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Preface

This book arose from a course of lectures given by the first author during
the winter term 1977/1978 at the University of Miinster (West Germany).
The course was primarily addressed to future high school teachers of
mathematics: it was not meant as a systematic introduction to number
theory but rather as a historically motivated invitation to the subject,
designed to interest the audience in number-theoretical questions and
developments. This is also the objective of this book, which is certainly not
meant to replace any of the existing excellent texts in number theory. Our
selection of topics and examples tries to show how, in the historical
development, the investigation of obvious or natural questions has led to
more and more comprehensive and profound theories. how again and
again, surprising connections between seemingly unrelated problems were
discovered. and how the introduction of new methods and concepts led to
the solution of hitherto unassailable questions. All this means that we do
not present the student with polished proofs (which in turn are the fruit of a
long historical development); rather, we try to show how these theorems are
the necessary consequences of natural questions.

Two examples might illustrate our objectives. The book will be successful
if the reader understands that the representation of natural numbers by
quadratic forms—say. n = x? + dy*—necessarily leads to quadratic reci-
procity. or that Dirichlet, in his proof of the theorem on primes in
arithmetical progression. simply had to find the analytical class number
formula. This is why, despite some doubts, we retained the relatively
amorphous, unsystematic and occasionally uneconomical structure of the
original lectures in the book. A systematic presentation, with formal defini-
tions, theorems, proofs and remarks would not have suited the real purpose
of this course, the description of living developments. We 1:evertheless hope
that the reader. with the occasional help of a supplementary text, will be
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able to learn a number of subjects from this book such as the theory of
binary quadratic forms or of continued fractions or important facts on
L-series and {-functions.

Clearly, we are primarily interested in number theory but we present it
not as a streamlined ready-made theory but in its historical genesis.
however, without inordinately many detours. We also believe that the lives
and times of the mathematicians whose works we study are of intrinsic
interest: to learn something about the lives of Euler and Gauss is a sensible
supplement to learning mathematics. What was said above also applies to
the history in this book: we do not aim at completeness but hope to stir up
the interests of our readers by confining ourselves to a few themes and hope
this will give enough motivation to study some of the literature quoted in
our text.

Many persons have contributed to this book. First of all, the students of
the course showed a lot of enthusiasm for the subject and made it
worthwhile to prepare a set of notes; Walter K. Biihler kindly suggested to
publish these notes in book form and prepared the English translation.
Gary Cornell helped with the translation and suggested several mathemati-
cal improvements: many colleagues and friends contributed encouragement
and mathematical and historical comments and pointed out a number of
embarrassing errors. We wish to mention in particular Harold Edwards,
Waulf-Dieter Geyer, Martin Kneser, and Olaf Neumann. It is a pleasure to
thank them all.

Miinster, West Germany WINFRIED SCHARLAU
June 1984 Hans OpoLKA

Added in proof. In early 1984, André Weil's Number Theory: An Approach
Through History from Hammurapi to Legendre appeared. It contains substantial
additional material and discussion. especially concerning the period between
Fermat and Legendre.
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CHAPTER 1
The Beginnings

The first work devoted to topics from the history of mathematics of which
at least a few fragments survive is by the Greek mathematician Eudemus of
Rhodes. a member of the school of Aristotle. It begins as follows (quoted
from Proclus:

Next we must speak of the development of this science during the present
era...we say, as have most writers of history, that geometry was first
discovered among the Egyptians and originated in the remeasuring of their
lands. This was necessary for them because the Nile overflows and obliterates
the boundary lines between their properties. It is not surprising that the
discovery of this and the other sciences had its origin in necessity. since
everything in the world of generation proceeds from imperfection to perfec-
tion. Thus they would naturally pass from sense-perception to calculation and
from calculation to reason. Just as among the Phoenicians the necessities of
trade and exchange gave the impetus to the accurate study of number, so also
among the Egyptians the invention of geometry came about from the cause
mentioned.

According to Eudemus the Phoenicians invented number theory but this is
probably false; rather, we should look to Babylon for the origins of
arithmetic and algebra. It is more interesting to see what Eudemus’ main
message is: If we interpret his first sentence in a general way, we can
understand it as motivating the necessity of studying history. The followers
of Aristotle liked to assign an author to every idea, a tendency which makes
Eudemus’ statement not very surprising. Nonetheless, the most eminent
mathematicians have emphasized again and again how important it was for
them to go back to study the original papers of their predecessors. This is
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often connected with a direct encouragement to the reader to follow the
masters’ footsteps. Today, where one never learns mathematics from the
originals but rather from secondary sources. this is certainly not clear.
However. one of the main objectives of this book is to guide the reader to
the study of the works of some of the greatest number theorists.

Let us stop for a second and consider the statement that science proceeds
from the imperfect to the perfect. This appears to be a triviality., and
mathematicians will certainly agree with it. But it gains a new dimension
when we keep in mind that generally the history of mankind does not seem
to proceed or progress from the imperfect to the perfect. Some of our
readers might feel challenged to reflect on whether this is a real or only an
apparent contradiction. To us. it is particularly important to see how
Eudemus describes the development of a mathematical theory. and this is a
legitimate reading of what he says. In mathematics. sense perception may
entail an interesting numerical example, or a specific problem that we want
to solve. Calculation tries to solve the problem in a more general frame-
work, perhaps by determining all solutions of an equation or by finding
necessary and sufficient conditions for its solvability. And reason is the
imbedding of a specific problem in a more general theory. the generaliza-
tion of special cases. or the search for the “real reasons.” We want to
illustrate this with the help of an example: the only number-theoretical
problem that we believe to have been fully solved in antiquity.

Let us take as a “sense-perception” the equation 3% + 42 = 5% which has a
well-known geometrical interpretation by the Pythagorean theorem—which
was known long before Pythagoras (approximately 580-500 B.C.). (If this
does not suffice as *sense perception™ one can convince oneself that a
string, stretched in a corresponding right triangle, is tuned in the proportion
kevnote : quart : sext.) Other Pythagorean triples have been known for a
long time and in many different cultures:

52+ 122 =132,

7 + 242 = 252,

82+ 152 = 172,
Now it is not too far-fetched (?!) to try to determine all such triples. The
first observation is that one can generate new triples by multiplying one of
the equations by a square. One can invert this idea and cancel. as far as

possible, square factors. This means that it is enough to investigate the
equation

a’+ bt =2
only when a, b, and ¢ have no common factor. Specifically, all three
numbers are not even. neither are all of them odd. (Now we are in the
midst of what Eudemus called “calculation™!) Exactly one of the three

numbers is even. Which one? Giving the matter some more thought we see
that it cannot be ¢. For then ¢? would be a multiple of 4 while since @ and b
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are both odd. say a=2d + 1 and b =2f+ 1. a® + b* could be written as
a2+ b?=4d>+d+f1+f)+2

which is not a multiple of 4. Let a now denote the number that is even in
our Pythagorean triple. We transform the equation into

a’=c?—b?=(c — b)(c + b).
All factors are positive even numbers, so we set
a=2n, c—b=2y¢, c+b=2w

which yields n? = vw. What happened along the way to our condition that
a, b, and c are relatively prime? Answer: ¢ and w are relatively prime and
not both odd because otherwise b = w — v, ¢ = w + v would have a com-
mon factor. Then, because of unique prime factorization, a theorem already
known to Euclid (approx. 300 B.C.). the factors ¢ and w in the equation
n? = pw have to be perfect squares because v and w are relatively prime.

Now turn this around: Let v and w be arbitrary relatively prime squares
of different parity, say v = p? and w = ¢* with ¢ > p. If we set

a=2pq, b=g'—p c=q¢'+p}

then we see that every Pythagorean triple must be of this form. Conversely,
a. b. and c are, as one can easily see, relatively prime and

a’+ b2 = (2pg)’+ (¢ = p*) = 4p’g* + ¢* ~ 2" + p*
= g*+2p%} + p* = (¢? + p?)'= .
The Babylonian mathematician (unfortunately we do not know his name)
who apparently knew all this some 3500 years ago did what we would do:
he asked one of his assistants to compute a list of the first 60, 120, or 3600
Pythagorean triples and to write them down. He used clay tables; we would
write a small program for our pocket calculator and print out the results. If
we could ask the Babylonian mathematician why he wanted to know these

numbers he would perhaps give us answers as obscure as those we would
give and certainly not as clear as

49612 + 6480% = 81612
We have already mentioned that these considerations mark the highest
achievements of ancient number theory. Whatever was known beyond this
can be described in a few sentences: the most important divisibility
theorems for integers including the Euclidean algorithm and unique factor-
ization into primes, the summation of simple finite series such as

n(n+1)

1+2+3+ .-+ +n 3

or

2 LA "-w
Ltk+ ke 4k T
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and, as perhaps the most remarkable single result, Euclid’s theorem that for
any prime of the form 1 + 2+ - -+ +2"=2"*' — | = p, the number 2 is
a perfect number, i.e.. it is the sum of its proper divisors. (In this connec-
tion, the following remark: to determine all perfect numbers is the oldest
unsolved problem in number theory, probably the oldest unsolved mathe-
matical problem. Euler showed that any even perfect number has the form
given by Euclid. No odd perfect number is known, but their nonexistence
has not been proved.)

The other number-theoretical results that were known in antiquity con-
cern not general problems but rather special numerical equations or sys-
tems of equations. Many of those results, often with tricky solutions. can be
found in the works of Diophantos (approximately 250 A.D.). Contrary to
modern terminology where “Diophantine solutions” are always integers,
Diophantos himself allows rational solutions. This means that his work is
algebraic rather than number theoretic. Of course, this distinction is superfi-
cial; just consider the above equation, a®+ b?= ¢2. Having a rational
solution, one obtains an integral solution by multiplication by a common
denominator: conversely, one obtains rational solutions from integral solu-
tions by dividing by arbitrary squares of integers. In fact. Diophantos’
derivation is quite similar to our solution above. Moreover, Diophantos
knew some basic theorems about the representations of numbers as sums of
squares but largely without proofs or sometimes with only partial proofs.
His work was an important source of inspiration for later mathemati-
cians. particularly Fermat. One can agree completely with Jacobi's words:
“Diophantos will always be remembered because he started the investiga-
tion of the deep-rooted properties and relations between numbers which
have been understood by the beautiful research of modern mathematics.”

References

Proclus. A Conunentary on the First Book of Euclid’s Elements. iranslated with
Introduction and Notes by Glenn R. Morrow. Princeton University Press,
Princeton. N.J.. 1970.

Edwards. Chap. I.

Th. L. Heath: Diophantus of Alexandria, Dover. New York. 1964.



CHAPTER 2
Fermat

After more than a thousand years of stagnation and decay the rejuvenation
and revitalization of western mathematics, particularly algebra and number
theory, starts with Leonardo of Pisa, known as Fibonacci (ca. 1180-1250).
Occasionally, the formula

(a* + bY)(c? + d*) = (ac — bd)*+ (ad + bc)’ 2.

is ascribed to Fibonacci: if two numbers are the sums of two squares, their
product is a sum of two squares as well. This development was continued
by the Italian renaissance mathematicians Scipio del Ferro (ca. 1465-1526).
Nicolo Fontano, known as Tartaglia (ca. 1500-1557), Geronimo Cardano
(1501-1576), and Ludovico Ferrari (1522-1565). Their solution of algebraic
equations of the third and fourth degree marks the first real progress over
ancient mathematics. Next in this line is Frangois Viéte (1530-1603) who
introduced the use of letters in mathematics. With Viéte, we enter the
seventeenth century; from that time on, mathematics enjoys an uninter-
rupted, continuous and exponentionally accelerating development. This
new era, the era of modern mathematics, starts with four great French
mathematicians: Girard Desargues (1591-1661), René Descartes (1596-
1650), Pierre de Fermat (1601-1665), and Blaise Pascal (1623-1662).

It is difficult to imagine four persons more different from each other:
Desargues—the most original, an architect by profession—was thought of
as strange, an individualist who wrote his main opus in a kind of secret
code and had it printed in minute letters. Descartes—the most famous—
started out as a professional soldier and was well able to fend off a group of
sailors who wanted to rob him. Like a professional soldier, he planned a
general attack (Discours sur la méthode) on the foundations of science.
Pascal—the most ingenious—Ileft mathematics and became a religious
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fanatic, troubled by constipation for most of his short life. Finally, Fermat
—the most important—was royal councillor at the Parliament of Toulouse,
a position that. in today’s terms, can be described as a high-level adminis-
trator.

Fermat's profession apparently provided him with all the leisure he
needed to occupy himself with mathematics. His style of work was slow, his
letters, which contain all his important number-theoretical results. are
laconic and dry. The majority of these were directed to Mersenne who, for
a while. was Fermat's go-between in exchanges with other mathematicians.
Several of these correspondents were important in the development of
number theory. among them Frenicle, Pascal, and Carcavi. In these letters.
Fermat formulated number-theoretical problems. but there are also several
definitive statements and discussions of special numerical examples.

Fermat never gave proofs and only once did he indicate his method of
proof. (We will come back to this later.) This makes it difficult to determine
what Fermat really proved as opposed to what he conjectured on the basis
of partial results or numerical evidence. We will see that many of his
theorems cannot be proved easily. and first-rate mathematicians. such as
Euler, had great trouble proving them. On the other hand. there can be no
doubt that Fermat knew how to prove many if not most of his theorems
completely. His letters indicate that at about 1635. inspired by Mersenne.
Fermat began to occupy himself with number-theoretical questions. His
first interests were perfect numbers. amicable numbers. and similar arith-
metical brain-teasers. He describes several ways to construct such numbers.
but far more remarkable is that—showing more insight than any of his
contemporaries—he succeeded in proving an important theorem in this still
very barren area. “Fermat's little theorem™: a”~'=1 mod p for every
prime number p and every number a prime to p. (Today this theorem is
proved early in an algebra course from the basic notions of group theory.)
Fermat’s most important number-theoretical heritage is a letter to Carcavi
in August 1650 (Fermat. Qeuvres. 11, pp. 431-436). He himself considers
this as his testament. a fact which he expresses in the following words:
“Voila sommairement le compte de mes reveries sur le sujet des nombres.™
At the beginning of this letter. one finds the passage where he describes a
certain method of proof which he himself discovered and used with great
success. He then formulates a number of theorems all of which were
contained in earlier letters or papers, but it is obvious that he wanted to
compile what he himself considered his most beautiful and important
results.

