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Foreword

The present book is meant as a text for a course in linear algebra, at the
undergraduate level in the upper division.

My Introduction to Linear Algebra provides a text for beginning stu-
dents, at the same level as introductory calculus courses. The present
book is meant to serve at the next level, essentially for a second course
in linear algebra, where the emphasis is on the various structure
theorems: eigenvalues and eigenvectors (which at best could occur only
rapidly at the end of the introductory course); symmetric, hermitian and
unitary operators, as well as their spectral theorem (diagonalization);
triangulation of matrices and linear maps; Jordan canonical form; convex
sets and the Krein-Milman theorem. One chapter also provides a com-
plete theory of the basic properties of determinants. Only a partial treat-
ment could be given in the introductory text. Of course, some parts of
this chapter can still be omitted in a given course.

The chapter of convex sets is included because it contains basic results
of linear algebra used in many applications and “geometric” linear
algebra. Because logically it uses results from elementary analysis (like a
continuous function on a closed bounded set has a maximum) I put it at
the end. If such results are known to a class, the chapter can be covered
much earlier, for instance after knowing the definition of a linear map.

I hope that the present book can be used for a one-term course. The
first six chapters review some of the basic notions. I looked for effi-
ciency. Thus the theorem that m homogeneous linear equations in n
unknowns has a non-trivial soluton if n > m is deduced from the dimen-
sion theorem rather than the other way around as in the introductory
text. And the proof that two bases have the same number of elements
(ie. that dimension is defined) is done rapidly by the “interchange”
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method. I have also omitted a discussion of elementary matrices, and
Gauss elimination, which are thoroughly covered in my Introduction to
Linear Algebra. Hence the first part of the present book is not a substi-
tute for the introductory text. It is only meant to make the present book
self contained, with a relatively quick treatment of the more basic mate-
rial, and with the emphasis on the more advanced chapters. Today’s
curriculum is set up in such a way that most students, if not all, will
have taken an introductory one-term course whose emphasis is on
matrix manipulation. Hence a second course must be directed toward
the structure theorems.

Appendix 1 gives the definition and basic properties of the complex
numbers. This includes the algebraic closure. The proof of course must
take for granted some elementary facts of analysis, but no theory of
complex variables is used.

Appendix 2 treats the Iwasawa decomposition, in a topic where the
group theoretic aspects begin to intermingle seriously with the purely linear
algebra aspects. This appendix could (should?) also be treated in the
general undergraduate algebra course.

Although from the start I take vector spaces over fields which are
subfields of the complex numbers, this is done for convenience, and to
avoid drawn out foundations. Instructors can emphasize as they wish
that only the basic properties of addition, multiplication, and division are
used throughout, with the important exception, of course, of those theor-
ies which depend on a positive definite scalar product. In such cases, the
real and complex numbers play an essential role.

New Haven, SERGE LANG
Connecticut

Acknowledgments

I thank Ron Infante and Peter Pappas for assisting with the proof reading
and for useful suggestions and corrections. I also thank Gimli Khazad for
his corrections.

S.L.



Contents

CHAPTER |

Vector Spaces . . . . ... ... ....

§1. Definitions. . . . .. ... ......
§2. Bases . . . ... ... ...
§3. Dimension of a Vector Space . . .
§. Sums and Direct Sums . . . .. ..

CHAPTER 1l

Matrices . . . . ... ... ........

§1. The Space of Matrices . . ... ..
§2. Linear Equations. . . .. .. .. ..
§3. Multiplication of Matrices . . . . .

CHAPTER 11l

Linear Mappings . . . . . . ... .. ..

§1. Mappings . . . ... ... ......
§2. Linear Mappings. . . . .. ... ..

.......................

§3. The Kernel and Image of a Linear Map . . .. ... ... ... ......

§4. Composition and Inverse of Linear Mappings
§5. Geometric Applications . . . . . . .

CHAPTER IV

Linear Maps and Matrices. . . . . . .

§1. The Linear Map Associated with a Matrix . . . .. ... ... ... ....
§2. The Matrix Associated with a Linear Map . . . . ... ... ... ... ..

§3. Bases, Matrices, and Linear Maps

10
15
19

23

23
29
31

43

43
51
59
66
72

81

81
82
87



viil CONTENTS

CHAPTER V

Scalar Products and Orthogonality. . . . . ... ... .............. 95
§1. Scalar Products. . . . . . . . .. .. ... 95
§2. Orthogonal Bases, Positive Definite Case . . . . . .. ... ......... 103
§3. Application to Linear Equations; the Rank. . . . . .. ... ... .. ... 113
§4. Bilinear Maps and Matrices . . . . .. ... ... ... ............ 118
§5. General Orthogonal Bases . . . . . ... .................... 123
§6. The Dual Space and Scalar Products . . . ... ... ............ 125
§7. Quadratic Forms. . . . . .. ... ... ... ... .. .. 132
§8. Sylvester’s Theorem . . . . . .. .. .. ... ... . ... ... .. ... ... 135
CHAPTER VI

Determinants . . . . . . . . ... ... 140
§1. Determinants of Order 2 . . . . ... ... ... ... ... ... .. . .... 140
§2. Existence of Determinants . . . .. ... ... ... ... ........... 143
§3. Additional Properties of Determinants. . . . ... ... ........... 150
§4. Cramer’s Rule . . . ... .. ... . ... . ... . 157
§5. Triangulation of a Matrix by Column Operations . . ... ........ 161
§6. Permutations . . . . . . . . . ... e e 163
§7. Expansion Formula and Uniqueness of Determinants . . . .. ... ... 168
§8. Inverse of a Matrix . . . . ... .. ... ... ... 174
§9. The Rank of a Matrix and Subdeterminants . . . . ... .. . 177

CHAPTER VI

- Symmetric, Hermitian, and Unitary Operators. . . . . .. ... ... ... .. 180
§1. Symmetric Operators . . . . .. .. ... . 180
§2. Hermitian Operators . . .. .. .. ... ... ... ... .. ........ 184
§3. Unitary Operators . . . . . . . . . . .ttt 188

CHAPTER Vil

Eigenvectors and Eigenvalues . . . . ... ... ... .............. 194
§1. Eigenvectors and Eigenvalues . . . .. ... ... ... ... ......... 194
§2. The Characteristic Polynomial. . . . . . ... ... .. ............ 200
§3. Eigenvalues and Eigenvectors of Symmetric Matrices . . ... .. .. .. 213
§4. Diagonalization of a Symmetric Linear Map . . . . ... ... .. ... .. 218
§5. The Hermitian Case . . . . . . . . .. . . . ... ... ... 225
§6. Unitary Operators . . . . . . . . . . v v ittt et e e 227
CHAPTER IX

Polynomials and Matrices . . . . . . . .. .. .. ... ... . ... .. ... 231
§1. Polynomials. . . . .. .. ... ... ... ... 231

§2. Polynomials of Matrices and Linear Maps . . . . .. ... ......... 233



CONTENTS X

CHAPTER X

Triangulation of Matrices and Linear Maps . . . . . . ... ... ....... 237
§1. Existence of Triangulation . . . . ... .. .. ... ... ... ... ..... 237
§2. Theorem of Hamilton-Cayley . . . . . ... ... ............... 240
§3. Diagonalization of Unitary Maps. . . . . . ... ... ... ..... L. 242
CHAPTER Xi

Polynomials and Primary Decomposition. . . . . ... ... ... . ...... 245
§1. The Euclidean Algorithm . . . . .. ... .. ... ... ............ 245
§2. Greatest Common Divisor . . . . . .. .. ... ... ... ... ... . ... 248
§3. Unique Factorization . . . . . ... .. .. ... .. .............. 251
§4. Application to the Decomposition of a Vector Space. . . .. .. ... .. 255
§5. Schur’s Lemma. . . . ... ... .. ... ... 260
§6. The Jordan Normal Form . . . .. .. ... ... ... .. ... ....... 262
CHAPTER Xil

Convex Sets . . . ... ... . .. ... 268
§1. Definitions . . . . . .. ... .. ... 268
§2. Separating Hyperplanes . . . . . ... ... ... .. ... . ... . ..... 270
§3. Extreme Points and Supporting Hyperplanes . . . ... .. ... ... .. 272
§4. The Krein-Milman Theorem . .. .. ... .. ... ... . ......... 274
APPENDIX |

Complex NUMberS. . ... ... i e e 277
APPENDIX I

Iwasawa Decomposition and Others ....................................... 283






CHAPTER |

Vector Spaces

As usual, a collection of objects will be called a set. A member of the
collection is also called an element of the set. It is useful in practice to
use short symbols to denote certain sets. For instance, we denote by R
the set of all real numbers, and by C the set of all complex numbers. To
say that “x is a real number” or that “x is an element of R” amounts to
the same thing. The set of all n-tuples of real numbers will be denoted
by R* Thus “X is an element of R"” and “X is an n-tuple of real
numbers” mean the same thing. A review of the definition of C and its
properties is given an Appendix.

Instead of saying that u is an element of a set S, we shall also fre-
quently say that u lies in S and write ueS. If S and §' are sets, and if
every element of S’ is an element of S, then we say that S’ is a subset of
S. Thus the set of real numbers is a subset of the set of complex
numbers. To say that S’ is a subset of S is to say that §’ is part of S.
Observe that our definition of a subset does not exclude the possibility
that §'=S. If §' is a subset of §, but §’ # S, then we shall say that §’ is
a proper subset of S. Thus C is a subset of C, but R is a proper subset
of C. To denote the fact that S’ is a subset of S, we write §' = S, and
also say that S’ is contained in S.

If §,, S, are sets, then the intersection of S; and S,, denoted by
S; N S,, is the set of elements which lie in both §; and §,. The union of
S; and §S,, denoted by S; U S,, is the set of elements which lie in S, or
in S,.



2 VECTOR SPACES [T, §1]

I, §1. DEFINITIONS

Let K be a subset of the complex numbers C. We shall say that K is a
field if it satisfies the following conditions:

(a) If x, y are elements of K, then x + y and xy are also elements of
K.

(b) If xeK, then —x is also an element of K. If furthermore x # 0,
then x~! is an element of K.

(c) The elements 0 and 1 are elements of K.

We observe that both R and C are fields.

Let us denote by Q the set of rational numbers, i.e. the set of all frac-
tions m/n, where m, n are integers, and n # 0. Then it is easily verified
that Q is a field.

Let Z denote the set of all integers. Then Z is not a field, because
condition (b) above is not satisfied. Indeed, if n is an integer # O, then
n~!=1/n is not an integer (except in the trivial case that n=1 or
n= —1). For instance { is not an integer.

The essential thing about a field is that it is a set of elements which
can be added and multiplied, in such a way that additon and multiplica-
tion satisfy the ordinary rules of arithmetic, and in such a way that one
can divide by non-zero elements. It is possible to axiomatize the notion
further, but we shall do so only later, to avoid abstract discussions which
become obvious anyhow when the reader has acquired the necessary
mathematical maturity. Taking into account this possible generalization,
we should say that a field as we defined it above is a field of (complex)
numbers. However, we shall call such fields simply fields.

The reader may restrict attention to the fields of real and complex
numbers for the entire linear algebra. Since, however, it is necessary to
deal with each one of these fields, we are forced to choose a neutral
letter K.

Let K, L be fields, and suppose that K is contained in L (i.e. that K
is a subset of L). Then we shall say that K is a subfield of L. Thus
every one of the fields which we are considering is a subfield of the com-
plex numbers. In particular, we can say that R is a subfield of C, and Q
is a subfield of R.

Let K be a field. Elements of K will also be called numbers (without
specification) if the reference to K is made clear by the context, or they
will be called scalars.

A vector space V over the field K is a set of objects which can be
added and multiplied by elements of K, in such a way that the sum of
two elements of V' is again an element of V, the product of an element of
V by an element of K is an element of V, and the following properties
are satisfied:
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VS 1. Given elements u, v, w of V, we have
u+ov)+w=u+(+w).
VS 2. There is an element of V, denoted by O, such that

O+u=u+0=u

for all elements u of V.

VS 3. Given an element u of V, there exists an element —u in V such
that
u+(—u)=0.
VS 4. For all elements u, v of V, we have
ut+ov=ov+u
VS 5. If ¢ is a number, then c(u + v) = cu + cv.
VS 6. If a, b are two numbers, then (a + b)v = av + bv.

VS 7. If a, b are two numbers, then (ab)v = a(bv).

VS 8. For all elements u of V, we have 1-u = u (1 here is the number
one).

We have used all these rules when dealing with vectors, or with func-
tions but we wish to be more systematic from now on, and hence have
made a list of them. Further properties which can be easily deduced

from these are given in the exercises and will be assumed from now on.

Example 1. Let VV = K" be the set of n-tuples of elements of K. Let
A=(ay,....a,) and B = (by,....,b,)

be elements of K". We call a,,...,a, the components, or coordinates, of A.
We define

A+B=(a,+b,,...,a,+b,).
If ce K we define

cA = (cay,...ca,).
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Then it is easily verified that all the properties VS 1 through VS8 are
satisfied. The zero elements is the n-tuple

0 =(0,...,0)
with all its coordinates equal to O.

Thus C" is a vector space over C, and Q" is a vector space over Q.
We remark that R"” is not a vector space over C. Thus when dealing
with vector spaces, we shall always specify the field over which we take
the vector space. When we write K", it will always be understood that it
is meant as a vector space over K. Elements of K" will also be called
vectors and it is also customary to call elements of an arbitrary vector
space vectors.

If u, v are vectors (i.e. elements of the arbitrary vector space V), then

u+(—v)

is usually written u — v.

We shall use 0 to denote the number zero, and O to denote the ele-
ment of any vector space V satisfying property VS 2. We also call it
zero, but there is never any possibility of confusion. We observe that
this zero element O is uniquely determined by condition VS 2 (cf. Exer-
cise 5).

Observe that for any element v in V' we have

Ov = 0.
The proof is easy, namely
ov+ov=0+1v=0+ v=1v=no.

Adding —v to both sides shows that Ov = O.

Other easy properties of a similar type will be used constantly and are
given as exercises. For instance, prove that (—1)v = —o.

It is possible to add several elements of a vector space. Suppose we
wish to add four elements, say u, v, w, z. We first add any two of them,
then a third, and finally a fourth. Using the rules VS 1 and VS 4, we see
that it does not matter in which order we perform the additions. This is
exactly the same situation as we had with vectors. For example, we have

(u+v)+w+z=W+@+w)+z
=((w+w)+u)+z
=@w+w)+ (u+z), etc
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Thus it is customary to leave out the parentheses, and write simply
ut+v+w+z

The same remark applies to the sum of any number n of elements of V,
and a formal proof could be given by induction.

Let V be a vector space, and let W be a subset of V. We define W to
be a subspace if W satisfies the following conditions:

(1) If v, w are elements of W, their sum v + w is also an element of
w.

(i) If v is an element of Wand ¢ a number, then cv is an element of
W.
(iit) The element O of Vis also an element of W.

Then W itself is a vector space. Indeed, properties VS 1 through VS 8§,
being satisfied for all elements of V, are satisfied a fortiori for the ele-
ments of W,

Example 2. Let V= K" and let W be the set of vectors in V whose last
coordinate is equal to 0. Then W is a subspace of ¥, which we could
identify with K",

Linear Combinations. Let V be an arbitrary vector space, and let
vy,...,0, be elements of V. Let x,,...,x, be numbers. An expression of
type

X0y + -+ X,0,
is called a linear combination of v,,... v

n

Let W be the set of all linear combinations of v,,...,v,. Then W is a
subspace of V.

Proof. Let y,,...,y, be numbers. Then
(xlvl + e+ xnvn) + (ylvl + oo+ ynvn) = (xl + yl)vl + -+ (xn + yn)vn'

Thus the sum of two elements of W is again an element of W, i.e. a
linear combination of v,,...,v,. Furthermore, if ¢ is a number, then

c(xvy + -+ x,0,) =cx 0, + -+ + cx,0,

is a linear combination of v,...,v,, and hence is an element of W.
Finally,

0 =00, + -+ O,

is an element of W. This proves that W is a subspace of V.
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The subspace W as above is called the subspace generated by
Uy,...,0,- If W=V, 1e. if every element of V is a linear combination of
vy,...,0,, then we say that v,,...,v, generate V.

Example 3. Let V=K" Let 4 and BeK", A =(a,,...,a,) and
B = (b,,...,b,). We define the dot product or scalar product

A-B=ab, + -+ a,b,.
It is then easy to verify the following properties.
SP1. We have A-B = B- A.
SP 2. If A, B, C are three vectors, then
A B+C)=A-B+A-C=(B+0(C)- A
SP3. If xeK then

(xA)-B=x(4-B) and  A-(xB)= x(A-B).

We shall now prove these properties.
Concerning the first, we have

albl + + anbn = blal + + bnam
because for any two numbers a, b, we have ab = ba. This proves the
first property.
For SP 2, let C = (¢y,...,¢,). Then
B+ C= (b, +cy....b,+c,)

and

A'(B + C) = al(bl + Cl) + PP + an(bn + C”)
=ab, +ac; +... +a,b, + a,c,.

Reordering the terms yields
aby+---+ab,+ac, +---+a,c,
which is none other than A-B + A-C. This proves what we wanted.
We leave property SP 3 as an exercise.

Instead of writing A- A for the scalar product of a vector with itself, it
will be convenient to write also 42. (This is the only instance when we



[1, §1] DEFINITIONS 7

allow ourselves such a notation. Thus 4% has no meaning.) As an exer-
cise, verify the following identities:

(A+ B)= A% + 2A4-B + B?
(A— B)?=A4?> —2A4-B + B>

A dot product A-B may very well be equal to 0 without either 4 or
B being the zero vector. For instance, let 4 =(1,2,3) and B = (2,1, —%).
Then A-B = 0.

We define two vectors A, B to be perpendicular (or as we shall also
say, orthogonal) if 4-B =0. Let A be a vector in K". Let W be the set
of all elements B in K" such that B-4 = 0, i.e. such that B is perpen-
dicular to 4. Then W is a subspace of K". To see this, note that
O0-A =0, so that O is in W. Next, suppose that B, C are perpendicular to
A. Then

(B+C)A=B-A+C-A=0,

so that B + C is also perpendicular to A. Finally, if x is a number, then
(xB)-A =x(B-A) =0,

so that xB is perpendicular to A. This proves that W is a subspace of
K"

Example 4. Function Spaces. Let S be a set and K a field. By a func-
tion of S into K we shall mean an association which to each element of
S associates a unique element of K. Thus if fis a function of S into K,
we express this by the symbols

f:S—>K.
We also say that fis a K-valued function. Let V be the set of all func-
tions of § into K. If f, g are two such functions, then we can form their

sum f+g. It is the function whose value at an element x of S is
S(x) + g(x). We write

(f + 9(x) =f(x) + g(x).
If ce K, then we define ¢f to be the function such that

(¢f )x) = ¢f ().

Thus the value of ¢f at x is ¢f(x). It is then a very easy matter to verify
that Vis a vector space over K. We shall leave this to the reader. We
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observe merely that the zero element of V is the zero function, i.e. the
function f such that f(x) =0 for all xeS. We shall denote this zero
function by 0.

Let V be the set of all functions of R into R. Then V is a vector
space over R. Let W be the subset of continuous functions. If f, g are
continuous functions, then f+ g is continuous. If ¢ is a real number,
then cf is continuous. The zero function is continuous. Hence W is a
subspace of the vector space of all functions of R into R, i.e. Wis a sub-
space of V.

Let U be the set of differentiable functions of R into R. If f, g are
differentiable functions, then their sum f + g is also differentiable. If ¢ is
a real number, then c¢f is differentiable. The zero function is differenti-
able. Hence U is a subspace of V. In fact, U is a subspace of W, because
every differentiable function is continuous.

Let V again be the vector space (over R) of functions from R into R.
Consider the two functions ¢, e?’. (Strictly speaking, we should say the
two functions f, g such that f(t) = ¢' and g(t) = e* for all teR.) These
functions generate a subspace of the space of all differentiable functions.
The function 3e' + 2e? is an element of this subspace. So is the function
2¢' + me*.

Example 5. Let V be a vector space and let U, W be subspaces. We
denote by U n W the intersection of U and W, i.e. the set of elements
which lie both in U and W. Then U n Wis a subspace. For instance, if
U, W are two planes in 3-space passing through the origin, then in gen-
eral, their intersection will be a straight line passing through the origin,
as shown in Fig. 1.

Figure 1
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Example 6. Let U, W be subspaces of a vector space V. By

U+ W

we denote the set of all elements u + w with ue U and we W. Then we
leave it to the reader to verify that U + W is a subspace of V, said to be
generated by U and W, and called the sum of U and W.

, §1. EXERCISES

1.

10.

11.

12.

13.

Let V be a vector space. Using the properties VS 1 through VS 8, show that
if ¢ is a number, then cO = O.

Let ¢ be a number # 0, and v an element of V. Prove that if cv = O, then
v=0.

. In the vector space of functions, what is the function satisfying the condition

VS 2?

Let V be a vector space and v, w two elements of V. If v + w = O, show that
w= —0.

. Let V be a vector space, and v, w two elements of V such that v + w =v.

Show that w = O.

Let A4,, A, be vectors in R”. Show that the set of all vectors B in R" such
that B is perpendicular to both A, and A4, is a subspace.

Generalize Exercise 6, and prove: Let A4,,...,A4, be vectors in R". Let W be
the set of vectors B in R” such that B- A4; = 0 for every i = 1,...,r. Show that
W is a subspace of R".

Show that the following sets of elements in R? form subspaces.
(a) The set of all (x, y) such that x = y.

(b) The set of all (x, y) such that x — y =0.

(c) The set of all (x, y) such that x + 4y = 0.

Show that the following sets of elements in R*® form subspaces.
(a) The set of all (x, y, z) such that x + y +z = 0.

(b) The set of all (x, y, z) such that x =y and 2y = z.

(c) The set of all (x, y, z) such that x + y = 3z.

If U, W are subspaces of a vector space V, show that U n Wand U + W are
subspaces.

Let K be a subfield of a field L. Show that L is a vector space over K. In
particular, C and R are vector spaces over Q.

Let K be the set of all numbers which can be written in the form a + bﬁ,
where a, b are rational numbers. Show that K is a field.

Let K be the set of all numbers which can be written in the form a + bi,
where a, b are rational numbers. Show that K is a field.
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14. Let ¢ be a rational number > 0, and let y be a real number such that y? = c.
Show that the set of all numbers which can be written in the form a + by,
where a, b are rational numbers, is a field.

l, §2. BASES

Let V be a vector space over the field K, and let v,,...,v, be elements of
V. We shall say that v,,...,v, are linearly dependent over K if there exist
elements a,,...,a, in K not all equal to O such that

a vy +---+aw,=0.
If there do not exist such numbers, then we say that v,,...,v, are linearly

independent. In other words, vectors v,,...,v, are linearly independent if
and only if the following condition is satisfied:

Whenever a,,...,a, are numbers such that
a vy +---+aw,=0,
then a; =0 for all i = 1,... n.
Example 1. Let V= K" and consider the vectors
E, = (1,0,...,0)
E, = o0,0,...,1).
Then E,,...,E, are linearly independent. Indeed, let a,,...,a, be numbers

such that
a1E1 + M + anEn - 0.

Since
a,E,+- -+ a,E,=(ay,...,a,),
it follows that all a; = 0.
Example 2. Let V be the vector space of all functions of a variable ¢.

Let f,,...,f, be n functions. To say that they are linearly dependent is
to say that there exists n numbers a,,...,a, not all equal to O such that

alfl(t) + -t anfn(t) = 0

for all values of t.
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The two functions &', e*' are linearly independent. To prove this, sup-
pose that there are numbers a, b such that

ae' + be* =0
(for all values of t). Differentiate this relation. We obtain
ae' + 2be* = 0.

Subtract the first from the second relation. We obtain be? =0, and
hence b = 0. From the first relation, it follows that ae' = 0, and hence
a =0. Hence ¢, e*' are linearly independent.

If elements v,,...,v, of V generate V and in addition are linearly inde-
pendent, then {v,,..,v,} is called a basis of V. We shall also say that the
elements v,,...,v, constitute or form a basis of V.

The vectors E,,... ,E, of Example 1 form a basis of K".

Let W be the vector space of functions generated by the two functions

¢, e*. Then {¢,e*} is a basis of W.

We shall now define the coordinates of an element ve V with respect
to a basis. The definition depends on the following fact.

