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Geometry Formulas

Area of rectangle A4 =/w
circle A= 7r?
triangle A4 =1bh
- Surface Area of sphere A = 4772
cylinder A =2arh

Volume of box ¥V
sphere V

cylinder ¥V = ar?
vV

cone
Trigonometric Identities

Pythagorean

cos’ +sin¥¥=1,1+ tand = sec?d, cotd + 1 = csc¥
Parity

sin(—#) = —sin4, cos(—#) = cosh, tan(—8) = —tan¥d

csc(—8) = —csch, sec(—8) =sech, cot(—8)= —cotd
Co-relations

cosf = sin(g —9), csch = sec(% —0), cotfd = tan(% —9)
Addition formulas

sin(# + ¢) = sinf cos ¢ + cos b sin ¢

sin(f — ¢) = sinf# cos ¢ — cos #sin ¢

cos(f + ¢) = cosfcosp — sinfsin ¢

cos{# — ¢) = cosfcoso + sinfsing

(tan 4 + tan ¢)

[an(9 + ¢) = (1 — tanm

an( — ¢) = (tan 4 — tan ¢)
(1 +tanftang)
Double-angle formulas

sin 26 = 2sin f cos ¢

cos 28 = cos™ — sin’f = 2cosd — 1 = 1 — 2sin%

tan2g = 2@nfd
(1 - tanzﬁ)
Half-angle formulas
- 28 _ 1-cosé 29 _ 1 —cos28
sin R — or sing —
28 _ 1+cosé 29 _ 1 +cos2d
cos R or cosd —5
8 _ sinf _ 1-—cosé _ 1 —cos28
tan 2 T+cos8  sind or tan g sin 24
Product formulas
sin§sin ¢ = % [cos(8 — ¢) — cos(8 + ¢)]
cosfcos¢ = % [cos(8 + ¢) + cos(8 ~ &)]
1

sinfcos¢ = 5 [sin(8 + ¢) + sin(4 — ¢)]
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A Brief Table of Integrals

(An arbitrary constant may be added to each integral.)

n = 1 n+1l _
l.fxdx P (n==-1

Vo=
2.f;dx—ln|x|

3. fexdx=ex
4, faxdx= li;

.fsinxdx = —COoSX

. fcosx dx = sinx

5
6
7. ftanxdx = —In|cos x|
8. fcotxdx = In|sin x|

9

. fsecxdx = In|sec x + tan x|

tan(1x+ lw)

= Injtan{ 5 x + 2

10. fcscxdx = In|csc x — cot x|

=1n’tan%x‘
ll.fsinflgdx=xsin*l£ +a? — x? (a>0)
—a?— x? (a>0)

- %ln(a2 + x2) (a>0)

-1 X -
12.fcos P2 dx = xcos™!
a

slxalx ®

13. ftan*l X dx = xtan™!
a

e
2m

15. fcoszmx dx = ﬁ (mx + sin mx cos mx)

14. f sin’mx dx = (mx — sin mx cos mx)
16. fseczx dx = tan x
17. fcsczx dx = —cotx

-1
X COS X n—1 e
+ fsm" 2y dx
n

3

18. fsin”x dx = — S

n
n—1 : _
19. fcos"x dx =508 Xsmx R 1 fcos”*zx dx
n n
tan” " lx _2
20. | tan™ = — "
fanxdx o ftan X dx (n==1)

n—1 .
21. fcot”xdx= —cot x —fcot”*zxdx (n£1)

n—1
tanxsec" °x ,_ n—2 2
2. | sec” = sec”
2 f%ecxdx PR +n—1 sec” “x dx (n==1)
n—2
23. n _ _ cotxesc”x n—2 n—2
fcscxdx P +n—1 csc” " xdx (n#1)

24. fsinhx dx = cosh x

25. fcoshx dx = sinh x

26. ftanhx dx = In|cosh x|

27. fcothx dx = In|sinh x|

28. fsechxdx = tan~ (sinh x)

This table is continued on the endpapers at the back.
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Preface

The goal of this text is to help students learn to use calculus intelligently for
solving a wide variety of mathematical and physical problems.

This book is an outgrowth of our teaching of calculus at Berkeley, and
the present edition incorporates many improvements based on our use of the
first edition. We list below some of the key features of the book.

Examples and Exercises

The exercise sets have been carefully constructed to be of maximum use to the
students. With few exceptions we adhere to the following policies.

® The seciion exercises are graded into three consecutive groups:

(a) The first exercises are routine, modelled almost exactly on the exam-
ples; these are intended to give students confidence.

(b) Next come exercises that are still based directly on the examples and
text but which may have variations of wording or which combine
different ideas; these are intended to train students to think for
themselves.

(c) The last exercises in each set are difficult. These are marked with a
star (»x) and some will challenge even the best students. Difficult does
not necessarily mean theoretical; often a starred problem is an
interesting application that requires insight into what calculus is really
about.

® The exercises come in groups of two and often four similar ones.

® Answers to odd-numbered exercises are available in the back of the
book, and every other odd exercise (that is, Exercise 1, 5, 9, 13, . . . )
has a complete solution in the student guide. Answers to even-
numbered exercises are not available to the student.

Placement of Topics

Teachers of calculus have their own pet arrangement of topics and teaching
devices. After trying various permutations, we have arrived at the present
arrangement. Some highlights are the following.

® Integration occurs early in Chapter 4; antidifferentiation and the |
notation with motivation already appear in Chapter 2.
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® Trigonometric functions appear in the first semester in Chapter 5.

® The chain rule occurs early in Chapter 2. We have chosen to use
rate-of-change problems, square roots, and algebraic functions in con-
junction with the chain rule. Some instructors prefer to introduce sin x
and cosx early to use with the chain rule, but this has the penalty of
fragmenting the study of the trigonometric functions. We find the
present arrangement to be smoother and easier for the students.

® Limits are presented in Chapter 1 along with the derivative. However,
while we do not try to hide the difficulties, technicalities involving
epsilonics are deferred until Chapter 11. (Better or curious students can
read this concurrently with Chapter 2.) Our view is that it is very
important to teach students to differentiate, integrate, and solve calcu-
lus problems as quickly as possible, without getting delayed by the
intricacies of limits. After some calculus is learned, the details about
limits are best appreciated in the context of I"'Hdpital’s rule and infinite
series.

® Differential equations are presented in Chapter 8 and again in Sections
12.7, 12.8, and 18.3. Blending differential equations with calculus
allows for more interesting applications early and meets the needs of
physics and engineering.

Prerequisites and Preliminaries

A historical introduction to calculus is designed to orient students before the
technical material begins.

Prerequisite material from algebra, trigonometry, and analytic geometry
appears in Chapters R, 5, and 14. These topics are treated completely: in fact,
analytic geometry and trigonometry are treated in enough detail to serve as a
first introduction to the subjects. However, high school algebra is only lightly
reviewed, and knowledge of some plane geometry, such as the study of similar
triangles, is assumed.

Several orientation quizzes with answers and a review section (Chapter R)
contribute to bridging the gap between previous training and this book.
Students are advised to assess themselves and to take a pre-calculus course if
they lack the necessary background.

Chapter and Section Structure

The book is intended for a three-semester sequence with six chapters covered
per semester. (Four semesters are required if pre-calculus material is included.)

The length of chapter sections is guided by the following typical course
plan: If six chapters are covered per semester (this typically means four or five
student contact hours per week) then approximately two sections must be
covered each week. Of course this schedule must be adjusted to students’
background and individual course requirements, but it gives an idea of the
pace of the text.

Proofs and Rigor

Proofs are given for the most important theorems, with the customary omis-
sion of proofs of the intermediate value theorem and other consequences of
the completeness axiom. Our treatment of integration enables us to give
particularly simple proofs of some of the main results in that area, such as the
fundamental theorem of calculus. We de-emphasize the theory of limits,
leaving a detailed study to Chapter 11, after students have mastered the
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fundamentals of calculus—differentiation and integration. Our book Calculus
Unlimited (Benjamin/Cummings) contains all the proofs omitted in this text
and additional ideas suitable for supplementary topics for good students.
Other references for the theory are Spivak’s Calculus (Benjamin /Cummings &
Publish or Perish), Ross’ Elementary Analysis: The Theory of Calculus
(Springer) and Marsden’s Elementary Classical Analysis (Freeman).

Calculators

Calculator applications are used for motivation (such as for functions and
composition on pages 40 and 112) and to illustrate the numerical content of
calculus (see, for instance, p. 405 and Section 11.5). Special calculator discus-
sions tell how to use a calculator and recognize its advantages and shortcom-
ings.

Applications

Calculus students should not be treated as if they are already the engineers,
physicists, biologists, mathematicians, physicians, or business executives they
may be preparing to become. Nevertheless calculus is a subject intimately tied
to the physical world, and we feel that it is misleading to teach it any other
way. Simple examples related to distance and velocity are used throughout the
text. Somewhat more special applications occur in examples and exercises,
some of which may be skipped at the instructor’s discretion. Additional
connections between calculus and applications occur in various section sup-
plements throughout the text. For example, the use of calculus in the determi-
nation of the length of a day occurs at the end of Chapters 5, 9, and 14.

Visualization

The ability to visualize basic graphs and to interpret them mentally is very
important in calculus and in subsequent mathematics courses. We have tried
to help students gain facility in forming and using visual images by including
plenty of carefully chosen artwork. This facility should also be encouraged in
the solving of exercises.

Computer-Generated Graphics

Computer-generated graphics are becoming increasingly important as a tool
for the study of calculus. High-resolution plotters were used to plot the graphs
of curves and surfaces which arose in the study of Taylor polynomial
approximation, maxima and minima for several variables, and three-
dimensional surface geometry. Many of the computer drawn figures were
kindly supplied by Jerry Kazdan.

Supplements

Student Guide Contains

® Goals and guides for the student
® Solutions to every other odd-numbered exercise
® Sample exams

Instructor’'s Guide Contains

® Suggestions for the instructor, section by section
® Sample exams
® Supplementary answers
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Misprints

Misprints are a plague to authors (and readers) of mathematical textbooks.
We have made a special effort to weed them out, and we will be grateful to the
readers who help us eliminate any that remain.

Acknowledgments

We thank our students, readers, numerous reviewers and assistants for their
help with the first and current edition. For this edition we are especially
grateful to Ray Sachs for his aid in matching the text to student needs, to Fred
Soon and Fred Daniels for their unfailing support, and to Connie Calica for
her accurate typing. Several people who helped us with the first edition
deserve our continued thanks. These include Roger Apodaca, Grant Gustaf-
son, Mike Hoffman, Dana Kwong, Teresa Ling, Tudor Ratiu, and Tony
Tromba.

Jerry Marsden
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How toUse this Book:
A Note to the Student

Begin by orienting yourself. Get a rough feel for what we are trying to
accomplish in calculus by rapidly reading the Introduction and the Preface
and by looking at some of the chapter headings.

Next, make a preliminary assessment of your own preparation for calcu-
lus by taking the quizzes on pages 13 and 14. If you need to, study Chapter R
in detail and begin reviewing trigonometry (Section 5.1) as soon as possible.

You can learn a little bit about calculus by reading this book, but you
can learn to use calculus only by practicing it yourself. You should do many
more exercises than are assigned to you as homework. The answers at the
back of the book and solutions in the student guide will help you monitor
your own progress. There are a lot of examples with complete solutions to help
you with the exercises. The end of each example is marked with the symbol
A.

Remember that even an experienced mathematician often cannot “see”
the entire solution to a problem at once; in many cases it helps to begin
systematically, and then the solution will fall into place.

Instructors vary in their expectations of students as far as the degree to
which answers should be simplified and the extent to which the theory should
be mastered. In the book we have arranged the theory so that only the proofs
of the most important theorems are given in the text; the ends of proofs are
marked with the symbol B. Often, technical points are treated in the starred
exercises.

In order to prepare for examinations, try reworking the examples in the
text and the sample examinations in the Student Guide without looking at the
solutions. Be sure that you can do all of the assigned homework problems.

When writing solutions to homework or exam problems, you should use
the English language liberally and correctly. A page of disconnected formulas
with no explanatory words is incomprehensible.

We have written the book with your needs in mind. Please inform us of
shortcomings you have found so we can correct them for future students. We
wish you luck in the course and hope that you find the study of calculus
stimulating, enjoyable, and useful.

Jerry Marsden
Alan Weinstein
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Chapter 13

13.1

Vectors

Vectors are arrows which have a definite magnitude and direction.

Many interesting mathematical and physical quantities depend upon more
than one independent variable. The length z of the hypotenuse of a right
triangle, for instance, depends upon the lengths x and y of the two other sides;
the dependence is given by the Pythagorean formula z =/x* + y? . Similarly,
the growth rate of a plant may depend upon the amounts of sunlight, water,
and fertilizer it receives; such a dependence relation may be determined
experimentally or predicted by a theory.

The calculus of functions of a single variable, which we have been
studying since the beginning of this book, is not enough for the study of
functions which depend upon several variables—what we require is the
calculus of functions of several variables. In the final six chapters, we present
this general calculus,

In this chapter and the next, we set out the algebraic and geometric
preliminaries for the calculus of several variables. This material is thus
analogous to Chapter R, but not so elementary. Chapters 15 and 16 are
devoted to the differential calculus, and Chapters 17 and 18 to the integral
calculus, of functions of several variables.

Vectors in the Plane

The components of vectors in the plane are ordered pairs.

An ordered pair (x, y) of real numbers has been considered up to now as a
point in the plane—that is, as a geomerric object. We begin this section by
giving the number pairs an algebraic structure.! Next we introduce the notion
of a vector. In Section 13.2, we discuss the representation of points in space by
triples (x, y,z) of real numbers, and we extend the vector concept to three
dimensions. In Section 13.3, we apply the algebra of vectors to the solution of
geometric problems.

The authors of this book, and probably many of its readers, were brought
up mathematically on the precept that “you cannot add apples to oranges.” If
we have x apples and y oranges, the number x + y represents the number of

! The reader who has studied Section 12.6 on complex numbers will have seen some of this
algebraic structure already.
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Chapter 13 Vecto}s

Example 1

Solution

pieces of fruit but confounds the apples with the oranges. By using the ordered
pair (x, y) instead of the sum x + y, we can keep track of both our apples and
our oranges without losing any information in the process. Furthermore, if
someone adds to our fruit basket X apples and Y oranges, which we might
denote by (X, Y), our total accumulation is now (x + X, y + Y)—that is,
x + X apples and y + Y oranges. This addition of items kept in separate
categories is useful in many contexts.

Addition of Ordered Pairs

If (x,, y)) and (x,, y,) are ordered pairs of real numbers, the ordered
pair (x; + x,, y, + y,) is called their sum and is denoted by (x,, y)) +

(x5 ¥2)- Thus, (xy, y)) + (x5, y)) = (x| + X5, y| + yo).

(a) Calculate (—3,2) + (4,6).
(b) Calculate (1,4) + (1,4) + (1,4).
(c) Given pairs (a,b) and (c,d), find (x, y) such that (a,b) + (x, y) = (c,d).

(a) (=3,2)+ (4,6)=(-3+4,24+6)=(1,8).

(b) We have not yet defined the sum of three ordered pairs, so we take the
problem to mean [(1,4) + (1,4)] + (1,4), which is (2,8) + (I,4) = (3, 12). No-
tice that thisis (1 + 1+ 1,4+4+4), or 3-1,3-4).

(¢) The equation (a,b) + (x, y) = (c,d) means (a + x,b + y) = (¢,d). Since
two ordered pairs are equal only when their corresponding components are
equal, the last equation is equivalent to the two numerical equations

atx=c and b+y=d.

Solving these equations for x and y gives x=c—a and y=d— b, or
(x, )=(c—a,d—0). A

Following Example 1(b), we may observe that the sum (x, y)+ (x, y)
+ - - - +(x, y), with n terms, is equal to (nx,ny). Thinking of the sum as “n
times (x, y),” we denote it by n(x, y), so we have the equation

n(x, y) = (nx,ny).

Noting that the right-hand side of this equation makes sense when » is any
real number, not just a positive integer, we take this as a definition.

Multiplication of Ordered Pairs by Numbers

If (x, y) is an ordered pair and r is a real number, the ordered pair
(rx,ry) is called the product of r and (x, y) and is denoted by r(x, y).
Thus, r(x, y) = (rx,ry).

To distinguish ordinary numbers from ordered pairs, we sometimes call
numbers scalars. The operation just defined is called scalar multiplication.
Notice that we have not defined the product of two ordered pairs—we will do
so in Section 13.4.



Example 2

Solution

Example 3

Solution

Example 4

Solution

13.1 Vectors in the Plane 647

(a) Calculate 4(2, —3) + 4(3, 5). (b) Calculate 4{(2, —3) + (3, 5)].

(@) 42, —3)+ 43,5 =8, —12) + (12,20) = (20, 8).

(®) 42, —=3)+ (3,5]=4(5,2)=(20,8). A

It is sometimes a useful shorthand to denote an ordered pair by a single letter
such as 4 = (x, y). This makes the algebra of ordered pairs look more like the
algebra of ordinary numbers. The results in Example 2 illustrate the following
general rule.

Show that if a is a number and 4, and A4, are ordered pairs, then a(4, + A4,)
=ad, + ad,.

We write 4; = (x,, y,) and 4, = (x,, y,). Then 4, + 4, = (x; + x,, y, + y,),
and so

a(d,+ 4,)=(a(x + xX3),a(y, +yy)) = (ax, + ax,,ay, + ay,)
= (ax, ,ayl) + (ax2 ,ayy) = a(xl R )’1) + a(x2 s V2)
= aAl + aAz,

as required. A

All the usual algebraic identities which make sense for numbers and ordered
pairs are true, and they can be used in computations with ordered pairs (see
Exercises 17-22).

(a) Find real numbers a,,a,,a; such that a,(3,1)+ ay(6,2) + ay(—1,1) =
5,6).

(b) Is the solution in part (a) unique?

(c) Can you find a solution in which a,, a,, and a, are integers?

@) a,(3,1) + ay(6,2) + ay(—1,1) = (3a, + 6a, — as,a, + 2a, + a;); for this to
equal (5,6), we must solve the equations

3a,+ 6a, —ay =5,
a,+2a, + a; =6.

A solution of these equations is a, =0, a, =1, a, =1, (Part (b) explains
where this solution came from.)
(b) We can rewrite the equations as

6a,—a,=5-3a,
2a,+ a;=6—a,.

We may choose a, at will, obtaining a pair of linear equations in a, and a,
which always have a solution, since the lines in the (a,,a,) plane which they
represent have different slopes. The choice a, =0 led us to the equations
6a, —a3;=>5 and 2a, + a; =6, with the solution as given in part (a). The
choice a, =6, for instance, leads to the new solution a =6, a,=—143,
a; =43, so the solution is not unique.

(c) We notice that the sums 3+ 1=4, 6+2=8, and —1+1=0 of the
components in each of the ordered pairs are even. Thus the sum 4a, + 8a, of
the components of a\(3,1) + a,(6,2) + a;(—1,1) is even if a,, a,, and a, are
integers; but 5+ 6 =11 is odd, so there is no solution with a,, a,, and d,
being integers. &
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Example 5
Solution
y
P
A
] S ——

Figure 13.1.1. The point P
has coordinates (x, y)
relative to the given axes.

~
e

Figure 13.1.2. A vector v is
an arrow with definite
length and direction. The
same vector is represented

by the two arrows in this
figure.

%

Figure 13.1.3. The vector
from P to Q is denoted P_Q'

Figure 13.1.4. The
components of v are x
and y.
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Interpret the chemical equation 2NH, + H, = 2NH; as a relation in the
algebra of ordered pairs.

We think of the molecule N H, (x atoms of nitrogen, y atoms of hydrogen) as
represented by the ordered pair (x, y). Then the chemical equation given is
equivalent to 2(1,2) + (0,2) = 2(1, 3). Indeed, both sides are equal to (2,6). A

We know from Section R.4 how to represent points P in the plane by ordered
pairs by selecting an origin O and two perpendicular lines throught it. Relative
to these axes, P is assigned the coordinates (x, y), as in Fig. 13.1.1. If the axes
are changed, the coordinates of P change as well. (In Section 14.2, we will
study how coordinates change when the axes are rotated.) When a definite
coordinate system is understood, we refer to “the point (x, y)” when x and y
are the coordinates in that system.

We turn now from the algebra of ordered pairs to the related geometric
concept of a vector.

Vectors in the Plane

A vector in the plane is a directed line segment in the plane and is drawn
as an arrow.

Vectors are denoted by boldface symbols such as v. Two directed
line segments will be said to be equal when they have the same length
and direction (as in Fig. 13.1.2).2

The vector represented by the arrow from a point P to a point Q is
denoted PQ. (Figure 13.1.3). If the arrows from P, to Q, and P, to Q,
represent the same vector, we write P, O, =P, Q..

Ordered pairs are related to vectors in the following way. We first choose
a set of x and y axes. Given a vector v, we drop perpendiculars from its head
and tail to the x and y axes, as shown in Fig. 13.1.4, producing two signed
numbers x and y equaling the directed lengths of the vector in the x and y
directions. These numbers are called the components of the vector. Notice that
once the x and y axes are chosen, the components do not depend on where
the arrow representing the vector v is placed; they depend only on the
magnitude and direction of v. Thus, for any vector v, we get an ordered pair
(x, y). Conversely, given an ordered pair (x, y), we can construct a vector with
these components; for example, the vector from the origin to the point with
coordinates (x, y). The arrow representing this vector can be relocated as long
as its magnitude and direction are preserved.

Operations of vector addition and scalar multiplication are defined in the
following box. These geometric definitions will be seen later to be related to
the algebraic ones we studied earlier.

2 Strictly speaking, this definition does not make sense. The two directed line segments in Fig.
13.1.2 are clearly not equal—that is, they are not identical. However, it is very convenient to have
the ser of all directed line segments with the same magnitude and direction represent a single
geometric entity—a vector. A convenient way to do this is to regard two such segments as equal.
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Figure 13.1.5. The
geometric construction of

u-+v.

Figure 13.1.6. The product
ru.

Example 6

Figure 13.1.7. Find u + v,
3u, and —v.

Solution

Figure 13.1.8. To find 3u,
draw a vector in the same
direction as u, three times
as long; —visa vector
having the same length as v
pointing in the opposite
direction.

L]

Example 7

Figure 13.1.9. Findu +v
and —2u.
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Vector Addition and Scalar Multiplication

Addition. Let u and v be vectors. Their sum is the vector represented by
the arrow from the tail of u to the tip of v when the tail of v is placed at
the tip of u (Fig. 13.1.5).

Scalar Multiplication. Let u be a vector and r a number. The vector ru is
an arrow with length |r| times the length of u. It has the same direction
as u if r > 0 and the opposite direction if » < 0 (Fig. 13.1.6).

/
ruif r >0

%

In Fig. 13.1.7, which vector is (2) u + v?, (b) 3u?, (c) — v?

y
—Z
e —————-

w

Toh— V’

N,

=

(@) To construct u + v, we represent u and v by directed line segments so that
the head of the first coincides with the tail of the second. We fill in the
third side of the triangle to obtain u + v (see Fig. 13.1.5(b)). Comparing
Fig. 13.1.5(b) with Fig. 13.1.7, we find that u + v = w.

(b) 3u = q (see Fig. 13.1.8).

(¢) —v=(—1)v=r(see Fig. 13.1.8). A

X

y -
3

Ju

Let u and v be the vectors shown in Fig. 13.1.9. Draw u + v and — 2u. What
are their components?

|
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Solution

Figure 13.1.10. Computing
u+vand —2u

Figure 13.1.11. The
geometry which relates
vector algebra to the
algebra of ordered pairs.

Figure 13.1.12. Tllustrating
the identityu+v=v+u
and the parallelogram law
of addition.

We place the tail of v at the tip of u to obtain the vector shown in Fig. 13.1.10.

The vector —2u, also shown, has length twice that of u and points in the
opposite direction. From the figure, we see that u + v has components 5,2)
and — 2u has components (—6, —4). A

The results in Example 7 are illustrations of the following general rules which
relate the geometric operations on vectors to the algebra of ordered pairs.

Vectors and Ordered Pairs

Addition. If u has components (x,, y,) and v has components (x,, y,),
then u + v has components (x, + x5, y; + y2)-

Scalar Multiplication. If u has components (x, y), then ru has compo-
nents (rx, ry).

The statements in this box may be proved by plane geometry. For example,
the addition rule follows by an examination of Fig. 13.1.11(a), and the one for
scalar multiplication follows from the similarity of the triangles in Fig.
13.1.11(b).

ru

u

X
X ~~ X
rx

(a) (b)

We can use the correspondence between ordered pairs and vectors to
transfer to vectors the identities we know for ordered pairs, such as u+v
= v + u. This identity can also be seen geometrically, as in Fig. 13.1.12, which
illustrates another geometrlc_lnterpretatlon of vector addition. To add u and v,
we choose representatives PQ and P Thavmg their tails at the same point P. If
we complete the figure to a parallelogram PQSR, then the diagonal PS
represents u + v. For this reason, physical quantities which combine by vector
addition are sometimes said to “obey the parallelogram law.”

If v and w are vectors, their difference v — w is the vector such that
(v—w)+w=yv. It follows from the “triangle” construction of vector sums
that if we draw v and w with a common tail, v —w is represented by the



w
Figure 13.1.13. Geometric
interpretation of vector
subtraction.

Figure 13.1.14.
PO =00 -OFP.

Exampie 8

Solution
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directed line segment from the head of w to the head of v. (See Fig. 13.1.13.)
The components of v —w are obtained by subtracting the corresponding
ordered pairs. Since PQ = 0Q — OP (Fig. 13.1.14), we obtain the following.

Vectors and Directed Line Segments

If the point P has coordinates (x,, y,) and Q has coordinates (x,, y,),
then the vector PQ has components (x, — x;, y, — y,).

(a) Find the components of the vector from (3,5) to (4, 7).

(b) Add the vector v from (—1,0) to (2, —3) and the vector w from (2,0) to
(1, D).

(c) Multiply the vector v in (b) by 8. If this vector is represented by the
directed line segment from (5, 6) to Q, what is Q?

(a) By the preceding box, we subtract the ordered pairs (4,7) — (3,5) = (1,2).

Thus the required components are (1,2).

(b) The vector v has components (2, —3)—(—1,0)=(3, —3) and w has

components (1, 1) — (2,0) = (—1,1). Therefore, the vector v + w has compo-

nents 3, —=3)+(—1,1)=(2, —2).

(c) The vector 8v has components 8(3, —3) = (24, —24). If this vector is

represented by the directed line segment from (5,6) to Q, and Q has coordi-

nates (x, y), then (x, ) —(5,6) = (24, —24), so (x, y)=(5,6) + (24, —24)

= (29, -18). A

Exercises for Section 13.1

Complete the computations in Exercises 1-4.

1L (1,2)+@3,7)= 2. (—2,6)— 6(2, —10) =
3. 3[(1, 1) - 2(3,0)] = 4. 2[(8,6) —4(2, - D] =

Solve for the unknown quantities, if possible, in Exer-
cises 5-16.

(L2 + (0, )= (1,3)
. r(7,3)=(14,6)

a2, - =(6,—n)

(7,2 + (x, y)=(3,10)

9. 2(1,b) + (b,4) = (3,4)

10 (x,2) + (=3)(x, ) = (—2x, 1)
11. 03,a) =(3,a)

12. 6(1,0) + (0, 1) = (6,2)

3. a(L, D+ 5(1,-D=(3,5

14. (a,1) = (2,b) =(0,0)

15. Ba,b) + (b,a)=(1, 1)

16. a(3a, )+ a(l, - 1)=(1,0)

0 ~3 N

In Exercises 17-22, A, B, and C denote ordered pairs;
O is the pair (0,0); if 4 =(xy,y;), then —4 =
(—xy, —y)); and a and b are numbers. Show the fol-
lowing.

17. A+ 0=4

18. A+(—4A)=0

19.(A4+B)+C=A+(B+ C)

200 A+B=B+ A

21. a(bA) = (ab)4

22. (a + b)A = ad + bA

23. Describe geometrically the set of all points with
coordinates of the form m(0, 1) + n(1, 1), where
m and n are integers. (A sketch will do.)

24. Describe geometrically the set of all points with
coordinates of the form m(0, 1) + r(1, 1), where
m is an integer and r is a real number.

25. (a) Write the chemical equation kSO, + /S,

= mSQO, as an equation in ordered pairs.
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26.

27.

28.

29.

30.

6—.—
s4
44
34

14+

o
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(b) Write the equation in part (a) as a pair of
simultaneous equations in k, /, and m.

(c) Solve the equation in part (b) for the small-
est positive integer values of k, /, and m.
Ilustrate the solution of Exercise 25 by a vector
diagram in the plane, with SO, S,, and SO,

represented as vectors.

In Fig. 13.1.15, which vector is (a) a — b?, (b) ;a?
In Fig. 13.1.15, find the number r such that
c—a=rb.

Trace Fig. 13.1.15 and draw the vectors (a) ¢ + d,
(b) —2e + a. What are their components?

Trace Fig. 13.1.15 and draw the vectors (a)
3(e — d), (b) — }c. What are their components?

™~

a
- AR
1 234567891011 x

——
d /
‘b
bopoTod

1
Tt 1 1

Figure 13.1.15. Compute
with these vectors in
Exercises 27-30.

In Exercises 31-36, let u have components (2, 1) and v
have components (1,2). Draw each of the indicated

vectors.
3l.u+v R2.u—v
33. 2u 34, —4v
35. 2u—4v 36. —u+2v
37. Let P=(2,1), 0 =(3,3), and R = (4, 1) be points

38.

in the xy plane.

(a) Draw (on the same diagram) these vectors: v
joining P to Q; w joining ¢ to R; u joining
R to P.

(b) What are the components of v, w, and u?

(c) Whatis v+ w+u?

Answer the questions in Exercise 37 for P =

(=2,—-1),0=(-3,-3),and R=(—1,—-4).

13.2 Vectors in Space

39. (a) Draw the vector v, joining (1,0) to (1, 1).

(b) What are the components of v,?

(c) Draw v, joining (1,0) to (1,3) and find the
components of v,.

(d) Draw the vector v, joining (1,0) to (1, —2).

(e) What are the coordinates of an arbitrary
point on the vertical (that is, parallel to the y
axis) line through (1,0)?

(f) What are the components of the vector v
joining (1,0) to such a point?

. (a) Draw a vector v joining (—1, 1) to (1, I).

(b) What are the components of v?

(¢) Sketch the vectors v, =(—1,1)+ tv when
t=0,4% 1,3 and L.

(d) Describe, geometrically, the set of vectors
v, = (—1,1) + ¢v, where ¢ takes on all values
between 0 and 1. (Assume that all the vec-
tors have their tails at the origin.)

. We say that v and w are linearly dependent if

there are numbers r and s, not both zero, such

that rv + sw=0. Otherwise v and w are called

linearly independent.

(a) Are (0,0) and (1, 1) linearly dependent?

(b) Show that two non-zero vectors are linearly
dependent if and only if they are parallel.

(c) Letvand w be vectors in the plane given by
v=(a,b) and w = (c,d). Show that v and w
are linearly dependent if and only if od
= bc. [Hint: For one implication, you might
use three cases: b0, d=+0, and b=d
=0]

(d) Suppose that v and w are vectors in the
plane which are linearly independent. Show
that for any vector u in the plane there are
numbers x and y such that xv + yw=u.

. Let P=(a,b) and Q = (¢,d) be points in the

plane. (You may assume that 0 < a < c and
b>d >0 to make the picture unambiguous.)
Compute the area of the parallelogram with ver-
tices at O, P, Q, and P + Q. Comment on the
relationship between this and Exercise 41(d).

A vector in space has three components.

The plane is two-dimensional, but space is three-dimensional—that is, it
requires three numbers to specify the position of the point in space. For
instance, the location of a bird is specified not only by the two coordinates of
the point on the ground directly below it, but also by its height. Accordingly,
our algebraic model for space will be the set of triples (x, y,z) rather than

pairs of real numbers.

If one starts with abstract “space” as studied in elementary solid geome-
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X

Figure 13.2.1. Coordinate
axes in space.

Figure 13.2.2. Which axes
obey the right-hand rule?
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try, the first step in the introduction of coordinates is the choice of an origin O
and three directed lines, each perpendicular to the other two, called the x, y,
and z axes. We will usually draw figures in space with the axes oriented as in
Fig. 13.2.1.

Think of the x axis as pointing toward you, out of the paper. Notice that
if you wrap the fingers of your right hand around the z axis, with your fingers
curling in the usual (counterclockwise) direction of rotation in the xy plane,
then your thumb points toward the positive z axis. For this reason, we say that
the choice of axes obeys the right-hand rule. For example, the coordinate axes
(a) and (d) in Fig. 13.2.2 obey the right-hand rule, but (b) and (c) do not.
(Think of all horizontal and vertical arrows as being in the plane of the paper,
while slanted arrows point out toward you.)

(b) ©)

Given a point P in space, drop a perpendicular from P to each of the
axes. By measuring the (directed) distance from the origin to the foot of each
of these perpendiculars, we obtain numbers (x, y,z) which we call the coordi-
nates of P (see Fig. 13.2.3).

If you cannot see the lines through P in Fig. 13.2.3 as being perpendicular
to the axis it may help to draw in some additional lines parallel to the axes,
using the convention that lines which are parallel to one another in space are
drawn parallel. This simple convention, sometimes called the rule of parallel
projection, does not conform to ordinary rules of perspective (think of railroad
tracks “converging at infinity”), but it is reasonably accurate if your distance
from an object is great compared to the size of the object.

Now look at Fig. 13.2.4. Observe that the point Q, obtained by dropping
a perpendicular from P to the xy plane, has coordinates (x, y,0). Similarly,
the points R and S, obtained by dropping perpendiculars from P to the yz and
xz planes, have coordinates (0, y,z) and (x, 0, z), respectively. The coordinates
of T, U, and V are (x,0,0), (0, y,0), and (0,0, z).

9 1 ) G - R=(0,»,2)
// !
/ i
/ / !
_»  S=(x,02) P=x,
) - ¥ Qiy.z)
|
' .
| U y
| 4
X ' J //
___________ y

Figure 13.2.3. We obtain T Q=(x,y.0)
the coordinates of the point
P by dropping perpendicu-

lars to the x, , and z axes. Figure 13.2.4. Lines which

are parallel in space are
drawn parallel.
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As in the plane, we can find the unique point which has a given ordered
triple (x, y,z) as its coordinates. To do so, we begin by finding the point
Q = (x, »,0) in the xy plane. By drawing a line through Q and parallel to the z
axis, we can locate the point P at a (directed) distance of z units from Q along
this line. The process just described can be carried out graphically, as in the
following example.

Example 1 Plot the point (1,2, —3).

Solution We begin by plotting (1,2,0) in the xy plane (Fig. 13.2.5(a)). Then we draw
the line through this point parallel to the z axis and measure 3 units
downward (Fig. 13.2.5(b)). A

24 Z{
1. 1
Zah .
AT %020 7 Ta20 Y
4 E 3
T 2,3
. 1,2,
Figure 13.2.5. Plotting the ¥ x (h2=3)
point (1,2, —3). (a) (b)

Warning If you are given a picture consisting simply of three axes (with units of
" measure) and a point, it is not possible to determine the coordinates of the
point from these data alone, since some information must be lost in making a
two-dimensional picture of the three-dimensional space. (See Review Exercise

86.)

Addition and scalar multiplication are defined for ordered triples just as for
pairs.

The Algebra of Ordered Triples

1. If (x,, y1,z,) and (x,, y,,2,) are ordered triples of real numbers, the
ordered triple (x, + X,, y\ + 5,2, + 2,) is called their sum and is
denoted by (x, y(,2)) + (X3, ¥2,22)-

2. If (x, y,z) is an ordered triple and r is a real number, the triple
(rx,ry,rz) is called the product of r and (x, y,z) and is denoted by

r(x, y,z).

Example 2 Find (3,2, —2) + (—1, =2, — 1) and (= 6)2, — 1, 1).

Solution We have (3,2, ~2)+ (—1,=2,—1)=(3—1,2—2,—2— 1)=(2,0, —3) and
(_6)(27 - 15 1) = (— 12565 _6)~ A



Figure 13.2.6. The vector v
has components (x, y, z).

Example 3

Solution

Figure 13.2.7. Multiplying
(~=1,1,2) by —2.
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Now we look at vectors in space, the geometric objects which correspond to
ordered triples.

Vectors in Space

A vector in space is a directed line segment in space and is drawn as an
arrow. Two directed line segments will be regarded as equal when they
have the same length and direction.

Vectors are denoted by boldface symbols. The vector represented
by the arrow from a point P to a point Q is denoted P—Q> If the arrows
from P, to Q, and P, to Q, represent the same vectors, we write

P1Q1=P2Q2-

Vectors in space are related to ordered triples as follows. We choose x, y, and
z axes and drop perpendiculars to the three axes. The directed distances
obtained are called the components of the vector (see Fig. 13.2.6).

z4

X

Vector addition and scalar multiplication for vectors in space are defined
Just as in the plane. The student should reread the corresponding development
in Section 13.1, replacing the plane by space.

Vectors and Ordered Triples

1. The algebra of vectors corresponds to the algebra of ordered triples.
2. If P has coordi11_>ates (x1, y1,2) and Q has coordinates (x,, y,,z,),
then the vector PQ has components (x, — x|, y, — y,,2, — z)).

(a) Sketch —2v, where v has components (—1, 1,2): (b) If v and w are any two
vectors, show that v — 1w and 3v — w are parallel.

(a) The vector —2v is twice as long as v but points in the opposite direction
(see Fig. 13.2.7). (b) v —{w = 1(3v — w); vectors which are multiples of one
another are parallel. A

4o

(2,-2,-4)
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Example 4

Solution

Figure 13.2.8. Adding
v=(3,2, —2) tow, the
vector from (2, 1, 3) to
(=10, —-1.

Figure 13.2.9. The standard
basis vectors.

Let v be the vector with components (3,2, —2) and let w be the vector from
the point (2, 1,3) to the point (— 1,0, — ). Find v + w. Illustrate with a sketch.

Since w has components (—1,0, —1) — (2,1,3) = (=3, — 1, —4), we find that
v + w has components (3,2, —2) + (=3, —1, —4) = (0, 1, — 6), as illustrated in
Fig. 13.2.8. A

0,1,-6)

To describe vectors in space, it is convenient to introduce three special vectors
along the x, y, and z axes.

i: the vector with components (1,0,0);
j: the vector with components (0, 1,0);
k: the vector with components (0,0, 1).

These standard basis vectors are illustrated in Fig. 13.2.9. In the plane one has,
analogously, i and j with components (1,0) and (0, 1).

z

: (0,0,1)

(1,0,0) i

Now, let v be any vector, and let (a, b, c) be its components. Then
v=ai+ bj+ ck,

since the right-hand side is given in components by
a(1,0,0) + £(0,1,0) + ¢(0,0,1) = (4,0,0) + (0,5,0) + (0,0,c) = (a,b,¢).

Thus we can express every vector as a sum of scalar multiples of i, j, and k.

The Standard Basis Vectors

1. The vectors i, j, and k are unit vectors along the three coordinate
axes, as shown in Fig. 13.2.9.
2. If v has components (a, b, c), then

v=ai+ bj+ ck.
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Solution

Example 6

Solution

Figure 13.2.10. Vector
methods can be used to
locate objects.

Position
after | hour

SIE

| I,

Inilial 10

-~

position 2
Figure 13.2.11. If an object
moves northeast at 10
kilometers per hour, its
velocity vector has
components (10/y2,10/2).
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(2) Express the vector whose components are (e,7, —y3) in the standard
basis. (b) Express the vector v joining (2,0,1) to (2,7, —1) by using the
standard basis.

(@) v=ei+ 7j —3 k. (b) The vector v has components (3,7, —1) - (2,0,1)
=(—4,7, —2),s0v=—li+7j— 2k A

Now we turn to some physical applications of vectors.’> A simple example of a
physical quantity represented by a vector is a displacement. Suppose that, on
a part of the earth’s surface small enough to be considered flat, we introduce
coordinates so that the x axis points east, the y axis points north, and the unit
of length is the kilometer. If we are at a point P and wish to get to a point 0,
the displacement vector u joining P to Q tells us the direction and distance we
have to travel. If x and y are the components of this vector, the displacement
of O from P is “x kilometers east, y kilometers north.”

Suppose that two navigators, who cannot see one another but can communi-
cate by radio, wish to determine the relative position of their ships. Explain
how they can do this if they can each determine their displacement vector to
the same lighthouse.

Let P, and P, be the positions of the ships and Q be the position of the
lighthouse. The displacement of the lighthouse from the ith ship is the vector
u, joining P, to Q. The displacement of the second ship from the first is the
vector v joining P, to P,. We have v + u, = u, (Fig. 13.2.10), so v=1u, — u,.

7

uy
-

0

That is, the displacement from one ship to the other is the difference of the
displacements from the ships to the lighthouse. A

We can also represent the velocity of a moving object as a vector. For the
moment, we will consider only objects moving at uniform speed along straight
lines—the general case is discussed in Section 14.6. Suppose, for example, that
a boat is steaming across a lake at 10 kilometers per hour in the northeast
direction. After 1 hour of travel, the displacement is (10/y2,10/y2)~
~(7.07,7.07) (see Fig. 13.2.11). The vector whose components are (10/\/5,
10/y2) is called the velocity vector of the boat. In general, if an object is
moving uniformly along a straight line, irs velocity vector is the displacement
vector from the position at any moment to the position 1 unit of time later. If a

3 Historical note: Many scientists resisted the use of vectors in favor of the more complicated
theory of quaternions until around 1900. The book which popularized vector methods was Vector
Analysis, by E. B. Wilson (reprinted by Dover in 1960), based on lectures of J. W. Gibbs at Yale
in 1899-1900. Wilson was reluctant to take Gibbs® course since he had just completed a full-year
course in quaternions at Harvard under J. M. Pierce, a champion of quaternionic methods, but
was forced by a dean to add the course to his program. (For more details, see M. J. Crowe, 4
History of Vector Analpsis, University of Notre Dame Press, 1967.)
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Displacement
due to current

Displacement
due te
engine

Total
displacement

Figure 13.2.12. The total
displacement is the sum of
the displacements due to
the engine and the current.

Figure 13.2.13. The velocity
w of the wind can be
estimated by comparing the
“wingflap” velocity v with
the actual velocity v + w.

Figure 13.2.14. The
magnitude and direction of
electrical flow in the heart
are indicated by the cardiac
vector.

Example 7

Solution

Chapter 13 Vectors

current appears on the lake, moving due eastward at 2 kilometers per hour,
and the boat continues to point in the same direction with its engine running
at the same rate, its displacement after 1 hour will have components given by
(10/y2 +2,10/y2). (See Fig. 13.2.12.) The new velocity vector, therefore, has
components (10/ V2 +2,10 / V2 ). We note that this is the sum of the original
velocity vector (10/ V¥2,10/y2) of the boat and the velocity vector (2,0) of the
current.

Similarly, consider a seagull which flies in calm air with velocity vector v.
If a wind comes up with velocity w and the seagull continues flying “the same
way,” its actual velocity will be v + w. One can “see” the direction of the
vector v because it points along the “axis” of the seagull; by comparing the
direction of actual motion with the direction of v, you can get an idea of the
wind direction (see Fig. 13.2.13).

\iJ
\
/

%V-Fw
Another example comes from medicine. An electrocardiograph detects
the flow of electricity in the heart. Both the magnitude and the direction of the
net flow are of importance. This information can be summarized at every
instant by means of a vector called the cardiac vector. The motion of this

vector (see Fig. 13.2.14) gives physicians useful information about the heart’s
function.*

Tip of
cardiac vector
moving in space

/ Cardiac
vector
at one moment

A bird is flying in a straight line with velocity vector 10i+ 6j+k (in
kilometers per hour). Suppose that (x, y) are coordinates on the ground and z
is the height above the ground.

(a) If the bird is at position (1,2,3) at a certain moment, where is it 1 minute
later?
(b) How many seconds does it take the bird to climb 10 meters?

(a) The displacement vector from (1,2,3) is 6‘0(10i 6j,k)=1i+ Lj+ &k, so
the new position is (1,2,3) + (¢, 5 &) =(14,21%,3%

(b) After ¢ seconds (= ¢/3600 hours), the dlsplacement vector from (1,2,3) is
(¢/3600)(10i + 6j + k) = (¢/360)i + (¢/600)j + (¢/3600)k. The increase in al-
titude is the z component ¢/3600. This will equal 10 meters (= 5 kilometer)
when ¢/3600 = 1/100—that is, when ¢ = 36 seconds. A

4 See M. J. Goldman, Principles of Clinical Electrocardiography, 8th edition, Lange, 1973,
Chapters 14 and 19.
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Physical forces have magnitude and direction and may thus be represented by

vectors. If several forces act at once on an object, the resultant force is
represented by the sum of the individual force vectors. Suppose that forces
i +k and j+ k are acting on a body. What third force must we impose to
counteract these two—that is, to make the total force equal to zero?

Solution

The force v should be chosen so that (i + k) + (j + k) + v=0; that is v=

—({+k)— (j+k)= —i—j— 2k. (Here 0 is the zero vector, the vector whose

components are all zero.) A

Exercises for Section 13.2

Plot the points in Exercises 1-4.

1. (1,0,0)
3. (3,—1,5

2. (0,2,4)
4.2, -1,})

Complete the computations in Exercises 5-8.

5.
6. (0,0,0) + (0,0,0) =
7.
8
9
10.

1L

12.

(6,0,5) +(5,0,6) =

(L3,5)+4(—1,-3,-5)=

- (2,0, =83, 1,9 =

. Sketch v, 2v, and —v, where v has components

(1,-1,-1).
Sketch v, 3v, and — 1v, where v has components
@, —-1,0.

Let v have components (0, 1, 1) and w have com-
ponents (1,1,0). Find v + w and sketch.

Let v have components (2, —1,1) and w have
components (1, — 1, —1). Find v + w and sketch.

In Exercises 13-20, express the given vector in terms of
the standard basis.

13.
14.
15.
16.
17.
18.
19.
20.

21.

22.

The vector with components (— 1,2, 3).
The vector with components (0, 2, 2).
The vector with components (7,2, 3).
The vector with components (— 1,2, 7).
The vector from (0, 1,2) to (1,1, ).
The vector from (3,0, 5) to (2,7, 6).
The vector from (1,0,0) to (2, —1,1).
The vector from (1,0,0) to (3, —2,2).

A ship at position (1,0) on a nautical chart (with
north in the positive y direction) sights a rock at
position (2,4). What is the vector joining the ship
to the rock? What angle does this vector make
with due north? This is called the bearing of the
rock from the ship.
Suppose that the ship in Exercise 21 is pointing
due north and travelling at a speed of 4 knots
relative to the water. There is a current flowing
due east at 1 knot. (The units on the chart are
nautical miles; 1 knot=1 nautical mile per
hour.)
(a) If there were no current, what vector u
would represent the velocity of the ship rela-
tive to the sea bottom?

23.

24.

25.

26.

(b) If the ship were just drifting with the cur-
rent, what vector v would represent its veloc-
ity relative to the sea bottom?

(c) What vector w represents the total velocity
of the ship?

(d) Where would the ship be after 1 hour?

(e) Should the captain change course?

(f) What if the rock were an iceberg?

An airplane is located at position (3, 4, 5) at noon

and travelling with velocity 400i + 500§ — k kilo-

meters per hour. The pilot spots an airport at

position (23,29, 0).

(a) At what time will the plane pass directly
over the airport? (Assume that the earth is
flat and that the vector k points straight up.)

(b) How high above the airport will the plane
be when it passes?

The wind velocity v, is 40 miles per hour from

east t0 west while an airplane travels with air

speed v, of 100 miles per hour due north. The
speed of the airplane relative to the earth is the

vector sum v; + v,.

(a) Find v{ + v,.

(b) Draw a figure to scale.

A force of 50 Ibs is directed 50° above horizon-

tal, pointing to the right. Determine its horizontal

and vertical components. Display all results in a

figure.

Two persons pull horizontally on ropes attached

to a post, the angle between the ropes being 60°.

A pulls with a force of 150 Ibs, while B pulls with

a force of 110 lbs.

(a) The resultant force is the vector sum of the
two forces in a conveniently chosen coordi-
nate system. Draw a figure to scale which
graphically represents the three forces.

(b) Using trigonometry, determine formulas for
the vector components of the two forces in a
conveniently chosen coordinate system. Per-
form the algebraic addition, and find the
angle the resultant force makes with A.

27. What restrictions must be placed on x, y, and z

so that the triple (x, y,z) will represent a point
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on the y axis? On the z axis? In the xy plane? In
the xz plane?
28. Plot on one set of axes the eight points of the
form (a, b, c), where a, b, and ¢ are each equal to
I or —1. Of what geometric figure are these the
vertices?
29. Let u = 2i + 3j + k. Sketch the vectors u, 2u, and
—3u on the same set of axes.
In Exercises 30-34, consider the vectors v = 3i+ 4j +
5k and w=1— j + k. Express the given vector in terms

of i, j and k.
30. v+ w 31. 3v
32, —2w 33. 6v + 8w

34. the vector u from the tip of w to the tip of v.
(Assume that the tails of w and v are at the same
point.)

In Exercises 35-37, let v=i+ j and w= —i + j. Find
numbers ¢ and b such that av + bw is the given vector.

35. 1 36. j 37. 3i+ 7j

38. Let u=i+j+k v=i+j and w=1i Given
numbers 7, s, and ¢, find a, b, and ¢ such that
au+ by + cw = ri + sj+ tk.

39. A I-kilogram mass located at the origin is sus-
pended by ropes attached to the points (1,1, 1)
and (—1, —1,1). If the force of gravity is point-
ing in the direction of the vector —k, what is the
vector describing the force along each rope?
[Hint: Use the symmetry of the problem. A
I-kilogram mass weighs 9.8 newtons.]

40. Write the chemical equation CO + H,0 = H, +
CO, as an equation in ordered triples, and illus-
trate it by a vector diagram in space.

41. (a) Write the chemical equation pC;H,O; +
g0, = rCO, + sH,0 as an equation in or-
dered triples with unknown coefficients P9
r, and s.

13.3 Lines and Distance

(b) Find the smallest integer solution for P g,
and s.

(c) Illustrate the solution by a vector diagram in
space.

42. Suppose that the cardiac vector is given by
costi + sintj + k at time ¢.

(a) Draw the cardiac vector for ¢ = 0, 7/4,m/2,
3n/4, 7,57 /4,37 /2, Tw /4,27,

(b) Describe the motion of the tip of the cardiac
vector in space if the tail is fixed at the
origin.

*43. Let P,=(1,0,0)+¢(2,1,1), where ¢ is a real
number.

(a) Compute the coordinates of P, for t = —1,
0, 1, and 2.

(b) Sketch these four points on the same set of
axes,

(¢) Try to describe geometrically the set of all
the P,.

*44. The z coordinate of the point P in Fig. 13.2.15 is

3. What are the x and y coordinates?

z

[

x T
Figure 13.2.15. Let
P =(x, y,3). What are x
and y?

Algebraic operations on vectors can be used to solve geometric problems.

In this section we apply the algebra of vectors to the description of lines and
planes in space and to the solution of other geometric problems.

The invention of analytic geometry made it possible to solve geometric
problems in the plane or space by reducing them to algebraic problems
involving number pairs or triples. Vector methods also convert geometric
problems to algebraic ones; moreover, the vector calculations are often
simpler than those from analytic geometry, since we do not need to write

down all the components.

Example 1
other.

Solution

Use vector methods to prove that the diagonals of a parallelogram bisect each

Let PORS be the parallelogram, w the vector P—Q>and v the vector P_§(see Fig.



Figure 13.3.1. The
diagonals of a parallelo-
gram bisect each other.

Example 2

Solution

Figure 13.3.2. The point U
is one-third of the way from
O to the midpoint of the
face PSQT.

Example 3

Solution

Figure 13.3.3. The figure
obtained by joining the
midpoints of successive
sides of PQRS is the
parallelogram JKLM.
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13.3.1). Since PQRS is a parallelogram, v + w is the vector PR.

The vector joining P to the midpoint M, of the diagonal PR is thus
3(v + w). On the other hand, the vector QS is v — w, so the vector joining Q
to the midpoint M, of the diagonal QS is 1 (v — w).

To show that the diagonals bisect each other, it is enough to show that
the midpoints M, and M, are the same. The vector P—I\/T;is the sum

wHi(v—w)=w+ilv—Ilw=w—-1lw+ly
=iw+jv=J(v+w)
which is the same as the vector PM|. It follows that M| and M, are the same

point. A

Consider the cube in space with vertices at (0,0,0), (1,0,0), (1,1,0), (0,1,0),
0,0,1), (1,0, 1), (1,1,1), and (0, 1, 1). Use vector methods to locate the point
one-third of the way from the origin to the middle of the face whose vertices
are (0,1,0), (0,1,1), (1,1, 1), and (1, 1,0).

Refer to Fig. 13.3.2. The vector OP is j, and vector O—Q>is i +j + k. The vector

z

X

PQ is the difference i + j+ k—j=1i+k; the vector joining P to the midpoint
R of PQ (and hence of the face PSQT) is one-half of this, that is, 1(i + K); the
vector OR is then j+ 313+ k), and the vector joining O to the point U
one-third of the way from O to R is i[j+i(i+Kk)]=1j+li+lk=
si+3j+ ¢k It follows that the coordinates of U are (1,1,1). A

Prove that the figure obtained by joining the midpoints of successive sides of
any quadrilateral is a parallelogram.

Refer to Fig. 13.3.3. Let PQRS be the quadrilateral, v =PS, w =SK, t =P_Q>,

and u =@€ The vector a from the midpoint J of PS to the midpoint X of SR
satisfies 1v+a=v+ jw; solving for a gives a=1v+ lw=1(v+w). Simi-
larly, the vector b from the midpoint M of PQ to the midpoint L of QR
satisfies Jt+b=t+ Ju,sob=1t+ lu=1(t+ u).
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Figure 13.34. Since P, Q,
and R lie on a line, the
vector w — u is a multiple of
vV—

Example 4

Solution

Figure 13.3.5. If the line
through P and R has the
direction of the vector d,
then the vector from P to R
is a multiple of d.

To show that JKLM is a parallelogram, it suffices to show that the
vectors a and b are equal, but v + w =t + u, since both sides are equal to the
vector from Pto R,soa=i(v+w)=1(t+u)=b. A

In Section R4 we discussed the equations of lines in the plane. These
equations can be conveniently described in terms of vectors, and this descrip-
tion is equally applicable whether the line is the plane or in space. We will
now find such equations in parametric form (see Section 10.4 for a discussion
of parametric curves).

Suppose that we wish to find the equation of the line / passing through
the tw_opoints P and Q. Let O be the origin and let u and v be the vectors OP
and OQ as in Fig. 13.3.4. Let R be an arbitrary point on / and let w be the
vector % Since R is on /, the vector w — u=PR is a multiple of the vector
v —u=PQ—that is, w — u = (v — u) for some number ¢. This gives w=u +
tv—wy=(1 — Hu + #v.

The coordinates of the points P, Q, and R are the same as the compo-
nents of the vectors u, v, and w, so we obtain the parametric equation
R=(1—- 0P + tQ for the line /.

Parametric Equation of a Line:
Point-Point Form

The equation of the line / through the points P =(x,, y,z;) and
Q = (x;, y2,2)) I8

R=(1-18P +:Q.
In coordinate form, one has the three equations

x=(1-1t)x; + tx,,

y=>1-ny+v,

z=(1—-t)z, + tz,,

where R = (x, y,z) is the typical point of /, and the parameter ¢ takes on
all real values.

Find the equation of the line through (2,1, —3) and (6, — 1, —5).
We have P=(2,1,—3)and Q = (6, — 1, —5), so
(x> p2)=R=(1-HP+1tQ=(1-1)(21,-3)+ 16, -1, -5)
=(2-2¢t1—t,—3+3)+ (6t,—t, —5¢)
=(2+4:1-2t,-3-2r)
or, since corresponding entries of equal ordered triples are equal,
x=2+4, y=1-2t, z=-3-2t A
We can also ask for the equation of the line which passes through a given
point P in the direction of a given vector d. A point R lies on the line (see Fig.
13.3.5) if and only if the vector PRisa multiple of d. Thus we can describe all
points R on the line by PR = 1d for some number t. As t varies, R moves on
the line; when ¢t = =0, R comc1des with P. Since PR = OR — OP, we can rewrite

the equation as OR =0OP + td. This reasoning leads to the following conclu-
sion.



Example 5

Solution

Example 6

Solution
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Parametric Equation of a Line:
Point-Direction Form
The equation of the line through the point P = (X, yo,Z2o) and pointing
in the direction of the vector d = ai + bj+ ck is PR =1d or equiva-
lently OR = OP + td.

In coordinate form, the equations are
x = x5+ at,
y=yo+ bt,

= ZO + Ct,

where R = (x, y,z) is the typical point on / and the parameter ¢ takes on
all real values.

For lines in the xy plane, the z component is not present; otherwise, the results
are the same.

(a) Find the equations of the line in space through the point (3, —1,2) in the
direction 2i — 3j + 4k.
(b) Find the equation of the line in the plane through the point (1, —6) in the
direction of 5i — @j.
(c) In what direction does the line x = —=31+2, y=—2(t—1), z=8r+ 2
point?
(a) Here P = (3, —1,2) = (X, Yo, Zo)and d = 2i — 3j + 4k,soa = 2,b = -3, and
¢ = 4. Thus the equations are
x=3+2, y=—1-3t, z=2+4t.
(b) Here P = (1, —6) and d = 5i — 7j, so the line is
R=(1,-6)+ (5¢t, —mt) = (1 +5¢, =6 — =)
or
x=14 5t y=—6—mt
(c) Using the preceding box, we construct the direction d = ai + bj + ¢k from
the coefficients of ¢t: a= —3, b= —2, ¢ = 8. Thus the line points in the
direction of d= —3i—2j+ 8k. A

(a) Do the lines R, = (¢, —6¢ + 1,27 — 8) and R, = (3¢ + 1,2¢,0) intersect?
(b) Find the “equation” of the line segment between (1,1, 1) and (2,1,2).

(2) If the lines intersect, there must be numbers 7, and ¢, such that the
corresponding points are equal: (¢, —6¢, + 1,21, — 8) = (31, + 1,21,,0); that
is,

t,=38+1,
—61,+1=21,,
2t;,—8=0.

From the third equation we have ¢, = 4. The first equation then becomes
4=3t,+ 1 or t,= 1. We must check whether these values satisfy the middle
equation:

? .
—6t,+1=21,, ie,
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Figure 13.3.6.

[OP| =+a® + b2 + 7.

Example 7

Solution

Figure 13.3.7. The law of
cosines applied to vectors.

—6-4+122-1, ie,
U122,

The answer is no; the lines do not intersect.

(b) The line through (1,1,1) and (2,1,2) is described in parametric form by
R=(1-0(,LD+121,2)=1+ 11,1+ 1), as ¢ takes on all real values.
The point R lies between (1,1, 1) and (2, 1,2) only when 0 < ¢ < 1, so the line
segment is described by R=(1+1,1,1+1),0<r< 1. A

Since all the line segments representing a given vector v = ai + bj + ck have
the same length, we may define the length of v to be the length of any of these
segments. To calculate the length of v, it is convenient to use the segment 5?,
where P = (a,b, c), so that the length of v is just the distance from (0,0, 0) to
(a,b,c). We apply the Pythagorean theorem twice to calculate this distance.
(See Fig. 13.3.6.) Let Q = (a,b,0) and R =(a,0,0). Then |OR|=|a| and
|IRQ|=1b|, so |0Q|=Va’+ b?>. Now | QP|=|c|, so applying Pythagoras’
theorem again, this time to the right triangle OQP, we obtain |OP|=
Va® + b> + ¢> . We denote the length of a vector v by ||v||; it is sometimes
called the magnitude of v as well.

Z 4

P=(a,b,c)

R =(a,0,0) Y

/ Q=1(a,b,0)

X

Length of a Vector

The length ||v|| of a vector v is the square root of the sum of the squares
of the components of v:

l|lai + bj + ck|| =va® + b% + 2 .

(a) Find the length of v=2i — 6j + 7k. (b) Find the values of ¢ for which
li+j+ k|| =4.

@) (v =1/22+(—6)2+72 =4 4+36+49 =89 ~9.434.

(b) We have ||i +j + ck|| =\/1 + 1+ ¢? =\/2 + ¢? . This equals 4 when 2 + ¢?
=16, or c=i\/-lz.A

Some basic properties of length may be deduced from the law of cosines (see
Section 5.1 for its proof). In terms of vectors, the law of cosines states that

W = vII* = [vI* + [[wi* ~ 2]v]l||w]/cos,

where 6 is the angle between the vectors v and w, 0 < 6 < 7. (See Fig. 13.3.7)
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Solution

Figure 13.3.8. Illustrating
the inequality
Ju = vl < fu— wi + [|w—v].
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In particular, since cosf < 1, we get
[w = v[[* = [iwl}> + {[v]* = 2||v]i[|wllcos 8
> {Iwl? + [IvI|2 = 2[Iv i | wll

= (Iwll = IIvlly

Takihg square roots and remembering that \/)6_2 = |x|, we get
W — vl > [lIwll = [IvIil.
Hence
—(lw—=vlly < Wl = vl < [|w — |-
In particular, from the right-hand inequality, we get
Wl < [lw —vI[ + lv]].
That is, the length of one side of a triangle is less than or equal to the sum of

the lengths of the other sides. If we write u=w — v, then w=u+ v, and the
inequality above takes the useful form

lju+ vl < [lulf + v,

which is called the triangle inequality.
The relation between length and scalar multiplication is given by

[[rvil = |7l [ivi]
since, if v = ai + bj + ck, then

l|ry|| = \/(ra)2 + (rb)2 + (rc)2 =\/72\/a2 + b2+ % = [Vl

Properties of Length

If u, v, and w are any vectors and r is any number:

() [ > 0;
(2) ||u|| = 0 if and only if u=0;

@) [irull = |7| Jul;

@) Jju+ v < Jul + (v } o
@) w =] > [wj = [vil.f Trianele inequality

(a) Verify the triangle inequality (4) foru=i+jand v=2i+j+k.

(b) Prove that |ju— v{| < |ju—w|} + |{w — v|| for any vectors u,v,w. Illustrate
with a figure in which u, v, and w are drawn with the same base point, that is,
the same “tail.”

(a) We haveu+v=3i+2j+k so |u+v|=y9+4+1 =/14. On the other
hand, |jul| =2 and ||v|| =6, so the triangle inequality asserts that {14 <
V2 + 6. This is indeed true, since {14 ~ 3.74, while 2 + 6 ~1.41 +2.45 =
3.86.

(b) We find that u— v =(u—w)+ (w—v), so the result follows from the
triangle inequality with u replaced by u — w and v replaced by w — v. Geomet-
rically, we are considering the shaded triangle in Fig. 13.3.8. A

The length of a vector can have interpretations other than the geometric one
given above. For example, suppose that an object is moving uniformly along a
straight line. What physical quantity is represented by the length of its velocity
vector? To answer this, let v be the velocity vector. The displacement vector
from its position P at any time to its position Q, ¢ units of time later, is tv. The
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Example 9

Solution

W

Figure 13.3.9. The vectors
u, v, and w are represented
by the sides of an
equilateral traingle.

Examplie 10

Solution

distance between P and Q is then [f|||v{], so the length |v|| of the velocity
vector represents the ratio of distance travelled to elapsed time—it is called the

speed.

A vector u is called a unit vector if its length is equal to 1. If v is any
nonzero vector, ||v|| 0 then we can obtain a unit vector pointing in the
direction of v by taking u = (1/|[v||)v. In fact,

1 1
Lyl= Loy =1.
(v ‘ 1M

We call u the normalization of v.

[[ull =

(a) Normalize v = 2i + 3j — k. (b) Find unit vectors u, v, and w in the plane
such that u+v=w.

(a) We have |[lv|| =22+ 32+ 1/22 = (1/2)/53, so the normalization of v is
u=-Ly=24 ;4 6 1 g
vt 33 537 53
(b) A triangle whose sides represent u, v, and w must be equilateral as in Fig.
13.3.9. Knowing this, we may take w=1i, u = 1i+ (\3 /2)j, v =1i — (\3 /2)j.
Check that |[u|| = ||v|| = |w|]| =1 and thatu+ vy =w. A

Finally, we can use the formula for the length of vectors to obtain a formula
for the distance between any two points in space. If P, =(x,, y,,z,) and
P, =(x3, y,,2,), then the distance between P, and P, is the length of the
vector from P, to P; that is,

| PPy = l(x) = x)i+ (y1 = y2)i+ (21— z,)k]|

o T

Distance Formula

If P, has coordinates (x,, y,,z,) and P, has coordinates (x,, y,, z,), then
the distance between P, and P, is

Vi = %+ (= )+ (21— 2

(a) Find the distance between (2, 1,0) and (3, —2, 6).
(b) Let P, =¢(1, 1, 1).
(i) What is the distance from P, to (3,0, 0)?
(it) For what value of ¢ is the distance shortest?
(iit) What is the shortest distance?

(a) The distance is

\/(2—3)2+[1 — (=2 + (0 -6y =\/(—1)2+32+(—6)2
=T +9+36 =46 .

(b) (i) By the distance formula, the distance is
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\/(t—3)2+ (t = 0)’+ (¢t — 0y

=V —61+9+ 7+ =317 —61+9 .
(i) The distance is shortest when 3#> — 61 + 9 is least-—that is, when
(d/d)(3* —6t+9)=6t—6=0,0rt=1.
(iiiy For ¢ = 1, the distance in (i) is V6 . A

Exercises for Section 13.3

Use vector methods in Exercises 1-6.

L.

10.

Show that the line segment joining the midpoints
of two sides of a triangle is parallel to and has
half of the length of the third side.

. Prove that the medians of the triangle intersect in

a point two-thirds of the way along any median
from a vertex to the midpoint of the opposite
side.

. Prove that if PQR is a triangle in space and

b >0 is a number, then there is a triangle with
sides parallel to those of POR and side lengths b
times those of POR.

. Prove that if the corresponding sides of two

triangles are parallel, then the lengths of corre-
sponding sides have a common ratio. (Assume
that the triangles are not degenerated into lines.)

. Find the point in the plane two-thirds of the way

from the origin to the midpoint of the line seg-
ment between (1, 1) and (2, —2).

. Let P=(3,5,2) and @ = (2,5, 3). Find the point

R such that Q is the midpoint of the line seg-
ment PR.
equations for the lines in Exercises 7-10.

. The line through (1,1,0) and (0,0, 1).
. The line through (2,0,0) and (0, 1,0).
. The line through (0,0, 0) and (1, 1, 1).

The line through (=1, —1,0) and (1,8, —4).

Write parametric equations for the lines in Exercises
11-14.

11.

12.
13.

14.

I5.

16.

17.

18.

The line through the point (1,1,0) in the direc-
tion of vector —i — j + k.

The line through (0, 1,0) in the direction j.

The line in the plane through (—1, ~2) and in
direction 3i — 2j.

The line in the plane through (2, —1) and in
direction —i — j.

At what point does the line through (0, 1,2) with
direction i + j + k cross the xy plane?

Where does the line through (3,4,5) and (6,7, 8)
meet the yz plane?

Do the lines given by R, =(s,37— 1,4r) and
R, =(345,1 — 1) intersect?

Find the unique value of ¢ for which the lines
Ry=(t,—6t+c,2t—8)and R,=(3t+1,2¢,0)
intersect.

Compute the length of the vectors in Exercises 19-24.

19.
21
23.

25.
26.
27.
28.
29.
30.

31.

32.

33
34

i+j+k 20. 2i+j

i+k 22. 3i+ 4j

2i + 2k 24 i—j—3k

For what a is ||ai — 3j + k|| = 167

For what b is ||i — bj + 2k|| = 37

Verify the triangle inequality for the vectors in
Exercises 19 and 21.

Verify the triangle inequality for the vectors in
Exercises 20 and 22.

Find unit vectors u, v, and w in the plane such
thatu+2v + w=0.

Find unit vectors u, v, w, and z in the plane such
thatu+v+w+z=0.

Show that (0,0,1) (0,1,0), and (1,0,0) are the
vertices of an equilateral triangle. How long is
each side?

Find an equilateral triangle in space which
shares just one side with the one in Exercise 31.
Normalize the vectors in Exercises 19 and 21.
Normalize the vectors in Exercises 20 and 22.

Find the distance between the pairs of points in Exer-
cises 35--38.

35.
37.

39.

40.

4]1.

42.

*43.

(1,1,3) and (2,2,2)

(1,1,2) and (1,2,3)

Let P, = (3,2, ).
(i) What is the distance from P, to (2,0,0)?

(ii) For what value of ¢ is the distance shortest?

(iii) What is that shortest distance?

Draw a figure, sirhilar to Fig. 13.3.6, to illustrate

the distance formula on p. 666.

A boat whose top speed in still water is 12 knots

points north and steams at full power. If there is

an eastward current of 5 knots, what is the speed

of the boat?

A ship starting at (0, 0) proceeds at a speed of 10

knots directly toward a buoy located at (3,4).

(The chart is measured in nautical miles; a knot

equals 1 nautical mile per hour.)

(a) What is the ship’s point of closest approach

to a rock located at (2,2)?

(b) After how long does it reach this point?

(c) How far is this point from the rock?

Derive the point-point form of the equation of a

line obtained in Section R.4 from the parametric

36. (2,0,0) and (2, 1,2)
38. (1,2,3) and 3,2, 1)
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*44.

*45.

*46.
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form obtained in this section. Comment on the
case in which x| = x,.

Derive the point-direction form for the paramet-
eric equation of a line from the point-point form.
[Hint: If a line through P is to have direction d,
what other point must lie on the line?]

When does equality hold in the triangle inequal-
ity? (You might try using the law of cosines as
was done in the text.) Test your conclusion on
the vectors in Exercises 21 and 23.

The potential ¥ produced at (x, y,z) by charges
g1 and g, of opposite sign placed at distances x;
and x, from the origin along the x axis is given
by

13.4 The Dot Product

91 92
= + i
d7eg|ir — 1] 4megllr — 1|

In this formula, r is the vector from the origin to

the point (x, y,z). The vectors r; and r, are

vectors from the origin to the respective charges

g1 and g¢,. ) .

(a) Express the formula for V entirely in terms
of the scalar quantities x, y,z,x,x,,4,
g2, €.

(b) Show that the locus of points (x, y,z) for
which V=0 is a plane or a sphere whose
radius is |g,¢,(x, — x2)/(q1 — ¢3)| and
whose center is on the x axis or is a plane.

The dot product of two unit vectors is the cosine of the angle between them.

