilinear map. 

5. Write out in full in terms of coordinates the expression for tx A Y when A IS 

the following matrix, and X, Yare vectors of the corresponding dimension. 
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(e) ( -~ 2 

D (f) (-~ 
2 -n 1 2 
"3 

5 -1 0 

6. Let 

c= (-: 

2 

D 1 

0 

and define g(X, Y) = tXCY. Find two vectors X, YER 3 such that 

g(X, Y) :;6 g(Y, X). 

V, §5. GENERAL ORTHOGONAL BASES 

Let V be a finite dimensional vector space over the field K, with a scalar 
product. This scalar product need not be positive definite, but there are 
interesting examples of such products nevertheless, even over the real 
numbers. For instance, one may define the product of two vectors 
X = (Xl' X2) and Y = (Yl' Y2) to be XlYl - X2Y2. Thus 

Such products arise in many applications, in physics for instance, where 
one deals with a product of vectors in 4-space, such that if 

x = (x, y, z, t), 

then 

In this section, we shall see what can be salvaged of the theorems 
concerning orthogonal bases. 

Let V be a finite dimensional vector space over the field K, with a 
scalar product. If W is a subspace, it is not always true in general that V 
is the direct sum of Wand Wl.. This comes from the fact that there 
may be a non-zero vector v in V such that (v, v) = O. For instance, over 
the complex numbers, (1, i) is such a vector. The theorem concerning the 
existence of an orthogonal basis is still true, however, and we shall prove 
it by a suitable modification of the arguments given in the preceding sec­
tion. 

We begin by some remarks. First, suppose that for every element u of 
V we have (u, u) = O. The scalar product is then said to be null, and V 
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is called a null space. The reason for this is that we necessarily have 
(v, w) = 0 for all v, w in V. Indeed, we can write 

(v, w) = ![(v + w, v + w) - (v, v) - (w, w)]. 

By assumption, the right-hand side of this equation is equal to 0, as one 
sees trivially by expanding out the indicated scalar products. Any basis 
of V is then an orthogonal basis by definition. 

Theorem 5.1. Let V be a finite dimensional vector space over the field 
K, and assume that V has a scalar product. If V i= {O}, then V has an 
orthogonal basis. 

Proof We shall prove this by induction on the dimension of V. If V 
has dimension 1, then any non-zero element of V is an orthogonal basis 
of V so our assertion is trivial. 

Assume now that dim V = n > 1. Two cases arise. 
Case 1. For every element UE V, we have (u, u) = O. Then we already 

observed that any basis of V is an orthogonal basis. 
Case 2. There exists an element V l of V such that (Vl vl ) i= O. We 

can then apply the same method that was used in the positive definite 
case, i.e. the Gram-Schmidt orthogonalization. We shall in fact prove 
that if V l is an element of V such that (Vb V l ) i= 0, and if Vl is the 1-
dimensional space generated by Vl' then V is the direct sum of Vl and vt. 
Let v E V and let c be as always, 

Then v - CV l lies in vt, and hence the expression 

shows that V is the sum of Vl and V~. This sum is direct, because 
Vl n vt is a subspace of Vb which cannot be equal to V1 (because 
(Vl' Vl) i= 0), and hence must be 0 because V1 has dimension 1. Since 
dim vt < dim V, we can now repeat our entire procedure dealing with 
the space of vt, in other words use induction. Thus we find an orthogo­
nal basis of V~, say {v 2 , ••• ,vn}. It follows at once that {v 1, .•• ,vn } is an 
orthogonal basis of V. 

Example 1. In R2, let X = (Xb x 2) and Y = (Yb Y2). Define their 
product 
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Then it happens that (1, 0) and (0, 1) form an orthogonal basis for 
this product also. However, (1, 2) and (2, 1) form an orthogonal basis 
for this product, but are not an orthogonal basis for the ordinary dot 
product. 

Example 2. Let V be the subspace of R3 generated by the two vectors 
A = (1, 2, 1) and B = (1, 1, 1). If X = (Xl' X 2, x 3) and Y = (Yl' Y2' Y3) are 
vectors in R 3, define their product to be 

We wish to find an orthogonal basis of V with respect to this product. 
We note that <A, A) = 1 - 4 - 1 = -4 i= O. We let V l = A. We can 
then orthogonalize B, and we let 

<B, A) 1 
c = =-. 

<A, A) 2 

We let V 2 = B - tAo Then {Vl' v2 } is an orthogonal basis of V with re­
spect to the given product. 

V, §5. EXERCISES 

1. Find orthogonal bases of the subspace of R 3 generated by the indicated vec­
tors A, B, with respect to the indicated scalar product, written X· Y. 
(a) A = (1, 1, 1), B = (1, - 1, 2); 

X· Y = XtYt + 2X2 Y2 + X 3 Y3 

(b) A = (1, - 1, 4), B = ( - 1, 1, 3); 
X· Y = XtYt - 3X2 Y2 + X t Y3 + Yt X 3 - X 3 Y2 - X 2 Y3 

2. Find an orthogonal base for the space C2 over C, if the scalar product IS 

given by X· Y = XtYt - iX 2 Yt - iX t Y2 - 2X 2 Y2. 

3. Same question as in Exercise 2, if the scalar product is given by 

V, §6. THE DUAL SPACE AND SCALAR PRODUCTS 

This section merely introduces a name for some notions and properties 
we have already met in greater generality. But the special case to be 
considered is important. 
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Let V be a vector space over the field K. We view K as a one-dimen­
sional vector space over itself. The set of all linear maps of V into K is 
called the dual space, and will be denoted by V*. Thus by definition 

V* = !l'(V, K). 

Elements of the dual space are usually called functionals. 
Suppose that V is of finite dimension n. Then V is isomorphic to Kn. 

In other words, after a basis has been chosen, we can associate to each 
element of V its coordinate vector in Kn. Suppose therefore that V = Kn. 

By what we saw in Chapter IV, §2 and §3 given a functional 

there exists a unique element A E K n such that 

qJ(X) = A·X 

Thus qJ = LA. We also saw that the association 

is a linear map, and therefore this association is an isomorphism 

between K n and V*. In particular: 

Theorem 6.1. Let V be a vector space of finite dimension. Then 
dim V* = dim V. 

Example 1. Let V = Kn. Let qJ: K n -+ K be the projection on the first 
factor, i.e. 

Then qJ is a functional. Similarly, for each i = 1, ... ,n we have a func­
tional qJi such that 

These functionals are just the coordinate functions. 

Let V be finite dimensional of dimension n. Let {v 1, ••• ,vn } be a basis. 
Write each element v in terms of its coordinate vector 
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For each i we let 

be the functional such that 

and if i =1= j. 

Then 

The functionals {qJ 1, ... ,qJn} form a basis of V*, called the dual basis of 
{V1' ... ,vn}· 

Example 2. Let V be a vector space over K, with a scalar product. 
Let Vo be an element of V. The map 

is a functional, as follows at once from the definition of a scalar product. 

Example 3. Let V be the vector space of continuous real-valued func­
tions on the interval [0, 1]. We can define a functional L: V -+ R by the 
formula 

L(f) = ff(t) dt 

for fE V. Standard properties of the integral show that this is a linear 
map. If fo is a fixed element of V, then the map 

is also a functional on V. 

Example 4. Let V be as in Example 3. Let b: V -+ R be the map such 
that b(f) = f(O). Then b is a functional, called the Dirac functional. 

Example 5. Let V be a vector space over the complex numbers, and 
suppose that V has a hermitian product. Let Vo be an element of V. The 
map 
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is a functional. However, it is not true that the map v ~ <vo, v) is a 
functional! Indeed, we have for any C( E C, 

Hence this last map IS not linear. It is sometimes called anti-linear or 
semi-linear. 

Let V be a vector space over the field K, and assume given a scalar 
product on V. To each element v E V we can associate a functional Lv in 
the dual space, namely the map such that 

for all WE V. If Vl' V 2 E V, then Lv! + V2 = Lv! + L v2 . If c E K then Lev = cLv. 
These relations are essentially a rephrasing of the definition of scalar 
product. We may say that the map 

is a linear map of V into the dual space V*. The next theorem IS very 
important. 

Theorem 6.2. Let V be a finite dimensional vector space over K with a 
non-degenerate scalar product. Then the map 

is an isomorphism of V with the dual space V*. 

Proof. We have seen that this map is linear. Suppose Lv = O. This 
means that <v, w) = 0 for all WE V. By the definition of non-degenerate, 
this implies that v = O. Hence the map v ~ Lv is injective. Since 
dim V = dim V*, it follows from Theorem 3.3 of Chapter III that this 
map is an isomorphism, as was to be shown. 

In the theorem, we say that the vector v represents the functional L 
with respect to the non-degenerate scalar product. 

Examples. We let V = K n with the usual dot product, 

which we know is non-degenerate. If 

qJ:V-+K 
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is a linear map, then there exists a unique vector A E K n such that for all 
HEKn we have 

qJ(H) = A·H. 

This allows us to represent the functional qJ by the vector A. 

Example from calculus. Let U be an open set in Rn and let 

f: U -+ R 

be a differentiable function. In calculus of several variables, this means 
that for each point X E Rn there is a function g(H), defined for small vec­
tors H such that 

lim g(H) = 0, 
H-+O 

and there is a linear map L: Rn -+ R such that 

f(X + H) = f(X) + L(H) + IIHllg(H). 

By the above considerations, there is a unique element A E Rn such that 
L = LA' that is 

f(X + H) =f(X) + A·H + IIHllg(H). 

In fact, this vector A is the vector of partial derivatives 

A = (Of , ... , Of) 
ox! OXn 

and A is called the gradient of f at X. Thus the formula can be written 

f(X + H) =f(X) + (gradf)(X)·H + IIHllg(H). 

The vector (grad f)(X) represents the functional L: Rn -+ R. The function­
al L is usually denoted by f'(X), so we can also write 

f(X + H) = f(X) + f'(X)H + IIHllg(H). 

The functional L is also called' the derivative of f at X. 

Theorem 6.3. Let V be a vector space of dimension n. Let W be a sub­
space of V and let 

W1. = {qJE V* such that qJ(W) = O}. 
Then 

dim W + dim W 1. = n. 
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Proof. If W = {O}, the theorem is immediate. Assume W i= {O}, and 
let {W l' ... ,W r} be a basis of W Extend this basis to a basis 

of V. Let {qJ1' ... ,qJn} be the dual basis. We shall now show that 
{qJr+ 1'··· ,qJn} is a basis of W-L. Indeed, qJj(W) = 0 if j = r + 1, ... ,n, so 
{qJr+ l' ... ,qJn} is a basis of a subspace of W-L. Conversely, let qJ E W-L. 
Write 

Since qJ(W) = 0 we have 

for i = 1, ... ,r. 

Hence qJ lies In the space generated by qJr+ 1' ... ,qJn. This proves the 
theorem. 

Let V be a vector space of dimension n, with a non-degenerate scalar 
product. We have seen in Theorem 6.2 that the map 

gives an isomorphism of V with its dual space V*. Let W be a subspace 
of V. Then we have two possible orthogonal complements of W: 

First, we may define 

perpv(W) = {VE V such that <v, w) = 0 for all WE w}. 

Second, we may define 

perpv*(W) = {qJE V* such that qJ(W) = O}. 

The map 

of Theorem 6.2 gives an isomorphism 

Therefore we obtain as a corollary of Theorem 6.3: 
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Theorem 6.4. Let V be a finite dimensional vector space with a non-de­
generate scalar product. Let W be a subspace. Let W1- be the subspace 
of V consisting of all elements v E V such that < v, w> = 0 for all WE W 
Then 

dim W + dim W1- = dim V. 

This proves Theorem 3.1, which we needed in the study of linear 
equations. For this particular application, we take the scalar product to 
be the ordinary dot product. Thus if W is a subspace of K n and 

W1- = {X EK n such that X· Y = 0 for all YE W} 

then 
dim W + dim W 1- = n. 

V, §6. EXERCISES 

1. Let A, B be two linearly independent vectors in Rn. What is the dimension of 
the space perpendicular to both A and B? 

2. Let A, B be two linearly independent vectors in en. What is the dimension of 
the subspace of en perpendicular to both A and B? (Perpendicularity refers to 
the ordinary dot product of vectors in en.) 

3. Let W be the subspace of e3 generated by the vector (1, i, 0). Find a basis of 
W1. in e3 (with respect to the ordinary dot product of vectors). 

4. Let V be a vector space of finite dimension n over the field K. Let qJ be a 
functional on V, and assume qJ #- o. What is the dimension of the kernel of 
qJ? Proof? 

5. Let V be a vector space of dimension n over the field K. Let 1/1, qJ be two 
non-zero functionals on V. Assume that there is no element C E K, c#-O such 
that t/I = CqJ. Show that 

(Ker qJ) n (Ker t/I) 

has dimension n - 2. 

6. Let V be a vector space of dimension n over the field K. Let V** be the dual 
space of V*. Show that each element v E V gives rise to an element Av in V** 
and that the map v 1---+ Av gives an isomorphism of V with V**. 

7. Let V be a finite dimensional vector space over the field K, with a non-degen­
erate scalar product. Let W be a subspace. Show that W 1.1. = W 
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V, §7. QUADRATIC FORMS 

A scalar product on a vector space V is also called a symmetric bilinear 
form. The word "symmetric" is used because of condition SP 1 in 
Chapter V, §1. The word "bilinear" is used because of condition SP 2 
and SP 3. The word "form" is used because the map 

(v, w) ~ <v, w) 

is scalar valued. Such a scalar product is often denoted by a letter, like 
a function 

g: V x V --+ K. 

Thus we write 

g(v, w) = <v, w). 

Let V be a finite dimensional space over the field K. Let g = < , ) be 
a scalar product on V. By the quadratic form determined by g, we shall 
mean the function 

f: V --+ K 

such that f(v) = g(v, v) = <v, v). 

Example 1. If V = K n
, then f(X) = X· X = xi + ... + x; is the quad­

ratic form determined by the ordinary dot product. 
In general, if V = K n and C is a symmetric matrix in K, representing 

a symmetric bilinear form, then the quadratic form is given as a function 
of X by 

n 

f(X) = txcx = L cijxixj • 

i,j= 1 

If C is a diagonal matrix, say 

C1 0 0 

C= 
0 C2 0 

0 0 Cn 

then the quadratic form has a simpler expression, namely 



[V, §7] QUADRATIC FORMS 133 

Let V be again a finite dimensional vector space over the field K. Let 
g be a scalar product, and f its quadratic form. Then we can recover the 
values of g entirely from those of f, because for v, WE V, 

<v, W) = i[<v + w, v + W) - <v - w, v - W)] 

or using g, f, 

g(v, w) = i[f(v + w) - f(v - w)]. 

We also have the formula 

<v, w) = t[<v + w,v + w) - <v, v) - <w, w)]. 

The proof is easy, expanding out using the bilinearity. For instance, for 
the second formula, we have 

<v + w, v + w) - <v, v) - <w, w) 

= <v, v) + 2<v, w) + <w, w) - <v, v) - <w, w) 

= 2<v, w). 

We leave the first as an exercise. 

Example 2. Let V = R2 and let tx = (x, y) denote elements of R2. 
The function f such that 

f(x, y) = 2X2 + 3xy + y2 

is a quadratic form. Let us find the matrix of its bilinear symmetric form 
g. We write this matrix 

and we must have 

!(X,y)=(X,y)(: ~)G) 
or in other words 
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Thus we obtain a = 2, 2b = 3, and d = 1. The matrix is therefore 

(
2 ~) 

C = ~ :. 

Application with calculus. Let 

f: R n 
--+ R 

be a function which has partial derivatives of order 1 and 2, and such 
that the partial derivatives are continuous functions. Assume that 

for all X ERn. 

Then f is a quadratic form, that is there exists a symmetric matrix 
A = (aij) such that 

n 

f(X) = L aijxixj . 
i,j= 1 

The proof of course takes calculus of several variables. See for In­
stance my own book on the subject. 

V, §7. EXERCISES 

1. Let V be a finite dimensional vector space over a field K. Let f: V --. K be a 
function, and assume that the function 9 defined by 

g(v, w) = f(v + w) - f(v) - f(w) 

is bilinear. Assume that f(av) = a2f(v) for all v E V and a E K. Show that f is 
a quadratic form, and determine a bilinear form from which it comes. Show 
that this bilinear form is unique. 

2. What is the associated matrix of the quadratic form 

f(X) = x 2 - 3xy + 4y2 

if tx = (x, y, z)? 

3. Let Xl' x 2 , x3' X4 be the coordinates of a vector X, and Yl' Y2' Y3' Y4 the 
coordinates of a vector Y. Express in terms of these coordinates the bilinear 
form associated with the following quadratic forms. 
(a) X l X 2 (b) X l X 3 + x~ (c) 2X l X 2 - X 3 X 4 (d) xi - 5X2 X 3 + x~ 
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4. Show that if 11 is the quadratic form of the bilinear form g1' and 12 the quad­
ratic form of the bilinear form g 2' then 11 + 12 is the quadratic form of the 
bilinear form g 1 + g 2· 

V, §8. SYLVESTER'S THEOREM 

Let V be a finite dimensional vector space over the real numbers, of di­
mension > O. Let < , ) be a scalar product on V. As we know, by 
Theorem 5.1 we can always find an orthogonal basis. Our scalar prod­
uct need not be positive definite, and hence it may happen that there is a 
vector vEVsuch that <v,v) =0, or <v,v) =-1. 

Example. Let V = R2, and let the form be represented by the matrix 

(
-1 c= +1 

+1). 
-1 

Then the vectors 

and 

form an orthogonal basis for the form, and we have 

as well as 

For instance, in term of coordinates, if tx = (1, 1) is the coordinate vec­
tor of say V 2 with respect to the standard basis of R2 then a trivial direct 
computation shows that 

<x, X) = txcx = O. 

Our purpose in this section is to analyse the general situation in arbi­
trary dimensions. 

Let {v l , ... ,vn } be an orthogonal basis of V. Let 

After renumbering the elements of our basis if necessary, we may assume 
that {v l , ... ,vn } are so ordered that: 
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We are interested in the number of positive terms, negative terms, and 
zero terms, among the "squares" <Vi,Vi), in other words, in the numbers 
rand s. We shall see in this section that these numbers do not depend 
on the choice of orthogonal basis. 

If X is the coordinate vector of an element of V with respect to our 
basis, and if f is the quadratic form associated with our scalar product, 
then in terms of the coordinate vector, we have 

We see that in the expression of f in terms of coordinates, there are ex­
actly r positive terms, and s - r negative terms. Furthermore, n - s vari­
ables have disappeared. 

We can see this even more clearly by further normalizing our basis. 
We generalize our notion of orthonormal basis. We define that an or­

thogonal basis {v l , ... ,vn } to be orthonormal if for each i we have 

or or 

If {v l , ... ,vn } is an orthogonal basis, then we can obtain an orthonor­
mal basis from it just as in the positive definite case. We let Ci = <Vi' Vi). 

If Ci = 0, we let 

If Ci > 0, we let 

If Ci < 0, we let 

Then {V'l , ... ,v~} is an orthonormal basis. 
Let {v l , ... ,vn} be an orthonormal basis of V, for our scalar product. 

If X is the coordinate vector of an element of V, then in terms of our 
orthonormal basis, 

f(X) - 2 2 2 2 - Xl + ... + Xr - Xr + l - ... - Xs· 

By using an orthonormal basis, we see the number of positive and nega­
tive terms particularly clearly. In proving that the number of these does 
not depend on the orthonormal basis, we shall first deal with the number 
of terms which disappear, and we shall give a geometric interpretation 
for it. 
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Theorem 8.1. Let V be a finite dimensional vector space over R, with a 
scalar product. Assume dim V > O. Let Vo be the subspace of V consist­
ing of all vectors v E V such that <v, w) = 0 for all WE V. Let {v l' ... ,vn } 

be an orthogonal basis for V. Then the number of integers i such that 
< Vi' Vi) = 0 is equal to the dimension of Vo. 

Proof. We suppose {v 1, ••• ,vn } so ordered that 

but if i > s. 

Since {v 1, ••• ,vn } is an orthogonal basis, it is then clear that vs + l' ... ,Vn lie 
in Vo. Let v be an element of Vo, and write 

with Xi E R. Taking the scalar product with any v j for j < s, we find 

Since <Vj' Vj) ;;/= 0, it follows that Xj = o. Hence v lies in the space gener­
ated by Vs + 1 , ••• ,Vn • We conclude that VS + 1' ••• 'Vn form a basis of Vo. 

In Theorem 8.1, the dimension of Vo is called the index of nullity of 
the form. We see that the form is non-degenerate if and only if its index 
of nullity is o. 

Theorem 8.2 (Sylvester's theorem). Let V be a finite dimensional vector 
space over R, with a scalar product. There exists an integer r > 0 hav­
ing the following property. If {v 1, ••• ,vn } is an orthogonal basis of V, 
then there are precisely r integers i such that <Vi' Vi) > O. 

Proof. Let {v 1, ••• ,vn} and {w 1, ••• ,wn} be orthogonal bases. We sup­
pose their elements so arranged that 

Similarly, 

<Vi' Vi) > 0 

<Vi'Vi) < 0 

<Vi'Vi) = 0 

<Wi' Wi) > 0 

<Wi' Wi) < 0 

<Wi' Wi) = 0 

if 

if 

if 

if 

if 

if 

1 < i < r, 

r + 1 < i < s, 

s + 1 < i < n. 

1 < i < r', 

r' + 1 < i < s', 

s' + 1 < i < n. 
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We shall first prove that 

are linearly independent. 
Suppose we have a relation 

Then 
X 1 V1 + ... + XrVr = -(Yr'+lWr'+l + ... + YnWn)· 

Let C i = <Vi' Vi) and di = <Wi' Wi) for all i. Taking the scalar product of 
each side of the preceding equation with itself, we obtain 

The left-hand side is > O. The right-hand side is < O. the only way 
this can hold is that they are both equal to 0, and this holds only if 

From the linear independence of W r, + 1' ... ,wn it follows that all coeffi­
cients Yr' + l' ... ,Yn are also equal to o. 

Since dim V = n, we now conclude that 

r+n-r'<n 

or in other words, r < r'. But the situation holding with respect to our 
two bases is symmetric, and thus r' < r. It follows that r' = r, and 
Sylvester's theorem is proved. 

The integer r of Sylvester's theorem is called the index of positivity of 
the scalar product. 

V, §8. EXERCISES 

1. Determine the index of nullity and index of positivity for each product deter­
mined by the following symmetric matrices, on R 2 • 

(b) G ~) 
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2. Let V be a finite dimensional space over R, and let ( , ) be a scalar product 
on V. Show that V admits a direct sum decomposition 

where Vo is defined as in Theorem 6.1, and where the product is positive defi­
nite on V + and negative definite on V -. (This means that 

(v v) > 0 

(v, v) < 0 

for all v E V+, v#-o 

for all v E V-, v #- 0.) 

Show that the dimensions of the spaces V +, V - are the same in all such de­
com positions. 

3. Let V be the vector space over R of 2 x 2 real symmetric matrices. 
(a) Given a symmetric matrix 

show that (x, y, z) are the coordinates of A with respect to some basis of 
the vector space of all 2 x 2 symmetric matrices. Which basis? 

(b) Let 
f(A) = xz - yy = xz - y2. 

If we view (x, y, z) as the coordinates of A then we see that f is a quad­
ratic form on V. Note that f(A) is the determinant of A, which could be 
defined here ad hoc in a simple way. 

Let W be the subspace of V consisting of all A such that tr(A) = O. 
Show that for A E Wand A#-O we have f(A) < o. This means that the 
quadratic form is negative definite on W. 



CHAPTER VI 

Determ i nants 

We have worked with vectors for some time, and we have often felt the 
need of a method to determine when vectors are linearly independent. 
Up to now, the only method available to us was to solve a system of 
linear equations by the elimination method. In this chapter, we shall 
exhibit a very efficient computational method to solve linear equations, 
and determine when vectors are linearly independent. 

The cases of 2 x 2 and 3 x 3 determinants will be carried out sepa­
rately in full, because the general case of n x n determinants involves no­
tation which adds to the difficulties of understanding determinants. In a 
first reading, we suggest omitting the proofs in the general case. 

VI, §1. DETERMINANTS OF ORDER 2 

Before stating the general properties of an arbitrary determinant, we shall 
consider a special case. 

Let 

be a 2 x 2 matrix in a field K. We define its determinant to be 
ad - be. Thus the determinant is an element of K. We denote it by 

a b 
= ad - be. 

e d 
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For example, the determinant of the matrix 

lS equal to 2·4 - 1 . 1 = 7. The determinant of 

is equal to (- 2)·5 - ( - 3)·4 = -10 + 12 = 2. 
The determinant can be viewed as a function of the matrix A. It can 

also be viewed as a function of its two columns. Let these be A 1 and A 2 

as usual. Then we write the determinant as 

D(A), Det(A), or 

The following properties are easily verified by direct computation, 
which you should carry out completely. 

As a function of the column vectors, the determinant is linear. 

This means: let b', d' be two numbers. Then 

Furthermore, if t is a number, then 

Det(a tb) = t Det(a b) 
c td cd· 

The analogous properties also hold with respect to the first column. 
We give the proof for the additivity with respect to the second column 
to show how easy it is. Namely, we have 

a(d + d') - c(b + b') = ad + ad' - cb - cb' 

= ad - bc + ad' - b' c, 

which is precisely the desired additivity. Thus in the terminology of 
Chapter V, §4 we may say that the determinant is bilinear. 

If the two columns are equal, then the determinant is equal to O. 
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If A is the unit matrix, 

then Det(A) = 1. 

The determinant also satisfies the following additional properties. 

If one adds a multiple of one column to the other, then the value of the 
determinant does not change. 

In other words, let t be a number. The determinant of the matrix 

(
a + tb b) 
c + td d 

is the same as D(A), and similarly when we add a multiple of the first 
column to the' second. 

If the two columns are interchanged, then the determinant changes by a 
sign. 

In other words, we have 

The determinant of A is equal to the determinant of its transpose, i.e. 

D(A) = D(~). 

Explicitly, we have 

The vectors (:) and (~) are linearly dependent if and only if the deter­

minant ad - bc is equal to O. 

We give a direct proof for this property. Assume that there exists 
numbers x, y not both 0 such that 

xa + yb = 0, 

xc + yd = O. 
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Say x =1= O. Multiply the first equation by d, multiply the second by b, 
and subtract. We obtain 

xad - xbe = 0, 

whence x(ad - be) = O. It follows that ad - be = O. Conversely, assume 
that ad - be = 0, and assume that not both vectors (a, e) and (b, d) are 
the zero vectors (otherwise, they are obviously linearly dependent). Say 
a =1= O. Let y = - a and x = b. Then we see at once that 

xa + yb = 0, 

xe + yd = 0, 

so that (a, e) and (b, d) are linearly dependent, thus provIng our asser­
tion. 

VI, §2. EXISTENCE OF DETERMINANTS 

We shall define determinants by induction, and give a formula for com­
puting them at the same time. We first deal with the 3 x 3 case. 

We have already defined 2 x 2 determinants. Let 

al2 a l3 ) 
a22 a23 

a32 a33 

be a 3 x 3 matrix. We define its determinant according to the formula 
known as the expansion by a row, say the first row. That is, we define 

(*) Det(A) = all 
a22 a23 a2l a23 + al 3 

a2l a22 - a l2 
a32 a33 a3l a33 a3l a32 

all al2 al 3 
a2l a22 a23 
a3l a32 a33 

We may describe this sum as follows. Let Aij be the matrix obtained 
from A by deleting the i-th row and the j-th column. Then the sum ex­
pressing Det(A) can be written 
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In other words, each term consists of the product of an element of the 
first row and the determinant of the 2 x 2 matrix obtained by deleting 
the first row and the j-th column, and putting the appropriate sign to 
this term as shown. 

Example 1. Let 

A = ( ~ ! ~). 
-3 2 5 

Then 

and our formula for the determinant of A yields 

1 4 1 4 1 1 
Det( A) = 2 2 5 - 1 _ 3 5 + 0 - 3 2 

= 2(5 - 8) - 1(5 + 12) + 0 

= -23. 

The determinant of a 3 x 3 matrix can be written as 

We use this last expression if we wish to consider the determinant as a 
function of the columns of A. 

Later we shall define the determinant of an n x n matrix, and we use 
the same notation 

IAI = D(A) = Det(A) = D(Al, ... ,An). 

Already in the 3 x 3 case we can prove the properties expressed in the 
next theorem, which we state, however, in the general case. 

Theorem 2.1. The determinant satisfies the following properties: 

1. As a function of each column vector, the determinant is linear, i.e. if 
the j-th column Ai is equal to a sum of two column vectors, say 
Ai = C + C', then 

D(A 1, ... ,C + C', ... ,An) 

= D( A 1, ... ,C, ... ,A n) + D( A 1 , ... ,C', ... ,A n). 
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Furthermore, if t is a number, then 

D(A 1, ... ,tAi, ... ,An) = tD(A 1, ... ,Ai, ... ,An). 

2. If two adjacent columns are equal, i.e. if Ai = Ai+ 1 for some 
j = 1, ... ,n - 1, then the determinant D( A) is equal to O. 

3. If I is the unit matrix, then D(I) = 1. 

Proof (in the 3 x 3 case). The proof is by direct computations. Sup­
pose say that the first column is a sum of two columns: 

Al = B + C, 

Substituting in each term of (*), we see that each term splits into a sum 
of two terms corresponding to Band C. For instance, 

a22 a23 = b l 

a22 a23 + C1 
a22 a23 

all 
a32 a33 a32 a33 a32 a33 

b2 + c2 a23 b2 a23 + a 12 

c2 a23 a 12 
h3 + c3 

= a 12 
h3 a33 a33 a33 c3 

and similarly for the third term. The proof with respect to the other 
column is analogous. Furthermore, if t is a number, then 

because each 2 x 2 determinant is linear in the first column, and we can 
take t outside each one of the second and third terms. Again the proof 
is similar with respect to the other columns. A direct substitution shows 
that if two adjacent columns are equal, then formula (*) yields 0 for the 
determinant. Finally, one sees at once that if A is the unit matrix, then 
Det(A) = 1. Thus the three properties are verified. 