Fermat writes the following about his method of proof. quoted from
E. T. Bell. Men of Mathematics:

For a long time I was unable to apply my method to affirmative propositions,
because the twist and the trick for getting at them is much more troublesome
than that which I use for negative propositions. Thus. when I had to prove
that everv prime number which exceeds a multiple of 4 bv 1 is composed of wo
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squares, 1 found myself in a fine torment. But at last a meditation many times
repealed gave me the light I lacked. and now affirmative propositions submit
to my method, with the aid of certain new principles which necessarily must
be adjoined to it. The course of my reasoning in affirmative propositions is
such: if an arbitrarily chosen prime of the form 4n + | is not a sum of two
squares, [I prove that] there will be another of the same nature, less than the
one chosen, and [therefore] next a third still less. and so on. Making an
infinite descent in this way we finally arrive at the number 5, the least of all
the numbers of this kind [4n + 1]. [By the proof mentioned and the preceding
argument from it), it follows that 5 is not a sum of two squares. But it is.
Therefore we must infer by a reductio ad absurdum that all numbers of the
form 4n + 1 are sums of two squares.

This method is now called the method of infinite descent. Before going into
more details we want to give a brief explanation of what Fermat might
have been thinking when he spoke of the relative simplicity with which one
can prove negative statements. First we consider an example using the same
principle encountered in our earlier discussion of Pythagorean triples.

(2.2) Theorem. No natural number of the form 8n + 7 is the sum of three
squares.

PROOF. Let k be a natural number (including 0). If one divides k2 by 8. the
remainder will be 0. 1. or 4: When k is even. the remainder will be either 0
or 4, for odd k = 2/ + 1, the remainder is always | because k* = 4(/? +
1) + 1. Consequently, after forming the sum of three squares of natural
numbers, division by 8 leaves a remainder p + ¢ + r with p,q.r either 0, 1,
or 4. Checking all the possibilities shows that the remainder will be 0, 1. 2,
3.4. 5. or 6 but not 7.

It is easy to obtain numerous similar negative results. For example, try to
determine which numbers cannot be written as sums of two squares.

We now formulate most of the theorems listed in Fermat's letter to
Carcavi.

(2.3) Theorem (Two-Square Theorem). Every prime number of the form
4k + | can be written uniquely as a sum of two squares.

(2.4) Theorem (Four-Square Theorem). Every natural number is a sum of
four squares of natural numbers (zero is allowed as a summand).

(2.5) Theorem. Let N not be a square. Then the equation
Nxl+1=)?

has infinitely many integer solutions.
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Pierre de Fermat

This equation is frequently called Pell’s equation [because the English
mathematician Pell (1610-1685) had nothing to do with it).

(2.6) Theorem. The equation
3

x3+y3-z

cannot be solved in natural numbers.
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(2.7) Theorem. The only solution in natural numbers of the equation
xX}=yl42

isy=5x=3.

Finally. there is an assertion that was later disproved by Euler; namely:
(2.8) Every integer of the form 2¥ + 1 is prime.
Euler gave the example

22" + | = 4294967297 = 641 - 6700417,

Quite correctly, Fermat writes in his letter, “Il y a infinies questions de cette
espéce. . . .,” and it is remarkable with what certainty he identified central
problems in number theory. Each of the theorems we have just listed is the
starting point for a deep and rich theory. This is true even for the incorrect
assertion (2.8). The so-called Fermat numbers 2¥'+ 1 occur in Gauss’
solution to the problem of constructing the regular k-gon. According to
Gauss, the division of the circle into k parts with ruler and compass is
possible for odd k only if k is a square free product of Fermat primes.
Jacobi writes the following about Fermat's statements concerning the
“quadratic forms™ x?+ 1’ x?+ 21 x?+ 32 x’ - dv’ ... (in his Col-
lected Papers, Vol. 7): “The efforts of mathematicians to prove these
theorems have created the great arithmetical theory of quadratic forms."
There is nothing we have to add to Descartes’ statement about the four-
square theorem: *“Without any doubt this theorem is one of the most
beautiful that can be found in number theory but I do not know a proof; in
my judgement, it will be so difficult that I did not even attempt to search
for it.”” Euler, the most important mathematician of the eighteenth century,
tried for 40 years to find a proof, without succeeding. We know from the
correspondence with Mersenne that Fermat knew most of these theorems
before 1638.

Before starting to explain some of the proofs, we want to give a better
idea of the development of number theory by the middle of the seventeenth
century by quoting a few further statements and propositions from Fer-
mat’s correspondence.

(2.9) Theorem. The equation x* + y* = 22, and more specifically the equation
x* 4 y* = z% is not solvable in integers.

(2.10) Theorem (from a letter to Pascal on September 25, 1654). Every
prime number of the form 3k + 1 can be written as x? + 3y2. Every prime
number of the form 8k + 1 or 8k + 3 can be written as x? + 2v2.

(2.11) Theorem. Every number is the sum of at most three triangular num-
bers, i.e., numbers of the form n(n — 1)/2 = ().
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Approximately 150 years later, Gauss proved that every natural number
which is not of the form 4%(8n + 7) can be written as the sum of three
squares. This result is basically equivalent to the theorem on triangular
numbers.

(2.12) Theorem. No triangular number (with the exception of 1) is a cube.

Though we could add many more interesting results, let us stop here. It is
obvious that the majority of these theorems remain central to lectures or
books on elementary number theory even today.

We will now give a detailed proof of (2.9). There are three reasons why
we start with this theorem. It is the only theorem for which Fermat himself
published a rather complete proof. Also, proving it, we can continue where
we left off when determining the Pythagorean triples in Chapter 1. Finally,
this is the simplest result to which we may apply the method of infinite
descent.

PROOF OF (2.9). Let us assume that the proposition is wrong. Then there are
pairwise relatively prime integers x, y,z with x* + y* = z2. We assume that
z is minimal with this property. It follows from our study of Pythagorean
triples (Chapter 1) that x2= A2 — B? y?=24B, z = A+ B?, where B is
even. Smce x and y are relatively pnme, Aand B are as well, and therefore
A= a?, B 2bz Consequently, x2+ (2b%)? = a* which leads to 242
= 2CD. a* = C + D% The numbers C and D are relatively pnme One
obtams C = 2 D = d? consequently a? = c*+ d* Now z = a* + (2b%)?
> a* > a, and we know b > 0 because y > 0. This is a contradiction to the
fact that z is minimal.

Before proving the two-square theorem (also with the help of the method
of infinite descent), we prove the following lemma:

(2.13) Lemma. The equation x* + y* = 0 has a nontrivial solution in the field
F, of q elements if and only if q is of the form q = 4k + 1.

PrOOF. For g =4k + 1 the multlphcatwe group k2 of F, contains an
element x of order 4, ie, x2+ 1 =x2+12=0 in Fq Let us assume a
nontrivial solution (x, y) exists for ¢ = 4k + 3. Then x/y is a nontrivial
element in F of order 4. This is a contradiction because the order of the
groupF2is g — 1 =4k + 2 = 202k + 1).

It is, we think. reasonable to assume that Fermat thought of a proof of
the two-square theorem along the following lines.

Proor oF (2.3) First, let us prove existence. Assume that the statement is
false. Then there is a minimal prime number p with p = 4k + 1. which is
not the sum of two integer squares. Let n be the smallest natural number
such that np = x2 + v? with x, y relatively prime. Such an n exists because
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by (2.13) we know mp = 2% + 12 for suitable integers. We can assume that
X,y >0 and that x, y < p/2. This can be easily proved by determining
integers k,/ with |x — kp| < p/2 and |y — lp| < p/2 and replacing x, y by
|x — kp| and |y — Ip|. Another consequence is n < p/2. Moreover x and y
are both relatively prime. Otherwise there would be a prime number ¢ with
X = xoq, y=yoq and consequently np = g*(x3 + y3). Then, ¢ <p and
consequently ¢” is a divisor of n because x, y < p/2. This means that n/q?
is a natural number n, and consequently (n/¢?)p is the sum of two squares,
contradicting our choice of n. Specifically, x, y are not both even nor are
they both odd, for if they were, 2 would be a divisor of both x * y and n,
and we would obtain the following contradiction: (n/2)p = (x + y)2/4 +
(x — »)2/4. To complete this proof, we observe that n contains only prime
factors of the form 4k + 1, for if there were a prime factor of the form
g =4k + 3 then, according to (2.13), x and y would have ¢ as a common
factor. This contradicts the fact that x and y are relatively prime. Let g be a
prime factor of n. Since n < p. we have ¢ < p. and ¢ can be written as a
sum of two squares: ¢ = u*> + v2 Then

xz-l-y2

u? + o?

ux + vy \2 [ uy —ox\?

- (g ) (=) Q
u‘+v u‘+v

n

-_I_ 2+2-
rid q(x Y9

o (ux -\ (uptoxy? .
(u2+vz)+(u2+vz)' **)
In the field with ¢ elements one has: v?/u’= -1 and x?/y’= —1;
consequently v/u= *x/y or vy + xu=0. This means that (*) or (*+)
provides a representation of (n/q)p as a sum of two squares of integers,
which contradicts our assumption.

Now, we prove uniqueness. Let us assume that

p=xl+yi=X24 Y2 (+)
There are exactly two solutions of the congruence z2+ 1 =0 mod p [c.f.

(2.13)). They can be written as z= *h mod p. Consequently, x = + hy
mod p and X = + hY mod p. Since the sign does not matter, we choose

x=hymodp, X =-hYmodp. (++)
From (+) and Fibonacci’s formula (2.1) we have
Pr= (x4 y)( X2+ YY) = (xX — yY )24+ (xY + X)L

Because of (++), x¥Y + yX =0 mod p and consequently xX — yY =0
mod p. Division by p? yields a representation of | as a sum of two integral
squares. The only possible representation of this kind is 1 = (% 1)? + 0%
This shows xX — yY or xY + yX = 0. Uniqueness follows from the fact
that x, v, X. Y are pairwise relatively prime.
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From what we have proved so far and Fibonacci’s formula (2.1). it
follows that all numbers divisible only by 2 and numbers of the form
4k + 1 can be written as sums of two squares. Once one knows that every
prime number p of the form 4k + | can be written uniquely in the form
x2+ y2 it is natural to ask how to construct such numbers x, y. Here we
mention only that there are several known methods [Legendre (1808),
Gauss (1825), Serret (1848), and Jacobsthal (1906)]). Lengendre’s method is
based on the theory of continued fractions which will be discussed in
Chapter 5 and used in our proof of the important Theorem (2.5). Let us
now make a few comments on the equation x? — dy? = 1 (this is now the
usual way of writing the equation which occurs in (2.5)). One reason why
this equation is so interesting is that using it one can find an optimal
rational approximation of Vd. For large x, y, one has Vd ~ x/y if x* - y’d
= |. However. it is mathematically much more interesting that the smallest
solutions of the equation do not appear to follow any regular pattern. This
can be seen in Table 1 which lists the smallest solutions for a few d. Fermat
seems to have computed a similar table because in his letters he poses the
equation x? — y’d = | as a problem and repeatedly chooses special d for
which x and y become particularly large, e.g., d = 61, 109, 149. (Centuries
earlier, Indian mathematicians seem to have known much about this
equation.)

Table of the smallest solutions of x? — dy? = 1.

d X ¥

8 3 |
10 19 6
11 10 3
12 7 2
13 649 180
14 15 4
15 4 1
60 31 4
61 1766319049 226153980
62 63 8
108 1351 130
109 158070671986249 15140424455100
110 21 2
148 73 6
149 25801741449 2113761020
150 49 4

And who will be able to see right away that with d = 991

x = 3795164009068 1 1930638014896080,
y = 12055735790331359447442538767 ?
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To conclude this chapter, a few words about the so-called “Fermat’s last
theorem.” Whether Fermat knew a proof or not has been the subject of
many speculations. The truth seems to be obvious. Fermat made his
famous remark in the margin of his private copy of Bachet’s edition of
Diophantos in 1637 (next to the problem of decomposing a square into the
sum of two squares): “Cubum autem in duos cubos, aut quadrato-
quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum
ultra quadratum potestatem in duas ejusdem nominis fas est dividere: cujus
rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non
caperet.” (Fermat, Oeuvres, 111, p. 241). Basically, Fermat claims that the
equation x" + y” = z", n > 3, is unsolvable in natural numbers and states
that he has a truly wonderful proof. The margin, however, was too small to
write it down.

This statement was made at the time of his first letters concerning
number theory and we can assume that this was also the time his interest
awakened in the theory of numbers. As far as we know, he never repeated
his general remark but repeatedly made the statement for the cases n = 3
and 4 and posed these cases as problems to his correspondents. We have
already seen that he formulated the case n = 3 in a letter to Carcavi in 1659
(n = 4 obviously appeared to be too simple to be included in his collection
of important theorems). All these facts indicate that Fermat quickly be-
came aware of the incompleteness of the “proof” of 1637. Of course, there
was no reason for a public retraction of his privately made conjecture.
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CHAPTER 3
Euler

After 1650 number theory stood virtually still for a hundred years. This
period saw the development of analysis in the work of Isaac Newton
(1643-1727). Gottfried Wilhelm Leibniz (1646-1716), the Bernoullis (Ja-
cob, 1655-1705; Johann I, 1667-1748; Nicholas 11, 1687-1759; Daniel
1700-1792). and Leonhard Euler (1707-1783). Analysis is not the subject
of this book. but analytic methods have played an important role in
number theory since Dirichlet. This interplay between analysis and number
theory has its origins in the work of Euler, and we will try to sketch the
beginnings of this development here.