Theorem 2.1. Let V be a vector space. Let v,,...,v, be linearly inde-

pendent elements of V. Let x,,...,x, and y,,...,y, be numbers. Suppose
that we have

X0y + -+ X, 0, = Y10y + -+ Y0,
Then x; = y; for i=1,...,n.
Proof. Subtracting the right-hand side from the left-hand side, we get
XUy — Y0y + - + x,0, — y,0, = O.
We can write this relation also in the form
(xy — yoy + -+ + (X, — Yo, = O.

By definition, we must have x; — y, =0 for all i = 1,...,n, thereby prov-
Ing our assertion.

Let ¥V be a vector space, and let {v,,...,v,} be a basis of V. The ele-
ments of V can be represented by n-tuples relative to this basis, as fol-

lows. If an element v of Vis written as a linear combination

V=X0y + -+ X,0,
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then by the above remark, the n-tuple (x,,...,x,) is uniquely determined
by v. We call (x,,...,x,) the coordinates of v with respect to our basis,
and we call x; the i-th coordinate. The coordinates with respect to the
usual basis E,,... E, of K" are the coordinates of the n-tuple X. We say
that the n-tuple X = (x,,...,x,) is the coordinate vector of v with respect
to the basis {v,,...,0,}.

Example 3. Let V be the vector space of functions generated by the
two functions €', e*’. Then the coordinates of the function

3e' + 5¢*

with respect to the basis {e, e*'} are (3, 5).

Example 4. Show that the vectors (1, 1) and (—3, 2) are linearly inde-
pendent.
Let a, b be two numbers such that

a(1,1) + b(—3,2) = 0.
Writing this equation in terms of components, we find
a—3b=0, a+2b=0.

This is a system of two equations which we solve for a and b. Subtract-
ing the second from the first, we get —5b = 0, whence b = 0. Substitut-
ing in either equation, we find a = 0. Hence a, b are both 0, and our
vectors are linearly independent.

Example 5. Find the coordinates of (1,0) with respect to the two vec-
tors (1, 1) and (—1, 2), which form a basis.
We must find numbers a, b such that

a(1,1) + b(—1,2) = (1, 0).
Writing this equation in terms of coordinates, we find

a—b=1, a+2b=0.

Solving for a and b in the usual manner yields b= —3% and a=3%.

Hence the coordinates of (1,0) with respect to (1,1) and (—1,2) are

Example 6. Show that the vectors (1, 1) and (—1,2) form a basis of
R2.
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We have to show that they are linearly independent and that they
generate R? To prove linear independence, suppose that a, b are
numbers such that

a(1,1) + b(—1,2) = (0, 0).
Then

a—b=0, a+2b=0.
Subtracting the first equation from the second yields 3b =0, so that
b=0. But then from the first equation, a = 0, thus proving that our

vectors are linearly independent. Next, let (a, b) be an arbitrary element
of R%. We have to show that there exist numbers x, y such that

x(l’ 1) + y(_ la 2) = (aa b)
In other words, we must solve the system of equations

X —y=a,
x+ 2y =b.

Again subtract the first equation from the second. We find

3y=b —a,
whence
b—a
y= 3
and finally
b—a
XxX=y+a= 3 +a

This proves what we wanted. According to our definitions, (x, y) are the
coordinates of (a, b) with respect to the basis {(1, 1), (—1, 2)}.

Let {v,,...,v,} be a set of elements of a vector space V. Let r be a
positive integer < n. We shall say that {v,,...,v,} is a maximal subset of
linearly independent elements if v,,...,v, are linearly independent, and if
in addition, given any v; with i > r, the elements v,,...,v,, v; are linearly
dependent.

The next theorem gives us a useful criterion to determine when a set
of elements of a vector space is a basis.

Theorem 2.2. Let {v,,...,v,} be a set of generators of a vector space V.
Let {v,,...,v,} be a maximal subset of linearly independent elements.
Then {v,,...,v,} is a basis of V.
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Proof. We must prove that v,,...,v, generate V. We shall first prove
that each v; (for i > r) is a linear combination of v,,...,v,. By hypothe-
sis, given v;, there exist numbers x,,...,x,, y not all 0 such that

X0y + -+ x,0, + yv; = 0.

Furthermore, y # 0, because otherwise, we would have a relation of lin-
ear dependence for v;,...,v,. Hence we can solve for v;, namely

Xy
Ui=701+...+
-y -y

r

v

ro°

thereby showing that v; is a linear combination of v,,...,v,.
Next, let v be any element of V. There exist numbers c,,...,c, such
that

v=1cC0; + -+ C,0,.

In this relation, we can replace each v; (i > r) by a linear combination of
vy,...,0,. If we do this, and then collect terms, we find that we have ex-
pressed v as a linear combination of v,,...,v,. This proves that v,,...,v
generate V, and hence form a basis of V.

r

l, §2. EXERCISES

1. Show that the following vectors are linearly independent (over C or R).

(@) (1,1,1)and (0, 1, —2) (b) (1,0)and (1, 1)
(¢) (—=1,1,0)and (0, 1, 2) (d) 2, —1)and (1,0)
(e) (n,0)and (0, 1) ) (1,2)and (1, 3)

(g) (1,1,0),(1,1,1),and (0, 1, — 1) (h) (0,1, 1),(0,2,1),and (1, 5, 3)

2. Express the given vector X as a linear combination of the given vectors A, B,
and find the coordinates of X with respect to A, B.
(@ X=(1,0,4=(,1, B=(0,1)
®)X=21,4=(,—-1),B=(1,1)
© X=01,1),4A=2,1), B=(—-1,0)
d X=143),4=2,1), B=(—-1,0)

3. Find the coordinates of the vector X with respect to the vectors A4, B, C.
(@ X=(@1,0,0,4=(1,1,1), B=(—-1,1,0),C=(1,0,-1)
® X=01,1,1,4A=0,1,—-1),B=(1,1,0), C=(1,0,2)
(c) X=(0,0,1),4=(1,1,1), B=(—110),C=(,0,—-1)

4. Let (a,b) and (c,d) be two vectors in the plane. If ad — bc = 0, show that
they are linearly dependent. If ad — bc # 0, show that they are linearly inde-
pendent.
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5. Consider the vector space of all functions of a variable t. Show that the fol-
lowing pairs of functions are linearly independent.
@ Lt (b)) t,t2 () t,t* (d) &,t (e) te', e* (f)sint,cost (g) t,sint
(h) sint,sin2t (i) cost,cos 3t

6. Consider the vector space of functions defined for t > 0. Show that the fol-
lowing pairs of functons are linearly independent.
(@) t,1/t (b) €, logt

7. What are the coordinates of the function 3sint + 5 cos t = f(t) with respect
to the basis {sint, cos t}?

8. Let D be the derivative d/dt. Let f(t) be as in Exercise 7. What are the
coordinates of the function Df(t) with respect to the basis of Exercise 7?

9. Let 4,,...,4, be vectors in R" and assume that they are mutually perpen-
dicular (ie. any two of them are perpendicular), and that none of them is
equal to O. Prove that they are linearly independent.

10. Let v, w be elements of a vector space and assume that v # O. If v, w are
linearly dependent, show that there is a number a such that w = av.

I, §3. DIMENSION OF A VECTOR SPACE

The main result of this section is that any two bases of a vector space
have the same number of elements. To prove this, we first have an inter-
mediate result.

Theorem 3.1. Let V be a vector space over the field K. Let {vy,...,0,}
be a basis of V over K. Let w,,...,w, be elements of V, and assume that
n>m. Then wy,...,w, are linearly dependent.

Proof. Assume that w,,...,w, are linearly independent. Since
{vy,...,U,} is a basis, there exist elements a,,...,a, € K such that

Wl - (111)1 + cct + amvm.

By assumption, we know that w, # O, and hence some g; # 0. After re-
numbering v,,...,v,, if necessary, we may assume without loss of generali-
ty that say a, # 0. We can then solve for v,, and get

all)l = Wl _azvz — e —qa, v

m~“m>

v, =aj; 'w, —aylta,v, —--- —ajla,v,.

The subspace of V generated by w,, v,,...,v, contains v,, and hence must
be all of V since v,,v,,...,v,, generate V. The idea is now to continue
our procedure stepwise, and to replace successively v,,v3,... by
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W,, ws,... until all the elements v,,...,v,, are exhausted, and w,....w,,
generate V. Let us now assume by induction that there is an integer r
with 1 <r < m such that, after a suitable renumbering of v,,...,v,, the
elements w,,...,w,, v,,,-...,0,, generate V. There exist elements

biy.oisbys Coy1seeesCim

in K such that

Wei1 =b1W1 +“.+b'w"+cr+lvr+1 +---4+c.v

m-m-*

We cannot have c¢; =0 for j=r + 1,...,m, for otherwise, we get a rela-
tion of linear dependence between wy,...,w,, ;, contradicting our assump-
tion. After renumbering v,, ,,...,0, if necessary, we may assume without
loss of generality that say c,,, # 0. We then obtain

Cre1lUpt1 = Wrpq1 — blwl - brwr “Cr42Upya — 1 T CpUpy

Dividing by c,.,;, we conclude that v,,, is in the subspace generated by
WiseoosWoi1, Upyns---50,.- By our induction assumption, it follows that
WiyeoosWyi 1o Upgase-- U, generate V. Thus by induction, we have proved
that w,,...,w,, generate V. If n > m, then there exist elements

dy,...d,eK

m

such that

w,=dw; +---+d,w

m>°

thereby proving that w,,...,w, are linearly dependent. This proves our
theorem.

Theorem 3.2. Let V be a vector space and suppose that one basis has n
elements, and another basis has m elements. Then m = n.

Proof. We apply Theorem 3.1 to the two bases. Theorem 3.1 implies
that both alternatives n > m and m > n are impossible, and hence m = n.

Let V be a vector space having a basis consisting of n elements. We
shall say that n is the dimension of V. If V consists of O alone, then V
does not have a basis, and we shall say that V has dimension 0.



(1, §3] . DIMENSION OF A VECTOR SPACE 17

Example 1. The vector space R" has dimension n over R, the vector
space C" has dimension n over C. More generally for any field K, the
vector space K" has dimension n over K. Indeed, the n vectors

(1,0,...,0), (0,1,...,0), ..., (0,...,0,1)
form a basis of K" over K.

The dimension of a vector space V over K will be denoted by dimy V,
or simply dim V.

A vector space which has a basis consisting of a finite number of ele-
ments, or the zero vector space, is called finite dimensional. Other vector
spaces are called infinite dimensional. It is possible to give a definition
for an infinite basis. The reader may look it up in a more advanced text.
In this book, whenever we speak of the dimension of a vector space in
the sequel, it is assumed that this vector space is finite dimensional.

Example 2. Let K be a field. Then K is a vector space over itself,
and it is of dimension 1. In fact, the element 1 of K forms a basis of K
over K, because any element x € K has a unique expresssion as x = x- 1.

Example 3. Let V be a vector space. A subspace of dimension 1 is
called a line in V. A subspace of dimension 2 is called a plane in V.

We shall now give criteria which allow us to tell when elements of a
vector space constitute a basis.

Let v,,...,v, be linearly independent elements of a vector space V. We
shall say that they form a maximal set of linearly independent elements of
V if given any element w of V, the elements w, v,,...,v, are linearly de-
pendent.

Theorem 3.3. Let V be a vector space, and {v,,...,v,} a maximal set of
linearly independent elements of V. Then {v,,...,v,} is a basis of V.

Proof. We must show that v,,...,v, generates V, i.e. that every element
of ¥V can be expressed as a linear combination of v,,...,v,. Let w be an
element of V. The elements w, v,,...,v, of ¥V must be linearly dependent
by hypothesis, and hence there exist numbers x,, x;,...,x, not all 0 such
that

XoW + X0y + -+ + x,0, = O.
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We cannot have x, = 0, because if that were the case, we would obtain a
relation of linear dependence among v,,...,v,. Therefore we can solve for
w in terms of v,,...,v,, namely

xl xn
W:——vl_..._;v
Xo X0

This proves that w is a linear combination of v,,...,v,, and hence that
{v4,...,0,} is a basis.

Theorem 3.4. Let V be a vector space of dimension n, and let v,,... v,
be linearly independent elements of V. Then v,,...,v, constitute a basis
of V.

Proof. According to Theorem 3.1, {v,,...,v,} is a maximal set of lin-
early independent elements of V. Hence it is a basis by Theorem 3.3.

Corollary 3.5. Let V be a vector space and let W be a subspace. If
dim W =dim V then V = W.

Proof. A basis for W must also be a basis for V by Theorem 3.4.

Corollary 3.6. Let V be a vector space of dimension n. Let r be a posi-
tive integer with r < n, and let v,,...,v, be linearly independent elements
of V. Then one can find elements v,, ,,...,v, such that

(V15 s,

is a basis of V.

Proof. Since r < n we know that {v,,...,v,} cannot form a basis of V,
and thus cannot be a maximal set of linearly independent elements of V.
In particular, we can find v,,, in V such that

Uyseeeslpyy

are linearly independent. If r + 1 < n, we can repeat the argument. We
can thus proceed stepwise (by induction) until we obtain n linearly inde-
pendent elememts {v,,...,v,}. These must be a basis by Theorem 3.4 and
our corollary is proved.

Theorem 3.7. Let V be a vector space having a basis consisting of n
elements. Let W be a subspace which does not consist of O alone. Then
W has a basis, and the dimension of W is < n.
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Proof. Let w, be a non-zero element of W. If {w,} is not a maximal
set of linearly independent elements of W, we can find an element w, of
W such that w,, w, are linearly independent. Proceeding in this manner,
one element at a time, there must be an integer m < n such that we can
find linearly independent elements w,, w,,...,w,,, and such that

{Wiseoo oW}

is a maxmal set of linearly independent elements of W (by Theorem 3.1
we cannot go on indefinitely finding linearly independent elements, and
the number of such elements is at most n). If we now use Theorem 3.3,
we conclude that {w,,...,w,} is a basis for W.

I, §4. SUMS AND DIRECT SUMS

Let V be a vector space over the field K. Let U, W be subspaces of V.
We define the sum of U and W to be the subset of V consisting of all
sums u + w with ue U and we W. We denote this sum by U + W. It is
a subspace of V. Indeed, if u,, u,e U and w,, w, € W then

U, +w)+ W +wy))=u, +u, +w, +w,elU + W.
If ce K, then
cu, +wy)=cu; +cw,eU + W.

Finally, O + O € W. This proves that U + W is a subspace.
We shall say that V is a direct sum of U and W if for every element v
of V there exist unique elements ue U and we W such that v =u + w.

Theorem 4.1. Let V be a vector space over the field K, and let U, W be
subspaces. If U+ W =1V, and if U W = {0}, then V is the direct
sum of U and W.

Proof. Given veV, by the first assumption, there exist elements ue U
and we W such that v =u +w. Thus V is the sum of U and W. To
prove it is the direct sum, we must show that these elements u, w are
uniquely determined. Suppose there exist elements u' € U and w' € W such
that v =u' + w'. Thus

u+w=u +w.
Then

u—u =w —w.
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But u —u'eU and w — we W. By the second assumption, we conclude
that u—u'=0 and w —w=0, whence u=u and w=w, thereby
proving our theorem.

As a matter of notation, when V is the direct sum of subspaces U, W
we write
V=U®®W.

Theorem 4.2. Let V be a finite dimensional vector space over the field
K. Let W be a subspace. Then there exists a subspace U such that V is
the direct sum of W and U.

Proof. We select a basis of W, and extend it to a basis of ¥V, using
Corollary 3.6. The assertion of our theorem is then clear. In the nota-
tion of that theorem, if {v,,...,v,} is a basis of W, then we let U be the
space generated by {v,,,...,0,}.

We note that given the subspace W, there exist usually many subs-
paces U such that V is the direct sum of W and U. (For examples, see
the exercises.) In the section when we discuss orthogonality later in this
book, we shall use orthogonality to determine such a subspace.

Theorem 4.3. If V is a finite dimensional vector space over K, and is
the direct sum of subspaces U, W then

dim V=dim U + dim W,

Proof. Let {u,,...,u,} be a basis of U, and {w,,...,w,} a basis of W.
Every element of U has a unique expression as a linear combination
xiuy + -+ x,u,, with x;€ K, and every element of W has a unique ex-
pression as a linear combination y;w,; + --- + y;w, with y;e K. Hence by
definition, every element of V has a unique expression as a linear com-
bination

XUy + -+ xu, + ywy e+ YWy,

thereby proving that u,,...,u,, w,,...,w, is a basis of ¥, and also proving
our theorem.

Suppose now that U, W are arbitrary vector spaces over the field K
(i.e. not necessarily subspaces of some vector space). We let U x W be
the set of all pairs (u, w) whose first component is an element u of U and
whose second component is an element w of W. We define the addition
of such pairs componentwise, namely, if (u,,w,)eU x W and
(u,, w,)e U x W we define

(uy, wy) + (uz, wy) = (uy + uy, wy + wy).
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If ce K we define the product c(u,, w,) by
c(uy, wy) = (cuy, cwy).

It is then immediately verified that U x W is a vector space, called the
direct product of U and W. When we discuss linear maps, we shall com-
pare the direct product with the direct sum.

If n is a positive integer, written as a sum of two positive integers,
n=r + s, then we see that K" is the direct product K" x K°*.

We note that

dim (U x W) =dim U + dim W.

The proof is easy, and is left to the reader.

Of course, we can extend the notion of direct sum and direct product
of several factors. Let V,,...,V, be subspaces of a vector space V. We
say that V is the direct sum

if every element ve V has a unique expression as a sum

v=0; 4+, with v, e V.

13 i

A “unique expression” means that if
v="0] + -+, with vieV,

then v =v, for i=1,... ,n
Similarly, let W,,...,W, be vector spaces. We define their direct pro-
duct

HW;'=W1><"'><W

n
i=1

to be the set of n-tuples (w,,...,w,) with w,e W,. Addition is defined
componentwise, and multiplication by scalars is also defined compo-
nentwise. Then this direct product is a vector space.
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l, §4. EXERCISES

1. Let V=R2, and let W be the subspace generated by (2,1). Let U be the sub-
space generated by (0, 1). Show that Vis the direct sum of W and U. If U’ 1s

the subspace generated by (1, 1), show that V is also the direct sum of W and
U'.

2. Let V= K3 for some field K. Let W be the subspace generated by (1,0, 0),
and let U be the subspace generated by (1, 1,0) and (0, 1, 1). Show that V is
the direct sum of W and U.

3. Let A, B be two vectors in R?, and assume neither of them is O. If there is
no number ¢ such that ¢4 = B, show that 4, B form a basis of R?, and that
R? is a direct sum of the subspaces generated by 4 and B respectively.

4. Prove the last assertion of the section concerning the dimension of U x W. If
{uy,...,u,} is a basis of U and {w,,...,w;} is a basis of W, what is a basis of
U x W?



CHAPTER I

Matrices

I, §1. THE SPACE OF MATRICES

We consider a new kind of object, matrices. Let K be a field. Let n, m
be two integers = 1. An array of numbers in K

a;; 4z a3 Ain
ay; A4y A4jzz az,
aml am2 am3 amn

is called a matrix in K. We can abbreviate the notation for this matrix
by writing it (a;), i=1,...,m and j=1,...,n. We say that it is an m by
n matrix, or an m x n matrix. The matrix has m rows and n columns.
For instance, the first column is

and the second row is (a,,, a,;,...,a,,). We call a;; the ij-entry or ij-
component of the matrix. If we denote by A4 the above matrix, then the
i-th row is denoted by A4;, and is defined to be

A; = (a;, Az, .- ,8;5)-
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The j-th column is denoted by A7, and is defined to be

Example 1. The following is a 2 x 3 matrix:

1 1 =2
-1 4 =5/

It has two rows and three columns.
The rows are (1,1, —2) and (—1,4, —5). The columns are

() () )

Thus the rows of a matrix may be viewed as n-tuples, and the columns
may be viewed as vertical m-tuples. a vertical m-tuple is also called a
column vector.

A vector (x,,...,x,) is a 1 X n matrix. A column vector

X1

is an n X 1 matrix.

When we write a matrix in the form (q;;), then i denotes the row and
j denotes the column. In Example 1, we have for instance a,, = 1,
a3 = —5.

A single number (a) may be viewed as a 1 x 1 matrix.

Let (a;;),i=1,...,mand j=1,...,n be a matrix. If m = n, then we say
that it is a square matrix. Thus

1 —1 5

1 2
( ) O) and 2 1 -1
3 1 —1

are both square matrices.
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We have a zero matrix in which a;; = 0 for all i, j. It looks like this:

000 ---0
000 ---0
000 ---0

We shall write it O. We note that we have met so far with the zero
number, zero vector, and zero matrix.

We shall now define addition of matrices and multiplication of ma-
trices by numbers.

We define addition of matrices only when they have the same size.
Thus let m, n be fixed integers = 1. Let A = (q;;) and B = (b;;) be two
m x n matrices. We define 4 + B to be the matrix whose entry in the
i-th row and j-th column is a;; + b;;. In other words, we add matrices of
the same size componentwise.

Example 2. Let
1 —1 0 5 1 -1
A=<2 3 4) and B‘(z 1 —1)‘

4+ B 6 0 —1
TE= <4 4 3)'

If O is the zero matrix, then for any matrix A (of the same size, of
course), we have O + A = A + O = A. This is trivially verified.

We shall now define the multiplication of a matrix by a number. Let
c be a number, and 4 = (a;;) be a matrix. We define c4 to be the ma-

trix whose ij-component is ca;;. We write ¢4 = (ca;;). Thus we multiply
each component of A by c.

Then

Example 3. Let A, B be as in Example 2. Let ¢ = 2. Then
2 =2 0 10 2 =2
24 = (4 6 8> and 2B = ( 4 y 2).

We also have
( ) _:2 -3 —4 )

For all matrices 4, we find that 4 + (—1)4 = O.
We leave it as an exercise to verify that all properties VS 1 through
VS 8 are satisfied by our rules for addition of matrices and multiplication
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of matrices by elements of K. The main thing to observe here is that
addition of matrices is defined in terms of the components, and for the
addition of components, the conditions analogous to VS 1 through VS 4
are satisfied. They are standard properties of numbers. Similarly, VS 5§
through VS 8 are true for multiplication of matrices by elements of K,
because the corresponding properties for the multiplication of elements of
K are true.

We see that the matrices (of a given size m x n) with components in a
field K form a vector space over K which we may denote by
Mat,, . (K).

We define one more notion related to a matrix. Let 4 = (a;;) be an
m x n matrix. The n x m matrix B = (b;;) such that b;; = q;; is called the
transpose of A, and is also denoted by ‘A. Taking the transpose of a
matrix amounts to changing rows into columns and vice versa. If A is
the matrix which we wrote down at the beginning of this section, then ‘4
is the matrix

Ay 4zy A4zy o Gy

Ay Q4zp Q3p ' Ay

aln a2n a3n amn

To take a special case:
2 1
2 1 0

If A= ) 3 5 then ‘4=11 3
0 5

If A=(2,1, —4) is a row vector, then

‘A= 1
—4
is a column vector.
A matrix A is said to be symmetric if it is equal to its transpose, i.e. if

‘A = A. A symmetric matrix is necessarily a square matrix. For instance,
the matrix

1 —1 2
—1 0 3
2 3 7

is symmetric.
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Let A4 = (a;;) be a square matrix. We call a,,...,a,, its diagonal com-
ponents. A square matrix is said to be a diagonal matrix if all its
components are zero except possibly for the diagonal components, i.e. if
a;; =0 if i #j. Every diagonal matrix is a symmetric matrix. A diagonal
matrix looks like this:

a, O 0
0 a, 0
0 O a

We define the unit n x n matrix to be the square matrix having all its
components equal to 0 except the diagonal components, equal to 1. We
denote this unit matrix by I,, or I if there is no need to specify the n.
Thus:

1 0 0
0 1 0
IL,=1. . .
00 1

I, §1. EXERCISES ON MATRICES

(1 23 g (-1 5 2
“\-t o 2/ ™ “\ 2 2 -1

Find A + B, 3B, —2B, A + 2B, 2A — B, A — 2B, B — A.

2. Let
(1 ! s (1 1
2 2 “( 0o —3)

Find A + B, 3B, —2B, A+ 2B, A— B, B — A.

1. Let

3. In Exercise 1, find ‘4 and 'B.
4. In Exercise 2, find ‘4 and ‘B.

5. If A, B are arbitrary m x n matrices, show that

A+ B)="'A + 'B.
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If ¢ is a number, show that

Y(cA) = c'A.