In the above proof, we see that the properties of 2 x 2 determinants 
are used to prove the properties of 3 x 3 determinants. 
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Furthermore, there is no particular reason why we selected the expan­
sion according to the first row. We can also use the second row, and 
write a similar sum, namely: 

Again, each term is the product of a2j times the determinant of the 2 x 2 
matrix obtained by deleting the second row and j-th column, and putting 
the appropriate sign in front of each term. This sign is determined ac­
cording to the pattern: 

One can see directly that the determinant can be expanded according to 
any row by multiplying out all the terms, and expanding the 2 x 2 deter­
minants, thus obtaining the determinant as an alternating sum of six 
terms: 

Furthermore, we can also expand according to columns following the 
same principle. For instance, expanding out according to the first 
column: 

yields precisely the same six terms as in (**). 
The reader should now look at least at the general expression given 

for the expansion according to a row or column in Theorem 2.4, inter­
preting i, j to be 1, 2, or 3 for the 3 x 3 case. 

Since the determinant of a 3 x 3 matrix is linear as a function of its 
columns, we may say that it is trilinear; just as a 2 x 2 determinant IS 

bilinear. In the n x n case, we would say n-linear, or multilinear. 
In the case of 3 x 3 determinants, we have the following result. 

Theorem 2.2. The determinant satisfies the rule for expansion according 
to rows and columns, and Det(A) = Det(~). In other words, the deter­
minant of a matrix is equal to the determinant of its transpose. 
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This last assertion follows because taking the transpose of a matrix 
changes rows into columns and vice versa. 

Example 2. Compute the determinant 

301 

125 

-1 4 2 

by expanding according to the second column. 
The determinant is equal to 

2 
3 

-1 
1 3 

-4 
2 1 

1 
5 =2(6-(-1»)-4(15-1)= -42. 

Note that the presence of a 0 in the second column eliminates one term 
in the expansion, since this term would be O. 

We can also compute the above determinant by expanding according 
to the third column, namely the determinant is equal to 

The n x n case 

Let 

1 
+ 1 -1 

23030 
4 - 5 -1 4 + 2 1 2 = -42. 

F: K n x ... x K n ~ K 

be a function of n variables, where each variable ranges over Kn. We say 
that F is multilinear if F satisfies the first property listed in Theorem 2.1, 
that is 

F(Al, ... ,C + C', ... ,An) = F(Al, ... ,C, ... ,An) + F(Al, ... ,C', ... ,An), 

F(A 1, ... ,tC, ... ,An) = tF(A 1, ... ,C, ... ,An). 

This means that if we consider some index j, and fix Ak for k i= j, then 
the function Xi H F(A 1, ... ,X i, ... ,An) is linear in the j-th variable. 

We say that F is alternating if whenever Ai = Ai+ 1 for some j we 
have 

F(A 1, ... ,Ai,Ai, ... ,An) = O. 

This is the second property of determinants. 
One fundamental theorem of this chapter can be formulated as fol­

lows. 
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Theorem 2.3. There exists a multilinear alternating function 

F:Knx···xKn~K 

such that F(J) = 1. Such a function is uniquely determined by these 
three properties. 

The uniqueness proof will be postponed to Theorem 7.2. We have al­
ready proved existence in case n = 2 and n = 3. We shall now prove the 
existence in general. 

The general case of n x n determinants is done by induction. Suppose 
that we have been able to define determinants for (n - 1) x (n - 1) 
matrices. Let i, j be a pair of integers between 1 and n. If we cross out 
the i-th row and j-th column in the n x n matrix A, we obtain an 
(n - 1) x (n - 1) matrix, which we denote by A ij • It looks like this: 

j 

all 

aij 

anl 

We give an expression for the determinant of an n x n matrix in terms 
of determinants of (n - 1) x (n - 1) matrices. Let i be an integer, 
1 < i < n. We define 

Each Aij is an (n - 1) x (n - 1) matrix. 
This sum can be described in words. For each element of the i-th 

row, we have a contribution of one term in the sum. This term is equal 
to + or - the product of this element, times the determinant of the 
matrix obtained from A by deleting the i-th row and the corresponding 
column. The sign + or - is determined according to the chess-board 
pattern: 

+ + ... ) ... + + 
+ + 
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This sum is called the expansion of the determinant according to the i-th 
row. We shall prove that this function D satisfies properties 1, 2, and 3. 

Note that D(A) is a sum of the terms 

L (-IY+jaij Det(Aij) 

as j ranges from 1 to n. 

1. Consider D as a function of the k-th column, and consider any 
term 

If j i= k, then aij does not depend on the k-th column, and Det(Aij) 
depends linearly on the k-th column. If j = k, then aij depends linearly 
on the k-th column, and Det(Aij) does not depend on the k-th column. 
In any case, our term depends linearly on the k-th column. Since D(A) 
is a sum of such terms, it depends linearly on the k-th column, and 
property 1 follows. 

2. Suppose two adjacent columns of A are equal, namely Ak = A k+ 1. 
Let j be an index i= k or k + 1. Then the matrix Aij has two adjacent 
equal columns, and hence its determinant is equal to O. Thus the term 
corresponding to an index j i= k or k + 1 gives a zero contribution to 
D(A). The other two terms can be written 

i+k i+k+1 (-1) aik Det(Aik) + (-1) ai,k+1 Det(Ai,k+ 1). 

The two matrices Aik and Ai,k+ 1 are equal because of our assumption 
that the k-th column of A is equal to the (k + 1)-th column. Similarly, 
aik = ai, k + 1· Hence these two terms cancel since they occur with opposite 
signs. This proves property 2. 

3. Let A be the unit matrix. Then aij = 0 unless i = j, in which case 
aii = 1. Each Aij is the unit (n - 1) x (n - 1) matrix. The only term in 
the sum which gives a non-zero contribution is 

which is equal to 1. This proves property 3. 

Example 3. We wish to compute the determinant 

121 
-1 3 1. 
015 
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We use the expansion according to the third row (because it has a zero 
in it), and only two non-zero terms occur: 

1 
( -1) 

-1 
1 1 2 
1+ 5 -13. 

We can compute explicitly the 2 x 2 determinants as in §1, and thus we 
get the value 23 for the determinant of our 3 x 3 matrix. 

It will be shown in a subsequent section that the determinant of a 
matrix A is equal to the determinant of its transpose. When we have 
proved this result, we will obtain: 

Theorem 2.4. Determinants satisfy the rule for expansion according to 
rows and columns. For any column Ai of the matrix A = (aij), we have 

In practice, the computation of a determinant is often done by using 
an expansion according to some row or column. 

VI, §2. EXERCISES 

1. Let c be a number and let A be a 3 x 3 matrix. Show that 

D(cA) = c3D(A). 

2. Let c be a number and let A be an n x n matrix. Show that 

D(cA) = cnD(A). 

VI, §3. ADDITIONAL PROPERTIES OF DETERMINANTS 

To compute determinants efficiently, we need additional properties which 
will be deduced simply from properties 1, 2, 3 of Theorem 2.1. There is 
no change here between the 3 x 3 and n x n case, so we write n. But 
again, readers may read n = 3 if they wish, the first time around. 

4. Let i, j be integers with 1 < i, j < nand i i= j. If the i-th and j-th col­
umns are interchanged, then the determinant changes by a sign. 
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Proof. We prove this first when we interchange the j-th and (j + l)-th 
columns. In the matrix A, we replace the j-th and (j + l)-th columns by 
Ai + Ai+1. We obtain a matrix with two equal adjacent columns and by 
property 2 we have: 

Expanding out using property 1 repeatedly yields 

o = D( ... ,Ai, Ai, ... ) + D( ... ,Ai+ 1, Ai, ... ) 

. ·+1 ·+1 ·+1 + D( ... ,AJ, AJ , ... ) + D( ... ,AJ , AJ , ... ). 

Using property 2, we see that two of these four terms are equal to 0, 
and hence that 

o == D( ... ,Ai+ 1, Ai, ... ) + D( ... ,Ai, Ai+ 1, ... ). 

In this last sum, one term must be equal to minus the other, as desired. 

Before we prove the property for the interchange of any two columns 
we prove another one. 

5. If two columns Ai, Ai of A are equal, j i= i, then the determinant of A 
is equal to O. 

Proof. Assume that two columns of the matrix A are equal. We can 
change the matrix by a successive interchange of adjacent columns until 
we obtain a matrix with equal adjacent columns. (This could be proved 
formally by induction.) Each time that we make such an adjacent inter­
change, the determinant changes by a sign, which does not affect its be­
ing 0 or not. Hence we conclude by property 2 that D(A) = 0 if two 
columns are equal. 

We can now return to the proof of 4 for any i i= j. Exactly the same 
argument as given in the proof of 4 for j and j + 1 works in the general 
case if we use property 5. We just note that 

0= D( ... ,Ai + Ai, ... ,Ai + Ai, ... ) 

and expand as before. This concludes the proof of 4. 

6. If one adds a scalar multiple of one column to another then the value 
of the determinant does not change. 
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Proof. Consider two distinct columns, say the k-th and j-th columns 
Ak and Ai with k i= j. Let t be a scalar. We add tAi to Ak. By property 
1, the determinant becomes 

D( ... ,Ak + tAi, ... ) = D( ... ,Ak, ... ) + D( ... ,tAi, ... ) 

iii 
k k k 

(the k points to the k-th column). In both terms on the right, the indi­
cated column occurs in the k-th place. But D( ... ,Ak, ... ) is simply D(A). 
Furthermore, 

D( . .. ,tAi, ... ) = tD( ... ,Ai, ... ). 

i i 
k k 

Since k i= j, the determinant on the right has two equal columns, because 
Ai occurs in the k-th place and also in the j-th place. Hence it is equal 
to O. Hence 

D( ... ,Ak + tAi, ... ) = D( ... ,Ak, ... ), 

thereby proving our property 6. 

With the above means at our disposal, we can now compute 3 x 3 de­
terminants very efficiently. In doing so, we apply the operations de­
scribed in property 6, which we now see are valid for rows or columns, 
since Det(A) = Det(~). We try to make as many entries in the matrix A 
equal to O. We try especially to make all but one element of a column 
(or row) equal to 0, and then expand according to that column (or row). 
The expansion will contain only one term, and reduces our computation 
to a 2 x 2 determinant. 

Example 1. Compute the determinant 

3 

1 

-1 

o 
2 
4 

1 

5 . 

2 

We already have 0 in the first row. We subtract twice the second row 
from the third row. Our determinant is then equal to 

301 

1 25. 

-3 0-8 
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We expand according to the second column. The expansion has only 
one term =1= 0, with a + sign, and that is: 

2 3 1 
-3 -8 

The 2 x 2 determinant can be evaluated by our definition ad - be, and 
we find 2{ -24 - (-3») = -42. 

Example 2. We wish to compute the determinant 

1 3 1 1 
2 1 5 2 
1 -1 2 3 
4 1 -3 7 

We add the third row to the second row, and then add the third row to 
the fourth row. This yields 

1 3 1 1 1 3 1 1 
3 0 7 5 3 0 7 5 
1 -1 2 3 1 -1 2 3 
4 1 -3 7 5 0 -1 10 

We then add three times the third row to the first row and get 

4 0 7 10 

307 5 
1 -1 2 3 ' 

5 0 -1 10 

which we expand according to the second column. There IS only one 
term, namely 

4 7 10 

3 7 5 . 

5 -1 10 

We subtract twice the second row from the first row, and then from the 
third row, yielding 

-2 -7 0 

3 7 5 , 

-1 -15 0 
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which we expand according to the third column, and get 

-5(30 -7) = -5(23) = -115. 

VI, §3. EXERCISES 

1. Compute the following determinants. 

2 1 2 3 -1 5 2 4 3 

(a) 0 3 -1 (b) -1 2 1 (c) -1 3 0 
4 1 1 -2 4 3 0 2 1 

1 2 -1 -1 5 3 3 1 2 

(d) 0 1 1 (e) 4 0 0 (f) 4 5 1 

0 2 7 2 7 8 -1 2 -3 

2. Compute the following determinants. 

1 1 -2 4 -1 1 2 0 
3 1 1 

0 1 1 3 0 3 2 1 
(a) (b) (c) 2 5 5 

2 -1 1 0 0 4 1 2 
8 7 7 

3 1 2 5 3 1 5 7 

4 -9 2 4 -1 1 2 0 0 

(d) 4 -9 2 (e) 2 0 0 (f) 1 1 0 

3 1 0 1 5 7 8 5 7 

4 0 0 5 0 0 2 -1 4 

(g) 0 1 0 (h) 0 3 0 (i) 3 1 5 

0 0 27 0 0 9 1 2 3 

3. In general, what is the determinant of a diagonal matrix 

all 0 0 0 

0 a22 0 0 

? 

0 0 0 

0 0 0 ann 

4. Compute the determinant . ICOS (J 

SIn e 
-sin (J I. 

COS e 
5. (a) Let Xl' X 2 , X3 be numbers. Show that 

1 Xl X2 
1 

1 X 2 
X2 

2 = (X2 - X l )(X3 - X l )(X3 - X 2 )· 

1 X3 X2 
3 
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(b) If Xl"" ,Xn are numbers, then show by induction that 

1 Xl 
n-l 

Xl 

1 X2 
n-l X2 = n (Xj - xJ, 

i<j 

1 Xn 
n-l 

Xn 

the symbol on the right meaning that it is the product of all terms 
Xj - Xi with i < j and i, j integers from 1 to n. This determinant is called 
the Vandermonde determinant v". To do the induction easily, multiply 
each column by Xl and subtract it from the next column on the right, 
starting from the right-hand side. You will find that 

v" = (xn - x l )"'(X2 - Xl)v,,-l' 

6. Find the determinants of the following matrices. 

(a) (~ 
2 

D (-~ 
5 2:) 1 (b) 4 

0 0 

(c) (~ 
-6 :) (-~ 

98 54) 
1 (d) 2 46 

0 0 -1 

G 
4 

D (-~ 
0 

D (e) 0 (f) 2 

0 79 54 

1 5 2 3 -5 0 0 

~) 0 2 7 6 7 2 0 
(g) 

0 0 4 1 
(h) 

-9 4 1 

0 0 0 5 96 2 3 

(i) Let A be a triangular n x n matrix, say a matrix such that all 
nents below the diagonal are equal to O. 

o a22 * 
A = 0 0 

o o 
What is D(A)? 

7. If a(t), b(t), c(t), d(t) are functions of t, one can form the determinant 

l
a(t) b(t) I 
c(t) d(t) , 

compo-
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just as with numbers. Write out in full the determinant 

I 
sin t cos t I 

-cos t sin t . 

8. Write out in full the determinant 

t - 1 I 
2t + 5 . 

9. Let f(t), g(t) be two functions having derivatives of all orders. Let <p(t) be 
the function obtained by taking the determinant 

I 
f(t) g(t) I 

<p(t) = f'(t) g'(t)· 

Show that 

, I f(t) g(t) I 
<p (t) = f"(t) g"(t) , 

i.e. the derivative is obtained by taking the derivative of the bottom row. 

10. Let 

be a 2 x 2 matrix of differentiable functions. Let B(t) and C(t) be its column 
vectors. Let 

<p(t) = Det(A(t). 

Show that 

<p'(t) = D(B'(t), C(t» + D(B(t), C'(t». 

11. Let (1.1' ••• ,(1.n be distinct numbers, i= O. Show that the functions 

are linearly independent over the complex numbers. [Hint: Suppose we have 
a linear relation 

with constants Ci , valid for all t. If not all ci are 0, without loss of generality, 
we may assume that none of them is o. Differentiate the above relation 
n - 1 times. You get a system of linear equations. The determinant of its 
coefficients must be zero. (Why?) Get a contradiction from this.] 
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VI, §4. CRAMER'S RULE 

The properties of the preceding section can be used to prove a well­
known rule used in solving linear equations. 

Theorem 4.1 ( Cramer's rule). Let A l, ... ,A n be column vectors such that 

Let B be a column vector. If Xl' ... ,Xn are numbers such that 

then for each j = 1, ... ,n we have 

D(A l, ... ,B, ... ,An) 
x·=-------

J D(A 1, ... ,An) 

where B occurs in the j-th column instead of Ai. In other words, 

all bl aln 
a2l b2 a2n 

anl bn ann 
Xi = 

all ali aln 
a2l a2i a2n 

anl ani ann 

(The numerator is obtained from A by replacing the j-th column Ai by 
B. The denominator is the determinant of the matrix A.) 

Theorem 4.1 gives us an explicit way of finding the coordinates of B 
with respect to A l, ... ,An. In the language of linear equations, Theorem 
4.1 allows us to solve explicitly in terms of determinants the system of n 
linear equations in n unknowns: 

We now prove Theorem 4.1. 



\ 
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Let B be written as in the statement of the theorem, and consider the 
determinant of the matrix obtained by replacing the j-th column of A by 
B. Then 

We use property 1 and obtain a sum: 

D(A I, ... ,Xl A I, ... ,An) + ... + D(A I, ... ,xjAj, ... ,An) 

+ ... + D(A I, ... ,xnAn, ... ,An), 

which by property 1 again, is equal to 

X I D(A I, ... ,A I, ... ,An) + ... + X jD(A I, ... ,A n) 

+ ... + xnD(A I, ... ,An, ... ,An). 

In every term of this sum except the j-th term, two column vectors are 
equal. Hence every term except the j-th term is equal to 0, by property 
5. The j-th term is equal to 

and is therefore equal to the determinant we started with, namely 
D(A I, ... ,B, ... ,An). We can solve for Xj' and obtain precisely the expres­
sion given in the statement of the theorem. 

Example. Solve the system of linear equations: 

3x + 2y + 4z = 1, 

2x - y+ z = 0, 

X + 2y + 3z = 1. 

We have: 

1 2 4 3 1 4 3 2 1 

0 -1 1 2 0 1 2 -1 0 
1 2 3 1 1 3 1 2 1 

X= 
3 2 4 ' 

y= 
3 2 4' 

Z= 
3 2 4 

2 -1 1 2 -1 1 2 -1 1 

1 2 3 2 3 2 3 



[VI, §4] CRAMER'S RULE 159 

Observe how the column 

B =(~) 
shifts from the first column when solving for x, to the second column 
when solving for y, to the third column when solving for z. The denomi­
nator in all three expressions is the same, namely it is the determinant of 
the matrix of coefficients of the equations. 

We know how to compute 3 x 3 determinants, and we then find 

x = -!, y = 0, z =~. 

Determinants also allow us to determine when vectors are linearly 
independent. 

Theorem 4.2. Let AI, ... ,An be column vectors (of dimension n). If they 
are linearly dependent, then 

If D(A 1, ... ,An) =1= 0, then AI, ... ,An are linearly independent. 

Proof. The second assertion is merely an equivalent formulation of 
the first. It will therefore suffice to prove the first. Assme that AI, ... ,An 
are linearly dependent. We can find numbers Xb ... ,xn not all 0 such 
that 

Suppose xi =1= O. Then 

We note that there is no j-th term on the right hand side. Dividing by 
xi we obtain Ai as a linear combination of the vectors Ak with k =1= j. In 
other words, there are numbers Yk (k =1= j) such that 
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namely Yk = -xk/xj • By linearity, we get 

D( A 1 , ... ,An) = D( A 1 , ... , L Y k A k, ... ,An) 
k*j 

= L YkD(A1, ... ,Ak, ... ,An) 
k*j 

[VI, §4] 

with Ak in the j-th column, and k =1= j. In the sum on the right, each de­
terminant has the k-th column equal to the j-th column and is therefore 
equal to 0 by property 5. This proves Theorem 4.2. 

Corollary 4.3. If A 1 , ... ,An are column vectors of Kn such that 
D( A 1, ... ,An) =1= 0, and if B is a column vector of Kn, then there exist 
numbers Xl' ... ,xn such that 

Proof. According to the theorem, A 1, ... ,An are linearly independent, 
and hence form a basis of Kn. Hence any vector of K n can be written as 
a linear combination of A 1 , ... ,An. 

In terms of linear equations, this corollary shows: 

If a system of n linear equations in n unknowns has a matrix of coeffi­
cients whose determinant is not 0, then this system has a solution, which 
can be determined by Cramer's rule. 

In Theorem 5.3 we shall prove the converse of Corollary 4.3, and so 
we get: 

Theorem 4.4. The determinant D(A 1, ... ,An) is equal to 0 if and only if 
A 1, ... ,An are linearly dependent. 

VI, §4. EXERCISES 

1. Solve the following systems of linear equations. 

(a) 3x + y - z = 0 

x+y+z=O 

y-z=l 

(b) 2x - y + z = 1 

x + 3y - 2z = 0 

4x - 3y + z = 2 
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(c) 4x + y + z + w = 1 

x - y + 2z - 3w = 0 

2x + y + 3z + 5w = 0 

x+y-z-w=2 

(d) x + 2y - 3z + 5w = 0 

2x + y - 4z - w = 1 

x+y+z+w=o 

-x-y-z+w=4 

VI, §5. TRIANGULATION OF A MATRIX BY COLUMN 
OPERATIONS 

To compute determinants we have used the following two column opera­
tions: 

COL 1. Add a scalar multiple of one column to another. 
COL 2. Interchange two columns. 

We define two matrices A and B (both n x n) to be column equivalent 
if B can be obtained from A by making a succession of column opera­
tions COL 1 and COL 2. Then we have: 

Proposition 5.1. Let A and B be column equivalent. Then 

rank A = rank B; 

A is invertible if and only if B is invertible; Det(A) = 0 if and only if 
Det(B) = O. 

Proof. Let A be an n x n matrix. If we interchange two columns of 
A, then the column space, i.e. the space generated by the columns of A, 
is unchanged. Let A 1, ... ,An be the columns of A. Let x be a scalar. 
Then the space generated by 

is the same as the space generated by A 1, ... ,An. (Immediate verifica­
tion.) Hence if B is column equivalent to A, it follows that the column 
space of B is equal to the column space of A, so rank A = rank B. 

The determinant changes only by a sign when we make a column 
operation, so Det(A) = 0 if and only if Det(B) = o. 

Finally, if A is invertible, then rank A = n by Theorem 2.2 of Chapter 
IV, so rank B = n, and so B is invertible by that same theorem. This 
concludes the proof. 
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Theorem 5.2. Let A be an n x n matrix. Then A is column equivalent 
to a triangular matrix 

b 11 0 0 
b21 b22 0 

B= 

bn1 bn2 bnn 

Proof. By induction on n. Let A = (a ij). There is nothing to prove if 
n = 1. Let n > 1. If all elements of the first row of A are 0, then we 
conclude the proof by induction by making column operations on the 
(n - 1) x (n - 1) matrix 

Suppose some element of the first row of A is not O. By column opera­
tions, we can suppose that all =/; O. By adding a scalar multiple of the 
first column to each of the other columns, we can then get an equivalent 
matrix B such that 

b12 = ... = b1n = 0, 

that is all elements of the first row are 0 except for all. We can again 
apply induction to the matrix obtained by deleting the first row and first 
column. This concludes the proof. 

Theorem 5.3. Let A = (A 1 , ... ,An) be a square matrix. T he following 
conditions are equivalent: 

(a) A is invertible. 
(b) The columns A 1, ... ,An are linearly independent. 
(c) D(A) =/; O. 

Proof. That (a) is equivalent to (b) was proved in Theorem 2.2 of 
Chapter IV. By Proposition 5.1 and Theorem 5.2 we may assume that A 
is a triangular matrix. The determinant is then the product of the dia­
gonal elements, and is 0 if and only if some diagonal element is O. But 
this condition is equivalent to the column vectors being linearly indepen­
dent, thus concluding the proof. 

VI, §5. EXERCISES 

1. (a) Let 1 ~ r, s ~ nand r i= s. Let J rs be the n x n matrix whose rs-com­
ponent is 1 and all other components are O. Let Ers = I + J rs. Show that 
D(Ers ) = 1. 
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(b) Let A be an n x n matrix. What is the effect of multiplying ErsA? of mul­
tiplying AErs? 

2. In the proof of Theorem 5.3, we used the fact that if A is a triangular matrix, 
then the column vectors are linearly independent if .and only if all diagonal 
elements are =1= O. Give the details of the proof of this fact. 

VI, §6. PERMUTATIONS 

We shall deal only with permutations of the set of integers {I, ... ,n}, 
which we denote by J n' By definition, a permutation of this set is a map 

a: {1, ... ,n} ~ {I, ... ,n} 

of J n into itself such that, if i, j E J nand i i= j, then a(i) i= a(j). Thus a 
permutation is a bijection of J n with itself. If a is such a permutation, 
then the set of integers 

{ a( 1), ... ,a( n ) } 

has n distinct elements, and hence consists again of the integers 1, ... ,n in 
a different arrangement. Thus to each integer j E J n there exists a unique 
integer k such that a(k) = j. We can define the inverse permutation, 
denoted by a - 1, as the map 

such that a- l(k) = unique integer j E J n such that a(j) = k. If a, ! are 
permutations of I n , then we can form their composite map 

a O!, 

and this map will again be a permutation. We shall usually omit the 
small circle, and write a! for the composite map. Thus 

By definition, for any permutation a, we have 

and 

where id is the identity permutation, that is, the permutation such that 
id(i) = i for all i = 1, ... ,no 
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If a 1, ••. ,ar are permutations of J n' then the inverse of the composite 
map 

a
1 

••• a
r 

is the permutation 

This is trivially seen by direct multiplication. 
A transposition is a permutation which interchanges two numbers and 

leaves the others fixed. The inverse of a transposition r is obviously 
equal to the transposition r itself, so that r2 = ide 

Proposition 6.1. Every permutation of J n can be expressed as a product 
of transpositions. 

Proof. We shall prove our assertion by induction on n. For n = 1, 
there is nothing to prove. Let n > 1 and assume the assertion proved for 
n - 1. Let a be a permutation of J n. Let a(n) = k. If k =1= n let r be the 
transposition of J n such that r( k) = n, r( n) = k. If k = n, let r = ide Then 
ra is a permutation such that 

ra(n) = r(k) = n. 

In other words, ra leaves n fixed. We may therefore view ra as a permu­
tation of J n - l' and by induction, there exist transpositions r 1, ... ,r s of 
I n - 1 , leaving n fixed, such that 

ra = r 1 ... rs. 
We can now write 

-1 a = r r 1 ... r s = rr 1 ... r s' 

thereby proving our proposition. 

Example 1. A permutation a of the integers {I, ... ,n} is denoted by 

Thus 
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denotes the permutation a such that a(l) = 2, a(2) = 1, and a(3) = 3. 
This permutation is in fact a transposition. If a' is the permutation 

[1 2 3J 
3 12' 

then aa' = a 0 a' is the permutation such that 

so that we can write 

aa'(I) = a(a'(I») = a(3) = 3, 

aa'(2) = a(a'(2») = a(l) = 2, 

aa'(3) = a(a'(3») = a(2) = 1, 

[
1 2 3J 

aa' = 3 2 1 . 

Furthermore, the inverse of a' is the permutation 

[
1 2 3J 
231 

as is immediately determined from the definitions: Since a'(I) = 3, we 
must have a'-l(3) = 1. Since a'(2) = 1, we must have a'-l(l) = 2. 
Finally, since a'(3) = 2, we must have a'-l(2) = 3. 

Example 2. We wish to express the permutation 

= [1 2 3J 
a 312 

as a product of transpositions. Let r be the transposItIon which inter­
changes 3 and 1, and leaves 2 fixed. Then using the definition, we find 
that 

[
1 2 3J 

ra = 1 3 2 

so that ra is a transposition, which we denote by r'. We can then write 
ra = r', so that 

because r- 1 = r. This is the desired product. 
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Example 3. Express the permutation 

_ [1 2 3 41J 
a - 2 3 4 

as a product of transpositions. 

[VI, §6] 

Let r 1 be the transposition which interchanges 1 and 2, and leaves 3, 
4 fixed. Then 

2 3 4J. 
342 

Now let r 2 be the transposition which interchanges 2 and 3, and leaves 
1, 4 fixed. Then 

2 3 4J 
2 4 3 ' 

and we see that r 2 r 1 a is a transposition, which we may denote by r 3' 
Then we get r 2 r 1 a = r3 so that 

Proposition 6.2. To each permutation a of J n it is possible to assign a 
sign 1 or -1, denoted by E(a), satisfying the following conditions: 

(a) If r is a transposition, then E(r) = -1. 
(b) If a, a' are permutations of J n' then 

E(aa') = E(a)E(a'). 

In fact, if A = (A 1, ... ,An) is an n x n matrix, then E(a) can be defined 
by the condition 

Proof. Observe that (Au(l), ... ,Au(n» is simply a different ordering from 
(A 1, ... ,An). Let a be a permutation of J n' Then 

and the sign + or - is determined by a, and does not depend on 
A 1, ... ,An. Indeed, by making a succession of transpositions, we can 
return (Au(l), ... ,Au(n» to the standard ordering (A 1, ... ,An), and each 
transposition changes the determinant by a sign. Thus we may define 

D( A u( 1) A u(n» 
E(a) = ---' -' '-' -' --

D(A 1, ... ,An) 
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for any choice of A 1, ... ,A n whose determinant is not 0, say the unit vec­
tors E 1

, ••• ,En. There are of course many ways of applying a succession 
of transpositions to return (Au(1), ... ,Au(n») to the standard ordering, but 
since the determinant is a well defined function, it follows that the sign 
E(a) is also well defined, and is the same, no matter which way we select. 
Thus we have 

and of course this holds even if D(A 1, ... ,An) = 0 because In this case 
both sides are equal to O. 

If r is a transposition, then assertion (a) is merely a translation of 
property 4. 

Finally, let a, a' be permutations of J n. Let C i = AU'U) for j = 1, ... ,no 
Then on the one hand we have 

and on the other hand, we have 

= E(a)D(C 1
, ••• ,cn) 

= E( a )D( A u'( 1), ... ,A u'(n») 

= E( a )E( a')D( A 1 , ... ,A n). 

Let A 1, ... ,An be the unit vectors E 1
, ••• ,En. From the equality between 

(*) and (**), we conclude that E(a' a) = E(a')E(a), thus proving our propo­
sition. 

Corollary 6.3. If a permutation a of J n is expressed as a product of 
transpositions, 

where each r i is a transposition, then s is even or odd according as 
E( a) = 1 or - 1. 

Proof. We have 

whence our assertion is clear. 
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Corollary 6.4. If a is a permutation of J n' then 

Proof. We have 

Hence either E(a) and E(a- 1
) are both equal to 1, or both equal to -1, 

as desired. 

As a matter of terminology, a permutation is called even if its sign is 
1, and it is called odd if its sign is -1. Thus every transposition is odd. 

