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Introduction

This book is based on lectures I have given to undergraduate and graduate
audiences at Oxford and elsewhere over the years. My aim has been to provide
an outline of both the topological theory and the uniform theory, with an
emphasis on the relation between the two. Although I hope that the prospec-
tive specialist may find it useful as an introduction it is the non-specialist I
have had more in mind in selecting the contents. Thus I have tended to avoid
the ingenious examples and counterexamples which often occupy much of the
space in books on general topology, and I have tried to keep the number of
definitions down to the essential minimum. There are no particular pre-
requisites but I have worked on the assumption that a potential reader will
already have had some experience of working with sets and functions and will
also be familiar with the basic concepts of algebra and analysis.

There are a number of fine books on general topology, some of which I
have listed in the Select Bibliography at the end of this volume. Of course I
have benefited greatly from this previous work in writing my own account.
Undoubtedly the strongest influence is that of Bourbaki’s Topologie Générale
[2], the definitive treatment of the subject which first appeared over a genera-
tion ago. Although general topology has moved on since then, and alternative
viewpoints have become important at the research level, it is remarkable how
little there is in that volume which one would wish to see changed in any way.
However, in a student text the exposition has to be constructed on different
lines. I have reorganized the material, omitting topics which I felt were not of
first importance for the non-specialist. I have tried to strengthen the motiva-
tion. Examples and diagrams are used to illustrate points at every suitable
Opportunity and each chapter except the preliminary one ends with a set of
exercises.

The book divides naturally into three sections. Thus the first six chapters
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are devoted to the topological theory while the next two are devoted to the
uniform theory. The last four, which are independent of each other, draw on
ideas from both the topological section and the uniform section.

To avoid having to interrupt the course of the main exposition I have
inserted a preliminary chapter, dealing with certain aspects of the theory of
sets which will be required later. The topics discussed are somewhat mis-
cellaneous in character. The first topic is the behaviour, for a given function,
of the direct image and the inverse image in relation to the operations of
complementation, union and intersection. This is followed by a discussion of
the cartesian product. Relations are considered at various places in the main
text, and so I thought it would be helpful to include a reminder of the notation
and terminology used in connection with relations. Finally, and this is the
most substantial part, I have given a brief outline of the theory of filters.

The first chapter of the topological section deals with the basic axioms.
Illustrations are taken from interval topologies and metric topologies, with
special reference to the real line. No previous knowledge of metric spaces is
assumed.

The second chapter is concerned with continuity: topology is about contin-
uous functions just as much as topological spaces. The topological product is
dealt with here. Also topological groups are introduced at this stage both
because of their intrinsic interest and because they provide such exceilent
illustrations of points in the general theory. Subspaces and quotient spaces
are considered in Chapter 3, with a wide range of examples.

Most accounts of the theory go on to discuss separation axioms, connected-
ness and so forth at this point. But in my view compactness should come first,
because of its fundamental importance. I believe the concept arises most
naturally from a discussion of open functions and closed functions. This is not
the orthodox approach, of course, but I have tried to justify it by showing that
all the usual properties of compact spaces such as the Heine—Borel theorem
can be proved quite simply and directly from this approach. I also show
how compactness can be characterized in terms of filters, and incidentally
show how the best-known characterization of compactness, in terms of open
coverings, can be obtained. The general Tychonoff theorem is proved, fol-
lowed by some observations on the subject of function spaces. This material
occupies Chapters 4 and 5.

Chapter 6 is devoted to the separation axioms: the basic properties of
Hausdorff, regular and normal spaces are established. In a later chapter there
is an account of the corresponding functional separation axioms.

Chapter 7 of the uniform section deals with the basic axioms of uniform
structure, with illustrations from topological groups and metric spaces. I have
tried to show how the idea of a uniformity is a very natural one, in many ways
more natural than the idea of a topology. This leads on to the notion of
uniform continuity: the uniform theory is about uniformly continuous func-
tions just as much as uniform spaces. I also deal with the uniform product
with subspaces and, to a limited extent, with quotient spaces.
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In Chapter 8 the connection between the uniform and the topological
theories is established. It becomes clear at this stage that results about topo-
logical groups and metric spaces found earlier can be regarded as special cases
of results about uniform spaces. The chapter continues with a discussion of
the Cauchy condition, both for sequences and for filters. This lays the foun-
dation for a subsequent chapter on completeness and completion.

The first of the last four chapters is concerned with connectedness. I show
how connectedness, local connectedness and pathwise-connectedness are de-
fined, for a topological space. I also discuss connectedness and local con-
nectedness for uniform spaces.

The second of the last four chapters is concerned with countability. The
first and second axioms are discussed, countable compactness and sequential
compactness are considered, also the Lindelof property and separability. In
the next chapter we return to the separation axioms. After a glance at the
functional Hausdorff property we discuss functional (i.e. complete) regularity.
In particular, we show that complete regularity is a necessary and sufficient
condition for a topological space to be uniformizable. We also prove Urysohn’s
theorem, to the effect that normal spaces are functionally normal.

The final chapter is concerned with completeness and completion, both for
metric spaces and for uniform spaces. Metric completions are constructed
both using the space of bounded continuous real-valued functions and via
equivalence classes of Cauchy sequences. Then the uniform completion is
constructed via equivalence classes of Cauchy filters.

Most branches of mathematics which have attained a certain degree of
maturity have been developed as the result of the efforts of many different
individuals. I have not included a historical section in my account, since the
history of general topology is related in several of the other textbooks. I would,
however, like to acknowledge my obvious debt to previous writers on the
subject. I would also like to thank those who commented on various points
which arose in the course of the work, particularly Dr. Alan Pears and Dr.
Wilson Sutherland who kindly read an early draft and made a number of
valuable suggestions; the former was also a great help at the proof stage.

Mathematical Institute
University of Oxford






CHAPTER O

Preliminaries

General Remarks

Following standard practice in topology I will generally refer to elements of
sets as points, in the course of this work, but I will retain the term element
where groups are concerned specifically.

If every point of the set X is also a point of the set Y I describe X as a
subset of Y or Y as a superset of X, and write X < Y or Y o X. Ifitis necessary
to exclude the possibility that X = Y I describe X as a proper subset of Y.

In dealing with subsets of a given set I say that a pair of subsets intersect
if their intersection is non-empty, otherwise I say that they do not intersect or
are disjoint. Strictly speaking, families of subsets should always be indexed but
it is seldom necessary to mention the indexing set explicitly.

Let ¢: X — Y be a function, where X and Y are sets; we refer to X as the
domain and to Y as the codomain of ¢. We say that ¢ is injective, or is an
injection, if for each point y of Y there exists at most one point x of X such
that ¢(x) = y. We say that ¢ is surjective, or is a surjection, if for each point y
of Y there exists at least one point x of X such that ¢(x) = y. We say that ¢
is bijective, or is a bijection, if there exists a function y: Y — X such that y¢
is the identity on X and ¢y is the identity on Y. Note that ¢ is bijective if and
only if ¢ is both injective and surjective.

Direct and Inverse Images

Again let ¢: X — Y be a function, where X and Y are sets. The direct image
of a subset H of X, with respect to ¢, is the subset ¢H of Y consisting of all
points y of Y such that y = ¢(x) for some point x of H. The inverse image of
a subset K of Y, with respect to ¢, is the subset ¢ 'K of X consisting of all
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points x of X such that ¢(x)e K. The inverse image behaves well with respect
to complementation, in that

61 (Y —K)=X — ¢'K.

In the case of the direct image all we can say is that ¢X — ¢H is a subset of
#(X — H), in general a proper subset.

For each subset H of X the saturation ¢ ¢H of H with respect to ¢ contains
H as a subset, in general a proper subset. When H = ¢ " '¢H we say that H is
saturated. All subsets H are saturated when ¢ is injective.

For each subset K of Y the cosaturation ¢¢~*K of K with respect to ¢ is
contained in K as a subset, in general a proper subset. When K = ¢¢ 'K we
say that K is cosaturated. All subsets K are cosaturated when ¢ is surjective.

X
H ¢
X
¢ #X
K=Y
Y
Hc ¢ '¢gH
'K < K

Next we recall the behaviour of the direct image and the inverse image with
respect to the operations of union and intersection. First let {H;} be a family
of subsets of the set X. We have that

¢(J Hy) = | (¢H)).

We also have that ¢([) H;)is a subset of () (#H;), in general a proper subset.
Equality holds whenever ¢ is injective or, more generally, when not more than
one of the sets H; is non-saturated. Then let {K;} be a family of subsets of the
set Y. We have that

6 (UK) = UK,
and we also have that
¢_1(ﬂ Kj) = ﬂ (¢—1Kj)'
Thus the inverse image behaves well with respect to the operations of comple-

mentation, union and intersection, but the direct image only behaves well with
respect to the operation of union. It is important to remember these facts.
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Cartesian Products

Consider a family {X;: je J} of sets, where J is some indexing set. The cartesian
product of the members of the family is a set | | X; together with a family of

functions

with the following characteristic property: for each set 4 the functions
4 A-TIX,
correspond precisely to the families of functions
¢ =mip: A—> X, (jeJ).

We refer to ; as the jth projection of the cartesian product, and to ¢; as the
jth component of the function ¢.

In case each of the sets X is the same set X, so that we are dealing with J
copies of X, the cartesian product may be called the cartesian Jth power of
X and written X”. Then a function

A X > X!

is defined, called the diagonal, such that the jth component of A is the identity
function on X, for each index j. There is, of course, no difference in logic
between points ¢ of X7 and functions &: J — X. So 7;(¢) and &(j) are just two
ways of writing the same point of X; this change of notation will come up
from time to time in what we are going to do and it is important not to be
confused by it.
Given a family of functions
¢ X; - Y, (jeJd),

J

where X; and Y; are sets, there is a function
[Ie:11X-11Y

such that the jth component of | | ¢; is the composition ¢;o m;, for each index j.
We refer to [ | 4; as the product of the members of the family {¢;}. Note that if

4 X;— Y, Vi Y, > Z; (jeJ)

are families of functions, where X;, Y; and Z; are sets, then

[TW08) = TT¥p=(19).

Relations

Formally, of course, a relation on a set X is just a subset R of X x X. If
(&, n) € R we write £Ry and say that £ is R-related to . Given & we denote by
R[&] the set of R-relatives of &, thus

R[&] = {n: &Rn}.
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Similarly, if H is a subset of X we denoted by R[H] the set of R-relatives of
points of H, so that R[H] is the union of the subsets R[¢] for £ € H. Note that
if {H;} is a family of subsets of X then

RIUH1=URIH], RI(H]l<(\R[H]

The identity relation on the set X is just the diagonal AX of X x X. A
relation R which contains AX is said to be reflexive. If R is a relation on X
the reverse relation R™! is given by

ER7'y ifand only if #RE.
We say that R is symmetric if R = R™?; for example, AX is symmetric.
The composition of relations R, S on the set X is the relation R o S, given by:
E(RoS)n if and only if £S{ and Ry for some {.
Composition of relations is associative and so bracketing is unnecessary for
repeated compositions such as
R"=Ro---oR (nfactors).
Note that (RoS)™* = S7' o R7%. Also note that if H is a subset of X then
(RoS)[H] = R[S[H]]

Composition of relations is not generally commutative. For example (taking
X ={0,1,2})ifR={(1,2)} and S = {(0, 1)} then Ro S = {(0, 2)} while SoR
is empty.

A relation R is said to be transitive if R o R is contained in R. An equivalence
relation R is reflexive, symmetric and transitive; in that case the set R[£] is
just the equivalence class of & The set of equivalence classes is denoted by
X/R. Thus to each equivalence relation R on X there corresponds a surjection
n: X — X/R, where n(£) = {R[£]}.

' . “ . [0<x<2y,
@) x> +y* <1 (i) xy 240 (iii) {0 p ;‘ S 2){'
Which of these relations on the real line is transitive?

Given a group G there are two ways to associate a relation R, on G with
a subset 4 of G. One is to write £R ,n when &1 -5 e A; this is called the left
relation. The right relation is defined similarly but with 7 - ¢! instead of £ - 5.
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Of course the relations coincide when G is commutative. Note that both left
and right relations are equivalence relations in case A is a subgroup of G.

Filters

A sequence in a set X is just a function assigning to each natural number n a
point x, of X, the nth term of the sequence. Sequences play a useful role in
elementary real analysis, for example. However, for our purposes the simple
notion of sequence turns out to be inadequate. There are two ways to deal
with this problem.

One is to introduce generalized sequences or nets, in which the natural
numbers are replaced by ordered sets. The other is to introduce the notion of
filter. This is a rather more sophisticated replacement for the simple notion of
sequence but it is considerably more versatile. Consequently we shall be using
filters rather than nets and so a summary of the relevant theory is included
for the convenience of the reader.

Definition (0.1). A filter & on a set X is a non-empty family of non-empty
subsets of X such that:

(i) each superset of a member of & is also a member of #,
(ii) the intersection of each pair of members of & is also a member of .

The second condition implies, of course, that the intersection of a finite
family of members of & is again a member of & and in particular is non-
empty. However, this does not necessarily apply to infinite families. For
example, the cofinite subsets of an infinite set form a filter %, such that the
intersection of all the members of %, is empty. (A cofinite subset is the
complement of a finite subset.)

The non-empty subsets of a set X generate filters in an obvious way. For
example, all the subsets of X which contain a given point x of X form a filter
&,; this is called the principal filter generated by x. Again all the subsets of X
which contain a given non-empty subset H of X form a filter. These examples
have the property that the intersection of all the members of the filter is itself
a member of the filter.

For another type of example we turn to the notion of (infinite) sequence.
A sequence of points of a set X is a function a: N — X, where N denotes the
ordered set of natural numbers. It is usually convenient to write the sequence
in the form {x,: n =1, 2,...}, or simply {x, >, where x, = a(n) is the nth term
of the sequence. Subsequences are defined by precomposing « with an order-
preserving injection o: N — N.

Definition (0.2). Let {x, > be a sequence of points of the set X. The elementary
filter associated with {x, > is the filter consisting of subsets M of X for which
there exists an integer k such that x, e M whenever n > k.
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Note that it is necessary to know more than just the set {x,} in order to
define the filter. Also note that if <{x, > and {x,» are sequences such that for
some integer k we have x, = x, whenever n > k then the elementary filter
associated with {x,, > coincides with the elementary filter associated with {(x; >.

For example, take X = N and consider the sequence {n) of which the nth
term is n. The elementary filter associated with this sequence consists of the
cofinite subsets of the set N.

Definition (0.3). A non-empty family of non-empty subsets of the set X is a
filter base if the intersection of every pair of members of the family contains
a member of the family.

If this condition is satisfied then the family generates a filter on X, by taking
supersets of members of the base. Note that two filter bases on the same set
generate the same filter if, and only if, each member of the first base contains
a member of the second, and vice versa.

Of course every filter is generated by itself, regarded as a base. Also the
principal filter ¢,, where x is a point of X, is generated by {x}.

Let &, 4 be filters on X and suppose that every member of & intersects
every member of 4. Then the family of intersections M n N, where M € # and
N €%, has the property that the intersection of a pair of members of the family
is again a member of the family. In particular, the family constitutes a filter
base and the filter thus generated is called the filter generated by & and %. It
cannot be defined if there exist disjoint members of & and %.

Let & be a filter on the set X. For each set X’ and function ¢: X - X' a
filter ¢, # on X' is defined by taking the direct images of the members of # as
a filter base. In case X" is a superset of X and ¢ the inclusion we refer to ¢, F
as the extension of # to X'.

In the other direction, let X’ be a set and ¢: X’ — X a function. If the inverse
images of the members of & are all non-empty, as is always the case when ¢
is surjective, then the conditions for a filter base are satisfied and the filter on
X' thereby generated is called the induced filter and denoted by ¢*%. In case
X' is a subset of X and ¢ the inclusion we refer to ¢*& as the trace of & on
X', emphasizing that it is only defined when each member of & has non-empty
intersection with X". :

Definition (0.4). Let & be a filter on the set X. A refinement of & is a filter
&’ on X such that each member of & is also a member of #'.

In this situation we say that &' refines &, or that & is refined by #'. When
the possibility that # = ' is to be excluded we describe the refinement as
strict.

For example, let # be the elementary filter associated with a sequence {x, »
in X. The elementary filter associated with any subsequence of <{x,> is a
refinement of . Also if #' is an elementary filter associated with a sequence
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{x,>in X, and if # refines &, then &' is the elementary filter associated with
a subsequence of {x,>.

For another example, let # and ¥ be filters on X such that each member
of & intersects each member of 4. Then the filter generated by the intersec-
tions is a refinement of both & and 4.

For a third example, let ¢: X — Y be a function, where X and Y are sets.
Then ¢*¢,. .7 is refined by &, for each filter # on X. And ¢, ¢*% refines 4 for
each filter % on Y such that ¢*% is defined.

Refinement imposes a partial order on the collection of filters on the set X.
A maximal member of the collection is called an ultrafilter. Using Zorn’s
lemma one can show that every filter admits an ultrafilter refinement (in
general, far from unique). Principal filters are obviously ultrafilters but ultra-
filters in general are somewhat mysterious objects.

Proposition (0.5). Let & be a leter on the set X. Then & is an ultrafilter lf and
only lf whenever M v N € ¥, where M, N are subsets of X, either Me F
Ne#F

For suppose that M U Ne & but M¢ & and N ¢ F. Let F' be the family
of subsets N’ of X such that M U N'e #. Then ' is a refinement of & and
since N ¢ # the refinement is strict, hence & is not an ultrafilter.

Conversely, let &' be a strict refinement of #. If M is a member of &' but
not of # then MU (X — M) = Xe %, and so X — M e %, by the condition.
But this implies X — M e %, since &' is a refinement of &, and then M N
(X — M) = J, contrary to the definition of filter.

Hence by induction we obtain

Proposition (0.6). Let M, ..., M, be subsets of the set X, and let ¥ be an
ultrafilter on X. If the union of My, ..., M, is a member of & then one of
M,,..., M, is a member of &

This uses the “only if” part of (0.5). The “if” part gives us

Proposition (0.7). Let & be a filter base on the set X. If for each subset M of
X either Me B or X — M e % then & is an ultrafilter on X.

Forlet & be any filter refining the filter generated by . Then & coincides
with 8, sinceif Me # then X — M¢F,s0 X — M ¢ B, s0 MedB.So B is an
ultrafilter, and we deduce

Proposition (0.8). Let ¢: X — Y be a function, where X and Y are sets. If F is
an ultrafilter on X then ¢, is an ultrafilter on Y.

For let N be a subset of Y. If $7'N is a member of & then N € ¢, F since
#¢ N < N.Ifnotthen X — ¢ N = ¢} (Y — N)is a member of & and hence
Y — Ne ¢, 7. Now apply (0.7).



8 0. Preliminaries

In the case of a finite set every ultrafilter is necessarily principal. In the case
of an infinite set a special role is played by the filter %, consisting of cofinite
subsets mentioned earlier. Since %, is obviously not principal neither is any
ultrafilter refinement of %,. In fact, any non-principal ultrafilter # must be a
refinement of #,. For if M € &, then either M € & or thefiniteset X — M e #.
But if X — MeZ then {x}e# for some xe X — M, by (0.6), which is a
contradiction, since % is non-principal.

We conclude with some remarks concerning countability. Let X be a set
and let & be a filter on X. If # admits a countable filter base {B,:n = 1,2, ...}
then & also admits a countable filter base {4,: n = 1, 2, ...} which is nested
in the sense that

All that needs to be done is define A, = B; n...N B, for each n. Elementary
filters have a countable filter base satisfying the nesting condition, owing to
their definition in terms of sequences, and in fact the connection between
elementary filters and filters with a countable filter base is a close one, as is
shown by

Proposition (0.9). If the filter & on the set X admits a countable filter base
then & can be refined by an elementary filter. Moreover, F is the intersection
of all the elementary filters which refine & .

Forlet{A4,: n=1,2,...} beacountable filter base for # which satisfies the
nesting condition. Since each A4, is non-empty we can choose a point x,€ 4,
and then the elementary filter associated with the sequence {x,:n=1,2,...}
is a refinement of &.

Now consider the intersection ¢ of all the elementary filters which refine
Z , i.e. the family of subsets of X which belong to every such elementary filter.
Then % refines &. Suppose, to obtain a contradiction, that ¢ is a strict
refinement of %, and let M be a member of ¢ which is not a member of #.
No member A, of the base for # can be contained in M since that would
imply M € #. Therefore A, n (X — M) is non-empty, for every n, and so we
can choose a point x,e A4, n (X — M). Then the elementary filter associated
with the sequence {x,: n = 1, 2, ...} refines & and yet does not contain M and
so does not refine 4. This contradiction establishes the result.



CHAPTER 1

Topological Spaces

Axioms

In most branches of mathematics the primary objects of study are sets with
some kind of additional structure. In algebra, for example, the additional
structure takes the form of one or more binary operations. In topology the ad-
ditional structure consists of a family of subsets satisfying certain conditions:

Definition (1.1). A topology on a set X is a family of subsets of X, called open
sets, such that:

(i) the empty set and the full set are open sets,
(ii) the intersection of a pair of open sets is an open set,
(iii) the union of any number of open sets is an open set.

Thus (ii) implies, by iteration, that the intersection of any finite number of
open sets is an open set; in general, the intersection of an infinite number of
open sets is not an open set.

By a topological space we mean a set X together with a topology 9~ on X;
usually X alone is sufficient notation. A refinement of the topology J is a
topology ' on the same set X such that each open set of J is also an open
set of 7. In this situation we say that 7' refines 4 or that I coarsens 7.
If the possibility that 7 = 9" is excluded we describe the refinement as strict.
Let us have a few examples.

Definition (1.2). The discrete topology on the set X is the topology in which
every subset is open.

In this situation we describe X as a discrete space. Clearly the discrete
topology refines every other topology. Going to the other extreme we have
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Definition (1.3). The trivial' topology on the set X is the topology in which
the empty set and the full set are the only open sets.

In this situation we describe X as a trivial space. When X has fewer than
two points the discrete topology and the trivial topology coincide; no other
topology is possible. When X has two or more points, however, the discrete
topology and the trivial topology are different, and there are other possible
topologies as well.

For example, consider the case of the point-pair {0, 1} (the choice of labels
is immaterial). As well as the discrete topology and the trivial topology there
are two others. In one of these {0} is open but {1} is not, in the other {1} is
open but {0} is not. These are known as the Sierpinski topologies.

Thus there are four distinct topologies on a set with two points, and one
can show that there are 29 distinct topologies on a set with three points, and
so on. In the case of an infinite set the number of topologies is infinite.

. O,
GEE
B

Which of these families of subsets of the three-point set constitute topologies, with the
addition of the empty set, and which do not?

! The terms coarse topology and indiscrete topology are also in common use.
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Here is another example which is different from the discrete topology in
the case of an infinite set, and illustrates the point that the intersection of an
infinite number of open sets is not necessarily an open set.

Definition (1.4). The cofinite topology on the set X is the topology in which
the open sets are the empty set and the cofinite sets, i.e. the complements of
the finite sets.

In this situation we describe X as a cofinite space. Cocountable spaces may
be defined similarly.

The examples so far given are valuable for illustrating points in the
elementary theory since it is immediately clear as to whether or not a
given subset is open, in a particular topology. Later we shall describe other,
much more important, examples where the status of a given set may be less
transparent.

With every family & of subsets of a set X there is associated a dual family
F*, consisting of the complements of the members of . Any condition placed
on the members of &# can be transformed, according to the De Morgan laws,
into a condition on the members of & *. In case Z is a topology the members
of the dual family are called closed sets, and we have

Definition (1.5). A topology on a set X is given by a family of subsets of X,
called closed sets, such that:

(i) the empty set and the full set are closed sets,
(i) the union of a pair of closed sets is a closed set,
(iii) the intersection of any number of closed sets is a closed set.

It is generally agreed nowadays that a topology consists, as in (1.1), of the
family of open sets, rather than the dual family of closed sets; the latter are
simply the complements of the open sets, and the conditions in (1.5) describe
how they behave. Thus (ii), by iteration, implies that the union of any finite
number of closed sets is closed; in general, the union of an infinite number of
closed sets is not a closed set.

In our first pair of examples, the discrete topology and the trivial topology,
it happens that every open set is closed and every closed set is open. Consider,
however, our third example, the cofinite topology, where the closed sets are
the finite subsets and the full set. In the case of a finite set the cofinite topology
is the same as the discrete topology, but in the case of an infinite set the
topology cannot be discrete. In fact an infinite cofinite space contains sets
which are closed and not open, sets which are open and not closed, sets which
are neither open nor closed and, of course, sets which are both open and closed.
Here the empty set and the full set are the only subsets which are both open
and closed but in general one must expect to find others (see Chapter 9 below
for further details).



12 1. Topological Spaces

Closure and Interior

We now turn to a series of results concerning subsets of topological spaces.

Definition (1.6). Let H be a subset of the topological space X. The closure
Cl H of H is the intersection of the closed sets of X which contain H. The
interior Int H of H is the union of the open sets of X which are contained in H.

Clearly Cl H is closed and Int H is open. Thus Cl H = H if and only if H
is closed, while Int H = H if and only if H is open.

These remarks imply that closure and interior are idempotent operators,
asin

Proposition (1.7). Let H be a subset of the topological space X. Then
CI(ClH)=ClH, Int(Int H) = Int H.

Informally we may refer to Cl H as the smallest closed set of X containing
H and to Int H as the largest open set of X contained in H. Note that

X — Cl1 H = Int(X — H);

i.e. the interior of the complement is the complement of the closure. Also note
thatif H « K < X then Cl H =« C1 K and Int H < Int K.

In the case of the trivial topology we have Cl H = X for each non-empty
H and Int H = (f for each non-full H, while in the case of the discrete topology
we have Cl H = H = Int H, for each subset H of X. In the case of the cofinite
topology we have Cl H = H when H is finite and Cl H = X when H is infinite.

Definition (1.8). The subset H of the topological space X is dense in X if
ClH = X.

For example, in the case of the trivial topology every non-empty subset is
dense, while in the case of the discrete topology no proper subset is dense. In
the case of the cofinite topology on an infinite set the dense subsets are the
infinite subsets.

So far we have said nothing-at-all about the status of the individual points
(strictly speaking, one-point subsets) of a topological space. In general, these
have no special status; like other subsets they may or may not be open sets,
and may or may not be closed sets. However, the relation between the points
and the topology is always of importance and this is the next subject for
consideration. a ’

Definition (1.9). Let H be a subset of the topological space X and let x be a
point of X. If xeInt H then x is an interior point of H. If xe Cl H then x is
an adherence? point of H.

2 Various other terms, such as closure point, are used in the literature instead of adherence point.
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Thus Int H consists of the interior points of H and Cl H consists of the
adherence points of H. Our next result gives a useful criterion for a point to
be an interior point or an adherence point.

In the statement of this result, and elsewhere, we will use the expression
“open neighbourhood of” as a synonym for “open set containing”. This is
standard practice, although some topologists would write “neighbourhood”
where we write “open neighbourhood”. Thus an open neighbourhood of a
point x is simply an open set containing x, so that an open set is an open
neighbourhood of every point of itself. If the topology is discrete then any
subset containing x, including {x} itself, is an open neighbourhood of x. If the
topology is trivial then the only open neighbourhood of x is the full set X.

Proposition (1.10). Let H be a subset of the topological space X and let x be a
point of X. Then

(i) x is an interior point of H if and only if H contains some open neighbour-
hood of x,

(i) x is an adherence point of H if and only if H intersects every open
neighbourhood of x.

Note that (i) follows from (ii), and vice versa, by taking complements. It is
therefore sufficient to give details for (ii).

Suppose that every open neighbourhood of x intersects H. The open set
X — CI H does not intersect H and so does not contain x, hence x is an
adherence point of H.

Suppose that some open neighbourhood U of x does not intersect H. Then
X — U is closed and so contains Cl H. But x e U and so x is not an adherence
point of H.

Corollary (1.11). Let H be a subset of the topological space X. Then

(i) H is an open set of X if and only if each point of H admits an open
neighbourhood contained in H,

(ii) H is a closed set of X if and only if each point of X — H admits an open
neighbourhood contained in X — H.

Generating Families

Suppose that we are given a topology on a set X and wish to refine it by
making a particular subset H an additional open set. Unless X has the trivial
topology it is not sufficient simply to add H to the family of open sets. If the
axioms are to be satisfied we also have to add each of the sets U u (V n H),
where U and V run through the open sets of the original topology. Because
the operations of union and intersection distribute with respect to each other
it is easy to see that after enlarging the family of open sets in this way we again
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have a topology, the coarsest topology which contains H as well as the open
sets of the original topology.

So now let X be a set and let I" be a family of subsets of X. By the topology
generated by I" we mean the coarsest topology in which all the members of I"
are open sets. Thus as well as the empty set and the full set we have to take,
first, all finite intersections of members of I" and, secondly, all (unrestricted)
unions of these finite intersections.

An important simplification occurs if the first step, that of taking finite
intersections, can be omitted, so that it is only necessary to take unions of
members of the family. A convenient sufficient condition for this is given in

Definition (1.12). Let I" be a family of subsets of the set X. The family is
complete if, whenever two members of I intersect, the intersection is also a
member of I

For example, the one-point subsets of X satisfy this condition and generate
the discrete topology.

Of course the first step can also be omitted if, in (1.12), the intersection is
a union of members of I'. In that case I' is said to be a base for the topology
it generates. However, I do not propose to discuss bases in this sense.

The real line R provides a good illustration of the use of generating families.
In fact the rich variety of structures enjoyed by the real line enables it to be
topologized by various methods, certain of which lead to the same final result.
The first method we shall use depends on the order relation.

Ordered Sets

Recall that an order on a set X is a transitive relation < on X such that for
each pair of points &, 5 of X there holds one and only one of the following:

W &<m, () &=n (i) <<

As usual we write n > £ when & < 5. We also write £ < ywhené <noré=n,
and ¢ > n when & > 5 or & = 5. An ordered set® is a set X together with an
order <; usually X alone is sufficient notation.

Let X be an ordered set. A subset H of X is said to be an interval if the
following condition is satisfied. Suppose that « < ¢ < 8, where o, f, £€ X; if
o, fe H then £ € H. Here are some examples.

First, the full set X and the empty set (J are intervals. Second, for each
point o€ X the intervals

(—oo,0)={&&<a}, (o +00)={&E>0a}
are defined. These are called open intervals, to distinguish them from

(—o0, 0] ={& &< al, [o, +00) = {&: & >a},

3 The terms linearly ordered set and partially ordered set are also in common use.
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which are called closed intervals. The term ray is sometimes used to describe
open or closed intervals of this type.
Third, for each pair of points o, f € X the open intervals

(@ B)={sa<&<p}
and the closed intervals

[o, Bl ={&a < &< B}
are defined, also the half-open (or half-closed) intervals

[0 B) = (&0 < & < ),

(0 B]={&:a<&<p).

When o = f§ the open and half-open types of interval are empty, while the
closed interval reduces to {a}. When o > B all four types of interval are empty.

Note that the four types of interval just specified can be obtained as
intersections of rays. Thus

(O(, ﬁ)=(-—-00, ﬁ)ﬁ(d, +OO),
[OC, ﬁ] =(_w’ ﬁ]m[‘xa +w)’

and so on.

Consider the family of open intervals («, 8), where o, f€ X. The family
satisfies the completeness condition and generates a topology on X, called the
interval topology. Note that the open intervals are indeed open, in this topo-
logy. This is clear for («, §) itself, while for the open rays it follows from the
observation that (a, + c0) is the union of the generating sets (a, 8) where 8
runs through all points of X, and similarly in the case of (— o0, o). Hence the
closed intervals [, ] are indeed closed, since the complement of [«, f] is the
union of the open intervals (—oo, ) and (f, + o0). In particular, taking o« = 8,
we see that the individual points of X are closed, in the interval topology.

Of course the order on the set X can be used to produce a topology on X
in other ways. In discussing these however, we must be cautious about using
the terms open interval, closed interval and so forth, since they refer to the
situation in respect of the interval topology itself, we shall therefore place the
terms open and closed in inverted commas.

The family of “closed” intervals of the form [, 8] contains the one-point
sets and so simply generates the discrete topology. More interestingly each of
the families of “half-open” intervals generates a topology, coarser than the
interval topology, which is different from any we have previously considered.
The topology generated by the family of intervals of the form [e, ) is called
the upper Sorgenfrey topology, while the topology generated by the family of
intervals of the form (a, f] is called the lower Sorgenfrey topology. These
Sorgenfrey topologies* will be used to provide examples and counterexamples,
from time to time, but they do not play an essential role in what is to follow.

“ Also known as the upper and lower limit topologies.



16 1. Topological Spaces

Returning to the interval topology itself, in the special case of R, let us
examine the status of some subsets of R such as the subset @ of rationals and
the subset R — Q of irrationals. If £ is rational then any open interval (e, f),
where o < & < B, contains irrational numbers and so is not contained in Q;
therefore, Q is not open and R — @ is not closed. Similarly, if & is irrational
then any open interval («, ), where & < & < B, contains rational numbers and
sois not contained in R — @; therefore R — Q is not open and @ is not closed.
Observe, however, that for any real number ¢ an open interval («, ), where
o < & < B,contains both rational and irrational numbers, in other words («, )
intersects both Q@ and R — @. We conclude, therefore, that @ and R — @ are
dense subsets of R.

Neighbourhoods

So far we have been using the term “open neighbourhood of” as a synonym
for “open set containing”. From now on I also wish to use the term “neigh-
bourhood” as a synonym for “superset of an open neighbourhood”. Thus if x
is a point of the topological space X a subset N of X is a neighbourhood of x
if x belongs to the interior of N, and similarly if x is replaced by a subset of X.

If N itself is open the term “open neighbourhood” has not changed its
meaning. If N is closed we use the term “closed neighbourhood”.

For each point x of the topological space X the family of neighbourhoods
of x forms a filter 47, the neighbourhood filter of x. Since each neighbourhood
contains x itself, the principal filter ¢, is a refinement of /.. A filter base for
N is called a neighbourhood base at x. Thus a family %, of neighbourhoods
of x is a neighbourhood base if every neighbourhood of x contains a basic
neighbourhood, i.e. a member of 4,. For example, the open neighbourhoods
form a neighbourhood base although the closed neighbourhoods in general
do not. We shall discuss this point further in Chapter 6 below.

By way of illustration, consider the real line R with the interval topology.
Since the open intervals (o, 8) generate the topology, a neighbourhood base
at a given point & consists of those open intervals (e, f) such that « < & < §.
However, this is not the only neighbourhood base in this topology. Another,
which is generally more convenient in practice, consists of the open intervals
(€ — &, & + ¢) for all ¢ > 0. Or, more generally, we can use open intervals of
the form (¢ — Ae, & + ue), for fixed positive A, 4 and all ¢ > 0. Yet another
possibility is to use open intervals of the same form but with ¢ restricted to
the positive rationals. Each of these constitutes a neighbourhood base in the
interval topology.

Returning to the general case we now observe that (1.10) remains true for
any neighbourhood base at the point in question, rather than the open
neighbourhoods specifically. Since this is the form in which the result is most
commonly used we restate it as
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Proposition (1.13). Let H be a subset of the topological space X and let x be a
point of X. In terms of a given neighbourhood base at x then

(i) x is an interior point of H if and only if H contains some basic neighbour-
hood of x,

(i) x is an adherence point of H if and only if H intersects every basic
neighbourhood of x.

The corollary can also be reformulated in a similar fashion.

Neighbourhood filters at different points are not unrelated since, after all,
the same open set is a neighbourhood of every one of its own points. In fact,
the collection of filters 47, for all x € X, satisfies the following condition.

Definition (1.14). Let X be a set and let {#,: xe X} be a collection of filters
on X, such that ¢, is a refinement of 4} for each x. The collection is coherent
if for each point x of X and each member N of ./ there exists a member N’
of A, such that N is a member of /.., for each point x’ of N".

Proposition (1.15). Let X be a set and let {/,: x€ X} be a coherent collection
of filterson X, as in (1.14). Let I be the family of subsets U of X which satisfy
the condition: U € N, whenever x € U. Then I constitutes a topology on X such
that A, for each point x, is the neighbourhood filter of x defined by the
topology.

Let us refer to the members U of 7, without prejudice, as open sets. We
first have to verify the axioms of topology. Since the empty set and the full set
are obviously open, we only have to check the axioms for intersection and
union.

Let U, V be open. If xe U n V then U, Ve 4, since xe U and x e V, hence
UnVed,,and so U Visopen.

Let {U;} be a family of open sets. If x e | ) U; then x € U; for some j and so
Uje A, But | ) U;is a superset of U; and so | ) U;€ A;. Therefore | | U;is open,
completing the verification.

It remains to be shown that the neighbourhood system determined by the
topology is the same as the coherent collection which determined the topo-
logy. If N is a neighbourhood of the point x then xe U = N for some open
U. Now x e U implies U € 4, and so N € 4, since N is a superset of U. Thus
each neighbourhood of x is a member of A4;; conversely, each member N of
A is a neighbourhood of x. Define U to be the set of all points ye X such
that N e 4. Clearly x is one of these points, and so x € U. Also if N € .4}, then
yeN,and so U = N. I assert that U is open. For if ye U then N € 4} and so,
by (1.14), there exists a member N’ of .4} such that N e 4], whenever y’e N'.
But N e ./, implies y’ € U, by definition of U, so N’ = U and so Ue ./}, as
required. This completes the proof.
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Metric Spaces

A coherent collection of filters, as in (1.14), is generally known as a fundamen-
tal system of neighbourhoods. This approach to topology is particularly well
suited to the case when the set in question is equipped with a metric. In case
the reader is not already familiar with the notion of metric space, we recall
the essential features, beginning with

Definition (1.16). A metric on a set X is a non-negative real-valued function
p: X x X — R such that

(i) p(& &) =0forall (eX,

(i) p(& n) = p(n, &) forall &, ne X,
(ii)) p(& O) <p(&n) + pn, {)forall & n, {eX,
(@iv) if p(& n) = 0, for some &, ne X, then & = g.

A set X together with a metric p is called a metric space. Usually X alone
is sufficient notation.

For example, the discrete metric on X is given by p(&, %) =0 if & =1y,
p(&, n) = 1 otherwise.

