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Preface

This volume covers approximately the amount of point-set topology that a
student who does notintend to specialize in the field should nevertheless know.
This is not a whole lot, and in condensed form would occupy perhaps only a
small booklet. Our aim, however, was not economy of words, but a lively
presentation of the ideas involved, an appeal to intuition in both theimmediate
and the higher meanings.

I wish to thank all those who have helped me with useful remarks about
the German edition or the original manuscript, in particular, J. Bingener,
Guy Hirsch and B. Sagraloff. I thank Theodor Brocker for donating his
“Last Chapter on Set-Theory” to my book; and finally my thanks are due to
Silvio Levy, the translator. Usually, a foreign author is not very competent to
judge the merits of a translation of his work, but he may at least be allowed
to say: I like it.

Regensburg, May 1983 KLAUS JANICH
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Introduction

§1. What Is Point-Set Topology About?

It is sometimes said that a characteristic of modern science is its high—and
ever increasing—level of specialization; every one of us has heard the phrase
“only a handful of specialists . . .”. Now a general statement about so complex
a phenomenon as “modern science” always has the chance of containing a
certain amount of truth, but in the case of the above cliché about specializa-
tion the amount is fairly small. One might rather point to the great and ever
increasing interweaving of formerly separated disciplines as a mark of modern
science. What must be known today by, say, both a number theorist and a
differential geometer, is much more, even relatively speaking, than it was
fifty or a hundred years ago. This interweaving is a result of the fact that
scientific development again and again brings to light hidden analogies
whose further application represents such a great intellectual advance that
the theory based on them very soon permeates all fields involved, connecting
them together. Point-set topology is just such an analogy-based theory,
comprising all that can be said in general about concepts related, though
sometimes very loosely, to “closeness”, “vicinity” and “convergence”.
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Theorems of one theory can be instruments in another. When, for instaqce,
a differential geometer makes use of the fact that for each point and dlrecuop
there is exactly one geodesic (which he does just about every day), he 1s

taking advantage of the Existence and Uniqueness Theorem for systems of
second-order ordinary differential equations. On the other hand, the applica-
tion of point-set topology to everyday uses in other fields is based not so
much on deep theorems as on the unifying and simplifying power of its
system of notions and of its felicitous terminology. And this power stems, in
my understanding, from a very specific source, namely the fact that point-set
topology makes accessible to our spatial imagination a great number of prob-
lems which are entirely abstract and non-intuitive to begin with. Many situa-
tions in point-set topology can be visualized in a perfectly adequate way in
usual physical space, even when they do not actually take place there. Our
spatial imagination, which is thus made available for mathematical reasoning
about abstract things, is however a highly developed intellectual ability which
is independent from abstraction and logical thinking; and this strengthening
of our other mathematical talents is indeed the fundamental reason for the
effectiveness and simplicity of topological methods.

§2. Origin and Beginnings

The emergence of fundamental mathematical concepts is almost always a
long and intricate process. To be sure, one can point at a given moment and
say: Here this concept, as understood today, is first defined in a clear-cut and
plain way, from here on it “exists”—but by that time the concept had always
passed through numerous preliminary stages, it was already known in im-
portant special cases, variants of it had been considered and discarded, etc.,
and it is often difficult, and sometimes impossible, to determine which
mathematician supplied the decisive contribution and should be considered
the originator of the concept in question.

In this sense one might say that the system of concepts of point-set topology
“exists” since the appearance of Felix Hausdorfl’s book Grundziige der
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Mengenlehre (Leipzig, 1914). In its seventh chapter, “Point sets in general
spaces”, are defined the most important fundamental concepts of point-set
topology. Maurice Fréchet, in his work “Sur quelques points du calcul
fonctionnel” (Rend. Circ. Mat. Palermo 22), had already come close to this
mark, introducing the concept of metric spaces and attempting to grasp
that of topological spaces as well (by axiomatizing the notion of convergence).
Fréchet was primarily interested in function spaces and can perhaps be seen
as the founder of the function analytic branch of point-set topology.

But the roots of the matter go, of course, deeper than that. Point-set
topology, as so many other branches of mathematics, evolved out of the
revolutionary changes undergone by the concept of geometry during the
nineteenth century. In the beginning of the century the reigning view was the
classical one, according to which geometry was the mathematical theory of
the real physical space that surrounds us, and its axioms were seen as self-
evident elementary facts. By the end of the century mathematicians had
freed themselves from this narrow approach, and it had become clear that
geometry was henceforth to have much wider aims, and should accordingly
be made to work in abstract “spaces”, such as n-dimensional manifolds,
projective spaces, Riemann surfaces, function spaces etc. (Bolyai and
Lobachevski, Riemann, Poincaré “and so on”—I'm not so bold as to try to
delineate here this development process . ..). But now another contribution
of paramount importance to the emergence of point-set topology was to be
added to the rich variety of examples and the general ripeness to work with
abstract spaces: namely, the work of Cantor. The dedication of Hausdorff’s
book reads: “To the creator of set theory, Georg Cantor, in grateful admira-
tion.”

“A topological space is a pair consisting of a set and a set of subsets, such
that...”—it is indeed clear that the concept could never have been grasped
in such generality were it not for the introduction of abstract sets in mathe-
matics, a development which we owe to Cantor. But long before establishing
his transfinite set theory Cantor had contributed to the genesis of point-set
in an entirely diverse way, about which I would like to add something.

Cantor had shown in 1870 that two Fourier series that converge pointwise
to the same limit function have the same coefficients. In 1871 he improved
this theorem by proving that the coefficients have to be the same also when
convergence and equality of the limits hold for all points outside a finite
exception set A < [0, 2n]. In a work of 1872 he now dealt with the problem
of determining for which infinite exception sets uniqueness would still hold.

An infinite subset of [0, 2n] must of course have at least one cluster point:

0 2n
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This is a very “innocent” example of an infinite subset of [0, 2z]. A somewhat
“wilder” set would be one whose cluster points themselves cluster around
some point:

——— A — H—— + 4
0 2x
1Mt 1 1 1 t
Cp CP CP CP

Cluster point of cluster points

Cantor now showed that if the sequence of subsets of [0, 2n] defined in-
ductively by A%:= A4 and A"*! = {x€[0, 2n]|x is a cluster point of A"}
breaks up after finitely many terms, that is if eventually we have A* = &,
then uniqueness does hold with A as the exception set. In particular a
function that vanishes outside such a set (but not identically in the interval)
cannot be represented by a Fourier series. This result helps to understand
the strange convergence behavior of Fourier series, and the motivation for
Cantor’s investigation stems from classical analysis and ultimately from
physics. But because of it Cantor was led to the discovery of a new type of
subset A = R, which must have been felt to be quite exotic, especially when
the sequence A4, A%, A2, ... takes a long time to break off. Now the subsets of
R move to the fore as objects to be studied in themselves, and, what is more,
studied from what we would recognize today as being a topological view-
point. Cantor continued along this path when later, while investigating
general point sets in R and R" he introduced the point-set topological
approach, upon which Hausdorff could now base himself.

¥

I do not want to give the impression that Cantor, Fréchet and Hausdorff
were the only mathematicians to take part in the development and clarification
of the fundamental ideas of point-set topology; but a more detailed treatment
of the subject would be out of the scope of this book. I just wanted to outline,
with a couple of sketchy but vivid lines, the starting point of the theory we are
about to study.



CHAPTER 1
Fundamental Concepts

§1. The Concept of a Topological Space

Definition. A topological space is a pair (X, O) consisting of a set X and a set
O of subsets of X (called “open sets™), such that the following axioms hold:
Axiom 1. Any union of open sets is open.

Axiom 2. The intersection of any two open sets is open.

Axiom 3. @ and X are open.

One also says that @ is the topology of the topological space (X, @). In
general one drops the topology from the notation and speaks simply of a
topological space X, as we’ll do from now on:

Definition. Let X be a topological space.

(1) A < X is called closed when X\ 4 is open.
(2) U < X is called a neighborhood of x € X if there is an open set V with
xeV cU.
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(3) Let B c X be any subset. A point x € X is called an interior; exterior
or boundary (or frontier) point of B, respectively, according to whether B,
X\ B or neither is a neighborhood of x.

(4) The set B of the interior points of B is called the interior of B.

(5) The set B of the points of X which are not exterior points of B is called
the closure of B.

These are then the basic concepts of point-set topology; and the reader
who is being introduced to them for the first time should at this point work
out a couple of exercises, in order to become familiar with them. Once, when
I was still a student at Tubingen, I was grading some exercises after a lecture
on these fundamental concepts. In the lecture it had already been established
that a set is open if and only if all of its points are interior, and one exercise
went like this: Show that the set of interior points of a set is always open. In
came a student asking why we had not accepted his reasoning: “The set of
interior points contains only interior points (an indisputable tautology);
hence, the problem is trivial.” There were a couple of other graders present
and we all zealously tried to convince him that in talking about interior
points you have to specify what set they are interior to, but in vain. When he
realized what we wanted, he left, calmly remarking that we were splitting
hairs. What could we answer?

Therefore, should among my readers be a complete newcomer to the
field, I would suggest him to verify right now that the interior of B is the union
of all open sets contained in B, and that the closure of B is the intersection of
all closed sets containing B. And as food for thought during a peaceful after-
noon let me add the following remarks.

Each of the three concepts defined above using open sets, namely, *“closed
sets”, “neighborhoods” and “closure”, can in its turn be used to characterize
openness. In fact, a set B « X is open if and only if X\ B is closed, if and only
if B is a neighborhood of each of its points, and if and only if X\ B is equal to
its closure. Thus the system of axioms defining a topological space must be
expressible in terms of each one of these concepts, for instance:

Alternative Definition for Topological Spaces (Axioms for Closed Sets). A
topological space is a pair (X, &) consisting of a set X and a set o of subsets
of X (called “closed sets’), such that the following axioms hold :

Al. Any intersection of closed sets is closed.
A2. The union of any two closed sets is closed.
A3. X and ¢ are closed.

This new definition is equivalent to the old in that (X, @) is a topological
space in the sense of the old definition if and only if (X, &) is one in the sense
of the new, where & = {X\ V|V € @}. Had we given the second definition
first, closedness would have become the primary concept, openness following
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by defining X'\ V to be open if and only if V < X is closed. But the definition
of concepts (2)-(5) would have been left untouched and given rise to the same
system of concepts that we obtained in the beginning. It has become custom-
ary to start with open sets, but the idea of neighborhood is more intuitive,
and indeed it was in terms of it that Hausdorfl defined these notions
originally:

Alternative Definition (Axioms for Neighborhood). A topological space is
a pair (X, U) consisting of a set X and a family U = {U,}, x of sets U,
of subsets of X (called “neighborhoods of x™) such that:

N1. Each neighborhood of x contains x, and X is a neighborhood of each
of its points.

N2. If V < X contains a neighborhood of x, then V itself is a neighborhood
of x.

N3. The intersection of any two neighborhoods of x is a neighborhood of x.

N4. Each neighborhood of x contains a neighborhood of x that is also a
neighborhood of each of its points.

One can see that these axioms are a bit more complicated to state than
those for open sets. The characterization of topology by means of the closure
operation, however, is again quite elegant and has its own name:

Alternative Definition (The Kuratowski Closure Axioms). A topological
space is a pair (X, ~) consisting of a set X and a map ~: P(X) - P(X)
from the set of all subsets of X into itself such that:

Cl. @ =@.

C2. Ac Aforall A c X.

C3. A=AforallAc X.

C4. AUB=AuUBforall4,Be X.

Formulating what exactly the equivalence of all these definitions means
and then proving it is, as we said, left as an exercise to the new reader. We
will stick to our first definition.

§2. Metric Spaces

As we know, a subset of R" is called open in the usual topology when every
point in it is the center of some ball also contained in the set. This definition
can be extended in a natural way if instead of R" we consider a set X for which
the notion of distance is defined; in particular every such space gives rise to
a topological space. Let’s recall the following
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Definition (Metric Space). A metric space is a pair (X, c'i) consisting of a
set X and a real function d: X x X — R (called the “metric”), such that:

ML. d(x, y) > Oforall x, y € X and d(x, y) = O if and only if x = y.
M2. d(x, y) = d(y, x) for all x, y € X.
M3. (Triangle Inequality). d(x, z) < d(x, y) + d(y, z) for all x, y, z € X.

Definition (Topology of a Metric Space). Let (X, d) be a metric space. A
subset V < X is called open if for every x € V there is an &€ > 0 such that the
“g-ball” K(x) = {ye€ X|d(x, y) < ¢} centered at x is still contained in V.
The set O(d) of all open sets of X is called the topology of the metric space
(X, d).

Then (X, 0(d)) is really a topological space: and here again our hypo-
thetic novice has an opportunity to practice. But at this point even the more
experienced reader could well lean back on his chair, stare at the void and
think for a few seconds about what role is played here by the triangle in-
equality.

So? Well, absolutely none. But as soon as we want to start doing some-
thing with these topological spaces (X, 0(d)), the inequality will become very
useful. It allows us, for example, to draw the conclusion, familiar from R",
that around each point y such that d(x, y) < & there is a small §-ball entirely
contained in the e-ball around x:

radius 8

radius €

and consequently that the “open ball” {y|d(x, y) < &} is really open, whence
in particular a subset U c X is a neighborhood of x if and only if it contains
a ball centered at x.

Metrics which are very different can in certain circumstances induce the
same topology. If d and d’ are metrics on X, and if every ball around x in the
d metric contains a ball around x in the 4’ metric, we immediately have that
every d-open set is d’-open, that is (d) < O(d’). If furthermore the converse
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also holds, then the two topologies are the same: O(d) = O(d’). An example is
the case X = R? and

d(x, y) == \Rxl — )+ (x; — y,)
d'(x, y):==max{|x; — y;l, |x2 — y21}:

And here there is a simple but instructive trick that should be noted right
from the start, a veritable talisman against false assumptions about the
relationship between metric and topology: If (X, d) is a metric space, then so
is (X, d'), where d’ is given by d'(x, y) :== d(x, y)/(1 + d(x, y)); moreover, as
can be readily verified, @(d) = @O(d’)! But since all distances in d’ are less
than 1, it follows in particular that if a metric happens to be bounded this
property can by no means be traced back to its topology.

Definition (Metrizable Spaces). A topological space (X, 0)iscalled metrizable
if there is @ metric d on X such that O(d) = 0.

How can one determine whether or not a given topological space is
metrizable? This question is answered by the “metrization theorems”
of point-set topology. Are all but a few topological spaces metrizable, or is
metrizability, on the contrary, a rare special case? The answer is neither,
but rather the first than the second: there are a great many metrizable spaces.
We will not deal with the metrization theorems in this book, but with the
material in Chapters I, VI and VIII the reader will be quite well equipped for
the further pursuit of this question.

§3. Subspaces, Disjoint Unions and Products

It often happens that new topological spaces are constructed out of old ones,

and the three simplest and most important such constructions will be
discussed now.
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Definition (Subspace). If (X, 0) is a topological space and X, < X a subset,
the topology 0| X, = {U n X,|U € @} on X, is called the induced or sub-
space topology, and the topological space (X,, @|X,) is called a subspace
of (X, 0).

Instead of “open with respect to the topology of X, one says in short
“open in X", and a subset B © X, is then open in X if and only if it is the
intersection of X, with a set open in X:

open in X

open in X,

Thus such sets are not to be confused with sets “open and in X, since they
do not have to be open—open, that is, in the topology of X.

Definition (Disjoint Union of Sets). If X and Y are sets, their disjoint union
or sum is defined by means of some formal trick like for instance

X+Y=Xx{0}uY x {1}

—but we immediately start treating X and Y as subsets of X + Y, in the
obvious way.

Intuitively this operation is nothing more than the disjoint juxtaposition
of a copy of X and one of Y, and we obviously cannot write this as X U Y,
since X and Y do not have to be disjoint to begin with, as for example when
X =Y and X U X = X consists of only one copy of X.

\ J — _J
X+Y X+X

Definition (Disjoint Union of Topological Spaces). If (X, @) and (Y, @) are
topological spaces, a new topology on X + Y is given by

{U+V|UeO,Ved}
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and the set X + Y with this topology is called the topological disjoint union
of the topological spaces X and Y.

Definition (Product Topology). Let X and Y be topological spaces. A subset
W < X x Y iscalled open in the product topology if for each point (x, y)e W
there are neighborhoods U of xin X and Vof yin Y suchthat U x V < W.
The set X x Y endowed with the above topology is called the (Cartesian)
product of the spaces X and Y.

Y—
A-X+Y
Vs -- 1" -
S --4--
y
D ¢
The box is the usual mental image for the Cartesian product

of sets or topological spaces, and as long as we are dealing with nothing too
complicated, this image is perfectly adequate. I will call the products

UxVecXxY

of opensets U « X and V < Y open boxes. Open boxes are obviously open in
the product topology, but they are not the only open sets: by themselves

they do not form a topology, since the union of two boxes is not in general a
box:

This trivial observation would not have occurred to me if I had not often

come upon the opposite, erroneous, opinion, which must possess some
peculiar attraction.—Well, that’s it for the time being.
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§4. Bases and Subbases

Definition (Basis). Let X be a topological space. A set B of open sets is called
a basis for the topology if every open set is a union of sets in B.

For example, the open boxes form a basis for the product topology, and
the open balls in R" form a basis for the usual topology in R"; but notice that
the set of balls with rational radius and rational center coordinates (which is
countable!) is also a basis for the topology of R".

Definition (Subbasis). Let X be a topological space. A set S of open sets is
called a subbasis for the topology if every open set is a union of finite inter-
sections of sets in &.

Of course the word “finite” here does not mean that the intersection
should be a finite set, but that it is the intersection of finitely many sets. This
includes the intersection of zero sets (that is, an empty family of sets), which
by a meaningful convention is defined to be equal to the whole space (since in
this way the formula ();caS: O (Nuer Sy = [NveaomS, still holds). An-
alogously, the union of an empty family of sets is suitably defined as the
empty set.

With these conventions we then have that if X is a set and & an arbitrary
set of parts of X, there is exactly one topology @(€) on X such that Sisa
subbasis for O(S) (the topology " generated” by &). It consists exactly of the
unions of finite intersections of sets in &.

Thus a topology can be defined by prescribing a subbasis. But why should
one want to do it? Well, it often happens that one wants a topology satisfying
certain conditions. Usually one of these conditions refers to the fineness of
the topology. If @ and @ are topologies on X, and if @ < @' one says that ¢’
is finer than @ and that @ is coarser than @'; and often there are reasons to
look for a topology which is as fine or as coarse as possible. To be sure, there
is a coarsest topology on X, the so-called trivial topology, which contains only
thesets X and ¥ ; and there is a finest topology, the so-called discrete topology,
in which all subsets of X are open. But this is not enough, for one wishes to
impose other conditions as well. In a typical case, the desired topology
should on the one hand be as coarse as possible, and on the other contain at
Jeast the sets of &. There is always such a topology: it is exactly our ().

§5. Continuous Maps

Definition (Continuous Map). Let X and Y be topological spaces. A map
f:X - Y is called continuous if the inverse image of open sets is always

open.
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Note. The identity map idy: X — X is continuous,and if X - Yand Y = 2
are continuous, soisgo f:X — Z.

With this the most important has been said. If the concept is new to you,
I suggest two useful exercises for practice. The first consists in searching for
the characterization of continuous maps in terms of the “alternative defini-
tions” given in §l1, that is, in verifying that a map f: X — Y is continuous
if and only if the inverse image of any closed set is closed, if and only if the
inverse image of a neighborhood is a neighborhood (more exactly, if U is a
neighborhood of f(x), then f ~1(U) is a neighborhood of x), and if and only
if f~1(B)  f~Y(B) for all subsets B « X. Furthermore, considering the
characterization of continuity in terms of neighborhoods in the special case
of metric spaces leads to the good old “For every ¢ > Othereisad > 0...".

The second recommended exercise has to do with subspaces, disjoint
unions and products, and consists in proving the following three notes:

Note 1. If f:X —= Y is continuous and X, c Y is a subspace, then the re-
striction | X o: Xo — Y is also continuous.

Note 2. f: X + Y — Z is continuous if and only if f|X and f|Y are both
continuous.

Note 3. (f;, f3):Z - X x Y is continuous if and only if f,:Z — X and
f2:Z — Y are both continuous.

By the way, the properties stated in Notes 2 and 3 characterize the direct
union and product topology.

Definition (Homeomorphism). A bijective map f:X — Y is called a homeo-
morphism when both f and f ™! are continuous, that is when U < X is open
if and only if f(U) = Y is.

Suppose a topological property (i.e. one that can be formulated in terms
of open sets) holds for X or some subset A = X. Then, if f is a homeo-
morphism, the same property must hold for Y or the corresponding subset
f(A). For instance: A = X is closed < f(A) = Y isclosed; Uc X is a
neighborhood of x < f(U) is a neighborhood of f(x); B is a basis for the
topology on X <> {f(B)|B € B} is a basis for the topology of Y ; and so on.
Thus homeomorphisms play the same role in topology that linear isomor-
phisms play in linear algebra, or that biholomorphic maps play in function
theory, or group isomorphisms in group theory, or isometries in Riemannian
geometry. For this reason we also use the notation f:X = Y for homeo-
morphisms, as well as X = Y for homeomorphic spaces (i.e. spaces such that
there is a homeomorphism from one to the other.)

Until now we have named very few topological properties of topological
spaces. From the great many that there are, I have picked for this chapter
on “fundamental concepts™ three that are particularly important and widely
different in character: connectedness, Hausdorffness and compactness.
They will be discussed in the next three paragraphs.
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§6. Connectedness

Definition (Connectedness). A topological space is called connected if it is
not the union of two non-empty, open, disjoint subspaces; or, in other
words, the whole space and the empty set are the only subsets which are at
the same time open and closed.