Example 4. The sign of the permutation a in Example 2 is equal to 1 
because a = 7:7:'. The sign of the permutation a in Example 3 is equal to 
-1 because a = 7: 1 7: 2 7: 3 , 

VI, §6. EXERCISES 

1. Determine the sign of the following permutations. 

(a) [~ ~ ~J (b) [~ ~ ~J (c) [~ ~ ~J 

[
1 

2 3 44J [
1 

2 3 43J [3
1 

2 3 41 J (d) 2 3 1 (e) 2 1 4 (f) 2 4 

(g) [~ ~ ~ ~J (h) [! ~ ! ~J (i) G ~ ~ ~J 
2. In each one of the cases of Exercise 1, write the inverse of the permutation. 

3. Show that the number of odd permutations of {1, ... ,n} for n ~ 2 is equal to 
the number of even permutations. [Hint: Let! be a transposition. Show that 
the map (J I---+!(J establishes an injective and surjective map between the even 
and the odd permutations.] 

VI, §7. EXPANSION FORMULA AND UNIQUENESS OF 
DETERMINANTS 

We make some remarks concerning an expansion of determinants. We 
shall generalize the formalism of bilinearity discussed in Chapter V, §4 
and first discuss the 3 x 3 case. 
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Let Xl, X 2, X 3 be three vectors in K3 and let (bij) (i,j = 1, ... ,3) be a 
3 x 3 matrix. Let 

3 

Al = bllX I + b2l X 2 + b3l X 3 - L bklX\ 
k=l 

3 

A2 = bl2 X l + b22 X 2 + b32 X 3 = L b,2X ', 
1= I 

3 

A 3 = bl3 X l + b23 X 2 + b33 X 3 = L bm3xm. 
m=l 

Then we can expand using linearity, 

D(A\ A
2
, A

3
) = D(t

l
bklX\ Itl bl2XI'mtlbm3xm) 

- ktlbklD( xk, Itl bl2 X
I
, mtlbm3 xm) 

- ktl Jl bkl bl2 D( X\XI'mtlbm3xm) 
3 3 3 

- L L L bklb'2bm3D(Xk, X', xm). 
k=l'=l m=l 

Or rewriting just the result, we find the expansion 

3 3 3 

D(A\ A 2, A 3) = L L L bklb'2bm3D(Xk, X', xm) 
k=11=1 m=l 

If we wish to get a similar expansion for the n x n case, we must ob­
viously adjust the notation, otherwise we run out of letters k, 1, m. Thus 
instead of using k, 1, m, we observe that these values k, 1, m correspond 
to an arbitrary choice of an integer 1, or 2, or 3 for each one of the 
numbers 1, 2, 3 occurring as the second index in b ij. Thus if we let (J 
denote such a choice, we can write 

k = (J(I), 1 = (J(2), m = (J(3) 

and 
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Thus (1: {I, 2, 3} ~ {I, 2, 3} is nothing but an association, I.e. a function, 
from J 3 to J 3' and we can write 

the sum being taken for all such possible (1. 

We shall find an expression for the determinant which corresponds to 
the six-term expansion for the 3 x 3 case. At the same time, observe that 
the properties used in the proof are only properties 1, 2, 3, and their 
consequences 4, 5, 6, so that our proof applies to any function D 
satisfying these properties. 

We first give the argument in the 2 x 2 case. 
Let 

A = (: !) 
be a 2 x 2 matrix, and let 

be its column vectors. We can write 

and 

where El, E2 are the unit column vectors. Then 

D(A) = D(A 1, A2) = D(aEl + eE2, bEl + dE2) 

= abD(E1, El) + ebD(E2, El) + adD(E1, E2) + edD(E2, E2) 

= -beD(E 1
, E2) + adD(El, E2) 

= ad - be. 

This proves that any function D satisfying the basic properties of a deter­
minant is given by the formula of §l, namely ad - be. 

The proof in general is entirely similar, taking into account the n 
components. It is based on an expansion similar to the one we have just 
used in the 2 x 2 case. We can formulate it in a lemma, which is a key 
lemma. 
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Lemma 7.1. Let Xl, ... ,xn be n vectors in n-space. Let B = (bij) be an 
n x n matrix, and let 

Al=b X 1 + ... +b xn 11 nl 

Then 

D(A 1, ... ,An) = I £(a)bu(1), 1 ••• bu(n),n D(X 1
, ••• ,Xn), 

where the sum is taken over all permutations a of {1, ... ,n}. 

Proof. We must compute 

Using the linearity property with respect to each column, we can express 
this as a sum 

L bu(1), 1 ••. bu(n),nD(Xu(1), ... ,xu(n», 
u 

where a(1), ... ,a(n) denote a choice of an integer between 1 and n for 
each value of 1, ... ,no Thus each a is a mapping of the set of integers 
{1, ... ,n} into itself, and the sum is taken over all such maps. If some a 
assigns the same integer to distinct values i, j between 1 and n, then the 
determinant on the right has two equal columns, and hence is equal to O. 
Consequently we can take our sum only for those a which are such that 
a(i) 1= a( j) whenever i 1= j, namely permutations. By Proposition 6.2 we 
have 

D(xu(l), ... ,xu(n» = £(a)D(Xl, ... ,xn). 

Substituting this for our expressions of D(A 1, ... ,An) obtained above, we 
find the desired expression of the lemma. 

Theorem 7.2. Determinants are uniquely determined by properties 1, 2, 
and 3. Let A = (a ij). The determinant satisfies the expression 

D(A 1, ... ,An) = L £(a)au(l), 1 ... au(n),n' 

where the sum is taken over all permutations of the integers {1, ... ,n}. 

Proof. We let X j = Ej be the unit vector having 1 in the j-th compo­
nent, and we let bij = aij in Lemma 7.1. Since by hypothesis we have 
D(Et, ... ,En) = 1, we see that the formula of Theorem 7.2 drops out at 
once. 
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We obtain further applications of the key Lemma 7.1. Everyone of 
the next results will be a direct application of this lemma. 

Theorem 7.3. Let A, B be two n x n matrices. Then 

Det(AB) = Det(A) Det(B). 

The determinant of a product is equal to the product of the deter­
minants. 

Proof. Let A = (aij) and B = (b jk ): 

Let AB = C, and let C k be the k-th column of C. Then by definition, 

Thus 

D(AB) = D(C I, ... ,C n
) 

= D(bIIAI + ... + bnIAn, ... ,bInAI + ... + bnnAn). 

- ~ b ... b D(AO'(1) AO'(n») - ~ 0'(1), I O'(n), n , ••• , 

0' 

by Lemma 7.1 

=D(B)D(A) by Lemma 7.2. 

This proves the theorem. 

Corollary 7.4. Let A be an invertible n x n matrix. Then 

Proof. We have 1 = D(I) = D(AA- I) = D(A)D(A- I). This proves ,,'hat 
we wanted. 

Theorem 7.5. Let A be a square matrix. Then Det(A) = Det(~). 

Proof. In Theorem 7.2, we had 

Det(A) = L £(a)aO'(I), I ... aO'(n),n· 
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Let a be a permutation of {1, ... ,n}. If a(j) = k, then a- 1(k) = j. We 
can therefore write 

In a product 

aO'( 1), 1 ••• aO'(n), n 

each integer k from 1 to n occurs precisely once among the integers 
a(1), ... ,a(n). Hence this product can be written 

and our sum (*) is equal to 

L (a- 1 )a 1 ,0'-1(1) ••• an,O'-I(n)' 
0' 

because (a) = (a- 1
). In this sum, each term corresponds to a permuta­

tion a. However, as a ranges over all permutations, so does a - 1 because 
a permutation determines its inverse uniquely. Hence our sum is equal 
to 

L (a)a 1,0'(1) ••• an, O'(n)· 
0' 

The sum (**) is precisely the sum giving the expanded form of the deter­
minant of the transpose of A. Hence we have proved what we wanted. 

VI, §7. EXERCISES 

1. Show that when n = 3, the expansion of Theorem 7.2 is the six-term expres­
sion given in §2. 

2. Go through the proof of Lemma 7.1 to verify that you did not use all the 
properties of determinants in the proof. You used only the first two proper­
ties. Thus let F be any multilinear, alternating function. As in Lemma 7.1, let 

Then 

n 

Ai = L biiX i 
i= 1 

for j = 1, ... ,no 

F(A 1, ... ,An) = L f(a)bO'(1), 1 ••• bO'(n),nF(Xt, ... ,xn). 
0' 

Why can you conclude that if B is the matrix (b i), then 

F(A 1, ... ,An) = D(B)F(Xl, ... ,xn)? 
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3. Let F: Rn x ... x Rn ~ R be a function of n variables, each of which ranges 
over Rn. Assume that F is linear in each variable, and that if A1, ... ,An E Rn 
and if there exists a pair of integers r, s with 1 ~ r, s ~ n such that r # sand 
Ar = AS then F(A 1, ... ,An) = O. Let Bi (i = 1, ... ,n) be vectors and cij numbers 
such that 

n 

Aj = L cijBi
• 

i= 1 

(a) If F(B 1
, ••• ,Bn) = - 3 and det(c i) = 5, what is F(A 1, ... ,An)? Justify your 

answer by citing appropriate theorems, or proving it. 
(b) If F(E 1

, ••• ,En) = 2 (where E 1
, ••• ,En are the standard unit vectors), and if 

F(A 1, ... ,An) = 10, what is D(A 1, ... ,An)? Again give reasons for your 
answer. 

VI, §8. INVERSE OF A MATRIX 

We consider first a special case. Let 

A = (: !) 
be a 2 x 2 matrix, and assume that its determinant ad - be #- O. We 
wish to find an inverse for A, that is a 2 x 2 matrix 

such that 

AX=XA=I. 

Let us look at the first requirement, AX = I, which written out in full, 
looks like this: 

Let us look at the first column of AX. We must solve the equations 

ax + bz = 1, 

ex + dz = O. 
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This is a system of two equations in two unknowns, x and z, which we 
know how to solve. Similarly, looking at the second column, we see that 
we must solve a system of two equations in the unknowns y, W, namely 

Example. Let 

ay + bw = 0, 

cy + dw = 1. 

A = (2 1) 
43' 

We seek a matrix X such that AX = I. We must therefore solve the 
systems of linear equations 

2x + z = 1, 

4x + 3z = 0, 
and 

2y + w = 0, 

4y + 3w = 1. 

By the ordinary method of solving two equations in two unknowns, we 
find 

z = -2, and y = -!, w=1. 

Thus the matrix 

X=( ! -!) 
-2 1 

is such that AX = I. The reader will also verify by direct multiplication 
that X A = I. This solves for the desired inverse. 

Similarly, in the 3 x 3 case, we would find three systems of linear 
equations, corresponding to the first column, the second column, and the 
third column. Each system could be solved to yield the inverse. We 
shall now give the general argument. 

Let A be an n x n matrix. If B is a matrix such that AB = I and 
BA = I (1 = unit n x n matrix), then we called B an inverse of A, and we 
write B = A -1. 

If there exists an inverse of A, then it is unique. 

Proof. Let C be an inverse of A. Then CA = I. Multiplying by B on 
the right, we obtain CAB = B. But CAB = C(AB) = CI = C. Hence 
C = B. A similar argument works for AC = I. 

A square matrix whose determinant is =1= 0, or equivalently which 
admits an inverse, is called non-singular. 
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Theorem 8.1. Let A = (aij) be an n x n matrix, and assume that 
D(A) 1= o. Then A is invertible. Let Ej be the j-th column unit vector, 
and let 

D(A 1, ... ,Ej, ... ,An) 
b··= . 

lJ D(A) 

where Ej occurs in the i-th place. Then the matrix B = (bij) is an 
inverse for A. 

Proof. Let X = (xij) be an unknown n x n matrix. We wish to solve 
for the components Xij' so that they satisfy AX = I. From the definition 
of products of matrices, this means that for each j, we must solve 

This is a system of linear equations, which can be solved uniquely by 
Cramer's rule, and we obtain 

D(A) 

which is the formula given in the theorem. 

We must still prove that XA = I. Note that D(~) 1= O. Hence by 
what we have already proved, we can find a matrix Y such that ~ Y = I. 
Taking transposes, we obtain tYA = I. Now we have 

I = tY(AX)A = tYA(XA) = XA, 

thereby proving what we want, namely that X = B is an inverse for A. 

We can write out the components of the matrix B in Theorem 8.1 as 
follows: 

all 0 a ln 

ajl 1 ajn 

b··= 
an! 0 a"n 

lJ 

Det(A) 

If we expand the determinant in the numerator according to the i-th 
column, then all terms but one are equal to 0, and hence we obtain the 
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numerator of b ij as a subdeterminant of Oet(A). Let Aij be the matrix 
obtained from A be deleting the i-th row and the j-th column. Then 

(-1Y+ j Oet(Aji) 
bij = Det(A) 

(note the reversal of indices!) and thus we have the formula 

( 
-1Y+ j Oet(A . .)) 

A - 1 = transpose of ('J . 
Oet A) 

VI, §8. EXERCISES 

1. Find the inverses of the matrices in Exercise 1, §3. 

2. Using the fact that if A, B are two n x n matrices then 

Det(AB) = Det(A) Det(B), 

prove that a matrix A such that Det(A) = 0 does not have an inverse. 

3. Write down explicitly the inverses of the 2 x 2 matrices: 

(3 -1) 
(a) 1 4 ~) (c) (: !) 

4. If A is an n x n matrix whose determinant is # 0, and B is a given vector in 
n-space, show that the system of linear equations AX = B has a unique 
solution. If B = 0, this solution is X = o. 

VI, §9. THE RANK OF A MATRIX AND 
SUBDETERMINANTS 

Since determinants can be used to test linear independence, they can be 
used to determine the rank of a matrix. 

Example 1. Let 

1 2 

2 -1 
1 0 



178 DETERMINANTS [VI, §9] 

This is a 3 x 4 matrix. Its rank is at most 3. If we can find three 
linearly independent· columns, then we know that its rank is exactly 3. 
But the determinant 

3 

1 

1 

1 

2 

1 

5 

2 

1 

is not equal to ° (namely, it is equal to -4, as we see by subtracting the 
second column from the first, and then expanding according to the last 
row). Hence rank A = 3. 

It may be that in a 3 x 4 matrix, some determinant of a 3 x 3 subma­
trix is 0, but the 3 x 4 matrix has rank 3. For instance, let 

B=(! 
1 2 

2 -1 

3 1 

The determinant of the first three columns 

3 1 2 

1 2 -1 

4 3 1 

is equal to ° (in fact, the last row IS the 
But the determinant 

125 

2 -1 2 
3 1 1 

sum of the first two rows). 

is not zero (what is it?) so that again the rank of B is equal to 3. 
If the rank of a 3 x 4 matrix 

C l2 C l3 

C22 C23 

C32 C33 

is 2 or less, then the determinant of every 3 x 3 submatrix must be 0, 
otherwise we could argue as above to get three linearly independent col­
umns. We note that there are four such subdeterminants, obtained by 
eliminating successively anyone of the four columns. Conversely, if 
every such subdeterminant of every 3 x 3 submatrix is equal to 0, then it 
is easy to see that the rank is at most 2. Because if the rank were equal 
to 3, then there would be three linearly independent columns, and their 
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determinant would not be o. Thus we can compute such subdetermin­
ants to get an estimate on the rank, and then use trial and error, and 
some judgment, to get the exact rank. 

Example 2. Let 

c = (! 1 2 

2 -1 

3 1 

If we compute every 3 x 3 subdeterminant, we shall find o. Hence the 
rank of C is at most equal to 2. However, the first two rows are 
linearly independent, for instance because the determinant 

3 1 

1 2 

is not equal to O. It is the determinant of the first two columns of the 
2 x 4 matrix 

Hence the rank is equal to 2. 

1 2 

2 -1 

Of course, if we notice that the last row of C is equal to the sum of 
the first two, then we see at once that the rank is < 2. 

VI, §9. EXERCISES 

Compute the ranks of the following matrices. 

~) 2. G 
5 1 

:) 1. (~ 3 5 
-1 1 

-1 2 
4 2 

3. G 
5 1 

n 4. G 
5 1 

D -1 1 -1 1 

9 3 1 2 

-1 1 6 

~) 
2 1 6 

-~) 1 1 2 3 1 1 
5. 6. 

-1 2 5 5 2 7 

2 1 0 -2 4 3 

7. (; 

1 6 

-~) ( -~ 1 1 

-~) 1 1 4 3 
8. 

9 2 7 -1 7 

3 8 7 4 2 



CHAPTER VII 

Symmetric, Hermitian, and 
Unitary Operators 

Let V be a finite dimensional vector space over the real or complex 
n urn bers, with a posi ti ve definite scalar product. Let 

A: V -+ V 

be a linear map. We shall study three important special cases of such 
maps, named in the title of this chapter. Such maps are also represented 
by matrices bearing the same names when a basis of V has been chosen. 

In Chapter VIII we shall study such maps further and show that a 
basis can be chosen such that the maps are represented by diagonal 
matrices. This ties up with the theory of eigenvectors and eigenvalues. 

VII, §1. SYMMETRIC OPERATORS 

Throughout this section we let V be a finite dimensional vector space 
over a field K. We suppose that V has a fixed non-degenerate scalar 
product denoted by <v, w), for v, WE V. 

The reader may take V = K n and may fix the scalar product to be the 
ordinary dot product 

<x, Y) = tXY, 

where X, Yare column vectors in Kn. However, in applications, it is not 
a good idea to fix such bases right away. 
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A linear map 

A: V -+ V 

of V into itself will also be called an operator. 

Lemma 1.1. Let A: V -+ V be an operator. Then there exists a unique 
operator B: V -+ V such that for all v, WE V we have 

<Av, W) = <v, Bw). 

Proof. Given WE V let 

L: V-+K 

be the map such that L(v) = <Av, w). Then L is immediately verified to 
be linear, so that L is a functional, L is an element of the dual space V*. 
By Theorem 6.2 of Chapter V there exists a unique element w' E V such 
that for all v E V we have 

L(v) = <v, w'). 

This element w' depends on w (and of course also on A). We denote this 
element w' by Bw. The association 

W 1--+ Bw 

IS a mapping of V into itself. It will now suffice to prove that B IS 

linear. Let Wl' w2 E V. Then for all v E V we get: 

<v, B(Wl + w2) = <Av, W l + w2) = <Av, wl ) + <Av, w2) 

= <v, Bwl ) + <v, Bw2) 

= <v, BWI + Bw2). 

Hence B(Wl + w2) and BWl + BW2 represent the same functional and 
therefore are equal. Finally, let c E K. Then 

<v, B(cw) = <Av, cw) = c<Av, w) 

= c<v, Bw) 

= <v, cBw). 

Hence B(cw) and cBw represent the same functional, so they are equal. 
This concludes the proof of the lemma. 



182 SYMMETRIC, HERMITIAN, AND UNITARY OPERATORS [VII, §1] 

By definition, the operator B in the preceding proof will be called the 
transpose of A and will be denoted by~. The operator A is said to be 
symmetric (with respect to the fixed non-degenerate scalar product ( , ») 
if tA = A. 

For any operator A of V, we have by definition the formula 

(Av, w) = (v, ~w) 

for all v, WE V. If A is symmetric, then (Av, w) = (v, Aw), and conver­
sely. 

Example 1. Let V = Kn and let the scalar product be the ordinary dot 
product. Then we may take A as a matrix in K, and elements of Kn 
as column vectors X, Y. Their dot product can be written as a matrix 
multiplication, 

(X, Y) = tXY. 

We have 

(AX, Y) = t(AX)Y = tx~Y = (X, ~Y), 

where ~ now means the transpose of the matrix A. Thus when we deal 
with the ordinary dot product of n-tuples, the transpose of the operator 
is represented by the transpose of the associated matrix. This is the rea­
son why we have used the same notation in both cases. 

The transpose satisfies the following formalism: 

Theorem 1.2. Let V be a finite dimensional vector space over the field 
K, with a non-degenerate scalar product ( , ). Let A, B be operators 
of V, and c E K. Then: 

t(A + B) = ~ + tB, 

t(cA) = c~, 

t(AB) = tB~, 

t~ = A. 

Proof. We prove only the second formula. For all v, WE V we have 

(ABv, w) = (Bv, ~w) = (v, tB~w). 

By definition, this means that t(AB) = tB~. The other formulas are just 
as easy to prove. 
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VII, §1. EXERCISES 

1. (a) A matrix A is called skew-symmetric if ~ = - A. Show that any matrix 
M can be expressed as a sum of a symmetric matrix and a skew-sym­
metric one, and that these latter are uniquely determined. [Hint: Let 
A = t(M + 'M).] 

(b) Prove that if A is skew-symmetric then A2 is symmetric. 
(c) Let A be skew-symmetric. Show that Det(A) is 0 if A is an n x n matrix 

and n is odd. 

2. Let A be an invertible symmetric matrix. Show that A-I is symmetric. 

3. Show that a triangular symmetric matrix is diagonal. 

4. Show that the diagonal elements of a skew-symmetric matrix are equal to o. 

5. Let V be a finite dimensional vector space over the field K, with a non­
degenerate scalar product. Let vo, Wo be elements of V. Let A: V ~ V be the 
linear map such that A(v) = (vo, v)wo. Describe~. 

6. Let V be the vector space over R of infinitely differentiable functions vanishing 
outside some interval. Let the scalar product be defined as usual by 

<f, g) = f 1 f(t)g(t) dt. 
o 

Let D be the derivative. Show that one can define tD as before, and that 
tD= -D. 

7. Let V be a finite dimensional space over the field K, with a non-degenerate 
scalar product. Let A: V ~ V be a linear map. Show that the image of ~ is 
the orthogonal space to the kernel of A. 

8. Let V be a finite dimensional space over R, with a positive definite scalar 
product. Let P: V ~ V be a linear map such that PP = P. Assume that 
tpp = ptP. Show that P = tP. 

9. A square n x n real symmetric matrix A is said to be positive definite if 
'X AX > 0 for all X =I o. If A, B are symmetric (of the same size) we define 
A < B to mean that B - A is positive definite. Show that if A < Band 
B < C, then A < C. 

10. Let V be a finite dimensional vector space over R, with a posItIve definite 
scalar product ( ,). An operator A of V is said to be semipositive if 
(Av, v) ~ 0 for all VE V, v =I o. Suppose that V = W + Wl. is the direct sum 
of a subspace Wand its orthogonal complement. Let P be the projection on 
W, and assume W i= {O}. Show that P is symmetric and semipositive. 

11. Let the notation be as in Exercise 10. Let c be a real number, and let A be 
the operator such that 

Av = cw 

if we can write v = w + w' with WE Wand w' E Wl.. Show that A is sym­
metric. 
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12. Let the notation be as in Exercise 10. Let P again be the projection on W. 
Show that there is a symmetric operator A such that A 2 = I + P. 

13. Let A be a real symmetric matrix. Show that there exists a real number c so 
that A + cI is positive. 

14. Let V be a finite dimensional vector space over the field K, with a non­
degenerate scalar product < , ). If A: V ~ V is a linear map such that 

<Av, Aw) = <v, w) 

for all v, WE V, show that Det(A) = ± 1. [Hint: Suppose first that V = K n 

with the usual scalar product. What then is ~A? What is Det(~A)?] 

15. Let A, B be symmetric matrices of the same size over the field K. Show that 
AB is symmetric if and only if AB = BA. 

VII, §2. HERMITIAN OPERATORS 

. Throughout this section we let V be a finite dimensional vector 
space over the complex numbers. We supose that V has a fixed positive 
definite hermitian product as defined in Chapter V, §2. We denote this 
product by <v, w) for v, WE V. 

A hermitian product is also called a hermitian form. If the readers 
wish, they may take V = en, and they may take the fixed hermitian 
product to be the standard product 

<x, Y) = tX¥", 

where X, Yare column vectors of en. 
Let A: V --. V be an operator, i.e. a linear map of V into itself. For 

each WE V, the map 

such that 

for all v E V is a functional. 

Theorem 2.1. Let V be a finite dimensional vector space over C with a 
positive definite hermitian form < , ). Given a functional L on V, there 
exists a unique w' E V such that L(v) = <v, w') for all v E V. 

Proof. The proof is similar to that given in the real case, say 
Theorem 6.2 of Chapter V. We leave it to the reader. 
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From Theorem 2.1, we conclude that given w, there exists a unique w' 
such that 

<Av, w) = <v, w') 
for all VE V. 

Remark. The association w 1--+ Lw is not an isomorphism of V with the 
dual space! In fact, if rJ., E C, then L(lW = aLw' However, this is immaterial 
for the existence of the element w'. 

The map w 1--+ w' of V into itself will be denoted by A*. We sum­
marize the basic property of A * as 'follows. 

Lemma 2.2. Given an operator A: V ---+ V there exists a unique operator 
A *: V ---+ V such that for all v, WE V we have 

<Av, w) = <v, A*w). 

Proof. Similar to the proof of Lemma 1.1. 

The operator A * is called the adjoint of A. Note that A *: V ---+ V is 
linear, not anti-linear. No bar appears to spoil the linearity of A *. 

Example. Let V = cn and let the form be the standard form given by 

for X, Y column vectors of cn. Then for any matrix A representing a 
linear map of V into itself, we have 

Furthermore, by definition, the product <AX, Y) is equal to 

<X, A*Y) = tX(A*Y). 
This means that 

A* =~. 

We see that it would have been unreasonable to use the same symbol t 
for the adjoint of an operator over C, as for the transpose over R. 

An operator A is called hermitian (or self-adjoint) if A * = A. This 
means that for all v, WE V we have 

<Av, w) = <v, Aw). 
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In view of the preceding example, a square matrix A of complex 
numbers is called hermitian if ~ = A, or equivalently, ~ = A. If A is a 
hermitian matrix, then we can define on Cn a hermitian product by the 
rule 

(Verify in detail that this map is a hermitian product.) 
The * operation satisfies rules analogous to those of the transpose, 

namely: 

Theorem 2.3. Let V be a finite dimensional vector space over C, with a 
fixed positive definite hermitian form ( , ). Let A, B be operators of V, 
and let a E C. Then 

(A + B)* = A* + B*, 

(aA)* = ~A*, 

(AB)* = B*A*, 

A** = A. 

Proof. We shall prove the third rule, leaving the others to the reader. 
We have for all v, WE V: 

(aAv, w) = a(Av, w) = a(v, A*w) = (v, ~A*w). 

This last expression is also equal by definition to 

(v, (aA)*w) 

and consequently (aA)* = ~A*, as contended. 

We have the polarization identity: 

(A(v + w), v + w) - (A(v - w), v - w) = 2[(Aw, v) + (Av, w)] 

for all v, WE V, or also 

(A(v + w), v + w) - (Av, v) - (Aw, w) = (Av, w) + (Aw, v). 

The verifications of these identities are trivial, just by expanding out the 
left -hand side. 

The next theorem depends essentially on the complex numbers. Its 
analogue would be false over the real numbers. 
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Theorem 2.4. Let V be as before. Let A be an operator such that 
<Av, v) = 0 for all VE V. Then A = o. 

Proof. The left-hand side of the polarization identity is equal to 0 for 
all v, WE V. Hence we obtain 

<Aw, v) + <Av, w) = 0 

for all v, WE V. Replace v by iv. Then by the rules for the hermitian 
product, we obtain 

-i<Aw, v) + i<Av, w) = 0, 
whence 

-<Aw, v) + <Av, w) = o. 

Adding this to the first relation obtained above yields 

2<Av, w) = 0, 

whence <Av, w) = O. Hence A = 0, as was to be shown. 

Theorem 2.5. Let V be as before. Let A be an operator. Then A is 
hermitian if and only if < Av, v) is real for all v E V. 

Proof. Suppose that A is hermitian. Then 

<Av, v) = <v, Av) = <Av, v). 

Since a complex number equal to its complex conjugate must be a real 
number, we conclude that <Av, v) is real. Conversely, assume that 
<Av, v) is real for all v E V. Then 

<Av, v) = <Av, v) = <v, Av) = <A*v, v). 

Hence «A - A*)v, v) = 0 for all VE V, and by Theorem 2.4, we conclude 
that A - A* = 0 whence A = A*, as was to be shown. 

VII, §2. EXERCISES 

1. Let A be an invertible hermitian matrix. Show that A-I is hermitian. 

2. Show that the analogue of Theorem 2.4 when V is a finite dimensional space 
over R is false. In other words, it may happen that Av is perpendicular to v 
for all v E V without A being the zero map! 
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3. Show that the analogue of Theorem 2.4 when V is a finite dimensional space 
over R is true if we assume in addition that A is symmetric. 

4. Which of the following matrices are hermitian: 

(a) (_~ ~) (
1 + i 2) 

(b) 2 5i 

1 + i 
2 

-i 

5. Show that the diagonal elements of a hermitian matrix are real. 

6. Show that a triangular hermitian matrix is diagonal. 

7. Let A, B be hermitian matrices (of the same size). Show that A + B is 
hermitian. If AB = BA, show that AB is hermitian. 

8. Let V be a finite dimensional vector space over C, with a positive definite 
hermitian product. Let A: V ~ V be a hermitian operator. Show that 1 + iA 
and 1 - iA are invertible. [Hint: If v * 0, show that 11(1 + iA)vll * 0.] 

9. Let A be a hermitian matrix. Show that ~ and A are hermitian. If A is in­
vertible, show that A - 1 is hermitian. 

10. Let V be a finite dimensional space over C, with a positive definite hermitian 
form < , ). Let A: V ~ V be a linear map. Show that the following condi­
tions are equivalent: 

(i) We have AA* = A* A. 
(ii) For all VE V, IIAvl1 = IIA*vll (where Ilvll = j(;,0). 

(iii) We can write A = B + iC, where B, C are hermitian, and BC = CB. 

11. Let A be a non-zero hermitian matrix. Show that tr(AA *) > O. 

VII, §3. UNITARY OPERATORS 

Let V be a finite dimensional vector space over R, with a positive 
definite scalar product. 

Let A: V -+ V be a linear map. We shall say that A is real unitary if 

(Av, Aw) = (v, w) 

for all v, WE V. We may say that A is unitary means that A preserves the 
product. You will find that in the literature, a real unitary map is also 
called an orthogonal map. The reason why we use the terminology 
unitary is given by the next theorem. 
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Theorem 3.1. Let V be as above. Let A: V ---+ V be a linear map. The 
following conditions on A are equivalent: 

(1) A is unitary. 
(2) A preserves the norm of vectors, i.e. for every v E V, we have 

IIAvl1 = Ilvll· 

(3) F or every unit vector v E V, the vector Av is also a unit vector. 

Proof. We leave the equivalence between (2) and (3) to the reader. It 
is trivial that (1) implies (2) since the square of the norm <Av, Av) is a 
special case of a product. Conversely, let us prove that (2) implies (1). 
We have 

<A(v + w), A(v + w) - <A(v - w), A(v - w) = 4<Av, Aw). 