To introduce the dot product, we will calculate the angle # between two
vectors in terms of the components of the vectors.
If v; and v, are two vectors, we have seen (Fig. 13.3.7) that

1v2 = vall> = Ivall® + {Ival® = 2[[v ][ }¥v2]cos b,

where 6 is the angle between v, and v,; 0 < # < 7. Therefore,
2wyl [Ivollcos 8 = [1v,|* + [[v,1> = [Iva — v, 1% (H

If vy =aji+ bj+ ck and v, = a,i + b,j+ c,)k, then the right-hand side of

equation (1) is

(al + b7+ cf) + (a3 + b3+ 3) —[(a1 — @) + (by — by)" + (¢, — )]

= 2aya, + bib, + ¢,cy).

Thus we have proved that

(Vi [|vollcos§ = a,a, + b b, + c|c;. (2)

This very convenient formula enables us to compute cos# and hence 4; thus
the quantity on the right-hand side deserves a special name. If v, = a,i +
bij+ ¢k and v, = a,i + b,j + c,)k are two vectors, the number a,a, + b,b, +
¢,c, is called their dot product and is denoted by v, - v,. The dot product in the
plane is defined analogously; just think of ¢, and ¢, as being zero.

Notice that the dot product of two vectors is a number, not a vector. It is
sometimes called the scalar product (do not confuse this with scalar multiplica-

tion) or the inner product.

Example1 (a)Ifv,=3i+j— 2k and v,=i—j+k, calculate v, « v,.
(b) Calculate (2i + j — k) - 3k — 2j).

Solution (a)v,'v,=3-141-(=1)+(=2)-1=3—-1-2=0.
® Qi+j-k-Gk—2)=Qi+j-Kk -0i—2j+3k)=2-0—-1-2—1-3

- -5 a

Combining formula (2) with the definition of the dot product gives

Vil ]¥allcos 8 = v, vy,

)

where § is the angle between v, and v,.



Example 2

Solution
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We may solve (3) for cos# to obtain the formula
AT/

cosf=—L "2 ;
INAINIY

Vi'v,

ie, 6=cos” '(
IANAL

)if v;#0 and v,#0.

(a) Find the angle between the vectors i+ j+k and i +j—k. (b) Find the
angle between 3i+j— 2k and i —j + k.

(@ Let vy=i+j+k and v,=i+j—k. Then [v,|=13, lvo]| =V3, and
Vi*v;=1-1+1-1-1-1=1. Hence cosf=1, so #=cos '(1)~123
radians (70°32).

(b) From Example 1(a), 3i+j—2k)-(i—j+k)=0, so cos# = 0 and hence
O=a/2. A

From (3) we get
Vi =¥ = [[vi]l [[v2]| [cos 8].
However, |cosf| < 1, so we have
Ve Vol < vl iIv,]l-

This is a useful inequality called the Schwarz inequality (and sometimes the
Cauchy—Schwarz—Buniakowski inequality).
From either (2) or (3), we notice that if v = ai + bj + ck, then

vev=a’+b*+ = |v|

Since two nonzero vectors are perpendicular when # = 7 /2—that is,
when cos# = 0—we have an algebraic test for perpendicularity: the nonzero
vectors v; and v, are perpendicular when v, - v, = 0. (We adopt the convention

that the zero vector is perpendicular to every vector.) The synonyms “or-
thogonal” or “normal” are also used for “perpendicular.”

The Dot Product
Algebraic definition:
(aii+bij+ ck):(ayi+ byj+ c,ky=aa,+ b b, + cic,.
Geometric interpretation:
ViV = [[vy {[¥al[cosb,
where # is the angle between v, and v,, 0 < # < 7. In particular,
IVl =v-v.
Properties:
. u-u > 0 for any vector u.
u-u=0onlyifu=0.
u-v=v-u
.(utv)w=u-wty-w
. (au)-v=a(u-v).
. Ju-v] <{lujll]v|| (Schwarz inequality).
u and v are perpendicular when u-v =0.

N
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Example 3

Solution

Figure 13.4.1. There are
two unit vectors orthogonal
to i — 3j.

Example 4

Solution

Figure 13.4.2. The vector
v—w=(v-u/u-uwuis the
orthogonal projection of v
on u.

Figure 13.4.3. The
orthogonal projection of v
on u equals — u.

Find a unit vector in the plane which is orthogonal to v=1i — 3j.

If w = ai + bj is perpendicular to i — 3j, we must have 0 = v+ w = a — 3b; that
is, a = 3b. If w is to be a unit vector, we must also have 1 = a® + b% = (3b)* +
b*=10b% so b= *=1/y10 and a= +3//10. Thus there are two possible
solutions: (% 1/;/-16)(3i +J). (See Fig. 13.4.1.) A

1
as
T Bt

1 PR
\/T6(3HJ)

i3

Let u and v be vectors in the plane; assume that u is nonzero.

(a) Show that w=v — (v-u/u - uu is orthogonal to u.

(b) Sketch the vectors u, v, w, and v — w. The vector y —w=(v-u/u-uu is
called the orthogonal projection of v on u. Why?

(c) Find the orthogonal projection of i + j on i — 2j.

(a) We compute
cw=u-{yv—- 18
urw=u (v " u u).
By the algebraic properties of the dot product, this is equal to

u-v—Lﬁu-u=u-v—v-u=0,

so u+w =0 and w is orthogonal to u.

(b) We note that v—w = (v+u/u-uju is a multiple of u. Thus the configura-
tion of vectors must be as in Fig. 13.42. The vector v —w is called the
orthogonal projection of v on u because it is obtained by dropping a perpendic-
ular from the “tip” of v to the line determined by u. (The base points of u and
v must be the same for this construction.)

(c) With u=1i— 2j and v =i + j, the orthogonal projection of v on u is

uev . 1-2 ¢ 50 1. s
v T T A ="50)

(See Fig. 13.4.3.) A

We can use the dot product to find the distance from a point Q = (x;, y,z;)
to the line / which passes through a point P = (X, yy,zo) and has the direction
d = ai + bj + ck. Indeed, in Fig. 13.4.4 the distance from Q to the line is the

Q=01 y1,21)

-
g

Orthogonal
projection
of vonu

P=(xq,50,2¢)

Figure 13.44. || QR'H is the
distance from Q to /.



dist( Q,/) = {(xl - xo)2 + (y —yo)2 +(z,— 20)2 -

Example 5

Solution

Figure 13.4.5. The plane &
is perpendicular to the
vector n.

Example 6

Solution

13.4 The Dot Product 671

distance between Q and R, where R is chosen on / in such a way that PR and
QR' are orthogonal. Then PR is the orthogonal projection of PQ on the line /.
Thus, by Example 4,

7= P_Q>'dd= a(x, = xo) + b(y) — yo) + ¢(z, — 2o) q
d-d a’+ b? + ¢? '
By Pythagoras® theorem, ||RQ| = y/|[PJ]> — | PR]|> which gives

[a(xl = xo) + b(y, —Yo)t+ec(z— zo)]2
a’+ b* + ¢?

1/2

4

as the distance from Q to the line /.

Find the distance from (1,1,2) to the line through (2,0,0) in the direction
A= 1/ 2
In formula (4), we set (x;, y;,2,) = (1,1,2), (xq, yp,20) = (2,0,0) and obtain
a,b,c from ai+ bj+ ck=(1/\/5)i—(1/\/5)j to be a= 1/\/5, b=—-1/2,
¢ =0. Thus,

2,172
La-29-L

dist(Q,l)= (1_2)2+12+22_ ‘/5 \/5

+

DN | s
N | —

=(6-2)"=2a

The dot product makes it simple to determine the equation of a plane.
Suppose that a plane & passes through a point Py = (xq, yo,2,) and is
perpendicular to a vector n = 4i + Bj + CKk. (See Fig. 13.4.5.)

Let P =(x, y,z) be a point on Z. Then n must be perpendicular to the
vector v from P, to P; thatis, n-v=0, or

(Ai+ Bj+ Ck)-[(x — xo)i + (y — yo)i + (z — zok ] = 0.
Hence

A(x —x0) + B(y — yo) + C(z—2p) =0.

We call n the normal vector of the plane. If we let D = —(Ax, + By, + Czy),
the equation of the plane becomes

Ax+ By+ Cz+ D=0.

Find the equation of the plane through (1, 1, 1) with normal vector 2i + j — 2k.
Here 4i + Bj + Ck =2i + j — 2Kk, and (x,, Yos 2oy = (1,1,1), so we get
A(x -1+ B(y = 1)+ C(z~1)=0.
Hence
2x-DH+(y-H-2z-1)=0,
2x+y—-2z=1. A
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Example 7

Solution

Figure 13.4.6. The plane
Ix+y—z=10.

Exampie 8

Solution

Find a unit normal vector to the plane 3x + y — z = 10. Sketch the plane.

A normal vector is obtained by making a vector out of the coefficients of x, y,
and z; that is, (3,1, — 1). Normalizing, we get

G, L =)/ FT+1 =3/, 11T, - 1/{IT); ie. 711_1—(3i+j—k)-

We may sketch the plane by noting where it meets the coordinate axes.
For example, setting y = z = 0, we see that (12,0,0) lies on the plane (see Fig.
13.4.6). A

0,10,0) ~

Equation of a Plane in Space

The equation of the plane through (x,, yy,2z,) with normal vector n
=Ai+ Bj+ Ckis

A(x — xg)+ B(y —yo)+ C(z —25) =0 %)
or

Ax + By+ Cz+ D =0. (6)

(a) Find the equation of the plane passing through the point (3, —1, —1) and
perpendicular to the vector i —2j+ k. (b) Find the equation of the plane
containing the points (1,1,1), (2,0,0), and (1, 1,0).

(a) We use the first displayed equation (5) in the preceding box, choosing the
point (xg, yo,2¢) = (3, — 1, — 1) and components of the normal vector to be
A=1, B= -2, C=1 to give

I(x=3)—=2(y+ 1)+ 1(z+1)=0

which simplifies to x — 2y + z = 4.
(b) The general equation of a plane has the form (6) Ax + By + Cz + D =0.
Since the points (1,1, 1), (2,0,0), and (1, 1,0) lie on the plane, the coefficients
A, B, C, D satisfy the three equations:
A+ B+ C+ D=0,
24 +D =0,
A+ B +D=0.




Example 9

Solution

Figure 13.4.7. The vector
from O to the closest point
P, on a plane is
perpendicular to the plane.

Figure 13.4.8. The
geometry for determining
the distance from a point to
a plane.
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Proceeding by elimination, we reduce this system to the form
244+ D=0 (second equation),

2B+ D=0 (twice the third equation minus the second),
C=0 (first equation minus the third).

Since the numbers 4, B, C, and D are determined only up to a common
factor, we can fix the value of one of them and then the others will be
determined uniquely. If we let D= —2 then 4 =1, B=1, C =0. Thus
x + y —2=0is an equation of the plane that contains the given points. (You
may go back and verify that the given points actually satisfy this equation.) A

Where does the line through the origin in the direction of i + j + 2k meet the
plane x + y + 2z = 5? Use your answer to find the distance from the origin to
this plane. Sketch.

The line has parametric equations x = ¢, y = ¢, z = 2¢. It meets the plane when
x+y+2z=1t+4+1t+4r=25; that is, when ¢t = 2. The point of intersection is
P =(3,%.3)

Since a normal to the plane is n =1+ j + 2k, which is the same as the
direction vector of this line, we see that the line is perpendicular to the plane
at P,. If P is also in the plane, con51derat10n of the right triangle OP, P shows
that OPl must be shorter than OP (see Fig. 13.4.7). Thus the distance from the
origin to the plane is the length of OPl.

25 .25, 25 _ /150 _ 5/6
%6737 09 T T~ g A

Let A(x — xp) + B(y — yg) + C(z — z5) = 0 be the equation of a plane &
through the point P = (x,, yo,2,) in space. Let us use the basic ideas of the
preceding example to determine the distance from a point Q = (x,, y;,2,) to
the plane (see Figure 13.4.8). Consider the vector

z Q=2
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Ai+ Bj+ Ck
yA*+ B* + C?
which is a unit vector normal to the plane. Next drop a perpendicular from Q
to the plane and construct the triangle POR shown in Figure 13.4.8. The
distance d =R_éis the length of the projection of v = PQ (the vector from P to
Q) onto n; thus

distance = |v - n| = |[(x, — xo)i + (¥ — yo)i + (21 — Zo)k] - n|
_ |4 (x, — x0) + B(y1 — yo) + C(z, — 2o)l
yA*+ B+ C?
If the plane is given in the form Ax + By + Cz + D =0, choose a point

(Xo» Yo»Zo) On it and note that D = —(Ax, + By, + Cz,). Substituting in the
previous formula gives

|Ax, + By, + Cz, + D|

VA*+ B2+ C?

for the distance from Q to &.

>

dist( 0, #) = O

Example 10 Find the distance from Q = (2,0, — 1) to the plane ##: 3x —2y + 8z + 1 =0.

Solutlon We substitute into (7) the values x; =2, y, =0, z, = — 1 (from the point) and
A=3 B=-2,C=8, D=1 (from the plane) to give
3:24(—-2)-0+8(—1)+1 -
dist(Q,g’)=| 9 ol =1 1

Exercises for Section 13.4

Compute the dot products in Exercises 1-4. any triangle inscribed in a circle, with one side
L. .. L. ] of the triangle as a diameter, is a right triangle.
L+j+kl-G+j+ k) 2.0 it k)- (i +k) 13. Show that the length of the orthogonal projection
304 4. (Gi+4)- Gj+4k) of v on u is equal to ||v]||cos@|, where 8 is the
5. Find the angle between the pair of vectors in angle between v and u.
Exercise 1. 14. Use vector methods to prove that a triangle is
6. Find the angle between the pair of vectors in isosceles if and only if its base angles are equal.
Exercise 2. 15. Find the distance from (2,8, —1) to the line
7. Find the angle between the pair of vectors in through (1,1,1) in the direction of the vector
Exercise 3. (1/¥3)i+(1/y3)j+1/3 )k
8. Find the angle between the pair of vectors in 16. Find the distance from (1,1, —1) to the line
Exercise 4. through (2, —1,2) in the direction of k.
9. Find a unit vector in the xy plane which is 17. Find the distance from (1,1,2) to the line x
orthogonal to 2i — j. =3t+2,y=—t—-lz=t+ 1
10. Find a unit vector in the xy plane which is 18. Find the distance from (1,1,0) to the line
orthogonal to 3j — 5i. through (1,0, — 1) and (2,3, 1).
11. Use the formula (i+j+k)-i=1 to find the Give the equation for each of the planes in Exercises
angle between the diagonal of a cube and one of 19-24.
its edges. Sketch. 19. The plane through the origin orthogonal to the
12. (a) Show that if |ju}} = jv}, and u and v are not vector i + j + k.
parallel, then u+v and u—v are perpendic- 20. The plane through (1,0,0) orthogonal to the

ular. (b) Use the result of part (a) to prove that vector i +j + k.



2L
22.

23.

24.

Find

The plane through the origin orthogonal to i.
The plane containing (a, b, ¢) with normal vector
ai + bj + ck.

The plane containing the points (0,0, 1), (1,1,1)
and (0, 1,0).

The plane containing the points (1,0,0), (0,2, 0),
and (0,0, 3). :

a unit vector orthogonal to each of the planes in

Exercises 25-28.

25
26

27.

28.

Find
29
30
31

32.

33.

34.

35.

36.

37.

38.

39.

. The plane given by 2x + 3y + z=0.
The plane given by 8x — y —2z+ 10=0.
The plane through the origin containing the
points (1,1, 1) and (1,1, — 1).
The plane containing the line (1 +¢,1 — ¢,¢7) and
the point (1, 1, 1).
the equation of the objects in Exercises 29-32.
. The plane containing (0, 1,0), (1,0,0), (0,0, 1).
. The line through (1,2, 1) and (-1, 1,0).
. The line through (1,1, 1) and orthogonal to the
plane in Exercise 29.
The line through (0,0,0) which passes through
and is orthogonal to the line in Exercise 30.

Where does the line through the origin in the
direction of 2i — j + 3k meet the plane 2x — y +
3z =77 Find the distance from the origin to this
plane.

Where does the line through P =(1,1,1) in the
direction of 2i — j + 3k meet the plane 2x — y +
3z =7? Find the distance from P to this plane.
The planes 3x+4y +5z=6and x—y+z=4
meet in a line. Find the parametric equations of
this line.

Find the parametric equations of the line where
the plane x + y = z meets the plane y + z = x.
Find the distance from the point (1,1, 1) to the
plane x —y —z + 10=0.

Find the distance from the point, (2, — 1, 2) to the
plane 2x — y 4+ z = 5.

Find the distance from the origin to the plane
through (1,2,3), (—1,2,3), and (0,0, 1).

40. Find the distance from the point (4,2,0) to the

41.

plane through (0,0,0), (1,1, 1), and (1,1, 2).
Show that the locus of points in the plane equi-
distant from two given points is a line, and give
an equation for that line in terms of the coordi-
nates of the two points.

42. Use vector methods to show that if three parallel

43.

lines in the plane cut off equal segments on one
transversal, then they do so on any transversal.
Compute the following:

(@ Gi+2-k-(-k.

®) [Bi-j—k)—(@(+]l-]

(c) The distance between (1,0,2) and (3,2, 4).
(d) The length of (i—j—k) + 2j—k+1).

44.

45.

46.
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Find the following:

(a) A unit normal to the plane x — 2y + z=0.

(b) A vector orthogonal to the vectors i —j + k
and i+j+k.

(c) The angle between 2i + j+ k and k — 1.

(d) A vector in space making an angle of 45°
with i and 60° with j.

Let P, and P, be points in the plane. Give an

equation of the form ax + by = ¢ for the perpen-

dicular bisector of the line segment between P,

and P,.

Given nonzero vectors a and b, show that the

vector v = ||a]|b + ||b||a bisects the angle between

aand b.

Exercises 47-50 form a unit.

47.

48.

49.

50.

5L

52.

Suppose that e; and e, are perpendicular unit
vectors in the plane, and let v be an arbitrary
vector. Show that v=(v-e)e, + (v-eye,. The
numbers v-e; and v-e, are called the compo-
nents of v in the directions of e, and e,. This
expression of v as a sum of vectors pointing in
the directions of e, and e, is called the orthogonal
decomposition of v relative to e, and e,.
Consider the vectors e, =(1/y2)(i+j) and e,
=(1/y2)(i —j) in the plane. Check that e, and
e, are unit vectors perpendicular to each other
and express each of the following vectors in the
form v = aje; + a,e, (that is, as a linear combina-
tion of e; and e,):

(@ v=i (b v=j,

() v=2i+j, d) v=—-2i—j.
Supposé that a force F (for example, gravity) is
acting vertically downward on an object sitting
on a plane which is inclined at an angle of 45° to
the horizontal. Express this force as a sum of a
force acting parallel to the plane and one acting
perpendicular to it.

Suppose that an object moving in direction i+ j
is acted on by a force given by the vector 2i + j.
Express this force as a sum of a force in the
direction of motion and a force perpendicular to
the direction of motion.

A force of 6 newtons makes an angle of /4

radians with the y axis, pointing to the right. The

force acts against the movement of an object

along the straight line connecting (1,2) to (5,4).

(a) Find a formula for the force vector F.

(b) Find the angle # between the displacement
direction D=(5—-Di+ (4 —2)j and the
force direction F.

(¢) The work done is F+D, or equivalently,
[|[F|] {|Djcos 8. Compute the work from both
formulas and compare.

A fluid flows across a plane surface with uniform

vector velocity v. Let n be a unit normal to the

plane surface. Show that v-n is the volume of
fluid that passes through a unit area of the plane
in unit time.
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53.

54.

55.

*56.
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Establish the following properties of the dot

product:

(a) u-u 3> 0 for any vector u.

(b) Ifu-u=0, thenu=20.

(¢) w-v=yv-ufor any vector u and v.

(d) (au+bv)-w=a(u-w)+ b(v-w) for any
numbers 2 and b and.any vectors u, v, w.

Let:

L, =theline 2,1, )+ «(1,1,1);

L, = the line (1 +7¢,7t — 2,2 + 7¢);

L, = the line (1,0, 8) + #(1,1,9);

L4 = the line through the points (—1,0,1) and

(1,2,19).

Determine whether each of the following

pairs of lines is parallel or intersects. If the

lines intersect, find the point of intersection.
() L,and L,

(ii) L, and L,

(i) L, and Ls

(iv) L, and L,

(v) Lyand L,

(vi) Ly and Ly

For each pair of lines in part (a) which lie in

a plane (that is, are not skew), find an

equation for that plane.

(¢) For each of the lines L; to Ly, find the point
of the closest approach to the origin and an
equation for the plane perpendicular to that
line through that point.

A construction worker is checking the architect’s

plans for some sheet metal construction. One

diagram contains a triangle with sides 12.5, 16.7,

20.9, but no angles have been included. The

worker gets out a calculator to check that

(12.5) 4 (16.7)* ~ (20.9)%, then marks the angle

opposite the long side as 90°.

(a) Explain from the law of cosines the reason
why the worker’s actions are essentially cor-
rect.

(b) The angle is not exactly 90°, from the data
given. What percentage error is present?

Let P, and P, be points in the plane with polar
coordinates (r;,#)) and (r,,0,), respectively, and
let w; be the vector from O to P, and u, the
vector from O to P,. Show that u;-u, =
rirscos(8, — 8,). [Hint: Use a trigonometric iden-
tity.]

(a)

(b)

Suppose that R = Py+ 1(a,b,¢) is the line

*57.

through P, in the direction d = ai + bj + ck. Let

u=d/|d| = (gA,»). Let:

a= angle from i to d;

B=angle from j to d;

v=angle from k to d.

These are called the direction angles of the line.

The numbers cos a, cos 8, and cosy are called its

direction cosines (see Fig. 13.4.9).

k

d
u
y 5
o / ]
i

Figure 13.4.9. The direction
angles of the line / are a, £,
and vy.

(a) Show that Py + s(u, A, ») gives the same
line. (What values of s and ¢ correspond to
the same points on the line?)

(b) Show that cosa=i-u=p; cos f=j-u
=A;cosy=k-u=y.

() Show that cos’a + cos?B + cos™y = 1.

(d) Determine the direction angles and cosines
of each of the lines in Exercise 54.

(e) Which lines through the origin have direc-
tion angles a = = v?

*58. Imagine that you look to the side as you walk in

the rain. Now you stop walking.

(a) How does the (apparent) direction of the

falling rain change? (The rain may be falling

at an angle because of wind.)

Explain the observation in (a) in terms of

vectors. -

(¢) Suppose that there is no wind and that you
know your walking speed. How could you
measure the speed at which the rain is fall-
ing?

(d) Do part (c) if the rain is falling at an angle.

(b)
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Figure 135.1. The point P
has velocity vector v.

Figure 13.5.3. Calculating
the area of ORQP.

Example 1

Solution

13.5 The Cross Product 677

The Cross Product

The cross product of two vectors in space is a new vector that is perpendicular to
the first two.

What is the velocity of a point on a rotating object? Let v, be a vector which
points in the direction of the axis of rotation and whose length equals the
rotation rate (in radians per unit time). Let v, be a vector from a point O on
the axis of rotation to a point P on the object (see Fig. 13.5.1). A little thought
shows that the velocity v of the point P has the following properties:

L |lvll = |lv,|i lv,llsin @, where @ is the angle between v, and v,.
2. 1f 6 # 0 (so that v # 0), v is perpendicular to both v, and v,, and the triple
(v,,v,, V) of vectors obeys the right-hand rule (see Fig. 13.5.2).

Figure 13.5.2. Right-hand
rule: Place the palm of your v
hand so that your fingers

curl from v, in the direction

of v, through the angle 8.

Then your thumb points in / vy
the direction of v.

Note that condition 1 says the magnitude of the velocity of P is proportional
to the product of the magnitude of the rotation rate and the distance of P
from the axis of rotation; furthermore, for fixed |[v,||, the velocity is greatest
when v, is perpendicular to the axis.

Conditions 1 and 2 determine v uniquely in terms of v, and v,; v is called
the cross product (or vector product) of v, and v, and is denoted by v, X v,.

We will now determine some properties of the cross product operation.
Our ultimate goal is to find a formula for the components of v, X v, in terms
of the components of v, and v,. Let us first show that ||v, X v,|| is equal to the
area of the parallelogram spanned by v, and v,. Drop the perpendicular PS as
shown in Fig. 13.5.3. Then 4 =|OR||PS|=|OR||OP|sin8 = ||v,|| ||v,|/sind
= |lv; x v,|| by condition 1, proving our claim.

P

()

D R

Find all the cross products between the standard basis vectors i, j, and k.

We observe first that i X i =j X j =k X k = 0, because the angle between any
vector and itself is zero, and sin0 = 0. Next we observe that i X j must be a
multiple of Kk, since it is perpendicular to i and j. On the other hand,
[li X j|l = ||i]] |jl[sin 90° = 1, so i X j must be k or —k. The right-hand rule then
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Figure 13.54. The
right-hand rule requires
that i X j equal k, not —k.

k .
\/l
Figure 13.5.5. As we go
around the circle, the cross
product of any two
consecutive vectors equals
the third vector. Going
backwards produces the
negative of the preceding
vector.

shows that i X j=k (see Fig. 13.5.4). Next, j X i must be k or —k; this time
the right-hand rule gives —k as the answer. Similarly, jxk=1i, kxXi=j],
kXj=—-jandixk=—j A

e

A good way to remember these products is to write i, j, and k in a circle as in
Fig. 13.5.5.

We will now obtain a general formula for the cross product

(@1 + byj + 1K) X (a,i + b,j + ¢;K).
If we assumed that the usual rules of algebra apply to the cross product, we
could use the result of Example 1 to make the following calculation:

(a)i+ byj + ¢ k) X (a5i + byj + k)

= a)i X (@i + byj + ¢ k) + bj X (ayi + byj + ¢ k) + ¢ Kk X (aji + byj + ¢k

= a,b)k + acy(—j)+ biay,(—K) + bici + ¢ a,j + ¢,by(— ).
Collecting terms, we have
(aji+ bjj+ c k)X (a5 + b,j+ ¢)K)
= (bicy — ¢1by)i + (¢ya; — a,6))j + (a,by, — biay)k. €)]

Although to derive (1) we made the unjustified assumption that some
laws of algebra hold for the cross product, it turns out that the result is
correct. To see this, we shall show that u= (b,c, — ¢,b,)i + (c,a, — a,c,)j +
(a,b, — biay)k is indeed the cross product of v,=a,i+ bj+ ¢k and v,
= a,i + b,j + c,k. We accomplish this by verifying that u satisfies conditions
1 and 2 in the definition of the cross product.

First, we consider the squared length of u:

(biey — clb2)2+ (c1a, — a\c,)* + (a;b, — bla2)2
= b2 — 2b,c,byc, + cib2 + ca3 — 2a,c,a,c, + alcs + atb — 2aba,b, + b?a?
Now we compute the square of |lv,||||v,||sin#:
Ve l1Z1¥2)1%sin®8 = [|vy]I?|vll*(1 — cos’d )
= Vi IPIv2ll? = (IvlFlIvallcos 8 )®
= [[vill?lIvall® = (vVi° "2)2
= (ai + b} + ¢})(a3 + b + ¢3) — (@@, + byby + ¢yc))’
which, when it is multiplied out and terms are collected, is the same as ||ul|?, so

lull = ||v,]| |}v,||sin .
Next we check that u is perpendicular to v, and v,. We have

u-v, = (blc2 — clbz)al +(ca, — alcz)bq + (alb2 — blaz)cl
= b,cya, — ¢1bya, + ¢ ab, — ac,by + abye, — biayc,
=0’
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Solution
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since the terms cancel in pairs. Similarly, u - v, = 0, so u is perpendicular to v,
and v,.

To check the right-hand rule would require a precise mathematical
definition of that rule, which we will not attempt to give. Instead, we will
merely remark that the rule is satisfied for all products of standard basis
vectors; see Example 1.

We have now shown that the vector u on the right-hand side of (1)
satisfies the conditions in the definition of v, X v,, so it must be v, X v,. The
algebraic rules in the following display may then be verified as a consequence
of formula (1) (see Example 7).

The Cross Product
Geometric definition: v X v, is the vector such that:

L [lvy X wyll = ||vy]| [Iv,|lsin @, the area of the parallelogram spanned by v,
and v, (# is the angle between v, and v,; 0 < 4 < 7).

2. v; X'y, is perpendicular to v, and v,, and the triple (v ,v,,v, X v,)
obeys the right-hand rule.

Component formula:
(aii+ bjj+ ¢ k) X (aji + byj + ck)
= (biey = ¢ \by)i+ (cya, — a,¢))j + (a,b, — biay)k
Algebraic rules:

. vy X v, =0 if and only if v, and v, are parallel or v, or v, is zero.
VXV, = =y, Xy,

Vi X (Vg + V) =v, X vy + v Xv;.

(Y, + V) Xvy=v, Xv;+ v, Xv;.

(av) X vy, = a(v, X v,).

DA N =

Multiplication table (see Fig. 13.5.5):

Second Factor
x | i i k
First l - 0 k B J
Fact -k 0 i
actor k i _ 0

(a) Compute (3i+2j—k)x (§—k). (b) Find i X (i xj) and (i X i) X j. Are
they equal?
(a) We use the products i X j =K, etc. and the algebraic rules as follows:
Gi+2i-kyx(j-ky=@Ci+2j—-kyxj— 3i+2j—k)xk
=3iXj+2jxj—kxj-3ixk—2jxk+kxk
=3k+0+i+3j—-2i+0
= —i+3j+ 3k

This can be checked using the component formula.

(b) We find that i X (iXj)=iXk= —j, while i Xi)Xj=0Xxj=0, so the
two expressions are not equal. This example means that the cross product is
not associative—one cannot move parentheses as in ordinary multiplication. A
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Example 3

Solution

Example 4

Solution

Example 5

Solution

Example 6

Solution

Find the area of the parallelogram spanned by the vectors v, =i+ 2j + 3k
and v, = —i—k.

We calculate the cross product of v, and v, by applying the component
formula, with a, =1,5,=2,¢,=3,a,= -1, b,=0,¢c,= — It

vixXv=[@)(-) = @O)]i+[3)~) - DD+ [(DO) - @)(—DH]k
= —2i—2j+ 2k

Thus the area is

vy X vall =y (~27 + (=2 + (D

=2/3. A
Comparing the methods of Examples 2 and 3 shows that it is often easier
to use the algebraic rules and the multiplication table directly, rather than
using the component formula.

Find a unit vector which is orthogonal to the vectors i + j and j + k.

A vector perpendicular to both i + j and j + k is the vector
i+ x@+ky=ixj+ixk+jxj+jxk
=k—j+0+i
=i—j+k

Since |li—j+ k|| = V3, the vector (1/ V3 )i — j + k) is a unit vector perpendic-
ulartoi+jand j+ k. A

Use the cross product to find the equation of the plane containing the points
1,1, 1), (2,0,0), and (1, 1,0). (Compare Example 8 of Section 13.4.)

The normal to the plane is perpendicular to any vector which joins two points
in the plane, so it is perpendicular to v, =(1,1,1)—(2,0,0)=(-1,1,1)=
—i+j+kand v,=(1,1,1)—(1,1,00=(0,0,1) = k. A vector perpendicular
tov,and vyis vy Xv,=(—i+j+k) xk= —ixXk+jxk+kXk=j+i+0
=i+j, so the equation of the plane has the form x + y + D =0. Since
(1,1,1) lies in the plane, 2+ D =0, and the equation is x + y —2=0. (In
Example 8 of Section 13.4, we obtained this result by solving a system of
simultaneous equations. Here the cross product does the solving for us.) A

Find the area of the triangle with vertices P, = (1,1,2), P, =(2, —1,0), and
P,=(1,-1,3).

The area of a triangle is half that of the parallelogram spanned by two of its
sides. As sides we take the vectors v, =P P,=i—2j—2k and v,=P P;=
—2j+ k. Then

viXvy=(i—2j—2k) X (—2j+ k)= —6i—j— 2k

The area of the triangle is thus

1/2
Lvy X vyl = 2 (6% + 17 + 2%

=1/41 ~3.20. A
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Example 7 Prove the algebraic rule 3 by using the component formula,
Letv,=ai+ bj+ ck (i =1,2,3). Then
Vo + V3= (ay + @)i+ (by + by)j + (¢ + 65)k

Solution

and
VX (Vy+ v3) = [bl(c2 +¢3) — ¢y (by+ b3)]i
+[ey(a, + az) — ay(cy + ¢3) i+ [ai(by + b3) — by(a, + a5) |k
= (blc2 — clbz)i + (14, — ac,)j + (alb2 — b]az)k
+ (bie3 — ¢ by)i+ (cia5 — aje3)j + (a,b; — azb )k

=V XV, + v XV3. A

Example 8 Show that |ju X v|? = |Jul/|v|]? — (u - v)%
Solution Let # be the angle between u and v. Then
[[u X v|] =|uj| ||v|]sinf and wu-vy=|ul|vicosb.

Squaring both equations and summing gives
[[u X v]|> + (u-v)> = [Ju|?|[v|]*(sin®f + cos)
= [lul||vII?,

2 _ 2 2 2
o Jlu X v|[" = Jlaf*v]]" — (u-v)". A

Exercises for Section 13.5

Calculate the cross products in Exercises 1-10.

20.

Find a unit vector perpendicular to i — j and to
i + k and with a positive k component.

1. fi _J: +h) X (G —k). 21. Find the equation of the plane passing through
2. l->< (] — k). ) o the points (0,0,0), (2,0, — 1), and (0,4, —3).
3.4 TJ),X [(k — !) +@j-2i+ k) 22. Find the equation of the plane through the
4 (d+j-kpxi points (1,2,0), (0, 1, —2), and (4,0, 1).
3. [§3l + 2) X 31_] X (21— j+k). 23. Find the equation of the plane through (1,1,1)
6. (ix DX (+] + k). and containing the line which is the intersection
7. (f+_2-'+3k)>f(l+3k)' of the planes x —y =2 and y —z = 1.
8. (f tit k)_>< (f +k). 24. Find the equation of the plane through the point
9. i+k) X ({+j+k). (2,1,1) and containing the line x=7-1, y
10. (3i—2k) X (3i — j — k). =2 41,z2=—1—1.
Find the area of the parallelogram spanned by the 25. Find the area of the triangle whose vertices are
vectors in Exercises 11-14. ©,1,2), 3,4,5), and (— 1, —1,0).
Hoi-2j+kandi+j+k 26. Find the area of the triangle whose vertices are
12.i—jandi+] (0,1,2), (1,1, 1), and (2, 1,0).
13. iand i —2j. 27. Find the area of the triangle whose vertices are
4. i-j-kandi+j+k (0,0,0), (0, —1,1), and (0, 1, — 1).
Find a unit vector orthogonal to the pairs of vectors in 28. Find the area of the triangle whose vertices are
Exercises 15-18. (-1, -1,-D,(-1,0,1, and (1,0, — ).
I5.iandi+j+k 29. Prove algebraic rule 5 by using the component
16. i—jand i+ j. formula.
17. i —j— k and 2i — 2j + k. 30. Prove the formula in Example 8 by using the
18. i+2j+k and 3i — i. compopent formula.
31. By using the cross product of the vectors

19.

Find a unit vector perpendicular to i + j and to
i —j — 1k and with a positive k component.

cos#i +sinfj and cosyi + sinyj, verify that
sin(# — ) = sin# cosy — cosfsiny.
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32. Let / be a line through a point P, in direction d. are separated by a plane surface perpendicular to
Show that the distance from a point P to / is the unit vector N. Let a and b be unit vectors
given by |(W)>< dj|/|djj. along the incident and refracted rays, respec-

33. Let a line in the plane be given by the equation tively, their directions being those of the light
ax + by = c. Use the cross product to show that rays. Show that n;(N X a) = ny(N X b) by using
the distance from a point P = (x, y) to this line is Snell’s law sin 6, /sin8, = n,/n,, where 8, and 8,
given by : are the angles of incidence and refraction, re-

lax + by — | spectively. (See Eig. 13.5.7.)
T — *38. Prove the following:
vat+ b (a) (WX v)-(axb)=(u-a)v-b)—(v-a)u-b).

34. Use the cross product to find a solution of the (b) The Jacobi identity:
following simultaneous equations: x + y = 0 and XV Xw+(Xw)Xu+ (wxu)xXv=0.
x—y—-2:=0 #39. (a) Using vector methods, show that the dis-

35. In .mechar'ucs, tbe moment M of a forcg F about a tance between two nonparallel lines /; and /,
point O is defined to be the magnitude of F is given by
times the perpendicular distance d from O to the
line of action of F. The vector moment M is the d= [(v2 = v1)+ (a; X ay)]
vector of magnitude M whose direction is per- Hla; X a|
pendicular to the plane of O and F, determined where v,, v, are vectors from the origin to
by the right-hand rule. Show that M= R XF, points on /; and /,, respectively, and a, and
whf:re R is any Yector from O to the line of a, are the directions of /, and l,. [Hint:
action of F. (See Fig. 13.5.6.) Consider the plane through /, which is paral-

0 lel to 7;. Show that (a, X a;)/[|la; X a| is a
- unit normal for this plane; now project
v, — v, onto this normal direction.]
R (b) Find the distance between the line /, deter-
mined by the two points (—1, —1,1) and
line of action Figure 13.5.6. Moment of a (O, 0, 0) and the line 12 determined by the
force. points (0, —2,0) and (2,0, 5).

36. The angular velocity € of rotation of a rigid *40. Use PrOpertie§ of t.he cross pr'oduct to expla..in
body has direction equal to the axis of rotation w.hy, m th.e d1s01..1ss1on of rotat'lon at the begin-
and magnitude equal to the angular velocity in ning of this section, th‘? resulting ve'ct.or v d.oes
radians per second. The sense of Q is determined not depend on the 'ch01ce of the origin O; 1€,
by the right-hand rule. what happen§ if O is r.eplaced by another point
(a) Letr be a vector from the axis to a point P O’ on the axis of rotatlgn? . )

*41. When a gyroscope rotating about an axis €, as in

37.

N

on the rigid body. Show that the quantity
v=Q Xr is the velocity of P, as in Fig.
135.1, with @ =v, and r=v,.

Interpret the result for the rotation of a
carousel about its axis, with P a point on the
circumference.

Two media with indices of refraction n, and n,

(b)

Light ray

Figure 13.5.7. Snell’s law.

Anchor
point

Fig. 13.5.8, is subject to a force F, the gyroscope
responds by moving in the direction @ X F.°
Show that this fact is consistent with the gyro-
scopic precession you actually observe in toy
gyroscopes.

Figure 13.5.8. Gyroscope
and cross products.

5 This relationship is easiest to see in an orbiting earth satellite, where the effects of gravity do not complicate the issue. Indeed, the
Skylab astronauts had great fun carrying out such experiments. (See Henry S. Cooper, Jr., 4 House in Space, Holt, Rinehart, and
Winston, 1976).
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@) ajb, ~bja, >0

ST~

V2
(b) a; by —bra;, <0

Figure 13.6.1. The sign of
a\by — b,a, determines the
orientation of the ordered
pair (a,i + bj, axi + b,j).

Example 1

Solution

13.6 Matrices and Determinants 683

Matrices and
Determinants

The cross product can be expressed as a 3 X 3 determinant.

From the point of view of geometry and vectors, we will consider, in turn,
2 X 2 determinants and matrices, and then the 3 X 3 case.

If vi=aji+ bjj and v, = a,i + b,j are vectors in the plane, to compute
the area of the parallelogram spanned by v, and v,, we may consider them as
vectors in space (with ¢, =c¢,=0) and take the cross-product v, X v,
= (a,b, — bya)k. The area is then [lv; X v,|| = |a,b, — b,a,|, but the sign of
aib, — bya, also gives us some information: it is positive if the sense of
(shortest) rotation from v, to v, is counterclockwise and negative if the sense
of rotation is clockwise (see Fig. 13.6.1). We may say that the sign of
ab, — bya, determines the orientation of the ordered pair of vectors (v,,v,).

The combination a,b, — b,a, of the four numbers a, b, a,, and b, is
denoted by

a, b,

a, b,

and is called the determinant of these four numbers,

2 X 2 Determinants

If a, b, ¢, d are any four numbers, we write

a b= 44— pe.
¢ d

The absolute value of
a b
¢ d

equals the area of the parallelogram spanned by the vectors v = ai + bj
and w = ci + dj. The sign of

a b
¢ d

gives the orientation of the pair (v, w).

(a) Find the determinant | " 3 ’

w/2 6

(b) Show that

12 =)1 2'=)1 4'. What is their common value?
3 4 4 6 2 6

a bl _|b a (the two columns are interchanged).
¢

P that
(c) Prove tha e d d
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(b) =(HH-OB) =%

= () - = -2

AP AN BN

1
3
1
4
V d=mE-@o=-2

Their common value is — 2.

a Z|= ad — bc, and

—\’; 4| = —(be ~ ad) = ad - be. A&

From the previous section we recall that
(ai+ bij+ ck)X (a+ byj+ k)
= (bycy — €1 by)i + (¢1a, — agcy)i + (ayhy — biasr)k.
All the components on the right-hand side are determinants. We have:
(aiji+ bij+ck)X(ai+ b+ oK)

b, ¢ ¢, a a, b
R R R 1 9
c, a,

k. (1)

by, ¢, a, b,

The middle term can also be written
a, ¢,
a, ¢

Shortly we shall see how to write the cross product in terms of a single 3 X3
determinant.
Sometimes we wish to refer to the array

a b

¢ d
of numbers without taking the combination ad — bc. In this case, we use the
notation

a b
c d
and refer to this object as a 2 X 2 matrix. Two matrices are considered equal

only when all their corresponding entries are equal; thus, in contrast to the
equalities in Example 1(b), the matrices

12 1 2 1 4
13 47 4 6} 2 6
are all different. The determinant

a b
c d

is a single number obtained by combining the four numbers in the matrix

(a b }
lc d
Geometrically, we may think of a matrix as representing a parallelogram

(that is, a geometric figure), while the determinant represents only the area of
the parallelogram (that is, a number).




Example 2

Solution

Figure 13.6.2. The absolute
value of a determinant
equals the volume of the
parallelepiped spanned by
the rows.

Figure 13.6.3. The volume
of the parallelepiped is its
height | PQ| times the area
of its base.

13.6 Matrices and Determinants 685

The transpose of a matrix [a Z ] is defined to be the matrix [Z 2]
c

obtained by reflection across the main (upper left to lower right) diagonal.

(a) Find the transpose of [ 15 ]

, -3 2
(b) Show that the determinant of a matrix is equal to the determinant of its
transpose: a b ___'a ¢ '
c dl b d

(¢) Check (b) for the matrix in (a).

(a) The transpose of [ _; g} is [é _g}

a b___ . =a C
(b) . d'—ad bc 'b dl

1 5
=24+ 15=17;
© n 2.

1 -3
—2415=17.
5 2| A

A 3 X 3 matrix consists of nine numbers in a square array, such as

1 4 6
0 2 9|
31 =5
a, by ¢ a by ¢
To define the determinant D =|a, b, c¢,|of a3 X3 matrix [a, b, ¢, |,
as by ¢ ay by ¢

we proceed by analogy with the 2 X 2 case. The rows of the matrix give us
three vectors in space:

v, =ai+ bjj+ ck,

vy = a,i + byj + ¢k,

V3 = asi + bij + csk.

Since the determinant of a 2 X 2 matrix represents an area, we should define
the determinant in such a way that its absolute value is the volume of the
parallelepiped spanned by v,, v,, and v;. (See Fig. 13.6.2.)

To compute this volume in terms of the nine entries in the matrix, we
drop a perpendicular PQ from the tip of v, to the plane spanned by v, and v,.
It is a theorem of elementary solid geometry that the volume of the parallelepi-
ped is equal to the length of PQ times the area of the parallelogram spanned
by v, and v, (see Fig. 13.6.3).

Looking at the right angle OQP, we find that the length of PQ is
lv5]{ lcos #{, where # is the angle between v; and PQ. On the other hand, PQ is
perpendicular to v, and v,, so it is parallel to v, X v,, so # is also the angle
between v; and v, X v,. Now we have:
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Volume = (area of base)(height)
= [lv; X vyl [[vs]| |cos 8]
= [1Iv; X vl lIvs]icos )|
= |(v) X ¥p) * V3.

Since the volume is to be the absolute value of the determinant, we define the
determinant to be the expression inside the bars:

a, b, ¢
ay b, cy|=[(aii+bj+ ck)X (ai+bj+ k)] - (asi + byj + c3K).
a; by ¢

By using the component formula for the cross product in equation (1), we find

@ by e b, ¢ ¢, a a, b
_121 4 1 4 1 b
a, b, cz—b . a3+c . b3+a C3
2 O 2 4 2 D
as by ¢
or
@ byoe b, ¢ a, ¢ a, b
a, b, o|= v as — v by + ! : ‘3. (2)
b, ¢, a ¢, a, b,
a; by ¢

We take equation (2) as the definition of the determinant of a 33
matrix; the volume of the parallelepiped spanned by three vectors is thus
equal to the absolute value of the determinant of the matrix whose rows are
the components of the vectors. The sign of the determinant is interpreted
geometrically in Example 9.

0 0 4
Example 3 Evaluate the determinant |2 —1 6]
3 1 2
Solution By equation (2),
0 0 4
2 —1 6=’ 0 ‘6‘1(3)—’2 ‘6‘|(1)+’g (”(z)
3 1 2 B -

=3 — (=8 + (0
=12+8=20. A '

We can express the cross product of two vectors as a single 3 X 3 determinant.
In fact, comparing equation (2), with (1),

a, by ¢
(ai+ bjj+ ck) X (aji+ bj+ ck)=|a, by, ¢,}- 3)
i j k

Example 4 Write (i + k) X (j — 2k) as a determinant.

Solution

10 1
(+kx(-2k)=0 1 —2|.A
i j kK




Example 5

Solution

Example 6

Solution

13.6 Matrices and Determinants 687
Formula (2) is worth memorizing. To do so, notice that the ith entry in the
third row is multiplied by the determinant obtained by crossing out the ith
column and third row of the original matrix. Such a 2 X 2 determinant is
called a minor, and formula (2) is called the expansion by minors of the third
row.

It turns out that a determinant can be evaluated by expanding in minors
of any row or column. (We shall verify this for the second column in Example
1.) To do the expansion, multiply each entry in a given row or column by the
2 X 2 determinant obtained by crossing out the row and column of the given
entry. Signs are assigned to the products according to the checkerboard

pattern:
+ - +
— + — 1.
+ - +

(Remember the plus sign in the upper left-hand corner, and you can always
reconstruct this pattern.) Thus, the cross product (3) can also be written

i j k
a, b, ¢
a, b, c,

(a) Evaluate the determinant

0 0 4
2 -1 6
3 1 2

of Example 3 by expanding in minors of the first row.
(b) Find (2i — j + k) X (i — j — 3k) using a 3 X 3 determinant.

(@)
0 0 4
2 -1 6

~1l,
31 2 1]

_|-1 6[m_12 6 2
—ll JQ 3 2®+L
=0-0+ (5)(4) = 20.

Since we do not need to evaluate the minors of the zero entries, the expansion
by minors of the first row results in a simpler calculation (for this particular
matrix) than the expansion by minors of the third row.

i k
(d) Q-j+kx(i-j-3k=|p _1
1 -1 -3
-1 -3 1 -3 Q-
=4i+7j—k A

Find the volume of the parallelepiped spanned by the following vectors:
i+ 3k, 2i +j— 2k, and 5i + 4k

The volume is the absolute value of

1 0 3
21 =2
50 4




688 Chapter 13 Vectors

Example 7

Solution

Example 8

Solution

If we expand this by minors of the second column, the only nonzero term is

13
y=—11,
5 4‘()

so the volume equals 11. A

To prove that the expansions by minors of rows or columns all give the same
result, it is sufficient to compare these expansions for the “general” 3 X 3
determinant.

Show that expanding the determinant

a, b, c
a, b, ¢
a; by ¢

by minors of the second column gives the correct result.

The expansion by minors of the second column is
a,
as

)
C3

a,
as

€
C3

a
a;

€
)

2

b, + ,.

Expanding the 2 X 2 determinants gives
— (@363 — €aa3)b, + (ajc; — ¢,a3)b, — (a,¢; — €1a3)bs
= —bayc; + b,c,ay + abycy — ¢ bya; — ac,by + cja,by.
Collecting the terms in a;, by, and c¢;, we get

(bicy — ¢1by)as — (ac; — c\a)b; + (alb2 — biay)e;

_ by ¢ a ¢ a, b
= 2 P by + 5
b, ¢ 2 O a, b,
a by ¢
=la, b, ¢|. A
as by ¢

The proof that we get the same result by expanding in any row or column is
similar.

If vi=ai+bj+ck, v,=a5i+ byj+ ck, and v;=asi+ bsj+ 3k,
equation (2) can be written

a b ¢
ay, by c|=(v(X V) v;.
as by ¢

This is called the triple product of v, v,, and v;.

Show that (v, X v,) vy = (V3 Xv,)*V,. In fact, the numbers 1,2,3 can be
moved cyclically without changing the value of the triple product:

7Yy
3 2

T

The triple product (v5 X v,) * v, is equal to the determinant

a, by ¢
a b, ¢
a b, ¢



Example 9

Solution
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Expanding this by minors of the first row gives

by ¢ a, ¢

a; €

a, b,
a, b,

03— 3 C3.

b, ¢,

Expanding the determinant for (v, X v,) - v, by the third row gives the same
result.”’ A

Let vi=aji+ bj+ ck, v, = a,i + b,j + ¢k, and V3= a,i + b3j + c;k. Show
that the triple (v,,v,,v;) is right-handed (left-handed) if the determinant

a, b ¢
a, by ¢,
a; by ¢

is positive (negative). What does it mean if the determinant is zero?

Let & be the plane spanned by v, and v,. (We assume that v, and v, are not
parallel; otherwise v, X v, = 0, and the determinant is zero.) Then (vi,V5,V3) I8
right handed (left handed) if and only if v, lies on the same (opposite) side of
& as v; X vy; that is, if and only if (v, X v,)+ v, is positive (negative); but
(vi X v,) +v; is the determinant

a, by ¢
a, by, c,.
as by ¢

If the determinant is zero (but v, X v, is not zero), then v, must lie in the
plane #°. In general, we may say that the determinant is zero when the vectors
Vi, ¥3, and v; fail to span a solid parallelepiped, but instead lie in a plane, lie
on a line, or are all zero. Such triples of vectors are said to be linearly
dependent and are neither right-handed nor left-handed. A

3 X 3 Determinants

a, b, ¢
1 b6
by ¢ a, ¢ a, b
a, b, ¢,= b as — by + Cs
2 O a, ¢ a; by
a; by ¢

The determinant can be expanded by minors of any row or column. If
Vi=ai+bj+ ck,
V2 = azi + sz + Czk,
V3= aii + b3j + ¢k,
then the determinant equals (v, X v,) - v; which is also called the triple
product of v, v,, and v,.
The absolute value of the determinant equals the volume of the
parallelepiped spanned by v,, v,, and v,.

The sign of the determinant tells whether the triple (v,,v,,vs) is
right- or left-handed.
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Exercises for Section 13.6

Evaluate the determinants in Exercises 1-10.

1ol S| 12
1. -1 1 ° —1 0
565 4]0 0
112 10 3 17
1 2 1 2
5. 6.
3 4 2 4
. 143 o [1-x -1
17 1 ~-1-x
9. |a ® j0.| a b
0 ¢ |=b a
Prove the identities in Exercises 11-14.
11. |4 b = —|¢ 9| (the two rows are inter changed).
c d a b
12. |4 bl =|atec b+d]| (helast row is added to
c d c d
the first).
13. |r@ 2| = /|@ ®| (the first row is multiplied by
c d c d
a constant).
14. z: jz, Z, =\ Z, (a constant times the sec-

ond column is subtracted from the first).
Evaluate the determinants in Exercises 15-24.

1 0 1 1 10
I5. 10 10 16. 10 1 1
1 01 0 1 1
2 -1 0 1 1 2
17. 14 3 18. {12 —1 1
3 0 1 1 00
1 2 3 -1 0 1
9. -1 —1 2 20. 21 3
0 1 -1 01 2
210 -1 0 1
2110 2 1 22, 1 3
1 0 2 31 2
a d e a 0 0
23.10 b f 4. 1e b d
0 0 ¢ 0 0 ¢

Write the cross products in Exercises 25-30 as determi-
nants and evaluate,

25 Bi— )X (G+k). 26 (i+3j— K x(3{—3j+k).

27 G+ )X G+K). 28 (2i+4j+ 6k) X k.
29. G—K) X (i+k). 30. G+ 2K) X (32j + 64K).

31. Find the volume of the parallelepiped spanned
by the vectors i+ j+k, i—j+k, and 3k

32. Find the volume of the parallelepiped spanned
byi—j,j—k and k+1i

33. Find the volume of the parallelepiped with one
vertex at (1,1,2) and three adjacent vertices at
(2,0,2), (3,1,3), and (2,2, —3).

34.

36.
37.
38.
39.

40.
41.

42.

43.

44.

*45.

Find the other four vertices of the parallelepiped
in Exercise 33 and use them to recompute the
volume.

. Check that expanding the determinant

a; by c
az b2 C2
a3 by

by (a) minors of the second row and (b) minors
of the third column gives the correct result.
Show that if the first two rows of a 3 X 3 matrix
are interchanged, the determinant changes sign.
Show that if the first two columns of a matrix are
interchanged, the determinant changes sign.

Use Exercise 36 to verify that (v Xvy):v3=
—(vy X vy)»v3.

Verify that (v; X vp) = v3 = (v X v3) * v;.

Verify that (v; — v3) X (v| + v3) = 2v; X v;.

Show by drawing appropriate diagrams that if
(v{,V,,v3) is a right-handed triple, then so is
(v2, V3, V1)

Show that if two rows or columns of a 3 X3
matrix are equal, then the determinant of the
matrix is zero.

Show that if

a b

Flia 0,
then the solutions to the equations
ax + by = e,
cx+dy=f
are given by the formulas
e b a e
fd c f
= a b|’ - a b
c d c d

This result is called Cramer’s rule® (We have
already used it without the language of determi-
nants in our discussion of Wronskians in the
Supplement to Section 12.7.)

Use Cramer’s rule (Exercise 43) to solve the
equations 4x + 3y =2; 2x — 6y = 1.

Suppose that the determinant

a b ¢
D= a, bz (%)
a; by o

6 Gabriel Cramer (1704—1752) published this rule in his book, Introduction a I’analyse des lignes courbes algebriques (1750). However,
it was probably known to Maclaurin in 1729. For systems of # equations in n unknowns, there is a generalization of this rule, but it
can be inefficient to use on a computer when # is large. (See Exercises 45 for the case n = 3.)



is unequal to zero. Show that the solution of the
equations

ax+by+cz=d,
ax+byy+cz=4d,
ax + byy+ ez =ds

is given by the formulas

dy by ¢ a dy ¢
dy by ¢ a, dy ¢
dy by o3 ay dy o
*—p > YT Db
a, by d,
a by d,
a; by d
z=—"7—.
This result is called Cramer’s rule for 3 X 3 sys-
tems.
46. Use Cramer’s rule (Exercise 45) to solve
—x+ty = 14,

2x+y+z =38,
x+y+5z=—-1
Use Cramer’s rule to solve the systems in Exercises 47
and 48.
47. 2x+3y=5;3x -2y =9.
48. x+y+z=3x—y+tz=4;x+y—z=3

49, Check that

ad gl |a b ¢
b e hi=|d e f|.
c f i g h i

That is, check that the determinant of the trans-
pose of a 3 X 3 matrix is equal to the determi-
nant of the original matrix.

*50. Show that adding a multiple of the first row of a

*51.

*52.

*53.

*54.

Review Exercises for Chapter 13 691

matrix to the second row leaves the determinant
unchanged; that is,

a b, ¢ a by ¢
02+Aal b2+Abl (,‘2+AC1 =14, b2 Cyl-
a, b3 C3 a, b3 Cy

[In fact, adding a multiple of any row (column)
of a matrix to another row (column) leaves the
determinant unchanged.]

Justify the steps in the following computation:

12 3|1 2 3
45 6|=[0 -3 —6
7 8 10| |7 8 10
12 3
=0 -3 -6
0 —6 -1
=73 ~6|=33-36=-3.
-6 —11

Follow the technique of Exercise 51 to evaluate
the determinant

1 25
2 3 6|
-1 2 1

(Add —2 times the first row to the second row,
then add the first row to the third row.)
Use the technique in Exercise 51 to evaluate the
3 X 3 determinants in Exercises 18 and 19.
Show that the plane which passes through the
three points A = (a,, a,,a3), B = (b, b,,b,), and
C = (¢, ¢3, ¢3) consists of the points P = (x, y, z)
given by

a—XxX ay—y a3—z

by—x by—y by—z[=0.

=X €=y c3—z

[Hint: Write the determinant as a triple product.]

Review Exercises for Chapter 13

Complete the calculations in Exercises 1-16.

. 3,2)+(—1,6)=

2L -+ (L5 =

(L2, + 21, -2, =

L 2[(-1,0, D)+ (6,0,2)]— (0,0, ) =

@i+ 2Hp+Bi—j—k) =
.@Bi+3j-k—-6(i—j—-k =
LBi+3 -k x(i-j-k=
(i-j-k+j+2k) =

9. Bi+3i—-k-(i—-j—k=

10 G+ ) G- )=

I i+jp)x@-)=

12 [Qi—-)HpXGi+pl-Qj+k=

13. uXv=2 whereu=2i+jand v=k.

14. u-v=? whereu=3j—kand v=2j+1

15. u — 3v =7, where u and v are as in Exercise 13.
16. u + 6v =7, where u and v are as in Exercise 14.

O ~1 0N WU A WN

17.

18.
19.

20.

2L

22.

23.

Find a unit vector orthogonal to 3i+ 2k and
i—k

Find a unit vector orthogonal to j + k and 2i + k.
Find the volume of the parallelepiped spanned
by 2i—j+k, i, and j — k.

Find the volume of the parallelepiped spanned
byi+ji—j andi+k.

(a) Draw the vector v joining (—2,0) to (4, 6) and
find the components of v. (b) Add v to the vector
joining (—2,0) to (1, ).

Find the intersection of the medians of the trian-
gle with vertices at (0,0), (1,3), and (2,0).

Let POR be a triangle in the plane. For each side
of the triangle, construct the vector perpendicu-
lar to that side, pointing into the triangle, and
having the same length as the side. Prove that the
sum of the three vectors is zero.
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24,

25.

26.

27.

28.
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Show that the diagonals of a rhombus are per-
pendicular to each other.
A bird is headed northeast with speed 40 ki-
lometers per hour. A wind from the north at 15
kilometers per hour begins to blow, but the bird
continues to head northeast and flies at the same
rate relative to the air. Find the speed of the bird
relative to the earth’s surface.
An airplane flying in a straight line at 500 miles
per hour for 12 minutes moves 35 miles north
and 93.65 miles east. How much does its altitude
change? Can you determine whether the airplane
is climbing or descending? (Ignore the curvature
of the earth.)

The work W done in moving an object from

(0,0) to (7,2) subject to a force F is W=F-r

where r is the vector with head at (7,2) and tail

at (0,0). The units are feet and pounds.

(a) Suppose the force F = 10cosfi+ 10sin#j.
Find W in terms of 6.

(b) Suppose the force F has magnitude 6 lbs
and makes an angle of 7 /6 radian with the
horizontal, pointing right. Find W in feet-
Ibs.

If a particle with mass m moves with velocity v,
its momentum is p = my. In a game of marbles, a
marble with mass 2 grams is shot with velocity 2
meters per second, hits two marbles with mass 1
gram each, and comes to a dead halt. One of the
marbles flies off with a velocity of 3 meters per
second at an angle of 45° to the incident direc-
tion of the larger marble as in Fig. 13.R.1. As-
suming that the total momentum before and
after the collision is the same (law of conserva-
tion of momentum), at what angle and speed
does the second marble move?

3m/5;'/<'
4
N1 lg ﬂi/

2m/sec

-

2g
xg‘\

Figure 13.R.1. Momentum
and marbles.

Write an equation, or set of equations, to describe each
of the following geometric objects in Exercises 29-40.

29.
30.
31.
32.

33.
34.

35.

The line through (1, 1,2) and (2,2, 3).

The line through (0,0, — 1) and (1, 1, 3).

The line through (1,1,1) in the direction of
i—j—k

The line through (1, —1,2) in the direction of
i+j+3k

The plane through (1, 1,2), (2,2,3), and (0,0, 0).
The plane through the points (1,2, 3), (1, —1,1),
and (-1, 1, 1).

The plane through (1,1, —1) and orthogonal to
i—j—k

36.

37.

38.

39.

40.

The plane through (1, —1,6) and orthogonal to
i+j+k

The line perpendicular to the plane in Exercise
33 and passing through (0,0, 3).

The line perpendicular to the plane in Exercise
34 and passing through (1,1, 1).

The line perpendicular to the plane in Exercise
35 and passing through (2,3, 1).

The line perpendicular to the plane in Exercise
36 and passing through the origin.

In Exercises 41-46, find a unit vector which has the
given property.

41.
42.

43.
44.

45.

46.

47.

48.

49.

50.

5L

52.

53.

Orthogonal to the plane x — 6y + z = 12.
Parallel to the line x =3r+1, y=16t—2,
z=—(t+2).

Orthogonal to i + 2j — k and to k.

Parallel to both the planes 8x + y+ z=1 and
x—y—z=0.

At an angle of 30° to i and makes equal angles
with j and k.

Orthogonal to the line x=2¢r—1, y=—t—1,
z=t+ 2, and the vector i — j.

Suppose that v and w each are parallel to the

(x, y) plane. What can you say about v X w?

Suppose that u, v and w are three vectors. Ex-

plain how to find the angle between w and the

plane determined by u and v.

Describe the set of all lines through the origin in

space which make an angle of 7 /3 with the x

axis.

Consider the set of all points P in space such that

the vector from O to P has length 2 and makes

an angle of 45° with i + j.

(a) What kind of geometric object is this set?

(b) Describe this set using equation(s) in x, y,
and z.

Let a triangle have adjacent sides a and b.

(a) Show that ¢ =b — a is the third side.

(b) Show thatc X a=c¢ Xb.

(c) Derive the law of sines (see p. 263).

Find the equation of the plane through (1,2, — 1)

which is parallel to both i — j + 2k and i — 3k.

Thales’ theorem states that the angle # in Fig.

13.R.2(a) is 7 /2. Prove this using the vectors a

and b shown in Fig. 13.R.2(b).

N /7\
a¢
(@) (b)

Figure 13.R.2. Triangle
inscribed in a semicircle.

54.

Show that the midpoint of the hypotenuse of a
right triangle is equidistant from all three verti-
ces.



Evaluate the determinants in Exercises 55-62.

55.

57.

59.

61.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

1 2 2 -1
RE wlo |
-1 =1 0 1

; 1‘ 58. | 0}

I -1 1 1 00
2 1 1 60. [0 —1 1
1 3 -1 0 1 1
I 1 1 — 0 1
2 2 2 62. 0 0
33 3 — 0 —1

Find the area of the parallelogram spanned by

3i—2j+ kand 8i — k.

Find the area of the parallelogram spanned by

2i — j and 3i — 2j.

Find the volume of the parallelepiped spanned

byi—j~k, 2i+j— 5k, and $i—j+ 1k

Find the volume of the parallelepiped spanned

by 2j+1,i—j, and k.

The volume of a tetrahedron with concurrent

edges a, b, ¢ is given by V= (1/6)a- (b X c).

(a) Express the volume as a determinant.

(b) Evaluate Vwhena=i+j+kb=i—j+k,
c=1i+j.

A tetrahedron sits in xyz coordinates with one

vertex at (0,0, 0), and the three edges concurrent

at (0,0, 0) are coincident with the vectors a, b, c.

(a) Draw a figure and label the heads of the
vectors as a, b, c.

(b) Find the center of mass of each of the four
triangular faces of the tetrahedron.

Let r, ..., r, be vectors from 0 to the masses

my, ..., m,. The center of mass is the vector

(3 (5

i=1 i=1
Show that for any vector r,

n n
2 2
2 mille =l = 3 mylr,— el + mir — |,

i=] i=1

where m = >7_ m; is the total mass of the sys-
tem.

Solve the following equations using Cramer’s
rule (Exercise 43, Section 13.6): x + y=2;
Ix -y=4

Solve by using determinants (Exercise 45, Sec-
tion 13.6): x —y+2z=4; 3x+y+z=1;
4x—y—z=2.

Use Exercise 50, Section 13.6 to show that

66 628 246 |68 627 247

88 435 24|={86 436 23
2 -1 1 2 -1 1

73.

74.

75.

76.

77.

78.

79.

80.
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Evaluate
6 2 -3
2 2 3
4 8 -1

using Exercise 50, Section 13.6.
Use Exercise 50, Section 13.6 to show that

n n+l n+2
n+3 n+4 n+5
n+6 n+7 n+8

has the same value no matter what » is. What is
this value?
Show that for all x, y, z,

x+2 y z y  x+2 z
z y+1 1015711 z—-x-2 10—z
5 5 2 5 5 2
Show that

1 x x?

1oy »#0

1z 2°

if x, y, and z are all different.

If the triple product (v X j) - k is zero, what can
you say about the vector v?

Suppose that the three vectors a;i + b;j + ck for
i=1, 2, and 3 are unit vectors, each orthogonal
to the other two. Find the value of

a; by ¢
dy b2 Cyl-
as by ¢

A sphere of radius 10 centimeters with center at
(0,0,0) rotates about the z axis with angular
velocity 4 radians per second such that the rota-
tion looks counterclockwise from the positive z
axis.
(a) Find the rotation vector € (see Section 13.5,
Exercise 36).
(b) Find the velocity v=Q Xr when r=
5y2 (i — j) is on the “equator.”
A pair of dipoles are located at a distance  from
each other. The magnetic potential energy P is
given by P = —m, - B, (dipole-dipole interaction
potential), where the first dipole has moment m;
in the external field B, of the second dipole. In
MKS units,
—m + 3(m2 * lr)lr

B; = yo 4 ’
ket

where 1, is a unit vector, and p, is a scalar
constant.
(a) Show that

m; -m, —3(m,-1,)(m, '1,)

P:.u() 3

4rr

(b) Find P when m; and m, are perpendicular.
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81

82.

*(c)

83

84.

*85.

* 86

Chapter 13 Vectors

. (a) Suppose that v-w=0 for all vectors w.
Show that v = 0. [ Note: This is not the same
thing as showing that 0-w = 0.]

(b) Suppose that u-w=v-w for all vectors w.
Show that u =v.

(¢c) Suppose that v-i=v-j=v-k=0. Show
that v = 0.

(d) Suppose that w-i=v:i, u-j=v-j, and
u-k=v-k. Show thatu=v.

Let 4, B, C, D be four points in space. Consider

the tetrahedron bounded by the four triangles

A= BCD, A,=ACD, Ay;=ABD, and

A 4= ABC. The triangle A, is called the ith face

of the tetrahedron. For each i, there is a unique

vector v; defined as follows: v, is perpendicular
to the face A; and points into the tetrahedron;

the length of v, is equal to the area of A;.

(a) Prove that for any tetrahedron ABCD, the

sum vy + vy + v, + v4 is zero. [Hint: Use al-

gebraic properties of the cross-product.]

Try to generalize the result of part (a) to

more complicated polyhedra. (A polyhedron

is a solid which is bounded by planar fig-
ures.) In other words, show that the sum of
the inward normals, with lengths equal to
areas of the sides, is zero. You may want to
do some numerical calculations if you can-
not prove anything, or you may want to
restrict yourself to a special class of figures

(distorted cubes, decapitated tetrahedra, fig-

ures with five vertices, and so forth).

There is a physical interpretation to the re-

sults in parts (a) and (b). If the polyhedron

is immersed in a fluid under constant pres-
sure p, then the force acting on the ith face
is pv;. Interpret the result Sv; =0 in this
context. Does this contradict the fact that

water pressure tends to buoy up an im-

mersed object? [Note: There is a version of

all this material for smooth surfaces. It is
related to a result called the divergence theo-
rem and involves partial differentiation and

surface integrals. See Chapter 18.]

. Let P=(1,2) and Q = (2,1). Sketch the set of

points in the plane of the form rP + sQ, where r

and s are:

(a) positive integers;

(b) integers;

(c) positive real numbers;

(d) real numbers.

Repeat Exercise 83 with P=(1,2) and Q=

2, 4).

Repeat Exercise 83 using the points P =(1,2)

and Q = (7,2x). (You may have to guess parts

(a) and (b).)

. There are two unit vectors such that if they were

*(b)

drawn on the axes of Fig. 13.R.3, their heads and
tails would appear to be at the same point (that
is, they would be viewed head on). Approxi-
mately what are these vectors? [Hint: Suppose
that when you tried to plot a point P, the result-
ing dot on the paper fell right where the axes
cross.]

X

Figure 13.R.3. Which unit
vectors would be drawn as
the dot at the orign?

*87.

*88.

*89.

A regular tetrahedron is a solid bounded by four
equilateral triangles. Use vector methods to find
the angle between the planes containing two of
the faces.

In integrating by partial fractions, we are led to
the problem of expressing a rational function

czx2 +cox+ ¢
(x = r)(x = r)(x — r3)

as a sum

a, a as

X—r  X—rp X-=ry

(a) Show that the undetermined coefficients a,,
a,, a, satisfy a system of three simultaneous
linear equations.

Applying Cramer’s rule (Exercise 45, Sec-
tion 13.6) to this system, show that the deter-
minant D is equal to

1 1 1
rpt+ry st ort+ ).
rars r3ry nry

()

(¢) Evaluate the determinant in (b) and show
that it is nonzero whenever r,, r,, and r; are
all different.

Conclude that the decomposition into par-
tial fractions is always possible if r;, r,, and
r4 are all different.

(e) What happens if r, = r,? Give an example.
Read Chapter 5 of Friedrichs’ book, From
Pythagoras to Einstein (Mathematical Associa-
tion of America, New Mathematical Library, 16
(1965)) on the application of vectors to the study
of elastic impacts, and prepare a two-page writ-
ten report on your findings.

d




Chapter 14

14.1

Figure 14.1.1. Conic
sections are obtained by
slicing a cone with a plane;
which conic section is
obtained depends on the
direction of the slicing
plane,

Curves and
Surfaces

Some three-dimensional geometry is needed for understanding functions of two
variables.

The main subject of this chapter is surfaces in three-dimensional space. In
preparation for this, we begin with a study of some special curves in the plane
—the conic sections. In the last two sections, we will do some calculus with
curves in space. Applications of calculus to surfaces are given in Chapters 15
and 16.

The Conic Sections

All the curves described by quadratic equations in two variables can be obtained
by cutting a cone with planes.

