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Preface 

This book is intended for students familiar with a beginner's version of 
differential and integral calculus stressing only manipulation offormulas and 
who are now looking for a closer study of basic concepts combined with a 
more creative use of information. The work is primarily aimed at students in 
mathematics, engineering, and science who find themselves in transition from 
elementary calculus to rigorous courses in analysis. In addition, this book 
may also be of interest to those preparing to teach a course in calculus. 

Instead of exposing the reader to an excess of premature abstractions that 
so easily can degenerate into pedantry, I felt it more useful to stress instruc­
tive and stimulating examples. The book contains numerous worked out 
examples and many of the exercises are provided with helpful hints or a 
solution in outline. For further exercises the interested reader may want to 
consult a problem book by the author entitled Problems and Propositions in 
Analysis (New York: Marcel Dekker, 1979). For the history of calculus I 
recommend the book by C. B. Boyer, The Concepts of the Calculus (New 
York: Dover, 1949). 

This book is made up of seven chapters and the Contents gives detailed 
information concerning the topics covered. The book begins with a study of 
the logarithmic and exponential functions. The treatment of these functions 
is geometric rather than arithmetic in nature and quickly leads to the evalua­
tion of certain limits that are of crucial importance; the approach, which 
depends on a specific relation between hyperbolic segment and logarithmic 
function, goes back to A. A. de Sarasa (1618~ 1667). In the Bibliography at 
the end of the book the reader will find suitable references for further study. 

I thank Professor P. R. Halmos, Indiana University, for the kind interest 
he has shown in my work, my son Peter who prepared the illustrations for 
this book, and my friends Dr. E. L. Cohen, University of Ottawa, and Dr. 
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G. K. R. Rao, University of Kenya, for valuable help and steadfast encourage­
ment. I also wish to express my gratitude to the Board of Governors of the 
University of Ottawa for the benefit of a sabbatical leave during a portion of 
the writing of this book, and to the staff of Springer-Verlag for their fine 
cooperation. 

Gabriel Klambauer 
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CHAPTER 1 

The Logarithmic and 
Exponential Functions 

1. An Area Problem 

The curve y = l/x, for x > 0, is of special interest to us; it is located above the 
x-axis in the first quadrant of the x, y plane and it is seen to be symmetric 
with respect to the line y = x (because the equation xy = 1 remains un­
changed when x and yare interchanged). See Figure 1.1 for a display of the 
curve under consideration. 

Definition. If ° < a < b, let Aa, b denote the area of the region bounded above 
by the curve y = l/x, bounded below by the x-axis, bounded to the left by 
the line x = a, and bounded to the right by the line x = b; if ° < b < a, let 
Aa,b = - Ab,a' 

It is easily seen that Aa,a = 0, Aa,b = - Ab,a, and 

Aa,c = Aa,b + Ab,c (1.1) 

for any points a, b, and c on the positive part of the x-axis [see Figure 1.2 and 
Figure 1.3 in connection with equation (1.1)]. Perhaps less obvious is the 
relation 

(1.2) 

for any r > 0. To verify equation (1.2) we proceed as follows. Suppose r > 1. 
(The case r = 1 needs no proof; the case ° < r < 1 reduces to the case under 
consideration when we interchange the roles of rand l/r.) In Figure 1.4 the 
region indicated by vertical cross-hatching has the same area as the region 
indicated by horizontal cross-hatching because the rectangle R2 (with ver­
tical cross-hatching) and the rectangle Rl (with horizontal cross-hatching) 
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have the same area, namely, 1 - l/r. We shall see shortly that equation (1.2) 
is merely a special case of a more general relationship. 

Let 0 < a < b and consider the closed interval [a, b], that is, the set of all 
points x such that a :::;; x :::;; b. Then y = l/x with a :::;; x :::;; b will assume its 
largest value for x = a and its smallest value for x = b. On the interval [a, b] 
we construct two rectangles, one with altitude lla and the other with altitude 
lib. The larger rectangle has area (b - a}la and the smaller rectangle has area 
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(b - a}/b (see Figure 1.5). It is apparent that 

b-a b-a 
--<Aab<--' b . a 

3 

(1.3) 

If a = b, each term in the foregoing inequality vanishes. Inequality (1.3) gives 
an estimate for Aa•b which we shall find very useful later on. 
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To refine the estimate for Aa•b provided by inequality (1.3) we bisect the 
interval [a,b] into two subintervals [a,m] and [m,b], where m = (a + b)/2, 
the midpoint of the interval [a, b], and on each of these two subintervals we 
construct the corresponding larger and smaller rectangles to estimate Aa.m 

and A m•b (see Figure 1.6). We obtain 

m-a m-a 
--<A <-- and m a.m a 

b-m b-m 
--<Amb <--b . m 
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or 

m-a b-m m-a b-m 
-- + -- < Aa m + Am b = Aa b < -- + --. (1.4) m b . . , a m 

Let 

m-a b-m 
L l =--+-- and 

m b 

m-a b-m 
Vl =--+--· 

a m 

We call Ll a lower approximating sum for A a•b and VI an upper approximating 
sumfor Aa,b; Ll is the sum of the areas of the two inscribed rectangles and VI 
is the sum of the areas of the two circumscribed rectangles by which we seek 
to approximate Aa,b and Ll represents an underestimate and VI an over­
estimate of Aa,b' It can be seen that 

b-a 
-b-<L l 

b-a 
and --> VI; 

a 
(1.5) 

indeed, (b - a)/b = (b - m)/b + (m - a)/b < (b - m)/b + (m - a)/m and 
(b - a)/a = (b - m)/a + (m - a)/a > (b - m)/a + (m - a)/m. Combining the 
inequalities (1.4) and (1.5) we obtain 

b-a b-a 
-b- < Ll < Aa b < VI < --. , a (1.6) 

Looking back, we have used the process of bisection of the interval [a, b] to 
obtain from the estimate in inequality (1.3) the refinement expressed in in­
equality (1.6). This process can of course be continued by bisecting the sub­
intervals [a,m] and [m,b] (see Figure 1.7) and obtaining a lower appro xi-

y 

___ +-J-__ -L __ ~ ____ L-__ ~ ______ ~ X 

a b 

Figure 1.7 
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mating sum L2 for Aa,b and an upper approximating sum V2 for Aa,b; L2 
simply stands for the sum of the areas of the four inscribed rectangles and V2 

stands for the sum of the areas of the four circumscribed rectangles by which 
we try to approximate Aa,b' In Figure 1.8 we display the next step of this 
process of continued bisection which will result in a lower approximating 
sum L3 for Aa,b and an upper approximating sum V3 for Aa,b; here L3 stands 
for the sum of the areas of the eight inscribed rectangles and V3 denotes the 
sum of the areas of the eight circumscribed rectangles by which we seek to 
approximate Aa,b' It is clear that 

b-a b-a 
--b-- < L1 < L2 < L3 < ... < Aa b < ... < V3 < V2 < V1 < ----. (1.7) , a 

At the nth step of bisection of the interval [a, b J we have split up this interval 
into 2n subintervals of equal length (b - a)/2n; let the enumeration of these 
subintervals be [a, t 1J, [t1' t2J, [t2' t3J, ... , [tk-1, tkJ, where k = 2n and tk = b. 
Then 

and 

and we have 

(1.8) 
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But a and b are fixed and n can be made as large as we please; therefore the 
difference Un - Ln tends to zero as n becomes arbitrarily large. 

For n = 1,2,3, ... let In denote the closed interval [Ln' Un]. It is clear from 
inequality (1.7) that In+l is contained in In for n = 1, 2, 3, ... and thus we are 
dealing with a sequence of nested closed intervals, where 12 is a subset of 11 , 

13 is a subset of 12 , and so forth. Moreover, as n becomes arbitrarily large, the 
length of the interval In becomes as small as we please in view of equality (1.8). 
By an argument that we omit, it can be proved that there is one and only one 
point t that is common to all intervals In for n = 1,2, 3, ... ; this unique point 
t on the number line is precisely our quantity Aa•b • We now state the result 
that we have invoked. 

Nested Interval Principle. For n = 1,2,3, ... let I n be closed intervals such that 

(i) I n+1 is contained in I n for each n, 
(ii) the length of the intervals I n tends to zero as n becomes arbitrarily large. 

Then there is one and only one point that is common to all intervals I n • 

COMMENTS. It is easy to see that there can not be two (or more) points in 
common to all intervals I n for this would violate condition (ii). Indeed, if two 
points, say, t and s with t #- s, were common to all I n then the distance 
between t and s (which could not be zero) would act as a barrier and no 
interval I n could possibly have length less than this distance. It is also neces­
sary that the intervals I n be closed. Indeed, suppose I n would be the interval 
o < x ::::;; lin for n = 1, 2, 3, .... Clearly, the intervals I n for n = 1, 2, 3, ... 
would be nested and the length of I n , being lin, would tend to zero as n 
becomes arbitrarily large. However, there is no point t that is common to all 
I n in this case. To see this note that the point 0 does not qualify; in fact, 0 is 
not a member of any I n • Also, any t larger than 0 does not qualify because, 
by letting n grow, lin can be made less than any such fixed t. Finally, note 
that ·condition (ii) can also be expressed in the following way: For any r > 0 
there is an interval I n so that the length of I n is less than r. 

Proposition 1.1. Let 0 < a < band s > 0; then 

(1.9) 

PROOF. Let k = 2n, where n is a positive integer, and let 

a = to < tl < t2 < ... < tk - 1 < tk = b 

be equally spaced points splitting the interval [a, b] into k subintervals 
[a, t 1 ], [t 1 , t2], ... , [tk- 1 , b]. On these subintervals we construct inscribed and 
circumscribed rectangles as indicated in Figure 1.9. The sum of the areas of 
the inscribed rectangles is 

b-a(..!..+..!..+ ... +~) 
k tl t2 b 
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and the sum of the areas of the circumscribed rectangles is 

b - a (1 1 1 ) 
-k- ~ + t; + ... + t

k
- 1 ; 

we therefore have 

b - a (~ + ~ + ... + ~) < Aa b < b - a (~ + ~ + ... + _1_). 
k t1 t2 b . k a t1 tk- 1 

(1.10) 

Now let 

sa = Vo < VI < V2 < ... < Vk - 1 < Vk = sb 

be equally spaced points splitting the interval [sa, sb J into k subintervals 
[sa, v 1 J, [VI' V2J, •.• , [Vk - 1 ,sb]. On these subintervals we construct in­
scribed and circumscribed rectangles and obtain, in analogy to the case just 
considered, 

sb - sa (~ 1 . . . 1 ) sb - sa ( 1 1 . . . 1) k + - + + -b < Asa•sb < k - + - + + -- . 
VI V2 S sa VI Vk - 1 

But Vj = stj for j = 1, 2, ... , k - 1 and so 

b - a (1 1 1) b - a (1 1 1 ) -- - + - + ... + - < Asa •sb < -- - + - + ... + - . 
k tIt 2 b kat 1 tk - 1 

(1.11) 

Comparison of (1.10) and (1.11) shows that the same sequence of nested 
closed intervals produces both A a•b and A sa •sb and thus (1.9) is true. This 
completes the proof. 0 
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REMARK. Putting a = 1, b = r, and s = 1/r in (1.9) yields (1.2). 

Proposition 1.2. Let v > 0 and w > 0; then 

(1.12) 

and 

(1.13) 

PROOF. By (1.1) and (1.9) we have 

and 

But this is what we wanted to show. o 

Proposition 1.3. Let v > 0 and r = n/m, where n is an integer and m is a positive 
integer; then 

(1.14) 

PROOF. It is easy to see that 

Al,Vk = kAl,v 

for any nonnegative integer k. Since Al,l/v = -Al,v by (1.2), we see that 

Al,v-k = -kAl,v 

for any nonnegative integer k. If m is a positive integer, we have 

Thus, if n is any integer and m is any positive integer and n/m = r, then 

This finishes the proof. 0 

2. The Natural Logarithm 

Given that a and b are positive numbers, we recall having defined Aa,b 

to denote the area of the region under the curve y = 1/x, above the x-axis 
and between the lines x = a and x = b provided that a < b; if a > b we let 
Aa,b = - Ab,a' We are already familiar with a number of properties of Aa,b' 
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Definition. For x> 0, the function L(x) = Inx with Inx given by 

Inx = AI,x 

is called the (natural) logarithm. 

It is clear that In x is negative for 0 < x < 1, In 1 = 0, and In x is positive 
for x > 1. It is evident that In x is an increasing function because x I < X2 

obviously implies that Inxi < Inx2 • From (1.12) and (1.13) we know that 

In(xy)=lnx+lny and In(~)=lnx-lny 
for any positive x and y. From (1.14) it follows that 

Inx' = rlnx 

for any rational number r, that is, any number r of the form n/m, where nand 
m are integers and m is not zero. This formula also holds for irrational 
numbers r, that is, numbers that are not rational; here the main difficulty lies 
in defining x' when r is irrational. We shall overcome this obstacle in the next 
section. 

The curve y = In x lies completely to the right of the y-axis and below the 
line y = x; the domain of definition of In x is the positive part of the x-axis 
and In x ::;; x-I by (1.3). Since 

Inx -Ina = AI,x - AI,a = Aa,x, 

it can be seen that In x tends to In a as x tends to a because Aa,x tends to zero 
as x tends to a. In the next chapter we shall see that this property of y = In x 
means the continuity of the logarithmic function for 0 < x. It also means that 
y = In x can "skip" no values and that its range or set of values is an interval. 
To show that this interval covers the entire number line, we need only to 
show that this interval is unbounded above and unbounded below. We can 
do this by letting M be an arbitrary positive number and showing that In x 
has values greater than M and values smaller than - M. Indeed, since In 2 is 
positive [we have t < In 2 < 1 by (1.3)J, we know that some positive multiple 
of In 2 has to be larger than M; namely, we know that there is a positive 
integer n such that n(ln 2) > M. [Here we are using the Archimedean property: 
If a> 0 and b > 0, then for some positive integer n we have na > b.J Multi­
plying this inequality by - 1 yields - n(ln 2) < - M. Since n(ln 2) = In(2n) 
and - n(ln 2) = In(2-n), we have In(2n) > M and In(rn) < - M, verifying the 
unboundedness of y = In x. 

From our discussion we see that y = In x has domain of definition 0 < 
x < 00 and range - 00 < y < 00. Moreover, y = In x takes on every value 
between - 00 and 00 and it does so only once because it is an increasing 
function. In particular, there is one and only one number e such that In e = 1; 
this number e is called the base of the natural logarithm. We now consider the 
question of calculating the number e. 



2. The Natural Logarithm 

For x> 1 we have 

~ < lnx < 1 
x x-I 

by (1.3). For x = 1 + lin, where n = 1,2,3, ... , we have 

n In(l + lin) 
--< <1 
n + 1 lin 

n (l)n or -- < In 1 + - < 1. 
n+1 n 

11 

As n becomes arbitrarily large, nl(n + 1) tends to 1 and so In(l + lin)" 
tends to 1 as well. This suggests that the calculation of the number e will 
depend on a closer examination of the sequence (1 + lin)", where n = 1, 
2,3, .... 

Lemma. Let 0 ~ a < b; then 

bn+1 _ an+1 

b _ a < (n + l)bn (1.15) 

and 

bn+1 _ an+1 

b _ a > (n + l)an (1.16) 

for n = 1, 2, 3, .... 

PROOF. Consider the identity 

bn+1 _ an+1 = (b n + abn- 1 + aZbn- Z + ... + an- 1b + an)(b - a). 

Then 

and 

> an + aa n- 1 + aZan- Z + ... + an- 1a + an = (n + l)an. 

This completes the proof. D 

Proposition 1.4. For n = 1,2,3, ... let 

an = (1 +~)" and bn = (1 + ~)"+1. 
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PROOF. We can rewrite the inequality (1.15) as 

bn[b - (n + l)(b - a)] < an+1. 

Putting a = 1 + 1/(n + 1) and b = 1 + lin, the term in brackets reduces to 1 
and we have 

(1 +~y «1 + n~ 1y+1; 

this shows that an < an+1. Next we put a = 1 and b = 1 + 1/(~n). This time 
the term in brackets reduces to t, and we have 

( 1 )n (1 )2n 
1 + 2n < 2 or 1 + 2n < 4. 

( 1)n ( 1 )2n 
1 + ;; < 1 + 2n < 4 

for any positive integer n. Noting that a 1 = 2, we see that 

2::s; an::s; 4 

for n = 1,2,3, .... 
We can rewrite (1.16) as 

bn+1 > an+1 + (n + l)an(b - a). 

Putting a = 1 + 1/(n + 1) and b = 1 + lin, we get 

1+- > 1+-- +- 1+--( 1)n+1 ( 1 )n+1 1 ( l)n 
n n+1 n n+1 

or 

1+- > 1+-- 1+--+-. ( 1)"+1 ( 1)" ( 1 1) 
n n+1 n+1 n 

But 

1+- 1+--+- > 1+--( 1)" ( 1 1) ( 1 )n+2 
n n+1 n n+1 

because 

1 +--+-> 1 +--1 1 ( 1)2 
n+1 n n+1 

or, equivalently, 

1 1 1 1 
----= >-----,;-
n n + 1 n(n + 1) (n + 1)2· 

Hence, by (1.17) and (1.18), bn > bn+1 and the proof is finished. 

(1.17) 

(1.18) 

o 
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Proposition 1.5. For n = 1,2,3, ... let an and bn be as in Proposition 1.4. Then 
the closed intervals [al,b l ], [a 2 ,b2 ], [a3 ,b3 ], ••• form a nested sequence of 
intervals and bn - an tends to zero as n becomes arbitrarily large. By the Nested 
Interval Principle there is one and only one point common to all these intervals; 
this point is e, the base of the natural logarithm. The (increasing) sequence 
ai' a2 , a3 , ••• and the (decreasing) sequence bl , b2 , b3 , ••• tends to e as n 
becomes arbitrarily large. 

PROOF. To see that bn - an, the length of the interval [an,bn], tends to zero as 
n becomes arbitrarily large, we note that 

(1.19) 

But an was seen to satisfy 2 ~ an ~ 4 for all positive integers n and lin tends 
to zero as n becomes arbitrarily large. Knowing that an < an +1 , bn > bn+1' and 
bn - an = (l/n)an > 0 shows that the interval [an+1,bn+1] is contained in the 
interval [an, bnl Indeed, all conditions of the Nested Interval Principle are 
fulfilled and the conclusion of the proposition follows. 0 

COMMENTS. Since bs < 3, it is clear that 2 ~ an < 3 for all positive integers n; 
here we have used the fact that for a fixed m the point bm has to be to the right 
of the point an for any'positive integer n. Rewriting (1.19) gives 

( l)n+1 ( l)n 1 ( l)n 1+;; - 1+;; =;; 1+;;; (1.20) 

we also know that e < 3 and 

( l)n (l)n+1 1+;; <e< 1+;; . 

Hence, (1.20) yields, for any positive integer n, 

( l)n 3 e - 1 +;; <;;. (1.21) 

Inequality (1.21) provides us with an error estimate in the calculation of e by 
using the approximating sequence (1 + lint for n = 1, 2, 3, ... ; for example, 
if n = 30,000, then e can exceed (1 + I/n)n only by an amount less than 
0.0001. The number e is an irrational number, e = 2.718281. ... In the study 
of infinite series we shall encounter a more convenient way of calculating e; it 
is also in the study of infinite series where we shall come across effective 
methods of calculating the logarithm of a positive number. At this stage 
we simply use suitable pocket calculators or other aids such as tables for 
numerical work in connection with logarithms. For a sketch of the graph of 
the logarithmic function see Figure 1.10. 
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Figure 1.10 

Proposition 1.6. For any positive integers p and q, p < q, we have 

q+1 1 1 1 q 
In--<-+--+·'' +-<In--. 

p p p+1 q p-1 
(1.22) 

PROOF. Let a = nand b = n + 1, for n = 1, 2, 3, ... , in (1.3); then 

1 n + 1 1 ---- < In---- <-. 
n + 1 n n 

(1.23) 

For n = p, p + 1, ... , q the inequality (1.23) gives 

1 p + 1 1 ---- < In ---- < -
P + 1 p p' 

1 p + 2 1 
p+2<ln p + 1 <p+1'···' 

_1_ < In q + 1 < ~. 
q + 1 q q 

Addition of the right halves of these q - p inequalities gives the first half of 
(1.22) and the second half is obtained in like manner. D 

ApPLICATION. Let 

111 
H =--+--+ ... +-

n n+1 n+2 2n 

for n = 1, 2, 3, .... By (1.22) we obtain 
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2n + 1 2n 
In--1- < Hn < In~ = In 2. 

n+ n 

But we know that In x tends to In a as x tends to a and so it is clear that Hn 
tends to In 2 as n becomes arbitrarily large. 

Let 
1 1 1 1 

T.=1--+---+"·-~ 
n 2 3 4 2n 

=Hn 

and so T" is seen to tend to In 2 as n becomes arbitrarily large. 

Proposition 1.7. For n = 2, 3, 4, ... let 

1 1 
Xn = 1 + - + ... + -- - In n 

2 n - 1 
(1.24) 

and 
1 1 1 

Yn = 1 + - + ... + -- + - -Inn. 
2 n - 1 n 

(1.25) 

Then Xn+1 > Xn, Yn+1 < Yn, and Yn - Xn = lin. Hence, by the Nested Interval 
Principle, there is one and only one point C common to the closed intervals 
[X2,Y2], [X3'Y3], [X4,Y4], ... ; this number C is called Euler's constant and it 
is known that C = 0.5772156649 .... 

PROOF. By (1.23) 

1 1 n + 1 
Xn+1 - Xn = - -In(n + 1) + Inn = - -In-- > 0 

n n n 

and 

1 1 n + 1 
Yn+l-Yn=---ln(n+ 1)+lnn=--1- ln --<0. 

n+ 1 n+ n 

It is evident that Yn - Xn = lin. We therefore see that the Nested Interval 
Principle is applicable, producing a unique number C. D 

COMMENTS. To visualize Euler's constant, consider the following geometric 
situation. Given the closed interval [1, n] and the curve Y = 11x over this 
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1 2 3 4 5 

Figure 1.11 

interval, the area of the region bounded above by the curve y = 1/x, bounded 
on the left by the line x = 1, bounded on the right by the line x = n, and 
bounded below by the x-axis is In x. On the other hand, dividing the interval 
[1, n] into the n - 1 subinterval [1,2], [2,3], ... , [n - 1, n] and erecting over 
[1,2] a rectangle of altitude 1, over [2,3] a rectangle of altitude t, ... , over 
[n - 1, n] a rectangle of altitude 1/(n - 1), we can easily see that the region 
with vertical cross-hatching displayed in Figure 1.11 has area Xn [see (1.24)]. 
If we think of the n - 1 subregions with vertical cross-hatching as shifted to 
the left into the square bounded by the x-axis, the y-axis, and the lines x = 1 
and y = 1 and, moreover, assume that n is becoming arbitrarily large, we can 
readily appreciate that C will be somewhat large than t but definitely less 
than 1. A famous open question of mathematics asks: Is Euler's constant C a 
rational number (i.e., a ratio of two integers) or not? 

ApPLICATION. For n = 1, 2, 3, ... let 

1 1 
S =1+-+···+-

n 2 n' 

Using a pocket calculator, we find 

SlO = 2.9289683 

Szo = 3.5977397 

S30 = 3.9949871 

S40 = 4.278543 

Sso = 4.4992053 

S60 = 4.6798704 

S70 = 4.8328368 

Sso = 4.9654793 

S90 = 5.0825706 

SlOO = 5.1873775 

SllO = 5.2822346 

S120 = 5.3688683. 

(1.26) 

Let Zn = (xn + Yn)/2, the midpoint of the interval [xn' Yn]; Xn and Yn are given 
by (1.24) and (1.25). We have 
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Z10 = 0.5763832 Z70 = 0.5771987 

Z20 = 0.5770074 Z80 = 0.5772027 

Z30 = 0.5771231 Z90 = 0.5772054 

Z40 = 0.5771635 Z100 = 0.5772073 

Z50 = 0.5771828 Z110 = 0.5772088 

Z60 = 0.5771925 Z 120 = 0.5772099. 

It is noteworthy how closely Z120 approximates C = 0.5772156649 .... 
Again, by pocket calculator we obtain In 10 = 2.3025851, X 10 = 0.5263832, 

and Yl0 = 0.6263832. By Proposition 1.7, Sn - In n = Yn has to be between 
X 10 and Yl0 for n > 10; hence 

23.55 < Sn < 23.66 for n = 1010. 

Using the fact that X 120 = 0.5730432 and Y120 = 0.5813765, we get 

23.598 < Sn < 23.608 for n = 1010. 

In both of these estimates we have used the relation Sn = Yn + In n together 
with the fact that Xm < Yn < Ym for n > m. Both Xn and Yn tend to C as n 
becomes arbitrarily large. Evidently, Sn becomes arbitrarily large as n be­
comes arbitrarily large. However, Sn becomes arbitrarily large very slowly. 

3. The Exponential Function 

Rational powers of e have an established meaning: By en1m we mean the mth 
root of e raised to the nth power. Moreover, we have seen that 

n 
In en1m = -. 

m 
(1.27) 

Definition. If t is an irrational number, then by et we mean the unique num­
ber which has logarithm t: 

lne t = t. 

Definition. The function 

E(x) = eX for all real numbers x 

is called the exponential function. 

COMMENTS. Using (1.27) and (1.28) and writing 

L(x) = In x and E(x) = eX, 

(1.28) 
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Figure 1.12 

we obtain 

L(E(x)) = x for all real numbers x. (1.29) 

This means that the exponential function is the inverse function of the loga­
rithmic function. Another way of expressing the relation that the exponential 
and the logarithmic functions are inverses of each other is 

E(L(x)) = x for all positive real numbers. (1.30) 

In more conventional notation (1.29) and (1.30) read: 

In eX = x for all real numbers x (1.31) 

and 

e1nx = x for all real x> o. (1.32) 

The graph of the exponential function appears in Figure 1.12; it can be 
obtained from the graph of the logarithmic function by reflection in the line 
y = x. It is clear that x = eY if and only if y = In x. Since the graph of the 
logarithmic function remains to the right of the y-axis, the graph of the 
exponential function remains above the x-axis; namely, 

eX > 0 for all real numbers x. (1.33) 

Since the graph of the logarithmic function crosses the x-axis at x = 1, the 
graph of the exponential function crosses the y-axis at y = 1. Recalling that 
the logarithmic function is an increasing and continuous function and noting 
that the exponential function is the inverse of the logarithmic function, it will 
follow by general theory that the exponential function is an increasing and 
continuous function. 
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[Since it is easy to give a direct proof of the continuity of the exponential 
function, we shall do so now. Let x = eY and x + h = eY+v• Then 

v = Ax,x+h 

and by (1.3) it follows that Ivl > h/(x + h) if h > 0 and Ivl > Ihl/x if h < O. 
This shows that if v is small in absolute value, then h must also be small in 
absolute value. Note that Ivl = v if v ~ 0 and Ivl = -v if v ~ 0.] 

We will now make use of the logarithmic and the exponential functions to 
define the expression ab for a> 0 and b denoting any real number; the 
elementary notion of exponent applies only when b is a rational number. We 
have already looked at the case a = e. If a > 0 and n/m is rational, we get 

anjm = e(njm)(ln a). (1.34) 

To see that (1.34) is true, we need only to take logarithms on both sides of the 
equation. Next we note that the right-hand side of (1.34) is of the form 

and has meaning for any real number b, be it rational or irrational. We are 
now ready to define the expression ab for a > 0 and b denoting an irrational 
number. 

Definition. If b is an irrational number and a is positive, we define the number 
ab by setting 

(1.35) 

Lemma. Let n = 2, 3, ... ; then fn tends to 1 as n becomes arbitrarily large. 

PROOF. Let fn = 1 + Vn for n = 2, 3, .... Then Vn > 0 and 

n(n - 1) 
n = (1 + vnt = 1 + nVn + 2 v; + ... + v~. 

Since all terms in the last sum are positive, we have 

n(n - 1) 2 
n> 1 + 2 Vn or 

Thus, 

o < Vn < A for n = 2, 3, ... 

It is clear that ../2Ft = .j2/Jn tends to 0 as n becomes arbitrarily large. 
Since Vn is wedged between 0 and ../2Ft for n = 2, 3, ... , it can be seen that Vn 
tends to 0 as n becomes arbitrarily large and so fn must tend to 1 as n 
becomes arbitrarily large. D 
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Proposition 1.S. The function In x tends to infinity with x, but more slowly than 
any positive power ofx. In other words, lnx becomes arbitrarily large with x but 
(In x)/x',for any s > 0, tends to 0 as x becomes arbitrarily large. 

PROOF. Since In t tends to In a as t tends to a (as noted in Section 2), we 
get that In fn = (l/n)ln n tends to 0 as n becomes arbitrarily large by the 
Lemma. However, n takes the integer values 2,3, ... in the Lemma. We must 
verify that (In t)/t tends to 0 as t becomes arbitrarily large and t denoting any 
real number. We do this now. Let [t] stand for the integer part of t. Then 

0< lnt < In([t] + 1) = [t] + 1 .In([t] + 1) for t > 1 
t [t] [t] [t] + 1 

shows that (In t)/t tends to 0 as t becomes arbitrarily large (note that t - 1 < 
[t] ::;; t). Letting t = x' for any s > 0, we see that 

lnx' lnx 
--=s'-
x' x' 

tends to 0 as x becomes arbitrarily large. But s is positive and fixed. 0 

Proposition 1.9. The function eY tends to irifinity with y more rapidly than any 
power of y, or y'/eY,for any t > 0, tends to 0 when Y becomes arbitrarily large 
for all values oft however great. 

PROOF. In Proposition 1.8 we saw that, for any positive value of s, x-'(lnx) 
tends to 0 when x becomes arbitrarily large. Putting t = l/s, we see that 
x- l (In x)f tends to 0 as x becomes arbitrarily large for any t > O. The desired 
result then follows on putting x = eY• 0 

DISCUSSION. In Section 2 we observed that the logarithmic function L(x) = 
In x satisfies the functional equation 

L(X 1 X2) = L(x l ) + L(x2 ) for any Xl > 0 and X 2 > O. 

We now note that the exponential function E(y) = eY satisfies the functional 
equation 

E(Yl + Yl) = E(Yl)E(Y2) for any real numbers Yl and Y2' 

Indeed, let Yl = lnxl and Yl = Inx2. Then Xl = eY', X2 = eY2 , and 

Yl + Y2 = lnxl + Inx2 = In(x l x2) 

or 

More generally, for a > 0, we have 
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because 

We also remark that 

If a> 1 then aX = ex(lna) = eCX, where c = In a is positive. The graph of aX 
is in this case similar to that of eX and aX becomes infinite with x more rapidly 
than any power of x. 

If 0 < a < 1 then the graph of aX is obtained from the graph of bX, where 
b = 1/a (and so b > 1), by reflecting the graph of y = bX with respect to the 
y-axis. 

It is easy to express logarithms to a base other than e in terms of natural 
logarithms. If for a positive number a, with a =f= 1, the equation x = aY is 
satisfied, we write 

y = loga x 

and say that y is the logarithm ofx with respect to the base a. NowaY = ey(lna) 
so that x = ey(lna) or y(ln a) = In x. It follows that 

lnx 
loga x = -1 -. 

na 

Since logarithms to any base a, where a > 0 and a =f= 1, are proportional to 
natural logarithms, they satisfy the usual identities, 

loga x + loga y = loga (xy), 

loga (~ ) = loga x - loga y, 

loga (XC) = c(loga x), 

for any positive real numbers x and y and any real number c. 
Since 10gA B = (In B)/(ln A) for any positive real number B and any positive 

real number A with A =f= 1, we get at once that 

loga x = (logax)(loga b), 

1 
10gb a =l-b' oga 

1 _ 10gb X 
oga x - 1 

ogb a 

for any positive real numbers x, a, and b with a =f= 1 and b =f= 1. It is clear that 
loga 1 = 0 and loga a = 1. Moreover, we can write loge x in place ofln x. 
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Examples 

1. Simplify l/(logz 5) + 1/(log3 5) - (logs 3)/(lOg30 3). 

SOLUTION. Since l/(logz 5) = logs 2 and 1/(log35) = logs 3, we get that 1/ 
(logz 5) + 1/(log3 5) = logs 2 + logs 3 = logs 6. On the other hand, (logs 3)/ 
(lOg30 3) = (logs 3)(log3 30) = logs 30. But logs 6 - logs 30 = logs (1/5) = - 1 
and so the given expression simplifies to - 1. 

2. Let log410g310gz x = O. Find x. 

SOLUTION. We have log4(log310gz x) = 0 = log41 and so log310gz x = 1. But 
log3(logz x) = 1 = log3 3 implies that logz x = 3 and hence x = 8. 

3. Find x iflog16 x + log4 X + logz x = 7. 

SOLUTION. Since log4 x = (logz x)/(logz 4) = (logz x)/2 and log16 x = (logz x)/ 
(logz 16) = (logz x)/4, we see that (1 + t + i) (logz x) = 7 or logz x = 4. We 
therefore have x = 16. 

4. Express logs 12 in terms of a = loglo 2 and b = loglo 3. 

SOLUTION. Let logs 12 = x; then 5X = 12 or lOX(rX) = 12. Taking logarithms 
to the base 10 gives X(lOglO 10) - X(lOglO 2) = loglo 12. But loglo 12 = 
loglo 3 + 2(lOglO 2) = b + 2a and so x - xa = b + 2a or x = (b + 2a)/(1 - a). 

5. Consider a given geometric and arithmetic progression with positive terms: 

The ratio of the geometric progression and the common difference of the 
arithmetic progression are positive. Show that there exists a system of loga­
rithms for which 

loge Gn - loge G = An - A 

for any n and find the base c of this system. 

SOLUTION. Let Gn = Gqn and An = A + nd. Then loge Gn - loge G = n(loge q) 
and An - A = nd. Hence, n(loge q) = nd, that is, loge q = d. We therefore ob­
tain Cd = q or c = ql/d. 

Lemma. Let b > 1 and n = 2, 3, ... . Then db tends to 1 as n becomes arbi­
trarily large. 

PROOF. Since b> 1 we have db> 1 for n = 2, 3, .... We set db = 1 + hn­
Then, for n = 2, 3, ... , we have hn > 0 and 

n(n - 1) 
b = (1 + h )" = 1 + nh + hZ + ... + hn 

n n 2 n n° 
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Since all terms in the last sum are positive, we have 

b - 1 
O<hn <--. 

n 

As n becomes arbitrarily large, hn tends to 0 and jb tends to 1. 

23 

o 

REMARK. An alternate way of proving the Lemma depends on observing that 
In(jb) = (ljn)(ln b) tends to 0 as n becomes arbitrarily large. 

Proposition 1.10. Let b > 1. Then n(jb - 1),for n = 2, 3, ... , tends to In b as 
n becomes arbitrarily large. 

PROOF. Let n be a positive integer larger than 1 and put q = jb. Then 

1 < q < q2 < q3 < ... < qn-l < qn = b. 

Let Xo = 1, Xl = q, X 2 = q2, X3 = q3, ... , Xn-l = qn-\ Xn = qn = b and sup­
pose that the interval [1, b] is split up into the n subintervals 

[XO,x l ], [Xl>X2 ], [X2,X3], ... , [xn-l,xn]. 

On the interval [xo, Xl] we construct the rectangle with altitude Ijxo, on 
[X l ,X2 ] the rectangle with altitude Ijx l , on [X2,X3] the rectangle with alti­
tude Ijx2, ... , and on [xn-l,xn] the rectangle with altitude Ijxn- l . The sum 
of the areas of these n rectangles is 

111 
(q _ 1) + _(q2 _ q) + _(q3 _ q2) + ... + __ (qn _ qn-l) = n(q - 1). 

q q2 qn 1 

The foregoing sum is an approximating sum for A l • b = In b. We know that 
q tends to 1 as n becomes arbitrarily large; this means that we can make 
the length of the largest of the subintervals [Xo,x l ], [X l ,X2], [X 2 ,X3 ], ... , 

[xn - l , xn] as small as we please by taking n sufficiently large and our claim 
therefore follows. D 

COMMENTS. Let a > 1 and b > 1. Then the relation 

n(~ - 1) = n(fa - l)jb + n(jb - 1) 

naturally lends itself to deduce the functional equation for the logarithm 

In(ab) = In a + In b. 

Again let b > 1 and define Xn = (b)1/2n for n = 1, 2, 3, .... Then X;+1 = Xn 
and Xn+1 < x .. Moreover, Xn tends to 1 as n becomes arbitrarily large. We 
define 
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for n = 1,2,3, .... We shall now verify that the sequence of closed intervals 

[al,b l ], [a2,b2], [a 3 ,b3 ], ... 

satisfies the conditions of the Nested Interval Principle (See Section 1). To see 
that bn < bn- l we note that Xn > 1 and so 

(xn + 1)(xn - 1) = x; - 1 = xn- l - 1 

implies 2(xn - 1) < Xn-l - 1 and thus 2n(xn - 1) < 2n- l (xn _ l - 1). To see 
that an > an- l we note that 1/xn < 1 and so 

( 1 +~)(1-~) = 1--;= 1 __ 1_ 
Xn Xn Xn Xn- l 

implies 2(1 - 1/xn) > 1 - 1/xn- l and thus 2n(1 - 1/xn) > 2n-l(1 - l/xn-d. 
To verify an < bn we observe that 

Xn - 1 < xn(xn - 1) 

because Xn > 1. Hence, 1 - 1/xn < Xn - 1 or 2n(1 - 1/xn) < 2n(xn - 1). Fi­
nally, to verify that bn - an tends to 0 as n becomes arbitrarily large we only 
need to realize that 

and that Xn tends to 1 as n becomes arbitrarily large. The unique point 
common to all intervals [al,b l ], [a2,b2], [a 3 ,b3 ], ..• is lnb. 

Proposition 1.11. Let n = 1, 2, 3, ... and x be any real number. Then both 

tend to eX as n becomes arbitrarily large. 

PROOF. By (1.3) we have that (l/h)ln(1 + xh) = (1/h)A l . l+xh is between x and 
x/(1 + xh). Thus, (1/h)ln(1 + xh) tends to x as h tends to O. Putting h = l/k, 
we see that k{ln(1 + x/k)} tends to x when k, taking integer values, tends to 
00 or - 00. Since the exponential function is continuous, 

(1 + ~ Y = ek{ln(1+x1k)} 

tends to eX as k tends to 00 or - 00. D 

REMARK. For n = 2, 3, 4, ... 

Proposition 1.12. Let Xl' X2, X3 , ••• be a sequence of numbers. Ifnxn tends to K 
as n becomes arbitrarily large, then (1 + xn)n tends to eK • 
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PROOF. If nXn tends to K as n becomes arbitrarily large, we see that Xn tends 
to ° and hence {In(l + xn)}/xn tends to 1 (see proof of Proposition 1.11). 
Writing n{ln(l + xn)} in the form 

K (nXn) In(l + xn) 
K Xn 

we see that n{ln(l + xn)} tends to K as n becomes arbitrarily large. 0 

ApPLICATION. Let a> ° and b > 0. We show that, for n = 2, 3, 4, ... , 

tends to fo as n becomes arbitrarily large. 
Indeed, let Xn = (fa + jb)!2 - 1. Then 

nXn = Hn(fa - 1) + n(jb - I)} and 

By Proposition 1.10 we have that nXn tends to ±(In a + In b) = Info as n 
becomes arbitrarily large. Hence, by Proposition 1.12, we have that (1 + xn)" 
tends to 

e1nJab = fo 

and we have what we wanted to show. 
Using .the same method of proof we can show that for a 1 > 0, a2 > 0, ... , 

am > ° the sequence 

( j;;; + ~ + ... + Fm)n _ for n - 2, 3, 4, ... 
m 

tends to :::/ a1 a2 • .• am as n becomes arbitrarily large. Indeed, we let 

j;;;+~+···+Fm I 
xn = m -

and note that 

I 
nXn = - {n(j;;; - 1) + n(~ - 1) + ... + n(Fm - I)}. 

m 

We then observe that nXn tends to In(:::/ a1 a2 ..• am) and (1 + xn)" tends to 
:::/ a1 a2 ••• am as n becomes arbitrarily large. 

In Chapter 4 we shall establish some interesting properties of the function 

( aX + bX)l/X 
f(x) = 2 for x#- 0, 

=fo for x = 0; 

for details see Proposition 4.19. 
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4. The Hyperbolic Functions 

Certain combinations of exponential functions (which are related to the 
hyperbola x 2 - y2 = 1 in somewhat the same manner that trigonometric 
functions are related to the circle x 2 + y2 = 1) appear so frequently in mathe­
matics that they have been given special names. These functions are called 
the hyperbolic functions and their similarity to trigonometric functions is 
emphasized by calling them hyperbolic sine, hyperbolic cosine, hyperbolic 
tangent, and so on. They are defined as follows: 

eX _ e-X 
(i) sinh x = 2 

eX + e-X 
(ii) cosh x = 2 

sinh x eX - e-X 
tanh x = --- = ---,,----

cosh x eX + e X 
(iii) 

(iv) h cosh x eX + e-X 
cot x=---=---

sinh x eX - e-x 

1 2 
(v) sechx=--=---

cosh x eX + e-x 

1 2 
csch x = -- = ---,,----

sinh x eX - e X 
(vi) 

The six hyperbolic functions satisfy identities that correspond to the usual 
trigonometric identities except for an occasional switch of plus and minus 
signs. For example, we have the following identities: 

(1) cosh2 x - sinh2 x = 1. 
(2) 1 - tanh2 x = sech2 x. 
(3) coth2 x - 1 = csch2 x. 
(4) sinh(s ± t) = (sinh s)(cosh t) ± (cosh s)(sinh t). 
(5) cosh(s ± t) = (cosh s)(cosh t) ± (sinh s)(sinh t). 
(6) sinh 2x = 2(sinh x)(cosh x). 
(7) cosh 2x = cosh2 X + sinh2 x = 2(cosh2 x) - 1 = 2(sinh2 x) + 1. 

The graphs of the six hyperbolic functions are shown in Figure 1.13. 
Since the hyperbolic functions are defined in terms of exponential func­

tions, it is not surprising to find that the inverse hyperbolic functions can be 
written in terms of logarithmic functions. The formulas for the inverse hyper­
bolic functions are: 

(i) Inverse hyperbolic sine: 

sinh-1 x = In(x +~) for any real number x. 

(ii) Inverse hyperbolic cosine: 

cosh-1 x = In(x +~) for x ~ 1. 
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Domain: (-"",""), Range: (-"","") 
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(iii) Inverse hyperbolic tangent: 

tanh-1 x = tlnG ~ :) for Ixl < 1. 

(iv) Inverse hyperbolic cotangent: 

coth-1 X = tIn --( 1 + x) 
I-x 

for Ixl > 1. 

(v) Inverse hyperbolic secant: 

( 1 + fi-=-?) sech-1 x = In x for any x satisfying 0 < x ::; 1. 

(vi) Inverse hyperbolic cosecant: 

cschx = In(~ + ~) for x oF o. 

The graphs of the six inverse hyperbolic functions are shown in Figure 
1.14. Note that the graphs of sinh-I, tanh-I, coth-1, and csch-1 are obtained 
by reflecting the graphs of sinh, tanh, coth, and csch, respectively, about the 
line y = x; the functions sinh, tanh, coth, and csch are one-to-one (i.e., any 
straight line parallel with the x-axis intersects the graph of the function in at 
most one point) and hence are invertible. The hyperbolic cosine and the 
hyperbolic secant are not one-to-one functions and hence are not invertible. 
However, the portions of these functions whose graphs lie to the right of the 
y-axis are one-to-one and hen.ce invertible; the inverses of these portions of 
cosh and sech are denoted by cosh -1 and sech -1. 

To verify that 

sinh -1 x = In(x +.JX2+1) for any real number x, 

we only have to set 

eX _ e-X 
f(x) = sinh x = 2 

and 

g(x) = sinh-1 x = In(x + .JX2+1) 
and show that f[g(x)] = g[f(x)] = x. But this is a calculation that offers no 
difficulties. Another approach is to let y = sinh-1 x and so 

Multiplying both sides of the latter equation by eY, we get 

2xeY = (eYf - 1 or (eY)2 - 2x(eY) - 1 = o. 
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Thus, 

2x+J4x2+4 P+1 
eY = - = X + X 2 + 1. 2 -

Since eY is always positive and x - P+1 is always negative, the solution 
must be 

eY=x +P+1. 
Taking logarithms on both sides of the latter equation, we obtain 

y = In(x + P+1). 
Therefore, 

sinh-1 x = In(x + P+1). 
The other formulas for inverse hyperbolic functions are just as simple to 

verify. 

5. Miscellaneous Examples 

1. Let n be a positive integer and consider the sum 

1 1 1 M =-+-+ ... +-. 
2 3 n 

Then M cannot be an integer. 
Indeed, of the fractions making up the sum M we select that one whose 

denominator contains the highest power of 2 as a factor; there can only 
be one such term. Now, if we rewrite each term of the sum M so as to have 
as denominator the least common multiple of all the denominators, then 
each of them, except the selected fraction, will acquire the fractor 2 in its 
numerator, but the selected fraction will acquire only odd factors. Therefore, 
when the fractions are added in this form, the resulting numerator will be the 
sum of several even numbers and exactly one odd number, but the (common) 
denominator will be even. Hence, the numerator will be odd and the deno­
minator even, and so the sum M cannot be an integer. 

2. We know by Proposition 1.7 that the sum 

1 1 1 
1+-+-+···+-

2 3 n 

is greater than any previously selected number N, if n is taken sufficiently 
large. However, if in the sum 

1 1 1 
1+-+-+···+-

2 3 n 
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we discard every term that contains the digit 9 in its denominator, then the 
sum of the remaining terms, for any n, will be less than 80. 

Indeed, let nk denote the number of undeleted fractions between l/lOk and 
l/lOk+l. If the fraction l/q, lying between these two fractions, is one of the 
undeleted numbers, then of the numbers 

1 1 1 1 1 
10q' lOq+1' 10q+2' ... , lOq+8' 10q+9 

(all of which lie between l/lOk and 1/10k+l), only the final fraction will be 
deleted when those containing a digit 9 in the denominator are crossed out. 
If l/q is one of the deleted numbers, then all of the additional fractions 

1 1 1 
lOq' 10q + l' ... , lOq + 9 

will also be deleted. It follows that 

Of the fractions 1, t, t, ... , -k,~, only ~ is deleted; hence no = 8 and 

n1 = 8·9 = 72, 

n2 = 8.92, 

nk = 8 ·9k • 

Now consider, for n < 10m+1, the sum 

We add up the sum 

1 1 1 
1 + 2" + "3 + ... + 10m +1 - l' 

after deleting all those fractions having a digit 9 in the denominator. Then we 
get 
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with 88 ... 8 denoting the number made up of m + 1 digits 8. If we now 
replace each sum in parentheses by the product of the largest term contained 
therein and the number of terms in those parentheses, we obtain 

( 9 92 9m- l 9m ) 
= 8 1 + 10 + 102 ~ ... + lOm-l + 10m 

1 - (9/10)m+1 1 
= 8· 1 _ 9/10 < 8· 1 _ 9/10 = 8·10 =:= 80. 

This completes the proof of what was claimed at the start. 

3. For any positive integer n the sum 

111 
1 + 22 + 32 + ... + n2 

is situated between the values 

Letting n --+ 00, we readily see that 

1 1 71: 2 

1 + 22 + 32 + ... = 6' 

Before commencing the proof, we recall two results of algebra: the first of 
these is De Moivre'sJormula and the second is Vieta'sJormulas. 

De Moivre's Formula: Let n be a positive integer, oc any real number and 
i = J=l; then 

(cos oc = i sin oc)" = cos noc + i sin noc. 

Vieta's Formulas: Let the polynomial of degree n, 

have the roots Xl' X2' ••• , X n • Then for following relationship exists between 
the coefficients and the roots of the polynomial: 

Using De Moivre's formula and the binomial theorem, we have 
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cosna + isinna = (cos a + i sin a)n 

= (cosna - (;)cosn-2a'sin2a + (:)cosn-4 a'sin4 a - .. -) 

+ i( G)cosn- 1 a' sino: - (~)cosn-3 0:' sin3 a + .. ) 

and so 

and 

sin no: = (~)cosn-lo:.sino: - (~)cosn-30:.sin3a + .... 

Replacing n by 2n + 1 in the foregoing formula for sin no:, we get 

sin(2n + 1)0: = (sin2n+1 0:) ( en; 1) cot2n 0: - en; 1) coen - 2 0: + .. )­

Thus, it follows that for 

n 2n nn 
0: =---

2n + l' 2n + l' 2n + 1 

the equation 

( 2n + 1) (2n + 1) 1 cot2n 0: - 3 cot2n- 2 a + ... = 0 

holds. Therefore, the numbers 

n 
cot2---

2n + l' 
are roots of the polynomial 

2n 
cot2---

2n + l' 
nn 

cot2---
2n + 1 

en ; 1) xn _ en ; 1) x n - 1 + ... = 0 
of degree n. But the sum of the roots of 

is equal to the negative of the coefficient of xn- 1 ; that is, 

33 

n 2n nn n(2n - 1) 
coe -- + cot2 -- + ... + coe -- = . (1.36) 

2n + 1 2n + 1 2n + 1 3 
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Since csc2 a = cotla + 1, equation (1.36) implies 

n 2n nn 
csc2--+ csc2 -- + ... + csc2--

2n+l 2n+l 2n+l 
2n(n + 1) 

3 
(1.37) 

But sin a < a < tan a for 0 < IX < n/2 [e.g., see (2.9) in Chapter 2] and so 

1 n 
cot IX <;X < CSCIX for 0 < a < 2". 

It now follows from (1.36) and (1.37) that 

n~n-l) n ~ M 
--- = cotl --+ cot2 -- + ... + cotl--

3 2n + 1 2n + 1 2n + 1 

< (2n: 1 r + Cn2: 1 r + ... + (2nn: 1 r 
n 2n nn 

< csc2 -- + csc2 -- + ... + csc2--
2n + 1 2n + 1 2n + 1 

By dividing all terms of (1.38) by (2n + 1)2/n2, we obtain 

~. 2n - l.n2 _ (1 __ 1_)(1 __ 2_).n2 
2n + 1 2n + 1 6 2n + 1 2n + 2 6 

111 
<1+-+-+···+-

22 32 n2 

as was to be shown. 

(1.38) 

2n(n + 1) 

3 

REMARK. See Proposition 7.19 (in Chapter 7) for another treatment of this 
sum. 

4. Let j and n be positive integers and put 

Sj = 1 j + 2j + 3j + ... + nj. 

Then 

(k + 1) (k + 1) (k + 1) k+1 1 S1 + 2 S2 + ... + k Sk = (n + 1) - (n + 1). (1.39) 

Indeed, 
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by summing p from 1 to n in the identity 

(k + 1) (k + 1) (k + 1) (p + 1)k+l = pk+1 + 1 pk + 2 pk-l + ... + k P + 1. 

However, 

n n 
L (p + l)k+l - L pk+l = (n + l)k+1 - 1 
p=l p=l 

and 

( k + 1) ( k + 1 ) m = k + 1 _ m for m = 1,2, ... , k. 

REMARK. The recursion formula (1.39) produces the following set of values: 

n(n + 1) n(n + 1)(2n + 1) 
Sl = 2 ,S2 = 6 ,S3 = Sf, .... 

5. Let nand j be positive integers. Then 

_1_ni +1 < Ii + 2i + Y + ... + ni < (1 + ~)i+l_l_ni+1. (1.40) 
j+l n j+l 

Indeed, let T = xi + x i - 1 + '" + x + 1; if x > 1, then the first term is the 
largest, but if 0 < x < 1, then the last term is the largest. Hence, 

(j + l)xi > T > j + 1 if x> 1 

and 

(j+ l)xi< T<j+ 1 ifO<x< 1. 

If both sides of these inequalities are multiplied by x-I, it is found that for 
x =I 1 

(j + l)xi(x - 1) > xi+1 - 1 > (j + l)(x - 1) 

[note that T(x - 1) = xi+1 - 1]. Assume now that x = p/(p - 1); then we 
find 

(j + l)pi pi+1 - (p - l)i+1 (j + l)(p - l)i 
(p _ l)i+1 > (p _ l)i+1 > (p _ 1)i+1 

Similarly, if we assume that x = (p + 1 )/p, we obtain 

(j + l)(p + l)i (p + l)i+1 _ pi+1 (j + l)pi 
pi+1 > pi+1 > pi+1 

It follows that 

(p + l)i+1 _ pi+1 > (j + l)pi > pi+1 _ (p _ l)i+1, 

or, letting p successively assume the values 1, 2, 3, ... , n, 
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2i+1 - Ii+1 > (j + l)Ii > 1i+1 - 0, 

3i+1 - 2i+1 > (j + 1)2i > 2i+1 - 1i+1, 

4i+1 _ Ji+1 > (j + l)Ji > Ji+1 _ 2i+1, 

(n + 1)i+1 - ni+1 > (j + l)ni > ni+1 - (n - 1)i+1. 

If these inequalities are added together we get 

(n + 1)i+1 - 1 > (j + l)(li + 2i + 3i + ... + ni) > ni+1. (1.41) 

But (1.41) is easily seen to be equivalent to (1.40). 

REMARK. A particular consequence of inequality (1.40) is the result 

. Ii + 2i + 3i + ... + ni 1 
!~~ ni+1 = j + l' (1.42) 

6. Show that the sum 

Si = Ii + 2i + 3i + ... + ni, 

where n is an arbitrary positive integer and j is an odd positive integer, is 
divisible by Sl' 

Indeed, Sl = n(n + 1)/2 and we first note that for oddj, ai + bi is divisible 
by a + b. Two cases are to be considered. 

Case 1: Suppose n is even. Here the sum Si is divisible by n + 1 because 
each of the sums 

Ii + ni, 2i + (n - l)i, 3i + (n - 2)i, ... , GY + (~ + 1 Y 
is divisible by 

1 + n = 2 + (n - 1) = 3 + (n - 2) = ... = ~ + G + 1). 

The sum Si is also divisible by n/2 because 

Ii + (n - l)i, 2i + (n - 2)i, Ji + (n - ])i, 

are divisible by n/2. 
Case 2: Suppose n is odd. Here the sum Si is divisible by (n + 1)/2 because 

Ii + ni, 2i + (n - l)i, 3i + (n - 2)i, 

(~)i (~)i (~)i ... , 2 + 2 ' 2 

are all divisible by (n + 1)/2. Also, Si is divisible by n because 
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(n - 1)i (n + 1)i . ... , -2- + -2- , nl 

are all divisible by n. 

7. In the equality N = Nj2 + Nj4 + Nj8 + ... + Nj2n + ... , where N is 
an arbitrary positive integer, every fraction may be replaced by the nearest 
whole number: 

N = (~) + (~) + (~) + ... + (~) + .... 

Indeed, it is readily seen that (a) = [a + ~]; here (a) denotes the nearest 
whole number to a and [a + ~] denotes the integer part of a + ~, that is, the 
greatest integer less than or equal to a + t. Hence, we can put the equation 
which we wish to derive into the following form: 

N = [~ + ~J + [~ + ~J + [~ + ~J + .... 

Now let 

N = an· 2' + a.-I· 2.-1 + ... + a1 ·2 + ao 

(a., a.-I' ... , aI' ao are either 0 or 1) be the expansion of N in powers of 2 as 
in the binary number system. We then have 

- + - = a· 2.-1 + a .2.- 2 + ... + a + ---[ N 1J [ ao + 1J 
2 2 • .-1 1 2 

- + - = a· 2.- 2 + a ·2'- + ... + --- + ~ [ N 1J [ 3 a1 + 1 ao] 
4 2 • .-1 2 4 

[ N ~] _ [ a'_ l + 1 a.- 2 ... ao] 
2' + 2 - a. + 2 + 4 + + 2' 

and 
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recalling that the ai are either 0 or 1. Hence, we obtain 

[~ + ~J + [~ + ~J + ... + [2~1 + ~J + ... 

= an{2n-1 + 2n- 2 + ... + 1 + I} 

+ an- 1 {2n-2 + 2n- 3 + ... + 1 + I} 

+ ... + a1 {I + I} + ao 

= an' 2n + an- 1 ·2n - 1 + ... + a1 ·2 + ao 

=N 

which is what we wished to verify. 

8. The Cauchy-Schwarz Inequality: Let a1, a2, ... , an and b1, b2, ... , bn be 
any real numbers. Then 

(a 1 b1 + a2b2 + ... + anbn)2 

:::; (ai + a~ + ... + a;)(bi + b~ + ... + b;) 
(1.43) 

with equality holding only if alib1 = a2/b2 = ... = an/bn. 
Indeed, 

(xa 1 + b1)2 + (xa2 + b2)2 + ... + (xan + bn)2 = AX2 + 2Bx + C, (1.44) 

where 

A = ai + a~ + ... + a~, 
C = bi + b~ + ... + b;. 

By (1.44), AX2 + 2Bx + C is the sum of squares and so AX2 + 2Bx + C ;;::: ° 
for any real number x. Hence, putting x = - B/ A, we get 

B2 B AC - B2 
A - - 2B - + C = > O. A2 A A-

Since A> 0, we obtain AC - B2 ;;::: ° or B2 :::; AC and so (1.43) is seen to 
hold. The equality sign in (1.43) is possible only if 

9. Let c1 , C2' ... , en be positive real numbers. Then, for any real numbers 
t1> t2, ... , tn we have 

(C1t1 + C2t2 + ... + cntn)2 

:::; (c 1 + C2 + ... + cn)(c1ti + C2t~ + ... + cnt;). 
(1.45) 

Indeed, putting ak = yfc; and bk = yfc;. tk for k = 1,2, ... , n in (1.43), we 
get the desired inequality (1.45). 
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REMARK. Putting Cl = t, C2 = t, and C3 = ~, inequality (1.45) yields 

(ttl + tt2 + ~t3)2 ~ ttf + tt~ + ~t~ 

for any real numbers t 1, t 2, and t3. 

10. We have the identity 

a + b(l + a) + c(l + a)(l + b) + d(l + a)(1 + b)(1 + c) 

39 

+ ... + q(I + a)(1 + b)···(1 + p) (1.46) 

= (1 + a)(1 + b)(1 + c)· ··(1 + q) - 1. 

Indeed, adding 1 to the left side, we can write 

[(1 + a) + b(I + a)] + c(I + a)(l + b) + d(I + a)(1 + b)(1 + c) 

+ ... + q(I + a)(1 + b)··· (1 + p) 

= [(1 + a)(1 + b) + c(l + a)(1 + b)] + d(l + a)(1 + b)(l + c) 

+ ... + q(I + a)(l + b)··· (1 + p) 

= (1 + a)(l + b)(1 + c)(1 + d) 

+ ... + q(I + a)(1 + b)··· (1 + p) 

= (1 + a)(l + b)(1 + c)(1 + d)···(1 + p) 

REMARKS. If a = b = c = ... = q, then 

a + a(l + a) + a(I + a)2 + a(l + a)3 + ... + a(I + ar1 = (1 + a)n - 1, 

where n is the number of integers a, b, ... , q; writing 1 + a = x, we get 

(x - 1)(1 + x + x 2 + ... + xn- 1 ) = xn - 1 

which is the formula for the sum of a geometric progression. 
Letting a = 1, b = 2, c = 3, ... , q = n, we get 

1· I! + 2· 2! + 3·! + ... + n· n! = (n + I)! - 1 

and putting a = (n + l)jI, b = (n + 1)/2, c = (n + 1)/3, ... , q = (n + l)lk, we 
obtain 

11. Let a > b > 0 and n be a positive integer. Then 

1 + a + a2 + ... + an- 1 + an 1 + b + b2 + ... + bn- 1 + bn 
------:,-----------;;---------:::----.-- > (1.47) 

1 + a + a2 + ... + an 1 1 + b + b2 + ... + bn 1 

Indeed, since a > b > 0, we have 

1 + all 1 1 1 + b aZ bZ 

~ = aZ + a < b2 + b = -v- or 1 + a > 1 + b' 
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1 + a + a2 a2 b2 1 + b + b2 
--,------ = 1 + -- > 1 + -- = -----=--

1 + a 1 + a 1 + b 1 + b2 

a3 b3 

--'--1-+-a-+-a-"'2 > 1 + b + b2' 

1 + a + a2 + a3 a3 b3 
--,-----::;-- = 1 + > 1 + --------=-

1 + a + a2 1 + a + a2 1 + b + b2 

and so forth. 

12. We have cos(sin x) > sin (cos x) for all real numbers x. 
Indeed, using the identity cos(A + B) = (cos A)(cos B) - (sinA)(sinB), we 

get 

or, 

and so 

But 

cos(~ + cosx) = (cos~)(COSx) - (sin~)sin(COSX) 

= -(sin~)sin(COSX) = -sin(cosx), 

sin(cosx) = -cos(~ + cos x ). 

cos(sin x) - sin (cos x) = cos(sin x) + cos (~ + sin x). 

A+B A-B 
cosA + cosB = 2cos-2-·cos-2- and cosA = cos(-A), 

and so 

( . . ) sin x + nl2 + cosx -sinx + nl2 + cos x 
cos smx) - sm(cosx = 2cos 2 . cos 2 . 

Now, 
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and 

Icos X + sinxl = (cos2 X + 2{ cos X} {sin x} + sin2 X)1/2 

= Jl + sin2x ::;;.j2 

Icosx - sinxl = (cos2 X - 2{cosx} {sinx} + sin2 X)1/2 

= Jl - sin2x ::;;.j2. 
Since nl2 = 1.57 ... and .j2 = 1.41 ... , we have 

n nl2 + cosx + sin x n nl2 + cosx - sin x 0 
"2 > 2 > 0 and "2 > 2 > . 

Therefore, 

nl2 + cosx + sin x nl2 + cosx - sin x 0 
cos 2 >0 and cos 2 > 

and hence cos(sin x) - sin (cos x) > O. 

EXERCISES TO CHAPTER 1 

1.1. Show that (1 - 1/n)-n, for n = 2, 3, ... , is a decreasing sequence tending to e. 
[Hint: If n = k + 1, then (1 - 1/ntn = (1 + 1Ik)k+l.] 

1.2. Show that 

and 

. .. . . sinh t(n + l)x 
smhx + smh2x + smh3x + ... + smhnx = (smhtnx) . h 1 

sm 2X 

sinh(n + t)x 
t + cosh x + cosh2x + cosh3x + ... + coshnx = 2' h 1 

sm 2X 

[Hint: We have 

sinh .l(n + l)x e(n+l)x/2 _ e-(n+1)x/2 
2(sinhtnx) 2 = (e nx/2 _ e-nx/2 )------:c=------:::7.;;---

2 sinh tx e x /2 - e x/2 

e(n+1)x _ eX + e-nx - 1 

eX - 1 

eX(enx - 1) e-X(e-nx - 1) 

eX - 1 e X - 1 

n n ( n ) 
= r~ erx - r~ e-rx = 2 r~ sinh rx 

and so forth.] 

1.3. If n = a + b + c + ... + Z, where a, b, c, ... , Z are positive integers, then 

41 
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[Hint: We have (a + b + c + ... + z)' = n·. Each term of the multinomial 
expansion of the left-hand side is positive and less than the sum of all terms. 
Hence, the particular term 

n' __ · __ aabbcc . .. z' ::;; n·.] 
alb! c! ... z! 

1.4. Let ak > 0 and bk > 0, for k = 1,2, ... , n. Verify that 

(ai + bi)1/2 + (a~ + b~)1/2 + ... + (a; + b;)1/2 

~ [(a l + a2 + ... + a.)2 + (b l + b2 + ... + b.fJi/2• 

(1.48) 

[Hint: Let Po be the point with coordinates (0,0), Pl with coordinates 
(a l ,bd, P2 with coordinates (a l + a2,bl + b2), ... , and p. with coordinates 
(a l + a2 + ... + a., bl + b2 + ... + b.). Then 

(ai + bi)1/2 is the distance between Po and Pl , 

(a~ + bDl /2 is the distance between Pl and P2 , 

(a; + b;)1/2 is the distance between p.- l and p., 

while [(al + a2 + ... + a.)2 + (b l + b2 + ... + b.)2]1/2 is the distance between 
Po and p.. But the shortest path between Po and p. is the line segment 
connecting Po and p •. ] 

1.5. (i) Is inequality (1.48) valid if ak and bk are not positive? (ii) Under what condi­
tions will we have equality in inequality (1.48)? 

1.6. Let A = (1/2)(3/4)(5/6)··· (9999/10,000). Verify that A < 1/100. 
[Hint: Put B = (2/3)(4/5)(6/7)·· . (10,000/10,001). Then A < B and so A 2 < 

AB = 1/10,001.] 

1.7. Show that 
1352n-1 1 _._._ ... _- < ----=== 
246 2n ~. 

[Hint: It is clear that 

1·3 < 22 , 3·5 < 42, ••• , (2n - 1)(2n + 1) < (2n)2. 

Thus, 

1.8. Show that 

1·3·5···(2n - 1) In+l 
--,......,--:--- > ---. 

2·4·6···2n 2n + 1 

[Hint: If a oF b, then a + b > 2# and so k + (k - 1) > 2Jk(k - 1); hence, 
(2k - 1)/2(k - 1) > Jk/(k - 1). For k = 2, 3, ... , n + 1 we get 

2n - 1 > J n , 2n + 1 > In + 1 . 
2(n - 1) n - 1 2n n 
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Multiplying these n inequalities together we get 

and so 

_1_' 3_' _5 '_"_(2_n_+_l) > In+l 
2·4·6,,·2n 

1· 3·5,,· (2n - 1) In+l 
-2-'-4-' -6 -,,-. 2-n- > -2-n-+-l .] 
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REMARK. Since j0+1)/(2n + 1) > j0+1)/(2n + 2) > 1/2Jn+l and by 
the result in Exercise 1.7, we may state that 

1 1 . 3 . 5 " . (2n - 1) 1 
~> >~. 

y 2n + 1 2·4·6" . 2n 2y n + 1 

1.9. Real numbers ai' a2,,,., an' not all zero, are given, and Xl> X2, "., Xn are real 
variables satisfying the equation al Xl + a2x 2 + '" + anxn = 1. Show that the 
least value of XI + x~ + ... + x; is 

(ar+a~+"·+a;rl. 

[Hint: By the Cauchy-Schwarz Inequality (1.43), 

(xI + x~ + ". + x;)(ar + a~ + ". + a;) 2 (alx l + a2x 2 + ". + anx n)2.] 

1.10. If 0 < a < X < b, show that 

1 1 1 1 
-+ <-+-. 
X a+b-x a b 

[Hint: We have a - X < 0 and b - x > 0 and so (a - x)(b - x) < O. Hence, 
ab - (a + b)x + x2 < 0, that is, ab < x(a + b - x). It follows that 

1 1 
- > ----,------:----:-
ab x(a + b - x) 

a+b a+b 
or --> .] 

ab x(a + b - x) 

1.11. Let n = 2, 3, " .. Show that 

[Hint: Since 

we have 

1-- =1+-+~, ( 1 )-1 1 A 
2n 2n n2 

where An < t. 

x 2 
(1 - X)-l = 1 + x + --, 

I-x 

( 1 _ ~)-l = 1 + ~ + 1 . 
2n 2n 4n2 - 2n 

But 4n2 - 2n > 4n2 - 2n2 = 2n2 for n > 1. Hence, An < t.] 
1.12. Let the function f be defined for all real x and y, and satisfy the relation 

f(x + y) = f(x)f(y). Show that if f is not identically zero, then f is positive for 
all x and f(O) = 1. Show also that if f is not identically unity, then there is no 
M such that f(x) < M for all x. 
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[Hint: Let y = O. Then f(x) = f(x)f(O) for all x. Hence, f(O) = 1. Put x = Y = 

tao Then f(a) = [f(ta)]2 ~ O. If f(a) = 0, then f(x) = 0 for all x (put x = a, 
y = x - a). Suppose f(x) < M for all x, then f( -x) = [f(X)]-l > M, a contra­
diction unless f(x) = 1 for all x.] 

1.13. Iflog.n = x and logen = y, where n oF 1, show that 

x - y 10gbC -IOgba 

x + y 10gbC + 10gb a 

[Hint: We have 

log.n -Iogen (10gb n)(log. b) - (10gb n)(loge b) log.b -Iogeb 

log. n + loge n (10gb n)(log. b) + (10gb n)(loge b) log. b + loge b 

= I/(1ogb a) - 1/(logb c) = 10gb c - 10gb a.] 

1100gb a) + I/(logb c) 10gb C + 10gb a 

1.14. If x = log. (bc), y = 10gb (ca) and z = loge (ab), show that x + y + z = xyz - 2. 
[Hint: We have 

and 

(log. b + log. C)(IOgb C + 10gb a) 

= (log. b)(logb c) + (log. b) (10gb a) + (log. C)(IOgb c) + (log. C)(IOgb a) 

= (log. c) + 1 + (log. c) (10gb c) + 10gb c 

{(log. c) + 1 + (log. c) (10gb c) + (10gb c)} (loge a + loge b) 

= (loge a)(log. c) + loge a + (loge a)(log. C)(IOgb c) + (loge a) (10gb c) 

+ (logeb)(log.c) + logeb + (loge b)(log. C)(IOgb c) + (loge b) (10gb c) 

= 1 + loge a + 10gbC + 10gb a + log.b + logeb + log.c + 1 

= log. (bc) + 10gb (ca) + loge (ab) + 2.] 

1.15. If Cr is the coefficient of xr in the expansion of (1 + x)n, where n is a positive 
integer, and fer) = COCr + C 1 Cr +1 + ... + Cn-rCn, show that 

. (2n)! 
(1) fer) = ( + )' ( _ )" n r. n r. 

.. ~~ 
(n) cof(O) + cd(l) + ... + cJ(n) = --. 

(n)! (2n)! 

[Hint: (i) Since Cr = Cn - n 

= (1 + x)"(l + x)" = (1 + x)2n. 

The coefficient of xn+r on the left-hand side is fer) while the coefficient of xn+r in 
(1 + x)2n is (2n)!/(n + r)! (n - r)! and (i) is established. 

(ii) It has been show in (i) that 

(1 + x)2n = terms up to x n- 1 + f(O)x n + f(l)x n+1 + ... + f(n)x 2n. 
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Multiplying by (1 + xt = C. + C.-1X + ... + cox·, it is clear that 

cof(O) + cJ(1) + ... + c.J(n) 

is the coefficient of x2n in the expansion of(1 + x)3n. This being 

(3n)! 

(2n)! (n)!' 

the validity of (ii) follows.] 

1.16. Show that, if a and b are positive integers and b > a, 

. (1 1 1 1) b lIm --+--+--+ ... +- =In-. 
n~oo an + 1 an + 2 an + 3 bn a 

[Hint: We have 

( 1 1 1 ) lim 1 + - + - + ... + - - In(bn + 1) = C 
n~oo 2 3 bn 

and 

. ( 1 1 1 ) lIm 1 + - + - + ... + - - In (an + 1) = C, 
n~oo 2 3 an 

45 

where C is Euler's constant. Subtracting these equations, the required result 
appears.] 

1.17. If 0 < x < 1 and 0 < y < 1, show that 0 < x + y - xy < 1. 
[Hint: Since 0 < (x - 1)(y - 1) < 1, we have 0 < xy - x - y + 1 < 1 and so 

-1 < xy - x - y < 0 or 1 > -xy + x + y > 0.] 

1.18. Show that the range of the function y = (x2 + X + 1)/(x + 1) does not contain 
the open interval (-3,1). 

[Hint: We have x 2 + (1 - y)x + 1 - y = o. For x to be real 

(1 - yf ~ 4(1 - y) or (y - 1)(y + 3) ~ o. 
If y lies between -3 and 1, y + 3 > 0, and y - 1 < 0 giving (y - 1)(y + 3) < 0 
and the above inequality (1 - y)2 ~ 4(1 - y) is not satisfied. Hence, there is no 
real value between - 3 and 1.] 

1.19. Let E(x) = limn~oo (1 + x/n)·. Show that E(x)· E(y) = E(x + y). 
[We have, using Proposition 1.12, 

E(x). E(y) = lim (1 + ~)n . lim (1 + ~)n = lim ((1 + ~) (1 + ~))n _00 n _00 n _00 n n 

. ( x + y xy)n = lIm 1 + -- + 2"" = E(x + y).] 
n .... co n n 

1.20. Estimate the magnitude of the sum 

1 1 1 1 
1 + -J2 + -J3 + -j4 + ... + -';(=1,=000=,=000= 
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[Hint: Let k be a positive number. Then 

1 
fi+l - jk = fi+l jk k+1+ k 

and so 

1 
2fi+l - 2jk < jk < 2jk - 2Jk=l. 

Hence, 

1 2J3 - 2~ < ~ < 2~ - 2, 

1 
2}4 - 2J3 < J3 < 2J3 - 2~, 

1 
2)5 - 2}4 < }4 < 2}4 - 2J3, 

1 
2Jn"+l - 2Jn < In < 2Jn - 2Jn"=l 

and we get upon addition 

111 1 
2Jn"+l- 2~ < - + - + - + ... + - < 2Jn - 2. 

~J3}4 In 
Since 2~ < 3, and In"+l > In, it follows that 

1 1 1 1 2Jn - 2 < 1 + - + - + - + ... + - < 2Jn - 1. 
~J3}4 In 

But n = 1,000,000 and so 

1 1 1 1 
1998 < 1 + h + r; + fA + ... + < 1999.] 

...;2 ...;3...;4 J1,000,000 

1.21. Show the inequality 

1 1 1 
2Jn"+l - 2';;' < C + Fm+l + ... + r.:. < 2Jn -2~ 

...;m m+1 ...;n 

and verify that 

1 1 1 
1800 < I1ni\i\il + f1(\i\i\1 + ... + < 1800.02 . 

...; 10,000 ...; 10,001 Jl,OOO,OOO 

[Hint: See the hint to Exercise 1.20.] 

1.22. Let a > 1 and b > 1. Show that 

log,. b + 10gb a ~ 2. 
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[Hint: If m > 0 then m + l/m ~ 2 with equality if and only if m = 1. Indeed, 
(m - 1)2 = m2 - 2m + 1 ~ 0 and division by m gives the desired result. But 
10gb a = l/(Iog. b).] 

1.23. Show that l/Jn < In+l- In=l for n ~ 1. 
[Hint: We have 

(In+l + In=l)2 = 2n + 2(n2 - 1)1/2 < 2n + 2(n2)1/2 = 4n 

and so In+l + In=l < 2Jn. Thus, 

1 1 In+l - In=l -- < = --'--------,-----'-------
2Jn In+l + In=l 2 

and the desired result follows.] 

1.24. Let a and b denote numbers larger than zero. The arithmetic, geometric, and 
harmonic mean of a and b are, respectively, 

a+b 
A=--

2 ' G=fo, 
2ab 

and H = a + b' 

[Observe that a - A = A - b, a/G = G/b, l/a - l/H = l/H - lib, and AH = 
G2.] If 0 < a < b, verify that 

(i) A < G < H, 
(ii) A - G > G - H, 

(iii) A - G < (b - a)2/8a, 
(iv) A - H < (b - a)2/4a. 

[Hints: We have 

A - G = t(Ja - .}b)2 > 0 and H - G = - fob (Ja - Jb)2 < 0, 
a+ 

proving (i). Next we note that 

A - 2G + H = A - G - (G - H) = (Ja - Jb)4 > 0, 
2(a + b) 

proving (ii). From 

and the assumption that a < b, we obtain (iii). Finally, from 

A-H= (a-W 
2(a + b) 

and the assumption a < b we get (iv).] 

1.25. Show that if x ~ 0, then 

1 1 + 2x + ... + nx·-1 
-< <1 
n - 1 + 22X + ... + n2x· 1 -

1 + 2x + ... + nx·-1 
and - < 1:::;; n. 

n - n + (n - l)x + ... + x· 
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[Hint: Let alibi, a2/b2' ... , aJb. be n fractions with positive denominators. 
Then the fraction 

a l + a2 + ... + a. 
bl + b2 + ... + b. 

is contained between the largest and the smallest of these fractions (see Worked 
Example 1 following Proposition 7.15 in Chapter 7). The inequalities in ques­
tion now follow immediately.] 

1.26. Let a, b, e, and d be positive numbers. Show that 

(a2 + a + l)(b2 + b + l)(e2 + e + 1)W + d + 1) 
abed ~ 81. 

[Hint: If a > 0, then a + (l/a) ~ 2.] 



CHAPTER 2 

Limits and Continuity 

1. Limits 
Let x be any real number. By the absolute value of x, in notation lxi, we mean 
x if x ~ 0 and - x if x ::;; o. If we picture x as a point on the number line, then 
Ixl can be viewed as the distance between the points 0 and x. It is obvious 
that I-xl = Ixl· 

Proposition 2.1. Let a and b be any real numbers. Then 

la + bl ::;; lal + IhI- (2.1) 

PROOF. If we add the (trivial) inequalities 

-Ial ::;; a::;; lal and -Ibl::;; b::;; Ibl, 

we get 
-(lal + Ibl) ::;; a + b ::;; lal + Ibl; 

but the inequality I A I ::;; B is clearly equivalent to the inequality - B ::;; A ::;; B 
for any two real numbers A and B. D 

COMMENTS. The inequality in Proposition 2.1 is sometimes called the triangle 
inequality. We can use it to derive some other useful inequalities. For example, 
for any real numbers a and b 

la - bl = la + (-b)1 ::;; lal + I-bl = lal + IhI- (2.2) 

Moreover, since a = a + b - b, 

lal ::;; la + bl + I-bl = la + bl + Ibl 
or 
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lal - Ibl ~ la + bl. 

By interchanging the role of a and b in the last inequality we obtain 

Ibl - lal ~ la + bl· 

Thus, we see that 

Iial -Ibll ~ la + bl· 

On the other hand, since a = a - b + b, we get 

lal ~ la - bl + Ibl 
or 

lal - Ibl ~ la - bl· 

By interchanging the role of a and b in the last inequality we get 

Ibl - lal ~ Ib - al = la - bl· 

Therefore, 

Iial - Ibll ~ la - bl· 

Combining inequalities (2.1) to (2.4) we get 

Iial -Ibll ~ la ± bl ~ lal + Ibl 
for any real numbers a and b. 

Another simple consequence of (2.1) is that 

la + b + cl ~ lal + Ibl + Icl for any real numbers a, b, and c. 

(2.3) 

(2.4) 

(2.5) 

Indeed, la + b + cl ~ lal + Ib + cl ~ lal + Ibl + Icl. Instead of only taking 
three summands, we could of course have taken any finite number of 
summands. 

Proposition 2.2. Let a and b be any real numbers and let max {a, b} and 
min {a, b} denote the larger and the smaller of the two numbers a and b, 
respectively. Then 

a + b + I a - b I {b} 2 = max a, 

and 

a + b -Ia - bl _ . { b} 
2 - mm a, . 

PROOF. Let x be any real number. Then 

x + Ixl 
if x ~ 0, 

if x ~ 0 

---=x 
2 

=0 
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and 

=x 

if x ~ 0, 

if x ~ 0. 
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Replacing x by a - b and then adding a to both sides gives what we have set 
out to show. 0 

DISCUSSION. Geometrically, Ix - al means the distance between the two points 
a and x. Let b (delta) be larger than zero; then Ix - al < b means that 
a - b < x < a + band Ixl < b means that -b < x < b for in the latter case 
a = 0. Let a < b; then the inequality a < x < b can be expressed in the form 
Ix - AI < B, where A = (a + b)/2 and B = la - bl/2 (here A is the midpoint 
between the points a and band B is half the distance between the points a 
and b). 

If we know the curve y = f(x), then the curve y = I f(x) I is easy to picture. 
To obtain the curve y = I f(x) I from the curve y = f(x), we leave unchanged 
that portion of the curve which is above the x-axis, but reflect through the 
x-axis the portion which is below the x-axis. For example, y = x - 2 is a 
straight line with slope 1 intersecting the x-axis at x = 2; the curve y = Ix - 21 
consists of two branches: for x ~ 2 we have y = x - 2, but for x ~ 2 we have 
y = -(x - 2). Figure 2.1 shows the curve y = Ix - 21. 

The set of points (x, y) satisfying the equation I x I + I y I = 1 is the closed 
curve that we get by connecting consecutively the points (1,0), (0, 1), (-1,0), 
(0, -1), and (1,0) by line segments; the shape of the figure is a diamond. The 
set of points (x, y) satisfying the equation x - Ixl = y - Iyl consists of all 
points making up the first quadrant, that is, all (x, y) satisfying x ~ ° and 
y ~ 0, and the points of the line y = x in the third quadrant. 

To find the smallest value of 

f(x) = Ix + 21 + Ix - 11 + Ix - 31 

y 

3 

+y jx-2j 

----~--~--~--------------~x 
1 2 3 4 5 

Figure 2.1 
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y 

8 

~y IX+21 

4 

2 

--~--+----'---7 x 
-2 2 

Figure 2.2 

+ Jx - 11 
+ Jx - 3J 

we proceed as follows. If x satisfies - 2 ::;; x ::;; 3, then f(x) = 5 + Ix - 11 
(because Ix + 21 + Ix - 31 = 5 when x is between - 2 and 3); but Ix - 11 ~ ° 
with equality precisely when x = 1. Hence, f(x) is smallest at x = 1 when x 
ranges over the closed interval [ - 2,3]. For x ~ 3 we have f(x) = 3x - 2 
(because Ix + 21 = x + 2, Ix - 11 = x-I, and Ix - 31 = x - 3 for x ~ 3) 
and for x::;; -2 we have f(x) = -3x + 2 (because Ix + 21 = -(x + 2), 
Ix - 1 = -(x - 1), and Ix - 31 = -(x - 3) for x ::;; -2). Therefore, f(x) ~ 
f(3) = 7 for x ~ 3 and f(x) ~ f( - 2) = 8 for x ::;; - 2. Hence, f(x) is smallest 
at x = 1 for any real number x; f(l) = 5. Among the points x = -2, x = 1, 
and x = 3 the point x = 1 is the median point in the sense that x = - 2 is to 
its left and x = 3 is to its right. The smallest value of 

f(x) = Ix + 21 + Ix - 11 + Ix - 31 

is assumed at x = 1, the median point of the set of three points x = - 2, 
x = 1, and x = :t. Figure 2.2 shows the graph of y = Ix + 21 + Ix - 11 + 
Ix - 31. 

Given the points x = - 2, x = 0, x = 2, x = 3, and x = 10 the median 
point is x = 2 in the sense that the two points x = - 2 and x = ° are to its 
left and the two points x = 3 and x = 10 are to its right. By an argument 
similar to the one above we can conclude that the smallest value of 

g(x) = Ix + 21 + Ixl + Ix - 21 + Ix - 31 + Ix - 101 

is assumed at x = 2, the median of the set { - 2,0,2,3, 1O}. 
To solve the inequality 12x - 71 < x + 1 amounts to finding the set of all 

x for which the graph of y = 12x - 71 is below the graph of y = x + 1. But 
12x - 71 = 2x - 7 for x ~ t and 12x - 71 = -(2x - 7) for x ::;; l For x ~ t 
we have 2x - 7 = x + 1 or x = 8 and for x::;; t we have -(2x - 7) = x + 1 
or x = 2. The set of x satisfying 12x - 71 < x + 1 is the set of x with the 
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y 

x + 1 

12x - 71 

Figure 2.3 

property 2 < x < 8. Figure 2.3 shows the graphs of y = 12x - 71 and y = 

x+1. 

Definition. Let a and b be two points on the number line and a < b; then the 
set of all points x satisfying a < x < b is called an open interval and is denoted 
by (a, b). For any positive 8 (epsilon), the interval (a - 8, a + 8) is called a 
neighborhood of a (or, more precisely, an 8-neighborhood of a). We recall that 
the set of all points x satisfying a ::<s; x ::<s; b is called a closed interval and is 
denoted by [a,b]. 

Definition. Let a function f be defined on some neighborhood of a point a, 
except possibly at the point a itself, and the set of values or range of f be a 
set of real numbers. We say that the limit of f(x) as x tends to a is L, or that 
f(x) tends to L as x tends to a, and write 

limf(x) = L, or f(x) ~ L as x ~ a, 
x-+a 

if, given any 8 > 0, there exists some () > 0, such that If(x) - LI < 8 for any x 
satisfying 0 < Ix - al < (). 

DISCUSSION. A more compact phrasing of the defining condition of a func­
tionallimit is: if for any 8 > 0 and some () > 0 we have If(x) - LI < 8 for any 
x satisfying 0 < Ix - al < (). To say that f(x) does not tend to L as x tends to 
a means: if for some e > 0 and any () > 0 we have If(x) - LI ~ e for some x 
satisfying 0 < Ix - al < (). 

To visualize the defining condition of a functional limit, let us consider the 
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y 

+- y f(x) 
L+E: 

L 

L-E: 

a ____ +-__________ ~~_L ________ ~ X 

a-a a+a 

Figure 2.4 

graph of the function y = f(x). We take any e > 0 and consider the lines 
y = L - e and y = L + e. Then there has to be an open interval (a - b, a + b) 
on the x-axis so that for all points x of this interval, with the exception of its 
midpoint x = a, we have that f(x) is between L - e and L + e. See Figure 2.4. 

To make the defining condition of a functional limit even more accessible, 
picture the function f to be a gun which shoots from the point t on the x-axis 
and the bullet hits at the point (t,f(t)) in the x, y-plane. The strip between the 
lines y = L - e and y = L + e is the target that we are trying to hit. For any 
choice of e > 0 we must find a b-neighborhood of a so that the bullet will hit 
the target. This b-neighborhood of a need not be the largest possible for a 
given e and the point x = a is completely excluded from consideration. 

In the definition of functional limit we speak of "the" limit instead of "a" 
limit; the reason for this is the following Uniqueness Theorem. 

Proposition 2.3. If limx~a!(x) = L and limx~af(x) = M, then L = M. 

PROOF. We shall show that L = M by proving that the assumption L # M 
leads to the absurd conclusion IL - MI < IL - MI. 

Let us assume that L # M. It follows that ~IL - MI > O. Since f(x) ~ L as 
x ~ a, we know that there exists some b1 > 0 such that 

if 0 < Ix - al < b1 , then If(x) - LI < ~IL- MI. 

Since f(x) ~ M as x ~ a, we know that there exists some b2 > 0 such that 

if 0 < Ix - al < b2 , then If(x) - MI < ~IL - MI. 

Let b = min{b u b2 }. For t satisfying 0 < It - al < b we find that 

If(t) - LI < ~IL - MI and If(t) - MI < ~IL - MI. 
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Using (2.1), it follows that 

IL- MI = I[L- f(t)] + [f(t) - MJI:o;; IL- f(t)1 + If(t) - MI 

< !IL - MI + !IL - MI = IL - MI. 

Indeed, we have arrived at the absurdity IL - MI < IL - MI. 
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o 

Definition. The sequence Xl> x 2 , x 3 , .•. of real numbers is said to converge if 
there is a real number x with the following property: For each 8 > 0, there is 
a positive integer no, dependent on 8, such that n > no implies IXn - xl < 8. 

The number x is then called the limit of the sequence Xl' X2' X3' ... and we say 
that the sequence converges to x, or Xn tends to x as n becomes arbitrarily 
large, and we write 

lim Xn = x, or Xn ~ x as n ~ 00. 
n-+w 

REMARKS. If a sequence has a limit, then this limit is unique; we may therefore 
speak of "the" limit of a sequence. Indeed, suppose the contrary: Let Xn ~ x 
and Xn ~ x' as n ~ 00 with x =I x'. Let 8 = !Ix - x'i. Since Xn ~ x as n ~ 00, 

there exists a positive integer n l such that IXn - xl < 8 for n > nl . Similarly, 
since Xn ~ x' as n ~ 00, there exists a positive integer n2 such that IXn - x'i < 
8 for n > n2 . Let no = max{nl,n2}' Then both IXn - xl and IXn - x'i are less 
than 8 for n > no. Thus 

Ix - x'i = I(xn - x') - (xn - x)1 :0;; IXn - x'i + IXn - xl < 28 = Ix - x'i 

which shows that Ix - x'i < Ix - x'i. This contradiction establishes that 
x =x'. 

Proposition 2.4. Let a function f be defined on a neighborhood J of a point a, 
except possibly at the point a itself. Then 

limf(x) = L 

if and only if 

for every sequence Xl' x 2 , x 3 , ••• of points in J such that Xn =I a for any positive 
integer nand Xn ~ a as n ~ 00. 

PROOF. Suppose limx-+af(x) = L. We choose a sequence Xl' x 2 , x 3 , ••• in J 
such that Xn =I a for n = 1, 2, 3, ... and Xn ~ a as n ~ 00. Let 8 > 0 be given. 
Then there is a 6 > 0 such that If(x) - LI < 8 whenever x belongs to J and 
0< Ix - al < 6. Also, there exists an no such that n> no implies 0 < 
IXn - al < 6. Thus, for all n > no, we have If(xn) - LI < 8 and we see that 
limn-+wf(xn) = L holds. 



56 2. Limits and Continuity 

Conversely, suppose limx-+af(x) = L fails. Then there exists some 8 > 0 
such that for any b > 0 there is a point x in the neighborhood J (depending 
on b), for which If(x) - LI ~ 8 but 0 < Ix - al < b. Taking bn = l/n for n = 
1,2,3, ... , we thus find a sequence Xl' x 2 , X3, ••• in J satisfying Xn i= a for 
n = 1, 2, 3, ... , Xn -+ a as n -+ 00, for which limn-+oof(xn) = L is false. This 
completes the proof. D 

REMARK. The following are equivalent statements: 

(i) limf(x) = L. (ii) lim [f(x) - L] = o. 

(iii) lim If(x) - LI = o. (iv) limf(a + h) = L. 
h-+O 

Examples 

1. Show that limx-+o (x/x) = 1. 

SOLUTION. The function f(x) = x/x = 1 for x i= 0, but is undefined for x = O. 
Let 8 > O. Here we must find b > 0 such that 

if 0 < I x I < b, then 11 - 11 < 8. 

Since 11 - 11 = 0, we always have 11 - 11 < 8 no matter how b is chosen; in 
short, any positive number will do for b. 

2. Show that limx-+l (3x - 8) = - 5. 

SOLUTION. Let 8 > O. Here we must find b > 0 such that 

if 0 < Ix - 11 < b, then 1(3x - 8) - (-5)1 < 8. 

But 1(3x - 8) - (-5)1 = 31x - 11. Therefore, the condition 1(3x - 8)­
( - 5)1 < 8 is equivalent to 31x - 11 < 8, that is, I x-II < 8/3. Hence, we must 
determine a positive b such that 

if 0 < I x-II < b, then I x-II < 8/3. 

Obviously, b = 8/3 works. So does any smaller positive value of b. 

3. Show that limx-+3 x 2 = 9. 

SOLUTION. Let 8> O. We must find b > 0 such that 

ifO<lx-31<b, thenlx 2 -91<8. 

But Ix 2 - 91 = Ix - 311x + 31. Let us first require that b ~ 1. Then Ix - 31 < 
b gives that 2 < x < 4 and hence 5 < x + 3 < 7. Now, Ix 2 - 91 = Ix - 31· 
Ix + 31 will be less than 8 if simultaneously Ix - 31 < 8/7 and Ix + 31 < 7; to 
achieve this we only have to take b to be the smaller of the two numbers 1 
and 8/7, that is, b = min{1,8/7}. The graph of b = min{1,8/7} is shown in 
Figure 2.5. 
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o = min{l,E:/7} 
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Figure 2.5 

4. Show that limx _ z [(XZ - x + 18)/(3x - 1)] = 4. 

SOLUTION. We have 

I
x Z 

- x + 18 _ 41 = Ix Z -13x + 221 = Ix _ 21·lx - 111. 
3x - 1 3x ~. 1 3x - 1 

We now require that () ::;; 1. Then Ix - 21 < () gives 1 < x < 3 and hence also 
-10 < x - 11 < - 8 and 2 < 3x - 1 < 8, so that Ix - 111 < 10 and 13x - 11 < 
2. Thus, 

I
x - 111 10 3x _ 1 <"2 = 5 whenever Ix - 21 < 1. 

But 

I
x -111 Ix-21· --
3x - 1 

will be less than e if simultaneously 

e 
Ix - 21 < 5" and I

x -111 
3x _ 1 < 5; 

we only have to take () = min{l,e/5}. 

5. Show that limx_ o sin{1/x) does not exist, that is, there is no real number L 
such that sin{1/x) - L as x - o. 
SOLUTION. We have sin(2n - 1/2)n = -1 and sin(2n .f 1/2)n = 1 for n = 1, 
2, .... Let 

1 1 
x = and t = for n = 1, 2, ... 

n (2n _ 1/2)n n (2n + 1/2)n 

Then xn - 0 and tn - 0 as n - 00; however, sin(l/xn) - - 1 and sin{1/tn) - 1 
as n - 00 which is in violation of Proposition 2.3. The curve y = sin{1/x) is 
shown in Figure 2.6. 
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6. Show that limx _ o x [sin(l/x)] = o. 
SOLUTION. Since I sin tl ::; 1 for any real number t, we have 

o ::; I x sin ~ I ::; I xl. 

Hence, given any B > 0, we can take (j = B to obtain the desired result. The 
curve y = x sin(l/x) is shown in Figure 2.7. 

7. Let f(x) = x if x is rational and f(x) = - x if x is irrational. For what 
values of a does limx_a/(x) exist? 

SOLUTION. It is easily seen that the limit in question exists for a = o. The limit 
does not exist if a 'I- 0; note that any (nonempty) open interval on the number 
line contains both rational and irrational points. 

Proposition 2.5. lflimx_a/(x) = Land limx_ a g(x) = M, then 

(i) lim [f(x) + g(x)] = L + M, 

(ii) lim [cf(x)] = cL for each real number c, 

(iii) lim [f(x)g(x)] = LM. 

PROOF. Let B > O. To establish (i) we must verify that there exists (j > 0 such 
that 

if 0 < Ix - al < (j, then I [f(x) + g(x)] - [L+ M]I < B. 



1. Limits 

y 

1 

--~~~4----+--------~-------------+x 

, , , , , 

2/1T 

Figure 2.7 

59 

Since f(x) --+ Land g(x) --+ M as x --+ a, we know that there exist positive 
numbers 15 1 and 15 2 such that 

and 

iro < Ix - cl < 15 1 , then If(x) - LI < ~ 

e 
irO < Ix - al < 15 2 , then Ig(x) - MI < 2. 

e e 
irO < Ix - al <15, then If(x) - LI < 2 and Ig(x) - MI < 2. 

Hence, 

because 

iro < Ix - al <15, then I [f(x) + g(x)] - [L + M]I < e 

I [f(x) + g(x)] - [L - M]I = I [f(x) - L] - [g(x) - M]I 

::;;; If(x) - LI + Ig(x) - MI 

by (2.1) and (i) is proved. 
To establish (ii) we consider two cases: c "# 0 and c = o. If c "# 0, then 
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ellel > 0 and since f(x) - L as x - a, we know that there exists b > 0 so that, 

if 0 < Ix - al < b, then If(x) - LI < 1:1. 

But If(x) - LI < e/lcl implies that Icllf(x) - LI < e and thus Icf(x) - cLI < e. 
The case c = 0 is trivial. 

To establish (iii) we first note that 

If(x)g(x) - LMI ~ If(x)g(x) - f(x)MI + If(x)M - LMI 

= If(x)llg(x) - MI + IMllf(x) - LI 

~ If(x)llg(x) - MI + (1 + IMl)lf(x) - LI· 

Let e > o. Since f(x) - Land g(x) - M as x - a, we know 

(1) that there exists b1 > 0 such that, if 0 < Ix - al < b1 , then 

If(x) - LI < 1 and thus If(x)1 < 1 + ILl; 

(2) that there exists b2 > 0 such that, if 0 < Ix - al < b2 , then 

Ig(x) - MI < ~C : ILl} 

(3) that there exists b3 > 0 such that, if 0 < Ix - al < b3 , then 

If(x) - LI < ~C +\MI). 

Now we set b = min{b1 ,b2 ,b3 } and note that if 0 < Ix - al < b, then 

If(x)g(x) - LMI < (1 + ILI)~C +1 ILl) + (1 + IMI)~C +\MI) = e. 

This completes the proof. D 

Proposition 2.6. If limx .... af(x) = Land limx .... a g(x) = M with M #- 0, then 

limf(x) =~. 
x .... ag(X) M 

PROOF. We show first that limx .... a g(x) = M with M #- 0 implies 

Indeed, for g(x) #- 0, 

Pick b 1 > 0 such that 

. 1 1 
hm-=-. 
x .... ag(X) M 

1

1 1 I Ig(x) - MI 
g(x) - M = IMllg(x)1 . 
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IMI 
if 0 < Ix - al < (jl' then Ig(x) - MI < 2' 

For such x we have 

and therefore 

IMI 
Ig(x)1 > 2' 

1 2 
--<­
Ig(x)1 IMI 

Now let s > 0 and pick (jz > 0 such that 

IMI2 
if 0 < Ix - al < (jz, then Ig(x) - MI < -2-s. 

Putting (j = min {(jl' (jz}, we get that 

if 0 < Ix - al < (j, then 1_1_ - ~I < s. 
g(x) M 

This shows that 1/g(x) --+ 11M as x --+ a. 
To prove the proposition we only note that 

f(x) 1 
g(x) = f(x) g(x) . 
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With f(x) --+ Land 1/g(x) --+ 11M as x --+ a, part (iii) of Proposition 2.5 gives 

limf(x) = L~ =~. 
x-+ag(x) M M 

o 

REMARKS. The results in Proposition 2.5 and Proposition 2.6 are readily 
extended to any finite number of functions. Thus, it is easy to see that every 
polynomial 

satisfies 

lim P(x) = P(a). (2.6) 

Also, if P and Q are polynomials and Q(a) =f. 0, then 

lim P(x) = P(a) . 
x-+a Q(x) Q(a) 

(2.7) 

Iflimx-+a!(x) = L with L =f. 0 and limx-+ag(x) = 0, then limx-+a [f(x)/g(x)] does 
not exist. Indeed, suppose on the contrary that there exists a real number T 
such that 



62 2. Limits and Continuity 

Then 

limf(x) = T. 
x-a g(x) 

L 1· f() 1· (() f(X)) 1· . f(x) = 1m x = 1m gx·- = Img(x)·hm-=O·T=O, 
x-a x-a g(x) x-a x-a g(x) 

which contradicts the assumption that L =F O. 

Proposition 2.7. Suppose that there is a number q > 0 such that 

h(x) ::=:; f(x) ::=:; g(x) 

for all x satisfying 0 < Ix - al < q. If 

Iimh(x) = Land Iimg(x) = L, 

then 

limf(x) = L. 

PROOF. Let e > O. Let q > 0 be such that 

if 0 < Ix - al < q, then h(x)::=:; f(x)::=:; g(x). 

Pick 15 1 > 0 such that 

ifO<lx-al<b1 , thenL-e<h(x)<L+e 

and pick 152 > 0 such that 

if 0 < Ix - al < 15 2 , then L- e < g(x) < L+ e. 

Let 15 = min{q,b1 ,b2 }. For x satisfying 0 < Ix - al < 15, we have 

L - e < h(x) ::=:; f(x) ::=:; g(x) < L + e 

and so If(x) - LI < e. 

ApPLICATION. We show that 

First we verify the inequality 

1· sin x 1 Im--= . 
x-o X 

sin x < x < tanx 
11: 

forO < x <"2. 

D 

(2.8) 

(2.9) 

Consider in a circle of radius R an acute angle LAOB, the chord AB and the 
tangent AC to the circle at the point A (see Figure 2.8). Let x be the radian 
measure of the angle LAOB; then the length of the circular arc AB equals 
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Figure 2.8 

Rx. Evidently, the area of the triangle AOB (which equals tR2 sin x) is less 
than the area of the circular sector AOB which equals tR2 x); moreover, 
the area of the circular sector AOB is less than the area of the triangle AOC 
(which equals tR2 tan x). Thus, upon division by tR2, we get (2.9). 

Since sin x is positive for 0 < x < n/2, we can divide by sin x in (2.9) and 
obtain 

sin x sin x n 
1 < -- < cos x or 0 < 1 - -- < 1 - cos x for 0 < x < -2 . 

x x 

But 1 - cos x = 2(sin2 x/2) < 2(sin x/2) and so, by (2.9), 2(sin x/2) < x. Thus, 

SIll X n o < 1 - -x- < x for 0 < x < 2 

or 

I sin x I n o < ~ - 1 < Ixl for 0 < x < 2' 

Letting f(x) = (sin x)/x if x "# 0, we see that f( - x) = f(x); on the other hand, 
I-xl = Ixl. Thus, 

0< I Si:x - 11 < Ixl for 0 < Ixl <~. (2.10) 

Applying Proposition 2.7 we get at once the desired result (2.8). In fact, for 
anye > 0 and b = min{e, n/2} we have: 
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if 0 < Ixl < 15, then ISi:x - 11 < B. 

Returning to the estimate 

sinx 1t o < 1 - ~ < 1 - cos x for 0 < x < 2' 

we could have proceeded in the following way as well: Since 

1-cosx=2sin2~ and sin~<~bY(2.9), 

we obtain 
x 2 1t 

1 - cos x <"2 for 0 < x < 2 

and so 
~nx x 2 1t o < 1 - -- < - for 0 < x < -2 . 

x 2 

But replacing x by - x does not alter the foregoing inequality and so 

(2.11) 

I 
sinx I x 2 1t o < ~ - 1 <"2 for 0 < Ixl < 2' (2.12) 

Applying Proposition 2.7 we get at once the desired result (2.8) from (2.12). 
Indeed, for any B > 0 and 15 = min{j2e,1t/2} we have 

if 0 < Ixl < 15, then ISi:x - 11 < B. 

It is easy to prove that 

1· 1 - cosx 0 
1m = . (2.13) 

x .... o X 

It is clear that the inequality (2.11) remains true if we replace x by -x. Thus, 

or 

1
1 - cosx I Ixl 1t o < X <"2 for 0 < Ixl < 2 

and (2.13) follows by applying Proposition 2.7. 

Definition. Let f be a function defined at least on an open interval of the form 
(d, a); then the left-side limit of f(x) is L as x tends to a, written as 

limf(x) = L or f(a-) = L, 
xta 
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if, given any 8 > 0, there exists some b > 0, such that If(x) - LI < 8 for any x 
satisfying a - b < x < a. 

Definition. Let f be a function defined at least on an open interval of the form 
(a, d); then the right-side limit of f(x) is L as x tends to a, written as 

limf(x) = L or f(a+) = L, 
x,\.a 

if, given any 8 > 0, there exists some b > 0, such that If(x) - LI < 8 for any x 
satisfying a < x < a + b. 

REMARKS. Since Jx is not defined on both sides of 0, we can not consider the 
(two-sided) limit of Jx as x tends to 0. However, we have that 

limJx = ° 
x,\. 0 

because, for any 8> ° and b = 8 2, we have: 

ifO < x < b, then IJx - 01 = Jx < 8. 

One-sided limits give us a simple method of deciding whether or not a 
(two-sided) limit exists: 

limf(x) = L if and only if limf(x) = Land limf(x) = L. 
x-+a xta x,\.a 

One-sided limits are of particular interest in connection with increasing 
and decreasing functions, as we shall see in the next section. 

Definition. Let f be a function defined for all real numbers x > d, where d is 
some real number. We say that the limit of f(x) is L as x tends to infinity (or 
as x becomes arbitrarily large), and we write 

limf(x) = L, 
x-+oo 

if, given any 8> 0, there exists some K > 0, such that If(x) - LI < 8 for any 
x satisfying x > K. 

REMARK. There is a simple relation between limits at 00 and one-sided limits 
at 0; setting x = lit, it is easily seen that 

lim f(x) = L if and only if limf(~) = L. 
x-+oo t'\'O t 

Definition. Let f be a function defined for all real numbers x < d, where d is 
some real number. We say that the limit of f(x) is L as x tends to negative 
infinity (or minus infinity), written as 

lim f(x) = L, 
X-+-CX) 
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if, given any [; > 0, there exists some K < 0, such that If(x) - LI < [; for any 
x satisfying x < K. 

REMARK. Propositions 2.3 to 2.7, suitably modified, are also valid for one­
sided limits and limits at ± 00. 

Examples 

1. Let n be a positive integer. Show that 

xn -1 
lim--- = n. 
x-+l x-I 

SOLUTION. For x#-1 we have 

and so 

xn - 1 = (x - l)(xn- 1 + x n- 2 + ... + x + 1) 

xn - 1 
lim--- = lim (xn- 1 + x n- 2 + ... + x + 1) = n. 
x-+l x-I x-+l 

2. Let m and n be positive integers. Show that 

xm -1 m 
lim---=-. 
x-+l xn - 1 n 

SOLUTION. For x#-1 we have 

xm - 1 (x - l)(xm- 1 + x m- 2 + ... + x + 1) 

xn - 1 (x - l)(xn- 1 + x n - 2 + '" + x + 1) 

and so 

lim xm - 1 = li~x-+l (x m - 1 + x m- 2 + ... + x + 1) =~. 
x-+l xn - 1 hmx-+l (xn- 1 + x n- 2 + ... + x + 1) n 

3. Let nand k be positive integers and n > k. Show that 

. (xn_l)(xn-l_l)"'(xn-k+l_l) n(n-l)···(n-k+ 1) 
hm = --'---------
x-+l (x -1)(x 2 -1)···(xk -1) 1·2···k 

SOLUTION. We have 

xn - 1 x n- 1 - 1 X n - k+1 - 1 
= lim ---lim ... lim --,--,---

x-+l x-I x-+l x 2 - 1 x-+l Xk - 1 

nn-l n-k+l =_. __ ... _---
12k 
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4. Let m and n be positive integers. Show that 

( m n) m-n 
~~ 1 - xm - 1 - xn = -2-· 

SOLUTION. We have 

But 

and 

m n n(xm - 1) - m(xn - 1) 

(xm - l)(xn - 1) 

n(x m - 1 + x m- 2 + ... + x + 1) - m(xn- 1 + x n- 2 + ... + x + 1) 

(x - l)(x m- 1 + x m- 2 + ... + x + l)(xn- 1 + x n- 2 + ... + x + 1)· 

n(x m - 1 + x m- 2 + ... + x + 1) 

x-I 

( x m - 1 - 1 x m - 2 - 1 x-I 1 - 1) nm 
=n + + ... +--+-- +--

x-I x-I x-I x-I x-I 

m(xn- 1 + x n- 2 + ... + x + 1) 

x-I 

( x n- 1 - 1 x n- 2 - 1 x-I 1 - 1) nm 
=m + + ... +--+-- +--. 

x-I x-I x-I x-I x-I 

Thus, 

. n(x m - 1 + x m - 2 + ... + x + 1) - m(xn- 1 + x n- 2 + ... + x + 1) 
hm-----------------------
x~ x-I 

= n{(m - 1) + (m - 2) + ... + I} - m{(n - 1) + (n - 2) + ... + I} 

m(m - 1) n(n - 1) 
=n 2 -m 2 

2 

On the other hand, 

lim(xm - 1 + x m- 2 + ... + x + l)(xn- 1 + x n - 2 + ... + x + 1) = mn. 
x--+l 

But 

and so 

( m n) m-n 
lim -1--m - -1--n = -2-· 
x"'l - x - x 

67 
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5. Show that 

lim {J(x + a)(x + b) _ x} = a + b. 
~oo 2 

SOLUTION. We commence with an inequality: If A and B are any positive real 
numbers, then 

2 r:iD A+B ----<yAB <~-. 
1jA+1jB- - 2 

(2.14) 

Indeed, O:s:; (JA - JB)2 = A + B - 2JAB and so fiB:s:; (A + B)j2. 
This shows the validity of the second part of (2.14). Replacing in fiB :s:; 
(A + B)j2 the numbers A and B by 1jA and 1jB, respectively, we get the first 
part of (2.14). Inequality (2.14) expresses the familiar fact that the harmonic 
mean of two positive numbers A and B is less than or equal to the geometric 
mean of A and B which in turn is less than or equal to the arithmetic mean 
of A and B; there is equality in (2.14) if and only if A = B. 

Now, putting A = x + a and B = x + bin (2.14), we obtain 

(a + b)x + 2ab J( )( b) a + b -'-----'------- < x + a x + - x < --
2x + a + b - - 2 

whenever x is such that x + a > ° and x + b > 0. Letting x --> 00 in (2.14) 
yields the desired result. 

6. If a regular polygon of n sides is inscribed in a circle of radius r, its area is 

. 2n 
A(n) = tnr2 SIn-

and its circumference is 

n 

C(n) = 2nrsin~. 
n 

Show that limn~oo A(n) = nr2 and limn~oo C(n) = 2nr. 

SOLUTION. We have (sin x)jx --> 1 as x --> 0; but 

A(n) = nr2 Sin(2;jn) and 
2n n 

( ) _ 2 sin(njn) en - nr j . 
nn 

2. Continuity 

Definition. Let a function f be defined on some neighborhood of a point a 
(including the point a itself) and the set of values or range of f be a set of real 
numbers. We say that f is continuous at a if, given any e > 0, there exists some 
b > 0, such that If(x) - f(a) I < e for any x satisfying Ix - al < b. 
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REMARK. It follows immediately from the definition that f is continuous at a 
if and only if limx->af(x) = f(a). 