For another example, the euclidean metric on the real line R is given by

p(&n) =1&—nl

More generally, the euclidean metric on the real n-space R" is given by

p((éla ceey én)’ (}71) sees 7],,)) = ((51 - 771)2 + 4+ (gn - nn)2)1/2.

Other metrics on R”* (we take n = 2 for simplicity) include

(@) p(Ce1s x2), (Y15 ¥2)) = %1 — yal + 1x2 — y2l,
(i) p((x1, x2), (y1, ¥2)) = max{|x1 — Vil 1%y — ,V2|}-

To get some feeling for these different metrics on R? it may be helpful to
draw the “unit circle” with respect to each of them, i.e. the set of points x € R?
such that p(x, 0) = 1. For the euclidean metric the unit circle is the usual one.
For the discrete metric it is the punctured plane R? — {0}. For the last two
metrics listed above, the unit circle is the lozenge shaped figure on the left in
the case of (i) and is the square on the right in the case of (ii).

) (i)
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If the examples we have so far mentioned were the only examples of metric
spaces the motivation for studying the general concept might not seem very
strong. But in fact there are a multitude of examples of different types which
arise very naturally in functional analysis. Here are just a few.

Consider the set H of sequences {x, > of real numbers such that the series
Y x2 converges. A metric p on H is defined by

0 1/2
p(<xn>> <yn>)={;(xn~yn)2} s

and H with this metric is called the Hilbert (sequence) space.
For any non-empty set X let B(X) denote the set of bounded real-valued
functions X — R. The supremum metric p on B(X) is given by

p(f, 9) = sup|f(&) — g(&)],
teX

where f, g: X —» R are bounded.

For any non-empty topological space X let C(X) denote the set of contin-
uous real-valued functions X —» R and let C*(X) = B(X) n C(X) denote the
subset of bounded functions. We can give C*(X) the supremum metric, as
above, but this is by no means the only possibility.

For example, take X = I = [0, 1]. One alternative to the supremum metric
is the metric p given by

1
p(f,9) = L 1f(€) — g(O)ldg

and another is the metric p given by
1 1/2
p(f.9) = HO (f(&) = 9(£))? dé} :

Returning to the general case, let X be a metric space with metric p. We
introduce the notation

By(x) = {& p(& x) < g},

where ¢ > 0, for the closed ¢-ball at x and

Uy(x) = {¢&: p(& x) < e},

where ¢ > 0, for the open ¢-ball. The justification for the use of the terms open
and closed in this context will emerge in a moment. Note that in the case of the
real line R, with the euclidean metric, the closed e-ball is just the closed inter-
val [x — &, x + ¢] and the open &-ball is just the open interval (x — ¢, x + ¢).
Clearly, the open ¢-balls at a given point x of X, for all positive ¢, generate
a filter ./, on the metric space X. I assert that the collection of filters .47, for
all x e X, satisfies the coherence condition (1.14). Since it is sufficient to show
that the condition is satisfied for members of the filter base, consider the open
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e-ball U,(x), where ¢ > 0 and xe X. If £e U,(x) then p(&, x) < ¢ and so § =
¢ — p(&, x) > 0. Therefore Us(¢) = U,(x), by the triangle inequality. Since Uy(€)
is a member of 4 this establishes coherence. We conclude, therefore, that the
collection of filters determines a topology on X in which ./} is the neighbour-
hood filter of x, for each point x. We refer to this as the metric topology.

For example, in the case of the discrete metric 4 reduces to the principal
filter ¢, and the metric topology is just the discrete topology.

For another example, consider the real line R, with the euclidean metric.
At a given point x of R each basic neighbourhood of the metric topology is
also a basic neighbourhood of the interval topology, while each basic neigh-
bourhood («, B) of the interval topology contains the basic neighbourhood
(x — & x + ¢) of the metric topology, where ¢ = min(f — x, x — «). Therefore
the neighbourhood filters are the same, in both cases, and so the interval
topology and the euclidean topology coincide. Since the euclidean topology
is available in higher dimensions while the interval topology is not we shall
tend to use the term euclidean topology from now on, even in the case of the
real line.

Returning to the general case it should be noted that although the metric
topology depends on the choice of metric it is nevertheless true that different
metrics may determine the same topology. For example, if p is a metric on the
set X then 2p is also a metric on X; the open ¢-balls in the case of p are the
same as the open 2e-balls in the case of 2p, hence the metric topologies are
the same since the neighbourhood filters are the same.

In the metric topology the open e-balls (¢ > 0) are obviously open sets. To
see that the closed ¢-balls (¢ > 0) are closed sets we use the test in (1.11): if
£ ¢ B,(x) then p(&, x) > ¢ and so Uy(¢) = X — B,(x), where § = p(&, x) — &. In
particular (taking ¢ = 0) we see that points are closed, in the metric topology.
This implies, of course, that any topology in which points are not closed—for
example, the Sierpinski topology on the point-pair—cannot be obtained from
a metric.

According to (1.13), the necessary and sufficient condition for a point x to
adhere to a subset H of a metric space X is that U,(x) intersects H for all ¢ > 0.
We can restate this as follows. Assuming H is non-empty the set

- A{plx, &): EeH}

of real numbers is bounded below (by zero) and so the infimum is defined. We
denote the infimum by p(x, H) and note that p(x, H) = 0 if and only if x
adheres to H. If, as is natural, we think of p(x, H) as the distance from x to H
then the closure of H is just the set of points whose distance from H is zero.

It should be noted that the closure of the open ball U,(x) is generally a
proper subset of the closed ball B,(x), although Cl U,(x) = B,(x) in the case of
R". For example, if X has the discrete metric then ClI U;(x) = Cl{x} = {x}
while B; (x) = X. However the closed balls at x always form a neighbourhood
base at x.
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It is usually not difficult, in practice, to decide the status of a given subset
of a metric space. For example, consider the real n-space R", with the euclidean
metric, and write [[(xy, ..., x,)|| = (x? + --- + x2)"? in the usual way. Among
the subsets of R" there are several which will often be featured in our work
as it progresses. Using the criteria of (1.11) it is not difficult to decide the
status of each of them. Notable examples of closed sets include the close
n-ball

B" = {xeR™ ||x| < 1}
and the (n — 1)-sphere
St = {xeR™ ||x|| = 1}.
Notable examples of open sets include the open n-ball
Ur=B"—S""1={xeR" |x|| <1}
and the punctured open n-ball
U"— {0} = {xeR" 0 < |x|| < 1}.

Further examples will be given in the exercises.

Filters on Topological Spaces

Recall that in a topological space X, a point x of X is said to adhere to a
subset H of X if x belongs to the closure Cl H, i.e. if every neighbourhood of
x intersects H. We extend this to filters as follows.

Definition (1.17). Let & be a filter on the topological space X. The point x of
X adheres to & if x is an adherence point of every member of %.

The condition implies, incidentally, that # and .4, generate a filter which
refines them both. Note that if x adheres to & then x also adheres to every
filter which is refined by &. Note also that if & is generated by a filter base
then x adheres to & if x adheres to every member of the filter base. In
particular, if # is the principal filter generated by a non-empty subset H of
X then the adherence set of & is just the closure Cl H of H.

Obviously the set of adherence points of a filter & is just the intersection
of the closed members of &. Suppose that X is an infinite set with cofinite
topology. Then the adherence set of every filter # on X is non-empty. If every
member of & is infinite then the adherence set is the full set.

The notion of convergence, and the associated notion of limit, is familiar
from the theory of sequences of real numbers. It is easy enough to generalize
this to sequences in any topological space, as in



22 1. Topological Spaces

Definition (1.18). A sequence {x,> of points of the topological space X
converges to a point x of X if for each neighbourhood U of x there exists an
integer k such that x,e U whenever n > k.

It is sufficient, of course, if the condition is satisfied for each member U of
a neighbourhood base at x. For example, if X has the discrete topology then
{x,> converges to x if and only if there exists an integer k such that x, = x
whenever n > k. More generally, if X is a metric space then {x,) converges
to x, in the metric topology, if and only if for each positive ¢ there exists an
integer k such that x,e U,(x) whenever n > k.

If {x,> converges to x, as in (1.18), we describe x as a limit of {x,> and
write x,, — x. Limits, when they exist, are not necessarily unique. For example,
if X has the trivial topology then every sequence in X converges to every point
of X. However, limits are clearly unique in the metric case.

In general, sequences do not carry enough information about the topology
for it to be possible to develop a satisfactory theory of convergence. The
difficulty is overcome if we replace convergent sequences by convergent filters,
as follows.

Definition (1.19). Let & be a filter on the topological space X. The point x
of X is a limit point of & if & is a refinement of the neighbourhood filter A7
of x.

When this condition is satisfied we say that & converges to x, and write
& — x. For example, 4} — x for each xe€ X. Note that if # converges to x
then so does any refinement of . In other words limit points are inherited
by refinements, whereas for adherent points it goes the other way.

The relation between convergence of filters and convergence of sequences
is explained in

Proposition (1.20). A sequence {x,» of points of the topological space X
converges to x, in the sense of (1.18), if and only if the elementary filter
associated with {x,» converges to x, in the sense of (1.19).

The proof is an immediate consequence of the definition (0.2) of the term
elementary filter.

Limit points when they exist, are not in general unique. For example, if X
is a trivial space every filter on X converges to every point of X.

Our next result elucidates the relationship between adherence points and
limit points.

Proposition (1.21). Let & be a filter on the topological space X and let x be a
point of X. Then x is an adherence point of F if and only if x is a limit point
of some refinement of F.



Exercises 23

For if x adheres to # then each member of the neighbourhood filter 4,
of x intersects every member of % ; hence the common refinement ¢ of A,
and % is defined and has x as a limit point. Conversely, if x is a limit point
of some refinement ¥ of & then each neighbourhood of x is a member of ¥
and so intersects every member of % thus x is an adherence point of #. In
case & is an ultrafilter strict refinement of & cannot occur and so we deduce

Corollary (1.22). For an ultrafilter & on the topological space X each adherence
point of & is also a limit point of F.

EXERCISES

1. Let K < H < X, where X is a topological space. Show that H — K is open if H is
open and K is closed, while H — K is closed if H is closed and K is open.

2. Show that if U is an open set of the topological space X then
UnClH < Cl(UnH)
for each subset H of X.
3. Show that for any open set U of the topological space X
Cl U = Cl(Int(Cl U)).

4. A subset of a topological space is said to be regularly open if it coincides with the
interior of its closure, regularly closed if it coincides with the closure of its interior.
Show that the complement of a regularly open set is regularly closed, and vice
versa. Also show that the interior of the closure of a subset is always regularly
open, and that the closure of the interior of a subset is always regularly closed.

5. In the real line R, with the euclidean topology, give an example of an open set
which is not regularly open, and an example of a closed set which is not regularly
closed.

6. Let {H;} be a family of subsets of the topological space X. Prove or disprove the
relations

Cl(J H) = (C1H), Cl(("\ H)) = (\(C1 H)),

in the general case, and do the same when the family is finite. Similarly with the
interior operator in place of the closure operator.

7. If no proper subset of the topological space X is dense, is the topology necessarily
discrete?

8. If every countable subset of the topological space X is closed, is the topology
necessarily discrete?

9. Let X be an infinite set and let x, be a point of X. Let  be the family of subsets
of X which are either (i) cofinite or (i) do not contain x,. Show that J is a topology
on X in which every point other than x, is both open and closed.



24 1. Topological Spaces

10. If p is a metric on the set X, for which values of n is p” also a metric?

11. Show that if ¢ is any real-valued injection defined on the set X then a metric p on
X is given by

p& n) = [8() — d(n)l.

12. Find a topology on the real line, other than the discrete topology and the trivial
topology, in which every open set is closed and vice versa.



CHAPTER 2

Continuity

General Remarks

In branches of mathematics where the objects of study are sets with some kind
of additional structure, a special role is played by functions which preserve
that structure. In algebra, for example, where the additional structure takes
the form of one or more binary operations, the structure-preserving functions
(generally called homomorphisms) are those which respect the binary operation
or operations.

In topology there are several possible choices for the notion of “structure-
preserving” function. Specificially, let ¢: X — Y be a function, where X and
Y are topological spaces. Under ¢, the direct image of a subset H of X is a
subset ¢H of Y, while the inverse image of a subset K of Y is a subset ¢ 1K
of X. At first sight there appear to be four main candidates for the title of
structure-preserving function, namely those which satisfy one of the following
conditions:

(i) ¢H is open in Y whenever H is open in X,

(i) @H is closed in Y whenever H is closed in X,
(iii) ¢ *K is open in X whenever K is open in ¥,
(iv) ¢ 'K is closed in X whenever K is closed in Y.

In addition one can obviously consider combinations of these.

It turns out that the direct image conditions (i) and (ii) are less important
than the inverse image conditions (iii) and (iv), although just why this is so
will emerge only gradually. Certainly, it is partly due to the fact that the inverse
image behaves better than the direct image in respect of operations such as
complementation.
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In fact, (i) and (ii) are distinct conditions, as can easily be seen, while (iii)
and (iv) are equivalent conditions. Essentially, therefore, there is just the one
inverse image condition, and this is called continuity. We study this most
important condition in the present chapter and postpone consideration of the
direct image conditions until Chapter 4.

Continuous Functions

Definition (2.1). Let ¢: X — Y be a function, where X and Y are topological
spaces. Then ¢ is continuous if the inverse image of each open set of Y is an
open set of X or, equivalently, if the inverse image of each closed set of Yis a
closed set of X.

Thus ¢ is necessarily continuous if the topology of X is discrete or if the
topology of Y is trivial. More interestingly, suppose that X and Y have the
cofinite topology. Then ¢ is continuous if and only if ¢~1(y) is finite for each
point y of Y.

Constant functions are continuous. For suppose that ¢X = {y,} for some
point y, of Y. The inverse image of a subset K of Y is either the full set or the
empty set according as K does or does not contain y,, and so ¢ is continuous.

Note that the identity function on any topological space is continuous. Also
that if ¢: X — Y and y: Y — Z are continuous, where X, Y and Z are topo-
logical spaces, then the composition y¢: X — Z is continuous. This follows
immediately from either form of the definition.

Continuity of a function at a point of its domain is defined as follows.

Definition (2.2). Let ¢: X — Y be a function, where X and Y are topological
spaces. Then ¢ is continuous at the point x of X if for each open neighbour-
hood V of ¢(x) in Y there exists an open neighbourhood U of x in X such that
#U is contained in V.

In fact ¢ is continuous, as in (2.1), if and only if ¢ is continuous at each
point x of X. For suppose that the latter condition is satisfied. If V' is open
in Y then V is an open neighbourhood of ¢(x) for each point x of ¢™*V and
so, by the condition, there exists an open neighbourhood U of x which is
contained in ¢~1V; thus ¢ 'V is open in X.

Conversely, suppose that ¢ is continuous. If x is a point of X and V is an
open neighbourhood of ¢(x) in Y then, by continuity of ¢, ¢!V is an open
neighbourhood of x in X and, since ¢¢ 'V < V, this shows that ¢ is continuous
at x.

There are various other ways of formulating the continuity condition,
such as
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Proposition (2.3). Let ¢: X — Y be a function, where X and Y are topological
spaces. Then ¢ is continuous if and only if

¢ ClH = Cl ¢H
for each subset H of X.

For suppose that the condition is satisfied for all H, and in particular for
¢~1F, where F is closed in Y. Then

¢ Cl(¢™'F) = Cl(¢¢™'F) = C1 F = F,

since F is closed. Thus Cl ¢ 'F = ¢~'F and so ¢~ F is closed.

Conversely, suppose that ¢ is continuous. Let H be a subset of X and let
x be a point of Cl H. If V is an open neighbourhood of ¢(x) in Y then,
by continuity, there exists an open neighbourhood U of x such that ¢U < V.
Then ¢U intersects ¢H, since U intersects H, and so V intersects H. Thus
#(x)e Cl ¢H. This completes the proof.

Recall that the inverse image behaves well not only in relation to comple-
menentation but also in relation to the operations of union and intersection.
Thus we obtain

Proposition (2.4). Let ¢: X — Y be a function, where X and Y are topological
spaces. Then ¢ is continuous if the inverse image of each member of a generating
family for the topology of Y is open in X.

For example, suppose that X and Y are ordered sets and that the function
¢: X — Y is order-preserving, in the sense that

E<n = ¢&)<dm) (&neX).

Also suppose that ¢ is bijective. Then for each point x of X and each open
interval («, B) in Y containing ¢(x) we have the open interval (¢ ~*(x), 4~ *(B))
in X containing x. Since

(@@, 47(B) = ¢7" (. B)

this shows that ¢ is continuous at x, in the interval topology, and so that ¢ is
continuous, since x is arbitrary.

In particular, consider the translation function ¢: R — R given by ¢(x) =
x + 4, where AeR. This is bijective and order-preserving, in the standard
order, and so continuous in the interval topology.

One can perfectly well use (2.4) when the codomain is a metric space.
However, in that case the following is generally more convenient.

Proposition (2.5). Let ¢: X — Y be a function, where X and Y are topological
spaces. Then ¢ is continuous at a point x of X if, in terms of a given neighbour-
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hood base at ¢(x), the inverse image of each basic neighbourhood of ¢(x) contains
a neighbourhood of x.

For if V, as in (2.2), is an open neighbourhood of ¢(x) then V contains a
basic neighbourhood W of ¢(x). So if ¢~ W contains the neighbourhood U
of x then so does ¢~ V.

For example, suppose that X and Y are metric spaces with metrics p and
o respectively. In this case the condition for ¢: X — Y to be continuous at a
given point x of X is that for each positive ¢ there exists a positive ¢ such that

Up(x) = 7V (4(x))
or, equivalently, such that

PUs(x) = V,(4(x)).

Here Uy(x) denotes the open d-ball around x in X and V,(¢(x)) denotes the
open ¢-ball around ¢(x) in Y.

Clearly, the condition will be satisfied if ¢ is isometric, in the sense
that

p& n) =0c(@&), o) (& neX),

or, more generally, when there exists a positive 4 such that

p& n) = po(d(&), ¢(n) (& neX),

In particular, consider the dilatation function ¢: R — R given by ¢(x) = vx,
where ve R. We already know that ¢ is continuous when v = 0. We now see
that ¢ is continuous when v # 0, since the above condition is satisfied with
w= vl

By combining translations and dilatations we obtain the family of affine
transformations ¢: R — R, where

o(x)=vx + A (4, veR)

What we have done so far, therefore, shows that affine transformations are
continuous. It would be quite possible at this stage to go on to show that
real addition and multiplication, as functions R x R — R, are continuous
operations. However, I prefer to-develop the theory a little further first.

Returning to the general situation we observe that the continuity conditions
can be neatly restated in terms of convergence of filters, as in

Proposition (2.6). Let ¢: X — Y be a function, where X and Y are topological
spaces. Then ¢ is continuous at the point x of X if and only if for each filter &
on X which converges to x the direct image filter ¢, F on Y converges to ¢(x).

In fact, the definition given in (2.2) is equivalent to the condition that ¢, 4
converges to ¢(x). So if the condition in (2.6) is satisfied we have only to put
F = AN, and conclude that ¢ is continuous at x. Conversely, if ¢ is continuous
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at x and & converges to x then & refines .4, hence ¢, refines ¢,/ hence
if ¢, converges to ¢(x) then so does ¢, 7.

Corollary (2.7). Let ¢: X — Y be a continuous function, where X and Y are
topological spaces. If a sequence {x,» in X converges to a point x then the
sequence {d(x,)> in Y converges to the point ¢(x).

For an example where the converse of (2.7) breaks down, consider the real
line R with the “cocountable” topology in which the open sets are the empty
set and the complements of the countable subsets. If Q' is the subset consisting
of the irrationals then every rational is obviously an adherent point of Q' (as
in the euclidean topology) although no rational is a limit point of a sequence
of irrationals.® Thus in R with the cocountable topology the only convergent
sequences are those which are ultimately constant. It follows that the identity
function on R, with the cocountable topology, to R, with the euclidean
topology, preserves convergent sequences but is not continuous.

Homeomorphisms

Definition (2.8). A homeomorphism ¢: X — Y, where X and Y are topological
spaces, is a bijective function such that both ¢ and ¢! are continuous.

The term topological equivalence is often used instead of homeomorphism.
Note that it is insufficient for ¢ to be a continuous bijection. For example,
the identity function on a set X is continuous when the domain has the
discrete topology and the codomain any non-discrete topology but it is not a
homeomorphism.

The translation functions R — R are obviously homeomorphisms. More
generally, the affine transformation ¢: R — R given by

px)=Ax+u (4 peR)

is a homeomorphism when 4 # 0, since then ¢ is bijective with inverse the
affine transformation ¢~*: R — R given by

7)) = A" x — A7,

Note thatif ¢: X' — X is a bijection, where X’ is a set and X is a topological
space, we can topologize X’ so as to make ¢ a homeomorphism. Specifically,
we take the open sets of X' to be precisely the inverse images, with respect to
¢, of the open sets of X. In case the topology of X is generated by a family I'
the topology of X" is generated by the family I'” consisting of the inverse images
of the members of T".

5 If the reader has not seen a proof of this I trust it is sufficiently plausible for the purposes of
this counterexample.
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For example, consider the set C of complex numbers. By taking real and
imaginary parts we obtain a bijection between C and the real plane R?, and
then use the above procedure to topologize C. Similarly, in higher dimensions
we can topologize C" so as to make the corresponding bijection C" — R*" a
homeomorphism.

For another example, consider the set M(n, R) of real n x n matrices. By
listing the entries x;; of each matrix ||x;| in a definite order we obtain a
bijective correspondence with the real n x n space, and then topologize M(n, R)
so as to make the correspondence a homeomorphism.

Definition (2.9). The topological space X is homogeneous if for each pair of
points &, 5 of X there exists a homeomorphism ¢: X — X such that ¢(&) = 5.

Discrete spaces and trivial spaces are homogeneous, as are cofinite spaces.
Also the real line R is homogeneous, using translation functions. However,
the two-point Sierpinski space is not homogeneous since the function which
interchanges the points is not continuous.

The Topological Product

In Chapter 0 we have described the properties of the cartesian product [ [ X;
of a family {X;} of sets. In the topological situation we shall be particularly
concerned with subsets of [ | X;. Among these subsets a special role is played
by those which are of the form [] H;, where H; is a subset of X for each
index j; we refer to these as product sets. And among the product sets a special
role is played by those which are such that H; # X for at most a finite number
of indices j; we refer to these as restricted product sets. In the case of a finite
family every product set is restricted, of course, but in the general case the
distinction is important.

So now let {X;} be a family of topological spaces. We should like to
topologize the cartesian product [ | X; so that the projection

7 HX,;'—’XJ

is continuous, for each index j. This means that the open sets of the topology
must include the inverse images 7, ' U;, where Uj is open in X;. The product
topology, for the cartesian product, is the topology generated by the family of
these inverse images, for all indices j and open sets U; of X;. The corresponding
complete generating family, obtained by taking finite intersections, is precisely
the family of restricted product open sets [ | U;, as defined above. With this
topology []X, ; is called the topological product, and has the following
characteristic property:

Proposition (2.10). Let {X;} be a family of topological spaces. Let ¢: A — [ [ X;
be a function, where A is a topological space and [ | X; s the topological product.
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Then ¢ is continuous if and only if each of the components ¢; = m;p: A - X;
is continuous.

Naturally, one asks what happens if we take product open sets without
restriction as the generating family. The topology on the cartesian product
thus defined is called the box topology: it is of relatively minor importance.
For example, consider the diagonal function

A X - X7,

where X is a topological space. The inverse image of the product open set
[TU;, where U; is open in X for each index j, is the intersection () U;. For a
restricted product open set the inverse image is open, hence A is continuous
with the product topology, but A is not continuous, in general, with the box
topology.

Many of the properties of the topological product can be deduced directly
from the characteristic property, without going back to the definition of the
product topology. One can see in this way, for example, that the diagonal
function

A X X!

is continuous, since each of its components is the identity function on X. One
can also see that if

B XY (jed)

is a family of continuous functions, where X; and Y; are topological spaces,

then the product
[T4:11%-11%

is also a continuous function. Moreover, if ¢; is a homeomorphism for each
index j, then so is the product [ | ¢;. It follows, incidentally, that the topological
product of the members of a family of homogeneous spaces is a homogeneous
space.

To illustrate the general theory let us extend to higher dimensions some of
the results already proved for the real line. First, consider the translation
function ¢: R" —» R", where

dx)=x+1  (LeR").

We recognize this as the product [ | ; of the translation functions ¢;: R - R,
where

glx)=x+4 (j=1...,n)
here /; is the jth coordinate of A. Since each of the ¢; is continuous, so is ¢

itself. A similar argument shows that the dilatation function ¢: R" —» R" is
continuous, where

$(x) =px  (ueR).
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Returning to the definition of the topological product in general, there are
several more points to be made. First of all, the products of closed sets are
closed, without restriction, in the product topology. For if E; is closed in X},
for each index j, then ;' E; is closed in [ | X; and so the intersection

N E=]1E
is closed. More generally, if H; is a subset of X, for each index j, then
c[lH=TICH,

without restriction. It should be noted that the corresponding relation for the
interior operator is only true for finite products.

It is not always necessary to use the whole family of restricted products of
open sets. Thus suppose that the topology of X; is generated by a family T
of subsets, for each index j. Then the product topology on [ | X; is generated
by the family I of restricted products [ | U;, where U; belongs to T; for each
index j for which U, is not full. Note that I" generates the product topology
if T; generates the topology of X; for each j.

Another situation in which one can economize on generators arises in
relation to the topological Jth power X”, where X is a topological space.
Recall that points of X7 may be interpreted as functions J — X. For each finite
subset S of J and each open set U of X let M(S, U) denote the set of functions
£:J - X such that &S = U. It is easy to check that the family of subsets of
X7 thus defined constitutes a complete generating family for the product
topology, in this case. Moreover, if T is a complete generating family for the
topology of X then the family of subsets M(S, U), for S finite and UeT, is a
complete generating family for the topology of X"

Itis clear from the definition of the product topology that restricted product
neighbourhoods form a neighbourhood base in the topological product.
Specifically, let {X;} be a family of topological spaces and let ¢ be a point of
the topological product [ [ X; with jth projection 7;({)€ X;. By a restricted
product neighbourhood of ¢ I mean a neighbourhood of the form [ [ H;, where
H; is a neighbourhood of 7;(¢) in X; and where H; is full for all but a
finite number of indices j. These restricted product neighbourhoods form a
neighbourhood base at & More generally, a neighbourhood base at ¢ is
obtained if the H; are taken to be members of a neighbourhood base at ()
for each index j. We deduce

Proposition (2.11). Let {X;} be a family of topological spaces. Then a filter &
on the topological product [] X; converges to the point  if and only if m; F
converges to mi(£) for each index j.

In one direction this is obvious, since the projections 7; are continuous.
For the proof in the other direction it is sufficient to show that & contains
each restricted product neighbourhood [] H; of £&. However

[1H = (\n"H,,
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taken over no more than a finite number of indices j. Now ;! H; belongs to
Z ,for each such j, since H; is a neighbourhood of the limit point 7;(¢) of 7, .
Therefore the finite intersection belongs to %, which completes the proof.

Corollary (2.12). Let {X;} be a family of topological spaces. Then a sequence
{x,» in the topological product | | X; converges to the point & if and only if the
sequence {mj(x,)> converges to ;(§) for each index j.

When the indexing set is finite the proofs of these results can be simplified
and further results can be obtained. For example, suppose that each of the X;
is a metric space with metric p;. Since J is finite a metric p on the cartesian
product [ [ X; is given by

p(x, x) = (. p (mi(x), m(x"))M2;

the formula is modelled on the one used in the euclidean case. Moreover, the
metric topology on [ X; obtained in this way coincides with the product
topology. To see this we have to compare neighbourhood bases at a given
point x of [ ] X;. Each open ¢-ball (¢ > 0) at x with respect to p contains a
product of open &/2-balls at 7;(x) with respect to p;. Each product of open
g;-balls (¢; > 0) at m;(x) with respect to p; contains an open e-ball at x with
respect to p, where
& = ming;.
jelJ

So although the neighbourhood bases are different they generate the same
neighbourhood filter. Therefore the metric topology agrees with the product

topology, as asserted.

A curious result, which is not without its uses, concerns the metric function
p: X x X —» R for any metric space X. I assert that p is continuous, in the
metric topology. For if £, € X and & > 0 are given, then with 6 = ¢/2, we have
(&, 1) — p(& n)| < ¢ whenever & e Us(¢) and #' € Us(n), which establishes
continuity at (&, 7). A consequence is that the function X — R, given by
x> p(x, xo)(xo € X), is also continuous.

To illustrate the general theory consider the addition function j: R x R— R,
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given by (s, f) = s + t. It is simple enough to show that ¥ is continuous, of
course; one method is as follows. First observe that ¥ is continuous at the
point (0, 0) of the domain. In fact, given the basic open neighbourhood
(—e¢, +¢) of Y(0, 0) = 0 in the codomain, where ¢ > 0, we have

Y(—98, +0) X (=0, +9)) = (—¢, +¢),

where 6 = ¢/2. To prove continuity at an arbitrary point (&, ) of the domain
one can either proceed similarly or else make use of translation functions as
follows.

Observe that Y(a x ) = vy, as shown below, where a, g, y are translation
by —¢&, —n, —(& + ), respectively.

RxR —— R xR

RXR—'//) R

Since a, § are continuous, and ¥ is continuous at (0, 0), as we have just seen,
so Y(a x PB)is continuous at (£, n). Therefore yy is continuous at (¢, ), and so
Y is also continuous at (&, ), since y is a homeomorphism.

This mode of procedure may seem more effort than the direct method, in
this particular case. However, we shall be using similar procedures in other
cases shortly where direct methods are messy and unilluminating,

The argument we have given generalizes at once to higher dimensions and
shows that vector space addition R* x R" — R" is continuous, for all n. Hence
vector space addition C" x C"— C" is continuous, for all n. Also matrix
addition

M@, R) x M(n, R) > M(n, R)

is continuous, for all n.

Now let us turn to the multiplication function ¢: R x R — R. To show that
¢ is continuous at the point (0, 0) of the domain, recall that a neighbourhood
base for the point ¢(0, 0) = 0 of the codomain is formed by the open intervals
(—¢, +¢), where 0 < & < 1. Since

d((—¢, +&) x (—¢, +8) = (—¢, +8),

continuity at (0, 0) follows at once. To show that ¢ is continuous at the point
(1, 1) of the domain, recall that a neighbourhood base for the point ¢(1, 1) = 1
of the codomain is formed by the open intervals (1 — 2¢, 1 + 3¢), where
O<e<l1.Sinced((1 —&, 1 +¢ x (1 —e 1 +e)c(l — 21 + 3¢, continu-
ity at (1, 1) follows at once. To show that ¢ is continuous at the point (1, 0) of
the domain, observe that a neighbourhood base at the point ¢(1, 0) = 0 of
the codomain is formed by the open intervals (— 2¢, 2¢), where 0 < ¢ < 1. Since

(1 — & 1 +8) x(—¢ +e&)) = (—2¢ +2¢),
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continuity at (1, 0) follows at once, and continuity at (0, 1) follows by symmetry.

So now consider the general case. Given the point (£, ) of R X R, we have
a commutative diagram as shown below, where o denotes dilatation by & for
& # 0, the identity for ¢ = 0, where § denotes dilatation by # for # # 0, the
identity for # = 0, and where y = af.

RxR —, RxR

't

Now a, f§, y are homeomorphisms in all cases, as we have seen. If &, # are
non-zero then ¢ on the left is continuous at (1, 1), as we have shown, so
yé = ¢(a x B)is continuous at (1, 1), so ¢ is continuous at (&, ). If € is non-zero
and n = 0 we argue in the same way, replacing (1, 1) by (1, 0), and similarly if
¢ = 0andn # 0. Thus all cases are covered and we see that real multiplication
is continuous.

Similarly in higher dimensions. To show that scalar multiplication

f:R x R" > R"

is continuous we use the above and (2.10). Specifically, to show that the jth
component 6; = ;6 of 0 is continuous (j =1, ..., n) we observe that 6, =
#(id x =;), where ¢: R x R — R is real multiplication, as before.

A somewhat similar argument shows that bilinear functions R”? x R? —» R
are continuous, for all p, g, and then again that matrix multiplication

M(n, R) x M(n, R) > M(n, R)

is continuous, since each of the components is bilinear. A further example is
the determinant function

det: M(n, R) - R.

Similarly in the complex case.

Of course, one is not restricted to the linear situation. For example, to
show that the squaring function R — R, given by x+ x2, is continuous, one
expresses the function as a composition

RARxRAR

More generally, by combining the operations of addition and multiplica-
tion, in obvious ways, one obtains that each polynomial function R — R 1is
continuous, where

Xag +ay;x + 0+ a,x" (a;eR).

Similarly for complex numbers.
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Returning to the general case there are some remarks to be made on the
subject of relations. First of all, observe that a relation R on the topological
space X is, of course, a subset of the topological product X x X. When R is
an equivalence relation, the equivalence classes are open in X when R is open,
and closed in X when R is closed. Not quite so obviously the equivalence
classes are also closed in X when R is open, because the complement of one
equivalence class is just the union of all the others, and the union of open sets
is open. In the literature, incidentally, the terms open relation and closed
relation are used in a different sense.

In this connection some interesting questions arise concerning neigh-
bourhoods of the diagonal AX in the topological product X x X. Such
neighbourhoods can be regarded as relations on X and so the terminology
and notation set forth in the preliminary chapter are applicable. All such
neighbourhoods are reflexive, of course, since they contain the diagonal.
Neighbourhoods of the special form

U x vy,

where {U;} is an open covering of X, are also symmetric. When the members
of the covering are mutually disjoint such neighbourhoods are also transitive.

Every neighbourhood U of the diagonal contains the symmetric neigh-
bourhood U n U™!. However, such a neighbourhood does not necessarily
contain a transitive neighbourhood, or even a neighbourhood V of the
diagonal which satisfies the weaker condition VoV < U. We shall pursue
these questions further in Chapter 8 below.

Topological Groups

Let us turn now to a different subject. The notion of topological group can
be introduced quite early in the study of topology, as soon as the topological
product has been defined. I assume that the reader is already familiar with the
axioms of group theory in the algebraic sense. So let G be a group in that
sense. Then G is equipped with a neutral element e, a symmetry u: G — G, and
a binary operation m: G x G — G. Usually the binary operation is called
multiplication, in which case the symmetry is called inversion and the neutral
element the identity; however, in some situations it seems more natural to call
the binary operation addition, in which case the symmetry is called the
negative and the neutral element the zero. Normally we use the multiplicative
terminology. Suppose that G, and hence G x G, has a topology. If the func-
tions # and m continuous then we describe G as a topological group. For
example, if the topology of G is discrete or trivial then the functions are
continuous and the group G is topological.

From what we have already proved the real line R is a topological group,
with the additive group structure and the euclidean topology, and more
generally the real n-space R" is a topological group similarly. Further exam-
ples will be given in the next chapter.
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In the theory of topological groups homomorphisms are required to be
continuous, as well as satisfying the usual algebraic requirements. Thus a
function ¢: G —» H, where G and H are topological groups, is a homomor-
phism in the topological sense if it is both a homomorphism in the algebraic
sense and a continuous function. Moreover ¢ is an isomorphism in the
topological sense if it is both an isomorphism in the algebraic sense and a
homeomorphism.

Due to the interplay between the algebra and the topology a topological
group has many special topological properties such as homogeneity. I conclude
this chapter with a brief discussion of these which will also serve to illustrate
various points in the theory we have developed so far.

Let G be a topological group. For each element g€ G a functiong,: G —» G
is defined by multiplying on the left by g. This is known as left translation;
right translation is defined similarly. The continuity of g can be established
by expressing it as the composition

G56xG6286x60a6,
where c is constant at g. Since g, and (¢g™!) . are continuous, and since (g71) 4
is the (set-theoretic) inverse of g, we conclude that g, is a homeomorphism.
Thus left translation is a homeomorphism, and similarly so is right translation;
combining the two we see that conjugation is also a homeomorphism.

Since translations are homeomorphisms it follows at once that G is a
homogeneous space. Another useful consequence is

Proposition (2.13). Let ¢: G - H be a homomorphism in the algebraic sense,
where G and H are topological groups. If ¢ is continuous at the neutral element
of G then ¢ is continuous everywhere.

For let g be any element of G, and let V be an open neighbourhood of ¢(g).
Then (#g)Z'V is an open neighbourhood of ¢(e), where e is the neutral element
of G. Let U be an open neighbourhood of e in G such that U < (¢g)Z' V. Then
g4 U is an open neighbourhood of g in G such that ¢(g,U) < V. Thus ¢ is
continuous at g, and so the result is obtained.

If A is a subset of the topological group G we denote by 47" the direct
image of A under the inversion G — G. Clearly 47! is open whenever 4 is
open. Similarly, if 4, B are subsets of G we denote by A - B the direct image of
A x B under the multiplication G x G — G, with the usual modification for
one-point subsets. It is important to note that 4- B is open in G whenever 4
or Bisopen in G. For take B = U, where U is open in G. Each of the translates
g4«U of U is open in G, since g, U is the inverse image of U under the
translation homeomorphism g3'. Therefore the union of these translates, as
g runs through the elements of A4, is also open in G. But this is precisely 4- U.
Similarly, U- 4 is open in G.

If U is a neighbourhood of the neutral element e then U™ is also a
neighbourhood. Hence U contains the neighbourhood V = U n U™ which
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is symmetric in the sense that V' = V™1, Again, using continuity of multiplica-
tion, we see that m™! U contains a product neighbourhood W, x W, of (e, e)
in G x G and so U contains the neighbourhood W = W, n W, which satisfies
the condition W+ W < U. Neighbourhood bases whose members satisfy these
special requirements are frequently used in the theory of topological groups.

Finally, we prove two results concerning subgroups: at this stage we simply
use the term subgroup in the algebraic sense.

Example (2.14). Let H be a subgroup of the topological group G. If H is open
in G then H is closed in G. If H is closed in G and of finite index in G then H
is open in G.

To see this observe that G — H is a union of cosets of H. If H is open then
each of the cosets is open, by translation, hence G — H is open and H is closed.
If H is closed then each of the cosets is closed, by translation. If, further, the
index is finite then the cosets are finite in number, hence G — H is closed and
so H is open.