One of the most important and interesting objects in analysis was the
geometrical series which was first summed by Nicole Oresme (ca. 1323-
1382):

l+x+x2+ - =
l -x

for |x|< 1.
Comparatively simple manipulations, well known since the beginnings of
analysis, lead to other series, e.g.,

1 2 3
—— =] -x+x x4+
1+ x ’

by integration we get

_x-X Xy
log(1 + x) = x I T .

Applying Abel’s limit theorem yields
log(2)=1—-1+4-4 ...,
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Another example is

1
1 + x?

by integration one obtains

=l—xl4+xt—xt4-..

3 s
X X

arctanx = x — S~ 4+ =— — 4 ¢+«
3 5

and with the help of Abel’s limit theorem,

’r‘ = -_— — -_—. e
Y arctanl=1-1+4-4+

To this last series, well known to the reader from lectures in analysis, we
will return repeatedly. Its discovery, as the discovery of many fundamental
results in analysis, can be ascribed to several mathematicians. Gregory
seems to have been the first, but Leibniz independently found it approxi-
mately 1663, i.e., before (re)discovering the fundamental theorem of calcu-
lus. It is quite possible that this immediately acknowledged outstanding
achievement (by, among others, Huygens) prompted Leibniz, who was then
a lawyer and diplomat, to turn to mathematics.

These series show—though in a naive and superficial way—that there is a
connection between sequences of integers satisfying a simple mathematical
principle and transcendental functions. We will encounter such examples
again and again, and we now introduce a particularly important one,
related to the so-called Bernoulli numbers which are of great importance in
mathematics even today.

The function

x
fx)= ==
has a convergent power series expansion in the unit disc,

B B B, ,
f(x)=Bo+ 33 2" x1+ - R AR R

The coefficients B; are called the “Bernoulli numbers™ (after Jacob Ber-
noulli). We will now give a recursive formula for these numbers.

(£ BB

m=0 n=0 r=0

is the Cauchy product of two power series. If the right-hand side of this
formula equals 1, one obtains

n-1
aObO =1, aobn == kzobkan—k .
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This permits us to compute b, recursively. Because

‘_ £
P AT
we obtain the following recursive formula for the Bernoulli numbers:
@l n!
B"g—kz.:oakﬁ("_—m' (3.1
According to (3.1) all the B, are rational numbers. We have
By =1, By=-4. By={, By=0, By= -+,
By=0, By=2%, B, =0, Bg=— 4, By=0,
Bo=%,» B, =0 Byy= 5, .

Euler computed B, for k < 30. The B, seem to occur first in Jacob
Bernoulli’s Ars conjectandi. Basel. 1713. in connection with computing the
sum 2,»% 1 < r< n- 1. The computation of such sums was of interest
even before Fermat. and Fermat himself did some work on them. Today.
Bernoulli numbers appear in many places in number theory, but also in
other areas such as algebraic topology. One feels that they are connected
with particularly deep and central questions. Let us discuss some of the
more elementary properties of these numbers.
First, let us rewrite the recursive formula:

4 n! -

Multiplying by n + 1 and using the identity
(n+1)! _ ( n+ 1
k'(n—k+1)! k )
yields

n

31 )amo

k=0
Using for p(x) = 37 _qa,x"* the notation

n
p(B) = 3 aB,.
k=0
the recursion formula can be written very concisely as
(1+ B)"*'-B"*'=0 3.1y
The above table suggests the following.

(3.2) Remark. B, =0 for odd k > 1.
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PrOOF. Obviously, this statement is equivalent to the statement that

x/(e* = 1)+ x/2 is an even function. This is easy to prove since
x 4 lem_=x _1
-1 3" -1 2"

is equivalent to

x x
+ —=
e*—1 e *-1
X

- — X,

which is true because e*e ”

We mentioned above that Bernoulli numbers occurred for the first time
in the formula

K4+2%4 o+ (n=1)k= ((n+ B)*' = B**");  (33)

1
k+1
specifically, for k = 1,2, 3:

1+2 + .- +(n—=1)=4(n—-1)n,

1422+ .- +(n= 1)Y= Ln(n—1)2n-1),

14224 - +(n=1Y=1n(n- 1)
PROOE. Obviously,

e™ — | ) nlk
ety ,-o-—-z( )

On the other hand, using the Cauchy product with ¢ = k — s,
ns*iys e B’ .
s=0 ("" ')' ) 2o ¥ )

2 é :#lBk —y X
= —_  |x"
(,-o G+ Di(k—s) )
Comparing coefficients yields
n-1 k k n""lBk
-3

,
Py i > G+DI(k-9)"

s=0

e nx __

and multiplication by k!
n=1 k (k+ 1) e
,?o' k+l ,E_:o GrOi(k=s" Be-s

k+1 s+
k+l ,go(.f"'l)n By-.

= m((n + B)k-o-l - Bk“).
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We now come to one of Euler’s most celebrated theorems, discovered in
1736 (Institutiones Calculi Differentialis, Opera (1), Vol. 10).

(3.4) Theorem.

00

2 _l_ - 22k—l”2k'32k|
n=1 n (Zk)'
Specifically, for k = 1, 2, and 3 one obtains

6

2 <
1 s
2 5= 955

2%-%, z%

SI“

The series 32 ,(1/n?*) converges because 1/n* < 1/n2 < 1/n(n - 1) for
n > 2and
ol B Y A | PP
nhynn=1) < \n-1 n k-’
For a proof of (3.4) we need a few facts from the theory of trigonometric
functions. First we make sort of a pedagogical remark: the usual definitions
of the sine and cosine functions.

. ko " xn+1
smx-ngo( ) @ne )i’

x n x27
cos x -"5-_:0(— 1 (—;n_)'

do not make it obvious that these functions are periodic. It is natural to
look for an expression that makes the periodicity obvious. The simplest
approach is to consider

fx)= . (35)

Nne= —
Let us assume for a moment that this definition makes sense. Obviously,
the right-hand side has period 1, for if one replaces x by x + 1, one just
replaces the summation index n by n + 1. Now let us rewrite (3.5):
Lyl _2x
f(X) +2(x+n Y—n) x+"§|x2_"2'
Clearly, f(x) is not defined for x € Z, but it is easy to show that

Sx.(1/(x + n)+ 1/(x — n)) is absolutely convergent for x & Z. How can
we express f by a known periodic function? The answer is easy:

f(x)'_+2(x+n _\:_1—5)

= 7 Cot(mx).

(3.6)
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This is the well-known decomposition of the cotangent by partial fractions.
Although the reader should be familiar with this from calculus, we will
deduce it from Euler’s product representation of the sine because the steps
in this deduction are typical and use arguments that will reoccur. Euler’s
general idea for representing functions as products is to find a representa-
tion analogous to the decomposition of a polynomial in linear factors of the
form x — a,. where the a, are the roots of the polynomial. Of course, the
product will usually not be finite, and one has to deal with questions of
convergence. Once a representation of the product has been found, taking
logarithms—which is permitted under certain conditions—transforms the
product into a series. For sin(#x), the roots of which are all integers, Euler
found the following product representation.

sin7x = x H (l —5)

n+0 n

()]

The expression on the right-hand side converges absolutely. This product
leads to the representation of the cotangent by partial fractions. 7 cot(wx) is
the logarithmic derivative of sin(7x). Thus, taking logarithms (which can be
done term by term because the product converges absolutely) the product
representation of sinzx becomes

(3.7)

had 2
log(sin7x) = log x + "zl log(l - # ),

and by term by term differentiation,

“lys__ —2x
7 coy(mx) = - + "z-:l (= x2/)

+§(;+;)_

neq\x+n x-—n

1
x

Let us mention that the theory of periodic and trigonometric functions can
be developed from the above definition of the cotangent (cf. André Weil,
Elliptic Functions According to Eisenstein and Kronecker, Springer-Verlag,
Ergebnisse der Mathematik, 1976).

PROOF OF (3.4). Let us substitute x = 2iz in x/(e* — ). Then

iz _ = B« .. k_ x 2'i*B, k
i go T (2iz) k§_]0 72
b 22k( - l)kBZk 2%

=] - jz+ —_— <,
kz-:l (2k)!
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because the B, vanish for all odd k > 1. On the other hand,

cosz _, (1/2)(e" + ™)
sinz = (1/2i)(e” — e™*)

ZCotz =2z

iz - ":.
=izl te " IZ + 1

eiz_e—i: -1

2+e"‘— 1 _2iz +iz
_ Zix .
1 -1
From this last equation it follows that
x 24— 1)*By,
zcotz= | + —_—— %
El (2k)!

Using the decomposition of the cotangent in partial fractions (with z = 7x)
yields

zcotz = 7x cot S ! L
- (wx)-l-f—xz(x + )

n=|

22 22 1
T+ 2,,2, 21— n’vr2 2,§| nr? ( 1 — z2/n*? )
2%

=] =2 2 z 2 < (geometrical series)

o <
1 zlk +2
- 2/‘20( > e | T (absolute convergence)

-1-23 (3 )5
£ \a=h n
Comparing the coefficients of both representations of z cotz one obtains
i _l_ _ 221(—!,”21((_ I)k+|BZI¢
< onk (2k)!

Since this series is positive, the B., have alternating signs. which completes
our proof.

(3.8) Corollary. |B,,| and even *Y|B,,| — o with k — 0.
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PROOF. Let us write G, := $%.,(1/n*). Then,

L2V 1l 2y 61
0<Gk_l“"2?;"§2(;) 555:"22(‘”-) =——22k-2 .

so that lim,_, .G, = 1, i.e, by (3.4)

: l82k| 2k -\ 2k

/ 2k)!
im 2/ 9 o,
k—bw ‘szl

Euler’s life, as opposed to Fermat'’s, was very eventful. Leonhard Euler
was born in Basel in 1707. His father, Paul Euler, a parson interested in
mathematics, who had taken courses from Jacob Bernoulli, was his son’s
first teacher. In 1720, not quite 14 years old, Euler became a student at the
University of Basel, first in theology and philosophy. He also attended
mathematical lectures given by Johann I. Bernoulli. Though he passed his
examination in philosophy, his main interest was mathematics. At the age
of 18, Euler published his first mathematical paper. When two of Johann I.
Bernoulli’s sons, Daniel and Nicholas II., were called to St. Petersburg by
Catherine I to be members of the newly founded Academy, created
according to plans of Peter the Great, they tried to find a position for their
friend Euler. They were partially successful, since Euler was invited to join
the medical department of the Academy in 1726. After quickly studying
some physiology, he arrived in Petersburg after a fairly arduous trip (from
April 5-May 24, 1727). Contrary to his expectations he was immediately
appointed adjunct to the mathematical class, and in 1731, appointed
Professor of Natural Science, and in 1733, Professor of Mathematics as the
successor of Daniel Bernoulli. Euler devoted much of his time to applied
sciences (physics and engineering, maps, navigation, shipbuilding) and the
teaching of mathematics. He also wrote several texts in mathematics and
physics. Nonetheless, Euler’s most important achievements are in pure
mathematics; but even they are often computationally oriented. Before
formulating general theorems, Euler used to verify special cases through
calculations.

In 1740, the political situation in the Russian capital was very confused.
At the same time, Frederick the Great, who had just become King of

Then

This proves our corollary.
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Joseph Louis Lagrange. Published by permission, Germanisches Museum, Munich.

Adrien Marie Legendre
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Prussia. made an effort to revive the Berlin Academy of Science that had
been founded by his grandfather Frederick I. Euler was invited to work
there. accepted. and with his large family reached Berlin on July 25, 1741.
There he was faced with a multitude of problems, partly administrative. but
also practical ones such as the assignment to plan the construction of a
canal. insurance matters, and ballistics. But he did not neglect mathematics
and physics. He published much and maintained a lively correspondence
with scientists all over Europe. Frederick the Great and Euler were very
different. both intellectually and in their personalities. The King, very
interested in literature. music and philosophy. surrounded himself with
artists, philosophers, and free thinkers. This was a world into which Euler
did not fit at all. Educated as a protestant, he was a devout Christian all his
life. It should not come as a surprise that leading personalities at the Court
made fun of him when he involved himself, with his Christian background.
in the current philosophical quarrels about the so-called doctrine of
monads. This hostile atmosphere and his failure to become President of the
Academy after Maupertuis died might have contributed to the decision to
accept Catherine the Great’s invitation to return to the Academy in St.
Petersburg in 1766. Euler lived there until his death on September 18. 1783.
Even though he lost his eyesight in 1771, he continued to be incredibly
productive. The publication of his works. started in 1911 by the Schweiz-
erische Naturforschende Gesellschaft. has not yet been completed! His
mathematical works alone occupy more than one yard of shelf space. Euler
made meaningful contributions in every field of mathematics in which he
worked. Doubtlessly. his most important achievements are in analysis
(infinite series, theory of functions. differential and integral calculus, differ-
ential equations. calculus of variations). We have already mentioned that
Euler’s applications of infinite series to different number theoretical prob-
lems was of principal importance. We will now study this.

The study of the series =n~2* leads to series of the form Zn~'. s €N.
The case where s =2k + 1 runs into major difficulties. Even today. no
explicit formula like (3.4) is known for the corresponding series. Minkowski
discovered interesting and very different interpretations for these expres-
sions (see Ch. 10). Euler was probably the first to see that these series can
be applied to number theory. His proof of the existence of infinitely many
primes uses the divergence of the harmonic series n~"': If we assume that
there are only finitely many prime numbers, the product

4"

as p runs through the prime numbers, is finite. Expanding every factor in a
geometrical series and using the so-called fundamental theorem of arithme-
tic which says that every natural number can uniquely be written as
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product of powers of primes, one obtains

-1 00
oo>n(l——|-) =[[(1+p ' +p 24 - )= S Lo,
14 P P n=
a contradiction!

L. P. G. Dirichlet (1805-1859) systematically introduced analytical meth-
ods in number theory. Among other things, he investigated the series Zn~*
for real s. B. Riemann (1826-1866) allowed complex s.