Definition. If a function f is continuous at every point of an open interval 
(a, b), we say that f is continuous on the interval (a, b). If a function f is defined 
on a closed interval [a, b J, we say that f is continuous on [a, b J if f is contin­
uous on (a, b) and if, in addition, 

limf(x) = f(a) and limf(x) = f(b). 
x.j.a xtb 

Proposition 2.S. Let f and g be functions defined on the same neighborhood of 
a point a and both functions be continuous at the point a. Then each of the 
following functions is continuous at a: 

(i) (f + g)(x) = f(x) + g(x), 
(ii) (fg)(x) = f(x)g(x), 

(iii) (£) (x) = ;~:~ [if g(a) oF OJ, 

(iv) Ifl(x) = If(x)l. 

PROOF. Properties (i), (ii), and (iii) follow immediately from Propositions 2.5 
and 2.6; property (iv) is a consequence of the inequality 

Ilf(x)1 - If(a)11 :::; If(x) - f(a)1 

[see inequality (2.4)]. o 
REMARK. If f and g are as in Proposition 2.8, then the functions 

(f v g)(x) = max {j(x), g(x)} and (f /\ g)(x) = min {j(x), g(x)} 

are continuous at a. Indeed, using Propositions 2.2 and 2.8, the claim follows 
at once. 

Proposition 2.9. Let a function g (of the variable y) be defined on an interval Y, 
a function f (of the variable x) be defined on an interval X, and assume that the 
set of values f(x), as x ranges over X, are contained in the interval Y. Iff is 
continuous at a point Xo of X and g is continuous at the corresponding point 
Yo = f(xo) of Y, then the composite function 

h(x) = g[f(x)] for all x in X 

is continuous at Xo. 

PROOF. Let E > 0 be given. Since g is continuous at y = Yo, there exists some 
(1 > 0 such that 

if Iy - Yol < (1, then Ig(y) - g(Yo)1 < E. 

On the other hand, since f is continuous at x = xo, for this (1 (sigma) there 
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exists some D > 0 such that 

if Ix - xol < D, then If(x) - f(xo)1 = If(x) - Yol < (J. 

It therefore follows that 

if Ix - xol < D, then Ig[f(x)] - g(Yo)1 = Ig[f(x)] - g[f(xo)] I < 8. 

This shows the continuity of h at x = Xo. D 

REMARK. We can view the power function hex) = x b with x> 0 and b a fixed 
real number as a composition of the logarithmic and the exponential func­
tions; by (1.35) in Chapter 1 we have 

The continuity of the power function hex) = x b with x> 0 and b fixed will 
follow by use of Proposition 2.9 as soon as we have established the continuity 
of the logarithmic and the exponential functions. 

The function hex) = cos x can be seen to be continuous by Proposition 2.9 
once we know that g(x) = sin x and f(x) = c - x, where c is a constant, are 
continuous because cos x = sin{tn - x). 

Proposition 2.10. Let f be a continuous function at a point a and suppose that 
f(a) is positive. Then we can determine a positive number (J such that f is 
positive throughout the interval (a - (J, a + (J). 

PROOF. Let 8 = tf(a) in the defining condition for continuity and denote the 
corresponding (j by (J. Then 

If(x) - f(a)1 < tf(a) 

for any x satisfying Ix - al < (J. But If(x) - f(a) I < tf(a) means 

-tf(a) < f(x) - f(a) < tf(a) or tf(a) < f(x) < !f(a). 

Thus f(x) > tf(a) > 0 for any x in the interval (a - (J, a + (J). D 

REMARK. There is plainly a corresponding proposition referring to negative 
values of a continuous function f 

Proposition 2.11. If a function f is continuous on a closed interval [a,b] of 
finite length, it is bounded on that interval, that is, there are numbers m and M 
such that 

m ~ f(x) ~ M for all x in [a,b]. 

PROOF. Let f be continuous on [a, b]. We observe first that if Xo is any point 
of [a, b], there is some subinterval containing Xo on which f is bounded. For, 
if we take 8 = 1 in the defining condition for continuity and denote the 
corresponding D by (jl' we have 
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f(xo) - 1 < f(x) < f(xo) + 1 

provided that x is a point of [a, b] such that Xo - c5 1 < X < Xo + c5 1• Note 
that this subinterval extends to both sides of Xo if a < Xo < b, and one side of 
Xo if Xo = a or Xo = b. A second observation of importance is this: if f is 
bounded on two subintervals of [a,b] whose union is [a,b], then f is also 
bounded on [a,b]. 

We now turn to the proof of the proposition at hand and suppose that our 
claim was false. In other words, suppose f was not bounded on [a, b]. Bisect­
ing [a,b] into [a,d] and [d,b], where d = (a + b)/2, thefunction f would not 
be bounded on at least one of these two subintervals. Let us call [ai' b l ] the 
subinterval on which f is not bounded. Next we bisect [ai' b 1 ], obtaining a 
subinterval [a2' b2] on which f is not bounded and so forth. By repetition of 
this bisection process we generate a sequence of closed nested intervals on 
each of which f is not bounded; the length of the nth interval [an, bn] is 
(b - a)/2n. By the Nested Interval Principle (see Section 1 of Chapter 1) there 
is one and only one point c common to all these intervals [an, bn]. Clearly, the 
point c is in the interval [a,b]. Now, as shown at the beginning of our proof, 
f is bounded on some interval J containing the point c. Since c is in [am bn] 
and since the length of [an, bn] tends to zero as n becomes arbitrarily large, it 
is clear that J must contain [an, bn] when n is sufficiently large. But this is a 
contradiction for f is not bounded on [an, bn] and it is bounded on J. Because 
of this contradiction, our initial claim that the proposition is false must be 
rejected and the proof is complete. 0 

Proposition 2.12. Let f be a continuous function on a closed interval [a, b] of 
finite length and suppose that f(a) # f(b). Then for every real number A 
between f(a) and f(b) there exists a point t such that f(t) = A, that is, f 
assumes all intermediate values between f(a) and f(b). 

PROOF. Suppose that f(a) < f(b). Starting with the points Xo = a and Yo = b, 
we construct by successive bisections a sequence of nested closed intervals 
[xn,Yn] for n = 1,2,3, ... such that f(xn) ~ A ~ f(Yn) for n = 1,2,3, .... To 
this end we only have to set 

Xn+l = dn and Yn+l = Yn in case f(dn) ~ A 

and 

xn+1 = Xn and Yn+1 = dn in case f(dn) > A, 

where dn = (xn + Yn)/2. Let t be the point determined by this sequence of 
nested closed intervals (see the Nested Interval Principle), that is, let t be the 
point common to all these nested closed intervals. Then Xn -+ t and Yn -+ t as 
n -+ 00. Since f(xn) ~ A ~ f(Yn) and f is continuous at t, we have that 
f(t) = A. 

The case f(b) < f(a) reduces to the case already discussed when we consider 
the function -f. The proof is finished. 0 
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ApPLICATION. We wish to show that a polynomial function P of odd degree 
has at least one real root. 

Let P(x) = Co + Clx + ... + cnxn, where Cn =1= 0 and n is odd, that is, an 
integer not divisible by 2. We may suppose that Cn = 1; otherwise we would 
work with (l/cn )P. It is clear that P is continuous everywhere because 

lim P(x) = P(a) 
x-+a 

for any real number a, as already noted in the remarks following Proposi­
tion 2.6. To apply Proposition 2.12 we need only to show that P(x) > 0 for 
some x and P(x) < 0 for some other x. However, this is seen to be true 
because 

lim P(x) = + 00 and lim P(x) = - 00, 
x-+oo x-+-oo 

remembering that Cn = 1. We can avoid these limit notions by the following 
argument. Observe that 

where 

() 1 CO+C1X+"'+Cn_1Xn-l 
D x = + -----"-----------'----­

xn 

Let d = 1 + leo I + ICll + ... + Icn-ll. Iflxl > d, then 

Ixl> 1 and Ixl > ICol + lell + ... + Icn-ll 

and so 

Ico + Clx + ... + cn_lxn-ll ~ (icol + Icll + ... + Ien_1Dlxln- l < Ixln 

so that D(x) > 0 for Ixl > d. Now, if x> d, then xn > 0 and so P(x) > O. And 
if x < - d, then xn < 0 (because n is odd) and so P(x) < O. 

Definition. Let S be a nonempty set of real numbers. We call M an upper 
bound of S if s ~ M for all s in S and we call m a lower bound of S if s ~ m for 
all s in S. If S has an upper bound, we say that S is bounded above; if S has a 
lower bound, we say that S is bounded below. If S is both bounded above and 
bounded below, then S is said to be bounded. 

Definition. Let S be a nonempty set of real numbers which is bounded above. 
Suppose that a real number M* has the following two properties: 

(i) M* is an upper bound of S. 
(ii) If K < M*, then K is not an upper bound of S. 

Then M* is called the least upper bound of S [that there is at most one such 
M* is clear from (ii)], or the supremum of S; in notation, M* = lub S or 
M* = supS. 
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If S is a nonempty set of real numbers which is not bounded above, we put 
supS = + 00. 

REMARK. Let M* be an upper bound of a nonempty set S of real numbers. 
Then M* is the supremum of S if and only if, for any B > 0, there is an s in S 
such that s > M* - B. 

Indeed, let M* be the supremum of S. Suppose that B > 0 is given. Then 
M* - B can not be the supremum of S, hence there is an s in S such that we 
have s > M* - B. On the other hand, suppose M* is not the supremum of S. 
Then there is some M~ < M* such that M~ is the supremum of S. We have 
to find an B > 0 such that s ~ M* - B for all s in S. But we only need to put 
B=M* -M~. 

Definition. Let S be a nonempty set of real numbers which is bounded below. 
Suppose that m* is a real number satisfying the following two conditions: 

(i) m* is a lower bound of S. 
(ii) If L > m*, then L is not a lower bound of S. 

Then m* is called the greatest lower bound of S [that there is at most one such 
m* is clear from (ii)], or the infimum of S; in notation, m* = glb S or m* = 

infS. 
If S is a nonempty set of real numbers which is not bounded below, we put 

infS = - 00. 

Axiom of Completeness. Every nonempty set of real numbers that has a lower 
bound has a greatest lower bound. Also, every nonempty set of real numbers 
that has an upper bound has a least upper bound. 

DISCUSSION. The Axiom of Completeness and the Nested Interval Principle 
can be derived from each other. 

We assume the Axiom of Completeness and we show: If J 1 , J2 , ••• , I n, ••• 

is a sequence of closed intervals, if I n ::::> I n+1 for n = 1, 2, 3, ... , and if the 
length of I n is less than any preassigned positive number for all large n, then 
there is one and only one point common to all intervals I n. 

Indeed, let I n = [an, bn] and so the "nesting" property 

holds for n = 1, 2, 3, .... This shows that the set A of points that occur as left 
endpoints of intervals I n is a bounded set and that the same is true for the set 
B of points that occur as right endpoints of the intervals I n • Let 

a=supA and b=infB. 

It is clear that a ~ bn and b ~ an for n = 1, 2, 3, ... and so a ~ b with both a 
and b belonging to I n for n = 1, 2, 3, .... But 

b - a < bn - an for n = 1, 2, 3, ... 
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and bn - an ~ 0 as n ~ 00, implying that a = b. This is, however, what we 
wanted to show. 

Now, we assume the Nested Interval Principle and we show: If S is a 
nonempty set of real numbers that is bounded above, then S has a least upper 
bound. 

Indeed, let M be an upper bound of Sand s belong to S; consider the closed 
interval [s, MJ = J l' If J 1 has only the single point s in common with S, then 
we are finished and s is the least upper bound of S. If J 1 has more than one 
point, namely, the left endpoint s, in common with the set S, then we bisect 
the interval J 1 and denote by J2 the right-hand or the left-hand half of J 1 

depending on whether or not there are points of S that belong to the right­
hand half of J l' According to the same rule we select one half of J 2 as J 3 and 
so forth. The intervals J 1 , J2 , J3 , ••• have the property that to the right of each 
such interval there is no point of S, but that in each such interval there is at 
least one point of S. The point c common to all J 1 , J 2 , J3 , ... satisfies the 
property that for any 8 > 0 there is an s in S such that s > c - 8 and so 
c = supS. 

Proposition 2.13. Let f be a continuous function on a closed interval [a, b J of 
finite length. By Proposition 2.11 the set S of all f(x) as x ranges over the 
interval [a, b J is a bounded set; let m = inf Sand M = sup S. Then f assumes 
the values M and m at least once each in the interval [a, b]. 

PROOF. Let M be the supremum of the set S of all f(x) with x ranging over 
the interval [a, b J; M is called the upper bound of f on [a, b]. If [a, b J is 
bisected, then it is possible to find a half [a1,b1J on which the upper bound 
of f is also M. Proceeding by the method of repeated bisection, we construct 
a sequence of closed nested intervals 

[a,bJ, [a1,b1J, [a2,b2J, ... 

on each of which the upper bound of f is M. These intervals have one and 
only one point c in common and the sequences 

tend to c. But f(c) = M. Suppose not, that is, suppose f(c) = L"# M. Then 
IL - MI = 28 for some 8> O. By the continuity of fat c, there is an open 
interval (c - b, c + b) on which f(x) can not differ from L by more than 8 and 
hence M can not be the upper bound of f on (c - b, c + b). But (c - b, c + b) 
must contain [an, bnJ for n larger than some no because the length 

b-a 
bn-an =~ 

tends to zero as n becomes arbitrarily large. Let n be such that [an, bnJ is 
contained in (c - b, c + b); then 
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M = sup{J(x): an ::; X ::; bn} ::; sup{J(x): c - b < X < C + b}. 

But [a,b] contains (c - b,c + b) and so 

sup{J(x): c - b < X < c + b} ::; sup{J(x): a ::; x ::; b} = M. 

We have a contradiction. [Trivial modifications are needed if c = a or c = b.] 
In a similar manner we can show that there is a point d in [a, b] such that 

f(d) = m. 0 

ALTERNATIVE PROOF OF PROPOSITION 2.13. Given any positive number (J, we 
can find a point x in [a, b] for which 

1 1 
M - f(x) < (J or >-. 

M - f(x) (J 

Hence, l/[M - f(x)] is not bounded, and therefore, by Proposition 2.11, not 
continuous. But M - f(x) is a continuous function and so l/[M - f(x)] is 
continuous at any point at which its denominator does not vanish. There 
must therefore be a point at which the denominator vanishes, and at which 
f(x) = M. Similarly, it may be shown that there is a point at which f(x) = m. 

o 
Definition. Let f be a bounded function on an interval [a, b] and J be a 
subinterval of [a, b]. By the oscillation off on J, denoted by w(f, J), we mean 

wU,J) = sup {J(x): XEJ} - inf{J(x): xEJ}, 

that is, the difference between the upper bound and the lower bound of f 
onJ. 

Proposition 2.14. Let f be a continuous function on a closed interval [a, b] of 
finite length. Given 8 > 0, there exists a partition of [a, b] into a finite number 
of subintervals of equal length such that the oscillation of f on each of these 
subintervals does not exceed 8. 

PROOF. Suppose not, that is, suppose there was a continuous function f on 
[a, b] and an 8 > ° for which no partition of [a, b] of the desired type existed. 
For convenience, let us agree to say that the interval [a, b] has property p. if 
there exists no partition of [a, b] into a finite number of subintervals of equal 
length such that the oscillation of f on each of these subintervals is less than 
or equal to 8. In short, we suppose that [a, b] has property p •. Bisecting [a, b], 
we obtain a subinterval [a l , b l ] with property p •. We then bisect [a l , b l ] and 
obtain a subinterval [a 2 , b2 ] having property p. and so forth. Proceeding in 
this manner we get a sequence of nested closed intervals 

[al,bl ], [a2,b2], ... , [an,bn], ... 

with each interval of the sequence having property p •. In particular, this 
implies that w(f, [an, bnJ) > e for n = 1, 2, 3, .... But the length of [an, bnJ 
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equals (b - a)/2· which tends to zero as n becomes arbitrarily large. By the 
Nested Interval Principle there is one and only one point c in common to all 
these intervals [a.,b.] for n = 1, 2, 3, .... But c is in [a,b] and so f is 
continuous at c. Hence, we can find a positive (j such that If(x) - f(c) I < e/2 
for any x in [a, b] which satisfies Ix - cl < (j. If Xl and X2 are two such x, then 

f(x l ) - f(x 2) = [f(xd - f(c)] + [f(c) - f(X2)] 

and so 

and so the oscillation on the interval I = [a, b] n (c - (j, c + (j) is less than e. 
For sufficiently large n the interval [a., b.] is contained in the interval I 

and so the oscillation of f on such [a., b.] will be smaller than or equal to the 
oscillation off on I. We have reached a contradiction because by our assump­
tion and construction the oscillation of f on [a., b.] for n = 1, 2, 3, ... is 
larger than e. 0 

Proposition 2.15. Let f and [a, b] be as in Proposition 2.14. Given e > 0, there 
exists a positive (j such that on any subinterval J of [a, b] having length less 
than (j the oscillation of f on J is smaller than e. 

PROOF. By Proposition 2.14 we can pick m so large that the oscillation of f 
on each of the intervals 

[a,a + (j], [a+(j,a+2(j], ... , [a+(m-l)(j,b], (2.15) 

each of which has length (j = (b - a)/m, is less than e/2. We consider any 
subinterval J of [a, b] having length less than (j and we let Xl and X 2 denote 
points of J at which f assumes largest and smallest values on J, respectively, 
and thus f(x l ) - f(x 2) will denote the oscillation of f on J. These points Xl 

and X2 either belong to the same interval in (2.15) and then f(x l ) - f(x 2) will 
be smaller than e/2 or they belong to two abutting intervals 

[a + (k - 1)(j,a + k(j] and [a + k(j,a + (k + 1)(j] 

and in this case 

e e 
f(x l ) - f(x 2) = [f(xd - f(a + k(j)] + [f(a + k(j) - f(x 2)] < 2' + 2' = e. 

On any subinterval J of length less than (j the oscillation of f is thus seen to 
be smaller than the prescribed e. D 

Definition. A function f is said to be uniformly continuous on [a, b] if, given 
any e > 0, there exists some (j > 0, dependent on e only, such that for any 
points Xl and X2 in [a,b] the inequality 

IXl - x 2 1 < (j implies If(x l ) - f(x 2 )1 < e. 
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REMARKS. Uniform continuity is readily expressed in terms of oscillation. The 
definition implies that w(j, J) < e if the length of the interval J is less than b 
regardless where J is placed in the interval [a, b]. Or, we can say that 
w(j, J) < e holds uniformly with respect to all intervals J, provided the 
length of J is less than b. Geometrically, the situation can be described as 
follows. A small rectangle of height 2e and width 2b is centered at a point on 
the curve. We have uniform continuity, if we can choose the width of the 
rectangle, whenever its height is given, so that while the rectangle slides along 
the curve y = f(x) remaining parallel to itself, the curve projects from the 
vertical sides but does not touch the top or the bottom of the rectangle. 

Proposition 2.16. Let f be a continuous function on a closed interval [a,b] of 
finite length. Then f is uniformly continuous on [a, b]. 

PROOF. The claim follows at once from Proposition 2.15. o 

Examples. The function g(x) = l/x is not uniformly continuous on the open 
interval (0,1). Indeed, suppose that g was uniformly continuous on (0,1). 
Then for any e > ° we should be able to find some b, say between ° and 1, 
such that Ig(xd - g(x2)1 < e whenever IXl - x21 < b for any Xl and X2 in the 
interval. Now, let Xl = band X2 = b/(l + e). Then IXl - x21 = [e/(l + e)]b < 
b. But II/xl - 1/x21 = e/b > e (since ° < b < 1). Thus we have a contradic­
tion and g is not uniformly continuous on (0, 1). 

The function h(x) = sin(1/x) is not uniformly continuous on the open 
interval (0, l/n). Figure 2.6 shows the graph of the function h. While the 
function h is bounded by 1 and - 1, the oscillation w(h, J) = 2 on any interval 
J of the form (0, a) no matter how small the positive number a is. This fact 
prevents uniform continuity of h on (0, l/n). 

The function w(x) = x 2 is not uniformly continuous on (0, (0). Small 
changes in x can produce arbitrarily large changes in x 2 if only x is large 
enough. Indeed, suppose there was a b > ° such that 

Iw(x) - w(a)1 < 2 whenever Ix - al < b for all a> 0. 

We would than have for x = a + b/2 

Iw(x) - w(a)1 = Ix - allx + al = ~12a + ~I < 2, 

implying that ab < 2 for all a > ° which is clearly false. 
Let A be a nonempty bounded set of real numbers and define 

v(x) = inf{lx - aI: aEA} for all real numbers x. 

Then v is uniformly continuous on ( - 00, (0). Indeed, for each a E A we have 

v(x) :::;; Ix - al :::;; Ix - yl + Iy - al 

for any real number y. Taking the infimum over all a E A, we obtain 
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v(x) s Ix - yl + v(y) 

or v(x) - v(y) s Ix - YI. Exchanging the roles of x and y, we also obtain 
v(y) - v(x) s Ix - YI. This shows that 

Iv(x) - v(y)1 s Ix - yl 

and so v is seen to be uniformly continuous on ( - 00,(0). 

3. Monotonic Functions 

Definition. Let f be a real-valued function on an interval J and x and y be 
points of J. Then f is said to be nondecreasing on J if 

x < y implies f(x)::;; f(y); 

f is said to be strictly increasing on J if 

x < y implies f(x) < f(y). 

Similarly, f is said to be non increasing on J if 

x < y implies f(x) ~ f(y) 

and f is said to be strictly decreasing on J if 

x < y implies f(x) > f(x). 

The class of monotonic functions consists of both the nondecreasing and the 
nonincreasing functions; the class of strictly monotonic functions consists of 
the strictly increasing and the strictly decreasing functions. 

Definition. Let f be a real-valued function on an open interval (a, b). Iff is not 
continuous at a point x of (a, b), then f is said to be discontinuous at x. If f is 
discontinuous at a point x of (a, b) and if the one-sided limits f(x +) and 
f(x - ) exists, then f is said to have a discontinuity of the first kind, or a simple 
discontinuity, at x. Otherwise, the discontinuity is said to be of the second 
kind. 

ILLUSTRATION. Consider the following three functions: 

f(x) = 1 for x ~ 0, 

= -1 for x < 0; 

g(x) = 1 for x"# 0, 

=0 for x = 0; 

h(x) = sin~ for x "# 0, 
x 

= 0 for x = O. 
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It is clear that f(O + ) = 1 and f(O - ) = -1; thus f has a discontinuity of the 
first kind at x = O. For the function g we have g(O + ) = g(O - ) = 1, but 
g(O) = 0; thus g has a discontinuity of the first kind at x = O. For the function 
h, neither h(O+) nor h(O-) exists [see Figure 2.6 and note that h( -x) = 
- h(x)]; thus h has a discontinuity of the second kind at x = O. 

REMARK. There are two ways in which a function f can have a simple dis­
continuity at x; either f(x + ) #- f(x - ), or f(x + ) = f(x - ) #- f(x). The follow­
ing proposition shows that a monotonic function f has no discontinuities of 
the second kind since the one-sided limits f(x + ) and f(x - ) exist. 

Proposition 2.17. Let f be a nondecreasing function on an open interval (a,b). 
Then, for any x satisfying a < x < b, 

A = f(x - ) ~ f(x) ~ f(x + ) = B, (2.16) 

where A = sup{J(t): a < t < x} and B = inf{J(t): x < t < b}. Moreover, if 
a < x < y < b, then 

f(x + ) ~ f(y - ). 

PROOF. By assumption, the set of numbers f(t), where a < t < x, is bounded 
above by the number f(x), and thus has a supremum which we have denoted 
by A. Evidently, A ~ f(x). We verify that A = f(x-). 

Let E > 0 be given. It follows from the definition of A as a supremum that 
there exists 0 > 0 such that a < x - 0 < x and 

A - E < f(x - 0) < A. 

Since f is nondecreasing, we have f(x - 0) ~ f(t) ~ A for x - 0 < t < x. 
Thus, for x - 0 < t < x, we have If(t) - AI < E and so f(x-) = A. 

The second half of(2.16) is proved in the same way. 
Next, if a < x < y < b, we get from (2.16) that 

f(x+) = inf{J(t): x < t < b} = inf{J(t): x < t < y}. 

The last equality in the foregoing is obtained by applying (2.16) to (a,y) in 
place of (a, b). Similarly, 

f(y-) = sup{J(t): a < t < y} = sup{J(t): x < t < y}. 

Thus, f(x+) ~ f(y-) is seen to hold for a < x < y < b. D 

Definition. Let X and Y be two nonempty sets; then the set of all ordered 
pairs (x, y) where x E X, Y E Y, is called the Cartesian product of X and Y and is 
denoted by X x Y. Here (xI,yd = (X2,Y2) if and only if Xl = X2' YI = Yl. 
We refer to x as the first coordinate of the pair (x, y) and y as the second 
coordinate. 

A function from X to Y is a nonempty subset of pairs (x, y) in X x Y such 
that no two distinct pairs have the same fi~st coordinate. The sets 
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D[f] = {x: XEX,(X,y)Ef}, 

R[f] = {y: yE ¥,(x, y) Ef}, 

2. Limits and Continuity 

are called the domain off and the range of f, respectively. 
We say that f is a one-to-one function if(x1' Y1) Ef, (X 2,Y2)Ef, and Xl =I X2 

implies Y1 =I Y2 for any Xl and X2 in D[f]. 

Definition. Let f be a one-to-one function with domain D [f] and range 
R [f]. Then f is said to be invertible and the inverse function of f, denoted by 
f- 1, is defined by the set of ordered pairs 

we have 

{(y,x): YER[f],xED[f]}; 

f-1[f(X)] = X for all xED[f], 

f[f-1(y)] = Y for all YER[f]. 

REMARKS. We are concerned with functions mapping a set of real numbers 
into a set of real numbers. The meaning of the terms just defined is simple 
enough to grasp. A function is defined as a set, namely, as the set of points 
making up the graph of the function. The function is one-to-one if any 
straight line parallel with the x-axis intersects the graph of the function in at 
most one point. Finally, if f is one-to-one, that is, if f is invertible, then the 
graph of f- 1 is obtained from the graph of f by simply reflecting the graph 
of f about the line Y = x. A strictly monotonic function is one-to-one, but a 
one-to-one function need not be monotonic; for example, 

f(x) = !x for ° ::; x ::; 2, 

= -!x + 3 for 2 < x < 4, 

= !x for 4 ::; x ::; 6 

maps the closed interval [0,6] onto the closed interval [0,3] in a one-to-one 
manner, but the function f is not monotonic on [0,6]. Note also that f takes 
on all intermediate values between ° and 3, but f is not continuous every­
where on [0,6] (having discontinuities at x = 2 and at x = 4). See Figure 2.9 
for the graph of Y = f(x). 

Proposition 2.1S. Let f be a continuous function on a closed interval I = [a, b] 
of finite length. Then f is invertible if and only if f is strictly monotonic. 
Trivially, f- 1 is increasing or decreasing depending on whether f is increasing 
or decreasing. Moreover, the inverse function f- 1 is continuous on its interval 
of definition 1*. 

PROOF. It is clear that strict monotonicity is a sufficient condition for the 
invertibility of f We only need to show that in the case of continuity it is also 
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a necessary condition. For f to be invertible we need to have f(x l ) -# f(x2) 
for any two distinct points Xl and X2 in I. Since f is assumed to be contin­
uous, we have for any X between Xl and X2 that 

(2.17) 

To see this, we suppose that Xl and X2 are so indexed that f(xd is less than 
f(X2). Suppose now that f(x) > f(x2). By Proposition 2.12, the value f(X2) is 
attained between Xl and X; however, this contradicts the invertibility of f 
since X 2 is not situated between Xl and x. In the same way the assumption 
that f(x) is less than f(x l ) leads to a contradiction. Thus, f(x l ) < f(x) < 
f(x 2) and we get (2.17). 

Suppose now that f is not monotonic on I. Then there are two pairs of 
points Yt, Y2 and Y3' Y4 in I such that YI < Y2 and Y3 < Y4 satisfying 

(2.18) 

Without loss of generality we may assume that none of the points YI' Y2, Y3' 
and Y4 is an endpoint of the interval 1. (Observe: if f is continuous at t and 
f(t) > c [resp. f(t) < c] for a given real number c, then there is a neighbor­
hood U of t such that f(x) > c [resp. f(x) < c] for all X belonging to U and X 
being in I, the domain of definition of f. This is an easy consequence of 
Proposition 2.10 applied to the function g(x) = f(x) - c.) Then there are 
points v and w in I such that for k = 1, 2, 3, 4, 

v < Yk < w. 

By (2.17) we have 

{f(yd - f(v)} {f(yd - f(Y2)} < 0 

and 

adding the foregoing two inequalities we obtain 
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Thus, 

{J(v) - f(w)} {J(yd - f(Yl)} > O. 

In the same way we obtain 

By multiplication of the last two inequalities, we see that 

{J(Y1) - f(yz)} {J(Y3) - f(Y4)} > O. 

But this violates the inequality (2.18). We have therefore shown that f is 
strictly monotonic. 

We show that if f is strictly increasing, then f- 1 is strictly increasing; the 
case of strictly decreasing is completely similar. Suppose that 

Y1 < Yz and Xl = f- 1(Y1), Xz = f-1(yZ)' 

Then 

Y1 = f(xd and Yz = f(x z)· 

If we had Xl > Xz, then it would follow that Y1 > Yz (because f is strictly 
increasing) and this violates our assumption. If we had Xl = Xz, then it would 
follow that Y1 = Yz which is also against our assumption. Hence, only Xl < Xz 
is possible and so f- 1 is seen to be strictly increasing. 

To complete the proof, we must show that f- 1 is continuous on 1* which 
is as the range of f a closed interval of finite length by Propositions 2.12 and 
2.13. 

Let r be in the range of f and write r = f(s) with SEI. We want to prove 
that given any e > 0, there exists some (j > 0 such that, for any Y in the range 
of f satisfying Iy - xl < (j, we have If-1(y) - f- 1(r)1 < e. 

To this end, let e > O. By what we have proved already, f is strictly mono­
tonic. We may without loss of generality suppose that f is increasing. Since 
s - e < s < s + e, we have 

f(s - e) < f(s) < f(s + e). 

Let (j be the smaller of the two numbers f(s) - f(s - e) and f(s + e) - f(s). 
Then 

f(s - e) :$; f(s) - (j < f(s) + (j :$; f(s + e). 

Hence, for any Y satisfying f(s) - (j < Y < f(s) + (j, we have 

f(s - e) < Y < f(s + e). 

Since f is increasing, so is f -1. Hence, 

that is, 
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s - e < f-1(y) < S + e. 

But s = f-1(r) and so 

We therefore have shown that, for any y satisfying r - fJ < y < r + fJ, 

If- 1(r) - f- 1(y)1 < e. 

Hence, f- 1 is continuous at r. 
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1. The logarithmic functions f(x) = In x and g(x) = loga x, where a > ° and 
a -=I 1, are continuous on (0, (0). 

Indeed, we have by (1.3) 

x-c x-c 
-- < In x - In c < -- for x > c 

x c 

and 

c-x c-x 
--Inc -Inx < -- for x < c. 

C x 

In either case, In x -+ In c as x -+ c for any point c in (0,00). To verify the 
continuity of g(x) = loga x we only need to recall that 

loga x = (loga e)(ln x). 

2. The exponential functions v(x) = eX and w(x) = aX, where a > ° and 
a -=I 1, are continuous on ( - 00,(0). 

Indeed, the claim follows at once by use of Proposition 2.18. The function 
v(x) = eX is the inverse function of the continuous strictly increasing function 
f(x) = In x; the fact that f(x) = In x is strictly increasing can be seen from the 
inequality 

x-c 
-- < In x - In c for x > c > 0, 

x 

already used in Example 1. In Section 3 of Chapter 1 there is a direct proof 
of the continuity of the exponential function v(x) = eX. 

To verify the continuity of the exponential function with the base a, namely, 
w(x) = aX, we may use Proposition 2.18 and treat w(x) = aX as the inverse 
function of the strictly monotonic and continuous function g(x) = loga x. 
Another approach consists in showing that aX -+ aC as x -+ c. Since 

aX _ aC = aC(aX- C - 1), 
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we need to verify that aX - c ..... 1 as x - c ..... 0 or, equivalently, at ..... 1 as t ..... O. 
We shall do this now. It will be enough to consider the case a> 1 only. 

Let a > 1. By the Lemma preceding Proposition 1.10, a lin ..... 1 as n ..... 00. 

We wish to show the more general result at ..... 1 as t ..... O. First we note that 

lim a-lin = lim !/n = 1. 
n-oo n-oo a 

Thus, corresponding to any e > 0, there exists some positive integer no such 
that 

holds. Now, if 

then 

1 - e < a-l/no < a l/no < 1 + e (for a> 1) 

1 
It I < - or 

no 
1 1 

--<t<-
no no' 

from this it follows that 

1- e < at < 1 + e or la t -11 < e 

and we have what we wanted to show. 

3. The power function h(x) = Xb, where x > 0 and b denotes a fixed real 
number, is continuous on (0, (0). 

Indeed, see the Remark following Proposition 2.9. 

4. The polynomial function P(x) = cnxn + cn_lxn- l + ... + clx + co, where 
Cn> Cn- l , ... , Cl , Co are fixed real numbers, is continuous on (- 00, (0). The 
rational function 

R( ) = P(x) 
x Q(x)' 

where P and Q are polynomial functions, is continuous on ( - 00, (0) with the 
exception of those points a for which Q(a) = O. 

Indeed, see the Remarks following Proposition 2.6. 

5. The trigonometric function s(x) = sin x is continuous on ( - 00,(0). 

Indeed, by (2.9) 

sin x < x 

From this it easily follows that 

n 
forO < x < 2"' 

I sin x I :::; I x I for any real number x 
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[for Ixl ~ nl2 > 1 it follows from Isinxl ~ 1; moreover, s( -x) = -s(x)]. But 

.. 2'x-c x+c smx - smc = sm-2-cos-2-

and so 

I . . I 21' x - c II x + c I I' x - c I Ix - cl smx - smc = sm-2- cos-2 - ~ 2 sm-2 - ~ 2-2-' 

that is, 

Isinx - sincl ~ Ix - cl for any real numbers x and c. (2.19) 

Thus, sinx --+ sinc as x --+ c. [In fact, (2.19) shows uniform continuity on 
( - 00,00 ).] 

From the Remark following Proposition 2.9 we can see that the cosine 
function is also continuous on (- 00, (0). However, the functions 

sin x 
tan x =--, 

cosx 
1 

secx = --, 
cosx 

cosx 
cotx = -.-, 

smx 
1 

cscx =-.­
smx 

have certain points of discontinuity; tan x and sec x are continuous for any x 
such that cos x -=I- ° and cot x and csc x are continuous for any x such that 
sin x -=I- 0. The points of discontinuity of tan x and sec x are of the form 
(2k + 1 )n12 and the points of discontinuity of cot x and csc x are of the form 
kn, where k denotes any integer. 

6. Let f be a continuous function on the closed interval [0,2] and f(O) = 
f(2). Then there are points Xl and X2 in [0,2] such that IXI - x2 1 = 1 and 
f(xd = f(x 2 )· 

Indeed, let g(x) = f(x + 1) - f(x) on [0,1]. Then 9 is continuous on [0,1] 
and g(O) = - g( 1). If g(O) = 0, then f( 1) = f(O) and we are finished. If g(O) -=I- 0, 
then g(O) and g(l) have opposite signs; by Proposition 2.12 there is a point t 
in [0,1] such that g(t) = f(t + 1) - f(t) = 0, that is, f(t + 1) = f(t). 

7. Let 9 be a continuous function mapping the closed interval [0,1] into 
itself. Then there is a point t in [0,1] such that g(t) = t. 

Indeed, let h(x) = g(x) - x on [0,1]. Then h is continuous on [0,1]. Since 
h(O) = g(O) - ° = g(O) ~ 0 and h(l) = g(l) - 1 ~ 1 - 1 = 0, Proposition 2.12 
shows that h(t) = 0 for some t in [0,1] and so we have g(t) = t. 

8. The equation x2x = 1 is satisfied for some x in (0, 1). 
Indeed, let h(x) = x2x on [0,1]. Then h(O) = ° and h(l) = 2. By Proposi­

tion 2.12, there is some point t between ° and 1 such that h(t) = 1. 

9. Let f be a continuous function on an interval J of finite length and Xl' 
x2 , and X3 be points of J and PI' P2' and P3 be positive real numbers. Then 
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there is a point t in J such that 

f(t) = pd(x 1 ) + pd(xz) + P3f(x3). 
Pl + pz + P3 

Indeed, let a = min{x 1,xZ,x3 } and b = max{x1 ,xZ'X3 } and set 

v = min{J(xd,f(xz),f(x3 )} and V = max{J(x 1),f(XZ),f(x3 )}. 

Then f is continuous on the closed interval [a,b] of finite length and f 
assumes all values between v and V. But 

or 
v ~ pd(x1 ) + pd(xz) + P3f(x3) ~ v. 

Pl + pz + P3 

[Clearly, the foregoing result can be extended from the case of three points to 
the case of any finite number of points.] 

10. A rational number x can be written in the form x = p/q, where q > 0, and 
P and q are integers without common divisor. When x = 0, we take q = 1. 
Consider the function f on the closed interval [0, 1] defined by 

f(x) = ° for x irrational, 

1 for x =!!.. 
q q 

Then f is continuous at every irrational point of (0,1) and discontinuous at 
every rational point of (0, 1). 

Indeed, let t be any point of (0,1). Given 13 > 0, there is only a finite number 
of positive integers q that are not larger than 1/13; this means that in (0, 1) there 
are only finitely many rational points p/q for which f(p/q) = l/q ~ e. Thus, 
one may construct around the point t a neighborhood (t - fJ, t + fJ) with 
fJ > ° such that in this neighborhood there is no point x for which f(x) ~ 13 
(except possibly the point t itself). Thus, if ° < Ix - tl < fJ, then for both 
rational and irrational x we have If(x)1 < e. Thus, the one-sided limits for 
every point tin (0, 1) satisfy 

f(t +) = f(t - ) = 0. 

If t is irrational, then f(t) = 0, that is, f is continuous at t; if t is rational, then 
f(t) "# 0, that is, f is discontinuous at t. 

11. Let g be defined on ( - 00, (0) as follows: 

g(x) = ° for x irrational, 

g(x) = x for x rational. 

Then g is continuous at x = ° and discontinuous everywhere else. 
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Indeed, limx-+o g(x) = 0; but limx-+a g(x) does not exist for a -=1= 0 because 
any (nonempty) open interval on the number line contains both rational and 
irrational points. 

12. A strictly increasing (or strictly decreasing) function on an interval that 
assumes all intermediate values is continuous. 

Indeed, let 9 be a strictly increasing function on an interval J such that the 
set of g(x) as x runs through J is an interval I. Consider a point t in J and 
suppose that t is not an endpoint of J; only minor changes in the proof are 
needed if t is an endpoint of J. Then g(t) is not an endpoint of I and so there 
is some 0" > 0 such that the open interval (g(t) - 0", g(t) + 0") is contained in I. 
Take any e > 0 with e < 0". Then there exist points Xl and X 2 in J such that 

g(x l ) = g(t) - e and g(x2) = g(t) + e. 

It is clear that Xl < t < x2. Moreover, if Xl < X < X2' then 

g(x l ) < g(x) < g(x2) or g(t) - e < g(x) < g(t) + e 

and hence Ig(x) - g(t)1 < e. Now, if we set () = min {X2 - t, t - xd, then 

Ix - tl < () implies Xl < X < X 2 

and hence Ig(x) - g(t)1 < e. 
If 9 is strictly decreasing, then -g is strictly increasing; thus the case when 

9 is strictly decreasing does not require a separate proof. 

13. Let a and b denote given real numbers. Then 

lim {j(x + a)(x + b) - x} = a +2 b. 
x-+ao 

Indeed, we have 

I( )( b) (x + a)(x + b) - x 2 
V X + a X + - x = -,:-=====,.---

j(x + a)(x + b) + x j(x + a)(x + b) + x 

(a + b)x + ab 

a + b + ab/x 

j(l + a/x)(l + b/x) + 1 

Using the continuity of the power function (see Example 3), we get 

and the desired result follows. 

14. Let al , a2"" ,ak denote given real numbers and put 

S(x) = .,y(x + al)(x + a2)'" (x + ak) - x. 

Then limx-+ao S(x) = (a l + a2 + ... + ak)/k. 
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Indeed, putting 

Y = ..y(x + a1)(x + az)"·(x + ak) and z = x 

in the identity 

we obtain 

S(x) = (x + a1)·· ·(x + ak) - Xk 
(F)k-1 + X(F)k-2 + ... + Xk- 1 

(a 1 + ... + ak) + (a 1 az + ... + ak- 1 ak)/x + ... + (a1 az ... ak)/xk- 1 

{..y(1 + a1/x)· ··(1 + ak/xW 1 + ... + 1 

Since ..y(1 + a1/x)··· (1 + ak/x) -+ 1 as x -+ 00, we have 

I· S() = a1 + az + ... + ak 
1m x k . 

x-+oo 

15. Let m be a positive integer; then 

lim ~ -1 =~. 
x-+1 x-I m 

Indeed, let x = tm. Then t = x l/m is continuous for x > 0 (see Example 3) 
and t -+ 1 as x -+ 1. Thus, 

~-1 t-l 
lim = lim -- = lim --;-1------;;--------,-
x-+1 x-I 1-+1 t m - 1 /-+1 t m + t m 2 + ... + t + 1 m 

16. Let m and n be positive integers; then 

lim ~ -1 =~. 
x-+1 fx - 1 m 

Indeed, we have (using Example 15) 

lim ~ - 1 = lim ~ - 1 . lim x-lin n 
x-+1 fx - 1 x-+1 x-I x-+1 fx.- 1 m 1 m 

17. Let p, q, r, and s be positive integers; then 

x P/q - 1 ps 
lim x,/s _ 1 
x-+1 qr 

Indeed, let x = t q• Then t = x l/q is continuous for x > 0 (see Example 3) 
and t -+ 1 as x -+ 1. Thus, by Example 16, 
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On the other hand, 

x p/q - 1 t P - 1 p 
lim =lim--=-. 
x-+1 x - 1 1-+1 t q - 1 q 

I. x - 1 s 
1m =­

x-+1 x'/' - 1 r 

Thus, the desired result follows. 

18. Let a and b be given real numbers; then 

lim s~n ax = ~. 
x--+O smbx b 

Indeed, we have 
sin ax sin ax bx a 
sin bx = ---;;;- . sin bx . b· 

But (sin t)/t -+ 1 as t -+ 0 by (2.8). 

19. We have 
lim {In(x + 1) -Inx} = O. 
x-+oo 

Indeed, since 

x+l 
In(x+l)-lnx=ln-- and Int-+Oast-+l, 

x 

the desired result follows. 

20. We have 

lim In(l + x) = 1. 
x-+O x 

Indeed, by (1.3) 

_1_ < In(l + x) < 1 for x > 0 
l+x x 

and 

1 In(l + x) 1 
< < -- for -1 < x < 0; 

x 1 + x 

the claim follows immediately. 

21. Let a > 0, a =1= 1; then 

I· loga(1 + x) - I 1m - ogae. 
x-+O X 
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(2.20) 

(2.21) 
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Indeed, (2.21) follows from (2.20) by noting that 

loga(1 + x) = (logae)ln(1 + x). 

22. Let a > 0, a =1= 1; then 

aX - 1 
lim --- = In a. 
x-a x 

(2.22) 

Indeed, let us set aX - 1 = y. Then y ~ 0 as x ~ 0 because the exponential 
function is continuous. Moreover, x = 10ga(1 + y) and so, by (2.21), 

aX - 1 y 1 
lim--- = lim = -- = Ina. 
x-a x y-o 10ga(1 + x) loga e 

Note that (2.22) implies n(fa - 1) ~ In a as n ~ 00 when we let x = lin in 
(2.22); we have already come across this result in Proposition 1.10. 

23. Let c be a given real number; then 

I. (1 + xy - 1 
1m = c. (2.23) 
x-o X 

Indeed, let (1 + xy - 1 = y. Then y ~ 0 as x ~ 0 because the power function 
is continuous (see Example 3). But (1 + xy = 1 + y gives c[ln(1 + x)] = 

In(l + y) and so 

(1 + xy - 1 y 

x x 

y In(1 + x) 
---'c'---
In(1 + y) x 

By (2.20) 

In(1 + x) 
y ~ 1 for y ~ 0 

In(1 + y) 
and ~ 1 

x 
for x ~O; 

the desired result (2.23) follows. 

24. Let 

Then 

X2n - 1 
f(x) = lim ---=2n:---:­

n-co X + 1 

f(x) = 1 

X 2n+ 1 + x 2 

and g(x) = lim -"""2-n-­
n-co X + 1 

for Ixl > 1, 

= -1 for Ixl < 1, 

= 0 for x = ± 1. 

Indeed, for Ixl > 1 we have x2n ~ 00 as n ~ 00. Thus, for Ixl > 1, 

x2n _ 1 1 - l/x 2n 
----;;---:- = ~ 1 as n ~ 00. 
x2n + 1 1 + l/x 2n 



4. Miscellaneous Examples 

For Ixl < 1 we have x 2" ~ 0 as n ~ 00 and so, for Ixl < 1, 

x 2" - 1 
-=--,--~ -1 asn~oo. 
x 2" + 1 

For x = ± 1 we have x 2" = 1 and so f(± 1) = O. 
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In an entirely similar way we obtain g(x) = x for Ixl > 1, g(x) = x 2 for 
Ixl < 1, g(1) = 1, and g( -1) = O. Thus, 9 is discontinuous at x = -1 only. 

25. We have 

1. 1 - cosx _ 1 
1m 2 --2' 

x-o x 

Indeed, putting x = 2t, we get 

1 - cosx 

x 2 

1 - cos2t 

4t 2 

and the desired result easily follows from (2.8). 

26. We have 

1 sin t sin t 
2 t t 

1. cosmx - cosnx _ n2 - m2 
1m x2 - 2 

Indeed, 

1 - cosnx 

x 2 

x-o 

1 - cos mx 2 1 - cos nx 2 1 - cos mx 
---,;--- = n - m --,---....,..".-

x 2 (nx)2 (mx)2 

and we can use (2.24) to deduce the result in question. 

27. We have 

1. tan x - sinx _ 1 
1m 3 --. 

x-o x 2 

Indeed, we have 

sin x - (sin x)(cos x) sin x 1 - cos x 1 

x 3cosx x cos x 

and we can use (2.24) to get the desired result. 

28. We have 

J1 - cosx 1 
lim =-. 
x-o x J2 

Indeed, 

(2.24) 
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Jl - cosx Jl - cosx Jl + cosx Jl - COS2 X sinx 

X X Jl + cosx xJl + cosx xJl + cosx 

and we use (2.8) to get what we are after. 

29. We have 

1. X - sin2x 1 
1m . 
x-o X + sm3x 4 

Indeed, since 

X - sin2x 

X + sin 3x 

2 (x - sin 2x)j2x 
3 (x + sin 3x)j3x 

2 t - (sin 2x)j2x 
3 t + (sin 3x)j3x 

we see that 

lim x - sin 2x = ~ t - 1 1 
x-a x + sin 3x 3 t + 1 4 

30. We have 

lim Jx 2 - 2x ~ 6 - Jx 2 + 2x - 6 = _~. 
x-3 X - 4x + 3 3 

Indeed, 

J x 2 - 2x + 6 - J x 2 + 2x - 6 

x 2 - 4x + 3 

-4(x - 3) 

(x 2 - 4x + 3)(J x 2 - 2x + 6 + J x 2 + 2x - 6) 

-4 

(x - I)(Jx 2 - 2x + 6 + Jx 2 + 2x - 6) 

and so the limit in question equals 

-4 1 
2(j9 + j9) or -3' 

31. We have 

Indeed, 

and the desired result follows. 

2(W + 3 

(W + 1 
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32. Let f( -2) = -1,/( -1) = 0,/(1) = 1, and 

x 2 + x - 2 
f(x) = 3 + 2 2 2 for x =1= - 2, -1, 1. x x -x-

Then f is discontinuous for x = ± 1, but continuous for x = - 2. 
Indeed, for x =1= - 2, -1, 1 we have 

But 

f(x) = (x + 2)(x - 1) 
(x + 2)(x - 1)(x + 1) 

. 1 
hm --= 00 

x.\--l X + 1 
d I· 1 an 1m -- = - 00. 

xt-l x + 1 

In addition, 

On the other hand, 

33. We have 

Indeed, since 

lim_1_=~. 
x .... l x + 1 2 

I. 1 
1m --=-1. 

x .... -2 x + 1 

JX+1 + F=!- 2Jx = (JX+1- Jx) - (Jx - F=!) 
1 1 

JX+1 + Jx Jx + F=! 
F=!-JX+1 

we have 

x 3/2(JX+1 + F=!- 2Jx) 
-2(Jx)3 

(JX+1 + Jx)(Jx + F=!)(F=! + JX+1) 
-2 1 

-(Jr 1=+=1/=x -+-1--)(-1 -+-Jr 1=-=1=/x=-)--(Jr 1=-=1/=x -+-Jr 1=+=1/=-x) -+ - 4 

as x -+ 00. 

93 

34. Let A and B be two bounded sets of real numbers and let C be defined 
by 
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y 

y = x 

A£=------~ f[ f (x) ] 
----~------~----L-------~x 

f(x) x 

Figure 2.10 

C = {x: x = a + b where aEA,bEB}. 

Then C is bounded above and sup C = sup A + sup B. 
Indeed, for any XE C, x = a + b where aEA and bEB. Now a::;; supA and 

b ::;; sup B. Thus, x ::;; sup A + sup B. This holds for all x E C; thus sup A + 
sup B is an upper bound for C, C is bounded above, and sup C ::;; sup A + 
supB. 

By the Remark following the definition of supremum, for any 6 > 0 there 
is an a E A such that a > sup A - t6 and an element bE B such that b > 
supB - t6. But a + bEe. Hence, supC ~ a + b > supA + supB - 6. This 
is true for all 6 > 0 and thus sup C ~ sup A + sup B. Thus, finally, sup C = 

supA + supB. 

35. Let A and B be two bounded sets of real numbers. Then 

sup(A u B) = max{sup A, sup B}. 

Indeed, A u B ::J A. Thus, sup(A u B) is an upper bound of A. Hence, 
sup(A u B) ~ sup A and similarly sup(A u B) ~ sup B. If a E A u B, then a E A 
or a E B. Thus, a ::;; sup A or a ::;; sup B and in either case a ::;; max {sup A, 
sup B}. Hence, we have sup(A u B) = max {sup A, sup B}. 

36. Knowing the graph of the function y = f(x), Figure 2.10 illustrates 
how to plot the graph of the function y = f[f(x)]. 

EXERCISES TO CHAPTER 2 

2.1. The functions f and 9 are defined as follows: 
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1 
f(x) = - 2(1 + x) if -1 < x ~ -!, 

= 2x if -t~ x~!, 

1 
if t ~ x < 1, 

2(1 - x) 

=0 if x ;:::: 1 or x ~ -1, 

and 

2x - 1 
g(x)=--

2x 
if x;:::: 1, 

x 

2 
if -1 ~ x ~ 1, 

2x + 1 
if x ~ -1. ---

2x 

Show that f[g(x)] = x for all values of x but g[f(x)] is different from x outside 
the interval (-1,1). 

[Hint: If t ~ x < 1, then g[f(x)] = x; if -t ~ x ~ !, g[f(x)] = x; if x;:::: 1, 
g[f(x)] = g(O) = 0 #- x; if -1 < x ~ -!, g[f(x)] = x; and if x ~ -1, g[f(x)] = 
o #- x. Note that g is increasing but its values are confined to the interval 
(-1,1), and so g[f(x)] = x only for x in (-1,1). 

On the other hand, if x ;:::: 1, then 

if -1 ~ x ~ 1, 

f[g(x)] = f(tx) = 2(tx) = x; 

if x ~ -1, 

( 2x + 1) 1 ( 2x + 1) f[g(x)] = f --- = -- 1 - -- = x. 
2x 2 2x 

Hence, f[g(x)] = x for all x.] 

2.2. The function f is continuous in (a, b) and f(x) is not zero for any x in (a, b). Show 
that f is of constant sign in (a, b). 

[Hint: For any positive t, and any A, B in (a, b), [if(A) + f(B)]/(t + 1) lies 
between f(A) and f(B) and therefore, since f is continuous, is a value of f for an 
x between A and B and so different from zero. Suppose that f(A) > 0; take 
t = If(B)llf(A), then f(B) #- -If(B)1 and so f(B) > O. In the same way it follows 
that if f(A) < 0, then f(B) < 0.] 

2.3. Let 

d x _ Ix - yl 
( 'Y)-l+lx-yl 

Show that d(a, b) ~ d(a, c) + d(b, c) for any real numbers a, b, and c. 
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[Hint: Since a - b = (a - c) + (c - b), we have 

la - bl ~ la - cl + Ie - bl· 

Evidently Ie - bl = Ib - cI. But the function 

t 1 
f(t) = 1 + t = 1 - 1 + t 

is increasing for t ~ 0 and so 

2. Limits and Continuity 

la - bl la - cl + Ib - cl 
----< . 
1 + la - bl - 1 + la - cl + Ib - cl 

However, it is clear that 

la - cl + Ib - cl la - cl Ib - cl 
-,------,-----,------,.,--------:- < + .] 
1 + la - cl + Ib - cl - 1 + la - cl 1 + Ib - cl 

2.4. A function f is said to be concave up on (A, B) if 

f[tx + (1 - t)y] ~ tf(x) + (1 - t)fy 

whenever A < x < B, A < y < B,O < t < 1. Geometrically, this means that if P, 
Q, and R are any three points on the graph of f with Q between P and R, then 
Q is on or below chord P R. 

Show that if f is concave up on (A, B) and [a, b] is any closed subinterval of 
(A, B), then f is continuous on [a, b]. 

[Hint: We show that the set of all values f(x) as x ranges over the interval 
[a, b] is bounded above and below and then establish that there exists a con­
stant K so that for any two points x, y of [a, b] we have 

If(x) - f(y)1 ~ Klx - YI· 

We observe that M = max{f(a),f(b)} is an upper bound for f on [a,b], since 
for any point z = ta + (1 - t)b in [a, b] 

f(z) ~ tf(a) + (1 - t)f(b) ~ tM + (1 - t)M = M. 

But f is also bounded from below because, writing an arbitrary point in the 
form (a + b)j2 + s, we have 

( a + b) 1 (a + b ) 1 (a + b ) f -2- ~"5J -2-+ s +"5.1 -2-- s 

or 

( a + b ) (a + b) (a + b ) f -2-- s ~2f -2- +f -2-- s . 

Using M as an upper bound, 

( a + b ) -f -2-+s ~ -M, 

so 

(a + b ) (a + b) f -2-+ s ~2f -2- -M=m. 
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This shows that M and m are upper and lower bounds of f on [a,b], respec­
tively. 

We next pick h > 0 so that a - hand b + h belong to (A, B), and let m and M 
be the lower and upper bounds for f on [a - h, b + h]. If x and yare distinct 
points of [a, b], set 

h 
z = y + --(y - x), 

Iy-xl 
Iy-xl 

t= . 
h + Iy - xl 

Then z belongs to the closed interval [a - h, b + h], y = tz + (1 - t)x, and we 
have 

fey) ~ tJ(z) + (1 - t)f(x) = t[f(z) - f(x)] + f(x), 

Iy-xl 
fey) - f(x) ~ t(M - m) < -h-(M - m) = Kly - xl, 

where K = (M - m)/h. Since this is true for any x and y in [a,b], we conclude 
that If(y) - f(x)1 ~ Kly - xl as desired.] 

2.5. Show that f is concave up on (A, B) if and only iffor all sets of distinct Xl' x 2 , 

X3 belonging to (A, B), 

is nonnegative. 

(X3 - x2)f(x1) + (Xl - x 3)f(X2) + (X2 - x 1)f(X3) 
(Xl - X2)(X2 - X3)(X3 - Xl) 

[Hint: Let Xl < X2 < X3 and consider the determinant 

1 Xl f(xd 
1 X 2 f(X2) 

X3 f(x 3) 

Interpret this determinant geometrically.] 

2.6. Let f1' f2' and f3 be continuous functions on [a, b] and let f(x) denote that one 
of the three values f1(X), f2(X), and f3(X) that lies between the other two. Show 
that f is continuous on [a, b]. 

[Hint: Note that 

f(x) = f1(X) + f2(X) + f3(X) - max{J1(x).!2(X).!3(X)} 

- min{J1(x).!2(X).!3(X)}.] 

2.7. Any continuous function f mapping the set ofreal numbers into itself such that 
f(x + y) = f(x) + fey) for any real numbers X and y is of the form f(x) = ex, 
where e is a constant. Verify this claim. 

[Hint: For any positive integer n, we have, by induction on n, f(nx) = nf(x); 
replacing x by x/n, we see that f(x/n) = (l/n)f(x). On the other hand, f(O + x) = 
f(O) + f(x), hence f(O) = 0; and f[x + ( - x)] = f(x) + f( - x) = f(O) = 0, hence 
f( - x) = - f(x). Thus, for any pair of integers p, q such that q > 0, we have 
f(px/q) = (p/q)f(x); in other words, f(rx) = rf(x) for any rational number r. If 
we let x = 1 and denote f(l) bye, we obtain fer) = cr. 

Let p be any irrational number. We choose for p an approximating sequence 
r1, r2, r3, ... of rational numbers, for example, the sequence of finite decimal 
fractions approximating p. Then, for n = 1, 2, 3, ... , fern) = ern. Since f is 
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assumed continuous on the entire number line, we obtain, on passing to the 
limit as n --> 00, 

f(p) = lim f(rn) = lim crn = cp.] 
n-+a') n-+oo 

2.8. Show that if 9 is any continuous function mapping the set of real numbers into 
itself such that g[(x + y)/2] = [g(x) + g(y)]/2 for any real numbers x and y, 
then 9 is of the form g(x) = ex + a, where c and a are constants. 

[Hint: Indeed, for y = 0, we obtain g(x/2) = [g(x) + g(0)]/2 = [g(x) + a]/2, 
where a = g(O); thus, 

g(x) + g(y) = (x + y) = g(x + y) + a 
2 9 2 2' 

that is, g(x + y) = g(x) + g(y) - a, and, with f(x) = g(x) - a, 

f(x + y) = f(x) + f(y)· 

But 9 is continuous; hence f is continuous and so, by Exercise 2.7, f is of the 
form f(x) = ex. This shows that 9 is of the form g(x) = ex + a, where c and a are 
constants.] 

2.9. Let [a, b] be a closed interval of finite length and f be a continuous function on 
[a, b]. If for each x in [a, b] there exists a y in [a, b] such that 

If(y)1 :s;; tlf(x)l, 

show that there is a point t in [a, b] for which f(t) = O. 
[Hint: The function f2 is continuous on [a, b] and hence achieves a minimum 

value c at some point t of [a, b]. But there exists an s in [a, b] such that If(s)1 :s;; 
tlf(t)1 = tJc. Thus, P takes the value ic on [a, b] and hence c :s;; ic. Since 
c ~ 0, it follows that c = 0.] 

2.10. Let the numbers of the open interval (0,1) be expressed as finite or infinite 
decimals x = O.a l a2 a3 ••• an'" , and let f(x) = O.Oa l Oa 20a3 ••• • Is f discontin­
uous for every value of x represented by a finite decimal? 

2.11. Show that a continuous function on a closed interval J of finite length which 
takes on no value more than twice must take on some value exactly once. 

[Hint: Let M be the maximum value which the function f takes on J. If 
f(x) = M nowhere else on J, we are done; if not, let m be the minimum which f 
takes on between the two points where the value of f is M. Then evidently 
between these two points f takes on all the values m < a < M at least twice, and 
thus, by assumption, exactly twice. But the value m is taken only once, since for 
it to be taken twice, either within or without the interval between the two 
maxima, f would have to take on some of the values m < a < M still more 
times.] 

2.12. A function f is said to be periodic, with period a, if f(x) = f(x + a) for all values 
of x for which f(x) is defined. Show that no periodic function can be a rational 
function, that is, a quotient of two polynomials, unless it is a constant. 

[Hint: Let f be a periodic function with period a and suppose that f is a 
rational function so that f(x) = P(x)/Q(x), where P and Q are polynomials. If 
f(O) = c, then P(x)/Q(x) = c when x = 0, a, 2a, 3a, .... Thus, whatever the 
degree n of the equation P(x) - cQ(x) = 0, it is satisfied by more than n values 
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of x and this is only possible if P(x) - cQ(x) = 0 for all values of x, that is, if 
f(x) = c (constant).] 

2.13. Show that if P(x) = xm + a1xm - 1 + a2 x m - 2 + ... + am, where m is a positive 
integer and a" a2 , ••• , am are real numbers, then there exists a number X such 
that, when x > X, 

[Hint: For x> I, 

la1x m-' + a2 x m - 2 + ... + ami::; la,xm-'I + la 2 x m- 2 1 + ... + laml ::; Axm-' 

where A = la,1 + la21 + ... + laml. Thus, 

la,xm- 1 + a2 X m- 2 + ... + ami::; 1Xm if x > X = max{1,2A}. 

That is, 

and the claim follows on addition of xm.] 

2.14. Let 

f I· In(x + 2) - x2n(sin x) 
(x) = 1m 2n 

n~oo 1 + x 
for 0::; x ::; 1n. 

Describe the graph of f in the interval [0,1n] and note that f does not vanish 
anywhere in this interval, although f(O) and f(1n) are of opposite sign. 

[Hint: Note that 

f(x) = In(x + 2) for 0 ::; x < 1, 

= 1(ln 3 - sin 1) for x = 1, 

= -sinx for 1 < x::; 1n.] 

2.15. Show that a function f which, in a given interval [a, b], possesses either of the 
properties 

(i) it attains its largest and smallest values for any closed subinterval [a', b'] of 
[a, b] at least once in the subinterval; 

(ii) it attains at least once in any subinterval [a', b'] of [a, b] every value between 
f(a') and f(b'); 

does not necessarily possess the other. 
Show further that a function which possesses both these properties in [a, b] is 

not necessarily continuous on [a, b]. 
[Hint: On the interval [a, b] with a = -1 and b = 1, consider the functions 

f(x) = 0 x rational, 

= 1 x irrational; 

g(x) = (1 - x 2)sin(x- 2) for x#- 0, 

=0 for x = 0; 

h(x) = sin(x-1 ) for x #- 0, 

= 0 for x = O. 
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Then f is an example of a function showing that (i) does not imply (ii), 9 is an 
example of a function showing that (ii) does not imply (i), and, lastly, h is an 
example of a function that shows that (i) and (ii) in combination are not enough 
to secure continuity throughout [a, b]. Note especially that while 1 is the upper 
bound of g(x) on [ -1,1], 1 is never attained and that the graph of 9 is contained 
between the parabolic arcs Y = ±(1 - x 2 ) for -1 :;:;; x :;:;; 1.] 

2.16. Let p > 1, q > 1, and Yl' Y2' ... , Y. be functions defined by the relations 

Yl = {X(X)1fq}I/P, Y2 = {x(xYtl 1/qP/p, ... , Y. = {X(Xy._l)I/QP/P• 

Find Y = lim._oo Y.· 
[Hint: Let at> a2, ... , a. be the exponents of x in Yl' Y2' ... , Y., respectively. 

Then 

a2 ( 1 1) a3 = a 1 + - = a 1 1 + - + 22 ' 
pq pq pq 

: ( 1 1 1 
a. = al 1 + - + 22 + ... + • 1 • 

pq pq p q 

Hence, 

q + 1 
a --> -- as n --> 00 

• pq - 1 

and so 

Y = X(Q+l)/(pQ-l).] 

2.17. Iff is defined on (0, 00), has inverse f-1, and satisfies the relation 

f(x) + f(y) = f(xy) for all x > 0 and Y > 0, 

find a corresponding relation satisfied by f- 1• 

[Hint: We must have r 1 {j(x) + f(y)} = r 1 {j(xy)} = xy. Put f(x) = u and 
f(y) = v. Then x = r 1(u), y = r 1(v), and rl(u + v) = r 1(u)r 1 (v). The last 
equation is the relaltion we desire.] 

2.18. Let f(x) = (ax + b)/(ex + d), where we assume that ad - be #- O. Show that 
f-l(X) = (b - dx)/(ex - a). In particular, f = f- 1 when a = -d. 

2.19. Let f(x) = 1 - Ixl if Ixl :;:;; 1 and f(x) = 0 if Ixl ;::: 1. Sketch the graph of y = 

f(x)f(a - x) if (i) a = 0, (ii) a = 1, and (iii) a = 2. 

2.20. Find 

lim 1 + -cosx + -cos2x + ... + -cosnx . ( 111) 
'-00 2 4 2' 

[Hint: Let 

s = 1 + a(cosx) + a 2(cos2x) + ... + ak(coskx) 
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and 

Then 

T = a(sin x) + a2(sin 2x) + ... + ak(sin kx). 

S + iT= 1 + (cos x + isinx) + a2(cos2x + isin2x) + ... 

+ ak(coskx + isinkx). 

Putting A = cos x + i sin x, we obtain 

Hence, 

S + iT= 1 + aA + a2A2 + ... + akAk 

aA -1 aA -1 aA-1 - 1 

ak+2 Ak _ ak+1 Ak+1 _ aA -1 + 1 

a2 - a(A + A 1) + 1 

ak+2(cos kx) - ak+1 [cos(k + 1)xJ - a(cos x) + 1 
S = ----'-----'---;;----=-:----'-----'----=-:---'----------'---

a2 - 2a(cosx) + 1 . 

Finally, letting k = n and a = t. we see that 

. (1 1 1) 2(2 - cos x) hm 1 + -cosx + -cos2x + ... + -cosnx = .J 
"~OO 2 4 2" 5 - 4cosx 
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CHAPTER 3 

Differentiation 

1. Basic Rules of Differentiation 

Definition. Let f be a real-valued function defined on an open interval (a, b) 
containing the point s. We form the quotient 

f(t) - f(s) 
t - s 

with a < t < band t '# s. If the limit 

I. f(t) - f(s) 
1m '----'--'-----=----'­

t .... s t - s 

exists (as a finite real number), its value is denoted by f'(s); in this case f'(s) 
is called the derivative of f at sand f is said to be differentiable at s. If f is 
differentiable at every point of a set S, then f is said to be differentiable on S. 

REMARK. Consider the graph of the function f and let (s,f(s» and (t,f(t» be 
two points on the graph off The straight line containing the points (s,f(s» 
and (t,f(t» is a secant line to the graph off and has the slope 

f(t) - f(s) 
t-s 

At t -+ s, the slope [f(t) - f(s)]/(t - s) of the secant line approaches the slope 
m of the tangent line to the graph offat the point (s,f(s» and m = f'(s). See 
Figure 3.1. 

Definition. Letfbe a real-valued function defined on a closed interval [a, b]. 
Thenfis said to be differentiable at the endpoints a and b if 
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y 

graph of f 
secant 

(t,f (t)) 

~tangent 

-- (t,f(t)-f(s)) 

--t--------------7X 

Figure 3.1 

f'(a) = limf(t) - f(a) and f'(b) = limf(t) - f(b) 
t.\.a t - a ttb t - b 

exist (as finite real numbers); the notation t! a signifies that t approaches a 

from above, that is, t > a, and t i b signifies that t approaches b from below, 
that is, t < b. 

Proposition 3.1. Let f be defined on an interval J. Iff is differentiable at some 
point s of J, thenfis continuous at s. 

PROOF. For all points x of J, x i= s, sufficiently close to s the expression 

has bound M, that is, 

If(x) - f(s)1 ::; Mix - sl· (3.1) 

Indeed, for all points x of J, x i= s, let 

h(x) = f(x) - f(s). 
x-s 

But limx~s h(x) = L, where L is a finite real number. Let B = 1 in the defining 
condition of limit. Then there is a subinterval I of J, with s not in I, such that 

L - 1 < h(x) < L + 1 

for any x in I. Now, take M = max{IL - 11, IL + II}. 
As x -+ s, the expression on the right-hand side of inequality (3.1) tends to 

zero; hencef(x) -+ f(s) as x ..... s and the continuity of/at s is established. 0 
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REMARKS. Another way of proving Proposition 3.1 is to note that 

f(x) - f(s) 
f(x) - f(s) = (x - s) -+ f'(s)· 0 = 0 as x -+ s. 

x-s 

The converse of Proposition 3.1 is not true; a function can be continuous 
at a point without being differentiable at that point. For example,J(x) = Ixl 
is continuous at x = 0 but is not differentiable at x = 0; the limit 

1. Ixl-IOI 
Im--­

x-+O X - 0 

does not exist. The expression Ixllx equals 1 for x> 0 and equals -1 for 
x < 0; for x = 0 the expression Ixllx is not defined. 

It is possible to construct functions continuous everywhere on an interval 
but differentiable nowhere on the same interval; see Proposition 7.65. 

Proposition 3.2. Let f and 9 be functions defined on [a, b] and be differentiable 
at a point x of [a, b] and let k be a fixed real number. Then /if, f + g, fg, and 
fig [where g(x) #- 0] are differentiable at x, and 

(i) (kf)'(x) = kf'(x); 
(ii) (f + g)'(x) = f'(x) + g'(x); 

(iii) (fg)'(x) = f'(x)g(x) + f(x)g'(x); 

(iv) (£)' (x) = g(X)f'(X;2~x~'(X)f(X). 

PROOF. Parts (i) and (ii) are easy consequences of Proposition 2.5. To verify 
part (iii), we let h = fg and note that 

h(t) - h(x) = f(t) [g(t) - g(x)] + g(x) [f(t) - f(x)]. 

Dividing by t - x and observing thatfand 9 are continuous at x (by Proposi­
tion 3.1), we let t -+ x and see that part (iii) follows. 

Finally, let w = fig. Then 

w(t) - w(x) = 1 (g(x/(t) - f(x) _ f(x)g(t) - g(X)). 
t - x g(t)g(x) t - x t - x 

Letting t -+ x, we obtain (iv). o 

Proposition 3.3 (Chain Rule). Letfbe afunction defined on an interval J andf 
be differentiable at some point x of J; let 9 be defined on an interval I which 
contains the range off, and let 9 be differentiable at the pointf(x). If,for t in J, 

h(t) = g[f(t)], 

then h is differentiable at x and 

h'(x) = g'[f(x)]f'(x). (3.2) 
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PROOF. Le! y = f(x). By the definition of derivative, we have 

f(t) - f(x) = (t - x) [f'(x) + u(t)], 

g(s) - g(y) = (s - y) [g'(y) + v(s)], 
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where tEJ, sEI, and u(t) -+ 0 as t -+ x, v(s) -+ 0 as s -+ y. We let s = f(t). Then 

h(t) - h(x) = g[f(t)] - g[f(x)] = [f(t) - f(x)] [g'(y) + v(s)] 

or, if t #- x, 

= (t - x) [f'(x) + u(t)] [g'(y) + v(s)], 

_h(_t)_-_h---,-(x--,--) = [g'(y) + v(s)] [f'(x) + u(t)]. 
t - x 

Letting t -+ x, we see that s -+ y, by the continuity off at x (see Proposition 
3.1); thus, as t -+ x, 

h(t) - h(x) -+ g'(y)f'(x). 
t - x o 

Proposition 3.4. Let f be continuous and strictly monotonic on an interval I; 
moreover, let f be differentiable at some point x of I with f'(x) #- o. Then the 
inversefunctionf-1 is differentiable at y = f(x) and 

(f- 1 ),(y) = f'~X). (3.3) 

PROOF. Let I* be the interval on whichf-1 is defined (see Proposition 2.18). 
Let wEI*, W #- y, and w -+ y. Then [with v = f- 1(w),VEI,v #- x,v -+ x] 

f-1(W) - f-1(y) V - X 1 
W - Y f(v) - f(x) [f(v) - f(x)]/(v - x) 

1 
f'(x) . o 

REMARKS. The relation (3.3) is easy to remember. Since h(x) = x obviously 
yields h'(x) = 1, we get by Proposition 3.3 thatf-1 [f(x)] = x implies 

(f-1 )'(y)f'(x) = 1. 

Figure 3.2 illustrates formula (3.3) geometrically. The graphs off and f- 1 

are reflections of one another in the line y = x. The tangent lines 11 and 12 are 
also reflections of one another in the line y = x; we have 

fi~-b x-b 
f'(x) = slope of 11 = x _ band (f-1 ),(y) = slope of 12 = f(x) _ b 

are reciprocals of one another. 
Let y = f(x). Thenf'(x) can also be written 

dy d 
dx' dx f(x), D"y, Dxf(x), and y'. 
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y 

y = x 

f 

Figure 3.2 

For w = g(y) and y = f(x) we can write (3.2) in the simple form 

dw 
dx 

(3.4) 

Similarly, for y = f(x) and x = f-l(y) we can write (3.3) in the simple form 

dx 1 1 
-=-- or Dx=-. 
dy dy/dx Y DxY 

(3.5) 

Definition. A function f defined on an open interval (a, b) is said to be twice 
differentiable at s in (a, b) iffis differentiable on a neighborhood of s and iff' 
has a derivative at s. The derivative off' is called the second derivative off or 
the second order derivative off and its value at s is denoted by /,,(s). If this 
situation prevails at all points s of (a, b), thenfis said to be twice differentiable 
on (a, b) and we denote the second derivative offby /". Instead of saying that 
fis twice differentiable at s we can also say thatfhas a second derivative at s 
or that the second derivative off exists at s. We say that the third derivative 
off exists at s iff' is differentiable on a neighborhood of s and if/" has a 
derivative at s; the third derivative at s is denoted by f"'(s). Proceeding 
inductively, we say that the nth derivative off exists at s if the derivative of 
order n - 2 offis differentiable in a neighborhood of s and if the derivative 
of order n - 1 of f has a derivative at s. We denote by j<n) the nth order 
derivative off 

Let y = f(x), thenj<n)(x) can also be written 

dny 

dx n ' 
and yen). 
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2. Derivatives of Basic Functions 

1. Let f(x) = c, where c is a fixed real number. Then f'(x) = 0. 
Indeed, 

f'(x) = limf(t) - J(x) = lim c - c = limO = O. 
t .... x t - x t .... x t - x t .... x 

2. Let g(x) = x·, where n is a positive integer. Then g'(x) = nx·-1• 

Indeed, for t i= x we have 

Thus, 

t· - x· 
g'(x) = lim--- = lim (t·- 1 + t·- 2 x + ... + tx·- 2 + x·-1 ) 

t-+x t - X t-x 

= nx·-1• 

3. For x> 0, let f(x) = In x. Thenf'(x) = 1jx. 
Indeed, by (1.3) 

1 lnt-lnx 1 
- < < - for x> t 
t t - x x 

and 

1 lnx-lnt 1 
- < < - for x < t. 
x x - t t 

In either case 

f'(x) = lim lnt -lnx =!. 
t .... x t - x x 
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REMARK. Another method for obtaining the derivative of In x is to note that 

lnt -lnx lln[l + (t - x)jx] 
t - x x (t - x)jx 

and then use (2.20). 

4. For x > 0, let g(x) = loga x, where a is a fixed positive real number differ­
ent from 1. Then g'(x) = (loga e)(ljx). 

Indeed, loga x = (loga e)(ln x) and so 

d d 1 
-d (loga x) = (logae)-d (In x) = (loga e)-. 

x X X 
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5. Let h(x) = aX, where a is a fixed positive real number different from 1 and 
x is any real number. Then h'(x) = (In a)ax• 

Indeed, for - 00 < x < 00 and 0 < y < 00 

y = aX if and only if x = log" y. 

Thus, by (3.5), 

In particular, 

REMARK. Another method for obtaining the derivative of aX is to note that 

and then use (2.22). 

6. For x > 0, let w(x) = Xb, where b is a fixed real number. Then w'(x) = 
bxb- t . 

Indeed, since 

we get, letting w = e' and y = b(ln x), 

dw = dw. dy = e'(~) = Xb(~) = bxb-t. 
dx dy dx x x 

REMARK. Another way of getting the derivative of the power function x b is to 
observe that 

tb - x b b-t [1 + (t - x)lx]b - 1 
---=X 
t - x (t - x)lx 

and then use (2.23) 

7. For x > 0, let v(x) = XX. Then v'(x) = xX(l + In x). 
Indeed, XX = ex(lnx) and so, putting v = e' and y = x(lnx), we get 

dv dv dy 
dx = dy' dx = e'(l + In x) = xX(1 + In x). 

8. Letf(x) = sinx. Thenf'(x) = cosx. 
Indeed, since 

. . 2 . t-x t+x smt - smx = sm-2-cos-2-, 
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we have 

f '() I· sin t - sin x I. 2 . t - x t + x x = 1m = 1m--sm--cos--
t-+x t - X t-+x t - x 2 2 

_ I· sin[(t - x)/2] .1· [(t + X)] _ 
- 1m (-)1 1m cos 2 - cos x 

t-+x t x 2 t-+x 

by (2.8). 

9. Let g(x) = cosx. Then g'(x) = -sinx. 
Indeed, since cos x = sin(tn - x), we have by Proposition 3.3 

dd (cos x) = ~[sin(!n - x)] = -cos(tn - x) = -sinx. 
x dx 

REMARK. Since 

sinx 
tanx =--, 

cosx 
cosx 

cotx = -.-, secx = --, 
smx cosx 

1 
and csc x = -.­

smx 

it is easily seen by using part (iv) of Proposition 3.2 that 

d d 
dx (tan x) = sec2 x, dx (cot x) = -csc2 x, 

d d 
dx (sec x) = (secx)(tanx), and dx (cscx) = -(cscx)(cotx). 
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10. The inverse sine function, denoted by sin -1, or arc sin, is defined as 
follows: 

y = sin-1 x if and only if x = siny and -I:=:; y:=:; I. 
(The domain of sin -1 is the closed interval [ -1,1], and the range is the 
closed interval [ -nI2, nI2].) 

For -1 < x < 1 we have 

d . 1 
-(sm -1 x) = --;::== 
dx ~ 

Indeed, Dy(sin y) = cos y > 0 for any y in the open interval ( -nI2, nI2). In 
this case the derivative DxY exists and 

1 1 1 1 
D y = - = -- = ---;====::;:= 

x Dyx cosy J1 _ sin2 y ~' 

the root is positive because cos y > o. 

REMARKS. The inverse cosine function, denoted by cos -1, or arc cos, is defined 
as follows: 



110 3. Differentiation 

y = COS -I X if and only if x = cos y and ° :::; y :::; n. 

(The domain of cos -I is the closed interval [ - 1, 1], and the range is the 
closed interval [0, n]. Moreover, cos -I x = (n/2) - sin -I x for -1 :::; x :::; 1.) 

It is not difficult to show that 

d 1 1 
-(cos- x)= - for -1 <x< 1. 
dx ~ 

11. The inverse tangent junction, denoted by tan -I, or arc tan, is defined as 
follows: 

y = tan-I x if and only if x = tany and -i < y < i' 
(The domain of tan -I is the set of all real numbers, and the range is the open 
interval ( - n/2, n/2).) 

For - 00 < x < 00 we have 

d -I 1 -(tan x) = --. 
dx 1 + x 2 

Indeed, for any real number x 

1 1 1 
DxY = Dyx = sec2 y = 1 + tan2 y 1 + x2 • 

REMARKS. The inverse cotangent junction, denoted by cot -I, or arc cot, is 
defined by 

y = cot -I x if and only if x = cot y and ° < y < n. 

(The domain of cot -I is the set of all real numbers and the range is the open 
interval (0, n). Moreover, cot -I x = (n/2) - tan -I x for all real numbers x.) 

It is not difficult to see that 

d -I 1 -(cot x) = ---- for - 00 < x < 00. 
dx 1 + x 2 

12. The inverse secant junction, denoted by sec-I, or arc sec, is defined as 
follows: 

y = sec -I x if and only if x = sec y, y #- n/2, and ° :::; y :::; n. 

(The domain of sec-I is (- 00, -1] together with [1, (0) and its range is 
[0, n/2) together with (n/2, n]. Moreover, sec-I x = cos -1(I/x) for Ixl ;::: 1.) 

For Ixl > 1 we can see that 

d -I 1 
-d (sec x) = /:21' 

x Ixly' x 2 - 1 
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Note: The inverse cosecant function, denoted by csc -1, or arc csc, is defined 
by 

y = csc-1 x if and only if x = csc y, y "# 0, and -i :s; y :s; i. 
(The domain of csc-1 is (- 00, -1] together with [1, (0) and its range is 
[-n/2,0) together with (0,n/2]. Moreover, csc-1 x = sin-l (l/x) for Ixl ~ 1.) 

For Ixl > 1 we can see that 

d -1 1 
-d (csc x)= - ~. 

x Ixlv x 2 - 1 

REMARK. The graphs of the six inverse trigonometric functions are obtained 
by reflecting each of the graphs in Figure 3.3 about the line y = x; Figure 3.4 
shows the resulting graphs. Figure 3.5 shows the graphs of some additional 
functions that are of interest. 

13. The hyperbolic and inverse hyperbolic functions were introduced in Sec­
tion 4 of Chapter 1. It is easily seen that 

dd (sinh x) = cosh x, dd (cosh x) = sinh x, ~(tanhx) = sech2 x, 
x x dx 

d d 
dx (cothx) = -csch2 x, dx (sechx) = -(sechx)(tanhx), 

d 
dx (csch x) = -(csch x)(coth x), 

and 

d ( . h-1 ) 1 
d-sm x = ~' 

x v 1 + x 2 

d 1 
-(cosh -1 x) = if x > 1, 
dx p-=t 
d 1 1 

dx (tanh- x) = 1 _ x 2 if Ixl < 1, 

d 1 
-(coth-1 x) = -- iflxl> 1, 
dx 1 - x 2 

d -1 
-d (sech -1 x) = ~ 

x Xv 1 - x 2 
ifO<x<l, 

d -1 
-(csch-1 x) = -----=== 
dx Ix lJi+X2 

if x"# O. 
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3. Mechanics of Differentiation 

We tabulate the various differentiation formulas discussed so far in this 
chapter. It is assumed that c and n are fixed real numbers and that the 
functions u, v, w, and yare differentiable. 

(1) DAc) = O. 

(2) DAx) = 1. 

(3) DAx") = nx"-l. 

(4) DAcu) = cDAu). 

(5) DAu + v) = DAu) + DAv). 

(6) DAuv) = uDAv) + vDAu). 

( (~) _ vDAu) - uDAv) 
7) Dx - 2 (v i= 0). 

V V 

(8) Dx w = Dy W' DxY (Chain Rule). 

1 
(9) Dyx = - (DxY i= 0). 

DxY 

1 
(10) DAln x) = - (x > 0). 

x 

1 1 
(11) DAloga x) = (Ioga e)- = (-I -

x na)x 

(12) DAeX) = eX. 

(13) DAaX) = (In a)ax. 

(14) Dx(xX) = xX(1 + In x) 

(15) DAsinx) = cosx. 

(16) DAcosx) = -sinx. 

(17) DAtan x) = sec2 x. 

(18) DAcot x) = - csc2 x. 

(x> 0). 

(19) DAsecx) = (sec x)(tan x). 

(20) DAcsc x) = -(csc x)(cot x). 

(x> 0). 

1 
(21) DAsin-1 x) = I1------::z 

v'1 - x 2 
(Ixl < 1). 

1 
(22) DAcos-1 x) = - I1------::z 

v'1 - x 2 
(Ixl < 1). 
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-1 1 
(23) DAtan x) = --1 . 

1 + x 

-1 1 
(24) DAcot x) = --1 --1' 

+x 

1 
(25) Dx (sec- 1 x) = 1:::""21 

14Jxl - 1 

1 
(26) DAcsc- 1 x) = - F-=1 

Ixl Xl - 1 

(27) DAsinh x) = cosh x. 

(28) Dx(cosh x) = sinh x. 

(29) DAtanh x) = sech l x. 

(30) DAcothx) = -csch2 x. 

(Ixl > 1). 

(Ixl > 1). 

(31) DAsech x) = -(sech x)(tanh x). 

(32) DAcsch x) = -(csch x)(coth x). 

(33) Dx (sinh-1 x) = ~. 
1 + x 2 

1 
(34) DAcosh -1 x) = 1:::""21 

v' Xl - 1 

1 
(35) DAtanh -1 x) = 1 _ x 2 

1 
(36) DAcoth -1 x) = 1 _ Xl 

-1 
(37) DAsech -1 x) = ~ 

xv'I - x 2 

(x > 1). 

(Ixl < 1). 

(Ixl > 1). 

(0 < X < 1). 

-1 
(38) Dx(csch- 1 x) = ~ 

Ixlv'1 + Xl 

(x # 0). 

3. Differentiation 

The logarithmic function is very useful in certain types of arithmetic cal­
culations; it is equally useful in the computation of derivatives of some types 
of function. For example, suppose that 

F(x) = 11 (X)/l(X)'" In(x), (3.6) 

where each Ik(X) with k = 1, 2, ... , n is defined as a positive differentiable 
function in the same interval (a, b). Then F(x) is seen to have the same 
properties; we note that 
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and use of the chain rule of differentiation gives 

F'(x) f{(x) f;(x) f:(x) 
-- = -- + -- + ... + --. 
F(x) fl(X) fz(x) fn(x) 

(3.7) 

This method of differentiation is referred to as logarithmic differentiation; the 
name derives from the fact that 

d F'(x) 
-(lnF(x)) = -(-) 
dx F x 

and so the logarithmic derivative is not some kind of new derivative but 
merely the derivative of the logarithm of a function. Logarithmic differentia­
tion is often time-saving and brings out properties of the derivative which 
may otherwise be easily overlooked. 

Logarithmic differentiation is particularly important when powers are in­
volved. Suppose thatf(x) and g(x) are differentiable functions in an interval 
(a, b) and thatf(x) is positive. We wish to consider 

G(x) = U(x)]g(X). 

Taking logarithms we get 

In G(x) = g(x){lnf(x)} 

and differentiation gives 

G'(x) = g'(x){lnf(x)} + g(x/'(x) . 
G(x) f(x) 

Thus, 

( f'(X)) G'(x) = U(x)]g(X) g'(x){lnf(x)} + g(x) f(x) . 

We now illustrate the foregoing remarks with some examples. 

EXAMPLE 1. Find y' if 

3D I-x y = ~ xZ---(sin4 x)(COS Z x) for x < 1. 
1 + X Z 

SOLUTION. Taking logarithms we have 

lny = ~(lnx) + In(1 - x) -In(1 + XZ) + 4 {In (sin x)} + 2 {In(cos x)} 

and differentiation yields 

1 2 1 1 2x 
- y' = - - - -- - --- + 4 cot x - 2 tan x; 
y 3 x 1 - x 1 + X Z 

hence, 

( 2 1 2x ) y' = y - - -- - --- + 4 cos x - 2 tan x . 
3x 1 - x 1 + X Z 
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EXAMPLE 2. Find y' if y = (tanx)COSX, where 0 < x < n12. 

SOLUTION. We have lny = (cosx){ln(tanx)} and so 

1 . 
- y' = csc x - (sm x){ln(tan x)}. 
y 

Therefore, y' = (tanx)COSX[cscx - (sinx){ln(tanx)}J. 

EXAMPLE 3. Letf(x) and g(x) be positive on an interval (a, b). Moreover, letf 
and 9 be differentiable on (a, b). Using logarithmic differentiation, show that 

(L)' = gf' - fg' . 
9 g2 

SOLUTION. Let h = fig on (a, b). Then In h = In f - In 9 and so 

1, 1 , 1, '( 1, 1 ') /i h = 7f - -;/ or h = h 7 f - fj9 . 

But h = fig and thus we get the desired formula. 

COMMENTS. It is clear that the function In( -x) is defined for x < O. Using the 
chain rule of differentiation, we get 

1 1 
Dx{ln( -x)} = -( -1) =-

-x x 

Combining this with the relation 

we observe that 

1 
DAlnx) =-

x 

1 
DAlnlxl) =-

x 

(x> 0), 

(x f= 0). 

(x < 0). 

(3.8) 

We can therefore see that iff(x) is differentiable on an interval and is not zero 
at any point of this interval, then on this interval 

f'(x) 
f(x) = Dx{ln If(x)l} (3.9) 

exists; we call it the logarithmic derivative of f(x). 
Letting F(x) be as in (3.6), where each fk(X) with k = 1, 2, ... , n is a 

differentiable function in the same interval (a, b) and is not zero at any point 
of this interval, then formula (3.7) is valid because 

and 

f{(x) f:(x) 
Dx{ln If1 (x) I + ... + In Ifn(x)l} = f1 (x) + ... + fn(x)· 
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We know that the formula 

(3.10) 

holds if x > 0 and n is any fixed real number. Now, let n > 0 and define 

f(x) = x" for x > 0, 

= 0 for x = o. 
(Note that x" is not defined for x = 0 and n :$; 0.) Then, for h > 0, we have 

f(O + h) - f(O) = h" = h,,-l 
h h . 

For n > 1 and h > 0 we have 

h,,-l .... 0 as h .... 0; 

for 0 < n < 1 and h > 0 we have 

h"-1 .... + 00 as h .... o. 
If n = 1, thenf(x) = x. However, we know that DAx) = 1. 

We have also seen that formula (3.10) holds if x is any real number and n 
is a fixed positive integer. If n = 0, then x" = 1 provided x # 0 and DA1) = O. 
It is easy to see that formula (3.10) remains valid if n is a fixed negative integer 
and x # O. For example, 

has the derivative 

-2x 
y' = -- = -2x-3 

X4 

(x # 0) 

(x # 0). 

Suppose that n > 0 is a rational number, that is, n = p/q with p and q being 
relatively prime positive integers. If q is an odd number, then x p/q is defined 
as the (uniquely determined) solution of the equation yq = x p• In this case 
the function y = x p/q = x" is also defined for negative x and we have for 
negative x 

x 1/q = -( _X)l/q and x" = (x1/q)P = (-1)P( -x)". 

We now verify that formula (3.10) is valid in the case of the function y = x" = 
x p/q, where p and q are relatively prime positive integers, q is odd, and x # O. 
Indeed, 

But (3.9) gives 

(x # 0) 
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and (3.8) gives 

therefore, 

1 
Dx[n(ln Ix!)] = n­

x 
(x =f. 0); 

DAx") 1 
-- = n- or DAx") = nx"-l for x =f. O. 

x" x 

3. Differentiation 

To motivate the next proposition, we consider the following example. Let 

Y = ~ (-1 < x < 1). 

Then 

DxY= - ~. 
V l-x2 

x 

If we put x = sin t, where -n12 < t < n12, then Y = (1 - sin2 t)1/2 = cos t and 
we get 

thus, 

Dty = -sint; 

-sint Dty 
DxY=--=-· 

cost Dtx 

This suggests the possibility of obtaining DxY in terms of Dty and Dtx. 

(3.11) 

Proposition 3.5. Let f and g be continuous functions on a closed interval [a, b] 
and be differentiable on the open interval (a, b). Suppose, moreover, that f'(t) =f. 0 
for any t satisfying a < t < band f is strictly monotonic on [a,b]. Then the 
parametric equations 

x = f(t) and y = g(t) for a ::s;; t ::s;; b 

define y as a differentiable function of x, and 

Dty 
DxY = - for a < t < b. 

Dtx 

(3.12) 

PROOF. By Proposition 2.18 we see thatfhas a continuous inversef-l such 
that t = f-1(x) for all x on the closed interval whose endpoints aref(a) and 
f(b). Thus, 

y = g(t) = g{f-l(X)} = F(x), (3.13) 

where F = g(f-l) is a continuous function whose domain is the closed inter­
val with endpointsf(a) andf(b). Hence, the parametric equations (3.12) define 
y as a continuous function of x, whose rule of correspondence is given by 
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(3.13). By substituting x = f(t) into g(t) = F(x) from (3.13), we obtain the 
identity in t: 

g(t) = F {J(t)}. (3.14) 

If we differentiate both members of (3.14) with respect to t by the chain rule 
(see Proposition 3.3), we obtain 

g'(t) = F'[f(t)]f'(t), 

which in view of equations (3.12) can be written 

DIY = DxF· Dlx. 

Therefore, since Dlx = f'(t) =1= 0, 

o 

REMARK. Note that iff'(t) =1= ° on (a, b) andf' is continuous on [a,b], thenf 
will be strictly monotonic on [a, b]. 

DISCUSSION. Consider the equation 

x 2 + y2 = R2; (3.15) 

it represents a circle of radius R with center at the origin (0,0) in the x, y 

plane. We look at two parametrizations of this circle. 
First Parametric Representation. Let e denote the (polar) angle between the 

line segment connecting the origin (0,0) with the point (R,O) and the line 
segment connecting the origin (0,0) with the point (x, y) on the circle; the 
angle e is measured in radians and in the counterclockwise direction (see 
Figure 3.6). Then 

x = R cos e, y = R sin e, and 0:;; e < 2n. (3.16) 

As e goes from ° to 2n the point (x, y) traces out the circle, starting at the 
point (R,O) and moving in the counterclockwise direction. 

Second Parametric Representation. We now use instead of the (polar) angle 
e the magnitude t, where 

as parameter; note that t represents the slope of the line connecting the points 
(- R, 0) and (x, y) on the circle x2 + y2 = R2 (see Figure 3.7). From Figure 3.8 
we can see that 

. e t e 1 
Sln- = , 

2 ~ 
cos "2 = ~. 

But 



122 3. Differentiation 

(x,y) 

, 
\ 

\ 

8 
\ 
\ 
I 

----_+----------------~----~--------_+----~x 

8/2 

(-R,O) 

\ 
I 
I 
I 

(0,0) 

Figure 3.6 

y 

, 

(0,0) 

Figure 3.7 

\ 
\ 
\ 
I 

(R,O) 

x 



3. Mechanics of Differentiation 

t 

1 

Figure 3.8 

. . f) f) 2t 
smf) = 2sm-cos- =--

2 2 1 + t 2 ' 

f) . f) 1 - t2 
cosf) = cos2 - - sm2 - =--

2 2 1 + t2 ' 

and so we obtain 

2t 1 - t2 
x=R--2 , 

1 + t Y - R-- and 
- 1 + t2 ' 

-oo<t<oo 
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(3.17) 

as the parametric representation of x2 + y2 = R2 in terms of the parameter t. 
As t goes from - 00 to 00 the angle f) 12 = tan -1 t goes from -n12 to nl2 and 
hence f) goes from -n to n and the point (x, y) traces out the circle (3.15), 
starting from the point ( - R, 0) and moving in the counterclockwise direction. 
The point (-R,O) itself is obtained as a limit point for t ~ ± 00. 

From (3.16) we get (for 0 < f) < nand n < f) < 2n) 

DeY = rcosf) = -cotf) = _:: 
Dex -rsinf) y' 

and from (3.17) we obtain (for - 00 < t < 0 and 0 < t < (0) 

Dty 2r(1 - t 2 ) -4rt 1 - t2 x 

Dtx (1 + t2) ...,... (1 + t2)2 -----u- y 

Hence, both parametrizations lead to the same answer, namely, 

, x 
y = -- for y # O. (3.18) 

Y 

At the points (± R, 0) the tangent line to the circle (3.15) is parallel with the 
y-axis and the derivative at these points has to be infinite. 

We mention in passing two parametric representations for the ellipse 

(3.19) 
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y 

-------1~~------~-----~--_+------_7X 

Figure 3.9 

they are 

x = acos8, y = bsin8, and 0 ~ 8 < 2n 

(see Figure 3.9) and 

1 - t 2 
x=a--

1 + t 2 ' 
-b~ d Y - 1 + t2 ' an -00 < t < 00. 

We note three parametric representations for the hyperbola 

x2 y2 
a2 - b2 = 1; 

they are 

(3.20) 

(3.21 ) 

(3.22) 

x = a cosh s, y = b sinh s, and - 00 < s < 00; (3.23) 

x = a sec v, y = b tan v, and 
n 3n 

o ~ v < 2n, v =f. 2' v =f. 2; 

1 + w2 
x=a-I--2 , 

-w 
2w 

y = b-I--2 , and 
-w 

- 00 < w < 00, w =f. ± 1. 

In the case of the ellipse (3.19) we obtain 

b 2 x 
y' = -- for y =f. 0 

a2 y 

and in the case of the hyperbola (3.22) we get 

b 2 x 
y' = - for y =f. O. 

a2 y 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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In the case of the curves (3.15), (3.19), and (3.22) we used explicit parametric 
representations to calculate the derivative y'. However, the lack of such an 
explicit representation need not prevent us from finding y'. Let a curve C be 
given by an equation of the form 

F(x,y) = 0, (3.28) 

which is not solved for y. Assume that in some interval or other there is at 
least one functionfsuch that 

F[x,f(x)] = ° (3.29) 

holds for all values of x in the interval in question. Suppose, moreover, that F 
is a differentiable function of each of its two arguments x and y, and that f 
is a differentiable function of x. Then the derivative of f can be found by 
straightforward differentiation of (3.29). This does not exclude the possibility 
that there are points where f has no derivative or an infinite one (the latter 
meaning that there is a vertical tangent). The process by whichf'(x) is com­
puted is called implicit differentiation andf(x) is known as an implicit function 
since f is not given explicitly. 

Before turning to examples of implicit differentiation, let us note clearly 
that our present purpose is not to examine any of the following questions: 
Under what conditions is a solution y = f(x) of F(x,y) = ° possible? What 
can be said about the differentiability of the functionfin terms of what may 
be known about the function F? The answers to these and related questions 
belong to the study of multi variable calculus. 

Examples 

1. Consider the circle x 2 + y2 = R2 and compute y' by using implicit differ­
entiation. 

SOLUTION. We have 

2x + 2y·Dx Y = ° 
2. An astroid satisfies the equation 

, x 
or y = --. 

y 

X2/3 + y2/3 = a2/3, 

where a is a fixed positive number. See Figure 3.10 for the graph of the 
astroid. Using implicit differentiation, find y'. 

SOLUTION. We have 

iX-1/3 + h-1/3 . DxY = ° or y' = -i· 
REMARKS. A simple calculation shows that X 2/3 + y2/3 = a 2/3 implies 

(x 2 + y2 _ a 2 )3 + 27a 2 x 2 y2 = 0, 
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y 

--~~------------~----------~~~+--7X 

Figure 3.10 

showing that the astroid is inside the circle x 2 + y2 = a2 and is symmetric 
with respect to both coordinate axes. It is therefore sufficient to study the 
curve only in the first quadrant of the x, y plane. It is easy to establish that 
the length of the line segment intercepted on the tangent line by the coor­
dinate axes is independent of the point of contact P on the curve; the length 
equals a. This geometric property is useful in the construction of an astroid. 
Finally, an astroid has the parametric representation 

x = acos3 t, y = asin3 t, and 0:::; t < 2n. 

3. The equation of the folium of Descartes is 

x 3 + y3 = 3axy, 

where a is a fixed positive number. See Figure 3.11 for the graph of the folium 
of Descartes. Using implicit differentiation, find y'. 

SOLUTION. We have 

or 

ay - x 2 
y' - --::----­- y2 _ ax' 
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y 

x 

Figure 3.11 

REMARKS. The straight line y = tx, where t is an arbitrary real number, 
intersects the folium of Descartes in three points, counting the origin (0,0) as 
two; the third point has the coordinates 

x = ~ = 3at 2 and 
1 + t 3 ' y 1 + t 3 ' 

- 00 < t < 00; t i= -1. 

This is a parametric representation of the folium of Descartes. As t goes from 
- 00 to -1, the point (x, y) on the curve travels, starting at the origin (0,0), 
along the right-side branch of the curve to infinity. As t goes from -1 to 0, 
the point on the curve goes from infinity to the origin (0,0) along the left-side 
branch of the curve. As t goes from ° to 00, the point on the curve moves 
along the loop of the curve in the counterclockwise direction. The folium of 
Descartes is situated in the half-plane bounded by the line x + y + a = ° 
containing the origin (0,0). The line x + y + a = ° is indicated by the ashed 
line in Figure 3.11. The highest point of the loop has coordinates (21/3 a, 22/3 a). 
Three distinct points on the folium of Descartes given by the parametric 
values t 1, t2, and t3 are colinear if and only if the product t1 t2t3 equals -1. 

4. Consider the curve x Y = yX, where x > ° and y > 0. It consists of two 
branches, namely, the line y = x in the first quadrant of the x, y plane and the 
curve given by the parametric representation 

x = (1 + ~y and y = (1 + ~y+l 
obtained by first putting y = tx into x Y = yX and then setting t - 1 = 1/u. See 
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Figure 3.12 

3. Differentiation 

Figure 3.12 for the curve x Y = y"', where x > 0 and y > O. Calculate y' when 
X:F y. 

SOLUTION. For x > 0 and y > 0 the equation x Y = yX is equivalent to 

y(ln x) = x(ln y). 

Using implicit differentiation yields 

1 1 ror y' __ (X(ln y) - y)_y. y- + y'(lnx) = lny + x-y' l' 
X Y y(lnx)-x x 

REMARKS. The representation x = (1 + l/u)U, y = (1 + l/u)u+1 permits us to 
find easily points on the curved part of the graph of xY = yX for x > 0, y > O. 
Note, for example, that 

if u = 1, then x = 2 and y = 4; 
if u = 2, then x = land y = V; 
if u = 3, then x = ~ and y = 28516. 

The solution 24 = 42 is the only solution of nm = mn in positive integers n 
and m with n :F m. Indeed, suppose m < n and we write m = n + r, where r is 
a positive integer. Substituting into mn = nm, we find that (n + r)" = nn+r or 

(1 + ~y = nr < er , 

by Proposition 1.11 in Chapter 1. Hence, n = 1 or n = 2. If n = 1, then m = 1 
and this case is excluded because n :F m. The case n = 2 yields m = 4. 
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5. Let x and Y be connected by the equation 

InJx 2 + y2 = tan-l~. 
x 

Using implicit differentiation, calculate Y' and y". 

SOLUTION. Since !In(x2 + y2) = tan -1 y/x yields 

12x + 2yy' 
2 x 2 + y2 

we obtain 

1 xy' - Y 
1 + (Y/X)2 x 2 

, x+y 
y =-­

x-y 

or x + yy' = xy' - y, 
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Implicit differentiation of x + yy' = xy' - y gives 1 + (y')2 + yy" = xy" and 
so (substituting for y' the expression obtained) 

1 + (y')2 x 2 + y2 
y" = = 2-:-----'-:--;;-x - y (x _ y)3' 

6. Let x = y - asiny, where a is fixed and 0 < a < 1. Find y' and y". 

SOLUTION. We have 1 = y' - a(cosy)y'. Thus, 

, 1 
y = 

1 - acosy 
d ,,-a(siny)y' -asiny 

an y = = . 
(1 - a cos y)2 (1 - a cos y)3 

REMARK. In x = y - a sin y, where 0 < a < 1, x is a strictly increasing func­
tion of y. Indeed, let Xk = Yk - a sin Yk for k = 1, 2; then 

X2 - Xl = (Y2 - yd - a(sinY2 - sinYl)' 

But IsinYl - sinYll < Y2 - Yl whenever Yl > Yl [see inequality (2.19) in 
Chapter 2]. It follows therefore that Yl > Yl implies X2 > Xl' The inverse 
function of 

x=y-asiny (0 < a < 1) 

exists, but we can't express it in terms of elementary functions. Incidentally, 
Dyx > 0 for any real y and we could have used Proposition 3.4 to find y'. 

7. Let x and y be connected by the equation 

y5 eY - (2x 3 + 3)(siny) + x 2y2 - xcosx = O. (3.30) 

It is clear that the origin (0,0) is a point of the graph of (3.30). However, we 
would be hard up to verify that for an x close to x = 0 there corresponds a y 
close to y = 0 satisfying (3.30) because we can not solve equation (3.30). Yet 
straightforward implicit differentiation gives, at the point (x, y) = (0,0), 

y" =0, '" 26 
y = 27' (3.31) 
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REMARK. While we have no way of sketching the graph of equation (3.30), 
the result expressed in (3.31) reveals that (3.30) has a point of inflection (a 
concept to be studied later on) at the point (0,0). 

We complete this section with a few observations concerning higher order 
derivatives. Suppose thatfand g are functions having derivatives of order n 
on the same interval. Then the product functionfg satisfies 

where 

(fg)' = fg' + l' g, 

(fg)" = fg" + 21'g' + 1"g, 

(fg)1II = fglll + 31' gil + 31" g' + 1'" g, 

(fg)(n) ~ fg(n) + (;)1'g(n-l) + (~)1"g("-2) 

+ ... + ( n )p"-l)g' + pn)g, 
n-1 

(~)=k!(n~k)! and m!=1·2·3···m. 

(3.32) 

The relation (3.32) is known as the formula of Leibniz. To verify (3.32) we note 
that it is fairly obvious that we must have a formula of the type 

(fg)(") = fg(n) + C",l1'g(,,-l) + C",2f"g(,,-2) 

+ ... + C",,,_lP,,-l)g' + pn)g, 

where the coefficients C",k are positive integers independent of the choice off 
and g. The values of the coefficients can be found by substituting suitable 
special functions. We take, for example, 

f(x) = x\ 
so that the left-hand side becomes 

(fg)(") = D~(XkX"-k) = D~(xn) = n!. 

On the right-hand side the derivatives off occur in increasing orders while 
those of g are in decreasing orders. This gives 

and 

Dl(xk ) = k! ifj = k, 

= 0 ifj> k, 

ifj = 0, 1, ... , k - 1, 

= (n - k)! ifj = k, 
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Hence, all terms on the right-hand side vanish with only one exception, so 
that we get the equation 

n! = Cn,kk!(n - k)! 

and Cn,k is seen to have the value claimed in (3.32). 
Next we consider composite functions for higher derivatives. We assume, 

for example, thatfand g have derivatives of order 4 and we suppose that 

F = f[g] 

exists; then 

F' = 1'[g]g', F" = 1"[g] (g')2 + 1'[g]g", 

Fill = fill [g] (g')3 + 31" [g]g' g" + 1'[g]glll, 

F(4) = J<4)[g] (g')4 + 61"'[g] (g')2 g" + 1"[g] {3(g")2 + 4g' gill} + 1'[g]g(4). 

We now look at the inverse function and we suppose that f is strictly 
monotone, three times differentiable, and1'(x) # o. Thenf-1 satisfies 

1"(x) 
[f'(X)]3 ' 

(f -l)lII( ) = 3 [f"(x)] 3 - 1'(x)flll(x) 
Y [1'(x)] 5 • 

Finally, we consider the parametric representation x = f(t) and y = g(t) 
with a ~ t ~ b; we assume that the functions f and g are two times differenti­
able on the open interval (a, b), that f and g together with their first order 
derivatives with respect to t are continuous on the closed interval [a, b], that 
1'(t) # 0 for any t satisfying a < t < b, and thatfis strictly monotone on the 
closed interval [a, b]. Then y is a twice differentiable function of x and 

for a < t < b. 

4. Asymptotes 

Definition. A straight line is said to be an asymptote of an infinite branch of a 
curve, if, as the point P recedes to an infinite distance from the origin along 
the branch, the perpendicular distance of P from the straight line tends to 
zero. 

REMARKS. The coordinate axes are asymptotes of y = 1/x. The x-axis is an 
asymptote of y = eX. The straight line y = x is clearly an asymptote of 
y = x + 1/x because 1/x -+ 0 as x -+ ± 00. The straight lines y = ±1t/2 are 
asymptotes of y = arc tan x. 
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DISCUSSION. We proceed to the determination of asymptotes and first con­
sider the case of oblique asymptotes, that is, asymptotes not parallel to the 
coordinate axes, having an equation of the form 

y + Ax + B. (3.33) 

The abscissa, x, must tend to infinity as the point P with coordinates (x, y) 
recedes to infinity along the branch. We shall determine A and B so that the 
straight line (3.33) may be an asymptote of the given curve. The perpendicular 
distance of any point P with coordinates (x, y) on an infinite branch of a given 
curve from the line (3.33) is 

d = Iy - Ax - BI 
J1+A"2 . 

But d -+ 0 as x -+ 00 and so limx"'oo (y - Ax - B) = 0, which means that 

lim (y - Ax) = B. 
x'" 00 

Since y/x - A = (y - Ax)(l/x), 

lim (~) = (lim (y - AX)) (lim (!)) = A· 0 = 0 
x-+oo X A x-+oo x-+oo x 

or 

lim (~) = A. 
x-+oo X 

Hence, 

A = lim ~ and B = lim (y - Ax); (3.34) 
x-+oo x x-+oo 

A is the slope and B is the y-intercept of the asymptote y = Ax + B. 
Similar considerations have to be carried out for x -+ - 00. 

EXAMPLE 1. We are given the hyperbola 

For x -+ 00 we get by (3.34) 

y b Jx 2 - a 2 b b 
- = ±- = ±-Jl - a 2/x 2 -+ ±-, 
x a x a a 

and then 

b b ab 
y+-x=±-(.jx2 -a2 -x)=+ -+0; 

a a x+Jx2 -a2 

thus, 
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b 
Y= ±-x 

a 

are the desired asymptotes. See Figure 3.13. 
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EXAMPLE 2. Let y = (x - 1)3/(x + 1)2 (see Figure 3.14). For x -+ ± 00 we get 

Y 
--+ 1, 

-5x2 +2x-l 
y - x = (x + W -+ - 5. x 

Therefore, y = x - 5 is an asymptote of the given curve. (Another asymptote 
is x = -1 because y -+ - 00 as x -+ - 1.) 