Example (2.15). Let H be a subgroup of the topological group G. Then the
closure Cl H of H is also a subgroup of G. Moreover, Cl H is normal if H is
normal.

For the first assertion consider the division function d: G x G — G. Since
d is continuous it follows from (2.3) that

ClA-CI(B™') = CI(4-B™)

for any subsets A, B of G, from which the first assertion follows at once. For
the second consider the conjugation function y: G — G determined by a given
element g of G. Conjugation is continuous, as we have seen. By (2.3) again we
have that

(Cl ) < Cl(yA)

for any subset 4 of G, from which the second assertion follows at once.

If {G;} is a family of topological groups then the cartesian product [ | G; is
also a topologlcal group, with the direct product group structure and the
product topology. This is a simple consequence of (2.10), which also shows
that each of the projections

:[1G - G;
is a (continuous) homomorphism. Moreover, a function
4:6-11G
where G is a topological group, is a homomorphism if and only if each of

the functions ¢; is a homomorphism. It follows, for example, that the prod-
uct of homomorphisms is again a homomorphism. It also follows that the
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diagonal function

A:G—-> G’

is a homomorphism, for each topological group G and indexing set J.

EXERCISES

1.

10.

11.

12.

Let {p;} be a family of polynomials in the real variable ¢ with real coefficients.
Show that the set of values of ¢ where p;(t) = O for all j is a closed set of R, with
the euclidean topology.

. Let E = {0, 1} be the Sierpinski space with {0} open and {1} not. Which are the

closed sets of E x E?

. Show that the topological product of an infinite number of discrete spaces is not

in general discrete.

. Show that the direct product of a family of topological groups is a topological

group not only with the product topology but also with the box topology.

. Suppose that the neutral element e forms a closed set in the topological group G.

Show that the diagonal subset AG forms a closed subgroup of the direct product
G x G.

. Show that each closed subgroup of the real line R with euclidean topology is either

the full group R or else is the subgroup consisting of integral multiples of « for
some positive real number a.

. Show that if X is an uncountable set with the cofinite topology then every

continuous reai-valued function on X is constant.

. Show that in a topological group G, the open symmetric neighbourhoods of the

neutral element e form a base for the neighbourhood filter at e.

. Show that any group G can be made into a topological group by specifying, as

neighbourhood base at the neutral element e, a family I" of subgroups of G such that
(i) if U, VeI then W <« U n V for some WeT,

(ii) if UeT and g€ G then g™'Vg < U for some VeT.

Illustrate by taking I to be

(a) the members of a chain of normal subgroups,

(b) the family of subgroups of finite index,

(c) the members of the lower central series.

Show that the closure Cl E of a subset E of the topological group G coincides with
the intersection of the subsets N - E, where N runs through the open neighbour-
hoods of the neutral element e.

Let U be an open neighbourhood of the neutral element e in the topological group
G. Show that the set of elements g € G such that g? € U coincides with the union of
the open neighbourhoods V of e such that V2 < U.

Show that every subgroup H of the topological group G with interior Int H
non-empty is both open and closed.
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13.

14.

15.

2. Continuity

Let G be a topological group, let H be a dense subgroup of G, and let K be a normal
subgroup of H. Show that Cl K is a normal subgroup of G.

Suppose that the neutral element e forms a closed set in the topological group G.
Show that the centre of G is a closed normal subgroup of G.

Let G be a topological group. Show that

(i) the intersection of all open subgroups of G is a normal subgroup of G, and that
(ii) the intersection of all non-trivial closed subgroups of G is a normal subgroup
of G.



CHAPTER 3

The Induced Topology
and Its Dual

The Induced Topology

This chapter is mainly concerned with subspaces and quotient spaces. How-
ever, it often happens in mathematics that by taking a more general point of
view one can see more clearly what is happening in a special case. We begin,
therefore, by discussing the notion of induced topology before going on to
embeddings and subspaces; likewise, we discuss the notion of coinduced
topology before going on to quotient maps and quotient spaces.®

Definition (3.1). Let ¢: X — Y be a function, where X and Y are topological
spaces. The topology of X is induced by ¢ from the topology of Y if the open
sets of X are precisely the inverse images, with respect to ¢, of the open sets
of Y.

The condition here is stronger than continuity, since X is not allowed to
have open sets other than those which arise from Y in the prescribed manner.
Because of the good behaviour of the inverse image with respect to com-
plementation we see at once that “open set” may be replaced by “closed set”
in both places without affecting the meaning of the definition.

We have already observed that the inverse image behaves well in relation
to the operations of union and intersection. This implies that the condition in
(3.1) only needs to be checked for the members of a generating family for the
topology of the domain, as stated in

Proposition (3.2). Let ¢: X — Y be continuous, where X and Y are topological
spaces. Suppose that each member of a generating family for the topology of X

6 The induced and coinduced topologies are also known as the initial and final topologies,
respectively.
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is the inverse image of an open set of Y. Then the topology of X is induced by
@ from the topology of Y.

The situation may arise in which we are given a function ¢: X — Y, where
Y is a topological space and X is a set. Then we can use the procedure indicated
in (3.1) to give X a topology. This topology, which is called the induced
topology, may be described as the coarsest topology such that ¢ is continuous.
For example, if Y has the trivial topology then so does X, under this procedure.

The induced topology is transitive in the following sense. Let ¢: X — Y and
V: Y > Z be functions, where X, Y and Z are topological spaces. If Y has the
topology induced by s from the topology of Z and X has the topology induced
by ¢ from the topology of Y then X has the topology induced by ¢ from the
topology of Z. The proof is obvious.

The following property is characteristic of the induced topology.

Proposition (3.3). Let ¢: X — Y and : Y — Z be functions, where X, Y and Z
are topological spaces. Suppose that Y has the topology induced by \ from the
topology of Z. Then ¢ is continuous if (and only if ) Y ¢ is continuous.

For if V is open in Y then V = ¢y "'W, where W is open in Z, since Y has
the induced topology, and then

¢V =¢TYTIW = (Yg)"' W

is open in X, since ¢ is continuous.

Multiple forms of the induced topology can also be considered. Thus let X
be a set and let {¢;} be a family of functions ¢;: X — Y;, where Y;is a topological
space, for each index j. We can give X the coarsest topology which makes ¢;
continuous for each j. Thus a generating family consists of the inverse images
¢; ' U;, where j runs through the indices and U; runs through the open sets of
Y;. The topological product is an example of this, with each function ¢; the
corresponding projection of the cartesian product. In fact this observation
implies that the multiple form of the induced topology, as above, is no more
than the ordinary form of the induced topology with respect to the function

with jth component ¢, for each index j. For this reason it is not necessary to
say very much about the multiple form.
Returning to the ordinary form, consider the situation where the function

in question is injective. Because of the importance of this case special ter-
minology is used.
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Definition (3.4). Let ¢: X — Y be an injection, where X and Y are topological
spaces. If X has the topology induced by ¢ from the topology of Y then ¢ is
an embedding.

A continuous injection is necessarily an embedding when the domain has
trivial topology, for example, when the domain is a one-point space. However,
in general, the domain of a continuous injection will have open sets and closed
sets which are not inverse images of open sets and closed sets of the codomain.
For example, take the identity function on any set with the topology of the
domain a strict refinement of the topology of the codomain.

Of course, (3.2), (3.3) and other results about the induced topology apply
to embeddings as a special case. In addition, we have

Proposition (3.5). Let ¢: X - Y and Y: Y — Z be continuous functions, where
X, Y and Z are topological spaces. If Y¢ is an embedding then so is ¢.

For then each open set of X is of the form (y¢)~* W, where W is open in Z,
and so is of the form ¢y~ W, where ¢y " Wis open in Y.

In particular, take Z = X and y¢ the identity. In that case y is called a left
inverse of ¢ and (3.5) states that a continuous function is an embedding if it
admits a (continuous) left inverse. Thus we obtain

Corollary (3.6). Let ¢: X — Y be a continuous function, where X and Y are
topological spaces. Then the graph function

IpX->XxY
is an embedding.

Here I'y may be expressed as the composition
XA3xxx2 xxvy;
the left inverse is given by projecting onto the first factor. Similarly, we obtain

Corollary (3.7). For any topological space X the diagonal function

A: X - X7
is an embedding.

Another straightforward application of (3.2) is

Proposition (3.8). Let {¢;} be a family of embeddings ¢;: X; — Y;, where X; and
Y; are topological spaces. Then the product

[Te: 11X-11Y

is an embedding.

Given topological spaces 4 and X one may ask whether A can be embedded
in X, i.e. whether a function ¢: A — X exists which satisfies the embedding
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condition. This is not an easy question, in general, although there are some
cases where it can be answered by elementary methods. For example, it is
obviously impossible to embed A4 in X if X has the discrete topology, or the
trivial topology, and A4 does not.

Subspaces

Suppose now that we have a topological space X and a subset 4 of X. For
each subset H of X the trace A n H of H on A is just the inverse image 6 ' H
of H under the injection a: 4 — X. We use the induced topology to topologize
A so as to make ¢ an embedding. Specifically, we take the open sets of A to
be the traces on A of the open sets of X or, equivalently, the closed sets of A
to be the traces on A of the closed sets of X. This is usually called the relative
topology and A, with this topology, is called a subspace of X. In fact the terms
subset and subspace tend to be used interchangeably since it is most unusual
to give a subset any topology other than the relative topology.

It is important to appreciate that, in the above situation, a subset H of 4
itself may be open in A but not open in X, or closed in 4 but not closed in X.
For example, A4 is always open and closed in itself but this says nothing about
its status in relation to X.

The composition of embeddings is an embedding, as we have seen. Hence,
if A is a subspace of X and B is a subspace of 4 then B is a subspace of X.

Some of the results we have obtained for embeddings are particularly useful
in relation to subspaces. Thus (3.3) shows that if ¢: X — Y iscontinuous, where
X and Y are topological spaces, then so is the function ¢": X' — Y’ determined
by ¢ for each subspace X’ of X and each subspace Y’ of Y which contains ¢X".
Moreover, (3.5) shows that if, further, ¢ is an embedding then so is ¢'. Con-
sequently, an embedding ¢: X —» Y maps X homeomorphically onto the
subspace ¢X of Y; more generally, ¢ maps X’ homeomorphically onto ¢X’
for every subspace X’ of X. For example, take X = Y = R, with the euclidean
topology. Choosing ¢ to be an affine transformation we see that all the open
intervals (o, f) (x < ) are homeomorphic, and that all the closed intervals
[o, B] are homeomorphic. We also see that all the half-open intervals [o, f)
and (f, «] are homeomorphic.

Notice that a generating family for the topology of X determines, by taking
traces, a generating family for the relative topology of each subset A of X. For
example, let X be an ordered set. Then each subset 4 of X is also an ordered set,
by restriction of the order of X. And the interval topology on 4, thus defined,
is just the relative topology obtained by A from the interval topology on X.

For another example, recall that the (upper) Sorgenfrey line L is just the
real line with the topology generated by intervals of the form [e, ). The
Sorgenfrey plane L x L is the topological product of L with itself. The
topology of L x L is therefore generated by slabs of the form

L1, B1) X [22, Bo)-
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As we have seen in (3.7), the diagonal subspace {(¢, n): £ =5} is homeo-
morphic to L, on general grounds. However, the antidiagonal subspace
{(& n): ¢ = —n} is discrete, in the relative topology, since each point (£, — &)
is the trace on the antidiagonal of the open slab [£, o0) x [—¢, o0) and
therefore open in the relative topology.

The same observation about generating families shows that the relative
topology is compatible with the topological product. Specifically, let {X;} be
a family of topological spaces and let 4; be a subset of X (jeJ). We can first
give each 4; the relative topology and then give [ ] 4; the product topology,
or we can first give [ | X; the product topology and then give [ | 4, the relative
topology; the result is exactly the same, by (3.8).

To illustrate this consider a subgroup H of a topological group G. I claim
that H, with the relative topology, is also a group in the topological sense.
This can easily be seen from the following diagrams, where m, n are the binary
operations, where u, v are the inversions and where o is the embedding.

HxH — > H H—-> H

From now on we will always regard a subgroup of a topological group as
being itself a topological group, in this manner.

Returning to the case where A is a subset of the topological space X, with
the relative topology, observe that for a point x of A, the trace on 4 of the
neighbourhood filter of x in X is a base for the neighbourhood filter of x in
A; more generally, the trace of a neighbourhood base of x in X is a base for
the neighbourhood filter of x in A. It follows that if X is a metric space then
the relative topology which 4 obtains from the metric topology on X coincides
with the metric topology determined by the restriction to A x A of the metric
on X.

Before giving some applications and examples there is a further theoretical
result which needs to be discussed. Recall that a covering of a set X is a family
of subsets of X such that each point of X belongs to at least one member of
the family. A subfamily of a covering is called a subcovering if it too is a
covering. If 4 is a subset of X we can consider coverings of 4 by families of
subsets of X, in the obvious sense.

When X is a topological space the types of covering which are impor-
tant are those which consist entirely of open sets or entirely of closed sets.
These are called open coverings or closed coverings, as the case may be, and we
have

Proposition (3.9). Let {A;} be a family of subsets of the topological space X
which is either an open covering or a finite closed covering of X. Let H be a
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subset of X and let H; = A; n H, for each index j. Then H is open in X if H; is
open in A; for each j, while H is closed in X if H; is closed in A; for each j.

First, suppose that {4;} is an open covering. If H; is open in 4; for each j
then H; is open in X for each j and so the union H of the H; is open in X. If
H; is closed in A; for each j, replace H by X — H and proceed as before.

Second, suppose instead that {4;} is a finite closed covering. If H; is closed
in 4; for each j then H; is closed in X for each j and so the union H of the H;
is closed in X. If H; is open in A4; for each j, replace X by X — H and proceed
as before.

Corollary (3.10). Let {A;} be a family of subsets of the topological space X which
is either an open covering or a finite closed covering. Then a function ¢: X — Y,
Jfor any topological space Y, is continuous if (and only if) the restriction | A; is
continuous for each index j.

For a simple application, consider the function

min: R x R—- R.
The subsets

H,={¢n:¢=n}, H_-={¢n:é<n}

are closed and cover R x R. Now min is given by the second projection on
H,, the first projection on H_. Since the projections are continuous the
corollary shows that min is continuous. Similarly max is continuous.

To illustrate the ideas we have been discussing let us begin with subsets of
the real line R, with the euclidean topology. Given a subset A4, a generating
family for the relative topology consists of the traces A n(a, ) of the open
intervals of R, as we have seen. In particular cases this may not be the most
convenient family to use. For example, the relative topology on the set Z
of integers is discrete, since each integer n has the open neighbourhood
(n — 1, n + 1)in R of which the trace is {n}; in this case the obvious generating
family to use is that formed by the subsets {n} for each integer n. For another
example, the relative topology on the rational line Q is generated by the
rational intervals

(0, B)={eQ:a< &< B},

for rational «, B. Note that for real open intervals with irrational end-points
the rational trace is both open and closed. Similar observations apply in the
case of subsets of the real n-space R”, with the euclidean topology.

Next consider the punctured real line R — {0} = R, with the relative
topology. Note that the trace of the open interval (a, f) is (o, f) itself unless
o < 0 < f when the trace is the union of the open intervals (¢, 0) and (0, f).
I assert that the inversion function u: R, — R, is continuous, where u(¢) =
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&71 (£eR,). For consider the trace of the open interval (a, ). If both o and
B are non-zero the inverse image of the trace is the trace of (¢!, B7*) or
(B, a™1). If o is non-zero the inverse image of («, 0) is (¢!, 0), while if B is
non-zero the inverse image of (0, §) is (0, 7). Thus, in any case, the inverse
image is open and so u is continuous, as asserted.

We have already seen that the multiplication function R x R — R is con-
tinuous, hence the multiplication function R, x R, — R, is continuous. Since
inversion is also continuous, as we have just shown, we conclude that R, is a
topological group. Another consequence is that the multiplication function
R x R, — R is continuous and hence that the division function R x R, —» R
is continuous. These results imply that rational functions R — R, with non-
vanishing denominator, are continuous.

Similar results hold for complex numbers. Thus the punctured complex
line C,, = C — {0} forms a topological group, under complex multiplication,
and the complex numbers of unit modulus form a subgroup, called the circle
group.

This is a convenient point at which to mention the well-known function
oa: R x R— R given by

2%n
&+
away from (0, 0) and by «(0, 0) = 0. If we fix either £ or  the resulting function
R — R is continuous. However, if we compose a with the diagonal function A
the result is not continuous, hence « itself is not continuous.

Turning now to higher dimensions we recall that scalar multiplication

R*x R—>R"

a(é,n) =

is continuous, hence the restriction
R" x R, — R"

is continuous. Composing the restriction with the product of the identity on
R" and the inversion function R, — R, we deduce that scalar division

R" x R, - R"
is continuous.
By way of application let us show that the real n-space R" is homeomorphic

to the open n-ball U". In fact ¢: R" - U" is a continuous function with
continuous inverse y: U" —» R", where

(&) =& + |EN! (EeRM),
Yy =nd—In)™"  @HeU.

For another example of the same sort consider the n-sphere $” in R**. Let
p € S" be the pole where the last coordinate x,,; = 1. Stereographic projection
from p onto the equatorial n-space determines a function ¢: S" — {p} > R",
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where

Xy Xn
Xiseees X =
¢( 1> s n+1) <1 _ x”+19 H 1 _ x”+1>)

which is readily shown to be a homeomorphism.

#(x) #(x") equatorial
. n-space

For an example of a different type consider the general linear group Gl(n, R)
of non-singular real n x n matrices, where n = 0, 1, ... ; the group operation
is matrix multiplication. I assert that Gl(n, R), topologized as a subset of
M(n, R), is a group in the topological sense. For the group operation is
continuous since matrix multiplication

M(n, R) x M(n, R) - M(n, R)

is continuous, as we saw in the previous chapter. Also the inversion function
is continuous since it can be expressed as the result of taking the matrix of
cofactors, then transposing and finally dividing by the determinant, all of
which are continuous operations. Thus Gl(n, R) is a topological group, as
asserted.

The Coinduced Topology

We now turn from the induced topology to the coinduced topology, which is
in some sense a dual notion:

Definition (3.11). Let ¢: X — Y be a function, where X and Y are topological
spaces. The topology of Y is coinduced by ¢ from the topology of X if the
open sets of Y are precisely those subsets of which the inverse images, with
respect to ¢, are open sets of X.

The condition here is stronger than continuity; when ¢ is continuous there
will generally be non-open subsets of Y of which the inverse images are open
sets of X. Because of the good behaviour of the inverse image with respect to
complementation we see at once that “open sets” may be replaced by “closed
sets” in both places without affecting the meaning of the definition.
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The situation may arise in which we are given a function ¢: X — Y, where
X is a topological space and Y is a set. Then we can use the procedure indicated
in (3.11) to give Y a topology. This topology, which is called the coinduced
topology, may be described as the finest topology such that ¢ is continuous.
For example, if X has the discrete topology then so does Y, under this
procedure.

The coinduced topology is transitive in the following sense. Let ¢: X - Y
and y: Y — Z be functions, where X, Y and Z are topological spaces. If Y has
the topology coinduced by ¢ from the topology of X and Z has the topology
coinduced by ¥ from the topology of Y then Z has the topology coinduced
by ¥¢ from the topology of X.

Y
)
X/.//

s
z

The following property is characteristic of the coinduced topology.

Proposition (3.12). Let ¢: X —» Y and : Y — Z be functions, where X, Y and
Z are topological spaces. Suppose that Y has the topology coinduced by ¢ from
the topology of X. Then s is continuous if (and only if ) Y is continuous.

For if W is open in Z then (y¢) ' Wis open in X, since /¢ is continuous,
hence Y "' Wis open in Y, since Y has the coinduced topology.

The case when ¢ is surjective is particularly important, and special ter-
minology is used.

Definition (3.13). Let ¢: X — Y be a surjection, where X and Y are topological
spaces. Then ¢ is a quotient map if the open sets of Y are the direct images of
the saturated open sets of X.

A continuous surjection is necessarily a quotient map when the codomain
has discrete topology. In general, however, the codomain of a continuous
surjection will have non-open subsets of which the inverse images are open
and non-closed subsets of which the inverse images are closed. For example,
take the identity function on a set with the topology of the domain a strict
refinement of the topology of the codomain.

Of course, (3.12) and other results about the coinduced topology apply to
quotient maps as a special case. In addition, we have

Proposition (3.14). Let ¢: X — Y and . Y — Z be continuous functions, where
X, Y and Z are topological spaces. If Y¢ is a quotient map then so is y.

For let W be a subset of Z such that ¢y "'Wis open in Y. Then ¢ 1y ' W
is open in X, since ¢ is continuous, and so W is open in Z, since y/¢ is a quo-
tient map.
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In particular, take Z = X and ¢ the identity. In that case ¢ is called
a right inverse of ¥ and (3.14) states that a continuous function is a quo-
tient map if it admits a (continuous) right inverse. Examples will be given
later.

Care must be exercised when the induced and coinduced topologies occur
together. Thus let ¢: X — Y be a quotient map. If 4 is a subspace of X it is not
in general true that the function 4 — ¢4 determined by ¢ is a quotient map.
Nor is it true that the product X X Z — Y x Z of ¢ and the identity on Z is
a quotient map for all topological spaces Z. These problems will be further
discussed, with examples, at a later stage.

Quotient Spaces

Suppose now that we have a topological space X and an equivalence relation
R on X. Consider the set X/R of equivalence classes together with the natural
projection 7: X — X/R which assigns each point of X to its equivalence class.
The topology on X/R which makes = a quotient map is called the quotient
topology and X/R, with this topology, is called a quotient space’ of X.

For example, let X be a topological space and let 4 be a subspace of X.
Impose an equivalence relation R on X so that all the points of 4 are related
to each other but each of the points of X — A4 is only related to itself. The
resulting quotient space is known as the topological space obtained from X
by collapsing 4 to a point.

For another example, let G be a discrete group of self-homeomorphisms of
the topological space X. For each point x of X the subset G- x = {gx: g€ G}
is called the orbit of x, under the action of G. If we identify points of X which
lie in the same orbit the resulting quotient space is called the orbit space of X,
under the action of G, and denoted by X/G. Note that a function ¢: X — Y,
for any Y, induces a function y: X/G — Y whenever ¢ is invariant with
respect to the action. Moreover, an invariant continuous function ¢ induces
a continuous function y, by (3.12).

As an illustration consider the n-sphere S” with the group Z, consisting of
the antipodal transformation and the identity. In this case, the quotient space
§"/Z, can be identified with real projective n-space. Complex and quaternionic
projective spaces can be similarly represented as quotient spaces of spheres of
appropriate dimensions.

An equivalence relation R on a set X determines, by restriction, an equi-
valence relation R’ on each subset X’ of X, so that X'/R’ may be regarded as
a subset of X/R. When X is a topological space it is not in general true that
the relative topology which X’/R’ obtains from the quotient topology of X/R
agrees with the quotient topology of X'/R’ itself. For example, take X to be
the real line R and take X’ to be the half-open interval I’ = [0, 1). Let us place

7 The terms identification topology and identification space are also in common use.
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two real numbers in the same equivalence class if they differ by an integer.
Since the induced equivalence relation on I’ is trivial we may identify the
quotient set with I’ itself. Then [0, 1) is open in the quotient topology but
not in the relative topology.

One of the main uses of the quotient topology occurs in the theory of
topological groups. Thus let H be a subgroup of the topological group
G. Consider the (left) factor set G/H together with the natural projection
n: G —» G/H, which assigns each element to the coset to which it belongs. If
we give G/H the quotient topology determined by = then G/H is called the
(left) factor space of G by H.

It follows from (3.12) that for each element g of G the translation homeo-
morphism g4: G — G induces a homeomorphism G/H — G/H, which we may
refer to likewise as translation by g and denote by g . Consequently, G/H is
a homogeneous space.

The right factor space of G by H is defined similarly. Of course, the de-
composition of G into left cosets is different, in general, from the decompo-
sition of G into right cosets. However, the inversion homeomorphism G - G
induces a homeomorphism between the left factor space and the right factor
space.

Our next two results give necessary and sufficient conditions for the topology
of the factor space to be (i) discrete or (ii) trivial.

Proposition (3.15). Let H be a subgroup of the topological group G. The factor
space G/H is discrete if and only if H is open in G.

For if G/H is discrete then [H] is open in G/H, hence H is open in G.
Conversely, if H is open in G then each coset of H is open in G, hence each
point of G/H is open and so G/H is discrete.

Proposition (3.16). Let H be a subgroup of the topological group G. The factor
space G/H is trivial if and only if H is dense in G.

For suppose that H is dense in G. Then
G/H =G =nClH = ClzH = Cl n(e),

from which the triviality of the topology follows at once. Conversely, suppose
that H is not dense in G. Then there exists an element g of G and an open
neighbourhood U of g which does not intersect H. Hence U-H does not
intersect H and so nU is an open neighbourhood of n(g) which does not
contain 7(e). The topology of G/H is therefore non-trivial.

As a further illustration of these ideas we prove

Proposition (3.17). Let G be a topological group. The factor space of the direct
product G x G by the diagonal subgroup AG is homeomorphic to G.
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For consider the division function d: G x G — G, given by d(g,, g,) =
g1'9g,". This admits a right inverse c: G = G x G, where c(g) = (g, €). Since
both ¢ and d are continuous it follows that d is a quotient map. Consequently,
the continuous bijection (G x G)/AG — G induced by d is also a quotient map
and therefore a homeomorphism.

EXERCISES

1. Let X bea topological space in which every finite subspace has the trivial topology.
Show that X itself has the trivial topology. Is the corresponding assertion for the
discrete topology true or false?

2. The topological space X is the union A, U A, U--- of a countable family of
subspaces A, such that A, < Int A, , for each n. The function ¢: X — Y, where Y
is a topological space, is such that ¢| A, is continuous for each n. Show that ¢ is
continuous.

3. Let H be a non-closed subgroup of the topological group G. Show that Cl H — H
is dense in Cl H.

4. Show that in the topological group G the closure Cl{e} of the neutral element has
the trivial topology.

5. Show that both the following functions are quotient maps
(@) ¢: R x R — R, where ¢(x, y) = x + y?,
(i) ¢: R x R — [0, 00), where ¢(x, y) = x* + y2.
(Here R has the euclidean topology and [0, c0) the relative topology.)

6. Let X, Y be topological spaces. Let R be the equivalence relation on X x Y given
by (&, n)R(&, v') if and only if = #". Show that the quotient space (X x Y)/R is
homeomorphic to Y.

7. On the unit interval I = [0, 1] = R, with the euclidean topology, let R be the
equivalence relation for which I n @ and its complement are the equivalence
classes. Show that the quotient space I/R has the trivial topology.

8. Show that the real projective line S*/Z, is homeomorphic to S*.
9. Show that the function ¢: S* — R* given by
P(xo» X1, X3) = (X5, XoX1, X] + XoXz, X, X;)

induces an embedding of the real projective plane S2/Z, in R*, with the euclidean
topology.



CHAPTER 4

Open Functions and Closed
Functions

General Remarks

In Chapter 2 we studied functions from one topological space into another
which are structure-preserving in the inverse image sense. In the present
chapter we shall primarily be concerned with functions which are structure-
preserving in the direct image sense. Specifically, we shall be concerned with
functions which send open sets to open sets, and with functions which send
closed sets to closed sets. Usually, but not invariably, the functions will be
required to be continuous as well.

Open Functions®

To begin with an example, let us return to the squaring function ¢: R - R,
given by
&) =1>  (teR),

where R denotes the real line with the euclidean topology. Of course ¢ is

continuous, as we have seen, but the direct image ¢R = [0, +0c0) is not open
although the full set R itself is open. Thus ¢ is not open, according to

Definition (4.1). Let X and Y be topological spaces. The function ¢: X — Y is
open if the direct image ¢U is open in Y whenever U is open in X.

For example, every function ¢: X — Y is open when Y is discrete, while
every surjection ¢: X — Y is open when X is trivial.

8 Also known as interior functions.
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Clearly, the identity function on a topological space is always open. Also
if¢: X - Yand y: Y — Z are open, where X, Y and Z are topological spaces,
then the composition Y¢: X — Z is open.

Proposition (4.2). Let ¢: X — Y be a function, where X and Y are topological
spaces. If the restriction §|X; is open for each member X; of a covering of X
then ¢ is open.

For if U is open in X then U n X; is open in Xj, by the relative topology,
and so if ¢(U n X;) is open in Y, for each j, then ¢U = | J;4(U n X;) is open
in Y.

Note that an open continuous injection is necessarily an embedding, and
that an open continuous surjection is necessarily a quotient map. In the other
direction we have

Proposition (4.3). Let X and Y be topological spaces.

(i) The embedding ¢: X — Y is open if (and only if ) ¢X is open in Y.
(i) The quotient map ¢: X — Y is open if (and only if ) the saturation ¢~ ¢U is
open in X whenever U is open in X.

The proofs are obvious. Next we establish

Proposition (4.4). Let ¢: X — Y and : Y — Z be functions, where X, Y and Z
are topological spaces. Suppose that the composition Y¢: X — Z is open.

(i) If ¥ is a continuous injection then ¢ is open.
(i) If ¢ is a continuous surjection then y is open.

In the case of (i), if U is open in X then y@U is open in Z, hence
¢U =y 1YgU is open in Y.

In the case of (ii), if V is open in Y then ¢~'V is open in X, hence
YV = Y¢gd~'V is open in Z.

Proposition (4.5). Let X and Y be topological spaces. The function ¢: X —» Y is
open if and only if ¢ Int H < Int ¢H for each subset H of X.

For suppose that ¢ is open. If H = X thenInt H ¢ Handso ¢ Int H — ¢H.
However ¢ Int H is open, since Int H is open, and so ¢ Int H = Int ¢H, by
definition of the interior. _ o

Conversely, suppose that ¢ Int H < Int ¢H for all H. Take H to be open
in X. Then ¢H < Int ¢H and so ¢H is open in Y.

Proposition (4.6). Let X and Y be topological spaces. If the function ¢: X - Y
is open then for each subset M of Y and each closed set H of X containing
@M there exists a closed set K of Y containing M such that ¢ 'K < H.
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For take K = Y — ¢(X — H). Then
p'K=X—¢"'[¢(X—-—H)]cX—[X—-H]=H.

If ¢ is open then ¢(X — H)is open and so K is closed in Y. Also M < K, since
¢~*M < H, which proves the result.

As we have remarked earlier, the inverse image behaves well in relation to
the operations of union and intersection, while the direct image behaves well
in relation to the operation of union but not the operation of intersection.
This implies, in the topological situation, that a function may transform every
member of a generating family into an open set and yet fail to be an open
function. However, (4.2) at once implies

Proposition (4.7). Let ¢: X — Y be a function, where X and Y are topological
spaces. Then ¢ is open if (and only if) ¢U is open in Y for each member U of
a complete generating family for the topology of X.

For example, consider the addition function ¢: R x R — R. Open intervals
of the form («, ) constitute a complete generating family for R. Hence open
slabs of the form (a,, ;) x («,, B,) constitute a complete generating family
for R x R. Now the direct image of such a slab with respect to ¢ is the open
interval (o, f8), where a = a; + a,, f = B, + f,. Therefore the addition func-
tion is open, similarly the multiplication function is open.

Two important applications of (4.7) concern the topological product.

Corollary (4.8). Let {X;} be a family of topological spaces. Then the projection
i [1% - X;

is open, for each index j.

Corollary (4.9). Let {¢;} be a family of open functions ¢;: X; — Y;, where X; and
Y; are topological spaces. Then the product

[Te:11X-11%

is open.

To illustrate these ideas we return to the theory of topological groups. Let
H be a subgroup of the topological group G. Recall that the factor space G/H
has the quotient topology determined by the natural projection n: G — G/H.
Moreover, if U is open in G then, as we have already seen, the saturation
nlzU = U-H is openin G and so nU is open in G/H. Thus = is open, as well
as continuous.

Now suppose that H is normal in G so that G/H has the factor group
structure at the algebraic level. The inversion u’ and multiplication m’ in G/H
are induced by the inversion u and multiplication m in G as indicated in the
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following diagram.

G —> G GxG —5 G
G/H —— G/H G/H x G/H —— G/H

Now 7 is a quotient map, and so u’ is continuous. In general, as stated above,
the product of quotient maps is not a quotient map. In this case, however, ©
is open and so © X = is open. Therefore = x 7 is a quotient map and so m’ is
continuous. Thus we conclude that G/H is a group in the topological sense,
with 7: G —» G/H a (continuous) homomorphism.

Now suppose that we have a (continuous) epimorphism ¢: G —» G’, where
G and G’ are topological groups. The kernel H of ¢ is a normal subgroup,
of course, so that ¢ induces an isomorphism

¥:G/H—G,

in the algebraic sense. If ¢ is open then so is i, hence  is a homeomorphism
and so an isomorphism in the topological sense.

For example, take G = R and take G’ to be the circle group, consisting of
complex numbers of unit modulus. The exponential function ¢+ e*™ is a
homomorphism with kernel the subgroup of integers Z. The function is a
continuous open homomorphism, hence the factor group R/Z is isomorphic
to the circle group.

For another example, consider the determinant homomorphism

det = D: Gl(n, R) - R,,.

Let 4 be an element of Gl(n, R) and let U be an open neighbourhood of A.
Since U is open in Gl(n, R) there is an open interval J containing unity such
that t4 e U for all teJ. As t ranges over J, t" takes every value in some open
interval J' containing unity, and so t"D(A) = D(tA) takes every value in some
open interval J” containing D(A). Thus D(U) > J” and D(U) is open in R,.. So
D is open, as well as continuous. In this case the kernel Si(n, R) is called the
modular group and we see by the above that the factor group Gl(n, R)/Sl(n, R)
is isomorphic to R,, as a topological group.

Closed Functions
We now turn from open functions to closed functions. Up to a point the two
theories appear to be quite similar but there is a crucial difference, as we shall

see, and it is this which gives rise to the idea of compactness.

Definition (4.10). Let X and Y be topological spaces. The function ¢: X - Y
is closed if the direct image ¢E is closed in Y whenever E is closed in X.
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For example, every function ¢: X — Y is closed when Y is discrete, while
every surjection ¢: X — Y is closed when X is trivial.

Clearly the identity function on a topological space is always closed. Also
if¢: X —» Yandy: Y — Z are closed, where X, Y and Z are topological spaces,
then the composition Y¢: X — Z is closed.

Proposition (4.11). Let ¢: X — Y be a function, where X and Y are topological
spaces. If the restriction ¢|X; is closed for each member X; of a finite covering
of X then ¢ is closed.

Forif E is closed in X then E N X; s closed in X, by the relative topology,
and so if #(E N X;) is closed in Y, for each j, then ¢E = | );¢(E N X;) is closed
in Y, since the union is finite.

This shows, for example, that the squaring function ¢: R —» R is closed,
since the restrictions of ¢ to (—oo, 0] and [0, c0) are obviously closed.

Note that a closed continuous injection is necessarily an embedding, while
a closed continuous surjection is necessarily a quotient map. In the other
direction we have

Proposition (4.12). Let X and Y be topological spaces.

(i) The embedding ¢: X — Y is closed if (and only if) X is closed in Y.
(ii) The quotient map ¢: X — Y is closed if (and only if ) the saturation ¢~ ¢E
is closed in X whenever E is closed in X.

The proofs are obvious. Next we establish

Proposition (4.13). Let ¢: X —> Y and y: Y — Z be functions, where X, Y and
Z are topological spaces. Suppose that the composition Yy¢: X — Z is closed.

() If ¥ is a continuous injection then ¢ is closed.
(i) If ¢ is a continuous surjection then  is closed.

In the case of (i), if E is closed in X then Y¢E is closed in Z, hence
#E = Yy~ Y@E is closed in Y.

In the case of (ii), if F is closed in Y then ¢~ 'F is closed in X, hence
WF = Ypp*F is closed in Z.

Proposition (4.14). Let X and Y be topological spaces. The function ¢: X - Y
is closed if and only if C1 ¢H < ¢ Cl1 H for each subset H of X.

For suppose that ¢ is closed. If H « X then H < C1 H and so Cl ¢H <
Cl(¢ Cl H) = ¢ Cl H, since Cl H is closed.

Conversely, suppose that Cl ¢H < ¢ Cl1 H for all H < X. Take H to be
closed in X. Then Cl ¢H < ¢H and so ¢H is closed.
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Proposition (4.15). Let ¢: X — Y be a function where X and Y be topological
spaces. If ¢ is closed then for each subset M of Y and open neighbourhood U
of $7*M there exists an open neighbourhood V of M such that ¢~V < U.
Conversely, suppose that for each point y of Y and open neighbourhood U of
&7 () there exists an open neighbourhood V of y such that ¢~V < U, then ¢
is closed.

To prove the first part take V = Y — ¢(X — U). Then
W =X-¢'pX-U)]cX~—-[X-U]l=U.

If ¢ is closed then ¢(X — U)is open and so V is open in Y. Also M < V since
#~'M < U, as required. To prove the second part, let H be closed in X. If
y¢ H then X — H is an open neighbourhood of ¢ (y). There exists, therefore,
an open neighbourhood V of y such that ¢!V does not meet H, hence V does
not meet $H. So ¢H is closed.

Note that there is no analogue of (4.7), for closed functions, and so no
analogues of (4.8) and (4.9). In fact we have

Example (4.16). The projections
TRxR-R
are not closed, with the euclidean topology.
To see this consider the closed set
H={¢neRxR:én=1}

of the domain; its image 7H = R, is not a closed set of the codomain.

nH TH

Consideration of this significant example suggests that the failure of the
projection to be closed may be related in some way to the fact that the domain
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is unbounded. To understand the situation better, let us extend the discussion
to metric spaces generally.

Definition (4.17). A metric p on the set X is bounded if for some real number
k we have
pn) <k  (neX)

For example, the discrete metric is always bounded, with k = 1, while the
euclidean metric on real n-space (n > 1) is not. The reader may wish to
consider which of the other examples of metrics mentioned above are bounded
and which are not.

Definition (4.18). The subset H of the metric space X is bounded if for some
real number k we have

p&n) <k
forall ¢, ne H.

In other words, H is bounded if and only if the induced metric on H is
bounded. In that case a further definition suggests itself.