Using the assumption (2), and noting that the left-hand side consists of 
squares of norms, we see that the left-hand side of our equation is equal 
to 

<v + w, v + w) - <v - w, v - w) 

which is also equal to 4<v, w). From this our theorem follows at once. 

Theorem 3.1 shows why we called our maps unitary: They are char­
acterized by the fact that they map unit vectors into unit vectors. 

A unitary map U of course preserves perpendicularity, i.e. if v, ware 
perpendicular then Uv, Uw are also perpendicular, for 

<Uv, Uw) = <v, w) = O. 

On the other hand, it does not follow that a map which preserves per­
pendicularity is necessarily unitary. For instance, over the real numbers, 
the map which sends a vector v on 2v preserves perpendicularity but is 
not unitary. Unfortunately, it is standard terminology to call real unitary 
maps orthogonal maps. We emphasize that such maps do more than 
preserve orthogonality: They also preserve norms. 

Theorem 3.2. Let V be a finite dimensional vector space over R, with a 
positive definite scalar product. A linear map A: V ---+ V is unitary if and 
only if 

~A =1. 
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Proof. The operator A is unitary if and only if 

(Av, Aw) = (v, w) 

for all v, WE V. This condition is equivalent with 

(~Av, w) = (v, w) 

for all v, WE V, and hence is equivalent with ~A = I. 

There remains but to interpret in terms of matrices the condition that 
A be unitary. First we observe that a unitary map is invertible. Indeed, 
if A is unitary and Av = 0, then v = 0 because A preserves the norm. 

If we take V = Rn in Theorem 3.2, and take the usual dot product as 
the scalar product, then we can represent A by a real matrix. Thus it 
is natural to define a real matrix A to be unitary (or orthogonal) if 
~A = In' or equivalently, 

Example. The only unitary maps of the plane R2 into itself are the 
maps whose matrices are of the type 

(

COS () 

sin () 
-sin ()) 

cos () 
or 

(

COS () 

sin () 
sin ()) 

-cos () . 

If the determinant of such a map is 1 then the matrix representing the 
map with respect to an orthonormal basis is necessarily of the first type, 
and the map is called a rotation. Drawing a picture shows immediately 
that this terminology is justified. A number of statements concerning the 
unitary maps of the plane will be given in the exercises. They are easy 
to work out, and provide good practice which it would be a pity to spoil 
in the text. These exercises are to be partly viewed as providing addi­
tional examples for this section. 

The complex case. As usual, we have analogous notions in the com­
plex case. Let V be a finite dimensional vector space over C, with a posi­
tive definite hermitian product. Let A: V --+ V be a linear map. We define 
A to be complex unitary if 

(Av, Aw) = (v, w) 
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for all v, WE V. The analogue of Theorem 3.1 is true verbatim: The map 
A is unitary if and only if it preserves norms and also if and only if it 
preserves unit vectors. We leave the proof as an exercise. 

Theorem 3.3. Let V be a finite dimensional vector space over C, with a 
positive definite hermitian product. A linear map A: V --+ V is unitary if 
and only if 

A*A = I. 

We also leave the proof as an exercise. 

Taking V = cn with the usual hermitian form given by 

we can represent A by a complex matrix. Thus it is natural to define a 
complex matrix A to be unitary if ~A = In' or 

Theorem 3.4. Let V be a vector space which is either over R with a 
positive definite scalar product, or over C with a positive definite hermi­
tian product. Let 

A: V--+ V 

be a linear map. Let {v I' ... ,vn} be an orthonormal basis of v. 
(a) If A is unitary then {Av l , ... ,Avn } is an orthonormal basis. 
(b) Let {WI' ... ,wn} be another orthonormal basis. Suppose that 

AVi = Wi for i = 1, ... ,no Then A is unitary. 

Proof. The proof is immediate from the definitions and will be left as 
an exercise. See Exercises 1 and 2. 

VII, §3. EXERCISES 

1. (a) Let V be a finite dimensional space over R, with a positive definite scalar 
product. Let {VI' ... ,vn } and {WI' ... ,wn } be orthonormal bases. Let 
A: V ---+ V be an operator of V such that AVi = Wi. Show that A is real 
unitary. 

(b) State and prove the analogous result in the complex case. 
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2. Let V be as in Exercise 1. Let {v l' ... ,vn } be an orthonormal basis of V. Let 
A be a unitary operator of V. Show that {Av l' ... ,Avn} is an orthonormal 
basis. 

3. Let A be a real unitary matrix. 
(a) Show that ~ is unitary. 
(b) Show that A - 1 exists and is unitary. 
(c) If B is real unitary, show that AB is unitary, and that B- 1 AB is unitary. 

4. Let A be a complex unitary matrix. 
(a) Show that ~ is unitary 
(b) Show that A - 1 exists and is unitary. 
(c) If B is complex unitary, show that AB is unitary, and that B- 1 AB is 

unitary. 

5. (a) Let V be a finite dimensional space over R, with a positive definite scalar 
product, and let {v 1, ••• ,vn } = (!A and {W l' ... ,Wn } = (!A' be orthonormal 
bases of V. Show that the matrix M:, (id) is real unitary. [Hint: Use 
< Wi' Wi) = 1 and <Wi' Wj ) = 0 if i #- j, as well as the expression 
Wi = L aijvj, for some aijER.] 

(b) Let F: V --+ V be such that F(v i ) = Wi for all i. Show that M:, (F) is 
unitary. 

6. Show that the absolute value of the determinant of a real unitary matrix is 
equal to 1. Conclude that if A is real unitary, then Det(A) = 1 or -1. 

7. If A is a complex square matrix, show that Det(A) = Det(A). Conclude that 
the absolute value of the determinant of a complex unitary matrix is equal 
to 1. 

8. Let A be a diagonal real unitary matrix. Show that the diagonal elements of 
A are equal to 1 or -1. 

9. Let A be a diagonal complex unitary matrix. Show that each diagonal 
element has absolute value 1, and hence is of type eiO

, with real B. 

The following exercises describe various properties of real unitary maps of the 
plane R2. 

10. Let V be a 2-dimensional vector space over R, with a positive definite scalar 
product, and let A be a real unitary map of V into itself. Let {Vi' V2 } and 
{W1' w2 } be orthonormal bases of v such that AVi = Wi for i = 1, 2. Let a, b, 
c, d be real numbers such that 

Show that a2 + b2 = 1, c2 + d 2 = 1, ac + bd = 0, a2 = d 2 and c2 = b2
• 

11. Show that the determinant ad - bc is equal to 1 or - 1. (Show that its 
square is equal to 1.) 
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12. Define a rotation of V to be a real unitary map A of V whose determinant is 
1. Show that the matrix of A relative to an orthogonal basis of V is of type 

for some real numbers a, b such that a2 + b2 = 1. Also prove the converse, 
that any linear map of V into itself represented by such a matrix on an 
orthogonal basis is unitary, and has determinant 1. Using calculus, one can 
then conclude that there exist a number e such that a = cos e and b = sin e. 

13. Show that there exists a complex unitary matrix U such that, if 

A = (COS e 
sin e 

then U-lAU = B. 

-sin e) 
cos e and 

14. Let V = C be viewed as a vector space of dimension 2 over R. Let lJ, E C, 
and let La: C --+ C be the map z ~ lJ,z. Show that La is an R-linear map of V 
into itself. For which complex numbers lJ, is La a unitary map with respect to 
the scalar product <z, w) = Re(zw)? What is the matrix of La with respect to 
the basis {I, i} of Cover R? 



CHAPTER VIII 

Eigenvectors and 
Eigenvalues 

This chapter gives the basic elementary properties of eigenvectors and 
eigenvalues. We get an application of determinants in computing the 
characteristic polynomial. In §3, we also get an elegant mixture of 
calculus and linear algebra by relating eigenvectors with the problem of 
finding the maximum and minimum of a quadratic function on the 
sphere. Most students taking linear algebra will have had some calculus, 
but the proof using complex numbers instead of the maximum principle 
can be used to get real eigenvalues of a symmetric matrix if the calculus 
has to be avoided. Basic properties of the complex numbers will be 
recalled in an appendix. 

VIII, §1. EIGENVECTORS AND EIGENVALUES 

Let V ee a vector space and let 

A: V--+ V 

be a linear map of V into itself. An element v E V is called an eigenvector 
of A if there exists a number A such that Av = AV. If v =1= 0 then A is 
uniquely determined, because Al v = A2 v implies Al = A2. In this case, we 
say that A is an eigenvalue of A belonging to the eigenvector v. We also 
say that v is an eigenvector with the eigenvalue A. Instead of eigenvector 
and eigenvalue, one also uses the terms characteristic vector and charac­
teristic value. 

If A is a square n x n matrix then an eigenvector of A is by definition 
an eigenvector of the linear map of K n into itself represented by this 
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matrix. Thus an eigenvector X of A is a (column) vector of K n for 
which there exists A E K such that AX = AX. 

Example 1. Let V be the vector space over R consisting of all infi­
nitely differentiable functions. Let A E R. Then the function f such that 
f(t) = e;'t is an eigenvector of the derivative d/dt because df/dt = Ae;'t. 

Example 2. Let 

be a diagonal matrix. Then every unit vector Ei (i = 1, ... ,n) is an eigen­
vector of A. In fact, we have AEi = aiEi: 

0 0 
a l 0 0 

0 a2 0 
1 -

0 0 an 
0 

Example 3. If A: V -+ V is a linear map, and v is an eigenvector of A, 
then for any non-zero scalar c, cv is also an eigenvector of A, with the 
same eigenvalue. 

Theorem 1.1. Let V be a vector space and let A: V -+ V be a linear 
map. Let A E K. Let V;. be the subspace of V generated by all eigenvec­
tors of A having A as eigenvalue. Then every non-zero element of V;. is 
an eigenvector of A having A as eigenvalue. 

Proof. Let VI' V2 E V be such that AVI = AV I and AV2 = AV2. Then 

If CEK then A(cv l ) = CAVI = CAV I = ACV I. This proves our theorem. 

The subspace V;. in Theorem 1.1 is called the eigenspace of A belong­
ing to A. 
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Note. If vl , V2 are eigenvectors of A with different eigenvalues Al =1= A2 

then of course V l + V2 is not an eigenvector of A. In fact, we have the 
following theorem: 

Theorem 1.2. Let V be a vector space and let A: V --+ V be a linear 
map. Let v l , ... ,Vm be eigenvectors of A, with eigenvalues Al , ... ,Am 
respectively. Assume that these eigenvalues are distinct, i.e. 

if i =1= j. 

Then v l , ... ,Vm are linearly independent. 

Proof. By induction on m. For m = 1, an element V l E V, V l =1= 0 IS 

linearly independent. Assume m > 1. Suppose that we have a relation 

with scalars ci • We must prove all Ci = o. We multiply our relation (*) 
by A 1 to obtain 

We also apply A to our relation (*). By linearity, we obtain 

We now subtract these last two expressions, and obtain 

Since Aj - Al =1= 0 for j = 2, ... ,m we conclude by induction that 

Going back to our original relation, we see that C1V l = 0, whence C l = 0, 
and our theorem is proved. 

Example 4. Let V be the vector space consisting of all differentiable 
functions of a real variable t. Let ct l , ... ,ctm be distinct numbers. The 
functions 

are eigenvectors of the derivative, with distinct eigenvalues ct l , ... ,ctm , and 
hence are linearly independent. 
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Remark 1. In Theorem 1.2, suppose V is a vector space of dimension 
n and A: V -+ V is a linear map having n eigenvectors V 1, ••• ,Vn whose 
eigenvalues A1 , ••• ,An are distinct. Then {V 1 , ••• ,Vn} is a basis of V. 

Remark 2. One meets a situation like that of Theorem 1.2 In the 
theory of linear differential equations. Let A = (aij) be an n x n matrix, 
and let 

F(t) = : 
(

f1 (t)) 

fn(t) 

be a column vector of functions satisfying the equation 

dF 
dt = AF(t). 

In terms of the coordinates, this means that 

Now suppose that A is a diagonal matrix, 

A = (: ! ::: I) with ai -1= 0 all i. 

Then each function fi(t) satisfies the equation 

By calculus, there exist numbers C b ... 'Cn such that for i = 1, ... ,n we 
have 

[Proof: if df/dt = af(t), then the derivative of f(t)/e at is 0, so f(t)/e at is 
constant.] Conversely, if C 1, ••• 'Cn are numbers, and we let 

(

c ealt) 
F(t) = 1 : . 

C eant 
n 
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Then F(t) satisfies the differential equation 

dF 
dt = AF(t). 

Let V be the set of solutions F(t) for the differential equation 

dF at = AF(t). 

Then V is immediately verified to be a vector space, and the above argu­
ment shows that the n elements 

... , 

form a basis for V. Furthermore, these elements are eigenvectors of A, 
and also of the derivative (viewed as a linear map). 

The above is valid if A is a diagonal matrix. If A is not diagonal, 
then we try to find a basis such that we can represent the linear map A 
by a diagonal matrix. 

Quite generally, let V be a finite dimensional vector space, and let 

L: V -+ V 

be a linear map. Let {v l , ..• ,vn } be a basis of V. We say that this basis 
diagonalizes L if each Vi is an eigenvector of L, so LVi = CiVi with some 
scalar Ci • Then the matrix representing L with respect to this basis is the 
diagonal matrix 

o C2 o 
A= 

We say that the linear map L can be diagonalized if there exists a basis 
of V consisting of eigenvectors. Later in this chapter we show that if A 
is a symmetric matrix and 
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is the associated linear map, then LA can be diagonalized. We say that 
an n x n matrix A can be diagonalized if its associated linear map LA 
can be diagonalized. 

VIII, §1. EXERCISES 

1. Let a E K and a #- o. Prove that the eigenvectors of the matrix 

generate a I-dimensional space, and give a basis for this space. 

2. Prove that the eigenvectors of the matrix 

generate a 2-dimensional space and give a basis for this space. What are the 
eigenvalues of this matrix? 

3. Let A be a diagonal matrix with diagonal elements all' ... ,ann. What is the 
dimension of the space generated by the eigenvectors of A? Exhibit a basis 
for the space, and give the eigenvalues. 

4. Let A = (aij ) be an n x n matrix such that for each i = 1, ... ,n we have 

n 

L aij = O. 
j= 1 

Show that 0 is an eigenvalue of A. 

5. (a) Show that if 8ER, then the matrix 

A = (COS 8 
sin 8 

sin 8) 
-cos 8 

always has an eigenvector in R2, and in fact that there exists a vector V l 

such that AVl = Vl. [Hint: Let the first component of V l be 

sin 8 
x=----

1 - cos 8 

if cos 8 #- 1. Then solve for y. What if cos 8 = I?] 
(b) Let V2 be a vector of R2 perpendicular to the vector V l found in (a). Show 

that AV2 = - v2 . Define this to mean that A is a reflection. 
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6. Let 

EIGENVECTORS AND EIGENVALUES 

(

COS 0 
R(O) = . 0 

SIn 

- sin 0) 
cos 0 

[VIII, §2] 

be the matrix of a rotation. Show that R(O) does not have any real eigen­
val ues unless R( 0) = ± I. [I t will be easier to do this exercise after you have 
read the next section.] 

7. Let V be a finite dimensional vector space. Let A, B be linear maps of V into 
itself. Assume that AB = BA. Show that if v is an eigenvector of A, with 
eigenvalue A, then Bv is an eigenvector of A, with eigenvalue A also if Bv #- O. 

VIII, §2. THE CHARACTERISTIC POLYNOMIAL 

We shall now see how we can use determinants to find the eigenvalue of 
a matrix. 

Theorem 2.1. Let V be a finite dimensional vector space, and let A be a 
number. Let A: V ~ V be a linear map. Then A is an eigenvalue of A if 
and only if A - AI is not invertible. 

Proof. Assume that A is an eigenvalue of A. Then there exists an 
element v E V, v =I- 0 such that Av = Av. Hence Av - AV = 0, and 
(A - AI)v = O. Hence A - AI has a non-zero kernel, and A - AI cannot 
be invertible. Conversely, assume that A - AI is not invertible. By 
Theorem 3.3 of Chapter III, we see that A - AI must have a non-zero 
kernel, meaning that there exists an element v E V, v =I- 0 such that 
(A - AI)v = O. Hence Av - AV = 0, and Av = Av. Thus A is an eigen­
value of A. This proves our theorem. 

Let A be an n x n matrix, A = (aij). We define the characteristic poly­
nomial PA to be the determinant 

PA(t) = Det(tI - A), 

or written out in full, 

P(t) = 

We can also view A as as linear map from K n to K n
, and we also say 

that PA(t) is the characteristic polynomial of this linear map. 
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Example 1. The characteristic polynomial of the matrix 

A = (-~ 
-1 

-:) 
1 
1 

IS 

t - 1 1 -3 
2 t - 1 -1 

0 -1 t + 1 

which we expand according to the first column, to find 

For an arbitrary matrix A = (aij), the characteristic polynomial can be 
found by expanding according to the first column, and will always con­
sist of a sum 

Each term other than the one we have written down will have degree 
< n. Hence the characteristic polynomial is of type 

PA(t) = tn + terms of lower degree. 

Theorem 2.2. Let A be an n x n matrix. A number A is an eigenvalue 
of A if and only if A is a root of the characteristic polynomial of A. 

Proof. Assume that A is an eigenvalue of A. Then AI - A is not in­
vertible by Theorem 2.1, and hence Det(AI - A) = 0, by Theorem 5.3 of 
Chapter VI. Consequently A is a root of the characteristic polynomial. 
Conversely, if A is a root of the characteristic polynomial, then 

Det(AI - A) = 0, 

and hence by the same Theorem 5.3 of Chapter VI we conclude that 
AI - A is not invertible. Hence A is an eigenvalue of A by Theorem 2.1. 

Theorem 2.2 gives us an explicit way of determining the eigenvalues of 
a matrix, provided that we can determine explicitly the roots of its char­
acteristic polynomial. This is sometimes easy, especially in exercies at the 
end of chapters when the matrices are adjusted in such a way that one 
can determine the roots by inspection, or simple devices. It is consider­
ably harder in other cases. 

For instance, to determine the roots of the polynomial in Example 1, 
one would have to develop the theory of cubic polynomials. This can be 
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done, but it involves formulas which are somewhat harder than the for­
mula needed to solve a quadratic equation. One can also find methods 
to determine roots approximately. In any case, the determination of such 
methods belongs to another range of ideas than that studied in the 
present chapter. 

Example 2. Find the eigenvalues and a basis for the eigenspaces of the 
matrix 

The characteristic polynomial is the determinant 

t - 1 - 4 
= (t - 1)(t - 3) - 8 = t 2 

- 4t - 5 = (t - 5)(t + 1). 
- 2 t - 3 

Hence the eigenvalues are 5, - 1. 
For any eigenvalue A, a corresponding eigenvector is a vector (;) 

such that 

or equivalently 

x + 4y = AX, 

2x + 3y = Ay, 

(1 - A)X + 4y = 0, 

2x + (3 - A)y = O. 

We give X some value, say X = 1, and solve for y from either equation, 
for instance the second to get y = - 2/(3 - A). This gives us the eigen­
vector 

X(A.) = ( -2/(~ - A.)} 

Substituting A = 5 and A = -1 gives us the two eigenvectors 

and 

The eigenspace for 5 has basis Xl and the eigenspace for -1 has basis 
X2. Note that any non-zero scalar multiples of these vectors would also 
be bases. For instance, instead of X 2 we could take 

(-~) 
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Example 3. Find the eigenvalues and a basis for the eigenspaces of the 
matrix 

(~ 
1 

1 

2 
-!) 

The characteristic polynomial is the determinant 

(

t - 2 - 1 0) 
o t - 1 1 = (t - 2)2(t - 3). 

o -2 t-4 

Hence the eigenvalues are 2 and 3. 
For the eigenvectors, we must solve the equations 

(2 - A)X + Y = 0, 

(1 - A)Y - Z = 0, 

2y+(4-A)Z=0. 

Note the coefficient (2 - A) of x. 
Suppose we want to find the eigenspace with eigenvalue A = 2. Then 

the first equation becomes y = 0, whence Z = 0 from the second equa­
tion. We can give x any value, say x = 1. Then the vector 

is a basis for the eigenspace with eigenvalue 2. 
Now suppose A =1= 2, so A = 3. If we put x = 1 then we can solve for 

y from the first equation to give y = 1, and then we can solve for Z in 
the second equation, to get z = - 2. Hence 

is a basis for the eigenvectors with eigenvalue 3. Any non-zero scalar 
multiple of X 2 would also be a basis. 
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Example 4. The characteristic polynomial of the matrix 

is (t - 1)( t - 5)( t - 7). Can you generalize this? 

Example 5. Find the eigenvalues and a basis for the eigenspaces of the 
matrix in Example 4. 

The eigenvalues are 1, 5, and 7. Let X be a non-zero eigenvector, say 

also written tx = (x, y, z). 

Then by definition of an eigenvector, there is a number A such that 
AX = AX, which means 

x + y + 2z = AX, 

5y - Z = AY, 

7z = AZ. 

Case 1. Z = 0, y = o. Since we want a non-zero eigenvector we must 
then have X =1= 0, in which case A = 1 by the first equation. Let Xl = E1 
be the first unit vector, or any non-zero scalar multiple to get an eigen­
vector with eigenvalue 1. 

Case 2. Z = 0, y =1= o. By the second equation, we must have A = 5. 
Give y a specific value, say y = 1. Then solve the first equation for x, 
namely 

X + 1 = 5x, which gives X =!. 
Let 

Then X 2 is an eigenvector with eigenvalue 5. 

Case 3. Z =1= O. Then from the third equation, we must have A = 7. 
Fix some non-zero value of z, say Z = 1. Then we are reduced to solving 
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the two simultaneous equations 

x + y + 2 = 7x, 

5y - 1 = 7y. 

This yields y = - -t and x = !. Let 

Then X 3 is an eigenvector with eigenvalue 7. 

205 

Scalar multiples of Xl, X 2, X 3 will yield eigenvectors with the same 
eigenvalues as xl, X 2

, X 3 respectively. Since these three vectors have 
distinct eigenvalues, they are linearly independent, and so form a basis of 
R3. By Exercise 14, there are no other eigenvectors. 

Suppose now that the field of scalars K is the complex numbers. We 
then use the fact proved in an appendix: 

Every non-constant polynomial with complex coefficients has a complex 
root. 

If A is a complex n x n matrix, then the characteristic polynomial of A 
has complex coefficients, and has degree n > 1, so has a complex root 
which is an eigenvalue. Thus we have: 

Theorem 2.3. Let A be an n x n matrix with complex components. 
Then A has a non-zero eigenvector and an eigenvalue in the complex 
numbers. 

This is not always true over the real numbers. (Example?) In the next 
section, we shall see an important case when a real matrix always has a 
real eigenvalue. 

Theorem 2.4. Let A, B be two n x n matrices, and assume that B is in­
vertible. Then the characteristic polynomial of A is equal to the charac­
teristic polynomial of B- 1 AB. 

Proof. By definition, and properties of the determinant, 

Det(tI - A) = Det(B- 1(tI - A)B) = Det(tB- 1 B - B- 1 AB) 

= Det(tI - B- 1AB). 

This proves what we wanted. 
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Let 
L:V~V 

be a linear map of a finite dimensional vector space into itself, so L is an 
operator. Select a basis for V and let 

be the matrix associated with L with respect to this basis. We then de­
fine the characteristic polynomial of L to be the characteristic polynomial 
of A. If we change basis, then A changes to B-1AB where B is invert­
ible. By Theorem 2.4, this implies that the characteristic polynomial does 
not depend on the choice of basis. 

Theorem 2.3 can be interpreted for L as stating: 

Let V be a finite dimensional vector space over C of dimension > O. 
Let L: V ~ V be an operator. Then L has a non-zero eigenvector and 
an eigenvalue in the complex numbers. 

We now give examples of computations using complex numbers for 
the eigenvalues and eigenvectors, even though the matrix itself has real 
components. It should be remembered that in the case of complex eigen­
values, the vector space is over the complex numbers, so it consists of 
linear combinations of the given basis elements with complex coefficients. 

Example 6. Find the eigenvalues and a basis for the eigenspaces of the 
matrix 

A=G -1) 
1 . 

The characteristic polynomial is the determinant 

t - 2 

-3 
1 

= (t - 2)(t - 1) + 3 = t2 
- 3t + 5. 

t - 1 

Hence the eigenvalues are 

3 ±)9 - 20 
2 

Thus there are two distinct eigenvalues (but no real eigenvalue): 

and 
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Let X = (;) with not both x, y equal to O. Then X is an eigenvector if 

and only if AX = AX, that is: 

2x - Y = AX, 

3x + y = AY, 

where A is an eigenvalue. This system is equivalent with 

(2 - A)X - Y = 0, 

3x + (1 - A)Y = o. 

We give X, say, an arbitrary value, for instance X = 1 and solve for y, so 
Y = (2 - A) from the first equation. Then we obtain the eigenvectors 

and 

Remark. We solved for Y from one of the equations. This is con­
sistent with the other because A is an eigenvalue. Indeed, if you substi­
tute x = 1 and Y = 2 - A on the left in the second equation, you get 

3 + (1 - A)(2 - A) = 0 

because A is a root of the characteristic polynomial. 

Then X(A I ) is a basis for the one-dimensional eigenspace of AI' and 
X(A 2 ) is a basis for the one-dimensional eigenspace of A2 • 

Example 7. Find the eigenvalues and a basis for the eigenspaces of the 
matrix 

1 

1 

o 

-1) o . 
1 

We compute the characteristic polynomial, which is the determinant 

t-1 -1 1 
o t - 1 0 

-1 0 t-1 

easily computed to be 

P(t) = (t - 1)(t2 
- 2t + 2). 
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Now we meet the problem of finding the roots of P(t) as real numbers 
or complex numbers. By the quadratic formula, the roots of t 2 

- 2t + 2 
are given by 

The whole theory of linear algebra could have been done over the com­
plex numbers, and the eigenvalues of the given matrix can also be de­
fined over the complex numbers. Then from the computation of the 
roots above, we see that the only real eigenvalue is 1; and that there are 
two complex eigenvalues, namely 

1 + v'-l and I-Fl· 
We let these eigenvalues be 

Let 

be a non-zero vector. Then X is an eigenvector for A if and only if the 
following equations are satisfied with some eigenvalue A: 

x + y - Z = AX, 

y = AY, 

X + Z = AZ. 

This system is equivalent with 

(1 - A)X + Y - Z = 0, 

(1 - A)Y = 0, 

X + (1 - A)Z = o. 

Case 1. A = 1. Then the second equation will hold for any value of y. 
Let us put y = 1. From the first equation we get Z = 1, and from the 
third equation we get X = O. Hence we get a first eigenvector 



[VIII, §2] THE CHARACTERISTIC POLYNOMIAL 209 

Case 2. A =1= 1. Then from the second equation we must have y = O. 
Now we can solve the system arising from the first and third equations: 

(1 - A)X - Z = 0, 

x + (1 - A)Z = O. 

If these equations were independent, then the only solutions would be 
x = Z = O. This cannot be the case, since there must be a non-zero ei­
genvector with the given eigenvalue. Actually you can check directly that 
the second equation is equal to (A - 1) times the first. In any case, we 
give one of the variables an arbitrary value, and solve for the other. For 
instance, let Z = 1. Then x = 1/(1 - A). Thus we get the eigenvector 

(

1/(1 - A)) 
X(A) = 0 . 

1 

We can substitute A = Ai and A = A2 to get the eigenvectors with the 
eigenvalues Ai and A2 respectively. 

In this way we have found three eigenvectors with distinct eigenvalues, 
namely 

Example 8. Find the eigenvalues and a basis for the eigenspaces of the 
matrix 

(-~ 
-1 

1 

-1 

The characteristic polynomial is 

t - 1 

2 
- 1 

1 

t - 1 

1 

-2 
- 3 = (t - 1)3 - (t - 1) - 1. 

t - 1 

The eigenvalues are the roots of this cubic equation. In general it is not 
easy to find such roots, and this is the case in the present instance. Let 
u = t - 1. In terms of u the polynomial can be written 

Q(u) = u3 
- U - 1. 
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From arithmetic, the only rational roots must be integers, and must 
divide 1, so the only possible rational roots are + 1, which are not 
roots. Hence there is no rational eigenvalue. But a cubic equation has 
the general shape as shown on the figure: 

-1/)3 1/)3 

Figure 1 

This means that there is at least one real root. If you know calculus, 
then you have tools to be able to determine the relative maximum and 
relative minimum, you will find that the function u3 

- u - 1 has its rela-

tive maximum at u == -1/)3, and that Q( -1/)3) is negative. Hence 
there is only one real root. The other "two roots are complex. This is as 
far as we are able to go with the means at hand. In any case, we give 
these roots a name, and let the eigenvalues be 

They are all distinct. 
We can, however, find the eigenvectors In terms of the eigenvalues. 

Let 

be a non-zero vector. Then X is an eigenvector if and only if AX == AX, 
that is: 

x -- y + 2z == AX, 

-2x + y + 3z == Ay, 

X - Y + Z == Az. 
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This system of equations is equivalent with 

(1 - A)X - Y + 2z = 0, 

- 2x + (1 - A)Y + 3z = 0, 

x - Y + (1 - A)Z = O. 

211 

We give Z an arbitrary value, say Z = 1 and solve for x and y using the 
first two equations. Thus we must solve: 

(A - l)x + y = 2, 

2x+(A-l)y=3. 

Multiply the first equation by 2, the second by (A - 1) and subtract. 
Then we can solve for y to get 

3(A-l)-4 
y( A.) = (A. _ 1)2 - 2 . 

From the first equation we find 

Hence eigenvectors are 

2-y 
X(A) = --. 

A-I 

where AI' A2 , A3 are the three eigenvalues. This is an explicit answer to 
the extent that you are able to determine these eigenvalues. By machine 
or a computer, you can use means to get approximations to AI' A2 , A3 
which will give you corresponding approximations to the three eigenvec­
tors. Observe that we have found here the complex eigenvectors. Let Al 
be the real eigenvalue (we have seen that there is only one). Then from 
the formulas for the coordinates of X(A), we see that yeA) or X(A) will be 
real if and only if A is real. Hence there is only one real eigenvector 
namely X(A 1). The other two eigenvectors are complex. Each eigen­
vector is a basis for the corresponding eigenspace. 
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VIII, §2. EXERCISES 

1. Let A be a diagonal matrix, 

o 

J). A= 

o 

(a) What is the characteristic polynomial of A? 
(b) What are its eigenvalues? 