EXAMPLE 3. Let y = (x - 3)2/4(x - 1) (see Figure 3.15). For x -+ ± 00 we get 

y (x - 3)2 (1 - 3/x? 1 
...,..,.-,----,-,---,---+-

X 4(x - l)x 4(1 - l/x) 4 
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and 

Thus, 
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y 
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Figure 3.15 

1 (x - 3)2 X - 5x + p 
y-~x= --= 

4 4(x - 1) 4 4(x - 1) 

1 5 y = ~x - ~ 

4 4 

-5 + 9/x 5 
-----+ -~. 
4(1 - l/x) 4 

is an asymptote of the given curve. (Another asymptote is x = 1 because 
y -+ ± 00 as x -+ 1.) 

EXAMPLE 4. Consider the folium of Descartes x 3 + y3 - 3axy = 0 (see Figure 
3.10), where a is a fixed positive number; we show that x + y + a = 0 is an 
asymptote of the curve. 

Indeed, dividing the equation of the curve by x 3, we get 

(~)3 = 3a.L~ _ 1. 
x x x 

Hence, for Ixl > 3a, the quantity Iy/xl remains bounded; from this we get 

But, for x -+ ± 00, 

y 
- -+ -1 as x -+ ± 00. 
x 

3axy 3a(y/x) 
y + x = = -+ -a. 

x 2 - xy + y2 1 - y/x + (Y/X)2 

Definition. Let P(x, y) be a polynomial in x and y with real coefficients, say 

P(x,y) = 2:>ikXiyk; 
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in other words, P(x, y) is made up of a linear combination of terms of the 
form x j yk, where j and k are nonnegative integers, and the coefficients ajk in 
the linear combination are real numbers. The degree of the polynomial 
P(x,y) is 

n = max{j + k}. 

We assume that P(x, y) can not be factored into polynomial factors. The set 
of points (x, y) in the plane such that P(x, y) = ° forms an algebraic curve C 
of order n. 

REMARKS. In the foregoing Examples 1 and 3 we had algebraic curves of order 
2; in Examples 2 and 4 we had algebraic curves of order 3. The astroid (see 
Figure 3.9) satisfies the equation X 2/3 + y2/3 = a 2/3 , where a is a fixed positive 
number; its equation can be written in the form 

(x 2 + y2 _ a 2)3 + 27a 2x 2y2 = 0, 

showing that the astroid is an algebraic curve of order 6. 

DISCUSSION. Let the equation of an algebraic curve of order n be arranged in 
homogeneous sets of terms and expressed as 

an.ox n + an_1.1Xn-1y + an_2,2xn-2y2 + ... + ao,nyn 

+ an_1,oXn- 1 + an_2,lx·- 2y + ... + ao,n_lyn-l 

+ an_2,oXn- 2 + ... + ao,n_2yn-2 

+ ... 

+ ao,o = ° 
or 

X.Hn(~) + xn-1Hn_l(~) + xn-2Hn_2(~) + ... + Ho(~) = 0, (3.35) 

where Hk(y/x) is a polynomial of degree k in the unknown y/x. Dividing by 
x·, we get 

H.(~) + ~Hn-l(~) + :2Hn-2(~) + ... + :.Ho(~) = 0. 

Letting x ~ ± 00, we see that 

that is, y/x must tend to a number A and this A satisfies the equation 

(3.36) 

Hence, in the case of an algebraic curve we obtain the slope A of an oblique 
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asymptote by finding the real roots of the polynomial (of highest degree) H1I • 

An algebraic curve of order n can therefore have at most n oblique asymp­
totes. Having found A by solving equation (3.36), we then substitute y = 
Ax + B into the equation of the curve and in the resulting expression we let 
the coefficient of the highest power of x be zero; this procedure supplies for 
each value of A the corresponding value of B in most cases. We shall illus­
trate what goes on with the help of some examples and comments. 

EXAMPLE 5. We wish to determine the asymptotes of the algebraic curve 

P(x, y) = 9x 2 - 4y2 - 5x + 2y + 1 = o. 
The algebraic curve under consideration has order 2. It is clear that 

H2(A) = 9 - 4A2. Thus, H2(A) = 0 implies A = ±l Putting y = Ax + B 
into the equation of the curve and noting that 9 - 4A 2 = 0, we get 

- 8ABx - 4B2 - 5x + 2Ax + 2B + 1 = o. 
Setting the coefficients of the highest power of x equal to zero gives 

2A - 5 
- 8AB - 5 + 2A = 0 or B = 8A 

Hence, if A = t, then B = -1 and if A = -t, then B = l The two asymp­
totes are 

y = t X - -1 and y = -tX + 1· 

EXAMPLE 6. The asymptotes of the algebraic curve 

2x 3 - x 2y - 2xy2 + y3 + 2X2 + xy - y2 + X + y + 1 = 0 

of order 3 are 

y = x + 1, y = - x, and y = 2x. 

Here H3(A) = A 3 - 2A2 - A + 2 = (A - 1)(A + 1)(A - 2) and 

A2 - A - 2 
B = 3A 2 _ 4A - 1 . 

EXAMPLE 7. We wish to find the asymptotes of the algebraic curve 

(y - xfx - 3y(y - x) + 2x = o. 
Here we have xy2 - 2x 2y + x 3 - 3y2 + 3xy + 2x = 0 and so H3(A) = 
(A - 1)2. H3(A) = 0 produces the double root A = 1. We can of course write 
the equation of the curve in the form 

(y - xf - 3(y - x)~ + 2 = 0 
x 

and make use of the fact that y/x --+ A = 1 as x --+ ± 00. Doing so we get 
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(y - xf - 3(y - x) + 2 = 0 

which shows that y - x = 1 and y - x = 2 are asymptotes; thus, B is either 
1 or 2. 

However, if we try to find B by substituting y = Ax + B into the equation 
of the curve, we obtain (after noting that A 2 - 2A + 1 = 0) 

(2AB - 2B - 3A2 + 3A)x 2 + (B2 - 6AB + 3B + 2)x - 3B2 = O. 

The coefficients of the highest power of x is 

2AB - 2B - 3A 2 + 3A; 

putting A = 1 into this expression, we get 2B - 2B - 3 + 3. Therefore, we 
can not determine B by setting the coefficient of x 2 equal to O. But the 
coefficient of the next highest power of x, namely, 

B2 - 6AB + 3B + 2 

will give us the expression 

B2 - 3B + 2 = (B - 1)(B - 2) 

when A = 1 and so we see that B is either 1 or 2 when we set the coefficient 
of x equal to O. Figure 3.16 illustrates the curve under discussion. (Inciden­
tally, the curve also has a vertical asymptote, namely, x = 3.) 

COMMENTS. We recall that in order to find the slope A of the asymptote 
y = Ax + B we had to solve equation (3.36) for A. To find B (once A is 
known), we substituted y = Ax + B into the equation of the curve and in the 
resulting expression we let the coefficient of the highest power of x be 0 (in 
Example 7 we let the coefficient of the second highest power of x be 0) and 
solved for B. If A is a simple real root of equation (3.36), we can obtain B by 
use of the formula 

B· H~(A) + Hn- 1 (A) = O. (3.37) 

If H~(A) = 0 = Hn- 1 (A) and H"(A) =f. 0, then the following formula replaces 
formula (3.37) for the determination of B: 

B2 "( ) '( THn A + B· Hn- 1 A) + Hn- 2 (A) = O. (3.38) 

The reason for formulas (3.37) and (3.38) is, briefly, the following. Replac­
ing y/x by A + B/x in (3.35), we get 

xn[Hn(A)] + x n- 1 [B' H~(A) + H1I - 1 (A)] 
(3.39) 

+ x"- 2 [tB 2 . H;(A) + B· H~-l (A) + Hn- 2(A)] + .. , = 0 

when we arrange terms according to descending powers of x; the details of 
calculation are somewhat tedious, but can be avoided if one makes use of 
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y 

Figure 3.16 

Taylor's Theorem (to be taken up in Section 2 of Chapter 4). We observe that 
upon putting Hn{A) = 0 in (3.39) and then dividing by x n- 1 we obtain formula 
(3.37) when we let x -. ± 00; moreover, we can solve for B if H~{A) #- O. If 
H~{A) = 0 but Hn- 1 (A) #- 0, then (3.40) does not determine any (finite) value 
of B and, thus, there is no asymptote corresponding to the slope A. However, 
if H~{A) = 0 = Hn- 1 (A), (3.37) becomes an identity and we have to reexamine 
equation (3.39) which now becomes 

x n- 2[tB2'H"{A) + B'H~_l{A) + Hn- 2{A)] + ... = O. 

Division by x n - 2 and then taking the limit as x -. ± 00 lead to formula (3.38) 
which determines two values of B provided that H:{A) #- O. The conditions 

Hn{A) = 0 = H~{A), H"{A) #- 0, and Hn- 1 (A) = 0 

signify that A is a double root and so we have two parallel asymptotes. The 
exceptional case encountered in Example 7 was of this type because 

H3{A) = (A - 1)2, H2{A) = -3A2 + 3A, and H1{A) = 2; 

applying formula (3.39) yields B2 - 3B + 2 = 0 implying that B is either 1 
or 2. 
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DISCUSSION. We now consider the determination of the asymptotes parallel to 
the coordinate axes. First we look at the case of asymptotes parallel to the 
y-axis, that is, vertical asymptotes. 

Let x = k be an asymptote of the curve and we have to determine k. Here 
y alone tends to infinity as a point P with coordinates (x, y) recedes to infinity 
along the curve. The distance of any point P with coordinates (x, y) on the 
curve from the line x = k is equal to Ix - kl. Hence, x -+ k when y tends to 
infinity. 

Thus, to find the asymptotes parallel to the y-axis, we find the definite 
value or values kl' k2' and so on, to which x tends as y tends to infinity. Then 
x = kl' X = k2' and so on are the required asymptotes. 

We will now obtain a simple rule for finding vertical asymptotes of an 
algebraic curve. We arrange the equation of the curve in descending powers 
of y, so that it takes the form 

(3.40) 

where Q(x), Ql (x), Q2(X), ... are polynomials in x. Dividing equation (3.40) by 
ym, we get 

1 1 
Q(x) + -Ql(X) + 2Q2(X) + ... = o. 

y y 
(3.41) 

Letting y tend to infinity and writing x -+ k as y tends to infinity, equation 
(3.41) gives Q(k) = 0 so that k is a root of the equation Q(x) = O. Let kl' k2' 
and so on be the real roots of Q(x) = O. Then the asymptotes parallel to the 
y-axis are x = kl' X = k2' and so on. Hence, we have the rule: The asymp­
totes parallel to the y-axis are obtained by setting equal to zero the real linear 
factors of the coefficient Q(x) of the highest power of y in the equation of the 
curve. 

In the same manner it can be shown that the horizontal asymptotes of an 
algebraic curve can be obtained by setting equal to zero the real linear factors 
of the coefficient of the highest power of x in the equation of the curve. In 
general, y = r is an asymptote parallel to the x-axis if y -+ r when x tends to 
infinity in the equation of the curve. 

EXAMPLE 8. The curve x2 y - 3x2 - 5xy + 6y + 24 = 0 has the asymptotes 
x = 2, x = 3, and y = 3. 

5. Tangent to a Conic Section 

From analytic geometry it is known that any conic section (e.g., circle, ellipse, 
hyperbola, parabola) can be represented by an equation of the form 

AX2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0, (3.42) 

where A, B, C, D, E, and F are constants. There is a very simple way of 
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writing down the equation of the tangent to such a curve at a point (Xl> yd 
of the curve. Indeed, using implicit differentiation, we get from (3.42) that 

, Ax + By + D 
Y = -Bx + Cy + E 

The equation of the tangent at (xl,yd is therefore 

. AXl + BYl + D ( ) 
Y - Yl = - x - Xl 

BXl + CYl + E 

or 

AXlX + B(xly + ylx) + CYlY + D(Xl + X) + E(Yl + y) + F = o. (3.43) 

If we compare this equation with equation (3.42) from which it was derived, 
we see that the equation ofthe tangent at a point (xl,yd to any curve defined 
by an equation of the second degree in X and Y can be obtained from the 
equation of the curve by replacing X2 by XlX, 2xy by (xly + xYd, y2 by YlY, 
2x by (Xl + X), and 2y by (Yl + y). This method, of course, is applicable only 
in finding tangents to curves of second order. 

Let P3 = (X3'Y3) be a given point not on the conic section (3.42) such that 
two tangents can be drawn to the conic section (3.42) from P3; let Pl = (Xl'Yl) 
and P2 = (x2, Y2) be the points of contact of these two tangents (see Figure 
3.17). We wish to determine the equation of the chord of contact joining Pl 

and P2 • 

By (3.43), the equations of the two tangents are 

Axlx + B(xly + ylx) + CYlY + D(Xl + x) + E(Yl + y) + F = 0 (3.44) 

and 

where Xl' Yl, X2, Yl, of course, are not given at the outset. Since the two 
tangents are to pass through P3 = (x3 , Y3) equations (3.44) and (3.45) must be 
satisfied if we set X = X3 and Y = Y3' That is, 

AXl X3 + B(xl Y3 + YlX3) + CYlY3 + D(Xl + x 3) + E(Yl + Y3) + F = 0 

and 

Ax2x 3 + B(x2Y3 + Y2 X3) + CY2Y3 + D(X2 + x 3) + E(Y2 + Y3) + F = O. 

These equations show that the coordinates of Pl and the coordinates of P2 

satisfy the equation 

AX3X + B(X3Y + Y3X) + CY3Y + D(X3 + x) + E(Y3 + y) + F = O. (3.46) 

But (3.46) is linear in x and Y, and so represents a straight line. Since (3.46) is 
satisfied by the coordinates of Pl and by those of P2 , this line is the line 
through Pl and P2 • Therefore, equation (3.46) is the equation of the chord of 
contact of the tangents drawn to the conic section (3.42) from the point 
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y 

----+-------------------------------------~x 

Figure 3.17 

P3 = (X3' Y3)· It is easily remembered from the form of the equation of the 
tangent to the conic at a point of the conic. 

EXAMPLE 9. The equation of the chord of contact of the tangents drawn to the 
ellipse 

x2 + 4y2 - 18 = 0 

from the external point (2,2) is, by (3.46), 

2x + 4· 2y - 18 = 0 or x + 4y = 9. 

From this we easily obtain the points of tangency 

(!, if» and (3,!) 

and the equations of the two tangents 

x + 2y - 6 = 0 and x + 14y - 30 = o. 

EXERCISES TO CHAPTER 3 

3.1. If the entries of a determinant are differentiable functions, show that the deriva­
tive of the determinant is the sum of all the determinants formed by differentiat­
ing one row, leaving the other rows unchanged. 
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[Hint: If p, q, r, s are differentiable functions, then 

[~ !J =p's-q'r+ps'-qr'=[~ ~]+[~ :J 
Assuming the proposition for a determinant of order n, then if P1, P2, ... , Pn+1 
are the cofactors of P1, P2, ... , Pn+1 in a determinant 1\n+1 of order n + 1, so that 
1\.+1 = P1 P1 + P2 P2 + ... + Pn+1 Pn+1, it follows that 

hence, since P1 , P2 , •.• , Pn+1 are determinants of order n, we deduce the proposi­
tion for determinants of order n + 1.] 

3.2. Show that 

[Hint: Since 

we have 

1 2xJ2 
y--=~-

Y 1 - x 2 ' 

1 2(1 + X4)1/2 
y+-= 1 2 Y -x 

and therefore 

( 1) 1 ( 1 ) ( 1 + x 2 
) Y +:y :yl = 1 + y2 y' = 2J2 (1 _ X2)2 ' 

implying that 

d 1 dy J2( 1 + x 2 ) 1 - x 2 J2(1 + x 2) -(lny)=--=2 2 = ] 
dx y dx (1 - X2)2 2(1 + x4) (1 - x 2(1 + X4)1/2 . 

3.3. If P is a polynomial and P(a) = P'(a) = 0, show that P(x) has factor (x - a)2. 
More generally, if P is a polynomial and P(a) = P'(a) = ... = p(n)(a) = 0, show 
that P(x) is divisible by (x - a)n+1. 

[Hint: Since P(a) = 0, P(x) is divisible by x-a. Let P(x) = (x - a)Q(x), 
where Q is a polynomial. Then P'(x) = (x - a)Q'(x) + Q(x). But P'(a) = 0 and so 
Q(a) = 0; hence, Q(x) is divisible by x-a. Now use induction.] 

3.4. We say that a function f is periodic with period a if f(x + a) = f(x) for all x. 
Show that if f is differentiable and periodic with period a, then f' is periodic 
with period a. 

[Hint: By periodicity, 

f(t + a) - f(x + a) = f(t) - f(x) .] 
(t + a) - (x + a) t - x 

3.5. Consider the parabola y = x 2 and the straight line x - y - 2 = o. It is required 
to connect these two curves by a line segment of least length. 
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[Hint: Evidently only the point (1, i) on the parabola y = x2 has a tangent 
line parallel to the line x - y - 2 = O. The perpendicular from the point (1,i) 
to the line x - y - 2 = 0 intersects the line at (\1, -i). The line segment of 
least length connecting y = x 2 and x - y - 2 = 0 therefore connects the points 
(ti) and (¥, -i) and has length 7)2/8.] 

3.6. Let f(x) = AX2 + Bx + C be a parabola and a and b denote given numbers. 
Then c = (a + b)/2 is the only number strictly between a and b such that 

f(b) - f(a) = (b - a)f'(c). 

Note that c = (a + b)/2 is the midpoint of the interval [a, b]. 
[Hint: We havef(b) - f(a) = A(b2 - a2) + B(b - a) and so 

f(b) - f(a) = A(b + a) + B. 
b-a 

On the other hand,f'(c) = 2Ac + B and so c = (a + b)/2.] 

3.7. If f and g are differentiable three times and if f'(x)g'(x) = 1 and h(x) = 

f(x)g(x), show that 

hm(x) j"'(x) gm(x) 
--=--+--. 
h(x) f(x) g(x) 

[Hint: Since f'g' = 1, f'g" + f"g' = 0 and so hm = j"'g + 3f"g' + 3f'g" + 
gmf = f'''g + gmf] 

3.8. Letf(x) = {x(x + l)(x + 2)(x + 3)(x + 4)} -1. Findjl"). 
[Hint: Putting 

1 ABC D E 
------,------- = - + -- + -- + -- + --, 
x(x + l)(x + 2)(x + 3)(x + 4) x x + 1 x + 2 x + 3 x + 4 

we obtain 

1 = A(x + l)(x + 2)(x + 3)(x + 4) + Bx(x + 2)(x + 3)(x + 4) 

+ Cx(x + l)(x + 3)(x + 4) + Dx(x + l)(x + 2)(x + 4) 

+ Ex(x + l)(x + 2)(x + 3). 

Letting x = 0, -1, -2, -3, and -4 in succession, we obtain A = l4, B = 

-1;, C = i, D = -1;, and E = l4' Thus, 

1 1 1 1 
f(x) = 24x - 6(x + 1) + 4(x + 2) - 6(x + 3) + 24(x + 4) 

and the required nth derivative is therefore 

( 1 1 1 1 1) 
(-I)"n! 24x"+1 - 6(x + 1)"+1 + 4(x + 2)"+1 - 6(x + 3)"+1 + 24(x + 4)"+1 .] 

3.9. Show that the polynomial 

d" 
p"(x) = -d (x 2 - 1)" 

x" 
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satisfies the equation 

(I - x2)P~(n) - 2xP~(x) + n(n + I)Pn(x) = o. 

[Hint: Let 9 = (x 2 - I)n so that, by logarithmic differentiation, 

g' 2nx 

9 = x 2 - 1 

and so (1 - X2)g' + 2nxg = O. Differentiating again 

(1 - X2)g" + 2(n - I)xg' + 2ng = o. 
Using the formula of Leibniz (3.32) to differentiate n times, we obtain 

(I _ x2)g(n+2) + ng(n+1)( -2x) + n(n + 1) g(n)( -2) 
2 

+ 2(n - I) [xg(n+l) + ng(n)] + 2ng(n) = 0, 

giving 
(I - x 2)g(n+2) - 2xg(n+l) + n(n + I)g(n) = o. 

But g(n) = Pn.] 

3.10. If y = u/x, where u is a function of x, verify that 

dny = (-I)nn! (u _ ~ du + x2 d2u _ x3 d 3 u + ... + (_I)nxn dnu). 
dxn xn+l 1! dx 2! dx2 3! dx3 n! dxn 

Conclude, by putting u = xm, that 

where m is any rational number. 

3.11. If X4 - (a + b)x3 + (a - b)x - I = 0 has a root of multiplicity two, show that 
a4/3 _ b4!3 = 22/3. 

[Hint: By Exercise 3.3, the equations 

f(x) = X4 - (a + b)x3 + (a - b)x - 1 = 0 

and 

f'(x) = 4x3 - 3(a + b)x2 + a - b = 0 

will have a common root and the required result will be obtained by eliminating 
x between these two equations. Multiplying the second equation by x and sub­
tracting the first gives a + b = (3X4 + 1)/2x3 ; multiplying the second equation 
by x and subtracting three times the first equation gives a - b = (x4 + 3)/2x. 
Adding and subtracting the relations giving a + b and a - b, we get 

1 ( 1)3 2a=2 x+~ , 

Thus, x + I/x = 22/3 a2/3 and x - I/x = _22/3b2/3; by squaring and subtracting, 
the required result follows.] 
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3.12. Show that the length of the portion of the tangent to the astroid (see Figure 
3.10) 

X2/3 + y2/3 = a2/3 

intercepted between the coordinate axes is constant. 
[Hint: Differentiation gives 

2 2 dy dy (y)1/3 "3 X - l/3 + "3 y - l/3 dx = 0, that is, dx = - ~ . 

Therefore, the equation of the tangent at any point (xl,yd is 

( Yl)1/3 
Y - Yl = - Xl (X - xd· 

The x-intercept of the tangent at (xl,yd is (x~/3a2/3,0) and the y-intercept is 
(0,i/3 a2/3); the distance between these two points is a.] 

3.13. Show that the sum of the intercepts on the coordinate axes of any tangent to 
Jx + JY = Ja is constant. 

3.14. Find the equations for the tangents to the ellipse 4x2 + y2 = 72 that pass 
through the point (4,4). 

[Answer: 2x + y - 12 = 0 and 14x + y - 60 = 0.] 

3.15. Let P(x) be a polynomial and y = mx + c be tangent to y = P(x) at x = Xo. 
Show that the polynomial Q(x) = P(x) - mx - c is divisible by (x - XO)2. 

[Hint: Since y = mx + c is tangent to y = P(x) at x = Xo we have P(xo) = 
mxo + c, P'(xo) = m, and so Q(xo) = Q'(xo) = 0 and the result follows by 
Exercise 3.3.] 

3.16. Find the equations of the asymptotes of y2(X - 1) - x3 = 0 
[Answer: x - 1 = 0, Y = x + t, y = -x - t·] 

3.17. Find the equations of the asymptotes of x 3 - 2x2y - y2 = O. 
[Answer: 4x - 8y - 1 = 0.] 

3.18. If y = 1/(a2 + x 2 ), show that 

(n) _ (-1)nn!(sinn+1 t)[sin(n + 1)t] 
Y - an+2 ' 

where t = cot-l(x/a). 
[Hint: Put i = p. We have 

1 1 (1 1) 
Y = (x + ia)(x - ia) = 2ia x - ia - x + ia 

and so 

(n) _ (-l)nn! (1 1) 
Y -~ (x - ia)n+l - (x + ia)n+1 . 

Now let rand t be such that x = r cos t and a = r sin t; then 
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( -l)nnl 
in) = -. -_. [(cost - i sin t)-n-I - (cost + isint)-n-I]. 

2zarn+1 

Therefore, since 

(cost - isint)-n-I = cos(n + 1)t + isin(n + 1)t 

and 

(cos t + i sin t) -n-I = cos(n + 1)t - i sin(n + 1)t, 

we have 

(-1)nn! (-1)"n! 
y(n) = --+-I-sin(n + 1)t = --+-2-(sinn+1 t)[sin{n + 1)t].] 

arn an 

3.19. If y = xj(a2 + x 2), show that 

(n) _ (-1)"n!(sinn+1 t) [cos(n + 1)t] 
y - an+1 ' 

where t = cot-I(x/a). 
[Hint: See Exercise 3.18.] 

3.20. If y = sin x, show that y(n) = sin(x + nnj2). 
[Hint: We have y' = cos x = sin(x + nj2), 

y" = :x sin (x + ~) = d(x ~ nj2) sin ( x + ~) = sin (x + 22n), 

and so forth.] 

3.21. If y = cos x, show that y(n) = cos(x + nnj2). 

3.22. Show that 

d n . b . b ~eaxsm x=rneaxsm( x+nt) 
dxn 

and 

dn 
~eaxcosbx = rneaxcos(bx + nt) 
dxn ' 

where r2 = a2 + b2 and t = tan -I bja. 
[Hint: If y = eax sin bx, then 

y' = aeax sin bx + be ax cos bx = eax(a sin bx + b cos bx). 

Let a = r cos t and b = r sin t, so that 

then we get 

and 
b 

tant =-; 
a 

y' = reax[(cos t)(sin bx) + (sin t)(cos bx)] = reax sin(bx + t). 

Again, 
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y" = reaX[a sin(bx + t) + b cos(bx + t)] 

and so forth.] 

= r2eax{(cost)[sin(bx + t)] + (sint)[cos(bx + t)]} 

= r2 eax sin(bx + 2t) 

3.23. If y = (sin x)(sin 2x), show that 

yrn) = ~[cos(x + n27r) - 3nCOS(3X + n;) 1 
[Hint: Note that y = t(cos x - cos 3x).] 

3.24. If y = eX(sin2 x)(sin 2x), show that 

y(n) = t(5)n/2ex sin(2x + n tan -12) - i(17)n/2ex sin(4x + n tan -14). 

[Hint: Note that 

y = (e Xj2)(1 - cos 2x)(sin 2x) = teX(sin 2x) - ieX(sin 4x).] 

3.25. Show that the determinant 

satisfies ~'(x) = o. 

[

COS(X + a) sin(x + a) 1] 
~(x) = cos(x + b) sin(x + b) 1 

cos(x + e) sin(x + e) 1 
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[Hint: Take the transpose of the determinant ~(x) and differentiate (see 
Exercise 3.1).] 

3.26. Simplify the expressionf(x) = cos{tan-1[sin(cot-1 x)J}. 
[Hint: Let a: = cot-1 x and P = tan-1 y. Then 

But Y = sin(cot-1 x) = (1 + X2)-1/2 and f(x) = cos {tan-l y} = (1 + y2)-1/2 so 
that 

(x 2 + 1)1/2 
f(x) = (x2 + 2)1/2·] 

3.27. Let y = (ax + b)j(ex + d). Show that 

n' en - 1 
yrn) = (_1)n· (be - ad). 

(ex + d)n+l 

[Hint: Note that 
ax+b a be-ad 
--=-+ .] 
ex + d e e(ex + d) 

3.28. If y = 1j(X4 - a4), show that 

(n) _ (-1)nn! (1 1 2. n+1. ) 
y -~ (x _ a)n+l - (x + a)n+l - an+1 (sm t)[sm(n + 1)t] , 

where t = cot-l (xja). 
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[Hint: We have 

1 1( 1 1 1) 
X4 _ a4 = 4a 3 x _ a - x + a - 2a x 2 + a 2 . 

For the differentiation of 1/(x 2 + a2 ) see Exercise 3.18.] 

3.29. If y = tanh -I (x/a), show that 

y<n) = ______ + __ _ (n - 1)!((_1)n-1 1) 
2 (a + x)" (a - x)n . 

[Hint: Recall that (see Section 4 of Chapter 1) 

tanh -I U = tln(1 + u) 
1-u 

3.30. If y = 1/[(x2 + a2 )(x2 + b2 )], show that 

for lui < 1.] 

<n) = (-1)nn! ((Sinn+! t) [sin(n + 1)t] _ (sin n+1 s) [sin(n + 1)S]) 
y a2 _ b2 bn+ 2 an+ 2 ' 

where x = bcott = acots. 
[Hint: We have 

1 1 (1 1) 
(x 2 + a2 )(x2 + b2 ) = a2 _ b2 x 2 + b2 - x 2 + a2 . 

For the differentiation of 1/(x2 + c2 ) see Exercise 3.18.] 

3.31. If y = 1/(x2 - a2 ), show that 

<n) _ (-1)nn! (1 1) 
y -~ (x - a)n+1 - (x + a)n+1 . 

3.32. Prove the following result: Iff is continuous on [a, b] and if at every point t in 
[a,b] 

f(t + h) - f(t - h) 
'------'----'- --> 0 as h --> 0, 

h 

thenfis constant on [a,b]. 

COMMENTS. It should first be observed that the convergence, as h --> 0, of 
the special incremental ratio 

f(t + h) - f(t - h) 

h 

does not secure the existence of f'(t). To see this, it is enough to consider the 
functions 

lxi, sin2 G) 
at x = O. Neither function is differentiable at x = 0, yet, the special incremental 
ratio for each of them vanishes identically and so certainly converges as h --> O. 
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We can see that the result is not necessarily true for a discontinuous function 
by considering the function 

Here, if t =1= 0, 

J(x) = 1 for x =1= 0, 

= 0 for x = O. 

J(t + h) - J(t - h) = 0, iflhl < Itl, 

while J(h) - J( -h) = 0 for every h. Thus, the limit of the special incremental 
ratio is everywhere zero, but the function is not constant in any interval which 
contains the origin. 

[Hint: To prove the result we state the condition of convergence in the form 

IJ(x + h) - J(x - h)1 :::;; hs, if 0 < h < some b(s, x), (3.47) 

where it is sufficient to consider h positive, since the expression on the left is not 
affected by changing h to - h. We verify that the numbers 15 are unrestricted, 
except, of course, by the condition that x ± h lie in the stated interval [a, b]. 
Suppose, on the contrary, that for given x, s the numbers 15 have a largest 
number or an upper bound 15 0 (15, x). Then 

IJ(x + h) - J(x - h)1 :::;; hs, if 0 < h < bo(s, x), (3.48) 

IJ(x + h') - J(x - h')1 > h's, for some h' < any 15 0 + s', (3.49) 

where, of course, h' ~ 15 0 by (3.48). 
Now, by (3.47), 

IJ(x + 150 + h) - J(x + 15 0 - h)1 :::;; hs, if 0 < h < b(s,x + 15 0 ), (3.50) 

IJ(x - 15 0 + h) - J(x - 150 - h)1 :::;; hs, if 0 < h < b(s,x - 15 0 ), (3.51) 

Choose as s' the smallest of 150 and b(s, x ± 150 ), Then, by (3.49), we can find a 
positive hI < s' :::;; 15 0 such that 

IJ(x + 15 0 + hI) - J(x - 15 0 - hdl > (15 0 + hds. (3.52) 

But by (3.50) and (3.51) 

IJ(x + 150 + hI) - J(x + 150 - hI):::;; hIS, since 0 < hI < b(s,x + 15 0 ), 

IJ(x - 15 0 + hd - J(x - 150 - hdl :::;; hIS, since 0 < hI < b(s,x - 15 0 ), 

and by (3.48) 

IJ(xo + 15 0 - hd - J(x - 15 0 + hdl :::;; (150 - hds, since 0 < 15 0 - hi < 15 0 , 

By addition of the last three inequalities we have 

IJ(x + 150 + hI) - J(x - 15 0 - hl)1 :::;; (150 + hds, 

which contradicts (3.52). 
The preceding argument is fallacious, however, if, in (3.49), h' is always 150 , 

that is, if 
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but 

If(x + h) - f(x - h)1 :<::;; he 

in every open neighborhood of h = bo. We now require the condition thatfbe 
continuous, in virtue of which we can take the limit h -> bo. This gives 

and so rules out our assumption. 
The original assumption, then, that there is a largest b(e, x) is also disproved 

and we therefore have that 

If(x + h) - f(x - h)1 :<::;; he, 

provided only that x ± h lie in [a, b]. Thus, e is independent of x, h, and we may 
take the limit [) -> 0, giving 

f(x + h) = f(x - h) for every h. 

In particular, if we put x = h + c, where c is a constant in [a,b], we get 

f(x + 2c) = f(c), 

that is,fis a constant throughout [a,b].] 

3.33. Determine 

[Hint: Note that 

and that 

eX _ esinx 

Iim---­
x~o x - sinx 

eX _ esinx . ex-sin x - 1 
____ = eSlDX ___ _ 

x - sin x x - sm x 

lim e' - 1 = ~(e')1 = 1.] 
,~o t dt '=0 

3.34. Jf(1 - X2)1/2 + (1 - y2)1/2 = a(x - y), show that y' = (1 _ y2)1/2/(1 _ X2)1/2. 
[Indeed, putting x = sin t and y = sin s, we get 

cos t + cos s = a(sin t - sin s). 

It follows that a = cott(t - s), implying that t - s = 2(cot-1 a) or 

sin 1 x - sin -1 y = 2(cot -1 a). 

Differentiating with respect to x gives the desired expression for y'.] 



CHAPTER 4 

Applications of Differentiation 

1. Mean Value Theorems 

Definition. Let (a, b) be an open interval contained in the domain of definition 
of a real-valued function f and c be a point of (a, b). The number f(c) is said 
to be a relative maximum of f at c if there is some () > 0 such that the open 
interval (c - (), c + ()) is contained in (a, b) and f(x) ::;; f(c) for any point x in 
(c - (), c + ()). Similarly, the number f(c) is said to be a relative minimum of f 
at c if there is some () > 0 such that the open interval (c - (), c + ()) is con­
tained in (a, b) and f(x) ~ f(c) for any point x in (c - (), c + ()). By a relative 
extremum we mean a relative maximum or a relative minimum. By an abso­
lute maximum of a function on an interval we simply mean the largest value 
of that function on the given interval; by an absolute minimum of a function 
on an interval we mean the smallest value of that function on the given 
interval. Absolute maxima and absolute minima are often only referred to as 
maxima and minima, respectively. 

COMMENTS. By Proposition 2.13, every function continuous on a closed inter­
val [a, b] of finite length has an absolute maximum and an absolute mini­
mum on that interval. It can happen that a continuous function has an 
absolute maximum without having a relative maximum; a case in point is the 
function f(x) = x on [0, 1]. By the definition ofthe relative extremum it must, 
if it is to exist at all, occur at an inner point rather than endpoint of the 
interval. 

Proposition 4.1. If a continuous function f on a closed interval [a, b] of finite 
length takes on some value twice, then it has a relative extremum. 
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PROOF. If f is constant, that is, if f(x d = f(X2) for any Xl and X 2 in [a, b], the 
proposition holds trivially. If f is not constant, we can assume without loss 
of generality that f(a) = f(b) and that for some x inside the interval we have 
f(x) > f(a). The absolute maximum of the function is then assumed at an 
inner point of the interval, say, at Xo' The proposition is then proved, for such 
an absolute maximum must be a relative maximum. If f(x) had been less than 
f(a), the same argument would have given us a minimum. 0 

Proposition 4.2 (Fermat's Theorem). Let f be defined on [a, b]; if f has a 
relative extremum at an inner point x of [a, b], and if the derivative of f at x 
exists, then f'(x) = O. 

PROOF. Suppose that we have a relative maximum at x. Let (j be chosen in 
accordance with the definition of a relative maximum so that 

If x - (j < t < x, then 

a < x - (j < x < x + (j < b. 

f(t) - f(x) 
----~O. 

t-x 

Letting t ~ x, we see that f'(x) ~ O. If x < t < x + (j, then 

f(t) - f(x) < O. 
t - x -

which shows that f'(x) :s; O. Hence, f'(x) = O. The same argument shows that 
the derivative also vanishes at relative minima. 0 

REMARKS. Proposition 4.2 shows that the relative extrema of a differentiable 
function are to be found among the zeros of the derivative. The absolute 
maximum must be the largest of the values of the function at these points and 
at the boundaries of the interval; the absol\.1te minimum must be the smallest 
of the values of the function at these points and at the boundaries of the 
interval. The converse of Proposition 4.2 is not true; the function f(x) = x3 

has derivative zero at x = 0, but has no relative extremum at x = O. 
The graph of the function g(x) = Ixl has a corner at x = 0; g is not differ­

entiable at x = 0, but g has a relative minimum at x = O. The graph of the 
function h(x) = X2/3 has a cusp at x = 0; h is not differentiable at x = 0, but h 
has a relative minimum at x = O. Figure 4.1 shows the graph of the function 
g and Figure 4.2 the graph of h. 

Proposition 4.3 (Rolle's Theorem). If f is a continuous real-valued function on 
a closed interval [a, b] of finite length and is differentiable on the open interval 
(a, b), and if f(a) = f(b), then there is a point x in the open interval (a, b) such 
that f'(x) = O. 

PROOF. The proposition is a consequence of Propositions 4.1 and 4.2. 0 
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Figure 4.1 
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REMARKS. Proposition 4.3 shows that if f'(x) #- 0 for each point x in (a, b), 
then f(x l ) #- f(x 2 ) for any two distinct points Xl and X2 in (a, b). 

Proposition 4.3 includes the statement that between two real zeros of a 
function the derivative must have at least one real zero. If f is a polynomial 
with real coefficients such that f(a) = f(b) = 0 and f(x) #- 0 for any X in the 
open interval (a, b), then f' has an odd number of real zeros in the open 
interval (a, b) and hence at least one real zero between a and b; the zeros of 
course are counted by their multiplicity. This result is a special case of 
Proposition 4.4, to be considered next. 

Proposition 4.4 (Waring's Theorem). Let f be a polynomial with real coeffi­
cients such that f(a) = f(b) = 0 and f(x) #- 0 for any x in the open interval 
(a, b); moreover, let r be any fixed real number. Then f' + rf has an odd number 
of zeros (hence at least one zero) in the open interval (a, b). It is understood here 
that the zeros are counted according to their multiplicity. 

PROOF. We recall from algebra the following: Let A and B be real numbers 
and P be a polynomial with real coefficients. If the numbers P(A) and P(B) 
have opposite signs, then there is an odd number of zeros of P between A and 
B (hence at least one zero). However, if the numbers P(A) and P(B) have the 
same sign, then there is either no zero or an even number of zeros of P 
between A and B. Here each zero is counted according to its multiplicity. 

Turning to the proof of the proposition, we assume that a < b and we 
suppose that a is a zero of f of multiplicity p and b a zero of f of multiplicity 



154 4. Applications of Differentiation 

q; thus, 

f(x) = (x - a)P(x - Wg(x), 

where g does not become zero anywhere on the closed interval [a,b] and 
hence does not change sign on [a, b]; we may assume that g is positive on 
[a, b]. It follows that 

f'(x) + rf(x) = (x - a)p-l(x - W- 1h(x), 

where 

h(x) = p(x - b)g(x) + q(x - a)g(x) + (x - a)(x - b)g'(x) 

+ r(x - a)(x - b)g(x). 

Therefore, the zeros between a and b of the function f' + rf and the zeros 
between a and b of the function h are identical and also with regard to their 
multiplicity. But the sign of h(a) is that of a - b and of h(b) that of b - a; so 
h(a) and h(b) have opposite signs. We thus see that the function h has an odd 
number of zeros between a and b; hence the function f' + rf must have an 
odd number of zeros between a and b. D 

ApPLICATION. Let n be a positive integer and n! = 1· 2·3 ... n; the function 

x x 2 xn 
fn(x) = 1 + -1' + -2' + ... +, .. n. 

has no real zero or one real zero according to whether n is even or odd. 
Indeed, it is enough to show that fn does not have two consecutive zeros; 

it is clear that f" can not have positive zeros and, if n is odd, f" has at least 
one zero (see the Application following Proposition 2.12). Now, suppose a 
and b were two such consecutive zeros [i.e., f,,(a) = fn(b) = 0, fn(x) # ° for 
a < x < b], then we would have 

bn 

f,,(b) = f:(b) + , = 0, 
n. 

sgn f:(a) = sgn f:(b) # 0, 

where sgn A denotes the sign of the number A. Since the sign of f:(a) and the 
sign of f:(b) are the same, f: would have an even number of zeros in the open 
interval (a, b); however, by Proposition 4.4 (with r = 0), f: would have an odd 
number of zeros in (a, b). Therefore, the assumption that f" has two consecu­
tive negative zeros leads to a contradiction. This proves the assertion. 

Proposition 4.5 (Mean Value Theorem). If f is continuous on a closed interval 
[a, b] of finite length and is differentiable on the open interval (a, b), then there 
is a point x in the open interval (a, b) such that 

f'(x) = f(b) - f(a). 
b-a 
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y 

(b,f(b) ) 

----r-----~------~--~----~--~ x 
a x t b 

Figure 4.3 

PROOF. Geometrically speaking, the Mean Value Theorem tells us that there 
exists at least one value x between a and b such that the tangent to the curve 
at the point (x,f(x)) is parallel to the chord joining (a,f(a)) with (b,f(b)); see 
Figure 4.3. The proof of the Mean Value Theorem is obtained by applying 
Proposition 4.3 to a properly chosen auxiliary function F. To this end, define 

F(t) = f(t) - (f(a) + f(bi = ~(a) (t - a)) for a::;; t ::;; b. 

Note that F(t) can be interpreted geometrically; it measures the separation 
between the point S = (t,f(t)) on the curve and the point R with abscissa t on 
the chord joining (a,f(a)) with (b,f(b)), as can be seen in Figure 4.3. Now F 
is clearly continuous on [a, bJ and differentiable on (a, b) and F(a) = F(b) = O. 
So F satisfies the conditions of Proposition 4.3. There is accordingly a point 
x in the open interval (a, b) for which F'(x) = O. But this implies 

and the proof is finished. 

f'(x) - f(b) - f(a) = 0 
b-a 

o 

COMMENTS. To see that the assumptions in the Mean Value Theorem are 
necessary, consider the function 

1 
f(O) = 0 and f(t) = - for t =f. O. 

t 

If t = 0 belongs to the open interval (a, b), then the conclusion of the Mean 
Value Theorem would give the impossible relation x 2 = ab, where a and b 
have opposite signs; but the Mean Value Theorem is not applicable because 
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f is not differentiable for t = o. If t = 0 is one of the endpoints of the interval 
[a,b], say a = 0, then the conclusion of the Mean Value Theorem would give 
the impossible relation x2 = -b2 ; but the Mean Value Theorem is not appli­
cable here either because f is not continuous for t = o. 

Another interesting situation is provided by the function 

g(O) = 0 and g(x) = x2 sin! for x "" O. 
x 

For x "" 0 we can calculate the derivative in the usual fashion and obtain 

g'(x) = 2xsin! - cos!; 
x x 

for x = 0 we get 

'(0) 1· g(h) - g(O) 1· h· 1 0 9 = 1m = 1m sln- = 
h .... O h h .... O h 

(because I sin 1/hl ::;; 1). Since limx .... ocos(1/x) does not exist, we see that g'(x) 
does not tend to a limit as x -+ 0 and so the function g' is not continuous at 
x = O. This shows that a function can be differentiable everywhere but its 
derivative may fail to be continuous everywhere. Remarkable for us is the 
following circumstance: Let h be a positive real number and consider the 
closed interval [0, h]. The function 9 is continuous on [0, h] and differentiable 
on the open interval (0, h). By the Mean Value Theorem there is a point x in 
(0, h) such that 

g(h) - g(O) . 2 . 1 1 h. 1 
g'(x) = h ,that IS, XSIn~ - cos~ = SInh· 

Now for each h > 0 there is an x> 0 by the Mean Value Theorem; moreover, 
since 0 < x < h, it is clear that x -+ 0 as h -+ O. We have 

lim g'(x) = 0 but lim g'(x) does not exist 
h .... O x .... O 

and 

lim cos! = 0 but lim cos! does not exist. 
h .... O x x .... o X 

This suggests that x must be a discontinuous function of h, being undefined 
at vastly more points than defined in any open interval of the form (0, b). 

A further example of this type is provided by the function 

w(O) = 0 and w(x) = x sin(ln x) for x > O. 

Here we have, by virtue of the Mean Value Theorem, 

.j2sin(i + In x) = sin (In h), 
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noting that 

sin(ln x) + cos(ln x) = J2 sin (i + In x). 

Since sin2 (n/4 + In x) can not be larger than t, there are infinitely many 
intervals in (0, h), regardless of how small h is, that do not contain the point 
x. These intervals belong to the sequence 

(q, q2), (q3, q4), (q5, q6), ... , where q = e- 1t /2. 

Proposition 4.6. (i) Let f be a differentiable function on (a, b) such that 1'(x) = 
o for all x in (a, b). Then f is a constant function on (a, b). 

(ii) Let f and 9 be differentiable functions on (a, b) such that l' = g' on 
(a, b). Then there is a constant c such that f(x) = g(x) + c for all x in (a, b). 

PROOF. If f is not constant on the interval (a, b), then there are two points Xl 

and X2 such that a < Xl < X2 < band f(x l ) # f(x2). By the Mean Value 
Theorem, for some x satisfying Xl < X < X2 we have 

a contradiction. This establishes part (i) of the proposition. 
To prove part (ii) of the proposition, we merely have to apply part (i) of the 

proposition to the function f - g. D 

Proposition 4.7. Let f be a differentiable function on an interval (a, b). Then 

(i) f is strictly increasing if f'(x) > 0 for all x in (a,b); 
(ii) f is strictly decreasing if 1'(x) < 0 for all x in (a, b); 

(iii) f is nondecreasing if 1'(x) ~ 0 for all x in (a, b); 
(iv) f is non increasing if 1'(x) ::;; 0 for all x in (a, b). 

PROOF. To prove part (i), consider points Xl and x2, where a < Xl < X2 < b. 
By the Mean Value Theorem (see Proposition 4.5), for some x satisfying 
Xl < X < x 2 we have 

Since x2 - Xl > 0, we get that f(x2) - f(x l ) > 0 or f(x2) > f(x l ). The re­
maining cases are equally easy to establish. D 

COMMENTS. The function f(x) = x 3 is strictly increasing, but 1'(x) = 3x2 is 
zero for X = O. This shows that f can be strictly increasing on an interval 
(a, b) while 1'(x) = 0 for some isolated points x of the interval. 

If f is a differentiable function on an interval (a, b) and if 1'(c) > 0 for some 
point c of (a, b), then there is a subinterval (al' c) of (a, c) such that f(x) < f(c) 
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for any x in (at, c) and there exists a subinterval (c, b t ) of (c, b) such that 
f(x) > f(c) for any x in (c, btl. Indeed, from f'(c) > 0 it follows that for all x 
in (a, b) that are sufficiently close to c we have 

f(x) - f(c) 0 
'----'----'---------'----'--'-> , 

x-c 

that is, for x < c {resp. x> c} we have f(x) < f(c) {resp. f(x) > f(c)}. A 
similar statement holds if f'(c) < O. 

Proposition 4.8 (Darboux's Theorem). Let f be a differentiable function on a 
closed interval [a, b] of finite length and suppose that f'(a) < Yo < f'(b). Then 
there is a point Xo in the open interval (a, b) such that f'(xo) = Yo' 

PROOF. We first consider the special case where f'(a) < 0, f'(b) > 0 and show 
that there is an x in (a, b) such that f'(x) = O. 

We note that since f is differentiable it must be continuous (see Proposi­
tion 3.1). It accordingly attains its smallest value on [a,b] (see Proposition 
2.13). Since f'(a) < 0 there are points X t in (a, b) with f(x t ) < f(a); similarly, 
since f'(b) > 0 there are points X2 in (a, b) with f(X2) < f(b) (see Comments 
following Proposition 4.7). Thus, the least value of f in [a, b] is attained at an 
x in (a, b). But then f'(x) = 0 (by Proposition 4.2). 

Now suppose f is differentiable and only that f'(a) < Yo < f'(b). We show 
that there is an Xo in (a, b) such that f'(xo) = Yo' 

Consider the auxiliary function g(t) = f(t) - Yot. Then 

g'(a) = f'(a) - Yo < 0 and g'(b) = f'(b) - Yo > O. 

Since g satisfies the conditions of the special case already considered, there is 
an Xo in (a, b) for which g'(xo) = O. But f'(xo) = g'(xo) + Yo = Yo' D 

REMARKS. In place of the inequality f'(a) < Yo < f'(b) we could also have 
used the inequality f'(a) > Yo > f'(b) in Proposition 4.8; in the proof we 
would merely have to replace the function f by the function - f. 

From the Comments following Proposition 4.5 we already know that the 
derivative of a differentiable function need not be a continuous function. 
Continuous functions have the property that they assume all intermediate 
values (see Proposition 2.12); by Proposition 4.8, derivatives of differentiable 
functions share this property. We now give an example of two functions f 
and g that have the intermediate value property but f + g does not. Let 

F(O) = 0 and F(t) = t 2 sin! for t "# 0, 
t 

1 
G(O) = 0 and G(t) = t 2cos- for t "# O. 

t 

Now F'(O) = G'(O) = 0; for t"# 0, F'(t) = 2t sin(l/t) - cos(l/t) and G'(t) = 
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2t cos(1/t) + sin(1/t). Putting f(t) = {F'(t) Y and g(t) = {G'(t) y, then f and g 
have the intermediate value property because F' and G' do, but 

(f + g)(t) = 4t 2 + 1 for t -1= 0 

= 0 for t = O. 

Proposition 4.9 (Generalized Mean Value Theorem). (i) Let f and g be con­
tinuous functions on a closed interval [a, b] of finite length and both be 
differentiable on the open interval (a, b), then there is a point x in the open 
interval (a, b) such that 

[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x). (4.1) 

(ii) If, in addition, g(a) -1= g(b), and f'(t) and g'(t) are not both zero for the 
same value oft in the a pen interval (a, b), then 

feb) - f(a) f'(x) 

g(b) - g(a) g'(x) 
(4.2) 

for some x in (a, b). 
(iii) If g'(t) is not zero for any t in (a, b) the additional assumptions (ii) 

necessarily hold, so that equation (4.2) follows. 

PROOF. To prove part (i) we apply Proposition 4.3 to the auxiliary function F 
given by 

F(t) = [f(b) - f(a)]g(t) - [g(b) - g(a)]f(t). 

Then F is continuous on [a,b] and differentiable on (a, b) and F(a) = F(b) = 
f(b)g(a) - f(a)g(b). Thus, by Proposition 4.3, there is a point x in the open 
interval (a, b) for which F'(x) = O. It therefore follows that 

[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x). 

We next suppose that the additional assumptions of part (ii) hold. Then, if 
f'(x) = 0, it follows that g'(x) -1= O. On the other hand, if f'(x) -1= 0, since 
g(b) - g(a) -1= 0, the right-hand member of equation (4.1) is not zero. There­
fore, the left-hand member of equation (4.1) is not zero, and again g'(x) -1= O. 
Thus, we may divide by g'(x) and g(b) - g(a) and so deduce equation (4.2). 

Finally, we want to see that we may replace the additional assumptions of 
part (ii) by assuming that g'(t) -1= 0 for any t in (a, b), as was asserted in part 
(iii). Indeed, if g'(t) -1= 0 for any t in (a, b), then f'(t) and g'(t) can not both 
vanish for the same t in (a, b). Moreover, by the Mean Value Theorem, 

g(b) - g(a) = (b - a)g'(s) -1= 0, 

completing the proof. o 

COMMENTS. Taking g(t) = t, we see that Proposition 4.5 is a special case of 
Proposition 4.9. We can give Proposition 4.9 a geometric interpretation that 
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is similar to the geometric interpretation of Proposition 4.5. We consider a 
curve given by the parametric representation 

x = f(t), 

Then the formula 

y = get) for IY. ~ t ~ f3. 

f(f3) - f(lY.) 

g(f3) - g(lY.) 

f'(y) 
g'(y) 

(4.3) 

for some y in the open interval (IY., f3) can be interpreted as follows: The 
left-hand side of (4.3) stands for the slope of the chord connecting the two 
endpoints of the curve and the right-hand side of (4.3) stands for the slope of 
the tangent line to the curve for t = y. 

Proposition 4.10 (L'Hopital's Rules). Let J be an open interval with an "end­
point" c, where c may be either finite or infinite. Assume that f and g are two 
functions satisfying the properties: 

(i) f and g are differentiable on J; 
(ii) g(x) # 0 and g'(x) # 0 for any x in J; 

(iii) limx~c f'(x)/g'(x) = L, where L may be either finite or infinite. 

Moreover, assume that either 

or 

Then 

(A) limf(x) = 0 = limg(x) 

(B) lim Ig(x)1 = 00. 

limf(x) = L. 
x~c g(x) 

PROOF. Let c < d and J = (c, d). For any x in J define the functions 

m(x) = inf{f'((v)): c < v < x} and M(x) = sup {f'(V): c < v < x}. 
g' v g'(v) 

Let s be any point between c and x. By Proposition 4.9 we have 

f(x) - f(s) f'(t) 

g(x) - g(s) g'(t) , 

where t is a number between sand x. Hence, we have 

m(x) ~ f(x) - f(s) ~ M(x) 
g(x) - g(s) 

for each s between c and x. But clearly 
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m(x) ~ f(x) - f(s) = f(x)jg(x) - f(s)/g(x) ~ M(x) (4.4) 
g(x) - g(s) 1 - g(s)/g(x) 

and 

m(x) ~ f(x) - f(s) = f(s)/g(s) - f(x)/g(s) ~ M(x). (4.5) 
g(x) - g(s) 1 - g(x)jg(s) 

Suppose now that condition (A) of the assumption is satisfied. Let x be fixed. 
Since both f(s) and g(s) tend to 0 as s --+ c, it then follows from (4.4) that 
m(x) ~ f(x)/g(x) ~ M(x). If case (B) holds and x is fixed, then letting s --+ C, we 
see from (4.5) that 

. f(s) 
m(x) ~ hm-) ~ M(x). 

s-->c g(s 

To complete the proof, it is enough to note that by (iii) both m(x) and M(x) 
tend toward L as x --+ c and that s is trapped between c and x. 

If x does not tend to a finite real number c, we can use the foregoing to 
settle matters as well. Suppose, for example, that x --+ 00. Making the change 
of variable y = l/x, we see that y tends to 0 from the right when x --+ 00. If we 
define 

F(Y)=f(t)=f(X) and G(y)=g(t)=g(X), 

we have 

F'(y) = - y-2f' (t) = -x2f'(x) and G'(y) = -xV(x) 

and so 

F'(y) f'(x) 
G'(y) g'(x) . 

This shows that if limx--> 00 f'(x)/g'(x) = L, then we have 

lim f(x) = lim F(y) = lim F'(y) = lim f'(x) = L 
x-->oo g(x) y.l.o F(y) y.l.o F'(y) x-->oo f'(x) . D 

COMMENTS. If f'(x)/g'(x) does not approach a limit as x --+ C, we can not 
conclude that f(x)jg(x) also has no limit as x --+ c. Consider, for example, 

f(x) = x - sinx and g(x) = x + sinx 

Then 

. x-sinx I. 1-(sinx)/x 
hm = 1m = 1 
x-->oo x + sin x x-->oo 1 + (sin x)/x 

but 
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1· 1 - cos X l' 2 X 1m = 1m tan -
x-+oo 1 + cos X x-+oo 2 

does not exist. Another example of this type is the following: Let 

f(O) = 0, 

Then, as x --+ 0, 

but 

. 1 
f(x) = x2 Slll- for x of. 0, 

x 

f(x) = ~ (x sin~) --+ 0 
g(x) sin x x ' 

and g(x) = sin x. 

f'(x) 2x sin(l/x) - cos(l/x) 
g'(x) cosx 

approaches no limit whatever as x --+ O. 
The fact that g'(x) of. 0 for x "near" c is important: Let 

f(x) = x + sin x cos x and g(x) = (x + sin x cos x)eSin x. 

Then, as x --+ 00, f(x)/g(x) oscillates forever between e and lie and has no 
limit. Now 

f'(x) = 2(COSX)2 and g'(x) = eSinx(cosx)(x + 2cosx + sinxcosx). 

But, as x --+ 00, 

f'(x) 
g'(x) 

2e-sin x cos x 
---:c=-----:-----c-~ --+ 0 
X + (2 + sinx)cosx 

because the numerator remains bounded and the denominator becomes arbi­
trarily large. Note that both f'(x) = 0 and g'(x) = 0 whenever cos x = O. 

From the Remarks to Proposition 4.3 we know that if 9 is a differentiable 
function on an open interval (c, d) and g'(x) of. 0 for each point x in (c, d), then 
g(x l ) of. g(x2 ) for any two distinct points Xl and X2 in (c, d). We add, if 
g'(x) of. 0 for each point x in (c, d), then either g'(x) > 0 for each x in (c, d) or 
g'(x) < 0 for each x in (c, d) and hence the function 9 is seen to be strictly 
monotonic on (c,d) by Proposition 4.7. Indeed, if for two distinct points Xl 
and X2 we had g'(x l )g'(X2 ) < 0, then by the intermediate value property of 
differentiable functions (see Proposition 4.8) there would exist a point X3 
between Xl and X2 such that g'(x3) = o. 

Discussion and Examples. We frequently come upon limits of the form 

1. f(x) 
1m-­
x-+c g(x)' 

(4.6) 

where the limit can be one- or two-sided and where c is finite or infinite. The 
limit (4.6) exists and is simply 
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limx-+J(x) 
limx-+c g(x) 
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(4.7) 

provided the limits limx-+cf(x) and limx-+cg(x) exist and are finite and pro­
vided limx-+c g(x) -# 0; see Proposition 2.6. When we calculate the derivative 
of a function h at a point x we consider the limit 

I. h(t) - h(x) 
1m , 
I-+x t - x 

provided that this limit exists. Applying the rule that "the limit of a quotient 
is the quotient of the limits" would only result in the indeterminate form of 
type 0/0, which has no meaning, and would show that we forgot the impor­
tant condition that the limit of the denominator must be different from zero 
for this rule to apply. If the expression (4.7) leads to an indeterminate form of 
the type % or 00/00, then L'Hopital's Rules (see Proposition 4.10) can 
frequently be used to evaluate the limit (4.6). In addition, other indeterminate 
forms, such as o· 00,00 - 00, 0°,00°, or 100 , can usually be reformulated so 
as to take the form % or 00/00. 

Indeed, if the product fg of two functions presents itself in the form o· 00 
as x -t c, then we try to apply L'Hopital's Rules to the quotient 

If the difference f - 9 presents itself in the form 00 - 00 as x -t c, then we 
consider the product 

f(1 - g/f), 

which will be of the type o· 00 provided that g/ f tends to 1 as x -t c. If 

F(x) = [f(x)]g(X) 

produces an indeterminate of the type 0°,00°, or 100 as x -t c, then 

In F(x) = g(x) [In f(x)] 

gives rise to a form of the type O· 00. If In {F(x)} -t K as x -t c, then F(x) -t eK 

as x -t c by the continuity of the exponential function. 
We now look at some examples. 

1. We wish to find the limit 

where a and b are fixed positive real numbers. 
Here f(x) = aX - bX and g(x) = x; as x -t 0 we get an indeterminate of 

type 0/0. Now 
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. f'(x) . a 
hm-,- = hm{ax(lna) - bX(lnb)} = In-b 
x-+O g (x) x-+o 

and Proposition 4.10 is applicable. We obtain 

x bX 
I· a - I a 1m = n-. 
x-+o x b 

2. To determine the limit 

. Xl/2 _ a 1/2 + (x _ a)1/2 

~~ (x 2 _ a 2)1/2 ' 

where a is a fixed positive real number, we again use Proposition 4.10. 
Here f(x) = Xl/2 - a 1/2 + (x - a)1/2 and g(x) = (x 2 - a 2)1/2 so that 

f'(x) (x 2 - a 2)1/2 + X1/2 (X + a)1/2 1 
-- - --+ -- as x 1 a g'(x) - 2XX1/2 (2ay/2 . 

Once again we had an indeterminate of type 0/0. By Proposition 4.10 we 
conclude that the limit in question equals (2atl/2. 

3. Consider the limit 

eX + e-x - 2 
lim . 
x-+O 1 - cosx 

With f(x) = eX + e-x - 2 and g(x) = 1 - cos x, we see that 

f'(x) eX - e-x f"(x) eX + e-X 
--= and --=---
g'(x) sin x g"(x) cos x 

Now f(x)!g(x) and f'(x)!g'(x) are indeterminates of type 0/0; however, 

f"(x) eX - e-X 
lim -,-, - = lim = 2. 
x-+O g (x) x-+O cos x 

Thus, by Proposition 4.10, 

f '( ) x-x 
lim ~ = lim e - e = 2 
x-+O g' (x) x-+O sin x 

and, by Proposition 4.10 applied for a second time, 

limf(x) = lim eX + e-x - 2 = 2. 
x-+O g(x) x-+O 1 - cos x 

4. If f'(x) exists on an interval containing c, then 

. f(c + h) - f(c - h) I' f'(c + h) + f'(c - h) f'() 
hm = 1m = c, 
h-+O 2h h-+O 2 
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by Proposition 4.10. If f"(x) exists on an interval containing c, then 

lim f(c + h) + f(~ - h) - 2f(c) = lim f'(c + h) - f'(c - h) = f"(c). 
h~O h h~O 2h 

5. Let n be a positive integer. We claim 

lim (..1x n + a1x n 1 + azx n z + ... + an - x) =~. 
~oo n 

Indeed, let us replace x by 1/y so that y! 0 corresponds to x --+ 00. Our 
problem now becomes the evaluation of the limit 

1. ..11 + a1 y + azyZ + ... + anyn - 1 
1m . 

y.j,o y 

Here both numerator and denominator tend to 0 as y! O. Passing from the 
quotient f(y)/g(y) to the quotient f'(y)/g'(y), we must seek to evaluate the 
limit 

r a 1 + 2az y + ... + nanyn-l 
/~ n(l + a1 Y + ... + anyn)l l/n' 

However, this latter limit is easily seen to be at/no Invoking Proposition 4.10 
gives us what we had claimed. 

6. From Example 5 we can immediately deduce that 

lim (y/xn + a x n- 1 + ... + a _ y/xn + b xn I + ... + b ) = a1 - bl 
1 n 1 n , n 

where n denotes a positive integer. In both Example 5 and the present 
example the indeterminate is of type 00 - 00. 

7. Let b denote a positive real number. We wish to show that 

lim x(b l /X - 1) = In b. 

Indeed, letting f(x) = b1/ x - 1 and g(x) = l/x, we see that 

f'(x) b1/x (ln b)( -1/xZ) 
-- = / z --+ In b as x --+ 00. 
g'(x) -1 x 

The rest follows by Proposition 4.10. (Look up Proposition 1.10 for 
comparison.) 

8. The function 

F(O) = 0, F(x) = e- 1/x2 for x#-O 

has the remarkable property that its derivatives of all orders are zero at 
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y 

--------------- ------ - - -- ---- - ------------

------------~~~~----------__7X 

Figure 4.4 

x = O. In the graph of y = F(x) (see Figure 4.4) this property accounts for the 
extreme flattening in the neighborhood of the origin. Note that the graph of 
y = F(x) is symmetric about the y-axis because F( - x) = F(x). 

We now show that the derivatives of all orders of F vanish at x = O. If we 
put u = 1/x and use the notation exp(t) for et , we obtain 

'(0) l' F(x) 1· u F = Im-- = 1m ( 2 = 0 
x-o x u-±oo exp u ) 

by using Proposition 4.10. Since F(x) = exp( _u2), u' = _u2, we have by the 
chain rule for differentiation 

F"(x) = exp( - u2) [ - 2uu'] = 2u3 exp( - u2) for x ¥= O. 

Now 

F"(O) = lim F'(x) = lim 2u4 = 0 
x-+o X u-+±oo exp(u2) 

by using Proposition 4.10 repeatedly and 

F"(x) = exp( - u2) [6u2u' - 4u4u'] = exp( - u2) [4u6 - 6u4 ] for x ¥= O. 

Again 

F"'(O) = lim F"(x) = lim 4u 7 
- 6us = 0 

x-+o x u-+±oo exp(u2) 

by using Proposition 4.10 several times. Continuing in this manner, for any 
positive integer n we find that 

F(n)(o) = lim Pn(U)2 = 0, 
u-+±oo exp(u ) 

where Pn is a polynomial. 
If F(n)(x) = exp( - u2)Pn(u), we obtain the recursion formula 

Pn+1(u) = 2u3Pn(u) - U2P~(U). 

Thus, with Po(u) = 1, we have 

P1 (u) = 2u3, P2(u) = 4u6 - 6u4 , P3(U) = 8u9 - 36u7 + 24us, ... 

It is clear that the polynomial Pn has degree 3n and that Piu) is made up of a 
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linear combination of terms of the form urn, where m is an integer satisfying 
o < m ~ 3n. Thus, 

I· urn . I' I' Pn(u) - 0 1m 2 = 0 Imp 1es 1m 2 - • 
u .... ±oo exp(u ) u .... ±oo exp(u ) 

We prove that 
urn 

lim 2 = 0 
u .... ±oo exp(u ) 

by repeated use of Proposition 4.10: 

urn mu m - 1 m( urn- 2 ) 
lim 2 = lim 2 = - lim 2; 

u .... ±ooexp(u) u .... ±002uexp(u) 2 u .... ±ooexp(u) 

after a finite number of steps the exponent in the numerator will no longer be 
positive, and then the limit is seen to be O. 

9. We show that 
lim (1 + x)lfx = 1. 
X"" 00 

Indeed, let y = (1 + x/Ix; then Iny = (1/x)ln(1 + x). But 

lim In(1 + x) = lim _1_ = O. 
X"" 00 X x .... oo 1 + x 

by Proposition 4.10. Since Iny --+ 0 as x --+ 00, we see that y --+ 1 as x --+ 00. 

10. We verify that 
. (1 + X)l/X - e e 

hm = --. 
x~o x 2 

Indeed, putting y = (1 + X)l/X, hence In y = (1/x) In(1 + x), we can see that 

lim (l + X)l/x = e. 
x~o 

By Proposition 4.10, 

I· (1 + X)l/X - e I' (1 )1/ x - (1 + x)ln(1 + x) 1m = 1m + x x----=-2-------'--
x~o X x~o X (l + x) 

and two applications of Proposition 4.10 give us that 

lim x - (1 + x)ln(1 + x) = _~ 
x .... o x2 (1 + x) 2' 

11. We have 

( )
1/X2 

I. tan x _ 1/3 1m-- -e. 
X .... o x 

Indeed, since 
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tan x sinx 1 
--=----, 

X X cosx 

we see that the indeterminate form under investigation is of type 1 <Xl, We put 

Y = Ca:xy/x2 

and show that In y -+ t as X -+ 00 and hence that y -+ el/3 as x -+ 00. Now 

1 In (tan x) - In x 
ny = 

x2 

and applying Proposition 4.10 gives 

1· 1 I' (sec2 x)/(tan x) - llx I' 2x - sin(2x) 
1m ny = 1m = 1m 2' ' 

X-a X-a 2x x-a 2x sm(2x) 

However, applying Proposition 4,10 three times in succession yields 

I, 2x - sin(2x) _ ~ 
1m 2' -. 

X-a 2x sm(2x) 3 

12, We show that 

Indeed, 

lim(~ - cot x) = O. 
x-a X 

1 sin x - xcosx 
- - cotx = ------
x xsinx 

and, by Proposition 4,10, 

I, sinx - xcosx l' xsinx 
1m , = 1m . 

x-a X sm x x-a sm x + x cos x 

Another application of Proposition 4.10 gives 

xsinx = 11'm sin x + xcosx = 0 lim, . 
x-a sm x + x cos x x-a 2 cos x - x sin x 

However, we could have avoided application of Proposition 4,10 in the last 
step by observing that (sin x)/x -+ 1 as x -+ 0 [see (2,8)] and hence 

xsinx sl'nx 
I, I' 0 1m , = 1m . = . 
x-o sm x + x cos X x-o(sm x)/x + cos x 

13. We show that 

, xe2x + xex - 2e2x + 2ex 1 
~~ (eX - 1)3 6' 
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Indeed, we use Proposition 4.10 three times in succession. After the first 
application of Proposition 4.10 we cancel the common factor eX in the nu­
merator and denominator and after the second application of Proposition 
4.10 we replace the factor eX in the denominator by 1 (because eX - 1 as 
x - 0). The actual calculation simplifies a lot by this procedure. The details 
are as follows: 

. xe2x + xex _ 2e2x + 2ex .. 2xe2x + e2x + xex + eX - 4e2x + 2ex 
~1: (eX _ 1)3 = ~1: 3eX(eX _ 1)2 

14. Let 

1. 2xex - 3eX + 3 + x = Im-----,----,..-;;---
x-+O 3(eX - 1)2 

1 . 2xeX + 2eX - 3ex + 1 
= _. hm--------

3 x-+O 2eX(e X - 1) 

= ~.lim _ex + 2xex + 1 
6 x-+O eX - 1 

(
n )1/(10 x) 

Y= 2-arctanx . 

For x - 00 we obtain an indeterminate form of the type 00 ; we wish to show 
that y - lie as x - 00. 

Indeed, 

1 In(nl2 - arc tan x) 
ny = --'-----­

lnx 

is an indeterminate form of the type 00/00; we apply Proposition 4.10 and 
obtain 

1 1 

lim In y = lim nl2 - arc tan x1+?= lim x/(1 + x2) 
x-+oo x-+oo 1/x x-+oo arc tan x - nl2 

. (1 - x2)/(1 + X 2)2 . 1 - x2 

= hm 2 = hm---2 = -1. 
x-+oo 1/(1 + x ) x-+oo 1 + x 

15. We have 

1. xcosx - sin x 1 
1m . 2 = --. 

x-+O X sm x 3 
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From this follows in particular that 

I, (2 1) 2 1m cot x - 2 =--
x-o x 3 

and (
sin X)l/(l-COS xl 

lim -- = e- 1/3 , 
x-o X 

Indeed, by Proposition 4.10, 

I, xcosx - sin x -I' -xsinx 
1m , 2 - 1m '2 2 (.)( ) x-+o x sm x x-+o sm x + x sm x cos x 

-1 1 
= lim -:-:----::-:---:--­

x-+o(sinx)/x + 2cosx -3' 
establishing the first assertion, Since 

xcosx + sin x xcosx - sinx 
x x sin2 x 

with 

xcosx + sin x sin x 2 
------= cosx +---+ asx-+O 

x x 

the second assertion follows from the first. Finally, putting y = f(x), where 

we have 

y = ei: x Y/(l-COS xl, 

I _In(sinx) -Inx ~ 0 
ny - 1 lor x> . 

- cos x 

The assumption x> 0 causes no restriction because f( -x) = f(x), Using 
Proposition 4.10, we obtain 

I, I I' (cos x)/(sin x) - 1/x I' x cos x - sin x 1 
1m ny = 1m , = 1m , 2 = --, 

x-+o x-+o sIn x x .... o X sIn x 3 

establishing the third assertion in terms of the first. 

16, Find a value of the fixed number c such that 

lim (x + c)X = 4, 
x .... oo x - c 

We put 

(
X + C)X I In(x + c) - In(x - c) 

y = -- or n y = ------,-.,-----
x-c 1~ 

and apply Proposition 4.10; we get 
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1· 1 l' In(x + c) - In(x - c) l' Ij(x + c) - Ij(x - c) 
1m ny = 1m = 1m 2 

x-oo x-oo Ijx x-oo -ljx 

2cx 2 

= lim 2 2 = 2c. 
x--+oo x - c 

We therefore see that 2c = 2(In 2) or c = In 2. 

17. Let a and b denote fixed numbers and suppose that a > O. Then 

lim aX. sin~ = b if a> 1 
x-oo aX 

=0 ifO<a<1 

Indeed, let a > 1; then a X --+ 00 as x --+ 00 and so 

. b sin(bjaX) 
aX. sm - = b· --+ b as x --+ 00. 

aX bjaX 
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If 0 < a < 1, then aX --+ 0 as x --+ 00; moreover, Isin tl ::; 1 for any real 
number t. 

18. We have 

lim (_1 _~) = ~ 
. 2 2 . x-o sm x x 3 

Indeed, we have 

sin 2 x· 

Applying Proposition 4.10 four times in succession yields 

x 2 - sin2 x 1 
lim 4 3 
x-a x 

On the other hand, x 2 j(sin2 x) --+ 1 as x --+ O. 

2. Taylor's Theorem 

Proposition 4.11 (Taylor's Theorem). Suppose that f is a real-valued function 
on a closed interval [a, bJ of finite length and n denotes a nonnegative integer. 
Let f and its first n derivatives be continuous on [a, bJ and let the (n + l)st 
derivative f(n+ 1) exist (i.e., f(n) be differentiable) on the open interval (a, b). 
Assume, moreover, that IX and P are distinct points of [a, bJ and put 

f'(IX) pn)(rx) 
P(t) = f(lX) + T!(t - IX) + ... + ---n!(t - lX)n. (4.8) 
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Then there exists a point x between Ct and 13 such that 

f(n+ l)(X) 
f(f3) = P(f3) + (13 - lY.)q(I3 - xrq+ 1, 

n!q 

where q is a fixed number ~ 1. 

PROOF. Let K be a number defined by 

f(f3) = P(f3) + K(f3 - lY.)q 

and put, for t in [a, b], 

g(t) = f(t) + f~;t) (13 - t) + ... + f~)!(t) (13 - t)n + K(f3 - t)q, 

(4.9) 

(4.10) 

where 13 is held fixed. It is clear that g(f3) = f(f3); by (4.10) we have that 
g(lY.) = f(f3). Thus, by Proposition 4.3, g'(x) = 0 for some x between Ct and 13. 
But 

g'(t) = f'(t) + (f~~t) (13 - t) - f'(t)) 

+ (flll(t) (13 - t)2 _ f"(t) (13 - t)) 
2! 1! 

+ (P4)(t) (13 _ t)3 _ f"'(t) (13 _ t)2) + ... 
3! 2! 

+ (13 - tt - (13 - t)n-l - qK(f3 - t)q-1 (f (n+ 1 )(t) f(n)(t) ) 

n! (n - 1)! 

and (4.9) follows. o 

REMARKS. The polynomial P in (4.8) is called the Taylor polynomial of order 
n for f at Ct. The expression 

f (n+l)(x) 
Rn = (13 - Ct)q(f3 - x)n-q+ 1 

n!q 
(4.11) 

that appears in (4.9) is called Schlomilch's form of the remainder. If we let 
q = n + 1 in (4.11), then we obtain 

f (n+1)( ) 
R = x (13 - r+ 1 

n (n + 1)! IY. 

and we call it Lagrange's form of the remainder Putting q = 1 in (4.11) yields 

pn+1)( ) 
Rn = ,x (13 - IY.)(I3 - xt 

n. 

and we call it Cauchy's form of the remainder. 
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For n = 0 and using Lagrange's form of the remainder, Proposition 4.11 
reduces to Proposition 4.5. In general, Proposition 4.11 shows that f may be 
approximated by a polynomial of degree n; and (4.9) allows us to estimate the 
error of the approximation, if we know bounds on lJ<n+l)(x)l. 

In Example 8 following Proposition 4.10 we studied the function 

F(O) = 0, F(t) = e- 1/t2 for t =f. O. 

It is noteworthy to point out that the Taylor polynomials of all orders for F 
at 0 vanish because the derivatives of all orders of F are zero at t = O. In the 
case of this function Proposition 4.11 does not yield an approximating poly­
nomial (except for the trivial zero polynomial) and the function F is merely 
reproduced in the remainder. However, in the case of some other functions, 
Proposition 4.11 provides very useful information indeed. We consider some 
examples next. 

Exponential Function. Let f(t) = et • Then J<k)(t) = e t for k = 1,2, .... Tak­
ing IX = 0 and choosing for Rn Lagrange's form of the remainder, we get 

where 

P p2 pn 
eP = 1 + I! + 2! + ... + n! + Rn({3), 

pn+l 
Rn({3) = eX (n + I)! 

with x between 0 and p. We note that 

and, for fixed p, 

IPln+lelPI 
IRn(P)1 < (n + I)! 

n-+<XJ 

(4.12) 

To verify (4.12), let m be a positive integer> 21f31. Then for n ~ m we have 

IPln+lelPI = eIPI.IPlm.(~).(~) ... (JtL) < eIPI.IPlm.(!)n-m+l. 
(n + I)! m! m + 1 m + 2 n + I m! 2 

Thus, for n ~ m, 

where M is the fixed number 

M = 2m-l. eIPI.IPlm. 
m! 

But (1/2t -+ 0 as n -+ 00 and so M· (1/2t -+ 0 as n -+ 00 with M a fixed 
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number. Therefore, for fixed p we can calculate ef3 by use of the relation 

p p2 pn pn+ 1 

ef3 = 1 + - + - + ... + - + eOf3 where 0 < () < 1 (4.13) 
1! 2! n! (n + 1)! ' 

with any degree of accuracy. In particular, for p = 1 we get from (4.13) that 

1 1 1 3 
e = 1 + - + - + ... + - + Rn(1), where 0 < Rn(1) < ( )" (4.14) 

1! 2! n! n + 1 . 

Taking n = 13 in (4.14) we see that e = 2.718281828 ... , accurate to nine 
decimal places. 

We observe that e is not a rational number, that is, e is not representable 
as the ratio of two integers. Indeed, from (4.13) we have 

1 1 1 eO 
e = 1 +, + -2' + .,. +, + ( 1)" where 0 < () < 1 

1.. n. n + . 

for any positive integer n; the number () depends on n. Suppose now that 
e = p/q, where p and q denote positive integers. We only need to convince 
ourselves that 

p 1 1 1 eO 
- = 1 + -1' + -2' + ... + , + ( 1)' q " n. n + . 

(4.15) 

can not be true if n ~ q and ~ 3 and 0 < () < 1. Now (4.15) is equivalent to 

(4.16) 

But (4.16) can not be true because on the left-hand side of the equation we 
have an integer while on the right-hand side we have a quantity larger than 
o but less than 3/(n + 1) which in turn is less than 1 because n ~ 3 by 
assumption; however, there is no integer between 0 and 1. 

Sine and Cosine Functions. Let f(t) = sin t. If m is a positive integer, then 

j<2m-l)(t) = (-1r-1cost and j<2m)(t) = (-1rsint. 

Taking IX = 0 and choosing for Rn Lagrange's form of the remainder, we 
obtain upon setting n = 2m 

. p3 p5 p7 _ p2m-l 

sm p = p - 3T + 5! - 7! + ... + ( - 1)m 1 (2m _ 1 )! + Rn(P), (4.17) 

where 

p2m+l 

Rn(P) = (_l)m (2m + 1)! cos x 

with x being some point between 0 and p. It is clear that 
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and so, just as in the case of the exponential function, Rn({3) --+ 0 as n --+ 00 for 
any fixed p. Thus, sin p can be calculated by (4.17) with any degree of accu­
racy we please for any fixed p. 

In a completely similar way we obtain 

pz p4 p6 _ pzm-z 
cos p = 1 - 2! + 4! - 6! + ... + ( - 1 t 1 (2m _ 2)! + Rn(P), (4.18) 

where 

pZm 
Rn(P) = (_I)m (2m)! cos v 

with v being some point situated between 0 and p. Since 

it follows that Rn(P) --+ 0 as n --+ 00 for fixed p. Hence, (4.18) can be used to 
compute cos P with any degree of accuracy we please. 

Logarithmic Function. Let f(t) = In(1 + t). Then, for k = 1, 2, ... , 

f(k)(t) = (_I)k-l (k - I)! . 
(1 + t)k 

We have f(O) = 0 and 

~f(k)(O) = (_I)k-l ~ k 1 2 
k! k or = , , .... 

Taking !X = 0 and choosing for Rn Lagrange's form of the remainder, we get 

In(1 +P)=P_~Z +~3 _~4 + ... +(_lrl~n + Rn(P), (4.19) 

where 

pn+l 1 
Rn(P) = (-1)" n + 1 (1 + X)"+l 

with x being a point between 0 and p. We can write Rn also in the form 

pn+l 1 
Rn(P) = (-1)" n + 1 (1 + ()p)n+l' 

where () denotes some number between 0 and 1. For fixed P such that 
o :s; P :s; 1 we have 
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1 
IRn(fJ)l ~ --1 -> 0 as n -> 00 

n+ 

and so we see that In(1 + 13) can be computed with any prescribed degree of 
accuracy by use of (4.19) provided that 13 satisfies 0 ~ 13 ~ l. 

Since for positive values of 13 the expression 

(1 + ()f3)n+ 1 

as well as () are between 0 and 1, we can write in place of (4.19) 

132 133 134 f3n f3n+ 1 

In(1 + 13) = 13 - 2 + 3 - 4 + ... + (_1)n-l.; + (-1)n()1 n + l' (4.20) 

where 0 ~ 13 ~ 1 and 0 < ()1 < l. 
We now wish to investigate what happens when -1 < 13 ~ O. In place of 

Lagrange's form of the remainder, we now consider Cauchy's form of the 
remainder and get 

132 p3 p4 pn 
In(1 + 13) = 13 - 2 + 3 - 4 + ... + (_1)n-1-; + Rn(f3), (4.21) 

where 

n pn+ 1 (1 -W )n 
Rn(f3) = (-1) 1 + wp 1 + wp , 

where 0 < w < 1 and - 1 < P ~ 0 (note that we have replaced x by wf3 in the 
formula for Cauchy's form of the remainder). This form of the remainder 
makes it possible to see that Rn(f3) tends to 0 as n -> 00 when 13 satisfies 
-1 < 13 ~ O. Indeed, if -1 < P ~ 0, then (since 0 < w < 1) 

1 - w < 1 + wp 

and so, for any n ;::: 0, 

O«/+:f3)"~l. 
Moreover, if -1 < P ~ 0 and 0 < w < 1, then 

1 1 
0< <--. 

1 + wf3 - 1 + p 

Hence, we can write in place of(4.21) 

p2 p3 p4 _ pn f3n+ 1 

In(1 + 13) = 13 - 2 + 3 - 4 + ... + (_1)n 1-; + (-1)n()2 1 + P' (4.22) 

where - 1 < P ~ 0 and 0 < ()2 < 1, and it is also clear that 
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tends to 0 as n -t 00. Thus, (4.22) can be used to calculate In(l + p) when 13 
satisfies -1 < 13 ~ 0 with any prescribed degree of accuracy. Of course, we 
do not need such powerful methods for the trivial case 13 = O. Since 

1 
Ina = -In-, 

a 

we can use (4.22) to compute In a in the case a > 0; however, such a direct 
approach is often not advantageous. 

Replacing 13 by - 13 in (4.22) and multiplying both sides by -1, we obtain 

1 132 133 pn pn+ 1 

In 1 _ 13 = 13 + 2" + 3 + ... + n + O2 1 _ 13 , (4.23) 

where 0 ~ 13 < 1 and 0 < O2 < 1. 
Since 

1 + 13 1 
1 _ 13 = In(1 + 13) + In 1 _ 13 , 

we can combine the results in (4.20) and (4.23); picking n to be the even 
number 2k, we have 

1 + 13 (133 p2k-1 ) 2k+1 (01 O2 ) 
1 - 13 = 2 13 + 3 + ... + 2k - 1 + 13 2k + 1 + 1 _ 13 , (4.24) 

where 0 ~ 13 < 1, 0 < 01 < 1, and 0 < O2 < 1. The relations (4.20), (4.22), and 
(4.24) are basic for the computation of logarithms. 

Putting p = 2 in (4.20), we obtain 

1 1 1 (-1r1 (-1)" 
In2 = 1 - 2 + 3 - 4" + ... + n + n + 101' (4.25) 

where 0 < 01 < 1. While (4.25) is of considerable theoretical interest, it is not 
very helpful in computing In 2 accurate to, say, six decimal places because we 
would have to let n = 106 or more and the resulting calculation would be 
formidable indeed. 

The relation (4.25), in contrast, is much more helpful in the computation of 
In2. To get 

1+13=2 
1-13 

we merely need to take 13 = 1; doing so, we get 

( 1 1 1 1) 1 (01 3) 
In2 = 2 3 + 3'33 + 5'35 + ... + (2k _ 1)32k- 1 + 32k+1 2k + 1 + 202 , 

(4.26) 

where 0 < 01 < 1 and 0 < O2 < 1. For example, it is easy to see that we get 
an accuracy of up to eight decimal places by taking k = 9 in (4.26). 

Suppose we already calculated In m, where m is a positive integer, and we 
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wish to calculate In(m + 1) next. Since 

m+1 
In(m + 1) = lnm + In--, 

m 

it is of interest to calculate In{(m + l)/m} as efficiently as possible. By setting 

1 
P=2m+1' 

we obtain 

l+P m+1 
1-P m 

therefore, relation (4.25) will aid us in the computation of In {(m + 1 )/m} and 
will in fact become more convenient as m gets larger. Incidentally, note that 
calculating, for example, In 3 by use of the identity 

In3 = In2 + lnt 

with P = t in (4.25) is preferable to setting p = ! in (4.25) and then working 
with 

In3 = 2G + 3.123 + 5.125 + ... + (2k _ !)22k 1) + 22!+1 (2/~ 1 + 202)­

J. C. Adams (in Proceedings of the Royal Society of London, vol. 27,1878, 
p. 88 fT.) used the identities 

10 25 81 
In2 = 71n- - 21n- + 3In-

9 24 80' 

10 25 81 
In3 = 11ln- - 31n- + 51n-

9 24 80' 

10 25 81 
In5 = 161n9" - 4In 24 + 7In 80, 

1 (10 25 81 50) In 7 ="2 39 In 9" - 10ln 24 + 17ln 80 -In 49 ' 

and 
10 25 81 126 

In 7 = 19 In 9" - 4ln 24 + 8ln 80 + In 125 

to calculate In 2, In 3, In 5, and In 7 with an accuracy of up to 262 decimal 
places. Note that 

In 10 = -In(l _~) 
9 10 ' 

81 ( 1 ) In 80 = In 1 + 80 ' 
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moreover, the numbers 

1 4 1 2 8 

10' 100' 80' 100' 1000 

together with their integer powers are easily calculated to many decimal 
places. 

Once we have In 2 and In 5 computed with high accuracy, we know In 10 
with high accuracy as well because 

In 10 = In 2 + In 5. 

The relation between logarithms to the base 10 and natural logarithms is 
given by 

InN 
loglo N = In 10 

and therefore an accurate calculation of M = In 10 is of interest. We note that 

1 
M = 2.3025850929940... and M = 0.4342944819032 .... 

Binomial Function. Let c be any real number and put 

(~) = 1 and (~) = c(c - 1Hc - ~! ... (c - n + 1) 

for k = 1,2, .... For x > -1, let f(t) = (1 + t)'; then 

:! f(k)(t) = G) (1 + tY-\ that is, :! j<k)(O) = G)' 
for k = 0, 1, 2, .... Taking rt. = 0 and choosing for Rn Lagrange's form of the 
remainder (for the point x between 0 and 13 we put ef3 with e satisfying the 
inequality 0 < e < 1), we obtain 

(1 + 13)' = 1 + G) 13 + G) 132 + ... + G)f3n + Rn(f3), (4.27) 

where 

with e dependent on nand 13 and satisfying the inequality 0 < e < 1. 
It is clear that (4.27) is an extension of the Binomial Theorem and turns 

into the Binomial Theorem if c is a positive integer p and n ~ p. 

If 13 > 0 (the case 13 = 0 is trivial) and n + 1 > c, then 

0< (1 + ef3y-n-l < 1 

and we can replace (4.27) by the simpler representation 
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where c is arbitrary, P > 0, n + 1 > c, and 0 < (}1 < 1. 
Let c be fixed and not a positive integer and suppose that P is fixed and 

IPI < 1. We wish to convince ourselves next that the numbers 

y" = (:) P" --+ 0 as n --+ 00. (4.29) 

Indeed, 

y,,+l = C - n P 
y" n + 1 

and so 

Y,,+l P -- --+ - as n --+ 00, (4.30) 
y" 

that is, the absolute value of the limit is < 1. Hence, if v is any fixed number 
satisfying IPI < v < 1, we can find a positive integer m so that 

I y~: 1 I < v for k ~ m. (4.31) 

We now envisage the inequality (4.31) written out for k = m, m + 1, ... , 
n - 1. Multiplying all these inequalities together, we get 

ly,,1 < IYml v" for n > m. 
vm 

But m is fixed, hence, IYml/vm is fixed and so v" --+ 0 as n --+ 00 implying 

y" --+ 0 as n --+ 00. 

In the sequel we shall need to know also the stronger result that 

(4.32) 

in case IPI < 1. But 

z,,+ 1 = n + 1 c - n P --+ _ P 
z" n n + 1 

and we can use for the numbers z" the same reasoning as we employed in the 
case of numbers y" on the basis of the relation (4.31). 

Thus, for fixed P satisfying 0 ::; P < 1 we can certainly claim that the 
remainder term R,,(P) in (4.27) tends to zero as n becomes arbitrarily large. 
What happens to R,,(P) as n --+ 00 in case - 1 < P < 0 is hard to make out 
from (4.27) or (4.28). However, using Cauchy's form of the remainder instead 
of Lagrange's form, it is not difficult to see that R,,(P) --+ 0 as n --+ 00 in case P 
is fixed and satisfies - 1 < P < o. 
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Indeed, using Cauchy's form of the remainder we get the representation 

(1 +P)'= 1 +G)p+G)p2+ ... +(:)pn 

+ (n + 1)(n: 1)pn+1(1- w)"(l + wpy-n-t, 
(4.33) 

where -1 < p ::;; 0 and 0 < w < 1 (note that we have replaced x by wp in 
Cauchy's form of the remainder). Just as in the foregoing study of the loga­
rithmic function, we note that - 1 < p ::;; 0 and 0 < w < 1 implies 

1 - w < 1 + wp 
and therefore, for any n ;;::: 0, the number 

( 1-w)n 
()2 = 1 + wp 

satisfies 

o < ()2 ::;; 1. 

We can therefore rewrite (4.33) in a somewhat simpler form as follows: 

(1 + py = 1 + G)p + G)p2 + ... + (:)pn 

+ (n + l)(n: 1)pn+1()2(1 + wpy-t, 
(4.34) 

where c is arbitrary, -1 < p ::;; 0, 0 < ()2 ::;; 1, and 0 < w < 1. By (4.32), we 
have 

Zn = nYn = n(:)pn -+ 0 as n -+ 00 

for fixed p satisfying - 1 < p ::;; 0; also, for fixed p such that - 1 < p ::;; 0 we 
have 

1()2(1 + wPy-11::;; 1, respectively ::;;(1 + p)e-1, 
depending on whether c - 1 ;;::: 0 or ::;; O. In any event, the factors joining Zn 

are bounded and so Rn(P) -+ 0 as n -+ 00 also in case the fixed p satisfies 
-1 < p::;; O. 

To sum up: For any p satisfying -1 < p < 1 we have a representation of 
the form 

(1 + py = 1 + G)p + (~)p2 + ... + (:)pn + Rn{P), (4.35) 

where Rn(P) -+ 0 when we fix p and let n -+ 00. Moreover, if n + 1 > c, we 
have 
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(4.36) 

and 

Rn({3) = (n + l)C: 1)pn+182(1 + OJpy-1 for -1 < P ~ O. (4.37) 

The numbers 81 , 82 , and OJ are larger than 0 but do not exceed 1; nothing 
more definite is known about them. 

We can use the foregoing result to come up with high-precision calcula­
tions. For example, 

But 

However, 

5 1 
1 + ... + 16503 = 1.0101525 

13;8 5~4 = 0.00000004375 

26:6 5~5 = 0.0000000007875 
1.0101525445375 

1.0101525445375·1.4 = 1.41421356235250. 

We note that the error in this approximation is smaller than 

1.4.6(-1/2)_1_= 1.4.6. 231 _1_ 
6 506 1024 506 

and the latter is smaller than 1.22 ,10- 1°. Therefore, 

.Ji = 1.414213562 ... 

with an accuracy of up to nine decimal places. 
Our accuracy would be even higher if we had used the identity 

( 119 )-1/2 .Ji = 1.41 1 - 20000 . 

Inverse Tangent Function. Let y = arc tan t. We seek to express y(n) in 
terms of y. Since t = tany, we have 
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y' = 1 : t2 = COS 2 Y = (COSY)Sin(y +~). 
Another differentiation yields 

y" = ( -(SinY)Sin(y +~) + (COSY)COs(y +~)) Y' 

= (cos2 Y)COS(2Y +~) = (cos2 Y)Sin2(Y +~). 
Differentiating again, we get 

y lII = ( -2(Sin Y)(COS Y)Sin2(Y +~) + 2(cos2 Y)COS2(Y +~)) Y' 

= 2(cos3 y)cos (3Y + 2 .~) = 2(cos3 y)sin 3 (Y + ~). 
The general formula is 

yIn) = (n - l)!(cosn y) sin n (y + ~) (4.38) 

and can be verified by induction (see also Exercise 3.18 at the end of 
Chapter 3). 

Putting f(t) = arc tan t, we see that 

f(O) = 0 f'(0) = 1 f"(0) = 0 flll(O) 
'1! '2! ' 3! 

Lettjng IX = 0, substituting for x the expression (){3, and taking n to be the 
even integer 2k, we have 

{33 {35 {37 {32k-l 
arctan{3 = {3 -3 + 5 -7 + ... + (_l)k-l 2k _ 1 + Rn({3), (4.39) 

where 

{32k+l () 
Rn({3) = ( _l)k 2k + 1 (cos2 k+ 1 (){3) sin(2k + 1) (){3 + ~ 

with 1{31 ::=:;; 1 and 0 < () < 1. It is clear that 

1 
IRn({3)1 ::=:;; --1 -+ 0 as n -+ 00. 

n+ 

The relation (4.39) was used around 1706 by John Machin to calculate the 
number 1C with an accuracy of up to 100 decimal places; W. Shanks in 1873 



184 4. Applications of Differentiation 

extended Machin's result and computed n with an accuracy of up to 707 
decimal places (see Proceedings of the Royal Society of London, vol. 21, 1873, 
p. 318; corrections in vol. 22,1874, p. 45). Machin's method makes use of the 
formula 

nil 
- = 4 arc tan- - arc tan-
4 5 239 

and goes as follows. Let A = arc tan t. Then 

1 
tan A = 5' 

2/5 5 
tan2A = 1 _ 1/25 12' 

10/12 120 
tan 4A = 1 _ 25/144 119· 

Since the number 120/119 is near 1, the angle 4A is near n/4. Putting 

we obtain 

120/119 - 1 1 h. 1 
tanB = 1 + 120/119 = 239' t at IS, B = arctan 239 · 

We therefore have Machin's Formula 

Consideration of (4.39) shows that calculation of the listed terms will suffice 
to obtain n with an accuracy of up to seven decimal places: 

n = 3.1415926 .... 

REMARKS. A less effective formula than n/4 = 4(tan-1t) - (tan-12~9) is the 
formula n/4 = tan -1 ! + tan -1t. Gauss found, by means of the theory of 
numbers, two remarkable formulas, namely, 

~ = 12 (tan-1 118) + 8 (tan-1 517) - 5 (tan-1 2~9). 

= 12 (tan -1 318) + 20 (tan -1 517) + 7 (tan -1 2~9) + 24 (tan -1 2!8). 

by means of which n could be calculated with great rapidity should its value 
be required to an accuracy beyond the one reached by W. Shanks. In recent 
times n was actually calculated with an accuracy of one million decimal 
places. 
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Proposition 4.12. Suppose that f is a real-valued function and n denotes an 
integer;:::>: 2. Let fen) exist at a point c and, for k = 1, 2, ... , n - 1, 

j<k)(C) = 0 and j<n)(c) #- o. 
Then f has a relative extremum at c if n is even. If n is even and f(n)(c) > 0, 
then f has a relative minimum at c; if n is even and f(n)(c) < 0, then f has a 
relative maximum at c. 

PROOF. It will be sufficient to carry out the proof in the case j<n)(c) > 0; the 
case f(n)(c) < 0 is entirely analogous and can in fact be reduced to the con­
sidered case by replacing f by - f 

Since j<n) is assumed to exist at c, j<n-l) exists on a neighborhood of c. By 
Proposition 4.11, we have for sufficiently small Ihl and for suitable () with 
0< () < 1, 

f(c + h) = f(c) + f'(c) h + j"(c) h2 + ... + j<n-2)(c) hn- 2 
I! 2! (n - 2)! 

f(n-l)(c + ()h) 
+ hn - 1 

(n - I)! 

= f(c) + f(n-l)(c + h) hn- 1• 

(n - I)! 

But j<n-l)(c) = 0 and j<n)(c) > 0 by assumption and so 

j<n-l)(c + ()h) < 0 for h < 0 

> 0 for h > 0 

(see Comments to Proposition 4.7). For odd n we have hn - 1 > 0 and so 

f(n-l)(c + ()h) < 0 for h < 0 

> 0 for h > 0 

(4.40) 

and thus f can not have a relative extremum by (4.40). On the other hand, for 
even n the sign of h and the sign of hn - 1 coincide and so, for even n, 

f(n-l)(c + ()h)' hn- 1 > 0 for h #- O. 

Thus, (4.40) shows that f has a relative minimum at c. o 

REMARK. In the discussion following Proposition 4.10 we studied the function 

F(O) = 0, F(t) = e- 1/t2 for t #- O. 

This function F has both a relative as well as an absolute minimum at t = 0; 
however, Proposition 4.12 is not applicable because F(n)(o) = 0 for any inte­
ger n ;:::>: O. While Proposition 4.12 is very useful, its effectiveness is certainly 
less than universal. 
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Proposition 4.13. If on an interval J the derivative f(n+1) of a function f exists 
and is equal to 0 for every t in J, then f is a polynomial of degree at most n 
(possibly the zero polynomial). 

PROOF. Let a be a point in the interior of J and 8 satisfy 0 < 8 < 1. For any 
point {3 in the interior of J we have, by Proposition 4.11, 

f({3) = f(a) + f'(a) ({3 - a) + f"(a) ({3 - af + ... + f(n)(a) ({3 - at 
I! 2! n! 

f(n+ l){a + 8({3 - a)} 
+ ({3 - at+1 

(n + I)! 
[we have chosen to write the point x between a and {3 in the form a + 
8({3 - a)]. However, by assumption f(n+ 1) is zero on J and so 

f({3) = f(a) + f'(a) ({3 - a) + f"(a) ({3 - a)2 + ... + pn)(a) ({3 - at (4.41) 
1! 2! n!' 

This completes the proof. D 

REMARK. If f is a polynomial of degree n in the variable {3 and we wish to 
express f({3) in terms of powers of ({3 - a) for some given number a, then we 
can use (4.41) to accomplish the given task. For example, 

{33 - 2{32 + 3{3 + 5 = 11 + 7({3 - 2) + 4({3 - 2)2 + ({3 - 2)3 

because, putting 

f({3) = {33 - 2{32 + 3{3 + 5 and a = 2, 

we note that f(2) = 11,1'(2) = 7,1"(2) = 8, and f"'(2) = 6; the rest follows by 
completing the substitution into formula (4.41). 

3. Concave Functions 

Definition. Let J be an interval. A function f defined on J is said to be 
concave up on J if 

f«1 - t)a + tb) ::;; (1 - t)f(a) + tf(b) (4.42) 

whenever a and b are points of J and 0::;; t ::;; 1. We call f concave down on J 
if -f is concave up on J. 

REMARKS. Putting x = (1 - t)a + tb, we see that inequality (4.42) is equiva­
lent to 
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b-x x-a 
f(x) ~ b _ a f(a) + b _ a f(b) 

= f(a) + f(bi = ~(a) (x - a), 

(4.43) 

whenever a and b are points of J and x is situated between a and b. Geo­
metrically speaking, f is concave up on J if for any two points a and b of J 
the chord having endpoints (a,f(a)) and (b,f(b)) is never below the graph of 
f on the interval [a, b]. We can write in place of (4.43) the more symmetric 
inequality 

(b - x)f(a) + (a - b)f(x) + (x - a)f(b) ~ o. (4.44) 

Proposition 4.14. Let f be a function differentiable on an open interval J. The 
f is concave up on J if and only if I' is nondecreasing on J. 

PROOF. Suppose f is not concave up on J. Then there exist a < x < b in J 
such that 

b-x x-a 
f(x) > b _ af(a) + b _ af(b). 

This inequality is equivalent to 

f(x) - f(a) f(b) - f(x) 
'---'---'-------'---'--'- > . 

x-a b-x 

We now apply Proposition 4.5 to each of the closed intervals [a, x] and [x, b] 
and note that there exist points t and s, a < t < x < s < b, such that 

I'(t) > I'(s). 

Therefore, I' fails to be nondecreasing on J. 
Conversely, if f is concave up on J, then a < x < b with (a, b) in J means 

f(x) - f(a) f(b) - f(x) 
----< . 

x-a - b-x 

But I' exists on J. If x tends to a or b, we get 

f '( ) < f(b) - f(a) 
a - b ' -a 

(4.45) 

respectively 

I'(b) ~ f(bi = ~(a), (4.46) 

and so I'(a) ~ I'(b). But a and b are arbitrary points of J satisfying a < band 
so I' is seen to be nondecreasing on J. D 
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Proposition 4.15. Let J be an open interval and f be a twice differentiable 
function on J. Then f is concave up on J if and only if f"(x) ~ 0 for all x in J. 

PROOF. The proposition is an immediate consequence of Proposition 4.14. 0 

Proposition 4.16. Let f be differentiable on an open interval J. Then f is 
concave up on J if and only if the points of the tangent line at any point of J 
are never above the graph of f on J. 

PROOF. Let (c,J(c)) be a point of the graph of f on J. Then the equation of 
the tangent line at the point (c,J(c)) is 

y = f(c) + f'(c)(x - c). 

We assume that f is concave up and we wish to show that 

f(x) ~ f(c) + f'(c)(x - c) (4.47) 

for any x of J. But the inequality (4.47) is equivalent to the two inequalities 

f'(c) :$; f(x) - f(c) for x > c 
x-c 

(4.48) 

and 

f '( ) > f(x) - f(c) c < 
C _ lor x c. 

x-c 
(4.49) 

However, inequality (4.48) is merely inequality (4.45) with a = c and b = x; 
inequality (4.49) is merely inequality (4.46) with b = c and a = x. Therefore, 
the assumptions that f is differentiable on J and concave up on J imply that 
(4.48) and (4.49) hold. 

Conversely, suppose that (4.47) is fulfilled or, equivalently, that (4.48) and 
(4.49) are satisfied. Setting c = a and x = b, inequality (4.48) becomes in­
equality (4.45); setting c = b and x = a, inequality (4.49) becomes inequality 
(4.46). But inequalities (4.45) and (4.46) together imply that f' is nonde­
creasing on J; Proposition 4.14 then ensures that f is concave up on J. 0 

REMARKS. Corresponding to the Propositions 4.14, 4.15, and 4.16 there are 
dual statements in terms of concave down functions. 

Concavity is often used to decide whether an extremum is a maximum or 
a minimum. We consider an example. 

Let A > 0, B > 0, and p ¥- O. Given that 

f(x) = AePx + Be-Px, 

we wish to find the smallest value of f. 
Since 

f'(x) = ApePx - Bpe-Px and f"(x) = p2f(x), 
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we can easily see that f is concave up on the entire number line as f(x) > 0 
for any finite real number x and so fl/(x) > 0 for any finite real number x. 
Now f'(x) = 0 gives 

AePx = Be-Px or Ae2px = B, implying ePX = ft 
Therefore, the smallest value of f is 

Aft+ Bfi= 2 JAB. 

Definition. Let f be a twice differentiable function on an open interval J. For 
c in J, the point (c, f(c)) on the graph of f is said to be a point of inflection of 
f if j"(c) = 0 and if 

j"(c - h)j"(c + h) < 0 

for all sufficiently small values of h =1= o. 

REMARKS. A point on a curve at which the curve changes from concave up to 
concave down or vice versa is a point of inflection. Since the tangent to a 
curve always lies opposite to the concave side of the curve (see Proposition 
4.16), it follows that at a point of inflection the tangent crosses the curve. 

A necessary and sufficient condition for f to have a point of inflection at 
x = c is that j"(c) = 0 and j"'(c) =1= O. In analogy to Proposition 4.12, if the 
first nonvanishing derivative at x = c of order higher than the second is of 
odd order, then there is a point of inflection at x = c; if this derivative is of 
even order, then there is no point of inflection at x = c. For example, f(x) = 
X4 has no point of inflection at x = 0, but g(x) = x 5 has a point of inflection 
at x = o. 

The function h(x) = x 3 has one point of inflection, namely, the point (0,0); 
moreover, the curve y = x3 is symmetric with respect to this point because 
h( -x) = _x3• More generally, we note that the cubic 

y = ax 3 + bx2 + cx + d (4.50) 

has one point of inflection, and that the curve is symmetric with respect to 
this point of inflection. 

Indeed, yl/ = 6ax + 2b and so the point (A, B), where 

b 2b3 cb 
A = -- and B = -- - - + d 

3a 27a2 3a ' 

is the point of inflection. Using translation of axes, we set X = x - A and 
y = y - B. The substitution x = X + A and y = Y + B into (4.50) yields 

Y=aX3+(c-~:)x. (4.51) 
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Setting Y = H(X) in (4.51), we note that H( -X) = -H(X). This establishes 
the symmetry of the curve (4.50) with respect to the point (A, B). 

4. Newton's Method for Approximating Real 
Roots of Functions 

A technique generally called Newton's Method will enable us to find, to any 
desired degree of accuracy, the real roots of many equations of the form 
f(x) = O. To fix ideas, we shall throughout this section suppose that the 
function f under discussion satisfies the following three conditions: 

1. The function f and its derivatives f' and fff are continuous on a closed 
interval [a, b] of finite length. 

2. The numbers f(a) and f(b) have opposite signs, that is, f(a)' f(b) < O. 
3. The derivatives f' and f" do not change signs on the interval [a, b]. 

Since f is continuous on [a, b] and because f changes sign on the interval 
[a, b], the function f must have at least one root inside [a, b]. Since f' does 
not change sign on [a,b], we have that f is monotonic on [a,b] and so can 
have only one root inside [a,b]. The condition that f" does not change sign 
on [a,b] means that f is either concave up or concave down on [a,b]. For a 
polynomial f with real coefficients the situation called for by the three condi­
tions above can always be realized; the same can be claimed for many func­
tions f that are not polynomials, but the same can not be claimed for all 
functions. 

If the three conditions above are satisfied for an interval [a, b], the follow­
ing four possibilities arise: 

Case (a): f"(x) > 0 and f'(x) > 0 for all x in [a, b]; 
Case (b): f"(x) > 0 and f'(x) < 0 for all x in [a, b]; 
Case (c): f"(x) < 0 and f'(x) > 0 for all x in [a,b]; 
Case (d): f"(x) < 0 and f'(x) < 0 for all x in [a, b]. 

Figure 4.5 illustrates these four cases. 
We are given a function f that satisfies conditions 1,2, and 3 on [a, b] and 

we let r denote the root of f inside [a, b]. Commencing with an endpoint of 
[a, b], say the point b, Proposition 4.11 (using Lagrange's form of the re­
mainder) gives 

0= f(r) = f(b) + f'(b)'(r - b) + !f"(c)'(r - b)2, (4.52) 

where r < c < b. Ignoring the remainder term, we can write the approxima­
tion 

f(b) + f'(b)'(r - b) ~ 0 

from which we get the approximation 
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r '" b j(b) 
'" - f'(b)' 

In this manner we arrive at the approximation 

j(b) 
Xl = b - f'(b) (4.53) 

of the root r. Equation (4.53) can be interpreted geometrically as follows: At 
the point M' with coordinates (b,j(b» we draw the tangent line; its equation 
is of the form 
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y = f(b) = f'(b)' (x - b). 

Putting y = 0, we find the point T' with coordinates (x 1,0) where the tangent 
line (with point of tangency M') intersects the x-axis. The essence of the 
method of approximation consists in replacing the arc y = f(x) connecting 
the points M [with coordinates (a,f(a))] and M' [with coordinates (b,f(b))] 
by the tangent line formed at one of the endpoints M or M'. Finding the 
x-intercept of a straight line is computationally very simple. 

The question as to the relative location of the point Xl on the x-axis 
presents itself. From Figure 4.5 we can see that the point of intersection of the 
tangent line and the x-axis may very well be situated outside the interval 
[a, b ]. We claim: If f( b) and f" (x) for all x in [a, b] have the same sign {this 
will be so in Cases (a) and (d)}, then Xl is between rand b. (This means of 
course that Xl rather than b is the better approximation for r.) 

Indeed, if f(b) and f'(b) have the same sign, then (4.53) shows that Xl < b. 
On the other hand, by (4.52) and (4.53), 

f(b) 1 f"(c) 2 

r - Xl = r - b + f'(b) = -2 f'(b) (r - b) . (4.54) 

In the considered cases the signs of f"(x) and f'(x) for all x in [a,b] coincide 
and so r < Xl' Thus, r < Xl < b, as claimed. 

In a similar fashion we obtain in place of (4.53) the approximation 

f(a) 
Xl = a - f'(a) (4.53*) 

of the root r when we commence with the point a and draw the tangent at the 
point M (with abscissa a) to the arc y = f(x) connecting M with M' (with the 
abscissa b). With regard to Xl in formula (4.53*) we claim: If f(a) and f"(x) 
for all x in [a, b] have the same sign {this will happen in Cases (b) and (c)}, then 
Xl is between a and r. 

Thus, we have found in each of the four cases, from which endpoint (be it 
M or M') of the arcy = f(x) with a ~ X ~ b we get the best approximation of 
the root r by Newton's Method. 