For real s> 1 + € (e >0), =n~""*9 majorizes =n~*. Thus =n~* is
uniformly convergent for s > |1 + ¢ and is a continuous function of s
because of the continuity of its summands. The function represented by
this series is called the Zeta-function, and is denoted by {(s). One obtains

<f°° 1 dt<§(s)<l+f Loas |+-‘—l,

s—1
and consequently
lin|1§(s)(s -1)=1, specifically liﬂﬁ(s) = 00. 39
sy s
The Zeta-function has a first order pole at s = 1.

If one now expands each factor of the infinite product [],(1 — p~*)~ Lp
running over the primes. in a geometrical series and again uses the
fundamental theorem of arithmetic, one obtains, analogous to the above,
Euler’s product representation for the Zeta-function for all real s > I:

()= 2 =T -p7" (3.10)

(3.11) Theorem. 3 1/p is divergent.

PRrOOF. lim, (log §(s)) = oc because lim,;,{(s) = co. Because of

log$(s) = IOS(HU -P")") - ZPlos(#;)

(logarithmic series)
P n=]

"ZP
P nwm2

it suffices to show that DI NITY I / n converges. This can be seen from
the following rough estimate:

s$k<s3 L-3(;

P n=2 P P n=2 P P

-lp")—'z p(p -1)

=ss——1 < 1 o
—2,,7,,(,,_1) naz n(n—=1) !
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From (3.11) one obtains a first statement about the distribution of prime
numbers: the prime numbers are denser than the squares since

> 1 w°
—=—<®
n;l n2 6
by (3.4). The series 3 p1/p diverges very slowly. The partial sum after the
first 50 million terms is still less than 4.

Another typical example for Euler's way of thinking is the following
attempt to prove the four-square theorem. The problem fascinated him over
several decades but he never found a complete proof: however. he im-
proved and simplified the first proof of the theorem. due to Lagrange.
Euler’s approach tries to use the function

Jf)=l+x+x*+ 7+ x¥+ ...

which is defined for |x| < 1. After expanding the function f(x)* in a power
series

<
fix)'= 0 7(m)x"
n=0

and comparing coefficients, 7(n) will denote the number of ways n can be
written as a sum of four squares. To prove Fermat's statement, one only
has to show that v(n) > 0. It is quite difficult to do this: only many vears
later did C. G. J. Jacobi succeed, using the theory of elliptic functions. We
do, however, see how Euler nearly magically transforms a purely arithmeti-
cal question into an analytical problem. In fact. Euler’s idea is more
general. as we will now see in our discussion of a similar problem. A
partition of a natural number is a representation as a sum of natural
numbers. Two partitions are the same if they differ only in the sequence of
their summands: consequently. we can always assume in a partition »n
=n+---+n that n, >n,> .-+ 2> n.. Let p(m be the number of
partitions of n. For example. p(2) = 2. p(3) = 3. p(4) = 5. p(5) = 7. In 1663,
Leibniz suggested investigating these partitions in a letter to Johann 1.
Bernoulli. It is extremely difficult to compute p(n) for arbitrary n. Like 7(n)
considered above. p(n) is an arithmetical function. i.e.. a function f:N— R,
Euler assigns to every such function a series

€
F(x):= Zof(n)x". f(0):=1 (3.12)
F is called the generating function of f. If f(n) does not approach infinity too

rapidly with n. this series has a positive radius of convergence. When f is
the partition function, this series converges for |x| < I. Euler shows:
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(3.13) Theorem. For |x| < I,

> P(n)x"=m[_l| '

m
o 1 -x

(with p(0) = 1).

Proor. First, we expand every factor in a geometrical series and obtain

0

1

m
met 1 — X

=(l+x+x3+ - )l+x?+x+ )1+ 7+ x4+ )

Disregarding questions of convergence, we multiply the series on the
right-hand side as if they were polynomials and order them according to
powers of x. Then we obtain a power series of the form

L
S a(k)x*  (a(0):=1).
k=0
Now we have to show that a(k) = p(k). Let x* be a term of the first series,
x2*: g term of the second. and. generally, x"*~ a term of the mth series. The
product of these terms is

xkiek: | x =X

with
k=k +2k,+ - + mk,.

This last expression is a partition of k. Any term gives us a partition of k;
conversely, any partition of k corresponds to a term. This relation is one to
one; so a(k) = p(k). This is not yet a complete proof. We will now fill in
the gaps. First let x € [0, 1). We introduce the functions

Cm(x) = kI;II 1 —lx" ' G = kI;I| ﬁ = "!i"r'n“’ Cn(X):

The product defining G converges for x € [0, 1) because the series 3 x* do.
For fixed x in [0,1), the series G,(x) grows monotonically. Therefore,
G,,(x) € G(x) for fixed x € 0. 1) and every m. Since G, (x) is a product of
a finite number of absolutely convergent series, G, (x) is absolutely conver-
gent and can be written as

Gn(x) = 2 Pm(k)x".

where p, (k) denotes the number of partitions of k into parts not greater
than m (p,(0):=1). For m > k, p, (k) = p(k). Since p,(k) < p(k) one
obtains lim,, _, . p,.(k) = p(k).
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Let us now decompose G, (x) into two parts:
m oc
Gu(x)= 2 pulk)x*+ F pu(k)x*
k=0 kam+1

m <
=2 plh)x*+ 3 pa(k)xt,
k=0 k=m4+1
Because x > 0,
S p(k)x*s G, (x) = G(x).
k=0
Consequently 37.op(k)x* converges; because p,,(k) < p(k),
x o0
2 Pnk)x*= 3 p(k)x"= G(x).
k=0 k=0
Consequently. the series 3 7. op,,(k)x* converges uniformly for all m and

x
G(x) = lim G, (x)= lim 3 p,(k)x*
m—o0 m-—>00 k=0

= > lim p,(k)x*
k_om—-oeo

= > p(k)x~
k=0

This proves Euler’s formula for x € [0, 1). By analytic continuation, the
proof follows for x € (—1.1).

Let g(n) be the number of partitions of n in odd summands and r(n) the
number of partitions of n into different summands. Then the generating
functions of ¢ and r can be found in a similar way.

(3.14) Theorem (Euler).
1
A=-x)(1=-x})1=-x%...

is a generating function of q and (1 + xX1 + x?)(1 + x%) ... is a generating
Sunction of r.

The first statement can be proved in a way similar to (2.4): the second is
trivial.

(3.15) Theorem (Euler). g(n) = r(n).

The proof is easy with the help of the corresponding generating func-
tions. We just have to show that they coincide. The statement follows by
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comparing coefficients. In fact,
(1= x3)(1 = x*)(1 - x4
(1= x)(1 = x?)(1 = x%)

1
(1 = x)(1 = x*)(1 — x%

A+ x) 1+ x)(1+x%) -

Without generating functions the proof of the theorem is not obvious; cf.
Hardy and Wright, The Theory of Numbers.

We have just seen a fine example of the power of this method, and we
end with another theorem of Euler which, however, we will not prove.

Let us look at []x.,(1 — x™), the reciprocal of the generating function
of p. The first terms are

(1= x)(1 = x)(1 = )1 = x*(1 = )1 = x(1 = x7) - - -
=l—x—x?+x*+xT=-x?2=xB+-...

The series does not follow an obvious law, and Euler certainly calculated a
great number of terms before he found it. A few years later he proved:

(3.16) Theorem.
Ha-xm= 3 (-pteewenn
me| k= — o0

o0
c= 20(_l)k(x(3k’-k)/2+ x(3k2+k)/2).

It was Jacobi who gave the first “natural” proof of this result, again
within the framework of the theory of elliptic functions. There is an
attractive combinatorial proof of F. Franklin (1881) to be found in Hardy
and Wright.

Obviously, what has been discussed so far in this chapter can be
characterized by the use of analytical methods and might be said to belong
to analysis rather than to number theory. Number theory, in a way, did not
exist when Euler began his work, since Fermat had not left any proofs.
Initially, Euler was quite isolated; only later did Lagrange join him as a
versatile and knowledgeable partner. It is difficult to realize today what
kind of obstacles Euler faced, obstacles which we can overcome easily
today with the help of simple algebraic concepts such as the theory of
groups. André Weil, one of the most eminent mathematicians of our time
made the following comments on Euler’'s number-theoretical work: “One
must realize that Euler had absolutely nothing to start from except Fer-
mat’'s mysterious-looking statements . . . Euler had to reconstruct every-
thing from scratch . ... However, one would not do justice to Euler’s
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versatility if one tried to pin him down too tightly. be it with regard to the
problems he treated or to the methods he used. On the contrary, it is
significant and typical for Euler that he was interested in everything and
pursued so many different and disparate questions with the enthusiasm of
the natural philosopher of his period.

To conclude this chapter, we will mention a few more results which show
the breadth of Euler’s mathematical work. Some reflect deep insights,
others are just curiosities. But everything has some connection to number
theory and we will discuss some of these results later in more detail.

There are formulas, easy to understand but not so simple to prove, such
as

J‘°°sinx dx=T
b X 2°
“sinxldx=1./T
j(;smx dx 3V3 -

1-14

1
+ =
1 33
Then there is another formula which is very difficult to prove and seems
very obscure at first sight:

(ST
o=
(VY

|_2m—l+3m—_l_4m:l+... _ 1'2'3"‘('"-I)(zm‘-l)coM
=2 "+3 "4 "4 -~ @ )" 572

(Remarques sur un beau rapport entre les series des Puissances tant directes
que reciproques, Opera (1), Vol. 15, p. 83). If one looks at it more closely,
one sees that this is the functional equation for the Zeta-function. Then. in
his correspondence and in his papers, there are various strictly arithmetical
theorems for which Euler does not have a proof and which he does not
even state precisely, among them the following. The numbers d = 1,2, 3,4,
5,6,7,8,9,10,12,13,15,16,18,21. . . ., 1320, 1365. 1848 (altogether 65) have
the following property: If ab = d and if a number can be uniquely written
in the form ax? + by? with ax, by relatively prime, then this number is of
the form p, 2p, or 2%, where p is a prime number. Specifically, any odd
number > 1 that can be written uniquely in this way is prime; Euler calls
these numbers numeri idonei because they can be used for primality tests.
He gives the following application for 4 = 57. 1000003 is a prime number
because it can be written uniquely as

19-82+3-577%
d = 1848 yields the prime number 18518809 with the unique representation
1972 + 1848 - 100°.

It is still unsolved whether Euler’s 65 numbers are the only numeri idonei.
(Only for the cases d = 1,2,3 did Euler show that they have the required
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property. In the case of d = | there is an obvious connection to Fermat’s
theorem (2.3).)

The following is a decidedly curious statement. x? + x + 41 is a prime
number for x =0,1,2, ..., 39. Of course, one can check this easily, but
how does one find such a result and what is the real reason? (The field
Q(V— 163 ) has class number 1.)

It is equally easy to check the following purely algebraic formula (with
xx in Euler’s notation, instead of x?):

(aa + bb+ cc+dd)(pp+qq+ rr+ss)=xx+yy+2z+ vv
with
x=ap+ bg+ cr+ds,
y=aq—bp*cs¥dr,
z=arF bs—cp*dg,
t=as* br¥cq—dp.
Obviously, this means that the product of two sums of four squares is the
sum of four squares. This means that one can confine oneself to primes in
the proof of Fermat's four-square theorem.

We conclude this list with the statement of the law of quadratic reciproc-
ity which Euler found but could not prove: An odd prime number s is a
square modulo an odd prime number p if and only if (—1)"/%*"'p is a
square modulo s.
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CHAPTER 4
Lagrange

Joseph Louis Lagrange lived from 1736 to 1813. Born in Turino. he had
both French and Italian ancestors. His family was well off but Lagrange’s
father lost the family fortune in risky financial transactions. This is said to
have prompted Lagrange to remark. “Had I inherited a fortune I would
probably not have fallen prey to mathematics.” (cf. E. T. Bell. Men of
Mathematics). As a youth Lagrange was more interested in classical lan-
guages than in mathematics, but his interest in mathematics was stirred by
a paper by Halley, the friend of Newton. In a short time he acquired a deep
knowledge of analysis; only 19 years old, he became Professor at the Royal
School of Artillery in Turino. Lagrange stayed there for about 10 years. His
reputation as a mathematician grew quickly, mainly by basic contributions
to analysis, specifically the calculus of variations, the theory of differential
equations, and mechanics. This combination of mathematics and mechan-
ics or, more generally, theoretical physics. is typical of the eighteenth
century. Mathematics was not viewed as an end in itself but mostly as a
tool for understanding nature. In 1766, d’Alembert was instrumental in
bringing Lagrange to succeed Euler at the Berlin Academy of Science.
Financial conditions in Berlin were very good: moreover. he could devote
himself exclusively to his mathematical work. Lagrange stayed there until
1787 when he moved to the Academie Frangaise in Paris. At that time,
soon after Euler's death, he was recognized as the most important living
mathematician. Though Lagrange had had close ties to the French royal
family he was not persecuted during the French Revolution. Altogether. the
sciences gained importance during the era of the French Revolution and
Napoleon. Lagrange's authority transcended the sphere of science. He was
a Senator of the Empire and in fact received a state burial in the Pantheon.

While he was in Paris, Lagrange was quite involved in the problems of
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teaching mathematics and other areas of science. For a time, he even seems
to have dropped his interest in mathematics. Lagrange’s number-theoretical
papers belong to the Berlin era, mainly to the years 1766-1777. Lagrange’s
main inspiration seems to have been Euler’s work which he read very
carefully. Though there is an extensive correspondence between Euler and
Lagrange, they never met.

Euler was not really successful in treating Fermat’s problems. In spite of
great efforts he gave a complete proof, after several unsuccessful attempts,
only of the two-square theorem. Euler’s contributions to the four-square
theorem or to the theory of the equations x> = y? + 2 or x> + y* = z° were
almost successful, but serious gaps remained. Euler’s real achievement was
the presentation of many examples and the use of analytical methods.