2e e

disconnected space connected space

Example. An (open, half-open, closed) interval I = R is always connected.
Although simple, this example presents a special interest, since in many cases
the connectedness of complicated spaces ultimately derives from that of the
interval. We will thus repeat the proof succinctly: Suppose that I = A U B
and A n B = @, Aand B both non-empty and open in the subspace topology
of I = R. Choose points a € 4, b € B (we can assume a < b). Let s be equal
to inf{x € Bla < x}. Then every neighborhood of s contains points in B
(by definition of infimum), but also points in A, for if s is not equal to a, then
a < s and (a, s) = A. Thus s cannot be a point of either 4 or B, which is a
contradiction, since s € A U B and A and B are both open. qed.

Example. The subspace X = [0, 1] U (2, 3) = R is not connected, because
we can split it into the two non-empty open sets A = [0, 1] and B = (2, 3).
(Objection: It is clear that X = 4 U B and A4 and B are disjoint: but open?
After all, A is a closed interval!! It may indeed be painful to have to call a
closed interval open; but remember, folks, we’re dealing with the topology
of X and not that of R!...)

What is this notion good for? Well, for one thing, it affords a crude way of
distinguishing between topological spaces: if a space is connected and a
second one is not, the two cannot be homeomorphic. Moreover, the following
is also true: If X is a connected space, Y is a set and f:X — Y is locally
constant (i.e. for each x € X there is a neighborhood U, such that f|U, is
constant), then f is constant over the whole domain. In fact, if y is a point in
the image of f, 4 = {x|f(x) = y} and B = {x]| f(x) # y} are both open,
hence X = A because X is connected, qed. This conclusion is often applied
to the case Y = {yes, no} or {true, false}, as follows: Let X be connected and
let P be a property that points of X may or may not have, and suppose we
want to prove that all points of X have property P. Then it is enough to prove

the following three assertions:
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(1) There is at least one point with property P;

(2) If x has property P, the same applies to all points in a sufficiently small
neighborhood;

(3) If x does not have property P, then the same applies to all points in a small
neighborhood.

The following stronger concept is often of interest:

Definition (Path-Connectedness). X is said to be path-connected if every two
pointsa, b € X are connected by a path, that is,a continuous mapa: [0,1] = X

such that a(0) = a and (1) = b:
b
/
e

One sees immediately that a path-connected space X is connected:
If X = A U B, with A and B open, non-empty and disjoint, there can be no
path from a € 4 to b € B, due to the connectedness of [0, 1] (otherwise we
would have [0, 1] = a~!(4) U «~ }(B) and so on).

R

The converse is not true, though: a space can be connected and still
manage to be “impassable” between two points. The subspace of R? given
by {(x, sin In x)|]x > 0} U (0 x [~1, 1]) is an example:

)

\

and so on!
To conclude let me add three remarks concerning the behavior of con-
nectedness under different operations. Topological properties such as

connectedness tend to acquire, upon closer acquaintance, emotional over-
tones: some appear friendly and helpful, after we have seen several times how
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they make proofs easy or even possible in the first place; others, on the
contrary, we come to dread, for the exactly opposite reason. True enough, a
property of good repute can on occasion be an obstacle, and many properties
are entirely ambivalent. But I can assure you that connectedness, Hausdorff-
ness and compactness are predominantly * good” properties, and one would
naturally like to know if such good properties are transferred from the building
blocks to the final products by the usual topological constructions and
processes. Thus:

Note 1. Continuous images of (path-)connected spaces are (path-)connected.
In other words, if X is (path-)connected and f: X — Y is continuous, then the
subspace f(X) of Y is also (path-)connected. For a decomposition of f(X)
as A U B would imply the same for X = f~1(A) u f~}(B), etc.

N, —

X

Note 2. Non-disjoint unions of (path-)connected spaces are (path-)connected,
that is if Xo and X, are (path-)connected subspaces of X with X = X, U X,
and Xo 0 X, # @&, then X is (path-)connected.

Xo
X,

Note 3. A Cartesian product X x Y of non-empty topological spaces X and Y
is (path-)connected if and only if both factors are.

X x Y connected
Y connected @

X connected

Facetious question: How about the disjoint union of X and Y?
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§7. The Hausdorff Separation Axiom

Definition (Hausdorff Separation Axiom). A topological space is called
Hausdorff if for any two different points there exist disjoint neighborhoods.

A

For example, every metric space is Hausdorff, for if 4 1s a metric and
d(x, y) = &€ > 0, then the sets

U, = {z|d(x, z) < ¢/2} and U, = {z|d(y, 2) < ¢/2},

for instance, are disjoint neighborhoods.

The property “non-Hausdorff” is quite counterintuitive and at first
glance even unreasonable, seeming to go against our intuition of the neighbor-
hood concept. For this reason Hausdorff included the above separation
axiom in his original definition of “topological space™ (1914). But later it
was found that non-Hausdorff topologies too can be very useful, e.g. the
“Zariski topology” in algebraic geometry. In any case one can step fairly
deep into topology without really feeling a need for non-Hausdorff spaces,
though here and there it is more convenient not to have to watch for Hausdorfi-
ness. For those who want to see such an exotic thing once, take a set X
with more than one element and consider on it the trivial topology {X, &}.

One of the advantages offered by the separation axiom is the uniqueness
of convergence:

U,

Definition (Convergent Sequence). Let X be a topological space, (x,),en @
sequence in X. A point a € X is called limit of the sequence if for every
neighborhood U of a there is an n, such that x, € Uforalln > n,.

Note. In a Hausdorff space a sequence can have at most one limit.

In a trivial topological space, on the other hand, every sequence converges
to every point.

As for behavior under operations, we note the following easily proved fact:

Note. Every subspace of a Hausdorff space is Hausdorff, and two non-empty
topological spaces X and Y are Hausdorff if and only if their disjoint union
X + Y is and if and only if their product X x Y is.

x*
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The HausdorfT separation axiom is also called T,. This sounds like there
isa T;,doesn’t it? Well, how about this: Ty, Ty, T, Ty, T, Ts, not to mention
T4 and Ty, ! The Hausdorff axiom, however, is by far the most important of
these, and deserves most to be kept in mind. Shall I say what T, standsfor...?
But no. We can wait for it.

§8. Compactness

Ah, compactness! A wonderful property. This is true especially in differential
and algebraic topology, as a rule, because everything works much more
smoothly, easily and fully when we are dealing with compact spaces, manifolds,
CW-complexes, groups etc. Now not everything in the world can be compact,
but even for “non-compact™ problems the compact case is often a good
first step: We must first master the “compact terrain”, which is easier to
conquer, and then work our way into the non-compact case with modified
techniques. Exceptions confirm the rule: Occasionally non-compactness also
offers advantages, there is more “room” for certain constructions... .
But now:

Definition (Compactness). A topological space is called compact if every
open cover possesses a finite subcover. This means that X is compact if the
following holds: If U = {U,},.A Is an arbitrary opencoverof X,ie. U, c X
open and | J,.4 U, = X, then there are a finite number of A,, ..., 4, € Asuch
that U,, v---v U, = X.

(Remark. Many authors call such spaces “quasicompact” and save the word
“compact” for “quasicompact and Hausdorff”.)

In compact spaces the following type of generalization from “local” to
“global ™ properties is possible: Let X be a compact space and P a property
that the open subsets of X may or may not have, and also such thatif U and V
have it, then so does U u V. (Examples below.) Then if X has this property
locally, i.e. every point has a neighborhood with property P, then X itself
has property P. In fact, such open neighborhoods form an open cover
{U,}.cx of X; but, choosing the x; appropriately, we have

X=U,v---0U,,

and by assumption the property is inductively transferred to finite unions,
qed.

Example 1. Let X be compact and f:X — R locally bounded (continuous,
for example). Then f is bounded.
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Example 2. Let X be compact and (/;),», 2 locally uniformly convergent
sequence of functions on X. Then the sequence converges uniformly over the
whole of X.

Example 3. Let X be compact and {A4,},.4 a locally finite cover (i.e. each
point has a neighborhood that intersects A, for only finitely many 2);
then the cover is finite.

Example 4. Let X be compact and A = X a locally finite subset (supply
definition). Then A4 is finite. Or, conversely, if A — X is infinite, there is a
point x € X all of whose neighborhoods contain infinitely many points of A.

Example 5. Let v be a differentiable vector field on a manifold M, for instance
an open set of R". Denote by a,:(a,, b,) = M the maximal integral curve
with a(0) = x and, reasonably enough, call b, the (remaining) life expectancy
and —a, > 0 the age of x under v. From the local theory of ordinary dif-
ferential equations it follows that locally there are positive lower bounds for
life expectancy and age. Thus—and here comes in the compactness—there
are such lower bounds for any compact set X < M as well. Now as a point
moves forward along its solution curve, its age increases and its life expectancy
decreases:

time ¢ elapses along this arc

o(1)
life expectancy = b, — ¢

— a,(0)

life expectancy = b,

If the life expectancy were finite, b, < 00, then it would eventually become
as small as desired, and we obtain the well-known and useful lemma: If a
point in a compact subspace X — M has finite life expectancy, it must use it
before it is over to abandon X forever. What then if there is no possibility for a
point to abandon X —whether because the boundary of X is barricaded with
vectors that point inwards all the time, or because the whole universe M is
compact and X = M?

@ .
M=X
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Then every point of X must move forever; and in particular a vector field ona
compact manifold without boundary is always globally integrable.

But back to our subject! The consequences of this possibility of passing
from local to global cannot, of course, be exhausted in a few pages, but I
wanted to illustrate a bit, and not only to state, the usefulness of the notion of
compactness.

Examples of compact spaces? The closed interval [0, 1] is an unpretentious
but important example, because from it many others derive. It is well known
that for every open cover of [0, 1] there is a “ Lebesgue number”,i.e.ad > 0
such that every subinterval of length é lies in one of the sets of the cover.
(If there were not such a number, one could choose a sequence (1,),», of
subintervals I, < [0, 1] with length 1/n none of which is contained in any of
the sets of the cover. There must be a subsequence of the sequence of mid-
points of the I, converging to an x € [0, 1]; but since x is in some set of the
cover, we get a contradiction for n large.) Now since [0, 1] can be covered by

finitely many intervals of length §, it can also be covered by finitely many
sets of the open cover.

Proposition 1. Continuous images of compact spaces are compact, or in other
words, if X is a compact space and f:X — Y is continuous, then f(X) is a
compact subspace of Y.

PROOF. Let {U,}, A be an open cover of f(X). Then {f~'(U,)} 1ca is an open
cover of X, hence X = f~}(U,) v ---u f~}(U,) with an appropriate
choice of indices, hence f(X) = U,, v---v U, , qed.

Propeosition 2. Closed subspaces of compact spaces are compact.

PROOF. Let X be compact, 4 c X closed, {U,},.4 an open cover of A. By the
definition of subspace topology there is then a family {V,}, .4 of sets openin X
such that U, = A n V;:

Now since A is closed, { X\ A4, {Vi}.ca} is an open cover for X, hence there are
Ay, ..0d, with X\A UV, LUV, =X, ie, Uju---vU, =4,
qed. O
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Proposition 3. Two non-empty spaces X and Y are both compact if and only if
their disjoint union is, and if and only iftheir product is.

ProoF. (We'll prove only that the product of compact spaces is compact,
which is the most interesting and relatively more difficult assertion. The
converse follows from Proposition 1, and the statement about the disjoint
union is trivial.) Let X and Y be compact and {W,},.. an open cover of
X x Y.

|1z
..................... §§g_§
P AN W SZ:
; N =5
H : \._/_
o S ==
P =T
NZ=-
. x . \-": ;-J A L
U_' A [N R
u,,
Step 1 Step 2 Step 3

Step 1. We can choose for each (x, y) a A(x, y) such that (x, y) € Wj, ,).
and because W, ,, is open it contains an open box U, , x V.., around

(x, y)-

Step 2. For a fixed x the family {V,, ,)}, .y is an open cover of Y, hence there
are yy(x), ..., y,(x) such that

Vixyun V-2 U Vg, iy =Y
Now put
U(x. e RARRREA U(x. ) =t Ux'

Step 3. Since X is compact, there are x, ..., x, withU, v---v U, = X,
and consequently X x Y is covered by the (finitely many!) W, , s
l<i<nl<j<r,qed

Fromthe compactness of the closed interval and these three propositions we
can prove the compactness of many other spaces, e.g. all closed subspaces of
the n-dimensional cube and hence all closed and bounded subsets of R".
This is one half of the famous Heine-Borel theorem, which states that a
subset of R" is compact if and only if it is closed and bounded. Why is every
compact subset X, of R" closed and bounded? Well, we have already
observed that continuous functions on compact sets are bounded, and this
applies in particular to the norm function, hence X, is bounded. As for
closedness, it follows from the following simple but useful

Lemma. If X is a Hausdorff space and X, = X a compact subspace, then X,
is closed in X.
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PROOF. We must show that X\ X, is open, hence that every point p has a
neighborhood U that does not intersect X,. For each x € X, choose disjoint
neighborhoods U, of p and V, of x. It may happen that U, intersects X,

but at least it does not intersect the subset V, n X,, and if we now choose
finitely many points x,, ..., x, € X, such that

Van Xg)u---u(V,, N Xo) = X,

(which is always possible because of compactness), then U == U, N --- N u,,
is a neighborhood of p with the desired property of not intersecting X, ged.
O

A

Last but not least, I will present a nice little theorem about homeo-
morphisms, but first a few words to put it in the proper light. The first notions
of isomorphism are introduced to us in linear algebra, and to prove that a
linear map f:¥ — W is an isomorphism, it is enough to verify bijectivity,
because f~':W — V is then automatically linear. The same applies for
instance to groups and group homomorphisms. Having got accustomed to
that, it is with a certain chagrin that we realize that there are other nice
properties of bijections which are not transferred to the inverse: for instance,
x — x* defines a differentiable bijection from R into R, but the inverse map
is not differentiable at the origin:
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Unfortunately it is no better with continuity: take for instance the identity
map from a set X with the discrete topology to X with the trivial topology.
Nor does one have to resort to such extreme examples: Just wrap the half-
open interval [0, 2rt) once around the unit circle, using the function t +— e,

and we have a continuous bijection which cannot be a homeomorphism,
because the circle is compact and the half-open interval is not. But even when
f ! is continuous, establishing this fact can turn out to be quite trouble-
some, especially when the continuity of f itself is obtained from an explicit
formula y = f(x), and there seems to be no way to write out a corresponding
formula x = f~!(y). For this reason it is useful to have a condition, general in
character and often satisfied, under which the inverse of a continuous bi-
jection 1s always continuous:

Theorem. A continuous bijection f:X — Y from a compact space X into a
Hausdorff space Y is always a homeomorphism.

PROOF. We have to show that the images of open sets are open, or, equivalently,
that the images of closed sets are closed. Let then A = X be closed. Then A4
is compact, since it is a closed subspace of a compact space; this means f(A)
is compact (continuous image of a compact space) and hence closed (compact
subspace of the Hausdorff space Y), qed. O



CHAPTER 1I
Topological Vector Spaces

A large number of elements which intervene in mathematics are each

completely determined by an infinite series of real or complex numbers:

For example, a Taylor series is determined by the sequence of its coefficients . . .

One can thus consider the numbers of the sequence which determine each of

the elements as the coordinates of this element seen as a point of a space (E_)

having a countably infinite number of dimensions. There are several advantages to working
thus. First, the advantage that always appears when we use geometrical language, which
favors intuition because of the analogies that it gives rise to . . .

MaAURICE FRECHET
On Some Points of Functional Calculus (1906)
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§1. The Notion of a Topological Vector Space

The present short chapter aims at nothing higher than presenting a certain
class of examples of topological spaces, which really occur within the range of
application of topology (in this case in functional analysis), and which is in
fact of great significance: the topological vector spaces. It is only fair to
place these examples right in the beginning, as they have played an important
role in the formation of the notion of topological spaces (Fréchet 1906).

Definition (Topological Vector Space). Let I := R or C. A IK-vector space E
with a topological space structure is called a topological vector space if its
topological and linear structure are compatible in the following sense:

Axiom 1. The subtraction E x E — E is continuous.
Axiom 2. Multiplication by scalars i x E — E is continuous.

Remark. Some authors impose an additional
Axiom 3. E is Hausdorff (e.g. Dunford-Schwartz [7]; but not Bourbaki [1]).
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Instead of the subtraction we might as well have required the addition to
be continuous, because it follows from Axiom 2 that themap E — E, x+— —x
is continuous, hence so is E x E = E x E, (x, y)—(x, —y). But there is
one reason to phrase Axiom 1 with “subtraction” instead of “addition”,
and this reason, which I'll presently explain, is none the worse for being purely
esthetic.

In the same way that there is a connection here between the notions of
“vector space” and “topological space”, so also many other interesting and
useful concepts arise fromaconnection between the topology and the algebraic
structure. In particular a group G which is also a topological space will be
called a topological group if the group structure and the topology are *com-
patible”. And what will be meant by that? Well, that the composition

GxG-G, (a, b)— ab

and the inverse map G — G, a — a~! are continuous. But these two con-
ditions can be merged into one, the axiom for topological groups: The map
G x G - G, (a, b)—ab~! is continuous.

Thus Axiom 1 says exactly that the additive group (E, +) together with
the topology of E forms a topological group.

In the next four paragraphs we will introduce the most common classes
of topological vector space, in order of increasing generality.

§2. Finite-Dimensional Vector Spaces

K", with the usual topology, is a topological vector space, and every iso-
morphism K" — K" is also a homeomorphism. Thus every n-dimensional
vector space V has exactly one topology for which some (and consequently
any) isomorphism V = K" is a homeomorphism, and with this topology V
becomes a topological vector space. This is all trivial, and undoubtedly the
“usual” topology defined in this way is the most obvious one could find
for V. But this topology is in fact more than just “obvious”, for we have the
following

Theorem (no proof given here, see, for instance, Bourbaki [1], Th. 2, p. 18).
The usual topology on a finite-dimensional vector space V is the only one that
makes it into a Hausdorff topological vector space.

The theorem shows that finite-dimensional topological vector spaces as
such are not interesting, and the notion has been introduced because of the
infinite-dimensional case. But even for these the theorem has an important
consequence: namely, if V is a finite-dimensional vector subspace of any
Hausdorff topological vector space E, then the topology on V induced from
E is exactly the usual topology—even if E is one of the wilder specimens of
its category.
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§3. Hilbert Spaces

Let’s recall that an inner product space is a real (resp. complex) vector space E
together with a symmetric (resp. Hermitian) positive definite bilinear form

{.., ..). Then for v € E the scalar ||v|| :== \/{v, v) is called the norm of v.

Note. If (E, .., ..)) is an inner product space, d(v, w) = |lv — w|| defines a
metric whose topology makes E into a topological vector space.

Definition (Hilbert space). An inner product space is called a Hilbert space
when it is complete relative to its metric, i.e. when every Cauchy sequence
converges.

Hilbert spaces are surely, after finite-dimensional spaces, the most innocent
topological vector spaces, and they can be completely classified, as follows:
A family {e,},.A Of pairwise orthogonal unit vectors in a Hilbert space is
called a Hilbert basis for H if the only vector orthogonal to all the e, is the
zero vector. It can be proved that every Hilbert space has such a basis, any
two bases of the same Hilbert space have the same cardinality, and finally
two Hilbert spaces with equipotent bases are isometrically isomorphic.

§4. Banach Spaces

Definition (Normed Spaces). Let E be a iK-vector space. Amap ||..]:E - R
is called a norm if the following three axioms hold:

N1. |Ix|]]| = Ofor all x € E, and ||x|] = 0 if and only if x = 0.
N2. |lax|| = |a]llx| for all a € K, x € E.
N3. (Triangle Inequality). |Ix + y|]l < lIxll + ||y| forall x, y € E.

A pair (E, ||..]) consisting of a vector space and-a norm on it is called a
normed space.

Note. If (E, || ..|}) is a normed space, d(x, y) = ||x — y| defines a metric whose
topology makes E into a topological vector space.

Definition (Banach Space). A normed vector space is called a Banach space
if it is complete, i.e. if every Cauchy sequence converges.

Hilbert and Banach spaces are, in particular, examples of topological
vector spaces, but they have more structure than that: The scalar product
{.., ..> or the norm || .. | obviously cannot be recovered from the topology.
Already for finite n > 2,a vector space V of dimenston n can be endowed with
many different norms which—in contrast with scalar products—cannot be
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obtained from one another by linear isomorphisms of the space into itself.
Of course, all these norms define the same (i.e. the “usual ™) topology on V.
Now, in infinite dimensions, even if one is only interested in the topological
vector space structure (as often happens in functional analysis), Banach
spaces define a very rich class of which it is difficult and perhaps impossible
to get a complete overview.

§5. Fréchet Spaces

Definition (Seminorm). Let E be a (K-vector space. A map |..|:E -+ R is
called a seminorm if the following hold:

SN1. |x] = Ofor all xe E.

N2. |ax| = |a]|x], as for norms
N3. Triangle inequality, '

For example, |..|;: R" = R, x — |x;| is a seminorm on R".

We can talk about “open balls ™ for seminorms as well as for norms, and we
will denote them by B,(x):= {y€ E||x — y| < &}; but in general there isn’t
anything “round” about them anymore.

e, Y

Iz RZ_.R

;(X)

Definition. Let E be a vector space and {|..|;}1¢4 @ family of seminorms on E.
A subset U < E is called open in the topology generated by the family of
seminorms if every point of U belongs to a finite intersection of seminorm
open balls which is contained in U; in other words, for every x € U there are
Ayy..., A, € A and an ¢ > Osuch that BA(x) n --- n B¥(x) = U.

