


Geometry Formulas

Area of rectangle 4 =/w

Area of circle A = 7r?

Area of triangle 4 = 1bh
‘Surface Area of sphere 4 =47r?
Lateral Surface Area of cylinder 4 =27rh

Volume of box V= Iwh

Volume of sphere V' =47r°

Volume of cylinder V==r%h

Volume of cone ¥ =14 (area of base) X (height)

Trigonometric Identities

Pythagorean
cos®d + sin¥¥ = 1, | + tan¥ = sec?, cot®¥ + 1 = csc
FParity
sin(—#)= —sinf, cos(—0) = cosh, tan(— ) = —tanh
csc(—80)= —csch, sec(—8) =sech, cot(—8)= —coth

Co-relations

c050=sin(% ~0), csc0=sec(g ﬁﬂ), co[0=lan(327« —0)

Addition formulas
sin(8 + ¢) = sin # cos ¢ + cos¥sin ¢
sin(# — ¢) = sinf cos ¢ — cos B sin ¢
cos(f + ¢) = cosfcos¢ — sinfsing
cos(# — ¢) = cosf cos ¢ + sinf sin ¢
(tan @ + tan ¢)

tan(f + ¢) = m
(tan§ — tan ¢)
an( =) = g ane)

Double-angle formulas

sin 28 = 2sinf cosé

€0s28 = cos® — sin®d = 2cos® — 1 =1 — 2sin’f
tan 26 = _2_!%
(1 —tan?)
Half-angle formulas
sinzg = 1—-cosd 2COS 4 or sing = 1 —cos20 czos 26
280 _ 1+cosh 29=l+c0520
cos 5 =5 or cos —
0 sinf 1 —cosé 1 —cos28
tan — = = tanf = e
an 2 1+ cosé sin#é or an sin 26

Product formulas

sinfsing = —; [cos(d — &) — cos( + ¢)]

cosfcosp = = [cos(8 + ¢) + cos(f — ¢)]

B = b=

[sin(§ + ¢) + sin(§ — ¢)]

sinfl cos¢ =
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Preface

The goal of this text is to help students learn to use calculus intelligently for
solving a wide variety of mathematical and physical problems.

This book is an outgrowth of our teaching of calculus at Berkeley, and
the present edition incorporates many improvements based on our use of the
first edition. We list below some of the key features of the book.

Examples and Exercises

The exercise sets have been carefully constructed to be of maximum use to the
students. With few exceptions we adhere to the following policies.

® The section exercises are graded into three consecutive groups:

(a) The first exercises are routine, modelled almost exactly on the exam-
ples; these are intended to give students confidence.

(b) Next come exercises that are still based directly on the examples and
text but which may have variations of wording or which combine
different ideas; these are intended to train students to think for
themselves.

(c) The last exercises in each set are difficult. These are marked with a
star (%) and some will challenge even the best students. Difficult does
not necessarily mean theoretical; often a starred problem is an
interesting application that requires insight into what calculus is really
about.

® The exercises come in groups of two and often four similar ones.

® Answers to odd-numbered exercises are available in the back of the
book, and every other odd exercise (that is, Exercise 1, 5, 9, 13,...)
has a complete solution in the student guide. Answers to even-
numbered exercises are not available to the student.

Placement of Topics

Teachers of calculus have their own pet arrangement of topics and teaching
devices. After trying various permutations, we have arrived at the present
arrangement. Some highlights are the following.

® Integration occurs early in Chapter 4; antidifferentiation and the [
notation with motivation already appear in Chapter 2.
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® Trigonometric functions appear in the first semester in Chapter 5.

® The chain rule occurs early in Chapter 2. We have chosen to use
rate-of-change problems, square roots, and algebraic functions in con-
junction with the chain rule. Some instructors prefer to introduce sinx
and cosx early to use with the chain rule, but this has the penalty of
fragmenting the study of the trigonometric functions. We find the
present arrangement to be smoother and easier for the students.

® [Limits are presented in Chapter | along with the derivative. However,
while we do not try to hide the difficulties, technicalities involving
epsilonics are deferred until Chapter 11. (Better or curious students can
read this concurrently with Chapter 2.) Our view is that it is very
important to teach students to differentiate, integrate, and solve calcu-
lus problems as quickly as possible, without getting delayed by the
intricacies of limits. After some calculus is learned, the details about
limits are best appreciated in the context of ’Hdpital’s rule and infinite
series.

® Differential equations are presented in Chapter 8 and again in Sections
12.7, 12.8, and 18.3. Blending differential equations with calculus
allows for more interesting applications early and meets the needs of
physics and engineering,

Prerequisites and Preliminaries

A historical introduction to calculus is designed to orient students before the
technical material begins.

Prerequisite material from algebra, trigonometry, and analytic geometry
appears in Chapters R, 5, and 14. These topics are treated completely: in fact,
analytic geometry and trigonometry are treated in enough detail to serve as a
first introduction to the subjects. However, high school algebra is only lightly
reviewed, and knowledge of some plane geometry, such as the study of similar
triangles, is assumed.

Several orientation quizzes with answers and a review section (Chapter R)
contribute to bridging the gap between previous training and this book.
Students are advised to assess themselves and to take a pre-calculus course if
they lack the necessary background.

Chapter and Section Structure

The book is intended for a three-semester sequence with six chapters covered
per semester. (Four semesters are required if pre-calculus material is included.)

The length of chapter sections is guided by the following typical course
plan: If six chapters are covered per semester (this typically means four or five
student contact hours per week) then approximately two sections must be
covered each week. Of course this schedule must be adjusted to students’
background and individual course requirements, but it gives an idea of the
pace of the text.

Proofs and Rigor

Proofs are given for the most important theorems, with the customary omis-
sion of proofs of the intermediate value theorem and other consequences of
the completeness axiom. Our treatment of integration enables us to give
particularly simple proofs of some of the main results in that area, such as the
fundamental theorem of calculus. We de-emphasize the theory of limits,
leaving a detailed study to Chapter 11, after students have mastered the
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fundamentals of calculus—differentiation and integration. Our book Calculus
Unlimited (Benjamin/Cummings) contains all the proofs omitted in this text
and additional ideas suitable for supplementary topics for good students.
Other references for the theory are Spivak’s Calculus (Benjamin/Cummings &
Publish or Perish), Ross’ Elementary Analysis. The Theory of Calculus
(Springer) and Marsden’s Elementary Classical Analysis (Freeman).

Calculators

Calculator applications are used for motivation (such as for functions and
composition on pages 40 and 112) and to illustrate the numerical content of
calculus (see, for instance, p. 142). Special calculator discussions tell how to
use a calculator and recognize its advantages and shortcomings.

Applications

Calculus students should not be treated as if they are already the engineers,
physicists, biologists, mathematicians, physicians, or business executives they
may be preparing to become. Nevertheless calculus is a subject intimately tied
to the physical world, and we feel that it is misleading to teach it any other
way. Simple examples related to distance and velocity are used throughout the
text. Somewhat more special applications occur in examples and exercises,
some of which may be skipped at the instructor’s discretion. Additional
connections between calculus and applications occur in various section sup-
plements throughout the text. For example, the use of calculus in the de-
termination of the length of a day occurs at the end of Chapters 5, 9, and 14.

Visuaiization

The ability to visualize basic graphs and to interpret them mentally is very
important in calculus and in subsequent mathematics courses. We have tried
to help students gain facility in forming and using visual images by including
plenty of carefully chosen artwork. This facility should also be encouraged in
the solving of exercises.

Computer-Generated Graphics

Computer-generated graphics are becoming increasingly important as a tool
for the study of calculus. High-resolution plotters were used to plot the graphs
of curves and surfaces which arose in the study of Taylor polynomial
approximation, maxima and minima for several variables, and three-
dimensional surface geometry. Many of the computer drawn figures were
kindly supplied by Jerry Kazdan.

Suppiements

Student Guide Contains

® Goals and guides for the student
® Solutions to every other odd-numbered exercise
® Sample exams

Instructor’'s Guide Contains

® Suggestions for the instructor, section by section
® Sample exams
® Supplementary answers
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Misprints

Misprints are a plague to authors (and readers) of mathematical textbooks.
We have made a special effort to weed them out, and we will be grateful to the
readers who help us eliminate any that remain.

Acknowledgments

We thank our students, readers, numerous reviewers and assistants for thetr
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deserve our continued thanks. These include Roger Apodaca, Grant Gustaf-
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How toUse this Book:
A Note to the Student

Begin by orienting yourself. Get a rough feel for what we are trying to
accomplish in calculus by rapidly reading the Introduction and the Preface
and by looking at some of the chapter headings.

Next, make a preliminary assessment of your own preparation for calcu-
lus by taking the quizzes on pages 13 and 14. If you need to, study Chapter R
in detail and begin reviewing trigonometry (Section 5.1) as soon as possible.

You can learn a little bit about calculus by reading this book, but you
can learn to use calculus only by practicing it yourself. You should do many
more exercises than are assigned to you as homework. The answers at the
back of the book and solutions in the student guide will help you monitor
your own progress. There are a lot of examples with complete solutions to help
you with the exercises. The end of each example is marked with the symbol
A.

Remember that even an experienced mathematician often cannot “see’
the entire solution to a problem at once; in many cases it helps to begin
systematically, and then the solution will fall into place.

Instructors vary in their expectations of students as far as the degree to
which answers should be simplified and the extent to which the theory should
be mastered. In the book we have arranged the theory so that only the proofs
of the most important theorems are given in the text; the ends of proofs are
marked with the symbol B. Often, technical points are treated in the starred
exercises.

In order to prepare for examinations, try reworking the examples in the
text and the sample examinations in the Student Guide without looking at the
solutions. Be sure that you can do all of the assigned homework problems.

When writing solutions to homework or exam problems, you should use
the English language liberally and correctly. A page of disconnected formulas
with no explanatory words is incomprehensible.

We have written the book with your needs in mind. Please inform us of
shortcomings you have found so we can correct them for future students. We
wish you luck in the course and hope that you find the study of calculus
stimulating, enjoyable, and useful.

’

Jerry Marsden
Alan Weinstein
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Figure I.1. Temperature in
°C as a function of time.

Introduction

Calculus has earned a reputation for being an essential tool in the sciences.
Our aim in this introduction is to give the reader an idea of what calculus is all
about and why it is useful.

Calculus has two main divisions, called differential calculus and integral
calculus. We shall give a sample application of each of these divisions,
followed by a discussion of the history and theory of calculus.

Differential Calcuius

The graph in Fig. 1.1 shows the variation of the temperature y (in degrees
Centigrade) with the time x (in hours from midnight) on an October day in
New Orleans.

¥ = temperature (°C)

20 T+
15 @—m———
i
|
10 +
|
|
T |
0 |
t $- + + X = time in hours
6 12 18 24 measured from
6AM noon 6pM midnight midnight

Each point on the graph indicates the temperature at a particular time.
For example, at x = 12 (noon), the temperature was 15°C. The fact that there
1s exactly one y for each x means that y is a function of x.

The graph as a whole can reveal information more readily than a table.
For example, we can see at a glance that, from about 5 AM to 2 P.M,, the
temperature was rising, and that at the end of this period the maximum
temperature for the day was reached. At 2 p.M. the air cooled (perhaps due to
a brief shower), although the temperature rose again later in the afternoon.
We also see that the lowest temperature occurred at about 5 Am.

We know that the sun is highest at noon, but the highest temperature did
not occur until 2 hours later. How, then, is the high position of the sun at
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Figure 1.2. The ratio

(y2— y)/(x2— x)) is the
ratio of change of
temperature with respect to
time.

Figure 1.3. The rate of
change of temperature with
respect to time when x = 12
is the slope of the line /.

noon reflected in the shape of the graph? The answer lies in the concept of
rate of change, which is the central idea of differential calculus.

At any given moment of time, we can consider the rate at which
temperature is changing with respect to time. What is this rate? If the graph of
temperature against time were a segment of a straight line, as it is in Fig. 1.2,
the answer would be easy. If we compare the temperature measurement at

4 y = temperature (°C)

i+

X Xy x = time (hours)

times x, and x,, the ratio (y, — y,)/(x, — x,) of change in temperature to
change in time, measured in degrees per hour, is the rate of change. It is a
basic property of straight lines that this ratio, called the slope of the line, does
not depend upon which two points are used to form the ratio.

Returning to Fig. 1.1, we may ask for the rate of change of temperature
with respect to time at noon. We cannot just use a ratio (y, — y,)/(x, — x,);
since the graph is no longer a straight line, the answer would depend on which
points on the graph we chose. One solution to our problem is to draw the line /
which best fits the graph at the point (x, y) = (12, 15), and to take the slope of
this line (see Fig. 1.3). The line / is called the tangent line to the temperature

v = temperature (°C)

6 12 18 14 X = time (hours)

curve at (12, 15); its slope can be measured with a ruler to be about 1°C per
hour. By drawing tangent lines to the curve at other points, the reader will
find that for no other point is the slope of the tangent line as great as 1°C per
hour. Thus, the high position of the sun at noon is reflected by the fact that
the rate of change of temperature with respect to time was greatest then.

The example just given shows the importance of rates of change and
tangent lines, but it leaves open the question of just what the tangent line is.
Our definition of the tangent line as the one which “best fits” the curve leaves
much to be desired, since it appears to depend on personal judgment. Giving a
mathematically precise definition of the tangent line to the graph of a function
in the xy plane is the first step in the development of differential calculus. The
slope of the tangent line, which represents the rate of change of y with respect
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to x, is called the derivative of the function. The process of determining the
derivative is called differentiation.

The principal tool of differential calculus is a series of rules which lead to
a formula for the rate of change of y with respect to x, given a formula for y
in terms of x. (For instance, if y = x2 + 3x, the derivative at x turns out to be
2x + 3.) These rules were discovered by Isaac Newton (1642-1727) in En-
gland and, independently, by Gottfried Leibniz (1642-1716), a German work-
ing in France. Newton and Leibniz had many precursors. The ancient Greeks,
notably Archimedes of Syracuse (287-212 B.C.), knew how to construct the
tangent lines to parabolas, hyperbolas, and certain spirals. They were, in
effect, computing derivatives. After a long period with little progress, develop-
ment of Archimedes’ ideas revived around 1600. By the middle of the
seventeenth century, mathematicians could differentiate powers (i.e., the func-
tions y = x, x% x>, and so on) and some other functions, but a general method,
which could be used by anyone with a little training, was first developed by
Newton and Leibniz in the 1670°s. Thanks to their work, it is no longer
difficult or time-consuming to differentiate functions.

Integral Caicuius and the Fundamental Theorem

The second fundamental operation of calculus is called integration. To illus-
trate this operation, we consider another question about Fig. 1.1: What was
the average temperature on this day?

We know that the average of a list of numbers is found by adding the
entries in the list and then dividing by the number of entries. In the problem
at hand, though, we do not have a finite list of numbers, but rather a
continuous graph.

As we did with rates of change, let us look at a simpler example. Suppose
that the temperature changed by jumps every two hours, as in Fig. 1.4. Then
we could simply add the 12 temperature readings and divide by 12 to get the
average.

We can interpret this averaging process graphically in the following way.
Let y,,...,y;, be the 12 temperature readings, so that their average is
Yave =3 (¥1 + - -+ +y;5). The region under the graph, shaded in Fig. L5, is
composed of 12 rectangles. The area of the ith rectangle is (base) X (height)
=2y;, so the total area is 4 =2y, +2y,+ -+ + 2y, =2(y,+ -+ + y).
Comparing this with the formula for the average, we find that y,,, = 4/24. In
other words, the average temperature is equal to the area under the graph,

v ¥y
20 T
15 T —_--_--_
104 =
5 4
0
b .
6 1218 24 *
Figure 1.4. If the Figure L.5. The area of the
temperature changes by ith rectangle is 2y;.

jumps, the average is easy
to find.
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Figure 1.6. The average
temperature is 1 /24 times
the shaded area.

Figure 1.7. Quantities
related by the operations of
calculus. (The independent
variable is in brackets,)

divided by the length of the time interval. Now we can guess how to define the
average temperature for Fig. I.1. It is simply the area of the region under the
graph (shaded in Fig. 1.6) divided by 24.

The area under the graph of a function on an interval is called the
integral of the function over the interval. Finding integrals, or integrating, is
the subject of the integral calculus.

Progress in integration was parallel to that in differentiation, and eventu-
ally the two problems became linked. The ancient Greeks knew the area of
simple geometric figures bounded by lines, circles and parabolas. By the
middle of the seventeenth century, areas under the graph of x, x?, x3, and
other functions could be calculated. Mathematicians at that time realized that
the slope and area problems were related. Newton and Leibniz formulated this
relationship precisely in the form of the fundamental theorem of calculus, which
states that integration and differentiation are inverse operations. To suggest
the idea behind this theorem, we observe that if a list of numbers b,
by, ..., b, is given, and the differences d,=b,— b,, dy=b;—b,, ...,
d,_,=b,— b,_, are taken (this corresponds to differentiation), then we can
recover the original list from the d’s and the initial entry b, by adding (this
corresponds to integration): b, = b, + d,, b= b, + d, + d,, ..., and finally
by=b,+d +d,+ - +d,_,.

The fundamental theorem of calculus, together with the rules of differen-
tiation, brings the solution of many integration problems within reach of
anyone who has learned the differential calculus.

The importance and applicability of calculus lies in the fact that a wide

‘s
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Figure 1.10. The integral of
y = x? on the interval [0, 1]
lies between the integrals of
the two functions.
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variety of quantities are related by the operations of differentiation and
integration. Some examples are listed in Fig. 1.7.

The primary aim of this book is to help you learn how to carry out the
operations of differentiation and integration and when to use them in the
solution of many types of problems.

The Theory of Caiculus

We shall describe three approaches to the theory of calculus. It will be
simpler, as well as more faithful to history, if we begin with integration.

The simplest function to integrate is a constant y = k. Its integral over the
interval [q, b] is simply the area k(b — a) of the rectangle under its graph (see
Fig. 1.8). Next in simplicity are the functions whose graphs are composed of
several horizontal straight lines, as in Fig. 1.9. Such functions are called step
functions. The integral of such a function is the sum of the areas of the
rectangles under its graph, which is easy to compute.

— o X

Axy Ax, Avy  Axy

Figure I.8. The integral of
the constant function y = k
over the interval [a, b}, is
just the area k(b — a) of
this rectangle.

Figure 1.9. The integral

over [a, b] of this step

function is

kiAx) + kAxy + kyBxsy + kydxy,
where k, is the value of y on

the /th interval, and Ax; is

the length of that interval.

There are three ways to go from the simple problem of integrating step
functions to the interesting problem of integrating more general functions, like
y= x? or the function in Fig. I.1. These three ways are the following.

1. The method of exhaustion. This method was invented by Eudoxus of
Cnidus (408355 B.c.) and was exploited by Archimedes of Syracuse (287-212
B.C.) to calculate the areas of circles, parabolic segments, and other figures. In
terms of functions, the basic idea is to compare the function to be integrated
with step functions. In Fig. 1.10, we show the graph of y = x* on [0, 1], and
step functions whose graphs lie below and above it. Since a figure inside
another figure has a smaller area, we may conclude that the integral of y = x?
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Figure 1.11. The integral of
this step function is an
approximation for the
integral of x?.

I
I
|
!
|
I

—

Figure 1.12. The integral of
x%on [0, 1] may be thought
of as the sum of the areas
of infinitely many
rectangles of

infinitesimal width dx.

on [0, 1] lies between the integrals of these two step functions. In this way, we
can get lower and upper estimates for the integral. By choosing step functions
with shorter and shorter “steps,” it is reasonable to expect that we can exhaust
the area between the rectangles and the curve and, thereby, calculate the area
to any accuracy desired. By reasoning with arbitrarily small steps, we can in
some cases determine the exact area—that is just what Archimedes did.

2. The method of limits. This method was fundamental in the seven-
teenth-century development of calculus and is the one which is most impor-
tant today. Instead of comparing the function to be integrated with step
functions, we approximate 1t by step functions, as in Fig. [.11. If, as we allow
the steps to get shorter and shorter, the approximation gets better and better,
we say that the integral of the given function is the /imit of these approxima-
tions.

.v1

3. The method of infinitesimals. This method, too, was invented by
Archimedes, but he kept it for his personal use since it did not meet the
standards of rigor demanded at that time. (Archimedes’ use of infinitesimals
was not discovered until 1906. It was found as a palimpsest, a parchment
which had been washed and reused for some religious writing.)! The infinites-
imal method was also used in the seventeenth century, especially by Leibniz.
The idea behind this method is to consider any function as being a step
function whose graph has infinitely many steps, each of them infinitely small,
or infinitesimal, in length. It is impossible to represent this idea faithfully by a
drawing, but Fig. .12 suggests what is going on.

Each of these three methods—exhaustion, limits, and infinitesimals—has
its advantages and disadvantages. The method of exhaustion is the easiest to
comprehend and to make rigorous, but it is usually cumbersome in applica-
tions. Limits are much more efficient for calculation, but their theory is
considerably harder to understand; indeed, it was not until the middle of the
nineteenth century with the work of Augustin-Louis Cauchy (1789-1857) and
Karl Weierstrass (1815-1897), among others, that limits were given a firm
mathematical foundation. Infinitesimals lead most quickly to answers to many
problems, but the idea of an “infinitely small” quantity is hard to comprehend
fully, and the method can lead to wrong answers if it is not used carefully.
The mathematical foundations of the method of infinitesimals were not

! See S. H. Gould, The method of Archimedes, American Mathematical Monthly 62(1955),
473-476.

2 An early critic of infinitesimals was Bishop George Berkeley, who referred to them as “ghosts of
departed quantities” in his anticalculus book, The Analyst (1734). The city in which this calculus
book has been written is named after him.



y=Emx+h

Figure L13. If y = mx + b,
the rate of change of y with
respect to x is constant and
equal to m.

Figure 1.15. The rate of
change of a function is the
limit of the slopes of secant
lines drawn through two
points on the graph.
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established until the twentieth century with the work of the logician, Abraham
Robinson (1918-1974).3

The three methods used to define the integral can be applied to differenti-
ation as well. In this case, we replace the piecewise constant functions by the
linear functions y = mx + b. For a function of this form, a change of Ax in x
produces a change Ay = mAx in y, so the rate of change, given by the ratio
Ay /Ax, is equal to m, independent of x and of Ax (see Fig. I.13).

1. The method of exhaustion. To find the rate of change of a general
function, we may compare the function with linear functions by seeing how
straight lines with various slopes cross the graph at a given point. In Fig. 1.14,
we show the graph of y = x?, together with lines which are more and less steep
at the point x = 1, y = 1. By bringing our comparison lines closer and closer
together, we can calculate the rate of change to any accuracy desired; if the
algebra is simple enough, we can even calculate the rate of change exactly.

The historical origin of this method can be found in the following
definition of tangency used by the ancient Greeks: “the tangent line touches
the curve, and in the space between the line and curve, no other straight line
can be interposed.”*

» 4

N

0 "% Figure 1.14. The rate of
change of y = x*at x = 1
lies between 1 and 3.

2. The method of limits. To approximate the tangent line to a curve we
draw the secant line through two nearby points. As the two points become
closer and closer, the slope of the secant approaches a limiting value which is
the rate of change of the function (see Fig. I.15).

v v v v

3 A calculus textbook based upon this work is H. J. Keisler, Elementary Calculus, Prindle, Weber,
and Schmidt, Boston (1976).

4 See C. Boyer, The History of the Calculus and Its Conceptual Development, Dover, Nevwy York,
p. 57. The method of exhaustion is not normally used in calculus courses for differentiation, and
this book is no exception. However, it could be used and it is intellectually satisfying to do so; see
Calculus Unlimited, Benjamin/Cummings (1980) by J. Marsden and A. Weinstein,



8 introduction

Figure L.16. The slope of
the tangent line is zero at a
maximum Or minimum
point.

Figure L.17. The tangent
line may be thought of as
the secant line through a
pair of infinitesimally near
points.

This approach to rates of change derives from the work of Pierre de
Fermat® (1601-1665), whose interest in tangents arose from the idea, due
originally to Kepler, that the slope of the tangent line should be zero at a
maximum or minimum point (Fig. [.16).

Ly 3

Maximum

y=£(x)
Minimum

X

3. The method of infinitesimals. In this method, we simply think of the
tangent line to a curve as a secant line drawn through two infinitesimally close
points on the curve, as suggested by Fig. 1.17. This idea seems to go back to
Galileo® (1564-1642) and his student Cavalieri (1598-1647), who defined
instantaneous velocity as the ratio of an infinitely small distance to an
infinitely short time.

b )

T

Tangent
line

As with integration, infinitesimals lead most quickly to answers (but not
always the right ones), and the method of exhaustion is conceptually simplest.
Because of is computational power, the method of limits has become the most
widely used approach to differential calculus. It is this method which we shall
use in this book.

The Power of Calculus (The Caiculus of Power)

To end this introduction, we shall give an example of a practical problem
which calculus can help us to solve.

The sun, which is the ultimate source of nearly all of the earth’s energy,
has always been an object of fascination. The relation between the sun’s
position and the seasons was predicted by early agricultural societies, some of
which developed quite sophisticated astronomical techniques. Today, as the
earth’s resources of fossil fuels dwindle, the sun has new importance as a direct
source of energy. To use this energy efficiently, it is useful to know just how

5 Fermat is also famous for his work in number theory. Fermat’s last theorem: “If » is an integer
greater than 2, there are no positive integers x, y, and z such that x” + y” = z"” remains
unproven today. Fermat claimed to have proved it, but his proof has not been found, and most

mathematicians now doubt that it could have been correct.

6 Newton’s acknowledgment, “If I have seen further than others, it is because I have stood on the
shoulders of giants,” probably refers chiefly to Galileo, who died the year Newton was born. (A
similar quotation from Lucan (39-65 A.D.) was cited by Robert Burton in the early 1600’s—
“Pygmies see further than the giants on whose shoulders they stand.”)



Figure 1.18. The earth
revolving about the sun.
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much solar radiation is available at various locations at different times of the
year.

From basic astronomy we know that the earth revolves about the sun
while rotating about an axis inclined at 23.5° to the plane of its orbit (see Fig.
1.18). Even assuming idealized conditions, such as a perfectly spherical earth

~ 1/
’fr?‘\-\ i=235°

\—//

revolving in a circle about the sun, it is not a simple matter to predict the
length of the day or the exact time of sunset at a given latitude on the earth on
a given day of the year.

In 1857, an American scientist named L. W. Meech published in the
Smithsonian Contributions to Knowledge (Volume 9, Article II) a paper entitled
“On the relative intensity of the heat and light of the sun upon different
latitudes of the earth.” Meech was interested in determining the extent to
which the variation of temperature on the surface of the earth could be
correlated with the variations of the amount of sunlight impinging on different
latitudes at different times. One of Meech’s ultimate goals was to predict
whether or not there was an open sea near the north pole—a region then
unexplored. He used the integral calculus to sum the total amount of sunlight
arriving at a given latitude on a given day of the year, and then he summed
this quantity over the entire year. Meech found that the amount of sunlight
reaching the atmosphere above polar regions was surprisingly large during the
summer due to the long days (see Fig. 1.19). The differential calculus is used
to predict the shape of graphs like those in Fig. I.19 by calculating the slopes
of their tangent lines.

Meech realized that, since the sunlight reaching the polar regions arrives
at such a low angle, much of it is absorbed by the atmosphere, so one cannot
conclude the existence of “a brief tropical summer with teeming forms of
vegetable and animal life in the centre of the frozen zone.” Thus, Meech’s
calculations fell short of permitting a firm conclusion as to the existence or not
of an open sea at the North Pole, but his work has recently taken on new
importance. Graphs like Fig. 1.19 on the next page have appeared in books
devoted to meteorology, geology, ecology (with regard to the biological energy
balance), and solar energy engineering.

Even if one takes into account the absorption of energy by the atmo-
sphere, on a summer day the middle latitudes still receive more energy at the
earth’s surface than does the equator. In fact, the hottest places on earth are
not at the equator but in bands north and south of the equator. (This is
enhanced by climate: the low-middle latitudes are much freer of clouds than
the equatorial zone.)’

7 According to the Guinness Book of World Records, the world’s highest temperatures (near
136°F) have occurred at Quargla, Algeria (latitude 32°N), Death Valley, California (latitude
36°N), and Al’Aziziyah, Libya (latitude 32°N). Locations in Chile, Southern Africa, and Austra-
lia approach these records.
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Figure 1.19. The sun’s diurnal intensity along the meridian, at intervals of 30 days.
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As we carry out our study of calculus in this book, we will from time to
time in supplementary sections reproduce parts of Meech’s calculations
(slightly simplified) to show how the material being learned may be applied to
a substantial problem. By the time you have finished this book, you should be
able to read Meech’s article yourself.
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review trigonometry Eail ' Pass Your tr!go(n;)lmetry background
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for a review

see Section 5.1

Quiz A

(Passing score is 8/10. Answers are on p. A.l.)

1. What is the slope of the line 3y + 4x = 27

2. For which values of x is 3x +2 > 0?

3. For which values of x is 3x2—2x — 1 > 0?

4. Solve for x: 2x?>+8x — 11 =0.

5. Sketch the graph of f(x) = x*— x — 2.

6. Let g(x) = (3x* + 2x — 8)/(2x* — x). Compute g(2) and state the domain

of g.

7. For what values of x is 3x + 2 > 2x — 87

8. Where does the graph of f(x) = 3x — 2 intersect the graph of g(x) = x*?
9. Sketch the curve x2 + y? —2x —4y + 1 = 0.
10. Find the distance between the point (1, 1) and the mtersection point of the

linesy = —2x+ 1 and y = 4x — 5.
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Orientation Quizzes

Quiz B

(Passing score is 8/10. Answers are on p. A.l.)

1. 3+3= .

2. Factor: x2+3x= .

3. (—6)(=3)+8(—1)= .

4. If a bag of sand weighs 80 kilograms, 5% of the bag weighs
5

6

7

CAGx —=1)/2x] -1 = . (Bring to a common denominator.)
Cx3xt= :
. Arrange these numbers in ascending order (smallest to largest): 8, —6
0, —4.
8. Solve for x: 6x +2=—x— 1.
9. If x=3and y =9, then yy /3x =
10. (x>~ 16)/(x —4) = . (Simplify.)

Quiz C

(Passing score is 7/10. Answers are on p. A.1.)

1
s 7

1. Find the coordinates of the point P:

bod 1 1

Pe

T

) O S T |

2. Find x: 3. Find 6:

4. Find siné: 5. Find y:
sin 5 ‘ y . |
3

4

T

[=))

. What is the circumference of a circle whose radius is 4 centimeters?

7. A rectangle has area 10 square meters and one side of length 5 meters.
What is its perimeter?

8. The volume of a cylindrical can with radius 3 centimeters and height 2
centimeters is

9. cos60° =

10. 2sin’x + 2cos>x = .




ChapterR

R.1

Example 1

Solution

Review of
Fundamentals

Functions are to calculus as numbers are to algebra.

Success in the study of calculus depends upon a solid understanding of
algebra and analytic geometry. In this chapter, we review topics from these
subjects which are particularly important for calculus.

Basic Algebra: Real Numbers
and Inequalities

The real numbers are ordered like the points on a line.

The most important facts about the real numbers concern algebraic operations
(addition, multiplication, subtraction, and division) and order (greater than
and less than). In this section, we review some of these facts.

The positive whole numbers 1,2,3,4, ... (... means “and so on”) that
arise from the counting process are called the natural numbers. The arithmetic
operations of addition and multiplication can be performed within the natural
numbers, but the “inverse” operations of subtraction and division lead to the
introduction of zero (3 — 3 = (), negative numbers (2 — 6 = —4), and frac-
tions (3 + 5 = 2). The whole numbers, positive, zero, and negative, are called
integers. All numbers which can be put in the form m/n, where m and »n are
integers, are called rational numbers.

Determine whether or not the following numbers are natural numbers, inte-

gers or rational numbers.
@ 0 () 3-2 ( 7-6 (9 2

(a) 0 is not a natural number (they are only the numbers 1,2,3, ...), butit is
an integer, and so it is a rational number—every integer m is rational since
it can be written as m/ 1.

(b)3—(4+5)/2=3-9/2=—3/2 is not a natural number or an integer,
but it is rational.

() 7—6 =1 is a natural number, an integer, and a rational number.

(d) 4+5)/(—3)= —3 is not a natural number, but is an integer and a
rational number. A
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The ancient Greeks already knew that lines in simple geometric figures could
have lengths which did not correspond to ratios of whole numbers. For
instance, the length v2 of the diagonal of a square with sides of unit length
cannot be expressed in the form m/n, with m and » integers. (The same turns
out to be true of 7, the circumference of a circle with unit diameter.) Numbers
which are not ratios of integers are called irrational numbers. These, together
with the rational numbers, comprise the real numbers.

The usual arithmetic operations of addition, multiplication, subtraction,
and division (except by zero) may be performed on real numbers, and these
operations satisfy the usual algebraic rules. You should be familiar with these
rules; some examples are “if equals are added to equals, the results are equal,”
“a+b=>b+a” and “if ab = ac and a = 0, we can divide both sides by a to
conclude that b = ¢.”

For example, to solve the equation 3x + 2 = 8 for x, subtract 2 from both
sides of the equation:

3x+2-2=8-2,

3x =6.

Dividing both sides by 3 gives x = 2.

Two fundamental identities from algebra that will be useful for us are

(a+b)a—by=a’—b* and (a+ by’ =a’ +2ab + b*.

Example 2 Simplify: (a + b)(a — b) + b*.
Solution Since (g + b)(a — b) = a* — b%, we have (a + b)(a — b) + b* = a® — b* + b?
=d’ A
Example 3 Expand: (a + b)°.
Solution We have (a + b)? = a® + 2ab + b%. Therefore
(a + b)y’'=(a+ b)’(a + b)
= (a’ + 2ab + b*)(a + b)
= (a* + 2ab + b¥)a + (a* + 2ab + b*)b
=a®+2a% + ab® + a*h + 2ab* + b?
=a*+3a% + 3ab* + b3 A
Another important algebraic operation is factoring. We try to reverse the
process of expanding: (x + r)(x + s)= x> + (r + s)x + rs.
Example 4 Factor: 2x2 +4x — 6.

Solution We notice first that 2x? + 4x — 6 = 2(x® + 2x — 3). Using the fact that the
only integer factors of —3 are =1 and *3, we find by trial and error that
x2+2x—=3=(x+3)(x—1),s0 we have 2x2 +4x —6=2(x + 3)(x — 1). A

The quadratic formula is used to solve for x in equations of the form
ax?+ bx + ¢ =0 when the left-hand side cannot be readily factored. The
method of completing the square, by which the quadratic formula may be
derived, is often more important than the formula itself.
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Example 5 Solve the equation x2 — 5x + 3 = 0 by completing the square.

Solution We transform the equation by adding and subtracting (%)2 on the left-hand
side:

x-i:i—.@
2 2
x=—§—i—-——‘/_1§.A

Another method for completing the square is to write
x?=5x+3=(x+p)+gq.
and then expand to

x2=5x+3=x>+2px +p’+q.

Equating coefficients, we see thatp = —3 and ¢=3—p?=3—-2 = — 13 50
x?—5x+3=(x—3%)"— 3. This can be used to solve x*—5x+3=0 as
above.

Completing the Square

To complete the square in the expression ax? + bx + ¢, factor out a and
then add and subtract (b/2a)*:

(v+ %)+ (6~ )]

ax’+ bx+c=a

When the method of completing the square is applied to the general
quadratic equation ax? + bx + ¢ = 0, one obtains the following general for-
mula for the solution of the equation. (See Exercise 53).

Quadratic Formuia
To solve ax? + bx + ¢ = 0, where a # 0, compute
—b +\b?— dac
2a )

If 52 — 4ac > 0, there are two solutions.

If 52 — 4ac = 0, there is one solution.

If b2 — 4ac < 0, there are no solutions.

(The expression b2 — 4ac is called the discriminant.)

In case b2 — 4ac <0, there is no real number yb% — 4ac, because the
square of every real number is greater than or equal to zero. (Square roots of
negative numbers can be found if we extend the real-number system to
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Exampie 6
Solution

Example 7

Solution

Figure R.1.1. The real
number line.

encompass the so-called imaginary numbers.)! Thus the symbol yr represents a
real number only when r > 0, in which case we always take yr to mean the
non-negative number whose square is r.

Solve for x: (a) 4x2=2x + 5 and (b) 2x2 +4x — 6= 0.

(a) Subtracting 2x+5 from both sides of the equation gives 4x?—2x—5=0,
which is in the form ax* + bx +c =0 witha=4, b= —2, and ¢ = —5.
The quadratic formula gives the two roots

R T

2(4)
_2xV4+80 _2+y84 1 21-4 1 V21
= ) -8 4~ 8 a4~ 4 -

(b) An alternative to the quadratic formula is to factor. From Example 4,
2x*+4x —6=2(x +3)x — 1). Thus the two roots are x = —3 and
x = |. The reader may check that the quadratic formula gives the same
roots. A

Solve for x: x2—5x +20=0.

We use the quadratic formula:

L 3%E5-420
_——-——T—-————.

The discriminant is negative, so there are no real solutions. A

The real numbers have a relation of order: if two real numbers are unequal,
one of them is less than the other. We may represent the real numbers as
points on a line, with larger numbers to the right, as shown in Fig. R.1.1. If
the number «a is less than b, we write a < b. In this case, we also say that b is
greater than a and write b > a.

V2

Given any two numbers, a and b, exactly one of the following three
possibilities holds:

(1) a < b,
(2) a=b,
3) a>b.

Combinations of these possibilities have special names and notations.

If (1) or (2) holds, we write a € b and say that “a is less than or equal
to b.”

If (2) or (3) holds, we write ¢ > b and say that “a is greater than or equal
to b.”

If (1) or (3) holds, we write a # b and say that “a is unequal to b.”

For example, 3 < 3 is true, (—2)? < 0 is false (since (—2)’ = 4 > 0) and
— 7 < — 17 is true; note that — 7 and — 1 7 both lie to the left of zero on the

! Imaginary numbers are discussed in Section 12.6.



Example 8

Soiution

Figure R.1.2. Possible
positions of a and b when
they have the same sign
(ab > 0) or opposite signs

(ab < 0).

Exampie 9

Solution

Exampie 10

Solution
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number line and since — J 7 is only half as far from zero as —, it lies to the
right of — .

If x is any real number, we know that x2 > 0. If x % 0, we can make the
stronger statement that x* > 0.

Write the proper inequality sign between each of the following pairs of
numbers:

(2) 0.0000025 and — 100,000 (b) 2and§  (c) VI2 and4

(a) 0.0000025 > — 100,000 since a positive number is always to the right of a
negative number.
(b) 3 <$ since 3 =4 and § = %.

(c) VI2 < 4since 12< 4% A

We can summarize the most important properties of inequalities as follows.

1. If a< band b < ¢, then a < c.

2. If a< b, thena + ¢ < b + ¢ for any ¢, and ac < be if ¢ > 0, while ac > bc
if ¢ < 0. (Multiplication by a negative number reverses the sign of inequal-
ity. For instance, 3 < 4, and multiplication by —2 gives —6 > —8.)

. ab>0 when « and b have the same sign; ab <0 when « and b have
opposite signs. (See Fig. R.1.2.)

4. If ¢ and b are any two numbers, then a < b when a— b< 0 and a > b

when a — b > 0.

w

Transform a + (b — ¢) > b — a to an inequality with «a alone on one side.
We transform by reversible steps:
a+b—c>b—a,
2a+b—c>b (add a to both sides),
2a—¢>0 (add — b to both sides),
2a > ¢ (add ¢ to both sides),
a>ic (multiply both sides by 1). A
(a) Find all numbers x for which x2 < 9.
(b) Find all numbers x such that x> —2x — 3 > 0.
(a) We transform the inequality as follows (all steps are reversible):
x2 <9,
x2—=9<0, (add —9 to both sides),
(x +3)(x—3)<0 (factor).

Since the product (x + 3)(x — 3) is negative, the factors x + 3 and x — 3
must have opposite signs. Thus, either x +3 >0 and x — 3 < 0, so that
x> —3 and x <3 (that is, —3<x<3); or x+3<0 and x—3>0,
in which case x < —3 and x > 3, which is impossible. We conclude that
x?<9if and only if —3 < x < 3.
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(b) The inequality x> — 2x — 3 > 0 is the same as (x — 3)(x + 1) > 0. That is,

x — 3 and x + 1 have the same sign. There are two cases to consider:

Case 1: x—3 and x + | are both positive; that is, x — 3 >0 and
x +1>0; that 15, x > 3 and x > — |, which is the same as x > 3 (since
any number greater than 3 is certainly greater than — 1).

Case 2: x —3 <0Oand x + 1 <0; thatis, x < 3 and x < — 1, which is
the same as x < — 1.

Thus x> — 2x — 3 > 0 whenever x >3 or x < — 1. These numbers x
are illustrated in Fig. R.1.3. (The open dot indicates that this point is not
included in the shaded region—if it were included, we would have used a

solid dot.) A
x1-2x-3>0
Figure R.1.3. Solution of A
. X ¥ by
the inequality B %
x2=2x—-3>0. -3 22 -1 0 1 2 3

Exercises for Section R.1

In Exercises 1-4, determine whether or not each given 25. Verify that x> ~ 1= (x — D)(x%+ x + I).
number is a natural number, an integer, or a rational 26. Factor x3 + 1 into linear and quadratic factors.
number. 27. Factor x> + x? — 2x into linear factors.

. 8_9 28. Factor x*—2x2+ 1 into linear factors. [Hint:

"6 4 First consider x? as the variable.]
2.(-D+(=D Solve the equations in Exercises 29 and 30 in three
1 + 1 1 1 ways: (a) by factoring; (b) by completing the square;
) ( 2 A )( 2 B ) (c) by using the quadratic formula.
1 29. x245x+4=0

47— 30. 4x2— 12x+9=0
Simplify the expressions in Exercises 5-8. Solve for x in Exercises 31-36.

5. (a—3)b + ) — (ac + 2b), 3. x*+4x~4=0

6. (b*— a)?— a(2b* — a) 32, 4x2—18x +20=0

7. @’ + (a— b)(b—c)a+b) 33, —x2+5x+03=0

8. 3a+2)%— (da+ b)Ra—-1) 3. 5x24+2x—1=0
Expand the expressions in Exercises 9-12. 35 x2=5x+7=0

9. (a— b)° 36. 0.1x2—13x+0.7=0

10. Ba+ b%+ ¢)? Solve for x in Exercises 37-42.

1. (b + ¢)* 37. x2+4=3x2—x

12. (2¢ — bY’(2¢c + b)? 38. 4x =3x2+7
Factor the expressions in Exercises 13-20. 39. 2x + x* =9 + x?

13. x>+ 5x+6 40. 5~ x)2-x)=1

14. x> —5x+6 41, 2x2=2yTx+1=0

15. x> = 5x — 6 42. x> +9x =0

16. x>+ 5x—6

43. Put the following list of numbers in ascending
order. (Try to do it without finding decimal
equivalents for the numbers.)

1 2 2 9 —
_gy _\/2_7 ) _‘721 3; §1, O’ KR \/§

17. 3x* —6x — 24
18. —=5x*+ 15x — 10
19. x2—1
20. 4x2 -9
Solve for x in Exercises 21-24.
21. 2B3x~7)— (4x—10)=0 44. Put the following numbers in ascending order.
22,33+ 2x)+(2x—1)=8 (Do not use a calculator):
2. 2x+ 1D+ @ —-4xH+(x—=5=10
24. 8(x + 12 —8x +10=0 -0, 8 -—-4&, &, 90, 9, -9, -8



Simplify the inequalities in Exercises 45-50.
45.

46

47.

48
49
50

(@a=b)+c>2c—-»b
L@+ D+ cla—c)> ac+1
ab—(a—2b)b < b* + ¢
.2a+ac)—4ac>2a—-c

L b(B+2)> b+ )b+ 2)

. (a—b?>3—2ab+a®

R.2 Intervals and Absolute Values 21

51. Find all numbers x such that: (a) 4x —13<3,
®2(7T—x)2x+1,(©) 5(x—3)—2x+6>0.
Sketch your solutions on a number line.

52. Find all numbers x such that: (a) 2(x 2— x) > 0,
(b) 3x2+2x—-1>0, (¢) x2=-5x+6<0.
Sketch your solutions on a number line.

*53. (a) Prove the quadratic formula by the method

R.2

(a.b) la,b]

n sl
a b a b
fa.b) (a.b]
S
a b a b
{a, ) (a.o0)

& 4
a a
(=20, b1 (—2°, b)
b b
(=00, )
% / Z

Figure R.2.1. The nine
types of intervals.

Warning

of completing the square. (b) Show that the equa-
tion ax?+ bx + ¢=0, where a0, has two
equal roots if and only if 4% = 4ac.

Intervals and
Absolute Values

The number x belongs to the interval [a — r,a + r] when |x — a| < r.

In this section, two important notations are discussed. The first is that of
intervals on the real-number line, and the second is the absolute value |x|,
which is the distance from the origin (zero) to x.

We begin by listing the notations used for different kinds of intervals.

(a, b) means all x such that ¢ < x < b (open interval).

[a, b] means all x such that a < x < b (closed interval).
[a,b) means all x such that a < x < b (half-open interval).
(a,b] means all x such that ¢ < x < b (half-open interval).
[a, c0) means all x such that a < x (half-open interval).
(a, «0) means all x such that ¢ < x (open interval).

(— o0, b] means all x such that x < b (half-open interval).
(— o0, b) means all x such that x < b (open interval).

(— ©0, 00) means all real numbers (open interval).

These collections of real numbers are illustrated in Fig. R.2.1. A black dot
indicates that the corresponding endpoint is included in the interval; a white
circle indicates that the endpoint is not included in the interval. Notice that a
closed interval contains both its endpoints, a half-open interval contains one
endpoint, and an open interval contains none.

The symbol oo (“infinity”’) does not denote a real number. It is merely a
placeholder to indicate that an interval extends without limat.

In the formation of intervals, we can allow a = b. Thus the interval [q,d]
consists of the number « alone (if ¢ < x < @, then x = a), while (a,a), (a,d],
and [a,a) contain no numbers at all.

Many collections of real numbers are not intervals. For example, the
integers, . .., —3,—-2,—-1,0,1,2,3, ..., form a collection of real numbers
which cannot be designated as a single interval. The same goes for the rational
numbers, as well as the collection of all x for which x> —2x — 3 > 0. (See Fig.
R.1.3)) A collection of real numbers is also called a set of real numbers.
Intervals are examples of sets of real numbers, but not every set is an interval.

We will often use capital letters to denote sets of numbers. If 4 is a set
and x is a number, we write x € 4 and say that “x is an element of 4” if x
belongs to the collection 4. For example, if we write x € [q, b] (read “x is an
element of [a, b]”), we mean that x is a member of the collection [a, b]; that is,
a € x < b. Similar notation is used for the other types of intervals.
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Example 1

Soiution

Example 2

Soiution

Example 3

Soiution

Figure R.2.2. The absolute
value measures the distance

to the origin.

Example 4

Solution

True or false: (a) 3 €[1,8], (b) =1 €(—0,2), (¢) 1 €[0, 1), (d) 8 €(—8, ),
(¢) 3 — 5 € Z, where Z denotes the set of integers.

(a) True, because 1 < 3 < 8 is true;

(b) true, because —1 < 2 is true;

(c) false, because 0 < 1 < 1 is false (1 < 1 is false);

(d) true, because —8 < 8 is true.

(e) true, because 3 — 5 = —2, which is an integer. A

Prove: If a < b, then (a + b)/2 € (a,b).

We must show that a < (¢ + b)/2 < b. For the first inequality:
a<h,
2a<a+b (adding a),

4 ; b (multiplying by 1).

a <

The proof that (a + b)/2 < b is done similarly; add b to (¢ < b) and divide
by 2. Thus a < (a + b)/2 < b; i.e., the average of two numbers lies between
them. A

Let A be the set consisting of those x for which x> — 2x — 3 > 0. Describe 4
in terms of intervals.

From Example 10(b), Section R.1, 4 consists of those x for which x > 3 or
x < —1. In terms of intervals, 4 consists of (3, c0) and (— 0, — 1), as in Fig.
R.13. A

If a real number x is considered as a point on the number line, the distance
between this point and zero is called the absolute value of x. If x is positive or
zero, the absolute value of x is equal to x itself. If x is negative, the absolute
value of x is equal to the positive number — x (see Fig. R.2.2). The absolute
value of x is denoted by |x|. For instance, [8| =8, | — 7| =7, | — 10°| = 10%.

This distance is the This distance is the

absolute value of y absolute value of x
I's A A 'd - N
4 t + }
v 0 x = x| Iyl=y

Absolute Vaiue

The absolute value |x| of a real number x is equal to x if x > 0 and —x
if x < 0. To compute |x|, change the sign of x, if necessary, to make a
non-negative number.

Find (a) | - 6], (b) [8- (=3)|, (&) [(—=2) - (—5)|, (d) all x such that |x| = 2.

(@) |—6|=6.

(b) |8~(—3)|=|—24|=24.

(©) [(=2)(—5)| = [10] = 10.

(d) If |x] =2 and x > 0, we must have x =2, If |x| =2 and x < 0, we must
have —x =2; thatis, x = —2. Thus |x| =2 if and only if x = +2. A
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For any real number x, |x| > 0, and |x| =0 exactly when x=0. If b is a
positive number, there are two numbers having b as their absolute value: b
and —b. Geometrically, if x <0, |x| is the “mirror image” point which is
obtained from x by flipping the line over, keeping zero fixed.

If x, and x, are any two real numbers, the distance between x, and x, is
xy — x5 if x{ > x, and x, — x, if x; < x,. (See Fig. R.2.3 and note that the
position of zero in this figure is unimportant.) Since x, > x, if and only if

x,— X%, 20, and x, — x;, = —(x; — x,), we have the result shown in the next
box.

Figure R.2.3. The distance Distance is x, — x;

between x; and x, is N

lx) = xal. M M

Distance Formula on the Line

If x, and x, are points on the number line, the distance between x, and
x, is equal to |x; — x,|.

Exampie 5 Describe as an interval the set of real numbers x for which |x — 8| < 3.

Solution |x — 8| < 3 means that x — 8 <3 incase x —8 > 0and —(x — 8) <3 in case
x — 8 < 0. In the first case, we have x < 11 and x > 8. In the second case, we
have x > 5 and x < 8. Thus |[x — 8| < 3 if and only if x €[5,11]. A

Example 6 Describe the interval (4,9) by a single inequality involving absolute values.

Solution Let m be the midpoint of the interval (4,9); that is, m=1(@4+9)=4. A
number x belongs to (4,9) if and only if the distance from x to m is less than
the distance from 9 to m, which is |9 — 43| = 3. (Note that the distance from 4

i3 tomis [4—LB|=|-3|=3 as well) So we have x € (4,9) if and only if
2 2
b2el2e]  x -] <s. (See Fig R24)
e+
0 4 13 9 The most important algebraic properties of absolute values are listed below.

Figure R.2.4. The interval -
(4,9) may be described by Properties of Absolute Values

the inequality |x — | <3.
nequality |x =4 <3 If x and y are any real numbers:

L fx +y] < [x] + ]|

2. |xpl= x|yl
3. |x| =vyx?

Example 7 Show by example that |x + y| is not always equal to |x| + | y|.

Solution Letx=3andy= —5 Then |x +y|=|3—-5|=2, while |x|+|y|=3+5=8.
(Many other numbers will work as well. In fact, |x + y| will be less than
|x| + | y| whenever x and y have opposite signs.) A
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The preceding example illustrates the general relation between |x + y| and
|x| + | y|: they are equal if x and y have the same sign, |x + y| < |x| + | y|
if x and y have opposite signs.

Example 8 Prove that |x| = yx?.

Solution

For any number x, we have (— x)* = x% so |x|* = x? whatever the sign of x.

Thus |x| is a number such that |x| > 0 and |x|* = x?, so it is the square root of

x2 A

Exercises for Section R.2

L.

2.

3.
4.

True or false: (a) —7€[—8,1]; (b) 5€(4,6];
(©4€E(~4,6; (d)dE4,6);(e) 2+ €77
Which numbers in the list —54, —9, — 2,0,%,4,
8, 32, 100 belong to which of the following inter-
vals?

(@) [—-10,)  (b) (—o0,44)
(© (75500) (d) (=20,-3)
© (—9%]

Prove: If a < b then a < (2a + b)/3.
Prove: If a < b then (a — 4b)/3 < —b.

Describe the solutions of the inequalities in Exercises
5-12 in terms of intervals.

5.
6.
7.
8.
9.
10.
11.
12.

x+4>7
2x+5< —x+1
x>4x—6
5—x>4-2x
x2+2x—=3>0
2x2-6<0
x2—x2>0

Cx+ D(x—5<0

Find the absolute values in Exercises 13-20.

13.
14.
15.
16.
17.
18.
19.
20.

21.
22.

13 =75

13 + 5]
|—3-5]

| —3+5|
13-5|
I(=3)(—5)|
I(—=3)-5|
13- (=5)

Find all x such that {x| =8.
Find all x such that | — x| =9.

Describe in terms of absolute values the set of x satisfy-
ing the inequalities in Exercises 23-26.

23 x*+5x>0

24, x2=2x<0

25. x2—=x—-2>0

26. x*+5x+7<0
Express each of the inequalities in Exercises 27-32 in
the form “x belongs to the interval ... ”".

27. 3 <x <4

28. x>5

29. |x] <5

30 |x—3| <6

31 Bx+ 1) <2

32. x2=3x 42320
Express each of the statements in Exercises 3338 in
terms of an inequality involving absolute values:

33. x €(-3,3)

4. —xE(—4,9

35. x €E(—6,6)

36. x €(2,6)

37. x €[-8,12)

38. |x| €0, 1)

39. Show by example that |x + y + z| is not always
equal to |x| + | y| + |z|.

40. Show by example that |x — y| need not equal
| 1x[ = | y]]-

41. Prove that x =3/x°.

42. Prove that |x| =4/x*.

43. Is the formula |x — y| < |x| — | y| always true?

44. Using the formula |xy| = |x||y|, find a formula .
for |a/b|. [Hint: Let x = b and y = a/b.]



R.3

Exampile 1

Solution

R.3 Laws of Exponents 25

Laws of Exponents

Fractional and integer exponents obey similar laws.

The expression b”, where b is a real number called the base and » is a natural
number called the exponent, is defined as the product of b with itself » times:

b"=b-b-+---b (n times).

This operation of raising a number to a power, or exponentiation, has the
following properties, called laws of exponents:

Laws of Exponents: Integer Powers
1. b"b™ = b+
2. (b"y" = b™
3. (bey' = b"c"

These laws can all be understood and remembered using common sense. For
example, b™*" = p™b" because

bbb b= (b-b- - by (b-b- - b).

m + n times m times n times

m + n times in all

Likewise
()= (B")(b") - - (B")
m times
=(b---b)b...b)b...b)
nm times
— bnm.
and

(bc)"=bcbc...bc=(b...b)(c...c)
M e R e A SRR
n times n times »n times

=b"c".
Simplify
(3-2)"°+3°
@ 250 (b))

(a) 210 . 510 — (2 . 5)10 = 1010.

(3-2)'0+39_3\0.2\0_,_39_39.3.2\0_,_39:
39 - 39 - 39

(b) 3.2+ 1. A

The first of the three laws of exponents is particularly important; it is the basis
for extending the operation of exponentiation to allow negative exponents. If
b® were defined, we ought to have %" = b°*" = b If b0, then b" 50,
and the equation h%" = b" implies that »° must be 1. We take this as the
definition of b°, noting that 0° is not defined (see Exercise 31).
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Exampie 2

Soiution

If » is a natural number, then 5" is defined in order to make b~ "b"
=p7"t"=p%=1; thatis, b~ "= 1/b".

Negative Powers: Definition and
Laws of Exponents

If b is a real number and # is a positive integer, we define

—"=_.1——
b= 5.

The laws of exponents given in the preceding box remain valid for
integers n, m; positive, negative, or zero.

For example, let us show that 5" " = b"b™ is valid if n = — ¢ is negative and
m is positive, with m > g. Then b"*"=bp""9=p... - b (m— g times).
Also,

m times .

——~—— m — g times
prpm = p—apm— b7 _ bbb _ b...b
b% b...b
e —
g times

Thus b"*™ = p"b™. The other cases and laws are verified similarly.

Simplify
2-3)7"-4
@
(1/3)
(b) [8/3)* — (3/8YI8/3) >+ (3/8)7°].
2-3)74 _ 4.3
(1/3)2 22 . 32
(b) Multiplying out, the given expression becomes
2 -2 2 -3 3 -2 3 -3
(5)(5) +(5) () -(6)(5) ~(3)(F)
3/13 3 8 8/\3 8/\8
_ § 2 8 3_ 3 3 3 2_
-1+(3)(3) - (5)(5) !
_(8V_ (3
=(5)-(5)-a
To define b'/”, we require b'/"-p'/". .. .. pVn=pl/nt o ¥lUn= pl=p
to hold—that is, (b'/")" ought to be equal to b. Thus we declare b'/" to be
b, that positive number whose nth power is b; i.e, b'/" is defined by the
equation (b'/7)"=b. (If n is odd, then %b may be defined even if b is
negative, but we will reserve the notation b'/” for the case b > 0.)
Finally, if » = m/n is a rational number, we define b” = b™/" = (b™)"/",
We leave it to you to verify that the result is independent of the way in which

r is expressed as a quotient of positive integers; for instance, (5%)!/¢ = (b%)'/°
(see Exercise 32).

(@)
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Exampie 4
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Having defined 5" for b > 0 and r rational, one can go back and prove
the laws of exponents for this general case. These laws are useful for calcula-
tions with rational exponents.

Let us first check that (bc)'/" = b'/"c!/". Now (bc)'/" is that number
whose nth power is bc; but (b'/"c!/"y" = (b'/"y'(c'/"Y* = be, by Property 3 for
integer powers and the fact that (b'/"y" = b. Thus (b'/"c'/"y" = bc, which
means that b'/7c!'/" = (bc)'/".

Using this, we can check that 57*9 = b”b9 as follows. Let p = m/n and
q = k/I. Then

pPTa = pm/nrk/l _ plmi+kn)/nl _ (bm/+kn )‘/"/

= (b'”’b kn )l/"l (by Property 1 for integer powers)

= (b'”’)l/"l(bk")l/"l (by the law (be)!/™ = b1/ 7!/ just proved)
= pmi/nlpkn/nl (by the definition of b™/ ")

= bFb1.

The other properties are checked in a similar way (Exercises 33 and 34).

Rational Powers
Rational powers are defined by:

b"=b-----b(ntimes); b°=1
b™"=1/b"

b'/" = %p if b >0 and » is a natural number
bm/n=(bm)l/n

If b,c > 0 and p, g are rational, then:

1. bP+9 = pPpa
2. bP = (bP)
3. (be)? = bPc?

4. bF <b7ifb>landp<gq; b? >b7if b<1landp <gq.

Find 8~ %3 and 9%/~
8= =1/8=1/(By=1/22=1/4. P =(9y=3=27. a

Simplify [x%/3(x~*%]¥/? and (x*/3)*/?/x"/*.
(x2/3x——3/2)8/3 — (x2/3—3/2)8/3 — (x—5/6)8/3 — x—20/9 — 1/9/x20 .

5/2 - _
(x2/3) / /x1/4=x2/3-5/2 /4 _ 5/3=1/4 _ L 11/12, A

We defined b”/" as (b™)"/". Show that b™/" = (b'/"y" as well.

We must show that (b'/")" is the nth root of b™. But [(b!/")"]" =
(bY/"y™ = (b'/"y™ = [(b"/")"]" = b™; this calculation used only the laws of
integer exponents and the fact that (bI/ "Y'=b. A
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Example 6 Remove the square roots in the denominator:
|

Vx—a+yx—5b .
Solution There is a useful trick called rationalizing. We multiply top and bottom by
VX —a —yx — b, giving
K=a-h—b _ Fi=a-—%
(\/x—a+\6c—b)(\/x—a—\5c—b) (\/x—a)z-—(\&—b)z
_Yx—a—-vVvx—0b N
N b—a )

Example 7 Assume that the cost of food doubles every 6 years. By what factor has it
increased after

(a) 12 years? (b) 18 years? (c) 3 years? (d) 20 years?

Soiution (a) Since the cost doubles in 6 years, in 12 years it increases by a factor of
2:2=4.
(b) In 18 = 6 + 6 + 6 years it increases by a factor 2-2-2 = 8.
(c) In 3 years, let it increase by a factor k. Then in 6 years we get k - k =2, so
k=y2 =29~ 14142
(d) In 20 years the factor is 22°/¢ = 213 =32'° = 10.0794. A

Exercises for Section R.3

Simplify the expressions in Exercises 1-20. 13. 25/3/47/3
1 32.(1)2 14. 378/11(1 /g)—4/11
' 3 15. 122/3.182/3
2. 83.<1)2 16. 207/2.5-7/2
4 17. (x3/2+x5/2)x’3/2
(4_3)10+49 18. (x3/4)g/3
o 19. x%/%(x3/% 4 2x1/% 4 3x7/2)
(2-3)'0 4 315 2. M0/ y+ 20y +p713
4. 315 Using the laws of rational exponents, verify the root

formulas in Exercises 21 and 22.

(4-3)7°-8
o 20 YR =
. en! 22, “x® = /xF
To3-3 Simplify the expressions in Exercises 23 and 24 by
7 ( g ? )4 writing with rational exponents.
. —72 4 3 6
b
1! 1y 31y 12 23 7;;
s 1(3) +(3) (3) ~(5) ]
2 3 2 3
9. 91/2 59
1 1/4 24. 3 a’b
0. 16 4 5
11. (1/9)"172 @b
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25. The price of housing doubles every 10 years. By *31. Since 0* = 0 for any positive rational x, 0° ought
what factor does it increase after 20 years? 30 to be zero. On the other hand, =1 for any
years? 50 years? b>0, so 0° ought to be 1. Are both choices

#!26. Money in a certain bank account grows by a consistent with the laws of exponents?
factor of 1.1 every year. If an initial deposit of *32. Suppose that b >0 and that p=m/n=m'/n’.
$100 is made, how much money will be in the Show, using the definition of rational powers,
account after 10 years? that b™/7 = p™'/; that is, b” is unambiguously
Factor the expressions in Exercises 27-30 using frac- defined. [Hint: Raise both 5™/7 and 5™/" to the
tional exponents. For example: x + 2\/5); + 2y = power nn'.]

(Xl/2+(2_y)l/2)2.
27. x —yxy =2y

28. Yy + Yyx? +x+y

29. x—2yx —8
30. x +2{3x +3

R.4

Figure R.4.1. The x and y
axes in the plane.

Figure R.4.2. The point P
has coordinates (a, b).

%33. Prove Rules 2 and 3 for rational powers.

*34. Let b > 1 and p and ¢ be rational numbers with
p < q. Prove that b7 < b9. Deduce the corre-
sponding result for b < 1 by using 47 = (1/b)"7.

Straight Lines

The graph y = ax + b is a straight line in the xy plane.

In this section, we review some basic analytic geometry. We will develop the
point-slope form of the equation of a straight line which will be essential for
calculus.

One begins the algebraic representation of the plane by drawing two
perpendicular lines, called the x and y axes, and the placing the real numbers
on each of these lines, as shown in Fig. R.4.1. Any point P in the plane can

w

[
|
o

[}

w
e

now be described by the pair (a,b) of real numbers obtained by dropping
perpendiculars to the x and y axes, as shown in Fig. R.4.2. The numbers
which describe the point P are called the coordinates of P: the first coordinate
listed is called the x coordinate; the second is the y coordinate. We can use
any letters we wish for the coordinates, including x and y themselves.

Often the point with coordinates (a, b) is simply called “the point (a, b).”
Drawing a point (a, b) on a graph is called plotting the point; some points are
plotted in Fig. R.4.3. Note that the point (0,0) is located at the intersection of
the coordinate axes; it is called the origin of the coordinate system.

! & This symbol denotes exercises or discussions that may require use of a hand-held calculator.
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Figure R4.3. Examples of
plotted points.

of Fundamentals

(--3,0) 0.0
(-2,-1H® ©.-D

Example1 Let a=3 and b=2. Plot the points (a,b), (b,q), (—a,b), (a,—b), and
(—a, —b).
Solutlon The points to be plotted are (3,2), (2,3), (—3,2), (3, —2), and (— 3, —2); they
are shown in Fig. R4.4. A
The theorem of Pythagoras leads to a simple formula for the distance between
two points (see Fig. R.4.5):
v
g (2,3) 1
3+ °
(~3,2) U A
[ 2T [ ] . |
'+ (3.2 T i
—t— b P g e — L -— -r—l R
-3 =2 -1 0| 1 2 3 % | Y2 |
17T e Xy - x3 —>
e 2} . | NI
(-3,-2) (3,~2) X3 x) *
34

Figure R.4.4. More plotted
points,

Example 2

Solution

Figure R.4.5. By the Pythagorean theorem,
2
PP = PaRP + PR =(x, = x2)” + (71 = »2)'

Distance Formula

If P, has coordinates (x,,y,) and P, has coordinates (x,, y,), the

distance from P, to P, is \'/(xl — x> + (¥, — y,)° . The distance be-
tween P, and P, is denoted | P, P,|.

Find the distance from (6, —10) to (2, — 1).
The distance is
2 2 _ 2 2
V6-22+[-10- (-] =@+ (-9
=y16 + 81 =97 ~9.85. A

If we have two points on the x axis, (x;,0) and (x,,0), the distance between

them is \/(xl —x) + (0-0) =y/(x;, — x;)° = |x, — x,|. Thus the distance

formula in the plane includes the distance formula on the line as a special case.




Figure R.4.6. The slope of
this line is
(y2 = y1)/(xa = x)).

R.4 Straight Lines 31

Draw a line? / in the plane and pick two distinct points P, and P, on .
Let P, have coordinates (x,, y;) and P, have coordinates (x,, y,). The ratio
(y; — y1)/(x, — x,) (assuming that x, # x,) is called the slope of the line / and
is often denoted by the letter m. See Fig. R.4.6.

¥

Slope Formula

If (x,, y,) and (x,, y,) lie on the line /, the slope of / is
Y2~V

.xZ_.x‘

An important feature of the slope m is that it does not depend upon
which two points we pick, so long as they lie on the line /. To verify this, we
observe (see Fig. R.4.7) that the right triangles P, P,R and P{P;R’ are similar,
since corresponding angles are equal, so P,R/P,R= P;R’/P{R’. In other
words, the slope calculated using P, and P, is the same as the slope calculated
using P; and P;. The slopes of some lines through the origin are shown in Fig.
R.4.8.

Figure R.4.7. The slope
does not depend on which
two points on / are used.

Example 3

Solution

Figure R.4.8. Slopes of
some lines through the
origin.

What is the slope of the line which passes through the points (0, 1) and (1, 0)?

By the slope formula, with x; =0, y, =1, x,=1, and y, =0, the slope is
O-DH/1~0=-1. A

2 In this book when we use the term /ine with no other qualification, we shall mean a straight line.
Rather than referring to “curved lines,” we will use the term curve.
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Warning A line which is parallel to the y axis does not have a slope. In fact, any two

points on such a line have the same x coordinates, so when we form the ratio
(y2— y)/(x, — x,), the denominator becomes zero, which makes the expres-
sion meaningless. A vertical line has the equation x = x,; y can take any
value.

To find the equation satisfied by the coordinates of the points on a line, we
consider a line / with slope m and which passes through the point (x;, y;). If
(x, y) is any other point on /, the slope formula gives

Y~ _
X~ X
That is,

y=y+ m(x - x,).
This is called the point-slope form of the equation of /; a general point (x, y)
lies on / exactly when the equation holds.

If, for the point in the point-slope form of the equation, we take the point
(0, b) where [ intersects the y axis (the number b is called the y intercept of 1),
we have x; = 0 and y, = b and obtain the slope-intercept form y = mx + b.

If we are given two points (x;, y,) and (x,, y,) on a line, we know that
the slope is (y, — y;)/(x, — x,). Substituting this term for m in the point-slope
form of the equation gives the point-point form:

Ya—)y
)’=)’l+(;2£f}':")(x_xl)'

Straight Lines
Name Data needed Formula
point-slope one point (x;, y,) on the line and the
slope m y=y;+m(x—x)
slope-intercept the slope m of the line and the
y-intercept b y=mx+b
point-point two points (x,, y;) and (x,, y,) on Yy =y
the line y=yl+(x2_x' )(x— x;)
i

Figure R.4.9. Three forms
for the equation of a line.

For calculus, the point-slope form will turn out to be the most important of
the three forms of the equation of a line, illustrated in Fig. R.4.9(2).

v

Y : r4 (x3.37)

(X|‘_V|)
/m =m Slope = m
/ / G
b
X X X
(a) Point-Slope: (b} Slope-Intercept: (c) Point-Point;

rEytmx - xy) yEmx o+ b V2 =V
yEy s ) - xy)
X3 — Xy



Exampie 4

Solution

Examplie 5

Soiution

Figure R.4.10. Finding
where the line through (3,2)
and (4, — 1) meets the x
axis.

Exampie 6

Solution

Exampie 7

Solution

R.4 Straight Lines 33
Find the equation of the line through (1, 1) with slope 5. Put the equation into
slope-intercept form.
Using the point-slope form, with x, =1, y; =1, and m =35, we get y =1+
5(x ~ 1). This simplifies to y = 5x ~ 4, which is the slope-intercept form. A
Let / be the line through the points (3,2) and (4, —1). Find the point where
this line intersects the x axis.

The equation of the line, in point-point form, with x; = 3, y, = 2, x, = 4, and
y,=—1,is

r2e (55

=2-3(x—3).
The line intersects the x axis at the point where y =, that is, where
0=2-3(x—3).