. If A =(a;;) is a square matrix, then the elements a; are called the diagonal

elements. How do the diagonal elements of A and ‘4 differ?

Find ‘(A + B) and ‘4 + ‘B in Exercise 2.

. Find A +'4 and B + 'B in Exercise 2.
10.
11.

Show that for any square matrix A, the matrix 4 + ‘4 is symmetric.

Write down the row vectors and column vectors of the matrices A, B in
Exercise 1.

Write down the row vectors and column vectors of the matrices A4, B in
Exercise 2.

Il, §1. EXERCISES ON DIMENSION

1.

What is the dimension of the space of 2 x 2 matrices? Give a basis for this
space.

What is the dimension of the space of m x n matrices? Give a basis for this
space.

. What is the dimension of the space of n x n matrices of all of whose com-

ponents are 0 except possibly the diagonal components?

What is the dimensison of the space of n x n matrices which are upper-
triangular, ie. of the following type:

Ayp Q12 v Ay
0 ay, Arpn 9
0 0 a

. What is the dimension of the space of symmetric 2 x 2 matrices (ie. 2 x 2

matrices A such that 4 =‘A)? Exhibit a basis for this space.

More generally, what is the dimension of the space of symmetric n x n ma-
trices? What is a basis for this space?

What is the dimension of the space of diagonal n x n matrices? What is a
basis for this space?

. Let V be a subspace of R2. What are the possible dimensions for V?

Let V be a subspace of R®. What are the possible dimensions for V?
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I, §2. LINEAR EQUATIONS

We shall now give applications of the dimension theorems to the solu-
tion of linear equations.

Let K be a field. Let A =(a;;),i=1,...,m and j=1,...,n be a matrix
in K. Let b,,...,b, be elements of K. Equations like

allxl + ot + al,,xn = b1
(%)

amlxl + -+ amn'xn = bm

are called linear equations. We shall also say that (x) is a system of lin-
ear equations. The system is said to be homogeneous if all the numbers
b,...,b, are equal to 0. The number n is called the number of un-
knowns, and m is called the number of equations. We call (g;;) the ma-
trix of coefficients.

The system of equations

allxl +"' +al,,X”=O

(%)

Ap1Xy + -+ appx, =0

mn-"n

will be called the homogeneous system associated with (x).

The system (k) always has a solution, namely, the solution ob-
tained by letting all x; = 0. This solution will be called the trivial solu-
tion. A solution (x,,...,x,) such that some x; # 0 is called non-trivial.

We consider first the homogeneous system (xx). We can rewrite it in
the following way:

or in terms of the column vectors of the matrix 4 = (a;)),
x A + - 4+ x, A" = 0.

A non-trivial solution X = (x,,...,x,) of our system (*x) is therefore
nothing else than an n-tuple X # O giving a relation of linear depen-
dence between the columns A!,...,4". This way of rewriting the system
gives us therefore a good interpretation, and allows us to apply Theorem
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3.1 of Chapter I. The column vectors are elements of K™, which has
dimension m over K. Consequently:

Theorem 2.1. Let

allxl + e +a1nxn=O
1%, + -+ apyx, =0

be a homogeneous system of m linear equations in n unknowns, with
coefficients in a field K. Assume that n > m. Then the system has a
non-trivial solution in K.

Proof. By Theorem 3.1 of Chapter, we know that the vectors
Al ... ,A" must be linearly dependent.

Of course, to solve explicitly a system of linear equations, we have so
far no other method than the elementary method of elimination from ele-
mentary school. Some computational aspects of solving linear equations
are discussed at length in my Introduction to Linear Algebra, and will
not be repeated here.

We now consider the original system of equations (x). Let B be the
column vector

b,

a, Ain b,

mn m

or abbreviated in terms of the column vectors of A4,
x;A* +--- + x,A" = B.

Theorem 2.2. Assume that m = n in the system (x) above, and that the
vectors A',... A" are linearly independent. Then the system (x) has a
solution in K, and this solution is unique.
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Proof. The vectors A,...,A" being linearly independent, they form a
basis of K". Hence any vector B has a unique expression as a linear
combination

B=x,A 4 - + x, A",

with x;€K, and X = (x,,...,x,) is therefore the unique solution of the
system.

Il, §2. EXERCISES

1. Let (**) be a system of homogeneous linear equations in a field K, and as-
sume that m =n. Assume also that the column vectors of coefficients are
linearly independent. Show that the only solution is the trivial solution.

2. Let (xx) be a system of homogeneous linear equations in a field K, in n un-
knowns. Show that the set of solutions X = (x,,...,X,) is a vector space over
K.

3. Let A',...,A" be column vectors of size m. Assume that they have coefficients
in R, and that they are linearly independent over R. Show that they are
linearly independent over C.

4. Let (x*) be a system of homogeneous linear equations with coefficients in R.
If this system has a non-trivial solution in C, show that it has a non-trivial
solution in R.

I, §3. MULTIPLICATION OF MATRICES

We shall consider matrices over a field K. We begin by recalling the dot
product defined in Chapter I. Thus if A = (a,,...,a,) and B = (b,,...,b,)
are in K", we define
A-B=ab, + -+ a,b,.

This is an element of K. We have the basic properties:

SP1. For all A, B in K", we have A-B = B- A.

SP2. If A, B, C are in K", then

A B+C)=A-B+A-C=(B+C)-A.
SP 3. If xeK, then

(xA)-B=x(A-B) and  A-(xB)= x(A-B).
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If A has components in the real numbers R, then
A=+ +a 20,

and if A # 0O then A% > 0, because some a? > 0. Notice however that
the positivity property does not hold in general. For instance, if K = C,
let A =(1,i). Then A # O but

A-A=1+i2=0.

For many applications, this positivity is not necessary, and one can use
instead a property which we shall call non-degeneracy, namely:

IfAeK", andif A-X =0 for all X e K" then A = O.

The proof is trivial, because we must have A-E; = 0 for each unit vector
E;=(0,...,0,1,0,...,0) with 1 in the i-th component and O otherwise.
But A-E;, = a;, and hence a; = 0 for all i, so that 4 = O.

We shall now define the product of matrices.
Let A=(ay), i=1,...,m and j=1,...,n, be an m x n matrix. Let
B=(b),j=1,....nand k=1,...,5, be an n x s matrix.

n by, - bys
mn bnl bns

We define the product AB to be the m x s matrix whose ik-coordinate is

Y @b = aibyy + apby + - + ayby.
j=1

If A,,...,A,, are the row vectors of the matrix A, and if B',...,B* are the
column vectors of the matrix B, then the ik-coordinate of the product
AB is equal to A;-B*. Thus

Al-Bl v A, B
AB={: :
A B ... A .Bs

m m

Multiplication of matrices is therefore a generalization of the dot prod-
uct.
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Example 1. Let

2 1 5 34
a=(7 5 ) B=|-1 2
21

Then AB is a 2 x 2 matrix, and computations show that

Example 2. Let

(1))

Let A, B be as in Example 1. Then

3 4 1 5
13
BC={-1 2 ( | 1): ~3 _5
1 1 5
and
2 1 5 -1 > 0 30
(BCO) (1 3 2> 3 55 <—8 0)

Compute (4B)C. What do you find?

Let A be an m x n matrix and let B be an n x 1 matrix, i.e. a column
vector. Then AB is again a column vector. The product looks like this:

where
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If X=(x,,...,x,,) is a row vector, ie. a 1 x m matrix, then we can
form the product X A, which looks like this:

S S U S P
(X1seeeXm)| C =0V

ml mn

where
Vi = X111, + -0+ X Q.

In this case, XA is a 1 x n matrix, i.e. a row vector.

Theorem 3.1. Let A, B, C be matrices. Assume that A, B can be mul-
tiplied, and A, C can be multiplied, and B, C can be added. Then
A, B + C can be multiplied, and we have

A(B + C) = AB + AC.

If x is a number, then

A(xB) = x(AB).

Proof. Let A; be the i-th row of A and let B*, C* be the k-th column
of B and C, respectively. Then B* + C* is the k-th column of B + C.
By definition, the ik-component of AB is A;- B*, the ik-component of AC
is A;-C*, and the ik-component of A(B + C) is A;-(B* + C*). Since

Ai'(Bk + Ck) == Ai‘Bk + Ai'Ck,

our first assertion follows. As for the second, observe that the k-th col-
umn of xB is xB*. Since

Ai . ka = X(Al i Bk),
our second assertion follows.

Theorem 3.2. Let A, B, C be matrices such that A, B can be multiplied
and B, C can be multiplied. Then A, BC can be multiplied. So can
AB, C, and we have

(AB)C = A(BC).
Proof. Let A = (a;;) be an m x n matrix, let B = (b;) be an n x r ma-
trix, and let C = (¢,;)) be an r x s matrix. The product AB is an m x r

matrix, whose ik-component is equal to the sum

a; by, + aizbyy + - + ayby.
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b

We shall abbreviate this sum using our ) notation by writing
n
2 @by
ji=1

By definition, the il-component of (AB)C is equal to

r n r n
Z [ aijbjk]ckl = Z [Z aijbjkckl:l'
k=1| j=1 k=1]j=1

The sum on the right can also be described as the sum of all terms

Z aijbjkckl’

where j, k range over all integers 1 <j <n and 1 < k < r respectively.

If we had started with the jl-component of BC and then computed the
il-component of A(BC) we would have found exactly the same sum,
thereby proving the theorem.

Let A be a square n x n matrix. We shall say that 4 is invertible or
non-singular if there exists an n x n matrix B such that

AB=BA =1,

Such a matrix B is uniquely determined by A, for if C is such that AC =
CA =1, then

B =BI, = B(AC) = (BA)C = I,C = C.

(Cf. Exercise 1.) This matrix B will be called the inverse of 4 and will be
denoted by A~!. When we study determinants, we shall find an explicit
way of finding it, whenever it exists.

Let A be a square matrix. Then we can form the product of A with
itself, say AA, or repeated products,

A---A

taken m times. By definition, if m is an integer = 1, we define A™ to
be the product A---A taken m times. We define A° = I (the unit matrix
of the same size as A). The usual rule 4""* = A"A4°® holds for integers
r,s = 0.

The next result relates the transpose with multiplication of matrices.
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Theorem 3.3. Let A, B be matrices which can be multiplied. Then 'B, ‘A
can be multiplied, and

‘(AB) = 'B'A.

Proof. Let A = (a;;) and B = (b;). Let AB= C. Then

n
Cix = Z aijbjk'

ji=1

Let ‘B = (b;;) and ‘A = (aj;). Then the ki-component of ‘B’4 is by defini-
tion

n
’ ’
2. bijaj;.

i=1

Since b;; = b, and a); = a;; we see that this last expression is equal to

n

n
)y bja;; = > a;ibj.
ji=1

j=1

By definition, this is the ki-component of ‘C, as was to be shown.

In terms of multiplication of matrices, we can now write a system of
linear equations in the form

AX = B,

where 4 is an m x n matrix, X is a column vector of size n, and B 1s a
column vector of size m.

Il, §3. EXERCISES
1. Let I be the unit n x n matrix. Let 4 be an n x r matrix. What is JA? If A
1S an m X n matrix, what is AI?

2. Let O be the matrix all of whose coordinates are 0. Let A be a matrix of a
size such that the product AO is defined. What is A0?
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3. In each one of the following cases, find (4B)C and A(BC).

(P N ("' Neo(t H

(@) _<3 1>’ _( 1 0)’ _(2 3)
1

b)A=2 PR e_l2 o) c=(]

( 3 1 2) s ) 3

1 1 0 1 2
2 4 1 /
) A= ,B=[2 1 -1),c=| 3 1
30 -1
3 1 5 ~1 4

. Let A, B be square matrices of the same size, and assume that AB = BA.
Show that (4 + B)? = A% + 2AB + B2, and

(A + BY(A — B) = A> — B?,

using the properties of matrices stated in Theorem 3.1.

. Let
A_1 2 B_z 0
“\3 -1) 1 1

Find AB and BA.
. Let

c 7 0
~\0 7

Let A, B be as in Exercise 5. Find CA, AC, CB, and BC. State the general
rule including this exercise as a special case.

. Let X =(1,0,0) and let

3 1 5
A=]2 0 1
1 1 7

What is X A?

. Let X =(0,1,0), and let A be an arbitrary 3 x 3 matrix. How would you
describe XA? What if X =(0,0,1)? Generalize to similar statements con-
cerning n X n matrices, and their products with unit vectors.

. Let A, B be the matrices of Exercise 3(a). Verify by computation that
‘(AB) ='B'A. Do the same for 3(b) and 3(c). Prove the same rule for any
two matrices A, B (which can be multiplied). If 4, B, C are matrices which
can be multiplied, show that ((4BC) = 'C'B'A.
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10.

11.

12.

13.
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Let M be an n x n matrix such that ‘M = M. Given two row vectors in n-
space, say A and B define (A4, B) to be AM'B. (Identify a 1 x 1 matrix with
a number.) Show that the conditions of a scalar product are satisfied, except
possibly the condition concerning positivity. Give an example of a matrix M
and vectors A, B such that AM ‘B is negative (taking n = 2).

(a) Let A be the matrix

0 1 1
0 0 1
0 0 0

Find A2, A3. Generalize to 4 x 4 matrices.
(b) Let A be the matrix

1 1 1
0 1 1
0 0 1

Compute A2, A3 A*.

Let X be the indicated column vector, and A the indicated matrix. Find AX
as a column vector.

3 1 0 1
@Xx=(2)4=l2 o 1
1 2 0 -1

1
(b) X = 1,A:<2 ! 5)

~~
o,
S
o<
I
=
N
b
Il
Ve N
o
(e
(e
~_

Find AX for each of the following values of X.
1 0 0
@ X={0 b) X =11 c) X={0
0 1 1
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14. Let
3 7 5
A=11 -1 4
2 1 8

15. Let

S O = O

What is 4AX?

16. Let X be a column vector having all its components equal to 0 except the
i-th component which is equal to 1. Let A be an arbitrary matrix, whose size
is such that we can form the product AX. What is AX?

17. Let A=(a;), i=1,...,m and j=1,...,n, be an m x n matrix. Let B = (by),
j=1,....nand k=1,...,5, be an n x s matrix. Let AB = C. Show that the
k-th column C* can be written

Ck = blkAl + A + b”kA”.

(This wili be useful in finding the determinant of a product.)

18. Let A be a square matrix.
(a) If A2 = O show that I — A is invertible.
(b) If 4> = O show that I — A is invertible.
(¢) In general, if A" = O for some positive integer n, show that I — A4 is in-
vertible.
(d) Suppose that A2 + 24 + I = 0. Show that A is invertible.
(e) Suppose that A3 — 4 + I = 0. Show that A is invertible.

19. Let a, b be numbers, and let

A—l a d B—l b
“\o 1 an “lo 1

What is AB? What is A" where n is a positive integer?
20. Show that the matrix A in Exercise 19 has an inverse. What is this inverse?

21. Show that if A, B are n x n matrices which have inverses, then AB has an
inverse.

22. Determine all 2 x 2 matrices A such that 4% = O.
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cos —sinf

23. Let A4 =<

) Show that A — (cos 20 —sin 20)

sin 0 cos 0 sin 20 cos 20

Determine 4" by induction for any positive integer n.

—1 0
24. Find a 2 x 2 matrix A such that 42 = —] =( 0 1)-

25. Let A be an n x n matrix. Define the trace of A to be the sum of the
diagonal elements. Thus if 4 = (g;;), then

tr(4) = i a;.

For instance, if

then tr(4)=1+4=5. If

1 -1 5
A=1]2 1 31
1 —4 7

then tr(4) = 9. Compute the trace of the following matrices:

1 7 3 3 -2 4 .
@ |-1 5 2 | 1 4 1 ol 3 4 4
2 3 —4 -7 -3 -3 -5 2 6

26. Let A, B be the indicated matrices. Show that

tr(AB) = tr(BA).

1 -1 1 31 2
@ A4=2 4 1]B=| 110
30 1 —1 2 1
1 7 3 3 -2 4
®a={-1 5 2},B=| 1 4 1
2 3 -4 —7 -3 2

27. Prove in general that if A, B are square n X n matrices, then
tr(AB) = tr(BA).

28. For any square matrix 4, show that tr(A4) = tr(‘4).
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29.

30.

31.

32.

33.

34.
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Let

h N

{
© o -
o N o
w o o

Find 42, 43, A*.

Let A4 be a diagonal matrix, with diagonal elements a,,...,a,, What is
A%, A3, A* for any positive integer k?

Let
01 6
A=10 0 4
0 00
Find A43.

Let A be an invertible n x n matrix. Show that
t(A—l) — (tA)_l.

We may therefore write ‘4~! without fear of confusion.

Let 4 be a complex matrix, A = (a;;), and let A4 = (d;;), where the bar means
complex conjugate. Show that

(A) =A.
We then write simply 'A.
Let A be a diagonal matrix:
a, 0 0
4= 0 a'2 0
0 0 a

If a; # 0 for all i, show that A is invertible. What is its inverse?

Let A be a strictly upper triangular matrix, i.c. a square matrix (q;;) having
all its components below and on the diagonal equal to 0. We may express
this by writing a;; =0 if i 2 j:

0 a,, a;; - A1n

0 0 ay -+ ay,
4 - . . .

. . . Ap—1,n

0 O 0

Prove that A" = 0. (If you wish, you may do it only in case n =2, 3 and 4.
The general case can be done by induction.)
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36. Let A be a triangular matrix with components 1 on the diagonal:

1 ay, - Ayn

0 1 a,,
a=f:

0 O 1 a,_,

0 O 0 1

Let N=A —1,. Show that N"*! =0. Note that 4 = + N. Show that 4
is invertible, and that its inverse is

I+N)Y'=I—-N+N?—.--+(—1)'N".

37. If N is a square matrix such that N**! = O for some positive integer r, show
that I — N is invertible and that its inverse is I + N + --- + N".

38. Let A be a triangular matrix:

a,; 4y ayn
4= 0 a?2 a.z,,
0 0 a

Assume that no diagonal element is 0, and let

alt 0 o 0
B— 0 a2._21 0
0 0 a_l

nn

Show that BA and AB are triangular matrices with components 1 on the
diagonal.

39. A square matrix A is said to be nilpotent if A" = O for some integer r = 1.
Let A, B be nilpotent matrices, of the same size, and assume 4B = BA.
Show that AB and A + B are nilpotent.



CHAPTER 1l

Linear Mappings

We shall define the general notion of a mapping, which generalizes the
notion of a function. Among mappings, the linear mappings are the
most important. A good deal of mathematics is devoted to reducing
questions concerning arbitrary mappings to linear mappings. For one
thing, they are interesting in themselves, and many mappings are linear.
On the other hand, it is often possible to approximate an arbitrary map-
ping by a linear one, whose study is much easier than the study of the
original mapping. This is done in the calculus of several variables.

I, §1. MAPPINGS

Let S, S’ be two sets. A mapping from S to S’ is an association which
to every element of S associates an element of S’. Instead of saying that
F is a mapping from S into §’, we shall often write the symbols F: S — §'.
A mapping will also be called a map, for the sake of brevity.

A function is a special type of mapping, namely it is a mapping from
a set into the set of numbers, i.e. into R, or C, or into a field K.

We extend to mappings some of the terminology we have used for
functions. For instance, if T: S — §’ is a mapping, and if u is an element
of S, then we denote by T(u), or Tu, the element of S’ associated to u by
T. We call T(u) the value of T at u, or also the image of u under T.
The symbols T(u) are read “T of u”. The set of all elements T(u), when
u ranges over all elements of S, is called the image of T. If W is a subset
of S, then the set of elements T(w), when w ranges over all elements of
W, is called the image of W under T, and is denoted by T(W).
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Let F: S—> §’ be a map from a set S into a set §'. If x is an element
of S, we often write
x > F(x)

with a special arrow +— to denote the image of x under F. Thus, for

instance, we would speak of the map F such that F(x) = x* as the map
2

X x°.

Example 1. Let S and §' be both equal to R. Let f:R—>R be the
function f(x) = x? (ie. the function whose value at a number x is
x%). Then f is a mapping from R into R. Its image is the set of
numbers = 0.

Example 2. Let S be the set of numbers = 0, and let S'=R. Let
g: S — S be the function such that g(x) = x!/2. Then g is a mapping
from S into R.

Example 3. Let S be the set of functions having derivatives of all
orders on the interval 0 <t < 1, and let §'=S. Then the derivative
D = d/dt is a mapping from S into S. Indeed, our map D associates the
function df/dt = Df to the function f. According to our terminology,
Df is the value of the mapping D at f.

Example 4. Let S be the set of continuous functions on the interval
[0,1] and let S’ be the set of differentiable functions on that interval.
We shall define a mapping #:S — §' by giving its value at any function
fin S. Namely, we let #f (or #(f)) be the function whose value at x is

F)x) = f:f(t) d.

Then #Z(f) is differentiable function.

Example5. Let S be the set R3, ie. the set of 3-tuples. Let
A=(2,3,—1). Let L:R>—> R be the mapping whose value at a vector
X=(xy2)18 A-X. Then L(X)=A4-X. If X=(,1, —1), then the
value of L at X is 6.

Just as we did with functions, we describe a mapping by giving its
values. Thus, instead of making the statement in Example 5 describing
the mapping L, we would also say: Let L:R>—> R be the mapping
L(X)= A-X. This is somewhat incorrect, but is briefer, and does not
usually give rise to confusion. More correctly, we can write X +— L(X)
or X — A-X with the special arrow +— to denote the effect of the map
L on the element X.
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Example 6. Let F: R2 - R? be the mapping given by

F(x, y) = (2x, 2y).

Describe the image under F of the points lying on the circle x* + y* = 1.
Let (x, y) be a point on the circle of radius 1.
Let u = 2x and v = 2y. Then u, v satisfy the relation

W/2)? + (v/2) = 1

or in other words,

ur  v?
Z+z=1.

Hence (u,v) is a point on the circle of radius 2. Therefore the image
under F of the circle of radius 1 is a subset of the circle of radius 2.
Conversely, given a point (u, v) such that

u2+02=4’

let x=u/2 and y=v/2. Then the point (x,y) satisfies the equation
x2 4+ y* =1, and hence is a point on the circle of radius 1. Furthermore,
F(x,y) = (u,v). Hence every point on the circle of radius 2 is the image
of some point on the circle of radius 1. We conclude finally that the im-
age of the circle of radius 1 under F is precisely the circle of radius 2.

Note. In general, let S, S’ be two sets. To prove that S = §’, one fre-
quently proves that S is a subset of §" and that S’ is a subset of S. This
is what we did in the preceding argument.

Example 7. Let S be a set and let V be a vector space over the field
K. Let F, G be mappings of S into V. We can define their sum F + G
as the map whose value at an element ¢t of S is F(t) + G(t). We also de-
fine the product of F by an element ¢ of K to be the map whose value
at an element ¢t of S is cF(¢t). It is easy to verify that conditions VS 1
through VS 8 are satisfied.

Example 8. Let S be a set. Let F:S — K" be a mapping. For each
element ¢t of S, the value of F at t is a vector F(t). The coordinates of
F(t) depend on t. Hence there are functions f;,...,f, of S into K such
that

F@t) = (f1(t), ....[,()).
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These functions are called the coordinate functions of F. For instance, if
K =R and if S is an interval of real numbers, which we denote by J,
then a map

F:J->R"

is also called a (parametric) curve in n-space.

Let S be an arbitrary set again, and let F, G: S - K" be mappings of S
into K". Let f,,...,f, be the coordinate functions of F, and g¢,,...,g, the
coordinate functions of G. Then G(t) = (g,(t),...,9,(t) for all teS.
Furthermore,

(F + G)(t) = F(t) + G(t) = (fy(1) + 91(1), -...£u(8) + 9,(D)),
and for any ceK,
(cF)®) = cF(t) = (cfy (@), - ,cf0))-
We see in particular that the coordinate functions of F + G are .
Sitgoofut gu
Example 9. We can define a map F:R — R” by the association
t— (2t, 10, t3).

Thus F(t) = (2t, 10%, ¢3), and F(2) = (4, 100, 8). The coordinate functions
of F are the functions fi, f,, f5 such that

iO=2t,  f()=10" and  f(1) =1

Let U, V, W be sets. Let F: U - V and G: V— W be mappings. Then
we can form the composite mapping from U into W, denoted by GoF.
It is by definition the mapping defined by

(GoF)(t) = G(F(1))

for all teU. If f:R—> R is a function and g: R > R is also a function,
then go f is the composite function.
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The following statement is an important property of mappings.