Definition (4.19). Let H be a bounded non-empty subset of the metric space
X. The diameter of H is the real number

diam H = sup{p(¢, n): &, ne H}.

Clearly H is bounded if (and only if) the closure Cl H is bounded, and
diam H = diam CI H. It is not to be expected that points & € H can always
be found such that p(&, %) = diam H. For example, take X = R, with the
euclidean metric, and take H to be the open interval (0, 1), which has diameter
1 although p(&, 1) < 1 for all €, (0, 1).

It is remarkable that any metric p on the set X can be transformed into a
bounded metric p’ without altering the metric topology, through formulae
such as

p'=min(l,p), p =p(+p)".

In the first case, for example, each open ¢-ball (¢ > 0) at a point x with respect
to p contains the open &'-ball at x with respect to p’, where ¢’ = min(1, ¢),
while each ¢'-ball (¢’ > 0) with respect to p’ is also an ¢’-ball at x with respect
to p. Consequently the neighbourhood filters are the same in the first case,
and similarly in the second case.

Proposition (4.20). Suppose that the second projection m: X x R — R is closed,
where X is a metric space. Then X is bounded.

For consider the subset H of X x R consisting of pairs (x, t) such that
p(x, xo)-t = 1, where x, € X is fixed. Suppose, to obtain a contradiction, that
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X is not bounded. Then 0 adheres to nH, since if ¢ > 0 there exists a point
(>, t) of H for which p(x, xo) > ¢”*. But 0 is not a point of =H, and so nH is
not closed. Since H is closed we have our contradiction.

We now consider the bounded interval I = [0, 1] = R and prove

Proposition (4.21). The second projection n: I x T — T is closed for all topo-
logical spaces T.

We use the criterion of (4.15). Thus let ¢ be a point of T and let U be an
open neighbourhood of I x {t} in I x T. We shall show that there exists an
open neighbourhood W of t in T such that I x W < U.

Let us say that a subset S of I is bad if there exists no open neighbourhood
W of t for which S x W < U. Note that if S =5 U S” and S is bad then at
least one of §’, S” must be bad. For if neither is bad then §' x W’ < U and
S§” x W" < U, for some open neighbourhoods W’, W” and then S x W < U,
where W= W' nW",

Suppose, to obtain a contradiction, that I is bad. Write I = I,. By the above
remark, at least one of the intervals [0, 1], [, 1] is bad. Choose one and
denote it by I,. Subdividing I, in a similar fashion, choose I, in the same way,
and so on. We obtain a nested chain

I=IODIID"'

of closed intervals, each of which is bad. The right-hand end-points &, &,, ...
of these intervals form a monotone decreasing sequence of real numbers,
bounded below by zero. The sequence converges to a limit &, say, where £ > 0.

Now not every open neighbourhood of ¢ can be bad, since by the product
topology there exists an open neighbourhood V of ¢ and an open neighbour-
hood W of t such that ¥V x W < U. But then V contains a bad interval, and
so we have our contradiction.

EXERCISES

1. Let ¢: X — Y be a function, where X and Y are topological spaces. Let {¥;} be a
family of subsets of Y which is either an open covering or a finite closed covering.
Show that if the function ¢ ™'Y, - Y; determined by ¢ is open (resp. closed) for each
index j then ¢ is open (resp. closed).

2. Let ¢: X - Y be an open and closed function where X and Y are topological
spaces. Let a: X — I be continuous, where I = [0, 1] < R, with the euclidean
topology. Prove that f: Y — I is continuous, where

B(y) = sup{a(x): xe4~'(y)}  (yeY).
3. By considering an appropriate subset of the domain, such as
{Cm:E—n)-CE+m=1}

show that the function R x R — R given by real addition is not closed, with the
euclidean topology.
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4. By considering an appropriate subset of the domain, such as

{E&m:&n &+ =1}

show that the function R x R — R given by real multiplication is not closed, with
the euclidean topology.

5. Let H, K be bounded subsets of the metric space X such that H intersects K. Show
that H U K is also bounded and that

diam(H v K) < diam H + diam K.

6. Show that if A is open (resp. closed) in X then the projection n: X — X/A4 is open
(resp. closed).



CHAPTER 5

Compact Spaces®

Of all the invariants of topology compactness is undoubtedly the most im-
portant. To appreciate it fully one has to look at it in several different ways.
The way I have chosen to define it in the first instance follows on very naturally
from the discussion of closed functions at the end of the previous chapter.
Once we have established its main properties and considered some examples
we will show how compactness can be characterized in other ways. Of these
the characterization in terms of the existence of finite subcoverings of open
coverings is certainly the best known.

Definition (5.1). The topological space X is compact if the second projection
7w: X x T - T is closed for all topological spaces T.

Thus I is compact, by (4.21), while R is not compact, by (4.16). Since
compactness is obviously a topological invariant we conclude that R is not
homeomorphic to I; more generally, that the open interval (o, ), where o« < f,
is not homeomorphic to the closed interval [o, f]. This is just the first of many
applications of compactness. -

One-peint spaces, more generally, finite spaces are compact, whatever the
topology. Infinite discrete spaces are not compact, as we shall see in a moment.
On the other hand, we have

Proposition (5.2). Let X be a cofinite space. Then X is compact.

For consider the projection n: X x T — T, where T is any topological
space. Let ¢ be a point of T and let U be an open neighbourhood of X x {t}

9 Bourbaki, amongst others, reserves the term compact to mean what we call compact HausdorfT,
and uses the term quasicompact to mean what we call compact.
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in X x T. By the product topology there exists, for each point x of X, an open
neighbourhood V, of x in X and an open neighbourhood W, of ¢t in T such
that V, x W, < U. Choose any x; then V, is the complement of a finite set
(%15 ..., x,), say. The union

V=V,uV, u vl

contains both V, and the complement of V, and so coincides with X, while
the intersection

W=WnW, nnW,

is an open neighbourhood of t in T. Thus X X W=V x W < U and so 7 is
closed, by (4.15).

When X is infinite there is a difference between the cofinite topology and
the discrete topology; in fact, the latter is not compact. To see this let X be
an infinite discrete space and consider the projection n: X x X* — X*, where
X* is the cofinite space consisting of the set X together with an additional
point. In the topological product X x X consider the “diagonal” subset D
consisting of pairs (x, x), where x € X. Now nD = X, which is infinite and so
not closed in X *. But D itself is closed since if x” # x, where xe X and x' e X*,
then {x} x (X* — {x}) is an open neighbourhood of (x, x") which does not
intersect D. Thus X is not compact as asserted.

The definition makes it clear that compactness is a topological invariant.
Moreover, we have

Proposition (5.3). Let ¢: X — X' be a continuous surjection, where X and X' are
topological spaces. If X is compact then so is X'.

For n = n'(¢ x id), as shown below, where n’ denotes the projection in the
case of X'.
XxT

l \T
¢ x id

) /
X' xT

Now ¢ x id is a continuous surjection, since ¢ is a continuous surjection.
Hence 7’ is closed whenever = is closed, by (4.13(ii)). The result follows at once.

Proposition (5.4). Let ¢: X' — X be a closed embedding, where X and X' are
topological spaces. If X is compact then so is X'.

For ¢ xid: X' x T —> X x T is a closed embedding, since ¢ is a closed
embedding, for each topological space T. Therefore n’ = n(¢ x id) is closed
whenever 7 is closed, which proves the assertion.



64 5. Compact Spaces

We conclude that closed subspaces of compact spaces are compact. As we
shall see in a moment the conclusion is untrue for subspaces in general. Note
that (4.11) implies

Proposition (5.5). Let {X;} be a finite covering of the topological space X. If
each of the X; is compact then so is X.

Proposition (5.6) (Tychonoff). Let X,, ..., X, be compact spaces. Then the
topological product X; x -++ x X, is compact.

For let T be any topological space. Since X, is compact the projection
X, xT->T
is closed. Since X,,_; is compact the projection
Xpoy X X, xT->X,xT
is closed. So we continue until at last
XXX, x " x X, xToX,xxX,xT

is closed, since X is compact. Now compose all these closed maps, in the
obvious way; we obtain that the projection

X xX, x " xX,xT->T

is closed. Therefore X; x -+ x X, is compact, as asserted.

In fact, the topological product of an infinite family of compact spaces is
compact, as we shall see later in this chapter.

We now come to the theorem of Heine—Borel, which characterizes compact
subsets of the real n-space.

Theorem (5.7). Let X be a subspace of the real n-space R", with euclidean
topology. Then X is compact if and only if X is closed and bounded.

This result enables us to see at once that the closed n-ball B" and the
(n — 1)-sphere S"~! are compact, while the open n-ball U" and the punctured
(n — 1)-sphere S"~! — {p} aré not. A less obvious example will be discussed
after we have given the proof of (5.7).

Consider first of all the composition

XL_X x R"5 R,

where I is the graph of the inclusion o: X — R". Now I'X is the inverse image
of zero with respect to the continuous function

X x R"—> R",

given by vector subtraction, and is therefore closed. Thus I' is always a closed
embedding. When = is closed, as is the case for compact X, then ¢ = nI is
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closed, i.e. X is closed in R". Taken together with (4.20) this proves (5.7) in one
direction.

For the proof in the other direction suppose that X is closed and bounded.
Then X is contained in the closed slab

K= [(xl, ﬁl] X o X [OC,,, ﬁn]a

whereo; < fBy,..., %, < B,. Now [a;, ;1(j = 1, ..., n)is the continuous image
of the unit interval I, under an affine transformation, and so is compact, by
(4.21) and (5.3). Hence the topological product K is compact, by (5.6). Now X
is closed in R”, by hypothesis, therefore closed in K, by the relative topology,
and so compact, by (5.4). This completes the proof.

As a first application we deduce

Proposition (5.8). Let ¢: X — R be continuous, where X is compact. Then ¢ X
is bounded, so that its infimum and supremum are defined. M oreover, there exist
points &, n of X such that

$(£) = sup(¢X),  ¢(n) = inf(4X).

It is the last assertion which is meant by the expression: a continuous
real-valued function on a compact space attains its bounds. The proof of (5.8)
follows almost at once from the observation that ¢X is compact, therefore
closed and bounded in R. In fact, the only other remark necessary is that, as
we have seen in Chapter 1, the distance between ¢X and both inf(¢X) and
sup(¢X) is zero, since ¢X is closed.

For another illustration of the Heine—Borel theorem consider the group
O(n, R) of real orthogonal n x n matrices. As with Gl(n, R), which contains
O(n, R) as a subgroup, we topologize O(n, R) as a subspace of M(n, R), which
is homeomorphic to R™ for m = n x n. Now O(n, R) is bounded, as a subset
of R™, since x7 < 1 for each entry x; of an orthogonal matrix. Moreover,
the orthogonality relations

Yxpxp—6a=0 (k1=1,2,...,n)

determine O(n, R) as the intersection of a number of closed sets of R™ so that
O(n, R) is closed, as well as bounded. By (5.7), therefore, we conclude that
O(n, R) is compact. On the other hand, Gl(n, R) is not compact, since R, is
the continuous image of Gl(n, R) under the determinant function and R,, is
not compact.

Although (5.7) gives us a good idea of what compactness means for subsets
of real n-space there is nothing comparable for metric spaces generally. We
shall, however, be proving a result which gives at least some insight into the
situation but first we must develop the theory further.

Compactness Via Filters

We now come to an important result which can be used to provide an
alternative definition of compactness.
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Theorem (5.9). The topological space X is compact if and only if each filter on
X admits an adherence point.

For suppose that each filter on X admits an adherence point. Consider
the projection

X xT->T,

where T is any topological space. Let E be a closed set of X x T and let ¢ be
an adherence point of zE. Then =E intersects every member of the neighbour-
hood filter .#; of t, and so E intersects every member of the induced filter 7* 4
on X x T. Consider the trace ¢ of n*.#; on E. By hypothesis the direct image
filter p,% on X admits an adherence point x € X, say, where p: E — X is given
by the first projection. I assert that (x, t)e E and so tenE.

For suppose, to obtain a contradiction, that (x, t)¢ E. Since E is closed there
exists a neighbourhood U of x in X and a neighbourhood V of ¢ in T such
that U x V does not intersect E. Now E N (X x V) is a member of ¢, since
V is a member of 4}, and so p(E n(X x V)) is a member of p,%. Also U
is a neighbourhood of the adherence point x of p,% and so U intersects
P(E N (X x V)). Therefore U x T intersects EN(X x V), in other words
U x V intersects E, giving us our contradiction.

We conclude, therefore, that zE contains each of its adherence points and
so is closed. This proves (5.9) in one direction.

Conversely, let # be a filter on X. Consider the set X’ obtained by
adjoining a point * to X. Let &%’ be the filter on X’ consisting of the sets
M U {*}, where M runs through the members of #. A coherent collection of
filters on X’ is formed by &, in the case of * | and by the principal filters ¢,
for all points x € X. Note that * is an adherence point of X, in the resulting
topology.

Now consider the graph D of the inclusion of X in X" as a subset of X x X’
and write C1 D = E. Since n: X x X' — X' is closed, by assumption, we have
nE = Cl D = Cl X. Thus * belongs to nE and so (x, *) belongs to E for some
point x of X. I assert that x is an adherence point of &.

For if U is a neighbourhood of x in X and M is a member of & then
U x (M U {*}) is a neighbourhood of (x, *) in X x X". Since E = Cl D and
(x, ¥) € E this neighbourhood intersects D. Therefore U intersects M U {*} and
so intersects M. This proves the assertion and so completes the proof of (5.9).

Corollary (5.10). Let & be a filter on the compact space X, and let A be the set
of adherence points of % . Then each r_zeighbourhood of A is a member of F.

For let V be a neighbourhood of the adherence set 4. Suppose, to obtain
a contradiction, that each member of # intersects X — V. Then the trace of
& on X — V generates a filter 4 on X. Since X is compact, ¥ admits at least
one adherence point y, say. Now y cannot belong to A4 since the neighbour-
hood V of A does not intersect certain of the members of 4 (those which belong
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to the trace of #). However, ¢ is a refinement of &, and so y is an adherence
point of #. Therefore y € 4, and we have our contradiction. Hence and from
(1.21) above we obtain

Corollary (5.11). The topological space X is compact if and only if each
ultrafilter on X is convergent.

By (5.10) each filter on a compact space contains every neighbourhood of
its adherence set. When the adherence set consists of a single point this yields

Proposition (5.12). Let & be a filter on the compact space X. Then & is
convergent if & admits precisely one adherence point.

We are now ready to give a proof of the Tychonoff theorem, in full
generality: the proof for finite products, given earlier, does not generalize to
the infinite case and so a different approach is necessary.

Theorem (5.13). Let {X;} be a family of compact spaces. Then the topological
product [ | X; is compact.

For let # be an ultrafilter on X = [] X;. Then n;, & is an ultrafilter on Xj,
for each index j, by (0.8). Since X is compact there exists a limit point x; of
m; % . Then x = (x;) is a limit point of # and so X is compact.

One of the main applications of the theory of infinite products is in relation
to function spaces. If X and Y are sets then the cartesian product Y* of X
copies of Y with itself is logically identical with the set of functions ¢: X — Y;
such a function can be regarded as a point of the cartesian X th power. When
Y (but not necessarily X) is a topological space we may give Y* the product
topology and any subset ® of Y* the relative topology. In other words, we
can topologize sets of functions ¢: X — Y and, since there is more than one
way of doing so, we refer to this as the topology of pointwise convergence, or
pointwise topology. The reason for the name is provided by the following
result, which is an immediate consequence of the definition of the topology.

Proposition (5.14). Let {¢,> be a sequence of functions in the topological space
®. Then {@,> converges to the function ¢ of @ if and only if {¢,(x)) converges
to ¢(x) for each point x of X.

It is often important, in functional analysis, to know whether such a subset
® of Y* is compact. A useful pair of necessary and sufficient conditions are
as follows:

(i) @ is closed in YX,
(i) for each point x of X the subset
{$(x): g @}

has compact closure in Y.
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In fact, the subset in (ii) is just the xth projection 7, ® in Y, and we have

[[ Clm,®=Cl [] =,0.

xeX xeX
If #,® has compact closure, for each x, then so does l—[xe x 7D, by the
Tychonoff theorem. Now @ is contained in [ | . x 7, ®. If, further, @ is closed
in Y* then @ is a closed set of Cl [ ] .. x 7, ®, and so is compact.

Compactness Via Coverings

Our original definition of compactness was based on the notion of closed
function. Then in (5.9) we characterized compact spaces through the existence
of adherence points of filters. However, neither of these is the approach to
compactness most commonly used, which is based on

Proposition (5.15). Let X be a topological space. Then X is compact if and only
if each open covering of X admits a finite subcovering.

For suppose that X is compact. Let I' be an open covering of X. Consider
the dual family I'* of complements of members of I', which has empty inter-
section. I assert that some finite subfamily of I'* also has empty intersection.
For suppose, to obtain a contradiction, that every finite subfamily has non-
empty intersection. Then I'* generates a filter & on X. Now & admits an
adherence point, by (5.9), since X is compact. The adherence point belongs to
each of the closed members of #; in particular, to each of the members of I'*.
But the intersection of all the members of I'* is empty, since I" covers X, and
so we have our contradiction. If a finite subfamily of I'* has empty intersection
then the corresponding subfamily of I covers X. This proves (5.15) in one
direction.

For the proof in the other direction suppose that each open covering of X
admits a finite subcovering. Suppose, to obtain a contradiction, that there
exists a filter # on X with no adherence point, ie. the intersection of the
family I'* of closures of members of & is empty. Then the dual family I" of
complements forms an open covering of X and so admits a finite subcovering,
by hypothesis. Then the corresponding finite subfamily of I'* has empty
intersection. But the members of I'* are all members of the filter &, and so
we have our contradiction. This completes the proof of (5.15).

The relationship between (5.9) and (5.15) is therefore quite close compared
with that between (5.9) and our original definition (5.1). It makes a good
exercise to derive from (5.15) the results we proved earlier using (5.1), such as
the product theorem. It also makes a good exercise to take some of the results
which seem easier to prove from (5.15), such as the following, and demonstrate
them directly from (5.1).
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Two coverings of the real line.

Proposition (5.16). Let T be an open covering of the compact metric space X.
Then there exists a positive ¢ such that U,(x) is contained in a member of T" for
each point x of X.

The number ¢ here is called the Lebesgue number of the covering; it is not
unique, of course, since any positive number less than ¢ will have the same
property.

To prove (5.16), first observe that each point x of X is contained in some
member U of I" and then, since U is open, there eXists a positive number &,
such that U, (x) = U. Consider the open covering {U,; (x): x€ X} of X, where
e, = 1e,. Since X is compact we can extract a finite subcovering, indexed by
X1, ..., Xp, 8ay. I assert that

& =min(ey,..., &y,
has the required property in relation to I'. For each point x of X is contained
in Us;j(xj) for some j. So if p(&, x) < & then
p(&, x;) < p(&, x) + p(x, X)) <&+ & <é,.
So U,(x) < st,.(xi) < U, as required.

EXERCISES

1. Show that if X is a non-compact subset of the real line R then
(i) there exists a continuous function ¢: X — R which is not bounded,
(ii) there exists a continuous function ¢: X — R which is bounded but does not
attain its bounds.

2. Let & be a family of closed compact subsets of the topological space X. Suppose
that the intersection of the members of the family is contained in some open set



70

10.

11.
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U. Show that the intersection of the members of some finite subfamily is also
contained in U.

. Let¢: X — X be a continuous function, where X is compact. Show that there exists

a non-empty closed set 4 of X for which 4 = ¢A.

. A continuous function ¢: X — Y, where X and Y are topological spaces, is said to

be proper if the product
dxid: X xT->YxT

is closed for all topological spaces T. Show that ¢ is proper if and only if ¢ is closed
and ¢7*(y) is compact for all points y of Y.

. Let X be a topological space. Let X* be the union of X and an additional point

* with the topology consisting of (i) the open sets of X and (ii) the complements in
X* of the closed compact sets of X. Show that X* is compact.

. Let E and F be compact subsets of the topological spaces X and Y, and let W be

a neighbourhood of E x F in X x Y. Show that there exist neighbourhoods U of
Ein X and V of Fin Ysuch that U x V < W.

. Let A, B be compact subsets of the topological group G. Show that A4 - Bis compact.

. Let C be a compact subset and let E be a closed subset of the topological group

G. Show that C- E is closed in G.

. Let H be an open subgroup of the compact group G. Show that H is of finite index

in G.

Let U be any open neighbourhood of the neutral element e in the topological
group G, and let C be any compact subset of G. Show that there exists an open
neighbourhood V of e for which C-V-C™ < U.

Let H be a compact subgroup of the topological group G. Show that the natural
projection n: G — G/H is closed.



CHAPTER 6

Separation Conditions

General Remarks

We now come to a series of conditions, often regarded as axioms, all of which
are satisfied by metric spaces with the metric topology. Traditionally these
conditions tend to be labelled T, T, ...; however, the only case where we
shall use this notation is for the condition known as T;. Each condition is
obviously a topological invariant.

T, Spaces
We now state the first of the separation conditions to be considered here.

Definition (6.1). The topological space X is T; if {x} is closed for each point
x of X.

For example, discrete spaces and cofinite spaces are T; while trivial spaces
with more than one point are not. Topological products of T, spaces are T;.
Subspaces of T; spaces are T;. All these statements follow at once from the
definition.

Let X be a topological space. For each point x of X the intersection of the
neighbourhoods of x is the same as the intersection of the open neighbour-
hoods of x. The intersection need not coincide with the one-point set {x}; in
the trivial topology, for example, the intersection is the full set X. In general
the intersection of the open neighbourhoods is a proper subset of the intersec-
tion of the closed neighbourhoods.
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Proposition (6.2). The topological space X is T, if and only if each point x of
X coincides with the intersection of its (open) neighbourhoods.

For suppose that the intersection condition is satisfied. Given x, if x” # x
then x’ has a neighbourhood which does not contain x, and so {x} is closed.

In the other direction, suppose that for some point x the intersection of the
neighbourhoods of x contains a point x" # x. Then {x'} cannot be closed since
that would imply the existence of a neighbourhood of x not containing x".

Hausdorff Spaces

The second condition is much more important than the first. Although the
term T, is often used it is better known as the Hausdorff property.

Definition (6.3). The topological space X has the Hausdorff property if for
each pair of distinct points x, x" of X there exist neighbourhoods U of x and
U’ of x’ which are disjoint.

The Hausdorff condition.

Here and in similar definitions in this section it makes no real difference
whether we write neighbourhood or open neighbourhood, or indeed basic
neighbourhood where neighbourhood bases are given.

For example, discrete spaces are Hausdorff since we can take U = {x},
U’ = {x'}. Infinite cofinite spaces, on the other hand, are never Hausdorff.
Thus although Hausdorff spaces are obviously T; the converse is false.

For another example, let X be a metric space with metric p. Then U,(x),
U,(x') are disjoint neighbourhoods of x, x’, where & = $p(x, x').

Proposition (6.4). The topological space X is Hausdorff if and only if for each
point x of X the intersection of the closed neighbourhoods of x is the one-point
set {x}.

For let X be Hausdorff. Suppose, to obtain a contradiction, that for some
point x there exists a distinct point x’ such that each closed neighbourhood
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of x contains x’. By the Hausdorff property there exist disjoint neighbour-
hoods U of x and U’ of x". Then X — U’ is closed and contains the neighbour-
hood U of x, hence is a neighbourhood of x, contrary to hypothesis.

Conversely, suppose that the intersection of the closed neighbourhoods of
x is just {x} for each point x of X. Then if x’ # x there exists a closed
neighbourhood N of x which does not contain x’. Hence N and X — N are
disjoint neighbourhoods of x and x’, respectively. This completes the proof
of (6.4).

Proposition (6.5). Let ¢: X — Y be a continuous injection, where X and Y are
topological spaces. If Y is Hausdorff then so is X.

For let x, x’ be distinct points of X. Then ¢(x), ¢(x’) are distinct points of
Y, since ¢ is injective. Since Y is Hausdorff there exist disjoint neighbourhoods
V, V' of ¢(x), p(x’), respectively. Then ¢ 1V, "1 V' are disjoint neighbourhoods
of x, x', respectively.

We see from (6.5) that each subspace of a Hausdorff space is itself Hausdorff.
We also see that the Hausdorff property is a topological invariant.

Proposition (6.6). Let {X;} be a family of Hausdorff spaces. Then the topological
product [ | X; is a Hausdorff space.

For let x = (x;), x' = (x/) be distinct points of X =[] X;. Then x; # x;] for
some index j. Since X; is Hausdorff there exist disjoint neighbourhoods U;, U}
of x;, x; in X;. Their inverse images with respect to the jth projection X — X;
are disjoint neighbourhoods of x, x’, as required.

Recall that the diagonal subset of X x X is denoted by AX. The com-
plement of the diagonal consists of precisely the pairs (x, x) of distinct points
of X. We prove

Proposition (6.7). The topological space X is Hausdorff if and only if AX is
closed in X x X.

For let (x, x') be a pair of distinct points of X. If AX is closed in X x X
then (x, x') admits an open neighbourhood which does not intersect AX, hence
a product open neighbourhood U x U’ say with the same property. Then U,
U’ are disjoint open neighbourhoods of x, x’ in X. This proves the result in
one direction; the argument in the other direction is just the reverse.

Proposition (6.8). Let ¢: X — Y be continuous, where X and Y are topological
spaces. If Y is Hausdorff then the graph embedding

XX xY

is closed.
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For we have I, X = (¢ x id)"'AY, as indicated, where AY is closed.

X —" , xxvY

|-

Y——z—’YXY

Proposition (6.9). Let ¢, X — Y be continuous, where X and Y are topological
spaces. If Y is Hausdorff then the coincidence set

M = {xeX: $(x) = ()}
of ¢ and y is closed in X.

For we have M = A7l (¢ x )"*AY, as indicated below.

X —2 L xxX

|-

Y—A>Y>(Y

Now AY is closed, since Y is Hausdorff, and so M is closed, by continuity of

(4 x ¥)A.

Corollary (6.10). Let ¢, : X — Y be continuous, where X and Y are topologi-
cal spaces. If 'Y is Hausdorff and if ¢ and  agree on a dense subset of X then

$=y.

Corollary (6.11). Let G be a Hausdorff group and let H be a commutative
subgroup of G. Then the subgroup Cl H of G is also commutative.

To see this, write Cl H = H and consider the continuous functions
mm':H x H- G,

where m(x, x') = x-x" and m'(x, x") = x’- x. Since H is commutative the func-
tions agree on H x H, but H x H is dense in H x H and so m = m/, as
required.

Our next result concerns the behaviour of filters on a Hausdorff space.

Proposition (6.12). The topological space X is Hausdorff if and only if the
following condition holds for each convergent filter # on X : if x is a limit point
of & then each adherence point of F coincides with x.

This shows, in particular, that limit points are unique in a Hausdorff space.
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To prove (6.12), suppose that the stated condition is satisfied. Let &, 1 be
distinct points of X. The neighbourhood filter .#; of & converges to £ and so,
by the condition, # cannot be an adherence point of 4. In other words, there
exists a neighbourhood V of  and a neighbourhood U of & which are disjoint:
thus X is Hausdorff.

In the other direction, suppose that there exists a filter # on X and distinct
points &, # of X such that £ is a limit point of # and # is an adherence point
of #. Then each neighbourhood V of # meets each neighbourhood U of ¢,
and so X cannot be Hausdorff.

It is often important to know whether a quotient space of a topological
space X is a Hausdorff space. The following result covers at least some of the
situations which can arise in practice.

Proposition (6.13). Let R be an equivalence relation on the topological space
X. The quotient space X/R is a Hausdorff space if the natural projection
n: X — X/R is open and R is closed in X x X.

For let x, x’ be points of X such that n(x) # n(x’). Then x is not related to
x’, i.e. (x, x")¢ R. Since R is closed in X x X there exist neighbourhoods U,
U’ of x, x" in X such that U x U’ does not intersect R. Then nU, nU’ are
disjoint neighbourhoods of 7(x), z(x’) in X/R, since = is open.

Proposition (6.14). Let H be a subgroup of the topological group G. Then the
factor space G/H is Hausdorff if and only if H is closed in G.

For if G/H is Hausdorff (or even T;) then [H] is closed in G/H and so
H = n7'[H] is closed in G. The converse follows from (6.13) but it makes a
good exercise to deduce it from first principles. Note in particular that G itself
is Hausdorff if and only if {e} is closed in G.

We now come to a series of results involving both compactness and the
Hausdorff property.

Proposition (6.15). Let ¢: X — Y be continuous, where X is compact and Y
Hausdorff. Then ¢ is closed.

For if Y is Hausdorff the graph embedding X — X x Y is closed, as we
have seen, and since X is compact the projection X x Y — Y is closed; now
(6.15) follows since the composition of closed functions is closed.

In particular, we see that compact subspaces of Hausdorff spaces are closed.
Consequently, for compact Hausdorff spaces, a subset is closed if and only if
it is compact.

A common procedure which depends on (6.15) for its justification is as
follows. Let ¢: X — Y be a continuous surjection, where X and Y are topo-
logical spaces. In the equivalence relation R = (¢ x ¢)"*AY on X determined
by ¢, points of X are equivalent if and only if they have the same image under
¢, and so ¢ induces a continuous bijection y: X/R — Y. If X is compact then
X/R is compact and so if Y is also Hausdorff then  is a homeomorphism.
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For example, consider the continuous surjection ¢: " x I — B"*!, where
I =[0, 1] and where
d(x, 1) =tx (tel, xeS").

The corresponding equivalence relation identifies all the points of S” x {0}.
Now S" x I is compact, since S" and I are compact, and B"*' is Hausdorff.
We see, therefore, that B"*! is homeomorphic to the quotient space of S* x I
which is obtained by collapsing S” x {0}.

Similarly, using a suitable function defined in terms of polar coordinates,
we can represent S"*! as a quotient space of the cylinder S” x I. In this case
the equivalence relation identifies all points of S” x {0} to one of the poles of
S™*1 and all points of S” x {1} to the other.

§? Stx I B2

For another example, consider the topological group O(n, R) of real ortho-
gonal n x n matrices. A continuous surjection ¢: O(n, R) - S"™* can be de-
fined by applying each matrix to a given point peS"~!. In this case the
equivalence classes are just the cosets of the subgroup ¢~'(p) of O(n, R), which
may be identified with O(n — 1, R). Since O(n, R) is compact, as we have seen,
and since S"~! is Hausdorff we conclude that $*~! can be represented as the
factor space O(n, R)/O(n — 1, R).

Regular Spaces?®

We now move on to another of the separation conditions, which is neither
weaker nor stronger than the Hausdorff property.

Definition (6.16). The topological space X is regular if for each point x of X
and each neighbourhood U of x there exists neighbourhood V of x such that
ClveU.

19 Some authors, including Bourbaki, require regular spaces to be Hausdorff as well.
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In other words, the closed neighbourhoods of a point form a neighbour-
hood base at that point. Another way to express the condition, which is
obviously equivalent, is as follows: for each point x of X and each closed set
E such that x ¢ E, there exists a neighbourhood V of x and a neighbourhood
W of E which are disjoint.

The regularity condition.

Discrete spaces are regular. Trivial spaces are also regular although not,
in general, Hausdorff. Regular T; spaces are Hausdorff, of course; since infinite
cofinite spaces are not Hausdorff they are not regular either. A refinement of
a regular Hausdorff topology, although necessarily Hausdorff, may fail to be
regular. For example, consider the real line R with the refinement of the
euclidean topology in which the set Q of rationals is an additional open
neighbourhood of unity. In the refined topology there exists no open neigh-
bourhood V of unity such that C1 V < Q.

Metric spaces are regular. For if X in (6.16) has metric p then U,(x) and
U,(E) are disjoint neighbourhoods of x and E, where ¢ = 3p(x, E).

Proposition (6.17). Let ¢: X — X’ be an embedding, where X and X' are topo-
logical spaces. If X' is regular then so is X.

For let x be a point of X and let U be an open neighbourhood of x in X.
Since ¢ is an embedding there exists an open neighbourhood U’ of ¢(x) in X’
such that ¢7*U’ = U. If X' is regular there exists an open neighbourhood V’
of ¢(x)in X’ such that C1 V' = U’. Then V = ¢ ™'V’ is an open neighbourhood
of x in X and

$ClV < ClgV =Clgp™ V' < ClV' c U;

thus Cl V < ¢7*U’ = U, as required.
We see, in particular, that subspaces of regular spaces are regular. We also
see that regularity is a topological invariant.
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It should be observed that if the topology of X is generated by a complete
family I" then the condition in (6.16) holds for all open neighbourhoods U if it
holds for the I'-neighbourhoods. We use this in the proof of

Proposition (6.18). Let {X;} be a family of regular spaces. Then the topological
product [ | X; is regular.

For let x = (x;) be a point of the topological product and let [ [ U; be a
restricted product open neighbourhood of (x;). Since each of the factors X; is
regular, and since U; is an open neighbourhood of x; in Xj; there exists an
open neighbourhood ¥, of x; in X; such that C1 V; < Uj; we take V; = X for
those j such that U; = X;. Then [ | V; is a restricted product open neighbour-
hood of x such that C1[[ ;=[] Cl V; = [] U,, as required.

Topological groups and, more generally, factor spaces of topological
groups, are necessarily regular. Specifically, we have

Proposition (6.19). Let H be a subgroup of the topological group G. Then the
factor space G/H is regular.

Using homogeneity we can assume, without real loss of generality, that the
point of G/H concerned is the neutral coset [H]. Let V be an open neighbour-
hood of [H] in G/H. Then U = n~'V is an open neighbourhood of H, and
hence of e,in G. Let N be an open neighbourhood of e such that N™!- N < U.
Then nN = n(N-H) is an open neighbourhood of [H] in G/H. I assert
that

ClzrN)c n(N"}*N)c U < V.

Forif [gH]is an adherence point of N, where g € N, the saturated neighbour-
hood N-gH of gH meets N-H, hence gH meets N™'- N - H, hence [gH] e
(N~ - N), as required. Thus G/H is regular, as asserted.

Proposition (6.20). Let X be a compact Hausdorff space. Then X is regular.

For let x be a point of X, and let 4, be the filterbase formed by the closed
neighbourhoods of x. Since X is Hausdorff the intersection of the members of
2. is {x}. Therefore x is the sole adherence point of 4,, and so 4, converges
to x by (6.12). Now regularity follows at once.

Given a topological space X, let us say that the point & is related to the
point # if every neighbourhood of & contains #. The relation thus defined is
reflexive and transitive, but not in general symmetric. Suppose, however, that
X is regular. If U is a neighbourhood of & which does not contain # then there
exists a neighbourhood V of ¢ such that Cl V = U and hence a neighbourhood
X — Cl1 V of n which does not contain &. For regular X, therefore, the relation
is symmetric, as well as reflexive and transitive, and so is an equivalence
relation.
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Itis easy to see that both the open sets and the closed sets of X are saturated,
with respect to the relation. For if £ is related to a point of an open set U then
U, as a neighbourhood of that point, must contain & Similarly, if ¢ is a
point of the complement of a closed set E then ¢ has a neighbourhood
which is disjoint from E, and so & is not related to any point of E, by
transitivity. Consequently, the natural projection n: X — X’ to the quotient
space is both open and closed. Moreover, X' is Hausdorff, since if &, # are
points of X such that n() # n(y) then £¢Cl{n} and so, by regularity,
there exist disjoint neighbourhoods U of ¢ and V of Cl{n} in X, hence
disjoint neighbourhoods U of #(£) and =V of =(y) in X'. Similarly, X' is
regular.

We refer to X’ as the Hausdorff quotient of X. The construction has the
following characteristic property:

Proposition (6.21). Let ¢: X — Y be continuous, where X is regular and Y is
Hausdorff. Then there exists one and only one continuous function y: X' - Y
such that yn = ¢.

Of course, 7 is a homeomorphism when X itself is Hausdorff. Also X' is a
one-point space when X has the trivial topology.

For another example, consider the case of a topological group G, which is
always regular as we have seen. The Hausdorff quotient of G is the factor
group G/Cl{e}. More generally, the Hausdorff quotient of the factor space
G/H, where H is a subgroup of G, is the factor space G/Cl H.

As we observed earlier, it is often important to know whether or not a
quotient space has the Hausdorff property. In (6.13) we have obtained a result
of this nature in the case of a closed equivalence relation. We now prove
another result of the same type.

Proposition (6.22). Let A be a closed subspace of the regular Hausdorff space
X. Then the quotient space X/A obtained by collapsing A to a point is a
Hausdorff space.

For let &, n be distinct points of X/A. If neither one is the point [A4] the
existence of disjoint open neighbourhoods follows at once from the Hausdorff
property of X — A. If one of ¢, # is the point [4], say n = [A4], then =™ (&) is
a single point and X — A is an open neighbourhood of that point. By regular-
ity there exists an open neighbourhood V of z71(£) in X such that C1 V <
X — A. Then V is saturated, since V is disjoint from A, and so nV is open in
X/A. Also X — Cl V contains 4 and is therefore also saturated, so that
n(X — C1 V) is open in X/A. Thus =V is an open neighbourhood of ¢ and
n(X — Cl1 V) is an open neighbourhood of #. Since these sets are disjoint this
completes the proof that X/A4 is Hausdorff.
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Normal Spaces
We now reach the last of the separation conditions to be considered here.

Definition (6.23). The topological space X is normal if each pair E, F of disjoint
closed sets of X admit disjoint neighbourhoods U, V.

The normal condition.

Clearly the condition is topologically invariant. Discrete spaces are normal:
take U = E and V = F. Trivial spaces are normal since the only possibilities
for E and F are the empty set and the full set. Normal T; spaces are regular
and Hausdorff; since infinite cofinite spaces are not Hausdorff they are not
normal either. The Sierpinski point-pair is normal although it is neither
regular nor Hausdorff. Metric spaces are normal. For if X in (6.23) has metric
p then U, V can be defined by

U= {xeX:p(x, E) < p(x, F)}, V ={xeX:p(x E)> p(x, F)}.

Proposition (6.24). Let ¢: X — Y be a closed embedding, where X and Y are
topological spaces. If Y is normal then so is X.