2. Let A be a triangular matrix, 

A= 

[VIII, §2] 

What is the characteristic polynomial of A, and what are its eigenvalues? 

Find the characteristic polynomial, eigenvalues, and bases for the eigenspaces 
of the following matrices. 

3. (a) G ~) (b) ( _ ~ ~) 
(-2 -7) (c) 1 2 (d) G ~) 

4. 

(a) ( -~ 0 

D (b) (: 

-3 

!) 1 -5 
-2 0 -6 

(c) G 1 

n (-: 
2 

-D 4 (d) 2 

1 1 

5. Find the eigenvalues and eigenvectors of the following matrices. Show that 
the eigenvectors form a I-dimensional space. 

(a) G -~) (b) G ~) (c) G ~) (d) G -3) 
-1 

6. Find the eigenvalues and eigenvectors of the following matrices. Show that 
the eigenvectors form a I-dimensional space. 

(a) G 1 

:) (b) G 
1 

D 1 1 

0 0 
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7. Find the eigenvalues and a basis for the eigenspaces of the following ma­
trices. 

(a) (~ 
1 0 

!) 
( -1 

0 
0 1 

(b) -1 3 
0 0 

-4 13 
0 0 

8. Find the eigen val ues and a basis for the 
matrices. 

(a) 
(

25 (b) G -~) 

(
- ~ ~ ~) (e) (~ ~ ~) 
-3 -6 -6 0 1-1 

(d) 

-D 
eigenspaces 

(c) (_~ 

(

-1 

(f) -3 

-3 

for the following 

9. Let V be an n-dimensional vector space and assume that the characteristic 
polynomial of a linear map A: V -+ V has n distinct roots. Show that V has 
a basis consisting of eigenvectors of A. 

10. Let A be a square matrix. Show that the eigenvalues of ~ are the same as 
those of A. 

11. Let A be an invertible matrix. If'{ is an eigenvalue of A show that ,{ =1= 0 
and that ,{ -1 is an eigenvalue of A-I. 

12. Let V be the space generated over R by the two functions sin t and cos t. 
Does the derivative (viewed as a linear map of V into itself) have any non­
zero eigenvectors in V? If so, which? 

13. Let D denote the derivative which we view as a linear map on the space of 
differentiable functions. Let k be an integer =1= o. Show that the functions 
sin kx and cos kx are eigenvectors for D2. What are the eigenvalues? 

14. Let A: V -+ V be a linear map of V into itself, and let {VI' ... ,Vn } be a basis of 
V consisting of eigenvectors having distinct eigenvalues C 1' ... 'Cn. Show that 
any eigenvector V of A in V is a scalar mUltiple of some Vi. 

15. Let A, B be square matrices of the same size. Show that the eigenvalues of 
AB are the same as the eigenvalues of BA. 

VIII, §3. EIGENVALUES AND EIGENVECTORS OF 
SYMMETRIC MATRICES 

We shall give two proofs of the following theorem. 

Theorem 3.1. Let A be a symmetric n x n real matrix. Then there ex­
ists a non-zero real eigenvector for A. 
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The first proof uses the complex numbers. By Theorem 2.3, we know 
that A has an eigenvalue A in C, and an eigenvector Z with complex 
components. It will now suffice to prove: 

Theorem 3.2. Let A be a real symmetric matrix and let A be an eigen­
value in C. Then A is real. If Z =1= 0 is a complex eigenvector with ei­
genvalue A, and Z = X + i Y where X, Y ERn, then both X, Yare real 
eigenvectors of A with eigenvalue A, and X or Y i= O. 

Proof. Let Z = t(Zl' ... ,zn) with complex coordinates Zi. Then 

By hypothesis, we have AZ = AZ. Then 

The transpose of a 1 x 1 matrix is equal to itself, so we also get 

But AZ = AZ = AZ and AZ = AZ = A:Z. Therefore 

Since tzZ i= 0 it follows that A = ~, so A is real. 

Now from AZ = AZ we get 

AX + iA Y = AX + iA Y, 

and since A, X, Y, are real it follows that AX = AX and A Y = AY. This 
proves the theorem. 

Next we shall give a proof using calculus of several variables. 
Define the function 

f(X) = tXAX 

Such a function f is called the quadratic form associated with A. If 
tx = (Xl' ... ,Xn) is written in terms of coordinates, and A = (aij) then 

n 

f(X) = L aijxixj • 

i, j= 1 
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Example. Let 

Let tx = (x, y). Then 

More generally, let 

Then 

Example. Suppose we are given a quadratic expression 

f(x, y) = 3x2 + 5xy - 4y2. 

Then it is the quadratic form associated with the symmetric matrix 

A = 2 
(

3 ~) 
~ -4 

In many applications, one wants to find a maximum for such a func­
tion f on the unit sphere. Recall that the unit sphere is the set of all 

points X such that IIXII = 1, where IIXII =JX.X. It is shown in analy­
sis courses that a continuous function f as above necessarily has a maxi­
mum on the sphere. A maximum on the unit sphere is a point P such 
that IIPII = 1 and 

f(P) > f(X) for all X with II X II = 1. 

The next theorem relates this problem with the problem of finding eigen­
vectors. 

Theorem 3.3. Let A be a real symmetric matrix, and let f(X) = tXAX 
be the associated quadratic form. Let P be a point on the unit sphere 
such that f(P) is a maximum for f on the sphere. Then P is an eigen­
vector for A. I n other words, there exists a number )., such that 
AP = )"P. 
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Proof. Let W be the subspace of Rn orthogonal to P, that is W = p.l. 
Then dim W = n - 1. For any element WE W, IIwll = 1, define the curve 

C(t) = (cos t)P + (sin t)w. 

The directions of unit vectors WE Ware the directions tangent to the 
sphere at the point P, as shown on the figure 

p = C(O) 

c~ 
~..--------- .. -...... 

0-

Figure 2 

The curve C(t) lies on the sphere because II C(t)11 = 1, as you can verify 
at once by taking the dot product C(t)· C(t), and using the hypothesis 
that p. W = O. Furthermore, C(O) = P, so C(t) is a curve on the sphere 
passing through P. We also have the derivative 

C'(t) = ( - sin t)P + (cos t)w, 

and so C'(O) = w. Thus the direction of the curve is in the direction of 
w, and is perpendicular to the sphere at P because W· P = O. Consider 
the function 

get) = f( C(t)) = C(t)· AC(t). 

Using coordinates, and the rule for the derivative of a product which ap­
plies in this case (as you might know from calculus), you find the deriva­
tive: 

g'(t) = C'(t)· AC(t) + C(t)· AC'(t) 

= 2C'(t)· AC(t), 

because A is symmetric. Since f(P) is a maximum and g(O) = f(P), it 
follows that g'(O) = O. Then we obtain: 

o = g'(O) = 2C'(O)· AC(O) = 2w· AP. 

Hence AP is perpendicular to W for. all WE W. But W.l is the 1-dimen­
sional space generated by P. Hence there is a number )., such that 
AP = )"P, thus proving the theorem. 
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Corollary 3.4. The maximum value of f on the unit sphere is equal to 
the largest eigenvalue of A. 

Proof. Let A be any eigenvalue and let P be an eigenvector on the 
unit sphere, so IIPII = 1. Then 

Thus the value of f at an eigenvector on the unit sphere is equal to the 
eigenvalue. Theorem 3.3 tells us that the maximum of f on the unit 
sphere occurs at an eigenvector. Hence the maximum of f on the unit 
sphere is equal to the largest eigenvalue, as asserted. 

Example. Let f(x, y) = 2X2 - 3xy + y2. Let A be the symmetric ma­
trix associated with f. Find the eigenvectors of A on the unit circle, and 
find the maximum of f on the unit circle. 

First we note that f is the quadratic form associated with the matrix 

=( 2 -i) A 3 . 
-2 1 

By Theorem 3.3 a maximum must occur at an eigenvector, so we first 
find the eigenvalues and eigenvectors. 

The characteristic polynomial is the determinant 

t - 2 

Then the eigenvalues are 

3 
"2 

3 

2 = t2 - 3t _ i. 
t - 1 

For the eigenvectors, we must solve 

2x - iy = AX, 

-ix + y = Ay. 

Putting X = 1 this gives the possible eigenvectors 



218 EIGENVECTORS AND EIGENVALUES [VIII, §4] 

Thus there are two such eigenvectors, up to non-zero scalar multiples. 
The eigenvectors lying on the unit circle are therefore 

P A _ X(A) 
( ) - IIX(A)II with and 

By Corollary 3.4 the maximum is the point with the bigger eigenvalue, 
and must therefore be the point 

peA) with 

The maximum value of f on the unit circle is (3 + jiO)/2. 
By the same token, the minimum value of f on the unit circle IS 

(3 - jiO)/2. 

VIII, §3. EXERCISES 

1. Find the eigenvalues of the following matrices, and the maximum value of the 
associated quadratic forms on the unit circle. 

( 2 -1) 
(a) -1 2 (b) G ~) 

2. Same question, except find the maximum on the unit sphere. 

(a) (-~ -~ -~) (b) (-~ -~ -~) 
o -1 1 0 -1 2 

3. Find the maximum and minimum of the function 

f(x, y) = 3x2 + 5xy - 4y2 

on the unit circle. 

VIII, §4. DIAGONALIZATION OF A SYMMETRIC 
LINEAR MAP 

Throughout this section, unless otherwise specified, we let V be a vector 
space of dimension n over R, with a positive definite scalar product. 

We shall give an application of the existence of eigenvectors proved in 
§3. We let 

A:V~V 
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be a linear map. Recall that A IS symmetric (with respect to the scalar 
product) if we have the relation 

<Av, W) = <v, Aw) 
'for all v, WE V. 

We can reformulate Theorem 3.1 as follows: 

Theorem 4.1. Let V be a finite dimensional vector space with a positive 
definite scalar product. Let A: V ~ V be a symmetric linear map. Then 
A has a nonzero eigenvector. 

Let W be a subspace of V, and let A: V ~ V be a symmetric linear map. 
We say that W is stable under A if A(W) c W, that is for all u E W we 
have Au E W. Sometimes one also says that W is invariant under A. 

Theorem 4.2. Let A: V ~ V be a symmetric linear map. Let v be a 
non-zero eigenvector of A. If w is an element of V, perpendicular to v, 
then A w is also perpendicular to v. 

If W is a subspace of V which is stable under A, then W.l is also 
stable under A. 

Proof. Suppose first that v is an eigenvector of A. Then 

<Aw, v) = <w, Av) = <w, AV) = A<w, v) = o. 

Hence A w is also perpendicular to v. 
Second, suppose W is stable under A. Let u E W.l. Then for all WE W 

we have: 

<Au, w) = <u, Aw) = 0 

by the assumption that Aw E W. Hence Au E W.l, thus proving the second 
assertion. 

Theorem 4.3 (Spectral theorem). Let V be a finite dimensional vector 
space over the real numbers, of dimension n > 0, and with a positive 
definite scalar product. Let 

A:V~V 

be a linear map, symmetric with respect to the scalar product. Then V 
has an orthonormal basis consisting of eigenvectors. 

Proof. By Theorem 3.1, there exists a non-zero eigenvector v for A. 
Let W be the one-dimensional space generated by v. Then W is stable 
under A. By Theorem 4.2, W.l is also stable under A and is a vector 
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space of dimension n - 1. We may then view A as gIvIng a symmetric 
linear map of W-L into itself. We can then repeat the procedure. We put 
v = V1 , and by induction we can find a basis {v 2 , ••• ,vn} of W-L consisting 
of eigenvectors. Then 

is an orthogonal basis of V consisting of eigenvectors. We divide each 
vector by its norm to get an orthonormal basis, as desired. 

If {e 1 , ••• ,en} is an orthonormal basis of V such that each ei is an 
eigen vector, then the matrix of A with respect to this basis is diagonal, 
and the diagonal elements are precisely the eigenvalues: 

In such a simple representation, the effect of A then becomes much 
clearer than when A is represented by a more complicated matrix with 
respect to another basis. 

A basis {v 1, ••• ,vn } such that each Vi is an eigenvector for A is called a 
spectral basis for A. We also say that this basis diagonalizes A, because 
the matrix of A with respect to this basis is a diagonal basis. 

Example. We give an application to linear differential equations. Let 
A be an n x n symmetric real matrix. We want to find the solutions in 
Rn of the differential equation 

where 

dX(t) 
--=AX(t) 

dt ' 

is given in terms of coordinates which are functions of t, and 

Writing this equation in terms of arbitrary coordinates is messy. So let 
us forget at first about coordinates, and view Rn as an n-dimensional 
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vector space with a posItIve definite scalar product. We choose an or­
thonormal basis of V (usually different from the original basis) consisting 
of eigenvectors of A. Now with respect to this new basis, we can identify 
V with Rn with new coordinates which we denote by Y1' ... ,Yn. With 
respect to these new coordinates, the matrix of the linear map LA is 

where A1, ••• ,An are the eigenvalues. But in terms of these more conve­
nient coordinates, our differential equation simply reads 

Thus the most general solution is of the form 

with some constant ci • 

The moral of this example is that one should not select a basis too 
quickly, and one should use as often as possible a notation without 
coordinates, until a choice of coordinates becomes imperative to make 
the solution of a problem simpler. 

Theorem 4.4. Let A be a symmetric real n x n matrix. Then there 
exists an n x n real unitary matrix U such that 

is a diaponal matrix. 

Proof. We view A as the associated matrix of a symmetric linear map 

relative to the standard basis [lA = {el, ... ,en}. By Theorem 4.3 we can 
find an orthonormal basis [lA' = {w 1, ••• ,wn } of Rn such that 
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is diagonal. Let U = M::,(id). Then U -1 AU IS diagonal. Furthermore 
U is unitary. Indeed, let U = (c ij ). Then 

n 

Wi = L Cjiej 
j= 1 

for i = 1, ... ,no 

The conditions <Wi' Wi) = 1 and <Wi' Wj ) = 0 if i i= j are immediately 
seen to mean that 

tuu = I that is 

This proves Theorem 4.4. 

Remark. Theorem 4.4 shows us how to obtain all symmetric real 
matrices. Every symmetric real matrix A can be written in the form 

tUBU, 

where B is a diagonal matrix and U is real unitary. 

VIII, §4. EXERCISES 

1. Suppose that A is a diagonal n x n matrix. For any X ERn, what is tx AX in 
terms of the coordinates of X and the diagonal elements of A? 

2. Let 

be a diagonal matrix with A 1 ~ 0, ... ,An ~ o. Show that there exists an n x n 
diagonal matrix B such that B2 = A. 

3. Let V be a finite dimensional vector space with a posItIve definite scalar 
product. Let A: V --+ V be a symmetric linear map. We say that A is positive 
definite if (Av, v) > 0 for all VE V and v i= o. Prove: 
(a) if A is positive definite, then all eigenvalues are > o. 
(b) If A is positive definite, then there exists a symmetric linear map B such 

that B2 = A and BA = AB. What are the eigenvalues of B? [Hint: Use 
a basis of V consisting of eigenvectors.] 

4. We say that A is semipositive if (Av, v) ~ 0 for all VE V. Prove the anal­
ogues of (a), (b) of Exercise 3 when A is only assumed semipositive. Thus the 
eigenvalues are ~ 0, and there exists a symmetric linear map B such that 
B2 = A. 
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5. Assume that A is symmetric positive definite. Show that A 2 and A-I are 
symmetric positive definite. 

6. Let A: Rn --+ Rn be an invertible linear map. 
(i) Show that ~A is symmetric positive definite. 

(ii) By Exercise 3b, there is a symmetric positIve definite B such that 
B2 = ~A. Let U = AB - 1. Show that U is unitary. 

(iii) Show that A = U B. 

7. Let B be symmetric positive definite and also unitary. Show that B = I. 

8. Prove that a symmetric real matrix A is positive definite if and only if there 
exists a non-singular real matrix N such that A = tNN. [Hint: Use Theorem 
4.4, and write tu AU as the square of a diagonal matrix, say B2. Let 
N=UB- 1

.] 

9. Find an orthogonal basis of R2 consisting of eigenvectors of the given matrix. 

(a) G ~) (b) (-~ ~) (c) (~ ~) 
(d) G ~) (e) (-~ -~) (f) (-~ -:) 

10. Let A be a symmetric 2 x 2 real matrix. Show that if the eigenvalues of A 
are distinct, then their eigenvectors form an orthogonal basis of R 2 • 

11. Let V be as in §4. Let A: V --+ V be a symmetric linear map. Let VI' V 2 be 
eigenvectors of A with eigenyalues AI, A2 respectively. If Al i= A2, show that 
VI is perpendicular to v2 • 

12. Let V be as in §4. Let A: V --+ V be a symmetric linear map. If A has only 
one eigenvalue, show that every orthogonal basis of V consists of eigenvec­
tors of A. 

13. Let V be as in §4. Let A: V --+ V be a symmetric linear map. Let dim V = n, 
and assume that there are n distinct eigenvalues of A. Show that their eigen­
vectors form an orthogonal basis of v. 

14. Let V be as in §4. Let A: V --+ V be a symmetric linear map. If the kernel of 
A is {O}, then no eigenvalue of A is equal to 0, and conversely. 

15. Let V be as in §4, and let A: V --+ V be a symmetric linear map. Prove that 
the following conditions on A imply each other. 
(a) All eigenvalues of A are > o. 
(b) For all elements VE V, V i= 0, we have (Av, v) > O. 

If the map A satisfies these conditions, it is said to be positive definite. Thus 
the second condition, in terms of coordinate vectors and the ordinary scalar 
product in Rn reads: 

(b/) For all vectors X ERn, X i= 0, we have 

tXAX > O. 
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16. Determine which of the following matrices are positive definite. 

(a) G 

(d) G 
~) 
2 

o 
1 

-1 

o 
1 

(c) ~) 

D 

[VIII, §4] 

17. Prove that the following conditions concerning a real symmetric matrix are 
equivalent. A matrix satisfying these conditions is called negative definite. 
(a) All eigenvalues of A are < o. 
(b) For all vectors XERn, X =I 0, we have tXAX < O. 

18. Let A be an n x n non-singular real symmetric matrix. Prove the following 
statements. 
(a) If A is an eigenvalue of A, then A =I o. 
(b) If A is an eigenvalue of A, then A -1 is an eigenvalue of A -1. 

(c) The matrices A and A -1 have the same set of eigenvectors. 

19. Let A be a symmetric positive definite real matrix. Show that A - 1 exists and 
is positive definite. 

20. Let V be as in §4. Let A and B be two symmetric operators of V such that 
AB = BA. Show that there exists an orthogonal basis of V which consists of 
eigenvectors for both A and B. [Hint: If A is an eigenvalue of A, and V;. 
consists of all v E V such that Av = AV, show that BV;. is contained in V;.. 
This reduces the problem to the case when A = AI.] 

21. Let V be as in §4, and let A: V --+ V be a symmetric operator. Let A l' ... ,Ar 
be the distinct eigenvalues of A. If A is an eigenvalue of A, let V;.(A) consist 
of the set of all VE V such that Av = AV. 
(a) Show that V;.(A) is a subspace of V, and that A maps V;.(A) into itself. 

We call V;.(A) the eigenspace of A belonging to A. 
(b) Show that V is the direct sum of the spaces 

This means that each element v E V has a unique expression as a sum 

v = v1 + ... + Vr 

(c) Let A1, A2 be two distinct eigenvalues. Show that V;'l is orthogonal to 
V;. 2 • 

22. If P l' P 2 are two symmetric positive definite real matrices (of the same size), 
and t, u are positive real numbers, show that tP 1 + uP 2 is symmetric positive 
definite. 

23. Let V be as in §4, and let A: V --+ V be a symmetric operator. Let A l' ... ,Ar 
be the distinct eigenvalues of A. Show that 

(A - A 1 I) ... (A - Ar I) = O. 
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24. Let V be as in §4, and let A: V ~ V be a symmetric operator. A subspace W 
of V is said to be invariant or stable under A if Aw E W for all WE W, i.e. 
AWe W. Prove that if A has no invariant subspace other than 0 and V, 
then A = AI for some number A. [Hint: Show first that A has only one ei­
genvalue.] 

25. (For those who have read Sylvester's theorem.) Let A: V ~ V be a symmetric 
linear map. Referring back to Sylvester's theorem, show that the index of 
nullity of the form 

(v, w) ~ (Av, w) 

is equal to the dimension of the kernel of A. Show that the index of positi­
vity is equal to the number of eigenvectors in a spectral basis having a posi­
tive eigenvalue. 

VIII, §5. THE HERMITIAN CASE 

Throughout this sections we let V be a finite dimensional vector space 
over C with a positive definite hermitian product. 

That the hermitian case is actually not only analogous but almost the 
same as the real case is already shown by the next result. 

Theorem 5.1. Let A: V -+ V be a hermitian operator. Then every eigen­
value of A is real. 

Proof. Let v be an eigenvector with an eigenvalue A. By Theorem 2.4 
of Chapter VII we know that <Av, v) is real. Since Av = AV, we find 

<Av, v) = A<V, v>. 

But <v, v) is real >0 by assumption. Hence A is real, thus proving the 
theorem. 

Over C we know that every operator has an eigenvector and an ei­
genvalue. Thus the analogue of Theorem 4.1 is taken care of in the pre­
sent case. We then have the analogues of Theorems 4.2 and 4.3 as 
follows. 

Theorem 5.2. Let A: V -+ V be a hermitian operator. Let v be a non­
zero eigenvector of A. If w is an element of V perpendicular to v then 
A w is also perpendicular to v. 

If W is a subspace of V which is stable under A, then W-L is also 
stable under A. 

The proof is the same as that of Theorem 4.2. 
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Theorem 5.3 (Spectral theorem). Let A: V ~ V be a hermitian linear 
map. Then V has an orthogonal basis consisting of eigenvectors of A. 

Again the proof is the same as that of Theorem 4.3. 

Remark. If {v l , ... ,vn} is a basis as in the theorem, then the matrix of 
A relative to this basis is a real diagonal matrix. This means that the 
theory of hermitian maps (or matrices) can be handled just like the real 
case. 

Theorem 5.4. Let A be an n x n complex hermitian matrix. Then there 
exists a complex unitary matrix U such that 

U*AU = U-lAU 

is a diagonal matrix. 

The proof is like that of Theorem 4.4. 

VIII, §5. EXERCISES 

Throughout these exercises, we assume that V is a finite dimensional vector space 
over C, with a positive definite hermitian product. Also, we assume dim V > o. 

Let A: V --+ V be a hermitian operator. We define A to be positive definite if 

<Av, v) > 0 for all v E V, v # O. 

Also we define A to be semi positive or semidefinite if 

<Av, v) ~ 0 forallvEV. 

1. Prove: 
(a) If A is positive definite then all eigenvalues are > o. 
(b) If A is positive definite, then there exists a hermitian linear map B such 

that B2 = A and BA = AB. What are the eigenvalues of B? [Hint: See 
Exercise 3 of §4.] 

2. Prove the analogues of (a) and (b) in Exercise 1 when A is only assumed to 
be semidefinite. 

3. Assume that A is hermitian positive definite. Show that A 2 and A-I are her­
mitian positive definite. 

4. Let A: V --+ V be an arbitrary invertible operator. Show that there exist a 
complex unitary operator U and a hermitian positive definite operator P 
such that A = UP. [Hint: Let P be a hermitian positive definite operator 
such that p 2 = A * A. Let U = AP - 1. Show that U is unitary.] 
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5. Let A be a non-singular complex matrix. Show that A is hermitian positive 
definite if and only if there exists a non-singular matrix N such that 
A = N*N. 

6. Show that the matrix 

( Ii) A= 
-i 1 

is semipositive, and find a square root. 

7. Find a unitary matrix U such that U* A U is diagonal, when A is equal to: 

( 
2 1 +1 i) 

(a) 1 - i (b) (_~ :) 

8. Let A: V ~ V be a hermitian operator. Show that there exist semipositive 
operators PI' P 2 such that A = PI - P 2 • 

9. An operator A: V ~ V is said to be normal if AA * = A * A. 
(a) Let A, B be normal operators such that AB = BA. Show that AB is 

normal. 
(b) If A is normal, state and prove a spectral theorem for A. [Hint for the 

proof: Find a common eigenvector for A and A*.] 

10. Show that the complex matrix 

( ~ -~) 
-l l 

is normal, but is not hermitian and is not unitary. 

VIII, §6. UNITARY OPERATORS 

In the spectral theorem of the preceding section we have found an or­
thogonal basis for the vector space, consisting of eigenvectors for an her­
mitian operator. We shall now treat the analogous case for a unitary 
operator. 

The complex case is easier and clearer, so we start with the complex 
case. The real case will be treated afterwards. 

We let V be a finite dimensional vector space over C with a positive 
definite hermitian scalar product. 

We let 
U:V~V 
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be a unitary operator. This means that U satisfies anyone of the follow­
ing equivalent conditions: 

U preserves norms, i.e. II Uvll = Ilvll for all VE v. 
U preserves scalar products, i.e. <Uv, Uw> = <v, w> for v, WE V. 

U maps unit vectors on unit vectors. 

Since we are over the complex numbers, we know that U has an ei­
genvector v with an eigenvalue A i= 0 (because U is invertible). The one­
dimensional subspace generated by v is an invariant (we also say stable) 
subspace. 

Lemma 6.1. Let W be a U-invariant subspace of V. Then W-L is also 
U -invariant. 

Proof. Let VEW-L so that <w,v>=O for all WEW. Recall that 
u* = U - 1. Since U: W ~ W maps W into itself and since U has kernel 
{O}, it follows that U- 1 maps W into itself also. Now 

<W, Uv) = <U*w, v) = <U- 1w, v) = 0, 

thus proving our lemma. 

Theorem 6.2. Let V be a non-zero finite dimensional vector space over 
the complex numbers, with a positive definite hermitian product. Let 
U: V ~ V be a unitary operator. Then V has an orthogonal basis con­
sisting of eigenvectors of U. 

Proof. Let v1 be a non-zero eigenvector, and let V1 be the I-dimen­
sional space generated by v1• Just as in Lemma 6.1, we see that the or­
thogonal complement vt is U-invariant, and by induction, we can find 
an orthogonal basis {v 2 , ••• ,vn} of vt consisting of eigenvectors for U. 
Then {v 1, ... ,vn } is the desired basis of v. 

Next we deal with the real case. 

Theorem 6.3. Let V be a finite dimensional vector space over the reals, 
of dimension > 0, and with a positive definite scalar product. Let T be 
a real unitary operator on V. Then V can be expressed as a direct sum 

of T-invariant subspaces, which are mutually orthogonal (i.e. Vi is or­
thogonal to Vj if i i= j) and dim Vi is 1 or 2, for each i. 
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Proof. After picking an orthonormal basis for V over R, we may as­
sume that V = Rn and that the positive definite scalar product is the or­
dinary dot product. We can then represent T by a matrix, which we 
denote by M. Then M is a unitary matrix. 

Now we view M as operating on en. Since M is real and tM = M-l, 
we also get 

so M is also complex unitary. 
Let Z be a non-zero eigenvector of M in en with eigenvalue A, so 

MZ = AZ. 

Since II M Z II = II Z II it follows that I A I = 1. Hence there exists a real 
number () such that A = ei8

• Thus in fact we have 

We write 

Z = X + iY 

Case 1. A = ei8 is real, so ei8 = 1 or - 1. Then 

MX=AX and MY= AY. 

Since Z i= 0 it follows that at least one of X, Y is i= o. Thus we have 
found a non-zero eigenvector v for T. Then we follow the usual proce­
dure. We let V1 = (v) be the subspace generated by v over R. Then 

Lemma 6.1 applies to the real case as well, so T maps vi into vi. We 
can then apply induction to conclude the proof. 

Case 2. A = e i8 is not real. Then A i= i, and i = e -w. Since M is real, 
we note that 

so Z = X - iY is also an eigenvector with eigenvalue A. If we write 

ei8 = cos () + i sin () 
then 

MZ = MX + iMY = (cos () + i sin ())(X + iY) 

= «cos ())X - (sin ()) Y) + i«cos ()) Y + (sin ())X), 
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whence taking real and imaginary parts, 

MX = (cos fJ)X - (sin fJ)Y, 

MY = (sin fJ)X + (cos fJ)Y. 

[VJII, §6] 

The two vectors X, Yare linearly independent over R, otherwise Z and 
Z would not have distinct eigenvalues for M. We let 

Vl = subspace of V generated by X, Y over R. 

Then the formulas for MX and MY above show that VI IS Invariant 
under T. Thus we have found a 2-dimensional T-invariant subspace. By 
Lemma 6.1 which applies to the real case, we conclude that Vi is also 
T-invariant, and 

We can conclude the proof by induction. Actually, we have proved 
more, by showing what the matrix of T is with respect to a suitable ba­
sis, as follows. 

Theorem 6.4. Let V be a finite dimensional vector space over the reals, 
of dimension > 0 and with a positive definite scalar product. Let T be a 
unitary operator on V. Then there exists a basis of V such that the 
matrix of T with respect to this basis consists of blocks 

o 0 M, 

such that each Mi is a 1 x 1 matrix or a 2 x 2 matrix, of the following 
types: 

(1), ( -1), 
(

COS fJ 

sin fJ 
-sin fJ) 

cos fJ 

We observe that on each component space Vi in the decomposition 

V= VIEB···EBV, 

the linear map T is either the identity I, or the reflection - I, or a rota­
tion. This is the geometric content of Theorem 6.3 and Theorem 6.4. 



CHAPTER IX 

Polynomials and Matrices 

IX, §1. POLYNOMIALS 

Let K be a field. By a polynomial over K we shall mean a formal 
expreSSIon 

where t is a "variable". We have to explain how to form the sum and 
product of such expressions. Let 

be another polynomial with hj E K. If, say, n > m we can write hj = 0 if 
j> m, 

and then we can write the sum f + g as 

Thus f + g is again a polynomial. If C E K, then 

and hence cf is a polynomial. Thus polynomials form a vector space 
over K. 
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We can also take the product of the two polynomials, fg, and 

so that fg is again a polynomial. In fact, if we write 

then 

k 

Ck = L aibk- i = aObk + a1bk- 1 + ... + akbo· 
i=O 

[IX, §1] 

All the preceding rules are probably familiar to you but we have recalled 
them to get in the right mood. 

When we write a polynomial f in the form 

with ai E K, then the numbers ao, ... ,an are called the coefficients of the 
polynomial. If n is the largest integer such that an =1= 0, then we say that 
n is the degree of f and write n = deg f. We also say that an is the lead­
ing coefficient of f. We say that a ° is the constant term of f. If f is the 
zero polynomial, then we shall use the convention that deg f = - 00. 
We agree to the convention that 

-00+-00=-00, 

- 00 + a = - 00, -00 < a 

for every integer a, and no other operation with - 00 is defined. 
The reason for our convention is that it makes the following theorem 

true without exception. 