Repeated application of the method generates in Cases (a) and (d) the 
decreasing sequence 

b > Xl > X 2 > ... > Xn > Xn+ l > ... > r 

and in Cases (b) and (c) the increasing sequence 

a < Xl < X 2 < ... < Xn < Xn+ l < ... < c, 

where Xn+l is computed from its predecessor Xn by the formula 

f(xn) 
Xn+ l = Xn - f'(xn)' (4.55) 

[It is not difficult to show that Xn --+ r as n --+ 00. Suppose that {xn} is a 
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decreasing sequence. The set 

S = {Xn: n = 1,2,3, ... } 

is bounded below by r (which in turn is larger than the finite real number a). 
Thus, inf S = [3 exists as a finite real number (between the finite real numbers 
a and b) and, in fact, Xn ~ [3 as n ~ 00. But f and I' are continuous on [a,b] 
and passage to the limit as n ~ 00 in (4.55) shows that 

f([3) 
1'([3) = 0, hence f([3) = ° and [3 = r. 

If {xn} is an increasing sequence we consider the supremum of the set S.] 
Figure 4.6 illustrates successive applications of Newton's Method. 
Now we turn to the matter of estimating the accuracy of the approxima­

tion. To estimate the deviation between rand Xn we note that, by Proposition 
4.5, 

where c is between Xn and r. Hence, 

f(xn) 
Xn - r = f'(c). 

Denoting by m the smallest value of If'(x)1 on the interval [a, b], we see that 

IXn - rl ~ If(xn)l. (4.56) 
m 

To estimate the deviation between rand X n+1 in terms of the deviation be-
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tween rand X n , we consider the relation (4.54) and replace in it b by Xn and 
Xl by X n+ 1 ; we obtain 

1 f"(c) 
Xn+ 1 - r = "2 f'(xn) (xn - rf. 

Denoting by M the largest value of I f"(x) I on the interval [a, b], we see that 

M 2 
IXn+1 - rl ::;; 2m 'Ixn - rl . (4.57) 

Since there is a square on the right-hand side of (4.57), a rather rapid con­
vergence of Xn to r is assured (at least beginning with some value of the index 
n); for example, if M < 2m, and if Xn approximates r with an accuracy of up 
to k decimal places, then x n+ 1 will approximate r with an accuracy of at least 
up to 2k decimal places. This makes Newton's Method one of the most 
effective techniques for the numerical solution of equations. 

EXAMPLE 1. We wish to calculate the root of X3 - 2x - 5 = 0 in the interval 
[2,2.1] with an error that is less than to- 10• 

We have 

f(x) = X3 - 2x - 5, f(2) = -1 < 0, f(2.1) = 0.061 > 0, 

f'(X) = 3X2 - 2 > 0, f"(X) = 6x > 0 for 2::;; X ::;; 2.1 

[Case (a)]. We readily find that m = 10, M < 12.6, and 

M 
2m < 0.63 

hold. 
We commence with b = 2.1. By (4.56) we get 

0.061 
b - r < 10 = 0.0061. 

Using (4.57), we can determine in advance what accuracy can be expected 
of Xl: 

Xl - r < 0.63' 0.00612 < 0.000024. 

Hence, we round up the number 

f(2.1) 0.061 
Xl = 2.1 - 1'(2.1) = 2.1 - 11.23 = 2.1 - 0.00543 ... 

"on the side of the root" to five decimal places: Xl = 2.1 - 0.00544 = 2.09456. 
Since 

f(x 1) = f(2.09456) = 0.000095078690816, 
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the error can now be determined more accurately by use of (4.56): 

0.000095 
Xl - r < 10 < 0.00001. 
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We now pass to X2 and use (4.57) once again to determine what accuracy 
can be expected of X 2 : 

X2 - r < 0.63·0.000012 < 0.000000000063. 

Hence, the number 

0.000095078690816 
X2 = 2.09456 - 11.1615447808 = 2.09456 - 0.000008518416 ... , 

which is rounded up to eleven decimal places and so comes out to 

X2 = 2.09456 - 0.00000851841 = 2.09455148159, 

differs from the sought after root by less than 0.00000000007. Thus, 

2.09455148152 < r < 2.09455148159. 

EXAMPLE 2. The equation 2x = 4x has two real roots; one root is X = 4 and 
the other is between 0 and 1- We wish to calculate the root between 0 and! 
with an error that is less than 10-5. 

For 0::;; x::;;! we have 

f(x) = 2X - 4x, f'(x) = 2x(ln2) - 4 < 0, 

[Case (b)]. Since m = 4 - .j2(ln2) > 3 and M = .j2(ln2)2 < 0.7, we have 

M 
- < 0.12. 
2m 

We use the value f(0.30) = 0.031144 and estimate more accurately the error 
by (4.56): 

0.031144 
r - Xl < 3 < 0.011; 

by (4.57) we therefore obtain 

r - X2 < 0.12·0.000121 < 0.000015 

and it is seen that we are approaching the desired degree of accuracy. 
In the next approximation, 

0.031144 0.031144 .. . 
X2 = 0.30 - 0.8533643 ... _ 4 = 0.30 + 3.1466356 ... = 0.309897 ... , 

we round up "on the side of the root" to five decimal places: X2 = 0.30990. 
Since f(0.30990) = 0.000021 ... > 0, this value is still less than the root. By 
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(4.56) we have in reality an error smaller than 10-5 because 

0.000022 000 1 
r - X2 < 3 < O. 0 

and so r = 0.30990( +0.00001). 

EXAMPLE 3. A goat is tethered by a rope from a post on the boundary of a 
circular field of unit radius. What length r of rope will allow the goat access 
to precisely half the field? 

Consider Figure 4.7. The center of the circular field of unit radius is at B, 
the post is at A. We denote by xl2 the angle L BAE and observe that the 
angle L AED is a right angle. The distance from A to E is r and the distance 
from A to D is 2. By similarity of triangles we have rl2 = cos(xI2), that is, 

r = 2(COS~). 
The angle L BDE equals nl2 - xl2 and so the angle L BED equals nl2 - xl2 
because the triangle b.BDE is isosceles. Thus, the angle L DBE equals x and 
the angle L ABE equals n - x. 

Consider Figure 4.8. It is easily seen that the (striped) circular segment has 
area tR2(O - sin 0). 

From Figure 4.7 we can see that the goat will have access to a region 
bounded by the circular arc EAF and the circular arc FeE; this region is the 
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Figure 4.8 

union of two circular segments and its area equals 

tr2(x - sin x) + t[(2n - 2x) - sin(2n - 2x)] 

= 2(cos2 xl2)(x - sin x) + n - x + (sin x)(cos x) 

= (1 + cos x)(x - sin x) + n - x + (sin x)(cos x) 

= n + x(cosx) - sinx. 
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But half of the circular field of unit radius has area nl2 and so x must satisfy 

sinx - x(cosx) = I' 
Solving (4.59), we can substitute back into (4.58) to get r. 

(4.59) 

The point of this example is that a simple shepherd's problem leads to an 
elusive equation of the form (4.59) and does not lend itself to .il simple-minded 
treatment. 

Using a common pocket calculator we find that x satisfying (4.59) is ap­
proximately 1.9056957 radians and the corresponding r is approximately 
1.1587285. 

EXAMPLE 4. The volume of a spherical segment of one base is given by 

where r denotes the radius of the sphere and h the height of the segment. 
Suppose we divide a hemisphere of radius 1 into two equal parts by a plane 
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parallel to the base. Then 

2nx2 (1 - ~) = 23n or x 3 - 3x2 + 1 = 0, 
where x is the height of the spherical segment of one base cut off the hemi­
sphere of radius 1. Determining x reduces to computing the root of the 
equation 

x 3 - 3x2 + 1 = 0 

contained in the interval (0, 1). The answer is approximately x = 0.6527. The 
other two roots are approximately - 0.5321 and 2.8794. 

The formula for the volume of a spherical segment of one base used above 
is due to Archimedes; a significant problem of Archimedes was that of using 
a plane to cut a spere into two segments with volumes having a preassigned 
ratio. [For a verification of the formula nh2(r - h13) for the volume of a 
spherical segment see (6.106) of Section 5 of Chapter 6.] 

5. Arithmetic and Geometric Means 

It is simple to verify that the function f(x) = eX - 1 - x with the derivative 
f'(x) = eX - 1 has a single minimum at x = 0 and so 

0= f(O) ~ f(x) 

for any real number x. Thus, 

eX ~ 1 + x for all real numbers x; (4.60) 

in particular, 

eX > 1 + x for x =I O. (4.61) 

We shaH use inequalities (4.60) and (4.61) to establish some useful inequalities. 

Proposition 4.17. Let ai' a2' ... , an be positive real numbers. Then 

(4.62) 

there is equality in (4.62) if and only if all ak, for k = 1,2, ... , n, are equal. 

PROOF. Let 

A is called the arithmetic mean of ai' a2' ... , an and G is called the geometric 
mean of ai' a2' ... , an' For 
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ak 
x=--1 A ' k = 1,2, ... , n, 

we get, by (4.60) and employing the notation exp(t) = et, 

( a1 ) a1 (a2 ) a2 (all) all exp - - 1 > - exp - - 1 > - ... exp - - 1 >-. A -A' A -A' , A -A 

Multiplying all these inequalities together, we obtain 

or 

implying that 

exp 1 2 11 _ n > 1 2 11 ( a + a + ... + a ) a a ···a 
A - A" 

Gn n-n> 
e - An 

Gn 

or 1 ~ An' 

A~G. 
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Note that A = G only if equality holds in all n relations. This requires that 
akl A-I = 0 in all cases, showing that A = G only when all ak are equal 
~4 D 

REMARK. Replacing ak by llak in (4.62) we get that 

1 1 n 1 ~::Ja1a2·"an. (4.63) 

-+-+ ... +-
a1 a2 an 

The term on the left-hand side of (4.63) is called the harmonic mean of a1' a2, 
... , all· 

Proposition 4.18. We have 
(4.64) 

PROOF. Since n > e, we have nle > 1 and so x = nle - 1 > O. Thus, by (4.61), 

or 
exp( n12) n tele 
---='----- > - or e > n. 

e e 

But the latter inequality is equivalent to the inequality (4.64). D 

REMARKS. Another way of showing the validity of the inequality (4.64) is to 
observe that the function g(x) = (In x)/x, defined for x > 0, has a single maxi-
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mum at x = e because g'(x} = [1 -lnxJ/x2 is negative for x> e and is posi­
tive for x satisfying 0 < x < e. But n > e and so g(n} < g(e}, and so on. 

We can use a common pocket calculator and get approximations of e" and 
n e to see which is larger; however, it is more interesting to use the cutting 
edge of theory to establish (4.64). 

Worked Examples and Comments 

1. The following two statements are direct consequences of Proposition 
4.17: 

(i) If aI' a2, ... , an are positive numbers satisfying the condition 

al + a2 + ... + an = k, 

then their product al a2 ... an has maximum value, (k/nt, when al = a2 = 
... = an = kin. 

(ii) If aI' a2' ... ' an are positive real numbers satisfying the condition 

al a2···an = k, 

then their sum al + a2 + ... + an has minimum value, n(k} lin, when al = 
a2 = ... = an = kIln. 

REMARK. For example, if aI' a2, a3' and a4 are four positive numbers whose 
sum is 1000, then the product al a2a3a4 will be a maximum if 

al = a2 = a3 = a4 = 250. 

2. The cube is the rectangular parallelepiped of maximum volume for 
given surface area, and of minimum surface area for given volume. 

Indeed, if we denote the lengths of three adjacent edges of a rectangular 
parallelepiped by x, y, z, its surface area is 2(yz + zx + xy) and its volume is 
xyz. If we put IX = yz, fJ = zx, y = xy, the surface area is 2(1X + fJ + y) and 
the volume .;;py. Hence, analytically speaking, the problem is to make IXfJy a 
maximum when IX + fJ + y is given, and to make IX + fJ + Y a minimum when 
IXfJy is given. This, by the result in the foregoing Example 1, is done in either 
case by making IX = fJ = y, that is, yz = zx = xy; hence x = y = z. 

3. The equilateral triangle has maximum area for given perimeter, and 
minimum perimeter for given;:-=.a::.cre:.:a:.:.. . ..,..-:-_--::-:-:-_--:-

Indeed, the area is A = J s(s - a)(s - b)(s - c). Let x = s - a, y = s - b, 
z = s - c; then x + y + z = s and the area is A = J sxyz. Since, in the first 
place, s is given, we have only to make xyz a maximum subject to the 
condition x + y + z = s. By the result in Example 1, this leads to x = Y = z. 

Next, let A be given. Then (x + y + z)xyz = A2 and s = A2/xyz. If we put 
IX = x 2yz, fJ = xy2z, Y = xyz2, we have IX + fJ + y = A2 and s = A2/(lXfJy)1/4. 
Hence, to make s a minimum when A is given, we have to make IXfJy a 
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maximum, subject to the condition ex + p + y = i\2. This leads to ex = p = y, 
that is, 

and so x = y = z. 

REMARK. In a similar way one can prove: Of all rectangles of given perimeter, 
the square has the largest area; of all rectangles of given area, the square has 
least perimeter. 

4. The fact that the arithmetic mean of n positive numbers is not less than 
their geometric mean (see Proposition 4.17) may also be used to show the 
following: For n = 1,2, 3, ... , 

( l)n ( 1 )n+l 
1+-;; < 1+n+1 (4.65) 

and 

(l+~J+l >(1+n~lJ+2. (4.66) 

[Note that the inequalities (4.65) and (4.66) were already proved in Proposi­
tion 1.4.] 

Indeed, consider the set of n + 1 numbers 

1 1 
1, 1 + -, 1 +-, ... , 

n n 

These have an arithmetic mean of 

and a geometric mean of 

Hence, 

1 
1+-­n+1 

( l)n/(n+l) 
1 + - . 

n 

1 
1 +-. 

n 

1+--> 1+- . 
1 ( l)n/(n+l) 

n+1 n 
But (4.67) is equivalent to (4.65). 

Similarly, consider the set of n + 2 numbers 

1 _n_ 
, n + l' 

These have an arithmetic mean of 

n 
n + l' ... , 

(4.67) 
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and a geometric mean of 

Hence, 

n + 1 
n+2 

(
_n_)(n+1)/(n+2). 

n + 1 

n + 1 > (_n_)(n+1)/(n+2). 
n+2 n+l 

Taking reciprocals this becomes 

1+--< 1+- . 
1 ( 1)(n+ 1)/(n+2) 

n+l n 

But (4.68) is equivalent to (4.66). 

5. For any positive integer n we have 

(4.68) 

n{(n+1)1/n-1}<1+~+ ... +~<n(1- 1 +_1_). (4.69) 
2 n (n + 1)1/n n + 1 

The verification of inequality (4.69) will again use the fact that the arithmetic 
mean of n positive numbers does not exceed their geometric mean. 

First we show that 

1 + - 1 + - + ... + - > (n + 1)1/n. 1 (1 1) 
n 2 n 

But this is immediate by setting 

2 
a 1 = 1 + 1 =-

1 ' 
1 n + 1 

an = 1 +-=--
n n 

into inequality (4.62). 
We next show that 

(n +n1)1/n < n(1 + n ~ J -1 - ~ -'" -~. 
But the right-hand side of inequality (4.70) is 

(1 - 1) + (1 _~) + ... + (1 _~) + _n_ 
2 n n + 1 

and (4.88) follows from inequality (4.62) if we set 

2 n 
a1 = 2' a2 = 3' ... , an = n + 1 . 

(4.70) 
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6. For any positive integer n we have 

1· 3··· (2n - 1) < nn. 

Indeed, by inequality (4.62), 

or 

{I + 3 + ... + (2n - I)} > {I. 3 ... (2n _ lW/n 
n 

n2 
- > {I . 3 ... (2n - I)} l/n, 
n 

implying (4.71). 
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(4.71) 

7. Find the largest value of (a + x)S(a - X)3 for x between - a and a. Here 
again we wish to use inequality (4.62) in obtaining the answer. 

We consider the following eight positive numbers 

a+x 
al = a2 = ... = as = -5-' 

a-x 
a6 = a7 = as = -- for - a < x < a. 

3 

Their arithmetic mean is a/4. Hence, by inequality (4.62), 

(4.72) 

equality arising when 

!(a + x) = t(a - x). 

From (4.72) we get 

8. Let ai > 0, bi > ° (i = 1,2, ... , n). Then 

-Y(a l + bl )(a2 + b2 )··· (an + bn) :::::.: -Yal a2 "· an + -Ybl b2 •·• bn (4.73) 

with equality if and only if al/bl = a2 /b 2 = ... = an/bn. 
Indeed, by inequality (4.62), 

-Yal a2·" an + -Yblb2"· bn 

-Y(al + bl )(a2 + b2 )·· • (an + bn) 

1 ~ ai 1 ~ bi _ 1 
~-~--+-~--- . 

n 1= 1 al + hi n 1= 1 at + hi 
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9. Let Wi > 0 for i = 1, 2, ... , n. Then 

(l + wl )(1 + w2) .. ·(1 + wn);:?: (1 + qt, (4.74) 

where Wl W2 ••• Wn = qn, with equality if and only if Wl = W2 = ... = Wn. 
Indeed, inequality (4.74) follows from inequality (4.73) by setting ai = 1 and 

bi = Wi for i = 1, 2, ... , n. 

10. Problem of Huygens. Let 0 < a < b. The fraction 

Xl X2'" Xk 
U = -,-------,---,----,------,--------:---,-------:-:-

(a + Xl)(X l + x2)"'(Xk- l + Xk)(Xk + b) 

assumes maximal value precisely when 

a < Xl < X2 < ... < Xk- l < Xk < b 

forms a geometric progression, that is, xt/a = X2/X l = ... = Xk/Xk- l = b/xk. 
Evidently, u will be maximal if and only if l/au is minimal. But 

1 
- = (1 + wl )(1 + w2}··· (1 + wk-l)(1 + wk), 
au 

where Wl = a/xl' W2 = X2/Xl' ... , Wk-l = Xk/Xk-l, Wk = b/xk. By (4.74) 

(1 + wl )(1 + W2)' "(1 + wk- l)(1 + wk) 

is minimal precisely when W l = W2 = ... = Wk- l = Wk' 

11. For n = 2, 3, ... we have 

( n + l)n n!< -2- . 

Indeed, let ak = k. Then v' al a2'" an = fo and (a l + a2 + ... + an}/n = 
(1 + n}/2 and the claim follows by Proposition 4.17. 

REMARK. The inequality nn/2 < n! for n = 3, 4, 5, ... is simple to verify. Con­
sider the equality 

(n!)2 = [1' n] [2(n - 1)] [3(n - 2)] ... [(n - 1}2] [n' 1]. 

Now, the first and the last factors in square brackets are equal and are less 
than the other factors in square brackets because, for n - k > 1 and k > 0 we 
have (k + l)(n - k) = k(n - k} + (n - k) > k·l + (n - k) = n and so (n!}2 > 
nn follows for n = 3, 4, 5, .... 

12. Let al , a2, ... , an be positive and put s = al + a2 + ... + an' Then 

with equality only in case n = 1. 
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Indeed, by Proposition 4.17, 

= (1 + ~y 

= 1 + nG) + n(n; 1) GY + ". + (~)". 
We observe that the coefficients of sm will be 

n! 1 
m!(n - m)! nm' 

But (n - m)!nm ~ n! and so 

n! 1 n! 1 
-----<--=-
m!(n - m)! nm - m!n! m! ' 
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proving the inequality we set out to verify. That we have equality only in case 
n = 1 follows by Proposition 4.17. 

13. We have 

1'~'~'~"'~ < (_2_)"<"+1)/2. 
22 33 44 nn n + 1 

Indeed, the left-hand side of the inequality contains two factors 1/2, three 
factors 1/3 and so on, and finally n factors l/n; in all, there are 1 + 2 + 3 + 
". + n = n(n + 1)/2 such factors. The geometric mean of these factors is 
equal to the n(n + 1)/2 root of this product; the arithmetic mean is 

1 1 1 
1·1+2·-+3·-+"·+n·-

2 3 n n 2 
n(n + 1)/2 n(n + 1)/2 n + 1 . 

The validity of the inequality under consideration therefore follows by Pro­
position 4.17. 

6. Miscellaneous Examples 

1. Let a and b be distinct positive real numbers. We define 

( aX + bX)1/X 
f(x) = 2 

=# 

for x#- 0, 

for x = O. 
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The function! is strictly increasing on ( - 00, (0), yet its total increase is only 
la - hi. Specifically, we make the following claims: 

(a) f'(x) > 0 for x =F 0; 
(b) limx_o!(x) = fo; 
(c) j'(O) = -kfo(ln a/b)2; 
(d) limx __ oo!(x) = min{a,b} and limx_oo!(x) = max{a,b}. 

The proof runs as follows. We verify first claim (a). For x =F 0, let 

1 (aX + bX) g(x) = In!(x) = ~ln 2 . 

Then 

f'(x) = eg(X)g'(x) 

and f'(x) and g'(x) have the same sign. Differentiation gives 

'(x) = aX(ln a) + bX(ln b) _ ~ In (aX + bX). 
9 x(aX + bX) x 2 2 

Since 

and 

we obtain 

We put 

since aX and bX are always positive, we see that -1 < t < 1. Moreover, 

and thus 

(4.75) 

(4.76) 

2x2g'(x) = (1 + t)ln(1 + t) + (1 - t)ln(1 - t). (4.77) 

We let, for -1 < t < 1, 

h(t) = (1 + t) In(1 + t) + (1 - t) In(1 - t). 
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Then 

We have 

and so 

1 + t 
h'(t) = InrI + t) - In(1 - t) = In--. 

1 - t 

1 + t > 1 for 0 < t < 1 
1 - t 

< 1 for - 1 < t < 0 

1 + t 
In -1 - > 0 for 0 < t < 1 

-t 

< 0 for - 1 < t < O. 
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It follows that h increases on (0, 1), h decreases on (-1,0), and h(O) = 0 is the 
smallest value of h(t) for -1 < t < 1. Since x "# 0 (because 1jx is not defined 
for x = 0) and since a "# b, we see that t can not vanish. Thus, h(t) > 0 for 
t "# 0, implying that g'(x) > 0 for x "# 0 and so f'(x) > 0 for x "# O. 

Next we verify claim (b). Let 

y = (aX; bX)l/X 1 (aX + bX) and so In y = ~ In 2 . 

By Proposition 4.10, 

lim In(a Xj2 + bXj2) = lim aX(lna) + bX(lnb) = Ina + lnb = In,Jtib. 
x~o x x~o aX + bX 2 

Thus, 

( aX + bX)l/X 
lim 2 = limf(x) = ,Jtib. 
x~o x-a 

Since f(x) is differentiable for x "# 0 and having defined f(O) = ,Jtib, we see 
that f is continuous throughout ( - 00,(0). 

We now verify claim (c). The function f is seen to satisfy the Mean Value 
Theorem (see Proposition 4.5) on a closed interval [0, s] of finite length. 
Hence, 

f(s) - f(O) = f'(x) 
s 

for some x between 0 and s. As before, let g(x) = In f(x). Then 

f'(x) = f(x)g'(x) 

and, using the substitution (4.75), we get 
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I (1 + t)ln(1 + t) + (1 - t)ln(1 - t) 
g(x) = 2X2 

[see (4.77)]. By (4.76) 

and so 

Thus, 

aX 1 + t 
P 1- t 

In(1 + t) - In(1 - t) 
x = ---,--...,...--:..,-,----

In (alb) 

f ' - ~f( (I ~)2(1 + t)ln(l + t) + (1- t)ln(l- t) 
(x) - 2 x) n b [In(l + t) _ In(1 _ t)]2 . 

But In(l + t) + In(l - t) = In(1 - t 2 ) and so 

1 2 (l/t 2 ) In(1 _ t 2 ) + In(1 + t) - In(l - t) 

rex) ~ 2/ (x) ( In~) CO(I + t) ~ 10(/ - t;y 
As x -+ 0, we have t -+ 0; moreover, by Proposition 4.10, 

lim In(l - t 2 ) = 1 and lim In(l + t) - In(l - t) = 1. 
1-+0 - t 2 1-+0 2t 

Thus, 

1 (a)2 ~~1'(x) = gJab ln b . 

Hence, 

1'(0) = limf(s) - f(O) = lim1'(x) = lim1'(x) = -81 Jab(ln~b)2 
~o s ~o ~o 

because x is between 0 and sand limx-+o 1'(x) exists. 
Finally, we establish claim (d). Suppose that a> b and let x take the values 

1, 2, 3, .... Then 

f(n) = (an; bny/n = aC + ~bla)ny/n = ar1/ne(1/n)ln[1+(b/a)nl. 

But (b/a)n -+ 0 as n -+ 00 and so In[l + (bla)n] -+ 0 as n -+ 00. Clearly, lin -+ 0 
as n -+ 00 and 2- 1/n -+ 1 as n -+ 00. Thus, f(n) -+ a as n -+ 00. But, if n :s; x < 
n + 1, then f(n) :s; f(x) < f(n + 1) [because 1'(x) > 0 and using Proposition 
4.7] and so f(x) -+ a as x -+ 00. In an entirely similar way we show that 
f(x) -+ b as x -+ - 00. 
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REMARK. Note in particular the inequalities 

f( -1) < f(O) < f(1); 

f( -1) is the harmonic mean, f(O) is the geometric mean, and f(1) is the 
arithmetic mean of the two distinct positive real numbers a and b. 

2. We consider the problem of inscribing a right circular cylinder of maxi­
mal surface area into a right circular cone of fixed dimensions. 

Let R be the radius and H the height of the cone; let r be the radius and h 
the height of the cylinder. Then the surface area of the cylinder is 

S = 2nr2 + 2nrh. 

By similar triangles we have 

h 

R -r 
H R-r 

or h=~H R 

and so 

S=2n[r2 +rH(1-i)} whereO:::;;r:::;;R. 

Differentiation with respect to r yields 

S' = 2n ( 2r + H - ~ H ). 

Setting S' = 0, we get 

HR 
(4.78) r = 2(H _ R)' 

If this value or r is to be contained in the open interval (0, R), then 

HR HR 
o < 2(H _ R) and 2(H _ R) < R (4.79) 

must be satisfied. The first ofthese inequalities is equivalent to H > R. Multi­
plying the second inequality with the positive quantity 2(H - R) we get 

H 
R<-

2' 

If the latter inequality holds, then S" is negative; to the value of r in (4.78) 
corresponds the only maximum of the function S. This maximum value is 
easily obtained by substituting the value for r in (4.78) into the expression 
for S. 

We assume now that the value r in (4.78) is not in the open interval (0, R), 
that is, the inequalities in (4.79) are not satisfied. Here two possibilities can 
arise: either H :::;; R or H > R but R ~ H/2. The inequality 
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H~2R (4.80) 

characterizes the two possibilities. 
We rewrite the expression for S' and get 

( 2rH) 2n S' = 2n 2r + H - R = R [(2R - H)r + H(R - r)]. 

But inequality (4.80) implies S' > 0 for 0 < r < R; hence S is an increasing 
function on (0, R) and assumes its largest value for r = R. For r = R we have 
h = 0 and the inscribed cylinder is completely flat. 

3. Let (a, b) be the coordinates of a fixed point situated in the first quadrant 
of the x, y-plane and consider the set of all straight lines passing through the 
point (a, b) and intersecting both coordinate axes. Among these straight lines 
we wish to determine the length of the shortest segment cut off by the 
coordinate axes. 

Let t > 0 and suppose that (a + t,O) is the x-intercept of a straight line 
passing through the point (a, b) in the first quadrant. It is easily seen that this 
straight line intersects the y-axis at y = (b/t)(a + t) and that the square of the 
length of the segment cut off this straight line by the coordinate axes is 

f(t) = (a + t)2 + GY (a + t)2 = (a + tf(1 + ~:). 
It is clear that if f(t) is smallest for t = to, then Jl[i) is also smallest for 
t = to and conversely. We proceed to find the smallest value t = to of f(t). 
Differentiation yields 

f'(t) = 2(a + t)(1 + ~:) + (a + t)2( _ 2t~2). 
Putting f'(t) = 0, we get 

and 

f(a 1/3b2/3) = (a 2/3 + b2/3)3. 

A simple calculation shows that 

f"(a1/3b2/3) = 2.-(a2/3 + b2/3) [1 _ 4 + 3(a2/3 + b2/3)] > 0 
a2/3 b2/3 

because (a2/3 + b2/3)jb2/3 > 1. 
We therefore see that the length of the shortest segment cut off by the 

coordinate axes is (a2/3 + b2/3)3/2. 

REMARKS. The foregoing result shows the validity of the following two 
statements: 
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(i) Let two corridors of width a and b, respectively, intersect at right 
angles. Then the length of the longest thin rod that will go horizontally 
around the corner is (a 2/3 + b2/3)3/2. 

(ii) The length of the shortest thin beam that can be used to brace a wall, 
if the beam is to pass over a second wall (of negligible thickness) that is b units 
high and a units from the first wall is (a2/3 + b2/3)3/2. 

4. A circular sector of fixed radius R and variable central angle x (mea­
sured in radians) is to be shaped into the lateral surface of a right circular 
cone of height h and radius r. We wish to determine the value x for which the 
cone will have largest volume. 

The length of the circular arc of central angle x and radius R is Rx. The 
circumference of the base of the cone is 2nr. Thus, 

2nr = Rx 
Rx 

or r=-. 
2n 

The volume of the cone is 

nr2h 1 R 2x 2 R R3 
V = -- = -n--·-(4n2 - X 2)1/2 = --x2(4n2 _ X 2)1/2. 

3 3 4n2 2n 24n2 

To determine the largest value of V we only need to investigate the function 

h(x) = 4n2x 4 - x6 for 0< x < 2n. 

But h'(x) = 162x 3 - 6x 5 and putting h'(x) = ° we get the three values 

Xl = 0, X 2 = -2nvl1, and X3 = 2nvl1. 

Only X3 is in the open interval (0, 2n) and gives the desired answer. 

5. We consider the Law of Refraction. Let A and B be two given points on 
opposite sides of the x-axis. To fix ideas, let A have coordinates (0, a) and B 
have coordinates (c,b) with a, b, and c denoting fixed positive numbers. We 
wish to find the path from A to B requiring the shortest possible time if the 
velocity on the upper side of the x-axis is V l and on the lower side of the 
x-axis is V 2 ; it is assumed that V l and V 2 are fixed positive numbers. 

It is clear that this shortest path must consist of two portions of straight 
lines meeting one another at a point P on the x-axis; let the point P have 
coordinates (x, 0). See Figure 4.9. The length of the segments AP and PB are, 
respectively, 

(a 2 + X 2)1/2 and [b 2 + (c - x)2r/2; 

the time of passage along the path consisting of the line segments AP and 
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y 

A 

----r---------~~~--------------_,--~x 

Figure 4.9 

PBis 

Differentiation gives 

c-x 

and 

a2 b2 

f"(x) = v1(a2 + X2)3/2 + v2[b2 + (c _ X)2]3/2' 

Since f"(x) > 0 for any real number x, it follows that f' is strictly increasing 
on ( - 00, (0). Moreover, f'(O) < 0 and f'(c) > O. Since f' is continuous, f' 
must have exactly one root between x = 0 and x = c. For this root, say 
x = X o, we have 

x/(a2 + X2)1/2 V1 
(c - x)/[b2 + (c - x)2r/2 V2 

This is the Law of Refraction due to Snell which can be put into the form 

sin P1 V1 
sinP2 V2' 

where P1 is the angle of incidence and P2 the angle of refraction. If we denote 
by !Xl the angle of inclination which the line segment AP forms with the 
x-axis and by !X2 the angle of inclination which the line segment P B forms 
with the x-axis, then the Law of Refraction can be written 

cos !Xl cos!X2 
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Figure 4.10 
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6. The General Refraction Curve. Suppose that the x, y-plane is parti­
tioned into layers that run parallel to the x-axis (see Figure 4.10). Inside each 
layer the velocity of passage is constant. We select two points A and B 
situated in different layers; let A be in the layer Lo and B in the layer Ln. 
Between the layers Lo and Ln are the layers L 1 , Lz, ... , Ln - l . The velocity of 
passage in the layer Lk is Vk for k = 0, 1, 2, ... , n. We are moving from the 
point A in layer Lo through the consecutive layers L l' Lz, ... , Ln - l to the 
point B in layer Ln along a path requiring the shortest possible time. The 
path is made up of the line segments 

APl , PlPZ' PZP3 , ••• , Pn-ZPn- l , Pn-1Pn, PnB. 

The angles that these consecutive line segments make with the x-axis we 
denote by 
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According to the Law of Refraction discussed in Example 5 we have 

at the point P1 and 

at the point P2 and so forth. At the point Pn we have 

cos O(n-1 cos O(n 
Vn- 1 Vn 

Hence, 

cos 0(0 cos 0(1 cos 0(2 cos O(n-1 cos O(n 
- -

If we denote by c the common value of these quotients, we get 

cosO( 
--=c, 

v 

where 0( is the angle of inclination of any of the line segments with respect to 
the x-axis and v is the velocity of passage in the corresponding layer. 

Suppose, finally, that the velocity of passage v is a continuous function of 
the ordinate y of the point P with coordinates (x, y), that is, 

v = v(y). 

Then the path requiring the shortest possible time to travel from A to B is the 
curve q characterized by the equation 

cosO( 
--=c, 

v 

where 0( is the angle of inclination which the tangent line at the point P with 
coordinates (x, y) on the curve q makes with the x-axis, v = v(y) is the velocity 
of passage at the point P, and c is a constant (se~ Figure 4.11). We arrive at 
this situation by considering layers that run parallel to the x-axis and for 
which the widths tend to zero. 

7. The Curve of Quickest Descent. We assume now that the point A is on 
the x-axis and that the point B is below the point A but not on a vertical line 
going through the point A (see Figure 4.12). We assume that the y-axis is 
directed downward. Under the action of gravity alone an object is to travel 
from point A to point B; it is assumed that the object is at rest when at A and 
it is moving along a path from A to B such that it reaches B in the shortest 
possible time. 

From physics we know that the gravitational force imparts a constant 
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y 

A 

B cy. 

----+-----------------------~--~----_7 x 

Figure 4.11 

A 
----+---~----------------------------~ x 

B 

y 

Figure 4.12 

acceleration g of about 32 ftjsec 2 in the downward direction. But acceleration 
is the rate of change of velocity v with respect to time, that is, Dtv. Since v = 0 
when t = 0, we have v = gt, where t denotes time (in seconds). The displace­
ment y (measured in feet) is zero for t = 0 (because A is on the x-axis). Thus, 
y = gt 2 j2 and so 

v2 = 2gy or v = .j2gJy. 
Therefore, the curve connecting A and B along which an object starting from 
rest at A and moving under the action of gravitational force alone reaches B 
ip the shortest possible time satisfies 

cos a cosa cosa 
--= =c 

v .j2gJy or Jy = C1 , 

where C and C1 denote constants. 
In Example 2 of Section 1 in Chapter 5 we shall study a curve called a 

cycloid (see Figure 5.2 for a sketch of a cycloid); a cycloid is a curve traced by 
a point on a circle as the circle rolls on a straight line without slipping. We 
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shall see at the indicated place in Chapter 5 that the equations 

x = a(t - sint), Y = a(1 - cost), 

where a is a constant, are the parametric equations of a cycloid. What is of 
interest to us here is that a cycloid satisfies the equation 

cosa 
Jy = c t , 

where Ct is a constant and a is the angle of inclination which the tangent line 
at a point (x, y) on the cycloid makes with the x-axis; the point (x, y) on the 
cycloid must not be a cusp of the curve, but should be a point of the curve at 
which the derivative DxY exists. 

Indeed, 

D,y sin t t 
D y = - = = cot- and DxY = tana. 

x D,x 1 - cos t 2 

But tan(nl2 - 0) = cot 0 implying that a = nl2 - tl2 and so 

. t 
cos a = sm2. 

But Y = a(1 - cos t) = 2a(sin2 tI2). Therefore, 

cos a 1 
Jy = fo = constant. 

This shows that the curve of quickest descent connecting A and B is part of 
a cycloid. 

REMARK. The cycloid arises in several kinematic problems involving descent 
of an object under gravity along a curve in a vertical plane; books on calculus 
of variations provide detailed treatment of kinematic problems. 

8. The solution of our next problem is based on a result known as Viviani's 
theorem. 

Viviani's Theorem. For a point P inside an equilateral triangle .6.ABC the sum 
of the perpendiculars a, b, c from P to the sides is equal to the altitude h. 

or 

Indeed, we have in terms of areas (see Figure 4.13) 

.6.ABC = .6.PBC + .6.PCA + .6.PAB 

tsh = tsa + tsb + tsc, 

implying h = a + b + c. This proves Viviani's Theorem. 
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N 

We now state the problem under consideration: We wish to determine a 
point P in a given triangle b.ABC such that the sum P A + P B + PC is a 
mInImum. 

It turns out that if the given triangle b.ABC contains an angle of 120° or 
more the required point P is the vertex of this obtuse angle. We shall not 
consider this case but instead concentrate on the case in which the triangle 
b.ABC has no angle as large as 120°; the required point P, called the Fermat 
point of the triangle b.ABC, is then characterized by the fact that at the point 
P each side of the triangle subtends an angle of 120°. Let us note that in order 
to find the Fermat point for a given triangle, all we need to do is draw equi­
lateral triangles outwardly on two sides of the triangle b.ABC and observe 
where their circumcircles meet (see Figure 4.14). 

Consider the Fermat point P of the triangle b.ABC in Figure 4.15; we shall 
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Z~ __________ ~~ _______ y 

x 

Figure 4.15 

show that it solves our problem. As a first step we draw around the given 
triangle b.ABC a triangle b.XYZ by drawing perpendiculars to PA, PB, and 
Pc. In quadrilateral ZAP B, then, the angle Z is 

360° - 90° - 90° - 120° = 60°. 

We follow a similar procedure for the angles at Y and X, making b.XYZ 
equilateral. Thus, by Viviani's theorem 

PA + PB + PC = h, 

the altitude of b.XYZ. 
For another point Q in b.ABC we also have that the sum of the perpen­

diculars QA', QB', and QC' to the sides of b.XYZ is h. But in general the 
hypotenuse QA of the right triangle b.QAA' exceeds the leg QA'. Similarly, 
QB and QC, respectively, exceed the legs QB' and QC'. Thus, the sum 

QA + QB + QC > QA' + QB' + QC' = h = PA + PB + PC, 

showing P to be the solution to our problem. 
We observe that at most one of the right triangles can collapse and yield 

the equality of a hypotenuse and leg (e.g., when Q lies on PAl. Thus, at most 
one of QA', QB', or QC' can actually be as great as the corresponding QA, 
QB, or QC, giving universal validity to the inequality 

QA + QB + QC > QA' + QB' + QC'. 

This solves the problem under consideration. 
In Figure 4.16 we indicate a second construction for the Fermat point P 



6. Miscellaneous Examples 

C' \ - __ _ 
\ , , 
, , 

\ 
\ , 

\ 
\ , , 

\ , 
\ , 
, I 

\ I 

" " 

P' 

, , , , , , , , 
, I 

\ I 

A' 

A 

, 
I 

I 

, 
I 

I 

Figure 4.16 

I 
I 

I 

I 
I 

, , 

, 
I 

I 

B' 

219 

of the triangle L.ABC. Consider the triangle L.ABC with the equilateral 
triangles 

L.ACB, L.BAIC, and L.CBIA 

erected (externally) on the three sides. After drawing the lines BBI and CC, 
which meet at P, we observe that a rotation through 60° about A takes 
L.ACC into L.ABBI. Hence, the angle L CPB = 60° and CC = BBl. Similar 
reasoning shows that AI A = CC. Thus, 

AAI = BBI = CC. 

Moreover, since 

LCPB = 60° = LCAB and LCPBI = 60° = LCABI, 

the quadrangles ACBP and CBIAP are cyclic; and since 

LBPC = 120° while LCAIB = 60°, 

BAICP is a third cyclic quadrangle. Therefore, the circumcircles of the tri­
angles 

L.BAIC, L.CBIA, and L.ACB 

all pass through the point P. This is the Fermat point of L.ABC. 
It is easy to see that 

AAI = BBI = CC = PA + PB + PC. 
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Indeed, if the triangle f::.P AB is rotated outwardly through 60° about the 
vertex B to the position f::.P'C'B, it can be seen from Figure 4.16 that 

C'C = PA + PB + Pc. 

Summing up: The segments AA', BB', and CC' are all the same length 
(equal to the minimal sum of PA, PB, and PC), are concurrent at the Fermat 
point P of the triangle f::.ABC, and meet there at 60° angles (see Figure 4.16). 

REMARK. The problem of determining a point P in a given triangle f::.ABC 
such that the sum PA + PB + PC is a minimum was given by the famous 
number theorist Pierre de Fermat (1601-1665) to Evangelista Torricelli 
(1608-1647), the well-known student of Galileo and discoverer of the ba­
rometer. Torricelli solved the problem several ways and we considered the 
simplest of Torricelli's solutions. 

9. Let x> 0 and 0 < rx < 1. Then 

(4.81) 

Indeed, differentiation of the function f(x) = x" - rxx with respect to x yields 

f'(x) = rx(X"-l - 1). 

Clearly, 

f'(x) > 0 for 0 < x < 1, 

= 0 for x = 1, 

< 0 for x> 1; 

hence, f(1) ~ f(x) for x> 0 and this implies (4.81). 

REMARK. Putting x = alb and setting 1 - rx = p, we see that (4.81) gives 

(4.82) 

where a and b are positive numbers and rx and p satisfy 0 < rx < 1, 0 < p < 1, 
and rx + p = 1. [Note that there is strict inequality in (4.82) if and only if 
a oF b.J 

10. Let x > 0 and a and b be positive and a oF b. Then 

Indeed, differentiation of the function 

(
a + X)h+X 

h(x) = -b­
+x 

with x> 0 

(4.83) 
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gives 

h'(x) = g(x)h(x), 

where 

b-a a+x 
g(x) = ~- + ln~-. 

a+x b+x 

The sign of h'(x) is the same as the sign of g(x). Since 

(a - b)2 
g'(x) = -(a + x?(b + x) < 0, 

the function g is decreasing and, consequently, 

g(x) > g( + (0) = ° for x > 0. 

221 

(4.84) 

(4.85) 

By (4.85) and (4.84) we conclude that the function h is increasing and therefore 
(4.83) holds. 

REMARK. Letting x = a in (4.83) we get 

or 

for a i=- b, (4.86) 

where a and b are assumed to be positive. 

11. Let a and b be positive real numbers and a i=- b. Then 

( a + b)a+b 
abba < -2- < aabb. (4.87) 

Indeed, in view of (4.86) it only remains to verify that 

abba < __ ( a + b)a+b 
2 . (4.88) 

Putting 

b a 
IX = -- and fJ = --b 

a+b a+ 

in (4.82) and keeping in mind that a i=- b, we see that 
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But 

2ab = 2 < fo < a + b for a #- b 
a + b lla + lib 2 

by (4.62) and (4.63); thus, 

and (4.88) follows. 

12. The inequality 

x(ln x) ~ x-I for x > 0 (4.89) 

implies 

n n 

L Pi(lnp;) ~ L Pi(lnq;) (4.90) 
i=l i=l 

for Pi> 0, qi > 0 (i = 1,2, ... ,n) and 

n n 

L Pi = L qi· 
i=l i=l 

Indeed, since pdqi > 0, we get from (4.89) that 

Pi In Pi ~ Pi _ 1 
qi qi qi 

or 

because qi > O. Thus, 

n p. n 

LPiln~~ L(Pi-q;)=O 
i=l qi i=l 

or 

n 

L [Pi(lnpi) - Pi(lnq;)] ~ O. 
i=l 

But the latter inequality implies (4.90). 

REMARKS. Let a and b be positive real numbers. The inequality abba ~ aabb is 
equivalent to 

b(ln a) + a(ln b) ~ a(ln a) + b(ln b) 

and the inequality [(a + b)/2]a+b ~ aabb is equivalent to 

(4.91) 
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a+b 
(a + b)ln-2- ~ a(lna) + b(lnb). (4.92) 

Evidently, inequalities (4.91) and (4.92) are immediate consequences of in­
equality (4.90) and thus a good part of inequality (4.87) can be verified by use 
of inequality (4.90). Recall that inequality (4.89) is a simple consequence of 
inequality (1.3) in Chapter 1. 

13. Let [a, b] be a closed interval of finite length and f be a continuous 
function on [a, b]. Suppose that for each x between a and b we have 

lim f(x + h) + f(~ - h) - 2f(x) = o. 
h-+O h 

Then f(x) = Ax + B for suitable numbers A and B. 
Indeed, let c be any point between a and b. We put 

Q(x) = (x - b)(x - c) f(a) + (x - c)(x - a) f(b) + (x - a)(x - b) f(c). 
~-~~-~ ~-~~-~ ~-~~-~ 

Clearly, Q(a) = f(a), Q(b) = f(b), and Q(c) = f(c). We put 

g(x) = Q(x) - f(x) for a ~ x ~ b. 

Then g(a) = g(b) = g(c) = O. Evidently, g is continuous on [a,b]. Hence, there 
are points Sand s between a and b where g assumes its largest and its smallest 
values, respectively, by Proposition 3.13; if one of these points happens to be 
either the endpoint a or the endpoint b of the interval, we may set it equal to 
c and thereby will always have that Sand s are situated between a and b. 

But for a < x < band h -+ 0 we have 

I. g(x + h) + g(x - h) - 2g(x) _ I. Q(x + h) + Q(x - h) - 2Q(x) 
~ h2 -~ h2 

h-+O h-+O 

_---..:c2f_(a-'---) _ + 2f(b) = K. 
(a - b)(a - c) (b - c)(b - a) 

Thus, we also have 

I. g(S + h) + g(M - h) - 2g(S) 
~ ~ =K 

h-+O 

and 

I. g(s + h) + g(s - h) - 2g(s) _ 
1m h2 - K. 

h-+O 

But 

g(S + h) ~ g(S), g(S - h) ~ g(S) 

and 
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g(s + h) ;?: g(s), g(s - h) ;?: g(s); 

this means that the number K has to be nonpositive and nonnegative si­
multaneously. Thus, K = 0 and so 

b-c c-a 
f(c) = b _ af(a) + b _ af(b). 

However, c was an arbitrary point between a and b. Moreover, our equation 
g = Q - f remains valid if we replace c by either a or b. Hence, in the entire 
interval 

b-x x-a 
f(x) = b _ af(a) + b _ af(b) 

and so f is seen to be of the form f(x) = Ax + B. 

14. Let w be a continuous function on the closed interval [a,b] which is 
assumed to be of finite length. Suppose that w has a second derivative at each 
point of the open interval (a, b). Then 

w(x) - w(a) w(b) - w(a) 
x-a b-a 1 

------:----- = -w"(c), 
x-b 2 

where c is some point between a and b. 
Indeed, let x be fixed with a < x < b. Put 

r 
w(t) t 2 t 

v(t) = w(x) x 2 x 
w(a) a2 a 
w(b) b2 b 

~ 1 1 . 

1 

Then v(a) = v(x) = v(b) = O. By the Mean Value Theorem (see Proposition 
4.5) there exist numbers IX and {3 such that a < IX < X < (3 < band V'(IX) = 
v'({3) = O. Applying the Mean Value Theorem once again, we see that there is 
a number c such that IX < c < (3 and v"(c) = O. Evidently, c is between a and 
b.Now 

r w"(c) 2 0 0 1 
v"(c) = w(x) x2 

X 1 = O. 
w(a) a2 a 1 
w(b) b2 b 1 

Expanding by the first row we find the desired relation. 

15. Bernoulli's Inequality. If x > -1, x =f. 0, and n is a positive integer 
larger than 1, then 

(1 + x)" > 1 + nx. (4.93) 
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Here we consider the following generalization of Bernoulli's Inequality. 
Let oc be a fixed real number different from 0 and 1. Then x > - 1 and x i: 0 
imply 

(1 + x)~ > 1 + ocx if oc < 0 or oc > 1 (4.94) 

and 

(1 + x)~ < 1 + ocx if 0 < oc < 1. (4.95) 

Indeed, let f(x) = (1 + x)~ - (1 + ocx) for x > -1. Then 

f'(x) = oc(1 + X)~-l - oc and f"(x) = oc(oc - 1)(1 + X)~-2. 

Suppose oc < 0 or oc > 1. Then f is concave up on ( - 1, (0). Moreover, f is 
decreasing on ( - 1,0) and increasing on (0, (0). Since f(O) = 0, it follows that 
f(x) > 0 if -1 < x i: O. Thus, (4.94) follows. In the case where 0 < oc < 1, f 
is concave down on ( -1, (0); moreover, f is increasing on ( - 1,0) and de­
creasing on (0, (0) and f(O) = O. Thus, f(x) < 0 if -1 > xi: 0 and (4.95) is 
obtained, finishing the proof. 

REMARK. Sometimes Bernoulli's Inequality is stated in the following form: If 
n is a positive integer larger than 1, then 

(1 + x l )(1 + x 2)···(1 + xn) > 1 + Xl + X2 + ... + Xn, (4.96) 

provided that each ofthe numbers Xl' X2"'" Xn is different from 0 and larger 
than -1 and all numbers Xl' X2, ... , Xn have the same sign. 

Indeed, from the inductive assumption 

(1 + x l )(l + X2)'" (1 + Xk) > 1 + Xl + X2 + ... + Xk 

we can easily see that 

(1 +xd(l +x2)···(1 +xk)(l +Xk+l) 

> 1 + (Xl + x2 + ... + Xk) + Xk+l + (Xl + X2 + ... + Xk)Xk+l 

> 1 + (Xl + x 2 + ... + Xk + Xk+l) 

because (Xl + X2 + ... + Xk)Xk+l > O. The rest of the verification of (4.96), 
namely, that it holds for n = 2, is trivial. 

16. Let y = (1 + 2x - Jl + 4x)/2; it is defined on [ -t, + (0) and it has 

derivative y' = 1 - l/Jl + 4x. Hence, 

1 + 2x - Jl + 4x 
f(x) = 2 for XE[O, + (0) 

is an increasing function and has an inverse function f-l. Verify that 

f-l(X) = X + Jx for XE [0, + (0). 

Indeed, interchanging X and y we have 
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1+2y-~ 
x = ----:-2-'----. 

To solve equation (4.97) for y, we observe that 

and so 

1+2Y-2~ =(~-ly 

x + Jx = 1 + 2y -~ _ ~ - 1 = Y 
22' 

(4.97) 

REMARK. Note that y = (1 + 2x - ~)/2 is a decreasing function 
on the interval (-i,O). While y = (1 + 2x - ~)/2 is defined on 
[ -t, + (0), it is not invertible on all of [ -1/4, + (0); see Proposition 2.18, 

17. The polynomial 

X x2 xn 
P(x) = 1 + - + - + ... + ~ 

1 1·2 n! 

does not have multiple roots. 
Indeed, a multiple root of the polynomial P(x) must also be a root of its 

derivative 

X x n- 1 xn 
P'(x) = 1 + - + ... + ( _ 1)1 = P(x) - " 

1 n. n. 

Hence, if P(xo) = P'(xo) = 0, then Xo = 0, but ° is not a root of P(x) = 0. 

18. Let f be a polynomial of degree n. If f(a) > 0, f'(a) ~ 0, ... , f(n)(a) ~ 0, 
then all real roots of f do not exceed a. 

Indeed, expanding f(x) in powers of x - a, we get, for x ~ a, 

f'(a) f"(a) j<n)(a) 
f(x) = f(a) + ----u-(x - a) + ~(x - a)Z + .. , + ~(x - a)" > 0. 

19. Let ck > ° for k = 1,2, ... , nand C1 + Cz + ... + Cn = 1. Then 

n ( 1 )Z (1 + nZ)Z L Ck +- ~ . 
k=l Ck n 

(4.98) 

Indeed, the Cauchy-Schwarz Inequality [see (1.43) in Chapter IJ 

gives, putting ak = 1 and bk = Ck + lick, 
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But 

By (4.62) and (4.63) the arithmetic mean is larger than or equal to the har­
monic mean of the numbers 1/cl , 1/c2 , •.• , 1/cn , that is, 

Hence, 

and so 

n 1 n 1 
------:$; - L - or 
cI + c2 + ... + cn n k=l Ck 

n (1) n 1 L ck + - = 1 + L - ~ 1 + n2 

k=l Ck k=l ck 

20. We are given a circle with center at 0, radius r, and a tangent line AT. 
In Figure 4.17, AM equals arc AP and P is the intersection of the line through 
M and P with the line through A and O. Determine the limiting position of 
B as P approaches A as a limiting position. 

Let e = LPOA, PPI.l.. OA, and PP2 .l.. MA (see Figure 4.17). Arc AP = 
re = AM, and, because the triangles l:!,.MAB and l:!,.MP2 P are similar, 

AB PP2 

AM P2 M' 

But PP2 = OA - OPI = r - rcose and P2 M = AM - P2 A = AM - PIP = 
re - r sin e. Thus, 

AB = AM P P2 = r e - e :os e . 
P2 M e - sme 

As P approaches A, e --+ O. If we let e --+ 0 in our expression for AB, we get an 

~;, 
8' , , , 

B 

Figure 4.17 
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B 

Figure 4.18 

indeterminate form. Using L'Hopital's Rules (see Proposition 4.10), we obtain 

1· l' e - e cos e l' 1 - cos e + e sin e lmAB=r 1m . =r lm-------
P->A 6->0 e - sm e 6->0 1 - cos e 

1· 2 sin e + e cos e l' 3 cos e - e sin e 3 
=rlm =rlm = r 

6->0 sin e 6->0 cos e . 

REMARKS. Let AB = 3r and suppose LAOP::; n/3 in Figure 4.18. Then the 
line through the points Band P intersects the tangent to the circle at A at 
such a point M that the segment AM on the tangent and the arc AP on the 
circle are approximately equal. Now PP1 = rsine and OP! = rcose. We 
therefore get that e = L AOP is approximately equal to (3 sin e)/(2 + cos e), 
an approximation due to the learned Cardinal Nicolaus Cusanus of the 15th 
century. For () = n/3 the arc AP is smaller than the segment AM by only 
about 0.8% of the radius r. That e is approximately equal to (3 sin e)/(2 + 
cos e) is of course a consequence of the similarity of the triangles f:,BP1 P and 
f:,BAM. Figure 4.18 also indicates how one can measure off approximately 
equal arcs on two circles of different radii rand s. 

21. We have, for x "# 1, 

Qn = 12 + 22X + 32x 2 + ... + n2x n - 1 

1 + x - (n + 1)2xn + (2n2 + 2n - l)xn+1 - n2x n+2 

(1 - X)3 

Indeed, for x "# 1, let 

T" = 1 + x + x 2 + x 3 + ... + xn. 

Then 

and 

1 _xn+l 
T.=---

n 1 - x 

d 1 - (n + l)xn + nxn+1 
-(T.) = 1 + 2x + 3x2 + ... + nxn- 1 = = S dx n (1 _ X)2 n 
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and 

22. We have, for x =1= 0, 

1 x 1 xIII x 
-tan- + -tan- + '" + -tan- = -tan- - cotx. 
2 2 4 4 2n 2n 2n 2n 

Indeed, for x =1= 0, 

and so 

or 

sin x = 2 (cos i) (sin i) = 22(cosi)(cos~)(sin~) 

= ... = 2n(cosi)(cos~} .. (cos;n) (sin; ) 

( x) ( x) ( x) sin x cos"2 cos 22 ... cos 2n = 2n(sin x/2n) 
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In (cos i) + In (cos;) + ... + In (cos; ) = In(sinx) -ln2" -In (sin; ). 

Differentiating both sides of the last equality gives the desired relation. 

23. Let f be such that f"(x) exists in (a, b) and f'(a) = f'(b) = 0. Then 
there is a point c satisfying a < c < b such that 

If"(c) I ~ (b ~ af If(b) - f(a)l. 

Indeed, since f'(a) = f'(b) = 0, we get, by Proposition 4.11, 

f(a; b) = f(a) + f'~~l)e; ar 

and 

f( a; b) = f(b) + f"~~2) e; ar, 

where Xl is between a and (a + b)/2 and X2 is between (a + b)/2 and b. But 

If(b) - f(a) I ::; If(b) - f(a; b)1 + If(a; b) - f(a)/ 

::; (b ; a r G!) [1f"(xl)1 + 1f"(x2)1J. 
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Let I f"(c) I be the larger of the two numbers 1f"(x1)1 and 1f"(x2)1; then 

1C1f"(x1)1 + 1f"(X2)1] ::; I f"(c) I 
and the claim follows immediately. 

24. Let 0 < a < b. Then b ::; e implies ab < ba and a ~ e implies ab > ba• 

Indeed, ab < ba if and only if (In a)/a < (In b)/b, which is true if 

~ (In x) = 1 - In x > 0 
dx X x2 

throughout (a, b), and this holds if b ::; e. Similarly, a b > ba if 

~ (In x) = 1 - In x < 0 
dx X x 2 

throughout (a, b), which holds if a ~ e. 

REMARK. What if a < e < b? Taking a = 2, b = 3, we have ab < ba ; if a = 2, 
b = 4, then ab = ba ; while if a = 2, b = 5, then ab > ba• 

25. The Rule of Proportional Parts. If a < b < c and the values of a func­
tion f are tabulated at the points a and c, the rule is that, approximately, 

b-a 
feb) - f(a) = -(fCc) - f(a)). 

c-a 

In other words, we replace the arc of the curve y = f(x) on the interval [a, c] 
by the chord connecting the points (a,f(a)) and (c,f(c)). 

To obtain an upper bound for the error, suppose that f is continuous on 
the closed interval [a, c] and that f has second derivative at each point of the 
open interval (a, c). Applying the Mean Value Theorem (see Proposition 4.5) 
to the function 

~ f(X) X2 x 1~1 J f(a) a2 a 
g(x) = feb) b2 b 

f(c) c2 C 

we obtain 

b - a 1 
feb) - f(a) = --( f(c) - f(a)) + -2 (b - a)(b - c)f"(s), 

c-a 

where a < s < c. (The details of proof are completely analogous to the details 
of proof in Example 14 of this section.) 

Next, we note that b - a and c - b are positive and that the sum 

(b - a) + (c - b) = c - a 

which is independent of b. But the product (b - a)(c - b) is largest if 
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e-a 
b-a=e-b=--

2 
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(see Number 1 of Worked Examples and Comments following Proposition 
4.18). Thus, 

(e - a)2 
I(b - a)(b - e)1 ~ 4 . 

Hence, the error involved in assuming that as x increases from a to c, the 
increase in f(x) is proportional to the increase in x, can not be greater than 
*(c - a)2M, where M = sup{If"(x)l: a ~ x ~ c}. 

26. Let f and 9 be continuous functions on a closed interval [a, b] of finite 
length and both be differentiable on the open interval (a, b). If, in addition, 
g'(t) is not zero for any t in (a, b), then 

for some x in (a, b). 

f(b) - f(a) 

g(b) - g(a) 
f'(x) 
g'(x) 

(4.99) 

We have already encountered the foregoing result in part (iii) of Proposi­
tion 4.9. Our present objective is to show that formula (4.99) is an example of 
the application of the Mean Value Theorem (see Proposition 4.8) to a com­
position of functions. 

Indeed, if G is a continuous function on [oc, P], differentiable on (oc, p), with 
a nonvanishing derivative in (oc, P), then, since the derivative of f [G(t)] is 
f'[G(t)] G'(t), by Proposition 4.8 there is a point l' in (oc, p) such that 

f[G(P)~ = ~[G(OC)] = f'[G('l')]G'('l'). (4.100) 

Since G'(t) ¥= 0 in (oc, P), by Proposition 4.8 we see that G'(t) is of constant sign, 
and so G has a differentiable inverse function g, say, such that G'(t) = 
l/g'[G(t)]. Putting a, b, x for G(oc), G(P), G('l') so that g(a) = oc and g(b) = p, 
we see that equation (4.100) becomes equation (4.99). 

27. Let f and 9 be continuous functions on a closed interval [oc, b] of finite 
length and both be differentiable n times on the open interval (oc, b). More­
over, let 

l~k<n, 

and 

Ig(kl(t) I > 0 in [oc,b], 1 ~ k ~ n. 

Then if oc ~ a < b, we can find x in (oc, b) such that 

f(b) - f(a) j<"l(x) 
g(b) - g(a) == g("l(x) . 
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Indeed, by (4.99) we can find Xl' X2' ... , Xn- l , X in turn, such that 

and 

f(b) - f(a) 
g(b) - g(a) 

f'(XI) f'(x l ) - f'(rx) !"(X2) pn-1)(Xn_l ) 
g'(X I) g'(X I) - g'(rx) = g"(X2) = ... = gIn 1)(Xn_ l ) 

pn-I)(Xn_l) - pn-l)(rx) 
gIn 1)(Xn_l) _ gIn l)(rx) 

pn)(X) 
g(n)(X) , 

which completes the proof. 

28. Formula of Huygens. If A is the chord of any circular arc and B that of 
half the arc, then the length L of the arc is approximately equal to 

8B-A 
3 

Indeed, if rx is the central angle and R the radius, then by the cosine law we 
get 

A2 = R2 + R2 - 2R2cosrx. 

But 2 sin2(rx/2) = 1 - cos rx and so 

. rx 
A = 2Rsm2:' 

It is clear that B = 2R cos(IX/4) and so 

8B - A R ( 6 . IX 2' rx) s 3 ="3 1 sm 4 - sm 2: = Rrx + AIX , 

where A denotes a finite factor, and where we have replaced the sine function 
by its Taylor polynomial of order 5. But L = Rrx. 

REMARK. A better approximation for the length L of a circular arc is given by 
the formula 

is(A + 256C - 40B), (4.101) 

where A is the chord of the circular arc, B that of half the arc, and C that of 
quarter of the arc. 

EXERCISES TO CHAPTER 4 

4.1. Iff has n roots in [a, b], show that f(n-l) has at least one root in that interval. 
[Hint: By Rolle's Theorem (see Proposition 4.3), I' has at least one root 

between any two of f, so that I' has at least n - 1 roots; hence f" has at least 
n - 2 roots, 1''' at least n - 3, and so on.] 
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4.2. If f(a) = f(b) = 0 and 1"(x) oF 0 in (a, b), show that f(x) oF 0 in (a, b). 
[Hint: For a < x < b, let 

g(t) = f(x)(t - a)(t - b) - f(t)(x - a)(x - b). 
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Then g vanishes at t = a, t = x, and t = b, so that, by Rolle's Theorem, g' 
vanishes between a and x, and again between x and b, so that g" vanishes (at 
least) once at c, say, in (a, b). But g"(t) = 2f(x) - (x - a)(x - b)1"(t) and so 
f(x) = t(x - a)(x - b)1"(c), which shows that f(x) oF 0 in (a, b), since 1"(c) oF 0.] 

4.3. If a < b < c, a + b + c = 2, and ab + bc + ca = 1, show that a, b, and c lie in 
the intervals (0, t), (t, 1), and (1, t), respectively. 

[Hint: The numbers a, b, and c are the roots of the cubic polynomial 

f(t) = t 3 - 2t 2 + t - abc = t(t - 1)2 - abc. 

But f'(t) = (3t - l)(t - 1), and a root of I' lies between two ofthe roots of J, by 
Rolle's Theorem, and therefore a < t < b < 1 < c. 

Since f(c) = 0, therefore ab = (c - 1)2 so that a> 0, and therefore f(O) = 

-abc < o. Since I'm = 0, f(t) - fm has the factor (t - 1)2, and since the sum 
of the roots of the equation f(t) - fm = 0 is 2, the third root is t =!- Thus, 
f(t) = (t - t)(t - 1)2 + fm· One root only of f(t) = 0 lies between 0 and t and 
f(O) < 0, therefore fm > 0. But f(c) = 0 and so (c - t)(c - 1)2 = -f(1) < O. 
Thus, c < t. Hence, 0 < a < t < b < 1 < c <!-] 

4.4. If f(O) = a, f(a) = b, 1'(0) = -1, and if 11"(x)1 < 1/41al in the interval [ - 2a, 2a], 
show that 11 + f'(x)1 < t in [ - 2a, 2a] and hence that If(a + b)1 < tlf(a)1 < 
ilal. 

[Hint: By the Mean Value Theorem (see Proposition 4.5), for - 2a ~ x ~ 2a, 

If'(x) + 11 = If'(x) - 1'(0)1 = I x1"(c) I < ~::: =~. 
Since f(a) - a = f(a) - f(O) = af'(a), therefore 

If(a) I = lalll + f'(a) I < tlal· 

Moreover, la + bl = la + f(a)1 < ~a so that a + b lies in [ - 2a, 2a] and 

f(a + b) = f(a) + bf'(f3), 13 in ( - 2a, 2a), 

= f(a)(1 + 1'(13)) 

and so If(a + b)1 < tlf(a)1 < ilal.] 

4.5. Let f be twice differentiable in [a,b] and such that f(a) = f(b) = 0 and f(c) > 0 
for a < c < b. Show that there is at least one value t between a and b for which 
1"(t) < o. 

[Hint: Since 1" exists, I' and f both exist and are continuous on [a, b]. Since 
c is a point between a and b, applying the Mean Value Theorem to f on the 
intervals [a,c] and [c,b], respectively, we get 

f(c) - f(a) = f'(t 1), a < tl < c, 
c-a 

and 
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f(b~ = ~(c) = f'(tz), c < t z < b. 

But f(a) = f(b) = 0 and so 

f'(t I) = f(c) and f'(t z) = - f(c) where a < t I < c < t z < b. 
c-a b-c 

Again f' is continuous and differentiable on [tl,tz]. Therefore, by the Mean 
Value Theorem 

Substituting the values of f'(tz) and f'(t I)' we get 

r(t) = - (b - a)f(c) < O.J 
(tz - t I)(b - c)(c - a) 

4.6. If h is differentiable, with positive nonzero derivative, in [a,bJ, h(a) = 0, and if 
in the interval [h(a), h(b)], a :-:; f(x) :-:; b, f(O) = a, and f'(x) = 1/h'[f(x)], show 
that f and h are inverse functions. 

[Hint: The function h[f(x)] is differentiable in [h(a), h(b)J with derivative 
h,[f(x)Jf'(x) = 1, and so h[f(x)] - x is constant; when x = 0, h[f(x)] - x = 0, 
and therefore h[f(x)J = x for all x in [h(a),h(b)]. 

Moreover, since h'(x) > 0 in [a, bJ, therefore h(a) :-:; h(x) :-:; h(b) in [a, bJ, and 
so h{f[h(x)]} = h(x) in [a,bJ; since h is monotonic and increasing it follows 
that f[h(x)J = x for all x in [a, b].J 

4.7. If f'(a) = f'(b) = 0 and f'(x) =1= 0 in (a, b), show that f(a) and f(b) can not be 
both maxima nor both minima. 

[Hint: By Proposition 4.8, f'(x) is of constant sign in (a, b). If f'(x) is positive 
in (a, b), then f(a) is not a maximum and f(b) is not a minimum, that is, f(a) and 
f(b) are not both maximum nor both minimum. A similar argument holds if 
f'(x) is negative in (a, b).J 

4.8. If f is differentiable in [a, bJ and if f' vanishes at only a finite number of points 
in [a, b J, then between any two points in (a, b) where f(x) is maximum there is a 
point where f(x) is minimum, and between two minimum values, a maximum. 

[Hint: If cx and fJ lie in (a, b) and f(cx) and f(fJ) are both maximum values of 
f(x), let CX I , CX 2 , ••• , cxp be the points between cx and fJ where f'(x) = O. Since f(cx) 
is a maximum, by Exercise 4.7, f'(x) is negative in (cx, cx l ), and similarly f'(x) is 
positive in (cxp,fJ). Moreover, f'(x) is of constant sign in each interval (cx"cxr + 1). 

Let p be the least value of r for which f'(x) is positive in (cx" cxr + 1); then f'(x) is 
negative in (cxp_l,cxp) and positive in (CX p,CXp+l), and therefore f(x) has a minimum 
value at x = cxp.J 

4.9. Given that a and b are two real roots of the equation f(x) = 0, where f(x) is a 
polynomial in x, show that there is at least one real root of the equation 
f'(x) + f(x) = 0 which lies between a and b. 

[Hint: Let g(x) = eXf(x) so that g'(x) = eX[f'(x) + f(x)]. Since f(x) vanishes 
at x = a and x = b so does g(x) and hence, by Rolle's Theorem (see Proposition 
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4.3), there is at least one real root of g(x) between a and b. Since eX #- 0, it follows 
that f'(x) + f(x) vanishes for at least one real value of x between a and b.] 

4.10. Deduce from the result in Exercise 4.9 that if a, b, and c are real roots of the 
equation f(x) = 0 and are such that a < b < c, then there is a real root of the 
equation f"(x) + 2f'(x) + f(x) = 0 which lies between a and c. 

4.11. Determine the range of values of A for which the equation 

3x4 - 8x3 - 6x2 + 24x + A = 0 

has four real unequal roots. 
[Hint: Let f be a polynomial. If f(a) and f(b) are not zero and have opposite 

signs, then an odd number of real roots of the equation f(x) = 0 lie between a 
and b; if f(a) and f(b) are not zero and have the same sign, then an even number 
of roots (or no root) of f(x) = 0 lie between a and b. Hence, by Rolle's Theorem, 
necessary and sufficient conditions for f(x) = 0 to have n unequal real roots are 
that f'(x) = 0 shall have n - 1 unequal real roots and, if these n - 1 roots are 
Xl' x 2 , ••• , X n - l in ascending order, that the signs of the succession 

f( - 00), f(x d, f(X2), ... , f(xn- l ), f( 00) 

are alternate. 
If f(x) = 3x4 - 8x3 - 6x2 + 24x + A, then f'(x) = 12(x + l)(x - l)(x - 2), 

and the roots of f'(x) = 0 are at X = -1, 1, and 2. Hence, the equation in 
question will have four unequal roots ifthe signs of f( - 00), f( -1) = -19 + A, 
f(l) = 13 + A,f(2) = 8 + A, and f( 00) alternate. But f(x) is positive if X --+ ± 00 
and so we must require that -19 + A < 0, 13 + A > 0, and 8 + A < O. How­
ever, these inequalities require that -13 < A < -8.] 

4.12. Let f(x) = 1 - x + x 2/2 - x 3/3 + ... + (-ltxn/n. Show that f(x) = 0 has one 
real root if n is odd and no real root if n is even. 

[Hint: Clearly, f(x) = 0 has no negative roots. We note that f(x) = 0 does not 
have two consecutive positive roots. Suppose it had. Then f'(x) = 0 would have 
to hold for some x between two consecutive positive roots of f(x) = O. But 
f'(x) = -(1 + xn+I)/(1 + x).] 

4.13. The functions u and v and their derivatives u' and v' are continuous in [a, b], and 
uv' - u'v never vanishes at any point of [a, b]. Show that between any two zeros 
of u lies one of v and the converse, that is, the roots of u and v separate each 
other. 

[Hint: Let Xl and X2 be consecutive roots of u(x) = o. Then, if v(x) #- 0 when 
Xl < X < X2, u/v is continuous in [a, b] and vanishes at Xl and X2; hence, (u/v), 
must vanish at an intermediate point: a contradiction. Nor can v vanish twice in 
(XI,X2), for then u would have a root between Xl and X2.] 

4.14. Show that the equation 

ao a l a2 an- l an =--+-+--+ ... +--+-
n+l n n-l 2 1 

has a root between 0 and 1. 
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[Hint: Consider the function 

( ao a1 a2 an - 1 an) - --+-+--+ ... +--+- x. 
n+1 n n-1 2 1 

Then F(O) = F(1) = O. Thus, by Rolle's Theorem, there is a point x between 0 
and 1 such that F'(x) = 0.] 

4.15. Show that (tan x)/x > x/(sin x) for 0 < x < n/2. 
[Hint: Since x sin x > 0 for 0 < x < n/2, it will be sufficient to show that 

(sin x)(tan x) - x 2 > 0 for 0 < x < n/2 in order to have 

(sin x)(tan x) - x 2 n 
x sin x > 0 for 0 < x < "2' 

Let f(x) = (sin x)(tan x) - x 2 • Then 

and 

f'(x) = (cos x)(tan x) + (sin x)(sec2 x) - 2x 

= sin x + (sin x)(sec2 x) - 2x 

f"(x) = cos x + (cos x)(sec2 x) + 2(sin x)(sec2 x)(tan x) - 2 

= (Jsecx - JCOSX)2 + 2(tan2 x)(secx). 

Thus, f"(x) > 0 for 0 < x < n/2. Since the derivative f"(x) of f'(x) is positive for 
o < x < n/2, the function f'(x) is an increasing function for 0 < x < n/2. Fur­
thermore, since f'(0) = 0, we have f'(x) > 0 for 0 < x < n/2. Again, since f'(x) 
is larger than 0 for 0 < x < n/2 and f(x) = 0, we have f(x) > 0 for 0 < x < n/2. 
Thus, it follows that (tan x)/x > x/(sin x) for 0 < x < n/2.] 

4.16. Show that if 0 < w < v, then 

v-w v-w 
-- < tan- 1 v - tan- 1 w < ---. 
1 + v2 1 + w2 

[Hint: Apply the Mean Value Theorem (see Proposition 4.5).] 

4.17. Show that if 0 < C( < p < n/2, then , 

sin C( - sin p 
------'- = cot e 
cos p - cos C( 

for some e satisfying C( < e < p. 
[Hint: Apply part (ii) of Proposition 4.9.] 

4.18. Iff, g, and h are functions continuous on [a, b] and differentiable on (a, b), show 
that there is a point c situated between a and b such that 

[
f(a) f(b) 

g(a) g(b) 

h(a) h(b) 

f'(C)] 
g'(c) = O. 

h'(c) 
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[Hint: Apply Rolle's Theorem (see Proposition 4.3) to the function 

[
f(a) 

w(x) = g(a) 

h(a) 

4.19. Show that the extreme values of 

f(b) f(X)] 
g(b) g(x) .] 

h(b) h(x) 

ax2 + 2bx + c y - -;;----,--­
- px2 + 2qx + r' 

pr - q2 > 0 

are roots of the quadratic 

(pr - q2)y2 - (ar - 2bq + cp)y + (ac - b2) = O. 
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[Hint: We differentiate (px2 + 2qx + r)y = ax2 + 2bx + c; when y' = 0, 
(px + q)y = ax + b and, from this and (px2 + 2qx + r)y = ax2 + 2bx + c, we 
get (qx + r)y = bx + c. Solving for x in 

ax + b bx + c 
y=-- and y=--

px + q qx + r 

we get 

-qy+b 
x = and 

py-a 
-ry + c 

X= , 
qy- b 

respectively. Hence, elimination of x from the equations 

y = ax + band y = bx + c 
px + q qx + r 

gives (-qy + b)(qy - b) = (-ry + c)(py - a) or 

(pr - q2)y2 - (ar - 2bq + cp)y + (ac - b2) = 0.] 

4.20. Show that the values of y = (x2 + 2x + 1l)/(x2 + 4x + 10) are confined to the 
interval i :::;; y :::;; 2. 

[Hint: Apply the result in Exercise 4.19.] 

4.21. Show that f(x) = (a cos x + b sin x)f(ccos x + d sin x) has neither a maximum 
nor a minimum. 

[Hint: We have f'(x) = (be - ad)/(ccosx + dsinx)2.] 

4.22. Show that f(x) = a sin x + b cos x has ± (a2 + b2)1/2 as extreme values. 
[Hint: f'(x) = 0 implies alb = tan x.] 

4.23. Verify that, when m and n are positive integers, 

f(x) = (x - ar(x - e)", a < c, 

has the extremes given in the following list, where b divides the interval [a,c] in 
the ratio min: 

(i) m and n even; minima at a and c, maximum at b = (na + mc)f(m + n); 
(ii) m and n odd; minimum at b; 

(iii) m even, n odd; maximum at a, minimum at b; 
(iv) m odd, n even; maximum at b, minimum at c. 
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4.24. When x> 0, show that f(x) = (tan- 1 x)/(tanhx) increases as x increases and 
that 

n 
tan-1 x < 2 (tanh x). 

[Hint: f'(x) has the same sign as g(x) = (1 + x2)-1(sinh x)(cosh x) - tan- 1 x, 
g'(x) has the same sign as h(x) = (1 + x2)(sinhx) - x cosh x, and h'(x) > 0 when 
x > O. Moreover, f(x) --+ n/2 as x --+ 00.] 

4.25. What is wrong with the following reasoning? Let f(x) = e-2x(cosx + 2 sin x) 
and g(x) = e-X(cos x + sin x). As x --+ 00, the fraction f(x)/g(x) has the form 0/0. 
Now 

f'(x) _5e-2x sin x 

g'(x) -2e-x sin x 

Canceling sin x in f'/g' we see that f'/g' --+ 0 as x --+ 00 and so we may conclude 
that f/g --+ 0 as x --+ 00. 

[Hint: Note that f'/g' has no limit as x --+ 00, for, as x becomes infinite along 
the sequence nn, f'/g' is never defined; the limit 

1. f(x) l' -x 1 + 2 tan x 
tm--= tme 

x-+oo g(x) x-oo 1 + tan x 

is nonexistent, since (1 + 2 tan x)/(1 + tan x) is discontinuous at the points x. = 
nn + n/2 for n = 1, 2, 3, .... ] 

4.26. Verify formula (4.101). 

4.27. Find constants A and B so that (sin 3x + A sin 2x + B sin x)/xs may tend to a 
finite limit as x --+ O. 

[Hint: Expanding the sine function in powers of x by use of Taylor's Theorm 
(see Proposition 4.11), we need 

3 + 2A + B = 0, 27 + SA + B = 0 

to make the coefficients of x and x 3 zero. Hence, A = -4 and B = 5.] 

4.2S. Let f(x) = x2 sin(1/x) and g(x) = sin x. Verify that f(x)/g(x) --+ 0 as x --+ 0 and 
that f'(x)/g'(x) does not tend to a limit as x --+ O. Does this belie the truth of 
L'Hopital's Rule? 

4.29. Find 

. x sin (sin x) - sin2 x 
hm 6 • 
x-a X 

[Answer: l8'] 

4.30. Find 

. (sinx)(sin- 1x)-x2 
hm 6 
x-a X 

[Answer: is.] 
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4.31. Find 

. tan(sinx) + tan-1(sinx) - sin (tan x) - sin(tan-1 x) 
lIm 9 
x-o X 

[Answer: -b.] 
4.32. Find 

[Answer: (1 - In b)/(l + In b).] 

ab _ ba 
lim-a--b • 
a~b a - b 
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4.33. Show that if a > b > 0 the minimum value of (a - b)x/(x + a)(x + b) exceeds 
the maximum by 4fo/(a - b). 

[Hint: If y = (a - b)x/(x + a)(x + b) = a/(x + a) - b/(x + b), y = 0 when 
x= ±fo, 

yO = 

and 

yO = Ja + y'b if x = -fo. 
fo(Ja - y'b)3 

Hence, (Ja - y'b)!(Ja + y'b) is the maximum value and (Ja + y'b)!(Ja -
y'b) is the minimum value.] 

4.34. If y = (x + a)(x + b)/(x - a)(x - b), show that the maximum and minimum 
are, respectively, 

_(Ja + y'b)2 and _(Ja - y'b)2. 
Ja - y'b Ja + y'b 

Also show that, if x is real, (x + a)(x + b)/(x - a)(x - b) can not lie between the 
values 

_(Ja + y'b)2 and _(Ja - y'b)2. 
Ja - y'b Ja + y'b 

[Hint: We have 

(x + a)(x + b) 2(a + b)x 2(a + b) (a b) 
(x - a)(x - b) = 1 + (x - a)(x - b) = 1 + a - b x - a - x - b . 

Also note that 

or 

x 2 + (a + b)x + ab 
=y 

x 2 - (a + b)x + ab 

(1 - Y)X2 + (a + b)(l + y)x - ab(l - y) = 0, 

an equation whose roots are only real when (a + b)2(1 + y)2 ;?: 4ab(1 - y)2.] 
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4.35. A rancher wishes to divide a triangular field into two equal parts by a straight 
fence. How is this to be done so that the fence may be of the least length? 

[Hint: If A is the smallest angle and b, e the adjacent sides, the distance of 
each end of the fence from A equals Jbe/2 and the length of the fence equals 
j2bc(sin A/2).] 

4.36. If a and b are positive, show that 

(1 + a)ln(1 + a) + (1 + b)ln(1 + b) < (1 + a + b)ln(1 + a + b), 

and generally that if every ar is positive, 

rtl (1 + ar)ln(1 + ar) < (1 + rt a}n(1 + rtl a) 

[Hint: Let g(x) = (1 + x) In(1 + x) for x > 0 and suppose that 0 < a < b. By 
the Mean Value Theorem (see Proposition 4.5), there is a point e such that 

Thus, 

g(a + b) - g(b) = g'(e), where b < e < a + b. 
a 

(1 + a + b)ln(1 + a + b) - (1 + b)ln(1 + b) = a[1 + In(1 + e)], 

where 0 < a < b < e < a + b. But a > In(1 + a) for a > 0 and In(1 + c) > 
In(1 + a) for 0 < a < e. Hence, 

a[1 + In(1 + e)] = a + a[ln(1 + c)] 

> In(1 + a) + a[ln(1 + a)] = (1 + a) In(1 + a).] 

4.37. Let f"(e) = f"'(e) = ... = J(n-1J(e) = 0, but pnJ(e) i= O. Show that if n is odd, 
then the curve y = J(x) has a point of inflection at x = e; if n is even, it is 
concave upward or downward according to whether pnl(e) > 0 or <0. 

4.38. Let n be a positive integer. Show that the abscissas of the points of inflection of 
the curve yn = J(x) are the roots of the equation 

n - 1 
--{f'(X)}2 = J(x)f"(x). 

n 

4.39. Show that the points of inflection of the curve y2 = (x - a)2(x - b) lie on the 
line 3x + a = 4b. 

4.40. If J(x) = ax + 6b2/X2, b i= 0, show that the curve y = e-f(xJ has at least two 
points of inflection. 

[Hint: We have J'(x) = a - 12b2/x 3, f"(x) = 36b2/X4, and therefore 

y" = e- f (f')2 - e-f(f") = e-: {(ax3 _ 6bx - 12b2)(ax3 + 6bx - 12b2)}. 
x 

The cubics have no common factor, since b i= 0, and each cubic has either one 
real root or three real roots of which one must be simple, that is, each cubic has 
at least one nonrepeated real root, and y" changes sign, and vanishes, as x 
passes through a nonrepeated real root of each cubic.] 
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4.41. Let nand r be positive integers larger than or equal to 3. Show that 

(n + r)n < nn+,. 

[Hint: The inequality in question is equivalent to 

In(n + r) Inn 
---<-. 

n + r n 
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But the function g(x) = (In x)jx, defined for x > 0, has a single maximum at 
x = e because g'(x) = (1 - In x)/x2 is negative for x > e and is positive for x 
satisfying 0 < x < e. Evidently, the function g is decreasing for x > e.] 

4.42. If a plane at distance x from the center of a unit sphere cuts it into two segments, 
one with twice the volume of the other, show that 

3x3 - 9x + 2 = o. 
Then use Newton's Method to find x accurate to four decimal places. 

[Hint: See Example 4 in Section 4 of Chapter 4. Answer: 0.2261.] 

4.43. The equation x = tan x has infinitely many roots. It is easily seen that its 
smallest positive root is between 5n/4 and 3n/2. Using Newton's Method, verify 
that the smallest positive root of the given equation is approximately 4.4934. 

4.44. The equation xsinx = t has infinitely many roots. Verify that the smallest 
positive root of the given equation is approximately 0.740841. 

4.45. The equation 2x 3 - x 2 - 7x + 5 = 0 has three distinct real roots. Find these 
three roots with an accuracy of 0.001. 

[Answer: Xl = -1.9509 (approximately), X 2 = 0.756 (approximately), and 
X3 = 1.694 (approximately). Note that by Vieta's Theorem the sum of the three 
roots is equal to t.] 

4.46. Verify that the equation X4 - x - 1 = 0 has a root between the POiJ;ltS a = 1.22 
and b = 1.23. Then determine this root with an accuracy of six decimal places. 

[Answer: 1.220744.] 

4.47. Problem of Viviani. Two parallel lines are cut by a given line AB. See Figure 
4.19. From the point C we draw a straight line intersecting AB. How should this 
line be chosen so that the sum of the areas of the two triangles .6.ACP and 
.6.QPB is a minimum? 

[Hint: Let the lengths of AC and AB be a and b, respectively, and the lengths 

B 

p 

A c 

Figure 4.19 
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of AP and QB be x and y, respectively. Since the triangles are similar we have 

a y b - x 
~ = b _ x or y = a-x-· 

If or; is the angle at A, the sum of the areas is 

tax sin or; + t(b - x)(ysinor;). 

We substitute the value of y and now the problem requires the determination of 
the minimum value of the function 

f(x) = x + (b - X)2. 
X 

It is easily seen that x = b/.j2 gives the minimum area.] 

4.48. A piece of wire k units long is cut into two parts. One part is bent into a circle, 
the other into a square. Show that the sum of their areas is a minimum when the 
wire is cut in such a way that the diameter of the circle equals the side of the 
square and that the sum of the areas is a maximum when the wire is left uncut 
and bent into a circle. 

4.49. A triangle .6.ABC has a right angle at c, and the product ofthe sides AB and BC 
is constant. Show that AC + 3BC is a minimum when AC = 2BC and a maxi­
mum when AC = Be. 

[Hint: Let AB = x and L ABC = (J. Then x 2 cos (J is constant and (AC + 
3BC)2 is proportional to (sin (J + 3 cos (J)2/(COS (J) = sec (J + 6 sin (J + 8 cos (J; the 
first derivative equals 

t 3 - 7t + 6 
(sec (J)(tan (J) + 6 cos (J - 8 sin (J = 2 3/2 

(1 + t ) 

(t + 3)(t - l)(t - 2) 
(1 + t 2 )3/2 

where t = tan (J. When 0 < t < 1 the derivative is positive, it vanishes at t = 1, 
is negative for 1 < t < 2, vanishes again at t = 2, and is positive for t > 2. 
Hence, (AC + 3BC)2 is maximum when t = 1 and minimum when t = 2. Note 
that f(t)2 and f(t) are maximum and minimum together, when f(t) > 0, because 

f(T)2 - f(t)2 = {f(T) - f(t)} {f(T) + f(t)} 

and so f(T)2 - f(t)2 and f(T) - f(t) have the same sign.] 

4.50. Let ql' q2, ... , qn be positive real numbers with sum 1. Show that, for any 
nonnegative real numbers a1 , a2 , •.• , an' we have 

with equality only if a1 = a2 = ... = an. 
[Hint: First we note that, if x is any real number, then 

with equality only if x = 1. Indeed, the function f(x) = eX - ex has an absolute 
minimum at x = 1. 
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T K p 

Figure 4.20 

To prove the desired inequality, put w = q1a1 + q2a2 + ... + qnan' We now 
replace x in the inequality eX ~ ex by aj/w to get 

Multiplying these inequalities for each of the values j = 1,2, ... , n, we get 

which proves the desired inequality. Evidently, there is equality here if and only 
if each of adw, a2/w, ... , an/w equals 1, giving the condition a1 = a2 = ... = an.] 

4.51. Determine the shortest distance from the point (e, 0) to y2 = 4x, where e may be 
positive, negative, or zero. 

[Answer: If e:-:; 2, the point on y2 = 4x that is nearest to (e,O) is the point 
(0,0). If e > 2, there are two nearest points to (e,O) on the curve, namely, 
(e - 2, ± 2Jc"=2).] 

4.52. Suppose that f is a differentiable function at each point of a closed interval 
[a,b], where Ib - al < 00. If there is a number M for which If'(x) I < M for 
every x in [a, b], show that f is uniformly continuous on [a, b]. 

[Hint: Use the Mean Value Theorem (see Proposition 4.5).] 

4.53. Let f(x) = x(ln x) if x > 0 and f(O) = O. Show that f is uniformly continuous on 
the closed interval [0,1], but that f'(x) is not bounded on [0,1]. Explain why 
this does not contradict the result in Exercise 4.52. 

4.54. A picture hangs on a wall above the level of an observer's eye. How far from the 
wall should the observer stand to maximize the angle of observation? 

[Hint: Consider Figure 4.20, where Q and R represent the bottom and top of 
the picture and TS is the horizontal line at the level of the observer's eye. Next, 
consider the circle passing through the points Q and R, tangent to the line TS, 
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and let P be the point of tangency. If K is any other point on TS, let H be the 
intersection point of the line segment RK and the circle. We have 

LQPR = LQHR 

by the property that the chord QR subtends equal angles at any two points on 
the arc QR. Hence, 

LQPR = LQHR = LQKR + LHQK > LQKR. 

This shows that the angle of observation is maximized if the observer's eye is at 
the point of tangency P. The tangent line SP and the secant line SQR satisfy the 
distance relation (SP)2 = (SQ)(SR).J 

4.55. Let the second derivative f" of a function f be continuous for a :<::; x :<::; b and at 
each point x, the sign of f(x) and f"(x) be the same. Show that if f(x) vanishes 
at points c and d, where a :<::; c < d :<::; b, then it vanishes everywhere between c 
andd. 

4.56. The normal is drawn at a variable point P of the ellipse 

Show that the maximum distance of the normal from the center of the ellipse is 
la - bl· 

4.57. Verify that if in formula (4.2) we write for f(t) and g(t), respectively, 

(i) t 2 , t, 
(ii) sin t, cos t, 

(iii) e', e-', 

then in each case "x" is the arithmetic mean between a and b. 
If in formula (4.2) we write for f(t) and g(t), respectively, 

1 
.fi and .fi' 

then "x" is the geometric mean between a and b and if we write 

1 1 
- and -
t 2 t' 

then "x" is the harmonic mean between a and b. 
[The arithmetic, geometric, and harmonic means of a and b are, respectively, 

a + b Jcili 2ab 
A = -- G = ab and H = --.J 

2 ' , a + b 

4.58. If all the roots of the polynomial P(x) - a and P(x) - b are real, show that all 
the roots of the polynomial P(x) - c are real if a < c < b. 

[Hint: All the roots of P'(x) are clearly real; denote them by t l , t 2 , ... , tn-I' 

Next, denote by YI' Y2' ... , Yn the roots of P(x) - b and by XI' x 2 , •.. , Xn the 
roots of P(x) - a. Then YI < tl < Y2 < ... < Yn-I < tn-I < Yn and XI < tl < 
X2 < t2 < ... < Xn - I < tn-I < x .. It follows that intervals bounded by the points 
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Xl' Yi do not overlap since they lie in the nonoverlapping intervals (- 00, t d, 
(t l' t2 ), ••• , (t.- l , + (0). The polynomial P(x) takes on the values a and b at the 
endpoints of each of these intervals and passes through all intermediate values 
inside the interval. Hence, P(x) - c vanishes n times on (- 00, + (0).] 

4.59. Let f be such that f"(x) exists, If(x) I :0;; A, and 1f"(x)1 :0;; B for all x> 0, where A 
and B are positive constants. Show that 1f'(x)1 :0;; 2.jAii for all x > o. 

[Hint: Let x and h be positive. Then, by Taylor's Theorem, 

h2 
f(x + h) = f(x) + hf'(x) + , f"(x + (Jh) 

2. 

for some number (J satisfying 0 < (J < 1. Hence 

or 

I hf'(x) I = jI(X + h) - f(x) - ~; f"(x + (Jh)/ 

h2 
:0;; If(x + h)1 + I f(x) I + 2! If"(x + (Jh)1 

for any x> 0 

2A Bh 
If'(x) I :0;; h + 2 for any x> o. 

Since If'(x) I is independent of h and is less than or equal to 2Ajh + Bhj2 for 
any h > 0, it follows that If'(x) I is less than or equal to the least value of 
2A/h + Bh/2. But 

and so 

2A Bh 
2 lAB <-+-yfW_ h 2 for any h > o. 

It therefore follows that 1f'(x)1 :0;; 2fo for all x > 0.] 



CHAPTER 5 

Integration 

1. Examples of Area Calculation 
The problem of finding the area of a region in a plane bounded by a given 
curve has fascinated mathematicians for a long time. We shall consider a few 
of the celebrated examples that have come down to us from times past; the 
special methods of quadrature used in these examples are of a rather clever 
kind. 

EXAMPLE 1 (The Quadrature of the Parabola by Archimedes). Consider a 
parabola satisfying the equation 

Y = AX2 + Bx + C with A > O. (5.1) 

Figure 5.1 illustrates the parabola under consideration. Let Pl = (x l, Y l)' 
P2 = (X2,h), and P3 = (X3,Y3) be points on this parabola such that the 
abscissas Xl' X2, and X3 form an arithmetic progression, that is, 

X 2 - Xl = X3 - X2 = h. 

The region bounded by the parabolic arc connecting the points P l and P3 

and the chord from P l to P3 is called the parabolic segment between P l and P3 ; 

the chord between P l and P3 is said to be the base of the parabolic segment 
between P l and P3 and the point P2 is said to be the vertex of the parabolic 
segment between P l and P3 • The vertex P2 of the parabolic segment between 
P l and P3 is that point on the parabolic arc connecting P l and P3 from which 
the perpendicular to the base is the greatest. 

Given the parabolic segment between P l and P3 with vertex P2 , the para­
bolic arc is assumed to satisfy equation (5.1). Our problem is the determina­
tion of the area of this parabolic segment. We shall do this in two steps: We 
show that 
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y 

----+-~------L-----L-----~----~_7 x 

Figure 5.1 

(i) the area of the triangle !::"PIP2P3 is equal to Ah3 and 
(ii) the area of the parabolic segment between PI and P3, having vertex P2, is 

1 times the area of the triangle !::"PI P2P3. 

Let M denote the center of the chord from PI to P3; then M has the 
coordinates 

M = (Xl + X3 YI + Y3) 
2 ' 2 . 

The point P2 has the coordinates (X2'Y2), where 

X2 = Xl; X3 and Y2 = f(XI ; X3) with f(x) = AX2 + Bx + c. 

The distance between the points M and P2 is 

YI;Y3_ f (X I ;X3) 

= Axi + BXI + c; Ax~ + BX3 + C _ A(XI ; X3 Y _ Bel; X3) _ C 

A 2 2 A 2 = 2(xl + x 3 ) - "4(x l + x 3 ) 

A 2 = "4(x 3 - xd . 
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But the area of the triangle 6Pl Pz P3 is 

i(x3 - xd x (distance between the points M and Pz)· 

Therefore, the area of the triangle 6Pl Pz P3 is 

A 3 3 
g(x3 - Xl) = Ah . 

5. Integration 

Summing up, the area of the triangle 6Pl PZ P3 situated above an interval of 
length 2h equals Ah3 . 

Note that we have inscribed in the parabolic segment with base Pl P3 and 
vertex Pz the triangle 6Pl PZ P3; the triangle 6Pl PZ P3 and the parabolic 
segment between Pl and P3 have the same base P1P3 and the same vertex Pz. 
The area of the triangle 6Pl PZ P3 is clearly less than the area of the parabolic 
sector between Pl and P3; moreover, the triangle 6Pl PZ P3 is easily seen to 
be the triangle of largest area with base Pl P3 that can be inscribed in the 
parabolic arc with base P1 P3 • We also note the following: If one constructs 
through Pz a parallel to the chord Pl P3, then this parallel forms a side of the 
parallelogram Pl Q 1 Qz Q3 (see Figure 5.1) which completely contains the 
parabolic sector between Pl and P3 . In fact, the segment Ql Q3 is tangent to 
the parabolic arc between Pl and P3 at Pz and the area of the parallelogram 
P1Q1Q3P3 is exactly twice the area of the triangle 6P1PZ P3. Therefore, the 
area of the parabolic segment with base Pl P3 situated above an interval of 
length 2h is strictly between the numbers 

Ah3 and 2Ah3 

with the parabolic curve under consideration satisfying equation (5.1). 
We now proceed to show that the area of the parabolic segment with base 

Pl P3 and vertex Pz is 1 times the area of the triangle 6Pl PZ P3 with base Pl P3 

and vertex Pz. 
First, we inscribe in the parabolic segment with base Pl P3 and vertex Pz 

the triangle 6Pl Pz P3. Second, within each of the two smaller parabolic 
segments with bases Pl Pz and PZ P3 we inscribe the triangles 6Pl P4 PZ and 
6PZ PSP3 (see Figure 5.1). The parabolic segment with base P1PZ (respec­
tively, base PZ P3) and vertex P4 (respectively, vertex Ps) has the same base 
and vertex as the triangle 6Pl P4 PZ (respectively, triangle 6PZ PS P3). The 
abscissa X4 is the midpoint of the interval from Xl to Xz and the abscissa Xs 

is the midpoint of the interval from Xz to X 3. The area of the triangle 6Pl P4 PZ 

(respectively, triangle 6PZ PS P3) situated above an interval of length h equals 

Ah3 

8 

and hence both triangles 6P1P4 PZ and 6PZ PSP3 together have a total area of 

±Ah3 . 

Accordingly, the polygon Pl P4 PZ PS P3 has area 
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(1 + !)Ah3 . 

Next, we inscribe triangles within each of the four parabolic segments, the 
bases of which are, respectively, P1P4 , P4 P2 , P2 PS ' and PS P3 ; the correspond­
ing vertices are so chosen that the vertex of the parabolic segment and the 
vertex of its inscribed triangle coincide. 

Continuing this process, at the nth stage we have a polygon with area 

( 1 1 1 ) qn = 1 + 4 + 42 + ... + 4n- 1 Ah3• 

The difference between the area of the polygon and the area of the parabolic 
segment with base PI P3 is nonnegative and tends to zero as n becomes 
arbitrarily large. The area of the parabolic segment with base PI P3 is given by 

Putting 

we get 

and so 

implying that 

lim qn. 
n-+oo 

1 1 1 1 
-s =-+-+ ... +-
4 n 4 42 4n 

3 1 
-s = 1 - - or 4 n 4n 

r 4 
1m Sn = -3' 

n-+oo 

lim q = ~Ah3 
n-+oo n 3 . 

Thus, the area of the parabolic segment is i times the area of the inscribed 
triangle having the same base and vertex as the parabolic segment. 

We now add some remarks concerning the calculation of the area of a 
parabolic segment. Commencing with the triangle /::"P1P2 P3 , we add the two 
triangles /::"P1 P4 P2 and /::"P2 PSP3 , then we add four triangles, and so on, each 
time doubling the number of triangles in the previous step. If instead of 
doubling the number of triangles in the nth step, one quadruples the number 
of triangles, one can see that one exceeds the area of the parabolic segment 
under investigation. In this connection, recall that the area of the parallel­
ogram PI Ql Q2Q3 has twice the area of the triangle /::"P1P2 P3 and contains 
completely the parabolic segment with base P1 P3 • Hence, the area of the 
parabolic segment with base PI P3 differs from the area of the triangle 
/::"P1P2 P3 by a factor which is larger than 
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1 1 1 1 
Sn = 1 + 4 + 42 + ... + 4n-2 + 4n-1 

but which is less than 

Clearly, Sn increases as n gets larger; however, 

1 

and so Sn decreases as n gets larger. For n = 2, 3, ... , the closed intervals 

I n = [sn, SnJ, 

where I n has length 1/4n- 1, form a nested sequence of intervals; the point l' is 
the unique point common to all intervals I n • 

COMMENT. Archimedes of Syracuse died in 212 B.C. The mathematicians 
Gilles Personne de Roberval and Pierre de Fermat, to whom the next two 
examples are due, lived in the 17th century. 

EXAMPLE 2 (The Quadrature of the Cycloid by Roberval). The curve traced 
by a point on a circle as the circle rolls on a straight line without slipping is 
called a cycloid; the rolling circle is referred to as the generating circle of the 
cycloid. 

To find simple parametric equations of the cycloid, we let the fixed line on 
which the circle rolls be the x-axis and we place the origin at one of the places 
where the tracing point comes into contact with the x-axis. 

Denote the center of the rolling circle by C and its radius by a. Let the 
point P with the coordinates (x, y) be any position of the tracing point, and 
choose for a parameter the angle t through which the line segment CP has 
turned from its position when P was at the origin (see Figure 5.2). We assume 
that the generating circle is rolling to the right on top of the x-axis, that t is 

y 

----+-~~~--------~-------------L~x 
o 1Ta 

Figure 5.2 
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expressed in radian measure, and that the positive direction for t is clockwise. 
While the cycloid consists of infinitely many congruent arches, we are only 
interested in the arch extending from x = 0 to x = 2na. Our purpose is to 
show that the area of the region bounded by the arch of the cycloid extending 
from x = 0 to x = 2na and the x-axis is three times the area of the generating 
circle, that is, 3na2 . 

Since the generating circle rolls along the x-axis without slipping, the 
distance from a to N equals the length of the arc of the generating circle from 
P to N in the counterclockwise direction. From Figure 5.2 we can see that 

ON = at, QC = a(cott), PQ = asint. 

Thus, 

x = ON - PQ = a(t - sin t) and y = NC - QC = a(l - cos t). 

Therefore, the parametric equations of the arch of the cycloid extending from 
x = 0 to x = 2na are 

x = a(t - sint), y = a(l - cos t) with 0 :$; t :$; 2n. 

By the companion to the cycloid we mean the curve with the parametric 
equation 

x = at, y = a(1 - cos t) with 0 :$; t :$; 2n; 

note that the point Q is on the companion to the cycloid and that the line 
segment from P to Q has precisely the same length as the cross-section of the 
semicircle at the level y = a(1 - cos t); see Figure 5.3 for an illustration of the 
companion to the cycloid. 