Let U, V, W, S be sets. Let
F:U-Y, G: VoW, and H:W-S
be mappings. Then
Ho(GoF)=(H-G)-F.

Proof. Here again, the proof is very simple. By definition, we have,
for any element u of U:

(H~(GoF))(u) = H(G> F)()) = H(G(F(u)))-
On the other hand,
((H>G)o F)u) = (H > G)(F(u)) = H(G(F(w))).
By definition, this means that
Ho(GoF)=(HoG)<F.

We shall discuss inverse mappings, but before that, we need to men-
tion two special properties which a mapping may have. Let

f:§->8
be a map. We say that f is injective if whenever x, yeS and x # y, then
f(x) # f(y). In other words, f is injective means that f takes on distinct

values at distinct elements of S. Put another way, we can say that f is
injective if and only if, given x, yeS,

f(x)=f(y)  implies  x

|
=

Example 10. The function
f:R->R

such that f(x) = x? is not injective, because f(1) = f(—1) = 1. Also the
function x - sin x is not injective, because sin x = sin(x + 2n). How-
ever, the map f:R —> R such that f(x) =x + 1 is injective, because if
x+1=y+1 then x =y.
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Again, let f: S —> S’ be a mapping. We shall say that f is surjective if
the image of f is all of §".
The map

f:R>R

such that f(x) = x? is not surjective, because its image consists of all
numbers = 0, and this image is not equal to all of R. On the other
hand, the map of R into R given by x — x> is surjective, because given a
number y there exists a number x such that y = x* (the cube root of y).
Thus every number is in the image of our map.

A map which is both injective and surjective is defined to be bijective.
Let R* be the set of real numbers = 0. As a matter of convention,
we agree to distinguish between the maps

R—->R and R* > R"*

given by the same formula x+ x2. The point is that when we view the
association x — x> as a map of R into R, then it is not surjective, and it
is not injective. But when we view this formula as defining a map from
R™ into R*, then it gives both an injective and surjective map of R*
into itself, because every positive number has a positive square root, and
such a positive square root is uniquely determined.

In general, when dealing with a map f: S — S, we must therefore al-
ways specify the sets S and §’, to be able to say that f is injective, or
surjective, or neither. To have a completely accurate notation, we should
write

Js.s

or some such symbol which specifies S and S’ into the notation, but this
becomes too clumsy, and we prefer to use the context to make our
meaning clear.

If S is any set, the identity mapping I is defined to be the map such
that I¢(x) = x for all xeS. We note that the identity map is both injec-
tive and surjective. If we do not need to specify the reference to S (be-
cause it is made clear by the context), then we write I instead of Is.
Thus we have I(x) = x for all xeS. We sometimes denote I by idg or
simply id.

Finally, we define inverse mappings. Let F:S — S’ be a mapping from
one set into another set. We say that F has an inverse if there exists a
mapping G: S’ — S such that

GOFZIS and FOG=ISr.
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By this we mean that the composite maps Go F and FoG are the iden-
tity mappings of S and S’ respectively.

Example 11. Let S = §’ be the set of all real numbers = 0. Let
f:8§-8

be the map such that f(x) = x2. Then f has an inverse mapping, namely
the map g: S — S such that g(x) = \/;

Example 12. Let R., be the set of numbers > 0 and let f:R->R_,
be the map such that f(x) = e*. Then f has an inverse mapping which is
nothing but the logarithm.

Example 13. This example is particularly important in geometric ap-
plications. Let V be a vector space, and let u be a fixed element of V.
We let

T, V-V

be the map such that T,(v) = v + u. We call T, the translation by u. If §
is any subset of V¥, then T,(S) is called the translation of S by u, and con-
sists of all vectors v + u, with veS. We often denote it by S + u. In the
next picture, we draw a set S and its translation by a vector wu.

0
Figure 1

As exercises, we leave the proofs of the next two statements to the
reader:

o T,

uz*

If u,, u, are elements of V, then T, ,,, =T,

ui

If u is an element of V, then T,V — V has an inverse mapping which is
nothing but the translation T_,.
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Next, we have:

Let
f:8§-8

be a map which has an inverse mapping g. Then f is both injective and
surjective, that is f is bijective.

Proof. Let x,yeS. Let g:S"— S be the inverse mapping of f. If
f(x) = f(y), then we must have

x=g(f(x) = g(f») =y,

and therefore f is injective. To prove that f is surjective, let zeS". Then

f(g(z)) =z

by definition of the inverse mapping, and hence z = f(x), where x = g(z).
This proves that f is surjective.

The converse of the statement we just proved is also true, namely:

Let f:S— S’ be a map which is bijective. Then f has an inverse map-
ping.

Proof. Given ze€S§', since f is surjective, there exists xeS such that
f(x) = z. Since f is injective, this element x is uniquely determined by z,
and we can therefore define

g(z) = x.

By definition of g, we find that f(g(z)) = z, and g(f(x)) = x, so that g is
an inverse mapping for f.

Thus we can say that a map f:S — S’ has an inverse mapping if and
only if f is bijective.

I, §1. EXERCISES

1. In Example 3, give Df as a function of x when f is the function:

(@ f(x)=sinx  (b) f(x)=e" (c) f(x)=logx
2. Prove the statement about translations in Example 13.

3. In Example 5, give L(X) when X is the vector:
@ 1,2 -3 ®(L50 ©E1LD
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4. Let F:R — R? be the mapping such that F(t) = (e',t). What is F(1), F(0),
F(—1)?

5. Let G: R — R? be the mapping such that G(t) = (¢, 2t). Let F be as in Exer-
cise 4. What is (F + G)(1), (F + G)2), (F + G)0)?

6. Let F be as in Exercise 4. What is (2F)(0), (nF)(1)?

7. Let A=(1, 1, —1, 3). Let F:R* > R be the mapping such that for any vec-
tor X = (x,, x,, X3, x,) we have F(X) = X-A + 2. What is the value of F(X)
when (a) X = (1,1,0, —1) and (b) X = (2,3, —1, 1)?

In Exercises 8 through 12, refer to Example 6. In each case, to prove that the
image is equal to a certain set S, you must prove that the image is contained in
S, and also that every element of S is in the image.

8. Let F:R? —» R? be the mapping defined by F(x, y) = (2x, 3y). Describe the
image of the points lying on the circle x? + y? = 1.

9. Let F: R? —» R? be the mapping defined by F(x, y) = (xy, y). Describe the im-
age under F of the straight line x = 2.

10. Let F be the mapping defined by F(x, y) = (e* cos y, e*sin y). Describe the
image under F of the line x = 1. Describe more generally the image under F
of a line x = ¢, where ¢ is a constant.

11. Let F be the mapping defined by F(t,u) = (cost,sint,u). Describe geo-
metrically the image of the (t, u)-plane under F.

12. Let F be the mapping defined by F(x,y) = (x/3, x/4). What is the image
under F of the ellipse

<
)

x_2+ _1‘)
9 "16

(o)}

lll, §2. LINEAR MAPPINGS
Let V, V' be the vector spaces over the field K. A linear mapping
F: V>V
is a mapping which satisfies the following two properties.
LM 1. For any elements u, v in V we have
F(u + v) = F(u) + F(v).
LM 2. For all c in K and v in V we have

F(cv) = cF(v).
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If we wish to specify the field K, we also say that F is K-linear. Since
we usually deal with a fixed field K, we omit the prefix K, and say
simply that F is linear.

Example 1. Let V be a finite dimensional space over K, and let
{vq,...,0,} be a basis of V. We define a map

F:V-K"

by associating to each element ve V its coordinate vector X with respect
to the basis. Thus if

V= X0y + -+ X,0,,
with x;e K, we let

F(v) = (x4, -..,X,)

We assert that F is a linear map. If

W =)0y + - +ynvn’
with coordinate vector Y = (y,,...,y,), then

vt+w= (xl +y1)U1 + e+ (xn +yn)vn3
whence F(v + w) = X + Y= F(v) + F(w). If ceK, then
CU = ¢cxX 0y + -+ + CX, 0y,

and hence F(cv) = cX = cF(v). This proves that F is linear.

Example 2. Let V= R> be the vector space (over R) of vectors in 3-
space. Let V' = R? be the vector space of vectors in 2-space. We can
define a mapping

F:R?>->R?
by the projection, namely F(x, y, z) = (x, y). We leave it to you to check
that the conditions LM 1 and LM 2 are satisfied.

More generally, let r, n be positive integers, r <n. Then we have a

projection mapping
F:K"—> K"

defined by the rule

F(x,,...,x,) = (Xq,...,X,).

It is trivially verified that this map is linear.
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Example 3. Let 4 = (1,2, —1). Let V=R? and V' =R. We can de-
fine a mapping L = L,: R® - R by the association X > X - A4, ie.

LX)=X-4

for any vector X in 3-space. The fact that L is linear summarizes two
known properties of the scalar product, namely, for any vectors X, Y in
R? we have

X+Y)A=X-A+7Y-A,
(cX)-A=c(X-A).

More generally, let K be a field, and 4 a fixed vector in K". We have
a linear map (i.e. K-linear map)

L,:K"> K

such that L ,(X)= X-A for all Xe K"
We can even generalize this to matrices. Let A be an m x n matrix in
a field K. We obtain a linear map

L,:K"—> K™
such that
L (X)=AX

for every column vector X in K". Again the linearity follows from prop-
erties of multiplication of matrices. If A = (a;;) then AX looks like this:

AX =

This type of multiplication will be met frequently in the sequel.

Example 4. Let V be any vector space. The mapping which associates
to any element u of V this element itself is obviously a linear mapping,
which is called the identity mapping. We denote it by id or simply 1.
Thus id(u) = u.

Example 5. Let V, V' be any vector spaces over the field K. The
mapping which associates the element O in V' to any element u of V is
called the zero mapping and is obviously linear. It is also denoted by O.
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As an exercise (Exercise 2) prove:
Let L: V— W be a linear map. Then L(O) = O.

In particular, if F: V— W is a mapping and F(O) # O then F is not lin
ear.

Example 6. The space of linear maps. Let V, V' be two vector spaces
over the field K. We consider the set of all linear mappings from V into
V', and denote this set by L(V, V'), or simply & if the reference to V, V'
is clear. We shall define the addition of linear mappings and their mul-
tiplication by numbers in such a way as to make . into a vector space.

Let T:V—>V' and F: V-V’ be two linear mappings. We define
their sum T+ F to be the map whose value at an element u of V is
T(u) + F(u). Thus we may write

(T + F)(u) = T(u) + F(u).

The map T + F is then a linear map. Indeed, it is easy to verify that the
two conditions which define a linear map are satisfied. For any elements
u, v of V, we have
(T+F)u+v)=Tu+v)+ F(u+v)
= T) + T() + F(u) + F(v)
= T(u) + F(u) + T(v) + F(v)
=(T+ F)u) + (T + F)Qv).

Furthermore, if ce K, then

(T + F)(cu) = T(cu) + F(cu)
= cT(u) + cF(u)
= c[T(u) + F(u)]
= c[(T + F)(w)].

Hence T + F is a linear map.

If aeK, and T: V- V' is a linear map, we define a map aT from V
into V' by giving its value at an element u of V, namely (aT)(u) = aT(u).
Then it is easily verified that aT is a linear map. We leave this as an
exercise.

We have just defined operations of addition and scalar multiplication

in our set . Furthermore, if T: V> V' is a linear map, i.e. an element
of &, then we can define —T to be (—1)T, ie. the product of the
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number —1 by T. Finally, we have the zero-map, which to every ele-
ment of V associates the element O of V. Then % is a vector space. In
other words, the set of linear maps from V into V' is itself a vector
space. The verification that the rules VS1 through VS8 for a vector
space are satisfied is easy and left to the reader.

Example 7. Let V=V’ be the vector space of real valued functions of
a real variable which have derivatives of all order. Let D be the deriva-
tive. Then D: V— V is a linear map. This is merely a brief way of sum-
marizing known properties of the derivative, namely

D(f + g) = Df + Dg, and D(cf) = cDf

for any differentiable functions f, g and constant ¢. If fis in V, and I is
the identity map, then

(D+I)f=Df + f.
Thus when f is the function such that f(x) =e* then (D + I)f is the
function whose value at x is e* + e* = 2e™.
If f(x) = sin x, then ((D + I)f)(x) = cos x + sin x.
Let T:V — V'’ be a linear mapping. Let u, v, w be elements of V. Then
T(u+v+w)=Tw) + Tw) + T(w).
This can be seen stepwise, using the definition of linear mappings. Thus

Tu+v+w)y=Twu+v)+ T(w) = T(u) + T(v) + T(w).

Similarly, given a sum of more than three elements, an analogous prop-
erty is satisfied. For instance, let u,,...,u, be elements of V. Then

T, +---+u)=Twy) + -+ T(u,).
The sum on the right can be taken in any order. A formal proof can

easily be given by induction, and we omit it.
If a,,...,a, are numbers, then

T(au, + -+ a,u,) =a, T(u) + - + a,T(u,).
We show this for three elements.

T(a,u + a,v + azw) = T(au) + T(a,v) + T(asw)
=a,T(u) + a, T(v) + a3 T(w).
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The next theorem will show us how a linear map is determined when
we know its value on basis elements.

Theorem 2.1. Let V and W be vector spaces. Let {v,,...,v,} be a basis

of V, and let w,,...,w, be arbitrary elements of W. Then there exists a

unique linear mapping T:V — W such that

T(,)=wy,...,T(v,) =Ww,.
If x,,...,x, are numbers, then
T(xv; + -+ X,0,) =X, W, + -+ + X, W,.

Proof. We shall prove that a linear map T satisfying the required
conditions exists. Let v be an element of V, and let x,,...,x, be the
unique numbers such that v = x,v; + --- + x,v,. We let

TW) = xwy + -+ + xX,W,.

We then have defined a mapping T from V into W, and we contend that
T is linear. If v' is an element of V, and if v' = y,v, + --- + y,v,, then

v+vV =(x; +y vy + -+ (x, + YU,
By definition, we obtain
T(U + U’) = (xl + yl)wl + + (xn + yn)wn

==x1W1 +y1W1 +"'+on”+y"W”

= T(v) + T(®').
Let ¢ be a number. Then cv = c¢x,v; + --- + ¢x,v,, and hence
T(cv) = cxywy + -+ + cx,w, = cT(v).

We have therefore proved that T is linear, and hence that there exists a
linear map as asserted in the theorem.

Such a map is unique, because for any element x,v, + --- + x,v, of V,
any linear map F:V— W such that F(v)) =w; (i=1,...,n) must also
satisfy

F(x,v, + -+ + x,v,) = x;F(vy) + --- + x,F(v,)

= x1W1 + b + xnwn.

This concludes the proof.



[II1, §27] LINEAR MAPPINGS 57

Ill, §2. EXERCISES

1.

Determine which of the following mappings F are linear.

(a) F:R?® - R? defined by F(x, y, z) = (x, z)

(b) F:R* —» R* defined by F(X)= — X

(¢) F:R* > R3 defined by F(X)= X + (0, —1, 0)

(d) F:R? > R? defined by F(x, y) = (2x + y, )

(e) F:R? - R? defined by F(x, y) = (2x,y — x)

(f) F:R? - R? defined by F(x, y) = (y, x)

(g) F:R? R defined by F(x, y) = xy

(h) Let U be an open subset of R* and let V be the vector space of dif-
ferentiable functions on U. Let V' be the vector space of vector fields on
U. Then grad: V— V' is a mapping. Is it linear? (For this part (h) we
assume you know some calculus.)

Let T:V—> W be a linear map from one vector space into another. Show
that T(0) = O.

. Let T: V— W be a linear map. Let u, v be elements of V, and let Tu =w. If

Tv = O, show that T(u + v) is also equal to w.

. Let T: V—> W be a linear map. Let U be the subset of elements ueV such

that T(u) = 0. Let we W and suppose there is some element vye V such
that T(v,) = w. Show that the set of elements ve V satisfying T(v) =w is
precisely vy + U.

.Let T:V—>W be a linear map. Let v be an element of V. Show that

T(—v) = — T(v).

. Let V be a vector space, and f: VR, g: V> R two linear mappings. Let

F: V —R? be the mapping defined by F(v) = (f(v), g(v)). Show that F is lin-
ear. Generalize.

. Let V, W be two vector spaces and let F: V— W be a linear map. Let U be

the subset of V consisting of all elements v such that F(v) = 0. Prove that U
is a subspace of V.

. Which of the mappings in Exercises 4, 7, 8, 9, of §1 are linear?

. Let V be a vector space over R, and let v, we V. The line passing through v

and parallel to w is defined to be the set of all elements v + tw with teR.
The line segment between v and v + w is defined to be the set of all elements

v+ tw with 0t 1.

Let L: V- U be a linear map. Show that the image under L of a line seg-
ment in V is a line segment in U. Between what points?
Show that the image of a line under L is either a line or a point.

Let V be a vector space, and let v;, v, be two elements of V which are
linearly independent. The set of elements of ¥ which can be written in the
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form t v, + t,v, with numbers ¢, t, satisfying
0t =1 and 0<t,=1

is called the parallelogram spanned by v,, v,.

Let V and W be vector spaces, and let F: V— W be a linear map. Let v,, v,
be linearly independent elements of V, and assume that F(v,), F(v,) are
linearly independent. Show that the image under F of the parallelogram
spanned by v, and v, is the parallelogram spanned by F(v,), F(v,).

Let F be a linear map from R? into itself such that
FE)=(,1) and  F(E))=(-12).

Let S be the square whose corners are at (0, 0), (1,0), (1, 1), and (0, 1). Show
that the image of this square under F is a parallelogram.

Let A, B be two non-zero vectors in the plane such that there is no constant
¢ #0 such that B=cA. Let T be a linear mapping of the plane into itself
such that T(E,) = A and T(E,) = B. Describe the image under T of the rec-
tangle whose corners are (0, 1), (3, 0), (0,0), and (3, 1).

Let A, B be two non-zero vectors in the plane such that there is no constant
¢ # 0 such that B = cA. Describe geometrically the set of points t4 + uB for
values of t and u such that 0 <t <5and 0 Zu <2

Let T,: V- V be the translation by a vector u. For which vectors u is T, a
linear map? Proof?

Let V, W be two vector spaces, and F: V— W a linear map. Let w,,...,w, be
elements of W which are linearly independent, and let v,,...,v, be elements of
V such that F(v,) =w; for i =1,...,n. Show that v,,...,v, are linearly inde-
pendent.

Let V be a vector space and F: V— R a linear map. Let W be the subset of
V consisting of all elements v such that F(v) = 0. Assume that Ws# V, and
let v, be an element of ¥V which does not lie in W. Show that every element
of V can be written as a sum w + cv,, with some w in W and some number
C.

In Exercise 16, show that W is a subspace of V. Let {v,,...,v,} be a basis of
W. Show that {v,,v,,...,0,} is a basis of V.

Let L:R? - R? be a linear map, having the following effect on the indicated
vectors:

(@ L3, 1)=(,2)and L(—1,0)=(1, 1)

(b) L4, 1) =(1, 1) and L(1, 1) =(3, —2)

(¢) L(1, 1) =(2, 1) and L(—1, 1) = (6, 3).

In each case compute L (1, 0).

Let L be as in (a), (b), (c¢), of Exercise 18. Find L(0, 1).
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lll, §3. THE KERNEL AND IMAGE OF A LINEAR MAP
Let V, W be vector spaces over K, and let F: V— W be a linear map.

We define the kernel of F to be the set of elements veV such that
F(v) = 0.

We denote the kernel of F by Ker F.
Example 1. Let L: R®* - R be the map such that
L(x,y,z) =3x — 2y + z
Thus if A = (3, —2, 1), then we can write
LX)=X-A=A4-X.
Then the kernel of L is the set of solutions of the equation
3x —2y+2z=0.

Of course, this generalizes to n-space. If A is an arbitrary vector in R”,
we can define the linear map

L;:R">R

such that L ,(X)= A-X. Its kernel can be interpreted as the set of all X
which are perpendicular to A.

Example 2. Let P: R?* —» R? be the projection, such that

P(x, y, z) = (x, y).

Then P is a linear map whose kernel consists of all vectors in R® whose
first two coordinates are equal to 0, i.e. all vectors

0,0, 2)
with arbitrary component z.

We shall now prove that the kernel of a linear map F: V> W is a
subspace of V. Since F(O) = O, we see that O is in the kernel. Let v, w
be in the kernel. Then F(v + w)= F(v) + F(w)= 0 + O = O, so that
v+ w is in the kernel. If ¢ is a number, then F(cv) = cF(v) = O so that
cv is also in the kernel. Hence the kernel is a subspace.
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The kernel of a linear map is useful to determine when the map is in-
jective. Namely, let F: V— W be a linear map. We contend that follow-
ing two conditions are equivalent:

1. The kernel of F is equal to {O}.

2. If v, w are elements of V such that F(v) = F(w), then v = w. In other
words, F is injective.

To prove our contention, assume first that Ker F = {0}, and suppose
that v, w are such that F(v) = F(w). Then

F(v —w)=F(v) — F(w) = 0.

By assumption, v — w = O, and hence v = w.
Conversely, assume that F is injective. If v is such that

F(v) = F(O) = 0,
we conclude that v = O.
The kernel of F is also useful to describe the set of all elements of V

which have a given image in W under F. We refer the reader to Exercise
4 for this.

Theorem 3.1. Let F:V — W be a linear map whose kernel is {O}. If
Uy, ...V, are linearly independent elements of V, then F(v,),...,F(v,) are

linearly independent elements of W.

Proof. Let x,,...,x, be numbers such that
x,F(0,) + -+ + %,F(v,) = 0.
By linearity, we get
F(xyvy + -+ + x,0,) = 0.

Hence x,v, +--- + x,v, = 0. Since v,,...,v, are linearly independent, it
follows that x; =0 for i = 1,...,n. This proves our theorem.

Let F: V— W be a linear map. The image of F is the set of elements
w in W such that there exists an element of v of V such that F(v) = w.

The image of F is a subspace of W.
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To prove this, observe first that F(O) = O, and hence O is in the im-
age. Next, suppose that w,, w, are in the image. Then there exist ele-
ments v,, v, of V such that F(v,) = w, and F(v,) = w,. Hence

F(vy +v;) = F(vy) + F(vy) = wy + wy,
thereby proving that w, + w, is in the image. If ¢ is a number, then
F(cv,) = cF(v)) = cw;.

Hence cw, is in the image. This proves that the image is a subspace of
w.

We denote the image of F by Im F.

The next theorem relates the dimensions of the kernel and image of a
linear map with the dimension of the space on which the map is defined.

Theorem 3.2. Let V be a vector space. Let L:V — W be a linear map
of V into another space W. Let n be the dimension of V, q the dimen-
sion of the kernel of L, and s the dimension of the image of L. Then
n=gq+s. In other words,

dim V = dim Ker L + dim Im L.

Proof. If the image of L consists of O only, then our assertion is triv-
ial. We may therefore assume that s > 0. Let {w,...,w,} be a basis of
the image of L. Let v,...,v, be elements of V such that L(v,) = w; for
i =1,...,s. If the kernel of L is not {0}, let {u;,...,u,} be a basis of the
kernel. If the kernel is {0}, it is understood that all reference to
{ug,....u,} is to be omitted in what follows. We contend that
{v1,.. 05 Uy, ..., u,} is a basis of V. This will suffice to prove our asser-
tion. Let v be any element of V. Then there exist numbers x;,...,x; such
that

L(v) = xwy + --- 4+ x Wy,
because {w,,...,w,} is a basis of the image of L. By linearity,
L(v) = L(xvy + -+ + x,v),

and again by linearity, subtracting the right-hand side from the left-hand
side, it follows that

L(v — x,v; — -+ — x,0,) = O.
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Hence v — x,v; —--- — x,v, lies in the kernel of L, and there exist
numbers y,,...,y, such that

UV— X0y — o — XUy = YUy + -+ + Y, u,.
Hence
U=Xx,0y + -+ X0, + yyuy + 0+ y,u,

is a linear combination of v,,...,v,u,,...,u
s + q elements of V generate V.

We now show that they are linearly independent, and hence that they
constitute a basis. Suppose that there exists a linear relation:

. This proves that these

X0y -0+ X0+ Yyuy + oo+ Yu, = 0.

Applying L to this relation, and using the fact that L(u)= O for
j=1,...,q, we obtain

x,L(vy) + -+ + x,L(vy) = O.