The ellipse, hyperbola, parabola, and circle are called conic sections because
they can all be obtained by slicing a cone with a plane (see Fig. 14.1.1). The

Hyperbola Parabola Circle Ellipse
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theory of these curves, developed by Apollonius of Perga (262-200 B.C.), is a
masterwork of Greek geometry. We will return to the three-dimensional origin
of the conics in Section 14.4, after we have studied some analytic geometry in
space. For now, we will treat these curves, beginning with the ellipse, purely as
objects in the plane.

Definition of Ellipse

An ellipse is the set of points in the plane for which the sum of the
distances from two fixed points is constant. These two points are called
the foci (plural of focus).

An ellipse can be drawn with the aid of a string tacked at the foci, as shown in
Fig. 14.1.2,

To find an equation for the ellipse, we locate the foci on the x axis at the
points F'=(—¢,0) and F = (¢,0). Let 2a > 0 be the sum of the distances
from a point on the ellipse to the foci. Since the distance between the foci is
2¢, and the length of a side of a triangle is less than the sum of the lengths of
the other sides, we must have 2¢ < 24; i.e., ¢ < a. Referring to Fig. 14.1.3, we

y

-

F=(—c,0) F=@,0) *

Figure 14.1.3. P is on
Figure 14.1.2. Mechanical the ellipse when
construction of an ellipse. |FP| + |F'P| = 2a.
see that a point P = (x, y) is on the ellipse precisely when
|FP|+ |F'P| =2a.
That is,

\/(x+ Y +y° +\/(x — o)’ +y? =2a.

Transposing \/(x - c)2 + y?, squaring, simplifying, and squaring again yields

(@® = Ax* + ay? = a¥(a® - h).

Let a* — ¢? = b? (remember that @ > ¢ >0 and so a® — ¢? > 0). Then, after
division by a%?, the equation becomes

X2 0

a* b2
This is the equation of an ellipse in standard form.

Since b> = a® — ¢* < a®, we have b < a. If we had put the foci on the y
axis, we would have obtained an equation of the same form with b > a; the
length of the “string” would now be 2b rather than 2a. (See Fig. 14.1.4) In
either case, the length of the long axis of the ellipse is called the major axis,
and the length of the short axis is the minor axis.



Figure 14.1.4. The
appearance of an ellipse in
the two cases b < a and

b > a.

Example 1

Solution

Figure 14.1.5. The graph of

4x? + 9y = 36.
Example 2
vy Solution
0,9
*0\6Vv2)
( 3,0 (3,0)
X
“(O, *6\/3)
0,-9)

Figure 14.1.6. The ellipse
9x% + y? =8l.
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W
=Y

<

(@) b<a (by b>a

Sketch the graph of 4x? + 9y? = 36. Where are the foci? What are the major
and minor axes?

Dividing both sides of the equation by 36, we obtain the standard form

2

2
x2 X
5 7 1.

Hence a=3, b=2, and ¢ =va®— b> =5. The foci are (=5,0), the y
intercepts are (0, = 2), and the x intercepts are (* 3,0). The major axis is 6 and
the minor axis is 4. The graph is shown in Fig. 14.1.5.

(=3.0) (-v5,0)

Sketch the graph of 9x? + y? = 81. Where are the foci?

Dividing by 81, we obtain the standard form x?/3% + y*/9? = 1. The graph is
sketched in Fig. 14.1.6. The foci are at (0, +6v2). A

Ellipse
2 2
Equation: % + fi = | (standard form).
Foci: + ¢,0) where ¢ =ya? — b* if a>b.

( H
(0, = ¢) where ¢ = yb* — a* if a<b.
If a = b, the ellipse is a circle.

x intercepts: (a,0) and (— a,0).

y intercepts: (0,b) and (0, — b).

If P is any point on the ellipse, the sum of its distances from the foci is
2a if b<aor2bif b >a.
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Figure 14.1.7. Mechanical
construction of a
hyperbola.

Figure 14.1.8. P is on the
hyperbola when
|F'P|—|FP| = +2a.

The second type of conic section, to which we now turn, is the hyperbola.

Definition of Hyperbola

A hyperbola is the set of points in the plane for which the difference of
. the distances from two fixed points is constant. These two points are
called the foci.

To draw a hyperbola requires a mechanical device more elaborate than the
one for the ellipse (see Fig. 14.1.7); however, we can obtain the equation in the
same way as we did for the ellipse. Again let the foci be placed at F’ = (— c,0)

and F={(c,0), and let the difference in question be 2a, a > 0. Since the
difference of the distances from the two foci is 24 and we must have
|F'P| <|FP|+ |F'F|, it follows that |F'P| — |FP| < |F'F|, and so 2a < 2c.
Thus we must have a < ¢ (see Fig. 14.1.8). The point P = (x, y) lies on the

Asymptote

\/

hyperbola exactly when

\/(x +e)’+ ) —\/(x — ¢’ +y? = *2a.
After some calculations (squaring, simplifying and squaring again), we get
(@ = Ax* + a¥* = a¥(a® - c?).

If we let ¢ — a® = b? (since a < c), we get

a b?

which is the equation of a hyperbola in standard form.

For x large in magnitude, the hyperbola approaches the two lines y=
*+(b/a)x, which are called the asymptotes of the hyperbola. To see this, for
x and y positive, we first solve for y in the equation of the hyperbola, ob-

2
x>
2



Figure 14.1.9. The vertical
distance d from the
hyperbola to its asymptote

y=(b/a)x is
%(x—m)
ab

xtE—a

Example 3

Solution

Figure 14.1.10. The
hyperbola
25x% — 162 = 400.
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taining y = (b/a)yx* — a® . Subtracting this from the linear function (b/a)x,
we find that the vertical distance from the hyperbola to the line y = (b/a)x is
given by

=b(x -\ =2).

To study the behavior of this expression as x becomes large, we multiply by

(x +yx* — a®)/(x +yx? — a®) and simplify to obtain ab /(x + x> — a?). As
x becomes larger and larger, the denominator increases as well, so the
quantity d approaches zero, Thus the hyperbola comes closer and closer to the

line. The other quadrants are treated similarly. (See Fig. 14.1.9.)

Sketch the curve 25x% — 16y? = 400.

Dividing by 400, we get the standard form x?/16 — y*/25=1, so a = 4 and
b =15. The asymptotes are y = * $x, and the curve intersects the x axis at
(+4,0) (see Fig. 14.1.10). A

¥
\\ (0,¢)
c
N //\ b
/ y=—x
2 2 N a
sziz=l N ©0,5) /
b a \|/
7 \ X
7/
AN
\ // (O,vb)
M e —_
/,
V

Figure 14.1.11. A
hyperbola with foci
on the y axis.

If the foci are located on the y axis, the equation of the hyperbola takes the
second standard form y*/b* — x*/a* =1 (see Fig. 14.1.11).

Notice that if we draw the rectangle with (% a,0) and (0, + b) at the
midpoints of its sides, then the asymptotes are the lines through opposite
corners, as shown in Figs. 14.1.10 and 14.1.11.
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Example 4 Sketch the graph of 4y? — x? = 4.

Solution

Figure 14.1.12. The
hyperbola 4y — x? = 4.

Figure 14.1.13. P is on the
parabola when
|PF| =|PG]|.

Dividing by 4, we get y* — x2/22 = 1, which is in the second standard form
with a = 2 and b = 1. The hyperbola and its asymptotes are sketched in Fig.
14.1.12. A

y‘t/Focus = (0,\/?)

3
™ Focus = 0,-vV5)

Hyperbola

Case 1: Foci on x axis Case 2: Foci on y axis
2 2 2

2
ST R A Yoo x _
Equation: 7 P = 7 = =1

Foci: (+¢,0), c =Va’ + b? ©, *¢), c =ya* + b*

x intercepts: (+a,0) none
y intercepts. none 0, xb)
Asymptotes: y = gx y== gx

If P is any point on the hyperbola, the difference between its distances
from the two foci is 2a in case 1 and 25 in case 2.

We are already familiar with the circle and parabola from Section R.5. The
circle is a special case of an ellipse in which a = b; that is, the foci coincide.
The parabola can be thought of as a limiting case of the ellipse or hyperbola,
in which one of the foci has moved to infinity. It can also be described as
follows:

Definition of Parabola

A parabola is the set of points in the plane for which the distances from
a fixed point, the focus, and a fixed line, the directrix, are equal.

Placing the focus at (0,c) and the directrix at the line y = — ¢ leads, as above,
to an equation relating x and y. Here we have (see Fig. 14.1.13) | PF| = | PG|.

l= (x.»)

Directrix

That is, \x>+ (y — ¢y =|y+¢|, so x2+ (y — ¢)*=(y + ¢)>, which gives




Example 5

Solution

Axis

Focus ¢

Figure 14.1.14. The angles
a and B are equal.

Example 6

Solution

Figure 14.1.15. Find the
focus of the searchlight.
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x?—4cy =0,

x2

" 4c
which is the form of a parabola as given in Section R.5.
If we place the focus at (¢, 0) on the axis and use x = — ¢ as the directrix,
we get the “horizontal” parabola x = y?/4c.

Parabola

Case 1: Focus on y axis Case 2: Focus on x axis

] . = 2 = ——1— = 2 = L
Equation: y = ax (a Ac ) x=by (b i )
Focus: (0,¢) (c,0)

Directrix: y = —¢ x=—c

If P is any point on the parabola, its distances from the focus and
directrix are equal.

(a) Find the equation of the parabola with focus (0,2) and directrix y = ~2.
(b) Find the focus and directrix of the parabola x = 10y~

(@) Here c=2,s0 a=1/4c=1/8, and so the parabola is y = x*/8.
(b) Here 6 =10=1/4c, so ¢ =1/40. Thus the focus is (1/40,0) and the
directrix is the line x = —1/40. A

The conic sections appear in a number of physical problems, two of which will
be mentioned here; we will see additional ones in later sections. The first
application we discuss is to parabolic mirrors. The parabola has the property
that the angles o and 8 shown in Fig. 14.1.14 are equal. This fact, called the
reflecting property of the parabola, was demonstrated in Review Exercise 86 of
Chapter 1. Since the angles of incidence and reflection are equal for a beam of
light, this implies that a parallel beam of light impinging on a parabolic mirror
will converge at the focus. This is the basis of parabolic telescopes (visual and
radio) as well as solar-energy collectors. Similarly, a searchlight will produce a
parallel beam of light if a light source is placed at the focus of a parabolic
mirror.

A parabolic mirror for a searchlight is to be constructed with width 1 meter
and depth 0.2 meter. Where should the light source be placed?

We set up the parabola on the coordinate axes as shown in Fig. 14.1.15. The
equation of the parabola is y = ax®. Since y =02 when x =05, we get

Y

|
—1 m—

0.2 ;f\ g

=

a=02/025=0.8. The focus is at (0,c), where a=1/4c, so c=1/4a=
0.3125. Thus the light source should be placed on the axis, 0.3125 meters from
the mirror. A
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Example 7

Solution

In courses in mechanics, it is shown that bodies revolving about the sun
(planets, asteroids, and comets) do so in elliptic, parabolic, or hyperbolic
orbits with the sun at one focus. We shall see part of the derivation of this fact
in Section 14.7. Most planetary orbits are nearly circular. To measure the
departure from circularity, the eccentricity is introduced. It is defined by

c

e==,

a
where a, b, and ¢ are defined as on p. 697, with a > b. Thus a and b are the
semi-major and semi-minor axes and ¢ is the distance of a focus from the

center; ¢ =va’ — b*. An ellipse is circular when e = 0, and as e approaches 1,
the ellipse grows longer and narrower.

The eccentricity of Mercury’s orbit is 0.21. How wide is its orbit compared to
its length?

Since e=0.21, c=0.2la, so ¢2=4a%—b% and therefore b*=qa’— ¢*=
a*(1 — (0.21)%) = 0.95594% Hence b ~0.9777a, so the orbit is 0.9777 times as

wide as it is long. A

Exercises for Section 14.1

1. Sketch the graph of x?+ 9y? = 36. Where are
the foci?
2. Sketch the graph of x? + 4y* = 1. Where are the
foci?
3. Sketch the graphs of x? + 4y =4, x> + y> =4,
and 4x? + 4y = 4 on the same set of axes.
4. Sketch the graphs of x>+ 9y? =9, 9x2 + y2 =9,
and 9x? + 9y2 = 9 on the same set of axes.
5. Sketch the graph of y?— x?=2, showing its
asymptotes and foci.
6. Sketch the graph of 3x2=2+ y?, showing
asymptotes and foci.
7. Sketch the graphs x% + 4y = 4 and x? — 4y% = 4
on the same set of axes.
8. Sketch the graphs of x> — y? =4 and x> + y2 =4
on the same set of axes.
Find the equation of the parabolas in Exercises 9 and
10 with the given focus and directrix.
9. Focus (0,4), directrix y = —4
10. Focus (0, 3), directrix y = —3.
Find the focus and directrix of the parabolas in Exer-
cises 11-14.
Ily=x2 12.y=5x2
13. x =y? 14, x = 4y?
Find the equations of the curves described in Exercises
15-20.
15. The circle with center (0,0) and radius 5.
16. The ellipse consisting of those points whose dis-
tances from (—2,0) and (2,0) sum to 8.

17. A parabola with vertex at (0,0) and passing
through (2, 1).

18. The circle centered at (0,0) and passing through
(L.

19. The hyperbola with foci at (0,2) and (0, —2) and
passing though (0, 1). ,

20. The ellipse with x intercept (1,0) and foci (0, —2)
and (0,2).

21. A parabolic mirror to be used in a searchlight
has width 0.8 meters and depth 0.3 meters.
Where should the light source be placed?

22. A parabolic disk 10 meters in diameter and 5
meters deep is to be used as a radio telescope.
Where should the receiver be placed?

23. The eccentricity of Pluto’s orbit is 0.25. What is
the ratio of the length to width of this orbit?

24. A comet has an orbit 20 times as long as it is
wide. What is the eccentricity of the orbit?

*25. Prove the reflecting property of the ellipse: light
originating at one focus converges at the other
(Hint: Use implicit differentiation.)

*26. A planet travels around its sun on the polar path
r=1/(2 + cos ), the sun at the origin.

(a) Verify that the path is an ellipse by chang-
ing to (x, y) coordinates.

(b)y Compute the perihelion distance (minimum
distance from the sun to the planet).
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Example 1

Solution

Figure 14.2.1. The graph

(x =352/9+ (y —4)?2/4=1
is an ellipse centered at
(5,4).

14.2 Translation and Rotation of Axes 703

Translation and Rotation of Axes

Whatever their position or orientation, conics are still described by quadratic
equations.

In Sectlon R.5 we studied the shifted parabola if we move the origin to (p, ),
y = ax?® becomes (y — ¢)=a(x — p)>. We can do the same for the other
conic sections:

Shifted Conic Sections
¥ — p)2 N2
Shifted ellipse: - azp )V bzq) =1 (shifted circle if a = b).
x — ) 2
Shifted hyperbola: ( 2]?) _Y bzq) =1 (horizontal);
a
N2 x — )
4 bzq) _ ¢ azp) =1 (vertical).
Shifted parabola: y — q = a(x — p)* (vertical);
x—p=>b(y—q)? (horizontal).
N el F T =
Graph the ellipse ) + T = 1 and shifted ellipse 5 + 7] =]

on the same xy axes.

The graph of x?/9 + y*/4 = 1 may be found in Fig. 14.1.5. If (x, y) is any
pomt on this graph, then the point (x + 5, y +4) satisfies the equation
(x —5)*/9 + (y — 4)*/4 = 1; thus the graph of (x — 5)%/9 + (y—4H*/4=1is
obtained by shifting the orlgmal ellipse 5 units to the right and 4 units upward.
(See Fig. 14.2.1.) A

(x 5, (y 4% _

7 ! shift ellipse to (5,4)

.
2, B

_4=

Although we referred to the second graph in Example 1 as a “shifted ellipse,”
it is really just an ellipse, since it satisfies the geometric definition given in
Section 14.1. (Can you locate the foci?) To emphasize this, we may introduce
new “shifted variables,” X =x —5 and Y = y — 4, for which the equation
becomes X2/9 + Y?/4 = 1. If we superimpose X and Y axes on our graph as
in Fig. 14.2.2, the “shifted” ellipse is now centered at the origin of our new
coordinate system. We refer to this process as translation of axes.
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Figure 14.2.2. The ellipse

(X = 572/9+ (y—47/4=1
is centered at the origin

in a shifted coordinate
system.

Example 2

Solution

Figure 14.2.3. The
hyperbola
x? —4)12 - 2x + 16y =19.

Chapter 14 Curves and Surfaces

y Ya
I
|
I
I
I

=Y

The importance of translation of axes is that it is possible to bring any
equation of the form

Ax2+Cy2+Dx+Ey+F=O (1
into the simpler form
AX 4+ CY2 4+ G=0 (2)

of a conic by letting X =x—a and Y=y — b for suitable choices of
constants @ and b. Thus, (1) always describes a shifted conic. The way to find
the quantities a and b by which the axes are to be shifted is by completing the
square, as was done for circles and parabolas in Chapter R. (Notice that in
equation (1) there is no xy term. We shall deal with such terms by means of
rotation of axes in the second half of this section.)
Sketch the graph of x* — 4y — 2x + 16y = 19.
We complete the square twice:
x2—2x=(x—1)2—1,

—4y’ + 16y = —4(y? — dy) = —4[(y-2 - 4].
Thus

0=x—4y* —2x+ 16y — 19=(x — 1)*~ 1 —4[()1—2)2—4] —19

=(x—1Y—4(y-2"-4.

Hence our equation is

x—1)?
(_4)-—()’—2)2=1

which is the hyperbola x?/4 — y* = 1 shifted over to (1,2). (See Fig. 14.2.3.)

An alternative procedure is to write
x?—~4y* = 2x + 16y — 19 = (x — a)’— 4(y — b)’+ G.
Expanding and simplifying, we get



Example 3

Solution

y
X
4i 3
.-

Figure 14.2.4. The parabola
y 4+ x+3y—8=0.

Figure 14.2.5. The XY
coordinate system is
obtained by rotating the xy
system through an angle a.
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-2x+ 16y —19= —2ax + a® + 8by —4b* + G.
We find a, b, and G by comparing both sides, which givesa=1,b=2, and
—19=a>—4b>+ G, or G=—19—1+ 16 = —4. This gives the same an-
swer as above. A

Sketch the curve y> + x + 3y — 8 = 0.

Completing the square, we get y*> + 3y = (y + 2) — 2, so that y? + x + 3y — 8
=0 becomes (y+3) +x—4 =0; that is, x —4 = —(y +3)2 This is a
shifted parabola opening to the left, as in Fig. 14.2.4. A

We next turn our attention to rotation of axes. The geometric definitions of
the ellipse, hyperbola, and parabola given in Section 14.1 do not depend on
how these figures are shifted or oriented with respect to the coordinate axes.
In the preceding examples we saw how the equations are changed when the
coordinate axes are shifted; now we examine how they are changed when the
axes are rotated.

In Figure 14.2.5 we have drawn a new set of XY axes which have been

pg

rotated by an angle a relative to the old xy axes. The corresponding unit
vectors along the axes are denoted i, j and L, J, as shown in the figure.
To understand how to change coordinates from the xy to XY systems, we
will use vector methods. Note that as vectors in the plane,
I=icosa + jsina

3

Observe that either a direct examination of Fig. 14.2.5 or the fact that
J =k X I can be used to derive the formula for J.

Now consider a point P in the plane and the vector v from O to P. The
coordinates of P relative to the two systems are denoted (x, y) and (X, 7Y),
respectively, and satisfy

v=xi+yj=XI+7YJ 4
Substituting (3) into (4), we get
xi+ yj= X(icosa + jsina) + Y(—isina + jcosa).

J= —isina + jcosa.

Comparing coefficients of i and j on both sides gives
x=Xcosa — Ysina 5
y=Xsina + Ycosa. ()

To solve these equations for X, Y in terms of x, y, we notice that the roles
of (X, Y) and (x, y) are reversed if we change a to — a. In other words, the xy
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Example 4

Solution

Figure 14.2.6. The conic is
aligned with the rotated
coordinate system (X, Y)
but is rotated relative to the
(x, y) coordinate system.

axes are obtained from the XY axes by a rotation through an angle — a. Thus

we can interchange (x, y) and (X, Y) in (5) if we switch the sign of a:
X =Xxcosa + ysina
’ (©)

Y= —xsina + ycosa.

This conclusion can be verified by substituting (6) into (5) or (5) into (6).

Write down the change of coordinates corresponding to a rotation of 30°.

We have cos30° =3 /2 and sin30° = 1/2, so (5) and (6) become

_ 3 1
X—TX EY,
y=%X+gY

3 |

andX—T +5_y,

__1 .3
Y= 2x+ zy.A

Now suppose we have a rotated conic, such as the ellipse shown in Fig.
14.2.6. In the XY coordinate system, such a conic has the form given by (1):

=

y

AX*+ CY*+ DX+ EY + F=0. (7)
Substituting (6) into (7) gives

A (x cosa +ysina)2+ 6(—xsina +ycosoz)2

+D(xcosa + ysina)+ E(—xsina + ycosa) + F=0.

Expanding, we find

Ax2+Bxy+Cy2+Dx+Ey+F=O, (8)
where

A = A4 cos’a + Csin’a,

B= (A_— 6) -2cosasina = (}4—— f)sinZa,

C = A4 sin’a + C cos’a,

D= Dcosa — Esina, (

®

sina + E cosa,

Y by
i
e[l



14.2 Translation and Rotation of Axes 707

Notice the introduction of the xy term in (8). If we are given an equation
of the form (8), we may determine the type of conic it is and the rotation angle
a by finding the rotated form (7). To accomplish this, we notice from (9) that

A4 — C= A4 (cos’a — sina) — C (cos’a — sin’a)

= (4 — C)cos2a.
Therefore,
B= (Z— E)sin2a = (4 - C)tan2a.
Thus,
_ B
tan2a = 1-C (10)

(a=45° if A =C). Equation (10) enables one to solve for a given equa-
tion (8).

Equation (8) will describe an ellipse only when (7) does, i.e., when 4 and
C have the same sign, or AC > 0. To recognize this condition directly from
(8), we use (9) to obtain

AC=(Acos’a+ C sin’a)(4 sin’a + C cos’ar)
=A*+C ycos’a sina + AC (cos’a + sin‘a).

However, B = (4 —C)2cosasina, so 1B2=(42+ C%— 2AC)(cos’a sin’w),
and thus

AC — 1B*= AC (cos'a + sin‘a + 2 cos sin’er)
= AC (cos’a + sinza)2= AC.

Thus (8) is an ellipse if AC — 1 B?>0; i, B2~ 44C < 0. The other conics
are identified in a similar way, as described in the following box.

Rotation of Axes
The equation
Ax*+ Bxy + Cy*+ Dx + Ey+ F=0
(with 4, B, and C not all zero) is a conic; it is

an ellipse if B%2 — 44C < 0;
a hyperbola if B2—44C > 0;
a parabola if B> —44C = 0.

To graph this conic, proceed as follows:

. - B
1. Find « from a = 1tan '[ n }

2. Let x=Xcosa — Ysina, y = Xsina + Ycosa, and substitute into
the given equation. You will get an equation of the form

AX + CY*+ DX+ EY+ F=0.

3. This is a shifted conic in XY coordinates which may be plotted by
completing the square (as in Examples 2 and 3).

4. Place your conic in the XY coordinates in the xy plane by rotating
the axes through an angle «, as in Figure 14.2.6.
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Example 5 What type of conic is given by x*> + 3y> —2/3 xp + 2{3 x + 2y = 0?
Solution This is a rotated conic because it has an xy term. Here 4 =1, B = -243,
C=3, D=23, and E=2. To find the type, we compute the quantity
—44C=4-3—-4-3=0, so this is a parabola. A
Example 6 Sketch the graph of the conic in Example 5.

Solution We follow the four steps in the preceding box:

l.a=1ttan"'[B/(4 — C)] =%tan"[—2\/§/(l - 3)]

=%tan_l\/§='n/6.
Thus a = 7 /6 or 30°.
2. As in Example 4, we have
B 1 1,, B3
X = 2X—5Y and y—§X+TY.

Substituting into x2 + 3% — 2/3 xy + 243 x + 2y = 0, we get

(—‘/;X—%Y) +3(%X+l;3—Y)
—2\/_(%—3—X %Y)(%X+%Y)

+2/3 £X lyl+2 lX+‘/§Y =0.
2 2 2
Expanding, we get

3y2,1y2_ B 32,92, 383
(4X+4Y 2XY)+(4X+4Y+2XY

—2\/_(‘/—X2+ lyy B 2)+3X—\/§Y+X+\/§Y=O

2 4
which simplifies to 4Y2 +4X =0or X = — Y2
3. The conic X = — Y? is a parabola opening to the left in XY coordi-
nates.

4. We plot the graph in Fig. 14.2.7. A

30°

|
Wi
—

Figure 14.2.7. The graph of a8
x2+3y2—2\/§xy+ -
2y3x+2y=0.
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Example 7
Solution

Sketch the graph of 3x® + 3y? — 10xy + 18y2 x — 14/2 y + 38 = 0.

Let us first determine the type of conic. Here B2 —44C=100—4-3-3
=100 —36 = 64 >0, so it is a hyperbola.

la=Jtan"'[B/(4 - C)] = Ltan ‘oo = 7 /4 or 45°,
2. x=(1/V2)X - 1), »=(1/¥2)(X + Y); substituting and simplifying, one
arrives at
X?—4Y2-2X +16Y — 19 =0.
3. This is the hyperbola in Fig. 14.2.3.
4. See Fig. 14.2.8. A

»
/ s/
xX=1 |/ //
N y:—/f A\ /X
AN // SN
Y )\\ / /9’
/ /*///
//< /; N
//7‘\}4 N
7 -
Figure 14.2.8. The graph of S v
3x2+ 3y — 10xy + / /
18/2 x — 142y + 38 = 0.

Exercises for Section 14.2

Sketch the graphs of the conics in Exercises 19-22.
19. The conic in Exercise 15.
20. The conic in Exercise 16.
21. The conic in Exercise 17.

In Exercises 1-4, graph the conics and shifted conics on
the same xy axes.
Ly==-x%y—-2=—(x+1> e 1 :
2. xz—y2= 1, (x—2)2—(y+3)2= 1. .22. The conic in Exercise 18. _ .
3. x4 y2=4, (x+ 372+ (y — 87 =4. Find the equations of the curves described in Exercises

4. x2/9+y2/16=1, (x - 1)’/9+ (y —2)*/16=1. 23-28.

Identify the equations in Exercises 5—10 as shifted conic ;3 ?Ee CHC le with center (% 3}3 and ra.ldlus ?‘1 di
sections and sketch their graphs. . € ellipse consisting of those points whose dis-

5. x24y2=2x=0 tances from (0,0) and (2,0) sum to 8.

Xl 4)12 ~8y =0 25. The parabola with vertex at (1,0) and passing

6.
7 2x2 + 4)12 —6y =8 through (0, 1) and (2, 1).
8.

X4 2x 42 2y =2 26. The circle passing through (0, 0), (1,}), and (2, 0).
9 x240x — yr—2y=1 27. The hyperbola with foci at (0, — 1) and (0, 3) and
10. 3x2—6x+y—7=0 passing through (0, 2).
In Exercises 11-14, write down the transformation of 28. The ellipse with x intercept (1,0) and foci (0,0) and
coordinates corresponding to a rotation through the ©,2).
given angle. 29. Find the equation of the conic in Exercise 8
1. 60° 12. m/4 rotated through = /3 radians.
13. 15° 14. 2m/3 30. Find the equation of the conic in Exercise 9
In Exercises 15-18, determine the type of conic. rotated through 45°.
15, xy = 2. 31. Show that 4 + C is unchanged under a rotation
16. x>+ xy+ y? =4, or translation of axes.
32. Show that D?+ E? is unchanged under a rota-
19 , 43 ,. 783 _ ; _
17. Z* + SV R4 + 5 = 48. tion of axis, but not under translation.
*33. Show that if B —4A4C <0, the area of the el-

2 6 6
18 3x? +3p2 —2xp— — x— —~ y=8.
2 2

lipse Ax*+ Bxy + Cy*=1is 2z /J4AC — BZ.
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14.3 Functions, Graphs, and

Figure 14.3.1. Isotherms
are lines of constant
temperature (in degrees
Celsius).

Level Surfaces

The graph of a function of two variables is a surface in space.

The daily weather map of North America shows the temperatures of various
locations at a fixed time. If we let x be the longitude and y the latitude of a
point, the temperature 7 at that point may be thought of as a function of the
pair (x, y). Weather maps often contain curves through points with the same
temperature. These curves, called isotherms, help us to visualize the tempera-
ture function; for instance, in Fig. 14.3.1 they help us to locate a hot spot in
the southwestern U.S. and a cold spot in Canada.

Functions of two variables arise in many other contexts as well. For
instance, in topography the height # of the land depends on the two coordi-
nates that give the location. The reaction rate ¢ of two chemicals 4 and B
depends on their concentrations a and b. The altitude « of the sun in the sky
on June 21 depends on the latitude / and the number of hours ¢ after
midnight.

Many quantities depend on more than two variables. For instance, the
temperature can be regarded as a function of the time ¢ as well as of x and y
to give a function of three variables. (Try to imagine visualizing this function
by watching the isotherms move and wiggle as the day progresses.) The rate of
a reaction involving 10 chemicals is a function of 10 variables.

In this book we limit our attention to functions of two and three
variables. Readers who have mastered this material can construct for them-
selves, or find in a more advanced work,' the generalizations of the concepts
presented here to functions of four and more variables.

! See, for example, J. Marsden and A. Tromba, Vector Calculus, Second Edition, W. H. Freeman
and Co., 1980.
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Solution

Example 2

Solution
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The mathematical development of functions of several variables begins
with some definitions.

Functions of Two Variables

A function of two variables is a rule which assigns a number f(x, y) to
each point (x, y) of a domain in the xy plane.

Describe the domain of f(x, y) = x /(x? + y?). Evaluate f(1,0) and f(1, 1).

As given, this function is defined as long as x2 + y? £ 0, that is, as long as
(x, y) % (0,0). We have

(1,0 = 1

12 4 (2

1
12412

=1 and f(1,1)=

_1

The Graph of a Function

The graph of a function f(x, y) of two variables consists of all points
(x, y,2) in space such that (x, y) is in the domain of the function and

z = f(x, y).

Some particularly simple graphs can be drawn on the basis of our work in
earlier chapters.

Sketch the graph of (a) f(x, y) = x —y+2and (b) f(x, y) = 3x.

(a) We recognize z = x — y + 2 (that is, x — ¥ — z + 2 =0) as the equation of
a plane. Its normal is (1, — 1, — 1) and it meets the axes at (—2,0,0),(0,2,0),
(0,0,2). From this information we sketch its graph in Fig. 14.3.2.

(b) The graph of f(x, y) = 3x is the plane z = 3x. It contains the y axis and is
shown in Fig. 14.3.3. A

X

Figure 14.3.3. The graph of
z=3x,

Figure 14.3.2. The graph of
z=x—y+2isaplane.
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Example 3

Solution

Example 4

Solution

Figure 14.3.5. The level
curve of f(x, y) with value ¢
is obtained by finding the
intersection of the graph of
[ with the plane z = ¢ and
moving it down to the

(x, y) plane.

Using level curves instead of graphs makes it possible to visualize a function
of two variables by a two-dimensional rather than a three-dimensional picture.

Level Curves

Let f be a function of two variables and let ¢ be a constant. The set of all
(x, y) in the plane such that f(x, y) = c is called a leve/ curve of f (with
value ¢).

Isotherms are just the level curves of a temperature function, and a contour
plot of a mountain consists of representative level curves of the height
function.

Sketch the level curves with values —1,0,1 for f(x, y) = x ~ y + 2.

The level curve with value —1 is obtained by setting f(x, y) = —1; that is,
X—y+2=-1, thatis, x —y+3=0,

which is a straight line in the plane (see Fig. 14.3.4). The level curve with value
zero is the line

x—y+2=0,
and the curve with value ! is the line
x—y+2=1, thatis, x—y+1=0. A

Figure 14.3.4. Three level
curves of the function
S, y=x—y+2

How is the intersection of the plane z = ¢ with the graph of f(x, y) related to

" the level curves of f? Sketch.

The intersection of the plane z = ¢ and the graph of f consists of the points
(x, y,¢) in space such that f(x, y) = c. This set has the same shape as the level
curve with value ¢, but it is moved from the xp plane up to the plane z = c.
(See Fig. 143.5) A

Graph of f(x.y)

-]

We turn now to functions of three variables.

f&x,y)=c

X

Functions of Three Variables

A function of three variables is a rule which assigns a number f(x, y,z) to
each point (x, y,z) of a domain in (x, y,z) space.




Example 5

Solution

Figure 14.3.6. Three level
surfaces of the function
S,y 2)y=x—py+z+2.

Figure 14.3.7. The level
surface of x% + yr+z2-8
with value 1 is a sphere of
radius 3.
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The graph of a function w = f(x, y,z) of three variables would have to lie in
four-dimensional space, so we cannot visualize it; but the concept of level
curve has a natural extension.

Level Surfaces

Let f be a function of three variables and let ¢ be a constant. The set of
all points (x, y,z) in space such that f(x, y,2) = cis called a level surface
of f (with value c).

(a) Let f(x, y,z) = x — y + z + 2. Sketch the level surfaces with values 1,2, 3.
(b) Sketch the level surface of f(x, y,z) = x® + y* + z2 — 8 with value 1.

(a) In each case we set f(x, y,z) = c:
c=1: x—y+z42=1 (thatis,x —y + z+ 1=0),
c=2 x—y+z+2=2 (thatis,x—y+z=0),
c=3. x—y+z+2=3 (thatis,x — y + 2z — 1 =0).

These surfaces are parallel planes and are sketched in Fig. 14.3.6.

z

X

(b) The surface x>+ y>+ 22— 8=1 (that is, x>+ y? + 22 =9) is the set
of points (x, y,z) whose distance from the origin is y9 = 3; it is a sphere with
radius 3 and center at the origin. (See Fig. 14.3.7.) A

(0.0,3)

Plotting surfaces in space is usually more difficult than plotting curves in the
plane. It is rare that plotting a few points on a surface will give us enough
information to sketch the surface. Instead we often plot several curves on the
surface and then interpolate between the curves. This technique, called the
method of sections, is useful for plotting surfaces in space, whether they be
graphs of functions of two variables or level surfaces of functions of three
variables. The idea behind the method of sections is to obtain a picture of the
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Figure 14.3.8. The section
z = ¢ of the graph

z = f(x, y).

Example 6

Solution

Example 7

Solution

surface in space by looking at its slices by planes parallel to one of the
coordinate planes. For instance, for a graph z = f(x, y) the section z = c is
illustrated in Fig. 14.3.8.

/z = constant

1

! 1
\ Level curve in f

x xy plane

Sketch the surfaces in xyz space given by (a) z = —y* and (b) x> + y* = 25.

(a) Since x is missing, all sections x = constant look the same; they are copies
of the parabola z = — y. Thus we draw the parabola z = —y* in the yz plane
and extend it parallel to the x axis as shown in Fig. 14.3.9. The surface is
called a parabolic cylinder.

Figure 14.3.9. The graph

z = —y?is a parabolic

cylinder. Figure 14.3.10. The graph
X+ y2 = 25 is aright
circular cylinder.

(b) The variable z does not occur in the equation, so the surface is a cylinder
parallel to the z axis. Its cross section is the plane curve x? + y? = 25, which is
a circle of radius 5, so the surface is a right circular cylinder, as shown in Fig.
14.3.10. A

(a) Sketch the graph of f(x, y) = x>+ y? (this graph is called a paraboloid of
revolution). (b) Sketch the surface z = x* + y? — 4x — 6y + 13. [Hint: Com-
plete the square.]

(a) If we set z = constant, we get x> + y* = ¢, a circle. Taking ¢ = 12, 22 3% 4%,
we get circles of radius 1, 2, 3, and 4. These are placed on the planes
z=12=1,2=22=4,2z=3*=9, and z = 4> = 16 to give the graph shown in
Fig. 14.3.11.

If we set x = 0, we obtain the parabola z = yz; if we set y = 0, we obtain
the parabola z = x2. The graph is symmetric about the z axis since z depends

only on r=yx>+ y?.
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(b) Completing the square, we write z = x* + yz —4x — 6y + 13 as

z=x*—4x+ y2—6y + 13
=x>—4x+4+y? -6y +9+13—13
=(x—2)2+(y—3)2.

The level surface for value ¢ is thus the circle (x —2)* + (y — 3)* = ¢ with
center (2,3) and radius ¢ . Comparing this result with (a) we find that the
surface is again a paraboloid of revolution, with its axis shifted to the line
(x, ) =(2,3). (See Fig. 14.3.12.) A

Z4

z
,
l
|
[
¢
l
)
/5
leog X712
X ' b=3
X
Figure 14.3.11. The Figure 14.3.12. The graph
sections of the graph z=x+y?—4x—6y+ 13
z=x*+y?byplanesz = ¢ is a shifted paraboloid of

are circles. revolution.

Plotting Surfaces: Methods of Sections

1. Note any symmetries of the graph.

2. See if any variables x, y, or z are missing from the equation. If so, the
surface is a “cylinder” parallel to the axis of the missing variable, and
its cross section is the curve in the other variables (see Example 6).

3. If the surface is a graph z = f(x, y), find the level curves f(x, y) = ¢
for various convenient values of ¢ and draw these curves on the
planes z = ¢. Smoothly join these curves with a surface in space.
Draw the curves obtained by setting x = 0 and y = 0 or other conve-
nient values to help clarify the picture.

4. If the surface has the form F(x, y,z) = c, then either:

(a) Solve for one of the variables in terms of the other two and use
step 2 if it is convenient to do so.

(b) Set x equal to various constant values to obtain curves in y and z;
draw these curves on the corresponding x = constant planes.
Repeat with y = constant or z = constant or both. Fill in the
curves obtained with a surface.
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Figure 14.3.13. The graph
of z = x? + y? drawn by
computer in two ways.

In the next section, we will use our knowledge of conic sections to plot the
graphs of more complicated quadratic functions.

The computer can help us graph surfaces that may be tedious or impossi-
ble to plot by hand. The computer draws the graph either by drawing sections
perpendicular to the x and y axes or by sections perpendicular to the z
axis—that is, level curves lifted to the graph. When this is done for the
function z = x* + y? (Example 7), Figs. 14.3.13(a) and 14.3.13(b) result. (The
pointed tips appear because a rectangular domain has been chosen for the
function.)?

The computer-generated graph in Fig. 14.3.14 shows the function
z=(x"+ 3y2)el’(x2+y2).

Fig. 14.3.15 shows the level curves of this function in the xy plane, viewed first
from an angle and then from above. Study these pictures to help develop your
powers of three-dimensional visualization; attempt to reconstruct the graph in
your mind by looking at the level curves.

2 The authors are indebted to Jerry Kazdan for preparing most of the computer-generated graphs
in this book.
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\S
S
R

(a)

(b)

Figure 14.3.14. Computer-
generated graphs of
z=(x*+ 3y2)e17(x2+’2).

(a)

(b)

Figure 14.3.15. Level
curves for the function
z=(x2 + 3y?)e! "),
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Exercises for Section 14.3

In Exercises 1-8, describe the domain of each of the
given functions and evaluate the function at the indi-
cated points.

L f(x, ) =23 (1,0), (1, 1)
2. f(x, )= ;t_i; (1, -1, (1,09),

X+)1
3. f(x, y) = S, 1), (—1,1).
foo = g D LD
2x
4. f(x, y)= 2= (1,1, (1, 1),
X“+y
2x+y—z
5. f p )= 52 =05 (1,1,1), (0,0,
x“+y +z-—1
6. f(x, y,2) = : (1,05, 1), (0.1,05,1).

-z
x2—4y?—1

N
7 e = S /), (/A ).

8. f(x, y)= IL::SI% ©, 1); (w /4, —1).

Sketch the graphs of the functions in Exercises 9-12.
9 flx,y)=1—-x—y 10. f(x, y)=—-1—x—y
1. z=x~y 12.z=x+2

Sketch the level curves for the indicated functions and

values in Exercises 13-18.

13. fin Exercise 9, values 1, —1.

14. f in Exercise 10, values I, — 1.

15. f in Exercise 3, values —2, —1,1,2 and describe
the level curve for the general value.

16. f in Exercise 4, values —2, —1,1,2 and describe
the level curve for the general value.

17. f in Exercise 2, values —2, —1,1,2 and describe
the level curve for the general value.

18. f(x, y) =3~/ value 1/e.

Sketch the level surfaces in Exercises 19-22.

19. x+y—2z=8 20. 3x -2y —z=4
21.x2+y2+zz=4 22. x2+y?—z=4

Draw the level curves f(x, y) = c—first in the xy plane

and then lifted to the graph in space—for the functions

and values in Exercises 23-26.

23. f(x, y)=x*+2y% c=0,1,2.
24. f(x, y)= x? _yz; c=—1,01.
25. f(x, y)=x —yz; c=-2,072.
26. f(x, y)=y—x% c=—10,1

Sketch the surface in space defined by each of the

equations in Exercises 2740,
27. z=x*+2
29. 22+ x? =4
3lz=(x— 17+’

33 z=x2+y’L2x +8.
34. z=3x*+3y? — 6x + 12y + 15.

35, z= \/x2 +y2

36. z = max(|x|,| y|). [Note: max(|x|,|y|) is the maxi-
mum of |x| and |y|.]
37. z = sin x (the “washboard™).

28. z =yl
30. x2+y=2
32. x=—8z>+z

38.
39.
40.
41.

B842.

43.

*44,

z=1/(1+y%.

Ax2+y?+9z2=1.

x2+4y? + 1622 =1.

Let f(x, y)= e~ /*+37; £(0,0) = 0.

(a) Sketch the level curve f(x, y)=c for ¢ =
0.001, ¢ = 0.01, c=0.5, and ¢ = 0.9.

(b) What happens if ¢ is less than zero or
greater than 1?7

(c) Sketch the cross section of the graph in the
vertical plane y = 0 (that is, the intersection
of the graph with the xz plane).

(d) Argue that this cross section looks the same
in any vertical plane through the origin.

(e) Describe the graph in words and sketch it.

The formula

2x
-y ) +@x)

appears in the study of steady state motions of a

mechanical system with viscous damping sub-

jected to a harmonic external force. The average
power input by the external force is proportional
to the variable z (with proportionality constant

k > 0). The variable y is the ratio of input fre-

quency to natural frequency. The variable x

measures the viscous damping constant.

(a) Plot z versus y for x=02,05,2.0 on the
same axes. Use the range of values 0 <y
< 2.0.

(b) The average power input is a maXimum
when y =1, that is, when the input and
natural frequencies are the same. Verify this
both graphically and algebraically.

The potential difference £ between electrolyte

solutions separated by a membrane is given by

RT x—y

F x+y

z =

Inz.

(The symbols R, T, F are the universal gas con-

stant, absolute temperature, and Faraday unit,

respectively—these are constants. The symbols x

and y are the mobilities of Na* and CI™ respec-

tively. The symbol z is ¢, /¢,, where ¢, and ¢, are

the mean salt (NaCl) concentrations on each side

of the membrane.) Assume hereafter that RT/F

= 25.

(a) Write the level surface E = — 12 in the form
z = f(x, y).

(b) In practice, y = 3x/2. Plot E versus z in this
case.

Describe the behavior, as ¢ varies, of the level

curve f(x, y) = c for each of these functions:

(@ f(x,y)=x? +yi+ 1

® f(xp)=1-x2—y%

© flx, y)=x*+xp;

(d flx,y)= x3— x.
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Example 1

Solution

Figure 14.4.1. Some level
curves of f(x) = x* — y2.
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Quadric Surfaces

Quadric surfaces are defined by quadratic equations in x, y, and z.

The methods of Section 14.3, together with our knowledge of conics, enable us
to graph a number of interesting surfaces defined by quadratic equations.

Sketch the graph of
z=f(x,y)=x*—)? (a hyperbolic paraboloid).

To visualize this surface, we first draw the level curves x> — y>=¢ for
¢=0,%1, +4. For ¢ =0 we have y*> = x? (that is, y = + x), so this level set
consists of two straight lines through the origin. For ¢ =1 the level curve is
x? — y? =1, which is a hyperbola that passes vertically through the x axis at
the points (+1,0) (see Fig. 14.4.1). Similarly, for ¢ =4 the level curve is
x?/4 — y*/4=1, the hyperbola passing vertically through the x axis at
(£2,0). For ¢ = —1 we obtain the hyperbola x* — y*= —1 passing horizon-
tally through the y axis at (0, = 1), and for ¢ = —4 the hyperbola through
(0, £2) is obtained. These level curves are shown in Fig. 14.4.1. To aid us in
visualizing the graph of f, we will also compute two sections. First, set x = 0 to
obtain z = — % a parabola opening downward. Second, setting y = 0 gives
the parabola z = x? opening upward.

y
X2 —p2=_p2 x2 2= 22
72
N
20
\\0
x2 — y2 %
x? _ypr=_p x? -pt=_22

The graph may now be visualized if we lift the level curves to the
appropriate heights and smooth out the resulting surface. The placement of
the lifted curves is aided by the use of the parabolic sections. This procedure
generates the saddle-shaped surface indicated in Fig. 14.4.2. The graph is
unchanged under reflection in the yz plane and in the xz plane. When
accurately plotted by a computer, this graph has the appearance of Fig.
14.4.3; the level curves are shown in Fig. 14.4.4. (The graph has been rotated
by 90° about the z axis.) A
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x2 7}12 :7(]2)

Figure 14.4.2. The graph
z=x*— y2 is a hyperbolic
paraboloid, or “saddle.”

Figure 14.4.3. Computer-

generated graph of

z=x?—y%

Figure 14.4.4. Level curves
of z = x? — y? drawn by
compluter.
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Figure 14.4.5. Graph of the
monkey saddle:
z=x3- 3xy2.

Figure 14.4.6. Level curves
for the monkey saddle.
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The origin is called a saddle point for the function z = xt— yz because of the
appearance of the graph. We will return to the study of saddle points in
Chapter 16, but it is worth noting another kind of saddle here. Figure 14.4.5
on the preceding page shows the graph of z = x* — 3xy?%, again plotted by a
computer using sections and level curves. The origin now is called a monkey
saddle, since there are two places for the legs and one for the tail. Figure 14.4.6
shows the contour lines in the plane. Figure 14.4.7 shows the four-legged or

dog saddle: z = 4x% — 4xy’.

SRS IS SIS DTy, 175
o

'o'lll/

i
W

Figure 14.4.7. The dog
saddle: z = 4x%y — 4xy”.



Example 2

Solution

~Example 3

Solution

Figure 14.4.8. The surface
z =y + | is a parabolic
cylinder.

14.4 Quadric Surfaces 723

A quadric surface is a three-dimensional figure defined by a quadratic
equation in three variables:

ax2+by2+czz+dxy+exz+jjzz+gx+hy+kz+m=0.

The quadric surfaces are the three-dimensional versions of the conic sections,
studied in Section 14.1, which were defined by quadratic equations in two
variables.

Particular conic sections can degenerate to points or lines. Similarly, some
quadric surfaces can degenerate to points, lines, or planes. Match the sample
equations to the appropriate descriptions.

@ x*+3y*+22=0 (1) No points at all
(b) 22=0 (2) A single point
(©) x*+y*=0 (3) A line

@ x*+y*+z22+1=0 (4) One plane

(&) x*—y*=0 (5) Two planes

Equation (a) matches (2) since only (0, 0,0) satisfies the equation; (b) matches
(4) since this is the plane z = 0; (c) matches (3) since this is the z axis, where
x =0 and y = 0; (d) matches (1) since a non-negative number added to 1 can
never be zero; (¢) matches (5) since the equation x* — y? = 0 is equivalent to
the two equations x + y = 0 or x — y = 0, which define two planes. A

If one variable is missing from an equation, we only have to find a curve in
one plane and then extend it parallel to the axis of the missing variable. This
procedure produces a generalized cylinder, either elliptic, parabolic, or hyper-
bolic.

Sketch the surface z = y? + 1.

The intersection of this surface with a plane x = constant is a parabola of the
form z = y? + 1. The surface, a parabolic cylinder, is sketched in Fig. 14.4.8.
(See also Example 6, Section 14.3). A

<
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Example 4

Solution

Figure 14.4.9. The surface
x2+4y2—22= —4isa
hyperboloid of two sheets
(shown with some of its
sections by planes of the
form z = constant).

Example 5

Solution

Figure 14.4.10. The surface
(x2/9D+ (/16) + 22 =1
is an ellipsoid.

The surface defined by an equation of the form x?/a® + y?/b* - 22/c*= —1
is called a hyperboloid of two sheets. Sketch the surface x* + 4y? — 22 = —4.

The section by the plane z = ¢ has the equation x? + 4y* = ¢ — 4. This is an
ellipse when |c| > 2, a point when ¢ = +2, and is empty when |c| < 2. The
section with the xz plane is the hyperbola x* — z° = —4, and the section with
the yz plane is the hyperbola 4y? — 22 = —4. The surface is symmetric with
respect to each of the coordinate planes. A sketch is given in Fig. 14.4.9. A

The surface defined by an equation of the form x2/a” + y?/b%*+ 22/c? =1 is
called an ellipsoid. Sketch the surface x?/9 + y*/16 + z2 = 1.

First, let z be constant. Then we get x*/9 + y2/16 = 1 — z2 This is an ellipse
centered at the origin if —1 < z < 1. If z = 1, we just get a point x = 0,y=0.
Likewise, (0,0, —1) is on the surface. If |z| > 1 there are no (x, y) satisfying
the equation.

Setting x = constant or y = constant, we also get ellipses. We must have
|x| < 3 and, likewise, | y| < 4. The surface, shaped like a stepped-on football,
is easiest to draw if the intersections with the three coordinate planes are
drawn first. (See Fig. 14.4.10.) A




Example 6

Solution

Figure 14.4.11. The surface
x2+y? -z =4isa
one-sheeted hyperboloid of
revolution.

Figure 14.4.12. One can
make a hyperboloid with a
wire frame and string.

Example 7

14.4 Quadric Surfaces 725

The surface defined by an equation of the form x2/a*+ y?/b% — z22/c* =1 is
called a hyperboloid of one sheet. Sketch the surface x* + y* — 2% = 4.

If z is a constant, then x* + y? =4 + 22 is a circle. Thus, in any plane parallel
to the xy plane, we get a circle. Our job of drawing the surface is simplified if
we note right away that the surface is rotationally invariant about the z axis
(since' z depends only on r* = x? + y?). Thus we can draw the curve traced by
the surface in the yz plane (or xz plane) and revolve it about the z axis. Setting
x =0, we get y* — z2 = 4, a hyperbola. Hence we get the surface shown in Fig.
14.4.11, a one-sheeted hyperboloid. Since this surface is symmetric about the z
axis, it is also called a hyperboloid of revolution. A

The hyperboloid of one sheet has the property that it is ruled: that is, the
surface is composed of straight lines (see Review Exercise 76). It is therefore
easy to make with string models and is useful in architecture. (See Fig.
14.4.12.)

Consider the equation x* + y? — 22 =0,

(a) What are the horizontal cross sections for z = +1, +2, +39

(b) What are the vertical cross sections for x =0 or y =0? (Sketch and
describe.)

(c) Show that this surface is a cone by showing that any straight line through
the origin making a 45° angle with the z axis lies in the surface.

(d) Sketch this surface.
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Solution (a) Rewriting the equation as x?+ y® = z? shows that the horizontal cross
sections are circles centered around the z axis with radius |z|. Therefore,
for z= %1, £2, and =3, the cross sections are circles of radius 1, 2,
and 3.
(b) When x =0, the equation is y*> — z?=0 or y*> =z
graph is two straight lines. When y = 0, the equation is x
x = =*z, again giving two straight lines.
(¢) Any point on a straight line through the origin making a 45° angle with

the z axis satisfies |z|/yx?+ y?+ z2 = cos45° = 1/y2. Squaring gives
1/2=22/(x*+ y*+ z%), or x?+y*+22=2z% or x*+ )y —2z*=0,
which is the original equation.

(d) Draw a line as described in part (c¢) and rotate it around the z axis (see
Figure 14.4.13). A

2 or y = %2z, whose

2_72=0or

Ly

Forx=0 Fory =0

Z4

Figure 14.4.13. The cone
X%+ y2 —-22=0.

We now discuss how the conic sections, as introduced in the first section of
this chapter, can actually be obtained by slicing a cone.

Example 8 Show that the intersection of the cone x* + y* = z? and the plane y =1 is a
hyperbola (see Figure 14.4.14).

]

Figure 14.4.14, The
intersection of this vertical
plane and the cone is a
hyperbola. Hyperbola

X

\/
/TN



Solution

Example 9

Solution

/\

Figure 14.4.15. The
intersection of the plane
tilted at 45° and the cone is
a parabola.
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The intersection of these two surfaces consists of all points (x, y,z) such that
x?+ y*=z? and y = 1. We can use x and z as coordinates to describe points
in the plane. Thus, eliminating y, we get x?+ 1 =2z or z— x> = 1. From
Section 14.1, we recognize this as a hyperbola with foci at x =0, z = *y2 in
the plane y = 1, with the branches opening vertically as in the figure. A

Show that the intersection of the cone x? + y? = z* and the plane z = y — 1 is
a parabola (see Figure 14.4.15).

We introduce rectangular coordinates on the plane as follows. A normal
vector to the plane is n= (0, 1, — 1), and so a vector w = (a,b, c) is parallel to
the plane if 0 =n-w= b — c. Two such vectors that are orthogonal and of
unit length are

. 1 ..
u=i and v=—(+Kk).
\/2( )

Pick a point on the plane, say P, = (0,0, — 1), and write points P = (x, y,z) in
the plane in terms of coordinates (£, 1) by writing

PP =%u+ v
(see Fig. 14.4.16). In terms of (x, y, z), this reads

x=£ y=i, and z=77;_——1.

2

Figure 14.4.16. Coordinates
(&,,m) in the planez =y — 1.

Substitution into x> + y* = z?* gives

2 2 2
£2+"—=(i— )="7—\/5n+1,

2 \2

or
£2=_‘/5TI+1,

or

2o

This, indeed, is a parabola opening downwards in the &y plane. A

Other sections of the cone can be analyzed in a similar way, and one can
prove that a conic will always result (see Exercise 27).
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Exercises for Section 14.4

Sketch the surfaces in three-dimensional space defined
by each of the equations in Exercises 1-16.

Ly*+22=1 2. x2+y2=0
3. 9x*+4z2 =36 4. 4x?+yr=2
5. 22—-8?2=0 6. x2—z2=1
7. 8x2+3z2=0 8. x2=4z2+9
2
9.x2+y2+%2=1 10.%+y2+€43=1
11. x=222—y2 12.)1=4)€2—z2
13.x2+9y2—22=1 14.x2+y2+422=1

15. 162° =4x’+ p2+ 16 16. 22+ 4y2= x>+ 4
17. This problem concerns the hyperbolic paraboloid.

(A surface of this kind was studied in Example

L. ) A standard form for the equation is z =

ax? — by%, with @ and b both positive or both

negative.

(a) Sketch the graph of z = x? — 2y2,

(b) Show that z = xyp also determines a hyper-
bolic paraboloid. Sketch some of its level
curves.

18. This exercise concerns the elliptic paraboloid:

(a) Sketch the graph of z = 2x? + 2,

(b) Sketch the surface given by

x=-3y?—2z2

(c) Consider the equation z = ax? + by?, where
a and b are both positive or both negative,
Describe the horizontal cross sections where
z = constant. Describe the sections obtained
in the planes x =0 and y = 0. What is the
section obtained in the vertical plane x = ¢?
(The special case in whicha = b is a parabo-
loid of revolution as in Example 7(a), Section
14.3)

19. Sketch the cone z% = 3x2 + 3y2,

14.5 Cylindrical and

20.
21.
22,
23.
24.

25.

*26.

*27.

Sketch the cone (z — 1)? = x2 + y2.

Sketch the cone z2 = x%+2y%

Sketch the cone 22 = x2/4 + 2 /9.

Show that the intersection of the cone x2+ 2

= z% and the plane z = 1 is a circle.

Show that the intersection of the cone x?+ y?

= z2 and the plane 2z = y + 1 is an ellipse.

This problem concerns the elliptic cone. Consider

the equation x2/a*+ y2/b* — 22/c? =0

(a) Describe the horizontal cross sections z =
constant.

(b) Describe the vertical cross sections x =0
and y = 0.

(¢) Show that this surface has the property that
if it contains the point (xg, yg,Z¢), then it
contains the whole line through (0, 0, 0) and
(%05 yo, 29)-

The quadric surfaces may be shifted and rotated

in space just as the conic sections may be shifted

in the plane. These transformations will produce
more complicated cases of the general quadratic
equation in three variables. Complete squares to
bring the following to one of the standard forms

(shifted) and sketch the resulting surfaces:

(a) 4x?+y? +472 +8x—4y—82+8—0

(b) 2x? +3y?— 422 +4x+9y—8z+10=0.

Show that the intersection of the cone x*+ y?

= z? and any plane is a conic section as follows.

Let u and v be two orthonormal vectors and P, a

point. Consider the plane described by points P

such that P,P = fu + nv, which introduces rec-

tangular coordinates (£ 7) in the plane. Substi-
tute an express1on for (x, y,z) in terms of (¢,7)

into x>+ y= 72 and show that the result is a

conic section in the &y plane.

Spherical Coordinates

? T r(X,y,Z)

X

Figure 14.5.1. The
cylindrical coordinates of
the point (x, y, z).

x=rcosf, y=rsinb,
See Fig. 14.5.1. As with polar coordinates, we can solve for r and # in terms of
x and y: squaring and adding gives

There are two ways to generalize polar coordinates to space.

In Sections 5.1, 5.6, and 10.5, we saw the usefulness of polar coordinates in the
z plane. In space there are two different coordinate systems analogous to polar
coordinates, called cylindrical and spherical coordinates.

Y The cylindrical coordinates of a point (x, y,z) in space are the numbers
r (r,8,z), where r and # are the polar coordinates of (x, »); that is,

and z=:z.

x* + y* = r’(cos™ + sin¥) = r?, so r=xyx2+y%,



Example 1

Solution

Figure 14.5.2. Comparing
the cylindrical and
cartesian coordinates of
two points.
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Dividing gives

Lo sinb _ang,

x  cosf
As in polar coordinates, it is sometimes convenient to allow negative r; thus
(r,8) and (—r,0 + =) represent the same point. Also, we recall that (r,8) and
(r,0 + 27) represent the same point. Sometimes we specify r > 0 (with r =0
corresponding to the z-axis) and a definite range for . If we choose # between
7 and — = and choose tan " 'u between —=/2 and = /2, then the solution of
y/x=tanf is #=tan"'(y/x) if x>0, and §=tan"'(p/x)+ 7 if x <0
(#=7/2if x=0andy >0,and # = —7/2 if x =0 and y <0).

Cylindrical Coordinates

If the cartesian coordinates of a point in space are (x, y,z), then the
cylindrical coordinates of the point are (r, 8, z), where

X = rcosf, y = rsinb, z =2z

or, if we choose r > 0 and — 7 < 0 < =,

r=\/x2+y2 s
0 tan”'(y/x) if x>0,
tan"'(y/xy+7 if x<O.

(a) Find the cylindrical coordinates of (6,6, §). Plot.

(b) If a point has cylindrical coordinates (3, — 7 /6, —4), what are its cartesian
coordinates? Plot.

(c) Let a point have cartesian coordinates (2, —3,6). Find its cylindrical
coordinates and plot.

(d) Let a point have cylindrical coordinates (2,37/4,1). Find its cartesian
coordinates and plot.

(a) Here r=y6*+ 6 =62 and #=tan"'(¢)=tan"'(1)= #/4. Thus the
cylindrical coordinates are (6y2 ,7/4,8). See Fig. 14.5.2(a).

(b) x=rcosf# =3cos(—7/6)=3V3 /2, and y=rsinf=3sin(—7/6)=
—3/2. Thus the cartesian coordinates are (3y3 /2, —3/2, —4). See Fig.
14.5.2(b).

(€ r=vx2+y* =122+ (=3)* =V13; =tan"'(— )=~ — 0983~
—56.31°; z = 6. See Fig. 14.5.3(a).

z z
(6,6,8)
o
s
4
\ 8
3
g / ’
x 6V2 e/ .
_4 6

x (3V312,-3/2, -4

(a) (b)
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Figure 14.5.3. Two points
in cylindrical coordinates.

Example 2

Solution

I
|

Figure 14.5.4. The cylinder
has a very simple equation
in cylindrical coordinates.

Example 3

Solution

z} z
I
6

V13 2

/

/ y __/ y
3
4

—56° X

(a) (b)

@ x= rcosH=ZCos(3w/4)=2-(—\/5/2)= -2 ;
y= rsin0=251n(377/4)=2-(\/5/2)=\/5;z =1
See Fig. 14.5.3(b). A

Many surfaces are easier to describe in cylindrical than in cartesian coordi-
nates, just as many curves are easier to work with using polar rather than
cartesian coordinates.

Plot the two surfaces described in cylindrical coordinates by (a) r = 3 and
(b) r = cos24.

(a) Note that r is the distance from the given point to the z axis. Therefore the
points with » = 3 lie on a cylinder of radius 3 centered on the z axis. See Fig.
14.5.4.

(b) The curve r = cos26 in the xy plane is a four-petaled rose (see Example 1,
Section 5.6). Thus in cylindrical coordinates we obtain a vertical cylinder with
the four-leafed rose as a base, as shown in Fig. 14.5.5. A

Figure 14.5.5. The surface

= cos 28 is a cylinder with
a four-petaled rose as its
base.

Describe the geometric meaning of replacing (r,6,z) by (r,8 + &, — z).

Increasing # by « is a rotation through 180° about the z axis. Switching z to
— z reflects in the xy plane (see Fig. 14.5.6). Combining the two operations
results in reflection through the origin. A



Figure 14.5.6. The effect of
replacing (r, 4, z) by

(r,8 + m, —z) is to replace
P by —P.
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2 z z§
Reflect in
Rotate 180° P xy plane P
e c———- ————————
P P
: . .
Y ] y "
25 P
7 ‘ 6+7 «

Example 4 Show that the surface r = f(z) is a surface of revolution.

Solution

(x,¥,2)

x (x,»,0)
Figure 14.5.7. Spherical
coordinates.

If we set y = 0 and take x > 0, then r = x and r = f(z) becomes x = f(z); the
remaining points satisfying r = f(z) are then obtained by revolving the graph
x = f(z) about the z axis; note that r = ¢, z = d is a circle centered on the z
axis. Thus we get a surface of revolution with symmetry about the z axis. A

Cylindrical coordinates are best adapted to problems which have cylindrical
symmetry—that is, a symmetry about the z axis. Similarly, for problems with
spherical symmetry—that is, symmetry with respect to all rotations about the
origin in space—the spherical coordinate system is useful.

The spherical coordinates of a point (x, y,z) in space are the numbers
(p, 9, ¢) defined as follows (see Fig. 14.5.7).

p = distance from (x, y,z) to the origin;
# = cylindrical coordinate # (angle from the positive x axis to the point
(x, »);
¢ = the angle (in [0, 7]) from the positive z axis to the line from origin to
(x, ,2).
To express the cartesian coordinates in terms of spherical coordinates,
we first observe that the cylindrical coordinate r = yx* + y? is equal to psin¢
and that z = pcos¢ (see Fig. 14.5.7). Therefore

x =rcosf =psin¢cosf, y=rsinf=psin¢sing, z=pcose.

We may solve these equations for p, 8, and ¢. The results are given in the
following box.

Spherical Coordinates

If the cartesian coordinates of a point in space are (x, y,z), then the
spherical coordinates of the point are (p, , ¢), where

X = psin¢cosé,
y =psingsind,
Z = pCos o,
or, if we choose p >0, — 7 <f#<7and0< ¢ < 7,

p=\/x2+yz+z2 s
tan”'(y/x) if x>0,
tan~!(y/x)+7 if x<0,

-1 Z

V2 + p? + 22

¢ = Cos8
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Example 5

Solution

Figure 14.5.8. Finding the
spherical coordinates of the
point (1, —1, 1) and the
cartesian coordinates of

G, 7/6,7 /4).

Notice that the spherical coordinates # and ¢ are similar to the geographic
coordinates of longitude and latitude if we take the earth’s axis to be the z
axis. There are differences, though: the geographical longitude is |§| and is
called east or west longitude according to whether @ is positive or negative; the
geographical latitude is |7 /2 — ¢| and is called north or south latitude accord-
ing to whether 7 /2 — ¢ is positive or negative.

(a) Find the spherical coordinates of (1, —1, 1) and plot.

(b) Find the cartesian coordinates of (3,7 /6,7 /4) and plot.

(c) Let a point have cartesian coordinates (2, —3,6). Find its spherical coordi-
nates and plot.

(d) Let a point have spherical coordinates (1, — 7 /2,7 /4). Find its cartesian
coordinates and plot.

(@) p=VYx2+y + 22 =P+ (=1Y+ 12 =3,

H=tan"(—§-)=tan_l(%l)= —%,

¢ = cos“( %) = cos—'( 71_— ) ~0.955 ~ 54.74°.
3

See Fig. 14.5.8(a).

z z 4

Lo=55°
(4, -1, e p=V3

(@) (b)

)

(b) x=psin¢cosﬂ=3sin(%)cos(%)=3(%)g 3
= pingsin = 2sn( £ in ) -3 £ )(3)

z=pcos¢=3cos(%)=3—\é§-.

[\
N
ISy

N[ —
Il

NI

S

See Fig. 14.5.8(b).

(© p=yx2+ 2+ 22 =22+ (-3 + 6 =/29 =7,

~if Y 1 =3 o

g =tan (——x)—— tan (——2 )-—O.983-—56.31
_ -1z _ -1 6)~0541~31 °
¢ = cos (—p)—cos (—7 ~0. ~31.0°.

See Fig. 14.5.9(a) (the point is the same as in Example 1(d)).



Figure 14.5.9. Two points
in spherical coordinates.
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Solution

Example 7

Solution

Example 8
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(@) (b)

(d) x=psingcosd = lsin(%)cos(—T'”) = (—‘/22:) -0=0,

T
!
|

y=psin<¢>sin6?=15in(%)sin(%’”)=(%)(_l 2

2
z.

Z=pcos¢ = lcos(%) =
See Fig. 14.5.9(b). A
Find the equation in spherical coordinates of x? + y* — 22 = 4 (a hyperboloid
of revolution).
To take advantage of the relationship x? + yz + z2 = p?, write

x2+ 2 - 2= (x2 +y° + zz) —2z2=p?— 2p%cos’e,
since z-= pcos¢. Also, we can note that

p? = 2p’cos’p = p*(1 — 2cos’p) = — p2cos 2¢.
Thus the surface is

p’cos2¢+4=0. A

(a) Describe the surface given in spherical coordinates by p = 3. (b) Describe
the geometric meaning of replacing (p, 4, ¢) by (p,8 + 7, $).

(a) In spherical coordinates, p is the distance from the point (x, ¥,z) to the
origin. Thus p = 3 consists of all points a distance 3 from the origin—that is, a
sphere of radius 3 centered at the origin. (b) Increasing # by 7 has the effect of
rotating about the z axis through an angle of 180°. A

Show that the surface p = f(¢) is a surface of revolution.

The equation p = f(¢) does not involve # and hence is independent of
rotations about the z axis; thus it is a surface of revolution. If we set y=0,

then p=yx?+ z*> and ¢ = cos™'(z/Vx? + z?). Thus the surface p = f(¢) is

obtained by revolving the curve in the xz plane given by

\/m=f(cos_'(———‘/;2_i7 )),

about the z axis. A
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Exercises for Section 14.5

In Exercises 1-6, convert from cartesian to cylindrical
coordinates and plot:

1. (1, -1,0) 2. (VZ,1,1)
3.3,-2,1) 4. (0,6, —2)
5. (6,0, —2) 6. (-1,1,1)

In Exercises 7-12, convert from cylindrical to cartesian
coordinates and plot.

7. (1,7/2,0) 8. (3,45°,8)
9. (—1,7/6,4) 10. (2,0, 1)
11. (0,7/18,6) 12. 2, —7/4,3)

13. Sketch the surface described in cylindrical coor-
dinates by r = 1 + 2 cos#.

14. Sketch the surface given in cylindrical coordi-
nates by r = 1 + cosé.

In Exercises 15-18, describe the geometric meaning of
the stated replacement.

15. (r,8,2) by (r,8, — z)

16. (r,8,2) by (2r,8,2)

17. (r,8,2) by (2r,8, — z)

18. (r,8,2) by 2r,0 + 7,2)

19. Describe the surfaces r = constant, # = constant,
and z = constant in cylindrical coordinates.
20. Describe the surface given in cylindrical coordi-
nates by z = 4.
In Exercises 21-26, convert from cartesian to spherical
coordinates and plot.

21. (0,1, 1) 22. (1,0, 1)
23. (=2,1,-3) 24. (1,2,3)
25. (=3, -2, —4) 26. (1,1, 1)

In Exercises 27-32, convert from spherical to cartesian
coordinates and plot.

27. G, n/3,m) 28. 2, —w/6,7/3)

29. (3,27,0) 30. (1,w/6,7/3)

31. 8, —7/3,m) 32. (1,7/2,%/2)

33. Express the surface xz =1 in spherical coordi-
nates.

34. Express the surface z = x% + yz in spherical co-
ordinates.

35. Describe the surface given in spherical coordi-
nates by 6 = 7 /4.

36. Describe the surface given in spherical coordi-
nates by p = ¢.

37. Describe the geometric meaning of replacing
(0,0, 9) by (20,0, ).

38. Describe the geometric meaning of replacing
(0,8,¢) by (p,8,¢+ 7/2) in spherical coordi-
nates.

39. Describe the curve given in spherical coordinates
byp=1,¢é=m/2.

40. Describe the curve given in spherical coordinates
byp=1,68=0.

In Exercises 41-46, convert each of the points from
cartesian to cylindrical and spherical coordinates and
plot.

41. (0,3,4) 42, (—2,1,0)
43. (0,0,0) 4. (—1,0,1)
45. (=2¢3,=2,3) 46. (= 1,1,0)

In Exercises 47-52, the points are given in cylindrical
coordinates. Convert to cartesian and spherical coordi-
nates:

47. (1,7 /4,1) 48. (3,7/6, —4)
49. (0,7/4,1) 50. (2, —7/2,1)
51. (=2, —7/2,1) 52. (1, —7/6,2)

In Exercises 53-58, the points are given in spherical
coordinates. Convert to cartesian and cylindrical coor-
dinates and plot.