/ v

VAR ////

“seminorm boxes,”
(for the example R?, {|..I,. |.-1:})
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In the terminology of I, §4 these open balls of the seminorms |..|;, AeA
form a subbasis of, or generate, the topology.

Note. With the topology given by the family of seminorms {|..1;}1¢ a» E becomes
a topological vector space, which moreover is Hausdorff if and only if O is the
only vector for which all seminorms |..|, are zero.

Definition (Pre-Fréchet Space). A Hausdorff topological vector space whose
topology can be defined by an at most countable family of seminorms is
called a pre-Fréchet space.

Fréchet spaces will be the “complete™ pre-Fréchet spaces. To be sure,
completeness is a metric motion, but there is an obvious topological version
of it for topological vector spaces:

Definition (Complete Topological Vector Spaces). A sequence (x,),»; in a
topological vector space is called a Cauchy sequence if for every neighborhood
U of 0 there is an ng such that x, — x,, € U for all n, m = nq. If every Cauchy
sequence converges, the space is called (sequentially) complete.

In normed spaces this concept of completeness is of course equivalent to
the old one, obtained from the metric given by the norm.

Definition (Fréchet Space). A Fréchet space is a complete pre-Fréchet space.

Notice that pre-Fréchet spaces are always metrizable: If the topology is
given by a sequence of seminorms |..]|, .>, then

= 1

1 |x=yla
n=12"l+|x—y|n

d(x, y) =

defines a metric which generates the same topology and for which the Cauchy
sequences are the same.

§6. Locally Convex Topological Vector Spaces

Finally, let us define locally convex spaces, which are the most general class
of topological vector spaces for which there exists a theory with decent
theorems.

Definition. A topological vector space is called locally convex if every
neighborhood of O contains a convex neighborhood of 0.
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We mention the following facts to illustrate to what extent these spaces
are more general than the preceding ones (no proof here; cf. [13] §18): A
topological vector space is locally convex if and only if its topology can be
given by a family of seminorms; and a locally convex topological vector space
is a pre-Fréchet space if and only if it is metrizable.

§7. A Couple of Examples

Example 1. We consider the Lebesgue-integrable real functions f on [ -, n]
which satisfy

r f(x)? dx < 0.

Two such functions will be called equivalent if they coincide outside a set of
measure zero. The equivalence classes are called, somewhat loosely, square-
integrable functions. Let H be the set of such functions. H has a canonical
real vector space structure and can be made into a Hilbert space using, for
instance, the following inner product:

o> =1 | sedte) ax

The trigonometric functions e, »= cos kx, e_; »= sin kx, k > 1, form, together

with eg = \/5/2, a Hilbert basis {e,},.z for H, and the representation of
elements f€ Has f = ) .z {/, e,e, is exactly the Fourier series of f.

Example 2. Let X be a topological space, C(X) the vector space of bounded

continuous functions on X, and || f|| :== sup,ex |f(x)|. Then (C(X), ||..]) 1s
a Banach space.

Example 3. Let X = C be a domain and @(X) the vector space of holo-
morphic functions on X, endowed with the topology given by the family

{ I . IK}KcXiscompacl

of seminorms | f |x = sup,x | f(2)| (topology of “compact convergence™).
Then O(X) is a Fréchet space (we just have to consider a countable collection
of K, which “exhaust” X; completeness follows from the Weierstrass
convergence theorem. . .).

These are three out of a great number of “ function spaces ” which effectively
come up in analysis. As mere vector spaces they did not have to be invented,
they just are there and one can’t miss them. And that the linear differential
and integral operators behave as linear maps L: E, — E, between function
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spaces also follows immediately from the nature of things. But mere linear
algebra will lead us only to trivialities here; to understand the properties
of these operators, we must study their continuity behavior under different
topologies, and exploit our knowledge about the structure of abstract
topological vector spaces. And while point-set topology, in whose praise I'm
saying all this, does not exactly represent the cutting edge of research in the
area of partial differential equations, it is nevertheless an indispensable
instrument in it, to the point of being taken for granted.

I haven’t yet given any examples of locally convex but non-metrizable,
and hence non-pre-Fréchet, topological vector spaces. Well, such spaces also
come up in a completely natural way in function analysis. For instance, it is
sometimes necessary to consider the “ weak topology " on a given topological
vector space, that is, the coarsest topology for which all the old continuous
linear maps E — R (the “linear functionals”) remain continuous, or in other
words, the topology generated by {f~'(U)JU < R is open, f:E— R is
linear and continuous}. With this topology E is still a topological vector
space, but much more complicated than before. Even if we start with some-
thing as simple as an infinite-dimensional Hilbert space, we end up with a

locally convex, Hausdorff, but non-metrizable topological vector space
(cf. [4], p- 76).



CHAPTER 1II
The Quotient Topology

§1. The Notion of a Quotient Space

Notation. If X is a set and ~ an equivalence relation on X, then X/~ will
denote the set of equivalence classes, [x] € X/~ the equivalence class of
x € X, and n: X — X/~ the canonical projection, so that n(x) := [x].

Definition (Quotient Space). Let X be a topological space and ~ an equiva-
lence relation on X. A set U = X/~ is called open in the quotient topology
if n~(U) is open in X. X/~, endowed with the topology thus defined, is
called the quotient of X by ~.

Note. The quotient topology is obviously the finest topology on X/~ such that
T is a continuous map.

Just as we have, for the notions of subspace, disjoint union and product,
a simple mental image on which we can base our intuition in the beginning,
I would like to suggest a mental image for quotient spaces as well. In order to
depict an equivalence relation, the best thing is to imagine the equivalence
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m X

subspace X, « X disjoint union X + Y product X x Y

classes; but though these equivalence classes are the points of the quotient
space, this is not enough, because our intuition demands a geometrical
picture for the quotient space in which the points of the space are really
“points” in the geometrical sense:

-l U
Equivalence X A

class[x] =« X

so for instance

I 1

[x] X/~ -
U

The next two sections contain all the “theory” of quotient spaces we need
to know, and after that we are free to go into the really interesting part, that is,
examples that really come up in mathematics, and not far-fetched contrap-
tions.

§2. Quotients and Maps

Note 1 (Maps from Quotient Spaces). Let Y be another topological space. A
map [ : X/~ — Y is evidently continuous if and only if [ o mis continuous:
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Note 2 (Maps into Quotient Spaces). There is no corresponding universal
criterion for the continuity of a map ¢: Y = X/~ but the following trivial
observation is often useful: If there is a continuous map ®: Y — X with

o=nD,

Y ’—«s—' X/~

or even if this is the case only locally, i.e. if every ye Y has a neighborhood
U for which there is a continuous map ®y: U - X with no ®, = ¢|U,

X

.G
°U“¢‘ ‘ n

U —— X/~
elU /

then ¢ is of course continuous.

§3. Properties of Quotient Spaces

Which properties of X are carried over to X/~ ? Connectedness and compact-
ness are the most well-behaved ones:

Note. If X is (path-)connected (resp. compact), then so is X/~ (being a con-
tinuous image of X).

The situation is entirely different as regards the third property discussed in
Chapter I: A quotient space of a HausdorfT space is in general not Hausdorff
anymore. A trivial reason why this may be so is that the equivalence classes
may not be all closed:

Note. A necessary condition for a quotient space X/~ to be Hausdorff is that
all equivalence classes in X be closed; for if y ¢ [x] is a boundary point of [x],
then [x] and [y] cannot be separated by disjoint neighborhoods in X/~ .

Another, possibly more elegant way to say this is the following: The
closedness of equivalence classes in X is equivalent to the closedness of points
in X/~, and of course in a Hausdorff space all points are closed sets.
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All right, so let the equivalence classes be closed: this condition is per-
fectly reasonable, and without it nothing works. But then what? Here are two
misleadingly similar examples. In both X = R? with the usual topology, the
equivalence classes are closed one-dimensional submanifolds, arranged
in a very simple way, and the decomposition of R? is even invariant under
translations in the y direction. Moreover, the two examples are so similar
that one cannot easily describe the difference between them by means of
point-set theoretical properties of the two equivalence relations—except
that one of the quotient spaces is Hausdorff and the other is not!

From this what we can learn right away is that the separation properties of
quotients depend a lot on the particular arrangement of the equivalence
classes, and one should be thankful for the existence of theorems that
guarantee Hausdorfiness for whole classes of examples.

\
/

D))

§4. Examples: Homogeneous Spaces

Let’s recall the following notations from algebra: If Gis a groupand H < Gis
a subgroup, then G/H denotes the set {gH |g € G} of left cosets of H, which are
the equivalence classes under the equivalence relation on G defined by
a~ b<e>b 'acH. If moreover H is a normal subgroup (ie. gHg ! = H
for all g € G), then G/H inherits a canonical group structure from G.

Definition (Topological Group). A group G that is also a topological space
is called a topological group if G x G — G, (a, b)+> ab™" is continuous.

The groups GL(n, R) and GL(n, C) of invertible n x n matrices, for
example, are topological groups in a canonical way, and so are the abelian
groups (E, +) underlying topological vector spaces. Also, any subgroup of a
topological group, endowed with the subspace topology, is trivially a
topological group.
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Definition (Homogeneous Space). If H = G is a subgroup of a topological
group G, the quotient space G/H is called a homogeneous space.

Thus our general definition of quotient space X/~ in §1 is applied here for
thecase X = Ganda ~ b: <b"'ae H.

Why are homogeneous spaces of interest? This is a damned far-reaching
question and cannot be fully answered at the level of this book. But I will
try to make some comments about it. When topological groups are found
in nature, they are generally not given abstractly as a set G with a composition
law and a topology, but concretely, as a group of transformations, ie. a
group of bijective maps from a set X onto itself, and the law of composition is
none other than the composition of maps. But such an X should not be
imagined as being just a set, any more than G should be the group of all
bijections of X. The set X will instead be endowed with some more structure:
first a topology, but maybe also a differentiable or analytical or algebraic or
metrical or linear or any other sort of structure, according to the situation.
And the elements g: X = X of G will be bijections that are compatible with
that structure. From this connection it generally follows what topology we
must reasonably endow G with. Take G = GL(n, R) as a simple example:
The set X will be R" with its linear structure.

So far this is an observation about topological groups and not yet about
homogeneous spaces. But now think of some mathematical object A in X
or on X or somchow associated with X and its structure: for instance, a
given subset A < X or a function A: X — C, or indeed anything such that
it makes sense to say that A is transformed by g € G into a similar object
gA, and gA is transformed by he G into (hg)A. For a subset A = X, gA
is simply the image g(A); for a function A: X = C, gA is the function
Aog~'. X - C,andsoon. Butnowtheset H = {g € G|gA = A} of elements
that transform A into itself is a subgroup of G, and the homogeneous space
G/H can be considered in a natural way to be the space of all positions that A
can assume under transformations by elements of G. As a simple example of
this process consider G = O(n + k)and X = R* x R". Let 4 be the subspace
R* x 0. The orthogonal matrices that take R* x O into itself are exactly
those of the form
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with h, € O(k) and h, € O(n); we have thus H = O(k)x O(n) = O(n + k),
and the homogeneous space O(n + k)/O(k) x O(n) is the so-called “Grass-
mannian manifold” of k-dimensional subspaces of R"**. In the case k = 1,
for instance, O(n + 1)/0(1) x O(n) is the well-known real projective space
RP" of straight lines through the origin of R"* .

Returning now to the general case, it often happens that it is such a
“position space” that we are primarily interested in, and discovering groups
G and H such that it can be represented as a homogeneous space G/H will
be the first step in studying it.

With this I have described, vaguely enough, a first important point of
view from which homogeneous spaces are interesting; a second, related one
(homogeneous spaces as “orbits ™), will be discussed in the next section; and
now I will mention a third one, quite profound. In a very general way, one
of the fundamental principles in the study of complicated geometrical
objects is to decompose them into simpler parts and study the laws according
to which the whole can be reconstructed from the parts. One such possibility
is the decomposition of a space into similar “fibers”. Now the rules according
to which such similar fibers can be reassembled into *fiber bundles”™ are
determined by a topological group, the “structure group”, and in connection
with these topological groups homogeneous spaces come to the fore again.
For instance, the Grassmannian manifolds O(n + k)/O(k) x O(n) are im-
portant for the classification of vector bundles, and the knowledge we acquire
about these homogeneous spaces (the Grassmannian manifolds) pays off
as a means to analyze vector bundles, which in turn . .. . But this is taking us
too far afield. Let me just say one more thing: Apart from being instrumental
in achieving any immediate ends, as outlined above, homogeneous spaces
deserve attention in themselves as geometrical objects, being both very
varied and, as group quotients, accessible to the methods of the theory of
topological groups (or other groups with richer structure). Cf. the “sym-
metric spaces” of Riemannian geometry.

¥

All this takes us way beyond the scope of point-set topology: my modest
purpose of convincing you of the real occurrence of homogeneous spaces in
mathematics may have been achieved, and we can gradually set our feet
back on the ground.

To conclude, let’s turn again to the question of Hausdorffness of quotient
spaces. Intractable as this may be in the general case, for homogeneous spaces
a very neat criterion holds:

Lemma (for the proof, which in any case is not difficult, see for instance
Bourbaki [2], 1I1.12). A homogeneous space G/H is Hausdorff if and only if
H is closed in G.
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If E is a topological vector space and E, c E is a subspace, the quotient
E/E,, with the quotient topology, is again a topological vector space. Now
since the closure E, of E, is also a vector subspace of E, the above lemma
implies that E/E, is always a Hausdorff space, and in particular we call E/{0}
the Hausdorff space associated with E. For instance, if the topology of E is
given by a seminorm |..|, we have {0} = {x € E||x| = 0}, and |..| defines a
norm on E/{0}.

§5. Examples: Orbit Spaces

Definition. Let G be a topological group and X a topological space. A
continuous action or operation of G on X is defined to be a continuous map
G x X — X, denoted by (g, x) — gx, such that:

Axiom 1. 1x = x for all x € X.
Axiom 2. g,(g9,x) = (g9,9;)xforall xe X and g,,9, € G.

Thus every g defines via x+— gx a map from X into itself, and the two
axioms mean that this correspondence is a group homomorphism from G
into the group of bijections of X onto itself. Because of the continuity of
G x X — X the image of this homomorphism is actually contained in the
group of homeomorphisms of X into itself.

Definition (G -space). A G-space is a pair consisting of a topological space X
and a continuous G-action on X.

Differentiable G-manifolds are defined analogously: G is then not only
a topological group, but actually a Lie group (i.e. G is a differentiable
manifold and G x G — G, (a, b)—»ab™ ! is differentiable), X is not only a
topological space but actually a differentiable manifold, and the action
G x X — X is not only continuous but differentiable.

G-spaces and especially G-manifolds are the object of an extensive theory,
the theory of transformation groups. To be sure, we can’t go deeper into this
theory here, but there is only one tiny aspect of it which concerns us in con-
nection with this chapter: namely, that the quotient topology plays a role in
it from the very first concepts on, as I'll presently explain.

Definition (Orbit). If X is a G-space and x € X, the set Gx := {gx|g € G} is
called the orbit or trajectory of x.

The orbit is thus the set of points into which x can be taken by the action
of elements of the group. In particular, if G is the additive group (R, +) of the
real numbers, a G-action is the same as a “flow ™ (cf. the theory or ordinary
differential equations, integration of vector fields), the orbits are the images of
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integral curves or trajectories of the flow, and the name “trajectory” is
generalized to any group by analogy.

\\\\ orbit of x

The orbits are the equivalence classes of the equivalence relation defined
by “x ~ y:<> y = gx for some g € G”, and we can thus consider the quotient
topology on the set of orbits.

Definition (Oribt Space). If X is a G-space, the set of orbits, endowed with the
quotient topology, is called the orbit space and denoted by X/G.

As an illustration we will “calculate™ the orbit space for a simple example:
this means we are going to find a homeomorphism between the orbit space
and a well-known topological space. Let G = SO(2), the group of rotations
of R? around the origin, let X be the unit sphere $2 = {x € R?| | x|] = 1}, and
let the G-action on X be given by rotation around the x-axis, i.e.

g(xh X2, X3) = (g(xl' xZ)s x3)'

The orbits are then the parallels of latitude and the two poles.

Assertion. S%/G = [—1, 1].

ProoF. Consider the continuous map ny: S = [—1, 1] given by projection
on the xs-axis. Since n is constant on each orbit, it defines a map

[::84G-[-1,1]
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such that the diagram
SZ

/G 7 [-1,1]

commutes; moreover, f; is obviously bijective. By §2, f; is continuous as
well ; but $2/G is compact, since it is the continuous image of the compact set
S2,and [ -1, 1] is Hausdorff. Hence f; is a homeomorphism by the theorem
at the end of Chapter I, ged. O

To conclude we will take a look at the individual orbits themselves, and
discover a quotient topology in them as well.

Definition (Stabilizer). Let X be a G-space and x € X. Then
G,={g € Glgx = x}

is called the stabilizer or isotropy group of the point x.

Remark. The correspondence gG, — gx defines a continuous bijection from
the homogeneous space G/G, onto the orbit Gx.

ProOOF. First, gG, — gx really gives rise to a well-defined map G/G, — Gx,
because gG, = hG,impliesh = gafor some a € G, and hence hx = gax = gx.
This map is obviously surjective, and also injective since gx = hx implies
h~'gx = x, hence h™'g € G, and hG, = gG,. Continuity follows from §2,
because the composition G =+ G/G, — Gx is continuous. ged. O

This is already a quite close connection between orbits and homogeneous
spaces. Now when in particular G is compact and X is Hausdorff, G/G, 1s
compact since it is the continuous image of G. Then Gx is Hausdorff because
it is a subspace of a Hausdorff space, and we obtain from our theorem at the
end of Chapter I that G/G, — Gx is a homeomorphism: then the orbits
really “are” homogeneous spaces.

§6. Examples: Collapsing a Subspace to a Point

So far we have considered examples of quotient topologies which come up
“spontaneously”, as it were, in mathematics, by conferring the obvious
topology to an object already given in some way. In §§6 and 7 we are
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introduced to the quotient operation more as a handicraft technique, used
according to one’s aims and purposes to manufacture new topological
spaces with given properties.

Definition. Let X be a topological space, A — X a non-empty subspace.
Denote by X/A the quotient space X/~ , obtained from the equivalence
relation defined by

X~ay.<>x=1y orkx,ybothbelongto A.

The equivalence classes are thus 4 and the one-point sets not contained in
A; in the quotient space X/A, therefore, A is a point, whereas the comple-
ment X\ A remains unaltered. Incidentally, this explains why it has been
found convenient to set X/ := X + {pt} in the case 4 = . The process of
going from X to X/A is called collapsing of A4 into a point.

Analogously, one can of course collapse several subspaces to points, and
we’ll introduce a notation for this process:

Definition. If X is a topological space and A4,,...,4, € X are disjoint
non-empty subsets, denote by X/A4,,..., 4, the quotient space obtained
from the equivalence relation defined by

X ~ y:<>x = y or there is an i such that x, y both belong to A4,.

Remark. As already noticed in §3, X/A,, ..., A, can only be Hausdorff if the
A; are all closed. In “reasonable ” spaces this condition is in fact sufficient as
well, e.g. it 1s not difficult to prove that X/A,,..., A, is a Hausdorff space if
the A, are closed and X is metrizable. Of course it is essential here that there
be only a finite number of equivalence classes with more than one point;
otherwise we’ve already got a counterexample in §3.

Example 1 (Cone Over a Set). Let X be a topological space. Then
CX:=Xx[0,1)/X x1

is called the cone over X.

XxlecXx[01) X xleCX
Vi 7/

0. 1]

CX
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Now again, such a picture is to be understood only as a mental image,
but is it well chosen as an image? Shouldn’t we, since the complement X\ 4
remains unaltered when we build X/A, represent the cone like this:

X xleCX
/

No, this picture creates a false image of the topology of the cone, because by
definition of the quotient topology every neighborhood of the vertex of the
cone must have as inverse image a neighborhood of the “lid” X x 1 of the
cylinder, which is the case only in the first figure.

Xx1lcXx[0,1] X x \| eCX neighborhood?

correct representation false representation

And the fact that nothing happens with the complement of the hd is also

adequately taken into account by the first picture, in that it shows that the

canonical projection n gives rise to a homeomorphism from X x [0, 1]\ X x 1

onto CX\ {X x 1}.

Example 2 (Suspension). For a topological space X, the space
IX=Xx[-1,1)/Xx{-1}, X x {1}

is called the suspension of X or double cone over X:

X)(l\

X

X x 07]

X x (=17
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Example 3. Sometimes there is reason to construct a cone over only a part of
X, but keeping the whole of X as the “ground™. Thus, if A = X, denote by
C, X the quotient (X x0uU Ax[0,1])/Ax1:

X
N

A

Example 4 (Wedge and Smash Products). Let X and Y be topological spaces
and x4 € X, y, € Y fixed points. Then denote by X v Y (wedge product) the
subspace X x yo U xox Y of the product X x Y,

Yo

Xo
and by X A Y (smash product) the quotient space X x Y/X vY.

Example 5 (Thom Space). Let E be a vector bundle with a Riemannian metric,
DE = {x € E| |lv]| < 1} its disc bundle and SE := {v € E| ||v|] = 1} its sphere
bundle. Then the quotient space DE/SE is called the Thom space of the bundle
E.