Let M be the point with coordinates (na/2, a). It is easy to see that the curve 

x = at, y = a(1 - cos t) with 0 :$; t :$; n 

is mapped onto itself by a rotation through n about the point M; note that 

a( 1 - cos t d + a (1 - cos {~ - t 1 } ) = 2a 

for any t 1 satisfying 0 :$; t 1 :$; n/2. Hence, the curve 

y 

~~~~+~~~ornpanion to 
the cycloid 

Figure 5.3 
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x = at, y = a(l - cos t) with ° ::;; t ::;; n 

divides the rectangle with vertices (0,0), (na,O), (na,2a), and (0,2a) into two 
congruent regions. Thus, the region bounded by the companion to the 
cycloid 

x = at, y = a(l - cos t) with ° ::;; t ::;; 2n 

and by the x-axis has area precisely half as large as the area of the rectangle 
with vertices (0,0), (2na,0), (2na,2a), and (0,2a). Consequently, the region 
bounded by the companion to the cycloid and by the x-axis has area 2na2. 

On the other hand, the region bounded by the arch of the cycloid extend­
ing from x = ° to x = 2na and the companion to the cycloid has the same 
area as the generating circle, namely, na2 ; the areas of two enclosed plane 
figures are equal provided that any system of parallel lines cuts off equal 
intercepts on each. Thus, the area of the region bounded by a full arch of a 
cycloid and the x-axis is three times the area of the generating circle. 

EXAMPLE 3 (The Quadrature of y = AxC by Fermat). Consider the region 
enclosed by the curve y = Ax c, the x-axis, and the two straight lines x = a, 
x = b with ° < a < b, where the coefficient A and the exponent c are arbi­
trary but fixed real numbers. To determine the area of the region under 
consideration, we insert between a and b, n - 1 geometric means so as to 
obtain the sequence 

a, a(1 + v), a(l + V)2, ... , a(l + vrl, b, 

where the number v satisfies the condition a(1 + v)" = b. Taking this set of 
numbers as the abscissas of the points of division of the interval [a,b], the 
corresponding ordinates have the following values: 

Aac, AaC(l + vy, AaC(1 + V)2c, ... , AaC(l + Vl"-1)C, AbC, 

and the area of the pth rectangle is 

[a(1 + v)p - a(1 + V)P-1 ]AaC(l + V)(p-1)C = Aac+1v(1 + V)(p-1)(c+1). 

Hence, the sum of the areas of all the rectangles is 

Aac+1v[1 + (1 + vy+1 + (1 + V)2(C+1) + ... + (1 + Vl"-1)(c+1)]. 

If c + 1 #- 0, as we shall suppose first, the sum inside the parentheses is 
equal to 

(1 + v)"(C+1) - 1 

(1 + vy+1 - 1 ' 

or, replacing a(1 + v)" by b, the sum of the areas of all the rectangles may be 
written in the form 

c+1 c+1 v 
A(b - a ) (1 + vy+1 _ 1 . 
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As V tends to zero the quotient 

(1 + V)C+l - 1 

v 
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approaches as its limit the derivative of (1 + v)C+1 with respect to v for v = 0, 
that is, c + 1; hence, the area of the region under consideration is 

A(bc+1 _ aC+1 ) 

c+l 

If c = -1, this calculation no longer applies. The sum of the areas of the 
inscribed rectangles is equal to nAv, and we have to find the limit of the 
product nv, where n and v are connected by the relation a(1 + vt = b. Hence, 

nv = (In~)ln(lv+ v) = (In~)ln(1 ~ V)l/V' 

As v tends to zero, (1 + V)l/v tends to e, and the product nv tends to In(b/a). 
Therefore, the required area equals A In(b/a). 

2. Area of a Planar Region 

Suppose that one has marked off a region of the x, y-plane with the help of a 
curve; it is intuitively clear that the region has an area. However, how is one 
to define this area arithmetically? If the region is a rectangle, the area of the 
region is taken to be the product of the length and the width of the rectangle. 
When at least part of the boundary of the region is curved, however, the 
definition of the area of the region is no longer obvious. 

For the moment we restrict attention to particularly simple regions and 
consider only those bounded by the x-axis, the lines x = a and x = b with 
a < b, and the curve y = f(x). Moreover, we assume that the function y = 
f(x) is continuous on the closed interval [a,b] and that f(x) ~ 0 for all x 
satisfying a :$; x :$; b. The theory of the area of general regions bounded by 
curves can be reduced to the case of these special regions. Let us note at once 
that the restriction concerning the sign of f on [a, b] is not of a serious 
nature. Indeed, if f is a continuous function on [a, b] which changes sign, we 
can introduce the continuous (recall the content of Proposition 2.8) non­
negative functions 

fl(X) = t{lf(x)1 + f(x)} and f2(X) = t{lf(x)1 - f(x)} 

and put f = fl - f2; see Figure 5.4. 
To define the area I of a region F, we divide the interval [a, b] into n 

subintervals with the help of the points 

(5.2) 
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Figure 5.4 
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Figure 5.5 

x = b 
n 
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and draw lines parallel to the y-axis through the points X k , k = 0, 1, ... , n. In 
this way the region F is divided into n strips. Into each of these strips we draw 
the largest rectangle which still fits entirely into the region (see Figure 5.5). 
The area of the kth of these rectangles is 

(Xk - xk-l}mk, where mk = min{J(x): Xk-l :::; x :::; Xk}. 

We clearly must define the area of F making it at least as large as the sum 
n 

S = (Xl - xO}ml + (X2 - x l }m2 + ... + (xn - xn-dmn = L (Xk - xk-dmk 
k=l 

of the areas of these rectangles. Now, the number s will depend on the num­
ber and the special choice of the points X k• The set of all numbers s which 
can be found by different choices of the subdivision (5.2) will be denoted by 
Y. It seems apparent that we shall have to define I in such a way as to have 
numbers s in Y arbitrarily close to I. Thus, we are compelled to set I equal 
to the least upper bound 1 of all numbers sin Y, that is, 1 = sup Y. 

However, we can also obtain the definition of the area I of the region F by 
considering, instead of the rectangles lying inside F, those rectangles that 
cover F. We again draw lines parallel to the y-axis through the points Xk of 
the subdivision (5.2), dividing F into n strips. But now for each strip we find 
the smallest rectangle which still contains the strip (see Figure 5.6). The area 
of the region of the kth of these rectangles is 

(Xk - xk-dMk, where Mk = max {J(x}: Xk- l :::; x :::; xk}· 

We evidently must define the area I of F so as to have it at most as large as 
the sum 
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y 

y f(x) 

----+---~--~----~---------------L------~~~x 
X = b 

n 

Figure 5.6 
n 

S = (Xl - XO)Ml + (X2 - x l )M2 + ... + (Xn - xn-l)Mn = L (Xk - xk-dMk 
k=l 

of the areas of all these rectangles. The set of all the numbers S which can be 
obtained by different choices of the subdivision (5.2) of the interval [a, bJ will 
be denoted by g. It again seems apparent that I must be so defined that there 
are numbers S in g arbitrarily close to 1. One is thus compelled to set I equal 
to the greatest lower bound I of all numbers S in g, that is, 1= inf g. 

We have thus seen that I = 1 and I = I must hold. However, it is not clear 
from the start that the numbers 1 and I coincide. A complete theory of area 
with the first goal of a correct definition of a numerical value for area of a 
region must verify the equation 

(5.3) 

The proof of this equation is a purely arithmetic problem. The equation is a 
statement about continuous functions. The class of functions for which a 
statement corresponding to equation (5.3) holds is far greater than the set of 
continuous functions. In the next section we review the train of thought 
which led us to equation (5.3); the approach will be purely arithmetic and will 
avoid geometric considerations and visualizations. 

3. The Riemann Integral 

Definition. Let [a, bJ be a closed interval of finite length. By a partition P of 
[a, bJ we mean any finite set of points Xo, Xl' ... , Xn such that 

a = Xo < Xl < ... < Xn = b. 
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We write, for 1 ~ k ~ n, 

and denote by 

IIPII = max {AXk: 1 ~ k ~ n}; 

II P II is called the mesh of the partition P. 
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Definition. A partiton P* of [a, b] is called a refinement of a partition P of 
[a,b] (in symbols, p* =:> P) if every point of P is a point of P*. Given two 
partitions P1 and Pz of [a, b], we call p* = P1 U Pz their common refinement. 
P* is said to be finer than P if P* =:> P. 

REMARK. It is clear that the common refinement of two partitions of an 
interval is actually a refinement of each. 

Definition. Let f be a bounded real-valued function on a closed interval [a, b] 
of finite length, that is, there are two numbers, m and M, such that 

m ~ f(x) ~ M for a ~ x ~ b. 

Corresponding to each partition P of [a, b] we put 

Mk = sup{J(x): Xk- 1 ~ x ~ xk}, 

mk = inf{J(x): Xk- 1 ~ x ~ xk}, 

and define the upper and the lower Darboux sums of f relative to P by, 
respectively, 

finally, we put 

n n 

U(P,J) = L MkAk and L(P,J) = L mkAk; 
k=l k=l 

f f(x)dx = infU(P,J), 

r f(x) dx = sup L(P,J), 

(5.4) 

(5.5) 

where the infimum and the supremum are taken over all partitions P of 
[a, b]. The left-hand members of (5.4) and (5.5) are called the upper and the 
lower Riemann integrals off over [a, b], respectively. If the upper and the 
lower Riemann integrals are equal, we say that f is Riemann integrable on 
[a, b] and we denote the common value of (5.4) and (5.5) by the symbol 

b r f(x) dx or f f(x) dx 

a 
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and call it the Riemann integral off over [a,b]. When talking about the 
Riemann integral of f over [a, b] we assume that f is bounded and [a, b] is 
of finite length. 

REMARK. To see that the upper and lower Riemann integrals exist for every 
bounded function f on a closed interval [a, b] of finite length, we observe 
that the numbers L(P,J) and U(P,J) form a bounded set. Indeed, since f is 
bounded, 

m :::;; f(x) :::;; M for a :::;; x :::;; b; 

hence, for any partition P of [a, b], we have 

m(b - a) :::;; L(P,J) :::;; U(P,J) :::;; M(b - a). 

Proposition 5.1. Let f be a bounded function on [a, b]. If P and P* are partitions 
of [a,b] and Pc P*, then 

L(P,J) :::;; L(P*,J) :::;; U(P*,J) :::;; U(P,J). 

PROOF. The middle inequality is obvious. The verifications of the first and the 
third inequalities are similar and so we will only prove 

L(P,f) :::;; L(P*,J). 

We suppose first that P* contains only one more point than P. Let x* be this 
extra point and assume that Xk- I < x* < xk, where Xk- I and Xk are two 
consecutive points of P. We put 

Letting, as before, 

WI = inf{J(x): Xk-I :::;; x :::;; x*}, 

W2 = inf{J(x): x* :::;; x :::;; x k }. 

mk = inf{J(x): X k- I :::;; x :::;; xd, 

we see that WI ~ mk and W2 ~ mk • Thus, 

L(P*,J) - L(P,J) = wI(x* - Xk - I) + W 2 (Xk - x*) - mk(xk - Xk- I) 

= (WI - mk)(x* - xk-d + (W2 - mk)(xk - x*) (5.6) 

~O. 

If p* contains j points more than P, we repeat the above reasoning j times, 
and arrive at the inequality L(P,J) :::;; L(P*,J). 0 

Proposition 5.2. Let f be a bounded function on [a, b] and PI and P2 be any 
partitions of [a, b]. Then 
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PROOF. Let P* = PI U P2, the common refinement of PI and P2. By Proposi­
tion 5.1 we have 

because PI C P* and P2 c P*. 

Proposition 5.3. Iffis a boundedfunction on [a,b], then r f(x) dx:::;; r f(x) dx. 

PROOF. By Proposition 5.2, for any partitions PI and P2 of [a, b], 

L(PI,f) :::;; U(P2,f)· 

o 

By keeping P2 fixed, and taking the supremum over all PI' the foregoing 
inequality gives r f(x)dx :::;; U(P2 ,f)· 

The claim of the proposition now follows by taking the infimum over all P2 

in the foregoing inequality. 0 

Proposition 5.4. A bounded function f on [a, b] is Riemann integrable over [a, b] 
if and only if for any e > 0 there exists a partition P of [a, b] such that 

U(P,f) - L(P,f) < e. 

PROOF. Using Proposition 5.3, we see that 

L(P,f):::;; r f(x)dx:::;; r f(x)dx :::;; U(P,f), 

where P denotes any partition of [a, b]. Inequality (5.7) therefore implies 

0< r f(x)dx - r f(x)dx < e. 

Thus, if (5.7) holds for any e > 0, then r f(x)dx = r f(x)dx, 

implying that f is Riemann integrable over [a, b]. 

(5.7) 

Conversely, suppose that f is Riemann integrable over [a, b] and let e > 0 
be given. Then there are partitions PI and P2 of [a, b] such that 

f.b e f.b e 
U(P2,f) - a f(x)dx < 2 and a f(x)dx - L(PI,f) < 2' (5.8) 
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Let P be the common refinement of PI and P2. Then, by Proposition 5.3, 
together with (5.8), we get 

U(P,J)::;; U(P2,J) < r f(x)dx + ~ < L(Pl,J) + 8 ::;; L(P,J) + 8; 

thus (5.7) holds for the partition P = PI U P2. o 
REMARK. In the foregoing proof we have used the following fact: If A and B 
are fixed real numbers such that A ~ B and A - B < 8 for any 8 > 0, then 
A = B. Indeed, if A # B was possible, then A - B = IX > 0 and so 8 > IX 

would follows. 

Proposition 5.5. A bounded function f on [a, b] is Riemann integrable over [a, b] 
if and only if for any 8 > 0 there exists some () > 0 such that 

II P II < () implies U(P,f) - L(P,J) < 8 

for all partitions P of [a, b ]. 

(5.9) 

PROOF. Proposition 5.4 shows that the condition (5.9) implies the Riemann 
integrability of f. 

Conversely, assume that f is Riemann integrable over [a, b]. Let 8 > 0 and 
pick a partition 

Po = {a = to < t 1 < ... < tm = b} 

of [a, b] such that 

8 
U(Po,J) - L(Po,J) < "2. (5.10) 

Since f is bounded, there exists B > 0 such that If(x) I ::;; B for all x in [a,b]. 
Let () = 8/8mB with m being the number of intervals comprising Po. 

To verify (5.9), we consider any partition 

P = {a = Xo < Xl < ... < Xn = b} 

with mesh II P II < (). Let Q = P u Po. If Q has one more element than P, then 
a look at relation (5.6) in the proof of Proposition 5.1 reveals that 

L(Q,J) - L(P,J) ::;; 2B· II P II· 

Since Q has at most m elements that are not in P, we see that 

8 
L(Q,J) - L(P,J)::;; 2mB·IIPII < 2mB{) = 4. 

By Proposition 5.1 we have L(Po,J) ::;; L(Q,J) and so 

8 
L(Po,J) - L(P,J) < 4· 
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Similarly, U(P,f) - U(Po,f) < 6/4 and so 

6 
U(P,f) - L(P,f) < U(Po,f) - L(Po,f) + 2' 

Now (5.10) shows that U(P,f) - L(P,f) < 6 and we have verified (5.9). 0 

Definition. Let [a,b] be a closed interval of finite length and f a bounded 
function on [a, b]. Take a partition 

P = {a = Xo < Xl < ... < Xn = b} 

of [a, b]. With tk selected such that X k - 1 ::; tk ::; Xk for k = 1, ... , n, form the 
sum 

n 

S(P,f) = L f(tdfl.xk, where fl.Xk = Xk - X k- 1 ; 
k=l 

the number S(P,f) is called a Riemann sum off associated with the partition P. 
The choice of the tk'S is arbitrary apart from the restriction X k- 1 ::; tk ::; Xk for 
k = 1, ... , n and so there are infinitely many Riemann sums associated with 
a single function and partition. The notation 

lim S(P,f) = A, 
jjpjj .... o 

(5.11) 

where A is a real number and II P II denotes the mesh of P, means that for any 
6 > 0 there is some ~ > 0 such that for any partition P of [a, b] with II P II < ~ 
and for any.possible Riemann sum S(P,f) associated with P, the inequality 

IS(P,f) - AI < 6 

is satisfied. 

REMARKS. In analogy to Proposition 2.3 we can show that if 

lim S(P,f) = A and lim S(P,f) = B, 
IIPIl .... o IIpll .... o 

then A = B; in other words, if the limit exists, it is unique. 
Equivalent to the foregoing definition of the notation (5.11) is the follow­

ing: For any 6 > 0 there is some partition p. of [a, b] such that 

IS(P,f) - AI < 6 

holds for all partitions P :::> p. of [a, b], where S(P,f) is any Riemann sum 
associated with P. 

Proposition 5.6. Let f be a bounded function on [a, b]. Then f is Riemann 
integrable over [a, b] if and only if 

lim S(P,f) = A. 
jjPjj .... o 
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Moreover, r f(x)dx = A. 

PROOF. Suppose first that f is Riemann integrable over [a,b]. Let 6 > 0, and 
let (j > 0 be chosen so that condition (5.9) in Proposition 5.5 is satisfied. We 
verify that 

(5.12) 

for every Riemann sum S(P,f) associated with a partition P with II P II < (j. 

Obviously, we have 

L(P,f) ~ S(P,f) ~ U(P,f) 

and so (5.12) follows from the inequalities 

U(P,f) < L(P,f) + 6 ~ r f(x)dx + 6 = r f(x)dx + 6 

and 

L(P,f) > U(P,f) - 6 ~ f f(x)dx - 6 = r f(x)dx - 6. 

This proves (5.12); hence, 

lim S(P,f) = fb f(x)dx. 
IiPll-o a 

Now suppose that limliPIi-O S(P,f) exists and is equal to A. Let 6 > 0 be 
given. From the definition of the notation in (5.11) we see that there exist 
some (j > 0 such that II P II < (j implies 

(5.13) 

We choose one such partition 

P = {a = Xo < Xl < ... < Xn = b}. 

If we let the points tk range over the intervals [Xk-l,Xk] and take the 
supremum and the infimum of the numbers S(P,f) so obtained, (5.13) yields 

Thus, 

6 6 
A - "2 ~ L(P,f) ~ U(P,f) ~ A + 3· 

26 
U(P,f) - L(P,f) ~ "3 < 6 
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and f is seen to be Riemann integrable over [a, b] by Proposition 5.4. Since 

L(P,f)::; r f(x) dx ::; U (P,f), 

it follows that 

lim S(P,f) = fb f(x) dx. 
IIPII-o a 

This completes the proof. 

Proposition 5.7. Let (J and w be arbitrary positive numbers and f be a bounded 
function on an interval [a, b] of finite length. Then f is Riemann integrable over 
[a, b] if and only if there is a mode of division of [a, b] into subintervals such 
that the sum of the lengths of the subintervals in which the oscillation off is 
greater than or equal to w is less than (J. 

PROOF. Let P = {a = Xo < Xl < ... < Xn = b} be a partition of [a,b] and 
consider the sum 

n 

Z(P,f) = L Wk 8xk, 
k=l 

(i.e., W k is the oscillation of f in the interval [Xk-l,Xk ]). We let 

Q=M-m, 

where 

M = sup{!(x): a ::; X ::; b}, m = inf{!(x): a ::; x ::; b}, 

and denote the length of the interval [a, b] by K. 
We now derive bounds for Z(P,f); incidentally, Z(P,f) = U(P,f) -

L(P,f). Let b be the sum of the lengths of the subintervals obtained by the 
partition P in which the oscillation of f is greater than or equal to w. Then 

Z(P,f) ;;::: bw. (5.14) 

But in these subintervals the oscillation of f is less than or equal to Q and in 
the remaining subintervals (the sum of whose lengths is K - b) the oscillation 
of f is less than w. Thus, 

Z(P,f) ::; bQ + (K - b)w. 

Since K - b ::; K, we see that 

bw ::; Z(P,f) ::; bQ + KQ. 

If f is Riemann integrable over [a, b], then by Proposition 5.4 there exists 
a partition P such that for any preassigned positive numbers (f and co we have 
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Z(P,f) S W(J. (5.15) 

From (5.14) and (5.15) it follows that (jw < W(J, that is, (j < (J. 

Conversely, if there exists a partition P for which (j < w, we choose 

e e 
W = 2K and (j = 2Q' 

Then Z(P,J) S (jQ + KQ < el2 + el2 = e. o 
Proposition 5.S. Let fl'/2, ... , it be Riemann integrable functions over [a, b] 
and suppose that f is a function defined on [a, b]. Suppose there exist positive 
numbers "1' "2""'''q such that on any subinterval J of [a, b] we have 

w(f, J) s "1 W(fl, J) + "2 w(f2, J) + ... + "qw(it, J), 

where w(f, J) denotes the oscillation of the function f on J and w(ij, J) the 
oscillation of ij on J for j = 1, ... , q, then f is also Riemann integrable over 
[a,b]. 

PROOF. Let P be the partition 

P = {a = Xo < XI < ... < Xn = b} 

of [a, b]. Since 

w(f,[Xk- 1 ,Xk]) = sup{J(x): Xk-l s x S Xk} - inf{J(x): Xk- 1 S x S Xk}' 

we have 
n 

U(P,J) - L(P,J) = I w(f,[Xk- 1 ,xk])dxk 
k=1 

q n 

S I "j I w(ij, [Xk- 1 , xk])dxk 
j=1 k=1 

q 

= I "j{U(P,ij) - L(P,ij)}. 
j=1 

The claim now easily follows from Proposition 5.4. Indeed, for a given B > 0 
we select a partition P such that 

B 
U(P,ij) - L(P,ij) < -----

"1 +"2 + ... +"q 
holds for all j = 1, ... , q. o 
Proposition 5.9. Let f and g be Riemann integrable functions over [a, b]. Then 
each of the following functions is Riemann integrable over [a, b]: 

(i) IXf + Pg, where IX and P are any fixed real numbers; 
(ii) If I; 

(iii) fg; 
(iv) fig provided that inf{lg(x)l: a S x S b} > O. 



3. The Riemann Integral 26S 

PROOF. We apply Proposition S.8. To obtain the verification of claims (i) and 
(ii) we only need to note that for any subinterval J of [a, b] we have 

w(a.f + Pg,J):s; 1a.lw(f,J) + IPlw(g,J) (S.16) 

and 

w(lfl, J) :s; w(f, J). (S.17) 

However, (S.16) and (S.17) can be deduced from the inequalities 

Ia.f(x) + pg(x) - a.f(t) - Pg(t)1 :s; Ia.llf(x) - f(t) 1 + IPllg(x) - g(t)1 

and 

I 1 f(x) 1 -If(t)11 :s; If(x) - f(t)l, 

where x and t are points of the interval J. (In connection with the foregoing 
inequalities see Proposition 2.1 and the comments following it.) 

To prove claim (iii) we also apply Proposition S.8 and observe that for any 
subinterval J of [a,b] we have 

w(fg, J) :s; Y 1 w(f, J) + Y 2 w(g, J), 

where 

Yl = sup{lg(x)l: a:s; x :s; b} and Y2 = sup{lf(x)l: a :s; x :s; b} 

because, for any two points x and t in J, 

If(x)g(x) - f(t)g(t)1 :s; If(x) [g(x) - g(t)] + g(t) [f(x) - f(t)]l 

:s; sup{lf(s)l: a :s; s :s; b}lg(x) - g(t)1 + sup{lg(s)l: a :s; s :s; b}lf(x) - f(t)l. 

To prove claim (iv) we only need to establish that l/q is Riemann inte­
grable; the rest follows from claim (iii). Noting that 

1
1 1 I 1 

g(x) - g(t) = Ig(x)llg(t)llg(x) - g(t)1 :s; Ylg(x) - g(t)l, 

where 

1 
Y = ~::-;-:-""""""'-------::-7= 

(inf{lg(s)l: a :s; s :s; bW (S.18) 

and x and t are any two points of a subinterval J of [a, b], it follows that 

w G, J) :s; yw(g, J), (S.19) 

where y is given by (S.18). But (S.19) ensures that l/g is Riemann integrable 
over [a,b] via Proposition S.8 provided that inf{lg(s)l: a:s; s:s; b} > O. 0 

Proposition 5.10. Let f and g be Riemann integrable over [a, b] and let a. and 
P be any fixed real numbers. Then 
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f {exf(x) + f3g(x)} dx = ex f f(x) dx + 13 f g(x) dx. (5.20) 

PROOF. Let P = {a = Xo < Xl < ... < Xn = b} be a partition of [a,b] and tk 
satisfy Xk- l :$; tk :$; Xk for k = 1, ... , n. Then for any e > 0 there exist b l > 0 
and b2 > 0 such that 

lex ktl f(tk)fhk - ex f f(X)dXI < ~ whenever IIPII < b l 

and 

113 ktl g(tk)~Xk - 13 f g(X)dXI < ~ whenever IIPII < b2 , 

where ~Xk = Xk - Xk- l for k = 1, ... , n. Thus, whenever IIPII < min{b l ,b2 }. 

I ktl {exf(tk) + f3g(tk)} ~Xk - (ex f f(x) dx + 13 f g(x) dX) I 

:$; I ex t f(tk)~Xk - ex fb f(x) dx I + 113 t g(tk)~Xk - 13 fb g(x) dx I < e 
k-l a k-l a 

showing that exf + f3g is Riemann integrable over [a,b] and that (5.20) is 
satisfied. 0 

Proposition 5.11. Iff and 9 are Riemann integrable over [a, b] and iff(x) :$; g(x) 
for all X in [a, b], then J~ f(x) dx :$; J~ g(x) dx. 

PROOF. By Proposition 5.9, h = 9 - f is integrable over [a, b]. Since h(x) ~ 0 
for all X in [a, b], it is clear that L(P, h) ~ 0 for all partitions P of [a, b] and so 

f h(x)dx = f h(x)dx ~ 0 

Applying Proposition 5.10, we see that J~g(x)dx - J~f(x)dx = J~h(x)dx ~ 0 
and the proof is complete. 0 

Proposition 5.12. Iff is Riemann integrable over [a, b], then If I is Riemann 
integrable over [a, b] (by Proposition 5.9) and 

If f(X)dxl:$; flf(X)ldX. (5.21) 

PROOF. Since we know already that If I is Riemann integrable over [a,b], 
Proposition 5.11 applied to the inequality -If I :$; f :$; If I shows that 

-f I f(x) I dX:$; f f(x)dx:$; f If(x) I dx 

and so (5.21) follows. o 
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Proposition 5.13. Iff is Riemann integrable over [a, b] and if a < c < b, then f 
is Riemann integrable over both [a,c] and [c,b], and 

f f(x)dx + r f(x)dx = r f(x)dx. 

PROOF. Let 8 > 0 be given. Choose a partition P of [a, b] such that 

U(P,f) - L(P,f) < 8. 

In view of Proposition 5.4 we may (and do) suppose that c is a point of P; say 

P = {a = Xo < ... < Xm = C < X m+1 < ... < Xn = b}. 

Let 

Pi = {a = Xo < ... < Xm = c} and P2 = {c = Xm < ... < Xn = b}. 

Then 

[U(Pl,f) - L(Pl,f)] + [U(P2,f) - L(P2,f)] = U(P,f) - L(P,f) < 8. 

It follows that f is Riemann integrable over both [a, c] and [c, b J Let 

f f(x)dx = Ki and r f(x)dx = K 2· 

Clearly, 

O:<s:: U(Pl,f) - Kl < 8 and O:<s:: U(P2,f) - K2 < 8. 

Adding these two inequalities, we obtain 

O:<s:: U(P,f) - (Kl + K 2) < 28. 

Since a similar statement is true for L(P,f), we conclude that r f(x)dx = Kl + K2 

and the proof is complete. D 

Proposition 5.14. Let f be a function defined on [a, b J If a < c < b and iff is 
Riemann integrable over [a, c] and over [c, b], then f is Riemann integrable over 
[a, b] and r f(x)dx = f f(x)dx + r f(x)dx. 

PROOF. Since f is bounded on both [a,c] and [c,b], f is bounded on [a,bJ 
Let 8> O. By Proposition 5.4 there exist partitions P1 of [a, c] and P2 of [c, b] 
such that (we decorate in this proof upper and lower sums of that it will be 
clear with which intervals we are dealing) 
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The set P = PI U P2 is a partition of [a, b] and it is clear that 

U%(P,f) = U%(PI,f) + U%(P2,f) 

with a similar identity for lower sums. It follows that 

U%(P,f) - L~(P,f) < s 

(5.22) 

and so f is Riemann integrable over [a, b] by Proposition 5.4. Also (5.22) 
holds because r f(x)dx:-:;; U%(P,f) = U%(PI,f) + U%(P2,f) < L~(PI,f) + L~(P2,f) + S 

:-:;; f f(x)dx + r f(x)dx + s 

and, similarly, r f(x)dx > f f(x)dx + r f(x)dx - s. 

completing the proof. 

Definition. If b < a, we set r f(x)dx = - r f(x)dx 

in case the latter integral exists. Furthermore, we put r f(x)dx = O. 

COMMENTS. In Propositions 5.13 and 5.14 we encountered the equation r f(x)dx = f f(x)dx + r f(x)dx. 

In terms of the foregoing definition we can write (5.23) in the form r f(x)dx + f f(x)dx + ff(X)dX = O. 

o 

(5.23) 

(5.24) 

It is easily seen that (5.24) is universally true whenever the three integrals 
exist, regardless of the order relation between the numbers a, b, and c. 
For example, if c < b < a, then (5.24) holds also. It can also be seen that if 
al> a2 , ••• , ak are a finite number of points situated in an interval [a,b] of 
finite length and if a function f is Riemann integrable over this interval, then 
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L~2 f(x)dx + L:3 f(x)dx + ... + L:k_
1 
f(x)dx + L:lf(X)dX = 0, 

whatever may be the order relation between the points al , a2 , ••• , ak. 
If the order relation between a and b is not specified, then inequality (5.21) 

needs to be written in the form 

If f(X)dxl ~ Iflf(X)ldxl· 

Proposition 5.15. Every monotonic function f on [a, b] is Riemann integrable 
over [a,b]. 

PROOF. Suppose that f is increasing on [a, b]; if f were decreasing; we could 
simply consider the function -f. Since f(a) ~ f(x) ~ f(b) for all x in [a, b], f 
is clearly bounded on [a,b]. Let B > 0 and pick a positive integer n so large 
that 

f(b) - f(a) 
b < nB. 
-a 

For the partition 

P = {a = Xo < Xl < ... < Xn = b}, 

where Xk - Xk- l = L\Xk = (b - a)/n for k = 1, ... , n, we have 

b-a n b-a 
U(P,f) - L(P,f) = - L {!(xk ) - f(Xk-d} = -{!(b) - f(a)} < B. 

n k=l n 

Proposition 5.4 now implies that f is Riemann integrable over [a, b]. D 

Proposition 5.16. Every continuous function f on [a, b] is Riemann integrable 
over [a, b]. 

PROOF. Let B > O. Since [a,b] is assumed to be closed and of finite length, f 
is uniformly continuous on [a, b] by Proposition 2.16. Hence, there exists 
b > 0 such that if x and yare in [a,b] and Ix - yl < b, then 

B 
If(x) - f(y) I < b _ a· (5.25) 

Consider any partition 

P = {a = Xo < Xl < ... < Xn = b}, where IIPII < b. 

Since f assumes its maximum and minimum on each interval [Xk-l' Xk] by 
Proposition 2.13, it follows from (5.25) that 
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for each k, where k = 1, ... , n. Thus, 

n e 
U(P,f) - L(P,f) < k~l b _ a AXk = e 

and Proposition 5.4 implies that f is Riemann integrable over [a, b]. D 

Proposition 5.17. Letfbe Riemann integrable over [a,b], let 

m = inf{f(x): a :$; x :$; b}, M = sup{f(x): a :$; x :$; b}, 

and let 9 be a continuous function on [m, M]. Then the composition function 
h(x) = g[f(x)] is Riemann integrable over [a,b]. 

PROOF. Let e > 0 be given. By the uniform continuity of 9 on [m,M] we can 
find some (jl > 0 such that 

Ig(s) - g(t)1 < e 

if Is - t I < (j 1 and s, t being points of the closed interval [m, M]. Let (j = 
min {(j 1, e}. Corresponding to (j2, choose a partition 

P = {a = Xo < Xl < ... < Xn = b} 

of [a, b] such that 

U(P,f) - L(P,j) < (j2, (5.26) 

which is possible by Proposition 5.4. As usual, let 

mk = inf{f(x): Xk- 1 :$; x :$; Xk} and Mk = sup{f(x): Xk-l :$; x :$; xd 

and let 

mt = inf{h(x): Xk- 1 :$; x :$; Xk} and Mt = sup{h(x): Xk-l :$; x :$; xd. 

Divide the numbers 1, 2, ... , n into two classes: k E A if Mk - mk < (j and k E B 
if Mk - mk ~ (j. 

If k E A and Xk- 1 :$; x :$; Y :$; Xk' then 

If(x) - f(y) I :$; Mk - mk < (j :$; (jl 

and so Ig[f(x)] - g[f(y)] I < e, implying that Mt - mt :$; e since h(x) = 
g[f(x)]. Thus, 

n 

L (Mt - mt)Axk :$; e L AXk = e(b - a). (5.27) 
keA k=l 

If k E B, then Mk - mk ~ (j and we have by (5.26) 
n 

(j L AXk :$; L (Mk - mk)Axk :$; L (Mk - mk)Axk = U(P,f) - L(P,f) < (j2 
keB keB k=l 

and 
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Let K = sup{g(t): m :s; t :s; M}. Then M: - mt :s; 2K and 

L (M: - mt)!l.Xk :s; 2K L ilxk < 2K. 
kEB kEB 

Thus, using (5.27) and (5.28), 

U(P, h) - L(P, h) = L (M: - mt)ilxk + L (M: - mt)ilxk 
kEA kEB 

:s; e(b - a + 2K). 
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(5.28) 

Since e is arbitrary while b - a + 2K is fixed, we see that h is Riemann 
integrable over [a, b] by Proposition 5.4. D 

REMARK. Since f(x) = x is monotonic and hence Riemann integrable over 
[a, b], by Proposition 5.15, it is clear that Proposition 5.16 is a special case of 
Proposition 5.17. 

DISCUSSION. In Example 10 of Section 4 in Chapter 2 we considered the 
function f on [0,1] defined as follows: We let f(O) = f(l) = 1 and 

f(x) = ° for x irrational 

1 p 
for x =-, 

q q 

where q > ° and p and q are integers without common divisor. It was shown 
that f is discontinuous at every rational point x of [0, 1] and continuous at 
every irrational point x of [0, 1]. Figure 5.7 gives an indication of the graph 
of f; the graph in part is reminiscent of the shape of a Christmas tree. We 
observe that f is Riemann integrable. 

Indeed, any lower Darboux sum of f is zero. We next divide the interval 
[0,1] into k3 equal parts. Since there are at most 

1 + 2 + ... + (k _ 1) = ~k(--:k :;c-l ) 

positive proper fractions with denominator :s; k, the upper Darboux sum is 

k(k - 1) 1 2 1 
< 2 k3 + k3 + k' 1. (5.29) 

Note that on at most k(k - 1)/2 subintervals, each oflength l/k\ in the open 
interval (0,1) the values of f are between t and 0, on the subintervals [0, l/k3 ] 

and [(k 3 - 1)/P, 1] the values of f are between 1 and 0, and on the remain­
ing subintervals the sum of whose lengths is at most 1 the values of fare 
between l/k and 0. But the expression in (5.29) tends to zero as k becomes 
arbitrarily large; by Proposition 5.4 we see that f is therefore Riemann 
integrable over [0, 1]. It is simple to see that fbf(x)dx = 0. 

We also note that if g(y) = 1 for ° < y :s; 1 and g(O) = 0, then the function 

hex) = g[f(x)] with ° :s; x :s; 1 
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is not Riemann integrable over [0,1], because 

h(x) = 1 for rational x 

= 0 for irrational x; 

however, 

5 
7 

3 !~ 
4 5 6 

Il h(x) dx = 1 and Il h(x) dx = O. 

5. Integration 

~ 
7 

1 

It can be seen that the function h is discontinuous everywhere on [0,1]. 
How badly discontinuous maya bounded function on a closed interval of 

finite length be and still be Riemann integrable over this interval? The answer 
to this question is in terms of the concept of sets having measure zero: A set 
of points on the x-axis is said to have measure zero if the sum of the lengths 
of intervals enclosing all the points can be made less than any given positive 
number e. The integrability condition in question is: A bounded function on 
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a closed interval of finite length is Riemann integrable if and only if the set of 
discontinuities of the function on this interval has measure zero. Since these 
matters properly belong to Lebesgue's integration theory, a significant exten­
sion of Riemann's integration theory, we shall not pursue this matter further 
here but refer the interested reader to books on real analysis (three such 
works are listed in the Bibliography at the end of this book). 

In a Riemann integral S: f(x) dx the values of f can be changed at a finite 
number of points without affecting either the existence of the value of the 
integral. To verify this, it is enough to consider the case where f(x) = 0 for all 
x in [a,b] except for one point, say x = c. But for such a function it is clear 
that 

I S(P,f) I ~ If(c)I·IIPII. 
Since II P II can be made arbitrarily small, it follows that S: f(x) dx = o. 

A function f on [a, b] is called a step-function if there is a partition 

P = {a = Xo < Xl < ... < Xn = b} 

of [a, b] such that f is constant on each subinterval (Xk-l' Xk), say f(x) = Ck 

for x in (Xk-l, Xk), where k = 1, ... , n. Note that a step-function f is Riemann 
integrable and 

In this connection we only need to recall Proposition 5.14 and observe that 
we can assign at the points of the partition P whatever (finite) values we 
please to the function f. 

Finally, we note the following example: Let w be defined on [0,1] and 

w(x) = (1 - X 2)l/2 when x is rational, 

=1-x when x is irrational. 

Then w is discontinuous everywhere on the open interval (0, 1); moreover, 

Il w(x)dx = ~ and r w(x)dx = ~ 
and so w is not Riemann integrable on [0,1]. 

4. Basic Propositions of Integral Calculus 

Proposition 5.18 (Fundamental Theorem of Calculus I). Let [a, b] be a closed 
interval of finite length. Iff is Riemann integrable over [a, b] and if there exists 
a differentiable function F on [a, b] such that F' = f, then r f(x) dx = F(x) - F(a). (5.30) 
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PROOF. Let B > O. By Proposition 5.4, there exists a partition 

P = {a = Xo < Xl < ... < Xn = b} 

of [a, b] such that 

U(P,J) - L(P,J) < B. (5.31) 

By Proposition 3.1, F is continuous on [a,b]. We apply the Mean Value 
Theorem (see Proposition 4.5) to each interval [Xk-l, Xk], for k = 1, ... , n, to 
obtain tk in the open interval (Xk- 1 , Xk) for which 

F(xk) - F(xk-d = f(tk)(Xk - Xk-l)· 

Hence, we have 
n n 

F(b) - F(a) = L [F(Xk) - F(Xk-d] = L f(tk)Axk, 
k=l k=l 

where AXk = Xk - Xk-l. It follows that 

L(P,J) ~ F(b) - F(a) ~ U(P,J). 

Since L(P,J) ~ J~f(x)dx ~ U(P,J), inequalities (5.31) and (5.32) imply 

I r f(x) dx - [F(b) - F(a)] I < B. 

Since B is arbitrary, (5.30) holds. 

(5.32) 

o 
REMARKS. The assumption that f is Riemann integrable over [a,b] is an 
essential part of the assumptions in Proposition 5.18. For example, the 
function 

. 1 
F(x) = X2 sm 2 for X i= 0 

X 

and F(O) = 0 is differentiable on [0,1], but F' = f is not Riemann integrable 
over [0,1] since it is unbounded. 

Looking back at Example 3 in Section 1 of this chapter, we see that 
Proposition 5.18 produces with a minimum of effort the result 

fb bc+l - ac+1 

xcdx=----
a C + 1 

b 
=In­

a 

for C i= -1, 

for c = -1, 

where a, b, and c are arbitrary but fixed real numbers and 0 < a < b. Another 
example is 

fl 1 n 
-1 --2 dx = -2 . 

-1 + X 

Indeed, letting F(x) = tan-1 x, we have that F'(c) = 1/(1 + X2) which is con-
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tinuous, hence Riemann integrable, when -1 ~ x ~ 1. But F(l) = n/4 and 
F( -1) = -n/4. 

Proposition 5.19 (Integration-by-Parts Formula). Let [a,b] be a closed inter­
val of finite length. If u and v are both differentiable functions on [a, b] and if u' 
and v' are both Riemann integrable over [a, b], then r u(x)v'(x) dx + r u'(x)v(x) dx = u(b)v(b) - u(a)v(a). (5.33) 

PROOF. By Proposition 3.1, u and v are continuous on [a,b] and so, by 
Proposition 5.16, u and v are Riemann integrable over [a,b]. Let g = uv. By 
Proposition 3.2, g' = uv' + u'v. By Proposition 5.9, g' is seen to be Riemann 
integrable over [a, b]. Proposition 5.18 shows that r g'(x)dx = g(b) - g(a) = u(b)v(b) - u(a)v(a) 

and so (5.33) holds. D 

EXAMPLES. Letting u(x) = xeX and v(x) = -1/(x + 1), (5.33) gives 

11 xeX e 
o (x + 1)2 dx = :2 - 1, 

and letting u(x) = tan-1 x and v(x) = (x 2 + 1)/2, (5.33) gives 

x(tan- 1 x)dx = - --. 11 n 1 

o 4 2 

Proposition 5.20 (Fundamental Theorem of Calculus II). Let [a, b] be a closed 
interval offinite length. Iff is a Riemann integrable function over [a, b] and 

F(x) = LX f(t) dt for x E [a, b], 

then F is continuous on [a, b]. Iffis continuous at Xo in the open interval (a, b), 
then F is differentiable at Xo and F'(xo) = f(xo). 

PROOF. Choose B > 0 such that If(x)1 ~ B for all XE [a, b]. If x, yE [a, b] and 
Ix - yl < B/B with x < y, say, then 

IF(y) - F(x)1 = I J: f(t) dt I ~ J: I f(t) I dt ~ J: B dt = B(y - x) < B. 

We therefore see that F is (uniformly) continuous on [a, b]. 
Next, suppose that f is continuous at Xo E (a, b). Since 

F(x) - F(xo) _ 1 IX f()d f ----- - --- t t or x =1= Xo 
x - Xo x - Xo Xo 
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and 

we have 

F(x) - F(xo) _ f(xo) = _1 _ fX [f(t) - f(xo)] dt. (5.34) 
x - Xo x - Xo Xo 

Let 8 > O. Since f is continuous at X o, there exists some £5 > 0 such that 

If(t) - f(xo)1 < 8 

if t E (a, b) and It - xol < £5. It follows from (5.34) that 

I F(x) - F(xo) - f(x o) I < s 
x - Xo 

(5.35) 

for x E (a, b) satisfying Ix - xol < £5; the cases x > Xo and x < Xo require 
separate arguments. From (5.35) we see that F'(xo) = f(xo)· D 

REMARKS. We note the following corollary to Proposition 5.20: If g is differ­
entiable and f is continuous, then 

d (f 9(X) ) dx a f(t) dt = f[g(x)]g'(x). 

Indeed, let 

f9(X) 

H(x) = a f(t)dt 

and observe that H is the composition of differentiable functions: 

H(x) = F[g(x)] with F(x) = IX f(t)dt. 

The Chain Rule (see Proposition 3.3) gives 

H'(x) = F'[g(x)]g'(x). 

Proposition 5.20 gives 

F'(x) = f(x). 

It therefore follows that 

H'(x) = f[g(x)]g'(X), 

which is what we had set out to show. 
In the same way we can verify the following result: If gl and g2 are 

differentiable and f is continuous, then 
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In fact, we only need to take a number a from the domain of f and note that 

ig2(X) fg2(X) f g1 (X) 
f(t) dt = f(t) dt - f(t) dt. 

91(X) a a 

As an illustration, observe that H'(2) = 23° for 

(f X3
-

4 1 ) H(x) = x r.dt 
2x 1 + v t 

Proposition 5.21 (Change of Variable Formula). Let u be a differentiable 
function on an open interval J such that u' is continuous and let I be an open 
interval such that u(x) E I for all x E J. Iff is continuous on I, then the composite 
function h(x) = f[u(x)],for xEJ, is continuous on J and 

fb fU(b) 
f[u(x)]u'(x)dx = f(u)du 

a u(a) 
(5.36) 

for a, bEJ. 

PROOF. The continuity of the composite function h follows from Proposition 
2.9. Fix c E I and let F(u) = J~ f(t) dt. Then F'(u) = f(u) for all u E I by Pro­
position 5.20. Let g(x) = F[u(x)] for x E J. By the Chain Rule (see Proposi­
tion 3.3), we have g'(x) = F'[u(x)]u'(x) = f[u(x)]u'(x) and so by Proposi­
tion 5.18 r f[u(x)] u'(x) dx = r g'(x)dx = g(b) - g(a) = F[u(b)] - F[u(a)] 

f
U(b) fuca) fU(b) 

= f(t) dt - f(t) dt = f(t) dt, 
c c u(a) 

establishing (5.36). [Observe that u(a) need not be smaller than u(b), even if a 
is smaller than b.] 0 

REMARK. Let a, b, and s be strictly positive numbers. For f(u) = l/u and 
u(x) = sx, where x > 0, the relation (5.36) gives 

(Compare this with Proposition 1.1 in Chapter 1.) 

DISCUSSION. Let g be a strictly monotonic and differentiable function on an 
open interval I with g'(x) =f. 0 for any XEI. Then J = g(I) is an open interval 
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and the inverse function g-1 is differentiable on J by Proposition 3.4. We 
show that 

f. b i9(b) 
g(x)dx + g-1(u)du = bg(b) - ag(a) 

o g(o) 

(5.37) 

fora,bE/. 
Indeed, we put f = g-1 and u = 9 in the formula (5.36) to obtain 

f. b i9(b) 
g-1[g(x)]g'(x)dx = g-1(u)du. 

o g(o) 

Since g-1 [g(x)] = x for x E I, we obtain 

i
9(b) f.b 

g-1(u)du = xg'(x)dx. 
9(0) 0 

Now integrate by parts using u(x) = x and v(x) = g(x): 

f9(b) f.b 
g-1(u)du = bg(b) - ag(a) - g(x)dx. 

9(0) 0 

This, however, is (5.37). 
Formula (5.37) can sometimes be employed to calculate the value of cer­

tain integrals which can not otherwise be determined so easily. A case in 
point is the integral 

f1/2 Jo (sin-1 x)dx. 

Using (5.37), we see that 

f~ f~ l(n) Jo (sin-1 x)dx + Jo (sinx)dx ="2 "6 

or 

J1/2 • -1 n J3 
(sm x) dx = - + - - 1 

o 12 2 

because 

t'/6 (sinx)dx = -(cos~ - COSO) = 1 - f. 
Formula (5.37) is also valid if 9 is assumed to be only strictly monotonic 

and continuous on an open interval J. Indeed, then the inverse function g-1 
exists and is a strictly monotonic and continuous function, by Proposition 
2.18. Moreover, both integrals 

f. b g(x)dx and f9(b) g-1(u)du 
o J9(0) 
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exist (by Proposition 5.15 or Proposition 5.16). These integrals can be inter­
preted as areas of regions; see Figure 5.8. The numbers bg(b) and ag(a) 
represent areas of rectangles. In fact, formula (5.37) is no more than might 
have been anticipated from geometric considerations. 

Suppose now that 9 is a strictly increasing continuous function of x for 
x ~ ° and g(O) = 0. If A > ° and B > 0, then 

AB:;; LA g(x)dx + LB g-l(u)du. (5.38) 

The inequality in (5.38) is called Young's Inequality. The validity of Young's 
Inequality is evident by considering Figure 5.9 and interpreting the integrals 

LA g(x)dx and f: g-l(u)du 

as the areas of the regions shaded with vertical lines and horizontal lines, 
respectively. It is also clear that equality will hold in Young's Inequality if 
and only if g(A) = B. 

From Young's Inequality we can readily obtain the following result: If 
p> 1, A> 0, and B > 0, then we have 

AP Bq 
AB:;; - +-, 

p q 
(5.39) 

where q satisfies lip + 11q = 1; equality hol4~ if and only if AP = Bq. Indeed, 
let g(x) = XP-1 and g-l(U) = U1/(p-1). Then 9 and g-l satisfy the conditions of 
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Young's Inequality (S.38). Therefore, by noting that {p - l)q = p, we have 

AB ~ fAXp-1dx + fB U1/(p-l)du = AP + Bq. 
Jo Jo p q 

This proves (S.39). Inequality (S.38) will be used presently to obtain an impor­
tant inequality concerning integrals. 

Let p > 1 and q > 1 such that lip + 11q = 1. Let u and v be Riemann 
integrable functions over an interval [a,b] of finite length. By Propositions 
S.9 and S.17, the functions luvl, lulP, and Ivlq are Riemann integrable over 
[a, b]. Moreover, we have 

f I u{x)v{x) I dx ~ (f lu{x)IPdx yIP (f Iv{x)lqdx Ylq. (S.40) 

Inequality (S.40) is called Holder's Inequality. For p = q = 2, Holder's In­
equality is referred to as the Cauchy-Schwarz Inequality: 

f lu{x)v{x)1 dx ~ (f lu{xW dx yI2 (f Iv{xW dx y12. (S.41) 

To prove (S.40) we proceed as follows. By (S.39), we have 

lu{x)v{x)1 A-Plu{x)IP B-qlv{xW 
AB ~ p + q , 

where 

A = (f lu{x)IPdx yIP and B = (f Iv{xWdx Ylq. 

By Propositions S.9 and S.11, we have 

x 



4. Basic Propositions of Integral Calculus 281 

_l_fb lu(x)v(x)1 dx ~ ~fb lu(x)IP dx + ~fb Iv(x)lq dx = ! +! = 1. 
AB a pA a qB a p q 

Thus, r lu(x)v(x)1 dx s AB 

and (5.40) follows. 

Proposition 5.22. Let [a, b] be a closed interval of finite length. 

(i) If f is continuous on [a, b], f(x) ?: 0 for all x in [a, b], and f(c) = k > 0 
for some point c in [a, b], then J~ f(x) dx > O. 

(ii) Iff and g are continuous on [a, b], f(x) ~ g(x) for all x in [a, b], and 
f(c) < g(c)for some point c in [a,b], then J~f(x)dx < J~g(x)dx. 

PROOF. We consider part (i) and assume that c is a point of the open interval 
(a, b). By the continuity of f, we can find an interval (c - a, c + a) throughout 
which f(x) > k/2 (see Proposition 2.10); and then the value of the integral 
would be greater than ak. If c is an endpoint of [a, b], say c = a, we can find 
an interval (a, a + a) throughout which f(x) > k/2; and then the value of the 
integral would be greater than ak/2. 

Part (ii) reduces to part (i) if we set h = f - g. 0 

Proposition 5.23 (First Mean Value Theorem for Integrals). Let [a,b] be a 
closed interval offinite length. Iffis a continuous function on [a,b], then there 
exists a point t such that a < t < band r f(x) dx = f(t) [b - a]. (5.42) 

PROOF. Let m and M be the smallest and the largest values, respectively, of f 
on [a, b] (see Proposition 2.13). By Proposition 5.16, f is integrable over 
[a, b]. If f is not constant over [a, b], using part (ii) of Proposition 5.22 yields 

J~f(x)dx 
m< <M. 

b-a 

But f is continuous on [a, b] and hence assumes all intermediate values 
between m and M (see Proposition 2.12); hence, there is a point t between a 
and b which satisfies (5.42). 0 

Proposition 5.24 (Generalized Form of the First Mean Value Theorem for 
Integrals). Let [a, b] be a closed interval of finite length. Iff and g are con­
tinuous on [a, b] and g does not change sign on [a, b], then there exists a point 
t such that a < t < band r f(x)g(x) dx = f(t) r g(x) dx. (5.43) 
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PROOF. The details of proof are similar to the proof of Proposition 5.23. Let 
m and M be the smallest and the largest values, respectively, of f on [a, b]. 
To avoid the trivial case, assume that g is not identically zero on [a, b]. If f 
is not constant over [a, b], then 

f~ f(x)g(x) dx 
m < fb )d < M. ag(x x 

But f is continuous on [a, b] and hence assumes all intermediate values 
between m and M; thus, there is a point t between a and b which satisfies 
(5.43). 0 

REMARKS. Proposition 5.23 follows from Proposition 5.24 when we set g(x) = 

x. If f is never negative on [a, b], Proposition 5.23 has a simple geometric 
interpretation: There is a rectangle of height f(t) and length b - a which has 
the same area as the region bounded by the curve y = f(x), the lines x = a 
and x = b, and the x-axis. 

In our formulation of Propositions 5.23 and 5.24 it was assumed that 
a < b. A moment's reflection shows that these propositions remain valid if 
b ~ a. 

Proposition 5.25 (Second Mean Value Theorem for Integrals). Let [a,b] be a 
closed interval offinite length. Iff, g, and g' are continuous on [a, b], and if g is 
monotonic on [a, b] (equivalently, g' does not change sign on [a, b ]), then there 
exists a point t such that a < t < band r f(x)g(x)dx = g(a) f f(x)dx + g(b) r f(x)dx. 

PROOF. Let F(x) = f~ f(s) ds. By Proposition 5.19, r f(x)g(x)dx = F(b)g(b) - r F(x)g'(x)dx; 

by Proposition 5.24, there is some point t between a and b such that r F(x)g'(x) dx = F(t) r g'(x) dx = F(t) [g(b) - g(a)]. 

Therefore, r f(x)g(x) dx = F(b)g(b) - F(t)g(b) + F(t)g(a) 

= g(a)F(t) + g(b) [F(b) - F(t)] 

= g(a) f f(s) ds + g(b) r f(s) ds 

and the proof is complete. o 
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DISCUSSION. Let [a,b] be a closed interval of finite length. If u' and v' are 
continuous functions on [a, b], then r u(x)v'(x) dx = u(b)v(b) - u(a)v(a) - r u'(x)v(x) dx 

by Proposition 5.19. A simpler notation for the foregoing formula is r uv' dx = uvl: - r u'vdx. 

It is easy to see that repeated application of this formula yields the following 
statement: 

If u(n+1) and v(n+l) are continuous functions on a closed interval [a, b] of 
finite length, then 

{b uv(n+1) dx = (uv(n) _ u'v(n-l) + ... + (-l t u(n)v)l: 

(5.44) 

+ (-It+1 {b u(n+l) V dx. 

Formula (5.44) may be used as a starting point in obtaining a Taylor-type 
formula with remainder (see Proposition 4.11). Let 

Then 

v(x) = (b - xt. 

v'(x) = - n(b - x)n-l, 

v"(x) = n(n - l)(b - xr2, 

vlll(x) = -n(n - l)(n - 2)(b - xr 3 , 

v(n)(x) = (-1tn(n - l)(n - 2)'" 2· 1, 

v(n+1)(x) = 0; 

Moreover, v(b) = v'(b) = v"(b) = ... = v(n-l)(b) = O. Letting u = f, formula 
(5.44) assumes the form 

o = (-It [n!f(b) - n!f(a) - n!f'(a)(b - a) 

- ;; j"(a)(b - a)2 - .. , - f (n)(a)(b - at] 

+ (_l)n+l r j<n+l)(x)(b - xt dx. 

(We are assuming of course that f(n+1) is continuous on [a, b]; in Proposition 
4.11 no assumption of continuity was made concerning j<n+l).) From this in 
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turn we obtain 

f(b) = f(a) + f~(~) (b - a) + f~;a) (b - a? + ... 

+ p")(a) (b _ a)" + ~ fb P"+1)(x)(b - x)" dx. 
n! n! a 

Replacing a by IX, b by {3, and x by t, we get 

f({3) = f(lX) + f~(~) ({3 - IX) + f~;IX) ({3 - 1X)2 + ... 

+ P:~IX) ({3 - IXt + ~! f: P"+1)(t)({3 - t)ndt. 

(S.4S) 

However, ({3 - t)n does not change sign on the interval [IX, {3J and we may 
therefore apply Proposition S.24, obtaining 

~ fP pn+1)(t)({3 - t)ndt = ~ f(n+1)(x) fP ({3 - t)ndt 
n! J" n! J" 

f (n+1)( ) 
= X ({3 _ )"+1 

(n + 1)! IX, 

where x is a point between IX and {3. But this is Lagrange's form of the 
remainder (see the remarks following Proposition 4.11). 

FURTHER DISCUSSION. An informative example concerning the calculation of 
an integral is provided by the following example: Compute 

1=. dx. f"/2 sin" x 

o sm"x + cos" x 

We would indeed be on the wrong track, trying to determine I by use of 
Proposition S.18. Instead, we proceed as follows. Letting x = nl2 - t, we 
obtain 

1= dx = dt = dx f "/2 sin" x f"/2 cos" t f"/2 cos" x 
o sin" x + cos" x 0 cos" t + sin" t 0 cos" x + sin "x 

and so 

I + I =. dx + . dx f "/2 sin" x f"/2 cos" x 
o sm"x + cos" x 0 cos"x + sm"x 

=. dx = dx =-. f "/2 sin" x + cos" X f"/2 n 

o sm"x + cos"x 0 2 

Thus, 21 = nl2 or I = n14. 
In the same way we can show that, for any fixed real number r, 
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f"/2 sin' x 1t 

J 0 sin' x + cos' x dx = "4. 
In Example 6 at the end of the next section we shall compute the result 

f l~(~ ::) dx = ~ (In 2). 

A less formidable task relating to the calculation of integrals consists in 
showing that 

fb b a2 b Jo (a2 - X2)1/2 dx = 2(a2 - b2)1/2 + Tarcsina for 0::::;; b ::::;; a. (5.46) 

We shall verify (5.46) by three different methods. 
First method: We use integration by parts, setting u = (a2 - X 2 )1/2 and 

dv = dx, and get 

implying 

2 f: (a2 - X2)1/2 dx = b(a2 - b2)1/2 + a2 (arc sin~) 
which is equivalent to (5.46). 

Second method: Integrating by substitution, we set x = a sin t and we 
obtain 

(a2 _x2)1/2dx=a2 (cos2t)dt, whereB= arcsin-. Jb JB b 
o 0 a 

But 

fB 1 fB Ib Jo (cos2t)dt=2Jo (1 +cos2t)dt=!(t+!sin2t) 0 

= !(t + [sint] [cost])I: 

1 (( . b) b (a2 - b2)1/2) = - arc sm - + _. -'------'-
2 a a a 
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because 

. b (a2 _ b2 )1/2 
sm B = - and cos B = (1 - sin2 B)1/2 = -----

a a 

and (5.46) follows. 
Third method: Knowing that the integral 

T = f: (a2 - X 2 )1/2 dx for 0 ::;; b ::;; a 

represents the area of the region in the first quadrant bounded by the co­
ordinate axes, the line x = b, and the circle x 2 + y2 = a2 , we observe that the 
region in question is made up of the triangle L.ObM and the circular sector 
AOM (see Figure 5.10). But the area of the triangle L.ObM is (b/2)(a 2 - b2 )1/2 

and the area of the circular sector AOM is !a2s = (a2 /2)arcsin(b/a) because 
sin s = b/a. Thus, (5.46) follows. 

ADDITIONAL COMMENTS ON INEQUALITIES RELATING TO INTEGRATION. We can 
use the Cauchy-Schwarz Inequality to verify that 

b b-a 
In - < r::z.. for b > a > O. 

a yab 

Indeed, we merely put u(x) = 1 and v(x) = l/x in (5.41) and the claim follows. 
An interesting inequality, due to Kantorovich, is the following: Let f be a 

continuous function on the interval [0, 1] such that 0 < m ::;; f(x) ::;; M for all 
x in [0,1]. Then 

(f 1 1 )(f1 ) (m+M)2 
o f(x) dx 0 f(x) dx ::;; 4mM (5.47) 
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[If in the foregoing we replace the unit interval [0,1] by the interval [a,b], 
then (5.47) takes on the form 

(fb 1 )(fb ) (m + M)2 
a f(x) dx a f(x)dx ~ 4mM (b - af·] 

Indeed, since 

{f(x) - m} {f(x) - M} < ° 
f(x) - for 0 ~ x ~ 1, 

we obtain by integrating f - (m + M) + mM/f over [0, 1] 

Il f(x)dx + mM Il f;X) dx ~ m + M. 

Putting 

e 1 
u = mM Jo f(x) dx, 

we get 

Ilf(X)dx+u~m+M 

and 

e (m + M)2 
u J 0 f(x) dx ~ (m + M)u - u2 ~ 4 ' 

noting that [(m + M)/2 - U]2 ~ 0. This establishes (5.47). 

5. Numerical Integration 

Let a < band f(x) > ° for a ~ x ~ b. Then J! f(x) dx is equal to the area of 
the region bounded above by the curve y = f(x), below by the x-axis, and 
lying between the lines x = a and x = b. We divide the interval from a to b 
into n subintervals, each of length 

by the points 

b-a 
h=-­

n 

a = Xo < Xl < X2 < ... < Xn-l < Xn = b 

and put Yk = !(Xk) for k = 0,1,2, ... , n - 1, n. For k = 0,1,2, ... , n, let Pk be 
the point with coordinate (Xk' Yk) and consider the polygonal line whose 
vertices are these points Pk (see Figure 5.11). Then the area of the region 
under the curve Y = f(x) may be approximated by that under the polygonal 
line whose vertices are Pk• The region under the polygonal line is made up of 
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y 

Figure 5.11 

trapezoids. The area of a trapezoid is equal to half the sum of the parallel 
sides times the width. It follows that 

Area of first trapezoid = ~(yo + Yl), 

Area of second trapezoid = ~(yl + Y2)' 

Area of nth trapezoid = ~(Yn-l + Yn). 

Adding these expressions, we get that the approximating region has area 

T" = h (~o + Yl + Y2 + ... + Yn-l + ~). 
The approximating formula 

f f(x)dx ~ T" 

is known as the trapezoidal rule for numerical integration. 
The restriction f(x) > 0 for a :::;; x :::;; b is not necessary for our discussion; 

it is easy enough to see, for example, that if(xl,yd and (X2,h) are connected 
by a straight line Y = s(x) and X 2 = Xl + h, then 

rX2 s(x)dx = ~(Yl + Y2)· Jx, 
In the sequel we shall establish the following error boundfor the trapezoidal 
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rule: If the second derivative I" of f is continuous on the interval [a, b] and 
if M is the largest value of I I"(x) I for a ~ x ~ b, then 

I f. b I (b - a)3 
T,. - a f(x)dx ~ M 12n2 ' 

where T,. is the approximation to J~f(x)dx given by the trapezoidal rule 

T,. = h(~O + Yl + Y2 + ... + Yn-l + ~n). h = b: a. 

Proposition 5.26. Suppose that the second derivative f" of a function f is con­
tinuous on a closed interval [A, A + h] of finite length h. Then 

fA+h h h3 

A f(x) dx = "2 {f(A) + f(A + h)} - 121"(s), 

where s is between A and A + h. 

PROOF. We wish to determine Q such that 

fA+h h 
A f(x)dx = "2 {f(A) + f(A + h)} + h3 Q. 

Let f(x) = F'(x). Then 

f A+h 

A f(x) dx = F(A + h) - F(A) 

and so 

F(A + h) - F(A) - ~ {f(A) + f(A + h)} - h3Q = o. 

Let C = A + h/2; C is the midpoint of [A,A + h]. We consider the function 
G defined by 

G(x) = F ( C + I) - F ( C - I) -I {f ( C + I) + f ( C - I) } -Qx\ 

where 0 ~ x ~ h. But G(O) = G(h) = 0 and so, by Rolle's Theorem (see Pro­
position 4.3), we have that G'(t) = 0 for some t between 0 and h. But, since 
F'=f, 

G'(x) = tf( C + I) + tf( C - I) -t{f( C + I) + f( C - I)} 
-~ {r ( C + I) -r ( C - I) } - 3Qx2 

= -~{r( C + I) -r( C - I)} - 3Qx2. 
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Thus, 

0= G'(t) = -£{f'( C +~) - f'( C -~)} - 3Qt2• 

Since t "# 0, 

Q = _~ f'(C + t/2) - f'(C - t/2). 
12 t 

Again by Rolle's Theorem, 

f'(C + t/2) - f'(C - t/2) = f"(s) 
t 

for some s between the points C - t/2 and C + t/2; hence, 

Q = - /2 f"(s), 

5. Integration 

where s is between the points C - t/2 and C + t/2 and, a fortiori, s between 
A and A + h. 0 

Proposition 5.27. Let [a,b] be a closed interval of finite length. We divide 
[a, b] into n subintervals, each of length h = (b - a)/n. Suppose that the second 
derivative f" of a function f is continuous on [a, b]. Then 

fb b - a ( n-1 ( b - a)) (b - a)3 
a f(x)dx = 2;;- f(a) + f(b) + 2 k~l f a + k-n - - 12n2 f"(v), 

where v is between a and b. 

PROOF. Since h = (b - a)/n and 

f b fa+h f a+2h fb f(x)dx = f(x)dx + f(x)dx + ... + f(x)dx, a a a+h a+(n-1)h 
we have r f(x)dx = ~{f(a) + f(a + h)} - ~;f"(S1) 

h h3 

+ "2 {f(a + h) + f(a + 2h)} - 12 f"(S2) 

+ ... 

h h3 
+ "2{f(a + [n - l]h) + f(b)} - 12 f"(sn), 

where S1 is between a and a + h, S2 is between a + h and a + 2h, ... , sn is 
between a + (n - l)h and b. But f" is continuous on [a, b] and so there is a 
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point v between a and b such that (see Example 9 in Section 4 of Chapter 2) 

1"(sd + 1"(S2) + ... + 1"(sn) = 1"(v). 
n 

This completes the proof. D 

REMARK. The foregoing proposition shows that 

fb (b - a)3 1/ 

T" - a f(x)dx = 12n2 f (v), 

where v is a point between a and b. Clearly, 

11"(v):5: max{I1"(x)l: a:5: x :5: b} = M 

for any point v between a and b. Hence, 

I f b I (b - a? 
T" - a f(x)dx :5: M 12n2 

and the error bound for the trapezoidal rule is established. 

Lemma. The equation of a parabola with vertical axis may be written in the 
form Y = g(x), where 

g(x) = a(x - xd2 + b(x - Xl) + c. 

If this parabola passes through the points (xo,Yo), (Xl,Yl), and (X3,Y3), where 
Xl = Xo + hand X2 = Xl + hfor some fixed, positive h, then 

PROOF. We have 

f X2 fX.+h 
g(x)dx = {a(x - xd2 + b(x - Xl) + c} dx; 

Xl Xl-h 

with X = Xl + t, this becomes 

But 

It follows that 

fh h 
-h (at2 + bt + c)dt = 3" (2ah2 + 6c). 

Yo = g(xo) = g(x l - h) = ah2 - bh + C, 

Yl = g(Xl) = C, 

Y2 = g(X2) = g(x l + h) = ah2 + bh + c. 
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Yo + Yz = 2ahz + 2c and Yo + 4YI + Yz = 2ahz + 6c, 

so that 

as was to be shown. o 

DISCUSSION. We again consider the definite integral S~f(x)dx. We pick an 
even integer 2n and divide the interval [a, b] into 2n subintervals, each of 
length 

by the points 

b-a 
h=--

2n ' 

a = Xo < Xl < Xz < ... < XZn-Z < XZn- 1 < XZn = b. 

We put Yk = f(xk) for k = 0, 1, 2, ... , 2n and let Pk denote the point with 
the coordinates (Xk' Yk). Now, as in Figure 5.12, we approximate the curve 
Y = f(x) for each pair of intervals, as POPIPZ' by the arc of a parabola with 
vertical axis. It follows from the Lemma and without regard to the sign of 
f(x) that between the x-axis and the parabolic arc 

POPIPZ, the area is ~(YO + 4YI + Yz), 

PZP3P4, the area is ~(YZ + 4Y3 + Y4)' 

Pn-ZPn- 1 Pn, the area is ~(Yzn-z + 4YZn-1 + Yzn)· 

Adding these expressions, we find that the approximating area is 

h 
SZn = 3(Yo + 4Yl + 2yz + 4Y3 + 2Y4 + ... + 2Yzn-z + 4YZn-1 + Y2n)· 

The coefficients 1,4,2 result from the fact that each Yk with k odd is a middle 
ordinate once, whereas except for Yo and Y2n' each Yk with k even is an end 
ordinate twice. 

The approximation formula r f(x) dx = S2n, 
b-a 

h=--
2n 

is known as Simpson's rule for numerical integration. 
We shall establish the following error bound for Simpson's rule: If the fourth 

derivative J<4) of a function f is continuous on the interval [a, b] and if K is 
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the largest value of 1J<4)(x)1 for a ::s; x ::s; b, then 

I fb I (b - a)S 
S2n - a f(x) dx ::s; K 2880n4 ' 

where S2n is the approximation to S= f(x) dx given by Simpson's rule 

h 
S2n = 3"(Yo + 4Yl + 2Y2 + 4YJ + 2Y4 + ... + 2Y2n-2 + 4Y2n-l + Y2n) 

and 

b-a 
h=~. 

293 

REMARK. If f is a polynomial whose degree does not exceed three, then K = 0 
and Simpson's rule give the exact value fo S=f(x)dx: 

fb b - a ( (a + b) ) 
a f(x)dx = -6- f(a) + 4f -2- + f(b) . 

[When the volume V of a solid is regarded as a limiting sum of thin slices of 
area f(x), then 

V= lb g(X)dX~b~a(f(a)+4f(a;b)+f(b») 
is known as the prismoid formula. It is easy to see that the prismoid formula 
gives the volume of a cylinder, a cone, a sphere, and an ellipsoid exactly.] 
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Proposition 5.28. Let the fourth derivative J<4) of a function f be continuous on 
a closed interval [A - h,A + h] offinite length 2h. Then 

f A+h h h5 

A-h f(x)dx = "3{J(A - h) + 4f(A) + f(A + h)} - 90J<4)(W), 

where w is some point between A - h and A + h. 

PROOF. We wish to determine K such that 

fA+h h 
A-h f(x) dx = "3 {J(A - h) + 4f(A) + f(A + h)} + Kh 5• 

Let f(x) = F'(x). Then 

fA+h 

A-h f(x)dx = F(A + h) - F(A - h) 

and so 

h 
F(A + h) - F(A - h) - "3{J(A + h) + 4f(A) + f(A - h)} - Kh 5 = O. 

We consider the function 

x 
H(x) = F(A + x) - F(A - x) - "3 {J(A + x) + 4f(A) + f(A - x)} - Kxs 

for 0 ~ x ~ h. But H(O) = H(h) = 0 and so by Rolle's Thebrem (see Proposi­
tion 4.3) we have H'(t) = 0 for some t between 0 and h. But, since F' = f, 

H'(x) = f(A + x) + f(A - x) - Hf(A + x) + 4f(A) + f(A - x)} 

- ~{J'(A + x) - f'(A - x)} - 5Kx4 
3 

= Hf(A + x) + f(A - x)} - !f(A) 

-I {J'(A + x) - f'(A - x)} - 5Kx4. 

Hence, H'(O) = H'(t) = 0 and so, by Rolle's Theorem, H"(s) = 0 for some s 
between 0 and t. But 

H"(x) = Hf'(A + x) - f'(A - x)} - Hf'(A + x) - f'(A - x)} 

x 
- - {J"(A + x) + f"(A - x)} - 20Kx3 

3 

x 
= Hf'(A + x) - f'(A - x)} - "3 {J"(A + x) + f"(A - x)} - 20Kx3• 

Thus, H"(O) = H"(s) = 0 and so, by Rolle's Theorem, H"'(v) = 0 for some v 
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between 0 and s. But 

H"'(x) = Hf"(A + x) + f"(A - x)} - !{J"(A + x) + f"(A - x)} 

-I {J"'(A + x) - f"'(A - x)} - 60Kx2. 

It follows that 

H"'(v) = -~ {J"'(A + v) - f'''(A - v)} - 60Kv2 = o. 

Since v #- 0, we get 

By Rolle's Theorem 

1 f"'(A + v) - f"'(A - v) 
K=-- . 

90 2v 

f"'(A + v) - f"'(A - v) 
----2v---- = j<4)(W) 

for some w between A - v and A + v. Thus, 

1 
K = -- j<4)(W) 

90 
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for some w between A - v and A + v and so, a fortiori, some w between 
A - h and A + h. 0 

REMARKS. If we divide up the interval [a, bJ into 2n subintervals, each of 
length 

by the points 

b-a 
h=--

2n ' 

a = Xo < Xl < X2 < X3 < X4 < ... < X2n-2 < X2n- l < X2n = b, 

then we get 

i X2 h h5 Jxo f(x)dx = 3 {J(xo) + 4f(xd + f(x 2)} - 90f(4)(Wl), 

i x , h h5 J
X

2 f(x)dx = 3 {J(X2) + 4f(x3 ) + f(x4)} - 90j<4)(W2), 

i X2n h h5 

J
X
2n_,!(x)dx = 3 {J(X2n-2) + 4f(X2n-l) + f(X2n)} - 90j<4)(W,,), 

where Wl' W2' ... , wn are between a and b. But 
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j<4)(Wl) + f(4)(W 2) + ... + f(4)(Wn) = j<4)(W) 
n 

5. Integration 

for some W between a and b because f(4) is continuous on [a, bJ (see Example 
9 in Section 4 of Chapter 2). Hence, 

fb h5 (b - a)5 
a f(x) dx = S2n - 90 (f!{(4)(W)) = S2n - 2880n4 j<4)(W), 

where W is some point between a and band 

b-a 
S2n = -6-(Yo + 4Yl + 2Y2 + 4Y3 + 2Y4 + ... + 2Y2n-2 + 4Y2n-l + Y2n) 

with Yk = f(x k ) for k = 0, 1, 2, ... , 2n. It therefore follows that 

I f b I (b - a)5 
SZn - a f(x) dx S K 2880n4 ' 

where K is the largest value of If(4)(x)1 for a s x s b. This establishes the 
error bound for Simpson's rule. 

It is clear from the foregoing proposition that if f is a fourth-degree 
polynomial, then the error for Simpson's rule is a computable constant. We 
shall look at such a situation now. 

Consider a symmetric barrel that has the shape obtained by revolving a 
parabolic arc. Let H be the length of the barrel, R the radius of its midsection, 
r the radius of each end, and <5 = R - r. Then its volume is exactly 

V = nH(~RZ + trZ - ?5<5Z), 

according to Newton. Indeed, 

f HIZ V = n yZdx, 
-HIZ 

where 

Thus, 

V = n f(x)dx, where f(x) = __ x 4 - _xz + RZ. fHIZ 1Mz 8<5R 

-HIZ H4 HZ 

But 

Taking A = 0, h = Hj2, and multiplying by n throughout, the desired result 
for V follows from the equation in the foregoing proposition. 

EXAMPLE 1. Letting n = 10 and using the trapezoidal rule, calculate 

fZ1 In2 = -dx 
1 x 

and determine the corresponding error bound. 
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SOLUTION. Here f(x) = l/x, [a, b] = [1,2], and h = 0.1; hence, 

1 (1 1 1 1 1 1 1 1 1 1 1) 
TlO = 10 2 + it + 1.2 + 1.3 + 1.4 + 1.5 + 1.6 + 1.7 + IS + 1.9 + 4 

= 0.69377 .... 

Since 0 < f"(x) = 21x3 ~ 2 for 1 ~ x ~ 2, the error bound is 

2 1 
12.102 - 600' 

Incidentally, letting n = 20 (and hence h = 0.05), we get T20 = 0.69330333 .... 
Actually, In 2 = 0.69314718 ... with an accuracy of eight decimal places. 

EXAMPLE 2. Letting 2n = 10 and using Simpson's rule, calculate 

In2 = f2.!..dX 
1 x 

and determine the corresponding error bound. 

SOLUTION. Here f(x) = 1/x, [a, b] = [1,2], and h = 0.1; hence, 

1 ( 4 2 4 2 4 2 4 2 4 1) 
SlO = 30 1 + it + 1.2 + 1.3 + 1.4 + 1.5 + 1.6 + 1.7 + 1.8 + 1.9 + 2 

= 0.693152 .... 

Since 0 < f(4)(X) = 241xs ~ 24 for 1 ~ x ~ 2, the error bound is 

24 1 
2880· 54 = 75,000' 

Letting 2n = 20 (and hence h = 0.05), we get S20 = 0.69314716 ... which coin­
cides with the actual value In 2 = 0.69314718 ... in the first seven decimal 
places. 

COMMENT. Comparison of Examples 1 and 2 shows that the trapezoidal rule 
and Simpson's rule require about the same amount of calculation; however, 
Simpson's rule yields a much better approximation. 

EXAMPLE 3. Since 

7t r1 

"4 = Jo f(x)dx, 
1 

where f(x) = -1 --2 ' 
+x 

the numerical calculation of this integral is of definite interest. Since 

f '( ) -2x f"() 6x2 - 2 f"'( ) = 24x(1 - x2) 
x = (1 + X2)2' X = (1 + X2)3' x (1 + X2)4 ' 

f (4)( ) = 24(5x4 - 10x2 + 1) d f(5)(X) = -240x(3x4 - 10x2 + 3) 
x (1 + X2)5 ,an (1 + X2)6 
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we find that If"(x) I < 2 and IP4)(x)1 ::;; 24 for 0::;; x ::;; 1. A more elegant 
approach is to set y = arc tan x. Then, by (4.38) (in Chapter 4), 

f"(x) = ylll = 2(cos3 y) [sin 3 (Y + I) ] = - 2(cos3 y)(sin 3y) 

and 

j(4)(X) = y(5) = 24(cos5 y{sin 5 (y + I) ] = 24(cos 5 y)(cos 5y). 

Here the trapezoidal rule with n = 10 gives T10 = 0.78562 ... , while Simpson's 
rule with 2n = 4 gives S4 = 0.78539 ... ; the actual value of n/4 with an accu-
racy of six decimal places is 0.785398 ... . 

EXAMPLE 4. Let h(O) = 1 and 

hex) = In(x + 1) 
for x> O. 

x 

Using Simpson's rule for the calculation of the integral of h over a suitable 
interval needs information concerning h(4). We claim that h(4) is a decreasing 
function on [0, 00 ) and 

o < h(4)(X) < 4.8 = h(4)(0) for x > O. 

Indeed, 

, 1 In(x+l) 
h (x) = (x + l)x x2 

hI! _ 2 ln(x + 1) 3x + 2 
(x)- x2 -(x+l)2x 2' 

hlll(x) = llx2 + 15x + 6 _ 6ln(x + 1), 
(x + 1?x3 X4 

h(4)(X) = 241n(x + 1) _ 50x 3 + 104x2 + 84x + 24 
x 5 (x + 1)4x4 

h(5) x) = 274x4 + 770x 3 + 940x2 + 540x + 120 _ 1201n(x + 1) 
( (x + 1)5x 5 x 5 

Therefore, 

!£ (x6. h(5)(X)) = _ 120x5 

dx (x + 1)6 

and it follows that x6. h(5)(X) is a decreasing function for x > 0 (by Proposi­
tion 4.7). Since the product x6. h(5)(X) vanishes for x = 0, we therefore have 

for x > 0, showing that h(4) is decreasing on [0,00). In particular, 

o < h(4)(X) < 4.8 = h(4)(0) for x > O. 
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REMARK. Using suitable methods from the theory of infinite series, one can 
show that (see Example 1 in Section 8 of Chapter 7) 

i 11n(X + l)d = n2 

o x x 12· 

Instead of actual equality, we can verify approximate equality in the fore­
going relation by using Simpson's rule. 

EXAMPLE 5. Let y = e- x2• Then 

y' = _ 2xe-x2 , y'" = -4x(2x2 - 3)e-x >, 
y(5) = _ 8x(4x4 _ 20x2 + 15)e-x2• 

Hence, max{li4)1: 0::5: x::5: 1} = 12. Letting 2n = 10 and using Simpson's 
rule, we get 

and the error bound is 
12 

2880.54 150,000· 

EXAMPLE 6. Using Simpson's rule with 2n = 20, we get 

i 11~(1 + ;) dx ~ 0.27219844. 
o + x 

Actually, 

i 11n(1 + x) n 
o 1 + x2 dx = gIn 2 = 0.2721982613 .... 

Indeed, setting x = tan t, 

i11n(1 + x) i"/4 i"/4 ---;;2:-dx = In(cost + sint)dt - In(cost)dt. 
o l+x 0 0 

Substituting t = n/4 - s, 

L"/4 1n(cost)dt = - L:41n[(COss<cos~) + (sins) (sin i) JdS 

= L"/4 In ( cos Sfi sin s) ds 

i
"/4 In 2 i"/4 = In(coss+sins)ds- T ds 
o . 0 

i"/4 n 
= 0 In(coss + sins)ds - gln2. 
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Hence, 

f11n(1 + x)d _ 1[1 
-c----;;2- X - - n 2. 

o 1 + x 8 

EXAMPLE 7. Using Simpson's rule with 2n = 6, we get 

f"sinx 
-dx ~ 1.852. 

o x 

5. Integration 

EXAMPLE 8. We wish to calculate Ii (l/x)dx with an accuracy of 5 ,10- 5. Into 
how many parts must we divide the interval [1, 2J if we use (i) the trapezoidal 
rule and (ii) Simpson's rule? 

We first consider the case (i). The error bound for the trapezoidal rule (see 
Proposition 5.27 and the Remark following it) is 

M(b - a)3 

12n2 

In our case M = max{12/x3 1: 1 S x S 2} = 2 and b - a = 1. We have to 
consider the inequality 

2 -- < 5,10-5 
12n2 

and find the smallest positive integer n satisfying it. But 

2 -- < 5.10-5 
12n2 

'f d l'f 100 I an on y I fi < n. 

Since 100/fi approximately equals 57.735027, we see that the number n of 
subdivisions of the interval [1, 2J in the case of using the trapezoidal rule will 
be n = 58. 

We next consider case (ii). The error bound for Simpson's rule (see the 
Remarks following Proposition 5.28) is 

K(b - a)5 

2880n4 
K(b - a)5 
180(2n)4 . 

In the case under consideration, K = max{124/x51: 1 S x S 2} = 24 and 
b - a = 1. Also, recall that in the case of Simpson's rule the number of 
subdivisions of the interval [a,bJ is 2n. We therefore have to consider the 
inequality 

--,---2---,4-. < 5 . 10 - 5 
180(2n)4 

and find the smallest positive integer 2n satisfying it. But 

24 4~ 
180(2n)4 < 5· 10-5 if and only if V 15' 10 < 2n. 
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Since .y4/15 ·10 equals approximately 7.186082, the number 2n of subdivi­
sions of the interval [1,2] in case of using Simpson's rule will only be 2n = 8. 
It is clear therefore that Simpson's rule is much more efficient than the 
trapezoidal rule in calculating Sf (l/x) dx with an accuracy of 5 .10- 5• 

EXAMPLE 9. Let n be a positive integer. Then 

fn 3/2 < 1 + J2 + J3 + ... + In < 4n : 3 In. 

Indeed, for k a positive integer and k - 1 :::;; x < k, we have .jk > Jx and so 

.jk > L~l Jx dx. 

Adding, we get 

1 + J2 + J3 + ... + In > J: Jx dx = fn 3/2• 

Since the graph of y = Jx is concave down, it is clear that 

!(Jk=l + .jk) < f-l Jx dx; 

here !(Jk=l + .jk) is the area of the trapezoid with the vertices (k - 1,0), 
(k,O), (k, .jk), and (k - 1, Jk=l). Hence, 

1+J2+J3+···+Jn 
= !(jO + ji) + !(ji + J2) + !(J2 + J3) 

+ !(J3 + )4) + ... + !(In=i + In) + !In 
rn c r:. 4n + 3 r:. 

< Jo yxdx + !yn = -6-yn. 

EXAMPLE 10. Let f be a differentiable function on [a, b] and assume that 
If'(x) I :::;; M for all x E [a, b]. Moreover, let 

n 

Sn = L f(tj)h, 
j=l 

when h = (b - a)/n, Xo = a, Xl = a + h, X2 = a + 2h, ... , Xn = a + nh = b 
and tj E [Xj-l, Xj] for each j = 1, 2, ... , n. Then 

lib I M(b - a)2 
af(x)dx-Sn :::;; n . 

Indeed, by the First Mean Value Theorem for Integrals (see Proposition 
5.23), in each interval [Xj-l, xJ there exists a point Cj so that 

IXj f(x)dx = f(cj)(xj - xj-d = f(c)h. 
Xj_1 
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Hence, 

lIb f(x)dx - Snl = I t fXj f(x)dx - t f(tj)hl 
a }-l Xj_1 }-l 

= Ijtl [f(c) - f(t)]hl ::;; jt1If(Cj) - f(tj)lh. 

But, by the Mean Value Theorem of Differential Calculus (see Proposition 
4.5), there exists a point ej between cj and tj so that 

If(cj) - f(t)1 = 1f'(ej)I'lcj - tjl· 

Moreover, it is clear that ICj - tjl ::;; IXj - xj-d = h and so 

lIb f(x)dx - Snl::;; t 1f'(ej)lh2 ::;; nMh2 = M(b - a)2 
a }=l n 

REMARK. In Example 10 we have obtained an error bound for the approxima­
tion of an integral by Riemann sums in which the interval [a, b] is partitioned 
into subintervals of equal length. For example, the error bound for Sf (i/x) dx 
with h = 0.1 is only /0 (compare this with the results in Examples 1 and 2). 

EXERCISES TO CHAPTER 5 

5.1. Let f be a continuous function such that 0 < A :s; f(x) :s; B for 0 :s; x :s; 1. Show 
that 

fl 1 fl 
AB Jo f(x) dx :s; A + B - Jo f(x)dx. 

[Hint: Note that 

{f(x) - A} {f(x) - B} 
f(x) :s; 0 

in the interval [0,1]. Integrating both sides of this inequality over [0,1] gives 
what we want.] 

5.2. Let p and q be larger than zero. Show that 

II (1 - xP)lfq dx = II (1 - Xq)l/P dx. 

[Hint: Let f be a decreasing continuous function in [a,b]. Then the inverse 
function g exists in [f(b)./(a)] and is also decreasing and continuous. Hence, 

if(O) So ia fb g(y)dy = g{f(t)}f'(t)dt = tf'(t)dt = af(a) - bf(b) + f(t)dt. 
feb) b b a 

If additionally we have f(a) = band f(b) = a, then 

f g(t)dt = f f(t)dt. 



s. Numerical Integration 303 

The functions f(x) = (1 - Xq)l/p and g(x) = (1 - XP)l/q represent in [0,1] a 
special case of this situation.] 

5.3. Explain the curiosity 

f b 1 Ib fb 1 --dx = 1 + --dx, 
" xlnx "" xlnx 

using integration by parts: u = 1/(ln x) and dv = (l/x) dx. 

5.4. Let a> 1 and x. = n(vIa - 1) for n = 1,2,3, .... Show that x. > X.+1 for all n. 
[Hint: If x > 1 and p > q > 1, then x p - 1 > x q - 1 and so 

XP-l dx > x q - 1 dx or --> --. f" f" aP - 1 aq - 1 
lIP q 

Putting P = lin and q = 1/(n + 1), we obtain the desired inequality.] 

5.5. If r f(xt)dt = 0 

for all values of x, show that f = O. 
[Hint: We have 

e1 f(xt)dt = ex f(u)du, implying ex f(u)du = 0 Jo Jo x Jo 
and so 

d ex 
dx Jo f(u)du = 0 or f = 0.] 

5.6. Find the derivative of the function 

H(x) = (f fey) dY) (f g(y) dY) 

and hence show that 

for all x 

r g(X)(f f(y)dy )dX = r f(X)(f g(y)dy )dX. 

[Hint: We have H(a) = H(b) = 0 and 

H'(x) = f(x) f g(y)dy - g(x) f f(y)dy; 

hence, integrating over the interval [a, b], the desired conclusion follows.] 

REMARK. In the next three Exercises we assume that f is twice differentiable. 

5.7. Show that there is a point IX in (-h,h) such that 

fh h3 
-h f(x)dx = 2hf(0) + 3 f"(IX). 
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[Hint: Let T(h) = S"-hf(x)dx - 2hf(O). Then 

T(O) = 0, T'(h) = f(h) + f( - h) - 2f(0), T'(O) = 0, 

and, by the Mean Value Theorem (see Proposition 4.5 in Chapter 4), 

T"(h) = f'(h) - f'( - h) = 2hf"(ch), 

where Ch is some point between - hand h. Hence, by the result in Example 27 
of Section 6 in Chapter 4, there is a point u in (0, h) such that 

T(h) T"(u) 1" 
}T=3·2·u=]f(cu ) 

and so T(h) = (h 3 j3)f"(iX), where iX = cu, which is a point in ( - u, u) and so a 
point in (- h, h).] 

5.8. Show that there is a point fJ in ( - h, h) such that 

f/(X) dx = h{f(h) + f( - h)} - 2~3 f"(fJ). 

[Hint: If T(h) = S"-hf(x)dx - h{f(h) + f( -h)}, then 

T'(h) = - h{f'(h) - f'( - h)} = - 2h2f"(Ch), 

where Ch is between -h and h, by the Mean Value Theorem (see Proposition 
4.5). Hence, by the result in Example 26 of Section 6 in Chapter 4, there is a 
point u in (0, h) such that 

T(h) T'(u) 2 
-- = -- = --f"(c) with -u < c < u h3 3u2 3 u u 

because T(O) = 0, hence T(h) = -(2h3 j3)f"(fJ), where fJ == cu.] 

5.9. Show that there is a point y in ( - h, h) such that 

fh f(x) dx = ~ {f(h) + 2f(0) + f( - h)} - h3 f"(y). 
~ 2 6 

[Hint: If T(h) = S"-h f(x) dx - (hj2) {f(h) + 2f(0) + f( -h)}, then 

T(O) = T'(O) = 0 and T"(h) = -~ {f"(h) + f"( -h)}. 
2 

but {f"(h) + f"( -h)}j2Iies between f"(h) and f"( -h) and so, since f" takes all 
intermediate values, equal f"(c) for some c in [ -h,h]. Thus, 

h3 

T"(h) = -hf"(c) or T(h) = -- f"(y).] 
6 

5.10. If f is periodic with period a and if 

1 f.a g(x) = f(x) - - f(x) dx, 
a 0 

show that So g(t) dt is periodic with period a. 
[Hint: We have 
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J:+a g(t)dt = (J: + f+X) g(t) dt = J: g(t)dt + J: g(u)du, t = a + u, 

= J: g(u)du 

because 9 has period a and 

J: g(t) dt = J: f(t) dt - ~ J: (J: f(x) dX) dt = J: f(t) dt - f: f(t) dt = 0.] 

5.11. Let f be continuous on [a, b] and S:f(x) dx = O. Show that f(x) = 0 for some x 
in (a, b). 

[Hint: See Proposition 5.23.] 

REMARK. If 9 and h are continuous on [a,b] and S:g(x)dx = S: h(x) dx, then 
g(x) = h(x) for some x in (a, b). [Indeed, let g(x) - h(x) = f(x) and apply the 
result in Exercise 5.11.] 

5.12. (Theorem of Bliss) Suppose that f and 9 are Riemann integrable on [a, b] and 
let P = {a = Xo < Xl < ... < Xn = b} be a partition of [a,b]. Show that 

n 

L: f(tk)g(t~)dxk' 
k~l 

where Xk- 1 S tk S Xk and Xk- 1 S t~ S Xk, k = 1,2, ... , n, and 
n 

L: f(tdg(tddxk 
k~l 

tend to the same limit as II P II --> O. 
[Hint: Note the identity 

n n n 

L: f(tk)g(t~)dxk = L: f(tdg(tk)dxk + L: f(tk)[g(t~) - g(tk)] dXk 
k~l k~l k~l 

and the inequality (since f is Riemann integrable, it is bounded) 

kt1 f(tk)lg(tD - g(tk)ldxk S K Ct1 Ig(t~) - 9(tk)ldx} 

Finally, let ~k = tk or t~ so that 

g(~d = max{g(tk),g(tD}, 

and '1k = tk or t~ so that 

k = 1,2, ... , n. Then 

n n n 

L: Ig(tD - g(tk)ldxk = L: g(~k)dxk - L: g(I/k)dxk'] 
k~l k~l k~l 

5.13. What is wrong with 

f1 ~dx = _~11 = -21 
-1 x x -1 
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5.14. Evaluate 

. x fX ,z hm--z edt. 
x~o 1 - eX 0 

[Answer: -1.] 

5.15. Show that if f is continuous on [a, b] and J~ f(x)g(x) dx = 0 for every integrable 
g, then f = O. 

[Hint: If fis continuous on [a,b] and J~F(x)dx = 0, thenf = 0 on [a,b], as 
can be seen by part (i) of Proposition 5.22.] 

5.16. Let f, g, and h be Riemann integrable on [a, b]. Show that r If(x) - g(xW dx :-::; 2 r If(x) - h(xW dx + 2 r Ig(x) - h(xW dx. 

[Hint: We have f(x) - g(x) = {j(x) - h(x)} - {g(x) - h(x)} and so 

If(x) - g(x)1 :-::; If(x) - h(x)1 + Ig(x) - h(x)1 

and 

If(x) - g(xW :-::; If(x) - h(xW + Ig(x) - h(xW + 2If(x) - h(x)llg(x) - h(x)l· 

But 2If(x) - h(x)llg(x) - h(x)1 :-::; If(x) - h(x)12 + Ig(x) - h(xW] 

5.17. If fl(x) = Jo f(t) dt and f2(X) = JOfI(t)dt, show that 

f2(X) = J: (x - t)f(t)dt. 

More generally, if fdx) = SO A-I (t) dt for k = 2, 3, ... , then 

1 fX A(x) = (k _ 1)1 0 (x - t)k-If(t) dt. 

[Hint: We integrate SOfl(t)dt by parts as follows: Let u = fl(t) and dv = dt. 
Then 

J: fl (t) dt = tfl (t{ - J: if(t) dt = xfl (x) - J: tf(t) dt 

= x J: f(t) dt - J: tf(t) dt = J: (x - t)f(t) dt. 

A similar integration by parts will result in the formula 

fn(x) = J: (x - t)fn_2(t)dt. 

In this equation let u = fn-2(t) and dv = (x - t)dt. Then 

f
x (x - t)2 IX fX(X - t)2 
(x - t)fn-2(t)dt = ---fn-2(t) + --fn-3(t)dt 

o 2 0 0 2 

fX(X - t)2 
= --fn_3(t)dt. 

o 2 
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Another integration by parts will give 

JX(X - t)3 
f.(x) = --f.-4(t)dt 

o 3 

and it is clear that we can continue in this way and obtain 

rX(x - t)n-1 
fn(x) = Jo (n _ I)! f(t)dt.] 
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5.18. As an application of the result in Exercise 5.17, if m and n are positive integers, 
show that 

J1 m!n! 
(1 - xtxm dx = ( )' . 

o m+n+l. 

[Hint: If f(t) = t m, then, in the notation of Exercise 5.17, 

I (1 - tttm dt = n!f.+1 (1). 

Now 

m!x m+k 

J,.(x) = (m + k)! 

and so n!f.+1 (1) = m! n!f(m + n + I)!.] 

5.19. Using Simpson's rule, compute the volume of a sphere. 

5.20. Verify that if we take 2n = 10 in the evaluation of 

~= I 1 :X2dx 

by use of Simpson's rule, we obtain approximately 0.78539815 (the exact value 
ofn/4 with an accuracy of eight decimal places is 0.78539816); the error bound 
in the considered case is approximately 0.000013, much larger than the actual 
error. 

[Hint: See Example 3 following Proposition 5.28.] 

5.21. Using Simpson's rule, show that the integral 

f01 e-x2 dx 

approximately equals 0.7468. 

5.22. Using Simpson's rule, show that the integral 
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fnl2 o (1-tsin 2 x) 1/2 dx 

approximately equals 1.351. 

5.23. Show that S6 P(x) dx = /8 {5P(IX) + 8P(tj + 5P(P)} if P is any polynomial of 
the fifth degree and IX and P are the roots of x 2 - x + /0 = o. 



CHAPTER 6 

Additional Topics in Integration 

1. The Indefinite Integral 

Definition. Let f be a given continuous function on an interval [a,bJ A 
function F, such that 

F'(x) = f(x) with a < x < b, 

is called an antiderivative or an indefinite integral off. If the latter name is 
used one writes 

F(x) = f f(x) dx. 

REMARKS. Proposition 5.20 asserts that, if f is continuous on [a, b], then 

F(x) = LX f(t)dt for XE [a,b] 

is an antiderivative for f on [a, b J It is clear that we can add any constant to 
the function F and still obtain an antiderivative of f. We now show that all 
antiderivatives of f are obtained by adding an arbitrary constant to F. 

Proposition 6.1. Let f be a continuous function on an interval [a, b J Then 

F(x) = LX f(t)dt for xE[a,b] (6.1) 

defines an antiderivative off and every other antiderivative off differs from this 
one by a constant. 
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PROOF. That (6.1) defines an antiderivative of f follows from Proposition 
5.20. If Fl is another antiderivative of f, then the difference F - Fl is a 
function whose derivative is zero for all x in [a, b] and by Proposition 4.6 
such a function is constant. 0 

REMARKS. In view of Proposition 6.1, the indefinite integral 

f f(x) dx = LX f(t) dt + c, 

where C is some constant. If 

f f(x) dx = F(x), 

(6.2) 

(6.3) 

we thus immediately have F'(x) = f(x), but not more. If in addition to (6.3) 
we have 

f f(x)dx = F1(x), (6.4) 

it does not follow that F(x) = Fl (x) but because of the constant C in (6.2) the 
equations (6.3) and (6.4) yield only 

F(x) = Fl (x) + C, 

where C again is some constant. 
To illustrate this point further, let f and g be functions which have con­

tinuous derivatives on an interval [a, b]. The function 

f(x)g(x) - f f'(x)g(x)dx 

is an antiderivative of f(x)g'(x) because f(x)g'(x) = (f(x)g(x»), - f'(x)g(x) by 
part (iii) of Proposition 3.2 and so we have the integration by partsformula 

f f(x)g'(x) dx = f(x)g(x) - f f'(x)g(x) dx. (6.5) 

By (6.5) we get 

f 1 f cotx f ' (.)( ) dx = -2-dx = (cotx)(tanx) dx 
smx cosx cos x 

f f tanx 
= (cotx)(tanx) - (tan x)(cot x)' dx = 1 + -.-2-dx, 

sm x 

that is, 

f 1 dx = 1 + f. 1 dx. 
(sin x)(cos x) (sm x)(cos x) 

(6.6) 

Wrongly interpreted, equation (6.6) leads to the absurdity 0 = 1. The correct 
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interpretation of (6.6) is: The constant 0 is, up to an additive constant, equal 
to the constant 1 (which is no doubt true!). This example serves only the 
purpose of stressing the great importance of the constant of integration C in 
the equation 

f f(x) dx = F(x) + C, 

where F is an antiderivative of f and f is called the integrand. The integration 
by parts formula (6.5) we have already come across in Proposition 5.19 and 
an extension of the integration by parts formula has appeared in (5.44) of 
Chapter 5. 

ADDITIONAL REMARKS. From Proposition 5.18 (together with Proposition 
5.16) we may conclude that if f is continuous on [a, b] and if F is any 
antiderivative of f, then r f(t)dt = F(b) - F(a). (6.7) 

We shall agree to refer to the Riemann integral J~f(t)dt of f on [a,b] as 
simply the definite integral off on [a, b] and call the numbers a and b the 
lower and upper limits of integration; for brevity we shall replace the term 
"Riemann integrable" by the phrase "integrable." 

Relation (6.7) shows that knowledge of the antiderivative (or the indefinite 
integral) suffices to determine the corresponding definite integral. We shall 
consider various techniques for the determination of antiderivatives of certain 
functions in the sequel. We recall, however, that there are definite integrals 
which can be evaluated explicitly without knowledge of the corresponding 
antiderivatives for which explicit expressions may not be available [e.g., see 
(5.45) in Chapter 5 and Exercises 6.3 and 6.4 at the end of this chapter]. 

Proposition 6.2. The indefinite integral satisfies the following basic rules: 

(i) IfF has a continuous derivative F', then 

f F'(x) dx = F(x) + c. 

(ii) Iff and g have antiderivatives, then so does f + g and 

(6.8) 

f {J(x) + g(x)} dx = f f(x) dx + f g(x) dx. (6.9) 

(iii) Iffhas an antiderivative, and ifk is a constant, then kfhas an antiderivative 
and 

f kf(x)dx = k f f(x)dx. (6.10) 
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(iv) IfF and G have continuous derivatives F' and G', then 

f {F(x)G'(x) + F'(x)G(x)} dx = F(x)G(x) + C. (6.11) 

(v) Let G in the variable x have a continuous derivative G' in some interval 
(a, b). Let F in the variable u be defined in the range of G and let F have a 
continuous derivative £I. Then for values of x in (a, b) 

f £I {G(x)} G'(x) dx = F {G(x)} + c. (6.12) 

PROOF. The claims follow directly from the definition and the rules of differ­
entiation. Note, for example, that the integrand in (6.11) equals (FG)' and that 
FG' + F'G is continuous. Similarly, the integrand in (6.12) is continuous and 
is equal to the derivative of F {G(x)}. D 

REMARKS. Observe that J F'(x)dx = F(x) + C, but [J F(x)dx]' = F(x). 
We can obviously rewrite (6.11) in the form 

f F(x)G'(x)dx = F(x)G(x) - f G(x)F'(x)dx, (6.13) 

known as the integration by parts formula. Repeated application of (6.13) 
yields the following: If F(n+1) and G(n+l) are continuous, then 

f F(x)G(n+1)(x) dx = F(x)G(n)(x) - F'(x)G(n-l)(x) + ... 

+ (-1)"F(n)(x)G(x) + (_1)n+1 f F(n+ ll(x)G(x)dx, 

(6.14) 

is known as the extended integration by parts formula. 
If we set u = G(x) in (6.12), then 

f F'{G(x)}G'(x)dx = f F'(u)du = F(u) + C = F{G(x)} + C; (6.15) 
, 

when we use this procedure, we shall speak of using the method of integration 
by substitution. 

2. Some Techniques of Integration 

Much of the art of integration consists essentially in a repeated use of the 
rules contained in Proposition 6.2 together with a few basic antiderivatives. 
We begin by listing a number of useful integration formulas. 

f xn+l 

1. xn dx = n + 1 + C, n=/=-1. 
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2. f ~ dx = In I x I + c. 

3. f eX dx = eX + c. 

4. fax dx = ~ + c, a i= 1, a > o. 
Ina 

5. f (sin x) dx = -cosx + c. 

6. f (cos x) dx = sinx + c. 

7. f (sec2 x)dx = tanx + c. 

8. f (csc2 x)dx = -cotx + c. 

9. f (sec x)(tan x) dx = sec x + c. 

10. f (cscx)(cotx)dx = -cscx + c. 

11. f (tanx)dx = In Isecxl + c. 

12. f (cot x) dx = Inlsinxl + c. 

13. f (secx)dx = Inlsecx + tanxl + c. 

14. f (cscx)dx = Inlcscx - cotxl + c. 

15. f (sinh x) dx = cosh x + c. 

16. f (coshx)dx = sinh x + c. 

17. f (sech2 x) dx = tanh x + c. 

18. f (CSCh2 x)dx = -cothx + c. 
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19. f (sechx)(tanhx)dx = -sechx + c. 

20. f (cschx)(cothx)dx = -cschx + c. 

f 1 1 -1 (X) 21. 2 2 dx = -tan - + c. 
a + X a a 

22. f 1 d . -1 (X) 
(a2 _ X 2 )1/2 X = sm ~ + C, I X I < a and a > O. 

23. f 1 -ll x I x(x2 _ a2 )1/2 dx = sec ~ + C, Ixl > lal and a #- O. 

24. f ( 2 1 2 1/2 dx = sinh-1 (~) + C, 
a + X ) a 

a> O. 

25. f 1 -1 (x) (x2 _ a2 JI/2 dx = cosh ~ + c, x> a > O. 

f 2 1 2dx=!tanh-l(~)+C, 
a -x a a 

26. Ixl < a. 

= ~coth-l (~) + C, Ixl > a > O. 

f 1 1 _l lxl 
27. (2 2)1/2 dx = --sech - + C, xa -X a a 

0< Ixl < a. 

f 1 1 _ll xl 
28. (2 2)1/2 dx = --csch - + C, xa +x a a 

a > 0 and X #- O. 

The foregoing integration formulas are immediate consequences of the corre­
sponding differentiation formulas in Section 3 of Chapter 3. Only formulas 
13 and 14 are obtained somewhat artificially by first noting that 

secx + tanx cscx - cotx 
sec x = (sec x) and cscx = (cscx)-----

sec x + tan x cscx - cot x 

and then making use of the relation 

f f'(t) 
f(t) dt = In If(t)1 + c. (6.16) 

Relation (6.16) follows from formula 2 by putting X = f(t); see also (3.8) and 
(3.9) in Chapter 3. Of course, formulas 11 and 12 are also arrived at via 
relation (6.16). 

The integration of trigonometric functions will very often involve con­
siderable use of trigonometric identities. For example, to see that 
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f sin nx n sin (2k - 1)x 
-.-dx = 2 L + C for n = 1, 2, 3, ... 
smx n=l 2k-1 

(6.17) 

we need to note that 

n n 

sin2nx = L [sin2kx - sin(2k - 2)x] = 2(sinx) L cos(2k - l)x 
k=l k=l 

and this evidently involves the trigonometric identity 

.. A+B . A-B 
smA - smB = 2cos--2-·sm--2-. 

In a similar fashion we obtain 

f sin(2n + 1)x d _ ~ sin2kx 
. x - x + 2 L., 2k + c. 

smx k=l 
(6.18) 

Integrals of the form 

f (sinm x)(cosn x) dx, (6.19) 

where m and n are constant exponents, are easy to evaluate if at least one of 
the exponents m, n is a positive odd integer. In this case we use the identity 

sin2 x + cos2 X = 1 

to rewrite the integrand either in the form F(cos x)sin x or in the form 
F(sin x)cos x. In the former case, the substitution u = cos x is effective, while 
in the latter case, the substitution u = sin x works. For example, 

f sin3 x f 1 - cos2 X . f 1 u 2 

( )1/2 dx = 1/2 (sm x) dx = - u-:/2 du cos x (cos x) 

by setting u = cos x. But 

-f 1 - u2 du = f (U 3/2 _. U- 1/2)du = ~U5/2 - 2U 1/2 + C 
U 1/2 

= ~(COSX)5/2 - 2(COSX)1/2 + c. 
Integrals of the form (6.19) are also easily evaluated if both of the expo­

nents m, n are nonnegative even integers. In this case we use the identities 

sin2 x = !(1 - cos 2x) and cos2 x = !(1 + cos 2x), 

which follow from the double-angle formula 

cos2x = 1 - 2sin2 x = 2cos2 x-I. 

For example 

f (COS2 mx)dx = ~x + _1_(sin 2mx) + C, 
2 4m 

m#O, (6.20) 
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and 

f (sin2 mx) dx = ~ x - 4~ (sin 2mx) + C, 

Use of the trigonometric identities 

m#-O. 

(sin mx)(cos nx) = Hsin(m + n)x + sin(m - n)x], 

(cosmx)(cosnx) = Hsin(m + n)x + cos(m - n)x], 

and 

(sin mx)(sin nx) = Hcos(m - n)x - cos(m + n)x] 

for m ± n#-O gives 

f (sinmx)(cosnx)dx 

1 1 
2(m + n) cos(m + n)x - 2(m _ n) cos(m - n)x + C, 

f (cos mx)(cos nx) dx 

2(m 1+ n) sin (m + n)x + 2(m ~ n) sin (m - n)x + C, 

and 

f (sin mx)(sin nx) dx 

2(m 1_ n) sin(m - n)x - 2(m 1+ n) sin(m + n)x + c. 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

In integrating positive integral powers or products of positive integral 
powers of tan, cot, sec, and esc, the identities 

1 + tan2 s = sec2 sand 1 + cotl s = csc2 s 

can often be used to advantage. For example, 

f (tan4 x)dx = f (tan2 x)(sec2 x - 1)dx 

= f (tan2 x)(sec2 x) dx - f (tan2 x) dx 

= f (tan2 x)(tan x)' dx - f (sec2 x - 1) dx 

= !tan3 x - tan x + x + c. 
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However, the evaluation of the integral J (sec3 x) dx shows that we need more 
than just some trigonometric identities to succeed. Using integration by 
parts, we have [putting F(x) = sec x and G(x) = tan x in (6.13)] 

f (sec3 x) dx = (sec x)(tan x) - f (sec x)(tan2 x) dx 

= (sec x)(tan x) - f (sec 3 x) dx + f (sec x) dx. 

Now, solving for J (sec3 x) dx, we obtain 

f (sec3 x)dx = t(secx)(tan x) + tIn Isecx + tanxl + C. (6.25) 

Integration by parts can also be used in the evaluation of an integral like 

f (sin mx)(cos nx) dx 

occurring in (6.22) if we do not remember the convenient trigonometric 
identity 

(sin mx)(cos nx) = hin[(m + n)x + sin(m - n)x]. 

The extended ititegration by parts formula (6.14) modified to the form 

f F(x)G"(x)dx = F(x)G'(x) - F'(x)G(x) + f F"(x)G(x)dx, 

with F(x) = sinmx and G(x) = -(cosnx)/n2 , gives us an equation that we 
can solve for J(sinmx)(cosnx)dx. Similar remarks pertain to the integrals in 
(6.23) and (6.24). 

The extended integration by parts formula (6.14) is particularly effective in 
connection with integrals such as 

f P(x)eaxdx, f P(x)(sinbx)dx, and f P(x)(cosbx)dx, 

where P is a polynomial. Putting 

G(II+l)(X) = eax and F(x) = P(x) 

in (6.14), we see that 

f P(x)eax dx = eax (P(X) _ P'(x) + P"(x) - ... ) + c. (6.26) 
a a2 a3 

Setting 

G(II+1)(X) = sin bx and F(x) = P(x) 

in (6.14) gives 
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f (Pf(X) P"'(X) ) 
P(x)(sin bx) dx = (sin bx) y -~ + ... 

( P(X) P"(x) ) 
-(cosbx) -b--lT"+··· +C. 

In a similar way we get 

f P(x)(cosbx)dx = (SinbX)(PiX) _ P~~X) + ... ) 

( Pf(X) P"'(x) ) 
+(cosbx) y-~+ ... +c. 

Using the integration by parts formula (6.13) we can easily see that 

f eax(cosbx)dx = ~eax(cOSbx) + ~f eaX(sinbx)dx 

and 

(6.27) 

(6.28) 

(6.29) 

f eaX(sinbx)dx = ~eaX(Sinbx) - ~f eax(cosbx)dx. (6.30) 

!fin (6.29) we replace the integral on the right-hand side by what (6.30) gives 
for that integral, we obtain 

f b sin bx + acosbx 
eax(cos bx) dx = eax + c. 

a2 + b2 
(6.31) 

In a similar way we obtain 

f ax( . b)d - asinbx - bcosbx ax C e sm X X - 2 b2 e + . 
a + 

(6.32) 

Another application of the integration by parts formula (6.13) is the 
development of certain recursion formulas. Suppose 

I n = f (x2 ~ a2 )" dx, n = 1,2,3, ... . (6.33) 

Putting 

1 
F(x) = (2 2)" and G(x) = X 

X + a 

in (6.13), we get 

But 