53. (1,7/2,7) 54. (2, —7/2,7/6)
55. (0,7/8,7/35) 56. (2, —m/2, —7)
57. (= 1,m,7/6) 8. (=1, —m/4,7/2)

59. Express the surface z = x*—y* (a hyperbolic

paraboloid) in (a) cylindrical and (b) spherical
coordinates.

60. Express the plane z = x in (a) cylindrical and (b)
spherical coordinates.

61. Show that in spherical coordinates:

(a) pis the length of xi + yj + zk;
(b) ¢ =cos™(v-k/|v|), wherev = xi + yj + zk;
(¢) 8=cos™'(u-i/|u|)), where u= xi + yj.

62. Two surfaces are described in spherical coor-
dinates by the equations p= f(f,¢) and p=
—2f(6,¢), where f(6,4) is a function of two
variables. How is the second surface obtained
geometrically from the first?

63. A circular membrane in space lies over the re-
gion x? + y? < a% The maximum deflection z of
the membrane is b. Assume that (x, y,z) is a
point on the deflected membrane. Show that the
corresponding point (r, 8, z) in cylindrical coordi-
nates satisfies the conditions
0<r<a0<89<2m |zl <b.

64. A tank in the shape of a right circular cylinder of
radius 10 feet and height 16 feet is half filled and
lying on its side. Describe the air space inside the
tank by suitably chosen cylindrical coordinates.

65. A vibrometer is to be designed which withstands
the heating effects of its spherical enclosure of
diameter d, which is buried to a depth d/3 in the
earth, the upper portion being heated by the sun.
Heat conduction analysis requires a description
of the buried portion of the enclosure, in spheri-
cal coordinates. Find it.

66. An oil filter cartridge is a porous right circular
cylinder inside which oil diffuses from the axis to
the outer curved surface. Describe the cartridge
in cylindrical coordinates, if the diameter of the
filter is 4.5”, the height is 5.6” and the center of
the cartridge is drilled (all the way through) from
the top to admit a 3” diameter bolt.

»67. Describe the surface given in spherical coordi-
nates by p = cos 28.
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Figure 14.6.1. A parametric
curve in the plane.
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Solution

Figure 14.6.2. The ellipse
traced out by (sint, 2 cos?).

Example 2

Solution
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Curves in Space

Tangents and velocities of curves in space can be computed by vector methods.

We continue our study of three-dimensional geometry by considering curves
in space. We can consider tangents to these curves by using calculus, since
only the calculus of functions of one variable and a knowledge of vectors are
required. (To determine tangent planes to surfaces, we will need the calculus
of functions of several variables.)

Recall from Section 2.4 that a parametric curve in the plane consists of a
pair of functions (x, y) = (f(¢), g(?)). As ¢ ranges through some interval (on
which f and g are defined), the point (x, y) traces out a curve in the plane; see
Fig. 14.6.1.

What curve is traced out by (sin¢,2cost), 0 < ¢t < 277

Since x =sin¢ and y/2 =cost, (x, y) satisfies x>+ y?/4 =1, so the curve
traced out is an ellipse. As ¢ goes from zero to 27, the moving point goes once
around the ellipse, starting and ending at P (Fig. 14.6.2). A

P=(0,2)

(1L,0y x

The step from two to three dimensions is accomplished by adding one more
function; i.e., we state the following definition: A parametric curve in space
consists of three functions (x, y,z) = (f(¢), g(¢), h(t)) defined for ¢ in some
interval on which f, g, and h are defined.

The curve we “see” is the path traced out by the point (x, y, z) as ¢ varies,
just as for curves in the plane.

(a) Sketch the parametric curve (x, y,z) = (3t + 2,8 — 1,¢). (b) Describe the
curve x =33+2, y=1—8,z=41 +3.
(a) If we write P = (x, y,z), then
P=(2,-10)+13,8,1)
which is a straight line through (2, —1,0) in the direction (3, 8, 1) (see Section

13.3). To sketch it, we pick the points obtained by setting ¢ = 0 and ¢ = 1, that
is, (2, —1,0) and (5,7, 1); see Fig. 14.6.3 on the next page.
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Figure 14.6.3. The
parametric curve
Br+2,8—1,0nisa
straight line.

Example 3

Solution

Figure 14.6.4. The curve
(cost,sint, 1) is a helix.

— G707 g
1,07 ——
P

(b) We find

(%, y,2) = (B3 + 2, — 8,41 + 3)
=(2,-8,3) + (3, 1,4);

so the curve is a straight line through (2, —8,3) in the direction (3,1,4). A

(a) Sketch the curve given by x = cost, y =sinz, z = ¢, where — o0 < ¢ < c0.
(b) Sketch the curve (cost,2sint,2t).

(a) As ¢ varies, the point (x, y) traces out a circle in the plane. Thus (x, y,z) is
a path which circles around the z axis, but at value ¢, its height above the xy
plane is z = . Thus we get the helix shown in Fig. 14.6.4. (It is called a right
circular helix, since it lies on the right circular cylinder x? + 2 = 1.)

@
g

(1,0,0)

NAVAVAV

In Fig. 14.6.4, the z axis has been drawn with a different scale than the x

and y axes so that more coils of the helix can be shown. It is often useful to do
something like this when displaying sketches of curves or graphs. You should
be careful, however, not to give a false impression—label the axes to show the
scale when necessary.
(b) Since x = cost and y/2 = siny, the point (x, y,0) satisfies x? + y2/4 =1,
so the curve lies over this ellipse in the xy plane. As ¢ increases from zero
to 27, the projection in the xy plane goes once around the same ellipse as in
Example 1 (Fig. 14.6.2), only now it starts at (1,0,0) at ¢ =0 and proceeds
counterclockwise since x behaves like cosz and y like 2sinz. Meanwhile, z
increases steadily with ¢ according to the formula z = 2¢. The net result is a
helix winding around the z axis, much like that of part (a), but no longer
circular. It now lies on a cylinder of elliptical cross section (see Fig. 14.6.5). A



Figure 14.6.5. The curve
(cost,2sint,2¢) is an
elliptical helix.

Example 4

Solution

Figure 14.6.6. The curve
(t,2¢, cost) lies in the plane
y=2x.
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Sketch the curve (¢,2¢, cos?).

If we ignore z temporarily, we note that (z,2r) describes the line y = 2x in the
xy plane. As ¢ varies, (#,2¢) moves along this line. Thus (¢,2¢,cosf) moves
along a curve over this line with the z component oscillating as cos¢. Thus we
get the curve shown in Fig. 14.6.6. A

In doing calculus with parametric curves, it is useful to identify the point
P =(x, y,2) = (f(1), g(t), h(2)) with the vector

r=xi+yj+zk=f()i+ g(1)j + h(H)k

This vector is a function of ¢, according to the following definition.

Vector Functions

A vector function of one variable is a rule o which associates a vector
r = o(?) in space (or the plane) to each real number ¢ in some domain.
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Example 5

Solution

Figure 14.6.7. The tip of
u+ vcost + wsint moves
in a circle of radius r with
center at the tip of u and in
a plane parallel to that
spanned by v and w.

If @ is a vector function and ¢ is in its domain, we can express o(¢) in terms of
the standard basis vectors, i, j, and k. The coefficients will themselves depend
upon ¢, SO we may write
o(fy=f(Hi+ g()j + h(n)k,

where f, g, and h are scalar (real-valued) functions with the same domain as o.
Notice that the functions f(7), g(¢), h(¢) define a parametric curve such that
the displacement vector from the origin to (f(¢), g(¢), h(¢)) is just &(z). The
functions f, g, and h are called the component functions of the vector function
o (). To summarize, we may say that parametric curves, vector functions, and
triples of scalar functions are mathematically equivalent objects; we simply
visualize them differently. For instance, the wind velocity at a fixed place on
earth, or the cardiac vector (see Fig. 13.2.14), may be visualized as a vector
depending on time.

Let u, v, and w be three vectors such that v and w are perpendicular and have
the same length r, and let’ 6(¢) = u + vcos ¢ + wsin+.
(a) Describe the motion of the tip of &(¢) if the tail of o(z) is fixed at the
origin. (That is, describe the parametric curve corresponding to &(z).)
(b) Find the component functions of o(¢) if u=2i+j, v=j—k, and w=
itk
(a) We observe first that the vector vcost + wsins always lies in the plane
spanned by v and w and that the square of its length is
(veost + wsint) - (vcost + wsin?)
=v-vcos? + 2v-wsinzcost + w - wsin
= r’cos’t + r’sin’t = r’(cos’t + sin’) = r?,
so the tip of the vector vcos¢ + wsinz moves in a circle of radius r if its tail is

fixed. Adding u to vcost + wsinz to get o(7), we find that the tip of o ()
moves in a circle of radius r whose center is at the tip of u. (See Fig. 14.6.7.)

Path of the tip of u+ v cos ¢ + wsin ¢
if its tail is at O

Path of the tip of
v cos f+ wsin £ if
its tail is at O

N

(b) We have
o(f)y=u+vcost+wsint =2i+ j+ (j — k)cost + (j + k)sin¢

u+vcoss+wsint

=2i+ (1 + cost + sin?)j + (—cos? + sint)k,

so the component functions are 2, 1 + cost + sinz, and —cosz + sinz. A

3 Formulas involving vector functions are sometimes clearer to write and read if scalars are
placed to the right of vectors. Any expression of the form vf(z) is to be interpreted as f(¢)v.



Example 6

Solution

Example 7

Solution
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We now wish to define the rate of change, or derivative, of a vector function
o(r) with respect to ¢. If o(¢) is the displacement from a fixed origin to a
moving point, this derivative will represent the velocity of the point. To see
how the derivative should be defined, we examine the case of uniform
rectilinear motion.

Let o(¢) = u + tv, so that o(¢) is the displacement from the origin to a point
moving uniformly with velocity vector v. Let u= ai+ bj + ck and v=1/i+
mj + nk.

(a) Find the component functions of &(?).
(b) Show that the components of the velocity vector are obtained by differen-
tiating the component functions of o(¢).

(a) We have
o(ty=u+tv=ai+ bj+ ck+ t(li + mj + nk)
=(a+ )i+ (b+ mn)j+ (c+ n)k,
so the component functions are a + /t, b + mt, and ¢ + nt.

(b) The derivatives of the component functions of o(¢) are the constants /, m,
and n; these are precisely the components of the velocity vector v. A

Let o(f) = f(1)i + g(¢)j be a vector function in the plane. Show thgt the
tangent line at time 7, to the parametric curve corresponding to ¢ () (with the
tail of o(¢) fixed at zero) has the direction of the vector f'(£o)i + &'(Z)i-

Recall from Section 2.4 that if ( f(£), g(2)) is a parametrized curve in the plane,
then the slope of its tangent line at (f(2,), g(o)) is g'(£y)/f/(to)- A line in the
direction of f'(to)i + g'(£o)j has slope g'(¢5)/ f(t,), so it is in the same direction
as the tangent line. A

Guided by Examples 6 and 7, we make the following definition.

Derivative of a Vector Function

Let a(2) = f(0)i + g(1)j + h(1)k be a vector function. If the coordinat.e
functions f, g, and h are all differentiable at ¢,, then we say that & is
differentiable at #,, and we define the derivative o’(t,) to be the vector
J )i+ g/ (1) + K (1o)k:

a'(to) = f'(to)i + g'(to)i + H (to)k.

The derivative of o is a function of the value of ¢+ at which the derivative is
evaluated. Thus o'(¢) is a new vector function, and we may consider the
second derivative o7 (1), as well as higher derivatives.

We will sometimes use Leibniz notation for derivatives of vector func-
tions: if r = o(¢), we will write dr/dt for o’(¢) and d’r/dt* for ¢”(2).

The derivative of a vector function can also be expressed as a limit of
difference quotients. If r = &(z), we write Ar = o (¢ + At) — o(2). Then Ar/A¢
(i-e., the scalar 1/A¢ times the vector Ar) is a vector which approaches o’(7) as
At—0. (See Fig. 14.6.8 on the next page and Exercise 52.)
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Ar=g(t + A —0(1)

Figure 14.6.8. As Az—>0, e+ Aan

the quotient

[o(t + Aty — a(1)] /At
approaches &'(1); i.e.,
Ar/At—>dr/dt. 0

Example 8 Let o(¢) be the vector function of Example 5, with u, v, and w as in part (b) of
that example. Find o'(¢¥) and o”(2).
Solution In terms of components,
o(r)=2i+ (1 + cost +sin?)j+ (—cost + sinz)k.
Differentiating the components, we have
o'(t) = (—sint + cost)j + (sint + cost)k
and
o”(t) = (—cost —sint)j + (cost — sinz)k. A
The differentiation of vector functions is facilitated by algebraic rules which

follow from the corresponding rules for scalar functions. We list the rules in
the following box.

Differentiation Rules for Vector Functions

To differentiate a vector function a(¢) = f(¢)i + g(1)j + h(1k, differenti-
ate it component by component: ¢'(¢) = f'()i + g'(¢)j + h'()k. Let o (2),
o(#), and o,(¢) be vector functions and let p(r) and ¢(f) be scalar
functions.

Scalar Multiplication Rule: di [p(H)e ()] = p'()e(t) + p(D)o' ().

Sum Rule: % [al(t) + az(t)} = 0/(1) + o5(1).

t
Dot Product Rule: % [al(t) . az(t)} = 0|(1): oy(1) + o,(1) - o5(2).
Cross Product Rule: % [al(t) X az(t)} = 0(1) X ay(1) + (1) X oy(1).

Chain Rule: % [e(9(1))] = 7' (Do (q(2))

For example, to prove the dot product rule, let o,(¢) = fi(D)i + g,()j + h,(D)k
and o,(1) = fo(Di + g,()j + h,(t)k. Hence,

ai(2)* 0x(1) = fu(1) fo(1) + 81(7) &2(2) + hu()h(2),
so by the sum and product rules for real-valued functions, we have
2 Lay(1)- o:(0)] = [ SO + L0 ]+ 81(08:(1) + £i(H)8x(1)]
+ [ Bi(0)hy(2) + By (1) hy(1)].
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(f(tg). gltg), hty))
11

o'(1g)
Figure 14.6.9. The velocity
vector of a parametric
curve is the derivative of
the vector ¢ (?) from the
origin to the curve.

Exampie 10

Solution
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Regrouping terms, we can rewrite this as

[FiDf(1) + 81(1)ga(1) + Hi(1)hy(1) ]
+[ [ + gi(Dga(r) + hi(t)ha()]
=[fi(i+ g+ hi(k] - [ L(0)i + ga(0)i + ho(1)k]
+[ fud)i+ gi(Di + k(DK ] [ f(0)i + gh(1)i + hy()K]
= cr’l(t) coy(0) + crl(t) . aé(t),

so the dot product rule is proved. The other rules are proved in a similar way
(Exercises 53-56).

Show that if o(¢) is a vector function such that ||e(¢)| is constant, then ¢’(¢) is
perpendicular to () for all ¢.

Since ||(2)|| is constant, so is its square ||6(2)||> = o(t) - o(¢). The derivative
of this constant is zero, so by the dot product rule we have

0= % [o(t)- a(t)] = a'(1) - o (1) + () /(1) = 20(1) - 0/(1);
so o(1) - o'(¢t) = 0; that is, ¢'(¢) is perpendicular to a(z). A

Let (f(1), g(), h(¢)) be a parametric curve. If f, g, and & are differentiable at
ty, the vector f'(1)i + g'(1o)j + h'(¢,)k is called the velocity vector of the curve
at #,. Notice that if o(¢) is the vector function corresponding to the curve
(f(2), g(1), (1)), then the velocity vector at ¢, is just o”(¢,) (see Fig. 14.6.9). We
often write v for the velocity vector—that is, v = o'(#). In Leibniz notation, if
r= o(t), we have v=dr/dt.

Several other quantities of interest may be defined in terms of the velocity
vector. If v = o’(¢,) is the velocity of a curve at #,, then the length v = ||v||
= [l6’(ty)| is called the speed along the curve at t,, and the line through e(t,)
in the direction of ¢’'(¢y) (assuming o'(fy) # 0) is called the rangent line to the
curve (see Example 7). Thus the tangent line is given by r = o(¢,) + to'(¢y).

For a curve describing uniform rectilinear motion, the velocity vector is
constant (see Example 6). In general, the velocity vector is a vector function
v = o'(t) which depends on ¢. The derivative a = dv/dt = ¢”(¢) is called the
acceleration vector of the curve. Notice that if the curve is (f(¢), g(2), ~(2)),
then the acceleration vector is

a =f”(t)i + g”(t)j + h”(t)k. ‘
The terms velocity, speed, and acceleration come from physics, where

parametric curves represent the motion of particles. These topics will be
discussed in the next section.

A particle moves in a helical path along the curve (cos¢,sint, #). (a) Find its
velocity and acceleration vectors. (b) Find its speed. (¢) Find the tangent line
at to=w/4.

(a) Differentiating the components, we have v = —(sin#)i + (cos?)j + k, and
a=dv/dt= —(cost)i — (sint)j. Notice that the acceleration vector points
directly from (cos¢,sin ¢, ) to the z axis and is perpendicular to the axis as well
as to the velocity vector (see Fig. 14.6.10).
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Figure 14.6.10. The velocity
and acceleration of a
particle moving on a helix.

R0

(b) The velocity vector is v = —(sin#)i + (cos?)j + k, so the speed is

v=|v| =\/(—sint)2 + (cost)2 +1

=1sin% + cos¥ + 1 =2 .

(c) The tangent line is
r = o (ty) + to’(1,) = (cos to)i + (sin to)j + tok + t[(—— sin to)i + (cos to)j + k].
At ty = 7 /4, we get

S P B k]
2 2
1—¢,, 1412, aT
=i+ ZLj+ (T +1)k A
s Ll (14)

Example 11 A particle moves in such a way that its acceleration is constantly equal to —k.
If the position when ¢ = 0 is (0,0, 1) and the velocity at z = 0 is i + j, when and
where does the particle fall below the plane z = 0? Describe the path travelled
by the particle.

1 . . T
r=—(i+j)+ Tk+1¢
\/5( )3

Solution Let (f(2), g(), h(¢)) be the parametric curve traced out by the particle, so that
the velocity vector is &'(2) = f/()i + g'()j + '(t)k. The acceleration ¢”(¢) is
equal to —K, so we must have (1) =0, g”(t) = 0, and h”(z) = — 1. It follows
that f'(¢) and g'(¢) are constant functions, and 4’(¢) is a linear function with
slope —1. Since ¢’(0)=1i+j, we must have o'(t) =1i+j— tk. Integrating
again and using the initial position (0,0, 1), we find that (f(¢), g(2),h(2)) =
(t,¢,1 — L 1%). The particle drops below the plane z = 0 when 1 — 112 = 0; that
is, t =2 . At that time, the position is (\/5 2 ,0). The path travelled by the
particle is a parabola in the plane y = x. (See Fig. 14.6.11.) A

z

Figure 14.6.11. The path of
the parabola with initial
position (0, 0, 1), initial
velocity i + j, and constant
acceleration —kisa
parabola in the plane

)1=X.
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Exercises for Section 14.6

Sketch the curves in Exercises 1-10.

WO A WN -

10.

. x=sint, y=4cost, 0 <1< 2m.
. x=2sint, y =4cost, 0 <t < 2.

x=2t-ly=t+2;z=1
x=—6y=2tz=1/1; 1 <1<3.
x=—t;y=t;z=12;0<t<3.

(-0 <2,

. (dcost,2sint, t); 0 < ¢ < 2.

. x=cost;y=sint; z=1t/2n; —27 <t <27.
(/L 1 < <3

(cosht,sinhz,7); —1 <t< 1.

Let u, v, and w be three vectors such that v and w are
perpendicular and have the same length r. In Exercises
11 and 12, (a) describe the motion of the tip of the

vecto

u=i
11.
12,

r o(f) and (b) find the components of &(r) if
—j,v=2(j+k),w=2(j— k).

o(f)=wu+ 2vcost + 4wsinz.

o(1)=u+ 3vcost — Swsint.

13. Let o(f) =3 cos ti — 8sintj + e’k. Find ¢’(¢) and

a”(1).
14. (a) Give the “natural” domain for this vector
function:
_ 1. 1 . 1
a(t)= tl+—t— 1"+—t—2k'

(b) Find ¢’ and o”.

In Exercises 15-20, let o,(¢) = e'i + (sin#)j + °k and

(1)
deriv

15

le.
17.
18.
19.
20.

21.

22.

= e 7'+ (csc1)j — 2¢%k. Find each of the stated
atives in two different ways:

- o+ o]
L1a1(1)- ox(0)]

2 16,(1) X 1]

2 (0(1)- 20:(1) + (1))

d
T e'a\(1)

2 g,

Show that if the acceleration of an object is
always perpendicular to the velocity, then the
speed of the object is constant. [ Hint: See Exam-
ple 9.]

Show that, at a local maximum or minimum of
lle(D||, &'(t) is perpendicular to o (7).

Compute (a) the velocity vecior, (b) the acceleration
vector, and (c) the speed for each of the curves in
Exercises 23-32.

23.
24.
25.
26.
27.
28.
29.

The curve in Exercise 1.
The curve in Exercise 2.
The curve in Exercise 3.
The curve in Exercise 4.
The curve in Exercise 5.
The curve in Exercise 6.
The curve in Exercise 7.

30.
3L
32.

The curve in Exercise 8.
The curve in Exercise 9.
The curve in Exercise 10.

For each of the curves in Exercises 33-38, determine
the velocity and acceleration vectors for all ¢ and the
equation for the tangent line at the specified value of .

33.
34.
35.
36.
37.
38.

39.

40.

41.

42.

43.

45.

46.

47.

(61,323, %); t =0.

(sin3t,c0s32,2¢3/%); t = 1.

(cos’t, 3t — £1;t=0.

(rsint, tcost,3 1); t=0.

(V2 t,e'e ) t=0.

(2cost,3sint, t); t = 7.

Suppose that a particle follows the path
(e,e ™, cost) until it flies off on a tangent at
t = 1. Where is it at 1 = 27

If the particle in Exercise 39 flies off the path at
t = 0 instead of ¢t = 1, where is it at t = 2?
Describe and sketch the curves specified by the
following data:

(@) (0 =(1,0,1) a(0) = (0,0,0),

(b) al(t) = (_ L1, 1)9 0(0) = (1’27 3)’

© o (=(-1,1,1) a(0)=(0,0,0).

Suppose that a curve o(r) has the velocity vector
o'(t) = (a, b,sint), where a and b are constants.
Sketch the curve if a = —1, b =2, and assuming
a(0)= (0,0, 1).

Suppose that a curve has the velocity vector
v=0¢'(f) = (sin7, —cost,d), where d is a con-
stant. (a) Describe the curve. (b) Sketch the curve
if you know that a(0) = i. (c) What if in addition,
d=0?

. Suppose that &(z) is a vector function such that

o'(t) = — o(¢). Show that o(f) = e ‘a(0). (Hint:

See Chapter 8.) What is the behavior of &(?) as

t—>co?

(a) Let o,(¢) and o4(¢) satisfy the differential

equation ¢”(f) = — o (t). Show that for any con-

stants 4, and A4,, 4,6,(1) + A,0,(t) satisfies the

equation as well.

(b) Find as many solutions of ¢”(1) = —&(?) as

you can.

Suppose that o(r) satisfies the differential equa-

tion &”(t) + w?o(¢) = 0. Describe and sketch the

curve if ¢(0) = (0,0, 1) and ¢’(0) = (0, w, w).

(a) Sketch the following curves. On each curve,

indicate the points obtained when ¢ = 0,},4,3, 1.
) x=—-y=2tz=3;0<1t<1.

(i) x=—1%y=21% z=3¢% -1<1< 1

(ili) x = —sin(w1/2); y = 2sin(nt /2);

z=3sin(nt/2); 0 <t < 1.

(b) Show that the set of points in space covered

by each of these curves is the same. Discuss

differences between the curves thought of as

functions of ¢. (How fast do you move along the

curve as ¢ changes? How many times is each

point covered?)
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48. For each curve in Exercise 47, find the velocity
vector v and the speed v as functions of ¢.
Compute [fvdt, where [a, b] is the defining inter-
val for ¢ in each case. What should this number
represent? Explain the difference between the
result for part (ii) and that for (i) and (iii).

49. Let 8 and ¢ be fixed angles, and consider the
following two curves:

(a) x=sin¢cost,

y =sin¢sint, 0<t<27
z = cos ¢}

(b) x =sinzcosé,
y =sintsiné, 0<r<g2n

Z = COS t.

Show that each curve is a circle lying on the
sphere of radius 1 centered at the origin. Find
the center and radius of each circle. Sketch the
curves for ¢ = 45° and for § = 45°.

50. Suppose that 0 < 8 <27 and 0 < ¢ < 27, and
let

o(8,¢) = ((2 + cosp)cos b, (2 + cos ¢)sin 4, sin ¢).

(Note that this is a vector function of two vari-

ables.)
(a) Describe each of the following curves:
(i) 6(8,0); 0<8<27
(i) e(8,7); 0<0<2m;
(iti) o(8,7/2); 0 < 8 < 2m;
(iv) 0(0,¢); 0< ¢ <2m;

) o(7/2,¢); 0< ¢ < 2m;
Vi) (7 /4,¢); 0 < ¢ < 2.

(b) Show that the point a(6, ¢) lies on the circle of
radius 2 + cos ¢ parallel to the xy plane and
centered at (0,0, sin ¢).

(c) Show that o(#,¢) lies on the doughnut-
shaped surface (a torus) shown in Fig.
14.6.12.

(d) Describe and sketch the curve
((2 + cos #)cost, (2 + cos t)sin ¢, sin 1).

2

Figure 14.6.12. The points
a(0, ¢) (Exercise 50) lie on
this surface.

51. Suppose that Py = (xg, yo,0) is a point on the
unit circle in the xy plane. Describe the set of
points lying directly above or below P, on the
right circular helix of Example 3. What is the
vertical distance between coils of the helix?

*52. If 3(H)= f(i+ g(0)j + h()k is a vector func-
tion, we may define lim,_,, ¢(#) componentwise;
that is,

limo()=[ Jim f(0]i+] fim g0 s

+ [ lim h(t):lk
totg
if the three limits on the right-hand side all exist.
Using this definition, show that
lim - lo(ty + Aty — o (1)l = o'(1y).
ar—o Af
Prove the rules in Exercises 53-56 for vector functions.
*53. The sum rule.
*54. The scalar multiplication rule.

*55. The cross product rule.
*56. The chain rule,

*537. Let r = a(f) be a parametric curve.
(a) Suppose there is a unit vector u (constant)
such that o(¢)-u=0 for all values of ¢.
What can you say about the curve o(#)?
(b) What can you say if o(¢)-u= c for some
constant ¢?
(c) What can you say if o(¢)-u=b|e(?)| for
some constant b with 0 < b < 1?
*58. Consider the curve given by

X =rcoswl, y=rsinwt, and z=ct,

where r, w, and ¢ are positive constants and

—o00 <t < 00,

(a) What path is traced out by (x, y) in the
plane?

(b) The curve in space lies on what cylinder?

(c) For what ¢, does the curve trace out one coil
of the helix as ¢ goes through the interval
0<t<1,?

(d) What is the vertical distance between coils?

(e) The curve is a right-circular helix. Sketch it.
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Example 1

Example

Example 2

Solution
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The Geometry and
Physics of Space Curves

Particles moving in space according to physical laws can trace out geometrically
interesting curves.

This section is concerned with applications of calculus: arc length, Newton’s
second law, and some geometry of space curves.
In Section 10.4, we found the arc length formula

fmdf\/(%)(;_y) “

for a parametric curve in the plane. A similar formula, with one term added,
applies to curves in space.

Arc Length

Let (x, y,2z) = (f(2), g(¥), h(1)) be a parametric curve in space. The length
of the curve, for ¢ in the interval [a, b), is defined to be

L= [ @P+ (g0 + (o) a

L= ’ @24.5)124.@201 1
i (dt) (dt) (dt) M

Find the length of the helix (cos¢,sint, ¢) for 0 < ¢ < 7.

or

Here f'(f)= —sint, g'(¢) = cost, and A'(t)=1, so the integrand in the arc
length formula (1) is ysin% + cos* + 1 =2, a constant. Thus the length is
simply

L=fw\/5dt=rm/5.A
0

Notice that the integrand in the arc length formula is precisely the speed
lle’(2)]| of a particle moving along the parametric curve. Thus the arc length,
which can be written as L = [2||6’(¢)|| dt, is the integral of speed with respect
to time and represents the total distance travelled by the particle between time
a and time b.

Find the arc length of (cosz,sint,1?),0< ¢t < 7.
The curve o(t) = (cost,sin ¢, #%) has velocity vector v = (—sinz, cosz,21). Since
vl =V1+ 4 =24/ + (%)2 , the arc length is

L =f0772\/t2+ (1) .
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~ This integral may be evaluated using the formula (43) from the table of
integrals:

f\/x2 + a? dx= %[xw/xz +a® +d’n(x +yx* + a* )] + C.

Thus

L=2-%{tm+(%)2ln(t+ t2+(%)2)]

=ayri+] + %ln(w+\/772 +1 ) —ﬁln(\/_)
= g V1 + 472 + 4In(27 +y1 + )

=~ 10.63. A

T

t=0

P

Example 3 Find the arc length of (e',t,e’), 0< ¢ < 1. [Hint: Use u=vy1+2e* to

Solution

evaluate the integral.]
(1) = (e’,t,e"), sov=_(e’ 1,e"), and ||v|| =1 + 2¢* ; so L = [}y1 +2e* d.
To evaluate this integral, set u =1 + 2¢* | which leads to

fmdt=fu—l;du—

u —1

f{l +%(ul 1)—%(14_}_ I )]du (partial fractions)

1 1
u+§1n(u— 1)——2—1n(u+ H+C

2t _
=1 +2e¥ + %ln————“l’Lze1 +C.
\/1—+2e2’ +1

(This result may be checked by differentiation.) To find L, we evaluate the last
expression at t = 0 and ¢ = 1 and subtract, to obtain

2 __ _
L=\1+22+ %ln——“”el—ﬁ—%mﬂzz.m.A
I+ 282 +1 B+l

We turn next to the study of curves followed by physical particles subject to
forces. :

If a particle of mass m moves in space, the total force F acting on it at
any time is a vector which is related to the acceleration by Newton’s second
law (see Section 8.1): F = ma.

In many situations, the force is a given function of position r (the “force
law”), and the problem of interest is to find the vector function r= (7
describing a particle’s motion, given the initial position and velocity. Thus,
Newton’s second law becomes a differential equation for o (), and techniques
of differential equations can be used to solve it (as we solved the spring
equation in Section 8.1). For example, a planet moving around the sun
(considered to be located at the origin) obeys to a high degree of accuracy
Newton’s law of gravitation:

F = _ GmMr=__ GmMr
|l r

il
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Example 3

Solution

This integral may be evaluated using the formula (43) from the table of
integrals:

f\/x2+ a’ dx=%[x\/x2+ a® +a’ln(x +yx* + az)] + C.

Thus

L=2g [ () + (a4 )|
=WM+%m(w+ w2+§)—%ln \/_)

7
t=0

e

Find the arc length of (e’,t,e’), 0< ¢t < 1. [Hint: Use u=+1+2e* to
evaluate the integral.]

o()= (e, t,e’), s0 v={(e',1,e"), and ||v]| =1 + 2e* ; so L = [3y1 + 2e* db.
To evaluate this integral, set # =1 + 2¢? , which leads to

f 1+2e* dt=fu—u—dL

u?—1

=f[l + %(ui I )— %(ﬁ)]du (partial fractions)

1 1
=u+§ln(u—l)—§1n(u+1)+C

2r
=1+ 2% + %ln—~———v1+2€1 +C.
V1+2e* +1

(This result may be checked by differentiation.) To find L, we evaluate the last
expression at ¢ = 0 and ¢ = 1 and subtract, to obtain

7 _
L=\/1+2e2+%ln————vl+2€1—\/§—51n‘/§ L c264 a
e Gl

We turn next to the study of curves followed by physical particles subject to
forces. ,

If a particle of mass m moves in space, the total force F acting on it at
any time is a vector which is related to the acceleration by Newton’s second
law (see Section 8.1): F = ma.

In many situations, the force is a given function of position r (the “force
law”), and the problem of interest is to find the vector function r= & ()
describing a particle’s motion, given the initial position and velocity. Thus,
Newton’s second law becomes a differential equation for o(¢), and techniques
of differential equations can be used to solve it (as we solved the spring
equation in Section 8.1). For example, a planet moving around the sun
(considered to be located at the origin) obeys to a high degree of accuracy
Newton’s law of gravitation:

= _GmM,_ GmM,
JIr|f? r




Example 4

Solution

Figure 14.7.1. The
acceleration vector of a
particle in uniform circular
motion points to the center
of the circle.
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where r is the vector pointing from the sun to the planet at time ¢, M is the
mass of the sun, m that of the planet, r = |||, and G is the gravitational
constant (G = 6.67 X 10~!" newton meter® per kilogram?). The differential
equation arising from this force law is

dr _ _GM

a A r

dt r
Rather than solving this equation here, we shall content ourselves with
understanding its consequences for the case of circular motion.

A particle of mass m is moving in the xy plane at constant speed v in a
circular path of radius r,. Find the acceleration of the particle and the force
acting on it.

Let r be the vector from the center of the circle to the particle at time 7.
Motion of the type described is given by

r= rocos( v )i + rosin( v )j.
To To

Differentiating twice, we see that

2 2 2 2
= d—; = — D—cos(t—v)i— D—sin(t—u)j= ~ D—zr.
dt Ty To To To ry
The force acting on the particle is F = ma= —(mv?/rd)r. A

Example 4 shows that in uniform circular motion, the acceleration vector
points in a direction opposite to r—that is, it is directed toward the center of
the circle (see Fig. 14.7.1). This acceleration, multiplied by the mass of the
particle, is called the centripetal force. Note that even though the speed is
constant, the direction of the velocity vector is continually changing, which is
why there is an acceleration. By Newton’s law, some force must cause the
acceleration which keeps the particle moving in its circular path. In whirling a
rock at the end of a string, you must constantly be pulling on the string. If you
stop that force by releasing the string, the rock will fly off in a straight line
tangent to the circle. The force needed to keep a planet or satellite bound into
an elliptical or circular orbit is supplied by gravity. The force needed to keep a
car going around a curve may be supplied by the friction of the tires against
the road or by direct pressure if the road is banked (see Exercise 12).

Suppose that a satellite is moving with a speed v around a planet with
mass M in a circular orbit of radius r,. Then the force computed in Example 4
must equal that in Newton’s law:

02 GM
2

r=— =-r.

o ro

The lengths of the vectors on both sides of this equation must be equal. Hence
2_ GM 2
v ——ro . (2)
If T is the period of one revolution, then 2mry/ T = v (distance /time = speed);
substituting this value for v in equation (2) and solving for 72, we obtain the
rule:

27
T?=rg (GA; : (3)

The square of the period is proportional to the cube of the radius. This law is one
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Example 5

Solution

Example 6

Solution

of the famous three which were discovered empirically by Kepler before
Newton’s laws were formulated; it enables one to compute the period of a
satellite given the radius of its orbit or to determine the radius of the orbit if
the period is prescribed. If both the radius and period are known, (3) can be
used to determine GM, and hence if G is known, M can be computed.

Suppose we want to have a satellite in circular orbit about the earth in such a
way that it stays fixed in the sky over one point on the equator. What should
be the radius of such an orbit? (The mass of the earth is 5.98 x 10
kilograms.)

The period of the satellite should be 1 day, so T=60X 60X 24 = 86,400
seconds. By formula (3), the radius of the orbit should satisfy

. TGMm _ (86:400)* X (6.67 X 107'") X (5.98 x 10%)
rq = =

2m)? 272

(27) (27)

= 7.54 X 10%* meters®,
50 ro = 4.23 X 10 meters = 42.300 kilometers
= 26,200 miles. A

Let r = o(¢) be the vector from a fixed point to the position of an object, v the
velocity, and a the acceleration. Suppose that F is the force acting at time 7.

(a) Prove that (d/dt)(mr X v) = o X F, (that is, “rate of change of angular
momentum = torque”). What can you conclude if F is parallel to r? Is this
the case in planetary motion?

(b) Prove that a planet moving about the sun does so in a fixed plane. (This is
another of Kepler’s laws.)

(a) We use the rules of differentiation for vector functions:

%(mer)=m£><v+mr><£11=mv><v+mr><a

dt dt
=0+rXma=rXF.

If F is parallel to r, then this last cross product is 0. Thus mr X v must be a
constant vector. It represents the angular momentum, a quantity which
measures the tendency of a spinning body to keep spinning. The magnitude of
mr X v measures the amount of angular momentum, and the direction is along
the axis of spin. If the derivative above is zero, it means that angular
momentum is conserved; both its magnitude and its direction are preserved.
This is the case for our model of planetary motion in which the sun is
regarded as fixed and the gravitational force

- _ GmM

I

is parallel to the vector r from the sun to the planet. (The actual situation is a
bit more complicated than this: in fact, both the sun and the planet move
around their common center of mass. However, the mass M of the sun is so
much greater than the mass m of the planet that this center of mass is very
close to the center of the sun, and our approximation is quite good. Things
would be more complicated, for example, in a double-star system where the
masses were more nearly the same and the center of gravity somewhere
between. What is conserved is the total angular momentum of the whole
system, taking both stars into account.)




Example 7

Solution
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(b) Let I = mr X v be the angular momentum vector. Then certainly r- = Q.
We argued above that dl/dr =0, so I is a constant vector. Since r satisfies
r-1= 0, the planet stays in the plane through the sun with normal vector I. 4

Our third and final application in this section is to the geometry of space
curves.

Differential geometry is the branch of mathematics in which calculus is
used to study the geometry of curves, surfaces, and higher dimensional
objects. When we studied the arc length of curves, we were already doing
differential geometry—now we will go further and introduce the important
idea of curvature.

The curvature of a curve in the plane or in space is a measure of the rate
at which the direction of motion along the curve is changing. A curve with
curvature zero is just a straight line. We can define the curvature as the rate of
change of the velocity vector, if the length of this vector happens to be 1;
otherwise the change in length of the velocity vector confuses the issue. We
therefore make the following definitions.

Parametrization by Arc Length
Let r = o(¢) be a parametric curve.

1. The curve is called regular if v = o’'(?) is not equal to 0 for any 7.

2. If the curve is regular, the vector T = v/Ivll = o’(1)/|lo’()]| is called
the unit tangent vector to the curve.

3. If the length of o'(¢) is constant and equal to 1 (in which case T =),
the curve is said to be parametrized by arc length.

Suppose that the curve r = o(?) is parametrized by arc length. Show that the
length of the curve between r = g and r = b is simply b — q.

The integrand in the arc length formula (1) is constant and equal to 1 if the
curve is parametrized by arc length. Thus

L=fb1dt=b—a.A

If a curve r = o(z), as it is presented to us, is regular but not parametrized by
arc length, we can introduce a new independent variable so that the new curve
is parametrized by arc length. In fact, we can choose a value « in the domain
of the curve and define s = p() to be the arc length [}|/6(u)|| du of the curve
between a and 1. We have ds/dr = lo’(9)]| > 0 since the curve is regular, so.
the inverse function ¢ = qg(s) exists (see Section 5.3). Now look at the new
curve r = o,(s) = o(q(s)), which goes through the same points in space as the
original curve but at a different speed. In fact, the new speed is

i) = llg'(s)o’(q(s))|| (chain rule)
=)o’ (g(s)Hll (9'(s) is positive)
1
= — 5 1o’ (g ().
P 7D
However, by the fundamental theorem of calculus and the definition of p,

P()=|lo'(]], so [|o7(s)|| = 1, and so the new curve is parametrized by arc
length.
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Example 8 Find the arc length parametrization for the helix (cos?,sint, ¢).
Solution We have ||v|| =ysin + cost + 1 = V2. Taking a =0, we have s=p(t) =

Example 9

Solution

f{)\/f du=\21, 50 s =21t and t = s/\/f; the curve in arc length parame-
trization is therefore (cos(s/y2 ),sin(s/ 2),5/V2). A

The arc length parametrization is mostly useful for theoretical purposes,
since the integral in its definition is often impossible to evaluate. Still, the
existence of this parametrization makes the definitions which follow much
simpler.

Whenever a curve is parametrized by arc length, we will denote this
parameter by s. Notice that in this case T=v = dr/ds. Now we can define the
curvature of a curve.

Curvature

Let T be the unit tangent vector of a curve parametrized by arc length.
The scalar k = ||dT/ ds|| is called the curvature of the curve. If k 0, the
unit vector N = (dT/ds)/||dT/ds|| is called the principal normal vector
to the curve.

Let us show that the principal normal vector is perpendicular to the unit
tangent vector. Since T has constant length, we know, by Example 9 of the
previous section, that dT/ds is perpendicular to T. Since N has the same
direction as dT/ds, it is perpendicular to T as well.

Compute the curvature and principal normal vector of the helix in Example 8.

We have T = —(1/y2 )sin(s/y2 )i + (1/v2 )eos(s/V2)j + (1/V2 )k, so dT/ds
= —-(1/2)cos(s/\/5)i - (1/2)sin(s/\/5)j; the curvature is

1 2(s) 1-2(s)_ 1 _1
—cosl = |+ s\ — | =/ =7
\/: A B 4 2

and the principal normal vector is — cos(s/ V2)i — sin(s/ V2)i- A

If a curve is not parametrized by arc length, it is possible to compute the
curvature and principal normal vector directly by the following formulas:

g = v @
vl
NGy = LY 5)

(v V)V — (V- V)Y )

We now prove formula (4). The curvature is defined as |dT/dsl|. We
must use the chain rule to express this in terms of the original parametrization
1. First of all, we have T =v/||v|| = v/(v+¥)"/? s0

dT _dT dt _ 1 daT

Now ds/dt = ||v|]| and so
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t dt (v.v)1/2
=(%(v V) 1/2)v+(v V) 1/2%
- _1 3/2 av ~12dv
(vv) 2(v i )v+(v v) dr

50

|2 T |

= (v-v)_3_(v- %)z(v-v)-—2(v-

av
dt
= dv . d dv \* -
= (G dr) (v dr) }=||v|| v
(See Exercise 38a, Section 13.5.) Thus
ll |lv % dv/di|
IvIf?

)(v v)+ (v v)(‘;,;'

Ilvi| =2

i rA

which is formula (4).
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:—(v-%)v+(v-v)%}-[—(v ‘2)v+(v v)dt]

)

i‘i 2
dt “

In Exercise 20, the reader is asked to derive (5) using similar methods.

Example 10 Find the curvature of the exponential spiral (e “‘cos?,e " 'sint, 0) (Fig. 14.7.2).

What happens as ¢ —> c0?
v

Figure 14.7.2. Graph of the
exponential spiral in the
(x, y) plane.

Solution We have
v=(—e ‘cost— e 'sint)i + (—e 'sint + e~ ‘cost)j
and
vV = (e ‘cost + e 'sint + e 'sint — e~ ‘cost)i
+ (e 'sinz — e ‘cost — e "‘cost — e 'sint)j
= 2e”'(sinti — cosj).
Then

—cost—sint —sint + cost Kk

yXy =2e %€
sin¢ — COst

=2e”%(cos + costsint + sin’t — coszsin )k = 2e ~ ¥k,
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and so ||v X v'|| = 2e %, Since

(vl = {[e~“(cost + sinr)]? + [e~*(cost — sin £)]*} /2,

2

[v]|> = e“3’[(cost +sin7)’ + (cost — sint)zr/ = e~ ¥23/2,

By formula (4),
' 2e % e’
e-3023/2 —\/i: :

As t—> oo, the curvature approaches infinity as the spiral wraps more and
more tightly about the origin. A

Exercises for Section 14.7

Find the arc length of the given curve on the specified

12. (a) Suppose that a car is going around a circular

interval in Exercises 1-6.

10.

11.

. (2cost,2sint,t); 0 < t < 27.
(L3288 0<t< 1L
. (sin3t,c0834,2¢3%); 0< t < 1.

2y2
3

.(t+1,—t3/2+7,%t2)for1<t<2.

(Lt forl <t <2,
. (t,tsint, tcost); 0 < t < 7.
. A body of mass 2 kilograms moves in a circular

path on a circle of radius 3 meters, making one
revolution every 5 seconds. Find the centripetal
force acting on the body.

. Find the centripetal force acting on a body of

mass 4 kilograms, moving on a circle of radius 10
meters with a frequency of 2 revolutions per
second.

. A satellite is in a circular orbit 500 miles above

the surface of the earth. What is the period of the

orbit? (See Example 5; 1 mile = 1.609 kilometer; the

radius of the earth is 6370 km).

What is the gravitational acceleration on the satel-

lite in Exercise 97 The centripetal acceleration?

For a falling body near the surface of the earth,

the force of gravity can be approximated very

well as a constant downward force with magni-
tude F= GmM / R?, where G is the gravitational
constant, M the mass of the earth, m the mass of

the body, and R the radius of the earth (6.37 X

10° meters).

(a) Show that this approximation means that
any body falling freely (neglecting air resis-
tance) near the surface of the earth experi-
ences a constant acceleration of g = 9.8 me-
ters per second per second. Note that this
acceleration is independent of m: any two
bodies fall at the same rate.

(b) Show that the flight path of a projectile or a
baseball is a parabola (see Example 11 in
Section 14.6).

curve of radius r at speed v. It will then exert
an outward horizontal force on the roadway
due to the centripetal acceleration and a verti-
cal force due to gravity. At what angle ¢
should the roadway be banked so that the
total force tends to press the car directly into
(perpendicular to) the roadway? (See Fig.
14.7.3.) How does the bank angle depend on »
and on the speed ©?

Figure 14.7.3. For what
value of # does the total
force press directly into the
roadway?

(b) Discuss how you might treat the design
problem in part (a) for a curve that is not part
of a circle. Design an elliptical racetrack with
major axis 800 meters, minor axis 500 meters,
and speed 160 kilometers per hour.

13. A particle with charge g moving with velocity

vector v through a magnetic field is acted on by

the force F = (g/c)v X B, where c is the speed of

light and B is a vector describing the magnitude

and direction of the magnetic field. Suppose

that:

(1) The particle has mass m and is following a
path r = &(f) = xi + yj + zk.

Q) o6(0)=1i; 6'(0) = aj + ck.

(3) The magnetic field is constant and uniform
given by a vector B = bk.

(a) Use the equation F = (g/c)v x B to write dif-
ferential equations relating the components of
a=c¢"(t)and v=06'(t).



14.

15.

16.

17.

18.

19.

*20.

*21.

*22.

14.7 The Geometry and Physics of Space Curves

{(b) Solve these equations to obtain the compo-
nents of o(¢). [Hint: Integrate the equations
for d*/dt* once, use item (2) in the list
above to determine the constant of integra-
tion, and substitute the resulting expression
for dx/dt into the equation for d%/dt? to
get an equation similar to the spring equa-
tion solved in Section 8.1.]

(c) Show that the path is a right circular helix.
What are the radius and axis of the cylinder
on which it lies? (The dimensions of the
helix followed by a particle in a magnetic
field in a bubble chamber are used to mea-
sure the charge to mass ratio of the particle.)

In Exercise 13, how does the geometry of the

helix change if (a) m is doubled, (b) ¢ is doubled,

(c) ||o’(0)|| is doubled?

Show that a circle of radius » has constant curva-

ture 1/r.

Compute the curvature ###¢# and principal nor-

mal vector for the helix (rcoswt, rsinwr, cf) in

terms of r, w, and c.

Find the curvature of the ellipse x*+2y2=1,

z =0. (Choose a suitable parametrization.)

Compute the curvature and principal normal

vector of the elliptical helix (cos¢, 2sin¢, £).

Show that if the curvature of a curve is identi-

cally zero, then the curve is a straight line.

Derive formula (5) by using the methods used to

derive (4).

A vparticle is moving along a curve at constant

speed. Express the magnitude of the force on the

particle in terms of the mass of the particle, the
speed of the particle, and the curvature of the
curve,

Let T and N be the unit tangent and principal

normal vectors to a space curve r = ¢(f). Define

a third unit vector perpendicular to them by

B =T X N. This is called the binormal vector.

Together, T, N, and B form a right-handed sys-

tem of mutually orthogonal unit vectors which

may be thought of as moving along the curve

(see Fig. 14.7.4.)

zZ 4

r=¢(t) T

X
Figure 14.7.4. The vectors
T, N, and B form a
“moving basis” along the
curve.

*23.

*24.

*25.

*26.
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(a) Show that
B=(vxa)/|vxal=(vxa)/(k|v|),

where a is the acceleration vector.

(b) Show that (dB/dr)+ B =0. [Hint: |B||>= 1
is constant.]

(c) Show that (dB/df)- T = 0. [Hint: Take de-
rivatives in B+ T = 0.]

(d) Show that dB/dr is a scalar multiple of N.
(e) Using part (d) we can define a scalar-
valued function 7 called the torsion by

dB/dt = —r||v||N. Show that

i [o/(0) X a"()]- 0""(2)
lo'(r) X o" (D>

(a) Show that if a curve lies in a plane, then the
torsion 7 is identically zero. [ Hint: The vec-
tor function o(#) must satisfy an equation of
the form o(f)-n=0. By taking successive
derivatives show that ¢’, 6¢”, and ¢’ all lie
in the same plane through the origin. What
does this do to the triple product in Exercise
22(e)?]

(b) Show that B is then constant and is a nor-
mal vector to the plane in which the curve
lies.

If the torsion is not zero, it gives a measure of

how fast the curve is tending to twist out of the

plane. Compute the binormal vector and the

torsion for the helix of Example 8.

Using the results of Exercises 22 and 23, prove

the following Frenet formulas for a curve para-

metrized by arc length:

dT _

=

dN

i kT \

dB _

S
[Hint: To get the second formula from the oth-
ers, note that N-N, N-B, and N:T are con-
stant. Take derivatives and use earlier tormulas
to get (dN/ds) - B and (dN/ds) - T.]
Kepler’s first law of planetary motion states that
the orbit of each planet is an ellipse with the sun as
one focus. The origin (0,0) is placed at the sun,
and polar coordinates (r,8) are introduced. The
planet’s motion is r = r(z), § = #(t), and these
are related by r(f)=1/[1 + ecos@(¢)], where
I=k*/GM and e = 1 — Qk*E/G*M*m); k is a
constant, G is the universal gravitation constant,
E is the energy of the system, M and m are the
masses of the sun and planet, respectively
(a) Assume e < 1. Change to rectangular coor-

dinates to verify that the planet’s orbit is an
ellipse.

(b) Let p=1/r. Verify the energy equation

(dp/dB) + p2 = (2/K*m)(GMmp — E).

kN,

—7N.
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7~

Figure 14.S.1. If r rotates
about 1, its tip describes a

circle.

Figure 14.S.2. The vector
m, is in the plane of ry and
1, is orthogonal to I, and
makes an angle of
(w/2)—A

with rg.

Figure 14.5.3. The triple
(1, my, ng) is a right-handed
orthogonal set of unit

vectors.

Example 1

Solution

Suppliement to Chapter 14:
Rotations and the Sunshine Formula

Rotations described in terms of the cross product are used to derive the sunshine
formula.

The purpose of this section is to derive the sunshine formula, which has been
stated and used in the supplements to Chapters 5 and 10. Before we begin the
actual derivation, we will study some properties of rotations in preparation for
the description of the earth rotating on its axis. The cross product, introduced
in Section 13.5, will be used extensively here.

Consider two unit vectors | and r in space with the same base point. If we
rotate r about the axis through I, then the tip of r describes a circle (Fig.
14.S.1). (Imagine | and r glued rigidly at their base points and then spun about
the axis through L) Assume that the rotation is at a uniform rate counterclock-
wise (when viewed from the tip of I), making a complete revolution in 7" units
of time. The vector r now is a vector function of time, so we may write
r = (7). Our first aim is to find a convenient formula for &(7) in terms of its
starting position ry = o(0).

Let A denote the angle between 1 and r; we can assume that A # 0 and
A # 7, i.e., | and r, are not parallel, for otherwise r would not rotate. Construct
the unit vector m, as shown in Fig. 14.S.2. From this figure we see that

r, = cosAl + sinAm, . (H

(In fact, formula (1) can be taken as the algebraic definition of m, by writing
m, = (1/sinA)r, — (cosA/sinA)l. We assumed that A # 0, and A # 7, so sinA
#0.)

Now add to this figure the unit vector ny = 1 X my. (See Fig. 14.8.3.) The
triple (I, my, ny) consists of three mutually orthogonal unit vectors, just like

@, j, k)-

Let I=(1/y3 )i + j + k) and r, = k. Find m, and n,.

The angle between | and r, is given by cosA=1I-r,=1/ Y3 . This was
determined by dotting both sides of formula (1) by | and using the fact that |

is a unit vector. Thus sinA =1 — cos?A» =y2/3, and so from formula (1) we
get

=1 _ cosA
Mo = S (0) sinA !
3 1 3 1 ,.,.
=1/— ——=—4/3 -—(i+j+k
=Lk__1_(i+j)

G

[=))



Figure 14.S.4. The three
vectors v, m, and n all
rotate about L.

Example 2

Solution

14.S Rotations and the Sunshine Formula 755

and
i j k |
1 4 1
I 1 2| 2 2

Return to Fig. 14.8.3 and rotate the whole picture about the axis I. Now m

and n will vary with time as well. Since the angle A remains constant, formula
(1) applied after time ¢ to r and I gives

_ 1 _ cosA ,

M= S’ sin)xl (1)

(See Fig. 14.54.)

On the other hand, since m is perpendicular to I, it rotates in a circle in
the plane of m, and n,. It goes through an angle 27 in time T, so it goes
through an angle 271/ T in ¢ units of time, and so

m = cos( 2t )mo + sm( 2? )no.
Inserting this in formula (1’) and rearranging gives

r=o0(t)=(cosA)l + sm)xcos( 27t )mo + sinA sm( 2%” )no. ()

This formula expresses explicitly how r changes in time as it is rotated
about I, in terms of the basic trihedral (I, my, ny). -
Express the function o(f) explicitly in terms of I, r,, and 7.

We have cosA =1-1, and sinX = ||[I X ry||. Furthermore n, is a unit vector
perpendicular to both I and r,, so we must have

_ IXr
RN TN

Thus (sinMng=1Xr,. Finally, from formula (1), we obtain (sinA\)m,=
— (cosM)l =1, — (r, - DI. Substituting all this into formula (2),

r=(r,-Hl+ cos( Z;f )[ — (- D] + sm( 2t )(I X Tg)- A
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Example 3 Show by a direct geometric argument that the speed of the tip of r is
(2w /T)sinA. Verify that equation (2) gives the same formula.

Solution The tip of r sweeps out a circle of radius sinA, so it covers a distance 27 sin A
in time T. Its speed is therefore 27 sin)A)/ T (Fig. 14.S.5). From formula (2),
1 we find the velocity vector to be

' sin A Cdr G 2T [ 27 in\- 27 (@)
i sinA T sm( T )m0+ sin A 7 cos| = g,
o and its length is (since my and n, are unit orthogonal vectors)
2 2
”% = sinz)\-(2—77) sinz(@) + sin®\ - (2777) co 2(2—;:[)
Figure 14.S.5. The tip of r ¢ T T 1

T

Now we apply our study of rotations to the motion of the earth about the
sun, incorporating the rotation of the earth about its own axis as well. We will
use a simplified model of the earth—sun system, in which the sun is fixed at the
origin of our coordinate system and the earth moves at uniform speed around
a circle centered at the sun. Let u be a unit vector pointing from the sun fo the
earth; we have u = cos(27t/ T))i + sin2mt / T,)j, where T, is the length of a
year (¢ and T, measured in the same units). See Fig. 14.5.6. Notice that the
unit vector pointing from the earth to the sun is —u and that we have oriented
our axes so that u = i when 7= 0.

sweeps out a circle of . Y
ius si =sinA-{ %= bove.
radius sin A. ), as above. A

k

Figure 14.S.6. The unit
vector u points from the
sun to the earth at time 1.

Next we wish to take into account the rotation of the earth. The earth
rotates about an axis which we represent by a unit vector I pointing from the
center of the earth to the North Pole. We will assume that I is fixed* with
respect to i, j, and k; astronomical measurements show that the inclination of I
(the angle between I and k) is presently about 23.5°. We will denote this angle
by a. If we measure time so that the first day of summer in the northern
hemisphere occurs when 7 = 0, then the axis I must tilt in the direction —i,
and so we must have I = cosak — sin ai. (See Fig. 14..7.)

Now let r be the unit vector at time ¢ from the center of the earth to a
Figure 14.S.7. Atr=0, the fixed point P on the earth’s surface. Notice that if r is located with its base
earth’s axis is tilted toward
the sun. * Actually, the axis 1 is known to rotate about k once every 21,000 years. This phenomenon,

called precession or wobble, is due to the irregular shape of the earth and may play a role in
long-term climatic.changes, such as ice ages. See pp. 130-134 of The Weather Machine by Nigel
Calder, Viking (1974).
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point at P, then it represents the local vertical direction. We will assume that P
is chosen so that at z = 0, it is noon at the point P; then r lies in the plane of 1
and i and makes an angle of less than 90° with —i. Referring to Fig. 14.S.8,
we introduce the unit vector my = —(sina)k — (cosa)i orthogonal to I. We
then have ry = (cos M)l + (sinA\)m,, where A is the angle between I and r;,. Since
A =90° — /, where / is the latitude of the point P, we obtain the expression
I, = (sin )l + (cos/)m,. As in Fig. 14.8.3, let ny =1 X my,.

Figure 14.S.8. The vectorr
is the vector from the
center of the earth to a Equator
fixed location P. The
latitude of P is / and the
colatitude is A = 90° — /.
The vector my is a unit
vector in the plane of the
equator (orthogonal to I)
and in the plane of I and r.

S m

Example 4 Prove that ng=1Xm,= —j.

Solution Geometrically, I X m, is a unit vector orthogonal to I and m, pointing in the
sense given by the right-hand rule. But I and m,, are both in the ik plane, so
I X m, points orthogonal to it in the direction —j (see Fig. 14.8.8).
Algebraically, I = (cos a)k — (sina)i and my = — (sina)k — (cos a)i, so

i § K
IXmy=| _gng 0 cosa |= —i(sin’m +cos’a)= —j. A
—cosa 0 —sina

Now we apply formula (2) to get

: 2at . . 2mt
r = (cos A\l + sinA cos| <=~ + sinAsin{ == In,,
(o simheos( 22 7
where T, is the length of time it takes for the earth to rotate once about its
axis (with respect to the “fixed stars”—i.e., our i, j, k vectors).” Substituting the
expressions derived above for A, I, m,, and n,,, we get

r = sin/(cos ak — sin ai) + coslcos( 2t )(- sinak — cosai) — cos /sin 2mt j-
T, T,

Hence

_ . 27t \ |, - 2at \.
r= —|sin/sina + cos/cosacos| 55— } |i — cos/sin| S== |j

T, T,
+|sin/cosa — cos/sina cos( % )}k 3)
d

Example 5 What is the speed (in kilometers per hour) of a point on the equator due to the
rotation of the earth? A point at latitude 60°? (The radius of the earth is 6371
kilometers.)

Solution From Example 3, the speed is s = 27R/T,)sinA = (2R / T)cos [, where R is
the radius of the earth and / is the latitude. (The factor R is inserted since r is
a unit vector; the actual vector from the earth’s center to a point P is Rr).

3 T, is called the length of the sidereal day. It differs from the ordinary, or solar, day by about 1
part in 365. (Can you explain why?) In fact, 7, ~23.93 hours.
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Figure 14.S.9. The intensity
of sunlight is proportional
to sin A. The ratio of area 1
to area 2 is sinA.

Figure 14.S.10. The
geometry for the formula
sinA4 = cos(90° — 4)

Chapter 14 Curves and Surfaces

—u-r.

Using T, = 23.93 hours and R = 6371 kilometers, we get s = 1673 cos/ ki-
lometers per hour. At the equator /=0, so the speed is 1673 kilometers per
hour; at / = 60°, s = 836.4 kilometers per hour. A

With formula (3) at our disposal, we are now ready to derive the sunshine
formula. The intensity of light on a portion of the earth’s surface (or at the top
of the atmosphere) is proportional to sin 4, where 4 is the angle of elevation
of the sun above the horizon (see Fig. 14.5.9). (At night sinA4 is negative, and
the intensity then is of course zero.)

Sunlight

Thus we want to compute sin 4. From Fig. 14.5.10 we see that sin4 =
—u-r. Substituting u = cos(2wt/ T))i + sin(2mt / T,)j and formula (3) into this
formula for sin 4 and taking the dot product gives

sind = cos( 27t )[sinlsina + coslcosacos( 2mt )J
Ty T,

inf 27t in( 27t
+sm( Ty )[coslmﬂn( T, )J

= cos( ;TW—t)sinlsina
y
2t 2t - 2mt \.. [ 2at
+ cosl[cos( —Ty_ )cosacos( —T;) + sm( Ty )sm( T, )} @)

-
(VAVAVAN

Sunlight

Example 6 Set r =0 in formula (4). For what / is sin 4 = 0? Interpret your result.
Solution With 7 = 0 we get

sind =sin/sina + cos/cosa = cos(/ — a).

This is zero when / — a = + 7 /2. Now sin4 = 0 corresponds to the sun on the
horizon (sunrise or sunset), when 4 =0 or 7. Thus, at ¢ = 0, this occurs when
I'=a*(7/2). The case a + (7/2) is impossible, since / lies between — 7 /2
and 7 /2. The case / = a — (7 /2) corresponds to a point on the Antarctic
Circle; indeed at ¢ = 0 (corresponding to noon on the first day of northern
summer) the sun is just on the horizon at the Antarctic Circle. A
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Solution

14.S Rotations and the Sunshine Formula 759

Our next goal is to describe the variation of sin4 with time on a particular
day. For this purpose, the time variable ¢ is not very convenient; it will be
better to measure time from noon on the day in question.

To simplify our calculations, we will assume that the expressions
cos(2mt /T,) and sin(2mt/T,) are constant over the course of any particular
day; since T, is 365 times as large as the change in ¢, this is a reasonable
approximation. On the nth day (measured from June 21), we may replace
2@t/ T, by 2an /365, and formula (4) gives

27t 2t
smA—(sml)P+(cosl)[Qcos( 77{1 )+Rsm( 77{1 ”, (5)
where P = cos(2wn /365)sina, Q = cos(2wn/365)cos a, and R = sin(27n /365).
We will write the expression Q cos(2wt/T,) + Rsin(2wt/T,) in the form
Ucos[27(t — t,)/ T,], where t, is the time of noon of the nth day. To find U,
we use the addition formula to expand the cosine:

2at 2at,, _ 2at 21, 2ot \ .. [ 27,
Ucos( T, _Td )— U[cos( T, )cos( T, +sn( T, )sm T, .

Setting this equal to Qcos(2wt/T,) + Rsin(2wt/T,) and comparing coeffi-
cients of cos2wt/ T, and sin2xt/ T, gives

U 27,
COS Td =

7L,
Td
Squaring the two equations and adding gives

U*=Q*+R?> or U=yQ?>+R*}

while dividing the second equation by the first gives tan(2xz,/T,) = R/ Q. We
are interested mainly in the formula for U; substituting for @ and R gives

_ 2an 2an
U—\/cos(365)cosa+sm(365)
= 2( 271\ (1 _ gin? in2( 27n
—\/005(365 )(1 sma)+sm(365)
=\/1—cosz(%)sin2a.

Letting 7 be the time in hours from noon on the nth day so that (t — 1,)/ T,
= 7/24, we may substitute into formula (5) to obtain the final formula:

sind = smlcos( %g;’ )sina + cosl\/r— cosz( %’767;’ )sm ” cos( 227;7 ) )

which is identical (after some changes in notation) to formula (1) on page 301.

How high is the sun in the sky in Edinburgh (latitutde 56°) at 2 p.M. on
February 1?
We plug into formula (6): a =23.5°, /=90 — 56 = 34°, n = number of days
after June 21 = 225, and 7 = 2 hours. We get

sind = 0.5196,
so4=2313° A

6 We take the positive square root because sin4 should have a local maximum when ¢ = z,.
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Exercises for The Supplement to Chapter 14

. Let 1=(j+k)/y2 and ry=(i—j)/y2. (a) Find
mg and ng. (b) Find r=o(¢) if T=24. (c) Find
the equation of the line tangent to o(¢) at ¢ = 12
and T = 24.

2. From formula (2), verify that ¢(7T/2)-n=0.
Also, show this geometrically. For what values of ¢
iso(f)n=0?

3. If the earth rotated in the opposite direction about
the sun, would T, be longer or shorter than 24
hours? (Assume the solar day is fixed at 24 hours.)

4. Show by a direct geometric construction that r
= 0(T;/4) = —sin/sinai — cos /j + sin/ cos ak.
Does this formula agree with formula (3)?

5. Derive an “exact” formula for the time of sunset
from formula (4).

6. Why does formula (6) for sin 4 not depend on the
radius of the earth? The distance of the earth from
the sun?

7. How high is the sun in the sky in Paris at 3 .M. on
January 15? (The latitude of Paris is 49°N).

8. How much solar energy (relative to a summer day
at the equator) does Paris receive on January 157
(The latitude of Paris is 49° N).

9. How would your answer in Exercise 8 change if
the earth were to roll to a tilt of 32° instead of
23.5°7

Review Exercises for Chapter 14

Sketch the graphs of the conics in Exercises 1-8.

1. 4x*+9y2=136 2. x =2y?
3.x2—4y?=16 4. 4x* + 16y = 81
5. 100x? + 100y% =1 6. y> =16 + 4x>
7. x2—y=14 8. 2x2+2y2 =80

Sketch the graphs of the conics in Exercises 9-12.
9. 9x — 18x + y2— 4y +4=0.
10. 9x2 + 18x — y2 +2y — 8 = 0.
11 x* 4+ 2xp + 3y% = 14.
12. x> —2xy — 3)% = 14.
Sketch or describe the level curves for the functions and
values in Exercises 13~16.
13. f(x, y)=3x—-2y;c=2
14, f(x, p)=x*—y% c=—1
15. f(x, )= x>+ xp; c =2
16. f(x, y)=x*+4; c=85
Describe the level surfaces f(x, y,z) = ¢ for each of the
functions in Exercises 17-20. Sketch for ¢ =1 and
c=25,
7. f(x, y,2)=x—y—z
18. f(x, y,2)=x+y—2z
19. f(x, y,2) =x2+ y* + 22+ 1
20. f(x, y,z) = x>+ 2y + 322
Sketch and describe the surfaces in Exercises 21-28.

2L x2+ 4y + 22 =1 22 x*+4y? - 2=0
2. xr+4y? - 2=1 24. x2+ 4y +22=0
25 x4+ 4y —z=1 26. x2+4y2—z=0
27. x*+ 4y 4z =1 28. x*+4y* 4+ z=0

29. This exercise concerns the elliptic hyperboloid of
one sheet. An example of this type was studied in
Example 6, Section 14.4. A standard form for the

equation is

2 2

X 42 _Z o (a, b, and c positive).

a? c?

(a) What are the horizontal cross sections ob-
tained by holding z constant?

(b) What are the vertical cross sections obtained
by holding either x or y constant?

(c) Sketch the surface defined by

2 2 2
L+y__ZT=1_

4 1
In a yz plane, sketch the cross-section curves
obtained from this surface when x is held
constantly equal to 0, 1, 2, and 3 (x =2 is
especially interesting).

30. (a) Describe the level surfaces of the function
f(x, y,2) = x*+ y2 — z2. In particular, dis-
cuss the surface f(x, y, z) = ¢ when c is posi-
tive, when c is negative, and when c is zero.

(b) Several level surfaces of f are sketched in
Fig. 14.R.1. Find the value of ¢ associated
with each.

(c) Describe how the appearance of the level
surfaces changes if we consider instead the
function g(x, y,z) = x* + 2y2 - 22

31 Let f(x, y) = x>+ 2y2+ 1

(a) Sketch the level curves f(x, y)=c for ¢ =
—10, —1,0, 1, 2, and 10.

(b) Describe the intersection of the graph of f
with the vertical planes x=1, x = —1,
x=2y=1lLy=2,y=—1

(c) Sketch the graph of f.
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Figure 14.R.1. Level

surfaces of x? + y? — z2,

32.

2

Do as in Exercise 31 for f(x, y)=y/x, and
describe the intersection of the graph of f with
the cylinder of radius R (that is, » = R in cylin-
drical coordinates).

In Exercises 33-38, fill in the blanks and plot.

Spherical
coordinates

Rectangular
coordinates

Cylindrical
coordinates

33.
34.
35.
36.
37.
38.

1, -1,1
(1,0,3)
(5,7/12,4)
8,37/2,2)
3, —7/6,7/4)
(10,7/4,7/2)

39.

40.

41.

42.

43.

44.

A surface is described in cylindrical coordinates
by 3r?=z2 + 1. Convert to rectangular coordi-
nates and plot.

Show that a surface described in spherical coor-
dinates by f(p, ¢) = 0 is a surface of revolution.
Describe the geometric meaning of replacing
(p,8,¢) by (p.0 + 7,6+ m/2) in spherical coor-
dinates.

Describe the geometric meaning of replacing
(p,9, ¢) by (4p, 8, ¢) in spherical coordinates.
Describe by means of cylindrical coordinates a
solenoid consisting of a copper rod of radius 5
centimeters and length 15 centimeters wound on
the outside with copper wire to a thickness of 1.2
centimeters. Give separate descriptions of the rod
and the winding.

A gasoline storage tank has two spherical cap
ends of arc length 56.55 feet. The cylindrical part
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of the tank has length 16 feet and circumference
113.10 feet. Let (0,0,0) be the geometric center
of the tarik. See Fig. 14.R.2.

113.10 ft

\ =N
} 56.55 ft
/
\_/
L—léft

(a) Describe the cylindrical part of the tank via
cylindrical coordinates.

(b) Describe the hemispherical end caps with
spherical coordinates. (Set up spherical coor-
dinates using the centers of the cap ends as
the origin.)

Sketch the curves or surfaces given by the equations in
Exercises 45-52.

45. z=x+y

46. x> 4 2xz+ z*=0

47. o(t)=3sinti+ tj+costk

48. o(f)=(sint,t + 1,2t — 1)

49. 2= —(x*+ y*/%)

50. z = —(x2+y2)

51 z22= —x2—3y?+2

52. 22 =x?— 4y2
Find the equation of the line tangent to each of the
curves at the indicated point in Exercises 53 and 54.

53. (£ + 1,e7 " cos(mt /2)); t =1

54, (1= 1,cost iy, t =y
Find the velocity and acceleration vectors for the curves
in Exercises 55-58.

55. oy(f)=e'i+sintj+ costk.

Figure 14.R.2. The gasoline
storage tank for Exercise 44.

