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Preface

This book is intended for students familiar with a beginner’s version of
differential and integral calculus stressing only manipulation of formulas and
who are now looking for a closer study of basic concepts combined with a
more creative use of information. The work is primarily aimed at students in
mathematics, engineering, and science who find themselves in transition from
elementary calculus to rigorous courses in analysis. In addition, this book
may also be of interest to those preparing to teach a course in calculus.

Instead of exposing the reader to an excess of premature abstractions that
so easily can degenerate into pedantry, I felt it more useful to stress instruc-
tive and stimulating examples. The book contains numerous worked out
examples and many of the exercises are provided with helpful hints or a
solution in outline. For further exercises the interested reader may want to
consult a problem book by the author entitled Problems and Propositions in
Analysis (New York: Marcel Dekker, 1979). For the history of calculus I
recommend the book by C. B. Boyer, The Concepts of the Calculus (New
York: Dover, 1949).

This book is made up of seven chapters and the Contents gives detailed
information concerning the topics covered. The book begins with a study of
the logarithmic and exponential functions. The treatment of these functions
is geometric rather than arithmetic in nature and quickly leads to the evalua-
tion of certain limits that are of crucial importance; the approach, which
depends on a specific relation between hyperbolic segment and logarithmic
function, goes back to A. A. de Sarasa (1618-1667). In the Bibliography at
the end of the book the reader will find suitable references for further study.

I thank Professor P. R. Halmos, Indiana University, for the kind interest
he has shown in my work, my son Peter who prepared the illustrations for
this book, and my friends Dr. E. L. Cohen, University of Ottawa, and Dr.
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G. K. R. Rao, University of Kenya, for valuable help and steadfast encourage-
ment. I also wish to express my gratitude to the Board of Governors of the
University of Ottawa for the benefit of a sabbatical leave during a portion of
the writing of this book, and to the staff of Springer-Verlag for their fine
cooperation.

Gabriel Klambauer
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CHAPTER 1

The Logarithmic and
Exponential Functions

1. An Area Problem

The curve y = 1/x, for x > 0, is of special interest to us; it is located above the
x-axis in the first quadrant of the x, y plane and it is seen to be symmetric
with respect to the line y = x (because the equation xy = 1 remains un-
changed when x and y are interchanged). See Figure 1.1 for a display of the
curve under consideration.

Definition. If 0 < a < b, let A, ;, denote the area of the region bounded above
by the curve y = 1/x, bounded below by the x-axis, bounded to the left by
the line x = a, and bounded to the right by the line x = b; if 0 < b < q, let
Aa,b = _Ab,a'

It is easily seen that 4, , = 0, A, , = — A4, ,, and
Aa,c = Aa,b + Ab,c (11)

for any points a, b, and ¢ on the positive part of the x-axis [see Figure 1.2 and
Figure 1.3 in connection with equation (1.1)]. Perhaps less obvious is the
relation

Al,r = A1/r,1 (1-2)

for any r > 0. To verify equation (1.2) we proceed as follows. Suppose r > 1.
(The case r = 1 needs no proof; the case 0 < r < 1 reduces to the case under
consideration when we interchange the roles of r and 1/r.) In Figure 1.4 the
region indicated by vertical cross-hatching has the same area as the region
indicated by horizontal cross-hatching because the rectangle R, (with ver-
tical cross-hatching) and the rectangle R; (with horizontal cross-hatching)
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Figure 1.1
Yy
1
<~y = l/X
—7 X
a b c
Figure 1.2

have the same area, namely, 1 — 1/r. We shall see shortly that equation (1.2)
is merely a special case of a more general relationship.

Let 0 < a < b and consider the closed interval [a,b], that is, the set of all
points x such that a < x < b. Then y = 1/x with a < x < b will assume its
largest value for x = a and its smallest value for x = b. On the interval [a, b]
we construct two rectangles, one with altitude 1/a and the other with altitude
1/b. The larger rectangle has area (b — a)/a and the smaller rectangle has area
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Figure 1.3

<~y = l/X
r (1/r,r)

1 (1,1)

il

1/ 1

> X

Figure 1.4

(b — a)/b (see Figure 1.5). It is apparent that

b— b—
a<Aa,b< a

(1.3)

If a = b, each term in the foregoing inequality vanishes. Inequality (1.3) gives
an estimate for 4, , which we shall find very useful later on.
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Y
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1/a
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Figure 1.6

To refine the estimate for A4, , provided by inequality (1.3) we bisect the
interval [a,b] into two subintervals [a,m] and [m,b], where m = (a + b)/2,
the midpoint of the interval [a, b], and on each of these two subintervals we
construct the corresponding larger and smaller rectangles to estimate 4, ,,
and A4, , (see Figure 1.6). We obtain

m—a m-—a b—m b—m

<A, . < and <App <
m ’ a
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or

_ bh— _ h—
M8 2T gyt Ay = Ay < “+Tm. (1.4)

m

Let

m—a b-—m m—a b-—m
and U, = + .
m a m

L, =

We call L, a lower approximating sum for A, , and U, an upper approximating
sum for A, p; L, is the sum of the areas of the two inscribed rectangles and U,
is the sum of the areas of the two circumscribed rectangles by which we seek
to approximate A, , and L, represents an underestimate and U, an over-
estimate of 4, ,. It can be seen that

b—a

b _
<L, and 25U (1.5)
a

indeed, (b —a)/b=(b—m)b+ (m—a)b<(b—m)b+(m—a)/m and
(b — a)/a = (b — m)/a + (m — a)/a > (b — m)/a + (m — a)/m. Combining the
inequalities (1.4) and (1.5) we obtain

b—a b—a

<L, <A,,<U< (1.6)

Looking back, we have used the process of bisection of the interval [a,b] to
obtain from the estimate in inequality (1.3) the refinement expressed in in-
equality (1.6). This process can of course be continued by bisecting the sub-
intervals [a,m] and [m,b] (see Figure 1.7) and obtaining a lower approxi-

Yy
0

+y:l/x

\

Figure 1.7
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«y:l/x

T

a b

Figure 1.8

mating sum L, for 4,, and an upper approximating sum U, for 4, ,; L,
simply stands for the sum of the areas of the four inscribed rectangles and U,
stands for the sum of the areas of the four circumscribed rectangles by which
we try to approximate A, ,. In Figure 1.8 we display the next step of this
process of continued bisection which will result in a lower approximating
sum L; for A, , and an upper approximating sum Uj for 4, ;; here L, stands
for the sum of the areas of the eight inscribed rectangles and U; denotes the
sum of the areas of the eight circumscribed rectangles by which we seek to
approximate A, ,. It is clear that

b—a b—a
<Li<Ll,<Lz<- <A, < <U<U,<U <

(1.7)

At the nth step of bisection of the interval [a, b] we have split up this interval
into 2" subintervals of equal length (b — a)/2"; let the enumeration of these
subintervals be [a,t,], [t;,t2]1, [t2,t31, -+, [tx—1, 1), Where k = 2" and t, = b.

Then
b—afl 1 1 1
L = T T -
" k (tl t, + ts o b)
and
b—a <1 1 1 1 )
U,= -+ =4
k \a t t, L1
and we have

U"—L,,=é:—a<l—l)=u-~l—. (1.8)
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But a and b are fixed and n can be made as large as we please; therefore the
difference U, — L, tends to zero as n becomes arbitrarily large.

Forn=1,2,3,...let I, denote the closed interval [L,, U,]. It is clear from
inequality (1.7) that I, is contained in I, for n = 1, 2, 3, ... and thus we are
dealing with a sequence of nested closed intervals, where I, is a subset of I,
L5 is a subset of I,, and so forth. Moreover, as n becomes arbitrarily large, the
length of the interval I, becomes as small as we please in view of equality (1.8).
By an argument that we omit, it can be proved that there is one and only one
point ¢ that is common to all intervals I, for n = 1, 2, 3, .. .; this unique point
t on the number line is precisely our quantity A, ,. We now state the result
that we have invoked.

Nested Interval Principle. For n = 1, 2, 3, ... let J, be closed intervals such that

(1) J,4+1 1s contained in J, for each n,
(i1) the length of the intervals J, tends to zero as n becomes arbitrarily large.

Then there is one and only one point that is common to all intervals J,.

ComMENTS. It is easy to see that there can not be two (or more) points in
common to all intervals J, for this would violate condition (ii). Indeed, if two
points, say, t and s with ¢ # s, were common to all J, then the distance
between ¢ and s (which could not be zero) would act as a barrier and no
interval J, could possibly have length less than this distance. It is also neces-
sary that the intervals J, be closed. Indeed, suppose J, would be the interval
O<x<l/mforn=1,2 3,.... Clearly, the intervals J, for n=1, 2, 3, ...
would be nested and the length of J,, being 1/n, would tend to zero as n
becomes arbitrarily large. However, there is no point ¢ that is common to all
J, in this case. To see this note that the point 0 does not qualify; in fact, 0 is
not a member of any J,. Also, any ¢ larger than 0 does not qualify because,
by letting n grow, 1/n can be made less than any such fixed t. Finally, note
that condition (ii) can also be expressed in the following way: For any r > 0
there is an interval J, so that the length of J, is less than r.

Proposition 1.1. Let 0 < a < b and s > 0; then
Asa,sb = Aa,b' (19)

Proor. Let k = 2", where n is a positive integer, and let
p g
Aa=tg<t; <t, <" "<t <t,=b

be equally spaced points splitting the interval [a,b] into k subintervals
[a,t,], [t1,t2], ..., [te—1, b]. On these subintervals we construct inscribed and
circumscribed rectangles as indicated in Figure 1.9. The sum of the areas of
the inscribed rectangles is

b=aft 1 .., 1
k \n 1 b
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—

<y =1/x

[ i

7 X

sa sb

Figure 1.9

and the sum of the areas of the circumscribed rectangles is

b—a (1 1 1 )
=t —;
k \a 1t bt
we therefore have

b—af1 1 1 b—afl 1 1
“<—+—+---+—><Aa,b< a<—+~+-~+——)- (1.10)

k \ty t, b k \a t tia

Now let

50 =10y <0 <V < ' <Uy_y <0 =8b

be equally spaced points splitting the interval [sa,sb] into k subintervals
[sa,v,]1, [v1,02], -.., [Vk—1,sP]. On these subintervals we construct in-
scribed and circumscribed rectangles and obtain, in analogy to the case just
considered,

sb—safl 1 1 sb—sall 1 1
—+—F = | <Ay < — =t — .
k v,y Uy sb ' k sa v, Uk—q

But v; = st;forj=1,2,...,k — 1 and so

b—a/l 1 1 b—a/l 1 1
L P P anily LI LEL TR T
k <t1+t2+ +b> smab < <a+t1+ +tk,1> (1D

Comparison of (1.10) and (1.11) shows that the same sequence of nested
closed intervals produces both A, , and A, and thus (1.9) is true. This
completes the proof. 0



2. The Natural Logarithm 9

REMARK. Putting a = 1, b = r, and s = 1/r in (1.9) yields (1.2).

Proposition 1.2. Let v > 0 and w > 0; then
Al,vw:Al,v+A1,w (112)
and

Al,v/w:Al,v_Al,w‘ (113)

Proor. By (1.1) and (1.9) we have
Atow= Ao+ Apow =A1,, + A1 0
and
Ar o =Aro+ Ap o = A1 + Aw 1 = Aro — Ay e
But this is what we wanted to show. O

Proposition 1.3. Let v > 0 and r = n/m, where n is an integer and m is a positive
integer; then

Aj o =TAy (1.14)
Proor. It is easy to see that

Alyvk = kAl,v
for any nonnegative integer k. Since A4, ;,, = — A, , by (1.2), we see that

Al,v'k = _kAl,v
for any nonnegative integer k. If m is a positive integer, we have

1
Alyv:Al,(UUm)m:mAl,vl/m or Al,v”"':;Al,v'
Thus, if n is any integer and m is any positive integer and n/m = r, then

n
Alyvn/m = Aly(vl/m)n = nAly,,um = ;Al,v or Al,vr = rAlyv.

This finishes the proof. O

2. The Natural Logarithm

Given that a and b are positive numbers, we recall having defined 4, ,
to denote the area of the region under the curve y = 1/x, above the x-axis
and between the lines x = a and x = b provided that a < b; if a > b we let
Aup = —A, .. We are already familiar with a number of properties of A, .
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Definition. For x > 0, the function L(x) = In x with In x given by
Inx = A4, ,

is called the (natural) logarithm.

It is clear that In x is negative for 0 < x < 1,In1 = 0, and In x is positive
for x > 1. It is evident that In x is an increasing function because x; < x,
obviously implies that In x, < Inx,. From (1.12) and (1.13) we know that

In(xy) =Inx +Iny and ln<§> =Ilnx —Iny

for any positive x and y. From (1.14) it follows that
Inx"=rlnx

for any rational number r, that is, any number r of the form n/m, where n and
m are integers and m is not zero. This formula also holds for irrational
numbers r, that is, numbers that are not rational; here the main difficulty lies
in defining x” when r is irrational. We shall overcome this obstacle in the next
section.

The curve y = In x lies completely to the right of the y-axis and below the
line y = x; the domain of definition of In x is the positive part of the x-axis
and Inx < x — 1 by (1.3). Since

Inx —lna=A4, ,—A;,= A, .,

it can be seen that In x tends to Ina as x tends to a because A4, , tends to zero
as x tends to a. In the next chapter we shall see that this property of y = Inx
means the continuity of the logarithmic function for 0 < x. It also means that
y = In x can “skip” no values and that its range or set of values is an interval.
To show that this interval covers the entire number line, we need only to
show that this interval is unbounded above and unbounded below. We can
do this by letting M be an arbitrary positive number and showing that In x
has values greater than M and values smaller than — M. Indeed, since In 2 is
positive [we have 1 < In2 < 1 by (1.3)], we know that some positive multiple
of In2 has to be larger than M; namely, we know that there is a positive
integer n such that n(In 2) > M. [Here we are using the Archimedean property:
If a > 0 and b > 0, then for some positive integer n we have na > b.] Multi-
plying this inequality by —1 yields —n(In2) < —M. Since n(ln2) = In(2")
and —n(In2) = In(27"), we have In(2") > M and In(2™") < — M, verifying the
unboundedness of y = In x.

From our discussion we see that y = Inx has domain of definition 0 <
x < o0 and range — o < y < 0. Moreover, y = Inx takes on every value
between —oo and oo and it does so only once because it is an increasing
function. In particular, there is one and only one number e such thatlne = 1;
this number e is called the base of the natural logarithm. We now consider the
question of calculating the number e.
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For x > 1 we have

1 Inx

x x-—1

<1

by (1.3). Forx =1+ 1/n, wheren = 1,2, 3, ..., we have

In(1 +1 "
" <n(+/n)<1 or e <ln1+1 <1

n+1 1/n n+1 n
As n becomes arbitrarily large, n/(n + 1) tends to 1 and so In(1 + 1/n)"
tends to 1 as well. This suggests that the calculation of the number e will
depend on a closer examination of the sequence (1 + 1/n)", where n =1,
2,3,....

Lemma. Let 0 < a < b; then

pr+l _ g+l
A <(n+ 1)b" (1.15)
and
bn+1 _ gnt+l
. > (n+ l)a" (1.16)

forn=1,2,3,....

Proor. Consider the identity
bt — g™l = (b" + ab" ' + a?b" 2 + -+ a" b + a") (b — a).

Then
prtl _ gntt
5 =b"+ab" ' +a*n" 2+ +a"'b+a"
—a
<b"+bb" + b7 4+ DD+ " = (n + 1)b”
and
prtl _ gntt
5 = bh" + abn—l + aznn—z + -+ an—l + a®
—a
>a"+aa" ' +a*a"?+ - +a"la+a"=(n+ a"
This completes the proof. O

Proposition 1.4. Forn=1,2,3, ... let

1\ 1\
a,,=<1+—> and b,,=<1+—> .
n n

Then a, < a,,, and b, > b,,,.
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Proor. We can rewrite the inequality (1.15) as
b*b—(n+ 1)(b—a)] <a"t.
Puttinga =1+ 1/(n + 1) and b = 1 + 1/n, the term in brackets reduces to 1

and we have
1 n 1 n+1
<1+—> <<1+~—> ;
n n+1

this shows that a, < a,,,. Next we put a = 1 and b = 1 + 1/(2n). This time
the term in brackets reduces to 4, and we have

1+1n<2 r 1+12"<4
— o — .
2n 2n
ln 1 2n
<1+-><<1+“> <4
n 2n

for any positive integer n. Noting that a, = 2, we see that

Since a, < a,44,

2<a,<4

forn=1,2,3,....
We can rewrite (1.16) as

b"! > a"*! 4+ (n + Da™(b — a).
Puttinga=1+ 1/(n + 1) and b = 1 + 1/n, we get

1n+1 1 n+1 1 1 n
1+-) >{t+—) +-[(1+
n n+1 n n+1

or
1\*! 1\ 1 1
1+- >(1+—— 1+ +—]. (1.17)
n n+1 n+1 n
But
1 n 1 1 1 n+2
1+ 1+ +-)>11+ (1.18)
n n+1 n n+1
because

1 1 1 \?
1+ +->(1+
n+1 n n+1

S SR SN
n o n+l nm+1)" (n+ 1)?

Hence, by (1.17) and (1.18), b, > b, ; and the proof is finished. O

or, equivalently,
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Proposition 1.5. For n =1, 2, 3, ... let a, and b, be as in Proposition 1.4. Then
the closed intervals [a,,b,], [a,,b,], [as,bs], ... form a nested sequence of
intervals and b, — a, tends to zero as n becomes arbitrarily large. By the Nested
Interval Principle there is one and only one point common to all these intervals;
this point is e, the base of the natural logarithm. The (increasing) sequence
a,, 45, Ay, ... and the (decreasing) sequence b, b,, bs, ... tends to e as n
becomes arbitrarily large.

Proor. To see that b, — a,, the length of the interval [a,, b, ], tends to zero as
n becomes arbitrarily large, we note that

1
b, —a,=-a,. (1.19)
n

But a, was seen to satisfy 2 < aq, < 4 for all positive integers n and 1/n tends
to zero as n becomes arbitrarily large. Knowing that ¢, < a,,,, b, > b,,,,and
b, — a, = (1/n)a, > 0 shows that the interval [a,,,,b,.,] is contained in the
interval [a,,b,]. Indeed, all conditions of the Nested Interval Principle are
fulfilled and the conclusion of the proposition follows. O

CoMMENTS. Since bs < 3, it is clear that 2 < a, < 3 for all positive integers n;
here we have used the fact that for a fixed m the point b,, has to be to the right
of the point a, for any positive integer n. Rewriting (1.19) gives

(1 +1>n+1 —<1 +1>n=1<1 +1>n; (1.20)
n n n n

we also know that e < 3 and

ln 1n+1
<1+—><e<<1+—> .
n n

Hence, (1.20) yields, for any positive integer n,

1 3
e—<1 +—> < -. (1.21)

n n
Inequality (1.21) provides us with an error estimate in the calculation of e by
using the approximating sequence (1 + 1/n)" forn =1, 2, 3, ...; for example,

if n = 30,000, then e can exceed (1 + 1/n)" only by an amount less than
0.0001. The number e is an irrational number, e = 2.718281. ... In the study
of infinite series we shall encounter a more convenient way of calculating e; it
is also in the study of infinite series where we shall come across effective
methods of calculating the logarithm of a positive number. At this stage
we simply use suitable pocket calculators or other aids such as tables for
numerical work in connection with logarithms. For a sketch of the graph of
the logarithmic function see Figure 1.10.
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Yy
N
2
~ vy =1lnx
1
e
X
1 2 3 4
-1
Figure 1.10

Proposition 1.6. For any positive integers p and q, p < q, we have

1 1 1 1
e I - . (1.22)
p p+1 q p—1
Proof. Leta=nandb=n+ l,forn=1,2,3,...,in (1.3); then
1 1 1
<m?r (1.23)
n+1 n n
Forn=p,p + 1,..., q the inequality (1.23) gives
1 1 1 1
7<lni<~, <lnp+2< : Yy
p+1 p p p+2 r+1 p+1
1 g+1 1
q+1 q q
Addition of the right halves of these ¢ — p inequalities gives the first half of
(1.22) and the second half is obtained in like manner. |
ArpLicATION. Let
p— 1 + 1 + . e + 1
"Th+l n+2 2n

forn=1,2,3,.... By (1.22) we obtain
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2n+ 1

1
nn+1

2
< H, <ln7n=1n2.

But we know that In x tends to Ina as x tends to a and so it is clear that H,
tends to In 2 as n becomes arbitrarily large.
Let
1 1 1 1

T:l-—_ o e
n Y3 4T T T

forn=1,2,3,.... Then

T—1+1+1+1+"'+1 21+1+---+1
" 2 3 4 2n 2 4 2n

Il

R L SIS I VLV
2 3 4 2n 2 n

=Hn

and so T, is seen to tend to In 2 as n becomes arbitrarily large.

Proposition 1.7. Forn =2,3,4, ... let

1 1
Xp=14+-+"+ —Inn (1.24)
2 n—1
and
1 1 1
yo=1+—+ "+ +-—Inn (1.25)
2 n—1 n

Then X,pq1 > Xp» Vus1 < Vn» and y, — x, = 1/n. Hence, by the Nested Interval
Principle, there is one and only one point C common to the closed intervals
[x5,v21, [x3,¥3], [X4, V4], ...; this number C is called Euler’s constant and it
is known that C = 0.5772156649. .. .

Proor. By (1.23)

1 1 +1
x,,+1—x,,=f—1n(n+1)+1nn=f——lnn >0
n n n
and
1 1 n+1
yn+1—yn=m—ln(n+1)+1nn=m—ln - < 0.

It is evident that y, — x, = 1/n. We therefore see that the Nested Interval
Principle is applicable, producing a unique number C. O

ComMmENTs. To visualize Euler’s constant, consider the following geometric
situation. Given the closed interval {1,n] and the curve y = 1/x over this
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w i

<~y =1/x

Figure 1.11

interval, the area of the region bounded above by the curve y = 1/x, bounded
on the left by the line x = 1, bounded on the right by the line x = n, and
bounded below by the x-axis is In x. On the other hand, dividing the interval
[1,n] into the n — 1 subinterval [1,2],[2,3], ..., [» — 1,n] and erecting over
[1,2] a rectangle of altitude 1, over [2,3] a rectangle of altitude 3, ..., over
[n — 1,n] a rectangle of altitude 1/(n — 1), we can easily see that the region
with vertical cross-hatching displayed in Figure 1.11 has area x,, [see (1.24)].
If we think of the n — 1 subregions with vertical cross-hatching as shifted to
the left into the square bounded by the x-axis, the y-axis, and the lines x = 1
and y = 1 and, moreover, assume that n is becoming arbitrarily large, we can
readily appreciate that C will be somewhat large than % but definitely less
than 1. A famous open question of mathematics asks: Is Euler’s constant C a
rational number (i.e., a ratio of two integers) or not?

AppLICATION. Forn=1,2,3,...let
S,=14+=-+""+-. (1.26)

Using a pocket calculator, we find
S10 = 2.9289683 S,0 = 4.8328368
S50 = 3.5977397 Sgo = 49654793
S50 = 3.9949871 Sg0 = 5.0825706
Ss0 = 4.278543 S100 = 5.1873775
S50 = 4.4992053 S110 = 5.2822346
Seo = 4.6798704 S120 = 5.3688683.

Let z, = (x, + y.)/2, the midpoint of the interval [x,, y,]; x, and y, are given
by (1.24) and (1.25). We have
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2,0 = 0.5763832
250 = 0.5770074
Z30 = 0.5771231
Z40 = 0.5771635
Z50 = 0.5771828
Zgo = 0.5771925

27 = 0.5771987
zgo = 0.5772027
Zgo = 0.5772054
Z100 = 0.5772073
Z110 = 0.5772088

2120 = 0.5772099.

17

It is noteworthy how closely z,,, approximates C = 0.5772156649... .

Again, by pocket calculator we obtain In 10 = 2.3025851, x,, = 0.5263832,
and y,, = 0.6263832. By Proposition 1.7, S, — Inn = y, has to be between
X0 and y,, for n > 10; hence

23.55 < S, <23.66 forn=10'°
Using the fact that x;,, = 0.5730432 and y,,, = 0.5813765, we get
23.598 < S, < 23.608 for n = 10'°.

In both of these estimates we have used the relation S, = y, + Inn together
with the fact that x,, <y, <y, for n > m. Both x, and y, tend to C as n
becomes arbitrarily large. Evidently, S, becomes arbitrarily large as n be-
comes arbitrarily large. However, S, becomes arbitrarily large very slowly.

3. The Exponential Function

Rational powers of e have an established meaning: By ¢"™ we mean the mth
root of e raised to the nth power. Moreover, we have seen that

Inevm =" (1.27)
m

Definition. If ¢ is an irrational number, then by ¢' we mean the unique num-
ber which has logarithm ¢:

Ine* =t (1.28)
Definition. The function
E(x) = e* for all real numbers x

is called the exponential function.

ComMENTS. Using (1.27) and (1.28) and writing
L(x)=Inx and E(x)=e",
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Figure 1.12

we obtain
L(E(x)) = x for all real numbers x. (1.29)

This means that the exponential function is the inverse function of the loga-
rithmic function. Another way of expressing the relation that the exponential
and the logarithmic functions are inverses of each other is

E(L(x)) = x for all positive real numbers. (1.30)
In more conventional notation (1.29) and (1.30) read:
Ine* = x for all real numbers x (1.31)
and
e"* = x forall real x > 0. (1.32)

The graph of the exponential function appears in Figure 1.12; it can be
obtained from the graph of the logarithmic function by reflection in the line
y = x. It is clear that x = ¢” if and only if y = Inx. Since the graph of the
logarithmic function remains to the right of the y-axis, the graph of the
exponential function remains above the x-axis; namely,

e¢* >0 for all real numbers x. (1.33)

Since the graph of the logarithmic function crosses the x-axis at x = 1, the
graph of the exponential function crosses the y-axis at y = 1. Recalling that
the logarithmic function is an increasing and continuous function and noting
that the exponential function is the inverse of the logarithmic function, it will
follow by general theory that the exponential function is an increasing and
continuous function.
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[Since it is easy to give a direct proof of the continuity of the exponential
function, we shall do so now. Let x = ¢” and x + h = ¢***. Then

v= Ax,x+h

and by (1.3) it follows that |v| > h/(x + h) if h> 0 and |v| > |h|/x if h <O.
This shows that if v is small in absolute value, then A must also be small in
absolute value. Note that [v| = vifv > 0and |v] = —vifv < 0]

We will now make use of the logarithmic and the exponential functions to
define the expression a® for a >0 and b denoting any real number; the
elementary notion of exponent applies only when b is a rational number. We
have already looked at the case a = e. If a > 0 and n/m is rational, we get

a"m — gmm(ina) (1.34)

To see that (1.34) is true, we need only to take logarithms on both sides of the
equation. Next we note that the right-hand side of (1.34) is of the form

eb(ln a)

and has meaning for any real number b, be it rational or irrational. We are
now ready to define the expression a” for a > 0 and b denoting an irrational
number.

Definition. If b is an irrational number and a is positive, we define the number
a® by setting

ab = gbina), (1.35)
Lemma. Let n = 2,3, ...; then /n tends to 1 as n becomes arbitrarily large.

Proor. Let (/n=1+v,forn=2,3,.... Thenv, > 0 and

nn—1)

3 v+ ol

n=(_1+v)=14+n,+

Since all terms in the last sum are positive, we have

-1
n(n2 )v,%

0<v,,<\/g forn=23,...
n

It is clear that \/7 = \/5/\/;; tends to 0 as n becomes arbitrarily large.
Since v, is wedged between 0 and \/% forn=2,3,...,it can be seen that v,
tends to O as n becomes arbitrarily large and so \'/;1 must tend to 1 as n
becomes arbitrarily large. O

n
n>1+ or 1>§v§.

Thus,
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Proposition 1.8. The function In x tends to infinity with x, but more slowly than
any positive power of x. In other words, In x becomes arbitrarily large with x but
(In x)/x°, for any s > 0, tends to 0 as x becomes arbitrarily large.

Proor. Since Int tends to Ina as ¢ tends to a (as noted in Section 2), we
get that ln\'/r_z = (1/n)lnn tends to 0 as n becomes arbitrarily large by the
Lemma. However, n takes the integer values 2, 3, ... in the Lemma. We must
verify that (In t)/t tends to O as t becomes arbitrarily large and ¢t denoting any
real number. We do this now. Let [t] stand for the integer part of t. Then

It _In@]+1) _[+1 In((]+ 1)
t [l [ []+1

shows that (Int)/t tends to 0 as t becomes arbitrarily large (note that t — 1 <
[t] <1). Letting t = x* for any s > 0, we see that

0< fort>1

In x* Inx
xS =S xS
tends to 0 as x becomes arbitrarily large. But s is positive and fixed. O

Proposition 1.9. The function e’ tends to infinity with y more rapidly than any
power of y, or y'/e”, for any t > 0, tends to 0 when y becomes arbitrarily large
Jor all values of t however great.

Proor. In Proposition 1.8 we saw that, for any positive value of s, x*(In x)
tends to 0 when x becomes arbitrarily large. Putting t = 1/s, we see that
x~!(In x)' tends to 0 as x becomes arbitrarily large for any ¢ > 0. The desired
result then follows on putting x = ¢”. O

DiscussioN. In Section 2 we observed that the logarithmic function L(x) =
In x satisfies the functional equation
L(x,x,) = L(x,) + L(x,) foranyx, >0andx, > 0.

We now note that the exponential function E(y) = e” satisfies the functional
equation

E(y, + y,) = E(y,)E(y,) for any real numbers y, and y,.
Indeed, let y; = Inx, and y, = Inx,. Then x, = ¢’, x, = ¢’2, and
Y1 +y,=Inx; +1Inx, =In(x,x,)
or
e1tyz = glnlaxd) = x x, = gVig?2,

More generally, for a > 0, we have
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a’ttr = g¥igr2

because

a’1trz = pU1tyllng _ ,yi(lna),ya(lna) _ a’iaq?2.

We also remark that

(aYI).VZ = (eyz(ln a))yz = e¥w2lna _ vz

If a > 1 then a* = e*!"? = ¢, where ¢ = Ina is positive. The graph of a*
is in this case similar to that of e* and a* becomes infinite with x more rapidly
than any power of x.

If 0 < a < 1 then the graph of a* is obtained from the graph of b*, where
b = 1/a (and so b > 1), by reflecting the graph of y = b* with respect to the
y-axis.

It is easy to express logarithms to a base other than e in terms of natural
logarithms. If for a positive number a, with a 5 1, the equation x = a® is
satisfied, we write

y =log,x

and say that y is the logarithm of x with respect to the base a. Now a® = ¢?*®
so that x = e*™"9 or y(In a) = In x. It follows that

o Inx
X=—.
Ea Ina

Since logarithms to any base a, where a > 0 and a # 1, are proportional to
natural logarithms, they satisfy the usual identities,

log, x + log, y = log, (xy),
log, <i) = log,x — log, y,
y

log, (x¢) = c(log, x),

for any positive real numbers x and y and any real number c.
Since log, B = (In B)/(In A) for any positive real number B and any positive
real number 4 with A # 1, we get at once that

log, x = (log, x)(log, b),

lo !
a=——
gb loga b s
o log, x
X =
B log, a

for any positive real numbers x, a, and b with a # 1 and b s 1. It is clear that
log,1 = 0and log,a = 1. Moreover, we can write log, x in place of In x.
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Examples

1. Simplify 1/(log, 5} + 1/(log; 5) — (logs 3)/(logs, 3).

SoLrutioNn. Since 1/(log, 5) = logs2 and 1/(log; 5) = logs 3, we get that 1/
(log, 5) + 1/(log; 5) = logs 2 + logs 3 = logs 6. On the other hand, (logs 3)/
(logso 3) = (logs 3)(log; 30) = logs 30. But logs 6 — logs 30 = logs (1/5) = —1
and so the given expression simplifies to — 1.

2. Let log,log;log, x = 0. Find x.

SorLuTtion. We have log,(log;log, x) = 0 = log, 1 and so log;log, x = 1. But
log,(log, x) = 1 = log, 3 implies that log, x = 3 and hence x = 8.

3. Find x iflog ¢ x + log,x + log, x = 7.

SoLuTioN. Since log, x = (log, x)/(log, 4) = (log, x)/2 and log,¢ x = (log, x)/
(log, 16) = (log, x)/4, we see that (1 + 4 + §)(log, x) = 7 or log, x = 4. We
therefore have x = 16.

4. Express logs 12 in terms of a = log,,2 and b = log,, 3.

SoLuTion. Let logs 12 = x; then 5* = 12 or 10¥(27*) = 12. Taking logarithms
to the base 10 gives x(log,,10) — x(log;,2) = log,,12. But log,,12 =
log,63 + 2(log,,2) =b + 2aandso x — xa=b + 2aor x = (b + 2a)/(1 — a).

5. Consider a given geometric and arithmetic progression with positive terms:
G, G,Gyy...,Gyy... and A, A, A4,,..., A4, ...

The ratio of the geometric progression and the common difference of the
arithmetic progression are positive. Show that there exists a system of loga-
rithms for which

log. G, —log. G=A4,— A4
for any n and find the base ¢ of this system.
SoLuTtioN. Let G, = Gq" and A, = A + nd. Then log, G, — log. G = n(log,q)

and 4, — A = nd. Hence, n(log. q) = nd, that is, log.q = d. We therefore ob-
tain c¢? = q or ¢ = g

Lemma. Let b> 1and n=2,3,.... Then \Yb tends to 1 as n becomes arbi-
trarily large.

Proor. Since b > 1 Wehave\'/E> 1forn=23,.... Weset [Y/b=1+h,.
Then, forn = 2, 3, ..., we have h, > 0 and

nn — 1)

b=(1+h)=1+nh,+ h? + -+ h).
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Since all terms in the last sum are positive, we have
b—1
O<h, <—.
n
As n becomes arbitrarily large, h, tends to 0 and \'/E tends to 1. O

REMARK. An alternate way of proving the Lemma depends on observing that
ln(\'/g) = (1/n)(In b) tends to 0 as n becomes arbitrarily large.

Proposition 1.10. Let b > 1. Then n(\'/E —1),forn=2,3,...,tends tolnb as
n becomes arbitrarily large.

ProoF. Let n be a positive integer larger than 1 and put ¢ = \'/B Then
l<qg<@®><qg®*<--<qg"'<q"=b
Let xo=1,x,=¢, x,=¢*> x3=¢° ..., Xoo1 = q" ', X, = " = b and sup-
pose that the interval [1,b] is split up into the n subintervals
[x0.x11, [x1,%2), [x2,x3), ooy [Xp15X,]

On the interval [x,, x,] we construct the rectangle with altitude 1/x,, on
[x1,x,] the rectangle with altitude 1/x,, on [x,, x5 ] the rectangle with alti-
tude 1/x,, ..., and on [x,_4, x,] the rectangle with altitude 1/x,_,. The sum
of the areas of these n rectangles is

1 1 1
(@a— 1+ a(q2 —q)+ q—z(q3 -+ + = (@ —q" ) =n(g—-1).

The foregoing sum is an approximating sum for 4, , = Inb. We know that
q tends to 1 as n becomes arbitrarily large; this means that we can make
the length of the largest of the subintervals [xq,x,], [x;,x,], [X5,%3], ...,
[x,_1,X,] as small as we please by taking n sufficiently large and our claim
therefore follows. =

CoMmMENTs. Let a > 1 and b > 1. Then the relation
n(y/ab — 1) = n(Ja — 1)/b + n(/b — 1)
naturally lends itself to deduce the functional equation for the logarithm
In(ab)y =1Ina + Inb.

Again let b > 1 and define x, = (b)'*" forn =1, 2, 3, .... Then x2,, = x,
and x,,; < x,. Moreover, x, tends to 1 as n becomes arbitrarily large. We
define

1
b,=2"x,—1) and a,= 2"(1 - —)

Xn



24 1. The Logarithmic and Exponential Functions

forn=1,2,3,.... We shall now verify that the sequence of closed intervals

[alabl]a [a25b2]5 [a3’b3]7"‘

satisfies the conditions of the Nested Interval Principle (See Section 1). To see
that b, < b,_, we note that x, > 1 and so

(xn+ 1)(-xn_ l)zxrzl_ 1 :xn—l_l
implies 2(x, — 1) < x,_; — 1 and thus 2°(x, — 1) < 2" '(x,_; — 1). To see
that a, > a,_, we note that 1/x, < 1 and so

1 1 1 1
(RO
Xn Xp Xn Xn—1

implies 2(1 — 1/x,) > 1 — 1/x,_; and thus 2"(1 — 1/x,) > 2""*(1 — l/x,_,).
To verify a, < b, we observe that

X, — 1 < x,(x,— 1)

because x, > 1. Hence, 1 — 1/x, < x, — 1 or 2*(1 — 1/x,) < 2*(x, — 1). Fi-
nally, to verify that b, — a, tends to O as n becomes arbitrarily large we only
need to realize that

x'l a'l = bn

and that x, tends to 1 as n becomes arbitrarily large. The unique point
common to all intervals [a,,b,], [a,,b,], [az,b3],...isInb.

Proposition 1.11. Let n = 1, 2, 3, ... and x be any real number. Then both

(1 +£> and (1 —x>
n n

tend to e* as n becomes arbitrarily large.

Proor. By (1.3) we have that (1/h)In(1 + xh) = (1/h) A, ;. is between x and
x/(1 + xh). Thus, (1/h)In(1 + xh) tends to x as h tends to 0. Putting h = 1/k,
we see that k{In(1 + x/k)} tends to x when k, taking integer values, tends to
o0 or — 0. Since the exponential function is continuous,

k
1+ f — ek{ln(l +x/k)}
n
tends to e* as k tends to oo or — 0. O
RemMARk. Forn =2,3,4,...

(=) (5 -GS ()

Proposition 1.12. Let x, x,, X3, ... be a sequence of numbers. If nx, tends to K
as n becomes arbitrarily large, then (1 + x,)" tends to eX.
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Proor. If nx, tends to K as n becomes arbitrarily large, we see that x, tends
to 0 and hence {In(l + x,)}/x, tends to 1 (see proof of Proposition 1.11).
Writing n{In(1 + x,)} in the form

K <%> In(1 + x,)
K X

n

we see that n{In(1 + x,)} tends to K as n becomes arbitrarily large. O
APPLICATION. Let @ > 0 and b > 0. We show that, forn =2,3,4, ...,
2

tends to \/ﬁ as n becomes arbitrarily large.
Indeed, let x, = (Ya + /b)/2 — 1. Then

mﬁﬂ%ﬁ—nﬂwﬁdnaml+%=£%#6

By Proposition 1.10 we have that nx, tends to 3(Ina + Inb) = In./ab as n
becomes arbitrarily large. Hence, by Proposition 1.12, we have that (1 + x,,)"

tends to
eV — /b

and we have what we wanted to show.
Using the same method of proof we can show that for a, > 0,a, >0, ...,
a,, > 0 the sequence

<ﬁ+ "“2+”'+@>n forn=23.4, ..

m

tends to {/a,a,...a,, as n becomes arbitrarily large. Indeed, we let

o _a+ Vaz + -+

m

and note that

nx, =%{n(\'/a:— D +n(ay = D)+ + n(a, — D).

We then observe that nx, tends to In(J/a,a,...a,) and (1 + x,)" tends to
Ja,a,...a, asnbecomes arbitrarily large.
In Chapter 4 we shall establish some interesting properties of the function

o = (£

=\/LE for x = 0;

for details see Proposition 4.19.

1/x
) for x # 0,
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4. The Hyperbolic Functions

Certain combinations of exponential functions (which are related to the
hyperbola x? — y2 =1 in somewhat the same manner that trigonometric
functions are related to the circle x2 + y* = 1) appear so frequently in mathe-
matics that they have been given special names. These functions are called
the hyperbolic functions and their similarity to trigonometric functions is
emphasized by calling them hyperbolic sine, hyperbolic cosine, hyperbolic
tangent, and so on. They are defined as follows:

x -X

e*—e
Y sinh x =

(1) sinhx 5

(i1) coshxze—_%f—

sinhx e*—e™

iii) tanhx = = .
(i) coshx e*+e”*

coshx e*+e™™

iv) cothx = — = .
) sinhx e*—e™
2
v) sechx = = .
V) coshx e*+e~*
. 2
(vi) cschx = — =— -
sinhx e*—e

The six hyperbolic functions satisfy identities that correspond to the usual
trigonometric identities except for an occasional switch of plus and minus
signs. For example, we have the following identities:

(1) cosh?x — sinh? x = 1.

(2) 1 — tanh?x = sech? x.

(3) coth?x — 1 = csch? x.

(4) sinh(s + t) = (sinh s)(cosh t) + (cosh s)(sinh ¢).

(5) cosh(s + ) = (cosh s)(cosh t) & (sinh s)(sinh t).

(6) sinh 2x = 2(sinh x)(cosh x).

(7) cosh2x = cosh? x + sinh? x = 2(cosh? x) — 1 = 2(sinh?x) + 1.

The graphs of the six hyperbolic functions are shown in Figure 1.13.

Since the hyperbolic functions are defined in terms of exponential func-
tions, it is not surprising to find that the inverse hyperbolic functions can be
written in terms of logarithmic functions. The formulas for the inverse hyper-
bolic functions are:

(i) Inverse hyperbolic sine:
sinh™! x = In(x + \/x* + 1) for any real number x.

(i) Inverse hyperbolic cosine:

cosh™ x = In(x + /x> —1) forx> 1
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Domain: (-«,®), Range: (-« ,®)
Y
1
X
1
y = sinh x
Domain: (-»,®»), Range: [1,®)
Yy
2
b
1
y = cosh x
Domain: (-«,®), Range: (-1,1)
3
;
2
x
1
y = tanh x

Domain: (-*,0) v (0,*), Range: (=®,0) U (0,®)
Y
1
X
1
1
y = eseh x = opy
Domain: (-~,®), Range: (0,1]
Y
4
2
__—_—’,//rﬂ‘~\\7\\\___ﬂ 5«
1
1
y = sech x = Gosh x
Domain: (-%,®) U (0,®), Range: (~®,-1) u (1,%)
Y
2
X
1
1
= t = ————
Y coth x tanh x

Figure 1.13
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(iii) Inverse hyperbolic tangent:

1—x
(iv) Inverse hyperbolic cotangent:

1

+
=

1
tanh™! =§ln< +x> for |x| < 1.
coth ™' x = %ln(

> for |x| > 1.

—

— X

(v) Inverse hyperbolic secant:

1 1—x2
sech™x =1n <¥> for any x satisfying 0 < x < 1.
X

(vi) Inverse hyperbolic cosecant:

/ 2
cschx = ln<1 +L> for x # 0.

x x|

The graphs of the six inverse hyperbolic functions are shown in Figure
1.14. Note that the graphs of sinh ™%, tanh™!, coth™, and csch™! are obtained
by reflecting the graphs of sinh, tanh, coth, and csch, respectively, about the
line y = x; the functions sinh, tanh, coth, and csch are one-to-one (i.e., any
straight line parallel with the x-axis intersects the graph of the function in at
most one point) and hence are invertible. The hyperbolic cosine and the
hyperbolic secant are not one-to-one functions and hence are not invertible.
However, the portions of these functions whose graphs lie to the right of the
y-axis are one-to-one and hence invertible; the inverses of these portions of
cosh and sech are denoted by cosh™! and sech™!.

To verify that

sinh™' x = In(x + /x> + 1) for any real number x,

we only have to set
x e—x

f(x) = sinhx = %

and

g(x) =sinh™'x =1In(x + \/x* + 1)

and show that f[g(x)] = g[ f(x)] = x. But this is a calculation that offers no
difficulties. Another approach is to let y = sinh™ x and so
ey —_— e_y

x=sinhy=T or 2x=¢"—¢e".

Multiplying both sides of the latter equation by e”, we get

2xe’ =(e")* =1 or () —2x(e’)—1=0.
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Domain: (-*,®), Range: (-%,») bomain: (==,0) u (0,=), Range: (==,0) U (0,~)
y Y
l l
x + X
1 1
L o= -
Yy = sinh X y=csch1x
Domain: [1,»), Range: [0,») Domain: (0,1], Range: [0,®)
Y Y
1 1
+ X > X
1 1
y = coshl b4 y = sech_l X
Domain: (-1,1), Range: (-o,) Domain: (-«,-1) u (1,®), Range: (-,0) u (0,%)
Y Yy
1 i I '
1 e
] I
: | ! :
' ! ! 1
vl 1 1 [
I | i I
1 1 1 1
— x —— x
1 I
! P2 ! )
' 1 ! i
H ! | i
I ! ! !
: ! ’ !
| 3 | :
-1 -
y = tanh X y=cothlx

Figure 1.14
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Thus,

2
P BEVEETS s L

e

Since e” is always positive and x — ./x2 + 1 is always negative, the solution

must be
e’ =x+./x*+ 1.

Taking logarithms on both sides of the latter equation, we obtain

y=In(x +./x* + 1).
sinh™! x = In(x + /x% + 1).

The other formulas for inverse hyperbolic functions are just as simple to
verify.

Therefore,

5. Miscellaneous Examples

1. Let n be a positive integer and consider the sum

M 1 1 1
=5yt
Then M cannot be an integer.

Indeed, of the fractions making up the sum M we select that one whose
denominator contains the highest power of 2 as a factor; there can only
be one such term. Now, if we rewrite each term of the sum M so as to have
as denominator the least common multiple of all the denominators, then
each of them, except the selected fraction, will acquire the fractor 2 in its
numerator, but the selected fraction will acquire only odd factors. Therefore,
when the fractions are added in this form, the resulting numerator will be the
sum of several even numbers and exactly one odd number, but the (common)
denominator will be even. Hence, the numerator will be odd and the deno-
minator even, and so the sum M cannot be an integer.

2. We know by Proposition 1.7 that the sum

peiglp !
2 3 n

is greater than any previously selected number N, if n is taken sufficiently
large. However, if in the sum

tebatyn !
2 3 n
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we discard every term that contains the digit 9 in its denominator, then the
sum of the remaining terms, for any », will be less than 80.

Indeed, let n, denote the number of undeleted fractions between 1/10¥ and
1/10¥*1 1If the fraction 1/q, lying between these two fractions, is one of the
undeleted numbers, then of the numbers

1 1 1 1 1
109 10g+1° 10g+2° 7 10g+8 10g+9
(all of which lie between 1/10* and 1/10%*!), only the final fraction will be

deleted when those containing a digit 9 in the denominator are crossed out.
If 1/q is one of the deleted numbers, then all of the additional fractions

IR !
109 10g+1" =7 10g +9
will also be deleted. It follows that
n,=9,_,.

Of the fractions 1, 1, %, ..., %, 3, only 4 is deleted; hence n, = 8 and

n o=89=72

n, =8 92,

n, = 8- 9.

Now consider, for n < 10™*!, the sum

11 1
Lo+ +-.

2 3 n
We add up the sum
TP S
2 3 10m* — 1’

after deleting all those fractions having a digit 9 in the denominator. Then we
get

reielind
23 8

LIPS L IS
otttz 18120 88

1 1 1 1 1
+<T66+10_1+”+@>+ +<1o—m+' *sg...8>

1 1 1 1
<l-ny+ 0 ny +100 n, + + 1071 n,_, + 10" n
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with 88...8 denoting the number made up of m + 1 digits 8. If we now
replace each sum in parentheses by the product of the largest term contained
therein and the number of terms in those parentheses, we obtain

1
1.n0+_.n1+ .n2+“.+10m—1'nm—1+w'nm

10 100
_8 1+i+i_|l...+9m_l +9—"‘
- 10 ' 102 o™t " q1om
1 — (9/10y™+! 1
=8- . =8-10 = 80.
1—9/10 1—9/10 - 80

This completes the proof of what was claimed at the start.

3. For any positive integer n the sum
1 1 1
1+ 2—2 + 3—2 + -+ n—2

is situated between the values

2 2 72 1 1 n?
<1 Cn+ 1><1 S 2n+ 1>'Z and (1 C2n+ 1><1 HETn 1>'?'

Letting n — o0, we readily see that

7'E2

1+1+1+-~—
22 7 32 T 6

Before commencing the proof, we recall two results of algebra: the first of
these is De Moivre’s formula and the second is Vieta’s formulas.

De Moivre’s Formula: Let n be a positive integer, « any real number and
i=./—1;then

(cosa = isina)" = cos na + isinno.
Vieta’s Formulas: Let the polynomial of degree n,
x"+ax" ' +a,x"?+-+a,x+a,=0,

have the roots x,, x,, ..., x,. Then for following relationship exists between
the coefficients and the roots of the polynomial:

a, = _(xl +x2 +t Xn—1 +xn)’

Ay = XX, + X X3+ + Xy Xy,

as = —(X1X;X3 + " + Xp_ 2%y 1 X,),
_ n

a,=(—1)"x;X,%X3...%,.

Using De Moivre’s formula and the binomial theorem, we have
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cos na + isinno = (cosa + isina)”

n . n _ )
= <c0s"a — <2>cos"‘2a~sm2a + <4)cos" 4o-sin*a — )
n . n .
+ i<<1>cos"—1 o-sina — <3>cos"_3a-sm3a + >,

n _ . n _ )
cos no = cos"a — <E>cos” 2y sin?a + <4>cos" 4a-sinto — -

and so

and
. n _ . n _ .
sin no = <1>cos" la-sina — <3>cos" 3osindo 4+ -,

Replacing n by 2n + 1 in the foregoing formula for sinno, we get

1 3

2 1 2 1
sin(2n + 1)o = (sin2"*? a)<( et >cot2"oc - < " )cotz""za + -

Thus, it follows that for

the equation

2 1 2 1
<n1+ >cot2"a—( n; )cotz"'2a+"-=0

holds. Therefore, the numbers

cot?

T
t N t
2n+1° o 2n + 1 co 2n+1

are roots of the polynomial

2n + 1 2n+ 1
<n1+ )x”—("; )x,.-1+...=0

of degree n. But the sum of the roots of

2n+1
n 3 n—1

_ e =0
x 2n+ 1 o
1

is equal to the negative of the coefficient of x"™*; that is,

cot?

LI . SO S C.
2n+1 2n+1 2n4+1 3

33

(1.36)
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Since csc? a = cot? o + 1, equation (1.36) implies

csc?— 4 csc? 2n + - + csc? nn =2n(n+1)'
2n +1 2n+1 2n+1 3

(1.37)
Butsina < a < tana for 0 < a < /2 [e.g., see (2.9) in Chapter 2] and so
1
cota < - <csca for0 <o <.
b 2
It now follows from (1.36) and (1.37) that

nan 1) _ Cot? = 4 Cot? = 4 -+ + cot?
3 - 2n+ 1 2n+1 2n + 1
2 1\? 2 1\? 2 1\?
<<"+ >+<"+ )+~~+<”+ ) (1.38)
n 2n nn
, T , 2m , o 2n(n+1)
< CSC 2n+l'+'CSC 2n+1+ + csC 2n+1— 3 .

By dividing all terms of (1.38) by (2n + 1)?/n%, we obtain
2n .2n_"1.7t2.. | 1 ) 2 7t_2
2n4+12n+1 6 2n+ 1 2n4+2) 6

1 1 1
<1+2—2+§2‘+"'+;17

- 2n 2m+2 7% : 1 : 1\ n?
2n+12n+1 6 2n + 1 2n+1/) 6°

as was to be shown.

REMARK. See Proposition 7.19 (in Chapter 7) for another treatment of this
sum.

4. Let j and n be positive integers and put

S§=1+2 434 +nl

Then
(e (e am
Indeed,

S+ 1rt= 3ot (k A 1>Z P (k 2 1); a

E+1\ &
+---+< ;: >2p+n
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by summing p from 1 to n in the identity

k+1 k+1 k+1
(p+1)k+1=pk+1+< 41_ >pk+< ; >pk—l++< -;; >p+1

However,

M=

(P + 1)k+1 _ Z pk+1 — (n + 1)k+1 _ 1
p=1

p=1

R T B N A T T
m k+1—m

REMARK. The recursion formula (1.39) produces the following set of values:

and

:n(n+ 1) S =n(n+ HN2rn+1)

1 ) 2 6 5 S3=Sf,

5. Let n and j be positive integers. Then

U . V1
,+—an <VV+24+3+--4+n< 1+; f:—ln’ . (140)
J

Indeed, let T =x7 + x™' + -+ + x + 1; if x > 1, then the first term is the
largest, but if 0 < x < 1, then the last term is the largest. Hence,
G+ DxI>T>j+1 ifx>1
and
(+Dxi<T<j+1 ifo<x<]l.

If both sides of these inequalities are multiplied by x — 1, it is found that for
x#1

G+ Dxix— 1) >x* — 1>+ )x—1)

[note that T(x — 1) = x/*! — 1]. Assume now that x = p/(p — 1); then we
find

G+’ P (- (j+ D1
(p— 1" (p— 1" (p— 1D
Similarly, if we assume that x = (p + 1)/p, we obtain

G+ +1)) (p+ 1" —p™ (j+ Dp
pit > pitt > pil

It follows that
(p+ 1)/t — pi*t > (j+ 1)p/ > p/*t — (p — 1)M,

or, letting p successively assume the values 1,2, 3, ..., n,
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2 s (4 U > 1Y,
32t S (4 1) > 27— P
43 (4 )3 > 3

(n+ 17" — "> (j+ Dnd > 0™t — (n — 1)1,
If these inequalities are added together we get
(m+ 1" —1>G+ DU +2+3 +--+n))>n/* (141)

But (1.41) is easily seen to be equivalent to (1.40).

REMARK. A particular consequence of inequality (1.40) is the result

U422 4+3 441
lim =

lim — St (1.42)

6. Show that the sum
S;=1V+2+3 4+ +n)

where n is an arbitrary positive integer and j is an odd positive integer, is
divisible by ;.

Indeed, S, = n(n + 1)/2 and we first note that for odd j, a’ + b/ is divisible
by a + b. Two cases are to be considered.

Case 1: Suppose n is even. Here the sum §; is divisible by n + 1 because
each of the sums

S S . n\Y (n j
V+n, 2Z2+mn—-1)y, 33+mn0-2), ..., <§>+<2+1>
is divisible by
n (n
1+n=2+(n—-1)=3+(n—2)=~-=§+<5+1>.

The sum §; is also divisible by n/2 because

Vrm—1, 224+m—-2, 3+ @n—3),

n i (n i m\
— —_ — — J
(2 1> +<2+1), <2> "
are divisible by n/2.

Case 2: Suppose n is odd. Here the sum §; is divisible by (n + 1)/2 because
Vtnd, 204 m—1), 3 +xn-2),

)

are all divisible by (n + 1)/2. Also, §; is divisible by n because
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V+@m—1), 2Z2+mn-—2), 3+ @n-3),
n—lj+ n+ 1Yy ;
. 5 =) n

7. In the equality N = N/2 + N/4 + N/8 + - 4+ N/2" + ---, where N is
an arbitrary positive integer, every fraction may be replaced by the nearest
whole number:

<)) ()

Indeed, it is readily seen that (@) = [a + 17; here (a) denotes the nearest
whole number to a and [a + 3] denotes the integer part of a + 1, that is, the
greatest integer less than or equal to a + ;. Hence, we can put the equation
which we wish to derive into the following form:

N = N+1+N+1+N+1+-~-
12 T2 4 2 8 2

are all divisible by n.

Now let
N=a,2"+a,,'2" "+ +a;-2+a,
(@n, @n—y, ..., ay, a, are either O or 1) be the expansion of N in powers of 2 as
in the binary number system. We then have
'N 1] [ ag + 1
— 4+ == an.2"_1+an_1.2"_2+...+a1_+_ 0
=a,2""+a, 2" 24+ +a; + a,,
[N 1 [ a,+1 a
— 4+ |= .2"_2 e .2"‘3 1 +£
|77 7] _a,, +a,4 + -+ 5 )
=a,2"?+a, - 2"34+ - +a,,
N 17 [ G+l a,, a,
[2n+§——_an+—"2—+ 4 + +2—"
=an+an—1,
N +1__(a,,+1+a,,-1+‘_.+ a,
T 2 4 2n+
a,,
and
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recalling that the g; are either O or 1. Hence, we obtain

VIR ) AR U LS S
2 2 4 2 22
=aq, 2"+ 27+ + 1+ 1}
+a, {272+ 2" 3+ 4 1+ 1}
+-+a {1+1}+a,
=a,2"+a,_;' 2" '+ +a,-2+a,
=N
which is what we wished to verify.
8. The Cauchy—Schwarz Inequality: Let a,, a,,...,a,and b,, b,, ..., b, be
any real numbers. Then
(ayby + ab, + -+ + a,b,)?
e (1.43)
<@} +a5+-+a})bi+b3+ - +b)

with equality holding only if a,/b, = a,/b, = --- = a,/b,.
Indeed,

(xa; + by)* + (xap + by)* + -+ + (xa, + b,)*> = Ax*> + 2Bx + C, (1.44)
where
A=a}i+aj+-+a3, B=ab, +ab,+ " +ab,
C=b3+b3+ - +b2
By (1.44), Ax? + 2Bx + C is the sum of squares and so Ax? + 2Bx + C >0

for any real number x. Hence, putting x = — B/A, we get
B? B AC — B?
A—5 —2B—+C=—2>0.
A? A + A o

Since A > 0, we obtain AC — B?> > 0 or B2 < AC and so (1.43) is seen to
hold. The equality sign in (1.43) is possible only if

xa; + by =xa,+b,="""=xa,+b,=0
orb,/a, = b,/a, == b,/a, (= —X).
9. Let ¢y, ¢5, ..., ¢, be positive real numbers. Then, for any real numbers
ti,t,5,...,t, we have

City + Gty + 0+ cpt,)?
( 191 242 ) (145)
<(eg + e+ +e)egt? +cyt3 + - + ¢, t).
Indeed, putting @, = /¢, and b, = /¢, -, for k= 1,2, ..., nin (1.43), we
get the desired inequality (1.45).
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REMARK. Putting ¢, = 1, ¢, = 3, and ¢; = ¢, inequality (1.45) yields
(3ty + 36, + §t3)° <35 + 33 + 513
for any real numbers ¢, t,, and t;.
10. We have the identity
a+b(l+a)+cl +a)(1+b)+d1+a)(l +b)1+c)
+-+ql+al+b)y-(1+p (1.46)
=(1+a(+bQQ+c)-1+g—1
Indeed, adding 1 to the left side, we can write
[(1 +a)+ b+ a)]+cl+a)+b)+d(l+a) +b)(1+c)
+-+ql+ad+b):--(1+p
=[(1 +a)(1 +b)+c(l+a@+b]+d1+a)l +b(l+c)
+-+qgl+a(d +b):--(1+p
=(1+a+b(1+c(1+4d)
+ o +ql+a(d+b--(1+Dp
=1+al+bA+)1+d)-(1+p)
ReMARKS. Ifa = b = ¢ =+ = g, then
a+al +a)+a(l +af+al+a+ - +al+a ' =(1+a"—1,
where n is the number of integers a, b, ..., ¢; writing 1 + a = x, we get
x=DA+x+x2++x"H=x"—1

which is the formula for the sum of a geometric progression.
Lettinga=1,b=2,c=3,...,q9 = n, we get

-1 4+220 43+ +nnl=n+1) -1

and puttinga =@+ )/L,b=m+1)/2,c=n+1)/3,...,9= (n + 1)/k, we
obtain

(1303 )01

11. Let a > b > 0 and n be a positive integer. Then

1+a+a2+-~-+a"‘1+a">1+b+b2+---+b"—1+b"
l+a+a*+ - +a"! 14+b+b>+ - +b""

(1.47)

Indeed, since a > b > 0, we have

l+a 1 1 _1 1 _1+b a2 b

—_—— =t Ll = > ’
a? a2+a b2+b b2 % T+a  1+0b
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implying
1+a+c12_1+ a? 14 b? _1+b+b?
l+a l+a 1+b 1452
Similarly,
1+a+a2_1 1+1<1+1+1_1+b+b2
a’ Ta® T a? Ta BT T b3
or
a® b3
> s
l+a+a?" 1+b+ b2
implying
l+a+a*+ad a3 b3 1+b+b%+0b3
7 =1+ > 1+ 2= 2
l+a+a l+a+a 1+b+b 1+b+b

and so forth.

12. We have cos(sin x) > sin(cos x) for all real numbers x.
Indeed, using the identity cos(4 + B) = (cos 4)(cos B) — (sin A)(sin B), we

get
s T A
cos| =+ cosx | = cos— |(cosx) — | sin— }sin(cos x)
2 2 2
A .
= — (sm 5) sin(cos x) = —sin(cos x),
or,
. T
sin(cos x) = —cos (5 + cos x),
and so
cos(sin x) — sin(cos x) = cos(sin x) + cos <g + sin x>.
But
A+ B A—B
cos A + cos B = 2cos ; - COS 5 and cos A = cos(— A),
and so

sinx + /2 + cos x —sinx + /2 + cosx
- COS
2 2

cos(sin x) — sin(cos x) = 2 cos

Now,
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|cos x + sin x| = (cos? x + 2{cos x} {sin x} + sin? x)*?

=1 + sin2x S\/E

and
cos x — sin x| = (cos? x — 2{cos x} {sin x} + sin?x)*/?

= /1 —sin2x < /2.
Since 7/2 = 1.57... and \/5 = 141..., we have

2 i 2 — si
g>n/ +cos2x+smx>0 and g>n/ +coszx smx>0~

Therefore,

/2 + cos x + sinx /2 + cos x — sinx
cos / 5 >0 and cos / 5 >0

and hence cos(sin x) — sin(cos x) > 0.