But L(v,),...,L(v,) are none other than w,,...,w, which have been as-
sumed linearly independent. Hence x; =0 for i = 1,...,s. Hence

yiug + -+ yu, = 0.
But u,,...,u, constitute a basis of the kernel of L, and in particular, are
linearly independent. Hence all y; = 0 for j=1,...,q. This concludes the

proof of our assertion.

Example 1 (Cont.). The linear map L:R>— R of Example 1 is given
by the formula

L(x,y,z) =3x -2y + z
Its kernel consists of all solutions of the equation
3x -2y +z=0.

Its image is a subspace of R, is not {0}, and hence consists of all of R.
Thus its image has dimension 1. Hence its kernel has dimension 2.

Example 2 (Cont.). The projection P:R3®—R? of Example2 is ob-
viously surjective, and its kernel has dimension 1.

In Chapter V, §3 we shall investigate in general the dimension of the
space of solutions of a system of homogeneous linear equations.
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Theorem 3.3. Let L: V— W be a linear map. Assume that

dim V =dim W.

If Ker L = {0}, or if Im L = W, then L is bijective.

Proof. Suppose Ker L = {O}. By the formula of Theorem 3.2 we con-

clude that dim Im L = dim W. By Corollary 3.5 of Chapter1 it follows
that L is surjective. But L is also injective since Ker L = {O}. Hence L
is bijective as was to be shown. The proof that Im L = W implies L bi-
jective is similar and is left to the reader.

1.

§3. EXERCISES

Let 4, B be two vectors in R? forming a basis of R%2. Let F:R*—>R" be a
linear map. Show that either F(A), F(B) are linearly independent, or the im-
age of F has dimension 1, or the image of F is {O}.

Let A be a non-zero vector in R% Let F: R?> » W be a linear map such that
F(A) = 0. Show that the image of F is either a straight line or {O}.

Determine the dimension of the subspace of R* consisting of all X e R* such
that

xl +2x2 =0 al’ld x3 — 15x4=0.

Let L: V—> W be a linear map. Let w be an element of W. Let vy be an ele-
ment of V such that L(v,) =w. Show that any solution of the equation
L(X) =w is of type v, + u, where u is an element of the kernel of L.

Let V be the vector space of functions which have derivatives of all orders,
and let D: V- V be the derivative. What is the kernel of D?

Let D? be the second derivative (i.e. the iteration of D taken twice). What is
the kernel of D?? In general, what is the kernel of D" (n-th derivative)?

. Let V be again the vector space of functions which have derivatives of all

orders. Let W be the subspace of V consisting of those functions f such that
f"+4=0 and f(n)=0.
Determine the dimension of W.

Let V be the vector space of all infinitely differentiable functions. We write
the functions as functions of a variable ¢, and let D = d/dt. Let a,,...,a, be
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11.

12.

13.
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numbers. Let g be an element of V. Describe how the problem of finding a
solution of the differential equation

dmf dm—lf
amﬁ+am—1w+°"+aof=g

can be interpreted as fitting the abstract situation described in Exercise 4.

Again let V be the space of all infinitely differentiable functions, and let
D:V — V be the derivative.

(a) Let L =D — I where I is the identity mapping. What is the kernel of L?
(b) Same question if L = D — al, where a is a number.

(a) What is the dimensison of the subspace of K" consisting of those vectors
A = (ay,...,a,) such that a, +--- + a, = 0?

(b) What is the dimension of the subspace of the space of n x n matrices (a;;)
such that

all +"'+a”n= Z a”::O?

[For part (b), look at the next exercise.]

Let A = (a;)) be an n x n matrix. Define the trace of A to be the sum of the
diagonal elements, that is

tr(A) = i a;.
i=1

(a) Show that the trace is a linear map of the space of n x n matrices into
K.

(b) If A, B are n x n matrices, show that tr(4B) = tr(BA).

(c) If B is invertible, show that tr(B~1AB) = tr(A).

(d) If A, B are n x n matrices, show that the association

(4, B) — tr(AB) = {A, B)
satisfies the three conditions of a scalar product. (For the general defini-
tion, cf. Chapter V.)
(e) Prove that there are no matrices 4, B such that

AB—BA=1,.

Let S be the set of symmetric n x n matrices. Show that S is a vector space.
What is the dimension of S? Exhibit a basis for S, when n =2 and n = 3.

Let A be a real symmetric n x n matrix. Show that
tr(4A) = 0,

and if A # O, then tr(44) > 0.
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14.

15.

16.

17.

An n x n matrix A4 is called skew-symmetric if ‘4 = — 4. Show that any
n x n matrix A can be written as a sum

A=B+C,

where B is symmetric and C is skew-symmetric. [Hint: Let B = (A + '4)/2.].
Show that if A = B, + C,, where B, is symmetric and C, is skew-symmetric,
then B=B, and C=C,.

Let M be the space of all n x n matrices. Let
P:M->M
be the map such that
A+'A
P(A) = ——

(a) Show that P is linear.

(b) Show that the kernel of P consists of the space of skew-symmetric ma-
trices.

(c) What is the dimension of the kernel of P?

Let M be the space of all n x n matrices. Let
F-M-M
be the map such that
ot
F(4) =
() ="

(a) Show that F is linear.
(b) Describe the kernel of F, and determine its dimension.

(a) Let U, W be the vector spaces. We let U x W be the set of all pairs
(u,w) with ueU and weW. If (u,,w,), (u,,w,) are such pairs, define
their sum

Uy, wi) + (uy, wy) = (uy + uy, wy + wy).

If ¢ is a number, define c(u, w) = (cu, cw). Show that U x W is a vector
space with these definitions. What is the zero element?

(b) If U has dimension n and W has dimension m, what is the dimensison of
U x W? Exhibit a basis of U x W in terms of a basis for U and a basis
for W.

(c) If U is a subspace of a vector space V, show that the subset of V x V
consisting of all elements (u, u) with ue U is a subspace.
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18. (To be done after you have done Exercise 17.) Let U, W be subspaces of a
vector space V. Show that

dim U + dim W =dim(U + W) + dim(U n W).

[Hint: Show that the map

LUxW->V
given by
Luyw)=u—w

is a linear map. What is its image? What is its kernel?]

lll, §4. COMPOSITION AND INVERSE OF LINEAR
MAPPINGS

In §1 we have mentioned the fact that we can compose arbitrary maps.
We can say something additional in the case of linear maps.

Theorem 4.1. Let U, V, W be vector spaces over a field K. Let
F:U-V and G VoW
be linear maps. Then the composite map G- F is also a linear map.

Proof. This is very easy to prove. Let u, v be elements of U. Since F
is linear, we have F(u + v) = F(u) + F(v). Hence

(GoF)u + v) = G(F(u + v)) = G(F(u) + F(v)).
Since G is linear, we obtain

G(F(u) + F(v)) = G(F(w)) + G(F(v))
Hence
(GoF)u+ v)=(GoF)u) + (Go F)v).

Next, let ¢ be a number. Then

(G o F)(cu) = G(F(cw))
= G(cF(u)) (because F is linear)
= c¢G(F(u)) (because G is linear).

This proves that Go F is a linear mapping.
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The next theorem states that some of the rules of arithmetic concern-
ing the product and sum of numbers also apply to the composition and
sum of linear mappings.

Theorem 4.2. Let U, V, W be vector spaces over a field K. Let
F:U-V

be a linear mapping, and let G, H be two linear mappings of V into W.
Then

(G+ H)o-F=GoF + HoF.
If ¢ is a number, then
(cG)oF =c(GoF).
If T: U - V is a linear mapping from U into V, then
Go(F+T)=GoF+ G-T.

The proofs are all simple. We shall just prove the first assertion and
leave the others as exercises.
Let u be an element of U. We have:

((G + H)oF)w) = (G + H)(Fw) = G(F(u)) + H(F(u))
= (GoF)u) + (H o F)(u).

By definition, it follows that (G + H)oF = GoF + Ho F.

It may happen that U =V =W. Let F: U > U and G: U —» U be two
linear mappings. Then we may form FoG and GoF. It is not always
true that these two composite mappings are equal. As an example, let
U = R3. Let F be the linear mapping given by

F(x,y,2z) = (x,50)
and let G be the linear mapping given by

G(x,y,2) =(x,2z0).
Then
(GoF)(x,y,2)=(x,0,0),
but
(F-G)(x,y,z)=(x,z0).
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Let F: V— V be a linear map of a vector space into itself. One some-
times calls F an operator. Then we can form the composite F o F, which
is again a linear map of V into itself. Similarly, we can form the compo-
site

FoFo---oF
of F with itself n times for any integer n = 1. We shall denote this com-

posite by F". If n=0, we define F° = I (identity map). We have the
rules

Fr+s — FroFs

for integers r, s = 0.

Theorem 4.3. Let F: U - V be a linear map, and assume that this map
has an inverse mapping G: V— U. Then G is a linear map.

Proof. Let vy, v,e€V. We must first show that
G(v, + vy) = G(vy) + G(vy).
Let u, = G(v,) and u, = G(v,). By definition, t‘his means that
F(u,) =v, and F(u,) = v,.
Since F is linear, we find that
F(uy + uy) = F(u,) + F(u,) = v, + v,.

By definition of the inverse map, this means that G(v, + v,) = u; + u,,
thus proving what we wanted. We leave the proof that G(cv) = cG(v) as
an exercise (Exercise 3).

Corollary 4.4. Let F: U —» V be a linear map whose kernel is {0}, and
which is surjective. Then F has an inverse linear map.

Proof. We had seen in §3 that if the kernel of F is {0}, then F is
injective. Hence we conclude that F is both injective and surjective, so

that an inverse mapping exists, and is linear by Theorem 4.3.

Example 1. Let F: R? » R? be the linear map such that

F(x, y) = (3x — y,4x + 2y).
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We wish to show that F has an inverse. First note that the kernel of F
is {0}, because if

3x —y=0,
4x + 2y =0,

then we can solve for x, y in the usual way: Multiply the first equation
by 2 and add it to the second. We find 10x = 0, whence x = 0, and then
y =0 because y = 3x. Hence F is injective, because its kernel is {O}. By
Theorem 3.2 it follows that the image of F has dimension 2. But the im-
age of F is a subspace of R?, which has also dimension 2, and hence this
image is equal to all of R?, so that F is surjective. Hence F has an in-
verse, and this inverse is a linear map by Theorem 4.3.

A linear map F: U — V which has an inverse G: V—> U (we also say
invertible) is called an isomorphism.

Example 2. Let V be a vector space of dimension n. Let

{v1 ... 30,}

be a basis for V. Let
L:R">V
be the map such that
L(xy,....x,) = X0y + - + x,0,.
Then L is an isomorphism.
Proof. The kernel of L is {0}, because if
X0, + -+ x,0, =0,
then all x; = 0 (since v,,...,v, are linearly independent). The image of L
is all of V, because v,,...,v, generate V. By Corollary 4.4, it follows that
L is an isomorphism.
Remark on notation. Let
F: Vo>V and G V-V
be linear maps of a vector space into itself. We often, and even usually,

write
FG instead of FoG.
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In other words, we omit the little circle - between F and G. The distri-
butive law then reads as with numbers

F(G + H) = FG + FH.

The only thing to watch out for is that F, G may not commute, that is
usually

FG # GF.

If F and G commute, then you can work with the arithmetic of linear
maps just as with the arithmetic of numbers.

Powers I, F, F2, F3,... do commute with each other.

Ill, §4. EXERCISES

1. Let L: R?2 > R? be a linear map such that L # O but L? = LoL = 0. Show
that there exists a basis {4, B} of R? such that

L(A)=B and L(B) = 0.
2. Let dim V> dim W. Let L: V— W be a linear map. Show that the kernel of
L is not {O}.
3. Finish the proof of Theorem 4.3.

4. Let dim V=dim W. Let L:V— W be a linear map whose kernel is {O}.
Show that L has an inverse linear map.

5. Let F, G be invertible linear maps of a vector space V onto itself. Show that

(FoG) '=G-1oF1,
6. Let L: R?2 > R? be the linear map defined by

L(X,y) = (x + ¥, X _y)

Show that L is invertible.

7. Let L: R? > R? be the linear map defined by
L(x,y) = 2x + y, 3x — 5y).

Show that L is invertible.

8. Let L: R® > R3 be the linear maps as indicated. Show that L is invertible in
each case.
@) Lx,y,2)=(x—y, x+z,x+y+ 22)
®) L(x, y,z2)=2x—y+2z,x+y, 3x+y+2)
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9. (a) Let L: V— V be a linear mapping such that L2 = O. Show that I — L is

10.

11.

12.

13.

14.

15.

16.

17.

invertible. (I is the identity mapping on V)
(b) Let L: V— V be a linear map such that L2 4+ 2L + I = O. Show that L is
invertible.

(c) Let L: V— V be a linear map such that L3 = 0. Show that I — L is in-
vertible.

Let V be a vector space. Let P: V— V be a linear map such that P? = P.
Show that

V=KerP+ImP and KerPnImP = {0},
in other words, V is the direct sum of Ker P and Im P. [Hint: To show V'is
the sum, write an element of V in the form v = v — Pv + Pv.]

Let V be a vector space, and let P, Q be linear maps of V into itself. Assume
that they satisfy the following conditions:

(a) P + Q =1 (identity mapping).

(b) PQ = QP = 0.

(c) P2=P and Q? = Q.

Show that V is equal to the direct sum of Im P and Im Q.

Notations being as in Exercise 11, show that the image of P is equal to the
kernel of Q. [Prove the two statements:

Image of P is contained in kernel of Q,
Kernel of Q is contained in image of P.]

Let T: V— V be a linear map such that T? = I. Let

=3I+ T) and Q=3U-T).
Prove:
P+ Q=1 P2 =p; 0% =0; PQ =QP = 0.

Let F:V—> W and G: W— U be isomorphisms of vector spaces over K.
Show that Go F is invertible, and that

(GoF) ' =F oG 1.

Let F:V—> W and G: W— U be isomorphisms of vector spaces over K.
Show that Go F: V— U is an isomorphism.

Let V, W be two vector spaces over K, of finite dimension n. Show that V
and W are isomorphic.

Let A be a linear map of a vector space into itself, and assume that
A2 —A+1=0

(where I is the identity map). Show that A~! exists and is equal to I — A.
Generalize (cf. Exercise 37 of Chapter II, §3).
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Let A, B be linear maps of a vector space into itself. Assume that AB = BA.
Show that

(A + B> = A?> + 2AB + B>
and

(A + BY(A — B) = A* — B2

Let A, B be linear maps of a vector space into itself. If the kernel of A is
{0} and the kernel of B is {0}, show that the kernel of AB is also {O}.

More generally, let A: V— W and B: W— U be linear maps. Assume that the
kernel of 4 is {O} and the kernel of B is {O}. Show that the kernel of BA is

(o).

Let A:V—> W and B: W— U be linear maps. Assume that A is surjective and
that B is surjective. Show that BA is surjective

§5. GEOMETRIC APPLICATIONS

Let V be a vector space and let v, u be elements of V. We define the line
segment between v and v + u to be the set of all points

v+ tu, 0t1.

This line segment is illustrated in the following figure.

v+u
v+iu
v
Figure 2
For instance, if t = 3, then v + u is the point midway between v and

v + u. Similarly, if t = %, then v + 1u is the point one third of the way
between v and v + u (Fig. 3).

vt+u v4u

v+§u

(a) (b)
Figure 3
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If v, w are elements of V, let u =w — v. Then the line segment be-
tween v and w is the set of all points v + tu, or

v+ t(w— ), 0t

v+t(w—v)

Figure 4
Observe that we can rewrite the expression for these points in the form
€)) (1 —0v+ tw, 0<t<1,
and letting s=1—1¢, t =1 — s, we can also write it as
sv + (1 — s)w, 0s<1.
Finally, we can write the points of our line segment in the form
)] L0+ tw

with t,, t, =20 and ¢, + ¢, = 1. Indeed, letting t = ¢,, we see that every
point which can be written in the form (2) satisfies (1). Conversely, we
let t;, =1—1t and ¢, =t and see that every point of the form (1) can be
written in the form (2).

Let L: V> V' be a linear map. Let S be the line segment in V be-
tween two points v, w. Then the image L(S) of this line segment is the
line segment in V' between the points L(v) and L(w). This is obvious
from (2) because

L(t,v + t,w) = t,L(v) + t, L(w).
We shall now generalize this discussion to higher dimensional figures.
Let v, w be linearly independent elements of the vector space V. We
define the parallelogram spanned by », w to be the set of all points

tlv+t2W, Oétié 1 fOI‘ i= 1, 2.

This definition is clearly justified since ¢,v is a point of the segment be-
tween O and v (Fig. 5), and ¢,w is a point of the segment between O and
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w. For all values of t,, t, ranging independently between O and 1, we see
geometrically that t,v + t,w describes all points of the parallelogram.

v+w

Liv+tw

v

Figure 5

At the end of §1 we defined translations. We obtain the most general
parallelogram (Fig. 6) by taking the translation of the parallelogram just
described. Thus if u is an element of V, the translation by u of the paral-
lelogram spanned by v and w consists of all points

u+to+t,w, 0,51 for i=1,2.

i

u+v
~tw

"

Figure 6

As with line segments, we see that if L: V- V’ is a linear map, then
the image under L of a parallelogram is a parallelogram (if it is not de-
generate), because it is the set of points

L(u+tiv+t,w)=Lu)+ t;L(v)+ t,L(w)
with
0 =1 for i=1,2
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We shall now describe triangles. We begin with triangles located at
the origin. Let v, w again be linearly independent. We define the triangle
spanned by O, v, w to be the set of all points

3) LY+ tw, 0=y and t, +t, <1

We must convince ourselves that this is a reasonable definition. We do
this by showing that the triangle defined above coincides with the set of
points on all line segments between v and all the points of the segment
between O and w. From Fig. 7, this second description of a triangle
does coincide with our geometric intuition.

Figure 7

We denote the line segment between O and w by Ow. A point on Ow
can then be written tw with 0 <t < 1. The set of points between v and
tw is the set of points

4) sv + (1 — s)tw, 0<s=s 1.
Let t; =s and t, = (1 — s)t. Then
ti+t, =5+ —s)t<s+(1—s)= 1.

Hence all points satisfying (4) also satisfy (3). Conversely, suppose given
a point t,v + t,w satisfying (3), so that

t, +t, < 1.

Then t, <1 —1t,. If t; =1 then t, =0 and we are done. If ¢t; < 1, then
we let

s=t, t=t)1—1t).
Then
I,

(1—1)

tio+t,w=tv+ (1 —1t)) w=sv+ (1 — s)tw,
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which shows that every point satisfying (3) also satisfies (4). This justifies
our definition of a triangle.

As with parallelograms, an arbitrary triangle is obtained by translating
a triangle located at the origin. In fact, we have the following descrip-
tion of a triangle.

Let vy, v,, v3 be elements of V such that v, — v; and v, — v; are lin-
early independent. Let v =v, —v; and w=v, —v;. Let S be the set
of points
(5) tlvl + tzvz + t3U3, O é ti fOI' i = 1, 2, 3,

b+t +t3=1.

Then S is the translation by v of the triangle spanned by O, v, w. (Cf.
Fig. 8.)

Figure 8

Proof. Let P =t,v, + t,v, + t3v; be a point satisfying (5). Then

P =t,(v; —v3) +t,(v; — v3) + 1103 + 1,05 + 303
== tlv + t2W + U3,
and t, +t, < 1. Hence our point P is a translation by v; of a point sat-
isfying (3). Conversely, given a point satisfying (3), which we translate by

v3, we let t3=1—1t,—t,, and we can then reverse the steps we have
just taken to see that

tllJ + tzw + U3 - tll)l + tzvz + t303.
This proves what we wanted.
Actually, it is (5) which is the most useful description of a triangle, be-

cause the vertices v,, v,, v3 Ooccupy a symmetric position in this defini-
tion.
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One of the advantages of giving the definition of a triangle as we did
is that it is then easy to see what happens to a triangle under a linear
map. Let L: V— W be a linear map, and let v, w be elements of V which
are linearly independent. Assume that L(v) and L(w) are also linearly in-
dependent. Let S be the triangle spanned by O, v, w. Then the image of
S under L, namely L(S), is the triangle spanned by O, L(v), L(w). In-
deed, it is the set of all points

L(t,v + t,w) = t,L(v) + t,L(w)
with
0=y and t,+t, <1

Similarly, let S be the triangle spanned by v,, v,, v;. Then the image
of S under L is the triangle spanned by L(v,), L(v,), L(vs5) (if these do
not lie on a straight line) because it consists of the set of points

L(t,vy + a0, + t303) = £, L(v) + t;L(v;) + t3L(v3)
with 0 <t and ¢, + ¢, + t; = 1.
The conditions of (5) are those which generalize to the fruitful con-
cept of convex set which we now discuss.
Let S be a subset of a vector space V. We shall say that S is convex if
given points P, Q in S the line segment between P and Q is contained in
S. In Fig. 9, the set on the left is convex. The set on the right is not

convex since the line segment between P and Q is not entirely contained
in S.

[

Convex set Not convex

Figure 9

Theorem 5.1. Let P,,...,P, be elements of a vector space V. Let S be
the set of all linear combinations

t1P1+'“+tnPn

withO<t,and t, +---+t,=1. Then S is convex.
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Proof. Let
P=t1P1+"'+tnPn
and

Q=SIP1+'”+snPn
with 0 <¢, 0 <s;, and

t1+"'+tn=1,
S;+--+s,=1

Let 0 <t < 1. Then:
(1—-09P +1tQ

=1-o4,P +---+0 —0),P, + ts,P, +--- + ts,P,
=[( -0ty +ts, )P, +---+ [(1 — D), + t5,]P,.
We have 0 < (1 — 0)t; + ts; for all i, and
A—-ovt, +tsy +---+ (1 =0, +ts,
= —-t)t,+--+¢t)+ts, +-+s,)
=(1—-t+t
=1.
This proves our theorem.

From Theorem 5.1, we see that a triangle, as we have defined it ana-
lytically, is convex. The convex set of Theorem 5.1 is therefore a natural
generalization of a triangle (Fig. 10).

P3

Py
Ps

P, Ps

Figure 10



[I11, §5] GEOMETRIC APPLICATIONS 79

We shall call the convex set of Theorem 5.1 the convex set spanned by
P,,...,P,. Although we shall not need the next result, it shows that this
convex set is the smallest convex set containing all the points P,,...,P,.
Theorem 5.2. Let P,,...,P, be points of a vector space V. Any convex
set S’ which contains P,,...,P, also contains all linear combinations

tlpl + e + t P

with Ot foralliand t, +---+1t,=1

Proof. We prove this by induction. If n =1, then ¢, = 1, and our as-
sertion is obvious. Assume the theorem proved for some integer n — 1 = 1.
We shall prove it for n. Let t,,...,t, be numbers satisfying the condi-
tions of the theorem. If ¢, = 1, then our assertion is trivial because

Suppose that ¢, # 1. Then the linear combination ¢,P, +--- +¢t,P, is
equal to

t t,_
(l_tn)<1:t P1+"'+ ﬁpn—l)-}-tnpn'

Let

Then s; =20 and s, +---+s,_; =1 so that by induction, we conclude
that the point

Q=sP +--+5,.P,
lies in S’. But then
q-t)o+¢,P,=t,P,+---+1t,P,
lies in S’ be definition of a convex set, as was to be shown.
Example. Let V be a vector space, and let L: V— R be a linear map.
We contend that the set S of all elements v in V such that L(v) <O is
convex.

Proof. Let L(v) <0 and L(w) <0. Let 0 <t < 1. Then

L(tv + (1 — t)w) = tL(v) + (1 — )L(w).
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Then tL(v) <0 and (1 — t)L(w) <0 so tL(v) + (1 — t)L(w) <0, whence
tv+(1—twliesin S. If t =0 or t =1, then tv + (1 — t)w is equal to v
or w and thus also lies in §. This proves our assertion.

For a generalization of this example, see Exercise 6.
For deeper theorems about convex sets, see the last chapter.

§5. EXERCISES

. Show that the image under a linear map of a convex set is convex.

Let S, and S, be convex sets in V. Show that the intersection S, N S, is con-
vex.

Let L: R"— R be a linear map. Let S be the set of all points A in R” such
that L(A) = 0. Show that S is convex.

Let L: R"— R be a linear map and ¢ a number. Show that the set S consist-
ing of all points A in R” such that L(A) > ¢ is convex.

Let A be a non-zero vector in R" and ¢ a number. Show that the set of
points X such that X-A = c is convex.