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and so 

_ X 2 
J" - (2 2)" + 2nJ" - 2na J,,+1 

x + a 

or 

1 x 2n-ll 
J,,+1 = -2 2 ( 2 + 2)" + -2-2J,,· nax a n a 

(6.34) 

Since 

1 -1 (x) J1 = ~tan a' (6.35) 

we get 

J2 = 212 2 X 2 + 21
3 tan-1 (~), (6.36) 

a x +a a a 

J =_1_ x +~J =_1_ x +~tan-l(~) (637) 
3 4a2 (x2 + a2)2 4a2 2 4a2 (x2 + a2)2 8as a" 

and so forth. In (6.35), (6.36), and (6.37) we have omitted the constants of 
integration on purpose. 

Another approach to the evaluation of the integrals 

J" = f (x2 : a2)" dx, n = 1,2,3,... (6.38) 

is by the trigonometric substitution x = a tan t. We get 

f 1 f a sec2 t 1 f 2,,-2 
J" = (2 2)"dx = (2 2 )"dt = 2,,-1 (cos t)dt. x+a asect a 

For example, 

If 1 J1 = - dt = - t + C 
a a 

(6.39) 

and 

If I1f 1. J2 = a3 (cos2 t)dt = a3 "2 (1 + cos2t)dt = 2a3 (1 + !sm2t) + C 
(6.40) 

= 2~3 [t + (sin t)(cos t)] + c. 

But tant = x/a and so t=tan-1(x/a), sint=x/(x2+a2)1/2, and cost = 
a/(x2 + a2)1/2 (see Figure 6.2). This shows that J1 and J2 are as given in (6.35) 
and (6.36) when we delete the constant of integration for J1 and J2 • 
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REMARKS. By use of the trigonometric identities 

1 - sin2 t = cos2 t, 1 + tan2 t = sec2 t, and sec2 t - 1 = tan2 t 

we obtain substitutions which enable us to integrate expressions involving 

If(a2 - X2)1/2 occurs, we substitute x = asint; if(a2 + X2)1/2 occurs, we sub­
stitute x = a tan t; if (x 2 - a2 )1/2 occurs, we substitute x = a sec t. After the 
integration has been carried out with respect to the variable t, the answer can 
be written in terms of the original variable x by referring to the appropriate 
right triangle in Figures 6.1, 6.2, or 6.3. 

Sometimes expressions involving integrals powers a2 - x2 or a2 + x 2 or 
x 2 - a2 may be most conveniently integrated by these trigonometric substi­
tutions; relations (6.34) and (6.35) illustrate this. 

We conclude with some examples. 

1. To find J (a 2 - X2)1/2 dx, where Ixl :::; a and a> 0, we put x = a sin t. 
Then 

f (a2 - X2)1/2dx = a2 f (cos2t)dt = ~a2 f (1 + cos2t)dt 

= !a2(t + !sin2t) + C = !a2[t + (sint)(cost)] + C 

= - a sm - + - + c. 1 2 ( . -1 (x) x (a 2 - X2)1/2) 
2 a a a 

We have used Figure 6.1 in the last step for guidance. 

2. To find J (a2 + X2)-1/2 dx, where a> 0, we put x = a tan t. Then 

f (a 2 + X2)-1/2 dx = f (sec t) dt = In I sec t + tan tl + C 

l(a2 + X2)1/2 x I 
= In a + ~ + C = In l(a2 + X2)1/2 + xl + C1· 

t 

\ 
\ 
\ 
\ 
I 

a 

Figure 6.1. Substitution: x = a sin t. 

x 
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2 
(a + 

a 

Figure 6.2. Substitution: x = a tan t. 
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x 

We have used Figure 6.2 when changing from the variable t back to the initial 
variable x. At the beginning of this section (see formula 24) the integral under 
consideration was evaluated in terms of the inverse of the hyperbolic sine 
function. 

3. To find f(x 2 - a2 r 1/2 dx, where x > a > 0, we put x = a sec t. Then 

f (x2 - a2r 1/2 dx = f (sect)dt = In Jsect + tantJ + C 

Ix (X2 a2)1/21 
=In a+ -a +C=lnJx+(x2-a2)1/2J+Cl· 

We have used Figure 6.3 when changing from the variable t back to the initial 
variable x. At the beginning ofthis section (see formula 25) the integral under 
consideration was evaluated in terms of the inverse of the hyperbolic cosine 
function. 

3. Integration of Rational Functions 

Defmition. A function f is said to be rational if it can be represented in the 
form 

f( ) = P(x) 
x Q(x)' (6.41) 

where P and Q are polynomials 

P(x) = amxm + am-l xm- 1 + ... + a1 x + ao 

and 

Q(x) = bnxn + bn_1x n- 1 + ... + b1x + bo 

with real coefficients ao, a1, ... , am and bo, b1, ... , bn. Also, we assume that P 
and Q have no common roots, in other words, that the rationalfraction P/Q 
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( 2 2) l::i x - a 

a 

Figure 6.3. Substitution: x = a sec t. 

is in "canonical" form. If the degree of the numerator P is less than the degree 
of the denominator Q, the fraction P/Q is said to be proper; otherwise it is 
said to be improper. 

REMARKS. If the rational fraction (6.41) is improper, then by division of 
polynomials we can represent P/Q in the form 

P(x) _ () R(x) 
Q(x) - S x + Q(x)' 

where S (quotient) and R (remainder) are also polynomials, but the degree of 
R is less than the degree of the divisor Q, that is, the rational fraction R/Q is 
proper. Hence, an improper rational fraction can be represented as a sum of 
a polynomial and a proper fraction. Since we can integrate polynomials, 
integration of improper rational fractions reduces to integration of proper 
fractions. We can therefore only consider the case when / is a proper rational 
fraction. 

All general methods for the integration of rational functions are based on 
their representation in a special form convenient for integration. In these 
methods an important part is played by the roots of the denominator Q of the 
fraction. If 0( is a real or complex root of the polynomial Q, then Q can be 
divided without remainder by the binomial x - 0(, that is, 

Q(x) = (x - O()Q*(x), 

where Q* is also a polynomial; if Q*(O() = 0, we have 

Q(x) = (x - 0()2Q**(X), 

and so forth. If 

Q(x) = (x - I#Ql (x), (6.42) 

where k ~ 1 and Ql (0() #- 0 (i.e., 0( is no longer a root of the polynomial Ql) 
we say that the polynomial Q has root 0( o/multiplicity k. 

Lemma 1.1/ a real number 0( is a root o/multiplicity k > 0 o/the polynomial Q, 
we have identically 
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P(x) Ak PI (x) 
-Q(-X) = (X - a.)k + (x - a.)k IQI(X)' 

(6.43) 

where Ak is a constant and PI is a polynomial. 

PROOF. We note first that the polynomial QI is defined in this case by 
equation (6.42) [so that QI (a.) # 0], the number Ak is real, all polynomials 
have real coefficients, and the fraction P/Q in (6.43) can be proper or 
improper. 

Turning to the proof, the identity (6.43) is equivalent to the identity 

(6.44) 

obtained on multiplying by Q(x); the identity (6.44) implies that the poly­
nomial P - AkQI can be divided by the binomial x - a.. But for this to hold 
it is necessary and sufficient that 

(6.45) 

If we therefore assume that 

Ak = P(a.) 
QI (a.) 

[recalling that QI (a.) # 0], then equation (6.45) will be satisfied and the poly­
nomial P - AkQI will be divisible by the binomial x - a., that is, we shall 
have the identity (6.44) and hence also the identity (6.43). 0 

REMARKS. If k ;;?: 2, then the rational fraction 

(x - a.)k-IQI (x) 

has the same form as the initial fraction P/Q; applying Lemma 1 to this 
fraction we get 

P(x) Ak Ak- I P2(x) 
Q(x) (x - a.)k + (x - a.)k-I + (x - a.)k 2QI (x) . 

If k ;;?: 3, this process can be continued as long as the denominator or the 
last fraction on the right-hand side still contains the binomial x - a. of an 
arbitrary positive power. Hence, we finally obtain . 

P(x) Ak Ak- I Al P*(x) 
= + + ... +--+--

Q(x) (x - a.)k (x - a.)k-I x - a. QI (x)' 
(6.46) 

where AI' ... , Ak are real numbers and P* is a polynomial with real 
coefficients. 

In all these considerations we have assumed that the number a. is real. If 
the complex number a. = f3 + iy, y # 0, is a root of multiplicity k of the 
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polynomial Q (with real coefficients), then the conjugate complex number 
a = 13 - iy will also be a root of this polynomial of the same multiplicity k. In 
this case the polynomial Q is divisible by (x - ct)k and by (x - a)k and hence 
also by their product; and since (x - ct)(x - a) = (x - 13)2 + y2, we therefore 
obtain 

(6.47) 

where QI (ct) =f. 0 and QI (a) =f. 0 [the numbers 13 and y and the coefficients of 
the polynomial QI are evidently real]. 

Lemma 2. If the complex number ct = 13 + iy, y =f. 0, is a root of multiplicity k 
of the polynomial Q, then identically 

P(x) 
Q(x) 

where Bk and Ck are constants and PI is a polynomial. 

(6.48) 

PROOF. The polynomial QI is here defined by equation (6.47), the numbers 
Bk , Ck , and the coefficients of the polynomial PI are real numbers, and the 
fractions P/Q on the left-hand side of (6.48) can be proper or improper. 

Turning to the proof, let 

(x - ct)(x - a) = (x - f3? + y2 = q(x). 

The identity (6.48) is equivalent to the identity 

P(x) - (BkX + Ck)QI (x) = q(x)PI (x), (6.49) 

which because of the as yet undetermined polynomial PI is, in its turn, 
equivalent to the condition that the polynomial on the left-hand side of (6.49) 
is divisible by q, that is, by x - ct and x-a. But for this it is necessary and 
sufficient that 

or 

P(ct) _ P(a) 
Bkct + Ck = -(-) and Bkct + Ck = -(_)' 

QIct QIct 

Thus, we have a system of two equations of first degree with determinant 

ct - a = 2iy =f. 0 

for the evaluation of the unknowns Bk and Ck> and we can therefore deter­
mine these two numbers uniquely. It can be seen that in this case the expres­
sions obtained for Bk and Ck depend symmetrically on ct and a and they are 
therefore real. Having Bk and Ck thus determined, we can easily find PI by 
(6.49). D 
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REMARKS. If k > 1, then, as with a real root, the last fraction on the right­
hand side of (6.48) has the same form as the initial fraction on the left-hand 
side. We can therefore apply the same Lemma 2. Continuing this process we 
find, as before, that if the polynomial Q has a complex root (X = /3 + iy, y i= 0, 
of multiplicity k and if the polynomial Ql is defined by the identity (6.47), 
then the following identity holds: 

P(x) Bkx + Ck Bk- 1X + Ck- 1 B1x + C1 P*(x) 
Q(x) = {q(x)Y + {q(x)1k 1 + ... + q(x) + Q1 (x)' (6.50) 

where q(x) = (x - /3)Z + yZ, Bl> Bz, ... , Bk, C1, Cz, ... , Ck are real numbers 
and P* is a polynomial with real coefficients. 

ADDITIONAL REMARKS. Concerning the identities (6.46) and (6.50) we note that 
if P /Q is a proper fraction, then so is P* /Q l' Indeed, if we assume that the 
variable x increases indefinitely, all terms except possibly P*(X)/Q1 (x) tend to 
zero; it follows from the identity that P*(X)/Q1 (x) must also tend to zero and 
this is possible only if p* /Q 1 is a proper rational fraction. 

Definition. A rational function is called a partial fraction if it is either of the 
form 

A 

(x - (Xt 

or of the form 

Bx+ C 
[(x - /3f + yZ]V' 

here A, B, C, (x, /3, and y denote fixed real number and u and v stand for 
positive integers. 

DISCUSSION. Our goal is to show that every proper rational function P/Q can 
be converted to a finite sum of partial fractions. Subsequently, we shall see 
that partial fractions are very convenient for integration. 

Suppose that Q has the real roots (Xl> (Xz, ... , (Xr and the complex roots 
/31 ± iY1' /3z ± iyz, ... , /3s ± iys' Moreover, we assume that all these roots are 
distinct and that the real root (Xm has multiplicity km with 1 :::; m :::; r and that 
the multiplicity of the pair of complex roots /3n ± iYn iSjn with 1 :::; n :::; s. Then 

r s 

Q(x) = b TI (x - (Xmtm TI [(x - /3n)Z + y;]in, 
m=1 n=1 

where b i= 0 is a constant. 
Applying formula (6.46) r times (for all r real roots (Xm) we obtain the 

identity 
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P(x) 
Q(x) 

+ ... 
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A~l) 
+ ... +-­

X - lX1 

A(r) A(r) Ar) P*(x) + kr + kr-1 + ... + __ + __ 
(x - lXr)kr (x - lXr )kr-1 X - lXr Q*(X) 

r km A~m) P*(x) 
ml;1 uf:1 (x - lXm)U + Q*(x) , 

where A~m) is a constant real and P*/Q* is a proper fraction because P/Q is 
and 

S 

Q*(x) = b n [(x - f3n)2 + y;Jin. 
n=1 

Applying formula (6.50) s times, we obtain 

P*(x) 
Q*(x) 

B(1)x + e(1) B(1)x + e(1) 
11 11 + ... + 1 1 

[(x - f3d + yf]i! (x - f3d2 + y2 

B(2)X + e(2) m2)x + e(2) + J2 12 + ... + 1 1 

[(x - f32)2 + ynh (x - f32)2 + y~ 
+ ... 

B(S)x + e(s) B(s)x + e(s) P**(x) + J. J. + ... + 1 1 + __ _ 
[(x - f3s)2 + y;J i• (x - f3sf + y; Q**(x) 

s in B~n)x + qn) P**(X) 
= I I [( f3 )2 2y + Q**( )' n=l v=l X - n + Yn X 

where B~") and e~n) are constant real numbers and p** = 0 (because all roots 
of Q* have been used and Q** has no other roots; also, since P* /Q* is a 
proper fraction, so is P** /Q**). Thus, we have for the initial proper fraction 
P /Q the following partial fraction expansion: 

P(x) r km A~m) s in B~n)x + e~n) 
Q(X) = ml;l J1 (X - lXm)U + nf:1 vf:1 [(X _ f3n)2 + y;y' (6.51) 

The foregoing shows that, given a proper rational fraction P/Q, it is pos­
sible to expand P/Q into a finite sum of partial fractions; moreover, this 
expansion is unique because at all stages of the successive determination of 
the numbers A~m), B~n), and e~n) we have found that their determination is 
unique. We record these facts in the following proposition. 



3. Integration of Rational Functions 327 

Proposition 6.3. Any proper rational fraction can be represented uniquely as a 
finite sum of partial fractions. 

COMMENTS. The method just discussed for the successive determination of 
coefficients of the expansion (6.51) is usually not the simplest method to use. 
It is generally easier and more efficient to use the so-called method of undeter­
mined coefficients. We write the expansion (6.51) with undetermined A~m), B~n), 
and c~n) and, in disposing of all fractions, multiply both sides of this relation 
by Q(x). As a result we get the given polynomial P on the left-hand side and 
on the right-hand side another polynomial whose coefficients, after com­
parison with similar terms, evidently contain the unknown numbers A~m), B~n), 
and c~n) and, as can readily be seen, are linearly dependent on these numbers. 

Since the resulting equation must be an identity, the coefficients of like 
powers of x on the right- and left-hand sides must be equal. Comparing them 
with each other in pairs, we obtain a system of linear equations for the 
unknowns A~m), B~n), and c~n), with whose help these numbers can be deter­
mined. We know in advance that this problem has a unique solution. It can 
readily be seen that the number of equations of the system is equal to the 
number of the unknowns. Indeed, let N be the degree of the polynomial Q. 
On multiplying both sides of the identity (6.51) by Q(x) we clearly get a 
polynomial of degree N - 1 on the right-hand side; on the left-hand side we 
have the polynomial P whose degree is not larger than N - 1, since P/Q is a 
proper rational fraction. Since a polynomial of degree N - 1 has N coeffi­
cients, a comparison of coefficients on the right- and left-hand sides gives us a 
system of N equations. On the other hand, the number of the A~m) (1 s m s r, 
1 sus kn) is L:-"=1 km; similarly, the number of B~n) is L~=1jn and the same 
applies to the number of c~n). Hence, the total number of unknowns is equal 
to 

r s 

L km + 2 Ljn; 
m=1 n=1 

but the expansion 
r s 

Q(x) = b n (x - IXm)k~ n [(x - f3nf + I';]in, b =1= 0 is a constant, 
m=l n=1 

shows that this number is exactly equal to the degree N of the polynomial Q. 
Hence, the number of unknowns is, in fact, equal to the number of linear 
equations obtained. 

EXAMPLE. As an illustration of the method of undetermined coefficients con­
sider the partial fraction decomposition of 

2X2 + 2x + 13 
(x - 2)(x2 + 1)2' 
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We put 

2X2 + 2x + 13 A Bx + C Dx + E 
(x - 2)(x2 + 1)2 = X - 2 + x 2 + 1 + (x2 + 1)2· 

Clearing fractions gives 

2X2 + 2x + 13 = A(x2 + 1)2 + (Bx + C)(X2 + l)(x - 2) + (Dx + E)(x - 2) 

= (A + B)x4 + ( - 2B + C)x3 + (2A + B - 2C + D)x2 

+ ( - 2B + C - 2D + E)x + (A - 2C - 2E). 

Comparing coefficients of like powers, we get the system of equations 

A + B = 0, 

- 2B + C = 0, 

2A + B - 2C + D = 2, 

-2B+ C-2D+ E=2, 

A -2C - 2E = 13. 

If we set x = 2 in 

2X2 + 2x + 13 = A(x2 + 1)2 + (Bx + C)(x2 + l)(x - 2) + (Dx + E)(x - 2), 

we obtain 25 = 25A or A = 1. From the system of equations we see that 
B = -1, C = -2, D = -3, and E = -4. Therefore, 

2X2 + 2x + 13 
(x - 2)(x2 + 1)2 

1 x + 2 

x - 2 x 2 + 1 
3x + 4 

(6.52) 

DISCUSSION. We now consider the integration of partial fractions, that is, 
proper rational fractions of the form 

A Bx+C 
(x-a)" and [(X_P)2+ y2Jv' 

where A, B, C, a, p, and yare constant real numbers and u and v are positive 
integers. We have 

and 

f~dX = Alnlx - al + K 
x-a 

(6.53) 

f A -A 
-,----,.,-dx = 1 + K, for u = 1,2, 3, .... (6.54) 
(x - a)" (u - l)(x - a)" 

Using the substitution x = p + yy gives 
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f Bx + C dx - f B(f3 + yy) + C d 
(x - 13)2 + y2 - y2(1 + y2) Y Y 

-~f~d +Bf3+Cf_l_d 
- 2 1 + y2 y Y 1 + y2 y 

Similarly, for v = 1,2, 3, ... , we get 

f Bx + C dx - f B(f3 + yy) + C d 
[(x - 13)2 + y2]V - y2V(1 + y2)V Y Y 

(6.56) 
- _B_ f 2y d Bf3 + C f 1 d 
- 2y2V-2 (1 + y2)V Y + y2v 1 (1 + y2)V y. 

But 

f 2y 1 
(1 + y2)v dy = (v _ 1)(1 + y2)V 1 + K (6.57) 

and, setting 

(6.58) 

we have, by (6.34), 

(6.59) 

Hence, by knowing 11 we can find in succession 12 , 13 , and so forth. By 
putting y = (x - f3)/Y, we can change back to the initial variable x. 

Summing up, we therefore see that the functions obtained by integration of 
partial fractions (and hence also by integration of all rational functions) can 
either be logarithms and arc tangents or rational functions. 

EXAMPLE. By (6.52), we have 

f 2X2 + 2x + 13 dx = f _1_ dx - f x + 2 dx - f 3x + 4 dx 
(x - 2)(x 2 + 1)2 X - 2 x2 + 1 (x2 + I? 

and so 



330 6. Additional Topics in Integration 

FURTHER DISCUSSION. We have seen so far that the integration of rational 
functions for which the roots of the denominator are known does not cause 
much difficulty, although it sometimes can be connected with rather lengthy 
calculations. There is a general method, due to M. V. Ostrogradski and 
C. Hermite, which can often simplify and shorten these calculations. We 
shall consider this method next and refer to it as the Hermite-Ostrogradski 
Method. 

Let us suppose again that P/Q is a proper rational fraction and 
r s 

Q(x) = b n (x - IXm)km n [(x - Pn? + y;]in, b ~o. (6.60) 
m=1 n=1 

By Proposition 6.3, we can expand P/Q uniquely into a finite sum of partial 
fractions, that is, functions of the form 

A Bx+ C 
(x - IX)U and [(x _ P)2 + y2]V' 

where A, B, C, IX, p, and yare constant real numbers and u and v are positive 
integers. Integration of 

A 

(x - IX)" 

leads to the logarithmic function for u = 1 and to rational functions for u > 1 
[see (6.53) and (6.54)]. Letting 

Iv = f (1 +1y2tdY, 

relation (6.59) shows that we can represent Iv in the form 

L(y) 
Iv = AvI1 + (1 + y2)v-1' (6.61) 

where Av is a constant, L is a polynomial, and the fraction 

L(y) 
(1 + y2t 1 

is a proper rational fraction. Substituting (6.61) into (6.56) and returning on 
the right-hand side from the variable y to the initial variable x, we get 

f Bx + C dx = R(x) + (J f 1 dx (6.62) 
[(x _ P)2 + y2y [(x _ P)2 + y2]V 1 v (x _ P)2 + y2 ' 

where R is a polynomial, (Jv is a constant, and the fraction 

R(x) 
[(x _ P)2 + y2]V-l 

is a proper rational fraction. This is the situation for v > 1; for v = 1 we have 
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(6.55) in which there are no rational terms on the right-hand side, but only 
the logarithmic function and the arc tangent function. 

We therefore see that if a proper rational fraction P/Q is expanded into 
partial fractions, those terms of the expansion in which u > 1 or v > 1 give 
upon integration proper rational fractions with corresponding denominators 

(x - IXmr1 and [(x - f3n)Z + y;y-1. 

On adding all these proper rational fractions we obtain another proper 
rational fraction, 

whose denominator evidently equals 
r • 

Q1(X) = n (x - IXm)km-1 n [(x - f3n)2 + y;]in-1. (6.63) 
m=1 n=1 

This is the rational part of the integral of the given fraction P/Q. The second 
transcendental part of the integral of P/Q will evidently consist of: (i) integrals 
of those terms of the expansion (6.51) in which u = 1 and v = 1, and (ii) 
integrals of those terms of the expansion (6.51) in which v> 1, as can be seen 
by (6.62). In both these cases the integrand belongs to one of the following 
types: 

A Bx+ C 
, 

X-IX 

the sum of these integrands will therefore be a proper rational fraction 

Pz(x) 
Qz(x) , 

where 
r • 

Qz(x) = n (x - IXm) n [(x - f3n)Z + y;]. 
m=1 n=1 

We thus obtain the Hermite-Ostrogradski Formula 

f P(x) dx = P1(x) + f Pz(x) dx 
Q(x) Q1 (x) Qz(x) , 

(6.64) 

(6.65) 

where the first and second terms on the right-hand side represent the rational 
and transcendental parts of the integral of P/Q, respectively. The polynomials 
Q1 and Q2 are determined from the formulas (6.63) and (6.64), respectively, 
and the fractions PdQ1 and Pz/Qz are proper rational fractions. 

The interesting feature of (6.65) is due to the fact that it can be obtained 
without knowing the roots of the polynomial Q. In fact, we can easily see that a 
root of multiplicity k > 1 of the polynomial Q is a root of multiplicity k - 1 



332 6. Additional Topics in Integration 

of the polynomial Q' (the derivative of Q); if we therefore assume that 

r s 

Q(x) = b n (x - IXm)km n [(x - 13m)2 + y;]in, 
m=1 n=1 

then 

r s 

Q'(x) = n (x - IXm)km-1 n [(x - 13n)2 + y;]in-1. R(x) = Q1(x)R(x), 
m=1 n=1 

where the polynomials Q and R have no common root. This shows that the 
polynomial Q1 is the greatest common divisor of the polynomial Q and its 
derivative Q'. By (6.60), (6.63), and (6.64), we have 

(6.66) 

therefore, knowing Q and Q1' we can find the polynomial Q2 by (6.66). 
Finally, to obtain P1 and P2 , we can differentiate the expression in (6.65) and 
obtain 

P(x) Q1 (x)P~ (x) - P1 (X)Q'1 (x) P2(x) 
--= +--
Q(x) Qi(x) Q2(X) . 

(6.67) 

By (6.63) each root r of the polynomial Q1 is a root of the polynomial Q 
and, by (6.64), is also a root of the polynomial Q2. If Q 1 contains the binomial 
x - r of power k > 1, then Q'1 contains it also, but its power is k - 1, and it 
appears in Q2 in the first degree; therefore, the product Q'1 Q2 contains x - r 
of the same power k as the polynomial Q1. And since the same also applies 
to any root r of the polynomial Q 1, Q'1 Q2 is divisible by Q 1> that is, 

Q'1 (X}Q2(X) = Q1 (x)S(x), 

where S is a polynomial. We therefore obtain 

Q1 (x)P{ (x) - P1 (X)Q'1 (x) 

Qi(x) 

Q2(X)Q1 (x)P~ (x) - Q2(X)P1 (X)Q'1 (x) 

Q2(x)Qi(x) 

Q1 (x) [Q2(X)P~ (x) - P1 (x)S(x)] 

Q2(x)Qi(x) 

Q2(X)P~ (x) - P1 (x)S(x) 

Q1(X)Q2(X) 

multiplying by Q(x) = bQ1(X)Q2(X), we get from (6.67) 

P(x) = b[Q2(X)P{ (x) - P1 (x)S(x)] + bP2(x)Q1 (x). (6.68) 

In this expansion the polynomials P, Q1' Q2, and S are known to us. The 
highest possible degrees of the polynomials P1 and P2 which we are trying to 
find is determined by the fact that the fractions PdQ1 and P2/Q2 are proper 
rational fractions. Hence, the polynomials P1 and P2 can readily be obtained 
from relation (6.68) by the method of undetermined coefficients. It can easily 
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be seen that in this case the number of unknowns coincides with the number 
of equations obtained and that the solution of this system is assured by the 
expansion (6.67). 

To illustrate the theory, we look at some examples next. 

EXAMPLE 1. Consider the integral 

f 4xs - 1 
(X S + x + 1)2 dx. 

Here Q(x) = (X S + x + 1)2 and Q'(x) = 2(x S + x + 1)(5x4 + 1). Since Ql 
is the largest common divisor of Q and Q', we have Ql (x) = X S + x + 1. 
Since b = 1, Q2 = Q/Ql and so Q2(X) = XS + x + 1. Thus, by the Hermite­
Ostrogradski Formula [see (6.65)], 

f 4xs - 1 d Pl(X) f P2(x) d 
X= + X 

(X S + x + If XS + x + 1 XS + x + 1 

or 

4x S - 1 (X S + x + I)P~ (x) - (5X4 + I)P1 (x) P2(x) 
~~--~ - + ~---=-..:....:..-
(X S + X + 1)2 - (X S + x + 1)2 XS + X + 1 . 

Putting 

P1 (x) = Aox4 + A 1 x 3 + A2X2 + A3X + A 4, 

P2(x) = Box4 + B 1 x 3 + B2X2 + B3X + B 4, 

we obtain, after clearing fractions, 

4x s - 1 = (x.s + x + 1)(4Aox3 + 3A 1 x 2 + 2A2x + A 3) 

- (5X4 + I)(Aox 4 + A 1 x 3 + A2X2 + A3X + A4) 

+ (X S + x + I)(Box4 + B 1 x 3 + B2X2 + B3X + B4)' 

Comparing coefficients of like powers of x, we find 

Bo = Bl = B2 = B3 = B4 = O. 

We therefore conclude that 

~----dx= f 4xs - 1 

(X S + x + 1) 

X 
S +K. 

x + x + 1 

REMARK. In an entirely similar manner we can show that 

-----=----=----dx = - + K. f 4X9 + 21x6 + 2x3 - 3x2 - 3 x 3 + 3 
(x 7 -x+l)2 x 7 -x+l 
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EXAMPLE 2. Consider the integral 

f 4X4 + 4x 3 + I6x2 + I2x + 8 d 
(x + 1)2(X2 + 1)2 X. 

Here 

Putting 

P1(X) = Aox2 + A1x + A2 and P2(x) = Box2 + B1x + B2, 

the Hermite-Ostrogradski Formula gives 

4X4 + 4x 3 + I6x2 + I2x + 8 = (AoX2 + A1x + A2)' + Box2 + B1x + B2 
(x 3 + x2 + X + If x 3 + x 2 + X + 1 x 3 + x 2 + X + 1 . 

From this, in turn, we obtain 

Ao = -1, Al = 1, A2 = -4, Bo = 0, B1 = 3, B2 = 3. 

Therefore, 

f 4X4 + 4x 3 + 16x2 + 12x + 8 dx = 
(x + 1)2(X2 + 1)2 

x 2 - X + 4 1 
3 2 + 3 tan- x + K. 

x+x+x+1 

EXAMPLE 3. Consider the integral 

Here 

Thus, 

and so 

f 2X4 - 4x 3 + 24x2 - 40x + 20 
2 3 dx. (x - 1)(x - 2x + 2) 

Q1 (x) = (x2 - 2x + 2)2 and Q2(X) = (x - 1)(x2 - 2x + 2). 

2X4 - 4x3 + 24x2 - 40x + 20 

(x - 1)(x2 - 2x + 2)2 

= (AX 3 + Bx2 + Cx + D)' + ~ + Fx + G 
(x 2 - 2x + 2)2 X - 1 x2 - 2x + 2 

A = 2, B = -6, C = 8, D = -9, E = 2, F = -2, G = 4, 

showing that 

f2X4 - 4x 3 + 24x2 + 12x + 8 dx 
(x - 1)(x2 - 2x + 2)2 

2x 3 - 6x2 + 8x - 9 I (x - 1)2 2 -1 ( 1) K = + n + tan x- + . 
(x2 - 2x + 2)2 x2 - 2x + 2 
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EXAMPLE 4. Consider the integral 

f X6 - x 5 + X4 + 2x3 + 3x2 + 3x + 3 
(x + 1)2(x2 + X + 1)3 dx. 

Here 

Ql(X) = (x + l)(x2 + X + 1)2 and Q2(X) = (x + l)(x2 + X + 1). 

Thus, 

and so 

x6 - x 5 + X4 + 2x3 + 3x2 + 3x + 3 
(x + 1)2(x2 + X + 1)3 

( AX4 + Bx 3 + Cx 2 + Dx + E)' Fx2 + Gx + H 
= (x + l)(x2 + X + 1) + (x + l)(x2 + X + 1) 

A = - 1, B = 0, C = - 2, D = 0, E = - 1, F = G = H = 0, 

showing that 
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-----~-=-----~--dx = - + K. fX6 - x 5 + X4 + 2x3 + 3x2 + 3x + 3 X4 + 2X2 + 1 

(x + 1)2(x2 + X + 1)3 (x + l)(x2 + X + If 

4. Integration by Rationalization 

If a given integral can be converted by a suitable substitution into an integral 
of a rational function, we say that we can integrate by rationalization. In the 
foregoing section the integration of rational functions was solved in principle; 
in this section we consider certain integrals that can be evaluated by the 
method of integration by rationalization. 

Definition. We call P a polynomial in the variables u, v, ... , z if P(u, v, ... , z) is 
a (finite, real) linear combination of expressions of the form UkV i . .. zm, where 
k, j, ... , m are nonnegative integers. We say that R is a rational function in 
the variables u, v, ... , z if 

P(u,v, ... ,z) 
R(u,v, ... ,z)= ( )' Q U,v, ... ,z 

where P and Q are polynomials in the variables u, v, ... , z. 

Proposition 6.4. Consider the integral 

f R(sin x, cos x) dx, (6.69) 

where R is a rational function in the variables u and v with 
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u = smx and v = cosx. 

The integral (6.69) can be rationalized by the substitution 

x 
t = tanI' 

where -7t < x < 7t. 

PROOF. Since 

. 2 . x x 2 sin(x/2) 2 x 2 tan (x/2) 
smx = Sln-cos- = cos - = , 

2 2 cos (x/2) 2 1 + tan2(x/2) 

2 x . 2 X 2 X ( 2 x) 1 - tan2(x/2) 
cos x = cos I - sm I = cos I 1 - tan I = 1 + tan2(x/2) , 

and 

we obtain 

and so 

. 2t 
smx =--2' 

1 + t 

x = 2tan-1 x, 

1 - t2 

COSX =--2' 
1 + t 

f . f (2t 1 - t2
) 1 R(smx,cosx)dx=2 R --2'--2 --2dt, 

l+t l+t l+t 

accomplishing the rationalization. 

(6.70) 

(6.71) 

o 

DISCUSSION. The substitution (6.71) at times leads to complicated expressions 
and it is therefore of interest to discover other substitutions resulting in less 
work, provided that such substitutions exist, when the rational function R 
satisfies some additional properties. 

The situation at hand calls for some remarks concerning even and odd 
polynomials and rational functions first. We call a function R even or odd if 

R( -x) = R(x) resp. R( -x) = -R(x) 

holds. An even polynomial contains only even powers of x, hence is a poly­
nomial with respect to x 2• An odd polynomial contains only odd powers of x, 
hence is divisible by x and thus equals the product of x and a polynomial in 
x 2• 

Now, suppose a rational function R is even and let R = PdP2' where PdP2 

are in reduced form, that is, P1 and P2 are assumed to have no common roots. 
Then 

P1 ( -x) P1(x) 
P2 ( -x) P2 (x) 
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implies 

for some constant a. Comparing in both these equations the highest powers 
of x, we see that a can only have the values ± 1. If it were true that a = -1, 
then Pi and P2 would both be odd, hence divisible by x; but we had assumed 
that PdP2 is in reduced form. Therefore a = 1 and Pi and P2 are even, that is, 
Pi and P2 are polynomials in x 2. 

We therefore see that an even rational function R is a rational function in x2 
and in reduced form is representable as a quotient of even polynomials: 

R(x) = Qi(X2) 
Q2(X2) . 

If, on the other hand, R is odd, then R(x)jx is even, so that we have 

R(x) = xRdx2) 

for some rational function Ri in x 2 • 

We therefore make the following claims: 
Rule I: If R(u, v) is an odd function with respect to u, then the integral (6.69) 

can be rationalized by the substitution 

t = cosx. 

Indeed, by the assumptions made and by what has been said further above, 

R(u, v) = URi (u2, v), 

where Ri is a rational function in the two variables u2 and v. Therefore, the 
integral (6.69) assumes the form 

f Ri (sin2 x, cos x)(sin x) dx 

and becomes via the substitution t = cos x 

-f R i (1 - t2, t)dt. 

Rule II: If R(u, v) is an odd function with respect to v, then the integral 
(6.69) can be rationalized by the substitution 

t = sinx. 

Indeed, in this case 
U(u,v) = vR i (u,V 2) 

where Ri is a rational function in the variables u and v2 ; the integral (6.69) 
assumes the form 
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via the substitution 

t = sinx. 

Rule II I: If the rational function R in the variables u and v satisfies 

R( -u, -v) = R(u, v), 

then the integral (6.69) can be rationalized by the substitution 

t = tanx. 

Indeed, putting u = vt, it follows from our assumptions that 

R( - vt, - v) = R(vt, v); 

thus, the function R(vt, v) is even with respect to v and therefore satisfies the 
relation 

R(vt, v) = R 1 (v2, t), 

where R 1 is a rational function in the variables v2 and t. Putting v = cos x, 
t = tan x, we therefore obtain 

R(sin x, cos x) = R1(cos2 x,tanx) =R1(1 1 2 ,tanx) + tan x 

and thus, with t = tan x, 

f R(sinx,cosx)dx = f Rl C ~ t2' t) 1 ~ t2 dt. 

In certain cases the integrand in (6.69) can easily be decomposed into a 
sum in such a way that one of the foregoing Rules I, II, or III is applicable to 
the individual summands. 

Actually, even in the most general case we can use the following decompo­
sition of R: 

R(u, v) = t[R(u, v) + R( -u, -v)] + t[R(u, v) - R( -u, v)] 

+ t[R( -u, v) - R( -u, -v)]. 

To the three partial sums on the right-hand side we can apply, respectively, 
Rules III, I, and II. However, if all three Rules have to be brought into play, 
the advantage of the substitutions in these Rules over the substitution (6.71) 
is often insignificant in practice. 

We take up some examples. 

EXAMPLE 1. Let 

1= f 1. dx. 
(sin x)(2 + cos x - 2 sm x) 

Using the substitution t = tan(x/2), we get 
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1= f 1 + t2 dt. 
t(t2 - 4t + 3) 

Expanding into partial fractions, we get 

1 + t2 ABC 
t(t - 3)(t - 1) = t + t - 3 + t - 1 ' 

where A = t, B = i, and C = -1. Hence, 

1 5 
1= 3lnltl + 3lnlt - 31-lnlt - 11 + K 

EXAMPLE 2. Let 

- f (sin2 x)(cos x) d 
J -. x. 

smx + cosx 

Here we can use Rule III and substitute t = tan x. We obtain 

J = f (t + 1)::2 + w dt. 

Expanding into partial fractions, we obtain 

t2 A Bt + C Dt + E 
-,----:-:-;;------,--;;- = -- + + ~-.,.,....". 
(t + l)(t2 + 1)2 t + 1 t2 + 1 (t2 + 1)2' 

where A = t, B = -t, C = t, D = t, and E = -to Hence, 

1 11+t I II+t 
J = 4ln (1 + t2)1/2 - 4 1 + t2 + K 

= tlnlsinx + cosxl- i{cosx)(sinx + cos x) + K. 

EXAMPLE 3. Let 

H = f. 1 2 dx. 
(smx)(2cos x-I) 

Here Rule I is applicable. Putting t = cos x, we obtain 

But 

1 1 1 IP IP 
---=-------=--- = + + -- + --
(I - t2)(2t2 - 1) 1 + fit 1 - fit 1 + t 1 - t 

and so 
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H = _I_In 11 + .,fit 1_ ! In 11 + t I + K 
.,fi 1-.,fit 21-t 

1 I 11 + .,fi(cos x) I II 11 - cos x I =-n +-n +K 
.,fi 1 - .,fi(cos x) 2 1 + cos x 

= _I_In I 1 + .,fi(cosx) 1+ !In Itan~1 + K . 
.,fi 1 - .,fi(cosx) 2 2 

EXAMPLE 4. We wish to evaluate 

I Acosx + Bsinx d . x, 
Ccosx + Dsmx 

where A, B, C, and D are constants. 
We proceed to determine two constants A and p. such that 

Acosx + Bsinx == A( -Csinx + Dcosx) + p.(Ccosx + Dsinx), 

with the foregoing equation holding identically for all x. Equating coeffi­
cients of cos x and sin x we see that the constants A and p. are given by the 
equations 

A = DA + Cp., 

B = -CA + Dp.. 
Hence, 

, =AD-BC AC+BD 
JI. 2 2 and p. = D2 + C2 . D +C 

Moreover, 

I Acosx + Bs~nx dx = AI -Csinx + D~osx dx + p.I dx 
Ccosx + Dsmx Ccosx + Dsmx 

= Aln(Ccosx + Dsinx) + p.x + K. 

REMARK. Proposition 6.4 has a dual for hyperbolic functions. The integral 

I R(sinh x, cosh x)dx, 

where R is a rational function in the variables u and v with 

u = sinh x and v = cosh x, 

can be rationalized by the substitution 

x 
t = tanh 2. 

Indeed, using the substitution t = tanh(x/2), we have 
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and so 

. h 2t 
SIn X =--2' 

1 - t 
1 + t 2 

cosh x =-1 2' -t 
dx=~ 

1 - t2 

I . I (2t 1 + t2
) 1 R(smh x, cosh x)dx = 2 R -1--2 '-1--2 --2dt. 

-t -t 1-t 

Proposition 6.5. Let R(x, y, z, ... ) be a rational function of its variables, let 

L(x) = ax + b 
cx + d 
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be a fractional linear function, where a, b, c, and d are given constants and 
ad - bc -# 0, and let oe, {3, ... be rational numbers. Then the integral 

I R(x, [L(X)]IX, [L(x)]P, ... ) dx 

can be rationalized by the substitution 

where m is the least common denominator of the fractions oe, {3, .... 

PROOF. We have that oem, {3m, ... are integers. Moreover, 

dt m - b 
X=--­

a - ctm 

Putting x = r(t), we see that the integral (6.72) becomes 

I R(r(t), tlXm, t Pm, . .. )r'(t) dt; 

(6.72) 

(6.73) 

here the integrand is obviously a rational function of t. After the integral is 
determined, we express t in terms of x using the substitution (6.73). 0 

EXAMPLE 1. Consider the integral 

I-I 1 dx - .y1 + x -11 + x . 

Here 1 + x = t 12 is the substitution rationalizing the integra1. Hence, 

I t8 
I = 12 t _ 1 dt. 

But 

~ ~-1 1 1 
-- = -- + -- = t7 + t6 + t 5 + t4 + t 3 + t2 + t + 1 + -­
t-1 t-1 t-1 t-1 
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and so 

( t8 t 7 t6 t 5 t4 t3 t2 ) 
I = 12 8 + 7 + 6 + "5 + "4 + 3 + 2: + t + In It - 11 + K. 

Substituting here t = l..yl + X we obtain the required expression for I in 
terms of the initial variable x. 

EXAMPLE 2. Consider the integral 

_f(~)1/3_1 
J - 1 1 dx. x- x+ 

Here (x + 1)/(x - 1) = t3 is the substitution rationalizing the integral. Thus, 
x = (t3 + 1)/(t3 - 1) and 

J = - 3 f t3 ~ 1 dt. 

We therefore have 

J= ---+ dt f( 1 t+2) 
t - 1 t2 + t + 1 

1 I t2 + t + 1 I r; -1 2t + 1 
=2"ln (t-l)2 +y3tan fi +K 

with t = .,J'(x + 1)/(x - 1). 

Proposition 6.6. Suppose that a and b are arbitrary real numbers and let m, n, 
and p be rational numbers. Then the binomial integral 

I = f xm(a + bxn)P dx (6.74) 

can be reduced to an integral of type (6.72), that is, can be rationalized, if one of 
the three numbers 

p, 

is an integer. 

m+l 
n 

m+l 
--+p 

n 

PROOF. We assume that n "# 0, for the case n = 0 is evidently trivial, and we 
put xn = t. Then 

Putting 

1 
dx = - t 1/n- 1 dt. 

n 

m+l 
q=---I, 

n 
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the substitution x = .:ji reduces the integral (6.74) to 

I = ~f tq(a + bt)Pdt. (6.75) 

Case I: Let p be an integer. Then the integrand in (6.75) depends rationally 
on t(m+l)/n and t; if 

m+ 1 
n 

j 

k' 
where j and k are integers, k > 0, this integrand has the form R(t, ,yt), where 
R is a rational function of its arguments. This is a special case of Propositon 
6.5. 

Case II: Let (m + l)/n be an integer. In this case the integrand in (6.75) 
depends rationally on t and (a + bt)P; if p = v/w, where v and ware integers, 
w > 0, then this integrand has the form R(t,v'a + btl and we have again an 
iptegral of the type already considered in Proposition 6.5. 

Case III: Let (m + l)/n + p be an integer. The integrand in (6.75) can then 
be written in the form [(a + bt)/t]Ptq+p and it therefore depends rationally on 
t and (a + bt)/t; if p = v/w, where v and ware integers, w > 0, then this 
integrand has the form R(t, v'(a + bt)/t) and we once again have an integral 
of the type already considered in Proposition 6.5. D 

REMARKS. To evaluate an integral of the form (6.72), provided that one of the 
three numbers p, (m + l)/n, or (m + l)/n + p is an integer, we proceed as 
follows: 

Case I: Let p be an integer. Then, if p > 0, the term (a + bx")P is expanded 
by the binomial formula; but if p < 0, then we put x = to, where s is the least 
common denominator of the fractions m and n. If p = 0, all is trivial. 

Case II: Let (m + l)/n be an integer. We put a + bx" = t W , where w is the 
denominator of the fraction p = v/w with v !md w being integers and w > 0. 

Case III: Let (m + l)/n + p be an integer. We put a + bx" = tWx", where w 
is the denominator of the fraction p = v/w with v and w being integers and 
w>o. 

It was proved by P. L. Chebyshev that an integral of the form (6.72) can 
not be evaluated in closed form if none of the numbers p, (m + l)/n, and 
(m + l)/n + p is an integer. . 

EXAMPLE 1. Consider the integral 

f X-l/2(1 + Xl/4)1/3 dx. 

Here m = -t, n = t, p = t, and (~+ l)/n = 2. We have Case II and put 

t = (1 + Xl/4)1/3 or x = (t 3 - 1)4 
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and so 

f X- 1/2(1 + X1/4)1/3 dx = 12 f (t6 - t3)dt = ~t4(4t3 - 7) + K 

with t = (1 + X1/4)1/3. 

EXAMPLE 2. Consider the integral 

f (1 + X4)-1/4 dx. 

Here m = 0, n = 4, p = -i, and (m + l)/n + p = 0. We have Case III and 
put 

and so 

f 4 -1/4 f t 2 1 f (1 1) 1 f 1 
(1 + x) dx = - t4 _ 1 dt = 4 t + 1 - t _ 1 dt - 2 t2 + 1 dt 

= ~ In 1 t + 1 1- ~ tan -1 t + K 
4 t - 1 2 

with 

(1 4)1/4 
t = + x = (x-4 + 1)1/4. 

X 

Proposition 6.7. Let R(x,y) be a rational function ofx and y and 

y = (ax2 + bx + C)1/2. (6.76) 

Then 

f R(x,y)dx (6.77) 

can be reduced by a rational substitution to the integral of a rational function. 
Specifically, the rationalizing substitutions (also called Euler substitutions) 
accomplishing this are: 

(i) (ax2 + bx + C)1/2 = (x - lX)t ifax2 + bx + c = a(x - IX)(X - f3), that is, if 
the roots IX and f3 ofax2 + bx + c are real; 

(ii) (ax 2 + bx + C)1/2 = tx + JC if c > 0. 

PROOF. If the roots IX and f3 ofax2 + bx + c are real, we have 

[ a(x - f3)] 1/2 
(ax2 + bx + C)1/2 = [a(x - IX)(X - f3)]1/2 = (x - IX) ; 

X-IX 
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hence, the integrand depends rationally on x and [a(x - P)/(x - tX)]1/2 and 
this brings us to a situation already considered in Proposition 6.5. Thus, 
rationalization can be achieved by setting 

a(x - P) 2 tXt2 - pa 
------'- = t or x = 2 • 
x-tX t -a 

The case tX = P can of course be disregarded. 
If the roots ofax2 + bx + c are complex, then ax2 + bx + c preserves the 

same sign for all values of x; we are of course assuming that the sign is always 
positive, for otherwise the value of the square root would be complex for 
all real numbers x and the problem would become void. In particular, by 
assuming that x = 0 we can see that in this case we must necessarily have 
c > 0 (the method which we are now going to describe always leads to the 
desired result for c > 0 irrespective of whether the roots ofax2 + bx + care 
real or complex). Assuming that 

we obtain 

and therefore 

(ax2 + bx + C)1/2 - Jc 
-'-------'-------"-- = t, 

x 

ax2 + bx + c = (tx + Jc)2 = t2x 2 + 2Jctx + c, 

ax + b = t2x + 2Jct, 

b - 2Jct 
x = t2 = g(t), -a 

dx = g'(t)dt 

(ax2 + bx + C)1/2 = tx + Jc = tg(t) + Jc, 

f R(x,(ax2 + bx + C)1/2)dx = f R{g(t),tg(t) + Jc}g'(t)dt. 

Since the function g (and therefore also its derivative g') is rational, we have 
accomplished the rationalization of the integral. 0 

EXAMPLE 1. Consider the integral 

I = f (7x _ 1;- X2)3/2 dx. 

Since 7x - 10 - x2 has the real roots tX = 2, P = 5, we use the first Euler 
substitution 

(7x - 10 - X2)1/2 = J(x - 2)(5 - x) = (x - 2)t. 
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Therefore, 

and so 

5-x __ =t2 

x-2 
5 + 2t2 

or x =--;:-
1 + t2 

1= -- dt = -- - + 2 dt = -- -- + 2t + K 6 f 5 + 2t2 2 f (5) 2 (5 ) 
27 t2 9 t2 9 t 

with 

(7x - 10 - X 2)1/2 
t=------­

x-2 
EXAMPLE 2. Consider the integral 

J-f 1 dx - x(x2 + X + 1)1/2 • 

Since c = 1 > 0, we can apply the second Euler substitution 

(x 2 + x + 1) 1/2 = tx + 1. 

Therefore, 

and so 

with 

-2t + 1 
x = 2 1 t -

(x2 + X + 1)1/2 - 1 
t= . 

x 

Lemma. Let R be a rational function in x and y and let y2 = P(x) be a 
polynomial in x. Then R can be represented in the form 

where R 1 , R 2 , and R3 are rationalfunctions in x. 

PROOF. Since R is a rational function in x and y, we can consider R as a 
quotient of two polynomials in y whose coefficients are polynomials in x, that 
is, quotients of two expressions of the form 

(6.78) 
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where Ho, HI, ... , Hn are polynomials in x. But y2 = P(x) is a polynomial in 
x, so every even power of y is a polynomial in x, and every odd power is the 
product of y and a polynomial in x. This means that (6.78) reduces to the 
form 

P6'(x) + Pi(x) y, 

where P6' and Pi are polynomials in x. Hence, 

R( ) = P6'(x) + P((x)y 
x,y . 

Q~(x) + Q!(x)y 
(6.79) 

We now multiply numerator and denominator of (6.79) by Q~(x) - Q!(x)y. 
We get 

(P6' + P(y)(Q~ - Q!y) = P6'Q~ - p(Q!y2 + (P(Q~ - P6'Q!)y = Po + QoY 

and 

where Po, Qo, D are polynomials in x. Finally, 

Po (x) Qo(x) 
R(x,y) = -(- + --) y or R(x,y) = R 1(x) + R2(X)Y. 

D x) D(x 

Putting R3(X) = R 2(x)P(x) and recalling that y2 = P(x), we obtain 

1 
R(x,y) = R 1(x) + R3(X)-. 

Y 

This completes the proof. 

Proposition 6.8. If R(x, y) is a rational function of x and y and if 

Y = ax2 + bx + c and y = ft, 
then, by the Lemma, 

1 
R(x,y) = R 1 (x) + R 3(x)-, 

y 

where Rl and R3 are rational functions. In the evaluation of the integral 

f R(x,y)dx = f R 1(x)dx + f R 3(X)t dX, 

the integral f Rl (x) dx is straightforward and the integral 

f R3(x)~dx = f R 3%) dx = f ( 2 R~(X) )1/2 dx 
y ...;Y ax+x+c 

reduces to integrals of the following three types: 

o 
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f P(x) ., 
(I) 2 1/2 dx, where P IS a polynomzal; 

(ax + bx + c) 

(II) f ( )k( 2A b )1/2 dx, where a is real and k = 0, 1, 2, ... ; 
x-a ax + x+c 

f Bx+ C mn d~ (x2 + px + q)m(ax2 + bx + C)1/2 
where m = 0, 1, 2, ... and the 
roots of x 2 + px + q are 
complex numbers. 

PROOF. To integrate 

f R3(X) d 
(ax2 + bx + C)1/2 x, 

where R3 is a rational function of x, we first separate the integral part P(x) 
of the rational function R3(X) and then we resolve the remaining proper 
fractional part of R3(X) into partial fractions. 0 

DISCUSSION. We now consider the evaluation of the three types of integral 
mentioned in Proposition 6.8. 

(I). We put 

v: = f xm dx = f xm dx 
m (ax2 + bx + C)1/2 fi for m = 0, 1, 2, .... 

For such integrals we can easily derive a recursion formula. To this end we 
assume m ~ 1 and take the derivative 

and integrate this identity; we obtain 

x m- 1fi = maVm + (m - t)bVm- 1 + (m - 1)cVm- 2. 

For m = 1 we obtain 

for m = 2 (using the expression for V1 ) we get 

1 IV 1 2 V2 = -2 (2ax - 3b)y' Y + -2 (3b - 4ac)Vo· 
4a 8a 
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Continuing this process, we arrive at the general formula 

Vm = Pm-l(X)ft + Am Vo, 

349 

(6.80) 

where Pm-l (x) is a polynomial of degree m - 1 and Am denotes a constant. 
Thus all integrals Vm can be reduced to Vo. 

If the polynomial P(x) in the integral 

f P(x) dx 
ft 

has degree n, then this integral is a linear combination of the integrals Vo, 
VI, ... , v", and thus, on the basis of (6.80), can be expressed in the form 

(6.81) 

where Q(x) is a polynomial of degree n - 1 and A denotes a constant. 
The polynomial Q and the constant A can be found in general by the 

method of undetermined coefficients. Differentiating in (6.81) and multiplying 
the equation so obtained by ft, we get 

P(x) = Q'(x)(ax2 + bx + c) + !Q(x)(2ax + b) + A.. 

Substituting here for Q(x) a polynomial of degree n - 1 with undetermined 
coefficients, we see that on the right-hand side of the equation we will have a 
polynomial in x of degree n. By comparison of coefficients of like powers of 
x we arrive at a system of n + 1 linear equations; from this system we can 
calculate the n coefficients of Q and the constant A. From the way the system 
of n + 1 linear equations has been derived, it is easy to see that the system is 
consistent and that it has a solution which is unique. 

(II). The integral 

f (x - ex)k(ax21 + bx + C)I/2 dx 

can be reduced to the type just considered by use of the substitution 

1 

Indeed, if x - ex = l/t, then 

x - ex =-. 
t 

2 b (aex2 + bex + c)t2 + (2aex + b)t + a 
ax + x+c= 2 

t 

so that (for simplicity we specifically assume x > ex, t > 0) 

f __ -:-;-:---;;,....l---::-_---,,..,,-;;;-dx = - f tk
-

1 dt. 
(x - ex)k(ax2 + bx + C)1/2 (aex2 + bex + c)t2 + (2aex + b)t + a 
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If aex.2 + bex. + c = 0, that is, if ex. is a root of Y, this integral further simplifies 
and we obtain an integral of the type considered in Proposition 6.5. 

(III). (a) We consider the integral 

f Bx + C d 
(x2 + px + q)m(ax2 + bx + C)1/2 x, 

where m = 0, 1,2, ... and the roots of x2 + px + q are complex, and assume 
that the expression ax2 + bx + c differs only by the factor a from the expres­
sion x2 + px + q. Then the considered integral has the form 

f Bx + C d 
(ax2 + bx + c)(2m+1)/2 X 

which can be written 

- x+ C-- x Bf 2ax+b d (Bb)f 1 d 
2a (ax2 + bx + c)(2m+1)/2 2a (ax2 + bx + c)<2m+l)/2 . 

(6.82) 

The first integral in (6.82) can readily be calculated by the substitution 
t = ax2 + bx + c. For the calculation of 

f 1 dx = f 1 dx (ax2 + bx + c)(2m+1)/2 y(2m+l)/2 

we shall use the substitution of Abel 

t = ( Iy)' = ~ = ax + b/2 
v ~ 2ft (ax2 + bx + C)1/2 . (6.83) 

If in the foregoing equation we take the square and then multiply by 4 Y, we 
get 

Hence, 

and so 

Next, differentiating 

we obtain 

b 
tft = ax + 2' 

ft dt + t 2 dx = a dx, 

(6.84) 
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that is, 

dx dt 
.JY a - t 2 • 

(6.85) 

By (6.84) and (6.85), we have 

dx (4)m 2 m-l y(2m+l)/2 = 4ac _ b2 (a - t) dt 

and so 

f 1 (4)m f 2 m-l y(2m+1)/2 dx = 4ac _ b2 (a - t) dt. (6.86) 

Thus, the problem is reduced to the integration of a polynomial. For example, 
for m = 1 we get 

f 1 dx= 2 2ax+b 
(ax2 + bx + C)3/2 4ac - b2 (ax2 + bx + C)1/2 . 

(b) We now consider the general case and we put 

ax2 + bx + c = a(x2 + p'x + q') 

to have symmetry in the notation; we can now assume that x 2 + p'x + q' is 
not identical with x 2 + px + q. We wish to transform the variable x in such 
a manner that the linear terms in x 2 + px + q and x 2 + p'x + q' vanish 
simultaneously. 

First we suppose that p i= p'. Then we can achieve our goal with the help 
of the fractional linear substitution 

Jl.t + v 
X=--

t + 1 
(6.87) 

if we select suitable coefficients Jl. and v. We obtain 

2 (Jl.2 + pJl. + q)t2 + [2Jl.V + p(Jl. + v) + 2q]t + (v2 + pv + q) 
x + px + q = (t + 1)2 

and an analogous formula for x2 + p'x + q'. The sought after coefficients can 
be determined with the help of the conditions 

or 

2Jl.v + p(Jl. + v) + 2q = 0, 

q-q' 
Jl.+v= -2--" p-p 

Hence, Jl. and v are the roots of 

2Jl.v + p'(Jl. + v) + 2q' = 0 

p'q - pq' 
Jl.V = , . 

p-p 
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(p - p')Z2 + 2(q - q')z + (p' q - pq'). 

In order that these roots be real and distinct, it is (necessary and) sufficient 
that 

(q _ q')2 _ (p _ p')(p'q _ pq') > 0, (6.88) 

or, equivalently, 

[2(q + q') - PP'Y > 4(q - p2)(4q' _ p,2); (6.89) 

note that for f1. = v the substitution loses its meaning, for in that case x = v. 
But 4q - p2 > 0 (because x2 + px + q has complex roots); hence, (6.89) is 
certainly satisfied if simultaneously 4q' - p,2 < 0 holds. 

It only remains to investigate the case 4q' - p,2 > O. From this it follows 
that q' > 0, and since q > 0 as well and hence 4jq1 > pp', we obtain 

[because (q + q')j2 ~ jq1] 

[2(q + q') - PP'Y ~ [4jq1- pp']2 

= (4q - p2)(4q' - p'2) + 4(pR _ p'Jq)2 

~ (4q - p2)(4q' _ p'2). 

Here we have the sign ~ twice; the equality sign can not occur in both cases 
simultaneously: For q oF q' there can not be equality in the first case and for 
q = q' there can not be equality in the second case. Thus, the inequality (6.89) 
and with it the inequality (6.88) is established. 

With the help of the substitution (6.87) we now transform the integral 

f Bx + C d 
(x2 + px + qr(ax2 + bx + C)1/2 x 

into an integral of the form 

f P(t) d 
(t2 + Ar(at2 + /3)1/2 t, 

where P(t) is a polynomial of degree 2m - 1 and 2 > o. Partial fraction 
decomposition of the proper rational fraction (we assume m > 1) 

P(t) 

(t 2 + 2r 
leads to a sum of integrals of the form 

f Mt + N d 
(t2 + 2)k(at2 + /3)1/2 t 

(k = 1,2, ... , m). (6.90) 

In the case p = p', a case we have excluded so far, the first degree terms 
vanish even more simply, namely, by use of the substitution 
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p 
X = t - 2' 
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Using the substitution x = t - p/2 we get immediately an integral of the type 
appearing in (6.90). 

But 

(6.91) 

The first integral on the right-hand side of(6.91) can be calculated at once by 
use of the substitution s = (rit 2 + f3)1/2; to the second integral we apply Abel's 
substitution 

rit 
S=-=---~ 

(rit 2 + f3)1/2 . 

By (6.86), we get 

dt ds 
(rit 2 + f3)1/2 ri - S2 ' 

moreover, we have 

Thus, 

Hence, the integral under consideration has been reduced to the integral of a 
rational function. 

REMARKS. Proposition 6.8, together with the foregoing discussion, gives us a 
method of calculating the integral (6.77) without the use of Euler substitu­
tions. In practice, Euler substitutions often lead to complicated calculations. 

The integral (6.77) can be brought to the form (6.69) by means of the 
following trigonometric substitutions: 

b (b2 - 4ac)1/2 . 
x + -2 = smt 

a 2a 

(b2 _ 4ac)1/2 
= cost 

2a 

(a < 0,4ac - b2 < 0); 
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b (b2 - 4ac)1/2 
x+2a= 2a sect 

(b2 _ 4ac)1/2 
= 2a csct 

(a> 0,4ac - b2 < 0); 

b (4ac - b2)1/2 
x+ 2a = 2a tant 

(4ac - b2)1/2 
= 2a cott 

(a> 0,4ac - b2 > 0). 

However, this approach often leads to complicated calculations as well. 

EXAMPLE 1. Let 

f x + 3 
I = (4x2 + 4x _ 3)1/2 dx. 

Using the substitution 2x + 1 = t or x = (t - 1)/2 we get 

1 f t + 5 
I = 4 (t2 _ 4)1/2 dt. 

Putting t = 2 sec s, we obtain, returning to the variable t after integration, 

1= i(t2 - 4)1/2 + iln It + (t2 - 4)1/21 + K 

and so 

1= i(4x2 + 4x - 3)1/2 + iln 12x + 1 + (4x2 + 4x - 3)1/21 + K. 

EXAMPLE 2. Let 

f X3 - x-I 
J = (x2 + 2x + 2)1/2 dx. 

Putting Q(x) = Ax2 + Bx + C, we get [see (6.81)] 

J = (Ax2 + Bx + C)(X2 + 2x + 2)1/2 + A. f (x2 + 2: + 2)1/2 dx. 

Differentiating this equality, we obtain 

x3 - x-I Jf = ---;: ___ -,-;--;;;-
(x2 + 2x + 2)1/2 

= (2Ax + B)(x2 + 2x + 2)1/2 

2 x+ 1 A. 
+ (Ax + Bx + C) (x2 + 2x + 2)1/2 + (x2 + 2x + 2)1/2' 

Hence, 
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X3 - X - 1 = (2Ax + B)(X2 + 2x + 2) + (Ax2 + Bx + C)(x + 1) + A. 

Equating coefficients of like powers of X, we get a system of equations with 
the solutions A = !, B = -i, C = t, A. = !. Thus, 

J = (l.x2 - .2.x + 1.)(x2 + 2x + 2)1/2 + - dx 1I 1 
3 6 6 2 (x2 + 2x + 2)1/2 ' 

where 

I (x2 + 2~ + 2)1/2 dx = I [(x + 1~ + 1]1/2 d(x + 1) 

= lnlx + 1 + (x2 + 2x + 2)1/21 + K. 

EXAMPLE 3. The integral 

I (x - 1)3(x2 ~ 2x _ 1)1/2 dx 

changes into the integral 

-I (1 _ t;t2) 1/2 dt 

by using the substitution X - 1 = 1ft (we let x > 1, t > 0). The latter integral 
can be evaluated using the trigonometric substitution t = .Ji sin s; we ob­
tain, returning to the variable t after integration, 

I t2 - 1 2 1/2 1 . -1 r-; 
- (1 _ 2t2)1/2 dt - 4t(1 - 2t) - 4.Jism (y 2t) + K. 

Thus, 

I 1 - 1 2 1/2 
(x _ 1)3(X2 _ 2x _ 1)1/2 dx - 4(x _ 1)2 (X - 2x - 1) 

1 .1(.Ji) - 4.Ji sm- x _ 1 + K. 

EXAMPLE 4. Let 

H = I (2X2 _ ~ + 2)712 dx. 

Applying the substitution of Abel 

4x -1 
t = ---=----~ 

2(2x2 - X + 2)1/2 

we get, by (6.86), 

64 I 22 H = 3375 (2 - t ) dt 
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and so 

64 ( 4x - 1 1 (4x - 1)3 
H = 3375 2 (2x 2 _ X + 2)1/2 - "6 (2X2 _ X + 2)3/2 

+ _1_ (4x - 1)5 ) + K 
160 (2x - x + 2)5/2 . 

EXAMPLE 5. Consider the integral 

f x + 3 d 
(x 2 _ X + l)(x2 + X + 1)1/2 x. 

Here the fractional linear substitution (6.87) gives 

2 (,.1 2 ± Jl + l)t2 + [2JlV ± (Jl + v + 2)]t + (v2 ± v + 1) 
x ± x + 1 = (t + IV 

The conditions 

2Jlv + (Jl + v) + 2 = ° 
or Jl + v = 0, JlV = -1 are fulfilled, for example, for Jl = 1, v = -1. Hence, 

t - 1 2 dt 4t + 2 t 2 + 3 
X=-­

t + l' 
dx -- 3 2 1 (t + 1)2' X + =~' x + x + = (t + 1)2 

and 

( 2 1)1/2 _ (3t 2 + 1)1/2 
X +x+ - l' t+ 

if we assume t + 1 > 0, that is, if x < 1. Thus, 

f x + 3 dx - f 8t + 4 dt 
(x2 - x + l)(x2 + X + 1)1/2 - (t2 + 3)(3t2 + 1)1/2 . 

The integral obtained equals the sum 

8 f t dt + 4 f 1 dt. (t2 + 3)(3t2 + 1)1/2 (t2 + 3)(3t2 + 1)1/2 

The first summand can be evaluated by use ofthe substitution s = (3t 2 + 1)1/2 
and works out to 

( 3t2 + 1)1/2 
J8tan-1 8 + K 1 • 

To the second summand we apply Abel's substitution 

3t 
s = ---;;-----,--;-"" 

(3t 2 + 1)1/2 

which transforms the integral under consideration into 
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f 1 1 13J3 + 2J2sl 
12 27 _ 8s2 ds = J6ln 3J3 _ 2J2s + K2 • 

It only remains to change back to the initial variable x. 

5. Some Applications of Integration 

We begin with a list of formulas to give some indication of the diversity of 
applications of the integral to geometry. 

The area A of the region R under the graph of a positive, continuous 
function between x = a and x = b, a < b, is given by 

A = r f(x)dx. (6.92) 

When this region R is rotated about the x-axis, the volume Yx of the resulting 
solid is given by 

Vx = n r P(x)dx. (6.93) 

When R is rotated about the y-axis, the volume Yy of the resulting solid is 
given by 

Yy = 2n r xf(x) dx, (6.94) 

provided that either a ~ 0 or b ~ O. Next, denote by C the graph of the 
function y = f(x) with a ~ x ~ b. If f is differentiable and the derivative f' is 
continuous on the interval [a, b J, then the length L of the curve C is given by 

L = r {1 + [f'(X)]2P/2 dx (6.95) 

(this formula is valid even if f is not a positive function). If the curve C is 
rotated about the x-axis, then the surface area Sx of the resulting surface of 
revolution is given by 

S" = 2n r f(x){1 + [f'(X)]2P/2 dx. (6.96) 

If C is rotated about the y-axis, then the surface area Sy of the resulting 
surface of revolution is given by 

Sy = 2n r x{1 + [f'(X)]2P/2 dx, 

provided that either a ~ 0 or b ~ O. 

(6.97) 

Formulas (6.93) and (6.94) are only instances of a more general formula. If 
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a solid lies between a and b on the x-axis, and its cross-sectional area at x is 
A(x), where A is a continuous function, then its volume V is given by 

V = r A(x)dx. (6.98) 

Formulas for area and arc length can also be obtained when the region, or 
curve, is specified in terms of polar coordinates. Suppose that the region R is 
bounded by the radii vectors fJ = Ct, fJ = /3, and by the curve C which is the 
graph of r = f(fJ). Then the area A of R can be obtained from 

A = ~ fP f2(fJ) dfJ, 
2 a 

(6.99) 

while the length L of C is given by 

L = f: {j2(fJ) + [f'(fJ)]2J1/2 dfJ. (6.100) 

There is a variant of (6.100) which is sometimes useful. If C is the graph of 
fJ = g(r) for r between r1 and r2, then 

L= f.'2 {r2[g'(r)]2 + 1} 1/2 dr. 
'1 

(6.101) 

More generally, if the coordinates of the curve are given by the parametric 
equations 

x = x(t) and y = y(t), 

if a = x(t1) and b = x(t2), then the area A of the region bounded by C, the 
lines x = a, x = b, and the x-axis is given by 

A = I f2 y(t)x'(t) dt I (6.102) 

provided that x(t) and y(t) have continuous derivatives, and y(t) is strictly 
increasing, all on [t 1, t 2]' The length L of C between a and b is given by 

L = f2 {[Y'(t)]2 + [X'(t)]2} 1/2 dt, (1.103) 

provided that x(t) and y(t) have continuous derivatives on [t l' t2J. 
Finally, if the region R is bounded by the graphs of two continuous func­

tions fl and f2 with f2(X) ~ fl (x) for a ~ x ~ b and by two straight lines 
x = a and x = b, then the area A of R is given by 

A = r {f2(X) - fl(X)}dx. (6.104) 

If the boundary of the region R is a simple closed curve (one which does not 
intersect itself anywhere) and the boundary is given by the parametric equa-
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tions X = x(t) and y = y(t), where x'(t) and y'(t) are continuous functions on 
[t1> t2] with tl and t2 being the values of the parameter t that correspond, 
respectively, to the beginning and the end of the traversal of the boundary in 
the positive direction of the contour (i.e., in the direction such that the region 
R enclosed remains on the left as we move along the boundary curve), then 
the area A of the region R can be evaluated by one of the three formulas: 

l~ l~ 11~ A = - y(t)x'(t) dt = x(t)y'(t) dt = - {x(t)Y'(t) - y(t)x'(t)} dt. 
t, t, 2 t, 

(6.105) 

By way of illustration, we consider some examples next. 

EXAMPLE 1. The volume of a spherical segment of one base is given by 

(6.106) 

where r denotes the radius of the sphere and h the height of the segment. 
Indeed, by (6.93), the volume of the solid in question equals (see Figure 6.4) 

1t i~h (r2 - x2) dx = 1t (r2x - ~3) I:-h = 1th2 (r - ~). 
We have already used formula (6.106) in Example 4 of Section 4 of Chapter 4. 

y 

--~r-------------~----~--------~~X 
r 

Figure 6.4 
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EXAMPLE 2. The surface area of a spherical segment of one base is given by 

2nrh, (6.107) 

where r denotes the radius of the sphere and h the height of the segment. 
Indeed, by (6.95), the surface area in question equals (see Figure 6.4) 

2n f.r r dx = 2nrx I r = 2nrh. 
r-h r-~ 

REMARKS. An interesting consequence of (6.107) is the following fact, already 
observed by Archimedes: If a sphere is inscribed in a right circular cylinder, 
then the surfaces of the sphere and the cylinder intercepted by a pair of planes 
perpendicular to the axis of the cylinder are equal in area. 

Another consequence of (6.107) is the following: An observer at height H 
above the north pole of a sphere of radius r can see a part of the sphere 
having area 

(6.108) 

Indeed, from Figure 6.5, we can see that 

(H + r? = r2 + S2 

Figure 6.5 
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and 

Thus, 

rZ - (r - h)Z = (H + r)Z - rZ - (H + d)Z or 2hr = 2Hr - 2hH, 

and so 

h=~. 
H + r 

Substituting this value of h into (6.l07), we obtain (6.108). 

EXAMPLE 3. Given by cycloid 

x = a(t - sint), y = a(1 - cost) 
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(see Example 2 in Section 1 of Chapter 5), we wish to find the area of the 
region bounded by an arc of the cycloid and the x-axis using integration. 

The boundary of the region under consideration consists of an arc of the 
cycloid (O:s; t :s; 2n) and a segment of the x-axis (O:s; x:S; 2na). We apply the 
formula it2 

A = - y(t)x'(t) dt. 
tl 

Since on the segment of the x-axis we have y = 0, it remains to compute the 
integral (taking into account the direction of the boundary traversal) 

fo fZ" A = - a(1 - cos t)a(1 - cos t) dt = aZ (1 - cos t)Z dt 
z" 0 

= aZ IZ" (1- 2cost +!(1 + cos2t))dt = 3naz. 

Thus, the area of the region bounded by an arc of the cycloid and the x-axis 
is three times the area of the generating circle. 

EXAMPLE 4. To find the length of one arc of the cycloid 

x = a(t - sint), 

we use the formula (6.103) and get 

y = a(1 - cos t) 

L = f:" {aZ sinZ t + aZ(1 - cos t)Z}l/Z dt = 2a IZ" (sin~) dt = 8a. 

Hence, the length of one arc of the cycloid is four times the diameter of the 
generating circle, a result originally found by Christopher Wren, the architect 
of St. Paul's Cathedral. 

EXAMPLE 5. The loop of the folium of Descartes, 

x3 + y3 = 3axy 
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(see Example 4 in Section 4 of Chapter 4 and Figure 6.6), has area 

3a2 

2' 
Moreover, the area of the loop is equal to the area of the region contained 
between the folium of Descartes and its asymptote x + y + a = O. 

Indeed, changing to polar coordinates, that is, letting 

x = rcose, y = rsine, 

and then dividing by r2, we get the equation in polar coordinates, 

3a(sin e)(cos e) 
r = sin3 e + cos3 e . 

Since the angle e varies in the first quadrant from 0 to n12, (6.99) gives 

9a2 1"/2 (sin2 e)(cos2 e) 
A=-. de. 

2 0 (sm3 e + cos3 e)2 

Replacing sin e in the integrand by (tan e)(cos e), we obtain 

9a2 1"/2 tan2 () 
A = 2 Jo (1 + tan3 e)2 d(tane) 

= _ 9a2 ~ ( 1 ) I ,,/2 = _ 3a2 cos3 e 1"12 = 3a2 . 
2 3 1 + tan3 e 0 2 sin3 e + cos3 () 0 2 

We shall now find the area of the region between the curve and its asymp­
tote. The line (shown dashed in Figure 6.6) drawn parallel to the asymptote 
makes an angle 3nl4 with the x-axis. We draw any line through 0 whose 

y 

Q 

x 

Figure 6.6 
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vectorial angle fJ lies between 3n/4 and n. Let it cut the curve and the 
asymptote in P and Q, respectively (see Figure 6.6). 

We shall first find the area between the curve and its asymptote lying in the 
second quadrant. This area is the limit of the area of the curvilinear region 
OBPQAO as the line OP starting from OA moves toward the dashed line. 
The area of the triangle .6.0AQ equals 

~ r" r2dfJ = ~ r" a2 dfJ 2J9 2J9 (sinfJ+ cosfJ)2 

and the area of the region bounded by the curve and the line OP equals 

~ r" 9a2(sin2 fJ)(cos2 fJ) dfJ 
2 J 9 (sin3 fJ + cos3 fJ)2 . 

Thus, the area of the curvilinear region 0 BPQAO is 

- - dfJ 1 i" (a 2 9a2(sin2 fJ)(cos2 fJ)) 
2 0 (sin fJ + cos fJ)2 (sin 3 fJ + cos3 fJ)2 

because 

and 

= dfJ = - + K f (sin2 fJ)(cos2 fJ) dfJ f (tan2 fJ)(sec2 fJ) 1 
(sin3 fJ + cos3 fJ)2 (1 + tan3 fJ)2 3(1 + tan3 fJ) 

f 1 dfJ = f sec2 fJ dfJ = 
(sin fJ + cos fJ)2 (1 + tan2 fJ)2 

1 
---+K. 
1 + tan fJ 

But, as fJ - 3n/4, we have 

and 

tanfJ- -1 

1 3 tan2 fJ - tanfJ - 2 
1 + tan fJ 1 + tan3 fJ 1 + tan3 fJ 

(tan fJ + 1)(tan fJ - 2) 

(tanfJ + 1)(tan2 fJ - tanfJ + 1) 

tan fJ - 2 
---=------ - -1 
tan2 fJ - tanfJ + 1 . 

Therefore, the area between the curve and its asymptote lying in the second 
quadrant equals 



364 6. Additional Topics in Integration 

Because of symmetry about the line y = x, a2/2 is also the area between the 
curve and the asymptote lying in the fourth quadrant. Also, the area in the 
third quadrant, being that of a triangle, is a2/2. Finally, the area between the 
curve and its asymptote equals 

a2 a2 a2 3a2 
2+2+2=2 

which is the same as the area of the loop. 

EXAMPLE 6. The area of the region enclosed by the ellipse 

x2 y2 
a2 + b2 = 1 

is nab. 
Indeed, considering the parametric representation 

x = a(cost), y = b(sin t), o :::;; t:::;; 2n, 

we obtain 

x(t)y'(t) - y(t)x'(t) = a(cos t)b(cos t) + b(sin t)a(sin t) = ab 

and so, by (6.105), 

A = ~ L21t {x(t)Y'(t) - y(t)x'(t)} dt = ~ L21t ab dt = nab. 

EXAMPLE 7. The volume of the ellipsoid 

x 2 y2 Z2 
2"+ b2 +2= 1 a c 

is !nabc. 
Indeed, the section of the ellipsoid by the plane x = constant is an ellipse, 

y2 Z2 
-=--~:---:,.-- + = 1 
b2(1 - x 2/a2) c2 (1 _ x2/a2) , 

with semiaxes b(l - x 2/a2)1/2 and c(l - x 2/a2)1/2. Hence, the area of the 
section, by Example 6, is 

A(x) = nb (1 _ ::)1/2 c (1 _ ::yI2 = nbc (1 _ ::yI2, 

where -a :::;; x :::;; a. By (6.98), the volume V of the ellipsoid is 

V = fa nbc (1 -::) dx = nbc (x - ;;2) [a = !nabc. 

In the particular case a = b = c the ellipsoid turns into a sphere of radius a 
and V becomes !na3 . 
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Figure 6.7 

EXAMPLE 8 (Buffon's Needle Problem). A table is ruled with equidistant 
parallel lines a distance D apart. A needle of length L, where L < D, is 
randomly thrown on the table. What is the probability P that the needle will 
intersect one of the lines (the other possibility being that the needle will be 
completely contained in the strip between two lines)? 

Let us determine the position of the needle by specifying the distance y 
from the middle point of the needle to the nearest parallel line, and the angle 
o between the needle and the projected line oflength y (see Figure 6.7). The 
needle will intersect a line if the hypotenuse of the right triangle in Figure 6.7 
is less than L/2, that is, if 

y L 
--<­
cos 0 2 

L 
or y < "2 cos lJ. 

As y varies between 0 and D/2 and lJ between 0 and n/2, it is reasonable to 
assume that they are independent, uniformly distributed random variables 
over these respective ranges. The possible cases are described by the condi­
tion 0 ~ 0 ~ n/2, 0 ~ y ~ D/2; the favorable cases by y < (L/2)cos O. The 
required probability P is therefore equal to the ratio of the area of the region 
below the curve 

y = ~(cOS 0) with 0 ~ 0 ~ n/2 

and the area of the rectangle 0 ~ 0 ~ n/2, 0 ~ y ~ D/2; thus, 

P = $0'2 (L/2)(cos 0) dO = 2L 
(n/2)(D/2) nD . 

(6.109) 

The chieffascination with (6.109) is that from it we get 

2L 
n=-

PD 

and an experimental evaluation of P leads to a statistical determination of n. 
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REMARKS. In addition to the above applications to geometry, integrals can 
also be used to find centers of mass, moments of inertia, work, fluid pressure, 
and so forth. We shall not pursue such topics. Instead, we look briefly at the 
computing of limits of sums with the aid of the definite integral in the next 
two examples as well as a few examples that are of general interest. 

EXAMPLE 9. We have, for p > 0, 

. 1 P + 2P + ... + nP 1 
hm =--. 
n~oo nP+1 p + 1 

Indeed, we have (see Proposition 5.6) 

IP + 2Pn;+~" + nP 
= ~(GY + GY + ... + (~Y) 

= ~(fG) + f(~) + ... + f(~)) 
--+ I1 f(x) dx as n --+ 00, 

where 

f(x) = x P 

and 

11 1 
o xPdx = p + l' 

EXAMPLE 10. We have, as n --+ 00, 

( ( h) ( 2h) (nh))l/n (1 Ia+h ) g(a)'g a+;;-·g a+--; "'g a+--; --+exp h a In[g(x)]dx. 

In particular, 

Indeed, taking logarithms, 

~(ln[g(a)] + In[g(a +~) ] + ... + In[g(a + ~) J) 
--+ ~ r+h In[g(x)] dx 

as n --+ 00. Moreover,. 
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Ii 11 11 2xZ In(1 + xZ)dx = x{ln(1 + XZ)} - --Z dx 
o 0 01+x 

1
1 11 11 1 = x{ln(1 + XZ)} - 2 dx + 2 --Z dx 
o 0 ol+x 

= In2 + t(n - 4). 

EXAMPLE 11. We have 

Indeed, direct evaluation of the integral 

III - xr 
~-dx 

o 1 - x 
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gives the left-hand side of the given expression. Then the evaluation of the 
same integral after making the substitution x = 1 - u gives the right-hand 
side of the given expression. 

EXAMPLE 12. Let E1> Ez, ... , En be n intervals which are situated in the unit 
interval [0, 1]. If each point of [0, 1] belongs to at least q of these intervals Ej 

withj = 1, ... , n, then at least one of these intervals must have length z q/n. 
Indeed, for x E [0, 1], define Jj(x) = 1 if x E Ej and Jj(x) = ° if x ¢ Ej ; then let 

n 

f(x) = L Jj(x). 
j=l 

Evidently, f(x) z q for every x in the interval [0,1] and so 

q::::;; Sal f(x)dx = Sal j~ Jj(x)dx = j~ Sal Jj(x)dx = j~ IEjl, 

where IEjl denotes the length of the interval Ej • It is clear that not every 
summand in the last sum can be less than q/n, for if it were then we would 
have q < n(q/n). 

EXAMPLE 13. Let f be integrable over every interval of finite length and 

f(x + y) = f(x) + f(y) (6.110) 

for any real numbers x and y. Then f(x) = ex, where e = f(I). 
Indeed, integrating f(y) = f(u + y) - f(u) with respect to u over the inter­

val [0, x], we see that 

xf(y) = f: f(u + y)du - Sax f(u)du. 

Putting u + y = S, we see that 
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rx rx+y rx+y ry 

Jo f(u + y)du = Jy f(s)ds = Jo f(s)ds - Jo f(s)ds. 

Therefore, 

xf(y) = S:+Y f(u) du - S: f(u) du - s: f(u) duo (6.111) 

Since the right-hand side of (6.111) is invariant under the interchange of x 
and y, it follows that xf(y) = yf(x). Thus, for x =1= 0, x-Y(x) = e, a constant; 
hence, j(x) = ex. Since in (6.110) f(O) = 0, f(x) = ex also holds for x = 0. 
Taking x = 1 in f(x) = ex, we obtain e = f(1). 

REMARK. If f satisfies (6.110), then f being continuous at a single point 
implies that f is continuous everywhere. Indeed, 

If(x + h) - f(x) I = If(h)1 = If(y + h) - f(y)l. 

EXAMPLE 14. An arithmetic progression and a geometric progression each 
have n terms and also have the same first term a and the same last term b. 
Their sums are S1 and S2' respectively. Then 

. S1 1 b + a b 
hm-=---ln­
n-oo S2 2 b - a a 

Indeed, the clue here is to note that the exponential function takes an 
arithmetic progression into a geometric progression. Actually, 

_1_fb xdx 

lim" ~ b,- a 1'"' n-oo S2 eXdx 
In b -Ina Ina 

and working out these integrals, we get the desired result. 

REMARKS. By Proposition 5.6, 

1 fB 1 n ( k) -- f(x)dx=lim-Lf A+(B-A)- , 
B - A A n-oo n k=1 n 

where f is integrable on the interval [A, B]. Since 

lim ~ f(A) = 0, 
n-oo n 

we may also write 

1 fB 1 n ( k) -- f(x)dx=lim-Lf A+(B-A)-. 
B - A A n-oo n k=O n 
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EXAMPLE 15. The number n is irrational, that is, supposing n = alb, where a 
and b are integers, leads to a contradiction. 

Indeed, let 

where n is an integer (to be specified more precisely later). Thus f(x) = 
f(n - x). We put 

F(x) = f(x) - f"(x) + j<4)(X) + ... + ( _1)"j<2")(X) 

and observe that 

F(x) + F"(x) = f(x) 

since f(k)(X) = 0 for k > 2n. Moreover, j<k)(O) is an integer for all k. In fact, 
this is obvious for k > 2n and for k < n since then the derivative is zero. For 
other values of k the derivative is the product of k!/n!, which is an integer, 
and the coefficient of Xk in x"(a - bx)", which is also an integer. Since f(x) = 
f(n - x), it follows that j<k)(n) is an integer as well for all k, so that both F(O) 
and F(n) are integers. 

Now, since F(x) + F"(x) = f(x), 

~ (F'(x) sin x - F(x) cos x) = [F"(x) + F(x)] sin x = f(x) sin x 

and so 

t' f(x)(sinx)dx = (F'(x)sinx - F(X)COSX)I: = F(n) + F(O), 

implying that the integral here is an integer, say N. But, if 0 < x < n, then 

Hence, by Proposition 5.22, 

(6.112) 

But 

lim (na)" = 0 
n-+oo n! 

(e.g., see Number 11 of the worked examples at the end of Section 1 in 
Chapter 7), so that the right-hand term in inequality (6.112) is less than 1 for 
sufficiently large n, and thus 0 < N < 1. Since N is an integer, this is clearly 
impossible, and our assumption that n is rational has led us to a contradic­
tion. Thus, n is irrational. 
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EXAMPLE 16. If t ~ 1 and s ~ 0, then ts :-;:; t(In t} - t + eS • 

Indeed, let f(x} = In(x + I}, A = t - 1, and B = s in Young's Inequality 
[see relation (5.38) in Chapter 5]. 

EXAMPLE 17. Find the position of a normal chord of a parabola such that it 
cuts off from the parabola a segment of minimum area. (Note that a normal 
to a curve is a straight line which is perpendicular to a tangent at the point 
of tangency.) 

To solve the problem we choose coordinates so that the equation of the 
parabola is 4ay = x 2, a> O. The chord connecting the point P(2as, as2) to 
the point Q(2at, at2) has the equation 

y =!(t + s)x - ast (6.113) 

and the tangent line at (2at, at2) has slope t. Hence, the line (6.113) will be 
normal to the parabola at Q if and only if !t(t + s) = -1 which may be 
written 

2 
s = -- - t. 

t 
(6.114) 

We see therefore that sand t have opposite signs. Take s < 0 and t > O. Then 
the area cut off by the chord is 

f 2at[~(t + s)x - ast - ~x2JdX = ta2(t - S)3. 
2as 2 4a 

This area will be minimal when t - s is minimal. But, by (6.114), 

t - s = 2t + ~ = 2( Jt - ~y + 4 ~ 4. 
Equality is attained only when Jt = 1 and hence t = 1. 

Thus, of all normals to the parabola at points to the right of the axis the 
normal at (2a, a) cuts off the largest area. The area cut off is 64a2/3. By 
symmetry, the normal at ( - 2a, a) cuts off the least area among normals at the 
point to the left of the axis. The critical normals can be characterized as those 
which meet the axis at an angle of n/4. 

EXERCISES TO CHAPTER 6 

6.1. A regular polygon of n sides rolls on a straight line. Show that the length of the 
path described by a vertex of the polygon in a complete revolution is 

"-1 n rn 
4a I -sin-, 

,=1 n n 

where a is the circumradius of the polygon. Deduce that if a circle of radius a 
rolls on a line, in a complete revolution, the length of the path of a point on the 
circumference, that is, the length of an arch of a cycloid having a generating 
circle of radius a, is 8a. 
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In a similar way establish that the area bounded by an arch ofthe cycloid and 
the base line is three times the area of the generating circle. 

[Hint: Let the vertices be numbered in order from 1 to n. Initially, the side nl 
rests on the line, then the side 12, then 23, and so on. The polygon turns about 
the vertices 1, 2, 3, ... in turn, turning through an angle 2n/n about each vertex. 
When the polygon turns about the vertex r, the vertex n describes an arc of a 
circle of angle 2n/n and of radius rn. The diagonal rn subtends an angle 2rn/n at 
the center, and so the length of the diagonal is 2a sin(rn/n). Hence, the length of 
the path of the vertex n, in one revolution of the polygon, is 

n-1 n rn 
4a I -sin-. 

,=1 n n 

But 

n-1 n rn fit 
I -sin- -+ (sin x) dx = 2 as n -+ 00. 
,=1 n n 0 

Thus, the length of an arch of the cycloid, the locus of a point on the circum­
ference of a rolling circle of radius a, is 8a. 

The area bounded by the path of the vertex n, in one revolution, and the line 
on which the polygon rolls, is the sum of the areas of the n - 1 sectors with 
centers 1, 2, 3, ... , n - 1, angle 2n/n, and radii 2a sin(rn/n), r = 1,2, 3, ... , n - 1, 
together with the sum of the areas of triangles 12n, 23n, 34n, ... , (n - 2)(» - l)n, 
that is 

n-1 1 2n 2' 2 rn n 2 . 2n 2 n-1 n . 2 rn n 2 . 2n 
I--4a sm -+-a sm-=4a I-sm -+-a sm-. 
,=1 2 n n 2 n ,=1 n n 2 n 

But, as n -+ 00, 

n-1 n rn fit 
I -sin2- -+ (sin2 x)dx = 1n 
,=1 n n 0 

and 

na2 • 2n 2 sin(2n/n) 2 
-sm- = na -+ na 

2 n 2n/n 

and so the area bounded by an arch of the cycloid and the base line is 
2na2 + na2 = 3na2.] 

6.2. The centers of two spheres of radii a and b are at a distance c apart, where 
c > a + b. Where must a point source of light be placed on the line of centers 
between the two spheres so as to illuminate the greatest total surface? 

[Hint: Use formula (6.108). Answer: Divide line of centers in the ratio a3/2 to 
b~J . 

6.3. Show that 

-,-----:;--dx =-. fit xsinx n2 

o 1 + cos2 X 4 

[Hint: It is easy to see that f~ f(x) dx = f~ f(a - x) dx. Hence, 
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~---;;--dx = dx = I" X sin x I" (n - x)sin(n - x) I" (n - x)sin x 
o 1 + cos2 X 0 1 + cos2(n - x) 0 1 + cos2 x 

and so we obtain 

I" xsinx I" sin x I" n2 
2 1 2 dx = n 2 dx = -ntan-1(cosx) = -.] 

o + cos x 01+cos x 0 2 

6.4. Show that 

1"/2 Sin2 x 1 
. dx = ;;,In(1 + j2). 

o smx+cosx ....;2 

[Hint: See the hint to Exercise 6.3. Let 

Then 

and so 

Hence, 

f sin2 x 
(x) = -:-.--­

smx + cosx 

1 cos2 x 
fb:n - x) = . 

cos x + smx 

----dx= dx=1 1"/2 sin2 x 1"/2 cos2 x 
o sin x + cos x 0 cosx + sinx 

1"/2 
21= . dx. 

o cos x + smx 

Putting tan(xJ2) = t, we get (see the proof of Proposition 6.4) 

21 = 1"/2 1 dx = 2 [.1 1 dt 
Jo cos x + sin x J0 2-(t-1)2 

= 2 _1 11 ( 1 + 1 ) dt 
2j2 Jo J2 - (t - 1) J2 + (t - 1) 

=_1 InIJ2+(t-1)lll =~ln(j2+1) 
j2 J2 - (t - 1) 0 j2 

and so 1 = (lJj2)ln(1 + j2).] 

6.5. Evaluate J [sin(x - a)sin(x - b)r1 dx. 
[Hint: Since 

sin(b - a) = sin[(x - a) - (x - b)] 

= sin(x - a)cos(x - b) - cos(x - a)sin(x - b), 

we have 

sin(b - a) 
. . ( b) = cot(x - b) - cot(x - a). 

sm(x - a)sm x -
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Therefore, the integral in question equals 

. In . + c. 1 I sin(x - a) I ] 
sm(a - b) sm(x - b) 

6.6. Reduce the evaluation of 

. dx I A cos x + B sin x + C 

Dcosx + Esmx + F 

to the evaluation of 

I 1 
. dx. 

Dcosx + Esmx + F 

[Hint: We determine three constants A, fl, and v such that 

Acosx + Bsinx + C = A(Dcosx + Esinx + F) + fl(-Dsinx + Ecosx) + v. 

They are given by the equations 

A = DA + Efl, B = EA - Dfl, C = FA. + v. 

With these values of A, fl, and v, we have 

. dx I 
Acosx + Bsinx + C 

Dcosx + Esmx + F 

I d I 
-Dsinx-+ Ecosx I 1 d 

= AX+fl . dx+v . x 
Dcosx + Esmx + F Dcosx + Esmx + F 

= AX + fllnlDcosx + Esinx + FI + vI 1 . dx.] 
Dcosx + Esmx + F 

6.7. For n = 1,2,3, ... , let 

Find Sn as n --+ 00. 

[Hint: We have 

1 
Sn= ;:(j1+j2+ 00. +In). 

ny' n 

Sn = ~(j1 + j2 + 00. + In) --+ r1 Jx dx = ~ as n --+ 00.] 
n n n n Jo 3 

6.8. For n = 1,2,3, ... , let 

1 1 1 1 
Sn = ;; + (n2 _ 1)1/2 + (n2 _ 22)1/2 + 00. + (n2 _ {n _ 1}2)1/2' 

Find Sn as n --+ 00. 

[Hint: We have, putting h = lin, 

( 1 1 1) 
Sn = h 1 + (1 _ h2)1/2 + (1 _ {2hV)1/2 + 00. + (1 _ {n _1}2h2)1/2 

il 1 11: 
--+ 2 1/2 dx = - as n --+ 00.] 

o (1 - x ) 2 
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6.9. Using partial fraction decomposition, evaluate 

f x2+5x+41 
-::------=-:-:----c:-:-::---,-:- dx. 
(x + 3)(x - 1)(2x - 1) 

[Answer:ilnlx + 31 + ¥lnlx -11- 2llnl2x - 11 + c.] 

6.10. Evaluate 

[Answer: 

1 1 7 1 1 
2Inlxl------lnlx-ll- --lnlx+ll+c.] 

x 2X2 4 2(x - 1) 4 

6.11. Evaluate 

f (x - If~x2 + 4) dx. 

[Answer: 

2 1 1 2 3 lX 
--lnlx-ll- +-In(x +4)--tan- -+c.] 

25 5(x - 1) 25 50 2 

6.12. Evaluate 

f (X2 + l)(x2 + 2) 
2 2 dx. 

(x + 3)(x + 4) 

[Hint: Put x 2 = y. Answer: 

6.13. Evaluate 

2 1 2 1 X 
X + -tan- - - 3 tan- - + c.] 

J3 J3 2 

f 1 + x 2 

--4dx. 
1 + x 

[Hint: Put x - l/x = y. Answer: 

1 x 2 - 1 
h tan-1 M:: + c.] 

y2 y2x 

6.14. The integration of (sinP x)(cosq x), when p + q is a negative even integer, is easily 
accomplished by use of the substitution tan x = t. Indeed, we have 

and so, putting p + q = - 2n, 

f (sinP x)(cosq x) dx = f t P(1 + t2r 1 dt. 

Evaluate S (cot t)1/2(sec4 x) dx. 
[Answer: 2(tan X)1/2 + ~(tan5 X)1/2 + c.] 
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6.15. Evaluate 

f1</2 1 
.,----------:--~dx. 

-1</2 5 + 7 cos x + sin x 

[Hint: Substitute tan(x/2) = t. Answer: tin 6.] 

6.16. Evaluate 

[Hint: Substitute tan x = t. 

Answer: -tan-1 -- + c.] 1 (atanx) 
ab b 

6.17. Evaluate 

f tanx 
a2 + b2 tan2 x dx. 

[Hint: Substitute tan2 x = t. Answer: 

6.18. Evaluate 

f (1 + X)1/2 : (1 + x) 1/3 dx. 

[Hint: Substitute 1 + x = t6 • Answer: 

2(1 + X)1/2 ~ 3(1 + X)1/3 + 6(1 + X)1/6 ~ 61n 11 + (1 + x)1/61 + c.] 

6.19. Evaluate 

f (~)1/2 ~dx. 1 + x x 

[Hint: Substitute (1 ~ x)/(1 + x) = y2. Answer: 

I (1 + X)1/2 ~ (1 ~ X)1/21 -1 (1 ~ X)1/2 

In (1 + X)1/2 + (1 ~ X)1/2 + 2 tan 1 + x + c.] 

6.20. Using the Hermite-Ostrogradski Formula (6.65), evaluate 

f (x 3 ~ 1)2 dx. 

[Hint: We have 

f 1 ~ AX2 + Bx + C f Dx2 + Ex + F 
( 3 1)2 dx ~ 3 1 + 3 1 dx, x ~ x ~ x ~ 

where A = 0, B = ~t, C = D = E = 0, and F = ~t. Answer: 

x 1 x2 + X + 1 1 1 2x + 1 --;:--- + -In ~ -tan- -- + c.] 
3(x3 ~ 1) 9 (x ~ 1)2.j3 .j3 
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6.21. Evaluate 

[Answer: 

6.22. Evaluate 

[Answer: 

6. Additional Topics in Integration 

f (X 2 : W dx. 

15xS + 40x3 + 33x 15 -1 

48(1 + X 2 )3 + 48 tan x + c.] 

fX4-2X2+2 
---=2----dx. 
(x - 2x + 2) 

x-1 
x - 2 + 21n(x2 - 2x + 2) + 3tan-1(x - 1) + c.] 

x -2x+2 

6.23. Evaluate 

[Answer: 

_x2 + x 1 1 1 
4(x + 1)(x2 + 1) + Zln Ix + 11- 41n(x2 + 1) + 4 tan-l x + c.] 

6.24. Using the result in Proposition 6.5, evaluate 

fx + X 2/3 + X 1/6 

x(1 + X1/3) dx. 

[Hint: Use the substitution x = t6 • Answer: ~X2/3 + 6 tan-l X1/6 + c.] 

6.25. Evaluate 

f (2x - 3)1/2 
(2x - 3)1/3 + 1 dx. 

[Hint: Use the substitution 2x - 3 = t6 • Answer: 

~(2x - 3)7/6 - !(2x - 3)5/6 + (2x - 3)1/2 - 3(2x - 3)1/6 + tan-1(2x - 3)1/6 + c.] 

6.26. Evaluate 

L2 ~ X)2 G : :Yf3 dx. 

[Hint: Use the substitution (2 - x)/(2 + x) = t3. Answer: 

3(2 - X)2/3 - -- + c.] 
4 2 + x 

6.27. Evaluate 
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[Hint: Use the substitution (x + 2)/(x - 1) = t4. Answer: 

4(X - 1)1/4 - -- + c.] 
3 x + 2 

6.28. Using the result in Proposition 6.6, evaluate 

f x-2/3(1 + X1/3) 1/2 dx. 

[Hint: Use the substitution 1 + X1/3 = t2. Answer: 2(1 + X1/3)3/2 + c.] 

6.29 Evaluate 

f x- ll (1 + X4)-1/2 dx. 

[Hint: We use the substitution 1 + X4 = x4t2. Answer: 

6.30. Using the result in Proposition 6.7, evaluate 

f x + (x2 ~ X + 1)1/2 dx. 
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[Hint: We use the substitution (x2 - x + 1)1/2 = tx + 1 and so the given 
integral becomes 

f 2 + 2t + 2t2 d 
(2 + t)(1 - t)(1 + tf x 

1 
= 2ln 12 + tl - tin 11 - xl - ~ In 11 + xl - -- + c. 

1 + t 
We then set 

(x2 - X + 1)1/2 - 1 
t = .] 

x 

6.31. Using relation (6.81), verify that 

----------------~~--------dx f 30X5 + 30x4 + 12x3 + 21x2 - 15x - 1 
(4 + 2x + 3X2)1/2 

= (2X4 + x 3 - 3x2 + 4x - 1)(4 + 2x + 3X2)1/2 - 16 f 1 2 1/2 dx. 
(4 + 2x + 3x ) 

Moreover, verify that 

f 1 d __ 1_ 2 1/2 
(3x2 + 2x + 4)1/2 X - j3lnll + 3x + (9x + 6x + 12) 1+ c. 

6.32. Evaluate the integral 

l=f x+4 dx 
(x - l)(x + 2)2(X2 + X + 1)1/2 . 
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[Hint: Noting that 

x+4 ABC 
(x - l)(x + 2)2 = x-I + (x + 2)2 + X + 2 ' 

where A = ~, B = -t, and C = -~, we obtain that 

I = ~f 1 dx - ~f 1 dx 
9 (x - 1)(x2 + X + 1)1/2 3 (x + 2)2(X2 + X + 1)1/2 

-~f 1 dx 
9 (x + 2)(x2 + X + 1)1/2 . 

The first integral is calculated by the substitution x-I = lit, the second and 
the third by the substitution x + 2 = lit.] 

6.33. Evaluate 

[Answer: 

1 I [2(2x2 - 2x + 5)]1/2 - (x + 1) I 1 -1 (2X2 - 2x + 5)1/2 
--In - -tan + c.] 
6-/i [2(2x2 - 2x + 5)]1/2 + (x + 1) 3 x + 1 

6.34. Evaluate, using the result in Proposition 6.7, 

f [1 + {X(ll+ X)P/2Y dx. 

[Answer: 

2(3 - 4z) 2 I I J5 + 1 + 2z I -:-:-:---'-----'--;;-,- + -- n + c, 
5(1 - z - Z2) 5J5 J5 - 1 - 2z 

where z = -x + {x(l + X)P/2.] 



CHAPTER 7 

Infinite Series 

1. Numerical Sequences 

Definition. A sequence of real numbers Xl' X 2 , ••• , X n , ••• is a function that 
assigns to each positive integer n a number X n • The number Xn is called the 
nth term of the sequence. Sometimes the notation {Xn}::'=l or, more simply, 
{xn} is used as an abbreviation of the sequence Xl' X2' ••• , X n, .... 

Definition. A sequence {Xn} of real numbers is called a null sequence if for any 
e > 0 there exists a positive integer no such that 

(7.1) 

In place of the expression "for any n ~ no" we shall often use the phrase "for 
all sufficiently large n." 

REMARKS. The defining condition means that given an arbitrarily small posi­
tive number e, we can always find an no (in general dependent on e) such that 
(7.1) is satisfied. The property that {xn} is a null sequence may also be 
expressed by saying that for any e > 0 we have 

IXnl < Ke for all sufficiently large n, 

where K is any fixed (Le., independent of e) positive real number. 
It is clear that {l/n}::'=l is a null sequence because 1/n:5;; 11no for all n ~ 

no> o. 

Definition. A sequence {xn} is said to be bounded if there is a real number M 
such that 

IXnl < M for all n. 
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Proposition 7.1. Any null sequence {xn} is bounded. 

PROOF. Since {xn} is a null sequence, we have IXnl :s; 1 for all n ~ no. There­
fore, 

IXnl:S; 1 + max{lxnl: n < no} 

and the claim is established. o 

Proposition 7.2. The sum, difference, and product of null sequences are again 
null sequences. 

PROOF. Let {xn} and {Yn} be null sequences. Now IXnl < e, IYnl < e for all 
sufficiently large n implies 

IXn ± Ynl :s; IXnl + IYnl < 2e for all sufficiently large n, 

and, if I Xn I < M for all n, then 

IXnYnl = IXnllYnl < Me for all sufficiently large n, (7.2) 

completing the proof. 0 

REMARK. Relation (7.2) shows that the product of a bounded sequence and a 
null sequence is a null sequence. 

Definition. A real number a is said to be the limit of a sequence {xn} (in 
symbols: a = limn_ oo xn) if {xn - a} is a null sequence, that is, if for any e > 0 
we have 

IXn - al < e for all sufficiently large n. 

We also say that Xn tends to or converges to a as n becomes arbitrarily large 
and we write Xn ~ a (as n ~ 00). A sequence of constant terms c tends to c. 

Proposition 7.3. Every sequence has at most one limit. 

PROOF. Let a and b be limits of {xn }. Suppose that e > 0 is arbitrary. There 
exists a positive integer n such that 

IXn - al < e and IXn - bl < e 

[note that (7.3) holds for all sufficiently large n] and so 

(7.3) 

la - bl = I(xn - b) - (xn - a)1 :s; IXn - al + IXn - bl < 2e. (7.4) 

Since a - b is fixed and 2e is an arbitrarily small positive number, (7.4) 
implies that a - b = O. 0 

Definition. A sequence is said to be convergent if it has a (finite real number 
as) limit. A sequence that is not convergent is said to be divergent. 
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REMARKS. Altering a finite number of terms of a sequence or the deletion or 
adjunction of a finite number of terms does not affect the convergence or 
divergence of a sequence and, in case of convergence, it also does not affect 
the limit. 

Definition. Given a sequence {xn}, consider a sequence {nk}k'=l of positive 
integers, such that n1 < n2 < n3 < .... Then the sequence 

is called a subsequence of {xn}. 

REMARK. A sequence {xn} converges to a if and only if every subsequence of 
{xn} converges to a. 

Proposition 7.4. Any convergent sequence is bounded. 

PROOF. Let {xn} converge to a. Since 

IXnl ~ IXn - al + lal, 
the claim follows because {xn - a} is a null sequence and hence bounded (by 
Proposition 7.1). 0 

Proposition 7.5. The sum, difference, and product of convergent sequences {xn} 
and {Yn} are convergent. Moreover, if Xn .... a and Yn .... bas n .... 00 and c is a 
fixed real number, then 

Xn ± Yn .... a ± b, XnYn .... ab, and CXn .... ca. 

If all Yn and the limit bare different from zero, then the quotient xnlYn converges 
and we have 

Xn a 
- .... -. 
Yn b 

PROOF. The statements concerning sum and difference reduce to the corre­
sponding statements about null sequences: 

(Xn ± Yn) - (a ± b) = (xn - a) ± (Yn - b) .... 0; 

the statement concerning the product follows from the Remark to Proposi­
tion 7.2 and from Proposition 7.4: 

xnYn - ab = (xn - a)Yn + a(Yn - b) .... o. 
Moreover, 

CXn - ca = c(xn - a) .... O. 

Having already considered the product, the statement concerning the quo­
tient will follow if we can show that llYn - lib .... O. But for all sufficiently 
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large n we have IYn - bl < Ibl/2 and so 

Ibl 
IYnl ~ Ibl - IYn - bl > 2' 

1 2 
-<-. 
IYnl Ibl 

This means that the sequence {llYn} is bounded. Using the Remark to Propo­
sition 7.2 and using Proposition 7.4 we conclude 

111 
- - - = --(Yn - b) - 0 
Yn b bYn 

and the proof is finished. o 

EXAMPLE. Let ao, a 1 , ... , ap with ap "# 0 be given real numbers and 

_ f k * _ Xn _ f ak _ Xn - L.. akn and Xn - - - L.. ----=k for n - 1,2,3, .... 
k=O nP k=O nP 

Since lin - 0 as n - 00, Proposition 7.5 gives x: - ap as n - 00. Similarly, 
let bo, b1 , ••• , bq with bq "# 0 be given real numbers and 

- ~ b q d * - Yn - ~ bk c - I 2 3 Yn - L.. kn an Yn - - - L.. ----=k lor n - , , , .... 
k=O nq k=Onq 

Since Y: - bq "# 0 as n - 00, we have Yn "# 0 for all sufficiently large n, say, 
for all n ~ n1 ~ 1. We consider the sequence {xnIYn} for n ~ n1 • Since 

the sequence 

Xn = np-q(X:) 
Yn Yn 

tends to 0 for q > p and to aplbp for q = p as n - 00; for q < p we apparently 
have an unbounded (hence divergent) sequence. 

Proposition 7.6. If Xn - a, then IXnl - lal as n - 00. For a = 0 the converse 
holds as well: Iflxnl- 0, then Xn - 0 as n - 00. 

PROOF. The first statement follows directly from 

Ilxnl-lall ~ IXn - al 

and the proof of the second statement is trivial. o 

Proposition 7.7. Ifxn - a, Yn - b as n - 00 and Xn ~ ynfor all sufficiently large 
n, then a ~ b. In particular, if Xn - a, I Xn I ~ c for all sufficiently large n, then 
lal ~ c. 

REMARK. The proof of Proposition 7.7 is trivial. 
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Definition. A sequence {xn} of real numbers is said to be nondecreasing if 
Xn :5; Xn+1 for all nand {xn} is said to be nonincreasing if Xn ~ Xn+1 for all n. 
Observe that if {xn} is nondecreasing then Xn :5; Xm whenever n < m and if 
{xn} is nonincreasing then Xn ~ Xm whenever n < m. A sequence that is non­
decreasing or nonincreasing is called a monotonic sequence. 

Proposition 7.8. Any bounded monotonic sequence converges. 

PROOF. It will be enough to consider the case of a nondecreasing sequence; if 
{xn} is nonincreasing, then { -xn } is nondecreasing. 

Let {xn} be a bounded nondecreasing sequence; suppose that S denotes the 
set of terms {xn: n = 1, 2, 3, ... } and let M* = sup S. Then 

Xn :5; M* for all n. (7.5) 

By the Remark following the definition of supremum in Section 2 of Chapter 
2, for any e > 0 there exists a positive integer no such that 

Xno> M* - e. 

Since the sequence {xn} is nondecreasing, it follows that 

Xn > M* - e for all n ~ no. 

By (7.5) and (7.6) we have 

I Xn - M* I < e for all sufficiently large n 

and the proof is finished. 

(7.6) 

o 

REMARK. Note that the Axiom of Completeness (see Section 2 in Chapter 2) 
in an essential ingredient in the proof of Proposition 7.8. 

Definition, A real number a is called an accumulation point of the sequence 
{xn} iffor any e > 0 we have 

IXn - al < e for infinitely many n. (7.7) 

REMARK. Every accumulation point of a subsequence of {xn} is also an 
accumulation point of the sequence {xn }. The limit of a convergent sequence 
{xn} is an accumulation point of {xn}, in fact, the only one (as the next 
proposition will show). 

Proposition 7.9. If a is an accumulation point of the sequence {Xn }:"l' then 
there is a subsequence {XnJk=l which converges to a. 

PROOF. Using induction, we shall construct a subsequence such that 
1 

IXnk - al < k (7.8) 

for all k = 1,2, 3, .... Evidently, we will then have xnk -+ a as k -+ 00. 
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We begin by choosing nl such that (7.8) is satisfied for k = 1. The condition 
(7.7) allows us to find such a positive integer n1. Then we choose n2 such that 
n2 > nl and that (7.8) is satisfied for k = 2. In general, we pick nk such that nk 
is larger than its predecessor nk- 1 and which satisfies (7.8); the condition (7.7) 
with e = 11k guarantees the existence of such a number nk • 0 

Proposition 7.10 (Theorem of Bolzano and Weierstrass). Every bounded 
sequence of real numbers has at least one accumulation point. 

PROOF. Let {xn} be a given bounded sequence and let us assume that 

Mo ::;; Xn ::;; No for all n, 

where Mo < No. Commencing with the closed interval [Mo, NoJ, we con­
struct by continued bisection a nested sequence of intervals 

[Mo,NoJ :::J [M1,N1 J :::J [M2 ,N2 J :::J ••• :::J [Mk,NkJ :::J ••• 

such that each of these intervals contains an infinite number of terms of the 
sequence {xn}, that is, for each k, where k = 0,1,2, ... , we have 

Mk ::;; Xn ::;; Nk for infinitely many n. 