Solving this equation for x, we get x = 11, so the point of intersection is (4, 0).
(See Fig. R4.10.) A

Find the slope and y intercept of the line 3y + 8x + 5 = 0.

The following equations are equivalent:

3y+8x+5=0,
3y = —8x—5,
y=-—4%x-3.

The last equation is in slope-intercept form, with slope —$ and y intercept
5

—3. A
3

Using the method of Example 6, one can show that any equation of the form
Ax + By + C =0 describes a straight line, as long as 4 and B are not both
zero. If B # O, the slope of the line is — A4 /B; if B = 0, the line is vertical; and
if 4 =0, it is horizontal.

Finally, we recall without proof the fact that lines with slopes m, and m,
are perpendicular if and only if m;m,= —1. In other words, the slopes of
perpendicular lines are negative reciprocals of each other.

Find the equation of the line through (0, 0) which is perpendicular to the line
3y—2x+8=0.

The given equation has the form Ax + By + C =0, with 4 = —2, B= 3, and
C = 8; the slope of the line it describes is — A4 /B =2 = m,. The slope m, of
the perpendicular line must satisfy m;m, = — 1, so m, = — 3. The line through
the origin with this slope has the equation y = —3x. A

Exercises for Section R.4

1. Plot the points (0,0), (L,1), (—=1,—1), (2,8), 3. Plot the points (x,x%) for x = =2, -3, —1, — 4,
(—2,-8),(3,27), and (-3, ~-27). 0,4,1,2,2.

2. Plot the points (—1,2), (—1,-2), (1, —~2), and 4. Plot the points (x,x*— x?) for x = —2, — 3,
(1.2).

-1,4,0,4,1,3,2.
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Find the distance between each of the pairs of points in
Exercises 5~10.
5 (L, D,(1,-1
6. (=1, 1),(—-1,-1
7. (=3,9,(2, -8
8. (0,0),(—-3,27)
9. (43721, 56841),(3,56841)
10. (839, 8400), (840, 8399)
Find the distance or a formula for the distance between
each pair of points in Exercises 11-16.
11. (2,1),(3,2)
12. (a,2),(3 + a,6)
13. (x, y),Bx, y + 10)
14. (a,0),(a + b,b)
15. (a,a),(—a, —a)
16. (a, b),(10a, 105)
Find the slope of the line through the points in Exer-
cises 17-20.
17. (1,3),(2.6)
18. (0, ), (2, -4
19. (—1,6),(1, - 1)
20. (0,0),(—1,-1)
In Exercises 21-24 find the equation of the line through
the point P with slope m, and sketch a graph of the line.
2. P=(2,3),m=2
2. P=(-2,6),m=—1%
23. P=(—-1,7),m=0
24, P=(1,—-1), m=1
Find the equation of the line through the pairs of points
in Exercises 25-28.
25. (5,7), (- 1,9
26. (1,1),(3,2)
27. (1,4),(3.9
28. (1,4),(1,6)

R.5 Circles and Parabolas

Find the slope and y intercept of each of the lines in
Exercises 29-36.
29. x+2y+4=0

30 %X"‘3_y+‘3‘:
31 4y =17
2. 2x+y=0

33. B-4x=Tx+y)
3. x —y = 14x + 2y)
35. y=17
36. x =60

37. (a) Find the slope of the line 4x + 5y — 9 =0.
(b) Find the equation of the line through (1, 1)
which is perpendicular to the line in part (a).
38. (a) Find the slope of the line 2x — 8y — 10=10.
(b) Find the equation of the line through (1,0)
which is perpendicular to the line in (a).
Find the equation of the line with the given data in
Exercises 39-42.
39. Slope = 5; y intercept = 14
40. y intercept = 6; passes through (7,8)
41. Passes through (4,2) and (2,4)
42. Passes through (—1, — 1); slope = — 10

43. Find the coordinates of the point which is a
distance 3 from the x axis and a distance 5 from
(1,2).

*44. (a) Find the coordinates of a point whose dis-
tance from (0,0) is 2,2 and whose distance
from (4,4) is 2y2.

(b) If A > 242 show both algebraically and geo-
metrically that there are exactly two points
whose distance from (0,0) is A and whose
distance from (4,4) is also A.

(x — a)* + (y— by = r* is a circle and y = a(x -p)2 + g is a parabola.

We now consider two more geometric figures which can be described by

Figure R,5.1. The point
(x, y) is a typical point on
the circle with radius r and
center (a, b).

g simple algebraic formulas: the circle and the parabola.
(x, ) The circle C with radius » > 0 and center at (a, b) consists of those points
L (x, y) for which the distance from (x, y) to (a, b) is equal to r. (See Fig. R.5.1.)
@, b) The distance formula shows that \/ (x— a)2 +(y— b)2 = r or, equivalently,
N “x  (x—a)+ (y— by =r% If the center of the circle is at the origin, this
— equation takes the simpler form x* + y? = r2,



Exampie 1

Solution

Exampie 2

Solution

Example 3
Solution

x]:z 15 1 05 0

y|4 225 1 025 0

Figure R.5.2, The parabola
y=x%

Figure R.5.3. Parabolas
y = ax? for various values
of a.

R.5 Circles and Parabolas 35

Find the equation of the circle with center (1,0) and radius 5.

Here a=1, 5=0, and r =5, so (x — a)* + (y — b)* = r? becomes the equa-
tion (x — 1>+ y*=25o0r x> —2x + y*=24. A

Find the equation of the circle whose center is (2, 1) and which passes through
the point (5, 6).

The equation must be of the form (x — 2)? + (y — 1)> = r%; the problem is to
determine r”. Since the point (5,6) lies on the circle, it must satisfy the
equation. That is,

rP=(5-27+(6- 1Y =3+5=34,
so the correct equation is (x —2)*+ (y — 1)* = 34. A

Show that the graph of x2+ y* — 6x — 16y + 8 = 0 is a circle. Find its center.
Complete the squares:
O=x*+y*—6x— 16y +8=x>—6x+ y* — 16y + 8
=(x*=6x+9)+ () — 16y +64)-9—64+38
= (x—3)’+ (y — 8)*— 65.
Thus the equation becomes (x — 3)* + (y — 8)> = 65, whose graph is a circle
with center (3, 8) and radius Y65 ~ 8.06. A

Consider next the equation y = x2 If we plot a number of points whose
coordinates satisfy this equation, by choosing values for x and computing y,
we find that these points may be joined by a smooth curve as in Fig. R.5.2.
This curve is called a parabola. 1t is also possible to give a purely geometric
definition of a parabola and derive the equation from geometry as was done
for the line and circle. In fact, we will do so in Section 14.1.

If x is replaced by — x, the value of y is unchanged, so the graph is
symmetric about the y axis. Similarly, we can plot y =3x% y=10x? y
= —1x? y=—8x% and so on. (See Fig. R.5.3)) These graphs are also
parabolas. The general parabola of this type has the equation y = ax?, where a

RN )

Axis of
symmetry
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Exampie 4

Soiution

Figure R.5.4. The focusing
property of a parabolic
reflector.

Figure R.5.5. The equation
y=q+ a(x — p)*is the
parabola y = ax? shifted
from (0, 0) to (p, ).

is a nonzero constant; these parabolas all have their vertex at the origin. If
a > 0 the parabola opens upwards, and if a < 0 it opens downwards.

Let C be the parabola with vertex at the origin and passing through the point
(2, 8). Find the point on C whose x coordinate is 10.

The equation of C is of the form y = ax” To find a, we use the fact that (2, 8)
lies on C. Thus 8 = a - 2> = 4a, so a = 2 and the equation is y = 2x2 If the x
coordinate of a point on C is 10, the y coordinate is 2 - 10? = 200, so the point
is (10,200). A

A special focusing property of parabolas is of practical interest: a parallel
beam of light rays (as from a star) impinging upon a parabola in the direction
of its axis of symmetry will focus at a single point as shown in Fig. R.5.4. The
property follows from the law that the angle of incidence equals the angle of
reflection, together with some geometry or calculus. (See Review Exercises 86
and 87 at the end of Chapter 1.)

Parallel beam of light

Parabolic
reflector

Angle of
incidence

Focus

Angle of
reflection

Just as we considered circles with center at an arbitrary point (a,b), we
can consider parabolas with vertex at any point (p, ¢). The equation of such a
figure is y = a(x — p)* + g. We have started with y = ax?, then replaced x by
x—pand y by y — g to get

y—q=a(x—py ie, y=a(x-p)+gq.
This process is illustrated in Fig. R.5.5. Notice that if (x, y) lies on the
(shifted) parabola, then the corresponding point on the original parabola is

(x = p, y — q), which must therefore satisfy the equation of the original
parabola; i.e., y — ¢ must equal a(x — p)™.

3
Y Shifted parabola

y=gtalx - p)z

(x,3)

(p.q) ‘J_
Wopyoo
* p l
(0,0) X

Given an equation of the form y = ax?* + bx + ¢, we can complete the
square on the right-hand side to put it in the form y = a(x — p)* + ¢. Thus the
graph of any equation y = ax® + bx + ¢ is a parabola.



Example 5

Solution

yi (1,3
y=—2x2
+4x +1

0,1

I’ \ x

Figure R.5.6. A parabola
with vertex at (1, 3).

Figure R.5.7. Intersections
of some geometric figures.

Example 6

Solution

Example 7

Solution
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Graph y = —2x? +4x + .
Completing the square gives

y=-2x"+4x+ 1= —2(x2—2x—%)
—2(x2—2x+l—l—%)= —-2(x2—2x+l—%)

= —2(x ~ 1)’+ 3.

The vertex is thus at (1,3) and the parabola opens downward like y = —2x?

(see Fig. R.5.6). A

Equations of Circles and Parabolas
The equation of the circle with radius » and center at (a, b) is
(x — ay*+ (y— b)’=r%
The equation of a parabola with vertex at ( p,q) is

y= a(x —p)2+ q.

Analytic geometry provides an algebraic technique for finding the points
where two geometric figures intersect. If each figure is given by an equation in
x and y, we solve for those pairs (x, y) which satisfy both equations.

Two lines will have either zero, one, or infinitely many intersection
points; there are none if the two lines are parallel and different, one if the lines
have different slopes, and infinitely many if the two lines are the same. For a
line and a circle or parabola, there may be zero, one, or two intersection
points. (See Fig. R.5.7.)

/X g S

Where do the lines x + 3y + 8 =0 and y = 3x + 4 intersect?
To find the intersection point, we solve the simultaneous equations
x+3y+8=0,
-3x+y—4=0
Multiply the first equation by 3 and add to-the second to get the equation

0+ 10y +20=0, or y = —2. Substituting y = —2 into the first equation gives
x —6+ 8 =0, or x = —2. The intersection point is (—2, —2). A

Where does the line x + y = 1 meet the parabola y = 2x* + 4x + 1?

We look for pairs (x, y) which satisfy both equations. We may substitute
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2x?+4x + 1 for y in the equation of the line to obtain

x+2x2+4x+1=1,
2x2 +5x =0,
x(2x +5)=0,

so x = 0 or — 3. We may use either equation to find the corresponding values
of y. The linear equation x + y =1 is simpler; it gives y=1—x, so y =1
when x = 0 and y =% when x = — 3. Thus the points of intersection are (0, 1)
and (— 2,7). (See Fig. R.5.8.) A

Figure R.5.8. Intersections yi
of the line x + y = 1 and
the parabola y = 2x? +

4x + 1 occur at (0, 1) and

"%9%)'

v=2xT+4x +1
0, 1)

(N

Example 8 (a) Where does the line y = 3x + 4 intersect the parabola y = 8x%?
(b) For which values of x is 8x? < 3x + 4?

-

xty=1

Solution (a) We solve these equations simultaneously:
—-3x+y—-4=0,
y= 8x2.
Substituting the second equation into the first gives —3x + 8x?~ 4 =0, so
8x2~3x —4=0.
By the quadratic formula,

y=8x? 3+/9+4-8-4 3+Y137 3+ 11.705
x = = Ry
16 16 16
~0919 and -—0.544.

When x ~0.919, y ~8(0.919)* ~ 6.76. Similarly, when x ~ —0.544, y ~2.37,
so the two points of intersection are approximately (0.919, 6.76) and (—0.544,
(-0.544, 2.37). (See Fig. R.59.) As a check, you may substitute these pairs into the
equation —3x + y—4=0.

If the final quadratic equation had just one root—a double root—there
would have been just one point of intersection; if no (real) roots, then no
points of intersection.

(b) The inequality is satisfied where the parabola lies below the line, that is,
for x in the interval between the x-values of the intersection points. Thus we

(0.919, 6.76)

y=3x+4

Figure R.5.9. The line have 8x? < 3x + 4 whenever

y = 3x + 4 intersects the _

parabola y = 8 at two x€ ( 3-VI137 34137 )~(—0.544,o.919). A
points. 16 16
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intersection Points

To find the intersection points of two figures, find pairs (x, y) which
simultaneously satisfy the equations describing the two figures.

Exercises for Section R.5

In Exercises 1-4, find the equation of the circle with
center at P and radius r. Sketch.

1. P=(l,1);r=3

2. P=(—1,N;r=5

3. P=(0,5);r=5
4. P=(L1)y;r=1
5

. Find the equation of the circle whose center is at
(—1,4) and which passes through the point (0, 1).
Sketch.

6. Find the equation of the circle with center (0, 3)
and which passes through the point (1, 1). Sketch.
Find the center and radius of each of the circles in
Exercises 7-10. Sketch.
7. x4+ y?=2x+y—31=0
8. 2x2+ 2y +8x+4y +3=0
9. —x2—y?+8x—4y—11=0
10. 3x? + 3p? — 6x +36y-8=0
Find the equation of the parabola whose vertex is at V'
and which passes through the point P in Exercises
11-14.
1. V=(1,2); P=(0,1)
12. V=(0,1); P=(1,2)
13. V=(5,5); P=(0,0)
4. V=(2,1); P=(1,4)
Sketch the graph of each of the parabolas in Exercises
15-18, marking the vertex in each case.
15. y=x*—4x+7
16, y=—x>+4x -1
17. y= —2x*+ 8x ~ 5
18.y=3x2+6x+2
Graph each of the equations in Exercises 19-24,
19. y = —3x?
20. y = -3x2+4

R.6 Functions and Graphs

2. y=—6x7+8

2. y=—-3(x+4)7>+4

23 y=4x?+4x +1

24,y =2(x + 1)* — x?
Find the points where the pairs of figures described by
the equations in Exercises 25-30 intersect. Sketch a
graph.

25. y=—-2x+7and y =5x + 1

26. y=1ix —4andy=2x2

27. y=5x2and y = —6x + 7

28. x24+ y?—2y—-3=0and y =3x + 1

29. y=3x2and y—x+1=0

30. y=xZand x>+ (y — 1)2=1

31. What are the possible numbers of points of inter-
section between two circles? Make a drawing
similar to Fig. R.5.7.

32. What are the possible numbers of points of inter-
section between a circle and a parabola? Make a
drawing similar to Fig. R.5.7.

Find the points of intersection between the graphs of
each of the pairs of equations in Exercises 33-36.
Sketch your answers.

33. y=4x?and x?+ 2y + y2 -3 =0

34. x2+2x + y?=0and x> - 2x + y2=0

35. y=x*+4x+5and y = x2 - 1

36. x2+(y~1?=1landy= ~x2+1

In Exercises 37-40, determine for which x the inequal-
ity is true and explain your answer geometrically.

37 9x? < x + 1

38 x1-1<x

39, ~4x2>2x 1

40, x2~Tx+6<0

A curve which intersects each vertical line at most once is the graph of a function.

In arithmetic and algebra, we operate with numbers (and letters which repre-
sent them). The mathematical objects of central interest in calculus are
functions. In this section, we review some basic material concerning functions
in preparation for their appearance in calculus.

A function f on the real-number line is a rule which associates to each real
number x a uniquely specified real number written f(x) and pronounced
“f of x.” Very often, f(x) is given by a formula (such as f(x) = x* + 3x + 2)
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Exampile 1

Solution

Figure R.6.1. A function on
a calculator.

which tells us how to compute f(x) when x is given. The process of calculating
f(x) is called evaluating f at x. We call x the independent variable or the
argument of f.

If f(x) = x> + 3x + 2, what is f(--2), f(2.9), f(q)?

Substituting —2 for x in the formula defining f, we have f(—2)=(-2)’ +
3(—2)+2=—-8—-6+2=—12. Similarly, f(2.9)=2.9)’°+329)+2=
24.389 + 8.7 + 2 = 35.089. Finally, substituting ¢ for x in the formula for f
gives f(q) = q3 +3¢+2. A

A function need not be given by a single formula, nor does it have to be
denoted by the letter f. For instance, we can define a function H as follows:

H(x)=0 if x<0 and H(x)=1 if x>0
We have a uniquely specified value H(x) for any given x, so H is a function.
For example, H(3) = | since 3 > 0; H(—5) = 0 since —5 < 0; H(0) = | since
0 > 0. Finally, since |x| > 0 no matter what the value of x, we may write
H(x|)= 1.

Calculator Discussion

We can think of a function as a machine or a program in a calculator or
computer which yields the output f(x) when we feed in the number x. (See
Fig. R.6.1)

Input Output
\ o] PTOZTANMC] ot fx)
Calculator

Many pocket calculators have functions built into them. Take, for exam-
ple, the key labeled x2. Enter a number x, say, 3.814. Now press the x? key
and read: 14.546596. The x? key represents a function, the “squaring func-
tion.” Whatever number x is fed in, pressing this key causes the calculator to
give x2 as an output.

We remark that the functions computed by calculators are often only
approximately equal to the idealized mathematical functions indicated on the
keys. For instance, entering 2.000003 and pressing the x2 key gives the result
4.000012, while squaring 2.000003 by hand gives 4.000012000009. For a more
extreme example, let f(x)=[x*—4.000012]- 10> + 2. What is £(2.000003)?
Carrying out the operations by hand gives

£(2:000003) = [ (2:000003)° ~ 4.000012] - 10 +2

= [4.000012000009 — 4.000012] - 108+ 2

= 0.000000000009 - 10" + 2
=90+2=92

If we used the calculator to square 2.000003, we would obtain f(2.000003)
=0- 10" + 2 = 2, which is nowhere near the correct answer. A

Some very simple functions turn out to be quite useful. For instance,
flx)=x

defines a perfectly respectable function called the identity function (“identity”
because if we feed in x we get back the identical number x). Similarly,

3 @ This symbol denotes exercises or discussions that may require use of a hand-held calculator.
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f(x)=0
is the zero function and
f(x)=1

is the constant function whose value is always |, no matter what x is fed in.

Some formulas are not defined for all x. For instance, 1/x is defined only
if x 0. With a slightly more general definition, we can still consider f(x)
= 1/x as a function.

Definition of a Function

Let D be a set of real numbers. A function f with domain D is a rule
which assigns a unique real number f(x) to each number x in D.

If we specify a function by a formula like f(x)=(x —2)/(x — 3), its
domain may be assumed to consist of all x for which the formula is defined
(in this case all x # 3), unless another domain is explicitly mentioned. If we
wish, for example, to consider the squaring function applied only to positive
numbers, we would write: “Let f be defined by f(x) = x? for x > 0.”

Example 2 (a) What is the domain of f(x) = 3x /(x? — 2x — 3)? (b) Evaluate f(1.6).

Solution (a) The domain of f consists of all x for which the denominator is not zero.
But x? — 2x — 3 = (x — 3)(x + 1) is zero just at x = 3 and x = — 1. Thus,
the domain consists of all real numbers except 3 and — 1.

(b) f(1.6) =3(1.6)/[(1.6)" = 2(1.6) = 3]
=438/[2.56 —3.2 - 3]
=48/(-3.64)~—1.32. A

To visualize a function, we can draw its graph.

Definition of the Graph

Let f be a function with domain D. The set of all points (x, y) in the
plane with x in D and y = f(x) is called the graph of f.

Example 3 (a) Let f(x) = 3x + 2. Evaluate f(— 1), f(0), f(1), and f(2.3).
(b) Draw the graph of f.

Solution (a) f(—D)=3(—-D+2=~-1; (0)=3-0+2=2; f(1)=3-1+2=35; f(2.3)

=3(2.3)+2=8.9.
/ y=3xrd (b) The graph is the set of all (x, y) such that y = 3x + 2. This is then just the
straight line y = 3x + 2. It has y intercept 2 and slope 3, so we can plot it

directly (Fig. R.6.2). A

/

Figure R.6.2. The graph of
f(x)=3x+ 2isaline.
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Example 4

Solution

Example 5

Solution

Figure R.6.4. Some points
on the graph of y = |x|.

Draw the graph of f(x) = 3x™.
The graph of f(x) = 3x? is just the parabola y = 3x2 drawn in Fig. R.6.3 (see

Section R.5). A
4

(1.3

Figure R.6.3. The graph of
f(x) = 3x?is a parabola. x

Let g be the absolute value function defined by g(x)=|x|. (The domain
consists of all real numbers.) Draw the graph of g.

We begin by choosing various values of x in the domain, computing g(x), and
plotting the points (x, g(x)). Connecting these points results in the graph
shown in Fig. R.6.4. Another approach is to use the definition
el | x if x>0,

8(x) = || { —x if x<0.
We observe that the part of the graph of g for x > 0 is a line through (0,0)
with slope 1, while the part for x < 0 is a line through (0, 0) with slope — 1. It
follows that the graph of g is as drawn in Fig. R.6.4. A

Examplie 6

Solution

NJ

h
s

Figure R.6.6. y =X is half
a parabola on its side.

.‘J
6+
5T @ ®
a4+ e @
3+ e © @

Figure R.6.5. The graphof 27

> the number of letters in 14
“one, two, three, four, five, ———
six, seven.” 1234 5 6 7 o

If the domain of a function consists of finitely many points, then the graph
consists of isolated dots; there is no line to be filled in. For instance, Fig. R.6.5
shows the graph of a function / whose domain is {1,2,3,4,5,6,7} and for
which /(x) is the number of letters in the English name for x.

Draw the graph y = Vx .

The domain consists of all x > 0. The graph passes through (0, 0) and may be
obtained by plotting a number of points. Alternatively, we can note that for
x>0andy>0, y= yx is the same as y? = x, which is a parabola with the
roles of x and y reversed; see Fig. R.6.6. A

In plotting a complicated function such as f(x)=0.3x*—02x2—0.1, we
must be sure to take enough values of x, for we might otherwise miss some
important details.



Example 7

Solution

‘\./’ v
12 k

Figure R.6.7. Correct
appearance of graph?

R.6 Functions and Graphs 43

Plot the graph of f(x) = 0.3x* — 0.2x? — 0.1 using

(a) X = _2’ - 1’0’ 1’2’
(b) x between —2 and 2 at intervals of 0.1.

(a) Choosing x = —2, —1,0, 1,2 gives the points (—2,3.9),(—1,0),(0, —0.1),
(1,0),(2,3.9) on the graph. (See Fig. R.6.7.) Should we draw a smooth curve
through these points? How can we be sure there are no other little bumps in
the graph?

(b) To answer this question, we can do some serious calculating:* let us plot
points on the graph of f(x) = 0.3x* — 0.2x> — 0.1 for values of x at intervals
of 0.1 between —2 and 2. If we notice that f(x) is unchanged if x is replaced
by —x, we can cut the work in half. It is only necessary to calculate f(x) for
x > 0, since the values for negative x are the same, and so the graph of f is
symmetric about the y axis. The results of this calculation are tabulated and
plotted in Fig. R.6.8.

x f(x) x f(x) x f(x) x )
0 —-0.10000 | 05  —0.I3125 | 1.0 0.00000 | L5  0.96875
01 —010197 | 06 —0.13312 | 1.1 009723 | 1.6  1.35408
02 —010752 | 07  —0.12597 | 12 023408 | 1.7  1.82763
03  —011557 | 08  —0.10512 | 1.3 041883 | 1.8  2.40128
04  —012432 | 09 —006517 | 1.4 066048 | 1.9  3.08763

20 3.90000

y=0.3x% —02x2 - 0.1

i
3 T

Figure R.6.8. The graph 1T
more carefully plotted.

Thus we see that indeed our original guess (Fig. R.6.7) was wrong and
that the more refined calculation gives Fig. R.6.8. How can we be sure not to
have missed still more bumps and wiggles? By plotting many points we can

4 Some hints for carrying out these calculations on your calculator are contained in the Student
Guide.
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Figure R.6.9. The circle is
not the graph of a function.

Examplie 8
Solution

Exampie 9

make good guesses but can never know for sure. The calculus we will develop
in Chapters 1 to 3 of this book can tell us exactly how many wiggles the graph
of a function can have and so will greatly facilitate plotting. A

Graphs of functions can have various shapes, but not every set of points in the
plane is the graph of a function. Consider, for example, the circle x* + y> =5
(Fig. R.6.9). If this circle were the graph of a function f, what would f(2) be?
Since (2, 1) lies on the circle, we must have f(2) = 1. Since (2, —1) also lies on
the circle, f(2) should also be equal to —1. But our definition of a function
requires that f(2) should have a definite value. Our only escape from this
apparent contradiction is the conclusion that the circle is not the graph of any

function. However, the upper semicircle alone is the graph of y =5 — x? and

the lower semicircle is the graph of y = —y5—x*, each with domain
[—v5,Y5]. Thus, while the circle is not a graph, it can be broken into two
graphs.

Which straight lines in the plane are graphs of functions?

If a line is not vertical, it has the form y = mx + b, so it is the graph of the
function f(x) =mx + b. (If m =0, the function is a constant function.) A
vertical line is not the graph of a function—if the line is x = a, then f(a) is not
determined since y can take on any value. A

There is a test for determining whether a set of points in the plane is the graph
of a function. If the number x, belongs to the domain of a function f, the
vertical line x = x, intersects the graph of f at the point (x,, f(x,)) and at no
other point. If x, does not belong to the domain, (x,, y) is not on the graph
for any value of y, so the vertical line does not intersect the graph at all. Thus
we have the following criterion:

Recognizing Graphs of Functions

A set of points in the plane is the graph of a function if and only if every
vertical line intersects the set in at most one point.

The domain of the function is the set of x, such that the vertical line
x = x, meets the graph.

If C is a set of points satisfying this criterion, we can reconstruct the function f
of which C is the graph. For each value x, of x, look for a point where the line
x = xy meets C. The y coordinate of this point is f(xg). If there is no such
point, x4 is not in the domain of f.

For each of the sets in Fig. R.6.10:

(i) Tell whether it is the graph of a function.
(i) If the answer to part (i) is yes, tell whether x = 3 is in the domain of the
function.
(iif) If the answer to part (ii) is yes, evaluate the function at x = 3.
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Figure R.6.10. Which
curves are graphs of
functions? @ (b} ()

Solution (a) (i) yes; (ii) no; this is indicated by the white dot.
(b) (i) no; for example, the line x = 3 cuts the curve in two points.
(c) (i) yes; (it) yes; (iii) 1. A

Example 10  Which of the curves y?> = x and y’ = x is the graph of a function?

Solution We begin with y2 = x. Note that each value of y determines a unique value of
x; we plot a few points in Fig. R.6.11.
We see immediately that the vertical line x = 4 meets y2 = Xx in two
points, so y> = x cannot be the graph of a function. (The curve y* = x is a
parabola whose axis of symmetry is horizontal.) Now look at y* = x. We
begin by plotting a few points (Fig. R.6.12).

T . S : — :

Figure R.6.11. Five points Figure R.6.12. Five points Figure R.6.13. The curve
satisfying y? = x. ony’ = x. V=

These points could all lie on the graph of a function. In fact, the full
curve y3 = x appears as in Fig. R.6.13. We see by inspection that the curve
intersects each vertical line exactly once, so there is a function f whose graph
is the given curve. Since f(x) is a number whose cube is x, f is called the cube
root function. A

Exercises for Section R.6

Evaluate each of the functions in Exercises 1-6 at 11. fx)= __2‘5£il~
= —land x=1: x*—x—6
1. f(x)=5x2~2x 12, flx) = ——
2. f(x)=—x*+3x -5 (x?=2)
3. flx)y= =2xr41 Draw the graphs of the indicated functions in Exercises
4. f(x)y=4x*+x—2 13-20.
5 fxy=~x>+x*—x + 1 13. fin Exercise 1|
6. f(x)=(x— 1>+ (x+ 17 +2 14. fin Exercise 2
Find the domain of each of the functions in Exercises 15. fin Exercise 4
7-12 and evaluate each function at x = 10. 16. fin Exercise 6
x2 17. fix)=(x — 1)’ +3
T 0= 18, f(x)= x>~ 9
x2 19. f(x)=3x + 10
8-f(x)=x2+2x~1 20.f(x)=x2+4x+2 _ ‘ -
9. f(x) = ST a7 Draw the giaphs of the functions in Exercises 21-24.
5 21 f(x)=|x — 1
10. fx)= XL 22. f(x)=3|x — 2|

=4 23. fixy=ix—1
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24, f(x)=2yx —2
Plot 10 points on the graphs of the functions in
Exercises 25 and 26,
25. f in Exercise 7
26. fin Exercise 10
Plot the graphs of the functions in Exercises 27 and 28
using the given sets of values for x.
27. f(x)=3x*—x?+1:
(a) atx=-2,—-1,0,1,2;
(b) at 0.2 intervals in [—2,2].
28. f(x) =2x*— x™:
(a) atx=-2,-10,1,2;
(b) at 0.1 intervals in [—2,2].
29. Which of the curves in Fig. R.6.14 are graphs of
functions?

¥y P v

-
e

{a) (b)

U

-
S

{c) (d)

Figure R.6.14. Which
curves are graphs of
functions?

30. Match the following formulas with the sets in
Fig. R.6.15:

x4+ x| \2
 y “( T)
(e) Not the graph of a function
(f) None of the above

by y

) (®)

¥y

r
\
x
© (D)
¥y
/
x

(E) Figure R.6.15. Match the

set with the formula.

Tell whether the curve defined by each of the equations
in Exercises 31-36 is the graph of a function. If the
answer is yes, find the domain of the function.

3l xp =1 4. x+y*=3
32 xt-yr=1 35. py+xr=3
33 y=\x2=1 36. x2— P =1

Review Exercises for Chapter R

In Exercises 1-8, solve for x.

.3x+2=0

2. x2+2x+1=0
Lox(x—1=1

4. (x—1¥—-9=0

5. (x+ 1P —(x~12=2
6. x2—-8(x —2)+ 10=0
7.(x~1P=8

8. x*+3x2-3x=9

In Exercises 9-16, find all x satisfying the given in-
equality.

9. 8x+2>0

10. 10x —6<5

1. x*~5<0

12. x2=5x+6<0

13. x2—(x =12 >2

14. x* > 1

15. 3x2~-7<0

16. x> ~2x+1>0




Describe in terms of intervals the set of x satisfying the
conditions in Exercises 17-24.

17. x2 < 1

18. |x — 1] <2
19. x2-2x<0
20. 8x—3>0
2L |x =12 =2

2. x*=Tx+12>0
23. x> = 1lx+30<0
24, |x - 3| <2
Find the x satisfying the conditions of Exercises 25-28.
25. x < 10 and x* €(—8,27)
26. —4< x <3and x*>2
27. x €[5,9) and 20 < x? < 36
28. x€(—4,2]land x €[—2,3)
Find the x satisfying the conditions of Exercises 29-32,
and express your answer in terms of intervals.
29.2(7—x)>»lor3x—22>0.
30. 3x2—7<0and x < 1.
31. 2x — 5)(x —3) >0 or x €(—5, 1], but nor both.
32, (x —1)3x — 10) < 0 and x*(5x — 15) > 0.
Simplify the expressions in Exercises 33-36.
33.|—-8|+5
34. |(a + 1)* —2a — 1|
35. |10 — (6 + 12)|
36. |- 18]+ | —2|
Simplify the expressions in Exercises 37-44.
37. 2 2712
8
38. yE
(2 =372 +3Y3
272
(F = 3)(2 + )2

21/23-2

xl/4\/;y

x1/23/4

. (x+ VA + 24 Yy +y) e
1

e
R
e B

Find the distance between the pairs of points in Exer-
cises 45-48.

45. (—1,1).and (2,0)

46. (2,0) and (10, 1)

47. (5,5) and (10, 10)

48. (100, 100) and (— 100, —100)
Find the equation of the line passing through each of
the pairs of points in Exercises 49-52.

49. (2i5 - 1)5 (7’ 3)

39.

40.

41.

44

Review Exercises for Chapter R a7

50. (—1,6),(1, —96)

51, (—2,3),(1,0)

52. (5,5),(—3,-2)
Find the equation of the line passing through the given
point P with slope m in Exercises 53-56.

5. P=(3,13), m= =3

5. P=(15,-1),m=9

55. P=(~2,10), m=1

56. P=(—-9,—-5),m=—1
Find the equations of the straight lines with the given
data in Exercises 57-60.

57. Passes through (1, 1) and is perpendicular to the

line 5y + 8x = 3.
58. Passes through (2,3) and is parallel to the line
y+Tx=1

59. Passes through (2,4) and is horizontal.
60. Passes through (—2, —4) and is vertical.
Find the equation of the circle with center P and radius
r in Exercises 61-64.
61. P=(12,5),r=8
62. P=(—9,3%), r=234
63. P=(—17),r=3
64 P=(—1—-1,r=1
Graph the parabolas in Exercises 65-68.
65. y =3x?+4x +2
66. y =3x? —4x + 2
67. y = —2x*+1
68. y = —x*+2x
Find the points where the pairs of graphs described in
Exercises 69-72 intersect.
69. x*+ y*=4andy =x
70. x* =y and x = 2
7. y=3x+4and y =3(x +2)
72. 2x+4y=6and y = x>+ 1
Sketch the graphs of the functions in Exercises 73-76.
73. f(x) = 3|x|
74. f(x)=|x|— x
75. fix)=5x"+ 1
76. f(x) =1~ x°
Plot the graphs of the functions in Exercises 77-80 by
evaluating f as indicated.
77. f(x) = 5(x* = x):
(a) atx=—2,0,2;
(b) at intervals of 0.5 in [~2,2].
78. f(x)= —x*+ 3x?
(a atx=-2,-1,0,1,2;
(b) at intervals of 0.1 in [—2,2].
79. f(x) = (x = H¥>
(@) atx=—-2,-1,0,1,2;
(b) at intervals of 0.1 in [—2,2].
80. f(x)= x>+ 1/x?
(a) atx=-2~1,—4,41,2;
(b) atintervals of 0.1 in [—1,1], x % 0.
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81. Which of the sets in Figure R.R.1 are graphs of 82. Match the graphs with the formulas,
functions?

R 3

@ ————Q (A) y=(x— 17

(a)

It (0 ———G*\ B) (x—-1P+(+1) =1

(© ————&—l‘ © x-D*+(y—-11=1

(b)

c/ Ny

@ (D) y=—(x+ 17
(<)
v Figure R.R.2. Matching.
/ \ %83. (a) If k and / are positive, show that

\\- 1 > 1

1+ 1/(k+1) " 1+1/1°

(b) Using the result in (b), show that, if ¥ and /
are positive numbers, then f(k + [) > f(I),

(@) where f(x) = x/(x + 1).
*84. (a) Prove that a circle and a parabola can inter-
Figure R.R.1. Which sets sect in at most four points.
are graphs of functions? (b) Give examples to show that 0, 1, 2, 3, or 4

intersection points are possible.



Chapter 1

1.1

Figure 1.1.1, What is the
velocity of the bus in terms
of its position?

Derivatives and
Limits

Differentiation is one of the two fundamental operations of calculus.

Differential calculus describes and analyzes change. The position of a moving
object, the population of a city or a bacterial colony, the height of the sun in
the sky, and the price of cheese all change with time. Altitude can change with
position along a road; the pressure inside a balloon changes with temperature.
To measure the rate of change in all these situations, we introduce in this
chapter the operation of differentiation.

introduction to the
Derivative

Velocities and slopes are both derivatives.

This section introduces the basic idea of the derivative by studying two
problems. The first is the problem of finding the velocity of a moving object,
and the second is the problem of finding the slope of the line tangent to a
graph.

To analyze velocity, imagine a bus which moves due east on a straight
highway. Let x designate the time in seconds that has passed since we first
observed the bus. (Using “x” for time rather than the more common “#” will
make it easier to compare velocities with slopes.) Suppose that after x seconds
the bus has gone a distance y meters to the east (Fig. 1.1.1). Since the distance

y depends on the time x, we have a distance function y = f(x). For example, if

X = time in seconds

0 0
50 10 50 @10
40 20 40 20

¥ InEEa
@ -FOT'-

y meters o

Starting position
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Chapter 1 Derivatives and Limits

Example 1

Solution

Exampie 2

f(x) happens to be f(x)=2x? for 0 < x < 5, then the bus has gone 2 - (3)
= 18 meters after 3 seconds and 2 - (5)> = 50 meters after 5 seconds.

The velocity of the bus at any given moment, measured in meters per
second, is a definite physical quantity; it can be measured by a speedometer
on the bus or by a stationary radar device. Since this velocity refers to a single
instant, it is called the instantaneous velocity. Given a distance function such as
y=f(x)= 2x2 how can we calculate the instantaneous velocity at a specific
time x,, such as x, =3 seconds? To answer this question, we will relate the
instantaneous velocity to the average velocity during short time intervals.

Suppose that the distance covered is measured at time x, and again at a
later time x; these distances are y,= f(x,) and y = f(x). Let Ax=x ~ x,
designate the time elapsed between our two measurements.! Then the extra
distance covered is y — y,, which we designate by Ay =y — y,. The aver-
age velocity during the time interval Ax is defined simply as the distance
travelled divided by the elapsed time; that is, average velocity = Ay /Ax =
[f(x) — f(x¢)]/Ax. Since x = x, + Ax, we can also write

J(xo+ Ax) = f(xo)
Ax )

average velocity =

A bus travels 2x> meters in x seconds. Find Ax, Ay and the average velocity
during the time interval Ax for the following situations: (a) x5 =3, x = 4;
(b) xo =3, x =3.1; (c) xo=3, x =3.01.

(a) Ax=x—xy3=4—-3=1 second, Ay = f(x,+ Ax) — f(xy) = f(4) — f(3)
=2-4%—2-3= 14 meters, average velocity = Ay/Ax = 14 meters per sec-
ond; (b) Ax=0.1, Ay = 1.22, average velocity = 12.2; (c) Ax =0.01, Ay =
.1202, average velocity = 12.02 meters per second. A

If we specify the accuracy to which we want to determine the instantaneous
velocity, we can expect to get this accuracy by calculating the average velocity
Ay/Ax for Ax sufficiently small. As the desired accuracy increases, Ax may
need to be made even smaller; the exact velocity may then be described as the
number v which Ay/Ax approximates as Ax becomes very small. For in-
stance, in Example 1, you might guess that the instantaneous velocity at
Xy, = 3 seconds is v = 12 meters per second; this guess is correct, as we will see
shortly.

Our description of v as the number which Ay/Ax approximates for Ax
very small is a bit vague, because of the ambiguity in what is meant by
“approximates” and “very small.” Indeed, these ideas were the subject of
controversy during the early development of calculus around 1700. It was
thought that Ax ultimately becomes “infinitesimal,” and for centuries people
argued about what, if anything, “infinitesimal” might mean. Using the notion
of “limit,” a topic taken up in the next section, one can resolve these
difficulties. However, if we work on an intuitive basis with such notions as
“approximates,” “gets close to,” “small,” “very small,” “nearly zero,” etc., we
can solve problems and arrive at answers that will be fully justified later.

The bus has gone f(x)=2x? meters at time x (in seconds). Calculate its
instantaneous velocity at x, = 3.

1 A is the capital Greek letter “delta,” which corresponds to the Roman D and stands for
difference. The combination “Ax”, read “delta-x”, is not the product of A and x but rather a
single quantity: the difference between two values of x.
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Solution We choose Ax arbitrarily and calculate the average velocity for a time interval
Ax starting at time x, = 3:

Ay  fBHAN)—f(3) _23+Ax)°-2-3

Ax Ax Ax
2(9+6Ax + (Ax)’) =29 18+ 12Ax + 2(Ax)* — 18
B Ax B Ax
12Ax + 2 (Ax)
=— T =124+ 2Ax.
Ax

If we let Ax become very small in this last expression, 2 Ax becomes small as
well, and so Ay /Ax = 12 + 2 Ax approximates 12. Thus the required instanta-
neous velocity at x, =3 is 12 meters per second. Note how nicely the 18’s
cancelled. This allowed us to divide through by Ax and avoid ending up with
a zero in the denominator. A

Warning In calculating what Ay /Ax approximates for Ax nearly zero, it usually does
no good to set Ax = 0 directly, for then we merely get 0/0, which gives us no

information.

The following more general procedure is suggested by Example 2.

Instantaneous Velocity

To calculate the instantaneous velocity at x, when the position at time x
is y = f(x):
1. Form the average velocity over the interval from x, to x, + Ax:

Ay f(at Ax) = f(x0)

Ax Ax

2. Simplify your expression for Ay/Ax as much as possible, cancelling
Ax from numerator and denominator wherever you can.
3. Find the number v that is approximated by Ay /Ax for Ax small.

Exampie 3 The position of a bus at time x is y =3x*+ 8x for x > 0. (a) Find the
instantaneous velocity at an arbitrary positive time x;. (b) At what time is the
instantaneous velocity 11 meters per second?

Solution (a) The calculation is similar to that of Example 2, except that x, no longer
has the specific value x,= 3. The average velocity for a time interval Ax
starting at xg is

Ay _ fe %) = f(x0)
Ax Ax
where f(x) = 3x? + 8x. Thus

Ay [3(x0 + Ax)® + 8(xo + Ax)} — (3x5 + 8x,)
Ax Ax
6xoAx + 3 (Ax)’ + 8Ax
h Ax
As Ax gets close zero, the term 3Ax gets close to zero as well, so Ay /Ax gets
close to (that is, approximates) 6x,+ 8. Thus our instantaneous velocity is
v = 6x, + 8 meters per second at the positive time x,.

=6x,+ 8 + 3Ax.
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(xg + Ox, f{xg + Ax))

Ay

—_—

(X().f(xo))

Figure 1.1.2. Ay/Ax is the
slope of the secant line.

Figure 1.1.3. The secant
line comes close to the
tangent line as the second
point moves close to xq.

Example 4

Solution

(b) We set the velocity equal to 11: 6x,+ 8=11. Solving for x; gives
Xy =13 second. A

The second problem we study is a geometric one—to find the slope of the line
tangent to the graph of a given function. We shall see that this problem is
closely related to the problem of finding instantaneous velocities.

To solve the slope problem for the function y = f(x), we begin by
drawing the straight line which passes through the points (x,, f(x,)) and
(xo + Ax, f(xo + Ax)), where Ax is a positive number; see Fig. 1.1.2. This
straight line is called a secant line, and Ay /Ax = [ f(x, + Ax) — f(xy)]/Ax is
its slope.

As Ax becomes small, x, being fixed, it appears that the secant line comes
close to the tangent line, so that the slope Ay /Ax of the secant line comes
close to the slope of the tangent line. See Fig. 1.1.3.

v

Secant lines

™~ Tangent line

—

Xg Xg t+ Ax X

Slope of the Tangent Line

Given a function y = f(x), the slope m of the line tangent to its graph at
(X9 yo) is calculated as follows:

1. Form the slope of the secant line:
Ay _ f(xo+Ax) = f(x0)
Ax Ax )

2. Simplify the expression for Ay /Ax, cancelling Ax if possible.
3. Find the number m that is approximated by Ay /Ax for Ax small.

Calculate the slope of the tangent line to the graph of f(x)= x>+ 1 at
xo = — L. Indicate your result on a sketch.

We form the slope of the secant line:
Ay _ f(xo+ Ax) — f(xo)

Ax Ax
[(—1+Ax+1]=[(=D)*+1]  —24Ax+ (Ax)’
Ax Ax
= -2+ Ax.

For Ax small, this approximates —2, so the required slope is —2. Figure 1.1.4



Example 5

Solution
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Figure 1.1.4. The tangent A
linetoy = x>+ lat pexlal
xg = — 1 has slope —2.

shows the graph of the parabola y = x? + 1. We have sketched the tangent
line through the point (—1,2). A

We define the slope of the graph of the function f at (x,, f(x,)) to be the slope
of the tangent line there.

Up to this point, we have drawn all the pictures with Ax positive.
However, the manipulations in Examples 2, 3, and 4 are valid if Ax has any
sign, as long as Ax # 0. From now on we will allow Ax to be either positive or
negative.

Comparing the two previous boxes, we see that the procedures for
calculating instantaneous velocities and for calculating slopes are actually
identical; for example, the velocity calculation of Example 2 also tells us the
slope m of y = 2x? at (3, 18), namely m = 12. We will later find that the same
procedure applies to many other situations. It is thus convenient and economi-
cal to introduce terms which apply to all the different situations: instead of
calling Ay/Ax an average velocity or the slope of a secant, we call it a
difference quotient; we call the final number obtained a derivative rather than
an instantaneous velocity or a slope. We use the notation f'(x,) to designate
the derivative of f at x,.

The Derivative
To calculate the derivative f'(x,) of a function y = f(x) at x:

1. Form the difference quotient
Ay _ f(xo+ Ax) — f(x0)
Ax Ax ’
2. Simplify Ay /Ax, cancelling Ax if possible.

3. The derivative is the number f'(x,) that Ay /Ax approximates for Ax
small,

This operation of finding a derivative is called differentiation.
The reader should be aware that the precise version of Step 3 involves the
notion of a limit, which is discussed in the next section.

Suppose that m is a constant. Differentiate f(x) = mx + 2 at x, = 10.

Here the function is linear, so the derivative should be equal to the slope:
f'(10) = m. To see this algebraically, calculate

Ay  [m(10+Ax)y+2]—(m-10+2) Ay

Ax Ax T Ax
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Exampie 6

Solution

This approximates (in fact equals) m for Ax small, so f'(10) = m. A

Glancing back over our examples, we notice that all the functions have been
either linear or quadratic. By treating a general quadratic function, we can
check our previous results and point the way to the goal of developing general
rules for finding derivatives.

Quadratic Function Rule

Let f(x) = ax® + bx + ¢, where a, b, and ¢ are constants, and let x, be
any real number. Then f'(x,) = 2ax, + b.

To justify the quadratic function rule, we form the difference quotient
Ay _ J(xo+ Ax) = f(x0)

Ax Ax
a(xp+ Ax)> + b(xy+ Ax) + ¢ — ax} — bxy— ¢
Ax
ax} + 2ax,Ax + a(Ax) + bxy+ bAx + ¢ — ax} — bx,— ¢

Ax

2ax,Ax + a(Ax)’ + bAx
Ax
=2ax, + b + alAx.

As Ax approaches zero, a Ax approaches zero, too, so Ay/Ax approximates
2ax, + b. Therefore 2ax, + b is the derivative of ax? + bx + ¢ at x = x,,.

Find the derivative of f(x) = 3x* + 8x at (a) xo,= —2 and (b) x, = 1.

(a) Applying the quadratic function rule with a=3, b=8, ¢ =0, and x, =
-2, wefind f(-2)=203)—-2)+ 8= —4.

(b) Taking a=3, b=8, c=0and x,= %, we get f'(3)=2-3-(3) +8=11,
which agrees with our answer in Example 3(b). A

If we set « =0 in the quadratic function rule, we find that the derivative of
any linear function bx + ¢ is the constant b, independent of x,: the slope of a
linear function is constant. For a general quadratic function, though, the
derivative f'(x,) does depend upon the point x, at which the derivative is
taken. In fact, we can consider f* as a new function; writing the letter x instead
of x,, we have f'(x) = 2ax + b. We can rephrase the quadratic function rule
with x, replaced by x as in the following box, which also summarizes the
special cases ¢ =0 and a =0 = b.

Differentiating the Simplest Functions

The derivative of the quadratic function f(x)= ax?+ bx + ¢ is the
linear function f'(x) = 2ax + b.

The derivative of the linear function f(x)= bx + ¢ is the constant
function f'(x) = b.

The derivative of the constant function f(x)= ¢ is the zero function

f(x)=0.




Exampie 7

Solution

y=x2 —4x+5

Horizontal
tangent

21/

X

Figure 1.1.5. The vertex of
the parabola is the point
where its slope is zero.

Exampie 8

Solution

Figure 1.1.6. The stunt
woman should jump when
she has the same velocity as
the freight train.
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The next example illustrates the use of thinking of the derivative as a function.

There is one point on the graph of the parabola y = f(x) = x> — 4x + 5 where
the slope is zero, so that the tangent line is horizontal (Fig. 1.1.5). Find that
point using: (a) derivatives; and (b) algebra.

(a) By the quadratic function rule with ¢ =1, b= —4, ¢ =5, the derivative
function is f'(x) = 2x — 4. For zero slope we have 0 = f'(x) = 2x — 4, i.e,,
x =2. Then y = 1, so our point is (2, 1). This point is called the verrex of
the parabola.

(b) Completing the square gives f(x) = x>*—4x +4+ 1 =(x — 2>+ 1. Now
(x — 2)* is zero for x =2 and positive otherwise, so the parabola has its
lowest point at x = 2, It is plausible from the figure, and true, that this low
point is the point where the slope is zero. A

We conclude this section with some examples of standard terms and nota-
tions. When we are dealing with functions given by specific formulas, we often
omit the function names. Thus in Example 7(a) we can say “the derivative of
x% — 4x + 5is 2x — 4. Another point is that we can use letters different from
x, y, and f. For example, the area A of a circle depends on its radius r; we can
write A = g(r) = 7r’. The quadratic function rule with a = 7, b = 0 = ¢, with f
replaced by g and with x replaced by , tells us that g'(r) = 2ar. Thus for a
circle the derivative of the area function is the circumference function—a fact
whose geometric interpretation will be discussed in Section 2.1. Similarly, the
time is often denoted by ¢ in velocity problems.

A stunt woman is on a moving passenger train. Her distance function is
3¢ + ¢. On the adjacent track is a long moving freight train. The distance
function for the center of this freight train is ¢ + 7¢. She must jump to the
freight train. What time is best?

The safest time to jump is when the stunt woman has the same velocity as the
freight train (see Fig. 1.1.6). Her instantaneous velocity v is the derivative of

312 + t. By the quadratic function rule, v = 67 + 1; similarly the instantaneous
velocity of the freight train is 2¢ + 7. The velocities are equal when 2¢ + 7
=6t + 1, i.e,, t = 3. That is the safest time. A

In this section, we have discussed the derivative, one of the two most basic
concepts of calculus. We showed how to find derivatives in some cases and
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indicated a few of their applications. Before we can usefully discuss other
applications of derivatives, we need to develop efficient techniques for calcu-
lating them. The next section begins that task.

Exercises for Section 1.1

In Exercises 1-4, y represents the distance a bus has
travelled after x seconds. Find Ay and the average
velocity during the time interval Ax for the following
situations.

(@) xg=2,Ax =05
(©) xg=4, Ax =0.1

(b) xo=2, Ax = 0.01
(d) xo =4, Ax = 0.01

1. y=x*+3x 2. y=3x 4+ x

3. y=x*+10x 4. y=2x
In Exercises 5-8, f(x) is the number of meters a bus has
gone at a time x (in seconds). Find the instantaneous
velocity at the given time x.

5. x2+3x; xg=2 6. x2+3x;x0=4

7. 3x2 4 x; xg=2 8. 3x2+ x; xg=4
In Exercises 9-12, y is the position (measured in me-
ters) of a bus at time x (in seconds). (a) Find the
instantaneous velocity at an arbitrary (positive) time x.
(b) At what time is the instantaneous velocity 10 meters
per second?

9, y=x2+3x 10. y =3x*+ x

1. y = x?+ 10x 12, y =2x
In Exercises 13-16, use the Ay/Ax method of Example
4 to find the slope of the tangent line to the graph of
the given function at the given point. Sketch.

13. y=x% xo=1

14, y = —x3 Xg =2

15. y=5x2=3x+ 1; x4=10

16. y=x+1—x% xq=2
In Exercises 17-20 use the Ay /Ax method of Example
5 to compute the derivative of f(x) at x¢; a is a constant
in each case.

17. f(x)=ax +2; xq=0

18. f(x)=2x+a; xq=0

19. f(x) = ax% xg=1

20. f(x)=8x*+ a; xy=2
In Exercises 21-24, use the quadratic function rule to
find the derivative of the given function at the indicated
point.

21 f)=x*+ x—1; xg=1

22, f(x)=x*— x; xg=2

23, f(x)=3x24+ x~2; xg= —2

24 f(x)= —3x1—=x+1; xg= ~1
In Exercises 25-28, find the vertex of the given parab-
ola using (a) derivatives and (b) algebra.

25 y=x*—16x +2

26. y=x?+8x+2

27. y= —2x2—8x—1

28 y=-2x2-3x+5
Lifferentiate the functions in Exercises 29-36 using the
quadratic function rule.

29. fOx)=x2+3x—1 30. f(x)= —-3x+4

3. f(x)=(x—D(x+1) 32 f(x)=( - xX1 - x)

33 g()=—42+3t+6 34 g(rN=mr’+3

35. g(s)=1~ 52 36. h(t)=32—-5¢t+9

37. Inspector Clumseaux is on a moving passenger
train. His distance function is 2¢2 + 3r. On the
adjacent track is a long moving freight train; the
distance function for the center of the freight
train is 3¢2 + ¢, What is the best time for him to
jump to the freight train?

38. Two trains, 4 and B, are moving on adjacent
tracks with positions given by the functions A4 (7)
=2+ 145 and B(¢)= 3¢+ 4. What is the best
time for a hobo on train B to make a moving
transfer to train 4?

39. An apple falls from a tall tree toward the earth.
After ¢ seconds, it has fallen 4.9s> meters. What
is the velocity of the apple when ¢ = 3?

40. A rock thrown down from a bridge has fallen
4t + 4.9¢ meters after ¢ seconds. Find its veloc-
ity at £ = 3.

41. f(x)= x*—2; find f'(3)

42. f(x)= —13x%— 9x + 5; find f(1)

43. f(x)=1; find f(7)

4. g(s)=0; find g'(3)

45. k() =(y +4(y —7); find K'(— 1)

46. x(f)=1- 2 find x'(0)

47. f(x)= —x + 2; find f/(3.752764)

48. g(a) = 10a — 8; find g'(3.1415)

In Exercises 49-54, find the derivative of each of the
given functions by finding the value approximated by
Ay/Ax for Ax small:

49, 4x2 +3x + 2 50. (x = 3)(x + 1)

51 1—x2 52. —x*

53. —2x%+5x 54.1— x

55. Let f(x) = 2x* + 3x + 1. (a) For which values of
x is f'(x) negative, positive, and zero? (b) Iden-
tify these points on a graph of f.

56. Show that two quadratic functions which have
the same derivative must differ by a constant.

57. Let A(x) be the area of a square of side length x.
Show that A’(x) is half the perimeter of the
square.

58. Let A(r) be the area of a circle of radius r. Show
that A’(r) is the circumference.

59. Where does the line tangent to the graph of
y = x?at xo =2 intersect the x axis?

60. Where does the line tangent to the graph of
y =2x*—8x + 1 at x, = 1 intersect the y axis?

61. Find the equation of the line tangent to the
graph of f(x)=3x?+ 4x + 2 at the point where
xg = 1. Sketch.

62. Find the tangent line to the parabola y = x2 —
3x + 1 when x4 = 2. Sketch.

*63. Find the lines through the point (4,7) which are
tangent to the graph of y = x2 Sketch. (Hint:
Find and solve an equation for the x coordinate
of the point of tangency.)



*64,

*65.

*66,

*67.

*68.

Given a point (X, ¥), find a general rule for
determining how many lines through the point
are tangent to the parabola y = x2,

Let R be any point on the parabola y = x2
Draw the horizontal line through R and draw the
perpendicular to the tangent line at R. Show that
the distance between the points where these lines
cross the y axis is equal to 3, regardless of the
value of x. (Assume, however, that x = 0.)

If f(x)=ax?+ bx + ¢ = a(x — r)Y(x — 5) (r and
s are the roots of f), show that the values of f'(x)
at r and s are negatives of one another. Explain
this by appeal to the symmetry of the graph.
Using your knowledge of circles, sketch the

graph of f(x)=y4 — x2. Use this to guess the
values of f/(0) and f'(y2).

A trained flea crawls along the parabola y = x
in such a way that its x coordinate at time ¢ is
2¢ + 1. The sun is shining from the east (positive
x axis) so that a shadow of the flea is projected

2

*69.

*70.
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on a wall built along the y axis. What is the

velocity of this shadow when ¢ = 37

A ball is thrown upward at ¢=0; its height in

meters until it strikes the ground is 24.5¢ — 4.9¢2

when the time is ¢ seconds. Find:

(a) The velocity at ¢ =0, 1,2,3,4,5.

(b) The time when the ball is at its highest
point.

(¢) The time when the velocity is zero.

(d) The time when the ball strikes the ground.

A toolbox falls from a building, its height y in

feet from the ground after ¢ seconds being given

by y = 100 — 162

(a) Find the impact time t*, ie., the positive
time for which y = 0.

(b) Find the impact velocity, i.e., the velocity
at r*.

(¢) The momentum p is defined by p = Wv /32,
where W is the weight in pounds, and v is
the velocity in feet per second. Find the
impact momentum for a 20-1b toolbox.

1.2 Limits

The limit of a function f(t) at a point x = x, is the value which f(x) approxi-
mates for x close to x.

In this section, we introduce limits and study their properties. In the following
sections, we will use limits to clarify statements such as “Ay /Ax approximates
f'(xp) for Ax small,” and to systematize the computing of derivatives. Some
technical points in the theory of limits have been deferred to Chapter 11,
where limits are needed again for other purposes. Readers who wish to see
more of the theory now can read Section I1.l together with the present
section.

We illustrate the idea of a limit by looking at the function

2x2—T7x + 3

f(x)= x—3

which is defined for all real numbers except 3. Computing values of f(x) for
some values of x near 3, we obtain the following tables:

x 35 3.1 3.01 3.0001 3.000001
f(x) 6 5.2 5.02 5.0002 5.000002

x 2.5 2.9 2.99 2.9999 2.999999
f(x) 4 48 4.98 4.9998 4.999998

It appears that, as x gets closer and closer to x, = 3, f(x) gets closer and closer
to 5, i.e., f(x) approximates 5 for x close to 3. As in our discussion of the
derivative, it does no good to set x = 3, because f(3) is not defined. In the
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Figure 1.2.1. The notion of
limit: as x approaches x,
f(x) gets near to L.

Example 1

Solution

special case we are considering, there is another way to see that f(x) approxi-
mates 5:

2x2—7x+3=(2x-1)(x_3)

x—3 (x—3) =2x— 1.

The cancellation of (x — 3) is valid for x % 3. Now for x close to 3, 2x — |
approximates 2-3— 1 =35, Note that after cancelling x — 3, the function
becomes defined at x, = 3.

In general, suppose that we have a function f(x) and are interested in its
behavior near some value x,. Assume that f(x) is defined for all x near x,, bui
not necessarily at x = x, itself. If the value f(x) of f approximates a number /
as x gets close to a number x,, we say that “/ is the limit of f(x) as x

O, f(xen

Ay

o

- xg

/

approaches x,” or “f(x) approaches / as x approaches x,.” See Fig. 1.2.1. Two
usual notations for this are

f(x)y—>1 as x> X,
or
Xll)mx0 fx)y=1

For example, the discussion above suggests that

2

M—)S as x—)3’
x—3

that is

2
x—3 x—3

Using numerical computations, guess the value of lim,_,[1 /(4x — 2)].

We make a table using a calculator and round off to three significant figures:

x|41 401 4001 39 399 3999
1/(4x —2) | 00694 00712 00714 00735 00716 0.0714

It appears that the limit is a number which, when rounded to three decimal
places, is 0.071. In addition, we may notice that as x—>4, the expression
4x —2 in the denominator of our fraction approaches 14. The decimal
expansion of - is 0.071428 . .., so we may guess that

1 _ 1

lim

M Ax—2 14 A

We summarize the idea of limit in the following display.



Example 2

Figure 1.2.2. Find the
limits of g at the indicated
points. A small circle
means that the indicated
point does not belong to
the graph.

Solution
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The Notion of Limit

If the value of f(x) approximates the number / for x close to x, then we
say that f approaches the limit | as x approaches x,, and we write

f(x)y—! as x—>x,, or xlggof(x)=l.

The following points should be noted.

I. The quantity lim,_,, f(x) depends upon the values of f(x) for x near x,,
but not for x equal to x,. Indeed, even if f(x,) is defined, it can be changed
arbitrarily without affecting the value of the limit.

2. As x gets nearer and nearer to x,, the values of f(x) might not approach
any fixed number. In this case, we say that f(x) has no limit as x — x,, or
that lim,_,, f(x) does not exist.

X=X,

3. In determining lim, _,, f(x), we must consider values of x on both sides of
Xg-

4. Just as in our discussion of the derivative, one can siill legitimately
complain that the definition of limit given in the preceding display is too
vague. Readers who wish to see an air-tight definition should now read the
first few pages of Section 11.1. (Section 11.1 is needed for other theoretical
points in Chapter 11 and for proofs, but not for what follows here.)

Reading the graph in Fig. 1.2.2, find lim,_,,g(?) if it exists, for b= 1, 2, 3, 4,
and 5.

vt
1.5+ o
+ vy=gl)
0.5—/\
—
t } } + } -
5 !
-0.5+ ! 2 3 4 5

Notice first of all that we have introduced new letters; lim,_,,¢(¢) means the
value approached by g(¢) as ¢ approaches b.

b=1: lim, ; g(¥)=0.5. In this case, g(b) is defined and happens to be

equal to the limit.

b=2: lim, ,g(#)= 1. In this case, g(b) is defined and equals 1.5, which

is not the same as the limit.

b =3: lim, ,;g(¢) does not exist. For ¢ near 3, g(¢) has values near 0.5
(for 1 <3) and near | (for ¢t > 3). There is no single number
approached by g(¢) as ¢t approaches 3.

=4: lim, ,,g(¢)= 1. In this case, g(b) is not defined.

5: lim,_ 5 g(¢) does not exist. As ¢ approaches 5, g(¢) grows larger and
larger and does not approach any limit. A

The computation of limits i1s aided by certain properties, which we list in the
following display. We will make no attempt to prove them until Chapter 11.
Instead, we will present some remarks and graphs which suggest that they are
reasonable.
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Figure 1.2.3. In (2)
lim,_,, c = c and in (b)

lim, . x = xq.

Exampie 3

Basic Properties of Limits

Assume that lim,_,, f(x) and lim,_,, g(x) exist:
Sum rule:

Jim [f(x) + g(x)] = lim f(x)+ lim g(x)
Product rule:
Jim [7)8(0] =[ Jim 700 ][ Jim ()]

Reciprocal rule:

lim [ f(lx) }: 1 it lim f(x) #0

x— : -
" fm ey

Constant function rule:

lim c=¢
x—)xo

Identity function rule:

lim x= x,
X=X

Replacement rule: 1f the functions f and g have the same values for all x
near x;, but not necessarily including x = x,, then

limof(x) = lim g(x).

X=X X xq

The sum and product rules are based on the following observaiion: If we
replace the numbers y, and y, by numbers z, and z, which are close to y, and
¥, then z, + z, and z,z, will be close to y, +y, and y, y,, respectively.
Similarly, the reciprocal rule comes from such common sense statemenis as
“1/14.001 is close to 1/14.”

The constant function rule says that if f(x) is identically equal to ¢, then
f(x) is near ¢ for all x near x,. This is true because c is near c.

The identity function rule is true since it merely says that x is near x, if x
is near x,. Illustrations of the constant function rule and the identity function
rule are presented in Fig. 1.2.3.

y1 74 _
y=x
. Xg5 €
w———] &, &) (%o, ©) y=c (xg,xg)
} (x, X) /!
| |
| |
] - |
—t F—1 >
X =X, x X = Xg x

(@) (b)

Finally, the replacement rule follows from the fact that lim,_, f(x)
depends only on the values of f(x) for x near x,, and not at x, nor on values
of x far away from x,. The situation is illustrated in Fig. 1.2.4.

Use the basic properties of limits: (a) to find lim, ,;(x* + 2x + 5); (b) to show
lim,_,[(2x? — 7x + 3)/(x — 3)] = 5 as we guessed in the introductory calcula-
tion at the start of this section, and (c) to find lim,_,[(84% + 2) /(u — 1)].



Figure 1.2.4. If the graphs
of fand g are identical near
Xg, except possibly at the
single point where x = xg,
then lim,_,, f(x)

= limX—)Xo g('x)'
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V4 ¥
y=fx) y=g(x)

|
|
!
|
|
1
X

Xy x

|
|
i
|
|
[
1
Xy X

a) Common sense suggests that the answer should be 32+2-3+5=20. In
(a) g8

fact this is correct.
By the product and identity function rules,

. 2_ 1 i — . . —1.2—
fimx? = Jim (-0 = (fimx)(fmx) = 33 =
By the product, constant function, and identity function rules,
fim 2= (fim 2)(fyx) =23 = 6.

By the sum rule,

lim (x2 +2x)= lim x?+ lim2x=9 + 6 = 15.

x—>3 x—>3 x—>3

Finally, by the sum and constant function rules,
lim(x2 +2x+35)= lim(x2+ 2x)+ lim 5= 15+ 5 = 20.
x—3 x—3 x—3

(b) We cannot use common sense or the quotient rule, since

lim(x —3)=limx—lim3=3-3=0.
x—3 x—3 x—3
Since substituting x = 3 into the numerator yields zero, x — 3 must be a

factor; in fact, 2x? — 7x + 3= (2x — 1)(x — 3), and we have
2x2—Tx+3 _ (2x = )(x = 3)
x—3 x—3 )
For x # 3, we can divide numerator and denominator by x — 3 to obtain
2x — 1. Now we apply the replacement rule, with

2x*—7x+3
f(x)=———)-c———)—c——_—x:—;-——— and g(x)=2x-1

since these two functions agree for x # 3. Therefore

lim 2= 7x+3 _ lim (2x — l)=2(limx)— 1=2-3-1=5.
x—3 x—3 x—3 x—3

(c) Here the letter “u” is used in place of “x,” but we do not need to change

our procedures. By the sum, identity, and constant function rules, we get

lim, ,(u —1)=lim,_,u — lim,_ ,,1 =2 — 1= 1. Similarly,

lim (82 + 2
fm 8 +2

= lirré 8ul+ lirré 2 (sum rule)
= ( lirré 8)( lim u2) +2 (product and constant function rules)
u—> u—2
= 8( lirr; u)( lim u) +2 (product and constant function rules)
u—> u—2

=8-2:2+2=34 (identity function rule).
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Thus, by the product and reciprocal rules,

. 8ut+2 _ o 2 . |
Mm e TT am G2 T
=lim @’ +2) —1—— =34. L34
u—2 lunz(u—l) 1

This agrees with the common sense rule obtained by substituting « = 2. A

As you gain experience with limits, you can eliminaie some of the steps used
in the solution of Example 3. Moreover, you can use some further rules which
can be derived from the basic properties.

Derived Properties of Limits

Assume that the limits on the right-hand sides below exist. Then we
have:
Extended sum rule:

limo[fl(x)+ o+ ()] = lim fi(x)+ -+ lim £(x)

XX,

Extended product rule:

lim [ f,(x) - f(x)] = lim fi(x)... lim f(x)

x—>xq xX—>Xx0 x> X0

Constant multiple rule:

limocf(x) =c¢ lim f(x)

X—x x> xg

Quotient rule:

x lim f(x
im 1% - ) if lim g(x)#0

x=xo g(x) N x]i_)mxog(x) x>0

Power rule:

lim x"= x§
X Xg

(n=0,%1,%x2,x3 ... and x, % 0 if n is not positive).

We outline how these derived properties can be obtained from the basic
properties. To prove the extended sum rule with three summands from the
basic properties of limits, we must work out lim,_,, (fi(x)+ fi(x) + f3(x))
when lim, _,, fi(x) is known to exist. The idea is to use the basic sum rule for
two summands. In fact fi(x) + fy(x) + f3(x) = fi(x) + g(x), where g(x)
= fi(x) + f3(x). Note that lim _,, g(x) =lim,, f,(x)+ lim,_, fi(x) by the
basic sum rule. Moreover lim,_,, (f{(x) + g(x)) =lim,_, f(x)+ lim,_,, g(x)
by the same rule. Putiting these resulis together, we have

Jim [ fi(x) + (x) + fo(x)] = Jim [ fi(x) + g(x)]

lim0 fi(x)+ xll_I)l;lCO g(x)

X—> X
= xli—I}}co filx) + xlgl}co fr(x) + xli—I>1}c0 f(x)

as we set out to show. The extended sum rule with more than three terms is
now plausible; it can be proved by induction (see Exercise 65). The extended
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product rule can be proved by very similar arguments. To get the constant
muliiple rule, we may start with the basic product rule lim ., [ f(x)g(x)]
= [lim,_,, fCOlllim, ,, g(x)]. Let g(x) be the constant function g(x)= ¢;
the constant function rule gives lim,_,, [¢f(x)] = [lim ., c]lim,_,  f(x)]=
clim,_,, f(x), as we wanted to show. Similarly, the quotient rule follows from
the basic product rule and the reciprocal rule by writing f/g=f-1/g. The
power rule follows from the extended product rule with fi(x)=x, ...,
f.,(x) = x and the identity function rule. The next example illustrates the use
of the derived properties.