2
56. o5(1) = — i+ tj+k.
1+ ¢
57. 6(1) = o,(1) + 6,(1), where o, and o, are given in
Exercises 55 and 56.
58. 6(!) = o,(1) X 6,(?), where o, and o, are given in

Exercises 55 and 56.

59. Write in parametric form the curve described by
the equations x — 1 =2y + 1 =32+ 2.
60. Write the curve x = p®=:z2+1 in parametric

form.
61. Find the arc length of 6(r) = ti+ In¢j+ 2y2rk;
<t <2

62. Express as an integral the arc length of the curve
x2=y%= 25 between x =1 and x =4. (Find a
parametrization.)

63. A particle moving on the curve o) =3¢% —
sin fj — e'k is released at time 7 = 4 and flies off
on a tangent. What are its coordinates at time
t=1?

64. A particle is constrained to move around the unit
circle in the xy plane according to the formula
(x, y,2) = (cos(#?),sin(1%),0), £ > 0.
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65.

66.

67.

Chapter 14 Curves and Surfaces

(a) What are the velocity vector and speed of
the particle as functions of ¢?

(b) At what point on the circle should the parti-
cle be released to hit a target at (2,0, 0)? (Be
careful about which direction the particle is
moving around the circle.)

(c) At what time ¢ should the release take place?
(Use the smallest ¢ > 0 which will work.)

(d) What are the velocity and speed at the time
of release?

(e) At what time is the target hit?

A particle of mass m is subject to the force law

F = —kr, where k is a constant.

(a) Write down differential equations for the
components of r(¢).

(b) Solve the equations in (a) subject to the
initial conditions r(0) = 0, r'(0) = 2j + k.

Show that the quantity

mdry?, k

2l a + 7 rer

is independent of time when a particle moves

under the force law in Exercise 65.

Find the curvature of the ellipse 4x* + 9y2 = 16.

L BOT R

* 68. Let r=0(s) be a curve in space and N be its

principal normal vector. Consider the “parallel

curve” r= p(t) = o(t) + N(1), where o(¢) is the

displacement vector to P(f) from a fixed origin.

(a) Under what conditions does p(f) have zero
velocity for some t,? [Hint: Use the Frenet
formulas, Exercise 25, Section 14.7]

(b) Find the parametric equation of the parallel
curve to the ellipse (4cos¢,4sin¢, 0).

69. Find a formula for the curvature of the graph

y = f(x) in terms of fand its derivatives.

70. The contour lines on a topographical map are

the level curves of the function giving height

above sea level as a function of position. Figure

14.R.3 is a portion of the U.S. Geological Survey

map of Yosemite Valley. There is a heavy con-

tour line for every 200 feet of elevation and a

lighter line at each 40-foot interval between

these.

(a) What does it mean in terms of the terrain
when these contour lines are far apart?

(b) What if they are close together?

(c) What does it mean when several contour
lines seem to merge for a distance? Is eleva-

N
N\

e,
FabRie

% Spring

N

*
-
=
.
=

Fopthridge

£
SN

Figure 14.R.3. Yosemite
Valley (portion). (U.S.
Department of Interior
Geological Survey.)
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tion really a function of position at such
points? (Look at the west face of Half
Dome. Does this seem like a good direction
from which to climb it?)

Sketch a cross section of terrain along a
north—south line through the top of Half
Dome. .

A hiker is not likely to follow the straight
north-south path in part (d) and is probably
more interested in the behavior of the ter-
rain along the trail he or she will follow. The
3-mile route from the Merced River (alti-
tude approximately 6100 feet) to the top of
Half Dome (approximately 8842 feet) along
the John Muir and Half Dome Trails has
been emphasized in Fig. 14.R.3. Show how a
cross section of the terrain along this trail
behaves by plotting altitude above sea level
as a function of miles along the trail. (A
piece of string or flexible wire may be of aid
in measuring distances along the trail.)

*x71. Find the curvature of the “helical spiral”
(t,tcost, tsint) for £ > 0. Sketch.

Describe the level curves f(x, y) = c for each of
the following functions. In particular, discuss any
special values of ¢ at which the behavior of the
level curves changes suddenly. Sketch the curves
forc=—-1,0, and 1.

*72.

*73.

(@)
(b
©
(d
(e)
®
@

(b
©

Jlx, p)y=x+2y;
flx, p)y = x> =y
fx, p)y=y>— x*
fOe )= x>+ y%
f(x, y) = xy;

f(x’.y)=.y —2X2.

Write in parametric form the curve which is
the intersection of the surfaces x2 + y? + z2
=3andy=1

Find the equation of the line tangent to this
curve at (1,1, 1).

Write an integral expression for the arc
length of this curve. What is the value of
this integral?
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*74. Let n be a positive integer and consider the curve

(@)

®)

©
(d

*75.

X = cost cos(4nt)
= 1 _r <1< s
y = costsin(4nt) o) t 5

z =sint

Show that the path traced out lies on the
surface of the sphere of radius 1 centered at
the origin.

How many times does the curve wind
around the z axis?

Where does the curve cross the xy plane?
Sketch the curve when n=1 and when
n=2,

Let u; and u, be unit vectors, and define the

curve o(t) by

(@)
(b)
©
CY)

(©)

*76 (a)

®)
©

o(t) = ulcost+uzs'int ’ 0t
|{uycos £ + u,sin ¢} 2
Find o(0) and o(7/2).
On what surfaces does & (¢) lie for all ¢?
Find, by geometry, the arc length of the
curve o(f) for 0 < 1t < 7 /2.
Express the arc length of the curve o(¢) for
0 <t < 7w/2 as an integral.
Find a curve o,(¢) which traverses the same
path as o(¢) for 0 < ¢ < 7/2 and such that
the speed ||67(#)|| is constant.
Show that the hyperboloid x? + y? — 22 =4
is a ruled surface by finding two straight
lines lying in the surface through each point.
[Hint: Let (xg, yg,zo) lie on the surface;
write the equation of the line in the form
x=xg+at, y=yo+bt, z=1zy+t; write
out x2+y2—22=4 using x§+y67'—z§=4
to obtain two equations for a and b repre-
senting a line and a circle in the (g, b) plane.
Show that these equations have two solu-
tions by showing that the distance from the
origin to the line is less than the radius of
the circle.]
Is the hyperboloid x2 +yt~z2=—-4 a
ruled surface? Explain.
Generalize the results of parts (a) and (b).



Chapter 15

15.1

Partial
Differentiation

A function of several variables can be differentiated with respect to one variable
at a time.

The rate of change of a function of several variables is not just a single
function, since the independent variables may vary in different ways. All the
rates of change, for a function of » variables, are described by » functions
called its partial derivatives. This chapter begins with the definition and basic
properties of partial derivatives. Methods for computation, including the chain
rule, are presented along with a geometric interpretation in terms of tangent
planes. The next chapter continues the development with topics including
implicit differentiation, gradients, and maxima and minima.

Introduction to
Partial Derivatives

The partial derivatives of a function of several variables are its ordinary deriva-
tives with respect to each variable separately.

In this section we define partial derivatives and practice computing them. The
geometric significance of partial derivatives and their use in computing
tangent planes are explained in the next section.

Consider a function f(x, y) of two variables. If we treat y as a constant, f
may be differentiated with respect to x. The result is called the partial
derivative of f with respect to x and is denoted by f,. If we let z = f(x, y), we
write

= 9z
fe= ax
These symbols' are analogous to those we used in one-variable calculus:
f(x)=dy/dx.

The partial derivative with respect to y is similarly defined by treating x as a
constant and differentiating f(x, y) with respect to y.

! The symbol 3 seems to have first been used by Clairaut and Euler around 1740 to avoid
confusion with d. The notation D, f or D, f for f, is also used.
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Example 1 (a) If f(x, y) = xy + e*cos y, compute f, and f,.
(b) For f as in (a), calculate f, (1,7 /2).

If z=x3+ x3* — e 9z 9z
(c) If z=x%*+ x}* — e, calculate x and 3y

Solution (a) Treating y as a constant and differentiating with respect to x, we get
- fo(x, y) =y + e*cos y.
Differentiating with respect to y and considering x as a constant gives
L(%,y)=x—e%sin y.
(b) Substituting x = 1 and y = 7 /2, we get
fe(L,w/2)y=m/2+ e'cos(m/2)=n/2.

(c) Here we again hold y constant and calculate the x derivative:

08z _ 5.3 4_ 207

5= =2%7° + 3xHt -yl
Similarly,

g—; =3x%% + 4x%> — 2yxe?’. A

In terms of limits, partial derivatives are given by
f(x + Ax, y) — f(%, p)

x, y)= lim
fx( y) Ax—0 Ax
and
X, y+ Ay — f(x,
f (% y) = lim Juy+ &)~ f(x )
Ay—0 Ay
See Fig. 15.1.1.
y y
Figure 15.1.1. The partial
A
derivatives f, and f, are yrayt Gy +4y)
limits of difference v+ wveease (x+AX,y) Y+ x,y)
quotients along the x,5)
horizontal and vertical —t '
paths shown here. x x+Ax X x x

Partial derivatives of functions f(x, y,z) of three variables are defined
similarly. Two variables are treated as constant while we differentiate with

respect to the third.

Example 2 (a) Let f(x, y,z) = sin(xp/z). Calculate f,(x, y,z) and f,(1,2,3).
(b) Evaluate

i I S
W
at (0,1,1).

(c) Write the result in (b) as a limit.

Solution (a) We differentiate sin(xy/z) with respect to z, thinking of x and y as
constants; the result is

f.(%, y,z) = cos(xp/z)(— xp/ %) = —(xy/ 2%)cos(xy / 2).
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Substituting (1,2,3) for (x, y,z) gives
__1-2 1-2y__ 2 2
fz(l,2,3)— —?COS(T)— 9005(3).
(b) Treating x and z as constants, and using the chain rule of one-variable
calculus,

a1 =ga—(x2+y?‘+z?‘)_l/2

W 2

At (0,1, 1) this becomes
-1 - -1
@+ 12+ 157 22

(c) In general,

o J(x, p + Ay, 2) = f(x, y,2)

A1y1—>0 Ay =5 (% 0,2).
In case (b), this becomes
; 1 1 1 1
lim — ————— — — = — —— &
A
VR a1 2 22

Partial Differentiation

If f is a function of several variables, to calculate the partial derivative
with respect to a certain variable, treat the remaining variables as
constants and differentiate as usual by using the rules of one-variable
calculus.

If z=f(x, y) is a function of two variables, the partial derivatives
are denoted f, = 9z/0dx and f, = 9z/9y.

If u= f(x, y,z) is a function of three variables, the partial deriva-
tives are denoted f, = du/dx, f, = du /9y, and f, = du/dz.

As in one-variable calculus, the letters for the variables do not always have to
be x, y,z.
Example 3 If & = rs’sin(r? + %), find 94 /3s.

Solution Holding r constant, we get

a—? =2rs sin(r2 + s2) +rs?-2s- cos(r2 + s2)

= 2rs[sin(r2 + 5% + szcos(r2 + sz)]. A
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Example 4

Solution

Example 5

Solution

Example 6

Solution

Partial derivatives may be interpreted in terms of rates of change, just as
derivatives of functions of one variable.

The temperature (in degrees Celsius) near Dawson Creek at noon on April 15,
1901 is given by 7'= —(0.0003)x?% + (0.9307)y, where x and y are the latitude
and longitude (in degrees). At what rate is the temperature changing if we
proceed directly north? (The latitude and longitude of Dawson Creek are
x =557° and y = 120.2°)

Proceeding directly north means increasing the latitude x. Thus we calculate

aT
i —(0.0003) - 2xy = —(0.0003) - 2 - (55.7) - (120.2) =~ —4.017.

So the temperature drops as we proceed north from Dawson Creek, at the
instantaneous rate of 4.017°C per degree of latitude. A

Since the partial derivatives are themselves functions, we can take their partial
derivatives to obtain higher derivatives. For a function of two variables, there
are four ways to take a second derivative. If z = f(x, y), we may compute

fuen = (E) =15 hen=g(F) =15

_ 8 (dzy_ 0% 9 (dz)_ 0%
fo (%) ay(ax) dyox (2= a( ) axdy

Compute the second partial derivatives of z = xy? + ye ™ + sin(x — y).

We compute the first partials:

g—)zc— = y® — ye ¥ + cos(x — y)

and
g—; =2xy+ e " —cos(x — y).
Now we differentiate again:
:—;Zz =ye " —sin(x — y), 27222 =2x —sin(x — ),
aﬁ%;%(sx) e,
aizgy = 8%(2_;) =2y —e *+sin(x—y). A

(a) If u = ycos(xz) + xsin(yz), calculate 9% /dx 3z and 8% /3z9x. (b) Let
f(x, y,z)=eY + zcosx. Find f,, and f,,.

(a) We find du/dx = — yzsin(xz) + sin(yz) and du/dz = — xysin(xz) +
xy cos( yz). Thus

2
83 gx = —ysin(xz) — xyz cos(xz) + y cos( yz).
Differentiation of du/dz with respect to x yields
2
ai gz = —ysin(xz) — xpz cos(xz) + y cos( yz).

(B) fu(x, ,2) = ye — zsinx; f,(x, y,2) = 08 x; f,x(x, y,2) = (3/8x)(c0s x) =
—sinx; f,,(x, y,z) = (8/9z)(ye™” — zsinx) = —sinx. A
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In the preceding examples, note that the mixed partials taken in different
orders, like 3%z/9xdy and 9%/dydx, or f,, and f,,, are equal. This is no
accident.

partial derivatives are equal; that is,

Theorem: Equality of Mixed Partial
Derivatives

If u = f(x, y) has continuous second partial derivatives, then the mixed

u . du -
dxdy _ ayax O be=lo

Similar equalities hold for mixed partial derivatives of functions of three
variables.

D/'(XO:yO)

Figure 15.1.2. The disk
D, (xg, yo) consists of the
shaded region (excluding
the solid circle).

Example 7

Solution

L. Euler discovered this result around 1734 in connection with problems in
hydrodynamics. To prove it requires the notions of continuity and limit for
functions of two variables.?

Let us write d((x, y), (x4, yo)) = \/(x - xo)2 +(y-— y0)2 for the distance

between (x, y) and (x,, y,), with a similar notation d((x, V,2), (Xgs Vo, 2)) in
space. The disk D,(x,, y,) of radius r centered at (x,, y,) is, by definition, the
set of all (x, y) such that d((x, y), (x4, yo)) < r, as shown in Fig. 15.1.2. The
limit concept now can be defined by the same ¢, 8 technique as in one variable
calculus.

The ¢,6 Definition of Limit

Suppose that f is defined on a region which includes a disk about
(xg» yp), but need not include (x, y,) itself. We write

(XJ’)I—I’%CO»}’O) f(x, 7) !
if, for every e > 0, there is a 6 > 0 such that | f(x, y) — | < & whenever
0 < d((x, ), (xg, ¥o)) < 8. A similar definition is made for functions of
three variables.

The ¢, definition of limit may be rephrased as follows: for every ¢ > 0,

there is a 8 > 0 such that | f(x, y) ~ I| < ¢ if (x, p) lies in Dy(x,, yo)-

The similarity between this definition and the one in Chapter 11 should

be evident. The rules for limits, including rules for sums, products, and
quotients, are analogous to those for functions of one variable.
Prove the “obvious” limit, lim, , yyX = Xg, using &’s and §’s.

Let ¢ > 0 be given and let f(x, y) = x and / = x,. We seek a number & > 0
such that | f(x, y) — I| < & whenever d((x, y),(xg, yo)) < 8, that is, such that

[x — xo| < & whenever \/(x — X0)> + (¥ — yo)® < 8. However, note that

1% = x| =y/(x = x0)® <Y(x = x)2 + (» — yo)*

so if we choose 8 = ¢, d((x, y), (%), yo)) < 8 will imply |x — x| < e. A

2If you are not interested in the theory of calculus, you may skip to p. 772. Consult your
instructor.
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Example 8

Solution

Example 9

Solution

Example 10

Solution

x4+ 2x% + xp? + 2)?

Find lim, 0.0
(x,)—>(0,0) %2 +y2

The numerator and denominator vanish when (x, ) = (0,0). The numerator
factors as (x* + y?)(x + 2), so we may use the replacement rule and algebraic
rules to get

(> +y))(x +2) B

lim Iim (x+2)=0+2=2,
G000 x24 )P oo ) A
Show that
24 y2

im ==
(x,p)—(0,0) 90X

does not exist. [Hint: Look at the limits along the x and y axes.]

(@/3x0x?+ p? = x/x% + p? if (x, y) # (0,0). Thus

(xyl)ig}w) % XHyt= <xy1)ig}00) —
If we approach (0,0) on the y axis—that is, along points (0, y)}—we get zero.
Thus the limit, if it exists, is zero. On the other hand, if we approach (0,0)
along the positive x axis, we have y =0 and x > 0; then x/ x2 +y2 =1
because x/ \/;2‘ = 1, so the limit is 1. Since we obtain different answers in

different directions, the actual limit cannot exist. A

We can base the concept of continuity on that of limits, just as we did in Sec-
tion 1.2.

Definition of Continuity
Let f be defined in a disk about (x,, ). Then we say f is continuous at
(x0, yo) if

lim X, V)= f(Xg, Vo)
(x,y)ﬁ(xo,yo)f( )’) f( 0 )’0)

There is a similar definition for functions of three variables.

Most “reasonable” functions of several variables are continuous, although this
may not be simple to prove from the definition. Here is an example of how to
do this.

(a) If f(x) and g(y) are continuous functions of x and y, respectively, show
that #(x, y) = f(x)g(y) is continuous. (b) Use (a) to show that e*cos y is
continuous.

(a) We must show that for any (x,, y), lim(x,y)_,(xwo) f()g(y) = f(x)g(ye)-
To this end, we manipulate the difference:

1/(x) () = f(x0) 8 (Wo)
= 1/(¥)&(») = f(%0) 8(») + (%) 8(») = [(*0) (¥o)l



15.1 Introduction to Partial Derivatives 771

<I(f(%) = f(x0)) g + [ f(x0)(&(¥) — g(Pa))l
=1/(x) = f(xo)l [gW)] + | f(x0)| | 8(») — & (o)l
<Hf(x) = f(x)l(1g (o)l + 18(») — go)l) + 1 f(X0)l 1 8(¥) — 8(¥o)
=1f(x) = f(x)l 1 g(Vo)l + | f(xo)l 1 £(¥) — &(¥o)l
+1f(x) = f(xo)l 1 8(y) — &()o)l-

Now let € >0 be given. We may choose ¢, > 0 so small that we have the
inequality &,(] g(yo)| + | f(ro))) + €2 < &, by letting ¢, be the smaller of

and 1.

lg(yo)l + [f(yo)l + 1

Since f and g are continuous, there exists §, > 0 such that, when |x — x| < &,
| f(x) — f(xo)| < €, and there exists 8, such that when |y — y| < 8,, we have
the inequality | g(x) — g(xo)| < ¢,. Let & be the smaller of §, and 4,.

Now if d((x, p),(xq, yo)) < 8, we have |[x — x| <8 < 8, and |y — yo| < 8
< é,. 80

|f(x)g(¥) — f(%0) g(yo)l < 1f(%) = f(xo)l | g(po)l + | f(x0)l 1 £(¥) — &( Vo)l
+ [ f(x) = f(xo)l | g(¥) — g( o)l
< elg(yo)l + f(xo)le) + &0 & <e

Thus we have proven that lim, ) , ., = f(*0)g(»o), s0 f(x)g(y) is continu-
ous.

(b) We know from one-variable calculus that the functions f(x)=e” and
g(y) = cos y are differentiable and hence continuous, so by part (a), f(x)g(»)
is continuous. A

Using the ideas of limit and continuity, we can now give the proof of the
equality of mixed partials; it uses the mean value theorem for functions of one

variable.
Proof of the Consider the expression
equality of f(xg+ Ax, yo+ Ay) — f(xo + Ax, yo) — f(X0, Yo + Ay) + f(X¢5 yo)- (1)
mixed partial . . .
derivatives W€ fix yo and Ay and introduce the function
g(*) = f(%, yo + &y) = (%, yo),
so that the expression (1) equals g(x,+ Ax) — g(x,). By the mean value
theorem for functions of one variable, this equals g'(x)Ax for some X between
xo and x, + Ax. Hence (1) equals
[ I (% yo +4y) - a—x (%, yO)}Ax.
Applying the mean value theorem again, we get, for (1),
0z o -
3 gx (%, 7)Ax Ay.
Since 3%2/dydx is continuous and (X, y)—=>(xg, yo) as (Ax,Ay)—(0,0), it
follows that
a y a - (X0, 0)
—  lm [f(x0+Ax,y0+Ay)—f(x0+Ax,y0)—f(x0,y0+Ay)+f(x0,y0)]
(Ax,A5)>(0,0) AxAy )

@
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(b)

Figure 15.1.3. Moving
water in a narrow tank
shown at two different
instants of time.

Figure 15.1.5. The
derivative g'( y,) of the
function g(y) = f(¢., »)
represents the slope of the
water’s surface at time ¢,
and position y,.

The right-hand side of formula (2) is symmetric in x and y, so that in this
derivation we can reverse the roles and x and y. In other words, in the same
manner we prove that 9%z /dx dy is given by the same limit, and so we obtain
the desired result: the mixed partials are equal. H

Supplement to Section 15.1:
Partial Derivatives and Wave Motion

Two of the most important problems in the historical development of partial
differentiation concerned wave motion and heat conduction. Here we concen-
trate on the first of these problems. (See also Exercises 71 and 72.)

Consider water in motion in a narrow tank, as illustrated in Fig. 15.1.3.
We will assume that the motion of the water is gentle enough so that, at any
instant of time, the height z of the water above the bottom of the tank is a
function of the position y measured along the long direction of the tank; this
means that there are no “breaking waves” and that the height of water is
constant along the short direction of the tank. Since the water is in motion, the
height z depends on the time as well as on y, so we may write z = f(¢, y); the
domain of the function f consists of all pairs (¢, y) such that ¢ lies in the
interval of time relevant for the experiment, and a < y < b, where a and b
mark the ends of the tank.

We can graph the entire function f as a surface in (¢, y,z) space lying
over the strip.a < y < b (see Fig. 15.1.4); the section of this surface by a plane

A slice at

t=1ty
Figure 15.1.4. The motion
of the water is depicted by
a graph in (¢, y, z) space;
sections by planes of the
form ¢ = ¢, show the

configuration of the water ‘
at various instants of time,
!

of the form ¢ = ¢, is a curve which shows the configuration of the water at the
moment £, (such as each of the “snapshots” in Fig. 15.1.3). This curve is the
graph of a function of ome variable, z = g(y), where g is defined by g(y)
= f(ty, y). If we take the derivative of the function g at a point y, in (a, b), we
get a number g'( y,) which represents the slope of the water’s surface at the
time ¢, and at the location y,. (See Fig. 15.1.5.) It could be observed as the
slope of a small stick parallel to the sides of the tank floating on the water at
that time and position.

— el

z

The slope of this
line is g'(yg)

z=g(y) =19, )
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This number, g'(y,), is obtained from the function f by:
1. Fixing ¢ at the value ¢,.
2. Differentiating the resulting function of y.
3. Setting y equal to y,.
The number g'(y,) is just f,(to, yo)-

We can also define the partial derivative of f with respect to ¢ at (¢,, y,);
it is obtained by:
1. Fixing p at the value y,.
2. Differentiating the resulting function of ¢.
3. Setting t equal to ¢,.
The result is £,(¢,, yo)- In the first step, we obtain the function A(2) = f(1, yy),
which represents the vertical motion of the water’s surface observed at the
fixed position y,. The derivative with respect to ¢ is, therefore, the vertical
velocity of the surface at the position y,. It could be observed as the vertical
velocity of a cork floating on the water at that position. Finally, setting ¢ equal

to 1, merely involves observing the velocity at the specific time ¢,,.

Exercises for Section 15.1

Compute f, and f, for the functions in Exercises 1-8
and evaluate them at the indicated points.

L flx, y)=xy; (1, 1)

2. fC, yy=x/y; (1,1

3. f(x, y)=tan"'(x —3y); (1,0)

4. f(x, py=yx2+y%; (1, = 1)

5. f(x, y) = esin(x + y); (0,0)

6. f(x, y) =In(x* + y> + 1); (0,0)

7. 0 y) = 1/(x* + %) (=1,2)

8 flx,yy=e 775 (1, -1
Compute f,, f,, and f, for the functions in Exercises
9-12, and evaluate them at the indicated points.

9 f(x, y,z)=xyz; (1,1,1)

10. f(x, y,z) =\/x2 +y2 + 22 3,0,4)

1. f(x, y,z)= cos(xyz) + 3% (7,1, 1)

12. f(x, y,z) = x”*; (1,1,0)
Find the partial derivatives 3z /dx and 0z/dy for the
functions in Exercises 13-16.

13. z=3x%+ 2y2 14. z = sin(x? — 3xy)

15. z = 2x* + 1x%)/3xy 16, z = x} %>
Find the partial derivatives du/dx, d0u/dy, and du/0z
in Exercises 17-20.

17. u=e " 2(xy + xz + yz)

18. u = sin(xyzz3)

19. u = e*cos(yz?)

20. u=(xy* + e?)/(x*y — &%)
Compute the indicated partial derivatives in Exercises
21-24.

21 %( ;ij;ll) 2. %(uvw—sin(uvw))
0 28 9 2,8
23. ﬁ(mx+b) 24. am(mx+b)

In Exercises 25-28, let
flx, y)=3x*+ 2sin(x/y?) + y3(1 — e¥)
and find the indicated quantities.
25. £(2,3) 26. £.(0,1)
27. £,(1,1) 28. f,(~1,-1)
29. Let z = (sinx)e ™.
(a) Find 8z /3y.
(b) Evaluate 9z/9y at the following four points:
0,0), (0,7/2), (7/2,0), and (7 /2,7 /2).
30. Let u = (xy/z)cos(yz).
(a) Find du/9:.
(b) Evaluate du/dz at (1,7, 1), (0,7/2,1), and
(1,7, 1/2).
Let g(¢,u,v) = In{(f + u + v) — tan(fuv) and find the in-
dicated quantities in Exercises 31-36.

31. g(0,0,1) 32. £,(1,0,0)
33. g,(1,2,3) 34. £,(2,3, 1)
35. g,(—1,3,5) 36. g,(—1,5,3)

In Exercises 3740, compute the indicated partial deriv-
atives

a stu? i l 2
7. e 38. ar(3wrh)
9 cosAp P
39, [ —% .9
7Y ( [T AT+ 5 ) 40 3 (bed)

41. If f(x, y,z) is a function of three variables, ex-
press f, as a limit.
42. Find
3+(x+y+Ay)2z—(3+(x+y)2z)
lim
Ay—0 Ay
43. In the situation of Example 4, how fast is the
temperature changing if we proceed directly
west? (The longitude y is increasing as we go
west.)
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44,

45.

46.
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Chicago Skate Company produces three kinds
of roller skates. The cost in dollars for producing
x, y, and z units of each, respectively, is

c(x, y,z) = 3000+ 27x + 36y + 47:.

(a) The value of dc/dx is the change in cost
due to a one unit increase in production of
the least expensive skate, the levels of pro-
duction of the higher-priced units being held
fixed. Find it.

(b) Find dc¢/3z, and interpret.

If three resistors R, R,, and R, are connected in

parallel, the total electrical resistance is deter-

mined by the equation
1 1 1 1
s + z + -

(a) Whatis 9R/0R;?

(b) Suppose that R,, R,, and R; are variable
resistors set at 100, 200, and 300 ohms,
respectively. How fast is R changing with
respect to R;?

Consider the topographical map of Yosemite

Valley in Fig. 14R.3. Let r represent the east—

west coordinate on the map, increasing from

west to east. Let s be the north—-south coordinate,

increasing as you go north. (East is the positive r

direction, north the positive s direction.) Let 4 be

the elevation above sea level.

(a) Explain how 84/9r and 94/ds are related
to the distances between contour lines and
their directions.

(b) At the center of the letter o in Half Dome,
what is the sign of 3k/8r? of 3k /95?7

In Exercises 47-50, find the partial derivatives 3% / ax2,
9%/9x dy, 9% /3y dx and 3% /dy? for each of the func-
tions in the indicated exercise.

47.
49.

51.

52.

Exercise 13 48. Exercise 14
Exercise 15 50. Exercise 16

Let f(x, y,z) = x% + xy* + yz°. Find f,,., f.,., fis

and f ..

Letz= x4y3 —x? +y4.

(2) Compute 9°z/dy dx dx, 3% /3dxdydx, and
3% /dx dx dy.

(b) Compute 3% /9x 9y dy, 3% /08y dx dy, and
3%z /3y 3y dx.

Compute 8% /3x?, 3% /dy dx, 0%u/dy% and 3% /dx dy
for each of the functions in Exercises 53-56. Check
directly the equality of mixed partials.

53.
54.

55.
56.

57.

58.

u=2xy/(x?+ y%?

u = cos(xy?)

u=e ¥ +y3x4

u=1/(cos’ + e ™)

Prove, using ¢’s and §7s, that
lim(xyy)*({co»yo)y = Jo-

Prove, using €'s and §’s, that
lim(x!y)_,(xo,yo)(x + )= x¢ + yo.

In Exercises 59-66, evaluate the given limits if they
exist (do not attempt a precise justification).

59.

60.

61.

62.

63.

64.
65.
66.

67.

69.

70.

71.

3

im X2t
()00 x> + 2
x+y

lim ——
G (x = 12+ 1

3 2 2
lim x61+y +x“+y

o 2 ‘/;7;—73 3
A+ 3yt4
lim X T T XY

G200 x2+ y2+ xY?
lim
)= (1)
lim
(xp)>(©.1)
lim
(x)=>(00)

e*cos(my)
eVcos(mxy)

sin(xy)
li 1
im
()00 1 +In(1 + 1/(x? +y2))

Let f(x, y)=x*+ »? and suppose that (x, »)

moves along the curve (x(¢), y(f)) = (cost,e’).

(a) Find g(f) = f(x(¢), (1)) and use your for-
mula to compute g'(¢,).

(b) Show that this is the same as

S (x (o), y () - x'(10) + f,(x (1), y(10)) * y' (o).
68.

Let f(x, y,z) = x2+ 2y — z and suppose the
point (x, y,z) moves along the parametric curve
(1,1, £%).
(a) Let g(£) = f(1,1,¢* and compute g'(¢).
(b) Show that your answer in (a) is equal to
dx dy dz
I T +£, a +f, @
A function u = f(x, y) with continuous second
partial derivatives satisfying Laplace’s equation
P,
axt 9yt
is called a harmonic function. Show that the func-
tion u(x, y) ='x3 - 3xy2 is harmonic.
Which of the following functions satisfy La-
place’s equation? (See Exercise 69).
@ fx, p)=x>=y4
() flx, yy=x"+y%
©) fx y)y=xy;
(A fx, yy=y® +3x%y;
(e) f(x,y)=sinxcosh y;
) f(x, y)=e*sin y.
Let f and g be differentiable functions of one
variable. Set @ = f(x — 1) + g(x + 0.
(a) Prove that ¢ satisfies the wave equation:
/0% = 3% /dx>
(b) Sketch the graph of ¢ against ¢ and x if
f(x) = x* and g(x)=0.



72. (a) Show that function g(x,f)=2+ e 'sinx
satisfies the hear equation: g, = g,.. (Here
g(x, t) represents the temperature in a rod at
position x and time ¢.)

(b) Sketch the graph of g for ¢ > 0. [Hint: Look
at sections by the planes t =0, ¢t =1, and
t=2] .

(c) What happens to g(x, ¢) as t— co? Interpret
this limit in terms of the behavior of heat in
a rod.

73. The productivity z per employee per week of a
company depends on the size x of the labor force
and the amount y of investment capital in mil-
lions of dollars. A typical formula is z(x, y)
= 60xy — x% — 4y,

(a) The value of dz/dx at x =35, y=3 is the
marginal productivity of labor per worker at
a labor force of 5 people and investment
level of 3 million dollars. Find it.

(b) Find 9z/3y at x =5, y = 3, and interpret.

74. The productivity z of a company is given by
z(x, y) = 100xy — 2x? — 6y* where x X 10° peo-
ple work for the company, and the capital invest-
ment of the company is y million dollars.

(a) Find the marginal productivity of labor
9z /0x. This number is the expected change
in production for an increase of 1000 staff
with fixed capital investment.

15.2 Linear Approximations

15.2 Linear Approximations and Tangent Planes 775

(b) Find 3z/3y when x =5 and y = 3. Inter-
pret.
*75. Show that
. 2, 2, n1/3
m Ao (x +y 2z
(2,.2)—>(0,0,0) 02 ( Y )
does not exist.
*76. Let

xp(x* = y%)
foeay) =1 24,7 (x, ) #(0,0),

0, (x, y)=1(0,0).

(@ If (x, p) # (0,0), compute f, and f,.
(b) What is the value of f(x,0) and f(0, y)?
(c) Show that f,(0,0) =0 = £,(0, 0).
*77 Consider the function f in Exercise 76.
(a) Show that £,(0, y)= —y when y =< 0.
(b) What is f,(x, 0) when x 5 0?
(c) Show that f,(0,0)=1 and f,(0,0)= —1.
[Hint: Express them as limits.]
(d) What went wrong? Why are the mixed
partials not equal?
*78. Suppose that f is continuous at (x,, yo) and
f(xg, yo} > 0. Show that there is a disk about
(x0, yo) on which f(x, y) > 0.

and Tangent Planes

The plane tangent to the graph of a function of two variables has two slopes.

In the calculus of functions of one variable, the simplest functions are the
linear functions /(x) = mx + b. The derivative of such a function is the
constant m, which is the slope of the graph or the rate of change of y with
respect to x. If f(x) is any differentiable function, its tangent line at x; is the
graph of the linear approximation y = f(xy) + f'(xo)(x — X).

To extend these ideas to functions of two variables, we begin by looking
at linear functions of the form z = /(x, y) = ax + by + ¢, whose graphs are
planes. Such a plane has two “slopes,” the numbers @ and b, which determine
the direction of its normal vector —ai— bj + k (see Section 13.4). These
slopes can be recovered from the function / as the partial derivatives /. = a
and /, = b. By analogy with the situation for one variable, we define the linear
approximation at (xy, y,) for a general function f of two variables to be the
linear function

I(x, ) = f(X0, yo) * fe(X0> Yo)(% = Xo) * (X0, yo)(V = Vo)
which is of the form ax + by + ¢ with

a=f.(xg, o)y b=/, (%0,0), and

¢ = f(x¢, Yo) = X0 fx(X0> Vo) — )’ofy (*0> Yo)-
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Figure 15.2.1. The tangent
plane at (xg, yo) to the
graph z = f(x, y) has the
equation z = f(xg, yo) +

Se(xo, yo)(x — xo) + f,(xo0, Yol — Yo)-

A vector normal to the
plane is

The function / is the unique linear function which has at (x4, y,) the same
value and the same partial derivatives as f. The graph

z = (X0, yo) + fo(X0> Yo)(X — Xg) + f,(X0> Vo)V — Vo) H
of the linear approximation is a plane through (x4, ¥, f(x, ¥¢)), With normal

vector —f.(xo, Yo)i — f,(xo, ¥o)j + k; it is called the tangent plane at (x,,y,) to
the graph of f (see Fig. 15.2.1).

Normal vector

B 2=/0))

n= —f(xg, ¥o)i — f,(xq,¥0)j + k. X

Example 1

Solution

Find the equation of the plane tangent to the hemisphere z =1 — x* - y2 at
a point (xg, yg). Interpret your result geometrically.

Letting f(x, y)=y1— x> —y*, we have f,(x,y)= —x/yl —x*—)* and

5x y)= —y/y1— x? — y* . The equation of the tangent plane at (x,, yg,2o)

is obtained from (1) to be

X J
2=Vl =X} = )} - = (¥ — %o) — (¥ ~ o)
V1= x2—y¢ V1= x5 — 5
* N
or z=zO—Z—0(x—x0)—z—0(y—y0).
0 0
A normal vector is thus ?i+ ? j + k. Multiplying by z,, we find that
0 0

another normal vector is xi + yoj + zok. Thus we have recovered the geomet-
ric result that the tangent plane at a point P of a sphere is perpendicular to the
vector from the center of the sphere to P. A

The linear approximation may be defined as well for a function of three
variables. We include its definition in the following box.

Linear Approximation and Tangent Plane
The linear approximation at (xy, yy) of f(x, y) is the linear function:

I(x, ¥) = f(x0, Yo) + (%05 Yo)(x — Xo) +fy(x0’ o)y — o) (@)
The graph z = /(x, y) is called the tangent plane to the graph of f at
(%9, yo)- It has normal vector — f (xo, yo)i — f,(Xo, yo)i + k.
The linear approximation at (x,, yg,2,) to f(x, y,z) is the linear
function:
I(x, y,2) = f(X0> Yo, 20) + (X0, Yo, 20)(X — Xo)
+ £5(x05 Y0, 20) (¥ — Yo) + f2(X0, Yo, 20)(z — 2Zo)- 3)




Example 2

Solution

Example 3

Solution

15.2 Linear Approximations and Tangent Planes 777

Find the equation of the plane tangent to the graph of
[0y = (5 +)%) /%y
at (xo, yo) = (1,2).
Here x, =1, yo =2, and f(1,2) = 3. The partial derivative with respect to x is
oy — (P4 xy -y xPoy?
()’ N

which is — 32 at (1,2). Similarly,

fx(x’ .y) =

yzx — 5} yz — x2

(o) xy?

which is 3 at (1,2). Thus the tangent plane is given by the equation (1)

t= -3 -D I -2+i

L(xp)=

>

ie,4z=—6x+3y+ 10. A

Find a formula for a unit normal vector to the graph of the function
f(x, y) = e’y at the point (— 1, 1).

Since a normal vector is — f,(xg, yoli — f,(xo, yo)i + k, a unit normal is
obtained by normalizing:

—fx(x09,y0)i _f}‘;(x(), ,yO).i +k

\[[f"(xo’yo):l2+ [fy(xo’)’o)]z +1

In this case, f,(x, y)=e" and f,(x, y)=e”. Evaluating the partial
derivatives at (—1,1), we find a normal to be —e 'i— e 'j+k, and so a
unit normal is

—e j—e -1 -1
e i—e j+k _ o . e i+ 1 k A
\/efz+ e 2+ 1 \/Ee_z +1 \/2e_2+ 1 2e 2+ 1

Just as in one-variable calculus, we can use the linear approximation for
approximate numerical computations. Suppose that the number z = f(x, y)
depends on both x and y and we want to know how much z changes as x and
y are changed a little. The partial derivative f, (x,, y,) gives the rate of change
of z with respect to x at (x,, ). Thus the change in z which results from a
change Ax in x should be about

Jx(%05 po) Ax.
Similarly, the change in z caused by a shift in y by Ay should be about
fy(xo » Yo) Ay
Thus the total change in z should be approximately
Az = fi(%o» yo) AX + f,(X0, Vo) By Q)
Notice that the change in z is obtained by simply adding the changes due to

Ax and Ay. If we write Ax = x — X, and Ay = y — y,, then the expression for
Az is the linear approximation to f(x, y) — f(xq, yo) at (xg, yo)-
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Example 4
a calculator.

Calculate an approximate value for (0.99¢%%%)®. Compare with the value from

Let z = f(x, y) = (xe”)® and let x, =1 and y, =0, so f(1,0) = 1. We get
which is 8 at (1,0),

which is 8 at (1,0).

Thus if we let x =0.99 and y = 0.02 so that x — x,= —0.01 and y — y, =
0.02, the linear approximation is (by (2) or (4))

The value for (0.99¢%%) obtained on our calculator is 1.082850933. A

Find an approximate value for sin(0.01) - cos(0.997).

Let f(x, y) =sinxcos y and x4, =0, yy = 7. Then if x =0.01 and y = 0.997,

S ) = O m)(x = 0) + f(0.m)(y — 7) + f(0,7)

(The value of f(x, y) computed on our calculator is —0.009994899.) A

A multiplication problem is altered by taking a small amount from one factor

and adding it to the other. How can you tell whether the product increases or

Solution
92 _ g\ 7%
x 8x'e”,
and
9z _ 8x%%,
dy
1 + 8(—0.01) + 8(0.02) = 1.08.
Example 5
Solution
= —1(001)+0+0
= —0.01.
Example 6
decreases?
Solution

Let f(x, y) = xy. If the amount moved from y to x is 4, we must look at

f(x+h, y—h) = f(x, ),
which may be approximated by
(%, ) + (=) f,(%, ).

The partial derivatives are f.(x, y) = y and £,(%, p) = x, so the linear approxi-
mation to the change in the product is A(y — x). Thus, the product increases
when the increment # is taken from the larger factor. A

Exercises for Section 15.2

Find equations for the planes tangent to the surfaces in
Exercises 1-4 at the indicated points.

L z=x3+p*—6xp; (1,2, =3)

2. z = (cos x)(cos y); (0,7/2,0)

3. z = (cosx)sin y); (0,7/2,1)

4. z=1/xy; (1,1, 1)
Find the equation of the plane tangent to the graph of
z=f(x, y)= x2+2y%+ 1 at the points in Exercises

Find the equation of the tangent plane of the graph of f
at the point (xg, yg, f(xg, o)) for the functions and
points in Exercises 9-12.
9. f(x,y)=x—y+2; (x0, yo) = (1, 1)
10. f(x, y) = x* + 4p%; (xo, yo) = (2, = 1).
1L f(x, y) = x9; (X0, yo) = (1, 1),
12. f(x, y) = x/(x + y); (x0, yo) = (1,0).
For each of the indicated functions and points in Exer-
cises 13-16, find a unit normal vector to the graph at
(X0, Yo, f(x0, yo))-
13. fand (xg, yo) as in Exercise 9.
14. f and (x¢, yo) as in Exercise 10.
15. fand (xg, yo) as in Exercise 11.
16. f and (xg, yo) as in Exercise 12.



Find an appropriate value for each of the quantities in
Exercises 17-22 using the linear approximation.

17.
18.

19.

20.
21.
22.
23.

24.

25.

(1LO1[1 — 198 | [Hint: 1.96 = (1.47]

tan( 7 + 0.01 )
3.97

26.

27.

15.3 The Chain Rule 779

Let g(u, v) be the gas mileage if you drive u miles
and use v gallons of gasoline. How does g(u,v)
change if you go Au extra miles on Av extra
gallons? (Use the linear approximation.)
Suppose that z = f(x, y) = x> + 2.

(a) Find 8z/9y|(y

3 3
(0.99)" + 2.01) 6(0'99)(2'01). (b) Describe the curve obtained by intersecting
© 98)sin( w) the graph of f with the plane x = 1.

’ 1.03 (c) Find a tangent vector to this curve at the
(0.98)(0.99)(1.03) point (1, 1, f(1, 1).

V401 + (3.98)" + (2.02)°

In the setup of Example 4, Section 15.1, at Dawson
Creek, is the temperature increasing or decreasing
as you proceed south? As you proceed east? South-
east?

Refer to Exercise 45, Section 15.1. If, in part (b),
R, is increased by 1 ohm, R, is decreased by 2
ohms, and R; is increased by 4 ohms, use the
linear approximation to calculate the change in
R. Compare with a direct calculation on a calcu-
lator.

Let f(a, v) be the length of a side of a cube whose
surface area is a and whose volume is v. Find the
linear approximation to f(6 + Aa, 1 + Av).

28.
29.

*30.

Repeat Exercise 27 for z = f(x, y) = e™.

Let f(x, y)= —(1 — x*— »?'/2 for (x, y) such
that x* + y* < 1. Show that the plane tangent to
the graph of f at (xq, yg, f(xo, o)) is orthogonal
to the vector with components (xg, yg, f(*0, yo))-
Interpret this geometrically.

(a) Let k be a differentiable function of one
variable, and let f(x, y) = k(xy). Suppose that x
and y are functions of ¢: x = g(¢), y = h(t), and
set F(¢) = f(g(1), h(r)). Prove that

A ax b

dx dr Ay di’

() If f(x, y) = k(x)I(p), show that the formula
in (a) is still valid. (These are special cases of the

F(t) =

15.3 The Chain Rule

chain rule, proved in the next section.)

The derivative of a composite function with several intermediate variables is a
sum of products.

In Chapter 2 we developed the chain rule for functions of one variable: If y is
a function of x and z is a function of y, then z also may be regarded as a
function of x, and

dz _ dz dy

=t

dx dy

For functions of several variables, the chain rule is more complicated. First we
consider the case where z is a function of x and y, and x and y are functions
of t; we can then regard z as a function of . In this case the chain rule states
that

dz _ 9z dx 32 &

dt  9x dt Ay dr’

The chain rule applies when quantities in which we are interested depend in a
known way upon other quantities which in turn depend upon a third set of
quantities. Suppose, for example, that the temperature 7" on the surface of a
pond is a function f(x, y) of the position coordinates (x, y). If a duck swims
on the pond according to the parametric equations x = g(¥), y = h(¢), it will
feel the water temperature varying with time according to the function
T= F(t)= f(g(2),h(2)). The rate at which this temperature changes with
respect to time is the derivative dT/dt. By analogy with the chain rule in one
variable, we may expect this derivative to depend upon the direction and
magnitude of the duck’s velocity, as given by the derivatives dx /dt and dy / di,
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as well as upon the partial derivatives 87 /9x and 07 /3y of temperature with
respect to position. The correct formula relating all these derivatives is given
in the following box. The formula will be proved after we see how it works in
an example.

The Chain Rule

To find dz/dt, when z = f(x, y) has continuous partial derivatives and
x = g(1) and y = h(¢) are differentiable, multiplying the partial deriva-
tives of z with respect to each of the intermediate variables x and y by
the derivative of that intermediate variable with respect to ¢, and add the
products: If F(t) = f(g(1),h(t)), then

F'(1) = f(g(t), k(1)) §'(1) + £,( (1) R(D)H' (D)-
In Leibniz notation,

dz _ 9z dx 02 &y

dt 0x dt 9y dt’

For three intermediate variables, if « depends on x, y, and z, and x, y,
and z depend on ¢, then

du _ Bu dx  Oudy  dude

dt  9x dr  dy dt 09z dr’

Suppose that a duck is swimming in a circle, x = cost, y =sin¢, while the
water temperature is given by the formula 7 = x%” — xp>. Find dT/dt: (a) by
the chain rule; (b) by expressing T in terms of ¢ and differentiating.
(a) 9T /dx =2xe” — y% 8T /dy = x%” —3xp%; dx/dt= —sint; dy/dt =
cos . By the chain rule, dT/dt = 3T /dx)(dx/dt) + (3T /dy)(dy/ dt), so
dar _
dr

=2 coste™ — sin’)(—sinz) + (cos’t esi" — 3 costsin’f)cost

(2xe? — y*)(—sinr) + (x%” — 3xp*)cost

= —2cosisinze™ + sin*t + cos*t ¥’ — 3 cos’ sin’t.
(b) Substituting for x and y in the formula for T gives

T = cose™* — costsin’,
and differentiating this gives
dar _

g7 2cost(—sint)e’™ + cos’t €™ ‘cost + sintsin’ — (cos?)3 sin’ cost
= —2costsinze™’ + cos’te™™’ + sint — 3 cos’ sin’t,
which is the same as the answer in part (a). A

An intuitive argument for the chain rule is based on the linear approximation
of Section 15.2. If the position of the duck changes from the point (x, y) to the
point (x + Ax, y + Ay), the temperature change AT is given approximately by
(8T /9x)Ax + (3T /3y)Ay. On the other hand, the linear approximation for
functions of one variable gives Ax &~ (dx/dt)At and Ay ~(dy/dt) At. Putting
these two approximations together gives

AT dx AT &y
AT~ 9T dx 9T D p,
T~ a8 g @ ™
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Hence

AT 9T dx 3T &

N x d ey a O
As Ar— 0, the approximations become more and more accurate and the ratio
AT/At approaches dT/dt, so the approximation formula (1) becomes the
chain rule. The argument for three variables is similar.

In trying to make a proof out of this intuitive argument, one discovers
that more than differentiability is required; the partial derivatives of 7' should
be continuous. The technical details are outlined in Exercise 20.

Verify the chain rule for u = xe”” and (x, y,z) = (e’,1,sin1).

Substituting the formulas for x, y, and z in the formula for u gives

U= et_etsmt= et(l+smt),

du

— : 1+si
SO i [tcost +(1+ smt)]e’( sind)

The chain rule says that this should equal

du dx , du & | du d-
Ao gt S+ = = =% + xze’ - | + xye¥icost
0x di " dy dr " 0z di Y

= etsintet+ etsintetsint+ el -t etsintcost

= e’““i“’)(l +sint + £ cost),

which it does. A

Suppose that v = rcos(st) — esin(rt) and that r, 5, and ¢ are functions of x.
Find an expression for dv/dx.

We use the chain rule with a change of notation. If v = f(r,s,t) and r,s,t are
functions of x, then

dvo _dv dr v ds | v di

dx Or dx = 9s dx = At dx
In this case we get

dv _ s dr . P ds
n= [cos(st) —te cos(rt)] y i [tr sin(st) + e sm(rt):' y

— [rs sin(st) + rescos(rt):' ‘% . A

What do you get if you apply the chain rule to the case z = xy, where x and y
are arbitrary functions of ?

If z=xy, then 9z/3x =y and 9z/9y = x, so the chain rule gives dz/dt
= y(dx /drty + x(dy/dt), which is precisely the product rule for functions of
one variable. A

The chain rule for the case of two intermediate variables has a nice geometric
interpretation involving the tangent plane. Recall from Section 15.2 that the
tangent plane to the graph z = f(x, y) at the point (xg, ¥o) 15 given by the
linear equation z = f(xg, o) + £, (g Yo)(X — Xo) + £, (Xo» Jo)X¥ — y). For this
formula to be consistent with the definition of the tangent line to a curve, we
would like the following statement to be true.
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Figure 15.3.1. If a curve
lies on the surface

z = f(x, y), then the
tangent line (with direction
vector v) to the curve lies in
the tangent plane of the
surface.

Example 5

Solution

Example 6

Solution

Tangents to Curves in Graphs

If (x, y,z) = (g(#), h(t), k(1)) is any curve on the surface z = f(x, y) with

(g(te), k(1)) = (X, yo), then the tangent line to the curve at f, lies in the

tangent plane to the surface at (xg, yo). (In this statement, all derivatives
. are assumed to be continuous.)

To verify the above statement, we start with the fact that ( g(1), h(1), k(1)) lies
on the surface z = f(x, y), i.e.,
k(1) = f(g(1):h(1))-
Differentiate both sides using the chain rule and then set 7 = #,:
K'(16) = f(X0» ¥0) & (to) + £, (%0, Yo)l' (%0);
but this shows that the tangent line
z — zy = tk'(1y), x — xo=tg'(1), y = yo=th'(t)

satisfies z — zo = f, (X0, yo)(x — Xo) + f,(X0, o)y = yo)s that is, the tangent
line lies in the tangent plane.

You may think of the preceding box as the “geometric statement” of the
chain rule. It is illustrated in Fig. 15.3.1.

(x9,¥0, f(X0,¥0))

(x,y,2) = (g(t), R ().K(1))
z=f(x,¥)

m

x (x,y)=(g(t), h(1))

Show that for any curve o(7) in the upper hemisphere z =1 — x* — y*, the
velocity vector o'(¢) is perpendicular to o (7).

Let (x, y,z) = o(t). By the preceding box, o’(?) is perpendicular to the normal
vector to the hemisphere at (x, y,z). From Example 1 of the previous section,
this normal vector is just xi + yj + zk = o(¢#). Thus, o'(?) is perpendicular to
o(t). A

Show that the tangent plane at each point (x4, y¢,Z,) of the cone
z=vx*+ y? ((x, y) # (0,0)) contains the line passing through (X, g, Z¢) and
the origin.

The line / through (x,, yo,Zo) and the origin has parametrization (x, y,z) =
(Xol, yolsZot). Since this line lies in the cone for all 7>, (z2=z* =
(x2 + yd)t* = x? + »?), the geometric interpretation of the chain rule implies
that the tangent plane to the cone contains the tangent line to /; but the
tangent line to / is / itself, so / is contained in the tangent plane. A
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Exercises for Section 15.3

1

. Suppose that a duck is swimming in a straight
line x =3 + 8¢, y = 3 — 21, while the water tem-
perature is given by the formula 7 = x2cos y—
y*sinx. Find dT/dt in two ‘ways: (a) by the
chain rule and (b) by expressing T in terms of ¢
and differentiating,

. Suppose that a duck is swimming along the curve
x=03+1 y =2 — 2, while the water tempera-
ture is given by the formula 7= e"(y2+ x3.
Find dT/dt in two ways: (a) by the chain rule
and (b) by expressing 7 in terms of ¢ and differ-
entiating.

Verify the chain rule for the functions and curves in
Exercises 3—-6.

3
4
5
6

7.

8.

10.

11.

12.

13.

14.

15.

- JG6 )= (2 + yAIn(Y + y2); o (1) = (el e 7).
- f(x, )= xe***V; a(t) = (1, —1).

 flx, y,2)=x +y2 + z%; o(t) = (cos ¢, sin ¢, t).
fOe )= e T (Y= xY); o (8) = (1, €, ).

Verify the chain rule for u=x/y +y/z + z/x,

x=e,y=e",z=¢".

Verify the chain rule for u = sin(xy), x = £2 + ¢,

y= £,

. Show that applying the chain rule to z=x/y

(where x and y are arbitrary functions of ¢) gives

the quotient rule for functions of one variable.

(a) Apply the chain rule to u = xyz, where x, ¥,
and z are functions of ¢, to get a rule for
differentiating a product of three functions of
one variable,

(b) Derive the rule in (a) by using one-variable
calculus.

Let z =/x? + 2 + 2xy?, where x and y are func-

tions of ». Find an expression for dz /du.

If u = sin(a + cosb), where a and b are functions

of ¢, what is du/ dr?

Describe the collection of vectors tangent to all

possible curves on the paraboloid z = x? + y?

through the point (1,2, 5).

Show that if a surface is defined by an equation

S, y,2) =0, and if (x(2), y(¥),z(8)) is a curve

in the surface which passes through the point

(X0, Yo, 2g) When ¢ = ¢, then the two vectors

X'(t)i + y'(1o)j + 2'(fp)k and

f;C(XO’ .yO’ZO)i + f}.l(x()’ Jos ZO)j + f;(xoa Jos ZO)k

are perpendicular.

(a) Use the chain rule to find (d/dx)(x*) by
using the function f(y,z) = y°.

(b) Calculate (d/dx)(x*) by using one-varjable

calculus.

(¢) Which way do you prefer?

16.

17.

18.
*19.

*20.

ol
i

*21.

*22.

Suppose that the temperature at the point (x, y, z)

in space is T'(x, y,z) = x? +y2 + z2. Let a parti-

cle follow the right circular helix &(f) =

(cost,sing, f) and let T(f) be its temperature at

time ¢.

(a) Whatis T7(¢)?

(b) Find an approximate value for the tempera-
ture at ¢ = (7 /2) + 0.01.

Use the chain rule to find a formula for the

derivative (d/dt)(f()g(t)/ k(D).

Use the chain rule to differentiate f(£)/[ g(Oh()]

A bug is swimming along the surface of a wave as

in the Supplement to Section 15.1. Suppose that

the motion of this wave is described by the func-

tion f(¢, y) = e cost +sin(y + £2). At t =2, the

bug is at the position y =3 and its horizontal

velocity dy/dt is equal to 5. What is its vertical

velocity dz/dt at that moment?

Prove the chain rule by filling in the details in the

following argument. Let z = f(g(¢), h(t)), where g

and £ are differentiable and f has continuous

partial derivatives.

(a) Show that

i {L/Cg (e + A0), h(t + A1) = f(g (), h(2 + Ap)]

+ [f(g(0), h(t + AD) — f( (), RN}

Apply the mean value theorem for functions
of one variable to each of the expressions in
square brackets.

Take the limit as At —0. (You will use the
continuity of partial derivatives at this point.)
Suppose that z = f(x, y) is a surface with the
property that if (xg, yg,zg) lies on the surface,
then so does the half-line from the origin through
(x9, Yo, Zo)- Prove that this half-line also lies in the
tangent plane to z = f(x, y) at (xy, yy). Give an
explicit example of such a surface.

The differential equation u, + u,,, + uu, =0,
called the Korteweg—de Vries equation, describes
the motion of water waves in a shallow channel.
Show that for any positive number ¢, the function

u(x,t) =3c sechz[ (x - ct)\/g]

is a solution of the Korteweg—de Vries equation.
This solution represents a travelling “hump” of
water in the channel and is called a soliton. How
do the shape and speed of the soliton depend on
c? (Solitons were first discovered by J. Scott Rus-
sell around 1840 in barge canals near Edinburgh.
He reported his results in the Transactjons of the
Royal Society of Edinburgh, 1840, Vol. 14, pp.
47-109.)

(b

©
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15.4

Figure 15.4.1. The (i, j)
entry of this matrix is a;,.

Matrix Multiplication
and the Chain Rule

The derivative matrix of a composite function is the product of two matrices.

The chain rule of Section 2.2 enabled us to differentiate a function which
depended on one independent variable through one intermediate variable. In
Section 15.3, this result was extended to the case of two or three intermediate
variables. When we allow the number of functions and independent variables
to grow to two or three, the chain rule may be expressed in terms of matrix
multiplication.

An m X n matrix is a rectangular array of mn numbers, called the entries
of the matrix, arranged in m rows and » columns. The entry in the ith row and
Jjth column is called the (i, j) entry. (See Fig. 15.4.1.)

First Second  Third
column  column  column

First row ay aq; a43
Second row ay ay, a3

The chain rule of Section 15.3 involves both the partial derivatives of one
function of three variables and the derivatives of three functions of one
variable. We may assemble the derivatives of one function of three variables
as a 1 X 3 matrix or row vector which we denote

Ou du du | _ __du (1
dx dy 0z a(x, y,2)
and the velocity vector of three functions of one variable as a 3 X 1 matrix or
column vector which we denote

dx
dt
dy | _ A(x, y,2) )
72 A TR @
dz
@
(If there are only two intermediate variables, our row and column vectors will
be 1 X 2 and 2 X 1 matrices.) ’
To express the chain rule in this new notation, we define a product
between row and column vectors of the same length.

Multiplication of Row and Column Vectors
Let

b,
by
A=[aya,...a,] and B=
b,,
be a row vector and a column vector, respectively. If m = n, we define
the product 4B to be the number a,b, + a,b, + - - - a,b, = >1_,a,b,. (If
m + n, the product 4B is not defined.)
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In terms of this definition, the chain rule for three intermediate variables
becomes

| ax
dt
du _[3ududull dy |_ __du  3(%»2) 3
dt dx dy GZJ dr a(x, y,2) at ’ G)
dz
L. dt n

which looks very much like the chain rule of one-variable calculus.
The product of row and column vectors has many other applications. For
example, every linear function f(x, y,z) = ax + by + ¢z + d can be written as

x
Y

z

f(x,y,z)=[a b c] +d.

Your bill at the fruit market can be expressed as a product PQ, where

P=[p pp - Pa]
is the price vector whose ith entry is the price of the ith fruit in dollars per
kilogram, and

1
=1
In
is the quantity vector whose ith entry is the number of kilograms of the ith fruit
purchased.

Find 4B if
-1

A=[1 2 3 4] and B=| !
~1

1

AB=D)(-D+QM+C(-D+@1)=—-1+2-3+4=2. A

Having described the derivative of m functions of one variable by an m X 1
matrix, and the derivative of one function of n variables by a 1 X n matrix, it
is natural for us to describe the derivative of m functions of n variables by an
m X n matrix. For example, if x = f(u,v), y = g(u,v), and z = h(u, v), we may
put all six partial derivatives into a 3 X 2 matrix:

[ ox dx
du dv
dy Ay _9(x, p,2)
qu v | O(u, )
o oz

| du o |

The rows of this matrix are the derivative vectors of f, g, and h. The columns
are the “partial velocity vectors” with respect to u and v of the vector-valued
function r(u,v) = (f(u,v), g(u,v), h(u,v)).

In general, we may define the derivative matrix of m functions of n
variables, as in the box on the following page.
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Derivative Matrix

Let w, = fi(X1,%5, - - - s X))y U= fo(X1, X0+ o o5 X,)s .- ., and u, =
fn(X1s %5, . .., X,) be m functions of the n variables x,, ..., X,. The
derivative matrix of the u;’s with respect to the x;’s is the m X n matrix:

du,  du, du,

dx, 0x, dx,

du,  Ou, du,

M, oot | 3%, Fx, | Bx,

(Xy5 - vesX,)
du,  Ou, du,,
L dx, 0x, dx,

whose (i, j) entry is the partial derivative du,/3x;.

The entries of the derivative matrix are functions of (x,, ..., x,). If we fix
values (x?, ..., x0) for the independent variables, then the derivative matrix
becomes a matrix of numbers and is denoted by

I(Uys e o Uy)

Xy, .- e 5 X,) )

Let u= x2+ y% v = x> — % and w = xp. Find (u,v,w)/3(x, y) and evalu-
ate

d(u, v, w)
(x, y)

(=23

Applying the definition, withm =3, n =2, u; =u, u, = v, u3 =w, x; = X, and
x, =y, we get

a(u,v,w) 2x 2y

=2 =lax -2y
= |5

Substituting x = —2 and y = 3, we get

—4 6

=1 -4 -6
(_2’3) 3 - 2
Notice that the derivative matrix of one function u = f(#) of one variable is a
1 X 1 matrix d(u)/d(¢) whose single entry is just the ordinary derivative du/dt.
Thus the chain rule (3) can be rewritten as
a(u) a(u) a(x, y,2) 4

Aty Ax,p,z) (D) )

In the remainder of this section, we will show how to multiply matrices of

all sizes and, thereby, to generalize the chain rule (4) to several independent
and dependent variables.

d(u, v, w)

I(x, y) A
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(a) Suppose that u =ax + by + cz+ d and v =ex + fy + gz + h, where aq,
b, ..., h are constants.

(i) Express u and v by using products of row and column vectors.
(i) Find the derivative matrix d(u,v)/9(x, y, z).
(b) Suppose that x, y, and z in (a) are linear functions of ¢:
x=mi+ny=pt+q,andz=rt+s.
(i) Express u and v in terms of # and find the derivative matrix d(u, v)/9(?).

(i) Express the elements of d(u,v)/3(f) as products of row and column
vectors.

x
(a) ) Wehaveu=[abc]| y|+d
z
x
andv=[efgll y|+h
z

(it) The derivative matrix is

d(u, v) _[a b ¢
o(x, y,2) _{e f g}’

all of whose entries are constants.

(b) (i) Substituting for x, y, and z their expressions in ¢, we get
u=a(mt+n)+b(pt+q)+c(rt+s)+d,
v=e(mt+n)+ f(pt+q)+g(rt+s)+h

We can find the derivative matrix without multiplying out:

du
d(u,v) _| dt |_[am+bpter
(1) av em+ fp+ gr '
dt

(i) The entries of d(u, v)/3(¢) are
m

(a b c]{p} and [e f g][rﬂ.

’
Notice that they are obtained by multiplying the rows of d(u,v)/9(x, y,z) by
the (single) column of d(x, y,z)/3(¢). A

The preceding example and the multiplication of row and column vectors
suggest how we should multiply m X n matrices.

Matrix Multiplication

Let 4 and B be two matrices and assume that the number of columns of
A equals the number of rows of B. To form C = 4B:

1. Take the product of the first row of 4 and first column of B and let it
be the (1,1) entry of C.

2. Take the product of the first row and second column of B and let it
be the (1,2) entry of C.

3. Repeat. In general, the product of the ith row of 4 and jth column of
B is the (i, j) entry of C.
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Example4 Let

1 -1

ald T e -2 0]
s -3

Find AB and BA.

Solution

2 0

18 =3

(going across the first row of 4 and down the first column of B). Moving to
the second column of B:

{2
g —3|t1

Moving to the second and third rows of 4, we fill in the remaining entries:

BA is not defined since the number of columns of B is not equal to the
number of rows of 4. A

Example5 Find:

2 ollo 1] = o 72 o)

Solution 1112=13ar1011211=51}A
2 0]0 1 2 4 0 142 0 2 0f
Example 5 shows that even if 48 and BA are defined, they may not be equal.
In other words, matrix multiplication is not commutative.

Example 6 For 2 X2 matrices 4 and B, verify that |AB|=|A4]||B|, where |4| denotes
the determinant of 4 (Section 13.6).

Solution Let
A=[a b} and B=[e f}
¢ d g h
Then |4| = ad — be, |B| = eh — gf, and

ae + bg af + bh
AB| =
4B ce + dg cf+dh|

= (ae + bg)(cf + dh) — (ce + dg)(af + bh)

= aecf + aedh + bgef + bgdh — aecf — adgf — cebh — bgdh
— aedh + bgcf — adgf — cebh

(ad = be)(eh — gf)

=141 1B]. &
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The result of Example 3(b) may be written in the following way in terms of
derivative matrices:

d(u,v) _ d(u,v) a(x, y,2)
(1) a(x, y,z)  8(1)

This suggests a similar formula for the general chain rule.

The General Chain Rule

Letu;=fi(xy, ..., %), ..., u,=f,(x,...,x,) be m functions of n

variables, and let x, =g((¢;,...,8), ..., x,=g(,..-,%) be n

functions of k variables, all with continuous partial derivatives.
Consider the u;’s as functions of the 1’s by

u1=fl(gl(t1,...,tk),...,gn(tl,...,tk)).

Then
Otys vy ty) (U, ey thy) (X, ..., X,)
Oty -esty) =8(x1,...,x") (tys.-vsty)
In other words,
du, du, dx;  Ju; Ix, du;, dx,
8—6=H8—tj+mmj+~--+a—% 3

(Note that there are as many terms in the sum as there are intermediate
variables.)

We will carry out the proof for the “typical” case m =2, n =3, k=2. We
must prove that

dx;  0x,
du, Ju, du, du; du, I
W || Tx Bn On || on
du, du, B du, du, du, a_tl a*tz
a0y ax; 0x, Bx || 8xy O
B,

This matrix equation represents four ordinary equations. We will prove a
typical one: '
du du, dx du, dx du, dx
2y, T T o)
9t 9x, 9y  9x, 91,  dxy; 9
In taking the partial derivatives with respect to #,, we hold ¢, fixed and take
ordinary derivatives with respect to 7,. With this understood, we may rewrite
(%) as
du du, dx du, dx du, dx
_2=_2_1+_2_2+_2_3 (6)
dt;,  0xy dt;  0x, dt;  0x; dt,
We are now in the situation of Section 15.3—we have the independent
variable ¢, the dependent variable u,, and intermediate variables (x,, x5, x3);

but the chain rule for this case is just formula (6), so (6) is true and hence (5)
is proved.
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Example 7 Verify the chain rule for 9p/dx, where

— Xz

p=f(wo,w)=u’+ 0> —w, u=x?%, v=y% and w=e

Solution  f(u,v,w) = (xﬁz)2 +y*t—e ¥ = x%? + y* — 7. Thus
p
ax

On the other hand,

— Xz

=4xy? + ze

9 du +a_p@+a—p§1=2u(2xy)+2o-0+ze_”

du dx  dv dx  Oow 0x
= 2xY)(2xp) + ze ™,

which is the same. A

Example 8 Let (x, y) be cartesian coordinates in the plane and let (r,8) be polar
coordinates. (a) If z = f(x, y) is a function on the plane, express the partial
derivatives 9z/9dr and 9z/98 in terms of dz/dx and 9z/dy. (b) Express
9% /9r? in cartesian coordinates.

Solutlon (a) By the general chain rule, using x = rcosf and y = rsiné,

dx  9x
3z 9z ]_[8z 8z) or 08
ar 06 ox  dy 8_); 8_);
| dr 08
_| 8z 9z |[cosb —rsinaJ_
dx 9y || sind rcosé
Multiplying out,
9z _ 9z
3 = Oy cosH+ 8y Z sin 8,
Q: a
30 r' B sm0+aycosaJ
(b) By (a),
dz _ 9z
= ax cos0+ ay Z sin. @)

9%z _ 93 [0z 9 | 9z
Thus 02 " or [ x ]cos0+ E)r[ 3y ]smﬂ Applying equation (7) with

0z/0x and 9z/dy replacing z, we get

2 2, 2 2 2 )
g—Z—=(a cosf + 9z sinB)cosB+( 9z cosa+ﬂsin0)sin0

a2\ ax2 dydx dx 3y 9y?
2 2
=ﬂ00520+2 0z sin00050+£sm0
dx? dydx 3y?
1 [eee 0%, 2%
x2+y? ¥ ax? 2 dxdy " 32 A

Example 9 Suppose that (1,5) = (f(x, y), g(x, »)), x = u — 20, and y = u + 3v. Express
the derivative matrix 9(z,s5)/9(u,v) in terms of 3(z,s)/d(x, y).

Solution By the chain rule,
a(t,5) a(t,5) 9(x, )
u,v) (X, y) d(u,v)




In this example,

-2

;)

Ix») 11
o "L
SO
ya(t,s) _ a(t,5)
d(u,v) B a(x, y)
oz
_ ax
d
ﬁ +

15.4 Matrix Multiplication and the Chain Rule

K

3t
dy
as

dy

791

9t ot

—2]= dx Iy 1 —2]

3 3 9s |l1 3
dx  dy
908t 301
295 3%,

as . .05 | A

_98 L 395
ax dy

Exercises for Sectlon 15.4

Find the matrix products in Exercises 1-4.

1
1 1 1
L[l 2 3]s 2,[_ 1 _} )
5 7 4]
) 1
37 2
3.2 2 6]|4 401 2 3 4 5]|3
5] 4

Find the derivative matrices in Exercises 5-8 and evalu-
ate at the given points.
5. 9(x, y)/9(u,0); x = usinv, y = e"’; at (0, 1).
6. ¥x, y,z)/9(r,0,¢); where x =rsin¢cosb,
y =rsin¢sing, z = rcose; at 2,7/3,7/4).
7. Hu,0)/0(x, y,z); u=xpz, 0=x+y + z;
at (3,3,3).
8. 9(x, y)/9(r,0); x = rcosf, y = rsin8; at (5,7 /6).
Compute the matrix products in Exercises 9-20 or
explain why they are not defined.

1 27[2 3 1 0][0 ©
9. 10.
10 1]|4 5] 0 | 0 O]_O 1]
[0 11a b (1 0l[a &
. 12.
1 1 0]}c d] 0 1]_0 d]
_ M 1] 4]
3.0 L, 4. (2|5
_2 3_L3 -3 6d
- "1 27-
0 0][a] 00 0]
15. 16. |3 4
[0 Ljib 5 6 13 2 1
_ 1T 0 0llae b c
17.10“ab] 18.10 1 of|d e f
[0 0]lc 4 00 1)|g n i
19_([1 012 4)1 1]
2 3)[1 —1JJjo 1]
20 1 0(2 1 1)
2 3)\|1 =1{lo 1

Compute 3z/0x and 9z/3y in Exercises 21-24 using
matrix multiplication and by direct substitution.