Lagrange is Fermat’s true successor in number theory. He was the first to
give proofs for a series of Fermat’s propositions and did so without leaving
the realm of arithmetic; many of these techniques were his own. Three of
Lagrange’s (not very numerous) papers in number theory are particularly
important:

“Solution d'un probléme d’arithmétique” (1768. Oeuvres de Lagrange I,
671-731). Lagrange treats the equation x2 — dy? = 1 (see (2.5)).

“Démonstration d’un théoréme d’arithmétique™ (1770, Oeuvres III, 189-
201). This paper contains the first proof of the four-square theorem (2.4).

“Recherches d’arithmétique” (1773, Oeuvres III, 695-795). Lagrange
develops the theory of binary quadratic forms and derives from the general
theory, among other things, Fermat’s theorems about the representation of
prime numbers by x? + 2y2 and x? + 32

We are particularly interested in this third paper because it is the first
work to develop systematically and coherently a complete arithmetical
theory, going much further than the individual problems which are dis-
cussed by Fermat and Euler. The importance of this step cannot be
overestimated for the further development of number theory and algebra.
About 25 years later, Gauss considerably expanded the theory of binary
quadratic forms. We will discuss this below, though we will use some of
Gauss'’s terminology in this chapter.

This might be a good occasion to mention that it is often difficult or
sometimes nearly impossible to credit a mathematical result to just one
mathematician. Often A discovers a theorem, B gives a partial proof, C
proves it completely, and D generalizes it. This gives us a certain freedom
in deciding in what context to discuss a specific theorem—and this freedom
we will often exploit.

Returning to Lagrange, we note that his papers are written in “con-
temporary” mathematical style. They are very readable, even exemplary in
their clear and well-organized presentation. We will now give a systematic
development of the foundations of the theory of binary quadratic forms,
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following Lagrange’s exposition. Let us start with a free translation of
excerpts from the introduction of the paper “Recherches d’arithmétique™:
These investigations are concerned with the numbers that can be written in
the form
Bi? + Cru + Du?

where B, C, D are integers and 1, u are also integers but variable. Thus, I will
determine those forms which represent numbers whose divisors can be
represented in the same way: later I will give a technique which permits us to
reduce these forms to their smallest number. This will lead to a table for
practical use: I will show how 10 use this table in the investigation of the
divisors of a number. I will finally give proofs for several theorems about
prime numbers of the form Br? + Cru + Du?; some of these theorems are
known but without proof and others are completely new.

Thus the author studies the quadratic forms
g(x.y)=ax?+ bxy + ¢y,

Certain quadratic forms, namely x2 + v2, x2 + 2y% x2 4 3y?, x? — dy?, were
already treated by Fermat (see Chapter 2). First, Lagrange investigates the
divisors of a number represented by ax?+ bxy + cy2. One says that a
number m can be represented by this form if the equation

m = ax? + bxy + cy?
is solvable in integers. Lagrange proves the following theorem: the proof is
taken nearly word for word from his paper.

(4.1) Theorem. Let r be a divisor of a number that can be represented by the
form ax? + bxy + cv? with x = xo. v = y, relatively prime. Then r can be
represented by a form AX*+ BXY + CY? with X = X,. Y = Y, relatively
prime, and 44AC — B? = 4ac — b2,
PROOF. Let
rs = ax? + bxy + cy’.

Let r be the greatest common divisor of s and v, i.e., s = fu, y = tX with u
and X relatively prime. This leads to

rtu = ax® + btxX + ct’X?
which means that  divides ax2. By our assumptions, x and y are relatively
prime, consequently, x and ¢ are as well. This means that ¢ divides aq, i.e.,
a = et. Dividing by 1 gives

ru= ex* + bxX + ctX?,
Since u and X are relatively prime. we can write x in the form
x=uY + wX.
Substituting this in the last equation, one obtains
ru=e(uY + wX)*+ b(uY + wX )X + ctX?

= (ew?+ bw + ct)X* + (2euw + bu)XY + eu’Y?.
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The first summand must be divisible by u. Since u and X are relatively
prime, u is a divisor of ew? + bw + ct. Setting

2
A= & ZOWT O "'2“""“, B:=2ew+b, C:meu,
one obtains, as required,

r=AX*+ BXY + CY2
X and Y are relatively prime, and it is easy to check that

4AC - B¥=4ac - b

We say that a number m is properly represented by a (binary) quadratic
form ¢ if the equation m = g(x, y) can be solved in relatively prime
integers. m is called a divisor of ¢ if m is a divisor of a number that can be
properly represented by g. The expression 4ac — b? is called the discrimi-
nant* of the form ax? + bxy + cy2. Now we can reformulate theorem (4.1):

(4.1Y Theorem. If m is a divisor of a quadratic form, m can be properly
represented by a quadratic form with the same discriminant.

In what follows we consider, instead of ax? + bxy + cy?, the more special
quadratic form
ax? + 2bxy + cyt.
In this, we follow Lagrange and, later, Gauss. (4.1) and (4.1) are valid for

this new form, too, because if b is even B also is even as B = 2ew + b.
Using matrices, one can write

ax? + 2bxy + cy? = (x, y)(z g)( ;)

One sees that the form can completely be described by a 2 X 2 matrix with
integral entries a, b, c. Depending on the context, we will identify the form
with the matrix. Frequently, we will use the abbreviations ¢(x, y) = ax? +
2bxy + cy? and
A:m det(a b) = ac — b,
b ¢
Throughout, we will assume A # 0.
Two forms

ax?+2bxy + cy®, AX*+2BXY + CY?
are equivalent (or isomorphic) if they can be transformed into each other
with an invertible integral linear substitution of variables, i.e., if

X = ax + Sy

Y = yx + 8y

with (: f)eGL(Z,Z).

*(Translator's note). This is occasionally called the determinant. but for quadratic forms
discriminant is more common.
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The forms are properly equivalent if (§ ) € SL(2.2). Here GL(2,Z) and

SL(2,Z) denote, as usual, the groups of invertible integral 2 X 2 matrices

and the group of invertible integral 2 X 2 matrices with determinant 1.
Using matrix notation, one has

This lead ()’(')-(: f)(:)

xnfy fy)=enl5 )G oS 2)G)

-eonf; )(3)

Thus, two matrices (§ 2),(3 2) define equivalent (or properly equivalent)
forms if and only if there is T € GL(2,Z) (T € SL(2,Z)) such that

A B - T!{a b
(3 ¢)=7( o)

where T is the transpose of 7. “Equivalence™ and “proper equivalence”
determine equivalence relations. Equivalent forms represent the same num-
bers and have the same discriminant because of (detT)* = 1. We call a
form g(x. v) = ax? + 2bxy + cy? positive (negative) if g(x. y) > 0 (< 0) for
all x. y €1Z. If a form is either positive or negative it is called definite;
otherwise it is indefinite.

It is easy to see that a form ¢ is positive if and only if A is positive and
a > 0; g is negative if and only if A is positive and a < 0. It is indefinite if
and only if A < 0. To prove this, write

b .,

2
2y)+or-£,

ax?+2bxy + ¢y’ = a(x +2
and test the three cases.

Below, we consider only definite and, without loss of generality, positive
forms.

Lagrange’s next result is the following; it is of fundamental importance

for the whole theory.

(4.2) Theorem. A positive form q is properly equivalent to a so-called reduced
form, i.e., a form that can be described by a matrix (§ %) with the entries
satisfying

—%<b§52'-. asc, and OSbS-‘zl if a=c.

These conditions uniquely determine the matrix. Moreover,

a<2v-§— ,

where A is the discriminant of q.



4. Lagrange kY)

ProoF. Suppose ¢ is described by the matrix (4 ). Let a be the smallest
number which can be represented by ¢q. Thus a can be written

a= AX2+2BX,Yy+ CY?

for suitable X,, Yo € Z. X, and Y, must be relatively prime. This means
that there are a, 8 € Z with

ax°+ BYog l.
Then
( Xo Y") €SL(2,2)
and

Xo Yo A B XO —B - a B’

-B a/\B C/]\Y, a B C’
with B’,C’ €Z. For arbitrary k €Z, we use the transformation (}9)
€ SL(2,2) to obtain

1 0)(a B’)l k)_( a B’+ka)
kK 1)\B’ C')\0 1 B’ + ka . ’
Let us now pick kK €Z such that —a/2 < B’ + ka < a/2. Setting b:=
B’ + ka, c :=», the matrix
a b\
(b c)

is, by construction, properly equivalent to (3 2) and satisfies the conditions
—af2< b< a/2andac< c. Then a < c since ¢ can be represented (with
x =0,y = +1) and a was assumed to be the smallest number that can be
represented.

If b is negative for the case a = ¢, we use the matrix ({ ~}) € SL(2,2):

(F ~o)(5 27 o)=(25 ~2)
Then —b5>0.

Now we have to show uniqueness. First we show that if (§ 2) is a reduced
form, then a is necessarily the smallest number represented by this form.
Hence a is determined uniquely.

Let us now prove this last statement. If (%) is reduced, the form
ax? + 2bxy + cy assumes only values > ax? > afor 0 < |x| < ] y| because
of 2bxy +cy*>0. If 0 < |yl < |x|, then ax?+ 2bxy > 0, and the form
assumes only values > cy? > a. If x = 0 or y = 0, then again ax? + 2bxy +
cy? > a. One obtains this minimum when x = *1, y = 0.

If a <c, these are the only values that give the minimum because
|x| > 1. v = 0 will not give all possible a, and x, v = 0 leads to

ax?+2bxy + p?> cp*>a  for x> y> 1,
ax?+2bxy + cy?>ax?>a  for 1< |x| <[yl
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Consequently, if ( &) is properly equivalent to (g 2) in reduced form, say

(5 2)=(5 3 2z 2)
,(aauzba,mz )

* *

we have a = ga’ + 2bay + ¢y, ie.. y =0. a = = |. The transformation is

then given by
(; g)’(tﬁi :OI)(Z lc,)(tbl :ﬁl)

a b= Ba
-(0°2%)
This leads to 8 = 0 because —a/2 < b, B < a/2. Also, B = b and conse-
quently (5 ) = (3 7).

Ifa=c0<b<a/2, the smallest a is attained when x = + 1, y = 0 and
x =0, y= *1. Hence, if (4 2) is properly equivalent to ({ 2) in its reduced
form, this equivalence can be expressed by

(3 &)=(% )G (% 4) )

(a B)_(O :l)(a b) 0 =1 (o
B c)]™\s1 N6 al=1 ) )
Then it follows that B= +af + b and B = *af3 — b. Because of 0 < b,
B < a/2, it follows that 8 =0, hence (% %) = (4 2). If a = ¢ = 2b, one has

(5 &)= 2)

and it suffices to consider the matrix (} }). One obtains 2, the minimum of
2x*4+2xv + 2% when x=x1, y=0 or x=0, y==1 or x= %1,
v = 1. It follows that B = b, C = c. The last inequality for a follows from
the previous inequalities.

or

(4.3) Corollary. There are only finitely many proper equivalence classes of
positive binary quadratic forms with a given discriminant A.

ProoF. Every proper equivalence class contains the reduced form (£ 2) with

<9./A A
a=2‘/3 , lbIS‘/:‘ .

This means that there are only finitely many possibilities for a and b, hence
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also for ¢c. We can now devise a table of positive reduced forms (Table 1)
(cf.. Lagrange. Oeuvres 111, page 757 or Gauss, Disquisitiones Arithmeticae,
art 176).

b (o)

2 (o 2)

> 63 (Ga)

¢ (3 (3

s (i)

¢ (e (o3

U ) B ()

* s (3 ()

> o) (s @3)

o ) (63

o) (o) (G (L3 7d)
26w G (G G

We have now enough theoretical results to supplement one of the
concrete statements in Chapter 2 (cf. (2.3)).

(4.4) Theorem (Fermat). A natural number a = b%. ¢ square free. is the sum
of two squares if and only if ¢ contains only prime factors of the form 4n + |
or 2.

PrOOF. If ¢ is square free and of the given form, it is, by (2.3) and its
corollary, the sum of two squares. Consequently a is the sum of two
squares. Conversely, let a be the sum of two squares, a = xJ + yZ. Without
loss of generality we can assume that x and y} are relatively prime. Let p
be a prime factor of c. Then p is a factor of x* + y%; so by (4.1) p can be
represented by a positive form with discriminant 1. Up to equivalence there
is, however, only one form with discriminant 1. This means that p can be
properly represented by x? + y? and consequently is equal to 2 or of the
form 4n + 1 because a prime number of the form 4n + 3 is not the sum of
two squares (cf. (2.13)).
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Let ¢ be a binary quadratic form, represented by the matrix M. A matrix
T € GL(2,2) is called a unit (automorph) of g if

T'MT =M,
i.e., if T maps the form q in itself. The unit T of g is called proper. if
det(T) = 1. We shall determine the proper units of a form ¢. Obviously
they form a group E(q). If the two forms ¢.q’—represented by matrices
M, N, respectively—are properly equivalent, i.e..

M=U'NU

with U € GL(2.Z). then the mapping T— UTU ~! yields an isomorphism
E(q) = E(q'). Therefore. in view of (4.2), we may assume that q is reduced.

(4.5) Theorem. The only proper units of g(x, v) = a(x> + y?) are +(}9) and
(:3%0). The only proper units of q(x.y)=a(x+2xy+ v?) are *(y )\
(.Y 3D and (2} *¢). Anv positive reduced form distinct from these two has
only the trivial proper units * (§ ).

PrOOF. This proof follows from an analysis of the proof of the uniqueness
statement in (4.2).

We have not yet discussed indefinile forms. One treats this case in a way
similar to (4.2).

(4.6) Theorem. An indefinite quadratic form is properly equivalent to a form
with matrix (§ %) whose coefficients satisfy the following conditions:

la] < |el. |6 < % .
(In general the reduced form of an indefinite form is not uniquely determined.)