EXERcISES TO CHAPTER 1

1.1. Show that (1 — 1/n)™", forn = 2, 3, ..., is a decreasing sequence tending to e.
[Hint: If n = k + 1, then (1 — 1/n)™ = (1 + 1/k)**1]
1.2. Show that
. . . . ., _.sinhj(n+ Dx
sinh x + sinh 2x + sinh 3x + -+ + sinhnx = (sinh znx)—7F—F——
sinh 3x
and

sinh(n + $)x
1 4 coshx + cosh2x + cosh3x + - +coshnx=—g

2sinh4x
[Hint: We have
. sinhi(n + 1)x et VX2 _ pm(nt1)x2
2(sinh nx)—=——— X _ (om gy e
2sinh4x e — e

_ e(n+l)x —e* + e " _ 1
B e —1
eXe™—1) e Fe™—1)

e —1 e —1

Yer—Ye= 2<i sinh rx>
r=1 r=1 r=1

and so forth.]
13. fn=a+b+c+ -+ z, where a, b, c, ..., z are positive integers, then

n! n"
<— .
alblel---z! 7 a®bPct---z*

41
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1.4.

LS.

1.6.

L.7.

1.8.

1. The Logarithmic and Exponential Functions

[Hint: We have (@ + b+ ¢ + -+ + z)" = n". Each term of the multinomial
expansion of the left-hand side is positive and less than the sum of all terms.
Hence, the particular term

n! abb gt < nn.]
atblc!-- -

Leta, > 0and b, > 0,for k = 1,2, ..., n. Verify that
(@t + b)Y + (a3 + b)) + o + (e + b7)' (148
>[(a; +a,+ - +a) +(by + by + - + b1 '

[Hint: Let P, be the point with coordinates (0,0), P, with coordinates
(a,,b,), P, with coordinates (a, + a,,b, + b,), ..., and P, with coordinates
(@, +a,+ - +a,by +b,+---+b,). Then

(a? + b?)? is the distance between P, and P;,

(a3 + b3)'? is the distance between P, and P,,

(a2 + b?)'? is the distance between P,_, and P,

while [(a; + a, + - + a,)* + (by + b, + -+ + b,)*]'2 is the distance between
P, and P,. But the shortest path between P, and P, is the line segment
connecting Py and F,.]

(i) Is inequality (1.48) valid if a, and b, are not positive? (ii) Under what condi-
tions will we have equality in inequality (1.48)?

Let A = (1/2)(3/4)(5/6) - - (9999/10,000). Verify that 4 < 1/100.
[Hint: Put B = (2/3)(4/5)(6/7)---(10,000/10,001). Then A < B and so A? <
= 1/10,001.]
Show that

135
246 2n \/ﬁ
[Hint: It is clear that
1-3<2% 3-5<4? ..., 2n—=-1)2n+1)<(2n)?>
Thus,
12:32:52.2n — 1)?(2n + 1) < 22-4%2-6%---(2n)2]

1:3:5@n—1) /n+1

2-4:6:-2n n+1°

[Hint: If a # b, thena + b > 2. /ab and so k + (k — 1) > 2, /k(k — 1); hence,
k — 1)2(k — 1) > /kf(k — 1). Fork=2,3,...,n + 1 we get

N 2 (5)s 3 (M A

2 1 \2 2’ \2 3’
2n —1 n 2n+1 n+1
n—l) n—1

Show that
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1.9.

1.10.

1.12.

Multiplying these n inequalities together we get
1-3:5---2n+ 1)
- @ 1
2462 V"
and so

1-3-5--~(2n—1)>,/n+1]

2:4-6-+2n 2n41°
REMARK. Since /(n+ 1)/2n+ 1) > . /(n + 1)/2n + 2) > 1/2/n+ 1 and by
the result in Exercise 1.7, we may state that
1 1-3-5--2n— 1) 1
> > .
J2n+1 2:4:6---2n 2/n+1
Real numbers a,, a,, -.., a,, not all zero, are given, and x,, x5, ..., X, are real

variables satisfying the equation a,x, + a,X, + *** + a,X, = 1. Show that the
least value of x? + x3 + -+ + x2 is

(@ +aj+ - +a)™t
[Hint: By the Cauchy—Schwarz Inequality (1.43),
O3+ x5+ +xd)@] +ad + o+ ad) 2 (@x + aX, + o+ ax,)]
If0 < a < x < b, show that
1 1

1
—t <-4
x a+b—x a

S| =

[Hint: We have a — x <0 and b — x > 0 and so (a — x)(b — x) < 0. Hence,
ab — (a + b)x + x* < 0, that is, ab < x(a + b — x). It follows that

1> 1 or a+b> a+b
ab  x(a+b—x) ab x(a+ b — x)

y|

. Letn=2,3,.... Show that

1\ 1 A
(1——) =1+_—+—, where4,<3.
n 2n n

[Hint: Since

we have

L U N
2n) 2n  4n® —2n’
But 4n% — 2n > 4n?® — 2n® = 2n® for n > 1. Hence, 4, < 3.]

Let the function f be defined for all real x and y, and satisfy the relation
f(x + y) = f(x)f(). Show that if f is not identically zero, then f is positive for
all x and f(0) = 1. Show also that if f is not identically unity, then there is no
M such that f(x) < M for all x.
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1.13.

1.14.

1.15.

1. The Logarithmic and Exponential Functions

[Hint: Let y = 0. Then f(x) = f(x)f(0) for all x. Hence, f(0) = 1.Putx =y =
{a. Then f(a) = [f($a)]?> = 0. If f(a) =0, then f(x) =0 for all x (put x = aq,
y = x — a). Suppose f(x) < M for all x, then f(—x) = [f(x)]"' > M, a contra-
diction unless f(x) = 1 for all x.]

If log,n = x and log.n = y, where n # 1, show that

Xy _ log, ¢ — log,a
x+y log,c+logya’

[Hint: We have

log,n —log.n  (log,n)(log, b) — (log, n)(log. b) _ log,b —log.b
log,n + log,n  (log, n)(log, b) + (log, n)(log, b) " log, b + log, b

_ 1/llog,a) — 1/(log,c) _log,c — log,a
" 1/(logya) + 1/(logyc)  logyc + log,a’

If x = log, (bc), y = log, (ca) and z = log,(ab), show that x + y + z = xyz — 2.
[Hint: We have

(log, b + log, c)(log, ¢ + log, a)
= (log, b)(log, ¢) + (log, b)(log, a) + (log, c)(log; ¢) + (log, c)(log, a)
= (log,¢) + 1 + (log,¢)(log, ¢) + log, ¢
and
{(log,¢) + 1 + (log,¢)(log, c) + (log, c)} (log.a + log b)
= (log. a)(log, ¢) + log, a + (log, a)(log, c)(log; ¢) + (log, a)(log,c)
+ (log.b)(log,c) + log, b + (log, b)(log, c)(log; ¢) + (log, b)(log, ¢)
=1+ log.a + log,c + log,a + log,b + log.b + log,c + 1
= log, (bc) + log, (ca) + log, (ab) + 2.]
If ¢, is the coefficient of x" in the expansion of (1 + x)", where n is a positive
integer, and f(r) = co¢, + €161 + *** + ¢,_,C,, sShow that
(2n)!
n+m—r"

) (3n)!
(i) cof(0) + uf(l) + -+ cuflm) = e

() f(r) =

[Hint: (i) Since ¢, = ¢,,,
(co+eyx+ - +ex" + X"y + CuoyXx + 0+ €y X + 00+ cpX")
0
=(1+x)"1+x)" =1+ x)*"

The coefficient of x"*” on the left-hand side is f(r) while the coefficient of x"*" in
(1 + x)*is 2n)!/(n + r)!(n — r)! and (i) is established.
(i) It has been show in (i) that

(1 + x)*" = terms up to x" ! 4+ f(O)x" + f(1)x"*! + -+ + f(n)x>".
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1.16.

1.17.

1.18.

1.19.

1.20.

Multiplying by (1 + x)" = ¢, + ¢,-1 X + == + cox", it is clear that
cof0) + ¢ f(1) + -+ + ¢, f(n)
is the coefficient of x2" in the expansion of (1 4 x)3". This being

Gn)!

@n)(n)’
the validity of (ii) follows.]

Show that, if a and b are positive integers and b > a,

li ! + ! + L + ! 1 b
im R P
m—mo\an+1 an+2 an+3 bn na
[Hint: We have

1 1 1
li 1 4 - —
,,LT,( +2 + 3 + +bn In(bn + 1)) C

and

1 1 1
lim{l+-4+-+-+——Inlan+1))=C,
oo 2 3 an

where C is Euler’s constant. Subtracting these equations, the required result
appears.]

IfO0<x<landO<y<l,showthat0 <x+y—xy < 1.
[Hint: Since0 < (x — 1)(y — 1) < l,wehave 0 < xy —x — y + 1 < 1 and so
—l<xy—x—y<Qorl>—xy+x+y>0]

Show that the range of the function y = (x2 + x + 1)/(x + 1) does not contain
the open interval (—3, 1).
[Hint: We have x2 + (1 — y)x + 1 — y = 0. For x to be real

1—=y2=41—-y) or (y—1Dy+3)=>0.

If y lies between —3and 1,y +3 >0,and y — 1 <O giving (y — )(y + 3) <0
and the above inequality (1 — y)2 > 4(1 — y) is not satisfied. Hence, there is no
real value between —3 and 1.]

Let E(x) = lim,_,, (1 + x/n)". Show that E(x)- E(y) = E(x + ).
[We have, using Proposition 1.12,

E(x) E(y) = lim <1 + f>"~ fim (1 ¥ 5’)" = lim ((1 + 5)(1 n X))
n—o n n-co n n—oo n n

=lim<1+x—+y+xy
n

n—*w

).. = E(x + )]

n?
Estimate the magnitude of the sum

1 1

1
- sas + .
V3 V4 /1,000,000

1+
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[Hint: Let k be a positive number. Then

1
Jk+1 - Jk=——unur——
Vi VE+1+ Jk
and so
2Jk+1-2 k<ﬁ<2 k—2/k—1.
Hence,

1
2/3-2/2<—4=<2/2-2,

J2
2\/E—2ﬁ<%<2 3-2./2,
2/5-2 4<ﬁ<2\/i—2\/§,

1
2 n+1—2\/;<7<2 n—2n-1
n
and we get upon addition

1
2/n+1— +—<2\/;1—2.
n

1 1 1
2/ <—4+ —4+—+ -
NVERENEING Jn
Since 2ﬁ<3, and,/n+1>\/ﬁ, it follows that

1 1
2/n—2<1+— <2 /n— 1L
n

1 1
+—=+—+
VERRNEIINE Jn
But n = 1,000,000 and so

1 1
1998 < 1 + — — 4+

1 1
— _— <1
V2 i V3 " /1,000,000

999.]

1.21. Show the inequality

1 1 1
2/n+1-2 —t et —<2/n—2/m— 1
n m<ﬁ+ —t +ﬁ< Jn—2/m

and verify that

1800 < < 1800.02.

1 1 1
+ ++
£/10,000 /10,001 +/ 1,000,000
[Hint: See the hint to Exercise 1.20.]

1.22. Leta > 1 and b > 1. Show that

log,b + log,a = 2.
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1.23.

1.24.

1.25.

[Hint: If m > 0 then m + 1/m > 2 with equality if and only if m = 1. Indeed,
(m—1%*=m? —-2m+ 1> 0 and division by m gives the desired result. But

log,a = 1/(log,b).]

Show that 1/y/n < \/n+ 1 —/n—1forn>1.

[Hint: We have
(n+ 1+ /n—1)=2n+2mn* - 1) <20+ 2(n>)"2 = dn
and so \/n-i-—l + \/m < 2. /n. Thus,
L 1 _Jntl-n—1
2/n Sn+l+n—1 2

and the desired result follows.]

Let a and b denote numbers larger than zero. The arithmetic, geometric, and
harmonic mean of a and b are, respectively,

a+b 2ab
A= , G=/a d H= .
an a+b

[Observe thata — A = A — b, a/G = G/b, 1/Ja — 1/H = 1/H — 1/b, and AH =
G2]If0 < a < b, verify that

i) A<G<H,

() A—G>G—H,
(iii) 4 — G < (b — a)¥/8a,
(iv) 4 — H < (b — a)*/4a.

[Hints: We have

A-—G=%J/a—/b)>>0 and H—-G= iﬁuf—JW<Q

proving (i). Next we note that

A—26+H=A-G—(G-H)= REZi;

proving (ii). From
(a — by
2 Ja+ /by
and the assumption that a < b, we obtain (iii). Finally, from

_(a—by
T 2a+b)

A—

and the assumption a < b we get (iv).]
Show that if x > 0, then

1 14+2x4+-+nx"! 1 14+2x 4 +nx"!
-< > <1 and -< — <n
n~ 14+ 2°x+ -+ n*x"" n n+m—Dx+-+x
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[Hint: Let a,/b,, a,/b,, ..., a,/b, be n fractions with positive denominators.
Then the fraction
at+a,+:+a,
by+by+--+b,
is contained between the largest and the smallest of these fractions (see Worked

Example 1 following Proposition 7.15 in Chapter 7). The inequalities in ques-
tion now follow immediately.]

1.26. Let a, b, ¢, and d be positive numbers. Show that

@+a+1)b*+b+ D +c+D)@*+d+1) S8
abcd -

[Hint: If a > 0, then a + (1/a) > 2.]

1.



CHAPTER 2

Limits and Continuity

1. Limits

Let x be any real number. By the absolute value of x, in notation | x|, we mean
xif x = 0and —x if x < 0. If we picture x as a point on the number line, then
|x| can be viewed as the distance between the points 0 and x. It is obvious
that | — x| = |x|.

Proposition 2.1. Let a and b be any real numbers. Then

la + b| < |a| + |b]. 2.1)

Proor. If we add the (trivial) inequalities
—lal|<a<|al] and —|b|<b<]|b|,

we get

—(lal + b)) < a + b <|a| + |b];
but the inequality | 4| < B is clearly equivalent to the inequality —B < A < B
for any two real numbers 4 and B. |

CommenTs. The inequality in Proposition 2.1 is sometimes called the triangle
inequality. We can use it to derive some other useful inequalities. For example,
for any real numbers a and b

la —b|=la+ (=b)| <l|a| +|—b| =|a| + |b|. 2.2)
Moreover, sincea =a + b — b,
lal <la+ b|+|—=bl=|a+ bl +|b|

or
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la| — |b| < |a + bl.
By interchanging the role of a and b in the last inequality we obtain
|b| —|a| < |a + b|.
Thus, we see that
llal — bl| < la + bl. 2.3)
On the other hand, since a = a — b + b, we get
lal <la — b| + |b]
or
la| —1b| < la — b.
By interchanging the role of a and b in the last inequality we get
|bl —lal <|b — a| =la — bl.
Therefore,
llal — bl < la —bl. (24)
Combining inequalities (2.1) to (2.4) we get
llal — Ibl| < la £ b| < |a| + |b] (2.5)

for any real numbers a and b.
Another simple consequence of (2.1) is that

la+ b+ c| <la|+|b| +|c| for any real numbers a, b, and c.

Indeed, |a + b +c| <|a| + |b + c| < la| + |b| + |c|. Instead of only taking
three summands, we could of course have taken any finite number of
summands.

Proposition 2.2. Let a and b be any real numbers and let max{a,b} and
min{a,b} denote the larger and the smaller of the two numbers a and b,
respectively. Then

a+ b+ |a—b|

7 = max{a, b}
and
b—la—b»b
atb—la—bl _ min{a, b}.
2
Proor. Let x be any real number. Then
x+2|x|=x if x >0,

=0 ifx<0
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and

x_2|x|=0 ifx >0,
=X ifx <O.

Replacing x by a — b and then adding a to both sides gives what we have set
out to show. O

DiscussioN. Geometrically, |[x — a| means the distance between the two points
a and x. Let 6 (delta) be larger than zero; then |x — a| < § means that
a—90<x<a+ 0and|x| < means that —6 < x < ¢ for in the latter case
a = 0. Let a < b; then the inequality a < x < b can be expressed in the form
|x — A| < B, where A = (a + b)/2 and B = |a — b|/2 (here A is the midpoint
between the points a and b and B is half the distance between the points a
and b).

If we know the curve y = f(x), then the curve y = | f(x)| is easy to picture.
To obtain the curve y = | f(x)| from the curve y = f(x), we leave unchanged
that portion of the curve which is above the x-axis, but reflect through the
x-axis the portion which is below the x-axis. For example, y=x — 2 is a
straight line with slope 1 intersecting the x-axis at x = 2; the curve y = |x — 2|
consists of two branches: for x > 2 we have y = x — 2, but for x < 2 we have
y = —(x — 2). Figure 2.1 shows the curve y = |x — 2|.

The set of points (x, y) satisfying the equation |x| + |y| = 1 is the closed
curve that we get by connecting consecutively the points (1,0), (0, 1), (—1,0),
(0, — 1), and (1, 0) by line segments; the shape of the figure is a diamond. The
set of points (x,y) satisfying the equation x — |x| =y — |y| consists of all
points making up the first quadrant, that is, all (x, y) satisfying x > 0 and
y = 0, and the points of the line y = x in the third quadrant.

To find the smallest value of

JX)=1x+2[+|x = 1] +|x -3

Yy
3
<—y=]x—2]
1
> X
1 2 3 4 5

Figure 2.1
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Yy
1
8
<y = lx+ 2]
+ Ix - 1]
4
+ Jx - 3]
2
' x
-2 2
Figure 2.2

we proceed as follows. If x satisfies —2 < x < 3, then f(x)=5+ |x — 1|
(because |x + 2| + |x — 3| = 5 when x is between —2 and 3); but |[x — 1| >0
with equality precisely when x = 1. Hence, f(x) is smallest at x = 1 when x
ranges over the closed interval [—2,3]. For x > 3 we have f(x) = 3x — 2
(because [x +2|=x+2, [x—1|=x—1, and |[x — 3] =x—3 for x > 3)
and for x < —2 we have f(x)= —3x + 2 (because |x + 2| = —(x + 2),
[x —1= —(x—1),and |x — 3| = —(x — 3) for x < —2). Therefore, f(x) >
f(B)=T7for x =3 and f(x) > f(—2) = 8 for x < —2. Hence, f(x) is smallest
at x = 1 for any real number x; f(1) = 5. Among the points x = —2, x = 1,
and x = 3 the point x = 1 is the median point in the sense that x = —2 is to
its left and x = 3 is to its right. The smallest value of

SE)=1x+ 2]+ |x— 1]+ |x — 3|

is assumed at x = 1, the median point of the set of three points x = —2,
x =1, and x = 3 Figure 2.2 shows the graph of y =[x + 2|+ |x — 1| +
|x — 3].

Given the points x = —2, x =0, x =2, x = 3, and x = 10 the median
point is x = 2 in the sense that the two points x = —2 and x = 0 are to its
left and the two points x = 3 and x = 10 are to its right. By an argument
similar to the one above we can conclude that the smallest value of

gx)=|x+2|+ |x| +|x—2]+|x— 3]+ |x — 10|

is assumed at x = 2, the median of the set {—2,0,2,3,10}.

To solve the inequality |2x — 7| < x + 1 amounts to finding the set of all
x for which the graph of y = |2x — 7| is below the graph of y = x + 1. But
|2x — 7| =2x — 7 for x > and |2x ~ 7| = —(2x — 7) for x < }. For x > 1
wehave2x —7=x+ lorx =8andforx <Zwehave —(2x —7) =x+ 1
or x = 2. The set of x satisfying [2x — 7| < x + 1 is the set of x with the
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<y =l2x - 7]

Figure 2.3

property 2 < x < 8. Figure 2.3 shows the graphs of y=|2x — 7| and y =
x + 1.

Definition. Let a and b be two points on the number line and a < b; then the
set of all points x satisfying a < x < b is called an open interval and is denoted
by (a,b). For any positive ¢ (epsilon), the interval (a — &,a + €) is called a
neighborhood of a (or, more precisely, an e-neighborhood of a). We recall that
the set of all points x satisfying a < x < b is called a closed interval and is
denoted by [a, b].

Definition. Let a function f be defined on some neighborhood of a point a,
except possibly at the point a itself, and the set of values or range of f be a
set of real numbers. We say that the limit of f(x) as x tends to a is L, or that
f(x) tends to L as x tends to a, and write

limf(x) =L, or f(x)—Lasx—a,

if, given any ¢ > 0, there exists some 6 > 0, such that | f(x) — L| < ¢ for any x
satisfying 0 < |x — a| < 4.

DiscussioN. A more compact phrasing of the defining condition of a func-
tional limit is: if for any € > 0 and some § > 0 we have | f(x) — L| < ¢ for any
x satisfying 0 < |x — a| < 8. To say that f(x) does not tend to L as x tends to
a means: if for some ¢ > 0 and any 6 > 0 we have | f(x) — L| = ¢ for some x
satisfying 0 < |x — a| < 4.

To visualize the defining condition of a functional limit, let us consider the



54 2. Limits and Continuity

Sy = £(x)

L+€e /

Figure 2.4

graph of the function y = f(x). We take any ¢ > 0 and consider the lines
y = L—eand y = L + ¢ Then there has to be an open interval (@ — é,a + 9)
on the x-axis so that for all points x of this interval, with the exception of its
midpoint x = a, we have that f(x) is between L — ¢ and L + ¢. See Figure 2.4.

To make the defining condition of a functional limit even more accessible,
picture the function f to be a gun which shoots from the point ¢ on the x-axis
and the bullet hits at the point (¢, f(¢)) in the x, y-plane. The strip between the
lines y = L— ¢ and y = L + ¢ is the target that we are trying to hit. For any
choice of ¢ > 0 we must find a J-neighborhood of a so that the bullet will hit
the target. This d-neighborhood of a need not be the largest possible for a
given ¢ and the point x = a is completely excluded from consideration.

In the definition of functional limit we speak of “the” limit instead of “a”
limit; the reason for this is the following Uniqueness Theorem.

Proposition 2.3. If lim,_,, f(x) = L and lim,_,, f(x) = M, then L = M.

Proor. We shall show that L = M by proving that the assumption L # M
leads to the absurd conclusion |L — M| < |L — M|.

Let us assume that L # M. It follows that 1|L — M| > 0. Since f(x) — L as
x — a, we know that there exists some §, > 0 such that

if0 <|x—al<d,, then|f(x)— L|<3L— M|
Since f(x) —» M as x — a, we know that there exists some &, > 0 such that
if0 < |x —a| <d,, then|f(x)— M|<3|L— M|
Let & = min{d,,d,}. For ¢ satisfying 0 < |t — a| < é we find that
1f®) — LI<3L— M| and |f() — M| <IL— M].
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Using (2.1), it follows that
IL— M| =|[L— f()] + [f() — M1| < |L— f)] + | f(t) — M|
<3L—M|+3i|L—M|=|L—- M|
Indeed, we have arrived at the absurdity |L — M| < |L — M|. O

Definition. The sequence x, x,, X3, ... of real numbers is said to converge if
there is a real number x with the following property: For each ¢ > 0, there is
a positive integer n,, dependent on ¢, such that n > n, implies |x, — x| < &.
The number x is then called the limit of the sequence x,, x,, X5, ... and we say
that the sequence converges to x, or x, tends to x as n becomes arbitrarily
large, and we write

limx,=x, or x,—xasn-— oo.

n—oo

REemarks. If a sequence has a limit, then this limit is unique; we may therefore
speak of “the” limit of a sequence. Indeed, suppose the contrary: Let x, — x
and x, — x’ as n > oo with x # x'. Let ¢ = {|x — x’'|. Since x, —» x as n - o0,
there exists a positive integer n; such that |x, — x| < & for n > n,. Similarly,
since x,, — x’ as n — oo, there exists a positive integer n, such that |x, — x'| <
¢ for n > n,. Let ny = max{n,,n,}. Then both |x, — x| and |x, — x'| are less
than ¢ for n > n,. Thus

I — x| = 10 = %) = (e = )| < |x, — X' + |, — x| <28 = |x — x|

which shows that [x — x'| < |x — x’|. This contradiction establishes that
x=x'

Proposition 2.4. Let a function f be defined on a neighborhood J of a point a,
except possibly at the point a itself. Then

lim f(x) = L
if and only if
lim f(x,) =L

n—oo
for every sequence x, X,, X3, ... of points in J such that x,, # a for any positive
integer n and x, —» a as n - oo.

Proor. Suppose lim, ,, f(x) = L. We choose a sequence x;, X,, X3, ... in J
such that x, #aforn=1,2,3,... and x, > a as n - 0. Let ¢ > 0 be given.
Then there is a é > 0 such that | f(x) — L| < ¢ whenever x belongs to J and
0 < |x —a| < 4. Also, there exists an n, such that n > n, implies 0 <
|x, — a| < é. Thus, for all n > n,, we have | f(x,) — L| < ¢ and we see that
lim,_,, f(x,) = L holds.
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Conversely, suppose lim,_,, f(x) = L fails. Then there exists some ¢ > 0
such that for any 6 > 0 there is a point x in the neighborhood J (depending
on 9), for which | f(x) — L| > e but 0 < |x — a| < 4. Taking é, = 1/nfor n =

1,2,3,..., we thus find a sequence x,, x,, X3, ... in J satisfying x, # a for
n=1,2,3,..., x,~a as n— o, for which lim,_,  f(x,) = L is false. This
completes the proof. O

Remark. The following are equivalent statements:

(i) lim f(x) = L. (i) Km[ f(x) — L] = 0.

xX—a

(i) lim|f(x) — L| = 0.  (iv) limf(a + h) = L.

x—a h—0

Examples

1. Show that lim,_,, (x/x) = 1.

Sorution. The function f(x) = x/x = 1 for x # 0, but is undefined for x = 0.
Let ¢ > 0. Here we must find 6 > 0 such that

ifO<|x| <9, then|l—1|<e
Since |1 — 1| = 0, we always have |1 — 1| < ¢ no matter how ¢ is chosen; in
short, any positive number will do for é.
2. Show that lim,_, (3x — 8) = —5.
SoLuTioN. Let ¢ > 0. Here we must find 6 > 0 such that
ifO0<|x—1]<d, then|(3x—8)—(—=9) <e

But |(3x — 8) — (—5)] = 3|x — 1|. Therefore, the condition |(3x — 8) —
(—95)| < eis equivalent to 3|x — 1| < g, that is, |x — 1| < ¢/3. Hence, we must
determine a positive d such that

ifO<|x—1] <, then|x — 1| <¢g/3.

Obviously, é = ¢/3 works. So does any smaller positive value of 6.

3. Show that lim,_; x2 = 9.
SoLuTiON. Let ¢ > 0. We must find é > 0 such that
if0<|x—3|<d, then|x?—-9|<e

But |x2 — 9| = |x — 3||x + 3|. Let us first require that 6 < 1. Then |x — 3| <
& gives that 2 < x < 4 and hence 5 < x + 3 < 7. Now, [x2 —9| = |x — 3|
|x + 3| will be less than ¢ if simultaneously |x — 3] < ¢/7 and |x + 3| < 7; to
achieve this we only have to take § to be the smaller of the two numbers 1
and ¢/7, that is, 6 = min{1,¢/7}. The graph of é = min{1,¢/7} is shown in
Figure 2.5.
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§ = min{1,e/7}

Figure 2.5

4. Show that lim, ., [(x*> — x + 18)/(3x — 1)] = 4.
SoLuTtiOoN. We have

x2—x+18
3x —1

x?2 —13x + 22

= ——2'
3x -1 Ix |

x— 11
3x — 11

_4‘=

We now require that § < 1. Then |x — 2| < d gives 1 < x < 3 and hence also
—10<x—~11< —8and2<3x—1<8,sothat|x— 11| <10 and [3x — 1| <
2. Thus,

=1 105 n 21 <1
I — 1 7= whenever |x — .
But
x—11
— |-
I |3x—1'

will be less than ¢ if simultaneously

x — 11
3x—1

|x—2|<§ and ’ |<5;

we only have to take d = min{1, ¢/5}.

5. Show that lim,_,, sin(1/x) does not exist, that is, there is no real number L
such that sin(1/x) - L as x — 0.

SoLutionN. We have sin(2n — 1/2)r = —1 and sin@rn + 1/2yn =1 forn =1,
2,....Let

_ 1

T @n+1/2)n
Then x, —» 0 and ¢, — 0 as n — o0; however, sin(1/x,) - —1 and sin(1/t,) — 1

as n — oo which is in violation of Proposition 2.3. The curve y = sin(1/x) is
shown in Figure 2.6.

and ¢, forn=1,2,...

T 2n—12)n



58 2. Limits and Continuity

Figure 2.6

6. Show that lim,_, x[sin(1/x)] = 0.

SoruTioN. Since [sint| < 1 for any real number ¢, we have

0< < Ix|.

!
X sin—
X

Hence, given any ¢ > 0, we can take 6 = ¢ to obtain the desired result. The
curve y = xsin(1/x) is shown in Figure 2.7.

7. Let f(x) = x if x is rational and f(x) = —x if x is irrational. For what
values of a does lim,_,, f(x) exist?

SoLuTioN. It is easily seen that the limit in question exists for a = 0. The limit
does not exist if a # 0; note that any (nonempty) open interval on the number
line contains both rational and irrational points.

Proposition 2.5. If lim,_,, f(x) = L and lim,_,g(x) = M, then
() im[f(x) +g(x)] = L+ M,

(ii) lim[c¢f(x)] = cL for each real number c,

X—a

(i) im [ f(x)g(x)] = LM.

x—a

ProoF. Let ¢ > 0. To establish (i) we must verify that there exists 6 > 0 such
that

if0<|x—a|l<d, then|[f(x)+ g(x)]—[L+ M]|<e
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Since f(x)— L and g(x) > M as x — a, we know that there exist positive
numbers 4, and §, such that

if0 < |x—c| <&, then|f(x)—L| <§
and
if0 < |x — a| < &, then|g(x)— M| < g
Putting 6 = min{d,,d,}, we observe:
if0 <|x —al <8, then|f(x)— L| <—§- and |g(x) — M| < g

Hence,
if0<|x—al<d, then|[f(x)+g(x)]-[L+M]l<e
because
ILfx) + g(x)] — [L— M1 = |[f(x) — L] — [g(x) — M]|
<|f(x) = L + lg(x) — M|

by (2.1) and (i) is proved.
To establish (ii) we consider two cases: ¢ # 0 and ¢ = 0. If ¢ # 0, then
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¢/|c] > 0 and since f(x) — L as x — a, we know that there exists 6 > 0 so that,
if0 <|x—al <&, then|f(x)— Ll <%.

But | f(x) — L| < ¢/|c| implies that |c|| f(x) — L| < ¢ and thus [¢f(x) — cL| < e.
The case ¢ = 0 is trivial.
To establish (iii) we first note that

|f(¥)g(x) — LM| < | f(x)g(x) — f(x)M]| + | f(x)M — LM]|
=f®Ilg(x) — M| + M| f(x) — L|
< fG)llg(x) — M|+ (1 + [M])|f(x) — L.
Let ¢ > 0. Since f(x) —» L and g(x) » M as x — a, we know
(1) that there exists 6, > 0 such that, if 0 < |x — a| < J,, then
|f(x) — Ll <1 andthus |f(x)]<1+|L]|;
(2) that there exists d, > 0 such that, if 0 < |x — a| < J,, then

€ 1
—M<Zl—);
lg(x) | 2<1 n |L|>
(3) that there exists d; > 0 such that, if 0 < |x — a| < J5, then

e 1
[f() — L| < §<T|M|>

Now we set § = min{d,,d,,d;} and note that if 0 < |x — a| < J, then

1) — L1 <1+ 05 () () =

This completes the proof. O

Propeosition 2.6. If lim, _,, f(x) = L and lim,,,g(x) = M with M # 0, then
L
limf(x) =

wag(x) M’

Proor. We show first that lim, ., g(x) = M with M # 0 implies
o1 1
lim——=—.

=ag(x) M

Indeed, for g(x) # 0,

‘1 L] _lge) — M|
90 M|~ IMIlgll

Pick §, > 0 such that
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M
if0<|x—a]<d,, then|g(x)— M| <|2—|.

For such x we have
|M| 1 2

96N> 61 S Ml

and therefore

1 1

’R_M |M|2|g(x) Mi.

Now let ¢ > 0 and pick é, > 0 such that

|M|?

2

if0 <|x —a|<d,, then|g(x)— M|< &

Putting 6 = min{d,, 5, }, we get that

1 1
if0<|x —a| <d, then ﬁ_ﬁl<8

This shows that 1/g(x) » 1/M as x — a.
To prove the proposition we only note that

S 1
g(x) S )g( )

With f(x) — L and 1/g(x) - 1/M as x — a, part (iii) of Proposition 2.5 gives

Jw L
e ~im = wm =

Remarks. The results in Proposition 2.5 and Proposition 2.6 are readily
extended to any finite number of functions. Thus, it is easy to see that every
polynomial

P(x) = c,x" + cpoy X" 1+ +c1x + o
satisfies

lim P(x) = P(a). 2.6)

Also, if P and Q are polynomials and Q(a) # 0, then
P(x) P(a)
a0 0@

If lim,, f(x) = L with L # 0 and lim,_,, g(x) = 0, then lim,_,, [ f(x)/g(x)] does
not exist. Indeed, suppose on the contrary that there exists a real number T
such that

@7
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J(x)
l—'a g(x) =T
Then
L=limf(x) = lim(g(x) &> = hm g(x)-lim f( ) =0-T=0,
x—a x=a (x) ea g(X)

which contradicts the assumption that L # 0.

Proposition 2.7. Suppose that there is a number q > 0 such that
h(x) < f(x) < g(x)
for all x satisfying 0 < |x — a| < gq. If
limh(x) =L and limg(x)=

x—a x—a

then

lim f(x) =

x—a

Proor. Let ¢ > 0. Let g > 0 be such that
if0 <|x —a| <gq, thenh(x)< f(x) < g(x).

Pick 6, > 0 such that

f0<|x—al<d,, thenL—e<h(x)<L+¢
and pick §, > 0 such that

if0<|x—a|l<d,, thenL—g<g(x)<L+e
Let 6 = min{q,d,,9,}. For x satisfying 0 < |x — a| < d, we have

L-—e<hx)<f(x)<gx)<L+e¢

and so |[f(x) — L| <. |

AppLICATION. We show that

Jim 22X . 2.8)
x=0 X
First we verify the inequality
sinx < x < tanx for0<x<g. (2.9)

Consider in a circle of radius R an acute angle / AOB, the chord AB and the
tangent AC to the circle at the point A4 (see Figure 2.8). Let x be the radian
measure of the angle / AOB; then the length of the circular arc AB equals
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Figure 2.8

Rx. Evidently, the area of the triangle AOB (which equals $R?sin x) is less
than the area of the circular sector AOB which equals R? x); moreover,
the area of the circular sector AOB is less than the area of the triangle AOC
(which equals 1 R? tan x). Thus, upon division by $R?, we get (2.9).

Since sin x is positive for 0 < x < n/2, we can divide by sin x in (2.9) and
obtain

sin x sin x

1< <cosx or O<1—

T
<1l—cosx for0<x<—.
x 2

But 1 — cosx = 2(sin® x/2) < 2(sin x/2) and so, by (2.9), 2(sin x/2) < x. Thus,

sin x

0<1-— <Xx for0<x<g

or

sin x

0< -1

<|x| for0<x<g.

Letting f(x) = (sin x)/x if x # 0, we see that f(—x) = f(x); on the other hand,
| —x| = |x|. Thus,

sin x

0< — 1] <|x| f0r0<|x|<g. (2.10)

Applying Proposition 2.7 we get at once the desired result (2.8). In fact, for
any ¢ > 0 and § = min{e, n/2} we have:
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if0 < |x| <o, then

sin x

sinx | <e
x

Returning to the estimate

0<1~—

sin x 13
<1-—cosx for0<x<5,
X

we could have proceeded in the following way as well: Since

1 —cosx = 2sin2§ and sin% < % by (2.9),

we obtain
2
1 —cosx <> for0<x <~ @.11)
2 2
and so
: 2
0<1_s_ng<§_ for0<x<£
X 2 2

But replacing x by —x does not alter the foregoing inequality and so

s 2
0< 22X 1< foro<|x| <X 2.12)
x 2 2

Applying Proposition 2.7 we get at once the desired result (2.8) from (2.12).
Indeed, for any & > 0 and 6 = min{,/2¢,7/2} we have

if0 < |x| <6, then|=X _1|<e.
X
It is easy to prove that
1 —
lim— 2% _ g, (2.13)
x—0 X

It is clear that the inequality (2.11) remains true if we replace x by —x. Thus,

x?2 T
1-— — for0 <=
cosx < 5 or 0 < |x| 3

or

|x|

1 —cosx T
P 2 for0 i
< 5 or <|x|<2

0<'

X
and (2.13) follows by applying Proposition 2.7.

Definition. Let f be a function defined at least on an open interval of the form
(d, a); then the left-side limit of f(x) is L as x tends to a, written as

li?f(x)=L or fla—)=1L,
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if, given any & > 0, there exists some 6 > 0, such that | f(x) — L| < ¢ for any x
satisfyinga — 0 < x < a.

Definition. Let f be a function defined at least on an open interval of the form
(a, d); then the right-side limit of f(x) is L as x tends to a, written as

liinf(x) =L or f(a+)=1L,

if, given any ¢ > 0, there exists some 6 > 0, such that | f(x) — L| < ¢ for any x
satisfyinga < x < a + 6.

REeMARKS. Since ./ x is not defined on both sides of 0, we can not consider the
(two-sided) limit of \/; as x tends to 0. However, we have that

lim/x = 0

x40

because, for any ¢ > 0 and 6 = &2, we have:
if0<x<d, then|/x —0]=./x<e

One-sided limits give us a simple method of deciding whether or not a
(two-sided) limit exists:
lim f(x)= L ifandonlyif limf(x)=L and lim f(x)= L.
x—a xta xla
One-sided limits are of particular interest in connection with increasing
and decreasing functions, as we shall see in the next section.

Definition. Let f be a function defined for all real numbers x > d, where d is
some real number. We say that the limit of f(x) is L as x tends to infinity (or
as x becomes arbitrarily large), and we write

lim f(x) = L,
if, given any ¢ > 0, there exists some K > 0, such that | f(x) — L| < ¢ for any
x satisfying x > K.

Remark. There is a simple relation between limits at oo and one-sided limits
at 0; setting x = 1/t, it is easily seen that

1
lim f(x) = L if and only if 1imf(—> = L.
tdbo” \t

X0

Definition. Let f be a function defined for all real numbers x < d, where d is
some real number. We say that the limit of f(x) is L as x tends to negative
infinity (or minus infinity), written as

lim f(x) =L,

X —
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if, given any ¢ > 0, there exists some K < 0, such that | f(x) — L| < ¢ for any
x satisfying x < K.

REMARK. Propositions 2.3 to 2.7, suitably modified, are also valid for one-
sided limits and limits at + co.

Examples

1. Let n be a positive integer. Show that

SoLuTION. For x # 1 we have
X"—1=x—-1E"T+x"2++x+1)

and so

n

Cox"—=1
lim =lim(x""'4+x"24+-+x+1)=n
x-1 X — x—1

2. Let m and n be positive integers. Show that
.x"—1 m
lim — =—,

x—1 X — 1 n

SoLuTION. For x # 1 we have

X" =1 (x=DE" T+ x" 24+ x+ 1)
x"—1 (x—DE"T+x"24++x+1)

and so

X" =1 lme,, (x" '+ x™" 2+ -+x+1) m
lim n =7 n—1 -2 =
=1 X"—1 lim,, (x" '+ x"?+--+x+1) n

3. Let n and k be positive integers and n > k. Show that

= DET D@ ) =)=k + 1)
pac R 3T PO P ) 3%

SoLuTION. We have

(xn _ 1)(xn—1 _ 1)_,_(xn—k+1 — 1)

I
- = DEI—D) (= 1)
1. xn _ 1 1 xn-l _ 1 h xn—k+1 . 1
= lm “ e m
xl—I:rllx_lx—‘l-xz_l x—1 xk—l

n—lmn——k+1
2 k )

_n
1
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4. Let m and n be positive integers. Show that
. m n m-—n
im - = .
x-1 \1 —x™ 1—x" 2

m n __n(x"‘—l)—m(x"—l)
1—x™ 1—x" (x"—1x"—1)
nx™ x4 x+ ) —mx"T x4+ x + 1)

:(x_1)(xm~1+xm—2+,,,+x+1)(xn—1+xn—2+.”+x+1).

SoLuTioN. We have

But
n(x™ 4 x" 24+ x4+ 1)
x—1
x'"_1—1+x"“2—1+ +x—1+1—1 + nm
=n e
x—1 x—1 x—1 x-—1 x—1
and
mx"" +x" 2 4+ x+ 1)
x—1
x"_1—1+x"_2——1+ +x—1+1—1 N nm
=m - .
x—1 x—1 x—1 x-—1 x—1
Thus,
linrln(x'"‘1+x'"‘2+---+x+1)—m(x"‘1+x"‘2+--~+x+1)

x—1

=n{m—-1D+m-2)+ -+ —m{n—D)+@n—2)++1}

m(m — 1) nn—1)
n—sy —m——

m?n — mn?
2

On the other hand,
Im(x™ ™+ x™ 2+ x+ D"+ x4+ x + 1) =mn.

x—1
But
m*n—mn®> m—n

2mn 2

lim | —2 " m-r
et \1 —x™ 1 —x" o2

and so
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5. Show that

. b
lim {/&x + @(x 1+ b) — x} = %
SorLution. We commence with an inequality: If 4 and B are any positive real
numbers, then

2 A+B
< /ap<iE2 (2.14)
/A + 1/B 2

Indeed, 0 < (/A —/B)>’=4 + B—2/4B and so /4B < (A4 + B)/2.
This shows the validity of the second part of (2.14). Replacing in \/AB <
(A4 + B)/2 the numbers 4 and B by 1/4 and 1/B, respectively, we get the first
part of (2.14). Inequality (2.14) expresses the familiar fact that the harmonic
mean of two positive numbers 4 and B is less than or equal to the geometric
mean of 4 and B which in turn is less than or equal to the arithmetic mean
of 4 and B; there is equality in (2.14) if and only if A = B.
Now, putting 4 = x + a and B = x + b in (2.14), we obtain

(a+b)x-{-2abS (x+a)(x+b)—xsa;b

2x+a+b

whenever x is such that x + a > 0 and x + b > 0. Letting x — o0 in (2.14)
yields the desired result.

6. If a regular polygon of n sides is inscribed in a circle of radius r, its area is
. 2m
A(n) = $nr?sin——
n
and its circumference is
.
C(n) = 2nrsin—.
n

Show that lim,_, , A(n) = nr® and lim,_,, C(n) = 27r.
SoLuTiON. We have (sin x)/x — 1 as x — 0; but

,8in(2n/n) and  C(n) = 2nrsin(n/n)

Aln) = mr 2n/n n/n

2. Continuity

Definition. Let a function f be defined on some neighborhood of a point a
(including the point a itself) and the set of values or range of f be a set of real
numbers. We say that f is continuous at a if, given any ¢ > 0, there exists some
0 > 0, such that | f(x) — f(a)| < ¢ for any x satisfying |x — a| < 4.
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Remark. It follows immediately from the definition that f is continuous at a
if and only if lim,,, f(x) = f(a).

Definition. If a function f is continuous at every point of an open interval
(a, b), we say that f is continuous on the interval (a, b). If a function f is defined
on a closed interval [a, b], we say that f is continuous on [a,b] if f is contin-
uous on (g, b) and if, in addition,

liinf(x) = f(a) and lim f(x) = f(b).

xTh

Proposition 2.8. Let f and g be functions defined on the same neighborhood of
a point a and both functions be continuous at the point a. Then each of the
following functions is continuous at a:

@ (f + 9)(x) = f(x) + g(x),
(i) (f9)(x) = f(x)g(x),

(i) (i) 0= L g@) 2 01,
g g(x)

i) 1/1(x) = [f(¥)].

Proor. Properties (i), (ii), and (iii) follow immediately from Propositions 2.5
and 2.6; property (iv) is a consequence of the inequality

/G = 1f @] < 1f(x) — fla)|
[see inequality (2.4)]. O

RemMARk. If f and g are as in Proposition 2.8, then the functions

(f v 9)(x) = max{f(x),g(x)} and (fA g)(x)=min{f(x),g(x)}

are continuous at a. Indeed, using Propositions 2.2 and 2.8, the claim follows
at once.

Proposition 2.9. Let a function g (of the variable y) be defined on an interval Y,
a function f (of the variable x) be defined on an interval X, and assume that the
set of values f(x), as x ranges over X, are contained in the interval Y. If f is
continuous at a point x, of X and g is continuous at the corresponding point
Yo = f(x0) of Y, then the composite function

h(x)=g[f(x)] forallxinX

is continuous at xg.

Proor. Let ¢ > 0 be given. Since g is continuous at y = y,, there exists some
¢ > 0 such that

if |y — yol <o, then|g(y) — g(y)l <e.

On the other hand, since f is continuous at x = x,, for this ¢ (sigma) there
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exists some 6 > 0 such that

if [x — xo| < d, then|f(x) — f(xo)l = |f(x) — Yol < 0.
It therefore follows that

if [x — xo| <4, then |g[f(x)] —g(¥)l =19[f(x)] — gL f(x0)]l <&

This shows the continuity of h at x = x,,. O

ReMARK. We can view the power function h(x) = x® with x > 0 and b a fixed
real number as a composition of the logarithmic and the exponential func-
tions; by (1.35) in Chapter 1 we have

xb — eb(ln x).
The continuity of the power function h(x) = x® with x > 0 and b fixed will
follow by use of Proposition 2.9 as soon as we have established the continuity
of the logarithmic and the exponential functions.

The function h(x) = cos x can be seen to be continuous by Proposition 2.9
once we know that g(x) = sinx and f(x) = ¢ — x, where c¢ is a constant, are
continuous because cos x = sin3n — x).

Proposition 2.10. Let f be a continuous function at a point a and suppose that
f(a) is positive. Then we can determine a positive number ¢ such that f is
positive throughout the interval (a — 0,a + o).

Proor. Let ¢ = 1 f(a) in the defining condition for continuity and denote the
corresponding ¢ by ¢. Then

|f(x) — fl@)] < 2f(a)
for any x satisfying |x — a| < ¢. But | f(x) — f(a)| <1 f(a) means
—3f(a) < f(x) — fla@) <3f(@) or 3f(a)<f(x)<3f(a)
Thus f(x) > % f(a) > 0 for any x in the interval (a — o,a + o). O

Remark. There is plainly a corresponding proposition referring to negative
values of a continuous function f.

Proposition 2.11. If a function f is continuous on a closed interval [a,b] of
finite length, it is bounded on that interval, that is, there are numbers m and M
such that

m< f(x) <M forall xin[a,b].

ProoF. Let f be continuous on [a,b]. We observe first that if x, is any point
of [a, b], there is some subinterval containing x, on which f is bounded. For,
if we take ¢ = 1 in the defining condition for continuity and denote the
corresponding 6 by J,, we have
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J(xo) = 1 < f(x) < f(xo) + 1

provided that x is a point of [a,b] such that x, — é; < x < x¢ + ;. Note
that this subinterval extends to both sides of x, if a < x, < b, and one side of
Xo if xg = a or xy = b. A second observation of importance is this: if f is
bounded on two subintervals of [a,b] whose union is [a,b], then f is also
bounded on [a,b].

We now turn to the proof of the proposition at hand and suppose that our
claim was false. In other words, suppose f was not bounded on [a, b]. Bisect-
ing [a, b] into [a,d] and [d, b], where d = (a + b)/2, the function f would not
be bounded on at least one of these two subintervals. Let us call [a,b,] the
subinterval on which f is not bounded. Next we bisect [a,,b, ], obtaining a
subinterval [a,, b,] on which f is not bounded and so forth. By repetition of
this bisection process we generate a sequence of closed nested intervals on
each of which f is not bounded; the length of the nth interval [a,,b,] is
(b — a)/2". By the Nested Interval Principle (see Section 1 of Chapter 1) there
is one and only one point ¢ common to all these intervals [a,, b, ]. Clearly, the
point ¢ is in the interval [a, b]. Now, as shown at the beginning of our proof,
f is bounded on some interval J containing the point c. Since c is in [a,, b, ]
and since the length of [a,, b, ] tends to zero as n becomes arbitrarily large, it
is clear that J must contain [a,, b,] when n is sufficiently large. But this is a
contradiction for f is not bounded on [a,, b, ] and it is bounded on J. Because
of this contradiction, our initial claim that the proposition is false must be
rejected and the proof is complete. |

Proposition 2.12. Let f be a continuous function on a closed interval [a,b] of
finite length and suppose that f(a) # f(b). Then for every real number A
between f(a) and f(b) there exists a point t such that f(t) = A, that is, f
assumes all intermediate values between f(a) and f(b).

Proor. Suppose that f(a) < f(b). Starting with the points x, = a and y, = b,
we construct by successive bisections a sequence of nested closed intervals
[x,,v,]forn=1,2 3 ...such that f(x,) < A < f(y,)forn=1,2,3,.... To
this end we only have to set

Xp+1 =d, and Y,y =y, incase f(d,)< A4
and
Xp41 =X, and y,,, =d, incase f(d,) > A4,

where d, = (x, + y,)/2. Let t be the point determined by this sequence of
nested closed intervals (see the Nested Interval Principle), that is, let ¢ be the
point common to all these nested closed intervals. Then x, —» ¢t and y, — ¢ as
n— oo. Since f(x,) < A4 < f(y,) and f is continuous at ¢, we have that
f@o) = A

The case f(b) < f(a) reduces to the case already discussed when we consider
the function —f. The proof is finished. O
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AppLICATION. We wish to show that a polynomial function P of odd degree
has at least one real root.

Let P(x) =cq + ¢y x + - + ¢,x", where ¢, # 0 and n is odd, that is, an
integer not divisible by 2. We may suppose that ¢, = 1; otherwise we would
work with (1/c,)P. It is clear that P is continuous everywhere because

lim P(x) = P(a)
for any real number a, as already noted in the remarks following Proposi-
tion 2.6. To apply Proposition 2.12 we need only to show that P(x) > 0 for
some x and P(x) <O for some other x. However, this is seen to be true
because
lim P(x)= +o00 and lim P(x) = — oo,

remembering that ¢, = 1. We can avoid these limit notions by the following
argument. Observe that

P(x) = x"D(x),

where
Co+ e X+ 4 cpyx" !

n

Dx)=1+ .

Letd =1+ |col + ley| + -+ + |cu_y |- If | x| > d, then
lx| >1 and |x]| > |col + leg| + =+ + ey
and so
leo + exx + -+ ¢y X" < (ol + leg] + -+ + ey DX < x|

so that D(x) > O for |x| > d. Now, if x > d, then x" > 0 and so P(x) > 0. And
if x < —d, then x" < 0 (because n is odd) and so P(x) < 0.

Definition. Let S be a nonempty set of real numbers. We call M an upper
bound of S if s < M for all s in S and we call m a lower bound of S if s > m for
all sin S. If S has an upper bound, we say that S is bounded above; if S has a
lower bound, we say that S is bounded below. If S is both bounded above and
bounded below, then S is said to be bounded.

Definition. Let S be a nonempty set of real numbers which is bounded above.
Suppose that a real number M* has the following two properties:

(i) M* is an upper bound of S.
(i) If K < M*, then K is not an upper bound of S.

Then M* is called the least upper bound of S [that there is at most one such
M* is clear from (ii)], or the supremum of S, in notation, M* =1ub S or
M* =supS.
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If S is a nonempty set of real numbers which is not bounded above, we put
supS = + 0.

REMARK. Let M* be an upper bound of a nonempty set S of real numbers.
Then M* is the supremum of S if and only if, for any ¢ > 0, there is an s in S
such that s > M* — ¢.

Indeed, let M* be the supremum of S. Suppose that ¢ > 0 is given. Then
M* — ¢ can not be the supremum of S, hence there is an s in S such that we
have s > M* — ¢. On the other hand, suppose M* is not the supremum of S.
Then there is some M < M* such that Mg is the supremum of S. We have
to find an ¢ > 0 such that s < M* — ¢ for all s in S. But we only need to put
&= M* — ME.

Definition. Let S be a nonempty set of real numbers which is bounded below.
Suppose that m,, is a real number satisfying the following two conditions:

(i) m, is a lower bound of S.
(ii) If L > m,, then L is not a lower bound of S.

Then my, is called the greatest lower bound of S [that there is at most one such
m, is clear from (ii)], or the infimum of S; in notation, m, = glbS or m, =
inf S.

If S is a nonempty set of real numbers which is not bounded below, we put
infS = — 0.

Axiom of Completeness. Every nonempty set of real numbers that has a lower
bound has a greatest lower bound. Also, every nonempty set of real numbers
that has an upper bound has a least upper bound.

Discussion. The Axiom of Completeness and the Nested Interval Principle
can be derived from each other.

We assume the Axiom of Completeness and we show: If J,, J,, ..., J,, ...
is a sequence of closed intervals, if J, > J,,, forn=1, 2, 3, ..., and if the
length of J, is less than any preassigned positive number for all large n, then
there is one and only one point common to all intervals J,,.

Indeed, let J, = [a,,b,] and so the “nesting” property

a, < Apyy < bn+1 < bn

holds for n = 1, 2, 3, ... . This shows that the set 4 of points that occur as left
endpoints of intervals J, is a bounded set and that the same is true for the set
B of points that occur as right endpoints of the intervals J,. Let

a=supA and b =infB.

Itis clear thata < b,and b > a,forn=1,2,3,... and so a < b with both a
and b belonging to J,forn=1,2,3,.... But

b—a<b,—a, forn=1,213,...
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and b, — a, — 0 as n — oo, implying that a = b. This is, however, what we
wanted to show.

Now, we assume the Nested Interval Principle and we show: If S is a
nonempty set of real numbers that is bounded above, then S has a least upper
bound.

Indeed, let M be an upper bound of S and s belong to S; consider the closed
interval [s, M] = J,. If J; has only the single point s in common with S, then
we are finished and s is the least upper bound of S. If J, has more than one
point, namely, the left endpoint s, in common with the set S, then we bisect
the interval J, and denote by J, the right-hand or the left-hand half of J,
depending on whether or not there are points of S that belong to the right-
hand half of J,. According to the same rule we select one half of J, as J; and
so forth. The intervals J,, J,, J5, ... have the property that to the right of each
such interval there is no point of S, but that in each such interval there is at
least one point of S. The point ¢ common to all J, J,, J3, ... satisfies the
property that for any ¢ > O there is an s in S such that s > ¢ — ¢ and so
c=supSs.

Proposition 2.13. Let f be a continuous function on a closed interval [a,b] of
finite length. By Proposition 2.11 the set S of all f(x) as x ranges over the
interval [a,b] is a bounded set; let m = infS and M = sup S. Then f assumes
the values M and m at least once each in the interval [a, b].

Proor. Let M be the supremum of the set S of all f(x) with x ranging over
the interval [a,b]; M is called the upper bound of f on [a,b]. If [a,b] is
bisected, then it is possible to find a half [a,,b;] on which the upper bound
of fis also M. Proceeding by the method of repeated bisection, we construct
a sequence of closed nested intervals

[a’b]’ [al’bll [a27b2]’

on each of which the upper bound of f is M. These intervals have one and
only one point ¢ in common and the sequences

a,a,,d,,... and b, by, b,,...

tend to c¢. But f(c) = M. Suppose not, that is, suppose f(c) = L # M. Then
|L — M| = 2¢ for some ¢ > 0. By the continuity of f at c, there is an open
interval (¢ — 6, ¢ + 0) on which f(x) can not differ from L by more than ¢ and
hence M can not be the upper bound of f on (¢ — J,¢ + J). But (c — 8,¢ + J)

must contain [a,, b, ] for n larger than some n, because the length
b—a
b,—a, = T

tends to zero as n becomes arbitrarily large. Let n be such that [a,,b,] is
contained in (¢ — J,¢ + J); then
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M = sup{f(x): a, < x < b,} <sup{f(x):c —d <x <c+ 3}
But [a, b] contains (¢ — J,c¢ + 6) and so
sup{f(x):c — 8 <x<c+d} <sup{f(x):a<x<bh}=M.

We have a contradiction. [ Trivial modifications are needed if c = aorc = b.]
In a similar manner we can show that there is a point d in [a, b] such that
fd)y=m. O

ALTERNATIVE ProOF OF ProposiTiON 2.13. Given any positive number o, we
can find a point x in [a, b] for which

1 1
M—fx) o

Hence, 1/[M — f(x)] is not bounded, and therefore, by Proposition 2.11, not
continuous. But M — f(x) is a continuous function and so 1/[M — f(x)] is
continuous at any point at which its denominator does not vanish. There
must therefore be a point at which the denominator vanishes, and at which
f(x) = M. Similarly, it may be shown that there is a point at which f(x) = m.

O

M- f(x)<o or

Definition. Let f be a bounded function on an interval [a,b] and J be a
subinterval of [a, b]. By the oscillation of f on J, denoted by w(f, J), we mean

o(f,J) = sup{ f(x): xeJ} — inf{ f(x): xe J},

that is, the difference between the upper bound and the lower bound of f
onlJ.

Proposition 2.14. Let f be a continuous function on a closed interval [a,b] of
finite length. Given ¢ > 0, there exists a partition of [a,b] into a finite number
of subintervals of equal length such that the oscillation of f on each of these
subintervals does not exceed .

Proor. Suppose not, that is, suppose there was a continuous function f on
[a,b] and an & > O for which no partition of [a, b] of the desired type existed.
For convenience, let us agree to say that the interval [a,b] has property P, if
there exists no partition of [a, b] into a finite number of subintervals of equal
length such that the oscillation of f on each of these subintervals is less than
or equal to &. In short, we suppose that [a, b] has property P,. Bisecting [a, b],
we obtain a subinterval [a,, b, ] with property P,. We then bisect [a,, b, ] and
obtain a subinterval [a,, b,] having property P, and so forth. Proceeding in
this manner we get a sequence of nested closed intervals

[al’b1]9 [a2’b2]’ e [ambn]’

with each interval of the sequence having property P,. In particular, this
implies that w(f,[a,,b,]) > ¢ for n =1, 2, 3, .... But the length of [a,,b,]
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equals (b — a)/2" which tends to zero as n becomes arbitrarily large. By the
Nested Interval Principle there is one and only one point ¢ in common to all
these intervals [a,,b,] for n=1, 2, 3, ... But ¢ is in [a,b] and so f is
continuous at c. Hence, we can find a positive J such that | f(x) — f(c)| < &/2
for any x in [a, b] which satisfies |[x — ¢| < 6. If x, and x, are two such x, then

Jler) = f(x3) = [f(x1) = [T + [f(0) — f(x2)]

and so

1) = Sl < 1Ge1) = f0) + 10 = ftxa) < 5 + 5 =5
and so the oscillation on the interval I = [a,b] N (c — §,¢ + J) is less than .
For sufficiently large n the interval [a,, b,] is contained in the interval I
and so the oscillation of f on such [a,, b,] will be smaller than or equal to the
oscillation of f on I. We have reached a contradiction because by our assump-
tion and construction the oscillation of f on [q,,b,] for n =1, 2, 3, ... is
larger than e. |

Proposition 2.15. Let f and [a, b] be as in Proposition 2.14. Given ¢ > 0, there
exists a positive § such that on any subinterval J of [a,b] having length less
than 6 the oscillation of f on J is smaller than e.

Proor. By Proposition 2.14 we can pick m so large that the oscillation of f
on each of the intervals

[a,a+0]), [a+d,a+25], ..., [a+ (m—1)5,b], (2.15)

each of which has length 6 = (b — a)/m, is less than &/2. We consider any
subinterval J of [a, b] having length less than ¢ and we let x; and x, denote
points of J at which f assumes largest and smallest values on J, respectively,
and thus f(x;) — f(x,) will denote the oscillation of f on J. These points x,
and x, either belong to the same interval in (2.15) and then f(x,) — f(x,) will

be smaller than ¢/2 or they belong to two abutting intervals
fa+(k—1)d,a+ké] and [a+ kd,a+ (k+ 1)5]
and in this case
& &
J(x1) = f(x2) = [f(x1) — fla + kd)] + [f(a + kd) — f(x,)] < yty==

On any subinterval J of length less than ¢ the oscillation of f is thus seen to
be smaller than the prescribed &. O

Definition. A function f is said to be uniformly continuous on [a, b] if, given
any ¢ > 0, there exists some 6 > 0, dependent on & only, such that for any
points x, and x, in [a, b] the inequality

|x; — x,| <d implies |f(x;) — f(x,)| <e.
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REMARKS. Uniform continuity is readily expressed in terms of oscillation. The
definition implies that w(f,J) < ¢ if the length of the interval J is less than
regardless where J is placed in the interval [a,b]. Or, we can say that
w(f,J) < ¢ holds uniformly with respect to all intervals J, provided the
length of J is less than . Geometrically, the situation can be described as
follows. A small rectangle of height 2¢ and width 26 is centered at a point on
the curve. We have uniform continuity, if we can choose the width of the
rectangle, whenever its height is given, so that while the rectangle slides along
the curve y = f(x) remaining parallel to itself, the curve projects from the
vertical sides but does not touch the top or the bottom of the rectangle.

Proposition 2.16. Let f be a continuous function on a closed interval [a, b] of
finite length. Then f is uniformly continuous on [a, b].

Proor. The claim follows at once from Proposition 2.15. O

Examples. The function g(x) = 1/x is not uniformly continuous on the open
interval (0, 1). Indeed, suppose that g was uniformly continuous on (0, 1).
Then for any ¢ > 0 we should be able to find some J, say between 0 and 1,
such that |g(x,) — g(x,)| < ¢ whenever |x; — x,| < 0 for any x, and x, in the
interval. Now, let x; = ¢ and x, = §/(1 + ¢). Then |x; — x,| =[e/1 + ¢)]d <
d. But |1/x, — 1/x,| = ¢/d > ¢ (since 0 < § < 1). Thus we have a contradic-
tion and g is not uniformly continuous on (0, 1).