All these constructions come up in algebraic topology, but I can’t explain
now what purpose they serve, and I admit the last example cannot even be
understood with the material covered so far—I included it just to have it
“in reserve”. However, let’s take a closer look at the simplest case of this
example, namely the case when E has only one “fiber”: E = R". Then DE is
the closed ball D" and SE is the sphere $"~!. What is the outcome when we
collapse the whole boundary of the ball to a point? So? It is a space homeo-
morphic to the n-sphere S$”. In fact, pick a continuous map f : D" — S" that
takes the boundary S"~! onto the south pole p and that takes D™\ S"~*
bijectively onto S™\ p (one example of such a map is obtained by mapping the
radii in the obvious way onto the great semicircles (“meridians”) that run
from the north to the south pole).

su-l
D"
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Then one obtains via f a bijection ¢: D"/S™ ! — §", with f = @ o n:

DH

n,con—1
D"/S — ¥

From §2 we know ¢ is continuous, and thus in fact a homeomorphism

because it is a bijection from the compact space D"/S"~ ! onto the Hausdorff
space S".

§7. Examples: Gluing Topological Spaces Together

Definition. Let X and Y be topological spaces, X, = X a subspace and
¢: Xo — Y a continuous map. Then denote by Y U, X the quotient space
X +Y/~ by the equivalence relation on X +Y generated by x ~ ¢(x)
for all x € X,. One also says that Y u,, X is obtained by attaching or gluing
X to Yby means of the attaching map ¢, or by identifying points x € X, with
their images ¢(x) € Y.

Just in case, let me repeat it again in detail: The equivalence classes either
have one point (every point of X + Y that does not belong to either X, or
©(X ), or have the form ¢~ '(y) + {y} €« X+ Y.

Example 1. Let X be a topological space and ¢: 8"~ ! — X be continuous.
One says then that X U, D" is obtained from X by “attaching a cell” by
means of the attaching map ¢.

D
P @
\. ¥ ~
Xy, D
/j\_/

(We'll discuss cell attaching again in Chapter VII—*“CW-complexes™.)

What is the relationship between the “building blocks” X and Y and the
space X u, Y? Since no two different points of Y are identified with one
another, Y is always contained in Y U, X in a canonical way, or, more
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exactly, the canonical map Yc X+Y — Y u,_ X is injective, and there will
be no misunderstanding in writing Y < Y U, X. And all the more reason to
do so since the subspace topology inherited by Y = Y U, X coincides with
the original topology on Y, as one can easily verify (you’ll have to use the
continuity of ¢). Thus:

Note. Y is a subspace of Y U, X in a canonical way.

This is, of course, not true for the attached part X: The complement
X\ X, is a subspace of Y U, X, but X itself can be considerably changed
by the canonical continuous map X <« X+Y — Y u,, X. For instance, if

Y is a single point, then {pt} U, X is exactly the X/X , defined in §6.

X

oY
Yu, X

If, however, ¢ is a homeomorphism from X, onto a subspace Y, = X and
¥: Yo = X, is its inverse, we of course have Y U, X = X v, Y, and by the
note above both spaces X and Y are canonically contained in Y U, X. The
following examples are of this type:

Example 2. Attaching a “handle” D* x D" * to an n-dimensional manifold
with boundary, by means of an embedding ¢: $*"! x D"™* - oM, as is
done in Morse theory (see, for example, [14]):

b, regular
J
——
¢, critical
a, regular

M. '=f- l(_m- a]

Writing M, = f~'(—o00, y] we have that crossing a “critical point” is
essentially equivalent to attaching a handle: M, = M, v, (D* x D" %),
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Example 3. In differential topology one constructs the so-called “connected
sum” M, # M, :=(My\p,) U, (M\p,) of two manifolds (see for instance
[3], p. 102), where one first “punctures” the manifolds, i.e. takes away an
arbitrary point, and then glues them together via an appropriate ¢.

The two manifolds @ @
M, M,

P P2
Preparation Q
Y/
Xo
Puncturing -
—
M I\Pl

Illustrating ¢: X, - Y,

After gluing

&
—
o=

M, # M,

Till now we’ve always been gluing two spaces X and Y, that is, forming a
quotient space X + Y/~. One can similarly glue a space X to itself in many
different ways, by “identifying™ certain points of X to others by prescribing
some map, which is the same as introducing an equivalence relation and
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passing to the quotient X/~. We'll introduce the following notation having
in mind the two examples below:

Notation. Let X be a topological space and a: X — X a homeomorphism.
Then denote by X x [0, 1]/x the quotient space of X x [0, 1] by the equivalence
relation given by (x, 0) ~ («(x), 1), which in particular means that all other
points (x, t),0 < t < 1, are equivalent only to themselves.

Example 4 (Mobius Strip). If X =[—1, 1] and a(x):= —x, then X x [0, 1]/e

is homeomorphic to the Mébius strip

Example 5 (Klein Bottle). Let «: S — S! denote reflection on the x-axis,
that is, a(z) == z, where S! is seen as the circle {z € C||z| = 1}. Then

S'x[0, 1}/«
is homeomorphic to the “Klein bottle™.
It is not so easy to visualize the Klein bottle concretely, as there is no

subspace of R* homeomorphic to it. To get an idea of what it “looks like”

one has to resort to the trick of “apparent intersection”. To illustrate this
trick consider the following figure:

=

U

One would normally interpret it as representing a subset of R?, the union of a
rectangle and a funnel which intersect in a circle. But if we are requested to
consider the intersection of the two parts as being merely apparent, the
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figure acquires an altogether different meaning. It no longer stands for that
subset of R3, but becomes an admittedly imperfect attempt to represent a
space which is the topological, and thus disjoint, sum of the rectangle and the
funnel. Thus in this space the circle is present twice: once in the rectangle and
once in the funnel; and we no longer have the possibility, originally suggested
by the figure alone, of passing continuously from the funnel to the rectangle

If you want to think of it in a more concrete way, imagine the space in
question as a subspace of R*, and the figure representing its projection on
R? x 0. The rectangle could be wholly contained in R*x0, and for the
funnel also the invisible fourth coordinate would be mostly zero, except
around the apparent intersection, where it would be positive. The following
two-dimensional analogy can clarify this situation:

additional coordinate

’RZ

AN

\ . .
apparent intersection

But when you really use a figure with apparent intersections to under-
stand some property of a given space, you’ll notice that this fourth-dimensional
crutch is not necessary at all and all you have to do is be prepared to keep
the two parts mentally separate at the apparent intersection.

In this spirit we can thus visualize a cylinder S* x [0, 1] with an apparent
self-intersection as in (6):

\ J @ @ @
(2 3) ) (%) (6)

m

The movement suggested by the series (1)-(6) indicates what point of (1)
corresponds to what point in (6). Except for translation and reduction, the
“bottom™ S* x 0 of (1) is tipped over exactly once around the axis that goes
through the points (1, 0) and (— 1, 0), in the transition from (1) to (6). Hence
in (6) we have each pair of points to be identified, (z, 0) and (2, 1), exactly in
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front of each other, and all we have to do is enlarge the inner boundary
circle a little bit to realize spatially the identification that defines the Klein
bottle. Except that we don’t want the seam to look like a sharp edge (there is
no reason why it should be visually distinguishable from the other *“parallels
of latitude™ of the figure), and therefore we’ll do it in the following way:

58§

M (10)

Then what we get in (10) is the Klein bottle, represented with an apparent
self-intersection.
If we now cut in two this curious contraption, to find out what it looks like

inside,
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and subsequently undo the apparent intersection very carefully in both

halves, we obtain, after smoothing and flattening things a bit, two Mdbius
strips:

Again, if we follow this process backwards, we see that two Mobius strips M
glued together along the boundaries become a Klein bottle:

MUy, M=K

Hm ... Have we proved this now? In no way. A proof would have to look like
this: First define a map

(—L1]x[0, 1)+ ([—1,1]x[0,1]) - Sx[0, 1]

by writing (6, t)— ("2, t) on the first and (—e ™%2,t) on the second
summand; then, prove that this really gives rise to a well defined bijection
Muyy,, M — K; then prove the continuity of this bijection using the note
in §2, and finally apply the theorem at the end of Chapter I that says that a

continuous bijection from a compact into a Hausdorff space is always a
homeomorphism.

%

It is often said against intuitive, spatial argumentation that it is not really
argumentation but just so much gesticulation—just “ handwaving”. Shall we
then abandon all intuitive arguments ? Certainly not. As long as it is backed by
the gold standard of rigorous proofs, the paper money of gestures is an in-

valuable aid for quick communication and fast circulation of ideas. Long
live handwaving!



CHAPTER IV
Completion of Metric Spaces

=3

%

§1. The Completion of a Metric Space

In this chapter things really depend on the metric of the metric spaces and not
only on the topology given by the metric, but it is customary and it makes
sense to rank metric spaces among the objects of point-set topology, and we
will not be pedantic about such distinctions anyway.

Let’s recall that a sequence (x,),,; in a metric space (X, d) is called a
Cauchy sequence if for every £ > 0 there is an n, such that d(x,, x,) < €
whenever n, m > n,. The metric space (X, d) is said to be complete if every
Cauchy sequence converges.

For instance, the real line R with the usual metric d(x, y)=|x — y| is
complete, as every mathematics student soon finds out (completeness
axiom for the real numbers); thus R" with the usual metric is also complete;
Hilbert and Banach spaces are complete by definition; every compact
metric space is complete—and finally we can obtain an enormous number
of other examples simply by observing that a subspace of a complete metric
space, that is a subset A — X with the metric d]| A x A, is complete if and only
if A is closed in X.
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Now by completion is understood the process of making a non-complete
space (X, d) into a complete one (X, d) by adjoining as few new points as
possible:

Definition (Completion). Let (X, d) be a metric space. A metric space (X, d)
such that X ¢ X and d = d| X x X is called a completion of (X, d) if

1. (X, d) is complete, and
2. X isdensein X, i.e. the closure X of X in X is equal to X itself.

The second condition says exactly that X is a minimal complete space such
that X is a subspace of X : Since X is dense, each “new” point x € X\ X is the
limit of a sequence (x,),» ; of points in X, and if we took £ away, (x,),»; Would
become a non-convergent Cauchy sequence and completeness would no
longer hold. Can every metric space be completed, and if so, in what different
ways? A good rule of thumb in such situations is to deal first with the unique-
ness question, and here the latter is easily settled by the following

Proposition (Uniqueness of the Completion). If (X, d) and (X, d) are com-
pletions of a metric space (X, d), there is exactly one isometry X = X whose
restriction to X is the identity.

PROOF. The image of x = lim x, under such an isometry, where (x,) is a
Cauchy sequence in X, must of course be the limit X of the same sequence in
X, which exists by assumption; thus there is at most one such isometry.
Conversely, if (x,) and (y,) are Cauchy sequences in X and &, § (resp. X, 7)
are their limits in X (resp. X), we have d(&, §) = lim d(x,, y,) = d(%, y);
hence a map X — X given by £+ X is first of all well-defined, and, second,
has the required property of being an isometry such that x + x for all x € X,
qed. O

In this sense (“ up to a canonical isometry ) there is at most one completion
of (X, d), and for this reason it is for most purposes irrelevant how we con-
struct it, if we can do it in the first place. It is easy to find a completion in a
natural way when X is already a metric subspace of a complete metric
space Y :all we need to do is take the closure of X in Y. In the examples below,
Y = R? and X is in each case a subspace homeomorphic to R:

Example 1. X = R, complete

Example 2. X is an open half-line; completed with a point

-«
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Example 3. X is an open interval; completed with two points

€ o

Example 4.

n

X = {(x, sin In x)|x > 0};
completed with a closed interval

2\X S

etc.

Example 5.

L\ X (circle)

X, completed with a circle

These examples are meant to show right away that homeomorphic
metric spaces can have extremely non-homeomorphic completions.

Let us now tackle the problem of constructing a completion for an
arbitrary metric space (X, d). We obviously have to create new points to be
limit values of the non-convergent Cauchy sequences (“ideal™ points, as
they were formerly called, implying that, strictly speaking, they do not
exist). And moreover two non-convergent Cauchy sequences (a,),,; and
(b,).> 1 have the same “ideal limit point” £ if and only iflim,,_, , d(a,, b,) = 0,
because then and only then they are to have the same limit in a completion of
X.

equivalent
Cauchy sequences

this boundary does -
not belong to X somm,
(does not “exist™)
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Now where do we get these points £ from? Well, this is one such case in
which we can make use of the “paradisiacal” (a la Hilbert) possibilities of
Cantor’s set theory: We simply take, as ideal limit points corresponding to
an equivalence class of non-convergent Cauchy sequences, the equivalence
class itself!

Lemma (Existence of the Completion). Let (X, d) be a metric space and A the
set of non-convergent Cauchy sequences in X. Two Cauchy sequences (a,) and
(b,) will be called equivalent if lim, ., d(a,, b,) = 0. Defining now the set X
as the disjoint union X + A&/~ and the distance d on X by

d(x, y) = d(x, y),
d(x, a) = d(a, x) := lim d(a,, x),

n=+o00

d(a, b) = lim d(a,, b,),
Jor all x, y in X and all equivalence classes a = [(a,)] and b = [(b,)] in

N [~, we obtain a well-defined map d: £ x X - R such that (X,d) is a
completion of (X, d).

PROOF. . .. The proof consists of that sort of argument that does not become
any clearer by being detailed by somebody else. One proves successively
that d is well-defined, that d satisfies the axioms for a metric, then that X
is dense in X and that (X, d) is complete. Just in case, let me indicate, for the
proof of completeness, that the terms of a Cauchy sequence (£,) don’t have
to be all in X. Choose sequences (x,),» ; in X such that either [(xu)x»1] = £,
or, if £,€ X, x,, = %, for all k. Then (x,, ),»;, for an appropriate sequence
k, < k, <---, is a Cauchy sequence, and (£,) will converge towards its
limit . .. . ged. O

We all, reader and author, value this trick with the equivalence classes of
non-convergent Cauchy sequences for what it is, a formal vehicle, and yet
none of us will lay aside his intuition and start imagining the ideal limit
points as really being such bouquets of Cauchy sequences. But look at what
can be done with set theory in the wrong hands and especially in school...
Well, never mind.

To conclude, a short side note about a question of formulation and
presentation. We could have defined the completion, perhaps more elegantly,
in the following way: Let € be the set of all (convergent and non-convergent)
Cauchy sequences in X.Let X = ¢/~ and d([a,], [b,]) = lim d(a,, b,). Then
(X, d) is a complete metric space, and if X is “looked on” as a subset X < X
via x — [(X),»1], then (X, d) is a completion of (X, d). (Proof: ... .) Indeed,
in analogous situations, this version is often preferred. Who would introduce
the field of complex numbers as C == R U {(x, y) € R?|y # 0}, endowed with
such and such composition laws? One naturally sets C:= R? as a set etc.
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and then announces that in the future R is “to be considered” as a subset of
C via x — (x, 0). And yet I must admit I always feel rotten when I have to
make this announcement to beginners...

§2. Completion of a Map

Let (X, d) be a metric space and f: X — Y a continuous map. Under what
circumstances and how can one extend f to a continuous map f:R-7?
First a preliminary remark. There is at most one way to do this:

Proposition. Let A be a topological space, X = A a dense subset, ie. X = A,
and let f, g: A — B be two continuous maps in a Hausdorff space B that
coincide on X. Then f = g.

PROOF. If f and g are different at a point a € A4, then they are different in a
whole neighborhood f~}(U) n g~ (V) of a, hence a ¢ X, contradiction. ged.

O
S~ U
7 ‘
. ) I
g~ (V)
in A v

in B: Choose disjoint neighborhoods
U, Vof f(a), g(a)...

Thusin particular a continuous map from a metric space X into a Hausdorff
space can be extended to the completion X in at most one way. But sometimes
it cannot be done at all, and there are in fact two different types of obstacles,
as illustrated by the following examples:

= = D

Example 1: X = R\0, £ =R, Y =R Example 2: X = R\0, £ = R, ¥ — R\1
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In the first case f has a “jump” at point 0, and therefore cannot be extended
continuously. In the second case f doesn’t have any jumps, but the only value
that would do for a continuous extension is “missing™ from the counter-
domain. We’ll now suppose that Y is also a metric space and smooth away
these two difficulties by using appropriate hypotheses: To guarantee that the
counterdomain doesn’t have any “holes”, we simply take its completion:
and to avoid jumps of f at the ideal limit points, we take f to be uniformly
continuous.

Let’s recall that if (X, d) and (Y, d') are metric spaces,amap f: X - Y
is called uniformly continuous if for every & > O there is a é > 0 such that
d’'(f(a), f(b)) < eforall a, b e X with d(a, b) < .

Lemma (Completion of Maps). Let (X, d) and (Y, d’) be metric spaces and
J: X - Y a uniformly continuous map. Then if (X, d) and (¥, d’) are comple-
tions of (X, d) and (Y, d’), there is exactly one extension of f to a continuous
map f: X -

PROOF. Because of uniform continuity Cauchy sequences are taken into
Cauchy sequences, and their equivalence is preserved. Hence defining
f(im,.., x) = lim,_, f(x,) we obtain a well-defined extension of f to a
map f: X —» ¥, where(x,),,; denotes a non-convergent Cauchy sequence in
X and the limits refer to convergence in X and ¥ respectively. One easily
verifies that f is continuous, even uniformly continuous.. . . ged. O

In particular let us notice en passant that isometries are always uniformly
continuous (& = ¢), and the completion f: £ — Yof an isometry f: X & Y
is of course again an isometry.

§3. Completion of Normed Spaces

It is not surprising that the concept of “completeness™ is particularly im-
portant for the function spaces of analysis, since interesting functions,
“solutions” to whatever it may be, are often constructed as limits of function
sequences. As already mentioned in Chapter II, §5, one can talk about
“Cauchy sequences”, hence completeness and incompleteness, in arbitrary
topological vector spaces; and when we try to establish axiomatically the
fundaments for these concepts in topological spaces, we are led to the
notion of “uniform spaces”: a structure situated between metric and topology
(every metric space being in particular a uniform space, and every uniform
space a topological space), and we can carry through the completion of
uniform spaces in the same way as with metric spaces. Every topological
vector space is also a uniform space, in a canonical way. But here I will limit
myself to normed topological vector spaces.
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First a couple of easy-to-prove notes of a general nature: The completion
of a normed space (E, |..||) is a Banach space (£, ||..]|") in a canonical way:
The vector space structure on £ can be elegantly defined as the quotient of the
vector space of all Cauchy sequences in E by the vector subspace of all
sequences that approach 0. The norm ||..]|: E = R is uniformly continuous
(¢ = &), and can thus be continuously extended to ||..||": £ = R, which is
again a norm (check this!), and d(x, y) = |x — y||”. The completion of a
real or complex inner product space is a Hilbert space in a canonical way.

Continuous linear maps f:E — V between normed spaces are auto-
matically uniformly continuous, and the extensions f: £ — ¥ obtained as
described above are again linear.

Now to get closer to what I'm really driving at, let’s recall (or define) the
meaning of *“ L? spaces”: For a fixed p > 1 let #?(R") denote the vector space
of the Lebesgue-measurable functions f :R" — R for which | f |? is Lebesgue-

integrable. Then
s, = / j | S|P dx
R"

gives a seminorm on #?(R"). As we know from integration theory, the
closure of point 0, that is {0} = {f € Z?||I S| , = 0}, is exactly the set of all
functions that vanish outside some set of measure zero. L?(R") will be defined
as the corresponding normed space: L?(R") := #?(R")/{0} (see end of III,
§4). Then an important theorem of integration theory asserts that L?(R") is
complete, hence a Banach space.

Analogously one defines the L? space L?(X, u) for an arbitrary measure
space (X, ) with a g-additive measure u: M — [0, oo] etc. The case p = 2
is particularly nice, because L%(X, u) is even a Hilbert space with

gy = j fa du.

Upon closer inspection an LP-space is thus a fairly intricate mathematical
object, and those who didn’t study Lebesgue integrals because they thought
they could get along with Riemann integrals have a well-founded horror of
such spaces. But L?(R") contains also very harmless elements, and in par-
ticular the vector space CT(R") of infinitely often differentiable functions
f:R" > R with “compact support” (i.e. vanishing outside a compact set),
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is a subspace of L?(R") in a canonical way. On this subspace the p-norm

1= 1rpas

and the scalar product {f, g)> = [g~fg dx are very easily understood, even
with a rudimentary knowledge of any of the concepts of integral. It is thus
encouraging to know that integration theory asserts that C3’(R") is dense in
LP(R")—because this then means that LP(R") is a completion of

(CE@®™), 11.-1,),

and since a space has only one completion up to a canonical isometric
isomorphism, we can define LP(R") as the completion of (Cg(R"), ||.-|l,)
(or (CP(RM), (.., ..D))ifp=2)

Now I don’t want to generate the illusion that with this simple completion
trick one can really get the Lebesgue integral out of the way, because if L?
spaces are introduced as above as completions, we don’t know anything
about to what extent those new “ideal limit points™ can be regarded as
functions, or how they can be otherwise interpreted in an analytical manage-
able way. But still! The fact that C3’(R") and like spaces, together with any
tailor-made norms they may be given according to the problem at hand, can
be completed like this—zap—creates an invaluable freedom of movements
(irrespective of the necessity of studying the ideal points). An example to
conclude the chapter will make clear what I’'m trying to say.

To denote partial differential operators it is customary to use multi-
index notation: If a = (ay, ..., a,), where a; > 0 are integers and |a|'=
@, + -+ + a,, the symbol D* means 91°!/9x3! . . - x%~; this is thus the general
form of a partial derivative of any order |a|. Now let a,: R" —» R be functions
(let's say smooth). Then p = ) <k 4,D* is a linear partial differential
operator on R", and an equation of the form Pf = g, where g is given on
R" and f is to be determined, is called a (non-homogeneous) linear partial
differential equation.