For let E, F be disjoint closed sets of X. Then ¢E, ¢F are disjoint closed
sets of Y. Since Y is normal there exist disjoint neighbourhoods U, V of ¢E,
¢F in Y. Then ¢~ 1U, ¢ 'V are disjoint neighbourhoods of E, F in X.

We see, in particular, that closed subspaces of normal spaces are normal;
examples can be given to show that subspaces in general are not necessarily
normal.

Proposition (6.25). Let ¢: X — Y be a closed continuous surjection, where X and
Y are topological spaces. If X is normal then so is Y.

For let E, F be disjoint closed sets of Y. Then ¢ 'E, ¢ ' F are disjoint closed
sets of X. Since X is normal there exist disjoint open neighbourhoods U, V
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of $7'E, $7'F in X. Then Y — ¢(X — U), Y — #(X — V) are disjoint open
neighbourhoods of E, F in Y.

Examples can be given to show that topological products of normal spaces
are not necessarily normal (there is even an example where X is normal but
the cylinder X x [ is not).

Proposition (6.26). Let E, F be disjoint compact subsets of the Hausdorff space
X. Then there exist open neighbourhoods U of E and V of F, which are disjoint.

For let £ be any point of E. By the Hausdorff property there exist, for each
point 5 of F, disjoint open neighbourhoods U, () of &, V,(£) of . The sets V,(£)
(n€ F) form an open covering of the compact F; extract a finite subcovering
indexed by #4, ..., 11, say. Then the intersection

Uu@)="0,&nnU,(©)

is an open neighbourhood of ¢ which does not intersect the union

Vi)=Y, (v ul (&)

which is an open ncighbourhood of F. Now vary &. The sets U (&) (£ € E) form
an open covering of the compact E; extract a finite subcovering indexed by
&y, ..., &, say. Then the union

U=U)vuUE)

is an open neighbourhood of E which does not intersect the open neigh-
bourhood

V=VE)n - AVE)
of F.

Corollary (6.27). If X is a compact Hausdorff space then X is normal.

Proposition (6.28). Let C be a compact subset of the regular space X and let U
be an open neighbourhood of Cin X. Then C1 V < U for some open neighbour-
hood V of Cin X.

Since U is an open neighbourhood of each point x of C there exist, by
regularity, open neighbourhoods V, of x and W, of X — U = E which are
disjoint. The family {V,: xe C} forms an open covering of the compact C;
cxtract a finite subcovering indexed by x, ..., Xx,,, say. Then the union

V = V;cl U U me
is an open neighbourhood of C and the intersection
W = [/[/x1 A A mm

is an open neighbourhood of E. Since the neighbourhoods do not intersect
we have that Cl V < U, as required. Another way to express this result is that
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if the compact C and the closed E are disjoint subsets of the regular space X
then C and E admit disjoint neighbourhoods.

Proposition (6.29). If X is compact regular then X is normal.

For let E, F be disjoint closed sets of X. Then E is compact, since X is
compact, and X — F is an open neighbourhood of E. Since X is regular
ClV < X — F, by (6.28), for some open neighbourhood V of E. Therefore
X — Cl V is an open neighbourhood of F which proves (6.29).

Compactly Regular Spaces

Regularity, as we have seen, means that there exists a closed neighbourhood
base at each point. Suppose that we modify this by requiring a compact
neighbourhood base at each point. There does not appear to be any settled
terminology for this condition unless the Hausdorff property also holds in
which case local compactness would be the appropriate term. It is tempting
to use the same term for the condition in the non-Hausdorff case but this
would be contrary to established practice. The term “compactly regular”
seems not inappropriate, and so I propose

Definition (6.30). The topological space X is compactly regular if at each point
of X the compact neighbourhoods form a neighbourhood basc.

Clearly every discrete space is compactly regular, using the one-point sets
as basic neighbourhoods. Closed subspaces of compactly regular spaces are
compactly regular but subspaces in general are not. The real line R is com-
pactly regular, for example, while the rational line @ is not.

In fact, for a Hausdorff space it is only necessary to produce one compact
neighbourhood of each point since the closed neighbourhoods form a base,
by the Hausdorff property, and so the traces of the closed neighbourhoods on
the compact neighbourhood form a compact base. In particular, every com-
pact Hausdorff space is compactly regular.

Due to the definition of the product topology, the topological product of
a family of compactly regular spaces is compactly regular provided all but a
finite number of the factors are compact.

It is easy to see that the direct image of a compactly regular space under a
continuous open function is also compactly regular. Hence the condition is a
topological invariant.

Proposition (6.31). Let p: Y — Z be a quotient map, where Y and Z are topo-
logical spaces. Then the product
g=dxp: X xXY>XxZ

is a quotient map, for all compactly regular spaces X.
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For let W « X x Z be such that g"*W is open and let (x, y) be a point of
g 'W. Since X is compactly regular there exists a compact neighbourhood C
of x in X and an open neighbourhood V, of yin Y such that C x V, = ¢ 'W.
Now the second projection n: C x Y - Y is closed, since C is compact;
consider the intersection U of ¢! W with C x Y. Since U is an open neighbour-
hood of C x p~'(pV,) there exists, by (4.15), an open neighbourhood V,
of p~'(pV,) such that C x ¥, = U. Repeating the process we obtain, for
i=0,1,...,an open neighbourhood V,,, of p~'(pV;) such that C x V,,, = U.
Then the union V of the open sets ¥ is an open neighbourhood of y such that
C x V< U, hence Int C x Vis an open neighbourhood of (x, y) contained in
U and hence in ¢ 'W. However, V = p~!(pV) and so pV is open in Z, since p
is a quotient map. Therefore Int C x pV is an open neighbourhood of (x, p(y))
contained in W, and so W is open. This proves (6.31).

The following example, taken from Kelley [8], is illuminating. Let X
be a regular Hausdorff space which is not normal. (In fact, the Sorgenfrey
plane meets these requirements, as can be shown without great difficulty.)
Let E and F be disjoint closed sets of X such that each neighbourhood
of E intersects each neighbourhood of F. Consider the complement of the
closed set R = AX U(E x E)U(F x F), regarded as a neighbourhood of
E x F. The image of this saturated open set under the natural projection

X x X > (X/R) x (X/R)

is not open. Thus we have an example where the product of two quotient maps
is not a quotient map.

EXERCISES

1. An equivalence relation R on the topological space X is defined so that Ry if
C1{¢} = Cl{n}. Show that the quotient space X/R has the T, property: for any two
distinct points at least one admits a neighbourhood which does not contain the
other.

2. Show that if H is a subset of the T; space X then the intersection of all the
neighbourhoods of H in X is H itself.

3. In the T, space X the intersection of every family of open sets is open. Show that
X is discrete.

4. Ontheclosed interval X = [ —1, 1] = Rlet S be the equivalence relation for which
the equivalence classes are pairs {x, —x} when —1 < x < 1, the one-point sets {x}
when x = 4+ 1. Show that X/S is T; but not Hausdorff.

5. Let X be a Hausdorff space such that each point of X admits a regular closed
neighbourhood. Show that X is regular.

6. Let A4 be a closed subspace of the regular space X. Show that A4 coincides with the
intersection of its closed neighbourhoods.
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10.

1L
12.

6. Separation Conditions

. Let¢: X — Y be afunction with graph I'; = X x Y, where X and Y are topological

spaces, with X Hausdorff. Show that ¢ is continuous if either

(i) Ty is compact, or
(i) I’y is closed and Y is compact.

. Let E, F be disjoint closed subsets of the normal spacec X. Show that there cxist

disjoint closed neighbourhoods of E, F in X.

. Let H be a discrete subgroup of the Hausdorff group G. Show that H is closed in G.

Let {X;} be a family of regular spaces. Show that the Hausdorff quotient of the
topological product []X; is homeomorphic to the topological product of the
family of Hausdorff quotients {X]}.

Show that if every subset of the Hausdorff space X is compact then X is discrete.

Consider the real line R with the topology in which a subset H is closed if and only
if H is closed in the euclidean topology and bounded with respect to the euclidean
metric. Show that R is T; but not Hausdorff.



CHAPTER 7

Uniform Spaces

Uniform Structures

The second section of this book is concerned with uniform spaces. These are
structured scts of a different kind from those we have studied so far. As we
shall see in duc course, a uniform structure on a given set determines a
topological structure on the same set. However, different uniform structures
may determine the same topological structure. Moreover, there exist topo-
logical structures which cannot be obtained from a uniform structure.

Metrics and topological group structures give rise to uniform structures,
as we shall see. A theory which encompasses many of the essentials of both
these important classes of spaces is obviously of considerable interest. But
what makes uniform spaces important, as much as anything, is that every
compact Hausdorff space admits a uniform structure, and that structure is
unique.

A uniformity (or uniform structure) on a given set X is a filter on the
cartesian square X x X satisfying certain conditions. The members of the
filter are not called relations (although the notation described in Chapter 0 is
still used) but entourages (or surroundings). Specifically, we have

Definition (7.1). A uniformity on a set X is a filter on X x X consisting of
entourages such that:

(i) each entourage D contains the diagonal AX,
(ii) if D is an entourage then E = D! for some entourage E,
(iii) if D is an entourage then D’o D’ < D for some entourage D’.

Note that if D is an entourage then so is D~; the reason for not stating (ii)
in this form will emerge in a moment. Also note that (iii) can be extended, by
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iteration, to the condition that for each n = 1, 2, ... there exists an entourage
E such that E" < D.

AX

Shaded region suggests entourage for X = I.

By a uniform space we mean a set X together with a uniformity Q on X;
usually X alone is sufficient notation. We also regard the empty set as a
uniform space with the empty set as entourage. A refinement of the uniformity
Qs a uniformity Q' on the same set such that each entourage of Q belongs to
Q'. In this situation we say that Q' refines Q or that Q coarsens Q'. If the
possibility that Q = Q' is to be cxcluded we describe the refinement as strict.
Let us have a few examples.

Definition (7.2). The discrete uniformity on the set X is the uniformity in which
every superset of AX is an entourage.

In this situation we describe X as a discrete uniform space. Clearly the
discrete uniformity refines every other uniformity. Going to the other extreme
we have

Definition (7.3). The trivial uniformity on the set X is the uniformity in which
the full set X x X is the sole entourage.

In this situation we describe X as a trivial uniform space. When X has fewer
than two points the discrete uniformity and the trivial uniformity coincide,
and no other uniformity is possible. When X has at least two points, however,
the discrete uniformity and the trivial uniformity are different, and when X
has at least three points there are other possible uniformities as well.

In topology, as we have seen, any family of subsets of a given set X can be
used to generate a topology on X, by first taking finite intersections and then
taking unrestricted unions. So far as I am aware nothing quite like this is
possible in the case of a uniform structure. Given a family of subsets of X x X,
each containing the diagonal AX, we can always complete the family by taking
finite intersections and then pass to the filter thus generated by taking super-
sets. But at some stage in the process we also have to take the “transitive
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closure” by taking compositions, in the sense of relation theory, and it is this
which causes the difficulty.

The following example may clarify matters. For any set X and any family
I" of subsets of X consider the family '™ of subsets of X x X consisting, for
each member M of I', of the subset

{&n):&=noréecMorneM}

of X x X.Each member of '™ is reflexive and symmetric but the composition
of any pair of members is just the full set X x X.

The definition (7.1) of the term uniformity includes the word “filter”. If we
replace this by the term “filter base” then we obtain the definition of what is
meant by a base, in this context. Thus a uniformity base on a set X is a family
of subsets of X" X, also called entourages, such that the same three condi-
tions are satisfied, and which satisfies the conditions for a filter base. The
uniformity determined by the base consists of the supersets of the members
of the base.

Given a uniformity Q on X we can, of course, take the whole of Q as a base,
in this sense. More usefully we can take the symmetric entourages of Q as a
base, i.e. the entourages D such that D = D!, In the case of the discrete
uniformity the one-member family consisting of the diagonal 4X constitutes
a base.

Base for uniformity on point-triple which is neither discrete nor trivial.

In practice, uniformities are usually defined by specifying a base for the
uniform structure. For example, consider the real line R. Consider the family
of subsets

Uc = {(éa }7) ,5 - 7’]' < 8}

of R x R, where ¢ runs through the positive reals. This satisfies the three
conditions in (7.1) and constitutes a filter base. The filter generated in this way
is called the euclidean uniformity on R. Specifically, a subset D of R x Ris an
entourage if U, = D for some ¢ > 0. A similar uniformity is defined in the case
of R™.
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For another example, consider the set of integers Z. The p-adic structure
on Z, for a given prime p, is the uniformity gencrated by the subsets D, of
7ZxZmn=1,2,...), where (£, n)e D, if and only if £ = # mod p". This struc-
ture is important in the theory of numbers.

Recall from the preliminary chapter that subscts of a group G determine
relations on G in two different ways. Specifically, the left relation determined
by a subset A4 is such that &, yeG are related if £7*-5e A, while the right
relation is such that &, u are related if &-n7'e A. Of course, the relations
coincide when G is commutative.

When G is a topological group a uniform structure on G can be defined in
two different ways (there are also other ways, but those do not concern us
here). Specifically, the left relations determined by the members of the neigh-
bourhood filter at the neutral element e generate the left uniformity, while the
right relations generate the right uniformity.

Let us check that the various conditions are satisfied by the family of left
relations. Thus let R, be the (left) relation corresponding to a neighbourhood
U of e. Then (i) is satisfied since U contains e, (ii) is satisfied since U contains
a neighbourhood V such that V™! = U, and (iii) is satisfied since U contains
a neighbourhood W such that W- W < U. Morcover, the family {R,} con-
stitutes a filter base since the family {U} constitutes a filter, and so all the
conditions for a uniformity base are satisficd. The argument for right, rather
than left, relations is similar.

When G is commutative the left and right uniformities coincide, of course.
They also coincide when G is discrete, since the entourage given by the neutral
element, as a neighbourhood of itself, is just the diagonal AG, and so we obtain
the discrete uniformity in either case. In general, however, the left and right
uniformities need to be distinguished.

Note that, in the above construction, if U is confined to a neighbourhood
base at the neutral element then the corresponding family of subsets Ry
constitutes a base for the left uniformity, and similarly in the case of the right
uniformity.

The euclidean uniformity on the real line R and, more generally, on the
real n-space R" is an illustration of this, where the neighbourhood base at the
neutral element 0 consists of the open ¢-balls U,(0). However, these examples
can also be regarded as special cases of the metric uniformity, which arises as
follows.

A metric p on a set X determines a uniformity on X, namely the uniformity
generated by the family of subsets

U, =p7'[0,¢),

where ¢ runs through the positive reals. We refer to U, as the ¢-entourage
determined by p. Thus a subset D of X x X is an entourage, in this uniformity,
if there exists a positive ¢ such that p(&, n) < ¢ implies (&, #)e D. In fact, (i) of
(1.16) implies that each entourage contains the diagonal, (ii) implies the
symmetry condition, while (iii) implies the condition of weak transitivity.
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For example, the discrete metric determines the discrete uniformity. The
trivial uniformity on a set with at least two points is not determined by any
metric.

Different metrics may determine the same uniformity. For example, the
uniformity determined by the metric p on the set X is the same as that
determined by the metric 2p.

Separated Uniformities

If X is a uniform space the intersection R of the entourages constitutes an
equivalence relation on X. For R is clearly reflexive and symmetric. To see
that R is transitive, let D be an entourage. There exists an entourage E such
that EocE < D. Since R < E we have RoR « EoE = D, hence RoR « R.
Since AX <« R we also have R < RoR. Thus RoR =R, and so R is an
equivalence relation, as asserted. To obtain R, of course, it is only necessary
to intersect the entourages of a uniformity base. So in the case of a topological
group G we see that R is just the subset of G x G corresponding to the
intersection of the neighbourhoods of the neutral element e, in either left or
right uniformity, i.e. to the closure of {e}, since G is regular. In the case of a
metric space, R is just the diagonal. This example shows that R itself is not
necessarily an entourage.

Returning to the general case we note that the diagonal AX is contained
in R, since AX is contained in every entourage of X; in general, AX is a proper
subset of R, as the above examples indicate. This gives point to

Definition (7.4). A uniformity on the set X is separated if the diagonal AX
coincides with the intersection R of the entourages.

For example, the condition is always satisfied in the case of a metric space.
In the case of a topological group, with either left or right uniformity, the
condition is satisfied if and only if {e} constitutes a closed set.

Totally Bounded Uniformities**

Definition (7.5). The uniform space X is totally bounded if for each entourage
D of X there exists a finite subset S of X such that D[§] = X.

For example, the trivial uniformity is always totally bounded, while the
discrete uniformity is totally bounded if and only if X itself is a finite set.

To understand this important condition better let us introduce a further
technical term. Given an entourage D of a uniform space X let us say that a
subset M of X is small of order D, or simply D-small,if M x M < D. Then the

1 The term precompact is also used instead of the term totally bounded.
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condition in (7.5) is that X can be covered by a finite number of D-small
subsets, for each entourage D of X. Clearly it is sufficient for this to be true
for the members of a uniformity base.

In case the uniformity on X is given by a metric p, the condition reduces
to the following. By an ¢-net, where ¢ > 0, we mean a subset S of X such that
the family {U,(x): x € S} covers X. Here and elscwhere

Ux) = {EeX: p(& x) < o),

in keeping with the notation introduced in Chapter 1. So in this case the
conditionin (7.5) may be expressed as the existence of a finite e-net for alle > 0.

If the uniformity on X arises from a metric p then X is bounded if X is
totally bounded. For take D to be the basic entourage U, of X. The condition
in (7.5) states that no point of X is further than distance 1 from some point of
a finite subset S; of X. Since S, is finite the diameter diam S, is defined, and
then k = 2 + diam S, is a bound for X.

We have already seen, in Chapter 4, that a metric p can be converted into
a bounded metric p’ by formulae such as

p’ = min(1, p), "=p(1+p)7h

The associated uniform structure is not affected by this change. For in the
case of the first formula, each basic e-entourage (¢ > 0) in the case of p contains
the basic ¢’-entourage in the case of p’, where ¢’ = min(1, ¢), while each basic
¢'-entourage (¢' > 0) in the casc of p’ is a basic ¢’-entourage in the case of p. It
follows from thesc observations that bounded metric spaces are not neces-
sarily totally bounded. For example, the real line R is not bounded, hence
not totally bounded, with the euclidean metric, and so remains not totally
bounded after conversion of the metric into a bounded metric.

Uniform Continuity

In the theory of uniform spaces the structure-preserving functions, in the
inverse image sense, are the uniformly continuous functions, as in

Definition (7.6). Let ¢: X —» Y be a function, where X and Y are uniform
spaces. Then ¢ is uniformly continuous if the inverse image (¢ x ¢)"'E is an
entourage of X for each entourage E of Y.

Thus ¢ is necessarily uniformly continuous if the uniformity of X is discrete
or if the uniformity of Y is trivial.

Constant functions arc uniformly continuous. For suppose that X = {y,}
for some point y, of Y. The inverse image of every entourage E of Y with
respect to ¢ x ¢ is the full set X x X since (yq, yo)€AY < E, and the full set
is always an entourage.

Note that the identity function on any uniform space is uniformly contin-
uous. Also that if ¢: X - Y and ¢: Y — Z are uniformly continuous, where
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X, Y and Z are uniform spaces, then the composition Y¢: X — Z is uniformly
continuous.

Clearly it is sufficient if the condition in (7.6) is satisfied for all entourages
E in a base for the uniformity of Y.

In the metric case, for example, the condition reduces to the following

Condition (7.7). Let ¢: X — Y be a function, where X and Y are metric spaces
with metrics p, g, respectively. Then ¢ is uniformly continuous if for each & > 0
there exists a § > 0 such that p(, n) < 6 implies a(¢(&), ¢(n)) < ¢ for all €&,
neX.

For example, take X = Y = R, with the euclidean uniformity, and take
#: R - R to be the squaring function given by ¢(x) = x2. To see that ¢ is not
uniformly continuous, take ¢ = 1 in the above; then for any § > 0 we have

[#(&) — o) = 1

when & =671 + 45, n = 67! —15. Almost the same argument shows that
real multiplication

R x R- R,

is not uniformly continuous, with the euclidean uniformitics.

A point to note is that for any metric space X the metric p: X x X -> R
itself is necessarily uniformly continuous, using the euclidean metric on R. In
fact, if D = U,;, (¢ > 0) is a basic entourage of X then for ({;, n;)eD (i = 1, 2)
we have

[p(E1,m1) — p(as M)l <o,

by the triangle inequality; therefore p is uniformly continuous, as asserted.
Another straightforward consequence of the definition is

Proposition (7.8). Let ¢: G — H be a (continuous) homomorphism, where G and
H are topological groups. Then ¢ is uniformly continuous, with respect to both
left and right uniformities.

For if E is a basic entourage of H, corresponding to a neighbourhood N
of the neutral element in H, then (¢ x ¢)"'E is a basic entourage of G,
corresponding to the neighbourhood ¢! N of the neutral element in G.

Corollary (7.9). Let G be a commutative topological group. Then the inver-
sion function G — G and the multiplication function G x G — G are uniformly
continuous.

The same conclusions hold, of course, when G is discrete. For general G,
however, all one can say is that inversion is uniformly continuous, in either
left or right uniformity, if and only if the left and right uniformities coincide.
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Uniform Equivalences

Definition (7.10). A uniform equivalence ¢: X — Y, where X and Y are uni-
form spaces, is a bijective function such that both ¢ and ¢! are uniformly
continuous.

In particular, if X and Y are metric spaces and ¢ is a distance-preserving
bijection then ¢ is a uniform equivalence. In such a case we also describe ¢ as
anisometry. The orthogonal transformations of R” are examples of isometries.

It is clear that the existence of a uniform equivalence constitutes an equiva-
lence relation between uniform spaces. A property of uniform spaces which
is invariant under uniform equivalence is called a uniform invariant. Total
boundedness is an example of a uniform invariant, in view of

Proposition (7.11). Let ¢: X — Y be a uniformly continuous surjection, where X
and Y are uniform spaces. If X is totally bounded then so is Y.

For let E be an entourage of Y. Then D = (¢ x ¢)"*E is an entourage of X,
since ¢ is uniformly continuous. Since X is totally bounded there exists a finite
subset S of X such that D[S] = X. Then Y = E[¢S], where ¢S is finite, and
so Y is totally bounded, as asserted.

Note that if ¢: X — Y is a bijection, where X is a sct and Y is a uniform
space, we can always impose a uniformity on X so as to make ¢ a uniform
equivalence. Specifically, the entourages of X are precisely the inverse images,
under ¢ X ¢, of the entourages of Y.

Definition (7.12). The uniform space X is uniformly homogeneous if for each
pair of points x, x" of X there exists a uniform equivalence ¢: X — X such that

o(x) = x'".

For example, discrete uniform spaces and trivial uniform spaces are uni-
formly homogeneous.

For another example, consider a topological group G, with the left unifor-
mity. For each element g of G the left translation g4: G — G is uniformly
continuous, since (g4 x g4)D = D for each basic entourage D of G. Since the
inverse of g, is just (g7*) 4 it follows at once that g, is a uniform equivalence,
and hence that G is uniformly homogeneous. Similarly, for right translation,
with the right uniformity.

The Uniform Product

Just as the cartesian product of topological spaces can be given a topology so
the cartesian product of uniform spaces can be given a uniformity. Specifically,
let {X;} be a family of uniform spaces. Disregarding the uniformities for a
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moment consider the cartesian product X = [] X;. We identify X x X with
the cartesian product [ [(X; x X ;) by the obvious rearrangement of factors.
This rearrangement being understood we regard the cartesian product [ | D;,
where D; = X; x X; for each index j, as a subset of X x X. In particular, we
regard the restricted product set [ [ D;, where D; is full for all but a finite
number of indices j, as a subset of X x X. Now consider the family of subsets
of X x X consisting of the restricted product sets [ [ D; such that D is an
entourage of X, for each index j. This family constitutes a base for a uniformity
on X, called the product uniformity, and X, with this uniformity, is called the
uniform product of the members of the family {X;}. Note that if the uniformity
on X is generated by a base, for each index j, then the product uniformity on
[1X; is generated by the family of restricted product sets [ | D; where D; is
basic or full for each j.

It follows at once from the definition of the product uniformity that each
of the projections 7; is uniformly continuous. In fact, the product uniformity
may be described as the coarsest uniformity on the cartesian product for which
this is true. As a result the uniform product is characterized by the following
property:

Proposition (7.13). Let {X;} be a family of uniform spaces. Let ¢: A — [ | X; be
a function, where A is a uniform space and || X; is the uniform product. Then
¢ is uniformly continuous if and only if each of the functions ¢; = m;¢p: A — X;
is uniformly continuous.

As far as possible, one should try and deduce results about the uniform
product from (7.13), rather than go back to the definition of the product
uniformity. For example, let {i);} be a family of uniformly continuous func-
tions y;: X; — Y;, where X; and Y, are uniform spaces. Then it follows at once
from (7.13) that the product function

[Ty T1X-11%

is uniformly continuous, since the jth component of [ [y; is the uniformly
continuous function y;7;. Notice that if each of the i/; is a uniform equivalence
then so is the product [ [ y;. It follows that the uniform product of uniformly
homogeneous uniform spaccs is again uniformly homogeneous.

For another illustration, consider the uniform product X’ of J copies of
the uniform space X, for some indexing set J. Then (7.13) shows that the
diagonal function

A X - X!

is uniformly continuous, since each component of A is the identity function
on X.

The proofs of the following two results are straightforward and will be left
to serve as exercises.
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Proposition (7.14). Let {X;} be a family of separated uniform spaces. Then the
uniform product [ | X; is separated.

Proposition (7.15). Let { X;} be a family of totally bounded uniform spaces. Then
the uniform product [ X; is totally bounded.

Let {G;} be a family of topological groups. Each member G; of the family
can be regarded as a uniform space, using the left uniformity, and then the
cartesian product [ | G; can be regarded as a uniform space, using the product
uniformity. However, | | G; can also be regarded as a topological group, using
the direct product group structure, and hence as a uniform space, using the
left uniformity. It is easy to check that these uniformities on [ | G; coincide.
Similarly, using right uniformity instead of left uniformity, throughout.

Let us pause in the development of the theory for a little while and consider
some more specific examples. To start with it follows from (7.9) that the
addition function R x R — R is uniformly continuous, in the euclidean uni-
formity, likewise the negative R — R. It is also easy to see that dilatations as
well as translations are uniformly continuous, and hence that the affine
transformation p: R — R given by

p&)=A+u  (eR)

is uniformly continuous for all real 4, u. Other uniformly continuous functions
R x R — R include max and min; the proofs are straightforward.

A similar situation obtains in higher dimensions. Thus the negative func-
tion R*" —» R" and the addition function R" x R" — R" are uniformly con-
tinuous, in the euclidean uniformity on R" (n > 1). Moreover, the affine
transformation p: R" — R" given by

p)=A+un (LeRY)

is uniformly continuous, where A is a real n x n matrix and g€ R". From these
basic facts we can draw conclusions about real-valued functions with a uni-
form space X as domain. Thus if ¢: X — R is uniformly continuous then so,
by postcomposition with the negative function R — R, is —¢: X — R. Again,
if ¢, y: X — R are uniformly continuous then so are

¢ + ¥ max(¢, ¥), min(g, ¥): X - R.

To see this, all we need to do is observe that ¢ + y can be cxpressed as the
composition A xy
X->XxX—RxR-R,

where the last function is given by addition, and similarly with max and min.

In the case of the punctured line R, = R — {0} the obvious uniformity to
use is the one determined by the multiplicative group structure. This has the
property that the operations

R,>R, R, xR, >R,

of inversion and multiplication are uniformly continuous.
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With the multiplicative uniformity, the inverse (reciprocal) ¢~* of a uni-
formly continuous function ¢: X — R, is uniformly continuous, likewise the
product ¢y of uniformly continuous functions ¢, ¥: X — R,, is uniformly
continuous, for cach uniform space X.

The Induced Uniformity

We now return to the development of the theory with

Definition (7.16). Let ¢: X — Y be a function, where X and Y are uniform
spaces. The uniformity on X is induced by ¢ from the uniformity on Yif the
uniformity on X is generated by the inverse images, with respect to ¢ x ¢, of
the entourages of Y.

The condition here is stronger than uniform continuity since X is not
allowed to have entourages other than those which arise from Y in the
prescribed manner.

The situation may occur in which we are given a function ¢: X — Y, where
Y is a uniform space and X is a sct. Then we can use the procedure indi-
cated in (7.16) to give X a uniformity. This uniformity, which is called the
induced uniformity, may be described as the coarsest uniformity such that ¢ is
uniformly continuous. For example, if Y has the trivial uniformity then so
does X.

The induced uniformity is transitive in the following sense. Let ¢: X - Y
and : Y - Z be functions, where X, Y and Z are uniform spaces. If Y has
the uniformity induced by y from the uniformity of Z and X has the uniformity
induced by ¢ from the uniformity of Y then X has the uniformity induced by
V¢ from the uniformity of Z. The proof is obvious.

The following property is characteristic of the induced uniformity.

Proposition (7.17). Let ¢: X — Y and : Y — Z be functions, where X, Y and
Z are uniform spaces. Suppose that Y has the uniformity induced by \ from the
uniformity of Z. Then ¢ is uniformly continuous if (and only if ) Yy is uniformly
continuous.

For if E is an entourage of Y then E = ( x )" 'F, for some entourage F
of Z, since Y has the induced uniformity. Then

B xPTES (B x )W X Y)F = Wé x yg)'F,
which is an entourage of X when ¢ is uniformly continuous.

The special case when the function is injective is particularly important.

Definition (7.18). Let ¢: X — Y be an injection, where X and Y are uniform
spaces. Then ¢ is a uniform embedding if the entourages of X are precisely
the inverse images under ¢ x ¢ of the entourages of Y.
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A uniformly continuous injection is necessarily a uniform embedding when
the domain has trivial uniform structure, for example, when the domain is a
one-point space. However, in general, the domain of a uniformly continuous
injection will have entourages which are not inverse images of entourages of
the codomain. For example, take the identity function on any set with the
uniformity of the domain a strict refinement of the uniformity of the codomain.

Of course, (7.17) and other results about induced uniformities apply to
uniform embeddings as a special case. In addition, we have

Proposition (7.19). Let ¢: X — Y and y: Y — Z be uniformly continuous func-
tions, where X, Y and Z are uniform spaces. If Yy is a uniform embedding then
50 is ¢.

For then each entourage of X is of the form (/¢ x y¢)™*F, where F is an
entourage of Z, and so is of the form (¢ x @)™ (Y x )"'F, where ( x y)"'F
is an entourage of Y.

In particular, take Z = X and y¢ the identity. In that case y is called a left
inverse of ¢ and (7.19) states that a uniformly continuous function is a uniform
embedding if it admits a (uniformly continuous) left inverse. Thus we obtain

Corollary (7.20). Let ¢: X — Y be a uniformly continuous function, where X and
Y are uniform spaces. Then the graph function
F¢: X->XxY

is a uniform embedding.

Here I'; may be expressed as the composition
X5X x X BLLUN X xY;
the left inverse is given by projecting onto the first factor. Similarly, we
obtain
Corollary (7.21). For any uniform space X the diagonal function
A: X - X’
is a uniform embedding.

Clearly the condition in (7.18) will be satisfied, in general, if it is satisfied
by the members of a base for the uniformity of the domain. Hence we obtain

Proposition (7.22). Let {¢,} be a family of uniform embeddings ¢;: X; — Y;, where
X; and Y; are uniform spaces. Then the uniform product

[I14:11X,~11%

is a uniform embedding.
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Suppose now that we have a uniform space X and a subset 4 of X. For
each subset D of X x X the trace (4 x A)n D on A x A is just the inverse
image of D under the injection A x A - X x X. There is a unique way to
impose a uniformity on 4 so as to make the injection 4 —» X a uniform
embedding. Specifically, we take the entourages of 4 to be the traceson A x A
of the entourages of X. This is called the relative uniformity and A, with this
uniformity, is called a (uniform) subspace of X.

Trace of an entourage on a subset.

It is important to appreciate that if 4 is a proper subset of X then entou-
rages of A, in the relative uniformity, cannot be entourages of X, since they
do not contain AX.

It should be noted that the multiplicative uniformity on the punctured real
line R, is not the same as the euclidean uniformity which R, obtains as a
subset of R. Nevertheless, the exponential function constitutes a uniform
equivalence between R, with the euclidean uniformity, and R* = (0, co), with
the multiplicative uniformity.

Some of the results we have proved for uniform embeddings are particularly
useful in relation to subspaces. Thus (7.17) shows that if ¢: X — Y is uniformly
continuous, where X and Y are uniform spaces, then so is the function
¢': X' > Y’ determined by ¢ for each subspace X’ of X and each subspace Y’
of Y which contains ¢X’. Moreover, (7.19) shows that if, further, ¢ is a uniform
embedding then so is ¢’. Consequently, a uniform embedding ¢: X — Y maps
X by a uniform cquivalence onto the subspace ¢X of Y; more generally, ¢
determines a uniform equivalence X' — ¢X’ for every subspace X’ of X.
Taking X = Y = R, in particular, with ¢ an affine transformation we deduce
that all the open intervals (o, f), where a < f§, are uniformly equivalent,
likewise all the closed intervals [a, f] arc uniformly equivalent, with respect
to the euclidean uniformity.

Notice that a base for the uniformity of a uniform space X determines, by
taking traces, a base for the relative uniformity of each subspace of X. From
this it follows that the relative uniformity is compatible with the uniform
product. Specifically, let {X;} be a family of uniform spaces and let 4; be a



98 7. Uniform Spaces

subspace of X for each index j. Then the product uniformity on [ | 4; coincides
with the relative uniformity obtained from the uniform product [ | X; by (7.22).

Proposition (7.23). Let G’ be a subgroup of the topological group G. The
uniformity on G' determined by its topological group structure coincides with
the relative uniformity obtained from G, as a uniform space.

The proofis straightforward and will be left as an exercise. Instead we prove
the rather less straightforward

Proposition (7.24). Let X be a totally bounded uniform space. Then each
subspace A of X is also totally bounded.

Forlet E be an entourage of 4. Then E is the traceon 4 x A4 of an entourage
D of X. Let D' be a symmetric entourage such that D'oD’ = D. Since X is
totally bounded there is a finite subset S = {x, ..., x,} of X such that D'[S] =
X. Let S’ < S be the subset of those x; (i = 1, ..., n) such that D'[x;] intersects
A and for each x; in §’, choose a point a;e D'[x;] n A. Since D’ is symmetric
x;€D’'[a;], and so

D'[x;] = D'oD'[a;] = D[a;].

Let T be the set of a’s. Then A =« D'[S'] = D[T], and so A = E[T], as
required.

The Coinduced Uniformity?

At this point the reader might well expect to find a discussion of quotient
uniformities and, more generally, coinduced uniformities. Unfortunately,
there are unavoidable difficulties in carrying out anything like the same
programme as in the topological case. The trouble lies with weak transitivity,
the third uniformity axiom, which tends to be destroyed when identifications
are made.

There are, however, some special cases where something can be done. For
example, let H be a normal subgroup of the topological group G. We can
regard both G and the factor group G/H as uniform spaces, using either
the left or the right uniformity in both cases. Then the natural projection
n: G - G/H, being a homomorphism, is uniformly continuous. In fact, the
uniformity on G/H is the finest for which = has this property.

Another important special case where there is a satisfactory outcome is the
procedure known as passing to the associated separated quotient space. The
details are as follows.

As we have seen, for any uniformity on a set X the intersection R of the
entourages constitutes an equivalence relation on X. Consider the quotient
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set X' = X/R. We shall give X' a uniformity under which the natural projec-
tion 7: X — X’ is uniformly continuous, moreover, the uniformity will be
separated. In fact, the direct images, under 7 x 7, of the entourages of X form
a base for the uniformity on X'.

To see this, let us denote by H’ the direct image, under n x 7, of any subset
H of X x X. Then

(mx )™ H = RoHoR,

since the points (&,, #,) and (&,, #,) of X x X have the same image under
7 x 7 if and only if (¢, &,) and (n,, ,) belong to R.

Now if D is an entourage of X we have AX = R = D and therefore
D = RoDoR < D3 1t follows that the sets RoDoR, as D runs through the
entourages of X, form a base for the entourages of X. Hence the intersection
of the sets D', as D runs through the entourages of X, is precisely the diagonal
AX' of X'. This shows that each member of our family contains AX’, which
is the first condition for a base, and that if the other two conditions are satisfied
the uniformity so defined will be separated.

The symmetry condition is obvious. To establish weak transitivity, let D
be an entourage of X. There exists an entourage E of X such that ES = D. If
(¢, #')e E' o E’ then there exists a point {’ such that (¢, {')e E' and ({, ') € E'.
So then up in X we have (£,{)e RoEoR and ({,n)e RoEoR, for {en ',
hence

((,m)eRoEocRoRoEoR c ES = D,

whence (&, #')e D'. Therefore E'o E' = D', and the last of the conditions for a
base is satisfied.

We refer to X', with the uniformity thus described, as the separated quotient
space associated with X. We prove

Proposition (7.25). Let X' be the separated quotient space associated with the
given uniform space X, with natural projection: X — X'. Let Y be any uniform
space. Then a function ¢: X' — Y is uniformly continuous if (and only if) the
function ¢n: X — Y is uniformly continuous.

For let E be an entourage of Y. If ¢n is uniformly continuous then
(¢7 x ¢m) 'E = D is an entourage of X. Since 7 is surjective

(¢ x $)'E = (n x m)(¢n x ¢n)"'E,
which is an entourage of X', and so ¢ is uniformly continuous.
Example (7.26). Let G be a topological group and let Cl{e} be the closure of
the neutral element. Then the factor group G/Cl{e}, as a uniform space, is

precisely the separated quotient space associated with G, as a uniform space.

The proof is straightforward.
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EXERCISES

1.

10.

Does the family
{Cm: 1 —nle, | —nl<e},

of subsets of R x R, where ¢ runs through positive reals, generate a uniform
structure on R?

. Show that a relation R on the set X forms a uniformity base on X if and only if R

is an equivalence relation.

. Let ¢ be a real-valued function which is uniformly continuous on the uniform

space X. Suppose that |¢(£)| = ¢ for some ¢ > 0 and all £€ X. Show that ¢7! is
uniformly continuous.

. Show that the exponential function R — R is not uniformly continuous, with the

euclidean uniformity.