The function h(x) = sin(1/x) is not uniformly continuous on the open
interval (0, 1/x). Figure 2.6 shows the graph of the function h. While the
function A is bounded by 1 and — 1, the oscillation w(h,J) = 2 on any interval
J of the form (0, a) no matter how small the positive number a is. This fact
prevents uniform continuity of 4 on (0, 1/7).

The function w(x) = x? is not uniformly continuous on (0, c0). Small
changes in x can produce arbitrarily large changes in x2 if only x is large
enough. Indeed, suppose there was a 6 > 0 such that

[w(x) — w(a)] <2 whenever |x—a|<d foralla>0.

We would than have for x = a + /2

o
wx) — w(a)l =[x —allx +al =3

1)
2a + =<2
a+2‘< ,

implying that aé < 2 for all a > 0 which is clearly false.
Let 4 be a nonempty bounded set of real numbers and define

v(x) = inf{|x — a|: ae A} for all real numbers x.
Then v is uniformly continuous on (— 00, 00). Indeed, for each ae A we have
v(x)<[x—al<|x—yl+|y—al

for any real number y. Taking the infimum over all ae A, we obtain
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v(x) < |[x — yl + v(y)

or v(x) — v(y) < |x — y|. Exchanging the roles of x and y, we also obtain
v(y) — v(x) < [x — y|. This shows that

[o(x) — o) < [x — yl

and so v is seen to be uniformly continuous on (— o, o).

3. Monotonic Functions

Definition. Let f be a real-valued function on an interval J and x and y be
points of J. Then f is said to be nondecreasing on J if

x <y implies f(x) < f(y);
[ is said to be strictly increasing on J if

x <y implies f(x) < f(y).
Similarly, f is said to be nonincreasing on J if

x <y implies f(x)> f(y)
and f is said to be strictly decreasing on J if

x <y implies f(x)> f(x).

The class of monotonic functions consists of both the nondecreasing and the
nonincreasing functions; the class of strictly monotonic functions consists of
the strictly increasing and the strictly decreasing functions.

Definition. Let f be a real-valued function on an open interval (a, b). If f is not
continuous at a point x of (a, b), then f is said to be discontinuous at x. If f is
discontinuous at a point x of (a,b) and if the one-sided limits f(x+) and
J(x—) exists, then f is said to have a discontinuity of the first kind, or a simple
discontinuity, at x. Otherwise, the discontinuity is said to be of the second
kind.
ILLusTrATION. Consider the following three functions:

flx)=1 for x > 0,

=—1 forx<0;
gx)=1 for x # 0,

=0 for x = 0;
!
h(x) = sm; for x # 0,

=0 for x = 0.
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It is clear that f(0+) = 1 and f(0—) = —1; thus f has a discontinuity of the
first kind at x = 0. For the function g we have g(0+) =g(0—) =1, but
g(0) = 0; thus g has a discontinuity of the first kind at x = 0. For the function
h, neither h(0+) nor h(0—) exists [see Figure 2.6 and note that h(—x) =
—h(x)7; thus h has a discontinuity of the second kind at x = 0.

ReMARK. There are two ways in which a function f can have a simple dis-
continuity at x; either f(x+) # f(x—), or f(x+) = f(x—) # f(x). The follow-
ing proposition shows that a monotonic function f has no discontinuities of
the second kind since the one-sided limits f(x+) and f(x —) exist.

Proposition 2.17. Let f be a nondecreasing function on an open interval (a, b).
Then, for any x satisfying a < x < b,

A=f(x—)< f(x) < f(x+)=B, (2.16)

where A =sup{f(t):a <t <x} and B =inf{f(t): x <t < b}. Moreover, if
a<x<y<hb,then

J+)<fly-)

Proor. By assumption, the set of numbers f(t), where a < t < x, is bounded
above by the number f(x), and thus has a supremum which we have denoted
by A. Evidently, 4 < f(x). We verify that 4 = f(x—).

Let ¢ > 0 be given. It follows from the definition of 4 as a supremum that
there exists > 0 such that a < x — § < x and

A—e< f(x —9d) < A.

Since f is nondecreasing, we have f(x —d) < f(t) < A4 for x —d <t < x.
Thus, for x — d < t < x, we have | f(t) — 4| < ¢ and so f(x—) = A.

The second half of (2.16) is proved in the same way.

Next, if a < x < y < b, we get from (2.16) that

flx+)=1inf{f(t): x <t < b} = inf{f(t): x <t < y}.

The last equality in the foregoing is obtained by applying (2.16) to (a, y) in
place of (a, b). Similarly,

- fy=) =sup{f(t):a <t <y} =sup{f(t): x <t <y}
Thus, f(x+) < f(y—)isseen to hold fora < x <y < b. O

Definition. Let X and Y be two nonempty sets; then the set of all ordered
pairs (x, y) where x € X, y € Y, is called the Cartesian product of X and Y and is
denoted by X x Y. Here (x,,y,) = (x;, ;) if and only if x; = x5, y; = y,.
We refer to x as the first coordinate of the pair (x,y) and y as the second
coordinate.

A function from X to Y is a nonempty subset of pairs (x, y) in X x Y such
that no two distinct pairs have the same first coordinate. The sets
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D[f]={x:xeX,(x,y)ef},
R[f1={y:yeY.(x,y)ef},

are called the domain of f and the range of f, respectively.
We say that f is a one-to-one function if (x,, y,) € f, (x5, y,) € f, and x; # x,
implies y, # y, for any x, and x, in D[ f].

Definition. Let f be a one-to-one function with domain D[ f] and range
R[f7]. Then f is said to be invertible and the inverse function of f, denoted by
/71, is defined by the set of ordered pairs

{(3,x): yeR[f1,xeD[f1};

we have

fUf(x)]=x forall xeD[f],
fLf7'(»l=y forallyeR[f].

REMARKS. We are concerned with functions mapping a set of real numbers
into a set of real numbers. The meaning of the terms just defined is simple
enough to grasp. A function is defined as a set, namely, as the set of points
making up the graph of the function. The function is one-to-one if any
straight line parallel with the x-axis intersects the graph of the function in at
most one point. Finally, if f is one-to-one, that is, if f is invertible, then the
graph of /7! is obtained from the graph of f by simply reflecting the graph
of f about the line y = x. A strictly monotonic function is one-to-one, but a
one-to-one function need not be monotonic; for example,

fx)

1x for0 < x <2,

—Ix+3 for2<x<4,

Il

ix ford<x<6

maps the closed interval [0, 6] onto the closed interval [0, 3] in a one-to-one
manner, but the function f is not monotonic on [0, 6]. Note also that f takes
on all intermediate values between 0 and 3, but f is not continuous every-
where on [0, 6] (having discontinuities at x = 2 and at x = 4). See Figure 2.9
for the graph of y = f(x).

Proposition 2.18. Let f be a continuous function on a closed interval I = [a, b]
of finite length. Then f is invertible if and only if f is strictly monotonic.
Trivially, f 7 is increasing or decreasing depending on whether f is increasing
or decreasing. Moreover, the inverse function f ' is continuous on its interval
of definition I*.

Proor. It is clear that strict monotonicity is a sufficient condition for the
invertibility of f. We only need to show that in the case of continuity it is also
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Figure 2.9

a necessary condition. For f to be invertible we need to have f(x,) # f(x,)
for any two distinct points x; and x, in I. Since f is assumed to be contin-
uous, we have for any x between x, and x, that

{Fx) = Fx)H ) = f(x,)} <. (2.17)

To see this, we suppose that x; and x, are so indexed that f(x,) is less than
Sf(x3). Suppose now that f(x) > f(x,). By Proposition 2.12, the value f(x,) is
attained between x; and x; however, this contradicts the invertibility of f
since x, is not situated between x; and x. In the same way the assumption
that f(x) is less than f(x,) leads to a contradiction. Thus, f(x,) < f(x) <
f(x,)and we get (2.17).

Suppose now that f is not monotonic on I. Then there are two pairs of
points y;, y, and ys, y, in I such that y; < y, and y; < y, satisfying

S <f2) S(r3) > f(a)- (2.18)

Without loss of generality we may assume that none of the points y,, y,, y3,
and y, is an endpoint of the interval I. (Observe: if f is continuous at t and
f(t) > ¢ [resp. f(t) < c] for a given real number c, then there is a neighbor-
hood U of t such that f(x) > c [resp. f(x) < c] for all x belonging to U and x
being in I, the domain of definition of f. This is an easy consequence of
Proposition 2.10 applied to the function g(x) = f(x) — ¢.) Then there are
points v and w in I such that for k = 1, 2, 3, 4,

v< Y < w.
By (2.17) we have

{f1) = fO}{f(r) — f()} <0

and

{f(n2) = M)} {F(32) — fW)} <G

adding the foregoing two inequalities we obtain
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{f1) = f(2)}? = {f©) — fW} {f() = f(2)} <O.
Thus,

{f) = WS () — f(y2)} > 0.

In the same way we obtain

{f() = fW}{S(y3) = f(ya)} > 0.

By multiplication of the last two inequalities, we see that

{f(3) = f2)} {f(r3) = fya)} > 0.

But this violates the inequality (2.18). We have therefore shown that f is
strictly monotonic.

We show that if f is strictly increasing, then f ! is strictly increasing; the
case of strictly decreasing is completely similar. Suppose that

<y, and x; = f"!(y), xy =7 (p).
Then
y1=f(x1) and y, = f(x,).

If we had x, > x,, then it would follow that y, > y, (because f is strictly
increasing) and this violates our assumption. If we had x, = x,, then it would
follow that y, = y, which is also against our assumption. Hence, only x; < x,
is possible and so f ! is seen to be strictly increasing.

To complete the proof, we must show that f ! is continuous on I* which
is as the range of f a closed interval of finite length by Propositions 2.12 and
2.13.

Let r be in the range of f and write r = f(s) with se I. We want to prove
that given any ¢ > 0, there exists some 6 > 0 such that, for any y in the range
of f satisfying |y — x| < J, we have | f1(y) — f"1(r)| < e

To this end, let ¢ > 0. By what we have proved already, f is strictly mono-
tonic. We may without loss of generality suppose that f is increasing. Since
s—e<s<s+e¢ wehave

fls —¢&) < f(s) < f(s + ¢).

Let 0 be the smaller of the two numbers f(s) — f(s — &) and f(s + &) — f(s).
Then

fe—e=<f(s)—d<fls)+=<f(s+e).
Hence, for any y satisfying f(s) — 6 < y < f(s) + J, we have
fls—e <y<f(s+e).
Since f is increasing, so is £ ~*. Hence,
TH{fs=a} <fT') < fH{fls+ 9},

that is,
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s—e<f My <s+e

But s = f(r) and so
7 - ol <e

We therefore have shown that, for any y satisfyingr —d <y <r + 4,
)=o)l <e

Hence, f ! is continuous at r. O

4. Miscellaneous Examples

1. The logarithmic functions f(x) = Inx and g(x) = log, x, where a > 0 and
a # 1, are continuous on (0, c0).
Indeed, we have by (1.3)

X —

C X —cC
<lnx—-—Inc<—— forx>c
C

and

cC—X

c—Xx
Inc—Ilnx<—— forx<ec.
X

In either case, Inx — Inc as x — ¢ for any point ¢ in (0, ). To verify the
continuity of g(x) = log, x we only need to recall that

log, x = (log, ¢)(In x).

2. The exponential functions v(x) = ¢* and w(x) = a*, where a > 0 and
a # 1, are continuous on (— 00, 00).

Indeed, the claim follows at once by use of Proposition 2.18. The function
v(x) = e* is the inverse function of the continuous strictly increasing function
f(x) = Inx; the fact that f(x) = In x is strictly increasing can be seen from the
inequality

x—c
<Ilnx —Inc forx>c>0,

already used in Example 1. In Section 3 of Chapter 1 there is a direct proof
of the continuity of the exponential function v(x) = e*.

To verify the continuity of the exponential function with the base a, namely,
w(x) = a*, we may use Proposition 2.18 and treat w(x) = a* as the inverse
function of the strictly monotonic and continuous function g(x) = log, x.
Another approach consists in showing that a* — a® as x — ¢. Since

a*—a‘=a‘(a°—1),
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we need to verify that a*™° — 1 as x — ¢ — 0 or, equivalently, a* > 1 as t — 0.
We shall do this now. It will be enough to consider the case a > 1 only.

Let a > 1. By the Lemma preceding Proposition 1.10, a'™ — 1 as n — o0.
We wish to show the more general result a* — 1 as t — 0. First we note that

1/n

lima™ " = limm= 1.

n—w n—oo

Thus, corresponding to any ¢ > 0, there exists some positive integer n, such
that

l—¢g<al™m<g™<l4+e (fora>1)

holds. Now, if

then
a o < gt < gl
from this it follows that
l—¢e<a'<l+e or |df—1]<ce
and we have what we wanted to show.
3. The power function h(x) = x® where x > 0 and b denotes a fixed real

number, is continuous on (0, co).
Indeed, see the Remark following Proposition 2.9.

4. The polynomial function P(x) = c,x" + ¢,—1 X" ' + - + ¢; x + ¢, where

Cps Cu_1s ---» €1, Co are fixed real numbers, is continuous on (— o0, o). The
rational function
P(x
R =,
0(x)

where P and Q are polynomial functions, is continuous on (— 00, o0) with the
exception of those points a for which Q(a) = 0.
Indeed, see the Remarks following Proposition 2.6.

5. The trigonometric function s(x) = sin x is continuous on (— 00, c0).
Indeed, by (2.9)

. T
sinx < x for0<x<5.

From this it easily follows that

|sinx| < |x| for any real number x
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[for |x| = =n/2 > 1 it follows from |sin x| < 1; moreover, s(—x) = —s(x)]. But

X —c X +c

sinx — sinc¢ = 2sin cos 2
and so
. . . xX—c x+c . xXx—c¢ |x — c|
[sin x — sinc| = 2|sin cos < 2|sin <2 ,
2 2 2 2
that is,
[sinx —sinc| < |x —¢| for any real numbers x and c. (2.19)

Thus, sinx — sinc as x — ¢. [In fact, (2.19) shows uniform continuity on
(—00,00).]
From the Remark following Proposition 2.9 we can see that the cosine
function is also continuous on (— oo, o0). However, the functions
sin x 1 COS X 1

tanx = s secx = N cotx = — s CSCX = —
Cos X COS X sin x sin x

have certain points of discontinuity; tan x and sec x are continuous for any x
such that cos x # 0 and cot x and csc x are continuous for any x such that
sinx # 0. The points of discontinuity of tanx and secx are of the form
(2k + 1)m/2 and the points of discontinuity of cot x and csc x are of the form
kn, where k denotes any integer.

6. Let f be a continuous function on the closed interval [0,2] and f(0) =
f(2). Then there are points x; and x, in [0, 2] such that |[x; — x,| = 1 and
Sxy) = f(x3).

Indeed, let g(x) = f(x + 1) — f(x) on [0, 1]. Then g is continuous on [0, 1]
and g(0) = —g(1). If g(0) = 0, then f(1) = f(0) and we are finished. If g(0) # O,
then g(0) and g(1) have opposite signs; by Proposition 2.12 there is a point ¢
in [0, 1] such that g(t) = f(t + 1) — f(t) = 0, that is, f(t + 1) = f(2).

7. Let g be a continuous function mapping the closed interval [0, 1] into
itself. Then there is a point ¢ in [0, 1] such that g(t) = .

Indeed, let h(x) = g(x) — x on [0, 1]. Then 4 is continuous on [0, 1]. Since
h(0)=9g(0) —0=g(0) >0 and h(1)=g(1) — 1 <1 —1=0, Proposition 2.12
shows that h(t) = 0 for some ¢ in [0, 1] and so we have g(t) = t.

8. The equation x2* = 1 is satisfied for some x in (0, 1).
Indeed, let h(x) = x2* on [0,1]. Then k(0) = 0 and h(1) = 2. By Proposi-
tion 2.12, there is some point ¢ between 0 and 1 such that h(t) = 1.

9. Let f be a continuous function on an interval J of finite length and x,,
X,, and x5 be points of J and p,, p,, and p; be positive real numbers. Then
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there is a point t in J such that

f(t) — plf(xl) + pi(xz) + p3f(X3)
P1 +p2tps '

Indeed, let a = min{x,, x,,x;} and b = max{x,, x,, x5} and set

v =min{f(x,),f(x;).f(x3)} and V= max{f(x,),flxz),f(x3)}.

Then f is continuous on the closed interval [a,b] of finite length and f
assumes all values between v and V. But

v(py + P2 + P3) < pif(xy) + paf(xz) + paflxs) < V(py + py + p3)
or

Uglhf(’ﬁ)'|‘pzf(xz)"‘Psf(’%)S
P1+ P2+ Ps

[Clearly, the foregoing result can be extended from the case of three points to
the case of any finite number of points.]

V.

10. A rational number x can be written in the form x = p/q, where g > 0, and
p and q are integers without common divisor. When x = 0, we take g = 1.
Consider the function f on the closed interval [0, 1] defined by

f(x) =0 for x irrational,

q q
Then f is continuous at every irrational point of (0, 1) and discontinuous at
every rational point of (0, 1).

Indeed, let ¢ be any point of (0, 1). Given ¢ > 0, there is only a finite number
of positive integers g that are not larger than 1/e; this means that in (0, 1) there
are only finitely many rational points p/q for which f(p/q) = 1/q > . Thus,
one may construct around the point ¢ a neighborhood (¢t — 4,¢ + ) with
0 > 0 such that in this neighborhood there is no point x for which f(x) > ¢
(except possibly the point ¢ itself). Thus, if 0 < |x — t| < §, then for both
rational and irrational x we have | f(x)| < &. Thus, the one-sided limits for
every point ¢ in (0, 1) satisfy

fle+)=fit—=)=0.
If t is irrational, then f(t) = 0, that is, f is continuous at ¢; if ¢ is rational, then
f(t) # 0, that is, f is discontinuous at t.
11. Let g be defined on (— o0, w0) as follows:
g(x) =0 for x irrational,
g(x) = x for x rational.

Then g is continuous at x = 0 and discontinuous everywhere else.
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Indeed, lim,_., g(x) = 0; but lim,_,g(x) does not exist for a # 0 because
any (nonempty) open interval on the number line contains both rational and
irrational points.

12. A strictly increasing (or strictly decreasing) function on an interval that
assumes all intermediate values is continuous.

Indeed, let g be a strictly increasing function on an interval J such that the
set of g(x) as x runs through J is an interval I. Consider a point ¢ in J and
suppose that t is not an endpoint of J; only minor changes in the proof are
needed if ¢ is an endpoint of J. Then g(t) is not an endpoint of I and so there
is some ¢ > 0 such that the open interval (g(t) — o, g(t) + o) is contained in I.
Take any ¢ > 0 with ¢ < ¢. Then there exist points x; and x, in J such that

g(x;) =g —¢ and g(x;) =g() + &
It is clear that x; <t < x,. Moreover, if x; < x < x,, then
g(x1) < g(x) < g(x,) or g(t)—e<glx)<g®)+e
and hence |g(x) — g(t)| < &. Now, if we set § = min{x, — t,t — x, }, then
|x —t| <d implies x; <x <X,

and hence |g(x) — g(t)| < e.
If g is strictly decreasing, then —g is strictly increasing; thus the case when
g is strictly decreasing does not require a separate proof.

13. Let a and b denote given real numbers. Then

lim{./(x+a)(x+b)—x}=a;b.

X0

Indeed, we have

(x + a)(x + b) — x? (a + b)x + ab
/ b —_— = =
O+ @) b) = x Jx+ax+b+x Jx+akx+b+x
_ a+b+ab/x
JU+a/x)A +b/x) +1

Using the continuity of the power function (see Example 3), we get

\/<1+ﬂ><1+§>_,1 as x — oo
x x

and the desired result follows.

14. Letay, a,, ..., a, denote given real numbers and put
S(x) = ¥(x + ay)(x + a) - (x + a) — x.

Then lim,_,,, S(x) = (a; + a, + - + a;)/k.
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Indeed, putting
y=Wx+a)x+a)(x+a) and z=x

in the identity

yk_Zk
_z=
y yk—l +yk—22_+_,,,+zk—l’
we obtain
+a;) - Y -
S = F @)t a) = x

P xR xR

@+t a) (@t g a)x+ o+ (a,a, - a,)/x*t
B (U +ay/x) (1 + a0+ +1 '

Since \’/(1 +a;/x)---(1 + a,/x) > 1 as x - oo, we have

. a, +a,+ - +a
lim S(x) = — 2 k,

xX—00 k

15. Let m be a positive integer; then

"x — 1 1
lim\/; =—.
x—1 x—1 m

Indeed, let x = t™ Then ¢ = x™ is continuous for x > 0 (see Example 3)
and ¢t — 1 as x — 1. Thus,
Mx —1 t—1 1 1

lim = lim = lim = —,
w1 X —1 o =1 gt ™24t + 1l m

16. Let m and n be positive integers; then
. YUx—1 n
lim f =—,
-1 Yx —1 m

Indeed, we have (using Example 15)

fim VE D VX Ly x =1 L
x—>1\"/;—-1 -1 X —1 x—*l\'/;.—l m1l m

17. Let p, g, r, and s be positive integers; then
. xPlh—1 ps
lim =—.
-1 XTS—1  gr

Indeed, let x = t% Then t = x4 is continuous for x > 0 (see Example 3)
and t — 1 as x — 1. Thus, by Example 16,
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. xPl4 1 CtP—1 P
lim = lim ==
x1 X = = tP—1 q
On the other hand,
x—1 s

lim =,
o1 X —1 r

Thus, the desired result follows.

18. Let a and b be given real numbers; then

sinax a

im — =_.
«o0Sinbx b
Indeed, we have
sinax sinax bx a
sin bx ax sinbx b’

But (sint)/t —» 1 as t — 0 by (2.8).

19. We have
lim {In(x + 1) — Inx} = 0.

X~

Indeed, since

1
x+ and Int—-0ast—1,

In(x + 1) —Inx =1n

the desired result follows.

20. We have
lim Ind + x) =1
x=0 X
Indeed, by (1.3)
L <ln(1+x)<1 forx >0

1+ x X

and

1<1n(1+x)< ! for -1 <x<0;
b 1+ x

the claim follows immediately.

21. Let a > 0, a # 1; then

hm M = 10
X

x—=0

g, e.

89

(2.20)

2.21)
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Indeed, (2.21) follows from (2.20) by noting that
log,(1 + x) = (log, e)In(1 + x).

22. Leta >0, a # 1; then

a*—1

lim
x—0 X

=lna. (2.22)

Indeed, let us set a* — 1 = y. Then y — 0 as x — 0 because the exponential
function is continuous. Moreover, x = log,(1 + y) and so, by (2.21),
a*—1 y 1

1‘ —Zl' = =l .
o x yolog(l+x loge

Note that (2.22) implies n(\'/a —1)>Inaasn— oo whenwelet x = 1/nin
(2.22); we have already come across this result in Proposition 1.10.

23. Let c be a given real number; then

. T+xf—-1
lim——— =c¢.
x=0 X

(2.23)

Indeed, let (1 + x)° — 1 = y. Then y — 0 as x — 0 because the power function
is continuous (see Example 3). But (1 + x)* =1+ y gives c[In(l + x)] =
In(1 + y) and so

(1+x)“——1_X_ y .c_ln(1+x)
X T x  In(l+y) x
By (2.20)
Y fory—»0 and 111_(1+_)c)_)1 for x - 0;
In(1 + y)

the desired result (2.23) follows.

24. Let
o=l S and ko= i *
Then
fx)=1  for|x|> 1,
=—1 for|x| <1,
=0 forx= +1.
Indeed, for | x| > 1 we have x2" — o0 as n — o0. Thus, for [x| > 1,

x—1 1—1/x*

xz"+1=1+1/x2"_)1 asn = oo
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For |x| < 1 we have x2" —» 0 as n - o and so, for |x| < 1,

x2" —1
——7— —1 asn— 0.
x“"+1

For x = +1 we have x2" = 1 and so f(+1) = 0.
In an entirely similar way we obtain g(x) = x for |x| > 1, g(x) = x2 for
|x| <1, ¢g(1) =1, and g(—1) = 0. Thus, g is discontinuous at x = — 1 only.

25. We have
1—cosx 1
Iim—05— = —. 2.24
xl.r,% x2 2 (2.24)

Indeed, putting x = 2t, we get

1—cosx 1—cos2t sin®’t 1sintsint

x2 42 xur 2t ot

and the desired result easily follows from (2.8).

26. We have
2 2
. CcoSmx — COsSnx hn*—m
Iim 5 =
x—~0 X 2
Indeed,
1 —cosnx 1 —cosmx ,1 — cosnx ,1 —cosmx
— =n —m 5
x2 x2 (nx)? (mx)

and we can use (2.24) to deduce the result in question.

27. We have
. tanx —sinx 1
Im—7m™m—m———— =

x=0 X 3 - 5 ’
Indeed, we have

sinx — (sinx)(cosx) sinx1—cosx 1

x3cos x P x2  cosx

and we can use (2.24) to get the desired result.

28. We have

. /1 —cosx 1
IimY—— = ——,
x—0 X \/—é

Indeed,
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,/1—cosx_\/l—cosx\/1+cosx_\/l—coszx sin x
x

x \/T+cosx x\/1+cosx_x\/l+cosx

and we use (2.8) to get what we are after.

29. We have

m x — sin2x 1

im— = ——.

x-»0 X + sin 3x 4

Indeed, since
x —sin2x  2(x—sin2x)/2x 23 — (sin2x)/2x
x +sin3x 3 (x +sin3x)/3x 31+ (sin3x)/3x

we see that
x—sin2x 23-1 1
im . =71 = ——.
=—0X +sin3x 33+1 4
30. We have
hg VXX 46— /xP+2x—6 |
%3 x%—4x + 3 3
Indeed,
\/x2—2x+6—\/x2+2x—6
x2—4x+3
_ —4(x — 3)
(x2 — dx + 3)(/x> = 2x + 6 + /x? + 2x — 6)
—4

C(x= (/X2 —2x + 6 + /x% + 2x — 6)
and so the limit in question equals
-4 1
——— or —-.
29 + /9 3
31. We have

2n+1 + 3n+1
lim —=3.
D T

Indeed,
2n+1 + 3n+1 B 2(%)11 + 3
Y1y G+l

and the desired result follows.
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32. Let f(—2)= —-1,f(—1)=0, f(1) =1, and

x24+x—=2
f(x)_x3+2x2—x—2 forx # -2, —1,1
Then f is discontinuous for x = 4 1, but continuous for x = —2.
Indeed, for x # —2, —1, 1 we have
x+2)(x—1 1

x+2x—1Dx+1) x+1
But

) 1 1
lim 1= oo and lim

= — 00.
xi-1X + -1 X+ 1

In addition,

On the other hand,

33. We have

lim x¥(/x + 1 +/x—1-2/x) = —&.

X0

Indeed, since

VAl x =12 x = (xH 1= D) - (x = x - D)

1 1

N R NN RV
Vr—1-x+1

N TN TN ED)

we have
X x+ 1+ /x—1-2/x)

—2(/x)°
(Q/x+1+\/>)(\/;+\/x—1)(\/x—l +\/x+1)

-2 1

NS N S N S N Ea v R

as x — 00.

34. Let A and B be two bounded sets of real numbers and let C be defined
by
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£f(x)

£l £(x) ]

f(x) x

Figure 2.10

C={x:x=a+ bwhereacA,beB}.

Then C is bounded above and sup C = sup 4 + sup B.

Indeed, for any xe C, x = a + b where ae A and be B. Now a < sup 4 and
b < sup B. Thus, x < sup 4 + sup B. This holds for all xe C; thus sup 4 +
sup B is an upper bound for C, C is bounded above, and supC < sup 4 +
sup B.

By the Remark following the definition of supremum, for any ¢ > 0 there
is an ae A such that a > supA4 — 1¢ and an element beB such that b >
supB — J&. But a + beC. Hence, supC >a + b > sup A + sup B — . This
is true for all ¢ > 0 and thus sup C > sup 4 + sup B. Thus, finally, sup C =
sup A + sup B.

35. Let A and B be two bounded sets of real numbers. Then
sup(4 U B) = max{sup 4, sup B}.

Indeed, A U B o A. Thus, sup(4 u B) is an upper bound of 4. Hence,
sup(A4 v B) > sup A4 and similarly sup(4 U B) > supB.Ifae A U B, thenac 4
or aeB. Thus, a <supA or a <supB and in either case a < max{sup 4,
sup B}. Hence, we have sup(4 v B) = max{sup 4, sup B}.

36. Knowing the graph of the function y = f(x), Figure 2.10 illustrates
how to plot the graph of the function y = f[ f(x)].

Exercises TO CHAPTER 2

2.1. The functions f and g are defined as follows:
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22,

23.

1

- if-l<x< -}
JO= =307 | =T
=2x f—f<x<i,
1 1
= ifz<x<1,
2(1 — x)
=0 fx>lorx< —1,
and
2x .
g(x) = ifx>1,
=§ if-1<x<l,
2 1
— 2 < o1
2x

Show that f[g(x)] = x for all values of x but g[ f(x)] is different from x outside
the interval (— 1, 1).

[Hint: If § < x < 1, then g[f(x)] = x; if —2<x <L g[f()] =xif x> 1,
gL/ =90)=0#xif -1 <x < —4,g9[f(X)] = x;and if x < —1,g[ f(x)] =
0 # x. Note that g is increasing but its values are confined to the interval
(—1,1),and so g[ f(x)] = x only for x in (— 1, 1).

On the other hand, if x > 1, then

2x — 1 1 1
st =1 (25 >=5[1 (i _Eﬂ -x

f-1<x<l,

9] = f(Gx) = 2(3x) = x;

2 1 2 1
f[g(x)]=f(— "“>=—5<1_ X+ )=x.

ifx< —1,

2x 2x
Hence, f[g(x)] = x for all x.]

The function f is continuous in (a, b) and f(x) is not zero for any x in (a, b). Show
that f is of constant sign in (a, b).

[Hint: For any positive ¢, and any A, B in (a,b), [tf(4) + f(B)]/(t + 1) lies
between f(A4) and f(B) and therefore, since f is continuous, is a value of f for an
x between A and B and so different from zero. Suppose that f(A) > 0; take
t = | f(B)I/f(A), then f(B) # —| f(B)| and so f(B) > 0. In the same way it follows
that if f(A) < 0, then f(B) < 0.]

Let

[x — i

d(x,y) = T+ =yl

Show that d(a, b) < d(a, c) + d(b, c) for any real numbers a, b, and c.



96

24.

2. Limits and Continuity

[Hint: Since a — b = (@ — ¢) + (c — b), we have
la—bl<|a—c|+|c—b|
Evidently |c — b| = |b — c|. But the function

t 1
[:—:1—————v
10 141t 1+t

is increasing for ¢ > 0 and so

la — b| < la—c|+|b—c|
l+la—bl " 1+la—c|+|b—c|

However, it is clear that

la—c|+|b—c| < la —c| |b —c|
l+jla—c|l+lb—cl  l4+la—cl 1+|b—c|

]

A function f is said to be concave up on (A4, B) if

Sltx+ 1 -yl <tf) + (1 = 0)fy

whenever A < x < B, A < y < B,0 < t < 1. Geometrically, this means that if P,
0, and R are any three points on the graph of f with Q between P and R, then
Q is on or below chord PR.

Show that if f is concave up on (4, B) and [a, b] is any closed subinterval of
(A, B), then f is continuous on [a, b].

[Hint: We show that the set of all values f(x) as x ranges over the interval
[a,b] is bounded above and below and then establish that there exists a con-
stant K so that for any two points x, y of [a,b] we have

1f) = S| < K|x — yl.

We observe that M = max{ f(a), f(b)} is an upper bound for f on [a, b], since
for any point z = ta + (1 — t)b in [a, b]

@) < i@+ (1 —0)f(b) <tM +(1 — )M = M.

But f is also bounded from below because, writing an arbitrary point in the
form (a + b)/2 + s, we have

a+b 1 fa+b 1 fa+b
(3) = (5 ws) (3 )

f(a;b—s>s2f<a;b>+f(a;b—s>.

Using M as an upper bound,

or

SO
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25.

2.6.

2.7.

This shows that M and m are upper and lower bounds of f on [a, b], respec-
tively.

We next pick & > 0 so that a — h and b + k belong to (4, B), and let m and M
be the lower and upper bounds for f on [a — h,b + h]. If x and y are distinct
points of [a, b], set

ly — x|

y—x, t=—"—-—.
[y — x| h+1y—x|

z=y+

Then z belongs to the closed interval [a — h,b + h], y = tz + (1 — t)x, and we
have

S =@ + 1 - 9f(x) =t[f(&) — f(x)] + f(x),

[y — x|

SO) = S0) < oM — m) <2

(M —m)=Kly — x|,
where K = (M — m)/h. Since this is true for any x and y in [a, b], we conclude
that | f(y) — f(x)] < K|y — x| as desired.]

Show that f is concave up on (4, B) if and only if for all sets of distinct x,, x,,
X3 belonging to (A4, B),
(3 = x2) (1) + (%1 — x3)f(x2) + (x2 — x1)f(x3)

(1 — x2)(x2 — X3)(x3 — x{)

is nonnegative.
[Hint: Let x; < x, < x3 and consider the determinant

1 x; flxy)
1 x, f(x;)
1 x5 f(x3)

Interpret this determinant geometrically.]

Let f;, />, and f; be continuous functions on [a,b] and let f(x) denote that one
of the three values f(x), f3(x), and f5(x) that lies between the other two. Show
that f is continuous on [a, b].

[Hint: Note that

f&x) = f1(x) + £2(x) + f3(x) — max{ f;(x), f2(x), f3(x)}
— min{ f;(x), f5(x), f3(x)}.]

Any continuous function f mapping the set of real numbers into itself such that
f(x + y) = f(x) + f(y) for any real numbers x and y is of the form f(x) = cx,
where c is a constant. Verify this claim.

[Hint: For any positive integer n, we have, by induction on n, f(nx) = nf(x);
replacing x by x/n, we see that f(x/n) = (1/n)f(x). On the other hand, f(0 + x) =
J(0) + f(x), hence f(0) = 0;and f[x + (—x)] = f(x) + f(—x) = f(0) = 0, hence
f(—x) = —f(x). Thus, for any pair of integers p, g such that g > 0, we have
f(px/q) = (p/q)f(x); in other words, f(rx) = rf(x) for any rational number r. If
we let x = 1 and denote f(1) by ¢, we obtain f(r) = cr.

Let p be any irrational number. We choose for p an approximating sequence
ri, T2, I3, ... Of rational numbers, for example, the sequence of finite decimal
fractions approximating p. Then, for n=1, 2, 3, ..., f(r,) = cr,. Since f is
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2.8.

29.

2.10.

2.11.

2.12.
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assumed continuous on the entire number line, we obtain, on passing to the
limit as n — oo,
f(p) = lim f(r,) = lim cr, = cp.]

Show that if g is any continuous function mapping the set of real numbers into
itself such that g[(x + y)/2] = [g(x) + g()]/2 for any real numbers x and y,
then g is of the form g(x) = cx + a, where ¢ and a are constants.

[Hint: Indeed, for y = 0, we obtain g(x/2) = [g(x) + g(0)1/2 = [g(x) + a]/2,
where a = g(0); thus,

gx)+9(y)  [x+y\ glx+y)+a
AN A

that is, g(x + y) = g(x) + g(y) — a, and, with f(x) = g(x) — a,
foe+y) =)+ f()

But g is continuous; hence f is continuous and so, by Exercise 2.7, f is of the
form f(x) = cx. This shows that g is of the form g(x) = ¢x + a, where c and a are
constants. ]

Let [a, b] be a closed interval of finite length and f be a continuous function on
[a,b]. If for each x in [a, b] there exists a y in [a, b] such that

LS < 3/,

show that there is a point ¢ in [a, b] for which f(t) = 0.

[Hint: The function 2 is continuous on [a, b] and hence achieves a minimum
value ¢ at some point ¢ of [a, b]. But there exists an s in [a, b] such that | f(s)| <
3 ) = %\/2 Thus, f? takes the value 4c on [a,b] and hence ¢ < ic. Since
¢ = 0, it follows that ¢ = 0.]

Let the numbers of the open interval (0,1) be expressed as finite or infinite
decimals x = 0.a,a,4a5...4,..., and let f(x) = 0.0a,0a,0a;.... Is f discontin-
uous for every value of x represented by a finite decimal?

Show that a continuous function on a closed interval J of finite length which
takes on no value more than twice must take on some value exactly once.

[Hint: Let M be the maximum value which the function f takes on J. If
f(x) = M nowhere else on J, we are done; if not, let m be the minimum which f
takes on between the two points where the value of f is M. Then evidently
between these two points f takes on all the values m < a < M at least twice, and
thus, by assumption, exactly twice. But the value m is taken only once, since for
it to be taken twice, either within or without the interval between the two
maxima, f would have to take on some of the values m < a < M still more
times. ]

A function f is said to be periodic, with period g, if f(x) = f(x + a) for all values
of x for which f(x) is defined. Show that no periodic function can be a rational
function, that is, a quotient of two polynomials, unless it is a constant.

[Hint: Let f be a periodic function with period a and suppose that f is a
rational function so that f(x) = P(x)/Q(x), where P and Q are polynomials. If
f(0) = ¢, then P(x)/Q(x) =c when x =0, a, 2a, 3a, .... Thus, whatever the
degree n of the equation P(x) — cQ(x) = 0, it is satisfied by more than n values
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2.13.

2.14.

2.15.

of x and this is only possible if P(x) — cQ(x) = 0 for all values of x, that is, if
f(x) = ¢ (constant).]

Show that if P(x) = x™ + a,x™™ ! + a,x™ % + - + a,,, where m is a positive
integer and a4, a,, ..., 4,, are real numbers, then there exists a number X such
that, when x > X,
ix™ < P(x) < 3x™

[Hint: For x > 1,

lagx™ ! 4+ apx™ 2 e al < lagx™ T 4 |apx™ T2+ g, < AXTT
where 4 = |a,| + |a,| + - + |a,,|- Thus,

la,x" ' + a,x™ 2+ + a,| <ix™ if x> X =max{l,24}.

That is,
xm

Nj=

—Ax"<ax" ' +a,x™ P+ +a, <
and the claim follows on addition of x™.]
Let

In(x 4+ 2) — x2"(sin x)

T for0 < x <im
x

f(x) = lim

Describe the graph of f in the interval [0,47] and note that f does not vanish
anywhere in this interval, although f(0) and f(37) are of opposite sign.
[Hint: Note that

f(x) =In(x + 2) for0<x <1,
=4(In3 —sinl) forx=1,
= —sinx for1 < x <4n.]

Show that a function f which, in a given interval [a, b], possesses either of the
properties

(i) it attains its largest and smallest values for any closed subinterval [a’, 5] of
[a, b] at least once in the subinterval;
(i) it attains at least once in any subinterval [a’, b] of [a, b] every value between

fl@’) and f(b);

does not necessarily possess the other.
Show further that a function which possesses both these properties in [a, b] is
not necessarily continuous on [a, b].
[Hint: On the interval [a,b] with a = —1 and b = 1, consider the functions

f(x) =0 xrational,
=1 xirrational;
glx) = (1 — x?)sin(x2?) for x # 0,
=0 for x = 0;
h(x) = sin(x"!) for x # 0,
=0 forx =0.
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2.16.

2.17.

2.18.

2.19.

2.20.

2. Limits and Continuity

Then f is an example of a function showing that (i) does not imply (ii), g is an
example of a function showing that (ii) does not imply (i), and, lastly, 4 is an
example of a function that shows that (i) and (ii) in combination are not enough
to secure continuity throughout [a, b]. Note especially that while 1 is the upper
bound of g(x) on [ —1,1], 1 is never attained and that the graph of g is contained
between the parabolic arcs y = +£(1 — x2)for —1 < x < 1]

Letp>1,q>1,and y,, y,, ..., ¥, be functions defined by the relations

yr= xRy, = {x(xy )Y,y = {x(xy,—) .
Find y = lim,_,, y,.
[Hint: Let a4, a,, ..., a, be the exponents of x in y,, y,, ..., ¥, respectively.
Then
1 1 1
a,=—(1+-], a,=a(1+—],
p q rq
+ 2 (1 + 2 ! >
a;=a,+—=a —t =,
P "' T pg pPe?
( L A )
a,=a - n-1,n—1 |°
"' pg p¢? Pl
Hence,
qg+1
. asn— oo
pq—1
and so

y= x(q+l)/(qul).]

If f is defined on (0, c0), has inverse f !, and satisfies the relation
f(x) + f(y) = f(xy) forallx >0andy>D0,

find a corresponding relation satisfied by f .

[Hint: We must have f ' {f(x) + f(»)} = f " {f(xy)} = xy. Put f(x) = u and
f(y)=v.Then x= fY(u), y = f'(v), and £ Y(u + v) = f ' (w)f ~*(v). The last
equation is the relaltion we desire.]

Let f(x) = (ax + b)/(cx + d), where we assume that ad — bc # 0. Show that
f7Y(x) = (b — dx)/(cx — a). In particular, f = f ! whena = —d.

Let f(x) =1 —|x| if |x| <1 and f(x) = 0 if |x| = 1. Sketch the graph of y =
f(x)fla—x)if(i))a=0, (ii)a = 1, and (iii) a = 2.

Find

1 1 1
lim <1 + Ecosx + Zcos2x + o+ ?cosnx).

[Hint: Let

S =1 + a(cos x) + a?(cos 2x) + -~ + a*(cos kx)
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and
T = a(sin x) + a?(sin 2x) + --- + a*(sin kx).
Then
S+iT =1+ (cosx + isinx) + a®(cos 2x + isin2x) + --*
+ a*(cos kx + isin kx).
Putting A = cos x + isin x, we obtain
S+iT=1+ad + a*4% + -+ + a*4*

ak+1Ak+1 —1 ak+1Ak+1 —1 aA—l 1

ad—1 ~  ad-1 ad™! —1

ak+2Ak _ ak+1Ak+1 — aA—l + 1
al—aA+A ) +1

Hence,

a**2(cos kx) — a**![cos(k + 1)x] — a(cos x) + 1

S =
a? — 2a(cosx) + 1

Finally, letting k = n and a = 1, we see that

lim 1_'_1 +1 e 1 2(2—cosx)]
i ~COo —co ce 4 —-COSHX | =——
- 2 SX 4 Sex 2" 5 —4cosx



CHAPTER 3

Differentiation

1. Basic Rules of Differentiation

Definition. Let f be a real-valued function defined on an open interval (a, b)
containing the point s. We form the quotient

J@©) — f(s)
t—s
with a <t < b and ¢ # s. If the limit
1 [0 = 1)
t—s t—s
exists (as a finite real number), its value is denoted by f(s); in this case f'(s)

is called the derivative of f at s and f is said to be differentiable at s. If f is
differentiable at every point of a set S, then f is said to be differentiable on S.

Remark. Consider the graph of the function f and let (s, f(s)) and (¢, f(t)) be
two points on the graph of f. The straight line containing the points (s, f(s))
and (¢, f(t)) is a secant line to the graph of f and has the slope

J©) — f(s)

t—s
At t — s, the slope [ f(t) — f(s)1/(t — s) of the secant line approaches the slope
m of the tangent line to the graph of f at the point (s, f(s)) and m = f'(s). See
Figure 3.1.

Definition. Let f be a real-valued function defined on a closed interval [a,b].
Then fis said to be differentiable at the endpoints a and b if
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wy

s t
graph of £ ecan

(t,£(t))

_—~ tangent

Figure 3.1

F@=1im?O=T@ ) = i O = S®)
t—a ity t—b

tda

exist (as finite real numbers); the notation ¢ | a signifies that ¢ approaches a
from above, that is, t > a, and t 1 b signifies that ¢ approaches b from below,
that is, t < b.

Proposition 3.1. Let f be defined on an interval J. If f is differentiable at some
point s of J, then f is continuous at s.

Proor. For all points x of J, x # s, sufficiently close to s the expression

Jx) = f(s)
X —s
has bound M, that is,
|f(x) — f(s)] < M|x — s]. (3.1)
Indeed, for all points x of J, x # s, let
by L9 =1
xX—5

But lim,_,; h(x) = L, where L is a finite real number. Let ¢ = 1 in the defining
condition of limit. Then there is a subinterval I of J, with s not in I, such that

L—-1<hx)<L+1

for any x in I. Now, take M = max{|L — 1|,|L + 1|}.
As x — s, the expression on the right-hand side of inequality (3.1) tends to
zero; hence f(x) — f(s) as x — s and the continuity of f at s is established. [
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REMARKS. Another way of proving Proposition 3.1 is to note that

f(x)—f(S)—f() f()( —5) > f(s):0=0 asx—s.

The converse of Proposition 3.1 is not true; a function can be continuous
at a point without being differentiable at that point. For example, f(x) = | x|
is continuous at x = 0 but is not differentiable at x = 0; the limit

o XL = 10)
x—0 X — 0
does not exist. The expression |x|/x equals 1 for x > 0 and equals —1 for
x < 0; for x = 0 the expression |x|/x is not defined.
It is possible to construct functions continuous everywhere on an interval
but differentiable nowhere on the same interval; see Proposition 7.65.

Proposition 3.2. Let f and g be functions defined on [a,b] and be differentiable
at a point x of [a,b] and let k be a fixed real number. Then kf, f + g, fy, and
f/g [where g(x) # 0] are differentiable at x, and

(@) (kY (x) = kf'(x);
i) (f + 9)(x) = f'(x) + g'(x);
(iii) (fgY(x) = f'(X)g(x) + f(x)g'(x);
(SN 9 (x) — g(x)f(x)
(iv) (=) (x) = 3 .
g g (x)

Proor. Parts (i) and (ii) are easy consequences of Proposition 2.5. To verify
part (iii), we let h = fg and note that

h(t) — h(x) = f(O) [g(0) — 9(x)] + g(¥) [S() — f(¥)].

Dividing by t — x and observing that fand g are continuous at x (by Proposi-
tion 3.1), we let t — x and see that part (iii) follows.
Finally, let w = f/g. Then

wit) —wx) 1 < (x)f(t) —fx g - g(X)>‘

t—x  gt)gx) t—x /&) t—x
Letting t — x, we obtain (iv). O
Proposition 3.3 (Chain Rule). Let f be a function defined on an interval J and f

be differentiable at some point x of J; let g be defined on an interval I which
contains the range of f, and let g be differentiable at the point f(x). If, for t in J,

h(t) = gLf(®)],

then h is differentiable at x and

K(x) = g'[f(x)]f'(x). (3.2)
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Proor. Let y = f(x). By the definition of derivative, we have
SO — f(x) =t = )[f'(x) + u@®],
g9(s) — g(y) = (s — M g'(Y) + v(s)],
where teJ,sel, and u(t) - 0ast — x, v(s) > 0 as s —» y. We let s = f(t). Then
h(t) — h(x) = g[f()] — g[f(x)] = [f(©) — f(x)1[g'(y) + v(s)]
=t —x)[f'(x) + u®I[g(y) + v(s)],

or,ift # x,

h(t) — h
% =[g'(y) + v(s)]Lf"(x) + u(®)].

Letting ¢ — x, we see that s — y, by the continuity of f'at x (see Proposition
3.1); thus, as t — x,
h(t) — h(x)

" =g (NS %) O

Proposition 3.4. Let f be continuous and strictly monotonic on an interval I,
moreover, let f be differentiable at some point x of I with f'(x) # 0. Then the
inverse function f 7! is differentiable at y = f(x) and
1
O =5~ (3.3)
S
Proor. Let I* be the interval on which f ! is defined (see Proposition 2.18).
Letwel* w # y,and w— y. Then [with v = fY(w),vel,v # x,v - x]
W~ _ v—x 1 1

w—y O =) LSO - v —% )

o0
ReMarks. The relation (3.3) is easy to remember. Since h(x) = x obviously
yields K'(x) = 1, we get by Proposition 3.3 that f [ f(x)] = x implies

W) =1.

Figure 3.2 illustrates formula (3.3) geometrically. The graphs of f and f !
are reflections of one another in the line y = x. The tangent lines I, and [, are
also reflections of one another in the line y = x; we have

f(x)—b
b

X

—b
and (f7'Y(y) =slope of I, = J—%m

f'(x) =slope of |, =

are reciprocals of one another.
Let y = f(x). Then f'(x) can also be written

dy d ,
zi;a af(X)’ nya Dxf(x)a andy'
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3
xd

(x,£(x))

~
v

Figure 3.2

For w = g(y) and y = f(x) we can write (3.2) in the simple form

dw dw dy
— == — D = D M D . 3.4
dx dy dx W= 5w Y G4
Similarly, for y = f(x) and x = f~*(y) we can write (3.3) in the simple form
dx 1
= D x = . 35
ay " dyax * P¥py )

Definition. A function f defined on an open interval (a, b) is said to be twice
differentiable at s in (a, b) if f is differentiable on a neighborhood of s and if f’
has a derivative at s. The derivative of f* is called the second derivative of for
the second order derivative of f and its value at s is denoted by f”(s). If this
situation prevails at all points s of (a, b), then fis said to be twice differentiable
on (a,b) and we denote the second derivative of f by f”. Instead of saying that
Jfs twice differentiable at s we can also say that f has a second derivative at s
or that the second derivative of f exists at s. We say that the third derivative
of f exists at s if f' is differentiable on a neighborhood of s and if /" has a
derivative at s; the third derivative at s is denoted by f"(s). Proceeding
inductively, we say that the nth derivative of f exists at s if the derivative of
order n — 2 of f'is differentiable in a neighborhood of s and if the derivative
of order n — 1 of f has a derivative at s. We denote by /™ the nth order
derivative of f.
Let y = f(x), then f™(x) can also be written

d"y

dn
-7 n n n)
T *dx,.f(x), Dy, Dif(x), and y™.
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2. Derivatives of Basic Functions

1. Let f(x) = ¢, where c is a fixed real number. Then f'(x) = 0
Indeed,
S ) f ()

760 = im? 2 = _im ST ~timo = 0.

t—x t—x t—Xx =x

2. Let g(x) = x", where n is a positive integer. Then g'(x) = nx""".

Indeed, for t # x we have

t" — x"
— tu-—l + tn—2x 4+ 4 txn—z + xn-—I‘
t—Xx
Thus,
’ : tn - x" : n—1 n—2 n—2 n—1
g'(x) = lim =lim@E" + " 2x + o+ X" 4 X"

—x 1—=x

n—1

= nx

3. For x > 0, let f(x) = Inx. Then f"(x) = 1/x.
Indeed, by (1.3)
1 Int—Inx

1
—g———— < — forx>t
t t—Xx X

and

1 Inx—Int 1
< —< - forx<t.
X X —1 t

In either case
Int —1 1
f'(x) = lim nx=_.
t=x t—Xx X

REMARK. Another method for obtaining the derivative of In x is to note that

Int —Inx _ 1In[1 + (¢t — x)/x]
t—x x (t—x)x

and then use (2.20).
4. For x > 0, let g(x) = log, x, where a is a fixed positive real number differ-

ent from 1. Then g’'(x) = (log, e)(1/x).
Indeed, log, x = (log,, ¢)(In x) and so

ﬂogax)—-ﬂogae) ﬂnx)—-ﬂogae)—
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S. Let h(x) = a*, where a is a fixed positive real number different from 1 and
x is any real number. Then #'(x) = (Ina)a*.
Indeed, for —c0o < x < owand0< y < oo

y=a* ifand onlyif x =log,}y.
Thus, by (3.5),

D,y = (log.a)y = (Ina)a”

1
B D,x
In particular,

d
E(e") = e*,

REMARK. Another method for obtaining the derivative of a* is to note that

at - ax at—x _ 1

t—Xx t—Xx

and then use (2.22).

6. For x > 0, let w(x) = x®, where b is a fixed real number. Then w'(x) =
bxbt.
Indeed, since

xb — eb(ln x)’

we get, letting w = e¢” and y = b(In x),
dw dw dy  (b\ ,/b\
dx dy dx—e<x>_ x = bx

REMARK. Another way of getting the derivative of the power function x? is to
observe that

t? — x?P B xb—l[] + (- x)x]* -1
t—x t — x)/x

and then use (2.23)

7. For x > 0, let v(x) = x*. Then v'(x) = x*(1 + In x).
Indeed, x* = e*®* and so, putting v = e” and y = x(In x), we get
d dv d
é = d—z-é — ¢’(1 +Inx) = x*(1 + Inx).

8. Let f(x) = sin x. Then f'(x) = cos x.
Indeed, since
t—Xx t+ x

sint — sinx = 2sin——cos
2 2’
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we have
int — si 2 t— t
19 = tm = i in ) Feos
. sin[(t — x)/2] .. [(t+X):|
=lim———————-limcos}| ——— | = cos x
—x (t—x)/2 ox 2
by (2.8).

9. Let g(x) = cos x. Then g'(x) = —sinx.
Indeed, since cos x = sin(in — x), we have by Proposition 3.3

d
—(cosx) = —d—[sin(%n —x)] = —cos}n — x) = —sinx.
dx dx

REMARK. Since

sin x cos x 1 1
tanx = , cotx=——, secx = , and cscx = —
cos x sin x cos x sin x

it is easily seen by using part (iv) of Proposition 3.2 that

d d
E(tan x) = sec? x, E(cot x) = —esct x,
d d
—(secx) = (secx)(tanx), and ——(cscx)= —{cscx)(cotx).
dx dx
10. The inverse sine function, denoted by sin~!, or arcsin, is defined as
follows:
. . . . 4 n
y =sin"!x if and only if x=s1nyand—ESyS§.

(The domain of sin™! is the closed interval [—1,1], and the range is the
closed interval [ — /2, 7/2].)
For —1 < x < 1 we have
d 1
—(sin 7' x) = ——
dx 1 —x?
Indeed, D,(sin y) = cosy > 0 for any y in the open interval (—n/2,7/2). In
this case the derivative D,y exists and
1 1 1 1

ny=———= = = ’
D,x cosy /1 —sin?y J1—=x?

the root is positive because cos y > 0.

REeMARKS. The inverse cosine function, denoted by cos ™!, or arc cos, is defined
as follows:
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y=cos!x ifandonlyif x=cosyand0<y<n.

(The domain of cos™ is the closed interval [—1,1], and the range is the

closed interval [0, 7]. Moreover, cos ! x = (n/2) —sin !xfor —1 < x < 1)
It is not difficult to show that

d 1
a;(cos“x) = "= for —1 <x < 1.

11. The inverse tangent function, denoted by tan™!, or arctan, is defined as
follows:

y=tan'x ifand onlyif x = tanyand —g<y<g.

(The domain of tan " is the set of all real numbers, and the range is the open
interval (—7/2,7/2).)

For —o0 < x < o0 we have

1
1+ x%

%(tan_1 X) =

Indeed, for any real number x
D 1 1 1 1
xy = — = = = .
D,x sec’y 1+tan’y 1+ x?

REMARKS. The inverse cotangent function, denoted by cot™, or arccot, is
defined by

y=cot™'x ifandonlyif x=cotyand0 <y <.

(The domain of cot ™! is the set of all real numbers and the range is the open
interval (0, ). Moreover, cot ™! x = (n/2) — tan ™! x for all real numbers x.)
It is not difficult to see that

d 1
E(cot‘lx)= T for —o0 < x < co.

1

12. The inverse secant function, denoted by sec™, or arcsec, is defined as

follows:

y=sec 'x ifandonlyif x=secy, y#n/2,and0<y<m.

(The domain of sec™ is (— oo, —1] together with [1, o) and its range is

[0, /2) together with (n/2, ]. Moreover, sec ! x = cos ™*(1/x) for |x| > 1.
For |x| > 1 we can see that

d
—(sec™tx) =

dx

1
x|l /x* =1
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Note: The inverse cosecant function, denoted by csc ™, or arc csc, is defined
by

1

y=csc'x ifandonlyif x=cscy,y#0,and ——<y<

N

(The domain of csc™! is (— oo, —1] together with [1, c0) and its range is

[—m/2,0) together with (0, r/2]. Moreover, csc ™! x = sin*(1/x) for |x| > 1.)
For |x| > 1 we can see that

;-);(csc~1 X) =

1
_le,/xz -1

Remark. The graphs of the six inverse trigonometric functions are obtained
by reflecting each of the graphs in Figure 3.3 about the line y = x; Figure 3.4
shows the resulting graphs. Figure 3.5 shows the graphs of some additional
functions that are of interest.

13. The hyperbolic and inverse hyperbolic functions were introduced in Sec-
tion 4 of Chapter 1. It is easily seen that

d d
—(sinh x) = coshx, ——(coshx) = sinhx, i(tanh x) = sech? x,
dx dx dx

d R d

——(coth x) = —csch?x, ——(sech x) = —(sech x)(tanh x),

dx dx

i(csch x) = —(csch x)(coth x),
dx

and
d 1
—(sinh ! x) = ——,
dx 1+ x?
d 1
el -1 — .
Ix (cosh™' x) \/xz——l if x > 1,
d _ 1 .
E(tanh 1x)= g if x| < 1,
d (coth™ x) if |x] > 1
— x -
dx 1—x2 ! x| ’
d (sech™ x) el S f0<x<1
— x) = i X ,
dx x/1 — x?
d -1
L esch™lx) = ——— ifx #0.

dx

Ix[/1 + x?
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~—=?X

/2

sin x, -T/2 < x £ /2

y =

¢csc X, =M/2 € x £ TW/2, x #0

y =

cos X,

y =

0<x<T, x #1/2

sec X,

y =

0 <x < T

cot x,

y =

y = tan x, =T/2 < x < m/2

Figure 3.3
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y
y
y
/2 n/2
x 0
o 1 1
_ .. -1 -1
Yy = sin X y = csc X
y y
T[ / W
) /
0 1 0 1
-1 -1
y = cos X y = sec X
y
m
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/2
X >
0 0
y = tan™! x
-1

Figure 3.4
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———————---—~—‘~7\—- «y=T"T/2

X
-.\/_-___ _______ (——y:-'ﬂ'/2

(a) y = sin-l(sin x)

_21'[

2m

(b) y = cos—l(cos x)

N

/2

LSS

STttty = -ny2

(c) y = tan Y (tan x)

Figure 3.5
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3. Mechanics of Differentiation

We tabulate the various differentiation formulas discussed so far in this
chapter. It is assumed that ¢ and n are fixed real numbers and that the
functions u, v, w, and y are differentiable.

(1) Di(c)=0.
(2) D.(x)=1.
(3) D.(x™) = nx""L.
(4) D.(cu) = cDy(u).
(5) D.(u + v) = D.(u) + D,(v).
(6) D, (uv) = uD,(v) + vD ().
() D, (%) = WD) )
(8) D,w =D,w:D,y (Chain Rule).
1

©) Dyx =

(D.y # 0).

(10) D (Inx) = -}1; (x > 0).

(11) D (log, x) = (log, e)é = (lnla)x (x > 0).

(12) D, (e*) = e™.

(13) D.(a*) = (Ina)a™

(14) D (x*) = x*(1 + In x) (x> 0).

(15) D.(sin x) = cos x.

(16) D (cosx) = —sinx.

(17) D,(tan x) = sec? x.

(18) D,(cotx) = —csc? x.

(19) D.(sec x) = (sec x)(tan x).

(20) D, (cscx) = —(csc x)(cot x).

(21) D,(sin"*x) = _ = (Ix] < 1).
—x

(22) D (cos™1x) = ——1—2 (Ix| < 1).
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(23) D,(tan ! x) = 1 +1x2
_ 1
(24) D.(cot™ ' x) = i
1
25) D lx) = e 1).
@9 Diee™t 0 = ey (1>
1
26) D X)) = - 1).

(27) D,(sinh x) = cosh x.

(28) D,(coshx) = sinhx.

(29) D,(tanh x) = sech? x.

(30) D,(cothx) = —csch?x.

(31) D,(sech x) = —(sech x)(tanh x).
(32) D,(csch x) = —(csch x)(coth x).

(33) Dy(sinh ' x) = ﬁ

(34) D,(cosh™'x) = le - (x> 1).

(35) Dy(tanh ™' x) = ; _lxz (Ix] < 1).

(36) Dyfeoth ™ x) = 7——5 (x| > 1)

(37) D, (sech™ x) = - 1—1 = O<x<1.
(38) Dy(osch™' x) = — =1 (x #0)

|x|/1 + x?

The logarithmic function is very useful in certain types of arithmetic cal-
culations; it is equally useful in the computation of derivatives of some types
of function. For example, suppose that

F(x) = f1()f5(x)* fu(x), (3.6)

where each f,(x) with k = 1, 2, ..., n is defined as a positive differentiable
function in the same interval (a,b). Then F(x) is seen to have the same
properties; we note that

In F(x) = In fi(x) + In f5(x) + - + In f,(x)
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and use of the chain rule of differentiation gives

FI ’ 7 i

(x) _ fi(x) + f2(x) N f,.(X)‘
F(x)  fi(x)  fo(x) Ja(x)
This method of differentiation is referred to as logarithmic differentiation; the
name derives from the fact that

3.7

F(x)
F(x)

£ inF() =

and so the logarithmic derivative is not some kind of new derivative but
merely the derivative of the logarithm of a function. Logarithmic differentia-
tion is often time-saving and brings out properties of the derivative which
may otherwise be easily overlooked.