I have intentionally left unsaid what the “operator™ P “operates™ on.
In any case P defines a linear map P: CP(R") - C3(R") in the linear algebra
sense. But linear algebra by itself won't get us any further; it would be much
better if we could regard P as a continuous operator in a Hilbert space, for
instance, because then we’d be able to resort to the function-analytical theory
of such operators in our study of P.

Now we can of course complete CZ(R") turning it into the Hilbert space
L*(R"), but unfortunately there is no way P can operate on it: P: C§¥ — C¥
itself is not ] ..]|,-continuous, much less a possible extension P: L? — L2
But there are many other ways of defining scalar products on Cg’, to be
chosen according to the ends in view (which is admittedly easier said than
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done). The most obvious ones are perhaps the scalar products given on
Co(R") by

(figd.= ) | (DY, D) dx
lalsr /R
for every integer r > 0. The Hilbert spaces H'(R") obtained by completing
(CP(RM, (.., ..D,) are the simplest examples of objects called “Sobolev
spaces”, which are used as a quite refined tool in the theory of partial dif-
ferential operators. It is not difficult to see that P =Y <, a,D% with
appropriate conditions on the coefficients, defines a linear operator

P H’(R") - Hr-k(Rn)

which is in fact continuous.

This example illustrates what sort of use point-set topology has in analysis.
Of course the study of the differential operator P is by no means completed
with the introduction of Sobolev spaces, and topology cannot solve the
analytical problems proper, but it creates a climate in which analysis thrives.



CHAPTER V
Homotopy

§1. Homotopic Maps

In §1-3 I will define and intuitively explain the basic notions of “homo-
topic maps”, “homotopy™ and “homotopy equivalence”, and in §4-7 we
discuss the use of these notions.

Definition (Homotopy, Homotopic). Two continuous maps f,g: X — Y be-
tween topological spaces are called homotopic, [ =~ g, if there is a homotopy
h between them, i.e. a continuous map h: X x [0, 1] = Y with h(x,0) = f(x)
and h(x, 1) = g(x) for all x € X.

Notations. In this case we also write f 5 g. We denote by h,: X — Y, for ¢
fixed, the continuous map given by

h,(x) := h(x, t).
Then we have hy = fand h, = g.

To the extent that maps can graphically visualized in the first place, so
can homotopies: Think of [0, 1] as a time interval; at time ¢t = 0 the map h,
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has the form f, but it changes in the course of time until it takes the form g
at time ¢t = 1. The whole change must go on continuously in both variables,
sO one can also say that the homotopy h is a “continuous deformation of
finto g”.

One frequently considers homotopies with additional properties besides
continuity; you will be acquainted from function theory with the concept
of homotopy of paths with endpoints fixed, where X = [0, 1], Y = Cis open

and p, g€ Y are fixed. The additional requirements on the homotopy are
h(0) = p, h(1) = g for all ¢:

hy

In differential topology one often considers homotopies between maps
from one manifold to another, such that each h, is required to be an embedding
(h is an “isotopy ™) or a diffeomorphism (h is a “diffeotopy”); thus there are
many situations in which h has to satisfy one or another additional re-
quirement. But here we’re just going to discuss the basic notion, where h has
to be merely continuous.

As already hinted by the sign ~, “homotopic™ is an equivalence relation.
Reflexivity is clear: f ~ f because h, := f for all ¢t gives a homotopy between
f and f. For symmetry, if f ~gviah,0<t <1, theng =~ f via h, _,. For
transitivity, if f >~ g = |, we have Sl with

hy for0<ts<
H,={2' o 2

N
ky_, fort<t<l (prove continuity!)
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Notation. If X and Y are topological spaces, [X, Y] denotes the set of
equivalence classes (* homotopy classes”) of continuous maps of X into Y.

If we introduce an (n + 1)-th concept, we can naturally formulate its
relation to the n previous ones by means of n lemmas, for instance:

Note (Composition of Homotopic Maps). For two pairs of homotopic maps
X 22Y 723 Z, the compositions f o f and g o g are also homotopic (via h, © h,
etc.)

Note (Product of Homotopic Maps). For two pairs of homotopic maps
Ji~gi:X;- Y,i=1,2 the maps f, x f, and g, x g, from X; x X, into
Y, x Y, are also homotopic (via K}’ x h? etc.)

But for such simple concept as homotopy it would be pedantic to present
now a list of such results as complete as possible; let’s wait leisurely to see
what we’ll really need in the applications.

§2. Homotopy Equivalence

Definition (Homotopy Equivalence). A continuous map f: X — Y is called
a homotopy equivalence between X and Y if it possesses a “homotopy inverse”,
i.e. a continuous map g: Y = X withge f ~ Idy and fog ~ Idy.

We then say that f and g are homotopy equivalences inverse to each other,
and call the spaces X and Y homotopy equivalent. Compositions of homo-
topy equivalences are evidently homotopy equivalences, and so is of course
Id, for all X; thus we really have an equivalence relation: X ~ X, and
X ~Y ~ Zimplies Y ~ X (anyway)and X =~ Z.

A simple but important special case:

Definition (Contractible Space). A topological space is called contractible if it
is equivalent to a space with one point.

In this case the definition reduces to the requirement that there be a
homotopy h: X x [0, 1] — X, called a “contraction™, between the identity
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and aconstantmap X — {x,} = X.Thespace R", for instance, is contractible,
for h(x) := (1 — r)x defines a contraction into the origin; and so is of course
any star-shaped subspace of R".

Definition (Retract and Deformation retract). Let X be a topological space,
A < X asubspace. A is called a retract of X if there is a retraction p: X — A,
i.e. a continuous map with p|4 = Id,. Now if p is also homotopic to the
identity, as a map from X into X, then p is called a deformation retraction
and A, correspondingly, a deformation retract. Finally, if this homotopy
between p and Idy can be chosen so that all points of A are kept fixed in the
course ofit, i.e.if h(a) = aforallt € [0, 1]andalla € A4, then pis called a strong
deformation retraction and A a strong deformation retract of X.

A deformation retraction p: X — 4 and the corresponding inclusion
is: A c X are evidently homotopy etuivalences inverse to each other,
because “retract” already means that poi, = Id,, and “deformation™
implies i o p ~ Id,.

Now this whole thing about retracts may taste at first rather dry, but I will
presently say something that will whet your interest in strong deformation
retracts. When dealing with homotopies in practice, it is important to develop
an eye for homotopy equivalences of spaces. Whenever possible, one tries to
avoid having to laboriously look for an f: X - Yandag: X - Y and a
homotopy fo g =~ Idy and another one g o f ~ Id,, and writing all this stuff
down in tiresome detail. We want to be able to say at a glance: These two
spaces are homotopy equivalent, and everybody shall agree: Of course, they
are homotopy equivalent.

But this quick identification of homotopy equivalent spaces is in many
practical cases based on the construction of the homotopy equivalence
X =~ Yasacomposition X ~ X, ~--- =~ X, =~ Y, where in each step (there are
generally only a few of them, sometimes only one) the two spaces are either
homeomorphic or one is a strong deformation retract of the other. Why
are strong deformation retracts so easy to recognize, though? Well, what does
such a deformation do: It takes each point of X along a continuous path
into the space A4, between times 0 and 1, and all we have to mind is that points
that already start in A do not move. So if X and 4 can be graphically depicted
at all, the deformation h, if it exists, will probably be easy to find. Now let’s
consider some examples to help sharpening our eye.
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§3. Examples

Example 1. The origin is of course a strong deformation retract of R" or of
the ball D".

Dl

But this means A x 0, where A is any topological space, is a strong deforma-
tion retract of A x R"or 4 x D",

and in particular the solid torus S' x D?, for instance, is homotopy equiva-
lent to the circle S*:

More generally, if E is a vector bundle over a topological space A4, the zero
section is a strong deformation retract of E, or, if E is endowed with a
Riemannian metric, of the disc bundle DE, i.e. A ~ E ~ DE.
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Example 2. The sphere $""! = {x € R"|||x|| = 1} is a strong deformation
retract of the ball minus a point D"\0:

SII—I

If we attach a cell to a space X and remove the origin from the cell, we
obtain a space X v, (D"\0) which is homotopy equivalent to X, because
X < X u,(D"\0) is a strong deformation retract:

X X

t—0 t=4%

Example 3. Let 0 < k < n. Look at R"*! as R* x R""**! and consider in
S" < R"*! the subspace \/2/2(S*"! x $"7*) = {(x, )| IxI? = IylI* = 4},

which is a “product of spheres”. Then \/5/2(8"‘l x S"~%) is a strong de-
formation retract of S"\($* "' x0 L 0x S"~%).

D883

Example 4. A “figure eight” and a figure consisting of two circles connected
by a line segment are homotopy equivalent, for they are both strong deforma-
tion retracts of the same space, a “thickened eight ™
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Example 5. Let M be a differentiable manifold with boundary. If the boundary
OM is non-empty, it is obvious that M\ @M cannot be a retract of M, since it
is dense in M. But using an appropriate “collar neighborhood” one can see
that M and M\OM have a common deformation retract. They are thus
homotopy equivalent.

oM

Example 6. Yet another example from differential topology, specifically from

Morse theory. M, u, D is a strong deformation retract of M,, in the notation
of 111, §7, Ex. 2 (cf. [14]).

Example 7.

For every topological space X the cone CX is contractible: the vertex is a
strong deformation retract of the cone.
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§4. Categories

In order to be able to explain the essence and purpose of the concept of
homotopy, I must say first what is understood by “algebraic topology”,
and this is best done by introducing an appropriate language, which also
finds many other applications in mathematics: the language of categories
and functors.

Definition (Categories). A category € consists of the following data:

(a) a class Ob(¥) of mathematical objects, called the objects of the category.

(b) a set Mor(X, Y) for each pair (X, Y) of objects, where Mor(X, Y) and
Mor(X', Y’) are disjoint if the pairs (X, Y) and (X', Y’) are distinct. The
elements of Mor(X, Y) are called the morphisms of X into Y. Notation:
Instead of feMor(X, Y) we'll also write f: X — Y, not necessarily
implying that X, Y are sets and f is a map.

(c) alaw of composition Mor(X, Y) x Mor(Y,Z) - Mor(X, Z)for each triple
of objects (X, Y, Z)(we write the law of composition as (f, g)+—+go f,
corresponding to the notation X 4 Y% Z borrowed from sets and
maps).

Data (a), (b) and (c) form a category if they fulfill the following axioms:

Axiom 1 (Associativity). If X & Y % Z % U are morphisms, then
ho(gef)=(hog)eof.

Axiom 2 (Identity). For every object X there is a morphism 1, € Mor(X, X)

with the property I, o f = fand g 1, = g for all morphisms f: Y — X and
g: X - 2.

Before proceeding any further I will first list some examples of categories.
As long as the morphisms are maps and nothing is said about the law of
composition, we’ll always have in mind the usual composition of maps.

Example 1. The category .# of sets:

(a) Objects: sets;

(b) Morphisms: maps.

Example 2. The topological category Jof:

(a) topological spaces;
(b) continuous maps.

By the way, Example 2':

(a) topological spaces;
(b) arbitrary maps between topological spaces,

is also a category, but not a particularly interesting one.
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Example 3. Category of groups:

(a) groups;
(b) group homomorphisms.

Example 4. Category of vector spaces over [X:
(a) K-vector spaces;

(b) K-linear maps.

Example S. Category of topological vector spaces over [K:

(a) topological vector spaces over [K;
(b) continuous linear maps.

Example 6. The differential topological category Zifftos:

(a) differentiable manifolds;
(b) differentiable maps.

Example 7. The category ¥ec¢ (X) of vector bundles over a given topological
space X :

(a) vector bundles over X ;
(b) bundle homomorphisms, i.e. continuous, fiberwise linear maps over the
identity in X:

E 2. F

\ /-

Example 8. The category of n-dimensional vector bundles over arbitrary
topological spaces:

(a) n-dimensional vector bundles;
(b) “bundle maps”, i.e. continuous, fiberwise isomorphic maps over con-
tinuous maps from one base space to another:

F

E —— F

x L. x
We could continue in this way for a long time, because practically every
sort of mathematical structure admits structure-preserving or structure-
compatible maps, and the category axioms don’t require too much. There are
examples by the dozen in algebra, analysis, topology as well as elsewhere.



68 V. Homotopy

The examples presented so far share the feature that their objects are sets
with some additional structure, and the morphisms are maps with the usual
composition (which is why we don’t have to worry about associativity).
But the concept of category goes further. As an illustration I'll give the
following example, which may look somewhat strange:

Example 9. Let G be a group.

(a) only one object, which we call ¢;
(b) Mor(e, €)= G;
(c) composition is the group multiplication.

A really important example of a category in which the morphisms are not
maps is the following:

Example 10. The homotopy category s# 44

(a) the objects are the topological spaces, as with Jof; but
(b) the morphisms are the homotopy classes of continuous maps;

Mor(X, Y):=[X, Y]:

and
(c) the composition is defined via representatives of each class

9l-Lf1=0g-11
*

After the definition and examples, a couple of complementary remarks.
From the identity axiom it follows at once that for each object there is
exactly one “identity” or “one” 1y, because if 1, € Mor(X, X) has the same
property, then 1y = 1y o1y = 14. In the same way a morphism f: X - Y
can have at most one inversemorphismg: Y — X (i.e.suchthat fog = 1,and
gof = ly), because if g’ has the same property, g’ (f cg) = g’ ° 1y, hence
from associativity (g'c f)eg= lyog=g=goly =g

The morphisms that possess an inverse are called isomorphisms of the
category, and two objects between which there is an isomorphism are called
isomorphic. Thus in the topological category two spaces are isomorphic
if they are homeomorphic, but in the homotopy category isomorphism
means only that the spaces are homotopy equivalent.

To conclude, a last remark about a word used in the definition, which may
already have momentarily puzzled you. There is good reason to speak only
of the “class”™ Ob(%¥) of objects and not of the “set of objects of €”. You
already know the contradictions to which the naive approach to set theory
can lead, with its phrases like *“the set of all sets”. True, here we require that
for a given category € the concept of objects be defined with enough pre-
cision (as in the case of topological spaces, for instance), but we don’t expect
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all the objects of € that there ever have been, are and will be, to form a well-
defined set that can be included in the usual set-theoretical operations. There
are of course categories whose objects really do form a set; they are the so-
called “small categories”.

A formal and exact understanding of the meaning of “set” and *“class”
requires the use of axiomatic set theory. Here we satisfy ourselves with the
warning that object classes are not to be taken as more than simply the concept
of the objects in question.

§5. Functors

Definition (Covariant Functor). Let € and 2 be categories. By a covariant
functor ¥:€ - 2 we mean a correspondence (“functor data™) which
associates to each object X of € an object #(X) of 92, and to each morphism
X3y
of € a morphism
F(X) Z5 F(Y)

of 2, such that the following “functor axioms™ hold : & respects the category
structure, i.e.

(l) f(lx) = l_f(x); and
(2) (¢ oY) = F(¢) o F(Y) for all etc. (it’s clear what for).

Definition (Contravariant Functor). Analogously, but with the difference that
& now reverses the direction of morphisms: To each X % Y is associated
a morphism

F(X)Z2 #(v)

(this stands for an element Z#(¢) € Mor(Z(Y), Z(X))). The identity axiom
remains the same for contravariant functors, but the composition axiom must
be written now as Z (¢ o ¥) = F(¥) o F(¢), because

xbvyaz
is taken to
F(X) & ()22 #(2).

Remark. To be sure, the difference between the two concepts is only formal,
because every category has a “dual category™ with the same objects, defined
by Mor®*(X, Y) := Mor(Y, X) and ¢ o  := {J o ¢, and with this notation
a contravariant functor from € into 2 is nothing but a covariant functor
from € to 292, But in view of the relevant examples it is more practical and
natural to talk about contravariant functors than about dual categories.
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For trivial examples take the identity functors Id: %€ — €, which is
evidently covariant, and the constant functors € — 9, which associate to
every object the fixed object Y,, and to every morphism the identity 1y,.
The constant functors can be seen as either co- or contravariant.

It would sometimes be inconvenient not to be allowed to call such
correspondences functors, but they aren’t exactly interesting. Somewhat
more noteworthy are the “forgetful functors”, for instance the covariant
functor 04 — # which associates to every topological space X the set X,
and to every continuous map f: X — Y the map f: X — Y. One often has
reason to consider such functors from a category with more structure into
one with less; all they do is “forget™ the richer structure of the domain
category.

The first examples of functors with real mathematical content are to be
found in linear algebra. For instance, let (£ be a field and ¥~ the category of
IK-vector spaces and linear maps. Then the concept of the “dual space™ of a
vector space gives us a contravariant functor *: ¥~ — ¥ in a canonical way:
To each object V is associated the dual space V* := {¢: V — [K]¢ is linear},
and to each linear map f: V — W the dual map f*: W* —» V* ar—aof.
Then Id} = Id,. and (f o g)* = g* - f*, and * is a (contravariant) functor.

Functors which have not only content but mathematical power as well
are admittedly harder to come by, but more about that later. This section is
just to introduce the concept, and I will close it with a simple example that
has to do with homotopy. Recall that [ X, Y] denotes the set of homotopy
classes of continuous maps X — Y. Then

Example. Let B be a topological space. Then [.., B] defines in a canonical
way a contravariant functor from the homotopy category into the category
of sets and maps, as follows: To every topological space X we associate the
set [X, B] and to every morphism [ f] € [ X, Y] of the homotopy category
we associate the map [/, B]: [Y, B] — [X, B] defined by [¢]+— [¢° f].

§6. What Is Algebraic Topology?

In a nutshell: Algebraic topology is solving topological problems using
algebraic methods. — Now what on earth can that mean? Well, we're going
to explain it in more detail.

What we call today algebraic topology was from the older, simpler and
more obvious point of view the finding, calculation and application of
invariants. A correspondence y that associates to every X in a given class of
geometrical objects a number y(X), is called an invariant if X = Y always
implies x(X) = x(Y). What sort of objects and isomorphisms “ =" this
definition refers to depends on the particular case under consideration; we
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speak for instance of “topological invariants™ when =~ means homeomor-
phism, of “diffeomorphism invariants” when = means diffeomorphism, and
SO on.

No doubt the oldest non-trivial example of such an invariant is the Euler
number or Euler characteristic of finite polyhedra. Let P be a polyhedron in
R", consisting of a, vertices, a, edges, a, two-dimensional “sides™ and so on
(we don’t have to get into the exact definition here). Then

(P)= Y (~1Ya,
i=0

is called the Euler number of the polyhedron P, and the following non-trivial
invariance theorem holds: The Euler number is a topological invariant.
This gives us right away a topological invariant for all topological spaces X
that are homeomorphic to finite polyhedra: y(X) is well defined (by the
invariance theorem) as the Euler number of a polyhedron homeomorphic

to X.
icosahedral surface P, x(8%) = tetrahedral surface P,
g +a, +a;= a +a +a;=
12-30+20=2 4—-6+4=2

How can one apply such invariants to the solution of geometrical problems?
Here is one example. Consider the following surfaces X and Y:

) 2

Are X and Y homeomorphic? They are both compact and connected,
and of course Hausdorffas well: so they cannot be immediately distinguished,
and just the fact that we aren’t able to construct a homeomorphism between
them doesn’t prove anything. But X # Y should somehow follow from 2 # 3,
shouldn’t it? And such is indeed the case, because the computation of Euler
characteristics gives x(X) = —2, but x(Y) = —4. Thus X and Y cannot be
homeomorphic, qed.
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Other topological invariants that were known around the turn of the
century, before the introduction of the modern viewpoint, were for example
the sorcalled “Betti numbers™ b; and the “torsion coefficients”. The Betti
numbers are connected with the Euler characteristic via y = ) (—1)'b;, but
two spaces can have the same Euler characteristic and different Betti numbers,
so in this sense the Betti numbers are a “finer” invariant, and one can
extract more information from them.

From the modern point of view algebraic topology is the finding, calcula-
tion and application of functors from “geometric™ categories (e.g. Jos.
Deffl s, ...) into “algebraic” categories (e.g. the category of groups, of
rings, .. .).

A fundamental example, that paved the way in the development of the

modern point of view, is that of “homology”: for every k > 0 one has the
(covariant) k-dimensional homology functor H, from the topological
category into the category of abelian groups. Mathematicians gradually
acquired greater skill in inventing appropriate functors, and there are now a
great many functors in use in algebraic topology, some co- and some contra-
variant. In particular the somewhat vague concept of “geometric” category
must now be understood in a much wider context. In analysis, for example, one
investigates “geometric” objects and categories (complex spaces and mani-
folds, Riemann surfaces etc.), which can be (and are!) studied from the
topological point of view, using the forgetful functor to pass to the topo-
logical category and functors defined thereon:
Category of complex spaces % Top 2%, Category of abelian groups.
But quite apart from that, complex analysis directly constructs functors from
“complex analytic” categories into algebraic ones, using analytical methods.
Such analytically defined functors are often “finer” than the topological
ones, since they do not *“forget ™ the complex structure.