Let L: V— W be a linear map. Let S’ be a convex set in W. Let S be the set
of all elements P in V such that L(P) is in §’. Show that S is convex.

Remark. If you fumbled around with notation in Exercises 3, 4, 5 then show

why these exercises are special cases of Exercise 6, which gives the general princi-
ple behind them. The set S in Exercise 6 is called the inverse image of S’ under

L.

7.
8.

10.

Show that a parallelogram is convex.

Let S be a convex set in V and let u be an element of V. Let T,: V— V be
the translation by u. Show that the image T,(S) is convex.

Let S be a convex set in the vector space V and let ¢ be a number. Let ¢S
denote the set of all elements cv with v in S. Show that ¢S is convex.

Let u, w be linearly independent elements of a vector space V. Let F: V> W
be a linear map. Assume that F(v), F(w) are linearly dependent. Show that
the image under F of the parallelogram spanned by v and w is either a point
or a line segment.



CHAPTER IV

Linear Maps and Matrices

IV, §1. THE LINEAR MAP ASSOCIATED WITH A MATRIX

Let

be an m x n matrix. We can then associate with 4 a map

L,:K"—> K"
by letting
L,(X)=AX

for every column vector X in K". Thus L, is defined by the association
X — AX, the product being the product of matrices. That L, is linear is
simply a special case of Theorem 3.1, Chapter II, namely the theorem
concerning properties of multiplication of matrices. Indeed, we have

AX +Y)=AX + AY and  A(cX) = cAX

for all vectors X, Y in K" and all numbers c¢. We call L, the linear map
associated with the matrix A.

Example. If
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then

2 1\/3 6+7 13
X) = = = .
LalX) (—1 5)(7) (—3 + 35) (32)
Theorem 1.1. If A, B are m x n matrices and if L, = Lg, then A = B.

In other words, if matrices A, B give rise to the same linear map, then
they are equal.

Proof. By definition, we have A;- X = B;- X for all i, if A4; is the i-th
row of A and B; is the i-th row of B. Hence (A, — B,)- X =0 for all i
and all X. Hence 4; — B; = 0, and A; = B; for all i. Hence A = B.

We can give a new interpretation for a system of homogeneous linear
equations in terms of the linear map associated with a matrix. Indeed,
such a system can be written

AX =0,

and hence we see that the set of solutions is the kernel of the linear map
L,.

IV, §1. EXERCISES

1. In each case, find the vector L ,(X).

a2 N (3 oAt O (5
wa(i opr=(0) ®aslo ofr=(3)
ot N [ ooac(® N[
On=lo afx=() @ )=(5)

IV, §2. THE MATRIX ASSOCIATED WITH A LINEAR MAP

We first consider a special case.

Let
L:K"—> K

be a linear map. There exists a unique vector A in K" such that
L =1L, ie. such that for all X we have

L(X)=A-X.
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Let E,,...,E, be the unit vectors in K". If X =x,E, +--- + x,E, is any
vector, then

L(X) = L(xlEl + e + an")
= le(El) +---+ an(En)'

If we now let

a; = L(E)),
we see that

L(X)=xya, + -+ x,0a,=X"A.

This proves what we wanted. It also gives us an explicit determination
of the vector A such that L = L,, namely the components of A are pre-
cisely the values L(E,),...,L(E,), where E; (i = 1,...,n) are the unit vec-
tors of K"

We shall now generalize this to the case of an arbitrary linear map
into K™, not just into K.

Theorem 2.1. Let L: K" — K™ be a linear map. Then there exists a
unique matrix A such that L = L.

Proof. As usual, let E' ... E" be the unit column vectors in K", and let
el,...,e™ be the unit column vectors in K™ We can write any vector X

in K" as a linear combination

X1
X=xE'+---+x,E"={ : }
X

n

where x; is the j-th component of X. We view E',...,E" as column vec-
tors. By linearity, we find that

L(X) = x;L(E") + -+ + x, L(E")

m

and we can write each L(E’) in terms of e!,... e
exist numbers a;; such that

. In other words, there
L(EYY=a,e' +--- +a,e™

L(EM =a e’ + -+ a,e™
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or in terms of the column vectors,

s QA1n
(*) LEEY=| : |} ..., L(EN=

Hence

L(X) = x,(a,,e* + - +a,,e™ + -+ x(a,,e! +---+ a,,e™

= (a1 X, + -+ ax)et + o+ (@ Xy + o0+ @eX,)e™
Consequently, if we let 4 = (g;;), then we see that
L(X) = AX.
Written out in full, this reads

X1
Ayp -0 Gy ) Ay Xy + o+ ag,X,

mi 7 Qmp A1 Xy + -+ AunXn

Xn

Thus L = L, is the linear map associated with the matrix 4. We also
call A the matrix associated with the linear map L. We know that this
matrix is uniquely determined by Theorem 1.1.

Example 1. Let F:R®—> R? be the projection, in other words the
mapping such that F(x,, x,, x3) = (x;, x,). Then the matrix associated

with F 1is
1 00
010

Example 2. Let I: R" —» R" be the identity. Then the matrix associated
with I is the matrix

1 0 0
010 0
0 0O 1

having components equal to 1 on the diagonal, and O otherwise.
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Example 3. According to Theorem 2.1 of Chapter III, there exists a
unique linear map L: R* — R? such that

2 3 - 1
L(E") = (1> L(E*) = (_ 1), L(E® = ( j) L(E% = <7>

According to the relations (x), we see that the matrix associated with L

i1s the matrix
2 3 -5 1
1 —1 4 7

Example 4 (Rotations). We can define a rotation in terms of matrices.
Indeed, we call a linear map L: R? - R? a rotation if its associated ma-
trix can be written in the form

R(0) = <cos 0 —sin 9>'

sin 0 cos 0

The geometric justification for this definition comes from Fig. 1.

EZ

L(E%

L(EY)

El

Figure 1

We see that
L(E") = (cos 0)E! + (sin O)E?,
L(E?) = (—sin 0)E! + (cos 6)E2.

Thus our definition corresponds precisely to the picture. When the ma-
trix of the rotation is as above, we say that the rotation is by an angle 6.
For example, the matrix associated with a rotation by an angle 7/2 is

)= o)
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We observe finally that the operations on matrices correspond to the
operations on the associated linear map. For instance, if A, B are m x n
matrices, then

Ly+sg=L,+ Lg

and if ¢ is a number, then

This is obvious, because
(A+B)X =AX +BX and  (cA)X = c(4X).
Similarly for compositions of mappings. Indeed, let
F:K"—> K™ and G:K"->K°*

be linear maps, and let 4, B be the matrices associated with F and G
respectively. Then for any vector X in K" we have

(G o FXX) = G(F(X)) = B(AX) = (BA)X.

Hence the product BA is the matrix associated with the composite linear
map GoF.

Theorem 2.2. Let A be an n x n matrix, and let A',...,A" be its col-
umns. Then A is invertible if and only if A',...,A" are linearly indepen-
dent.

Proof. Suppose A',...,A" are linearly independent. Then {4%,...,4"}
is a basis of K", so the unit vectors E!,... E" can be expressed as linear
combinations of A!,...,4" This means that there is a matrix B such
that

BA' = FE/ for j=1,....n,

say by Theorem 2.1 of Chapter III. But this is equivalent to saying that
BA =1. Thus A is invertible. Conversely, suppose A4 is invertible. The
linear map L, is such that

L(X)=AX =x, A' +--- 4+ x, A"
Since A is invertible, we must have Ker L, = O, because if AX = O then

A 'AX = X = 0. Hence A',...,A" are linearly independent. This proves
the theorem.
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IV, §2. EXERCISES

1. Find the matrix associated with the following linear maps. The vectors are
written horizontally with a transpose sign for typographical reasons.
(@) F:R*—>R? given by F('(x,, x,, X3, X4)) = '(x,, X,) (the projection)
(b) The projection from R* to R3
() F:R? - R? given by F('(x, y)) = ‘3x, 3y)
(d) F:R"—> R" given by F(X)=17X
(¢) F:R">R" given by F(X)= —X
() F:R* - R* given by F('(x,, x5, X3, X,)) = (x,, X,,0,0)

2. Find the matrix R(0) associated with the rotation for each of the following
values of 6.

@mn2 @®=n4 ©n @ —-n () —n/3
() n/6  (g) 5n/4

3. In general, let 6 > 0. What is the matrix associated with the rotation by an
angle —0 (i.e. clockwise rotation by 6)?

4. Let X ='(1,2) be a point of the plane. Let F be the rotation through an
angle of /4. What are the coordinates of F(X) relative to the usual basis
{E', E*}?

5. Same question when X =(—1, 3), and F is the rotation through n/2.

6. Let F:R" > R" be a linear map which is invertible. Show that if A is the
matrix associated with F, then A~ ! is the matrix associated with the inverse
of F.

7. Let F be a rotation through an angle . Show that for any vector X in R3
we have || X| = |[F(X)| (ie. F preserves norms), where |(a, b)| = /a? + b>.

8. Let ¢ be a number, and let L: R” —» R" be the linear map such that L(X) =
cX. What is the matrix associated with this linear map?

9. Let F, be rotation by an angle 0. If 6, ¢ are numbers, compute the matrix
of the linear map F,yo F, and show that it is the matrix of F,, .

10. Let F, be rotation by an angle . Show that F, is invertible, and determine
the matrix associated with F, '.

IV, §3. BASES, MATRICES, AND LINEAR MAPS

In the first two sections we considered the relation between matrices and
linear maps of K" into K™. Now let V, W be arbitrary finite dimensional
vector spaces over K. Let

B ={vy,...,00} and B = {Wi,...,.Wy}

be bases of ¥ and W respectively. Then we know that elements of V and
W have coordinate vectors with respect to these bases. In other words, if
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ve V then we can express v uniquely as a linear combination
vV=X.0y + -+ X,0,, x;eK.
Thus V is isomorphic to K" under the map K" — V given by
(X1 esXp) P> X0y + -+ + X, 0,,.
Similarly for W. If F:V—> W is a linear map, then using the above
isomorphism, we can interpret F as a linear map of K" into K™, and

thus we can associate a matrix with F, depending on our choice of bases,
and denoted by

MZ%.(F).
This matrix is the unique matrix 4 having the following property:
If X is the (column) coordinate vector of an element v of V, relative to

the basis &, then AX is the (column) coordinate vector of F(v), relative
to the basis #'.

To use a notation which shows that the coordinate vector X depends
on v and on the basis £ we let

X 5(v)

denote this coordinate vector. Then the above property can be stated in
a formula.

Theorem 3.1. Let V, W be vector spaces over K, and let
F: VoW

be a linear map. Let # be a basis of V and #' a basis of W. If veV
then

X 5(F(v)) = MZ(F)X 4(v).

Corollary 3.2. Let V be a vector space, and let B, #' be bases of V.
Let veV. Then

X 5(v) = Mg (id)X 4(v).
The corollary expresses in a succinct way the manner in which the

coordinates of a vector change when we change the basis of the vector
space.
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If A= M%(F), and X is the coordinate vector of v with respect to 4,
then by definition,

F(U) = (Al X)wl + o+ (AmX)Wm
This matrix A is determined by the effect of F on the basis elements
as follows.
Let
F(v)) =aywy + - + Gy Wy,
*) . . .

F(vn) = alnwl + -+ amnwm‘

Then A turns out to be the transpose of the matrix

Ay Qzp o Gy
iy Gz Gy
A1y Ay 0 Ay

Indeed, we have
F@)=F(xvy +--- + x,v,) =x F(vy) +--- + x,F(v,).
Using expression (x) for F(v,),...,F(v,) we find that
F(v) =xy(ay wy + -+ + Gpw,,) + -+ + x,(a1,W; + -+ + QpyWp),

and after collecting the coefficients of w,,...,w,, we can rewrite this ex-
pression in the form

(@y1X1 + -+ X)W + -+ (@i Xy + 00 G X)Wy
=(A - X)wy + -+ (A, - X)w,,.
This proves our assertion.

Example 1. Assume that dim V =2 and dim W= 3. Let F be the lin-
ear map such that

F(vy) = wy +w, — ws,
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Then the matrix associated with F is the matrix

3 1
—1 1
17 —1

equal to the transpose of

3 -1 17
1 1 —1)
Example 2. Let id: V- V be the identity map. Then for any basis %
of V we have

M3@d) = I,

where I is the unit n x n matrix (if dim V = n). This is immediately veri-
fied.

Warning. Assume that V= W, but that we work with two bases #
and #' of V which are distinct. Then the matrix associated with the
identity mapping of V into itself relative to these two distinct bases will
not be the unit matrix!

Example 3. Let # = {v,...,v,} and & = {w,,...,w,} be bases of the
same vector space V. There exists a matrix 4 = (a;;) such that

Wy =ay10; + -0 + a1,0,,
v(z,, = a,,;v1 + -+ a,,v,.
Then for each i = 1,...,n we see that w; = id(w;). Hence by definition,
MZ'(id) = 'A.
On the other hand, there exists a unique linear map F: V' — V such that
Fw)=wy ..., F@,)=w,.
Again by definition, we have

MZ(F)="A.
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Theorem 3.3. Let V, W be vector spaces. Let B be a basis of V, and #’
a basis of W. Let f, g be two linear maps of V into W. Let M = M%,.
Then

M(f + g) = M(f) + M(g).

If ¢ is a number, then

M(cf) = cM(f).

The association
f>Mg(f)

is an isomorphism between the space of linear maps L(V, W) and the
space of m x n matrices (if dim V =n and dim W = m).

Proof. The first formulas showing that f+— M(f) is linear follow at
once from the definition of the associated matrix. The association
f— M(f) is injective since M(f) = M(g) implies f = g, and it is surjec-
tive since every linear map is represented by a matrix. Hence f+— M(f)
gives an isomorphism as stated.

We now pass from the additive properties of the associated matrix to
the multiplicative properties.

Let U, V, W be sets. Let F: U —» V be a mapping, and let G: V> W
be a mapping. Then we can form a composite mapping from U into W
as discussed previously, namely Go F.

Theorem 34. Let V, W, U be vector spaces. Let B, %', #" be bases for
V, W, U respectively. Let

F: VoW and G W->U
be linear maps. Then
MZ(G)MZ(F) = M2(G - F).

(Note. Relative to our choice of bases, the theorem expresses the fact
that composition of mappings corresponds to multiplication of matrices.)

Proof. Let A be the matrix associated with F relative to the bases %,
#' and let B be the matrix associated with G relative to the bases %,
#". Let v be an element of V and let X be its (column) coordinate vec-
tor relative to #. Then the coordinate vector of F(v) relative to #' is



92 LINEAR MAPS AND MATRICES [TV, §3]

AX. By definition, the coordinate vector of G(F(v)) relative to %" is
B(AX), which, by §2, is equal to (BA)X. But G(F(v)) = (G F)).
Hence the coordinate vector of (Go F)(v) relative to the basis £” is
(BA)X. By definition, this means that BA is the matrix associated with
G- F, and proves our theorem.

Remark. In many applications, one deals with linear maps of a vector
space V into itself. If a basis # of V is selected, and F: V— V is a linear
map, then the matrix

Mg(F)

is usually called the matrix associated with F relative to # (instead of
saying relative to %, #). From the definition, we see that

Mg(id) = I,

where I is the unit matrix. As a direct consequence of Theorem 3.2 we
obtain

Corollary 3.5. Let V be a vector space and B, B' bases of V. Then
M2.Gd)MZ (id) = I = M% (id)MZ.(id).
In particular, M%.(id) is invertible.

Proof. Take V=W=U in Theorem 3.4, and F=G=id and
B" = #B. Our assertion then drops out.

The general formula of Theorem 3.2 will allow us to describe precisely
how the matrix associated with a linear map changes when we change
bases.

Theorem 3.6. Let F: V — V be a linear map, and let B, #' be bases of
V. Then there exists an invertible matrix N such that

MZ(F) = N~ 'MZ%(F)N.

In fact, we can take
N = MZ(id).

Proof. Applying Theorem 3.2 step by step, we find that
MZ(F) = M3.G)MAF)ME (id).

Corollary 3.5 implies the assertion to be proved.
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Let V be a finite dimensional vector space over K, and let F: V>V
be a linear map. A basis # of V is said to diagonalize F if the matrix
associated with F relative to # is a diagonal matrix. If there exists such
a basis which diagonalizes F, then we say that F is diagonalizable. It is
not always true that a linear map can be diagonalized. Later in this
book, we shall find sufficient conditions under which it can. If 4 is an
n x n matrix in K, we say that 4 can be diagonalized (in K) if the linear
map on K" represented by A can be diagonalized. From Theorem 3.6,
we conclude at once:

Theorem 3.7. Let V be a finite dimensional vector space over K, let
F: V>V be a linear map, and let M be its associated matrix relative to
a basis #B. Then F (or M) can be diagonalized (in K) if and only if
there exists an invertible matrix N in K such that N"*MN is a diag-
onal matrix.

In view of the importance of the map M — N !MN, we give it a spe-
cial name. Two matrices, M, M’ are called similar (over a field K) if
there exists an invertible matrix N in K such that M’ = N"!MN.

IV, §3. EXERCISES

1. In each one of the following cases, find M%(id). The vector space in each
case is R3.
(@) #={(1,1,0),(~1,1,1),(0, 1,2)}
B =1{21,1),(0,0,1),(—-1,1,1)}
(b) 33—{(3 2,1),(0, —-2,5),(1, 1,2)}
# ={(1,1,0),(-1,24),(2 —1,1)}

2. Let L: V> V be a linear map. Let # = {v,,...,v,} be a basis of V. Suppose
that there are numbers c,,...,c, such that L(v;) = ¢;v; for i = 1,...,n. What is
MZ(L)?

3. For each real number 0, let F,: R - R? be the linear map represented by the

matrix
R(6) = cosf —sinf
©) = sin 0 cos 0

Show that if 0, 6 are real numbers, then FoF, = Fy,,. (You must use the
addition formula for sine and cosine.) Also show that F, ' = F_,.

4. In general, let 6 > 0. What is the matrix associated with the identity map,
and rotation of bases by an angle —6 (i.e. clockwise rotation by 6)?

5. Let X =%(1,2) be a point of the plane. Let F be the rotation through an

angle of n/4. What are the coordinates of F(X) relative to the usual basis
{E', E*}?
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6.
7.

10.

11.
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Same question when X =*—1, 3), and F is the rotation through =/2.

In general, let F be the rotation through an angle 6. Let (x, y) be a point of
the plane in the standard coordinate system. Let (x', y') be the coordinates of
this point in the rotated system. Express x’, y’ in terms of x, y, and 6.

In each of the following cases, let D = d/dt be the derivative. We give a set
of linearly independent functions #. These generate a vector space V, and D
is a linear map from V into itself. Find the matrix associated with D relative
to the bases %, &. '

(@) {e, e}

®) {11}

(c) {e',te'}

(@ {1,1¢%}

(e) {1, ¢, e*, te*'}

(f) {sint,cost}

. (a) Let N be a square matrix. We say that N is nilpotent if there exists a

positive integer r such that N"=0. Prove that if N is nilpotent, then
I — N is invertible.

(b) State and prove the analogous statement for linear maps of a vector
space into itself.

Let P, be the vector space of polynomials of degree < n. Then the derivative
D:P,— P, is a linear map of P, into itself. Let I be the identity mapping.
Prove that the following linear maps are invertible:

(a) I — D2

(b) D™ — I for any positive integer m.

(c) D™ — cI for any number ¢ # 0.

Let A be the n x n matrix

oS O
O =
_— O
o O

0 0 0 -0 1
0 0 0 - 0

which is upper triangular, with zeros on the diagonal, 1 just above the diag-

onal, and zeros elsewhere as shown.

(a) How would you describe the effect of L, on the standard basis vectors
{E',...,E"} of K™

(b) Show that A" =0 and A" ' # O by using the effect of powers of A on
the basis vectors.



CHAPTER V

Scalar Products
and Orthogonality

V, §1. SCALAR PRODUCTS

Let V be a vector space over a field K. A scalar product on V is an
association which to any pair of elements v, w of V associates a scalar,
denoted by (v, w), or also v-w, satisfying the following properties:

SP 1. We have (v, w) = {w,v) for all v, weV.

SP 2. If u, v, w are elements of V, then

{u, v+ w) =<u, v) + {u, w.
SP 3. If xeK, then
{xu, v) = x{u, v) and {u, xv) = x{u, v).

The scalar product is said to be non-degenerate if in addition it also sat-
isfies the condition:

If v is an element of V, and {v,w) =0 for all weV, then v = 0.
Example 1. Let V= K". Then the map
(X,Y)— X-Y,

which to elements X, Y € K" associates their dot product as we defined it
previously, is a scalar product in the present sense.
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Example 2. Let V be the space of continuous real-valued functions on
the interval [0, 1]. If f, geV, we define

frgd = f F(©O9(0) d.

Simple properties of the integral show that this is a scalar product.

In both examples the scalar product is non-degenerate. We had point-
ed this out previously for the dot product of vectors in K”. In the sec-
ond example, it is also easily shown from simple properties of the
integral.

In calculus, we study the second example, which gives rise to the theo-
ry of Fourier series. Here we discuss only general properties of scalar
products and applications to Euclidean spaces. The notation ¢ , ) is
used because in dealing with vector spaces of functions, a dot f-g may
be confused with the ordinary product of functions.

Let V be a vector space with a scalar product. As always, we define
elements v, w of V to be orthogonal or perpendicular, and write v L w, if
{v,w) =0. If S is a subset of V, we denote by S* the set of all elements
we V which are perpendicular to all elements of S, i.e. <w,v) =0 for all
veS. Then using SP 2 and SP 3, one verifies at once that S' is a sub-
space of V, called the orthogonal space of S. If w is perpendicular to S,
we also write w L S. Let U be the subspace of V generated by the ele-
ments of S. If w is perpendicular to S, and if v,, v, €S, then

<W, Ul + Uz> == <W, Ul> + <W, Uz> = 0.
If ¢ is a scalar, then
<w, cvy) = cw, v).

Hence w is perpendicular to linear combinations of elements of S, and
hence w is perpendicular to U.

Example 3. Let (g;)) be an m x n matrix in K, and let 44,...,4,, be its
row vectors. Let X ='(xy,...,x,) as usual. The system of homogeneous
linear equations

allx1+"'+al,,xn=0
(**)
Am1X1 + -0+ An Xy = 0

can also be written in an abbreviated form, namely

AI'X=0, ceey Am'X=0-
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The set of solutions X of this homogeneous system is a vector space
over K. In fact, let W be the space generated by A,,...,4,,. Let U be
the space consisting of all vectors in K" perpendicular to A,,...,4,,.
Then U is precisely the vector space of solutions of (*x). The vectors
A,,...,A, may not be linearly independent. We note that dim W < m,
and we call

dim U = dim W+

the dimension of the space of solutions of the system of linear equations.
We shall discuss this dimension at greater length later.

Let V again be a vector space over the field K, with a scalar product.

Let {v,,...,v,} be a basis of V. We shall say that it is an orthogonal
basis if (v;,v;> =0 for all i #j. We shall show later that if V is a finite
dimensional vector space, with a scalar product, then there always exists
an orthogonal basis. However, we shall first discuss important special
cases over the real and complex numbers.

The real positive definite case

Let V be a vector space over R, with a scalar product. We shall call this
scalar product pesitive definite if {v, v) = 0 for all veV, and {v,v) > 0 if
v # 0. The ordinary dot product of vectors in R” is positive definite, and
so is the scalar product of Example 2 above.

Let V be a vector space over R, with a positive definite scalar product
denoted by ( , >. Let W be a subspace. Then W has a scalar product
defined by the same rule defining the scalar product in V. In other
words, if w, w' are elements of W, we may form their product {w, w).
This scalar product on W is obviously positive definite.

For instance, if W is the subspace of R> generated by the two vectors
(1,2,2) and (%, —1,0), then W is a vector space in its own right, and we
can take the dot product of vectors lying in W to define a positive defi-
nite scalar product on W. We often have to deal with such subspaces,
and this is one reason why we develop our theory on arbitrary (finite di-
mensional) spaces over R with a given positive definite scalar product,
instead of working only on R" with the dot product. Another reason is
that we wish our theory to apply to situations as described in Example 2
of §1.

We define the norm of an element ve V by

loll = /<o, v).

If ¢ is any number, then we immediately get

levll = lel llvll,
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because

leoll = /<ev, cv) = /c*<v,v) = |c| ||v].

The distance between two elements v, w of V is defined to be
dist(v, w) = |lv — w|.