Logarithmic differentiation is particularly important when powers are in-
volved. Suppose that f(x) and g(x) are differentiable functions in an interval
(a, b) and that f(x) is positive. We wish to consider

G(x) = [f(x)]*.
Taking logarithms we get
InG(x) = g(x) {In f(x)}
and differentiation gives
G'(x)
G(x)

S
fx)°

=g'(x){Inf(x)} + g(x)

Thus,

f(x) = o[ JS'x)
G'(x) = [f(x)]* ’(g ) {ln f(x)} + g(X)f(x))-

We now illustrate the foregoing remarks with some examples.

ExampLE 1. Find y’ if

1—
y = .3/x21 " ;z(sin“ x)(cos?x) for x < 1.

SoruTioN. Taking logarithms we have
Iny = %(Inx) + In(1 — x) — In(1 + x2) + 4{In(sinx)} + 2{In(cos x)}
and differentiation yields

1,21 ! 2x + 4 cot 2 tan x;
— =——— — — X — N
yy 3x 1—-—x 1+x?

hence,

2
y =Y<——_——x 5 + 4cosx — 2tanx>.
X



118 3. Differentiation

ExampLE 2. Find y’ if y = (tan x)°***, where 0 < x < /2.

SoLuTioN. We have Iny = (cos x) {In(tan x)} and so
1
;y’ = cscx — (sin x) {In(tan x)}.

Therefore, y' = (tan x)°**[csc x — (sin x) {In(tan x)} 1.

ExaMmpLE 3. Let f(x) and g(x) be positive on an interval (a, b). Moreover, let f
and g be differentiable on (a, b). Using logarithmic differentiation, show that

(1)' _a S

g g

SoLuTION. Let h = f/g on (a,b). ThenInh = In f — Ing and so
1 1 1 1 1
_hl:_ /__g/ or hr=h<_ /___gr>'
T 7

But & = f/g and thus we get the desired formula.

CoMmMENTs. It is clear that the function In(— x) is defined for x < 0. Using the
chain rule of differentiation, we get

1 1
Dfin(-0} =——(-N=1 (<0

Combining this with the relation

D, (Inx) = % (x > 0),

we observe that

D.(n|x|) = % (x # 0). (3.8)

We can therefore see that if f(x) is differentiable on an interval and is not zero
at any point of this interval, then on this interval

f'x)
J(x)

exists; we call it the logarithmic derivative of f(x).

Letting F(x) be as in (3.6), where each fi(x) with k=1, 2, ..., nis a
differentiable function in the same interval (a, b) and is not zero at any point
of this interval, then formula (3.7) is valid because

F'(x)

Foo D {In|F(x)|} = D {In|fi(x) " f)I}

= D.{In|f(x)[} (3.9)

and

G, 5

Dol A(I -+ + I[N} =7 S+ + 7
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We know that the formula
D (x") = nx"* (3.10)
holds if x > 0 and n is any fixed real number. Now, let n > 0 and define
f(x)=x" forx>0,
=0 forx=0.

(Note that x” is not defined for x = 0 and n < 0.) Then, for h > 0, we have

f(0+h)—f(0):hv"_h.,_1
h h :

Forn > 1and h > 0 we have
h"1 50 ash-0;
for0 < n < 1andh > 0 we have
h"!'> 4+ ash-0.

If n = 1, then f(x) = x. However, we know that D,(x) = 1.

We have also seen that formula (3.10) holds if x is any real number and n
is a fixed positive integer. If n = 0, then x" = 1 provided x # 0 and D.(1) = 0.
It is easy to see that formula (3.10) remains valid if n is a fixed negative integer
and x # 0. For example,

1
y=x7=5  (x#0)

has the derivative

-2
y="i=-nT (x#0)

Suppose that n > 0 is a rational number, that is, n = p/q with p and q being
relatively prime positive integers. If g is an odd number, then x?/ is defined
as the (uniquely determined) solution of the equation y? = x?. In this case
the function y = xP1 = x" is also defined for negative x and we have for
negative x

xV= —(—x)"" and x"=(x"1) =(—1)P(—x)"
We now verify that formula (3.10) is valid in the case of the function y = x" =

x?4, where p and q are relatively prime positive integers, q is odd, and x # 0.
Indeed,

|x"| =|x|" or In|x"| = n(ln|x]).
But (3.9) gives
D, (x")

n

D,[In|x"|] = =
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and (3.8) gives
DInlnlx)] = n  (x 0)

therefore,

1
=n_ or D.(x")=nx""! forx #0.

To motivate the next proposition, we consider the following example. Let
y=.1—x? (—1<x<1).
Then
X

If we put x = sint, where —n/2 <t < /2, then y = (1 — sin¢)*? = cost and
we get

ny=—

D,x = cost, D,y = —sint;
thus,
—sint D,
D.y— e 2 (3.11)
cost D,x

This suggests the possibility of obtaining D, y in terms of D,y and D, x.

Proposition 3.5. Let f and g be continuous functions on a closed interval [a,b]
and be differentiable on the open interval (a,b). Suppose, moreover, that f'(t) # 0
for any t satisfying a <t < b and f is strictly monotonic on [a,b]. Then the
parametric equations

x=f(t) and y=g(t) fora<t<b (3.12)

define y as a differentiable function of x, and

D
ny=—‘X fora <t <b.
D,x

Proor. By Proposition 2.18 we see that fhas a continuous inverse f ~! such
that ¢t = f~!(x) for all x on the closed interval whose endpoints are f(a) and
f(b). Thus,

y =49 =g{fT ()} = F(x), (3.13)

where F = g(f 1) is a continuous function whose domain is the closed inter-
val with endpoints f(a) and f(b). Hence, the parametric equations (3.12) define
y as a continuous function of x, whose rule of correspondence is given by
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(3.13). By substituting x = f(t) into g(t) = F(x) from (3.13), we obtain the
identity in ¢:

g9(t) = F{f(0)}. (3.14)
If we differentiate both members of (3.14) with respect to t by the chain rule
(see Proposition 3.3), we obtain

9’0 =FLIO1f@),

which in view of equations (3.12) can be written

D,y = D,F-D,x.
Therefore, since D,x = f'(t) # 0,

D,y

D.F =—.
* D,x -

ReMaRrk. Note that if f(t) # 0 on (a,b) and f” is continuous on [a,b], then f
will be strictly monotonic on [a, b].

Discussion. Consider the equation
x2 + y2 = RZ, (315)

it represents a circle of radius R with center at the origin (0,0) in the x, y
plane. We look at two parametrizations of this circle.

First Parametric Representation. Let 8 denote the (polar) angle between the
line segment connecting the origin (0,0) with the point (R,0) and the line
segment connecting the origin (0,0) with the point (x,y) on the circle; the
angle 0 is measured in radians and in the counterclockwise direction (see
Figure 3.6). Then

x =Rcosf#), y=Rsinf, and 0<6 <2m. (3.16)

As 8 goes from O to 27 the point (x, y) traces out the circle, starting at the
point (R,0) and moving in the counterclockwise direction.

Second Parametric Representation. We now use instead of the (polar) angle
0 the magnitude ¢, where

t—tane
= >

as parameter; note that ¢ represents the slope of the line connecting the points
(—R,0) and (x, y) on the circle x> + y? = R? (see Figure 3.7). From Figure 3.8
we can see that

. t 0 1
sin- =

Ve N

But
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N
(x,Y)
\\
AY
\
0 A
. 5 X
(0,0) (R,0)
Figure 3.6
Y
N
(x,v)
\\\
e \
B 5 x

(_RIO) (OIO)

Figure 3.7
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1
Figure 3.8
0 2t
sinf = 25in§cos§ = e

0 0 1—1¢2

cosf = coszi — sin2§ =i

and so we obtain
1—1¢2 2t
x=RiTp y=Rip and —oo<i<oo (3.17)

as the parametric representation of x> + y? = R? in terms of the parameter t.
As t goes from — oo to co the angle 6/2 = tan ™" ¢ goes from — /2 to n/2 and
hence 6 goes from —= to = and the point (x, y) traces out the circle (3.15),
starting from the point (— R,0) and moving in the counterclockwise direction.
The point (— R, 0) itself is obtained as a limit point for t — + co.

From (3.16) we get (for 0 < 8 < wand = < 6 < 2n)

D
Doy _ reos6 _ o= _%,
Dyx  —rsin® y
and from (3.17) we obtain (for —o0 <t <0and 0 <t < o)
Dy 2r(1—-¢)  —d4rt -2 x
Dx (1+¢) (+2r 2y

Hence, both parametrizations lead to the same answer, namely,
X
y' = —— fory#0. (3.18)
y

At the points (+ R, 0) the tangent line to the circle (3.15) is parallel with the
y-axis and the derivative at these points has to be infinite.
We mention in passing two parametric representations for the ellipse

2
SN AN (3.19)

Q
o
5]
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Y
2~
e AN
77X
Figure 3.9
they are
x=acosf, y=bsinf, and 0<0 <2n
(see Figure 3.9) and
L-r d <t
xX=a——, y=b——, and - < 0.
1+ ¢ 1+
We note three parametric representations for the hyperbola
x2 y2 _ 1
at? b
they are
x =acoshs, y=bsinhs, and —oo <5< o0;
i1 3n
X = asecv, =btanv, and 0<v < 2nm, v;ég, U?éT;
L+ w? it d <w< # 41
x=a , y=b——, and —w<w<oo,w# +1.
1—w2> ¥ 1 —w?

In the case of the ellipse (3.19) we obtain

2

a?y

fory #0

and in the case of the hyperbola (3.22) we get

y

’

2

a?y

fory #0.

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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In the case of the curves (3.15), (3.19), and (3.22) we used explicit parametric
representations to calculate the derivative y’. However, the lack of such an
explicit representation need not prevent us from finding y’. Let a curve C be
given by an equation of the form

F(x,y) =0, (3.28)

which is not solved for y. Assume that in some interval or other there is at
least one function f'such that

Flx, f(x)] =0 (3.29)

holds for all values of x in the interval in question. Suppose, moreover, that F
is a differentiable function of each of its two arguments x and y, and that f
is a differentiable function of x. Then the derivative of f can be found by
straightforward differentiation of (3.29). This does not exclude the possibility
that there are points where f has no derivative or an infinite one (the latter
meaning that there is a vertical tangent). The process by which f'(x) is com-
puted is called implicit differentiation and f(x) is known as an implicit function
since f'is not given explicitly.

Before turning to examples of implicit differentiation, let us note clearly
that our present purpose is not to examine any of the following questions:
Under what conditions is a solution y = f(x) of F(x, y) = 0 possible? What
can be said about the differentiability of the function fin terms of what may
be known about the function F? The answers to these and related questions
belong to the study of multivariable calculus.

Examples
1. Consider the circle x2 + y2 = R? and compute y’ by using implicit differ-
entiation.
SoruTioN. We have
X

2x +2y-D,y=0 or y = ——.
y
2. An astroid satisfies the equation

x¥ 4y = g2,

where a is a fixed positive number. See Figure 3.10 for the graph of the
astroid. Using implicit differentiation, find y’.

SoLuTiON. We have

3y

P43y Dy =0 ory' = -7~

REMARKS. A simple calculation shows that x*3 + y%3 = q%3 implies

(x2 + y2 — a?)? + 27a’x%y* =0,
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Figure 3.10

showing that the astroid is inside the circle x? + y2? = a2 and is symmetric
with respect to both coordinate axes. It is therefore sufficient to study the
curve only in the first quadrant of the x, y plane. It is easy to establish that
the length of the line segment intercepted on the tangent line by the coor-
dinate axes is independent of the point of contact P on the curve; the length
equals a. This geometric property is useful in the construction of an astroid.
Finally, an astroid has the parametric representation

x =acos’t, y=asin®t, and 0<r<2nx

3. The equation of the folium of Descartes is
x3 + y? = 3axy,
where a is a fixed positive number. See Figure 3.11 for the graph of the folium
of Descartes. Using implicit differentiation, find y’.
SoruTtioN. We have
3x%2 + 3y2-D,y = 3a(x D,y + y)

or
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AN
7

Figure 3.11

RemMARrks. The straight line y = tx, where t is an arbitrary real number,
intersects the folium of Descartes in three points, counting the origin (0, 0) as
two; the third point has the coordinates

3at 3at?

x=1+-—t3’ y:m, and —OO<t<OO,t¢—1

This is a parametric representation of the folium of Descartes. As t goes from
— oo to —1, the point (x, y) on the curve travels, starting at the origin (0, 0),
along the right-side branch of the curve to infinity. As ¢ goes from —1 to 0,
the point on the curve goes from infinity to the origin (0, 0) along the left-side
branch of the curve. As ¢t goes from O to oo, the point on the curve moves
along the loop of the curve in the counterclockwise direction. The folium of
Descartes is situated in the half-plane bounded by the line x + y + a =0
containing the origin (0,0). The line x + y + a = 0 is indicated by the ashed
line in Figure 3.11. The highest point of the loop has coordinates (23 a,2%3q).
Three distinct points on the folium of Descartes given by the parametric
values ¢, t,, and t; are colinear if and only if the product ¢,¢,¢; equals —1.

4. Consider the curve x” = y*, where x > 0 and y > 0. It consists of two
branches, namely, the line y = x in the first quadrant of the x, y plane and the
curve given by the parametric representation

lu 1u+1
x=<1+—> and y=<1+—>
u u

obtained by first putting y = tx into x¥ = y* and then setting t — 1 = 1/u. See
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N
rd

[E) S,
ol----

Figure 3.12

Figure 3.12 for the curve x¥ = y*, where x > 0 and y > 0. Calculate y’ when
X # ).

SorLuTion. For x > 0 and y > 0 the equation x* = y* is equivalent to

y(n x) = x(In y).

Using implicit differentiation yields

1 : .
yL eyt —tny+ xby for y = (XEN =)
* y Winx) —x)x

RemMarks. The representation x = (1 + 1/w)*, y = (1 + 1/u)**! permits us to
find easily points on the curved part of the graph of x¥ = y*for x > 0, y > 0.
Note, for example, that

ifu=1,thenx =2and y = 4;
ifu =2, then x = 2and y = Z/;
ifu =3,then x =$%and y = 438.

The solution 2* = 42 is the only solution of n™ = m" in positive integers n
and m with n # m. Indeed, suppose m < n and we write m = n + r, where r is
a positive integer. Substituting into m" = n™, we find that (n + r)" = n"*" or

r'l
<1+—> =n"<eé,
n

by Proposition 1.11 in Chapter 1. Hence,n =1orn=2.1fn=1,thenm = 1
and this case is excluded because n # m. The case n = 2 yields m = 4.
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5. Let x and y be connected by the equation

In/x*+ y%= tan™tY.

X
Using implicit differentiation, calculate y’ and y”.
SoLuTioN. Since In(x? + y?) = tan"! y/x yields

12x+2yy’_ 1 xy' —y
2 x24+y%2 1+ (y/x)* x2

or x+yy =xy —y,

we obtain
!

X+y
y = .
X =Yy

Implicit differentiation of x + yy’ = xy’ — y gives 1 + (y')*> + yy” = xy” and
so (substituting for y’ the expression obtained)

1+ )P xP+y?
x =y (x—y?*

6. Let x = y — asin y, where a is fixed and 0 < « < 1. Find y’ and y".
SoLutioN. We have 1 = y’ — a(cos y)y’. Thus,

, 1 , _ —alsiny)y’  —asiny
y T (1 —acosy)? (1 —acosy)?’

y =l—occosy

REMARK. In x = y — asiny, where 0 < a < 1, x is a strictly increasing func-
tion of y. Indeed, let x;, = y, — asiny, for k = 1, 2; then

Xy — Xy =(y; — y1) — a(siny, — siny,).
But |siny, —siny,| < y, — y; whenever y, > y, [see inequality (2.19) in
Chapter 2]. It follows therefore that y, > y, implies x, > x,. The inverse

function of
x=y—asiny O<a<l)

exists, but we can’t express it in terms of elementary functions. Incidentally,
D,x > 0 for any real y and we could have used Proposition 3.4 to find y'.

7. Let x and y be connected by the equation
y3e” — (2x3 + 3)(siny) + x2y% — xcosx = 0. (3.30)

It is clear that the origin (0, 0) is a point of the graph of (3.30). However, we
would be hard up to verify that for an x close to x = 0 there corresponds a y
close to y = 0 satisfying (3.30) because we can not solve equation (3.30). Yet
straightforward implicit differentiation gives, at the point (x, y) = (0,0),

1 26

[ " =0’ n =, 331
y y V=0 (3.31)
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RemMark. While we have no way of sketching the graph of equation (3.30),
the result expressed in (3.31) reveals that (3.30) has a point of inflection (a
concept to be studied later on) at the point (0, 0).

We complete this section with a few observations concerning higher order
derivatives. Suppose that fand g are functions having derivatives of order n
on the same interval. Then the product function fg satisfies

(foy =f9' + f'9,
(f9) =f9"+ 29"+ f'g,
(f9)" = fg" +3f'g" + "9’ + "9, (3.32)

(fo) = fg + <;l>f’g‘"‘” - <;>f”g‘"‘2’

n
NP +< )f(""l)g’_l_f(")g,
n—1

where

n n!
= 1=1-2:3m.
<k) Kl — )1 and m 2:3--m

The relation (3.32) is known as the formula of Leibniz. To verify (3.32) we note
that it is fairly obvious that we must have a formula of the type

(f9" ="+ C, 1 f'g" PV +C,,fg"?
+ Tt + Cn,n—lf("_l)g, + f(")g’

where the coefficients C, , are positive integers independent of the choice of f
and g. The values of the coefficients can be found by substituting suitable
special functions. We take, for example,

fe)=x"  gx)=x""
so that the left-hand side becomes
(o)™ = D(x*x""*) = Dy(x") = n.

On the right-hand side the derivatives of f occur in increasing orders while
those of g are in decreasing orders. This gives

Di(x*) = k! ifj=k,

=0 ifj>k,
and
DI i(x"*%) =0 ifj=0,1,...,k—1,
=mn—k! ifj=k
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Hence, all terms on the right-hand side vanish with only one exception, so
that we get the equation

n! = C, k!(n — k)!

and C, ; is seen to have the value claimed in (3.32).
Next we consider composite functions for higher derivatives. We assume,
for example, that fand g have derivatives of order 4 and we suppose that

F=f[4]
exists; then
F=f1lglg, F'=f"[g1g)+ (919"
F" = f"[g1(g') + 3f"[g1g'9" + f'[g19",
F® = f9q1(g)* + 6" [g1(9'Vg" + f"[91{3(g")* +49'9"} + f'[g19".

We now look at the inverse function and we suppose that f is strictly
monotone, three times differentiable, and f'(x) # 0. Then f ! satisfies

gy v L)
(f ) (y) - f/(x)’ (f ) (y) [f/(x)]3 5
cayng oy L0 — S (%)
("0 = [T :

Finally, we consider the parametric representation x = f(t) and y = g(¢)
with a < t < b; we assume that the functions fand g are two times differenti-
able on the open interval (a,b), that f and g together with their first order
derivatives with respect to ¢ are continuous on the closed interval [a, b], that
f'(t) # 0 for any ¢ satisfying a < ¢ < b, and that f'is strictly monotone on the
closed interval [a, b]. Then y is a twice differentiable function of x and

D,y Dx-D?y — D,y-D¥x

D.y=— D?
<Y x Y [D,x]3

= R fora<t <b.
D,x

4. Asymptotes

Definition. A straight line is said to be an asymptote of an infinite branch of a
curve, if, as the point P recedes to an infinite distance from the origin along
the branch, the perpendicular distance of P from the straight line tends to
zero.

REMARKS. The coordinate axes are asymptotes of y = 1/x. The x-axis is an
asymptote of y = e*. The straight line y = x is clearly an asymptote of
y = x + 1/x because 1/x — 0 as x — + 0. The straight lines y = £ 7/2 are
asymptotes of y = arctanx.
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Discussion. We proceed to the determination of asymptotes and first con-
sider the case of oblique asymptotes, that is, asymptotes not parallel to the
coordinate axes, having an equation of the form

y+ Ax + B. (3.33)

The abscissa, x, must tend to infinity as the point P with coordinates (x, y)
recedes to infinity along the branch. We shall determine 4 and B so that the
straight line (3.33) may be an asymptote of the given curve. The perpendicular
distance of any point P with coordinates (x, y) on an infinite branch of a given
curve from the line (3.33) is

_|ly— Ax — B|
J1+ 42
Butd —» 0 as x - oo and so lim,_, . (y — Ax — B) = 0, which means that

lim (y — Ax) = B.

P mde o}

Since y/x — A = (y — Ax)(1/x),

lim< y >=<1im(y—Ax)><1im<l>>=A-0=0
X0 X—A X— 00 x— 00 \X

d

or
lim (Z> = A.
oo \X
Hence,
A= lim% and B = lim (y — Ax); (3.34)

A is the slope and B is the y-intercept of the asymptote y = Ax + B.
Similar considerations have to be carried out for x » — c0.

ExampLE 1. We are given the hyperbola
2 2 b
% _ _y—z =1 or y= -i_-—\/;cT——az
a b a
For x —» oo we get by (3.34)
b./x?* - a* b b
XZi__x_a_zi; /1 —a?/x?— +-,
x a x a a
and then
b b ab
yF-x=+(/x?2—a?—x)=F—————=——0;
a a X+ /x*—a?

thus,
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Figure 3.14
b

y=t-x
a

are the desired asymptotes. See Figure 3.13.

ExaMpLE 2. Let y = (x — 1)3/(x + 1)? (see Figure 3.14). For x —» + oo we get

y —5x2+2x—1
— -1, y—x=

x =T e 7

Therefore, y = x — 5 is an asymptote of the given curve. (Another asymptote
isx= —1because y > —oo as x » —1.)

ExAMPLE 3. Let y = (x — 3)%/4(x — 1) (see Figure 3.15). For x - + o0 we get
y  (x=37 (1-3/x? 1

x 4x—1x 4(1—-1/x) 4
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b4
3t
; 3/‘//"’ x
,A ;
-3 :
i
Figure 3.15
and
1 (x—3?% x —5x+p —5+9/x 5
y—*x = —— = = - ——,
4 4x—1) 4 4(x—1) 41 —1/x) 4
Thus,
1 5
= —X — —
Y=g

is an asymptote of the given curve. (Another asymptote is x = 1 because
y—> tooasx— 1)

ExampLE 4. Consider the folium of Descartes x> + y3 — 3axy = 0 (see Figure
3.10), where a is a fixed positive number; we show that x + y + a = 0 is an
asymptote of the curve.

Indeed, dividing the equation of the curve by x3, we get

Hence, for |x| > 3a, the quantity |y/x| remains bounded; from this we get

Y - —1 asx— +oo.
X

But, for x - + o0,
3axy _ 3a(y/x)

= - —d.
x*—xy+y* 1—y/x+(y/x)?

Definition. Let P(x, y) be a polynomial in x and y with real coefficients, say

P(x,y) = Y apx/y*;
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in other words, P(x,y) is made up of a linear combination of terms of the
form x/y*, where j and k are nonnegative integers, and the coefficients a;, in
the linear combination are real numbers. The degree of the polynomial
P(x,y)is

n = max{j + k}.

We assume that P(x, y) can not be factored into polynomial factors. The set
of points (x, y) in the plane such that P(x,y) = 0 forms an algebraic curve C
of order n.

REMARKs. In the foregoing Examples 1 and 3 we had algebraic curves of order
2; in Examples 2 and 4 we had algebraic curves of order 3. The astroid (see
Figure 3.9) satisfies the equation x%* + y** = a??, where a is a fixed positive
number; its equation can be written in the form

(x% + y* —a?)?® +27a’x?y* =0,
showing that the astroid is an algebraic curve of order 6.

Discussion. Let the equation of an algebraic curve of order n be arranged in
homogeneous sets of terms and expressed as

ay,0x" + Aoy X"y + Aoz, 2X"2y2 4+ ag )"
+ Gpgox" Tt + Apon X" 72y + o+ 4o n1Y"}
+ Ayp0x" 2+t ao,n—zyn—2
T+
+ag0=0

or

ann<X> + xn~1H"_1<X\ + xn—an_2<X> T+t H()(X) =0, (3.35)
X x/ x b

where H,(y/x) is a polynomial of degree k in the unknown y/x. Dividing by
x", we get

1 1 1
Ao(2) + e (2)+ Sh () (L) =0
X X X X X X X

Letting x — + oo, we see that
wf)-<
X

that is, y/x must tend to a number A and this A4 satisfies the equation
H,(A) =0. (3.36)

Hence, in the case of an algebraic curve we obtain the slope 4 of an oblique
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asymptote by finding the real roots of the polynomial (of highest degree) H,.
An algebraic curve of order n can therefore have at most n oblique asymp-
totes. Having found 4 by solving equation (3.36), we then substitute y =
Ax + B into the equation of the curve and in the resulting expression we let
the coefficient of the highest power of x be zero; this procedure supplies for
each value of A4 the corresponding value of B in most cases. We shall illus-
trate what goes on with the help of some examples and comments.

ExaMPLE 5. We wish to determine the asymptotes of the algebraic curve

P(x,y) =9x2 — 4y —S5x + 2y + 1 =0.

The algebraic curve under consideration has order 2. It is clear that
H,(A) =9 — 442 Thus, H,(4) = 0 implies 4 = +3. Putting y = Ax + B
into the equation of the curve and noting that 9 — 442 = 0, we get

—84Bx —4B* — 5x + 2Ax+ 2B+ 1=0.
Setting the coefficients of the highest power of x equal to zero gives

24 —
—84B—-5+4+24=0 or B= 5.

84
Hence, if A =3, then B= —t and if 4 = —3, then B = %. The two asymp-
totes are

y=3x——% and y=—3x+

Wit

ExampLE 6. The asymptotes of the algebraic curve
2x3 —x?y —2xyr+ y P+ 2T+ xy—y P+ x+y+1=0
of order 3 are
y=x+1 y=—x, and y=2x.
Here Hy(A) = A> — 242 — A+ 2 =(A - 1)(4 + 1)(4 — 2) and

B— A2 — A4 -2
3474417
ExampLE 7. We wish to find the asymptotes of the algebraic curve
(y —x)?x —3y(y —x) + 2x = 0.

Here we have xy? —2x%y + x® —3y? +3xy +2x =0 and so H,;(A) =
(4 — 1)2. Hy(A) = 0 produces the double root A = 1. We can of course write
the equation of the curve in the form

(Y—x)2—3(y—x)£+2=0

and make use of the fact that y/x > A = 1 as x - + 0. Doing so we get
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(= xP=3(-x+2=0

which shows that y — x = 1 and y — x = 2 are asymptotes; thus, B is either
lor2.

However, if we try to find B by substituting y = Ax + B into the equation
of the curve, we obtain (after noting that A2 — 24 + 1 = 0)

(2AB — 2B — 342 + 3A4)x? + (B> — 6AB + 3B+ 2)x — 3B?> = 0.
The coefficients of the highest power of x is
2AB — 2B — 3A* + 34;

putting 4 = 1 into this expression, we get 2B — 2B — 3 + 3. Therefore, we
can not determine B by setting the coefficient of x2 equal to 0. But the
coefficient of the next highest power of x, namely,

B> — 64AB + 3B +2
will give us the expression
B2—3B+2=(B—1)(B—2)

when 4 = 1 and so we see that B is either 1 or 2 when we set the coefficient
of x equal to 0. Figure 3.16 illustrates the curve under discussion. (Inciden-
tally, the curve also has a vertical asymptote, namely, x = 3.)

CoMMENTs. We recall that in order to find the slope A of the asymptote
y = Ax + B we had to solve equation (3.36) for A. To find B (once A4 is
known), we substituted y = Ax + B into the equation of the curve and in the
resulting expression we let the coefficient of the highest power of x be 0 (in
Example 7 we let the coefficient of the second highest power of x be 0) and
solved for B. If A4 is a simple real root of equation (3.36), we can obtain B by
use of the formula

B-H)(A) + H,_,(A) = 0. (3.37)

If H,(4) =0 = H,_,(A) and H"(A) # 0, then the following formula replaces
formula (3.37) for the determination of B:

2

%H,’,’(A) + B-H,_,(A) + H,_,(4) = 0. (3.38)

The reason for formulas (3.37) and (3.38) is, briefly, the following. Replac-

ing y/x by A + B/x in (3.35), we get
x"[H,(A)] + x""[B- H(4) + H,-1(4)] (3.39)
+x"2[4B?-H;(A) + B-H,_y(A) + H,_,(A)] +---=0

when we arrange terms according to descending powers of x; the details of
calculation are somewhat tedious, but can be avoided if one makes use of
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-24 -16 v -8

-167

/ -24

Figure 3.16

Taylor’s Theorem (to be taken up in Section 2 of Chapter 4). We observe that
upon putting H,(A4) = 0in (3.39) and then dividing by x"~! we obtain formula
(3.37) when we let x — 4 co0; moreover, we can solve for B if H,(4) # 0. If
H,(A) = 0 but H,_,(A4) # 0, then (3.40) does not determine any (finite) value
of B and, thus, there is no asymptote corresponding to the slope A. However,
if H,(A) = 0 = H,_,(A), (3.37) becomes an identity and we have to reexamine
equation (3.39) which now becomes

x"2[3B*-H"(A) + B-H,_,(A) + H,_,(4)] + - = 0.

Division by x"~2 and then taking the limit as x — + co lead to formula (3.38)
which determines two values of B provided that H,(A4) # 0. The conditions

H,(A) =0 = H\(A), H'(A)#0, and H,_,(4) =0

signify that A is a double root and so we have two parallel asymptotes. The
exceptional case encountered in Example 7 was of this type because

Hy(A) = (A —1)?, Hy(A)= —3A4*+ 34, and H{(4) =2

applying formula (3.39) yields B?> — 3B + 2 = 0 implying that B is either 1
or 2.
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Discussion. We now consider the determination of the asymptotes parallel to
the coordinate axes. First we look at the case of asymptotes parallel to the
y-axis, that is, vertical asymptotes.

Let x = k be an asymptote of the curve and we have to determine k. Here
y alone tends to infinity as a point P with coordinates (x, y) recedes to infinity
along the curve. The distance of any point P with coordinates (x, y) on the
curve from the line x = k is equal to |[x — k|. Hence, x — k when y tends to
infinity.

Thus, to find the asymptotes parallel to the y-axis, we find the definite
value or values k,, k,, and so on, to which x tends as y tends to infinity. Then
x = k,, x = k,, and so on are the required asymptotes.

We will now obtain a simple rule for finding vertical asymptotes of an
algebraic curve. We arrange the equation of the curve in descending powers
of y, so that it takes the form

YO + Ym0 (%) + "0, 4 =0, (3.40)

where Q(x), Q1(x), Q,(x), ... are polynomials in x. Dividing equation (3.40) by
y™, we get

1 1
2(x) + ;Ql(X) + ?QZ(X) +--=0. (3.41)

Letting y tend to infinity and writing x — k as y tends to infinity, equation
(3.41) gives Q(k) = 0 so that k is a root of the equation Q(x) = 0. Let k4, k,,
and so on be the real roots of Q(x) = 0. Then the asymptotes parallel to the
y-axis are x = k;, x = k,, and so on. Hence, we have the rule: The asymp-
totes parallel to the y-axis are obtained by setting equal to zero the real linear
factors of the coefficient Q(x) of the highest power of y in the equation of the
curve.

In the same manner it can be shown that the horizontal asymptotes of an
algebraic curve can be obtained by setting equal to zero the real linear factors
of the coefficient of the highest power of x in the equation of the curve. In
general, y = r is an asymptote parallel to the x-axis if y - r when x tends to
infinity in the equation of the curve.

ExaMpLE 8. The curve x?y — 3x2 — 5xy + 6y + 24 = 0 has the asymptotes
x=2,x=3,and y = 3.

5. Tangent to a Conic Section

From analytic geometry it is known that any conic section (e.g., circle, ellipse,
hyperbola, parabola) can be represented by an equation of the form
Ax* + 2Bxy + Cy* + 2Dx + 2Ey + F = 0, (3.42)

where A, B, C, D, E, and F are constants. There is a very simple way of
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writing down the equation of the tangent to such a curve at a point (x,, y,)
of the curve. Indeed, using implicit differentiation, we get from (3.42) that
Ax + By + D
Bx+ Cy+ E’

’

y:

The equation of the tangent at (x,, y, ) is therefore

Ax; + By; + D

Bx, + Cy, + EC ™V

y—y=

or
Axyx + B(x1y + y1x)+ Cy;y+D(x; + x)+ E(y; + )+ F=0. (343)

If we compare this equation with equation (3.42) from which it was derived,
we see that the equation of the tangent at a point (x,, y,) to any curve defined
by an equation of the second degree in x and y can be obtained from the
equation of the curve by replacing x2 by x, x, 2xy by (x,y + xy;), Y by y, »,
2x by (x; + x), and 2y by (y, + y). This method, of course, is applicable only
in finding tangents to curves of second order.

Let Py = (x5, y;) be a given point not on the conic section (3.42) such that
two tangents can be drawn to the conic section (3.42) from P;; let P, = (x4, y,)
and P, = (x,,y,) be the points of contact of these two tangents (see Figure
3.17). We wish to determine the equation of the chord of contact joining P,
and P,.

By (3.43), the equations of the two tangents are

Ax;x + Bx;y + y1x)+ Cy,y+D(x; + x)+ E(y; + )+ F=0 (344
and
Axyx + B(x,y + y,x) + Cy,y + D(x; + x) + E(y, + y) + F =0, (3.45)

where x,, y;, X5, ¥,, of course, are not given at the outset. Since the two
tangents are to pass through P; = (x5, y3) equations (3.44) and (3.45) must be
satisfied if we set x = x5 and y = y;. That s,

Axix3 + B(x1y3 + y1x3) + Cy;y3 + D(x; + x3) + E(yy + y3) + F=0
and
Axy%X3 + B(X;y3 + y2%3) + Cy,y3 + D(x, + x3) + E(y, + y3) + F = 0.

These equations show that the coordinates of P, and the coordinates of P,
satisfy the equation

Ax3x + B(x3y + y3x) + Cysy + D(x3 + x) + E(ys +y) + F=0. (3.46)

But (3.46) is linear in x and y, and so represents a straight line. Since (3.46) is
satisfied by the coordinates of P, and by those of P,, this line is the line
through P, and P,. Therefore, equation (3.46) is the equation of the chord of
contact of the tangents drawn to the conic section (3.42) from the point
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Y
y

7 X

Figure 3.17

P; = (x3,y3). It is easily remembered from the form of the equation of the
tangent to the conic at a point of the conic.

ExampLE 9. The equation of the chord of contact of the tangents drawn to the
ellipse

x*+4y> —18=0
from the external point (2,2) is, by (3.46),

2x+4-2y—18=0 or x+4y=09.

From this we easily obtain the points of tangency

3.4 and (3,3
and the equations of the two tangents

x+2y—6=0 and x+ 14y —30=0.

EXERCISES TO CHAPTER 3

3.1. If the entries of a determinant are differentiable functions, show that the deriva-
tive of the determinant is the sum of all the determinants formed by differentiat-
ing one row, leaving the other rows unchanged.



142 3. Differentiation

[Hint: If p, g, r, s are differentiable functions, then

[p q:|=p’s—q’r+ps’—qr’=|:p q:|+[pl q,:l
ro s r s ros

Assuming the proposition for a determinant of order n, then if P, P, ..., P,,,
are the cofactors of p, p,, ..., p,1, in a determinant A, of order n + 1, so that
Aviyt =P P+ pyPy + 0 + Puyq Poyy, it follows that

A =Di1PL+ 0P+ 4 Phri Poy + 01 P+ 2P+ + puiy Pivys

hence, since Py, P,, ..., P, are determinants of order n, we deduce the proposi-
tion for determinants of order n + 1.]

3.2. Show that

((1+x4)1/2+fx> f(1+x
dx

1—x (1 —x?)(1 + xH)1?’
[Hint: Since

(1+x +\/_x 1—x?
1—x? (1+x)1/2—\/§x’
we have
1 2x/2 1 2(1 + x*)2
y_;zl—-xz’ y+;= 1—x2?

and therefore
1\1 14 x2
)l ) N (==
< y>yy V2 x?)?
implying that

n 1dy_2\[<1+x>1—x2_ f(1+x2)
( x3)2)2(1 + x*) (1 — x3(1 + x*)”2 :

3.3. If P is a polynomial and P(a) = P'(a) = 0, show that P(x) has factor (x — a)?.
More generally, if P is a polynomial and P(a) = P(a) = --- = P™(a) = 0, show
that P(x) is divisible by (x — a)**!.

[Hint: Since P(a) =0, P(x) is divisible by x —a. Let P(x) = (x — a)Q(x),
where Q is a polynomial. Then P'(x) = (x — @)Q'(x) + Q(x). But P'(a) = 0 and so
QO(a) = 0; hence, Q(x) is divisible by x — a. Now use induction.]

3.4. We say that a function f is periodic with period a if f(x + a) = f(x) for all x.
Show that if f is differentiable and periodic with period a, then f” is periodic
with period a.

[Hint: By periodicity,
fE+a)—flx+a) ft) = flx)

t+a)—(x+a T« 1

3.5. Consider the parabola y = x? and the straight line x — y — 2 = 0. It is required
to connect these two curves by a line segment of least length.
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[Hint: Evidently only the pomt (,3) on the parabola y = x? has a tangent
line parallel to the line x — y — 2 = 0. The perpendicular from the point (3,4
to the line x —y—2=0 intersects the line at (4%, —3). The line segment of
least length connecting y = x? and x — y — 2 = 0 therefore connects the points
&,4) and (4, —3) and has length 7,/2/8.]

3.6. Let f(x) = Ax? + Bx + C be a parabola and a and b denote given numbers.
Then ¢ = (a + b)/2 is the only number strictly between a and b such that

f(b) = fla) = (b — a)f(c).
Note that ¢ = (a + b)/2 is the midpoint of the interval [a, b].
[Hint: We have f(b) — f(a) = A(b? — a?) + B(b — a) and so

JO 1@ _ 44 a)+B.
b—a
On the other hand, f'(c) = 24c + B and so ¢ = (a + b)/2.]

37. If f and g are differentiable three times and if f'(x)g'(x) =1 and h(x)=
f(x)g(x), show that
hlll(x) _ f//l(x) + glll(x)
h(x)  fx)  g(x)
[Hint: Since f'g' =1, f'g" + f"g’ =0 and so h" = f"g + 3f"g’ + 3f'g" +
gmf fmg+gmf]

3.8. Letf(x) = {x(x + 1)(x + 2)(x + 3)(x + 4)} *. Find f ™.
[Hint: Putting

1 A B C D E

= + + + ,
x(x+ Dx+2)(x+ 3)(x+4) x+x+1 x+2 x+3 x+4

we obtain
1=A+ 1)(x + 2)(x + 3)(x + 4) + Bx(x + 2)(x + 3)(x + 4)
+ Cx(x + I)(x + 3)(x + 4) + Dx(x + 1)(x + 2)(x + 4)
+ Ex(x + 1)(x + 2)(x + 3).
Letting x =0, —1, —2, —3, and —4 in succession, we obtain 4 =3, B =
—L C=4 D= —% and E = 54 Thus,
1 1 1 1 1

ﬂx)z%_sow1)+4(x+2)‘6(x+3)+24(x+4)

and the required nth derivative is therefore

1 1 1 1 1
—1)yn! - - .
(=1'n (24x"+1 6+ D™ A+ 2" 6(x+ 3 T 2k + 4)"“) ]

3.9. Show that the polynomial

P,(x) =
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3.10.

3. Differentiation

satisfies the equation
(1 — x*)P(n) — 2xP,(x) + n(n + 1)P,(x) = 0.

[Hint: Let g = (x? — 1)" so that, by logarithmic differentiation,

and so (1 — x2)g’ + 2nxg = 0. Differentiating again
(1 —x®)g” + 2(n — 1)xg’ + 2ng = 0.
Using the formula of Leibniz (3.32) to differentiate n times, we obtain

nn+ 1)

(1= x)g"*D + ng™*D(—2x) + g"(~2)

+2(n — D[xg™" + ng™] + 2ng™ = 0,
giving
(I — x?)g"™*D — 2xg™*V 4 n(n + 1)g™ = 0.
But g™ = P,]
If y = u/x, where u is a function of x, verify that
dry (—1yn! x du x*d*u x3d3u x" d"u
"= T (P T g T P T3t :
dx X 11dx 2V dx 3! dx

Conclude, by putting u = x™, that

(560

where m is any rational number.

. If x* — (a + b)x® + (@ — b)x — 1 = 0 has a root of multiplicity two, show that

a*? — p¥3 =223,
[Hint: By Exercise 3.3, the equations
f)=x*—(a+bx*+@—bx—-1=0
and
fix)=4x>*—-3(a@+b)x*+a—-b=0

will have a common root and the required result will be obtained by eliminating
x between these two equations. Multiplying the second equation by x and sub-
tracting the first gives a + b = (3x* + 1)/2x>; multiplying the second equation
by x and subtracting three times the first equation gives a — b = (x* + 3)/2x.
Adding and subtracting the relations giving a + b and a — b, we get

1 1\3 1 1\3
2a=-{x+—1, 2b=—{x——].
2 X 2 X

Thus, x + 1/x = 2*?a?? and x — 1/x = —2%3b?B; by squaring and subtracting,
the required result follows.]
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3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

Show that the length of the portion of the tangent to the astroid (see Figure
3.10)

x4 y2/3 — a?B

intercepted between the coordinate axes is constant.
[Hint: Differentiation gives

2 2 ady Cdy  [y\e
—x7WB 4 -y =0, thatis,—=—|=] .
3x +3y dx arss dx (x

Therefore, the equation of the tangent at any point (x,, y,) is

1/3
y=y1= —<&> (x —x;).

X1

The x-intercept of the tangent at (x,,y,) is (x}*a®?,0) and the y-intercept is
(0, '3 a?3); the distance between these two points is a.]

Show that the sum of the intercepts on the coordinate axes of any tangent to
\/; + \/; = \/c_z is constant.

Find the equations for the tangents to the ellipse 4x? + y* = 72 that pass
through the point (4,4).
[Answer: 2x + y — 12 =0and 14x + y — 60 = 0.]

Let P(x) be a polynomial and y = mx + ¢ be tangent to y = P(x) at x = x,.
Show that the polynomial Q(x) = P(x) — mx — c is divisible by (x — x,)%

[Hint: Since y = mx + c is tangent to y = P(x) at x = x, we have P(x,) =
mxg + ¢, P(xg)=m, and so Q(xo) = Q'(xo) =0 and the result follows by
Exercise 3.3.]

Find the equations of the asymptotes of y>(x — 1) — x> =0
[Answer:x —1=0,y=x+1,y=—x—1]

Find the equations of the asymptotes of x> — 2x2y — y? = 0.
[Answer: 4x — 8y — 1 = 0.]

If y = 1/(a® + x?), show that
(= 1)"n!(sin"*! ) [sin(n + 1)¢]

n+2 ’

y =
a

where t = cot "1/,
[Hint: Puti = ./ —1. We have

_ 1 1 1 1
y_(x+ia)(x—ia)_2ia x—ia x+ia

w_(=m/ 1
Y 2ia \(x —ia)""'  (x +ia"*')’

Now let r and ¢ be such that x = rcost and a = rsint; then

and so
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3.19.

3.20.

3.21.
3.22.

3. Differentiation

(=1)'n! NN e
¥ = ———[(cost — isint) ™™ ! — (cost + isint) "]
2iar™

Therefore, since

(cost — ising) ™! = cos(n + 1)t + isin(n + 1)t

and
(cost + ising) ™! = cos(n + 1)t — isin(n + 1)z,
we have
—1)"n! —1)"n!
yo = %sin(n 4=t niz" (sin"*1 t)[sin{n + 1)].]
ar a

If y = x/(a* + x?), show that

= (—1)"n!(sin"*! ) [cos(n + 1)£]

n+1 4

a

where ¢t = cot "1/,
[Hint: See Exercise 3.18.]

If y = sin x, show that y™ = sin(x + nn/2).
[Hint: We have y’ = cos x = sin(x + 7/2),

L, 4 . 4 T d . + i1 in(x + 2n
=—sin|x+=})=————sin ~)= — ],
VT I 2) Tdx + a2 T\ T ) TS TS

and so forth.]
If y = cos x, show that y™ = cos(x + nn/2).

Show that

n

——e**sinbx = r"e**sin(bx + nt
dx"

and

n

dx"

e"*cos bx = r"e* cos(bx + nt),
where r? = g% + b? and t = tan"' b/a.
[Hint: If y = ¢**sin bx, then
y' = ae**sinbx + be"*cosbx = e**(asinbx + bcos bx).

Leta = rcost and b = rsint, so that

b
r’=a*>+b* and tant=-;
a
then we get
y' = re**[(cos t)(sin bx) + (sint)(cos bx)] = re**sin(bx + t).

Again,
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3.23.

3.24.

3.25.

3.26.

3.27.

3.28.

y" = re**[asin(bx + t) + bcos(bx + t)]
= r2e*{(cos t)[sin(bx + t)] + (sin ) [cos(bx + t)]}
= rZe*sin(bx + 2t)
and so forth.]

If y = (sin x)(sin 2x), show that

1 nz nmn
) — _ — 3" —
Y 2I:cos<x+ 2> 3 cos<3x+ 3 )]

[Hint: Note that y = 4(cos x — cos 3x).]
If y = e*(sin? x)(sin 2x), show that
y® = L(5)"2e*sin(2x + ntan"!2) — 1(17)"2e*sin(4x + ntan! 4).
[Hint: Note that
y = (€%/2)(1 — cos 2x)(sin 2x) = $e*(sin 2x) — ;e*(sin4x).]
Show that the determinant
cos(x + a) sin(x +a) 1
A(x) = | cos(x +b) sin(x+b) 1
cos(x +¢) sin(x +¢) 1
satisfies A’'(x) = 0.
[Hint: Take the transpose of the determinant A(x) and differentiate (see
Exercise 3.1).]
Simplify the expression f(x) = cos{tan "' [sin(cot ™! x)]}.
[Hint: Let « = cot ' x and f = tan™" y. Then

sina = sin(cot ™' x) = (1 + x2)™¥2,  cos B = cos{tan"!y} = (1 + y?)~V2

But y =sin(cot ™' x) = (1 + x2)™"2 and f(x) = cos{tan"! y} = (1 + y*)"*2 so
that
(x2 + 1172
fx)= m-]

Let y = (ax + b)/(cx + d). Show that

n| Cn—l

m _ (1) . _ -
P = (1) (be — ad)

[Hint: Note that
ax+b_a+ bc — ad
cx+d ¢ clex+d)

If y = 1/(x* — a*), show that

Yo = (—=1)"n! ( 1 1 _ a,.2_+1(Sin"+1 £) [sin(n + 1)[]),

4a3 (X _ a)n+l - (X + a)n+l

where t = cot "1 (x/a).
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3.29.

3.30.

3.31.

3.32.

3. Differentiation

[Hint: We have

1 1 1 1 5 1
= — —2a .
x*—a* 4a*\x—a x+a x? + a?
For the differentiation of 1/(x? + a?) see Exercise 3.18.]

If y = tanh™!(x/a), show that

L = D1yt 1
= 2 ((a+x)"+(a—x)">'

[Hint: Recall that (see Section 4 of Chapter 1)

1+
tanh 1y = §1n<1——u> for |u| < 1.]
- Uu

If y = 1/[(x% + a?)(x? + b?)], show that
o= (=1yn! ((sin"+1 flsin(n + ] (sin"*1s)[sin(n + 1)s]>

aZ _ b2 bn+2 an+2

where x = bcott = acots.
[Hint: We have

1 1 1 1
(x2 + a®)(x> + b?)  a® — b2 <x2 +b2 x4+ a2>'
For the differentiation of 1/(x? + ¢2) see Exercise 3.18.]
If y = 1/(x% — a?), show that
o (=1rn! 1 1
"= - :
2a \(x—a"! (x+a"

Prove the following result: If fis continuous on [a,b] and if at every point ¢ in

[a,b]

fe+h)—fie—h

p -0 ash-—0,

then f'is constant on [a, b].

CoMMENTs. It should first be observed that the convergence, as h— 0, of
the special incremental ratio

S+ h)—ft—h
h

does not secure the existence of f'(¢). To see this, it is enough to consider the

functions
. 1
[x], sin? (—)
x

at x = 0. Neither function is differentiable at x = 0, yet, the special incremental
ratio for each of them vanishes identically and so certainly converges as h — 0.
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We can see that the result is not necessarily true for a discontinuous function
by considering the function

flx)=1 forx+#0,
=0 forx=0.

Here, if t # 0,
S+ h)—fe—h)=0, if|nl <]t

while f(h) — f(—h) = 0 for every h. Thus, the limit of the special incremental
ratio is everywhere zero, but the function is not constant in any interval which
contains the origin.

[Hint: To prove the result we state the condition of convergence in the form

[ f(x + h) — f(x — h)| < he, if0 < h < some (g, x), (3.47)

where it is sufficient to consider h positive, since the expression on the left is not
affected by changing h to —h. We verify that the numbers é are unrestricted,
except, of course, by the condition that x + h lie in the stated interval [a,b].
Suppose, on the contrary, that for given x, £ the numbers & have a largest
number or an upper bound J,(J, x). Then

|l f(x + h)— fx — h)| < he, f0<h<dyle, x), (3.48)
| f(x + k') — f(x — h')| > h'e, forsome h’ <anyd,+ ¢, (3.49)

where, of course, h’ > §, by (3.48).
Now, by (3.47),

|f(x + 0 + ) — f(x + 8o — H)| < he, if0<h<(ex+38) (3.50)
|f(x — 8 + ) — f(x — 3o — h)| < he, if0<h<8(x—38). (3.51)

Choose as ¢ the smallest of §, and (¢, x + d,). Then, by (3.49), we can find a
positive h; < ¢ < §, such that

|f(x + 8¢ + hy) — f(x — 39 — hy)| > (6o + hy)e. (3.52)
But by (3.50) and (3.51)
[fGc + 8o + By) — f(x + 89 — hy) < hye, since 0 < hy < d(g,x + Jy),
[f(x — 8o + hy) — f(x — g — hy)| < hye, since 0 < hy < d(g,x — dy),
and by (3.48)
[f(xo + 8o — hy) — f(x — 8o + hy)| < (69 — hy)e, since 0 < &y — hy < Jy.
By addition of the last three inequalities we have
[fx + 89 + hy) — f(x — 8o — h)l < (B + hy)e,

which contradicts (3.52).
The preceding argument is fallacious, however, if, in (3.49), b’ is always Jq,
that is, if

[f(x + 8o) — fx — do)| > Sg€ > 0,
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3.33.

3.34.

3. Differentiation

but
|f(x + h) — f(x — h)| < ke

in every open neighborhood of h = §,. We now require the condition that f be

continuous, in virtue of which we can take the limit h — §,. This gives

LS + 6) — f(x — do)| < bo8,

and so rules out our assumption.

The original assumption, then, that there is a largest (g, x) is also disproved

and we therefore have that

LS+ h) — f(x — h)| < ke,

provided only that x + h lie in [a, b]. Thus, ¢ is independent of x, h, and we may

take the limit ¢ — 0, giving
f(x+ h)=f(x —h) forevery h.
In particular, if we put x = h + ¢, where c is a constant in [a, b], we get
Sx + 2¢) = f(o),
that is, fis a constant throughout [a, b].]

Determine

e* — esinx
lim——————.
x—0 X — SInXx

[Hint: Note that

ex — esinx . ex—sinx -1
- = esmx -

X —Ssinx X —Sinx

and that

t

. e—1 d

lim =-—(e" =1]

—~o L dt =0

I (1 — X' + (1 — y)' = a(x — y), show that y’ = (1 — y2)"2/(1 — x*)'™.
[Indeed, putting x = sint and y = sin s, we get

cost + coss = a(sint — sin s).
It follows that a = cot 4(¢ — s), implying that t — s = 2(cot "' a) or
sin 'x —sin"!'y = 2(cot ! a).

Differentiating with respect to x gives the desired expression for y'.]



CHAPTER 4

Applications of Differentiation

1. Mean Value Theorems

Definition. Let (a, b) be an open interval contained in the domain of definition
of a real-valued function f and c be a point of (a, b). The number f(c) is said
to be a relative maximum of f at c if there is some d > 0 such that the open
interval (¢ — d, ¢ + 9) is contained in (a, b) and f(x) < f(c) for any point x in
(¢ — 6,c¢ + 9). Similarly, the number f(c) is said to be a relative minimum of f
at c if there is some ¢ > 0 such that the open interval (¢ — d,¢ + J) is con-
tained in (a,b) and f(x) = f(c) for any point x in (c — d,¢ + ). By a relative
extremum we mean a relative maximum or a relative minimum. By an abso-
lute maximum of a function on an interval we simply mean the largest value
of that function on the given interval; by an absolute minimum of a function
on an interval we mean the smallest value of that function on the given
interval. Absolute maxima and absolute minima are often only referred to as
maxima and minima, respectively.

CoMmMENTS. By Proposition 2.13, every function continuous on a closed inter-
val [a,b] of finite length has an absolute maximum and an absolute mini-
mum on that interval. It can happen that a continuous function has an
absolute maximum without having a relative maximum,; a case in point is the
function f(x) = x on [0, 1]. By the definition of the relative extremum it must,
if it is to exist at all, occur at an inner point rather than endpoint of the
interval.

Proposition 4.1. If a continuous function f on a closed interval [a,b] of finite
length takes on some value twice, then it has a relative extremum.
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Proor. If f is constant, that is, if f(x;) = f(x,) for any x, and x, in [a, b], the
proposition holds trivially. If f is not constant, we can assume without loss
of generality that f(a) = f(b) and that for some x inside the interval we have
f(x) > f(a). The absolute maximum of the function is then assumed at an
inner point of the interval, say, at x,. The proposition is then proved, for such
an absolute maximum must be a relative maximum. If f(x) had been less than
f(a), the same argument would have given us a minimum. O

Proposition 4.2 (Fermat’s Theorem). Let f be defined on [a,b]; if f has a
relative extremum at an inner point x of [a,b], and if the derivative of f at x
exists, then f'(x) = 0.

Proor. Suppose that we have a relative maximum at x. Let § be chosen in
accordance with the definition of a relative maximum so that
a<x—06<x<x+0<h.

If x — 6 <t < x, then

S0 — f(x)

t—X

> 0.

Letting t — x, we see that f'(x) > 0. If x <t < x + J, then

JO =) _

t—Xx

0.

which shows that f’(x) < 0. Hence, f'(x) = 0. The same argument shows that
the derivative also vanishes at relative minima. O

REMARKS. Proposition 4.2 shows that the relative extrema of a differentiable
function are to be found among the zeros of the derivative. The absolute
maximum must be the largest of the values of the function at these points and
at the boundaries of the interval; the absolute minimum must be the smallest
of the values of the function at these points and at the boundaries of the
interval. The converse of Proposition 4.2 is not true; the function f(x) = x3
has derivative zero at x = 0, but has no relative extremum at x = 0.

The graph of the function g(x) = |x| has a corner at x = 0; g is not differ-
entiable at x = 0, but g has a relative minimum at x = 0. The graph of the
function h(x) = x*? has a cusp at x = 0; h is not differentiable at x = 0, but h
has a relative minimum at x = 0. Figure 4.1 shows the graph of the function
g and Figure 4.2 the graph of A.

Proposition 4.3 (Rolle’s Theorem). If f is a continuous real-valued function on
a closed interval [a, b] of finite length and is differentiable on the open interval
(a,b), and if f(a) = f(b), then there is a point x in the open interval (a, b) such
that f'(x) = 0.

Proor. The proposition is a consequence of Propositions 4.1 and 4.2. O
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b4
y = Ixl
X
Figure 4.1
y
2/3
g = /
X
Figure 4.2

REMARKS. Proposition 4.3 shows that if f'(x) # 0 for each point x in (g, b),
then f(x,) # f(x,) for any two distinct points x, and x, in (a, b).

Proposition 4.3 includes the statement that between two real zeros of a
function the derivative must have at least one real zero. If f is a polynomial
with real coefficients such that f(a) = f(b) = 0 and f(x) # O for any x in the
open interval (a,b), then f’ has an odd number of real zeros in the open
interval (a,b) and hence at least one real zero between a and b; the zeros of
course are counted by their multiplicity. This result is a special case of
Proposition 4.4, to be considered next.

Proposition 4.4 (Waring’s Theorem). Let f be a polynomial with real coeffi-
cients such that f(a) = f(b) =0 and f(x) # 0 for any x in the open interval
(a, b); moreover, let r be any fixed real number. Then f’ + rf has an odd number
of zeros (hence at least one zero) in the open interval (a, b). It is understood here
that the zeros are counted according to their multiplicity.

Proor. We recall from algebra the following: Let 4 and B be real numbers
and P be a polynomial with real coefficients. If the numbers P(A4) and P(B)
have opposite signs, then there is an odd number of zeros of P between A and
B (hence at least one zero). However, if the numbers P(4) and P(B) have the
same sign, then there is either no zero or an even number of zeros of P
between A and B. Here each zero is counted according to its multiplicity.
Turning to the proof of the proposition, we assume that a < b and we
suppose that a is a zero of f of multiplicity p and b a zero of f of multiplicity
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g; thus,
S(x) = (x — a)’(x — b)lg(x),

where g does not become zero anywhere on the closed interval [a,b] and
hence does not change sign on [a, b]; we may assume that g is positive on
[a, b]. It follows that

)+ rf(x) = (x — @’ (x — b)* 'h(x),
where
h(x) = p(x — b)g(x) + q(x — a)g(x) + (x — a)(x — b)g'(x)
+ r(x — a)(x — b)g(x).

Therefore, the zeros between a and b of the function f’ + rf and the zeros
between a and b of the function h are identical and also with regard to their
multiplicity. But the sign of h(a) is that of a — b and of h(b) that of b — a; so
h(a) and h(b) have opposite signs. We thus see that the function A has an odd
number of zeros between a and b; hence the function f’ + rf must have an
odd number of zeros between a and b. |

APPLICATION. Let n be a positive integer and n! = 1-2-3...n; the function
x x? x"

has no real zero or one real zero according to whether n is even or odd.

Indeed, it is enough to show that f, does not have two consecutive zeros;
it is clear that f, can not have positive zeros and, if n is odd, f, has at least
one zero (see the Application following Proposition 2.12). Now, suppose a
and b were two such consecutive zeros [i.e., f,(a) = f,(b) =0, f,(x) # 0 for
a < x < b], then we would have
! an ’ bn
f@=fi@+-r=0 fi(b)=1(b) + =0,

sgn f,(a) = sgn f,(b) # 0,

where sgn A denotes the sign of the number A. Since the sign of f,(a) and the
sign of f,(b) are the same, f, would have an even number of zeros in the open
interval (a, b); however, by Proposition 4.4 (with r = 0), f,, would have an odd
number of zeros in (a, b). Therefore, the assumption that f, has two consecu-
tive negative zeros leads to a contradiction. This proves the assertion.

Proposition 4.5 (Mean Value Theorem). If f is continuous on a closed interval
[a,b] of finite length and is differentiable on the open interval (a, b), then there
is a point x in the open interval (a, b) such that

1) - f@)

f ==
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Figure 4.3

Proor. Geometrically speaking, the Mean Value Theorem tells us that there
exists at least one value x between a and b such that the tangent to the curve
at the point (x, f(x)) is parallel to the chord joining (g, f(a)) with (b, f(b)); see
Figure 4.3. The proof of the Mean Value Theorem is obtained by applying
Proposition 4.3 to a properly chosen auxiliary function F. To this end, define

FO = £ - <f(a) RLASLE a)> fora<t<bh

Note that F(t) can be interpreted geometrically; it measures the separation
between the point S = (¢, f(t)) on the curve and the point R with abscissa ¢t on
the chord joining (a, f(a)) with (b, f(b)), as can be seen in Figure 4.3. Now F
is clearly continuous on [a,b] and differentiable on (a,b) and F(a) = F(b) = 0.
So F satisfies the conditions of Proposition 4.3. There is accordingly a point
x in the open interval (a, b) for which F'(x) = 0. But this implies

b - @ _

0
b—a

f'x)
and the proof is finished. O

ComMENTs. To see that the assumptions in the Mean Value Theorem are
necessary, consider the function

1
f0)=0 and f(t)= " fort # 0.
If t = 0 belongs to the open interval (a,b), then the conclusion of the Mean

Value Theorem would give the impossible relation x? = ab, where a and b
have opposite signs; but the Mean Value Theorem is not applicable because
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f is not differentiable for ¢ = 0. If t = 0 is one of the endpoints of the interval
[a,b], say a = 0, then the conclusion of the Mean Value Theorem would give
the impossible relation x> = —b?; but the Mean Value Theorem is not appli-
cable here either because f is not continuous for ¢t = 0.

Another interesting situation is provided by the function

g(0)=0 and g(x)=x? sin—j; for x # 0.

For x # 0 we can calculate the derivative in the usual fashion and obtain

1 1
g'(x) = 2xsin— — cos—;
x x

for x = 0 we get

g0 = limM = limhsin1 =0
h—0 h—0

(because |sin 1/h| < 1). Since lim, _ cos(1/x) does not exist, we see that g'(x)
does not tend to a limit as x — 0 and so the function g’ is not continuous at
x = 0. This shows that a function can be differentiable everywhere but its
derivative may fail to be continuous everywhere. Remarkable for us is the
following circumstance: Let h be a positive real number and consider the
closed interval [0, h]. The function g is continuous on [0, 4] and differentiable
on the open interval (0, h). By the Mean Value Theorem there is a point x in
(0, k) such that

g(h) — ¢(0) 1 1 1

thatis, 2xsin— — cos— = hsin-.

g(x) = L , . . ;

Now for each h > 0 there is an x > 0 by the Mean Value Theorem; moreover,
since 0 < x < h, it is clear that x — 0 as h — 0. We have

limg'(x) =0 but limg'(x) does not exist
h—0 x—0

and

) 1 . 1 .
limcos— =0 but limcos— does not exist.
h—0 X x—0

This suggests that x must be a discontinuous function of k, being undefined
at vastly more points than defined in any open interval of the form (0, b).
A further example of this type is provided by the function

w(0) =0 and w(x)=xsin(lnx) forx>0.