Find lim X.—=3x>+ 14x
>l xS+ X342

Common sense correctly suggests that the answer is (1°—=3- 12+ 14-1)/
(1°+ 1> + 2) = 3. To get this answer systematically, we shall write f(x) = x> —
3x?+ 14x, g(x)=x*+ x>+2, and use the quotient rule. First of all,
lim _,,x=1°=1 and lim,_,,x*=1 by the power rule; lim,_,,2=2 by the
constant function rule; since all three limits exist, lim,_,,; g(x)=1+1+2=4
by the extended sum rule. Similarly, lim,_,, f(x) = 12. Since lim, ,, g(x) #0,
the quotient rule applies and so im,_ [ f(x)/g(x)] =12 =3, as we antici-
pated. A

Clearly the common sense method of just setting x = 1 is far simpler when it
works. A general term to describe those situations where it does work is
“continuity.”

Definition of Continuity

A function f(x) is said to be continuous at x = x, if lim,_,, f(x) = f(x,).

Thus if f(x) is continuous at x,, two things are true: (1) lim,_,, f(x) exists and
(2) this limit can be calculated by merely setting x = x, in f(x), much as in
Example 4. The geomeiric meaning of continuity will be analyzed extensively
in Section 3.1.

We now discuss certain functions which are continuous at many or all
values of x,. Instead of the specific function (x* — 3x? + 14x)/(x® + x> + 2),
we consider more generally a ratio r(x) = f(x)/g(x) of two polynomials. Such
a ratio is called a rational function, just as a ratio of integers is called a rational
number. Note that a polynomial f(x) is itself a rational function—we can
simply choose the denominator g(x) in the ratio r(x) to be g(x) = 1. Suppose
that we are interested in the rational function r(x) = f(x)/g(x) for values of x
near x,. Moreover, suppose that g(x,) # 0 so that r(x,) is defined; for
instance, in Example 4 we had g(x,) = 4 # 0 at x, = 1. Using the limit rules in
almost exacily the same way as we did in Example 4 leads to the conclusion
that the common sense approach works for the rational function r(x). We
summarize in the following box.

Continuity of Rational Functions

If f(x) is a polynomial or a ratio of polynomials and f(x,) is defined,
then

lim f(x)= f(xo)

X—>Xxq
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Example 5

Solution

As an example of the use of the continuity of rational functions, note that
to calculate lim,_,[1/(4x - 2)], we can now just set x =4 to get {4, as we
guessed in Example 1 above. Indeed, students seduced by the simplicity of this
rule often believe that a limit is nothing more than a value. The next example
should help you avoid this trap.

Find
2
a)  Jim X_*Xx—6
@) x02 x24+2x—8
and
) (Ax)? +2Ax

m T AL’
Ax=>0 (Ax)" + Ax
where Ax is a variable.
(a) The denominator vanishes when x = 2, so we cannot use the continuity of

rational functions as yet. Instead we factor. When the denominator is not zero
we have

24 x—6 =(x+3)(x—2) _x+3
2+2x—8 (x+4(x-2) x+4°

Thus

x*+x—6 — lim X3
x%2x2+2x—8 x->2 x+4
_2+3_5

=571 ¢ (by the continuity of rational functions).

(by the replacement rule)

(b) The denominator vanishes when Ax = 0, so again we use the replacement
rule:

Ax)* + 2 Ax
im (8x) — lim Ax +2
Ax—0 (Ax)2 +Ax  Ax—0 Ax +1

(replacement rule)

=2 (continuity of rational functions). A

There are many limits that cannot be dealt with by the laws of limits we have
so far. For example, we claim that if x, is positive, then

Jim =0

i.e., the function f(x) = VX is continuous at x,. To make this result plausible,
assume that limX%XO\/}‘ = / exists. Then by the product rule,
2 _ N . _ . —

= (Jim ) fim ) = Jim = .
Now ! must be positive since yx > 0 for all x which are positive, and all x
which are close enough to x, are positive. Hence, /= \/)—c; . This limit is
consistent with the appearance of the graph of y = Vx . (See Fig. 1.2.5.)

In Section 11.1, we give a careful proof of the continuity of Vx .




Figure 1.2.5. The graph of
y =vx suggests that
limx—mo\/; = \/;(; .

Example 6

Soiution

Example 7

Solution

Figure 1.2.6. The graph of
the function |x|/x.
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(x9,Vxg)
x.Vx) %

X - xg X

Find
2
lim 8%
X3 ] 4y
By using the properties of limits and the continuity of Vx , we get
lim,_ (1 +yx)=lim, ;1 + lim__;x =1+x 7 0. Thus
lim 8 x?

lim 8x2 x—3 _ 83 _ 7

= 'A
34k lm(l+i)  1+3 0 143
Xx—>

Sometimes limits can fail to exist even when a function is given by a simple
formula; the following is a case in point.
Does lim, _, (] x|/ x) exist?

The function in question has the value 1 for x >0 and —1 for x <0. For
x =0, it is undefined. (See Fig. 1.2.6.) There is no number / which is

g
| E—

approximated by |x|/x as x—0, since |x|/x is sometimes | and sometimes
— 1, according to the sign of x. We conclude that lim,_, (x| / x) does not exist.
A

It is possible to define a notion of one-sided limit so that a function like |x|/x
has limits from the left and right (see Section 11.1 for details). Since the
one-sided limits are different, the limit per se does not exist. The reader might
wonder if any function of interest in applications actually shows a jump
similar to that in Fig. 1.2.6. The answer is “ yes.” For example, suppose that a
ball is dropped and, at ¢ = 0, bounces off a hard floor. Its velocity will change
very rapidly from negative (that is, downward) to positive (that is, upward). It
is often convenient to idealize this situation by saying that the velocity
function jumps from a negative to a positive value exactly at + = 0, much as in
Fig. 1.2.6.

We conclude this section with some limits involving + co. We shall be
quite informal and emphasize examples, again leaving a more careful discus-
sion to Chapter ll. First, it is often useful to consider limits of the form
lim,_, ., f(x). This symbol refers to-the value approached by f(x) as x becomes
arbitrarily large. Likewise, lim, _, _ ., f(x) is the value approached by f(x) as x
gets large in the negative sense. Limits as x — * co obey similar rules to those
with x = x,.
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Example 8 Find
|
l 2.
@ Jim o

- 2x+ 1,
(®) xll—>ngo 3x+ 17

and

. 5x2T=3x+2
(C) x_l)lIPOO x2+ 1 :

Solution  As x gets very large, 1/x gets very small. Thus
@ lim L=o0.
We shall do (b) and (c) by writing the given expression in terms of 1/ x.
(b) lim 2XE1_ 2+1/x_2+0_2

e 3x+1 sow3+1/x 340 3’

Sx2=3x+2 _ o 5-3/x+2/x*

c lim

© hm, x2+1 x> -0 1+ 1/x?
_5-0+0_
T 1+0 > A

Exampie 8 Find lim,_,  f(x)andlim, ,__, f(x) for the function f in Figure 1.2.7.
3 4

43

Figure 1.2.7. Find -
lim,_,, f(x)and
lim, , _ . f(x).

Solution Assuming that the ends of the graph continue as they appear to be going, we
conclude that lim, ,,, f(x)=2and lim,_, __ f(x)=0. A

Another kind of limit occurs when the value of f(x) becomes arbitrarily large
and positive as x approaches x,. We then write lim,_,, f(x)= co. In this case
lim, , f(x) does not, strictly speaking, exist (infinity is not a real number).
Similarly lim,_,, f(x)= —oo is read “the limit of f(x) as x approaches x, is
minus infinity,” which means that while lim,_, f(x) does not exist, as x
approaches x, from either side f(x) becomes arbitrarily large in the negative
sense.

Example 10 Find

. —3x
a) lim —==
@) x=2 x2—4x + 4
and
(b) lim 3x+2

x—0 X

Solution (a) The denominator vanishes when x = 2, so the quotient rule does not apply.
We may factor the denominator to get —3x /(x> —4x + 4)= —3x /(x — 2)%
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For x near 2, the numerator is near — 6, while the denominator is small and
positive, so the quotient is large and negative. Thus,

- 3x

lim —=— = — 00

X2 (x — 2)2

(See Fig. 1.2.8(a).)

(b) We write 3x + 2)/x =3 +2/x. When x is near 0, 2 /x is either large and
positive or large and negative, according to the sign of x (Fig. 1.2.8(b)). Hence
lim,_o[(3x + 2)/x] does not have any value, finite or infinite. (To get + co or
— co, one-sided limits must be used.) A

Figure 1.2.8. In (a) the limit
is — o0 and in (b) it does
not exist. (a)
lim —‘—}_X_ m o0
x>2 x2—4x + 4

(b)
3x+2

y= is infinitely schizophrenic near x = (

Exercises for Section 1.2

1. Guess lim,_,,[(x*> =3x2 + 5x —3)/(x = )] by
doing numerical calculations. Verify your guess
by using the properties of limits.

2. Find lim,_,_,[2x/(4x* + 5)], first by numerical
calculation and guesswork, then by the basic
properties of limits, and finally by the continuity
of rational functions.

Refer to Fig. 1.2.9 for Exercises 3 and 4.
3. Find lim, , _; f(x) and lim, ,; f(x) if they exist.
4. Find lim,_, ; f(x) and lim,_,, f(x) if they exist.

_3_T

Figure 1.2.9. Find the limits at x = -3, -1, 1, and 3 if
they exist. A small circle means that the indicated point
does not belong to the graph.

Use the basic properties of limits to find the limits in
Exercises 5-8.

5. lim (17 + x) 6. lim x?
x—3 x—3 2_1

o lim 4+l 8. lim Z

! u-l»rgl u—1 52 S

Use the basic and derived properties of limits to find
the limits in Exercises 9-12.
2
9. lim X =2
x=3 x2 43
(x2+3x - 10)
(x+2)
x104 8x3—7x2—2
x+1
24 3x ~
12. lim u
12 x+2
Use the continuity of rational functions and the re-

placement rule, if necessary, to evaluate the limits in
Exercises 13-22.

10. lim

x 2

11, lim
x>

-5
3 g 48 14 fm =8
.u—>\/§u—3 ’_’\Et*s
2
_ . -3
15, lim X =2 16. lim
xl—amzx—2 x-3 x<—3

2
17. lim X —4x+3

2
18. fim X *+x=20
x=3 x2—2x—3

x>=5 x2 4+ 6x+5
Ax)* +3 3+ 2(Ax)?
1o, fim BX H3B0) 0 (BX) + 28X

Ax—0 Ax Ax—0 Ax
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3(Ax)’ + 2A
2. fim A%+ 280
Ax—0 Ax
C(Ax)* + 2(Ax)? + 7(Ax)
22, lim
Ax—0 Ax
Find the limits in Exercises 23—26 using the continuity
of Jx.
23. lim
x4 | — \/; x—9 \/;
25. Bim, 31 =X )2 +yx)  26. lim,p(x? + 2x)Yx
Find the limits in Exercises 27-30 if they exist. Justify
your answer.

2
2x 24, fim 2X X

27. lim {2 +1 28. i 1, X
XLO< B ) ﬂ%(" H )
29, fim X1 30, lim X =2

x—=1 X = 1 x—>2 X —2
Find the limits in Exercises 31-36 as x > * .

- 2
3. lim X! 32, lim 2 *1
x-o0 2x 4+ | x—0 352 4 9
3 2
33, fim 2X—1 34, lim X +2x7+1
x-»=c 3x + 1 x>0 43— 24 x4+ 2
35, lim m 36. lim =
x>0 X X~ 00 |x[

37. For the function in Fig, 1.2.10, find lim,_,,f(x)
for a=0,1,2,3,4 if it exists. In each case, tell
whether lim,_,.f(x) = f(a).

4

Figure 1.2.10. Find the
limits at 0, 1,2,3, 4.

38. Find lim,_,,f(x), where a = —2, 0, and ] for f
sketched in Fig. 1.2.11.

y 4

N

-1 © 1

Figure 1.2.11. Find
lim,_,,f(x) at the indicated
points.

Refer to Fig. 1.2.12 for Exercises 39 and 40 (assume
that the functions keep going as they appear to).

39. Find lim,_, f(x) and lim,_,_ ,, f(x).

40. Find lim, _, g(x) and lim, , . g(x).

Figure 1.2.12, Find the
limits at =+ 0.

Find the limits in Exercises 41-44, If the limit is * o0,
give that as your answer,

~4
. x 42, lim —2°%
41- llm(__) y—3 _yz‘—6_y+9

2
44, lim Xt

x5 )C2 -5 x>0 X
Find the limits in Exercises 45-58 if they exist.
45, lim f_"i“z_'_"_“
u—0 u

46 x} 42

47. lim

48. XE,IEZ IX +2l

49, jm X = 3x+6

50. lim &—=—=" =

x4 x° —6x + 8
2

51, tim DA

14 |t|
2

52 lim S-—2s+ 1

5700 262 4 3542

(5+ Ax)y - 5°
m —— e

53 Al)l(—-)O Ax
(Ax)* +2(Ax)’ +2Ax
54. m
Ax—Q Ax
3(x -1
5s. fim S~ D

x—>1 x =1

56. lim y|g — 3]
q-3

2 —
57. lim 35 =25 =21
53 (S — 3)
8. fm %

X — Q X2+ 1

59. How should f(x)=(x®>=1)/(x —~ 1) be defined
at x = | in order that lim_,; f(x) = f(1)?



60.

*61.

*62.

Figure 1.3.1. The limit of
Ay/Ax as Ax—>0is f'(xg).

1.3 The Derivative as a Limit and the Leibniz Notation

How should g(#) = (¢ + 41)/(¢* — 4¢) be defined
at ¢ = 0 to make lim,_,og(¢) = g(0)?

A block of ice melts in a room held at 75°F. Let
f(¢) be the base area of the block and g(¢) the
height of the block, measured with a ruler at
time ¢.

(a) Assume that the block of ice melts com-
pletely at time 7. What values would you
assign to f(T) and g(7T)?

Give physical reasons why lim, ,,f(¢f) =
f(T) and lim,_,;g(¢) = g(T) need not both
hold. What are the limits?

The limiting volume of the ice block at time
T is zero. Write this statement as a limit
formula.

Using (b) and (c), illustrate the product rule
for limits.

A thermometer is stationed at x centimeters from
a candle flame. Let f(x) be the Celsius scale
reading on the thermometer. Assume that the
glass in the thermometer will crack upon contact
with the flame.

(a) Explain physically why f(0) doesn’t make
any sense.

Describe in terms of the thermometer scale
the meaning of lim, o, f(x) (i.e., the limit
of f(x) as x approaches zero through posi-
tive values).

Draw a realistic graph of f(x) for a scale
with maximum value 200°C. (Assume that
the flame temperature is 400°C.)

(b)

(©)

(d)

(b)

(©

1.3 The Derivative as a Limit

*63.

*64.

*65.

*66.

69

(d) Repeat (c¢) for a maximum scale value of
500°C.
Suppose that f(x)# 0 for all x 5= x5 and that
lim,_,,, f(x)=c0. Can you conclude that
lim,_,, [1/f(x)] = 07 Explain.
Draw a figure, similar to Figs. 1.2.3 and 124,
which illustrates the sum rule in our box on basic
properties of limits.
(a) Prove the extended sum rule in the box on
derived properties of limits for the case
n = 4 by using the basic sum rule and using
the extended sum rule for the case n =3
proved in the text.
Assume that the extended sum rule holds
when n = 16; prove from your assumption
that it holds when »n = 17.
Assume that the extended sum rule holds for
some given integer » > 2; prove that it holds
for the integer n + 1.
According to the principle of induction, if a
statement is true for » + | whenever it is
true for »n, and is true for some specific
integer, m, then the statement is also true for
m+lm+2,m+3,..., ie, itis true for
all integers larger than m. Use induction and
the basic sum rule to prove the extended
sum rule.
Prove the extended product rule for limits by
induction (see Exercise 65) and the basic proper-
ties of limits.

(b)

(©

(d)

and the Leibniz Notation

The derivative is the limit of a difference quotient.

We are now ready to tie together the discussion of the derivative in Section 1.1
with the discussion of limits in Section 1.2.

Let f(x) be a function such as the one graphed in Fig. 1.3.1. Recall the
following items from Section 1.1: If (x,, f(x,)) and (x, + Ax, f(x, + Ax)) are
two points on the graph, we write Ay = f(x, + Ax) — f(x,) and call Ay /Ax the

L[+ Ax)
+ f(xg) ——m—

~ &

Slope = f'(x)
Slope = Ay/Ax

~
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Example 1

Soiution

Example 2

difference quotient. This difference quotient is the slope of a secant line, as
shown in the figure; moreover, if f(x) is distance as a function of time, then
Ay/Ax is an average velocity. If Ax is small, then Ay /Ax approximates the
derivative f'(x,). Using these ideas, we were led to conclude that f'(x,) is the
slope of the tangent line; moreover if f(x) represents distance as a function of
time, f'(x,) is the instantaneous velocity at time x,. We can now make our
discussion of f'(x,) more precise using the language of limits.

Suppose that the domain of a function f(x) contains an open interval
about a given number x,. (For example, we might have x, = 3, and f(x) might
be defined for all x which obey 1 < x < 4.) Consider the difference quotient

AX f(xo+ Ax) = f(xg)

Ax Ax

as a function of the variable Ax. The domain of the difference quotient then
consists of those Ax, positive or negative, which are near enough to zero so
that f(x, + Ax) is defined. Since Ax appears in the denominator, Ax = 0 is not
in the domain of the difference quotient. (For instance, in the example just
mentioned with x, = 3 and 1 < x <4, Ay/Ax would be defined for —2 < Ax
<0 and 0 < Ax < 1.) As the examples in Section 1.l indicated, we should
look at the limit of Ay /Ax as Ax — 0. This leads to the following definition of
the derivative in terms of limits.

Formal Definition of the Derivative

Let f(x) be a function whose domain contains an open interval about x,.
We say that f is differentiable at x, when the following limit exists:

J(xo+ Ax) = f(xo) |

o) = Jim, Ax

f(xg) is then called the derivative of f(x) at x,.

Suppose that f(x) = x*. Then f/(3) = 6 by the quadratic function rule with
=1, b=0=c and x,= 3. Justify that f'(3)=6 directly from the formal
definition of the derivative and the rules for limits.

We write the difference quotient and simplify:
Ay f(xo+Ax)—f(xg) (3+ Ax)2 -3 6Ax+ (Ax)2
Ax Ax B Ax h Ax )

The independent variable is now Ax, but, of course, we can still use the rules
for limits given in the previous section. By the replacement rule, we can
cancel:

. 6Ax + (Ax)2
lim ——————— = lim (6 + Ax),

Ax—0 Ax Ax—0

provided the latter limit exists. However, 6 + Ax is a polynomial in the
variable Ax and is defined at Ax =0, so by the continuity of rational

functions, lim,, (6 +Ax)=6+0=6. A

Use the formal definition of the derivative and the rules for limits to differenti-
3
ate x-.
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Examplie 3

Solution

Example 4

Solution
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Letting f(x) = x°, we have
f(xo + Ax) = f(xo) . (X0 + Ax)’ — x3

f(x0) = AI;IBO Ax Ax—0 Ax
i xg + 3x{ Ax + 3xo(Ax)’ + (Ax)’ — x3 (expanding the cube)
= lim
Ax—0 Ax
3x¢Ax + 3x,(Ax)* + (Ax)?
= lim
Ax—0 Ax

1 2 2
= Al;r_r)lo(BxO +3x9Ax + (Ax)°)  (by the replacement rule)

= 3x}
(using the continuity of rational functions and setting Ax = 0).

The derivative of x> at x, is therefore 3x5. A

As the next example shows, we can write x instead of x, when differentiating
by the limit method, as long as we remember that x is to be held constant
when we let Ax —0.

If f(x)=1/x, find f'(x) for x # 0.
The difference quotient is
Ay 1/(x+Ax)=1/x x—(x+Ax) Ax

Ax Ax x(x + Ax)Ax N x(x + Ax)Ax ’

Here x is being held constant at some nonzero value, and Ay/Ax is
considered as a function of Ax. Note that Ax is in the domain of the
difference quotient provided that Ax # 0 and Ax # —x.

For Ax #0, Ay/Ax equals —1/x(x + Ax), so, by the replacement rule,

lim 22 = fim (- ——L
pamo Bx T axmol T x(x + Ax)

—  (by the continuity of rational functions).
X

Thus, f'(x)= —1/x% A

If we look back over the examples we have done, we may see a pattern. The
derivative of x* is 3x? by Example 2. The derivative of x? is given by the
quadratic function rule as 2x' = 2x. The derivative of x = x"is | - x®=1,
and the derivative of 1/x= x ' is (—1)x 2 by Example 3. In each case,
when we differentiate x”, we get nx”~'. This general rule makes it unneces-
sary to memorize individual cases. In the next section, we will prove the rule
for n a positive integer, and eventually we will prove it for all numbers n. For
now, let us see how to prove the rule for x'/? =x . We should get {x(!/~!
=1x""2=1/2Vx.

Differentiate yx (x > 0).

The difference quotient is

Ay Vx + Ax —yx

Ax Ax
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Proof

Example 5

In order to cancel Ax, we perform a trick: rationalize by multiplying numera-
tor and denominator by yx + Ax +x :

Ay _ (I +Ax =) (i + Ax +x)
Ax (Ax)(Vx + Ax +x)

_ (x +Ax)—x _ 1 .
Ax(Yx +Ax +Vx)  Vx +Ax +Vx

Notice that this trick enabled us to cancel Ax in the numerator and
denominator.
Now recall from the previous section that limx_,XO\/; =vx,. Thus,

lim,, ,Vx + Ax =yx . Hence, by the quotient rule for limits,

. Ay 1
m K— = -
Ax—0 AX Ahmo(m +yx)

L (sum rule)
im yx + Ax + lim Vx
Ax—0 Ax—0
=1 1
Y+ 24
Thus, the derivative is indeed 1/2Vx . A

(continuity of Vx )-

Next, let us establish a general relationship between differentiability and
continuity.

Theorem: Differentiability Implies Continuity

If f'(x,) exists, then f is continuous at x,; that is, lim,_,, f(x) = f(xo)-

We first note that lim,_, . f(x) = f(x,) is the same as lim,_, (f(x) — f(x,)) =0
(by the sum rule and then the constant function rule applied to the constant
f(x0)). With Ax = x — x4, and Ay = f(x, + Ax) — f(x,), this is, in turn, the
same as lim,, oAy = 0. Now we use again the trick of multiplying numerator
and denominator by an appropriate factor:

. . Ay
| Ay=1 <= A
Jim Ay A)ICIEO( Ax x) (replacement rule)
. Ay }
= ( AI;IEO H)( Al)chEO Ax) (product rule)
—1"(x4)-0 ince lim Ax=0
f'(x4) (smce Jim Ax )

=0.

This proves our claim. B

The converse theorem is not true; the following is a counterexample.

Show that f(x)=|x| has no derivative at x,=0, yet is continuous. (See
Section R.2 for a review of absolute values.)
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Figure 1.3.2. As x— 0 from
either direction, [x| >0, so
f(x) = |x]| is continuous at 0.
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The difference quotient at x, = 0 is (|0 + Ax| — [0])/Ax = |Ax|/Ax, which is |
for Ax >0 and —1 for Ax < 0. As we saw in Example 7 of Section 1.2, the
function |Ax|/Ax has no limit at Ax = 0, so the derivative of |x| at x, = 0 does
not exist.

O, bxh = (x, —x)

(0, fohy -
=(0,0)

On the other hand, as x =0, f(x)=|x|—>0 as well (see Fig. 1.3.2), so
lim, _,¢|x| = |0]; | x| is continuous at 0. &

We have seen that the derivative f'(x,) of y = f(x) at x, is approximated by
the difference quotient Ay /Ax, where Ax = x — x,.

In the view of Gottfried Wilhelm von Leibniz (1646-1716), one of the
founders of calculus, one could think of Ax as becoming “infinitesimal.” The
resulting quantity he denoted as dx, the letters 4 and A being the Roman and
Greek equivalents of one another. When Ax became the infinitesimal dx, Ay
simultaneously became the infinitesimal dy and the ratio Ay/Ax became
dy/dx, which was no longer an approximation to the derivative but exactly
equal to it. The notation dy/dx has proved to be extremely convenient—not
as a ratio of infinitesimal quantities but as a synonym for f’(x).2

Leibniz Notation
If y = f(x), the derivative f'(x) may be written

df(x
D gy, LD (apa o, o d(ix)/x

This is just a notation and does not represent division. If we wish to
denote the value f'(x,) of f’ at a specific point x,;, we may write

dy af(x)
dx X and dx

Xo

dy/dx is read “the derivative of y with respect to x” or “dy by dx.”

Of course, we can use this notation if the variables are named other than x
and y. For instance, the area A of a square of side / is 4 = /? so we can write
d4/dl =2l )

In the f' notation, if f(x)=3x?+2x, then f'(x)=6x + 2. Using the
Leibniz notation we may write:

if y=3x2+2x, then -:—:“)‘C—)=6x+2.

2 Modern developments in mathematics have made it possible to give rigorous definitions of dx
and dy. The earlier objections to infinitesimals as quantities which were supposed to be smaller
than any real number but still nonzero have been circumvented through the work of the logician
Abraham Robinson (1918-1974). A calculus textbook based upon this approach is H. J. Keisler,
Elementary Calculus, Prindle, Weber, and Schmidt, Boston (1976).
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Example 6

Solution

We can also use the even more compact notation
d(3x2 + 2x)
dx

Here the d/dx may be thought of as a symbol for the operation of differenti-
ation. It takes the place of the prime (') in the functional notation.

d
=6x+2 or E(3x2+2x)=6x+2.

(a) Find the slope m of the graph y = Vx at x = 4. (b) Find the velocity v of a
bus whose distance function is ¢°.

(2) The slope is a derivative. The derivative of Vx is dy/dx = d(yx )/dx
= 1/(2yx ) by Example 4. Evaluating at x = 4 gives m = 1 /(2y4) = 1.
(byv = (d/adny () =31 a

Supplement to Section 1.3
Filling a Pond

We conclude this section with a harder and perhaps more interesting applica-
tion that previews some important topics to be considered in detail later: rates
of change (Section 2.1) and integration (Chapter 4).

Suppose that a mountain brook swells from a trickle to a torrent each
year as the snows melt. At the time ¢ (days after midnight on March 31), the
flow rate is known to be 3¢ thousand liters per day. We wish to build a large
pond which holds the runoff for the entire month of April. How big must the
pond be?

The main difficulty here is that a flow rate of, say 3 - (5)° at midnight of
April 5 does not tell us directly how much water will be in the pond on April
5, but merely how fast water will be pouring in at that moment. Let’s see if we
can somehow handle that difficulty.

Designate the unknown amount of water in the pond at time ¢ by
A = f(r). During a short time interval Ar starting at ¢, the amount of water
entering the pond will be at least 37> A¢ and no more than 3(¢ + Ar)? At. Thus,
AA = A(t + At) — A(¢) is slightly larger than 3% Az. For At very small, we
can presumably take A4 ~3t2At, i.e., A4 /At~ 312 However, for Ar very
small, A4 /At approximates the derivative d4 /dt. Thus our problem becomes
the following. Find the “amount” function f(¢), given that the derivative obeys
() =32

Now, turning Example 2 around, we know one function which obeys
f'(1y=3¢*, namely f(r)=¢>. This solution is reasonable in the sense that
f(0) =0, i.e., the pond is empty at midnight of March 31. Could there also be
a different amount function that works? Not really. If a capacity of °
thousand liters is exactly right to accommodate all the influx up to time 7, no
other capacity will be exactly right. We thus have our answer: at midnight on
April 30, 4 = f(30) = (30)*; our pond must hold 27,000 thousand liters.

Exercises for Section 1.3

Use the formal definition of the derivative and the rules
for limits to find the derivatives of the functions in
Exercises 1-12.

I f(x)=x?+x
3. f(x) =5x°
. f =2

2. f(x) =2x*-3x 7-f(x)=x2+% 8.f(x)=x3—%
4 f(x)=2x° 9. f(x)=2x 10. f(x)=8/x
6.f(x)=—1x9 11.f(x)=2x2—\/;+% 12 f(x) = x> + 2x — -

X



Show that the functions in Exercises 13 and 14 have no
derivative at x,, yet are continuous.

13, f(x) =14 |x|; xg=0

14 g(x)=|x + 1[; xg= — L.
Find dy/dx in the Exercises 15-18.

15. y=x*—x 16. y = x — 5x?

17. y=3x+ x 18. y=x? - x*
In Exercises 19 and 20, find the slope of the line
tangent to the given graph at the given point.

19. y=8yx; xg=9

20, y=2x2=x +1/x; xg=1
In Exercises 21 and 22, f(¢) is the position of a car on a
straight road at time ¢. Find its velocity at the given
time.

21 f()y=5% =1 22 f(y=1*- 351 =14
In Exercises 23-26, evaluate the derivatives.

a3/t

23. 7 at =1

24. ii:t + 2t — -l—}att=2
d vt

25. —ad—(x +x)|

2. d( )

27. Usmg the hmlt method, find the derivative of
2X +)C -3 at/\()-—l
28. (a) Expand (a + b)* (b) Use the limit method to
differentiate x*.
Use limits to find the derivatives of the functions in
Exercises 29-32.
29. f(x)=1/x 30. Vx
3L f(x)=(x*+ x)/2x 32 f(x)=x/(1 + x?)
*33. Find an example of a function which is continu-
ous everywhere and which is differentiable every-
where except at two points.

*34. (a) Show by the quadratic function rule that if
flx)=ax?+bx+c, g(x)=dx’+ex + f,
and h(x)= f(x)+ g(x), then h'(x)=
F)+ g e, (d/dx)[f(x) + g(x)]
= (d/dx) f(x) + (d/dx) g(x).

1.4 Differentiating
Polynomials

*35.

*36.
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(b) Show from the rules for limits that if f(x)
and g(x) are differentiable functions, then

L1+ gl = £ jo) + £ g(v)

and
L) = g(0)] = & () - £ g().

(¢) Argue geometrically, using graphs and
slopes, that a function C(x) for which C’(x)
= (0 must be a constant function.

(d) Combining (b) and (c), show that if f'(x)
= g’(x), then there is some constant C such
that f(x) = g(x) + C. Illustrate your result
graphically.

(¢) In (d) show that if f(0) =
= g(x) for all x.

(f) Use (e) to argue that in the pond example
discussed in the Supplement, A(¢) = ¢* is the
only appropriate solution of 4’(¢f) =312

(a) Do some calculator experiments to guess
lim,_,o(sinx/x) and lim,_g[(1 — cosx)/x],
where the angle x is measured in radians.

(b) Given the facts that lim,_(sinx/x) = 1 and
lim, _g[(1 — cosx)/x] =0, use trigonometric
identities to show:

0 = g(0), then f(x)

d(sin x)

o = cosx,
d(cos x) .

o = Csinx.

Suppose that the mountain brook in the Supple-
ment has a flow rate of #*/12+ 2¢ thousand
liters per day ¢ days after midnight on March 31.
What is the runoff for the first 15 days of April?
The entire month?

Polynomials can be differentiated using the power rule, the sum rule, and the

constant multiple rule.

In Section 1.3, we learned how to compute derivatives of some simple
functions using limits. Now we shall use the limit method to find a general
rule for differentiating polynomials like f(x) = 3x> — 8x* + 4x + 2. To do this
systematically, we shall break apart a polynomial using two basic operations.

First, we recognize that a polynomial is a sum of monomials: for

example, f(x)=3x"—8x*+4x+2 is the sum of 3x°, —8x*,

4x and 2.

Second, a monomial is a product of a constant and a power of x. For
example, 3x° is the product of 3 and x°.
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Exampie 1

Let us work backward, starting with powers of x. Thus our first goal is to
differentiate x", where n is a positive integer. We have already seen that for
n=1,2,or 3 (as well as n = —1 or 1), the derivative of x" is nx"~".

We can establish this rule for any positive integer #» by using limits. Let
f(x)= x". To compute f'(x), we must find the limit
. f(x+Ax)— f(%)

m .

Al;—m Ax

Now f(x) = (x + Ax)" = (x + Ax)(x + Ax) ... (x + Ax), »n times. To expand
a product like this, we select one term from each factor, multiply these »
terms, and then add all such products. For example,

(x + Ax)(x + Ax) = x* + x Ax + (Ax) x + (Ax)?
= x2+ 2x Ax + (Ax),,
(x + Ax)(x + Ax)(x + Ax) = x>+ x*Ax + x (Ax) x + (Ax) x> + (Ax)’x
+x (Ax)® + (Ax) x (Ax) + (Ax)®
= x*+ 3x2Ax + 3x (Ax)’ + (Ax)".

For (x + Ax)", notice that the coefficient of Ax will be nx"~! since there will
be exactly » terms which contain » — 1 factors of x and one of Ax. Thus

(x +Ax)"=x"+ nx"""Ax + (terms involving (Ax)z, (Ax)3, e (Ax)").

If you are familiar with the binomial theorem, you will know the remaining
terms; however, their exact form is not needed here. For Ax # 0, dividing out
Ax now gives

f(x + Ax) — f(x) _ (x + Ax)" — x"

Ax Ax
nx"~! Ax + (terms involving (Ax)?, .. ., (Ax)")
Ax
=nx"" 1+ (terms involving (Ax), .. ., (Ax)"").
The terms involving Ax, . .., (Ax)"~! add up to a polynomial in Ax, so the

limit as Ax — 0 is obtained by setting Ax = 0 and by using the ‘continuity of
rational functions (Section 1.2). Therefore,

f(x + Ax) = f(x) R

f(x)= AI;IEO i nx

Power Rule

To differentiate a power x”, bring down the exponent as a factor and
then reduce the exponent by 1.
If f(x) = x", then f'(x) = nx""'; that is

—ildz(x")znx"", n=1273....

Compute the derivatives of x8 x'2, and x*.

Solution (d/dx)x® =8x", (d/dx)x'? = 12x", and (d/dx)x*° = 99x%. A

Next, we consider the constant multiple rule, stated in the following box.




Proof of the
Constant
Mulitiple Rule

Exampie 2

Solution

Exampie 3

Solution

1.4 Differentiating Polynomials 77

Constant Muitiple Rule

To differentiate the product of a number k with f(x), multiply the
number k by the derivative f'(x):

(K ) (x) = Kf'(x),
d . d
2 (kf(x)) = kL f(x).

Let h(x) = kf(x). By the definition of the derivative and the basic properties
of limits, we get

h(x + Ax) — h(x)

H(x) = Jim, Ax
- i HURAD ) g Lt an) 1)
Ax—0 X Ax—0Q Ax
. [ f(x+Ax) = f(x) ,
B (Al;r—r»lok) Alir—r»lo[ Ax } =K(x) &
Differentiate

@ -3 () S (© 3 and (@) -6a

(a) By the constant multiple and power rules,
d N d _7_ =
T (=3x)= (—3)2;x7 = (=3)(7)x* = - 21x".

(b) From Example 4, Section 1.3, (d/dx)\/; = 1/2\/;. Thus, by the constant
multiple rule,

4 —5d -5
dx (5‘/;) > dx x 2Wx
(c) By Example 3, Section 1.3, (d/dx)(1/x)= —1/x> Thus
d(8\_ =8
dx ( X ) e
(d) Although it is not explicitly stated, we assume that a is constant (letters

from the beginning of the alphabet are often used for constants). Thus, by
the constant multiple rule

-‘%(-6ax2)= —6a2d;x2= —12ax. A

The final basic technique we need is the sum rule.
If f and g are two functions, the sum f+ g is defined by the formula

(f+ 2)(x) = f(x) + g(x).

Let f(x) = 3x%+ 5x + 9 and g(x) = 2x2 + 5x. Use the quadratic function rule
to verify that (f+ g)'=f'+ g

By the quadratic function rule, f'(x)=6x+5 and g'(x)=4x+ 5, thus
f(x) + g'(x) = 10x + 10. On the other hand, f(x) + g(x) = 5x*+ 10x + 9. so
(f+2(x)=10x+10=f(x)+ g'(x). A
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Proof of the
Sum Ruie

Exampie 4

Sum Rule
To differentiate a sum, take the sum of the derivatives:
(f+g)’:f’+g’
or
d d
L)+ 8] = 2 [ (0] + £ [ 8()]
or
d
(u +0)= %2 + ‘-12

To be convinced that a mathematical statement such as the sum rule is true,
one should ideally do three things:

1. Check some simple examples directly.

2. Have a mathematical justification (proof).

3. Have a simple physical model, application, or diagram that makes the
result plausible.

In Example 3 we checked the sum rule in a simple case. In the next paragraph
we give a mathematical justification for the sum rule. In the Supplement at the
end of the section, we give a simple physical model.

By the definition of the derivative as a limit, (f+ g)'(x,) is equal to

i (f+ g)(xo+Ax) — (f+ g)(x0)
1im
Ax—Q Ax

(if this limit exists). We can rewrite the limit as
o f(xo + Ax) + g(xo + Ax) = f(X0) — g(xo)

Ax—0 Ax
_ f(xo+ Ax) — f(xq) g(xo+ Ax) — g(x)
= lm +
Ax—0 Ax Ax

By the sum rule for limits, this is

f(xo+Ax) — f(xo) fm g(Xo + Ax) — g(xo)
a0 Ax A;—>O Ax '

If fand g are differentiable at x,, these two limits are just f'(x,) and g'(x,).
Thus f+ g is differentiable at x,, and (f+ g)'(xo) = f'(xo) + g'(x,)- B

The sum rule extends to several summands. For example, to find a formula
for the derivative of f(x) + g(x) + h(x), we apply the sum rule twice:

It

L1 f(x)+ (8(x) + h(x)]
di f(x)+ Ed— (g(x)+ h(x))

= "-f(x) t I g(x)+ *—h(x)

L[ f(x)+ g(x) + h(x)]

I

Find the formula for the derivative 8f(x) — 10g(x).

Solution We use the sum and constant multiple rules:



Exampie 5

Solution

Exampie 6
Solution

Exampie 7

Solution
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4 [8f(x) ~ 10g(x)] = 2L [8f(x)] +

d
8 [~

I

4 [~ 10g(x)]
d
IOE g(x) A
Now we can differentiate any polynomial.
Differentiate (a) (x** + x2 + 2x? + 4x + 1); (b) 4x° — 6x° + 3x.
() d% (x® + xP +2x?+4x + 1)
d d d d d
= E(x”) + E(x”) +E(2x2)+ 7 (4x) + E(l)
(sum rule)

=95xM 4+ 23x2 +4x +4

(power rule and constant multiple rule).

(®) L (4x® —6x"+3x) = 362"~ 30x* + 3. &

Here, for reference, is a general rule, but you need not memorize it, since you
can readily do any example by using the sum, power, and constant multiple

rules.

Derivative of a Polynomial
If f(x) = c,x"+ - + x>+ ¢,x + ¢, then
f(x)y=ne,x" '+ (n— 1, x" "2+ - +20x + ¢y

Find the derivative of x> + 5x2— 9x + 2.

d (3450 _d o, d s d d
E(x +5x°—9x +2) o +dx(5x) dx(9x)+ dx2

=3x2+10x—9. A
(a) Compute f'(s) if f(s) = (s> + 3)(s* + 25 + ).
o d
(b) Find E(loﬁ ~8/x +5/x).
(a) First we expand the product
(P4 3P+ 25+ 1) = (s*+ 25 + %) + (357 + 65 + 3)

=5+ 55+ 2+ 65+ 3.
Now we differentiate this polynomial:

f'(s)=5s*+ 1552+ 25 + 6.

® 5 (100 =34 55) = £ 10y + 4 L(=2)+ 4 sik)
=104 (x) 8E(X—:)+5%(X|/z)

—30x2+ & 4 %x_‘/z =30x2+ 2 4

x x2 adx

S-A
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Exampie 8

Solution

Figure 1.4.1. The sum rule
illustrated in terms of
velocities.

The differentiation rules we have learned can be applied to the problems of
finding slopes and velocities.

(a) Find the slope of the tangent line to the graph of
y=x*'-2x*+1 at x=1.

(b) A train has position x = 31>+ 2 — 7 at time ¢. Find the velocity of the
train at ¢ = 2.

(a) The slope is the derivative at x = 1. The derivative is

j—iz-‘%(x“—2x3+ 1) =4x> - 6x°

Atx =1, thisis 4- 1>~ 6- 12 = —2, the required slope.
(b) The velocity is
ﬂ:i 2 — = —-__l._
a = aBrrln=6 2
At 1t =2, we get
d| g L _p 1 _2P2-1_48-02
2 22 22 23 4

- A

dr

Supplement to Section 1.4
A Physical Model for the Sum Rule

Imagine a train, on a straight track, whose distance at time x from a fixed
reference point on the ground is f(x). There is a runner on the train whose
distance from a reference point on the train is g(x). Then the distance of the
runner from the fixed reference point on the ground is f(x) + g(x). (See Fig.
1.4.1.) Suppose that, at a certain time x;, the runner is going at 20 kilometers

F) g(x)
r
9 A _ T 1=
% = =l TiCic a— s el
N J
Fxy+g(x)

per hour with respect to the train while the train is going at 140 kilometers per
hour—that is, f'(x,) = 140 and g'(x,) = 20. What is the velocity of the runner
as seen from an observer on the ground? It is the sum of 140 and 20-—that is,
160 kilometers per hour. Considered as the sum of two velocities, the number
160 is f'(xq) + g'(xo); considered as the velocity of the runner with respect to
the ground, the number 160 is (f+ g)'(x,). Thus we have f'(xq) + g'(x,)

=(f+ g (x)

3 The fact that one does not add velocities this way in the theory of special relativity does not
violate the sum rule. In classical mechanics, velocities are derivatives, but in relatjvity, velocities
are not simply derivatives, so the formula for their combination is more complicated.
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Exercises for Section 1.4

Differentiate the functions in Exercises 1-12.

1. x10 2. x4

3. x3 4. x°

5. —5x* 6. —53x2
7. 3x'0 8. 8xI®
9. 3yx 10. 2/x

11. —8x 12. —6/x

In Exercises 13-16, verify the sum rule for the given
pair of functions.

13. f(x)=3x2+6, g(x)=x+7

14. f(x)=8x+9, g(x)=x2—1

15. f(x)= x>+ x + 1, g(x) = —1

16. f(x)=2x2—3x+6,g(x)=—x2+8x—9

17. Find a formula for the derivative of f(x)—

2g(x).
18. Find a formula for the derivative of 3f(x) +
2g(x).
Differentiate the functions in Exercises 19-22.
19. x5+ 8x 20. 5x°
21 P+ 612+ 8¢ 42 22, 5104 85+ 558 42

Differentiate the functions in Exercises 23-34.
23 f(x)=x*—7x2-3x+1
24. h(x)=3x"1+8x°—9x3— x
25. g(s)=s"+125° — 357 4 s 4 450
26. f()= -y =8y — 14y -4
27. f(x) = x* —3x+ 2x2
28. f(ny=1t*+4¢
29. g(h) = 8h10 4+ h% — 56.502
30. h(y) = my'0+ 2y° =2 y?
3L p(x)=(x2+ 1)°
32. 1) =(t*+ 2192
33 ()= =17+ 93— 12— 1)
34, h(x) = (x*— D{(x*+ x +2)

35. Find f'(r) if f(r) = —5r%+ 5¢* — 13,2 + 15.

36. Find g'(s) if g(s) = s7 + 135° — 185° + 352

37. Find A(1) if h(2) = (t* + N — 1).

38. Differentiate x> + 2x* + 7.

39. Differentiate (u* + 5)(x*> + Tu? + 19).

40. Differentiate (3¢° + 9£3 + 56)(¢ + 1).
Differentiate the functions in Exercises 41-46.

41. f(x) = x2—x

4. f(x)=3x>+ %

43. f(x)= x> —2x + 2yx

44. f(x)=x*—x + 1

45. f(x)=(1 —Vx )1 +x)

46. f(x) = (1 +Vx )\x

47. A particle moves on a line with position f(7)
= 1642 + (0.03)¢* at time ¢. Find the velocity at
t=8.

48. Suppose that the position x of a car at time ¢ is

(t-2)>

(a) What is the velocity at t = —1,0,1?

(b) Show that the average velocity over every
interval of time is positive.

(¢) There is a stop sign at x = 0. A police officer
gives the driver a ticket because there was
no period of time during which the car was
stopped. The driver argues that, since his
velocity was zero at =2, he obeyed the
stop sign. Who is right?

49. Find the slope of the tangent line to the graph of
xt—x?+3xatx=1

50. Find the slope of the line tangent to the graph of
f(x)=x%+2x2+ 1 at (1,4).

For each of the functions in Exercises 51-54, find a
function whose derivative is f(x). (Do not find f'(x).)

51. f(x) = x?

52. f(x)=x?+2x+3

53. f(x) = x" (n any positive integer)
54. f(x)=(x + 3H(x*+ 1)

55. Verify the constant multiple rule for general qua-
dratic functions, i.e., show that (kf)'(x) = kf'(x)
if f(x)=ax?+ bx + c.

56. Verify the sum rule for general cubic functions
using the formula for the derivative of a polyno-
mial.

57. Let V(r) be the volume ¥V of a sphere as a
function of the radius ». Show that V’(r) is the
surface area.

58. Let V(I) be the volume of a cube as a function
of I, where 2/ is length of one of its edges. Show
that V(1) is the surface area.

*59. Explain the constant multiple rule in terms of a

change of units in distance from miles to ki-
lometers.

*60. Show that if two polynomials have the same

derivative, they must differ by a constant.
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1.5

Example 1

Solution

Exampie 2

Solution

Producis and Quotienis

To differentiate a product, differentiate each factor in turn and sum the resulls.

We have given general rules for the derivative of a sum and a constant
multiple. We now turn to products and quotients.

The product fg and quotient f/g of two functions are defined by
(fg)(x) = f(x)g(x) and (f/g)(x)= f(x)/g(x), the latter being defined only
when g(x)# 0. The formulas for (fg)’ and (f/g)’ are more complicated than
those for (f+ g)’ and (kf), but they are just as straightforward to apply.
Before developing the correct formulas, let us convince ourselves that (fg)’ is
not f'g

Let f(x) = x* and g(x) = x°. Is (fg)’ equal to f'g"?

Notice that the product function is obtamed simply by multlplymg the
formulas for f and g: (fg)(x)= (x )(x3) = x°. Thus, (fg)(x)=5x* On the
other hand, f'(x) = 2x and g'(x) = 3x? so (f’g’)(x) f/(x)g'(x) = 6x>. Since
Sx* and 6x7 are not the same function, (fg) is not equal to f'g’. A

Example 1 shows that the derivative of the product of two functions is not the
product of their derivatives. We state the correct rule for products now and
discuss below why it 1s true.

Product Rule

To differentiate a product f(x)g(x), differentiate each factor and multi-
ply it by the other one, then add the two products:

(f8) (%) = f(x) g'(x) + f(x) g(x)
or

d
("U) d:

(a) Verify the product rule for f and g in Example 1.
(b) Verify the product rule for f(x) = x™ and g(x)= x", where m and » are
natural numbers.

(a) We know that (fg)'(x) =5x*. On the other hand, f(x)g'(x) + f'(x)g(x)
= (xH)(3x%) + 2x)(x*) = 5x*, so the product rule gives the right answer.

(b) By the power rule in Section 1.4, f(x)=mx™"" and g'(x)=nx""",
so that (fg)'(x)=f(x)g'(x)+ f(x)g(x) = x"(nx""") + (mx™ " Hx" =
(n+ m)x™*"~!. On the other hand, (fg)(x) = x"x" = x"*", so again by
the power rule (fg)'(x) = (m+ n)x™*"~! which checks. A

The form of the product rule may be a surprise to you. Why should that
strange combination of f, g, and their derivatives be the derivative of fg? The
following mathematical justification should convince you that the product rule
1s correct.




Proof of the
Product Rule

Figure 1.5.1 The geometry
behind the proof of the
product rule.
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To find (fg)'(x,), we take the limit

U)ot %)~ (fe)(xo)
im
Ax—0 Ax

-5 J(xo + Bx)g(xo + Ax) = f(x0)8(%0)

= lim . H
Ax—>0 Ax

Simplifying this expression is not as straightforward as for the sum rule. We
may make use of a geometric device: think of f(x) and g(x) as the lengths of
the sides of a rectangle; then f(x)g(x) is its area. The rectangles for x = x,

and x = x, + Ax are shown in Fig. 1.5.1. The area of the large rectangle is

flxg +Ax)

g(xg + Ax) — g(xg) <

O g(xg + Ax)
0

-
f(xg) flxg +Ax) = f(xg)

f(xo+ Ax)g(x,+ Ax); that of the darker rectangle is f(xg)g(x,). The differ-
ence f(xq + Ax)g(x, + Ax) — f(xo)g(x,) is the area of the lighter region, which
can be decomposed into three rectangles having areas

[f(xo +Ax) — f(xo)] g(xo)>

[f(xo +Ax) ‘f(xo)][g(xo"' Ax) - g(x)],
and

f(xo)[ g(xo+Ax) — g(x)].
Thus we have the identity:

f(xo + Ax) g(xo + Ax) = f(x0) g(%0)

= [f(xo +4x) ‘f(xo)]g(xo) +f(xo)[ g(xo+ Ax) — g(xo)}
+[f(x0+Ax)~f(x0)][g(x0+Ax)-g(x0)]. (2

(If you do not like geometric arguments, you can verify this identity algebra-

ically.)
Substituting (2) into (1), we obtain

Xq+Ax) — f(xq Xq+ Ax) — g(x,
Al,i—>0{ f( AX) f( ) g(XO) +f(x0) g( Ax) g( )
Xq+ Ax) — f(xq Xq+ Ax) — g(x,

By the sum and constant multiple rules for limits, (3) equals

xy,+ Ax)— f(x xo+Ax)— g(x
[Alxi‘i‘o s Ax) 1) }g(""“f(x")[ﬁx“l‘o i Ax) dsd
i LGt 8%) — f(x0) [ g(xo +Ax) ~ g(x0)] @
Ax—0 Ax

We recognize the first two limits in (4) as f'(x,) and g'(x,), so the first two
terms give f'(x)g(xy) + f(x0)g'(xo)—precisely the product rule. To show that
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Examplie 3

Solution

Exampile 4

Soiution

the third limit, represented geometrically by the small rectangle in the upper
right-hand corner of Fig. 1.5.1, is zero, we use continuity of g (see Section
1.3). The product rule for limits yields

f(xo+ Ax) — f(x0)

N . Alxirgo[ g(xo+ Ax) — g(x0)]

lim
Ax—0

= f'(x)-0=0.8

Using the product rule, differentiate (x*+ 2x — 1)(x* — 4x?). Check your
answer by multiplying out first.

-‘% [(x2 +2x — 1)(x* — 4x2)]

d(x2 +2x —1)
T A
=(2x + 2)(x3 — 4x2) + (x2 +2x — 1)(3x2 — 8x)

d(x®—4x?
(x3 — 4x2) + (x2 +2x — 1)—(_21-;—_2
= (2x4 —6x3— 8x2) + (3x4 - 2x3—19x2 + 8x)
= 5x*—8x3—27x? + 8x.
Multiplying out first,
(x2 +2x — 1)(x3 - 4x2) = x5 —4x*+ 2x* — 8x3 — x3 + 4x?
= x5 — 2x*— 9x3 + 4x2%.

The derivative of this is 5x* — 8x3 — 27x? + 8x, so our answer checks. A

Differentiate x3/2 by writing x>/ = x -yx and using the product rule.

We know that (d/dx)x = 1 and (d/dx)yx = 1/(2yx ). Thus, the :.roduct rule
gives

O = () = (x
~ | a1 _3
-\/;+x°;‘/—;—-\/;+§‘/;*§‘/;°

This result may be written (d/dx)x>/* = 3x'/2, which is another instance of

the rule (d/dx)(x™)= nx" "' for noninteger n. A
We now come to quotients. Let 2(x) = f(x)/g(x), where f and g are differen-
tiable at x,, and suppose g(x,) # 0 so that the quotient is defined at x,. If we
assume the existence of 4'(xy), it is easy to compute its value from the product
rule.

Since h(x) = f(x)/g(x), we have f(x) = g(x)h(x). Apply the product rule
to obtain

f'(x0) = g'(x0)h(xo) + g(x0)h'(x0)-
Solving for A'(x,), we get

f'(x0) = g'(x0)h(x0) _ f'(x0) = g'(xo)[f(xo)/g(xo)]
g(xo) g(xo)

h'(xo) =




1.5 Products and Quotients 85

_ F(x0)g(x0) — f(*x0)g'(X0) .
[g(xo)]2

This is the quotient rule.

Quotient Rule

To differentiate a quotient f(x)/g(x) (where g(x) # 0), take the deriva-
tive of the numerator times the denominator, subtract the numerator
times the derivative of the denominator, and divide the result by the
square of the denominator:
(l)'(x): J'(0)g(x) — f(x)g'(x)
2
g [g(x)]

d (uy _ (@u/dx)yv — u(dv/dx)
a(i)- > -

When you use the quotient rule, it is important to remember which term in the
numerator comes first. (In the product rule, both terms occur with a plus sign,
so the order does not matter.) One memory aid is the following: Write your
guess for the right formula and set g =1 and g’ = 0. Your formula should
reduce to f'. If it comes out as — f’ instead, you have the terms in the wrong
order.

2
Exampie 5 Differentiate

45

Solution By the quotient rule, with f(x) = x* and g(x) = x> + 5,
d 2 2x(x3 +35)— x*(3x%)
E(x3+5) (x* +5)’

x(—x>+10
=~—L—5(2x3+10-3x3)=(——-—3—).
(x> +5) (x> +5)

Example 6 Find the derivative of (a) 2(x) = 2x + 1)/(x* — 2) and (b) Vx /(1 + 3x?).

Solution (a) By the quotient rule with f(x) = 2x + 1 and g(x) = x? — 2,
2(x2—-2)—-(2x+l)2x Ix2—4 —4x2— 2x
(x*~2)’ (x*~2)’

h(x)=

_ _2x*+2x+4
(x*=2)’

(b) i( 3 )z(lﬂxz)'(l/z&)"&“: 1-9x
ax\ 14357 (1 +3x%) 2% (1+ 3x%)’
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In the argument given for the quotient rule, we assumed that A'(x;) exists;
however, we can prove the quotient rule more carefully by the method of
limits.

Proof of the The derivative of h(x) = f(x)/g(x) at x, is given by the following limit:
Quotient Ruie y ‘ h(x+ Ax) — h(xg)
(%o) = AI;IEO Ax
. f(xo+Ax)/g(xo+ Ax) — f(xq)/g(X0)
= lim
Ax—>0 Ax
Sf(xo + Ax)g(x0) — f(x0)g (X0 + Ax)

Ax—0 g(x0)g(xo+ Ax)Ax

A look at the calculations in the limit derivation of the product rule suggests
that we add — f(xg)g(xg) + f(x5)g(xo) = 0 to the numerator. We get

J(xo+ Ax)g(xq) = f(x0)g(*X0) + f(X0)g(%0) = f(x0)g(xo + Ax)

H(xp) = lim

Ax—0 g(xg)g(xg+ Ax)Ax
i { 1 J(x0 + Ax) — f(xo) (x0)
Ax—0 | g(x0)g(x + Ax) Ax §%o

xo +Ax) ~ g(x,
~ fex) 8( A}z g( )”

N : l ) [f’(xo)g(xo) - f(xo)g’(xo)}. (5)

i +A X
Jim g (xo+Ax) &%

Since g is differentiable at x,, it is continuous there (see Section 1.3), and so

i + = . 6

lim g (xo+ Ax) = g(xo) 6)
Substituting (6) into (5) gives the quotient rule, &

Certain special cases of the quotient rule are particularly useful. If f(x) =1,
then h(x) = 1/g(x) and we get the reciprocal rule:

Reciprocal Ruie

To differentiate the reciprocal 1/g(x) of a function (where g(x) # 0),
take the negative of the derivative of the function and divide by the
square of the function:

oo EC) _
(f)eo-roy = &)

&&

Example 7 Differentiate (a) 1/(x*>+ 3x?) and (b) 1/(yx +2).

d 1 1 d 3 2
i af_t Y. ___ 1 a
Solution (a) ( 3 2) 3 2)2 (x* +3x%)

_ 3x?+6x
(x3 + 3x2)2




Exampie 8

Solution

Example 9

Solution
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da 1 _ 2
© Sy ey w
=———1 A

20% (fx +2)°

Combining the reciprocal rule with the power rule from Section 1.4 enables us
to differentiate negative powers.* If k is a positive integer, then
de_d(1\___1_ d .«
dx(x ) dx(xk) xk)2 dx(x )

= - L (k= — ke,

Writing » for the negative integer — k, we have (d/dx)(x") = nx" "', just as
for positive n. Recalling that (d/dx)(x°) = (d/dx)(1) = 0, we have established
the following general rule.

Integer Power Ruie

If n is any (positive, negative or zero) integer, (d/dx)x" = nx"~'. (When
n < 0, x must be unequal to zero.)

Differentiate 1/ x®
(d/dx)(1/x%)=(d/dx)(x %) = —6x""'=—6x"". A

We conclude this section with a summary of the differentiation rules obtained
so far. Some of these rules are special cases of the others. For instance, the
linear and quadratic function rules are special cases of the polynomial rule,
and the reciprocal rule is the quotient rule for f(x) = 1. Remember that the
basic idea for differentiating a complicated function is to break it into its
component parts and combine the derivatives of the parts according to the
rules.

2 _ 3 and (b)

Differentiate (a) 3x* + £ — 5 1 3 .
X x (x*+3)(x"+4)

(a) By the sum, power, and constant multiple rules,

d(34 i—-i)—3d(x)+2 (x~1) - 52‘1;()6‘3)

dx x3
=3-4x>+2(—Dx "2 = 5(=3)x"*

_ 3 2 15
—-l2x —2+—4.

X X
(b) Let f(x)=(x*+ 3)(x*+ 4). By the product rule, f'(x)=2x(x>+4)+
(x* + 3)2x = 4x> + 14x. By the reciprocal rule, the derivative of 1/f(x) is

J'(x) _ 4x> + 14x A

- [f(0)] (X2 +3) (x2 + 4’

4 Students requiring a review of negative exponents should read Section R.3.
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Example 10 We derived the reciprocal rule from the quotient rule. By writing f(x)/g(x)
= f(x)-[1/g(x)], show that the quotient rule also follows from the product
rule and the reciprocal rule.

Solution (l)’x =( ~i)’x
g | f g )

ey — - [ Vx

=) 5 ()
/() A0

= +f(x) - ——
g0 7 ]

S8 = f()g'(0)

[g()]’

(This calculation gives another way to reconstruct the quotient rule if you
forget it—assuming, of course, that you remembered the reciprocal rule.) A

Differentiation Rules

The derivative of is In Leibniz notation
Linear d -
function bx+c b dx (bx+c)=b
Quadratic 5 d ; ,
. ax*+ bx +c¢ 2ax + b —(ax*+bx+c)y=2ax+ b
function dx
Sum fx) + g(x) 0+ g(x) Ay )= By B
& & dx dx dx
Constant / A = u
mul”‘Ple kf('x) kf ('x) dx (ku) k dx
Power x" {n any integer) nx" ! Ed—(x") =nx""!
X
Polynomial | ¢, x" + - -+ + e, x° ne,x" 4 - :Z,d;(cnx” + Xt ox + )
+ox+ ¢ +2¢,x + ¢ =nc,x" '+ - +20x+ ¢
’ ’ d du dv
d t —r—— T — e
Produc f(x)g(x) f(x)g(x) + f(x)g'(x) e (uv) s +u i
. F(x)g(x) = f(x)g'(x du/dx)v — u(dv/dx
Qi | 103/ (500%.0)| LERCI IR | gy _ (il o~ o/
[g(x)] dx v v
Reciprocal | 1/g(x) {g(x)#0} | —g'(x)/[g(x)F ()52
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Exercises for Section 1.5

Compute the derivatives of the functions in Exercises
1-12 by using the product rule. Verify your answer by
multiplying out and differentiating the resulting polyno-
mials.

1. (x242)(x +8)

37.

38.

y[4(y+l)2-—2(y+l)-—
d {(z-—3)2+2}

d
d

1
y+1

dz| (z-3)+3

2. (x+ D(x=1) Differentiate the functions in Exercises 39-46.
3 (x*+ x)(xP=-2)
4. (x2+3x)2x = 1) Vx =1 1
5. (x2+ 2x + D(x = 1) 39— 40. ———
6. (x*+3x2+3x+ Dx—1) Chs (x+1)
7. (x% + 2x + 2)(x2 + 3x) 41. 3% + x? 4. 1
8. (x2+dx +8)(xX+2x—1) X +yx
9. (x—D(x+x+1) 1 = /%
10. (x — 2)(x2+ 2x + 1) 43. = 44. ——2—;\[—;
1L (x= D+ x2+ x+ 1) L+x x
12. (3 + 2)(x2 + 2x + 1) 45 2 6, B Hx
In Exercises 13-16, differentiate the given function by T+ 3x . 1—x
writing it as indicated and using the product rule. . . . .
13. x3 = x2Jx 14. x =yx -yx 47. Use the reciprocal rule twice to differentiate
15. x7/2 = x3 % 16, x2 =% -x/2 l/‘[l/g(x‘)] and show that the resul‘t is g'(x)-
. . .o . 48. Differentiate x”/x" by the quotient rule and
Differentiate the functions in Exerc;ses 17-30. compare your answer with the derivative of
17, X=2 g, X =3x+5 x™~" obtained by the power rule.
x*+3 xt=1 49. Find the slope of the line tangent to the graph of
19 x7—=x? 20 563+ x— 10 f(x)=1/{x at x =2.
341 ' 3x4 42 50. Find the slope of the line tangent to the graph of
X142 X fx)=Q2x+1)/Bx+Datx=1
21. x2—2 22. 1 — 2 Let f(x) = 4x° - 13x and g(x) = x> + 2x — 1. Find the
1 X 1 derivatives of the functions in Exercises 51-56.
23, — + e 24, — 51. fix)g(x)
x2 x?+1 £ 3
) 52, [f() + x° = Tx][ g(x)]
25, rt2 2. X 4 _3 53. xf(x) + g(x)
8 2 x+1 f(x)
(3 — 1)2 54, +(x*=3x)-7
7. (=) 8 g(x)
S x” +1 g(x)
2+ 1) +1 4 5
(x2+ 1) =1 (x*=D(x+7) 56.
Find the indicated derivatives in Exercises 31-38. JOx) + g(x) = 4x% = x>+ 10x + 1
3] d (1 *57. Let P(x) be a quadratic polynomial. Show that
Cdx ( x4 ) (d/dx)(1/ P(x)) is zero for at most one value of
d 1 x in its domain. Find an example of P(x) for
32. ax ( 5—‘2> which (d/dx)(1/P(x)) is never zero on its do-
X'+ Sx main.
33, d ( 1 ) %58. Calculate the following limits by expressing each
dx (x + l)2 one as the derivative of some function:
d 1 (a) lim M___—_‘} R
Mol X1 x=1
X\ (x2+9) _1/x3=1/2
(b) lim
35, L (P4t + 1) -2 x =2
ds . x4 x
(¢ lm ——M——r.
d 4 3 xo>-1 (x+2)(x+1)
36. E(u + 2u)(u’ + 2u)
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1.6 The Linear Approximation

Figure 1.6.1. The tangent
line to the graph y = f(x) at
(x0, f(x0))-

Example 1

Soiution

and Tangent Lines
A good approximation to f(x,+ Ax) is f(x) + f'(xp) Ax.

In Section 1.1, we saw that the derivative f'(x,) is the slope of the tangent line
to the graph y = f(x). This section explores the relationship between the graph
of f and its tangent line a little further.

Recall from Section R.4 that the equation of the straight line through
(xg> yo) With slope m is

Y =yo+ m(x— xp)-
In particular we get the following formula for the tangent line to y = f(x) (see
Figure 1.6.1).

y J/=f(xo)+f’(xo)(x_xo)

v = flxg)

U2 I S

Equation of the Tangent Line
The equation of the line tangent to y = f(x) at (x,, f(x)) is

¥ = f(x0) + f(x0)(x — Xo)-

(a) Find the equation of the line tangent to the graph y =yx + 1/(2(x + 1)) at
x=1.

(b) Find the equation of the line tangent to the graph of the function
f()=2x+1)/GBx+1atx=1.

(a) Here xo =1 and f(x) =yx + 1/2(x + 1). We compute

/ 1 1
'x = - 3
F) 2x  2x+1)
m=L_-1_3
so f'(1) = 5 "33
Since f(1) =1+ 4 =4, the tangent line has equation y =5 + 3(x — 1), ie,
8y=3x+17.

(b) By the quotient rule, f(x) equals [2(3x + 1) — (2x + 1)3]/(3x + 1)?
= —1/(3x + 1)~ The equation of the tangent line is

y=iH+fHx-H=3-w(x-1

= — L 13
ory= 6 X T i5- A




1.6 The Linear Approximation and Tangent Lines 91

Example 2 Where does the line tangent to y = yx at x =2 cross the x axis?
Solution Here dy/dx = 1/2yx, which equals 1/2y2 at x =2. Since y =2 at x =2,

Figure 1.6.2. As Ax
approaches zero, the
difference between f(x) and
the approximation

f(x0) + f/(x0)(x = x0)
becomes arbitrarily small
compared to Ax = x — xg.

the equation of the tangent line is

i
y=V2 + —(x —2).
2V2 )
This line crosses the x axis when y =0 or 0=y2 +(l/2\/f)(x—- 2).
Solving for x, we get x = —2. Thus the tangent line crosses the x axis at
x=—2. A

We have used the idea of limit to pass from difference quotients to derivatives.
We can also go in the other direction: given f(x,) and f'(x,), we can use the
derivative to get an approximate value for f(x) when x is near x,.

According to the definition of the derivative, the difference quotient
Ay /Ax =[f(xy+ Ax) — f(x)l/Ax is close to f'(x,) when Ax is small. That is,
the difference

A , f(xo+A%) — f(xg)

T ~f(x0) = o ~f(x)=d
is small when Ax is small. Multiplying the preceding equation by Ax and
rearranging gives

(%0 + Ax) = f(xq) + f'(x0) Ax + dAx. (H

Suppose now that we know f(x,) and f'(x,) and that we wish to evaluate f at
the nearby point x = x, + Ax. Formula (1) expresses f(x) as a sum of three
terms, the third of which becomes small-—even compared to Ax—as Ax — 0.
By dropping this term, we obtain the approximation

J(x) = f(x0) + f'(%0) Ax. (2
In terms of x = x, + Ax, we have
J(x)= f(xo) + f'(Xo)(x = *Xo)- 3

The right-hand side of (3) is a linear function of x, called the linear approxima-
tion to f at x,. Notice that its graph is just the tangent line to the graph of f at
(xg> f(x))- (See Fig. 1.6.2.)

y

¥ =f(x)
(%, f(x))

Linear approximation
at xg

(0. flxo ) Difference between
f(x) and its

linear approximation




92

Chapter 1 Derivatives and Limits

Examplie 3

Solution

Example 4

Soiution

The linear approximation is also called the first-order approximation.
Second-order and higher-order approximations are introduced in Section 12.5.

(a) Show that the linear approximation to (x,+ Ax)* is x7+ 2x,Ax. (b)
Calculate an approximate value for (1.03)2. Compare with the actual value.
Do the same for (1.0003)? and (1.0000003)2,

(a) Let f(x) = x% so f'(x) = 2x. Thus the linear approximation to f(x, + Ax)
is f(xg) + f(xg)Ax = xZ + 2x,Ax.

(b) Let x, =1 and Ax = 0.03; from (a), the approximate value is 1 + 2Ax =
1.06. The exact value is 1.0609. If Ax = 0.0003, the approximate value is
1.0006 (very easy to compute), while the exact value is 1.00060009 (slightly
harder to compute). If Ax = 0.0000003, the approximate value is 1.0000006,
while the exact value is 1.00000060000009. Notice that the error decreases
even faster than Ax. 4

The Linear Approximation
For x near x,, f(xg) + f'(xo}(x — x,) is a good approximation for f(x).
f(xo+ Ax)y = f(xq) + f'(xg)Ax or Ay= f(x,)Ax
The error becomes arbitrarily small, compared with Ax, as Ax—> 0.

Calculate an approximate value for the following quantities using the linear
approximation around x, = 9. Compare with the values on your calculator.

(@) V902 (b) VIO (c) V882 (d) VB

Let f(x) = yx and recall that f'(x) = 1/2yx . Thus the linear approximation is
f(x0 + Ax) = f(x0) + f'(%0) Ax,
ie.

Vxg + Ax ~vx, + ‘/l__ Ax.

2Vx,

(a) Let x,= 9 and Ax = 0.02, so x4 + Ax = 9.02. Thus

P02~ + —L002=3+ 202 _ 30033 . .
29 6

On our calculator we get 3.0033315.
(b) Let x;=9 and Ax = 1; then

Mo~ + L 1=3+1=3166....
29 6

On our calculator we get 3.1622777.
(c) Let x,=9 and Ax= —0.18; then

882 ~y0 + — (—0.18
J—ﬁz@( )

=3+ £(-0.18)=3-003=297.

On our calculator we get 2.9698485,



Example 5

Solution

Figure 1.6.3. The linear
approximation to the
change in area with respect
to a side has error equal to
the shaded area. (Diagram
not to scale.)

Exampie 6

Solution
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(d) Let x; =9 and Ax = —1; then

B=9--L =3 _1_2g33 .
2/9 6

On our calculator, we get 2.8284271.

Notice that the linear approximation gives the best answers in (a) and (c),
where Ax is smallest. A

Calculate the linear approximation to the area of a square whose side is 2.01.
Draw a geometric figure, obtained from a square of side 2, whose area is
exactly that given by the linear approximation.

A = f(r) = r*. The linear approximation near ry =2 is given by f(r,) + f'(ro)
(r—ro)=r2+2rf(r—ry)=4+4(r—ry). When r —r,=001, this is 4.04.