21 z=u? + 0% u=2x+T7,v=3x+y+T

22. z = u? + 3uv — v%; u =sinx,
v = —COSX + COosYy.
z=sinucosv; u=23x2—2p, v=x—3y.
z=ufvYu=x+y, v=xp.

23.
24.

25. (a) Compute derivative matrices 3(x, y)/9(¢,s)

and d(u,v)/9(x, y) if

x=1t+s, y=t—s,

u=x2+y2, v=x2—y2.

(b) Express (u,v) in terms of (¢,5) and calculate
(u,0)/3(t,5).

(c) Verify that the chain rule holds.

Do as in Exercise 25 for the functions

x=t2—s2,y=ts,u=sin(x+y),

v =cos(x — y).

. Do as in Exercise 25 for x =5, y = t5; u = x,

v=—y.

Do as in Fxercise 25 for x = 2 + s2,y =252

z=25; u= Xy, v= Xz, W= XZ.

26.

28.

29. Suppose that a function is given in terms of

rectangular coordinates by u = f(x, y,z). If

x = rcosfsing,

y = rsinfsin¢,

Z = rcoso,
express du/dr, du/d0, and du/d¢ in terms of
du/dx, du/dy, and du/0z.
Suppose that x, y,z are as in Exercise 29 and
u=x>+y?+ z* Find du/dr, du/036, and
ou/de.
Express the polar coordinates r and 6 in terms of
the cartesian coordinates x and y, and find the
derivative matrix 9(r, 8)/9(x, y).

30.

3L



792 Chapter 15 Partial Differentiation

32. Let A be the derivative matrix d(x, y)/d(r,8) for
x =rcos#, y=rsinf. Let B be the derivative
matrix 9(r,#)/0(x, y) of Exercise 31, with its
entries expressed in terms of r and 6. Find 4B
and BA.

33. Let B be the m X 1 column vector

r -

1
m
1
m
1

L ™M ]

If A =[a,-- - a,]is any row vector, what is AB?
Exercises 34—38 form a unit.
34, Let
1= 10 and A =]l 2 .
01 01

Find a matrix B such that AB = 1.
35. In Exercise 34, show that we also have

10
BA = .
36. Show that the solution of the equation

=5 = G-l

where A and B are as in Exercises 34 and 35.
37. Find a matrix B such that

1 2]1_[1 O
ol 5)lo 1)
38. Using the results of Exercises 36 and 37, solve
each of the following systems of equations:
(a) x+2y=12x+4+5y=2;
by x+2y=0,2x+5y=0.

Exercises 39-42 form a unit.

39. If (fidxy, oo o X0)s oo, fu(Xys oo, X))
= (uy,...,u,) are n functions of n variables,
then the (square) matrix of partial derivatives is
called the jacobian matrix. Its determinant is
called the jacobian determinant and is denoted by

0(uy, ..., uy,)
o(xy,...,x,)

(a) Suppose that n = 2. Show that the absolute
value of

a(ul s u2)
a(x, y)

is the area of the parallelogram spanned by

du,
(5] 5
and
ouy

(aul )
Wty Ly

(a,b)

8u2
Ax

(a.b)

{

(&%):(d+b)(a_”)+b(a_%3+ﬁ+a_ztﬁ)-
t y ’

(b) Suppose that » = 3. Show that the absolute
value of

a(ul sUz, u3)

a(xl 2 X2 x3)

(a,b,c)
is the volume of the parallelepiped spanned
by the vectors

(a,b,C))

du,
Ax;

fori=1,2,3.

au2 au:;

5

(a,b,c) dx;

x;

b
(a,b,c)

40. Compute the following jacobian determinants:
(a) (x, y)=(rcos#,rsin#). Find
a(x, y)
or,8) |
(b) Let (x, y,z) = (rcos#,rsinf, z). Find
a(x, y,z)
o(r,0,z) |’
(¢} Let (x, y,z)=(rcosfsin¢,rsinf sin ¢, rcosq
Find
a(x, y,z)
' 3(r.0,¢) |

41. Compute the jacobian determinants (see Exercise
39) of the following functions at the indicated
points:

(@ (x, y)=(+ %12 — (1,5 =(1,2).

®) (w,0)=(x+ p,xp); (x, ) = (5, = 3).

(c) Compute the jacobian determinant of (u,v)
with respect to (¢, s) from parts (a) and (b) at
(t,5) = (1,2). Verify that your answer is the
product of the answers in (a) and (b).

42. Prove the following equations (notation from Ex-
ercise 39) in light of the chain rule and the
multiplicative property of determinants found in
Example 6:

@) 3(u,0) | 3(x, y) d(u,v)

a = ;
a(x, y) || a(¢,8) a(s,s)
o(x, y) || (s, s)

® | o2 2 =
a(¢,s) || a(x, y)

43. Let v, v, 03 be the components of a vector func-
tion v, u a scalar function, a, b, p constants. Ex-
press in matrix notation the equations of elastic-
ity:

8201

2 2 2
du 801 aDl aU]

= a+b(—»)+b —t+t—+ —;
aﬂ) ( o (8x2 Iyt 0z’

axt  ay? 0zl



44.

45.

46.

A rotation of points in the xy plane (relative to
fixed axes) is given by

X| [cos® —sinf|[x
Y| |sin® cosf ||y

where # is the angle of rotation of

5] e 3]

Show by means of matrix multiplication that a
rotation of #, followed by a rotation of @, is the
same as a rotation of #, followed by a rotation of
0,.

The coordinates u,¢,f are defined by x =
ausingcosf, y = busingsinf, z = cucosg for
u>0,0<p<70<0<27.

(a) Show that the surfaces ¥ = constant are the

ellipsoids

x 2 y 2 z 2_
(ai) * () * () =1
(b) Show that the surfaces ¢ = constant are el-
liptical cones.
(c) Show the surface # = constant is a plane.
(d) Volume calculations involve the determi-
nant of 9(x, y,z)/d(u,p,d). Show that it
equals abcu’sin ¢.
The matrix equation

X cos§ —sinf O||x
Y |=|sin8 cosé O]y
1 0 0 1]t

can be viewed as a rotation in the xy plane through
the angle €. (See Exercise 4.4). Similarly, the equa-
tion

X 1 0 —allx
Y[ =]0 t —-pf|ly
1 0 0 1l]1?

can be viewed as a translation in the xy plane.
(a) Use a matrix multiplication to find the ma-
trix equation for a rotation followed by a
translation.

Is a rotation followed by a translation the
same as a translation followed by a rota-
tion?

(b)

*47.

*48.

AT

*49

*50.

Review Exercises for Chapter 15 793

Verify the formula {4B| =|A4]|B| for 3 X 3 ma-
trices 4 and B, where |4} denotes the determi-
nant of 4.

Public health officials have located four persons,
Xy, X5, X3, and x4, known to be carrying a new
strain of flu. Three persons, y,, y,, and y;, report
possible contact, and a first-order contact matrix
A is set up whose /, jth entry is 1 if there was
contact between x; and y;, and zero otherwise.
Five other people, z,, z;, z3, z4, and zg, are
questioned for possible contact with y,, y,, and
3, and another first-order contact matrix B is set
up whose 7, jth entry is 1 if y, has contacted z;
and zero otherwise.

(a) Show that the product matrix C= AB
counts the number of second-order contacts.
That is, the , jth entry of C is the number of
possible paths of disease communication
from x, to z,.

Write down the three matrices for the situa-
tion shown in Fig. 15.4.2. Check the conclu-
sion of part (a).

(®

V3 Figure 15.4.2. Contacts

: N f between three groups of

2, 2 4 2 people.

. Express Simpson’s rule (Section 11.5) by using a

product of row and column vectors.

Suppose that fis a differentiable function of one
variable and that a function u = g(x, y) is de-
fined by

x+y
Xy )
Show that u satisfies a (partial) differential equa-
tion of the form

u=g(x,y)= xyf(

2 0u 20U

7y -y 5}7 = G(x, y)u

and find the function G(x, y).

Review Exercises for Chapter 15

Calculate all first partial derivatives for the functions in
Exercises 1-10.

L.

2,

© N LW

sin(7x)
u=g(x, y)= -
1+y
- f — x
u=y2) = 1 4 cos(2z)
u=k(x,z)= xz? — cos(xz%).
u=m(y,z)=y-.
u=h(x,y,z)=zx + y* + yz.
u=n(x,yz)=x".
u=f(x, y,z)=In[l + e “cos(xy)].
cu= h(x, y,z) = cos(e "~ "2,

9. u= g(x,)),z) = xz + ez(fxtze’dt).
0

10. u = f(x, y) = cos(xy?) + exp[jx\/t_cos(ty) dt]
o

Check the equality of the given mixed partials for the
indicated functions in Exercises 11-16.

11
12.
13.
14.
15.
16.

du/dx 9y = 0% /3y dx for u in Exercise 1.
u/dxdz = 9% /dz dx for u in Exercise 2.
8% /dxdz = 8% /9z dx for u in Exercise 3.
Fu/dydz =% /0:z dy for u in Exercise 4.
9% /dx dz = 8% /dz dx for u in Exercise 5.
9% /3x 9z = 0% /3z dx for u in Exercise 6.
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17.
18.
19.
20.
21.

22.

Find

23.
24.
25.

26.

Find
surfa
27
28
29

30
Use

Chapter 15 Partial Differentiation

Find (3/0x)e* 0| _, _,.
Find (3/8s)exp(rs® — rs)|, =1 s=1-
Find f,(1,0) if f(x, y) = cos(x + ™).
Find f,(—1,2) if f(r,s) = (r + s3) /(1 — r* — 5?).
The possible time 7 in minutes of a scuba dive is
given by T'=32V/(x + 32), where V is the vol-
ume of air in cubic feet at 15 psi (pounds per
square inch) which is compressed into the air
tanks, and x is the depth of the scuba dive in
feet.
(a) How long can a 27-foot dive last when
V =657
(b) Find 97/9x and 0T/dV when x =27,
V = 65. Interpret.
The displacement of a certain violin string placed
on the x axis is given by u =sin(x — 6¢) +
sin(x + 6¢). Calculate the velocity of the string at
x=1when t=1.
the limits in Exercises 23-26, if they exist.

lim (x*=2xy+4)
(x,)—>(0,0)

lim (=3 +15)
xp)>(0.0) 3 3

. x> =

lim 3 3
(x)>(0.0) x“+ y
xp+xP+x—2

the equation of the tangent plane to the given
ce at the indicated point in Exercises 27-30.

. z=x2+y2;x=l,y=1.

z=xsiny; x=2,y=m7/4

.z=eY; x=0,y=0.

.z=\/x2+y2;x=3,y=4n

the linear approximation to find approximations

lim
(x,)=>(0,0)

for the quantities in Exercises 31-34.

31

32.
33.
34.

35.

36.

- V(LOLY + (4.01)% + (8.002)°
(2.004)In(0.98)

(0'999)1001

(1.001)09°°

Find an approximate value for the hypotenuse of
a right triangle whose legs are 3.98 and 3.03.
The capacitance per unit length of a parallel pair
of wires of radii R and axis-to-axis separation D
is given by

e

(D+\/D2—4R2 ) '
In — R

The capacitance between a wire and a plane
parallel to it is

C* = 2’1750

(h+\/W),
M=

where 7 = distance from the wire to the plane.

37.

38.

39.

40.

41.

42.

43.

44.

43,

46.

(a) Find the expected change in capacitance for
two parallel wires, -separated by 2 centime-
ters, with radius 0.40 centimeter, due to a
radius increase of 0.01 centimeter.

(b) A wire of 0.57 centimeter radius has its
central axis at a uniform distance of 3 centi-
meters from a conducting plane. Due to
heating, the wire increases 0.02 centimeter in
radius, but due to bowing of the wire, it can
be assumed that the axis of the wire was
raised to 3.15 centimeters above the plane.
What is the expected change in capacitance?

At time ¢ =0, a particle is ejected from the

surface x% + 2y2 + 322 = 6 at the point (1, 1, 1) in

a direction normal to the surface at a speed of 10

units per second. At what time does it cross the

sphere x2 +y2 + z2 = 103? [Hint: Solve for z].

At what point(s) on the surface in Exercise 37 is

the normal vector parallel to the line x = y = 2?

Verify the chain rule for the function f(x, y,z)

= In(1 + x? + 2z} /(1 +y2) and the curve o(¢)

= (1,1 — % cost).

Verify the chain rule for the function f(x, y)

= x2/(2 + cos y) and the curve x =e’, y = e~ ".

(a) Let ¢ be a constant. Show that, for every
function f(x), the function u(x,t) = f(x — ct)
satisfies the partial differential equation
u, + cu, = 0.

(b) With u as in (a), consider for each value of ¢
the graph z = u(x, ) in the xz plane. How does
this change as t increases?

(a) Show that, if u(x, t)is any solution of the equa-
tion u, + cu, =0, then the function g(y,1)
defined by g(y,t) = u(y + ct, ) is independent
of 1.

(b) Conclude from (a) that ¥ must be of the form
u(x,t) = f(x — ct) for some function f.

(c) What kind of wave motion is described by the
equation u, + cu, = 0?

A right circular cone of sand is gradually collaps-

ing. At a certain moment, the cone has a height

of 10 meters and a base radius of 3 meters. If the

height of the cone is decreasing at a rate of 1

meter per hour, how is the radius changing,

assuming that the volume remains constant?

A boat is sailing northeast at 20 kilometers per

hour. Assuming that the temperature drops at a

rate of 0.2°C per kilometer in the northerly direc-

tion and 0.3°C per kilometer in the easterly
direction, what is the time rate of change of
temperature as observed on the boat?

Use the chain rule to find a formula for

(d/ dryexpl f(1)g ()]

Use the chain rule to find a formula for

(d/ dn(f(£)E?).



47.

48.

49.

50.

Find

If x and y are functions of ¢,

dx
dt

»

- dy
=1 h'd = —
, and ";o 1

1=0

in terms of x and y.

. d
find = ex+2v
dt =0

If x, y, and z are functions of ¢ and

dx dy

ar ;=g i |,_g 0
dz . d .
d = = - - 2
an @ o 1, find 7 cos(xyz?) - in

terms of x, y, and z.

The tangent planeto z=x* + 6y at x =1, y =1
meets the xy plane in a line. Find the equation of
this line.

The tangent plane toz = e* Y at x = 1, y = 2 meets
the line x = ¢, y = 2t — 1, z = 5t in a point. Find it.
the products 4B of the matrices in Exercises

51-60.

51.

52.

53.

55.

56.

57.

58.

59.

60.

61.

Z =

62.

63.

2
A=[1 2 4,B=|_]
1
3/2
r1o1 1 3/2
i=l3 5 7 2)8=|%
2
(0 -1 1 0
A= B=
1 o) 0—1]
(1 2 -1 1
A= B =
ERIER N
a=[1 2] g2 -1
12 4 2 -1
2 -1 1 2
A= B=
ERIL At
[ 1 2
A=l-1 el 1 1]
| 21 b=
1
-1
A=[1 234 575 |7
6 78 9 10 1
1
30 1 1 0 -1
A={1 2 —~1/,B={2 ¢ 1
1 0 1 01 0
1 0 -1 30 1
A=12 0 1,B=[1 2 -1
01 0 1 0 1

Compute 9z/9x and 3z /3y if

W+ ot
-2’
by (a) substitution and (b) the chain rule.

Do as in Exercise 61 if z = uo, u = x + y, and
v=x-y

Suppose that z =f(x,y), x=u+vand y=u—o.
Express 0z/9u and 9z/dv in terms of 9z/dx
and 9z /9y,

u=e *7V, p=eY

64.

65.

66.

67.

68.

Review Exercises for Chapter 15 795

In the situation of Exercise 63, express 0z/dx

and dz /8y in terms of 9z/9u and 3z /9.

The ideal gas law PV = nRT involves a constant

R, the number # of moles of the gas, the volume

V, the Kelvin temperature T, and the pressure P.

(a) Show that each of n, P, T, V is a function of
the remaining variables, and determine ex-
plicitly the defining equations.

(b) The quantity dP/d7T is a rate of change.
Discuss this in detail, and illustrate with an
example which identifies the variables held
constant.

(c) Calculate 0V /0T,3T/dP,3P/3V and show
that their product equals —1.

The potential temperature 9 is defined in terms of

temperature 7' and pressure p by

0.286
b T( 1000 ) .
P

The temperature and pressure may be thought of
as functions of position (x, y,z) in the atmo-
sphere and also of time ¢.

(a) Find formulas for 96/0x,30/dy,38/3z,
08/9d¢ in terms of partial derivatives of T
and p.

(b) The condition 88 /9z < 0 is regarded as un-
stable atmosphere, for it leads to large verti-
cal excursions of air parcels from a single
upward or downward impetus. Mete-
orologists use the formula

w_g(ir, g
dz

a9z T Cp

where g=32.2. C, = constant > 0. How
does the temperature change in the upward
direction for an unstable atmosphere?

The specific volume V, pressure P, and tempera-

ture 7 of a Van der Waals gas are related by

P=[RT/(V - B)— a/V? where a, B,R are

considered to be constants.

(a) Explain why any two of ¥, P, or T can be
comsidered independent variables which de-
termine the third variable.

(b) Find 9T /0P,3P/3V,0V/3T. Identify
which variables are constant, and interpret
each partial derivative physically.

(c) Verify that (97 /0PY0P/0VYOV/IT)=
—1 (not + 1!).

Dieterici’s equation of state for a gas is

P(V — b)e®/®¥T = RT,

where a, b, and R are constants. Regard volume
V as a function of temperature 7 and pressure P
and show that

(R ) )
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69. What is wrong with the following argument?
Suppose that w = f(x, y) and y = x%. By the

chain rule,
ow ow dx 9w dy ow aow
ow _ ow ox , ow “F _ ow
ox ~ 0x ax " ay ax ax T 2%,

Hence 0 =2x(dw/dy), so dw /3y = 0.

What is wrong with the following -argument?
Suppose that w= f(x, y,z) and z= g(x, y).
Then by the chain rule,

aow 8y+

70.

dw 0z

9z dx

aw _

dx

9w dx , dw Oy
dx dx dy dx
aw 0z

dz 9x

x
Hence
0= ow 0z

dz ox’
s0 dw/0dz = 0 or 3z /dx = 0, which is, in general,
absurd.
For a function u of three variables (x, ¥,z), show
that 3’ /3x 3y 9z = 8% /9y 3z dx.
For a function u of three variables (x, y, z), show
that 9% /9x dy 9z = 3% /02 dx dy.
Prove that the functions
@ flx,y)=In(x>+ yz),l
b X, y,2)= —————— |
® 8=
I S
x2+y2+22+ w2’
satisfy the respective Laplace equations:
@ fxtfy=0,
(b) Exx + gyy + 822 = O,
© huthy,+h,+h,=0,
where f, = a2f/ax2, ete.
74. If z = f(x — y)/y, show that

z+ y(@z/0x)+ y(3z/3y) = 0.

71.
72.

73.

©) hlx, y,z,w)=

75. Given w = f(x, y) with x =u+ v, y=u—ouy,

show that
Ow _ dw _ ow
dudv  9x>  gy*

*76. (a) A function u = f(x, . ..
geneous of degree n if

Slxy, oo ) = "f(xy, .., x,).
Show that such a function satisfies Euler’s differ-
ential equation

du du
_— - « .. +
o 0x, 0x; +

, X,,) 18 called homo-

+ x5 xm%=nf(xl,...,xm).
(b) Show that each of the following functions
satisfies a differential equation of the type in part
(a), find n, and check directly that f is homoge-
neous of degree n.

@) f0x, ) =x>+xp+y%
() f(x, y,z)=x+3y —\xz; xz>0;
i) f(x, y,z) = xpz + x* = x¥.

*77. In Exercise 77 on page 775 we saw that the

mixed partial derivatives of

LGS
x? +y2

at (0, 0) are not equal. Is this consistent with the
graph in Fig. 15.R.1?
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16.1

Example 1

Solution

Gradients, Maxima,
and Minima

The gradient of a function of several variables vanishes at a maximum or a
minimum.

The gradient of a function f is a vector whose components are the partial
derivatives of f. Derivatives in any direction can be found in terms of the
gradient, using the chain rule. The gradient will be used to find the equations
for tangent planes to level surfaces. The last two sections of the chapter extend
our earlier studies of maxima and minima (Chapter 3) to functions of several
variables.

Gradients and
Directional Derivatives

The directional derivative is the dot product of the gradient and the direction
vector.

The right-hand side of the chain rule
du_8udx+8ud_y+ﬂg

dt dx dt  dy dt Bz at

has the appearance of a dot product—in fact it is the dot product of the
vectors

dx. . b . d Bu; , du, dup

=i+ =j+ =k and —i+ —j+ —k
ar' T AT dr ax' Tyl T 5z

We recognize the first vector as the velocity vector of a parametric curve; if

o(t) is the vector representation of the curve, it is just o’(f). The second vector

is something new: it depends upon the function u = f(x, y,z) and contains in

vector form all three partial derivatives of f. This is called the gradient of f and

is denoted Vf. Thus

Vi(x, »,2) = fo(x, y,2)i +fy(x, .ol + f.(x, y,2)k
(a) Find Vfif u = f(x, y,2) = xy — 2°.
(b) Find Vf for the function f(x, y,z) = e — x cos( yz?).

(a) Substituting the partial derivatives of f into the formula for the gradient of
f, we find Vf(x, y,z) = yi + xj — 2zk.



798 Chapter 16 Gradients, Maxima, and Minima

Example 2
Solution

Figure 16.1.1. The gradient
vector field V£, where

f(x, p) = (x*/10) + (y2/6).

(b) Here f.(x,y,z)=ye” — cos(yzz), fy(x, y,z) = xe” + xzzsin(yzz), and
f.(x, y,z) = 2xyz sin( pz?), so

Vf(x, y,2) =] ye? — cos(yz*) Ji + [xe?” + xz’sin(yz%) |j
+[2xpzsin( yz°) |k. A

Notice that the vector Vf(x, y,z) is a function of the point (x, y,z) in space;
in other words, Vf is a function of the point in space where the partial
derivatives are evaluated. A rule ® which assigns a vector ®(x, y,z) in space
to each point (x, y,z) of some domain in space is called a vector field. Thus,
for a given function f, Vf is a vector field. Similarly, a vector field in the xy
plane is a rule @ which assigns to each point (x, y) a vector ®(x, y) in the
plane.

The Gradient
If z = f(x, y) is a function of two variables, its gradient vector field V{ is
defined by
z., 0z,

V(% p) = (6 )i+ £ (5 i = 22 i+ =i

If u= f(x, y,z) is a function of three variables, its gradient vector field
Vf is defined by

Vi(x, y,2) = f.(x, y,2)i +fy(x, VOl + f(x, ¥, 2)k

_uy, dui, du
= 8xl+ 8yJ+ aZk.

We may sketch a vector field @(x, y) in the plane by choosing several values
for (x, y), evaluating ®(x, y) at each point, and drawing the vector ®(x, y)
with its tail at the point (x, y). The same thing may be done for vector fields
in space, although they are more difficult to visualize.

Sketch the gradient vector field of the function f(x, y) = x2/10 + y?/6.

The partial derivatives are f,(x, y) = x/5 and f,(x, y) = y/3. Evaluating these
for various values of x and y and plotting, we obtain the sketch in Fig. 16.1.1.
For instance, f,(2,2) =2 and fy(2,2 = Z; thus the vector 2i+ %j is plotted at
the point (2,2), as indicated in the figure. A -

by
2. 2.
Q,2) Vf(2,2)='5‘i+§.l
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Example 3

Solution

Figure 16.1.2. The vector
field 3yi — 3xj is not the
gradient of a function.

Example 4

Solution

16.1 Gradients and Directional Derivatives 799

In sketching a vector field ®(x, y), we sometimes find that the vectors are so
long that they overlap one another, making the drawing confusing. In this
case, it is better to sketch e®(x, y), where ¢ is a small positive number. This is
illustrated in the next example.

(a) Nlustrate the vector field ®(x, y) = 3yi — 3xj by sketching 1 ®(x, y).
(b) Using the law of equality of mixed partial derivatives, show that the vector
field in (a) is not the gradient vector field of any function.

(a) If we sketched ®(x, y) =3yi— 3xj itself, the vectors at different base
points would overlap. Instead we sketch [®(x, y) =1yi — 1 xj in Fig. 16.1.2.

y

]If‘

“Il :

(by If ®(x, y)=23pi—3xj were the gradient of a function z = f(x, y), we
would have 9z/9x = 3y and 0z/9y = —3x. By the equality of mixed partial
derivatives, 9% /dxdy = —3 and 3% /dy dx = 3 would have to be equal; but
3 # —3, so our vector field cannot be a gradient. A

In a number of situations later in the book, the vector r from the origin to a
point (x, y,z) plays a basic role. The next example illustrates its use.

Let r= xi + yj + zk and r = ||r]| = yx? + y? + z* . Show that

V(l)=—%, r=#0.

What is T| V(l/r)|T?
By definition of the gradient,
)= Sh e R

Now

‘:ulx

2= ——)-- x -
ax\r ax 2 2 2 (x2+y2+22)3/2
and, similarly,

i(l)=_l i(l)=_i

ay\r P dz\r P
Thus

xr

~
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Example 6

Solution

as required. Finally,
"(+)
r

In the next box we restate the chain rule from Section 15.3 in terms of
gradients.

H H r3 r2 x2+y2+zz

L
3

The Chain Rule for Functions and Curves

Let f be a function of two (three) variables, o(¢) a parametric curve in
the plane (in space), and k() = f(o(¢)) the composite function. Then

H(t)=Vf(e(n)-o'(;  thatis, 2 f(o(1))=Vf(a(1))- o'(1).

In this form, the chain rule looks more like it did for functions of one
variable:

4 (f(g() = () g(1)

Verify the chain rule for u = f(x, y,z) = xy — z? and o (1) = (sin¢,cos t,e’).

The gradient vector field of fis yi + xj — 2zk; the velocity vector is given by
o'(f) = costi— sintj + e’k. By the chain rule,
% =Vf-0'=(yi+ xj— 2zK) - (costi —sinzj + e'k)
= ycost — xsint — 2ze' = cos’t — sin’t — 2e%.
To verify this directly, we first compute the composition as f(a (7))
= sintcost — e*. Then by one-variable calculus, we find

g; f(e(1)) = —sin’ + cos’ — 2e*.
Thus the chain rule is verified in this case. A

Suppose that f takes the value 2 at all points on a curve o(¢). What can you
say about V f(o (1)) and o’()?

If f(o(2)) is always equal to 2, the derivative (d/dr) f(o(t)) is zero. By the
chain rule, 0 =V f(a(?)) - 6(2), so the gradient vector Vf(o (7)) and the veloc-
ity vector o'(t) are perpendicular at all points on the curve. A

Let u = f(x, y,z) be a function (with continuous partial derivatives) and o(?) a
parametrized curve in space. The derivative with respect to ¢ of the composite
function f(e(f)) may be thought of as “the derivative of f along the curve
o(1).” According to the chain rule, the value of this derivative at ¢ = ¢, is
Vf(a(ty) - o'(f). We may write this dot product as

V(e (1)l Io"(2g)llcos,

where 8 is the angle between the gradient vector Vf(a(f,)) and the velocity
vector o'(¢,) (Fig. 16.1.3). If we fix the function f and differentiate it along
various curves through a given point r (here, as usual, we identify a point with
the vector from the origin to the point), the derivative will be proportional to
the speed ||o(t,)|| and to the cosine of the angle between ihe gradient and



V(e

o' ()

the curve o

P

Figure 16.1.3. The
derivative of f along the
curve o(?) is

2 f(a(1))=Vf(e(1)) - &'(1)
= V(a1 l]o'(1)]lcos®.

Example 7

Solution

16.1 Gradients and Directional Derivatives 801

velocity vectors. To describe how the derivative of f varies as we change the
direction of the curve along which it is differentiated, we fix r and choose
o(t)=r + td for d a unit vector. (Note that since d is a unit vector, the speed
of the curve o(¢) is 1, so 1 unit of time corresponds to 1 unit of distance along
the curve.)

We make the following definition: Let f(x, y,z) be a function of three
variables, r a point in its domain, and d a unit vector. Define the parametric
curve o(t) by o(?)=r+ td. The derivative (d/dt) f(o(1))|,-, is called the
directional derivative of f at r in the direction of d.

Since o'(f)=d and |d| =1, we see that if f has continuous partial
derivatives, the directional derivative at r in the direction of d is

Vf(r)-d=|Vf(r)|lcosb.

Notice that the directional derivatives in the directions of i, j, and k are just
the partial derivatives. For instance, choosing d =1, Vf-i=(fi+ fj+ fk)-i
= f,- Similarly, Vf-j=f and Vf-k=f,.

As we let d vary, the directional derivative takes its maximum value when
cosf = 1, that is, when d points in the direction of V f(r). The maximum value
of the directional derivative is just the length || Vf(r)]].

The following box summarizes our findings.

Gradients and Directional Derivatives

The directional derivative at r in the direction of a unit vector d is the rate
of change of f along the straight line through r in direction d; i.e., along
o(t)=r+ td

The directional derivative at r in the direction d equals Vf(r)-d. It
is greatest (for fixed r) when d points in the direction of the gradient
Vf(r) and least when d points in the same direction as — Vf(r).

Compute the directional derivatives of the following functions at the indicated
points in the given directions.

(@) f(x, y)=x+2x*=3xp; (xg, yo) = (I, 1); d=(2,%).

(b) f(x, ) = In(yx> + 32 ); (xo, yo) = (1,0); d = 215 /5.5 /5).

() flx, y,2) = xpz; (x0, Yo, 2) = (1, 1, 1); d = (l/ﬁ)i + (1/\/5)1(-

(d) fGx, y.2) = ™ + yz; (%0, yo. 20) = (L, L, 1) d=(1/ 3 )i —j + k).

(@) Vf(x,»)=(1 +4x -3y, —3x). At (1,1) this is equal to (2, —3). The
directional derivative is Vf(xy, yg) - d= (2, =3)-(3,4) = - §.

(b) Vf(x, y)=(x/(x*+ D, y/(x* + p?)), so Vf(1,0) = (1,0). Thus, the direc-
tional derivative in direction (25 /5,/5 /5) is 2v5 /5.

(¢) Vf(x, y,z) = (pz,xz,xy), which equals (1,1,1) at (1,1,1). For d equal to
(1/42,0,1/42), the directional derivative is 1/y2 + 0+ 1/y2 =2.

(d) Vf(x, y,z) =(e*,z, y), which equals (e, 1,1) at (1,1,1). For d equal to
(1/y3)-(i — j+ k), the directional derivative is e(1/y3)+ 1(—1y3) +
(1/3)=¢/V3. A

If one wishes to move from r = (x, y,z) in a direction in which f is increasing

most quickly, one should move in the direction Vf(r). This is because

Vf(r)-d = ||Vf(r)|cosd is maximum when & = 0, i.e, coséd = 1, so d is in the

direction of Vf(r). Likewise, — Vf(r) is the direction in which f is decreasing at

the fastest rate.
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Example 8

Solution

Example 9

Solution

Figure 16.1.4. The slope at
the point P of the curve C
in the plane & is the
directional derivative at
(x9, yo) of fin the
direction d.

Let u = f(x, y,z) = (sinxy)e*zz. In what direction from (1,7,0) should one
proceed to increase f most rapidly?

We compute the gradient:
du., oJu,, du
V = — —_— —_—
f=axit g it 5k
=y cos(xy)e_zzi + X cos (xy)e_zzj +(—22 sinxy)e_zzk.
At (1,7,0) this becomes
7 cos(m)i + cos(7)j = —7i —j.

Thus one should proceed in the direction of the vector —#i —j. A

Captain Astro is drifting in space near the sunny side of Mercury and notices
that the hull of her ship is beginning to melt. The temperature in her vicinity is
given by T= e * + e~ % + &%, If she is at (1, 1, 1), in what direction should
she proceed in order to cool fastest?

In order to cool the fastest, the captain should proceed in the direction in
which T is decreasing the fastest; that is, in the direction —VT(1,1,1).
However,
aT. daT., d —xg —2ps 3z
=i+ —j+—k=—e"Fi—2e Vj+ .

vr 8xl+8y"+azk e i—2e Yj+3ek
Thus,

-VT(1, L= e li+2e7% -3’k
is the direction required. A

Directional derivatives are also defined for functions of two variables. In this
case, we have a geometric interpretation of the directional derivatives of
f(x, y) in terms of the graph z = f(x, y). Given a point (x,, y,) in the plane
and a unit vector d = ai + bj, we can intersect the graph with the plane & in
space which lies above the line through (x,, y,) with direction d. (See Fig.
16.1.4.)

z=f(x,y)

The result is a curve C which may be parametrized by the formula
(x, y,2) = (xg + at, yo + bt, f(xy + at, yo+ bt)). The tangent vector to this
curve at P = (xg, yo, f(Xg, o)) 18

v=ai+ bj+ % f(xo + at, yo+ br)|,_ok

= ai + bj + [afx(xo,yo) + bfy(xo,yo)]k.
The slope of C in the plane &7 at P is the ratio of the vertical component



Figure 16.1.5. Starting from
(0, 1), moving in along the y

Example 10

Solution

axis makes the graph rise

the steepest.

Example 11

Solution
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af, (Xo, o) + bf,(xg, yo) of v to the length ya® + b* of the horizontal compo-

nent; but ya? + b? = 1, since d = ai + bj is a unit vector. Hence the slope of
C in the plane & is just af,(xg, yo) + bf, (%o, yo) = d Vf(x,, y,), which is
precisely the directional derivative of f at (x,, y,) in the direction of d.

If we let the vector d rotate in the xy plane, then the plane & will rotate
about the vertical line through (x,, yy) and the curve C will change. The
slopes at P of all these curves are determined by the two numbers f,(x,, yo)
and 5 (X0, v and the tangent lines to all these curves lie in the tangent plane
to z = f(x, y) at P.

Let f(x, y) = x> — y% In what direction from (0, 1) should one proceed in
order to increase f the fastest? Illustrate your answer with a sketch.

The required direction is

(0, 1) = %i+ %j at (0, 1)

=2xi— 2yj at (0,1)
= —2j.

Thus one should head toward the origin along the y axis. The graph of f,
sketched in Fig. 16.1.5, illustrates this. A

Our final example concerns the “position vector” r; see Example 4.

Let r= xi + yj + zk and r = ||r|. Compute Vr. In what direction is r increas-
ing the fastest? Interpret your answer geometrically.

We know that r =y/x*+ y* + 22, so

=gy dri drg_xy Vi z
vr 8xl+8y"+azk rl+r"+rk’

since 3r/dx =1 +2x/yx*+ y? + z* = x/r and so forth. Thus
= l i 1 = —l-—
Vr—r(x1+yj+zk -

Thus r is increasing fastest in the direction of r/r, which is a unit vector
pointing outward from the origin. This makes sense since r is the distance
from the origin. A
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Exercises for Section 16.1

Compute the gradients of the functions in Exercises 1-8.

L f(x, p,z) = x>+ y? + 2%,

2. fix, y,z) = xy + yz + xz.

3 f(x, o2y =x+ y? + 23,

4. f(x, p,z) = xp* + yz° + zx°.
5. f(x, y) = In(y/x? + ).

Cfx, ) = (xzz-i—yzz)ln\/x2 + 2.
. f(x, yy = xe*

. f(x, y) = x exp(xp® + 3).

. Sketch the gradient vector field of f(x, y)=
x?/8+ y2/12 +6.

10. Sketch the gradient vector field of f(x, y)=
x2/8 — y?/12.

L1. (a) llustrate the vector field ®(x, y) = xj — yi by
sketching {®(x, y) instead. (b) Show that @ is
not a gradient vector field.

12. (a) Sketch the vector field ®(x, y)=Li+
[1/(9 + x*+ y3)]j. (b) Explain why @ is or is not
a gradient vector field.

13. Show that V(1/r%) = —2r/r* (r 5= 0).

14. Find V(1/r%) (r 5 0).

Verify the chain rule for the functions and curves in
Exercises 15-18.
15. f(x, y,z) = xz + yz + xy; o(f) = (e’, cos 1, sin ).
16. f(x, y,z) = e¥7; a(1) = (6¢, 312, 1).

17. f(x, y,z) =x2 + 2+ 22 ; o(f) = (sint, cost, 1).

18. f(x, y.z) = xy + yz + xz; o(£) = (1, 1,1).

N

O 00

19. Suppose that f(e(?)) is an increasing function of
¢t. What can you say about the angle between the
gradient VJ and the velocity vector o’?

20. Suppose that f(e(?)) attains a minimum at the
time 7;. What can you say about the angle be-
tween Vf(o(ty)) and o'(1y)?

In Exercises 21-28, compute the directional derivative
of each function at the given point in the given direc-
tion.

21 f(x, y) = x4 y% = 3xp%; (xo, yo) = (1,2);
d=(1/2,y3 /2).

22. f(x, y)= e*cos y; (xo, yo) = (0,7 /4);

d =i+ 3j)/V10.

23. f(x, y) = 17x%; (x0, yo) = (1, 1);
d=(@+j)/ /2.

24. f(x, y) = €77 (xq, yo) = (1,7/2);

d = (3i + 4j)/5.

25. f(x, y,2) = x* — 2xy + 32% (x0, yo,Z0) =
(LL2;d=({+j-k/3.

26. f(x, y,2) = e—(X2+y2+zz); (X5 Yos 20) =
(1,10,100); d=(1, -1, - 1)/43.

27. f(x, y,z) = sin(xyz); (xo, yo,20) = (L, L, 7/4);
d=(1/V2,0,~1/y2).

28. f(x, y,2) = 1/(x* + y2 + 22); (xq, yo» Z0) =
2,3, 1) d=(G— 2k +1)//6.

In Exercises 29-32 determine the direction in which
each of the functions is increasing fastest at (1, 1).
29. f(x, y)= x>+ 2y?

30.
31
32.

33.

34.

35.

36.

g(x, y)= x?— 2y2
h(x, y)=e*sin y
l(x, y)=e"sin y — e *cos y

Captain Astro is once again in trouble near the
sunny side of Mercury. She is at location (1, 1, 1),
and the temperature of the ship’s hull when she

is at location (x, y,z) will be given by T(x, y, z)

= e~ ¥"3 where x, y and z are measured

in meters.

(a) In what direction should she proceed in
order to decrease the temperature most rap-
idly?

(b) If the ship travels at e® meters per second,
how fast will be the temperature decrease if
she proceeds in that direction?

(¢) Unfortunately, the metal of the hull will
crack if cooled at a rate greater than {14 ¢?
degrees per second. Describe the set of pos-
sible directions in which she may proceed to
bring the temperature down at no more than
that rate.

Suppose that a mountain has the shape of an

elliptic paraboloid z = ¢ — ax? — byz, where a, b,

and ¢ are positive constants, x and y are the

east-west and north-south map coordinates, and

z is the altitude above sea level (x, y, and z are all

measured in meters). At the point (1, 1), in what

direction is the altitude increasing most rapidly?

If a marble were released at (1, 1), in what direc-

tion would it begin to roll?

An engineer wishes to build a railroad up the

mountain of Exercise 34. Straight up the moun-

tain is much too steep for the power of the
engines. At the point (1, 1), in what directions
may the track be laid so that it will be climbing
with a 3% grade—that is, an angle whose tangent

is 0.03. (There are two possibilities.) Make a

sketch of the situation indicating the two possible

directions for a 3% grade at (1, 1).

The height 2 of the Hawaiian volcano Mauna

Loa is (roughly) described by the function

h(x, y) = 2.59 — 0.00024 % — 0.00065x2, where h

is the height above sea level in miles and x and

measure east-west and north-south distances in
miles from the top of the mountain.
At (x, y)=(—2, —4)

(a) How fast is the height increasing in the
direction (1, 1) (that is, northeastward)? Ex-
press your answer in miles of height per mile
of horizontal distance travelled.

(b) In what direction is the steepest upward
path?



37.

38.

39.

40.

41.

42.

43.

44.

16.2 Gradients, Level Surfaces, and Implicit Differentiation

(¢) In what direction is the steepest downward
path?

(d) In what direction(s) is the path level?

(e) If you proceed south, are you ascending or
descending? At what rate?

(f) If you move northwest, are you ascending or
descending? At what rate?

(g) In what direction(s) may you proceed in
order to be climbing with a grade of 3%?

In what direction from (1,0) does the function

fix, y)= x? —yz increase the fastest? Illustrate

with a sketch.

In what direction from (— 1, 0) does the function

f(x, y)= x? ——y2 increase fastest? Sketch.

In what direction is the length of r + j increasing

fastest at the point (1,0, 1)? (r = xi + yj + zk).

In what direction should you travel from the

point (2,4,3) to make the length of r+k de-

crease as fast as possible?

Suppose that f and g are real-valued functions

(with continuous partial derivatives). Show that:

(a) Vf=0if fis constant;

(b) V(f+g=Vf+Vg

(¢) V(cf)=cVfif cis a constant;

d V(fe)=fVg+gVf

(©) V(f/g)=(gVf~[Vg)/g® at points where
g+#0.

What rate of change does Vf(x, y,z)- (—j) rep-

resent?

(a) In what direction is the directional deriva-
tive of f(x, y) = (x> — y?)/(x* + y? at (1, 1)
equal to zero?

(b) How about at an arbitrary point (xg, yg) in
the first quadrant?

(c) Describe the level curves of f. In particular,
discuss them in terms of the result of (b).

Suppose that f(x, y) is given (and has continuous

partial derivatives). At (1, 1) the directional deriv-

ative in the direction toward (2,4) is 2 and in the
direction toward (2,2) it is 3. Find the gradient

16.2 Gradients, Level Surfaces,

45.

46.

47.

48.

*49.

*50.
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of fat (1,1) and the directional derivative there

in the direction toward (2, 3).

A function f(x, y) has, at the point (1, 3), direc-

tional derivatives of +2 in the direction toward

(2,3) and —2 in the direction toward (1, 4). De-

termine the gradient vector at (1,3) and compute

the directional derivative in the direction toward

3,6).

In electrostatistics, the force P of attraction be-

tween two particles of opposite charge is given

by P=k(r/|r|®) (Coulomb’s law), where k is a

constant and r = xi + yj + zk. Show that P is the

gradient of f= —k/|r|.

The potential V' due to two infinite parallel fila-

ments of charge of linear densities A and —A is

V = (\/27e)n(r,/ r)), where r} = (x — xo)* + y?

and r? = (x + xg)* + y%. We think of the fila-

ments as being in the z direction, passing

through the xy plane at (— x¢,0) and (x,, 0).

(a) Find V V(x, y), using the chain rule.

(b) Verify the flux law 3V /3x2 + 3°V /3y = 0.

For each of the following find the maximum and

minimum values attained by the function f along

the curve o(¢):

(@) f(x, y)= xy; o(t) = (cost,sin¢);
0< <27,

d) f(x, y)=x2+ p% o(t)=(cost,2sint);
0<1<2m.

What conditions on the function f(x, y) hold if

the vector field k X Vfis a gradient vector field?

(a) Let F be a function of one variable and f a
function of two variables. Show that the
gradient vector of g(x, y) = F(f(x, y)) is
parallel to the gradient vector of f(x, y).

(b) Let f(x, y) and g(x, y) be functions such
that Vf=AVg for some function A(x, y).
What is the relation between the level curves
of f and g? Explain why there might be a
function F such that g(x, y) = F(f(x, y)).

and Implicit Differentiation

The gradient of a function of three variables is perpendicular to the surfaces on
which the function is constant.

Recall that the tangent plane to a graph z = f(x, y) was defined as the graph
of the linear approximation to f. We found (Section 15.3) that the tangent
plane at a point could also be characterized as the plane containing the
tangent lines to all curves on the surface through the given point. For a
general surface, we take this as a definition.
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Figure 16.2.1. The gradient
of f at ry is perpendicular to
the tangent vector of any
curve in the level surface.

Example 1

Solution

Definition: Tangent Plane to a Surface

Let S be a surface in space, r, a point of S. If there is a plane which

contains the tangent lines at r, to all curves through ry in S, then this

plane is called the tangent plane to S at ry. A normal to the tangent plane
_ is sometimes said to be perpendicular to S.

The next box tells how to find the tangent plane to a level surface.

Gradients and Tangent Planes

Let r, lie on the level surface S defined by f(x, y,z) = ¢, and suppose
that Vf(ry) # 0. Then Vf(r;) is normal to the tangent plane to S at r,.
(See Fig. 16.2.1.)

Vf(rg)

o (o)

0

To prove this assertion, first observe that f(e(7)) = c if the curve o(¢) lies in S.
Hence

d
4 fo)=0.
By the chain rule in terms of gradients, this gives
Vi(e(?)-o'(r)=0.
Setting ¢ = ¢y, we have Vf(ry) - o’(¢y) = 0 for every curve o in S, so Vf(r)) is

normal to the tangent plane. (We required Vf(r;) # 0 so there would be a
well-defined plane orthogonal to Vf(r,).)

Letu = f(x, y,z) = x* + y* — z2. Find V(0,0 1). Plot this on the level surface
flx, y,z)= —L
We have
du, , du._, du . .
= 2it+ —j+——k= 2yj — 2zk.

vf 8xl+8yj+azk 2xi+ 2yj— 2zk
At (0,0, 1), V£(0,0,1) = —2k.

The level surface x?+ y>—z2= —1 is a hyperboloid of two sheets
(Section 14.4). If we plot Vf(0,0, 1) on it (Fig. 16.2.2), we see that it is indeed
perpendicular to the surface. A



Figure 16.2.2. Vf(0,0,1)is
perpendicular to the

surface.

Example 2

Solution

Example 3

Solution

Example 4

Solution

Example 5

16.2 Gradients, Level Surfaces, and Implicit Differentiation 807

2 2 2 =

<

Af0,0,1)

Find a unit normal to the surface sin(xy) = e at (1,7 /2,0).

Let f(x, y,z) = sin(xy) — e®, so the surface is f(x, y,z)=0. A normal is
V= pycos(xy)i+ xcos(xy)j — e’k. At (1,7 /2,0), we get —k. Thus —k (or k)
is the required unit normal. (It already has length [, so there is no need to
normalize.) A

The gravitational force exerted on a mass m at (x, y,z) by a mass M at the
origin is, by Newton’s law of gravitation,

GMm

r3

Write F as the negative gradient of a function V (called the gravitational
potential) and verify that F is orthogonal to the level surfaces of V.

F=—

I, where r=xi+yj+:zk and r=r|.

By Example 4, Section 16.1, V(1/r)= —(r/r’). Therefore we can choose
V=—GMm/rto give F = —VV. The vector F points toward the origin. The
level surfaces of V are 1/r = c—that is, r = 1 /¢, a sphere. Therefore, F is
orthogonal to these surfaces. A

The gradient enables us to compute the equation of the tangent plane to the
level surface S at r,. Indeed, Vf(ry) will be a normal to this plane, which
passes through r,. Therefore its equation can be read off immediately. (See
Section 13.4.)

Compute the equation of the plane tangent to the surface 3xy + z2 =4 at
(L, L, D).
Here f(x, y,z) = 3xy + z? and Vf = (3y,3x,2z), which at (1,1,1) is the vector
3i + 3j + 2k. Thus the tangent plane is

3(x—=D+3(y—-1H+2(z—1)=0 or 3x+3y+2:=8 A

(a) Find a unit normal to the ellipsoid x? + 2y* + 3z° = 10 at each of the
points (y10,0,0), (—10,0,0), (1,0,43), and (— 1,0, —3).

(b) Do the vectors you have found point to the inside or outside of the
ellipsoid?

(c) Give equations for the tangent planes to the surface at the two points of
the surface with x, = y,= 1.
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Solution (a) Letting f(x, y,2z) = x?+ 2p? + 32> = 10, we find Vf(x, y,z) = (2x,4y, 62).

At (\/m ,0,0), a unit normal to the ellipsoid is
V(Y10 ,0,0) (210 ,0,0)

va(\/E,0,0)H - ((2@)24_02_,_02)
At (—10,0,0), it is (—1,0,0). At (1,0,/3), it is

V/(1,0,3) =( 1 035)
VL0 \ V2828 )

and at (— 1,0, —3) itis (—1/v28,0, =343 /28).

(b) The vectors are pointing to the outside of the ellipsoid.

(c) The two points are (1, 1,\/7/73 ), and (1,1, — \/7/73 ). Evaluating the gra-
dient, Vf(1,1,/7/3)=(2,4,2/21) and Vf(1,1,—\7/3) = (2,4, —2/21),
so the tangent planes to the surface at the points (1,1,\/7/7 ) and
(1,1, —V7/3) are given by 2(x — 1)+ 4(y — 1) + 2/21(z—V7/3)=0 and
2(x — 1) + 4(y — 1) = 2/21(z + V7/3) = 0, respectively. A

— =(1,0,0)

There is also a connection between gradients and tangents for functions of
two variables: the tangent line to a level curve of a function f(x,y) is
perpendicular to the gradient of f at each point. Combining this fact with the
box on p. 801, we see that the direction in which the function f is increasing or
decreasing most rapidly is perpendicular to the level curves of f. For example,
to get down most directly from the top of a hill, one should proceed in a
direction perpendicular to the level contours. (See Fig. 16.2.3.)

h =300

h=1500
R X 1 = 2000

Curve of steepest

descent

(a) Steepest descent of a hill (b) Contour map of hill 2000 feet high
Figure 16.2.3. The curve of
steepes;_delscent i; . Gradients, Level Surfaces,
perpendicular to the leve
curves. (a) Steepest descent and Level curves
of a hill. (b) Contour map The normal to the tangent plane at ry = (xg, yg,2o) of the level surface
of hill 2000 feet high. f(x, y,z) = c is Vf(ry). The equation of the plane is

fe(X05 Yo 20)(X = Xo) + f,(¥0, Yo, Zo)(¥ — yo) + (%05 Yo, Zo)(2 — 29) = 0.
The equation of the tangent line at (x,, y,) to the curve f(x, y)=rc is

Se(%o, yo)(% — xg) +fy(x0’ Yo)(y —yo) =0.




Example 6

Solution

Example 7

Solution
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Find the equation of the tangent line to xy =6 at x =1, y =6.

With f(x, y) = xp, we have f,(x, y) = y and f (x, y) = x. Then f,(1,6) = 6 and
5 (L,6)=1, so from the preceding box, the equation of the tangent line
through (1,6) is

6(x—D+1(y—6)=0 or y=—6x+12. A

In the next example we check that the equation given in Section 15.2 for the
tangent plane to a graph is consistent with that given here.

Let z = g(x, y). The graph of g may be defined as the level surface f(x, y,z)
=0, where f(x, y,z) = z — g(x, y). Compute the gradient of f and verify that
it is perpendicular to the tangent plane of the graph z = g(x, y) as defined in
Section 15.2.

With f(x, y,z) = z — g(x, p),
Vi(x, y,2) = fu(x, y,2)i +fy(x,y,z)j + f.(x, y,2)k
=—g.(x,)i- gy(x, itk
This is exactly the normal to the tangent plane at (x, p) to the graph of g. A

Many functions of several variables are built by combining functions of one
variable. We actually found partial derivatives of such functions in our earlier
work on implicit differentiation and related rates. For instance, suppose that
»y = f(x) and that x and y satisfy the relation

x* + 8xsin y = 0.

Then differentiating with respect to x, using the chain rule for functions of one
variable, gives

3x% + 8sin y + 8xcosyg)—) =

which we can solve for dy/dx to obtain
a4y _ _ 3x*+8siny
dx 8xcosy

From the point of view of multivariable calculus, we may say that the
graph y = f(x) lies on the level curve F(x, y) =0, where

F(x,p) = x>+ 8xsin y.
A normal vector to this curve at (x, y) is

_90F. OF.
VF= I i+ —yJ = (3x + 8sin y)i + (8xcos p)j,

80 a tangent vector is given by any vector perpendicular to V F, such as
(—8xcos y)i + (3x° + 8sin p)j.
Thus dy/ dx, the slope of the tangent line, is
3x% + 8sin y
— 8xcos y

The general procedure is indicated in the following box.
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Example 8

Solution

Example 9

Solution

Implicit Differentiation
and Partial Derivatives

If y = f(x) is a function satisfying the relation z = F(x, y) = 0, then
dy _ _ 9z/8x

dx  93z/dy’ Q)

ie.
U G20 (C)) ,
f(x)_ Fy(x,f(x)) . (1)

Indeed, differentiating F(x, y) = 0 with respect to x using the chain rule gives

OF dx , OF & _
0x dx+8y dx 0,

ie.,

AF L OF & _
ox T oy dx

Solving for dy/dx gives the result in the box. Notice that in (1) it is incorrect
to “cancel the 9z’s,” because the minus sign would be left.

Suppose that y is defined implicitly in terms of x by e* ™ + x*—y=1. Find
dy/dx at x =0, y = 0 using formula (1).

Here z = F(x, y)=e* 7V + x*—y — 1,50

82 _ yumy dz| _
P e +2x and x ;:g 1.
Likewise
82 x—y 82
=2 =—¢ —1 and ==| _,=-—2.
dy 1320
Therefore
dz/dx
- =L~ =1/2.
9z/dy /

and so, by (1), dy/dx = 1/2. A

Formula (1) makes sense as long as 3z /3y # 0. In fact there is a result called
the implicit function theorem' which guarantees that F(x, y) =0 does indeed
define y as a function of x, provided that 9z/dy + 0. The values of x and y
may have to be restricted, as we found when studying implicit differentiation
in Section 2.3 (see Figure 2.3.1).

Discuss what happens to y as a function of x if dz/dy =0 in (1) for the
example x — y’ = 0.

The equation z = F(x, y)=x — y*>=0 implicitly defines the function y
= f(x)= Yx. We have 8z/9x =1 and 3z/9y = —3y% so 3z/dy vanishes

! For a proof based on the mean value and intermediate value theorems, see J. Marsden and
A. Tromba, Vector Calculus, Second Edition, Freeman (1981), Section 4.4.
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when y = 0; this is just the point on the graph y = ¥x where the cube-root
function is not differentiable and the tangent line becomes vertical. A

In related rate problems, we have a parametric curve (x, y)= (g(1),h(?))
which lies on a level curve F(x, y) = 0. Differentiating with respect to ¢ by the
chain rule, we get

d d
0=F(x )5 + F(x )G )

which is a relation between the rates dx/dt and dy/dt. Such relations were
obtained in Section 2.5 using one variable calculus.

Suppose that x = g(¢) and y = h(7) satisfy the relation x> — y? = xp. Find a

(a) Differentiating the relation x? — y2 = xy with respect to ¢ by one-variable
calculus, we obtain 2x(dx/dt) —2y(dy/dr) = y(dx/dt) + x (dy/dt) or,

(b) To apply formula (2), we set F(x, y)=x?— y*— xp. Then F (x,y)
=2x —y and F,(x, y) = —(2y + x), s0 (2) gives the same relation between
dx/dt and dy/dt: 2x — y)(dx/dt)y — Qy + x)(dy/dt) = 0. A

Suppose that x = g(t) and y = h(¢) satisfy the relation x¥ = 2. Find a relation

Example 10
relation between dx/dt and dy /dt:
(a) by one-variable calculus;
(b) by formula (2).
Solution
equivalently, 2x — y)(dx/dt) — Ry + x)(dy/dt) = 0.
Example 11
between dx /dt and dy / dt.
Solution

Let z = F(x, y)=x” —2. Then 9z /8x = yx”~! and 9z/dy = x’Inx, so the
relation is
—1dx dy _

yo18x L o onx L =
yx i +x’Inx 7 0.

Using the fact that x” = 2, we can simplify this to

Y dx Y _
el +1nxdt 0. A

Exercises for Section 16.2

In Exercises 1-4, find V£(0,0, 1) and plot it on the level
surface f(x, y,z) = ¢ passing through (0,0, 1).

l. f(x, y,z)= x? +y2 + 22

2. f(x, y,2) =z — x? —yz

. f(x,y,2)=z—x+y

4. f(x, y,z)= 22— x -y
In Exercises 5-8, find a unit normal to the given
surface at the given point.

5. xyz=38; (1, 1,8).

6. x»2+y—z+1=0at (0,0,1).

7. cos(xy) = e* —2 at (1,7,0).

8. eV =cat(l,1,1)

9

. Coulomb’s law states that the electric force on a
charge g at (x, y,z) produced by a charge Q at
the origin is F= Qgr/r’. Find ¥ so that F =
~— V¥V and verify that F is orthogonal to the level
surfaces of V. .

10. Joe Perverse has invented a new law of gravita-
tion. In this theory, the force exerted on a mass
m at (x, y,z) by a mass M at the origin is
F = —JMmr/r°, where J is Joe’s constant. Find
V such that F= —VV and verify that F is or-
thogonal to the level surfaces of V.
In Exercises 11-16, find the equation for the tangent
plane to each surface at the indicated point.
11 x2+2y? + 322 =10; (1,y3, 1).
12, xpz2=1; (1, 1, 1).
13. x? + 2% + 3xz = 10; (1,2,1).
14. y* — x2=13; (1,2,8).
15, xyz=1; (1, 1, 1).
16. xy/z=1; (1,1, 1).
Find the equation for the tangent line to each curve at
the indicated point in Exercises 17-20.
17. x2+ 2% =3; (1, 1).
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18. xy = 17; (xg, 17/ x¢).

19. cos(x + y)=1/2; x=a/2, y =0.

20. e® =2; (1, In2).
Find the equation of the line normal to the given
surface at the given point in Exercises 21-24.,

21 e~ = -3 (1 1, 1)

22. 2x% +3y2 4+ 22=9; (1,1,2)

23. x/yz=1,(L,L,1)

24. xy22 =4;(1,1,2)
In Exercises 25-30, suppose that y is defined implicitly
in terms of x by the given equation. Find dy/dx using

fogmula (1).
25

26. x? —y2 =
27. x/y =10
28. y —sinx? + x2— yr=1
29. x> —sin y + y*=4
30 e** 4 y3 =0
In Exercises 31-34, find dy/dx at the indicated point
using formula (1).
31.3x2+ ) —e*=0; x=0,y =,
R2.x+yt=Lx=1y=1
33. cos(x+y)=x+1/2; x=0,y=n/3.
34. cos(xy)=1/2; x=1,y=7/3.
In Exercises 35-38, discuss what happens to y as a
function of x if 3z /3y = 0 in (1) for the given equation.
35.x— =0 36. x —cos y=0
37.x—y°=0 38. x —sin y =0
In Exercises 39-42, suppose that x and y are functions
of ¢ satisfying the given relation. Find a relation be-
tween dx /dt and dy/dt using formula (2).
39. xIny=1 40. sin(xy) + cos(xy) = 1
41, x*+y*=1 42 x?+3y?=2

43. (a) Derive a formula like (1) for dx/dy when x
and y are related by F(x, y)=0. (b) Use your
result in (a) to find dx/dy for the functions in
Exercises 29 and 30.

44. Let p be a function of x satisfying F(x, y,x + y)
=0, where F(x, y,z) is a given function. Find a
formula for dy /dx.

16.3 Maxima and Minima

Suppose that x = g(¢) and y = h(¢) satisfy the equations
in Exercises 45 and 46. Relate dx /dt and dy/dt.

45. In(xcos y)=x

46. cos(x —2p°+ yH =y

47. (a) Find the plane which is tangent to the surface
z= x>+ »? at the point (1, —2, 5).

*(b) Letting f(x, y) = x>+ »°, define the “slope”
of the tangent plane relative to the xy plane
and show that it equals {|Vf(1, —2)]|.

48. (a) Show that the curve x%—y?=c¢, for any
value of ¢, satisfies the differential equation
dy/dx =x/y.

{(b) Draw in a few of the curves x> —y2 = ¢, say
for ¢ = £1. At several points (x, y) along
each of these curves, draw a short segment of
slope x/y; check that these segments appear
to be tangent to the curve. What happens
when y = 0? What happens when ¢ = 0?

49. Suppose that a particle is ejected from the sur-

face x* + y> — 2> = —1 at the point (1,1,y3) in

a direction normal to the surface at time 1t =0

with a speed of 10 units per second. When and

where does it cross the xy plane?

*50. Let ¥ be a function defined on a domain in
space. The force field associated with V' is F
=®(x, y,z)= =V V(x, y,z); we call V the po-
tential of ®. Let a point with mass m move on a
parametric curve o(f) and satisfy Newton’s sec-
ond law ma =F, where a is the acceleration of
the curve. Use the chain rule to prove the law
of conservation of energy: E = 1m|o’(2)|* +
V[o(#)] is constant, where &(¢) is the position
vector of the curve.

x51. The level surfaces of a potential function V are
called equipotential surfaces.

(a) What is the relation between the force vec-

tor and the equipotential surfaces?

(b) Explain why “sea level” is approximately an

equipotential surface for the earth’s gravita-
tional field. What spoils the approximation?

First and second derivative tests are developed for locating maximum and
minimum points for functions of two variables.

In studying maxima and minima for functions of one variable, we found that
the basic tests involved the vanishing of the first derivative and the sign of the
second derivative. In this section we develop tests involving first and second
partial derivatives for locating maxima and minima of functions of two

variables.

The definitions of maxima and minima for functions of two variables are
similar to those in the one-variable case, except that we use disks instead of
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intervals. Recall that the disk of radius r about (x,, Yo) consists of all (x, y)
such that the distance \/(x — x0)> + (¥ — yo)° is less than r. (See Fig. 15.1.2)

Definition of Maxima and Minima

Let f(x, y) be a function of two variables. We say that (x,, y,) is a local
minimum point for f if there is a disk (of positive radius) about (x4, y)
such that f(x, y) > f(x,, yo) for all (x, y) in the disk.
Similarly, if f(x, y) < f(x,, yo) for all (x, y) in some disk (of posi-
tive radius) about (x,, y,), we call (x,, yo) a local maximum point for f.
A point which is either a local maximum or minimum point is
called a local extremum.

We may also define global maximum and minimum points to be those at
which a function attains the greatest and least values for all points in its
domain.

Example 1  Refer to Fig. 16.3.1, a computer-drawn graph of z = 2(x> + y%e™* 7", Where
are the maximum and minimum points?

Figure 16.3.1. The volcano: z =2(x? + y?)exp(— x2 — y%). (a) Coordinate grid lifted to the surface.
(b) Level curves lifted to the surface.
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Solution

Example 2

Solution

Example 3

Solution

There is a local (in fact, global) minimum at the volcano’s center (0,0), where
z=0. There are maximum points all around the crater’s rim (the circle

X2+y'=1). A

The following is the analog in two variables of the first derivative test for one
variable (see Section 3.2).

First Derivative Test

Suppose that (x, yo) is a local extremum of f and that the partial
derivatives of f exist at (xq, y). Then f,(xo, yo) = f, (X, yo) = 0.

We consider the case of a local minimum; the proof for a local maximum is
essentially the same.

By assumption, there is a disk of radius r about (xy, yo) on which
f(x, ¥) > f(xq, yo)- In particular, if [x — Xl < r, then f(x, yg) > f(Xo, yo), 5O
the function g(x) = f(x, yo) has a local minimum at x,. By the first derivative
test of one-variable calculus, g'(x,) = 0; but g'(x,) is just f,(xg, yo)- Similarly,
the function 4(y) = f(x,, y) has a local minimum at y,, 0 5, (o, o) =0.

The first derivative test has a simple geometric interpretation: at a local
extremum of f, the tangent plane to the graph z = f(x, y) is horizontal (that is,
parallel to the xy plane.)

Points at which f, and f, both vanish are called critical points of f. As in
one-variable calculus, finding critical points is only the first step in finding
local extrema. A critical point could be a local maximum, local minimum, or
neither. After looking at some examples, we will present the second derivative
test for functions of two variables.

Verify that the critical points of the function in Example 1 occur at (0,0) and
on the circle x* + y*= 1.

. 2 2 22
Since z = 2(x* + y“)e~* 7, we have

g—)zc = 4x(e_"2_y2) + 2(x2 +y2)e_"2_}’2(—2x)

= dx(e™ Y1 - 2= )
and

d N
R RN (SR}

These vanish when x = y = 0 or when x>+ »*=1. A

Let z = x> — 2. Show that (0,0) is a critical point. Is it a local extremum?

The partial derivatives 3z/3x = 2x and 3z/3y = — 2y vanish at (0,0), so the
origin is a critical point. It is neither a local maximum nor minimum since
flx, )= x?— y2 is zero at (0,0) and can be either positive (on the x axis) or
negative (on the y axis) arbitrarily near the origin. This is also clear from the
graph (see Fig. 16.1.5), which shows a saddle point at (0,0). A

If we know in advance that a function has a minimum point, and that the
partial derivatives exist there, then we can use the first derivative test to locate
the point.



Example 4

Solution

Figure 16.3.2. The point
nearest to the origin on the
planez=x+3y —6is

(6/11,18/11, —6/11).

Example 5

Solution

16.3 Maxima and Minima 815

(a) Find the minimum distance from the origin to a point on the plane
x+3y—z=6.
(b) Find the minimum distance from (1,2,0) to the cone 2% = x? +

(a) Geometric intuition tells us that any plane contains a point which is closest
to the origin. To find that point, we must minimize the distance 4=

yx? +y*+ 22, where z = x + 3y — 6. It is equivalent but simpler to minimize
d*= x>+ yz +(x+3y— 6)>. By the first derivative test, we must have

9(d?) :
ix =0 thatis, 2x+2(x+3y—6)=0
and
3(d?) .
3 =0 thatis, 2y +6(x +3y —6)=0.
Y
Solving these equations gives y =48, x =& Thusz=x+3y— 6= — §, and

so the minimum distance is d = x> + y* + z2 = 6y11 /11. (See Fig. 16.3.2.)

z

y

(b) We minimize the square of the distance: d?= (x — 1)? + ( y - 22 + 22
Substituting z? = x* + »?, we have the problem of minimizing
fxy)=(x— 1D+ (y -2+ x> +)?
=2x2+2y2—2x—4y+5.
Now
So(x,y)=4x—-2 and fy(x, y)y=4y—4

Thus the critical point, obtained by setting these equal to zero,is x =4,y = 1.
This is the minimum point. The minimum distance is

a=1/2= 1+ Q=2 1/
=V1/4+1+1/4+1=5/2~1581. A

A rectangular box, open at the top, is to hold 256 cubic centimeters of cat
food. Find the dimensions for which the surface area (bottom and four sides)
is minimized.

Let x and y be the lengths of the sides of the base. Since the volume of the box

is to be 256, the height must be 256/xy. Two of the sides have area
x(256/ xy), two sides have area y(256/xy), and the base has area xy, so the



816

Chapter 16 Gradients, Maxima, and Minima

Example 6

Solution

total surface area is 4 = 2x(256/xy) + 2y(256 /xp) + xy = 512 /y + 512/x +
xy. To minimize 4, we must have

_3d _ 512 _a4 _ 512
0=d4=_2l2,," o=04__22,

0x x dy »?
The first equation gives y = 512/x?; substituting this into the second equation
gives 0= —512(x2/512)* + x = —x*/512 + x. Discarding the extraneous
root x = 0, we have x*/512 =1, or x = {512 = 8. Thus y =512/x* = 8, and
the height is 256/ xy = 4, so the optimal box has a square base and is half as
high as it is wide. (We have really shown only that the point (8, 8) is a critical
point for f, but if there is any minimum point this must be it.) A

X.

We now turn to the second derivative test for functions of two variables. Let
us begin with an example.

Captain Astro is being held captive by Jovians who are studying human
intelligence. She is in a room where a loudspeaker emits a piercing noise.
There are two knobs on the wall, whose positions, x and y, seem to affect the
loudness of the noise. The knobs are initially at x = 0 and y = 0 and, when the
first knob is turned, the noise gets even louder for x < 0 and for x > 0. So the
captain leaves x = 0 and turns the second knob both ways, but, alas, the noise
gets louder. Finally, she sees the formula f(x, y) = x? + 3xp + »* + 16 printed
on the wall. What to do?

First of all, she notices that f(x,0)= x>+ 16 and f(0, )= y* + 16, so the
function f, like the loudness of the noise, increases if either x or y is moved
away from zero. But look! If we set y = — x, then the “3xy” term becomes
negative. In fact, f(x, — x) = x2 — 3x* + x?+ 16 = — x? + 16. Captain Astro
rushes to the dials and turns them both at once, in opposite directions. (Why?)
The noise subsides (and the Jovians cheer). A

The function f(x, y) = x> + 3xy + y*> + 16 has a critical point at (0,0), and
the functions g(x) = f(x,0) and h(y)= f(0, y) both have zero as a local
minimum point; but (0,0) is not a local minimum point for f, because
flx, —x)= —x?+ 16 is less than f(0,0)= 16 for arbitrarily small x. This
example shows us that to tell whether a critical point (xy, y,) of a function
f(x, y) is a local extremum, we must look at the behavior of f along lines
passing through (xg, yg) in all directions, not just those parallel to the axes.

The following test enables us to determine the nature of the critical point
(0,0) for any function of the form Ax> + 2Bxy + Cy>.

Maximum-Minimum Test
for Quadratic Functions

Let g(x, y) = Ax* 4+ 2Bxy + Cy?, where 4, B, and C are constants.

1. If AC— B*>0, and 4 > 0, [respectively 4 < 0], then g(x, y) has a
minimum [respectively maximum] at (0, 0).

2. If AC — B? <0, then g(x, y) takes both positive and negative values
for (x, y) near (0,0), so (0,0) is not a local extremum for g.

To prove these assertions, we consider the two cases separately.

1. fAC- ]32 > 0, then 4 cannot be zero (why?), so we may write
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—A(x24+ 2B C 2\ o 2, 2B By ¢ , BY»

=A(x+§y)2+ Lac- By, (1)

A A
Both terms on the right-hand side of (1) have the same sign as 4, and they
are both zero only when x + (B/A)y =0 and y = 0—that is, when (x, y)
= (0,0). Thus (0,0) is a minimum point for g if 4 > 0 (since g(x, y) > 0 if
(x, ) # (0,0)) and a maximum point if 4 < 0 (since g(x, y) <0 if (x, y)
= (0,0)).

2. If AC — B*> < 0 and A =0, then formula (1) still applies, but now the terms
on the right-hand side have opposite signs. By suitable choices of x and y
(see Exercise 49), we can make either term zero and the other nonzero. If
A =0, then g(x, y) = y(2Bx + Cy), so we can again achieve both signs. B

In case 2 of the preceding box, (0,0) is called a saddle point for g(x, y). (See
Exercises 49 and 50 for a further discussion of this case and the case
AC— B?=0)

(a) Apply the maximum-minimum test to f(x, y) = x* + 3xy + y* + 16.
(b) Determine whether (0,0) is a maximum point, a minimum point, or
neither, of g(x, y)=3x>—5xy + 3%

(a) We may write this as g(x, y) + 16, where g(x, y) = x> + 3xp + y? has the
form used in the test, with 4 =1, B=3,and C=1. Since AC — B*=1—-2is
negative, there exist choices of x and y making g(x, y) both positive and
negative, so f has a saddle point at (0,0). (Equation (1) gives g(x, y)
= (x + 3y’ — 2% so moving along the line x = — 3y makes g negative,
while moving along y = 0 makes g positive.)