This definition stems from the Pythagoras theorem. For example,
suppose V = R? with the usual dot product as the scalar product. If
X =(x,y,z)eV then

1X|| = /x* + y* + 2%

This coincides precisely with our notion of distance from the origin O to
the point A by making use of Pythagoras’ theorem.

We can also justify our definition of perpendicularity. Again the intu-
ition of plane geometry and the following figure tell us that v is perpen-
dicular to w if and only if

lo—wi = llv+ wl.
w—ol
lw — o
w v w
Iw + ol
w + vl 0
0
v v
(a) (b)
Figure 1
But then by algebra:
o —wll =llo+w] < [v—w|*=]v+w]?
= (vV—w)’=(0+w)?’
< P —-200w+w=024+20-w+ w?
< 4v-w=0
< v-w=_0.

This is the desired justification.
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You probably have studied the dot product of n-tuples in a previous
course. Basic properties which were proved without coordinates can be
proved for our more general scalar product. We shall carry such proofs
out, and meet other examples as we go along.

We say that an element veV is a unit vector if ||v|| = 1. If veV and
v # O, then v/||v] is a unit vector.

The following two identities follow directly from the definition of the
length.

The Pythagoras theorem. If v, w are perpendicular, then
lo + wllI? = [lo]l* + [wll®.
The parallelogram law. For any v, w we have
o+ wi? + [lo — w|i? = 2[[o]* + 2[w|>.

The proofs are trivial. We give the first, and leave the second as an
exercise. For the first, we have

lo 4+ w|2=<v+wov+wd=<ovd+2{v,wd + {w, wd

= |lv]|% + |w|? because v 1 w.

This proves Pythagoras.

Let w be an element of V such that |w| # 0. For any v there exists a
unique number ¢ such that v — cw is perpendicular to w. Indeed, for
v — cw to be perpendicular to w we must have

{v—cw,w) =0,
whence <{v,w) — {cw, w) = 0 and {v, w) = c{w, w). Thus

_(o,w)
T lwwy

Conversely, letting ¢ have this value shows that v — cw is perpendicular
to w. We call ¢ the component of v along w. We call cw the projection of
v along w.
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As with the case of n-space, we define the projection of v along w to
be the vector cw, because of our usual picture:

Figure 2

In particular, if w is a unit vector, then the component of v along w is
simply
c = <{v, w).

Example 4. Let V' =R" with the usual scalar product, i.e. the dot
product. If E; is the i-th unit vector, and X = (x,...,X,) then the com-
ponent of X along E,; is simply

X M El == xi,
that is, the i-th component of X.

Example 5. Let V be the space of continuous functions on [ —mr, x].
Let f be the function given by f(x) = sin kx, where k is some integer > 0.
Then

1/2

NG (j sin? kx dx>
_Jn

In the present example of a vector space of functions, the component
of g along f is called the Fourier coefficient of g with respect to f. If g is
any continuous function on [—mx, n], then the Fourier coefficient of g
with respect to f is

zj]“;i =%j g(x) sin kx dx.

Theorem 1.1. Schwarz inequality. For all v, we V we have

[<v, wh | = ol [wll.
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Proof. If w= 0, then both sides are equal to 0 and our inequality is
obvious. Next, assume that w=e¢ is a unit vector, that is eV and
llel = 1. If ¢ is the component of v along e, then v — ce is perpendicular

to e, and also perpendicular to ce. Hence by the Pythagoras theorem,
we find

loll* = llo — cell” + lce||®

= ||lv — ce||? + c2

Hence c¢* < |v||?, so that |c| < ||lv||l. Finally, if w is arbitrary # O, then
e = w/||w|| is a unit vector, so that by what we just saw,

w
v, — ) = ol
Iwl

<o, wp| = vl [Iwl,

This yields

as desired.
Theorem 1.2. Triangle inequality. If v, we V, then
o+ wll = lloll + lIwll.

Proof. Each side of this inequality is positive or 0. Hence it will suf-
fice to prove that their squares satisfy the desired inequality, in other
words

4+ w2 = (vl + Iwl)>.
To do this we have:

W+wl=@+w-W+w)=0v>+20-w+ w?
< [loll* + 2|lo|l wll + [Iw?|| (by Theorem 1.1)
= (lo] + [Iwl)?,

thus proving the triangle inequality.

Let v,,...,v, be non-zero elements of V which are mutually perpendic-
ular, that is <{v;,v;> =0 if i #j. Let c; be the component of v along v,.
Then

V—Cy — - — Cy0

n-n

is perpendicular to v,,...,v,. To see this, all we have to do is to take the
product with v; for any j. All the terms involving {v;,v;> will give 0 if

1
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i # j, and we shall have two remaining terms
(v, v;> — ¢Kvj, v;

which cancel. Thus subtracting linear combinations as above orthog-
onalizes v with respect to wv,,...,»,. The next theorem shows that

c,vy +--- + c,v, gives the closest approximation to v as a linear com-
bination of v,...,v,.

Theorem 1.3. Let v,,...,v, be vectors which are mutually perpendicular,
and such that |v;|| # 0 for all i. Let v be an element of V, and let c; be
the component of v along v,. Let a,,...,a, be numbers. Then

n
v— Y :

k=1

=

n
v— ), &by
k=1
Proof. We know that

n
v— Y Gy
k=1

is perpendicular to each v;, i = 1,...,n. Hence it is perpendicular to any
linear combination of v,,...,v,. Now we have:

lv — Z av* = v - Z C Uy + Z (cx — @l
= |lv — z cvll? + “Z (¢ — av )’

by the Pythagoras theorem. This proves that
lo =Y cevell® < o = Y ayuil?,
and thus our theorem is proved.

The next theorem is known as the Bessel inequality.

Theorem 14. If v,,...,v, are mutually perpendicular unit vectors, and if
c; is the component of v along v;, then

n
>, i = vll?.
i=1
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Proof. The elements v — Y ¢;v;, v,...,v, are mutually perpendicular.
Therefore:

loll? = llo = cvgll? + 1Y civill® by Pythagoras
2 > v ? because a norm is = 0

=Y ¢ by Pythagoras

because v,,...,v, are mutually perpendicular and |v;|*> = 1. This proves
the theorem.

V, §1. EXERCISES

1. Let V be a vector space with a scalar product. Show that (O, v) =0 for all v
in V.

2. Assume that the scalar product is positive definite. Let v,,...,v, be non-zero
elements which are mutually perpendicular, that is {v;,v;> =0 if i #j. Show
that they are linearly independent.

3. Let M be a square n x n matrix which is equal to its transpose. If X, Y are
column n-vectors, then
‘XMY

is a 1 x 1 matrix, which we identify with a number. Show that the map
(X,Y) — 'XMY

satisfies the three properties SP 1, SP 2, SP 3. Give an example of a 2 x 2 ma-
trix M such that the product is not positive definite.

V, §2. ORTHOGONAL BASES, POSITIVE DEFINITE CASE

Let V be a vector space with a positive definite scalar product through-
out this section. A basis {v,,...,0,} of V is said to be orthogonal if its
elements are mutually perpendicular, i.e. {v;, v;> = 0 whenever i #j. If in
addition each element of the basis has norm 1, then the basis is called
orthonormal.

The standard unit vectors of R” form an orthonormal basis of R”
with respect to the ordinary dot product.

Theorem 2.1. Let V be a finite dimensional vector space, with a positive
definite scalar product. Let W be a subspace of V, and let {w,,...,w,}
be an orthogonal basis of W. If W #V, then there exist elements
Wit 1> -+ W, Of V such that {w,,...,w,} is an orthogonal basis of V.



104 SCALAR PRODUCTS AND ORTHOGONALITY v, §2]

Proof. The method of proof is as important as the theorem, and is
called the Gram-Schmidt orthogonalization process. We know from
Chapter II, §3 that we can find elements v, ,,...,0, of V such that

(Wi sWos U 15 -+« sUp)

is a basis of V. Of course, it is not an orthogonal basis. Let W, ,, be
the space generated by wy,...,w,,, v,,+;. We shall first obtain an orthog-
onal basis of W,,,,. The idea is to take v, ., and substract from it its
projection along w,,...,w,. Thus we let

<vm+ 1s W1> _ <vm+ 1 wm>
Cl = ceey m_—.
<W15 W1> <wm’ wm>
Let
Wm+l =Um+l —Clwl ——"'——Cme.

Then w,,, is perpendicular to w,,...,w,. Furthermore, w,,, # 0O
(otherwise v,,,,; would be linearly dependent on w,,...,w,), and v, ., lies
in the space generated by w,,...,w, ., because

Um+1 = Wm+1 +CIW1 + - +mem'

Hence {w,...,w,} is an orthogonal basis of W,,,. We can now pro-
ceed by induction, showing that the space W,,,, generated by

Wiy oo sWos Ut 15+ - - sUmt s

has an orthogonal basis

{Wl’ o sWmt 15 "',Wm+s}

with s = 1,...,n — m. This concludes the proof.

Corollary 2.2. Let V be a finite dimensional vector space with a positive
definite scalar product. Assume that V # {O}. Then V has an orthogo-
nal basis.

Proof. By hypothesis, there exists an element v, of V such that v, # O.
We let W be the subspace generated by v;, and apply the theorem to get
the desired basis.
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We summarize the procedure of Theorem 2.1 once more. Suppose we
are given an arbitrary basis {v,,...,0,} of V. We wish to orthogonalize it.
We proceed as follows. We let

v = v,
, (v, v7)

Uy = Uy — v
SR

PR ON SRR RN
33— Y3 2 1
SRR

Opy V1), U V1),

Upy — o0 — vy.
B CAPN A B vy, V1)
Then {v},...,v,} is an orthogonal basis.

Given an orthogonal basis, we can always obtain an orthonormal ba-
sis by dividing each vector by its norm.

Example 1. Find an orthonormal basis for the vector space generated
by the vectors (1,1,0, 1), (1, —2,0,0), and (1,0, —1, 2).
Let us denote these vectors by A, B, C. Let

In other words, we subtract from B its projection along A. Then B’ is
perpendicular to A. We find

B =34, —5,0,1).

Now we subtract from C its projection along A and B, and thus we let

Since A and B’ are perpendicular, taking the scalar product of C' with A
and B’ shows that C’ is perpendicular to both 4 and B'. We find

C =4(—4, -2, ~7,6).

The vectors A, B’, C' are non-zero and mutually perpendicular. They lie
in the space generated by 4, B, C. Hence they constitute an orthogonal
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basis for that space. If we wish an orthonormal basis, then we divide
these vectors by their norm, and thus obtain

A 1

—=—(1a 1909 1)5
141~ /3

B 1
T 45 ——5,0519
1B~ Jaz' )
C’ 1

(——4, ——2, ——75 6)9

Icl /105
as an orthonormal basis.

Theorem 2.3. Let V be a vector space over R with a positive definite
scalar product, of dimension n. Let W be a subspace of V of dimension
r. Let W+ be the subspace of V consisting of all elements which are
perpendicular to W. Then V is the direct sum of W and W*, and W+
has dimension n — r. In other words,

dim W + dim W+ = dim V.

Proof. If W consists of O alone, or if W = V, then our assertion is ob-
vious. We therefore assume that W#V and that W# {O}. Let
{w;,...,w,} be an orthonormal basis of W. By Theorem 2.1, there exist
elements u,, ;,...,u, of V such that

(WiseoosWyy Uy oy g5 ne sty

is an orthonormal basis of V. We shall prove that {u,,,...,u,} is an
orthonormal basis of W+

Let u be an element of W'. Then there exist numbers x,,...,x, such
that

u=x1W1 + - +xrwr +xr+1ur+1 + o +xnun'

Since u is perpendicular to W, taking the product with any w;
(i=1,...,r), we find

0 =<u, w) = x{w;, wp) = Xx,.

Hence all x;,=0 (i=1,...,r). Therefore u is a linear combination of
Upp gy -n sty

Conversely, let u =x,,,u,,, +---+ x,u, be a linear combination of
U,y 1,---,U,. Taking the product with any w; yields 0. Hence u is perpen-
dicular to all w; (i=1,...,r), and hence is perpendicular to W. This
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proves that u, . ,...,u, generate W'. Since they are mutually perpendicu-
lar, and of norm 1, they form an orthonormal basis of W+, whose di-
mension is therefore n — r. Furthermore, an element of ¥V has a unique
expression as a linear combination

xlwl + - +xrwr+xr+1ur+1 + -t xnum

and hence a unique expression as a sum w + u with we W and ue W+
Hence V is the direct sum of W and W+
The space W+ is called the orthogonal complement of W.

Example 2. Consider R®. Let A, B be two linearly independent vec-
tors in R®. Then the space of vectors which are perpendicular to both 4
and B is a l-dimensional space. If {N} is a basis for this space, any
other basis for this space is of type {tN}, where t is a number # O.

Again in R?, let N be a non-zero vector. The space of vectors perpen-
dicular to N is a 2-dimensional space, i.e. a plane, passing through the
origin O.

Let V be a finite dimensional vector space over R, with a positive
definite scalar product. Let {e,,...,e,} be an orthonormal basis. Let
v, we V. There exist numbers x,,...,x,€R and y,,...,y,€R such that

v=Xx,6y +---+ Xx,€, and w=ye +--+y,e,.
Then

{o,w) =<{x,e; + -+ + x,e, Vi€, + -+ Ve,

= Z xi}’j<ei, ej> =Xyyy t o+ X, Y,

i,j=1

Thus in terms of this orthonormal basis, if X, Y are the coordinate vec-
tors of v and w respectively, the scalar product is given by the ordinary
dot product X-Y of the coordinate vectors. This is definitely not the
case if we deal with a basis which is not orthonormal. If {v,,...,v,} is
any basis of V, and we write

vV=X,0; + -+ X,0,
W=V + - +ynvn

in terms of the basis, then
n

<U, W> = Z xiyj<via Uj>'

i,j=1
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Each <{v;, v;> is a number. If we let a;; = {v;, v;), then

n
{o,wy = ), a;;x; X;.

ij=1
Hermitian products

We shall now describe the modification necessary to adapt the preceding
results to vector spaces over the complex numbers. We wish to preserve
the notion of a positive definite scalar product as far as possible. Since
the dot product of vectors with complex coordinates may be equal to 0
without the vectors being equal to O, we must change something in the
definition. It turns out that the needed change is very slight.

Let V be a vector space over the complex numbers. A hermitian prod-
uct on V is a rule which to any pair of elements v, w of V associates a
complex number, denoted again by (v, w), satisfying the following prop-
erties:

HP 1. We have {v,w) = {w, v) for all v, weV. (Here the bar denotes
complex conjugate.)

HP 2. If u, v, w are elements of V, then
<u, v+ w) = u, vy + {u, w).
HP 3. If aeC, then
{ou, vy = alu, v) and {u, av) = alu, v).

The hermitian product is said to be positive definite if (v, v) = 0 for all
veV, and {v,v)> > 0 if v # O.

We define the words orthogonal, perpendicular, orthogonal basis, or-
thogonal complement as before. There is nothing to change either in our
definition of component and projection of v along w, or in the remarks
which we made concerning these.

Example 3. Let V=C" If X =(x,,...,x,) and Y= (y,,...,y,) are vec-
tors in C", we define their hermitian product to be

<X, Y> = xlfl + e+ xn.}?n'
Conditions HP 1, HP 2 and HP 3 are immediately verified. This product

is positive definite because if X # O, then some x; #0, and x;x; > 0.
Hence (X, X)> > 0.
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Note however that if X = (1, i) then
X-X=1-1=0.

Example 4. Let V be the space of continuous complex-valued func-
tions on the interval [ —=, n]. If f, g€V, we define

ogd = j " fogD

Standard properties of the integral again show that this is a hermitian
product which is positive definite. Let f, be the function such that

fu®) = e™.

A simple computation shows that f, is orthogonal to f,, if n, m are dis-
tinct integers. Furthermore, we have

o> = f e~ dt = 2.

If feV, then its Fourier coefficient with respect to f, is therefore equal to

I _
S fo

| :
Py j f(t)e™ ™ dt,
2n J_,

which a reader acquainted with analysis will immediately recognize.

We return to our general discussion of hermitian products. We have
the analogue of Theorem 2.1 and its corollary for positive definite hermi-
tian products, namely:

Theorem 2.4. Let V be a finite dimensional vector space over the com-
plex numbers, with a positive definite hermitian product. Let W be a
subspace of V, and let {w,,...,w,} be an orthogonal basis of W. If
W # V, then there exist elements w,,,...,w, of V such that
{Wy,...,w,} is an orthogonal basis of V.

Corollary 2.5. Let V be a finite dimensional vector space over the com-
plex numbers, with a positive definite hermitian product. Assume that
V # {0}. Then V has an orthogonal basis.

The proofs are exactly the same as those given previously for the real
case, and there is no need to repeat them.
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We now come to the theory of the norm. Let V be a vector space
over C, with a positive definite hermitian product. If ve V, we define its
norm by letting

loll = /<o, v).

Since {v,v) is real, = 0, its square root is taken as usual to be the

unique real number = 0 whose square is {v, v).
We have the Schwarz inequality, namely

[<v, wp| = o]l [Iwll.
The three properties of the norm hold as in the real case:

For all veV, we have |v| 20, and = 0 if and only if v = 0.
For any complex number o, we have |oav| = || |v|.

For any elements v, we V we have |v + w| Z |v] + [|w].
All these are again easily verified. We leave the first two as exercises,
and carry out the third completely, using the Schwarz inequality.
It will suffice to prove that
lo +wii* < (lloll + lIwl)>.
To do this, we observe that
o4+ w2 =<v+ w0+ wd=<v,0)+ {w,vd + v, w) + {w, w.

But <w, v) + {v,w)> =<v,w) + {v,w) < 2|{v, w)|. Hence by Schwarz,

o+ wi? < [vl? + 2[<v, w>| + [Iwl?
< lloll® + 2[loll [Iwll + wll? = (lloll + [wl)>.
Taking the square root of each side yields what we want.
An element v of V is said to be a unit vector as in the real case, if
vl = 1. An orthogonal basis {v,,...,v,} is said to be orthonmormal if it
consists of unit vectors. As before, we obtain an orthonormal basis from

an orthogonal one by dividing each vector by its norm.

Let {e,,...,e,} be an orthonormal basis of V. Let v, we V. There exist
complex numbers a,,...,0,€C and f,,...,5,€C such that

U=alel +"' +anen
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and
w=B,e;, + -+ B,e,.
Then
o,w) =<ayey + - + ae,, Breg + -+ + Bre,

Thus in terms of this orthonormal basis, if A, B are the coordinate vec-
tors of v and w respectively, the hermitian product is given by the prod-
uct described in Example 3, namely A4-B.

We now have theorems which we state simultaneously for the real and
complex cases. The proofs are word for word the same as the proof of
Theorem 2.3, and so will not be reproduced.

Theorem 2.6. Let V be either a vector space over R with a positive de-
finite scalar product, or a vector space over C with a positive definite
hermitian product. Assume that V has finite dimension n. Let W be a
subspace of V of dimension r. Let W* be the subspace of V consisting
of all elements of V which are perpendicular to W. Then W*' has di-
mension n — r. In other words,

dim W + dim Wt = dim V.

Theorem 2.7. Let V be either a vector space over R with a positive de-
finite scalar product, or a vector space over C with a positive definite
hermitian product. Assume that V is finite dimensional. Let W be a
subspace of V. Then V is the direct sum of W and W*.

V, §2. EXERCISES

0. What is the dimension of the subspace of R® perpendicular to the two vec-
tors (1,1, —2,3,4,5) and (0,0, 1, 1,0, 7)?

1. Find an orthonormal basis for the subspace of R*® generated by the following

vectors:
(@) (1,1, —1) and (1,0, 1) (b) (2,1,1) and (1,3, —1)

2. Find an orthonormal basis for the subspace of R* generated by the following
vectors:
(a) (1,2,1,0) and (1,2,3,1)
() 1,1,0,0), (1, —1,1,1) and (—1,0,2, 1)

3. In Exercises 3 through 5 we consider the vector space of continuous real-
valued functions on the interval [0,1]. We define the scalar product of
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two such functions f, g by the rule
1
g = J f(®g(t) dr.
0

Using standard properties of the integral, verify that this is a scalar product.

4. Let V be the subspace of functions generated by the two functions f, g such
that f(t) =t and g(t) = t*>. Find an orthonormal basis for V.

5. Let V be the subspace generated by the three functions 1, t, t> (where 1 is
the constant function). Find an orthonormal basis for V.

6. Find an orthonormal basis for the subspace of C* generated by the following
vectors:
(a) (1’ ia 0) and (1’ 17 1) (b) (1, _la ——l) and (l, 1, 2)

7. (a) Let V be the vector space of all n x n matrices over R, and define the
scalar product of two matrices A, B by

(A, B = tr(4B),

where tr is the trace (sum of the diagonal elements). Show that this is a
scalar product and that it is non-degenerate.

(b) If A is a real symmetric matrix, show that tr(44) = 0, and tr(4A4) > 0 if
A # 0. Thus the trace defines a positive definite scalar product on the
space of real symmetric matrices.

(c) Let V be the vector space of real n x n symmetric matrices. What is
dim V? What is the dimension of the subspace W consisting of those
matrices 4 such that tr(4) = 0? What is the dimension of the orthogonal
complement W+ relative to the positive definite scalar product of part
(b)?

8. Notation as in Exercise 7, describe the orthogonal complement of the sub-
space of diagonal matrices. What is the dimension of this orthogonal com-
plement?

9. Let V be a finite dimensional space over R, with a positive definite scalar
product. Let {v,,...,0,} be a set of elements of V, of norm 1, and mutually
perpendicular (i.e. {v;,v;> =0 if i #j). Assume that for every veV we have

m

ol = 3 <v, 0,5

i=1

Show that {v,,...,v,,} is a basis of V.

10. Let V be a finite dimensional space over R, with a positive definite scalar
product. Prove the parallelogram law, for any elements v, we V,

lu + ol + lu — oll> = 2(Jull* + llv]?).
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V, §3. APPLICATION TO LINEAR EQUATIONS; THE RANK

Theorem 2.3 of the preceding section has an interesting application to
the theory of linear equations. We consider such a system:

a“xl + R + alnxn == 0
(*%) . .

A1 X1 + -+ + X, = 0.

mn-"n

We can interpret its space of solutions in three ways:

(a) It consists of those vectors X giving linear relations
x AV + -+ x,A"=0

between the columns of A.

(b) The solutions form the space orthogonal to the row vectors of the
matrix A.

(c) The solutions form the kernel of the linear map represented by A,
i.e. are the solutions of the equation AX = O.

The linear equations are assumed to have coefficients a;; in a field K.
The analogue of Theorem 2.3 is true for the scalar product on K". In-
deed, let W be a subspace of K" and let W+ be the subset of all elements
X e K" such that

X-Y=0 forall YeWw.

Then W+ is a subspace of K". Observe that we can have X-X = 0 even
if X # 0. For instance, let K = C be the complex numbers and let

X =(l,i). Then X-X =1—1=0. However, the analogue of Theorem
2.3 is still true, namely:

Theorem 3.1. Let W be a subspace of K". Then
dim W + dim W+ = n.

We shall prove this theorem in §6, Theorem 6.4. Here we shall apply it
to the study of linear equations.

If A=(a;) is an m x n matrix, then the columns A',...,4" generate a
subspace, whose dimension is called the column rank of A. The rows
Aq,...,A,, of A generate a subspace whose dimension is called the row
rank of A. We may also say that the column rank of A4 is the maximum
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number of linearly independent columns, and the row rank is the maxi-
mum number of linearly independent rows of A.

Theorem 3.2. Let A = (a;;) be an m X n matrix. Then the row rank and
the column rank of A are equal to the same number r. Furthermore,
n —r is the dimension of the space of solutions of the system of linear
equations (**).

Proof. We shall prove all our statements simultaneously. We consider
the map

L: K" —> K™

given by
L(X)=x,A* + -+ + x, A".

This map is obviously linear. Its image consists of the space generated
by the column vectors of A. Its kernel is by definition the space of solu-
tions of the system of linear equations. By Theorem 3.2 of Chapter III,
§3, we obtain
column rank + dim space of solutions = n.
On the other hand, interpreting the space of solutions as the orthogonal
space to the row vectors, and using the theorem on the dimension of an
orthogonal subspace, we obtain
row rank + dim space of solutions = n.

From this all our assertions follow at once, and Theorem 3.2 is proved.

In view of Theorem 3.2, the row rank, or the column rank, is also
called the rank.