Well, but what is the good of all those functors? Now, first we want to
remark that the functor axioms imply “invariance” in the following sense:
If H is a functor and f: X — Y an isomorphism, then H(f): H(X) —» H(Y)
(resp. H(Y) — H(X), in the contravariant case), is an isomorphism as well,
because if g is the inverse morphism to f, H(g) is obviously inverse to H(f).
In particular X = Y always implies H(X) = H(Y): such “invariance
theorems” come along free with every functor, and one can use the iso-
morphism classes of these algebraic objects to distinguish between geometric
objects exactly as in the case of numerical invariants. In fact the classical
invariants, too, can be obtained as invariants of these algebraic objects: for
example, the i-th Betti number is the rank of the i-th homology group:
b(X) = rk H(X), and x(X) = Y 2, (— 1) rk H'(X), etc. This just to show
that the modern functors are no worse than the classical invariants. But the
modern point of view of algebraic topology has in fact advantages over the
older one, as we are now going to explain.
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I'll not elaborate on the fact that the algebraic objects H(X) contain in
general more information than the invariants, that they make possible
distinctions between geometrical objects for which the invariants would
give us just a bleak “00”, or not even be defined—so I can go right to the
center of things, and that is: The functors give not only information about the
geometrical objects, but also about the geometrical morphisms, about the
maps! An example will illustrate what this means.

A geometrical problem often boils down to whether a given continuous,
surjective map n: X — Y, about which we already know for instance that it is
not injective (hence certainly does not possess an inverse) admits a section,
i.e. a continuous map ¢: Y — X such that n- ¢ = Id,.

X
{
",’ image of the section
“}y)
A Y a(y)
n l : c?
Y \_/

An analogous problem is often met in many other categories, the idea
being, generally speaking, to decide whether a morphism n: X — Y has a
“right inverse”, i.e. a morphism o: Y — X with noo = 1,. Let’s say for
instance we have a continuous surjective map = from S* onto S2. Can =
have a section? You can see that it’s no good calculating invariants for S2
and S?, because it's not a matter of their being equal or different. But things

look different if we apply an appropriate functor: If there is a ¢ such that the
composition

SZ 9, SS A SZ
is the identity, then, by the functor axioms, the composition
H(S?) 2 H(S®) 22, H(S?)

must also be the identity. But using two-dimensional homology, for instance,
we have H,(S?) = Z and H,(S*) = 0, and thus the composition

z 22,0 28, 7

must be the identity on Z, which is obviously impossible. So no map from
S3 to $2 can have a section.
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That was just a simple application example, but typical of the superiority
of the functorial point of view in all questions which have to do with maps.
But even if one were interested only in the geometrical objects themselves,
the old point of view in algebraic topology wouldn’t have developed much
further, because the study of spaces and the study of maps depend so much on
one another that any development unilaterally concentrated on spaces would
have led to a dead end.

§7. Homotopy—What For?

After all those preparations I can now give a reasonable answer to this
question, and I will in fact adduce two interconnected main reasons for the
usefulness of the notion of homotopy. The first is the homotopy invariance
of most algebraic topological functors. A functor defined on the category of
topological spaces is called homotopy invariant if f~ g always implies
H(f) = H(g). Such functors can be thought of as being actually defined on
the homotopy category, their application to Zz£ arising by composition
with the canonical functor: Fog — #éop — /. From the functor axioms it
follows of course that a homotopy invariant functor assigns isomorphic
objects to homotopy equivalent spaces: X ~ Y implies H(X) = H(Y).
Categories other than that of topological spaces can also, with a suitably
modified notion of homotopy, admit the concept of homotopy invariant
functors, and, as I said, many (though not all) functors in algebraic topology
have this property.

This is not implausible anyway, since homotopy invariance means that
for every homotopy h the morphisms H(h,) do not depend on t, which, due
to the connectedness of the interval [0, 1], means simply that H(h,) is locally
constant relative to t. In this form: *“For sufficiently small deformations of a
map the associated algebraic morphism is not changed”, homotopy in-
variance lies in the very nature of correspondences which coarsen continuous
behavior into algebraic features.

All right, but why is this so important ? Well, because the computability of
functors is based to a large extent on this fact! The best of functors is no good
if it cannot be calculated. Applying the definition directly would be too
complicated, but the task can often be simplified by using homotopy in-
variance to pass to homotopically equivalent spaces.

In fact, explicit calculations are carried out directly from the definition only
for a couple of extremely simple standard spaces (e.g. the one-point space,
S! and the like), and after that one applies “laws™, among which the homo-
topy invariance is one of the most important (others are for instance the
Mayer-Vietories principle, long exact sequences, spectral sequences . . .).

The second main reason for the usefulness of the notion of homotopy is the
possibility of “reducing”™ some geometric problems to homotopy problems.
When we apply an algebraic topological functor to a geometric situation,
i.e. to all spaces and maps occurring in it, we get in general a strongly simpli-
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fied, but for that very reason more transparent, algebraic “representation” of
the geometric situation. Geometric questions are thus translated into (simpler)
algebraic ones, and by answering the latter we may get at least some partial
information about the former, for instance: For f: X — Y to have a right
inverse it is certainly necessary that H(f): H(X) — H(Y) has, but it doesn’t
work the other way around—this condition is in general not sufficient. The
functor does not reflect all the essential features of the geometric problem,
but only one aspect of it. Now the homotopy category stands half-way, so to
speak, between the extremes of topological intractability and algebraic
oversimplification. On the one hand it is quite “fine” and is close to the
topological category, as attested by the homotopy invariance of so many
functors. Thus homotopy conditions are sometimes really sufficient, and
the original topological problem can be solved by solving its representation
in the homotopy category. On the other hand, the latter is still coarse and
algebraic enough not to make calculations entirely inaccessible. Loosely
speaking, there are much fewer homotopy classes than maps, so that one can
to a certain extent get a general view of [ X, Y]. For instance: There are many
and very complicated closed curves §' — C\0, but [S!, C\0] = Z (*winding
number™).

An important ingredient for the algebraic manageability of the homotopy
category are the so-called “homotopy groups™ of a topological space, and I
will digress from my main topic to include here their definition. To this
effect we need a bit of notation, namely: A space with basepoint simply
means a pair (X, x,) consisting of a topological space X and a point x € X,.
It is then clear what basepoint-preserving continuous maps (X, x,) — (Y, ¥o)
are, ditto for basepoint-preserving homotopies between such maps. Denote
by [(X, xo), (Y, yo)] the set of such homotopy classes. If now N is a fixed
point on the n-sphere ", n > 1, the north pole for instance, then

nn(X' xO) = [(s"' N)' (X' xO)]

has a canonical group structure (abelian for n > 2) which I will presently
explain, and is called the n-th homotopy group of (X, x,).

The group law is most easily described by considering the n-sphere as the
quotient I"/dI", obtained from the cube I" :=[0, 1]" by collapsing the
boundary dl" := {(x,, . ... x,) € I"| at least one x;isOor 1} (cf. p. 42 and p. 94).
So choose once and for all a homeomorphism I"/0I" = §S" taking the point 91"
to the north pole. Then the continuous maps (S", N) — (X, x,) are exactly
the continuous maps I" — X that take the whole boundary oI" to x,. Now
if «, § are two such maps, define amap [0, 2] x [0, 1J"~! — X in the obvious
way, given by a on the left half and by f on the right half, and compose this
map with another map I” — [0, 2] x I"~!stretching the first coordinate by a
factor of two:

— —_— X
here a here §
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The composition then represents another element of =, (X, x,) which is

defined to be the composition [a][#] of the elements [a], [B] € m. (X, Xo).
(Ct., for example, [11], p. 5).

¥

Picking up the thread again, this midway position of homotopy relative
to topology and algebra made it possible to take important geometric
problems and first reformulate them as homotopy problems and then solve
them, completely or in part, using homotopy-theoretical calculus Those
things are admittedly way above what can be done with the tools and on the
level of this book, and a critical observer may find it outrageous to talk
about them here. But this shall not stop me from mentioning at least one
example to satisfy a bit your by now whetted curiosity.

Two n-dimensional, compact differentiable manifolds without boundary
M, and M, are called “bordant” if there is an (n + 1)-dimensional compact

manifold with boundary W whose boundary is the disjoint union of M,
and M,:

“Bordant” is an equivalence relation, and the equivalence classes, called
“bordism classes”, form an abelian group M, with the composition law
defined by disjoint union. Problem: determine those groups.

Solving this problem would be equivalent to classifying n-dimensional
manifolds up to bordism. Now bordism is, in comparison to diffeomorphism,
a quite coarse relation, but in differential topology there are lots of reasons to
welcome coarser classifications as well, because to this day little enough is
known about the classification of higher dimensional manifolds up to dif-
feomorphism, and around the time of our story, the early fifties, nothing
whatever was known. Besides bordism is not so coarse a relation as it might
seem at first sight; it preserves some important properties of manifolds, and
in any case the classification up to bordism subsequently proved very
fruitful and useful.
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Now this problem does not look very accessible, given the above-mentioned
circumstances! René Thom solved it in 1954 using homotopy-theoretical
methods. I will not include here the result (see [18]), but the N, are certain
finite abelian groups, quite different for different n, and not at all to be guessed
using only geometric intuition. But I shall say a few words about the homo-
topic formulation of the problem. In Chapter III, §4 we talked about the
Grassmann manifold O(n + k)/O(k) x O(n), whose points are the k-dimen-
sional vector subspaces of R"**. Over this manifold there is a canonical k-di-
mensional vector bundle (“ Grassmann bundle”) whose fiber over a “point”
& « R"** is exactly the k-dimensional space ¢ itself (or rather £ x {£},
since the fibers must be mutually disjoint). Denote by M,0(k) the Thom
space of this bundle (see III, §6 example 5). Thom was able to prove that for
k big the homotopy group =, , (M, O(k)) is isomorphic to N,. Calculating these
homotopy groups is then the homotopy problem to which the bordism
problem could be reduced; and the homotopy problem could be solved by
Thom using the new methods with which J. P. Serre had not long before
achieved a great breakthrough in homotopy theory, which had known a long
period of stagnation before that.

I would greatly like to outline here the “Pontrjagin—-Thom construction”
which Thom used to perform the transformation of the bordism problem
into a homotopy problem, and to tell how this construction is connected with
an earlier one by Pontrjagin (1938) and a still earlier one by Hopf (1926)—
a very interesting and instructive detail of the development of modern
topology. But for once I will resist the temptation....



CHAPTER VI
The Two Countability Axioms

§1. First and Second Countability Axioms

This short chapter is linked directly to the basics. We recall that a set B
of open sets in X is called a basis of the topology of X if every open set is the
union of sets in B. Now we add to this notion that of “ neighborhood basis ":

Definition (Neighborhood Basis). Let X be a topological space, xo€ X. A
set U of neighborhoods of x, is called a neighborhood basis of x, if every
neighborhood of x, contains a neighborhood in U.

Example. The set of all neighborhoods of x i1s of course an (uninteresting)
neighborhood basis. But now let X = R". The set of balls K, ,(x,) with radius
1/n,n = 1,2,..around x, forms a (countable!) neighborhood basis of x,,.
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Definition (Countability Axioms). A topological space satisfies the first count-
ability axiom, and is called first countable, if every point possesses a countable
neighborhood basis. It satisfies the second countability axiom, and is called
second countable, if it possesses a countable basis for the topology.

Obviously the second axiom is the stronger one; the sets in a countable
basis that contain x, form of course a countable neighborhood basis for x,.
Both axioms have the property of being inherited by subsets. R"” and thus all
its subspaces satisfy both axioms (all balls with rational radius and rational
center coordinates form a countable basis for the topology). Metrizable
spaces satisfy at least the first axiom: If d is a metric, the d-balls K, ,(x,)
form a countable neighborhood basis of x,.

To get a better look at the difference between the two axioms, we'll con-
sider some examples of first countable spaces that are not second countable.
Uncountable discrete spaces, which are trivially in this category, are, of
course, uninteresting in themselves, but in looking for better examples it is
useful to

Note. If a topological space has an uncountable discrete subset, it cannot be
second countable.

Example 1. Let C(R) be the Banach space of bounded continuous functions
on R with the supremum norm. Then C(R) is first countable (being a metric
space), but not second countable.

PRrROOF. Define for every real number x expressed as a decimal a continuous

bounded function f, whose value for n € Z is the n-th decimal after the decimal
point.

I/ U

Then | f; — £l is always >1 for x # y, which means {/,|x € R} is an un-
countable discrete subspace of C(R), and C(R) cannot be second countable.

O
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Example 2. Let H be an “inseparable™ Hilbert space, i.e. one for.which there
is no countable Hilbert basis. A Hilbert basis {e,}, . will then have an un-

countable index set, and since |le; — e,|| = ﬁ for A # yu, it follows as
above that H does not satisfy the second axiom, but since it is a metric space
it satisfies the first.

§2. Infinite Products

Of course we want to see also a topological space that satisfies neither
countability axiom, and I use the question as an opportunity to talk for the
first time about products of arbitrarily many topological spaces, a topic we’ll
discuss again in Chapter X.
By the product [],ea X; of a family {X,},.A of sets we mean the set of

families {x,}, .1 Of elements with x, € X, forall A € A, that is

n X, ={{x}iealx1€ X}}.

A€A
For u € A a fixed index, the projection n,: [ [, X; = X, on the u-th factor
is defined by {x,};ea X,.and x, is also called the u-th component of the
point {x;};c € []ica X For A = {1,...,n} it is of course better to write
(X1, ..., X,)instead of {x,} ;¢ 1, ... m)» and then the above notations correspond
to the familiar ones for finite cartesian products X, x --- x X,.

Definition (Product Topology). Let {X ,},. A be afamily of topological spaces.
The product topology is defined as the coarsest topology relative to which the
projections on the individual factors are all continuous. Together with this
topology the set [ [, X, is called the product space.

The inverse images of open sets under the projections will be called “open
cylinders™.

— Product of
all factors

i

Product of the \

open cylinder”
remaining factors

R T T

h o > o > - - - e

> one factor X,
U open
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and the intersections of finitely many open cylinders will be called open
boxes. Thus the open cylindersforma subbasis {n; !(U)|1 € A, U = X,0open}
for the product topology, and the open boxes form a basis

{n;' (U)o ---na ' (UAy,..., 4 €A U, c X;, open}.

One can also say that a subset of the product is open in the product topology
if every point in the set is contained in an open box contained in the set.

If all the factors are the same, say X, = X for all 1 € A, we also write X"
instead of [],ea X. The elements of X* are then simply (arbitrary) maps
A- X.

Returning now to the countability axioms:

Example 1. If A is uncountable and every X, is non-trivial (meaning simply

that it has some open set other than ¥ and X ), the product [ ];.a X, is not
first, and hence not second countable.

PRrOOF. For every A choose an open set U, in X, that is neither J and X,
and choose x, € U,. If the point {x,},.» had a countable neighborhood
basis, it would have one consisting of open boxes. But only countably many 4
can be “involved” in countably many open boxes. Take a A that is not in-
volved in any of the boxes. Then none of the boxes of the neighborhood basis
will fit in =y '(U,), a contradiction. qed. O

Example 2. An oo-dimensional Hilbert space with the weak topology
(the coarsest one for which the linear functionals, i.e. here the maps

{v,.. > H- K, veH,
are still continuous) is not first countable.
The proof is similar to that of Example 1, even in the separable case, for

although H then has a countable Hilbert-basis, it has no countable vector
space basis. Cf. [15], p. 379.

§3. The Role of the Countability Axioms

The first countability axiom has to do with convergence of sequences.

Notation. Instead of saying * there is an nq such that x, € Uforalln > n,",

we’ll say “the sequence (x,),» eventually stays in U™, partly because it is
shorter, but also because it is more suggestive.

If £: X = Y is continuous and lim x, = ain X, we have lim f(x,) = f(a)
in Y. This is a well-known fact and entirely trivial, for if U is a neighborhood
of f(a), then f~'(U) is a neighborhood of a, hence the sequence f(x,)
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eventually stays in f(U) and (x,) stays in U. Moreover, if X is a subspace of
R", the converse also holds: f: X — Y is continuous if and only if every
convergent sequence is taken into a sequence that converges to the limit of
the first. This characterization of continuity (sequential continuity, one
might say) does not hold, however, for other spaces: the convergence of image
sequences to the right point is not sufficient in general to guarantee con-
tinuity, as will be shown by the following

Example. Let X be the set of continuous functions [0, 1] = [—1, 1] endowed
with the product topology, i.e. the topology inherited from

Xcl[-1]%Y= ] [-1,1].
defo, 1)

As a set X is then the same as the unit ball in the Banach space C[0, 1], but
the topology under consideration is entirely different. What does it mean for a
series to converge in X ? In general, what does convergence mean in a product
space? A sequence in [];.a X, converges to a if and only if it eventually
stays in every open box around g, or again if and only if it remains in every
open cylinder around a, which is equivalent to saying that it converges
componentwise to a. Convergence in our example function space X is then
nothing more than the familiar pointwise convergence: lim ¢, = ¢ means
lim ¢, (1) = ¢(4) for all 1 € [0, 1].

Every continuous function on the interval [0, 1] is a fortiori square-
integrable, and thus we have a canonical map X — L[0, 1], ¢ — ¢ from X
into the Hilbert space of square-integrable functions on [0, 1]. Now this map
is sequentially continuous (using, for instance, the Lebesgue convergence
theorem), but it is not continuous. If it were, there would be for every ¢ > 0
an open box K around the origin in [—1, 1]1") such that [} ¢*dx <&
for all ¢ € K N X; but “belonging to K” is a condition about the value of ¢
on certain finitely many points in [0, 1], and such a condition cannot prevent
[ @? dx from being arbitrarily close to 1:

_
T
 ———
- o o A W W T e e E - EEE w we we e e

0 4 A A
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Proposition 1. If X is first countable and Y is an arbitrary topological space,
amap f: X — Y is continuous if and only if it is sequentially continuous.

PROOF. Let f be sequentially continuous, a € X and U a neighborhood of
f(a). We must show: There is a neighborhood V of a with f (V) < U. Assume
no V satisfies this condition, in particular the finite intersection V; n --- " V,
of ¥; in a countable neighborhood basis of a. Choose x,e V"~ ---NV,
with f(x,)¢ U. Then (x,),,, converges towards a, because there is a V;
contained in every neighborhood of a, and x, € V; for all n > i. But of course
the image sequence does not converge towards f(a), because it does not
penetrate U at all, contradicting the sequential continuity of f. qed. O

More important than sequential continuity is perhaps the concept of
sequential compactness, and here too the first countability axiom plays a
decisive role.

Definition (Sequentially Compact). A topological space X is called se-
quentially compact if every sequence in X has a convergent subsequence.

Very often it would be desirable that compactness and sequential com-
pactness were the same, be it that one needs convergent subsequences, or the
other way around: one knows more about sequences than about open
covers, a case which occurs particularly often in function spaces. The concepts,
however, are not the same, and it i1s not even true in general that either of
them implies the other. Instead of giving examples for this, I will provide a
general reference, as follows: Let o/ and & be two topological properties
about which you want to know if “/ = £ holds; and suppose you feel it
would be too difficult or too unreliable or just plain too boring to verify it
yourself. Then of course you take the first available topology book, look in the
index for properties &/ and %, and if &/ = % does indeed hold, it is quite
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likely that you will find this fact stated as a lemma. But if o/ = % does not
hold, your chances are slimmer, at least in general; but there is one book
which is excellent exactly for such cases, namely, L. A. Steen and J. A. Seebach,
Counterexamples in Topology [17]. In this book are individually described
143 of mostly very strange topological spaces, and at the end there is a
“Reference Chart”, a big table where you can see at a glance whether or not
each example has each one of 61 (!) topological properties.

Now all you have to do is inspect the columns for f and 4, and you’ll find
in particular (returning to our original theme) examples of compact but

not sequentially compact spaces and vice-versa. Howcever, the following
holds:

Proposition 2. A first countable compact space is also sequentially compact.

PROOF. Let (x,),»1 be a sequence in X. Using first only the compactness of
X we notice that there must be a point a € X such that the sequence penetrates
infinitely often into every neighborhood of a, otherwise every point x would
have a neighborhood U, which intersects the sequence only a finite number of
times, and since X = U,, U --- L U, the sequence would eventually have
no place to step next. Now if a has a countable neighborhood basis {V;}; 51,
we can obviously choose a subsequence {x, }s>; With x, eV, n--- "},
and this subsequence converges towards a, ged. O

Proposition 3. For metric spaces the concepts “compact™ and “sequentially
compact” are actually synonymous.

PrOOF. Let X be a sequentially compact metric space and {U,},. A an open
cover that has no finite subcover. We want to derive a contradiction. For
every x € X we choose a A(x) such that x is not only contained in U,,,, but
is actually deeply imbedded in it, in the sense that the radius r of the biggest
open ball around x which is still contained in U,,, must be either greater
than 1 or so big that the ball of radius 2r around x is not contained in any of
the sets of the covering. It is obviously possible to choose such A(x).
Now we choose a sequence (X,),» inductively with

Xp41 € UA(:.) URERL VN /PRy

Observe that now the distance of a member x; of the sequence to any of its
successors is either greater than one or great enough that the ball around x;
with radius double the distance does not fit in any of the sets of the covering.
Now let a be the limit of a subsequence and 1 > r > 0,so that K,(a) < U,,,.
Then the subsequence would have to stay eventually in K,,s(a), but then the
points in the sequence would have to be crammed together closer than
allowed by our construction, a contradiction. qed. O

*
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So much for the first countability axiom. Where does one come across the
second? In a very prominent place, the definition of “manifolds”: an n-
dimensional topological manifold is a second countable Hausdorfl space
locally homeomorphic to R". In lots of mathematical fields the objects of
study are topological manifolds with additional structure, as for instance in
differential topology, Riemannian geometry, Lie groups, Riemann surfaces,
etc., and in yet other fields one studies structures that are like manifolds in
some ways, e.g. complex spaces, and which are also required to be second
countable ([10], p. 18). So one can say that this is one of the fundamental
axioms of the greater part of modern geometry and topology.