Here we have, by virtue of the Mean Value Theorem,

\/5 sin <% +1In x> = sin(ln h),
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noting that
sin(ln x) + cos(ln x) = \/5 sin <§ +1n x).

Since sin?(n/4 + Inx) can not be larger than 3, there are infinitely many
intervals in (0, &), regardless of how small 4 is, that do not contain the point
x. These intervals belong to the sequence

(4,99, (4*q9%, (¢°.95, ..., whereq=e ™2
Proposition 4.6. (i) Let f be a differentiable function on (a, b) such that f'(x) =
0 for all x in (a,b). Then f is a constant function on (a, b).

(ii) Let f and g be differentiable functions on (a,b) such that f' =g on
(a, b). Then there is a constant c such that f(x) = g(x) + ¢ for all x in (a, b).

Proor. If f is not constant on the interval (a, b), then there are two points x,
and x, such that a < x; < x, <b and f(x,) # f(x,). By the Mean Value
Theorem, for some x satisfying x, < x < x, we have

Sflxz) = f(xy) £0

Xy — X,

fx) = )
a contradiction. This establishes part (i) of the proposition.

To prove part (ii) of the proposition, we merely have to apply part (i) of the
proposition to the function f — g. O

Proposition 4.7. Let f be a differentiable function on an interval (a, b). Then

(i) f is strictly increasing if f'(x) > O for all x in (a, b);
(ii) f is strictly decreasing if f'(x) < O for all x in (a, b);
(iii) f is nondecreasing if f'(x) = 0 for all x in (a, b);
(iv) f is nonincreasing if f'(x) < 0 for all x in (a, b).

Proor. To prove part (i), consider points x; and x,, where a < x; < x, < b.
By the Mean Value Theorem (see Proposition 4.5), for some x satisfying
Xx; < X < x, we have

S(x2) — f(x4)

Xy — Xy

= f'(x) > O.

Since x, — x; > 0, we get that f(x,) — f(x;) >0 or f(x,) > f(x,). The re-
maining cases are equally easy to establish. O

CommMenTs. The function f(x) = x? is strictly increasing, but f'(x) = 3x? is
zero for x = 0. This shows that f can be strictly increasing on an interval
(a, b) while f'(x) = 0 for some isolated points x of the interval.

If f is a differentiable function on an interval (a, b) and if f’(c) > 0 for some
point ¢ of (a, b), then there is a subinterval (a,, ¢) of (g, ¢) such that f(x) < f(c)



158 4. Applications of Differentiation

for any x in (ay,c) and there exists a subinterval (c,b,) of (¢,b) such that
f(x) > f(c) for any x in (c, b,). Indeed, from f’(c) > 0 it follows that for all x
in (a, b) that are sufficiently close to ¢ we have

fx) = 1)

X —C

7

that is, for x < ¢ {resp. x > ¢} we have f(x) < f(c) {resp. f(x) > f(c)}. A
similar statement holds if f'(c) < 0.

Proposition 4.8 (Darboux’s Theorem). Let f be a differentiable function on a
closed interval [a, b] of finite length and suppose that f'(a) < y, < f'(b). Then
there is a point X, in the open interval (a,b) such that f’'(x,) = y,

Proor. We first consider the special case where f'(a) < 0, f'(b) > 0 and show
that there is an x in (a, b) such that f'(x) =

We note that since f is differentiable it must be continuous (see Proposi-
tion 3.1). It accordingly attains its smallest value on [a, b] (see Proposition
2.13). Since f'(a) < O there are points x, in (a,b) with f(x,) < f(a); similarly,
since f'(b) > O there are points x, in (g, b) with f(x,) < f(b) (see Comments
following Proposition 4.7). Thus, the least value of f in [a, b] is attained at an
x in (a, b). But then f'(x) = 0 (by Proposition 4.2).

Now suppose f is differentiable and only that f'(a) < y, < f’(b). We show
that there is an x, in (a, b) such that f’(x,) = y,.

Consider the auxiliary function g(t) = f(¢) — yot. Then

g@=f"@—y,<0 and ¢'(b)=f(b)—y,>0.

Since g satisfies the conditions of the special case already considered, there is
an x, in (a, b) for which g'(xy) = 0. But f'(x,) = g'(x0) + Vo = Vo- O

RemARkS. In place of the inequality f'(a) < y, < f'(b) we could also have
used the inequality f'(a) > y, > f'(b) in Proposition 4.8; in the proof we
would merely have to replace the function f by the function —f.

From the Comments following Proposition 4.5 we already know that the
derivative of a differentiable function need not be a continuous function.
Continuous functions have the property that they assume all intermediate
values (see Proposition 2.12); by Proposition 4.8, derivatives of differentiable
functions share this property. We now give an example of two functions f
and g that have the intermediate value property but f + g does not. Let

1
F(0)=0 and F(t)=t2sin? fort #0,

1
G(0)=0 and G()= tzcos? fort # 0.

Now F/(0) = G'(0) = 0; for t #0, F/(t) = 2tsin(1/t) — cos(1/t) and G'(t) =
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2t cos(1/t) + sin(1/t). Putting f(t) = {F'(t)}* and g(t) = {G'(z)}?, then f and ¢
have the intermediate value property because F’' and G’ do, but
(f+g9@®)=4%2+1 fort#0

=0 fort=0.

Proposition 4.9 (Generalized Mean Value Theorem). (i) Let f and g be con-
tinuous functions on a closed interval [a,b] of finite length and both be
differentiable on the open interval (a,b), then there is a point x in the open
interval (a, b) such that

Lf(B) — fla)1g'(x) = [g(b) — g(@)]f"(x). (4.1)

(i) If, in addition, g(a) # g(b), and f'(t) and g'(t) are not both zero for the
same value of t in the open interval (a,b), then

1) — f@) _ f'x)

g(b) —g(a) g'(x)

4.2)

for some x in (a,b).
(iii) If g'(¢) is not zero for any t in (a,b) the additiondl assumptions (ii)
necessarily hold, so that equation (4.2) follows.

Proor. To prove part (i) we apply Proposition 4.3 to the auxiliary function F
given by

F(t) = Lf(b) — fla)]g(t) — [9(b) — 9(a)1f(2).

Then F is continuous on [a, b] and differentiable on (a, b) and F(a) = F(b) =
f(b)g(a) — f(a)g(b). Thus, by Proposition 4.3, there is a point x in the open
interval (a, b) for which F'(x) = 0. Tt therefore follows that

L) — f(@]g'(x) = [9(b) — g(@)]/(x).

We next suppose that the additional assumptions of part (ii) hold. Then, if
f'(x) =0, it follows that g'(x) # 0. On the other hand, if f’'(x) # 0, since
g(b) — g(a) # 0, the right-hand member of equation (4.1) is not zero. There-
fore, the left-hand member of equation (4.1) is not zero, and again g'(x) # 0.
Thus, we may divide by g'(x) and g(b) — g(a) and so deduce equation (4.2).

Finally, we want to see that we may replace the additional assumptions of
part (ii) by assuming that g'(t) # O for any ¢ in (a, b), as was asserted in part
(iii). Indeed, if g'(t) # O for any ¢ in (a,b), then f’(t) and ¢'(t) can not both
vanish for the same ¢ in (a, b). Moreover, by the Mean Value Theorem,

g(b) — g(a) = (b — a)g'(s) # O,
completing the proof. O

CommMenTs. Taking g(t) = t, we see that Proposition 4.5 is a special case of
Proposition 4.9. We can give Proposition 4.9 a geometric interpretation that
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is similar to the geometric interpretation of Proposition 4.5. We consider a
curve given by the parametric representation
x = f(1), y=g@t) fora<t<p.

Then the formula

)= 1@ _f'0)
gB) —gl@®» g

for some y in the open interval (a, f) can be interpreted as follows: The
left-hand side of (4.3) stands for the slope of the chord connecting the two
endpoints of the curve and the right-hand side of (4.3) stands for the slope of
the tangent line to the curve for ¢t = y.

4.3)

Proposition 4.10 (L’Hopital’s Rules). Let J be an open interval with an “end-
point” ¢, where ¢ may be either finite or infinite. Assume that f and g are two
functions satisfying the properties:

(i) f and g are differentiable on J;
(i) g(x) # 0 and g'(x) # O for any x in J;
(iil) lim,.. f'(x)/g'(x) = L, where L may be either finite or infinite.

Moreover, assume that either

(A) lim f(x) = 0 = lim g(x)

or
(B) lim|g(x)| = o0
Then
%)
lim = L.
x—~cd (x)

Proor. Let ¢ < d and J = (¢, d). For any x in J define the functions

/@), 1),
) )

Let s be any point between ¢ and x. By Proposition 4.9 we have
19— £6) _ 10
glx)—g(s) g’

where t is a number between s and x. Hence, we have

mx) < J&x) = f(s) < M)

g(x) —g(s) =

for each s between ¢ and x. But clearly

m(x) = inf{ } and M(x) = sup{

c<u<x}
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f@—mpjmmmfmmeMw (4.4)

(T T R S B T

and

< fx) = fls) _ f6)/g(s) = f(x)/9(5) <M

g(x) — g(s) 1 —g(x)/g(s)
Suppose now that condition (A) of the assumption is satisfied. Let x be fixed.
Since both f(s) and g(s) tend to 0 as s — ¢, it then follows from (4.4) that
m(x) < f(x)/g(x) < M(x). If case (B) holds and x is fixed, then letting s — ¢, we
see from (4.5) that

m(x) (x). 4.5)

f6)

m(x) < lim——= < M(x).
s=c 9(5)

To complete the proof, it is enough to note that by (iii) both m(x) and M(x)

tend toward L as x — c and that s is trapped between ¢ and x.

If x does not tend to a finite real number ¢, we can use the foregoing to
settle matters as well. Suppose, for example, that x — co. Making the change
of variable y = 1/x, we see that y tends to 0 from the right when x — oo. If we
define

F(y) = f(%) /() and G(y)= "G) — 4

we have

1
F(y)=-y7f <;> = —x*f'(x) and G'(y)= —x*¢'(x)

and so
FO) _ [
G(y) 9K
This shows that if lim__, ., f'(x)/g'(x) = L, théen we have
Jx) . F(y) F(y) S

lim = lim =lim——=Ilim~— — = L. O
a0 d(X) Lo F()) 3o F())  xw f(X)

ComMenTs. If f'(x)/g'(x) does not approach a limit as x — ¢, we can not
conclude that f(x)/g(x) also has no limit as x — c. Consider, for example,
f(x)=x—sinx and g(x)=Xx + sinx
Then
i 5= sinx . 1—(sinx)/x _
tonX + 8INX  yool 4+ (siDX)/x

but
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. 1 —cosx . , X
lim —— = lim tan*—
=0l +COSX 1o 2

does not exist. Another example of this type is the following: Let

1
f0 =0, f(x)=x2%sin— forx#0, and g(x) = sin x.
x

Then, as x — 0,

Jx)  x <xsinl>—r0,
x

5(—)5 "~ sinx
but
S'(x) _ 2xsin(1/x) — cos(1/x)
gx) Ccos X

approaches no limit whatever as x — 0.
The fact that g'(x) # 0 for x “near” ¢ is important: Let

f(x)=x+sinxcosx and g(x)= (x + sinxcosx)e’i"*,

Then, as x — oo, f(x)/g(x) oscillates forever between e and 1/e and has no
limit. Now

f'(x) = 2(cosx)* and g'(x) = " *(cos x)(x + 2cosx + sin x cos x).
But, as x —» o0,

f'(x)  2e"*cosx

g(x) x4+ (2 + sinx)cosx -~

because the numerator remains bounded and the denominator becomes arbi-
trarily large. Note that both f’(x) = 0 and g'(x) = 0 whenever cos x = 0.

From the Remarks to Proposition 4.3 we know that if g is a differentiable
function on an open interval (c,d) and g'(x) # 0 for each point x in (c, d), then
g(x;) # g(x,) for any two distinct points x; and x, in (c,d). We add, if
g'(x) # 0 for each point x in (c,d), then either g'(x) > 0 for each x in (c,d) or
g'(x) < 0 for each x in (c,d) and hence the function g is seen to be strictly
monotonic on (c,d) by Proposition 4.7. Indeed, if for two distinct points x,
and x, we had g'(x;)g'(x,) < 0, then by the intermediate value property of
differentiable functions (see Proposition 4.8) there would exist a point x,
between x; and x, such that g'(x;) = 0.

Discussion and Examples. We frequently come upon limits of the form
lim Mf(x)
xoe 9(x)

where the limit can be one- or two-sided and where c is finite or infinite. The
limit (4.6) exists and is simply

4.6)
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lim,.. f(x)

fim,. g0 @7

provided the limits lim,_,. f(x) and lim,_ g(x) exist and are finite and pro-
vided lim,_,_ g(x) # 0; see Proposition 2.6. When we calculate the derivative
of a function h at a point x we consider the limit
’ . h(t) — h(x)
lim —————=,
»x [— X
provided that this limit exists. Applying the rule that “the limit of a quotient
is the quotient of the limits” would only result in the indeterminate form of
type 0/0, which has no meaning, and would show that we forgot the impor-
tant condition that the limit of the denominator must be different from zero
for this rule to apply. If the expression (4.7) leads to an indeterminate form of
the type 0/0 or oo/c0, then L’Hopital’s Rules (see Proposition 4.10) can
frequently be used to evaluate the limit (4.6). In addition, other indeterminate
forms, such as 0 00, co — o0, 0%, 0?, or 1, can usually be reformulated so
as to take the form 0/0 or oo/0.
Indeed, if the product fg of two functions presents itself in the form 0- co
as x — ¢, then we try to apply L’Hopital’s Rules to the quotient

S

1/g
If the difference f — g presents itself in the form oo — 00 as x — ¢, then we
consider the product

£t —gif),
which will be of the type 0- oo provided that g/f tends to 1 as x — ¢. If
F(x) = [f(x)]**
produces an indeterminate of the type 0°, o, or 1° as x — ¢, then

In F(x) = g(x)[1n f(x)]

gives rise to a form of the type 0- co. If In{F(x)} - K as x — ¢, then F(x) - ¥
as x — ¢ by the continuity of the exponential function.
We now look at some examples.

1. We wish to find the limit

where a and b are fixed positive real numbers.
Here f(x) = a* — b* and g(x) = x; as x -0 we get an indeterminate of
type 0/0. Now
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S s 1.4
ll_{ré 70) lli% {a*(Ina) — b*(Inb)} = lnb

and Proposition 4.10 is applicable. We obtain

2. To determine the limit

i x1/2 — ql? + (X . a)l/z
m
<la (xz _ a2)1/2 ’

where a is a fixed positive real number, we again use Proposition 4.10.
Here f(x) = x'? — a'? + (x — @) and g(x) = (x*> — a?)"? so that

f’(x) B (xz _ a2)1/2 + x1/2(x + a)1/2 1

gx) 2xx1? - (2a)'? asx|a.

Once again we had an indeterminate of type 0/0. By Proposition 4.10 we
conclude that the limit in question equals (2a)" 2.

3. Consider the limit
. eX+e -2
lim———
x>0 1 —cosx
With f(x) = e* + ¢ — 2 and g(x) = 1 — cos x, we see that
f/(x) _ ex _ e—x f’/(x) _ ex + e—x
g(x)  sinx g'(x)  cosx

Now f(x)/g{(x) and f'(x)/g'(x) are indeterminates of type 0/0; however,

fim? ) _ i &€

= = 2.
09" (X)  x-0 COSX
Thus, by Proposition 4.10,
iml® _im€ ¢ )
x-0g(x) xo0 sinx
and, by Proposition 4.10 applied for a second time,
X —-X __ 2
imf® _jm& et =2,

—0d(X) <m0 1 —cosx

4. If f'(x) exists on an interval containing c, then

. fle+h—fle—h . flet+th+f(c—h
im = lim
h—0 2h =0 2

= f(),
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by Proposition 4.10. If f"(x) exists on an interval containing c, then

TR H 2O St D =S
h—0 h "0 2h

5. Let n be a positive integer. We claim

. = a
lim (\"/x" +ax" P ta x4+ a,—x)= -
X0 ’ n
Indeed, let us replace x by 1/y so that y | O corresponds to x — 0. Our
problem now becomes the evaluation of the limit

hm\n/] +ay+ azyz +tayt — 1‘

yiO y
Here both numerator and denominator tend to 0 as y | 0. Passing from the
quotient f(y)/g(y) to the quotient f'(y)/g'(y), we must seek to evaluate the
limit

a, +2a,y + -+ na,y"!
im =TT

shon(l +ayy + - +ay)' 1"

However, this latter limit is easily seen to be a, /n. Invoking Proposition 4.10
gives us what we had claimed.

6. From Example 5 we can immediately deduce that

. = - a, —b
lim (/X" + a,x"" 4+ a, — X"+ by x" -+ by) = 1n =

X0

where n denotes a positive integer. In both Example 5 and the present
example the indeterminate is of type co — co.

7. Let b denote a positive real number. We wish to show that

lim x(b** — 1) = Inb.

X000

Indeed, letting f(x) = b'* — 1 and g(x) = 1/x, we see that
S'(x) b (Inb)(—1/x?)
g —1/x?
The rest follows by Proposition 4.10. (Look up Proposition 1.10 for
comparison.)

—1lnb asx— 0.

8. The function
FO)=0, F(x)=e " forx#0

has the remarkable property that its derivatives of all orders are zero at
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Figure 4.4

x = 0. In the graph of y = F(x) (see Figure 4.4) this property accounts for the
extreme flattening in the neighborhood of the origin. Note that the graph of
y = F(x) is symmetric about the y-axis because F(— x) = F(x).

We now show that the derivatives of all orders of F vanish at x = 0. If we
put u = 1/x and use the notation exp(t) for e, we obtain

F
FO) =lim™® = fim " =
x-0 X u— +o0 EXp(U?)
by using Proposition 4.10. Since F(x) = exp(—u?), W’ = —u?, we have by the

chain rule for differentiation
F'(x) = exp(—u?)[ —2uu'] = 2ulexp(—u?) forx #0.
Now
F(x) . 2u*

F’(0) =1i = lim ———=0
( ) xl—I;r(; X u—'lrinco CXP(uz)

by using Proposition 4.10 repeatedly and
F'(x) = exp(—u?)[6u?v' — 4u*u'] = exp(—u?)[4u® — 6u*] for x # 0.
Again '

F’ . 4 7 _ 6 5
F7(0) = lim =% _ fim Rt J
x20 X wtow €Xp(u?)
by using Proposition 4.10 several times. Continuing in this manner, for any
positive integer n we find that

. P
F™0) = 1 LA
© ws 10 €XP(?)

y

where P, is a polynomial.
If F™(x) = exp(—u?)P,(u), we obtain the recursion formula

Pi1(u) = 2u*P,(u) — u?Fy(u).
Thus, with Py(u) = 1, we have
P(u) = 2u®, Py(u) = 4uS — 6u*, Py(u) = 8u® — 36u’ + 24u’, ...
It is clear that the polynomial P, has degree 3n and that P,(u) is made up of a
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linear combination of terms of the form u™, where m is an integer satisfying
0 < m < 3n. Thus,
u™ P,(u)

1 ——— =0 1mpli h =
twexpd) o RS exp(u?)

We prove that
m

lim —
w10 €XP(iL?)

by repeated use of Proposition 4.10:
fim —Y = fim lim
im ———— = — =—[ lim —— |;
w10 €XPU3) oo 2uexp?) 2 \ustoexp(u?)

after a finite number of steps the exponent in the numerator will no longer be
positive, and then the limit is seen to be 0.

9. We show that
lim (1 + x)¥* = 1.

Indeed, let y = (1 + x)¥*; then Iny = (1/x)In(1 + x). But
1
im 2 L
X—00 X xX—00 1

by Proposition 4.10. Since Iny — 0 as x — oo, we see that y —» 1 as x - oo.

10. We verify that

1/x __
lim(1 + x) e_ e
x40 X 2
Indeed, putting y = (1 + x)!**, hence In y = (1/x)In(1 + x), we can see that

lim(1 + x)* =e.
x40

By Proposition 4.10,

1+ x> — — (1 + x)n(1
fim LF D778 iy g 4 e X = (L 00+ 1)

x40 x x40 x*(1 + x)

and two applications of Proposition 4.10 give us that

g XA+t +x) 1
0 X3(1 + x) A

2
. [tanx\¥*
lim = 1,
x—0 X

11. We have

Indeed, since
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tanx sinx 1

x X cosx’

we see that the indeterminate form under investigation is of type 1*. We put

tan x\ V**
y =
X

and show that In y — 1 as x — 00 and hence that y — ¢'® as x - co. Now

_In(tanx) — Inx

1
ny =
and applying Proposition 4.10 gives
lim In lim (sec*x)/(tanx) — 1/x . 2x — sin(2x)
i = _ '
= e 2x xo0 2x%sin(2x)

However, applying Proposition 4.10 three times in succession yields

2x —sin(2x) 1

o 2xZsin(2x) 3
12. We show that

1
lim (— — cot x> =0.
x—0 \ X

Indeed,
sin x ~ xCos x
——cotx =
X xsinx
and, by Proposition 4.10,
. sinx — xcosx . xsin x
Iim——mm———— =lm———————,
x=0 X Ssinx x—-0SIN X + X COS X

Another application of Proposition 4.10 gives

x sin x . sinx 4+ xcosx

m - =lim - =
*-»0SINX + XCOSX x502COSX — XSINX

However, we could have avoided application of Proposition 4.10 in the last
step by observing that (sin x)/x — 1 as x — 0 [see (2.8)] and hence

xsinx . sin x

m — = lim— =
x-08INX + XCOSX oo (Sin X)/x + cosx

13. We show that

. xe?* 4+ xe* — 2e** 4+ 2e* 1
lim 3 =
x—0 (e" — 1) 6
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Indeed, we use Proposition 4.10 three times in succession. After the first
application of Proposition 4.10 we cancel the common factor ¢* in the nu-
merator and denominator and after the second application of Proposition
4.10 we replace the factor e* in the denominator by 1 (because e* — 1 as
x — 0). The actual calculation simplifies a lot by this procedure. The details
are as follows:

limerX + xe* — 2e2* + 2e* 1 2xe2* + e2* + xe* + e* — 42> 4 2e*
= lm
x~0 (e = 1)3 o0 3e*(e* — 1)2
. 2xe*—3e*+3+x
= lim

w0 3 — 12

1 1,mer"+2e"—3e"+1
= —-11

3 x>0 2e*(e* — 1)
_l'h_m—e"+2xe"+1
"6 %0 e*— 1
_l‘lim2xe"+e"_1
T 6 g0 €6

14. Let
T 1/(In x)
y=<5—arctanx .

For x — oo we obtain an indeterminate form of the type 0°; we wish to show
that y —» 1/e as x = 0.

Indeed,
_In(n/2 — arctan x)

1
ny Inx

is an indeterminate form of the type co/co; we apply Proposition 4.10 and
obtain

1 1
" @2 —arctanx 1 + x? 1+ x?
limlny = lim mj2 — arctanx 1 + x = lim x/(1 + x°)
X0 Xx— 00 l/x x—»warctan x — 7[/2
1 — 2 1 2)\2 1 — 2
TN Ul A Ul . WS k. S
o 1/(1 + x?) x—ooo 1 + X2
15. We have
xcosx—sinx_ 1

[im XSS X 2
0  Xsin®x 3
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From this follows in particular that

. 1 2 . {sin x\V(17cos®)
lim <cot2x — —> = —= and hm< ) =153,

x—=0 xz 3 x—0 X

Indeed, by Proposition 4.10,

. XCcosx —sinx —Xxsinx
hm.—2 = lim - 3 P
x-0  Xsin®x x-08In* x + 2x(sin x)(cos x)
i —1 1
= lim— = —=
x—o0(sin x)/x + 2cos x 3’

establishing the first assertion. Since

5 1  x?cos?’x —sin?x xcosx + sinx xcosx — sinx
cot X——ZZ 2 3 = )
X x2sin?x X xsin? x

with

xcosx + sinx sin x
—_—————=cosxX+———2 asx-—0
x x

the second assertion follows from the first. Finally, putting y = f(x), where
Sin X 1/(1 —cos x)
= ()
b

_In(sinx) —Inx

we have

for x > 0.
1 —cosx

The assumption x > 0 causes no restriction because f(—x) = f(x). Using
Proposition 4.10, we obtain
.m(cos x)/(sinx) — 1/x . xcosx — sinx

; . 1
limlny =1 - lim — = —=
-0 %0 sin x -0 xsin“ x 3

s

establishing the third assertion in terms of the first.

16. Find a value of the fixed number ¢ such that
lim <x * C) —4
x—0 \X — C

<x + c>" In(x + ¢) — In(x — ¢)
y= or Iny=
xX—c 1/x

We put

and apply Proposition 4.10; we get
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In(x + ¢) — In(x — ¢) 1/{x+c)—1/(x —¢)

limIny = lim = lim

2
Xx—00 x—00 l/x X0 — l/X
. 2cx?
= lim 5 = 2¢.
xm X2 — C

We therefore see that 2¢c = 2(In2) or ¢ = In 2.
17. Let a and b denote fixed numbers and suppose that a > 0. Then

lim a"-sin%= b ifa>1
a

=0 f0<ax!
Indeed, let a > 1; then a* — oo as x — oo and so
b i *
sinl = b.sm(b/a )
a* b/a*
If 0<a<1, then a*—>0 as x — oo; moreover, |sint|] <1 for any real
number ¢.

X

a —b asx— 0.

18. We have

lim 1 1 1
i —— ==
wol\sin?x  x2? 3

1 1 x2—sin®x x?—sin?x  x

sin?x  x? x?sin? x x* sin® x’

Indeed, we have
2

Applying Proposition 4.10 four times in succession yields
" x? —sin?2x 1
im—— =

x—0 X4 3

On the other hand, x?/(sin?x) - 1 as x — 0.

2. Taylor’s Theorem

Proposition 4.11 (Taylor’s Theorem). Suppose that f is a real-valued function
on a closed interval [a,b] of finite length and n denotes a nonnegative integer.
Let f and its first n derivatives be continuous on [a,b] and let the (n + 1)st
derivative ™V exist (i.e., f™ be differentiable) on the open interval (a,b).
Assume, moreover, that o and B are distinct points of [a,b] and put

' ®
P(t)=f(oc)+£1£?)—(t—a)+ +%(t—a)". 4.8)
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Then there exists a point x between o and 5 such that

£+ () e,

16 =Pp)+ g~ aip @9)
where q is a fixed number > 1.
PRrOOE. Let K be a number defined by
£(B) = P(B) + K(B — ay 4.10)
and put, for ¢ in [a, b],
o0 =10+ 70—+ gy y kg -1y,

where f is held fixed. It is clear that g(B) = f(B); by (4.10) we have that
g(o) = f(B). Thus, by Proposition 4.3, g'(x) = 0 for some x between « and f.
But

g0 = fm+<59w—o—fm)

(ﬂQw—w ﬂ“w—@

) "
+(;Www3fmwwﬂ

(nt+1) (n)
H(E 0 - L - o) - akp -

and (4.9) follows. O

REMARKS. The polynomial P in (4.8) is called the Taylor polynomial of order
n for f at o. The expression

(n+1)
R, =1 ”w 2)i(B — xpa @1

that appears in (4.9) is called Schlémilch’s form of the remainder. If we let
q =n + 1in (4.11), then we obtain

_ /")
"+ 1)
and we call it Lagrange’s form of the remainder Putting g = 1 in (4.11) yields

(n+1)
=00

(ﬁ _ )n+1

R

and we call it Cauchy’s form of the remainder.
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For n = 0 and using Lagrange’s form of the remainder, Proposition 4.11
reduces to Proposition 4.5. In general, Proposition 4.11 shows that f may be
approximated by a polynomial of degree n; and (4.9) allows us to estimate the
error of the approximation, if we know bounds on | f®*1(x)|.

In Example 8 following Proposition 4.10 we studied the function

F(0) =0, F(t)=e V" fort+0.

It is noteworthy to point out that the Taylor polynomials of all orders for F
at 0 vanish because the derivatives of all orders of F are zero at ¢t = 0. In the
case of this function Proposition 4.11 does not yield an approximating poly-
nomial (except for the trivial zero polynomial) and the function F is merely
reproduced in the remainder. However, in the case of some other functions,
Proposition 4.11 provides very useful information indeed. We consider some
examples next.

Exponential Function. Let f(t) = ¢'. Then f®(t) = e'fork =1,2,.... Tak-
ing « = 0 and choosing for R, Lagrange’s form of the remainder, we get

B B B"
B — L L ce. T
e —1+1! +2! + +n! + R,(p),
where
ﬂn+1
R,(f) = e~
P =
with x between 0 and . We note that
Iﬂl"ﬂewl
R e
RO < iy
and, for fixed f,
lim R,(B) = 0. 4.12)

n—>oo

To verify (4.12), let m be a positive integer >2|f|. Then for n > m we have

B B 1B (1B [ 1Bl 1B 1y
(n+1)!*eﬂ7nT<m+1> <m+2> <n+1><eml_mw!<§) '

Thus, for n > m,

IR(B)] < M@

where M is the fixed number
M=2m1 .elﬂl.lﬂi.
m!

But (1/2)" >0 as n— o and so M-(1/2)" >0 as n— oo with M a fixed
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number. Therefore, for fixed 8 we can calculate e? by use of the relation

ﬂ ﬁz ﬁn Bn+1
B — LA i 98
el =1+ +2'+ “+ +(n+1)' , where0<f <1 (4.13)
with any degree of accuracy. In particular, for f = 1 we get from (4.13) that
R +1+R(1) here 0 < R,(1) < & (4.14)
e= TR i »(1), where . nr *

Taking n = 13 in (4.14) we see that e = 2.718281828..., accurate to nine
decimal places.
We observe that e is not a rational number, that is, e is not representable
as the ratio of two integers. Indeed, from (4.13) we have
1 1 e’

1
=14 — here 0 < 0 < 1
e +1!+2!+ +n!+(n+1)!’ where 0 < 0 <

for any positive integer n; the number § depends on n. Suppose now that
e = p/q, where p and g denote positive integers. We only need to convince
ourselves that

p 1 1 1 e®

=1 Y
q + + ar n'+(n+1)!

5 (4.15)

can not be true if n > g and >3 and 0 < § < 1. Now (4.15) is equivalent to

P 11 1\ _

But (4.16) can not be true because on the left-hand side of the equation we
have an integer while on the right-hand side we have a quantity larger than
0 but less than 3/(n + 1) which in turn is less than 1 because n >3 by
assumption; however, there is no integer between 0 and 1.

Sine and Cosine Functions. Let f(t) = sint. If m is a positive integer, then
Fem V() =(—1)""'cost and f@(t)=(—1)"sint.

Taking « = 0 and choosing for R, Lagrange’s form of the remainder, we
obtain upon setting n = 2m

ﬂ3 ﬂs ﬁ7 — ﬁzm 1
sinff=f— _57—7+ 4+ (=1 1(2m D + R,(B), (4.17)
where
ﬁ2m+1
R,(B) =(-1) mcosx

with x being some point between 0 and B. It is clear that
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|ﬁ|2m+1

IR < G 51

and so, just as in the case of the exponential function, R,(f) >0 asn — oo for
any fixed . Thus, sin  can be calculated by (4.17) with any degree of accu-
racy we please for any fixed S.

In a completely similar way we obtain

cosf =1 —g—?+i—:—[é—:+ o (_l)m_l(z_fnszzﬁ + R,(B), (4.18)
where
B2m
R,(p) = (=1" om0
with v being some point situated between 0 and f. Since
2m
R <

it follows that R,(f) — 0 as n — oo for fixed f. Hence, (4.18) can be used to
compute cos f with any degree of accuracy we please.

Logarithmic Function. Let f(t) = In(1 + ). Then,fork=1,2,...,

(e = 1)
790 = (=0
We have f(0) = 0 and
1 B (_ l)k—l _
GO0 = fork=1,2,....

Taking « = 0 and choosing for R, Lagrange’s form of the remainder, we get

2 3 4 n
Mﬂ%hﬂ—%+%—%+m+hwﬂ%+&m,(M%
where
R(p=(—1p P 1

n+ 11+ xy*!
with x being a point between 0 and f. We can write R,, also in the form

ﬂn+1 1
n+ 1 (1 + 0ﬂ)n+1’

R,(B) = (=1)

where 6 denotes some number between 0 and 1. For fixed f such that
0< f <1wehave
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1
'R"(ﬁ)lsn—-i——l_)() asn— oo

and so we see that In(1 + ) can be computed with any prescribed degree of
accuracy by use of (4.19) provided that f satisfies 0 < g < 1.
Since for positive values of f§ the expression

1
1+ 6py+t
as well as 0 are between 0 and 1, we can write in place of (4.19)
ﬁZ 3 4 ﬁn ﬁn+1
In(1 =f -4+ ==t (=D (=)0, ——, (4.2
N4 f=f =T+ = ()T (2170 (420)

where 0 < f<land0< 6, < 1.

We now wish to investigate what happens when —1 < # < 0. In place of
Lagrange’s form of the remainder, we now consider Cauchy’s form of the
remainder and get

1n(1+B)=ﬁ—%+%—%+---+(—1)"‘1§+R,,(/3), 4.21)
where
B . ﬁn+1 1—60 n
R,(B)=(-1) 1+wﬁ<1+wﬁ>,

where 0 < w < 1and —1 < § < 0 (note that we have replaced x by wf in the
formula for Cauchy’s form of the remainder). This form of the remainder
makes it possible to see that R,(f) tends to 0 as n— co when B satisfies
—1 < f<0.Indeed, if —1 < B <0, then (since 0 < w < 1)

l-w<l+ owp

0<<1_w> <L
1+ w

Moreover, if -1 < f <0and 0 < w < 1, then

and so, for any n > 0,

1 1
0< <—.
1+wp™ 1+8
Hence, we can write in place of (4.21)
2 3 4 ﬁn Bn+1
In(1 =f - 4 7 4. 1y —1)0 4.22
n(l+p) =48 IR U o Gt VA )21+ﬁ’( )

where —1 < f < 0and 0 < 6, < 1, and it is also clear that

Bn+1
R,(p) =(— 1)"92m
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tends to 0 as n — co0. Thus, (4.22) can be used to calculate In(1 + ) when
satisfies —1 < f# < 0 with any prescribed degree of accuracy. Of course, we
do not need such powerful methods for the trivial case § = 0. Since

Ina= —In—,
a
we can use (4.22) to compute Ina in the case a > 0; however, such a direct

approach is often not advantageous.
Replacing f by — f in (4.22) and multiplying both sides by — 1, we obtain

1 2 3 ﬁn ﬁn+1
where0 < f<land0< 6, <L
Since
1+5

1
= In(1 In——
n(l + ) +1n 5
we can combine the results in (4.20) and (4.23); picking n to be the even
number 2k, we have

1+ﬁ_ ﬁ3 BZk_l k+1 01 02
I—L—B—2<ﬂ+*3—+ +2k——1>+ﬁ2 <m+1_ﬁ>, 4.24)

where 0 < f < 1,0< 6, < 1,and 0 < 6, < 1. The relations (4.20), (4.22), and
(4.24) are basic for the computation of logarithms.

Putting f = 2 in (4.20), we obtain

1 1 1 (-t (—1y
In2=1 2+3 4+ + " +n+101’ 4.25)

where 0 < 6, < 1. While (4.25) is of considerable theoretical interest, it is not
very helpful in computing In 2 accurate to, say, six decimal places because we
would have to let n = 10° or more and the resulting calculation would be
formidable indeed.

The relation (4.25), in contrast, is much more helpful in the computation of
In2. To get

1—

=

1+8
1—8

we merely need to take f = 1; doing so, we get

ma=2(ty Lo Loy : - b3
He=23733 7538 tok—1)3%1) TamEi\gr 1 T22)
(4.26)

2

where 0 < 0, < 1 and 0 < 8, < 1. For example, it is easy to see that we get
an accuracy of up to eight decimal places by taking k = 9 in (4.26).
Suppose we already calculated In m, where m is a positive integer, and we
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wish to calculate In(m + 1) next. Since

1
In(m + 1)=lnm+lnm+ s
m

it is of interest to calculate In{(m + 1)/m} as efficiently as possible. By setting

1
ﬂ:2m+1’
we obtain
1+ m+1
T=p m

therefore, relation (4.25) will aid us in the computation of In{(m + 1)/m} and
will in fact become more convenient as m gets larger. Incidentally, note that
calculating, for example, In 3 by use of the identity

In3=1In2 +In3
with 8 = 1 in (4.25) is preferable to setting f = % in (4.25) and then working
with
1 1 1 1 1 0
In3=2(z+-— L 420, ).
n <2+3-23+5-25+ +(2k—1)22"‘1>+22"“<2k+1+ 2)

J. C. Adams (in Proceedings of the Royal Society of London, vol. 27, 1878,
p- 88 ff.) used the identities

10 25 81
In2 = 71n? — 21n§2 + 3In§6,

10 25 81
In3 = llln—9—— 3lnﬂ + SIn%,

1
In5 = 161n£ — 4In§ + 71n§—1~,

24 80
1 10 25 81 50
In7 = §<391n? — IOIHEZ + 171n% — lnE>,
and
10 25 81 126
In7 = 191n~9~ — 4ln2—4 + 8ln% + lnm

to calculate In2, In 3, In 5, and In7 with an accuracy of up to 262 decimal
places. Note that

10 1 25 4 81 1
— e —_ e R e — 1 —_
In 5 ln<1 10), ln24 1n<1 100), ln80 1n< +80>’
50 2 12 8
IHE = ——1I1<1 —1—00>, and 1111—2*-5* = 1I1<1 + i‘666>,
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moreover, the numbers
1 4 1 2 8
10° 100> 80° 100 1000

together with their integer powers are easily calculated to many decimal
places.

Once we have In2 and In 5 computed with high accuracy, we know In 10
with high accuracy as well because

In10=1In2 + In5.

The relation between logarithms to the base 10 and natural logarithms is
given by

InN

log,o N = 22
%810 = 1110

and therefore an accurate calculation of M = In 10 s of interest. We note that

M = 2.3025850929940... and % = 0.4342944819032....

Binomial Function. Let ¢ be any real number and put

¢\ c _c(c——l)(c—2)...(c—n+1)
(O>_1 and <k>_ )

fork=1,2,....Forx > —1,let f(t) = (1 + ?); then

1 ¢ - .1 c
o/ 0= <k>(1 + 07, thatis, 7 f(0) = <k>

fork=0,1,2,.... Taking & = 0 and choosing for R, Lagrange’s form of the
remainder (for the point x between 0 and  we put 6 with 0 satisfying the
inequality 0 < 8 < 1), we obtain

A+pF=1+ <(1:>ﬂ n <§> Byt <;> B"+ R(B),  (4.27)

where
Ri(B) = (n | 1)/%"“(1 + 6py !

with 8 dependent on n and f and satisfying the inequality 0 < § < 1.

It is clear that (4.27) is an extension of the Binomial Theorem and turns
into the Binomial Theorem if ¢ is a positive integer p and n > p.

If B > 0 (the case § = Ois trivial) and n + 1 > ¢, then

O<(1+0B " <l

and we can replace (4.27) by the simpler representation
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1+ B =1+ (i)ﬁ + (;)BZ T (;)B n <n i 1>01,8”“, (4.28)

where ¢ is arbitrary, § > 0,n+ 1 >c¢,and 0 < 6, < 1.
Let ¢ be fixed and not a positive integer and suppose that f is fixed and
|B] < 1. We wish to convince ourselves next that the numbers

Yy = <c> B"—0 asn— oo (4.29)
n
Indeed,
Vn+1 _ c—n
V. n+ lﬁ
and so
%a _B asn— oo, (4.30)

that is, the absolute value of the limit is < 1. Hence, if v is any fixed number
satisfying || < v < 1, we can find a positive integer m so that

Vi+1
Vi

We now envisage the inequality (4.31) written out for k=m, m+ 1, ...,
n — 1. Multiplying all these inequalities together, we get

<v fork=m. 4.31)

| Val <|L:~|v" forn > m.
v

But m is fixed, hence, |y,,|/vo™ is fixed and so v" — 0 as n — oo implying
y»—0 asn-— oo,
In the sequel we shall need to know also the stronger result that
z,=ny,—»0 asn— o0 4.32)
in case || < 1. But

Zyey N+ lc—n

z, n n+1 p— -5
and we can use for the numbers z, the same reasoning as we employed in the
case of numbers y, on the basis of the relation (4.31).

Thus, for fixed p satisfying 0 < f <1 we can certainly claim that the
remainder term R,(f) in (4.27) tends to zero as n becomes arbitrarily large.
What happens to R,(f) as n —» o0 in case —1 < ff < 0 is hard to make out
from (4.27) or (4.28). However, using Cauchy’s form of the remainder instead
of Lagrange’s form, it is not difficult to see that R,(f) » 0 as n — oo in case f§
is fixed and satisfies —1 < f§ < 0.
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Indeed, using Cauchy’s form of the remainder we get the representation

C C 2 c n
a1+p :1+<1)ﬁ+<1>ﬁ + +<n>ﬂ

(4.33)
F(n+ 1)<n fr 1)ﬁ"“u — @' + wf) ",

where —1 < f <0 and 0 < w < 1 (note that we have replaced x by wf in
Cauchy’s form of the remainder). Just as in the foregoing study of the loga-
rithmic function, we note that —1 < f < 0 and 0 < @ < 1 implies

l—w<1+ owf

and therefore, for any n > 0, the number
l—w\"
0 =
2 <1 + wﬁ)

0<0,<1.

satisfies

We can therefore rewrite (4.33) in a somewhat simpler form as follows:

ot (e
n

(4.34)
o+ 1)<n . 1)/3"“02(1 + w7,

where c is arbitrary, —1 < $<0,0<6, <1,and 0 < w < 1. By (4.32), we
have

c
z,,=ny,,=n<n>/5'"—>0 asn— oo

for fixed p satisfying —1 < f < 0; also, for fixed  such that —1 < f <0 we
have

16,(1 + wf) 1| <1, respectively <(1 + B 1,

depending on whether ¢ — 1 > 0 or <0. In any event, the factors joining z,
are bounded and so R,(f)— 0 as n— oo also in case the fixed f satisfies
—-1< <0

To sum up: For any f satisfying —1 < 8 < 1 we have a representation of
the form

(1+pr=1+ (i)/} ¥ <§> B4+ <Z> B"+ R,(B),  (435)

where R,(f)— 0 when we fix § and let n —» co. Moreover, if n + 1 > ¢, we
have
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R.(B) = <n i 1)91/3"“ for0<p<1 (4.36)

and

R,(B) = (n + 1)<n i 1)13"“92(1 +wfFt for —1<B<0. (437

The numbers 0,, 6,, and w are larger than 0 but do not exceed 1; nothing
more definite is known about them.

We can use the foregoing result to come up with high-precision calcula-
tions. For example,

1 —-1/2
2=14|1—-—
va-1s{i-g)

11 31 51 35 1 63 1 )
+-..

PPY E PLSL  S RL ELC R
( *25 t8507 T 1650° " 12850 ' 256 50°

But
14+ 5 L— 1.0101525
1650°

35 1

— =00

128 50° 0000004375

63 1

256505 = 0.0000000007875

1.0101525445375

However,

1.0101525445375- 1.4 = 1.41421356235250.

We note that the error in this approximation is smaller than

—1/2\ 1 231 1
14-6 . =14-6-=
< 6 >506 1024 505

and the latter is smaller than 1.22-1071°. Therefore,
V2 = 1.414213562...

with an accuracy of up to nine decimal places.
Our accuracy would be even higher if we had used the identity

119 \ 12

Inverse Tangent Function. Let y = arctant. We seek to express y™ in
terms of y. Since ¢t = tan y, we have
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- = cos? y = (cos y)sin + T
Y ETy T eosymioosy Y3

Another differentiation yields

y' = (—(siny)sin <y + g) + (cos y)cos <y + §>>y’

= (cos? y)cos <2y + g) = (cos? y)sin 2 (y + g)

Differentiating again, we get

Y = (—Z(Sin y)(cos y)sin 2 <y + g) + 2(cos? y)cos 2 (y + g)) y

= 2(cos? y)cos <3y + 2%) = 2(cos® y)sin 3 <y + g

The general formula is

y™ = (n — 1)!(cos” y)sinn ( y+ ;-) (4.38)

and can be verified by induction (see also Exercise 3.18 at the end of
Chapter 3).
Putting f(¢) = arctant, we see that

o9 _. 'O /") 1 90

JO=0 77 =L 57 =0 =3 5 =%
[0 1 f0) _ o L Do) _ 1
51 - 57 6 =Y 7 - 7, ceen

Letting o = 0, substituting for x the expression 0f, and taking n to be the
even integer 2k, we have

3 5 7 BZk 1
arctanﬂ=ﬂ—?+?—7+'”+( k1 1+R,,(/3), (4.39)
where
ﬂ2k+1
R,(B) =(— 1)" (cosz"+1 0p)sin(2k + 1)(0/3 + )

with || < 1and 0 < 8 < 1. It is clear that
1
[R,(B) <o -0 asn— 0.

The relation (4.39) was used around 1706 by John Machin to calculate the
number 7 with an accuracy of up to 100 decimal places; W. Shanks in 1873
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extended Machin’s result and computed = with an accuracy of up to 707
decimal places (see Proceedings of the Royal Society of London, vol. 21, 1873,
p. 318; corrections in vol. 22, 1874, p. 45). Machin’s method makes use of the
formula

T 4 ¢ 1 ) 1
— = 4arctan—- — —
4 5 arctan 239

and goes as follows. Let A = arctans. Then

2/5 5 10/12 120

1
A=- tan2d=—""__°  tapda—_ = _ 2
tand =g, fan 1—125 122 28 1—25/144 119

Since the number 120/119 is near 1, the angle 44 is near n/4. Putting

s
B=4A4——,
4

we obtain

1201191 1

1
=7~ - thatis, B=arctan——
1+ 120/119 239> ~at1s B =arctan

tan B .
an 239

We therefore have Machin’s Formula

1 11 11 11 11 1 1 >

s 3s sty o st

239 3 2393 '
Consideration of (4.39) shows that calculation of the listed terms will suffice
to obtain # with an accuracy of up to seven decimal places:

m=3.1415926....

n=16A—4B=16<

REMARKsS. A less effective formula than 7/4 = 4(tan™'$) — (tan™' 535) is the
formula 7/4 = tan™'} + tan™'4. Gauss found, by means of the theory of

numbers, two remarkable formulas, namely,

T 1 1 1

—=12 i 8({tan™!— ) —5(tan™ ' —

r <tan 18)+ ( 57) ( 239),
=12 tan_1i +20 tan~1i +7 tan_IL + 24 tan"lL
B 38 57 239 268 )°

by means of which n could be calculated with great rapidity should its value
be required to an accuracy beyond the one reached by W. Shanks. In recent
times 7w was actually calculated with an accuracy of one million decimal
places.
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Proposition 4.12. Suppose that f is a real-valued function and n denotes an
integer >2. Let f™ exist at a point c and, fork=1,2,...,n—1,

f®C)=0 and f™(c)#0.

Then f has a relative extremum at c if n is even. If n is even and f™(c) > 0,
then f has a relative minimum at c; if n is even and f™(c) <O, then f has a
relative maximum at c.

Proor. It will be sufficient to carry out the proof in the case f®(c) > 0; the
case f™(c) < 0 is entirely analogous and can in fact be reduced to the con-
sidered case by replacing f by —f.

Since f™ is assumed to exist at ¢, f®~1 exists on a neighborhood of c. By
Proposition 4.11, we have for sufficiently small |h| and for suitable 6 with
0<fO<1,

fietn= g0 +7 Phr L g L0
£ + Oy
o (4.40)
_ S e+h
= SO+ T

But f® V() = 0 and f®(c) > O by assumption and so
[ Ve +0h)y<0 forh<O
>0 forh>0
(see Comments to Proposition 4.7). For odd n we have " ! > 0 and so
SO Ve +6h)<0 forh<0
>0 forh>0

and thus f can not have a relative extremum by (4.40). On the other hand, for
even n the sign of h and the sign of h"~! coincide and so, for even n,

S e+ 6h)-h""t >0 forh#0.

Thus, (4.40) shows that f has a relative minimum at c. O

REMARK. In the discussion following Proposition 4.10 we studied the function
F@) =0, F(t)=e V" fort #0.

This function F has both a relative as well as an absolute minimum at ¢ = 0;
however, Proposition 4.12 is not applicable because F™(0) = 0 for any inte-
ger n > 0. While Proposition 4.12 is very useful, its effectiveness is certainly
less than universal.
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Proposition 4.13. If on an interval J the derivative f"*V of a function f exists
and is equal to O for every t in J, then f is a polynomial of degree at most n
(possibly the zero polynomial).

Proor. Let a be a point in the interior of J and 6 satisfy 0 < 6 < 1. For any
point f in the interior of J we have, by Proposition 4.11,

f ( ) f ”( ) +f o)

o (B—a)

J(B) = f(®)

. f(”“’{a oy
(n+ 1)

[we have chosen to write the point x between o and B in the form « +
6(B — «)]. However, by assumption f®*1 is zero on J and so

f() f”() f""()

(B . (X)n+1

J(B) =

(B—a)+-

(B —oa). (441)

This completes the proof. O

RemArk. If f is a polynomial of degree n in the variable f and we wish to
express f(f) in terms of powers of (f — ) for some given number a, then we
can use (4.41) to accomplish the given task. For example,

BP—=28+38+5=114+7(B—2)+4(B— 2+ (B — 2)°
because, putting

fB =5 -2 +3+5 and a=2

we note that f(2) = 11, f'(2) = 7, f"(2) = 8, and f"(2) = 6; the rest follows by
completing the substitution into formula (4.41).

3. Concave Functions

Definition. Let J be an interval. A function f defined on J is said to be
concave up on J if

S(1 —1a+tb) < (1 —t)f(a) + tf(b) (4.42)

whenever a and b are points of J and 0 < t < 1. We call f concave down on J
if —f is concave up on J.

REMARks. Putting x = (1 — t)a + tb, we see that inequality (4.42) is equiva-
lent to
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b—x X —a
f0) S g (@) + ;1)

- @)+ f() f()( _a),

(4.43)

whenever a and b are points of J and x is situated between a and b. Geo-
metrically speaking, f is concave up on J if for any two points a and b of J
the chord having endpoints (g, f(a)) and (b, f(b)) is never below the graph of
f on the interval [a,b]. We can write in place of (4.43) the more symmetric
inequality

b —x)f(@) + (a—b)f(x) + (x —a)f(b) = 0. (4.44)

Proposition 4.14. Let f be a function differentiable on an open interval J. The
[ is concave up on J if and only if f’ is nondecreasing on J.

Proor. Suppose f is not concave up on J. Then there exist a < x < b in J
such that

X —
b —

b—x a.,.
fx) > — fla) + fb).
—a a
This inequality is equivalent to

fx) = fla) _ fb) - 109

X —a b—x

We now apply Proposition 4.5 to each of the closed intervals [a, x] and [x, b]
and note that there exist points t and s, a < t < x < s < b, such that

1@ > f(s).

Therefore, f' fails to be nondecreasing on J.
Conversely, if f is concave up on J, then a < x < b with (a,b) in J means

fx) 1@ _fb)— S

x—a ~  b-—x

But [’ exists on J. If x tends to a or b, we get

flay <10 =@ (4.45)
b—a
respectively
b
riy 21010 @46)

and so f'(a) < f'(b). But a and b are arbitrary points of J satisfying a < b and
so f’ is seen to be nondecreasing on J. ]
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Proposition 4.15. Let J be an open interval and f be a twice differentiable
function on J. Then f is concave up on J if and only if f"(x) =0 forall xinJ.

Proor. The proposition is an immediate consequence of Proposition 4.14. [

Proposition 4.16. Let f be differentiable on an open interval J. Then f is
concave up on J if and only if the points of the tangent line at any point of J
are never above the graph of f on J.

Proor. Let (c, f(c)) be a point of the graph of f on J. Then the equation of
the tangent line at the point (c, f(c)) is

y=f+ f)x—c)

We assume that f is concave up and we wish to show that

fx) = fle)y + f'(e)(x — ) (4.47)
for any x of J. But the inequality (4.47) is equivalent to the two inequalities
o) < f(’z_f(c) for x > ¢ (4.48)
and
fio 29 =1O ) f © forx<e. (4.49)

However, inequality (4.48) is merely inequality (4.45) with a = c and b = x;
inequality (4.49) is merely inequality (4.46) with b = ¢ and a = x. Therefore,
the assumptions that f is differentiable on J and concave up on J imply that
(4.48) and (4.49) hold.

Conversely, suppose that (4.47) is fulfilled or, equivalently, that (4.48) and
(4.49) are satisfied. Setting ¢ = a and x = b, inequality (4.48) becomes in-
equality (4.45); setting ¢ = b and x = a, inequality (4.49) becomes inequality
(4.46). But inequalities (4.45) and (4.46) together imply that f’ is nonde-
creasing on J; Proposition 4.14 then ensures that f is concave uponJ. []

RemARrks. Corresponding to the Propositions 4.14, 4.15, and 4.16 there are
dual statements in terms of concave down functions.

Concavity is often used to decide whether an extremum is a maximum or
a minimum. We consider an example.

Let A > 0, B > 0, and p # 0. Given that

f(x) = AeP* + Be ™ P¥,

we wish to find the smallest value of f.
Since

f(x) = Ape™ — Bpe™™ and f"(x) = p*f(x),
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we can easily see that f is concave up on the entire number line as f(x) > 0
for any finite real number x and so f“(x) > 0 for any finite real number x.
Now f'(x) = 0 gives

B A
AeP* = Be P* or Ae*”™™ = B, implyinge"x=\/; and e 7 = B

Therefore, the smallest value of f is

A B+B A—ziw
A B :

Definition. Let f be a twice differentiable function on an open interval J. For
c in J, the point (c, f(c)) on the graph of f is said to be a point of inflection of
fif f"(c) = 0 and if

flce—hnf"(c+h<0

for all sufficiently small values of & # 0.

REMARKS. A point on a curve at which the curve changes from concave up to
concave down or vice versa is a point of inflection. Since the tangent to a
curve always lies opposite to the concave side of the curve (see Proposition
4.16), it follows that at a point of inflection the tangent crosses the curve.

A necessary and sufficient condition for f to have a point of inflection at
x = cis that f"(c) = 0 and f"(c) # 0. In analogy to Proposition 4.12, if the
first nonvanishing derivative at x = ¢ of order higher than the second is of
odd order, then there is a point of inflection at x = c; if this derivative is of
even order, then there is no point of inflection at x = ¢. For example, f(x) =
x* has no point of inflection at x = 0, but g(x) = x> has a point of inflection
atx =0.

The function h(x) = x> has one point of inflection, namely, the point (0, 0);
moreover, the curve y = x> is symmetric with respect to this point because
h(—x) = —x>. More generally, we note that the cubic

y=ax3+bx>+cx+d (4.50)

has one point of inflection, and that the curve is symmetric with respect to
this point of inflection.

Indeed, y” = 6ax + 2b and so the point (4, B), where
b 2b* b
A=—— and B=——r——

3¢ 27a> 3a T

is the point of inflection. Using translation of axes, we set X = x — A4 and
Y = y — B. The substitution x = X + 4 and y = Y + B into (4.50) yields

2
Y=aX3+<c—;)—a>X. 4.51)
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Setting Y = H(X) in (4.51), we note that H(— X) = — H(X). This establishes
the symmetry of the curve (4.50) with respect to the point (4, B).

4. Newton’s Method for Approximating Real
Roots of Functions

A technique generally called Newton’s Method will enable us to find, to any
desired degree of accuracy, the real roots of many equations of the form
f(x) =0. To fix ideas, we shall throughout this section suppose that the
function f under discussion satisfies the following three conditions:

1. The function f and its derivatives f’ and f” are continuous on a closed
interval [a, b] of finite length.

2. The numbers f(a) and f(b) have opposite signs, that is, f(a)- f(b) < 0.

3. The derivatives f” and f” do not change signs on the interval [a, b].

Since f is continuous on [a, b] and because f changes sign on the interval
[a, b], the function f must have at least one root inside [a, b]. Since f” does
not change sign on [a, b], we have that f is monotonic on [a,b] and so can
have only one root inside [a, b]. The condition that f” does not change sign
on [a,b] means that f is either concave up or concave down on [qa, b]. For a
polynomial f with real coefficients the situation called for by the three condi-
tions above can always be realized; the same can be claimed for many func-
tions f that are not polynomials, but the same can not be claimed for all
functions.

If the three conditions above are satisfied for an interval [a, b], the follow-
ing four possibilities arise:

Case (a): f"(x) > 0 and f'(x) > O for all x in [a, b];
Case (b): f"(x) > 0 and f'(x) < O for all x in [a, b];
Case (¢): f"(x) < 0and f'(x) > Ofor all x in [a,b];
Case (d): f"(x) < 0and f'(x) < Ofor all x in [a,b].

Figure 4.5 illustrates these four cases.

We are given a function f that satisfies conditions 1, 2, and 3 on [a, b] and
we let r denote the root of f inside [a,b]. Commencing with an endpoint of
[a,b], say the point b, Proposition 4.11 (using Lagrange’s form of the re-
mainder) gives

0= f(r)=f(b) + f'(b) (r — b) + 31 "(c) (r — b, (4.52)

where r < ¢ < b. Ignoring the remainder term, we can write the approxima-
tion

fb)+ f'(b):(r—b)=0

from which we get the approximation
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X —> X
T T
Case (a): £" >0, £' >0 Case (b): f" > 0 £f' < 0
y Y
X
oy
Case (c): £" <0 f' > 0 Case (d): f" <0, f' <0
Figure 4.5
o)
f'(b)
In this manner we arrive at the approximation
Xy =0~ ——f,(b) 4.53)
J'(b)

of the root r. Equation (4.53) can be interpreted geometrically as follows: At
the point M’ with coordinates (b, f(b)) we draw the tangent line; its equation

is of the form
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y=fb) = f'(b)(x — b).

Putting y = 0, we find the point T’ with coordinates (x,, 0) where the tangent
line (with point of tangency M’) intersects the x-axis. The essence of the
method of approximation consists in replacing the arc y = f(x) connecting
the points M [with coordinates (a, f(a))] and M’ [with coordinates (b, f(b))]
by the tangent line formed at one of the endpoints M or M'. Finding the
x-intercept of a straight line is computationally very simple.

The question as to the relative location of the point x; on the x-axis
presents itself. From Figure 4.5 we can see that the point of intersection of the
tangent line and the x-axis may very well be situated outside the interval
[a, b]. We claim: If f(b) and f"(x) for all x in [a,b] have the same sign {this
will be so in Cases (a) and (d)}, then x, is between r and b. (This means of
course that x, rather than b is the better approximation for r.)

Indeed, if f(b) and f'(b) have the same sign, then (4.53) shows that x, < b.
On the other hand, by (4.52) and (4.53),

1) _ 110
6" 210

In the considered cases the signs of f”(x) and f'(x) for all x in [a, b] coincide
and so r < x;. Thus, r < x; < b, as claimed.
In a similar fashion we obtain in place of (4.53) the approximation

 f@

/')
of the root r when we commence with the point a and draw the tangent at the
point M (with abscissa a) to the arcy = f(x) connecting M with M’ (with the
abscissa b). With regard to x, in formula (4.53*) we claim: If f(a) and f"(x)
for all x in [a, b] have the same sign {this will happen in Cases (b) and (c)}, then
X, is between a and r.

Thus, we have found in each of the four cases, from which endpoint (be it
M or M') of the arc y = f(x) with a < x < b we get the best approximation of
the root r by Newton’s Method.

Repeated application of the method generates in Cases (a) and (d) the
decreasing sequence

r—x,=r—b+ (r — b (4.54)

X, =a (4.53%)

b>x,>x,> " >X,> X0 > """ >0
and in Cases (b) and (c) the increasing sequence

A<X] <Xy < <Xy < Xppy <°°° <G,
where x, ., is computed from its predecessor x, by the formula

)
")

[It is not difficult to show that x, — r as n — oo. Suppose that {x,} is a

(4.55)

Xp+1 = X
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2

R I

=

Figure 4.6

decreasing sequence. The set
S={x;,n=123,...}

is bounded below by r (which in turn is larger than the finite real number a).
Thus, inf S = f exists as a finite real number (between the finite real numbers
a and b) and, in fact, x, — f as n — c0. But f and f’ are continuous on [a, b]
and passage to the limit as n — oo in (4.55) shows that

J(B)
A0
If {x,} is an increasing sequence we consider the supremum of the set S.]
Figure 4.6 illustrates successive applications of Newton’s Method.
Now we turn to the matter of estimating the accuracy of the approxima-

tion. To estimate the deviation between r and x,, we note that, by Proposition
45,

=0, hence f(f)=0 and f=r

J(x) = f(x,) — f(r) = (x, — 1)f (o),

where ¢ is between x, and r. Hence,

M)
G
Denoting by m the smallest value of | f'(x)| on the interval [a, b], we see that
[x, —r| < M (4.56)
m

To estimate the deviation between r and x,., in terms of the deviation be-
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tween r and x,, we consider the relation (4.54) and replace in it b by x, and
x, by x,,; we obtain

R A
2 f'(x)

Denoting by M the largest value of | f”(x)| on the interval [a, b], we see that

(x, — )2

ey — 1 < 2y = 2 (@57
2m

Since there is a square on the right-hand side of (4.57), a rather rapid con-
vergence of x, to r is assured (at least beginning with some value of the index
n); for example, if M < 2m, and if x, approximates r with an accuracy of up
to k decimal places, then x,,, will approximate r with an accuracy of at least
up to 2k decimal places. This makes Newton’s Method one of the most
effective techniques for the numerical solution of equations.