Theorem 1.1. Let f, g be polynomials with coefficients in K. Then 

deg (fg) = degf + deg g. 

Proof Let 

and 

with an =1= 0 and bm =1= O. Then from the multiplication rule for fg, we see 
that 

f(t)g(t) = anbmtn+ m + terms of lower degree, 
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and anbm =1= O. Hence degfg = n + m = degf + deg g. If f or g is 0, then 
our convention about - 00 makes our assertion also come out. 

A polynomial of degree 1 is also called a linear polynomial. 
By a root a of f we shall mean a number such that f(a) = O. We 

admit without proof the following statement: 

Theorem 1.2. Let f be a polynomial with complex coefficients, of degree 
> 1. Then f has a root in C. 

We shall prove this theorem In an appendix, uSIng some facts of 
analysis. 

Theorem 1.3. Let f be a polynomial with complex coefficients, leading 
coefficient 1, and degf = n > 1. Then there exist complex numbers 
aI' ... ,an such that 

The numbers a l , ... ,an are uniquely determined up to a permutation. 
Every root a of f is equal to some ab and conversely. 

Proof. We shall give the proof of Theorem 1.3 (assuming Theorem 
1.2) completely in Chapter XI. Since in this chapter, and the next two 
chapters, we do not need to know anything about polynomials except 
the simple statements of this section, we feel it is better to postpone the 
proof to this later chapter. Furthermore, the further theory of poly­
nomials developed in Chapter XI will also have further applications to 
the theory of linear maps and matrices. 

As a matter of terminology, let a l , ... ,ar be the distinct roots of the 
polynomial f in C. Then we can write 

with integers m l , ... ,mr > 0, uniquely determined. We say that mi is the 
multiplicity of ai in f. 

IX, §2. POLYNOMIALS OF MATRICES AND LINEAR MAPS 

The set of polynomials with coefficients in K will be denoted by the 
symbols K[t]. 

Let A be a square matrix with coefficients in K. Let f E K[t], and 
write 
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with a i E K. We define 

(
1 -01). Example 1. Let f(t) = 3t2 

- 2t + 5. Let A = 2 Then 

(1 -1)2 (2 -2) (5 
f(A) = 3 2 0 - 4 0 + 0 0) = (0 -1). 

5 2-1 

Theorem 2.1. Let f, g E K[t]. Let A be a square matrix with coeffi­
cients in K. Then 

(f + g)(A) = f(A) + g(A), 

(fg)(A) = f(A)g(A). 

If c E K, then (cf)(A) = cf(A). 

Proof Let f(t) and g(t) be written in the form 

and 

where 

By definition, 

On the other hand, 

and 

Hence 

k 

Ck = L aibk- i· 
i=O 

(fg)(A) = cm+nAm+n + ... + col. 

n m n m m+n 
f(A)g(A) = L L aiAibjAj = L L aibjAi+j = L ckAk. 

i=O j=O i=O j=O k=O 

Thus f(A)g(A) = (fg)(A). 
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For the sum, suppose n > m, and let bj = 0 if j > m. We have 

= f(A) + g(A). 
If c E K, then 

(cf)(A) = canAn + ... + cao1 = cf(A). 

This proves our theorem. 

Example 2. Let f(t) = (t - 1)(t + 3) = t2 + 2t - 3. Then 

f(A) = A 2 + 2A - 31 = (A - 1)(A + 31). 

If we multiply this last product directly using the rules for multiplication 
of matrices, we obtain in fact 

A2 - 1A + 3A1 - 312 = A2 + 2A - 31. 

Example 3. Let a l , ... ,an be numbers. Let 

Then 

Let V be a vector space over K, and let A: V ---+ V be an operator (i.e. 
linear map of V into itself). Then we can form A 2 = A 0 A = AA, and in 
general An = iteration of A taken n times for any positive integer n. We 
define A O = 1 (where I now denotes the identity mapping). We have 

for all integers m, n > O. If f is a polynomial in K[t], then we can form 
f(A) the same way that we did for matrices, and the same rules hold as 
stated in Theorem 2.1. The proofs are the same. The essential thing that 
we used was the ordinary laws of addition and multiplication, and these 
hold also for linear maps. 

Theorem 2.2. Let A be an n x n matrix in a field K. Then there exists 
a non-zero polynomial f E K[t] such that f(A) = O. 
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Proof The vector space of n x n matrices over K IS finite dimen­
sional, of dimension n2

• Hence the powers 

are linearly dependent for N > n2
• This means that there exist numbers 

ao, ... ,aN E K such that not all ai = 0, and 

We let f(t) = aNtN + ... + ao to get what we want. 

As with Theorem 2.1, we note that Theorem 2.2 also holds for a 
linear map A of a finite dimensional vector space over K. The proof 
is again the same, and we shall use Theorem 2.2 indiscriminately for 
matrices or linear maps. 

We shall determine later in Chapter X, §2 a polynomial P(t) which 
can be constructed explicitly such that P(A) = O. 

If we divide the polynomial f of Theorem 2.2 by its leading coefficient, 
then we obtain a polynomial g with leading coefficient 1 such that 
g(A) = O. It is usually convenient to deal with polynomials whose lead­
ing coefficient is 1, since it simplifies the notation. 

IX, §2. EXERCISES 

1. Compute f(A) when f(t) = t3 
- 2t + 1 and A = (- ~ ~} 

2. Let A be a symmetric matrix, and let f be a polynomial with real coefficients. 
Show that f(A) is also symmetric. 

3. Let A be a hermitian matrix, and let f be a polynomial with real coefficients. 
Show that f(A) is hermitian. 

4. Let A, B be n x n matrices in a field K, and assume that B is invertible. 
Show that 

for all positive integers n. 

5. Let f E K[t]. Let A, B be as in Exercises 4. Show that 



CHAPTER X 

Triangulation of Matrices 
and Linear Maps 

X, §1. EXISTENCE OF TRIANGULATION 

Let V be a finite dimensional vector space over the field K, and assume 
n = dim V >1. Let A: V ---+ V be a linear map. Let W be a subspace of 
V. We shall say that W is an invariant subspace of A, or is A-invariant, if 
A maps W into itself. This means that if WE W, then Aw is also con­
tained in W We also express this property by writing AWe W. By a 
fan of A (in V) we shall mean a sequence of subspaces {VI"'" Vn} such 
that Vi is contained in V; + 1 for each i = 1, ... ,n - 1, such that dim Vi = i, 
and finally such that each Vi is A-invariant. We see that the dimensions 
of the subspaces VI"'" Vn increases by 1 from one subspace to the next. 
Furthermore, V = Vn • 

We shall give an interpretation of fans by matrices. Let {VI"'" Vn} be 
a fan for A. By a fan basis we shall mean a basis {VI"" ,Vn } of V such 
that {VI"" ,V;} is a basis for Vi' One sees immediately that a fan basis 
exists. F or instance, let V 1 be a basis for V l' We extend V 1 to a basis 
{VI' V2 } of V2 (possible by an old theorem), then to a basis {VI' V2 , V3 } of 
V3 , and so on inductively to a basis {VI"" ,Vn } of Vn -

Theorem 1.1. Let {VI"" ,Vn} be a fan basis for A. Then the matrix 
associated with A relative to this basis is an upper triangular matrix. 
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Proof Since A ~ is contained In Vi for each i = 1, ... ,n, there exist 
numbers aij such that 

This means that the matrix associated with A with respect to our basis is 
the triangular matrix 

all a 1 2 a ln 

o a22 a2n 

as was to be shown. 

Remark. Let A be an upper triangular matrix as above. We view A 
as a linear map of K n into itself. Then the column unit vectors e l

, ... ,en 
form a fan basis for A. If we let Vi be the space generated by e l

, ... ,ei
, 

then {VI' ... ' Vn} is the corresponding fan. Thus the converse of Theorem 
1.1 is also obviously true. 

We recall that it is not always the case that one can find an eigenvec­
tor (or eigenvalue) for a linear map if the given field K is not the com­
plex numbers. Similarly, it is not always true that we can find a fan for 
a linear map when K is the real numbers. If A: V ---+ V is a linear map, 
and if there exists a basis for V for which the associated matrix of A is 
triangular, then we say that A is triangulable. Similarly, if A is an n x n 
matrix, over the field K, we say that A is triangulable over K if it is 
triangulable as a linear map of K n into itself. This is equivalent to say­
ing that there exists a non-singular matrix B in K such that B- 1 AB is 
an upper triangular matrix. 

Using the existence of eigenvectors over the complex numbers, we 
shall prove that any matrix or linear map can be triangulated over the 
complex numbers. 

Theorem 1.2. Let V be a finite dimensional vector space over the com­
plex numbers, and assume that dim V >1. Let A: V ---+ V be a linear 
map. Then there exists a fan of A in V. 
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Proof We shall prove the theorem by induction. If dim V = 1 then 
there is nothing more to prove. Assume that the theorem is true when 
dim V = n - 1, n > 1. By Theorem 2.3 of Chapter IX there exists a non­
zero eigenvector V 1 for A. We let V1 be the subspace of dimension 1 
generated by V 1• We can write V as a direct sum V = V1 EB W for some 
subspace W (by Theorem 4.2 of Chapter I asserting essentially that we 
can extend linearly independent vectors to a basis). The trouble now is 
that A does not map W into itself. Let P 1 be the projection of V on V1 , 

and let P 2 be the projection of V on W. Then P 2 A is a linear map of V 
into V, which maps W into W (because P 2 maps any element of V into 
W). Thus we view P 2 A as a linear map of W into itself. By induction, 
there exists a fan of P 2 A in W, say {W1, ... ,Wn - 1}. We let 

for i = 2, ... ,no Then Vi is contained in ~+ 1 for each i = 1, ... ,n and one 
verifies immediately that dim Vi = i. 

(If {u 1, ... ,un - 1 } is a basis of W such that {u 1, ... ,uj } is a basis of Wj' 
then {v 1, u1, ..• 'U i - 1 } is a basis of Vi for i = 2, ... ,n.) 

To prove that {V1, ... , Vn } is a fan for A in V, it will suffice to prove 
that AVi is contained in Vi. To do this, we note that 

Let v E JIi. We can write v = CV 1 + Wi-l, with C E C and Wi-l E Wi-I. Then 
P1Av = P1(Av) is contained in VI, and hence in J!i. Furthermore, 

Since P2A(cvt) = cP2 Av1, and since VI is an eigenvector of A, say 
AVI = A1V1, we find P2A(cv l) = P2(CAIV1) = O. By induction hypothesis, 
P2A maps Wi into itself, and hence P2Awi-1 lies in Wi-I. Hence P2Av lies 
in JIi, thereby proving our theorem. 

Corollary 1.3. Let V be a finite dimensional vector space over the com­
plex numbers, and assume that dim V >1. Let A: V ~ V be a linear 
map. Then there exists a basis of V such that the matrix of A with 
respect to this basis is a triangular matrix. 

Proof We had already given the arguments preceding Theorem 1.1. 

Corollary 1.4. Let M be a matrix of complex numbers. There exists a 
non-singular matrix B such that B- 1 M B is a triangular matrix. 

Proof This is the standard interpretation of the change of matrices 
when we change bases, applied to the case covered by Corollary 1.3. 
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X, §1. EXERCISES 

1. Let A be an upper triangular matrix: 

Viewing A as a linear map, what are the eigenvalues of A 2, A 3, in general of 
Ar where r is an integer ~ I? 

2. Let A be a square matrix. We say that A is nilpotent if there exists an integer 
r ~ 1 such that A r = O. Show that if A is nilpotent, then all eigenvalues of A 
are equal to o. 

3. Let V be a finite dimensional space over the complex numbers, and let 
A: V ---. V be a linear map. Assume that all eigenvalues of A are equal to o. 
Show that A is nilpotent. 

(In the two preceding exercises, try the 2 x 2 case explicitly first.) 

4. Using fans, give a proof that the inverse of an invertible triangular matrix is 
also triangular. In fact, if V is a finite dimensional vector space, if A: V --+ V is 
a linear map which is invertible, and if {Vi' ... ,Vn} is a fan for A, show that it 
is also a fan for A-i. 

5. Let A be a square matrix of complex numbers such that Ar = I for some posi­
tive integer r. If tX is an eigenvalue of A, show that tXr = 1. 

6. Find a fan basis for the linear maps of C2 represented by the matrices 

(1 11) (a) 1 (b) G :) (c) G ~) 
7. Prove that an operator A: V --+ V on a finite dimensional vector space over C 

can be written as a sum A = D + N, where D is diagonalizable and N is nil­
potent. 

We shall now give an application of triangulation to a special type of 
matrix. 

Let A = (aij) be an n x n complex matrix. If the sum of the elements 
of each column is 1 then A is called a Markov matrix. In symbols, for 
each j we have 

We leave the following properties as exercises. 
Property 1. Prove that if A, B are Markov matrices, then so is AB. In 

particular, if A is a Markov matrix, then Ak is a Markov matrix for every 
positive integer k. 
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Property 2. Prove that if A, B are Markov matrices such that laijl < 1 
and Ibijl < 1 for all i, j and if AB = C = (c ij ), then ICijl < 1 for all i, j. 

Theorem 1.5. Let A be a Markov matrix such that laijl < 1 for all i, j. 
Then every eigenvalue of A has absolute value < 1. 

Proof By Corollary 1.4 there exists a matrix B such that BAB- 1 IS 

triangular. Let A1 , ••• , An be the diagonal elements. Then 

and so 

o 

But Ak is a Markov matrix for each k, and each component of Ak has 
absolute value < 1 by Property 2. Then the components of BAkB- 1 have 
bounded absolute values. If for some i we have IAil > 1, then IA~I---+ 00 as 
k ~ 00, which contradicts the preceding assertion and concludes the proof. 

X, §2. THEOREM OF HAMIL TON-CA YLEY 

Let V be a finite dimensional vector space over a field K, and let 
A: V ---+ V be a linear map. Assume that V has a basis consisting of 
eigenvectors of A, say {v 1, ••• ,vn}. Let {A 1, ••• ,An} be the correspond­
ing eigenvalues. Then the characteristic polynomial of A is 

P(t) = (t - A1) ••• (t - An), 
and 

P(A) = (A - All)··· (A - AnI). 

If we now apply P(A) to any vector Vi' then the factor A - Ail will kill 
Vi' in other words, P(A)Vi = o. Consequently, P(A) = O. 

In general, we cannot find a basis as above. However, by using fans, 
we can construct a generalization of the argument just used in the dia­
gonal case. 

Theorem 2.1. Let V be a finite dimensional vector space over the com­
plex numbers, of dimension > 1, and let A: V ---+ V be a linear map. Let 
P be its characteristic polynomial. Then P(A) = o. 
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Proof By Theorem 1.2, we can find a fan for A, say {V1 , ••• , Vn }. 

Let 

be the matrix associated with A with respect to a fan basis, {v 1, ••• ,vn}. 

Then 
AVi = aUvi + an element of Vi- 1 

or in other words, since (A - aiiI)vi = AVi - aiivi, we find that 

(A - auI)vi lies in Vi - 1. 

Furthermore, the characteristic polynomial of A is given by 

so that 

We shall prove by induction that 

for all v in Vi' i = 1, ... ,no When i = n, this will yield our theorem. 
Let i = 1. Then (A - all I)V1 = AV1 - all V1 = 0 and we are done. 
Let i > 1, and assume our assertion proved for i - 1. Any element of 

Vi can be written as a sum v' + CVi with v' in Vi - 1, and some scalar c. 
We note that (A - aiiI)v' lies in Vi- 1 because AVi- 1 is contained in 
Vi- 1, and so is auv'. By induction, 

(A - a11 I)··· (A - ai-1,i-1I)(A - aiiI)v' = O. 

On the other hand, (A - auI)cvi lies in Vi- 1, and hence by induction, 

Hence for v in Vi' we have 

thereby proving our theorem. 

Corollary 2.2. Let A be an n x n matrix of complex numbers, and let P 
be its characteristic polynomial. Then peA) = o. 
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Proof We VIew A as a linear map of cn into itself, and apply the 
theorem. 

Corollary 2.3. Let V be a finite dimensional vector space over the field 
K, and let A: V ~ V be a linear map. Let P be the characteristic poly­
nomial of A. Then peA) = o. 

Proof Take a basis of V, and let M be the matrix representing A 
with respect to this basis. Then PM = P A' and it suffices to prove that 
PM(M) = O. But we can apply Theorem 2.1 to conclude the proof. 

Remark. One can base a proof of Theorem 2.1 on a continuity 
argument. Given a complex matrix A, one can, by various methods 
into which we don't go here, prove that there exist matrices Z of the 
same size as A, lying arbitrarily close to A (i.e. each component of Z 
is close to the corresponding component of A) such that Pz has all its 
roots of multiplicity 1. In fact, the complex polynomials having roots of 
multiplicity > 1 are thinly distributed among all polynomials. Now, if Z 
is as above, then the linear map it represents is diagonalizable (because 
Z has distinct eigenvalues), and hence Pz{Z) = 0 trivially, as noted at 
the beginning of this section. However, Pz(Z) approaches P A(A) as Z 
approaches A. Hence P A(A) = o. 

X, §3. DIAGONALIZATION OF UNITARY MAPS 

Using the methods of this chapter, we shall give a new proof for the fol­
lowing theorem, already proved in Chapter VIII. 

Theorem 3.1. Let V be a finite dimensil)nal vector space over the com­
plex numbers, and let dim V >1. Assume given a positive definite her­
mitian product on V. Let A: V ~ V be a unitary map. Then there exists 
an orthogonal basis of V consisting of eigenvectors of A. 

Proof First observe that if w is an eigenvector for A, with eigenvalue 
A, then A w = A w, and A i= 0 beca use A preserves length. 

By Theorem 1.2, we can find a fan for A, say {V1 , ... , Vn}. Let 
{v1, ... ,vn} be a fan basis. We can use the Gram-Schmidt orthogonaliza­
tion process to orthogonalize it. We recall the process: 
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From this construction, we see that {V'l' ... ,v~} is an orthogonal basis 
which is again a fan basis, because {V'l' ... ,va is a basis of the same 
space Vi as {v l , ... ,vJ. Dividing each v~ by its norm we obtain a fan 
basis {w l , ... ,wn} which is orthonormal. We contend that each Wi is an 
eigenvector for A. We proceed by induction. Since AWl is contained in 
Vl' there exist a scalar Al such that AWl = Alw l , so that W l is an eigen­
vector, and Al i= o. Assume that we have already proved that 
W l , •.. ,Wi-l are eigenvectors with non-zero eigenvalues. There exist 
scalars c l' ... 'Ci such that 

Since A preserves perpendicularity, AWi is perpendicular to AWk for every 
k < i. But AWk = Ak Wk. Hence AWi is perpendicular to Wk itself, and 
hence Ck = O. Hence AWi = CiWi' and Ci i= 0 because A preserves length. 
We can thus go from 1 to n to prove our theorem. 

Corollary 3.2. Let A be a complex unitary matrix. Then there exists a 
unitary matrix U such that U - 1 A U is a diagonal matrix. 

Proof Let {e l
, ... ,en} = 81 be the standard orthonormal basis of cn, 

and let {w l , ... ,wn} = 81' be an orthonormal basis which diagonalizes A, 
viewed as a linear map of cn into itself. Let 

Then U is unitary (cf. Exercise 5 of Chapter VII, §3), and if M' IS the 
matrix of A relative to the basis 81', then 

M' = U-lAU. 

This proves the Corollary. 

X, §3. EXERCISES 

1. Let A be a complex unitary matrix. Show that each eigenvalue of A can be 
written ei8 with some real O. 

2. Let A be a complex unitary matrix. Show that there exists a diagonal matrix 
B and a complex unitary matrix U such A = U- 1 BU. 



CHAPTER XI 

Polynomials and Primary 
Decomposition 

XI, §1. THE EUCLIDEAN ALGORITHM 

We have already defined polynomials, and their degree, in Chapter IX. 
In this chapter, we deal with the other standard properties of polyno­
mials. The basic one is the Euclidean algorithm, or long division, taught 
(presumably) in all elementary schools. 

Theorem 1.1. Let J, g be polynomials over the field K, i.e. polynomials 
in K[t], and assume deg g > O. Then there exist polynomials q, r in 
K[t] such that 

J(t) = q(t)g(t) + ret), 

and deg r < deg g. The polynomials q, r are uniquely determined by 
these conditions. 

Proof Let m = deg g > o. Write 

J(t) = antn + ... + ao, 

get) = bmtm + ... + bo, 

with bm i= o. If n < m, let q = 0, r = J. If n > m, let 
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(This is the first step in the process of long division.) Then 
degfl < degf. Continuing in this way, or more formally by induction 
on n, we can find polynomials q1' r such that 

with deg r < deg g. Then 

f(t) = anb;;; 1tn -mg(t) + f1 (t) 

= anb;;; 1tn - mg(t) + q 1 (t)g(t) + r(t) 

= (an b;;; 1 tn - m + q 1 )g( t) + r( t), 

and we have consequently expressed our polynomial in the desired form. 
To prove the uniqueness, suppose that 

with deg r 1 < deg g and deg r2 < deg g. Then 

The degree of the left-hand side is either > deg g, or the left-hand side is 
equal to O. The degree of the right-hand side is either < deg g, or the 
right-hand side is equal to O. Hence the only possibility is that they are 
both 0, whence 

and 

as was to be shown. 

Corollary 1.2. Let f be a non-zero polynomial in K[tJ. Let a E K be 
such that f(a) = O. Then there exists a polynomial q(t) in K[t] such 
that 

f(t) = (t - a)q(t). 

Proof We can write 

f(t) = q(t)(t - a) + r(t), 

where deg r < deg(t - a). But deg(t - a) = 1. Hence r is constant. Since 

o = f(a) = q(a)(a - a) + r(a) = r(a), 

it follows that r = 0, as desired. 



[XI, §1] THE EUCLIDEAN ALGORITHM 247 

Corollary 1.3. Let K be a field such that every non-constant polynomial 
in K[t] has a root in K. Let f be such a polynomial. Then there exist 
elements ex l , ... ,exn E K and c E K such that 

Proof In Corollary 1.2, observe that deg q = degf - 1. Let ex = ex l in 
Corollary 1.2. By assumption, if q is not constant, we can find a root ex 2 

of q, and thus write 

Proceeding inductively, we keep on going until qn is constant. 

Assuming as we do that the complex numbers satisfy the hypothesis of 
Corollary 1.3, we see that we have proved the existence of a factorization 
of a polynomial over the complex numbers into factors of degree 1. The 
uniqueness will be proved in the next section. 

Corollary 1.4. Let f be a polynomial of degree n in K[t]. There are at 
most n roots of f in K. 

Proof Otherwise, if m > n, and ex l , ... ,exm are distinct roots of f in K, 
then 

for some polynomial g, whence degf > m, contradiction. 

XI, §1. EXERCISES 

1. In each of the following cases, write f = qg + r with deg r < deg g. 
(a) f (t) = t2 

- 2t + 1, g( t) = t - 1 
(b) f(t) = t 3 + t - 1, g(t) = t2 + 1 
(c) f(t) = t 3 + t, g(t) = t 
( d) f (t) = t 3 

- 1, g( t) = t - 1 

2. If f(t) has integer coefficients, and if g(t) has integer coefficients and leading 
coefficient 1, show that when we express f = qg + r with deg r < deg g, the 
polynomials q and r also have integer coefficients. 

3. Using the intermediate value theorem of calculus, show that every polynomial 
of odd degree over the real n urn bers has a root in the real n urn bers. 

4. Let f(t) = t" + ... + ao be a polynomial with complex coefficients, of de­
gree n, and let rJ. be a root. Show that 1rJ.1 ~ n· maxi lad. [Hint: Write 
-rJ." = a"_lrJ."-l + ... + ao. If 1rJ.1 > n· maxi lail, divide by rJ." and take the 
absolute value, together with a simple estimate to get a contradiction.] 
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XI, §2. GREATEST COMMON DIVISOR 

We shall define a notion which bears to the set of polynomials K[t] the 
same relation as a subspace bears to a vector space. 

By an ideal of K[t], or a polynomial ideal, or more briefly an ideal we 
shall mean a subset J of K[t] satisfying the following conditions. 

The zero polynomial is in J. If f, g are in J, then f + g is in J. If f is 
in J, and g is an arbitrary polynomial, then gf is in J. 

From this last condition, we note that if C E K, and f is in J, then cf is 
also in J. Thus an ideal may be viewed as a vector space over K. But it 
is more than that, in view of the fact that it can stand multiplication by 
arbitrary elements of K[t], not only constants. 

Example 1. Let f1' ... ,fn be polynomials in K[t]. Let J be the set of 
all polynomials which can be written in the form 

with some gi E K[t]. Then J is an ideal. Indeed, if 

with hj E K[t], then 

also lies in J. Also, 0 = Of1 + ... + Ofn lies in J. If f is an arbitrary 
polynomial in K[t], then 

is also in J. Thus all our conditions are satisfied. 

The ideal J in Example 1 is said to be generated by f1"" ,fn' and we 
say that f1"" ,fn are a set of generators. 

We note that each fi lies in the ideal J of Example 1. For instance, 

Example 2. The single element 0 is an ideal. Also, K[t] itself is an 
ideal. We note that 1 is a generator for K[t], which is called the unit 
ideal. 
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Example 3. Consider the ideal generated by the two polynomials t - 1 
and t - 2. We contend that it is the unit ideal. Namely, 

(t - 1) - (t - 2) = 1 

IS In it. Thus it may happen that we are given several generators for an 
ideal, and still we may find a single generator for it. We shall describe 
more precisely the situation in the subsequent theorems. 

Theorem 2.1. Let J be an ideal of K[t]. Then there exists a polynomial 
g which is a generator of J. 

Proof Suppose that J is not the zero ideal. Let g be a polynomial in 
J which is not 0, and is of smallest degree. We assert that g is a genera­
tor for J. Let f be any element of J. By the Euclidean algorithm, we 
can find polynomials q, r such that 

f= qg + r 

with deg r < deg g. Then r = f - qg, and by the definition of an ideal, it 
follows that r also lies in J. Since deg r < deg g, we must have r = O. 
Hence f = qg, and g is a generator for J, as desired. 

Remark. Let gl be a non-zero generator for an ideal J, and let 
g2 also be a generator. Then there exists a polynomial q such that 
gl = qg2· Since 

it follows that deg g2 < deg gl. By symmetry, we must have 

Hence q is constant. We can write 

with some constant c. Write 

with an =1= O. Take b = a; 1. Then bg 2 is also a generator of J, and its 
leading coefficient is equal to 1. Thus we can always find a generator for 
an ideal (=1= 0) whose leading coefficient is 1. It is furthermore clear that 
this generator is uniquely determined. 
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Let I, g be non-zero polynomials. We shall say that g divides I, and 
write g I I, if there exists a polynomial q such that I = gq. Let 11' 12 be 
polynomials i= O. By a greatest common divisor of 11, 12 we shall mean 
a polynomial g such that g divides 11 and 12' and furthermore, if h 
divides 11 and 12' then h divides g. 

Theorem 2.2. Let 11' 12 be non-zero polynomials in K[t]. Let g be a 
generator lor the ideal generated by 11' 12. Then g is a greatest com­
mon divisor 01 11 and 12. 

Proof. Since 11 lies in the ideal generated by 11' 12' there exists a 
polynomial q 1 such that 

whence g divides 11. Similarly, g divides 12. Let h be a polynomial 
dividing both 11 and 12. Write 

and 

with some polynomials hl and h2. Since g is in the ideal generated by 
11,/2, there are polynomials gl' g2 such that g = gl/1 + g2/2' whence 

Consequently h divides g, and our theorem is proved. 

Remark 1. The greatest common divisor is determined up to a non­
zero constant multiple. If we select a greatest common divisor with lead­
ing coefficient 1, then it is uniquely determined. 

Remark 2. Exactly the same proof applies when we have more than 
two polynomials. For instance, if lb ... ,In are non-zero polynomials, 
and if g is a generator for the ideal generated by 11' ... ' In then g is a 
greatest common divisor of /1'··· ,In. 

Polynomials 11' ... ,In whose greatest common divisor is 1 are said to 
be relatively prime. 

XI, §2. EXERCISES 

1. Show that tn 
- 1 is divisible by t - 1. 

2. Show that t4 + 4 can be factored as a product of polynomials of degree 2 
with integer coefficients. 
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3. If n is odd, find the quotient of tn + 1 by t + 1. 

4. Let A be an n x n matrix over a field K, and let J be the set of all polyno­
mials f(t) in K[tJ such that f(A) = o. Show that J is an ideal. 

XI, §3. UNIQUE FACTORIZATION 

A polynomial p in K[t] will be said to be irreducible (over K) if it is of 
degree > 1, and if, given a factorization p = fg with f, g E K[t], then 
degf or deg g = 0 (i.e. one of f, g is constant). Thus, up to a non-zero 
constant factor, the only divisors of pare p itself, and 1. 

Example 1. The only irreducible polynomials over the complex 
numbers are the polynomials of degree 1, i.e. non-zero constant multiples 
of polynomials of type t - a, with a E C. 

Example 2. The polynomial t 2 + 1 is irreducible over R. 

Theorem 3.1. Every polynomial in K[t] of degree > 1 can be expressed 
as a product P1' ... ,Pm of irreducible polynomials. In such a product, the 
polynomials P1' ... ,Pm are uniquely determined, up to a rearrangement, 
and up to non-zero constant factors. 

Proof. We first prove the existence of the factorization into a product 
of irreducible polynomials. Let f be in K[tJ, of degree > 1. If f is irre­
ducible, we are done. Otherwise, we can write 

f= gh, 

where deg g < deg f and deg h < deg f. If g, h are irreducible, we are 
done. Otherwise, we further factor g and h into polynomials of lower de­
gree. We cannot continue this process indefinitely, and hence there exists 
a factorization for f. (We can obviously phrase the proof as an induc­
tion.) 

We must now prove uniqueness. We need a lemma. 

Lemma 3.2. Let p be irreducible in K[t]. Let f, g E K[t] be non-zero 
polynomials, and assume p divides fg. Then p divides f or p divides g. 

Proof. Assume that p does not divide f. Then the greatest common 
divisor of p and f is 1, and there exist polynomials hi' h2 in K[tJ such 
that 
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(We use Theorem 2.2.) Multiplying by g yields 

But fg = ph3 for some h3' whence 

and p divides g, as was to be shown. 