From the mere definition of manifold it is not immediate what we require
this axiom for. But its technical significance will soon become clear. In fact,
it makes it possible to find for every open cover {U,},.a (in particular for
every family of open neighborhoods {U,}, . x) a countable subcover, and this
is needed for the many inductive constructions and proofs where one starts
with local knowledge (locally homeomorphic to R"!) and proceeds from
U,,v---vU,  toU, v---vU, uU, . Butthe second countability
axiom is not merely a technical convenience: if it were to be discarded,
theorems of differential topology like for instance the metrizability of mani-
folds, the Whitney embedding theorem, the Sard theorem etc. would not
hold anymore.

Now of course this in itself would not be sufficient reason to leave aside
spaces that do not satisfy the axiom, but otherwise look like a manifold.
Maybe they are actually quite interesting?. .. . But this does not seem to be
the case, and at any rate there are no positive reasons why one should study
such “manifolds™.

To conclude the chapter I will mention a sort of ““ third countability axiom”
that sometimes comes up, namely, separability.

Definition. A topological space is called separable if it contains a countable
dense set.

This property is of a rather different nature from the first and second
countability axioms in that it is not inherited by subsets. For an example,
consider R? with the topology generated by the quadrants (x, y) + RZ , ;
this is a separable space, since the set {(n, n) |n € N}, for instance, is dense in
it. But on the other hand the “antidiagonal” x + y = 0 is an uncountable
discrete subspace, hence non-separable.

AN \

*(2,2)
(1, 1)
*(0,0)




86 V1. The Two Countability Axioms

Now you will say, come now, this is a very pathological example. Granted!
But in “reasonable” spaces, for instance metric spaces, the concept is dis-
pensable, because metric spaces are separable if and only if they are second
countable. In any case second countability implies separability, and for
Hilbert spaces the definition coincides with the concept we’ve been already
using: existence of a countable Hilbert basis.



CHAPTER VII
CW-Complexes

§1. Simplicial Complexes

Before we come to CW-complexes proper, I'd like to say something about
their forerunners, the simplicial complexes. The language of point-set topology
allows us to formulate concisely and consistently numerous problems
which at first glance seem very diverse, and to submit them to a common
intuitive presentation. But to the subsequent solution of such problems
point-set topology, strictly speaking, has little to contribute. By far most
solution methods come from algebraic topology. This was already known
very early, and from the very beginning (i.e. approximately the turn of
the century) it was a main endeavor of topology to develop the algebraic-
topological machinery. Classical textbooks like Seifert-Threlfall, Lehrbuch
der Topologie (1934) and Alexandroff-Hopf, Topologie I (1935) contain
mainly algebraic topology, and the division into *point-set” and “algebraic™
topology came about only after World War II, due to the accumulation of
material.
Algebraic topology can well be said to start with simplices:
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Definition (Simplex). By a k-dimensional simplex or k-simplex in R" we
mean the convex hull s(vy, ..., v) of k + 1 points in general position.

The convex hull of vy, ..., v, is of course the set

k
{Zlivdlo + .- +A& = l’AIZ 0},

i=0

and “general position” means that (v, — vg,...,v, — vp) are linearly
independent.

/&‘ ......

O-simplex 1-simplex 2-simplex 3-snmplex and soon
(point) (segment) ((full) triangle) ((full) tetrahedron)

Nomenclature. The convex hull of a subset of {v,, ..., v} is called a sub-
simplex or a face of s(v, ..., v)):

s(vy, v3): 1-dim.
/A \ subsimplex (edge)

0-dim. subsimplex (vertex) v2

2-dim. subsimplex L‘L
Uy

Definition (Simplicial Complex or Polyhedron). A set K of simplices in R"
is called a simplicial complex or a polyhedron if the following three con-
ditions are satisfied:

(i) If K contains a simplex it contains all faces of this simplex.
(i) The intersection of two simplices of K is either empty or a common face.
(iii) (In case K is infinite), K is locally finite, i.e. every point of R" has a
neighborhood that intersects only finitely many simplices of K.
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Thus the simplices cannot pierce through one another in a messy way,

V\Q
< />

but must fit with one another nicely. Here a couple of examples:

(1) Octahedral surface: the polyhedron is composed of eight 2-simplices
(and their faces). It 1s a “simplicial version™ of the 2-sphere.

&

(2) A “simplicial torus™:
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(3) A simplicial Mobius strip:

(4) A simplicial something, just as a reminder that simplices can meet in a
more general way than in the first three somewhat special examples.

Definition. The subspace | K| = | J,.x s of R" is called the topological space
underlying the complex K.

lK.' = leI, but Kl # Kz

The difference between K and | K| should be obvious, but you can well
imagine that we will not be so pedantic as to stress this difference all the time
in notation and words: One talks loosely of a simplicial complex K < R"
(meaning | K|), and the minute after one refers to its simplices (now meaning
K). Of course there are enough cases where a careful differentiation is
essential, as for instance in this chapter.

e
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So much for the concept. But what's the use of it? From the topological
point of view simplicial complexes, as subspaces of R", form only one, ap-
parently very special, class of examples of topological spaces. But with one
peculiarity: If for a given complex we know how many essential simplices
(i.e. those that are not faces of larger simplices in K) there are in each di-
mension (“simplex numbers™), and what vertices (hence what sides) these
simplices share (“simplex incidences”), then |K| is determined up to a
homeomorphism. How do we build from these data a space homeomorphic
to |K|? We choose for each dimension a standard simplex, for instance
A, :=s(ey, ..., e, ) with the unit vectors in R**! as vertices; then we form

the disjoint sum of as many copies of the standard simplices as are de-
termined by the simplex numbers:

X:(Ao+”‘+Ao)+”'+(An+“.+A")

and finally we identify corresponding sides using the incidence data.

a
~ d
Incidence data:
a—-a,b-bd S
-
~a
b ™
bl
i-th j-th

summand of X

We now have a continuous bijection from the (compact!) quotient space
X/~ to the Hausdorff space | K|, which must be a homeomorphism.

Example. Construction of the octahedron from eight 2-simplices:
1 2 2 3 3 4 4 1,

1 2 2 3 3 4 4 1 1 N

\6/ 6 6 6 6
Clearly the simplex numbers and incidences tell us more than the simple
homeomorphism type of |K|: we know | K| up to a homeomorphism that

takes simplices affinely into simplices. But they don't tell us any more than
that, and in particular notice that the position of |K| in space cannot be
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established from simplex numbers and incidences, not even *“in essence”,
as shown by the example below:

J456789

LA
O

But let’s switch back to our main line. If we go over from a topological
space to the simplex numbers and incidences of a simplicial complex homeo-
morphic to that space, we don’t have yet any topological invariants, but we
can be sure that all topological invariants can in principle be calculated from
these data, because they are enough to recover the original space up to
homeomorphism. This observation is so to speak the starting point of
algebraic topology, and for decades all efforts were canalized in the direction
indicated by it. What eventually came out was, expressed in today’s termin-
ology, the first significant algebraic topological functor, namely simplicial
homology. By construction this is a covariant functor H, = (Hq, H,,...)
from the category of simplicial complexes and simplicial maps (i.e. maps that
take k-simplices affinely into k’-simplices k' < k), or *“simplicial category”,
into the category of graded abelian groups. The decisive factor, however,
are invariance theorems which imply that H, defines a functor (also denoted

H)) from the category of spaces homeomorphic to simplicial complexes
and continuous maps:

Simplicial
category
simplicial
{ ful
et w.,
category of topological
spaces homeomorphic s category of
to simplicial complexes “homology™ H, graded abelian groups
and continuous maps
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Now even though simplicial homology existed some time before the
invariance theorems, it is not to be assumed that the invariance is an
“accident” that “luckily” made simplicial homology useful for topology.
Clearly the creators of simplicial homology had a geometric intuition for the
thing, and from the very beginning had the topological invariance in view.

OK, that was a beginning. Today many other functors have been added,
and even homology itself reaches much further now and is expressed in
more elegant terms. (*Computing homology with simplicial chains is like
computing integrals [ f(x) dx with approximating Riemann sums”, A.
Dold, Lectures in Algebraic Topology, 1972, p. 119.) But building a space
out of simple building blocks (here simplices) is, now as before, very useful,
the difference being that now one generally uses, instead of simplicial
complexes, CW-complexes, which are a sort of *“second-generation poly-
hedra”, and much more flexible and practical. What CW-complexes are,
their fundamental properties, in what respect they are better than simplicial
complexes and why they could be invented only after those, is what I will
explain in the next sections.

§2. Cell Decompositions

Just to recall, a partition of a set X is a set of pairwise disjoint subsets of X
whose union is the whole of X; thus every element of X lies in exactly one
such subset. A topological space is called an n-cell if it is homeomorphic to
R"; and a cell decomposition of a topological space X is a partition of X into
subspaces which are cells.

A space with a cell decomposition (X, &) is called a CW-complex if
it satisfies certain axioms. I’ll enumerate them in the next paragraph; but
first let’s familiarize ourselves with cells and cell decompositions.

Since R contains only one point, O-cells are exactly the one-point spaces.
The open ball D" and the punctured sphere S™\pt are, as is well known,
homeomorphic to R" and hence n-cells (S"\pt = R" by stereographic pro-
jection, R" & S" = D" by central and orthogonal projection).

ETTEN
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With a positive continuous function r: S"~! —» R as “stretching factor”
we obtain a homeomorphism of R" onto itself, given by 0+ 0 and

xl-»r( * ). x
x|

In particular this homeomorphism takes D" onto an n-cell, as in the figure:

cell

This is a simple procedure, which provides us enough cells. In fact it is
even true that every open star-shaped subset of R" is an n-cell; the best way
to see this is considering the flow of an appropriate radial vector field.

| i

This was just a marginal remark, and I actually shouldn't be diverting
your attention to such monstrosities, because although a cell is always a
cell, the way the cell in this example lies in R? is definitely not typical of the
nice and proper way in which cells lie in CW-complexes.

More important is the question of whether an n-cell can at the same time
be an m-cell for m # n. It cannot, I hasten to say. R"  R™ for n # m. This
was first proved by L. E. J. Brouwer (1911), and the proof is not simple.
Only two cases are trivial, R° and R' are not homeomorphic to any of the
higher-dimensional spaces R" (R* is the only R" that can be disconnected
by taking away a single point). The proof becomes very simple, though, if
one is allowed to apply a bit of algebraic topology: If R” =~ R™, then

R™\0 = R™\0,
thus
Sl > RN\O x R™\0 x> S"!,
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and because of the homotopy invariance of homology it follows that
Hn— I(S"- l) = Hn— I(Sm- l)'

But H,(S) = Z for i = k > 0 and zero for i # k > 0, hence n = m, qed.
By the way, this is really an “honest” proof, because in the derivation of the
homological tools the Brouwer theorem is never used. We can thus talk
about the dimension of a cell.

So much for the cells as individual beings. Now let’s look around for some
examples of cell decompositions. Every simplicial complex K defines in a
canonical way a cell decomposition of | K|, as follows: The union of the
proper faces of a simplex s is called its boundary ds, and s\0s is called the
“open simplex” associated with s. Open simplices are cells, and the collection
of open simplices of a simplicial complex K forms a cell decomposition for
|K|. A couple of other examples:

point (0-cell)
S"\pt (n-cell)
X = cubic surface, canonically X = §", decomposed
decomposed into eight O-cells, into two cells

twelve 1-cells and six 2-cells

These are very well-behaved examples. Unhindered by axioms we could
of course decompose a space by choosing for instance some very wild pair-
wise disjoint cells contained in it (like the “star™ in the preceding page),
and the remaining points would be defined as O-cells of the decomposition.
But with such decompositions it is impossible to start anything reasonable,
and that’s why we now turn to the “CW-axioms™.

§3. The Notion of a CW-Complex

Definition (CW-Complex). A pair (X, &), consisting of a Hausdorff space X
and a cell decomposition & of X, is called a CW-complex if the following
three axioms are satisfied:

Axiom 1 (“Characteristic Maps™). For each n-cell e€e & there is a con-
tinuous map ®@,: D" — X taking D" homeomorphically onto the cell e and
$"~ linto the union of the cells of dimension at most n — 1.

Axiom 2 (“Closure Finiteness™). The closure é of each cell e € & intersects
only a finite number of other cells.

Axiom 3 (“Weak Topology™). 4 = X is closed if and only if every A N &is.
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This concept was introduced in 1949 by J. H. C. Whitehead, and the name
CW-complex refers to Axioms 2 and 3, which give conditions under which
infinitely many cells are allowed in the complex (for finite cell decompositions
these two axioms are always trivially satisfied): “C” stands for “closure
finiteness™ and “ W™ for “ weak topology™.

Definition. If X is a space decomposed into cells, X" denotes the union of
cells of dimension <n, and is called the n-skeleton of X.

Axiom 1 (about the existence of characteristic maps) says roughly that
the n-cells are to be thought of as “attached” to the (n — 1)-skeleton. Later
we’ll make this statement more precise (§5). Before considering examples to
illustrate the three axioms, I would like to mention a coupled of immediate
consequences of Axiom 1, which should be included right after the definition
in your intuition about CW-complexes. For instance, every non-empty
CW-complex must contain at least one 0-cell, for if n > 0 were the lowest
dimension of a cell, S~ ! (# &) could not be taken into X"~ ! # . It also
follows at once that every finite CW-complex is compact, being the union of
finitely many compact subspaces ®,(D"), e € &. It is actually true even that the
closure of every cell is compact. More precisely:

Proposition. If a cell decomposition of a Hausdorf{ space X satisfies Axiom 1,
thenfor every n-cell we have e = ®,(D")and in particular the closure € is compact
and the * cell boundary™ eé\e = ®(S"~!) lies in the (n — 1)-skeleton.

PROOF. It is true in general for continuous maps that f(B) < f(B); thus
e= (D,(B") > @ (D") o e. Being a compact subspace of a HausdorfT space,
®,(D") is closed, and thus equal to & because it lies between e and é.qed. [

Now let’s take a look at some examples of cell decompositions of Hausdorff
spaces, with an eye towards the axioms:

First some finite decompositions, in which case Axioms 2 and 3 are
automatically satisfied.

(1)
e
e
Two 0-cells, Four 0-cells, Three O-cells, Three O-cells,
two 1-cells four 1-cells. three 1-cells. three 1-cells.
Axiom 1 fails, Axiom 1 satisfied Axiom 1 fails, Axiom 1 satisfied
cell boundary of cell closure e is

e is not in O-skeleton not compact.
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(2) The following decomposition into three 0- and two 1-dimensional cells
does not satisfy Axiom 1, since the boundary of cell e is not in the
O-skeleton. Incidentally, the example cannot be *“fixed” by considering
some other decomposition: the space is not CW-decomposable.

O-cell~

w 0-cell

1-celle
I-cell 4

O-cell-
etc.

(3) The decompositions of the cube and the sphere given at the end of the
preceding paragraph are CW-decompositions.

Now two examples demonstrating the independence of Axioms 2
and 3:

4) every point of
the boundary is
a O-cell

every radius

] is a 1-cell
center 1s

a O-cell Axiom 3 is not

satisfied, but
axioms 1 and 2 are

(5) every point of the
boundary isa 0-cell

2-cell

Axiom 2 is not
satisfied, but
axioms 1 and 3 are

(6) The decomposition of a simplicial complex into its open simplices is a
CW-decomposition.
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§4. Subcomplexes

Definition and Lemma (Subcomplexes). Let (X, &) be a CW-complex,
& < & a set of cells in it, and X’ = | J..¢ e its union. (X', &) is called a
subcomplex of (X, &) if one of the following three equivalent conditions is
satisfied:

(@) (X', &) is also a CW-complex;
(b) X' isclosed in X
(c) < X' foreveryee &".

PROOF OF THE EQUIVALENCE OF THE THREE CONDITIONS. (b) = (c) is trivial.
(c) = (b). We have to show that € N X' is closed for all e € &. Since X is
closure finitee N X' = € N (ej U --- U €)), which by (c) equals

en(e,v---ue),

being thus closed, ged.

(a) = (c). A characteristic map ®, for e € & relative to (X', &) is also
characteristic relative to (X, &), hence the remark in §3 implies that ®(D"),
the closure of e in X (which is of course what we mean in (c)) is also the
closure of e in the subspace X’, and consequently lies in it. ged.

(b, ¢) = (a). A characteristic map for e € & relative to X is also character-
istic relative to X', because of (c); and X’ is obviously closure finite. Thus
(X', &) satisfies Axioms 1, 2. We still have to show thatif 4 <« X’and A n é
isclosed in X’ for all e € &, A is closed in X". But (b) implies that “closed in
X is the same as “closed in X*”, so all we have to prove is that 4 N é is
closed for ee £\ & as well. From the closure finiteness of X we have
Ane=An(e; u---Ue) e where we can take e; € &, since cells in
&\¢&’ can’t contribute to the intersection with A = X’. Then we get

Ane=AnE v---ve)ne,

but A N (€; U --- U &) is closed by assumption, hence A N & is too. qed.

O

It is fair to say that from this easily remembered lemma there follows
immediately everything that one wants to know about subcomplexes when
dealing practically with CW-complexes. Let’s enumerate a couple of such
consequences:

Corollaries.

(1) Arbitrary intersections (using (b)) and also arbitrary unions (using (c)) of
subcomplexes are again subcomplexes.

(2) The skeletons are subcomplexes (using () and the proposition in §3).

(3) Every union of n-cells in & with X"~ ' forms a subcomplex (same reason).

(4) Every cell lies in a finite subcomplex (induction on dimension of cell:
closure finiteness and proposition in §3).
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A fifth consequence will be stated separately because it deserves more
attention:

Corollary. Every compact subset of a CW-complex is contained in a finite
subcomplex. In particular a CW-complex is compact if and only if it is finite.

ProOF. Using (1) and (4) there remains to prove that a compact subset 4 ¢ X
meets only a finite number of cells. To prove this, choose a point in each cell
met by A. This set of points P is closed, because closure finiteness implies
that P n éis actually finite and we're in a Hausdorff space. But this argument
works for any subset of P! Thus P has the discrete topology, but as a closed
subset of a compact A it must be compact too, hence finite, ged. O

§5. Cell Attaching

So far we have talked about CW-complexes as existing objects whose
properties we are studying. Now I will indicate the most important method
for the construction of CW-complexes. It is easy to visualize, being essentially
the cell attaching that we have already considered in III, §7, Example 1.
This method is not only of practical but also of fundamental importance,
because since every CW-complex, up to cell-preserving homeomorphisms,
can be so represented, one gets in this way a certain overall understanding
about the possible CW-complexes. I will not include the proof, but it is not
difficult and does not depend on anything not dealt with in this book (cf. III,
§1-3, 7).

If X is a CW-complex and ¢: 8"~ ! = X"~ ! is a continuous map into the
(n — 1)-skeleton, X U, D" is again a CW-complex with one more cell, in a
canonical way. The canonical map D" <« X + D" — X u, D" is character-
istic. The cell boundary of the new cell is ¢(S"" ') = X"~ 1. Note that this
cell boundary doesn’t have to be a homeomorphic image of the sphere, just
a continuous image.

\0

Dl

Xy, D"

Analogously, we can attach a whole family of n-cells simultaneously:
Let {@:}1ca be a family of continuous maps ¢,: $"™' — X"~ ', and let’s
collect them together into a single continuous map ¢: 8" ! x A —» X"~ !,
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(v, A)— @,(v), where A has the discrete topology. Then X U, (D" x A) is
again a CW-complex in a canonical way, created from X by “attaching a
family of n-cells”. Notice that by no means the boundaries of the new cells
have to be disjoint:

D" x1 X

N

D" x2
D"x3

But now we can obtain any CW-complex by successively attaching families
of cells: We start with the zero-skeleton X°. This is simply a discrete space,
and if we wish we can think of it as being obtained by attaching a family of
O-cells to the empty space. How do we get X" from X"~ 17 Let &" be the set of
n-cells. Choose for every n-cell e a characteristic map ®, and set ¢, := ®,|S"~ 1.
If we now use {¢,}.ce as the family of attaching maps, we get after the
attachinga CW-complex X"~ y, (D" x &™), which is cell-preserving homeo-
morphic to X" in a canonical way.

We thus get all skeletons by induction, and in particular X itself if X is
finite-dimensional (i.e. contains no cell above a certain dimension). On the
other hand, if X is infinite-dimensional we get X from the skeletons

XcXlc...

as the union (J=, X", endowed with the “weak topology” prescribed by
Axiom 3.

§6. Why CW-Complexes Are More Flexible

I'll now mention some points of view from which CW-complexes are “more
well behaved” or “more convenient” then simplicial complexes. Let’s start
with Cartesian products. The product of two cells is, of course, another cell,
and if (X, &) and (Y, &) are cell decompositions for X and Y respectively,
then {e x ¢'|e€ &, ¢ € F} is a cell decomposition for X x Y, and it is easy
to prove that the following holds for such decompositions:

Note. If X and Y are finite CW-complexes,then X x Y is alsoa CW-complex.
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Remark. (no proof here, see for instance Dold [5], p. 99). For infinite CW-
complexes it can happen that X x Y does not have the weak topology
(but Axioms 1 and 2 are always satisfied). But under very mild additional

assumptions, for instance when one of the factors is locally compact, X x Y
is again a CW-complex.

The product of two positive-dimensional simplices, though, is not a
simplex anymore:

so that if we want to make the product of two simplicial complexes into one,
we have to subdivide further the individual simplex products.