. Show that the uniform product of infinitely many discrete uniform spaces is not,

in general, discrete.

. The subspace A4 of the uniform space X is said to be bounded if for each entourage

D of X there exists an integer n such that 4 = D"[S] for some finite subset S of A.
Show that the union of a pair of bounded subspaces is bounded.

. Consider the left and right uniform structures on the topological group G. Show

that these structures coincide if and only if for each neighbourhood V of the
neutral element e there exists a neighbourhood W of e such thatg- W-g~! = V for
allgeG.

. The real-valued function p is defined so that p(&, #)is the shortest geodesic distance

between the points & and 5 of S”. Show that p is a metric on S” and that the uniform
structure determined by p is the same as that determined by the euclidean metric.

. On the real line the metric p,, for n odd, is given by

&) =18"—n"l (& neR)
Show that the uniform structures determined by these metrics are all distinct.

Let ¢, Y be real-valued functions which are uniformly continuous on the uniform
space X. Show that if ¢ and y are bounded then their product ¢ - ¥ is uniformly
continuous.



CHAPTER 8

The Uniform Topology

Uniform Neighbourhoods

We begin this chapter by showing that each uniformity on a given set deter-
mines a topology, on the same sct.

Definition (8.1.). Let X be a uniform space. The uniform topology on X is the
topology in which a neighbourhood base at a point £ of X is formed by the
family of sets D[£], where D runs through the entourages of X.

We have to check that the system of neighbourhood bases thus defined is
coherent, in the sense of (1.14). Given the basic neighbourhood D[£] of ¢,
choose an entourage D’ such that D’o D’ = D. Then D'[5] = D[{] whenever
ne D'[£], as required. Thus the system of neighbourhood bases is coherent
and so determines a topology. We therefore refer to D[&] as a uniform neigh-
bourhood of &. Also we refer to D[H] as a uniform neighbourhood of H for
each subset H of X.

Note that if instead of using all the entourages we simply let D run through
the members of a base for the uniformity the system of neighbourhood bases
thus defined remains coherent and determines the same topology.

For example, suppose that X has the discrete uniformity, for which the
diagonal AX constitutes a base; since A[x] = {x} for all x, the associated
topology is discrete. For another example, suppose that X has the trivial
uniformity, for which the full set X x X is the sole entourage and so X is the
sole uniform neighbourhood; the associated topology is therefore trivial.

In the case of a metric space X the neighbourhood base at each point ¢
determined by the uniformity base of e¢-entourages (¢ > 0) is precisely that
determined by the family of open e-balls, since

U.[£] = U(9).
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So in this case the uniform topology is precisely the metric topology. In
particular, the uniform topology determined by the euclidean uniformity on
R" is precisely the euclidean topology.

Not every topology on a given set can be obtained as the uniform topology
of a uniformity; a necessary and sufficient condition will be obtained in
Chapter 11 below. Moreover, if a topology can be so obtained there may be
more than one uniformity which gives rise to the topology. For example, let
X be an infinite set. With each partition {H;} of X we can associate the
neighbourhood

U H; x H))

of the diagonal in X x X. For unrestricted partitions these neighbourhoods
generate the discrete uniformity. For finite partitions they generate a different
uniformity, but the associated uniform topology is still the discrete topology.

Proposition (8.2). Let ¢: X — Y be uniformly continuous, where X and Y are
uniform spaces. Then ¢ is continuous, with respect to the uniform topologies.

For let x be a point of X. Consider the uniform neighbourhood E[¢(x)]
of ¢(x) in Y, where E is an entourage of Y. The inverse image (¢ x ¢)"'E =D
is an entourage of X. Then D[x] is a neighbourhood of x such that ¢D[x] =
E[#(x)] and so ¢ is continuous at x, as required.

Corollary (8.3). Let ¢: X — Y be a uniform equivalence, where X and Y are uni-
Jorm spaces. Then ¢ is a homeomorphism with respect to the uniform topologies.

It follows, in particular, that if the uniform space X is homogeneous in the
uniform sense then X, with the uniform topology, is homogeneous in the
topological sense.

Proposition (8.4). Let G be a topological group. Then the uniform topology
determined by the left or right uniformity on G coincides with the original
topology.

Forif N is a neighbourhood of the neutral element e in the original topology
then N = D[e], where D is the entourage corresponding to N in either uni-
formity. Thus e has the same neighbourhood filter in the uniform topology as
in the original topology. The general case follows by using translation.

Proposition (8.5). Let ¢: X — Y be a function, where X and Y are uniform spaces.
If the uniformity of X is induced by ¢ from the uniformity of Y then the uniform
topology of X is induced by ¢ from the uniform topology of Y.

For consider the uniform neighbourhood D[x] of x in X, where D is an
entourage of X. If X has the induced uniformity then D = (¢ x ¢)™*E for some
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entourage E of Y. Then D[x] = ¢ " (E[¢(x)]), where E[¢(x)] is a uniform
neighbourhood of ¢(x) in Y, and so X has the induced topology, as asserted.
In particular, if ¢ is an embedding in the uniform sense then ¢ is an embedding
in the topological sense and we obtain

Corollary (8.6). Let A be a subspace of the uniform space X. Then the uniform
topology on A obtained from the relative uniformity on A coincides with the rela-
tive topology on A obtained from the uniform topology on X.

Similarly, we have

Proposition (8.7). Let {X;} be a family of uniform spaces. Then the uniform
topology on the cartesian product [ X ; obtained from the product uniformity
coincides with the product topology obtained from the associated family {X;}
of topological spaces.

Recall from the previous chapter that a uniformity is said to be separated
if the diagonal is the intersection of the family of entourages. We prove

Proposition (8.8). Let X be a uniform space. The uniformity is separated if and
only if the uniform topology has the Hausdorff property.

For let &, n be distinct points of X. If the uniformity is scparated then
(&, n) ¢ D for some entourage D. Choose an entourage D’ such that D'o D’ < D.
Then D'[¢] and D'[#] provide neighbourhoods of £ and # which are disjoint.

Conversely, suppose that X is Hausdorff, in the uniform topology. Then
there exist uniform neighbourhoods D,[¢] of ¢ and D,[#] of # which are
disjoint. Then D, N D, is an entourage, since D, and D, are entourages, and
(¢, 1) ¢ De 1 D,. Thus the uniformity is separated, which completes the proof.

Closure in Uniform Spaces

Proposition (8.9). Let X be a uniform space. For each symmetric entourage D
of X and each subset M of X x X the subset Do M o D is a neighbourhood of
M in the topological product X x X. Moreover, the closure of M is given by

CIM = ((DoMoD),
D
where D runs through the symmetric entourages of X.

For let D be a symmetric entourage. Then (x, y)e Do M o D if and only if
there exists a point (£, #) € M such that (x, £)e D and (1, y)€ D, in other words,
such that xe D[¢] and y e D[#], or again such that

(x, y)e D[E] x D[#].
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Since D[] x D[#] is a neighbourhood of (&, n) in the topological product
X x X this proves the first assertion.

Moreover, because of the symmetry of D the same condition can also be
written in the form

(&, m)eD[x] x D[y].

Now as D runs through the symmetric entourages of X the sets D[x] x D[y]
form a neighbourhood base at the point (x, y)in X x X. In fact, if D', D" are
any two entourages there exists a symmetric entourage D such that D < D' n D"
and then

D[x] x D[y] = D'[x] x D"[y].
Therefore, to say that D[x] x D[ y]intersects M, for all symmetric entourages
D, is to say that (x, y) is an adherence point of M. This completes the proof.
Corollary (8.10). If H is a subset of the uniform space X then
ClH = (\D[H],
D

where D runs through the symmetric entourages of X.

This follows by taking M = H x H in (8.9) and observing that
DoMoD = D[H] x D[H],

in this case. For topological groups this relation was established earlier in
Chapter 2.

Corollary (8.11). Let X be a uniform space. Then with respect to the product
topology on X x X,

(i) the interiors of the entourages of X form a base for the uniformity, and
(ii) the closures of the entourages of X form a base for the uniformity.

For if D is any entourage of X there exists a symmetric entourage D’ such
that (D) = D. Since (D')? is a neighbourhood of D', by (8.10), the interior of
D in X x X contains D' and is therefore an entourage of X. This proves (i).
Moreover, -

D' = ClD < (D) <D,

and so D also contains the closure of an entourage of X, whence (ii).

Corollary (8.12). Let X be a uniform space. Then X is regular, in the uniform
topology.

For let D[£] be a uniform neighbourhood of the point & of X, where D is
an entourage of X. Choose an entourage D’ of X such that D’o D" = D. Then
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D’[&] is a uniform neighbourhood of & such that CI(D'[¢]) = D[&], which
establishes regularity. Of course, we have already shown this, in (6.19), for the
case when X is a topological group.

We see from (8.12) that no non-regular topological space can be given
uniform structure in a way which is compatible with the topology. For
example, in the casc of an infinite set the cofinite topology cannot arise from
a uniform structure.

Returning to the general theory we prove

Proposition (8.13). Let A be a dense subset of the uniform space X, in the uniform
topology. Then the closures in X x X of the entourages of A, in the relative
uniformity, form a base for the entourages of X.

For A x A is dense in X x X since A4 is dense in X. So let E be an open
entourage of A. Then E is the trace on A x A of an open entourage D of X.
However, D is contained in the closure of E which in turn is contained in the
closure of D. This proves (8.13).

As we have seen in the previous chapter there is a separated quotient space
X’ associated with each uniform space X. Since X is regular, in the uniform
topology, there is also a Hausdorff quotient space associated with X, according
to the procedure described in Chapter 6. It makes a good exercise to check
that this Hausdorff space is just X', with the uniform topology.

Next we come to a series of results which involve compactness in various
ways.

Proposition (8.14). Let H, K be disjoint subspaces of the uniform space X, with
H compact and K closed. Then there exists an entourage D of X such that the
uniform neighbourhoods D[H] and D[K] are disjoint.

For, if not, the trace on H of the family of sets Do D[K], where D runs
through the symmetric entourages of X, is non-empty, and so the trace
generates a filter on H. By compactness this filter has an adherence point x,
say, where x,€ H. Then for each symmetric entourage D of X the uniform
neighbourhood D*[x,] of x, intersects K and so x,€ K, since K is closed.
Thus we have a contradiction which establishes (8.14).

Corollary (8.15). Let H be a compact subspace of the uniform space X. The
uniform neighbourhoods D[ H], as D runs through the entourages of X, form a
base for the neighbourhoods of H.

For let U be an open neighbourhood of H. The complement K = X — U
is closed and disjoint from H. So there exists, by (8.14), an entourage D of X
such that D[H] does not intersect D[K]. Then D[H] < U, as required.
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Uniformization of Compact Hausdorff Spaces

Proposition (8.16). Let X be a compact Hausdorff space. Then the neighbour-
hood filter of the diagonal AX in X x X constitutes a uniformity on X such
that the uniform topology coincides with the original topology. Moreover, no
other uniformity on X has this property.

First, we have to show that the family 4" of neighbourhoods of AX satisfies
the conditions for a uniformity and that the uniform topology is the original
topology. For this purpose it is sufficient to show that 4" forms a separated
uniformity since in that case the uniform topology cannot be finer than the
original topology and so is identical to it, from (6.15).

Note that the intersection of the members of A" is precisely AX so that A",
if a uniformity, is separated. For if £ # 5 in X the complement of the point
(&,n)in X x X is a neighbourhood of AX, i.e. a member of A".

Clearly 4" satisfies all the axioms for a uniformity on X except, possibly,
for the last. Suppose, to obtain a contradiction, that .4~ does not satisfy the
condition of weak transitivity. Then there exists a member N of 4" such that
for all members M of 4" the set M? N (X? — N) is non-empty. The sets
M? (X2 — N), where M runs through the members of /", form a base for a
filter on X2, and this filter has an adherence point (¢, ), say, by compactness.
Note that (&, #) is not in AX, since X2 — N does not intersect AX.

Now X is Hausdorff, by hypothesis, and so there exist open ncighbour-
hoods U of ¢ and V of # which are disjoint. Also X is regular, by (8.12), and
so there exist closed neighbourhoods U’ = U and V' = Vof £ and #, respec-
tively. Write W = X — (U’ U V’) and consider the neighbourhood

K=UxUOulVx V)u(W x W)

of AX in X x X. The definitions imply that (U’ x X)n K = U’ x U and
(X x V')n K =V x V'.Hence the neighbourhood U’ x V' of (§,)in X x X
does not intersect K. Thus we have obtained a contradiction and established
the first part of (8.16).

To demonstrate the second part, suppose given a uniformity on X, com-
patible with the topology. Then the entourages are neighbourhoods of AX,
as we have secn. Suppose, to obtain a contradiction, that there exists a neigh-
bourhood W of AX which is not an entourage.

Without real loss of generality we may take W to be open. The entourage
filter of X traces a filter & on the complement CW of W. Now CW:is closed
in the compact spacc X x X and so is compact. Therefore & admits an
adherence point (x, y), say, in CW. The closed entourages form a base, as we
have seen, and so their intersection is AX, since X is Hausdorff. Therefore
(x, y) e AX, since (x, y) belongs to every closed entourage. But (x, y)e CW
which is disjoint from AX and so we have our contradiction.
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Corollary (8.17). Let ¢: X — Y be a continuous function, where X and Y are
uniform spaces. If X is compact Hausdorff then ¢ is uniformly continuous.

For if W is an open entourage of Y then (¢ x ¢)™' W is open in X x X,
since ¢ x ¢ is continuous. Thus (¢ x ¢)~' W is a neighbourhood of the diagonal
and so an entourage of X, by the proposition.

By way of illustration, the corollary shows that for any compact Hausdorff
group G the functions G — G, given by gr—g" (n=0, +1, +£2,...), are
uniformly continuous.

Cauchy Sequences

The reader is doubtless already familiar with the concept of Cauchy conver-
gence, in relation to sequences of real numbers. Essentially, the same definition
can be used in relation to sequences in any metric space or, more generally,
in any uniform space.

Definition (8.18). Let {x,)> be a sequence of points of the uniform space X.
The sequence satisfies the Cauchy condition if for each entourage D of X there
exists an integer k such that (x,, x,,) € D whenever n, m > k.

When the condition in (8.18) is satisfied we describe {x,> as a Cauchy
sequence. Note that it is sufficient if the condition is satisfied for all members
of a base for the uniformity. For example, when X is metric it is sufficient if
the condition is satisfied for all e-entourages U, (¢ > 0).

Proposition (8.19). Let {x,> be a sequence of points of the uniform space
X. If {x,> converges in the uniform topology then <x, ) is a Cauchy sequence.

For let x be a limit point of {x,». Given an entourage D of X choose a
symmetric entourage D’ of X such that D'o D’ < D. Then D'[x] is a uniform
neighbourhood of x and so there exists an integer k such that x,eD'[x]
whenever n > k. So if m, n > k we have x,,, x,e€D’[x], and consequently
(%> X,)€D o D' = D. Therefore {x, ) satisfies the Cauchy condition.

For an example of a Cauchy sequence which is not convergent take the
sequence {1/n) in the space R, of positive real numbers, with the euclidean
uniformity.

Proposition (8.20). Let ¢: X — Y be a uniformly continuous function, where X
and Y are uniform spaces. If {x,» is a Cauchy sequence in X then {§(x,)) is a
Cauchy sequence in Y.

For let E be an entourage of Y. Then D = (¢ x ¢) ' E is an entourage of X.
If {x, ) satisfies the Cauchy condition in X there exists an integer k such that
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(x,, x,,)€ D whenever n, m > k. Then (¢(x,), ¢(x,,))€ E, for n, m > k, and so
{¢(x,)) satisfies the Cauchy condition in Y.

It should be remarked that a function ¢: X — Y, where X and Y are uniform
spaces, may transform Cauchy sequences into Cauchy sequences and yet fail
to be uniformly continuous. The exponential function R — R, where R has
the euclidean uniformity, provides an example of this.

In the case of a metric space the condition of total boundedness can be
expressed in terms of the Cauchy condition as follows.

Proposition (8.21). The metric space X is totally bounded if and only if each
sequence in X contains a Cauchy subsequence.

For suppose that X is totally bounded. Let {x,> be a sequence of points
of X. Since X admits a finite e-net for ¢ = 1/2 we can cover X by a finite number
of open balls of radius 1/2. At least one of these balls must contain a sub-
sequence {x{"> say of the original sequence, and the distance between any
two terms of this subsequence is always less than 1. Similarly, with ¢ = 1/4 we
can obtain a subsequence {x{?'» of (x{1> in which the distance between any
two terms is less than 1/2. Proceeding by induction, for ¢ = 1/2k we obtain a
subsequence {x®> of {(x%~1% in which the distance between any two terms
is less than 1/k, fork=2,3,....

The diagonal sequence (x> is a Cauchy sequence: for if ¢ > 0 is given we
have only to take k > 1/c and then p(x™, x) < ¢ whenever m, n > k. Since
x> is a subsequence of the original sequence {x, ) this proves (8.21) in one
direction.

For the converse, suppose that X is not totally bounded. Then there exists
an ¢ > 0 such that X admits no finite e-net. By the following construction we
can obtain a sequence {x, » such that p(x;, x;) > ¢ whenever i # j; clearly, such
a sequence is not only not a Cauchy sequence itself but cannot contain a
Cauchy subsequence.

To construct the sequence, take x; to be any point of X. Since the finite set
{x,} is not an e-net for X there exists a point x, ¢ U,(x,), i.e. a point such that
p(xy, x,) > &. Now the finite set {x;, x,} is also not an ¢-net for X, and so
there exists a point x3 ¢ U,(x;) L U,(x,), i.e. a point x5 such that p(x;, x3) > ¢
and p(x,, x3) = &. We now proceed by induction.

If we have defined a set of points {x,, x,, ..., x,} such that p(x;, x;) > ¢
whenever i # j then this finite set is not an ¢-net for X, and so there exists a
point

Xn+1 ¢ Ue(xl) v Ue(XZ) Urtu Us(xn)a

i.e. such that p(x;, x;) > ¢ whenever i # jfori,j <n+ 1.

Cauchy Filters

We have seen in Chapter 6 that for topological spaces in general the notion
of convergent filter is more satisfactory than the notion of convergent sequence.



Cauchy Filters 109

This suggests the introduction of a Cauchy condition for filters on a uniform
space, as follows.

Definition (8.22). Let % be a filter on the uniform space X. The filter satisfies
the Cauchy condition if for each entourage D of X there exists a member M
of # which is D-small in the sense that M x M < D.

When the condition in (8.22) is satisfied we describe & as a Cauchy filter.
Note that it is sufficient if the condition is satisfied for all members of a base
for the uniformity.

In the case of the discrete uniformity only the principal filters are Cauchy.
In the case of the trivial uniformity every filter is Cauchy.

Clearly, if & is the elementary filter associated with a sequence {x,> of
points of the uniform space X then & is a Cauchy filter if and only if {x,) is
a Cauchy sequence.

The analogue of (8.19) for filters is

Proposition (8.23). Let & be a filter on the uniform space X. If & converges in
the uniform topology then & is a Cauchy filter.

First, observe that every refinement of a Cauchy filter also satisfies the
Cauchy condition. If # converges to the point x of X then & is a refinement
of the neighbourhood filter 4. So the result will follow once we have proved
that ./ is a Cauchy filter. But given an entourage D of X there exists an
entourage D’ of X such that D’o D" < D, and then the uniform neighbourhood
D'[x] of x is D-small. This proves (8.23). Of course, (8.19) can be obtained by
applying this result to the case of an elementary filter.

Proposition (8.24). Let F be a Cauchy filter on the uniform space X. Then each
adherence point of F is also a limit point of .

First, observe that for each entourage D of X there exists a closed member
of # which is D-small. For since the closed entourages form a base, as we
have seen, there exists a closed entourage E of X contained in D; choose M
to be E-small, then M x M < E and so N x N < E = D, where N = Cl M.
Also N is a member of &, since M = N, and so N is the closed member, as
required.

Now let x be an adherence point of #. Then x e N, since N is closed, and
so N = D[x], since N is D-small. Since the uniform neighbourhoods D[x] of
x form a base for .4, this shows that % is a refinement of .4, i.e. that &
converges to x, as asserted.

Corollary (8.25). Let {x,) be a Cauchy sequence in the uniform space X. If a
subsequence of {x,y converges to the point x of X then {x,) converges to x.
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For let # be the elementary filter associated with (x,>, and let & be the
elementary filter associated with the subsequence, which is a refinement of #.
Then % converges to x, since the subsequence converges to x. Thus x is an
adherence point of ¥ and so is an adherence point of . Therefore x is a limit
point of &, by (8.24), since % is Cauchy, and so x is a limit point of {x, ), as
asserted.

Proposition (8.26). Let ¢: X — Y be a uniformly continuous function, where X
and Y are uniform spaces. If F is a Cauchy filter on X then ¢, is a Cauchy
filter on Y.

For let E be an entourage of Y. Then the inverse image D = (¢ x ¢) 1 E is
an entourage of X. Since & is Cauchy there exists a member M of & which
is D-small. The direct image ¢M is a member of ¢,# which is E-small.
Therefore ¢, is Cauchy, as asserted.

Proposition (8.27). Let ¢: X — Y be a function, where X and Y are uniform
spaces. Suppose that the uniformity of X is induced by ¢ from the uniformity of
Y. If % is a Cauchy filter on Y such that ¢*¥ is defined then ¢*% is Cauchy as
a filter on X.

For let E be an entourage of Y. If N is an E-small subset of Y then ¢™' N
is a D-small subset of X, where D = (¢ x ¢) ' E. Since X has the induced
uniformity the inverse images (¢ x ¢)~*E, as E runs through the entourages
of Y, form a base for the entourages of X. Now (8.27) follows at once.

The notion of totally bounded uniform space was introduced in the previous
chapter. An alternative characterization is provided by

Proposition (8.28). The uniform space X is totally bounded if and only if each
filter # on X admits a Cauchy refinement.

For let X be totally bounded. Given an entourage D of X choose a
symmetric entourage D’ of X such that D'o D" < D. Since X is totally bounded
there exists a finite subset S of X such that D'[S] = X. Each of the sets D'[x]
(xeS) is D-small and together they cover X. Given a filter # on X let &' be
an ultrafilter refining % . Since X € %' some member D'[x] of the covering is
a member of &', by (0.6). Therefore &' is Cauchy. (It is only in this part of
the argument that ultrafilters are used.)

For the converse, suppose that X is not totally bounded. Then there exists
an entourage D of X such that D[S] is a proper subset of X for every finite
subset S of X. The family

I'={X — D[S]},

where S runs through the finite subsets of X, is a base for a filter # on X. I
assert that # does not admit a Cauchy refinement.
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For suppose, to obtain a contradiction, that there exists a Cauchy refine-
ment &' of #. Choose a D-small member M of #'. Then M intersects
X — D[S], for each finite subset S of X, since X — D[S] is a member of &
and hence of #’. Choose such an S and let x be a point of M n (X — D[S]).
Then M < D[x] and so M does not intersect X — D[S"], where §" = S U {x}.
But X — D[S'] is also a member of &, since S’ is finite, and so X — D[§'] is
a member of #'. Thus we have our contradiction and the proof of (8.28) is
complete.

Corollary (8.29). The uniform space X is totally bounded if and only if each
ultrafilter on X is a Cauchy filter.

Uniformization of Function Spaces

Consider the set Y* of functions X — Y, where X is a set and Y is a uniform
space. In this situation the product uniformity on Y* is usually known as the
uniformity of pointwise convergence. The associated uniform topology is the
topology of pointwise convergence already discussed in Chapter 5.

In fact, the uniformity of pointwise convergence is generally less important
than a certain refinement, called the uniformity of uniform convergence, which
is defined as follows. Consider for each entourage D of Y the subset D of
Y* x Y¥ consisting of pairs (6, ¢) of functions 0, ¢: X — Y such that

0(x), #(x))eD (xe X).

The family of subsets D, as D runs through the entourages of Y, constitutes a
base for the uniformity of uniform convergence.

9'\A L /
_

Iy

2¢

v

X, Xy X3 X4 X,

The uniformity of uniform convergence for real-valued functions.

When dealing with Y*, and with subsets of Y7, it is essential to be clear as
to which uniformity and associated topology is being used. Thus a sequence
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or filter may be pointwise Cauchy but not uniformly Cauchy, or may be point-
wise convergent but not uniformly convergent.

Notc that if Y is scparated then so is Y* with either uniformity. For Y*
is separated in the uniformity of pointwise convergence, by (7.14) and so is
separated in any finer uniformity.

Obviously, a uniformly convergent filter is uniformly Cauchy and point-
wise convergent, and similarly with sequences. In the other direction we have

Proposition (8.30). Let @ be a family of functions X — Y, where X is a set and
Y is a uniform space. Let & be a uniformly Cauchy filter on ® which converges
pointwise to some member ¢ of ®. Then F converges uniformly to §.

Corollary (8.31). Let {¢, > be a uniformly Cauchy sequence in @, as above, which
converges pointwise to ¢. Then {¢$,> converges uniformly to ¢.

The corollary follows by applying the proposition to the elementary filter
& associated with the sequence. To prove the proposition itself, let D be any
entourage of Y. There exists a symmetric entourage E of Y such that Eo E < D.
Since & is uniformly Cauchy there exists an E-small member M of &#. Let
0eM and let xe X. Then n,,% converges to 7,(¢) in Y, and so the uniform
neighbourhood E[7n.(¢)] of 7,(¢) intersects n, M in n.(£), say, where e M.
Now ((0), 7(¢)) € E, since 0, E€ M and M is E-small, while (n,(¢), n,(¢))€ E
by choice of &. Therefore

(n,.(0), n (@))€ Ec E < D.
In other words, (0, ¢)e D, ie. e 5[¢] Since this is true for all € M we obtain

M < D[¢] and hence D[¢]e #. Therefore # converges uniformly to ¢, as
asserted.

EXERCISES

1. In the uniformity on the set X determined by finite partitions, as on p. 102, show
that every ultrafilter is Cauchy and deduce that for infinite X the uniformity is not
discrete.

2. Let ¢: R — R be given by ¢(¢) = £3. Give the codomain R the euclidean uniformity
and give thec domain R the uniformity induced by ¢. Show that the latter uniformity
is a strict refinement of the former but that the Cauchy sequences are the same in
both cases.

3. Find the Cauchy sequences on the rational line @ when the metric is given by
pEM=IC-0)" —m—0)7" (& neQ)
for some irrational o.

4. A minimal element of the set of Cauchy filters on the uniform space X, with respect
to the relation of refinement, is called a minimal Cauchy filter. Show that for each
Cauchy filter & on X there exists one and only one minimal Cauchy filter %,
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refined by #. Moreover, &, is the filter generated by the family of uniform neigh-
bourhoods D[ M], where D runs through the entourages of X and M runs through
the members of #.

. Show that for each point x of the uniform space X the neighbourhood filter of x

is minimal Cauchy in the sense of the previous exercise.

. Show that if & is a minimal Cauchy filter on the uniform space X then % has a

base consisting of open sets.

. Let & be a non-principal ultrafilter on the infinite set X. Show that the family of

subsets of X x X consisting of the unions of the diagonal AX with the products
M x M, where M runs through the members of &, is a base for a uniformity on
X and that the associated uniform topology is discrete.

. Let I" be an open covering of the compact Hausdorff space X. Show that there

exists a neighbourhood D of the diagonal of X such that D[x] is contained in some
member of I" for each point x of X.

. Let ¢: X — Y be continuous, where X and Y are compact Hausdorff spaces. Let

D be a neighbourhood of the diagonal AX which contains (¢ x ¢) ' AY. Show that
there exists a neighbourhood E of the diagonal AY such that (¢ x ¢)"'E < D.

. Let D be a closed entourage of the uniform space X. Show that D[ A] is closed for

cach compact subset 4 of X.



CHAPTER 9

Connectedness

Connected Spaces

Definition (9.1). The topological space X is connected if for each discrete D
every continuous function A: X — D is constant.

For example, X is connected if X has the trivial topology, since if d is
a value of 1 then A7!(d) is closed and non-empty, therefore full. On the
other hand, X is not connected if X has the discrete topology and more than
one point, since in that case we can take X = D and A the identity. Again,
the punctured real line R, = R — {0} is not connected, since we can take
D={—1,+1} =R and define 4 by A(x) = —1 for x <0, A(x) = +1 for
x> 0.

Proposition (9.2). The topological space X is connected if and only if X contains .
no open and closed subset, other than the empty set and the full set.

For suppose that A: X — D is continuous, where D is discrete. Then A71(d)
is open and closed in X, for any point d of D. If d is a value of 4 then 17'(d)
is non-empty, while if A is non-constant then 17!(d) is non-full. This proves
(9.2) in one direction.

For the proof in the other direction, suppose that there exists an open and
closed subset H of X which is neither empty nor full. Choose D = {—1, +1} <
R, with discrete topology. Define : X - D by A(x) = +1ifxeH, A(x) = —1
if x¢ H. Then A is continuous and non-constant.

The characterization of connectedness provided by (9.2) is often convenient
in practice. For example, it enables one to see at once, that a non-connected
cofinite space must be the union of two finite sets and therefore finite. How-
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ever, the actual definition (9.1) is generally more convenient when it comes to
developing the theory.

Proposition (9.3). The real line R is connected, with the euclidean topology.

Forlet A: R — D be continuous, where D is discrete. Let d be any point in
the image of 4: to fix ideas let d = A(0). Suppose, to obtain a contradiction,
that A(t) # d for some teR. Then t # 0. In the argument which follows we
assume t > 0; if t < 0 we use the same argument with A replaced by — 4.

Consider the closed interval J = [0, t] = R, which is bounded and so
compact. We have J = H U K, where

H={(eJ: M¢)=d}, K={nel:Ay) #d}.

Of course, H and K are disjoint, and non-empty since O H and te K. Also
H and K are open and closed, since A|J is continuous. Since H and K are
closed and bounded they are compact. Therefore H x K is compact and so
the continuous function p: H x K — R attains its infimum, where

p&n=1E-n  (EeH,nek).

Let o€ H, Be K be such that & — f] is the infimum of p. Theny = 1(« + B)eJ,
since a, f € J and J is an interval. But y ¢ H, since p(y, ) = 4|a — Bl,and y¢ K,
since p(a, y) = 3| — BI. Since J = H U K we have our contradiction.

Before discussing the consequences of (9.3) it is illuminating to examine the
situation for the rational line @, which is a complete contrast. A topological
space which is not connected is often said to be disconnected. However, this
should not be confused with the following much stronger condition:

Definition (9.4). The topological space X is totally disconnected if all the
connected subspaces of X are one-point sets.

Discrete spaces are totally disconnected, obviously, but these are not the
only spaces to satisfy the condition. For example, consider the rational line
Q, with the euclidean topology. Let H be any subset of Q with at least two
points a, B, say, where o < . Choose any irrational ¢ such that a < ¢ < 3,
and consider the function A: H — {—1, +1} given by A(x) = —1 for x < &,
Ax) = +1 for x > & Then A is continuous and non-constant, so that H is
disconnected. Therefore Q is totally disconnected.

Proposition (9.5). Let ¢: X — Y be a continuous surjection, where X and Y are
topological spaces. If X is connected then so is Y.

For let 4: Y — D be continuous, where D is discrete. Then A¢: X — D is con-
tinuous. If X is connected then A¢ is constant and so 4 is constant. It follows
at once from (9.5) that connectedness is a topologically invariant property.
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Proposition (9.6) Let H be a connected subspace of the topological space X.
Then the closure Cl| H is also connected.

For let A: Cl H — D be continuous, where D is discrete. Since H is con-
nected and A|H is continuous then A is constant on H with valud d, say. Now
AH = 6|H, where 6: C1 H— D is constant at d. By (6.9) the coincidence set
of Aand § is closed in Cl H. But the coincidence set contains H and so contains
Cl H. Therefore A = § throughout Cl H and so 4 is constant. We conclude
that ClI H is connected, as asserted. One also obtains that if H =« K <« Cl H
then K is connected, by applying (9.6) to Cl H in place of X.

We have seen in (9.3) that the real line R is connected, with the euclidean
topology. Since connectedness is a topologically invariant property, we con-
clude that any open interval («, B), say, is also connected and hence, using
(9.6), that any closed interval [a, 8] is also connected. Similarly, we conclude
that half-open intervals such as («, 8] are also connected, since («, f) is dense
in (o, B].

Open rays and closed rays are connected for similar reasons. Thus every
interval in the real line R is connected; conversely, every non-empty connected
subset of R is an interval. For let H be a non-empty subset. If H is not an
interval then there exist o, fe H and £ R — H such that a < & < f. Define
A H—-D,where D={—1, +1} c R, by A(x) = —1 if x <& A(x) = +1 if
x > &£ Then A is continuous and non-constant, so that H cannot be connected.
This leads at once to

Proposition (9.7). Let ¢: X — R be a real-valued continuous function, where X
is any connected topological space. If a, f € $ X, where o < B, then & € X when-
evera < £ < B.

This result, which is generally known as the intermediate value theorem, has
some attractive applications, of which we give just two.

Corollary (9.8). Let ¢: R — R be a polynomial of odd degree. Then ¢(&) = 0 for
some value of &.

Clearly ¢(&) is positive and ¢( — £) is negative for large enough &, say & > &,.
By (9.7), ¢(&) = 0 for some & e(—¢&,, &), and so the result is obtained.

Corollary (9.9). Let ¢: [0, 1] — [0, 1] be a continuous function. Then ¢(&) = &
for some point £€[0, 1].

For suppose, to obtain a contradiction, that ¢(&) # & for all £€[0, 1]. In
particular, ¢(0) > 0 and ¢(1) < 1. So the continuous function y: [0, 1] - R
defined by ¥/(&) = ¢(&) — €& is positive when & = 0 and negative when & = 1.
By (9.7), ¥(¢) = 0 for some value of &, which gives us our contradiction.
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Proposition (9.10). Let R be an equivalence relation on the topological space X
Jor which each equivalence class is a connected subspace of X. If the quotient
space X/R is also connected then X is connected.

Forlet 2: X — D be continuous, where D is discrete. Since the equivalence
classes are connected, A is constant on each class, and so A = un, for some
function u: X/R — D. Now u is continuous, since X/R has the quotient
topology, and so constant, since X/R is connected. Therefore 4 is constant
and so X is connected.

Corollary (9.11). Let G’ be a subgroup of the topological group G. If G’ and
G/G’ are connected then so is G.

Proposition (9.12). Let {A;} be a family of connected subspaces of the topological
space X. Suppose that each member of the family intersects every other member
of the family. Then the union A of the members of the family is connected.

For let : A — D be continuous, where D is discrete. Since each of the 4; is
connected and since A|A4; is continuous we have that A|4; is constant with
value ¢;, say. Since any two members of the family intersect the constant ¢; is
independent of j. Thus 4 is constant on 4 and so A is connected.

Corollary (9.13). Let {C;} be a family of connected subspaces of the topological
space X. Let B be a connected subspace of X which intersects each of the C;.
Then B C is connected, where C denotes the union of the members of the

family.

To see this, put A; = Bu C;. Then (9.12) shows that 4; is connected. And
then (9.12) again shows that 4 = B u C is connected.

Proposition (9.14). Let {X;} be a family of connected spaces. Then the topological
product [ | X; is also connected.

In the finite case this result can be proved in a straightforward fashion,
using (9.12). In the general case, however, it is necessary to proceed in two
steps, as follows.

The first step is to choose a point & = (¢;) of [ | X; and consider the subset
H of [ ] X; consisting of points x = (x;) such that x; # &; for at most a finite
number of values of j. Then H is dense in [] X;. For if [ ] U; is a restricted
product of open sets then ;¢ U; for at most a finite number of values of j and
so [ ] U; intersects H.

The second step is to show that H is connected and hence C1 H = [] X; is
connected, by (9.6). To see this, let A: H — D be continuous, where D is dis-
crete. Then p;: X; — D is also continuous, where the value of p; at the point x;
of X; is given by evaluating A at the point with the same coordinates as {
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except that ¢; is replaced by x;. Then p; is constant, since X; is connected, and
moreover, the value of the constant is independent of j since p;(¢;) = A(¢) for
all values of j. Therefore A is constant throughout H. Thus H, and hence Cl H,
is connected, and the proof is complete.

Hence and from (9.3) we conclude that the real n-space R" is connected,
in the usual topology. It follows at once that the open n-ball U" is connected
and hence, using (9.6), that the closed n-ball B" is connected. Similarly, the
punctured n-sphere is connected. We deduce from this that the n-sphere S”
itself is connected when n > 1, since S” is the union of the complement of the
north pole and the complement of the south pole.

Connectedness Components
We now come to the idea of connectedness component, which depends on

Definition (9.15). The points &, # of the topological space X are equivalent, in
the sense of connectedness, if there exists a connected subspace C of X
containing both ¢ and #.

The relation defined in (9.15) is obviously symmetric and reflexive; tran-
sitivity is an immediate consequence of (9.13). The equivalence classes are
called the connectedness components of X, or simply components when this is
unlikely to create confusion. When X is totally disconnected the components
are the one-point subsets. It follows at once from (9.6) that components are
closed subsets. Also we have

Proposition (9.16). For each point & of the topological space X the connected-
ness component containing & is the union of all the connected subspaces of X
which contain &.

Clearly the union is contained in the connectedness component. Conversely,
any point # in the component is contained in a connected subspace C of X
which also contains ¢ and so is contained in the union.

Obviously a topological space is connected if and only if it has precisely
one connectedness component. If the number of components is finite then
each is open as well as closed, since cach is the complement of the union of
the others. In general, however, the components are not open. For example,
take the rational line Q: the components are the one-point subsets.

We have seen in (9.3) that the real line R, with the euclidean topology, is
connected. We have also seen that the punctured line R, = R — {0} is dis-
connected. In fact R, can be partitioned into the subspaces (—o0, 0) and
(0, +00), each of which is homeomorphic to R and therefore connected. Thus
R, has two components, one for the negative reals and one for the positive.
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More generally, the topological space obtained from R by removing n distinct
points (n = 0, 1, ...) has precisely n + 1 components.

We have also seen that the circle S* is connected. However, the punctured
circle, being homeomorphic to R, is still connected. More generally, the
topological space obtained from S* by removing ndistinct points(n = 1, 2, ...)
has precisely n components.