The discriminant of an indefinite form is negative. This means that
A = ac — b2 < 0 for the reduced form given by the above. Hence ac < 0
and |A| > 5b%, i.e.

Al

16l <y 5

As in the positive case, one can write a table of reduced indefinite forms

(Table 2). Among other things. the table shows that any odd natural

number which is a divisor of x2 — 5y? can be represented by x? — 5y2 or

5x? — v% In fact, there are three reduced forms with the same discriminant
as x2 — 512, and the form 2x? + 2xv — 2y? represents even numbers only.

Next Lagrange investigates the problem of representing prime numbers p

by the form x?+ ay?, a € Z — {0}. He distinguishes between the cases

p=4n—landp=4n+ 1.
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(o -1)

2 (o -3) (%0 2)

= o -3) (%o 3)

¢ (o -4 (7o)

= (o -3) (To8) (1 -2) (7 2)

= (o -¢) (o8 (6-3) (70 3)

7 (o -3 (To9) (G -3) (7 s)

= (6 -9 (6 -3) (o -3) (7o 3)

= (- (FHa) (6 -3) (5o 3)

=10 (o —10) (To ) (6 -5) (73 9) (0 -3)70 )

(4.7) Theorem. Ler a be an integer # 0. A prime number p of the form
P = 4n — | is a divisor of x* — ay? if and only if p is not a divisor of x* + ay®.

PROOF. Let r- 4n — | be a divisor of x? — ay®. Then in the field F, with p
elements, x* — ay? = 0, i.e., a is a square in F,. If in addition x? + ay’ = 0
in F,, then —a and consequently —1 would be a square in F,. We already
saw (c.f. (2.13)) that this is not possible. Now let us assume that p is not a
divisor of x2 — ay®. We have to show that in this case p is a divisor of
x4 ap®. It will suffice to show that 1 + a'?~"/2= 124 a(a'P~ /% is a
multiple of p ((p — 3)/4 is an integer).

According to the so-called little theorem of Fermat, a?~'— 1=
(a'P~"/2 — 1a'?~"/2 4 1) is a multiple of p, i.c., it suffices to show that
a'?="/2 — | is not a multiple of p. Let us assume that a'?""/2— | is a
multiple of p. Then the following polynomial identity

xP™'— 1= xP~! — glp=/2
holds in F_. The last expression in this formula is a multiple of x> — a. This
would imply that x> — a decomposes into linear factors because (by Fer-
mat’s little theorem) xP~' — 1 = x?~! — a(p — 1)/2 does. This means that
a is a square in F, i.e, there is x, € Z such that p divides xt—a,ie.isa
factor of x2 — ay?, which is a contradiction.

Now we give a few typical applications which enable us to solve several
of Fermat’s problems (cf. (2.10)).



42 From Fermal (o Minkowski

(4.8) Application. (1) Let p be a prime number of the form p =8n + 3.
Then p can be represented by the form x? + 2y% (2) Let p be a pnme
number of the form p = 12n + 7. Then p can be represented by x? + 3y2.
(3) Let p be a pnme number of the form p=24n+ 7. Then p can be
represented by x? + 6)2.

PROOF (l) Assume p is a divisor of x? — 2y2. Then one can represent it by
x2=2y2or —x?+ 2y? by (4.1) and Table 2. The only odd residues modulo
8 of these forms are =1 but not 3. Consequently. p is not a divisor of

— 2r%: by theorem (4.7) p is a divisor of x2 + 217, the only reduced form
with discriminant 2. This means that p = 8n + 3 can be represented by
x4+ 2p2

(2) Assume p = 12n + 7 is a proper divisor of x? — 3y2. Then it can be
represented by x2— 3y? or — x2+ 3y%. However, these expressions have
only +1,+9, *+3 as their odd residues modulo 12, but not 7. Consequcntly.
p is not a divisor of r — 3v? which means that it is a divisor of x2 + 3y by
4.7). 2x2 + 2xr + 2; , the other reduced form of discriminant 3. represents
even numbers only. Consequently, x? + 3y? reprcscnts p=12n+1.

(3) Assume p 24n + 7 is a divisor of x2 + 6| Then it can be repre-
sented by *(x? - 612) or *(2x? - 3y?). One easnly shows that these forms
do not glve the odd residue 7 modulo 24. According to (4.7) p is a divisor of
x? 4 6)% consequently. p= 24n + 7 can be represemed by a form with
determinant 6. i.e.. by x? >+ 61? or 2x? + 31r? according to Table 7. This
latter form does not leave the residue 7 modulo 24. Consequently. p can be
represented by x? + 6.

Let us now consider prime numbers p of the form p=4n+ 1. The
following lemma is central.

4.9) Lemm p is a divisor of x*+ ay? if and only if p is a divisor of
x2 - ayt.

PROOF. p is a divisor of x?* ay? if and only if x* = ay’ = 0 in F,. This

means that ¥a is a square in F,. For p=4n+1, —1 is a square in F;
consequently, —a is a square in F, if and only if a is a square in F,.

From this point on, Lagrange confines himself to prime numbers p of the
form p = 4an + 1. One first observes that there is x, such that X"+ lisa
multiple of p because the following identity holds for the polynomial
xP V=1

(xp-l — l) - (x(p-l)/l_'_ l)(x(p—ll/z -1

==(x2¢m_'_ l)(xlan_ l).
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As we have seen above, x?~' — 1 (and consequently x?*" + 1) decomposes
into linear factors in F,. Also, x, can be chosen in such a way that x2" + 1
is not a multiple of p=4an+1 for a > 1. Let us now set y:=x",
z:=y? + 1. Then one has the remarkable identity
a(a-13) o
2!

a(a—4)a->5 a(a—5)a—-6)a-17

_al 3‘>!( ) oty AQZN=ONAZD) oy,

XM 4l =29— a2y +

-+
Since Yo= x¢ and zo= y2 + | are relatively prime, a conscquence of this
formula is that p = 8n + 1 is a divisor of the form x2 — 2y? for a = 2. By
(4.8) p is a divisor of x? + 2y, the only reduced form with discriminant 2.
According to (4.1) p can be represented by this form.

When a =3 wc have the following consequences. p is a divisor of the
number zo -3z, yo = z,(z3 — 3y3) and, since p and z, are relatively prime,
also of z3—3yj. Consequently, p=12n + 1 is a divisor of the form
x2 - 3v and, accordmg to (4.8), also of x?+ 3y Other than xt+ 3v s
only the reduced form 2x% + 2xy + 2y has discriminant 3. The latter does
not have residue |1 modulo 12. This means that p can be represented by
x2 43y

Ifa=>5 thenp =2l+1lisa dmsor of the number 25 = 523y 4 5zov8 =
zo(zo - Sz0 yo + 5yo), ie., of 2§~ 5z2 yo + 5y3 and consequently also of
4z — 20z¢ y + 20y = (223 — 5y - 5y8. Tlus means that p is a divisor of
the form x? — 5y and consequently of x2+ Sy2 by (4.8). Accordmg to
Table 1. p can be represented by x? + 5y or 2x? + 2xy + 3p2. The latter
equation does not have residue | modulo 20 which means that p is
represented by x2 + 5y%. We summarize the above:

“. lO) Appllcaﬂon. Prime numbers of the form 8n + 1 can be represented
by x2+2y? pnme numbers of the form 12n + | can be represented by
x + 3y and prime numbers of the form 20n + | can be represented by
x2 + 5y

It is not difficult to prove more theorems like this; see, for instance,
Lagrange’s paper.

The problem of representing numbers by quadratic forms inevitably
leads to the solution of quadratic congruences (cf. (5.2)). i.e., to the law of
quadratic reciprocity (cf. (5.1)). We will discuss this in the following
chapter.

Next we look at Lagrange’s solution of Fermat's equation

xt—dy?=1.

Here Lagrange makes essential use of the theory of continued fractions
which he substantially extended for this purpose. These solutions essentially
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coincide with the units of the quadratic diagonal form

(o —Od)‘

G2 26 2= %)

then by simple calculations.

for if

xt—dvl=1, xu-dyc=0 u-d?=—d.
For x = 1, y =0 one obtains u = 0, ¢ = * 1. For x, 1 + 0 one obtains
. 2,2
w= @t g8 g
X x2

This latter relation yields
dv? - o= —x?, oY xl-dy)=mxl  lmx? o= x

and consequently

u= tdy.
Therefore, the units are
+(1 0 +f1 O x dy
—\0 1) “\0 -1/ vy x/
and the units of determinant | are

0 1) (2

“\0 1/ y x)

In particular. the set of solutions of Fermat's equation can be interpreted as
a group in a natural way.

Lagrange uses the so-called continued fraction algorithm for the solution
of Fermat’s equation. After many individual results and more or less
accidentally discovered connections, Euler and, even more so, Lagrange
developed the theory of continued fractions in a systematic way. Euler is
even more a member of the “naive” period of discovery, calculation and
heuristic methods. But modern mathematics with its rigorous proofs, sys-
tematic procedures, and clear descriptions and delineations of the problems
begins with Lagrange. A decisive change took place in the development of
number theory between Euler and Lagrange.

We will now describe the theory of continued fractions. As references we
mention Niven and Zuckermann, An Introduction to the Theory of Numbers,
Hardy and Wright, and Hasse.

Let [#] denote the largest integer < @ for @ €R. [ ] is called the Gauss
bracket (or the “greatest integer function.”) For § & Z we define

a:-a(,+z,'T with ap:=[8], 6,>1.
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We continue in this way:

0,:=al+bl— with a,:=[8,]. 8,>1, if 6,&Z
2

0, :=a,+0' with a,:=[6,]. 6,,,>1, if 6,&Z

n+1

This definition leads to

0=a°+l

1

0n+l

+a,+

The sequence ay,a,,a,, . ..
fraction.

is called the expansion of @ into a continued

(4.11) Remark, The expansion into a continued fraction terminates if and
only if 4 is a rational number.

Proor. If the expansion breaks off, then 8, = a, is an integer. Then

§=a,+
o7 a, +

1
a,,_,+-a—
n

which is obviously rational. Conversely, if § = u/v is rational we use the
Euclidean algorithm to write

u=aqgye+r,
v=a, +r,,

0<r <o,
0<r,<r,
0<"3<'2:

This procedure breaks off after finitely many steps with r,_, = a,r,. The

equations are equivalent to

f=a +r—'=a +L
0 ¢ 0 ol’

r
n 9,

1

02=az+2‘az+l.
r 6,
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Eventually one obtains 8, = r,_,/r, € Z, and the expansion into a contin-
ued fraction ends.

It is interesting to find the continuous fraction expansions of a few
numbers:

m 3 715 1 293
e 21 2 1 | 4 116 1
V212 2 2 ...

B: 11 2 1 2 1

5. 24 4 4 ...

6: 22 4 2 4 2

(for e. see A. Hurwitz, Uber die Kettenbruchentwicklung der Zahl e.

Gesammelte Abhandlungen 11: Euler showed that generally Jn2+ 1 =n,
2n.... )

Quadratic irrationalities have periodic expansions. a phenomenon which
will be investigated later.

Let us now derive a number of formulas that will be needed later. For
ag.a,..... a,€R a,.....a, > | we define

1
a +

(@g.ay.....a, =ay+

1
a,,_|+-‘;- .
n

For a, > | one has a, = a, — | + 1/1 and consequently
{ag,ay,...,a,)={ag,a;,...,a,—1,1).

The expansion of a rational number as a continued fraction is unique
except for this identity.

(4.12) Remark. Let (ay,...,a,>=<by,..., b, with a,,b, EL,
a,...,b....>1anda,.b,>1. Then m=n and g, = b, for all i.
PRroor. The proof follows by induction from
- — 1 . 1
{ag,...,a,>=ay+ @ e by + B b
if we can only show that {a,,...,a,>>1 whenever a,,....q, > I,
a,, > 1. But this is obvious from
1
a, +

aj,...,a,)=a;+
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Let ay.a,,4a,, . . . be a sequence with a,,a,, ... > 0. Let
7, ={ay.a,,ay,...,a,).
7, can be computed with the help of the formulas

Po = Qo> Pr=apa +1,..., Pn™=8nPnyt P2

(4.13)
Go=1 q=ay,.... 4 =089, % q,_2-
Then
Po _ 9 1
— = =17, —=aqy+ — =1,
7o 1 0 : o )

and more generally:

(4.14) Remark. p,/q, = 7,, specifically,
0= onpn—l + pn—Z
onqn-—i + gn-2

ProoF. This is proved by induction. The cases n = 0,1 have already been
discussed. Suppose that

1
7,-<ao,a,....,a,,>-<ao,a,,...,a,,_|+a—
n

- Pa-1
Gy’
where p,_,.q,_, are the p,q belonging to ay, . .., a,_5,a,_, + 1/a,. Then

Prln—l - (an-l + l/an)Pn-2+Pn—3 - Pn— + (l/an)Pn-Z
q:v-l (an-|+ I/an)qn—2+qn—3 qn—l+(l/an)qn—2

The second statement follows from the first and 8 = (a,, ..., a,_,,0,).
7, is called the nth convergent to the sequence a,.a,,a,, ... .

(4.15) Theorem. Let a,€Z: a,,a,.... EN. Then the sequence
{Tn)n=1.2.... converges to 8, where 8 is an irrational number. The a; are
uniquely defined by the expansion of 0 as a continued fraction. Conversely, let
0 be an arbitrary irrational number. Then 0 = limr, if 1, =a,,....a,) is
obtained by expanding 8 as a continued fraction.

ProoF. Obviously, {p,}.{g;} are strictly monotonically increasing se-
quences of natural numbers. Convergence follows from
T, =T, = -y 4.16
n n-1\ ( ) GnGn—1 ( )

because this formula shows that the differences form an alternating se-



48 From Fermat to Minkowski

quence converging to 0. Relation (4.16) is equivalent to

PGP =(—1)""", (4.16y

and this formula follows trivially by induction.