The possibility of such a construction is clear; if an interval J contains an 
infinite number of terms of a sequence, then at least one half of the interval J 
must contain an infinite number of terms of that sequence. It is clear that 
{Md is a nondecreasing sequence and {Nk } is a nonincreasing sequence; 
moreover, both sequences are bounded because all terms of both sequences 
belong to the interval [Mo, No]. It is also clear that 

Mk --+ a, Nk --+ a as k --+ 00, 

where a is the unique point common to all closed intervals of the nested 
sequence {[Mk> NkJ }k'=o (see Nested Interval Principle in Section 1 of 
Chapter 1). Hence, for each e > 0 there exists k such that 

a - e < Mk < Nk < a + e 

and so 

a - e < Xn < a + e for infinitely many n, 

implying that a is an accumulation point of {xn }. o 

Proposition 7.11. Suppose that the set A of all accumulation points of a bounded 
sequence {xn} is nonempty. Then A contains both sup A and inf A. 

PROOF. Let Q( = sup A. Then for every e > 0 we have that (i) at least one 
element a of A satisfies the inequality a > Q( - e and (ii) every element a of A 
satisfies the inequality a < Q( - e. 

Thus, by (i) there is some a E A with a > Q( - e. Since a E A means that a is 
an accumulation point of {xn} and because Q( - e is a point to the left of a on 
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the number line, we have that 

Xn > (X - e for infinitely many n. 

Since (X + e is to the right of every point a of A by (ii), the inequality Xn ~ (X + e 
can hold at most for a finite number of indices n and so 

Xn < (X + e for all sufficiently large n. 

Thus, (X E A. The dual statement concerning inf A can be proved along similar 
lines of reasoning. 0 

REMARK. Proposition 7.11 shows that the set A of all accumulation points of 
a bounded sequence has a maximum and a minimum. 

Definition. The real numbers sup A and infA occurring in Proposition 7.11 
are called the limit superior and the limit inferior of the sequence {xn}, respec­
tively, and are denoted by 

lim Xn and lim Xn. 
n-+oo n-+oo 

REMARKS. The numbers a = lim Xn and ~ = lim Xn are characterized by the 
following properties: For any e > 0 

Xn > a - e for infinitely many nand 

Xn > a + e for all sufficiently large n, 

Xn < ~ + e for infinitely many nand 

Xn > ~ - e for all sufficiently large n. 

For a bounded sequence {xn} the limxn and limxn exist and limxn :::;; limxn; 
equality occurs precisely when the sequence converges (and then we have 
lim Xn = lim Xn = lim xn). It is also easy to see that lim Xn = -lim( - xn). 

For an unbounded sequence we define lim Xn = 00 if {xn} is not bounded 
above and we define lim Xn = - 00 if {xn} is not bounded below; moreover, if 
Xn ..... 00 as n ..... 00, we put lim Xn = lim Xn = lim Xn = 00 and if X n ..... - 00 as 
n ..... 00, we put lim Xn = lim Xn = lim Xn = - 00. 

Definition. A sequence {xn} ofreal numbers is said to be a Cauchy sequence 
if for any e > 0 there exists a positive integer no such that 

(7.9) 

REMARKS. In (7.9) we may replace e in the inequality by Me, where M denotes 
a fixed but arbitrary positive real nflmber independent of e. 

Without loss of generality we may suppose that m > n and reformulate 
(7.9) as follows: 

IXn+k - xnl < e for all n ~ no and all positive integers k. 
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Proposition 7.12. A sequence {xn} of real numbers is convergent if and only if 
it is a Cauchy sequence. 

PROOF. Suppose that {xn} is convergent and let Xn ~ a as n ~ 00. Then, given 
any e > 0, we have 

IXn - al < e, IXm - al < e for all sufficiently large m and n. 

Thus, 

IXn - xml = I(xn - a) - (xm - a)1 ~ IXn - al + IXm - al < 2e 

for all sufficiently large m and n, showing that {xn} is a Cauchy sequence. 
Conversely, let {xn} be a Cauchy sequence, that is, given any e > 0, then 

there exists a positive integer no such that condition (7.9) is satisfied. It 
follows in particular that 

IXn - xnol < e for all n ~ no 

and so 

IXnl < IXnol + e for all n ~ no. 

Therefore, the larger of the two numbers 

IXnol + e and max{lxnl: n < no} 

is a bound for the IXnl and, by Proposition 7.10, the sequence {xn} has an 
accumulation point a. Therefore, for infinitely many m we have 

IXm - al < e; 

we choose one such m ~ no. Then for all n ~ no we have 

IXn - al ~ IXn - xml + IXm - al < 2e. 

This means that a is the limit of {xn} and the proof is finished. 

Proposition 7.13. Let {xn} be a convergent sequence with limit a. Then 

Xl + X2 + ... + Xn 
Yn = ~ a as n ~ 00. 

n 

PROOF. Let xn = vn + a. We must show that 

as n ~ 00 

if {vn } is a null sequence. Now, for n > m, 

VI + V2 + .,. + Vm Vm+l + Vm+2 + ... + Vn 
-------------+ , 

n n 

so that 

D 
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Given 8 > 0, we can choose m so that Ivnl < 8/2 for all n > m. For all such n 
we have 

IV1 + V2 + ... + Vnl IVI + V2 + ... + vml 8 n - m :::;; +-'--. 
n n 2 n 

Since IVI + V2 + ... + vml is a fixed real number, we can pick a positive 
integer no > m such that for all n > no we have 

IVI + V2 + ... + vml 8 
--'---=---_----'.:.:..:. < -. 

n 2 

Then 

Iv + v + ... + v I 1 2 n < 8 

n 
for all n > no. 

This completes the proof. o 

Proposition 7.14. Let {Un} be a convergent sequence with limit b and assume 
that each Un and b are positive. Then 

Wn = .y!U1U2 "'Un ~ b as n ~ 00. 

PROOF. Since the natural logarithm In is a continuous function, we get that 
Un ~ b implies (see Proposition 2.4 and the definition of continuity) 

Xn = In Un ~ a = In b as n ~ 00. 

By Proposition 7.12, 
x +X +· .. +X ,------

Yn= 1 2 n n=ln..yulu2···un=lnwn~lnb asn~oo. 

But the exponential function is continuous and so 

In Wn ~ lnb implies Wn ~ b as n ~ 00. 

This completes the proof. 

ApPLICATIONS. Applying Proposition 7.14 to the sequence 

, ... , 

where {un+1/un} is assumed to be convergent, we obtain 

1· ftC l' Un+1 Imyun = Im--
n~C() n-+oo Un 

o 
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and so 

(n + 1)! . nn 
(n + 1)n+1 n! 

1 1 
..,.,---:-:-:- --+ -
(1 + 1/n)n e 

limfo =~. 
n-oo n e 

as n --+ 00 

If we put Un = (n + l)(n + 2)'" (n + n)jnn, we obtain un+dun --+ 41e as n --+ 00 

and so 

lim~-d(n + l)(n + 2)"'(n + n) =~. 
n-+oo n e 

By taking Un = n, we obtain un+dun --+ 1 as n --+ 00 and so fn --+ 1 as n --+ 00 

(a result we already know from the Lemma preceding Proposition 1.8). 

Proposition 7.15. If {xn} and {Yn} converge to X and Y, respectively, then {zn}, 
where 

converges to X Y. 

PROOF. Let xn = X + a .. Then {an} is a null sequence. Since {Yn} is conver­
gent, it is bounded (see Proposition 7.4) and so there exists a number K such 
that 

IYnl < K for all n. 

We have 

X Yi + Y2 + ... + Yn aiYn + a2Yn-i + ... + anYi 
Zn = + ----------

By Proposition 7.13, 

and 

n n 

Yi + Y2 + ... +Yn 
------- --+ Y 

n 

laiYn + a2Yn-~ + ... + anYil ~ Kai + a2 : ... + an --+ O 

as n --+ 00 and so Zn converges to XY. 

Worked Examples 

1. (i) Let 

ai a2 an 
b;' b2 ' ••• , bn 

o 



1. Numerical Sequences 389 

be n fractions with bi > 0 for i = 1, 2, ... , n. Show that the fraction 

a1 + a2 + ... + a" 
b1 + b2 + ... + b" 

is contained between the largest and the smallest of these fractions. 
(ii) Use part (i) to show that if {a,,/b,,} is a monotonic sequence with b" > 0 

for n = 1,2,3, ... , then {c,,}, where 

a1 + a2 + ... + a" 
c" = , b1 + b2 + ... + b" 

is a monotonic sequence also. 

SOLUTION. To verify the claim in part (i), let m and M denote the smallest and 
the largest of the fractions, respectively. Then 

a· 
m :::;; i :::;; M or mbi :::;; ai :::;; Mbi for i = 1, 2, ... , n . 

• 
Summing these inequalities, we find 

" " " mL bi :::;; L ai:::;; M L bi 
i=1 i=1 i=1 

or 

" Lai 
m:::;;i:1 :::;;M. 

Lbi 
i=1 

To verify part (ii), let us assume that {a,,/b,,} is nondecreasing: 

By part (i), 

and 

a1 + a2 + ... + a" a1 + a2 + ... + a" + a,,+1 a,,+1 
-::----7-----:--"- < < -­

b1 + b2 + ... b" - b1 + b2 + ... + b" + b"+1 - b,,+1 . 

It follows in particular that {e,,} is nondecreasing. The case of nonincreasing 
sequences is handled in an entirely similar manner. 

REMARKS. From the foregoing we can easily deduce the following: If {a,,} is a 
monotonic sequence, then {e,,}, where 

e" = 
a1 + a2 + ... + a" 

n 
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is a monotonic sequence as well. Indeed, we only have to let bn = 1 for n = 1, 
2, 3, ... in part (ii). 

Similarly, if {an} is a monotonic sequence and an > 0 for n = 1, 2, 3, ... , then 
{cn }, where 

is a monotonic sequence as well. In this case we only need to note that 

I lnal + Ina2 + ... + In an 
n c = --=----=--------"-

n n 

and that the logarithmic function preserves the direction of the monotonicity. 
2. Show that the sequence {x,,}, where 

1 1 1 
x,,=--+--+"'+--, 

n+l n+2 n+n 

is convergent and find its limit. 

SOLUTION. Since 

1 1 1 1 1 1 
X,,+l - x" =---+-----<-+---=0, 

2n + 1 2n + 2 n 2n 2n n 

the sequence in question is seen to be decreasing; moreover, ! is a lower 
bound of the sequence because 

1 1 111 11 
--+--+ ... +-->-+-+ ... +-=­
n + 1 n + 2 n + n 2n 2n 2n 2 

and 1 is an upper bound of the sequence because 

1 1 1 1 1 1 n 
--+--+"'+--<--+--+"'+--, =--< 1. 
n+1 n+2 n+n n+1 n+1 n+1 n+l 

By Proposition 7.8 the sequence {xn} is convergent. 
An an application of Proposition 1.6 we have already shown that 

1 1 1 
--+-- + ... +---+ln2 as n-+ 00. 
n+1 n+2 n+n 

Here is another way of establishing this result: Dividing the interval [0,1J 
into n subintervals of equal length and considering the sum of approximating 
rectangles under the curve y = 1/(1 + x) lead to 

111 
--+--+ ... +--
n+l n+2 n+n 

=~( 1 + 1 +."+ 1 )-+e-1-dX=ln2 
n 1 + lin 1 + 21n 1 + nln J 0 1 + x 

as n -+ 00. 
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and 

Show that the sequences {an} and {bn} tend to a common limit L(al,bd and 
verify that 

where 

{n/2 1 

G = J 0 (ai cos2 x + bi sin2 X)1/2 dx. 

SOLUTION. We observe that a l > a2 > b2 > bl and that in general 

al > a2 > ... > an > an+1 > bn+1 > bn > ... > b2 > bl 

and hence {an} is a decreasing and bounded sequence and {bn} an increasing 
and bounded sequence because the an's and the bn's are, in fact, the consecu­
tive arithmetic and geometric means of the initially given numbers al and bi 

with al > bl > O. Indeed, it is evident that al > a2 and b2 > bl (because 
a l > bi > 0). To see that a2 > b2 , we note that 

a l + bi _ ~b _ (Ja; - yib;y 0 
2 Valul - 2 > fora l =1= b l • 

In the same way we can show that 

Moreover, it is easy to see that 

al>an>bn>bl · 

By Proposition 7.8 the sequences {an} and {bn} are therefore convergent; let 

IX = lim an and P = lim bn. 
n-+oo n-+oo 

But 

and so, for n -.. 00, we get 
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(X+P (X=--. 
2 ' 

hence, IX = p. We denote this common limit by L = L(a1,bd. 
We now assume that a> b > 0 and let 

and we show that 

a+b A=-- and B=fo 
2 

7. Infinite Series 

(~ ~ (~ ~ 

J 0 (a2 cos2 x + b2 sin2 X)1/2 = J 0 (A 2 cos2 t + B2 sin2 t)1/2 . (7.10) 

By repeated applications of (7.10) we get 

G = ("/2.,.....,.-_-;;-_d--:x-;;--:--;;----,-;= 
J 0 (a; cos2 x + b; sin2 x)1/2 

for n = 1, 2, 3, ... , 

where an and bn are defined by the recursion formula 

As we know already, these two sequences converge to the common value 
L = L(al,bd. It is easy to see that 

n n 
2an <G<2bn 

and passage to the limit as n -+ 00 gives 

We return to the verification of the transformation (7.10) and put 
. 2a sin t 

sm x = (a + b) + (a - b)sin2 t . 

As t changes from 0 to n12, x grows from 0 to n12. Differentiation gives 

(a + b) - (a - b)sin2 t 
cosxdx = 2a[( b) ( b)· 2 ]2costdt. a+ +a- smt 

But 
[(a + b)2 - (a - b)2 sin2 t]1/2 

cos x = ( b) ( b) . 2 cos t, a+ +a- smt 

and thus 
d _ (a + b) - (a - b)sin2 t . dt 

x - 2a (a + b) + (a _ b)sin2 t [(a + b)2 - (a _ b)2 sin2t] 1/2 . 

On the other hand, 
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( 2 2 b2 ' 2 )1/2 _ (a + b) - (a - b)sin2 t 
a cos x + sm x - a( b) ( b) . 2 a+ +a- smt 

and thus 

dx dt 
(a2cos2 x + b2sin2 X)1/2 - {[(a + b)/2]2cos2t + absin2tp/2' 

implying (7.10). 

REMARKS. We can use the formula 

G= 1t 
2L(a1,bd 

in the approximate calculation of certain types of integral. For example, 

G- -f fl/2 dx f"/2 dx 
- 0 (1 + cos2 X)1/2 - 0 (2cos2 X + sin2 X)1/2 
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and we take a1 = J2 and b1 = 1. The sequences {an} and {bn} in this case are 
rapidly converging to L = L(a1,b1) and both a4 and b4 are seen to be ap­
proximately equal to 1.198154. Taking L approximately equal to 1.198154 
we obtain 

G = 2: = 1.3110138 (approximately). 

Formula (7.10) is due to Carl Friedrich Gauss (1777-1855). 

4. Let a1, a2, ... , ap be p positive real numbers and suppose that A denotes 
the largest of these numbers. Show that 

lim (a~ + a~ + ... + a;)1/n = A. 
n .... oo 

SOLUTION. Since 

A :::;; (a~ + a~ + ... + a;)1/n :::;; A . vip 
and vip -.1 as n -. 00 by the Lemma preceding Proposition 1.10, the claim 
follows. 

5. Let 

1 1 1 
Z = + + ... + --=----0-= 

n (n2 + 1)1/2 (n2 + 2)1/2 (n2 + n)1/2 . 

Find limn .... oo Zn' 

SOLUTION. Let 

n 1 
Xn = (n2 + n)1/2 and Yn = (n2 + 1)1/2 • 
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It is clear that each summand in the expression for Zn is larger than the first 
and smaller than the last; hence, 

n n 
Xn = (n 2 + n)11Z < Zn < (n2 + 1)112 = Yn' 

But xn -+ 1 and Yn -+ 1 as n -+ 00 and so Zn -+ 1 as n -+ 00. 

6. Let 

an = In (1 + n12 ) + In (1 + :2 ) + " . + In ( 1 + n~). 

SOLUTION. Since x/(1 + x) < In(1 + x) < x for x > 0, we get by setting x = 
k/n2 with k :::;; n < n2 : 

Therefore, 

and so 

or 

implying 

k k (k) k 
-Z-- :::;; ~k < In 1 + 2 < 2' n +n n + n n 

n k n ( k) n k L-2--< LIn 1+2 < L2 
k=l n + n k=1 n k=l n 

1+2+"'+n 1+2+"'+n 
--;;-2 --- < an < ----;;:-2--

n + n n 

n(n + 1) n(n + 1) 
2(n2 + n) < an < 2n2 ' 

~ < an < ~ (1 + ~). 
It follows that an -+ t as n -+ 00. 

7. Let Xl = 1 and 

Xn+1 = (1 - (n : 1)2) xn for n = 1, 2, 3, " .. 

Find limn_ oo X n • 

SOLUTION. It is clear that 0 < Xn < X n+1 :::;; 1 and so limn_ oo Xn exists by 
Proposition 7.8. Since 
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n+l 
Xn=~' 

we see that Xn -+! as n -+ 00. 

8. Let ao = 1 and 

for n = 0, 1, 2, .... 

Find limn .... '" an. 

SOLUTION. First we verify that {an} is convergent. Evidently an ~ 1 for all n 
and thus an ;;::: !; therefore, for arbitrary n, k ;;::: 0, 

lan+k - ani 1 4 
lan+1+k - an +1 I = (1 + an+k)(1 + an) ~ (1 + 1/2)2I an+k - ani = 9" lan+k - ani· 

Thus, 

lan+k - ani ~ (!)nl ak - aol ~ 2. (!)n. 

Since (!)n -+ ° as n -+ 00, we see that {an} is a Cauchy sequence; by Proposi­
tion 7.12 the sequence {an} is convergent. Passage to the limit as n -+ 00 in 

1 
an+i = 1 + an 

gives a = 1/(1 + a), that is, a2 + a = 1, where a = limn .... '" an. 

9. Let 

where ai = cos t with -n12 < t < nl2 and bi = 1. Show that {an} and {bn} 
converge to the same limit L = (sin t)lt. 

SOLUTION. First we show that, for t ¥- 0, 

hm cos- cos- cos- ... cos- =-. ( t)( t)( t) ( t) sint 
n .... '" 2 22 23 2n t· 

(7.11) 

Indeed, 
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and so 

2" sin(t/2") t sin(t/2") 

holds. But x" = t/2" -+ 0 as n -+ 00 and (sin x)/x -+ 1 as x -+ O. 
Returning to the problem at hand, we note that 

cos t + 1 2 t 
a2 = 2 = cos 2' 

a3 = (cosD(coS2 ;2). 

a4 = (cos~)(COS;2 )(cos2 ;3). 

as = (cos~)(COS;2 ) (COS;3 )(cos2 ;4). 

bs = (cos~)(COS;2 )(COS;3 )(COS;4). 

and so forth. But cos x -+ 1 as x -+ 0 and all is clear in view of (7.11). 

10. Following the proof of Proposition 7.14 we showed that 

fo 1 1 4 
lim -' = - and lim -.j(n + l)(n + 2)'" (n + n) = -. 

" .... 00 n e n .... oo n e 

Verify these results by integration theory. 

SOLUTION. We have, as n -+ 00, 

In - = - In - + In - + ... + In-(n! )1/" 1 (1 2 n) 
n" n n n n 

-+ f (In x) dx = [x(lnx) - X]I: = -1 

and 
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~ Ll ln(1 + x)dx = [(1 + x)ln(1 + x) - X]I: = (ln4) - 1. 

11. Let f be a (finite, real) linear combination of functions of the form 
h(t) = t', where r is a fixed real number; in particular,! can be any polynomial. 
Let [a,b] be an interval of finite length with 0< a < b. Put 

PI = ad, P2 = ad2, ... , Pn-l = adn- 1, 

where d = ~, and 

ql = a + s, q2 = a + 2s, ... , qn-l = a + (n - l)s, 

where s = (b - a)jn. Denote by A the arithmetic mean of the values 

f(a), f(Pl)' ... , f(Pn-l)' f(b) 

any by G the arithmetic mean of the values 

f(b) 
T· 

Then, as n ~ 00, the fraction Gj A tends to a limit which is independent off; 
this limit is In(bja)j(b - a). 

SOLUTION. Suppose first thatf(t) = t', where r is a fixed real number. Then 

G = _1_(a'-1 + q'-1 + ... + q,-1 + b'-I) n + 1 1 n-l 

and so 

Indeed, as n ~ 00, 

lim G = In(bja) if r = 0, 
n-+oo b - a 

b' - a' 
ifr #- 0. 

(b - a)r 

_l_(a'-1 + q,-1 + ... + q'-1 + b'-I) ~ _l_fb t,-1 dt 
n + 1 1 "-1 b - a a • 

Moreover, 
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A = _l_(ar + (ad)' + (ad 2)' + ... + (adn- 1 )' + br) 
n+l 

and so 

= ~(l + dr + d2r + ... + d(n-I)r + dnr) 
n+l 

limA=l ifr ¥ 0, 

br _ ar 

ifr ¥ O. 
rln(b/a) 

This is trivial if r = 0; if r ¥ 0, we have, as n -+ 00, 

-- 1 + dr + d 2r + ... + d(n-1)r + dnr -+- - dt. ar ( ) arsr(b)t 
n+l roa 

Thus, G/ A tends to In(b/a)/(b - a) as n -+ 00 for f(t) = tr. 
If we takef(t) = Ktr, where K is a constant, the fraction G/A is cleariy not 

affected; the factor K introduced in the numerator and denominator in G/A 
cancels out. Finally, to see that the claim is valid whenfis a linear combina­
tion of functions of the form h(t) = tr, we observe: In a finite sequence of 
equal ratios, the sum of the numerators divided by the sum of the denomina­
tors gives a ratio equal to each of the given ratios in the sequence. 

12. For any fixed real number a, we have aninI -+ 0 as n -+ 00. 

SOLUTION. Assume that a > 0 and let the integer k be such that a < k + 1. 
Forn > kwehave 

Thus, 

a a 

n! k! k + 1 k + 2 n 

an < ak . (_a_)n-k 
n! - k! k + 1 . 

But ak/k! is fixed and [a/(k + l)]n-k -+ 0 as n -+ 00. 

13. Let 

( Inn)n 
Xn = n 1 - n for n = 2, 3, .... 

SOLUTION. We put v = n/(ln n). Then 

In Xn = (1 + v In (1 - ~ ) ) (In n). 
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But 

-In 1 - - = -In -- = In -- = In 1 + --( 1) v-I V ( 1) 
V v v-I v-I 

and [recall inequality (1.3)] 

Moreover, 

Therefore, 

or 

Hence, 

or 

~ < -In(1 _~) = In(1 + _1_) < _1_. 
v v v-I v-I 

Inn 
0< -Inx <-­

n v-I 

0< -Inx < ~ = (Inn)2 .~._1_ 
n v-I Inn n v-I 

v (In n)2 
0< -Inxn <-_._-. 

v-I n 

Passing to the limit (if n --+ 00, then v --+ (0) we get 

O I· I 1· v I· (Inn)2 S - 1m n Xn S 1m -_. 1m -- = 1·0 = 0 
n---+oo v-+oo v-I n-+oo n 

and so Xn --+ 1 as n --+ 00. 
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14. Let { aJ be a sequence such that (2 - an )an+1 = 1. Show that 
Iimn_ oo an = 1. 

SOLUTION. If an = 1 for some n, then an = 1 for all n. Otherwise, let 

Hence, 

1 
bn+1 =---

1 - an+1 
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1 b1 + n - 2 
and a = 1 - - = -"----

n bn b 1 + n - 1 

Thus, an ~ 1 as n ~ 00. 

15. For each positive integer n, put 

( l)n (l)n+1 an = 1 +;; , bn = 1 + ;; , and 

Show that e 1 < e2 < e3 < ... < en < .... 

SOLUTION. We find en = 2(n + l)n+l n -n(2n + 1)-1. Let 

g(x) = In2 + (x + l)ln(x + 1) - x(lnx) -In(2x + 1). 

Then 

and 

2 
g'(x) = In(x + 1) -lnx ---

2x + 1 

1 1 4 1 
g"(x) = -- - - + = - < ° 

x + 1 x (2x + W x(x + 1)(2x + 1)2 

for ° < x < 00. Hence, g' decreases on (0, (0). Since 

. . x + 1 . 2 
lIm g'(x) = lIm In-- - lIm -- = 0, 
x-co x~co X x~co 2x + 1 

if follows that g' is positive on (0, (0). Thus, g increases on (0, (0), so 

is strictly increasing for positive integers n. 

REMARK. Since an ~ e and bn ~ e as n ~ 00, it follows by Proposition 7.5 that 
en ~ e as n ~ 00. We also note that en is the harmonic mean of an and bn-

16. Let 

_ fhsinnxd I n - -- x, 
o x 

where n denotes a positive integer and h > 0. 
The symbol (sin nx)/x is meaningless for x = 0. By defining (sin nx)/x 

to be equal to n for x = 0, we see that (sin nx)/x is continuous for all real 
numbers x. 

We put nx = u and see that 
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_ fnhsin u . 
I n - du, 

o u 

thus, for nand m being positive integers and n > m, 

f nhsinu 
I n - Jm = --duo 

mh U 

We wish to verify that {In} is a Cauchy sequence and hence is convergent by 
Proposition 7.12. 

Indeed, putting a = mh, b = nh, we have 0 < a < b and therefore 

fbsinud _ (-COSU)lb fbCOS U 
-- U - - -2-du. 

a U U a a U 

Thus, 

If
bsinu 111 fbI 2 -- du ::; - + - + 2" du = -

a U a b aU a 

and so 

I f
bsin u I 2 

a -u- du < 8 whenever a >~. 

Consequently, if 8 > 0 is given, we can select m such that 21mh < 8. We then 
have for n > m 

2 
IJn - Jml < mh < 8 

and the sequence {In} is seen to be Cauchy. 

17. Let [a, b] be a closed interval of finite length, p = 1, 2, ... , and 

Ap = f f(x)(sinpx)dx and Bp = f f(x)(cospx)dx, 

wherefis a Riemann integrable function over [a, b]. Then Ap ---> 0 and Bp ---> 0 
as p ---> 00. 

Indeed, for any interval [a, fJ] of finite length we have 

If: (Sinpx)dXI = Icospa ~ COSPfJl ::; ~ 

because Icostl::; 1 for all t. Let If(x)1 ::; M on [a,b] and 8 be the usual 
arbitrary positive number. There is a partition P of [a, b], say 

P = {a = Xo < Xl < ... < Xn = b}, 

such that U(P,f) - L(P,f) < 812 (see Proposition 5.4). Thus, 
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If f(x)(Sinpx)dXI = Iktl f [f(xk) + f(x) - f(Xk)](Sinpx)dXI 

~ ktl ('f(Xk)'II:k_
1 
(Sinpx)dXI 

+ I:~l'f(X) - f(xk)llsinpxldx 

2nM 2nM 8 
< - + [U(P,f) - L(P,f)] < - + -2 < 8 

p P 

when p ~ 4nM18. Hence, Ap = S~ f(x)(sin px) dx tends to 0 as p --+ 00. In the 
same way, Bp = S~ f(x)(cos px) dx tends to 0 as p --+ 00. 

18. Returning to the integral 

fhsinnx d 
I n = -- x 

o x 

of Example 16, we wish to calculate the limit of the sequence {In} as n --+ 00. 

By the result in Example 17, 

lim rh' sin nx dx = 0 
n--+oo Jh X 

whenever h and h' are two numbers larger than O. This shows that 

1· smnx d f h . 

1m -- X 
n-+oo 0 X 

is entirely independent of what value we choose for the positive number h. We 
may therefore restrict ourselves to consideration of 

f"/2 sin nx 
lim --dx. 
n-+oo 0 X 

For 0 < x ~ nl2 we have that 

1 1 

x sin x 

sin x - x 

x(sin x) 

is a continuous function. Using L'Hopital's Rules (see Proposition 4.10) 
twice, we see that 

sin x - x --+ 0 as x --+ O. 
x(sinx) 

By defining the meaningless expression 1/x - Ilsin x to be 0 for x = 0, we see 
that 
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1 1 sin x - X 
- - -- = --,---
x sin x xsinx 

is continuous for 0 ~ x ~ n12. Thus, by the result in Example 17, 

f"12(1 1) lim - - -.- (sinnx)dx = 0, 
n--<Xl 0 X sIn x 

implying that 

f "/2 sin nx i "/2 sin nx 
lim -. -dx = lim --dx. 
n--<Xl 0 sIn x n--<Xl 0 X 

To find the limit of a convergent sequence, it is enough to consider a subse­
quence. We shall consider the subsequence corresponding to the odd indices. 

We commence with the observation that 

cos(p - 1)t - 2 cos pt + COS(p + 1)t = 2(cos t - 1)(cos pt). 

Putting up = cos(p - 1)t - cos pt, we can write this identity in the form 

up+1 - up = 2(1 - cos t)(cos pt). 

We write down the following chain of equations: 

Ul = 1 - cost, 

U2 - Ul = 2(1 - cos t)(cos t), 

U3 - U2 = 2(1 - cos t)(cos 2t), 

Up+1 --=- up = 2(1 - cos t)(cos pt). 

From this we get 

iUp+l = (t + cos t + cos 2t + ... + cos pt)(1 - cos t); 

hence, in case that cos t =1= 1, 

1. cos pt - cos(p + 1)t 
2 + cos t + cos 2t + ... + cos pt = 2(1 ). 

- cost 

Since 

cos(p + 1)t = cos[(p + i)t + it] and cos pt = cos[(p + i)t - it], 

we see that 

cos pt - cos(p + 1)t = [2 sin(p + i)t] (cos it); 

but 

and so 
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sin(p + !)t 
! + cos t + cos 2t + ... + cos pt = . . 

2sm!t 

Restricting t to the interval [0, n], then sin!t is only zero for t = O. If we 
define 

sin(p + !)t 
2 sin!t 

to be equal to p + ! for t = 0, then the formula 

sin(p + !)t 
! + cos t + cos 2t + ... + cos pt = ---:--:-. ----;--

2sm!t 

is also valid for t = O. 
In the integral 

f"/2 sin(2p + l)x 
. dx 

o smx 

we may therefore write 

sin(2p + l)x 
. = 2(! + cos2x + cos4x + ... + cos2px). 

smx 

Hence, we get 

f "/2 sin(2p + l)x f"/2 • f"/2 
. dx = dx + L 2 (cos 2kx) dx. 

o sm x 0 k=l 0 

But 

("/2 1 1"/2 
2 J 0 (cos 2kx) dx = k(sin 2kx) 0 = 0 

and so 

("/2 sin(2~ + l)x dx = ~. 
Jo smx 2 

From this we can conclude that 

I· smnx d n fh • 

1m -- X=-
n~oo 0 X 2 

for h > O. 

19. The decimal fraction 

a = 0.1234567891011121314 ... 

(the positive integers written consecutively) represents an irrational number. 
Denoting by [t] the integer part of t, consider the sequence 

10'a - [lO'a] for n = 0, 1, 2, 3, .... 
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Note that we obtain 10nO( - [10ntX] by shifting the decimal point in 0( by n 
places to the right and deleting all digits to the left of the decimal point. Let 

P = O. PlP2 ... Pk 
be a finite decimal fraction. If we choose n such that 10ntX - [10ntX] begins 
with the digits Pl' P2, ... , Pk and is followed by r zeros, then 

. 1 
110ntX - [10ntX] - PI < 10Hr ' 

This shows that any rational number P between 0 and 1 is a point of accumu­
lation of the sequence 10nO( - [10ntX] for n = 0, 1, 2, 3, ... ; since any real 
number between 0 and 1 can be obtained as a limit of a sequence of rational 
numbers between 0 and 1, it follows ultimately that any number in the 
interval [0,1] is an accumulation point of the sequence 10ntX - [10ntX] for 
n = 0, 1, 2, 3, .... 

20. Let A, B, C, and D be distinct real numbers and {xn} be a null sequence. 
Then the sequence {un} defined by 

for n = 1,2,3, ... has {A, B, C, D} as its set of accumulation points. 

21. For every integer p ~ 2 there are p - 1 numbers of the form 11k + 11m 
for which the sum of the positive integers k and m equals p. For p = 2, 3, 
4, ... , consider these numbers enumerated. Then we obtain the sequence 

2,1,1, t, 1,~, i, i, i, i, .... 
If in 11k + 11m we keep m fixed and let k -+ 00, we see that 11m is an accumu­
lation point for m = 1, 2, 3, .... Thus, 1, t, t, ... are accumulation points 
of the sequence under consideration. Similarly, keeping k fixed and letting 
m -+ 00, we get that 1, t, t, ... are accumulation points of the sequence. Now 
o is an accumulation point of 1, t, t, ... and so the sequence under considera­
tion has the accumulation points 

0, 1, t, t, i, ... 
and no other accumulation points. 

22. Let [t] denote the integer part of t. The sequence 

n!e - [n!e] for n = 1,2,3, ... 

has 0 as its only point of accumulation (hence limn-+oo(n!e - [n!e]) = 0). 
Indeed, by Taylor's Theorem (see Proposition 4.11) and especially (4.13), 

1 1 1 e6 . 
e = 1 + - + - + ... + - + WIth 0 < () < 1 

1! 2! n! (n + 1)! 
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and so 

n! n! eO 
n!e = n! + - + - + ... + 1 + --. 

I! 2! n + 1 

For n ~ 2, we have eOj(n + 1) < ej(n + 1) < 1; hence, 

eO e 
n!e - [n!e] < -- < --. 

n+l n+l 

2. The Formulas of Wallis and Stirling 

7. Infinite Series 

(7.12) 

PROOF. Let k be a positive integer larger than or equal to 2. Using integration 
by parts, we get 

J
"/2 J"/2 
o (sink x)dx = 0 (sink- 1 x)(sinx)dx 

1

"/2 J"/2 
= [ - (sink- 1 x)(cos x)] 0 + (k - 1) 0 (sink- 2 x)(cos2 x) dx 

J
"/2 J"/2 

=(k-l) 0 (sink-2x)dx-(k-l) 0 (sink x) dx, 

implying that 

(sink x)dx = -- (sink- 2 x)dx. J
"/2 k - 1 J"/2 

o k 0 

If k = 2n is an even number, then (7.13) gives 

J"/2 . 1 . 3··· (2n - 1) n 
(sm2n x)dx = 2 (2) '-2' o ·4··· n 

If k = 2n + 1 is an odd number, we deduce from (7.13) that 

because 

J"/2 2·4···(2n) 
(sin2n+l x)dx = -----'---'-­

o 3·5··· (2n + 1) 

I"/2 (sin x) dx = 1. 

If 0 S x S nj2 and n is a positive integer, then 

(7.13) 
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sin2n+1 X ~ sin2n X ~ sin2n- 1 X. 

By Proposition S.11 and in view of the foregoing results we therefore see that 
for n ~ 2 

2·4··· (2n) 1·3··· (2n - 1) n 2·4··· (2n - 2) 
----- < '- < -----
3'S"'(2n + 1) - 2'4"'(2n) 2 - 3'S"'(2n - 1) 

holds, implying that 

22 .42 ••• (2n)2 1 n 22 • 42 ••• (2n)2 1 
12'32"'(2n-l)2'2n+ 1 ~"2~ 12'32"'(2n-l)2'2n' (7.14) 

Evidently, (7.14) is true for n ~ 1 and for each such n there exists a real 
number On satisfying 0 ~ On ~ 1 such that 

n 22·42···(2n)2 

"2 = 12 • 32 ••• (2n - 1)2 2n + On' 

Replacing the fraction 

by 
2n + On 2n 2n + On 

1 2n 

in (7.1S) and noting that 
2n 

-=---:- -+ 1 as n -+ 00, 
2n + On 

(7.1S) 

we see that (7.1S) implies (7.12). D 

REMARKS. formula (7.12) easily yields 

lim (1 . 3··· (2n - 1). fo) = (~)1/2. 
n-oo, 2'4"'(2n) n 

Another consequence of (7.12) is 

To see that (7.17) is valid, observe that 

~ = lim (1 ·3·3· S'" (2n - 1)(2n - 1)) 
n n-oo 2'2'4'4"'(2n - 2)(2n) 

by (7.12). But 

2n + 1 vn = 1·3·3· S' .. (2n - 1)(2n - 1) and 
2·2·4·4···(2n - 2)(2n) wn=vn'~ 

tend to the same limit 21n as n -+ 00 and 

(7.16) 
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Given the sequence Sl = 1 and Sn+1 = [1 - 1/(2n)2]. Sn for n = 1, 2, 3, ... , 
it takes little effort to show that {sn} is bounded and monotonic and thus 
convergent by Proposition 7.8. However, finding the limit of {sn} is not so 
easy and we need relation (7.17). 

Proposition 7.17 (Stirling's Formula). For any positive integer n we have 

(7.18) 

PROOF. We consider the sequence {xn } given by 

n! 
xn = r:. for n = 1, 2, 3, .... 

nne-nyn 
(7.19) 

We observe that the sequence {xn} is decreasing because 

Xn 1 ( 1)n+1/2 
-=- 1 +- > 1 
X n+1 e n 

(7.20) 

or 

(n + Dln( 1 +~) - 1 > 0 

holds. Indeed, we shall at once show the double inequality 

0< (n + ~)ln(l +~) - 1 < ~(~ __ 1_). (7.21) 
2 n 4n n+l 

Let A1 denote the area of the region between the x-axis and the curve y = l/x 
in the interval n ::;; x ::;; n + 1; we know that 

A -I n+l 
1 - n 

n 

Let A2 denote the area of the region between the x-axis and the line segment 
connecting the points (n, l/n) and (n + 1, l/(n + 1)) in the interval n ::;; x ::;; 
n + 1; clearly 

A2 =~(~ __ 1 ) 
2 n n + 1 

and A1 < A2 because the curve y = l/x is concave up in the interval n ::;; x ::;; 
n + 1 and to get the region with area A2 we replaced the curve y = l/x over 
the indicated interval by its chord. Finally, let A3 denote the area of the 
region between the x-axis and the tangent line to the curve y = l/x at the 
point x = n + t in the interval n ::;; x ::;; n + 1; we have 
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and A3 < Ai in view of Proposition 4.16. Thus, A3 < Ai < A2 and so 

_1_ < In(1 +!) < !(! + _1_) 
n+t n 2n n+1 

which is apparently equivalent to (7.21). But (7.21) implies (7.20). 
Since Xn+i < Xn and Xn > 0 for all n, we see that 

lim Xn = (J (7.22) 
n~oo 

exists and (J is nonnegative. In fact, (7.21) shows that 

1 <~<exp(!(~--. 1 )), 
X i+ i 4 I 1+ 1 

(7.23) 

where we use the notation exp(t) to signify et . For i = n, n + 1, ... , n + k - 1 
the inequality (7.23) generates a system of inequalities which, upon multi­
plication, produces the inequality 

1 < ~ < exp (!(! __ 1 )) < exp(~) 
Xn+k 4 n n + k 4n 

for any two positive integers nand k. Keeping n fixed and letting k become 
arbitrarily large, we see that (J #- 0 and that 

Xn (1) 1 ~ -;; ~ exp 4n . 

We may therefore put 

Xn = (Jexp(:~) for n = 1,2,3, ... , (7.24) 

where en are suitable constants satisfying 0 ~ en ~ 1. By (7.19) and (7.16) 

X2n (2n)! n2ne- 2n n 
x~ (2n)2n e-2nj2n (n!)2 

1·3··· (2n - 1) j2n 1 
= '-- --+ ~- as n --+ 00 

2'4"'(2n) 2 fo 
and thus by (7.22) and because (J > 0 we have 

(J = lim Xn = fo. 
n~OCJ 

From (7.25) and (7.24) we finally get 

n! = nne-n~ exp(:~) for n = 1,2,3, ... , 

where en denote constants satisfying 0 ~ en ~ 1. 

(7.25) 

o 
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COMMENTS. From Proposition 1.5 in Chapter 1 we know that 

( l)i (1)i+l 1 + i < e < 1 + i ,where i = 1, 2, 3, .... (7.26) 

For i = 1,2, ... , n - 1, (7.26) generates a system of inequalities which, upon 
multiplication, produce the inequality 

eGJ ~ n! ~ enGr (7.27) 

While (7.27) represents only a coarse estimate of the order of magnitude of 
the number n!, it nevertheless suggests trying the number (n/et· In between 
e(n/et and en(n/et; this is the clue for trying out the sequence (7.19). 

We use Stirling's formula (7.18) to get some idea about the number WOO!. 
Since 

and 
10g1o (e)9*/4000 

is a number between 0 and 0.0001085 ... , it follows that 

IOg10 (WOO!) = 2567.604 ... 

with either 6 or 7 being the digit in the fourth decimal place. This shows that 
the number WOO! has 2568 digits and that the number 1000! begins with the 
digits 402 .... 

Another interesting question is: How many zeros are at the end of the 
number WOO!? Evidently, the number of terminal zeros of a number depends 
on how often the factor 10 = 2·5 occurs in its factorization. We must there­
fore find the exponent of the factors 2 and 5 in the prime factorization of 
WOO!. A moment's reflection shows that the prime 2 occurs to a much higher 
power in the prime factorization of WOO! than the prime- 5 (to begin with, 
there are 500 even numbers between 1 and 1001). We shall see at once that 
there are exactly 249 "fives" occurring in the prime factorization of WOO!. 
Indeed, the enumeration of multiples of 5 gives us 200 terms, namely, 

5, 10, 15, ... , 1000. 

The enumeration of multiples of 25 (= 52) gives us 40 terms, namely, 

25, 50, 75, ... , 1000. 

The enumeration of multiples of 125 (= 53) gives us 8 terms, namely, 

125, 250, 375, ... , 1000. 

Finally, the enumeration of multiples of 625 (= 54) gives us a single term, 
namely, 

625. 
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But 200 + 40 + 8 + 1 = 249. Along the same lines of reasoning we can see 
that there are precisely 994 "twos" in 1000L Thus, 1000! ends in 249 zeros. 

In finding the number of zeros at the end of 1000! we have touched on an 
interesting subject pertaining to the theory of numbers. If p is a positive 
prime number, let Ep(m) denote the highest power of the prime p that is a 
divisor of a given positive integer m. It can be shown that, if both the integer 
n and the prime number p are positive, the exponent of the highest power of 
p that divides n! is given by the formula 

where [t] denotes (here) the greatest integer less than or equal to t. Thus, 

E (10001) = [1000J [1000J [1000J [1000J 5 5 + 52 + 53 + 54 

= 200 + 40 + 8 + 1 = 249, 

E ( 000') = [1000J [1000J [1000J [1000J [1000J 2 1. 2 + 22 + 23 + 24 + 25 

= 500 + 250 + 125 + 62 + 31 + 15 + 7 + 3 + 1 = 994. 

To see that the binomial coefficient e500000) = 1000!f(500!f is not divisible 
by 7 we only need to note that E7(1000!) = 164 and E7(500!) = 82. Therefore, 
when 7164 is canceled out of the numerator and denominator of e500000), no 
multiple of 7 remains in the resulting number. 

We record for the convenience of the reader the number 

25! = 15,511,210,043,330,985,984,000,000. 

Stirling's Formula gives for 25! the approximate value 1.54596 x 1025 ; the 
true value and the approximate value therefore differ by only about 0.3%. As 
n increases, the error between the true value and the approximate value for 
n! decreases; it can be shown that this error is never more than lOin percent. 

Definition. Let (a l , a2, ... , an) be a permutation of the numbers 1, 2, ... , n 
such that no element is back in its original place, that is, a l "# 1, a2 "# 2, ... , 
an "# n. Such a permutation is called a derangement. Let Dn be the number of 
derangements of the set {I, 2, ... , n}. 

REMARKS. If we start with the 4! = 24 permutations of the numbers 1, 2, 3, 4 
and cross off all those with one in the first place, two in the second place, 
three in the third place, or four in the fourth place we have left the following 
nine arrangements: 
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Therefore, D4 = 9. 

2143 2341 2413 

3142 3412 3421 

4123 4312 4321. 

7. Infinite Series 

Proposition 7.1S. Let Dn be the number of derangements of the set {I, 2, ... , n}. 
Then 

( 1 1 1 1) D = n' 1 - - + - - - + ... + (_I)n_ . 
n • I! 2! 3! n! 

PROOF. Let Do = 1 and D1 = O. Let us distinguish two kinds of derangements. 
We know that a1 sits in the first position; suppose that 1 sits in the al th 
position, that is, a1 and 1 just changed places. The rest of the (n - 2) numbers 
must form a smaller derangement with each element moved from its initial 
position. This can happen in Dn - 2 ways. Since a 1 itself can be chosen in 
(n - 1) ways the number of derangements of this kind is (n - I)Dn- 2 • We can 
now count the number of derangements in which 1 is not in the a1 th position. 
First we can choose a1 in (n - 1) ways. Now add it to the front of any 
derangement of {2, 3, ... , n} in which we have replaced the a1 by 1. Since a1 

was not in place a l' 1 will not be in place a l' This process will produce all the 
derangements of the second kind. Clearly, there are (n - I)Dn - 1 of these. 

Adding both together, we find 

Dn = (n - l)Dn-1 + (n - I)Dn- 2. (7.28) 

Let us write (7.28) as 

n - 1 Dn- 1 n - 1 Dn- 2 ----.:.--+ . 
n (n - I)! n(n - 1) (n - 2)! 

We now introduce the notation 

Eo = 1, 

The E's satisfy the recurrence relationship 

En = (1 -~)En-1 + ~En-2 
or 

(7.29) 

Reiterating (7.29) for (n - 1) instead of (n), we obtain the descent 
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(-1)" 

n! 

We write this now in the form 

( _1)n 
En = --,- + En- 1 • n. 

Reiterating (7.30) for (n - 1) instead of (n), we obtain another descent 

(-1)" (-lrl 
En = -,- + ( _ 1)' + En- 2 n. n . 

. (1 1 1 ) =(-1)" -- + - + ... 
n! (n - I)! (n - 2)! 

and so 

413 

(7.30) 

D =n!(I-~+~-~+"'+(-I)n~) (7.31) 
n I! 2! 3! n! ' 

finishing the proof. D 

DISCUSSION. For any n, the probability that any given permutation is a 
derangement is given by 

Dn 1 1 1 1 
n! = 1 -IT + 2! - 3! + ... + (-1)" n!' 

By (4.13) we know that 

1 1 1 1 
1 -IT + 2! - 3! + ... + (-1)" n! 

and e-1 = lie can differ from each other by at most 3/(n + I)!. 
If we compare two packs of cards (one of them having been well shuffled), 

card by card, what is the probability that we shall get right through the 
packs without finding a single coincidence? The answer is lie (with an error 
of less than 10-69, for packs of 52 cards, because 53! is approximately 
4.2681617' 1069 by Stirling's formula). Many people are prepared to bet that 
no coincidence will occur, so an unscrupulous gambler might profit nicely by 
knowing that e > 2. 

If 10 men check their hats in a cloakroom and the attendant gives each 
man back a hat at random then the probability that no one gets back his 
correct hat is about lie. Surprisingly, if 100 men instead of just 10 checked 
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their hats the probability that a random reassignment is totally wrong is still 
about lie. 

It should be noted that the expression for Dn in (7.31) can be rewritten in 
the simpler form 

Dn = nDn- 1 + ( -It, where Dl = O. 

Proposition 7.19. Let 
n 1 

T,. = I k2' 
k=l 

Then T,. --+ n2/6 as n --+ 00. 

PROOF. For any nonnegative integer n, let 

f~ f~ J2n = 0 (cos 2nt)dt and I2n = 0 t2(cos 2nt)dt. 

Applying integration by parts twice, we get 

f
1t12 11t12 f1t12 
o (cos2n t) dt = t(cos2n t) 0 + 2n 0 t(COS2n - 1 t)(sin t) dt 

or 

= n[t2(cos 2n- 1 t)(sin t)] 1:/2 

_nL1t12 t2[ -(2n - 1)(cos2n-2t)(sin2t) + (cos 2nt)]dt 

= -2n2I2n + n(2n - 1)I2n - 2 

J2n = -2n2I2n + n(2n - 1)I2n - 2. 

On the other hand, 

f: 12 (cos2n t) dt = L1t12 (COS2n- 1 t)d(sin t) 

(7.32) 

= (COS2n- 1 t)(sin t) [2 + (2n - 1) f: 12 
(COS2n- 2 t)(sin2 t) dt, 

that is, J2n = (2n - 1)J2n-2 - (2n - 1)J2n or 

2n - 1 
J2n = ~J2n-2' 

Noting that Jo = n12, we see that 

(2n -1)(2n - 3)"'3'1 n 
J2n = 2n(2n - 2)' .. 4 . 2 . 2' 

We may thus conclude that 
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2 (2n - 1)!! n 
-2n 12n + n(2n - 1)12n- 2 = (2 )" -, n.. 2 

where we use the notation 

(2n)!! = 2'4, oo (2n - 2)(2n), O!! = 1, 

(2n + 1)!! = 1'3°O'(2n -1)(2n + 1), (-1)!! = 1. 
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(If n is a positive integer, then n!! is the product of all positive integers less 
than or equal to n and of the same parity as n.) 
Therefore, 

(2n)!! (2n - 2)!! n 1 
(2n - 1)!!12n - (2n _ 3)!!12n - 2 = -4' n2 

and so 

(2n)!! _ ~1 = n ( (2k)!! 1 _ (2k - 2)!! 1 ) 
(2n _1)!!12n (-1)!! 0 k~l (2k - 1)!! 2k (2k _ 3)!! 2k-2 

n n 1 
= --I-4 k=l k 2 ' 

This shows that 

But 

. (2n)!! 
hm (2 _ 1)" 12n = O. 
n-+oo n .. 

Indeed, since (2/n)t ~ sin t for 0 ~ t ~ n/2, we have 

n2 ( (,,/2 ("/2 ) 
=4 Jo (cos2nt)dt- Jo (COS2n+2t)dt 

= n3 (2n - 1)!! _ (2n + 1)!!) = n 3 (2n - 1)!! 
8 (2n)!! (2n + 2)!! 8 (2n + 2)!! 

and so 

(2n)!! n3 1 0< 1 <_._-
(2n - 1)!! 2n - 8 2n + 2 . 

The proof is complete. D 

REMARK. In Example 3 of Section 4 in Chapter 1 we derived the content of 
Proposition 7.19 in a different way. 
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3. Numerical Series 

Definition. Let {Xn}:'=l be a sequence ofreal numbers. The infinite series (or 
simply the series) generated by {Xn}:'=l and denoted by 

00 

Xl + X2 + X3 + ... or L Xn 
n=l 

is the sequence {skH"=l defined by 

Sl = Xl' 
S2 = Sl + X2 (= Xl + X2), 

If the sequence {skH"=l converges, that is, if there exists a (finite) real number 
S such that Sk -+ S as k -+ 00, then the series L:'=l Xn is said to be convergent 
and S is called the sum of the series and we write 

00 

L Xn = S. 
n=l 

The elements Xn are called the terms and the elements Sk are called the partial 
sums of the infinite series L:'=l X n• An infinite series is said to be divergent if 
its sequence of partial sums fails to be convergent. 

REMARKS. As we have seen in the foregoing definition, the series L:'=l Xn 
converges if and only if the sequence of partial sums of the series converges 
to a (finite) real number. Conversely, we observe that an arbitrary sequence 
{Xn}:'=l ofreal numbers converges if and only if the series 

Xl + (X2 - xd + (X3 - X2) + ... + (xn - xn-d + ... 
converges because the sequence of partial sums of this series coincides with 
the sequence Xl' X2, X3' ... . This means that convergence criteria for infinite 
series can also be used in the investigation of convergence of sequences. 

Proposition 7.20. The series L:'=l xn is convergent if and only if the remainder 
after m terms, that is, 

00 

Rm = am+l + am+2 + ... = L X n, 
n=m+l 

is convergent. Moreover, if L:'=l xn is convergent, then limm-+oo Rm = O. 

PROOF. Let Rm,k denote the partial remainder 

Then 
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(7.33) 

where Sm+k and Sm denote the partial sums 

Sm+k = Xl + X2 + ... + Xm+k and Sm = Xl + X2 + ... + Sm 

of the series L~=l X n . Assume now that the series L~=l Xn converges and has 
the sum S. Then, for m fixed and letting k --+ 00, Sm+k --+ S. By definition, for 
fixed m and letting k --+ 00, Rm,k --+ Rm. Hence, for fixed m and letting k --+ 00, 

(7.34) 

by (7.33). Therefore, the series L~=m+ I xn is seen to be convergent. Moreover, 
(7.34) shows that Rm --+ 0 as m --+ 00. 

Conversely, if L~=m+l Xn is assumed to be convergent and having sum T, 
then limk .... oo Rm,k = T. By (7.33), Sm+k = Rm,k + Sm; keeping m fixed and letting 
k --+ 00, we obtain 

00 

L Xn = T + Sm' 
n=l 

showing that the series L~l Xn is convergent. o 
REMARK. Proposition 7.20 shows that the initial terms of an infinite series 
have no effect whatsoever on the convergence or divergence of a series; it is 
the "tail end" of the series that matters as far as convergence or divergence is 
concerned. 

Proposition 7.21. Let L~=l Xn be a convergent series. Then Xn --+ 0 as n --+ 00. 

PROOF. Let {Sk}r=l be the sequence of partial sums ofL~=1 Xn • Then 

Xn = Sn - Sn-l --+ 0 as n --+ 00 

because Sn (and with it Sn-l) tend to S as n --+ 00, where S is the sum of the 
convergent series L~=l X n • 0 

REMARK. Proposition 7.21 provides us with a very handy necessary condition 
for the convergence of an infinite series: If {Xn}~=l is not a null sequence, then 
the series L~=l Xn diverges. It is important to note, however, that the condi­
tion is not sufficient: If {Xn}~=l is a null sequence, it can still happen that 
L~=l Xn diverges. For example, the series 

JI In( 1 +~) = n~l [In(n + 1) -Inn] (7.35) 

satisfies the property that Xn = In(l + lin) --+ 0 as n --+ 00, but the series in 
(7.35) is divergent because 

k 

Sk = L [In(n + 1) -Inn] = In(k + 1) --+ 00 as k --+ 00. 
n=l 
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The series L;;'=1 (lin) exhibits the same kind of behavior; while lin ~ 0 as 
n ~ 00, the harmonic series L;;'=1 (lin) is known to diverge by Proposition 1.7. 
Another example is the divergent series L;;'=1 (1/Jn); indeed, 

1 I I I 
s = 1 + - + - + ... + - > k - = fi ~ 00 as k ~ 00 

k j2J3 fi fi 
and 11Jn ~ 0 as n ~ 00. 

Proposition 7.22. Let L;;'= 1 an and L;;'= 1 bn be two convergent series with sums 
A and B, respectively. If IX and {l are any (finite) real numbers, then the series 

00 

L (IX an + (lbn) 
n=1 

converges and has sum IXA + {lB. 

PROOF. The claim follows from Proposition 7.5. o 

Proposition 7.23. The series L;;'=1 xn converges if and only if for any e > 0 
there exists an integer no such that 

I ktn Xk I < e if m 2: n 2: no· 

PROOF. The claim is a direct consequence of Proposition 7.12. o 

REMARK. Taking m = n in Proposition 7.23, we get IXnl < e for n 2: no and 
Proposition 7.21 follows. 

Proposition 7.24. If L;;'=1 xn is a series of nonnegative terms and 

Sk = X 1 + ... + Xb 

then L;;'=1 xn is convergent if and only if the sequence {sk}f=1 is bounded. 

PROOF. The claim follows from Proposition 7.8. o 

REMARK. The harmonic series L;;'=1 (lin) is a series of nonnegative terms. 
Since 

1 1 1 1 1 --+--+ ... +-> n-=-
n + 1 n + 2 2n 2n 2 ' 

we see that 

1 1 1 
2k - 1 + 1 + ... + 2k > :2 

and so the sums 
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are larger than! and therefore, letting Sk = L~=l lin, we see that 

S2k > k'! 

419 

and so the sequence of partial sums {Sk}k'=l is not bounded and L~=l (lin) 
must therefore be divergent by Proposition 7.24. 

Proposition 7.25 (Cauchy's Condensation Theorem). Let Xl ~ X2 ~ ... ~ O. 
Then the series L~=l Xn converges if and only if the following series converges 

00 

L 2k. X2k = al + 2X2 + 4X4 + 8xs + .... 
k=O 

PROOF. By Proposition 7.24 it will be sufficient to consider the boundedness 
of the sequence of partial sums. Let 

Sn = Xl + ... + Xn and tk = Xl + 2X2 + ... + 2k. X2k. 

For n < 2\ 
sn ~ Xl + (X2 + X3) + ... + (X2k + ... + X 2k+l_l) 

~ Xl + 2X2 + ... + 2k. X2k 

sn ~ Xl + X2 + (X3 + X4 ) + ... + (X2k-1+l + ... + X2k) 

~ tXl + X 2 + 2X4 + ... + 2k- l . X2k 

= !tk • 

Thus, the sequences {Sn}~=l and {tdk'=l are either both bounded or both 
unbounded. 0 

Proposition 7.26 (Comparison Theorem). We have the following comparison 
tests: 

(i) If lanl ~ Cn for n ~ no, where no is some fixed integer, and if L~=l Cn 
converges, then L~= 1 an converges. 

(ii) If an ~ dn ~o for n ~ no, where no is some fixed integer, and if L~=l dn 
diverges, then L~= 1 an diverges. 

PROOF. By Proposition 7.23, given any e > 0, there exists some no ~ no such 
that m ~ n ~ no implies Lk=n Ck < e. Hence, 

Ik~n akl ~ Jn lakl ~ k~n Ck < e 

and (i) follows. Part (ii) follows from Proposition 7.24. o 
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Proposition 7.27 (Limit Comparison Test). Let {an} ~= 1 and {bn} ~= 1 be se­
quences of positive real numbers. 

(i) If limn .... oo an/bn < 00 and L::'=1 bn converges, then L::'=1 an converges. 
(ii) If limn .... oo an/bn > 0 and L::'=1 bn diverges, then L::'=1 bn diverges. 

PROOF. (i) Choose f3 such that 

-I·-an f3 
1m -b < < 00. 

n-oo n 

Then there exists no such that an/bn < f3 for all n ~ no; hence, 
00 00 

L an < f3 L bn < 00. 
n=no n::::no 

(ii) Choose IX satisfying 

Then, for some no, we have an/bn > IX for all n ~ no; hence, 

n=no n=no 

and the proof is complete. 

Examples 

1. If Ixl < 1, then the geometric series 

00 1 L x n = __ ; 
n=O 1 - x 

if Ixl ~ 1, the series diverges. Indeed, if x of 0, then 

1 - Xk+1 
Sk = 1 + x + x2 + .. , + Xk = ---

1 - x 

and the claim follows if we let k ~ 00. 

2. The series 

00 1 Lp 
n=l n 

o 

converges if p > 1 and diverges if p ~ 1. Indeed, if p ::s; 0, divergence follows 
from Proposition 7.21. If p > 0, Proposition 7.25 is applicable, and we are led 
to the series 
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But 21 - p < 1 if and only if 1 - p < 0, and the claim follows by comparison 
with the geometric series taking x = 21 - p • The case when p = 1 we have 
already considered in the Remark following Proposition 7.24 as well as in 
Proposition 1.7. 

3. The series 

f_1_ 
n=2 n(ln n) 

is divergent by Proposition 7.25 because 

00 2k 1 00 1 

kf:l 2k(ln 2k) = In 2 kf:l k 
is divergent. 

4. The series 

00 i 
J3 n(In n)(In {In n}) 

is divergent by Proposition 7.25 and the foregoing Example 3: 

2k 1 1 

2k(ln2k)(ln{ln2k}) = k(ln2)(In[k{ln2}J) > k(lnk)" 

5. The series 
00 1 

nf:2 n(ln n)2 

is convergent by Proposition 7.25 and the foregoing Example 2: 

2k 1 
2k(ln 2k)2 P(In 2)2 

and I::O=l (1/n2) converges. 

6. The series 
00 1 

nf:3 n(ln n) (In {In 2k} )2 

converges by Proposition 7.25 and the foregoing Example 5: 

2k 1 1 
-:-;-.,------:--,-,---:,------:-:--,.-;-:--c-;;- < - -,--,----c--;;-
2k(In 2k)(In {In 2k} )2 In 2 k(ln k)2 . 

7. The series 
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is convergent. Indeed, 

1 1 
(In n)ln n (n)ln(ln n) 

and In(In n) > 2 for all sufficiently large n. Hence, 

1 1 
(n)ln(ln n) < n2 

for all sufficiently large n. But 2::'=1 (1/n 2 ) is convergent and the claim follows 
by part (i) of Proposition 7.26. 

8. The series 

00 1 
nf:3 (In n)ln(ln n) 

is divergent. Indeed, 

1 1 
(In n)ln(ln n) = e[ln(ln n)J2 

and [In(ln n)]2 < In n for all sufficiently large n [note that (In T)2 < T for 
sufficiently large T as (In T)2 IT -+ 0 when T -+ 00]. Hence, for all sufficiently 
large n we have 

1 1 1 1 
(In n)ln(ln n) 

--:c--o:--:-= > -- = -
e[ln(ln n)]2 e(ln n) n' 

But 2::'=1 (lin) diverges and the claim follows by part (ii) of Proposition 7.26. 

9. The series 

00 1 

nf:3 (In {In n} )In n 

is convergent. Indeed, 

1 1 
(In {In n})ln n nln(ln{lnn}) 

and In(ln {In n}) > 2 for all sufficiently large n. Hence, for all sufficiently 
large n 

1 1 1 
.,..,.--:-:--::-:~ = < -(In {In n})ln n nln(ln{lnn}) n2' 

But 2::'=1 (lln2 ) is convergent and the claim follows from part (i) of Proposi­
tion 7.26. 
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10. The series 

00 ( lnn)n L 1--
n=1 n 

is divergent. Indeed, Proposition 7.27 is applicable. Let bn = lin and an = 
[1 - (l/n)(ln n)]n in part (ii) of Proposition 7.27. In Example 13 of the worked 
examples following Proposition 7.15 we showed that 

an ( lnn)n 
Xn = - = n 1 - - -+ 1 as n -+ 00. 

bn n 
(7.36) 

REMARK. Another method for showing (7.36) is as follows: We have 

In Xn = In n + n In ( 1 _ 1: n ). 

By Taylor's Theorem (see Section 2 of Chapter 4) 

In (1 -1: n) = _1: n _ ~ C: n )2 + ~n C: ny, 

where ~n -+ 0 as n -+ 00. Hence, 

lnx = _~ (lnn)2 + ~ (lnn)2 -+0 
n 2 n n n as n -+ 00 

and (7.36) follows by the continuity of the logarithmic function. 

11. The series 

f (~_lnn + 1) 
n=1 n n 

(7.37) 

is convergent. Indeed, since 1/(n + 1) < In{(n + l)/n} < lin [see (1.27)], we 
get 

1 n+1 1 1 o < - - In-- < - - -- for n = 1,2, 3, .... 
n 'n n n+1 

But 

00 (1 1) L --- =1 
n=1 n n + 1 

because 

( 1 - D + G -D + G -~) + ... + G -k ~ 1) = 1 - k ~ 1 -+ 1 

as k -+ 00. TherefCire, by part (i) of Proposition 7.26, the series (7.37) con­
verges; by Proposition 1.7 its sum is Euler's constant C = 0.5772156649 .... 
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12. The series 

00 x L sin-
n=l n 

diverges if x i= O. Indeed, by part (ii) of Proposition 7.27, letting bn = l/n and 
an = sin(x/n), we see that an/bn -+ x as n -+ 00. However, the series 

00 1 x L -sin-
n=l n n 

converges for any (finite) value of x. Indeed, part (i) of Proposition 7.26 is 
applicable. Since Isin tl ::::; It I for any real number t, we see that 

1
1 . x I Ixl -sm- ::::;2 forn=I,2,3, ... 
n n n 

and any real number x. But L:'=l (l/n2) is convergent; actually, we know that 
its sum is n2/6 (see Proposition 7.19). 

Proposition 7.28. Let L:'=l Cn and L:'=l dn denote, respectively, a convergent 
and a divergent series of positive terms. Then 

(i) if the sequence {Yn}:'=l is positive and bounded, L:'=l YnCn converges; 
(ii) if the sequence {<>n}:'= 1 is positive and bounded below by the positive num­

ber <>, L:'=l <>ndn is divergent. 

PROOF. (i) If the partial sums ofL:'=l Cn remain constantly smaller than K and 
if the factors satisfy Yn < Y for n = 1, 2, 3, ... , then the partial sums of 
L:'=l YnCn obviously remain always smaller than yK and the claim follows by 
Proposition 7.24. 

(ii) If G > 0 is arbitrary, then by assumption the partial sums of L:'= 1 dn are 
larger than G/<> from a suitable index no onward. From the same index no 
onward, the partial sums of L:'= 1 <>ndn are then larger than G and so L:'=l <>ndn 
is seen to diverge. 0 

Proposition 7.29. Let L:'=l Cn and L::'=l dn denote, respectively, a convergent 
and a divergent series of positive terms. If the terms of a given series L:'=l an 
of positive terms satisfy, for every n ~ no with no fixed, 

(i) the condition 

then the series L::'=l an is also convergent. If however, for every n ~ no with no 
fixed, we have 
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(ii) constantly 

then 2:::,= 1 an must also diverge. 

PROOF. The sequence of ratios Yn = an/cn is, from a certain value of the index 
onward, monotone decreasing, and consequently, since all its terms are posi­
tive, it is necessarily bounded. Part (i) of Proposition 7.28 now establishes the 
claim. 

(ii) We have, similarly, an+t!dn+1 ;::: an/dn, so that the ratios {)n = an/dn 
increase monotonically from a certain value ofthe index onward. But as they 
are constantly positive, they then have a positive lower bound. Part (ii) of 
Proposition 7.28 now proves the divergence. 0 

Definition. 2:::'=1 cn is called absolutely convergent if2:::'=llcnl converges. 

REMARK. Absolute convergence implies convergence by Proposition 7.26 (i). 

Proposition 7.30 (Root Test). Let 2:::'=1 cn be a series of real terms and 

r=lim~. 
n .... oo 

(i) If r < 1, the series converges absolutely. 
(ii) If r > 1, the series diverges. 

PROOF. Suppose that r < 1. Take a fixed p such that r < P < 1. Then there 
exists an integer n such that ~ < P for all n ;::: n. Thus, 

00 00 pn 
n~nlcnl < n~ln = 1 _ P < 00 

and (i) follows. 
If r > 1, then ~ > 1, hence Icnl > 1, for infinitely many n, and so it is 

false that Cn -+ 0 as n -+ 00. Therefore, (ii) follows from Proposition 7.21 and 
the proof is finished. 0 

Proposition 7.31 (Cauchy-Hadamard Theorem). Let 2:::'=0 anxn be a series of 
real terms and let 

Y = lim i[aJ, 
n .... oo 

1 
R=-. 

Y 

(If Y = 0, R = + 00; if Y = + 00, R = 0.) Then 2:::'=0 cnxn converges absolutely 
whenever Ixl < R and diverges whenever Ixl > R. (Series of the form 2:::'=0 anxn 
are referred to as power series and will be studied separately later on in this 
chapter.) 
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PROOF. We let Cn = anxn and apply Proposition 7.30; we get 

- nli:l" - nil:! Ixl 
lim -\i Icnl = Ixllim -\i lanl = Ixl' y =-. 
n-oo n-+oo R 

o 

Lemma 1. Let b denote a positive real number. Then limn .... oo .:jb = 1. 

PROOF. If b > 1, then the claim follows from the Lemma preceding Proposi­
tion 1.10; if 0 < b < 1, limn .... oo.:jb = limn .... oo 11.:jb = 111 = 1. 0 

REMARK. A much simpler way of proving Lemma 1 is to take the logarithm 
and to consider the sequence {(lln)(lnb)}. 

Lemma 2, Let {an}:'=l be a sequence of positive real numbers. Then 

(7.38) 

In particular, if limn .... oo (an+1 /an) = L, where 0 ~ L ~ 00, then limn .... oo.::;a:. = L. 

PROOF. It is apparent that the last assertion follows from the first. The second 
inequality in (7.38) is obvious, while the first and the third have similar 
proofs. We only verify the first inequality in (7.38). Let 

1. an+l 
Im--=a. 

;:;;;- an 

It is clear that a ~ O. If a = 0, there is nothing to prove, thus we suppose that 
a > O. Let 0 < 0( < a. Hence, there is an integer N such that 

(7.39) 

for all k ~ N. For n > N, multiply the inequalities (7.39) for k = N, N + 1, 
... , n - 2, n - 1 to obtain 

Since (7.40) holds for all n > N, Lemma 1 shows that 

lim .::;a:. ~ lim O(aNa-N)l/n = 0(. 

n .... oo "-00 

But a was an arbitrary (positive) number smaller than a, and thus 

(7.40) 

o 

Proposition 7.32 (Ratio Test). Let L:'=l Cn be a series of real terms with Cn =F 0 
for all n. 
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(i) If limn_ oo Icn+dcnl < 1, then the series converges absolutely. 
(ii) If lim n_ oo Icn+dcnl > 1, then the series diverges. 

PROOF. Put an = Icnl and apply Lemma 2 and Proposition 7.30. 

427 

D 

COMMENTS. Strict inequalities are required in Propositions 7.30 and 7.32. If 
Cn = lin, then L~I Cn diverges while limyrc: = lim(cn+dcn) = 1. On the other 

hand, if Cn = I/n 2 , then L::";I Cn converges while lim~ = lim(cn+dcn) = 1. 
The Ratio Test (see Proposition 7.32) is often easier to apply than the Root 

Test (see Proposition 7.30), but the Root Test has wider scope; our proof of 
the Ratio Test shows that any series that can be tested successfully by the 
Ratio Test can also be tested successfully by the Root Test. The following two 
examples show that the Root Test is strictly stronger than the Ratio Test. 
The Root Test detects that the series 

11111111 
"3 + 22 + 33 + 24 + 35 + 26 + 37 + 28 + ... (7.41 ) 

is convergent while the Ratio Test does not; the Root Test detects that the 
series 

1 1 1 1 _ + 22 + _ + 24 + _ + 26 + _ + 28 + ... 
2 23 25 27 

(7.42) 

is divergent while the Ratio Test does not. Moreover, the series (7.41) shows 
that lim can not be replaced by lim in (ii) of Proposition 7.32 and the series 
(7.42) shows that lim can not be replaced by lim in either (i) of Proposition 
7.30 or (i) in Proposition 7.32. 

Proposition 7.33 (Alternating Series Test of Leibniz). If al ~ a2 ~ a3 ~ ... ~ 

o and an --+ 0 as n --+ 00, then the alternating series 

converges. A{oreover, if 
n 00 

Sn = L (-I)k+I ak and S = L (-IrIan, 
k;1 k;1 

then 

IS - snl ::;; an+1 for n = 1,2,3, .... 

PROOF. For n = 1, 2, 3, ... we have 

S2n+2 - s2n = a2n+1 - a2n+2 ~ 0, 

S2n+2 - s2n+l = -a2n+2 ::;; 0, 

S2n+l - s2n-l = -a2n + a2n+l ::;; 0, 
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and therefore 

In addition, 

n-+oo "-+00 

The subsequences {S2n}:'=1 and {S2n-1}:'=1 are bounded by 0 and a1 and 
generate the nested sequence of closed intervals 

{[S2n, S2n-1]}:'=1 

and the lengths ofthese intervals, that is, s2n-1 - S2,,' tends to zero as n --+ 00. 

Evidently, S is the unique point common to all these intervals and 

S2n < S < S2n-1 for n = 1,2,3 .... 

Therefore, for n = 1, 2, 3, ... , 

IS - s2nl ::;; IS2n+1 - s2nl = a2n+1 and IS - s2n-II ::;; IS2n - s2n-11 = a2n· 

This completes the proof. o 

Proposition 7.34 (Kummer's Test). Let {an}:'=1 and {bn}:'=l be sequences of 
positive numbers and put 

Then 

an+1 Kn = bn - bn+1--· 
an 

(i) limn-+oo Kn > 0 implies the convergence of L:'=l an, and 
(ii) Kn ::;; 0 for all n ~ N and the divergence of L:'=1 (llbn) implies the diver­

gence of L:'=1 an' 

PROOF. (i) Choose p such that 0 < p < lim Kn. Then there exists an integer no 
such that Kn > p for all n ~ no. This implies that 

1 
0< an < p(a"b" - an+1bn+1) (7.43) 

for all n ~ no. Hence, the sequence {anbn}:'="o is a strictly increasing sequence 
of positive numbers, and so it converges to a nonnegative limit y. Thus, 

00 1 k 1 
L -p (anbn - an+1 bn+1) = lim L -p (anbn - an+1 bn+1) 

"=no k-+oo n=no 

1 
= p(anobno - P) < 00. 

By (7.43) and Proposition 7.26 (i) we see that L:'=1 an converges. 
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(ii) For n ~ N we have anbn - an+1bn+1 :s; 0, and thus {anbn}~=N is a non­
decreasing sequence. Therefore, 

aNbN 
an ~ -b- for n ~ N 

n 

and so Proposition 7.26 (ii) implies that I~=l an diverges. D 

REMARK. Letting bn = 1 for n = 1, 2, 3, ... , we have Kn = 1 - an+dan and 
limKn = 1 -lim(an+1/an). Thus, in this case, Proposition 7.34 reduces to 
Proposition 7.32. 

Proposition 7.35 (Raabe's Test). If an > 0 for n = 1, 2, 3, ... and 

Rn = n(l _ a:: 1 ). 

then 

(i) limn~oo Rn > 1 implies the convergence of I~=l an, and 
(ii) Rn:S; 1 for all n ~ N implies the divergence of I~= 1 an· 

PROOF. In Proposition 7.34, take bn = 1 - n for n > 1 and b1 = 1. Then 
I~=l (llbn) diverges and 

an+ 1 Rn-1 =(n-1)-n--=Kn forn> 1 
an 

and the proof is complete. D 

REMARKS. In Proposition 7.35, the assumption lim Rn > 1 is equivalent to the 
existence of some f3 > 1 such that Rn > f3 for all large n; that is, an+dan < 
1 - f3ln. Similarly, Rn :s; 1 is equivalent to an+dan ~ 1 - lin. This shows that 
an+1lan < a < 1 for all large n (hence I~=l an converges by Proposition 7.32), 
then I~=l an converges by Proposition 7.35; and if an+dan ~ 1 for all large n 
(hence I~l an diverges by Proposition 7.32), then I~l an diverges by Propo­
sition 7.35. Therefore, Raabe's Test tests successfully any series that the Ratio 
Test does. But Raabe's Test is stronger than the Ratio Test. Indeed, consider 
the binomial series L~=o (~)xn at x = -1, where a is a fixed real number and 

( a) a(a-l)···(a-n+1)( 1) s-an = = , - n lor n > O. 
n n. 

Then 

an+1 n - a 
-- = -- -+ 1 as n -+ 00 

an n + 1 
(7.44) 

and so the Ratio Test fails to decide the convergence or divergence of I~l an. 
But it follows from (7.44) that all terms an have the same sign if n > max {a, O}. 
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Therefore, multiplying every term by - 1 if necessary and noting that this 
affects neither convergence nor the ratios, we may assume that an > 0 for all 
large n. We have 

( an+l) n(l + a) Rn = n 1 - -- = --+ 1 + a as n --+ 00. 
an n + 1 

This shows that Raabe's Test gives the convergence of 2:::"=1 an for a > 0 and 
the divergence of 2:::"=1 an if a < 0 (the series 2:::"=1 an evidently converges if 
a = 0). 

Proposition 7.36 (Bertrand's Test). If an > 0 for n = 1, 2, 3, ... and 

( an+ l ) En = (Rn - 1) In(n) = (n - 1) In(n) - ----;;: n(ln n), 

then 

(i) lim n~oo En > 1 implies the convergence of 2:::,,= 1 an, and 
(ii) limn~oo En > 1 implies the divergence of 2:::"=1 an" 

PROOF. In Proposition 7.34 take bn+1 = n(ln n). Then 2:::"=1 (l/bn) diverges and 

an+ 1 (n - 1) Kn = (n - l)ln(n - 1) - n(lnn)- = (n - 1)ln -- + En" 
an n 

Since 

(n - 1). (n) (l)-n lim(n-1)ln -- =hm(n)ln -- =limln 1+~ = -1, 
n~oo n n~oo n + 1 n~oo n 

we have lim En = 1 + lim Dn and the claim follows from Proposition 7.34. 0 

Proposition 7.37 (Gauss' Test). If an > 0 for n = 1, 2, 3, ... and if there exist 
a real number a, a positive number 8, and a bounded sequence {Xn}::"=1 of real 
numbers such that 

an+ 1 a Xn 
-- = 1 - ~ - 1+" for n = 1, 2, 3, ... , 

an nne 

then 2:::"=1 an converges if and only if a > 1. 

PROOF. We have 

as n --+ 00 

because {Xn }::"=l is bounded. Thus, for a #- 1, the claim follows from Raabe's 
Test (see Proposition 7.35). For a = 1 we use Bertrand's Test (see Proposition 
7.36). We have 
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xn(ln n) 
Bn = (Rn - 1)(ln n) = ~~- --+ 0 as n --+ 00, 

n' 

and so I::,,= 1 an diverges. D 

Worked Examples 

1. Let 0(, fJ, and y be real numbers, none of which is a negative integer or O. 
Define ao = 1 and, for n > 0, 

0((0( + 1)(0( + 2)···(0( + n - 1) fJ(fJ + l)(fJ + 2)···(fJ + n - 1) 
a = 

n n! y(y + 1)(y + 2)···(y + n - 1) . 

The series I::,,=o an is called the hypergeometric series. Clearly, 

(0( + n)(fJ + n) 

(1 + n)(y + n) 

n2 + (0( + fJ)n + O(fJ 
n2 + (y + l)n + y . 

Since limn-+oo (an+dan) = 1, for all large n the terms an have the same sign and 
so Gauss' Test may be applied. Solving the equation 

n2 + (0( + fJ)n + O(fJ (y + 1) - (0( + fJ) Xn 
----o,---~~~~----'-- = 1 - - -
n2 + (y + l)n + y n n2 

for Xn , we find that {Xn}::"=l converges and hence is bounded. Thus, Gauss' 
Test shows that I::"=l an converges if and only if 0( + fJ < y. 

2. Consider the series 

(~)P (~)P (~)P ... 
2 + 2·4 + 2·4·5 + . 

Since 

an+ 1 __ (2n + I)P ,1 
~ as n --+ 00, 

an 2n + 2 

the Ratio Test (see Proposition 7.32) fails, and we turn to Raabe's Test (see 
Proposition 7.35). We find 

n(1 _ an+1) = n(1 _ (~)P) = ~ 1 - (1 - xV, 
an 2n + 2 2n + 2 2x 

where 2n + 2 = l/x. But (by L'Hopital's Rules) 

. 1 - (1 - xV . p(1 - X)P-l P 
hm =hm~~~-
x-+oo 2x x-+oo 2 2 

Therefore, the given series converges for p > 2 and diverges for p < 2. It 
remains to consider the case p = 2. For p = 2 Raabe's Test fails but Gauss' 
Test (see Proposition 7.37) indicates divergence because 
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( 2n + 1)2 1 5 - 4/n 
2n + 2 = 1 - ~ + 4n2 + 8n + 4 

and so 

where {Xn }::"=l is a bounded sequence. 

3. The series 

00 1 (n)n I--
n=l n! e 

diverges by Raabe's Test. Indeed, 

n(1- a:: 1 ) = n(1- (1 +e1/n)n) 
and we only have to verify that 

lim~(1 _ (1 + X)l/X) =~. 
X"" 0 X e 2 

4. Consider the series 

where x > 0 and r(n) denotes the number of divisors of the positive integer n. 
Since 

and (by the Lemma preceding Proposition 1.8) 

lim .ifti = 1, 
n .... oo 

we observe that the Root Test (see Proposition 7.30) is applicable. The series 
under consideration is convergent for 0 < x < 1 and divergent for x > 1 (the 
series is apparently divergent for x = 1). 

5. Let 0 < p ::5: 1. Then the series 

00 1 I (_l)n+l p 
n=l n 

is convergent by Proposition 7.33; in particular, the alternating harmonic 
series 



3. Numerical Series 433 

is convergent and its sum is In 2 (see the Application following Proposition 
1.6). The series 

ao X L (_1)n+1 sin-
n=l n 

is convergent for arbitrary x "# O. While we can not apply Proposition 7.33 to 
the series directly, we can apply it to a certain remainder of the series. For 
sufficiently large n the signs of sin(x/n) and of x are the same and the absolute 
value of sin(x/n) decreases as n increases. From Example 12 following Propo­
sition 7.27 we can see that the series L::'=l (_1)n sin(x/n) is not absolutely 
convergent, however. 

6. The series 

1 1 1 1 1 
1--+---+---+··· 

3 5 7 9 11 

is seen to be convergent by Proposition 7.33. Moreover, from (4.39) in Chap­
ter 4 we can infer that 

1 1 1 1 1 n 
1--+---+---+···=-

3 5 7 9 11 4· 
(7.45) 

The representation (7.45) is very interesting, but not suitable for the computa­
tion of the number n; to obtain an accuracy of six decimal places, for example, 
we would have to consider half a million terms of the series in (7.45), ac­
cording to Proposition 7.33. Following equation (4.39) in Chapter 4 we 
considered Machin's method for computing the number n to a high degree of 
accuracy. 

7. The series 

f (_1)'I<n)(_n_)n, 
n=l 2n- 1 

where u(n) = 1 + 2 + ... + n = n(n + 1)/2, is convergent. Indeed, observe 
that the Root Test (see Proposition 7.30) shows the absolute convergence of 
the series under consideration. 

8. For n = 1,2,3, ... , let 

2nn! 
an = -n-· 

n 

Then an -+ 0 as n -+ 00. Indeed, since an+t/an -+ 2/e < 1 as n -+ 00, the infinite 
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series L:'~l an converges by the Ratio Test (see Proposition 7.32) and there­
fore an -+ 0 as n -+ 00 by Proposition 7.21. 

Definition. The Cauchy product of two series L:'~o an and L:'~o bn of real 
terms is the series L:'~o cn , where 

n 

Cn = L akbn - k · 
k~O 

Lemma. Let {an}:'~o and {f3n}:'~O be sequences of real numbers and a and f3 be 
(finite) real numbers. 

(i) If L:'~o lf3nl is convergent and {an}:'~O is a null sequence, then 
n 

Yn = L ak f3n-k -+ 0 as n -+ 00. 
k~O 

(ii) If an -+ a and f3n -+ f3 as n -+ 00, then 

1 n 
~~1 L akf3n-k -+ af3 as n -+ 00. 
n + k~O 

(iii) If an -+ a as n -+ 00, then 

1 n 
~~ L ak -+ a as n -+ 00. 
n + 1 k~O 

PROOF. (i) We put L:'~o lf3nl = b. Let e > 0 and pick no such that 

for all n > no. We set L:'~o lanl = a. Since {f3n}:'~o is a null sequence by 
Proposition 7.21, we can choose jo such that 

for allj > jo. Then, for n > no + jo, 

and so we have verified claim (i). 
Claims (ii) and (iii) are mere reformulations of Propositions 7.15 and 7.13, 

respectively. 0 

Proposition 7.38 (Theorem of Mertens). If at least one of the two convergent 
series 

00 00 

Lan = A and L bn = B 
n~O n~O 
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of real terms is absolutely convergent and if L~o cn is their Cauchy product, 
then L::'=o Cn converges and we have L~o Cn = AB. 

PROOF. Suppose that L::'=o bn is absolutely convergent. We put 
n n n 

An = L ak, Bn = L bk, Cn = L Ck' Pn = bn, IXn = An - A. 
k=O k=O k=O 

Then Cn is the sum of all the products ajbk for which 0 ~ j ~ n, 0 ~ k ~ n, 
and 0 ~ j + k ~ n. Thus, 

Cn = Aobn + A1bn- 1 + ... + Anbo 

= (A + IXO)Pn + (A + 1X1)Pn-1 + ... + (A + IXn)Po 
n 

= ABn + L IXkPn-k 
k=O 

-+ AB + 0 = AB as n -+ 00 

by virtue of our assumptions and part (i) of the foregoing Lemma. 0 

Proposition 7.39. If L::'=o an = A and L::'=o bn = B are convergent series and if 
their Cauchy product L::'=o Cn = C also converges, then C = AB. 

PROOF. Using the notation of the preceding proof, we have 

Ck = Aobk + A1bk- 1 + ... + AkbO 

and so 

Co + C1 + ... + Cn = AoBn + A1Bn- 1 + ... + AnBo. (7.46) 

Dividing both sides of the equation in (7.46) by n + 1 and then taking the 
limit as n -+ 00, we obtain C = AB in view of parts (ii) and (iii) of the Lemma 
preceding Proposition 7.38. 0 

REMARK. The Cauchy product of two convergent series may diverge. Take 

ao = bo = 0, 
(-lr1 

an = bn = In for n = 1, 2, 3, .... 

Then L::'=o an = L::'=o bn converges by Example 5 of the worked examples 
following Proposition 7.37, but Co = C1 = 0 and, for n = 1,2,3, ... , 

n n-1 1 

Cn = L akbn-k = (_l)n L II: r.::-/:' 
k=O k=1ykyn-k 

n-1 1 n-1 1 
Ic 1= L > L = 1· 

n k=1 Jk(n - k) - k=1 J(n - l)(n - 1) , 

hence, {Cn}::'=o is not a null sequence and so L::'=o Cn diverges by Proposition 
7.21. 
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Proposition 7.40 (Abel's Lemma). If {an }:;'1 is a sequence of real numbers 
whose partial sums Sn = al + ... + an satisfy, for all n = 1, 2, 3, ... , m S;; Sn S;; 

M for some real numbers m and M, and if {bn}:;'1 is such that b1 ~ b2 ~ b3 ~ 
... ~ 0, then, for all n = 1,2,3, ... , 

n 

mb1 S;; L akbk S;; Mb 1· 
k=1 

PROOF. An easy calculation shows that 

n n 

L akbk = L sk(bk - bud + Snbn+l' 
k=1 k=1 

Since bk - bUI ~ 0 and Sk S;; M, we get 
n n 

L akbk S;; M L (bk - bud + Mb,,+1 = Mb 1· 
k=1 k=1 

The left-hand side inequality is verified in a similar fashion. D 

Proposition 7.41 (Dirichlet's Test). Let the sequences {an}:;'1 and {bn }:;'1 be as 
in Proposition 7.40 and suppose, moreover, that bn -+ 0 as n -+ 00. Then the 
series L:;'1 akbk converges. 

PROOF. By assumption, there is an M > 0 such that ISnl S;; M for all n = 1,2, 
3, .... Hence, for any positive integers j and n with j S;; n, 

I i.akl = ISn - sj-ll S;; ISnl + ISj-ll S;; 2M. 
k=) 

By Proposition 7.40, applied to {ak}k'=j and {bk}k'=j' this implies, for n ~ j, 

Ii. akbk I S;; 2Mbj. 
k=) 

By assumption there is an integer no such that bn < f./2M for all n ~ no. 
Hence, 2Mbj < f. for j ~ no; thus, for n ~ j ~ no, 

Ikt akbkl < f.. 

The claim now fotIows from Proposition 7.23. D 

Proposition 7.42 (Abel's Test). If L:;'1 an is a convergent series and if the 
sequence {bn}:;'1 is monotonic and bounded, then L:;'1 anbn is also convergent. 

PROOF. Suppose {bn}:;'1 is monotonically increasing and let Cn = b - bn, 
where bn -+ b as n -+ 00. By Proposition 7.41 the series L:;'1 anbn converges. It 
is clear that the series L:;'1 ban also converges. But anbn = ban - ancn; thus, 

00 00 

L anbn = L (ban - ancn) 
n=1 n=1 

converges. D 
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4. Groupings and Rearrangements 

Definition. A series L Ak is said to arise from a given series L an by grouping 
of terms (or by the introduction of brackets) if every Ak is the sum of a finite 
number of consecutive terms ofL an, and every pair of terms am and an, where 
m < n, appear as terms in a unique pair of terms Ap and Aq, respectively, 
where p::;; q. 

EXAMPLE. The grouping 

(ao + a1 ) + (a 2) + (a3 + a4 + as) + (a6 + a7 ) + ... 

gives rise to the series LAn, where Ao = ao + aI' Al = a2, A2 = a3 + a4 + 
as, A3 = a6 + a7 , •... 

Proposition 7.43. The associative law holds for convergent infinite series 
without restriction in the following sense only: 

ao + a1 + a2 + ... = s 

implies 

(ao + a1 + ... + a.,) + (a., +1 + a., +2 + ... + a.2 ) + ... = s, 

if VI' V2, ... denote any increasing sequence of distinct integers and the sum of 
the terms enclosed in each bracket is considered as one term of a new series 

Ao + Al + ... + Ak + ... 

with 

for k = 0, 1, 2, ... and Vo = - 1. 

PROOF. The sequence of partial sums {Sd of L Ak is evidently the 
subsequence 

of the sequence of partial sums {sn} of Lan' D 

REMARK. The example 

(2 - 1~) + (1 ~ _ 1~) + (1 ~ _ 1~) + ... = _1_ + _1_ + _1_ + ... 
2 3 4 5 6 1·2 3·4 5·6 

shows that grouping of terms may convert a divergent series into a conver­
gent series. Equivalently, removal of brackets may destroy convergence. 

Proposition 7.44. If the terms of a convergent itifinite series Lk"=o Ak are them­
selves finite sums (say, as in Proposition 7.43, Ak = a.k +1 + .. , + a.k +,; k = 0, 
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1, ... ; Vo = -1), then we may omit the bracket enclosing these if and only if the 
new series L:;"o an thus obtained also converges. 

PROOF. By Proposition 7.43, if L an is convergent, then Lan = L Ak • If Lan 
diverges, the equality between the series L an and L Ak becomes meaningless. 

D 

REMARK. The new series L an obtained from L Ak in Proposition 7.44 is cer­
tainly convergent if the numbers 

A~ = laVk+11 + laVk+2 1 + ... + laVk+,1 

form a null sequence. Indeed, if e > 0 is given, pick m1 so large that 

e 
ISk-l - sl < 2 

for every k > m1 and pick m2 so large that A~ < 6/2 for every k > m2 . If m is 
larger than both these numbers m1 and m2 , then we have 

ISn - sl < e 

for every n > vm . For to each such n there corresponds a certain number k 
such that 

and this number k must be larger than or equal to m. In that case, however, 

And since 

we then have in fact 

00 

ISn - sl < e or L an = s 
n=O 

which we wanted to show. 

Examples 

1. By Proposition 7.43 the following three series are convergent and have 
the same sum s: 

11111 
1--+---+---+ - ... 

2 3 4 5 6 ' 
(7.47) 

(7.48) 
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1 - G -D -(~-D -... = 1 - /3 - 4\ - .... (7.49) 

From (7.48) we see that 

and from (7.49) we see that 

1 10 
s< 1--=-' 

2· 3 12' 

hence, 

Using more terms of the series (7.48) and (7.49), we can estimate s more 
closely; however, we know already from the Application following Proposi­
tion 1.6 that s = In 2. Again by Proposition 7.43, the series 

OO( 1 1 1 1) L -----+----
k=l 4k - 3 4k - 2 4k - 1 4k 

(7.50) 

has the same sum s = In 2 as the series 

00 (_I)k+l 
L--:-
k=l k 

OO( 1 1) 
and kf:l 2k - 1 - 2k 

appearing in (7.47) and (7.48), respectively. By Proposition 7.22 we therefore 
have that 

f( 1 1)_ln2 
k=l 4k - 2 - 4k - T' (7.51) 

Adding termwise series (7.50) and (7.51), Proposition 7.22 gives 

(7.52) 

2. We once more consider the series (7.52), that is, we consider L~l Ak , 

where 

Noting that Ak is positive and 
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the convergence of the series L Ak follows by Proposition 7.26 from the 
convergence of the series L (1/n 2 ). The Remark following Proposition 7.44 
applies; indeed, 

I 2 1 1 
Ak < 4k - 4 + 2k < k - 1 

and so {A,,} is a null sequence. Thus, the series 

11111 
1 +3-2+5+6-4+ + _ ... (7.53) 

is seen to be convergent by Proposition 7.44. In view of (7.52) and Proposi­
tion 7.43 the sum of the series (7.53) is !In 2. 

Definition. If L:;'l an converges but L:'=l lanl diverges, we say that L:;'l an 
converges conditionally. 

REMARKS. A series converges conditionally if it converges but does not con­
verge absolutely. The alternating series 

1 1 1 1--+---+ _ ... 
2P 3P 4P 

converges absolutely if p > 1, converges conditionally if 0 < p S 1, and 
diverges if p S O. The alternating series 

1 1·3 1·3·5 1·3·5·7 
2 - 2·4 + 2·4·6 - 2·4·6·8 + - ... 

converges conditionally. Indeed, by Example 2 following Proposition 7.37 the 
series fails to converge absolutely. To verify the convergence of the series we 
can use Proposition 7.33. Since 

1·3 < 22, 3·5 < 42, ••• , (2n - 1)(2n + 1) < (2n)2, 

it follows that 

12·32·52···(2n - 1)2(2n + 1) < 22·42·62···(2n)2 

which is equivalent to the inequality 

1352n-1 1 _._._ ... _-- < --=== 
246 2n fo+l. 

Thus, 

1 . 3 . 5 ... (2n - 1) 
-:--,..--,......:----,-,---:--'- -+ 0 as n -+ 00. 

2·4·6··· (2n) 

The other assumptions in Proposition 7.33 are simple to check out. 
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Definition. Let {n;}~l be a sequence of positive integers such that each posi­
tive integer occurs exactly once among the ni (i.e., if N denotes the set of 
positive integers, {n;}i~l is a one-to-one function from N onto N). If L~l an 
is a series of real numbers and if for i = 1, 2, 3, ... we have the relation 
bi = ani' then L~l bi is called a rearrangement ofL~l an· 

DISCUSSION. Consider the alternating harmonic series 

00 (- 1 t+1 1 1 1 1 1 L = 1--+---+---+ _ .... 
n=l n 2 3 4 5 6 ' 

it converges conditionally. We examine the following rearrangement of this 
series: Let the first p positive terms be followed by the first q negative terms, 
then the next p positive terms be followed by the next q negative terms, and 
so on. The resulting series converges to 

To see this, we let 

1 1 
H = 1 + - + ... + - = Inn + C +" 

n 2 n In' 

where C is Euler's constant and rn -. 0 as n -. 00 (see Proposition 1.7 in 
Chapter 1). Then 

11 111 11 
2 + 4 + ... + 2m = 2Hm = 2lnm + 2C + 2rm 

and 

The foregoing shows that the partial sums of the series in question are of the 
form 

where {(jn}~l is a null sequence. 
We note that, for p = q = 1, we get 

1 1 111 
1 - 2 +"3 - 4 + 5 -"6 + ... = In 2; 

for p = 2, q = 1, we obtain [compare with (7.52)] 

1 1 1 113 
1 + 3" - 2 + 5 + "1 - 4 + ... = 21n 2; 
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for P = 1, q = 4, we have 

1111111111 
1 - 2: - 4 - 6 - 8 + :3 - 10 - 12 - 14 - 16 + :5 - ... = 0, 

and so on. 

Proposition 7.45. Let I:;'1 an be a series of real terms and put 

We have the following result: 
(i) If I:;'1 an converges absolutely, then both I:;'1 Pn and I:;'1 qn converge. 

(ii) If I:;'1 an converges conditionally, then both I:'=1 Pn and I:'=1 qn diverge. 

PROOF. (i) If both I:;'1 an and I:;'1lanl converge, then so does the series 
I:;'1(an + lanl}. Thus, I:;'12Pn converges, implying that I:;'1 Pn converges. 
The convergence of I:;. 1 qn is established in a similar manner. 

(ii) Suppose I:;'1 an converges but I:;'1lanl diverges. Then the series 
I:;'1 Pn and I:'=1 qn both diverge. For if both were convergent, then 

00 00 

I (Pn + qn) = I an 
n=1 n=1 

would converge, contrary to assumption. Since 
k k k k 

I lanl = I (Pn - qn) = I Pn - I qn' 
n=1 n=1 n=1 n=1 

divergence of I:;. 1 Pn and convergence of I:;. 1 qn (or vice versa) implies diver­
gence of I:;'1 am again contrary to assumption. 0 

REMARK. Note that the Pn are the positive and the qn the negative terms of the 
sequence {an}. 

Proposition 7.46 (Riemann's Rearrangement Theorem). The terms of any condi­
tionally convergent series can be rearranged to give either a divergent series or 
a conditionally convergent series whose sum is any preassigned number. 

PROOF. Let I:;'1 an be a conditionally convergent series with divergent non­
negative and nonpositive parts I:;'1 Pn and I:;'1 qn' respectively, and let c be 
an arbitrary (finite) real number. Let the rearrangement be determined as 
follows: First put down terms 

P1 + ... + Pml 

until the total partial sum first exceeds c, then attach terms 

q1 + ... + qnl 

until the total partial sum first falls short of c. Then attach terms 
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Pm,+1 + ... + Pm2 

until the total partial sum first exceeds c, then terms 
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until the total partial sum first falls short of c, and so on. Each of these steps 
is possible because of the divergence of 2::=1 Pn and 2:~1 qn [see Proposition 
7.45 (ii)]. The resulting rearrangement of the given series 2:~1 an converges 
to c since Pn --+ 0 and qn --+ 0 as n --+ 00 (because an --+ 0 as n --+ (0). 

To see that there are rearrangements of 2::=1 an the partial sums of which 
tend to + 00, we consider a rearrangement of the series 2:~1 an in which we 
have alternately a group of positive terms followed by a single negative term. 
Since the series 2:~1 Pn diverges, its partial sums are unbounded and we can 
choose m1 so large that 

PI + ... + Pm, > 1 - ql' 

then m2 > m1 so large that 

PI + P2 + ... + Pm, + ... + Pm2 > 2 - ql - q2 

and, generally, mk > mk - 1 so large that 

PI + P2 + ... + Pmk > k - ql - q2 - ... - qk 

Hence, the series 

(k = 3,4, ... ). 

PI + ... + Pm, + ql + Pm,+! + ... + Pm2 + q2 + Pm2+1 + ... 
in which we have alternately a group of positive terms followed by a single 
negative term, is clearly divergent; its kth partial sum 

PI + ... + Pm, + ql + ... + Pmk + qk 

exceeds k. 
Analogously one may obtain rearrangements of 2::=1 an that tend to - 00. 

o 
Proposition 7.47. If 2::=1 an converges absolutely to A, then any rearrangement 
2:~1 bn of 2::=1 an also converges to A. 

PROOF. We first show that the proposition is true if2:~1 an is a series of non­
negative numbers. 

For each positive integer k, let Sk = b1 + ... + bk. Since bi = an for some 
sequence {n;}~l' we have . 

Let m = max {nl' ... , nd. Then clearly 

Sk ::;; a 1 + ... + am ::;; A. 

Thus, 2:~1 bn converges to some real number B (by Proposition 7.24). But 

B = lim Sk 
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and so B :S; A (i.e., I~l bn :S; I~l an). However, since I~l an is also a re­
arrangement of I~l bn , the same reasoning with the roles of the series 
I~l an and I~l bn reversed shows that A :S; B. Hence, A = B. 

We now consider the general case. If I~l an converges absolutely, then 
both I~l Pn and I~l qn converge by Proposition 7.45 (i); say I~l Pn = P and 
I~l qn = Q (so that Q :S; 0). Then A = P + Q. For some {nd~b we have 

(7.54) 

Moreover, Ii~l Pn, is a rearrangement of the series I~l Pn of nonnegative 
terms. Hence, by the first part of this proof, I~l Pn, converges and Ii~l Pn, = 

P. Similarly, I~l qn, = Q. From (7.54) we see that Ii~l bi converges and 
00 00 00 

I bi = I Pn, + I qn, = P + Q = A. 
i=l i=l i=l 

It only remains to show that I~l bi converges absolutely. By (7.54), we have, 
however, that 

Ibil :S; IPn,1 + Iqn,l = Pn, - qn,· 

Thus, for any positive integer k, 

k k 00 00 

Ibll + ... + Ibkl :S; I Pn, - I qn, :S; I Pn, - I qn, = P - Q. 
i=l i=l i=l i=l 

The partial sums ofI~l Ibil are thus all bounded above by P - Q and hence 
I~l Ibd is seen to be convergent (by Proposition 7.24). D 

Proposition 7.48. If all rearrangements ofI~l an converge, then they all con­
verge to the same sum. 

PROOF. Either I~l an converges absolutely, in which case Proposition 7.47 
applies, or the series converges conditionally, in which case there exists a 
divergent rearrangement by Proposition 7.46. D 

Definition. A series is said to converge unconditionally if every rearrangement 
of it converges. 

REMARKS. To sum up, we have shown that a series converges unconditionally 
if and only if it converges absolutely. Also, if a series converges uncondi­
tionally, then every rearrangement of it converges to the same sum. 

Definition. With an infinite matrix 
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of real numbers we can associate a double series 

00 

L allv ' 
ll,v=l 

If A: (jJ., v) ~ A. is an enumeration of the pairs (jJ., v) of positive integers, we put 
CA(A) = allv and call the series 

00 

L CA(A) ),=1 
the ordering (relative to A) of I..':. v=l allv into a single series. 

REMARK. Examples of ordering of double series into single series are arrange­
ment by diagonals 

all + (a 12 + a21 ) + (a13 + a22 + a31 ) + ... 
and arrangement by squares 

all + (a 12 + a22 + a2d + (a13 + a23 + a33 + a32 + a31) + ... ; 
in arrangement by diagonals we have grouped together the entries on succes­
sive diagonals and in arrangement by squares we have used rectangular 
grouping. 

Proposition 7.49 (Main Rearrangement Theorem). Let I..':. v=l allv be a given 
double series. Suppose there exists a number M such that 

m 

I.. lallvl:::;; M < 00 for all m. 
ll,v=l 

Then the following statements hold: 
(a) Any ordering of the double series into a single series is absolutely conver­

gent and all single series have the same sum s. 
(b) The series I..:'=1 allv (column series) are absolutely convergent (jJ. = 1, 2, 

3, ... ), and so are the series I..:'=1 allv (row series) (v = 1,2,3, ... ). 
(c) The two series 

are convergent and their sums are equal (sum of the row series = sum of the 
column series), namely, equal to s. 

PROOF. (a) Let n be a positive integer. We consider the pairs (jJ., v) which 
correspond to the numbers A. = 1, ... , n under the enumeration A and let m 
be the largest of the jJ. and v. Then 

n m 

I.. I CA(A) I :::;; I.. lallvl:::;; M. 
A=l Il, v=l 
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By Proposition 7.24 we see that Lf=1 C;.(A) converges absolutely. If A* is a 
second enumeration, then Lf=1 C;.(A*) is a rearrangement ofLf.1 C;.(A); by 
the absolute convergence both series must have the same sum (see Proposi­
tion 7.47). 

(b) If we put m = max{ll,n}, resp. m = max{v,n}, then 
n m n m 

L JallvJ:$; L JallvJ:$; M, resp. L JallvJ:$; L JallvJ:$; M; 
v=1 Il. v=1 1l=1 ll.v=1 

thus, by Proposition 7.24, this point is also settled. 
(c) For m :$; n we have 

J11vt1 allvl :$; J1 vt1 JallvJ :$; ll.t1 JallvJ :$; M, 

and passage to the limit as n - 00 gives 

showing the absolute convergence of the series formed by the column series. 
In the same way we get the absolute convergence of the series formed by the 
row series. 

Finally, let Lf.1 C;. be some ordering of the double series into a single 
series. For any e > 0 there exists a ko such that 

00 

L JC;.J < e for all k ~ ko· ;'=1<+1 
Corresponding to k we can find some no such that C1 , C2 , ••• , Ck are among 
the allv for 1 :$; Il :$; no, 1 :$; v :$; no' For m ~ no, n ~ no we then have 

Upon passage to the limit as n - 00, m - 00 (resp. in the reverse order) and 
then followed by passage to the limit as k - 00, we get 

1
0000 00 1 

resp. V~11l~1 allv - ;'~1 C;. :$; e. 

But e > 0 is arbitrarily small. o 

REMARK. Double series satisfying the assumptions in Proposition 7.49 we 
shall call absolutely convergent; to such series we may assign the number s in 
part (a) of the proposition as the sum. 

Proposition 7.50. Let L:'1 all and Lf=1 bv be absolutely convergent series. Then 
any of their products converges; moreover, all products converge to the same 
sum, namely, 
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(7.55) 

In particular, the Cauchy product 

of the absolutely convergent series L:'=l ap' and L~l bv is absolutely convergent 
and we have 

(7.56) 

PROOF. Since 

the assumptions of Proposition 7.49 are satisfied. Relation (7.55) is a con­
sequence of part (c) of Proposition 7.49. Finally, the claim concerning 
the Cauchy product is an immediate consequence of the first part of the 
proposition. D 

EXAMPLE. Let O! = 1. By the Ratio Test (see Proposition 7.32) the series 

00 xp. 

JOJ1! = E(x) (7.57) 

is absolutely convergent for any (finite) real number x. Hence, for any real 
numbers x and y the relation (7.56) gives 

that is, using the notation introduced in (7.57), 

E(x + y) = E(x)' E(y). (7.58) 

In particular, for y = - x we get 

E(x)· E( -x) = E(O) = 1. (7.59) 

Taylor's Theorem (see Proposition 4.11 in Chapter 4) applied to the expo­
nential function [note in particular (4.12) in Chapter 4] shows that E(x) as 
defined in (7.57) is precisely the function eX. Therefore, Proposition 7.50 
provides us with an analytical method of verifying the familiar relations 
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5. Uniform Convergence 

Definition. Let {In}:'.:l be a sequence of real-valued functions defined on a set 
E of real numbers. We say that {fn}:'.:l converges pointwise on E if, for every 
x E E, the numerical sequence 

is convergent. In this case we define a function f on E by taking 

f(x) = lim f,,(x) 

for every x E E. This function f is called the pointwise limit of the sequence 
{In}:'.:l· 

Definition. Let E be a set of real numbers and {fn}:'=l a sequence, each term 
of which is a real-valued function defined on E. We say that {fn}:'.:l converges 
uniformly on E to a function f if, for every 8 > 0, there exists an integer no 
(depending only on 8) such that n ;::::: no implies 

/f,,(x) - f(x)/ < 8 

for every x in E. We denote this symbolically by writing 

fn -4 f uniformly on E. 

(7.60) 

REMARKS. Clearly, uniform convergence on E implies pointwise convergence 
on E; if the uniform limit exists, it is equal to the pointwise limit. The 
difference between pointwise convergence and uniform convergence is this: If 
{fn}:'.:l converges pointwise on E, then there exists a function f such that, for 
every 8 > 0, and for every x in E, there is an integer no, depending on 8 and on 
x, such that (7.60) holds if n ;::::: no; if {f,,}:'.:1 converges uniformly on E, we can 
find, for each 8 > 0, one integer no which will do for all x in E. 

Since (7.60) is equivalent to 

f(x) - 8 < fn(x) < f(x) + 8, 

we see that if (7.60) is to hold for all n ;::::: no and for all x E E, then the graph 
of f" (i.e., the set {(x, y): y = fn(x), x E E}) lies within a "band" of height 28 
situated symmetrically about the graph of f; see Figure 7.1. 

Proposition 7.51. Suppose, for every x E E, limn_ oo fn(x) = f(x). Let 

Mn = suP{/fn(x) - f(x)/: xEE}. 

Then f" -4 f uniformly on E if and only if Mn -4 0 as n -4 00. 

PROOF. The proposition is an immediate consequence of the definition of 
uniform convergence. 0 

Proposition 7.52. Let {f,,}:'=1 be a sequence of functions defined on a set E of 
real numbers. There exists a function f such that 
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fn --+ f uniformly on E 

if and only if the following (called Cauchy's criterion for uniform conver­
gence) is satisfied: For every £ > ° there exists an integer no such that m ;::: no, 
n ;::: no implies 

(7.61) 

for every x in E. 

PROOF. Suppose that 1. --+ f uniformly on E. Then, given £ > 0, we can find no 
such that n ;::: no implies Ifn(x) - f(x)1 < £/2 for all x in E. Taking m ;::: no, we 
have Ifm(x) - f(x) I < £/2, and hence we have 

Ifm(x) - fn(x)1 ~ Ifm(x) - f(x) I + If,,(x) - f(x) I < £ 

for every x in E. 
Conversely, suppose that condition (7.61) is satisfied. Then, for each x in E, 

the sequence {fn(X)}~l converges by Proposition 7.12. Let 

f(x) = lim fn(x) 

if x E E. We must show that fn --+ f uniformly on E. If £ > ° is given, we choose 
no such that n ;::: no implies 
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for every k = 1, 2, ... and every x in E. Thus, 

lim 1J..(x) - J..+k(x)1 = 1J..(x) - f(x)1 ::;; -2e. 
k-+oo 

Hence, n ~ no implies 1J..(x) - f(x)1 < e for every x in E and so J.. --+ f uni­
formly on E. D 

Proposition 7.53. A sequence of functions {J..}~l defined on E does not con­
verge uniformly on E to a function f defined on E if and only if for some eo > 0 
there exists a subsequence {J..J~1 of {J..}~l and a sequence {Xd:'=l in E such 
that 

PROOF. The negation of uniform convergence: A sequence of functions {J..}~l 
defined on E fails to converge uniformly on E to a function f defined on E if 
and only if there exists a positive number eo having the property that for any 
number N there exists a positive integer n ~ N and a point x of E such that 