[ — 2.01————]
Y Total area:
square + two strips =
4+ 2(0.02)=4.04
Area of square 5
2.01 22=4

Area of each strip:
2(0.01)=0.02

The required figure is shown in Fig. 1.6.3. It differs from the square of side
2.01 only by the small shaded square in the corner, whose area is (0.01)? =
0.0001. A

Calculate an approximate value for
2

V0,99 + (0.99)°

and compare with the numerical value on your calculator.

We let f(x) = 2 /(yx + x?) and note that we are asked to calculate f(1 — 0.01).
By the linear approximation,

f(1 =001 = f(1) — f(1)(0.01).
Note that f(1) = 1. We calculate f'(x) by the quotient rule:
2(1/2\/; + 2x)
—
(& +x7%)
1+ 4xyx )
2
Vx (Vx + x?)
At x=1, f/(1)= — 3, so
f(1—001)~1+ 3(0.01) = 1.0125.
On our calculator we find f(0.99) = 1.0126134, in rather good agreement. A

f(x)=
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Exercises for Section 1.6

In Exercises 1-4, find the equation of the line tangent
to the graph of the given function at the indicated point
and sketch:

2 y=xt—x;xo=

Joy=xt-2x+1;x9=2

4. y=3x2+1-x;x=5
Find the equation of the tangent line to the graph of
f(x) at (xq, f(xo)) in Exercises 5-8.

5. f) = (2 = D255 % =0
6. f(x) = —

(x*+4)
7. f(x) =[ % - 2x}(x2 +2) xg=1

2;X0=0

X2
S 100 = g =

In Exercises 9—12, find where the tangent line to the

graph of the given function at the given point crosses
the x axis.

= _X . =
V= o 1
X
210,y = +1;xO—2
Il y=—2 _:x=4

12 y = x(yx +1); xo=1
Calculate an approximate value for each of the
squares in Exercises 13-16 and compare with the exact
value:

13. (2.02) 14. (199)°

15. (4.999)? 16. (—1.002)
In Exercises 17-20, calculate an approximate value
for the square root using the linear approximation at
xg = 16. Compare with the value on your calculator.

17. 16.016 18. V17
19. {15.92 20. {15

Using the linear approximation, find an approximate
value for the quantities in Exercises 21-24.

21. (2.94)* 22. (1.03)*

23. (3.99)° 24. (101)8

25. The radius of a circle is increased from 3 to 3.04.
Using the linear approximation, what do you
find to be the increase in the area of the circle?

26. The radius r of the base of a right circular
cylinder of fixed height % is changed from 4 to
3.96. Using the linear approximation, approxi-
mate the change in volume V.

27. A sphere is increased in radius from 5 to 5.01.
Using the linear approximation, estimate the in-
crease in surface area (the surface area of a
sphere of radius r is 47r?).

28. Redo Exercise 27 replacing surface area by vol-
ume (the volume inside a sphere of radius r is
$ard).

Calculate approximate values in Exercises 29-32.
29. (x* + 3)(x + 2) if x = 3.023
2

30. if x = 2.004
x7+2

1
© 0172 + (2.01)°
1

31

32—
(1.99)% + (1.99)*

33. Find the equation of the line tangent to the
graph of f(x) = x®+2x% + 1 at (1, 4).

34. Find the equation of the tangent line to the
graph of x* — x2 + 3x at x = 1.

35. Find the linear approximation for 1/0.98.

36. Find the linear approximation for 1/1.98.
Calculate approximate values for each of the quantities
in Exercises 37-40.

37. 5% = 557+ 35 — 4; s = 09997

4

38. 5*;2—1—;)(=2.0041
X7 — LXT —

39. (2.01)%

40. —
(1.99)

41. Let h(f) = —4:% + 7t + 2. Use the linear approx-
imation to approximate values for #(3.001),
h(1.97), and A(4.03).

42, Let f(x)=3x?—4x +7. Using the linear ap-
proximation, find approximate values for f(2.02),
f(1.98), and f(2.004). Compute the actual values
without using a calculator and compare with the
approximations. Compare the amount of time
you spend in computing the approximations with
the time spent in obtaining the actual values.

43. Let g(x)= —4x?>+ 8x + 13. Find g’(3). Show
that the linear approximation to g(3 + Ax) al-
ways gives an answer which is too large, regard-
less of whether Ax is positive or negative. Inter-
pret your answer geometrically by drawing a
graph of g and its tangent line when xq = 3.

44, Let f(x)=3x2—4x +7. Show that the linear
approximation to f(2 + Ax) always gives an an-
swer which is too small, regardless of whether Ax
is positive or negative. Interpret your answer
geometrically by drawing a graph of f and its
tangent line at x, = 2.

45, Let f(x) = x*.
(a) Find the linear approximation to f(x) near
x=2,
(b) Is the linear approximation larger or smaller
than the actual value of the function?

(¢) Find the largest interval containing x = 2
such that the linear approximattion is accu-
rate within 10% when x is in the interval.

*46. (a) Give numerical examples to show that linear
approximations to f(x)= x> may be either
too large or too small.



(b) Illustrate your examples by sketching a
graph of y = x3, using calculated values of
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the error in this approximation if x =1, — 1,5,
- 5,10, —10.

the function. #49. Return to Exercise 47. Show experimentally that
47. Show that a good approximation to 1/(1 + x) a better approximation to 1/(1 4+ x) is 1 — x +
when x is small is 1 — x. x2 Use this result to refine the speedometer
*48. If you travel 1 mile in 60 + x seconds, show that checking rule in Exercise 48.
a good approximation to your average speed, for *50. Devise a speedometer checking rule for metric
x small, is 60 — x miles per hour. (This works units which works for speeds in the vicinity of
quite well on roads which have mileposts.) Find about 90 or 100 kilometers per hour.
Review Exercises for Chapter 1
6 6
Differentiate the functions in Exercises 1-20. 35. lim m«-(h ~2 -4 36. lim -——(h —2) + 64
L fx)=x*-1 h-0 h h-0 h
2. f(x)=3x2+2x-10 . 3x2 4 2x . 3x242x
. = == 38.
Sy o7t 22 bl 2
4. f(x)=x*-8 . x2_9  (s+3) -3
5. f(x)=2x — 1 39. lim S 40. lim 5
6. f(x)=8x +1 o flx + Ax) = f(x)
7. f(s) = si + 25 41. AI:IBO g
g- ﬁ’) =r +0105’ +82 , where f(x) = x*+3x* + 2
L J(x)=—10x" + 8x _
10, f(x)=12x3+2x2 4+ 2x — 8 42. lim w
1. f(x)=x2— D2+ 1) Ax->0 x ,
12. f(X)=(X3+2X+3)(X2+2) wheref(x)=3x —8x" + 10.
=3x%— 3 ’
13. fx) = 3x 2/x 1. lim 22 4. lim X *4
14, f(x)=x*+9/x ARG N | x>0 3x2 49
15 f(x) = x + 1 45. tim X +4 46. fim X *4
Sx xX->00 5X3+9 X->00 5X2+9
16. =x"-2
Joy=x"= 3 47. For the function in Fig. L.R.1, find lim,_,,, f(x)
17. f(x) = x4+ 1 for xo = —3, -2, —1,0,1,2,3. If the limit is not
) x2—1 defined or does not exist, say so.
2
18. f(x) = \/i hd v
x“—1
1
9. f(x)= ——— 44
(x*+2)
% +3
20. f(x) = ———5 o 1,
(x*+2)
Find the derivatives indicated in Exercises 21-30. /"\ 1
2
21. fii(s+l)2(\/s—+2) p, 4 W2+ t——t % —
s du Y 3 2\4}71 oo X
2
n 4 _m 2, 4 Boxl
T+ 4 542
d 22 -1 d 3 =3
25, =3B +2) 2%, 4L 2 000
dr , dx x3 4+ 2x +1 —a+
2
7 4 2 8 Lger
5 P i T Figure 1.R.1. Find
2. = ——— 30. - 2)‘“’21__ lim, ,,, f(x) at the
X x (- 1) X xt+x+1 indicated points.
Find the limits in Exercises 31-46.
.ox34
32, lim =——
31, lim (x2+ 1) xo1 X+ 1
x—1 5
ox3—1 im X1
33. lim 34 il_)ml x —1
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Do as in Exercise 47 for the function in Fig,
1.R.2.

* 9

Figure 1.R.2, Find the limit
at the indicated points.

49.

50.

51.

52.

Use the limit method directly to find f'(1), where
f(x)= 3x3 + 8x.

Use the limit method directly to compute
(d/dx)(x*~ 8xHat x = —1.

Use the 1limit method directly to compute
(d/dx) (x = &),

Use the limit method directly to compute the
derivative of f(x)= x*— 1.

Find the slope of the tangent line to the graphs of the
functions in Exercises 53—58 at the indicated points.

53.
54.
55.
56.
57.
58.

59.

60.

61.

62.

y=x-8x% xg=1

y=x%4+2x; xg= ~1

y=x*+DHx*—1); x=0

y=x*+10x +2; xo=2

y= 3x4 ~ 10x°%; x=0

y=3x+1;x5=5

Two long trains, A and B, are moving on adja-
cent tracks with positions given by the functions
A(t)=r*+2¢ and B(r)=7:%/2+8. What are
the best times for a hobo on train B to make a
moving transfer to train A?

A backpack is thrown down from a cliff at # = 0.
1t has fallen 2r + 4.9/ meters after ¢ seconds.
Find its velocity at ¢ = 3.

A bus moving along a straight road has moved
f()y=(*+r)/(1 +{r) meters after time r (in
seconds). What is its velocity at ¢ = 1?

A car has position x = (1 —1)/(2/7 +1) at
time ;. What is its velocity at r = 4?

Calculate approximate values for the quantities in Exer-
cises 63-70 using the linear approximation.

63. (1.009)
64. (—1.008)* — 3(—1.008)% + 2
65. /4.0001
66. /897
3 _ 2

67. f(2.003) where f(x) = 3% IOXX +8x+2
68. £(1.0005) where g(x)= x*— 10x7.
69. h(2.95), where a(s) = 4s° — s*.

1+ (0.99)°

1+(099)°

Find the equation of the line tangent to the graph of the

function at the indicated point in Exercises 71-74.
71. f(x)= x*—6x; (0,0)

72. )= =L 1,0
6x2+1
37, 1
73. fo) = L0 =
J69 = 5= 0.gy)
S—6xt+2x3— x
74, f(x)= 22X T2X T X -2
f(x) N ( )

75. A sphere is increased in radius from 2 meters to
2.01 meters. Find the increase in volume using
the linear approximation. Compare with the ex-
act value.

76. A rope is stretched around the earth’s equator. If
it is to be raised 10 feet off the ground, approxi-
mately how much longer must it be? (The earth
is 7,927 miles in diameter.)

In Exercises 77-80, let f(x)=2x?—5x+2, g(x)=
3x2 4+ 2x and h(x)= —3x>+ x + 3.

77. Find the derivative of f(x) + g(x) at x = 1.

78. Find the derivative of 3f(x) — 2A(x) at x = 0.

79. Find the equation of the tangent line to the
graph of f(x) at x = 1.

80. Find the equation of the tangent line to the
graph of g(x) at x = —1.

81. Let B be a rectangular box with a square end of
side length r. Suppose B is three times as long as
it is wide. Let V' be the volume of B. Compute
dV /dr. What fraction of the surface area of B is
your answer?

82. Calculate lim,_,(x —yx>— @) and interpret
your answer geometrically by drawing a right
triangle with hypotenuse of length x and short
leg of length a.

83. Suppose that z =2y? + 3y and y = 5x + 1.

(a) Find dz/dy and dy/dx.

(b) Express z in terms of x and find dz/dx.

(¢) Compare dz/dx with (dz/dy)- (dy/dx).
(Write everything in terms of x.)

(d) Solve for x in terms of y and find dx/dy.

(e) Compare dx/dy with dy/dx.



84. Differentiate both sides of the equation

fe) 1

g(x)  g(x)/f(x)
and show that you get the same result on each
side.

%85. Find the equation of a line through the origin,

with positive slope, which is tangent to the parab-
olay=x%—2x+2.

*86. Prove that the parabola y = x2 has the optical

focusing property mentioned in Section R.5. (This

problem requires trigonometry; consult Section

5.1 for a review.) Hint: Refer to Fig. 1.R.3 and

carry out the following program:

(a) Express tan ¢ and tan#é in terms of x.

(b) Prove that 90° — § = 8 — ¢ by using the trig-
onometric identities:

tan 29 = —2tanf_

1 — tan

and

tan( + 90°) = — —1

tan¢

Tangent line

Figure 1.R.3. The geometry needed to prove that the
parabola has the optical focusing property.

*x87. Prove that the parabola y = ax? has the optical

focusing property. (You should start by figuring
out where the focal point will be.)

«88. The following is a useful technique for drawing

the tangent line at a point P on a curve on paper
(not given by a formula). Hold a mirror perpen-

Review Exercises for Chapter 1 97

dicular to the paper and rotate it until the graph
and its reflection together form a differentiable
curve through P. Draw a line / along the edge of
the mirror. Then the line through P perpendicular
to ! is the tangent line. (See Fig. 1.R.4.) Justify
this procedure.

Wrong

(@)

Right

(b)

Figure 1.R.4. How to draw a tangent line with a mirror.

*89.

*90.

*91.

The polynomial a,x” + a,_x" '+ - - + ay is

said to have degree n if a, + 0. For example:

deg(x® — 2x + 3) =3, deg(x* + 5) = 4, deg(0x? +

3x + 1) = 1. The degree of the rational function

f(x)/g(x), where f(x) and g(x) are polynomials,

is defined to be the degree of f minus the degree

of g.

(a) Prove that, if f(x) and g(x) are polynomials,
then deg f(x)g(x) = deg f(x) + deg g(x).

(b) Prove the result in part (a) when f(x) and
g(x) are rational functions.

(¢) Prove that, if f(x) is a rational function with
nonzero degree, then deg f'(x) = deg f(x) —
1. What if deg f(x)=0?

Show that f(x)= x and g(x)=1/(1 — x) obey

the “false product rule” (fg)'(x) —lf’(x)g’(x).

(a) Prove that if f/g is a rational function (ie., a
quotient of polynomials) with derivative zero,
then f/g is a constant.

(b) Conclude that if the rational functions F and
G are both antiderivatives for a function A,
then F and G differ by a constant.



Chapter 2

Rates of Change
and the
Chain Rule

The rate at which one variable is changing with respect to another can be
computed using differential calculus.

In Chapter |, we learned how to differentiate algebraic functions and, thereby,
to find velocities and slopes. In this chapter, we will learn some applications
involving rates of change. We will also develop a new rule of differential
calculus called the chain rule. This rule is important for our study of related
rates in this chapter and will be indispensable when we come to use trigono-
metric and exponential functions.

2.1 Rates of Change and the
Second Derivative

If y = f(x), then f'(x) is the rate of change of y with respect to x.

The derivative concept applies to more than just velocities and slopes. To
explain these other applications of the derivative, we shall begin with the
situation where two quantities are related linearly.

Suppose that two quantities x and y are related in such a way that a
change Ax in x always produces a change Ay in y which is proportional to
= y - Ax; that is, the ratio Ay/Ax equals a constant, m. We say that y changes
= —1 < proportionally or linearly with x.

S For instance, consider a hanging spring to which objects may be at-

. S tached. Let x be the weight of the object in grams, and let y be the resulting
—4___ length of the spring in centimeters. It is an experimental fact called Hooke’s

law that (for values of Ax which are not too large) a change Ax in the weight
of the object produces a proportional change Ay in the length of the spring.

(See Fig. 2.1.1)

If we graph y against x, we get a segment of a straight line with slope

Figure 2.1.1. Hooke’s law A

states that the change in m= ol

length Ay is proportional to Ax

the change in weight Ax. as shown in Fig. 2.1.2. The equation of the line is y = mx + b, and the
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Figure 2.1.2. y changes
proportionally to x when
Ay /Ax is constant.

Example 1

Solution

Example 2

Solution

function f(x)= mx + b is a linear function. The slope m of a straight line
represents the rate of change of y with respect to x. (The quantity b is the length
of the spring when the weight is removed.)

It

v=myth Av/Ax =m

X

Suppose that y changes proportionally with x, and the rate of change is 3. If
y =2 when x = 0, find the equation relating y to x.

The rate of change is the slope: m = 3. The equation of a straight line with this
slope is y = 3x + b, where b is to be determined. Since y =2 when x =0, b
must be 2; hence y = 3x + 2. A

Linear or Proportional Change

The variable y changes proportionally with x when y is related to x by a
linear function: y = mx + b, where Ay/Ax = m. The number m is the
rate of change of y with respect to x.

Let S denote the supply of hogs in Chicago, measured in thousands, and let P
denote the price of pork in cents per pound. Suppose that, for S between 0
and 100, P changes linearly with S. On April 1, S = 50 and P = 163; on April
3, a rise in S of 10 leads to a decline in P to 161. What happens if S falls
to 30?7

Watch the words of and to! The rise in S of 10 means that AS = 10; the
decline of P to 161 means that AP = 161 — 163 = — 2. Thus the rate of change
is — % = — 1. (The minus sign indicates that the direction of price change is
opposite to the direction of supply change.) We have P = — 1S + b for some
b. Since P =163 when § = 50, we have 163 = —1-50+ b, or b= 163 + 10
=173,s0 P= — 18+ 173. When § = 30, this gives P = —6 + 173 = 167. At
this point, then, pork will cost $1.67 a pound. A

If the dependence of y = f(x) on x is not linear, we can still introduce the
notion of the average rate of change of y with respect to x, just as we
introduced the average velocity in Section 1.1. Namely, the difference quotient

Ay _ J(xo+ Bx) = f(xo)
Ax Ax

is called the average rate of change of y with respect to x on the interval between
Xy and xy+ Ax. For functions f which are not linear, this average rate of
change depends on the interval chosen. If we fix x, and let Ax approach 0, the
limit of the average rate of change is the derivative f'(x,), which we refer to as
the rate of change of y with respect to x at the point x,. This may be referred to
as an instantaneous rate of change, especially when the independent variable
represents time.




Exampie 3

Solution

Example 4

Solution

Example 5

2.1 Rates of Change and the Second Derivative 101

An oil slick has area y = 30x> + 100x square meters x minutes after a tanker
explosion. Find the average rate of change in area with respect to time during
the period from x =2 to x =3 and from x =2 to x = 2.1. What is the
instantaneous rate of change of area with respect to time at x = 27

The average rate of change from x =2 to x = 3 is

(30 - 3*+100-3—-30-2°-100 - 2) square meters 670 square meters
1 minute minute )
From x =2 to x = 2.1, the average rate is calculated in a similar way to be
47.83 _ 498 5 Square meters
0.1 minute

Finally, the instantaneous rate of change is found by evaluating the
derivative 90x? + 100 at x = 2 to obtain 460. Since the instantaneous rate of
change is a limit of average rates, it is measured in the same units, so the oil
slick is growing at a rate of 460 square meters per minute after 2 minutes. A

Rates of Change

If two quantities x and y are related by y = f(x), the derivative f'(x)
represents the rate of change of y with respect to x at the point x,. It is
measured in (units of y)/(units of x).

A positive rate of change is sometimes called a rate of increase.

A circle with radius r millimeters has area 4 = #r® square millimeters. Find
the rate of increase of area with respect to radius at r, = 5. Interpret your
answer geometrically.

Here A = f(r) = mr®. Since 7 is a constant, the derivative f'(r) is 2zr, and
f'(5)=107. Notice that the rate of change is measured in units of (square
millimeters) /millimeters, which are just millimeters. The value 277 of the rate
of change can be interpreted as the circumference of the circle (Fig. 2.1.3). A

277 Figure 2.1.3. The rate of
change of A with respect to
r is 2@r, the circumference
of the circle.

In the next two examples, a negative rate of change indicates that one
quantity decreases when another increases. Since Ay = f(x,+ Ax) — f(x,),
it follows that Ay is negative when f(x, + Ax) < f(x,). Thus, if Ay/Ax is
negative, an increase in x produces a decrease in y. This leads to our stated
interpretation of negative rates of change. If a rate of change is negative, its
absolute value is sometimes called a rate of decrease.

Suppose that the price of pork P depends on the supply S by the formula
P =160 — 35 + (0.01)S?. Find the rate of change of P with respect to S when
S = 50. (See Example 2 for units.)
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Solution

Example 6

Solutlion

Figure 2.1.4. A coordinate
system with “+” upwards
and x = 0 at bridge level.

Example 7

Solution

The rate of change is the derivative of f(S) = 0.0152 — 3S + 160 with respect
to x = S at x, = 50. The derivative is f'(S) = 0.02S — 3. When S = 50, we get
f/(50)=1- 3= —2. Thus the price is decreasing by 2 cents per pound per
thousand hogs when S = 50-thousand. A

A reservoir contains 10® — 10% — 80¢% — 10¢° + 5¢° liters of water at time ¢,
where ¢ is the time in hours from when the gates are opened. How many liters
per hour are leaving the reservoir after one hour?

The rate of change of the amount of water in the reservoir is the derivative of
the polynomial 10® — 10% — 80¢2 — 10£3 + 5¢5, namely — 10* — 160 — 30¢% +
25¢% At t =1, this equals —10*— 160 — 30 + 25 = — 10,165 liters per hour.
This is negative, so 10,165 liters per hour are leaving the reservoir after one
hour. A

We now reconsider the velocity and acceleration of a particle moving on a
straight line. Suppose for the moment that the line is vertical and designate
one direction as “+” and the other as “—"". We shall usually choose the
upward direction as “+,” but consistently using the other sign would give
equivalent results. We also choose some point as the origin, designated by
x =0, as well as a unit of length, such as meters. Thus, if cur designated origin
represents the level of the Golden Gate Bridge, x = 100 would designate a
location 100 metersi above the bridge along our vertical straight line, and
x = — 10 would indicate a location 10 meters beneath the bridge (Fig. 2.1.4).

Suppose that, at time ¢, a particle has location x = f(¢) along our iine. We
call { f(¢ + At) — f(©)] /At the average velocity and dx /dt = f'(¢) the instanta-
neous velocity; this can either be positive, indicating upward motion, or can
be negative, indicating downward motion.

Suppose that x = 0 represents the level of the Golden Gate Bridge and that
x=f()=8+6¢— 5¢2 represents the position of a stone at time ¢ in seconds.

(a) Is the stone above the bridge, at the bridge, or below the bridge at t = 0?
How about at ¢ = 2?

(b) Suppose that the average velocity during the interval from ¢ to 1, + At is
negative; what can be said about the height at time ¢, + A¢?

(c) What is the instantaneous velocity at r = 1?

(a) At t =0, x =8, so the stone is 8 meters above the level of the bridge. At
t=2,x=8+6-2—5-4=0, so the stone is at the level of the bridge.

(b) It is less than that at time ¢,.

(¢) We compute dx/dt = 6 — 10 ¢, which at t = 1 is —4. Thus, the instanta-
neous velocity is 4 meters per second downward. A
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Figure 2.1.5. The velocity is
positive until ¢ = ¢, and
negative afterward.

Example 8

Soiution

Figure 2.1.6. (a) Velocity
and (b) speed as functions
of time for x = 1> — t + 2.
The acceleration dv/dt is
constant and positive.
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Of course, these interpretations of positive and negative velocity also apply to
horizontal motion, like that which we discussed at the beginning of Chapter 1.
In particular, we may let x denote the position along a road with larger values
of x corresponding to points further east, say. Then dx /dr > 0 indicates that
motion is eastward; dx /dt < 0 indicates westward motion. The magnitude, or
absolute value, of the velocity is called the speed.

If we graph x = f(r) against ¢, the slope of the graph indicates whether
the velocity is positive or negative. (See Fig. 2.1.5.)

Note that the instantaneous velocity v = dx/dt = f'(¢t) is usually itself
changing with time. The rate of change of v with respect to time is called
acceleration; it may be computed by differentiating v = f'(¢) once again.

Suppose that x = f(r) = L * — t + 2 denotes the position of a bus at time .

(a) Find the velocity as a function of time; plot its graph.
(b) Find and plot the speed as a function of time.
(c) Find the acceleration.

(a) The velocity isv = dx /dt = 1t — | (see Fig. 2.1.6(a)).

4y = velocity

v==1 1

/

ﬂo) d

[0 el

(2)

o} = speed

|Z/tl —
I 157 1

~_ -

(2.0) !

(b)

(b) The speed o] = |1t ~ 1} [see Fig. 2.1.6(b)].
(c) The acceleration is dv/dt = 1. A

In this example, the acceleration happens to be constant and positive, indicat-
ing that the velocity is increasing at a constant rate. Note, though, that the
speed decreases and then increases; it decreases when the velocity and acceler-
ation have opposite signs and increases when the signs are the same. This may
be illustrated by an example. If your car is moving backwards (negative
velocity) but you have a positive acceleration, your speed decreases until your
car reverses direction, moves forward (positive velocity), and the speed in-
creases.

Since acceleration is the derivative of the velocity and velocity is already
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Figure 2.1.7. The rate of
change of slope with
respect to x is the second
derivative f”(x). (a) f” > 0.

(b) f” < 0.

Example 9

Solution

a derivative, we have an example of the general concept of the second
derivative, i.e., the derivative of the derivative. If y = f(x), the second deriva-
tive is denoted f”(x) and is defined to be the derivative of f’(x). In Leibniz
notation we write d°/dx? for the second derivative of y = f(x). Note that
d%/dx* is not the square of dy/dx, but rather represents the result of the
operation d /dx performed twice.

If an object has position x (in meters) which is a function x = f(¢) of time
¢ (in seconds), the acceleration is thus denoted by f”(r) or d’x/dr*. Tt is
measured in meters per second per second, i.e., meters per second® or feet per
second?.

Second Derivatives
To compute the second derivative f”(x):

1. Compute the first derivative f'(x).
2. Calculate the derivative of f'(x); the result is f”(x).

The second derivative of y = f(x) is written in Leibniz notation as

d’y

;; .
The second derivative of position with respect to time is called accelera-
tion.

If we plot the graph y = f(x), we know that f'(x) represents the slope of the
tangent line. Thus, if the second derivative is positive, the slope must be
increasing as we move to the right, as in Fig. 2.1.7(a). Likewise, a negative
second derivative means that the slope is decreasing as we increase x, as in
Fig. 2.1.7(b).

v 3 = f(x) » Y

X X

(a) increasing slope means positive (b) decreasing slope means
second derivative negative second derivative

Calculate the second derivative of

@) f(x)=x*+2x—8x, (b) f(x)=2%EL1
Vx

d? 2 d? 2
) —@Bx*—2x+1), (d “—=@r +2r+10).
© L0 L@ L )

(a) By our rules for differentiating polynomials from Section 1.4,
f(x)= 4x3 + 6x2— 8.
Now we differentiate this new polynomial:

f(x)= 12x2+ 12x — 0= l2(x2+ X).
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(b) By the quotient rule from Section 1.5,

N G RV I
f(x)y= X _2\/;_x_2x3/2‘

By the quotient rule again,

Y Rl G B AU WY 5
2 x3 453 )
d(3x2 —2x+1)
(c) Here, p =6x — 2,
d2(3x2—2x+ 1) d
and so o = (6x — 2) =6,

a constant function.

d) 5—; (8r2+ 2r + 10) = (%)l(é’;)(sﬂ +2r + 10

=(§1)[16r+2]=16.A

~

Next we consider a word problem involving second derivatives.

Example 10 A race car travels } mile in 6 seconds, its distance from the start in feet after ¢
seconds being f(r) = 441> /3 + 1321.

(a) Find its velocity and acceleration as it crosses the finish line.
(b) How fast was it going halfway down the track?

Solution (a) The velocity at time ¢ is v = f'(t) = 88//3 + 132, and the acceleration is
a=f"(f)=%. Substituting : = 6, we get v = 308 feet per second (= 210
miles per hour) and a ~ 29.3 feet per second®.

(b) To find the velocity halfway down, we do not substitute = 3.00 in
v = f'(t)—that would be its velocity after half the time has elapsed. The
total distance covered is f(6) = (44)(36)/3 + (132)(6) = 1320 feet (=1
mile). Thus, half the distance is 660 feet. To find the time ¢ corresponding
to the distance 660, we write f(¢) = 660 and solve for ¢ using the quadratic
formula:

2
f‘-%’— + 1321 = 660,

24+9r—45=0 (multiply by ),

,_ —9=BI+180
- 2

~ —12.58,3.58 (quadratic formula).

Since the time during the race is positive, we discard the negative root and
retain ¢ = 3.58. Substituting into v = f'(f) = 887 /3 + 132 gives v &~ 237 feet
per second (=~ 162 miles per hour). A

We end this section with a discussion of some concepts from economics,
where special names are given to certain rates of change.

Imagine a factory in which x worker-hours of labor can produce y = f(x)
dollars worth of output. First, suppose that y changes proportionally with x.
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Figure 2.1.8. A possible
productivity curve; the
slope of the tangent line is
the marginal productivity.

Exampie 11

Solution

Then Ay = f(x,+ Ax) — f(x,) represents the amount of extra output pro-
duced if Ax extra worker-hours of labor are employed. Thus, Ay/Ax is the
output per worker-hour. This average rate of change is called the productivity
of labor.

Next, suppose that f(x) is not necessarily linear. Then Ay /Ax is the extra
output per extra worker-hour of extra labor when Ax extra worker-hours are
employed. The limiting value, as Ax becomes very small, is f(x,). This
instantaneous rate of change is called the marginal productivity of labor at the
level x,.

In Fig. 2.1.8 we sketch a possible productivity curve y = f(x). Notice that
as X, becomes larger and larger, the marginal productivity f'(x,) (= dollars of
output per worker-hour at level x,) becomes smaller. One says that the law of
diminishing returns applies.

y = output in dollars
Slope = f"(x,)

20.000

i

!

10,000 + |

|

|

|

X !

% P fo—e
1000 2000 3000 4000 x = worker-hours
A bagel factory produces 30x — 2x? — 2 dollars worth of bagels for each x

worker hours of labor. Find the marginal productivity when 5 worker hours
we emplayed.,

The output is f(x)=30x —2x?—2 dollars. The marginal productivity at
Xo=151is f(5)=30—4-5=10 dollars per worker-hour. Thus, at x,=35,
production would increase by 10 dollars per additional worker-hour. A

Next we discuss marginal cost and marginal revenue. Suppose that a company
makes x calculators per week and that the management is free to adjust x.
Define the following quantities:

C(x) = the cost of making x calculators (labor, supplies, etc.)

R(x) = the revenue obtained by producing x calculators (sales).

P(x)= R(x)— C(x) = the profit.

Even though C(x), R(x), and P(x) are defined only for integers x,
economists find it useful to imagine them defined for all real x. This works
nicely if x is so large that a change of one unit, Ax = 1, can legitimately be
called “very small.”

The derivative C’(x) is called the marginal cost and R'(x) is the marginal
revenue:

the cost per calculator for producing

C’(x) = marginal cost = . .
additional calculators at production level x.

the revenue per calculator obtained by
R’(x) = marginal revenue = - producing additional calculators at
production level x.

Since P(x) = R(x)— C(x), we get P'(x) = R'(x) — C’(x), the profit per addi-
tional calculator at production level x. This is the marginal profit. 1f the price
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per unit is f(x) and x calculators are sold, then R(x) = xf(x). By the product
rule, the marginal revenue is R'(x) = xf'(x) + f(x).

Example 12

Suppose that it costs (30x + 0.04x?)/(1 + 0.0003x?) dollars if x calculators

are made, where 0 < x < 100, and that calculators are priced at 100 — 0.05x
dollars. If all x calculators are sold, what is the marginal profit?

Solution

The revenue is R = x(100 — 0.05x), so the profit is P = x(100 — 0.05x) —

(30x + 0.04x%) /(1 + 0.0003x%). The marginal profit is therefore dP /dx, which
may be calculated using the sum and cuotient rules as follows:

aP _ d _ 2 _
e T (100x — 0.05x%)
= 100—0.1x —

__d_( 30x + 0.04x? )
dx \ 1+ 0.0003x°

(30 + 0.08x)(1 + 0.0003x%) — (30x + 0.04x2)(0.0009x?)

(1 +0.0003x%)’

3
100 — 0.1 — 30+0.08x — 018x° — 0.000012x*

A
(1 +0.0003x%’

Exercises for Section 2.1

In Exercises 1-4, assume that y changes proportionally
with x and the rate of change is r. In each case, find y
as a function of x, as in Example 1.

SO I

r=3,y=1 when x = 4.
r=-2,y=10 when x = 15.
r=1y,y=1when x = 3.
r=10,y =4 when x = —1.

. If the price of electricity changes proportionally

with time, and if the price goes from 2 cents per
kilowatt-hour in 1982 to 3.2 cents per kilowatt-
hour in 1984, what is the rate of change of price
with respect to time? When will the price be 5
cents per kilowatt-hour? What will the price be
in 19917

. Tt will take a certain woman seven bags of ce-

ment to build a 6-meter-long sidewalk of uniform
width and thickness. Her husband offers to con-
tribute enough of his own labor to extend the
sidewalk to 7 meters. How much more cement
do they need?

. A rock is thrown straight down the face of a

vertical cliff with an initial velocity of 3 meters
per second. Two seconds later, the rock is falling
at a velocity of 22.6 meters per second. Assuming
that the velocity v changes proportionally with
time ¢, find the equation relating v to ¢. How fast
is the rock falling after 15 seconds?

. In November 1980, Mr. B used 302 kilowatt-

hours of electricity and paid $18.10 to do so. In
December 1980, he paid $21.30 for 366 kilowatt-
hours. Assuming that the cost of electricity
changes linearly with the amount used, how
much would Mr. B pay if he used no electricity
at all? Suppose that Mr. B can reduce his bill to
zero by selling solar-generated electricity back to

Find

the company. How much must he sell? Interpret
your answers on a graph.
the average rate of change of the functions in

Exercises 9-12 on the specified interval.

9.

10.

11.
12.

13.

14.

15.

16.

17.

18.

(1) =400 — 207 — 16¢%;, t between ty=1 and
fH=1.

g(1)=18¢2+2¢ + 3; t between 1,=2 and ¢, =
35.

f(x)=(x+1)" xo=2,Ax =05.

g(s) = (35 + 2)(S - l) — 3S2; S = O, As = 6.

The volume of a cone is 1 (area of base) X height.
If the base has radius always equal to the height,
find the rate of change of the volume with re-
spect to this radius.

Find the rate of change of the area of an equilat-
eral triangle with respect to the length of one of
its sides.

During takeoff, a 747 has 25,000 — 80¢ + 2¢% +
0.2¢3 gallons of fuel in its tanks ¢ seconds after
starting its takeoff, 0 < ¢ < 10. How many gal-
lons per second are being burned 2 seconds into
the takeoff?

A space shuttle’s external tank contains 10° —
10% — 10% liters of fuel ¢ minutes after blastoff.
How many liters per minute are being burned
two minutes after blastoff?

If the height H in feet of a certain species of tree
depends on its base diameter d in feet through
the formula H =56d —3d? find the rate of
change of H with respect to d at d = 0.5.
Suppose that tension T of a muscle is related
to the time ¢ of exertion by T'=5 + 3¢ — ¢
0 < t <3%. Find the rate of change of T with
respect to ¢ at ¢t = 1.
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19

20.

21.

22.

23.

24.

25.

26.
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. A flu epidemic has infected P = 30¢2 + 100t peo-
ple by ¢ days after its outbreak. How fast is the
epidemic spreading (in people per day) after 5
days?

Find the rate of change of the area of a circle
with respect to its diameter when the diameter is
10. Compare with Example 4.

A sphere of radius r has volume V = 4773, What
is the rate of change of the volume of the sphere
with respect to its radius? Give a geometric inter-
pretation of the answer.

A balloon being blown up has a volume V =
3£3 + 8+ + 161 cubic centimeters after ¢ minutes.
What is the rate of change of volume (in cubic
centimeters per minute) at ¢ = 0.5?

Let x(¢) = 13 + ct be the position of a particle at
time ¢. For which values of ¢ does the particle
reverse direction, and at what times does the
reversal take place for each such value of ¢?
Does the value of ¢ affect the particle’s accelera-
tion?

An evasive moth has position 3 — ¢ + 2 at time
1. A hungry bat has position y(f) = — 31> + ¢ + 2
at time . How many chances does the bat have
to catch the moth? How fast are they going and
what are their accelerations at these times?

If the position of a moving object at time ¢ is
(> + 1)(¢ + 2), find its velocity and acceleration
when ¢ = 0.1.

Let h(¢) = 2¢* be the position of an object mov-
ing along a straight line at time 7. What are the
velocity and acceleration at ¢ = 3?

Compute the second derivatives in Exercises 27-32.

27.

29.

3L

2 2

% (x* - 3x?) 28. dﬁ_2(3x2 —8x + 10)
X X

d? x*+1 30 42 x*—1

dx? x+2 D dx? x4+ 8
2 2

% G -8 +10) 32 %(ﬁ — 1058+ 5)
¥ A

Find the second derivative of the functions in Exercises
33-40.

33 f(x)=x*-5

4. f(x)y=x-~2

35. y=x>+Tx*—-2x+3

36

37.
38.
39.

40.

cy=[(x—- D+ x> -1]
y‘x—l 5
5 1

y=x +;+;

2+ 1

=1

A)

s+ 1

In Exercises 41-46, find the velocities and accelerations
at the indicated times of the particles whose positions y
(in meters) on a line are given by the following func-

tions

41.

42

43.
44.
45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

of time ¢ (in seconds):
y=3t+2;t5=1
y=5t—1;1,=0
y=82+1;4=0
y=182 -2t +5;1,=2
y=10-2t—001t% t,=0
y=20-8r—002:5 tp=1"

The height of a pebble dropped off a building at
time 1 = 0 is h(t) = 44.1 — 4.9¢% meters at time ¢.
The pebble strikes the ground at ¢ = 3.00 sec-
onds,
(a) What is its velocity and acceleration when it
strikes the ground?
(b) What is its velocity when it is halfway down
the building?
The amount of rain y in inches at time x in hours
from the start of the September 3, 1975 Owens
Valley thunderstorm was given by y = 2x — x?,
O<xg L
(a) Find how many inches of rain per hour were
falling halfway through the storm.
(b) Find how many inches of rain per hour were
falling after half an inch of rain has fallen.
A shoe repair shop can produce 20x — x2—~ 3
dollars of revenue @very hour when X workers
are emploged. Find the marginel preductivity
when 5 workers are employea.
The owners of a restaurant find that they can
serve 300w — 2w? — 14 dinners when w worker-
weeks of labor are employed. If an average din-
ner is worth $7.50, what is the marginal produc-
tivity (in dollars) of a worker when 10 workers
are employed?
A factory employing w workers produces
100w + w?/100 — (1/5000)w* dollars worth of
tools per day. Find the marginal productivity of
labor when w = 20.
A farm can grow 10000x — 35x3 dollars worth of
tomatoes if x tons of fertilizer are used. Find the
marginal productivity of the fertilizer when
x = 10. Interpret the sign of your answer.
In a boot factory, the cost in dollars of making x
boots is (4x + 0.02x%)/(1 + 0.002x3). If
boots are priced at 25 — 0.02x dollars, what is
the marginal profit, assuming that x boots are
sold?
In a pizza parlor, the cost in dollars of making x
pizzas is (5x 4 0.01x2)/(1 + 0.001x3).
The price per pizza sold is set by the rule:
price = 7— 0.05x if x pizzas are made. If all x
pizzas are sold, what is the marginal profit?

In each of Exercises 55-58, what name would you give
to the rate of change of y with respect to x? In what

units

55.

56

could this rate be expressed?
x =amount of fuel used; y = distance driven in
an automobile.

. x = distance driven in an automobile; y=
amount of fuel used.



57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

x = amount of fuel purchased; y = amount of
money paid for fuel.

x = distance driven in an automobile; y =
amount of money paid for fuel.

The cost ¢ of fuel for driving, measured in cents

per kilometer, can be written as the product

¢ = rp, where r is the fuel consumption rate in
liters per kilometer and p is the price of fuel in
cents per liter. If » and p depend on time (the car
deteriorates, price fluctuates), so does c¢. The
rates of change are connected by the product
rule

de _ dp  dr

7 rE + @ P

Interpret in words each of the terms on the

right-hand side of this equation, and explain why

de/dr should be their sum.

If f(x) represents the cost of living at time x,

then f’(x) > 0 means that there is inflation.

(a) What does f”(x) > 0 mean?

(b) A government spokesman says, “The rate at
which inflation is getting worse is decreas-
ing.” Interpret this statement in terms of
0, f(x), and f(x).

Let y = 4x> — 2x + 7. Compute the average rate

of change of y with respect to x over the interval

from xo =0 to x; = Ax for the following values
of Ax: 0.1,0.001,0.000001. Compare with the

derivative at xq = 0.

Repeat Exercise 61 with Ax = —0.1, —0.001,

and —0.000001.

Find the average rate of change of the following

functions on the given interval. Compare with

the derivative at the midpoint.

(a) f(x)=(x=4)x+ 1) between x = — § and
x=0.
(b) g1 =3(t+ 5)(t—3) on [2,6].

h(r) = 10r? ~ 3r + 6 on [—0.1,0.4].

) =02=0H(+4);tin[37]

Let y = ax? + bx + ¢, where a, b, and c are
constant. Show that the average rate of
change of y with respect to x on any interval
[x1, x5] equals the instantaneous rate of
change at the midpoint; i.e., at (x; + x)/2.
Let f(x) = ax? + bx + ¢, where a, b, and ¢
are constant. Prove that, for any xg,

f(x) = f(x0) + f(m)(x = xo)
where m = (x + x¢)/2.
The length / and width w of a rectangle are
functions of time given by /= (3 + ¢ + ¢3) centi-
meters and w = (5 — 1 + 2t%) centimeters at time
t (in seconds). What is the rate of change of area
with respect to time at time ¢?
If the height and radius of a right circular cylin-

(©)
(d)
(@)

(b)
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67.

68.

69.

70.

71.

72.

73.
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der are functions of time given by A = (1 + > +
3+ t% centimeters and r= (1 + 2t — > + 1%)
centimeters at time ¢ (in seconds), what is the
rate of change with respect to time of the lateral
surface area, i.e., the total surface area minus the
top and bottom?
Let f(f) = 2¢% — 5t + 2 be the position of object
A and let () = =372 + t + 3 be the position of
object B.
(a) When is 4 moving faster than B?
(b) How fast is B going when A4 stops?
(¢) When does B change direction?
Repeat Example 7 with the same data but with
the following two conventions changed. First, the
origin is now chosen at a point 20 meters above
the bridge. Second, we designate down as “+”
and up as “—7” rather than vice versa.
For which functions f(x) = ax?+ bx + c is the
second derivative equal to the zero function?
How do the graphs of functions ax?+ bx + ¢
whose second derivative is positive compare with
those for which the second derivative is negative
and those for which the second derivative is
zero?
A particle is said to be accelerating (or decelerat-
ing) if the sign of its acceleration is the same as
(or opposite to) the sign of its velocity. (a) Let
f(t)= —1> be the position of a particle on a
straight line at time . When is the particle accel-
erating and when is it decelerating? (b) If the
position of a particle on a line is given as a
quadratic function of time and the particle is
accelerating at time fq, does the particle ever
decelerate?
One summer day in Los Angeles, the pollution
index at 7:00 am was 20 parts per million, in-
creasing linearly 15 parts per million each hour
until 5:00 pm. Let y be the amount of pollutants
in the air x hours after 7:00 am.
(a) Find a linear equation relating y and x.
(b) The slope is the increase in pollution for
each hour increase in time. Find it.
(¢) Find the pollution level at 5:00 pm.
Straight-line depreciation means that the differ-
ence between current value and original value is
directly proportional to the time ¢. Suppose a
home office is presently furnished for $4000 and
salvaged for $500 after ten years. Assume
straight line depreciation.
(a) Find a linear equation for the value ¥ of the
office furniture after ¢ years, for tax pur-
poses.
The slope of the line indicates the decrease
in value each year of the office furniture, to
be used-in preparing a tax return. Find it.

(b)
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*74. Suppose that the acceleration of an object is
constant and equal to 9.8 meters/second® and
that its velocity at time x = 0 is 2 meters /second.

(2)
(b)
(©

(d)

Express the velocity as a function of x.
What is the velocity when x = 3?

Express the position y of the object as a
function of x, if y =4 when x = 0.

How far does the object travel between
x =2 and x = 5?

*75. Let
=[O x <0,
/() { x2, x > 0.
(a) Sketch a graph of f(x).

(b)
©

(d

Find f'(x). Sketch its graph.

Find f”(x) for x # 0. Sketch its graph. What
happens when x = 0?

Suppose that f(x) is the position of an object

2.2

at time x. What might have happened at
x=0?

The Chain Rule

The derivative of f(g(x)) is a product of derivatives.

None of the rules which we have derived so far tell us how to differentiate
yx3 =5 =(x* —5)"/2. The chain rule will. Before deriving this rule, though,
we shall look at what happens when we differentiate a function raised to an
integer power.

If g(x) is any function, we can use the product rule to differentiate
[g()F:
d 2 d ’ ’ — ’
S 8] = 2o [8(0)g(x)] = g'(x)g(x) + 8(x) g'(x) = 2g(x) g'(x)-
If we write u = g(x), this can be expressed in Leibniz notation as
d d
I (uz) =2u 2}% .
In the same way, we may differentiate u>:

d d d d
-‘zx—(uz'): E;(uz- u) = 2;(“2) cu+ uz-‘?}%
oy o du 2 du
=2u_ u+udx 3udx‘
Similarly, (d/dx) (u*) = 4u’(du/dx) (check it yourself); and, for a general
positive integer n, we have (d/dx)u” = nu"~ ' (du/dx). (This may be formally
proved by induction—see Exercise 52.)

Power of a Function Rule

To differentiate the nth power [ g(x)]" of a function g(x), where n is a
positive integer, take out the exponent as a factor, reduce the exponent
by 1, and multiply by the derivative of g(x):

(g (x)=n[g(x)]"" 'g'(x)

I
dx(u) i dx

If u=x, then du/dx =1, and the power of a function rule reduces to the
ordinary power rule.
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A common mistake made by students in applying the power of a function rule
is to forget the extra factor of g'(x)—that is, du /dx.

Find the derivative of [ g(x)], where g(x) = x* + 2x? first by using the power
of a function rule and then by expanding the cube and differentiating directly.
Compare the answers.

By the power of a function rule, with u = x* + 2x? and n = 3,
(x4 2x%) = 3(x + 263 4L (x4 4+ 2x%) = 3(x 4 207 (45 + 4x),

If we expand the cube first, we get (x*+ 2x?)° = x'2+ 6x'°+ 12x% +
8x°, so

d 3_d
(et 207y = (x4 610 + 1227 + 8x6)
= 12x" + 60x° + 96x7 + 48x°.
To compare the two answers, we expand the first one:
3(x4 + 2x2)2(4x3 +4x) = 3(x8 +4x% + 4x4) . 4(x3 + x)
= l2(x” +5x7+8x7 + 4x5)

= 12x'"" + 60x° + 96x7 + 48x°,
which checks. A

Find % (s* + 25% + 3).
We apply the power of a function rule, with # = s* + 2s* + 3 (and the variable
x replaced by s):
d s*+2s%+3 8-=8 st4 257+ 3 T4 s+ 257+ 3
4 )= 8 y 4 )
= 8(s4 + 257+ 3)7(4s3 + 6s2).

(You could also do this problem by expanding the eighth power and then
differentiating; obviously, this practice is not recommended.) A

If y = (x*+ 1)"(x*+ 3x + 1)%, find the rate of change of y with respect to x.
First of all, by the power of a function rule,
L (x4 1) =27(x7 + 1) 2x
and
L (x4 3x+ 1) =8(x* + 3x + 1) (4x + 3)
Thus, by the product rule, the rate of change of y with respect to x is

d 26 8
2’;—)=27(x2+ D7 2x - (x*+3x+ 1)

+ (2 + 17 8(xt 4 3x + 1Y (4x7 + 3),

To simplify this, we can factor out the highest powers of x>+ 1 and x*+
3x + 1 to get

(74 1)+ 3x o+ 1) [27 2x(x* 4 3x + 1)+ (x2 + 1) - 8(4x° + 3) ].

We can consolidate the expression in square brackets to a single polynomial of
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Example 4

Soiution

degree 5, getting 2(x* + 1)*(x* + 3x + 1)’(43x° + 16x> + 93x2 + 27x + 12)
as our rate of change. [ Note: Consult your instructor regarding the amount of
simplification required.] A

The power of a function rule is a special case of an important differentiation
rule called the chain rule. To understand this more general rule, we begin by
noting that the process of forming the power [ g(x)]” can be broken into two
successive operations: first find v = g(x), and then find f(u), where y = f(u)
= u". The chain rule will help us to differentiate any function formed from
two functions in this way.

If f and g are functions defined for all real numbers, we define their
composition to be the function which assigns to x the number f(g(x)). The
composition is often denoted by f o g. Thus (fo g)(x) = f(g(x)). To evaluate
y = (fe° g)(x), we introduce an intermediate variable » and write ¥ = g(x) and
y = f(u). To evaluate y, we substitute g(x) for u in f(u). (If f(x) and g(x) are
not defined for all x, then (f o g)(x) is defined only when x is in the domain
of g and g(x) is in the domain of f.)

(a) If f(u) = w* + 2 and g(x) = (x* + 1)°, whatis h = fo g?
(b) Let f(x) =yx and g(x)=x>—5. Find fogand go f.
(c) Write {1 + x? /[2+ (1 + x??] as a composition of simpler functions.

(a) We calculate 7(x) = f(g(x)) by writing v = g(x) and substituting in f(u).
We get u= (x?+ 1)° and so

h(x) = f(u) = >+ 2= ((x* + 1)2)

() (fo x)=f(gx)=Vg(x) =yx’—5.
(g°N(x) =g(f(x) =[f(x)]~5

—(x) =5=x"2=5.

The functions f o g and g o f are certainly different.
(c) Let g(x) =1+ x? and f(u) =u /(2 + »°). Then the given function can be
written as fo g. A

3 6
+2=(x"+ 1)y +2

w

Calculator Discussion

On electronic calculators, several functions, such as 1 /x, x%, \x , and sinx, are
evaluated by the push of a single key. To evaluate the composite function f o g
on x, you first enter x, then push the key for g to get g(x), then push the key
for f to get f(g(x)). For instance, let f(x) = x?, g(x)=sinx. To calculate
(fog)x)=flg(x)= (sinx)? for x = 32 (degrees), we enter 32, then press the
sin key, then the x? key. The result is 32—0.52991926 — 0.28081442. Notice
that (g © f)(x) = sin(x?) is quite different: entering 32 and pressing the x* key
followed by the sin key, we get 32— 1024 - —0.82903756. A

Do not confuse the composition of functions with the product. We have

(fe)(x) = f(x) g(x),

while

(fo &) (x)=f(g(x))
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In the case of the product we evaluate f(x) and g(x) separately and then
multiply the results; in the case of the composition, we evaluate g(x) first and
then apply f to the result. While the order of f and g does not matter for the
product, it does for composition.

Composition of Functions

The composition fo g is obtained by writing u = g(x) and evaluating
f(u). To break up a given function A(x) as a composition, find an
intermediate expression u = g(x) such that #(x) can be written in terms
of u.

The derivative of a composite function turns out to be the product of the
derivatives of the separate functions. The exact statement is given in the
following box.

Chain Rule

To differentiate a composition f( g(x)), differentiate g at x, differentiate f
at g(x), and multiply the results:

(fo8)(x)=[(8(x)) &(x)
In Leibniz notation,

&y _d du

dx du dx
if y is a function of ¥ and « 1s a function of x.

A complete proof of the chain rule can be given by using the theory of limits
(see Review Exercise 99, Chapter 11). The basic argument, however, is simple
and goes as follows. If x is changed by a small amount Ax and the
corresponding change in u = g(x) is Au, we know that

oy du _ o Au
§(x)= dx AI;IEO Ax
Corresponding to the small change Au is a change Ay in y = f(u), and
=Y - m W
)= du _Alzil—rfoﬂ'

To calculate the rate of change dy /dx, we write

Y m Y~ fim élé.‘i=(1im Ay)( lim A“)

dx  ax>0 Ax  ax—>0 Au Ax Ax—0 Au J\ax—0 Ax

—{ tim VN i A\ D odu _ :
= (dim, 5 ) im, §%) = G & =92
In going to the second line, we replace Ax—>0 by Au—0 because the
differentiable function g is continuous, i.e., Ax = 0 implies Au— 0, as we saw
in Section 1.3.

There is a flaw in this proof: the Au determined by Ax could well be zero,
and division by zero is not allowed. This difficulty i1s fortunately not an
essential one, and the more technical proof given in Chapter 11 avoids it.

Notice that the chain rule written in Leibniz notation is closely related to
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Example 5

Solution

Exampie 6

Solution

Example 7

Solution

Exampie 8

Solution

Example 9

Solution

our argument and is easy to remember. Although du does not really have an
independent meaning, one may ‘“cancel” it informally from the product
(dy/du) - (du/ dx) to obtain dy /dx.

A physical model illustrating the chain rule is given at the end of this
section.
Verify the chain rule for f(u) = »? and g(x) = x> + 1.

Let A(x) = f(g(x))=[g(x)]* = (x*+ 1)?=x°+2x>+ 1. Thus A'(x) = 6x° +
6x2 On the other hand, since f'(u) = 2u and g'(x) = 3x?,

F(g(x) - g(x)=(2-(x*+ 1))3x> = 6x° + 6x°.
Hence the chain rule is verified in this case. 4

Let us check that the power of a function rule follows from the chain rule: If
y =[g(x)", we may write u = g(x), y = f(u) = u". Since dy/du = nu""", the
chain rule gives

d) . . n—1 .,

=L =f(g(NEx) =n[g(x)]" " ().

This calculation applies to negative or zero powers as well as positive ones.
Thus the power of a function rule holds for all integer powers.

Let f(x) = 1/[(3x* — 2x + 1)'®]. Find f'(x).
We write f(x) as (3x? — 2x + 1) '%. Thus
fi(xy=—1003x> —2x + 1) '"“(6x —2). &

The chain rule also solves the problem which began the section.

Differentiate yx* — 5.
In Example 4(b) we saw that x> — 5 =1u if u= x> — 5. Thus, if y = x> — 5
=Vu, then dy/du = 1/2Ju (Example 4, Sect. 1.3), and du/dx = 3x2 so

d _dyodu_ 1 g0 3%

dx du dx 2Wu 2x3._5'A

If A(x)=f(x?), find a formula for A’(x). Check your formula in the case
fu) = u’.

Let u=g(x)=x% so h(x)=f(u). Then h'(x)=f'(u)- g'(x)= f(x?) 2x.
Thus A'(x) = f/(x?) - 2x.

If f(u)=1u> then f'(u)=3u’ and f(x?)=3x* Thus, A'(x)=3x* 2x
= 6x°. In fact, h(x) = (x%y’ = x° in this case, so differentiating 4 directly gives
the same result. A
Use the chain rule to differentiate f(x) = ((x*+ 1)+ 1)*. (Do not expand!)

Letu = (x*+ 1)+ 1 and y = u*, so y = f(x). By the chain rule,
dy _dy du _ , 3du _ 2 20 3 du
_____ 4L =a((P+ )7+ 1) T

To calculate du/dx we use the chain rule again (or the power of a function
rule):

di o L2+ 1)+ 1] =20x2 + 1) 2x.
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Thus

dy 20 3 19
=P+ DT+ 1) 207+ 1) 2x
3
= 160x((x2+ 1)+ 1) (> + 1) &

The following examples require us to translate words into equations before
using the chain rule.

The population of Thin City is increasing at the rate of 10,000 people per day
on March 30, 1984. The area of the city grows to keep the ratio of 1 square
mile per 1000 people. How fast is the area increasing per day on this date?

Let A = area, p = population, ¢ = time (days). The rate of increase of area
with respect to time is dA /dt = (dA/dp)(dp/dt) = 1z - 10000 = 10 square
miles per day. A

A dog 2 feet high trots proudly away from a 10-foot-high light post.
When he is 8 feet from the post’s base, ke is moving ot
D feet per Second. Hou Fast 1§ the tip of Wis shadow moving?

Refer to Fig. 2.2.1. By similar triangles, y /(y — x) = 10/2; solving, y = 5x /4.
Then dy /dt = (dy /dx)(dx /dt)y = (5)3 = 33 feet per second. A

Slope = 4'(xy) Slope = f'(xq +¢)

1
|
|
|
y=hix)=f(x +0) i y=fx)
|
|
T

Figure 2.2.1. Dog trotting
proudly away from lamp
post.

¢ o e s e e

0 X+

Figure 2.2.2. The geometric
interpretation of the
shifting rule.

Another special case of the chain rule may help you to understand it.
Consider A(x) = f(x + ¢), ¢ a constant. If we let u= g(x)=x + ¢, we get
g'(x)=1,s0

H(xy=f'(gx)) - gx)=f(x+c)y - 1=f(x+c).

Note that the graph of 4 is the same as that of f except that it is shifted ¢
units to the left (see Fig. 2.2.2). It is reasonable, then, that the tangent line to
the graph of % is obtained by shifting the tangent line to the graph of f. Thus,

in this case, the chain rule is telling us something geometrically obvious. One
might call this formula the shifting rule. In Leibniz notation it reads

L f(x + 9|, = 4 f)

Xp+ ¢
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Supplement to Section 2.2
A Physical Model for the Chain Rule

When you change altitude rapidly, as in a moving car or plane, a pressure
difference develops between the inside and outside of your eardrums, and
your ears “pop.” Three variables relevant to this phenomenon are the time ¢,
the altitude w, and the air pressure p. Ear popping occurs when the rate of
change dp/dt is too large.

The rate dp / dt is hard to measure directly. On the other hand, du/dr can
be determined if we know the altitude as a function of ¢. For instance, if we
are rolling down a hill at 100 kilometers per hour, we could have du /dt = —3
meters per second. The rate of change dp/du is known to meteorologists; near
sea level, it is about —0.12 gsc per meter. (The unit “gsc” of pressure is
“grams per square centimeter”’; the rate of change is negative because pressure

decreases as altitude increases.)
Now the chain rule enables us to calculate how fast the pressure is

changing with time:

— = ==+ =~ = (—0.12)(— 3) gsc per second = 0.36 gsc per second.

dt du dt

This rate of pressure increase is fast enough so that the ears’ internal pressure
control system cannot keep up with it, and they “pop.”

Exercises for Section 2.2

Find the derivatives of the functions in Exercises 1-10.

1.
L2+ 3x + 1)

—_—
—

12.

SoXNoLALN

(x + 3)*

(x> + 10x)!®

. (s4+4s3+3sz+2s+ )8

(x> +8x)° x

2+ 2 +8)
(x2+2)(x° +8)

(x> +2°(x® + 2x + DO
(7 + D+ D%y +3)
((XZ _ 1)2 + 3)10

. Let g(x): x+1 and f(u): uz, Find fO g and

gef
Let A(x) = x** + 3x'? + 1. Write A(x) as a com-
posite function f( g(x)) with g(x) = x'2,

Find fo g and g o fin each of Exercises 13~16.

13.
14.

15.

16.

glx)= X f(x)=(x— 2)3.
glx)=x" f(x)=x".
g(x) = Til—;;f(X)=% -

C3x =2 0 2x—T
8= Hr /=553

Write the functions in Exercises 17-20 as compositions
of simpler functions.

17.
18.
19.
20.

h(x) =\/4x§ +5x+3.
R =+l +r .

(1l —u\s
ma =15 )"
h(x) = ((x*+ D+ (x* + D>+ )2

Verify the chain rule for f(u«) and g(x) given in Exer-
cises 21-24.

21, f(u) = u?, g(x)=x2—1

22, f(w)=u? g(x)=x+1

23. f(u) = w?, g(x)=Vx

24. f(u)=\u, g(x)= x?
Use the chain rule rule to differentiate the functions in
Exercises 25-34.

25. (x?2—6x + 1) 26. (x — 2x?)?
5
7. 2+ 2x 28 1
3+ 5x° (x+ 5)c)4
29, ((x%+ 2% + 1y 30, — 3
s [(x+2)+4]
2
(x2 +3) 1 ,
M — 32 ———[2x+ 1D’ + 5]
[14+(x2+3)] 2+

33. 4x® + 5x2 34, 1+ /%

35. If A(x) = x3f(2x?), find a formula for A’(x).

36. If h(x) = f(g(x?)), find a formula for A’(x).

37. Given three functions, f, g, and A:

(a) How would you define the composition
fogoh?

(b) Use the chain rule twice to obtain a formula
for the derivative of fo g o A.

38. If h(x) = f(g(x* + 2)) + g(f(x?), find a formula
for h'(x).

39. Fat City occupies a circular area 10 miles in
diameter and contains 500,000 inhabitants. If the
population is growing now at the rate of 20,000
inhabitants per year, how fast should the diame-



40.

41.

42.

43.

45,

46.

ter be increasing now in order to maintain the
circular shape and the same population den-
sity (= number of people per square mile). If
the population continues to grow at the rate of
20,000 per year, how fast should the diameter be
increasing in 5 years? Give an intuitive explana-
tion of the relation between the two answers.
The radius at time ¢ of a sphere § is given by
r=1>—2¢+ 1. How fast is the volume V of S
changing at time ¢ = §,1,2?
The kinetic energy K of a particle of mass m
moving with speed v is K= lmo’ A particle
with mass 10 grams has, at a certain moment,
velocity 30 centimeters per second and accelera-
tion 5 centimeters per second per second. At
what rate is the kinetic energy changing?

(a) At a certain moment, an airplane is at an
altitude of 1500 meters and is climbing at
the rate of 5 meters per second. At this
altitude, pressure decreases with altitude at
the rate of 0.095 gsc per meter. What is the
rate of change of pressure with respect to
time?

(b) Suppose that the airplane in (a) is descend-
ing rather than climbing at the rate of 5
meters per second. What is the rate of
change of pressure with respect to time?

At a certain moment, your car IS consuming

gasoline at the rate of 15 miles per gallon. If

gasoline costs 75 cents per gallon, what is the
cost per mile? Set the problem up in terms of
functions and apply the chain rule.

. The price of eggs, in cents per dozen, is given by

the formula p = 55/(s ~ 1)%, where s is the sup-
ply of eggs, in units of 10,000 dozen, available to
the wholesaler, Suppose that the supply on July
1, 1986 is s = 2.1 and is falling at a rate of 0.03
per month. How fast is the price rising?

If an object has position (> + 4)° at time ¢, what
is its velocity when ¢t = —1?

If an object has position (¢ + 1)/(#* — 1) at time
t, what is its velocity when ¢ = 2?7

Find the second derivatives of the functions in Exer-
cises 47-50.

47.
48.
49.
50.

*51.

(x + 13

(= 18

(x* + 10x% + 1)8

(x*+ 1P+ 172

(a) Find a “stretching rule” for the derivative of
f(ex), ¢ a constant.

(b) Draw the graphs of y =1+ x? and of y =
1 + (4x)* and interpret the stretching rule
geometrically.

*52.

*53.

*54.

*55.

*56.

*57.

*58.

*59.

*60.
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Prove that (d/dx)(u") = nu"~ 'du/dx for all nat-
ural numbers n as follows:

(a) Note that this is established for n = 1,2, 3 at
the beginning of this section.

(b) Assume that the result is true for n — 1, and
write 4" = u(u"""). Now differentiate using
the product rule to establish the result for n.

(c) Use induction to conclude the result for
all n. (See Exercise 65, p. 69.)

Find a general formula for (d2/dx?)(u"), where

u = f(x) is any function of x.

(a) Let i be the ‘““identity function™ i(x) = x.

Show that i o f= fand fo i = f for any function

f. (b) Verify the chain rule for f= fo i,

Let f and g be functions such that fo g=1,

where / is the function in Problem 54. Find a

formula for f'(x) in terms of the derivative of g.

Use the result of Exercise 55 to find the deriva-

tive of f(x) = 3/x by letting g(x) = x>.

Find a formula for the second derivative of fo g

in terms of the first and second derivatives of f

and g.

Show that the power of a function rule for nega-

tive powers follows from that rule for positive

powers and the reciprocal rule.

For reasons which will become clear in Chapter

6, the quotient f'(x)/f(x) is called the logarithmic

derivative of f(x).

(a) Show that the logarithmic derivative of the
product of two functions is the sum of the
logarithmic derivatives of the functions.

(b) Show that the logarithmic derivative of the
quotient of two functions is the difference of
their logarithmic derivatives.

(c) Show that the logarithmic derivative of the
nth power of a function is n times the loga-
rithmic derivative of the function.

(d) Develop a formula for the logarithmic deriv-
ative of

AT TR - - Lf(ol™

in terms of the logarithmic derivatives of f
through f;.

(e) Using your formula in part (d), find the
ordinary (not logarithmic) derivative of

(DD (x+T)
()c4 + 3)17(X4 + 2x + l)5 ‘

If you have enough stamina, compute f’(x)
without using the formula in part (d).
Differentiate (1 + (1 + (1 + x%)®®)3.

f(x)




118

Chapter 2 Rates of Change and the Chain Rule

2.3

Exampie 1

Solution

Fractional Powers and
Implicit Differentiation

The power rule still holds when the exponent is a fraction.

In this section we extend the power rule to include fractional exponents by
using a method called implicit differentiation, which can be applied to many
other problems as well.

Let us begin by trying to find dy/dx when y = x}/" ="/, where n is a
positive integer.! At the moment, we shall simply assume that this derivative
exists and try to calculate its value. This assumption will be justified in Section
5.3, in connection with inverse functions.

We may rewrite the relation y = x'/" as y" = x, so we must have

4 (3= (x). (1)

Recalling that y is a function of x, we may evaluate the left-hand side of (1)
by the chain rule (or the power of a function rule) to get

d 1
T =i (2)
The right-hand side of (1) is simply
dx _
i 1. (3)
Substituting (2) and (3) into (1) gives
_y dy
n—170 _
ny e 1
which we may solve for dy /dx to obtain
dy 1 1l a1l emy 1 (-
dx_ny"'l—ny Sa ) E g —n” '
Thus
d P | ny -
oy (M=, (4)

Note that this rule reads the same as the ordinary power rule: “Bring down
the exponent as a multiplier and then decrease the exponent by one.” The
special case (d/dx)(x'/?)=1x "'/ has already been considered in Example
4, Section 1.3.

Differentiate f(x) = 3%x .

dasmoqd 53 qn-1-3 a5 3
dx3‘/; 3dxx 5% 5% 5x4/5'A

Next, we consider a general rational power f(x) = x’, where r = p/ ¢ is a ratio
of integers. Thinking of x?/9 as (x'/9)?, we set g(x)= x'/9, so that f(x)
= [g(x)]”. Then, by the (integer) power of a function rule,

L[ gx)] =pl 2] g(x)

"Note that x'/" is defined for all x if 7 is odd but only for nonnegative x if n is even., A brief
review of fractional exponents may be found in Section R.3.



2.3 Fractional Powers and Implicit Differentiation 119

so by formula (4) with 1/# replaced by 1/¢4, we have

A wrliy= D (/e = gyt L g
e (7D = g Y = py
=L xtr-v/a0-9/a= P yr-a/a= L o/,
q q q

We conclude that differentiation of rational powers follows the same rule
as integer powers,

Rational Power Rule

To differentiate a power x” (r a rational number), take out the exponent
as a factor and then reduce the exponent by 1:

1

d IN o el
E(x)—rx .

(The formula is valid for all x for which the right-hand side makes
sense.)

Example 2 Differentiate f(x) = 3x>+ (x> + x'/%)/Vx .
. rpon_  d 2 3/2 ~1/6
Solution fl(x)= E(?yx + x4 x71/%)
x»7/6

=6x+3x"/2—~1

_ _ 1
=6x + 3x T A

We can combine the rational power rule with the chain rule to prove a
rational power of a function rule. Let y =[f(x)]" and let » = f(x) so that
y=u'. Then

F= S B )] ()

Rational Power of a Function Ruie

To differentiate a power [f(x)]" (r a rational number), take cut the
exponent as a factor, reduce the exponent by 1, and multiply by f'(x):

L 0] = f(0)] F()

Example 3 Differentiate g(x) = (9x* + 10)*/.
Solution Here f(x) =9x> + 10, r = §, and f(x) = 27x*. Thus

g(x) = 3(9x° + 10)"°. 27x2 = 45x%(9x* + 10)”°. A

The rules for rational powers can be combined with the quotient rule of
differentiation, as in the next example.
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1/2 3/2
Example 4 Differentiate X T X~

x4 1

Solution We use the quotient and rational power rules:

d [ x'/*+ x3?
dx x4+ 1

B [x3/2+ 1](d/dx)[x'/2+ x3/2] —[x'/2+ x3/2](d/dx)[x3/2+ 1]
B (/2417
[x3/2+ 1][%x—l/2+%xl/2} _[xl/2+x3/2][%xl/2}
x*+2x¥+ 1

_ (3x+3x*+ 1x— 12 4 1x'%) = (3x + 3x%)

x>+2x3% 41
_3x12 4 x /= 2x
2(x3 +2x3% + D

The method which we used to differentiate y = x'/" namely differentiating
the relation y” = x and then solving for dy / dx, is called implicit differentiation.
This method can be applied to more complicated relationships such as
x*+y?=1or x*+ xy + y° =2 which define y as a function of x implicitly
rather than explicitly. In general, such a relationship will not define y uniquely
as a function of x; it may define two or more functions. For example, the
circle x>+ y? =1 is not the graph of a function, but the upper and lower
semicircles are graphs of functions (see Fig. 2.3.1).

y 1 v ¥

Figure 2.3.1. Parts of the
circle x2 + y2 =1 are the
graphs of functions.