(by A=3, B=—3%, and C=3,50 4=3>0 and AC— B*=9-2 >0.
Thus (0,0) is a minimum point by part 1 of the maximum-minimum test. A

Note that for the quadratic function g(x, y) in the preceding box, the
constants 4, B, and C can be recovered from g by the formulas

2 2 2

08 p_1 %%  _17%%

4=1°8
2 9.’ 2 3x 9y’ 2 3y

so that the signs of 4 and AC — B? are the same as those of 9% /dx? and

(9%g/0x*)(d% /dy?) — (9% /dx dy)>. The second derivative test for general

functions involves just these combinations of partial derivatives.

Second Derivative Test

Let f(x, y) have continuous second partial derivatives, and suppose that
(x9, yo) 1s a critical point for f:

Se(%059) =0 and fy(xo,yo) = 0.
Let 4 = f. (xo, yo) B = Joy(Xo yo), and C = Sy (Xo0> Yo)-

If: then:
A>0,AC—-B*>0 (%9, Yo) 1s a local minimum;
A<0,AC—B*>0 (X9, yo) is a local maximum;
AC - B*<0 (Xg yo) is a saddle point;

AC—-B?*=0 the test is inconclusive.
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Figure 16.3.3. The
point (x, y) is
(xo + rcosf, yo+ rsinf).

Example 8

Solution

To prove these assertions, we look at f along straight lines through (x,, Vo)
Specifically, for each fixed # in [0,27], we will consider the function A(r)
= f(xo + rcos#d, yo + rsind), which describes the behavior of f along the line
through (xg, y,) in the direction of cos#i + sin §j. (See Fig. 16.3.3.)

For each 8, h(r) is a function of one variable with a critical point at r = 0.
To analyze the behavior of 4(r) near r = 0 by using the second derivative test
for functions of one variable, we differentiate 4(r) using the chain rule of
Section 15.3. Let x = x, + rcos8 and y = y, + rsiné; then

W) = (5 2) 4 £ 2) D = [ (3, 9088 + f(x, )sind.

We differentiate again, applying the chain rule to f, and f,:

7 — d dy
h'(r) = fo (%, y)cosﬂjf +fxy(x, y)cosazi;

+fyx(x,y)sm071; + fp (X, y)smﬂE .

Since f,, = f,. by equality of mixed partials, this becomes
h(r) = fo (%, y)cos®d + 2, (%, y)cosfsinb + f, (x, »)sin’d
or
R (F) = fux (X, + rcosd, y, + rsinf)cos™d
+ 2f,, (%o + recosé, yo + rsinf )cosdsiné
+f,,(xo + rcos8, yo + rsing )sin’d. ()
Setting r = 0, we get
B"(0) = f. (%o, Y0)c0sB + 2f,(xq, yo)cos b sind + f, (xo, Yo)sin’,

which has the form Ax? + 2Bxy + Cy?, with x = cos#, y =sind, and with
A = £, (%0, yoh B = f(X0s yo) C = f,, (%0, yo). Let AC = B> = D.

Now suppose that D >0 and f,,(xg, yo) >0. By the maximum-
minimum test for quadratic functions, #”(0) > 0, so & has a local minimum at
r = 0. Since this is true for all values of 8, f has a local minimum along each
line through (x,, y)- It is thus plausible that f has a local minimum at (xo, yo),
so we will end the proof at this point. (Actually, more work is needed; for
further details, see Exercises 51 and 52.)

If D >0 and f_ (%o, yo) <O, then f has a local maximum along every line
through (X, yo); if D <0, then f has a local minimum along some lines
through (x,, y,) and a local maximum along others. B

Find the maxima, minima, and saddle points of z = (x> — y?)e( =% 77/2,
First we locate the critical points by setting 3z /3x = 0 and 9z/dy = 0. Here

9z _ _ 2 N (—xE—pY /2
gy —[2x x(x"—y )]e Y

and

Q_ — _ 2 _ .2 (—xr=pH) /2
02 <[~y (2 e



Figure 16.3.4. Computer-

generated graph of
z=(x2— yHel ¥/,

Example 9

Solution
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so the critical points are the solutions of
x[2—-(x2—y2):|=0, y[—2—(x2—y2):|=0.

This has solutions (0, 0), (+2,0), and (0, = 2).
The second derivatives are

% 2 2.2 2 27 (=x2=)?) /2
a—xz—-[2—5x +x(x —y)+y:|€( y)/,
9%z 22

dxdy = xp(x? = p?)e 02

0%z _ 2 _ 2.2 _ .2 27 (—x2—yY) /2
—ayz—[Sy 2+ yi(x y)—x:Ie e,

Using the second derivative test results in the following data:

Point A B C AC— B? Type
(0,0) 2 0 -2 —4 saddle
(/2 ,0) —4/e 0 -4/ 16/ ¢ maximum
(—v2,0) —4/e 0 —4/e 16/¢* maximum
0,42) 4/e 0 4/e 16/ ¢ minimum
0, —2) 4/e 0 4/e 16/ ¢? minimum

819

The results of this example are confirmed by the computer-generated graph in

Fig. 16.3.4. A

<2

o
O E D N oE ®

Let z=(x? + y»cos(x + 2y). Show that (0,0) is a critical point. Is it an

extremum?

We compute:

g_)zc = 2xcos(x + 2y) — (x2 + yz)sin(x +2y),
g_; =2ycos(x + 2y) — 2(x2 + yz)sin(x + 2y).

These vanish at (0, 0), so (0,0) is a critical point.
The second derivatives are:
9%

dx

== = 2cos(x + 2p) — dxsin(x + 2y) — (x* + y*)cos(x + 2y),
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9%
dxdy

2
% = 2cos(x + 2y) — 8ysin(x + 2y) — 4(x’ + y*)cos(x + 2).
y

= —4xsin(x + 2y) — 2ysin(x + 2y) — 2(x* + y*)cos(x + 2y),

Evaluating at x=0, y=0, we get A =2, B=0, and C=2, so 4 >0,
AC — B? >0, and thus (0,0) is a local minimum. A

Example 10 Find the point or points on the elliptic paraboloid z =4x? + y* closest to
(0,0, 8).

Solution The typical point on the paraboloid is (x, y,4x? + y?); its distance from

(0,0,8) is \/x2 +)7+ (4x7 +y* — 8)2 . It is convenient to minimize the

square of the distance:

f(x,p)=x>+y*+ (4x? + 7 - 8)2.
We begin by locating the critical points of f. The partial derivatives of f
are

fo(x, p)=2x +2(4x> + y* — 8) - 8x = 2x(32x* + 8y? — 63),
(e y)=2p+ 2(4x%+ y* —8) - 2y = 2p(8x% + 2y* — 15).

For f.(x, y) to be zero we must have x =0 or 32x> + 8y — 63 =0. For
£, (x, y) to be zero we must have y = 0 or 8x%+2y* — 15 = 0. Thus there are
four possibilities:

CaseI. x =0and y = 0.
Case II. x =0and 8x>+ 2y — 15=0.Then 2y* — 15=0o0ry = *y15/2.
Case III. 32x>+8y*—63=0 and y=0. Then 32x2—63=0 and so
x = *xy63/32.
Case 1V. 32x>+8y?—63 =0 and 8x?+ 2> — 15 =0. Subtracting four
times the second equation from the first gives —3 =0, which is
impossible, so case IV does not occur.

A simple way to see which of the points in cases I, II, and III minimizes the
distance is to compute f(x, y) in each case and choose the smallest value. We
leave this method to the reader and, instead, use the second derivative test.
The second derivatives are

for = 2(32x% + 87 — 63) + 2x - 64x = 192x7 + 16y* — 126,
£,y = 2(8x> + 27 — 15) + 2y - 4y = 16x + 127 - 30,
Sy = oo =323y,

Case 1. fx{ = - 12.6, Sy = —39, fy="0.Thus f f, —fxzy =126-30>0, so
this point is local maximum for f.
Case II. f,,=16-% —126 <0, f, = 12-5 —30>0, f,,=0. Therefore
Sy — f,;"y < 0, so these two points are saddles for f.
Case III. f,,=192-% — 126 >0, f,, =16-9% —30>0, f,, =0. Therefore
Sy — fxzy > 0, so these two points are local minima for f. Thus the
closest points to (0,0, 8) on the paraboloid are

(3v3 .0.9) and (-3V3.0%)
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Supplement to Section 16.3:
Astigmatism

The visual problem called astigmatism results from a deviation from circular
symmetry in the shape of the lens in your eye. Correcting astigmatism requires
a compensating eyeglass or contact lens with the “opposite” deviation.

A piece of the lens surface may be described by a function z = [, »)
= Ax? + 2Bxy + Cy?, for x and y small. The lens is symmetric about the z
axis when B =0 and 4 = C. In general, if we slice the lens by a plane of the
form — xsiné + y cosé = 0, which contains the z axis and the vector cos#i +
sindj, the slice is bounded by a curve through the origin whose curvature there
is 2(A cos’@ + 2Bsinf cos # + Csin26) (see Section 14.7 and Exercise 56). The
maxima and minima of curvature occur when tan26=2B/(4 — C). Notice
that the direction of maximum and minima curvature differ by 90°; this
means that an optometrist must know only one of these directions in order to
orient corrective lenses properly.

Exercises for Section 16.3

L. Refer to Fig. 16.3.5, a computer-generated graph
of z=(x*—3x)/(1 + y?). Where are the maxi-
mum and minimum points?

Figure 16.3.5. Computer-
generated graph of
z=(x*=3x)/(1 + 2.

(a) Coordinate grid lifted to
the graph. 3

(b) Level curves lifted to
the graph. 3
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2. Refer to Fig. 16.3.6, a computer-generated graph
of z = sin(7x)/(1 + y%). Where are the maximum
and minimum points?

Find the critical points of each of the functions in
Exercises 3-6. Decide by inspection whether each of
the critical points is a local maximum, minimum, or
neither.

In

3. f(x, y) = x?+2)?

4. f(X,)))= x> — 2}’2

5. f(x, y) = exp(— x> — Ty* + 3)
6. f(x, y)= exp(x® + 2y2)

7. Minimize the distance to the origin from the
plane x — y +2z = 3.

8. Find the distance from the plane given by
X+ 2y +3z—10=0: (a) To the origin. (b) To
the point (1,1, 1).

9. Suppose that the material for the bottom of the
box in Example 5 costs b cents per square centi-
meter, while that for the sides costs s cents per
square centimeter, Find the dimensions which
minimize the cost of the material.

10. Drug reactions can be measured by functions of
the form R(u,t)=u*c— wytle ™", 0<u<c,
t > 0. The symbols v and ¢ are drug units and
time in hours, respectively. Find the dosage u
and time ¢ at which R is a maximum.

Exercises 11-16 use the maximum-minimum test for

quadratic functions to decide whether (0, 0) is a maxi-
mum, minimum, or saddle point.

1L f(x, y) = x>+ xpy + y*

12. f(x, y)=x2—xp+y*+ 1.
13. f(x, y)=y?— x? + 3xp.

14. f(x, y)=x*+ y* — xy.

15, f(x, y)=y*

16. f(x, y)=3+2x*— xy + y*

Find the critical points of each of the functions in
Exercises 17-30 and classify them as local maxima,

minima, or neither.

17. f(x, y)= x>+ y2+ 6x — 4y + 13.
18. flx, )=x*+y*+3x -2y + 1
19. f(x, yy=x>—y*+xy — 7.

Chapter 16 Gradients, Maxima, and Minima

Figure 16.3.6. Computer-
generated graph of

sin(7x) /(1 + y?).

20. f(x, y)= x>+ y*+3xy + 10.

21. f(x, y)= x>+ y*— 6x — 14y + 100.

22. f(x, yy=y*— x*

23. f(x, y)=2x*=2xy + y? = 2x + L

24, f(x, y)= x*—3xy + 5x — 2y + 6% + 8.

25. f(x, y)=3x>+2xy + 2p? = 3x + 2y + 10.

26. f(x, y)= x>+ xp> + y*.

27. f(x, y)=e" ¥

28. f(x, y) = (x> + yHe*’

29. f(x, y) =In(2 + sinxy). [Consider only the criti-
cal point (0, 0).]

30. f(x, y)=sin(x* + ). [Consider only the critical
point (0, 0).]

31. Analyze the behavior of z = x% + xy° + xy at
its critical points.

32. Test for extrema: z = In(x> + yz + 1)

33. Analyze the critical point at (0,0) for the func-
tion f(x, y) = x* + y* Make a sketch.

34. Locate any maxima, minima, or saddle points of
f(x, y) =In(ax>+ by* + 1), a,b > 0.

35. A computer-generated graph of

is shown in Fig. 16.3.7. (a) Show, by calculation,
that all critical points of the function lie on
circles whose radius satisfies the equation =r
= tan(zr). (b) Which points are maxima? Min-
ima? (c) What symmetries does the graph have?

36. Show that z = (x>—3x)/(1+ y? has exactly
one local maximum and one local minimum.
What symmetries does the graph have? (It is
computer drawn in Fig. 16.3.5.)

37. The work w done in a compressor with k + 1
compression cylinders is given by

01#07

z = (sinar)/ar,

w=cy+cy,

where

k
Y= 2 Ti(Pi/Pi+l)(n_l)/n'
i=0
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Figure 16.3.7. The
sombrero: z = (sin 7r)/ wr.

The symbols T; and p; stand for temperature and

pressure in cylinder i, 1 < i < k+ 1; the pres-

sures p,, ..., p, are the independent variables,
while po, pri1,To, - - - » Ty and n > 1 are given.

(a) Find relations between the variables if w is a
minimum.

*(b) Find p,, p,, p; explicitly for the case k = 3.

B38. Planck’s law gives the relationship of the energy

E emitted by a blackbody to the wavelength A

and temperature T

20k x° he
E——hzﬁ—e"—l’ where x—m.

The constants are 4 = 6.6256 X 1073* joule sec-

onds (Planck’s constant), k = 1.3805 X 102

joule kilograms™! (Boltzmann’s constant), ¢ =

2.9979 X 10% meter second ™! (velocity of light).

The plot of E versus A for fixed 7 is called a

Planck curve.

(a) The maximum along each Planck curve is
obtained by setting 0E/0\ = 0 and solving
for Ap... The relationship so derived is
called Wien’s displacement law. Show that
this law is just A, = hc/kTx,, where
5—xg—5e % =0.

(b) Clearly x, is close to 5. By examining the
sign of f(x)=5—x—15¢™*, use your cal-
culator to complete the expansion x,=
4.965 . .. to a full six digits.

Improve upon the displacement law A,

= 0.00289/ T by giving a slightly better con-

stant. The peak for the earth (288°K) is
about 10 micrometers, the peak for the sun

(6000°K) about 0.48 micrometers, so the

maximum occurs in the infared and visible

range, respectively.

39. Apply the second derivative test to the critical

point in Example 5.

40. (a) Show that if (xp, yg,Zzg) is a local minimum
or maximum point of w = f(x, y,z), then
ow/0dx, ow/dy, and dw/0z are all zero at
(X0, Yo, 20)-

(b) Find the critical points of the function
sin(x? + y* + z2%).
(c) Find the point in space which minimizes the

max

(©)
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sum of the squares of the distances from
(0,0,0), (1,0,0), (0,1,0), and (0,0, 1).
41. Analyze the behavior of the following functions
at the indicated points:

@ f(x, y)=x*—p?+3xp; (0,0).

(b) f(x, )= x*+ y*+ Cxy; (0,0). Determine
what happens for various values of C. At
what values of C does the behavior change
qualitatively?

42. Find the local maxima and minima for z =

(x? + 3yD)e' =" (See Fig. 14.3.15.)

Exercises 43-48 deal with the method of least squares. It
often happens that the theory behind an experiment
indicates that the data should lie along a straight line of
the form y = mx + b. The actual results, of course, will
never exactly match with theory, so we are faced with
the problem of finding the straight line which best fits
some experimental data (xy, yy), . . ., (x,, y,) as in Fig.
16.3.8. For the straight line y = mx + b, each point will
deviate vertically from the line by an amount 4; = y, —
(mx; + b). We would like to choose m and b in such a
way as to make the total effect of these deviations as
small as possible. Since some deviations are negative
and some are positive, however, a better measure of the
total error is the sum of the squares of these deviations;
so we are led to the problem of finding m and b to
minimize the function

s=f(mb)y=di+di+--- +d?

=3 (3= mx,— b),

i=1

where x, ..., x, and y;, . .., y, are given data.

y
(x3,3)

(x2,¥2)

Figure 16.3.8. The method
of least squares finds a
straight line which “best”
approximates a set of data.
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43.

45.

46.

47.

48.

*49.

*50.
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For each set of three data points, plot the points,

write down the function f(m, b), find m and b to

give the best straight-line fit according to the

method of least squares, and plot the straight

line.

(@) (xi,y)=0,1) (x2, y2)=(2,3); (x3, ¥3)
= (4, 3). ,

(®) Cer, y) =(0,0); (x3, y2) =(1,2); (x3, ¥3)
=(2,3).

. Show that if only two data points (x,, y;) and

(x2, y,) are given, then this method produces the
line through (x;, y,) and (x,, y,).

Show that the equations for a critical point,
d5/0b =0 and 9s/0m =0, are equivalent to
m(Zx;)+ nb =3y, and m(Zx}) + b(Zx;)
= Zx;y;, where all the sums run from i=1 to
i=n.

If y=mx + b is the best-fitting straight line to
the data points (x,, y), . .., (x,, y,) according
to the least squares method, show that

> (yi— mx;— b)=0.

i=1
That is, show that the positive and negative
deviations cancel (see Exercise 45).
Use the second derivative test to show that the
critical point of fis actually a minimum.,
Use the method of least squares to find the
straight line that best fits the points (0, 1), (1, 3),
(2,2), (3,4), and (4, 5). Plot your points and line.

Complete the proof of the maximum-minimum
test for quadratic functions by following these
steps:

(a) If A 0and AC ~ B2 < 0, show that

g(x, y)=

Al(x+ 2 2)-a][(++ 25)+o]

for some number e. What is e?

(b) Show that the set where g(x, y) = 0 consists
of two intersecting lines. What are their
equations?

(c) Show that g(x, y) is positive on two of the
regions cut out by the lines in part (b) and
negative on the other two.

(d) If 4 =0, g(x, y) =2Bxy + Cy*. B must be
nonzero. (Why?) Write g(x, y) as a product
of linear functions and repeat parts (b) and
(c).

Discuss the function Ax?+ 2Bxy + Cy? in the

case where AC — B*=0.

(a) If 4 0, use formula (1) in the proof of the
maximum-minimum test for quadratic
functions.

*51.

*52.

*53.

*54.

*55.

*56.

(b) Sketch a graph of the function f(x, y)=
x2+2xp + y2.

(c) What happens if 4 = 0?

Let f(x, y)=3x* — 4x% + )2

(a) Show that f(x, y) has a critical point at the
origin.

(b) Show that for all values of 8, the function
h(r)= f(r cos#,rsin#) has a local minimum
at r=0.

(c) Show that, nevertheless, the origin is not a
local minimum point for f.

(d) Find the set of (x, y) for which f(x, y)=0.

(e) Sketch the regions in the plane where f(x, y)
is positive and negative.

(f) Discuss why parts (b) and (c) do not contra-
dict one another.

Complete the proof of the second derivative test

by following this outline:

(a) We begin with the case in which D > 0 and
Jex(x0,¥0) > 0. Using Exercise 78, Section
15.1, show that there is a number £ > 0 such
that whenever (x, y) lies in the disk of ra-
dius & about (xg, yo),

fxx(x, }’)f)',y(X, }’) _f:vy(x’ y)2

and f,,(x, y) are both positive.

(b) Show that the function A(r) is concave up-
ward on the interval (—e¢,¢) for any choice
of 4.

(¢) Conclude that f(x, y) > fxg, yo) for all
(x, y) in the disk of radius & about (xg, yg).

(d) Complete the case in which D >0 and
f;cx(xo’ )’0) < 0

(e) Complete the case D < O by showing that f
takes values near (x,, yo) which are greater
and less than f(g, yo).

Find the point or points on the elliptic parabo-

loid z =4x? + »? closest to (0,0,a) for each a.

(See Example 10.) How does the answer depend

upon a?

Let f(x, y) >0 for all x and y. Show that f(x, y)

and g(x, y)=[f(x, y)]2 have the same critical

points, with the same “type” (maximum, mini-

mum, or saddle).

Consider the general problem of finding the
points on a graph z = k(x, y) closest to a point
(a, b, c). Show that (xg, y,) is a critical point for
the distance from (x, y,k(x, y)) to (a, b, c) if and
only if the line from (a, b, ¢) to (xg, yg,k(xq, ¥o))
is orthogonal to the graph at (xq, yo, k(xq, yo))-

(See the supplement to this section.)
(a) Show that if the surface z = Ax*+ 2Bxy +
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Cy? is sliced by the plane —xsin8 + ycos o (b) Show thatif B> — AC < 0and 4 > 0, then the
=0, then the curvature of the slice at the maximum and minima of curvature occur
origin is twice the absolute value of 4 cos?0 + when tan 20 = 2B/(4 — C).

2Bsin § cos 0 + Csin2.

16.4 Constrained Extrema
and Lagrange Multipliers

The level surfaces of two functions must cross, except where the gradients of the
functions are parallel.

In studying maximum-minimum problems for a function f(x) defined on an
interval [a, b], we found in Section 3.5 that the maximum and minimum points
could occur either at critical points (where f’(x)=0) or at the end-
points @ and b. For a function f(x, y) in the plane, it is common to replace the
interval [a, b] by some region D; the role of the endpoints is now played by
the boundary of D, which is a curve in the plane (possibly with corners).

The problem of finding extrema in several variables can be attacked in
steps: ’

Step 1. Suppose that (x,, y,) is an extremum lying inside D, like the point P,
in Fig. 16.4.1, and that the partial derivatives of f exist? at (xg, yo).
Then our earlier analysis applies and (x,, y,) must be a critical point.
Figure 16.4.1. If the interior  §yep 2. The extreme point (x,, y,) may lie on the boundary of D, like P, in
point P, is an extreme point Fig. 16.4.1. At such a point, the partial derivatives of f might not be
of fon D, then the partial zero. Thus we must develop new techniques for finding candidates for
derivatives of fat P, if the extreme points of f on the boundar,
they exist, must be zero. If . Y- . .
Step 3. The function f should be evaluated at the points found in Steps 1 and

the boundary point P, is an . .
extreme point, the partial 2, and the largest and smallest values should be identified.

derivatives there might not  If we can parametrize the boundary curve, say by o(¢) for 7 in [a, b], then the

be zero. restriction of f to the boundary® becomes a function of one variable, A(r)
= f(o (1)), to which the methods of one-variable calculus apply, as in the
following example.

Example 1 Find the extreme values of z = f(x, y) = x? + 2y? on the disk D consisting of
points (x, y) satisfying x> + y> < L.

Solution Step /. At a critical point, dz/8x =2x =0 and 9z/9y = 4y = 0. Thus, the
only critical point is (0,0). It is clearly a minimum point for f; we may also
verify this by the second derivative test:

2
M=2>0

0x?

and
2
a_zz _aiz_ _( 9% =2-4—-0>0.
ax2 J\ 92 dx dy

2 As with functions of one variable, there may be points where the derivatives of f do not exist. If
there are such points, they must be examined directly to see if they are maxima or minima.

3 That is, the function which has the same values as f but whose domain consists only of the
boundary points.
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Figure 164.2. The function
f(x, y) = x* + 2y* on the
disk D has a minimum
point at (0,0) and
maximum points at (0, 1)
and (0, —1).

This result confirms that (0,0) is a local minimum.
Step 2. The boundary of D is the unit circle, which we may parametrize by
(cost,sint). Along the boundary,

h(1) = f(cost,sint) = cos’ + 2sin’t = 1 + sin’.

Since A'(t) =2sintcost, h'({)=0 at t =0, n/2, =, and 37 /2 (2= gives the

same point as zero). Thus, the only boundary points which could possibly be

local maxima and minima are (cos ¢, sin¢) for these values of ¢, i.e., (1,0), (0, 1),

(= 1,0), and (0, — 1).

Step 3. Evaluating f at the points found in Steps 1 and 2, we obtain:
f(0,0)=0, f(1,00=1, f(0,)=2, f(—L0O)=1, f(0,—1)=2.
Thus, f has a minimum point at (0,0) with value 0 and maximum points

at (0,1) and (0, — 1) with value 2. (See Fig. 16.4.2.) The points (1,0) and

(—1,0) are neither maxima nor minima for f on D even though they are

minima for f on the boundary. A

y

Often it is inconvenient to find a parametrization for the curve C on which we
are searching for extrema. Instead, the curve C may be given as a level curve
of a function g(x, y). In this case, we can still derive a first derivative test for
local maxima and minima. The following result leads to the method of
Lagrange multipliers. '

First Derivative Test for Constrained Extrema

Let f and g be functions of two variables with continuous partial
derivatives. Suppose that the function f, when restricted to the level
curve C defined by g(x, y) = ¢, has a local extremum at (x,, y,) and
that Vg(x,, yo) # 0. Then there is a number A such that

Vi(xo, yo) =AVg(xq, yo)-

If A0, this formula says that the level curves of f and g through
(%g, ¥o) have the same tangent line at (x,, yg)-

To demonstrate the result in this box, choose a parametrization (x, y) = o(?)
for C near (xg, y,), With o(0) = (x, yo) and o’(0) % 0.* Since f has a local
extremum at (x,, yo), the function A(s) = f(o()) has a local extremum at
t =0, so #'(0) =0. According to the chain rule (Section 16.1), we get 4'(0)
=V f(xy, yo) - 0°(0), so Vf(xy, yy) is perpendicular to o¢'(0); but we already

4 The implicit function theorem guarantees that such a parametrization exists; see J. Marsden
and A. Tromba, Vector Calculus, Freeman (1981), p. 237. We will not need to know the explicit
parametrization for the method to be effective.



Figure 16.4.3. If Vg(xy, yo)
and Vf(x,, yo) are not
parallel, the level curve
g(x, y) = c cuts all nearby
level curves of f.
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know that the gradient V g(x,, y,) is perpendicular to the tangent vector o'(0)
to the level curve C (Section 16.2). In the plane, any two vectors perpendicular
to a given nonzero vector must be parallel, so Vf(x,, yo) = AVg(x,, yy) for
some number A. If A =40, the tangent line to the level curve of f through
(x> ¥¢)» Which is perpendicular to Vf(x,, yo), is also perpendicular to the
vector Vg(xy, yo); the tangent line to C is also perpendicular to Vg(xy, yo)
so the level curves of f and g through (x,, y,) must have the same tangent line.
This completes the demonstration. H

There is a nice geometric way of seeing the result above. If the level
curves of f and g had different tangent lines at (x,, y,), then the level curves
would cross one another. It would follow that the level curve C of g would
intersect level curves of f for both higher and lower values of f, so the point
(%9, ¥o) would not be an extremum (see Fig. 16.4.3).

Y
Vg(xg:¥o)

e, y) < flxg,¥9)

Fx,») = fxg, ¥0)

f(x,¥) > fxg,¥0)

gx,m=0C

VS (xg,0)

X

In some problems, it is easiest to use the geometric condition of tangency
directly. More often, however, we look for a point (x4, yo) on C and a
constant ), called a Lagrange multiplier, such that Vf(xy, yo) = AV g(x,, yo).
This means we wish to solve the three simultanecus equations

Je(% ) = Agu(%, 3),

[(%: ) = Ag, (%, ), (1)

g(x,y)=c
for the three unknown quantities x, y, and A. Another way of looking at
equations (1) is that we seek the critical points of the auxiliary function
k(x, y,A) = f(x, y) — N g(x, y) — c]. (By a critical point of a function of three
variables, we mean a point where all three of its partial derivatives vanish.)
Here

kx=fx_>\gx’
k, =1 —Ag,,
ky=c—g,

and setting these equal to zero produces equations (1). We call this attack on
the problem the method of Lagrange multipliers.

Method of Lagrange Multipliers

To find the extreme points of f(x, y) subject to the constraint g(x, y)

= ¢, seek points (x, y) and numbers A such that (1) holds.




828

Chapter 16 Gradients, Maxima, and Minima

Example 2

Solution

Example 3

Solution

Find the extreme values of f(x, y) = x*>— y? along the circle S of radius 1
centered at the origin.

The circle S is the level curve g(x, y)= x?2 +y2 =1, so we want x, y, and A
such that

Je(%,9) = Ago (%, »)s
S(%: p) = Agy(x, »)s

gy =1
That is,
2x =A2x,
2y = —A2y,
2+ y*=1

From the first equation, either x =0 or A = 1. If x = 0, then from the third
equation, y = + 1, and then from the second, A\ = —1. If A = 1, then y = 0 and
x = *1; so the eligible points are (x, y)=(0, =1) with A= —1 and (x, y)
=(*1,0) with A=1. We must now check them to see if they really are
extrema and, if so, what kind. To do this, we evaluate f:

fO.1) =10, ~1)= -1,
f(1L.0)= (1,0 =1,

so the maximum and minimum values are 1 and —1. A

Find the point(s) furthest from and closest to the origin on the curve
X6+ y6 = 1.

We extremize f(x, y) = x>+ y® subject to the constraint g(x, y) = x®+ y°
= 1. The Lagrange multiplier equations (1) are

2x = 6Ax>,
2y = 6)\)}5,
x+yS=1

If we rewrite the first two of these equations as
x(6Ax* —2) =0,
y(6M* — 2)=0,

we find the solutions (0, +1) and (+1,0) with A=1. If x and y are both
nonzero, we have x* =1/3A = y4, 80 x = *y, and we get the further solutions

(= §1/2, % §1/2), with A = 22/3/3,

To tell which points are maxima and minima, we compute; f(0, * 1)
=f(=1,00=1, while f(= §1/2,+ §1/2)=2Y1/2 =2**> 1, so the
points (0, = 1) and (= 1,0) are closest to the origin, while (= §1/2,+ {1/2)
are farthest (see Fig. 16.4.4). A



Figure 16.4.4. Extreme
points of x* + y? on the
curve x4 y° = 1.

Example 4

Solution
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1 (71
Ve

(]

(1,0 x

N —|
N —]

iy

(—1,0)

For functions of three variables subject to a constraint, there is a similar
method. (See Review Exercise 44 if there are two constraints.) Thus, if we are
extremizing f(x, y,z) subject to the constraint g(x, y,z) = ¢, we can proceed
as follows (see Exercise 23).

Method 1.
Vi(x05 yo:20) = AVg(xo, ¥o,20),
and

g(Xo0> Yo,20) = €

Find points (xy, yg,Z¢) and a number A such that

or
Method 2.
given by

k(x,y,2,X) = f(x, y,2) — A g(x, p,2) — c].

Find critical points of the auxiliary function of four variables

The density of a metallic spherical surface X2+ yr+ z2=4 is given by
p(x, y,2)=2+ xz + y®. Find the places where the density is highest and
lowest.

We want to extremize p(x, y,z) subject to the constraint g(x, y,z)= x*+
y? + z? = 4. Using either method 1 or 2 above gives the equations

0. = Ag, z=2\x
BN e =2
p. = Ag, o )§=2}\z
g=4 xX“+y +z°=4

If y # 0 then A = 1 from the second equation, and so z = 2x and x = 2z which
implies x = z = 0. From the last equation, y = +2. If y = 0 then we have
z=2\x, x=2\z and x’+z’=4.
Thus z = 4\%, soif z# 0 then A = +1/2, 50 x = *z. If x = z, then from the
last equation x = z = +2. If x=—2z then x=*2 and z= F/2. The
case y = 0 and z = 0 cannot occur (why?).
Thus we have six possible extrema:

(0,%2,0),  (£2,0,x42), (£2,072).
Evaluating p at these six points, we find that p is a maximum at the two points

(0, £2,0) (where p is 6) and a minimum at the two points (* V2,0, 72)
(where p is 0). A
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Example 5

Solution

Figure 16.4.5. What is the
largest value of Q in the
shaded triangle?

The multiplier A was introduced as an “artificial” device enabling us to find
maxima and minima, but sometimes it represents something meaningful.

Suppose that the output of a manufacturing firm is a quantity Q of product
which is a function f(K, L) of the amount K of capital equipment or invest-
ment and the amount L of labor used. If the price of labor is p, the price of
capital is g, and the firm can spend no more than B dollars, how do you find
the amount of capital and labor to maximize the output Q?

It is useful to think about the problem before applying our machinery. We
would expect that if the amount of capital or labor is increased, then the
output Q should also increase; that is,

a0 90
= > = >
3K 0, and
We also expect that as more and more labor is added to a given amount of
capital equipment, we get less and less additional output for our effort; that is,

0 g
aL?
Similarly,
3’0
IK?
It is thus reasonable to expect the level curves of output (called isoquants)

Q = f(K, L) = c to look something like the curves sketched in Fig. 16.4.5, with
c; <, < cs.

<0.

We can interpret the convexity of the isoquants as follows. As you move
to the right along a given isoquant, it takes more and more capital to replace a
unit of labor and still produce the same output. The budget constraint means
that we must stay inside the triangle bounded by the axes and the line
pL + gK = B. Geometrically, it is clear that we produce the most by spending
all our money in such a way as to pick the isoquant which just touches, but
does not cross, the budget line.

Since the maximum point lies on the boundary of our domain, to find it
we apply the method of Lagrange multipliers. To maximize Q = f(KX, L)
subject to the constraint pL + gK = B, we look for critical points of the
auxiliary function,

h(K,L,\) = f(K,L) = N(pL + gK — B);

$O we want

0 00 _
5}-)\(],\ H— . pL+qK—B



Example 6

Solution
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These are the conditions we must meet in order to maximize output. (We will
work out a specific case in Example 6.)

. In this example, A does represent something interesting and useful. Let
k = gK and [ = pL, so that k is the dollar value of the capital used and / is the
dollar value of the labor used. Then the first two equations become

3k gk " paL al’

Thus, at the optimum production point, the marginal change in output per
dollar’s worth of additional capital investment is equal to the marginal change
of output per dollar’s worth of additional labor, and A is this common value.
At the optimum point, the exchange of a dollar’s worth of capital for a dollar’s
worth of labor does not change the output. Away from the optimum point the
marginal outputs are different, and one exchange or the other will increase the
output.5 A

Carry out the analysis of Example 5 for the production function Q(KX, L)
= AK°L'"®, where A and a are positive constants and o <1. This Cobb—
Douglas production function is sometimes used as a simple model for the
national economy. Then Q is the output of the entire economy for a given

input of capital and labor.

The level curves of output are of the form AK o'« = ¢ or, solving for L,

Since o /(a — 1) < 0, these curves do look like those in Fig. 16.4.5. The partial
derivatives of Q are

99 _ aAK*'IL'™* and

8% 90 =(1—a)dK°L"",

L

so there are no critical points except on the axes, where Q = 0. Thus the
maximum must lie on the budget line pL + gK = B. The method of Lagrange
multipliers gives the equations

aAK* L'~ =g,
(1— a)AKL™* = )p,
pL + gK = B.
Eliminating A from the first two equations gives
apL = (1 — a)qKk,
and from the third equation we obtain

Y B Gl L
q

5 More of this type of mathematical analysis in economics can be found in Microeconomic
Theory, by James Henderson and Richard Quandt, McGraw-Hill (1958). This reference discusses
a second derivative test for the Lagrange multiplier method. {See also J. Marsden and A. Tromba,
Vector Calculus, Second Edition, Freeman (1981).]
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Exercises for Section 16.4

Use the method of Example 1 to find the extreme
values of the functions in Exercises 1-4 on the disk
x2 + y2 < 1.

L. f(x, p) =2x*+3)?

2
3
4
Find

JOe )= xy + 5y

 fx, p)=5x2—2y2+ 10

. f(x, y)=3xy—y+5

the extrema of f subject to the stated constraints in

Exercises 5-12.

5
6
7
8
9
10
11
12

13.

14.

15.

16.

17.

3.
x,0< y.

. f(x, y)=3x +2y; 2x2+3y2
fx, ) =xp; 2x +3y < 10,0
e yy=x+y; x4 y2=1.
f )y =x—y; x—yr=2.
S =xyx+y =1
.f(x,y)=coszx+cos§1; x+y=m/4
. f(x, yy=x—3y; x2+y2=1.
fOu )y =Xty x4yt =2,

<
<

Cascade Container Company produces a card-
board shipping crate at three different plants in
amounts x, y, z, respectively, producing an annu-
al revenue of R(x, y,z)= 8xy22 — 200,000(x +
y + z). The company is to produce 100,000 units
annually. How should production be handled to
maximize the revenue?

The temperature T on the spherical surface x* +
y?+ 22 =1 satisfies the equation T(x, y,z)=
xz + yz. Find all the hot spots.

A rectangular mirror with area A square feet is
to have trim along the edges. If the trim along
the horizontal edges costs p cents per foot and
that for the vertical edges costs 4 cents per foot,
find the dimensions which will minimize the total
cost.

The Baraboo, Wisconsin, plant of International
Widget Co. uses aluminum, iron, and magnesium
to produce high-quality widgets. The quantity of
widgets which may be produced using x tons of
aluminum, y tons of iron, and z tons of magne-
sium is Q(x, y,z) = xyz. The cost of raw materi-
als is aluminum, $6 per ton; iron, $4 per ton; and
magnesium, $8 per ton. How many tons each of
aluminum, iron, and magnesium should be used
to manufacture 1000 widgets at the lowest possi-
ble cost? [Hint: You want an extreme value for
what function? Subject to what constraint?]

A water main consists of two sections of pipe of
fixed lengths, /,,/, carrying fixed amounts Q,
and O, liters per second. For a given total loss of
head h, the (variable) diameters D,, D, of the
pipe will result in a minimum cost if

C=[(a+ bD))+ l,(a + bD,) = minimum
subject to the condition
c Of | chQF
b Di
Find the ratio D,/ D,.

h= +

20.

21.

22.

*23.

. A firm uses wool and cotton fiber to produce

cloth. The amount of cloth produced is given by
Q(x,y)=xy — x—y+ 1, where x is the num-
ber of pounds of wool, y is the number of
pounds of cotton, and x > 1 and y > 1. If wool
costs p dollars per pound, cotton costs g dollars
per pound, and the firm can spend B dollars on
material, what should the mix of cotton and wool
be to produce the most cloth?

. Let fix, y) = x? + xy + y°.

(a) Find the maximum and minimum points
and values of f along the circle x> +y2=1
Moving counterclockwise along the circle
x2+y2= 1, is the function increasing or
decreasing at the points (+1,0) and

0, =1)?

Find extreme points and values for f in the
disk D consisting of all (x, y) such that
X2+ yi<l,

Locate extreme points and values for the func-
tion f(x,y)=x*+y*—x—y+1 in the disk
x2+ 2 < 1.

A transformer is built from wire of cross sections
g, and g, wound with n; and n, turns onto the
primary and secondary coils, respectively. The
corresponding currents are f; and i,. The thick-
ness x of the primary winding and the thickness
y of the secondary winding will result in mini-
mum copper loss if

(b)

©)

C— pmm (D + x)if + prym(Dy = p)i3
9 92

is a minimum. The resistivity p and iron core
diameters D,, D, are constants.
(a) From transformer theory, n,i; = nyi, =
constant. By an argument involving insula-
tion thickness, one can show that g,
= axh/n, and g, = ayh/n,, where « and A
are constants. Use these relations to simplify
the expression for C.
Physical constraints give x + y = }(D, —
D). Apply the method of Lagrange multipli-
ers to find x and y which minimize C sub-
ject to this condition.
The state of Megalomania occupies the region
x4+ 2y4 < 30,000. The altitude at point (x, y) is
£xy +200x meters above sea level. Where are
the highest and lowest points in the state?
Suppose that (xg, g, Z) is a critical point for the
restriction of the function f(x, y, z) to the surface
g(x, y,z) = c. The method of Lagrange multipli-
ers tells us that in this case the partial derivatives
with respect to x, y, z, and A of the function of
four variables

k(x, y,2,A) = f(x, y,2)
- Ag(x, y,z) =l

(b)

are equal to zero.
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(a) Interpret this fact as the statement about the (¢) Rework Example 5, Section 16.3 by mini-
gradient vectors of fand g at (xg, o, Zo)- mizing a function of x, y, and 4 subject to
(b) Find the maxima and minima of xyz on the the constraint xyh = 256.

sphere x* + y? + z2=1.

Review Exercises for Chapter 16

Calculate the gradients of the functions in Exercises
1-4.

1. f(x, y) = e + cos(xy)
2_ .2
2. fix, 22

L

== “\ ‘

=TS
AN

3. fx, )= e* —cos (xyz)

4. f(x, y)=tan~'(x? + y?)
In Exercises 5-8, calculate (a) the directional derivative
of the function in the direction d =i/y2 —j/y2 and
(b) the direction in which the function is increasing
most rapidly at the given point.

5. f(x, y) =sin(x* = 2% (1, = 1)
in(
6. f(x,y)= x—+7’ ©,1

7. f(x, y) = exp(x* — y* +2); (= 1,2)

8. f(x, y)=sin"'(x — 2)%); (0,0)
In Exercises 9—12, find the equation of the tangent
plane to the surface at the indicated point.

9. z=x>+2y% (1,1,3)

boemis

Figure 16.R.1. Computer- generated graph of
z=03x*—4x - 12X+ 18)/12(1 + 4y?%).

26. Find the maxima, minima, and saddles of the
function z = (2 + cos #x)(sin 7y), which is
graphed in Fig. 16.R.2.

10. z = cos(x? + y?); (0,0, 1) SN
; (0,0, . N
111 R e S
1. x>+ 2+ 22 =5 (—,—,— : AR
’ ra RS P
eaien g ? MR 22
12. 3+ P+ 23 =3; (L, L, 1) : \\\\\\‘\:s::‘{&y\\\{“‘\\},)gfz::‘\t%%{égggzs“:‘\\\
Suppose that x = f(¢) and y = g(¢) satisfy the relations . s :"1'2"’3;‘{‘{%‘:}}\!!%222::‘:“‘%‘“‘\““$§§:‘§:““““
in Exercises 13-16. Relate dx/dt and dy /dt. T "’li’;"'\‘§§$§§§$§3\{{\\\\\\“&}%‘3&&&&\\
13 X2+ xp+y2=1 ‘\\\\\\t\s&\\\\\\\\\“\\8‘:=:%§§§\\§
y AN R
. cos(x —y) =13 \\:“‘:::&&xQ& _

15, (x +y)3 + (x — y)3 =42e” "

16. tan" Y (x —y)=w/4
Suppose that x and y are related by the equations given
in Exercises 17-20. Find dy/dx at the indicated points.

17. x+cosy=1,x=1,py=m/2

18. x4-l;y4= 1?’ x=-1y=2 27. Find and describe the critical points of f(x, y)

19. futdu=53,x=-2,y=2 = ysin(nx) (See Fig. 16.R.3).

20. [(2f(nyde=7, x=2, y=4; if [$f()ydi=7,

f@=3f@=5f&=1L f&=13.

Find and classify (as maxima, minima or saddles) the

Figure 16.R.2. Computer- generated graph of
z = (2 + cosmx)(sin 7y).

<
critical points of the functions in Exercises 21-24. o ";"
TN 73\
21 f(x, y) = x* = 6xp — y? //I'";;"' //,,/"';"'&‘1\ /]
22. f(x, y) =2x2— })2 + Sxy /l/l,,,,;";‘;;\ Ill/][’,"l:':::“:‘!y,,,/ ,,I[ o .
23. 1(x, ) = explxi — y?) W =iy
24. f(x, y) = sin(x? + y?) (consider only (0, 0)). VU W’:‘:ﬁ&z:é’:?ﬁ:?}};?’””””“\‘?l,’llllll Al
//////////,”?,e;:.:“\\vg\‘\{(,,w/lllllllllllli\\\\\v,/ll[l A \\
25 Prove U\ NN AN
. Prove that \\\\\\\\\\{,"/I[lll \\\\\\"'Illl \
. il
C3xt—4x® — 12x2 + 18 % I// N\
Z= 2 \\\\’o"l // <
12(1 + 4y%) N\l .

has one local maximum, one local minimum, and
one saddle point. (The computer-generated

. . i 16.R.3. C ter- d f
graph is shown in Fig, 16.R.1.) Figure 16.R.3. Computer-generated graph o

z = ysin(mx).
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28. A computer-generated graph of the function
z = sin(7x) /(1 +y2) is shown in Fig. 16.R.4.
Verify that this function has alternating maxima
and minima on the x axis with no other critical

points.

. S =
S e AN

=
S e
SRIZEEELTT TN

: R
: 2 NN " ' ’ “\\
S R RSRSTAL T ATHRIN
| \\W@Wﬁﬁ%
L7
() AALT AR
LTS
‘:\\\:bzo’ -

Figure 16.R.4. Computer-generated graph of
sin(7x)/(1 + y?).

29. In meteorology, the pressure gradient G is a vec-
tor quantity that points from regions of high
pressure to regions of low pressure, normal to the
lines of constant pressure (isobars).

(a) In an xy coordinate system,

P
ax

_op,
ay"'

G=— i
Write a formula for the magnitude of the
pressure gradient.

(b) If the horizontal pressure gradient provided
the only horizontal force acting on the air,
the wind would blow directly across the
isobars in the direction of G, and for a giv-
en air mass, with acceleration proportional
to the magnitude of G. Explain, using New-
ton’s second law.

(c) Buys—Ballo’s law states: “If in the North-
ern Hemisphere, you stand with your back
to the wind, the high pressure is on your
right and the low pressure on your left.”
Draw a figure and introduce xy coordinates
so that G points in the proper direction.

(d) State and graphically illustrate Buys—Bal-
lot’s law for the Southern Hemisphere, in
which the orientation of high and low pres-
sure is reversed.

30. A sphere of mass m, radius a, and uniform

density has potential u and gravitational force F,

at a distance r from the center (0, 0, 0), given by

2

3m _ mr m .
=— - —, F=-—r (r<a)
=S T o3 7 ( )
u="12 F=-2Z¢r (r>a)

r

Here, r = |r||, r= xi + yj + zk.

(a) Verify that F = Vu on the inside and out-
side of the sphere.

(b) Check that u satisfies Poisson’s equation:
3% /3x? + 0%u/9y* + 3% /0z? = constant
inside the sphere.

(¢) Show u satisfies Laplace’s equation:
3% /9x2 + 3% /9y? + 0% /32 = 0 outside
the sphere.

31. Minimize the distance from (0,0,0) to each of
the following surfaces. [ Hint: Write the square of
the distance as a function of x and y.]

(a) z=\/x2— 1

(b) z=6xy+7,

() z=1/xy.

32. Suppose that f(x, y)= x*+ y. Find the maxi-
mum and minimum values of f for (x, y) on a
circle of radius 1 centered at the origin in two
ways:

(a) By parametrizing the circle.

(b) By Lagrange multipliers.

In Exercises 33-36, find the extrema of the given func-
tions subject to the given constraints.

33, fx, p)=x*—2xp + 2y X2+ yP = 1.

34. fix, py=xy —yh x*+ yr =1

35 f(x, y)= cos(x? —yz); x? +y2 =1,

2_ 2

x“—y
36. f(x, y)= ——;x+y=1
Jix.7) xz+y2 4

37. An irrigation canal in Arizona has concrete sides
and bottom with trapezoidal cross section of area
A=y(x+ytanf) and wetted perimeter P =
x +2y/cosf, where x = bottom width, y =
water depth, # = side inclination, measured from
vertical. The best design for fixed inclination @
is found by solving P = minimum subject to
the condition A = constant. Show that y?2
= Acos#/(2—sinf).

38. The friction in an open-air aqueduct is propor-
tional to the wetted perimeter of the cross sec-
tion. Show that the best form of a rectangular
cross section is one with the width x equal to
twice the depth y, by solving the problem perime-
ter =2y + x = minimum, area = xy = constant.

39. (a) Suppose that z = f(x, y) is defined, has con-
tinuous second partial derivatives, and is har-

monic:
2 2
9z L 92z _
dx? 8y2

Assume that (0% /9x2)(xq, yo)} = 0. Prove that f
cannot have a local maximum or minimum at
(X0, yo)-

(b) Conclude from (a) that if f(x, y) is harmonic
on the region x% + y2 < 1 and is zero on x? +y2
= 1, then f is zero everywhere on the unit disk.
[Hint: Where are the maximum and minimum
values of f7]



X

40.

41.

42.

43.

/L

(a) Suppose that u = f(x, y) and v = g(x, y)
have continuous partial derivatives which satisfy
the Cauchy— Riemann equations:

du _ 0o and

ox 9y

du _ _ dv

¥y ox

Show that the level curves of u are perpendicular
to the level curves of v.

(b) Confirm this result for the functions u =
x?—y* and v =2xp. Sketch some of the level
curves of these functions (all on the same set of
axes).

Consider the two surfaces

S, :x2+y2+22=f(x,y,z)=6;
Sy 2x2 43y + 22 =g(x, y,2) =9.

Find the normal vectors and tangent planes
to S, and S, at (1,1,2).

Find the angle between the tangent planes.
Find an expression for the line tangent at
(1, 1,2) to the curve of intersection of S, and
S,. [Hint: Tt lies in both tangent planes.]
Repeat Exercise 41 for the surfaces x2 — y2 +z
=1and2x?— 2+ 5z2=6at (1,1, —1).

(a) Consider the graph of a function f(x, y)
(Figure 16.R.5). Let (x4, yp) lic on a level
curve C, so Vf(xq, yo) is perpendicular to
this curve. Show that the tangent plane to
the graph is the plane that (i) contains the
line perpendicular to V f(xy, ) and lying in
the horizontal plane z = f(xg, ), and (ii)
has slope ||V f(xq, yo)|| relative to the xy
plane. (By the slope of a plane P relative to
the xy plane, we mean the tangent of the
angle 8, 0 < @ < 7, between the upward
pointing normal p to P and the unit vec-
tor k.)

(@)

(®)
©

slope of tangent plane = |7 f||

level curve raised to graph

(x0,¥0,f (X0, ¥0))
graph of f
/

level curve

4
7/ ;; (xo,yO)

Vf(xo,¥9)

Figure 16.R.5. Relationship
between the gradient of a
function and the plane
tangent to the function’s
graph (Exercise 43(a)).
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(b) Use this method to show that the tangent
plane of the graph of

fCx, ¥y = (x + cos y)x?
at (1,0,2) is as sketched in Figure 16.R.6.

(1,0,0)

Figure 16.R.6. The plane
referred to in Exercise

43(b).

44.

45.

46.

(a) Use a geometric argument to demonstrate
that if f(x, y,z) is extremized at (xq, yg,2g)
subject to two constraints g,(x, y,z) = ¢,
and gy(x, y,z) = c,, then there should exist
A, and A, such that
Vf(xo0, yo.20) =M Vgi(x0, yo,20)
+ MV gy(x0. yo. 20)-

Extremize f(x, y,z)= x — y + z subject to
the constraints x?+ y>+ z2=1 and x +
y+2z=1

A pipeline of length / is to be constructed from
one pipe of length /; and diameter D, connected
to another pipe of length /, and diameter D,.
The finished pipe must deliver QO liters per sec-
ond at pressure loss 4. The expense is reduced to
a minimum by minimization of the cost C
= [i(a+ bD\) + l,(a + bD,) (a,b = constants)
subject to the conditions

L+ L=

h—ka{ ho, b }

D™ D[

where k,m,m;,m, are constants. Show that
D, = D, in order to achieve the minimum cost.
[Hint: As in Exercise 44, the partials of C —
Al — Ayh with respect to /,, [,, D, and D, must
all be zero for suitable constants A; and A,.]
Ammonia, NHj, is to be produced at fixed tem-
perature T and pressure p. The pressures of N,,
H,, NH; are labeled as u, v, w, and are known to
satisfy u4+ o+ w=p, w? = cuv® (c = positive
constant). Due to the nature of the reaction
N, + 3H,=2NH;, the maximium ammonia pro-
duction occurs for w = maximum. Find the max-
imum pressure w,,,.

(b)

and

—_———
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For Exercises 47-50, consider the level curves for the
function f(x, y) shown in Figure 16.R.7. Find or esti-
mate the maximum value of f(x, y) for each of the
given constraint conditions.

Figure 16.R.7. Level curves
of a function f.

47. x>0,y >0,y = —35x+2
2
2

48. x>+t < 4
49. x4+ y? =4
50. x=4,0< y<4

51. Refer to Figure 16.R.7. The function f has ex-
actly one saddle point. Find it.

52. Refer to Figure 16.R.7. There are two points on
the graph z = f(x, y) at which the tangent plane
is horizontal. Give the equation of the tangent
plane at each such point.

53. (a) Let y be defined implicitly by

x2+yi+ e’ =0.
Compute dy /dx in terms of x and y.
(b) Recall from p. 810 that
dy 0F/ox .. OF
= f == .
Ry oy TR M
Obtain a formula analogous to this if y,, y,
are defined implicitly by
Fi(x, y1(x), pa(x)) =0,
FZ(x7 .yl(x)’ .yZ(x)) =0.
(¢) Lety, and y, be defined by

x? +yf = Cos X,
x? —y% = sin x.

Compute dy, /dx and dy,/dx using (b).
54. Thermodynamics texts® use the relationship

W \( 2z (a_x) - -1

ax )\ ay J\ oz '
Explain the meaning of this equation and prove
that it is true. [Hins: Start with a relationship

F(x, y,z) = 0 that implicitly defines x = f(y, z),
y = g(x,z), and z = k(x, y) and differentiate.]
55. (a) Suppose that F(x, y) = P(x, p)i + Q(x, p)j.
Show that if there is a function f(x, y) with
continuous second partial derivatives such
that F=V{, then P, = Q..
(b) Suppose that
F(x, y,z)= P(x, y,2)i+ Q(x, y,2)j+ R(x, y, 2)k.
Show that if there is a function f(x, y,z)

with continuous second partial derivatives
such that F =V, then

Py:Qx’ Pz:Rxa Qz=Ry'

(c) Let F=3xyi— ye”j. Is there an f such that
F=Vf?

*56. (Continuation of Exercise 55.) Suppose that P

and Q have continuous partial derivatives every-

where in the xy plane and that P, = Q,. Follow

the steps below to prove that there is a function f

such that Vf= Pi+ Qj; that is, f, =P and

/=0

(a) Let g(x, y) be an antiderivative of @ with
respect to y; that is, g, = Q. Establish that
P — g, is a function of x alone by showing
that (P — g,), = 0.

(by If P—g =0, then we may simply take
g = f. Otherwise let h(x) be an antideriv-
ative of P —g.; that is, A'(x)=P — g,.
Show that f(x, y) = g(x, y) + y(x) satisfies
Vf=Pi+ Qj.

*57. For cach of the following vector fields Pi+ Qj,

find a function f such that f, = P and f, = Q or
show that no such function exists. (See Exercises
55 and 56.)

@ (x3*+2x)e”i+ 2xye ’j;

(b) (x2y2 + 2x)eX—V3i + 2x3ye"y3j;

© A e
I+ x“+y 1+ x"+y
) 2y 2x

— i j.
l+x2+y2 1+x2-t~y2'l

*58. (The gradient and Laplacian in polar coordinates.)

Let r and 6 be polar coordinates in the plane and
let f be a given function of (x, y). Write

u=f(x, y)=f(rcosf,rsind).

Let i, = cos#i + sindj and iy = —sin fi + cosdj.

(a) Show that when based at v= xi+ yj the
vectors i, and i, are orthogonal unit vectors
in the directions of increasing r and 6, re-
spectively.

(b) Show that

_ du _ sinf Ju\,
Vf—(cos&m . ag)l

. ,0u , cosf ou\,
+(sm9§+ . a—g)j

6 See S. M. Binder, “Mathematical methods in elementary thermodynamics,” J. Chem. Educ. 43 (1966): 85-92. A proper
understanding of partial differentiation can be of significant use in applications; for example, see M. Feinberg, “Constitutive
equation for ideal gas mixtures and ideal solutions as consequences of simple postulates”, Chem. Eng. Sci. 32 (1977): 75-78.
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(c) Show that
P PR
dx*  Byr  r ar\ dr ) 2 542
*59. Find a family of curves orth'ogonal to the level
curves of f(x, y) = x> — y? as follows:

(a) Find an expression for a vector normal to
the level curve of f through (xq, y,) at the
point (xo, yo).

(b) Use this expression to find a vector tangent
to the level curve of f through (x,, y,) at
(%0, yo)-

(c) Find a function g which has these vectors as
its gradient.

(d) Explain why the level curves of g should
intersect those of f orthogonally.

(e) Draw a few of the level curves of fand g to
illustrate this result.

*60. (a) Figure 16.R.8 shows the graph of the function
z=(x? —yz)/(xz +y2). Show that z has differ-
ent limits if we come in along the x Or y axis.

o
AT FTF T
AL

T 77
St
SN ’ 7 =
R :
2L ‘ \ 7
o ’.‘..”’ 3 ”’ oo
SO, i
S
=

Figure 16.R.8. Computer-

generated graph of

2= =y /(7 + y?),
(b) Figure 16.R.9 shows the graph of the func-
tion z =2xy*/(x*+ y*. Show that if we ap-
proach the origin on any straight line, z ap-
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Figure 16.R.9. Computer-
generated graph of
z=2xp/(x2 + y*).
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proaches zero, but z has different limits when

(0,0) is approached along the two parabolas

x == yz.

*61. Let f(x, y) = y*/(x* + y?); £(0,0) = 0.

(a) Compute f,, f»» £:(0,0), and £,(0,0).

(b) Show that, for any #, the directional deriva-
tive (d/dr) f(rcos,rsinf)|,_g exists.

(¢) Show that the directional derivatives are not
all given by dotting the direction vector with
the gradient vector (see Fig. 16.R.10). Why
does this not contradict the chain rule?

B
Worsr2 7 Py ey
////,/,/,/,’{/,///1,"

et 2 At
U
7

Figure 16.R.10. Computer-generated graph of z
=7/ + Y,

*62. Do the same things as in Exercise 61 for z
= (x’ = 3xp?)/(x® + y?), which is graphed in
Fig. 16.R.11.

Figure 16.R.11. Computer-generated graph of z
= (=302 /(x* + ).



Chapter 17

17.1

(a) The closed rectangle
asxshesysd

(b) The open rectangie
a<x<bc<y<d

Figure 17.1.1. Examples of
closed and open rectangles.

Multiple Integration

Functions can be integrated over regions in the plane and in space.

Double and triple integrals enable us to “sum” the values of real-valued
functions of two or three variables; we evaluate them by integration with
respect to one variable at a time, using the methods of one variable calculus.
As in the previous chapters, we concentrate on the basic ideas and methods of
calculation, leaving a few of the more theoretical points for a later course.

The Double Integral
and lterated Integral

The double integral of a non-negative function over a region in the plane is equal
to the volume under its graph.

The definite integral [2f(x)dx, defined in Chapter 4, represents a “sum” of the
values of f at the (infinitely many) points of the interval [a,b]. To “sum” the
values of a function f(x, y) over the points of a region D in the plane, we will
define the double integral |[,f(x, y)ydxdy. We recommend a rapid review of
Sections 4.1 to 4.5 as preparation for the present section.

Our development of double integrals will be similar to that of definite
integrals in Chapter 4. We will give a formal definition first, but the actual
calculation of double integrals will be done by reduction to repeated ordinary
integrals as explained later in the section, rather than using the formal
definition.

The sets in the plane which will play the role of “intervals” in double
integration are the rectangles (see Fig. 17.1.1). A closed rectangle D consists of
all x and y such that a < x < b and ¢ < y < d; it is denoted by [a,b] X [¢,d].
The interior of D consists of all x and y such thata < x < band c <y < d; it
is called an open rectangle and is denoted by (a,b) X (c,d). The area of D 1s
the product (b — a)(d — ¢). Note that the rectangles considered here have
their sides parallel to the coordinate axes.

We say that a function g(x, y) defined in [a,b] X [c,d] is a step function
provided there are partitions a =1, < t; <1, < --- <t,=b of [ab] and
c=5,< 85, <5<+ <s,=d of [c,d] such that, in each of the mn open
rectangles R; = (,_,, ;) X (5,-1,5) 8(X, ») has a constant value k. The graph
of a step function is shown in Fig. 17.1.2.
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Figure 17.1.2. g is a step
function since it is constant
on each subrectangle.

Example 1
Solution
y
3
4 -1
2
6 3
1
-8 2
2 s x

Figure 17.1.3. Find

{[pg(x, yydxdy if g takes
the values shown.

Graphof g

By analogy with our definition for step functions of one variable, we
define:

[Leondd= 3 ()arar)= 5 (k)0
i=1,=

=1, =
where At, =1, — 1, and As; =5, — s5;_,. The summation symbol means that
we sum over all i and j, with i ranging from 1 to n and j from 1 to m; there are
nm terms in the sum corresponding to the nm rectangles R;;.

If g(x, y) > 0, the integral of g is exactly the volume under its graph.
Indeed, the height of the box over the rectangle R, is k;, so the volume of the
box is k; X area (R;) = k; At; As;; the integral of g is the sum of these and so it

is the total volume.

Let g take values on the rectangles as shown in Fig. 17.1.3. Calculate the
integral of g over the rectangle D = [0, 5] X [0, 3].

The integral of g is the sum of the values of g times the areas of the rectangles:

ffg(x,y)dxdy= —8X24+2X346X2+3X34+4X2—1x3
D

=16. A

We proceed now to define the integral of a function over a closed rectangle in
the same manner as we did in Section 4.3.

Upper and Lower Sums

The integral over D of a step function g such that g(x, y) < f(x, y)on D
is called a lower sum for f on D. The integral over D of a step function A
such that h(x, y) > f(x, y) on D is called an upper sum for f on D.

As in Section 4.3, every lower sum is less than or equal to every upper sum.
The integral separates these sets of numbers.



Example 2

Solution

=

Figure 17.1.4. The
rectangle D is divided into
two smaller rectangles D,
and D,.

17.1 The Double Integral and lterated Integral 841

The Double Integral

We say that f is integrable on D if there is a number S, such that every
S < 8, is a lower sum for f on D and every S > §; is an upper sum. The
number S, is called the integral of f over D and is denoted by

[ s ydxady.

Let D be the rectangle 0 < x <2, 1 < y <3, and let f(x, y) = x%. Choose a
step function A(x, y) > f(x, y) to show that [[,f(x, y)dxdy < 25.

The constant function A(x, y) =12 > f(x, y) has integral 12 X 4 = 48, so we
get only the crude estimate [[,f(x, y)dxdy < 48. To get a better one, divide
D into four pieces:

D, =[0,1] x[12], D, =[1,2]X[1,2],
D2=[0,1}><[2,3}, D4=[1,2]><[2,3].
Let /# be the step function given by taking the maximum value of f on each
subrectangle (evaluated at the upper right-hand corner); that is,
h(x,y)=2onD,,30onD,,80nD,,and 120nD,.

The integral of 7 is 2X 1 +3X 1+8X 1+ 12X 1 =25 Since & > f, we get

ffo(x,y)dxdy< 25. A

The basic properties of the double integral are similar to those of the ordinary
integral:

Properties of the Double Integral

1. Every continuous function is integrable.

2. If a rectangle D is divided by a line segment into two rectangles D,
and D, (Fig. 17.1.4), and if f(x, y) is integrable on D, and D,, then f
is integrable on D and

[ fnydsay=[ [ e pasaye [ | joxpyaxdy.
3. If f, and f, are integrable on D and if f; < f, on D, then
[ [ pyaxdy< ] [ fix, yydxay.
4. If f(x,y)=k on D,
ff f(x, y)dxdy= k(area of D).
D

5. [ LA+ fx )] dxdy
=ffo1(x,y)dxdy+ffl)fz(x,y)dxdy.
6. [ [d@nady=c[] fxyydxa.




842 Chapter 17 Multiple Integration

Figure 17.1.5. The volume
of R, the region under the
graph of f, equals
[[pf(x, yydxdy.

We omit the proofs of these results since they are similar to the one-variable
case. Choosing k = 1 in 4, note that [{, dxdy = area of D.

We observed earlier that if g(x, y) > 0 and g is a step function, then the
integral of g is the volume under its graph. If f(x, y) > 0 is any integrable
function, then the volume under the graph of f lies between the volumes under
the graphs of step functions g < fand h > f; that is, between lower and upper
sums. Since the integral has exactly this property, we conclude, as for
functions of one variable, that the integral of f over D equals the volume under
the graph of f if f > 0 (see Fig. 17.1.5).

For the moment, we can evaluate integrals only approximately or by
appealing to geometric formulas for volumes of special solids. Later in this
section, we show how the fundamental theorem of calculus can be brought
into play.

The double integral has other interpretations besides the volume of the
region under the graph of the integrand. For example, suppose that a
rectangular plate D has mass density p(x, y) grams per square centimeter. Let
us argue that [[,p(x, y)dx dy is the mass of the plate. If p is constant, this is
true since mass = density X area. Next, if p is a step function, then the integral
of p over D is the mass of a plate with density p since the total mass is the sum
of the masses of its parts. Now let p be arbitrary. If p, is a step function with
p, < p, then [[pp,(x, y)dxdy < m, where m is the mass of the plate with
density p, since a lower density gives a smaller mass. Likewise, if p, is a step
function with p, > p, then m < [[,po(x, y)dxdy. Thus the mass m lies be-
tween any pair of lower and upper sums for p, so it must equal the integral

[ pp(x, y)ds dy.

Before establishing the fundamental result which will enable us to use
one-variable techniques to evaluate double integrals, we must explain some
notation. The iterated integral

fc d{ f "fx, y)dX} dy

is evaluated, like most parenthesized expressions, from the inside out. One first
holds y fixed and evaluates the integral f bf(x, yydx with respect to x; the
result is a function of y which is then integrated from ¢ to 4.

The expression [2[[%f(x, y)dy]dx is defined similarly; this time the inte-
gral with respect to y is evaluated first. Iterated integrals are often written
without parentheses as

fcdfabf(x,y) dxdy and f,,bfcdf(x’ y)dy dx.
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Example 3 Evaluate | ? I *xydydx.
0 J1

Solution f()zfl3x2)1dydx=f02(fl3x2)1dy) dx=f02( g :1) dx

}
S (9 - W ax—d (Atax a2 232
—fox(2 2)dx 4f0xdx -5

Notice that the second step in this calculation is essentially the inverse of a
partial differentiation. A

We claim, and shall prove below, that the double integral equals the iterated
integral. That is, for D = [a, b] X [¢,d],

’

ffpf(x» y)ydxdy= fcd[fabf(x, ) dx} dy= fab[fcdf(x, Y) dy} dx.

To see why this might be so, let us suppose that f(x, y) > 0, so that the
integral [f,f(x, y)dxdy represents the volume of the region R under the
graph of f. If we take this volume and slice it by a plane parallel to the yz
plane at a distance x from the origin, we get a two-dimensional region whose
area is given by 4 (x) = [¥f(x, y)dy (see Fig. 17.1.6).

z z
Graph of z = f(x,y)

z=f(x,y)

Figure 17.1.6. The area of
the cross-section is the area R
under the graph of

z = f(x, y)fromy = ¢ to ‘.
y = d (where x is fixed). % A= J feyydy

By Cavalieri’s principle (Section 9.1), the total volume is the integral of
the area function 4 (x). Thus,

ffo(x, »)dx dy= volume of R =fabA(x)dx=fab[fcdf(x,y)dyJ dx.

In the same way, if we use planes parallel to the xz plane, we get

ffo(x’)’)dXd)’=fcd[fabf(x,y)dx}dy,

which is what we claimed. We see that Cavalieri’s principle gives a geometric
“proof” of the reduction to iterated integrals; in fact, it is more appropriate to
take our proof below as a justification for Cavalieri’s principle.

Theorem: Reduction to Iterated Integrals

Assume that f(x, y) is integrable on the rectangle D = [a,b] X [c, d].
Then any iterated integral which exists is equal to the double integral;
that is,

Jg e y)dxdy=fcd[Lbf(x, y)dx]d):fab[fcdf(x, y)agVde,
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Proof of the
Reduction to

To prove this theorem, we first show it is true for step functions. Let g be a
step function, with g(x, y) = k; on (;_,4) X (5,-1,5), s0 that

fng(x,y)dxdy= > k; At As; .

i=Ty=1
If the summands k; Az; As; are laid out in a rectangular array, they may be
added by first adding along rows and then adding up the subtotals, as follows:

kAt As,  ky At,As, -k, At As) —> ( k”Atl-) As,
i=1
ki At Asy,  kyAt,As, - kp,AfAsy — (E k,-:,_At,-) As,
i=1
k,, At As,,  ky,At,As, -k, At,As, —— ( 2 k;, At,-) As,,
i=1
S ( » k,.jm,.) As,
PRy !

The coefficient of As; in the sum over the Jjth row, 3%_ k; Az, is equal to
[2g(x, y)dx for any y with 5;_, < y <, since, for y fixed, g(x, y) is a step
function of x. Thus the integral [%g(x, y)dx is a step function of y, and its
integral with respect to y is the sum:

fcdubg(x’y)dx}dyzél(é ky-Ati)Asj=fng(x,y)dxdy.

Similarly, by summing first over columns and then over rows, we obtain

fng(x, y)dx d}’=fab{fcdg(x, ») dy} dx.

The theorem is therefore true for step functions.

Now let f be integrable on D = [a,b] X [¢,d] and assume that the iterated
integral [%[[¢f(x, y)dy]dx exists. Denoting this integral by S,, we will show
that every lower sum for f on D is less than or equal to S, while every upper
sum is greater than or equal to S, so S, must be the integral of f over D.

To carry out our program, let g be any step function such that

g(x») < f(x.0) Q)
for all (x, y) in D. Integrating equation (1) with respect to y and using
property 5 of the one-variable integral (see Section 4.5), we obtain

fcdg(x, »)dy< f df(x, »)dy (2)

for all x in [a,b]. Integrating (2) with respect to x and applying property 5
once more gives
b
dx <
a

fab[fcdg(x,y) dy fcdf(x,y) dy} dx. 3)

Since g is a step function, it follows from the first part of this proof that the
left-hand side of (3) is equal to the lower sum [ [,g(x, y)dx dy; the right-hand
side of (3) is just S, so we have shown that every lower sum is less than or
equal to S,. The proof that every upper sum is greater than or equal to S is
similar, and so we are done. [ |
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Example 4 Let f(x, y) = e***”. Evaluate the integral of fover D =][0,1] X]0,3].
3f (1
luti , dy= 24y dx ) d
Solution ffo(xy)dxy fo(foe x)y

_f( 2+

%(e —l)f erdy=

(You should check that integrating with respect to p first gives the same
answer.) A

=l 3 24y _ Ly
xo)"y 3 [ —ena

(€ — 1) - 1)
2

=~ 60.9693.