ExaMpLE 1. We wish to calculate the root of x> — 2x — 5 = 0 in the interval
[2,2.1] with an error that is less than 1071°.
We have

f(x)=x3—2x -5, fQ=—-1<0, f(2.1) =0.061 > 0,
fix)=3x2—2>0, f'x)=6x>0 for2<x<2l
[Case (a)]. We readily find that m = 10, M < 12.6, and

M
— < 0.63
2m <
hold.
We commence with b = 2.1. By (4.56) we get
0.061

b—r< TR 0.0061.
Using (4.57), we can determine in advance what accuracy can be expected
of x,:
x; —r < 0.63-0.0061 < 0.000024.
Hence, we round up the number

f21) _21_%_
ey 7 1123

“on the side of the root” to five decimal places: x, = 2.1 — 0.00544 = 2.09456.
Since

X, =21— 2.1 — 0.00543...

f(x,) = £(2.09456) = 0.000095078690816,
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the error can now be determined more accurately by use of (4.56):

0.000095
< —_—_—

.00001.
10 < 0.0000

Xy —Fr

We now pass to x, and use (4.57) once again to determine what accuracy
can be expected of x,:

X, —r < 0.63-0.00001% < 0.000000000063.
Hence, the number

0.000095078690816
— 2.09456 — — 2.09456 — 0.000008518416....
X2 11.1615447808 ’

which is rounded up to eleven decimal places and so comes out to
X, = 2.09456 — 0.00000851841 = 2.09455148159,
differs from the sought after root by less than 0.00000000007. Thus,
2.09455148152 < r < 2.09455148159.

ExampLE 2. The equation 2* = 4x has two real roots; one root is x = 4 and
the other is between 0 and 4. We wish to calculate the root between 0 and 1
with an error that is less than 1075,

For 0 < x < ; we have

fx)=2"—4x, [f(x)=2*In2)—4<0, [f(x)=2%In2)>>0
[Case (b)]. Since m = 4 — ./2(In2) > 3 and M = ,/2(In2)> < 0.7, we have

M
— < 0.12.
2m <

We use the value f(0.30) = 0.031144 and estimate more accurately the error
by (4.56):

031144
r—x; < %§—< 0.011;
by (4.57) we therefore obtain
r —x, < 0.12-0.000121 < 0.000015

and it is seen that we are approaching the desired degree of accuracy.
In the next approximation,
0.031144 0.031144...

=030 - =030 + " 2 0309897 .,
2 =030 = 8533643 — 4 31466356, 20T

we round up “on the side of the root” to five decimal places: x, = 0.30990.
Since £(0.30990) = 0.000021... > 0, this value is still less than the root. By
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Figure 4.7

(4.56) we have in reality an error smaller than 10~° because

0.000022
r— X3 < ——— < 0.00001

and so r = 0.30990( 4 0.00001).

ExaMPLE 3. A goat is tethered by a rope from a post on the boundary of a
circular field of unit radius. What length r of rope will allow the goat access
to precisely half the field?

Consider Figure 4.7. The center of the circular field of unit radius is at B,
the post is at A. We denote by x/2 the angle .~ BAE and observe that the
angle . AED is a right angle. The distance from A4 to E is r and the distance
from A to D is 2. By similarity of triangles we have r/2 = cos(x/2), that is,

X
=2{cosZ ).
r <0082>

The angle /. BDE equals n/2 — x/2 and so the angle /. BED equals n/2 — x/2
because the triangle ABDE is isosceles. Thus, the angle /. DBE equals x and
the angle £ ABE equals © — x.

Consider Figure 4.8. It is easily seen that the (striped) circular segment has
area 1R?*(0 — sin 0).

From Figure 4.7 we can see that the goat will have access to a region
bounded by the circular arc EAF and the circular arc FCE; this region is the
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Figure 4.8

union of two circular segments and its area equals
1r?(x — sinx) + $[(2n — 2x) — sin(2w — 2x)]
= 2(cos? x/2)(x — sinx) + © — x + (sin x)(cos x)
= (1 4 cosx)(x —sinx) + m — x + (sin x)(cos x)
=7 + x(cos x) — sin x.

But half of the circular field of unit radius has area 7/2 and so x must satisfy
. 4
sin x — x(cosx) = 5 (4.59)

Solving (4.59), we can substitute back into (4.58) to get r.

The point of this example is that a simple shepherd’s problem leads to an
elusive equation of the form (4.59) and does not lend itself to a simple-minded
treatment.

Using a common pocket calculator we find that x satisfying (4.59) is ap-
proximately 1.9056957 radians and the corresponding r is approximately
1.1587285.

ExaMpLE 4. The volume of a spherical segment of one base is given by

h
7Zh2 (V — §>,

where r denotes the radius of the sphere and & the height of the segment.
Suppose we divide a hemisphere of radius 1 into two equal parts by a plane
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parallel to the base. Then
27rx2(1 ——>=—7E or x3—-3x24+1=0,

where x is the height of the spherical segment of one base cut off the hemi-
sphere of radius 1. Determining x reduces to compiiting the root of the
equation

x3—-3x24+1=0

contained in the interval (0, 1). The answer is approximately x = 0.6527. The
other two roots are approximately —0.5321 and 2.8794.

The formula for the volume of a spherical segment of one base used above
is due to Archimedes; a significant problem of Archimedes was that of using
a plane to cut a spere into two segments with volumes having a preassigned
ratio. [For a verification of the formula nh2(r — h/3) for the volume of a
spherical segment see (6.106) of Section 5 of Chapter 6.]

5. Arithmetic and Geometric Means
It is simple to verify that the function f(x) = ¢* — 1 — x with the derivative
f'(x) = e* — 1 has a single minimum at x = 0 and so
0=/0) < fx)

for any real number x. Thus,

e*>1+ x for all real numbers x; (4.60)
in particular,

e*>14+x forx#0. 4.61)

We shall use inequalities (4.60) and (4.61) to establish some useful inequalities.

Proposition 4.17. Let a,, a,, ..., a, be positive real numbers. Then

a+a;+ " +a
Maja,-a, < 22 n (4.62)

n

there is equality in (4.62) if and only if all a,, for k = 1,2, ..., n, are equal.

Proor. Let
a+a,+ " +a
A=1"2 ~ and G=a,a, " a,;
n
A is called the arithmetic mean of a,, a,, ..., a, and G is called the geometric

mean of a,, a,, ..., a,. For
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A
=——1, k=1,2,..., s
X A n

we get, by (4.60) and employing the notation exp(t) = e,

exp<%l~1>2%1, exp(%—l)k%, cees exp<%—l>2%.

Multiplying all these inequalities together, we obtain

a+a;+ " +a, a;a, --a,
exp(l 2 _n>ZL_

A A"
or
. G" G"
e"">— or 1>—,
A" A"
implying that
A>G.

Note that 4 = G only if equality holds in all n relations. This requires that
a,/A — 1 =0 in all cases, showing that 4 = G only when all g, are equal
(to A). ]

ReMARk. Replacing g, by 1/a, in (4.62) we get that

— ? - < Yaa, a, (4.63)

_.Q+__+...+_.
a; a; a,

The term on the left-hand side of (4.63) is called the harmonic mean of a,, a,,
ey Oy

Proposition 4.18. We have
e” > ml. (4.64)

ProoF. Since n > e, we have n/e > 1 and so x = n/fe — 1 > 0. Thus, by (4.61),

exp(zc——1>>1+<g—1>
e

or
2
M > Zr_ or e”/e > 1.
e e
But the latter inequality is equivalent to the inequality (4.64). O

REMARKS. Another way of showing the validity of the inequality (4.64) is to
observe that the function g(x) = (In x)/x, defined for x > 0, has a single maxi-
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mum at x = e because g'(x) = [1 — In x]/x? is negative for x > e and is posi-
tive for x satisfying 0 < x < e. But 7 > e and so g(n) < g(e), and so on.

We can use a common pocket calculator and get approximations of e” and
n° to see which is larger; however, it is more interesting to use the cutting
edge of theory to establish (4.64).

Worked Examples and Comments

1. The following two statements are direct consequences of Proposition
4.17:
@i Ifa,, a,, ..., a, are positive numbers satisfying the condition

a;+a,+ - +a,=k,

then their product a,a,---a, has maximum value, (k/n)", when a, = a, =
o= a, = k/n.
(i) If a,, a,, ..., a, are positive real numbers satisfying the condition

a,a, - -a, =k,

then their sum a; + a, + *-- + a, has minimum value, n(k)'", when a, =
a, =+ =aq = ki
2= =da, = .

ReMARK. For example, if a,, a,, a3, and a, are four positive numbers whose
sum is 1000, then the product a,a,a;a, will be a maximum if

a, =a, =az =a, = 250.

2. The cube is the rectangular parallelepiped of maximum volume for
given surface area, and of minimum surface area for given volume.

Indeed, if we denote the lengths of three adjacent edges of a rectangular
parallelepiped by x, y, z, its surface area is 2(yz + zx + xy) and its volume is
xyz. If we put o = yz, f = zx, y = xy, the surface area is 2(x + f + ) and
the volume . /afy. Hence, analytically speaking, the problem is to make affy a
maximum when o + B + y is given, and to make « + f + y a minimum when
afy is given. This, by the result in the foregoing Example 1, is done in either
case by making a« = f§ = y, that is, yz = zx = xy; hence x = y = z.

3. The equilateral triangle has maximum area for given perimeter, and
minimum perimeter for given area.

Indeed, the area is A = \/s(s —a)(s—b)(s—c).Letx=s—a,y=s5—b,
z=s—c;then x + y + z = s and the area is A = ./sxyz. Since, in the first
place, s is given, we have only to make xyz a maximum subject to the
condition x + y + z = s. By the result in Example 1, thisleadstox =y = z.

Next, let A be given. Then (x + y + z)xyz = A% and s = A?/xyz. If we put
o = x%yz, B = xy*z, y = xyz%, we have a + f + 7y = A? and s = A?/(afy)*".
Hence, to make s a minimum when A is given, we have to make affy a
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maximum, subject to the condition « + f + y = A% This leads to a = f = 7,
that is,

x2yz = xy*z = xyz?,
andsox =y =z
REMARK. In a similar way one can prove: Of all rectangles of given perimeter,

the square has the largest area; of all rectangles of given area, the square has
least perimeter.

4. The fact that the arithmetic mean of n positive numbers is not less than
their geometric mean (see Proposition 4.17) may also be used to show the
following: Forn=1,2,3,...,

1\* 1 n+1
<1 + —) < <1 + ———) (4.65)
n n+1

and
1 nt+1 1 n+2
(1 +*> > (l + ) . (4.66)
n n+1
[Note that the inequalities (4.65) and (4.66) were already proved in Proposi-
tion 1.4.]

Indeed, consider the set of n + 1 numbers
1 1

1, 1+—, 14—, ..., 1+~

n n n

These have an arithmetic mean of

1
1
+ n+1
and a geometric mean of
1 nj(n+1)
(1+ S
n
Hence,
1 1 n/(n+1)
1+__~n+1><1+~> . (4.67)
n

But (4.67) is equivalent to (4.65).
Similarly, consider the set of n + 2 numbers

n n n
n+1> n+1’ n+1

>

These have an arithmetic mean of
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n+1
n+2

n (n+1)/(n+2)
n+1 '

n+ 1 n (n+1)/(n+2)
—_— > .
n+2 <n + 1>

Taking reciprocals this becomes

1 1 (n+1)/(n+2)

and a geometric mean of

Hence,

But (4.68) is equivalent to (4.66).

S. For any positive integer n we have

1 1

TFS IR 1). (4.69)

1 1
n{(n+1)1/"—1}<1+§+"'+<n<1
n

The verification of inequality (4.69) will again use the fact that the arithmetic
mean of n positive numbers does not exceed their geometric mean.
First we show that

1 1 1
1+—<1+-+-~+—>>(n+1)1/".
n 2 n

But this is immediate by setting

2 3
ag=1+1=—, ay=14+-==, ..., g,=14+-=
1 2 n

into inequality (4.62).
We niext show that

L RN oot 470
(n + 1) n+1 2 A (4.70)

But the right-hand side of inequality (4.70) is

1 1 n
(1—1)+(1—§>+m+<1—5>+n+1

and (4.88) follows from inequality (4.62) if we set

a; =

1
2’
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6. For any positive integer n we have
1:3---2n— 1) <n 4.71)
Indeed, by inequality (4.62),

(1434 +0n-1}
n

> {1-3-(2n — 1)}

or

2

% > {1-3---2n — 1)},
implying (4.71).

7. Find the largest value of (a + x)°(a — x)* for x between —a and a. Here
again we wish to use inequality (4.62) in obtaining the answer.
We consider the following eight positive numbers

a—+x a—Xx

a,=a,="""=a5= s g = a, = dg = for —a<x<a.

Their arithmetic mean is a/4. Hence, by inequality (4.62),
a+x\(a—x\*> (a\®
<|- 4.72
()7 =) w2

La+ x) =3(a — x).

equality arising when

From (4.72) we get
55,33.a8

(a+x)5(a—x)33——48— for —a < x < a.

8. Leta;,>0,b;>0(=1,2,...,n). Then
ay + by)(ay + by) (@ + b) > Iajay a, + Ybiby b, (473)

with equality if and only if a, /b, = a,/b, = -+ = a,/b,.
Indeed, by inequality (4.62),

Majay --a, + \"/blbz'“b,,
May + by)(ay + by) (@, + b,)

() e ()

S1" a; 1&g b
ni=1a,+-bi n¢=1a1+-bi

=1
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9. Letw; >0fori=1,2,...,n Then
T+w)d+wy)-1+w)=(1+q), 4.74)

where w,w, - w, = ¢", with equality if and only if w, = w, = = w,.
Indeed, inequality (4.74) follows from inequality (4.73) by setting a; = 1 and
by=w;fori=1,2,...,n

10. Problem of Huygéns. Let 0 < a < b. The fraction

Y XXy X
(@+ x)(x; + x3) (=g + x)(x, + D)

assumes maximal value precisely when
<X <X, < " <Xy <X <b
forms a geometric progression, that is, x,/a = x,/x; = *** = x,/X,—1 = b/x,.

Evidently, u will be maximal if and only if 1/au is minimal. But

L W)+ w1+ we )L+ wy),
au

where wy, = a/x{, Wy = X, /X1, ..., We_1 = Xi/Xi—1> Wi = b/x;. By (4.74)
T+ w)(d +wy) (1 + wey)(1 + wy)

is minimal precisely when w; = w, =" = w,_; = w,.
11. Forn=2,3,... we have
| < n+ 1\
n! .
2

Indeed, let a, = k. Then Va,a,  -a, = W and (a; +a, + - +a,)/n=
(1 + n)/2 and the claim follows by Proposition 4.17.

REMARK. The inequality n"? < n! for n = 3, 4, 5, ... is simple to verify. Con-
sider the equality

(n)? =[1-n][2(n — DI[B3(n — 2)1---[(n — D2] [n-1].

Now, the first and the last factors in square brackets are equal and are less
than the other factors in square brackets because, forn — k > 1 and k > 0 we
have (k + )(n— k) =k(n — k) + (n — k) > k-1 + (n — k) = nand so (n!)? >
n" follows forn = 3,4, 5, ....

12. Let a,, a,, ..., a, be positive and put s = a, + a, + - + a,. Then
SZ s3 n

(1"'611)(1"‘az)"'(l+a,.)£1+s+i+§+~~+H

with equality only in case n = 1.
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Indeed, by Proposition 4.17,

(1 +a)( +ay)- (1+a,,)<<"+"1+“2 '+“">
( s
n
_pan(S) D (s +-~-+<f"
N n 2 n n/’

We observe that the coefficients of s™ will be

n! 1

m!(n — m)! n"

But (n — m)in™ > n! and so

n! 1 n! 1
— =<
m

ml(n —m)l n™ ~ min! m’

proving the inequality we set out to verify. That we have equality only in case
n = 1 follows by Proposition 4.17.

1111 2 e
234 \nrd

Indeed, the left-hand side of the inequality contains two factors 1/2, three
factors 1/3 and so on, and finally n factors 1/n; in all, there are 1 + 243+
- 4 n = n(n + 1)/2 such factors. The geometric mean of these factors is
equal to the n(n + 1)/2 root of this product; the arithmetic mean is
1

1 1
11 P . .
+22+33+ +nn " 5

nn + 1)/2 Tam+ D2 n+l

13. We have

The validity of the inequality under consideration therefore follows by Pro-
position 4.17.

6. Miscellaneous Examples

1. Let a and b be distinct positive real numbers. We define

x bx 1/x
f(x)=<a + ) for x #0,

2

=\/;B for x = 0.
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The function f is strictly increasing on (— o0, 00), yet its total increase is only
la — b|. Specifically, we make the following claims:

@ f'(x)>0for x ;e 0
(b) lim, o f(x) =

(©) f'(0) =4 /ab(in a/b)z
(d) lim,,_, f(x) = min{a,b} and lim,., f(x) = max{a,b}.

The proof runs as follows. We verify first claim (a). For x # 0, let

g(x) = In f(x) = %m (“x ; bx).

Then
f'(x) = e*¥g'(x)

and f’(x) and g'(x) have the same sign. Differentiation gives

) a*(lna) + b*(Ind) 1 In a* + b*
x) = S—— .
g x(a* + b%) x? 2
Since
In a* + b* _ a® In a* + b* + b* In a* + b*
2 T a*+b* 2 a* + b* 2
and
2. @(na” + b*(Inb") B a* + b*
X9 = a + b In{=5—)
we obtain
2a* 2a* 2b* 2b*
2x%g'(x) = 1 1 .
) = e “<ax n b") NP n(a" n b">
We put
a* — b*
=t 4,
a*+b* " (4.75)

since a* and b* are always positive, we see that —1 < t < 1. Moreover,

2a* 2b*
1+t= , 1—t= 4.76
LS @ + b (476
and thus
x2g(x) =1 +0)In(1 + 1) + (1 — )In(1 —¢). 4.77)

We let, for —1 <t <1,
ht)=1+)In(1 + )+ (1 — )In(1 —1).
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Then
14t
h’(t):ln‘(l+t)—ln(1——t)=ln%.
We have
1
Sl for0<t<1
1—¢
<1 for—1<t<0
and so
1+t
1n1i >0 for0<t<1

<0 for—1<t<O.

It follows that h increases on (0, 1), k decreases on (—1,0), and h(0) = O is the
smallest value of h(f) for —1 <t < 1. Since x # 0 (because 1/x is not defined
for x = 0) and since a # b, we see that ¢ can not vanish. Thus, h(t) > 0 for
t # 0, implying that ¢g'(x) > 0 for x s 0 and so f'(x) > O for x # 0.

Next we verify claim (b). Let

ax + bx 1/x 1 ax + bx
y= andso Iny=—In .
2 X 2

By Proposition 4.10,
x x 2 x x 1 1 b
limln(a /2+b/)=lima(lna)+b(nb)=lna+ n =ln\/a.

x—0 X x—0 ax + bx 2

Thus,

x—=0 x—=0

X bx 1/x
1im<“ JZ“ > — Tim f(x) = </ab.

Since f(x) is differentiable for x # 0 and having defined f(0) = ./ab, we see
that f is continuous throughout (— co, 0).

We now verify claim (c). The function f is seen to satisfy the Mean Value
Theorem (see Proposition 4.5) on a closed interval [0,s] of finite length.
Hence,

1O = SO _ s

N

for some x between 0 and s. As before, let g(x) = In f(x). Then
Jx) = f(x)g'(x)

and, using the substitution (4.75), we get
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(L +9ln(1+ 0+ (1 —0n(l — 1)

g'(x) e
[see (4.77)]. By (4.76)
ﬁ L+t
b* 1—1
and so
_In(1+7) —In(l —70)
- In(a/b)
Thus,

a\?(1 + )ln(1 + ) + (1 — D)In(1 —0)
b [In(l + ) — In(1 — ]2

Butln(l +t) + In(1 —¢) = In(1 — ¢?) and so

f0) = 5509 <ln

In(l + 1) — In(l — ¢
L()In(l — 1) + 2 )t nd 9

1
Sy =376 <ln5> <ln(1 + 1) —In(l — t)>2

t

As x — 0, we have t — 0; moreover, by Proposition 4.10,

—t2 1 —In(1 —¢
oL e L L) B Ul B
-0 —t t—0 2t
Thus,
. 1 a\?
lim f'(x) = = /ab|In- | .
x=0 8 b
Hence,
— f(© 1 2
f(0)= limM = lim f'(x) = lim f'(x) = 3 /ab <ln %)
50 N s=0 x=0

because x is between 0 and s and lim, ¢ f'(x) exists.
Finally, we establish claim (d). Suppose that a > b and let x take the values
1,2,3,.... Then

f(n) _ <an + b")l/u _ a(ﬂ)l/n = g2~ Ungtl/m) In[1+(b/a)"]
2 2

But (b/a)* - 0 as n — oo and so In[1 + (b/a)*] — 0 as n — oo. Clearly, 1/n - 0
asn— oo and 27" —» 1 as n - oo. Thus, f(n) > a asn— oo. But, ifn < x <
n + 1, then f(n) < f(x) < f(n + 1) [because f'(x) > 0 and using Proposition
4.7] and so f(x)—a as x — oo. In an entirely similar way we show that
f(x) > basx—> —o0.
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ReMaRrk. Note in particular the inequalities
f(=1) < f(0) < f(1);

f(—1) is the harmonic mean, f(0) is the geometric mean, and f(1) is the
arithmetic mean of the two distinct positive real numbers a and b.

2. We consider the problem of inscribing a right circular cylinder of maxi-
mal surface area into a right circular cone of fixed dimensions.

Let R be the radius and H the height of the cone; let r be the radius and h
the height of the cylinder. Then the surface area of the cylinder is

S = 2nr? + 2nrh.
By similar triangles we have

h
R-—r

R—r

H
R

H
= — h =
R or
and so
S = Zn[r2 + rH<1 ~%>], where 0 <r < R.
Differentiation with respect to r yields

2r H
S =2n(2 H—-—H S"=4n({1——=).
n<r+ R ), n( R)

Setting §’ = 0, we get

HR
= 4.78
"T2H-R) “4.78)
If this value or r is to be contained in the open interval (0, R), then
HR HR
0< ——=— d ————<R 4.79
2H-R ™ 2H-R " (4.79)

must be satisfied. The first of these inequalities is equivalent to H > R. Multi-
plying the second inequality with the positive quantity 2(H — R) we get
H
R <—.
2
If the latter inequality holds, then S” is negative; to the value of r in (4.78)
corresponds the only maximum of the function S. This maximum value is
easily obtained by substituting the value for r in (4.78) into the expression
for S.
We assume now that the value r in (4.78) is not in the open interval (0, R),
that is, the inequalities in (4.79) are not satisfied. Here two possibilities can
arise: either H < R or H > R but R > H/2. The inequality
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H < 2R (4.80)

characterizes the two possibilities.
We rewrite the expression for §” and get

2rH 2

S=2(2r+H-"T2)=“"[R - H)r + HR - n].
R R

But inequality (4.80) implies S’ > 0 for 0 < r < R; hence S is an increasing

function on (0, R) and assumes its largest value for r = R. For r = R we have

h = 0 and the inscribed cylinder is completely flat.

3. Let(a, b) be the coordinates of a fixed point situated in the first quadrant
of the x, y-plane and consider the set of all straight lines passing through the
point (a, b) and intersecting both coordinate axes. Among these straight lines
we wish to determine the length of the shortest segment cut off by the
coordinate axes.

Let ¢ > 0 and suppose that (a + ¢,0) is the x-intercept of a straight line
passing through the point (a, b) in the first quadrant. It is easily seen that this
straight line intersects the y-axis at y = (b/t)(a + t) and that the square of the
length of the segment cut off this straight line by the coordinate axes is

f()=(a+1)?+ G)Z(a +1?=(a+ t)2<1 + f—j)

It is clear that if f(¢) is smallest for t = t,, then ./f(t) is also smallest for
t = t, and conversely. We proceed to find the smallest value ¢ = ¢, of f(1).
Differentiation yields

f(t)=2(a + t)<1 + l;—j) +(a + t)2<—g{)—>_

Putting f'(t) = 0, we get
t = qlBPp23
and
f(a1/3b2/3) — (a2/3 + b2/3)3.

A simple calculation shows that

2/3 2/3
f”(a1/3b2/3) — %(am + b2/3)[1 44 MJ 0
a

b2/3
because (a?? + b¥3)/b%3 > 1.

We therefore see that the length of the shortest segment cut off by the
coordinate axes is (a%® + b23)32,

ReMARks. The foregoing result shows the validity of the following two
statements:
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(i) Let two corridors of width a and b, respectively, intersect at right
angles. Then the length of the longest thin rod that will go horizontally
around the corner is (a® + b%3)32,

(i) The length of the shortest thin beam that can be used to brace a wall,
if the beam is to pass over a second wall (of negligible thickness) that is b units
high and a units from the first wall is (a?® + b%3)%2,

4. A circular sector of fixed radius R and variable central angle x (mea-
sured in radians) is to be shaped into the lateral surface of a right circular
cone of height h and radius r. We wish to determine the value x for which the
cone will have largest volume.

The length of the circular arc of central angle x and radius R is Rx. The
circumference of the base of the cone is 2nr. Thus,

Rx
2nr=Rx or r=—.
2rn
It is clear that h2 4+ r? = R? and so
R2X2 1/2 R
h=(R2—_ 22 =[R2 _ = (42 _ )2,
( r) ( 472 > 2n( x7)
The volume of the cone is
nr’h 1 R>x*> R R3
V= _ = (4 — x2)2 = 20472 _ x2)12.
3 T3 g 2T T %) X Um = x)

To determine the largest value of V we only need to investigate the function
h(x) = 4n%x* — x® for0 < x < 2m.
But #'(x) = 162x3® — 6x° and putting h'(x) = 0 we get the three values
x,=0, x,=-2n/%, and x;= 271\/%.

Only x, is in the open interval (0, 2x) and gives the desired answer.

5. We consider the Law of Refraction. Let A and B be two given points on
opposite sides of the x-axis. To fix ideas, let A have coordinates (0, a) and B
have coordinates (c, b) with a, b, and ¢ denoting fixed positive numbers. We
wish to find the path from A4 to B requiring the shortest possible time if the
velocity on the upper side of the x-axis is v, and on the lower side of the
Xx-axis is v,; it is assumed that v, and v, are fixed positive numbers.

It is clear that this shortest path must consist of two portions of straight
lines meeting one another at a point P on the x-axis; let the point P have
coordinates (x,0). See Figure 4.9. The length of the segments AP and PB are,
respectively,

@+ x»)¥* and [b? + (c — x)*]*

the time of passage along the path consisting of the line segments AP and
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-2 X

Figure 4.9

PBis

f) = i("2 +x%)12 + i[b2 + (¢ — x)*1*2
Uy Uy

Differentiation gives

P00 = X B c—Xx
= v(@® + xHY2 p,[b? + (c — x)*]V?
and
a? b?
f(x)=

+ .
vi(a? + x)¥  0,[b? + (c — x)*]??

Since f"(x) > O for any real number x, it follows that f is strictly increasing
on (— 00, ). Moreover, f'(0) <0 and f'(c) > 0. Since f’ is continuous, f”
must have exactly one root between x = 0 and x = ¢. For this root, say
X = Xx,, we have

x/(a* + x*)'? o
(€ — x)/[b* + (c — x)*1? ~ vy’

This is the Law of Refraction due to Snell which can be put into the form

sinf;, v,

sinf, v,
where f, is the angle of incidence and f3, the angle of refraction. If we denote
by «, the angle of inclination which the line segment AP forms with the

x-axis and by a, the angle of inclination which the line segment PB forms
with the x-axis, then the Law of Refraction can be written

cos; COSa,
Uy Uy '
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6. The General Refraction Curve. Suppose that the x, y-plane is parti-
tioned into layers that run parallel to the x-axis (see Figure 4.10). Inside each
layer the velocity of passage is constant. We select two points 4 and B
situated in different layers; let A4 be in the layer L, and B in the layer L,.
Between the layers Ly and L, are the layers L,, L,, ..., L,_,. The velocity of
passage in the layer L, is v, for k =0, 1, 2, ..., n. We are moving from the
point A in layer L, through the consecutive layers L,, L,, ..., L,_, to the
point B in layer L, along a path requiring the shortest possible time. The
path is made up of the line segments

AP,, P,P,, P,P,, ..., P,_,P,_,, P,_,P,, P,B.

The angles that these consecutive line segments make with the x-axis we
denote by

Olgy Oyy Oy vnny Oyony Oy qs Oy
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According to the Law of Refraction discussed in Example 5 we have

cosa, COSd;
Vo Uy

at the point P, and

cosa; COSa,

Uy Uy
at the point P, and so forth. At the point P, we have

COSO,_; COSa,

Un—1 Un
Hence,
COSdy COSay COS&y  COSQ,_y  COSQ
vo vy vy Upy Dy

If we denote by ¢ the common value of these quotients, we get

Cos a

¢,
v
where « is the angle of inclination of any of the line segments with respect to
the x-axis and v is the velocity of passage in the corresponding layer.
Suppose, finally, that the velocity of passage v is a continuous function of
the ordinate y of the point P with coordinates (x, y), that is,

v =0(y).

Then the path requiring the shortest possible time to travel from A4 to B is the
curve g characterized by the equation

cosa
== C,
v
where « is the angle of inclination which the tangent line at the point P with
coordinates (x, y) on the curve g makes with the x-axis, v = v(y) is the velocity
of passage at the point P, and c is a constant (se¢ Figure 4.11). We arrive at
this situation by considering layers that run parallel to the x-axis and for
which the widths tend to zero.

7. The Curve of Quickest Descent. We assume now that the point A is on
the x-axis and that the point B is below the point 4 but not on a vertical line
going through the point A4 (see Figure 4.12). We assume that the y-axis is
directed downward. Under the action of gravity alone an object is to travel
from point 4 to point B; it is assumed that the object is at rest when at 4 and
it is moving along a path from A to B such that it reaches B in the shortest
possible time.

From physics we know that the gravitational force imparts a constant
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x
Figure 4.11
A
> x
B
W
Yy
Figure 4.12

acceleration g of about 32 ft/sec? in the downward direction. But acceleration
is the rate of change of velocity v with respect to time, that is, D,v. Since v = 0
when ¢t = 0, we have v = gt, where t denotes time (in seconds). The displace-
ment y (measured in feet) is zero for ¢ = 0 (because A is on the x-axis). Thus,

y = gt*/2 and so
v2=2gy or v=, /2g\/;.

Therefore, the curve connecting A and B along which an object starting from
rest at A and moving under the action of gravitational force alone reaches B
in the shortest possible time satisfies

cosa Ccosa Ccos
o =c

== e or —=c¢y,
v 29y Jy
where ¢ and ¢, denote constants.
In Example 2 of Section 1 in Chapter 5 we shall study a curve called a
cyeloid (see Figure 5.2 for a sketch of a cycloid); a cycloid is a curve traced by
a point on a circle as the circle rolls on a straight line without slipping. We




216 4. Applications of Differentiation

shall see at the indicated place in Chapter 5 that the equations
x = a(t — sint), y = a(l — cost),

where a is a constant, are the parametric equations of a cycloid. What is of
interest to us here is that a cycloid satisfies the equation

cos o
Jy
where ¢, is a constant and o is the angle of inclination which the tangent line
at a point (x, y) on the cycloid makes with the x-axis; the point (x, y) on the
cycloid must not be a cusp of the curve, but should be a point of the curve at

which the derivative D, y exists.
Indeed,

= ¢y,

D,y sint t
Dy=—-""=-———_=cotx and D,y=tana.
=y D,x 1 -—cost 7 o Y e

But tan(n/2 — 8) = cot 8 implying that « = n/2 — t/2 and so
.t
cos o = sin—.

But y = a(l — cost) = 2a(sin?t/2). Therefore,
cosa 1
\/; \/2a

This shows that the curve of quickest descent connecting A and B is part of
a cycloid.

= constant.

ReMARK. The cycloid arises in several kinematic problems involving descent
of an object under gravity along a curve in a vertical plane; books on calculus
of variations provide detailed treatment of kinematic problems.

8. The solution of our next problem is based on a result known as Viviani’s
theorem.

Viviani’s Theorem. For a point P inside an equilateral triangle A\ ABC the sum
of the perpendiculars a, b, ¢ from P to the sides is equal to the altitude h.
Indeed, we have in terms of areas (see Figure 4.13)
AABC = APBC + APCA + APAB
or
1sh = 1sa + §sb + 3sc,

implying h = a + b + c. This proves Viviani’s Theorem.
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Figure 4.14

We now state the problem under consideration: We wish to determine a
point P in a given triangle AABC such that the sum PA + PB + PC is a
minimum.

It turns out that if the given triangle A ABC contains an angle of 120° or
more the required point P is the vertex of this obtuse angle. We shall not
consider this case but instead concentrate on the case in which the triangle
AABC has no angle as large as 120°; the required point P, called the Fermat
point of the triangle A ABC, is then characterized by the fact that at the point
P each side of the triangle subtends an angle of 120°. Let us note that in order
to find the Fermat point for a given triangle, all we need to do is draw equi-
lateral triangles outwardly on two sides of the triangle A ABC and observe
where their circumcircles meet (see Figure 4.14).

Consider the Fermat point P of the triangle A ABC in Figure 4.15; we shall
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X

Figure 4.15

show that it solves our problem. As a first step we draw around the given
triangle A ABC a triangle A X YZ by drawing perpendiculars to P4, PB, and
PC. In quadrilateral ZAPB, then, the angle Z is

360° — 90° — 90° — 120° = 60°.

We follow a similar procedure for the angles at Y and X, making AXYZ
equilateral. Thus, by Viviani’s theorem

PA+ PB+ PC =h,

the altitude of AXYZ.

For another point Q in AABC we also have that the sum of the perpen-
diculars QA’, QB’, and QC’ to the sides of AXYZ is h. But in general the
hypotenuse QA of the right triangle AQAA’ exceeds the leg QA’. Similarly,
QOB and QC, respectively, exceed the legs OB’ and QC'. Thus, the sum

QA+ QB+ QC>QA + QB + QC =h=PA+ PB + PC,

showing P to be the solution to our problem.

We observe that at most one of the right triangles can collapse and yield
the equality of a hypotenuse and leg (e.g., when Q lies on PA). Thus, at most
one of QA’, OB, or QC’ can actually be as great as the corresponding QA,
OB, or QC, giving universal validity to the inequality

QA + OB + QC > QA' + OB + OC.

This solves the problem under consideration.
In Figure 4.16 we indicate a second construction for the Fermat point P
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Figure 4.16

of the triangle AABC. Consider the triangle AABC with the equilateral
triangles

AAC'B, ABA'C, and ACBA

erected (externally) on the three sides. After drawing the lines BB’ and CC,
which meet at P, we observe that a rotation through 60° about A takes
AAC'C into AABB'. Hence, the angle /. C'PB = 60° and C'C = BB'. Similar
reasoning shows that 4’4 = CC'. Thus,

AA’ = BB' = CC'.
Moreover, since
LCPB=60°= L CAB and /[ CPB =60°= /CAB,
the quadrangles AC'BP and CB’ AP are cyclic; and since
L BPC =120° while / CA'B = 60°,

BA'CP is a third cyclic quadrangle. Therefore, the circumcircles of the tri-
angles

ABA'C, ACB'A, and AACB

all pass through the point P. This is the Fermat point of AABC.
It is easy to see that

AA’ = BB = CC = PA + PB + PC.
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Indeed, if the triangle APAB is rotated outwardly through 60° about the
vertex B to the position AP'C’B, it can be seen from Figure 4.16 that

C'C=PA+ PB + PC.

Summing up: The segments AA’, BB, and CC’ are all the same length
(equal to the minimal sum of PA, PB, and PC), are concurrent at the Fermat
point P of the triangle A ABC, and meet there at 60° angles (see Figure 4.16).

REMARK. The problem of determining a point P in a given triangle AABC
such that the sum PA + PB + PC is a minimum was given by the famous
number theorist Pierre de Fermat (1601-1665) to Evangelista Torricelli
(1608—1647), the well-known student of Galileo and discoverer of the ba-
rometer. Torricelli solved the problem several ways and we considered the
simplest of Torricelli’s solutions.
9. Letx >0and 0 < a < 1. Then
x*—oax<1—o. (4.81)
Indeed, differentiation of the function f(x) = x* — ax with respect to x yields
f(x) = a(x*t — 1)
Clearly,
f(x)>0 forO<x<1,
=0 forx=1,
<0 forx>1;

hence, f(1) = f(x) for x > 0 and this implies (4.81).

REMARK. Putting x = a/b and setting 1 — o = f3, we see that (4.81) gives
a’h? < aa + Bb, 4.82)

where a and b are positive numbers and « and fsatisfy0 <a < 1,0 < ff < 1,
and « + f = 1. [Note that there is strict inequality in (4.82) if and only if
a#b]

10. Let x > 0 and a and b be positive and a # b. Then
a+ x b+x a b
—1. 4.83
G+ 6) =
Indeed, differentiation of the function

a+x\*"™*
h(x) <b n x> with x >
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gives
H(x) = g(x)h(x), (4.84)
where
b—a a+x
g(x)=a+x + T

The sign of h'(x) is the same as the sign of g(x). Since
o) = (a—by
9=~ b0 =Y

the function g is decreasing and, consequently,

g(x) > g(+0)=0 forx>0. (4.85)

By (4.85) and (4.84) we conclude that the function h is increasing and therefore
(4.83) holds.

REeMARK. Letting x = a in (4.83) we get
2a b+a a b
(a + b) i <E>

a+b
<“ ; b) <a® fora#b, (4.86)

or

where a and b are assumed to be positive.

11. Let a and b be positive real numbers and a # b. Then

ah® < (#)Hb < a’h’. (4.87)
Indeed, in view of (4.86) it only remains to verify that
a'h < <“ < b>a+b. (4.88)
Putting
OC=a-l|)-b and 'B:aib

in (4.82) and keeping in mind that a # b, we see that

a+b
ath® < < 2ab ) )
a+b
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But

2ab 2 b
o _ <./ab<%« fora # b

a+b ljla+1/b
by (4.62) and (4.63); thus,
<a + b>a+b
<
2

2ab atb
a+b

and (4.88) follows.

12. The inequality

x(Inx)=x—1 forx>0 (4.89)
implies
2. pinp) = 3, pillng,) (4.90)

forp;>0,¢;>0(=1,2,...,n) and

Indeed, since p;/q; > 0, we get from (4.89) that

||M=

PipPis Py
qi qi q;

or
Piln& 2P~ q;

because g; > 0. Thus,

Z I’iln&Z Z (pi —4:)=0

or

[p (Inp;) — pi(lng;)] > 0.

IIM:

But the latter inequality implies (4.90).

REMARKS. Let a and b be positive real numbers. The inequality a®h® < a®b® is
equivalent to
b(Ina) + a(lnb) < a(lna) + b(Inb) 4.91)

and the inequality [(a + b)/2]**® < a®b® is equivalent to
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a+b

(a+ b)In 3

< a(lna) + b(Inb). 4.92)

Evidently, inequalities (4.91) and (4.92) are immediate consequences of in-
equality (4.90) and thus a good part of inequality (4.87) can be verified by use
of inequality (4.90). Recall that inequality (4.89) is a simple consequence of
inequality (1.3) in Chapter 1.

13. Let [a,b] be a closed interval of finite length and f be a continuous
function on [a, b]. Suppose that for each x between a and b we have

po SO B+ SO — ) =29 _
h—0 h?

Then f(x) = Ax + B for suitable numbers 4 and B.
Indeed, let ¢ be any point between a and b. We put

_(x—=bx—0) (x —o)(x—a) (x—a)(x—b)

Q(x) —mf(a) + b =ob—a fb) + (c = a)c —b) f(©).

Clearly, Q(a) = f(a), Q(b) = f(b), and Q(c) = f(c). We put
gx)=0(x) — f(x) fora<x<bh.

0.

Then g(a) = g(b) = g(c) = 0. Evidently, g is continuous on [a, b]. Hence, there
are points S and s between a and b where g assumes its largest and its smallest
values, respectively, by Proposition 3.13; if one of these points happens to be
either the endpoint a or the endpoint b of the interval, we may set it equal to
¢ and thereby will always have that S and s are situated between a and b.

But for a < x < b and h — 0 we have )

i IE TP 96—k —290) _ . Qx+h)+ Qlx — k) — 20(x)

im > = lim >
h~0 h B0 h

_ 2 4 2f(b) _

@-bla—co (B-b-a

Thus, we also have

mg(S + h) + g(M — h) — 29(S)

li =
o W K
and
i J6 TP+ gl —h) — 29(s) _
im 5 =K.
h—0 h
But

9 +h) <g(S), 95— h=<g(S)

and
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gls +h) =g(s), g(s—h)=g(s)

this means that the number K has to be nonpositive and nonnegative si-
multaneously. Thus, K = 0 and so

b — —
f© = 37— (@ + — fb).

b
However, c was an arbitrary point between a and b. Moreover, our equation
g = Q — f remains valid if we replace ¢ by either a or b. Hence, in the entire
interval

— X X

b
Sx) = b__af(a) +

—da
—— 1)

and so f is seen to be of the form f(x) = Ax + B.

14. Let w be a continuous function on the closed interval [a, b] which is
assumed to be of finite length. Suppose that w has a second derivative at each
point of the open interval (a, b). Then

w(x) — w(a) w(b) — w(a)
x—a  b-a _1
x—b )

w’(c),

where c is some point between a and b.
Indeed, let x be fixed with a < x < b. Put

wit) t2 t 1

| wx) X ox 1
o(t) = w@ a®> a 1
wb) b b 1

Then v(a) = v(x) = v(b) = 0. By the Mean Value Theorem (see Proposition
4.5) there exist numbers a and f§ such that a<a <x < f < b and v'(a) =
v'(B) = 0. Applying the Mean Value Theorem once again, we see that there is
a number ¢ such that a < ¢ <  and v"(c) = 0. Evidently, ¢ is between a and
b. Now

wic) 2 0 0
oa W x?ox 1}
V(e = w@ a*> a 1 =0
wb) b2 b 1

Expanding by the first row we find the desired relation.

15. Bernoulli’s Inequality. If x > —1, x # 0, and n is a positive integer
larger than 1, then

(A +x">1+nx. 4.93)



6. Miscellaneous Examples 225

Here we consider the following generalization of Bernoulli’s Inequality.
Let o be a fixed real number different from 0 and 1. Then x > —1and x # 0

imply
l+x)*>1+ax fa<Oora>1 4.94)
and
l+xf<l+4+ax f0<a<l. (4.95)
Indeed, let f(x) = (1 + x)* — (1 + ax) for x > —1. Then
) =al+x*'—a and f"(x)=oa(x— 1)1+ x)*2

Suppose o < 0 or & > 1. Then f is concave up on (— 1, o). Moreover, f is
decreasing on (— 1,0) and increasing on (0, co). Since f(0) = 0, it follows that
f(x) > 0if —1 < x # 0. Thus, (4.94) follows. In the case where 0 <a < 1, f
is concave down on (— 1, c0); moreover, f is increasing on (—1,0) and de-
creasing on (0,00) and f(0) = 0. Thus, f(x) <0if —1 > x # 0 and (4.95) is
obtained, finishing the proof.

ReMARK. Sometimes Bernoulli’s Inequality is stated in the following form: If
n is a positive integer larger than 1, then
T+x)A+x)L+x)>14+x +x, 4+ + X, (4.96)

provided that each of the numbers x,, x,, ..., x, is different from 0 and larger
than —1 and all numbers x,, x,, ..., X, have the same sign.
Indeed, from the inductive assumption

T+x)A+x)L+x)>14+x +x,4+ -+ x
we can easily see that
(L4 x)(1 + x2) (1 + x)(1 + X y)
>S14H (X +X, 4+ x)+ Xeyg + (6 + X2+ + X)X
>14+(x; + x5+ + X + Xpeq)
because (x; + X, + -+ + X)X+, > 0. The rest of the verification of (4.96),

namely, that it holds for n = 2, is trivial.

16. Let y = (1 + 2x — /1 + 4x)/2; it is defined on [ —%, + o) and it has
derivative y = 1 — 1/,/1 + 4x. Hence,

f(x)=l+2x—,/1+4x

5 for xe[0, + 0)

is an increasing function and has an inverse function f . Verify that
f i) =x+ \/; for xe[0, + oo).

Indeed, interchanging x and y we have
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1 _
xo T2 2V1+4y. 4.97)

To solve equation (4.97) for y, we observe that

1-+-2y—«/1+4y=<1/1-+-4y—1>2

2 2

and so

x+\/;:1+2y—2\/1+4y_\/1 +24y—1=y_

REMARK. Note that y = (14 2x — /1 + 4x)/2 is a decreasing function
on the interval (—%,0). While y = (1 + 2x — /1 + 4x)/2 is defined on
[—% + o0), it is not invertible on all of [ — 1/4, 4+ oo); see Proposition 2.18,

17. The polynomial
x  x? x"
P(x)=1+i‘+ﬁ+' '+H
does not have multiple roots.
Indeed, a multiple root of the polynomial P(x) must also be a root of its
derivative

n—1 n

P)=1+>+ -+ P(x)—%.

x —
1 n—1) "
Hence, if P(x,) = P'(x,) = 0, then x, = 0, but 0 is not a root of P(x) = 0.

18. Let f be a polynomial of degree n. If f(a) > 0, f'(a) > 0, ..., f™(a) > 0,
then all real roots of f do not exceed a.
Indeed, expanding f(x) in powers of x — a, we get, for x > a,

' " (n)

(x—aP+-+ (x—a)">0.

19. Letc, > 0fork=1,2,...,nand¢; + ¢, + -~ + ¢, = 1. Then

> (ck + i>2 > L+ n)? (4.98)
k=1

Cx n

Indeed, the Cauchy—Schwarz Inequality [see (1.43) in Chapter 1]

(son) =() (59

gives, putting a;, = 1 and b, = ¢, + /¢y,



6. Miscellaneous Examples 227

(&(ava)) =nE (),

But

By (4.62) and (4.63) the arithmetic mean is larger than or equal to the har-

monic mean of the numbers 1/c,, 1/c,, ..., 1/c,, that s,
n 11 no]
<-Y — or n*<y) —.
cp+tep+r+c¢, Ni=16 k=1 Cx
Hence,

and so

i( +1>2>1<i< +1>>>1(1+ 22
c — ] == c —1]}=- ne)-.
k=1 , Ck R \k=1 , Ck n

20. We are given a circle with center at O, radius r, and a tangent line AT.
In Figure 4.17, AM equals arc AP and P is the intersection of the line through
M and P with the line through 4 and O. Determine the limiting position of
B as P approaches A as a limiting position.

Let § = £ POA, PP, L 0A, and PP, L MA (see Figure 4.17). Arc AP =
r0 = AM, and, because the triangles AM AB and AMP, P are similar,

AB _ PP,
AM ~ P,M’

But PP, = OA — OP; =r —rcosf and P,M = AM — P,A = AM — P, P=
r0 — rsin 6. Thus,

PP, 0 —0OcosO
AB = AM -2 — .
M~ 6 _sin0

As P approaches 4, 8 — 0. If we let 8 — 0 in our expression for 4B, we get an

Figure 4.17
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PlA

Figure 4.18

indeterminate form. Using L’Hopital’s Rules (see Proposition 4.10), we obtain

lim AB  rlim .= 0080 _ . 1= cos0 + sino
P-4 9-0 0 —sinf 90 1 — cos b
. 2sinf + Ocos 0 3cosf — Osinf
=rlim—— =rlim——— = 3r.
=0 sin 6 6-0 cos 0

RemARKS. Let AB = 3r and suppose . AOP < 7/3 in Figure 4.18. Then the
line through the points B and P intersects the tangent to the circle at A at
such a point M that the segment AM on the tangent and the arc AP on the
circle are approximately equal. Now PP, =rsinf and OP, = rcosf. We
therefore get that 6 = / AOP is approximately equal to (3sin 8)/(2 + cos 6),
an approximation due to the learned Cardinal Nicolaus Cusanus of the 15th
century. For 8 = /3 the arc AP is smaller than the segment AM by only
about 0.8% of the radius r. That 8 is approximately equal to (3sin8)/(2 +
cos B) is of course a consequence of the similarity of the triangles ABP, P and
ABAM. Figure 4.18 also indicates how one can measure off approximately
equal arcs on two circles of different radii r and s.

21. We have, for x # 1,
0, =12+ 22x +3>x> + - + n’x"!
L4+ x—(n+1)’x" + (2n% + 2n — 1)x""! — p?2x"+?
- (1—x> '

Indeed, for x # 1, let
T,=1+x+x>+x>+ - +x"
Then

1 — xn+1

T:
1—-x

n

and

1=+ )x"+ nx""?
- (1 —x)? o

d
—(T)=1+42x +3x>+ - + nx""!
dx
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and

d x —(n+ 1)°x" + (2n% + 2n — 1)x"*! — n2x"*?
= — S = .
Qn ix (xS,) 1= %P

22. We have, for x # 0,

ltanx+1tnx+' 1t 1 ltanx t
R I ton AN = o cotx.

Indeed, for x # 0,

inx = 2(cos™ ) (sin2) = 22 cos®) (cos ™) (sin™

sin x = 2<cosz><sm2> 2 <cosz><cos4>(sm4>
= =2" cosi ¢ s— co X sini
=T 2 )\%° Sy Pz

Sx X ) X\ sin x
08 N\ 27 )\ “% 2n ) T on(sinx/27)
or

X X x . n_ X
In <cos E) + In <cos §> +-+1In <cos i) =In(sinx) — In2" — In (sm 2n>.

Differentiating both sides of the last equality gives the desired relation.

and so

23. Let f be such that f"(x) exists in (a,b) and f'(a) = f'(b) = 0. Then
there is a point ¢ satisfying a < ¢ < b such that

Lf" @)l = 1f(B) — f(a)l.

(- )2
Indeed, since f'(a) = f'(b) = 0, we get, by Proposition 4.11,

a+b f”(xl)
1(%5%) = @+ L (25 EY

a+b f”(xz)
f< ; ) ) + ( . )

where x, is between a and (@ + b)/2 and x, is between (a + b)/2 and b. But

b
6= sian < |0 — 1 (52| + [ (452) - e

b—a\3/1 , Y
s( . )(i)w (0l + 1 Gl

and
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Let | f"(c)| be the larger of the two numbers | f"(x,)| and | f"(x,)|; then
LG+ 1G] < 1 F ()

and the claim follows immediately.

24. Let 0 < a < b. Then b < e implies a® < b? and a > e implies a® > b°.
Indeed, a® < b® if and only if (In a)/a < (In b)/b, which is true if

d (Inx _1—1nx>0
dx\ x /] x2

throughout (a, b), and this holds if b < e. Similarly, a® > b° if

d (Inx _l—lnx<0
dx\ x | x2

throughout (g, b), which holds if a > e.

REMARK. What if a < e < b? Taking a = 2, b = 3, we have a® < b% if a = 2,
b = 4, then a® = b*; while if a = 2, b = 5, then a® > b°.

25. The Rule of Proportional Parts. If a < b < ¢ and the values of a func-
tion f are tabulated at the points a and c, the rule is that, approximately,

16) = &) = =2t - fea.
In other words, we replace the arc of the curve y = fi (x) on the interval [a, c]
by the chord connecting the points (a, f(a)) and (c, f(c)).

To obtain an upper bound for the error, suppose that f is continuous on
the closed interval [a, c] and that f has second derivative at each point of the
open interval (g, ¢). Applying the Mean Value Theorem (see Proposition 4.5)
to the function

fx) x* x 1
fla) a®> a 1
9=\ 1) b b o1
fle) ¢ ¢ 1

we obtain

b— 1
Jb) - fla) = Z—a(f(C) — f@) + (b~ a)b - )f"(s)

—a

where a < s < c. (The details of proof are completely analogous to the details
of proof in Example 14 of this section.)
Next, we note that b — a and ¢ — b are positive and that the sum

b—a+c—b=c—a
which is independent of b. But the product (b — a)(c — b) is largest if



6. Miscellaneous Examples 231

c—a

2

b—a=c—b=
(see Number 1 of Worked Examples and Comments following Proposition

4.18). Thus,

b —a)b — o) < _4“)2.

Hence, the error involved in assuming that as x increases from a to c, the
increase in f(x) is proportional to the increase in x, can not be greater than
% — a)*M, where M = sup{|f"(x)]: a < x < c}.

26. Let f and g be continuous functions on a closed interval [a, b] of finite
length and both be differentiable on the open interval (a, b). If, in addition,
g'(t) is not zero for any ¢ in (a, b), then

fb) - fl@ _ ['(®)

= 4.99
o) — 9@ ~ 9 (4.99)

for some x in (a, b).

We have already encountered the foregoing result in part (iii) of Proposi-
tion 4.9. Our present objective is to show that formula (4.99) is an example of
the application of the Mean Value Theorem (see Proposition 4.8) to a com-
position of functions.

Indeed, if G is a continuous function on [«, §], differentiable on (a, ), with
a nonvanishing derivative in (a, f), then, since the derivative of f[G(t)] is
f'[G(t)]G'(¢), by Proposition 4.8 there is a point 7 in (o, f) such that

SIG(B)] — fI[G(W]
f—a
Since G'(t) # 0 in («, ), by Proposition 4.8 we see that G'(t) is of constant sign,
and so G has a differentiable inverse function g, say, such that G'(t) =
1/g'[ G(t)]. Putting a, b, x for G(«), G(f), G(y) so that g(a) = « and g(b) = f,
we see that equation (4.100) becomes equation (4.99).

= 'IGMIG' (). (4.100)

27. Let f and g be continuous functions on a closed interval [«, b] of finite
length and both be differentiable n times on the open interval (a, b). More-
over, let

fO(ax) = g¥(a) = 0, 1<k<n,
and
[g®(t)| > 0 in[a,b], 1<k<n.
Then if ¢ < a < b, we can find x in («, b) such that

fb) — fl@) _ S(x)
gb)—gl@ g"(x)
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Indeed, by (4.99) we can find x,, x,, ..., x,_,, x in turn, such that

fb) — fla) _ f'(x1)
gb) —gla) g'(x,)

and
f'&x) S )= f@ ) _ S x)
gx)  gx)—g@ g'(xy) g (x,-1)

T ) — ) _ S
T g Ix) — ") g™(x)

which completes the proof.

28. Formula of Huygens. If A is the chord of any circular arc and B that of
half the arc, then the length L of the arc is approximately equal to
8B— 4
3

Indeed, if o is the central angle and R the radius, then by the cosine law we
get

A% = R? + R?> — 2R?cos .

But 2sin?(a/2) = 1 — cos « and so
o
A =2Rsin—.
sin 2

It is clear that B = 2R cos(/4) and so

8B—A R .o .o 5
3 —§<16sm4—251n§> = Ro + Ao,

where A denotes a finite factor, and where we have replaced the sine function
by its Taylor polynomial of order 5. But L = Ra.

REMARK. A better approximation for the length L of a circular arc is given by
the formula

45(4 + 256C — 40B), (4.101)

where A is the chord of the circular arc, B that of half the arc, and C that of
quarter of the arc.

ExEercises To CHAPTER 4

4.1. If f has n roots in [a, b], show that ™1 has at least one root in that interval.
[Hint: By Rolle’s Theorem (see Proposition 4.3), f’ has at least one root
between any two of f, so that f’ has at least n — 1 roots; hence f” has at least
n — 2 roots, f” at least n — 3, and so on.]
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4.2.

4.3.

44.

4.5.

If f(a) = f(b) =0and f"(x) # 01in (a, b), show that f(x) # 0in (a, b).
[Hint: For a < x < b, let

9(t) = f()(t — a)(t — b) — f(H)(x — a)(x — b).

Then g vanishes at t =a, t = x, and t = b, so that, by Rolle’s Theorem, g’
vanishes between a and x, and again between x and b, so that g” vanishes (at
least) once at c, say, in (a,b). But g"(t) = 2f(x) — (x — a)(x — b)f"(t) and so
S(x) = £(x — a)(x — b)f "(c), which shows that f(x) # 0in (a, b), since f"(c) # 0.]

Ifa<b<c,a+b+c=2,and ab + bc + ca = 1, show that a, b, and c lie in
the intervals (0,3), 3, 1), and (1,%), respectively.
[Hint: The numbers a, b, and ¢ are the roots of the cubic polynomial

f@&)=1t>—2t2 4+t —abc = t(t — 1)> — abe.

But f'(t) = (3t — 1)(t — 1), and a root of f’ lies between two of the roots of f, by
Rolle’s Theorem, and thereforea <4 <b <1 <ec.

Since f(c) = 0, therefore ab = (c — 1) so that a > 0, and therefore f(0) =
—abc < 0. Since f'G) = 0, f(t) — f) has the factor (¢t — 1), and since the sum
of the roots of the equation f(t) — f(4) = 0 is 2, the third root is t = 4. Thus,
f@©) =@ -9 — 3%+ f@). One root only of f(t) = 0 lies between 0 and 4 and
f(0) <0, therefore f(3)> 0. But f(c) =0 and so (c —9(c—1)?* = —f@ <O.
Thus,c <% Hence,0 <a<i<b<l<c<$l]

If f(0) =a, fla) =b, f'(0) = —1, and if | f"(x)| < 1/4|a] in the interval [ —2a, 2a],
show that |1 + f(x)] <4 in [—2a,24] and hence that |f(a + b)| < 1|f(a)| <
1
lal.

[Hint: By the Mean Value Theorem (see Proposition 4.5), for —2a < x < 2a,

2 1
£ + 1 =/ (x) = O = |xf"()| < _Iz_l =5

la| 2
Since f(a) — a = f(a) — f(0) = af'(a), therefore
[f@] =lalll + f'(@I < 3lal.
Moreover, |a + b| = |a + f(a)| < 2a so that a + b lies in [ — 24, 2a] and
fla+b)=f@)+bf(f, PBin(—2a,2a),
= f@( + f(B)
and so | f(a + b)| < 31 f(a)] < #lal]

Let f be twice differentiable in [a, b] and such that f(a) = f(b) = 0 and f(c) > 0
for a < ¢ < b. Show that there is at least one value t between a and b for which
f"@®<0.

[Hint: Since f” exists, ' and f both exist and are continuous on [a, b]. Since
¢ is a point between a and b, applying the Mean Value Theorem to f on the
intervals [a, c] and [¢, b], respectively, we get

J(©) — fla)

————=ft), a<t<g
c—a

and
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4.6.

4.7.

4.8.

4.9.

4. Applications of Differentiation

M=f’(t2), c<t,<b
b—c
But f(a) = f(b) = 0 and so
Py =T and )= — T wherea < t<c<t,<bh.
c—a b—c¢

Again f” is continuous and differentiable on [, t,]. Therefore, by the Mean
Value Theorem

S = £ _

@), t <t<t,.
t, —t,

Substituting the values of f(t,) and f'(z,), we get

y (b—a)f(c)
S0 St —oe—a <%
If h is differentiable, with positive nonzero derivative, in [a,b], h(a) = 0, and if
in the interval [h(a), h(b)], a < f(x) < b, f(0) = a, and f'(x) = 1/K'[ f(x)], show
that f and h are inverse functions.

[Hint: The function h[ f(x)] is differentiable in [h(a), h(b)] with derivative
RLf(x)1f(x) = 1, and so h[ f(x)] — x is constant; when x = 0, h[f(x)] —x =0,
and therefore h[ f(x)] = x for all x in [h(a), h(b)].

Moreover, since h'(x) > 0 in [a, b], therefore h(a) < h(x) < h(b) in [a,b], and
so h{ f[h(x)]} = h(x) in [a,b]; since h is monotonic and increasing it follows
that f[h(x)] = x for all x in [a,b].]

If f(a) = f'(b) =0 and f'(x) # 0 in (a,b), show that f(a) and f(b) can not be
both maxima nor both minima.

[Hint: By Proposition 4.8, f'(x) is of constant sign in (a,b). If f'(x) is positive
in (a, b), then f(a) is not a maximum and f(b) is not a minimum, that is, f(a) and
f(b) are not both maximum nor both minimum. A similar argument holds if
Sf'(x) is negative in (a, b).]

If f is differentiable in [a,b] and if £’ vanishes at only a finite number of points
in [a,b], then between any two points in (g, b) where f(x) is maximum there is a
point where f(x) is minimum, and between two minimum values, a maximum.

[Hint: If « and $ lie in (a,b) and f(2) and f(B) are both maximum values of
Sx), let a;, a,,..., a, be the points between o and f where f'(x) = 0. Since f(e)
is a maximum, by Exercise 4.7, f'(x) is negative in (o, 1), and similarly f'(x) is
positive in (a,, B). Moreover, f'(x) is of constant sign in each interval (a,, 2, ,).
Let p be the least value of r for which f(x) is positive in (o, 6,4 1); then f'(x) is
negative in (,_,,a,) and positive in (,,2,+1), and therefore f(x) has a minimum
value at x = ,,.]

Given that a and b are two real roots of the equation f(x) = 0, where f(x)is a
polynomial in x, show that there is at least one real root of the equation
f'(x) + f(x) = 0 which lies between a and b.

[Hint: Let g(x) = e*f(x) so that g'(x) = e*[ f'(x) + f(x)]. Since f(x) vanishes
atx = aand x = b so does g(x) and hence, by Rolle’s Theorem (see Proposition
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4.10.

4.11.