With these considerations we have nearly completed the proof of the
second statement. Let ag.a,, ... be the expansion of @ in a continued
fraction. Let 74,7, . .. be the convergents. If we apply (4.16) to

0=(ay,ay.....a,_,,6,)
we obtain
1
qn-l(onqﬂ-l + 9»-2)

Since 6, > 0, ¢;— + ¢c, it follows that lim,7, = 8. It remains to show the
uniqueness of the expansion in a continued fraction. This is done analo-
gously to the rational case (4.12).

o—fn—l"("l)"_'

A continued fraction of the form
(ao,...'a"_|.b|.....bk,b|....,bk,...>
is called periodic. Occasionally we use the abbreviation
<a°....,a,_|,z|.....bk>.
agy, . ... a,_, is called the “preperiod,” b,, . . ., b, the “period.”

(4.17) Theorem. 8 can be expanded into a periodic continued fraction if and
only if it is of the form a + BVd with a, B € Q and d € N not a square.
PROOF. Let us assume we have a periodic continued fraction. First we
consider the purely periodic case
0=(ay,a,,...,a,,a9,ay,....a,,...).
Then
0 =(ay,a,,...,a,,0),
hence
Pk
0,1+ qu-,
This is a quadratic equation for 8. If there is a preperiod, say
O={ay,...,ay,0,,....0,,...0
then we set
r:=(b,,....b,) 0:=(ay,...,a,,) 0-:;—:;%.
So there is a rational relation between # and 7, ie, 8 is of the form

a+ Bvd.
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Conversely. a quadratic irrationality # can be written as

3 _ 2
0:a+lgnac+ be or a—.‘l‘.‘ib_c (a’b’ceZ)
c c2 _c2
+vd
= mokor (mo,ko.d € Z),
where kg is a factor of m} — d. We recursively define
m, +d .
e el S
d-ml'z+l ( . )
myimaki—m, o k= ———
i

We will now show that a;,,m,, k; € Z and that the g, give the expansion of
0 =6, as a continued fraction. Clearly, a;,,m;, k, are sequences of real
numbers. m,, k, €Z for i = 0, and k, is a factor of d — m?. Let us assume
that this holds for i. Then for i + 1 we obtain

d — a?k? + 2a,k;m, — m}?
k.

U

m €L k=

d—m?
km, +2a,m,— a’k, € 1

i

From k, = (d — m%, ))/k,.,, it follows that k, + 1 is a divisor of d — m?, ,.
We obtain directly from the definitions
—a,k,+m,+\/2 vd -m,,,
k; k;
- d- mlz+l - ki = 1
kl‘/a-"'kl'"u-l miyy +Nd Bisr
Hence 0 = {ay,a,,a,, . . . ).

To this point we have been considering a slightly different way of
expanding a number as a continued fraction. We will now start with the
proof proper. Let ¢ = a — BYd be the conjugate of ¢ = a + BYd; then
E+n)y =& +7, &) =&, (§/n) =§/n". We obtain

0pPn—1 + Pn-2
01 - 01 - l: n n
0 onqn-l + qn-2

0, —a =

and solve this equation for 0, :
0 = — qn-2 ( 06_Pn-2/‘1n-2 )'
" qn-1 o(;_Pn—l/qn-l

The number in the parenthesis converges to 1= (8, — 8)/(8y— 8) for
n—> 0. Hence 8, < 0 for n > N,. Because 8, > 0 we also have §, — 4, > 0.
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By the definition of 4,

2Vd
k,

9,-0; == 50,

and specifically
0<k,.
From (4.18) it follows that
0< kyky, =d—m2, =d,
my g <mi+kk, Sd |m,, | <Vd.

Consequently, for n > Ny, the numbers k,,m, will assume only finitely
many values. Thus there are indices n < j with k, = k,. m, = m,. conse-
quently 6, = §,, and hence

O=Cag,... .8, |, @ Gy 1s @)

(4.19) Theorem. The continued fraction of a quadratic irrationality 8 is purely
periodic if and only if 1 < 9, —1< 8’'<0.

ProoF. We start out by assuming that 1 < 8 and —1 < §’ < 0. Then

[ 1
0,- +1 oil+ 1

We know that a; > 1 for every i, and also for i = 0, since § > 1. For§; <0
one obtains 1/6/,, < —1 and —1<8/,,<0. Since —1<8°<0, it fol-
lows by induction that —1 < 8’ <0 for all i > 0. Hence

0,=a + _ol:_a"

1 |
0< m a; <1, a; [ 0‘.,*‘ ].
As 0 is a quadratic irrationality, its continued fraction is periodic. This
means that there are indices n < j with 8, = §,. a, = a,. Then it follows that
-1/0,=~-1/6/. [-1/6,)=[-1/6/] and a,_, = g;..,. Induction shows
that the fraction is purely periodic.
Conversely. let us assume that we have a purely periodic expansion of 8
into a continued fraction, say

0= ag.a,,....a,_;> (a,€EZ,a >0).
Then, because § > a, > | and

g OPr-1 ¥ Pu2
anqn—l + qn-2

we have

a1+ Pa-2
0901+ Gu-2
This means that 4 satisfies the quadratic equation

f(x)' "‘2%-1 + X(Gn-2= Pa-1) —pn—l-o'

0=(ag.a,,...,a,_,,0)=
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0 and 0’ are the solutions of this equation. Since § > 1 it suffices to show
that the equation has a root between — 1 and 0. To show this, it suffices to
show that f(—1) and f(0) have opposite signs. By the definition of p,,
f(0) = —p,_, <0. Moreover, for n > 1, we have
f(- l) =Gt = Gn-2F Pt — Pn-2

- (‘ln-z + pn-Z)(an—l - l) +G,_3% Pz

Z g3+ pa-3>0.
Finally, for n = 1 we have f(—1) = a, > 0.

Let us now expand V4 as a continued fraction where d is a positive
integer that is not a square. We consider the irrational number §:=
vd +[Vd). Then @ >1,0’'= —Jd +[Vd] and —1 < 6’ < 0. By Theorem
(4.19), 0 has a purely periodic expansion as a continued fraction, say

0= ay, a,_>=(ay,a,....4,_;.d9

Let n be its minimal period. 8,:= (a;,q,, . ... ) is purely periodic for all i
and =@y =0, =0, = --- .68, ....0,_, are all different, otherwise n
would not be the minimal length of the period. Then 8, = 4, if and only if
i = nj for a certain j. By (4.18) on page 49 we start out with 8, = (my + Vd ).

ko= 1. my=[Vd]. Then

knj ”j o= kO

=[Vd]+Vd

and consequently
My = kn/[‘/‘-i] = (ky = 1)Vd .

This means that k,; =1 because the left-hand side is rational and vd
irrational. We claim k; = 1 only for i = nj. In fact, 6, = m; +Vd follows
from k; = 1. However, 6, has a purely periodic expansion as a continued
fractlon and one has, by Theorem (4.19). =1 < m, —Jd <0, Vd — 1 < m,
<Vd, and consequently m, = [Vd}, i.e.. , = 6. and i is a multiple of n. ln
fact, k;,+ —1 for every i, for k;= —1 implies §, = —m, —Jd and
-m, —v/_ d >1 and ~1< —m; +J_ d <0 according to Theorem (4.19).
This leads to the contradiction \/_ d <m; < —Vd - 1.Since ay = [Vd + [Vd])
= 2{Vd ], one has

= ~[)+ (i +[@)
- (@] + (@) )
-([ﬁ],a,,az,..., ,,_,,ao>

with gy = 2[Vd].



52 From Fermat 10 Minkowski

Applying the formulas (4.18) to Vd + [Vd ], ko= 1, mg = [Vd] leads to
ag=2(Vd), m, = [Vd), k, = d — [Vd . If one applies these formulas to V4
with kg, = 1, my = 0, one obtains ag = [Vd ]}, m, = [Vd}, k, = d — [Vd ]*. This
means that a, assumes different values but m, and k, remain constant.
Since 6, = (m, +\d)/k,. these formulas yield the same values for a;, m,.
and k, (i +0). We see that the expansions as continued fractions for
vd +[Vd]and Vd differ only in a, and m,.

We are now in a position to solve the equation

x*—dy*= *1,  dnotasquare.
Let us first state:

(4.20) Theorem. Using the definitions above, we have pl_, - q}_\d=
(= 1)%,.
PROOF. Let us begin with the identity

'] -‘[J- 0,Pn—1 ¥ Pn-2 - ((m" +ﬁ)/kn)Pn—l + Pa-2

onqn—l + Gn-2 ((m,, +\/2)/kn)qn—l + Gn-2
o PPz +ﬁp,.-| + kp, -2
LT +ﬁqn-| + k"q"'z

If one multiplies this equation by its denominator and separates the
rational from the irrational part, it follows that

dqn—l = MyPp_ + knpn-2'
Pn-1™ Myqn_, + k,,q._z-

Multiplying the first equation by g,_, and the second by p,_, and subtract-
ing the second from the first equation yields

dq:-l _P:—l = K(Pn-29n—1 = Gn-2Pn-1)
By (4.]6)’, Pn-29n-1 " Gn-2Pn-1 ™ (- l)"-|.

Let n be the length of the period of the expansion of Vd as a continued
fraction. Then k, = 1, and the following corollary holds for every j € N.

(4.21) Corollary. p2,_, — dg2_, = (—1)".

(4.22) Corollary. The equation x* — dy? =1 has infinitely many solutions.
Forneven.x=p, _,,v=gq,_,. and for n odd, x = pyy_y, ¥ = Q21 Ifn
is odd the equation x* — dy* = — has infinitely many solutions of the form
X =Py . V=q,_ foroddj.

The next theorem shows that every solution of x2— dy?= %1 is ob-
tained from the expansion of Vd as a continued fraction.
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First we make the following simple observation. Save for the trivial
solutions x = + 1, y = 0 of x2 — dy? = 1 (and, analogously, the correspond-
ing trivial solutions of x? — dy? = n), every solution of x* — dy® = n yields
three additional solutions, by combining all the possible signs of * x and
* y. Hence, it suffices to consider positive solutions x >0, y > 0.

(4.23) Theorem. Let d be a natural number which is not a square and p,/q,
the convergents in the expansion of Vd as a continued fraction. If |N| <Vd

and s,t is a solution of x* — dy* = N in natural numbers such that g.c.d.(s.1)
= |, then there is an index n such that s =p,, t = gq,.

PrROOF. Let E and M be natural numbers with gcd(E,M)=1 and
EY— pM? = g, where Yo is irrational and 0 < o <\p, 0,p €R. Then

— — - o

p=-—,
M M(E + Mip)
and consequently

o _ 1
M(E+ M) MY((E/Mbp)+1) '

E _
0< 4 p <

From 0 < E/M —\p it follows that E/M\p > 1. Consequently
E _ 1
M ‘/E| “amM

According to lemma (4.24) which we will prove presently, E/M is a
convergent to the continued fraction expansion of Vp .

(4.24) Lemma. Let 8 be an arbitrary irrational number. Assume the rational
number a/b satisfies

—al L j
le b|<2b2 with b > 1.
Then a/b is a convergent in the expansion of 8 as a continued fraction.

We now complete the proof of (4.23). When N >0 weseto= N, p=d,
E = s, M = ¢, and the theorem is obviously true. If N < 0 then 12 — (1/d)s?
= —-N/d. Weseto= —N/d. p=1/d, E=1t, M =s. One can easily see

that /s is a convergent in the expansion of 1//d. By the lemma below,
s/t is a convergent in the expansion of Vd .

(4.25) Lemma. The nth convergent to 1/x is the reciprocal of the (n — 1)th
convergent to x for x ER, x > 1.
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We can summarize our results as follows:

(4.26) Theorem. All positive solutions of x* — dy* = +1 are given by the
convergents of the expansion of Vd as a continued fracnon Let n be the length
of the period of the expansion of Vd and even Then x? — dy* = — 1 does not
have a solution; all po:mve solutions of x* — dy* = | are given bv X = p,,j 1
Y= Gnj-1 for j=1,2, ... . For n odd, all positive solutions of x* — dy* = — 1
are given by x = p,, _ 1 and Y =G for j=13,5... . These are all the
positive solutions of x* = dy? — | for j = 2,4,6, .

The sequence of the pairs (pgy.qo)(py-qy) - .. contains all positive
solutions of x? — dy? = |. Since a, = [Vd] > 0, the sequence p,, py. Py, - . -
is strictly monotonically increasing. Let x,, y, be the first solution. For all
other solutions, x > x, and y > y,. After finding the smallest positive
solution with the help of the continued fraction, one can find ali other
positive solutions by a simple method:

(4.27) Theorem. Let x,, y, be the minimal solution of x* — dy* = 1 in natural
numbers (d > 0, not a square). All further solutions in natural numbers are
given by x,, y,, n = 1,23, ... with x,, y, defined by

X, + yVd = (x +y.\/7)n.

(One computes x, and y, by expanding the right-hand side into a rational
and irrational part.)

PROOF. Obviously, x, — y,Vd = (x, — y,Jd)". Hence
x2 = yid = (x, = yyd )(x, + yu¥d)
= (x, —y,ﬁ)n(n +y.w/¢?)”
= (x1=yid)'
=],

Every positive solution is obtained in this way. In fact, assume that there is
a positive solution (s,¢) which does not correspond to any of the (x,, v,).
Since x, + y,vd > 1 and s + tyd > | there is an m such that

(%) +y|ﬁ)m< s+ 0 <(x, +y,»/3)"'”.

(x,+ p\Wd)" = s+ tyd is impossible because this leads to x,, +y,,,»/¢7
=s+tVd. ie. s=x,. 1 = y,,. Clearly (x, —y,JZ)"' =(x, +y,»/¢7)"".
Multiplying the above inequality by (x, —y,\/g )™. one obtains

1 <(s+ 0/d)(x, —y,ﬁ)m< x, + y\d .
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We define the integers a,b by
(a+bVd)=(s+ t/d)(x, —y,v/z)m
and obtain
a? = b = (st — d)(x} - yld) = 1
This means that a,b is the solution of x> —dy*=1 with |1 < a+ byd

< X, + y,Vd. On the other hand, 0< (a + by¥d) ' < 1, ie. 0< a— b/d
<1.So

a=4i(a+bld)+}(a—-bld)>}+0>0,
bVd =4(a+bVd)-}(a-bld)>}-1=0;

This means that a,b is a positive solution. Hence a > x,;, b > y, which
contradicts a + by¥d < x, +y,\/c7.