Example 5 If y = f(x) and x* + y? = 1, express dy/dx in terms of x and y.
Solution Thinking of y as a function of x, we differentiate both sides of the relation
x* + y? =1 with respect to x. The derivative of the left-hand side is
d .2 n_d 2, .d 2_ dy
dx(x +y) dxx +dxy 2x+2ydx,
while the right-hand side has derivative zero. Thus
dy _ dy _ «x
2x+2ya—0 and so pi y'A

The result of Example 5 can be checked, since in this case we can solve for y
directly:

y=i\/1—x2.

Notice that the given relation then defines rwo functions: f,(x) =y1 — x* and




Figure 2.3.2. Tf x2 + 2 = 1,
the formula dy /dx =

— x/y means that the
tangent line to a circle at a
point on the circle is
perpendicular to the line
from that point to the
center of the circle.

Exampie 6

Solution
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fo(x)= —y1 — x*. Taking the plus case, with u=1— x* and y =u, the
chain rule gives

dx du dx 2\/;
=__L___(_2x)=_:x_=_:£’
2y1 — x? 1 - x? y

so it checks. The minus case gives the same answer.

From the form of the derivative given by implicit differentiation, dy /dx
= —x/y, we see that the tangent line to a circle at (x, y) is perpendicular to
the line through (x, y) and the origin, since their slopes are negative recipro-
cals of one another. (See Fig. 2.3.2.) Implicit differentiation often leads
directly to such striking results, and for this reason it is sometimes preferable
to use this method even when y could be expressed in terms of x.

It

_¥y
Slope =3

(x.1)

|

Slope = -

xr4pl=i

There is a device which may help you to remember that the chain rule
must be used. In Example 5, if we keep the notation f(x) for y, then the
relation x? + y* = 1 becomes x> + [ f(x)* = 1, and differentiating with respect
to x gives 2x + 2f(x)f'(x) = 0. Now we solve for f'(x) to get f'(x) = —x/f(x)
or, in Leibniz notation, dy /dx = — x /y, just as before. Once you have done a
few examples in this long-winded way, you should be able to go back to y and
dy /dx without the f.

The following is an example in which we cannot solve for y in terms of x.

Find the equation of the tangent line to the curve 2x° + y* = 9xy at the point
(1,2).

We note first that (1,2) lies on the curve, since 2(1)° + 2% = 9(1)(2). Now
suppose that y = f(x) and differentiate both sides of the defining relation. The
left-hand side gives

d 6 4 5 3d_y
dx(2x +y)=12x"+4y i’

while the right-hand side gives

d _ &
e (9xy) =9y + 9x i

Equating both sides and solving for dy /dx, we have

d d
5 34y _ y
12x° + 4y e 9y + 9x o

(4y> — 9x) Z—); =9y — 12x°,

d_y_ 9y—l2x5
dx 4y —9x
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Whenx=landy=2,

&y _ ) -12() 13- p _

dx 42y’ =9

Thus, the slope of the tangent line is £;

D)

32—

9 37

by the point-slope formula, the

equation of the tangent lineisy ~2=F%(x —1),ory=£x+£2. A

implicit Differentiation
To calculate dy /dx if x and y are related by an equation:

1. Differentiate both sides of the equation with respect to x, thinking of
y as a function of x and using the chain rule.
2. Solve the resulting equation for dy /dx.

Exercises for Section 2.3

Differentiate the functions in Exercises 1-24.

1. 10x'/8 2. X33

3. 8x!/4— x72/3 4. 8x*—3x~3/4

5. 3x2/3 — (5x)'/? 6. x2—3x'/?

7. X3 (x4 x*3) 8. (x +2)¥2/x ¥ 2

9. (x>+ 1)/ 10. (x'/3 4 x*/3H\/3

i, L 2 — 1
Vx 7 +5x +2
,/ 2 1

13. ¥ + 1 14, x\ﬂm
XT— 1 GBx* + x)

15. V(x +3)' =4 16. 3\/;—(%)+5

17. X 18. -
34 x4 x° Jx2 12

19. W 20. ok
1+x ¥ +2
3 3x2 —

21. \/; 22. M_)
x2+2 3

23 6x2+2x +1 24 3\/.—X—
Y x+2x° Y V3xE+ 14 x

Find the indicated derivatives in Exercises 25-28.
d 2 7/8
25, £ /
( g )(x +95)
d

2
26. (
dx

)
27. f(7), where f(x)=7%x
d 1/4 4
28. [ L) x4+ *)
< dx )( \/; x =8l

Find the derjvatives of each of the functions in Fxer-
cises 29-34.

29, f(x)= x3/ll _ xl/S
yl/8
y—2

)(x’), where r is rational

1
30 k(S) = ;;75—_'*;

31. h(y) = 32, g()=1(¥3+ 1)

33.

34.

35.

36.

37.

38.

39.

40.
41.
42.
43.
44.
45,
46.

47.

x'2 41
x'/2 -1

I(x) ={

-

m(u) = (u° = 1)7%/7

If x?+ y>=3, compute dy/dx when x =0

and y =3

If x*+ y= xp, compute dx/dy in terms of x

and y.

Suppose that x* + y? + y — 3 =0.

(a) Compute dy/dx by implicit differentiation.

(b) What is dy/dx when x=1,y = 1?

(c) Solve for y in terms of x (by the quadratic
formula) and compute dy /dx directly, Com-
pare with your answer in part (a).

Suppose that xpy +yx*—y =7.

(a) Find dy/dx.

(b) Find dx/dy.

(c) What js the relation between dy/dx and
dx/dy?

Suppose that x*/(x + y?) = y2/2.

(a) Finddy/dx when x=2,y=2.

(b) Finddy/dx when x=2,y=—2.

Let (u® + 6)(v® + 1) = 10uv. Find du/dv and

do/du when u=2and v = L

Find the equation of the tangent line to the curve

x*+y*=2whenx=y=1.

Find the equation of the tangent line to the curve

2x% 4 2xy + y* =8 when x =2 and y = 0.

Find (d?/dx*)(x'/? — x*/3),

Find (d%/dx®)(x/\1 + x?).

Find the equation of the tangent lire to the

graph of y =1 — x* at the point (3 /2,1/2).

Find the equation of the line tangent to y

=(x"24 xVH B atx=1,

Let x* + y*=1. Find dy/dx as a function of x

in two ways: by implicit differentiation and by

solving for y in terms of x,
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Differentiate the function (x* +2)/yx*> + 1 inat
least two different ways, Be sure that the answers
you get are equivalent. (Doing the same problem
in several ways is a good method for checking
your calculations, useful on examinations as well
as in scientific work.)

Find linear approximations for the expressions in Exer-

cises 49-52,
49, 41597 50. (4.02)3/2
51. (—26.98)%/3 52, 3122
53. The mass M of the first x meters of a concrete

54,

55.

beam is M =24(2+ x'/3* kilograms.
Find the density dM /dx.

The average pulse rate for persons 30 inches to
74 inches tall can be approximated by y =
589/yx beats per minute for a person x inches
tall,

(a) Find dy/dx, and show that it is always
negative.

The value of |dy/dx| at x =65 is the de-
crease in beats per minute expected for a
l-inch increase in height. Explain.

Do children have higher pulse rates than
adults according to this model?

Let y = 24\/x be the learning curve for learning y
items in x hours, 0 < x < 5. Apply the linear
approximation to estimate the number of new
items learned in the 12-minute period given by
I <x<12,

(b)

©
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56.

57.

58.

59.

*60.
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The daily demand function for a certain man-
ufactured good is p(x) =75+ 4{2x — (x%/2),
where x is the production level,

(a) Find dp/dx. Interpret.

(b) Find the production level x for which dp/dx
= 0. Interpret.

The fundamental period for vibration P and the

tension T in a certain string are related by

P =y32/T seconds. Find the rate of change of

period with respect to tension when T'=9 1bs,

Lions in a small district in an African game

preserve defend an exclusive region of area A

which depends on their body weight W by the

formula 4 = W',

(a) Find d4/dW.

(b) By what percentage should the defended
area increase after a 200-1b lion undergoes a
20-1b weight gain? (Use the linear approxi-
matjon.)

The object distance x and image distance y sat-

isfy the thin lens equation 1/x+ 1/y=1/f,

where f is the focal length,

(a) Solve for y as a function of x when f= 50
millimeters.

(b) Find dy/dx.

(¢) Find all (x, y) such that (d/dx)(x + y)=0.

Using implicit differentiation, find the equation

of the tangent line at the point (x4, yo) on the

circle (x ~ a)? + (y — b)*> = r2, Interpret your re-
sult geometrically. (a, b, and r are constants.)

and Parametric Curves

If two quantities satisfy an equation, their rates of change can be related by

implicit differentiation.

Suppose that we have two quantities, x and y, each of which is a function of
time /. We know that the rates of change of x and y are given by dx /dt and
dy /dt. If x and y satisfy an equation, such as x* + y* =1 or x* + y® + 2y = 5,
then the rates dx/dt and dy /dt can be related by differentiating the equation
with respect to ¢ and using the chain rule.

Example 1
dx /dt and dy /dt.

Solution
as functions of ¢:

Suppose that x and y are functions of ¢ and that x* + Xy +y4 = 1. Relate

Differentiate the relation between x and y with respect to ¢, thinking of x and y

gt—(x4+xy +y% =0,

ydx | dx
4x dt+dty

+x‘—1)—/

dt

+ 4y3

&

7 = 0.
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e

(x,)
) )

Figure 2.4.1. If x and y are
functions of ¢, the point
(x, y) follows a curve as ¢
varies,

—

Exampie 2

Solution

0t <

/

< <0

Figure 2.4.2. As ranges
from — o0 to + o0, the
point (¢4, ¢?) traverses the
parabola twice in the
directions shown.

We can simplify this to

Z)i__ 4x3+y d_x
dt x+4y3 dt

which is the desired relation. A

If you have trouble remembering to use the chain rule, you can use a device
like that following Example 5 in Section 2.3. Namely, write f(¢) for x and g(¢)
for y, then differentiate the relation (such as [ f(1)]* + f(H)g(t) +[g(N]*=1)
with respect to r. This will give a relation between f'(¢), g'(¢), f(¢), and g(¢).
Once you have done a few examples in this long-winded way, you should be
ready to go back to the d/dr’s.

Related Rates

To relate the rates dx/dt and dy/dt if x and y satisfy a given equation:

1. Differentiate both sides of the equation with respect to ¢, thinking of
x and y as functions of ¢.

2. Solve the resulting equation for dy /dt in terms of dx /dt (or vice versa
if called for).

There is a useful geometric interpretation of related rates. (This topic is treated
in more detail in Section 10.4.) If x and y are each functions of ¢, say x = f(¢)
and y = g(¢), we can plot the points (x, y) for various values of ¢. As ¢ varies,
the point (x, y) will move along a curve. When a curve is described this way,
it is called a parametric curve (see Fig. 2.4.1).

If x = t* and y = 1%, what curve does (x, y) follow for —oo < t < c0?

We notice thaty2 = x, so the point (x, y) lies on a parabola. As ¢ ranges from
— 00 to ¢o, y goes from + oo to zero and back to + oo, so (x, y) stays on the
half of the parabola with y > 0 and traverses it twice (see Fig. 2.4.2). A

It may be possible to describe a parametric curve in other ways. For instance,
it may be described by a relation between x and y. Specifically, suppose that
the parametric curve x = f(#), y = g(t) can be described by an equation

= y = h(x) (the case x = k(y) will be similar). Then we can differentiate by the

chain rule. Using Leibniz notation:
dy _dy dx  d _d/dt

dr  dx dr dx  dx/dt’

This shows that the slope of the tangent line to a parametric curve is given by
(dy /dr)/(dx /).

Parametric Curves

As ¢ varies, two equations x = f(¢) and y = g(¢) describe a curve in the
plane called a parametric curve. The slope of its tangent line is given by

dy _ dy/dt . dx
x aja a7l




Exampie 3

Solution

Exampie 4

Solution

Exampie 5

Solution

Example 6
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Find the equation of the line tangent to the parametric curve given by the
equations x=(1+ )+ L y=r++2atr=1

Here the relation between x and y is not clear, but we do not need to know it.
(We tacitly assume that the path followed by (x, y) can be described by a
function y = A(x).) We have

‘;—’t‘ =41+ 32420 =12(1 + Y12 + 21 and ‘%’ =564+ 21,
so the slope of the tangent line is

dy _dy/dr _ 514+ 21 _ 503+ 2

dx dx/dt 040y 42 1200+ 22 42

Attt =1, we get

dx 12.2342 98 14~
Since x =17 and y =4 at t = 1, the equation of the tangent line is given by
the point-slope formula:

y A= h(x =1

-x 439
Y=t A

Show that the parametric equations x = at + b and y = ¢t + d describe a
straight line if @ and ¢ are not both zero. What is its slope?

Multiplying x = at + b by ¢, multiplying y = ct + d by a, and subtracting, we
get

cx — ay = be — ad,
so y = (c/a)x + (1/a)ad — bc), which is the equation of a line with slope
c/a.(If a =0, x is constant and the line is vertical; if ¢ were also zero the line

would degenerate to a point.) Note that the slope can also be obtained as
(dy/dt)/(dx/drt), since dy/dt = c and dx/dt = a. A

Suppose that x and y are functions of time and that (x, y) moves on the circle
x?+ y?=1.If x is increasing at 1 centimeter per second, what is the rate of
change of y when x = 1/y2 and y =1/y2?

Differentiating x>+ y>=1 gives 2x(dx/dr) + 2y(dy/dr)=0; so dy/dt =
(—x/yNdx/dt). 1f x =y =1/\2,dy/dt = —dx/dt = — 1 centimeter per sec-
ond. A

In word problems involving related rates, the hardest job may be to translate
the verbal problem into mathematical terms. You need to identify the vari-
ables which are changing with time and to find relations between them. If
some geometry is involved, drawing a figure is essential and will often help
you to spot the important relations. Similar triangles and Pythagoras’ theorem
are frequently useful in these problems.

A light L is being raised up a pole (see Fig. 2.4.3). The light shines on the
object Q, casting a shadow on the ground. At a certain moment the light is 40
meters off the ground, rising at 5 meters per minute. How fast is the shadow
shrinking at that instant?
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Figure 2.4.3. At what rate
is the shadow shrinking?

Solution

Exampie 7

Soiution

Examplie 8

Solution

Figure 2.4.4. A conical
tank partially filled with
water.

Chapter 2 Rates of Change and the Chain Rule

}10 meters

AL A

Shadow 20 meters

Let the height of the light be y at time ¢ and the length of the shadow be x. By
similar triangles, x/10= (x + 20)/y; i.e., xy = 10(x + 20). Differentiating
with respect to ¢, x(dy/dt) + (dx /dt)y = 10(dx /dt). At the moment in ques-
tion y =40, and so x-40=10(x +20) or x =%. Also, dy/dr =5 and so
Q.5+ 40(dx /dty = 10(dx / dt). Solving for (dx/dt), we get dx/dt = — 2.
Thus the shadow is shrinking at 1 meters per minute. A

A spherical balloon is being blown up by a child. At a certain instant during
inflation, air enters the balloon to make the volume increase at a rate of 50
cubic centimeters a second. At the same instant the balloon has a radius of 10
centimeters. How fast is the radius changing with time?

Let the radius of the balloon be denoted by r and the volume by V. Thus
V =4%ar® and so

av _ g2 dr
ar 4qr 7R
At the instant in question, dV /dt = 50 and r = 10. Thus
- 2dr
50 = 47 (10) a
and so
dr 50 |

i 4007 82~ 0.04 centimeters per second. A

A thunderstorm is dropping rain at the rate of 2 inches per hour into a conical
tank of diameter 15 feet and height 30 feet. At what rate is the water level
rising when the water is 20 feet deep?

Figure 2.4.4 shows top and side views of the partially filled tank, both of
which will be useful for our solution.

We denote by # the height of the water in the tank, so that dh/dt is the
rate to be found. To proceed, we need to use the fact that the rate of rainfall is
2 inches per hour. What this means is that the water level in a cylindrical tank
would rise uniformly at the rate of 2 inches per hour, so that the volume of the
water pouring every hour into a circle of diameter 15 feet is 7 - (7.5)* - 1 cubic
feet = 2 7 cubic feet. It is useful, then, to introduce the variable V' represent-
ing the volume of water in the tank; we have dV/dt = 757 /8 cubic feet per
hour.

Now V and A are related by the formula for the volume of a cone:
V= 3l7rr2h, where 7 is the radius of the “base” of the cone, in this case, the
radius of the water surface. From Fig. 2.4.4, we see, using similar triangles,
that r/h=75/30=1/4, so r="1h, and hence V =} ah’. Differentiating
and using the chain rule gives dV/dt = L wh?dh/ds. Inserting the specific
data A =20 and 4V /dt =% 7 gives the equation B 7 = L7 -400dh/dr =
257 dh /dt, which we may solve for dh /dt to get dh/dt = . This is in feet per
hour, so the water level is rising at the rate of 41 inches per hour. A




2.4 Related Rates and Parametric Curves

127

Exercises for Section 2.4

In Exercises 1-8, assume that x and y are functions of
t. Relate dx /dt and dy/dr using the given relation.

1.

20.

21.

22.

xz——y2=3 2. x4+y=4
x——yz—-y3=4 4.8x2+9y2=5
x+yi=y 6. yx+2y =x

VX =y =5 8. (x*+ 4+ y}H/2=5

. Sketch the curve defined by the parametric equa-

tions x =% y=1-1t —00 <t < 0.

. Sketch the curve described by x =3r+2, y

=4t~ 8, —00 < 1 < 0.

. What curve do the parametric equations x = 2

and y = ¢ describe?

If x=(1+¢) and y = (I + 1)*, what curve does

(x, y) follow for —o0 < t < ®0?

. Find the equation of the tangent line to the

parametric curve x = 1%, y = > at t =5,

. Find the equation of the line tangent to the

parametric curve x =2+ 1, y=1/(t*+ 1) at
=2

. Find the equation of the tangent line to the

parametric curve

2
x=yt*+ 62+ 8¢, y=t+l
Vt =1

at ¢ =3,

. (a) Find the slope of the parametric curve y

=442, x=8ratr=1.

(b) What relationship between x and y is satis-
fied by the points on this curve?

(c) Verify that dy/dx = (dy/dt)/(dx/dr) for
this curve,

. Suppose that xy = 4. Express dy/dt in terms of

dx/dt when x = 8 and y = 1.

If x*+ y?=x%/y and dy/dt =3 when x =

y =42, what is dx/dt at that point?

. Suppose that x? +y2 =t and that x =3, y =4,

and dx/dr =7 when t=25. What is dy/dr at

that moment?

Let x and y depend on ¢ in such a way that

(x + ¥+ ¢*=2¢ and such that x =0 and y = |

when ¢ = 1. If dx /dt = 4 at that moment, what is

dy /dt?

The radius and height of a circular cylinder are

changing with time in such a way that the vol-

ume remains constant at | liter (= 1000 cubic

centimeters). If, at a certain time, the radius is 4

centimeters and is increasing at the rate of

centimeter per second, what is the rate of change

of the height?

A hurricane is dropping 10 inches of rain per

hour into a swimming pool which measures 40

feet long by 20 feet wide.

(a) What is the rate at which the volume of
water in the pool is increasing?

(b) If the pool is 4 feet deep at the shallow end

23.

24.

25.

26.

27.

28.

29.

30.

*31.

*32.

and 8 feet deep at the deep end, how fast is
the water level rising after 2 hours? (Suppose
the pool was empty to begin with.) How fast
after 6 hours?

Water is being pumped from a 20-meter square

pond into a round pond with radius 10 meters.

At a certain moment, the water level in the

square pond is dropping by 2 inches per minute,

How fast is the water rising in the round pond?

A ladder 25 feet long is leaning against a vertical

wall. The bottom is being shoved along the

ground, towards the wall at 14 feet per second.

How fast is the top rising when it is 15 feet off

the ground?

A point in the plane moves in such a way that it

is always twice as far from (0,0) as it is from

©, D.

(a) Show that the point moves on a circle.

(b) At the moment when the point crosses the
segment between (0,0) and (0, 1), what is
dy/di?

(c) Where is the point when dy/dt = dx /dr?
(You may assume that dx /dr and dy/dt are
not simultaneously zero.)

Two quantities p and ¢ depending on ¢ are

subject to the relation 1/p+ 1/g=1.

(a) Find a relation between dp/dt and dq/dr.

(b) At a certain moment, p =4 and dp/dt = 2.
What are ¢ and dq/dr?

Suppose the quantities x, y, and z are related by

the equation x> + y? + z2= 14. If dx /dt = 2 and

dy/dt =3 when x =2, y =1, and z = 3, what is
dz /dt?

The pressure P, volume V, and temperature T of

a gas are related by the law PV /T = constant.

Find a relation between the time derivatives of

P, V,and T.

The area of a rectangle is kept fixed at 25 square

meters while the length of the sides varies. Find

the rate of change of the length of one side with

respect to the other when the rectangle is a

square.

The surface area of a cube is growing at the rate

of 4 square centimeters per second. How fast is

the length of a side growing when the cube has
sides 2 centimeters long?

(a) Give a rule for determining when the tan-
gent line to a parametric curve x = f(1),
y = g(1) is horizontal and when it is verti-
cal.

(b) When is the tangent line to the curve x = 2,
y = > — ¢ horizonta]? When is it vertical?

(a) At which points is the tangent line to a
parametric curve parallel to the line y = x?

(b) When is the tangent line to the curve in part
(b) of Exercise 31 parallel to the line y = x?

(c) Sketch the curve of Exercise 31.
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*33. Read Example 8. Show that for any conical tank, ing to the area of the water surface. (In fact, this
the ratio of dh/dt to the rate of rainfall is equal result is true for a tank of any shape; see Review
to the ratio between the area of the tank’s open- Exercise 32, Chapter 9.)

2.5

Example 1

Solution

Figure 2.5.1. All these
functions have the same
derivative. Specifying
F(xg) = yg picks out one of
them.

Example 2

Solution

Antiderivatives

An antiderivative of f is a function whose derivative is f.

Many applications of calculus require one to find a function whose derivative
is given. In this section, we show how to solve simple problems of this type.

Find a function whose derivative is 2x + 3.

We recall that the derivative of x? is 2x and that the derivative of 3x is 3, so
the unknown function could be x*+ 3x. We may check our answer by
differentiating: (d/dx)(x*+3x)=2x+3. A

The function x> + 3x is not the only possible solution to Example 1; so are
x2+3x+1, x>+ 3x+2, etc. In fact, since the derivative of a constant
function is zero, x> + 3x + C solves the problem for any number C.

A function F for which F” = fis called an antiderivative of f. Unlike the
derivative, the antiderivative of a function is never unique. Indeed, if F is an
antiderivative of f, so is F + C for an arbitrary constant C. In Section 3.6 we
will show that a// the antiderivatives are of this form. For now, we take this
fact for granted. We can make the solution of an antidifferentiation problem
unique by imposing an extra condition on the unknown function (see Fig.
2.5.1). The following example is a typical application of antidifferentiation.

y=Fx)y+2
b y=EFoy+ 1
y = F{x)
—"1
y=F)~1

(Xg.Vo)

/ yr=rxy 2
— /
- 7 >
n———

The velocity of a particle moving along a line is 3¢ + 5 at time ¢. At time 1, the
particle is at position 4. Where is it at time 10?

Let F(t) denote the position of the particle at time . We will determine the
function F. Since velocity is the rate of change of position with respect to time,
we must have F'(¢) = 3¢ + 5; that is, F is an antiderivative of f(r) =3t + 5. A
function whose derivative is 3¢ is 3 ¢%, since (d/dt)} 1 = 32t = 3. Similarly, a
function whose derivative is 5 is 5¢. Therefore, we take

F(ry=3r*+5t+C,

where C is a constant to be determined. To find the value of C, we use the



Examplie 3

Solution

Example 4

Solution

Xy @
Velocity = v,

Figure 2.5.2, The body is
moving downward at ¢t =0
with velocity vg.
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information that the particle is at position 4 at time 1; that is, F(1)=4.
Substituting 1 for ¢ and 4 for F(¢) in the equation F(¢) =31+ 5t + C gives

4=3+5+C=18+¢

or C=—3, and so F(t)=%t2+ 5t — 3. Finally, we substitute 10 for ¢,
obtaining the position at time 10: F(10)=3 -100+5-10—3 =197, A

At this point in our study of calculus, we must solve antidifferentiation
problems by guessing the answer and then checking and refining our guesses if
necessary. More systematic methods will be given shortly.

Find the general antiderivative for the function f(x) = x* + 6.

We may begin by looking for an antiderivative for x*. If we guess x>, the
derivative is 5x*, which is five times too big, so we make a new guess, 1 x>,
which works. An antiderivative for 6 is 6x. Adding our two results gives
1x% + 6x; differentiating 1 x> + 6x gives x* + 6, so 1 x° + 6x is an antideriv-
ative for x*+ 6. We may add an arbitrary constant to get the general
antiderivative 1 x° + 6x + C. A

The acceleration of a falling body near the earth’s surface is 9.8 meters per
second per second. If the body has a downward velocity v, at t = 0, what is its
velocity at time ¢? If the position is x, at time O, what 1s the position at time ¢?
(See Fig. 2.5.2.)

We measure the position x in the downward direction. Let v be the velocity.
Then dv / dt = 9.8; since an antiderivative of 9.8 is 9.8¢, we have v = 9.8¢ + C.
At t=0, v =1y, 50 v=(9.8)0+ C=C, and so v =9.8¢ + v,. Now dx/dt
= v =98¢+ v,. Since an antiderivative of 9.8¢ is (9.8/2)r> = 4.9¢* and an
antiderivative of v, is vyl, we have x = 4.9+ vt + D. At t =0, x = x;, SO
xo =490y + vy- 0+ D =D, and s0 x =491 + vyt + xo. A

The most commonly used notation for the antiderivative is due to Leibniz.
The symbol

ff(x)dx

denotes the class of all antiderivatives of f; thus, if F is a particular antideriv-
ative, we may write

ff(x)dx= F(x)+ C,
where C is an arbitrary constant. For instance, the result of Example 3 may be
written

f(x4+6)dx= %x5+6x+ C.

The elongated S, called an integral sign, was introduced by Leibniz
because antidifferentiation (also called integration) turns out to be a form of
continuous [ummation. In Chapter 4, we will study this aspect of integration
in detail. There and also in the supplement to this section, we explain the
presence of the “dx” in the notation. For now, we simply think of dx as
indicating that the independent variable is x. Its presence should also serve as
a reminder that integrating is inverse to differentiating, where the dx occurs in
the denominator of dy /dx.

The function f(x) in [f(x)dx is called the integrand, and {f(x)dx is called
the indefinite integral of f(x). One traditionally refers to f(x)dx as being
“under” the integral sign, even though this is typographically inaccurate.
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Antidifferentiation and indefinite integrals

An antiderivative for fis a function F such that F’'(x) = f(x). We write
F(x) =ff(x)dx.

The function [f(x)dx is also called the indefinite integral of f, and f is
called the integrand.

If F(x) is an antiderivative of f(x), the general antiderivative has
the form F(x) + C for an arbitrary constant C.

Some of the differentiation rules lead directly to systematic rules for anti-
differentiation. The rules in the following box can be proved by differentiation
of their right-hand sides (see Example 5 below).

Sum:

Power:

Constant multiple: faf(x) dx= af f(x)dx, where a is constant

Polynomial:

Antidifferentiation Rules

f[f(x)+g(x)]dx=ff(x)dx+fg(x)dx

f "d—x"+l _l
X X—m"‘c (n# )

c c
n_xttlp oL 4 2

+ 1 2

f(c,,x"+---+clx+c0)dx=n x2+cpx+ C

Example 5

Solution

Exampie 6

Solution

xn+l
Prove the power rule fx"dx oy +C (n*—1)

By definition, F(x) = [x"dx is a function such that F'(x) = f(x) = x". How-
ever, F(x)=[x""'/(n+ )]+ C is such a function since its derivative is
F'(x)=(m+1)-x""'"7! /(n+ 1) = x", by the power rule for derivatives. &

The exclusion »# —1 in the power rule arises because the formula
x"*!'/(n + 1) makes no sense for n = — 1, the denominator is zero. (It turns
out that 1/x = x ~' does have an antiderivative, but it is a logarithm function
rather than a power of x. We will study logarithms in Chapter 6.)

Findf[—% +3x+2—i}dx.
X X

f(;l—z-+3x+2—%)dx

X

=f;12—dx+3fxdx+2fldx—8f—\/i_—dx

=fx72dx+3fxldx+2fx0dx—8fx"/2dx



Exampie 7

Solution

Example 8

Solution

Example 9

Solutlon

Example 10

Solution

Example 11
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3

—_ —1 2 2 l__8__ 1/2

1x +2x + 2x l/2x + C
=Ly 3via—16/x +C

X 2

We write C only once because the sum of four constants is a constant. &

. dx
Find | —&—.
f (3x + 1)5

We are looking for an antiderivative of 1/(3x + 1)°. The power of a function
rule suggests that we guess 1/(3x + 1)*. Differentiating, we have

d 1 __ -4 d —-12

dx 3x+ 1) (Bx+1)° dx (3x + 1)’

(Bx+1)=

Comparing with 1/(3x + 1)°, we see that we are off by a factor of —12, so

f x _____ -1 __4coa
(3x +1) l2(3x + 1)
Using the same method as in Example 7, we find that
n _ l n+1
f(ax+b) dx= ——a(n+ 0 (ax + b)'" '+ C,

where a and b are constants, a # 0, and » is a rational number, » # — 1.

Find f Bx+2 dx.
By the formula for [(ax + b)"dx witha=3, b =2, and n = §, we get
[ +2 dr= [(3x +2)"dx

__ 1
" 3(3/2)

Bx+2)+C=2(3x+2)*+ C. A

‘ x*—8
Find [ £ =3 dx.

Here we simplify first. Dividing x> — 8 by x —2 gives (x> —8)/(x —2)
= x2+2x + 4. Thus

3 3
fx _8dx=L+x2+4x+C.A
x =2 3

Let x = position, v = velocity, a = acceleration, ¢ = time. Express the relations

between these variables by using the indefinite integral notation.

By the definitions of velocity and acceleration, we have v =dx/dt and
a = dv/dt. It follows that

v=fadt and x=fvdt.‘

Water is flowing into a tub at 37+ 1/(z + 1)’ gallons per minute after ¢
minutes. How much water is in the tub after 2 minutes if it started out empty?
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Solution

Let f(¢) be the amount of water (in gallons) in the tub at time ¢. We are given

O 1
Q) 3t+(t+1)2'

This equation means that f is the antiderivative of 37 + 1/(¢ + 1); thus,

f(t)=f(3t+z;TIi-)-2-)dt

1 3 1
= ——di= 2~ — —— +C.
f3tdt+f(t+1)2dt > o C
Since the tub started out empty, f(0)=0; so 0= —1+ C, and thus C=].
Therefore f(1)=3r*/2—1/(t+ 1)+ 1. Setting =2 gives f(2)=3-4/2—
1+ 1=6% gallons after 2 minutes. A

Supplement to Sectlon 2.5
The Notation f f(x)dx

The Leibniz notation [f(x)dx for the antiderivative of a function f(x) may
seem strange at this point, but it is really rather natural and remarkably
functional. To motivate it, let us study the velocity—-distance relationship
again. As in Section 1.1, we imagine a bus moving on a straight road with
position y = F(x) in meters from a designated starting point at time x in
seconds (see Fig. 1.1.1). There we showed that v = dy /dx is the velocity of the
bus. As in Section 1.3, we may motivate this notation by writing the velocity
as the limit

Ay  distance travelled

Ax T elapsed time as Ax—0.

Conversely, to reconstruct y from a given velocity function v = f(x), we
notice that in a short time interval from x to x+ Ax, the bus has gone
approximately Ay = f(x)Ax meters (distance travelled = velocity X time
elapsed). The total distance travelled is thus the fum of f(x)Ax over all the
little Ax’s making up the total time of the trip. This abbreviates to [f(x) dx.

On the other hand, the distance travelled is y = F(x), assuming F(0) =0,
and we know that dy/dx =v = f(x), i.e,, F is an antiderivative of f. Thus
Jf(x)dx is a reasonable notation for this antiderivative. The arbitrariness in

the starting position F(0Q) corresponds to the arbitrary constant that can be
added to the antiderivative.

Exercises for Section 2.5

Find antiderivatives for each of the functions in Exer-

Il. o=2+ 1 F(1)=1; find F(1).

cises 1-8. 12. 0= 12— % FQ2)=1; find £(I).
I x+2 2. x%49 Find the general antiderivatives for the functions f
3os(s+ (s +2) 4. 4x® + 3x? given in Exercises 13-20.
5. 1 6. v+ 2 13. f(x)=3x 14, f(x) = 3x* + 4x°
r xt 15, fx) = X+ 1 16. f(1) = (¢ + 1Y
7. x32 — % 8. xt— L 432 x? ‘
Vx 17. f(x)=yx + 1| 18. f(x) =(/x + 1)?

In Exercises 9-12, v is the velocity of a particle on the
line, and F(¢) is the position at time ¢.

9. v =28+ 2; F(0)=0; find F(I).

10. o= ~2¢+3; F(1)=2; find F(3).

19. f(£) = (¢ + 1)*/?

20. f(s)=(s + 8)°/®

In Exercises 21-24, the velocity v, of a falling body (in
meters per second) near the earth’s surface is given at
time ¢ = 0. Find the velocity at time ¢ and the position



at time ¢ with the given initial positions x,. (The x axis
is oriented downwards as in Fig. 2.5.2)

21.DO=I;X0=2 22. 0023;)(0:“1
23, vp= —2; x¢=0 24, vy = —2; Xg= —6
25. Is it true that [f(x)g(x)dx is equal to

26.

27.
28.

[[f(x)dx] g(x) + f(0)lg(x) dx]?

Prove the constant multiple rule for antidif-
ferentiation.

Prove the sum rule for antiderivatives.

Prove that [f(x)f'(x)dx =4[ f(x)P + C for any
function f.

Find the indefinite integrals in Exercises 29-40.

29.
31.

33.

35.

37.

39.

f(x2+3x+2)dx 30.
f(3t2+2t+l)dt 32. f(u4~6u)du

B+r+1
34. f(—ts—-—)dt
36. f a5 du
2
38. /(L%z)dz

- 81+ 1
40. f 7 dt

f477r2 dr

f(8t+ DN™2dr
4
f(3b+2)9 @
f(% +x4)dx
j‘xz\/j_c-3 dx

Find the indicated antiderivatives in Exercises 41-52.

41.

43.

45.
47.

49,

51.

53.

54.

55.

56.

57.

f(x3 + 3x)dx 42. f(ﬂ + 17 dr

2
f L 44.[W+2dw
(t+1) w?
f BX + 3 dx 46. f JT0x — 3 dx
f10(8~3x)3/2dx 48. f3(x—— 1Y’/2 dx
3 __2 3/2
f“ Tf 50. f( =8,
-nY 3x -2
x3=27
f P dx

A ball is thrown downward with a velocity of 10
meters per second. How long does it take the ball
to fall 150 meters?

A particle moves along a line with velocity
o()=12+ ¢ If it is at x =0 when 7 =0, find
its position as a function of ¢.

The population of Booneville increases at a rate
of r(t)=(3.62)(1 + 0.8¢2) people per year, where
t is the time in years from 1970. The population
in 1976 was 726. What was it in 1984?

A car accelerates from rest to 55 miles per hour
in 12 seconds. Assuming that the accerleration is
constant, how far does the car travel during
those 12 seconds?

A rock is thrown vertically upward with velocity
19.6 meters per second. After how long does it
return to the thrower? (The acceleration due to
gravity is 9.8 meters per second per second; see
Example 4 and Fig. 2.5.3.)

58.

59.

60.

6l.

62.

63.

64.

65.

66.

*67.

*68.
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Suppose that the marginal cost of producing
grumbies at production level p is 100/(p + 20)%.
If the cost of production is 100 when p = 0 (setup
costs), what is the cost when p = 80?

. d {x*+1
(a) Find Ec_( 3_1).

(d) Fmdf( . S dx.
e

(a) Find (d/dx){x* + 2x .
(b) Find f 2l S
\/z2 +2z

(a) Differentiate (x* + )%,
(b) Find f[(x + 1)%3 + 3x2/3) dx.

|
3+ X927
(b) Find f —ZCLz dx.

(3 + x%/%)

Find a function F(x) such that x°F'(x)+ x* +
2x =3,
Find a function f(x) whose graph passes through
(1, 1) and such that the slope of its tangent line at
(x, f(x))is 3x + .
Find the antiderivative F(x) of the function f(x)
= x> 4+ 3x? + 2 which satisfies F(0) =
Find the antiderivative G(y) of g(y)=(y + 4
which satisfies G(1) = 0.
(a) What integration formula can you derive
from the general power of a function rule? (See
Exercises 60 and 61.) (b) Find [(x3 + 4)73x%dx
(a) What integration formula can you derive
from the chain rule?

(b) Find [[yx?+ 20x + (x% + 20x)](2x + 20)dx.

(a) Differentiate

-~

R

-

Figure 2.5.3. The path of a
rock thrown upwards from
the earth.
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Review Exercises for Chapter 2

Differentiate each of the functions in Exercises 1-10.
L (6x+ 1)

2. (x? +9x + 10)®
3. (x*+ X2 =1
4 (x?+ D7
5.6/x
6 Ox? — x¥ 4+ 14x7 + xS+ 5x*+ x2+2
: 2
X
7 X +1
Tx—1
8 X2_ l
x2=2
o+ n"
()Cz— l)14
. [+ 6) — 2x* + 1)3]
’ (x° +8)

In Exercises 11-20, let
A(x) = x*— x? - 2x,
B(x)=x2+%x—§,
Cx)=2x*=5x*+x+2,
D(x)=x?+ 8x + 16.

Differentiate the given functions in Exercises 11-16.

1. [B(x)P 12. [A(x)F )

A(x) 14, cx)— 3| 2
] =3 T
15. A(2x) 16. 4(2B(2x))

Find the equation of the tangent line to the graph of the
given function in Exercises 17-20, where' 4, B, C, and
D are given above.

17. [A() P atx =1

19. [C(x)P at x = =2

18. [B(x)F atx=0
20. yD(x) atx= —1

Differentiate the functions in Exercises 21-28.
21 f(x)= x3/3
22, h(x)= (1 +2x'/2)372
3/2

V1 + X2
2
2. 1(y)= 2L —
1 —y3
1+ x3?
25- f(x) = —l‘-‘:“x37

143 2
26. f(,V)=,V3+(l—_:’:§)l/

8x +3x( l+\[;)
+x 1—x

8y
28. f(y) =
1 e [3/(00+)]

27. f(x)= 1

4

Find the first and second derivatives of the functions in
Exercises 29-40.

29. f(x)= —x-a (a, b, ¢ constants).
x4 2bx + ¢
az+ b
Cf(ny= %18 d ts).
30. f(2) 4 (a, b, c,d constants)

31. x(t)=(l/jt)+(lft2)+(1_ct3)

(A, B, C constants).

32 s(t)=(t = 1)(t + 1),

3 _ o4 r
33, h(r)=rB =T, (Mr2+3)
34.k(s)=s'5+(£;_——_'13)+s2—-1.

35. f(x) = (x — 1Y’g(x) (here g(x) is some differen-
tiable function).
36. V(r) =4ar? + 2mrh(r), where h(r) = 2r — 1.
37. h(x)=(x = )%(x? +2)
1 1 1 1
17— 34
13—
40. g(s) = s5( 11_‘_3.5)

N

39. g(1) =

41. The volume of a falling spherical raindrop
grows at a rate which is proportional to the
surface area of the drop. Show that the radius of
the drop increases at a constant rate.

42. The temperature of the atmosphere decreases
with altitude at the rate of 2°C per kilometer at
the top of a certain cliff. A hang glider pilot finds
that the outside temperature is rising at the rate
of 10™* degrees Centigrade per second. How fast
is the glider falling?

43. For temperatures in the range [—350, 150} (de-
grees Celsius), the pressure in a certain closed
container of gas changes linearly with the tem-
perature. Suppose that a 40° increase in tempera-
ture causes the pressure to increase by 30 milli-
bars (a millibar is one thousandth of the average
atmospheric pressure at sea level). (a) What is
the rate of change of pressure with respect to
temperature? (b) What change of temperature
would cause the pressure to drop by 9 millibars?

44. Find the rate of change of the length of an edge
of a cube with respect to its surface area.

45. The organism amoebus rectilineus always main-
tains the shape of a right triangle whose area is
10~ ¢ square millimeters. Find the rate of change
of the perimeter at a moment when the organism
is isosceles and one of the legs is growing at 1074
millimeters per second.



46. The price of calculus books rises & the rate of 75¢
per year. The price of books varies with weight at
a rate of $2.00 per pound. How fast is the weight
of books rising? (Ignore the effect of inflation).

47. Two ships, 4 and B, leave San Francisco to-
gether and sail due west. 4 sails at 20 miles per
hour and B at 25 miles per hour. Ten miles out
to sea, A turns due north and B continues due
west. How fast are they moving away from each
other 4 hours after departing San Francisco?

48. At an altitude of 2000 meters, a parachutist
jumps from an airplane and falls 4.9¢% meters in ¢
seconds. Suppose that the air pressure p de-
creases with altitude at the constant rate of 0.095
gsc per meter. The parachutist’s ears pop when
dp/dt reaches 2 gsc per second. At what time
does this happen?

In Exercises 49-52, let A4 represent the area of the
shaded region in Fig. 2.R.1.

49. Find dA4 /dx and d?4 /dx>.

50. Find dA /dr and d%4 /dr*.

51. Find dA /dy and d?4 /dy>.

52. Find dA /dx and d?4 / dx?.

49 Find dA/dx and d? A /dx? 50 Find dA/dr and d? A /dr?

Sy —ste—Sy—

(Rectangle with i of

disk removed)

51 Find d4/dy and d? 4/dy*?

Figure 2.R.1. Find the
indicated rates of change of
the areas.

In Exercises 53-56 let P represent the perimeter of the
shaded region in Figure 2.R.1.

53. For Exercise 49, find d4 /dP and dP/dx.

54. For Exercise 50, find d4 /dP and dP/dr.

55. For Exercise 51, find d4 /dP and dP/dy.

56. For Exercise 52, find d4 /dP and dP /dx.

57. The total cost C in dollars for producing x cases
of solvent is given by C(x) = 20 + 5x — (0.01)x2

52 Find dA /dx and d? A /dx?
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The number 20 in the formula represents the
fixed cost for placing the order, regardless of
size. The other terms represent the variable costs.
(a) Find the marginal cost.

(b) Find the cost for the 85th case of solvent,
1.e., the marginal cost for a purchase of 84
cases.

(c) Explain in the language of marginal cost the
statement “the more you buy, the cheaper it
gets.”

(d) Find a large value of x, beyond which it is
unreasonable for the given formula for C(x)
to be applicable.

58. In Exercise 57, suppose that the solvent is priced
at 8 — [(8x + 100)/(x + 300)] dollars per case at
production level x. Calculate the marginal reve-
nue and the marginal profit.

Find the equation of the line tangent to the graph of the
function at the indicated point in Exercises 59-62.

59. f(x) = (x> —6x)% (0,0)

60. fx)= 22~ 1 (1,0
6x*+1
3
_7
61. f(x)= = C2,5
f= 2= @)
5 _ 4 3_
62. fx)= T O AT x ()
x“+1

63. If x2+y2+xy3= 1, find dy/dx when x =0,
y=1

64. If x and y are functions of ¢, x*+ xy + y* =2,
and dy/dt=1 at x=1, y=1, find dx/dt at

x=1y=1
65. Let a curve be described by the parametric equa-
tions
x=ﬁ+ﬂ+%,
I <<l
y=1+ ¥+,

Find the equation of the tangent line at r = 2.
66. The speed of an object traveling on a parametric

curve is given by v = \/(dx/dt)2 + (dy/dt)2 .
(a) Find the speed at =1 for the motion x
=83-32+1,y=0r -/
(b) Repeatforx=r -3, y=4r—ratr=1.
67. Find the linear approximations for: (a) 327.11;
(b) ¥=630I.
68. Find the linear approximations for (a) 332.02
and (b) /6398
69. (a) Find the linear approximation to the function
(x® = D/(x¥®+ 1) at x4 = 1.
(b) Calculate [(1.021)* — 1}/[(1.021)*° + 1] ap-
proximately.

70. Find an approximate value for \/l + (0.0036)2 .

71. Find a formula for (d?/dx?)[ f(x)g(x)].
72. 1f fis a given differentiable function and g(x)

= f(yx ), what is g’(x)?
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73.

74.
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Differentiate both sides of the equation

[10)"] = f)™
where m and n are positive integers and show
that you get the same result on each side.
Find a formula for (d/dx)[ f(x)"g(x)"], where f
and g are differentiable functions and m and n
are positive integers.

Find the antiderivatives in Exercises 75-94.

75.
76.
77.
78.

79.
80.

81.

82.

83.

84.
85.

86.

87.

8

o

91.

92.
93.

94.

fmdx

f(4.9t +15)dr
f(4x3 +3x2+ 2x + 1)dx
f(s5 + 45* + 9) ds

f%xz/sdx
f4x3/2dx
-1 -2 3 -4
o377
1 4
— + — }dz
f(zz z3>
f(x2+\/;)dx
f(x+\/§+3[)?)dx
f(x3/2+x_‘/2)dx

f(l)dx
Vx
4 6
x"+x"+1 dx
f 172

) f(\/;+ é)dx
89.
90.

f\/}c—:_l dx
f(2x + 17/ 4dx

1
— . d
/ -1
f[(s;x — 10)*/2 + 10x]dx
f[(x —~D)'/% — (x — 2% dx

Q2x—1)** =
f (10x — 5)‘/2

Differentiate each of the functions in Exercises 95-102
and write the corresponding antidifferentiation formula.

95.

96.

97.

98.

S0 = . SE—
(x1/2 = x4 1)

fo = (%)

fx) = -

Joo =) X

\/;?+1

*107.

P~ 1

99. f(x)=

S 4 + 1
100. f(x)=1 = +11
101. f(x) = z“

1

102. f(x) =x*+ 2yx + 1

103. The lemniscare 3(x* + y?)? = 25(x? — y?) is a pla-
nar curve which intersects itself at the origin.

(a) Show by use of symmetry that the entire
lemniscate can be graphed by (1) reflecting
the first quadrant portion through the x
axis, and then (2) reflecting the right half-
plane portion through the origin to the left
half-plane.

Find by means of implicit differentiation the
value of dy/dx at (2, 1).
Determine the equation of the tangent line
to the lemniscate through (2, 1).
The drag on an automobile is the force opposing
its motion down the highway, due largely to air
resistance. The drag in pounds D can be approxi-
mated for velocities v near 50 miles per hour by
D = kv®. Using k =024, find the rate of in-
crease of drag with respect to time at 55 miles
per hour when the automobile is undergoing an
acceleration of 3 miles per hour each second.
The air resistance of an aircraft fuel tank is given
approximately by D =980+ 7(v — 700) 1bs for
the velocity range of 700 < v < 800 miles per
hour. Find the rate of increase in air resistance
with respect to time as the aircraft accelerates
past the speed of sound (740 miles per hour) at a
constant rate of 12 miles per hour each second.
A physiology experiment measures the heart rate
oftee |
R(x) in beats per minute of an athlete, climbing a
vertical rope of length x feet. The experiment
produces two graphs: one is the heart rate R
versus the length x; the other is the length x
versus the time 7 in seconds it took to climb the
rope (from a fresh start, as fast as possible).
(a) Give a formula for the change in heart rate
in going from a 12-second climb to a 13-
second climb using the linear approxima-
tion.
Explain how to use the tangent lines to the
two graphs and the chain rule to compute
the change in part (a).
Find a formula for the second and third
derivatives of x".
Find a formula for the rth derivative of x " if
n>r.
(¢) Find a formula for the derivative of the
product f(x)g(x)h(x) of three functions.

(b)
(©)

104.

105.

106.

(b)

(a)
(b)



*108. (a)

(b)

Prove that if f/g is a rational function (i.e.,
a quotient of polynomials) with derivative
zero, then f/g is a constant.

Conclude that if the rational functions F

Review Exercises for Chapter 2 137

and G are both antiderivatives for a func-
tion A, then F and G differ by a constant.
*109. Prove that if the kth derivative of a rational
function r(x) is zero for some k, then r(x) is a
polynomial.



Chapter 3

3.1

Graphing and
Maximum—Minimum
Problems

Differential calculus provides tests for locating the key features of graphs.

Now that we know how to differentiate, we can use this information to assist
us in plotting graphs. The signs of the derivative and the second derivative of
a function will tell us which way the graph of the function is “leaning” and
“bending.”

Using the derivative to predict the behavior of graphs helps us to find the
points where a function takes on its maximum and minimum values. Many
interesting word problems requiring the “best”” choice of some variable involve
searching for such points.

In Section 3.1, we study the geometric aspects of continuity. This will
provide a useful introduction to graphing. In Section 3.6, we use the ideas of
maxirca and minima to derive an important theoretical result—the mean
value theorem. One consequence of this theorem is a fact which we used in
connection with antiderivatives: a function whose derivative is zero must be
constant.

Continuity and the
intermediate Value Theorem

If a continuous function on a closed interval has opposite signs at the endpoints, it
must be zero at some interior point.

In Section 1.2, we defined continuity as follows: “A function f(x) is said to be
continuous at x, if lim,_,, f(x) = f(x,).” A function is said to be continuous on
a given interval if it is continuous at every point on that interval. If a function f
is continuous on the whole real line, we just say that “f is continuous.” An
imprecise but useful guide is that a function is continuous when its graph can
be drawn “without removing pencil from paper.” In Figure 3.1.1, the curve on
the left is continuous at x, while that on the right is not.
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Figure 3.1.1. Illustrating a
continuous curve (left) and
a discontinuous curve
(right).

Exampie 1

Figure 3.1.2. Where are
these functions continuous?

Solution

Exampie 2

Solution

Example 3

Chapter 3 Graphing and Maximum-Minimum Problems

V4 1
T | T /
0 (g0 YO
44 1
PR—_—__
- - 'y V-
T T

Xg X Xy X

Decide where each of the functions whose graphs appear in Fig. 3.1.2 is
continuous. Explain your answers.

() (d)

(a) This function jumps in value at each of the points x,=0, x,= =1,
Xg= %2,..., solim,,  f(x)does not exist at these points and thus f is
not continuous there; however, f is continuous on each of the intervals
between the jump points.

(b) This function jumps in value at xo= —1 and x,= +1, and so
lim, , ,, f(x) and lim,_, _, f(x) do not exist. Thus f is not continuous at
Xxg = % 1; it is continuous on each of the intervals (— o0, —1), (=1, 1), and
(1, c0).

(c) Even though this function has sharp corners on its graph, it is continuous;
lim, . f(x) = f(x,) at each point x,.

(d) Here lim,_,, f(x) = 1, so the limit exists. However, the limit does not equal
f(1)=2. Thus f is not continuous at x,=1. It is continucus on the
intervals (— oo, 1) and (1, 0). A

In Section 1.2, we used various limit theorems to establish the continuity of
functions that are basic to calculus. For example, the rational function rule for
limits says that a rational function is continuous at points where its denominator
does not vanish.

Show that the function f(x) = (x — 1)/3x? is continuous at x, = 4.
This is a rational function whose denominator does not vanish at x, = 4, so it

is continuous by the rational function rule. A

Let g(x) be the step function defined by

_ [0 if x<0,
£(%) {1 it x>0

Show that g is not continuous at x, = 0. Sketch.



Figure 3.1.3. This step
function is discontinuous at

X =0.

Solution

Example 4

Soiution

Example 5

Solution
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y=gx)

¥

y=g(x)

The graph of g is shown in Fig. 3.1.3. Since g approaches (in fact, equals) 0 as
x approaches 0 from the left, but approaches 1 as x approaches 0 from the
right, lim,_,,g(x) does not exist. Therefore, g is not continuous at x, = 0. A

Using the laws of limits, show that if f and g are continuous at x,, so is fg.

We must show that lim, _,, (fg)(x) = (fg)(x,)- By the product rule for limits,
limx_,XO[f(x)g(x)] = [limx_,xOf(x)][limX_,Xog(x)],= f(x0)g(xy), since f and g are

continuous at x,. But f(xg)g(xg) = (fg)(x,), and so lim, _,, (fg)(x) = (fg)(xo),
as required. A

In Section 1.3, we proved the following theorem: if f is differentiable at x,,
then f is continuous at x,. Using our knowledge of differential calculus, we can
use this relationship to establish the continuity of additional functions or to
confirm the continuity of functions originally determined using the laws of
limits.

(a) Show that f(x) = 3x?/(x*— 2) is continuous at x, = [. Where else is it
continuous?

(b) Show that f(x) =yx?+ 2x + 1 is continuous at x = 0.

(a) By our rules for differentiation, we see that this function is differentiable
at x,=1; indeed, x?—2 does not vanish at xo=1. Thus f is also
continuous at x, = l. Similarly, f is continuous at each x, such that
x3 —2+#0, ie. at each x,# 2.

(b) This function is the composition of the square root function A(u) = Vu and
the function g(x) = x4+ 2x+ 1 f(x) = h(g(x)). Note that g(0)=12>0.
Since g is differentiable at any x (being a polynomial), and 4 is differentia-
ble at u=1, f is differentiable at x =0 by the chain rule. Thus f is
continuous at x = 0. A

According to our previous discussion, a continuous function is one whose
graph never “jumps.” The definition of continuity is Jocal since continuity at
each point involves values of the function only near that point. There is a
corresponding global statement, called the intermediate value theorem, which
involves the behavior of a function over an entire interval [a, b].

Intermediate Vaiue Theorem
(First Version)

Let f be continuous® on [a, b] and suppose that, for some number c,
f(a)<c<[f(b)or f(a)>c> f(b). Then there is some point x, in (a, b)
such that f(xy)=c.

L Qur definition of continuity on [a, b] assumes that f is defined near each point X of [a, b],
including the endpoints, and that im, _, f(x) = f(X). Actually, at the endpoints, it is enough to
assume that the one-sided limits (from inside the interval) exist, rather than the two-sided ones.
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Figure 3.1.4. The graph of f
must pierce the horizontal
line y = cif it is to get

across.

Example 6

Solution

Example 7

Solution

In geometric terms, this theorem says that for the graph of a continuous
function to pass from one side of a horizontal line to the other, the graph must
meet the line somewhere (see Fig. 3.1.4). The proof of the theorem depends on
a careful study of properties of the real numbers and will be omitted. (See the
references listed in the Preface.) However, by drawing additional graphs like
those in Fig. 3.1.4, you should convince yourself that the theorem is reason-
able.

T ~ 7

o=y
Jta) 1+
et \/ {

a Yy b

Show that there is a number x, such that x; — xo = 3.

Let f(x) = x° — x. Then f(0) = 0 and f(2) = 30. Since 0 < 3 < 30, the interme-
diate value theorem guarantees that there is a number x, in (0,2) such that
f(x) = 3. (The function f is continuous on [0, 2] because it is a polynomial.) A

Notice that the intermediate value theorem does not tell us how to find the
number x; but merely that it exists. (A look at Fig. 3.1.4 should convince you
that there may be more than one possible choice for x;.) Nevertheless, by
repeatedly dividing an interval into two or more parts and evaluating f(x) at
the dividing points, we can solve the equation f(x,) = ¢ as accurately as we
wish. This method of bisection is illustrated in the next example.

(The method of bisection) Find a solution of the equation x* — x = 3 in (0,2)
to within an accuracy of 0.1 by repeatedly dividing intervals in half and
testing each half for a root.

In Example 6 we saw that the equation has a solution in the interval (0,2). To
locate the solution more precisely, we evaluate f(1) = 1° — 1 = 0. Thus f(1) < 3
< f(2), so there is a root in (1,2). Now we bisect [1,2] into [1, 1.5] and [1.5, 2]
and repeat: f(1.5)~ 6.09 > 3, so there is a root in (1, 1.5); f(1.25) = 1.80 < 3,
so there is a root in (1.25, 1.5); f(1.375) ~ 3.54 > 3, so there is a root in (1.25,
1.375); thus x; = 1.3 is within 0.1 of a root. Further accuracy can be obtained
by means of further bisections. (Related techniques for root finding are
suggested in the exercises for this section. Other methods are presented in
Section 11.4.) A

There is another useful way of stating the intermediate value theorem (the
contrapositive statement).

intermediate Value Theorem
(Second Version)
Let f be a function which is continuous on [a,b] and suppose that

f(x) # ¢ for all x in [a,b]. If f(a) < c, then f(b) < c as well. (See Fig.
3.1.5.) Similarly, if f(a) > ¢, then f(b) > ¢ as well.




Figure 3.1.5. The graph
starts below the line y = ¢
and never pierces the line,
so it stays below the line.

Examplie 8

Solution
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In geometric language, this second version of the theorem says: “The graph of
a continuous function which never meets a horizontal line must remain on one
side of it.” The first version says: “If the graph of a continucus function
passes from one side of a horizontal line to the other, the graph must meet the
line somewhere.” You should convince yourself that these two statements
really mean the same thing.

In practice, the second version of the intermediate value theorem can be
useful for determining the sign of a function on intervals where it has no roots,
as in the following example.

Suppose that f is continuous on [0, 3], that f has no roots on the interval, and
that f(0) = 1. Prove that f(x) > 0 for all x in [0, 3].

Apply the intermediate value theorem (version 2), with ¢ =0, to f on [0, b] for
each b in (0, 3]. Since f is continuous on [0, 3], it is continuous on [0, b]; since
f(0)=12> 0, we have f(b) > 0. But b was anything in (0, 3], so we have proved
what was asked. A

Exercises for Section 3.1

1. Decide where each of the functions whose graph
is sketched in Fig. 3.1.6 is continuous.

Figure 3.1.6. Where are
these continuous?

(a) (b) (<)

2. Which of the functions in Fig. 3.1.7 are continu-

ous at xg = 1?

Figure 3.1.7. Which of
these functions are
continuous at xq = 1?

(2) (®) (©
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11.

12.

13.

14.

15.
16.

17.
18.
19.
20.

21.

22.

23.
24.

25.

26.
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. Show that f(x) = (x%+ 1)(x%~ 1) is continuous

at Xg = 0.

. Show that f(x) = x>+ 3x? — 2x is continuous at

X0=3.

. Prove that (x?—1)/(x* + 3x) is continuous at

Xg = 1.

. Prove that (x*—8)/(x*+2) is continuous at

X0=O.

. Where is (x* — 1)/(x* + x? + 1) continuous?
. Where is (x* + 1)/(x* — 8) continuous?
. Let f(x) = (x* + 2)/(x* = 1). Show that f is con-

tinuous on [~ %,4].

. Is the function (x* — 1)/(x*~ 1) continuous at

1? Explain your answer.
Let f(x) be the step function defined by
if x<0,

= [ =1

U { ~2 i x>0
Show that f is discontinuous at 0.
Let f(x) be the absolute value function: f(x) = |x|;
that is,

- )X if x>0,

&) {-—x if x<O.
Show that f is continuous at xo = 0.
Using the laws of limits, show that if f and g are
continuous at xg, so is f + g.
If f and g are continuous at x, and g(xg) + 0,
show that f/g is continuous at xg.
Where is f(x) = 8x*/y/x* — 8 continuous?
Where is f(x)=9x2—3x/yx* - 2x2—8 con-
tinuous?
Show that the equation — s> + s> =25 — 6 has a
solution.
Prove that the equation x*+2x —1=7 has a
solution.
Prove that f(x) = x® + 3x*— 1 has at least two
distinct zeros.
Show that x*~ 5x2 4 1 has at least two distinct
ZEer10S.
The roots of f(x)= x*>—2x—x2+2 are 2,
—y2, and 1. By evaluating f(-3), f(0), f(1.3),
and f(2), determine the sign of f(x) on each of
the intervals between its roots.
Use the method of bisection to approximate 7
to within two decimal places. [Hint: Let f(x) =
x2 — 7. What should you use for a and 57]

Find a solution of the equation x°> — x = 3 to an
accuracy of 0.01.
Find a solution of the equation x°> — x =5 to an

accuracy of 0.1.

Suppose that f is continuous on [—1,1] and that
f(x) =2 is never zero on [—1,1]. If f(0)=0,
show that f(x) <2 for all x in [~1,1].

Suppose that f is continuous on [3,5] and that
f(x) %4 for all x in [3,5]. If f(3) = 3, show that
f5) < 4.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Let f(x) be 1 if a certain sample of lead is in the
solid state at temperature x; let f(x) be 0 if it is
in the liquid state. Define x4 to be the melting
point of this lead sample. Is there any way to
define f(xq) so as to make f continuous? Give
reasons for your answer, and supply a graph
for f.

An empty bucket with a capacity of 10 liters is
placed beneath a faucet. At time ¢ = 0, the faucet
is turned on, and water flows from the faucet at
the rate of 5 liters per minute. Let V'(¢) be the
volume of the water in the bucket at time .
Present a plausible argument showing that V" is a
continuous function on (— o0, ). Sketch a
graph of V. Is V' differentiable on (~ o0, ®)?
Let f(x)=(x*—4)/(x —2), x % 2. Define f(2)
so that the resulting function is continuous at
X =2,

Let f(x) = (x*=1)/(x = 1), x % 1. How should
f(1) be defined in order that f be continuous at
each point?

Let f(x) be defined by

x2+1 if x<1,
fx)= 119 it 1<x<3,
x—6 if 3<x.

How can you define f(x) on the interval [1,3] in
order to make f continuous on (- o0, ®)? (A
geometr: > argument will suffice.)

Let f(x)=x+(4/x) for x < —4% and x > 2.
Define f(x) for x in (~%,2) in such a way that
the resulting function is continuous on the whole
real line.

Let f(x) be defined by f(x)= (x*—1)/(x = 1)
for x s+ 1. How should you define f(1) to make
the resulting function continuous? [Hins: Plot a
graph of f(x) for x near 1 by factoring the
numerator.]

Let f(x) be defined by f(x)=1/x for x = 0. Is
there any way to define f(0) so that the resulting
function will be continuous?

Sketch the graph of a function which is continu-
ous on the whole real line and differentiable
everywhere except at x=0,1,2,3,4,5,6,7,8,9,
i0.

Is a function which is continuous at xy necessar-
ily differentiable there? Prove or give a counter-
example.

The function f(x)=1/(x — 1) never takes the
value zero, yet f(0) = —1 is negative and f(2) = 1
is positive. Why isn’t this a counterexample to
the intermediate value theorem?

“Prove” that you were once exactly one meter
tall.
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In Exercises 39-42, use the method of bisection to find

a root of the given function, on the given interval, to

the given accuracy.

39. x3— 11 on [2,3]; accuracy .

40. x>+ 7on[~3, ~ 1]; accuracy .

41. x> + x4+ 1 on [~2, = 1]; accuracy +gs -

42. x*—3x =2 on[l,2]; accuracy .

%43. In the method of bisection, each estimate of the *46
solution of f(x)= c¢ is approximately twice as
accurate as the previous one. Examining the list

of powers of 2: 2,4,8,16,32,64,128,256,512, w47
1024, 2048, 4096, 8192, 16384, 32768, 65536,
131072, ... —suggests that we get one more dec-
imal place of accuracy for every three or four
repetitions of the procedure. Explain. *48

»44. Using the result of Exercise 43, determine how
many times to apply the bisection procedure to
guarantee the accuracy A4 for the interval [a, b] if:
(a) A=qg;[a,b]=[3,4]

(b) A= 15w; la,b]=[-13].

(€) A=%:[a,b]=[11,23]. *49.

(d) 4=1%;[a,b]=1[0.1,0.2].

*45. Can you improve the method of bisection by
choosing a better point than the one halfway
between the two previous points? [Hint: If f(a)
and f(b) have opposite signs, choose the point
where the line through (a, f(a)) and (b, f(b))
crosses the x axis.] Is there a method of division
more appropriate to the decimal system?

Do some experiments to see whether your
method gives more accurate answers then the

*50.

bisection method in the same number of steps. If
so, does the extra accuracy justify the extra time
involved in carrying out each step? You might
wish to compare various methods on a competi-
tive basis, either with friends, with yourself by
timing the calculations, or by timing calculations
done on a programmable calculator or micro-
computer.

. Prove that if {is continuous on an interval I (not

necessarily closed) and f(x) 0 for all x in I,
then the sign of f(x) is the same for all x in /.

. Suppose that f is continuous at x, and that in

any open interval I containing x, there are points
x, and x, such that f(x,) <0 and f(x;) > 0.
Explain why f(x,) must equal 0.

. (a) Suppose that f and g are continuous on the

real line. Show that f — g is continuous. (b) Sup-

pose that f and g are continuous functions on the

whole real line. Prove that if f(x) == g(x) for all

x, and f(0) > g(0), then f(x) > g(x) for all x.

Interpret your answer geometrically.

Prove that any odd-degree polynomial has a root

by following these steps.

1.  Reduce the problem to showing that f(x)
=x"+a,_ ;x" '+ +ax+a has a
root, where g; are constants and r is odd.

2. Show that if |x| > 1 and |x| > 2 X {|ag| +
+++ +|a,_|), then f(x)/x" is positive.

3.  Conclude that f(x) < O if x is large negative
and f(x) > 0 if x is large positive.

4. Apply the intermediate value theorem.

Show that the polynomial x* + bx + ¢ = 0 has a

(real) root if 256¢° < 27b%. Hint: use the Foct
khat the tangaal Line 18 horizankel ot the lswest

3.2 Increasing and

Decreasing Functions

The sign of the derivative indicates whether a function is increasing or decreasing.

We begin this section by defining what it means for a function to be
increasing or decreasing. Then we show that a function is increasing when its
derivative is positive and is decreasing when its derivative is negative. Local
maximum and minimum points occur where the derivative changes sign.

We can tell whether a function 1s increasing or decreasing at x, by seeing
how its graph crosses the horizontal line y = f(x;) at x, (see Fig. 3.2.1). This

Jis increasing
A atxg

<

N

I
Figure 3.2.1. Places where :

/1s neither increasing nor
decreasing at x;

/'is decreasing at x,

¥y =flx)

Jis increasing
atxy

W o . —

i
|
I
|
f
x

the function f is increasing
and decreasing.

ik
P
Graphes
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Example 1

Solution

Figure 3.2.2. This function
changes sign from negative
to positive at xg.

g

Figure 3.2.3. This function
changes sign from positive
to negative at x,.

geometric picture is the basis of the precise definition of increasing and
decreasing. Note that at the point x, in Fig. 3.2.1, f(x) is less than f(x,) for x
just to the left of x,, while f(x) is larger than f(x,) for x just to the right. We
cannot take x too far to the right, as the figure shows. The following
paragraph gives the technical definition.

We say that a function f is increasing at x, if there is an interval (a, b)
containing x, such that:

L If a < x < xg, then f(x) < f(xo)-
2. If x5 < x < b, then f(x) > f(x,).

Similarly, f is decreasing at x, if there is an interval (a,b) containing x,
such that:

1. If a < x < x;, then f(x) > f(x,).
2. 1f xy < x < b, then f(x) < f(xy).

The purpose of the interval (a, b) is to limit our attention to a small region
about x,. Indeed, the notions of increasing and decreasing at x, are local;
they depend only on the behavior of the function near x,. In examples done
“by hand,” such as Example 1 below, we must actually find the interval (a, b).
We will soon see that calculus provides an easier method of determining
where a function is increasing and decreasing.

Show that f(x) = x* is increasing at x, = 2.

Choose (a,b) to be, say, (1,3). If 1 < x <2, we have f(x)= x> <4=x3. If
2 < x <3, then f(x) = x> >4 = x2. We have verified conditions 1 and 2 of
the definition, so f is increasing at x, = 2. A

Of special interest is the case f(x,) = 0. If fis increasing at such an x,, we say
that f changes sign from negative to positive at x,. By definition this occurs
when f(x,) =0 and there is an open interval (g, b) containing x, such that
f(x) <0 when a < x < x, and f(x)>0 when x, < x <b. (See Fig. 322)
Similarly if f(x,) =0 and f is decreasing at x,, we say that f changes sign from
positive to negative at x,. (See Fig. 3.2.3.)

Notice that the chosen interval (¢,b) may have to be small, since a
function which changes sign from negative to positive may later change back
from positive to negative (see Fig. 3.2.4).

Changes of sign can be significant in everyday life as, for instance, when
the function b = f(¢) representing your bank balance changes from positive to
negative. Changes of sign will be important for mathematical reasons in the
next few sections of this chapter; it will then be useful to be able to determine
when a function changes sign by looking at its formula.

Figure 3.24. This function
changes sign from negative
to positive at x, and x4 and
from positive to negative at
X1, x3 and xg; it does
neither at xs.




Example 2

Solution

y=3x~-5

Figure 3.2.5. This function
changes sign from negative
to positive at x = 5/3.

Example 3

Solution

Figure 3.2.6. This function
changes sign from positive
to negative at x = 2 and
from negative to positive at
x =3

Figure 3.2.7. The function f
is increasing where its
derivative iz positive.
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Where does f(x) =3x — 5 change sign?

We begin by finding those x for which f(x) is negative and those for which it
is positive. First, f is negative when
3x —5<0,
3x <5,
x <3.
(If you had difficulty following this argument, you may wish to review the
material on inequalities in Section R.1.) Similarly, f is positive when x >3. So
f changes sign from negative to positive at x = 3. (See Fig. 3.2.5.) Here the
chosen interval (a, b) can be arbitrarily large. A

If a function is given by a formula which factors, this often helps us to find
the changes of sign.

Where does f(x) = x* — 5x + 6 change sign?