1J..(x) - f(x)1 ~ eo· 

Thus, if {J..}~l does not converge uniformly on E to f, there are positive 
integers nl < n2 < ... and points Xl' x 2 , ... of E such that 

for some eo. D 

Examples 

1. Let J..(x) = xn for Ixl ::;; c, where c is fixed and 0 < c < 1. Then {J..}~1 
converges uniformly to f(x) = 0 (for -c::;; x ::;; c) on the interval Ixl ::;; c 
because Ixnl ::;; cn and cn --+ 0 as n --+ 00. However, {fn}:'=l fails to be uniformly 
convergent to f(x) = 0 (for -1 < x < 1) on the open intervallxl < 1. In fact, 
for any positive integer n there is a point x in the open interval (-1,1) such 
that Ixnl is not smaller than the positive number t; for example, let x = 
1 - 1/2n and observe that 

( 1 - ~)n > 1 _~. n = 1 _! =! 
2n - 2n 2 2 

by Bernoulli's Inequality [see (4.93) in Example 15 of Section 6 in Chapter 4]. 
By Proposition 7.53 {fn}~l thus fails to be uniformly convergent to 0 on 
(-1,1). 

2. For x E [0, 2J, let 
nx 

fn(x) = 1 + n2 x 2 ' 

It is clear that J..(O) = 0 and J..(x) < l/nx for x > 0; thus, the pointwise limit 
of {J..}~1 is 0 on [0,2]. Since 
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nx nx 1 
o < In(x) = 1 2 2 < 22 ~ -

+nx nx n 

for 1 ~ x ~ 2, it is clear that {In}::'l converges uniformly to 0 on the interval 
[1,2]. However, {1n}::'1 does not converge uniformly to 0 on the interval 
[0,1]. Indeed, In {1 In) = 1/2 for n = 1,2,3, ... and In assumes its largest value 
(namely, 1/2) at the point x = lin; by Proposition 7.53 we therefore see that 
~1n}::'1 fails to converge uniformly to 0 on [0, 1]. The function In assumes not 
only its largest value at x = lin but also has a local maximum there; we may 
thus speak of a hump at x = lin. Figure 7.2 illustrates the graph of 

nx 
Y = In(x) = 1 + n2 x2 

for the cases n = 4,20. As we let n take the values 1,2, 3, ... , the hump glides 
toward the point x = O. 

3. For 0 < x < 1, let 
1 

In (x) =-1 -. + nx 

Evidently, the pointwise limit of {1n}::'1 is 0 on the open interval (0,1), but 
the sequence does not converge uniformly to 0 on (0,1) because, just as in 
Example 2, In{1ln) = 1/2. 

4. For 0 < x < 1, let 
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The pointwise limit of {f,,}:':1 is 0 on the open interval (0,1), but the sequence 
fails to be uniformly convergent to 0 on (0,1) because f,,(l/n) = 2nle. In this 
case the hump at x = lin has height 2nle and so becomes arbitrarily large 
with increasing n. 

5. For 0 ::; x ::; 1, let 

x 
f,,(x) = 1 2 2· +nx 

The pointwise limit of Un}:':1 is 0 on the interval [O,lJ; moreover, the 
sequence also converges uniformly to 0 on [0, 1J because 

1 2nx 1 
o ::; f,,(x) = -2 1 2 2::;-2 n + n x n 

[note that (1 - nx)2 ~ 0 and so 2nx ::; 1 + n2x2J. 

6. Let x be any real number and put 

x 
f,,(x) =-. 

n 

Then the pointwise limit of {f,,}:':1 is 0 on the number line ( - 00,00), but the 
sequence is not uniformly convergent to 0 on (- 00, 00) because f,,(n) = 1. 
However, the sequence {f,,}:'=1 is seen to be uniformly convergent to 0 on any 
interval (a, b) of finite length. 

The situation in the case of the sequence 

is entirely similar. The pointwise limit of {hn }:'=1 is h(x) = x on the num­
ber line (- 00, 00), but the sequence is not uniformly convergent to h(x) on 
(- 00,00) because hn(n) = n; however, the sequence {hn}:':1 is uniformly con­
vergent to h(x) = x on any interval (a, b) of finite length. 

7. Let x be any real number and put 

f,,(x) = sin(nx + n). 
n 

Since 1 sin tl ::; 1 for any real number t, we see that the pointwise limit of 
{f,,}:':1 is 0 on ( - 00,00). Since 

1 . 1 
Ifn(x) - 01 = -Ism(nx + n)1 ::;-

n n 

for any real number x, we see that {f,,}:':1 converges uniformly to 0 on 
(- 00,00). 
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Proposition 7.54. Suppose that fn - f uniformly on an interval J. If each fn is 
continuous at a point x of J, then the limit function f is also continuous at x 
and so 

lim lim fn(x) = lim limf,,(x). 
n-+ao x-+x 

PROOF. By assumption, for every 8 > ° there exists an integer N such that 
n ~ N implies 

8 
Ifn(x) - f(x)1 < "3 

for every x in J. Since fN is continuous at x, there is a neighborhood (x - ~, 

x + ~) with ~ > ° such that x E(X - ~,x + ~) n J implies 

But 

If(x) - f(x) I ~ If(x) - fN(X) I + IfN(X) - fN(X) I + IfN(X) - f(x)l. 

If x E (x - ~,x + ~) n J, each term on the right-hand side of the foregoing 
inequality is less than 8/3 and hence If(x) - f(x)1 < 8. 0 

REMARK. Uniform convergence is therefore sufficient, but not necessary, to 
transmit continuity from the individual terms of a sequence of functions to 
the limit function; for example, if f,,(x) = xn, f(x) = 0, and J is the open 
interval (-1,1), the f" and f are continuous on J but the convergence of fn to 
f is only pointwise on J and not uniform on J (see Example 1 following 
Proposition 7.53). But there is a partial converse to Proposition 7.54 which 
we shall take up next. 

Proposition 7.55 (Dini's Theorem). Let [a, b] be a closed interval of finite 
length and {f,,}:'=1 be a sequence of continuous functions on [a,b] which 
converges pointwise to a continuous function f on [a, b]. If, moreover, the 
sequence is monotonic on [a, b], then f" - funiformly on [a, b]. 

PROOF. We shall suppose that fix) ~ f,,+1 (x) for n = 1,2, ... , and for every x 
in [a,b]. We put 

gn(x) = f,,(x) - f(x). 

Then gn - 0, and gn(x) ~ gn+1 (x) on [a, b]. We have to show that gn - ° 
uniformly on [a,b]. 

To show that {gn}:'=l is uniformly convergent to ° on [a, b], it is sufficient 
to establish that for any 8 > ° there is at least one index n such that the 
inequality 

(7.62) 
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holds for all x in [a, b] (since {gn}:;'l is a decreasing sequence offunctions on 
[a, b], the inequality (7.62) holds of course for all indices larger than n as well). 
Now, if the convergence were not uniform, by Proposition 7.53, there would 
exist a subsequence {gnJ:'=l of {g,,}:;'l and a sequence {Xk}:'=l of points of 
[a,b] such that 

g"k(Xk) ::?: eo > 0 

for some eo. By Proposition 7.10, the sequence {Xd:'=l contains a convergent 
subsequence which, for simplicity of notation, we shall again denote by 
{Xk}:'=l and we assume that Xk --+ X as k --+ 00. It is clear that x is in the 
interval [a, b]. By the,continuity of each gm with m = 1,2, 3, ... , we have 

lim gm(Xk) = gm(x). 
k-+oo 

On the other hand, for each m and sufficiently large k with nk ::?: m we have 

gm(xk) ::?: g"k(Xk) ::?: eo· 

Passage to the limit as k --+ 00 gives 

lim gm(k) = gm(x) ::?: eo· 
k-+oo 

But the inequality gm(x) ::?: eo, which holds for every m with m = 1, 2, 3, ... , 
contradicts the assumption gm(x) --+ 0 as m --+ 00 and the proof is finished. 0 

REMARK. In Example 3 following Proposition 7.53 we have seen that 

1 
J,,(x) = 1 + nx 

fails to converge uniformly to 0 on the open interval (0, 1). However, 

f .. (x) ::?:J,,+l(X) 

for all x in (0, 1), showing that closedness of the interval in Proposition 7.55 is 
essentia1. That the interval be of finite length in Proposition 7.55 is essential 
as well; the sequence offunctions {h,,}:;'l' where 

X2 
hn(x) = --, 

n 

does not converge uniformly to 0 on ( - 00, 00), but h .. (x) ::;; h,,+l (x) for all x in 
(- 00,00). 

Proposition 7.56. Let {J,,}:;'l be a sequence of functions, differentiable on a 
closed interval [a, b] of finite length and such that Un(Xo)}:;'l converges for 
some point Xo of [a,b].If U:}:;'l converges uniformly on [a,b], then {J,,}:;'l 
converges uniformly on [a, b], to a function f, and, for a ::;; x ::;; b, 

f'(x) = lim f:(x). (7.63) 
"-+00 
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PROOF. Let 6 > 0 be given. Pick no such that n, m ~ no implies 

(7.64) 

and, for a :s; t :s; b, 

If:(t) - f,,:(t)1 < 2(b ~ a) (7.65) 

Applying Proposition 4.5 of Chapter 4 to the function fn - fm, (7.65) shows 
that 

Ix-tie 6 
Ifn(x) - fm(x) - fn(t) + fm(t) I < 2(b _ a) < "2 (7.66) 

for any x and tin [a,b], if n ~ no, m ~ no. But 

Ifn(x) - fm(x)1 :s; If.(x) - fm(x) - fn(xo) + fm(xo)1 + If.(xo) - fm(xo)1 

implies, by (7.64) and (7.66), that 

Ifn(x) - fm(x)1 < 6 

for a :s; x :s; b, n ~ no, m ~ no; thus, {f.}:':1 converges uniformly on [a,b]. 
Let, for a :s; x :s; b, 

f(x) = lim fn(x). 

We now fix a point x on [a,b] and define 

h (t) = f.(t) - fn(x) 
n t - x ' 

h(t) = f(t) - f(x) 
t-x 

(7.67) 

for a :s; t :s; b, t oF x. Then, for n = 1,2,3, ... , 

(7.68) 
t-+x 

The first inequality in (7.66) shows that 

6 
Ihn(t) - hm(t) I < 2(b _ a) 

for n, m ~ no; thus, {hn}:':l converges uniformly, for t oF x. Since {!n}~=l 
converges to f, we get from (7.67) that 

lim hn(t) = h(t) (7.69) 

uniformly for a:S; t :s; b, t oF x. Applying Proposition 7.54 to {hn }:':l, (7.68) 
and (7.69) give 

lim h(t) = lim f:(x). 
t~x n-+oo 

But this is (7.63), by the definition of h(t). o 



456 7. Infinite Series 

REMARK. Note that the uniform convergence of Un}:'=l implies nothing about 
the sequence U:}:'=l; consider, for example, the sequence 

f,,(x) = sj.x 

for all real x. Then limn .... oo f,,(x) = f(x) = 0 for every real x and 

f:(x) = In cos nx. 

Hence, limn .... oof:(x) does not exist for any real x. The sequence {f,,}:'=1 
converges uniformly on ( - 00,(0), but U:}:'=l does not even converge point-
wise on (- 00, (0). For example, U:}:'=l diverges since f:(O) = In; but 
f'(x) = 0 for all real x. 

Proposition 7.57. Let {fn}:'=1 be a sequence of continuous functions on a closed 
interval [a,b] of finite length and suppose that f is a function on [a,b] such 
that f" --+ f uniformly on [a, b]. Then 

!~ r f,,(x)dx = r f(x)dx. (7.70) 

PROOF. By Proposition 7.54 the function f is continuous and so the function 
f" - f are all Riemann integrable on [a, b] (by Proposition 5.16 of Chapter 5). 
Let e > O. Since fn --+ f uniformly on [a, b], there exists a number no such that 

e 
If,,(x) - f(x) I < b _ a 

for all x in [a,b] andall n;:::': no. Thus, n;:::.: no implies 

I r fn(x) dx - r f(x) dx I = I r [fn(x) - f(x)] dx I 

~ r If,,(x) - f(x) I dx ~ r b ~ a dx = e 

(note that we have used Propositions 5.11 and 5.12 of Chapter 5). Thus, for 
any e > 0, there exists a number no such that n ;:::.: no implies 

and so we see that (7.70) holds. D 

Examples 

1. Let f,,(x) = nX(1 - x)n. Then the pointwise limit of the sequence {f,,}:'=1 
on [0, 1] is 0, but the sequence does not converge uniformly on [0, 1]. Indeed, 
f" has a hump at x = 1/(n + 1) and 
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f, (_1 ) = (1 __ 1 )n+1 --+ e-1 

n n+1 n+1 
as n --+ 00 

so that Proposition 7.53 applies. The sequence Un}::'1 is not uniformly con­
vergent on [0,1], yet term-by-term integration over [0,1] will give 

lim [1 f..(x)dx = [1 f(x)dx 
n~oo Jo Jo 

in the case under consideration. Thus, uniform convergence is a sufficient, but 
not a necessary, condition for the validity of the interchange of limit and 
integration sign in relation (7.70). 

2. Let fn(x) = nxe-nx2 , n = 1,2, ... , ° :::;; x :::;; 1. Then fn(x) --+ ° as n --+ 00 for 
every x in [0,1]. But 

nxe-nx2 dx = -(1 - e-n) i1 1 

o 2 

and so 

On the other hand, gf(x)dx = ° and so 

lim [1 fn(x)dx =I- [1 f(x)dx. 
n-+oo Jo Jo (7.71) 

The reason for the result in (7.71) is that the sequence f..(x) = nxe-nx2 does not 
converge uniformly to ° on [0,1]. In fact, f.. has a hump at x = lifo and 

f..(_1 )=~ 
fo Je 

so that Proposition 7.53 is applicable. 

3. Let f..(x) = (n + sinx)/(3n + cos2 x). Then limn_oo gf..(x)dx = 1, by Pro­
position 7.57. 

Indeed, the pointwise limit of {f..}:"1 is -1 on [0,3]. But -1 is also the uniform 
limit of the sequence on [0,3] because 

1 
n+sinx 11 13sinx-cos2xl 3lsinxl+cos2 x 3+1 4 

3n + cos2 x - 3' = 3(3n + cos2 x) :::;; 3(3n + cos2 x) :::;; ~ = 9n 

for all x in [0, 3]. 

Definition. Let E be a set of real numbers and {f..}:"1 a sequence, each term 
of which is a real-valued function defined on E. We say that the series L:'=1 f.. 
converges uniformly on E if the sequence of partial sums defined by 
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n 

Sn(X) = L: jj(X) 
j=l 

converges uniformly on E. 

DISCUSSION. Putting 
co 

L jj(x) = sn(x) + rn(x), 
j=l 

where 
n co 

Sn(X) = L: jj(x) and rn(x) = L: jj(x), 
j=l j=n+1 

we can reformulate in terms of series the condition (7.60) as follows: The 
series L::'=1 fn is uniformly convergent on E if for every e > 0 there exists an 
integer no (depending only on e) such that n ~ no implies 

Irn(x)1 < e 

for every x in E [we also say that the rn(x) tends uniformly to 0 on E]. 
Cauchy's criterion for uniform convergence considered in Proposition 7.52 

reformulated for series reads: For every e > 0 there exists an integer no such 
that 

Ifn+1(X) + fn+2(X) + '" + fn+k(x) 1 < e 

for all n ~ no and every k = 1,2,3, ... and every x in E. 
Finally, we note that L::'=1 fn converges uniformly on E if and only if for 

any sequence {Xn }:'=l in E the corresponding remainders 

rn(xn) 

invariably form a null sequence. This is the formulation in terms of series of a 
statement equivalent to Proposition 7.53. 

Proposition 7.58. If a series L::=1 fn converges uniformly on a set E, then the 
general term fn converges to 0 uniformly on E. 

PROOF. Let sn(x) = f1 (x) + ... + f,,(x) and S(x) = L::;'1 f,,(x). Then 

If,,(x) 1 = ISn(x) - Sn-1 (x)1 = 1 [sn(x) - S(x)] + [S(x) - Sn-1 (x)] 

::s; ISn(x) - S(x)1 + ISn-1 (x) - S(x)l. 

Let e > 0 be given. If no is chosen such that n ~ no - 1 implies 

for all x in E, then n ~ no implies Ifn(x) 1 < e for all x in E. o 

Definition. A series of functions L::'=1 Vn is said to dominate a series of func-
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tions L~l fn on a set E if all terms are defined on E and that for any x in E 
we have l/n(x) 1 ~ vn(x) for every positive integer n. 

Proposition 7.59 (Comparison Test). Any series of functions L~l/n dominated 
on a set E by a series of functions L~l Vn that is uniformly convergent on E 
is uniformly convergent on E. 

PROOF. From Proposition 7.26 (i) we know that the series L~l fn(x) con­
verges for every x in E. If F(x) = L~l fn(x) and V(x) = L~l vn(x), then 

1 [f1(X) + f2(x) + ... + fn(x)] - F(x)1 = Ifn+1(x) + fn+2(x) + "'1 

::;; Vn+1 (x) + Vn+2(X) + ... = 1 [v1 (x) + v2(x) + ... + vn(x)] - V(x)l· 

Let e > 0 be given. If no is such that n ~ no implies 

1 [V1 (x) + ... + vn(x)] - V(x)1 < e 

for all x in E, then 1 [f1 (x) + ... + /n(x)] - F(x)1 < e for all x in E. 0 

Proposition 7.60. A series of functions converges uniformly on a set whenever 
its series of absolute values converges uniformly on that set. 

PROOF. The proposition is an immediate corollary to Proposition 7.59. 0 

Proposition 7.61 (Weierstrass M-Test). If L~Jn is a series of functions 
defined on a set E, if L~l Mn is a convergent series of nonnegative constants, 
and if for every x in E we have 

Ifn(x)1 ::;; Mn for n = 1,2, 3, ... , 

then L~l fn converges uniformly on E. 

PROOF. Since any convergent series of constants (constant functions) con­
verges uniformly on any set, we have that the proposition under consider­
ation is merely a special case of Proposition 7.59. 0 

COMMENTS. The Weierstrass M-Test (see Proposition 7.61) is an extremely 
useful test for uniform convergence. It should be noted carefully, however, 
that a series L:'=l/n of continuous functions on a closed interval [a,b] of 
finite length can converge absolutely and uniformly on [a, b], yet fail the 
Weierstrass M-Test. Here is an example: On the interval [0,1] let the func­
tion fn be defined by 

1 1 
fn(x) = 0 for 0 ::;; x ::;; 2n + 1 and 2n _ 1 ::;; x ::;; 1; 

1 1 
/n(x) = n for x = 2n; 

/n(x) is defined linearly in the intervals [1/(2n + 1),1/2n] 
and [1/2n, 1/(2n - 1)]. 
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It is easy to see that the series I~l f" satisfies the following conditions: 

(a) The series is uniformly convergent on [0,1]. 
(b) Any rearrangement of the series is uniformly convergent (i.e., the series is 

uniformly and absolutely convergent). 
(c) The series L~l Mn diverges, where Mn is the upper bound of If,,(x) I as x 

ranges over the interval [0,1]. 

Definition. A sequence {f,,}~1 offunctions is said to be uniformly bounded on 
E if there is a constant M > 0 such that If,,(x) I ::;; M for all x in E and all 
n = 1,2,3, .... The number M is called a uniform bound for {In}~l' 

REMARK. If each individual function of a sequence {fn}~l is bounded on E, 
that is, if sup{ Ifn(x)l: x E E} ::;; Mn for n = 1,2,3, ... , and f" ~ f uniformly on 
E, then it is easily seen that {f,,}~1 is uniformly bounded on E. 

Proposition 7.62 (Dirichlet's Test for Uniform Convergence). Let sn(x) denote 
the nth partial sum of the series L~l an (x), with an being a real-valued function 
defined on a set E of real numbers. Assume that {Sn}~l is uniformly bounded 
on E by a constant M. Let {bn}~l be a sequence of real-valued functions which 
is monotonically decreasing in n for each fixed x in E [i.e., bn+1 (x) ::;; bn(x) for 
each x in E andfor every n = 1,2,3, ... J, and suppose that bn ~ 0 uniformly on 
E. Then the series L~l an(x)bn(x) converges uniformly on E. 

PROOF. Since bn ~ 0 uniformly on E, for any B > 0 there exists an integer j 
such that for all x in E, 

whenever n ~ j. Moreover, by the proof of Proposition 7.41, 

laj+1(x)bj+1(x) + ... + aj+p(x)bj+p(x)1 < 2Mlbj+1 (x)1 < B 

provided that p is a positive integer and x E E. The uniform convergence of 
the series L~l an(x)bn(x) on E now follows from Proposition 7.52. 0 

Proposition 7.63 (Abel's Test for Uniform Convergence). Let sn(x) denote the 
nth partial sum of the series L~l an (x), where each an is a real-valued function 
defined on a set E of real numbers. Assume that {Sn}~l converges uniformly on 
E. Let {bn}~l be a sequence of functions which is uniformly bounded on E by 
a constant K. If bn(x) is either monotonically increasing in n for each fixed x in 
E, or monotonically decreasing in n for each fixed x in E, then the series 
L~l an(x)bn(x) converges uniformly on E. 

PROOF. Let bn(x) be monotonically increasing in n for each fixed x in E, that 
is, let bn(x) ::;; bn+1 (x) for each x in E and for every n = 1, 2, 3, .... Then the 
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pointwise limit of bn on E, say b, exists. Let 

Then cn(x) is positive (or zero) and monotonically decreasing in n for each 
fixed x in E. Also, 

Ib(x)1 ::s; K 

for xEE. Hence, if n = 1,2,3, ... , 

Cn(x) ::s; 2K 

for XEE. Since {Sn}:'=l is uniformly convergent on E, there is a positive 
integer j such that 

whenever p is a positive integer and x E E. Hence, by Proposition 7.40, 

B 
laj+1 (x)cj+1 (x) + '" + aj+p(x)cj+p(x)1 < 2K Cj+1 (x) < B. 

By Proposition 7.52, L:;"l an(x)bn(x) is uniformly convergent on E. 
Also, since Ib(x)1 ::s; K for all x in E, it follows from Proposition 7.52 that 

L:;"l b(x)an(x) converges uniformly on E. The uniform convergence of 
L:;"l an(x)bn(x) on E is now a consequence of the relation 

00 00 

L an(x)bn(x) = L [b(x)an(x) - an(x)cn(x)] 
n=l n=l 

and the proof is complete. o 

Proposition 7.64 (Tannery's Theorem). Let F(x) = L:;"l vn(x), the series being 
uniformly convergent with regard to x for all positive x. Furthermore, for each 
fixed n, let 

vn(x) --+ Wn as x --+ 00. 

Then the series L:;"l Wn is convergent and 
00 

F(x) --+ L wn as x --+ 00, 
n=l 

that is, we have termwise passage to the limit 

PROOF. The proof conveniently splits into two steps. 
Step 1: We prove that the series L:;"l Wn converges. Indeed, by the uniform 

convergence of L:'=l vn(x) for all positive x, for any B> ° there exists an 
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integer N such that for all positive x we have 

I N+k I L vn(x) < 8 for k = 1, 2, 3, .... 
n=N+l 

As x -+ 00, VN+l (x) + ... + VN+k(x) -+ WN+1 + ... + WN+k' Hence, 

I N+k I L Wn ::; 8 for k = 1, 2, 3, ... 
n=N+l 

which (by Proposition 7.23) implies that L~l Wn converges. 
Step 2: The convergence of L~l Wn having been established, we make a 

fresh start. Let W = L~l Wn • Then, since the series L~l vn(x) converges 
uniformly to its sum F(x) for all positive x, and since L~l Wn converges to the 
sum W, for any 8 > 0 there is an integer N such that 

IF(X) - Jl Vn(x) I < 8 
for all positive x and 

Hence, for all positive x, 

IF(x) - WI::; IF(X) - ntl Vn(x) I + Intl Vn(X) - ntl Wnl + Intl Wn - wi 
< 28 + Intl Vn(X) - ntl Wnl· 

But as x -+ 00, each vn(x) -+ Wn and so, since N is finite, 
N N 

L vn(x) -+ L Wn · 

n=l n=l 
Hence, there exists a number K such that 

Intl Vn(X) - ntl Wnl < 8 when X> K. 

Finally, we have 

IF(x) - WI < 38 when x > K. 

But this means that F(x) -+ Was x -+ 00. 

ApPLICATION. We have 

lim - + -- + ... + - = --. ((n)n (n - 1)n (1)n) e 
n .... oo n nne - 1 

o 
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Indeed, let 

(n)" (n 1)" (1)" A" = n + -n- + ... + n . 
Then 

,,-1 ( k)" ,,-1 
A" = L 1 - - = L bk(n), 

k=O n k=O 

say. Now bk(n) is monotonically increasing in n and tends to e-k as n --. 00 so 
that 

In addition, the series 

converges, its sum being 1/(1 - e-1 ). But, when k --. 00, we have also that 
n --'00 and so, by Proposition 7.64, 

OO( ) 00 1 e lim A" = L lim bk(n) = L e-k = 1 -1 = --1 . 
" .... 00 k=O " .... 00 k=O - e e -

Lemma. Let f be a real-valued function defined on an interval [a, b]. If there 
are sequences {a,,}:;'1 and {P"}:;'1' where a < a" < x < p" < b, and a" --. x, 
p" < x as n --. 00, such that the limit 

lim f(P .. ) - f( an) 
n""" 00 13ft - CXn 

does not exist, then f is not differentiable at x. 

PROOF. We shall prove the contrapositive statement. Let f be a real-valued 
function on [a, b] which is differentiable at a point x satisfying a < x < b. Let 
{a .. }:;'1 and {P"}:;'1 be any sequences such that a < an < x < Pn < b, and 
a .. --. x, P .. --. x as n --. 00. Then 

Indeed, let A .. = (P .. - x)/{P .. - an). Then 0 < An < 1 and 

f(P .. ) - f(a .. ) _ f'(x) = A,,(f(Pn) - f(x) - f'(X») 
Pn- a.. Pn- x 

(7.72) 

The expressions within the braces both tend to zero as n --. 00 and the 
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sequences {A.n}:'=l and {I - An}:'=l are both bounded. Hence, the limit in 
(7.72) exists and the equality holds. 0 

Proposition 7.65. There exists a real-valued continuous function on ( - 00, (0) 
that is nowhere differentiable. 

PROOF. Let 

h(x) = x 

=2-x 

for 0 :s; x :s; 1 

for 1 :s; x :s; 2, 

and extend the domain of definition of h to all real x by requiring that 

h(x + 2) = h(x); 

in other words, h is periodic with period 2. It is clear that h is continuous on 
(- 00, (0). Define 

f(x) = f (~)n hWx). 
n=O 4 

(7.73) 

Since 0 :s; h(x) :s; 1 for all real x, Proposition 7.61 shows that the series (7.73) 
converges uniformly on (- 00, (0); hence, f is continuous on (- 00, (0), by 
Proposition 7.54. 

We fix a real number x and a positive integer m. There exists an integer k 
such that 

We put 

and consider the numbers 4n Pm and 4nam. If n > m, their difference is an even 
integer; if n = m, they are integers and their difference is 1; if n < m, no integer 
is situated between them. Hence, 

for n > m, (7.74) 

= 4n- m for n :s; m. 

Thus, 

or 

(7.75) 
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Since (Xm S X S 13m and since 13m - (Xm --+ 0 as m --+ 00, (7.75) shows that f is not 
differentiable at x, by the Lemma. 0 

Worked Examples 

1. The series 

00 x 
" with (X> 0 
n~l n~(1 + nx 2 ) 

is uniformly convergent on ( - 00,(0). Indeed, the largest value of x/(1 + nx2 ) 

is attained for x = I/Jn and so the given series is dominated by the conver­
gent series 

and the uniform convergence of the given series on (- 00, (0) follows by 
Proposition 7.61. 

2. The alternating series 

00 (_l)n+1 
L -'--=-2--
n=l X + n 

is uniformly convergent on ( - 00, (0) because, by Proposition 7.33, 

I 00 (- l)n+1 I 1 1 
n~m x 2 + n S x 2 + m S ;. 

3. The series 

00 (-It+1 

n~dl + x 2t 
converges uniformly on ( - 00,(0) because, for x i= 0, 

1

00 (-It+1 I x 2 x 2 1 Jm(1 + x 2 t S (1 + x 2 t = 1 + mx2 + ... <;. 
However, the series 

does not converge uniformly on ( - 00,(0) because 

00 x 2 

" - 1 for x i= 0 
n~dl + x 2t-

= 0 for x = 0 

and we know that the uniform limit of a sequence of continuous functions is a 
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continuous function (see Proposition 7.54), but here the limit function has a 
point of discontinuity at x = 0. 

4. The series 

x x x 
--+ + +". 
1 + x (1 + x)(1 + 2x) (1 + 2x)(1 + 3x) 

is not uniformly convergent on ( - 00, (0). Indeed, the nth partial sum 

x x x -- + + ". + --:----,-----
l+x (1 +x)(l+2x) (1+{n-1}x)(l+nx) 

= ( 1 - 1 ~ x) + C ~ x - 1 : 2X) + ". + C + n1_ Ix - 1 : nx) 

1 
= 1 - 1 + nx = fn(x) 

and so fn(x) ~ 1 as n ~ 00, but fn(lln) = 1. This shows that the convergence 
on ( - 00, (0) is not uniform. 

5. Consider the series 

00 ( l)n 
,,- -nx L..--e 
n=l n 

on [0, (0). Evidently, le-nxi :s:; 1 for x ;:::: 0. Since the harmonic series L lin is 
divergent, we can not apply Proposition 7.61. We can use Proposition 7.62 to 
show the uniform convergence of the given series on [0, (0) after checking 
that the partial sums of the series L:( -lte-nx are bounded. Alternately, 
Proposition 7.63 applies since the series L (-Inn is convergent and the 
bounded sequence {e-nX } is monotonically decreasing on [0,(0) (but not 
uniformly convergent to zero). 

6. Power Series 

Definition. Given a sequence {an}~o of real numbers, the series 

(7.76) 

is called a power series; the numbers an are called the coefficients of the power 
series. 

Proposition 7.66. If L~o anxn is convergent for x = xo, it is absolutely conver­
gent for every value x such that Ixl < IXol; if it diverges for x = Xl' it is 
divergent for any value of x such that Ixl > IXll· 
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PROOF. Since L:"oanxo converges, the sequence {anxO}:"o converges to zero 
by Proposition 7.21 and hence is bounded (by Proposition 7.1 or by Proposi­
tion 7.4). Thus, there is an M such that lanxol < M, for n = 0, 1,2, .... But 

lanxnl = lanXoll:J· 

Therefore, if I x/xo I = c < 1, the terms of the series L:;'o anxn are less than the 
corresponding terms of the series M(L:;'o cn ). 

From this the second part of the proposition follows easily. Suppose that 
L:"o anx~ diverges and that there were another value of x, say x = xo, with 
Ixol > IXll for which L:"o anxo converges. If this could happen, we would be 
in the following situation: There is an Xo for which the series converges and 
an Xl with IXll < IXol for which it diverges. But this contradicts the first part 
of the proposition. 0 

REMARK. It follows from Proposition 7.66 that only the following three cases 
can occur: 

(i) The power series (7.76) converges for x = 0 and no other value of x; for 
example, 

1 + l!x + 2!x2 + 3!x3 + "', 
(ii) The power series (7.76) converges for all values of x; for example, 

x 2 x 3 

l+x+-+-+'" 2! 3! . 

(iii) There is some positive number R such that, if Ixl < R, the power series 
(7.76) converges and, if Ixl > R, the power series (7.76) diverges; for 
example, 

Definition. Given a power series L:"o anxn, let S be the set of x's for which 
this series converges. Then the number R, defined below, will be called the 
radius of convergence of L:"o anxn: 

(i) R = 0 if L:"o anxn converges only for x = O. 
(ii) R = + oc; if L:;'o anxn converges for all x's. 

(iii) R = sup{ Ixl: XES} if L:"o anxn converges for some x's and diverges 
for others. The open interval (- R, R) will be called the interval of 
convergence. 

Proposition 7.67. A power series L:'=o anxn converges absolutely for all x's 
inside the interval of convergence ( - R, R) and diverges for all x's satisfying 
Ixl >R. 
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PROOF. We restrict ourselves to case (iii), for clearly if R = 0 or R = + 00 we 
have nothing to prove. 

Let XE( -R,R). Then there is an X o, Ixi < IXol < R, for which the series 
converges (this is by the definition of supremum). By Proposition 7.66, the 
power series converges absolutely at x. Hence, it converges for all such x, that 
is, all such x for which x E ( - R, R). 

Suppose now that the power series does not diverge for some xo, IXol > R. 
This means it converges for Xo. But then we have found a member of the set S 
larger than the supremum. This is a contradiction. 0 

REMARK. Proposition 7.67 makes no statement about the endpoints x = ± R 
of the interval of convergence. It can happen that a power series converges at 
neither point, or at one point and not the other, or at both. Consider the 
power series 

(B) f x n, (C) f (-It+1 x n, (D) f x;, 
n=l n n=l n n=l n 

00 X 2n+1 

(E) I (-It--· 
n=O 2n + 1 

Using the Ratio Test (see Proposition 7.32) we see that each of these five 
power series is convergent for Ixl < 1 and divergent for Ixl > 1. Series (A) is 
divergent for x = ± 1; series (D) is absolutely convergent for x = ± 1; series 
(E) is conditionally convergent for x = ± 1; series (B) is convergent for x = 
- 1 and divergent for x = 1 while series (C) is convergent for x = 1 and 
divergent for x = - 1. 

DISCUSSION. If I:,=o anxn is any power series which does not merely converge 
everywhere or nowhere but at x = 0, then there exists a unique positive num­
ber R, namely, the radius of convergence of I:'=o anxn, such that I:'=o anxn 
converges for every Ixl < R (in fact, absolutely), but diverges for every 
Ixl > R. 

Indeed, by assumption there exists at least one point of divergence, and 
one point of convergence =f. O. We can therefore choose a positive number Xo 
nearer 0 than the point of convergence and a positive number to further from 
o than the point of divergence. By Proposition 7.66, the series I:'=o anxn is 
convergent for x = X o, divergent for x = to, and therefore we clearly have 
Xo < to. To the closed interval Jo = [xo, to] we apply the method of succes­
sive bisection: We denote by J1 the left or the right half of Jo according to 
whether I:'=o anxn diverges or converges at the middle point of Jo. By the 
same rule we designate a particular half of J1 by J2 , and so forth. The 
intervals of the nested sequence of closed intervals {In} all have the property 
that I:'=o anxn converges at their left endpoint (call it xn), but diverges at their 
right endpoint (call it tn ). For the sake of argument we assume that the 
sequence {In} is infinite. The number R (necessarily positive because R ~ xo), 
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determined by the nested sequence of closed intervals {In}:'=o, is the radius of 
convergence. In fact, if x = x' is any real number for which Ix'i < R (equality 
excluded), then we have Ix'i < Xk' for a sufficiently large k, that is, such that 
the length of Jk is less than R - Ix'i. By Proposition 7.66, x' is a point of 
convergence at the same time as X k is; and indeed at x' we have absolute 
convergence. If, on the contrary, x" is a number for which Ix"l > R, then 
Ix"l > tm , provided m is large enough for the length of Jm to be less than 
Ix"l - R. By Proposition 7.66, x" is then a point of divergence at the same 
time as tm is. 

If beside R there were another number R' which had the properties 
claimed of R, then every point between Rand R' would simultaneously have 
to be a point of convergence and a point of divergence for the power series 
L:'=o anxn, but this is impossible in view of Proposition 7.66. Therefore R is 
unique. 

This proves all that was desired and shows the existence of the radius of 
convergence of a given power series. The next proposition gives both 
existence and exact value of the radius of convergence of a given power series. 

Proposition 7.68. Let {an}:,=o be a sequence of real numbers and let 

Y = lim vTaJ· 
n .... oo 

(7.77) 

(i) If Y = 0, then L:'=o anxn converges absolutely for all real numbers x. 
(ii) If Y = L> 0, then L:'=o anxn converges absolutely for Ixl < IlL and 

diverges for Ixl > IlL. 
(iii) If Y = + 00, then L:'=o anxn converges only for x = ° and diverges for all 

other real numbers x. 
(iv) The number llY is the radius of convergence of L:'=o anxn, that is, if 

R = lly, then L:'=o anxn converges for every x such that - R < x < R. 

PROOF. The proposition is a mere reformulation of Proposition 7.31. D 

REMARKS. The radius of convergence of L:'=o anxn is also given by 

I. I an I 1m --
n .... oo an+1 

(7.78) 

provided that this limit exists; this fact is a simple consequence of the Ratio 
Test (see Proposition 7.32). Frequently, it is more convenient to use (7.78) 
than (7.77) to determine the radius of convergence of the power series 
L:'=o anxn. Nevertheless, formula (7.77) is always applicable, while formula 
(7.78) is only applicable if the limit in (7.78) exists, be it finite or infinite. The 
power series 

1 + (i) + (iY +(iY +(iY +"', (7.79) 
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where 

(1)2n-l (1)2n 
a2n- 1 = "2 and a2n = 4 ' 

has radius of convergence R = 2 in terms offormula (7.77). Formula (7.78) is 
clearly not applicable to determine the radius of convergence of the power 
series (7.79) because limn .... 00 lan/an+11 does not exist in the case of series (7.79). 

Proposition 7.69. Suppose that the power series I:'=o anxn converges for Ixl < 
R. Then I:'=o anxn converges uniformly on the closed interval [-R + 15, 
R - 15], where 15 is any assigned positive number less than R. 

PROOF. Let 15 > 0 be given. For Ixl :5: R - 15, we have 

lanxnl :5: lan(R - btl; 
and since 

converges absolutely by Proposition 7.67, Proposition 7.61 shows the uni­
form convergence of I:'=o anxn on [ - R + 15, R - 15]. 0 

REMARK. In case the interval of convergence extends to infinity, the power 
series will be absolutely convergent for every value of x, but it need not be 
uniformly convergent on ( - 00, (0). However, it will be uniformly convergent 
on any interval [ - b, b], where b is a (finite) real number; a case in point is the 
power series 

Proposition 7.70 (Abel's Limit Theorem). We have the following: 

(i) If b"'=o ak converges, then Ik=o akxk converges uniformly on [0,1]. 
(ii) If Ik=o ak converges to Land f(x) = Ik=o akxk, then limxt 1 f(x) = L. 

PROOF. Given 6 > 0 we may choose no such that 

Ik=t+l akl < 6 

provided that m, n ~ no. That is, 

-6 < am+1 + am+2 + ... + an < 6 

for m, n ~ no. If 0 :5: x :5: 1, then Abel's Lemma (see Proposition 7.40), applied 
to {adk'=m+l and {xk}k=m+l' gives 

-6Xm+1 < am+1Xm+1 + am+2 Xm+2 + ... + anxn < 6X m+1 (7.80) 
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for m, n ~ no and 0 ~ x ~ 1. If f,,(x) = L~o akx\ for 0 ~ x ~ 1, then (7.80) 
implies that If,,(x) - fm(x)1 < 8 for m, n ~ no, and 0 ~ x ~ 1. By Proposition 
7.52, the claim under part (i) now follows. 

To verify part (ii), we use the fact that L~o akxk converges uniformly on 
[0,1], established in part (i), and so f is continuous on [0,1] (by Proposition 
7.54). Thus, the one-sided limit limxt 1 f(x) = f(l) = L. D 

Lemma. Let {Un }:'=1 and {Vn }:'=1 be sequences of positive real numbers, the first 
sequence being bounded above, and in the second Vn --+ 1 as n --+ 00. Then 

lim UnVn = lim Vn . (7.81) 
n-oo n-co 

PROOF. It is clear that the sequence {UnVn }:'=1 is a positive sequence bounded 
above. If possible, let 

Take 28 = S' - s, and let K = sup{ Un: n = 1,2, ... }. Since Vn --+ 1, as n --+ 00, 

there is a positive integer k1 such that 

Thus, 

Therefore, 

But, since limn-+ 00 Un = s, there is a positive integer k2 such that 

8 
Un < s +.2 for n ~ k2 • 

Therefore, Un Vn < s + 8 for n ~ k, where k = max {k 1, k2 }. But, since 

lim UnVn = s', 
n-+oo 

we know that UnVn > s' - 8, for an infinite number of values of n. Therefore, s' 
can not be larger than s. 

Similarly, it can be shown that s' is not less than s; hence, s' = s. D 

Proposition 7.71. The intervals of convergence of the two power series 

ao + a1x + a2x2 + a3x3 + ... and a1 + 2a1x + 3a3x2 + ... 
are the same. 
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PROOF. Since .:tn --t 1 as n --t 00 (by the Lemma preceding Proposition 1.8 in 
Chapter 1), we have that 

n-+oo n-+oo 

by (7.81). The claim now follows by Proposition 7.68. D 

Proposition 7.72. Let the power series L~o anxn have ( - R, R) for its interval 
of convergence and define 

00 

f(x) = L anxn for -R < x < R. 
n=O 

Then 

(i) 

(ii) 

(iii) 

Ix f(t)dt = ao(x - Xo) + f ~(xn+l - XO+l), 
Xo n=ln + 1 

for - R < Xo < x < R; 

f'(x) = a1 + 2a2x + 3a3X2 + ... , 

where x is any point in the open interval ( - R, R); 

00 

f(k)(X) = L n(n - 1)··· (n - k + 1)anx n- k 
n=k 

for any XE( -R,R) and 

where k = 0, 1, 2, .... 

(7.82) 

PROOF. Part (i) follows from Propositions 7.67 and 7.57. Part (ii) is a con­
sequence of Propositions 7.71 and 7.56. Part (iii) is a corollary to part (ii). 
This completes the proof. D 

REMARKS. Formula (7.82) shows that the coefficients of the power series 
development of f are determined by the value of f and of its derivatives at a 
single point. Also, if the coefficients are given, the values of the derivatives of 
f at the center of the interval of convergence can be read off immediately 
from the power series. Note, however, that although a function f may have 
derivatives of all orders, the series L~o anxn, where an is calculated by (7.82), 
need not converge to f(x) for any x #- O. In this case,! can not be developed in 
a power series of the form f(x) = L:'=o cnxn. For if we had f(x) = L~o cnxn, 
then 

n! Cn = pn)(o) 

would follows, implying that Cn = an. The function 

f(x) = e-1/x2 for x #- 0, 

= 0 for x = 0 
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is a case in point; it has derivatives of all orders at x = ° and pn)(o) = ° for 
n = 1,2, ... (see Example 8 following Proposition 4.10 in Chapter 4). 

Proposition 7.73 (Uniqueness Theorem for Power Series). If I~o anxn and 
I~o cnxn converge on some interval (- r, r), r > 0, to the same function f, 
then 

an = Cn for n = 0, 1, 2, .... 

PROOF. By (7.82) we have n! an = pn)(o) = n! Cn for n = 0, 1,2, ... . 0 

Proposition 7.74 (Multiplication Theorem for Power Series). Iff and g are 
given on the open interval ( - r, r) by the power series 

00 00 

f(x) = I anx n and g(x) = I bnxn, 
n=O n=O 

then their product fg is given on this interval by the series I:=o cnxn, where the 
coefficients {cn} are 

n 

Cn = I akbn- k for n = 0, 1, 2, .... 
k=O 

PROOF. We have seen in Proposition 7.67 that if Ixl < r, then the series giving 
f(x) and g(x) are absolutely convergent. If we apply Proposition 7.50, we 
obtain the desired conclusion. 0 

DISCUSSION. Consider the power series 

(7.83) 

and 

(7.84) 

having radii of convergence different from zero, and suppose that the smaller 
of these is denoted by r. As we know already, these series can be added, 
subtracted, and multiplied; the resulting series are convergent for Ixl < rand 
can be written as power series: 

00 00 00 

I anxn ± I bnxn = I (an ± bn)xn, 
n=O n=O n=O 

00 00 00 

I anxn. I bnxn = I (aobn + a1 bn- 1 + azbn- z + ... + anbo)x n. (7.85) 
n=O n=O n=O 

Assuming that series (7.84) is identical with series (7.83), we see that a 
power series may be multiplied by itself in the interior of its interval of 
convergence as often as we please; we get 
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and generally, for every positive integral exponent m, 

(7.86) 

where the coefficient a~m) depends on the coefficients ao, a l , ... , an of the 
initial series (7.83), and comes about, as (7.85) shows, by addition and multi­
plication. Moreover, the series 

00 

L a~m)xn for m = 2, 3, ... 
n=O 

are absolutely convergent as long as L:'=o anxn itself is. 
We now consider the substitution of one power series into another power 

series. Let y = f(x) be a function which can be represented by the power 
series L:'=o anxn in the open interval (- R, R). Moreover, let z = g(y) be a 
function which can be represented by the power series L~=o bmym in the open 
interval (- r, r). 

If laol = I f(O) I < r, then If(x) I is smaller than r for sufficiently small x 
(because f is differentiable and hence continuous on its interval of conver­
gence) and so the functional composition z = g[f(x)] has meaning for at 
least all those x satisfying Ixl < Rand L:'=o lanllxln < r. 

Under the single condition that laol < r we can write the function z = 
g [f(x)] in a neighborhood of the point x = 0 as a power series in x, if in the 
series L~=o bmym we substitute for y the power series L:'=o anxn and then 
rearrange the terms in increasing powers of x. The details of proof for this 
result will be taken up in the next proposition. 

Proposition 7.75 (Substitution Theorem for Power Series). Let 
00 

f(x) = L anxn for Ixl < R, 
n=O 

00 

g(y) = L bmym for Iyl < r, 
m=O 

and 

laol < r. 

Then thefunction F(x) = g[f(x)] is defined and representable as a power series 
L:'=o Anxn for at least all those x for which 

00 

Ixl < Rand L lanllxln < r. (7.87) 
n=O 

This is certainly the case for some neighborhood of x = O. 
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PROOF. The last claim, namely, that (7.87) certainly holds for all x in a 
sufficiently small neighborhood of x = 0, follows simply for reasons of 
continuity: 

00 

L lanllxln -+ laol < r as x -+ O. 
n=O 

By repeated multiplication of the power series L~o anxn with itself we get 

C~O anxn r = n~o a~m)xn (7.88) 

with 

(7.89) 

where the symbol Lkl +k 2 +" '+km=n indicates that the summation is to be ex­
tended over all nonnegative integers kl' k2' ... , km whose sum is n. We also 
adopt the notation in (7.88) for m = 0 and m = 1. In the same way we have 

C~O lanllxlnr = n~o o:~m)lxln 
with 

Since o:~m) comes about by addition and multiplication of laol, lall, ... , lanl in 
the same way as a~m) comes about by addition and multiplication of ao, a l , 

... , an' it is clear that I a~m)1 ~ o:~m). For brevity we put 

00 

L lanllxln = p 
n=O 

and assume that p < r. We have for every integer M :?: 0: 
M M 00 

L la~m)llxln ~ L o:~m)lxln ~ L C(~m)lxln = pm, 
n=O n=O n=O 

00 M 00 

L Ibmlla~m)llxln ~ L Ibmlpm ~ L Ibmlpm. 
m.n=O m=O m=O 

By the Main Rearrangement Theorem (see Proposition 7.49) it therefore 
follows that 

00 co 00 00 

F(x) = L L bma~m)xn = L L bma~m)xn. 
m=On=O n=Om=O 

We therefore have to set 
00 

An = L bma~m). 
m=O 

This completes the proof. o 
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COMMENT. Particularly important is the case ao = O. Then the coefficients An 
are computed from the coefficients an and bm in terms of finite sums rather 
than infinite series. In fact, if ao = 0, then a~m) = 0 for all m > n, as can be seen 
from the definition of a~m) in (7.89) (in any system kl' k2' ... , km of non­
negative integers whose sum equals n with n < m, there must be at least one 
0). Thus, 

n 

An = L bma~m) (in the case ao = 0). 
m=O 

Proposition 7.76 (Taylor's Expansion Theorem). Suppose that 

OCJ 

f(x) = L cnxn 
n=O 

with the power series converging for Ixl < R. If -R < a < R, then 

OCJ pn)(a) 
f(x) = L -,-(x - at 

n=O n. 

for all x such that I x - a I < R - I a I and we say that f can be expanded in a 
power series about the point x = a which converges in Ix - al < R - lal. 

PROOF. We observe that 

This is the desired expansion about the point x = a. To see its validity, we 
note that we have used Proposition 7.75 and merely substituted into the 
power series L:'=o cnxn the simple power series a + (x - a) with the variable 
of expansion (x - a); the resulting expansion will be valid for at least those x 
which satisfy 

lal + Ix - al < R. 

Finally, the form of the coefficients in (7.90) follows from part (iii) of 
Proposition 7.72. 0 

DISCUSSION. An important example for the application of the Substitution 
Theorem for Power Series (see Proposition 7.75) is the division of power 
series. 

Let the term ao of the power series L:'=o anxn be different from zero; we can 
then writeL:'=o anxn in the form 

ao (1 + at x + a2 x 2 + ... + an xn + ... ) = ao(1 + y) 
ao ao ao 
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provided we set 

a l a2 2 an y = - X + - X + ... + - xn + .... 
ao ao ao 

Thus, 

1 1 1 

1 = -(1 - y + y2 - ... + (-1rym + ... ). 
ao 

The last series plays the role of the series L:=o bmym appearing in Proposition 
7.75; here r = 1. By Proposition 7.75, the expression under consideration can 
be expanded in powers of x: 

1 
---------- = Co + C1X + ... + cnxn + ... 
ao + a1x + ... + anxn + ... 

holds at least sufficiently small x, for example, for those which satisfy the 
inequality 

I:: I·!X! + I:: 1·!X!2 + ... + I:: I·!x!n + ... < 1. 

We consider a second power series 

ho + h1x + h2X2 + ... + hnxn + ... 

and suppose that it has a radius of convergence different from zero. Then the 
quotient 

ho + hi X + ... + hnxn + .. . 
ao + a l x + ... + anxn + .. . 

can be replaced by the product 

(ho + h1x + ... + hnxn + .. ·)(co + C1x + ... + cnxn + ... ) 

for sufficiently small x and can therefore be represented as a power series 

do + d1x + d2x2 + ... + dnx" + .... 

The coefficients of this series can be determined most conveniently by com­
mencing with the relation 

(ao + a l x + ... + anxn + ... )(do + d l x + ... + dnxn + ... ) 

= ho + h1x + ... + hnxn + ... 

in which the coefficients ai and hk are known. Multiplying the power series on 
the left-hand side of the foregoing equation by the general rule 

00 00 00 

L anxn. L dnxn = L (aodn + a1dn- 1 + a2dn- 2 + ... + ando)xn 
n=O n=O n=O 
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and comparing coefficients of like powers of x, we get the infinite system of 
equations 

aodo = ho, 

aOd 1 + a1do = hl' 

aodz + a1d1 + azdo = hz, 

Since ao "# 0, the first equation yields do = ho/ao, the second equation yields 

d _ hl - a1do aohl - a1ho 
1 - ao a6 

and so on. After having found the n coefficients do, d1, ... , dn- 1, the (n + 1 )th 
equation which contains the single unknown dn puts us into a position to 
determine the value of dn- In this manner we can determine (in fact, uniquely) 
the coefficients of the power series representing the quotient (7.91). 

7. Some Important Power Series 

The following series, convergent to the given function in the indicated inter­
vals, are frequently employed in practice. 

m(m - 1)··· (m - n + 1) 
1. (a + x)m = am + mam-1x + ... + , am-nxn + "', 

n. 

where -Ial < x < lal; 

x(lna) x 2 (lna? xn(lnat 
2. an = 1 + -- + + ... + + ... 

1! 2! n!' 

where - 00 < x < + 00; 

X z xn 
3. eX = 1 + x + - + ... + - + .. . where - 00 < x < + 00; 

2! n! ' 

x 3 X 2n+ 1 
4. sin x = x - - + ... + ( - 1 t + ... , 

3! (2n + I)! 
where - 00 < x < + 00; 

X Z X4 x2n 
5 cos x = 1 - - + - - ... + ( - 1)" -- + ... 

. 2! 4! (2n)!' 
where -00 < x < +00; 

x 3 2x 5 17x7 62x9 

6. tan x = x + 3" + 15 + ill + 2835 + ... , 
n n 

where -- < x < -' 
2 2' 
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where -n < x < n except for x = 0; 

1· x 3 1·3· x 5 1·3·5· X 7 

8. sin-1 x=x+T3+ 2.4.5 + 2.4.6.7 + ... 

1·3·5··· (2n - 1)x2n+1 
+ + ... where -1 < x < 1·, 

2·4·6···(2n)(2n + 1) , 

x 3 x 5 X 7 X 2n + 1 . 
9 tan-1 x = x - - + - - - + ... + (-1)"-- + ... 
· 3 5 7 2n + 1 ' 

where -1 :::; x :::; 1; 

x3 X 2n+ 1 

10 sinh x = x + - + ... + + ... where - 00 < x < + 00; 
· 3! (2n + I)! ' 

x 2 X4 x2n 
11 cosh x = 1 + - + - + ... + -- + ... where - 00 < x + 00· 

· 2! 4! (2n)! ' , 

x 3 2x5 17x7 
12 tanhx=x--+----+··· 

· 3 15 315 ' 
n n 

where -- < x < -. 
2 2' 

1 X x 3 2x5 x 7 

13. coth x = ~ + "3 - 45 + 945 - 4725 + ... , 

where -n < x < n except for x = 0; 

x 3 1 . 3x5 1 . 3 . 5x 7 

14. sinh -1 x = X - 2. 3 + 2. 4 . 5 - 2· 4 . 6 . 7 + ... 

1 . 3 . 5 ... (2n - 1 )x2n+1 
+ ( -1)" + ... where -1 :::; x :::; 1; 

2·4·6···(2n)(2n + 1) , 

x 3 x 5 X 2n+1 
15 tanh-1x=x+-+-+···+--+··· where-1<x<1· 

· 3 5 2n + l' , 

x 2 x 3 xn 
16. In(1 + x) = x - "2 + 3 - ... + (-1)"-; + ... , where -1 < x :::; 1; 

17.1nx=2 --+- -- +- -- + ... (
X + 1 1 (x - 1)3 1 (x - 1)5 
x+1 3 x+1 5 x+1 

+-- -- + ... where x >0· 1 (x 1 )2n+l ) 

2n+1 x+1 ' , 

1 + x ( x 3 x 5 X 2n+1 ) 18. In--=2 x+-+-+···+--+··· , where -1 <x< 1; 
1 - x 3 5 2n + 1 
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x + 1 (1 1 1 1 ) 
19. In x-I = 2 x + 3x3 + 5x5 + ... + (2n + l)x2n+1 + ... , 

where x < -lor x > 1; 

20. sinh x + sin x = 2(i- + ~; + ~; + .. -), where - 00 < x < + 00; 

21. sinh x - sin x = 2 (x3: + x: + Xl: + ... ), where -00 < x < +00; 
. 7. 11. 

22. cosh x + cosx = 2(1 + :; + ~; + ... ). where -00 < x < +00; 

23. cosh x - cos x = 2(~; + ~; + ~~~ + .. ). where - 00 < x < + 00; 

23. tanh x + tanx = 2( x + 2t55 + ~~~; + .. -), where - 00 < x < + 00; 

(
X3 17x7 1382xll ) 

25. tanh x - tan x = -2 3 + 315 + 155925 + ... , 

where -00 < x < +00. 

DISCUSSION. We shall now indicate how some of the foregoing expansions 
come about. In this connection, the matters presented in Section 2 of Chapter 
4 are of particular interest. 

Let f be a function having derivatives of any order in a neighborhood of 
the point x = o. We consider the numbers 

1 a = -f(k)(O) 
k k! ' k = 0,1,2, ... 

and formally write 
00 00 1 

s(x) = L ak xk = L - f(k)(O)xk, 
k=O k=ok! 

(7.91) 

ignoring for the moment the convergence of the series, that is, ignoring for 
the moment the existence of the sum function s. By Proposition 4.11 we have 

n 

f(x) = L akxk + Rn, (7.92) 
k=O 

where Lk=O akxk is the Taylor polynomial of order n for f at the point 0 and 
Rn denotes the remainder (which is to be formed in terms of the function f). 
Comparison of (7.91) and (7.92) gives the following: 

Iffor Ixl < p, p > 0, we have 

lim Rn = 0, (7.93) 
n--oo 
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then 

s(x) == f(x), 

that is, the power series 

represents on its interval of convergence the function f. 
Indeed, by Proposition 7.73, the power series representation is unique. To 

see that condition (7.93) is not just necessary, but also sufficient for the 
convergence of the series (7.91), we note that (7.93) means that for any 8 > 0 
there is some N > 0 such that I Rn I < 8 provided n > N. But then 

lan+1 x n+1 + ... + an+pxn+PI = IRn - Rn+pl ~ IRnl + IRn+pl < 28 

for all n > N and for arbitrary p > O. 
The series 

00 1 
f(x) = L - j<k)(O)Xk 

k=ok! 

is called the Maclaurin series off. More generally, the series 

00 1 
f(x) = k~O k! f(k)(xo)(x - XO)k 

(7.94) 

(7.95) 

is called the Taylor series off at the point Xo. In the latter case of course we 
are dealing with a function having derivatives of any order in a neighbor­
hood of the point x = Xo' 

We note that condition (7.93) is not only necessary and sufficient for the 
convergence of the series (7.94) and (7.95), but also that the given function f is 
represented by the series. 

A quick check of Section 2 of Chapter 4 will show that we have already 
proved a number of power series representations of elementary functions 
listed at the beginning of this section by proving that the remainder Rn tends 
to 0 with n -+ 00. 

An efficient way to get the Taylor and Maclaurin series for elementary 
functions is to obtain a set of basic expansions only and then use the mani­
pulative techniques of the last section to derive other expansions from the 
basic ones. For example, the series 

1 
-- = 1 - t + t 2 - t 3 + ... 
1 + t 

has radius of convergence R = 1. Therefore, for Ixl < 1, integration from 0 to 
x gives 

x 2 x 3 
In(1 + x) = x - - + - - ... for -1 < x < 1 

2 3 
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and Proposition 7.70 gives that 

x 2 x3 
In(1 + x) = x - - + - - . . . for -1 < x ~ 1. 

2 3 

As a second example, note that the series 

1 
-- = 1 - t 2 + t 4 - t 6 + ... 
1 + t 2 

has radius of convergence R = 1 and so, for Ixl < 1, integration from 0 to x 
gives 

x3 X S x7 
tan- l x = x - - + - - - + ... for -1 < x < 1. 

357 

By Proposition 7.70 we therefore get 

x3 X S x7 
tan -1 x = X - - + - - - + ... for - 1 ~ x ~ 1. 

357 

As a third example, note that the series 

1 1·3 1·3·5 
(1 + t)-1/2 = 1 - -t + _t2 - __ t 3 + ... 

2 2·4 2·4·6 

has radius of convergence R = 1. Therefore, the same is true for 

1 1·3 1·3·5 
(1 - t 2t l/2 = 1 + -t2 + _t4 + --t6 + .... 

2 2·4 2·4·6 

From this, by integration from 0 to x, where Ixl < 1, we find 

1 x 3 1· 3 X S 1·3·5 x 7 
sin- l x = x + - - + - - + --- + ... for -1 < x < 1. 

2 3 2·4 5 2·4·6 7 

Now, applying Proposition 7.70, we get 

1 x3 1 . 3 X S 1 . 3 . 5 x 7 

sin- l x = x + 2" 3 + 2.4 5 + 2.4.6 7 + . . . for -1 ~ x ~ 1. 

As a fourth example we show that 

x3 2xs 17x7 
tan x = x + - + - + -- + .... 

3 15 315 

Indeed, let 

noting that f(x) = tan x is an odd function, that is, f( -x) = -f(x). Now, 
differentiation and the use of the identity 

sec2 x = 1 + tan2 x 
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give 

a l + 3a3x2 + 5a5 x4 + 7a7X6 + 9a9XB + .. . 

= 1 + CalX + a3x 3 + a5 x 5 + a7x 7 + ... ]2 

= 1 + aix2 + 2ala3x4 + (2a l a5 + a~)x6 + .... 

Equating coefficients of like powers products the recursion formulas 

5a 5 = 2al a3, 

7a 7 = 2al a5 + a~, 
and so on. Hence, a l = 1, a3 = 1/3, a5 = 2/15, a7 = 17/315, and so on. 

8. Miscellaneous Examples 

EXAMPLE 1. We have 

I = f 1 In(1 + x) dx = n2. 
o x 12 

Indeed, 

In(1 + x) 1 1 1 ---'------'- = 1 - -x + _x 2 - ... + (-1t-l -x n - l + ... 
x 2 3 n 

on the entire interval [0, 1]. Termwise integration gives 

1 1 1 OC! 1 
1= 1 - - + - -'" + (-lrl- + ... = I (-1rl-. 

22 32 n 2 n=l n 2 

But 

(see Example 3 of Section 4 in Chapter 1) and so 

OC! (_1)n-l OC! 1 OC! 1 n 2 

I = I 2 = I - - 2 I -2 = -. 
n=l n n=l n2 n=l (2n) 12 

EXAMPLE 2. We have 

Indeed, 

OC! (-It 1 n L --= -(ln2) +-. 
n=O 3n + 1 3 3j3 

483 
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~ (-1)" 1. ~ (-1)" 3n+1 
1... ~~ = 1m L., ~~x 

n=O 3n + 1 x~I-0 n=O 3n + 1 

Ix 00 IX 1 
= lim L (_I)"x 3n dx = lim ---3 dx 

x~I-0 0 n=O x~1-0 0 1 + x 

= lIm -In +-tan ---+--. (1 (x + 1)2 1 -1 2x - 1 n) 
x~I-0 6 x 2 - X + 1)3 )3 6)3 
1 n 

= 3(ln 2) + 3)3· 

EXAMPLE 3. To sum the series 

00 ( _1)nx2n 
n~o -:-( n-+---:-l )-,--( n-+--::C-3) 

we start with the known series 

00 (_1)n+lxn 00 (_l)nxn+l 
In(1 + x) = L = L ---

n=1 n n=O n + 1 

Multiplying through by x, we obtain 

00 (_I)"xn+3 
xln(1 + x) = L ~-~ 

n=O n + 1 

Integration yields 

or 

f ro (_I)nxn+3 
In[x(1 + x)] dx = C + L ( 

n=O n + l)(n + 3) 

1 1 00 (_1)"xn+3 
_(x 2 - 1)ln(1 + x) - -(x - 1)2 = C + L ---~ 
2 4 n=O (n + l)(n + 3) 

Putting x = 0, we find that C = -t and so 

1 2 12 1 00 (_I)"xn+3 
-(x - l)ln(1 + x) - -x + -x = L c-----
2 4 2 n=O (n + l)(n + 3) 

Dividing by x 3, excluding x = 0, gives 

x 2 - 1 1 1 00 (-I)"xn 
--In(1 +x)--+-= L . 

2x 3 4x 2X2 n=O (n + l)(n + 3)' 

and, finally, replacing x by x 2 , we obtain 

x4-1 1 1 00 (_1)"x2n 
--In(l+x2)--+-= L forO<lxl<l, 

2x 6 4x 2 2X4 n=O (n + l)(n + 3) 

and we have what we set out to do. Note also the result that the left member, 
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near x = 0, is an indeterminate form, as x -+ 0, with limit i (the n = ° term 
on the right). 

EXAMPLE 4. If Sr denotes the sum of the squares of the first r positive integers, 
then 

Sl S2 sn 17e 
l! + 2! + ... + n! + .. , = 6' 

Indeed, since (see Example 4 of Section 4 in Chapter 1) 

12 + 22 + .. , + n2 = in(n + 1)(2n + 1), 

we see that 

f Sn = ~ f n(n + 1)(2n + 1) 
n=l n! 6 n=l n! 

and therefore it will be sufficient to show that 

f n(n + 1)(2n + 1) = 17e. 
n=l n! 

We do this now by starting with 

Multiplying both sides by x we get 

ao xn+1 
xeX = L --. 

n=O n! 

Next, we differentiate twice with respect to x and obtain 

eX(2 + x) = f n(n + 1)xn- 1 

n=O n! 

Replacing x by x 2 , we obtain 

ao n(n + 1)x2n- 2 
eX2(2 + x 2 ) = L --'-----'---

n=O n! 

Multiplying both sides of the foregoing equation by x 3 gives 

X2(2 3 5) ~ n(n + 1)X 2n+1 
e x +x =L.,. , 

n=O n. 

Differentiation with respect to x gives 

X2(6 2 9 4 2 6) _ ~ n(n + 1)(2n + 1)x2n 
e x+x+x -L.,. , • 

n=O n, 

Setting x = 1, we get 
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~ n(n + 1)(2n + 1) = ~ n(n + 1)(2n + 1) 
17e= 1... 1... 

n=O n! n=1 n! 

and we have obtained what we had set out to do. 

EXAMPLE 5. We have 

111111 n 1 
S = 1 - - - - + - + - - - - - + + - - ... = - - -(In 2). 

234567 42 

Indeed, using the relation 

fl 1 
t n - 1 dt =­

o n 
for n = 1,2, 3, ... , 

we see that 

S = tl (1 - t - t 2 + t 3 + t 4 - t 5 - t 6 + + - - "')dt 

= I [(1 - t 2 + t 4 - t 6 + ... ) - (t - t 3 + t 5 - ... )] dt 

= fl (_1 _ _ t )dt = (tan-1 x _ ~In(1 + t2)) 11 
o 1 + t 2 1 + t 2 2 0 

n 1 
= "4 - 2.(ln 2). 

EXAMPLE 6. We have 

1 1 1 1 
H =--+--+--+ ... = In2 --. 

1·2·3 3·4'5 5·6·7 2 

Indeed, using the identity 

~fl t n - 1 (1 - t)kdt = --,-_---:-:-1_:-------:-c-
k! 0 n(n+1)"'(n+k)' 

with nand k denoting positive integers, we see that 

H = - (1 - t)2(1 + t 2 + t 4 + ... ) dt = - - 2 dt 1 f 1 1 f 1 (1 t)2 
2! 0 2! 0 1 - t 

1fl 1 - t 1f22-S 1 
= 2! 0 1 + t dt = 2! 1 -S - ds = In 2 - 2.' 

EXAMPLE 7. We have 

=- 1+-+-+"'+-00 1 1( 1 1 1) Jl n(n + m) m 23m 

because 
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co 1 1 i1 Xli - xb L --- dx 
n=l (n + a)(n + b) - b - a 0 1 - x 

for a > -1, b > -1, and a ~ b; taking a = 0 and b = m, we get the desired 
result on account of the relation 

1- xm 
-' -- = 1 + x + x 2 + ... + xm-1. 
I-x 

EXAMPLE 8. We have 

,1 XP-1 1 1 1 1 
Jo 1 +xqdx=p- p+q + p+2q - p+ 3q + ... , 

where p and q are positive integers, because 

x p - 1 

--= xP-1(1 - x q + x 2q - x 3q + ... ). 
1 +xq 

EXAMPLE 9. Let x> 0 and x ~ 1. Then 

and 

Inx 1 
--<­x-I - X 1/2 

Inx 1 + X 1/3 
--<-----:= x-I - x + X 1/3 . 

Indeed, we start with the expansion 

In-- = 2 t + -t 3 + _t 5 + _t7 + ... l+t ( 1 1 1 ) 
I-t 3 5 7 ' 

(7.96) 

(7.97) 

which holds if It I < 1. To verify (7.96), we put x = (1 + t)2/(1 - t)2 and note 
that (7.96) becomes 

1 1 + t 1 
-In-----:s;; 0 forO < It I < 1. 
2t 1 - t 1 - t 2 

Using the power series expansions, we get 

f (1 __ I_)t2n ~ 0 forO:S;; It I < 1, 
n=l 2n + 1 

which is evidently true. 
To verify (7.97), we set x = (1 + t)3/(1 - t)3 and observe that (7.97) becomes . ' 

i ln 1 + t _ t 2 + 3 < 0 for 0 < It I < 1. 
2t 1 - t 1 - t4 -

U lIing power series expansions, we get 

co co co t 2n 
L t4n+2 + 3 L t 4n - 3 L -- ~ 0 for It I < 1, 

n=O n=O n=O 2n + 1 
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that is, 

3 f (1 -_1_)t4n + f (1 -_3 _)t4n+2 ~ 0, 
n=O 4n + 1 n=O 4n + 3 

which is obviously true. 

EXAMPLE 10. Let p and q be real numbers, and n be a positive integer. Then 

±(p)( q )=(p+q) 
k=O k n - k n' 

Indeed, we have (1 + x)P(1 + x)q = (1 + x)p+q. If Ixl < 1, then 

and 

(1 + x)p+q = Jo (P: q)xn 

(1 + x)P(1 + x)q = C~O (:)xn)C~o (:)xn) 

n~o CtJ~) (n ~ k) ) xn. 
Since the two power series must be equal for Ixl < 1, it follows that 

±(p)( q )=(p+q) 
k=O k n - k n' 

REMARK. Since 

we have, by setting p = q = n in (7.98), 

± (n)2 = (2n). 
k=O k k 

EXAMPLE 11. We have 

Indeed, we have the following succession of identities 

4cos3 x = cos3x + 3cosx, 

4cos3 3x = cos3 2 x + 3cos3x, 

4 cos3 32 X = cos 33 X + 3 cos 32 x, 

(7.98) 
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If we multiply the first of these identities by 1, the second by ( - 3r1, the third 
by r 2 , ••• , the nth by (- 3rn, and denote by Sn the sum of the first n terms 
of the proposed series, we see that 

4Sn = 3cosx + (-3tcos3n+ 1x. 

Letting n -. 00, we get that Sn -. lcos x. 

EXAMPLE 12. We have, for Ixl < 1, 

1 2x 4x 3 8x 7 1 
--+--+--+--+'''=--. 
1 + x 1 + x 2 1 + X4 1 + x B 1 - x 

Indeed, the nth partial sum of the series 

is equal to 

In(l - x) + In(l + x) + In(l + x 2 ) + In(l + x 4 ) + ... 

In{(l - x)(1 + x)(l + x 2 )"'(1 + X 2n - 2 )} 

= In{(l - x 2 )(1 + x 2 )"'(1 + X 2n - 2
)} 

-.0 

as n -. 00 for Ixl < 1. Moreover, for Ixl :::;; p < 1, 

x < 2n p2 n-1 
1

2n 2n-1 I 

1 + x 2 " - , 

and the series L 2n p2" is convergent. Hence, the series 

2x 4x 3 8x 7 
--+--+--+ ... 
1 + x 2 1 + X4 1 + x B 

is uniformly convergent for Ixl :::;; p < 1 and, by Proposition 7.56 (reformu­
lated for series), its sum is the derivative of -In(l - x) - In(l + x), that is, 
1/(1 - x) - 1/(1 + x). The result required follows immediately. 

EXAMPLE 13. (Theorem of Stolz). Let {Xn}::"=l and {Yn}::"=l be two sequences 
of real numbers. Suppose that {Yn}::"=l is strictly increasing for all sufficiently 
large n and that Yn -. 00 as n -. 00. Then 

1· Xn l' Xn - X n- 1 1m - = 1m -"----"---''-
n-+oo Yn n-+oo Yn - Yn-1 

(7.99) 

provided that the limit on the right-hand side exists (be it finite or infinite). 
Indeed, we assume first that the limit is finite, that is, 

1. Xn - X n - 1 
1m = r, 

n-+oo Yn - Yn-1 
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where r is a finite real number. Then, for any e > 0, there exists a positive 
integer k such that, for n ~ k, we have 

1 
Xn - Xn- 1 - r 1 < ~ 
Yn - Yn-l 2 

and Yn - Yn-l > o. 

We therefore see that all fractions 

, ... , 
Yk+2 - Yk+l Yn-l - Yn-2 Yn - Yn-l 

are situated between r - e/2 and r + e/2. By Example 1 of the Worked 
Examples following Proposition 7.15, the fraction 

Xn - xk 

Yn - Yk 

must also be between r - e/2 and r + e/2 and hence 

I
_Xn"---_X..:.ck - r 1 < ~. 
Yn - Yk 2 

We now use the identity 

Xn _ Xk - rYk (1 Yk)(Xn - Xk ) --r- + -- -r 
Yn Yn Yn Yn - Yk 

and we get 

(noting that Yk/Yn --+ 0 as n --+ (0). We know already that the second summand 
on the right-hand side of the foregoing inequality is smaller than e/2 for 
n ~ k; the first summand (whose numerator is a fixed quantity) also becomes 
smaller than e/2 for n ~ n' because Yn --+ 00. Choosing n' ~ k, we see that, for 
n ~ n', 

I:: -rl < e. 

This then proves the claim for the considered special case. 
To finish the proof, we observe that the case of an infinite limit easily 

reduces to the case of a finite limit. Take, for example, the case where 

Xn - Xn- 1 
---- --+ 00 as n --+ 00. 
Yn - Yn-l 

Then for all sufficiently large n, Xn - Xn- 1 > Yn - Yn-l; hence, Xn --+ 00 with 
Yn --+ 00 and the sequence {Xn};:'=l must be strictly increasing for all sufficiently 
large n. Therefore, we can use what we have proved already and apply the 
result to the reciprocal expression, namely, Yn/xn: 
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I, Yn I' Yn - Yn-l 0 1m-= 1m = 
n-+oo Xn n-+oo Xn - X n- 1 

and we conclude that limn-+oo xn/Yn = 00, finishing the proof. 

EXAMPLE 14. If an > 0, bn > 0, the series L~=l bn diverges, and 

I. an 
1m -b =L, 

n-+oo n 

where L is finite or infinite; then 

I· al + az + ... + an L 
1m = . 

n-+oo b l + bz + ... + bn 
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Indeed, we only have to set a l + ... + an = Xn and b l + ... + bn = Yn in 
(7.99) and everything is clear. 

EXAMPLE 15. Let {tn}~=l be a sequence with (finite or infinite) limit T. If 
aI' az, ... , an are positive numbers such that 

al + az + ... + an --+ 00 as n --+ 00, 

then 

(7.100) 

Indeed, (7.100) follows from (7.99) by setting a1 tl + ... + antn = Xn and 
a l + ... + an = Yn' 

REMARK. Letting a l = a2 = ... = an = 1 in (7.100), we obtain 

I· tl + t2 + ... + tn T. 
1m = , 

n-"oo n 
(7.101) 

provided that limn-+oo tn = T, where T is finite or infinite. 
Note that (7.101) is known to us from Proposition 7.13 already in the case 

where T is finite. 

EXAMPLE 16. Let aI' a2, ... , an,'" all be positive and L~=l an be a convergent 
infinite series with sum S. Moreover, let 

b = al + 2az + ... + nan 
n n(n + 1) 

Then 

Indeed, we know from (7.101) that the sequence 
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tends to the same limit as the sequence {sn}. We put sn = IZ=l ak • Then 

~ b a1 a1 + 2a2 a1 + 2a2 + 3a3 a1 + 2a2 + ... + nan 
L.. k=-+ + + ... +--------
k=l 1·2 2·3 3·4 n(n+1) 

Thus, 

= a1 (1 __ 1 ) + 2a2 (~ __ 1 ) + ... + nan (~ __ 1 ) 
n+1 2 n+1 n n+1 

na1 (n - 1)a2 an =--+ + ... +--
n+1 n+1 n+l 

Sl + S2 + ... + Sn 

n + 1 

Sl + S2 + ... + Sn 1 

n 1 + lin· 

EXAMPLE 17 (Carleman's Inequality). Let a1, a2, ... , an' ... all be positive and 
I;7=l an be a convergent infinite series with sum S. Moreover, let 

gn = yla1a2···an 

and the infinite series I;7=l gn have sum U. Then 

U < eS. 

Moreover, e is the best possible constant in (7.102). 

(7.102) 

Indeed, let bn be as defined in Example 16. We have, by Proposition 4.17, 

But 

and so 

Thus, 

1 n + 1 
gn = yla1a2···an = nGV"a1·2a2···nan::;; nG bn" 

V n ! V n ! 

1 + ~ 1 + ~ . .. 1 + ~ = < en ( 1)1 ( 1)2 ( l)n (n + It 
1 2 n n! 

n + 1 
nG <e. 
Vn ! 

n n 

L gk < e I bk , 
k=l k=l 

and by letting n --+ 00 we deduce that the infinite series I;7=l gn converges 
(because, by Example 16, I;7=l bn = S), and that its sum U can not exceed 
eS. 

To verify that e is the best possible constant in (7.102), we write 
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1 
a =­

n n for n = 1, 2, ... , m, 

= 0 for n > m; 

we then have to prove that 

But 

L::'=l gn 
L::'=l an 

m 1 
Ln=l nl:l yn: 
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(7.103) 

and since L~=l (lin) is divergent, by Example 14, if ml:::;;J tends to a limit 
as m --+ 00, the right-hand side of(7.103} tends to the same limit. However, we 
know from Example 10 of the Worked Examples following Proposition 7.15 
that 

lim :::;;J = ~ 
n-oo m e 

and so ml:::;;J --+ e as m --+ 00, completing the proof. 

EXAMPLE 18 (Bendix son's Test for Uniform Convergence). If IL::'=o f:(x} I is 
less than a fixed number G at all points of an interval (a, b) offinite length and 
for all values of m, then if L~=of,,(x} converges at all points of (a, b), it 
converges uniformly. 

Indeed, divide the interval into j subintervals each oflength L = biG, where 
b < !e, e being an arbitrarily small positive number. Next, find m so that at 
the ends of each subinterval 

m+p 
g(xr} = L f,,(xr}, p = 1,2,3, ... , 

n=m+l 

is in absolute value less than b. This can be done because the series converges 
at each of these points, and they are finite in number (j + I). Now if x is any 
point of the interval the distance to the nearest end of a subinterval (say x r ) 

is not larger than L12; hence, 

Ig(x} - g(xr}1 < (~>2G) = b, 
because Ig'(x}1 < 2G. Thus, 

Ig(x}1 < Ig(xr}1 + b < 2b < e, 

and so the test for uniform convergence is satisfied. 
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EXAMPLE 19. Let Un! 0 and Ul + U2 + ... + Un ~ 00 as n ~ 00. Then 

provided that the limit on the right-hand side exists. 
[Observe that we are not assuming that limn .... oo an exists and hence (7.100) 

does not apply; indeed, the foregoing result is of special value because it does 
not assume the existence ofthe limit limn .... oo an as we shall see in Example 20.] 

Indeed, put a 1 + a2 + ... + an = nAn and assume that An ~ A as n ~ 00. 

Then 

= Alul + (2A2 - Adu2 + ... + [nAn - (n - I)An- l ]un 

= Al(Ul - u2) + 2A2(U2 - u3 ) + ... + nAn(un - un+tl + nAnun+1' 

Letting Cn = n(un - un+l ) and noting that 

we get 

alul + a2u2 + ... + anUn = Alcl + A2C2 + ... + Ancn 

+ An{(Ul + U2 + ... + un) (7.104) 

- (c l + C2 + ... + cn)}· 

Since {un} is decreasing, Cn is positive. Moreover, Cl + C2 + ... + cn becomes 
arbitrarily large. Indeed, if L is any large number, we can determine k so that 
Cl + C2 + ... + Ck exceeds L. And then we can determine n so that 

holds. These two consecutive determinations are possible since 

Ul + U2 + ... + Un ~ 00 and Un! 0 as n ~ 00. 

Noting that {un} is decreasing, we have 

C l + C2 + ... + Cn > U l + U2 + ... + Uk + (n - k)un+1 - nun+1 , 

that is, 

Hence, by (7.99), 

The second part on the right-hand side of(7.104) therefore consists of a factor 
which converges to zero, multiplied by 
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C1 + C2 + ... + Cn = 1 _ nUn+l , 
U1 + U2 + ... + Un U1 + U2 + ... + Un 

a quantity which is between 0 and 1. Hence, the considered expression tends 
to zero while the first part oil the right-hand side of (7.104) converges to A. 
Thus, 

I· alul + a2u2 + ... + anun A 
1m = . 

n-ao U1 + U2 + ... + Un 

EXAMPLE 20 (Theorem of Cesaro). The relative frequency of positive and 
negative terms in a conditionally convergent series 2:>:l(n for which I (l(n I dimin­
ishes monotonically is subject to the following: The limit, if it exists, of the 
ratio Pn/Qn of Pn, the number of positive terms, to Qn' the number of negative 
terms (l(k' for k ::; n, is necessarily 1. 

Indeed, let 

an = 1 if (l(n is positive, 

= -1 if (l(n is negative, 

and denote by Un the absolute value of (l(n. Then 

(1(1 + (1(2 + (1(3 + ... = a1 U 1 + a2 u2 + a3 u3 + .... 
The series U1 + u2 + u3 + ... is divergent and un! 0 as n --+ 00. ay Example 
19, 

provided the first limit exists. Noting that a 1 + a2 + ... + an equals the excess 
of the number of positive terms over the negative terms, we see that the limit 
of the ratio of the two numbers satisfies 

I· n + (a 1 + a2 + ... + an) I· 1 + (1/n)(a 1 + a2 + ... + an) 1 
1m = 1m = 

n-ao n - (a 1 + a2 + ... + an) n-ao 1 - (l/n)(a 1 + a2 + ... + an) , 

that is, the frequency of positive terms and negative termS is asymptotically 
the same. 

EXAMPLE 21 (Theorem of Tauber). Suppose that the power series L::'=o anxn 
converges to f(x) for Ixl < 1 and that limn_ ao nan = O. If f(x) --+ A as x --+ 1-, 
then the series L::'=o an converges to A. 

Indeed, it is desired to estimate differences such as L~=o an - A. To do 
this, we write 

(7.105) 
N 00 

= L an(l - xn) - L anxn + {J(x) - A}. 
n=O n=N+l 
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Since 0 :=;;; x < 1, we have 1 - xn = (1 - x)(l + x + ... + X n- 1 ) < n(l - x), 
so we can dominate the first term on the right-hand side by the expression 

N 

(1 - x) L nan' 
n=O 

By assumption, limn .... oo nan = 0; hence, by Proposition 7.13 

lim (_1 -1 f. nan) = O. 
m .... oo m + n=O 

In addition, we have the relation f(x) -+ A. 
Now let e > 0 be given and choose a fixed positive integer N which is so 

large that 

(i) IJo nan I < (N + L)e; 

(ii) lanl < N : 1 for all n ~ N; 

1 
(iii) If(xo) - AI < e for Xo = 1 - --. 

N + 1 

We shall compute the magnitude of (7.105) for this value of Nand Xo' 

From (i), (ii), (iii) and the fact that (1 - xo)(N + 1) = 1, we get 

If an I :=;;; (1 - xo)(N + 1)e + _e_ x~+1 + e < 3e. 
n=O N + 1 1 - Xo 

Hence, L::'=o an converges to A. 

EXAMPLE 22 (Theorem of Bernstein). Let f be defined and possess derivatives 
of all orders on an interval [0, r] and suppose that f and all its derivatives are 
nonnegative on the interval [0, r]. If 0 :=;;; x < r, show that 

00 j<n)(o) 
f(x) = L __ xn. 

n=O n! 

To prove this, we shall make use of formula (5.45); if 0 :=;;; x < r, then 

n j<k)(O) 
f(x) = k~O ~ + Rn , (7.106) 

where 

Rn = - j<n+l)(t)(r - t}" dt = - (1 - s)"j<n+l)(rs) ds. 1 Ir rn Ii 
n! 0 n! 0 

Since all terms in the sum (7.106) are nonnegative, 

f(r) 2:: - (1 - s)"j<n+l)(rs) ds. rn Ii 
n! 0 

(7.107) 
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Since j<n+2) is nonnegative, j<n+1) is increasing on [0, r]; therefore, if x is in 
this interval, then 

Rn :=:; x; f 1 (1 - s)"!(n+l)(rs) ds. 
n. 0 

By combining (7.107) and (7.108), we have 

Rn :=:; (~Yf(r). 
Hence, if 0 :=:; x < r, then limn_ oo Rn = O. This completes the proof. 

EXERCISES TO CHAPTER 7 

(7.108) 

7.1. Let 0 < al < a1 and define an+1 = Jan+! an for n = 1, 2, 3, .... Show that the 
sequence {aln- l } is increasing and bounded above by a1 and {a1n } is decreasing 
and bounded below by a l with both sequences tending to the common limit 
(a l ai)1/3. 

[Hint: Note that an+1, being the geometric mean between an and an+!' lies 
between an and an+l . We also have an+1Ja;:: = an+!F. = ... = al~.] 

7.2. Let 0 < A :0;; al < a1 :0;; B and define the sequence {an} as in Exercise 7.1. Show 
that 

lan+1 - ani :0;; A ! B Ian - an-t! :0;; (A ! B )"-lla1 - at! 

and deduce that {an} is a Cauchy sequence. 
[Hint: We have A :0;; an :0;; B for n = 1,2, 3, ... and a;+l - a; = an(an- l - an) 

so that 

Moreover, if n > m, 

:0;; Ian - an-t! + lan- l - an-11 + ... + lam+l - ami·] 

7.3. The sets of numbers ai' a1, a3 , ••• and bl , b2 , b3 , ••• are defined in succession by 
the relations 

an + bn 
an+! =--2-' 

2anbn 

bn+l =-+b' an n 

where 0 < b l < a l . Show that for n = 1, 2, 3, ... 

an > an+! > bn+! > bn > 0 

and that both sequences {an} and {bn} tend to the common limit~. 
[Hint: Note that bn+l is the harmonic mean between an and bn • Also observe 

that an+! bn+l = anbn = ... = al bl ·] 
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7.4. Let al = 1 and a.+l = 2(2a. + 1)/(a. + 3) for n = 1,2,3, .... Show that {a.} is 
an increasing sequence bounded below by 0 and above by 2 and tending to the 
limit 2. 

[Hint: We have 

(2 - a.Hl + a.) d 
a.+ l - a. = an 

an + 3 

2(2 - an) 
2 - a.+l = .J 

an + 3 

7.5. Let al = .ji and a.+1 = (.ji)a. for n = 1,2,3, .... Show that {a.} is an increas­
ing sequence bounded above by 2. Find lim._ oo a., 

[Hint: Apparently, a2 > al . Moreover, a. > a.-l implies a.+1 > a. because 

and 2 > a. implies 2 > a.+l because 2/a'+1 = (.ji)2-a •. ] 

7.6. Let a.+l = t(a. + a.-d for n = 1,2,3, .... Show that {a.} is a Cauchy sequence 
and a. -+ (ao + 2ad/3 as n -+ 00. 

[Hint: We have a.+l - a. = t(a.- l - a.) implying that 

Moreover, X.+1 + tx. = x. + tXn- l = ... = Xl + txo.] 

7.7. Let the sequence {a.} be as defined in Exercise 7.6. Show that 

a. = Cl + c2 ( -tt, 
where Cl = (ao + 2ad/3 and C2 = 2(ao - al )/3. 

[Hint: If a. = t. and a. = s. satisfy a.+l = t(a. + a.-d, then so does a. = 
CIt. + C2S. for any constants Cl , c2 • For n;;:: 2, the equation is satisfied by 
a. = v' if v2 = t(v + 1), that is, if v = 1 or v = -t and so it is satisfied by 
an = Cl + C2( -t)·. Choose Cl , C2 so that a. = Cl + c2 ( -t)· also for n = 0 and 
n = 1; we find Cl = (ao + 2ad/3, C2 = 2(ao - ad/3. Note also that a. -+ (ao + 
2ad/3 as n -+ 00.] 

REMARKS. The method of solution outlined in the Hint to Exercise 7.7 belongs to 
the theory of finite differences and difference equations. The interested reader may 
wish to consult S. Goldberg, Introduction to Difference Equations with Illustrative 
Examples from Economics, Psychology and Sociology, New York: Wiley, 1958. 

7.8. The sequence defined by ao = 0, al = 1, and an+1 = ).(a. + a.-I) for n = 1, 2, 
3, ' . , converges provided -1 < ). ::;; 1-

[Hint: By the method outlined in the Hint to Exercise 7.7 we see that in this 
case we have the representation a. = clvi + C2 V2' where VI and V2 are the 
roots ofthe equation v 2 = ).(v + 1), that is, 

). + (). 2 + 4).)1/2 ). _ (). 2 + 4).)1/2 
VI = 2 and V2 = 2 ' 

and Cl and C2 satisfy Cl = -C2 with Cl = 1/().2 + 4).)1/2. For {a.} to converge it 
is necessary that Ivd ::;; 1 and IV21 ::;; 1. But this is the case provided -1 < ). ::;; t. 
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For example, if A. ~ 0 and A. + (A.2 + 4A.)1/2 :s; 2, then 0 :s; A. :s; t and if -4 < 
A. < 0 and IA. ± i( -4A. - A. 2 )1/21 :s; 2, where i = p, then it follows that 
0> A. > -1.] 

7.9. Let 3aft+l = 2a. + a.-l with ao = 7 and a1 = 3. Find lim .... co a •. 
[Hint: See the method. outlined in the Hint to Exercise 7.7 and note that in 

this case we have the representation aft = 4 - 9( -t)ft.] 

7.10. If aft+1 = +Jaft + k, ao > t, k > 0, show that the sequence {aft} is convergent 
and that its limit is the positive root of the equation 

x 2 - x - k = o. 
[Hint: We have a. > 0 for all n. If a~ - ao = k, then a. = ao for all n, and so 

aft is equal to the positive root of 

x 2 - X = k. 

If a~ - ao < k (so that ao is less than the positive root of x 2 - x = k), choose 
bo greater than je positive root of x 2 - x = k so that b~ - bo > k, and define 
bft by b.+1 = + b. + k. Since a:+1 = a. + k, we have 

But a: - a~ = -(a~ - ao - k) > 0 and so a.+1 > a. for all n. Similarly, 
b.+1 < b. for all n. But bo > ao and b:+1 - a:+1 = bft - a. so that b. > a. for 
all n, and 

so that a. and b. tend to the same limit L (say). Since a~+1 = a. + k, we get by 
passage to the limit as n -+ 00 that L2 - L - k = 0 and L> O. If a~ - ao > k, 
then the roles of a. and b. are interchanged.] 

7.11. Let a.+l = k/(l + a.), k > 0, ao > o. Show that the sequence {a.} is convergent 
and that its limit is the positive root of the equation 

x 2 + x - k = o. 
[Hint: We have a. > 0 for all n. If a~ + ao = k, then a. = ao for all n. If 

a~ + ao < k, then 

and so a1 > ao. Since 

we have 

k(l + a2.-1) k(l + a2.-2) 
a2 +1 - a20 = - -:----:----

o 1 + k + a2.-1 1 + k + a2.-2 

k2(a2._1 - a2.-2) 
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and so we see that a2n+1 - a2n has the same sign as a2n-1 - a2n-2 and is there­
fore positive because al - ao > o. Also 

a2n+1 - a2n < C : k)\a2n- 1 - a2n-2)· 

Furthermore, 

a~+ao-k 
a2 - ao = > 0, 

l+k+ao 

k(a~ + ao - k) 0 
a3 - a l = (1 + ao)2(1 + k) + (1 + ao)k < , 

and 

so that for all n, a2n+2 > a2n , a2n+3 < a2n+1, and so 

that is, the closed interval [a2n+2' a2n+3] is contained in the closed interval 
[a2n, a2n+l] for all n.] 

7.12. Let the sequence {an} be the same as in Exercise 7.11. Show that,.for any n, a 
root of x 2 + x = k lies between a2n and a2n+l , provided a~ + ao =F k. 

[Hint: We have an+1 - an = -(a; + an - k)j(l + an); if a~ + ao - k < 0, 
then (see the Hint to Exercise 7.11) 

and so ain + a2n - k is negative and ain+1 + a2n+1 - k is positive; hence, it 
follows since x 2 + x - k is continuous that a root of x 2 + x - k lies between 
a2n and a2n+I .] 

7.13. If an+1 = 2k2an/(a; + k 2) and bn+1 = (b; + k 2)/2bn, ao > 0, bo > 0, k > 0, then 
both an and bn tend to k. 

[Hint: We have 

k - an+1 (k - an)2 
k + an+1 = k + an 

= --- ...... 0. (
k - ao)2n -, 

k + ao 
Similarly, 

n+1 0 0] b - k (b _ k)2n+' 
bn+1 + k = bo + k ....... 

7.14. If Ibn+2 - bn+11 ~ klbn+1 - bnl and k < 1, verify that the sequence {bn} con­
verges. Hence, show that, if for all n, 
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pCn+2 - (p + q)Cn+l + qCn = 0, p>q>O, 

then PCn+2 - qCn+l = PCl - qco and Cn converges to (pc l - qco)/(p - q). 
[Hint: Since Ibn+2 - bn+d/lbn+l - bnl ~ k < 1, the series L(bn+l - bn) is abso­

lutely convergent, and so 

n-l 
L (br+l - br) = bn - bo 
r=l 

is convergent. 
Hence, since (cn+2 - cn+d/(cn+l - cn) = q/p > 0, we have 

ICn+2 - cn+ll = lJ. > 1 
ICn+l - cnl p 

so that c. converges; let y be the limit of Cn' 
From pC.+2 - qC.+l = PC.+l - qc. it follows that PCn+2 - qCn+l = PCl - qco 

and so 

PCl - qco = lim (pCn+2 - qcn+d = (p - q)y.] 
n~oo 

7.15. If {an} is a bounded sequence ofreal numbers and 2an ~ an- l + an+l , show that 
limn~oo (an+ l - a.) = O. 

[Hint: We have an - an- l ~ an+l - an' therefore {an - an-d is increasing; but 
bounded, therefore an - an- l --+ k as n --+ 00. If k =I- 0 suppose k > 0 (other case 
similar), then an - an- l >!k for n ~ N, where N is an appropriate large 
integer. Thus, 

M 1 
aM - aN - l = L (an - an-d > -(M - N)k. 

n=N 2 

This contradicts the boundedness of {an}. Thus, k ~ O. Similarly, k ~ O. Hence, 
k = 0.] 

7.16. Find the sum to n terms of the series 

00 k' 
k~l (x + 1)(x + ;). "(x + k) 

and hence show that the series converges for x > 1 and diverges for x ~ 1. 
[Hint: Let UHl = k!/(x + 1)(x + 2)· .. (x + k), Ul = 1, then 

(x + k)uk+l = kUk 

and so (x - 1)Uk+l = kUk - (k + 1)UH1; hence, 

• (n + 1)! 
(x - 1) L UHl = 1 - . 

k=l (x + 1)(x + 2)" '(x + n) 

Therefore, if x =I- 1, then 

n 1 (n + 1)! 

k~l UHl = X - 1 - (x - 1)(x + 1)(x + 2)(x + n) 

If y > 0, then 
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ifn> 2N, and so 

n! 1 
---------- = -+ 0 
(x + l)(x + 2)···(x + n - 1) (1 + y/2)(1 + y/3)···(1 + yin) , 

y = x-I> O. Thus, for x > 1 the series converges to l/(x - 1). If x < 1, put 
1 - x = z > 0, then 

n! n! 
(x + l)(x + 2)···(x + n - 1) (2 - z)(3 - z)···(n - z) 

1 
(1 - z/2)(1 - z/3)· .. (1 - z/n) 

(1 + z/p){ 1 + z/(p + I)}··· (1 + z/n) 
> (1 - z/2)(1 - z/3)···{I- z(p - I)}' 

for 1/(1 - z/r) > 1 + z/r, r > z, 

z{l/p + l/(p + 1) + ... + l/n} 
>-:-:--'-~-:-:--'-.:.:.-:-:--'-;-c---:-:-'--'-C":"7 

(1 - z/2)(1 - z/3)·· . {I - z/(p - I)} 

p> z, 

and so the sequence {n!/(x + l)(x + 2)···(x + n)} diverges, and therefore the 
series L Uk diverges.] 

7.17. Show that, if x > 1, the series 

1 2 4 8 --+--.-+--+--+ ... 
x + 1 x 2 + 1 X4 + 1 x 8 + 1 

has sum l/(x - 1). 
[Hint: Note that l/(x - 1) - l/(x + 1) = 2/(x 2 - 1).] 

7.18. Show that k + 4 terms of the series 

00 1 
L-

>=0 r! 

suffice to determine the limit of the series to k decimal places. 
[Hint: For n ~ 10, t(n!) > 3 ·4· 5· 6· 7·8·9 ·10"-9> 10"-4; but 

1 1 1 + 1/2 + 1/22 + ... --- + --- + ... < ---'----'----
(n + I)! (n + 2)! (n + I)! 

2 1 1 
< (n + I)! < 10"-3 :;;; 1Qk+l if n ~ k + 4.] 

7.19. For what values of x is the series 

00 2" x" 

1Jn 
(i) absolutely convergent, (ii) convergent (but not absolutely), and (iii) divergent? 
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[Hint: Leta, = l/Jn, then a,/a,+1 = Ji+17n = Po, say. Hence, p; = 
1 + l/n, therefore p, - 1 ~ l/k(p, + 1) < 1/2k, n ~ k, so that p, -+ 1. Thus, 
~>,t' is absolutely convergent for It I < 1, and divergent for It I > 1. When 
t = 1, La"t' = L l/Jn, which diverges since l/Jn> l/n, and when t = -1, 
L ant' = L (-l)'/Jn, which converges since l/Jn steadily decreases with limit 
zero. Taking t = 2x, we have that 

00 2' x' 

,~ In 
is absolutely convergent for Ixl < t, convergent for x = -1. and divergent for 
x ~ t or x < -t·] 

7.20. If X,+1 = +Jx;:, Xo > 0, then the transformation y = Jx gives 

f X"" 1 1 fX" 1 -dy = - -dx. 
1 y 2 1 X 

Hence, show that 

fXO 1 
2'(x, - 1) -+ -dx = In xo. 

1 x 
[Hint: We have 

f X" 1 fXO 1 
2' -dy = -dx. 

1 y 1 x 

Since X,+1 = Jx;:, we have (X,+1 - l)/(x, - 1) = l/(x,+1 + 1); but if Xo > 1, 
then x, > 1 for all n and so (X,+1 - l)/(x, - 1) < 1/2 and therefore (x, - 1)/ 
(xo ~ 1) < 1/2' so that x, -+ 1. If Xo < 1, then l/x, > 1 so that, by the foregoing 
consideration, l/x, -+ 1, that is, x, -+ 1. Finally, if Xo = 1, then x, = 1 for all n. 

Next we observe that 

and so 

S' (l/x)dx 
1. 1 . 1 
1m =hm-= 1 
'-I t - 1 ,-I t 

1.' J:" (l/x)dx 

2'(x, - 1) 

f:" (l/x)dx 
"----- -+ 1.] 

x, - 1 

7.21. If x,+1 = x,/[1 + (1 + X;)1/2], then the transformation 

x 

gives 

I X"+1 1 1 IX" 1 --dy=- --dx 
o 1 + y2 2 0 1 + x 2 . 

Hence, show that 
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[Hint: Since X.+ 1 = x./[1 + (1 + X,;)1/2], we have IX'+ll < flx.1 and so 

1 
Ix.1 < 2.lxol ..... o. 

Under the transformation 

x (1 + X2)1/2 - 1 
y = 1 + (1 + X2)1/2 = X 

we have 

2 
y--= --, 

Y x 

and so 

hence, 

1 dy 1 ( 1) 1 dy x 2 2 1 1 
---= y+- --= -=---
1 + y2 dx (y + Ijy)2 Y Y dx 4(1 + x 2) x 2 2 1 + x 2' 

Thus, 

f X.+1 1 1 fX. 1 
--dy=- --dx 

o 1 + y2 2 0 1 + x 2 

and therefore 

f X. 1 fXO 1 
2' --2 dy = --2 dx. 

ol+y ol+x 

Since 

f' 1 --dx 
lim 0 1 + x 2 = lim_l_ = 1 
,~o t HO 1 + t 2 ' 

we have 

2'J:·~dY rX._l_ dx 
Jo 1 + x 2 ..... 1 

2'x. x, 

and so 
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REMARK. In connection with the foregoing Exercises 7.20 and 7.21 the interested 
reader may want to look up Problems 85 and 86 in Chapter 3 of G. Klambauer, 
Problems and Propositions in Analysis, New York: Dekker, 1979. 

7.22. The sequence {un} is defined by Un+1 = (6u; + 6)/(u; + 11) and by the value of 
the initial term Uo. Verify that if Un -+ L as n -+ 00, then L is one of 1,2,3. 

Show that, if U. > 3, then 

(i) 3 < Un+1 < Un' ( .• ) Un+1 - 3 9 
11 U _ 3 < 10' 

n 

and prove that, if Uo > 3, then Un -+ 3 (monotonically) as n -+ 00. 

[Hint: If Un -+ L as n -+ 00, then L = (6L2 + 6)/(U + 11) which reduces to 
(L-1)(L- 2)(L- 3) = o. 

(i) If Un > 3, then 

and 

6u; + 6 - u; - 11un 

U.+ i - Un = u; + 11 
_( u-'.n _-_1_)_( u,,;... _-_2-'.)_( u_. _-_3_) < 0 

u; + 11 

3u; -27 
U.+1 - 3 = 2 11 > 0; 

Un + 

these two inequalities give 3 < U.+1 < Un. 

(ii) From the foregoing expression for Un+1 - 3, 

Un+i - 3 = 3(u. + 3) = ~(3 _ (3un - 1)(un - 3») < ~ 
un -3 u;+l1 10 u;+l1 10 

as Un > 3. Multiplying the inequalities for n = 0, 1,2, ... , n + 1, we get 

o < Un+1 - 3 < (~).+1 
Uo - 3 10 

(the first inequality holding as Un+1 > 3 and Uo > 3). Since fo < 1, this shows 
that Un -+ 3 as n -+ 00.] 

7.23. Show that if k is a positive integer, then 

is an integral multiple of e. 
[Hint: Note that 

00 nk 
L-

n=O n! 

nk = A i n + A2n(n - 1) + A3n(n - 1)(n - 2) + ... + Akn(n - 1)···(n - k + 1), 

where Ak = 1 and, for any r, 1 < r :S k, Ar is the remainder when 

nk-l - Ai - A 2(n - 1) _ ... - Ar- i (n - 1)(n - 2)·· ·(n - r + 2) 

is divided by (n - 1)(n - 2)··· (n - r), so that each Ar is an integer. We have 
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co nkx' co X.-1 co X.- 2 co X.-k 
L -=A1xL --+A2x 2 L --+"'+AkxkL-­

.=0 n! 0=1 (n - I)! .=2 (n - 2)! .=k (n - k)! 

= (A1X + A2X2 + ... + AkXk)ex 

and so 

By way of illustration, observe that n3 = n + 3n(n - 1) + n(n - l)(n - 2) 
and so 

co n3 

L,. = 5e.] 
.=0 n. 

7.24. Show that 

[Hint: By formula (1.39), 

and so 

13 +23 +"'+n3 

= i[A1n + A2n(n - 1) + A3n(n - l)(n - 2) + A4n(n - l)(n - 2)(n - 3)], 

where A1 = 4, Al = 14, A3 = 8, and A4 = 1.] 

7.25, Show that 

co (n - l)x' (x 2 - 3x + 3)eX + tx2 - 3 L = 2 • • =1 (n + 2)n! x 

[Hint: We have 

co (n - l)x' 1 co (n 2 - l)x·+ 2 

0~1 (n + 2)n! = Xl '~1 (n + 2)! . 

But nl - 1 = 3 - 3(n + 2) + (n + 2)(n + 1) and so 

co (n - l)x' 1 ( co x·+2 co x·+1 co X') 
L =- 3L---3xL--+x2 L­

.=1 (n + 2)n! x 2 0=1 (n + 2)! .=1 (n + I)! 0=1 n! 

3(e X - 1 - X - tx2 - 3x(eX - 1 - x) + x2(eX - 1) 

x 2 

(x 2 - 3x + 3)eX + tx2 - 3 
= 2 .] 

X 
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7.26. Show that 

00 n3 + 2n2 + n - 1 I = ge + l. 
.=1 n! 

[Hint: Let 

n3 + 2n2 + n - 1 = Ao + A 1 n + A2n(n - 1) + A3n(n - l)(n - 2).] 

7.27. If in the series 

111 
1+-+-+-+'" 

234 
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the signs of the terms are changed in such a way that p positive terms and q 
negative terms occur alternately, show that the resulting series converges or 
diverges according to whether p = q or p #- q. 

[Hint: See the Theorem of Cesaro (in Example 20 of Section S in this 
chapter).] 

7.2S. Let q1, q2, q3, ... be the sequence of all positive integers whose decimal repre­
sentations contain no digit 9. Does the series 

00 1 
I-

.=1 q. 

converge? 
[Hint: There are 9m - 9m - 1 integers between lOm-1 - 1 and 10m - 1 contain­

ing no nines at all. Hence, the sum in question is less than 

9 - 1 92 - 9 93 - 92 

-1-+--W-+1O{)+ ... = SO.] 

7.29. Consider the power series I::,=o a.x', where the coefficients satisfy the relation 
ar+2 + C1ar+1 + c2ar = 0, where C1 and C2 are constants. Find the sum of this 
power series if ao = 1, a 1 = -7, a2 = -1, and a 3 = -43 with x being such that 
the series in question converges. 

[Hint: From the recurrence relation on the coefficients we get 

-43 - C1 - 7C2 = 0 and -1 - 7c1 + C2 = 0 

and so C 1 = -1, c2 = - 6. Letting S denote the sum of the series for values of x 
for which the series converges, we see that 

S = 1 - 7x - x 2 - 43x 3 - ••• 

-xS = -x + 7x 2 + x 3 + .. . 

-6x2 S = -6x 2 + 42x 3 + .. . 

and, by addition, 

(1 - x - 6X2)S = 1 - Sx 

or 
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1 - 8x 1 - 8x 
S = = -,--------, ___ --::--:-

1 - x - 6x 2 (1 + 2x)(1 - 3x) 

We can also see that the series converges when Ixl < t·] 

7.30. Given that 

r a cos x + b sin x + ce x + d _ 1 
1m x 3 - , 
x-a 

find the values of a, b, c, and d. 
[Hint: Using the series expansions of cos x, sin x, and eX, we see that 

acosx + bsinx + cex + d 

x 3 

a + c + d b + c c - a c - b (c + a) . = 3 + --2- + -- + -- + -- x + higher powers of x. 
x x 2x 6 24 

If this is to tend to unity as x -+ 0, it follows that 

a + c + d = 0, b + c = 0, c - a = 0, c - b = 6. 

Solving this system of equations, we get a = 3, b = - 3, c = 3, and d = - 6.] 

7.31. Obtain the binomial series 

x 2 x 3 
Z = (1 + xr = 1 + mx + m(m - 1)- + m(m - 1)(m - 2)- + ... 

2! 3! 

by taking 

y2 y3 
Z = eY = 1 + y + - + - + ... 

2! 3! 

and 

y = m In(1 + x) = m(x - !X2 + tx 3 - ..• ). 

7.32. Let Xn = (1 + a)(1 + a 2 ) ••• (1 + an). Show that {xn} converges if 0 ::s; a < 1. 
[Hint: Use 1 + x ::s; eX.] 

7.33. Let m be a positive integer. Show that 

00 1 = ~(1 + ~ + ~ + ... + ~). n~l n(m + n) m 23m 

[Hint: Let 

1 1 1 
Sn= + + ... + . 

1(m + 1) 2(m + 2) n(m + n) 

Then 

mS = 1 +~ +~ + ... +~_(~1_+~1_+ ... +_1_) 
n 23m n+1 n+2 n+m 
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because 

1 1 (1 1) 
k(m + k) =;; k - k + m .] 

7.34. Show that 

co 1 1 

.~o (x + n)(x + n + 1)(x + n + 2)(x + n + 3) = 3x(x + 1)(x + 2) 

[Hint: Let 

1 
f(x) = 3x(x + 1)(x + 2) 

Then 

1 
f(x) - f(x + 1) = x(x + 1)(x + 2)(x + 3) , 

1 
f(x + 1) - f(x + 2) = (x + 1)(x + 2)(x + 3)(x + 4)' 

1 
f(x + n) - f(x + n + 1) = . 

(x + n)(x + n + 1)(x + n + 2)(x + n + 3) 

Adding these equations and passing to the limit as n -+ 00 we obtain the desired 
result.] 

7.35. Show that if~=1 a. is absolutely convergent, then so are 

co 1 
(i) L --, where no a. = -1, 

.=11 + a. 

co 

(ii) La;, 
• =1 

( ... ) ~ a; 
111 L.. -1--2 ' 

.=1 + a • 

[Hints: (i) Since L a. converges, we must have a. -+ 0 as n -+ 00 and so 
1 + a. >! for all sufficiently large n. Thus, la./(1 + a.)1 < 21a.1 for such nand 
so L a./(1 + a.) converges absolutely. 

(ii) Since a. -+ 0 as n -+ 00, {Ia.i} is bounded. Let M> la.1 for all n. Then 
a; = la;1 = la.12 < Mla.l, and so La; is absolutely convergent. 

(iii) This follows ftom part (ii) together with part (i).] 

7.36. Show that each of the following series has the indicated sum 

co 1'3'5"'(2n-1) 1 (1 +J2) 
(a) 11(-1)"+1 2.4'6".(2n) 2n=ln 2 ' 

co 1· 3 . 5··' (2n - 1) 1 7t 
(b) 1 + L --=-, 

.=1 2·4·6· .. (2n) 2n + 1 2 

co (1 1) 1 1 (c) L (_1)·+1 1 + - + ... + - -- = -(In 2)2, 
.=1 2 n n + 1 2 

"" (1 1) 1 7t (d) L (_1)·+1 1 + - + ... + - -- = -ln2, 
.=1 2 2n 2n + 1 8 
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(e) f (_1)n+1 (1 +! + ... + _1_)~ = n2. 
n~l 3 2n - 1 2n 32 

[Hint: Use Proposition 7.70 together with the expansions 

(
1 + fi+x) _ 00 _ n+11·3···(2n - 1) xn 

(a) In 2 - n~l (1) 2·4···(2n) 2n' 

00 1· 3· ··(2n - 1) x2n+1 
(b) sin- 1 x = x + L --, 

n~l 2·4···(2n) 2n + 1 

1 00 (1 1) xn+1 
(c) -[In(l + X)]2 = L (_1)n+1 1 + -2 + ... + - --1' 

2 n~l n n + 
1 00 (n 1) x2n+1 

(d) -(tan-1 x)ln(l + x 2) = L (_1)n+1 L -k -2 l' 
2 n~l k~l n + 

1 00 (n-1 1 )x2n 
(e) -(tan-1 X)2 = L (_1)n+1 L -2k 1 -2 .] 

2 n~l k~O + n 

7.37. Find the interval of convergence of the following power series and test for 
convergence at the endpoints: 

00 nn L _xn. 
n~l n! 

[Hint: It is easy to see that the radius of convergence is lie. To test at the 
endpoints x = ± lie, we put bn = nnlenn!. From Stirling's Formula (see Propo­
sition 7.17), it follows that bn -+ 0 as n -+ 00. Now 

bn+1 (1) ( l)n T.= -; 1+;; <1. 

Thus, {bn } decreases to zero, and so L;:'~l (-l)"bn converges. On the other 
hand, by Stirling's Formula, 

1 
bn > 2(2nn)1/2 

for all sufficiently large n, and so L;:'~l bn diverges.] 

7.38. Let {f.} be a sequence of Riemann integrable functions defined on [a,b] and 
assume that f is Riemann integrable on [a, b] and 

lim fb Ifn(x) - f(xW dx = O. 
11 ....... 00 a 

Let 9 be Riemann integrable on [a,b] and define, for x in [a,b], 

h(x) = r f(t)g(t)dt and hn(x) = r f.(t)g(t)dt. 

Show that hn -+ h uniformly on [a,b]. 

[Hint: We have, by (5.41), 
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Given 6 > 0, we can choose N so that n ;::: N implies 

If(t) - !.(t)j2 dt < -, fb 62 

a A 

where 

A = 1 + r Ig(tWdt. 

Thus, n;::: N implies O:$; Ih(x) - hn(x) I < 6 for every x in [a,b].] 

7.39. Find 

(1 + X)l/X e (1 + X)l/X - e + .lex 
(i) lim - and (ii) lim 2 2. 

x-+Q X x ..... O X 

[Hint: Let y = (1 + X)l/x. Then 

and so 

1 x x 2 
Iny = -In(l + x) = 1 - - + - - ... 

x 2 3 

y = el-x/2+x2/3-'" = e'e-x/2+x2/3-'" 

= e( 1 + ( _~ + ~2 _ •• -) + ;! ( _~ + ~2 -" J + .. -) 

=e(1_~+1~=2 _ .. } 
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It is now readily seen that the answer to part (i) is -ej2 and the answer to part 
(ii) is 11ej24.] 

7.40. Show that 

(1 + X)l/x - e + .lex + ilex 2 7e r 2 24 

x~ x 3 =-16' 

[Hint: See Exercise 7.39.] 

7.41. Show that 

e-n(1+~+n2 + ... +nn)-+~ 
I! 2! n! 2 

as n -+ 00. 

[Hint: See Problem 53 in Chapter 4 of G. Klambauer, Problems and Proposi­
tions in Analysis, New York: Dekker, 1979.] 
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