We will now prove (4.24) and (4.25).
(4.25) is easy. Obviously, we have x = (ay,a;,...> and 1/x = (0, a,,
a,,...) Letp,/q, and p,/q, be the convergents to x and 1/x. Then

Po=0. pi=1  py=a, p=a,_p\+p,2s
o=V q=a., ¢ 1=8,_ 19 2%Gy_3.
go=1 qi=ay, qy=a+1l, g =a, 9,.,%q,_,,
Po=ay, pi=aa,+1, p,_y=a, \p,_2tp,_;.
The statement follows by induction.

Now we consider (4.24). Let g.c.d.(a,b) = | which we can assume with-
out loss of generality. Let p,/ g, be the convergents to 8. Suppose a/ b is not
one of them. Then the inequality ¢,, < b < g,,,, defines a number m. We
claim that |6b — a| < |6q,, — p,,| is impossible. Suppose not. We consider
the linear system of equations

GmX + i1y = b,

PmX ¥ Py y = a. A
We know (see (4.16)') that the determinant of this system is g,,p, ., —
gm+1P» = = 1. Then an integral solution x, y exists with x # 0 and y # 0.
For if x=0, then b=yq,,, and hence v >0 and b > g,,,,. which
contradicts b< g,,,,. If y =0 thena = xp,,. b = xq,,. and

|06 — a| = 6xq,, = xp,,| = |x|10g,, — p.| =10, = pp]:
a contradiction because of |x| > 1.
x and y have different signs. If y <0 then x > 0 follows immediately

from xq,, = b - yq,.,. If y >0 then b < vgq,,,, follows immediately be-
cause b < g, ,,- In other words, xgq,, is negative, and hence x < 0. Formu-
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las (4.16) and (4.16)' show that g, — p,, and q,,,, = p,.., have different
signs; consequently, x(q,, — p,,) and ¥(¢,+; = Pm+,) have the same sign.
From the equations which define x and y we have

0b—a=x(0g, = pm) * Y(OGmsr = Pms1)-

Since the two expressions on the right-hand side have the same sign, we
have

10b — a| = |x(89,y = Pm) + Y (0gm 1 = Pms)
= |x(0gm — Pm)l + 17 (0Gm s = Pms)l
> |x(0gm = pm)|
= |x|10g,, — pml
=109, = pmh
a contradiction. This leads to

109, — Pl S10b — a| < 5

2b’
_ Pm 1
Gm <qu,,
Since a/b * p,,/ q., We have
A < |Pm—agl | Pn_a
bq., bq. 9m b
<|p_ Pm - a
-'o P+ o a|
1 1
<%bg, "2

and hence 4 < g, a contradiction.

This concludes our discussion of continued fractions and our chapter on
Lagrange. Let us end with a quote from Dirichlet:

This gap [the fact that x2 — dy? = n? has solutions in addition to x = n, = 0]
was only filled by Lagrange. This. 1 believe, is one of the most important
achievements of this great mathematician in the area of number theory
because the tools he introduced for this purpose can be very well generalized
and applied to analogous higher problems.
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CHAPTER 5
Legendre

One of the most celebrated theorems in number theory is the law of
quadratic reciprocity. We formulated it at the end of Chapter 3. The history
of the discovery of this theorem is complicated and not quite clear, but we
will shortly show that one is led to the theorem by the problem of deciding
whether a given prime number divides a number of the form x? + ay?. This
was how Euler and later (around 1785), independently, Legendre discov-
ered the theorem. Unlike Euler, Lagrange tried to prove the theorem, but
his proof had serious gaps. We will discuss it below. Finally, it was
rediscovered by Gauss, probably after numerical calculations and not in
connection with the theory of binary forms. Gauss gave the first complete
proof.

Let p be an odd prime number and a an integer with (p,a) = 1. Legendre
defined the following symbol:

( a ) - [ 1, if the congruence x? = a mod p is solvable,
14 -1, otherwise.

Today, (%) is called the Legendre Symbol. In the first case, a is called a
quadratic residue modulo p, in the second, a quadratic nonresidue mod-
ulo p.

(5.1) Theorem. Let p,q be prime numbers + 2. Then:

(£)(3) o
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(-l)_{ 1, if p=1 mod4

I4 l. if p=3 mod4
2
- (_ l)(p— I|/2.
(;)_{ l, if p=17 mod8
14 -1 if p=35 mod8
3)

- ( - l)l/uP:- ".

Formula (1) is called the law of quadratic reciprocity.

(2) has already been proved [see (2.13)). It is called the first supplement to
the law of quadratic reciprocity.

(3) is called the second supplementary theorem. (1) establishes a connec-
tion between ( ;,'-’) and (3). Offhand, it is not immediately clear that these
two expressions are in any way related.

We will come to the proof of the theorem later, but first we will discuss
what it means.

If p is an odd prime number, the multiplicative group F, of the field F,
with p elements is cyclic of order p — 1. The kernel of the homomorphisms
Fs 3 x> x? €F* has order 2. Therefore, (F;)’. the image of this homo-
morphism, has order (p — 1)/2. This means that F3 contains the same
number of squares as nonsquares: [F;:(F;)2]-2. et a.b EF; be two
nonsquares. Then the product (@) 4) is a square. This leads to

(5)=(5)5)

( a ) - ( atkp )
14 14
For a “denominator” b that can be written b = p, . .. p,. one defines

a\e[4a)...(4a
( b ) ( P ) ( Pr )‘
For odd a and b with (a,b) = 1 the following formula is a consequence of
(5.1).

In addition, trivially,

(%)(%) - (= 1)/Ana=Inb= )
Now we can easily compute the Legendre symbol. An example:
() = ()= V0= () = (35)(h)
= () 1= ()= DO . () 1= (F) = 1.
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The following theorem establishes the connection between the representa-
tion of numbers by binary quadratic forms and quadratic reciprocity.

(5.2) Theorem. Let m be a natural number properly represented by the form
ax? + 2bxy + cy2. Then b® — ac is a quadratic residue modulo m.

PROOF. Let x,. vy be two relatively prime integers such that m = ax? +
2bxg vo + cra. Let k.l be two integers with kxy + lo = 1. Then

(axg + 2bxg vy + c:y&)(al2 — 2bkl + ck?)

= (k(xob + yoc) — I(xoa + vob))* = (b7 = ac)(kxo + Ivg)’
or
m(al? — 2bkl + ck?) = (k(xob + voc) — I(x0a + yob))* — (b* — ac).

Our statement follows.

Now we will show that the problem of representing a prime number by
the form x2+ ay? leads to the law of quadratic reciprocity, i.e., the
connection between (£) and (%). If one can represent a prime number p of
the form 4n + 3 by x2 + ay?, then p. by (4.7), is not a divisor of x? — ay’.
This means that p cannot be represented by a form with discriminant —a.
Hence (4) = —|. Conversely, if the condition (%)= —1 is satisfied for a
prime number p, then, by (5.2), p cannot be represented by a form of
discriminant —a. Then, by (4.7), p is a divisor of xt+ ay’. Let us now
consider all reduced forms of discriminant a and look at congruences to
determine whether or not p can be represented by x?+ ay’. We have
already seen that this technique is often successful. The condition (4) =
— 1 is crucial for representing the prime number p = 4n + 3 by the form
xt+ a)'z.

To illustrate this situation, we investigate the representability by the form
x? + ay? of prime numbers p = 4n + 3 of the special form p = ka + b. The
number b is to be chosen in such a way that (525)= — 1. Offhand, it
appears to be difficult to check this condition. More specifically, it is not at
all clear that (%) depends only on the residue of b. One could think that
prime numbers of the form ka + b might yield the symbol +1 or —1 and
that sometimes we have a representation and sometimes not. Also, it would
be very difficult to compute (%) for large p = ka + b. For the sake of
simplicity, we assume that a is a prime number. Then it is easy to compute
the “reciprocal” (5) = (%) which depends only on b. In other words. one
studies whether it is helpful to know (4) and this leads to the law of
quadratic reciprocity which then. in fact. solves the problem as follows.
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By the law of quadratic reciprocity one has

(2) = () (R ety

- ( b )(_ |)(I/2)(a-|)llf2)(p-l)= ( b )( _ |)l|/2)(u—l)'
a a

Thus the condition (%)= — 1 is satisfied if and only if (5} —1)!'"- P
= -1

Now we give a few examples.

a=3.b=1. Then (F#X-13"""?= —1. We know that p =1 mod3.
and consequently p is congruent 7 modulo IZ This means that every prime
number p = 7 modulo 12 is a divisor of x? + 3% since the other reduced
form with discriminant 3, 2x? + 2xy + 2y never has residue 7 modulo 12,
every pnme number of the form p =7 modulo 12 can be represented by
x2 4352

Leta=S5. Then (41X —1)“""/2=(4)= —1 if and only if b= 2 or 3. In
these cases, p is congruent 3 or 7 modulo 20 Every prime number of the
form p =3, 7 modulo 20 is a divisor of x4+ Sv and lhus can be repre-
sented by x? + 5| or 2x2 + 2xy + 3% But x? + 52 = x2 + y2 modulo 4:
consequently x? + 5v represents at most the odd numbers congruent to |
modulo 4. Consequently. prime numbers of the form p = 3.7 modulo 20
are represented by 2x? + 2xy + 32

Leta =7 Then ()X —1)“" l'/’=(€)=- ~lifandonlyifb=1.20rd.p
is congruent to 11. 15,23 modulo 28. By analogous reasoning, one sees that
p can be represented by x? + 7y2.

Like his slightly older contemporary Lagrange, Adrien Marie Legendre
was the offspring of a wealthy family. He received a solid education at the
Collége Mazarin in Paris and concluded his studies in mathematics and
physics in 1770 when he was 18 years old. Abbé Frangois-Joseph Marie.
who had also furthered Lagrange’s carrier. introduced Legendre to mathe-
matics. Legendre was financially independent and was able to devote
several years to pure research. Between 1775 and 1780, he was a teacher at
the Ecole Militaire in Paris. After 1783 he was connected with the Acade-
mie. first as successor of Laplace as “‘adjoint mécanicien™ and then. from
1785 on, as *associé.”

In 1782. Legendre won the prize of the Berlin Academie with a paper on
ballistics. This is how he came to Lagrange’s attention. who was still at
Berlin. Later there were publications in number theory. celestial mechanics,
and the theory of elliptic functions. During the French revolution, Le-
gendre lost his fortune and was forced to give up his position at the
Academie. The Commission for Public Affairs gave him the task of writing.
together with Lagrange. a book on analysis and geometry. Legendre had
several other public positions but he fell out of favor in 1824 and lost his
annual pension of 3000 francs after he disagreed with certain official
personnel policies. At his death in 1833, Legendre had a position at the
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Bureau des Longitudes as successor of Lagrange. His priority quarrels with
Gauss about the method of least squares and the law of quadratic reciproc-
ity are dark chapters in Legendre’s life. Quite upset and embittered, he
complained to Jacobi that Gauss called both these discoveries his own. On
the other hand. towards the end of his life, Legendre had the satisfaction of
seeing that his favorite subject, the theory of elliptic functions, developed
by two brilliant young mathematicians, Abel and Jacobi.

To this point, we have discussed the problem of the representation of
natural numbers by binary quadratic forms. More generally, one can
consider the analogous problem for forms in n variables for arbitrary n € N.
We start out with a symmetric n X n matrix A with integral entries a; = a,,
an n-tuple x = (x,, . ... x,) of unknowns, and the quadratic form

g(x) = xAx' = 2 a,x,x,
ijwl

n
=Y a;x}+ ZZa XX .
i=1
The general representation problem consists of finding necessary and suffi-
cient conditions for the integral solutions and possibly also the number of
solutions of the equation

g(x)=1

for a given ¢ € Z. This very natural problem is extraordinarily difficult, and
a complete solution is still far away.

Of course, a necessary condition for a solution of q(x)=1 is the
solvability modulo an arbitrary prime power. (For reasons which we will
not explain, one calls this “local” solvability of g(x) = ¢, whereas a solution
of g(x) = ¢ is called “global.””) One can easily see that the only important
cases are powers of 2 and powers of those primes which are not relatively
prime to the coefficients of the form. The example 5x2 + 11y2 = 1 shows
that, in general. this condition is not sufficient for global solvability.
However, Legendre discovered an important case in which the “local-global
principle” holds. He proved:

(5.3) Theorem. Let a.b.c be integers other than O, such that abc is square
free. Then the equation
ax?+ byt + cz2=0

has a nontrivial solution in integers if and only if a,b,c do not all have the
same sign and — bc, —ac, — ab are quadratic residue modulo a. b. and c.
respectively. In other words, if the following congruences can be solved:

= - bc moda,
y=-ac mod b,

22=—ab mode.
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To see that this contains a “local-global principle™ one first shows that
the conditions on the signs of a,b,c can be replaced by the condition that
the congruence

ax?+ by’ + ¢z’ = mod 8

is solvable in integers not all of which are even. To do this one has to
distinguish several cases in a lengthy but simple proof. We will not go
through this but show that the conditions thus modified for the solvability
of ax? + by? + cz? = 0 are equivalent to the solvability of ax? + br? + cz?
=0 for every prime power N with g.c.d.(x, y.z.N) = |. Obviously, the
condition that the equation can be solved modulo every prime power is
necessary for global solvability.

Conversely, assume that the equation ax? + by’ + cz2 =0 modulo N is
solvable for every prime power N with g.c.d.(x. y.z, N) = 1. Specifically. let
N = p? with p| ¢ and x,. ¥.2 a solution of the corresponding congrue