We write f(x) = (x — 3)(x — 2). The function f changes sign whenever one of
its factors does. This occurs at x =2 and x = 3. The factors have opposite
signs for x between 2 and 3, and the same sign otherwise, so f changes from
positive to negative at x = 2 and from negative to positive at x = 3. (See Fig.
32.6) A

YE y=x2 5x+6

Given a more complicated function, such as x> — x> — 2x?, it may be difficult
to tell directly whether it is increasing or decreasing at a given point. The
derivative is a very effective tool for helping us answer such questions.

A linear function /(x) = mx + b is increasing everywhere when the slope
m 1s positive. If the derivative f'(x) of a function f is positive when x = x,, the
linear approximation to f at x, is increasing, sc we may expect f to be
increasing at x, as well. (See Fig. 3.2.7.)

Y ELg)+ fMgix -xg)

y=/[(x)

y=[(xg)
(xg./0xo)) AN




148 Chapter 3 Graphing and Maximum-Minimum Problems

We can verify that a function is increasing where its derivative is positive
by using difference quotients. Let y = f(x) and assume that f'(x,) > 0. Then

A J(xo + Ax) — f(x0)
KJ)‘CL B Ax >0

for Ax sufficiently small, since Ay /Ax approaches the positive number f(x,)
as Ax approaches zero. Thus, there is an interval (a,b) about x, such that
Ax = x — x, and Ay = f(x) — f(x,) have the same sign when x is in the
interval. Thus, when a < x < x,;, Ax is negative and so is Ay; hence
f(x) < f(x)- Similarly, f(x) > f(x,) when x, < x < b. Thus f is increasing at
xo- If f'(x,) <0, a similar argument shows that f is decreasing at x,.

The functions y = x*, y = —x°, and y = x* show that many kinds of
behavior are possible when f'(x;) =0 (see Fig. 3.2.8).

y p=x3 y=_y3 ¥ y _V:XZ v 4
X / X X x
1'(0)y=0and 7'(0)y=0and ’
fis increasing fis decreasing 70=0
atxg =0, atxg = 0. and f'is y=——X2

Figure 3.2.8. If f'(x,) = 0,
you cannot tell if f is
increasing or decreasing
without further
information.

Figure 3.2.9. f'(x,) > 0; fis
increasing at x;. f'(x,;) < 0;
f is decreasing at x;.

f(x3) = f'(xg) = 0; f s
neither increasing nor
decreasing at x; and x4.
f'(xs) = 0; f is decreasing at
Xs5. f'(xg)=0; f 15

increasing at xg.

Example 4

Solutlon

neither increasing
nor decreasing at xg = 0.

Thus we arrive at the following test (see Fig. 3.2.9).

Increasing-Decreasing Test

1. If f'(xp) > O, f 1s increasing at x;.
2. If f'(xp) <0, fis decreasing at x,.
3. If f'(xp) = O, the test 1s inconclusive.

:

o ode——

(a) Is x> — x* ~ 2x? increasing or decreasing at —2? (b) Is g(s) =vys’—s
increasing or decreasing at s = 2?

(a) Letting f(x) = x°> — x* — 2x%, we have f'(x) = 5x* — 3x* — 4x, and f'(—2)
= 5(—2)* — 3(—2)* - 4(-2) = 80 — 12 + 8 = 76, which is positive. Thus x> —
x* —2x? is increasing at —2. o

(b) By the chain rule, g'(s) = (25 — 1)/2y52 = 5, 50 g'(2) = 3/2YZ > 0. Thus g
1s increasing at s = 2. A




Example 5

Soiution

Figure 3.2.10. Positive
velocity means that the
motion is to the right, and
negative velocity means
that the motion is to the

left.

Exampie 6

Solution

Exampie 7

Solution
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Let f(x) = x> — x2+ x + 3. How does f change sign at x = — 1?

Notice that f(—1)=0. Also, f'(—=1)=3(- P=2(-D+1=6>0, so fis
increasing at x = — |. Thus f changes sign from negative to positive. A

We can also interpret the increasing-decreasing test in terms of velocities and
other rates of change. For instance, if f(¢) is the position of a particle on the
real-number line at time ¢, and f'(¢,) > O, then the particle is moving to the
right at time ¢#,; if f'(¢,) < 0, the particle is moving to the left (see Fig. 3.2.10).

Direction of
/ motion at f;, \\
———— ~—
A 4 @
) >0 ftg) <0

The temperature at time ¢ is given by f()=( + 1)/t — 1) for t < 1. Is it
getting warmer or colder at ¢t = 0?

We calculate f'(¢) by the quotient rule:
(= DH-(+1) 2
(r= 1 (=1

Since f'(0) = —2 is negative, f is decreasing, so it is getting colder. A

f=

Instead of focusing ocur attention on the small intervals used so far, one can
also consider the idea of increasing and decreasing functions on general
intervals, which could be large.

Let f be a function defined on an interval I. If f(x,) < f(x,) for all
x, < x, in I, we say that f is increasing on I. If f(x,) > f(x,) for all x, < x, in
I, we say that f is decreasing on I.

It is plausible that if f is increasing at each point of an interval, then f is
increasing on the whole interval in this new sense. We shall use this important
fact now, deferring the formal proof until Section 3.6.

On what intervals is f(x) = x> — 2x + 6 increasing or decreasing?

We consider the derivative f/(x) = 3x* — 2. This is positive when 3x2 - 2 > 0,
i.e, when x> > 2/3, i.e., either x >V2/3 or x < —y2/3. Similarly, f/(x) <0
when x?<2/3, ie, — V2/3 < x<y2/3. Thus, f is increasing on the
intervals  (—o0, —vy2/3) and (y2/3,%), and f is decreasing on
(—V2/3.2/3). A

The result of Example 7 enables us to make a good guess at what the graph
y = f(x) looks like. We first plot the points where x = +v2/3 as in Fig.
3.2.11(a). When x = +v2/3, we get y = 6 T 4/6 /9. We also plot the point
x =0, y=6. Since f is increasing on (— o, —\/27) and on (\/27, ®),
and decreasing elsewhere, the graph must look something like that in Fig.
3.2.11(b). Later in this chapter, we will use techniques like this to study
graphing more systematically.
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Figure 3.2.11. First steps in

sketching a graph.

Example 8

Figure 3.2.12. Matching
functions and their

derivatives.

v
8 4 ' |
® | ‘
| 6® i ! s
| it ? fincreasing |' it | [ increasing
: 24 I \ : 24 )/ decreasing
=1 I -1 il
: ++ -t : t - -+ .
-2 ~V2/3 V2/3 2 X / —V2/3 V2/3 2 ¥
(a) These points lie on the (b) We draw fincreasing on

graph y=x3 2x+6. o /;_ /z .
R hl
and decreasing on |-~/ = . 3
D p

Match each of the functions in the left-hand column of Fig. 3.2.12 with its
derivative in the right-hand column.

Functions Derivatives

¥ ¥

(2) f‘ ‘\ (b)

(3) (c)

4) (d) -

(5)

// x «© / .

Function (1) is decreasing for x <0 and increasing for x > 0. The only
functions in the right-hand column which are negative for x < 0 and positive
for x > 0 are (a) and (c). We notice, further, that the derivative of function 1
is not constant for x < 0 (the slope of the tangent is constantly changing),
which eliminates (a). Similar reasoning leads to the rest of the answers, which
are: (I)-(c), (2)-(b), (3)-(e), (4)-(2), (O)-(d). A

We now turn our attention to the points which separate the intervals on which
a function is increasing or decreasing, such as the points x = + \/27 in Fig.



Figure 3.2.13. The graph of
f lies above the line

y = f(xo) near a local
minimum point (a) and
below that line near a local
maximum point (b).

Example 9

Figure 3.2.14. Is x4 a local
maximum? Local
minimum? Neither?

Solution

3.2 Increasing and Decreasing Functions 151

3.2.11. In this figure, we see that these points are places where f has a
maximum and a minimum. Here are the formal definitions: A point x, is
called a local minimum point for f if there is an open interval (a, b) around x,
such that f(x)> f(x,) for all x in (a, b). Similarly, a point x, is called a
local maximum point for f if there is an open interval (a, b) around x, such
that f(x) < f(x,) for all x in (a, b).? (See Fig. 3.2.13.)

V4
v 4
y =1
2 y=/flxg)
|
%
. local
: Y =/(xq) E/ maximum point
A —
Hlocal %0 b X 4 x, b X
minimum point
(a) (b)

For each of the functions in Fig. 3.2.14, tell whether x, is a local minimum
point, a local maximum point, or neither.

¥ ke

AN

-
-
=
-

e

0
ta) tb) ) )

Comparing each graph in Fig. 3.2.14 with the horizontal line through the
heavy dot, we find that x; is a local maximum point in (b), a local minimum
point in (c), and neither in (a) and (d). &

At a local maximum or minimum point x,, a function f can be neither
increasing nor decreasing, as we see from a comparison of the definitions or
graphic interpretations of these concepts. It follows that the denivative f'(x,)
(if it exists) can be neither positive nor negative at such a point; hence, it must
be zero. Points x, where f'(x,) = 0 are called critical points of f.

The critical point test described in the following display is very important.
(Some people remember nothing else after a year of calculus.) A good portion
of this chapter explores the applications of the test and its limitations.

Critical Point Test

If x, is a local maximum or minimum point of a (differentiable) function
f, then x, is a critical point, i.e., f'(xy) = 0.

In Figs. 3.2.8 and 3.2.9, you will observe that not every critical point is a local
maximum or minimum. In the remainder of this section we shall develop a
test for critical points to be maxima or minima. This will be useful for both

2 Sometimes the phrase “strict local minimum point” is used when f(x)>f(x;) for all x in
(a, b) other than x,. Likewise for strict local maximum points. Here, and elsewhere, we use the
term “point” to refer to a number in the domain of f rather than to a point in the plane.



152

Chapter 3 Graphing and Maximum-Minimum Problems

graphing and problem solving. To lead to the test, we ask this question: How
does a function f behave just to the right of a critical point x,? The two
simplest possibilities are that f'(x) > O for all x in some interval (x,, b) or that
f'(x) < 0in such an interval. In the first case, f is increasing on (x,, ), and the
second case is decreasing there. These possibilities are illustrated in Fig. 3.2.15.

¥

Figure 3.2.15. Behavior to
the right of a critical point.

F(x)>0o0n (x4 b)

Vv

Fxy<0on (xq, b)

Likewise, the behavior of f just to the left of x, can be determined if we know
the sign of f'(x) on an interval (a, x,), as shown in Fig. 3.2.16.

\

/ =10
. ' ¥

Figure 3.2.16. Behavior to
the left of a critical point.

a Xp

f'(x)>0on (a.xy)

v

y=1x) ——R\&M

I

a Xg

1'(x) <0 on (4. xp)

The two possibilities in Fig. 3.2.15 can be put together with the two
possibilities in Fig. 3.2.16 to give four different ways in which a function may
behave near a critical point, as shown in Fig. 3.2.17.

g

¥Ef(x)
\ 1 4 [l
\/ T 1 ¥ _
a Xo b X
F(x)>00n(a,xy)
f'(x)>0o0n (x4, b)
/is increasing at x
v
— y=[x)
} } }
a X5 b X

Figure 3.2.17. Four ways in
which a function can
behave near a critjcal point.

S'(x)<0on (a,x4)
F(x)>0on (xq,b)
Xxg is a local minimum point

v

w e

)

4 } i
T Y T
a

Xy b

£ xy<0on (a,xg)
fx)<0on (x4, b)
/ is decreasing at x

=[x

X

f(x)>0on (a,x,)
£'x)y <0 on (xy,b)
xp is a local maximum point



Exampie 10

Solution

Exampie 11

Solution
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The situations shown in Fig. 3.2.17 are not the only possibilities, but they
are the most common. For example, f'(x) might be zero on one side of x, or
the other, or it might oscillate wildly. For most of the functions we encounter
in this course, though, the classification of critical points in Fig. 3.2.17 will
suffice. As we have already seen in Fig. 3.2.8, the functions x>, — x>, x2, and
— x? provide examples of all four possibilities. Notice that in the case where
X, is a local maximum or minimum point, f changes sign at x,, while f has
the same sign on both sides of a critical point where f is increasing or
decreasing.

We summarize our analysis of critical points in the form of a test.

First Derivative Test
Suppose that x, is a critical point for f(x), i.e., f'(x,) = 0.

1. If f’(x) changes sign from negative to positive at x,, then x, is a
(strict) local minimum point for f.

2. If f’(x) changes sign from positive to negative at x,, then x, is a
(strict) local maximum point for f.

3. If f'(x) is negative for all x # x, near x,, then f is decreasing at x,.

4. If f'(x) is positive for all x # x, near x,, then f is increasing at x,.

Sign of f'(x) near x, Sign of f’(x) near x, Behavior of f

to the left to the right at x,
- + local minimum
+ - local maximum
- - decreasing
+ + increasing

This test should ror be literally memorized. If you understand Fig. 3.2.17, you
can reproduce the test accurately.

Find the critical points of the function f(x)=3x*— 8x>+ 6x> — 1. Are they
local maximum or minimum points?

We begin by finding the critical points: f/(x) = 12x> —24x>+ 12x =
12x(x* —2x + 1) = 12x(x — 1)?; the critical points are thus 0 and 1. Since
(x = 1)* is always nonnegative, the only sign change is from negative to
positive at 0. Thus 0 is a local minimum point, and f is increasing at 1. A

Find and classify the critical points of the function

f(x) =x3+3x% - 6x.

The derivative f'(x)=3x>+ 6x — 6 has roots at — | +3; it is positive on

(=o,—1—=y3)and (=1 +3, o) and is negative on (—1—3, =1 +y3).

Changes of sign occur at —1—3 (positive to negative) and —1+3
(negative to positive), so —1 —y3 is a local maximum point and —1 +y3 isa
local minimum point. A
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Figure 3.2.18. Critical
behavior of y = x* and
y=—x4

Chapter 3 Graphing and Maximum-Minimum Problems

Exampie 12 Discuss the critical points of y = x* and y = — x*.

Solution If f(x) = x* f/(x) = 4x° and the only critical point is at x, = 0. We know that
x* changes sign from negative to positive at 0, so the same is true for 4x> and
hence x* has a local minimum at 0. Similarly, the only critical point of — x* is
0, which is a local maximum point. (See Fig. 3.2.18.) A

v A

=

Exercises for Section 3.2

1.

2.

3.

4.

Using algebra alone, show that f(x) = x? is in-
creasing at x, = 3.

Using algebra alone, show that f(x) = x? is de-
creasing at xo = ~1.

Show by algebra that f(x) = mx + b is increasing
for all xq if m > 0.

Show by algebra that f(x) = mx + b is decreas-

ing for all x, if m < 0.

Using only algebra, find the sign changes of the func-
tions at the indicated points in Exercises 5-8.

5. f(x)=2x~1; xg=14.

6. f(x)=x>~1; xo= —1.

7. f(x) = x% x¢=0.

8.

h(z)=2z(z—=12); z0= 2.

In Exercises 9-12, determine whether the functjons are
increasing, decreasing, or neither at the indicated
points.

9.
10.

11.

12.

13.

15.

x34+ x+1; x,=0.
x* 4+ x +5; xo=0.
2
X =1 =0
Yxt+1
1 ;XOzl.

(x*= 3+ 1)

If f(#) = ¢ — t* + 242 is the position of a particle
on the real-number line at time ¢, is it moving to
the left or right at r = 1?

. A ball is thrown upward with an initial velocity

of 30 meters per second. The ball’s height above
the ground at time ¢ is £(¢) = 30t — 4.9¢%. When
is the ball rising? When is it falling?

The annual inflation rate in Uland during 1968
was approximately r(1) = 20[1 + (> — 6£)/500]
percent per year, where t is the time in months
from the beginning of the year. During what
months was the inflation rate decreasing? What
are the max-min points of r(#)? Explain their
(political) significance.

Derivatives Functions

(a) v h ¥

(b) /VV
v

(c)

(d) - ¥ 4) »

B

Figure 3.2.19. Matching
derivatives and functions
(Exercise 21).



16. The rate of a chemical reaction between =0
and =10 is given by r(¢)=2r3-312+1.
When is the reaction slowing down? When is it
speeding up?

17. Find the intervals on which f(x)= x*—1 is in-
creasing or decreasing.

18. Find the intervals on which x*—3x24 2x is
increasing or decreasing.

19. Find the points at which f(x)=2x>-9x?+
12x + 5 is increasing or decreasing.

20. Find all points in which f(x)= x?—3x+2 is
increasing, and at which it changes sign.

21. Match each derivative on the left in Fig. 3.2.19
with the function on the right.

22. Sketch functions whose derivatives are shown in

Fig. 3.2.20.
¥ ¥
14»——— J
X
—- -
-2
(a) (b)
¥ ' ¥ .
1 X X
(] (d)

(e) / ()

Figure 3.2.20. Sketch
functions that have these
derivatives.

23. For each of the functions shown in Fig. 3.2.20
state: (1) where it is increasing: (2) where it is
decreasing; (3) its local maximum and minimum
points; (4) where it changes sign.

24. For each of the functions in Fig. 3.2.21 tell
whether the function is increasing or decreasing
and whether the derivative of the function is
increasing or decreasing.
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y y

/ //

(c) (d)

Figure 3.2.21. Are fand f’
increasing or decreasing?

25. In Fig. 3.2.22, which points are local maxima
and which are local minima?

N

Mo — e

=S

xy| X2

Figure 3.2.22. Find the
local maxima and minima.

26. Tell where the function in Fig. 3.2.22 is increas-
ing and where it is decreasing.

Find the critical points of the functions in Exercises

27-34 and decide whether they are local maxima, local

minima, or neither.

27. flx)= x% -2 28, f(x)= X+

x2—1
29. f(x)=x*+ x2 =2 30. f(x)=3x*
3. g(y)= 2 32. h(z)= -2
1+ y? 1+ z?

BAA=* =D 34 mg) = (- ™

35. Is f(x) = 1/(x? + 1) increasing or decreasing at
x=1,-3,325 367

36. Let f(x)=4x%+ (1/x). Determine whether f is
increasing or decreasing at each of the following
points: (a) 1; (b) — %; (¢) —5; (d) 24.

37. Describe the change of sign at x =0 of the
function f(x) = mx for m = —2,0,2.

38. Describe the change of sign at x =0 of the
function f(x) = mx — x2form=—1,-1,0,4 1.
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Find the sign changes (if any) for each of the functions
in Exercises 39-42.

39.
41.

43.

44,

2 +3x+2 4O.x23+x—l
x2—4x +4 4 *—1
xt+1
Using only algebra, determine the sign change of

f(x)=(x = r)(x — ry) at x = r;, where ry < r,.
For an observer standing on the Earth, let f(1)
denote the angle from the horizon line to the sun
at time 7. When does f(¢) change sign?

Find the intervals on which each of the functions in
Exercises 45-48 is increasing or decreasing:

45,
47.
49,

50.

*51.

*52.

*53.

*54.

*55.

2x3 = 5x +7 46. x° — x3
2
X"+ 1 48, x*—2x% 4+ 1
x-3
Find a quadratic polynomial which is zero at

x =1, is decreasing if x < 2, and is increasing if

x>2.

Herring production 7 (in grams) is related to the

number N of fish stocked in a storage tank by

the equation T = 500N — 50N 2,

(a) Find dT/dN.

(b) Unless too many fish are stocked, an in-
crease in the number of fish stocked will
cause an increase in production at the ex-
pense of a reduction in the growth of each
fish. (The weight for each fish is T/N.)
Explain this statement mathematically in
terms of derivatives and the level N* of
stocking which corresponds to maximum
production.

Prove the following assertions concerning the

function f(x) = (x> — 1)/(x* = 1):

(a) f can be defined at x = 1 so that f becomes
continuous and differentiable there, but can-
not be so defined at x = ~1.

(b) fisincreasing on (— oo, — 2] and decreasing
on[—-2,—1).

(¢) Ifa< —1,then (a®> —~ 1)/(a*— 1) < =3.

(d) fis increasing on [0, co) and decreasing on
(—1,0]. Make up an equality based on this
fact.

Prove that f is increasing at x, if and only if the

function f(x) — f(x,) changes sign from negative

to positive at x;.

Using the definition of an increasing function,

prove that if f and g are increasing at x,, then so

is f+ g

Prove that if f and g are increasing and positive

on an interval /, then fg is increasing on I.

Let f(x)=ag+ a;x + apx*+ -+ - + a,x". Un-

der what conditions on the g;’s is f increasing at

Xg = 0?

*56.
*57.
*58.

*59.

\ -

Under what conditions on a, b, ¢, and d is the
cubic polynomial ax® + bx? + cx + d strictly in-
creasing or strictly decreasing on (— oo, )?
(Assume a 5= 0.)

If g and & are positive functions, find criteria
involving g'(x)/g(x) and A'(x)/h(x) to tell when
(a) the product g(x)k(x) and (b) the quotient
g(x)/ h(x) are increasing or decreasing.

Let f be a function, and a >0 a positive real
number. Discuss the relation between the critical
points of f(x), af(x), a+ f(x), f(ax), and
fla + x).

Find a cubic polynomial with a graph like the
one shown in Fig. 3.2.23.

*60. (a)

*61.

—

X
\ Figure 3.2.23. This is the
graph of what cubic
polynomial?

Show that there is no quartic polynomial
whose graph is consistent with the informa-
tion shown in Fig. 3.2.20(e).

{b) Show that if +2 is replaced by * 2, then
there is a quartic polynomial consistent with
the information in Fig. 3.2.20(e).

Find a relationship between the (positive) values

of a and b which insures that there is a quartic

polynomial with a graph consistent with the in-

formation in Fig. 3.2.24.

el S
P S~

Figure 3.2.24. When is this
the graph of a quartic?
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Figure 3.3.1. f"(x)) > 0so
[’ is increasing at x; and
changes sign from negative
to positive; thus f has a
local minimum at x,.
Likewise f”(x;) < 0 and x,
is a local maximum.

Exampie 1

Solution
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The Second Derivative
and Concavity

The sign of the second derivative indicates which way the graph of a function is
bending.

In the last section we saw that the classification of critical points of a function
f(x) depends on the sign changes of the derivative f'(x). On the other hand,
the sign changes of f’(x) at a critical point of f are determined by the sign of
the derivative of f'(x), i.e., by the sign of the second derivative f”(x). (See Fig.
3.3.1.) After exploring the consequences of this idea, we shall see that the sign
of f”(x)is important even when x is not a critical point of f.

1(x) fx)

t t
X X .
/ t 2\ x Xy Xy X

(2) Graphot ' (b) Graph of f

Recall that if g(x,)=0 and g'(xy,) >0, then g(x) changes sign from
negative to positive. Applying this to the case where g is the derivative f' of a
function f, we find that for a critical point x, of f(x), f'(x) changes sign from
negative to positive if f”(x,) > 0. Thus, by the first derivative test, x is a local
minimum point. Similar reasoning when f”(x,) < 0 leads to the following test.

Second Derivative Test
Suppose that f'(x,) = 0.

1. If f"(x4) >0, then x, is a (strict) local minimum point.
2. If f”(x4) <0, then x, is a (strict) local maximum point.
3. If f"(x4) =0, the test is inconclusive.

We will discuss the case f”(x,) = 0 shortly. For now, notice that the functions
y=xy=—x%y=x%y=—x*(Figs. 3.2.8 and 3.2.18) show that various
things can happen in this case.

Use the second derivative test to analyze the critical points of the function
f(x)=x>—6x*+ 10.

Since f'(x) = 3x? — 12x = 3x(x — 4), the critical points are at 0 and 4. Since
f’(x)=6x — 12, we find that f"(0)= —12 <0 and f"(4)= 12> 0. By the
second derivative test, 0 is a local maximum point and 4 is a local minimum
point. A
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Example 2

Solution

Exampie 3

Solution

Figure 3.3.2. (a) The slope
of the tangent line is
increasing; f”(x) > 0.

(b) The slope of the tangent
line is decreasing;

f7(x) <0.

Figure 3.3.3. The function f
is concave upward at x,
and concave downward

at x,.

Analyze the critical points of f(x) = x> — x.

f'(x) =3x%— 1 and f”(x) = 6x. The critical points are zeros of f’(x); that is,
x=*(1/3) f(=1/¥3)=—(6/V3)<0and f(1/3)=6/y3 > 0. By the
second derivative test, —(1/y3 ) is a local maximum point and 1/ V3 is a local
minimum point. A

When f”(x,) =0, the second derivative test is inconclusive. We may some-
times use the first derivative test to analyze the critical points, however.

Analyze the critical point x, = — 1 of f(x) =2x*+ 8x> + 12x? + 8x + 7.

The derivative is f'(x)=8x>+24x*+24x + 8, and f(—1)= —8+24 —
24+ 8=0,s0 — 1 is a critical point. Now f”(x) = 24x? + 48x + 24, s0 f"(— 1)
= 24 — 48 + 24 = 0, and the second derivative test is inconclusive. If we factor
f', we find f'(x) = 8(x>+ 3x? + 3x + 1) = 8(x + 1)’. Thus — I is the only root
of f', f(—2)= —8, and f'(0) = 8, so f’ changes sign from negative to positive
at —1; hence, — 1 is a local minimum point for f. A

Whether or not f'(x,) is zero, the sign of f”(x,) has an important geometric
interpretation: it tells us which way the tangent line to the graph of f turns as
the point of tangency moves to the right along the graph (see Fig. 3.3.2). The
two graphs in Fig. 3.3.2 are bent in opposite directions. The graph in part (a)
is said to be concave upward; the graph in part (b) is said to be concave
downward.

v v =100 V4

./

y=1(x)

x x
(a) (b)

We can give precise definitions of upward and downward concavity by
considering how the graph of f lies in relation to one of its tangent lines. To
accomplish this, we compare f(x) with its linear approximation at x,:
I(x) = f(xo) + f'(x)(x — x,). If there is an open interval (a, b) about x, such
that f(x) > /(x) for all x in (a, b) other than x, then f is called concave upward
at xy. If, on the other hand, there is an open interval (a, b) about x, such that
f(x) < I(x) for all x in (a,b) other than x,, then f is called concave downward
at xg.

Geometrically, fis concave upward (downward) at x, if the graph of f lies
locally above (below) its tangent line at x,,, as in Fig. 3.3.3.

Notice that the difference h(x)= f(x)— I(x) is positive or negative
according to whether f(x) > I(x) or f(x) < I(x). Since hA(x,) = f(xq) — {(xq)
= (), we see that f is concave upward or downward at x, according to whether
h(x) has a local minimum or maximum at x,. (See Fig. 3.3.4.)

If we differentiate A(x) = f(x) — [ f(x,) + f'(xX(x — x,)] twice, we obtain
h'(x) = f'(x)~ f(xq) and A"(x) = f"(x) (x, is treated as a constant). Notice
that h'(xy) =0, so x, is a critical point for h. Next, observe that h”(x,)
= f"(x,), so we may conclude from the second derivative test for local
maxima and minima that x, is a local minimum for £ if f”(x;) > 0 and a local
maximum if f”(x,) < 0. Thus we have the test in the next box. (Once again,
the functions x>, — x3,x*, — x* at x, = 0 illustrate the possibilties in case 3.)




Figure 3.34. The function f
is concave upward at X,
when the difference h(x)
between f(x) and its linear
approximation at xy has a
local minimum at x,.

Exampie 4

Soiution

Examplie 5

Solution

Figure 3.3.5. The critical
points and concavity of
3x3—8x + 12

3.3 The Second Derivative and Concavity i5¢

, ¥ =f(x)

y=10x) = flxg) +f (xo)x — xg)

y=hx)= flx) - 1(x)

Xg X

The Second Derivative Test for Concavity

1. If f"(xo) > 0O, then f is concave upward at x,.

2. If f"(xg) <0, then f is concave downward at x,.

3. If f"(x) =0, then f may be either concave upward at x,, concave
downward at x,, or neither.

Discuss the concavity of f(x)=4x’ at the points x = —1, x =0, and x = 1.

We have f(x)=12x? and f”(x)=24x, so f"(—1)= —24, f"(0)=0, and
f"(1) = 24. Therefore, fis concave downward at — | and concave upward at 1.
At zero the test is inconclusive; we can see, however, that f is neither concave
upward nor downward by noticing that f is increasing at zero, so that it
crosses its tangent line at zero (the x axis). That is, f is neither above nor
below its tangent line near zero, so f is neither concave up nor concave down
at zero. A

Find the intervals on which f(x)=3x>— 8x + 12 is concave upward and on
which it is concave downward. Make a rough sketch of the graph.
Differentiating f, we get f(x)=9x*—8, f”(x)= 18x. Thus f is concave
upward when 18x > 0 (that is, when x > 0) and concave downward when
x < 0. The critical points occur when f(x)=0, ie., at x = * \/8/9
= * %\/5 Since f"(— %\/5) <0, — %\/5 is a local maximum, and since
f"(3y2)>0, 2/2 is a local minimum. This information is sketched in Fig.
335 A

-

Concave - Concave
*— downward 1 upward

]
I
: y=3x3 -8x+12
|
|
|
1

wllu
S
wiro
§ N

We have just seen that a function f is concave upward where f”(x) > 0 and
concave downward where f”(x) < 0. Points which separate intervals where f
has the two types of concavity are of special interest and are called inflection
points. More formally, we say that the point x, is a inflection point for the
function f if f is twice differentiable near x, and f” changes sign at x,. (See
Fig. 3.3.6.)
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Figure 3.3.6. The inflection
points of fare x, and x,.

Example 6

Solution

Example 7

Solution

y=1(x)

\ |
! I
[ 1 ¢
Concave Concave Concave
upward | downward | upward

/>0 /<0 !f”>0

1

Xy X3

To see where f” changes sign, we begin by looking for the points where it
is zero. Then we look at the next derivative, f"/(x,), to see whether a sign
change actually takes place.

inflection Points

An inflection point for f is a point where f” changes sign. If x, is an
inflection point for f, then f”(xy) = 0. If f"(xy) = 0 and f"’(x,) # 0, then
Xq 1s an inflection point for f.

Find the inflection points of f(x)= x>+ (1/x).

The first derivative is f'(x)=2x — (1/x?), and so the second derivative is
f"(x) =2+ (2/x%). The only possible inflection points occur where

” —_ 2
X
That is, x> = —1; hence, x = — 1. To test whether this is an inflection point,

we calculate the third derivative: f(x)= —6/x* so f"(—1)= —6+0;
hence, — 1 is a inflection point. A

If f7(x,) = 0 and f""(x,) = 0, then x, may or may not be an inflection point.
For example, f(x)= x* does not have an inflection point at xo= 0 (since
f"(x)=12x*> does not change sign at 0), whereas f(x)= x’ does have an
inflection point at x,= 0 (since f”(x)=20x> does change sign at 0). In both
cases, f(xq)=f""(x4) =0, so the test in the preceding box fails in this case.

We can also detect sign changes of f/” by examining the sign of f"(x)in
each interval between its roots.

Find the inflection points of the function f(x) = 24x* — 32x> + 9x? + 1.

We have f(x) = 96x> — 96x? + 18x, so f"(x) = 288x% — 192x + 18 and f(x)
=576x — 192. To find inflection points, we begin by solving f”(x) = 0; the
quadratic formula gives x = (4 =7 )/12. Using our knowledge of parabolas,
we can conclude that f” changes from positive to negative at (4 —7 )/12 and
from negative to positive at (4 +y7 )/12; thus both are inflection points. One
could also evaluate f”’((4 +y7)/12), but this requires more computation. A

Some additional insight into the meaning of inflection points can be obtained
by considering the motion of a moving object. If x = f(¢) is its position at time
1, then the second derivative d”x/dt* = f”(r) is the rate of change of the
velocity dx /dt = f'(¢) with respect to time—the acceleration. We assume that
dx/dr > 0, so that the object is moving to the right on the number line. If
d’x/dr* > 0, the velocity is increasing; that is, the object is accelerating. 1f
d*x/dt* < 0, the velocity is decreasing; the object is decelerating. Therefore, a
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point of inflection occurs when the object switches from accelerating to

decelerating or vice versa.

Examplie 8

In Fig. 3.3.7, tell whether the points x,; through x4 are local maxima, local

minima, inflection points, or none of these.

v

Figure 3.3.7. Locate the

local maxima and minima
and inflection points.

Solution

x, is a local maximum point;
x, 1s an inflection point;
x5 1s an inflection point;

o

x4 is none of these (it is a zero of f);
X5 is a local minimum point;
X 1s a local maximum point. A

Exercises for Section 3.3

Use the second derivative test to analyze the critical
points of the functions in Exercises 1-8.

L f(x)=3x*+2 2. f(x)=x*—6x—3

3 f(x)= 6);5 - x+20 4. f(x)= x‘;- x2

-1 x” =1
5 f(x)=2 6. f(x)= ——
fo) =5 f0) o
7. g(s) = —2 8. hip)=p+ —
g9 = P=r+

Find the intervals on which the functions in Exercises
9-16 are concave upward and those on which they are
concave downward:

9. f(x)=3x"+8x+10

10. f(x)= x>+ 3x +8

1. f(x) = x*
12. f(x)=—)lz
13. () = 2
14. f(x)= 2

15. f(x)= x>+ 4x> —8x + L.

16. f(x) = (x —2)° + 8.
Find the inflection points for the functions in Exercises
17-24.

17. f(x)= x>~ x 18. f(x)=x*~ x2+1

19. f(x)=x" 20. f(x)= x®

21 f(x) = (x — I)* 22, f(x)= 2)53 + 3x

23. f(x) = 24, f(xy=*—1
1+ x? ) x2+1

25. In each of the graphs of Fig. 3.3.8, tell whether
Xo Is a local maximum point, a local minimum
point, an inflection point, or none of these.

(b)
14
w

1
1

—_—
Xg Ay

(d)

(g) (h)

Figure 33.8. Is xy a local maximum? A local mini-
mum? An inflection point? Neither?
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Identify each of the points x, through x¢ in Fig.
3.3.9 as a local maximum point, local minimum
point, inflection point, or none of these.

Figure 3.39. Classify the
points x,, ..., Xg.

Find the local maxima, local minima, and inflection
points of each of the functions in Exercises 27-30. Also
find the intervals on which each function is increasing,
decreasing, and concave upward and downward.

27.

29.
3L

32.

33.

35.

36.

37.

38.

39.

40.

Ly2

X 1 8. x(x — l)

W +2xr—4x+3 300 x2—x*

Find the inflection points for x”, n a positive
integer. How does the answer depend upon n?
Is an inflection point always, sometimes, or never
a critical point? Explain.

Find a function with inflection points at | and 2.
[Hint: Start by writing down f”(x). Then figure
out what f’(x) and f(x) should be.]

. Find a function with local maxima or minima at

1 and 3 and an inflection point at 2.

(a) Relate the sign of the error made in the linear

approximation of f to the second derivative of f.

(b) Apply your conclusion to the linear approxi-

mation of 1/x at xy = 1.

(a) Use the second derivative to compare x* with

9 + 6(x ~ 3) for x near 3. (b) Show by algebra

that x2 > 9 + 6(x — 3) for all x 3.

Let f(x) = x* — x.

(a) Find the linear approximations to f at x,
= —1,0, and 1.

(b) For each such x,, compare the value of
f(xq + Ax) with the linear approximation for
Ax = =1,x0.1, 20.01. How does the error
depend upon f”(xg)?

Show that if f'(xg) = f"(x¢) = 0 and f""(xg) # 0,

then x, is not a local maximum or local mini-

mum point for f.

The power output of a battery is given by P

= EI — RI% where E and R are positive con-

stants.

(a) For which current / is the power P a local
maximum? Justify using the second deriva-
tive test.

(b) What is the maximum power?

A generator of E volts is connected to an induc-

tor of L henrys, a resistor of R ohms, and a

41.

42,

*43.

*44.

*45.

*46.

*47.

second resistor of x ohms. Heat is dissipated

from the second resistor, the power P being given

by
_ E*x
QaL)* + (x + R)?

(a) Find the resistance value x, which makes
the power as large as possible. Justify with
the second derivative test.

(b) Find the maximum power which can be
achieved by adjustment of the resistance x.

A rock thrown upward attains a height s =3 +

407 — 161> feet in ¢ seconds. Using the second

derivative test, find the maximum height of the

rock.

An Idaho cattle rancher owns 1600 acres adja-

cent to the Snake River. He wishes to make a

three-sided fence from 2 miles of surplus fencing,

the enclosure being set against the river to make

a rectangular corral. If x is the length of the

short side of the fence, then 4 = x(2 — 2x) is the

area enclosed by the fence (assuming the river is
straight).

(a) Show that the maximum area occurs when

= 4, using the second derivative test.

(b) Verify that the maximum area enclosed is
0.5 square mile.

(c) Verify that the fence dimensions are 1, |, 4
miles, when the area enclosed is a maxi-
mum.

Sketch the graphs of continuous functions on

(— 0, ®) with the following descriptions. (If you

think no such function can exist, state that as

your answer.)

(a) Three local maxima or minima and two
points of inflection.

(b) Two local maxima or minima and three
points of inflection.

(¢) Four local maxima or minima and no points
of inflection.

(d) Two (strict) local maxima and no (strict)
local minima.

Suppose that f'(xg) = f"(x¢) = f"'(xg) =0, but

f""(x9) #= 0. Is x4 a local maximum point, a local

minimum point, or an inflection point of f? Give
examples to show that anything can happen if

f7"(%0) = 0.

If f(x) is positive for all x, do f(x) and 1/f(x)

have the same inflection points?

Prove that no odd-degree polynomial can be

everywhere concave upward. (As part of your

solution, give a few simple examples and include

a brief discussion of the possibilities for even-

degree polynomials.)

Prove the following theorem, which shows that

the tangent line at a point of inflection crosses

the graph:




Let x4 be an inflection point for f and let
h(x) = f(x) = [f(x0) + f'(xo)(x = x0)] be the dif-
ference berween f and its linear approximation at
xo. If f" changes sign from negative to positive [or
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positive to negative] at x, ( for example, if f"'(xo)
>0 [or <Q]), then h changes sign from negative
to positive [or positive to negative] at x,.

The two cases are illustrated in Fig. 3.3.10.

Figure 3.3.10. The graph of
f crosses its tangent line at

a point of inflection.

3.4

y y=fx) V4
y =1l y=1(x)

y=f(x)

hxy=f(x) - 1lx)

Xo

hx)=fx) - I(x)

X9

(a) f”’(x())>0 () f”’(xo)<0

Drawing Graphs

Using calculus to determine the principal features of a graph often produces
better results than simple plotting.

One of the best ways to understand a function is to see its graph. The simplest
way to draw a graph is by plotting some points and connecting them with a
smooth curve, but this method can lead to serious errors unless we are sure
that we have plotted enough points. The methods described in the first three
sections of this chapter, combined with the techniques of differentiation, help
us make a good choice of which points to plot and show us how to connect
the points by a curve of the proper shape.

We begin by outlining a systematic procedure to follow in graphing any
function.

Graphing Procedure
To sketch the graph of a function f:

1. Note any symmerries of f. Is f(x)= f(—x), ot f(x)= —f(—x), or
neither? In the first case, f is called even; in the second case, f is called
odd. (See Fig. 3.4.1 and the remarks below.)

2. Locate any points where f is not defined and determine the behavior
of f near these points. Also determine, if you can, the behavior of f(x)
for x very large positive and negative.

3. Locate the local maxima and minima of f, and determine the intervals
on which f is increasing and decreasing.

4. Locate the inflection points of f, and determine the intervals on which
f 1s concave upward and downward.

5. Plot a few other key points, such as x and y intercepts, and draw a
small piece of the tangent line to the graph at each of the points you
have plotted. (To do this, you must evaluate f’ at each point.)

6. Fill in the graph consistent with the information gathered in steps 1
through 5.

Let us examine the graphing procedure beginning with step 1. If f is even—
that is, f(x) = f(— x)—we may plot the graph for x > 0 and then reflect the
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Figure 3.4.1. fis even when
f{—x)= f(x) and odd
when f(—x) = — f(x).

Example 1

Solution

Exampie 2

Solutlon

1)

x = | (Vertical
asymptote)

|
|
|
!
|
|
|
| x
|
!
|
!
1
!
1
|

[

Figure 3.4.2, Pieces of the
graph y = x /(1 — x) are
plotted near the vertical
asymptote x = 1.

result across the y axis to obtain the graph for x < 0. (See Fig. 3.4.1 (a).) If f is
odd, that is, f(x) = — f(— x) then, having plotted f for x > 0, we may reflect
the graph in the y axis and then in the x axis to obtain the graph for x < 0.
(See Fig. 34.1 (b).)

¥y v

f‘w-*k/:\ h —Nm Jx) b
. [
! o L
X x } X X
o (=)

(a) Even function (b) Odd function

o

To decide whether a function is even or odd, substitute — x for x in the
expression for f(x) and see if the resulting expression is the same as f(x), the
negative of f(x), or neither.

Classify each of the following functions as even, odd, or neither:

(@) f(x)=x*+3x*+ 12;

(b) g(x)=x/(1 + x?),

(©) h(x)=x/(1 + x);

@) f(—x)=(—x)*+3(—x)’ + 12 = x* + 3x? + 12 = f(x), so f is even.

®) g(—x)=(—x)/(1+ (—x))=—x/(1 + x?) = — g(x), so g is odd.

(©) h(—x)=(—x)/(1 + (—x))= —x /(1 — x), which does not appear to
equal A(x) or — h(x). To be sure, we substitute x = 2, for which A(x) =2
and A(— x) = 2; thus, A is neither even nor odd. A

Step 2 is concerned with what is known as the asymptotic behavior of the
function f and is best explained through an example. The asymptotic behavior
involves infinite limits of the type lim,_, f(x)= +c0 and lim,_, ., f(x)=1,
as were discussed in Section 1.2.

Find the asymptotic behavior of f(x) = x /(1 — x) (f is not defined for x = 1).

For x near 1 and x > |, 1 — x is a small negative number, so f(x) = x /(1 — x)
1s large and negative; for x near | and x < 1, 1 — x is small and positive, so
x /(1 — x) is large and positive. Thus we could sketch the part of the graph of
f near x =1 as in Fig. 3.42. The line x =1 is called a vertical asymptote
for x /(1 — x). In terms of Limits, we write lim,_,,_[x/(l — x)]= + c and
limx%l+ [X/(l - X)] = — 0.

Next we examine the behavior of x /(1 — x) when x is large and positive
and when x is large and negative. Since both the numerator and denominator
also become large, it is not clear what the ratio does. We may note, however,
that

X

_ 1
I—x (I/x)—1

for x # 0. As x becomes large (positive or negative), 1/x becomes small, and
(1/x)—1 approaches —1, so 1/[(1/x)— 1] approaches 1/(—1)= —1, ie,
lim,, [x/(l —x)]= —1and lim,_,_ [x/(l — x)] = — |. Furthermore, when
x is large and positive, 1/x >0, so (I/x)— 1> —1, and therefore
1/[(1/x)—11<1/(=1)= —1, so the graph lies near, but below, the line



Figure 3.4.3. Pieces of the
graph y = x /(1 — x) are
plotted near the horizontal
asymptote y = — 1.

Examplie 3

Solution

Figure 3.4.4. The lines
x=0andy = x are
asymptotes.
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y = — 1. Similarly, for x large and negative, 1 /x <0,s0 (I/x)— 1< —1, and
therefore 1/[(1/x)— 11> —1, so the graph lies near, but above, the line
y = —1. Thus, we could sketch the part of the graph for x large as in Fig.
3.4.3. The line y = — 1 is called a horizontal asymptote for f. A

y=-1
(Horizontal
asymptote)

Steps 3 and 4 were described in detail in Sections 3.2 and 3.3; step 5 increases
the accuracy of plotting, and step 6 completes the job. These steps will be
carried out in detail in the examples that follow. The graph y=x/(1— x)
begun above is discussed again in Example 9.

Some words of advice: It is important to be systematic; follow the
procedure step by step, and introduce the information on the graph as you
proceed. A haphazard attack on a graph often leads to confusion and
sometimes to desperation. Just knowing steps 1 through 6 is not enough—you
must be able to employ them effectively. The only way to develop this ability
1s through practice.

Sketch the graph of f(x)= x — % .

We carry out the six-step procedure:

I f(—=x)= —x+(1/x)= —f(x); f is odd, so we need only study f(x) for
x> 0.

2. f 1s not defined for x =0. For x small and positive, —(1/x) is large in
magnitude and negative in sign, so x — (1 /x) is large and negative as well,
x = 0 is a vertical asymptote. For x large and positive, —(1/x) is small and
negative; thus the graph of f(x)= x —(1/x) lies below the line y = x,
approaching the line as x becomes larger. The line y = x is again called an
asymptote (see Fig. 3.4.4),

¥ srEX
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L)

Figure 3.4.5. The
information obtained from

steps | to 5.

Example 4

Soiution

3. f'(x) =1+ (1/x?), which is positive for all x = 0. Thus f is always increas-
ing and there are no maxima or minima.

4. f’(x)= —(2/x%), which is negative for all x > 0; f is concave downward
on (0, c0).

5. The intercept occurs where x — (1/x)=0; that i1s, x = 1. We have f'(1)

=2f)=3,f @)=}

The information obtained in steps 1 through 5 is placed on the graph in Fig.
34.5.

6. We fill in the graph for x > 0 (Fig. 3.4.6). Finally, we use the fact that f is
odd to obtain the other half of the graph by reflecting through the x and y
axes. (See Fig. 3.4.7) A

y ¥y

Figure 3.4.6. The graph for Figure 3.4.7. The complete
x > 0 is filled in (step 6). graph is obtained by using
the fact that f is odd.

Calculator Remark

While calculators enable one to plot points relatively quickly, and computers
will plot graphs from formulas, the use of calculus is still essential. A
calculator can be deceptive if used alone, as we saw in Example 7, Section
R.6. In Chapter 14 we will see how the computer can help us graph compli-
cated surfaces in space, but it may be unwise to begin expensive computation
before a thorough analysis using calculus. Of course, it may be even quicker to
solve a simple problem by calculus than to go to a machine for plotting. A

Sketch the graph of f(x) = —%—.
graph of f(x) 12

Again we carry out the six-step procedure:
Lf(=x)=~x/[1+(—x)1= —x/[1 + x}] = — f(x); f is odd, so its graph
must by symmetric when reflected in the x and y axes.

2. Since the denominator 1 + x? is never zero, the function is defined every-
where; there are no vertical asymptotes. For x = 0, we have

- X __ _ 1
fx = 1+x2_x+(l/x)‘

Since 1/x becomes small as x becomes large, f(x) looks like 1/(x + 0)
= 1/x for x large. Thus y = 0 is a horizontal asymptote; the graph is below
»y = 0for x large and negative and above y = 0 for x large and positive.

l+x2—x(2x) 3 (1 —xz)

L 9=

(1 + x2) (1 +x3




Figure 3.4.8. The graph
y = x/(1 + x?) after steps 1
to 3.

Figure 3.4.9. The complete
graph y = x /(1 + x?).
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which vanishes when x = = 1. To check the sign of f'(x) on (—c0, —1),
(—1,1), and (1, 0), we evaluate it at conveniently chosen points:
f(=2)=—%, f(0)=1, f2Q)= — 5. Thus f is decreasing on (— o0, —1)
and on (1, o) and f is increasing on (— 1, 1). Hence — 1 is a local minimum
and 1 is a local maximum by the first derivative test.

l+x22—2x—l—x2-2l+x22x 2x(x*—3
iy UEC2 == A1+ w2x 25023

(1 + x%* (1 + x%’

This is zero when x =0, 3, and —3. Since the denominator of f7is
positive, we can determine the sign by evaluating the numerator. Evaluat-
ing at —2, —1, 1, and 2, we get —4, 4, —4, and 4, so f is concave
downward on (— oo, —y3) and (0,/3) and concave upward on (—y3,0)
and (\/5, ©0); — V3,0, and 3 are points of inflection.

f(0)=0; fo=1

=1 sm=e
f(By=48: r(B)=-1.
The only solution of f(x)=0is x =0.

The information obtained in steps 1 through 5 is placed tentatively on
the graph in Fig. 3.4.8. As we said in step 1, we need do this only for x > 0.

Y A
(%)
N 1
—e— (V3,3V}
0.0 o —
e —— x
Increasing Decreasing
concave down concave up
Decreasing
concave down

. We draw the final graph, remembering to obtain the left-hand side by

reflecting the right-hand side in both axes. (You can get the same effect by
rotating the graph 180°, keeping the origin fixed.) The result is shown in
Fig. 3.49. A

v

Examplie 5 Sketch the graph of f(x)=2x>+ 8x + .

Solutlon The six steps are as follows:

. f(—x)= —2x3 — 8x + 1 is not equal to f(x) or — f(x), so f is neither even
nor odd.
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't
+(!,H)

©. 0 j»
;—V“——J¥W~——/ x
Increasing Increasing
concave down concave up

(—!,"9)+

Figure 3.4.10. The graph
y= 2x3 + 8x + | after
steps 1 to 5.

Figure 3.4.11. The
completed graph
y=2x+8x+1.

2. f is defined everywhere. We may write

_ 5.3 4 1
f(x)=2x (l + > + 0 )

For x large, the factor 1+ (4/x%) + (1/2x7) is near 1, so f(x) is large
and positive for x large and positive, and large and negative for x large
and negative. There are no horizontal or vertical asymptotes.

3. f/(x) = 6x* + 8, which vanishes nowhere and is always positive. Thus f
1s increasing on ( — o0, o0) and has no critical points.

4. f"(x) = 12x, which is negative for x <0 and positive for x > 0. Thus f is
concave downward on (— o0,0) and concave upward on (0, c0); zero is a
point of inflection.

5. fO=1 f(0)y=38,
fy=115 fy=14,
f(—l)=—9,‘ f'(—l)=l4.
The information obtained so far is plotted in Fig. 3.4.10.
6. A look at Fig. 3.4.10 suggests that the graph will be very long and thin. In
fact, f(2) = 33, which is way off the graph. To get a useful picture, we may
stretch the graph horizontally by changing units on the x axis so that a unit

on the x axis is, say, four times as large as a unit on the y axis. We add a
couple of additional points by calculating

i)=ss pi)=9.
J=4)==34 f(=h)=9%.

Then we draw a smooth curve as in Fig. 3.4.11. 4

Any cubic function y = ax® + bx? + cx + d may be plotted just as the one in
the preceding example. The critical points are obtained by solving the qua-
dratic equation

f(x)= 3ax?+2bx+¢=0

which may have one or two roots or none. In Example 5, f'(x) =0 had no
roots, and f' was always positive. If f” has two roots, y = f(x) will have one
local maximum and one local minimum. Let us do an example of this type.



Example 6
Solution

y=vx

Figure 3.4.14. The graph
y=yx.
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Sketch the graph of f(x)=2x> —8x + 1.
Again, we use the six-step procedure:

1. There are no symmetries.

2. There are no asymptotes. As in Example 5, f(x) is large positive for x large
positive and large negative for x large negative.

3. f'(x) = 6x* — 8, which is zero when x = * \/4/—3 = +2/V3 ~ = 1.15. Also,
f'(=2)=f(2)=16 and f'(0)= —8, so f is increasing on (— oo, -2/V31
and [2/3, o0) and decreasing on [—2/y3,2/y3 |. Thus, —2/y3 is a local
maximum point and 2/y3 a local minimum point.

4. f"(x)=12x, so f is concave downward on (— ,0) and concave upward
on (0, c0). Zero is an inflection point.

5. =1 f(O)=-8
f(=2/V3)=1+32/33~7.16;  f(-2/V3)=0,
f(2/3)=1-32/33~ -5.16; f(2/¥3)=0,

f(=3)=43; f(=3)=—64,
fG)=-2%; f(3)=—63,
f(=2y=1; f(=2)=16,
f@=1n f@=1e.

The data are plotted in Fig. 3.4.12, The scale is stretched by a factor of 4 in
the x direction, as in Fig. 3.4.11.
6. We draw the graph (Fig. 3.4.13). A

v

Concave - 8

-— Concave up
down \ /
L 4
A A
- ~

I S

t -

;W"_J W_J X

Increasing 4+ Increasing L
- 4

Decreasing

Figure 3.4.12. The graph Figure 3.4.13. The
y=2x>—8x+1 after completed graph
steps 1 to 5. y=2x3—8x+1.

Some interesting new features arise when we graph functions which involve
fractional powers. For example, consider the graph of y = Vx for x > 0.
Notice that the slope dy/dx =1 x~'/2=1/(2yx ) becomes large and positive
as x =0, while dy /dx approaches 0 as x — co. Thus, the graph appears as in
Fig. 3.4.14.

Something similar happens for the cube root y = x'/3 so that dy/dx
= 1/(3x*/%). This time, the function is defined for all x; its derivative exists
for x # 0 and is large and positive for x near 0, of both signs. (See Fig. 3.4.15.)
We sometimes say that the graph y = x'/3 has a vertical tangent at x = 0,

You may notice that the graphs y = x'/? and y = x'/3 resemble y = x*
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Figure 3.4.15. The graph
y =%x has a “vertical
tangent line” at the origin.

Figure 3.4.16. The graph
»y = x*/* has a cusp at the
origin.

Example 7
Solution
A

o, n

Figure 3.4.17. The graph
y=(3+ 12

and y = x* turned on their sides. This relationship will be explored when we
study inverse functions in Section 5.3,

Still more interesting is the graph of y = x?/?, which is also defined for all
x. The derivative is dy /dx = 2x~'/*=2/(3%x). For x near 0 and positive,
dy/dx is large and positive, whereas for x near 0 and negative, dy /dx is large
and negative. Thus, the graph has the appearance shown in Fig. 3.4.16. Again,

yé

TN

= X203

we can say that the graph has a vertical tangent at x = 0. However, the shape
of the graph near x =0 has not been encountered before. We call x =0 a
cusp. Note that x = 0 is a minimum point of f(x) = x*/?, but that x*/? is not
differentiable there.

In general, a continuous function f is said to have a cusp at x, if f'(x) has
opposite signs on opposite sides of x, but f'(x) “blows up” at x, in the sense
that lim,,, [1/f'(x)] = 0; thus lim,_,, ., f'(x)= %0 or F co.

Let f(x) = (x* + 1)*/% (a) Where is f increasing? (b) Sketch the graph of f. Are
there any cusps?
(a) Using the chain rule, we get f'(x) = 3xyx>+ 1. Hence f'(x) <0 (so f is
decreasing) on (— o, 0), and f'(x) > 0 (so f is increasing) on (0, o).

(b) By the first derivative test, x = 0 is a local minimum point. Note that
f(x) is an even function and

"(xy=3 ———’f—z-—+\/x2+1)>0,
f() (\/x2+1

so f is concave upward. Thus we can sketch its graph as in Fig. 3.4.17. There
are no cusps. A



Exampie 8
Soiution

N

LI i
—1 0 X

3
T4

Figure 3.4.18. The graph
y = x2(x + 1)*/? has a cusp
at x = —1.

Examplie 9

Solution

Figure 3.4.19. The graph
y=x/(1-x).
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Sketch the graph of (x + 1)¥/2
Letting f(x) = (x + 1)*°x% we have
f(x)=35(x+ l)"/z'x2 +(x+ 1)2/3‘ 2x
= [2x/3(x + l)'/3](4x + 3).

For x near — 1, but x > —1, f’(x) is large positive, while for x < —1, f'(x) is
large negative. Since f is continuous at — 1, this is a local minimum and a
cusp.

The other critical points are x = 0 and x = — 3. From the first derivative
test (or second derivative test, if you prefer), — 3 is a local maximum and zero
is a local minimum. For x > 0, f is increasing since f'(x) > 0; for x < —1, f is
decreasing since f'(x) < 0. Thus we can sketch the graph as in Fig. 3.4.18. (We
located the inflection points at (— 33 =609 )/40 ~ —0.208 and — 1.442 by
setting the second derivative equal to zero.) A

Sometimes algebraic transformations simplify the job of drawing a graph.

Sketch the graph y = x/(1 — x) by (a) the six-step procedure and (b) by
making the transformation u =1 — x.

(a) In Example 1 we carried out steps |1 and 2. To carry out step 3, we
compute using the quotient rule:

d_y=(l—x)—x(—l)= 1

dx (1= ) (1-x?
Since dy/dx is always positive (undefined if x = 1), the graph has no maxima
and minima and the function is increasing on the intervals (—oo,1) and
(1, o). For step 4, we compute that

dy _ 2

dx? (1- x)3 ’
so the graph is concave upward on (— co, 1) and concave downward on (1, o).

For step 5 we note that y = 0 when x = 0 and y = —2 when x = 2. At both of
these points dy /dx is 1. The graph is then plotted in Fig. 3.4.19.

Smo———————— o —— e T

b)yIf weletu=x—1,then x=1+u, soy=(_1+w)/(-u)y=-1-
1/u. Letting z =y + 1, we get z= —1/u. This graph is easy to sketch and
may already be familiar to you as a hyperbola in the second and fourth
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quadrants of the uz plane. Translating axes (just as we did for parabolas in
Section R.2) produces the same result as in Fig. 3.4.19, in which the dashed
lines are the u and z axes. A

Supplement to Section 3.4
The General Cubic

In Section R.2, we saw how to plot the general linear function, f(x) = ax + b,
and the general quadratic function, f(x) = ax? + bx + ¢ (a # 0). The methods
of this section yield the same results: the graph of ax + b is a straight line,
while the graph of f(x) = ax® + bx + c is a parabola, concave upward if a > 0
and concave downward if ¢ < 0. Moreover, the maximum (or minimum) point
of the parabola occurs when f'(x) = 2ax + b =0, that is, x = —(b/2a), which
is the same result as was obtained by completing the square.

A more ambitious task is to determine the shape of the graph of the
general cubic f(x) = ax® + bx> + cx + d. (We assume that a # 0; otherwise,
we are dealing with a quadratic or linear function.) Of course, any specific
cubic can be plotted by techniques already developed, but we wish to get an
idea of what all possible cubics look like and how their shapes depend on a, b,
¢, and d.

We begin our analysis with some simplifying transformations. First of all,
we can factor out ¢ and obtain a new polynomial f,(x) as follows:

— 3 b c dy _
f(x)= a(x + sz + 2x + Z) = af|(x).
The graphs of f and f; have the same basic shape; if a > 0, the y axis is just
rescaled by multiplying all y values by a; if 2 <0, the y axis is rescaled and
the graph is flipped about the x axis. It follows that we not lose any generality
by assuming that the coefficient of x* is 1.

Therefore, consider the simpler form
fixy=x>+bx*+cx +d,

where b, = b/a, ¢, = c¢/a, and d, = d/a. In trying to solve cubic equations,
mathematicians of the early Renaissance noticed a useful trick: if we replace x
by x — (b,/3), then the quadratic term drops out; that is,

b, 3
f,(x—?)-'-’-x +C2x+d2,

3 These algebraic ideas are related to a formula for the roots of a general cubic, discovered by
Niccolo Tartaglia (1506-1559) but published by (without Tartaglia’s permission) and often
credited to Girolamo Cardano (1501-1576). Namely, the solutions of the cubic equation
x>+ bx2+ ex +d=0are

xl=s+T—§, where S= y/R+y{/Q%+ R?

x2=—%(S+T)—§+%‘/—3(S—T), T= 3R—w’Q3+R2
1 b _ 1 3c— b2 9bc — 27d — 2b°

= — = -0 _J T = =

wm=—2(S+T)-2-L/=3(s-1), 0=35" & T

There is also a formula for the roots of a quartic equation, but a famous theorem (due to Abel
and Ruffini in the nineteenth century) states that there can be no such algebraic formula for the
general equation of degree > 5. Modern proofs of this theorem can be found in advanced
textbooks on the algebra [such as L. Goldstein, Abstract Algebra, Prentice-Hall, (1973).] These
proofs are closely related to the proof of the impossibility of trisecting angles with ruler and
compass.



Figure 3.4.20. The graph of
y= x4 ex for: ¢ > 0 (I);
¢ =0 (II); and ¢ < 0 (IID).
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where ¢, and 4, are new constants, depending on b, ¢,, and d,. (We leave to
the reader the task of verifying this last statement and expressing ¢, and d, in
terms of b,, ¢,, and d,; see Exercise 56.)

The graph of f,(x — b,/3) = f,(x) is the same as that of f,(x) except that

it is shifted by b,/3 units along the x axis. This means that we lose no
generality by assuming that the coefficient of x? is zero—that is, we only need
to graph f,(x) = x* + ¢,x + d,. Finally, replacing f,(x) by fy(x) = f,(x) — d,
just corresponds to shifting the graph 4, units along the y axis.

We have now reduced the graphing of the general cubic to the case of

graphing f3(x) = x* + ¢,x. For simplicity let us write f(x) for f;(x) and ¢ for
¢,- To plot f(x) = x* + cx, we go through steps 1 to 6:

1. fis odd.
2. f is defined everywhere. Since f(x) = x*(1 + ¢/x?), f(x) is large and posi-

tive (negative) when x is large and positive (negative); there are no
horizontal or vertical asymptotes.

3. f(x)=3x%+ c. If ¢ >0, f'(x) > O for all x, and f is increasing everywhere.

If c=0, f(x) >0 except at x=0, so f is increasing everywhere even
though the graph has a horizontal tangent at x = 0. If ¢ < 0, f'(x) has roots

at =y—c¢/3; f is increasing on (—o0, —y—¢/3 ] and [y— ¢/3,0) and
decreasing on [—yV—¢/3 ,¥y—¢/3 ] Thus, —y— ¢/3 is a local maximum

point and y— ¢/3 is a local minimum point.

. f"(x)=6x, so f is concave downward for x <0 and concave upward for

x > 0. Zero is an inflection point.

- f0)=0, f'O)=c,

f(z/=c)=0, f(zV=c)==2¢c (if c¢<0);

f(:: :3—9)=¢%c = f’(i\/—_j—c-)=0 (if c<0).

. We skip the preliminary sketch and draw the final graphs. (See Fig. 3.4.20.)

>0 (=0

B §
<0
b\/%xm
X

W3 EVFH

(a) Typel (b) Type Il (¢) Type Il

Thus there are three types of cubics (with a > 0):

Type I: fis increasing at all points, f* > 0 everywhere.
Type II. f is increasing at all points; f’ = 0 at one point.
Type III: f has a maximum and a minimum.

Type II is the transition type between types I and III. You may imagine

the graph changing as ¢ begins with a negative value and then moves toward
zero. As ¢ gets smaller and smaller, the turning points move in toward the
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Exampie 10

Solution

origin and the bumps merge at the point where f'(x) = 0. As ¢ passes zero to
become positive, the bumps disappear completely.

Convert 2x° + 3x2+ x + 1 to the form x*> + ¢x and determine whether the
cubic is of type I, II, or III.

12x°+3x2+ x+ 1)= x>+ 3x2+1x + 1. Substituting x — 1
the coefficient of x? is 3) gives

for x (since

(=1 3=+ =)+

=x3—%x2+%x—%-{-%(xz—x-!-%)-!-%(x— )+

(ST
N —

= y3 _ 1 1
=X X +3.

Thus, after being shifted along the x and y axes, the cubic becomes x> —1x.

Since ¢ <0, it is of type III. A

1
4

Exercises for Section 3.4

In Exercises 1-4, is the function even, odd, or neither?

31. Match the following functions with the graphs in

3 .
1. f(x)= M 2. f(X) = x Flg. 3.4.21.
x2+1 @ x2+1
3, . 4. =x%+8x*+3 2
joo = f) x e
In Exercises 5-8, describe the behavior of the given () x+ x’
functions near their vertical asymptotes: () x*=3x2-9x+1,
5. f(x)= —= 6. "(x)=~x——— x2 -1
=T =5 @ L
x>+ 1 x*-1 x
7 f(x) =5 8. flx)= P
x x A Vi B yh
Sketch the graphs of the functions in Exercises 9-30. / :
2 2 7
9 _X 10. 3x“+4 // i :
1 - X2 X32 -9 // | |
-2 -
11. xx=-2 12. x2+l P x T [ x
x—1 x* -1 Vs } |
[Hint: Let u = x — 1] - [ '
13, x4 — x3 14, x* + x3 / }
15. x4 — x2 16. x*—3x2+2/2
17 —x3+ x + 1 18. = x3+3x2+x+1
19. x3+4x2—1Ix~1 20. x* +3x% + 2x C ¥ D 74
2
3 x“+1
p) "4 22, ——————
72— X2 +x (x= D(x+1)°
2
"4 24, x?+ 1
2. P Xt Y / \L —
25 X34+ 7x2=2x+10  26.3x° + x2+1 \/ ’ / \/ ’
2
27, 1= x 28, X
14+ x? I-x
29. 8x3 —3x? + 2x 30. x*— 6x%+ 5x +2

[Hint: Sketch the

derivative first.] Figure 3.4.21. Match these

graphs with the functions in
Exercise 31.



Figure 3.4.22. Match these
graphs with the functions in
Exercise 32.

32,

33.

34.

(A) y

(B) Y
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(9] y

(D) v

AV

Match the following functions with the graphs in
Fig. 3.4.22: (a) x27, (0) x*7, (&) (1 + x)¥" - 1,
(@ a4+ x5 -1

Let f(x)= (x? = 3)2/3, (a) Where is f increasing?
Decreasing? (b) Sketch the graph of f, noting any
cusps.

Show that the graph of

fO) =1 =" (1 + )"

has two cusps. Sketch.

Sketch the graph of each of the functions in Exercises
35-40.

35.
37.
39.

41.

42.

43,

44,

*45,

x>+ 173 36. (x2 4 5x + 427
(x = D¥3x + D¥3 38, x + x2/3
(x — 4)!00/99 40. (x> +2x% + x)*°,

Let f(x) be a polynomial. Show that f(x) is an

even (odd) function if only even (odd) powers of

x occur with nonzero coefficients in f(x).

Find a criterion for telling when the quotient

f(x)/g(x) of two polynomials is even, odd, or

neither.

A simple model for the voting population in a

certain district is given by N(#) =30 + 1212 — 13,

0 < r <8, where 7 is the time in years, N the

population in thousands.

(a) Graph N versus 7 on 0 < 1 < 8.

(b) At what time 7 will the population of voters
increase most rapidly?

(c) Explain the significance of the points =0
and ¢ = 8.

The population P of mice in a wood varies with

the number x of owls in the wood according to

the formula P =30+ 10x>~— x>, 0 < x < 10.

Graph P versus x.

Suppose that f(x) is defined on all of (— o0, %0).

Show that

fx) = e(x) + o(x),

where e is an even function and o is an odd
function. [Hins: Substitute — x for x, use the fact

*46.

*47.

*48.

*49,

*50.

*51.

*52,

*53,

*54,

that e is even and o is odd, and solve for e(x)
and o(x).]

There is one function which is both even and
odd. What is it?

If fis twice differentiable and x, is a critical
point of f, must x, be either a local maximum,
local minimum, or inflection point?

What does the graph of [ax/(bx + ¢)] + d look
like if a, b, ¢, and d are positive constants?
Prove that the graph of any cubic f(x)= ax’ +
bx*+ cx + d {a+ 0} is symmetric about its in-
flection point in the sense that the function

—fx—b Y- L
g(x)—f(x 3a) f( 3a)
is odd.
A drug is injected into a person’s bloodstream
and the temperature increase T recorded one
hour later. If x milligrams are injected, then

= (1- 7)

(a) The rate of change T with respect to dosage
x is called the sensitivity of the body to the
dosage. Find it.

(b) Use the techniques for graphing cubics to
graph T versus x.

(¢) Find the dosage at which the sensitivity is
maximum.

Convert x4+ x>+ 3x + 1 to the form x*+ ex

and determine whether the cubic is of type I, 11,

or III.

Convert x>~ 3x2+3x + 1 to the form x>+ ¢x

and determine whether the cubic is of type I, 11,

or III.

Suppose that an object has position at time ¢

given by x = (7 — 1)°/3, Discuss its velocity and

acceleration near ¢ = 1 with the help of a graph.

Consider g(x) = f(x)(x — ay’1, where f is differ-

entiable at x = a, p is even. ¢ is odd and p < g.

If f(a)+ 0, show that g has a cusp at x = a.

[Hint: Look at g'(x) for x on either side of a.]

0< x<leé.
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*55. For which values of a and p does the cubic
g(x) = ax® + px have zero, one, or two critical
points? (Assume a = 0).

*56. This problem concerns the graph of the general
cubic (see the Supplement to this Section):

(a) Find an explicit formula for the coefficient
¢y in f(x — b;/3) in terms of b,, ¢y, and 4,
and thereby give a simple rule for determin-
ing whether the cubic

X34 bx2+ cyx + d,

is of type I, II, or III.

(b) Give a rule, in terms of a, b, ¢, d, for
determining the type of the general cubic
ax® + bx? 4+ ex + d.

(c) Use the quadratic formula on the derivative
of ax®+ bx?+ cx +d to determine, in
terms of a, b, ¢, and d, how many turning
points there are. Compare with the result in
part (b).

Exercises 57 to 64 concern the graph of the general
quartic:

f(x) = ax*+ bx> + cx? + dx + e, a=+0.

*57. Using the substitution x — b/4a for x, show
that one can reduce to the case

fO)=x*+cx?+dx+e

(with a new ¢, d and e!).

*58. According to the classification of cubics, f'(x)
=4x%+ 2ex + d can be classified into three
types: I (¢ > 0), II (¢ = 0), and III (¢ < 0), so
we may name each quartic by the type of its
derivative. Sketch the graph of a typical quartic
of type L.

«59. Divide type II quartics into three cases: II,
(d>0), II, (d=0), II; (d <0). Sketch their
graphs with ¢ = 0.

*60. In case 111 (¢ < 0), f'(x) has two turning points
and can have one, two, or three roots. By
considering Fig. 3.4.23, show that the sign of
f'(x) at its critical points determines the num-
ber of roots. Obtain thereby a classification of
type III quartics into five subtypes I11,, IIL,,
115, 1114, and III5. Sketch the graphs for each
case and determine the conditions on ¢ and d
which govern the cases,

«61. Using your results from Exercises 59 and 60,
show that the (c,d) plane may be divided into
regions, as shown in Fig. 3.4.24, which deter-
mine the type of quartic.*

Using the results of Exercise 61, classify and sketch the
graphs of the quartics in Exercises 62-64.