The number of connectedncss components of a topological space is obvi-
ously a topological invariant; if two spaces do not have the same number
of components they cannot be homeomorphic. This criterion can be used
directly, of course, but it can also be used indirectly, as follows. Suppose that
for some set {x,, ..., x,} of n distinct points of the topological space X and
for every set {y, ..., y,} of n distinct points of the topological space Y the
number of components of X — {x,, ..., x,} is different from the number of
components of Y — {y,, ..., y,}. Then X and Y cannot be homemorphic, since
a homemorphism ¢: X — Y would determine a homeomorphism

X - {xh”"xn}—‘)Y_ {yb'“,yn})

withy, =é(x;) (i =1,..., n).

Forexample, consider bounded intervals of the real line R, with the euclidean
topology. If we remove the end-point « from the closed interval [a, 7, where
o < f§, we obtain the half-closed interval (o, ], which is connected. But if we
remove any point from («, f#) the resulting space is disconnected, since (a, f3)
is homecomorphic to R. Therefore [, §] is not homeomorphic to («, §). The
same argument shows that («, ] is not homeomorphic to (o, ). However, to
show that (a, ] is not homeomorphic to [, ] a refinement of the argument
is needed, as follows. If we remove both end-points from [«, ] the resulting
space (a, f8) is connected. Suppose we remove two distinct points from (a, §].
If one of these is the end-point the resulting space has two components,
otherwise it has three. In neither case is the resulting space connected and so
we conclude that (o, f] is not homeomorphic to [«, f].

The same type of argument shows that S* is not homeomorphic to R. In
fact, it can be adapted to show that S! cannot even be embedded in R. For
suppose, to obtain a contradiction, that there exists an embedding ¢: S* — R.
Now ¢S' is connected, since S* is connected, and so ¢S* is an interval. If
we remove an interior point from an interval the resulting space has two
components. But if we remove any point from S? the resulting space has just
one component. Thercfore S* cannot be homeomorphic to ¢S* and we have
a contradiction.

For a different type of illustration we rcturn to the theory of topological
groups, and prove

Proposition (9.17). Let G be a topological group. The component C of the neutral
element e is a closed normal subgroup of G.

Components are closed, which establishes the first point. To show that C
is normal, let g be any element of C. Then g™*C is the image of C under
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translation by ¢g~*, and so is connected since C is connected. Moreover,
e=gt-geg ' -Candsog!-C < C. Therefore

c'-c=g'Ccg,
geC
which shows that C is a subgroup. Now let g be any element of G. Then
g '+ C-gis the image of C under conjugation by g, and so is connected since
C is connected. Alsoe =g '-e-geg™*-C-gandsog™'-C-g = C. Thus Cis
normal, as asserted.

Locally Connected Spaces

Definition (9.18). The topological space X is locally connected if the connected
open neighbourhoods of each point form a neighbourhood base at that point.

For example, discrete spaces are locally connected since one-point sets are
connected. Also trivial spaces are locally connected since the full set is con-
nected. Since real intervals are connected the real line R is locally connected,
and similarly the real n-space R" is locally connected. But not every connected
space is locally connected.

Connected subset of the real plane which is not locally connected.

Proposition (9.19). Let {X;} be a family of locally connected spaces. Suppose
that X; is connected for all but a finite number of indices j. Then the topological
product | | X; is locally connected.

For let x = (x;) be a point of the topological product and let [J U; be a
restricted product open neighbourhood of (x;). Then [TU; contains a con-
nected restricted product open neighbourhood [ | ¥; of (x;), where V; is defined
as follows. We take V; to be full for those indices j for which U; is full and
connected. For the remaining indices j (necessarily finite in number) we use
the assumption that X; is locally connected and take ¥;to be a connected open
neighbourhood of x; contained in U,.
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Proposition (9.20). The topological space X is locally connected if and only if
the components of each open set of X are also open in X.

The condition is obviously sufficient, since if U is an open neighbourhood
of a point x then the component of U containing x is a connected open neigh-
bourhood of x. To prove the converse, let X be locally connected and let 4
be openin X. Let C be a component of 4 and let xe C. I V < A is a connected
neighbourhood of x then V < C, by definition of the term component, and so
Cis open in X.

Proposition (9.21). Let n: X — X' be a quotient map, where X and X' are
topological spaces. If X is locally connected then so is X'.

For let A’ be an open set of X', so that 4 = n™* 4’ is open in X, and let C’
be a component of A'. I assert that C = ™' C’ is a union of components of 4.
For if K is the component of A containing a given point x of C then nK is
connected and n(x)enK < A’, therefore nK < C’ and so K < C. Since X is
locally connected and since A4 is open in X we have that C is open in X and
so C'is open in X', as required.

It is not sufficient, in (9.21), for @ to be a continuous surjection. For example,
take the integers Z, with discrete topology. A continuous function p: Z - R
is given by p(n) = 1/n for n # 0 and by p(0) = 0. Although Z is locally con-
nected the image pZ is not.

Pathwise-Connected Spaces

There is another type of connectedness, called pathwise-connectedness, which
is also important and in some ways is more intuitive in nature. For a useful
class of topological spaces the two types of connectedness turn out to be the
same.

By a path in a topological space X we mean a continuous function f: I — X,
where I = [0, 1] = R; we say that f starts at f(0) and ends at f(1). It is im-
portant to appreciate that a path is a function, not the image of that function.

Definition (9.22). The topological space X is pathwise-connected if for each
pair of points &, n of X there exists a path in X which starts at £ and ends at #.

Sierpinski spaces are pathwise-connccted, more generally, so is any space
with not more than three open sets. The properties of pathwise-connected
spaces are similar to those of connected spaces. For cxample, the reader will
readily prove

Proposition (9.23). Let ¢: X — Y be a continuous surjection, where X and Y are
topological spaces. If X is pathwise-connected then so is Y.



122 9. Connectedness

This shows that pathwise-connectedness, like connectedness, is a topologi-
cally invariant property.

Proposition (9.24). Let { X;} be a family of pathwise-connected spaces. Then the
topological product [ | X; is pathwise-connected.

The proof is easier than that of the corresponding result (9.14) for ordinary
connectedness. Thus let ¢ = (&;) and # = (;) be points of [ ] X;. For each
index j let f; be a path in X; which starts at £; and ends at ;. Let f be the path
in [ [ X; of which the jth component is f;. Then f starts at £ and ends at #, as
required.

Proposition (9.25). Let X be a topological space. If X is pathwise-connected
then X is connected.

For suppose, to obtain a contradiction, that X is disconnected, so that there
exists a continuous non-constant function A: X — D, for some discrete D. Let
£, n be points of X such that A(¢) # A(x). Since X is pathwise-connected there
exists a path f in X which starts at £ and ends at . Then Af: [ —» D is con-
tinuous and non-constant. Since I is connected this gives us our contradiction.

In general, the converse of (9.25) is falsc, as the diagram may indicate—the
reader should be able to construct a proof without too much difficulty.

The topologists’ sine curve: a connected subset of the real plane which is not pathwise-
connected.

Pathwise-connectedness is particularly easy to study in the case of subsets
of R” since paths can be constructed by taking advantage of the geometry.
For example, if X is a convex subspace of R" then, for any points & ne X, a
path f in X from ¢ to 5 is given by

=01 -0é+1m  (tel).

In particular, the open n-ball U" and the closed n-ball B" are pathwise-
connected. The (n — 1)-sphere $”7! is not convex, of course, but here paths
can be constructed in a similar fashion using geodesic segments rather than
straight lines.
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If f is a path in the topological space X the reverse path f ! is defined by
ff=f1-0 (e

Thus f 7! starts where f ends and vice versa. If f, g are paths in X such that
f(1) = g(0) (i.e. g starts where f ends) the juxtaposition path h is defined by

_ 1@ 0<t<3),
h(o) = {g(Zt ) Get<))

To cstablish the continuity of & we use (3.10). Note that h starts where f starts
and h ends where g ends.

J(0)

J(1) = g(0)

g(1)

Juxtaposition of paths.

Pathwise-connectedness components (usually called path-components) can
be defined as the equivalence classes determined by an equivalence relation
as follows.

Definition (9.26). The points &, # of the topological space X are equivalent, in
the sense of pathwise-connectedness, if there exists a path in X which starts
at £ and ends at #.

To establish reflexivity we use the stationary (or constant) path; to establish
symmetry we usc the reverse path; and to establish transitivity we use the
juxtaposition of paths, as described above.

It follows from (9.25) that X has at least as many path-components as con-
nectedness components. In general, the path-components of X are not closed
(nor open, either); there is no analogue of (9.6) for pathwise-connectedness.
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Definition (9.27). The topological space X is locally pathwise-connected if for
each point x of X the pathwise-connected neighbourhoods of x form a neigh-
bourhood base.

Obviously the real line R is locally pathwisc-connected and so, more
generally, is the real n-space R". More generally still, any open subspace of
R" is locally pathwise-connected. Of course, any locally pathwise-connected
space is also locally connected.

Again we sce that the direct image of a locally pathwise-connected space
under a continuous open surjection is also locally pathwise-connected, and
hence that the property is a topological invariant.

Proposition (9.28). Let X be connected and locally pathwise-connected. Then X
is pathwise-connected.

For let x be a point of X, let H be the set of points x’ of X which can be
joined to x by a path in X, and let K = X — H. I assert that both H and K
are open in X. This will imply that K is empty, since X is connected, and so
that X is pathwise-connected.

First, we show that H is open. For if x' is a point of H there exists an open
neighbourhood U of x’ such that for any point x” of U there exists a path in
U from x’ to x”. But since x’ is in H there is also a path in X from x to x".
Juxtaposing these two paths we obtain a path in X from x to x”,so that x" € H.
Thus U < H and so H is open.

Second, we show that K is open. For if x’ is a point of K there exists an
open neighbourhood U of x’ such that for any point x” of U there exists a
pathin U from x” to x". Then x” is not in H since, otherwise, there would exist
a path in X from x to x” and hence, by juxtaposition, a path in X from x to
x', contrary to the assumption that x’€ K. So x”e€ K, thus U < K and so K
is open.

Now the proof is completed as indicated in the first paragraph. The result
applies, for example, to open subspaces of R" and of S". It can readily be
extended to

Proposition (9.29). Let X be a locally pathwise-connected topological space.
Then the components of X and the path-components of X coincide.

For a better undcrstanding of the relationship between the two forms of con-
ncctedness consider the diagram shown below, where X' is the quotient space
of X with respect to the equivalence relation defined in (9.26) while X” is the
quotient space of X with respect to the equivalence relation defined in (9.15).

/N

XI XI/
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The function &, induced by the identity on X, is a continuous surjection in all
cases. In some cases, as when X is locally pathwise-connected, & is also
injective. Then ¢! is also continuous, from consideration of our next diagram,

and so is a homeomorphism.
I Xl

¢t

As usual, the case of a topological group G has special features. We have
already seen, in (9.17), that the connectedness component of the neutral
element e constitutes a normal subgroup. In fact, the set of components of G
forms a group, in the algebraic sense, with the group structure inherited from
G, and this group is isomorphic to the factor group of G by the component
of e. A similar result holds for the path-components of G.

Uniformly Connected Spaces

Definition (9.30). The uniform space X is uniformly connected if for each
discretc uniform space D every uniformly continuous function A: X — D is
constant.

When X has the discrete uniformity we can takec X = D and A the identity;
then X is not uniformly connected if X has more than one point. When X has
the trivial uniformity then (A x 1)"'AD = X x X, since AD is an entourage
of D; therefore, 4 is constant and X is uniformly connected. This can also be
seen from

Proposition (9.31). Suppose that the uniform space X is connected, in the uniform
topology. Then X is uniformly connected.

For let A: X — D be uniformly continuous, where D is discrete. Then 4 is
continuous and so constant, since X is connected.

As we shall see later the converse of (9.31) is false. For example, the rational
line @ is uniformly connected, in the euclidean uniformity, although not con-
nected, in the euclidean topology.

The properties of uniform connectedness are similar to those of topological
connectedness. For example, we have

Proposition (9.32). Let ¢: X — Y be a uniformly continuous surjection, where X
and Y are uniform spaces. If X is uniformly connected then so is Y.

Proposition (9.33). Let {X;} be a family of uniformly connected spaces. Then
the uniform product | | X; is uniformly connected.
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Since the proofs of the above are straightforward we leave them to serve
as exercises. Instead we prove

Proposition (9.34). The uniform space X is uniformly connected if and only if
for each entourage E of X we have E" = X x X for some integer n.

For suppose that £, y€ X and an entourage F cxist such that (&, n) ¢ E" for
every n. Taking D = {—1, +1}, definc A(x) = — 1 if (&, x) € E" for some n and
A(x) = + 1 otherwise. Then E is contained in the inverse image of the diagonal
with respect to 4 x 4, and so 4 is uniformly continuous. Since 4 is not constant
this shows that X cannot be uniformly connected. This proves (9.34) in one
direction.

For the proof in the other direction, let D be any discrete uniform space
and let : X - D be uniformly continuous. Take E to be the inverse image
of the diagonal; then E" = E for all n. So if E" = X x X for some n then
E = X x X and so 1 is constant, as required.

For example, let G be a topological group. Then (9.34) shows that G is
uniformly connected if and only if every neighbourhood of the neutral element
gencrates the whole of G.

Definition (9.35). The uniform space X has property S if for each entourage
D the set X can be covered by a finite family of connected D-small subsets.

The S herc stands for Sierpinski.!? Clearly it is sufficient if the condition
in (9.35) is satisfied for members of a uniformity base. For example, in case
X is a metric space, it is sufficient if for each positive ¢, X can be covered
by a finite family of connected U,-small subsets or, equivalently, if X can be
covered by a finite family of connected subsets, each of which is contained in
an open 2¢-ball. Thus bounded intervals of the real line have property S, in
the euclidean uniformity, and similarly in higher dimensions.

Clearly if X has property S then X is totally bounded. We also have

Proposition (9.36). If the uniform space X has property S then X is locally
connected.

For let x be a point of X and let D be an entourage of X. We show that
the uniform neighbourhood D[x] contains a connected neighbourhood of x.
Let E be a closed entourage of X such that E < D. Since X has property S
there exists a family {C,, ..., C,} of connected E-small sets covering X. Let C
be the union of those members C; of the family such that xeCl C;. Then C is
connected. Moreover, C is a neighbourhood of x since x does not adhere to

12 See G. T. Whyburn, Analytic Topology (American Mathematical Society, Providence, RI,
1942) for the metric version of what follows, and P. J. Collins, On uniform connection properties,
(Amer. Math. Monthly, 78 (1971), 372-374) for the uniform version.
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X — C. Finally E is closed and so
CclJCeJCC < E[x] = D[x],

where the unions are taken over the same indices i as before. This proves
(9.36).

Uniformly Locally Connected Spaces
To understand property S better we also introduce

Definition (9.37). The uniform space X is uniformly locally connected if each
entourage D contains an entourage E such that the uniform neighbourhood
E[x] is connected for each point x of X.

Proposition (9.38). Let X be a compact Hausdorff space. If X is locally con-
nected then X is uniformly locally connected.

Here, of course, we are referring to the unique uniformity on X which is
compatible with the topology. To prove (9.38), let D bec an entourage of X.
There exists a symmetric entourage E of X such that Eo E = D. Since X is
locally connected and compact there exists, by (9.18), a connected uniform
neighbourhood C,[x] = E[x] for cach point x of X. Now the neighbourhood

N = {J (C[x] x C[x])
xeX
of the diagonal is an entourage, since X is compact Hausdorff. As a union of
connected sets containing x each uniform neighbourhood N[x] is connected,
and we have
N = ) (E[x] x E[x]) c EcE < D,

xeX

as required.

Proposition (9.39). Let X be a totally bounded uniform space. If X is locally
uniformly connected then X has property S.

Given an entourage D of X let E be a symmetric entourage such that
Eo E < D.If X is uniformly locally connected E contains an entourage F such
that the uniform ncighbourhood F[ x] is connected for each point x of X. Since
X is totally bounded there exists a finite family A4, ..., A, of non-empty
F-small sets which cover X. Choose x,€ A4; fori=1,...,n Then F[x,], ...,
F[x,] is a finite family of connected sets covering X. Moreover, F[x;] is
D-small for each index i, and so (9.39) is proved.

Thus the last three propositions show that a compact Hausdorff space is
locally connected if and only if it has property S.



128 9. Connectedness

EXERCISES

1. The topological space X is the union of closed subspaces X; and X,. If X and
X, n X, are connected show that X, and X, are connected.

2. Show that the Sorgenfrey line L is not connected.

3. Show that the cartesian product of an infinite number of connected spaces is also
connected when the box topology is used.

4. Show that, in the real plane R x R with the euclidean topology, the set of points
with at least one irrational coordinate is connected. Is the same true if irrational
is replaced by rational?

5. Let X = R x R be the subspace of points (x, y) such that either (i) x is irrational
and 0 < y < 1 or (i) x is rational and — 1 < y < 0. Prove that X is connected, with
the euclidean topology.

6. Let X be a topological space which is the union of connected subspaces A, ..., 4,
such that the intersections A, N A,,..., A,-; N A, are all non-empty. Does it
follow that X is connected?

7. Let ¢: X — Y be a quotient map such that ¢!y is connected for each point y of
Y. Let Y’ be an open or closed subset of Y. Show that Y’ is connected if and only
if #71 Y’ is connected.

8. Show that a subspace of a totally disconnected space is totally disconnected, and
that the topological product of totally disconnected spaces is totally disconnected.

9. Show that for any topological spacc X the quotient space with respect to the
equivalence relation of (9.15) is totally disconnected.

10. Let H be a discrete normal subgroup of the connected topological group G. Show
that H is a central subgroup.

11. Prove that if a finite topological group is connected the topology is trivial.

12. Show that for any open neighbourhood U of the neutral element e in the connected
topological group G the subsets U” (n = 1, 2, ...) form an open covering of G.

13. Let X be a compact Hausdorff space. Let 2 be a filter base on X consisting of
closed connected subsets of X. Show that the intersection of the members of 4 is
a closed connected set.

14. Let X be locally connected. Let H be a subset of X and let C be connected and
open in H. Show that C = H n U for some connected open set U of X.

15. Show that the additive group Q of rationals forms a topological group with neigh-
bourhood base at 0 consisting of the countable chain of subgroups ... > U_; o
Uy> U, o..., where

U, = {mp'/n: p|n} t=0,+1,+2..).
Show that @ with this p-adic topology is totally disconnected.

16. Let H be a normal subgroup of the connected Hausdorff group G. Show that H
is a closed subgroup of the centre of G.
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17. Let X be the subset of the real line consisting of 0 together with the points n™?, for
n=1,2,.... Show that X, with the euclidean topology, is totally disconnected.

18. Let # be a family of compact connected subsets of the Hausdorff space X. Suppose
that the intersection of any finite subfamily of % is non-empty. Show that the
intersection of the members of & is connected.



CHAPTER 10

Countability and Related
Topics

Countability

There are two important classes of topological spaces which satisfy countability
conditions (the class of separable spaces, to be discussed later, may be regarded
as a third). These arc known as the first and second countability conditions,
for historical reasons. However, in most accounts of the subject, including the
present one, it is the second countability condition which comes first.

Definition (10.1). Let X be a topological space. If X admits a countable
generating family then X is second countable.

For example, the real line R, with the euclidean topology, is second count-
able, since the topology is generated by the countable family

{0, B): o, e Q}.

(Of course, the same family with «, feR is also generating but is non-
countable.) o

Note that a family I" of subsets of X is countable if and only if the family
I of finite intersections of members of I" is countable. Without real loss of
generality, therefore, we may assume that a second countable space admits a
countable generating family which is complete, in the sense of Chapter 1.

Proposition (10.2). Let ¢: X — Y be a continuous open surjection, where X and
Y are topological spaces. If X is second countable then so is Y.

For let I" be a complete generating family for the topology of X. Then the
direct image ¢, I is a generating family for the topology of Y. Moreover, ¢, I"
is countable if I" is countable, and so (10.2) is obtained.
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Proposition (10.3). Let ¢: X' — X be an embedding, where X and X' are topo-
logical spaces. If X is second countable then so is X'.

For the inverse image of a countable generating family for the topology of
X is a countable generating family for the topology of X'. In particular, each
subspace of a second countable space is second countable.

Proposition (10.4). Let X, ..., X,, ... be a countable family of second countable
spaces. Then the topological product X x -+ x X, x - is second countable.

This follows since to generate the product topology it is sufficient to take
allw, ' (U(n, r), where {U(n, r)},-, ,. . is a generating set for the topology of X,,.

These results show that the class of second countable spaces includes the
real n-space R" and all its subspaces.

Lindelof Spaces

Next we study a condition which may be regarded as a weak form of
compactness.

Definition (10.5). The topological space X is Lindeldf if each open covering
of X admits a countable subcovering.

Proposition (10.6). Let ¢: X — Y be a continuous surjection, where X and Y are
topological spaces. If X is Lindeldf then so is Y.

ForletT" = {V;} be an open covering of Y. The inverse image ¢*I" = {¢ ™' V}}
is an open covering of X. If X is Lindel6f we can extract a countable sub-
covering of X from ¢*I'. The corresponding members of I' form a countable
subcovering of Y.

Proposition (10.7). Let ¢: X' — X be a closed embedding, where X and X' are
topological spaces. If X is Lindeldf then so is X'.

For let T be an open covering of X'. Then I'" = ¢*I", where I is a covering
of $X’ by open sets of X. By adjoining to I the open set X — ¢ X’ we obtain
an open covering 't of X. If X is Lindelof we can extract from I'* a countable
subcovering of X. Remove the additional set X — ¢X’ if it occurs in the
subcovering. We are left with a countable subcovering of I' of which the
inverse image forms a countable subcovering of I'". This proves (10.7). In
particular, closed subspaces of Lindelof spaces are Lindelof.

Examples can be given to show that finite topological products of Lindelof
spaces are not necessarily Lindelof. Possibly this is the main reason why they
are much less important than compact spaces, but they do have a number of
attractive properties nevertheless.
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Proposition (10.8). Let X be a second countable space. Then X is Lindelof.

Forlet I' = {W,:n = 1,2,...} be a countable complete generating family
for the topology of X. Given an open covering {U;} of X consider the
collection X of intcgers n such that W, is contained in some member U; of
the covering. For each ne X choose an index j,, say, such that W, < U; . Now
each U;is a union of members of the generating family I, therefore each point
of U; is contained in W, for some n in X and hence in U; . Thus the family
{U;,:ne L} covers X and we have extracted a countable subcovering of the
given covering, as required.

Proposition (10.9). Let X be a regular Lindelof space. Then X is normal.

To see this, let E, F be closed sets of X which are disjoint. Then E, F have
the Lindelof property, by (10.7). Since X is regular we can choose for each
point £ of E an open neighbourhood U, of which the closure does not intersect
F, and for each point # of F an open neighbourhood ¥, of which the closure
does not intersect E. By the Lindelof condition we can extract a countable
subcovering {U;,, U,,, ...} of E from the open covering { U,: ¢ € E} and extract
a countable subcovering {V, , V, , ...} of F from the open covering {¥,: n € F}.

Now construct open sets S, S,, ...; T;, T, ... as follows:
S, =U,, T,=V,—ClS,,
S,=U,—Cl T, T,=V,—CI(S;uS,),

S3=U; - Cl(T, v T), T=V,—ClS; S, USs),

and so on (the suffixes ¢ and # have been suppressed to ease the printing).
Then S ={)S, and T = () T, are disjoint open sets containing E and F,
respectively. Thus X is normal, as asserted.

Countably Compact Spaces

In the history of general topology several different compactness conditions
were studied before the one which is now standard was accepted as the most
satisfactory. These conditions agree on a reasonably broad class of topological
spaces although they differ in general. We consider just two of these conditions
here, beginning with

Definition (10.10). The topological space X is countably compact if each
countable open covering of X admits a finite subcovering.

Clearly X is compact, in the standard sense, if and only if X is both
countably compact and Lindelof; in a way, we have broken up the definition
of compactness into two parts.
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Propeosition (10.11). Let ¢: X — Y be a continuous surjection, where X and Y
are topological spaces. If X is countably compact then so is Y.

For let I' be a countable open covering of Y. The inverse image ¢*I" is a
countable open covering of X. If X is countably compact we can extract from
¢*T a finite subcovering of X. The corresponding members of I" form a finite
subcovering of Y.

Proposition (10.12). Let ¢: X' — X be a closed embedding, where X and X' are
topological spaces. If X is countably compact then so is X'.

For let I'"" be a countable open covering of X’. Then I'" = ¢*I, where I is
a countable covering of $X’ by open sets of X. By adjoining to I" the open set
X — ¢X' we obtain a countable open covering I'* of X. If X is countably
compact we can extract from I'" a finite subcovering of X. Remove the
additional set X — ¢ X" if it occurs in the subcovering. We are left with a finite
subcovering of I of which the inverse image is a finite subcovering of I'"". This
proves (10.12). In particular, closed subspaces of countably compact spaces
are countably compact.

Examples can be given to show that finite topological products of countably
compact spaces are not nccessarily countably compact.

There is an interesting characterization of countably compact Hausdorff
spaces involving the notion of accumulation point (not to be confused with
the notion of adherence point).

Definition (10.13). Let H be a subset of the topological space X. The point x
of X is an accumulation point of H if each neighbourhood of x intersects H
in some point other than x.

In other words, x is an accumulation point of H if and only if x is an
adherence point of H — {x}. Whereas points of H itself are automatically
adherence points this is not the case with accumulation points.

Proposition (10.14). Let X be a topological space. Then X is countably compact
if and only if there exists an accumulation point for each infinite subset of X.

For suppose that X is countably compact. Clearly it is sufficient to show
that for each scquence {x,:n = 1,2,...} of points of X the set H = {x,, X,, ...}
has an accumulation point. Without real loss of generality we may suppose
that all the terms of the sequence are distinct. Write H, = {X,, X,+y, ...} for
each n, and consider the countable family I'* of closed sets Cl H, of X. I assert
that the intersection of all these closed sets is non-empty: then any point of
the intersection is an accumulation point of H. For suppose, to obtain a
contradiction, that the intersection of the members of T'* is empty. Then
the dual family T’ of complements is a countable open covering of X. Since
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X is countably compact we can extract a finite subcovering, and then the
corresponding finite subfamily of I'* has empty intersection. Since no finite
subfamily of {H,: n = 1, 2, ...} has empty intersection we have our contradic-
tion, which proves (10.14) in one direction.

Conversely, suppose that X is not countably compact. Then there cxists a
countable open covering {U,:n = 1,2,...} of X from which it is impossible
to extract a finite subcovering. For each n, therefore, we can choose a point
x, of X which does not belong to U; U -~ u U,. Then theset {x,:n=1,2,...}
has no accumulation point since each point x of X belongs to Uy for some N
and yet Uy does not intersect {Xy,;, Xy+2,...}. This completes the proof of
(10.14).

Sequentially Compact Spaces

We turn now to another type of compactness which is defined in terms of
convergence of sequences.

Definition (10.15). The topological space X is scquentially compact if each
sequence of points of X admits a convergent subsequence.

Proposition (10.16). Let ¢: X — Y be a continuous surjection, where X and Y
are topological spaces. If X is sequentially compact then 5o is Y.

For let {y,> be a sequence of points of Y. Choose a point x,€¢~*(y,) for
each n. Then (x,) is a sequence of points of X. If X is sequentially compact
there exists a subsequence of {x,> which converges to some point x of X. The
corresponding subsequence of {y,> converges to the point ¢(x) of Y.

Proposition (10.17). Let ¢: X' — X be a closed embedding, where X and X' are
topological spaces. If X is sequentially compact then so is X'.

For let {x,) be a sequence of points of X'. Then <x,) is a sequence of points
of X, where x, = ¢(x,) for each n. If X is sequentially compact there exists
a limit point x of a subsequence of {x,». Now x is an adherence point of ¢X’,
since each neighbourhood of x contains at least onc term ¢(x,) (in fact
infinitely many). Since ¢X" is closed in X this implies that xe ¢X’. Then ¢ (x)
is a limit point of a subsequence of {x,». This proves (10.17); in particular,
closcd subspaces of sequentially compact spaces are sequentially compact.

Proposition (10.18). Let X4, ..., X, ... be a countable family of sequentially
compact spaces. Then the topological product X; x --- x X, x ** is sequen-
tially compact.

A diagonal process can be used to prove this. Thus let (£,) be a sequence
inX; x - x X, x -, so that {(zn,(£,)) is a sequence in X, for each n. Since
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X, is sequentially compact there exists an injection «,: N — N such that
{n,(&,, ) converges to a point x, of X,. Consider the injection f: N — N
given by

B(n) = a,0,_q ..oy (n) (neN).

Then (&;,)> convergesin X; x -+ x X, x ---to the point x, where w,(x) = x,,.

Proposition (10.19). Let X be a topological space. If X is sequentially compact
then X is countably compact.

For let H be an infinite subset of X. Then there exists a sequence {x,» of
distinct points of H. If X is sequentially compact then <{x,> contains a
subsequence {x, > which converges to some point x of X. Now <{x;>, like {x,>,
consists of distinct points of H. Each neighbourhood of x contains an infinite
number of terms of the sequence, hence at least one point of H N (X — {x}).
Therefore x is an accumulation point of H and so X is countably compact, as
asserted.

In general, the converse of (10.19) is false, but this is where the first
countability axiom comes in.

Definition (10.20). Let X be a topological space. Then X is first countable if
for each point x of X the neighbourhood filter A7 admits a countable base.

Clearly every second countable space is first countable, but not conversely;
for example, a non-countable discrete space is first countable but not second
countable.

In a first countable space (and a fortiori in a second countable space) the
essential features of the topology can be expressed satisfactorily in terms of
sequences. The reason for this is contained in

Proposition (10.21). Let X be a first countable space and let H be a subset of
X. The point x of X adheres to H if and only if there exists a sequence {x,) of
points of H which converges to x.

For if x is an adherence point of H, choose a countable neighbourhood
base {W,:n =1, 2, ...} atx in X. Without real loss of generality we can assume
that the nesting condition is satisfied. Since W, intersects H for each n we can
choose a point x, of the intersection H n W,. The result is a sequence {x,» of
points of H which converges to x by the nesting condition.

Conversely, suppose that {x, is a sequence of points of H which converges
to the point x. Then each neighbourhood of x contains a term of the sequence
and so intersects H. Therefore x is an adherence point of H, which completes
the proof.

We go on to show that continuity can also be characterized in terms of con-
vergence of sequences for first countable domains. This needs the preliminary
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Lemma (10.22). Let X be a first countable space. Let & be a filter on X which
admits a countable filter base and let x be an adherence point of F. Then there
exists an elementary filter on X refining & which converges to x.

For let {M,:n=1,2,...} be a countable basc for # and let {W,:n =
1,2,...} be a countable base for the neighbourhood filter A of x. We may
assume, without real loss of generality, that both of these countable bases are
nested. Since x is an adherence point of # each member of ¥, intersects every
member of . In particular, the intersection W, n M, is non-empty for each
n. Choose a point x,, of the intersection, for each n. Then the elementary filter
associated with the sequence {x,» satisfies the requirements.

With the aid of (10.22) we can prove the converse of (5.26) and so characterize
continuity, for first countable domains, as follows.

Proposition (10.23). Let ¢: X — Y be a function, where X and Y are topological
spaces with X first countable. Then ¢ is continuous at the point x of X if for
each sequence <{x,» in X which converges to x, the corresponding sequence
{p(x,)> in Y converges to ¢(x).

For by (10.22) the neighbourhood filter .4, can be refined by an elementary
filter %, which converges to x. Then ¢,/ is refined by ¢, Z.. Since ¢, Z,
converges to @(x), by hypothesis, so does ¢, .4, hence ¢ is continuous at x,
by (2.5).

Proposition (10.24). Let X be a countably compact and first countable space.
Then X is sequentially compact.

For suppose, to obtain a contradiction, that {x,) is a sequence of points
of X which contains no convergent subsequence. Then the set H = {x,} is
certainly infinite and so has an accumulation point x, say, since X is countably
compact. Choose a countable neighbourhood base {W,:n=1,2,...} for x
in X. Choose a point x,, € H n W, other than x, a point x,, € H n W,, other
than x, and so on. We obtain a subsequence of {x, > which obviously converges
to x.

By combining the results of the last few pages we reach the conclusion that
for second countable Hausdorff spaces the conditions compact, countably
compact and sequentially compact are coincident.

Separable Spaces

Definition (10.25). Let X be a topological space. If X admits a countable dense
subset then X is separable.

For example, the rationals Q form a countable dense subset of the real line
R, with the euclidean topology. More generally, any second countable space
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is separable, since by taking one point from each non-empty member of a
countable generating family we obtain a countable dense subsct.

Proposition (10.26). Let ¢: X — Y be a continuous surjection, where X and Y
are topological spaces. If X is separable then so is Y.

For if H is a countable dense subsct of X then ¢H is a countable dense
subset of Y, using (2.3).

Proposition (10.27). Let ¢: X' — X be an open embedding, where X and X' are
topological spaces. If X is separable then so is X'.

For if H is a countable dense subset of X then ¢ 'H is a countable dense
subset of X'. In particular, open subspaces of separable spaces are separable.

Proposition (10.28). Let X, ..., X,, ... be a countable family of separable
spaces. Then the topological product X, x -+ x X, X -+ is separable.

If for each n, {x},x53,...,x;,...} is dense in X,, let S be the set of all
sequences
(X}, X2, xp, )
such that r, = 1 (say) for all n sufficiently large. This is countable, and every
restricted product open set of [ | X,, contains a point of S.

Proposition (10.29). Let X be a countably compact uniform space. Then X is
totally bounded.

For suppose X is not totally bounded. Then for some entourage D there
exists no finite subset S of X such that D[S] = X. Choose any point x; of X.
Since D[x,] is a proper subset of X we can choose a point x, of X such that
x,¢D[x,]. Since D[x,, x,] is a proper subset of X we can choose a point x,
of X such that x5 ¢ D[x,, x,]. We now proceed by induction.

Suppose we have chosen a set of points {x,, ..., x,} of X such that (x;, x;)¢ D
whenever i # j. Since D[x,,..., x,] is a proper subset of X there exists a
point x,,; of X such that x,,, ¢D[x,, ..., x,], i.e. such that (x,,,, x;)¢ D for
i=1,...,n So by induction we have obtained a sequence {x,» of distinct
points of X such that (x;, x;)¢ D whenever i # j.

Now the subset H = {x, x,, ...} of X, being countable, has an accumula-
tion point x, say. There exists an entourage E of X such that Eo E < D, and
then E[x] intersects H in at least two points x;, x;, say, where i # j. But then
(x;, x;)€ Eo E < D, contrary to the construction. From this contradiction we
conclude that X is totally bounded.

Every metric space X satisfies the first condition of countability. To be sure,
we have described the metric topology using as a neighbourhood base at each
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point x the family of open e-balls U,(x) for all positive &. However, another
neighbourhood base, in the same topology, consists of the family of open
e-balls U,(x) for all positive rational ¢, and this neighbourhood base is countable.

It is easy to give examples of metric spaces which fail to satisfy the second
condition of countability, the existence of a countable generating family for
the topology. For example, an uncountable set with the discrete metric cannot
be second countable. We prove

Proposition (10.30). Let X be a separable metric space. Then X is second
countable.

For let H= {x,:n=1,2,...} be a countable dense subset of X. I claim
that the countable family {U,,(x,)}, where n, k run through the natural
numbers N, generates the metric topology. It is sufficient to show that for each
point x of X and positive ¢ we can choose n and k so that U, ,(x,) is contained
in U,(x). Choose k > 2/e. Since H is dense in X there exists an integer n such
that x,e Uy, (x), and then x € U ,(x,) by symmetry of the metric p. Now if
¢e Uyplx,) then

p(x, &) < p(x, x,) + plx,, &) < 2/k <,
so that e U,(x). Thus U, ,(x,) = U,(x), as required.

Proposition (10.31). Let X be a countably compact metric space. Then X is
separable.

For by (10.29) X is totally bounded, and so there exists a finite 1/n-net for
each natural number n. Let us denote this net by

{x1, x5, ..., Xgm }-

Now consider the subset
k(n)

H=U U}

neN i=1

which is certainly countable. I assert that H is dense in X. For let x be a point
of X, and let ¢ > 0. Choose an integer n > 1/¢ and consider the 1/n-net, as
above. For some i < k(n) we have xe U,;,(x!') and so x}'e U, ,(x) = U,(x), as
required.

EXERCISES

1. Let X be a first countable space. Show that X is Hausdorff if and only if each
convergent sequence in X has a unique limit.

2. Let X be a second countable space. Show that every family of pairwise disjoint
open sets of X is countable.
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3. Let X be a Lindel6f space. Show that there exists an accumulation point for each
uncountable subset of X.

4. Show that the Sorgenfrey plane is separable, but the anti-diagonal subspace is
not.

5. Show that if X is compact and Y isa Lindel6fspace then X x Yisa Lindelofspace.

6. Show that the Sorgenfrey line has the Lindeldf property, but the Sorgenfrey plane
does not.

7. Let ¢: X — Y be a function, where X is first countable and Y is countably compact.
If the graph function I';: X — X x Y is closed show that ¢ is continuous.

8. Let X be a Hausdorff space. Show that X is sequentially compact if and only if
each closed subset of X which is discrete in the relative topology is a finite set.



CHAPTER 11

Functional Separation
Conditions

General Remarks

Let H, K be a disjoint pair of subscts of the topological space X. Chapter 6
is concerned with the question of whether H and K can be separated: Do there
exist open neighbourhoods U, V of H, K, respectively, which arc also disjoint?
The present chapter is concerned with the question of whether H and K can
be functionally separated: Does there exist a continuous real-valued function
o: X — I such that o = 0 throughout H and « = 1 throughout K? The latter
condition implies the former since we can take U = «71[0, %), V = a7 *(3, 1].

For example, consider the Hausdorff condition, in which H and K are
one-point subsets. We may describe X as functionally Hausdorff if for each
pair &, 5 of distinct points of X there exists a continuous real-valued function
o: X — I such that (&) = 0 and a(n) = 1. We will not dwell on this condition,
since it is not particularly relevant to what we are going to do, but the reader
may be interested to show that subspaces of functionally Hausdorff spaces
are functionally Hausdorff, also that topological products of functionally
Hausdorff spaces are functionally Hausdorff.