The lemma will be applied when p divides a product of irreducible 
polynomials q 1 ..• qs' In that case, p divides q 1 or P divides q2'" qs· 
Hence there exists a constant c such that p = cq l' or P divides q2'" qs. 
In the ,latter case, we can proceed inductively, and we conclude that 
in any case, there exists some i such that p and q i differ by a constant 
factor. 

Suppose now that we have two products of irreducible polynomials 

After renumbering the qi' we may assume that Pi = c1ql for some 
constant c1 • Cancelling ql' we obtain 

Repeating our argument inductively, we conclude that there exist con­
stants Ci such that Pi = ciqi for all i, after making a possible permutation 
of q l' ... ,qs. This proves the desired uniqueness. 

Corollary 3.3. Let f be a polynomial in K[t] of degree > 1. Then f 
has a factorization f = CPl'" Ps' where Pi"" ,Ps are irreducible polyno­
mials with leading coefficient 1 , uniquely determined up to a permutation. 

Corollary 3.4. Let f be a polynomial in C[t], of degree > 1. Then f 
has a factorization 

with ai E C and c E C. The factors t - ai are uniquely determined up to 
a permutation. 

We shall deal mostly with polynomials having leading coefficient 1. 
Let f be such a polynomial of degree > 1. Let Pi"" ,Pr be the distinct 
irreducible polynomials (with leading coefficient 1) occurring in its factor­
ization. Then we can express f as a product 



[XI, §3] UNIQUE FACTORIZATION 253 

where i1, ••• ,ir are positive integers, uniquely determined by Pl'··· ,Pro 
This factorization will be called a normalized factorization for f. In par­
ticular, over the complex numbers, we can write 

A polynomial with leading coefficient 1 is sometimes called monic. 
If p is irreducible, and f = pmg, where p does not divide g, and m is an 

integer > 0, then we say that m is the multiplicity of p in f. (We define 
pO to be 1.) We denote this multiplicity by ordpf, and also call it the 
order of f at p. 

If rx is a root of f, and 

f(t) = (t - rx)mg(t), 

with g(rx) i= 0, then t - rx does not divide g(t), and m is the multiplicity of 
t - rx in f. We also say that m is the multiplicity of rx in f. 

There is an easy test for m > 1 in terms of the derivative. 
Let f(t) = antn + ... + ao be a polynomial. Define its (formal) deriva­

tive to be 

Then we have the following statements, whose proofs are left as exercises. 

(a) If f, g are polynomials, then 

(f + g)' = f' + g'. 
Also 

(fg), = f'g + fg'· 

If c is constant, then (cf)' = cf'. 

(b) Let rx be a root of f and assume degf > 1. Show that the 
multiplicity of rx in f is > 1 if and only if f'(rx) = 0. Hence if 
f'(rx) i= 0, the multiplicity of rx is 1. 

XI, §3. EXERCISES 

1. Let f be a polynomial of degree 2 over a field K. Show that either f is 
irreducible over K, or f has a factorization into linear factors over K. 

2. Let f be a polynomial of degree 3 over a field K. If f is not irreducible over 
K, show that f has a root in K. 
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3. Let f(t) be an irreducible polynomial with leading coefficient lover the real 
numbers. Assume degf = 2. Show that f(t) can be written in the form 

f(t) = (t - a)2 + b2 

with some a, bE Rand b i= O. Conversely, prove that any such polynomial is 
irreducible over R. 

4. Let f be a polynomial with complex coefficients, say 

Define its complex conjugate, 

by taking the complex conjugate of each coefficient. Show that if f, g are in 
C[t], then 

(f + g) = J + g, (fg) = Jg, 

and if P E C, then (Pf) = pI 
5. Let f(t) be a polynomial with real coefficients. Let (X be a root of f, which is 

complex but not real. Show that a is also a root of f. 

6. Terminology being as in Exercise 5, show that the multiplicity of (X in f is the 
same as that of a. 

7. Let A be an n x n matrix in a field K. Let J be the set of polynomials f in 
K[t] such that f(A) = O. Show that J is an ideal. The monic generator of J 
is called the minimal polynomial of A over K. A similar definition is made if 
A is a linear map of a finite dimensional vector space V into itself. 

8. Let V be a finite dimensional space over K. Let A: V ~ V be a linear map. 
Let f be its minimal polynomial. If A can be diagonalized (i.e. if there exists 
a basis of V consisting of eigenvectors of A), show that the minimal polyno­
mial is equal to the product 

where (Xl"" '(Xr are the distinct eigenvalues of A. 

9. Show that the following polynomials have no multiple roots in C. 
(a) t4 + t (b) t 5 

- 5t + 1 
(c) any polynomial t2 + bt + c if b, c are numbers such that b2 

- 4c is not O. 

10. Show that the polynomial tn 
- 1 has no multiple roots in C. Can you deter­

mine all the roots and give its factorization into factors of degree I? 
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11. Let I, g be polynomials in K[tJ, and assume that they are relatively prime. 
Show that one can find polynomials 11' gl such that the determinant 

is equal to 1. 

12. Let 11' 12' 13 be polynomials in K[t] and assume that they generate the unit 
ideal. Show that one can find polynomials Iij in K[tJ such that the deter­
minant 

is equal to 1. 

11 12 13 

121 122 123 

131 132 133 

13. Let rx be a complex number, and let J be the set of all polynomials I(t) in 
K[tJ such that I(rx) = O. Show that J is an ideal. Assume that J is not the 
zero ideal. Show that the monic generator of J is irreducible. 

14. Let I, g be two polynomials, written in the form 

and 

where iv, jv are integers ~ 0, and P l' ... 'Pr are distinct irreducible polyno­
mials. 
(a) Show that the greatest common divisor of I and g can be expressed as a 

product p~l ... p~r where k l' ... ,kr are integers ~ O. Express kv in terms of 
iv and jv· 

(b) Define the least common mUltiple of polynomials, and express the least 
common multiple of I and g as a product p~l ... p~r with integers kv ~ O. 
Express kv in terms of iv and j v . 

15. Give the greatest common divisor and least common multiple of the follow­
ing pairs of polynomials: 
(a) (t - 2)3(t - 3)4(t - i) and (t - 1)(t - 2)(t - 3)3 
(b) (t 2 + 1)(t2 

- 1) and (t + i)3(t3 - 1) 

XI, §4. APPLICATION TO THE DECOMPOSITION 
OF A VECTOR SPACE 

Let V be a vector space over the field K, and let A: V ~ V be an opera­
tor of V. Let W be a subspace of V. We shall say that W is an invariant 
subspace under A if Aw lies in W for each w in W, i.e. if A W is contained 
in W. 
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Example 1. Let Vi be a non-zero eigenvector of A, and let Vi be the 
I-dimensional space generated by Vi. Then Vi is an invariant subspace 
under A. 

Example 2. Let A be an eigenvalue of A, and let V;. be the subspace 
of V consisting of all V E V such that Av = Av. Then V;. is an invariant 
subspace under A, called the eigenspace of A. 

Example 3. Let f(t) E K[t] be a polynomial, and let W be the kernel 
of f(A). Then W is an invariant subspace under A. 

Proof. Suppose that f(A)w = O. Since tf(t) = f(t)t, we get 

Af(A) = f(A)A, 
whence 

f(A)(Aw) = f(A)Aw = Af(A)w = O. 

Thus Aw is also in the kernel of f(A), thereby proving our assertion. 

Remark in general that for any two polynomials f, g we have 

f(A)g(A) = g(A)f(A) 

because f(t)g(t) = g(t)f(t). We use this frequently in the sequel. 
We shall now describe how the factorization of a polynomial into two 

factors whose greatest common divisor is 1, gives rise to a decomposition 
of the vector space V into a direct sum of invariant subspaces. 

Theorem 4.1. Let f(t) E K[t] be a polynomial, and suppose that 
f = flf2' where fl' f2 are polynomials of degree > 1, and greatest 
common divisor equal to 1. Let A: V ---+ V be an operator. Assume that 
f(A) = O. Let 

Wi = kernel of fl (A) and 

Then V is the direct sum of WI and W2. 

Proof By assumption, there exist polynomials gl' g2 such that 

Hence 
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Let v E V. Then 

The first term in this sum belongs to W 2 , because 

Similarly, the second term in this sum belongs to W 1• Thus V is the sum 
of W 1 and W2 • 

To show that this sum is direct, we must prove that an expression 

with W 1 E W 1 and W2 E W2 , is uniquely determined by v. Applying 
g1(A)f1(A) to this sum, we find 

because f1(A)w 1 = O. Applying the expression (*) to W 2 itself, we find 

because f2(A)W2 = O. Consequently 

w2 = g 1 (A)f1 (A)v, 

and hence W2 is uniquely determined. Similarly, W 1 = g2(A)f2(A)v is 
uniquely determined, and the sum is therefore direct. This proves our 
theorem. 

Theorem 4.1 applies as well when f is expressed as a product of sever­
al factors. We state the result over the complex numbers. 

Theorem 4.2. Let V be a vector space over C, and let A: V ---+ V be an 
operator. Let P(t) be a polynomial such that P(A) = 0, and let 

be its factorization, the rx l' ... ,rxr being the distinct roots. Let Wi be the 
kernel of (A - rxiI)mi. Then V is the direct sum of the subspaces 

W1,··· ,Wr • 
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Proof The proof can be done by induction, splitting off the factors 
(t - ai)mt, (t - a 2 )m\ ... ,one by one. Let 

Wi = Kernel of (A - aiI)m 1
, 

W= Kernel of (A - a 2 I)m2···(A - arI)mr. 

By Theorem 4.1 we obtain a direct sum decomposition V = Wi EB W 
Now, inductively, we can assume that W is expressed as a direct sum 

where Wj (j = 2, ... ,r) is the kernel of (A - ajI)m j in W. Then 

is a direct sum. We still have to prove that Wj (j = 2, ... ,r) is the kernel 
of (A - ajI)m j in V. Let 

be an element of V, with WiE Wi' and such that v IS In the kernel of 
(A - ajI)m j

• Then in particular, v is in the kernel of 

whence v must be in W, and consequently Wi = o. Since v lies in W, we 
can now conclude that v = Wj because W is the direct sum of W 2 , .•• , Wr. 

Example 4. Differential equations. Let V be the space of (infinitely dif­
ferentiable) solutions of the differential equation 

with constant complex coefficients ai • 

Theorem 4.3 Let 

P( ) n n-i t = t + an - 1 t + ... + ao· 

Factor pet) as in Theorem 5.2 
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Then V is the direct sum of the spaces of solutions of the differential 
equations 

for i = 1, ... ,r. 

Proof This is merely a direct application of Theorem 4.2. 

Thus the study of the original differential equation is reduced to the 
study of the much simpler equation 

The solutions of this equation are easily found. 

Theorem 4.4 Let rx be a complex number. Let W be the space of sol­
utions of the differential equation 

Then W is the space generated by the functions 

eIXt teIXt tm - 1 eIXt , , ... , 

and these functions form a basis for this space, which therefore has di­
mension m. 

Proof For any complex rx we have 

(The proof is a simple induction.) Consequently, f lies in the kernel of 
(D - rxI)m if and only if 

The only functions whose m-th derivative is 0 are the polynomials of de­
gree < m - 1. Hence the space of solutions of (D - rxI)mf = 0 is the 
space generated by the functions 

eIXt teIXt tm - 1 eIXt , , ... , . 

Finally these functions are linearly independent. Suppose we have a 
linear relation 
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for all t, with constants co, ... 'Cm - l' Let 

Then Q(t) is a non-zero polynomial, and we have 

Q(t)ecxt = 0 for all t. 

But ecxt i= 0 for all t so Q(t) = 0 for all t. Since Q is a polynomial, we 
must have Ci = 0 for i = 0, ... ,m - 1 thus concluding the proof. 

XI, §4. EXERCISES 

1. In Theorem 4.1 show that image of 11 (A) = kernel of I2{A). 

2. Let A: V --+ V be an operator, and V finite dimensional. Suppose that A 3 = A. 
Show that V is the direct sum 

where Vo = Ker A, V1 is the {+ I)-eigenspace of A, and V -1 is the {-I)-ei­
genspace of A. 

3. Let A: V --+ V be an operator, and V finite dimensional. Suppose that the char­
acteristic polynomial of A has the factorization 

where ~1"" '~n are distinct elements of the field K. Show that V has a basis 
consisting of eigenvectors for A. 

XI, §5. SCHUR'S LEMMA 

Let V be a vector space over K, and let S be a set of operators of V. 
Let W be a subspace of V. We shall say that W is an S-invariant sub­
space if BW is contained in W for all B in S. We shall say that V is a 
simple S-space if V i= {O} and if the only S-invariant subspaces are V it­
self and the zero subspace. 

Remark 1. Let A: V -+ V be an operator such that AB = BA for all 
BE S. Then the image and kernel of A are S-invariant subspaces of V. 
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Proof. Let w be in the image of A, say w = Av with some VEV. Then 
Bw = BAv = ABv. This shows that Bw is also in the image of A, and 
hence that the image of A is S-invariant. Let u be in the kernel of A. 
Then ABu = BAu = O. Hence Bu is also in the kernel, which is therefore 
an S-invariant subspace. 

Remark 2. Let S be as above, and let A: V -+ V be an operator. Assume 
that AB = BA for all BE S. If f is a polynomial in K[t], then f(A)B = 
Bf(A) for all BE S. 

Prove this as a simple exercise. 

Theorem 5.1. Let V be a vector space over K, and let S be a set of 
operators of V. Assume that V is a simple S-space. Let A: V -+ V be a 
linear map such that AB = BA for all B in S. Then either A is invert­
ible or A is the zero map. 

Proof. Assume A i= O. By Remark 1, the kernel of A is {O}, and its 
image is all of V. Hence A is invertible. 

Theorem 5.2. Let V be a finite dimensional vector space over the com­
plex numbers. Let S be a set of operators of V, and assume that V is a 
simple S-space. Let A: V -+ V be a linear map such that AB = BA for 
all B in S. Then there exists a number A such that A = AI. 

Proof. Let J be the ideal of polynomials f in C[t] such that 
f(A) = O. Let g be a generator for this ideal, with leading coefficient 1. 
Then g i= o. We contend that g is irreducible. Otherwise, we can write 
g = h1h2 with polynomials h1' h2 of degrees < deg g. Consequently 
h1(A) i= O. By Theorem 5.1, and Remarks 1, 2 we conclude that h1(A) is 
invertible. Similarly, h2(A) is invertible. Hence h1 (A)h2(A) is invertible, 
an impossibility which proves that g must be irreducible. But 
the only irreducible polynomials over the complex numbers are of degree 
1, and hence g(t) = t - A for some A E C. Since g(A) = 0, we conclude 
that A - AI = 0, whence A = AI, as was to be shown. 

XI, §5. EXERCISES 

1. Let V be a finite dimensional vector space over the field K, and let S be the 
set of all linear maps of V into itself. Show that V is a simple S-space. 

2. Let V = R 2, let S consist of the matrix (~ ~) viewed as linear map of V into 

itself. Here, a is a fixed non-zero real number. Determine all S-invariant sub­
spaces of V. 
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3. Let V be a vector space over the field K, and let {v l' ... ,vn } be a basis of V. 
For each permutation (f of {I, ... ,n} let Au: V --+ V be the linear map such that 

(a) Show that for any two permutations (f, ! we have 

and Aid = I. 
(b) Show that the subspace generated by v = VI + ... + Vn is an invariant 

subspace for the set Sn consisting of all Au. 
(c) Show that the element v of part (b) is an eigenvector of each Au. What is 

the eigen val ue of Au belonging to v? 
(d) Let n = 2, and let (f be the permutation which is not the identity. Show 

that VI - V2 generates a I-dimensional subspace which is invariant under 
Au· Show that VI - V2 is an eigenvector of Au. What is the eigenvalue? 

4. Let V be a vector space over the field K, and let A: V --+ V be an operator. 
Assume that Ar = I for some integer r ~ 1. Let T = I + A + ... + Ar - 1. Let 
Vo be an element of V. Show that the space generated by Tvo is an invariant 
subspace of A, and that TVois an eigenvector of A. If TVo,i= 0, what is the 
eigen val ue? 

5. Let V be a vector space over the field K, and let S be a set of operators of V. 
Let U, W be S-invariant subspaces of V. Show that U + Wand U n Ware 
S-invariant subspaces. 

XI, §6. THE JORDAN NORMAL FORM 

In Chapter X, §1 we proved that a linear map over the complex numbers 
can always be triangularized. This result suffices for many applications, 
but it is possible to improve it and find a basis such that the matrix of 
the linear map has an exceptionally simple triangular form. We do this 
now, using the primary decomposition. 

We first consider a special case, which turns out to be rather typi­
cal afterwards. Let V be a vector space over the complex numbers. Let 
A: V -+ V be a linear map. Let rxEC and let VE V, v i= o. We shall say 
that v is (A - rxI)-cyclic if there exists an integer r > 1 such that 
(A - rxI)rv = o. The smallest positive integer r having this property will 
then be called a period of v relative to A - rxI. If r is such a period, then 
we have (A - rxI)kv i= 0 for any integer k such that 0 < k < r. 

Lemma 6.1. If v i= 0 is (A - rxI)-cyclic, with period r, then the elements 

v, (A - rxI)v, . .. , 

are linearly independent. 
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Proof Let B = A - aI for simplicity. A relation of linear dependence 
between the above elements can be written 

f(B)v = 0, 

where f is a polynomial i= 0 of degree < r - 1, namely 

with f(t) = Co + c1t + ... + cstS
, and s < r - 1. We also have Brv = 0 by 

hypothesis. Let g(t) = tr. If h is the greatest common divisor of f and g, 
then we can write 

where f1' gl are polynomials, and thus h(B) = f1(B)f(B) + gl(B)g(B). It 
follows that h(B)v = O. But h(t) divides tr and is of degree < r - 1, 
so that h(t) = td with d < r. This contradicts the hypothesis that r is a 
period of v, and proves the lemma. 

The vector space V will be called cyclic if there exists some number a 
and an element v E V which is (A - aI)-cyclic and v, Av, ... ,Ar- 1v generate 
V. If this is the case, then Lemma 6.1 implies that 

{(A - cxIr- lV, ... ,(A - aI)v, v} 

is a basis for V. With respect to this basis, the matrix of A is then par­
ticularly simple. Indeed, for each k we have 

By definition, it follows that the associated matrix for A with respect to 
this basis is equal to the triangular matrix 

a 1 0 0 0 

0 a 1 0 0 

.. 
0 

0 0 0 ... a 

0 0 0 0 a 

This matrix has a on the diagonal, 1 above the diagonal, and 0 every­
where else. The reader will observe that (A - aIr- 1v is an eigenvector 
for A, with eigenvalue a. 

The basis (*) is called a Jordan basis for V with respect to A. 
Suppose that V is expressed as a direct sum of A-invariant subspaces, 
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and suppose that each Vi is cyclic. If we select a Jordan basis for each 
Vi' then the sequence of these bases forms a basis for V, again called 
a Jordan basis for V with respect to A. With resp(;'ct to this basis, t!le 
matrix for A therefore splits into blocks (Fig. 1). 

al 1 

·1 

al 

a2 1 

1 

a2 

a3 1. 

·1 

a3 

Figure 1 

In each block we have an eigenvalue rx i on the diagonal. We have 1 
above the diagonal, and 0 everywhere else. This matrix is called the Jor­
dan normal form for A. Our main theorem in this section is that this 
normal form can always be achieved, namely: 

Theorem 6.2. Let V be a finite dimensional space over the complex 
numbers, and V i= {O}. Let A: V --+ V be an operator. Then V can be 
expressed as a direct sum of A-invariant cyclic subspaces. 

Proof By Theorem 4.2 we may assume without loss of generality 
there exists a number rx and an integer r > 1 such that (A - rxIr = O. 
Let B = A - rxI. Then Br = o. We assume that r is the smallest such in­
teger. Then Br-l i= O. The subspace BV is not equal to V because its 
dimension is strictly smaller than that of V. (For instance, there exists 
some WE V such that Br-lw i= O. Let v = Br-l w. Then Bv = O. Our as­
sertion follows from the dimension relation 

dim BV + dim Ker B = dim V.) 

By induction, we may write BV as a direct sum of A-invariant (or B-in­
variant) subspaces which are cyclic, say 
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such that Wi has a basis consisting of elements Bkw i for some cyclic vec­
tor WiE Wi of period rio Let ViE V be such that BVi = Wi. Then each Vi is 
a cyclic vector, because 

Let ~ be the subspace of V generated by the elements Bkvi for 
k = 0, ... ,rio We contend that the subspace V' equal to the sum 

V' = V + ... + V I m 

is a direct sum. We have to prove that any element u in this sum can be 
expressed uniquely in the form 

Any element of ~ is of type h(B)Vi where h is a polynomial, of degree 
< rio Suppose that 

(1) 

Applying B and noting that Bfi(B) = fi(B)B we get 

But WI + ... + Wm is a direct sum decomposition of BV, whence 

all i = 1, ... ,me 

Therefore tri divides flt), and in particular t divides flt). We can thus 
write 

for some polynomial gi' and hence fi(B) = gi(B)B. It follows from (1) 
that 

Again, tri divides gi(t), whence tri + I divides fi(t), and therefore 
fi(B)Vi = o. This proves what we wanted, namely that V'is a direct 
sum of VI' ... ' Vm • 

From the construction of V' we observe that BV' = BV, because any 
element in BV is of the form 
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with some polynomials ii' and is therefore the image under B of the ele­
ment 

which lies in V'. From this we shall conclude that 

V= V' + Ker B. 

Indeed, let v E V. Then Bv = Bv' for some v' E V', and hence 
B(v - v') = O. Thus 

v = v' + (v - v'), 

thus proving that V = V' + Ker B. Of course this sum is not direct. 
However, let [J4' be a Jordan basis of V'. We can extend [J4' to a basis of 
V by using elements of Ker B. Namely, if {u 1, ••. ,us} is a basis of Ker B, 
then 

is a basis of V for suitable indices j 1' ... ,j,. Each uj satisfies BUj = 0, 
whence uj is an eigenvector for A, and the one-dimensional space gener­
ated by U j is A -invariant, and cyclic. We let this subspace be denoted by 
U j • Then we have 

V = V' ffi U· ffi ... ffi U· Jl Jl 

thus gIvIng the desired expression of V as a direct sum of cyclic sub­
spaces. This proves our theorem. 

XI, §6. EXERCISES 

In the following exercises, we let V be a finite dimensional vector space over the 
complex numbers, and we let A: V --+- V be an operator. 

1. Show that A can be written in the form A = D + N, where D is a diagonaliz­
able operator, N is a nilpotent operator, and DN = ND. 

2. Assume that V is cyclic. Show that the subspace of V generated by eigenvec­
tors of A is one-dimensional. 
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3. Assume that V is cyclic. Let f be a polynomial. What are the eigenvalues of 
f(A) in terms of those of A? Same question when V is not assumed cyclic. 

4. If A is nilpotent and not 0, show that A is not diagonalizable. 

5. Let P A be the characteristic polynomial of A, and write it as a product 

r 

P A(t) = n (t - Cti)m i
, 

i= 1 

where Ct i, ••• ,Ctr are distinct. Let f be a polynomial. Express the characteristic 
polynomial P f(A) as a product of factors of degree 1. 

A direct sum decomposition of matrices 

6. Let Matn (C) be the vector space of n x n complex matrices. Let Eij for 
i, j == 1, ... ,n be the matrix with (ij)-component 1, and all other components 
O. Then the set of elements Eij is a basis for Matn(C). Let D* be the set of 
diagonal matrices with non-zero diagonal components. We write such a matrix 
as diag(at, ... , an) == a. We define the conjugation action of D* on Matn(C) 
by 

c(a)X == aXa- I
. 

(a) Show that a 1---+ c(a) is a map from D* into the automorphisrris of Matn(C) 
(isomorphisms of Matn (C) with itself), satisfying 

c(/) == id, c(ab) == c(a)c(b) and 

A map satisfying these conditions is called a bomomorphism. 
(b) Show that each Eij is an eigenvector for the action of c(a), the eigenvalue 

being given by Xij(a) == ai/aj. 
Thus Matn(C) is a direct sum o'f eigenspaces. Each Xij: D* -+ C* is a homo­
morphism of D* into the multiplicative group of complex numbers. 

7. For two matrices X, Y E Matn(C), define [X, Y] == XY - YX. Let Lx denote the 
map such that Lx( Y) == [X, Y]. One calls Lx the bracket (or regular or Lie) 
action of X. 
(a) Show that for each X, the map Lx: Y 1---+ [X, Y] is a linear map, satisfying 

the Leibniz rule for derivations, that is [X, [Y, Z]] == [[X, Y], Z] + [Y, [X, Z]]. 
(b) Let D be the vector space of diagonal matrices. For each HE D, show that 

Eij is an eigenvector of L H , with eigenvalue Ctij(H) == hi - hj (if hI, ... ,hn are 
the diagonal components of H). Show that Ctij: D -+ C is linear. It is called 
an eigencbaracter of the bracket action. 

(c) For two linear maps A, B of a vector space V into itself, define 

[A, B] == AB - BA. 
Show that L[x, Y] == [Lx, Ly]. 



CHAPTER XII 

Convex Sets 

XII, §1. DEFINITIONS 

Let S be a subset of Rm. We say that S is convex if given points P, Q in 
S, the line segment joining P to Q is also oontained in S. 

We recall that the line segment joining P to Q is the set of all points 
P + t(Q - P) with 0 < t < 1. Thus it is the set of points 

(1 - t)P + tQ, 
with 0 < t < 1. 

Theorem 1.1. Let P l' ... ,P n be points of Rm. The set of all linear com­
binations 

with 0 < Xi < 1 and Xl + ... + Xn = 1, is a convex set. 

Theorem 1.2. Let P l' ... ,P n be points of Rm. Any convex set which 
contains P l' ... ,P n also contains all linear combinations 

such that 0 < Xi < 1 for all i, and Xl + ... + X" -= 1. 

Either work out the proofs as art exercise or look them up in Chapter 
III, §5. 
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In view of Theorems 1.1 and 1.2, we conclude that the set of linear 
combinations described in these theorems is the smallest convex set con­
taining all points P l' ... ,P n • 

The following statements have already occurred as exercises, and we 
recall them here for the sake of completeness. 

(1) If Sand S' are convex sets, then the intersection S nS' is convex. 

(2) Let F: Rm --+ Rn be a linear map. If S is convex in Rm, then F(S) 
(the image of S under F) is convex in Rn. 

(3) Let F: Rm --+ Rn be a linear map. Let S' be a convex set of Rn. 
Let S = F -1(S') be the set of all X E Rm such that F(X) lies in S'. 
Then S is convex. 

Examples. Let A be a vector in Rn. The map F such that F(X) = A· X 
is linear. Note that a point c E R is a convex set. Hence the hyperplane 
H consisting of all X such that A· X = c is convex. 

Furthermore, the set S' of all x E R such that x > c is convex. Hence 
the set of all X E Rn such that A· X > c is convex. It is called an open 
half space. Similarly, the set of points X E Rn such that A· X > c is called 
a closed half space. 

In the following picture, we have illustrated a hyperplane (line) in R2, 
and one half space determined by it. 

Figure 1 

The line is defined by the equation 3x - 2y = -1. It passes through the 
point P = (1, 2), and N = (3, - 2) is a vector perpendicular to the line. 
We have shaded the half space of points X such that X· N < -1. 

We see that a hyperplane whose equation is X· N = c determines two 
closed half spaces, namely the spaces defined by the equations 

X·N>c and X·N < c, 

and similarly for the open half spaces. 
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Since the intersection of convex sets is convex, the intersection of a 
finite number of half spaces is convex. In the next picture (Figs. 2 and 
3), we have drawn intersections of a finite number of half planes. Such 
an intersection can be bounded or unbounded. (We recall that a subset 
S of Rn is said to be bounded if there exists a number c > 0 such that 
IIXII < c for all XES.) 

Figure 2 Figure 3 

XII, §2. SEPARATING HYPERPLANES 

Theorem 2.1. Let S be a closed convex set in Rn. Let P be a point of 
Rn. Then either P belongs to S, or there exists a hyperplane H which 
contains P, and such that S is contained in one of the open half spaces 
determined by H. 

Proof. We use a fact from calculus. Suppose that P does not belong 
to S. We consider the function f on the closed set S given by 

f(X) = IIX - PII· 

It is proved in a course in calculus (with ( and b) that this function has 
a minimum on S. Let Q be a point of S such that 

IIQ - PII < IIX - PII 
for all X in S. Let 

N = Q - P. 

Since P is not in S, Q - P =1= 0, and N =1= o. We contend that the hyper­
plane passing through P, perpendicular to N, will satisfy our require­
ments. Let Q' be any point of S, and say Q' =1= Q. Then for every t with 
o < t < 1 we have 

IIQ - PII < IIQ + t(Q' - Q) - PII = II(Q - P) + t(Q' - Q)II· 
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Squaring gives 

(Q _ p)2 < (Q _ p)2 + 2t(Q _ P). (Q' _ Q) + t2(Q' _ Q)2. 

Canceling and dividing by t, we obtain 

o <2(Q - P)·(Q' - Q) + t(Q' - Q)2. 

Letting t tend to 0 yields 

But N· N > O. Hence 

o < (Q - P)· (Q' - Q) 

< N .(Q' - P) + N ·(P - Q) 

< N·(Q' - P) - N·N. 

Q'·N > P·N. 
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This proves that S IS contained in the open half space defined by 
X·N>P·N. 

Let S be a convex set in Rn. Then the closure of S (denoted by S) is 
convex. 

This is easily proved, for if P, Q are points in the closure, we can find 
points of S, say P k' Qk tending to P and Q respectively as a limit. Then 
for 0 < t < 1, 

tends to tP + (1 - t)Q, which therefore lies in the closure of S. 

Let S be a convex set in Rn. Let P be a boundary point of S. (This 
means a point such that for every l > 0, the open ball centered at P, of 
radius l in Rn contains points which are in S, and points which are not 
in S.) A hyperplane H is said to be a supporting hyperplane of S at P if 
P is contained in H, and if S is contained in one of the two closed half 
spaces determined by H. 

Theorem 2.2. Let S be a convex set in Rn
, and let P be a boundary 

point of S. Then there exists a supporting hyperplane of S at P. 