*62. x*—3x% —4x.

*63. x* + 4x + 6x.

*64. x* + Tx.

4 For advanced (and sometimes controversial) applications of
this figure, see T. Poston and 1. Stuart, Catastrophe Theory and
Its Applications, Pitman (1978).

X
11l

(a) Oneroot: (f" has the same sign
at its two critical points)

e
1, or
P
X
1,

(b) Tworoots: (f' is zero at one
of its critical points)

"/
/ 77
/ /\

y

1,

Figure 3.4.23. The five
possible positions of the

4 (¢) Three roots: (/" has opposite
graph of f'in case IIL

signs at its critical points)

27
3~ 2D g2
[4 8d

111, m,o

i, i

—1,

1,

111, i, I

27
I
¢ Sd

Figure 3.4.24. Locating the
value of (¢, d) in this graph
tells the type of quartic.
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3.5 Maximum-Minimum
Problems

A step-by-step procedure aids in the solution of practical maximum—minimum
problems.

This section is concerned with maximum-minimum problems of two types.
First, we consider the problem of maximizing or minimizing a function on an
interval. Then we apply these ideas to maximum—minimum problems that are
presented in words rather than in formulas. Students are often overwhelmed
by such “word problems,” which appear to admit no systematic means of
solution. Fortunately, guidelines do exist for attacking these problems; they
are best learned through practice.

The maximum and minimum points discussed in Section 3.2 were local,
since we compared f(x,) with f(x) for x near x,. For many applications of
calculus, however, it is important to find the points where f(x) has the largest
or smallest possible value as x ranges over an entire given interval. In this
section, we show how calculus helps us to locate these globa/ maximum and
minimum points, and we discuss how to translate word problems into calculus
problems involving maxima and minima.,

Global maxima and minima should be as familiar to you as the daily
weather report. The statement on the 6 p.M. news that “today’s high tempera-
ture was 26°C” means that:

1. At no time today was the temperature higher than 26°C.
2. At some time today, the temperature was exactly 26°C.

If we let f be the function which assigns to each ¢ in the interval [0, 18] the
temperature in degrees at time ¢ hours after midnight, then we may say that 26
is the (global) maximum value of f on [0, 18]. It is useful to have a formal
definition.

Maximum and Minimum Values on Intervais

Let f be a function which is defined on an interval I of real numbers.
If M is a real number such that:

1. f(x) < M forall x in
2. f(xp) = M for at least one x, in /

then we call M the maximum value of f on I.
If m is a real number such that:

l. f(xy> mforall xin I/
2. f(x,)= m for at least one x, in /

then we call m the minimum value of f on 1.

The numbers x, and x, in the definition of maximum and minimum values
represent the points at which these values are attained. They are called
maximum or minimum points for f on I. For the temperature function
discussed above, x, might be 15.5, indicating that the high temperature
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Figure 3.5.1. The maximum
temperature (26°) occurred
at2 p.M. (z = 14) and also
at 3:30 p.M. (7 = 15.5).

Exampie 1

Solution

Figure 3.5.2. The function
fx)=1/(1+ x%)on
[—2,2] has a maximum
point at x = (0 and
minimum points at
x=+2,

Example 2

occurred at 3:30 p.Mm. Of course, it might be possible that the temperature rose
to 26° at 2 p.M. dipped due to a sudden rain shower, rose again to 26° at 3:30
pM. and finally decreased toward evening. In that case both 14 and 15.5
would be acceptable values for x,. (See Fig. 3.5.1.) Note that there were local
minima at t =11 (11 AM.), and t = 15 (3 P.M.).

T4

Sometimes, to distinguish the points considered here from the local
maxima and minima discussed in Section 3.2, we call them globa/ maximum
and minimum points.

We will see shortly that differential calculus provides a powerful tech-
nique for locating the maximum and minimum points of functions defined by
formulas. For functions defined by other means, there are sometimes direct
approaches to finding maxima and minima. For example:

1. The highest ring around a bathtub indicates the maximum water level
achieved since the tub was last scrubbed. (Other rings indicate local
maxima.)

2. On a maximum-minimum thermometer, one can read directly the maxi-
mum and minimum temperatures reached since the last time the thermom-
eter was reset.

3. If the graph of a function is available, either from experimental data or by
plotting from a formula as in Sections R.6 and 3.4, the maxima and
minima can be seen as the high and low points on the graph.

Find the maximum and minimum points and values of f(x)=1/(1 + x?) on
the interval [—2,2].

f(x) is largest where its denominator is smallest, and vice versa. The maxi-
mum point occurs, therefore, at x = 0; the maximum value is 1. The minimum
points occur at —2 and 2; the minimum value is {.

We may verify these statements with the assistance of some calculus:
f(x)= —2x/(1 + x*), which is positive for x <0 and negative for x > 0,

so f is increasing on [—2,0] and decreasing on [0, 2]. It follows that
1=f(-2)<f(x)<f(0)=1 for —2<x<0

and
I=£0)>f(x)> f2)=1 for 0<x <2,

and we have { < f(x) <l for —2 < x <2.(See Fig. 3.5.2)) A

Find the maximum and minimum points and values, if they exist, for the
function f(x) = x?+ 1 on each of the following intervals:

(@) (—o0,0) (©) (=11 (e) (0,1] (® (—2,1
(b) (0, ) @ [-11] ® [4,1] () [-2,1)



Solution

Figure 3.5.3. Solutions to
Example 2.

Exampie 3

Figure 3.5.4. The solar
energy y received on June
21 at the top of the
atmosphere at various
latitudes x. (See W. G.
Kendrew, Climatology,
Oxford University Press,
1949.)

Solution
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The graphs are indicated in Fig. 3.5.3. In case (a), there is no highest point on
the graph; hence, no maximum. In case (c), one might be tempted to call 2 the
maximum value, but it is not attained at any point of the interval (—1, 1).
Study this example well; it will be a useful test case for the general statements
to be made later in this section. A

/ Graph Maxi'mum Max iman M inimu f" Minimum

points value points vafue

(a) (- 00,00) \/ None None 0 1

(b) (0, °9) V None None None None

© (-1, D QO None None 0 1

(d) -1, 1 :4{ -1, 1 2 0 1

(e) (0, 1] Q [ 2 None None

| 13000 & s : ! s

@ |21 \J None None 0 i

ty | (-2, \.JD -2 5 0 1

== meuns that the graph goes off to infinity
O means that the endpoint does not belong to the graph

Figure 3.5.4 shows the amount of solar energy received at various latitudes in
the northern hemisphere on June 21 on a square meter of horizontal surface
located at the top of the atmosphere. Find the maximum and minimum points
and values.

y = energy in kilowatt-hours
per square meter
14 +
12 +
10 ¢
8 -
6 .
4+ North Pole
)4 Equator /
3 ] 4 4 i

0 2'0 4'0 (;0 8b <'90 x = latitude in degrees

The maximum value is about 13 kilowatt-hours, attained at x = 90 (the North
Pole); the minimum value is about 9 kilowatt-hours, attained at x =0 (the
equator). (There are local maximum and minimum points at about x = 30 and
x = 50, but these are not what we are looking for.) A
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Figure 3.5.5. The solar
energy received on June 21
at the surface of the earth,
assuming clear skies. (See
W. G. Kendrew,
Climatology, Oxford
University Press, 1949.)

The explanation for the unexpected result in Example 3 is that although
the sun’s radiation is weakest at the pole, the summer day is longest there,
resulting in a larger amount of accumulated energy. At the surface of the
earth, absorption of solar energy by the atmosphere is greatest near the pole,
since the low angle of the sun makes the rays pass through more air. If this
absorption is taken into account, the resulting graph is more like the one in
Fig. 3.5.5, which is in better correspondence with the earth’s climate,

Ay = energy in kilowatt-hours
per square meter
14 +
12 +
10 T
8+
6 ‘/\/
4 -
North Poic
2 + , Equator
+ + $ 4+ -
0 20 40 60 809 x = latitude in degrees

If 7 is a closed interval, the problem of finding maxima and minima for a
function f on I is guaranteed to have a solution by the following theoretical
result.

Extreme Vaiue Theorem

Let f be continuous on the closed interval [a,b). Then f has both a
maximum and a minimum value on [a, b].

The proof of this theorem is omitted,* but the statement should be understood
by everyone. It says that two conditions together are sufficient to ensure that f
has both a maximum and a minimum value on /:

l. fis continuocus on /.
2. I is a closed interval.

Cases (a), (b), (¢), (e), and (g) of Example 2 show that condition | alone is not
sufficient; that is, if 7 is not closed, the maxima and minima may not exist.
Case (h) shows that the maxima and minima might happen to exist even if 7 is
not closed; thus these two conditions are not necessary for the existence of
maxima and minima.

Notice that, like the intermediate value theorem, the extreme value
theorem is an existence theorem which tells you nothing about how to find the
maxima and minima. However, combining the extreme value theorem with
the critical point test does yield a practical test.

To obtain this test, we first note that by the extreme value theorem, the
maximum and minimum points must exist; by the critical point test (Section
3.2), these points must be either critical points or endpoints. It remains,
therefore, to determine which amongst the critical points and endpoints are the
maximum and minimum points; to do this, it suffices to evaluate f at all of
them and then compare the values. The following box summarizes the
situation.

4 The proof may be found in any of the references listed in the Preface.
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Figure 3.5.6. The graph of

y=x4—x2

Example 4

Solution

Example 5

Solution

on[—1, o).
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Closed Interval Test

To find the maxima and minima for a function f which is continuous on
[a,b] and differentiable on (a, b):

1. Make a list x|, . . ., x, consisting of the critical points of f on (a, b)
and the endpoints ¢ and b of [a, b].
2. Compute the values f(x)), - . ., f(x,).

The largest of the f(x;) is the maximum value of f on [a,b]. The
maximum points for f on [a,b] are those x; for which f(x;) equals the
maximum value.

The smallest of the f(x,) is the minimum value of f on [q,b]. The
minimum points for f on [a, b] are those x; for which f(x,) equals the
minimum value.

Find the maximum and minimum points and values for the function f(x) =
(x* — 8x + 12)* on the interval [— 10, 10].

The list indicated by the closed interval test consists of — 10,10, and the
critical points. To find the critical points we differentiate:

L (x? = 8x +12)" = 4(x” ~ 8x +12)’2x ~ 8)

=8(x — 6)°(x —2)*(x — 4)
which is zero when x = 2, 4, or 6. We compute the value of f at each of these
points and put the results in a table:
x | -2 4 6 10

f(x)
The maximum value is (192)* = 1358954496; the maximum point is the
endpoint —10. The minimum value is zero; the minimum points are the
critical points 2 and 6. A

(192)* 0 (=4)* 0 (32)*

For intervals which are not closed, we may use graphing techniques to decide
which critical points are maxima and minima.

Find maximum and minimum points and values for y = x* — x? on [— 1, c0).

The critical points satisfy the equation 0 = 4x> — 2x = 2x(2x? ~ 1). The solu-
tions of the equation are 0, y1/2, and —y1/2, all of which lie in the interval
[—1, c0). We make a table of values of the function

x } ~1 ]—\/1/2 0 [V1/2

x*— x* 0 ' -4 ’Ol -1
and its derivative

x ‘ —1[—% 0 I ] { 1

4x>—2x —2. 1 Ol—%|2

and draw a rough graph (Fig. 3.5.6).
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We see that the critical points — \/1‘/—2_ and \/l/—2 are minimum points;
the minimum value is — §. The endpoint — | and the critical point 0 are not
maximum or minimum points since x* — x? takes on values both greater and
less than 0 on the interval [—1, c0). Thus, there are no maximum points (0 is
only a local maximum). &

We now turn our attention to solving maximum-minimum problems given in
words rather than by formulas. To illustrate a general approach to these
problems, we will go through the solution of four sample problems step by
step.5

1. A shepherd lives on a straight coastline and has 500 meters of fencing with
which to enclose his sheep. Assuming that he uses the coastline as one side
of a rectangular enclosure, what dimensions should the rectangle have in
order that the sheep have the largest possible area in which to graze?®

2. Tllumination from a point light source is proportional to the intensity of the
source and nversely proportional to the square of the distance from the
source to the point of observation. Given two point sources 10 meters
apart, with one source four times as intense as the other, find the darkest
point on the line segment joining the sources.

3. Given four numbers, a,b,c,d, find a number x which best approximates
them in the sense that the sum of the squares of the differences between x
and each of the four numbers is as small as possible.

4. Suppose that it costs (x*/100) + 10x cents to run your car for x days. Once
you sell your car, it will cost you 50 cents a day to take the bus. How long
should you keep the car?

The first thing to do is read the problem carefully. Then ask yourself: “What
1s given? What is required?”

Sometimes it appears that not enough data are given. In Problem 2, for
instance, one may think: “Illumination is proportional to the intensity, but I'm
not given the constant of proportionality, so the problem isn’t workable.” It
turns out that in this problem, the answer does not depend upon the propor-
tionality constant. (If it did, you could at least express your answer in terms of
this unknown constant.) On the other hand, some of the data given in the
statement of a problem may be irrelevant. You should do your best at the
beginning of sclving a problem to decide which data are relevant and which
are not.

Here, 1n full, is the first step in attacking a maximum-minimum word
problem.

Step 1: Setting up the Probiem

(a) Read the problem carefully, give names tc any unnamed relevant
variables, and note any relations among the variables.

(b) Draw a figure, if one is appropriate.

(c) Identify the quantity to be maximized or minimized.

(d) Make sure that the relevant and irrelevant information are clearly
distinguished.

% For a general discussion of how to attack a problem, we enthusiastically recommend How fo
Solve It, by G. Polya (Princeton University Press, Second Edition, 1957).

6 This ancient Greek problem is a variant of a famous problem ingeniously solved by Dido, the

daughter of the king of Tyre and founder of Carthage (see M. Kline, Mathematics: A Cultural
Approach, Addison-Wesley, 1962, p. 114).



Exampie 6

Solutlon

Coastline

—

Figure 3.5.7. For which
shape is 4 largest?

Figure 3.5.8. Light sources
of intensities /, and /, are
placed at x = 0 and x = 10.
The observer is at x.
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Carry out step 1 for Problems [, 2, 3, and 4.

Problem 1: We draw a picture (Fig. 3.5.7). Let / and w denote the length and
width of the rectangle, and let 4 be the area enclosed. These quantities are
related by the equations lw = 4 and / + 2w = 500 (since there are 500 meters
of fencing available). We want to maximize 4.

Problem 2: We place the first source at x = 0 and the second source at x = 10
on the real line (Fig. 3.5.8). Denote by I, and I, the intensities of the two
sources. Let L, = illumination at x from the first source and L, = illumination
at x from the second source. Then L = L, + L, is the total illumination.

The given relations are

I,=41,,
kI, i T
L =— (k >0 is a proportionality constant),
x
kI
L=
(10 = x)

We want to minimize L.

Intensity 1, Intensity I,

N2 W

7N x 2N
0 10

Problem 3: Call the unknown number x. We want to minimize

y=(x—a)+(x— b)Y+ (x—c)+(x—d).

Problem 4: x is the number of days we run the car. At this point in solving the
problem, it is completely legitimate to pace around the room, muttering
“What should be minimized?” This is not clearly stated in the problem, so we
must determine it ourselves. A reasonable objective is to minimize the total
amount of money to be paid. How is this to be done? Well, as soon as the cost
of running the car exceeds 50 cents per day, we should switch to the bus. So
let y = the cost per day of running the car at day x. We want the first x for
which y > 50. The relation between the variables is

—d(xX - X
y~dx(100+10x) L +10. 4

Having set up a problem, we are ready to apply the methods of calculus.

Step 2: Solving the Problem

(a) Write the quantity to be maximized or minimized as a function of
one of the other variables in the problem. (This is usually done by
expressing all other variables in terms of the one chosen.)

(b) Note any restrictions on the chosen variable.

(c) Find the maxima and minima by the methods of this chapter.

(d) State the answer in words.
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Example 7

Solution

The main thing to be mastered in word problems is the technique of translat-
ing words into relevant mathematical symbols to which the tools of calculus
can be applied. Once the calculus work is done, the answer must then be
translated back into the terms of the original word problem.

Carry out step 2 for Problems 1, 2, 3, and 4.

Problem 1© We want to maximize 4, so we write it as a function of / or w; we
choose w. Now /+ 2w =500, so / =500 —2w. Thus 4 = lw = (500 — 2w)w
= 500w — 2w

The restriction on w is that 0 < w < 250. (Clearly, only a non-negative w
can be meaningful, and w cannot be more than 250 or else / would be
negative.)

To maximize 4 = 500w — 2w? on [0,250], we compute dA4 /dw = 500 —
4w, which is zero if w=125. Since d’4 /dw® = —4 for all w, the second
derivative test tells us that 125 is a maximum point. Hence the maximum
occurs when w = 125 and / = 250.

The rectangle should be 250 meters long in the direction parallel to the
coastline and 125 meters in the direction perpendicular to the coastline in
order to enclose the maximal area.

Problem 2: We want to minimize

1 4
L=L +L,=kI,| L +—2% |
L ‘{xz (10—x>2}

Since the point is to be between the sources, we must have 0 < x < 10. To
minimize L on {0, 10), we compute:

4020 — 2x
L(x)=kI,| - % + i)
x3 (10 - x)‘1
| 4
=2kl - =+ ——— |.
{ (10— Xy’ }
The critical points occur when
4 1
(10~ x)3 x3
Hence
10—x _3
- 4,

10— x—%4-x=0,
x=—10
1+ 34
Thus there is one critical point; we use the first derivative test to determine if
it is a maximum or minimum point. It suffices to check the sign of the

derivative at a point on each side of the critical point.
Let x _ =0.0001. Then

Li(x_)=2kl| ~ ———+ 4 :
(0.0001)* (10 — 0.0001)*

Without calculating this explicitly, we can see that the term — (1/0.0001)* is
negative and much larger in size than the other term, so L'(x_) < 0.



Figure 3.5.9. When does
the car become more
expensive than the bus?
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Let x, = 9.9999. Then
1,4

L'(x, )=2kl,| — .
(*+) 1 (99999 (0.0001)

Now it is the second term which dominates; since it is positive, L'(x_,) > 0.
Thus L’ changes from negative to positive at x,, so x, = 10/(1 + /4 ) must be
a minimum point.

The darkest point is thus at a distance of 10/(1 + 3/4)~3.86 meters
from the smaller source. It i1s interesting to compare the distances of the
darkest point from the two sources. The ratio

10~ [10/(1 + ¥4)]
10/(1+ %4)

is simply %4 .

Problem 3: y=(x — a)*+ (x — b)* + (x — ¢)* + (x — d)*. There are no re-
strictions on x.

dy
T =2Ax—a)+ 2x = b)+2(x — ) + 2(x — d)
=2(4x—a—b—c—d)
whichis O only if x =1(a + b+ c + d).
Since d?% /dx* =8 is positive, 1(a + b + ¢ + d) is the minimum point.
The number required is thus the average, or arithmetic mean, of a, b, ¢, and d.

Problem 4: This is not a standard maximum-minimum problem. We mini-
mize our expenses by selling the car at the time when the cost per day,
(x/50) + 10, reaches the value 50. (See Fig. 3.5.9.) We solve (x /50) + 10 = 50,
getting x = 2000. Thus the car should be kept for 2000 days. A

¥

/ Cost per day for car

50 / Cost per day for bus
10 1

x (number of days)

In the process of doing a word problem, it 1s useful to ask general questions
like, “Can 1 guess any properties of the answer? Is the answer reasonable?”
Sometimes a clever or educated guess can carry one surprisingly far toward
the solution of a problem.

For instance, consider the problem “Find the triangle with perimeter 1
which has the greatest area.” In the statement of the problem, all three sides of
the triangle enter in the same way—there is nothing to single cut any side as
special. Therefore, we guess that the answer must have the three sides equal;
that s, the triangle should be equilateral. This is, in fact, correct. Such
reasoning must be used with care: if we ask for the triangle with perimeter 1
and the Jleast area, the answer is not an equilateral triangle; thus, reasoning by
symmetry must often be supplemented by a more detailed analysis.

In Problems 1 and 3, the answers have as much symmetry as the data,
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Exampie 8

Figure 3.5.10. What shape
gives the rectangle the
largest area? The largest
perimeter?

Solution

Example 9

Solution

Example 10

Solution

and indeed these answers might have been guessed before any calculation had
been done. In Problem 2, most people would have a hard time guessing the
answer, but at least one can observe that the final answer has the darkest
point nearer to the weaker of the two sources, which is reasonable.

Of all rectangles inscribed in a circle of radius 1, guess which has the largest
area; the largest perimeter. (See Fig. 3.5.10.)

Since the length and width enter symmetrically into the formulas for area and
perimeter, we may guess that the maximum of both area and perimeter occurs
when the rectangle is a square. A

We can now solve word problems by bringing together all of the preceding
techniques.

Find the dimensions of a rectangular box of minimum cost if the manufactur-
ing costs are 10 cents per square meter on the bottom, 5 cents per square
meter on the sides, and 7 cents per square meter on the top. The volume is to
be 2 cubic meters and the height is to be 1 meter.

Let the dimensions of the base be / and w; the height is 1. If the total cost 1s C,
then

C=10w+Tw+2-5-(I'1+w- 1)=17w+ 10/ + 10w.

Now /- w-1=2is the total volume. Eliminating w,

C=34+101+ 20

/
We are to minimize C. Let f(/) = 34 + 10/ + (20/1) on (0, o0). Then
) 20
FHy=10-:3

which is 0 when /=42. (We are concerned only with / > 0.) Since f”(/)
= 40/13 is positive at [ =42, I = V2 is a local minimum point. Since this is the
only critical point, it is also the global minimum. Thus, the dimensions of
minimum cost are y2 by 2 by 1. A

The stiffness S of a wooden beam of rectangular cross-section is proportional
to its breadth and the cube of its thickness. Find the stiffest rectangular beam
that can be cut from a circular log of diameter d.

Let the breadth be b and thickness be . Then § is proportional to bt*. From
Fig. 3.5.11, we have (1b)* + (L 1)’ = (d/2)% i.e, b=yd*— 1* (0 <t < d). To
maximize f() = b’ = £yJd* — 1*, we note that f'(¢) = t(3d*> — 4¢%) /\Jd* — 1*
=0if 3d> —41*=0, ie, t =3 d/2. Since f'(¢) has the same sign as 3d* —
41?, which changes from positive to negative at t=\/§d/2, t=\/§d/2 is a

maximum point; so the dimensions of the beam should be t =3 d /2 and
b=d/2. A




Figure 3.5.11. Cross section
of a beam being cut from a
log.

Exampie 11

Figure 3.5.12. The
production level x; that
maximizes profit has
C'(x¢) = R'(xg).

Solution

Example 12

Solution
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i A

-

The terms marginal revenue and marginal cost were defined in Section 2.1.

(a) Prove that at a production level x, that maximizes profit, the marginal
revenue equals the marginal cost (see Fig. 3.5.12).

y=C'(x)
marginal cost

v=R'(x)

marginal revenue

_‘+—_

Xq X

(b) Determine the number of units of a commodity that should be produced
to maximize the profit when the cost and revenue functions are given by
C(x) =800 + 30x — 0.01x% and R(x) = 50x — 0.02x2, ¢ < x < 1500.

(a) We have P(x) = R(x) — C(x). At as maximum point x, for P, we must
have P’(xy) =0 by the critical point test. Therefore, R’(x,) — C'(x,) =0 or
R'(x4) = C’(x,) as required.
(b) The profit 1s

P(x)= R(x)— C(x)
(50x — 0.02x%) — (800 + 30x — 0.01x?)

=20x — 0.01x* — 800.

The limits on x are that 0 < x < 1500. The critical points occur where
P'(x)=0; ie., 20— 0.02x =0, 1.e., x = 1000. This is a maximum since P"(x)
= —0.02 is negative; at x = 1000, P(1000) = 9200. The endpoint x =0 is not
a maximum since P(0) = — 800 is negative. Alsoc P(1500) = 6700, so the value
at this endpoint is less than at x = 1000. Thus, the production level should be
set at x = 1000. A

Given a number ¢ > 0, find the minimum value of (a + x)/Jax where x > 0.
We are to minimize f(x) = (a + x)/\/; on (0, ). By the quotient rule,

Jax — (a+ x)(a/2\/z§)

ax

J'(x) =
_2ax—a(a+x) _a(x—a)

B 2((1)()3/2 - 2((1)()3/2 .

Thus, x = a 1s the only critical point in (0, c0). We observe that f’(x) changes
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sign from negative to positive at x = g, so this is a minimum point. The
minimum value is f(a) = (a + a)/Ya®> =2. A
The result of this example can be rephrased by saying that

atx s forevery a >0, x>0.

Jax

Writing b for x, this becomes

a-02-b2‘[a—b—

forevery « >0, b>0.

That is, the arithmetic mean (a + b)/2 of a and b is larger than their geometric
mean Jab . This inequality was proved by using calculus. It can also be proved
by algebra alone. Indeed, since the square of any number is non-negative,

0<(fa V) =a—2/ab +b,

so 2yab < a + b. Hence,

eg£>¢az.

This is sometimes called the arithmetic—geometric mean inequality.

Exercises for Section 3.5

Find the maximum and minimum points and values for
each function on the given interval in Exercises 1-4.

1. 2x3 = 5x + 2 on [1, )

2. x> —6x+3on (= o0, )

2
3, -’%?: on (0, 5]

4, -3x24+2x+ 1 on (-0, )
Find the maximum and minimum points for each of the
functions in Exercises 5-8.
2
5 x+1 _
1 on (- 0,0)
2
6. )C_i‘t}_ on (—2,2]
x*+5
7. ~x3+5x+4don (=23
8. x*—3x +5o0n(-3,2
9

. Figure 3.5.13 shows the annual inflation rate in
Oxbridge for 1970-1980. Find the approximate
maximum and minimum points and values.

y

35%

30
25+
20 +

15 -+

1 IS N S W | ! TS +—1t o
Y T T T T T T N S N

19707172 73 74 75 76 77 718 791980 !

Figure 3.5.13. The annual
inflation rate in Oxbridge.

10. Figure 3.5.14 shows the temperatures recorded in
Goose Brow during a 24-hour period. When did
the maxima and minima occur, and what were
their values?

°C

1 Noon 24 ¢ (hours)
T : T T 1] :

| Midnight Midnight
Figure 3.5.14. A cold day
in Goose Brow,

In Exercises 11-30, find the critical points, endpoints,
and global maximum and minimum points and values
for each function on the given interval.

11. f(x)=x?=x on [0,1).

12. f(x) = x> on [~ 1, o).

13. f(x) = x*—4x2+ 7 on [—4,2].

14. f(x) = 4x*—2x2 + 1 (a) on [—10,20] and
(b) on[~0.2, —0.1].

1
15. f(x) =
fx) 4x* ~ 2x% + 200,000

2
16. f(x) = i“‘z on [~4.3].

on [— 10, 20].

17. f(x) = x? = 3x + 1 on each of the following in-
tervals,
(a) 2,00) (© (-3,2]
() (—o0,3] d (-3%.2]



(© (-2.2) @® [-11]
® (—o0,0)  (h) [~8,8]

18. f(x) = x*—2x + 1 on each of the intervals in
Exercise 17.

19. f(x) =7x*+2x+4 on (a) [~1,1], (b) (0, ),
(C) [_4’2)'

20. f(x)=x3+6x*—12x +7 on (a) (- o0, ),
(b) (‘2’6]s (C) [Az’ l)’ (d) [‘4’ 4]

21, f(x)= x> —3x?+3x + 1 on (— o0, o).

22, f(x)=x>+3x>=3x+ lon[—1,2]

23, f(x) = x*~ x on [—2,3].

24, f(x)=x*+8x*+3on[-1,1].

25, f) ==L on =10, 10]

2 +1
2
26. f(x)= XL on (o0, 00).
x*+1
27, f(x) = - —*— on[~1,6].
1+ x?
28. f(x)= —X— on (~ o0, o).
1+ x2
x3
29. f(x)= 5 on (— o0, o).
1+ x
30. f(x)= x” on (— o0, ©0), n a positive integer.

1 + x?

Carry out step 1 for Exercises 31-34, (see Example 6).

31. Of all rectangles with area 1, which has the
smallest perimeter?

32. Find the point on the arc of the parabola y = x?
for 0 < x < 1 which is nearest to the point (0, 1).
[Hint: Consider the square of the distance be-
tween points.]

33. Two point masses which are a fixed distance
apart attract one another with a force which is
proportional to the product of the masses. As-
suming that the sum of the two masses is M,
what must the individual masses be so that the
force of attraction is as large as possible?

34. Ten miles from home you remember that you left
the water running, which is costing you 10 cents
an hour. Driving home at speed s miles per hour
costs you 6+ (s/10) cents per mile. At what
speed should you drive to minimize the total cost
of gas and water?

35. Carry out step 2 for Exercise 31.

36. Carry out step 2 for Exercise 32.

37. Carry out step 2 for Exercise 33.

38. Carry out step 2 for Exercise 34.

39. A rectangular box, open at the top, is to be
constructed from a rectangular sheet of card-
board 50 centimeters by 80 centimeters by cut-
ting out equal squares in the corners and folding
up the sides. What size squares should be cut out
for the container to have maximum volume?

40. A window in the shape of a rectangle with a
semicircle on the top is to be made with a
perimeter of 4 meters. What is the largest possi-
ble area for such a window?

41.

42,

43.

45.

46.

47.

48.

49.

50.
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(a) A can is to be made to hold 1 lLiter (= 1000
cubic centimeters) of oil. If the can is in the
shape of a circular cylinder, what should the
radius and height be in order that the sur-
face area of the can (top and bottom and
curved part) be as small as possible?

(b) What is the answer in part (a) if the total
capacity is to be V cubic centimeters?

(c) Suppose that the surface area of a can is
fixed at A square centimeters. What should
the dimensions be so that the capacity is
maximized?

Determine the number of units of a commodity

that should be produced to maximize the profit

when the cost and revenue functions are given
by C(x) =700+ 40x — 0.01x2, R(x)= 80x —
0.03x2.

Determine the number of units of a commodity

that should be produced to maximize the profit

for the following cost and revenue functions:

C(x) =360 + 80x +.002x> +.00001x>, R(x)

= 100x —.0001 x>,

. If the cost of producing x calculators is C(x)

=100 + 10x + 0.01x2 and the price per calcula-
tor at production level x is P(x)=26—0.1x
(this is called the demand equation), what pro-
duction level should be set in order to maximize
profit?

The U.S. Post Office will accept rectangular
boxes only if the sum of the length and girth
(twice the width plus twice the height) is at most
72 inches. What are the dimensions of the box of
maximum volume the Post Office will accept?
(You may assume that the width and height are
equal.)

Given n numbers, a,, .. ., q,, find a number x
which best approximates them in the sense that
the sum of the squares of the differences between
x and the » numbers is as small as possible.
One positive number plus the square of another
equals 48. Choose the numbers so that their
product 1s as large as possible.

Find the point or points on the arc of the parab-
ola y = x?for 0 < x < 1 which are nearest to the
point (0,9). Express your answer in terms of q.
[Hint: Minimize the square of the distance be-
tween points.]

One thousand feet of fencing is to be used to
surround two areas, one square and one circular.
What should the size of each area be in order
that the total area be (a) as large as possible and
(b) as small as possible?

A forest can support up to 10,000 rabbits. If
there are x rabbits in the forest, each female can
be expected to bear 45 (10,000 — x) bunnies in
a year. What total population will give rise to the
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51.

52.

53.
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greatest number of newborn bunnies in a year?

(Assume that exactly half the rabbits are female;

ignore the fact that the bunnies may themselves

give birth to more young during the year; and
remember that the total population including

new bunnies is not to exceed 10,000).

(a) In Fig. 3.5.15, for which value of y does the
line segment PQ have the shortest length?
Express your answer in terms of a and b.
[Hint: Minimize the square of the length.}

T
‘L a

Q

Figure 3.5.15. The “ladder”
PQ just fits into the corner
of the corrdor.

(b) What is the length of the longest ladder
which can be slid along the floor around the
corner from a corridor of width a to a
corridor of width 5?

One hundred feet of fencing is to be used to

enclose two pens, one square and one triangular.

What dimensions should the pens have to en-

close the largest possible area?

A conical dunce cap is to be made from a

circular piece of paper of circumference ¢ by

cutting out a pie-shaped piece whose curved
outer edge has length /. What should / be so that
the resulting dunce cap has maximum volume?

54. (a) Suppose that you drive from coast to coast

on Interstate Route 80 and your altitude
above sea level is f(x) when you are x miles
from San Francisco. Discuss the critical
points, endpoints, global maximum and
minimum points and values, and local maxi-
mum and minimum points for f(x).

Do as in part (a) for a hike to the top of Mt.
Whitney, where x is the distance walked
from your starting point.

(b)

In Exercises 55-59, try to guess the answer, or some
part of the answer, by using some symmetry of the

data.

55.

56.

57.

Of all rectangles of area 1, which has the smallest
perimeter?

Of all geometric figures with perimeter 1, which
has the greatest area?

In Problem 1 (see Example 6), suppose that we
allow the fencing to assume any shape, not nec-
essarily rectangular, but still with one side along
the shore requiring no fencing. What shape gives

58.

59.

60.

*61.

*62.

*63.

*64.

*65.

*66.

the maximum area? A formal proof is not re-
quired.

What is the answer to Problem 2 (see Example 6)
if the two intensities are equal? If one of the
intensities is eight times the other?

Of all right triangles of area 1, guess which one
has the shortest perimeter. Which one, if any, has
the longest perimeter?

Use calculus to show that the answer in Example
8 is correct.

Find a function on [~1, 1] which is continuous
but which is not differentiable at its maximum
point.

Find a function defined on [0, 1] which does not
have a maximum value on [0, 1].

Find a function defined on [—~2,2] which has
neither a maximum value nor a minimum value
on [—2,2].

Find a function defined on [—3, — 1] which is
continuous at —3 and —1, has a maximum
value on [—3, —1], but has no minimum value
on[—3,—1].

Prove that the maximum value of f on I is
unique; that is,show that if M, and M, both
satisfy conditions 1 and 2 of the definition at the
beginning of this section, then M, = M,. [Hint:
Show that M, < M, and M, < M, .}

Let the set I be contained in the set J, and
suppose that f is defined on J (and therefore
defined on /). Show that if m; and m; are the
minimum values of f on I and J, respectively,
then m, < my.

In Exercises 67-70, find the maximum and minimum
values of the given function on the given interval.
*67. f(x)= px + (q/x), on (0, c0) where p and g are

*68.

*69. f(x)=x/(1 — x?) for —

*70.

BTl

*72.

nonzero numbers.

= [ 5x, x<0 11
Jx) {-—3x, x>0 on[~1,1]
1< x <0and

fx)y=x3= x for0 < x <2, on (—1,2).

—x*=1 for —1<x<0
fx)=1{ - for 0<xxll
x—2 for 1 <x< o0

on (— 1, o0).

Three equal light sources are spaced at x =0, 1,
2, along a line. At what points between the
sources is the total illumination least? See Prob-
lem 2, Example 6. You should get a cubic equa-
tion for (x — 1)% Solve the equation numerically
by using the method of bisection.

What happens in Exercise 71 if there are four
light sources instead of three? Can you guess the
correct answer by using a symmetry argument
without doing any calculation?
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%73. (This minimization problem involves no calcu- *74. The cost of running a boat is 100> dollars per
lus.) You ran out of milk the day before your mile where v is its speed in still water. What is
weekly visit to the supermarket, and you must the most economical speed to run the boat up-
pick up a container at the corner grocery store. stream against a current of 5 miles per hour?

At the corner store, a quart costs Q cents and a *75. Let f and g be defined on /. Under what condi-
half gallon costs G cents. At the supermarket, tions is the maximum value of f+ g on I equal
milk costs g cents a quart and g cents a half to the sum of the maximum values of f and g
gallon. on I?

*76. Let I be the set consisting of the whole numbers

(a) If 9 =45 G =280, g =38, and g = 65, what

from 1 to 1000, and let f(x) = 45x — x>, Find the

size container should you buy at the corner maximum and minimum points and values for f

grocery to minimize your eventual milk ex- on .

pense? (Assume that a quart will get you *77. Suppose that f is continuous on [a, b] and is

through the day.) differentiable and concave upward on the inter-
(b) Under what conditions on Q, G, ¢, and g val (a, b). Show that the maximum point of f is

should you buy a half gallon today? an endpoint.

The Mean Value
Theorem

3.6

If the derivative of a function is everywhere zero, then the function is constant.

The mean value theorem is a technical result whose applications are more
important than the theorem itself. We begin this section with a statement of
the theorem, proceed immediately to the applications, and conclude with a
proof which uses the idea of global maxima and minima.

The mean value theorem is, like the intermediate value and extreme value
theorems, an existence theorem. It asserts the existence of a point in an
interval where a function has a particular behavior, but it does not tell you
how to find the point.

Mean Value Theorem

If f is continuous on [a,b) and is differentiable on (a,b), then there is a
point x, in (a,b) at which
f(b) — f(a)

fxo) = —5—

In physical terms, the mean value theorem says that the average velocity of a

/i moving object during an interval of time is equal to the instantaneous velocity

at some moment in the interval. Geometrically, the theorem says that a secant

i line drawn through two points on a smooth graph is parallel to the tangent

! line at some intermediate point on the curve. There may be more than one
v

¢ such point, as in Fig. 3.6.1. Consideration of these physical and geometric
. _

interpretations should make the theorem believable.

We will prove the mean value theorem at the end of this section. For
now, we will concentrate on some applications. These tell us that if we know
something about f'(x) for all x in [a,b], then we can conciude something
about the relation between values of f(x) at different points in [a, b].

Figure 3.6.1. The slope
[f(6) = f(@)]/(b — a) of the
secant line /; is equal to the
slope of the tangent line /,.
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Example 1

Soiution

Examplie 2

Soiution

Example 3

Soiution

Conseguences of the Mean Value Theorem
Suppose that f is differentiable on (a, b) and continucus on [a, b].

1. Assume that there are two numbers 4 and B such that
A< fi(x)<B for all x in (a, b).
Then for any two distinct points x,; and x, in [a, b],
PRI
Xy T Xy

2. If f'(x) =0 on (a,b), then f is constant on [a, b].

3. Let F(x) and G(x) be functions such that F'(x) = G'(x) for all x in
an open interval (a,b). Then there is a constant C such that F(x)
= G(x) + C for all x in (q, b).

The first consequence holds since [ f(x,) — f(x)]/[x2 — x;] = f'(x,) for some
X, between x; and x,, by the mean value theorem applied to f on the interval
with endpoints x; and x,. Since x 1s in (a, b), f'(x,) lies between 4 and B, so
does the difference quotient. In particular, if f'(x) =0, we can choose 4 = B
= 0, which implies that f(x;) = f(x,). Hence f is constant. To obtain the third
consequence, observe that F(x) — G(x) has zero derivative, so it is a constant.
This consequence of the mean value theorem is a fact about antiderivatives
which we used in Section 2.5.

Suppose that f is differentiable on the whole real line and that f'(x) is
constant. Prove that f is linear.

Let m be the constant value of f.

Method 1. We may apply the first consequence of the mean value
theorem with x;, =0, x, = x, A = m = B, to conclude that [ f(x) — f(0)]/(x —
0) = m. But then f(x)=mx+ f(0) for all x, so f is linear.

Method 2. Let g(x) = f(x) — mx. Then g'(x) = m — m =0, so g is a constant.
Setting x = 0, g(x) = f(0). Thus f(x) = mx + f(0) so f is linear. A

Let f be continuous on [1, 3] and differentiable on (1, 3). Suppose that for all x
m (1,3), 1 < f(x) < 2. Prove that 2 < f(3) — f(1) < 4.

Apply the first consequence with 4 = 1, B = 2. Then we have the inequalities
1<[fB) - fM]/B-1)<2,andso 2< f(3)—-f(1)<4. A

Let f(x) = (d/dx)|x|.

(a) Find f’(x).

(b) What does the second consequence of the mean value theorem tell you
about f? What does it not tell you?

(a) Since | x| is linear on (— 00,0) and (0, o0), its second derivative d?|x|/dx?
= f'(x) 1s identically zero for all x # 0.

(b) By consequence 2, f is constant on any open interval on which it is
differentiable. It follows that f is constant on (—¢0,0) and (0,c0). The
corollary does not say that f is constant on (— o0, c0). In fact, f(—-2)= 1,
while f(2)= +1. A



Example 4

Solution

Example 5

Solution

A T A
l a A b

Figure 3.6.2. Rolle’s
theorem: If f is zero at the
ends of the interval, its
graph must have a
horizontal tangent line
somewhere between.

Step 1 (Rolie’s
Theorem?’)

Step 2 (Horserace
Theorem)
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Suppose that F'(x) = x for all x and that F(3) = 2. What is F(x)?

Let G(x) = Lx% Then G'(x) = x = F'(x),s0 F(x)= G(x)+ C=1x*+ C.To
evaluate C, set x=3: 2=F(3)=1(3)+ C=3+C. Thus C=2-%= -}
and F(x)=1x>-3. A

The velocity of a train is kept between 40 and 50 kilometers per hour during a
trip of 200 kilometers. What can you say about the duration of the trip?

Before presenting a formal solution using the mean value theorem, let us use
common sense. If the velocity is at least 40 kilometers per hour, the trip takes
at most 22 = 5 hours. If the velocity is at most 50 kilometers per hour, the trip
takes at least 22 = 4 hours. Thus, the trip takes between 4 and 5 hours.

To use the mean value theorem, let f(r) be the position of the train at time
t; let ¢ and b be the beginning and ending times of the trip. By consequence
1 with 4 =40 and B =50, we have 40 < [f(b) — f(a)]/(b — a) < 50. But
f(b) — f(a) =200, so

40 < 290 ¢ 50,
b—a

1
b—a
5>b—a>4.
Hence the trip takes somewhere between 4 and 5 hours, as we found above. A

<

’

Bi—

1¢
5

Our proof of the mean value theorem will use two results from Sections 3.1
and 3.4, which we recall here:

1. If x, lies in the open interval (g, b) and is a maximum or minimum point
for a function f on an interval [a,b], and if f is differentiable at x,, then
f(xp) = 0 (critical point test).

2. If f is continuous on a closed interval [, b], then f has a maximum and a
minimum point i [q, b] (extreme value theorem).

We now proceed with the proof in three steps.

Let f be continuous on [a,b] and differentiable on (a,b), and assume that
f(a) = f(b) = 0. Then there is a point X in (a, b) at which f'(x,) = 0.

Indeed, if f(x) =0 for all x in [a, b], we can choose any x, in (a,b). So
assume that f is not everywhere zero. By the extreme value theorem, f has a
maximum point x, and a mimimum point x,. Since f is zero at the ends of the
interval but is not identically zero, at least one of x,, x, lies in (q, b), and not
at an endpoint. Let x, be this point. By the critical point test, f'(x;) = 0, so
Rolle’s theorem is proved.

Rolle’s theorem has a simple geometric interpretation (see Fig. 3.6.2).

Suppose that f, and f, are continuous on |a,b] and differentiable on (a,b), and
assume that fi(a) = f)(a) and f,(b) = f,(b). Then there exists a point x, in (a, b)
such that fi(x) = f3(xo).

7 Michel Rolle (1652-1719) (pronounced “roll”) was actually best known for his attacks on the
calculus. He was one of the critics of the newly founded theory of Newton and Leibniz. It is an
irony of history that he has become so famous for “Rolle’s theorem” when he did not even prove
the theorem but used it only as a remark concerning the location of roots of polynomials. (See
D. E. Smith, Source Book in Mathematics, Dover, 1929, pp. 251-260, for further information.)
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Figure 3.6.3. The curves y

= fi(x) and y=f,(x) have
parallel tangent lines when

y=fi(x)—fr(x)hasa
horizontal tangent line.

Exampie 6

Soiution

Exampie 7

Solution
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Let f(x)= fi(x)— f,(x). Since f, and f, are differentiable on (q, b) and
continuous on [a, b], so is f. By assumption, f(a)=f(b)=0, so from Step 1,
f'(xy) =0 for some x; in (a, b). Thus f/(x,) = f;(x,) as required (see Fig.
3.6.3).

We call this the “horserace theorem™ because it has the following inter-
pretation. Suppose that two horses run a race starting together and ending in a
tie. Then, at some time during the race, they must have had the same velocity.

74
y =f1(x)
y =)
|
y=flx)=fi1(x)~ f5(x)
|
|
T f ! -
a X b >
Step 3.

We apply Step 2 to a given function f and a linear function / that matches f at
its endpoints, namely,
f(b) — f(9) ]

1) = fa) + (<= )| S

Note that /(a) = f(a), I(b) = f(b), and I"(x) = [ f(b) — f(a)]/(b — a). By Step
2, f'(xp) = I'(x) = [f(b) — f(a)]/(b — a) for some point X, in (a, b).
This completes our proof of the mean value theorem. B

Let f(x) = x*—9x’ + 26x? — 24x. Note that f(0) =0 and f(2)=0. Show
without calculating that 4x> — 27x% + 52x — 24 has a root somewhere strictly
between 0 and 2.

Since f(0) = 0 and f(2) = 0, Rolle’s theorem shows that f’ is zero at some x; in
(0,2); that is, 0 < x5 < 2. A

Suppose that f is a differentiable function such that f(0) =0 and f(1) = I.
Show that f'(x,) = 2x, for some x; in (0, 1).

Use the horserace theorem with f,(x) = f(x), f,(x) = x* and [a,b] = [0,1]. A

Exercises for Section 3.6

1. Suppose that f is continuous on [0,1], and differ-
entiable on (0,3), and that 0.3 < f(x) <1 for
0 < x <3. Prove that 0.15 < [f(3) ~ f(0)] < 0.5.

2. Suppose that f is continuous on [3, 5] and differ-

entiable on (3,5), and that § < f'(x) <% for
3 < x < 5. Show that 1 < [f(5) — f(3)] <%.

3. Suppose that (d/dx)[f(x) = 2g(x)]=0. What

can you say about the relationship between f and
g?

4. If f”(x) = 0 on (a, b), what can you say about f?
5. Let f(x)=x°+8x*-5x?+ 15. Prove that

somewhere between — 1 and O the tangent line to
the graph of f has slope —2.

6. Let f(x) = 5x*+ 9x> — 11x? + 10. Prove that the

graph of f has slope 9 somewhere between — 1
and 1.

7. Let f(x):\/xj— 8. Show that somewhere be-

tween 2 and 3 the tangent line to the graph of f
has slope 19 .



8. Let f(x) = x7 — x> — x*+ 2x + 1. Prove that the
graph of f has slope 2 somewhere between — 1
and 1.

9. Suppose that an object lies at x =4 when ¢ =0
and that the velocity dx /dt is 35 with a possible
error of * 1, for all ¢ in [0,2]. What can you say
about the object’s position when ¢ = 2?

10. The fuel consumption of an automobile varies
between 17 and 23 miles per gallon, according to
the conditions of driving. Let f(x) be the number
of gallons of fuel in the tank after x miles have
been driven. If f(100) = 15, give upper and lower
estimates for f(200).

11. Directly verify the validity of the mean value
theorem for f(x)=x*-x+1 on [—1,2] by
finding the point(s) xq. Sketch.

12. Let f(x) = x> on the interval [ -2, 3]. Find explic-
itly the value(s) of x, whose existence is guaran-
teed by the mean value theorem. Sketch.

13. Suppose that F'(x)= -—(1/x? for all x 0. Is
F(x)=1/x+ C, where C is a constant?

14. Suppose that f/(x)= x? and f(1)=0. What is
f?

15. Let f(x)=|x|— 1. Then f(—-1)= f(1)=0, but
f'(x) is never equal to zero on [— 1, 1]. Does this
contradict Rolle’s theorem? Explain.

16. Suppose that the horses in a race cross the finish
line with equal velocities. Must they have had the
same acceleration at some time during the race?

Find the antiderivatives of the functions in Exercises
17-20.

17. f(xy=4x—4x?+21.

18. f(x)=6x°—12x + 15x — 11.

19. f(x) = iz +2x.
x

20. f(x)= 2x(x? + 7)'%,
Find the antiderivative F(x) for the given function f(x)
satisfying the given condition in Exercises 21-24.

21 flx) =2x% F(l)=2.

22, flxy=4—-x; FQ)=1.

23 flxy=x*+ x>+ x% F(l) = 1.

24. flxy=—; F(1)=3.

1
5
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25. Let f be twice differentiable on (a,b), and sup-
pose that f(x)=0 at three distinct points in
(a,b). Prove that there is a point x4 in (a,b) at
which f”(xg) = 0.

%26. Use the mean value theorem to prove the increas-
ing function theorem: If f is continuous on [a, b]
and differentiable on (a, b). and f'(x) > 0 for x
in (a,b), then f is increasing on [a, b].

*27. Suppose that fand g are continuous on [a, b] and
that f* and g’ are continuous on (a.b). Assume
that

fla)y=g(a) and f(b)=g(b).
Prove that there is a number ¢ in (a, b) such that
the line tangent to the graph of f at (¢, f(c)) is
parallel to the line tangent to the graph of g at
(e, g(e))-

*28. Let f be a polynomial. Suppose that f has a
double zero at a and b. (A polynomial f has a
double zero at x =a if f(x)=(x— a)’g(x) for
some polynomial g). Show that f’(x) has at least
three roots in [a, b].

%29. The coyote population in Nevada was the same
at three consecutive times ¢,,t,,#;. Assume that
the population N(¢) is a differentiable function
of time ¢ and is nonconstant on [¢,1,] and on
[t,,1;]. Establish by virtue of the mean value
theorem the existence of two times 7, 7* in
(t,.ty) and (i,,1;), respectively, for which the
coyote population decreases.

x30. (a) Let f be differentiable on (a, b) [and contin-

uous on [a, b]]. Suppose that, for all x in the
open interval (a,b), the derivative f'(x) be-
longs to a certain set S of real numbers.
Show that for any two distinct points x, and
X in (a,b) [in [a, b]), the difference quotient

f(x2) = f(x))

Xy ™ X

belongs to S as well.

(b) Use (a) to prove consequence 1 of the mean
value theorem.

(c) What does (a) tell you if S=[a,b)? If §
= (0, 00)?

Review Exercises for Chapter 3

On what intervals are the functions in Exercises 1-4

continuous?
1

L flx)y= ——
=T
1
2. f(x): :T:T
FRRI
S

5. Explain why the function 4 given by

h(x)={-x3+5 for x <2

x2-1 for x >2

is continuous at 2. Is 4 continuous on the whole
real line?

6. Let f(x)=[1/x]+[(x*=1)/x]. Can you de-
fine f(0) so that the resulting function is contin-
uous at all x?

7. Find a function which is continuous on the
whole real line and differentiable for all x ex-
cept 1, 2, and 3. (A sketch will do.)
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8. Sketch the graph of a function that has one
vertical asymptote at x =1, two maximum
points, and no other critical points.

9. Show that f(x)= x*+ x>+ x —2 has a root
between x =0 and x = 1.

10. Show that f(x)= x>+ x>+ 2x + | has a root
between x = —1 and x = 0.

11. Find a solution to the equation in Exercise 9 to
within two decimal places using the method of
bisection.

12. Find a solution to the equation in Exercise 10 to
within two decimal places using the method of
bisection.

In Exercises 13-16, determine the intervals on which
the given function is increasing and decreasing.

13. 8x3 - 3x%+2.

14. 5x% +2x% - 3x + 10.

15— .
14+ (x=1)

16. —---—-2;‘ > x = 1,2.
X —3x 4+

17. Suppose that the British inflation rate (in per-
cent per year) from 1990 to 2000 is given by the
function B(f) = 10(+*>/100 — ¢2/20 — t /4 + 1),
where ¢ is the time in years from January 1,
1993. When is the inflation rate increasing?
How might a politician react to minimum
points? Maximum points? Inflection points?

18. A paint can is kicked off the roof of a 156-foot
building, its distance S from the ground being
given by S = 156 + 41 — 16¢> (S in feet, ¢ in

seconds).

(a) How high up does the can go before it falls
downward?

(b) At what time does the can return to roof
level?

(¢) Find the velocity of the can when it col-
lides with the ground.
19. The rate of growth of a tree between ¢ = 0 and
t =100 years is given by the formula
r(t) = 1075 = 75¢*) + 10 inches per year.
When is the growth slowing down? speeding
up?
20. A bicycle is moving at (1% + 47 =31 +2)
miles per hour, where ¢ is the time in hours,
0 <t <2 Does the bicycle change direction
during this period?
In Exercises 21-24, find the critical points of the given
function and determine if they are local maxima, min-
ima, or neither.
21, 2x3 - 5x2+4x+3 22, —8x°4+2x -3
23. (x*+2x —3) 24, (x? = 12x + 1)°
For each of the functions in Exercises 25-30, answer
the questions below and draw a graph:
(i) Where is f continuous?
(iiy Where is f differentiable?
(iiiy On which intervals is f increasing? Decreasing?
(iv) Where is f concave upward or downward?

(v) What are the critical points, endpoints, local max-
imum and minimum points, and inflection points for f?
25. f(x)= —Tx¥ 4+ 2x2 4+ 15 on (— o0, 0).
26. f(x)= 6x> 4+ 3x + 4 on (o0, 0).
27. flx)=x*=2x+1lon[—-1,2]
28. f(x)= x*—=3x3+ x? on [—6,6).

. 3x . .
29. flx)= 3 %x on its domain,
30. f(x)= X on (—o0,0), n is a positive
I+ x2
integer.

Explain why each statement in Exercises 31-40 is true
or false: (Justify if true, give a counterexample if false.)

31. Every continuous function is differentiable.

32. If f is a continuous function on [0,2], and
f(l)y= =1 and f(2) =1, then there must be a
point x in [0, 1] where f(x) = 0.

33. If a function is increasing at x = 1 and at x = 2,
it must be increasing at every point between 1

34.

37.
38.

39.
40.

Sketch
41.

43.

45.

47.
49.

and 2.

If a differentiable function f on (— o, c0) has a
local maximum point at x == 0, then f'(0) = 0,
35. f(x) = x*— x3 is increasing at zero.

36. f(x) = x> + 3x takes its largest value on [~ 1, 1]
at an endpoint.

Parabolas never have inflection points.

All cubic functions y = ax>+ bx%+ cx + d,
a % 0 have exactly one inflection point.
f(x)=3/(5x*+1) on (—o0,00) has a local
maximum at x = 0.

y = x> has an inflection point at x = 0.

the graphs of the functions in Exercises 41-50.

xX3+3x+2 42, x% - 3x*
L 44, 1

x+3 1+ x4

3

1 —x 46, x =35

1+ 2x3 x2=3x+42
X234 (x — 1y*3 48. x*/3
x(x — 1)3/2 50. x(x — 1)2/3

In Exercises 51-56, find the maximum and minimum
value of each function on the designated interval.

51 f(x)=3x>+ x> = x+ 5,[-2,2]

52. flx)=2x3+ 5x? = 4x; [-2.2]

4
53, f(x):%—fl-l:[~—l.l]
54. f(x)= 2"3 S[-1.1]
e
55. f(x) x? (—2.2)
. X )= sl— 4,
x?—4
56. f(x)= —x*+ 8x? +2; (— 0, 00)

In Exercises 57-62, sketch the graph of the indicated
function on the designated interval.

57.
58.
59.
60.
61.
62.

The function
The function
The function
The function
The function
The function

in Exercise 51.
in Exercise 52.
in Exercise 53.
in Exercise 54.
in Exercise 55.
in Exercise 56.



63.

64.

A wooden picture frame is to be 2 inches wide
on top and bottom and 1 inch wide on the
sides. Assuming the cost of a frame to be pro-
portional to its front surface area, find the di-
mensions of the cheapest frame which will sur-
round an area of 100 square inches.

At time ¢, a rectangle has sides given by /()
=2+tand w(ty=1+1* for -1 <1< 1. (a)
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tance R, the active power dissipated in the load

w=e]’R/(R+ R;),
is maximum with respect to R for R = R, that
is, when the load resistance is matched to the
internal resistance of the generator.”

Verify this statement. (You do not need to
know any electrical engineering.)

€ a constant,

tance R, is connected to a positive load resis-

When does this rectangle have minimum area? 7L A fixed-frequency generator productipg 6 volts
(b) When is the area shrinking the fastest? 1s_connect_ed to a coil of 0.05 henry, in parfillel

65. Find the dimensions of the right circular cylin- with a resistor of 0.5 Ohm_anfi a second resistor
der of greatest volume that can be inscribed in a of x ohms. The power P is given by
given right circular cone. Express your answer = 36x i
in terms of the height 4 of the cone and the (7/10)> + (x + 1/2)?
radius r of the base of the cone. . Find the maximum power and the value of x

66. A rectangular box with square bottom is to which produces it.
have a volume of 648 cubic centimeters. The 72. The bloodstream drug concentration C(f) in a
top and bottom are to be padded with foam certain patient’s bloodstream t hours after injec-
and pressboard, which costs three times as tion is given by
much per square centimeter as the fiberboard 161
used for the sides. Which dimensions produce =
the box of least cost? (107 +20)

67. A box company paints its open-top square- Find the maximum concentration and the num-
bottom boxes white on the bottom and two ber of hours after injection at which it occurs.
sides and red on the remaining two sides. If red 73. In a drug-sensitivity problem, the change 7T in
paint costs 50% more than white paint, what are body temperature for an x-milligram injection
the dimensions of the box with volume ¥ which is given by
costs least to paint? In what sense is the _ 2 X
“shape” of this ti)ox independent of V? T =x (l 4 )’ Osx<4

68. Find the maximum area an isosceles triangle (a) Find the sensitivity T'(x) when x =2,
can have if each of its equal sides has a length (b) Graph T versus x.
of 10 centimeters. 74. The power P developed by the engine of an

69. The material for the top, bottom, and lateral aircraft flying at a constant (subsonic) Speed v
surface of a tin can costs & of a cent per square is given by
centimeter. The cost of sealing the top and y d
bottom to the lateral surface is p cents times the P= (CU + o2 )U’
total lengt-h in centimeters of th-e rims (see Fig. where ¢ > 0. d > 0.

3.R.1) which are to be sealed. Find (in terms of . - S
) ‘ ” - (a) Find the speed v, which minimizes the
p) the dimensions of the cheapest can which will power.
hold a volume of V cubic centlmeters. Express (b) Let Q(f) denote the amount of fuel (in
your answer in terms Qf the solution of a cubic gallons) the aircraft has at time . Assume
equation; do not solve it. the power is proportional to the rate of fuel
consumption. At what speed will the flight
time from takeoff to fuel exhaustion be
maximized?
75. Prove that for any positive numbers a, b, ¢,
a+ é? +c > z\/%(j
by minimizing f(x) = (a + b + x)/ Yabx .
Figure 3.R.1. Minimize the 76. Find the number x which best approximates 1,
cost of making the can. 2. 3, and 5 in the sense that the sum of the
fourth powers of the differences between x and

70. We quote from V. Belevitch, Classical Network each number is minimized. Compute x to
Theory (Holden-Day, 1968, p. 159): “When a within 0.1 by using the bisection method.
generator of e.m.f. e and internal positive resis- 77. A manufacturer of hand calculators can pro-

duce up to 50,000 units with a wholesale price
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78.

79.

80.

81.
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of $16 for a fixed cost of $9000 plus $11.50 for

each unit produced. Let x stand for the number

of units produced.

(a) Explain why the total revenue R, rotal cost
C and profit P must satisfy the equations

R = 16x, C =9000+ (11.5)x,
P=R—C=(4.5)x - 9000.

(b) The break-even point is the production level
x for which the profit is zero. Find it.

(¢) Determine the production level x which
corresponds to a $4500 profit.

(d) If more than 50,000 units are produced, the
revenue is R = 16x — 4 x 10 %2, but the
cost formula is unchanged. Find the x that
maximizes profits.

A manufacturer sells x hole punchers per week.

The weekly cost and revenue equations are

C(x) = 5000 + 2x,

R(x)=10x - 0 < x < 8000

%2
1000 °
(a) Find the minimum cost.
(b) Find the maximum revenue.
(c) Define the profit P by the formula P(x)
= R(x) — C(x). Find the maximum profit.
A homeowner plans to construct a rectangular
vegetable garden with a fence around it. The
garden requires 800 square feet, and one edge is
on the property line. Three sides of the fence
will be chain-link costing $2.00 per linear foot,
while the property line side will be inexpensive
screening costing $.50 per linear foot. Which
dimensions will cost the least?
A rental agency for compact cars rents 96 cars
each day for $16.00 per day. Each dollar in-
crease in the rental rate results in four fewer
cars being rented.
(a) How should the rate be adjusted to maxi-
mize the income?
(b) What is the maximum income?
The Smellter steel works and the Green Copper
Corporation smelter are located about 40 miles
apart. Particulate matter concentrations in parts
per million theoretically decrease by an inverse
square law, giving, for example,

k
C(x): = + .._.3_/&‘2
X (40 - x)

(I < x <39), £k aconstant,

as the concentration x miles from Smellter. This

model assumes that Green emits three times

more particulate matter than Smellter.

(a) Find C’(x) all critical points of C.

(b) Assuming you wished to build a house
between Smellter and Green at the point of
least particulate concentration, how far
would you be from Smellter?

82.

83.

84.

85.

86.

87.

88.

89.

Saveway checkers have to memorize the sale
prices from the previous day’s newspaper adver-
tisement. A reasonable approximation for the
percentage P of the new prices memorized after
t hours of checking is P(1) = 961 — 2417, 0 < ¢
<3

What is the maximum percentage of the
list memorized dswing khe First 3 howrs?

If f(x) =0 on (—o0, ), show that there are

constants A, B, and C such that f(x) = Ax? +

Bx + C.

Verify the horserace theorem for fi(x)= x* +

x—2and fy(x)=x?+3x>—2x — 2 on [0, 1].

Persons between 30 and 75 inches in height £

have average weight W = 1(h/10)’ lbs.

(a) What is the average weight of a person 5
feet 2 inches in height?

(b) A second grade child grows from 48 inches
to 50 inches. Use the linear approximation
to estimate his approximate weight gain
and compare with a direct calculation.

A storage vessel for a chemical bleach mixture

is manufactured by coating the inside of a thin

hollow plastic cube with fiberglass. The cube
has 12-inch sides, and the coating is { inch
thick. Use the volume formula ¥ = x* and the
mean value theorem to approximate the volume
of the fiberglass coating. [Hint: The fiberglass

volume is V(12) — V(11.8).]

(a) Show that the quotient f/g has a critical
point when the ratios f'/f and g'/g are
equal.

(b) Find a similar criterion for a product fg to
have a critical point.

(Refer to Review Problem 30 of Chapter 1 and

Fig. .R3.) Let P, with coordinates (x,, y,), be

inside the parabola y = x?; that is, y, > xi.

Show that the path consisting of two straight

lines joining P to a point (x, x?) on the parabola

and then (x,x%) to (0,1) has minimum length
when the first segment is vertical.

The graph of a factored polynomial (such as

y=x(x— 12(x — 2)(x — 3)(x — 4)'?) near a

root r appears similar to that of the function

v =c(x — r)', where ¢ and n are chosen appro-

priately for the root r.

(@) Lety= x(x+ 1)*(x — 2)* For values of x
near 2, the factor x(x + 1)? is approxi-
mately 2(2+ 1)’ =18, so y is approxi-
mately 18(x —2)* Sketch the graph near
x =2

(b) Argue that near the roots 0, 1,3 the equa-
tion y = 10x(x — 1)*(x — 3) looks geomet-
rically like y = —90x, yp =40(x — )%, y
= 240(x — 3)%, respectively. Use this infor-
mation to help sketch the graph from x = 0
to x =4



*x90. The astroid x*/3 + y*/? =

*91.

*92,

*93.

*94,

*95.

| is a planar curve

which admits no self-intersections, but it has

four cusp points.

(a) Apply symmetry methods to graph the
astroid.

(b) Divide the astroid into two curves, each of
which is the graph of a continuous func-
tion. Find equations for these functions.

(c) Find the points where dy /dx is not defined
and compare with the cusp points. Use
implicit differentiation.

(d) Explain why no tangent line exists at the
cusp points,

A function f is said to majorize a function g on

[a,b]if f(x) > g(x) foralla < x < b.

(a) Show by means of a graph that x majorizes
x2on [0, 1].

(b) Argue that “f majorizes g on [a,b]” means
that the curve y = f(x), a < x < b, lies on
or above the curve y = g(x), a < x < b.

(¢) If m>n>0, then x" majorizes x™ on
[0, 1. Explain fully.

(d) If m > n >0, (x — a)" majorizes (x — a)”
on [a,a + 1]. Why?

(e) Given that m %= n, m > 0, and n > 0, deter-
mine on which intervals (x — a)" majorizes
(x — a)™ (or conversely).

) Graph the functions y=x —1, y=(x —

y=(x=1>y=x-DLy=(x—-1Y
on the same set of axes for -1 < x < 3.
Let f(x) = 1/(1 + x?).

(a) For which values of ¢ is the function
f(x) + cx increasing on the whole real line?
Sketch the graph of f(x) + cx for one such
c.

(b) For which values of ¢ is the function
f(x) — cx decreasing on the whole real
line? Sketch the graph of f(x) — cx for one
such .

(¢) How are your answers in parts (a) and (b)
related to the inflection points of f?

Let f be a nonconstant polynomial such that

oy =

4he wnkerval (e},

Prove that, given any » numbers a, ..., a,
there is a uniquely determined number x for
which the sum of the fourth powers of the
differences between x and the a;’s is minimized.
[Hint: Use the second derivative.]

Prove the following intermediate value theorem
for derivatives: If f is differentiable at all points

f(1). Prove that f has a steict Local minimum
of o $krick local emoximum povnt gemewhere n

*96.

*97.

*98.

*99.

* 100.

Review Exercises for Chapter 3 199
f [a,b], and if f'(a) and f'(b) have opposite
signs, then there is a point x4 € (a, b) such that
f'(x0) = 0. [The example given in Review Exer-
cise 84, Chapter 5, shows that this theorem does
not follow from the intermediate value theorem
of Section 3.1.]
Let f be differentiable function on (0, ) such
that all the tangent lines to the graph of f pass
through the origin. Prove that fis linear. [Hint:
Consider the function f(x)/x.]
Let f be continuous on [3, 5] and differentiable
on (3,5), and suppose that f(3)=6 and f(5)
= 10. Prove that, for some x, in the interval
(3,5), the tangent line to the graph of f at xq
passes through the origin. [Hint: Consider the
function f(x)/x.] Illustrate your result with a
sketch.
A function defined on (a,b) is called convex
when the following inequality holds for x, y in
(a,b) and ¢ in [0, I]:

fax + (1= 0y) < tf(x) + (1 = O f(p)
Demonstrate by the following graphical argu-
ment that if f” is continuous and positive on
(a,b), then f is convex:

(a) Show that f is concave upward at each

point of (a, b).

(b) By drawing a graph, convince yourself that
the straight line joining two points on the
graph lies above the graph between those

points.
(c) Use the fact in (b) to deduce the desired
inequality.

Suppose that f is continuous on [a,b], f(a)
= f(b)=0, and x*f"(x) + 4xf'(x) + 2f(x) > O
for x in (a.b). Prove that f(x) <0 for x in
[a,b].

A rubber cube of incompressible material is
pulled on all faces with a force 7. The material
stretches by a factor v in two directions and
contracts by a factor v™2 in the other. By
balancing forces, one can establish Riviin’s equa-
tion:

e3 - % 2+ 1=0,
where « is a constant (analogous to the spring
constant for a spring). Show that Rivlin’s equa-
tion has one (real) solution if 7 < 3%2 a and
has three solutions if 7 > 332 a.



Chapter 4

4.1

The Integral

Integration, defined as a continuous summation process, is linked to differenti-
ation by the fundamental theorem of calculus.

In everyday language, the word integration refers to putting things together,
while differentiation refers to separating, or distinguishing, things.

The simplest kind of “differentiation” in mathematics is subtraction,
which tells us the difference between two numbers. We may think of differen-
tiation in calculus as telling the difference between the values of a function at
nearby points in its domain.

By analogy, the simplest kind of “integration™ in mathematics is addition.
Given two or more numbers, we can put them together to obtain their sum.
Integration in calculus is an operation on functions, giving a “continuous
sum” of all the values of a function on an interval. This process can be
applied whenever a physical quantity is built up from another quantity which
1s spread out over space or time. For example, in this chapter, we shall see that
the distance travelled by an object moving on a line is the integral of its
velocity with respect to time, generalizing the formula “distance = velocity X
time,” which 1s valid when the velocity is constant. Other examples are that
the volume of a wire of variable cross-sectional area is obtained by integrating
this area over the length of the wire, and the total electrical energy consumed
in a house during a day is obtained by integrating the time-varying power
consumption over the day.

Summation

The symbol > a; is shorthand for a, + a, + - -+ + a,.
To illustrate the basic ideas and properties of integration, we shall reexamine
the relationship between distance and velocity. In Section 1.1 we saw that
velocity is the time derivative of distance travelled, 1.e.,

Ad _ change in distance

velocity ~ ‘Ar ~ changein time M
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Figure 4.1.1. What is the _ - I3 5

position of the bus in terms f— v meters ]

Chapter 4 The Integral

In this chapter, it will be more useful to look at this relationship in the form
Ad =~ velocity X At. )
To be more specific, suppose that a bus is travelling on a straight highway
and that its position is described by a function y = F(r), where y is the

position of the bus measured in meters from a designated starting position,
and 7 is the time measured in seconds. (See Fig. 4.1.1.) We wish to obtain the

1 = time in seconds

0 0

io®lo S0@10

40 20 40 20
30 30

of its velocity? Starting position

position y in terms of velocity o. In Section 2.5 we did this by using the
formula v = dy/dr and the notion of an antiderivative. This time, we shall go
back to basic principles, starting with equation (2).