4.12.

4.13.

4.14.

4.3), there is at least one real root of g(x) between a and b. Since e* # 0, it follows
that f'(x) + f(x) vanishes for at least one real value of x between a and b.]

Deduce from the result in Exercise 4.9 that if a, b, and ¢ are real roots of the
equation f(x) = 0 and are such that a < b < ¢, then there is a real root of the
equation f"(x) + 2f'(x) + f(x) = 0 which lies between a and c.

Determine the range of values of A for which the equation
3x* —8x* —6x> +24x + A =0

has four real unequal roots.

[Hint: Let f be a polynomial. If f(a) and f(b) are not zero and have opposite
signs, then an odd number of real roots of the equation f(x) = 0 lie between a
and b; if f(a) and f(b) are not zero and have the same sign, then an even number
of roots (or no root) of f(x) = 0 lie between a and b. Hence, by Rolle’s Theorem,
necessary and sufficient conditions for f(x) = 0 to have n unequal real roots are
that f'(x) = 0 shall have n — 1 unequal real roots and, if these n — 1 roots are
X1, X5, ..., X,—1 In ascending order, that the signs of the succession

f(=), flx), fx2), -..n f(Xum1), S(o0)

are alternate.

If f(x) = 3x* — 8x3 — 6x% + 24x + A4, then f'(x) = 12(x + 1)(x — 1)(x — 2),
and the roots of f'(x) =0 are at x = —1, 1, and 2. Hence, the equation in
question will have four unequal roots if the signs of f(—o0), f(—1)= —19 + A4,
f(1) =13 + A4, f(2) = 8 + A, and f(o0) alternate. But f(x)is positive if x > + o0
and so we must require that —19 + 4 < 0,13 + 4 > 0, and 8 + 4 < 0. How-
ever, these inequalities require that —13 < 4 < —8.]

Let f(x) =1 — x + x%/2 — x3/3 + --- + (—1)"x"/n. Show that f(x) = O has one
real root if n is odd and no real root if n is even.

[Hint: Clearly, f(x) = 0 has no negative roots. We note that f(x) = 0 does not
have two consecutive positive roots. Suppose it had. Then f'(x) = 0 would have
to hold for some x between two consecutive positive roots of f(x) = 0. But

)= =1+ x""H/1 + x).]

The functions u and v and their derivatives u’ and v’ are continuous in [a, b], and
uv’ — u'v never vanishes at any point of [a, b]. Show that between any two zeros
of u lies one of v and the converse, that is, the roots of u and v separate each
other.

[Hint: Let x; and x, be consecutive roots of u(x) = 0. Then, if v(x) # 0 when
X; < Xx < X,, u/v is continuous in [a, b] and vanishes at x, and x,; hence, (u/v)’
must vanish at an intermediate point: a contradiction. Nor can v vanish twice in
(x1, x,), for then u would have a root between x; and x,.}

Show that the equation
agx" + a; x" '+ a,x"* + +a, x +a,

ao a; a, (2 a
+—+—F+ "+
n+1 n n-—1 2 1

has a root between 0 and 1.
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[Hint: Consider the function

n+1 n n—1

2
apx a;x a,x a, X a,x
F(x) = + + 4 +
) n+1 n n—1 2 1
ag a, a, an-1 4y
- +—+ ot + 2 )x.
<n +1 n n—1 2 1 >

Then F(0) = F(I) = 0. Thus, by Rolle’s Theorem, there is a point x between 0
and 1 such that F'(x) = 0.]

4.15. Show that (tan x)/x > x/(sin x) for 0 < x < 7/2.
[Hint: Since xsinx > 0 for 0 < x < n/2, it will be sufficient to show that
(sinx)(tan x) — x*> > 0 for 0 < x < 7/2 in order to have
. ) 2
gsmx—)(am“x > 0 fOI' 0 <x < E
xsinx 2
Let f(x) = (sin x)(tan x) — x2. Then
Sf(x) = (cos x)(tan x) + (sin x)(sec? x) — 2x
= sin X + (sin x)(sec? x) — 2x
and

S"(x) = cos x + (cos x)(sec? x) + 2(sin x)(sec? x)(tan x) — 2

= (y/secx — /cos x)? + 2(tan? x)(sec x).

Thus, f(x) > 0for 0 < x < =/2. Since the derivative f"(x) of f'(x) is positive for
0 < x < 7/2, the function f”(x) is an increasing function for 0 < x < /2. Fur-
thermore, since f'(0) = 0, we have f'(x) > 0 for 0 < x < n/2. Again, since f'(x)
is larger than 0 for 0 < x < /2 and f(x) = 0, we have f(x) > 0for 0 < x < 7/2.
Thus, it follows that (tan x)/x > x/(sin x) for 0 < x < 7/2.]

4.16. Show that if 0 < w < v, then

2 ctan o —tan tw< Y
1+ v? 1+ w?

[Hint: Apply the Mean Value Theorem (see Proposition 4.5).]
4.17. Show thatif 0 < o« < § < 7/2, then .

sino — sin 8
———————— =cot
cosfi — cosa

for some 0 satisfying o < 0 < f.
[Hint: Apply part (ii) of Proposition 4.9.]

4.18. If £, g, and h are functions continuous on [a, b] and differentiable on (a, b), show
that there is a point ¢ situated between a and b such that

M@ fb) fle)
gla gb) g |=0.
h(a) h(b) H(c)
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4.19.

4.20.

4.21.

422

4.23.

[Hint: Apply Rolle’s Theorem (see Proposition 4.3) to the function

fla fb) f(x)
wix)=]g(@ gb) g }]
h(a) h(b) h(x)
Show that the extreme values of

ax? + 2bx + ¢ 220
=, y —
Y px?+2gx +r pr—a

are roots of the quadratic
(pr — g*)y? — (ar — 2bq + cp)y + (ac — b?) = 0.

[Hint: We differentiate (px? + 2gx + r)y = ax* + 2bx + ¢; when y' =0,
(px + q)y = ax + b and, from this and (px? + 2gx + r)y = ax* + 2bx + ¢, we
get (gx + r)y = bx + c. Solving for x in

ax+b bx + ¢
y= and y=
px +4q qx +r
we get
—qy+b —ry+c
x=—"—— and x=-——,
py —a qy—b

respectively. Hence, elimination of x from the equations

ax+b bx + ¢
= y=

an
px +q ax +r

gives (—qy + b)(qy — b) = (—ry + ¢)(py — a) or
(pr — q¥)y? — (ar — 2bq + cp)y + (ac — b?) =0.]
Show that the values of y = (x> + 2x + 11)/(x? + 4x + 10) are confined to the

interval 2 <y < 2.
[Hint: Apply the result in Exercise 4.19.]

Show that f(x) = (acosx + bsin x)/(ccos x + dsin x) has neither a maximum
nor a minimum.
[Hint: We have f'(x) = (bc — ad)/(c cos x + dsin x)2.]

Show that f(x) = asinx + bcos x has + (a? + b?)*? as extreme values.
[Hint: f'(x) = 0 implies a/b = tan x.]
Verify that, when m and n are positive integers,
J®=x—-a"x—-cf, a<g
has the extremes given in the following list, where b divides the interval [a,c] in

the ratio m/n:

(i) m and n even; minima at a and ¢, maximum at b = (na + mc)/(m + n);
(ii) m and n odd; minimum at b;
(iii) m even, n odd; maximum at a, minimum at b;
(iv) m odd, n even; maximum at b, minimum at c.
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4.24.

4.25.

4.26.
4.27.

4.28.

4.29.

4.30.

4. Applications of Differentiation

When x > 0, show that f(x) = (tan™! x)/(tanh x) increases as x increases and
that

tan"1x < g—(tanh X).

[Hint: f”(x) has the same sign as g(x) = (1 + x?)”!(sinh x)(cosh x) — tan™ ! x,
g'(x) has the same sign as h(x) = (1 + x?)(sinh x) — x cosh x, and #'(x) > 0 when
x > 0. Moreover, f(x) > n/2 as x - ©0.]

What is wrong with the following reasoning? Let f(x) = e ?*(cos x + 2sinx)
and g(x) = e *(cos x + sin x). As x — 0, the fraction f(x)/g(x) has the form 0/0.
Now

S'(x)  —5e *sinx

g(x) —2e *sinx

Canceling sin x in /g’ we see that f'/g’ — 0 as x —» oo and so we may conclude
that f/g — 0 as x — 0.
[Hint: Note that f'/g’ has no limit as x — oo, for, as x becomes infinite along
the sequence nr, f'/g’ is never defined; the limit
. fix) .. __1+4+2tanx
Iim— = lime *——
x> g(X) X0 1+ tanx
is nonexistent, since (1 + 2 tan x)/(1 + tan x) is discontinuous at the points x, =
nn+ nf2forn=1,2,3,....]

Verify formula (4.101).

Find constants 4 and B so that (sin 3x + A sin2x + Bsin x)/x> may tend to a
finite limit as x — 0.

[Hint: Expanding the sine function in powers of x by use of Taylor’s Theorm
(see Proposition 4.11), we need

3+24+B=0, 27+84+B=0
to make the coefficients of x and x* zero. Hence, A = —4 and B = 5.]

Let f(x) = x2sin(1/x) and g(x) = sinx. Verify that f(x)/g(x) - 0 as x —» 0 and
that f'(x)/g’(x) does not tend to a limit as x — 0. Does this belie the truth of
L’Hopital’s Rule?

Find

. xsin(sin x) — sin% x
lim - .

x—0 X
[Answer: 1%.]
Find

(sin x)(sin" ! x) — x?2
m = )

li

x—0 X

[Answer: 15.]
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431

4.32.

4.33.

4.34.

Find

y tan(sin x) + tan™(sin x) — sin(tan x) — sin(tan"! x)
im
5 .

x—0 X

[Answer: .]
Find
. a®—b°
lim———.
asb a® — bb
[Answer: (1 — Inb)/(1 + In b).]
Show that if a > b > 0 the minimum value of (@ — b)x/(x + a)(x + b) exceeds
the maximum by 4., /ab/(a — b).
[Hint: If y=(a —b)x/(x + a)(x + b) =a/(x + @) — b/(x + b), y =0 when
x = +./ab,
y' = —_‘(f _ \/B) if x = /ab,
Jab(Ja + /b v
and
Ja+b oo
y'=—-——— ifx=—Jab.
Jab(/a — /b
Hence, (f — \/E)/(\/; + \/I;) is the maximum value and (\/5 + \/E)/(\/— —

\/E) is the minimum value.]

If y=(x + a)(x + b)/(x — a)(x — b), show that the maximum and minimum
are, respectively,

() - )

Also show that, if x is real, (x + a)(x + b)/(x — a)(x — b) can not lie between the
values

o) o ()
[Hint: We have

(x+a)(x+b)__ 2@+bx 2@+ b)) a b
G—a—b T _ax-b T a-bh \x—a x=b)

Also note that

x>+ (@+bx+ab
x*—(@+bx+ab

or
(1 —=y)x*+ (a+ b1+ y)x —ab(l —y) =0,

an equation whose roots are only real when (a + b)*(1 + y)* > 4ab(1 - y)*.]
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4.35.

4.36.

4.37.

4.38.

4.39.

4.40.

4. Applications of Differentiation

A rancher wishes to divide a triangular field into two equal parts by a straight
fence. How is this to be done so that the fence may be of the least length?
[Hint: If 4 is the smallest angle and b, ¢ the adjacent sides, the distance of

each end of the fence from A equals /bc/2 and the length of the fence equals
/2bc(sin A/2).]

If a and b are positive, show that
I+aln(l+a+1+bIn(l +b)<(l+a+b)ln(l+a+b),

and generally that if every aq, is positive,

1+ a)n(l +a,)< (1 + zn: a,)ln(l + 5_.: a,).
r=1 r=1

[Hint: Let g(x) = (1 + x)In(1 + x) for x > 0 and suppose that 0 < a < b. By
the Mean Value Theorem (see Proposition 4.5), there is a point ¢ such that

gla+b) —g(b)

M:

1

il

r

=g'(c), whereb<c<a+b.

Thus,
(I+a+bn(l+a+b)—(1+b)n(l +b)=all +In(1 + )],

where 0 <a<b<c<a+b But a>In(l +a) for a>0 and In(1 +¢) >
In(1 + a)for 0 < a < ¢. Hence,

a[l +1In(1 + ¢)] = a + a[In(1 + ¢)]
>1In(l + a) + a[ln(1 + a)] = (1 + a)In(1 + a).]

Let f"(¢)=f"(c)="""= ") =0, but f™(c) # 0. Show that if n is odd,
then the curve y = f(x) has a point of inflection at x = ¢; if n is even, it is
concave upward or downward according to whether f™(c) > 0 or <0.

Let n be a positive integer. Show that the abscissas of the points of inflection of
the curve y" = f(x) are the roots of the equation

n—1

" {£0)}? = f(x)f"(x).
Show that the points of inflection of the curve y* = (x — a)*(x — b) lie on the
line 3x + a = 4b.

If f(x) = ax + 6b%/x?, b 0, show that the curve y = ¢ /™ has at least two
points of inflection.
[Hint: We have f'(x) = a — 12b%/x3, f"(x) = 36b?/x*, and therefore
-f
Vo= e I(f)E = e (") = - {(ax® — 6bx — 12b%)(ax® + 6bx — 12b7)}.
x

The cubics have no common factor, since b # 0, and each cubic has either one
real root or three real roots of which one must be simple, that is, each cubic has
at least one nonrepeated real root, and y” changes sign, and vanishes, as x
passes through a nonrepeated real root of each cubic.]
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4.41.

442.

4.43.

4.44.

4.45.

4.46.

4.47.

Let n and r be positive integers larger than or equal to 3. Show that
(n+r) <n"
[Hint: The inequality in question is equivalent to

Inn+r) Inn
—_—
n+r n

But the function g(x) = (In x)/x, defined for x > 0, has a single maximum at
x = e because g'(x) = (1 — Inx)/x? is negative for x > ¢ and is positive for x
satisfying 0 < x < e. Evidently, the function g is decreasing for x > e.]

If a plane at distance x from the center of a unit sphere cuts it into two segments,
one with twice the volume of the other, show that

3x3 —9x +2=0.

Then use Newton’s Method to find x accurate to four decimal places.
[Hint: See Example 4 in Section 4 of Chapter 4. Answer: 0.2261.]

The equation x = tanx has infinitely many roots. It is easily seen that its
smallest positive root is between 57/4 and 37/2. Using Newton’s Method, verify
that the smallest positive root of the given equation is approximately 4.4934.

The equation xsinx = % has infinitely many roots. Verify that the smallest
positive root of the given equation is approximately 0.740841.

The equation 2x3 — x> — 7x + 5 = 0 has three distinct real roots. Find these
three roots with an accuracy of 0.001.

[Answer: x; = —1.9509 (approximately), x, = 0.756 (approximately), and
x5 = 1.694 (approximately). Note that by Vieta’s Theorem the sum of the three
roots is equal to £.]

Verify that the equation x* — x — 1 = 0 has a root between the points a = 1.22
and b = 1.23. Then determine this root with an accuracy of six decimal places.
[Answer: 1.220744.]

Problem of Viviani. Two parallel lines are cut by a given line AB. See Figure
4.19. From the point C we draw a straight line intersecting AB. How should this
line be chosen so that the sum of the areas of the two triangles AACP and
AQPB is a minimum?

[Hint: Let the lengths of AC and AB be a and b, respectively, and the lengths

Figure 4.19
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4.48.

4.49.

4.50.

4. Applications of Differentiation

of AP and QB be x and y, respectively. Since the triangles are similar we have

y b—x
= or y=a .
b—x y

a
X

If o is the angle at A4, the sum of the areas is
taxsina + 1(b — x)(ysina).
We substitute the value of y and now the problem requires the determination of
the minimum value of the function
b — x)?
f(x)=x+ ( ) .

X

It is easily seen that x = b/ﬁ gives the mintmum area.]

A piece of wire k units long is cut into two parts. One part is bent into a circle,
the other into a square. Show that the sum of their areas is a minimum when the
wire is cut in such a way that the diameter of the circle equals the side of the
square and that the sum of the areas is a maximum when the wire is left uncut
and bent into a circle.

A triangle AABC has a right angle at ¢, and the product of the sides AB and BC
is constant. Show that AC + 3BC is a minimum when AC = 2BC and a maxi-
mum when AC = BC.

[Hint: Let AB = x and .~ ABC = 6. Then x?cosf is constant and (AC +
3BC)? is proportional to (sin 8 + 3 cos 0)?/(cos 0) = sec 0 + 6sin 0 + 8cos 0; the
first derivative equals
*—Tt+6

(1 + 22

- -2
A+

(secH)(tan0) + 6¢cos O — 8sinf =

where t = tan . When 0 < t < 1 the derivative is positive, it vanishes at ¢t = 1,
is negative for 1 <t < 2, vanishes again at t = 2, and is positive for ¢ > 2.
Hence, (AC + 3BC)? is maximum when ¢ = 1 and minimum when ¢ = 2. Note
that f(¢)? and f(¢) are maximum and minimum together, when f() > 0, because

AT = f@)* = {f(T) — f@)} { A(T) + ()}
and so f(T)*> — f(¢)* and f(T) — f(¢) have the same sign.]

Let q,, 45, -.., g, be positive real numbers with sum 1. Show that, for any
nonnegative real numbers a,, a,, ..., a,, we have

4. g42... 4n
10y + g0, + -+ gua, 2 ay' ay’ a,

with equality only ifa; = a, = -+ = a,.
[Hint: First we note that, if x is any real number, then

e* > ex

with equality only if x = 1. Indeed, the function f(x) = e* — ex has an absolute
minimum at x = 1.
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4.51.

4.52.

4.53.

4.54.

Figure 4.20

To prove the desired inequality, put w = q,a, + ¢,4a, + - + ¢,a,. We now
replace x in the inequality e* > ex by a;/w to get

ea. \4
e > ea;/w or e% > (—’) .
w

Multiplying these inequalities for each of the valuesj = 1, 2, ..., n, we get

S e[a‘lh .agz .. .a:‘ln]

w

which proves the desired inequality. Evidently, there is equality here if and only
ifeach of a,/w, a,/w, ..., a,/w equals 1, giving the conditiona; = a, =--- = a,.]

Determine the shortest distance from the point (c,0) to y? = 4x, where ¢ may be
positive, negative, or zero.

[Answer: If ¢ < 2, the point on y? = 4x that is nearest to (c,0) is the point
(0,0). If ¢ > 2, there are two nearest points to (c,0) on the curve, namely,

(c—2,+2./c—2)]

Suppose that f is a differentiable function at each point of a closed interval
[a,b], where |b — a| < co. If there is a number M for which |f'(x)] < M for
every x in [a, b], show that f is uniformly continuous on [a, b].

[Hint: Use the Mean Value Theorem (see Proposition 4.5).]

Let f(x) = x(Inx) if x > 0 and f(0) = 0. Show that f is uniformly continuous on
the closed interval [0, 1], but that f”(x) is not bounded on [0, 1]. Explain why
this does not contradict the result in Exercise 4.52.

A picture hangs on a wall above the level of an observer’s eye. How far from the
wall should the observer stand to maximize the angle of observation?

[Hint: Consider Figure 4.20, where Q and R represent the bottom and top of
the picture and TS is the horizontal line at the level of the observer’s eye. Next,
consider the circle passing through the points Q and R, tangent to the line TS,
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4.55.

4.56.

4.57.

4.58.

4. Applications of Differentiation

and let P be the point of tangency. If K is any other point on T'S, let H be the
intersection point of the line segment RK and the circle. We have

/ QPR = / QHR

by the property that the chord QR subtends equal angles at any two points on
the arc QR. Hence,

LQPR=/QHR =/ QKR+ / HQK > . QKR.

This shows that the angle of observation is maximized if the observer’s eye is at
the point of tangency P. The tangent line SP and the secant line SQR satisfy the
distance relation (SP)? = (SQ)(SR).]

Let the second derivative f” of a function f be continuous for a < x < b and at
each point x, the sign of f(x) and f”(x) be the same. Show that if f(x) vanishes
at points ¢ and d, where a < ¢ < d < b, then it vanishes everywhere between ¢
and d.

The normal is drawn at a variable point P of the ellipse

2

+2 =1

x2 y
a® ' b?

Show that the maximum distance of the normal from the center of the ellipse is
la —b|.

Verify that if in formula (4.2) we write for f(z) and g(t), respectively,

W t%4t,
(1) sint, cost,
(1) €', e,
then in each case “x” is the arithmetic mean between a and b.
If in formula (4.2) we write for f(t) and g(¢), respectively,

\/E and —\1/;,

then “x” is the geometric mean between a and b and if we write

1 1
— and -,
2 t

~

then “x” is the harmonic mean between a and b.
[The arithmetic, geometric, and harmonic means of a and b are, respectively,

a+b 2ab
A= = ./ab H= .
7 G ab, and a+b]

If all the roots of the polynomial P(x) — a and P(x) — b are real, show that all
the roots of the polynomial P(x) — c are real if a < ¢ < b.

[Hint: All the roots of P’(x) are clearly real; denote them by ¢, t,, ..., t,—;.
Next, denote by y,, ¥, ..., ¥, the roots of P(x) — b and by x,, x,, ..., X, the
roots of P(x) —a. Then y, <t, <y, < " <P,y <ty <y, and x, <t; <
X, <ty < <X, ; <t,; <X, It follows that intervals bounded by the points
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4.59.

x;, y; do not overlap since they lie in the nonoverlapping intervals (— c0,¢,),
(t1,t5), ..., (t,_y, + 0). The polynomial P(x) takes on the values a and b at the
endpoints of each of these intervals and passes through all intermediate values
inside the interval. Hence, P(x) — ¢ vanishes n times on (— 00, + 00).]

Let f be such that f"(x) exists, | f(x)| < 4, and | f"(x)| < Bfor all x > 0, where A
and B are positive constants. Show that | f'(x)| < 2./AB for all x > 0.
[Hint: Let x and & be positive. Then, by Taylor’s Theorem,

2

Sx + h) = f(x) + hf'(x) + %—f”(x + 0h)

for some number 6 satisfying 0 < 6 < 1. Hence
2

h
IOl = |f(x + B) — f(x) — 57 f"(x + O)

2

h
G+ B+ 1O+ 50170 + Oh)]

Bh?
SZA-{—T for any x > 0

or

2A Bh
[/l < —+—+— for any x > 0.
h 2
Since | f'(x)| is independent of h and is less than or equal to 24/h + Bh/2 for
any h > 0, it follows that |f'(x)| is less than or equal to the least value of

24/h + Bhy2. But
24 Bh [ A [BEY
AL _ (A PRy Lo /4B
) ( I 2) *

2A Bh
2 ABST-&? for any h > 0.

and so

It therefore follows that | f'(x)| < 2./A4B for all x > 0.]



CHAPTER 5

Integration

1. Examples of Area Calculation

The problem of finding the area of a region in a plane bounded by a given
curve has fascinated mathematicians for a long time. We shall consider a few
of the celebrated examples that have come down to us from times past; the
special methods of quadrature used in these examples are of a rather clever
kind.

ExampLE 1 (The Quadrature of the Parabola by Archimedes). Consider a
parabola satisfying the equation

y=Ax?+ Bx + C with 4> 0. (CRY

Figure 5.1 illustrates the parabola under conmsideration. Let P, = (x,,y,),
P, = (x,,y,), and P; = (x5,y5;) be points on this parabola such that the
abscissas x,, X,, and x; form an arithmetic progression, that is,

X, — X, =Xz — X, =h.

The region bounded by the parabolic arc connecting the points P, and P,
and the chord from P; to P; is called the parabolic segment between P, and P;;
the chord between P, and P; is said to be the base of the parabolic segment
between P; and P; and the point P, is said to be the vertex of the parabolic
segment between P, and P;. The vertex P, of the parabolic segment between
P, and P; is that point on the parabolic arc connecting P, and P; from which
the perpendicular to the base is the greatest.

Given the parabolic segment between P, and P, with vertex P,, the para-
bolic arc is assumed to satisfy equation (5.1). Our problem is the determina-
tion of the area of this parabolic segment. We shall do this in two steps: We
show that
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> <

Figure 5.1

(i) the area of the triangle AP, P, P; is equal to Ah® and
(ii) the area of the parabolic segment between P; and P, having vertex P,, is
4 times the area of the triangle AP; P, P;.

Let M denote the center of the chord from P, to P,; then M has the

coordinates
X; +Xx +
M= < ! 3 N1 _V3>

2 02
The point P, has the coordinates (x5, y,), where

and y2=f<

_ X1+ X3 X1 + X3

X5 ) with f(x) = Ax?> 4+ Bx + C.

The distance between the points M and P, is

Y1+Y3_f Xy + X3
2 2

=Axf+Bx1+C+Ax§+Bx3+C_A<x1+x3>2_B<x1+x3>_C

2 2 2

A A
= 5(x% +x3) — 700+ x3)?

= —(X3 - xl)z.

4
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But the area of the triangle AP, P, P, is
1(x; — x,) x (distance between the points M and P,).

Therefore, the area of the triangle AP, P, P; is

é(x3 —x;)® = Ah3.
8
Summing up, the area of the triangle AP, P, P, situated above an interval of
length 2h equals Ah3.

Note that we have inscribed in the parabolic segment with base P, P, and
vertex P, the triangle AP, P, P;; the triangle AP, P,P; and the parabolic
segment between P, and P; have the same base P; P; and the same vertex P,.
The area of the triangle AP, P, P is clearly less than the area of the parabolic
sector between P; and P;; moreover, the triangle AP, P, P, is easily seen to
be the triangle of largest area with base P, P, that can be inscribed in the
parabolic arc with base P, P;. We also note the following: If one constructs
through P, a parallel to the chord P, P, then this parallel forms a side of the
parallelogram P,Q,0,Q; (see Figure 5.1) which completely contains the
parabolic sector between P, and P;. In fact, the segment Q, Q, is tangent to
the parabolic arc between P, and P, at P, and the area of the parallelogram
P,Q,0;P; is exactly twice the area of the triangle AP, P, P;. Therefore, the
area of the parabolic segment with base P, P, situated above an interval of
length 2h is strictly between the numbers

Ah® and 24k

with the parabolic curve under consideration satisfying equation (5.1).

We now proceed to show that the area of the parabolic segment with base
P, Py and vertex P, is § times the area of the triangle AP, P, P, with base P, P,
and vertex P,.

First, we inscribe in the parabolic segment with base P, P, and vertex P,
the triangle AP, P,P,. Second, within each of the two smaller parabolic
segments with bases P, P, and P, P; we inscribe the triangles AP, P, P, and
AP, PsP; (see Figure 5.1). The parabolic segment with base P, P, (respec-
tively, base P, P;) and vertex P, (respectively, vertex Ps) has the same base
and vertex as the triangle AP, P, P, (respectively, triangle AP, PsP;). The
abscissa x, is the midpoint of the interval from x, to x, and the abscissa x5
is the midpoint of the interval from x, to x;. The area of the triangle AP, P, P,
(respectively, triangle AP, P P;) situated above an interval of length h equals

y h\3 _ Ah3
2) 8
and hence both triangles AP, P, P, and AP, P, P; together have a total area of
1An®
$Ah>.

Accordingly, the polygon P, P, P, Ps P, has area
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(1 + AR,

Next, we inscribe triangles within each of the four parabolic segments, the
bases of which are, respectively, P, P,, P, P,, P, P5, and PsP,; the correspond-
ing vertices are so chosen that the vertex of the parabolic segment and the
vertex of its inscribed triangle coincide.

Continuing this process, at the nth stage we have a polygon with area

Y SRR LI e

W=\t T A
The difference between the area of the polygon and the area of the parabolic
segment with base P, P; is nonnegative and tends to zero as n becomes

arbitrarily large. The area of the parabolic segment with base P, P, is given by

lim g,,.
Putting
STV S
" 4 42 grt’
we get
1 1 1 1
A TatE Tty
and so
%sn=1~$ or 'llirgsn=g,
implying that

lim ¢, = iAh3.
P 3
Thus, the area of the parabolic segment is 4 times the area of the inscribed
triangle having the same base and vertex as the parabolic segment.

We now add some remarks concerning the calculation of the area of a
parabolic segment. Commencing with the triangle AP, P, P;, we add the two
triangles AP, P, P, and AP, PsP;, then we add four triangles, and so on, each
time doubling the number of triangles in the previous step. If instead of
doubling the number of triangles in the nth step, one quadruples the number
of triangles, one can see that one exceeds the area of the parabolic segment
under investigation. In this connection, recall that the area of the parallel-
ogram P, Q,Q,0; has twice the area of the triangle AP, P, P, and contains
completely the parabolic segment with base P, P;. Hence, the area of the
parabolic segment with base P, P, differs from the area of the triangle
AP, P, P, by a factor which is larger than
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I P S
Sy = 4 42 4n~2 4n71
but which is less than
S=l4ip gy L2
n 4 42 4n—2 4n—1'

Clearly, s, increases as n gets larger; however,

2 1 1

S T = g T

and so S, decreases as n gets larger. For n = 2, 3, ..., the closed intervals
Ju =[50 Sl

where J, has length 1/4"™%, form a nested sequence of intervals; the point £ is
the unique point common to all intervals J,,.

CoMmMENT. Archimedes of Syracuse died in 212 B.C. The mathematicians
Gilles Personne de Roberval and Pierre de Fermat, to whom the next two
examples are due, lived in the 17th century.

ExampLE 2 (The Quadrature of the Cycloid by Roberval). The curve traced
by a point on a circle as the circle rolls on a straight line without slipping is
called a cycloid; the rolling circle is referred to as the generating circle of the
cycloid.

To find simple parametric equations of the cycloid, we let the fixed line on
which the circle rolls be the x-axis and we place the origin at one of the places
where the tracing point comes into contact with the x-axis.

Denote the center of the rolling circle by C and its radius by a. Let the
point P with the coordinates (x, y) be any position of the tracing point, and
choose for a parameter the angle ¢ through which the line segment CP has
turned from its position when P was at the origin (see Figure 5.2). We assume
that the generating circle is rolling to the right on top of the x-axis, that ¢ is

2ar """"""""""""""""""""""" A

0 Ta 2Ta

Figure 5.2
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expressed in radian measure, and that the positive direction for ¢ is clockwise.
While the cycloid consists of infinitely many congruent arches, we are only
interested in the arch extending from x = 0 to x = 2za. Our purpose is to
show that the area of the region bounded by the arch of the cycloid extending
from x = 0 to x = 2na and the x-axis is three times the area of the generating
circle, that is, 3na?.

Since the generating circle rolls along the x-axis without slipping, the
distance from O to N equals the length of the arc of the generating circle from
P to N in the counterclockwise direction. From Figure 5.2 we can see that

ON =at, QC =a(cott), PQ = asint.
Thus,
x=ON — PQ =a(t —sint) and y= NC — QC = a(l — cost).

Therefore, the parametric equations of the arch of the cycloid extending from
x = 0to x = 2na are

x = a(t — sint), y=a(l—cost) with0<r¢<2n
By the companion to the cycloid we mean the curve with the parametric
equation
X = at, y=a(l —cost) with0 <t <2m;
note that the point Q is on the companion to the cycloid and that the line
segment from P to Q has precisely the same length as the cross-section of the
semicircle at the level y = a(1 — cos t); see Figure 5.3 for an illustration of the

companion to the cycloid.
Let M be the point with coordinates (na/2, a). It is easy to see that the curve

x = at, y=a(l —cost) withO0<t<n

is mapped onto itself by a rotation through 7 about the point M; note that

a(l —cost,) + a<1 — cos {g - tl}) =2a

for any t, satisfying 0 < t, < 7/2. Hence, the curve

cycloid ~

Fa M
<+ companion to
— the cycloid

Figure 5.3
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x = at, y=a(l —cost) with0<t<=n

divides the rectangle with vertices (0, 0), (na,0), (na, 2a), and (0, 2a) into two
congruent regions. Thus, the region bounded by the companion to the
cycloid

x = at, y=a(l —cost) with0<t<2n

and by the x-axis has area precisely half as large as the area of the rectangle
with vertices (0,0), (27a,0), (2na, 2a), and (0,24). Consequently, the region
bounded by the companion to the cycloid and by the x-axis has area 2na?.

On the other hand, the region bounded by the arch of the cycloid extend-
ing from x = 0 to x = 2zna and the companion to the cycloid has the same
area as the generating circle, namely, na?; the areas of two enclosed plane
figures are equal provided that any system of parallel lines cuts off equal
intercepts on each. Thus, the area of the region bounded by a full arch of a
cycloid and the x-axis is three times the area of the generating circle.

ExampLE 3 (The Quadrature of y = Ax® by Fermat). Consider the region
enclosed by the curve y = Ax°, the x-axis, and the two straight lines x = q,
x = b with 0 < a < b, where the coefficient A and the exponent ¢ are arbi-
trary but fixed real numbers. To determine the area of the region under
consideration, we insert between a and b, n — 1 geometric means so as to
obtain the sequence

a, a(l+v), a(l+v)? ..., a(l +0', b,

where the number v satisfies the condition a(1 + v)" = b. Taking this set of
numbers as the abscissas of the points of division of the interval [a,b], the
corresponding ordinates have the following values:

Aa’, Aa’(l +v), Aa“(1+0v)*, ..., Aa‘(l1 +0vo)" D Abc
and the area of the pth rectangle is
[a(1 + )P — a(l + v)P7'JAa‘(1 + v)®P™° = Aa“T'o(1 + p)P~DEHD,
Hence, the sum of the areas of all the rectangles is
Aao[1 + (1 4+ 0f " + (1 + 02D 4 oo 4 (1 4 p)m DD,

If ¢ + 1 # 0, as we shall suppose first, the sum inside the parentheses is
equal to
(1 + U)n(c+1) _ 1
(1 + v)c+1 -1 ?

or, replacing a(1 + v)" by b, the sum of the areas of all the rectangles may be
written in the form

v

c+1 _ e+l
AGT =y
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As v tends to zero the quotient

(1 + U)c+1 . 1
v

approaches as its limit the derivative of (1 + v)*** with respect to v for v = 0,

that is, ¢ + 1; hence, the area of the region under consideration is

A(bc+1 _ ac+1)
c+1

If ¢ = —1, this calculation no longer applies. The sum of the areas of the
inscribed rectangles is equal to nAv, and we have to find the limit of the
product nv, where n and v are connected by the relation a(1 + v)* = b. Hence,

_ lnb v _ 1b 1
E" ) n + 0 " M) In@ £ o

As v tends to zero, (1 + v)*" tends to e, and the product nv tends to In(b/a).
Therefore, the required area equals A In(b/a).

2. Area of a Planar Region

Suppose that one has marked off a region of the x, y-plane with the help of a
curve; it is intuitively clear that the region has an area. However, how is one
to define this area arithmetically? If the region is a rectangle, the area of the
region is taken to be the product of the length and the width of the rectangle.
When at least part of the boundary of the region is curved, however, the
definition of the area of the region is no longer obvious.

For the moment we restrict attention to particularly simple regions and
consider only those bounded by the x-axis, the lines x = a and x = b with
a < b, and the curve y = f(x). Moreover, we assume that the function y =
f(x) is continuous on the closed interval [a,b] and that f(x) > O for all x
satisfying a < x < b. The theory of the area of general regions bounded by
curves can be reduced to the case of these special regions. Let us note at once
that the restriction concerning the sign of f on [a,b] is not of a serious
nature. Indeed, if f is a continuous function on [a, b] which changes sign, we
can introduce the continuous (recall the content of Proposition 2.8) non-
negative functions

[ =3{I/@I+ f(x)} and f,() = 3{IfX)] — f(x)}

and put f = f; — f,; see Figure 5.4.
To define the area I of a region F, we divide the interval [a,b] into n
subintervals with the help of the points

A=Xg <X <Xy <" <Xy <X,=Db (5.2)
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b
> X
a C
y = £(x)
Yy
T
/,/,/ \\\\\
/ A Y
/ hY
/ \
\
/ \
\
! \
i \
) [ e +— x
a c b
y = £f,(x) = L{|f(x)| + £(x)}
Y
/N
,/// \\\\
/ \
]
1
Oy |
a C

f2(x) = 5{lf(x)] - £(x)}

Figure 5.4
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Figure 5.5

and draw lines parallel to the y-axis through the points x,, k =0, 1,...,n. In
this way the region F is divided into n strips. Into each of these strips we draw
the largest rectangle which still fits entirely into the region (see Figure 5.5).
The area of the kth of these rectangles is

(xx — Xg_1)my, where m, = min{f(x): x,_; < x < x;}.

We clearly must define the area of F making it at least as large as the sum

n
s =(x; — Xo)my + (X, — x)my + - + (X, — Xy ), = Z (ke — Xp—g )y

of the areas of these rectangles. Now, the number s will depend on the num-
ber and the special choice of the points x;. The set of all numbers s which
can be found by different choices of the subdivision (5.2) will be denoted by
& . It seems apparent that we shall have to define I in such a way as to have
numbers s in & arbitrarily close to I. Thus, we are compelled to set I equal
to the least upper bound I of all numbers s in &, that is, I = sup %.

However, we can also obtain the definition of the area I of the region F by
considering, instead of the rectangles lying inside F, those rectangles that
cover F. We again draw lines parallel to the y-axis through the points x, of
the subdivision (5.2), dividing F into n strips. But now for each strip we find
the smallest rectangle which still contains the strip (see Figure 5.6). The area
of the region of the kth of these rectangles is

(xx — X—1)M,, where M, = max{f(x): x,—; < x < x;}.

We evidently must define the area I of F so as to have it at most as large as
the sum
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y = £(x)

Figure 5.6
S=(x; = xo)M; + (X, — x( )M, + -+ + (X, — X)) M, = kzl (3% — X—1) M,

of the areas of all these rectangles. The set of all the numbers S which can be
obtained by different choices of the subdivision (5.2) of the interval [a, b] will
be denoted by . It again seems apparent that I must be so defined that there
are numbers S in & arbitrarily close to I. One is thus compelled to set I equal
to the greatest lower bound I of all numbers S in &, that is, I = inf &.

We have thus seen that I = I and I = I must hold. However, it is not clear
from the start that the numbers I and I coincide. A complete theory of area
with the first goal of a correct definition of a numerical value for area of a
region must verify the equation

I=1 (5.3)

The proof of this equation is a purely arithmetic problem. The equation is a
statement about continuous functions. The class of functions for which a
statement corresponding to equation (5.3) holds is far greater than the set of
continuous functions. In the next section we review the train of thought
which led us to equation (5.3); the approach will be purely arithmetic and will
avoid geometric considerations and visualizations.

3. The Riemann Integral

Definition. Let [a, b] be a closed interval of finite length. By a partition P of
[a, b] we mean any finite set of points xg, X4, ..., X, such that

Aa=Xg<Xx; < <x,=b.
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We write, for 1 <k < n,
Ax, = X — X
and denote by
[P| = max{Ax,: 1 < k <n};
| P is called the mesh of the partition P.
Definition. A partiton P* of [a,b] is called a refinement of a partition P of
[a,b] (in symbols, P* > P) if every point of P is a point of P*. Given two

partitions P, and P, of [a,b], we call P* = P, U P, their common refinement.
P* is said to be finer than P if P* > P.

ReMaRk. It is clear that the common refinement of two partitions of an
interval is actually a refinement of each.

Definition. Let f be a bounded real-valued function on a closed interval [a, b]
of finite length, that is, there are two numbers, m and M, such that

m< f(x) <M fora<x<h.
Corresponding to each partition P of [a,b] we put

M, = sup{ f(x): x,—1 < x < X},

my = inf{ f(x): Xy < X < X},
and define the upper and the lower Darboux sums of f relative to P by,
respectively,

UP,f) = k; M,A, and L(P,f)= kzi m A

finally, we put

fbf(x) dx = infU(P,f), (5.4)

jbf(x) dx = sup L(P, f), (5.5)

where the infimum and the supremum are taken over all partitions P of
[a,b]. The left-hand members of (5.4) and (5.5) are called the upper and the
lower Riemann integrals of f over [a,b], respectively. If the upper and the
lower Riemann integrals are equal, we say that f is Riemann integrable on
[a,b] and we denote the common value of (5.4) and (5.5) by the symbol

wa(x)dx or jf(x)dx
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and call it the Riemann integral of f over [a,b]. When talking about the
Riemann integral of f over [a,b] we assume that f is bounded and [a, b] is
of finite length.

ReMARK. To see that the upper and lower Riemann integrals exist for every
bounded function f on a closed interval [a,b] of finite length, we observe
that the numbers L(P, f) and U(P, f) form a bounded set. Indeed, since f is
bounded,

m< f(x) <M fora<x<b;

hence, for any partition P of [a, b], we have

mb—a)<L(P,f)<U(P,f) < M(b — a).
Proposition 5.1. Let f be a bounded function on [a,b]. If P and P* are partitions
of [a,b] and P — P*, then

L(P,f) < L(P*, f) < UP* f) < U(P, f).
Proor. The middle inequality is obvious. The verifications of the first and the
third inequalities are similar and so we will only prove

L(P,f) < L(P*,f).

We suppose first that P* contains only one more point than P. Let x* be this
extra point and assume that x, , < x* < x;, where x,_, and x, are two
consecutive points of P. We put

wy = inf{f(x): x,; < x < x*},

w, = inf{ f(x): x* < x < x,}.
Letting, as before,

myc = inf{ f(x): -y < x < X},
we see that w, > m, and w, > m,. Thus,

L(P*,f) — L(P.f)

I

Wi (x* = Xp—q1) + wax, — x*) — my(x, — x,—y)
= (wy — m)(x* — x,—1) + (Wy — my)(x, — x*) (56)
> 0.
If P* contains j points more than P, we repeat the above reasoning j times,
and arrive at the inequality L(P, f) < L(P*,f). 0
Proposition 5.2. Let f be a bounded function on [a,b] and P, and P, be any
partitions of [a,b]. Then

L(Plaf) < U(Pz,f)
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Proor. Let P* = P, U P,, the common refinement of P, and P,. By Proposi-
tion 5.1 we have

L(Py, /) < L(P*,f) < U(P*, f) < U(P,, f)
because P, < P* and P, — P* O

Proposition 5.3. If f is a bounded function on [a, b], then

b b
J f(x)ydx sf f(x)dx.

Proor. By Proposition 5.2, for any partitions P, and P, of [a, b],

L(Pl’f) < U(Pz,f)

By keeping P, fixed, and taking the supremum over all P;, the foregoing
inequality gives

J S(x)dx < U(P,, f).

The claim of the proposition now follows by taking the infimum over all P,
in the foregoing inequality. O

Proposition 5.4. A bounded function f on [a, b] is Riemann integrable over [a, b]
if and only if for any ¢ > 0 there exists a partition P of [a,b] such that

UP,f)— L(P,f)<e. (5.7)
Proor. Using Proposition 5.3, we see that
b
L(P,f) < be(x)dx < '[ f(x)dx < U(P, f),

where P denotes any partition of [a, b]. Inequality (5.7) therefore implies

b b
0< | f(x)dx — | f(x)dx <e.
Thus, if (5.7) holds for any ¢ > 0, then
(b b
Jx)dx = | f(x)dx,

implying that f is Riemann integrable over [a, b].
Conversely, suppose that f is Riemann integrable over [a,b] and let ¢ > 0
be given. Then there are partitions P, and P, of [a, b] such that

U(P,, f) — fb f(x)dx < g and r f(x)dx — L(P,, f) < % (5.8)
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Let P be the common refinement of P, and P,. Then, by Proposition 5.3,
together with (5.8), we get

b
UP,f) < U(P,,[) < J f(x)dx + % < L(P,,f) +¢< L(P,f) + &

thus (5.7) holds for the partition P = P, U P,. O
RemARK. In the foregoing proof we have used the following fact: If A and B
are fixed real numbers such that 4 > B and A — B < ¢ for any ¢ > 0, then

A = B. Indeed, if A # B was possible, then 4 — B=0o >0 and so ¢ > «
would follows.

Proposition 5.5. A bounded function f on [a, b] is Riemann integrable over [a, b]
if and only if for any ¢ > O there exists some 6 > 0 such that

|P|| <6 implies U(P,f)— L(P,f)<eg (5.9)
for all partitions P of [a,b].
Proor. Proposition 5.4 shows that the condition (5.9) implies the Riemann
integrability of f.

Conversely, assume that f is Riemann integrable over [a, b]. Let ¢ > 0 and
pick a partition

Po={a=ty<ty < <t,=b}
of [a, b] such that

U(Py,f) — L(Po, f) < g (5.10)

Since f is bounded, there exists B > O such that | f(x)| < B for all x in [q, b].
Let 6 = ¢/8mB with m being the number of intervals comprising P,.
To verify (5.9), we consider any partition

P={a=xy<x, < <x,=b}

with mesh | P|| < 6. Let Q = P u P,. If Q has one more element than P, then
a look at relation (5.6) in the proof of Proposition 5.1 reveals that

L(Q,f) — L(P,f) < 2B- || P|.
Since Q has at most m elements that are not in P, we see that
L(Q,f) — L(P,f) < 2mB- | P| < 2mB5 = %

By Proposition 5.1 we have L(P,, ) < L(Q, f) and so

L(Po.f) — LP.f) < 7.
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Similarly, U(P, f) — U(P,,f) < &¢/4 and so
UP.f) = LIP.f) < U(Po.f) = LPo.f) + 5.
Now (5.10) shows that U(P, f) — L(P, f) < ¢ and we have verified (5.9). O

Definition. Let [a,b] be a closed interval of finite length and f a bounded
function on [a, b]. Take a partition

P={a=xy<x, <" <x,=b}
of [a,b]. With ¢, selected such that x, ; <t, < x,fork=1,..., n, form the
sum

S(P,f)= > fth)Ax,, where Ax, = x;, — X,_q;
k=1

the number S(P, f) is called a Riemann sum of f associated with the partition P.
The choice of the t,’s is arbitrary apart from the restriction x,_; < t, < x, for

k =1, ..., n and so there are infinitely many Riemann sums associated with
a single function and partition. The notation
lim S(P,f) = 4, (5.11)
IPl—0

where A is a real number and || P|| denotes the mesh of P, means that for any
¢ > 0 there is some & > 0 such that for any partition P of [a, b] with | P| < d
and for any possible Riemann sum S(P, f) associated with P, the inequality

IS(P,f) — A <e

is satisfied.

REeMARKS. In analogy to Proposition 2.3 we can show that if

lim S(P,f)=A and lim S(P,f)= B,

IP|-0 IP|—0

then A = B; in other words, if the limit exists, it is unique.
Equivalent to the foregoing definition of the notation (5.11) is the follow-
ing: For any ¢ > 0 there is some partition P, of [a, b] such that

IS(P,f) — Al <e

holds for all partitions P > P, of [a,b], where S(P,f) is any Riemann sum
associated with P.

Proposition 5.6. Let f be a bounded function on [a,b]. Then f is Riemann
integrable over [a,b] if and only if

lim S(P,f) = A.

Ir|-o0
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Moreover,
b
J f(x)dx = A.

Proor. Suppose first that f is Riemann integrable over [a,b]. Let ¢ > 0, and
let 5 > 0 be chosen so that condition (5.9) in Proposition 5.5 is satisfied. We
verify that

b
‘S(P,f)—f S(x)dx

<e€ (5.12)

for every Riemann sum S(P, f) associated with a partition P with | P| < .
Obviously, we have

L(P,f) < S(P,f) < U(P,f)
and so (5.12) follows from the inequalities

UP,f)< L(P,f)+e< jbf(x)dx +ée= fbf(x)dx+ €

and

L(P,f)> U(P,f) —e=> J‘bf(x)dx —&= be(x)dx — &

This proves (5.12); hence,

lim S(P,f) = J‘bf(x)dx.

IPl—o

Now suppose that limp;_, S(P, f) exists and is equal to 4. Let ¢ > 0 be
given. From the definition of the notation in (5.11) we see that there exist
some ¢ > 0 such that || P| < é implies

A~§<ﬂﬂﬂ<A+§. (5.13)

We choose one such partition
P={a=xy<x; <" <Xx,=b}.

If we let the points #, range over the intervals [x,_,,x,] and take the
supremum and the infimum of the numbers S(P, f) so obtained, (5.13) yields

A—%sMRﬂsUmﬁsA+§
Thus,

UP,f) — LP.f) < 23—8 <e
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and f is seen to be Riemann integrable over [a, b] by Proposition 5.4. Since

L(P,f) < rf(x)dx < U(P,f),
it follows that

lim S(P,f) = fbf(x)dx.

IPl—0

This completes the proof.

Proposition 5.7. Let ¢ and w be arbitrary positive numbers and f be a bounded
Junction on an interval [a, b] of finite length. Then fis Riemann integrable over
[a,b] if and only if there is a mode of division of [a,b] into subintervals such
that the sum of the lengths of the subintervals in which the oscillation of f is
greater than or equal to w is less than o.

Proor. Let P = {a =x, < x; < " <x,=>b} be a partition of [a,b] and
consider the sum

Z(ny) = kzl kaxk’

where Ax, = x, — x,_, and w, = M, — m, with
M, = sup{f(x): X4y < X < X3}, my = inf{ f(X): X,y < x < %}
(i.e., w, is the oscillation of f in the interval [x,_,, x;]). We let
Q=M—m,
where
M =sup{f(x):a<x<b}, m=inf{f(x):a<x<b},

and denote the length of the interval [a, b] by K.

We now derive bounds for Z(P,f); incidentally, Z(P,f) = U(P, f) —
L(P,f). Let 6 be the sum of the lengths of the subintervals obtained by the
partition P in which the oscillation of f is greater than or equal to w. Then

Z(P,f) = dw. (5.14)

But in these subintervals the oscillation of f is less than or equal to Q and in
the remaining subintervals (the sum of whose lengths is K — ) the oscillation
of f is less than w. Thus,

Z(P,f)<Q + (K — dw.
Since K — 6 < K, we see that
dw < Z(P,f) < 6Q + KQ.

If f is Riemann integrable over [a, b], then by Proposition 5.4 there exists
a partition P such that for any preassigned positive numbers ¢ and w we have
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Z(P,f) < wo. (5.15)

From (5.14) and (5.15) it follows that dw < wa, that is, < .
Conversely, if there exists a partition P for which § < w, we choose

€ €

w= 7K and 6 = 20
Then Z(P,f) < 0Q + KQ < ¢/2 + ¢/2 =& W
Proposition 5.8. Let f1, f,, ..., f, be Riemann integrable functions over [a,b]

and suppose that f is a function defined on [a, b]. Suppose there exist positive
numbers y, y, ..., 7V, such that on any subinterval J of [a,b] we have

o(f,J) < yio(fi, ) + vao(fa, J) + - + y,0(f J)s

where o(f,J) denotes the oscillation of the function f on J and w(f;,J) the
oscillation of f; on J for j =1, ..., g, then f is also Riemann integrable over

[a,b].
Proor. Let P be the partition
P={a=x,<x; < <x,=b}
of [a,b]. Since
o(f, [Xe—1,%]) = sup{ f(x): x,—; < x < x3} — inf{ f(x): X,y < X < X,

we have
n

UP,f)— L(P,f) = z o(f, [xk—1> X ) Ax,

k=1

X

e

<

ij . a)(];, [xe-1, X 1)Ax,

1

.
|
-

= 2 5{UP.L) = LP.f)-

J

The claim now easily follows from Proposition 5.4. Indeed, for a given ¢ > 0
we select a partition P such that

U(P.f) — L(P.f) < ¢

’yl+’y2+'”+yq

holdsforallj=1,...,4. (|

Proposition 5.9. Let f and g be Riemann integrable functions over [a,b]. Then
each of the following functions is Riemann integrable over [a, b]:

(i) of + Pg, where a and B are any fixed real numbers;
(i) 1f1;
(ii1) fg;
(iv) f/g provided that inf{|g(x)|: a < x < b} > 0.
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Proor. We apply Proposition 5.8. To obtain the verification of claims (i) and
(i) we only need to note that for any subinterval J of [a,b] we have

w(af + Bg,J) < |alo(f,J) + |Blo(g,J) (5.16)
and
o(lf1,J) < o(f,J). (5.17)
However, (5.16) and (5.17) can be deduced from the inequalities
laf(x) + Bg(x) — af (1) — Bg()] < lal |f(x) — S| + |BlIg(x) — g(2)|
and
[LFG = LFOI < 1f(x) — £,

where x and ¢ are points of the interval J. (In connection with the foregoing
inequalities see Proposition 2.1 and the comments following it.)

To prove claim (iii) we also apply Proposition 5.8 and observe that for any
subinterval J of [a,b] we have

o(fg,J) < vio(f,J) + y,0(9,J),
where
yy =sup{lg(x):a < x <b} and 1y, =sup{|f(x)]:a<x<b}
because, for any two points x and ¢ in J,
1f)9() — fOg®)] < 1fIT9(x) — g1 + 9O L) — f@)]]
< sup{|f(s)]: a < s < b}ig(x) — g(®)] + sup{lg(s)|: a <'s < b}|f(x) — f(®)I.

To prove claim (iv) we only need to establish that 1/q is Riemann inte-
grable; the rest follows from claim (iii). Noting that

1 1

g(x) g lg(x) — g(8)] < 7lg(x) — g(®)!,

1
~ 9@ g

where

1
~ (inf{lg):a <s < b}y

y (5.18)

and x and ¢ are any two points of a subinterval J of [q, b], it follows that
1
g

where y is given by (5.18). But (5.19) ensures that 1/g is Riemann integrable
over [a,b] via Proposition 5.8 provided that inf{|g(s)|:a <s < b} >0. [

Proposition 5.10. Let f and g be Riemann integrable over [a,b] and let o and
B be any fixed real numbers. Then
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b b b
j {af (x) + Pg(x)} dx = af flx)dx + ﬁj g(x)dx. (5.20)
Proor. Let P = {a = xo < x; <" < x, = b} be a partition of [a,b] and ¢,
satisfy x,_; < t, < x, for k =1, ..., n. Then for any ¢ > 0 there exist §, >0

and 6, > 0 such that

£
< 3 whenever | P| < &,

n b
05’;1 St)Ax, — “J S(x)dx

and
n b
BY g(t)Ax, — B J g(x) dx <§ whenever || P| < 6,
k=1 a
where Ax; = x, — x,_; for k =1, ..., n. Thus, whenever || P|| < min{d,,3d,},

lki {of(t) + Pg (8} A — <°‘ J f(x)dx + ﬁf g(x)dx>

< <eg

%Y, f(b)Ax, — 2 J " ) d

n b
+ 'B ;;1 g(t)Ax, — B f g(x)dx

showing that af + Bg is Riemann integrable over [a,b] and that (5.20) is
satisfied. O]

Propeosition 5.11. If f and g are Riemann integrable over [a,b] and if f(x) < g(x)
for all x in [a,b], then [} f(x)dx < [5g(x)dx.

Proor. By Proposition 5.9, h = g — f is integrable over [a, b]. Since h(x) > 0
for all x in [a, b], it is clear that L(P, h) > O for all partitions P of [a, b] and so

b b
J h(x)dx = J h(x)dx =0

a a

Applying Proposition 5.10, we see that [ g(x)dx — 5 f(x)dx = [Sh(x)dx > 0
and the proof is complete. O

Proposition 5.12. If f is Riemann integrable over [a,b], then |f| is Riemann
integrable over [a,b] (by Proposition 5.9) and

b
f J(x)dx

< Jblf(x)ldx. (5.21)

Proor. Since we know already that | f| is Riemann integrable over [a, b],
Proposition 5.11 applied to the inequality —|f| < f < |f| shows that

b b b
—J |f(¥)dx < f f(X)deJ |f(x)] dx

and so (5.21) follows. O
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Proposition 5.13. If f is Riemann integrable over [a,b] and if a < ¢ < b, then |
is Riemann integrable over both [a,c] and [c,b], and

f e dx + f e dx = f Fe0dx.

Proor. Let ¢ > 0 be given. Choose a partition P of [a, b] such that
UP,f)— L(P,f) <.
In view of Proposition 5.4 we may (and do) suppose that c is a point of P; say
P={a=x,< " <Xp=0<Xpyy < <Xx,=b}.
Let
P={a=xy<" <x,=c¢} and P,={c=x,<-<x,=b}.
Then
LUPL,f) = L(Py, f)] + [U(P,, f) — L(P,, /)] = U(P,f) — L(P,f) <.
It follows that f is Riemann integrable over both [a,c] and [c, b]. Let

ch(x)dx =K, and be(x)dx =K,.

Clearly,
0<UP,f)— K, <e and 0<U(P,,f)— K, <e
Adding these two inequalities, we obtain
O0<U(P,f)— (K, + K,;) <2

Since a similar statement is true for L(P, f), we conclude that

b
J fx)dx = K, + K,

and the proof is complete. O

Proposition 5.14. Let f be a function defined on [a,b]. If a < c < b and if f is
Riemann integrable over [a, c] and over [c, b], then fis Riemann integrable over
[a,b] and

b c
f S(x)dx = J f(x)dx + fbf(x)dx.

Proor. Since f is bounded on both [a,c] and [¢,b], f is bounded on [a, b].
Let ¢ > 0. By Proposition 5.4 there exist partitions P; of [a,c] and P, of {c, b]
such that (we decorate in this proof upper and lower sums of that it will be
clear with which intervals we are dealing)
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Us(Pi.f) — Li(Pi.f) <5 and UXP,.f) — LA(P,.f) < -

The set P = P, U P, is a partition of [a, b] and it is clear that
Uz (P, f) = Ui(Py, f) + UX(P;, f) (522
with a similar identity for lower sums. It follows that
U(P,f) — LiP.f) <e

and so f is Riemann integrable over [a,b] by Proposition 5.4. Also (5.22)
holds because

b
J JX)dx < UP(P.f) = U(P,, f) + UX(Py, f) < Ly(P., f) + LUP,. f) + ¢

c b
< j f(x)dx + J f(x)dx + ¢
and, similarly,
b c b
J f(x)dx > f f(x)dx + J f(x)dx —e.

completing the proof. O
Definition. If b < g, we set

b a

J fx)dx = —f S(x)dx
a b

in case the latter integral exists. Furthermore, we put
f f(x)dx = 0.
CoMMENTs. In Propositions 5.13 and 5.14 we encountered the equation
b c b
J f(x)dx = j Sf(x)dx + [ S(x)dx. (5.23)
In terms of the foregoing definition we can write (5.23) in the form

jbf(x) dx + fcf(x) dx + Jaf(x) dx = 0. (5.24)

It is easily seen that (5.24) is universally true whenever the three integrals
exist, regardless of the order relation between the numbers g, b, and c.
For example, if ¢ < b < a, then (5.24) holds also. It can also be seen that if
ai, a,, ..., a; are a finite number of points situated in an interval [a, b] of
finite length and if a function f is Riemann integrable over this interval, then
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rz Fx)dx + f ® fdx + - + j " fdx + J f(x)dx =0,

whatever may be the order relation between the points a,, a,, ..., a,.
If the order relation between a and b is not specified, then inequality (5.21)
needs to be written in the form

jbf(X)dx <

J | /)l dx|.

Proposition 5.15. Every monotonic function f on [a,b] is Riemann integrable
over [a, b].

Proor. Suppose that f is increasing on [a, b]; if f were decreasing; we could
simply consider the function —f. Since f(a) < f(x) < f(b) for all x in [q,b], f
is clearly bounded on [a,b]. Let ¢ > 0 and pick a positive integer n so large
that
J®) — fla) _
b—a
For the partition
P={a=xy<x; < <x,=b},

where x;, — X, = Axk (b—a)ynfork=1,...,n wehave
UP,f)— LP,f) =—— Z {f0x) — fla-1)} = —“{f(b) fla)} <e
Proposition 5.4 now implies that f is Riemann integrable over [a, b]. O

Proposition 5.16. Every continuous function f on [a,b] is Riemann integrable
over [a,b].

Proor. Let ¢ > 0. Since [a,b] is assumed to be closed and of finite length, f
is uniformly continuous on [a,b] by Proposition 2.16. Hence, there exists
é > O such that if x and y are in [a,b] and |x — y| < 6, then

1) — fO)] < b—j~a (525)

Consider any partition
={a=xy<x, <" <x,=b}, where|P| <é.

Since f assumes its maximum and minimum on each interval [x,_;, X, ] by
Proposition 2.13, it follows from (5.25) that

&

M"—m"<b—a
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for each k, where k = 1, ..., n. Thus,

UP,f) — LP,/) < 3 +——Ax, =&
=itb—a
and Proposition 5.4 implies that f is Riemann integrable over [a, b]. O

Proposition 5.17. Let f be Riemann integrable over [a,b], let
= inf{ f(x): a < x < b}, M =sup{f(x):a < x < b},
and let g be a continuous function on [m, M]. Then the composition function

h(x) = g[ f(x)] is Riemann integrable over [a,b].

PrOOF. Let ¢ > 0 be given. By the uniform continuity of g on [m, M] we can
find some 6, > 0 such that

lg(s) — g0 <&

if |s —t| < 8, and s, t being points of the closed interval [m, M]. Let 6 =
min{d,, ¢}. Corresponding to 6%, choose a partition

P={a=xy<x, < <x,=b}
of [a, b] such that
U(P,f) — L(P,f) < 6%, (5.26)
which is possible by Proposition 5.4. As usual, let
my, = inf{ f(x): -y < x < x,} and M, =sup{f(x): x;—y < x < x;}
and let
mf = inf{h(x): x,—; < x <x,} and M} =sup{h(x): x,—; < x < x,}.