Remark. Let L = L,: K" —» K™ be the linear map given by
X— AX.
Then L is also described by the formula
L(X)=x;A" + --- + x, A"

Therefore

rank A = dim Im L.
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Let b,,...,b,, be numbers, and consider the system of inhomogeneous
equations

A-X = b,
(%) : :
X =b

m-*

It may happen that this system has no solution at all, i.e. that the equa-
tions are inconsistent. For instance, the system

2x + 3y —z =1,
2x +3y—z=2

has no solution. However, if there is at least one solution, then all solu-
tions are obtainable from this one by adding an arbitrary solution of the
associated homogeneous system (*x) (cf. Exercise 7). Hence in this case
again, we can speak of the dimension of the set of solutions. It is the
dimension of the associated homogeneous system.

Example 1. Find the rank of the matrix
2 1 1
0 1 -1
There are only two rows, so the rank is at most 2. On the other hand,

the two columns
2 1
o) = ()

are linearly independent, for if a, b are numbers such that

(o) +°0) =)

2a +b =0,
b=0,

then

so that a = 0. Therefore the two columns are linearly independent, and
the rank is equal to 2.
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Example 2. Find the dimension of the set of solutions of the following
system of equations, and determine this set in R>:

2x +y+z=1,
y—z=0.

We see by inspection that there is at least one solution, namely x = 1,
y =z =0. The rank of the matrix

2 1 1
0 1 -1
is 2. Hence the dimension of the set of solutions is 1. The vector space

of solutions of the homogeneous system has dimension 1, and one solu-
tion is easily found to be

y=z=1  x=—1.

Hence the set of solutions of the inhomogneous system is the set of all
vectors

t,0,0) + (=3, 1, 1),

where t ranges over all real numbers. We see that our set of solutions is
a straight line.

Example 3. Find a basis for the space of solutions of the equation
3x —2y+z=0.

Let A = (3, —2,1). The space of solutions is the space orthogonal to
A, and hence has dimension 2. There are of course many bases for this
space. To find one, we first extend (3, —2,1) = 4 to a basis of R?. We
do this by selecting vectors B, C such that 4, B, C are linearly indepen-
dent. For instance, take

B=(0,1,0)
and
C=1(0,0,1).

Then A, B, C are linearly independent. To see this, we proceed as usual.
If a, b, ¢ are numbers such that

aA + bB + cC =0,
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then
3a =0,
—2a+b =0,
a +¢=0

117

a=b=c=0,
so A, B, C are linearly independent. Now we must orthogonalize these
vectors.
Let
B =B A= G,
oo <G B

(4,4>" (B,B)
= (09 0, 1) - 1_{47(3’ -2, 1) - %(3’ 5, 1)

Then {B’,C'} is a basis for the space of solutions of the given equation.

V, §3. EXERCISES

1. Find the rank of the following matrices.

@ /2 1 3 (b) /—1 2 =2

<7 2 o) < 3 4 —5)
/1 2 7 (d) 1 2 -
(2 4 —1) -1 =2 3
4 8 —12

0 0 O

e /2 0 @ [-1 0 1
(o —5) 0o 2 3
0o o0 7

(8 2 0 o (h) 1 2 =3
-5 1 2 -1 -2 3

3 8 —7 4 8 —12

1 -1 5
2. Let A, B be two matrices which can be multiplied. Show that

rank of AB < rank of A4, and also rank of AB < rank of B.
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3. Let A be a triangular matrix

a1 Ay Aypn
0 a, Azp
0 0 a

Assume that none of the diagonal elements is equal to 0. What is the rank of
A?

4. Find the dimension of the space of solutions of the following systems of equa-
tions. Also find a basis for this space of solutions.

(@) 2x+y—z=0 b)) x—y+z=0
y+z=0

) 4x+T7y—nz=0 dx+y+z=0

2x— y+ z=0 x—y =0

y+z=0

5. What is the dimension of the space of solutions of the following systems of
linear equations?

@ 2x—-3y+z=0 (b) 2x+7y=0
x+y—z=0 x—2y+z=0

© 2x—-3y+z=0 (d) x+y+z=0
x+y—z=0 2x +2y+2z=0
Ix+4y =0

Sx+y+z=0

6. Let A be a non-zero vector in n-space. Let P be a point in n-space. What is
the dimension of the set of solutions of the equation

X-A=P-A?

7. Let AX = B be a system of linear equations, where A is an m x n matrix, X is
an n-vector, and B is an m-vector. Assume that there is one solution X = X,.
Show that every solution is of the form X, + Y, where Y is a solution of the
homogeneous system AY = O, and conversely any vector of the form X, + Y
is a solution.

V, §4. BILINEAR MAPS AND MATRICES
Let U, V, W be vector spaces over K, and let
gUXxV-oW
be a map. We say that g is bilinear if for each fixed ue U the map

v g(u, v)
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is linear, and for each fixed ve V, the map
ur g(u, v)

is linear. The first condition written out reads

g(u, vy + vy) = g(u, vy) + g(u, v,),
g(u, cv) = cg(u, v),

and similarly for the second condition on the other side.
Example. Let A be an m x n matrix, A = (a;)). We can define a map

g K" x K" > K
by letting
gu(X,Y) ="XAY,

which written out looks like this:

Our vectors X and Y are supposed to be column vectors, so that ‘X is a
row vector, as shown. Then ‘XA is a row vector, and ‘XAY isa 1 x 1
matrix, i.e. a number. Thus g, maps pairs of vectors into K. Such a
map g, satisfies properties similar to those of a scalar product. If we fix
X, then the map Y+ 'XAY is linear, and if we fix Y, then the map
X+ 'XAY is also linear. In other words, say fixing X, we have

gA(X, Y+ Y’) = gA(Xa Y) + gA(X’ Y,)’
ga(X, cY) =cg X, Y),

and similarly on the other side. This is merely a reformulation of prop-
erties of multiplication of matrices, namely

'XA(Y + Y') ='XAY + ‘X AY,
‘X A(cY) = c'X AY.
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It is convenient to write out the multiplication ‘XAY as a sum. Note
that

m m

t

XA = (Z xiail,...,zxi(lin)
i=1 i=1

and thus

IXAY = Z Z X;a;;y; = Z Zaijxiyj'

j=1i=1 j=1i=1

4 1 2
“\3 -1
If X = <x1> and Y= (y1> then
X3 Y2

'XAY = x1y; + 2x1y, + 3x291 — X2)5-

Example. Let

Theorem 4.1. Given a bilinear map g: K™ x K" — K, there exists a
unique matrix A such that g = g,, i.e. such that

g(X,Y) ='XAY.

The set of bilinear maps of K™ x K" into K is a vector space, denoted
by Bil(K™ x K" K), and the association

A— g,

gives an isomorphism between Mat,,, (K) and Bil(K™ x K", K).

mxn

Proof. We first prove the first statement, concerning the existence of a
unique matrix A such that g = g,. This statement is similar to the state-
ment representing linear maps by matrices, and its proof is an extension
of previous proofs. Remember that we used the standard basis for K" to
prove these previous results, and we used coordinates. We do the same
here. Let E!,...,E™ be the standard unit vectors for K™ and let

U!,...,U" be the standard unit vectors for K". We can then write any
XeK™ as

X=) xE
i=1

and any Ye K" as
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Then
9(X,Y) = g(x,E" + -+ + x, E", y, U' + -+ + y,U").
Using the linearity on the left, we find
g(X, Y) =} x;g(E\, y, U +--- + y,U"),
i=1
Using the linearity on the right, we find
gX,Y) =} ¥ xy;9(E, U)).

i=1j=1
Let
a;; = g(E', UY).

Then we see that

9(X,Y)= 3 Y a;xy;

i=1j=1
which is precisely the expression we obtained for the product
X AY,
where A is the matrix (a;;). This proves that g = g, for the choice of g;;
given above.
The uniqueness is also easy to see. Suppose that B is a matrix such
that g = gg. Then for all vectors X, Y we must have

‘XAY ='XBY.

Subtracting, we find
‘X(A— B)Y=0

for all X, Y. Let C = A — B, so that we can rewrite this last equality as
‘XCY =0,

for all X, Y. Let C = (c;;). We must prove that all ¢;;=0. The above

equation being true for all X, Y, it is true in particular if we let X = E*

and Y = U’ (the unit vectors!). But then for this choice of X, we find

0 ='E*CU' = ¢,,.

This proves that ¢,; = 0 for all k, I, and proves the first statement.
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The second statement, concerning the isomorphism between the space
of matrices and bilinear maps will be left as an exercise. See Exercises 3
and 4.

V, §4. EXERCISES

1. Let A be an n x n matrix, and assume that A is symmetric, i.e. 4 ='4. Let
g4 K" x K" > K be its associated bilinear map. Show that

g4(X, Y) = g,(Y, X)

for all X, YeK", and thus that g, is a scalar product, i.e. satisfies conditions
SP1, SP 2, and SP 3.

2. Conversely, assume that A is an n X n matrix such that

g4(X, Y) =g (Y, X)

for all X, Y. Show that A4 is symmetric.

3. Show that the bilinear maps of K" x K™ into K form a vector space. More
generally, let Bil(U x V, W) be the set of bilinear maps of U x V into W.
Show that Bil(U x V, W) is a vector space.

4. Show that the association
Arg,

is an isomorphism between the space of m x n matrices, and the space of bi-
linear maps of K™ x K" into K.

Note: In calculus, if f is a function of n variables, one associates with f a
matrix of second partial derivatives.

o*f
0x;0x;
which is symmetric. This matrix represents the second derivative, which is a
bilinear map.

5. Write out in full in terms of coordinates the expression for ‘XAY when A is
the following matrix, and X, Y are vectors of the corresponding dimension.

2 -3 4 1
(@) <4 1) (b (_2 5)

1 2 -1

-5 2 -3 1 4
(C)(n 7) 2 5 -1



[V,8§5] GENERAL ORTHOGONAL BASES 123

— 2 1 -1 2 =5
(e) 3 1 1 (3] 1 Z 4
2 5 7 -1 0 3
6. Let
1 2 3
cC=1-1 1
1 0 1

and define g(X, Y) ='XCY. Find two vectors X, YeR? such that

9(X, Y) # g(Y, X).

V, §5. GENERAL ORTHOGONAL BASES

Let V be a finite dimensional vector space over the field K, with a scalar
product. This scalar product need not be positive definite, but there are
interesting examples of such products nevertheless, even over the real
numbers. For instance, one may define the product of two vectors
X = (xy,x,) and Y= (y,,y,) to be x,y;, — x,y,. Thus

(X, X>=x}—x3.

Such products arise in many applications, in physics for instance, where
one deals with a product of vectors in 4-space, such that if

X =(x,y,21t),

then
(X, X>=x*+y*+2z2 -1

In this section, we shall see what can be salvaged of the theorems
concerning orthogonal bases.

Let V be a finite dimensional vector space over the field K, with a
scalar product. If W is a subspace, it is not always true in general that V
is the direct sum of W and W*. This comes from the fact that there
may be a non-zero vector v in V such that {v,v) = 0. For instance, over
the complex numbers, (1, i) is such a vector. The theorem concerning the
existence of an orthogonal basis is still true, however, and we shall prove
it by a suitable modification of the arguments given in the preceding sec-
tion.

We begin by some remarks. First, suppose that for every element u of
V we have {u,u) = 0. The scalar product is then said to be null, and V
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is called a null space. The reason for this is that we necessarily have
{v,w) =0 for all v, w in V. Indeed, we can write

o, w) =3Kv+w, v+ wd— v, 0) — {w, wh].

By assumption, the right-hand side of this equation is equal to 0, as one
sees trivially by expanding out the indicated scalar products. Any basis
of V is then an orthogonal basis by definition.

Theorem 5.1. Let V be a finite dimensional vector space over the field
K, and assume that V has a scalar product. If V # {0}, then V has an
orthogonal basis.

Proof. We shall prove this by induction on the dimension of V. If V
has dimension 1, then any non-zero element of V is an orthogonal basis
of V so our assertion is trivial.

Assume now that dim V=n > 1. Two cases arise.

Case 1. For every element ue V, we have {u,u) = 0. Then we already
observed that any basis of V is an orthogonal basis.

Case 2. There exists an element v, of V such that (v, v,> #0. We
can then apply the same method that was used in the positive definite
case, i.e. the Gram-Schmidt orthogonalization. We shall in fact prove
that if v, is an element of V such that {v,,v,) #0, and if V, is the 1-
dimensional space generated by v,, then V is the direct sum of V, and V.
Let veV and let ¢ be as always,

c = <U’ Ul> .
<vl’ Ul>

Then v — cv, lies in V{, and hence the expression
v=(v—cvy) + cvy

shows that V is the sum of V, and V. This sum is direct, because
V,n Vi is a subspace of V,, which cannot be equal to V,; (because
{vy, v3» #0), and hence must be O because V, has dimension 1. Since
dim Vi <dim V, we can now repeat our entire procedure dealing with
the space of Vj, in other words use induction. Thus we find an orthogo-
nal basis of V', say {v,,...,0,}. It follows at once that {v,...,v,} is an
orthogonal basis of V.

Example 1. In R? let X =(x;,x,) and Y= (y,,y,). Define their
product

(X, Y)=x1y; — X,),.
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Then it happens that (1,0) and (0,1) form an orthogonal basis for
this product also. However, (1,2) and (2,1) form an orthogonal basis
for this product, but are not an orthogonal basis for the ordinary dot
product.

Example 2. Let V be the subspace of R® generated by the two vectors
A=(1,2,1)and B=(1,1,1). If X =(x,, x,,x3) and Y= (y,, y,, y3) are
vectors in R?, define their product to be

(X, YY) =x1y; — X3¥, — X3)3.

We wish to find an orthogonal basis of V with respect to this product.
We note that (4, 4>=1—-4—1=—4+#0. We let vy = A. We can
then orthogonalize B, and we let

By _1
‘T4 2

We let v, = B— 3A4. Then {v,,v,} is an orthogonal basis of V with re-
spect to the given product.

V, §5. EXERCISES

1. Find orthogonal bases of the subspace of R® generated by the indicated vec-
tors A, B, with respect to the indicated scalar product, written X - Y.
(a) A=(,1,1), B=(1, —1,2);
X-Y=x1y1 +2X,9; + X33
(b) A=(1,—-1,4), B=(—1,1,3);
X-Y=x1y; —3x0, + X1 V3 + V1X3 — X3V, — X, V3
2. Find an orthogonal base for the space C2 over C, if the scalar product is
given by XY = x,y, —ix,y; —iX;¥, — 2X,,.

3. Same question as in Exercise 2, if the scalar product is given by

X-Y=x,y, +Xx,y; +4x,y;.

V, §6. THE DUAL SPACE AND SCALAR PRODUCTS

This section merely introduces a name for some notions and properties
we have already met in greater generality. But the special case to be
considered is important.
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Let V be a vector space over the field K. We view K as a one-dimen-
sional vector space over itself. The set of all linear maps of V into K is
called the dual space, and will be denoted by V*. Thus by definition

V* = £V, K).
Elements of the dual space are usually called functionals.

Suppose that V is of finite dimension n. Then V is isomorphic to K"
In other words, after a basis has been chosen, we can associate to each
element of V its coordinate vector in K". Suppose therefore that V = K".

By what we saw in Chapter IV, §2 and §3 given a functional

¢:K"—> K
there exists a unique element 4 € K" such that

p(X)=A4-X forall XeK"
Thus ¢ = L,. We also saw that the association
A— L,

is a linear map, and therefore this association is an isomorphism

K" —> V*
between K" and V*. In particular:

Theorem 6.1. Let V be a vector space of finite dimension. Then
dim V* = dim V.

Example 1. Let V= K" Let ¢: K" > K be the projection on the first
factor, i.e.

(p(xla LR ,Xn) = Xq.

Then ¢ is a functional. Similarly, for each i =1,...,n we have a func-
tional ¢; such that

(pi(xl’ e ’xn) = xl'
These functionals are just the coordinate functions.

Let V be finite dimensional of dimension n. Let {v,,...,v,} be a basis.
Write each element v in terms of its coordinate vector

szll)l +"' +xnl7n.
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For each i we let
¢;: V- K

be the functional such that

o (v) =1 and p(v;) =0 if i#].
Then
@{v) = x;.
The functionals {¢,...,p,} form a basis of V*, called the dual basis of

{vi,...,0,}.

Example 2. Let V be a vector space over K, with a scalar product.
Let v, be an element of V. The map

v — v, vy, veV,

is a functional, as follows at once from the definition of a scalar product.

Example 3. Let V be the vector space of continuous real-valued func-
tions on the interval [0, 1]. We can define a functional L: V> R by the
formula

L(f)=Jf(t)dt

for feV. Standard properties of the integral show that this is a linear
map. If f, is a fixed element of V, then the map

[ J Jo(O)f (1) dt
0

is also a functional on V.

Example 4. Let V be as in Example 3. Let 6: V> R be the map such
that (f) = f(0). Then ¢ is a functional, called the Dirac functional.

Example 5. Let V be a vector space over the complex numbers, and
suppose that V has a hermitian product. Let v, be an element of V. The
map

v (v, vy, veV,
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is a functional. However, it is not true that the map v (vy,v) is a
functional! Indeed, we have for any aeC,

Vg, av) = avgy, V).

Hence this last map is not linear. It is sometimes called anti-linear or
semi-linear.

Let V be a vector space over the field K, and assume given a scalar
product on V. To each element ve V we can associate a functional L, in
the dual space, namely the map such that

L,(w) = v, w)

for all weV. If v,,v,eV, then L, ,, =L, + L,,. If ceK then L., = cL,.

These relations are essentially a rephrasing of the definition of scalar

product. We may say that the map
vi— L

v

is a linear map of V into the dual space V*. The next theorem is very
important.

Theorem 6.2. Let V be a finite dimensional vector space over K with a
non-degenerate scalar product. Then the map

v L,
is an isomorphism of V with the dual space V*.

Proof. We have seen that this map is linear. Suppose L, = 0. This
means that (v, w) =0 for all we V. By the definition of non-degenerate,
this implies that v = 0. Hence the map v+ L, is injective. Since
dim V = dim V*, it follows from Theorem 3.3 of Chapter III that this
map is an isomorphism, as was to be shown.

In the theorem, we say that the vector v represents the functional L
with respect to the non-degenerate scalar product.

Examples. We let V= K" with the usual dot product,
X- Y= X1)1 + e+ XnYVn»
which we know is non-degenerate. If

@o:V->K
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is a linear map, then there exists a unique vector A€ K" such that for all
He K" we have
o(H)= A-H.

This allows us to represent the functional ¢ by the vector A.
Example from calculus. Let U be an open set in R” and let
f:U->R
be a differentiable function. In calculus of several variables, this means
that for each point X e R" there is a function g(H), defined for small vec-
tors H such that
limg(H) =0,
H-O0
and there is a linear map L: R" — R such that

JX + H)=f(X)+ L(H) + |Hlg(H).

By the above considerations, there is a unique element 4e€R” such that
L =1L, that is

J(X +H)=f(X)+ A-H+ |H|g(H).

In fact, this vector A is the vector of partial derivatives

A =<5f ,...,5f>
0x, 0x,

and A is called the gradient of f at X. Thus the formula can be written

f(X + H) = f(X) + (grad f)X)-H + | H|g(H).

The vector (grad f)(X) represents the functional L: R" - R. The function-
al L is usually denoted by f'(X), so we can also write

(X + H)=f(X)+ f(X)H + || H| g(H).
The functional L is also called the derivative of f at X.

Theorem 6.3. Let V be a vector space of dimension n. Let W be a sub-
space of V and let

Wt = {peV* such that (W) = 0}.
Then
dim W + dim W' = n.
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Proof. If W= {0}, the theorem is immediate. Assume W # {0}, and
let {w,,...,w,} be a basis of W. Extend this basis to a basis

{Wis oo oWy Wop e s Wy}
of V. Let {¢,...,0,} be the dual basis. We shall now show that
{@rs1,-..,0,) is a basis of W*. Indeed, (W) =0 if j=r+1,...,n, so

{@rs1>---,0,) 1s a basis of a subspace of W'. Conversely, let peW*.
Write

Y =a0, +--+ a,Py.

Since @(W) =0 we have
ow)=a;=0 for i=1,...,r

Hence ¢ lies in the space generated by ¢, ...,0,. This proves the
theorem.

Let V be a vector space of dimension n, with a non-degenerate scalar
product. We have seen in Theorem 6.2 that the map

v—> L,

gives an isomorphism of V with its dual space V*. Let W be a subspace
of V. Then we have two possible orthogonal complements of W:
First, we may define

perp,(W) = {ve Vsuch that {v, w) = 0 for all we W}.
Second, we may define

perpy«(W) = {@ € V* such that p(W) = 0}.

The map
v L

v

of Theorem 6.2 gives an isomorphism

perp, (W) — perpy(W).

Therefore we obtain as a corollary of Theorem 6.3:
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Theorem 6.4. Let V be a finite dimensional vector space with a non-de-
generate scalar product. Let W be a subspace. Let W+ be the subspace

of V consisting of all elements veV such that {v,w) =0 for all weW.
Then

dim W + dim W+t = dim V.

This proves Theorem 3.1, which we needed in the study of linear

equations. For this particular application, we take the scalar product to
be the ordinary dot product. Thus if W is a subspace of K" and

W' = {XeK"suchthat X-Y=0forall Ye W}

then

\'}

1.

dim W + dim W+ = n.

, §6. EXERCISES

Let A, B be two linearly independent vectors in R”. What is the dimension of
the space perpendicular to both 4 and B?

Let A, B be two linearly independent vectors in C". What is the dimension of
the subspace of C" perpendicular to both 4 and B? (Perpendicularity refers to
the ordinary dot product of vectors in C".)

Let W be the subspace of C* generated by the vector (1,i,0). Find a basis of
Wt in C? (with respect to the ordinary dot product of vectors).

Let V be a vector space of finite dimension n over the field K. Let ¢ be a
functional on V, and assume ¢ # 0. What is the dimension of the kernel of
¢@? Proof?

. Let V be a vector space of dimension n over the field K. Let y, ¢ be two

non-zero functionals on V. Assume that there is no element ce K, ¢ # 0 such
that = cp. Show that

(Ker @) n(Ker ¢)

has dimension n — 2.

Let V be a vector space of dimension n over the field K. Let V** be the dual
space of V*. Show that each element ve V gives rise to an element 4, in V**
and that the map v+ 4, gives an isomorphism of V with V**.

Let V be a finite dimensional vector space over the field K, with a non-degen-
erate scalar product. Let W be a subspace. Show that Wi+ = W.
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V, §7. QUADRATIC FORMS

A scalar product on a vector space V is also called a symmetric bilinear
form. The word “symmetric” is used because of condition SP1 in
Chapter V, §1. The word “bilinear” is used because of condition SP 2
and SP 3. The word “form” is used because the map

(v, w) = <o, w)
is scalar valued. Such a scalar product is often denoted by a letter, like
a function
g.VxV-K.
Thus we write :
g(v, w) = {v, w).
Let V be a finite dimensional space over the field K. Let g =, ) be

a scalar product on V. By the quadratic form determined by g, we shall
mean the function

f:V->K
such that f(v) = g(v, v) = <v, v).

Example1l. If V= K" then f(X)= X -X = x2 + --- + x2 is the quad-
ratic form determined by the ordinary dot product.
In general, if V= K" and C is a symmetric matrix in K, representing

a symmetric bilinear form, then the quadratic form is given as a function
of X by

fX)="XCX = Y c;x;x;.

i,j=1

If C is a diagonal matrix, say

c, O 0
C— 0 c.z 0 ,
0 O Cn

then the quadratic form has a simpler expression, namely

fX)=cx3 + -+ + c,x2.
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Let V be again a finite dimensional vector space over the field K. Let
g be a scalar product, and f its quadratic form. Then we can recover the
values of g entirely from those of f, because for v, we V,

o, w) =Hw+wv+wd—<v—w,v—w)]

or using g, f,
glv, w) =3[ f( + w) — f(v — w)].

We also have the formula

o, w) =3[v+w, v+ wd— o, v — w, wh].

The proof is easy, expanding out using the bilinearity. For instance, for
the second formula, we have

v+wo+w) —<v,v) —<w,w)

= (v, ) + 2{v, w) + <w, w) — v, 0> — w, w)
= 2{v, w).

We leave the first as an exercise.

Example 2. Let V=R? and let ‘X = (x, y) denote elements of R?2.
The function f such that

f(x, y) = 2x% + 3xy + y?

is a