Completely Regular Spaces

Next consider the regularity condition. The standard term for functionally
regular is completely regular:

Definition (11.1). The topological space X is completely regular if for each
closed set H of X and each point x of X — H there exists a continuous
real-valued function a: X — I such that « = 0 throughout H and a = 1 at x.
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Proposition (11.2). Let ¢: X' —> X be an embedding, where X and X' are
topological spaces. If X is completely regular then so is X'.

In particular, subspaces of completcly regular spaces are completely regular.
To prove (11.2),let H' be aclosed set of X’ and let x"€ X’ — H'. Write x = ¢(x")
and H = Cl(¢H’). Then H' = ¢ 'H, hence x¢ H. When X is completely
regular there exists a continuous function a: X — I such that « = 0 through-
out H and o = 1 at x. Then o’ = ao¢p: X’ — I is a continuous function such
that o’ = 0 throughout H and o’ = 1 at x’, as required.

Proposition (11.3). Let {X;} be a family of completely reqular spaces. Then the
topological product X =[] X; is completely regular.

Let x = (x;) be a point of X and let H be a closed set of X which does not
contain x. Let [ U;, where U; is open in X;, be a restricted product open
neighbourhood of x which does not intersect H. Thus U; is full for all but a
finite number of values of j, say j(1), ..., j(n). Given i = 1, ..., n there exists a
continuous function o;: Xj; — I such that «; = 0 throughout the closed set
X — Uy, while a; = 1 at x;;. The continuous function f; = a;m;;: X — I is
zero away from ;) Uy, Using multiplication of rcal numbers, therefore, we

can define a continuous function a: X — I by

O((X) = ﬁl ()C) e /},,(X) (X € X),
and « = 0 throughout H = X — [ | U; while o = 1 at x, as required.

Proposition (11.4). The topological space X is completely regular if and only if
the topology of X is generated by the family of cozero sets a~*(0, 1] of continuous
functions oz X — I.

For suppose that X is completely regular. Let x be a point of X and let U
be an open neighbourhood of x. Then there exists a continuous function
o: X — I such that o« = 0 throughout X — U and « = 1 at x. The cozero set
a~*(0, 1] contains x and is contained in U. Since the cozero sets are open and
cover X they generate the topology.

Conversely, suppose that the family of cozero sets generates the topology.
Let H be a closed set of X and let x be a point of X — H. Since X — H
is an open neighbourhood of x there exists a continuous function fi: X — I
such that # = 0 throughout H and 8 # 0 at x. By postcomposing f§ with
an appropriate self-homeomorphism of I we obtain a continuous function
o: X — I such that o = 0 throughout H and o = 1 at x. Thus X is completely
regular, as asserted.

Uniformizability

We now come to the first major result of this chapter, the proof of which
involves a different idea from any we have encountered so far.
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Proposition (11.5). The topological space X is uniformizable if and only if X is
completely regular.

By uniformizable we mean, of course, that there exists a uniformity such
that the associated uniform topology is the given topology. We have already
shown that uniform spaces are regular, and examples exist of regular spaces
which are not uniformizable; the functional separation axiom is essential for
this result.

In fact, any topological space X can be given uniform structure as follows:
give X the coarsest uniformity such that «: X — I is uniformly continuous,
for each continuous function «, with the euclidean uniformity on I. Thus a
base for the entourages consists of finite intersections of subsets of X x X of
the form

D,.={(¢meX x X:|a(¢) — aln) <&},

where o: X — Iiscontinuous and ¢ is positive. For each point x of X the subset
D, .[x] is open in the given topology, since

D, [x] = {&: |a(¢) — a(x)] < &} = o™ Ha(x) — &, alx) + &).

So the associated uniform topology is no finer than the given topology.

To prove (11.5), first suppose that X is completely regular. Then the uni-
form topology just defined is no coarser than the given topology. For let H be
a closed set of the given topology and let x be a point of X — H. Since X
is completely regular there exists a continuous function a: X — I such that
o = 0 throughout H and « = 1 at x. Consider the entourage

D =D, p={&neX x X:|a() —aly)] <3}

If £e D[x] we have (x, £)e D so that |a(x) — a(£)| < 4 and hence |a(¢)| > 1. Tt
follows that the uniform neighbourhood D[x] does not intersect H and so H
is closed in the uniform topology. We conclude, therefore, that the uniform
topology coincides with the given topology. This proves (11.5) in one direction.

In the other direction we suppose that X is a uniform space, and use a
variant of an ingenious construction for non-constant continuous functions
on X due to Urysohn, as follows. Let H be a closed set of X, in the uniform
topology, and let x be a point of X — H. Then D[x] <« X — H, for some
entourage D of X. Write D = D, and then, proceeding inductively, let D, ...,
D,, ... be entourages of X such that D,,;oD,,; = D;(i=0,1,...).

Each positive real number ¢ € I can be expressed in binary notation, thus

t=ao+a; /24 4+ a2+,

where each digit a; is either 0 or 1. Consider the subset I’ of I consisting of those
te I for which the binary expansion terminates, i.e. the dyadic rationals of I.
We associate an entourage E, of X with each such ¢ as follows: if i, i5, ..., i,
are the indices i for which g; = 1, in the expansion of t, with i; < i, <--- </,
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then
E, =D

1,

.oD. o--roD. .
n n-1 by

In addition, we set E, = AX, the diagonal.

I assert that if s, te I’ with s < ¢ then E; — E,. This is easy to see in case
s, t are of the form k/2", (k + 1)/2", respectively, since then D, o E; < E,. Hence,
by induction, we obtain the assertion in the special case when s, t are of the
form k/2", 1/2", with | > k. The general case now follows by taking n to be
the last index i in the binary expansions of s and ¢ for which the digit g; is
non-zero, and putting k = 2"s, [ = 2"t.

We now define our function «: X — I by

a(l) =inf{tel: ¢ E,[x]}

when & # x, and by a(x) = 1. If £€ H then ¢ E,[x], since E, = AX, and so
a(&) = 0. All that remains to be shown is that « is continuous.

In fact, « is uniformly continuous. For let n be any positive integer; I assert
that if (£, n) e D, then

|ou(€) — alm)] < 172070,

For observe that if s = k/2" and t = (k + 1)/2" then a(¢) < s implies a(y) < ¢,
since

(eE([t] = ne(D,°E)[x] = E,[x],

while a(n) < s implies a(£) < ¢ similarly. Thus the interval between a(¢) and
a(n) cannot contain an interval [s, t] of the above form, and so the assertion
follows. This establishes continuity and completes the proof of (11.5).

It is noteworthy that a completely regular T, space can be embedded as
a subspace of a compact Hausdorff space, specifically, as a subspace of the
topological Jth power I’ of the closed unit interval I for an appropriate
indexing set J. In fact, for any topological space X we can take J to be the set
of continuous functions ¢;: X — I and consider the continuous function

O: X1

defined by m;® = ¢; (j€J). Suppose that X is T; and completely regular; then
¢ is injective, as well as continuous, and it is not difficult to see that ® is an
embedding, as follows.

We have to show that ®U is open in ®X whenever U is open in X. So let
¥o be any point of ®U and let x,, be a point of X such that ®(x,) = y,. Choose
an index j such that ¢, =0 on X — U and ¢, > 0 at x,. Then V = 7; (0, 1]
is open in I’ and so W = V n®X is open in ®X. Now y, € W since m;(y,) =
m;®(xo) = Pi(xo) > 0. Also W = ®U. Forif ye Wtheny = ®(x)for some x € X
and 7;(y)e (0, 1]. But m;(y) = m;®(x) = ¢;(x), and ¢; = O away from U.So xe U
and ®(x)e ®U, as required.
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The Urysohn Theorem

We turn now [rom regularity to normality and prove
Propeosition (11.6). Let X be a normal space. Then X is functionally normal.

Thus X is normal if and only if X is functionally normal, consequently the
latter term can be dropped once this result has been established. It is usual to
refer to (11.6) as Urysohn’s lemma: the proof has features in common with
the proof of (11.5) just given.

Let H, K be disjoint closed sets of the normal space X; we have to show
that there exists a continuous function a: X — I such that a = 0 throughout
H and o = 1 throughout K, and again we use a dyadic procedure. Since X is
normal there exists an open set U, such that

Hc U1/2, Cl U1/2 <X — K.

Now H, X — U, are disjoint closed sets and Cl U,,, K are disjoint closed
sets. Again since X is normal there exist open sets U, and U, such that

Hc U1/4’ Cl U1/4 < Ul/29 Cl U]/z < U3/4, Cl U3/4 - X — K.

Clearly the process can be repeated again and again.
Suppose, therefore, that for some n there exist open sets Ugpn (k= 1,
..., 2" — 1) satisfying the conditions

H < U1/2"’ ceey Cl l](k—l)/l" < Uk/Z"’ DY Cl U(Z"—l)/Z" e X - K.

Since X is normal there exist open sets Uy pner (k= 1, 3,5, ..., 2"l _ 1) satis-
fying the corresponding conditions with n + 1 in place of n. By induction,
therefore, we conclude that for each dyadic rational t € I there exists an open
set U, such that

H c U, ClU,c X — K.

Furthermore, the open sets can be chosen so that Cl U; < U, whenever s < t,
fors,tel’.

U1/4
Uy

Usya,
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Now define a: X — I by
a(l) =inf{tel: (€U}

if £ belongs to some U,, otherwise a(£) = 1. Clearly a = 0 throughout H and
o = 1 throughout K. All that remains to be shown is that « is continuous. In
fact, continuity at points £ where 0 < «(¢) < 1 follows from the observation
that s < a(¢) < t implies €€ U, — Cl U,; continuity at points £ where «(¢) = 0
follows from the observation that «(¢) < t for ¢ € U,; and continuity at points
& where «(£) = 1 follows from the observation that a(£) > ¢ for £¢ U,. This
establishes (11.6).

The Tietze Theorem

Our final result, which depends very much on the Urysohn lemma, can be
stated in two forms.

Proposition (11.7). Let A be a closed subspace of the normal space X. Then

(1) each continuous function ¢: A — [ —1, 1] admits a continuous extension
y: X >[—1,1], and
(i1) each continuous function ¢: A — R admits a continuous extension y: X — R.

It is (i1) herc which is generally known as the Tietze theorem. In fact, (ii) is
a consequence of (i). To see this, observe first of all that R can be replaced by
the open interval (— 1, 1) in (ii). Suppose, thercfore, that ¢ has valuesin (— 1, 1).
Apply (i) to the inclusion ¢': 4 —>[—1,1] of ¢ and obtain a continuous
extension ¥': X > [—1,1] of ¢'. Write B=y’"'{—1,1}. Then 4, B are
disjoint closed sets and so, since X is normal, there exists a continuous function
a: X — I such that a = 0 throughout B and o = 1 throughout A. Using real
multiplication define y: X — (—1, 1) by ¥(&) = a(&)- #(&). Then y is a con-
tinuous extension of ¢, as required.

Thus (i) implies (ii). Before starting the proof of (i) we observe that the
converse of (i) is also true. For let H, K be disjoint closed sets of X. Then
H v K isaclosed set of X and the function ¢: H U K — [ — 1, 1] is continuous,
where ¢ = — 1 throughout H and ¢ = 1 throughout K. So ify is a continuous
extension of ¢ to X then o = 1(¢ + 1) functionally separates H, K.

To prove (11.7(i)), and hence (11.7(ii)), let ¢: A — [ —1, 1] be continuous.
The disjoint sets

H1:¢—][—19 '—%]9 K1:¢_l[%9]]

arcclosed in A and so closed in X. By (11.6) (applied with [ —4, 1] as codomain

instead of [0, 1]) there exists a continuous function &;: X — [ —%, 4] such that
o, = —13 throughout H; and «; = { throughout K,. Clearly we have

1#() — 0, (O)] < 3
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for each point ¢ of 4, in other words, ¢ — «, sends A into the interval [ —3%,%].
Now we repeat the process with ¢ — o, in place of ¢. Specifically, we divide
[—3, 3] into thirds, at the points —% and %, and apply (11.6) to the disjoint

closed sets
H, = {£{cA: §(&) — 0;(§) < ”“%},
K, ={¢cA: §(&) — a;(8) = 3}.

We obtain a continuous function a,: X — [ —%, 2] such that«, = —3 through-

out H, and a, = % throughout K,.

Repeating the process again and again we obtain a sequence a,, &,, ... of
continuous real-valued functions on X such that |« (¢)| < 4(3)* when e X
and

n

#(E) — Y (&)

k=1

<@r @m=12..)

when £e A. We may therefore define

Ve = S @) (EeX).

k=1

Clearly ¥ is an extension of ¢, and so it only remains to establish that y is
continuous, specifically continuous at each point & of X.
Given ¢ > 0, let N be an integer such that

Y () <e.
k=N
Since each of the functions o, is continuous there exists an open neighbour-
hood U, of & such that
lo(x) — 4 (E)] < &2N  (xe ).

Then if xe U; n--- n Uy we have

N 00
W(x) — (@)l < k; oy () — o4 (E)] + kZN(%)" <N-¢/2N +¢2=¢,
and so y is continuous at &.

One further remark: Simply by taking components the Tietze theorem can
be generalized from the case when R is the codomain to the case when R" is
the codomain, for any value of n.

EXERCISES

1. Let X be a completely regular space. Let E, F be disjoint subsets of X, with E
closed and F compact. Show that there exists a continuous function a: X — I such
that o = 0 throughout E and o = 1 throughout F.
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2. Show that a completely regular space X is compact if and only if every family
I of continuous real-valued functions on X, such that every finite subfamily has
a common zero, has a common zero.

3. Show that if X is normal and regular then X is completely regular.

4. Let {U,, ..., U,} be a finite open covering of the normal space X. Show that there
exists a family {¢,, ..., ¢,} of continuous functions ¢;: X — I, such that

6 (x) + -+ d(x)=1 foreach xeX,
Cl¢71(0,1] = U; for each i.

[Hint: First show that the given covering can be shrunk to an open covering
", ..., V,) of X such that Cl V; < U, for each i.]

5. Let ¢: A — S" be continuous where A is a closed subspace of the normal space X.
Then there exists a neighbourhood U of 4 in X and a continuous function
Y: U — S" such that Y|4 = ¢.

6. Consider the subset X of R? formed by the union of the point-pair {(0, 0), (1, 0)}
and the open unit square (0, 1) x (0, 1) = D. Give X the topology in which neigh-
bourhoods of points of D are the euclidean neighbourhoods, in which open
neighbourhoods of (0, 0) are the sets

U,={0,0}u{(xy):0<x<%$0<y<1/m} (meN)
and in which open neighbourhoods of (1, 0) are the sets
V,={(LLO)}u{(xy:l<x<1,0<y<1/n} (neN).

Show that X is a Hausdorff space but (0, 0) and (1, 0) do not have disjoint closed
neighbourhoods, so that X cannot be functionally Hausdorff.



CHAPTER 12

Completeness and
Completion

Complete Uniform Spaces

We have seen, in (8.23) above, that for filters on a uniform space convergence
implies the Cauchy condition, while the converse implication is generally false.
This suggests

Definition (12.1). The uniform space X is complete if each Cauchy filter on X
is convergent.

For example, the discrete uniformity is always complete and so is the trivial
uniformity, for rather different reasons.

Proposition (12.2). If the uniform space X is complete then each closed subspace
of X is complete.

For let A be a closed subspace of X with inclusion g: 4 - X. If & is a
Cauchy filter on A then the extension 0, % of # to X also satisfies the Cauchy
condition. If X is complete then 0,% converges to some point x of X. This
implies that x is an adherence point of A, since & consists of subsets of A,
and so xe€ A4 since A4 is closed. Thereforc % converges to x and so 4 is
complete.

In the other direction, we have

Proposition (12.3). Let X be a separated uniform space. Then each complete
subspace of X is closed.

For suppose, to obtain a contradiction, that A4 is a complete subspace of
X but not closed. Let x be an adherence point of 4 such that x¢ 4. The
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neighbourhood filter .4} of x in X is a Cauchy filter on X. Hence, by (8.27),
the trace of 4, on A is a Cauchy filter on A. Since A is complete the trace
converges to some point ae 4. But then a would be a limit point of .4, and
s0 a = x, since X is scparated. This gives us our contradiction.

Proposition (12.4). Let A be a dense subset of the uniform space X. Then X is
complete if and only if for each Cauchy filter on A the extension to X is
convergent.

If X is complete the extension of a Cauchy filter on A is a Cauchy filter on
X and so is convergent. To prove the converse, let # be a Cauchy filter on
X. Consider the inclusion ¢: A — X. There is no reason why the trace of &
on A should be a filter, since there may be members of # which do not intersect
A.However, consider the filter  on X generated by subsets of the form D[ M],
where D is an entourage and M is a member of &. Since & is finer than ¥ it
will be sufficient if we can show that ¢ converges. Now each set D[M] is a
neighbourhood of M and so intersects A; therefore, 0*% is defined as a filter
on A. Since ¢ is a Cauchy filter so is 0*%, by (8.27), and hence so is 0,0%%,
by (8.26). Thereforc 0,0*%% is convergent, by the condition, and so has an
adherence point. But ¢,0*9 is a rcfinement of 4, which therefore has the same
adherence point. But % is Cauchy and so convergent, by (8.24).

Proposition (12.5). Let {X;} be a family of complete uniform spaces. Then the
uniform product H X; is also complete.

Forlet # be a Cauchy filter on the uniform product. Then ;% is a Cauchy
filter on X; for each index j, and so m;, # converges to some point x; of X;
since X; is complete. Hence & converges to x, where m;(x) = x; for each j, and
so [ ] X; is complete, as asserted.

Proposition (12.6). Let Y be a complete uniform space. Then for each set X the
set Y* of functions X — Y is uniformly complete.

By uniformly complete we mean, of course, complete in the uniformity of
uniform convergence. To prove (12.6), let # be a uniformly Cauchy filter on
Y*. Then =, «7 is Cauchy in Y for each point x of X and so converges to a
limit ¢(x), say. In other words, # converges pointwise to the function ¢e Y*
thus defined and so, by (8.29), # converges uniformly to ¢.

Now suppose that X is a topological space. Consider the subset ® of Y*
consisting of continuous functions from X to Y, with the uniform topology. I
assert that @ is uniformly closed, i.e. closed in Y* with the topology of uniform
convergence. For let ¢: X — Y be a function which fails to be continuous at
some point x of X. Then for some entourage D of Y the subset ¢ "' (D[d(x)])
of X contains no neighbourhood of x. If E is an entourage of Y such that
E o E < D then for each function y € E[#] we have that

Y HE[P(X)]) = ¢7H(D[(x)])
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and so contains no neighbourhood of x. Then E[¢] is a neighbourhood of ¢
in Y* consisting of functions which are discontinuous at x. Therefore ® is
closed in Y*, as asserted. We deduce

Proposition (12.7). Let Y be a complete uniform space. Then for each topological
space X the set @ of continuous functions X — Y is uniformly complete.

For Y* is uniformly complete, by (12.6), and so each uniformly closed
subspace of Y* is uniformly complete, by (12.2).

It is natural to ask what would happen if we replaced Cauchy filters by
Cauchy sequences in the definition of completeness, as in

Definition (12.8). The uniform space X is sequentially complete if each Cauchy
sequence of points of X is convergent.

For example, it is well known that the real line R is sequentially complete
in the euclidean metric (this is either a theorem or an axiom depending on the
method used to define the real number system).

For another example, let X be the Hilbert sequence space consisting of all
sequences x = {x,> of real numbers x, such that ) xZ converges, with the
metric given by

px, y) = Q. (x, — yu)*)"

If x', x?, x*, ... is a Cauchy sequence in X then, for each n, (x;)2, is a Cauchy
sequence in the complete metric space R, and thus converges to a point of R,
say x, Then if x = {x,), the points x — x/ eventually belong to X, hence
x = (x — x’) + x/ must be in X, and so {p(x, x9)> converges to 0. Thus X is
sequentially complete.

Proposition (12.9). Let X be a complete uniform space. Then X is sequentially
complete.

For let {x,> be a Cauchy sequence in X. Then the associated elementary
filter satisfies the Cauchy condition and so is convergent. Therefore {x,> is
convergent.

Proposition (12.10). The metric space X is sequentially complete if and only if
X is complete, as a uniform space.

This means, of course, that the term sequentially complete is redundant
where metric spaces are concerned.

Since complete always implies sequentially complete, as we have just seen,
it is only necessary to show that the opposite implication holds in the metric
case, as follows.
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Suppose that the metric space X is sequentially complete. Let # be a
Cauchy filter on X. Then for each positive ¢ there exists a member M of &
which is e-small, in the sense that p(&, #) < ¢ whenever &, e M. So for each
positive integer n we may set ¢ = 1/n and obtain a nested sequence of members
M, of # which are 1/n-small. Since each member of & is non-empty we may
choose a point &, of M, and obtain a sequence <&,> in X which satisfies the
Cauchy condition and so is convergent. Let £ be a limit point of the sequence.
If U is a neighbourhood of & then U,,(¢) = U for some integer n. Choose
an integer msuch that m > 2n and such that &, U, ,,(£); then p(¢, &,,) < 1/2n.
Now for any point x of M,, we have p(¢,,, x) < 1/msince M,, is 1/m-small, and
so p(&, x) < (1/2n) + (1/m) < 1/n. Hence xe U and so M,, < U. Thus U is a
member of & and so x is a limit point of # as required.

Proposition (12.11). The metric space X is complete if and only if there exists
an accumulation point for each infinite totally bounded subset of X.

For suppose that X is complete, and let H be an infinite totally bounded
subset of X. Since H is infinite we can choose a sequence of distinct points
from H and then, since H is totally bounded, the sequence contains a Cauchy
subsequence. The subsequence converges to some point x of X, since X is
complete. But the subsequence is also composed of distinct points of H, and
$0 x is an accumulation point of H.

To prove the converse, supposc that each infinite totally bounded subset
of X admits an accumulation point. Let <x,> be a Cauchy sequence in X. The
underlying set H is totally bounded since for any ¢ > 0 there exists an integer
k such that p(x,,, x,) < ¢ whenever m, n > k. Thus H is covered by the open
balls {U,(x,)} for n=1, ..., k; in other words, the set {x,:n=1,...,k}
constitutes an ¢-net. If H is finite, one of the terms of the sequence {x,> must
be repeated infinitely often, and the Cauchy sequence obviously converges to
that point.

If H is infinite we can apply the hypothesis of (12.11) and obtain an
accumulation point of H, say xe X. We construct a subsequence <{x,,» of
{x,» which converges to x as follows. Since x is an accumulation point of H
there exists an integer n(1), say, such that x,,,€ U, (x). Suppose inductively
that integers n(1) < n(2) < -+ < n(r) have been chosen so that x,,; € Uy ,(x) for
i=1,2,...,r. Put

. 1
& = min {;:—1, pxy, x), p(x2, X), ..., P(Xps x)}.

Since x, # x for all n we have ¢ > 0. Since x is an accumulation point of H
there exists an integer n(r + 1) such that x,,.; € U,(x). Now & has been
chosen to force n(r + 1) > n(r), since p(x;, x) > & for all i < n(r). Also x,,4q,€
Uy +1(x). This completes the inductive step in the construction of the sub-
sequence, which converges to x since p(x,,, x) < 1/r for all r.
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Finally, we recall that {x, ) is a Cauchy sequence and so {x,, itself converges
to x, by (8.25). Thus X is complete, as asserted.
We return now to the general case and prove

Proposition (12.12). The uniform space X is complete if and only if the associated
separated quotient space X' is complete.

For suppose that X is complete. If #' is a Cauchy filter on X’ then the
inverse image n*#' = % is a Cauchy filter on X, by (8.27), where n: X —» X’
is the natural projection. Now % converges to some point x of X, since X is
complete, and so n, F converges to 7(x) in X', since 7 is continuous. However,
n a*F' = F', since © is surjective, and so &' is convergent. Thus X' is
complete, which proves (12.12) in one direction.

Conversely, suppose that X' is complete. If & is a Cauchy filter on X then
n,Z is a Cauchy filter on X', since 7 is uniformly continuous. Hence n,%
converges to some point x’ of X', since X’ is complete. Since the topology of
X is induced from that of X', by (8.5), it follows that n*n,% converges to x
for each point x of 7~ (x"). Hence the refinement % of n*n,Z also converges
to x, which completes the proof of (12.12).

Proposition (12.13). Let X be a uniform space and let A be a dense subset of X.
Let ¢: A — Y be uniformly continuous, where Y is a complete separated uniform
space. Then there exists a uniformly continuous extension y: X — Y of ¢, and
the extension is unique.

Uniqueness is an immediate consequence of (6.9) and (8.8).

To define Y at a given point x of X we proceed as follows. The neighbour-
hood filter /7 is Cauchy and so the trace of A4 on A4 is a Cauchy filter on A,
using (8.27). Since ¢ is uniformly continuous the direct image of the trace is a
Cauchy filter ¢, on Y. Since Y is complete ¥, converges to a limit y in Y, and
since Y is separated the limit is unique. We define y/(x) = y.

Next we show that ¥, thus defined, coincides with ¢ on 4. For suppose
that y = ¢(x), where xc A. If V is a neighbourhood of y then ¢~ 'V is a
neighbourhood of x in A, since ¢ is continuous, and so ¢ 'V = U n A4 for
some neighbourhood U of xin X. Then ¢(U N 4) = V,and since ¢(U N A)e ¥,
we have Ve%,. Thus g, converges to y and so Y/(x) = y = ¢(x).

To show that  is uniformly continuous, given an entourage E of Y, choose
a symmetric entourage F of Y such that Fo FoF < E. There exists an open
entourage D of X such that ¢ x ¢ maps D n (A4 x A)into F. I assert that then
¥ x Y maps D into FoFoF < E. This will establish the uniform continuity
of yy on X.

So let x, x" be points of X such that (x, x")eD. Let &#, %' be filters on
A converging to x, x’, respectively. Since D is open there exist members
Me% , M e% suchthat M x M’ < Dandso¢M x ¢M' < F. Butsince ¢, F
converges to y/(x), by definition, we have ¢N € F[y(x)] for some member N
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of #. Similarly, N’ = F[y(x’)] for some member N’ of #’. Thus for some
points e M n N and &€ M’ n N’ we have that (¢(£), #(&')), (#(¢), ¥(x)), and
(#(&), Y(x')) are contained in F, and so (Y(x), Y(x'))e FoFoF c E, as re-
quired. This completes the proof of (12.13).

Corollary (12.14). Let X, X, be complete separated uniform spaces and let A,,
A, be dense subsets of X,, X,, respectively. If A, and A, are uniformly
equivalent then X, and X, are uniformly equivalent.

Al_“,AZ“‘_",A1

X, —7‘—’X 2 ‘—g_’X 1
For let o, in the above diagram, be a uniform equivalence. By (12.13), o,
extends to a uniformly continuous function f, as shown, while o, ¢! extends
to a uniformly continuous function g, as shown. Now the uniformly contin-
uous function gf: X, — X, is an extension of 6;a "o = ¢,. The identity idy,
on X, is also such an extension, and so gf = idy, by uniqueness. Similarly,
Jg = idy,. Therefore f is a uniform equivalence, as required.

In particular, suppose that X; and X, are metric spaces and that «: 4; — 4,
is an isometry. Since each point of X is the limit of a convergent sequence in
A it follows that the function f: X, — X, we have defined is also an isometry.
Thus we obtain

Proposition (12.15). Let X, X, be complete metric spaces and let A,, A, be
dense subsets of X, X,, respectively. If A, and A, are isometrically equivalent
then X, and X, are isometrically equivalent.

Proposition (12.16). Let X be a uniform space. Then X is compact if and only
if X is complete and totally bounded.

For suppose that X is compact. Then each filter # on X admits an
adherence point, by (5.10). If # is Cauchy then each adherence point is a limit
point, by (8.24), which establishes completeness. In any case & can be refined
by a filter ¢ for which the adherence point is a limit point. Since ¢ is then a
Cauchy filter, by (8.23), this shows that X is also totally bounded.

Conversely, suppose that X is totally bounded. If & is a filter on X then
there exists a Cauchy refinement ¢ of &, by (8.28). Further, suppose that X
is complete. Then % admits a limit point, hence & admits an adherence point.
Therefore X is compact, as asserted.

Note that the Heine—Borel theorem can be immediately deduced from this.
For the unit interval I is obviously totally bounded, and complete by (12.2),
therefore compact.
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Metric Completion

By a metric completion of a metric space X we mean a complete metric space
X together with an isometric embedding of X as a dense subspace of X. By
(12.15) the metric completion of X, if it exists, is unique up to isometric
equivalence, and so in this sense we may write the metric completion. For
example, by (12.2) the metric completion of a subspace of a complete metric
space is just the closure of the subspace. In fact, there are at least two general
methods of constructing metric completions, as follows.

In the first method we consider the set C*(X) of bounded continuous
real-valued functions on X. We denote the metric of X by p and the supremum
metric of C*(X) by p*. I assert that C*(X) is complete with this metric. For
let {¢,> be a Cauchy sequence in C*(X). Then for each positive ¢ there exists
an integer k such that

|¢m(x) - ¢n(x)| < p*(¢m> ¢n) <g,

for allm, n > k and all x € X. Hence {¢,(x) >, for each x, is a Cauchy sequence
in R and so converges to some real number ¢(x), since R is complete. Now
for all m, n >k and all xe X we have that —¢ < ¢,,(x) — ¢,(x) < ¢ or,
equivalently, that ¢,(x) — & < @,(x) < @,(x) + & Keeping n and x fixed while
letting m tend to infinity we get ¢,(x) — ¢ < ¢(x) < ¢,(x) + ¢ for all n and for
all x. This implies that

P*(¢s #) = sup{ldy(x) — p(x)|: xe X} <
for all n > k. Hence ¢, — ¢, and since the convergence is uniform and ¢, is
continuous and bounded for all n, we have that ¢ e C*(X). Thus C*(X) is
complete, as asserted.
I now assert that X can be embedded isometrically as a subspace of C*(X).
To see this, choose a point x, of X. For each point x of X consider the
real-valued function ¢(x): X — R defined by

$x)(&) = p& x) — p(& x0)  (£€X)

Since the metric p is necessarily continuous, so is the function ¢(x). Moreover,
#(x) is bounded since |#(x)(¢)| < p(x, x,), by the triangle inequality, and so
#(x)e C*(X). Now for x, ye X we have

P¥($(x), () = sup{|[4(x)1(£) — [¢(»)1(&)]: Ee X}
= sup{|p(& x) — p(& y)|: Ee X}
For ¢ = y this yiclds
p¥(d(x), 6()) = p(y, x) = p(x, y).

If p(&, x) — p(&, ¥) > p(x, y) for some e X then p(¢, x) > p(&, y) + p(x, y) =
p(&, x) contrary to the triangle inequality. If p(&, x) — p(& y) < —p(x, »)
for some £e X then p(&, y) > p(x, y) + p(&, x) also contrary to the triangle
inequality. We conclude that |p(&, x) — p(&, )| < p(x, y) for all (e X, and
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hence that p*(¢(x), #(»)) < p(x, y). Therefore

P¥(p(x), 4(y) = p(x, y),

for all x, ye X. Thus ¢ embeds X isometrically into C*(X), and so X is iso-
metrically equivalent to ¢X. Of course, X is dense in Cl(¢X), and Cl(¢X) is
complete by (12.2).

The second method of constructing the metric completion uses Cauchy
sequences, generalizing the Cauchy procedure for constructing the real numbers
out of the rationals. Let us say that the Cauchy sequences <{x,» and {y,> in
the metric space X are equivalent if the sequence {p(x,, y,)) of real numbers
converges to zero. This equivalence relation partitions the collection of all
Cauchy sequences in X into disjoint equivalence classes. We take these to be
the points of a new space X* having a metric p* given by

p¥(x*, y*) = lim p(x,, y,),
n—oo
where (x,>, {y,> are representatives of x*, y* € X*, respectively. An isometric
embedding ¢: X — X* is defined so that ¢(x), for each point x of X, is the
equivalence class of Cauchy sequences having x as a limit point, in other
words, the equivalence class containing the constant sequence at x. It is not
difficult to show that X* is complete and that ¢X is dense in X*, in other
words, X* is a metric completion of X.

Uniform Completion

We turn now to uniform spaces in general. By a uniform completion of a
uniform space X we mean a complete uniform space X together with a
uniform embedding of X as a dense subspace of X. It is usual to require X
also to be separated, and in that case (12.14) shows that the completion is
unique up to uniform equivalence, and so in this sense we may write the
separated completion. For example, by (12.2) the separated completion of a
subspace of a complete separated uniform space is just the closure of the
subspace. In case X is a metric space the metric completion is, a fortiori, the
uniform completion. The first method of constructing the metric completion
does not appear to extend to uniform spaces in general. However, the second
method extends very satisfactorily, provided that Cauchy filters are used
instead of Cauchy sequences. The details are as follows.

Let X be a uniform space. We consider first the set X of Cauchy filters on
X. It will clarify the exposition at this point if whenever a Cauchy filter # on
X is regarded as a point of the set X we denote that point by #. Letg: X — X
be the function which assigns to each point £ of X the principal filter &,. Then
o is injective and we can make X into a uniform space so that ¢ is a uniform
embedding as follows.

Given a symmetric entourage D of X we denote by D* the subset of X x X
consisting of pairs (&, &,) such that the Cauchy filters #,, 4, on X have a
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D-small member in common. I claim that the family of subsets D*, as D runs
through the symmetric entourages of X, constitutes a base for a uniformity
on X.

To show that the conditions for a uniformity base are satisfied we have to
check four points. First, if # is a Cauchy filter on X then (%, #)eD* for each
symmetric entourage D of X; thus D* contains the diagonal of X. Second, D*
is symmetric since D is symmetric. Third, if D’ is a symmetric entourage of X
such that D'o D’ = D then D'* o D'* < D¥*; this is not quite so obvious, and
can be seen as follows. Let #;, &,, %, be Cauchy filters on X such that
(&, F>)eD'* and (£,, F3)eD'*. Then #;, &, have a common D’-small
member M, say, and &,, #; have a common D’-small member N, say. Both
M and N are members of %, and so M intersects N. Hence the union M U N
is D' o D'-small, therefore D-small. Since M U N is a member of both &%, and
, this shows that (#;, &) € D*, as required.

For the last point which has to be checked let D;, D, be symmetric
entourages of X. Then the intersection D; N D, is also a symmetric entourage
of X. Moreover, if %#;, &, are Cauchy filters on X such that (%, &,)€ D*,
where D = D, n D,, then #; and %, have a common D-small member M, say.
Then M is both D,-small and D,-small, since D = D, and D < D,, so that
(Z,, F,)e D} n D}. Thus D* = Df n D%, and the last of the conditions for a
uniformity base is satisfied.

It is clear from the construction that o: X — X is a uniform embedding.
We now show that X is complete and that ¢X is dense in X. Let & bc a
Cauchy filter on X. Let D be a symmetric entourage of X. Then & contains
a D-small member M, say. For each point x of M we have that (o(x), )€ D*,
ie. that o(x)e D¥[#]. Therefore ¢X is dense in X. Furthermore, cM
D*[ %] and so the principal filter of o(x) converges to the point & in X. Since
X is uniformly equivalent to X under o the filters of the form ¢, on X are
precisely the extensions of the Cauchy filters on ¢X and so, using (12.4), we
conclude that X is complete.

In general, the uniform space X constructed in this way is not separated.
One can, of course, always pass to the associated separated quotient space X,
say. The natural projection n: X — X is uniformly continuous and so X is
complete since X is complete. Also na X is dense in X since oX is dense in X
and = is a continuous surjection. In general no is not injective. Suppose,
however, that X itsclf is separated. Then for each pair &, n of distinct points
of X there exists a symmetric entourage D of X which docs not contain (¢, ).
The corresponding entourage D* of X docs not contain (a(¢), 6(y)) and so
7o (&) # no(n), by definition of X. It follows that 7o is a uniform embedding
and so X satisfies all the requirements for a uniform completion of X.

EXERCISES
1. Show that the uniformity on the set Z of integers generated by the subsets
D, = {(&, n): ¢ =y modn},

forn=1,2,...,is not complete.
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10.

11.

12.

13.

14.

. Show that a subset ® of Y*, where X is a set and Y is a uniform space, is pointwise

complete if (i) @ is pointwise closed in Y* and (ii) the closure of the projection 7, ®
is complete in Y for each point x of X.

. Let X be a complete metric space with metric p. Let ¢: X — X be a function such

that for some k < 1 the condition

p(H(&), p(m) < k- p(&, )

is satisfied, for all £, ne X. Show that ¢ is continuous and has precisely one fixed
point.

. The set X consists of the natural numbers N with a point* adjoined. The metric

p on X is given by
pm,n)=1 if myneNandm # n,

=0 if m,neNandm = n,

and by p(*,n) =pn,*)=1+n"' if neN. Show that X, with this metric, is
complete.

. Show that if {X;} is a family of uniform spaces then the uniform completion of the

uniform product ]—[Xj is uniformly equivalent to the uniform product of the
uniform completions {X;}.

. Let X be a separated uniform space. Suppose that there cxists an entourage D of

X such that D[x] is totally bounded for each point x of X. Show that the
completion X of X is compactly regular.

. Suppose that the topological group G admits a neighbourhood V of e which is

complete for the left or right uniform structurc. Show that G is complete.

. Show that a compactly regular topological group is complete. Deduce that the

rational line Q is not compactly regular.

. Suppose that inversion in the Hausdorff topological group G transforms Cauchy

filters into Cauchy filters, as is always the case when G is commutative. Show that
the uniform completion G of G is also a topological group.

Let G be a Hausdorff topological group, and let H be a closed normal subgroup
of G. Show that G is complete if H and G/H are complete.

Let X be a topological space and let Y be a complete uniform space. Show that
the set of continuous functions X — Y is complete, in the uniformity of uniform
convergence.

Consider the real line R with the metric p given by

p&m) =1E+[EDT —n( + D7 (& neR).

Show that R is not complcte, with this metric, although the associated topology
is euclidean.

Show that the interval [0, 1) is complete with respect to the metric
pm=101-" =1 —n7"L

Suppose that the metric p on the set X has the property that every closed and
bounded set is compact. Show that X is complete.
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