Divide the numbers 1,2, ..., ninto two classes: ke 4 if M, — m; < d and ke B
if M, — m, > 94.
Ifkedand x;_; < x <y < x;, then

/) = fO < My —my <0 <6,

and so |g[f(x)] — g[f(» ]l < & implying that M} — m§ < ¢ since h(x) =
gL f(x)]. Thus,
kZA (M¥ —mHAx, <¢ Z Ax, = &b — a). (5.27)
If ke B, then M,, — m,, > 6 and we have by (5.26)
5 Y A< T (M= m)Ax, < Z — m)Ax, = UP,f) — L(P, [) < &

and
0< Y Ay <d<e
keB
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Let K = sup{g(t): m <t < M}. Then Mj¥ — m{ < 2K and
Y (M — m¥)Ax, < 2K ¥ Ax, < 2K. (5.28)

keB keB

Thus, using (5.27) and (5.28),
U(P,h) — L(P,h) = Y (M} — m¥)Ax, + ) (MF — mf)Ax,
keB

keA
<ée(b —a+ 2K).

Since ¢ is arbitrary while b — a + 2K is fixed, we see that h is Riemann
integrable over [a, b] by Proposition 5.4. |

REeMARK. Since f(x) = x is monotonic and hence Riemann integrable over
[a, b], by Proposition 5.15, it is clear that Proposition 5.16 is a special case of
Proposition 5.17.

Discussion. In Example 10 of Section 4 in Chapter 2 we considered the
function f on [0, 1] defined as follows: We let f(0) = f(1) = 1 and

f(x) =0 for x irrational

1
= - forx=B,

q q

where ¢ > 0 and p and q are integers without common divisor. It was shown
that f is discontinuous at every rational point x of [0, 1] and continuous at
every irrational point x of [0, 1]. Figure 5.7 gives an indication of the graph
of f; the graph in part is reminiscent of the shape of a Christmas tree. We
observe that f is Riemann integrable.

Indeed, any lower Darboux sum of f is zero. We next divide the interval
[0, 1] into k* equal parts. Since there are at most

k(k —1)

T+24 0+ k—1)=——

positive proper fractions with denominator < k, the upper Darboux sum is

Me=D1 2 1
2 Bk ok

1. (5.29)

Note that on at most k(k — 1)/2 subintervals, each of length 1/k3, in the open
interval (0, 1) the values of f are between £ and 0, on the subintervals [0, 1/k*]
and [(k® — 1)/k3, 1] the values of f are between 1 and 0, and on the remain-
ing subintervals the sum of whose lengths is at most 1 the values of f are
between 1/k and 0. But the expression in (5.29) tends to zero as k becomes
arbitrarily large; by Proposition 5.4 we see that f is therefore Riemann
integrable over [0, 1]. It is simple to see that [§ f(x)dx = 0.

We also note that if g(y) = 1 for 0 < y < 1 and g(0) = 0, then the function

h(x) =g[f(x)] with0<x<1
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is not Riemann integrable over [0, 1], because
h(x) =1 for rational x
=0 forirrational x;

however,

0 0

vl T
o

th(x)dle and jlh(x)dx=0.

It can be seen that the function h is discontinuous everywhere on [0, 1].
How badly discontinuous may a bounded function on a closed interval of
finite length be and still be Riemann integrable over this interval? The answer
to this question is in terms of the concept of sets having measure zero: A set
of points on the x-axis is said to have measure zero if the sum of the lengths
of intervals enclosing all the points can be made less than any given positive
number ¢. The integrability condition in question is: A bounded function on
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a closed interval of finite length is Riemann integrable if and only if the set of
discontinuities of the function on this interval has measure zero. Since these
matters properly belong to Lebesgue’s integration theory, a significant exten-
sion of Riemann’s integration theory, we shall not pursue this matter further
here but refer the interested reader to books on real analysis (three such
works are listed in the Bibliography at the end of this book).

In a Riemann integral [} f(x)dx the values of f can be changed at a finite
number of points without affecting either the existence of the value of the
integral. To verify this, it is enough to consider the case where f(x) = O for all
x in [a, b] except for one point, say x = ¢. But for such a function it is clear
that

ISP, NI < 1f©)I IP].
Since || P| can be made arbitrarily small, it follows that j,b, f(x)dx =0.
A function f on [a, b] is called a step-function if there is a partition
P={a=xy<x, < <Xx,=b}

of [a,b] such that f is constant on each subinterval (x,_,, x;), say f(x) = ¢,
for x in (x,_,, x;), where k = 1, ..., n. Note that a step-function f is Riemann
integrable and

b n
[ fx)dx =Y ¢ Ax,, where Ax, = x; — X;_;.
k=1

a

o

In this connection we only need to recall Proposition 5.14 and observe that
we can assign at the points of the partition P whatever (finite) values we
please to the function f.

Finally, we note the following example: Let w be defined on [0, 1] and

w(x) = (1 — x2)"? when x is rational,
=1-—x when Xx is irrational.
Then w is discontinuous everywhere on the open interval (0, 1); moreover,
1 1 r T
J w(x)dx =< and f w(x)dx = —
0 2 0 4

and so w is not Riemann integrable on [0, 1].

4. Basic Propositions of Integral Calculus
Proposition 5.18 (Fundamental Theorem of Calculus I). Let [a,b] be a closed

interval of finite length. If fis Riemann integrable over [a, b] and if there exists
a differentiable function F on [a, b] such that F' = f, then

be(x) dx = F(x) — F(a). (530
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Proor. Let ¢ > 0. By Proposition 5.4, there exists a partition
P={a=xy<x; <" <x,=b}
of [a, b] such that
UP,f)— L(P,f) <e. (5.31)

By Proposition 3.1, F is continuous on [a,b]. We apply the Mean Value
Theorem (see Proposition 4.5) to each interval [x,_,,x,],fork=1,...,n, to
obtain ¢, in the open interval (x;-;, x,) for which

F(x) — F(x-1) = f(ti) (X — Xpe—1)-

Hence, we have
F(b) — F(a) = Z [F(x) — Flxg—4)] = kZ ft)Ax,,
k=1 =1
where Ax, = x, — X,-,. It follows that

L(P, f) < F(b) — F(a) < U(P, f). (5.32)
Since L(P, f) < |5 f(x)dx < U(P, f), inequalities (5.31) and (5.32) imply

b
f f(x)dx — [F(b) — F(@)]| <e.
Since ¢ is arbitrary, (5.30) holds. |

ReMARrks. The assumption that f is Riemann integrable over [a,b] is an
essential part of the assumptions in Proposition 5.18. For example, the
function

1
F(x) = xzsinp for x # 0
and F(0) = 0 is differentiable on [0, 1], but F’ = f is not Riemann integrable
over [0, 1] since it is unbounded.

Looking back at Example 3 in Section 1 of this chapter, we see that
Proposition 5.18 produces with a minimum of effort the result

b bc+1_ c+1
jx“dxzﬂ—a— forc # —1,

=In- forc= —1,
a

where a, b, and c are arbitrary but fixed real numbers and 0 < a < b. Another

example is
L | 7
dx = —.
JLI 1+ 72

Indeed, letting F(x) = tan™! x, we have that F'(c) = 1/(1 + x*) which is con-
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tinuous, hence Riemann integrable, when —1 < x < 1. But F(1) = n/4 and
F(—1)= —=n/4

Proposition 5.19 (Integration-by-Parts Formula). Let [a, b] be a closed inter-
val of finite length. If u and v are both differentiable functions on [a,b] and if v’
and v’ are both Riemann integrable over [a,b], then

‘[bu(x)v’(x) dx + fbu’(x)v(x) dx = u(b)v(b) — u(a)v(a). (5.33)

a a

Proor. By Proposition 3.1, u and v are continuous on [a,b] and so, by
Proposition 5.16, u and v are Riemann integrable over [a,b]. Let g = uv. By
Proposition 3.2, g’ = uv’ + u'v. By Proposition 5.9, g’ is seen to be Riemann
integrable over [a, b]. Proposition 5.18 shows that

b
J g'(x)dx = g(b) — g(a) = u(b)v(b) — u(ajv(a)

a

and so (5.33) holds. O

ExaMPLEs. Letting u(x) = xe* and v(x) = —1/(x + 1), (5.33) gives

L xe* e
_X ax=S_1,
L(x+1)2 X732

and letting u(x) = tan™! x and v(x) = (x> + 1)/2, (5.33) gives

1 A

tan"! x)dx = — — =.

JO x(tan™"' x)dx 42

Proposition 5.20 (Fundamental Theorem of Calculus II). Let [a, b] be a closed
interval of finite length. If f is a Riemann integrable function over [a,b] and

F(x)= J‘xf(t)dt for xe[a,b],

then F is continuous on [a,b]. If fis continuous at x, in the open interval (a, b),
then F is differentiable at x, and F'(x¢) = f(xo).

Proor. Choose B > 0 such that | f(x)| < B for all xe[a,b]. If x, ye[a,b] and
|x — y| < ¢/B with x < y, say, then

fﬂt) dt

We therefore see that F is (uniformly) continuous on [a, b].
Next, suppose that f is continuous at x, € (a, b). Since
F(x)—-F 1 *
() = Flxo) _ f@)dt for x # x,

X — Xq X — XoJx,

|F(y) = F(x)| =

< fylf(t)Idt < ijdt =B(y—x)<e.
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and

we have

F(x) — F(xq)  f(xg) = 1

X — Xq X — Xq

f L0 - fero)ld (5.34)

Let ¢ > 0. Since f is continuous at x,, there exists some é > 0 such that
A1) — f(xo)l < &
if te(a,b) and |t — x,| < 4. It follows from (5.34) that

F(x) — F(xo)
X — Xq

— flxo)| <e (5.35)

for xe(a,b) satisfying |x — xo| < J; the cases x > x, and x < x, require
separate arguments. From (5.35) we see that F'(x,) = f(x,). O

REMARKS. We note the following corollary to Proposition 5.20: If g is differ-
entiable and f is continuous, then

d g(x)
E( 10 dt) = fl9(x)]1g'(x).

a

Indeed, let

a

H(x) = f " f@)dt

and observe that H is the composition of differentiable functions:

H(x) = F[g(x)] with F(x)=r f()dt.

The Chain Rule (see Proposition 3.3) gives
H'(x) = F'[g(x)]g'(x).
Proposition 5.20 gives
F(x) = f(x).
It therefore follows that
H'(x) = fLg(x)1g'(x),

which is what we had set out to show.
In the same way we can verify the following result: If g, and g, are
differentiable and f is continuous, then
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d g2(x)
d_( 1) dt) = fl92(0)1g2(x) — f[91(x)]1g1(x).
X g1(x)
In fact, we only need to take a number a from the domain of f and note that
g2(x) g2(x) g1(x)
f(tde = flHydt — f(t)de.
g1(x) a a

As an illustration, observe that H'(2) = 22 for

x3-4 1
= d
H(x) x<Lx - \/E t>

Proposition 5.21 (Change of Variable Formula). Let u be a differentiable
function on an open interval J such that u’ is continuous and let I be an open
interval such that u(x)e I for all x € J. If f is continuous on I, then the composite
Sfunction h(x) = f[u(x)], for xeJ, is continuous on J and

u(b)

fbf[u(x)]u’(x) dx = f(u)du (5.36)

u(a)

fora, belJ.

Proor. The continuity of the composite function h follows from Proposition
2.9. Fix cel and let F(u) = [* f(¢)dt. Then F'(u) = f(u) for all uel by Pro-
position 5.20. Let g(x) = F[u(x)] for xeJ. By the Chain Rule (see Proposi-
tion 3.3), we have g'(x) = F'[u(x)]u'(x) = f[u(x)]u'(x) and so by Proposi-
tion 5.18

b b
f Slu(¥)]u'(x)dx = [ g'(x)dx = g(b) — g(a) = F[u(b)] — F[u(a)]

u(b) u(a) u(b)

= fOydt — f®)dt = f(®)dt,

¢ c u(a)

establishing (5.36). [ Observe that u(a) need not be smaller than u(b), even if a
is smaller than b.] O

REMARK. Let a, b, and s be strictly positive numbers. For f(u) = 1/u and
u(x) = sx, where x > 0, the relation (5.36) gives

b 1 sb 1
J —dx = [ —du.
a x o Sa u
(Compare this with Proposition 1.1 in Chapter 1.)

Discussion. Let g be a strictly monotonic and differentiable function on an
open interval I with g'(x) # O for any x € I. Then J = g(I) is an open interval
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and the inverse function g~!

show that

is differentiable on J by Proposition 3.4. We

b g(b
[ g(x)dx + [ ( )g_l(u) du = bg(b) — ag(a) (5.37)

a Jg(a)

fora, bel
Indeed, we put f = g~! and u = g in the formula (5.36) to obtain

g(b)

[ g7 [9(x)1g'(x)dx = [ g~ (w)du.

a J g(a)

o

Since g [ g(x)] = x for x eI, we obtain

g(b) b
J g"l(u)duzj xg'(x)dx.

g(a) a
Now integrate by parts using u(x) = x and v(x) = g(x):

g(b) b
L ) 9~ (W du = bg(b) — ag(a) — J g(x)dx.
gla a
This, however, is (5.37).

Formula (5.37) can sometimes be employed to calculate the value of cer-
tain integrals which can not otherwise be determined so easily. A case in
point is the integral

1/2
[ (sin™! x)dx.

0

o

Using (5.37), we see that

12 /6 1 /n
J (sin™! x)dx + J (sinx)dx = —<—>
[} 0 2 6

1/2
J (sin~! x)dx = — + V3

o 127 2

or

because

n/6
[‘ (sinx)dx = —<cosE — cosO) =1- —é

o 6 2

o

Formula (5.37) is also valid if g is assumed to be only strictly monotonic
and continuous on an open interval J. Indeed, then the inverse function g~*
exists and is a strictly monotonic and continuous function, by Proposition
2.18. Moreover, both integrals

b g(b)
Jg(x)dx and J g t(u)du

a g(a)
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Jf]; g(x)dx
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Figure 5.8

exist (by Proposition 5.15 or Proposition 5.16). These integrals can be inter-
preted as areas of regions; see Figure 5.8. The numbers bg(b) and ag(a)
represent areas of rectangles. In fact, formula (5.37) is no more than might
have been anticipated from geometric considerations.

Suppose now that g is a strictly increasing continuous function of x for
x>0and g(0) =0.1f A > 0 and B > 0, then

A B

AB SJ g(x)dx +J g 1(u)du. (5.38)
0 (0]

The inequality in (5.38) is called Young’s Inequality. The validity of Young’s

Inequality is evident by considering Figure 5.9 and interpreting the integrals

A B
J g(x)dx and j g Y(u)du
V] 0
as the areas of the regions shaded with vertical lines and horizontal lines,
respectively. It is also clear that equality will hold in Young’s Inequality if
and only if g(4) =
From Young’s Inequality we can readily obtain the following result: If
p>1,4>0,and B > 0, then we have
AP Bf
AB < — + —, (5.39)
p q
where q satisfies 1/p + 1/q = 1; equality holds if and only if 4”7 = B% Indeed,
let g(x) = x?"* and g~ !(u) = u¥*V. Then g and g~? satisfy the conditions of
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V. u = g(x) u = g(/x)
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VARS
u: 7/ ]
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Figure 5.9

Young’s Inequality (5.38). Therefore, by noting that (p — 1)q = p, we have

! B AP B
AB < f xPldx + J e gy == 4 7
0 0 p 4

This proves (5.39). Inequality (5.38) will be used presently to obtain an impor-

tant inequality concerning integrals.

Let p>1 and ¢ > 1 such that 1/p + 1/g = 1. Let u and v be Riemann
integrable functions over an interval [a,b] of finite length. By Propositions
5.9 and 5.17, the functions |uv|, |u|?, and |v|? are Riemann integrable over

[a, b]. Moreover, we have

Jb lu(x)v(x)|dx < (Jb |u(x)|”dx>1/p<Jb |v(x)|‘1dx>1/q.

(5.40)

Inequality (5.40) is called Hélder’s Inequality. For p = q = 2, Holder’s In-

equality is referred to as the Cauchy—Schwarz Inequality:

b b 12 b 12
flu(x)v(x)ldxs<f |u(x)|2dx> (J |v(x)|2dx> .

To prove (5.40) we proceed as follows. By (5.39), we have

Iu(x)v(x)l<A_"|u(X)l”+B_"IU(X)l"
AB T p a

b 1/p b 1/q
A= (J |u(x)|"dx> and B= <J |U(x)|"dx> .

By Propositions 5.9 and 5.11, we have

where

(5.41)
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I t (? 1 1
4 — Idx=-+-=1
pL lu(x)|Pdx + quJ; fo(x)|?dx + p

1 b
— | |u(x)v(x)|dx <
ABL (o9ldx <2 ;

Thus,
b
J lu(x)v(x)jdx < AB
and (5.40) follows.

Proposition 5.22. Let [a, b] be a closed interval of finite length.

(i) If f is continuous on [a,b], f(x) =0 for all x in [a,b], and f(c) =k >0
for some point c in [a,b], then (5 f(x)dx > 0.

(ii) If f and g are continuous on [a,b], f(x) < g(x) for all x in [a,b], and
f(c) < g(c) for some point c in [a,b], then [} f(x)dx < [5g(x)dx.

Proor. We consider part (i) and assume that ¢ is a point of the open interval
(a, b). By the continuity of f, we can find an interval (¢ — o, ¢ + ¢) throughout
which f(x) > k/2 (see Proposition 2.10); and then the value of the integral
would be greater than ok. If ¢ is an endpoint of [a, b], say ¢ = a, we can find
an interval (a,a + o) throughout which f(x) > k/2; and then the value of the
integral would be greater than ok/2.

Part (ii) reduces to part (i) if weset h = f — g. O

Proposition 5.23 (First Mean Value Theorem for Integrals). Let [a,b] be a
closed interval of finite length. If f is a continuous function on [a,b], then there
exists a point t such that a <t < b and

f f(x)dx = f()[b — a]. (5.42)

Proor. Let m and M be the smallest and the largest values, respectively, of f
on [a,b] (see Proposition 2.13). By Proposition 5.16, f is integrable over
[a,b]. If f is not constant over [a,b], using part (ii) of Proposition 5.22 yields

m<M<M.
b—a

But f is continuous on [a,b] and hence assumes all intermediate values
between m and M (see Proposition 2.12); hence, there is a point ¢ between a
and b which satisfies (5.42). ]

Proposition 5.24 (Generalized Form of the First Mean Value Theorem for
Integrals). Let [a,b] be a closed interval of finite length. If f and g are con-
tinuous on [a,b] and g does not change sign on [a, b], then there exists a point
t such thata <t < b and

b b
j f)g(x)dx = f (I)J g(x)dx. (5.43)
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Proor. The details of proof are similar to the proof of Proposition 5.23. Let
m and M be the smallest and the largest values, respectively, of f on [a,b].
To avoid the trivial case, assume that g is not identically zero on [a,b]. If f
is not constant over [a, b], then

j" x)g(x)dx
j" () dx
But f is continuous on [a,b] and hence assumes all intermediate values

between m and M; thus, there is a point t between a and b which satisfies

(5.43). O

< M.

REMARKS. Proposition 5.23 follows from Proposition 5.24 when we set g(x) =
x. If f is never negative on [a,b], Proposition 5.23 has a simple geometric
interpretation: There is a rectangle of height f(¢) and length b — a which has
the same area as the region bounded by the curve y = f(x), the lines x = a
and x = b, and the x-axis.

In our formulation of Propositions 5.23 and 5.24 it was assumed that
a < b. A moment’s reflection shows that these propositions remain valid if
b=>a.

Proposition 5.25 (Second Mean Value Theorem for Integrals). Let [a,b] be a
closed interval of finite length. If f, g, and g’ are continuous on [a,b], and if g is
monotonic on [a, b] (equivalently, g’ does not change sign on [a,b]), then there
exists a point t such that a < t < b and

J J(¥)g(x)dx = g(a)j S(x)dx + g(b)f J(x)dx

PrOOF. Let F(x) = |3 f(s)ds. By Proposition 5.19,

b

b
f f(x)g(x)dx = F(b)g(b) — f F(x)g'(x)dx;

a

by Proposition 5.24, there is some point ¢ between a and b such that

b b
J F(x)g'(x)dx = F(t)f g'(x)dx = F(1)[¢(b) — g(a)].

a a

Therefore,

j S(x)g(x)dx = F(b)g(b) — F(t)g(b) + F(t)g(a)
=g(a)F (1) + g(b)[F(b) — F(1)]

= g(a)J f(s)ds + g(b)f f(s)ds

and the proof is complete. O
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DiscussioN. Let [a,b] be a closed interval of finite length. If 4’ and v’ are
continuous functions on [a, b], then

b

Jbu(x)v/(x) dx = u(b)v(b) — u(a)v(a) — J u'(x)v(x) dx

a a

by Proposition 5.19. A simpler notation for the foregoing formula is

b b b
uv'dx =uv| — | u'vdx.
a a

a
It is easy to see that repeated application of this formula yields the following
statement:
If 4™V and v™*V are continuous functions on a closed interval [a,b] of
finite length, then

b b
J‘ w® D dx = (uv(") —up® D 44 (_ 1)"u('"v)

a

a

(5.44)
b
+ (_ 1)n+1 J‘ u(n+1) de_

a

Formula (5.44) may be used as a starting point in obtaining a Taylor-type
formula with remainder (see Proposition 4.11). Let

v(x) = (b — x)".
Then
v'(x) = —nb — x)",
v"(x) = nn — DB —x)""2,
v"(x) = —n(n —1)(n—2)(b — x>,

p™(x) = (—1)'n(n — 1)(n — 2)-+-2-1,
" (x) = 0;
Moreover, v(b) = v'(b) = v'(b) = -+ = v® (b) = 0. Letting u = f, formula

(5.44) assumes the form

0=(-1y [n!f(b) —nlf(a) — n!f'(@)(b — a)
n!
— Ef"(a)(b _ a)Z e f(")(a)(b _ a)n:l

+ (=1 rf‘"”’(x)(b — x)dx.

a

(We are assuming of course that f®* is continuous on [a, b]; in Proposition
4.11 no assumption of continuity was made concerning f®*".) From this in



284 5. Integration

turn we obtain

1= @+ 700 — 0+ 17

(b—aP+ -

I ""( )

(b—ar+ j FOI(x)(b — x)"dx.
Replacing a by a, b by f, and x by t, we get

f() f”()

J(B) = B—o*+

(5.45)

(m)
+1 n(“)(ﬂ o + Jf‘"“’(t (8~ rdt

However, (B — t)* does not change sign on the interval [a, f] and we may
therefore apply Proposition 5.24, obtaining

f AR G f @+ D(x) J B—rr
_f(n+1)(x) -_
‘(n+1)!(ﬂ_°‘) ’

where x is a point between o and . But this is Lagrange’s form of the
remainder (see the remarks following Proposition 4.11).

FurTHER DiscussioN. An informative example concerning the calculation of
an integral is provided by the following example: Compute

/2 sin™ x
I= Sy o dx
o SIn"x + cos™x

We would indeed be on the wrong track, trying to determine I by use of
Proposition 5.18. Instead, we proceed as follows. Letting x = n/2 — t, we
obtain

/2 sin™ x /2 cos™ t /2 cos™ x
1= T n T dx = n inT de = n in™ dx
o SIN"x + cos™x o COs™t +sin™t Jo cos™x + sin"x

and so
n/2 L. 1 n/2 n
S~ x COs™ X
I+1= —,n——"—dx + —n—#dx
o SIn"X + cos™ x o COS"X + sin* x

"2 8in" x + cos™x /2 n
= - dx = dx = —.
o SIn"x 4 cos™x 0 2
Thus, 21 = n/2 or I = /4.
In the same way we can show that, for any fixed real number r,



4. Basic Propositions of Integral Calculus 285

2 sin” x n
el s
o SIn"x + cos"x 4

In Example 6 at the end of the next section we shall compute the result

flln(l + x)

I
T dx = & (In2).

A less formidable task relating to the calculation of integrals consists in
showing that

b 2 23\1/2 b 2 2\1/2 az H b
(a* — x*)"dx = —(a* — b*)"* + —arcsin— for0<b <a. (546)
o 2 2 a
We shall verify (5.46) by three different methods.
First method: We use integration by parts, setting u = (a® — x
dv = dx, and get

2)112 and

"
b b 52

b
(@® — x2) dx = x(a® — x?) S A
fo o Jo (az _ x2)1/2

rb 2 2 2
a‘—x“—a

_ 2 2\1/2

= b(a* — b*)"* — 0——*(a2—x2)”2 dx

b
—_ b(az . b2)1/2 — (az — x2)1/2 dx
JO

b
1
v [ s

o (@ — x)12"

implying
b b
2f (@® — x)Y2 dx = b(a® — b*)'? + a2 (arc sina>
0
which is equivalent to (5.46).

Second method: Integrating by substitution, we set x = asint and we
obtain

b B b
J (a® — x?)2dx = azj (cos?t)dt, where B = arcsin—.
0 0 a
But

b

B 1 B
f (cos?r)dt = 5_[ (1 + cos2t)dt = 4(t + 1sin2f)
0 0

0
b

= 1(¢ + [sint][cost])
o]

1<< . b> b (a2 — b2)1/2)
—-{|{arcsm—- )+ ——-
2 a a a

i
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1

bk

Figure 5.10

because

(az _ b2)1/2

b
sinB=- and cosB=(1—sin?B)"? =
a a

and (5.46) follows.
Third method: Knowing that the integral

b
=f (@ —x?)"dx for0<b<a
0

represents the area of the region in the first quadrant bounded by the co-
ordinate axes, the line x = b, and the circle x2 + y* = a2, we observe that the
region in question is made up of the triangle AObM and the circular sector
AOM (see Figure 5.10). But the area of the triangle AObM is (b/2)(a? — b?)'2
and the area of the circular sector AOM is 1a2s = (a?/2)arcsin(b/a) because
sins = b/a. Thus, (5.46) follows.

ADDITIONAL COMMENTS ON INEQUALITIES RELATING TO INTEGRATION. We can
use the Cauchy—Schwarz Inequality to verify that

b b-—
In- <

a
a . Jab
Indeed, we merely put u(x) = 1 and v(x) = 1/x in (5.41) and the claim follows.

An interesting inequality, due to Kantorovich, is the following: Let f be a
continuous function on the interval [0, 1] such that 0 < m < f(x) < M for all

x in [0,1]. Then
( mdxxf f(x)dx )_('"+M)2. (5.47)

forb>a>0.
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[If in the foregoing we replace the unit interval [0, 1] by the interval [aq, b],
then (5.47) takes on the form

b (m + M)? )
([ ) ([ 100ax) < g0 - o2

Indeed, since

{fx) —m{fx) - M
fx)
we obtain by integrating ' — (m + M) + mMf over [0, 1]

}30 for0<x<l,

j f(x)dx+mM‘[ —dx<m+M

S
Putting
L |
u=mM J‘O mdx
we get
Jlf(x)dx+u3m+M
[}
and
J F(x)dx < (m + M)u (ﬂ-:ﬂ,

noting that [(m + M)/2 — u]? > 0. This establishes (5.47).

5. Numerical Integration

Let a < b and f(x) > 0 for a < x < b. Then [}, f(x)dx is equal to the area of
the region bounded above by the curve y = f(x), below by the x-axis, and
lying between the lines x = a and x = b. We divide the interval from a to b
into n subintervals, each of length

by the points
=X <X; <Xp<'""<Xyy <X,=b

and put y, = f(x,)fork=0,1,2,...,n—1,n.Fork=0,1,2,. , n,let P, be
the point with coordinate (xk,yk) and consider the polygonal line whose
vertices are these points P, (see Figure 5.11). Then the area of the region
under the curve y = f(x) may be approximated by that under the polygonal
line whose vertices are P,. The region under the polygonal line is made up of
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N
7

Figure 5.11

trapezoids. The area of a trapezoid is equal to half the sum of the parallel
sides times the width. It follows that

h
Area of first trapezoid = E(y0 + y1)

h
Area of second trapezoid = E(yl + ¥2),

h
Area of nth trapezoid = E(y"_l + V)

Adding these expressions, we get that the approximating region has area

7:.=h<yz—o+Y1+,V2+"'+Yn—1 +X2'l>

The approximating formula

be(x)dxz T,

is known as the trapezoidal rule for numerical integration.

The restriction f(x) > 0 for a < x < b is not necessary for our discussion;
it is easy enough to see, for example, that if (x,, y;) and (x,, y,) are connected
by a straight line y = s(x) and x, = x; + h, then

[ st =504 + 52

X1

In the sequel we shall establish the following error bound for the trapezoidal
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rule: If the second derivative f” of f is continuous on the interval [a,b] and
if M is the largest value of | f”(x)| for a < x < b, then

b—a’

<M=,

j f(x)dx

where T, is the approximation to jﬁ f(x)dx given by the trapezoidal rule

' b—a
h< +y1+y,+ +n1+y> h = .
2 n

Proposition 5.26. Suppose that the second derivative f” of a function f is con-
tinuous on a closed interval [A, A + h] of finite length h. Then

A+h h h3
f S)dx =3 {FA) + f(A + b} =1 176),

A
where s is between A and A + h.
Proor. We wish to determine Q such that

h

j f)dx = S{f(A) + f(4 + W} + K.

Let f(x) = F'(x). Then
J f(x)dx = F(A + h) — F(A)

and so

F(4 + h)—F(A)—g{f(A) + f(A+h} —hQ=0.

Let C = A + h/2; C is the midpoint of [4, A + h]. We consider the function
G defined by

G(x)=p(c+;)~F<c_;)_g{f<c+g)+f(c_;_>}-gxs,

where 0 < x < h. But G(0) = G(h) = 0 and so, by Rolle’s Theorem (see Pro-
position 4.3), we have that G'(t) = O for some t between 0 and h. But, since

F=f,

G’(x)=%f<C +§> +%f<c_22£)~%{f<c+§> +f<c_§>}
Sir(ens)rleny)i e
- iress) (e

Nyx

l\)|><
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0=G()= —é{f'(c + é) - f’<C _ %)} _ 3012,

Since t # 0,
1 f(C+t/2)— f/(C—1t/2)
12 t ’

Thus,

0=—
Again by Rolle’s Theorem,

S(C+12)— f(C —t/2)
t

= f"(s)
for some s between the points C — t/2 and C + ¢/2; hence,
R
-t

where s is between the points C — t/2 and C + t/2 and, a fortiori, s between
Aand A + h. O

Proposition 5.27. Let [a,b] be a closed interval of finite length. We divide
[a, b] into n subintervals, each of length h = (b — a)/n. Suppose that the second
derivative f" of a function f is continuous on [a,b]. Then

ff(x <f(a)+f(b +2Zf<a+kb “)) O

where v is between a and b.

Proor. Since h = (b — a)/n and

b a+h a+2h b
‘[ f(x)dx = ( f(x)dx + f(x)dx + - + [ f(x)dx,

a a+h Jat(n—1)h

o

we have

b h h3
f fGdx =2 { /(@) + fla+ W} = 75.7(61)

h h 2h e
+ 3@+ B+ fla+ 20} = 5 f"(s2)
+.-.

S s - 10+ 10— )

where s, is between a and a + h, s, is between a + h and a + 2h, ..., s, is
between a + (n — 1)k and b. But f” is continuous on [a,b] and so there is a
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point v between a and b such that (see Example 9 in Section 4 of Chapter 2)
S(s1) + f(s2) + 0 + f7(50)

n

= f"().
This completes the proof. O

Remark. The foregoing proposition shows that
) "
j fwax =28 ),
where v is a point between a and b. Clearly,

If"(v) < max{|f"(x);a<x <b} =

for any point v between a and b. Hence,

——fbf(x)dx <M

and the error bound for the trapezoidal rule is established.

(b—ap
12n?

Lemma. The equation of a parabola with vertical axis may be written in the
form y = g(x), where

g(x) = alx — x;)? + b(x — x;) + c.
If this parabola passes through the points (xo, ¥o), (X1, 1), and (x5, y3), where

X, = xo + hand x, = x, + h for some fixed, positive h, then

X2 h
J g(x)dx = 5()’0 + 4y, + y,)

X1

Proor. We have

szg(x)dx = J‘x1+h {a(x — x1)* + b(x — x;) + ¢} dx;

X x;—h

with x = x; + ¢, this becomes
f (at> + bt + c)dt (2ah2 + 6c¢).

But
Yo = g(xo) = g(x; — h) = ah® — bh + ¢,
yi=9x)=c
y, = g(x?) = g(x, + h) = ah® + bh + .
It follows that
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Yo+ ¥y, =2ah*> +2c and y,+ 4y, + y, = 2ah* + 6c,
so that

2 h h
f 90x)dx = 3(2ah® + 60) = Z(vo + 4y, + y2),

*o

as was to be shown. O

Discussion. We again consider the definite integral % f(x)dx. We pick an
even integer 2n and divide the interval [a,b] into 2n subintervals, each of
length

b—a

h:
2n

by the points
A=Xo <Xy <X < " < Xgpyog < Xgpy < Xyp = b.

We put y, = f(x,) for k=0, 1,2, ..., 2n and let P, denote the point with
the coordinates (x;, y,). Now, as in Figure 5.12, we approximate the curve
y = f(x) for each pair of intervals, as P, P, P,, by the arc of a parabola with
vertical axis. It follows from the Lemma and without regard to the sign of
f(x) that between the x-axis and the parabolic arc

. h
P, P, P,, the area is g(J’o + 4y, + y,),

. h
P, P;P,, the area is g(y2 +4y5 + ya),

_h
Pn—ZPn—IPm the arca 1s §(y2n—2 + 4y2n—1 + y2n)'
Adding these expressions, we find that the approximating area is
h
Son = g(YO T Ay 2y, +4ys + 200+ 4 2y5n + 4Yapg + Yan).

The coefficients 1, 4, 2 result from the fact that each Vi With k odd is a middle

ordinate once, whereas except for y, and y,,, each ¥, with k even is an end
ordinate twice.

The approximation formula
b—a
2n

fbf(X) dx=S8,,, h=

is known as Simpson’s rule for numerical integration.
We shall establish the following error bound for Simpson’s rule: If the fourth
derivative f® of a function f is continuous on the interval [a,b] and if K is
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Figure 5.12

the largest value of | f*¥(x)| for a < x < b, then

b—ap
2880n* ’

<K

b
San — J S(x)dx
where S,, is the approximation to % f(x)dx given by Simpson’s rule
h
Son = 5()’0 +4y; + 2y, +4ys + 2y + 0+ 2p000 + 4Y2u g + V2n)

and
b—a

h =
2n

ReMARK. If f is a polynomial whose degree does not exceed three, then K = 0
and Simpson’s rule give the exact value fo (3 f(x)dx:

[[ro0ax =222 (0 + o (252) + 1),

[When the volume V of a solid is regarded as a limiting sum of thin slices of
area f(x), then

V= r g(x)dx ~ 1)6;a<f(a) + 4f<#) + f(b))

a

is known as the prismoid formula. It is easy to see that the prismoid formula
gives the volume of a cylinder, a cone, a sphere, and an ellipsoid exactly.]
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Proposition 5.28. Let the fourth derivative f*® of a function f be continuous on
a closed interval [A — h, A + h] of finite length 2h. Then

A+h h hS
[ . fC)dx =2 {f(4 ~ k) + 4f(4) + f(4 + h)} — AL

o

where w is some point between A — hand A + h.

Proor. We wish to determine K such that

A+

) hhf(x)dx = g{f(A — h) + 4f(4) + f(A + h)} + Kh°.
Let f(x) = F'(x). Then
J:Tf(x)dx =F(A+h) — F(A— h)
and so
F(A+ h)— F(A —h)—g{f(A + h) + 4f(A) + f(A — h)} — Kh® =0.
We consider the function
H(x)=FA+x)—F(4 —x)—%{f(A + x) + 4f(4) + f(4 — x)} — Kx?

for 0 < x < h. But H(0) = H(h) = 0 and so by Rolie’s Thebrem (see Proposi-
tion 4.3) we have H'(t) = 0 for some ¢t between 0 and h. But, since F' = f,

H(x) = f(A+x) + f(A—x) = 3{f(4 + x) + 4f(4) + f(4 — x)}
- g{ fIA+x) — f(A— %)} — SKx*
=3{f(A +x) + f(4 - %)} —3(4)
—g{ f(A4 +x) = f(A— %)} — SKx*.

Hence, H'(0) = H'(t) = 0 and so, by Rolle’s Theorem, H"(s) = O for some s
between 0 and t. But

H'()=3{f(4+x) — f(A—-2} —3{f (4 +x) — f(4 - x)}

- -;5{ FA+ %) + (4 — x)} — 20Kx>

=34+ x - f(A—x)} - %{ f(A+x)+ f"(A— x)} — 20Kx>.

Thus, H"(0) = H"(s) = 0 and so, by Rolle’s Theorem, H”(v) = 0 for some v



5. Numerical Integration 295

between 0 and s. But

H'x) =3{f"(4 + %) + f"(A— 0} = 3{f (A +x) + f"(4 - %)}
_ g{ (A + x) — f"(A — x)} — 60Kx?.
It follows that
H"(v) = —g{ ™A +v)— f"(A — v)} — 60Kv? =0.

Since v # 0, we get

L MA+ )~ fTA—0)

K =
90 2v

By Rolle’s Theorem

f"(A+0v)— f"(A—v)
2v

= fPw)
for some w between A — v and A + v. Thus,
K = 5o /W)
90

for some w between A — v and A + v and so, a fortiori, some w between
A—hand A+ h. O

ReMarks. If we divide up the interval [a,b] into 2n subintervals, each of
length

h=

by the points
=Xy <Xy <Xy <X3 <Xy < "< Xgpp < Xgpy < Xy, = b,

then we get

X3 h h5
f fE)dx =3 {Foxo) + 4Cxr) + f2)} = 55 /0w

X4 hs
j S dx = 5 {f(x) + 4f(xs) + Fx0)} — 55 1 0w2)

Xan ’ hS
J flx)dx = g{f(xzn—z) + 4f (x2p-1) + f(X20)} — §6f“"(wn),

2n-2

where w,, w5, ..., W, are between a and b. But
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FOwy) + fBwy) + -+ fP(w,)

n

= /9w)

for some w between a and b because f*) is continuous on [a, b] (see Example
9 in Section 4 of Chapter 2). Hence,

(b—a

2880n* SO,

b B
L J()dx = Sp — 5o (1f (W) = S, —

where w is some point between a and b and

b—a
Son = 6 o +4y1 + 2y, +4y3 +2ps + - + 2550 + Y201 + V2)
with y, = f(x,)for k=0, 1,2, ..., 2n. It therefore follows that
(b a)’
S
2~ f e e T

where K is the largest value of | f*(x)| for a < x < b. This establishes the
error bound for Simpson’s rule.

It is clear from the foregoing proposition that if f is a fourth-degree
polynomial, then the error for Simpson’s rule is a computable constant. We
shall look at such a situation now.

Consider a symmetric barrel that has the shape obtained by revolving a
parabolic arc. Let H be the length of the barrel, R the radius of its midsection,
r the radius of each end, and 6 = R — r. Then its volume is exactly

V= nHGR? + 11 — #5%),

according to Newton. Indeed,

2 45
V=71:'[ y?dx, where y= —ﬁx2+R.

—H/2
Thus,
e 16562 86R
V=m f(x)dx, where f(x)=—7x*——5x?+ R~
—Hj2 H H
But
1662
FO) = 24—

Taking A =0, h = H/2, and multiplying by = throughout, the desired result
for V follows from the equation in the foregoing proposition.

ExampLE 1. Letting n = 10 and using the trapezoidal rule, calculate

21
ln2=j —dx
L X

and determine the corresponding error bound.
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SorutioN. Here f(x) = 1/x, [a,b] = [1,2], and h = 0.1; hence,

T_11+1 1+1+1+1+1+1+1+1+1
10— 112113

10\2 1.5 1.7 18 19 4
=0.69377....
Since 0 < f”(x) = 2/x® < 2for 1 < x < 2, the error bound is
21
12-102 600

Incidentally, letting n = 20 (and hence h = 0.05), we get T,, = 0.69330333....
Actually, In2 = 0.69314718.... with an accuracy of eight decimal places.

ExaMpLE 2. Letting 2n = 10 and using Simpson’s rule, calculate

2

1

ln2:J —dx
L X

and determine the corresponding error bound.

SoruTion. Here f(x) = 1/x, [a,b] = [1,2], and h = 0.1; hence,

1<4242424241>
So=-oll+ =4+ —+—F—c+c+tm+ot ot

30 1.2 3 14 1.6 17 18 19 2
=0.693152....
Since 0 < f™®(x) = 24/x> < 24 for 1 < x < 2, the error bound is

24 1
2880-5¢ 75,000
Letting 2n = 20 (and hence h = 0.05), we get §,, = 0.69314716... which coin-

cides with the actual value In2 = 0.69314718... in the first seven decimal
places.

ComMenT. Comparison of Examples 1 and 2 shows that the trapezoidal rule
and Simpson’s rule require about the same amount of calculation; however,
Simpson’s rule yields a much better approximation.

ExaMpLE 3. Since

g Jl f(x)dx, where f(x)=

4 14 x%
the numerical calculation of this integral is of definite interest. Since
, —2x ) x?—2 " 24x(1 — x?)
f(x)‘(l-i-—xz)_z’ J'x) = m, f (x)_m’
24(5x* — 10x2 + 1) —240x(3x* — 10x* + 3)
@) (x) = d Ox) = - 7
fO) 17227 , and f2(x) T+
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we find that |f"(x)| < 2 and |f*(x)| <24 for 0 < x < 1. A more elegant
approach is to set y = arctan x. Then, by (4.38) (in Chapter 4),

f'(x) =y" = 2(cos?y) |:sin 3 (y + g)] = —2(cos? y)(sin 3y)

and

f®(x) = y© = 24(cos® y) [sinS(y + g)] = 24(cos® y)(cos 5y).

Here the trapezoidal rule with n = 10 gives T;, = 0.78562. .., while Simpson’s
rule with 2n = 4 gives S, = 0.78539...; the actual value of n/4 with an accu-
racy of six decimal places is 0.785398... .

ExampLE 4. Let h(0) = 1 and

_In(x + 1)
- X

for x > 0.

h(x)

Using Simpson’s rule for the calculation of the integral of h over a suitable
interval needs information concerning h*., We claim that h* is a decreasing
function on [0, o) and

0 < h(x) < 4.8 = h(0) for x > 0.

Indeed,
1 In(x + 1) In(x+1) 3x+2
h, = — 4 — 2 _ ,
(x) (x + 1)x x2 ] h (x) x2 (x + 1)2x2
h%m_1u2+wx+6_6mu+n
ECER X
MW@_Mma+n_mﬁ+M%Mmu+m
= x5 (x ¥ 1)4x4
MW@_ZMﬁ+7mﬁ+OMf+5%x+HO 1201n(x + 1)
B (x + 1)°° x5 ’
Therefore,
d . 120x°
2 (x6-hONx) = —
P

and it follows that x®-h®®(x) is a decreasing function for x > 0 (by Proposi-
tion 4.7). Since the product x°- h®)(x) vanishes for x = 0, we therefore have

x®-h®(x) <0, h®(x) <0
for x > 0, showing that k¥ is decreasing on [0, co0). In particular,

0 < h®(x) < 4.8 = h®(0) for x > 0.
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ReMaARrk. Using suitable methods from the theory of infinite series, one can
show that (see Example 1 in Section 8 of Chapter 7)

In(x + 1) n?
—dx = .
0 X 12
Instead of actual equality, we can verify approximate equality in the fore-
going relation by using Simpson’s rule.

ExaMPLE 5. Let y = ™. Then
y = =2xe ¥, y"=22x2— e, y" = —4x(2x> —3)e ",
y@ = 4(4x* — 12x%2 + 3)e™*, yO = —8x(dx* — 20x% + 15)e™ .
Hence, max{|y®|: 0 < x < 1} = 12. Letting 2n = 10 and using Simpson’s

rule, we get

1
f e dx ~ 0.746825
o

and the error bound is
12 1

2880-5* 150,000

ExampLE 6. Using Simpson’s rule with 2n = 20, we get

1
f I+ 4 ~ 027219844,
o 1+x

Actually,

dx = -In2 = 0.2721982613....

n(l+%) =
o 1+x2 8

Indeed, setting x = tant,
n(1 n/4 4
n—(j—?dx = | In(cost +sinf)dt — | In(cos?)dr.
0 1 + X 0 0

Substituting t = /4 — s,

n/4 0 T T
J In(cost)dt = — f In I:(cos s) (cos Z) + (sins) (sin Z)] ds
0 /4

(=4  (coss + sins
= In{f ————)ds
Jo 2
I 72 1 2 T4
= In(cos s + sins)ds — n_f ds
JO - 2 0
(" /4

= In(cos s + sins)ds — g—ln 2.
JO
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Hence,

In(1 + x) n
——————dx=—-In2.
Jo T+x2 & 81112

ExampLE 7. Using Simpson’s rule with 2n = 6, we get

J SINX ix ~ 1.852.

o X

ExampLE 8. We wish to calculate [ (1/x)dx with an accuracy of 5-107°. Into
how many parts must we divide the interval [ 1, 2] if we use (i) the trapezoidal
rule and (ii) Simpson’s rule?

We first consider the case (i). The error bound for the trapezoidal rule (see
Proposition 5.27 and the Remark following it) is

M — a)®
12n%

In our case M = max{|2/x*|:1 <x<2} =2 and b —a=1. We have to
consider the inequality
2

Tni<5'10—5

and find the smallest positive integer n satisfying it. But

2 100
— > <5-107% ifand onlyif — <n.

12n? \/5
Since 100/\/3 approximately equals 57.735027, we see that the number n of
subdivisions of the interval [1,2] in the case of using the trapezoidal rule will
be n = 58.
We next consider case (ii). The error bound for Simpson’s rule (see the
Remarks following Proposition 5.28) is

Kb —a)® Kb -a)

2880n*  180(2n)*
In the case under consideration, K = max{|24/x’|:1 < x <2} =24 and
b —a = 1. Also, recall that in the case of Simpson’s rule the number of

subdivisions of the interval [a,b] is 2n. We therefore have to consider the
inequality

24

— < 5-107°
180(2n)*
and find the smallest positive integer 2n satisfying it. But

24 < 5-107% if and only if }4 10 < 2n
. 1 4. _
180(2n)° y 15
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Since %/4/15-10 equals approximately 7.186082, the number 2n of subdivi-
sions of the interval [ 1, 2] in case of using Simpson’s rule will only be 2n = 8.
It is clear therefore that Simpson’s rule is much more efficient than the
trapezoidal rule in calculating {} (1/x)dx with an accuracy of 5-107>.

ExamPLE 9. Let n be a positive integer. Then

4 3
%n3/2<1+\[2+\/§+-'-+\/;< n;— ﬁ
Indeed, for k a positive integer and k — 1 < x < k, we have \/E > \/; and so

JE> fkk_l\/;dx.

Adding, we get
1+ﬁ+\/§+---+\/ﬁ>j Jxdx =2
V]
Since the graph of y = \/; is concave down, it is clear that

k
%(ﬁ/k—1+ﬁ)<j Jxdx;
k—1
here {(J/k — 1 + \/E) is the area of the trapezoid with the vertices (k — 1,0),
(k,0), (k,/k), and (k — 1,./k — 1). Hence,
1+/2+ 3+ +n
=30+ /D HIVT+VD +3/2+/3)
FISBHSH+ A A1+ S+
<fn\/§dx+%\/ﬁ=4n;3ﬁ.
(4]

ExampLE 10. Let f be a differentiable function on [a,b] and assume that
|f(x)] € M for all xe[a,b]. Moreover, let

5, = ;f(t,-)h,

when h=(b —a)/n, xo=0a, x,=a+h, x,=a+2h, ..., x,=a+nh=">b
and t;e[x;_1,x;] foreachj=1,2,..., n. Then

M@ — a)?
—

<

rf(x)dx -5,

Indeed, by the First Mean Value Theorem for Integrals (see Proposition
5.23), in each interval [x;_;, x;] there exists a point c; so that

[ Y ) dx = fe) (- %) = fleph.

Xj-y

o
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Hence,

f " e dx — if(t,-)h|

x

be(X)dx—Sn

S~
1=

Jj—1

z [f(c) — f(t)1h

< z 1f(c) — f(ty)|h.

But, by the Mean Value Theorem of Differential Calculus (see Proposition
4.5), there exists a point e; between c; and ¢; so that

1£(e) — f@)] = £ el le; — .
Moreover, it is clear that |¢; — t;] < |x; — x;_;| = h and so

M — a)?
—

J " fdx — 8, | < Y. 1/ (e)Ik? < nMi? =

ReMArk. In Example 10 we have obtained an error bound for the approxima-
tion of an integral by Riemann sums in which the interval [q, b] is partitioned
into subintervals of equal length. For example, the error bound for % (1/x)dx
with h = 0.1 is only {5 (compare this with the results in Examples 1 and 2).

EXERCISES TO CHAPTER 5
5.1. Let f be a continuous function such that 0 < A < f(x) < Bfor 0 < x < 1. Show
that

1 1 1
AB . ﬁx—)'dXSA "l‘B—J\0 f(x)dx

[Hint: Note that
U0 -4/ -8 _
Sx)

in the interval [0, 1]. Integrating both sides of this inequality over [0, 1] gives
what we want.]

5.2. Let p and g be larger than zero. Show that

1 1
f (1 — x?)¥adx = J (1 — x9)1? dx,
0 0

[Hint: Let f be a decreasing continuous function in [a, b]. Then the inverse
function g exists in [ f(b), f(a)] and is also decreasing and continuous. Hence,

f(a) a a b
j g(y)dy=J g{f(t)}f’(t)dt=f tf’(t)dt=af(a)—bf(b)+J. f(®)de.

Sb) b b
If additionally we have f(a) = b and f(b) = a, then

jbg(t) dt = (bf(t) dt.
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The functions f(x) = (1 — x9)Y? and g(x) = (1 — x?)'/4 represent in [0,1] a
special case of this situation.]

b b boq
dx =1 + dx,
« Xlnx . « Xlnx

using integration by parts: u = 1/(In x) and dv = (1/x)dx.

5.3. Explain the curiosity

54. Leta>1land x, = n(\'/z_z —1)forn=1,2,3,.... Show that x, > x,, for all n.
[Hint: If x > 1and p > g > 1, then x»™* > x7 ! and so

a a a—1 al—1
j xPldx > j x7tdx or > .
1 1 p q

Putting p = 1/n and g = 1/(n + 1), we obtain the desired inequality.]
55 If

flf(xt)dt=0
V]

for all values of x, show that f = 0.
[Hint: We have

fl fxt)dt = fxf(u)d;u, implying fxf(u)du =0 forall x
and so
d J"
— | fwdu=0 orf=0.]
dx Jo

5.6. Find the derivative of the function

x b
H(x) = < j f(y).dy><f g(y)dy>
and hence show that

f g(x)( J ) dy) dx = f af(x)( f "4 dy) dx.
a a b b

[Hint: We have H(a) = H(b) = 0 and
H) = £ f 90)dy — 9 f 10y dy:
hence, integrating over the interval [a, b], the desired conclusion follows.]
REMARK. In the next three Exercises we assume that f is twice differentiable.
5.7. Show that there is a point « in (— k, h) such that

h h3
j Je)dx = 2hf(0) + = f"(@).
—h
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[Hint: Let T(h) = {*,, f(x)dx — 2hf(0). Then
TO) =0, T'h)=fh)+ f(-h—20), TO=
and, by the Mean Value Theorem (see Proposition 4.5 in Chapter 4),
T"(h) = f'(h) — f'(—h) = 2hf"(cy),

where c, is some point between —h and h. Hence, by the result in Example 27
of Section 6 in Chapter 4, there is a point u in (0, k) such that

Th) T'w 1t
W 32,3

and so T(h) = (h3/3)f"(«), where a = c,, which is a point in (—wu,u) and so a
point in (—h, h).]

5.8. Show that there is a point §in (— A, h) such that

3

h 2
f S dx = h{f ) + f(=)} = - S"(B)
~h
[Hint: If T(k) = [, f(x)dx — h{f(h) + f(—h)}, then

h) = —h{f'(h) — (=R} = —2kf"(cy),
where ¢, is between —h and h, by the Mean Value Theorem (see Proposition
4.5). Hence, by the result in Example 26 of Section 6 in Chapter 4, there is a
point u in (0, h) such that
Tth) _T'(w)
K3 3u?
because T(0) = 0, hence T(h) = —(2h3/3)f"(B), where B = c,.]

—~f”( L) With —u<c¢, <u

5.9. Show that there is a point y in (—h, k) such that
f J09dx =210 + 2510 + S}~ 76,
[Hint: If T(h) = [*,, f(x)dx — W/ {f(K) + 2(0) + f(—k)}, then
TO)=T(©0)=0 and T'(h) = —g{ Ik + f (=)}

but { f”(h) + f"(—h)}/2 lies between f”(h) and f"(—h) and so, since f” takes all
intermediate values, equal f”(c) for some ¢ in [ —h, h]. Thus,

h3
T'(h) = —hf"(c) or T(h)= —5 /0]

5.10. If f is periodic with period a and if
1 a
g(x) = f(x) — —f f(x)dx,
ajo

show that [ g(t)dt is periodic with period a.
[Hint: We have
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5.11.

5.12.

5.13.

Jx“g(t) dt = ( [a + jﬁx) g@t)dt = fag(t) dt + ng(u)du, t=a+u,
0 JO a 0 0
= fxg(u) du
0

because g has period a and

jag(t)dt = Jaf(t)dt - ér (Jaf(x)dx>dt = Jaf(t)dt — rf(t)dt =0]

Let f be continuous on [4,b] and |}, f(x)dx = 0. Show that f(x) = 0 for some x
in (a, b).
[Hint: See Proposition 5.23.]

REMARK. If g and h are continuous on [a,b] and [, g(x)dx = [} h(x)dx, then
g(x) = h(x) for some x in (a,b). [Indeed, let g(x) — h(x) = f(x) and apply the
result in Exercise 5.11.]

(Theorem of Bliss) Suppose that f and g are Riemann integrable on [a, b] and
let P ={a=x, < x,; <+ <x,=Db} be a partition of [a, b]. Show that

z £(t)g(t)Ax,,

where x,_; < tpy < xeand x,_ < t; <x, k=1,2,...,nand

n

Z ft)g(t)Ax,

k=1

tend to the same limit as || P|| — O
[Hint: Note the identity

z £t Ax, = z Ft)gt)Ax, + z Ft)La(t) — g(t)1Ax,

and the inequality (since f is Riemann integrable, it is bounded)

Z St)lgt) — g(t)lAx, < K(;::l lg(te) — g(tk)lek)

Finally, let &, = ¢, or t; so that

9(&) = max{g(1,), (1)},
and 7, = t, or t; so that

g(n) = min{g(t,), (ti)},
k=1,2,...,n Then

kz:; (t) — 9(t )| Axy = Zg(fk)Axk Zlg(nk)Axk-]

What is wrong with
1

= -2?
-1

11 1
| Sae= -2

1 x? X
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5.14. Evaluate

[Answer: —1.]

5.15. Show that if f is continuous on [a,b] and [® f(x)g(x)dx = O for every integrable
g, then f = 0.
[Hint: If f is continuous on [a, b] and _[” (x)dx = 0,then f = 0 on[a,b], as
can be seen by part (i) of Proposition 5.22.]

5.16. Let f, g, and h be Riemann integrable on [a, b]. Show that

b b b
f 1f(x) = g(x)* dx < 2[ 1f(x) — h(x)|* dx + 2f lg(x) — h(x)|? dx.

[Hint: We have f(x) — g(x) = { f(x) — h(x)} — {g(x) — h(x)} and so
|f(x) — g(X)] < |f(x) — h(x)| + |g(x) — h(x)|
and
1f(x) = g()I* < |f(x) = h(x)* + |g(x) — h(x)|* + 2| f(x) — h(x)||g(x) — h(x)].

But 2|f(x) — h(x)||g(x) — h(x)| < |f(x) — h(x)|* + |g(x) — h(x)}*.]

5.17. If fy(x) = [% f(5)dt and f,(x) = [5 f,(t)dt, show that
fa(x) = f (x = nf()dr.
0
More generally, if fi(x) = [ fp-1()dt for k = 2,3, ..., then

s R AL

[Hint: We integrate [3 fl(t) dt by parts as follows: Let u = f|(t) and dv = dt.
Then

fxfl(t)dr=rf1(r) x—fxrf(r)dmxfl(x)—fxu"(t)dr
0 0 0 0

= xjxf(t)dt — thf(t)dt = r(x —f(t)dt.
0 JOo

0

A similar integration by parts will result in the formula

fix) = r(x — Of,_,(t)dt.
0

In this equation let u = f,_,(t) and dv = (x — t)dt. Then
—t 2 x _ 2
b ) +J(X )f,,3(t)dt
0 0

=f (x_t)zf,, L) de.
0

f T = 0fyoa(0)dt = foma®
0
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Another integration by parts will give

x 3
filx) = J LamL AT
0

and it is clear that we can continue in this way and obtain

x(x . t)n—l
Ja(x) = L Wf(t) dt.]

5.18. As an application of the result in Exercise 5.17, if m and n are positive integers,
show that

t m!n!
(1 — x)'x™dx = .
0 m+n+1)

[Hint: If f(t) = t™, then, in the notation of Exercise 5.17,

J%l—g%maznmﬂa)

0

Now

x m+1
ﬁ@:ft%z x
(4]

Tm+ 1)
x m!tm+1 m!xm+2
L= e T mr
: m!xmtk
K=

and so n!f, ., (1) = m!nl/(m + n + 1)!.]
5.19. Using Simpson’s rule, compute the volume of a sphere.

5.20. Verify that if we take 2n = 10 in the evaluation of

n t 1

Z - d

4 L1+ﬁx
by use of Simpson’s rule, we obtain approximately 0.78539815 (the exact value
of 7/4 with an accuracy of eight decimal places is 0.78539816); the error bound
in the considered case is approximately 0.000013, much larger than the actual

error.
[Hint: See Example 3 following Proposition 5.28.]

5.21. Using Simpson’s rule, show that the integral
1

J e dx
0

5.22. Using Simpson’s rule, show that the integral

approximately equals 0.7468.



308 5. Integration

n/2
J‘ (1 — 4sin?x)" dx
0

approximately equals 1.351.

5.23. Show that [} P(x)dx = {5{5P(2) + 8P(3) + 5P(B)} if P is any polynomial of
the fifth degree and « and B are the roots of x> — x + {5 = 0.



CHAPTER 6

Additional Topics in Integration

1. The Indefinite Integral

Definition. Let f be a given continuous function on an interval [a,b]. A
function F, such that

F'(x) = f(x) witha <x <b,

is called an antiderivative or an indefinite integral of f. If the latter name is
used one writes

F(x) = ff(x)dx.
REMARKS. Proposition 5.20 asserts that, if f is continuous on [a, b], then

F(x) = f f(tydt for xe[a,b]
is an antiderivative for f on [a, b]. It is clear that we can add any constant to
the function F and still obtain an antiderivative of f. We now show that all
antiderivatives of f are obtained by adding an arbitrary constant to F.
Proposition 6.1. Let f be a continuous function on an interval [a,b]. Then

F(x) = J f(t)dt for xe[a,b] (6.1)

defines an antiderivative of f and every other antiderivative of f differs from this
one by a constant.
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Proor. That (6.1) defines an antiderivative of f follows from Proposition
5.20. If F, is another antiderivative of f, then the difference F — F| is a
function whose derivative is zero for all x in [a,b] and by Proposition 4.6
such a function is constant. O

REMARKS. In view of Proposition 6.1, the indefinite integral

jf(x) dx = fo(t) dt + C, 6.2)
where C is some constant. If
Jf (x)dx = F(x), (6.3)

we thus immediately have F'(x) = f(x), but not more. If in addition to (6.3)
we have

j f(x)dx = F,(x), 6.4)
it does not follow that F(x) = F;(x) but because of the constant C in (6.2) the
equations (6.3) and (6.4) yield only

F(x)=F,(x)+ C

where C again is some constant.
To illustrate this point further, let f and g be functions which have con-
tinuous derivatives on an interval [a, b]. The function

fx)g(x) — J f'(x)g(x)dx

is an antiderivative of f(x)g'(x) because f(x)g'(x) = (f(x)g(x)) — f'(x)g(x) by
part (iii) of Proposition 3.2 and so we have the integration by parts formula

[ f(x)g'(x)dx = f(x)g(x) — f f'(x)g(x)dx. (6.5)
By (6.5) we get
1 cotx
J‘mdx = [COS X dx = J(cotx)(tanx)
tan x
= (cot x)(tanx) — J (tanx)(cotx)dx =1+ dex,
that is,

i i
j oy -1t f ) cos ) (6.6)

Wrongly interpreted, equation (6.6) leads to the absurdity 0 = 1. The correct
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interpretation of (6.6) is: The constant 0 is, up to an additive constant, equal
to the constant 1 (which is no doubt true!). This example serves only the
purpose of stressing the great importance of the constant of integration C in
the equation

Jf(x)dx = F(x) + C,

where F is an antiderivative of f and f is called the integrand. The integration
by parts formula (6.5) we have already come across in Proposition 5.19 and
an extension of the integration by parts formula has appeared in (5.44) of
Chapter 5.

AppiTioNaL. REMARKS. From Proposition 5.18 (together with Proposition
5.16) we may conclude that if f is continuous on [g,b] and if F is any
antiderivative of f, then

jbf(t) dt = F(b) — F(a). 6.7)

We shall agree to refer to the Riemann integral j’; f(®)dt of f on [a,b] as
simply the definite integral of f on [a,b] and call the numbers a and b the
lower and upper limits of integration; for brevity we shall replace the term
“Riemann integrable” by the phrase “integrable.”

Relation (6.7) shows that knowledge of the antiderivative (or the indefinite
integral) suffices to determine the corresponding definite integral. We shall
consider various techniques for the determination of antiderivatives of certain
functions in the sequel. We recall, h<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>