Example 5 Evaluate f ’ f 2xﬁz dxdy and compare with Example 3.
10

e

_4p_p =32
3@ -1)=2.

Solution ffxﬁzdxdy f( xﬁzdx) 3(x)’

"f 3yy—§

The answer is the same as that in Example 3, as predicted by the theorem
above. (It is also consistent with Example 2.) A

Example 6 Compute f f sin(x + y)dx dy, where D = [0, 7] X [0,27].
D

Solution fstin(x + y)dx dy=f2w{fwsin(x +) dx] dy
f —cos(x + y)|T_o] dy

=f [cos y — cos(y + )] dy

=[siny —sin(y + 7) ]2, = 0. A

Example 7 Find the volume under the graph of f(x, y) = x*>+ y? between the planes
x=0,x=3,y=—-1l,and y=1.

Solution The volume is
1 3 1,3 3 1
I (x2+y2)dxdy=fhl(%+yzx )dy=f_l(9+3y2)dy

= (% +y3)|1_1 =20. A

Example 8 If D is a plate defined by 1 < x <2, 0< y <1, and the mass density is
p(x, y) = ye™ grams per square centimeter, find the mass of the plate.

Solution The total mass is

fpo(x, y)d?cdy=folflzyexydxdyzfol(exyli:l dy
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2
= —62— —e+ = ~ 14762 grams. A

Supplement for Section 17.1:
Solar Energy and Double Integrals

To illustrate the process of summation which is represented by the double
integral, we may use an example connected with solar energy. The intensity of
solar radiation is a “local” quantity, which may be measured at any point on
the earth’s surface. Since the sqlar intensity is really a rate of power input (see
the Supplement to Section 9.5), we can measure it in units of watts per square
meter.

If the solar intensity is uniform over a region, the total power received is
equal to the intensity times the area of the region. In practice, the intensity is a
function of position (in particular, it is a function of latitude); so we cannot
just multiply a value by the area of the region. Instead, we must integrate the
intensity over the region. Thus, the method of this section would allow us to
find (at least in principle) the total power received by the state of Colorado,
which is a rectangle in longitude-latitude coordinates. The problem for Utah
is also tractable, since that state is composed of two rectangles, but what
happens if we are interested in Michigan or Florida? For this problem, we
need to integrate over regions which are not rectangles: the method for doing
this is presented in the next section.

Exercises for Section 17.1

In Exercises 1 and 2, the function g takes values on the 4. Let D be the rectangle 1 < x <4, 0< y <2
rectangles as indicated in Fig. 17.1.7. Calculate the Suppose that D is a plate with mass density
integral of g.

p(x, y)= 2xy2 + cosmy + 1 (grams per square

1. For the rectangle in Fig. 17.1.7(a). centimeter). Find step functions to show that the
2. For the rectangle in Fig. 17.1.7(b).

mass m (in grams) of the plate satisfies the in-
equalities 30 < m < 62.

Y Y Evaluate the iterated integrals in Exercises 5-10.
4 4 5. (P [*xydxa 6. [*(*xydvd
i Eam Ppves o [firea
2 - - 2,1 Y 1 r2 2
- 7. dy d. 8. dxd
2 | | i ‘; M; fofil(yx) ly dx f_lfo(yx) x dy
4 X 2 4 6 x 9. fl flye"dydx 10. f‘ f3y5e"—vjdxdy
—140 —1J0
Evaluate [[,f(x, y)dxdy for the indicated functions
(@) (b) Y Y
Fi 17177, Find th and rectangles in Exercises 11-16.
.'tg""el o nc the 11 f(x, y) = (x +29)% D =[—1,2] X [0,2].
integral ot g. 12. f(x, y) = y’cos’; D =[—=/2,7] X [1,2].
=2 _ D= _
3. (a) Let D be the rectangle determined by the ii ﬁi’i;; §y3:"277)?D i‘/[;l ’3]Dx [1[0’2]1] x[=22]

inequalities ~1 < x <1 and 2 < y < 4 and let
f(x, y)=x(1 + y). Find a step function g satisfy-
ing g(x, y) < f(x, y) to show that

[ ofCx, y)dxdy > .

(b) Sketch the graph of f(x, y) over D. Use
symmetry to argue that the value of the integral
in part (a) must in fact be zero.

15 f(x, )=xy + x/(y + 1); D=[1,4] X[1,2].
16. f(x,¥) = y%e” **sinx; D = [0,1] x [—1,0].

17. Evaluate (3" x(1 + y)dx dy and compare with
Exercise 3.

18. Evaluate [3[1(2xp? + cosmy + 1)dx dy and com-
pare with Exercise 4.



Sketch and find the volume under the graph of f
between the planes x =a, x=b, y=¢, and y =4 in
Exercises 19 and 20.

19. f(x, )=x+y*+2; a=~1, b=1, c=1,

d=3.
20. f(x,y)=2x+3y2+2; a=0, b=3, ¢c= -2,
d=1.

21. The density at each point of a 1 centimeter square
(ie., each side has length 1 centimeter) microchip
is 4 + r? grams per square centimeter, where r is
the distance in centimeters from the point to the
center of the chip. What is the mass of the chip?

22. Do as in Exercise 21, but now let r be the
distance to the lower left-hand corner of the
plate.

%23. Prove that the sum of two step functions defined
on the same rectangle is again a step function.

*x24. Prove that if f(x, y) < g(x, y) for all (x, y) in
the rectangle [a, b] X [c,d], then

fabffdf(x, y)dydx<fcdfahg(x,y)dxdy.

17.2 The Double Integral
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*25. The state of Colorado occupies the region be-

tween 33° and 41° latitude and 102° and 108°
longitude. A degree of latitude is about 110 ki-
lometers and a degree of longitude is about 83
kilometers. The intensity of solar radiation at
time ¢ on day T at latitude / is (in suitable units;
see the Supplement to Section 9.5)

- ~ sinmcos( 27T ) cosf 27
1 cosl\/l smacos(365)cos( 24)

27T

365 )

(a) What is the integrated solar energy over
Colorado at time ¢ on day 7?7

(b) Suppose that the result of part (a) is inte-
grated with respect to ¢ from ¢, to 7,. What
does the integral represent?

+ sin/sina cos(

Over General Regions

Double integrals over general regions become iterated integrals with variable

endpoints.

Many applications involve double integrals [[,f(x, y)dxdy over regions D
which are not rectangles. For instance, the volume of a hemisphere, the mass
of an elliptical plate, or the total solar power received by the state of Texas
can be expressed as such integrals. We shall find that such integrals can be
evaluated by iterated integration in a form slightly more complicated than that

used for rectangles.

To begin, we must define what we mean by [[,f(x, y)dxdy when D is
not a rectangle. We shall assume that D is contained in some rectangle D*.
Let f* be the function on D* defined by

f(xp) i (x))ED,
f(x ) = L
0 if (x,y)€&D.
(See Fig. 17.2.1.)
‘ z=f(x,) ’ z=f1xy)

Figure 17.2.1. Given fand

D, we construct f* by

setting f*(x, y) equal to

zero outside D. x
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Figure 17.2.2. The choice
of D* does not matter.

y
Y =¢y0x)
}
a b x
y=0(x)
¥
Y = ¢p(x)

Y =¢(x)
Figure 17.2.3. A region D is
of type 1 if it is the region
between the graphs of two
functions, y = ¢,(x) and
Y = dy(x).

If D** is another rectangle containing D, and f** is the corresponding
function defined as above, then [[,.f*(x, y)dxdy = [[pef**(x, y)dxdy,
since f* and f** are zero in the regions where D* and D** differ (see Fig.
17.2.2 and use the properties of the integral given in Section 17.1).

f* and f** are zero here
D /

4

D**

We note that if f(x, y) > 0 on D, then both integrals above are equal to
the volume of the region under the graph of f on D, ie., the set of (x, y,z)
such that (x, y) € D and 0 < z < f(x, p).

With these preliminaries, we can state the following definition.

The Double Integral Over a Region D

Extend f to a rectangle D* containing D by letting f* equal f on D and
zero outside D. If f* is integrable on D*, then we say that f is integrable
on D, and we define [[,f(x, y) dxdy to be [[,. f*(x, y)dx dy. (By our
preceding remarks, the choice of D* does not affect the answer).

This definition serves the purpose of giving meaning to the double integral,
but it is not very useful for computation. For this purpose, we need to choose
D in a more specific way. We shall define two simple types of regions, which
we will call elementary regions. Complicated regions can often be broken into
elementary ones.

Suppose that we are given two continuous real-valued functions ¢, and ¢,
on [a, b] which satisfy ¢,(r) < ¢,(¢) for all ¢ in [a,b]. Let D be the set of all
points (x, y) such that

xisin[a,b] and ¢(x) < y < ¢y(x).
This region D is said to be of type 1. (See Fig. 17.2.3.) The curves and straight
line segments that enclose the region constitute the boundary of D.

We say that a region D is of type 2 if there are continuous functions i,
and y, on [c,d] such that D is the set of points (x, y) satisfying

yisin [c,d] and () < x < (),

where (1) < §,(¢) for ¢ in [c,d]. (See Fig. 17.2.4.) Again the boundary of the
region consists of the curves and line segments enclosing the region.



Figure 17.2.4. A region D is
of type 2 if it is the region
between the graphs of

x =Y(p) and x = Yo( y).

Example 1

Solution

Figure 17.2.5. The unit disk
as a type 1 region and a
type 2 region.

¥y =¢,(x)

8
=
—
>
¥

y=¢,()

Figure 17.2.6. The integral
of f* over D* equals that of
[ over D.

17.2 The Double Integral Over General Regions 849

x= \b;(y)

x = \1/2(}/)

The following example shows that a given region may be of types 1 and 2
at the same time.

Show that the region D defined by x* + y? < 1 (the unit disk) is a region of
types 1 and 2.

Descriptions of the disk, showing that it is of both types, are given in Fig.
17.2.5. A

y:¢2(X) x:\bl(y) x:\bz(y)

(a) Type 1 region (b) Type 2 region

We will use, without proof,' the following fact: If f is continuous on an
elementary region D, then f is integrable on D. This fact, combined with the
reduction to iterated integrals for rectangles, enables us to evaluate integrals
over elementary regions by iterated integration. Indeed, if D* =[a,b] X [c,d]
is a rectangle containing D, then

ffl)f(x,)’)dx dy =ffD*f*(x,y)dxdy =fabfcdf*(x>)’)dydx
=fcdfabf*(x’y) dx dy, (2)

where f* equals f in D and is zero outside D. Assume that D is a region of
type 1 determined by functions ¢, and ¢, on [a,b]. Consider the iterated
integral

I EACEIE T

and, in particular, the inner integral [¢f*(x, y)dy for some fixed x (Fig.
17.2.6). By definition, f*(x, y) = 0if y < ¢,(x) or y > $,(x), so

fc (e ) dy= L ‘fg)f*(x, y)dy= f¢ ‘j’(i)x)f(x, y)dy. 3)

i

(1

! Fora proof, see an advanced calculus text, such as J. Marsden, Elementary Classical Analysis,
Freeman (1974), Chapter 8.
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Substituting (3) into (1) gives
[ fo o nasar= [ [*0fx yyay | ax

A similar construction works for type 2 regions.

Double Integrals
If D is a region of type 1 (Fig. 17.2.3),

[ f e asds= 7] [# 55 . )
If D is of type 2 (Fig. 17.2.4),
[ e nasar= ][5 cx,pyax] @ )

If D is of both types, either (4) or (5) is applicable.

If f(x, y) > 0 on D, we may understand the procedure of iterated integration
as our old technique of finding volumes by slicing (Section 9.1). Suppose, for
instance, that D is of type 1, determined by ¢,(x) and ¢,(x) on [a, b]. If we fix
x and slice the volume under the graph of f(x, y) on D by the plane which
passes through the point (x,0,0) and which is parallel to the yz plane, we
obtain the region in the yz plane defined by the inequalities ¢,(x) < p < ox(x)

and 0 < z < f(x, y). The area A (x) of this region is just fgzggf(x y)dy. Now
the double integral [[,f(x, y)dx dy, which is the volume of the entire solid,
equals

LbA(x)dx=LbM‘j’(2:;‘)f(x, ) dy} dx

the iterated integral. Thus we get (4).

If D is of type 2, then slicing by planes parallel to the xz plane produces
the corresponding result (5). The reader should draw figures similar to Fig,
17.1.6 to accompany this discussion.

Example 2 Find ff (x + y)dx dy, where D is the shaded region in Fig. 17.2.7.
D

Solution D is a region of type 1, with [4,5]=[0,1], ¢,(x) =0, and @,(x)= x* By

formula (4) in the preceding box,

ffD(x +y)dxdy=f01/2f0x2(x+y)dydx=f01/2

NS
(xy+12—) }dx
0

.
1/2

Figure 17.2.7. Find
JipCGx+ y)dx dy.

. V2o xY g2 L X
x _f( 2) ‘(4+1o);\0

=, 1 _ 3
~ % T30 " 160

D is also a region of type 2, with ,(y) = \/; and y,(y) = 1. We leave it to you
to verify that the double integral calculated by formula (5) is also 3;. A



Example 3

Solution

x=1

Figure 17.2.8. The region
of integration for

[of5xy dy dx.
Example 4

Solution

Figure 17.2.9. The region of
integration for

(350" T= 7 dy a.
Example 5
Solution

(2,2)

(0,0) x

Figure 17.2.10. The region
of integration for
Example 5.
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x2
Evaluate f 1 f , Xpdydx. Sketch the region for the corresponding double
0 vx
integral.

Here y ranges from x* to x2, while x goes from 0 to 1. Hence the region is as
shown in Fig. 17.2.8. The integral is

(9217 ) s (2 2T\ e[ 5
fo(—z_ Xs)dx‘fo(z 2)dx‘(12 16)

y=

1
=1
3 A

»—A’_
N

1
12

x=0

The next example shows that it sometimes saves labor to reverse the order of
integration.

Write L= 1 — y? dydx as an integral over a region. Sketch the region
A Yy o4

and show that it is of types 1 and 2. Reverse the order of integration and
evaluate.

The region D is shown in Fig. 17.2.9. D is a type 1 region with ¢,(x) =0,
¢,(x) =y1 — x? and a type 2 region with ¢,(y) =0, Y,(y) =1 — . Thus

folfomﬂdydx=f01fom,/1—y2dxdy
=f01{\/1—y2xifl=07}dy=fol(l —y)dy

3!
(2
(=%

0

Evaluating the integral in the original order requires considerably more
computation! A

=2
2.

Calculate the integral of f(x, y)=(x + y)* over the region shown in Fig.
17.2.10.

In this example, there is a preferred order of integration for geometric reasons.
The order [[f(x, y)dxdy, i.e., x first, requires us to break up the region into
two parts by drawing the line y = 1; one then applies formula (5) to each part
and adds the results. If we use the other order, we can cover the whole region
at once:

ffpf(x,y)dxdy=f02fx*“ 'f(x, y)dy dx.

(The lines bounding D on the bottom and top are y = x and y = 1 x + 1.) The
integral is thus

2 rix 41 21 1 i1x+1
fofx (x+y)2dydx=f0{§(x+y)3 }dx

y=x

It
W=
—
O\ |—
——
[N
=
+
—
S———

[N
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=%{%(44—1)—2-16}

_1r2ry_21
'3{2} 6 A

General regions can often be broken into elementary regions, and double
1ntegrals over these regions can be computed one piece at a time.

Example 6 Find ff x%dx dy, where R is the shaded region in Fig. 17.2.11.
R

Solution FEach of the regions R,, R,, R;, R, is of types 1 and 2, so we may integrate over
each one separately and sum the results. Using formula (4), we get
dx

ffo dxdy ff 2dydx

—f(x — xY)dx= (%—%4)

1

0

1
12

PN

1
3
Similarly, we find

ffR2xdxdy ff "X dydx=

m—

Figure 17.2.11. Integrate x>
over the pinwheel. By symmetry,

2 -1 1 ,1_2
ffodxdy—lz+4+12+4 3

You may check that formula (5) gives the same answers. A

Exercises for Section 17.2

In Exercises 1-4, sketch each region and tell whether it 6. Find [[p(1 —sinwx)ydxdy, where D is the re-
is of type 1, type 2, both, or neither. gion in Figure 17.2.12.
1. (x, y)such that 0 < p <3x,0< x < L. 7. Find [[p(x —y)zdx dy, where D is the region in
2. (x, y) such thaty <x<p,0<y<l Figure 17.2.13.
3. (x, y) such that x* +y < 1. 8. Find [[py(l — cos(mx/4)) dx dy, where D is the

4. (x, y) such that § < x4yt <L region in Fig. 17.2.13.

5. Find [[p(x + y)*dxdy, where D is the shaded
region in Fig. 17.2.12. Y
y
y=x y=va
y=2 r
x=1 | x
Figure 17.2.13. The region
Figure 17.2.12. The region of integration for
of integration for Exercises 7 and 8.

Exercises 5 and 6.



Evaluate the integrals in Exercises 9-16. Sketch and
identify the type of the region (corresponding to the
way the integral is written).

9. fo”f:““‘x(l + y)dy dx.

10.

11.

1

[\S]

13

14.

15

16

1n X

flfx €08 27m(xz + xy + l)dy dx.
0 Jx—1 ’

[1 870 45— 2pdxdy.
Wy

f2f3(,/4¥x2)/2 ( 5 +y3) dy dx.
0 J-3(4-x")/2\ 2+ x

folfoxz(xz + xy —yz)dy dx.

f;fyfz— 13 dx dy.

folij(x +y)2dy dx.

. folfOBye”ydxdy.

In Exercises 17-20, sketch the region of integration,
interchange the order, and evaluate.

17. folfxlxydydx
18. fo”/zfocosycowdrdB

19. fo‘fl‘_y(x + yVdx dy

40V, 2 2
20. + y)d
fl fl (x"+ y)dy dx

Figure 17.3.1. The region

under the graph of fon D

may be thought of as being
composed of infinitesimal
rectangular prisms. x

17.3 Applications of

17.2 The Double Integral Over General Regions
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In Exercises 21-24, integrate the given function f over
the given region D.

21.

22,

23.

24,

25.

26.

27.

*28.

f(x, y)=x —y; D is the triangle with vertices
0,0), (1,0), and (2, 1).

f(x, )= x3y + cosx; D the triangle defined by
0<x<7/2,0< y<x.

fx, y)= (x2+ 2xy2 + 2); D the region bounded
by the graph of y = — x + x, the x axis, and the
lines x =0 and x = 2.

fx, y)y=sinxcos y; D the pinwheel in Fig.
17.2.11.

Show that evaluating [f,dxdy, where D is a
region of type 1, simply reproduces the formula
from Section 4.6 for the area between curves.

Let D be the region defined by x? +y2 < L

(a) Estimate [[,dxdy (the area of D) within
0.1 by taking a rectangular grid in the plane
and counting the number of rectangles: (i)
contained entirely in D (lower sum); (ii)
intersecting D (upper sum).

Compute ||, dx dy exactly by using an iter-
ated integral.

Which states in the United States are regions
of type 1? Type 2? (Take x = longitude, y =
latitude.)

Prove: fox[folF(u) duJ dt =f0x(x — w)F(u)du.

(b)

the Double Integral

Volumes, centers of mass, and surface areas can be calculated using double

integrals.

We have observed in Section 17.1 that if f(x, y) > 0 on D, then the double
integral [, f(x, y)dx dy represents the volume of the three-dimensional region
R defined by (x, y) in D, 0 < z < f(x, y). An “infinitesimal argument” for
this result goes as follows. Consider R to be made of “infinitesimal rectangular
prisms” with base dx and dy and height f(x, y) (see Fig. 17.3.1). The total




854 Chapter 17 Multiple Integration

Example 1

Solution

Figure 17.3.2. The volume
of the region in space above
D and below z = x2 +y2, is
[fp(* + y?ydx dy.

volume is obtained by integrating (that is, “summing”) the volumes of these
cylinders. Notice, in particular, that if f(x, y) is identically equal to 1, the
volume of the region under the graph is just the area of D, so the area of D is
equal to {{,dxdy.

Compute the volume of the solid in space bounded by the four planes x =0,
y=0,z=0, and 3x + 4y = 10, and the graph z = x? + y°.

The region is sketched in Fig. 17.3.2. Thus the volume is
2 v 2dedv= (P2 (D032 4 02y iy | @
ffD(x y)dxdy fo fo (x*+)y7)dx | dy

sy (10 =4y’ N (10 — 4y)
_fo 3* 3

dy

5/2

_ (10—4)))4 N 10y3 _y_4
T 34.4.4 9 3

0

_10° L 10-5° 5% _ 15625 _
ST E T3 3.0 1296 12056 A

(The volume in Example 1 can also be written as 5°/(3* - 24). Can any reader
explain this simple factorization?)

By reasoning similar to that for one-variable calculus (see Section 9.3), we
are led to the following definition of the average value of a function on a
plane region.

Average Value

If f is an integrable function on D, the ratio of the integral to the area
of D,

J S Jeaxd

fLw@

is called the average value of f on D.

Example 2 Find the average value of f(x, y) = x sin’(xy) on D = [0, 7] X [0, 7].

Solution  First we compute

ffo(x,y)dxdy=foﬂfowx sin®(xy) dx dy



Example 3

Solution

17.3 Applications of the Double Integral 855

1 —cos(2x a sin2(xy)
f(f i ”xdy)dx=f0(§___4§j )

7,( sz sm(27rx) )dx=(ﬂ2 N cos(2mx) )’"

dx

y=0

[l
5

4 87

. N [005(2-77 ) — I:I .

4 87

Thus the average value of fis
7°/4 + [cos(27?) — 1] /8 cos(27%) — 1
[ Gy } + —(—5—5—3)—%0.7839. A
T

~[3

2
Double integration also allows us to find the center of mass of a plate with
variable density. Let D represent a plate with variable density p(x, y). We can
imagine breaking D into infinitesimal elements with mass p(x, y)dxdy; the
total mass is thus [[,p(x, y)dxdy. Applying the consolidation principle (see
Section 9.4) to the infinitesimal rectangles, one can derive the formulas in the
following box.

Center of Mass

ffxp(x y)dxdy e ffl)yp(x,y)dxdy.
f f p(x, y)dx dy f fD p(x, y)dxdy

Find the center of mass of the rectangle [0, 1] X [0, 1] if the density is e**”.

First we compute the mass:

ffl)e"+ydxdy=f01f01e“ydxdy=f01(e"+y|i=0)dy
[

=e't—e,_g=e’—e—(e—1)=e"—2e+ 1

The numerator in the formula for X is
1
dy

f()lfO]xex+dedy=f01(xex+y — ex+)’) =0

=f01[el+y— e'*r — (0e” — e”)]dy

1
=f erdy=er|,_o=e—1,
0
50

y=_e—-1 _ e-1 _ 1 _gsg.
e’ —2e+1 (e—l)z e—1

The roles of x and y may be interchanged in all these calculations, so

y=1/(e — 1)~0.582 as well. A
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Figure 17.3.3. The “image”
on the surface z = f(x, y)
of an infinitesimal rectangle
in the plane is the
infinitesimal parallelogram
P, P,P,P;.

In Section 10.3 we used ordinary integration to determine the area of surfaces
of revolution. Using the double integral, we can find the area of general
curved surfaces. We confine ourselves here to an infinitesimal argument—the
rigorous theory of surface area is quite subtle.?

To find the area of the graph z = f(x, y) of a function f over the plane
region D, we divide D into “infinitesimal rectangles” which are of the form
[x,x + dx] X[y, y + dy]. The image of this infinitesimal rectangle on the
graph of f is approximately an “infinitesimal parallelogram” with vertices at

Py=(x,p f(%)),
P, =(x+dx, p, f(x + dx, y)) =~ (x + dx, p, f(x, y) + fo(%, p) dx),
Py=(x,y+dy, f(x, p + &)= (%0 + dy, f(x,0) + (%, y) D),
Py=(x+dx,y+dy, f(x+dx,y+ dy))
~(x +dx,y+dy, f(x, ) + f(x, y)dx +fy(x, »)dy).
(See Fig. 17.3.3)

We compute the area dA4 of this parallelogram by taking the length of the
cross product of the vectors from P, to P, and from P, to P; (see Section
13.5). The vectors in question are dxi + f,(x, y)dxk and dyj + f,(x, y)dyk;
their cross product is

i k
dx 0 f(x,p)dx|= —f(x,y)dxdyi— f,(x, y)dxdyj+ dxdyk,
0 & [0

and the length of this vector is dA = \/1 + fo (%, p)> + f,(x, y)* dxdy. To get
the area of the surface, we “sum” the areas of the infinitesimal parallelograms
by integrating over D.

2 See T. Rado, Length and Area, American Mathematical Society Colloquium Publications,
Volume 30 (1958).



Example 4

Solution

Figure 17.3.4. The area of
the hemisphere above the
ellipse x? + y2/a < 1is

4sin~

1

a.

17.3 Applications of the Double Integral 857

Surface Area of a Graph

Area=ffDdA=ffD\/1 £ (% p)Y + f (%, p): dxdy

=f£\/”(§—i)z+(g—;)z dxdy.

Note the similarity of this expression with the formula for the arc length of a
graph (Section 10.3). As with arc length, the square root makes the analytic
evaluation of surface area integrals difficult or even impossible in all but a few
accidentally simple cases.

Find the surface area of the part of the sphere x> + y? + 22> =1 lying above
the ellipse x? + (y?/a?) < 1; (a is a constant satisfying 0 < a < 1).

The region described by x* + (y /az) < 1is type 1 with ¢,(x) = —ayl — x?
and ¢,(x) = ayl — x?; —1 < x < 1. The upper hemisphere may be described
by the equation z = f(x, y)=y1 — x> — y*. The partial derivatives of f are

dz/8x = —x/\1 — x> —p? and 98z/dy = —y/y1—x>—»*, so the area

integrand is

\/1+ x? + y? = 1
2 2 2 2
I—x"—y I—x"—y /1—x2—y2

and the area is
e
a\/lfx \/1“‘)‘32_)/2
f ( H\/l*){z
—a\/l—x2
(See Fig. 17.3.4.) As a check on our answer, note that if a =1, we get

4sin"'1=4-7/2=2m, the correct formula for the area of a hemisphere of
radius 1 (the surface area of a full sphere of radius r is 4777). A

i

|

|
—+

dx

)dx= 2]1 sin lgdx=4sin" 'a.
1

l—x2

e
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Example 5 The equation in xyz space of the surface obtained by revolving the graph
» = f(x) about the x axis is y? + z> = [ f(x)]>. Express as a double integral the
area of the part of this surface lying between the planes x = @ and x = b.
Carry out the integration over y. Do you recognize the resulting integral
over x?

Solution Writing z as a function of x and y, we have z = g(x, y) = ++/f(x)* = »* .
The domain of this function consists of those (x, y) with —f(x) < y < f(x),
so the surface in question lies over the type 1 region D defined by @ < x < b,
— f(x) < y < f(x). (See Fig. 17.3.5.) The partial derivatives of g are

Figure 17.3.5. Finding the =ff(x) i
surface area when y = f(x) Y [y=rco
is rotated about the x axis.

g5 ) =X/ VI gy =~/ =)

so the surface area integrand is

\ﬁ+f’(X)2f(X)2+ 2 \/f(x)2~y2+f’(X)2f(X)2+y2
R O 1y =y

o [P
f( ) f(x)2 _y2
and the areais 4 = 2Lbf_f;:j)f(x)'\/ %{—(—)%22 dy dx.

(The factor of 2 occurs since half the surface lies below the xy plane.) We can
carry out the integration over y: '

=2 feont + x| [0 ———dy|dx
, —7 fix)
=2fa FY1+ f/(%) [sm (f(};))y=—f(x) dx

=2Lbf(x)\/1_+'f’(;);(% + %)dx
= 27rfabf(x)1/1 + f(x)* dx.

This is the formula for the area of a surface of revolution (Section 10.3). A
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Exercises for Section 17.3

In Exercises 1-4, find the volume under the graph of
f(x, y) between the given planes x =a, x =b, y =,

and y = d,
l. f(x,p)=xsiny+3; a=0, b=2, c=m,
d=3m; '
2. f(6y)=xy° +2x*+6 a=0, b=1 c=—1,
d=1.
3. f(x,y)=2x4+3y2/3; a=-1, b=1, ¢=0,
d=2;
4. f(x, y)=xpyx?+3y%; a=1, b=2 c=1,
d=2.

5. Compute the volume under the graph of f(x, y)
= 1+sin(wy/2) + x on the parallelogram in the
xy plane with vertices (0,0),(1,2),(2,0),(3,2).
Sketch.

6. Compute the volume under the graph of f(x, y)
=4x2 + 3y2 + 27 on the disk of radius 2 cen-
tered at (0, 1). Sketch.

7. Compute the volume under the graph of f(x, y)
=(cos y)el_c"sz" + xy on the region bounded
by the line y =2x, the x axis, and the line
x=m/2

8. Compute the volume between the graphs of the
functions f(x, y)=2x +1 and g(x, y)= —x —
3y — 6 on the region bounded by the y axis and
the curve x = 4 — y% Sketch.

9. Find the volume of the region bounded by the
planes x =0 and z=0 and the surfaces x =
—4y? + 3, and z = x¥.

10. Find the volume of the region bounded by the
planes x=1,z=0, y=x+1,y=—x—1 and
the surface z = 2x2 + y“.
In Exercises 11-14, find the average value of the given
function on the given region.
11. f(x, y) = ysinxy; D =[0,7] X [0, 7].
12. f(x, y)= x>+ p* D = the ring between the cir-
cles x2+y2=% and x2+y2= 1.
13. f(x, y) = e**7; D = the triangle with vertices at
(0,0), (0, 1), and (1,0).
14. f(x, y)=1/(x + y); D =[e,€?] X [e,€’].
Find the average value of x2+ y? over each of the
regions in Exercises 15-18.
15. The square [0, 1] X [0, 1].
16. The square [a,a + 1] X [0, 1], where a > 0.
17. The square [0,a] X [0, a], where a > 0.
18. The set of (x, y) such that x> + y? < a°.

19. Find the center of mass of the region between
y=x%and y = x if the density is x + y.

20. Find the center of mass of the region between
y=0,y=x% where 0 < x <j.

21. Find the center of mass of the disk determined
by (x — 1)* + y2 < 1 if the density is x>

22. Repeat Exercise 21 if the density is y°.

23.

24.

25.

26.

27.

28.

29.

30.

Find the area of the graph of the function f(x, y)
=2(x*?+ »3/?) which lies over the domain
D =1[0,1] X [0,1].

Find the area cut out of the cylinder x* + z2 =1
by the cylinder x2 + y?=1.

Calculate the area of the part of the cone z?
=x*+ y2 lying in the region of space defined by
x>0,y>0,z< L.

Find the area of the portion of the cylinder
x*+ z2 =4 which lies above the rectangle de-
finedby — 1< x<1,0< y<2

Show that if a plate D has constant density, then
the average values of x and y on D are the
coordinates of the center of mass.

Find the center of mass of the region (composed
of two pieces) bounded by y = x> and y =3/x if
the density is (x — y)>. Try to minimize your
work by exploiting some symmetry in the prob-
lem.

(a) Prove that the area on a sphere of radius r cut
out by a cone of angle ¢ is 27r(1 — cos ¢) (Fig.
17.3.6).

Figure 17.3.6. The area of
the cap is 2721 — cos ¢).

(b) A sphere of radius 1 sits with its center on the

surface of a sphere of radius r > 1. Show that the

area of surface on the second sphere cut out by
the first sphere is 7. (Does something about this
result surprise you?)

A uniform rectangular steel plate of sides a and b

rotates about its center of gravity with constant

angular velocity w.

(a) Kinetic energy equals I (mass)(velocity)>.
Argue that the kinetic energy of any element
of mass pdxdy (p= constant) is given by
p(w?/2)(x? + y?) dx dy, provided the origin
(0, 0) is placed at the center of gravity of the
plate.

(b) Justify the formula for kinetic energy:

2
K.E.= ©7 (x2 + y¥)dx dy.
ffplatepz(x y)ydxdy

(c) Evaluate the integral, assuming that the
plate is described by —a/2< x<a/2,
—-b/2< y<b/2
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much is the gold in the plate worth?

Express as a double integral the volume enclosed

A sculptured gold plate D is defined by 0 < x *33.

< 27 and 0 < y < 7 (centimeters) and has mass by the surface of revolution in Example 5. Carry

density p(x, y) = y*sin®4x + 2 (grams per square out the integration over y and show that the

centimeter). If gold sells for $7 per gram, how resulting integral over x is a formula in Section
9.1.

(a) Relate the integrand in the surface area for- *34. Let n right circular cylinders of radius r intersect

mula to the angle between k and the normal to
the surface z = f(x, y).

(b) Express the ratio of the area of the graph of f
over D to the area of D as the average value of

such that their axes lie in a plane, meeting at one
point with equal angles. Find the volume of their
intersection.

some geometrically defined quantity.

17.4

Figure 17.4.1. The box

W =la,b] X [c,d] X [p,q]
consists of points (x, y, z)
satisfyinga < x < b,

c< y<dandp<z<y.

Triple Integrals

Integrals over regions in three-dimensional space require the triple integral.

The basic ideas developed in Sections 17.1 and 17.2 can be readily extended
from double to triple integrals. As with double integrals, one of the most
powerful evaluation methods is reduction to iterated integrals. A second
important technique, which we discuss in Section 17.5, is the method of
changing variables.

If the temperature inside an oven is not uniform, determining the average
temperature involves “summing” the values of the temperature function at all
points in the solid region enclosed by the oven walls. Such a sum is expressed
mathematically as a triple integral.

We formalize the ideas just as we did for double integrals. Suppose that
W is a box (that is, rectangular parallelepiped) in space bounded by the planes
x=a,x=b,y=c,y=d,and z =p, z = g, as in Fig. 17.4.1. We denote this

box by [a,b] X [c,d] X[ p,q]. Let f(x, y,z) be a function defined for (x, y,z)
in W—that is, for

a<x<b, ce<y<d, p<z<gqg.

In order to define the rriple integral

fffwf(x,y,z)dxdydz,
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we first define the concept of a step function of three variables.

A function g(x, y,z) defined on [a,b] X [c,d] X [p.q] is called a step
function if there are partitions

a=ty <t <---<t,=b of [a,b],

c=s5< s <00 <, =d of [e,d],

p=ro<rn<---<n=gq of [p,q]
such that g(x, y,z) has the constant value ky for (x, »,2) in the open box

Wi = (i 158) X (§-155) X (-1 "x)-

We cannot draw the graphs of functions of three variables; however, we
can indicate the value K associated with each box (see Fig. 17.4.2). The

Zh

Tk - i
N pP—————

"

Figure 17.4.2. g has the
value k;; on the small

box W/Ijk .
integral of g is defined as a sum of nm/ terms:
n,m,l
fff g(x, y,z)dxdydz= > k,-jk(volume W)

w i=1,j=1k=1

n,m,l
= 2 ku(An)(ds)(An.
i=lj=1k=1

If fis any function on W, its lower (respectively upper) sums are defined,
as before, as the integrals of step functions g (respectively A) such that
g(x, y,z) < f(x, y,z) (respectively h(x, y,z) > f(x, y,z)) for all points (x, y,z)
in W.

The Triple Integral

We say that f is integrable on W if there is a number S, such that every
S < 8, is a lower sum for f on W and every S > S is an upper sum.
The number S, is called the integral of f over W and is denoted by

fffwf(x,y,z)dxdydz.

At this point you should look back at the basic properties of the double
integrals listed in Section 17.1. Similar properties hold for triple integrals.
Furthermore, there is a similar reduction to iterated integrals.
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Theorem: Reduction to Iterated Integrals

Let f(x,y,2) be integrable on the box W =[a,b] x [c,d] x [p,q]. Then
any iterated integral which exists is equal to the triple integral; that
is,

f(x, y,z)dxdydz= |* . bf(x, y,z)dxdyd:z
fffW L-jcj a
=qufabfcdf(x, y,2)dydxdz

=Lbqufcdf(x,y,z)dydzdx,

and so on. (There are six possible orders altogether.)

The proof of this result is just like the corresponding one in Section 17.1, so we
omit it.

Example 1 () Let W be the box [0, 1] X [— L,0] X [0,1]. Evaluate

fffw(x +2y+ 3z)2dxdy dz.

(b) Verify that we get the same answer if the integration is done in the order y
first, then z, and then x.

Solutlon (a) According to the reduction to iterated integrals, this integral may be
evaluated as

fol/3f_01/2fol(x + 2y + 3z)2dx dy dz

=L
0 J-1/2

=fol/3f—01/2% [(1 +2y + 32)3 -+ 32)3dedz

(x+2y+3z)3 l

3 }dy dz

x=

0
dz

y=-1/2

=f01/3714_ [(1+2y +32)" ~ 2y +32)*)

=f0‘/3 514_ (B2 +1)* = 232)* + 32 - 1)*] az

s[1/3
= 55 [ G2+ 1P - 2032)° + 32 - 1]

z=0

—_ 1 5_ 9y —
=% 15272

(b) fffw(x +2y +3z2)%dydz dx

L
12

=f01f01/3f_01/2(x +2y +32)%dy dzdx



Example 2

Solution
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0
(x+2p+ 3z)3

g dzdx

gy
0 JO

=f01f01/3%[(x+3z)3—(x+3z— 1)3]dzdx

y=-1/2

1] (x+ 3.2)4 (x+3z— 1)4 13
‘fog( o 12 ) &
z2=0
=f1—717[(x+1)4+(x—1)4—2x4]dx
0
11 5 1Y 251t = L
== 5[(x+1) +(x -1y -2x ]X= 5 A

Evaluate the integral of e**»** over the box [0, 1] X [0, 1] X [0, 1].

[T e

1 , . o . 41
=f0f0(el+y+ —er? )dydz—f0 [el**2 —er*?] _dz

=f1|:e2+z_2el+z+ ez]dzz[e2+z_2el+z+ez](l)
0

=e3—3ez+3e—1=(e—1)3.A

As in the two-variable case, we define the integral of a function f over a
bounded region W by defining a new function f*, equal to f on W and zero
outside W, and then setting

fffwf(X, )”Z)dXd)’dZ=fffW*f*(X, y,z)dxdydz,

where W* is any box containing the region W.

As before, we restrict our attention to particularly simple regions. A
three-dimensional region W will be said to be of ype I if there is an
elementary region D in the xp plane and a pair of continuous functions,
v1(x, y) and y,(x, y) defined on D, such that W consists of those triples
(x, y,2) for which (x, y) € D and y(x, y) < z < yy(x, y). The region D may
itself be of type 1 or type 2, so there are two possible descriptions of a type I
region:

a< x <

s ¢1(x) < )’ < ¢2(x)’

b
1
Yi(%, p) < Z < yy(X, ) (if D is of type 1) @
or
c< y<d, Yi(p) < x <y()), (2)
Y1(%, ¥) < 2 < yo(X, ) (if D is of type 2).

Figure 17.4.3 on the next page shows two regions of type I that are described
by conditions (1) and (2), respectively.
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z=7,(,¥)

/z =7,(x,¥)

Figure 17.4.3. A region of
type I lies between two (@) (b)
graphs z = y(x, y) and

z = yy(x, y). z=7(x,¥)

A region W is of type I if it can be expressed in form (1) or (2) with the
roles of x and z interchanged, and W is of type II1 if it can be expressed in
form (1) or (2) with y and z interchanged. See Fig. 17.4.4.

(b) Region of type II (c) Region of type II1

Flgure 17‘4‘.4' The three Top and bottom are Front and rear are Left and right are
types of regions 1n space. surfaces z = y(x, y) surfaces x = p(z, y) surfaces y = §(x, z)

Notice that a given region may be of two or even three types at once. (See

Fig. 17.4.5.) As with regions in the plane, we call a region of type I, II, or III
in space an elementary region.

Figure 17.4.5. Regions in
space can be of more than

one type. This one is of all As a region As a region As a region
three types. of type I of type 11 of type 111
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Example 3 Show that the unit ball x> + y*> + 2z < 1 is a region of all three types.

Solution As a type I region, we can express it as
-1<x<1

—y1—x* <y <yl—x2,
—yl=x2—p? <z <yl—-x2— )%,

In doing this, we first write the top and bottom hemispheres as z =
y1—x2—»? and z= —y1 — x> — »*, where x and y vary over the unit disk
(that is, —y1 — x? < y <Y1 — x* and x varies between — 1 and 1). (See Fig.
17.4.6.) We write the region as a type II or III region in a similar manner by
interchanging the roles of x, y, and z in the defining inequalities. A

/Z=72(x,y)=\/1 —x2—y?

Figure 17.4.6. The unit ball
described as a region of

type I. \\Zz,yl(x’y)zy,‘/l ,x2,y2

As with integrals in the plane, any function of three variables which is
continuous over an elementary region is integrable on that region. An argu-
ment like that for double integrals shows that a triple integral over an
elementary region can be rewritten as an iterated integral in which the limits
of integration are functions. The formulas for such iterated integrals are given
in the following display.

Triple Integrals
Suppose that W is of type I. Then either

fffwf(x, y,2)dxdydz= fabf:Z(X) YZ(X’y)f(x, y.2)dzdydx  (3)

1(X) Yyi(x.p)
(see Fig. 17.4.3(a)) or :

fff f(x,y,z)dxdydz=fd valy) YZ(X’y)f(x,y,z)dzdxdy 4)
W ¢ Sy Inxy)

(see Fig. 17.4.3(b)).

If W is of type II, it can be expressed as the set of all (x, y,z) such that
a<z<b, $1(2) < y < Py(2), p1(2, y) < x < py(z, p)
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Then
[[[ jxp.z)dsdydz= f [+ [N fx, y, 2y dx dy dz. (5)
W ®

1(2) Ypi(2.y)
If W is expressed as the set of all (x, y,z) such that

e<y<d,  $i()<z<y)  p(2p) <X <pyz ),
then

fff f(x, y,z)dxdydz—f V) (0 ¢ f(x, y,2)dxdzdy. (6)
Wi(y) You(z.y)

There are similar formulas for type III regions (Exercise 22).
Another way to write formula (3) is

Lm0y o

and for formula (4),

X, . z)dx dy dz= 2O f(x, y,z)dz | dx d
S e radxdyaz= [ [ ][ s, p.2dz ] ax
Notice that the triple integral [ [, dx dydz is simply the volume of W.

40

Example 4 Verify the formula for the volume of a ball of radius 1: [[[wdxdydz=14x
where W is the set of (x, y,z) with x> + y> + 22 < L.

Solution  As explained in Example 3, the ball is a region of type I. By formula (3), the
integral 1s

L (2 g gyan
f —\/1 x?2 \/l—x —y 4

Holding y and x fixed and integrating with respect to z yields

[ fm[ |J‘—— ]dydx

“lx

= 2f [f\/ﬁ (1- yz)l/zdy} dx.

Since x is fixed in the integral over y, this integral can be expressed as
[ (a®>— y»'/?dy, where a = (1 — x?)!/2 This integral represents the area of
a semicircular region of radius a, so that

a 1/2 a?
f_a(az - yz) dy= >3
(We could also have used a trigonometric substitution.) Thus
yi—x? 1/2 - x?
f_ma— - =152,

and so

borfi—i? 2 3 1/2 I 1—x?
2 1—-x°— dydx=72 d.
f_1f_ 1—x2( x*—y%) " dydx f_lw > I

=f_11-n-(1 - x%)dx= -n-(x - %3) 1

7. A

Wk

x=—1



Example 5

Solution

Figure 17.4.7. W is the
region below the plane

z =2, above the paraboloid
z=x%+ y% and on the
positive sides of the planes
x=0,y=0.

Figure 17.4.8. W as a type
II region.

17.4 Triple Integrals 867

Let W be the region bounded by the planes x =0, y = 0, and z = 2, and the
surface z = x* + y?. Compute [[[,xdxdydz and sketch the region.

Method 1. The region W is sketched in Fig. 17.4.7. We may write this as a
region of type I with y,(x, p) = x>+ )% 1) (X, ) =2, ¢,(x) =0, ¢y(x)=

V2 — x%,a=0, and b =42 . By formula (3),

fffwxdxdydz =foﬁ{f0‘/2_7(f;+y2xdz) dy} dx
=foﬁf0‘/2_7x(2— xz—yz)dydx

3/2

2
a 32 (2= x)
=f0 x(2—x2) i — }dx
5/2 V2
(B2, an, M)
, 37 05
0
_,. 2 _ 82
15 15 °

Z:2=72(x,y)

x=0

z=x2 4yt =y (x,y)

¢|(x)=0

0,00 =vV2-x2

Method 2. W can be expressed as the set of (x, y, z) with the property that
01(z, ) =0< x < (z — yH)"2 =py(z, y) and (z, p) in D, where D is the subset
of the yz plane with 0 < z < 2 and 0 < y < z'/?(see Fig. 17.4.8). Therefore,
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fffwxdxdydz=ffl)(fpj](2z(::)xdx)dydz

piI R E A

)dy dz

=%f02(z3/2—z/ )dz———f 2*/%dz

25/2}2 — 2 952 _ 8y2
15

>

o 15

which agrees with our other answer. A

Example 6

1 1
Evaluate f f * f
0 JO Jx2+ y

pret.

Solution

2dz dy dx. Sketch the region W of integration and inter-

LILXLJ_,,ydedydx:Lle(l _ xz“)’z)dydx

_ _ X 1_1_1_1
f(x x _)dx_z 4" 126"

This is the volume of the region sketched in Fig. 17.4.9. A

Figure 17.4.9. The region
W (type I) for Example 6.

=x2 42

Exercises for Section 17.4

1. Evaluate [ff,(2x+ 3y + z)dxdydz, where
W=[1,2] x[—1,1] X [0, 1], in at least two ways.

2. Evaluate the integral [[fyx*dxdydz, where

=[0,1] X [—1,1] X [0, 1], in at least two ways.

3. Integrate the function sin{x + y + z) over the

box [0, 7] X [0, 7] X [0, 7].
4. Integrate ze* > over [0, 1] X [0, 1] X [0, 1].
Determine whether each of the regions in Exercises 5-8
is of type L, II, or III.
5. The region between the cone z =x*+ y? and
the paraboloid z = x* + y%

6. The region cut out of the ball x>+ y* + z2 < 4
by the elliptic cylinder 2x2 + z2=1ie. the re-
gion inside the cylinder and the ball.

7. The region inside the ellipsoid x* + 2y? + z2 =1
and above the plane z = 0.

8. The region bounded by the planes x =0, y =0,
z=0,x+y=4andx=z—y— 1L

Find the volumes of the regions in Exercises 9—-12.

9. The region bounded by z=x?+y? and z=
10— x2 -2 yz.

10. The solid bounded by x>+ 2y2 =2,z=0, and
x+y+2z=2

1. The solid bounded by x=y,z=0,y =0, x=1,
and x +y+z=0.

12. The region common to the intersecting cylinders
x?+y?<a®and x* + 22 < a?
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Evaluate the integrals in Exercises 13-20.

. L2 3cos[7r(x + y + z)]dx dy dz.
bk

.fff(x2+y2+22)dxdydz; R is the region
R
bounded by x + y + z = a (whére a > 0), x =0,

fff zdxdydz; W is the region bounded by
w
the planes x =0, y=0, z=0, z=1, and the

ff x?coszdx dydz; W is the region
w
bounded by z=0, z=m, y=0, y=1, x =0,

13
1 rx
14. Yy + dz dy dx.
fofofo(y xz)dz dy dx
15
y=0,and z=0.
16.
cylinder x2+y2=1, with x >0,y > 0.
17.
and x + y = L.
2(x (x+
18. Ydz dy dx.
Jy o Jy
19.

20.[[[

21.

fff (1 - z%)dx dy dz; W is the pyramid with
w

top vertex at (0,0, 1) and base vertices at (0, 0),
(1,0), (0, 1), and (1, 1).

(x? +y2)dx dydz; W is the same pyra-
w

mid as in Exercise 19.

If f(x, y,z) = F(x, y) for some function F—that
is, if f(x, y,z) does not depend on z—what is the
triple integral of f over a box W?

22.

23.

24.

25,

26.

27.

Write general formulas analogous to (3) and (4)
for the triple integral over a region of type IIIL
Do Example 4 by writing W as a region of type
III.

Write out the property for triple integrals corre-
sponding to property 2 of double integrals (Sec-
tion 17.1, p. 841).

Show that the formula using triple integrals for
the volume under the graph of a function f(x, y),
on an elementary region D in the plane, reduces
to the double integral of f over D.

(a) Sketch the region for the integral

folfoxfoyf(x’ ¥,z)dz dy dx.

(b) Write the integral with the integration order
dxdydz.

(a) Show that the triple integral of a product
over a box is the product of three ordinary
integrals; that is, if D =[a,b] X [c,d] X
[p,q], then

[ [ 108h(a) ax dy az
= ¢ z)az.
_Lf(x)dxfc g(y)dyf:h( Y

(b) Use the result of part (a) to do Example 2.

17.5 Integrals in

Figure 17.5.1. The area of
the infinitesimal shaded
region is r dr df.

Polar,
Cylindrical, and Spherical Coordinates

Problems with symmetry are often simplified by using coordinates that respect
that symmetry.

We deal first with polar coordinates. Recall that a double integral

J [ e yydxdy

may be thought of as a “sum” of the values of f over infinitesimal rectangles
with area (dx)-(dy). As in Section 10.5, however, we can also describe a
region using polar coordinates and can use infinitesimal regions appropriate to
those coordinates. The area of such a region is rdr d#, as is evident from Fig.
17.5.1. If u = f(x, y), then ¥ may be expressed in terms of r and § by the
formula u = f(rcos4,rsin§).

y

The preceding argument using infinitesimals suggests the formula in the
following box (the rigorous proof is omitted).
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Example 1

Solution

R

a

N

4

o

e
a

AN

Figure 17.5.2. C, is the
shaded region between R,
and D,.

Double Integrals in Polar Coordinates

ffo(x,y)dxdy=ffl)’f(rcosa,rsina)rdrda, (1)

where D’ is the region corresponding to D in the variables r and 8.

Evaluate f f e~ "+ dx dy, where D, is the disk x* + y? < d°.
Dﬂ

The presence of r> = x>+ y? in the integrand and the symmetry of the disk
suggest a change to polar coordinates. The disk is described by 0 < r < g,
0 < 8 < 27, so by formula (1), we get

ffDae‘(x2+yz) dXdy=f02Wf0ae_rzrdrd0=f02W(— %e_’z):
= — % Ozw(e~az — 1)do==(1 - e_"z)_

do

There is no direct way to evaluate this integral in xy coordinates! A

There is a remarkable application of the result of Example 1 to single-variable
calculus: we will evaluate the Gaussian integral | "_"me_"2 dx, which is of basic
importance in probability theory and quantum mechanics. There is no known
way to evaluate this integral directly using only single-variable calculus. If we
bring in two-variable calculus, however, the solution is surprisingly simple.
Letting a go to co in the formula ffDae_("z‘“}’z) dxdy = 7(1— e ), we find
that the limit L = lim,_, | Dae_("z+yz) dx dy exists and equals 7. By analogy
with the definition of improper integrals on the line, we may consider L as the
(improper) integral of e~ (+) gver the entire plane, since the disks D, grow
to fill the whole plane as a — cc. The rectangles R, = [—a,a] X [— a, a] grow
to fill the whole plane, too, so we must have

lim ffRe_("Z*yz)dxdy=7r

a—>o0

as well’; but

3 The technical details of the proof that

i f o e iy [ [ v

go as follows. We have already shown that

ali)n&ff[)e"("zﬂz)dxdy

exists. Thus it suffices to show that

i ([ furerr = [ [ as)

equals zero. The limit equals

s

where C, is the region between R, and D, (see Fig. 17.5.2). In the region C,» \/x2 +y2 > a (the
radius of D,), so e~ *+" ¢ ¢=%° Thus



17.5 Integrals in Polar, Cylindrical, and Spherical Coordinates 871

—(xP4yY) - a a —(x2+y2) - a a _ .2 —y?
fjl;ae dx dy f_af*ae dx dy f_afgae e Vdxdy
([ free) -
where I, = [ ‘_‘_ae"‘z dx (see Exercise 27, Section 17.4). Thus,
f‘” e dx=lim I,=+/ lim I? = \/lim ff e+ dx dy
— 0 a—>o0 a—>o0 a—>o0 Ra

=r.

The Gaussian Integral

fw e_xzdx=\/77.

— o0

Example 2 Find f * =2 gy,

Solution We will use the change of variables y =2 x to reduce the problem to the
Gaussian integral just computed.

fw e ¥ dx= lim [* e *dx= lim ﬁ“evz—dl
— 0 a—>co —a a—>co —\/fa \/5

1 o  _ 2 ] T
= — eydy=—\/77= = . A
L e

Example 3 Evaluate f f In(x* + y?)dxdy, where D is the region in the first quadrant
D
lying between the circles x* + y* =1 and x* + y> = 4.

Solution In polar coordinates, D is described by the set of points (r,8) such that
1<r<2,0<8<7/2 Hence

ffbln(xz+y2)dxdy=fgw/2filln(rz)rdrdH

=0

0<ffce—<x2+ﬁ>dxdy<ffce—ﬂzdxdy

=e Tarea (C,) = e~ "(4a® - 7a%) = (4 — w)aze'“Z.
Thus it is enough to show that lim,_,  a% ~a' = 0. But, by I’Hopital’s rule (see Section 11.2),

20—

2
lim a%~ = lim (4} = fim (24} = lim —1—2) -0,
a—ro0 a—o0 egl a—00 2(16“2 a0\ ,a

as required.
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=j(;w/zjl.22(lnr) - rdrdf

7/2 2 2
=f0 (%(ZInr— D

=£’/2(41n2 - %)d0= (4ln2 - l). A

) db (integration by parts)
1
ki
2

We will now evaluate triple integrals in cylindrical and spherical coordinates.
At this point you should review the basic features of these coordinates as
discussed in Section 14.5.

Cylindrical coordinates consist of polar coordinates in the xy plane,
together with the z coordinate. Therefore the infinitesimal “volume element”

has volume r dr d dz. See Fig. 17.5.3.

B

Figure 17.5.3. The
infinitesimal shaded region
has volume rdrdf dz. x

As in the case of polar coordinates, this leads us to a formula for
multiple integrals, presented in the next box.

Triple Integrals in Cylindrical Coordinates

fffwf(X,)”Z)dXdde=fffwrf(rcosﬂ,rsinH,z)rdrdez (2)

where W’ is the region in r, 8,z coordinates corresponding to W.

Example 4 Evaluate f f f (z? + z%?%) dx dy dz, where W is the cylindrical region deter-
w
mined by x>+ y*< I, =1 <z <L

Solution By Formula (2) we have

fffw(zzxz + zzyz)dxdydz=fjlﬁzwﬁl(zzrz)rdrdﬂdz

= (! szzr_4 didz
- 170 4 r=0

(' 27,2y 7
f_, 7 d=3-A

Finally, we turn to spherical coordinates. The volume in space corresponding
to infinitesimal changes dp, d, and d¢ is shown in Fig. 17.5.4. The sides of
this “box” have lengths dp, rd8(= psin¢ df), and pde as shown. Therefore its
volume is pZsin ¢ dp df d. Hence we get the following:



Figure 17.54. The
infinitesimal shaded region

has volume p%sin ¢ dp df d¢.

Example 5

Solution

Example 6

Solution

17.5 Integrals in Polar, Cylindrical, and Spherical Coordinates 873

Triple Integrals in Spherical Coordinates
fff f(x, y,z)dxdydz
w
= f f f f(psingcosd, psin ¢sind, pcos p)p’singpdpdfde, (3)
W*

where W* is the region in p,8,¢ space corresponding to W; ie., the
limits on p,d, ¢ are chosen so that the region in xyz coordinates is W.

dp

’ | ll
y

* }rd0=psin¢d0

Find the volume of the ball x? + y? + z2 < R? by using spherical coordinates.

The ball is described in spherical coordinates by 0 < § < 27, 0 € ¢ < &, and
0 < p < R. Therefore, by formula (3),

ffdexdydz=j(;wfozwj:pzsin¢dpd0d¢= RTsﬁ)ﬂ'f()zﬂsin¢f10d¢

3 a 3
= A%R;fo sin ¢ dop= 2713R— {- [cos('zr) - cos(O)]}
- 47R3
3 b
which is the familiar formula for the volume of a ball. Compare the effort
involved with Example 4, Section 17.4. A

Evaluate f f f expl(x? + y? + z2)*/?|dx dy dz, where W is the unit ball;
w
ie., the set of (x, y,z) satisfying x* + y* + 2% < 1.

In spherical coordinates, W is described by
O<p<l, 0<o¢<m, 0<6<27.
Hence

[Jfpolee+yte | asaya
=f02ﬂfoﬂ'gle"p(p3) - p%sing dp de df = %fo2w'£)w(exp(p3)|(l))sin¢d¢d0
=3 [7[ (e~ singdpas = 1 (e - 1) [ (= cos )50 40

= (e~ 1)f02"2d0=%(e— HE7-0)=4T (e~ 1). a
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It is important to spend a few moments of reflection with each integral to
decide whether cylindrical, spherical, or rectangular coordinates are most
useful; usually the symmetry of the problem provides the needed clue.

Example 7 Find the volumes of the following regions:

(2) The solid bounded by the circular cylinder r = 2acos#, the cone z = r,
and the plane z = 0.

(b) The solid bounded by the cone z=vx*+ »> and the paraboloid of
revolution z = x? + »2.

(c) The region bounded by y = x%, y =x+2,4z= x>+ y* and z = x + 3.

Solution The formula for the volume of a region is [ [, dx dydz.

(a) Since we can write r = 2acosf as r*> = 2ax or (x — a)’ + y* = a*, we see
that the base of the solid is a circle in the xy plane centered at (a,0) with
radius a. (See Fig. 17.5.5.) The xz plane is a plane of symmetry, so the. total
volume is twice the volume over the shaded region. In cylindrical coordinates,
the total volume is

2LW/2L2aCOSHerdzdrd0= 2L"/2L2“°°s”(rz|;=o)drd0

2

w/2 (2acosh , /2 r3 2acos

=2 drdf=2 = df

R tram=2 (5]

Figure 17.5.5. The base of 7/2 8a3cosd 1643\ r=/2 .

W for Example 7(a). = 2](; —3 di= ( 3 )j(; (1- sin¥ )cos 8.db.
Let u=sinf to get (164°/3)[4(1 — w?)du = (16a/3)(u — u*/3)|y =

324%/9. _

(b) In cylindrical coordinates, the solid is bounded by z = r and z = r* (Fig.
17.5.6.) The solid is obtained by rotating the shaded area around the z axis.
Thus, the volume is

fohj(;lfr:rdzdrdH=](;hj(;l(rzlrz=,z)drd0=j:ﬂj(;l(rz — r*)drdf

_(aw r3_r4 1
-L(5-%)

do= L ("ap=17 .

r=0 - —17 0 6
L (c) This part does not require cylindrical or spherical coordinates; y = x* =

x + 2 has the solutions x = —1 and x = 2, so the volume is
Figure 17.5.6. A cross :

section of W for 2 rx+2 (x+3 2 rx+2 x2+y?
dz dydx= +3) =2 d
Example 7(b). f_ . fxz f( 243y 40 D f_l fxz [(" 3) 4 ]d)’ x

X
+2
_ (2 22y, 2
e8] e
y=x

- (*(16 VNN P SN A o
—f—1(3 +4x — 3x 3 + 4‘+ 12)dx

P _183

70 °

(16x g2 s xtx X
—( +2x*—x 3+20+84)
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Exercises for Section 17.5

1.

W

10.

11

12.

13.

14.

15.

16.

17.

. Evaluate f i
. Evaluate f ® 3e_8" dx.
. Integrate x2 + y? over the disk of radius 4 cen-

Evaluate I f p(x*+ y»*/2dx dy, where D is the
disk x? + y? < 4.

. Evaluate { f p(x*+y»*/?dxdy; D is the disk

x? +
y —10x dx.

tered at the origin.

. Find f f“‘ = sm(x + yYdydx by convert-

ing to polar coordmates

. Integrate ze” >+ over the cylinder x2 + yi <4,

2<2<3.

. Integrate x2 + y? + 2% over the cylinder given by

x*+22<2, -2< y<3.

. Evaluate

dxdydz

”fwm’

where W is the ball x*> + y? + z2 < 1.

Evaluate [[[p(x?+ y*+ 22 2dxdydz; W is
the ball x? +y2 + 22 < 1.

Evaluate

dxdydz
ffLaz;%ﬁgmw

where S is the sohd bounded by the spheres
x2+ y?+ 22 =a? and x2+y?+z —b2 where
a>b>0.

Integrate x2 + y2 + 22 e~ *+/"*2) over the re-
gion in Exercise 11.

Find the volume of the region bounded by the
surfaces x° + y? + z2 =1 and x? +y?=1

Find the volume of the region enclosed by the
cones z =yx2+ y? and z =1 -2yx>+ y*.
Find the volume inside the ellipsoid x? + y?+
472 =6.

Find the volume of the intersection of the ellip-
soid x2 + 2( % + z%) < 10 and the cylinder y* +
2 < 1.

Find the normalizing constant c, depending on o,
such that f‘i’wce_xz/"dx =1.

18.

*19.

*20.

*21.

*22.

Integrate (x + y?)z? over the part of the cylm-
der x2+ y*< 1 inside the sphere x*+ Y2+ 22
=4.

The general change of variables formula in two
dimensions reads

[ [ fopyaxdy
3(x, »)

=[ [ w0\ 5y

where h(u,v) = f(x(#,v), y(u,v)) and where
|8(x, y)/3(u,v)| is the absolute value of the de-
terminant

du dv,

dx oOx
u o
Iy
u v

Here x(u,v) and y(u,v) are the functions relat-

ing the variables (u,v) to the variables (x, y),

and D* is the region in the uv plane which

corresponds to D.

(2) Show that this formula is plausible by using
the geometric interpretation of derivatives
and determinants.

(b) Show that the formula reduces to our earlier
one when u and v are polar coordinates.
Using the idea of Exercise 19, write down the
general three-dimensional change of variables
formula and show that it reduces to our earlier

ones for cylindrical and spherical coordinates.

By using the change of variables formula in

Exercise 19 and u = x + y, y = up, show that

J(‘)IJ(‘)I—;: —1 i

2

Also graph the region in the xy plane and the uv
plane.

Let D be the region bounded by x+y=1,
x =0, y=0. Use the result of Exercise 19 to
show that

el

and graph D on an xy plane and a uv plane, with
u=x—yandvo=x+y.

e/ dy dx= ¢

)dxdy— sl
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17.6 Applications of
Triple Integrals

Chapter 17 Multiple Integration

The calculation of mass and center of mass of a region in space involves triple
integrals.

Some of the applications in Section 17.3 carry over directly from double to
triple integrals. We can compute the volume, mass, and center of mass of a
region with variable density p(x, y,z) by the formulas in the following box.

Volume, Mass, Center of Mass, and
Average Value

Volume = f f dex dy dz,

)
Mass = , ¥,2)dx dydz.
[ sarico
Center of mass = (X, 7,Z), where
fff xp(x, y,z)dxdydz
- mass ’
fff yo(x, y,z)dxdydz
- 4 2
Y mass ’ ()
fff zp(x, y,z)dx dydz
- mass '
The average value of a function f on a region W is defined by
fffwf(x, y,2)dx dy dz
: ©)

f f dex dy dz

The cube [1,2] X [1,2] X [1,2] has mass density p(x, y,z) = (1 + x)e’y. Find
the mass of the box.
The mass of the box is

flzflzflz(l+x)ezydxdydz

=2

_ff[(x+——)ey] dydz= ff Sevayds
f 15 zdz_[Ts ]:1

=T(e2—e).A ‘




Example 2

Solution

Example 3

Solution
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Find the center of mass of the hemispherical region W defined by the
inequalities x> + y? + z2 < 1, z > 0. (Assume that the density is constant.)

By symmetry, the center of mass must lie on the z axis, so X = y = 0. To find
Z, we must compute, by formula (2), / = [ [,z dx dy dz. The hemisphere is of
types I, II, and III; we will consider it to be of type III. Then the integral /
becomes

I= ff‘“ = V‘y zdxdydz
yl— 22 — y -z
Since z is a constant for the x and y integrations, we can bring it out to obtain

I= -z — o2 dx dy) dz.

[ s
Instead of calculating the inner two integrals explicitly, we observe that they
are simply the double integral [[,dxdy over the disk x*+)’<1-2?
considered as a type 2 region. The area of this disk is #(1 — z%), so

L IR N RN I Lo
I—fnfoz(l z)dz—wfo(z z)dz-—w[2 4]0 4
The volume of the hemisphere is (2/3)7, so Z = (v /4)/[2/3)7]=3/8. A

The temperature at points in the cube W=[-11]X[~1,1]X[-1,1] is

proportional to the square of the distance from the origin.

(a) What is the average temperature?

(b) At which points of the cube is the temperature equal to the average
temperature?

(a) Let ¢ be the constant of proportionality. Then 7 = ¢(x* + y* + z°) and the
average temperature is T = § [ [ [, Tdx dy dz, since the volume of the cube is
8. Thus

T———fff(x +y* + z%) dx dy dz.

The triple integral is the sum of the integrals of x?, y?, and z°. Since x, y, and z
enter symmetrically into the description of the cube, the three integrals will be
equal, so

PR s AL )

The inner integral is equal to the area of the square [—1,1] X [—1,1]. The
area of that square is 4, so

1
Fo3c (1 y,2g,= 3¢ -
T= 2 f_l4z dz > ( 3 )‘_1 c.

(b) The temperature is equal to the average temperature when c(x*+
»?+ z%) = c; that is, on the sphere x? + y* + z> = 1, which is inscribed in the
cube W. A
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Example 4

Solution

pyr un 11”} Thass
A

Figure 17.6.1. The
gravitational potential at
(x1, y1,2,) arising
from the mass
dm = p(x, y,z)dxdy dz
at (x, y,z)is

=[Go(x, y,z)dxdydz]/r.

Historical Note

The moment of inertia about the x axis of a solid § with uniform density p is
defined by

1x=fpr(y2+z2)dxdydz.

Similarly,
| 1y=fpr(x2+z2)dxdydz, 1,=fpr(x2+y2)dxdydz.

For the following solid, compute I,; assume that the density is a constant: The
solid above the xy plane, bounded by the paraboloid z = x? + y* and the
cylinder x* + y* = a2

The paraboloid and cylinder intersect at the plane z = a* Using cylindrical
coordinates, we find

I, =j(;af02ﬂj(;r2pr2- rdzdfdr = pj(;aj(;2ﬂf()r2r3dzd0dr= m;aG . A

An interesting physical application of triple integration is the determination of
the gravitational fields of solid objects. Example 3, Section 16.2, showed that
the gravitational force field F(x, y,z) is the negative of the gradient of a
function V(x, y,z) called the gravitational potential. If there is a point mass m
at (x, y,z), then the gravitational potential,at (x,, y,,z,) due to this mass is

=Gm[(x — x,)* + (y — y)* + (z — 2,’]7'/2, 'where G is the universal gravita-
tional constant.

If our attracting object is an extended domain W with density p(x, y, z),
we may think of it as made of infinitesimal box-shaped regions with masses
dm = p(x, y,z)dx dy dz located at points (x, y,z). The total gravitational po-
tential for W is then obtained by “summing” the potentials from the infinites-
imal masses—that is, as a triple integral (see Fig. 17.6.1):

V(%15 py,2,) =G p(x, y,z)dxdydz . .
(<1002 fffW¢(x_x,)2+(y—y1)2+(z_zl)z 0

(xl,ylyzl)

The evaluation of the integral for the gravitational potential is usually
quite difficult. The few examples which can be carried out completely require
the use of cylindrical or spherical coordinate systems.

Newton withheld publication of his gravitational theories for quite some time,
until he could prove that a spherical planet has the same gravitational field
that it would have if its mass were all concentrated at the planet’s center.
Using multiple integrals and spherical coordinates, we shall solve Newton’s
problem below; Newton’s published solution used only euclidean geometry.



Example 5

Solution

0,0,R)

x1,21,21)

X
Figure 17.6.2. The
gravitational potential at
(X1, y1,2y) is the same as at
(0,0, R), where

R=vxl+y?+2].

17.6 Applications of Triple integrals 879

Let W be a region of constant density and total mass M. Show that the

gravitational potentialfis given by e~ unit i

V(x y1s z)) =~(—%_) GM

where (1/r) is the average over W of

f(x 3,2) = ‘
V= xf + (r = p) + (2 — 2

According to formula (4),

V(X)) y1,2)) == p(x, y,z)dx dydz
(_ Y Zy) fofW\/(x—x1)2+(y_}’1)2+(z—zl)2

oo [ e

V= x)2+ (y =) + (2 — 21)?

f f fW dxdydz

\/(x — XAy — ) (- 2)

=G| p volume (W)] volume (W)

~on [T,

\|o—l

as required. A

Let us now use formula (4) and spherical coordinates to find the gravitational
potential V(x,, y,,z,) for the region W between the concentric spheres p = p,
and p = p,, assuming the density is constant. Before evaluating the integral in
formula (4), we make some observations which will simplify the computation.
Since G and the density are constants, we may ignore them at first. Since the
attracting body W is symmetric with respect to all rotations about the origin,
the potential V(x,, y,,z,) must itself be symmetric—thus V(x,, y,,z,) de-

pends only on the distance R =v/x? + y7 + z} from the origin. Our computa-
tion will be simplest if we look at the point (0,0, R) on the z axis (see Fig.
17.6.2). Thus our integral is

V(0,0,R) ={ffw \/xz +jjjy(iz— RY

In spherical coordinates, W is described by the inequalities p, < p < p,,
0< 8 <27 and 0 < ¢ < m, so by formula (3) in Section 17.5, '

2 .
V(0,0,R) {pzf f2w p’singpdf do dp
. \/p sin¢(cos™ + sin¥f) + (pcos¢ — R)’

Replacing cos?d + sin’d by 1, so that the integrgind no longer involves 6, we
may integrate over § to get
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n - plsingdedp
0 \/ pzsinqu(p cos¢ — R )2

=__2,”£:12p2 fo” \/ sin ¢ d¢

V(0,0,R) =2n f b2

dp.

p2—2Rpcos¢ + R?

The inner integral is easily evaluated by the substitution u = —2Rp cos ¢:
it becomes

2R
E}e—pfm"(p +u+R2) p2+u+R2)l/2 ’

= 52
2Rp —2Rp

1 172 n1/2°
—R—p[(p2+2Rp+R2) — (0 —2Rp + R?)

= {[e+ &)~ [~ &]")
=Lp(p+R