Proof. Let S be the closure of S. Then we saw that S is convex, and 
P is a boundary point of S. If we can prove our theorem for S, then it 
certainly follows for S. Thus without loss of generality, we may assume 
that S is closed. 
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For each integer k > 2, we can find a point P k not in S, but at dis­
tance < 11k from P. By Theorem 2.1, we find a point Qk on S whose 
distance from Pk is minimal, and we let Nk = Qk - Pk. Let N~ be the 
vector in the same direction as N k but of norm 1. The sequence of vec­
tors N'k has a point of accumulation on the sphere of radius 1, say N', 
because the sphere is compact. We have by Theorem 2.1, for all XES, 

for every k, whence dividing each side by the norm of N k , we get 

for every k. Since N' is a point of accumulation of {N~}, and since P is 
a limit of {P k}, it follows by continuity that for each X in S, 

X·N'>P·N'. 
This proves our theorem. 

Remark. Let S be a convex set, and let H be a hyperplane defined by 
an equation 

X·N=a. 

Assume that for all XES we have X· N > a. If P is a point of S lying in 
the hyperplane, then P is a boundary point of S. Otherwise, for i > 0 
and i sufficiently small, P - iN would be a point of S, and thus 

(P - iN) . N = p. N - iN . N = a - iN . N < a, 

contrary to hypothesis. We conclude therefore that H is a supporting 
hyperplane of S at P. 

XII, §3. EXTREME POINTS AND SUPPORTING 
HYPERPLANES 

Let S be a convex set and let P be a point of S. We shall say that P 
is an extreme point of S if there do not exist points Ql' Q2 of S with 
Ql #- Q2 such that P can be written in the form 

P = tQl + (1 - t)Q2 with 0 < t < 1. 

In other words, P cannot lie on a line segment contained in S unless it is 
one of the end-points of the line segment. 
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Theorem 3.1. Let S be a closed convex set which is bounded. Then 
every supporting hyperplane of S contains an extreme point. 

Proof. Let H be a supporting hyperplane, defined by the equation 
X . N = Po . N at a boundary point Po, and say X· N > Po . N for all 
XES. Let T be the intersection of S and the hyperplane. Then T is 
convex, closed, bounded. We contend that an extreme point of Twill 
also be an extreme point of S. This will reduce our problem to finding 
extreme points of T To prove our contention let P be an extreme point 
of T, and suppose that we can write 

o < t < 1. 

Dotting with N, and using the fact that P is in the hyperplane, hence 
p. N = po· N, we obtain 

(1) 

We have Ql·N and Q2·N > Po·N since Ql' Q2 lie in S. If one of these 
IS > Po·N, say Ql·N > Po·N, then the right-hand side of equation (1) 
IS 

and this is impossible. Hence both Ql' Q2 lie in the hyperplane, thereby 
contradicting the hypothesis that P is an extreme point of T. 

We shall now find an extreme point of T. Among all points of T, 
there is at least one point whose first coordinate is smallest, because T is 
closed and bounded. (We project on the first coordinate. The image 
of T under this projection has a greatest lower bound which is taken 
on by an element of T since T is closed.) Let Tl be the subset of T 
consisting of all points whose first coordinate is equal to this smallest 
one. Then Tl is closed, and bounded. Hence we can find a point 
of Tl whose second coordinate is smallest among all points of T1 , 

and the set T2 of all points of Tl having this second coordinate 
is closed and bounded. We may proceed in this way until we 
find a point P of T having successively smallest first, second, ... ,n-th 
coordinate. We assert that P is an extreme point of T. Let 

P = (PI'··· ,Pn)· 
Suppose that we can write 

P = tX + (1 - t)Y, o < t < 1, 



274 CONVEX SETS [XII, §4] 

and points X = (Xl' ... ,xn), Y = (Yl, ... ,Yn) In T. Then Xl and Yl > Pl' 

and 

If Xl or Yl > Pl' then 

which is impossible. Hence Xl = Yl = Pl. Proceeding inductively, sup­
pose we have proved Xi = Yi = Pi for i = 1, ... ,r. Then if r < n, 

Pr+ 1 = txr+ 1 + (1 - t)Yr+ l' 

and we may repeat the preceding argument. It follows that 

X = Y = P, 

whence P is an extreme point, and our theorem is proved. 

XII, §4. THE KREIN-MILMAN THEOREM 

Let E be a set of points in Rn (with at least one point in it). We wish to 
describe the smallest convex set containing E. We may say that it is the 
intersection of all convex sets containing E, because this intersection is 
convex, and is clearly smallest. 

We can also describe this smallest convex set in another way. Let EC 

be the set of all linear combinations 

of points P 1' ... ,Pm in E with real coefficients ti such that 

and 

Then the set EC is convex. We leave the trivial verification to the reader. 
Any convex set containing E must contain E C

, and hence E C is the smal­
lest convex set containing E. We call E C the convex closure of E. 

Let S be a convex set and let E be the set of its extreme points. Then 
EC is contained in S. We ask for conditions under which EC = S. 
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Geometrically speaking, extreme points can be either points like those 
on the shell of an egg, or like points at the vertices of a polygon, viz.: 

Figure 4 Figure 5 

An unbounded convex set need not be the convex closure of its ex­
treme points, for instance the closed upper half plane, which has no ex­
treme points. Also, an open convex set need not be the convex closure 
of its extreme points (the interior of the egg has no extreme points). The 
Krein-Milman theorem states that if we eliminate these two possibilities, 
then no other troubles can occur. 

Theorem 4.1. Let S be a closed, bounded, convex set. Then S is the 
smallest closed convex set containing the extreme points. 

Proof. Let S' be the intersection of all closed convex sets containing 
the extreme points of S. Then S' c S. We must show that S is con­
tained in S'. Let PES, and suppose P ~ S'. By Theorem 2.1, there 
exists a hyperplane H passing through P, defined by an equation 

X·N = c, 

such that X· N > c for all XES'. Let L: Rn ~ R be the linear map such 
that L(X) = X . N. Then L(P) = c, and L(P) is not contained in L(S'). 
Since S is closed and bounded, the image L(S) is closed and bounded, 
and this image is also convex. Hence L(S) is a closed interval, say [a, b], 
containing c. Thus a < c < b. Let Ha be the hyperplane defined by the 
equation 

X·N=a. 

By the remark following Theorem 2.2, we know that Ha is a supporting 
hyperplane of S. By Theorem 3.1, we conclude that Ha contains an 
extreme point of S. This extreme point is in S'. We then obtain a con­
tradiction of the fact that X· N > c > a for all X in S', and thus prove 
the Krein-Milman theorem. 
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XII, §4. EXERCISES 

1. Let A be a vector in Rn. Let F: Rn -+ Rn be the translation, 

F(X) = X + A. 

Show that if S is convex in Rn then F(S) is also convex. 

2. Let c be a number > 0, and let P be a point in Rn. Let S be the set of 
points X such that IIX - PII < c. Show that S is convex. Similarly, show that 
the set of points X such that II X - P II ~ c is convex. 

3. Sketch the convex closure of the following sets of points. 
( a) ( 1, 2), (1, - 1), (1, 3), ( - 1, 1) 
(b) (-1, 2), (2, 3), (-1, -1), (1, 0) 

4. Let L: Rn -+ Rn be an invertible linear map. Let S be convex in Rn and P an 
extreme point of S. Show that L(P) is an extreme point of L(S). Is the asser­
tion still true if L is not invertible? 

5. Prove that the intersection of a finite number of closed half spaces in Rn can 
have only a finite number of extreme points. 

6. Let B be a column vector in Rn
, and A an n x n matrix. Show that the set of 

solutions of the linear equations AX = B is a convex set in Rn. 



APPENDIX 

Complex Numbers 

The complex numbers are a set of objects which can be added and 
multiplied, the sum and product of two complex numbers being also a 
complex number, and satisfy the following conditions. 

(1) Every real number is a complex number, and if ~, P are real 
numbers, then their sum and product as complex numbers are 
the same as their sum and product as real numbers. 

(2) There is a complex number denoted by i such that i2 = -1. 

(3) Every complex number can be written uniquely in the form 
a + bi where a, b are real numbers. 

(4) The ordinary laws of arithmetic concerning addition and multipli­
cation are satisfied. We list these laws: 

If ~, p, yare complex numbers, then 

(~P)y = ~(Py) and (~ + p) + y = ~ + (p + y). 

We have ~(p + y) = ~p + ~y, and (P + y)~ = p~ + y~. 
We ha ve ~p = p~, and ~ + p = p + ~. 
If 1 is the real number one, then 1~ = ~. 
If 0 is the real number zero, then o~ = o. 
We have ~+(-l)~=O. 

We shall now draw consequences of these properties. With each 
complex number a + bi, we associate the vector (a, b) in the plane. Let 
~ = a l + a2 i and p = b i + b2 i be two complex numbers. Then 

~ + P = a l + hI + (a 2 + b2 )i. 
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Hence addition of complex numbers is carried out "componentwise" and 
corresponds to addition of vectors in the plane. F or example, 

(2 + 3i) + ( - 1 + 5i) = 1 + 8i. 

In multiplying complex numbers, we use the rule i2 = -1 to simplify 
a product and to put it in the form a + bi. For instance, let rx = 2 + 3i 
and f3 = 1 - i. Then 

rxf3 = (2 + 3i)(1 - i) = 2(1 - i) + 3i(1 - i) 

= 2 - 2i + 3i - 3i2 

= 2 + i - 3( -1) 

=2+3+i 

=5+i. 

Let rx = a + bi be a complex number. We define ~ to be a - bi. Thus 
if rx = 2 + 3i, then ~ = 2 - 3i. The complex number ~ is called the 
conjugate of rx. We see at once that 

With the vector interpretation of complex numbers, we see that rx~ is the 
square of the distance of the point (a, b) from the origin. 

We now have one more important property of complex numbers, 
which will allow us to divide by complex numbers other than 0. 

If rx = a + bi is a complex number #- 0, and if we let 

then rxA = Arx = 1. 
The proof of this property is an immediate consequence of the law of 

multiplication of complex numbers, because 

The number A above is called the inverse of rx, and is denoted by rx- 1 or 
l/rx. If rx, f3 are complex numbers, we often write f3lrx instead of rx - 1 f3 (or 
f3rx- 1

), just as we did with real numbers. We see that we can divide by 
complex numbers #- 0. 
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We define the absolute value of a complex number rx = a1 + ia2 to be 

Irxl = Jai + a~. 

This absolute value is none other than the norm of the vector (a 1 , a2 ). 

In terms of absolute values, we can write 

provided rx =1= o. 
The triangle inequality for the norm of vectors can now be stated for 

complex numbers. If rx, P are complex numbers, then 

Irx + PI < Irxl + IPI. 

Another property of the absolute value is given in Exercise 5. 
Using some elementary facts of analysis, we shall now prove: 

Theorem. The complex numbers are algebraically closed, in other words, 
every polynomial f E C[t] of degree > 1 has a root in C. 

Proof We may write 

I( ) n n-1 t = an t + an - 1 t + ... + ao 

with an #- O. For every real R > 0, the function I I I such that 

t ~ If(t)1 

is continuous on the closed disc of radius R, and hence has a minimum 
value on this disc. On the other hand, from the expression 

we see that when I t I becomes large, then II (t) I also becomes large, i.e. 
given C > 0 there exists R > 0 such that if It I > R then I/(t)1 > C. Con­
sequently, there exists a positive number Ro such that, if Zo is a mini­
mum point of Ilion the closed disc of radius Ro, then 

I/(t)1 > I/(zo)1 

for all complex numbers t. In other words, Zo is an absolute minimum 
for III. We shall prove that I(zo) = O. 
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We express f in the form 

with constants Ci • (We did it in the text, but one also sees it by writing 
t = Zo + (t - zo) and subs.tituting directly in f(t).) If f(zo);/= 0, then 
Co = f(zo) ;/= O. Let z = t - zo, and let m be the smallest integer > 0 
such that cm ;/= O. This integer m exists because f is assumed to have 
degree > 1. Then we can write 

for some polynomial g, and some polynomial fl (obtained from f by 
changing the variable). Let Zl be a complex number such that 

and consider values of z of type 

where A is real, 0 < A <1. We have 

f(t) = fl(AZ l ) = Co - AmCo + Am+ lz7+ 19(AZl ) 

= co[1 - Am + Am+ lz7+ lCO 19(AZl )]. 

There exists a number C > 0 such that for all A with 0 < A s 1 we have 
Iz7+ lCO 19(AZl)1 < C, and hence 

If we can now prove that for sufficiently small A with 0 < A < 1 we have 

then for such A we get Ifl(AZl)1 < Icol, thereby contradicting the hypoth­
esis that I f(zo)1 < I f(t)1 for all complex numbers t. The left inequality is 
of course obvious since 0 < A < 1. The right inequality amounts to 
CAm+ 1 < Am, or equivalently CA < 1, which is certainly satisfied for suffi­
ciently small A. This concludes the proof. 
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APP. EXERCISES 

1. Express the following complex numbers in the form x + iy, where x, yare real 
numbers. 
(a) (-1 + 3i) - 1 

(c) (1 + i)i(2 - i) 
(e) (7 + ni)(n + i) 

(b) (1 + i)( 1 - i) 
( d) (i - 1)(2 - i) 

(f) (2i + 1 )ni 

(g) (J2 + i)(n + 3i) (h) (i + 1)(i - 2)(i + 3) 

2. Express the following complex numbers in the form x + iy, where x, yare real 
numbers. 

(a) (1 + 0- 1 

1 + i 
(e) -. 

I 

1 
(b) 3 + i 

i 
(f) 1 + i 

2+i 
(c) -. 

2 - I 

2i 
(g) 3 - i 

1 
(d) -. 

2 - I 

1 
(h) -1 + i 

3. Let tY. be a complex number =I- o. What is the absolute value of tY./a? What is 
=? tY.. 

4. Let tY., f3 be two complex numbers. Show that tY.f3 = ap and that 

5. Show that 1tY.f31 = 1tY.11f31. 

6. Define addition of n-tuples of complex numbers componentwise, and multipli­
cation of n-tuples of complex numbers by complex numbers componentwise 
also. If A = (tY. 1, ... ,tY.n) and B = (f31' ... ,f3n) are n-tuples of complex numbers, 
define their product (A, B) to be 

(note the complex conjugation!). Prove the following rules: 

UP 1. (A, B) = (B, A). 
UP 2. (A, B + C) = (A, B) + (A, C). 
UP 3. If tY. is a complex number, then 

(tY.A, B) = tY.(A, B) and (A, tY.B) = a(A, B). 

UP 4. If A = 0 then (A, A) = 0, and otherwise (A, A) > O. 

7. We assume that you know about the functions sine and cosine, and their 
addition formulas. Let f) be a real number. 
(a) Define 

ei8 = cos f) + i sin f). 

Show that if (}1 and f)2 are real numbers, then 
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Show that any complex number of absolute value 1 can be written in the 
form eit for some real number t. 

(b) Show that any complex number can be written in the form re
i8 for some 

real numbers r, f) with r ~ o. 
(c) If ZI = r 1e

i81 and Z2 = r 2 e
i82 with real r l , r 2 ~ 0 and real f)1' f)2' show that 

(d) If Z is a complex number, and n an integer > 0, show that there exists a 
complex number w such that wn = z. If z =I- 0 show that there exists n dis­
tinct such complex numbers w. [Hint: If z = re

i8
, consider first rl/ne

i8
/
n
.] 

8. Assuming the complex numbers algebraically closed, prove that every ir­
reducible polynomial over the real numbers has degree 1 or 2. [Hint: Split the 
polynomial over the complex numbers and pair off complex conjugate roots.] 



APPENDIX II 

Iwasawa Decomposition and 
Others 

Let SLn denote the set of matrices with determinant 1. The purpose of this 
appendix is to formulate in some general terms results about SLn. We shall 
use the language of group theory, which has not been used previously, so 
we have to start with the definition of a group. 

Let G be a set. We are given a mapping G x G ~ G, which at first we 
write as a product, i.e. to each pair of elements (x, y) of G we associate an 
element of G denoted by xy, satisfying the following axioms. 

GR 1. The product is associative, namely for all x, y, Z E G we have 

(xY)Z = x(yz). 

GR 2. There is an element e E G such that ex = xe = x for all x E G. 

GR 3. Given x E G there exists an element x-I E G such that 

It is an easy exercise to show that the element in GR 2 is uniquely 
determined, and it is called the unit element. The element x-I in GR 3 is 
also easily shown to be uniquely determined, and is called the inverse of 
x. A set together with a mapping satisfying the three axioms is called a 
group. 

Example. Let G' = SLn(R). Let the product be the mUltiplication of 
matrices. Then SLn(R) is a group. Similarly, SLn(C) is a group. The unit 
element is the unit matrix I. 
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Example. Let G be a group and let H be a subset which contains the 
unit element, and is closed under taking products and inverses, i.e. if 
x, y E H then x-I E Hand xy E H. Then H is a group under the "same" 
product as in G, and is called a subgroup. We shall now consider some 
important subgroups. 

Let G = SLn(R). Note that the subset consisting of the two elements 
I, -I is a subgroup. Also note that SLn(R) is a subgroup of the group 
GLn{R) (all real matrices with non-zero determinant). 

We shall now express Theorem 2.1 of Chapter V In the context of 
groups and subgroups. Let: 

U = subgroup of upper triangular matrices with 1 's on the diagonal, 

1 XI2 XIn 

o 1 X2n 

u(X) = called unipotent. 

001 

A = subgroup of positive diagonal elements: 

a= with ai > 0 for all i. 

K = subgroup of real unitary matrices k, satisfying tk = k- l . 

Theorem 1 (Iwasawa decomposition). The product map U x A x K ----t G 
given by 

(u, a, k) 1---+ uak 

is a bijection. 

Proof Let eI, . .. ,en be the standard unit vectors of R n (vertical). Let 
g = (gij) E G. Then we have 

o 

o 
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There exists an upper triangular matrix B == (bij), so with bij == 0 if i > j, 
such that 

b ll gO) 

b 12g(1) + b22g(2) 

== e~ 
} 

such that the diagonal elements are positive, that is b11 , ... , bnn > 0, and 
such that the vectors ei, ... , e~ are mutually perpendicular unit vectors. 
Getting such a matrix B is merely applying the usual Gram Schmidt 
orthogonalization process, subtracting a linear combination of previous 
vectors to get orthogonality, and then dividing by the norms to get unit 
vectors. Thus 

) n n n n 
e; == L bijg(i) == L L gq;bijeq == L L gq;bijeq. 

;=1 ;=1 q=1 q=1 ;=1 

Let gB == k E K. Then ke; == e;, so k maps the orthogonal unit vectors 
e1, ... ,en to the orthogonal unit vectors ei, .. . ,e~. Therefore k is unitary, 
and g == kB- 1• Then 

g-l == Bk-1 and B == au 

where a is the diagonal matrix with a; == bu and u is unipotent, u == a-I B. 

This proves the surjection G == UAK. For uniqueness of the decompo­
sition, if g == uak == u' a' k', let U1 == u-1 u', so using gt g you get a 2tu11 == 
U1a,2. These matrices are lower and upper triangular respectively, with 
diagonals a2, a,2, so a == a', and finally U1 == /, proving uniqueness. 

The elements of U are called unipotent because they are of the form 

u(X) == / + X, 

where X is strictly upper triangular, and xn+1 == O. Thus X == u - / IS 

called nilpotent. Let 

00 y) 
exp Y == 2:-., 

)=0 J. 
and 

00 X; 
log(/ +X) == 2:(_I)Z+I_ .. 

;=1 1 
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Let n denote the space of all strictly upper triangular matrices. Then 

exp: n ----t U, y 1---+ exp Y 

is a bijection, whose inverse is given by the log series, Y == log( I + X). 
Note that, because of the nilpotency, the exp and log series are actually 
polynomials, defining inverse polynomial mappings between U and n. The 
bijection actually holds over any field of characteristic O. The relations 

exp 10g(1 + X) == I + X and log exp Y == 10g(1 + X) == Y 

hold as identities of formal power series. Cf. my Complex Analysis, 
Chapter II, §3, Exercise 2. 

Geometric interpretation in dimension 2 

Let h2 be the upper half plane of complex numbers z == x + iy with 
x, y E Rand y > 0, y == y(z). For 

define 

g = (: !) E G = SL2(R) 

g(z) == (az + b)(cz + d)-I. 

Then G acts on h2, meaning that the following two conditions are satisfied: 

If I is the unit matrix, then I(z) == z for all z. 
For g,g' E G we have g(g'(z)) == (gg')(z). 

Also note the property: 

If g(z) == z for all z, then g == + I. 
To see that if z E h2 then g(z) E h2 also, you will need to check the 

transformation formula 
y(z) 

y(g(z)) = Icz + d1 2 ' 

proved by direct computation. 
These statements are proved by (easy) brute force. In addition, for 

w E h2, let Gw be the subset of elements g E G such that g(w) == w. Then Gw 

is a subgroup of G, called the isotropy group of w. Verify that: 

Theorem 2. The isotropy group of i is K, i. e. K is the subgroup of 
elements kEG such that k(i) == i. This is the group of matrices 

(

COS () sin () ) 
-sin () cos () . 

Or equivalently, a == d, c == -b, a2 + b2 == 1. 
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For x E Rand al > 0, let 

u(x) = (~ ~) a=(~ ° ) . h 1 WIt a2 == al . 
a2 

and 

If 9 == uak, then u(x)(z) == z + x, so putting y == al, we get a(i) == yi, 

g(i) == uak(i) == ua(i) == yi + x == x + iy. 

Thus G acts transitively, and we have a description of the action in terms 
of the Iwasawa decomposition and the coordinates of the upper half plane. 

Geometric interpretation in dimension 3. 

We hope you know the quaternions, whose elements are 

and i2 == j2 == k 2 == -1, ij == k, jk == i, ki == j. Define 

Then 
- 2 2 2 2 

ZZ==XI +X2 +X3 +X4' 

and we define Izi == (zz) 1/2. 

Let h3 be the upper half space consIstIng of elements z whose k­
component is 0, and X3 > 0, so we write 

with y > 0. 

Let G == SL2(C), so elements of G are matrices 

with a, b, e, dEC and ad - be == 1. 

As in the case of h2, define 

9 ( z) == (az + b) (ez + d) -1 . 

Verify by brute force that if z E h3 then g(z) E h3, and that G acts on h3, 
namely the two properties listed in the previous example are also satisfied 
here. Since the quaternions are not commutative, we have to use the 
quotient as written (az + b)(ez + d)-I. Also note that the y-coordinate 
transformation formula for z E h3 reads the same as for h2, namely 

y(g(z)) == y(z)/lez + d1 2
. 
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The group G = SL2(C) has the Iwasawa decomposition 

G= UAK, 
where: 

U = group of elements u(x) = (~ ~) with x E C; 

A = same group as before in the case of SL2(R); 

[APP. II] 

K = complex unitary group of elements k such that ll( = k- l • 

The previous proof works the same way, BUT you can verify directly: 

Theorem 3. The isotropy group Gj is K. 
If g = uak with u E U, a E A, k E K, u = u(x) and y = y(a), then 

gO) = x + yj. 

Thus G acts transitively, and the Iwasawa decomposition follows trivially 
from this group action (see below). Thus the orthogonalization type proof 
can be completely avoided. 

Prool 01 the Iwasawa decomposition Irom the above two properties. Let 
g E G and g(j) = x + yj. Let u = u(x) and a be such that y = al/a2 = a? 
Let g' = ua. Then by the second property, we get gO) = g'(j), so j = 
g-l g' 0). By the first property, we get g-l g' = k for some k E K, so 

g'k- l = uak- l = g, 

concluding the proof. 

The conjugation action 

By a homomorphism I: G ~ G' of a group into another we mean a 
mapping which satisfies the properties l(eG) = l(eG') (where e = unit ele­
ment), and 

for all g 1 ,g2 E G. 

A homomorphism is called an isomorphism if it has an inverse homo­
morphism, i.e. if there exists a homomorphism I': G' ~ G such that II' = 
idG" and l'f = idG . An isomorphism of G with itself is called an auto­
morphism of G. You can verify at once that the set of automorphisms of 
G, denoted by Aut( G), is a group. The product in this group is the com­
position of mappings. Note that a bijective homomorphism is an iso­
morphism, just as for linear maps. 

Let X be a set. A bijective map a: X ~ X of X with itself is called a 
permutation. You can verify at once that the set of permutations of X is 
a group, denoted by Perm(X). By an action of a group G on X we mean a 
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map 
GxX--tX denoted by (g, x) 1--+ gx, 

satisfying the two properties: 

If e is the unit element of G, then ex == x for all x EX. 
For all gl,g2 E G and x E X we have gl(g2X) == (glg2)X. 

289 

This is just a general formulation of action, of which we have seen an 
example above. Given g E G, the map x 1--+ gx of X into itself is a per­
mutation of X. You can verify this directly from the definition, namely the 
inverse permutation is given by x 1--+ g-l x. Let a(g) denote the permutation 
associated with g. Then you can also verify directly from the definition 
that 

g 1--+ a(g) 

is a homomorphism of G into the group of permutations of X. Conversely, 
such a homomorphism gives rise to an action of G on X. 

Let G be a group. The conjugation action of G on itself is defined for 
g,g'EGby 

c(g)g' == gg' g-l . 

It is immediately verified that the map g 1--+ c(g) is a homomorphism of G 
into Aut( G) (the group of automorphisms of G). Then G also acts on 
spaces naturally associated to G. 

Consider the special case when G == SLn (R). Let 

a == vector space of diagonal matrices diag(h 1, •.. , hn ) with trace 0, 
Lhi == O. 

n == vector space of strictly upper triangular matrices (hij) with hij == 0 if 
i > j. 

t n == vector space of strictly lower diagonal matrices. 
9 == vector space of n x n matrices of trace O. 

Then 9 is the direct sum a + n + tn, and A acts by conjugation. In fact, 9 
is a direct sum of eigenspaces for this action. Indeed, let Eij (i < j) be the 
matrix with ij-component 1 and all other components O. Then 

c(a)Eij == (ail aj )Eij == a(J.ij Eij 

by direct computation, defining a(J.lj == ail aj. Thus lI.ij is a homomorphism 
of A into R+ (positive real multiplicative group). The set of such homo­
morphisms will be called the set of regular characters, denoted by 9l(n) 
because n is the direct sum of the 1 dimensional eigenspaces having basis 
Eij (i < j). We write 

n == E9 n(J., 
(J.E~(n) 
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where noc is the set of elements X E n such that aXa- 1 == aOC X. We have 
similarly 

Note that a is the O-eigenspace for the conjugation action of A. 
Essentially the same structure holds for SLn(C) except that the R­

dimension of the eigenspaces noc is 2, because noc has basis EiJ.' iEiJ.. The C­
dimension is 1. 

By an algebra we mean a vector space with a bilinear map into itself, 
called a product. We make g into an algebra by defining the Lie product 
of X, Y E 9 to be 

[X, Y] == XY - YX. 

It is immediately verified that this product is bilinear but not associative. 
We call 9 the Lie algebra of G. Let the space of linear maps 2(g, g) be 
denoted by End(g), whose elements are called endomorphisms of g. By 
definition the regular representation of 9 on itself is the map 

9 ~ End(g) 

which to each X E 9 associates the endomorphism L(X) of 9 such that 

L(X)( Y) == [X, Y]. 

Note that X ~ L(X) is a linear map (Chapter XI, §6, Exercise 7). 

Exercise. Verify that denoting L(X) by Dx , we have the derivation 
property for all Y, Z E g, namely 

Dx[Y,Z] == [DxY,Z] + [Y,DxZ]. 

Using only the bracket notation, this looks like 

[X, [Y,Z]] == [[X, Y],Z] + [Y,X,Z]]. 

We use a also to denote the character on ° given on a diagonal matrix 
11 == diag(h1, ... ,hn ) by 

This is the additive version of the multiplicative character previously 
considered multiplicatively on A. Then each noc is also the a-eigenspace for 
the additive character a, namely for 11 E 0, we have 
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which you can verify at once from the definition of multiplication of 
matrices. 

Polar Decompositions 

We list here more product decompositions in the notation of groups 
and subgroups. 

Let G == SLn ( C). Let U == U (C) be the set of strictly upper triangular 
matrices with components in C. Show that U is a subgroup. Let D be the 
set of diagonal complex matrices with non-zero diagonal elements. Show 
that D is a subgroup. Let K be the set of elements k E SLn(C) such that 
II( == k- l . Then K is a subgroup, the complex unitary group. Cf. Chapter 
VII, §3, Exercise 4. 

Verify that the proof of the Iwasawa decomposition works in the 
complex case, that is G == UAK, with the same A in the real and complex 
cases. 

The quadratic map. Let g E G. Define g* == I g. Show that 

(glg2)* == g~g~. 

An element g EGis hermitian if and only if g == g*. Cf. Chapter VII, 
§2. Then gg* is hermitian positive definite, i.e. for every v E Cn, we have 
<gg*v, v) > 0, and == ° only if v == 0. 

We denote by SPosn(C) the set of all hermitian positive definite n x n 
matrices with determinant 1. 

Theorem 4. Let p E SPosn(C). Then p has a unique square root in 
SPOsn(C). 

Proof See Chapter VIII, §5, Exercise 1. 

Let H be a subgroup of G. By a (left) coset of H, we mean a subset of 
G of the form gH with some g E G. You can easily verify that two cosets 
are either equal or they are disjoint. By G / H we mean the set of co sets of 
H in G. 

Theorem 5. The quadratic map g ~ gg* induces a bijection 

G/ K ~ SPosn(C). 

Proof Exercise. Show injectivity and surjectivity separately. 

Theorem 6. The group G has the decomposition (non-unique) 

G == KAK. 

If g EGis written as a product g == kl bk2 with kl' k2 E K and b E A, then 
b is uniquely determined up to a permutation of the diagonal elements. 
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Proof Given g E G there exists kl E K and b E A such that 

by using Chapter VIII, Theorem 4.4. By the bijection of Theorem 5, there 
exists k2 E K such that g == k 1bk2, which proves the existence of the de­
composition. As to the uniqueness, note that b2 is the diagonal matrix of 
eigenvalues of gg*, i.e. the diagonal elements are the roots of the charac­
teristic polynomial, and these roots are uniquely determined up to a per­
mutation, thus proving the theorem. 

Note that there is another version of the polar decomposition as 
follows. 

Theorem 7. Abbreviate SPosn(C) == P. Then G == PK, and the decom­
position of an element g == pk with PEP, k E K is unique. 

Proof The existence is a rephrasing of Chapter VIII, §5, Exercise 4. As 
to uniqueness, suppose g == pk. The quadratic map gives gg* == pp* == p2. 
The uniqueness of the square root in Theorem 4 shows that p is uniquely 
determined by g, whence so is k, as was to be shown. 
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