If the velocity is constant over an interval of length Ar, then the
approximation (/) in equation (2) becomes equality, i.e., Ad= v At. This
suggests another easily understood case: suppose that our time interval is
divided into two parts with durations Af, and Az, and that the velocity during
these time intervals equals the constants v, and v,, respectively. (This situation
is slightly unrealistic, but it is a convenient idealization.) The distance trav-
elled during the first interval is v, A7, and that during the second is v,A1,;
thus, the total distance travelled is

Ad = ¢, At + v,AL.

Continuing in the same way, we arrive at the following result:

Summation, Distance, and Velocity

If a particle moves with a constant velocity ¢, for a time interval Ar,,
t, for a time interval Az,, ¢, for a time interval Af,, ..., and velocity
¢, for time interval At,, then the iotal distance travelled is

n

Ad= v, A1)+ vy, AL + v A+ - - + ¢, AL 3

In (3), the symbol “+ - - - 4+ is interpreted as “continue summing until the
last term v, Az, is reached.”
Example 1 The bus in Fig. 4.1.1 moves with the following velocities:

4 meters per second for the first 2.5 seconds,

5 meters per second for the second 3 seconds,

3.2 meters per second for the third 2 seconds, and
1.4 meters per second for the fourth 1 second.

How far does the bus travel?

Solution We use formula (3) with n = 4 and
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vy = 4, Ar, =25,
v, =35, At, =3,
v; =32, Af;=2,
v,=14, A=1
to get
Ad=4X25+5X3+32xX2+14x%x1

=10+15+64+14
= 32.8 meters. A

Integration involves a summation process similar to (3). To prepare for the
development of these ideas, we need to develop a systematic notation for
summation. This notation is not only useful in the discussion of the integral
but will appear again in Chapter 12 on infinite series.

Given n numbers, g, through a,, we denote their suma, + o, + - - - + q,
by
_Z] q; 4
Here 2 is the capital Greek letter sigma, the equivalent of the Roman § (for
sum). We read the expression above as “the sum of a,, as / runs from 1 to n.”
Example 2 (a) Find 3*_,a,,if ¢, =2,a,=3,a,=4,a,= 6. (b) Find 3*_,i*.
Solution (a)>¢_q,=a,+a,+a;+a,=2+3+4+6=15
(b) Here a, = i*, 50
4
SP=1+2+3+4=1+4+9+16=30. A
i=1
Notice that formula (3) can be written in summation notation as

Ad = > v Al (3)

i=1
The letter / in (4) is called a dummy index; we can replace it everywhere
by any other letter without changing the value of the expression. For instance,

>a and > g,

A=1 i=1
have the same value, since both are equaltoa, + - - - + q,.

h

A summation need not start at 1: for instance

6
>b, means b,+ by + b+ bs+ b,

2 ¢, means c_,+c_,tcgtce+o,+ ey,

Example 3 Find 35 _,(k* — k).

Soluton S35 _,(k2—k)=(22—=2)+ (32 =3)+ (42— )+ (52—=5)=2+6+ 12 +20
=40. A
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Summation Notation
To evaluate
2 g,

where m < n are integers, and q; are real numbers, let i take each integer
value such that m < i < n. For each such i, evaluate ¢, and add the
resulting numbers, (There are n — m + 1 of them.)

We list below some general properties of the summation operation:

Properties of Summation
(a +b)= 2 a,+ 2 b;.

n
= 2 where ¢ is a constant.

'Mz “M:

i
3

+ 1< p, then

P
+ 2 a
jemma ]

4. If ;= C for all i with m < i < n, where C is some constant, then

i =C(n—m+1).

5. If a; < b, for all / with m < i < n, then

1

(9%
et
-
3
N
=
N
Q..

M-~
8
1l
"M=

[
3

These are just basic properties of addition extended to sums of many num-
bers at a time For instance, property 3 says that a, +a,,,  + -+ + a,=
(a, + -- a,)+(a,,+ - +a) whichisa generalization of the associa-
tive law. Property 2isa dlstrlbutive law; property 1 is a commutative law.
Property 4 says that repeated addition of the same number is the same as
multiplication property 5 is a generalization of the basic law of inequalities: if

<bandc<d, thena+c<bh+d.

A useful formula gives the sum of the first » integers:

Sum of the First » integers

< |
ig} = En(n +1) %)
To prove this formula, let S =>7_,i=1+2+ --- + n. Then write S again
with the order of the terms reversed and add the two sums:
S=1 +2 +3 + - +m=D+m—D+n
S=n +n—D+(rn-2)+---+3 +2 +1

2S=(n+D+r+DH+n+D+ - +(+DH+@+D+@+])
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Since there are » terms in the sum, the right-hand side is n(n + 1), so
2S=n(n+1),and S =1in(n+1).

Find the sum of the first 100 integers.'

We substitute #» =100 into S=4{n(n+1), giving 1-100-101=50-101
= 5050. A

Find thesum4+5+6+ --- +29.

This sum is 3% ,i. We may write it as a difference 3% i — S\3_,i using either
“common sense” or summation property 3. Using formula (5) twice gives

29
S i=1-29-30-1-3-4=29-15-3-2=435-6=429. A
i=4

Find 3%:(j - 2).

We use the summation properties as follows:

102 102 102
2(U-y=2j-22 (property 1)
=3 j=3 ;=3

102 2

= > j— > j—2(100) (properties 3 and 4)
= =

= 1(102)(103) — 3 -200  (formula (5))

= 5050.
We can also do this problem by making the substitution i = j — 2. As j runs
from 3 to 102, i runs from 1 to 100, and we get

102 100

SU-2= > i=1-100-101 = 5050. A

=3 i=1
The second method used in Example 6 is usually best carried out by thinking
about the meaning of the notation in a given problem. However, for reference,
we record the general formula for substitution of an index: With the substitu-
tioni=j+ g,

n n+gq
2 aj+q= 2 q; - (6)
j=m i=m+gq

The following example illustrates a trick that utilizes cancellation.

Show that SV7_,[* — (i — 1)’] = n°.

The easiest way to do this is by writing out the sum:

,é,["“("‘ D] =1 = 0]+ [2 - P]+[3 - 2]+ [4 - 3]

+ +[(n—1)3—(n—2)3}+[n3—(n—1)3}

and observing that we can cancel 1° with — 13, 2® with —2°, 3° with —3°, and
so on up to (n — 1) with —(n — 1)’. This leaves only the terms

-0 +n*=n’ A

I A famous story about the great mathematician C. F. Gauss (1777-1855) concerns a task his

class had received from a demanding teacher in elementary school. They were to add up the first

100 numbers. Gauss wrote the answer 5050 on his slate immediately; had he derived
=1pn(n+ 1) in his head at age 10?
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Exampie 8

Solution

Figure 4.1.2. Motion of the
bus in Example 8 (n = 3).

The kind of sum encountered in Exampie 7 is called a relescoping, or
collapsing, sum. A similar argument proves the result in the following box.

Telescoping Sum

S(ai—a_\)=a,—a )

The next example uses summation notation to retrieve a result which may

already be obvious, but the idea will reappear later in the fundamental
theorem of calculus.

Suppose that the bus in Fig. 4.1.1 is at position y; at time ¢,, i =0, . .. , n, and
that during time interval (¢;_,,¢,), the velocity 1s a constant

v = .yl yi—l - _A_)i i=1 n

1 t —_ t At > k E

Using a telescoping sum, confirm that the distance travelled equals the
difference between the final and initial position.

By formula (3'), the distance travelled is
Ad = i v; At
iz
Since v, = Ay, /At;, we get

This is a telescoping sum which, by (7), equals y, — y,; i.e., the final position
minus the initial position (see Fig. 4.1.2 where n = 3). A

4

V3

Total
> distance

V2 travelled

Vi 4

Rine

Total time
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Exercises for Section 4.1

In Exercises 1-4, a particle moves along a line with the
given velocities for the given time intervals. Compute
the total distance travelled.

1.

2 meters per second for the first 3 seconds,

1.8 meters per second for the second 2 seconds,
2.1 meters per second for the third 3 seconds,

3 meters per second for the fourth 1.5 seconds.

. 3 meters per second for the first 1.5 seconds,

1.2 meters per second for the second 3 seconds,
2.1 meters per second for the third 2.4 seconds,
4 meters per second for the fourth 3 seconds.

. 8 meters per second for the first 1.2 seconds,

10 meters per second for the second 3.1 seconds,
12 meters per second for the third 4.2 seconds.

. 2 meters per second for the first 8.1 seconds,

3.2 meters per second for the second 2 seconds,
4.6 meters per second for the third 1.1 seconds.

Find the sums in Exercises 5-8.

5.
7.

9.
11.

13.
15.

17.

S+ 1) 6. 331
PIRTICED) 8. Z8-1i(i—2)
Find the sums in Exercises 9-12.
1+2+ .- 425 10. 3+4+ --- +39
2‘ i 12, 92,0
Find the sums in Exercises 13-16.
21=4(]_3) 14. 2108
PG+ - 16 31 (, + 1)5 ~ 19
Find 21__”
Find 1% o0 °.

18.
19.
20.
21.

22.

23.
24.

Find 31%(j + 6).
Find 1% _, k.

Find a formula for 3'7_, i, where m and n are
positive integers.

Find S'!2 ,q;, where g; is the number of days in
the ith month of 1987.

Show that 3*1%%1/(1 + k?) < 1000.

Show that 23‘;0,3/(1 + #) < 300.

Find the telescoping sums in Exercises 25-28.

25

27
28.

el _(,_ 1]
,51{(31) -3¢ - DI}
2,51 (i +2)2— (+ 17

SEG+3? - +2)

29.

30.

Draw a graph like Fig. 4.1.2 for the data in
Exercise 1.
Draw a graph like Fig. 4.1.2 for the data in
Exercise 2.

Find the sums in Exercises 31-40.

31.

32.
33.
34,
35.
36.
37.
38.
39.
40.

*41,

*42,

4.2 Sums and Areas

2 o3k —2)
St_o2i+ 1)
Sh=altk + 1) = k4
3(02,[(1( + 1)8 — k]
PG +2 = (= 1)
z,_d(z: +2)° = (2¥)]
s’ + i+ 2]
,__75[19 +5/7 —
2]=221
Sh-13*

By the method of telescoping sums, we have
n
S+ =P]=(+ 1~
f=1

(@ Write (i + 1~ #=32+3i+1 and use
properties of summation to prove that

137° + 1]

n n(n+ 1)2n+1)
.2=
(b) Find a formula for
n
>

in terms of m and n.

(¢) Using the method and result of (a), find a
formula for 3%_,#3, (You may wish to try
guessing an answer by experiment.)

(a) Prove that

S+ l)=%n(n+ 1)(n +2)

i=1

by writing

i+ 1)= %[i(i+ 1)(i +2) = (i — 1)i(i + 1)]

and using a telescoping sum.
(b) Find 37_,i(i + 1)(7 + 2).
(c) Find 37_\[1/i(i + 1)].

Areas under graphs can be approximated by sums.

In the last section, we saw that the formula for distance in terms of velocity is
Ad = 3"_ v;At; when the velocity i1s a constant v; during the time interval
(#;,_;, ). In this section we shall discuss a geometric interpretation of this fact
which will be important in the study of integration.

Let us plot the velocity of a bus as a function of time. Suppose that the
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Figure 4.2.1. The velocity
of the bus.

y=[fx)

Figure 4.2.2. The region
under the graph of f on
[a,b].

total time interval in question is [a, b]; i.e., ¢ tuns from « to b, and this interval
is divided into » smaller intervals so that a = f; < ¢; < - - - < t,=b. The ith
interval is (#,_,,t), and v is a constant v, on this interval.? The form of v is
shown in Fig. 4.2.1 for n = 5.

To,

+2y

~

We notice that v, At is exactly the area of the rectangle over the ith
interval with base At;, and height v, (the rectangle for i = 3 is shaded in the
figure). Thus,

Ad = > v; At is the total area of the rectangles under the graph of v.
i=1

This suggests that the problem of finding distances in terms of velocities
should have something to do with areas, even when the velocity changes
smoothly rather than abruptly. Turning our attention to areas then, we go
back to the usual symbol x (rather than ¢) for the independent variable.

The area under the graph of a function f on an interval [q, b] is defined to
be the area of the region in the plane enclosed by the graph y = f(x), the x
axis, and the vertical lines x = ¢ and x = b. (See Fig. 4.2.2.) Here we assume
that f(x) > 0 for x in [a,b]. (In the next section, we shall deal with the
possibility that f might take negative values.)

Let us examine certain similarities between properties of sums and areas.
To the property >4_, a,=>"_ a. +>%_, . a of sums, there corresponds the
additive property of areas: if a plane region is split into two parts which
overlap only along their edges, the area of the region is the sum of the areas of
the parts. (See Fig. 4.2.3.) Another property of sums is that if g, < b, for

Figure 4.2.3. Area (4) = Figure 4.2.4.
Area (A)) + Area (Ay). Area (A) > Area (B).

2 We are deliberately vague about the value of v at the end points, when the bus must suddenly
switch velocities. The value of Ad does not depend on what o is at each #;, so we can safely ignore
these points.
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i=mm+1,..., n then 37 _,a, < 37 _,b;; the counterpart for areas is the
inclusion property: if one plane region is contained in another, the containing
region has more area. (See Fig. 4.24.)

The connection between areas and sums becomes more explicit if we
consider step functions. A function g on the interval [a,b] is called a step
function if [a,b] can be broken into smaller intervals (called subintervals) with
g constant on each part. More precisely, there should be numbers x,
Xiyooos Xy, With a=x,<x;, <x,< -+ <Xx,_,<x,=b, such that g is
constant on each of the intervals (xg,x,),(x,%5), ..., (x,_,%,), as in Fig.
4.2.5. The values of g at the endpoints of these intervals will not affect any of
our calculations. The list (x4, x,, . . ., x,) is called a partition of [a, b].

Draw a graph of the step function g defined on [2,4] by

1 if 2<x<25,
g(x)= {3 if 2.5<x <35,
2 if 35¢<x g4
The graph of g on [2,2.5] is a horizontal line with height 1 on this interval. The
endpoints on the graph are drawn as solid dots to indicate that g takes the
value | at the endpoints x = 2 and x = 2.5. Continuing through the remaining

subintervals and using open dots to indicate endpoints which do not belong to
the graph, we obtain Fig. 4.2.6. A

J
3T P
_l e
oo
I+ o~ |
P
t R — -
| 203 40X Xo X X2 X3 x
Figure 4.2.6. The graph of Figure 4.2.7. The shaded
the step function g in area is the sum of &, Ax,,
Example 1. kyAx, and k3 Ax;.

If a step function is non-negative, then the region under its graph can be
broken into rectangles, and the area of the region can be expressed as a sum.
It is common to write Ax; for length x, — x,_, of the ith partition interval; if
the value of g on this interval is &, >0, then the area of the rectangle from
X,_, to x; with height k; is k;Ax; Thus the total area under the graph is

1

kyAx, +ky,Ax,+ «- +k,Ax,=X"_ k,Ax, as in Fig. 4.2.7.

What are the x,;’s, Ax,’s, and k;’s for the step function in Example 1? Compute
the area of the region under its graph.

Looking at Figs. 4.2.6 and 4.2.7, we begin by labelling the left endpoint as x,;
i.e., xog = 2. The remaining partition points are x, = 2.5, x, = 3.5, and x; = 4.
The Ax/’s are the widths of the intervals: Ax, = x;, — x,=0.5, Ax, =1, and
Ax,=0.5. Finally, the k’s are the heights of the rectangles: k|, =1, k, = 3,
and k, = 2. The area under the graph is

3

> ki Ax,= (1)(0.5) + (3)(1) + (2)(0.5) =4.5. A

i=1
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s

Figure 4.2.8. The shaded
area >'7_ k;Ax; is a lower
sum for f on [a, b].

Exampie 3

Solution

Step Functions

A function g on [a,b] is a step function when [, b] can be broken up
into intervals of width Ax;, on each of which g equals a constant k;.
If each k; is positive (or zero), the area under the graph of g is
m k.Ax.
i= 1% it

In deriving our formula for the area under the graph of a step function, we
used the fact that the area of a rectangle is its length times width, and the
additive property of areas. By using the inclusion property, we can find the
areas under graphs of general functions by comparison with step functions—
this idea, which goes back to the ancient Greeks, is the key to defining the
integral.

Given a non-negative function f, we wish to compute the area 4 under its
graph on [a,b]. A lower sum for f on [a,b] is defined to be the area under the
graph of a non-negative step function g for which g(x) < f(x) on [a,b]. If
g(x) = k; on the ith subinterval, then the inclusion property of areas tells us
that 37_  k;Ax, < A. (Fig. 4.2.8).

i=1

v =)

b X a }"—A,\']—D{ h

Figure 4.2.9. The shaded
area 3L,/ Ax; is an upper
sum for f on [a, b].

Similarly, an upper sum for f on [a, b] is defined to be 37_ /. Ax;, where h
is a step function with f(x) < h(x) on [a,b], and h(x) = lj on the jth subinter-
val of a partition of [a,b] (Fig. 4.2.9). By the inclusion property for areas,
A< Z;L ‘lexj, so the area lies between the upper and lower sums.

Let f(x)= x*+ 1 for 0 < x < 2. Let

2 0<x <2,

< x < —
g(x)={(2) 0<x<l and hm=ia  3<x<y,
5 d<x<2

Draw a graph showing f(x), g(x), and s(x). What upper and lower sums for f
can be obtained from g and A?

The graphs are shown in Fig. 4.2.10.

For g wehave Ax, =1, k, =0and Ax, = 1, k, = 2. Since g(x) < f(x) for
all x in the open interval (0, 2) (the graph of g lies below that of f), we have as
a lower sum,

2
S kAx=0-1+2-1=2.

i=1



Figure 4.2.10. The area
under the graph of 4 is an
upper sum for f; the area
under the graph of gis a
lower sum.

Figure 4.2.11. The dark
shaded area is the
difference between upper
and lower sums for f on
[a, b]. The area under the
graph is between the upper
and lower sums.
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F V=)

pEfeo =it

r=glv)

For h we have Ax, =2,/ =2, Ax,=%,/,=4, and Ax; =%, ;= 5. Since
the graph of 4 lies above that of f, A(x) > f(x) for all x in the interval (0,2),
we get the upper sum
3
S LAx=2-2+4-2+5-2=2=7}.4A

i=1
Using partitions with sufficiently small subintervals, we hope to find step
functions below and above f such that the corresponding lower and upper
sums are as close together as we wish. Notice that the difference between
lower and upper sums is the area between the graphs of the step functions (Fig.
4.2.11). We expect this area to be very small if the subintervals are small
enough and the values of the step functions are close to the values of f.

a b X

Suppose that there are lower sums and upper sums which are arbitrarily
close to one another. Then there can only be one number 4 such that
L < A < U for every lower sum L and every upper sum U, and this number
must be the area under the graph.

Area Under a Graph

To calculate the area under the graph of a non-negative function f, we
try to find upper and lower sums (areas under graphs of step functions
lying below and above f) which are closer and closer together. (See
Example 6 below for a specific instance of what is meant by “closer and
closer.””) The area A4 is the number which is above all the lower sums and
below all the upper sums.
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Example 4

Solution

Example 5

Solution

Exampie 6

Solution

What we have done here for areas has a counterpart in our distance-velocity
problem. Suppose that v = f(¢) defined for a < ¢ < b gives the velocity of a
moving bus as a function of time, and that there is a partition (¢y,¢;, ..., t,)
of [a,b] and numbers k,, . .., k, such that k; < f(¢) for ¢ in the ith interval
(¢;,_,,t). Taking for granted that a faster moving object travels further in a
given time interval, we may conclude that the bus travels a distance at least
k;(t; — t,_) in the ith time interval. Thus the total distance travelled must be
at least k At + - -+ + k,At, = 37_ k; At; (where, as usual, we write A, for
t; = t;_,), 80 We have a lower estimate for the distance travelled between t = a
and ¢ = b. Similarly, if we know that f(r) < /; on (¢,_,,¢,) for some numbers

Ly, ..., 1,, we get an upper estimate >{_ I At; for the distance travelled. By
making the time intervals short enough we hope to be able to find &; and /,
close together, so that we can estimate the distance travelled as accurately as

we wish.

The velocity of a moving bus (in meters per second) is observed over periods
of 10 seconds, and it is found that

4<0v<5 when O0<t <10,
55<0v<6.5 when 10 < ¢ <20,
5 v<57 when 20 < ¢ < 30.

Estimate the distance travelled during the interval 0 < ¢ < 30.

A lower estimate is 4- 104+ 5.5- 10+ 5- 10 = 145, and an upper estimate is
5:10+65-10+5.7-10= 172, so the distance travelled is between 145 and
172 meters. A

The velocity of a snail at time ¢ seconds is (0.001)(¢? + 1) meters per second at
time ¢. Use the calculations in Example 3 to estimate how far the snail crawled
between ¢ = 0 and ¢ = 2.

We may use the comparison functions g and # in Example 3 if we multiply
their values by 0.001 (and change x to ). The lower sum and upper sum are
also multiplied by 0.001, and so the distance crawled is between 0.002 and
0.00733 ... meters, i.e., between 2 and 74 millimeters. A

When we calculate derivatives, we seldom use the definition in terms of limits.
Rather, we use the rules for derivatives, which are much more efficient.
Likewise, we will not usually calculate areas in terms of upper and lower sums
but will use the fundamental theorem of calculus once we have learned it.
Now, however, to reinforce the idea of upper and lower sums, we shall do one
area problem “the hard way.”

Use upper and lower sums to find the area under the graph of f(x)= x on
[0, 1].

The area is shaded in Fig. 4.2.12.

We will lock for upper and lower sums which are close together. The
simplest way to do this is to divide the interval [0, 1] into equal parts with a
partition of the form (0,1/n,2/n,...,(n—1)/n,1). A step function g(x)
below f(x) is given by setting g(x) = (i — 1)/ n on the interval [({ — 1)/n,i/n),
while the step function with A(x)=i/n on ((i — 1)/n,i/n] is above f(x) (Fig.
42.13).



Figure 4.2.12. The region

under the graph of f(x) = x

on [0, 1].
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Figure 4.2.15, The area lies
in the interval [1/2 — 1/2n,
1/2 + 1/2n] for all n. The
length of this interval >0
as n— o,
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The difference between the upper and lower sums is equal to the total
area of the chain of boxes in Fig. 4.2.14, on which both g(x) and A(x) are
graphed. Each of the n boxes has area (1/n) - (1/n) = 1/#r? so their total area
is n-(1/n% =1/n, which becomes arbitrarily small as »— o0, so we know
that the area under our graph will be precisely determined. To find the area,
we compute the upper and lower sums. For the lower sum, g(x)=(i — 1)/n
= k; on the ith subinterval, and Ax, = 1 /» for all i, so

y

Figure 4.2.14. Difference
Figure 4.2.13. Lower and upper sums for f(x) = x on [0, 1}. between the upper and
lower sums.

The area under the graph is the unique number 4 which satisfies the
inequalities 1/2—1/2n < A <1/2+ 1/2n for all n (see Fig. 42.15). Since
the number 1 satisfies the condition, we must have 4 = 1. A

The result of Example 6 agrees with the rule from elementary geometry that
the area of a triangle is half the base times the height. The advantage of the
method used here is that & wanbe applied to more general graphs. (Another case
is given in Exercise 20.) This method was used extensively during the century
before the invention of calculus, and is the basis for the definition of the
integral.

Exercises for Section 4.2

Draw the graphs of the step functions in Exercises 1-4.

0 if 0<x<l, 0 if 0<x<1,
Lga)y={2 if l<x<?2, Jogay={1 if 1<x<2,
1 if 2<x<3. 2 if 2<x<3.

1 if 0<x <05, 1 if 2<x<25,

_J3 if 05<x<2, _J3  if 25<x<3,
289=13 i 2<x<3, 8= Fox<ca

4 if 3<x<4 0 if 4<x<45.
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In Exercises 5-8 compute the x,;’s, Ax;’s, and k;’s for the
indicated step function and compute the area of the
region under its graph.

5.
6.
7.
8.

For g in Exercise 1.
For g in Exercise 2.
For g in Exercise 3.
For g in Exercise 4.

In Exercises 9 and 10, draw a graph showing f, g, and &
and compute the upper and lower sums for f obtained

from g and A.
9. f(x)=x%L 1 <x<3;
=1 l<x<2,
g(x) {4 2<x <3
_[4 l<x<2
h = ) 3
(x) {a 2<x <3
10 f(x)——x3+l,l<x\3,
2, 1<x<l15,
g(x)=1{ 4, 1.5< x <2,
9, 2<x<3;
_ {9, 1<x<2,
h(x) {%, 2<ox <3

11.

12.

The velocity of a moving bus (in meters per
second) is observed over periods of 5 seconds
and it is found that

50<0v<60 when 0 <t <S5,

40<0v <55 when 5 <t <10,
6.1 <072 when 10 <t < 15,
32<0<47 when 15 <t < 20.

Estimate the distance travelled during the inter-
val t =0 to t = 20.
The velocity of a moving bus (in meters per
second) is observed over periods of 7.5 seconds
and it is found that

40<0v<51 when 0<t <75,
30<0v<50 when 7.5 <t < 15,
44<0v<55 when 15 <t <225,
30<v<4l when 225 < ¢ < 30.

Estimate the distance travelled during the inter-
val t =0 to t = 30.

. The velocity of a snail at time ¢ is (0.002)¢?

meters per second at time f. Use the functions g
and A in Exercise 9 to estimate how far the snail
crawled between t =1 and ¢ = 3.

. The velocity of a snail at time ¢ is given by

(0.0005)(¢3 + 1) meters per second at time ¢. Use
the functions g and A in Exercise 10 to estimate
how far the snail crawled between ¢ =1 and
t=3.

In Exercises 15-18, use upper and lower sums to find
the area under the graph of the given function.

15.
16.
17.
18.

19.

*20.

*21.

*22.

*23.

fx)=xforl <x <2
fix)y=2xfor0 < x < 1.
flx)=5xfora<x<b,a>0.
fx)=x+3fora< x<b,a>0.

Using upper and lower sums, find the area under
the graph of f(x)=1- x between x =0 and
x = 1.

Using upper and lower sums, show that the area
under the graph of f(x) = x? between x = a and
x=1bis ¥(b — a. (You will need to use the
result of Exercise 41(a) from Section 4.1.)

Let f(x) = 0<x<l,

X, 1 <x<2.
Find the area under the graph of f on [0, 2], using

the results of the Exercises 15 and 20.
Let

= [ 1—x 0<x
f&) {Sx, 1 < x <4

Using the results of Exercises 17 and 19, find the
area under the graph of f on [0, 4].

By combining the results of Example 6 and Exer-
cise 20, find the area of the shaded region in Fig.
4.2.16. (Hint: Write the area as a difference of
known areas.)

Figure 4.2.16. Find the
shaded and striped areas.

*24,

Using the results of previous exercises, find the
area of the striped region in Fig. 4.2.16.
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Figure 4.3.1. The product
k; Ax; is the negative of the
shaded area.
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The Definition
of the integral

The integral of a function is a “signed” area.

In the previous section, we saw how areas under graphs could be approxi-
mated by the areas under graphs of step functions. Now we shall extend this
idea to functions that need not be positive and shall give the formal definition
of the integral.

Recall that if g is a step function with constant value k; > 0 on the
interval (x;_, x;) of width Ax;, = x; — x,_,, then the area under the graph of g
is

Area = > k;Ax;.

i=1

This formula is analogous to the formula for distance travelled when the
velocity is a step function; see formula (3), Section 4.1. In that situation, it is
reasonable to allow negative velocity (reverse motion). Likewise, in the area
formula we wish to allow negative k;,. To do so, we shall have to interpret
“area” correctly. Suppose that g(x) is a negative constant &, on an interval of
width Ax;. Then &, Ax; 1s the negative of the area between the graph of g and
the x axis on that interval. (See Fig. 4.3.1.)

To formalize this idea, we introduce the notion of signed area. If R is any
region in the xy plane, its signed area is defined to be the area of the part of R
lying above the x axis, minus the area of the part lying below the axis.

If fis a function defined on the interval [a,b], the region between the
graph of f and the x axis consists of those points (x, y) for which x is n [a, b]
and y lies betwen 0 and f(x). It is natural to consider the signed area of such a
region, as illustrated in Fig. 4.3.2. For a step function g with values &; on
intervals of length Ax;, the sum >7_  k; Ax, gives the signed area of the region
between the graph of g and the x axis.

Figure 4.3.2. The signed
area between the graph of f
and the x axis on [a, b] is
the area of the + regions
minus the area of the —
regions.

Signed Area

The signed area of a region is the area of the portion above the x axis
minus the area of the portion below the x axis.

For the region between the x axis and the graph of a step function
g, this signed area is 3)7_  k; Ax;.
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Example 1
Solution
y
y=gx)
3+ 8
RN
1 -
% L]
1l 31 X
3] 2 4
l ——
EEY W)
\.V =g(x)

Figure 4.3.3. The graph of

the step functi
Example 1.

on in

Draw a graph of the step function g on [0, 1] defined by
-2 if 0<x<d,
g(x)=4 3 if 1<x<3,

1 if 3<x<1

Compute the signed area of the region between its graph and the x axis.

The graph is shown in Fig. 4.3.3. There are three intervals, with Ax, =4,
Ax2=%—§=l— and Ax;=1—-2=1; k;=-2, k,=3, and k;=1. Thus
the S1gned area is

EkaxF(—z)( JHONEZ)+ (D)= —3+iti=35-A

i=1

The counterpart of signed area for our distance-velocity problem is directed
distance, explained as follows: If the bus is moving to the right, then v >0
and distances are increasing. If the bus is moving to the left, then v <0 and
the distances are decreasing. In the formula Ad =3"_ v Ar, Ad is the
displacement, or the net distance the bus has moved, not the total distance
travelled, which would be 3% |o,| At. Just as with signed areas, movement to
the left is considered negative and is subtracted from movement to the right.
(See Fig. 4.3.4.)

-——

= [\ —=v
X g
movement to right ;
< DO |
D
|

OO0, =
6]

L] —
= i
| %5 -
i ending X
starting Ad n
position position
movemert
to left Figure 4.3.4. Ad is the

displacement; i.e., net
distance travelled.

To find the signed area between the graph and the x axis for a function
which is not a step function, we can use upper and lower sums. Just as with
positive functions, if g is a step function lying below f, i.e., g(x) < f(x) for x
in [a, b], we call

L= kAx
=1
a lower sum for f. Likewise, if h is a step function lying above f, with values /,
on intervals of width ij forj=1,..., m, then
U= Y [ Ax

is an upper sum for f. If we can find L’s and U’s arbitrarily close together,
lying on either side of a number A, then 4 must be the signed area between
the graph of f and the x axis on [a, b]. (See Fig. 4.3.5.)



Figure 4.3.5. The signed
area of the region R lies
between the upper and
lower sums.

Definition
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by

We are now ready to define the integral of a function f.

Let f be a function defined on [a, b]. We say that f has an integral or that f is
integrable if upper and lower sums for f can be found which are arbitrarily
close together. The number I such that L < I < U for all lower sums L and
upper sums U is called the integral of f and is denoted

Lbf(x)dx.

We call | the integral sign, a, b, the endpoints or limits of integration, and f the
integrand.

The precise meaning of “arbitrarily close together” is the same as in Example
6, Section 4.2, namely, that there should exist sequences L, and U, of lower
and upper sums such that lim,_, (U, — L,) = 0. (Limits of sequences will be
treated in detail in Chapter 11.)

The Integral

Given a function f on [a,b], the integral of f, if it exists, is the number

[ 1o ax

which separates the upper and lower sums. This number 1s the signed
area of the region between the graph of f and the x axis.

The notation for the integral is derived from the notation for sums. The Greek
letter 3" has turned into an elongated S; &, and /. have turned into function
values f(x); Ax; has become dx; and the limits of summation (e.g., i goes from
1 to n) have become limits of integration:

> k;Ax;

i=1
o
[ fxyax

Just as with antiderivatives, the “x” in “dx’’ indicates that x is the variable of
integration.
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Example 2 Compute fB f(x)dx for the function f sketched in Fig. 4.3.6. How is the
-2

integral related to the area of the shaded region in the figure?

Figure 4.3.6. The signed
area of the shaded regjon is
an integral.

Solution The integral f ’ f{x)dx is the signed area of the shaded region.
-2
[C feyde= )+ (~H@) +@))=1-2+4=3. A
-2

Example 3 Write the signed area of the region in Fig. 4.3.7 as an integral.

y=x3

-1 =1j2
Figure 4.3.7. The signed
area of this region equals
what integral?
Solution The region is that between the graph of y = x* and the x axis from x = — ] to

x =1, so the signed area is

fl x3dx. A
-1/2

The next example shows how upper and lower sums can be used to approxi-
mate an integral. (In Chapter 6, we will learn how to compute this integral
exactly.)

Example 4 Using a division of the interval [1, 2] into three equal parts, find fz(l/x) dx to
1

within an error of no more than .

Solution To estimate the integral within J5, we must find lower and upper sums which
are within % of one another. We divide the interval into three equal parts and
use the step functions which give us the lowest possible upper sum and highest
possible lower sum, as shown in Fig. 4.3.8. For a lower sum we have

flzg(x)dx=—%(%—1)+§%§(%_%)+%(2_%>
1
2573

S -HE)- B

Blw A
w|—

.+.
w|w




Figure 4.3.8. Illustrating
upper and lower sums for

1/x on[1,2].

Existence
Theorem
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W
Sy
PN
!
LRSI

1.1, 1 1, 1 1
J r@de= 13+ 4337533
_1 3,3
=3(1+3+5)
=1 ( 47 ) =47
3120 60 °
It follows that
3 (2L g 41
60 = . de\ 60 -
Since the integral lies in the interval [27,47], whose length is L, we may take
the midpoint & = % as our estimate; it will differ from the true integral by no
more than § -1 =L, which is less than %. A

We have been calculating approximations to integrals without knowing

whether some of those integrals actually exist or not. Thus it may be

reassuring to know the following fact whose proof is given in more advanced
3

courses.

If f is continuous on [a,b], then it has an integral.

In particular, all differentiable functions have integrals, but so do step
functions and functions whose graphs have corners (such as y = |x|); thus,
integrability is a more easily satisfied requirement than differentiability or
even continuity. The reader should note, however, that there do exist some
“pathological” functions that are not integrable. (See Exercise 36).

It is possible to calculate integrals of functions which are not necessarily
positive by the method used in Example 6 of the previous section, but this is a
tedious process. Rather than doing any such examples here, we shall wait until
we have developed the machinery of the fundamental theorem of calculus to
assist us.

Let us now interpret the integral in terms of the distance—velocity
problem. We saw in our previous work that the upper and lower sums
represent the displacement of vehicles whose velocities are step functions and
which are faster or slower than the one we are studying. Thus, the displace-

3 See, for instance, Calculus Unlimited by J. Marsden and A. Weinstein, Benjamin /Cummings
(1981), p. 159, or one of the other references given in the Preface.
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Example 5

Solution

Figure 4.3.9. The area of
the shaded region is a
Riemann sum for f on
[a, b].

ment, like the integral, is sandwiched between upper and lower sums for the
velocity function, so we must have

displacement = fbf(t) dt.

A bus moves on the line with velocity v = (t> — 4t + 3) meters per second.
Write formulas in terms of integrals for:

{(a) the displacement of the bus between r =0 and ¢ = 3;
{(b) the actual distance the bus travels between t =0 and ¢ = 3.

(a) The displacement is [3(t* — 4t + 3)d.
{b) We note that v can be factored as (t — 1)(t — 3), so it is positive on (0, 1)
and negative on (1,3). The total distance travelled is thus

fl(t2—4t+3)dt—f3(t2—4t +3)dt. A
(1] 1

We close this section with a discussion of a different approach to the integral,
called the method of Riemann sums. Later we shall usually rely on the step
function approach, but Riemann sums are also widely used, and so you
should have at least a brief exposure to them.

The idea behind Riemann sums is to use step functions to approximate
the function to be integrated, rather than bounding it above and below. Given
a function f defined on [q, b] and a partition (x,,x,, . . ., x,) of that interval,
we choose points ¢, . . ., ¢, such that ¢, lies in the interval [x;_,, x;]. The step
function which takes the constant value f(c;) on (x,_,x;) is then an approxi-
mation to f; the signed area under its graph, namely,

S, = 2 f(<) Ax;,
i=1
is called a Riemann sum.* It lies above all the lower sums and below all the
upper sums constructed using the same partition, so it is a good approxima-
tion to the integral of f on [a, b] (see Fig. 4.3.9). Notice that the Riemann sum

a=xy €y Xxy €y Xp C3X3 ¢4 b= Xy X

is formed by “sampling” the values of f at points ¢, . . ., c,, “weighting” the
samples according to the lengths of the intervals from which the ¢’s are
chosen, and then adding.

If we choose a sequence of partitions, one for each n, such that the
lengths Ax; approach zero as n becomes larger, then the Riemann sums
approach the integral [2f(x)dx in the limit as n— co.From this and Fig. 4.3.9,
we again see the connection between integrals and areas.

Just as the derivatives may be defined as a limit of difference quotients,
so the integral may be defined as a limit of Riemann sums; the integral as
defined this way is called the Riemann integral.

4 After the German mathematician Bernhard Riemann (1826-1866).
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Riemann Sums

Choose, for each n, a partition of [a, b] into » subintervals such that the
maximum of Ax; in the nth partition approaches zero as n—co. If ¢; is a
point chosen in the interval [x;_, x;], then

Tim éjl f(e)Ax,= f * f(x)dx.

Examplie 6 Write fle dx as a limit of sums.

0

Solution As in Example 6, Section 4.2, divide [0,1] into n equal parts by the partition

Figure 4.3.10. The storage
unit accumulates the power
received by the solar cell.

0,1/n,2/n,...,(n—1)/n,1). Choose c;,=i/n, the right endpoint of the
interval [(i — 1)/n, i /n]. (We may choose any point we wish; the left endpoint
or midpoint would have been just as good.) Then with f(x) = x?3, we get
5= 3 fe)ax=Se L= (EY(1)=3 £
=1 i=1 n i= l n n i=1 n4
Therefore,
1
lim — iP= | x3dx.
jim L S [

Thus, we can find [{x*dx if we can evaluate this limit, or vice versa. A

Supplement to Section 4.3
Solar Energy

Besides the distance-velocity and area problems, which we used to introduce
the integral, there are other physical problems that could be used in the same
way. Here, we consider the problem of computing solar energy and shall see
how 1it, too, leads naturally to the integral in terms of upper and lower sums.

Consider a solar cell attached to an energy storage unit (such as a
battery) as in Fig. 4.3.10. When light shines on the solar cell, it is converted
into electrical energy which is stored in the battery (as electrical-chemical
energy) for later use.

Sunhght
\\ . Light meter
Energy
[ 7 7 storage dial

Energy storage unit

Solar cell

We will be interested in the relation between the amount E of energy
stored and the intensity I of the sunlight. The number E can be read off a dial
on the energy storage device; I can be measured with a photographer’s light
meter. (The units in which E and I are measured are unimportant for this
discussion.)

Experiments show that when the solar cell is exposed to a steady source
of sunlight, the change AE in the amount of energy stored is proportional to
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Figure 4.3.11. The intensity
of sunlight varying with
time.

the product of the intensity / and the length Ar of the period of exposure.
Thus

AE = kI At,
where k is a constant depending on the apparatus and on the units used to
measure energy, time, and intensity. (We can imagine k being told to us as a
manufacturer’s specification.)

The intensity / can change—for example, the sun can move behind a
cloud. If during two periods, Ar, and Ar,, the intensity 1s, respectively, I, and
L,, then the total change in energy is the sum of the energies stored over each
individual period. That is,

AE =kl At + kI, Aty = k(1 Aty + 1, Ar).

Likewise, if there are n periods, At,, ..., At,, during which the intensity is
I,,...,1 (asin Fig. 4.3.11(a)), the energy stored will be the sum of » terms,

AE = k(1) At) + LA, + -+« + 1 Ar) =« > LAz,
i=1
Notice that this sum is exactly « times the integral of the step function g,
where g(t) = I, on the interval of length Ay,.
In practice, as the sun moves gradually behind the clouds and its
elevation in the sky changes, the intensity / of sunlight does not change by
jumps but varies continuously with ¢t (Fig. 4.3.11(b)). The change in stored

i /4

1

i

P S
V

<>
~

=
~

energy AE can still be measured on the energy storage meter, but it can no
longer be represented as a sum in the ordinary sense. In fact, the intensity now
takes on infinitely many values, but it does not stay at a given value for any
length of time.

If 1 = f(1), the true change in stored energy is given by the integral

AE=bef(t)dt,

which is k times the area under the graph I = f(r). If g(¢) is a step function
with g(r) < f(1), then the integral of g is less than or equal to the integral of
f(r). This is in accordance with our intuition: the less the intensity, the less the
energy stored.

The passage from step functions to general functions in the definition of
the integral and the interpretation of the integral can be carried out in many
contexts; this gives integral calculus a wide range of applications.
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Exercises for Section 4.3

In Exercises 1-4, draw a graph of the given step func-
tion, and compute the signed area of the region be-
tween its graph and the x axis.

| f 0<x<1
1. = sxs< b
gx) {—3 if 1<x<2
-4 if —1<x<0,
2. g(x)= 2 if 0<x<l,
3 if | < x < 2.
- 1 if —2<x<—1,
380 {—l if —1<x<0
-3 if —3<x< -2,
4. g(x)={ -2 if —-2<x<-—1,
—1 if —1<x<0.

In Exercises 5-8, compute the indicated integrals.

5. fzg(x) dx, g as in Exercise 1.
0

6. fo g(x)dx, g as in Exercise 2.
-1

7. fo g(x)dx, g as in Exercise 3.
-2

8. fo g(x)dx, g as in Exercise 4.
-2

In Exercises 9-12, write the signed areas of the shaded
regions in terms of integrals. (See Figure 4.3.12.)

38
b

-2

Figure 4.3.12. Graphs for
Exercises 9-12.

13. Find f4(l/x)dx to within an error of no more
2

than .
14. If you used the method in Example 4 to calculate

fz(l/x)dx to within %, how many subintervals
1
would you need?

5. Estimate fz(l/xz)dx to within 7.
1

16. Estimate fz(l/xz)dx to within 4.
1

17. A bus moves on the line with velocity given by
v =5(1 =51+ 6). Write a formula in terms of
integrals for:

(a) the displacement of the bus between 1 =0

and 1 = 3;
(b) the actual disiance the bus travels between
t=0and r=3.

18. A bus moves on the line with velocity given by
© =612 — 30 + 24. Write a formula in terms of
integrals for:

(a) the displacement of the bus between 1 =0

and r = 5;
(b) the actual distance the bus travels beiween
tr=0and r=5.

In Exercises 19-22, write the given integral as a limit of
sums.

19. f|x5dx. 20. f|9x3dx.
(1] 0
4 ] 4 x?
21. dx. 22. dx.
fZ 1+ x° * f} T+x ™

23. Show that —3 <f2(z3 —4)ydr < 4.
|

24. Show that fltlodt <l
0

25. Let f(r) be defined by

2 if 0<r<l,

fin=4¢ 0 if 1<r<3,

-1 if 3<r<4
For any number x in (0, 4], f(} is a step function

on [0, x].
(a) Find fxf(t)dt as a function of x. (You will
0

need to use different formulas on different
intervals.)
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26.

27.

28.

29.

Chapter 4 The Integral

(b) Let F(x)= f *f(tydt, for x in (0,4]. Draw a
0

graph of F.

(c) At which points is F differentiable? Find a
formula for £'(x).

Let f be the function defined by

2, 1 < x <4,
f(x)=1{5, 4<x <7,
1, 7< x <10

(2) Find [ () dx.
i

(b) Find fz ®f(x)dx.

(c) Suppose that g is a function on [, 10] such
that g(x) < f(x) for all x in [I, 10]. What

inequality can you derive for flog(x) dx?
1
(d) With g(x) as in part (c¢), what inequali-

ties can you obtain for flOZg(x)dx and
1

[ ' _ g(x)dx? [Hint: Find functions like f
1

with which you can compare 2g and —g.]
Let f(¢) be the “greatest integer function™; that
is, f(r) is the greatest integer which is less than or
equal to r——for example, f(n) = n for any integer,
f(53)=15, f(=5%)= —6, and so on.
(a) Draw a graph of f(¢) on the interval [ -4, 4].

(b) Find f Yy, f fydr, f ? f(tydt, and
(4] (] -2

f 1ty dt.

0

(¢) Find a general formula for f"f(t) dt, where
0

n is any positive integer.
(d) Let F(x) =fxf(t)dt, where x > 0. Draw a
0

graph of F for x € [0, 4], and find a formula
for F’(x), where it is defined.

A rod | meter long is made of 100 segments of

equal length such that the linear density of the

kth segment is 30k grams per meter. What is the
total mass of the rod?

The volume of a rod of uniform shape is 4 Ax,

where A4 is the cross-sectional area and Ax is the

length.

(a) Suppose that the rod consists of n pieces,
with the ith piece having cross-sectional area
A; and length Ax;. Write a formula for the
volume.

(b) Suppose that the cross-sectional area is
A = f(x), where f is a function on [0, L}, L
being the total length of the rod. Write a
formula for the volume of the rod, using the
integral notation.

*30. Suppose that f(x) is a step function on [a, b}, and
let g(x)= f(x)+ k, where k is a constant.
(a) Show that g(x) is a step function.

() Find f P¢(x)dx in terms of f Pr(x)dx.

*31. Let h(x)= kf(x), where f(x) is a step function
on [a, b].
(a) Show that h(x) is a step function.

(b) Find f Ph(x)dx in terms of f P () dx.

*32. For x €[0, 1] let f(x) be the first digit after the
decimal point in the decimal expansion of x.

(a) Draw a graph of f. (b) Find f‘f(x) dx.
0

*33. Define the functions f and g on [0, 3] as follows:

4, 0<x<I,
fx)=4 -1, 1< x <2,
2, 2<x<3
2, 0<x<l4,
x) = -
g(x) { 1, 13 < x <3.

(a) Draw the graph of f(x) + g(x) and compute
Jueo + g

(b) Compute flz[f(x) + g(x)}dx.

3 . 3
(¢) Compare fo 2f(x)dx with 2[0 f(x)dx.
(d) Show that
f[f(x) - g(x)]dx=f3f(x)dx~f3g(x) dx.
0 0 0

(e) Is the following true?

[l 100 gx)dx = [l reds [7gx)d.

*34. Suppose that f is a continuous function on [a, b]
and that f(x) = 0 for all x in [a,b]. Assume that
a=b and that f((a+ b)/2)= 1. Prove that

fbf(x) dx > 0. [Hint: Find a lower sum.}]
a

%35. Compute the exact value of f‘x5dx by using
o

Riemann sums and the formula

S 254 P 4 NS NO LN SNY N
P+2°4 3+ + N T Tt 5
*36. Let the function f be defined on [0, 3] by
_ /0 if x isa rational number,
fx) { 2 if x isirrational.

(a) Using the fact that between every two real
numbers there lie both rationals and irra-
tionals, show that every upper sum for f on
[0, 3] is at least 6.

(b) Show that every lower sum for f on [0, 3] is
at most 0.

(¢) Is fintegrable on [0, 3]? Explain.
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Probiem

First Soiution

Second Soiution
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The Fundamental
Theorem of Calculus

The processes of integration and differentiation are inverses to one another.

We now know two ways of expressing the solution of the distance-velocity
problem. Let us recall the problem and these two ways.

A bus moves on a straight line with given velocity v = f(¢) fora < ¢ < b. Find
the displacement Ad of the bus during this time interval.

The first solution uses antiderivatives and was presented in Section 2.5. Let
y = F(t) be the position of the bus at time ¢. Then since v=dy/d, ie.,
f=F’, F is an antiderivative of f. The displacement is the final position
minus the initial position; i.e.,

Ad = F(b) — F(a), (1)

the difference between the values of the antiderivative at t = ¢ and ¢ = b.

The second solution uses the integral as defined in the previous section. We
saw that

Ad = fa *f(ya. )

We arrived at formulas (1) and (2) by rather different routes. However,
the displacement must be the same in each case. Equating (1) and (2), we get

F(b) = F(a)= [ f(1)a 3)

This equality is called the fundamental theorem of calculus. It expresses the
integral in terms of an antiderivative and establishes the key link between
differentiation and integration.

The argument by which we arrived at (3) was based on a physical model.
Later, in this section, we shall also give a purely mathematical proof.

With a slight change of notation, we restate (3) in the following box.

Fundamental Theorem of Calcuius

Suppose’ that the function F is differentiable everywhere on [a, b] and
that F’ is integrable on [q, b]. Then

[*F(xydx= F(b) = F(a).

In other words, if f is integrable on [a, b] and has an antiderivative F,
then

fabf(x)dx= F(b) - F(a).

We may use this. theorem to find the integral which we previously computed
“by hand” (Example 6, Section 4.2).
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Exampie 1

Soiution

Examplie 2

Solution

Figure 4.4.1. The shaded
area is [2x%dx = {(b° — a°).

Examplie 3

Solution

Using the fundamental theorem of calculus, compute f 'x dx.
0

By the power rule, an antiderivative for f(x) = x is F(x) = 1x% (You could
also have found F(x) by guessing, and you can always check the answer by
differentiating ! x2.) The fundamental theorem gives

j(;Ide=j(;lf(x)dx= F(l) — F(O) =%, 12_%‘02=

which agrees with our earlier result. A

il

Nl—

Next, we use the fundamental theorem to obtain a new result.

b
Using the fundamental theorem of calculus, compute f x2dx.
a

Let f(x)= x?% again by the power rule, we may take F(x)=
fundamental theorem, we have

fbxzdx=fbf(x)dx= F(b) — F(a)= 16— 1d*

We conclude that [2x*dx = L(b* — @), This gives the area under a segment
of the parabola y = x? (Fig. 4.4.1). A

x*. By the

1
3

We can summarize the integration method provided by the fundamental
theorem as follows:

Fundamental Integration Method

To integrate the function f(x) over the interval [a, b]: find an antideriv-
ative F(x) for f(x), then evaluate F at ¢ and b and subtract the results:

fa"f(x) dx= F(b) — F(a).

Notice that the fundamental theorem does not specify which antiderivative to
use. However, if F, and F, are two antiderivatives of f on [a, b], they differ by
a constant (see Section 3.6); F,(f) = Fy(t) + C, and so

Fy(b) — Fy(a) =[ Fy(b) + C]| — [ Fy(a) + C] = Fy(b) — Fy(a).
(The C’s cancel.) Thus all choices of F give the same result.

Expressions of the form F(b) — F(a) occur so often that it is useful to
have a special notation for them.

Notation for the Fundamental Theorem

F(x) ’ means F(b) — F(a).

Find (x* + 5)3.
Here F(x)= x>+ 5 and
(x> +35)3 = F(3) - F(2)
=3F+5-2°+5)
=32-13=19. A
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Solution

Proof of the
Fundamentali
Theorem

Figure 4.4.2. The integral
of g is a lower sum for f on
[a,b].
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In terms of this new notation, we can write the formula of the fundamental
theorem of calculus in the form

[ fexydx = Fx)

where F is an antiderivative of f on [, b].

b
k
a

Find fs(x2 + 1)ax.
2

By the sum and power rules for antiderivatives, and antiderivative for x* + 1
is 4 x* + x. By the fundamental theorem,

j:(x2+ l)abc=(%x3'+x)6

2

=(§33+6)—(333+2)

=78-42=731. A

Evaluate fz —1—4 dx.

1 X

An antiderivative of 1/x*= x"*is —1/3x?, since

T R

Hence
2
2l Lo Ly (L \o_ 1, 1_7
f;x“dx 3x3 |, ( 3-23) ( 3-13) 273724

We will now give a complete proof of the fundamental theorem of calculus.
The basic idea is as follows: letting F be an antiderivative for f on [a, b], we
will show that the number F(b) — F(a) lies between any lower and upper
sums for f on [a, b]. Since f is assumed integrable, it has upper and lower sums
arbitrarily close together, and the only number with this property is the
integral of f (see page 217). Thus, we will have F(b) — F(a)= [ f(x)dx.

For the lower sums, we must show that any step function g below f on (a, b)

has integral at most F(b) — F(a). So let k,k,, . .., k, be the values of g on
the partition intervals (xq,x,),(x,,xy), ..., (x,_,x,) (See Fig. 44.2). On
/

1
1
I
':

a:zU x| K> x;=b

(x;—1,x), k; < f(x)= F'(x), so the difference quotient for F satisfies the
inequality k; < [F(x,) — F(x,_)]/[x; — x;_,], by the first consequence of the
mean value theorem (Section 3.6). Thus, k;Ax;, < F(x;) — F(x;_,). Summing
from i = 1 to n, we get

2 e Ax <[ F(x)) = F(xq)] + [F(x)) = F(x)] + -+ +[F(x,) = F(x,_)].

i=1
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Example 7

Solution

The left-hand side is just the integral of g on [a, b], while the right-hand side is
a telescoping sum which collapses to F(x,) — F(xg); so we have proven that
[5g(x)dx < F(b) - F(a).

An identical argument works for upper sums: If /# is a step function
above f on (a,b), then F(b) — F(a) < [%h(x)dx (see Exercise 49). Thus the
proof of the fundamental theorem is complete. B

Here are two more examples illustrating the use of the fundamental
theorem. Notice that any letter can be used as the variable of integration, just
like the “dummy variable” in summation.

Find f“(z2 +307/%)dr.
0

By the sum, constant multiple, and power rules for antiderivatives, an antide-
rivative for ¢ + 3¢t7/%is (£3/3) + 3 - (2/9)¢°/2. Thus,

4 2 N 2t9/2)
fo(t +307/2) dt (3+—~3

4

In the next example, some algebraic manipulations are needed before the
integral is computed.

2 (S+5)2

Compute f ds.

i S
The integrand may be broken apart:
25

0
: + =

2
(s +5) =s2+10s+25=i+l__
54 54 2 s s

We can find an antiderivative term by term, by the power rule:

21,10, 25 2 - -
fl(_2+_~+_>ds=f,(s 24 10573 + 255~ Y ds

N 5‘3 S4

2

=((s"l 4+ 1052 +25s"3)

- (=2 (=3
(_1__12_2)2
s 252 353 1

2
=_(l+_12+£)

s Sz 3s 1
(L5425 25
((2+4+3-8) (1+5+3))
67 43 277
(ﬂ 3)=—2—“=1154A

Next we use the fundamental theorem to solve area and distance-velocity
problems. Let us first recall, from Sections 4.2 and 4.3, the situation for areas
under graphs.



Examplie 8

Figure 4.4.3. Compute this
area.

Solution

Example 9

Figure 4.4.5. Find the area
of this region.

Solution
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Area under a Graph

If f(x) > O for x in [a, b], the area under the graph of f between x = a
and x=">is

Lbf(x)dx.

If f is negative at some points of [a, ], then [% f(x)dx is the signed
area of the region between the graph of f, the x axis, and the lines x = a
and x = b.

(a) Find the area of the region bounded by the x axis, the y axis, the line
x =2, and the parabola y = x2 (b) Compute the area of the region shown in
Fig. 4.43.

Figure 4.4.4. The shaded
area equals [3x*dx.

(a) The region described is that under the graph of f(x)= x? on [0,2] (Fig.
4.4.4). The area of the region is [3x?dx = 1 x5 = 8.

(b) The region is that under the graph of y = x* from x =0 to x = 1, 50 its
area is [3x’dx. By the fundamental theorem,

e = X
j(;xdx 4

Thus, the area is 1. A

I

1
, 4

(a) Interpret fz(x2 — 1)dx in terms of areas and evaluate. (b) Find the shaded
0

area in Figure 44.5.

.V=X2~l

Figure 4.4.6. [3(x* — )dx
is the difference between
the areas of R, and R;.

(a) Refer to Fig. 4.4.6. We know that the integral represents the signed area of
the region between the graph of y = x2 — 1 and the x axis. In other words, it is
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Example 10

Solution

Figure 4.4.7. The total
distance travelled is
[qodt — fi’vdt; the
displacement is [5ov.dt.

the area of R, minus the area of R,. Evaluating,

j(;z(xz—l)dx=(%{—x)z

(b) For functions which are negative on part of an interval, we must recall,
from Section 4.3, that the integral represents the signed area between the graph
and the x axis. To get the ordinary area, we must integrate piece by piece.

The area from x =0 to x = | is [{x’dx. The negative of the area from
x=-1tox=0is [0, ,x’dx. Thus the total area is

0
A= —f x3dx+f‘x3dx
-1/2 0
0

to(1/2)
4

8 _,_2
=37%2=3-

+

+

x4

_1/2 4

| 1 _ 17
4

= e 4 L

4-16 4 6

=

_xt
4

il

0
- A

Finally, in this section, we consider the use of the fundamental theorem to
solve displacement problems. The following box summarizes the method,
which was justified earlier in this section.

Displacements and Velocity

If a particle on the x axis has velocity ¢ = f(¢) and position x = F(1),
then the displacement F(b) — F(a) between the times t = ¢ and t = b is
obtained by integrating the velocity from 1 = g 10 1 = b:

e . b
(l?nsplacement from) =f (velocity) dt.
tmet=atot=>5 a

An object moving in a straight line has velocity ¢ = 5r* + 3% at time ¢. How
far does the object travel between ¢ = 1 and 1 = 2?

The displacement equals the total distance travelled in this case, since v > 0.
Thus, the displacement is

Ad=f12(5t4+ 3%di= (15 + )= (32 +8) — (1 + 1) = 38,

Thus, the object travels 38 units of length between t=1and r=2. A

We have seen that the geometric interpretation of integrals of functions that
can sometimes be negative requires the notion of signed area. Likewise, when
velocities are negative, we have to be careful with signs. The integral is always
the displacement; to get the actual distance travelled, we must change the sign
of the integral over the periods when the velocity is negative. See Fig. 4.4.7 for
a typical situation.

. . object turns
endiug position: <0 tor around v =0atf=c
t=b «<t<bh
- - /
Pt - , .
starting v> (0 for
position: a<t<¢

{=ua
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Example 11 An object on the x axis has velocity v = 2¢ — 2 at time ¢. If it starts out at
Xz -\ &+t t=0, where is it at time ¢ = 3? How far has it travelled?
Solution Let x = f(¢) be the position at time ¢. Then
3
f3) = f©O) = [t = *yai
0
3113
:tz—t_) :9—21:0'
( 30, 3
Since f(0) = —1, the object is again at x =0+ f(0) = — 1 at time ¢ = 3.
The object turns around when v changes sign, namely, at those ¢t where

2t—t?=00rt=0,2. For 0<t<2 v>0, and for 2<¢ <3, v<0. The
total distance travelled is therefore

2 2o (3, 2
fo(zt—t)dt fz(zz 1%y dt

8 27 8
o)) e
3 3 3
-8
3" A
Exercises for Section 4.4
Using the fundamental theorem of calculus, compute 33 -1 aut—1
the integrals in Exercises 1-4. . fz v =1 au. 24. fz a—1 du.
3.3 3 2
I fl X" dx. 2. fz x*dx. Calculate the areas of the regions in Exercises 25-28
Fi 4.4.8).
3. f63x dx. a. f“(l +% ) dx. (Figure 4.4.8)
4 1
Compute the quantities in Exercises 5-8. 25. 26.
5. x3/43.
6. (x2+23)5-
7. 3x% + 5)[3.
8. (X4 + X2 + 2)|2_2.
Evaluate the integrals in Exercises 9-24.
b 2
9. 473 ds. 10. t* + 81)dr.
L s s f_l( )
2 1
1. [ “4wr?/dr. 12. *+ M dr.
j; T ¥ f~1( )
10 ¢4 2 0 2_ .3
13. - — .14, - . 27. 28.
fo (IOO t)dt f~4(l+x x7)dx 3 ,
X R . y o oy=x3+l )
15. (2 (1 + )2 16. 3+_)d.
f_ R ) fl (s )4
2 drt T 2
17. . 18. B+ z9d:z.
fl (t + 4y fw/z
2
2(1+ 1) 224+ 81+ 1
19. —dt. 20. — 4.
fl 2 fn 4

&

, 2+ 5)° 5 (-1t x) .,
' fl x4 ' f_z x o Figure 4.4.8. Regions for
Exercises 25-28.
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Interpret the integrals in Exercises 29 and 30 in terms of

areas,

29.

30.

sketch, and evaluate.

fz(x3 ~ Ddx.

(4]

f 2(x2 = 3)dx.
1

In Exercises 31-40, find the area of the region between
the graph of each of the following functions and the x
axis on the given interval and sketch.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.

42.

43,

x3 on [0,2].

1/x%?on[1,2].

x>+ 2x+3on[l,2]

x>+ 3x+2o0n(0,2].
x*+2on[—1,1].
Ix*—2x+2o0n[—1,1]
x*+3x24+1; —2< x< 1.
8x8+3x*~2; 1< x <
(/x)+x% 1< x <3
(3x+5)/x3; l<x<?
An object moving in a straight line has velocity
v =6¢*+ 3¢? at time ¢. How far does the object
travel between ¢ = 1 and ¢ = 10?

An object moving in a straight line has velocity
v =2+ t* at time ¢. How far does the object
travel between ¢t = 0 and ¢t = 2?

The velocity of an object on the x axis is ©
=47 -2/ If itisat x = | at t = 0, where is it at
¢ = 4?7 How far has it travelled?

4.5 Definite and

45.

46.

*47.

*48.

*49,

*50.

. The velocity of an object on the x axis is v

=2 -3¢+ 2.If the object is at x = — 1 at ¢ = 0,
where is it at ¢ = 2? How far has it travelled?
The velocity of a stone dropped from a balloon is
32t feet per second, where ¢ is the time in sec-
onds after release. How far does the stone travel
in the first 10 seconds?

How far does the stone in Exercise 45 travel in
the second 10 seconds after its release? The third
10 seconds?

An object is thrown upwards from the earth’s
surface with a velocity vy. (a) How far has it
travelled after it returns? (b) How far has it
travelled when its velocity is — 4 v,?

Suppose that F' is continuous on [0, 2], that F'(x)
< 2 for 0 < x <4, and that F'(x) < 1 whenever
4 < x < 2. What can you say about the differ-
ence F(2) — F(0)?

Prove that if A(¢) is a step function on [a, b] such
that f(r) < h(¢) for all ¢ in the interval (a, b), then

F(b)— F(a) < f Ph(tydr, where F is any antide-

rivative for f on [a, b}.

Let ag, ..., a, be a given set of numbers and
S=a—a_ Let by=Sk_8, d=5b—b_,
Express the b’s in terms of the a’s and the d’s in
terms of the §’s.

Indefinite Integrals

Integrals and sums have similar properties.

When we studied antiderivatives in Section 2.5, we used the notation [f(x)dx
for an antiderivative of f, and we called it an indefinite integral. This notation
and terminology are consistent with the fundamental theorem of calculus. We
can rewrite the fundamental theorem in terms of the indefinite integral in the

following way.

Lbf(x)dxsz(x)dx|

Definite and indefinite integrals

b
a

Notice that although the indefinite integral is a function involving an arbitrary

constant, the expression

(s

represents a well-defined number, since the constant cancels when we subtract
the value at a from the value at b.
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An expression of the form [% f(x)dx with the endpoints specified, which
we have been calling simply “an integral,” is sometimes called a definite
integral to distinguish it from an indefinite integral.

Note that a definite integral is a number, while an indefinite integral is a
function (determined up to an additive constant).

Remember that one may check an indefinite integral formula by differen-
tiating.

Indefinite integral Test
To check a given formula ff(x)dx = F(x) + C, differentiate the right-

hand side and see if you get the integrand f(x).

Check the formula f3x8dx =x’/3+ C.

We differentiate the right-hand side using the power rule:

d(x° _ 9 _ g
dx(3+C)— 3 = 3x°;

so the formula checks. A
The next example involves an integral that cannot be readily found with the
antidifferentiation rules.
(a) Check the formula J(x(l + x)%dx = & (7x — 1)1 + x)” + C. (Do not at-
tempt to derive the formula.)
(b) Find fzx(l + x)0dx.

0

(a) We differentiate the right-hand side using the product rule and power of a
function rule:

d% [ 316(7x — 1+ x)q - glg [7(1+ %)+ (7x = 1)7(1 + x)°]

| 6
c(1+x) [7(1 + x) + 7(7x — 1)]

Il

Il

(1+ x)6x.

Thus the formula checks.
(b) By the fundamental theorem and the formula we just checked, we have

2 6. _ 1 _ I
fox(1+x) de= 55 (Tx = (1 + %))
_ 1 7T (.
=z [13-37 - (- D]
_ 28432 _ 3554
Tt =75 ~ 5077 A

In the box on page 204 we listed five key properties of the summation process.
In the following box we list the corresponding properties of the definite
integral.
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Soiution

Example 4

Solution

Properties of the Definite integral

1. fb[f(x) + g(x)]ldx =fbf(X)dx +fbg(x)dx (sum rule).
2. fbcf(x) dx = cfbf(x) dx, ¢ a constant (constant multiple rule).
3

_Ifa<b<ec, then fcf(x)dx - fbf(x)dx +fbcf(x)dx.

. If f(x) = C is constant, then f *Hxydx = C(b — a).

. If f(x) < g(x) for all x satisfying a < x < b, then

Lbf(x)dx <ng(x)dx.

W A

These properties hold for all functions f and g that have integrals. However,
while it is technically a bit less general, it is much easier to deduce the
properties from the antidifferentiation rules and the fundamental theorem of
calculus, assuming not only that f and g have integrals, but that they have
antiderivatives as well.

Prove property 1 in the display above (assuming that f and g have antideriva-
tives).

Let F be an antiderivative for f and G be one for g. Then F+ G is an
antiderivative for f + g by the sum rule for antiderivatives. Thus,
b

Lb[f(x) + g(x)] dx = [F(x) + G(x)]
[F(b)+ G(b)] —[F(a) + G(a)]
[F(b) = F(a)] +[ G(b) = G(a)]

:Lbf(x)dx+ng(x)dx. A

a

Prove property 5.

If f(x) < g(x) on (a,b), then (F— GY(x)= F'(x)~ G'(x)= f(x) - g(x) <0
for x in (a, b). Since a function with a negative derivative is decreasing, we get

[F(b) = G(b)] =[F(a) = G()] <0,

and so F(b) — F(a) < G(b) — G(a). By the fundamental theorem of calculus,
the last inequality can be written

fbf(x)dx <fbg(x)dx
as required. A

Properties 2 and 3 can be proved in a way similar to property 1. Note that
property 4 is obvious, since we know how to compute areas of rectangles.
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Solution

Figure 4.5.1. Illustrating
the rule [{f(x)dx =
fflf(x)dx + [§f(x)dx.

Example 6

Solution
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Explain property 3 in terms of (a) areas (assume that f is a positive function)
and (b) distances and velocities.
(a) Since [§f(x)dx is the area under the graph of f from x =a to x = ¢,

property 3 merely states that the sum of the areas of regions 4 and B in Fig.
4.5.1 is the total area.

y

(b) Property 3 states that the displacement for a moving object between times
a and ¢ equals the sum of the displacements between ¢ and b and between b
and c. A

We have defined the integral fﬁf(x)dx when a is less than b; however, the
right-hand side of the equation

be’(x)dxz F(b) — F(a)

makes sense even when a > b. Can we define (*f(x)dx for the case a > b so
that this equation will still be true? The answer is simple:
If b < a and { is integrable on [b.a}, we define

fhf(x)dx tobe - ”f(x)dx.
a b

If a = b. we define [°f(x)dx to be zero.
Notice that if F’ is integrable on [b,«}. where b < a. then by the
preceding definition and the fundamental theorem.

th’(x)dxz —fb”F'(x)dx: ~ [ F(ay - F(b)] = F(b) - F(a),

so the equation (" F'(x)dx = F(b) — F(a) is still valid.

“Wrong-Way” integrals

l. th(.\')d.\‘ = —fh”f(x)dx:
2. f”f(x)dx =0

3. f”F'(x)dx = F(b) - F(a). for all @ and b.

Find f2x3 dx.
6

[exPdx = (x*/4)2 = 1(16 — 1296) = — 320. (Although the function f(x)= x’
is positive, the integral is negative. To explain this, we remark that as x goes
from 6 to 2, “dx is negative.”) A
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Solution

We have seen that the fundamental theorem of calculus enables us to compute
integrals by using antiderivatives. The relationship between integration and
differentiation is completed by an alternative version of the fundamental
theorem. Let us first state and prove it; its geometric meaning will be given
shortly.

Fundamental Theorem of Calculus:
Alternative Version

If f1s continuous on [a,%], then d%’c fxf(s) ds = f(x).

We now justify the alternative version of the fundamental theorem. In
Exercises 49-53, it is shown that f has an antiderivative F. Let us accept this
fact here.

The fundamental theorem applied to f on the interval [a, x] gives

fa *f(syds= F(x) — F(a).
Differentiating both sides,
d [* d
o [ I =L [Fx) - F(@)]
d : o .
= F(x) (since F(a) is constant)
= f(x) (since F is an antiderivative of f).
Thus the alternative version is proved.
Notice that in the statement of the theorem we have changed the

(dummy) variable of integration to the letter “s” to avoid confusion with the
endpoint “x.”

Verify the formula % faxf(s)ds = f(x) for f(x) = x.

The integral in question is

2
cod((* _d(x*_a\_, _
Thus, —- (fa f(s)ds)~ dx( )