2

In III, §6 we had considered a number of examples of “collapsing” a
subspace to a point, and it is exactly in algebraic topology that this operation
comes up most often. For CW-complexes the following is very easy to verify:

Note. If X is a CW-complex and A < X a subcomplex the cell decomposition
of X/A into the 0-cell A and the cells of X\ A is again a CW-decomposition,
or, in short: X[A is a CW-complex in a canonical way (Dold [5], p. 98).

For simplicial complexes, on the contrary, there is no such canonical
quotient operation. The quotient X/A4 of a simplicial complex by a sub-
complex cannot in general be made simplicial without further subdivision
and a new “embedding” in a possibly much higher-dimensional Euclidean
space. Just think as a simple example that the quotient of a single simplex by
its boundary is homeomorphic to the sphere.

Analogously, there is no *“simplex attaching” to correspond to cell
attaching in CW-complexes; already when we simply glue together two
1-simplices by the boundary, we have to do some work and make choices to
get a simplicial complex homeomorphic to the result (here S*).

2
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For a CW-decomposition of a space X much fewer and “ more natural™
cells are generally necessary than for a simplicial complex homeomorphic
to X. To exemplify let’s consider some simple spaces.

(1) The sphere S? as a simplicial and a CW-complex:

pt

sz ~pt

$2 as a simplicial $? as a CW-complex:
complex: at least it works with 2 cells
14 simplices

(2) The torus S* x S'. Since S! can be CW-decomposed into two cells, we
can do it for S! x S! with four:

or as a quotient space:

2-cell

In contrast, to build a simplicial complex homeomorphic to a torus, we
need quite a few simplices—42, to be exact, as Professor Guy Hirsch
casually informed me over a cup of tea, correcting a rash conjecture of
mine.

(3) The n-dimensional projective space can be CW-decomposed into n + 1
cells in an entirely natural way:

RP"=e;U:---Ue,,
CP"=eyue,u:---Ue,,,

where the cells are the affine spaces P" = P° U (P'\P?)--- u (P"\P"" ).
There is no simplicial decomposition as simple and natural.

§7. Yes,But...?

This is all nice and well, but simplicial complexes were not being con-
sidered for their own sake, but because they accomplish something: the
algebraization of geometric objects, the calculation of the homology functor
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and the topological invariants connected with it.. . . What do CW-decompo-

sitions accomplish, convenient as they may be? The question is perfectly
warranted.

Comparing what we do in both cases to construct a space from the building
blocks,

for simplicial complexes:

AL )

plus incidence data

for CW-complexes:

OO .

plus attaching maps

we immediately notice a big difference relevant to the possible use of these
notions: while for simplicial complexes the incidence data are.something
algebraic and thus establish some sort of primitive *algebraization™ of | K|,
the attaching maps are only continuous maps ¢: $"! - X"~1 and thus
complicated geometrical objects, themselves needing algebraization. It is
thus not immediately clear what we stand to gain by substituting cells and
attaching maps for a space. This is also the reason why, even assuming that
CW- and simplicial complexes were invented around the same time, the
latter must have been preferred.

And now we come to the crux of the matter: The investigation of simplicial
complexes led to the development of homology theory, and homology
theory itself can be used in the algebraization of attaching maps. The homo-
logical properties of attaching maps (as I must say somewhat vaguely,
since getting into homology in more detail would lead us too far afield)
can be expressed by means of certain “incidence numbers”. Such numbers
do not contain full information about the attaching maps anymore, nor do
they allow us to recover fully the topology of the complex. But they are
enough to determine the homology of the complex,

HDOO

plus “incidence numbers™

HOMOLOGY
H (X)

W

’—\_'
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and the point is that this method is extraordinarily more effective and faster
than the direct calculation of simplicial homology.

Having said this much, I should also indicate, though without proof and
further elucidation, a useful and easily remembered consequence: The Euler
characteristic of a finite CW-complex is the alternate sum of the number of
cells in each dimension. So we obtain in our examples, for instance:

X(S") =1 + (_ l)"’
W(S' x SHY=1-2+1=0,
ARP") = ¥(1 + (- 1),
(CPYY=n+ 1.

To conclude let me mention that CW-complexes are important on other
grounds as well. For example, a geometrical problem often boils down to
finding a continuous map f: X — Y with certain properties, and frequently
a CW-decomposition of X is what is needed to shed the right light on things.
Because then one tries to construct the map by induction on the skeleton.

The first map f,: X° — Y is generally easy enough to find, and if we already
have

Jo-1: X"V Y,

a continuous map f,—, o ®,|S""1:$"! — Y is given for each n-cell e,

X
N
D-! T
s ~ Y
chay. map. ;€
;o
a

/
S / Ju-1 already given

and it follows easily from the axioms for CW-complexes that f,_, can be
extended to a continuous f,: X" — Y if and only if each one of these maps
a, = f_, o®.|S""! can be extended to a continuous map D" — Y. This in
turn means that the element [o,.] € 7, - ,(Y) must be zero, which is certainly
the case for instance when this homotopy group is trivial . . . and so on.
“Simplifying assumptions” make life easier for the mathematician, but
when can they be made? In algebraic topology a compromise often has to be
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worked out: The spaces must be special enough to allow certain methods to
work and certain theorems to apply, but at the same time they mus-t be
general enough to include certain important examples of applications.
Considering CW-complexes (or spaces homotopy equivalent to them) is f)ften
a good compromise of this sort, and this is another reason to be acquainted
with the notion of a CW-complex.



CHAPTER VIII

Construction of Continuous Functions
on Topological Spaces

§1. The Urysohn Lemma

When we want to construct a function with certain properties on R" or one of
its subspaces, analysis offers us a vast array of tools. First thing to come to
mind are perhaps polynomials and rational functions, and there is a lot that
can be done with themalone! Then come the so called ** elementary functions™,
like the exponential, the logarithm, the trigonometric functions; then power
series or, more generally, uniformly convergent sequences of already available
continuous functions. We can obtain functions with given properties as
solutions of differential equations, and so on and on—as we might say in
good conscience.

All this looks a bit more difficult on manifolds, but the ties between
manifolds and analysis are so close that we still have essentially the same rich
possibilities for the construction of continuous functions. For one thing,
many analytical techniques (e.g. differential equations) can be carried over
to differentiable manifolds; then we can also imbed manifolds in RY

(M" = M’ c R, for N big enough),
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where they can be treated as subsets of R"; and finally we have a third
alternative, which is often the most practical: we establish a direct relation
between the manifold and R" by means of charts.

N2 :

@U open in M

h homeomorphism
(resp. diffcomorphism)

//////w-c R" open

and we can then “lift” a continuous function f on U’ to a continuous func-
tion on U

U

;jh\,,

U —T—-' R
Granted that a function on U is not a function on the whole of M, but if for
instance the support of the function f to be lifted (i.c. the closure Supp f :=
{x] f(x) # 0}) is compact,

the composition f o h can simply be extended to a continuous function F
on the whole of M taking the value 0 outside U:

Fp) = {foh(p) forpe U,

0 otherwise.
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Such functions then play an important role, either achieving themselves the
end in view, or serving as a means to achieve it (* partitions of unity”, §4).

CW-complexes also have a similar, if not so close, connection to analysis.
Here, using induction over the skeletons, we face the problem of extending an

existing function on "~ ! to the whole disk D", taking into account the desired
properties.

boundary (given)

we're looking for an
extension here

And finally let’s mention metrizable spaces, whose structure is already
considerably poorer: But even here we can still make use of a metric

d:X x X - R,

whenever we need a function on X. Suppose for instance the problem is
finding a continuous function f: X — [0, 1] for a given neighborhood of a
point p € X, such that the function is identically zero outside this neighbor-
hood and identically one inside a smaller neighborhood. Then we just choose

0 < &£ < 6 small enough, take an auxiliary function A: R = [0, 1] looking
like this

Mpevocneos

nprrrscco anqg

and make f(x) = Ad(x, p)).

This introduction was just to make sure that you really see the problem of
constructing continuous functions on general topological spaces asa problem.
Imagine you are given ¥ U = X and you have to find a function

f:X-1[01]

that is identically one on V and identically zero outside U.
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X, topological space /V U here 1 continuous

A)

here O

given sought

Where are we going to get such a continuous transition from 1 to 0, if the
topological space X has no recognizable relation to the real numbers—no
charts, no cells, no metric? So this is the problem:

Fundamental problem in the construction of functions on topological spaces
(The Urysohn Lemma Problem). Let 4 and B be closed, disjoint subsets of a
topological space X. Find a continuous function f : X = [0, 1]Jwithf |4 =1
fIB=0.

Notice that for every continuous function f : X — R the sets f ~!(1) and
f ~1(0) are closed anyway, so that the problem above is solvable for arbitrary
A and B if and only if it is solvable for 4 and B: that’s why we only have to
consider the case when A4 and B are closed.

A necessary condition for the problem to have a solution can be
immediately stated: A and B must be separable by open neighborhoods,
because if there is such an f, the sets f ~!(3, 1] and f ~'[0. ). for instance,
form open, disjoint neighborhoods of A and B. (Here and in the following
we use the common expression “open neighborhood” U of a subset 4 c X,
meaning simply an open set U containing A.)

The existence of separating open neighborhoods for 4 and B is not
sufficient, but we have the following result, which is so to speak the funda-
mental theorem for the construction of functions on topological spaces:

Urysohn Lemma. Suppose for the topological space X every pair of disjoint
closed sets can be separated by disjoint open neighborhoods. Then for every
pair of disjoint closed sets there is a continuous function f : X — [0, 1] which
takes the value 1 on one set and the value 0 on the other.

The proof comes in §2. But before we go into it we will take a look at some
classes of topological spaces with this separation property. First remark that
all metric spaces satisfy it trivially: Let (X, d) be a metric space. Given a
non-empty closed set B, a point a ¢ B has always a positive “distance”
inf, g d(a, x) > 0 to B, because there must be a whole ball around a lying
outside B. Denote by Upg(a) the open ball around a with radius half the
distance to B.
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Now let 4 and B be disjoint closed sets, we get separating open neighbor-
hoods simply by putting U = ), , Ug(a) and V:= | J, 5 U «(b).

In CW-complexes, too, it is always possible to separate closed sets by
open neighborhoods: using induction over the skeletons one reduces the
question to an easily solvable problem in D".

For a third example, notice the following

Proposition. In every compact Hausdorff space two closed disjoint sets can
be separated by open neighborhoods.

PRrROOF. Every two points ¢ € A and b € B can be separated by open neighbor-
hoods U(a, b) and V(a, b) because of Hausdorffness. For ‘a fixed, find
by,....b,€ B with Bc V(a,b,) U --- U V(a,b,), possible because B is a
closed subspace of a compact space, hence compact. Then

U(@):=U(a, b)) ---n U(a,b,)
and
V@@):=V(a,b,))u---v V(a,b,)

are separating neighborhoods for a and B

V(a)

U(a)

and, analogously, U := U(a,)v---v U(g,)and V := V(a,) n--- 1 V(a,) separate
A and B, ged. 0O
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Thus the Urysohn lemma is also applicable to compact Hausdorfl spaces,
and about such spaces it cannot be said that they were “a priori” or “by
definition ™ related to the real numbers. So you must concede that the Urysohn
lemma is indeed a striking theorem.

But maybe you’ll want to revise this opinion about the lemma after seeing
the proof. It is quite simple and may leave you with the feeling that “I could

have thought of it myself . But isn’t this a bit of self-deception? Just try it
before reading the proof....

§2. The Proof of the Urysohn Lemma

The simple idea is to obtain the function as a limit of step functions that
decrease gradually from A and B and get ever finer:

Giving such a step function is simply the same as giving a chain of sets
“between” A and X\ B:

A=Agc Ajc---c A, c X\B.

Then we define the “corresponding™ step function as being equal to 1 on
Ao, to 1 — 1/n on A\A,, to 1 — 2/n on A,\A, etc., and equal to zero
outside 4,, and in particular on B. Such a function is of course not con-
tinuous. In order to make its “jumps” successively smaller and smaller, so as
to obtain in the limit a continuous function, we are going to indent each step
with additional “plateaus”, halving the jump height each time:
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This is the fundamental idea. If we want this procedure to be successful,
though, we must make sure that the boundary of A;_, never touches the
boundary of 4;, because at a point where they touch the leap would already
be higher than its “nominal value” h, and above all it would continue to be
greater than h no matter how many times we indent new plateaus:
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We must thus guarantee that the closure of 4;_, is always contained in the
interior of A;, that is 4;,_, = A;. When we start the induction, our chain
contains only the two sets A =: A, = A, := X\B, and the condition is
obviously satisfied. Maintaining it along the inductive refining of the chain
is exactly where the separation axiom comes into the proof:

Note. If X is such that any two disjoint closed subsets of X can be separated
by open neighborhoods, then for any two subsets M, N with M = N there is a
third subset L “between” them, such that M ¢ L < L < N just separate M
and X\N by open neighborhoods U and V and put L := U.

¥

This is then the idea of the proof. A;_, < A, is an obvious precaution:
do we have to take any others? If we did, we’d notice it immediately when
trying to carry out our idea—but in fact there are no other obstacles at all,
and the proof goes smoothly without any tricks. Let’s convince ourselves:

PROOF OF THE URYSOHN LEMMA. Let 4 and B be disjoint closed subsets of X.
An increasing chain ¥ = (4,, ..., A,) of subsets of X with

A=Ayc A, c---c A, < X\B

will be called admissible if A;_, < A, for all i. The function X — [0, 1] that
takes the constant value 1 on A, the value 1 — k/ron A,\ A, _, and the value0
outside A, will be called the uniform step function of the chain . The open
sets Ay 41 \Ax-1,k=0,...,r,where A_, = Fand A,,, = X, are called the
step domains of U, because of their geometrical meaning. Notice that the
step domains of an admissible chain cover the whole space, because

ANAx- € Ay \Ay- -

Notice also that the uniform step function does not fluctuate by more than

k-th step domain

1/r on each step domain. Finally, by a refinement of an admissible chain
(Ag.--., A,) we'll mean an admissible chain (A4y, 4}, 4, ..., A4,, 4,). As
shown in the note above, the separation property of the space guarantees
that every admissible chain can be refined.
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Now let A, be the admissible chain (4, X\ B), and U, , be a refinement
of A, for each n. Call f, the uniform step function of U,,. Then the following
obviously holds: The function sequence (f,),, is pointwise monotonically
increasing and bounded by the value 1;in particular it is pointwise convergent
and the limit function f :=lim,_.,, f,: X — [0, 1] has the desired property
flA=1 and f|B = 0, because each f, does. There remains to prove
the continuity of f. To do this, notice that |f(x) — f,(x)| is always
< Y2 41 1/28 = 1/2", and that f, does not fluctuate by more than 172"
on every step domain of ,,. Thus f itself fluctuates by no more than 1/2"~*
on a step domain, and this implies continuity: If ¢ > 0 and x € X, choose an
n such that 1/2"~! < ¢, and the whole step domain of 2, containing x (an
open neighborhood of x!) will be mapped into (f(x) — ¢, f(x) + ¢€), and f
is continuous, ged. O

§3. The Tietze Extension Lemma

The Urysohn lemma may appear at first glance to be a bit too specific, but
it can do more than providing functions that are 0 and 1 at certain places. In
particular it has the following important consequence and generalization:

Tietze extension lemma. Suppose that in a topological space X any two disjoint
closed sets can be separated by open neighborhoods. Then every continuous
Junction f: A — [a, b] defined on a closed set A can be extended to a continuous
Sfunction F: X — [a, b].

PrROOF. Just for this proof let’s introduce the following terminology: If
¢@: A — R 1s a bounded continuous function and s := sup,. 4 |¢(a)|, a con-
tinuous function ®: X — [—s/3,s/3] is called a *“}-close approximate
extension” of ¢ if |¢(a) — ®(a)| < 2s/3 for all a € A. Such a @ is thus not a
real solution to the extension problem for ¢, but just a coarse approximation.
The existence of such 4-close extensions is what we can obtain directly from
the Urysohn lemma with a one-shot application: The two sets ¢~ *([s/3, sJ)
and ¢~ ([ —s, —s/3)) are disjoint and closed in A, and in X too, since A is
itself closed. There is then a continuous function X — [0, 1] that takes the
values 1 and O on these sets, and from it we obtain a continuous map

®: X - [—5/3,5/3]

taking the values s/3 and —s/3 on the same sets; such a function is obviously
a }-close extension of ¢.
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s
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on ¢ '[—-s, —5/3] on ¢~ (—s/3, —5/3) on ¢~ '[s/3, 5]

Now to the construction of F. Without loss of generality, we can assume
[a, b] = [—1, 1]. We first choose a §-close approximate extension F, of f,
then a {-close approximate extension of the “error” f — F,|A; the sum
F, + F, is then a better approximate extension. We continue to proceed
inductively: Let F, ., , be a }-close approximate extension of

f—@F, +---+F)|A.
Then we obviously have:
| f(@) — (Fy@) +---+ Ffa))| <@ forallae A, and

|Fpei(¥)l <33)" forall xe X.
Thus )2, F, converges uniformly towards a continuous extension
F:X->[-11]of f, qed. O

The Tietze extension lemma, too, goes further than the basic version just
proved.

Corollary 1. The Tietze extension lemma evidently remains valid if instead of
considering the interval [a, b] in R one considers the parallelepiped

[al' bl] X oo X [am bn]

in R" as counterdomain (apply the basic version to each component function),
and consequently to every counterdomain homeomorphic to such a parallele-
piped, for instance, the closed ball D":

f:A— R" with| f(a)| < r can be continuously extended to

F: X - R" with|F(x)| <.

Corollary 2. The Tietze extension lemma holds also with R (hence also R")
as counterdomain, instead of [a, b].
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ProorF (from [7]), p. 17). First extend ¢:=arctan f: 4 - (—n/2, n/2) to
®: X = [—n/2, n/2]. Now of course one cannot take tan ® immediately,

arctan

_____________________ S A8

since @ may actually take the values + /2. But where? It has to be only on a
closed set B disjoint from A. Then if A: X — [0, 1] is continuous with
A|A =1 and 4| B = 0 (Urysohn lemma), the product A9: X — (—n/2, n/2)
is a continuous extension of arc tan f not taking the values t /2, and
tan A® =: F is a continuous extension of f, qed. O

§4. Partitions of Unity and Vector Bundle Sections

Definition (Partition of Unity). Let X be a topological space. A family
{12} 1A Of continuous functions 7,: X — [0, 1] is called a partition of unity
if: (1) it is “locally finite”, in the sense that every point x € X has a neighbor-
hood in which the z, vanish for all but a finite number of 4: and (2) for every
x € X, we have

z T‘_(X) = 1.

AeA

The partition of unity is said to be subordinate to a given open cover U of
X if for every A the support of 1,, i.e. the closure

Supp 1, = {x € X|1,(x) # 0}

is entirely contained in one of the sets of the covering.

Partitions of unity shall occupy us for the rest of the chapter. How they
can be obtained will be discussed in the next sections; right now we will just
talk about what can be done with them when they are already available. To
this end I will first go into the construction of sections in vector bundles,
because this illustrates a principle that is typical of the application of parti-
tions of unity in a number of individual examples. For starts, let me offer a
very short
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EXCURSUS ON VECTOR BUNDLES AND THEIR SECTIONS

Definition (Vector Bundle). The data of an n-dimensional real vector bundle
over a topological space X consist of three parts:

(1) a topological space E (called “total space™);
(ii) a continuous surjective map n: E — X (“projection™); and
(iii) a real vector space structure on each “fiber” E, := n~ '(x).

For these data to make up an n-dimensional vector bundle over X, they only
have to satisfy one axiom:

Axiom (Local Triviality). For every point in X there is a “bundle chart”, or
simply “chart”, (h, U), i.e. an open neighborhood U and a homeomorphism

" (U) > U x R,

whose restriction to F,, for every x e U, is a linear isomorphism onto
{x} x R"

Definition (Sections in Vector Bundles). A continuous map ¢: X — E taking
each point to an element in its fiber (i.e. such that no o = Idy) is called a
section of E. In particular, for every vector bundle the map o: X — E taking
each x to the origin in E, is a section (“zero section™).

E,
Image of a
sectiono
Image of the
_ \\ zero section
- N -—-—"7
_~
v X
A _—-——"_—-_

Asked about the “most important” examples of n-dimensional real
vector bundles, I would answer without hesitation: the tangent bundles
TM 2 M of n-dimensional differentiable manifolds M. The sections of
tangent bundles are exactly the tangent vector fields on M Also many other
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objects in analysis and geometry, for instance alternating differential forms,
Riemann metrices and various other “co- and contravariant tensor fields”,
as they are known in a somewhat obsolescent terminology, are sections of
bundles derived from the tangent bundle.

But it is not only over manifolds that vector bundles and their sections must
be considered, but also over more general topological spaces, not least
because the vector bundles over X lead to a functor K (“ K-theory”) from the
topological category into the category of rings which is now indispensable
(although the way this comes about cannot be foreshadowed by our remarks
here). I will not even start to speak about the role of K-theory, just give a
reference: M. Atiyah, K-Theory, New York-Amsterdam 1967—in this book,
by the way, you will find the Tietze extension theorem and partitions of
unity being used as instruments right from the start (§1.4). End of the very
short (as promised) excursus on vector bundles and their sections.

Let then E & X be a vector bundle over X, and let’s suppose we want to
construct a section f : X - E—with certain properties, of course, otherwise
we could simply take the zero section. Let’s suppose also that the problem
is locally solvable, using for example charts. Then we can find an open cover
U of X such that for every set U in the cover there is a “local solution™ to
our problem, i.e. a section U — n~!(U) with the desired properties.

local solution
over U

7

zero section

[
RS

oU)

Now comes in the partition of unity. We choose (if possible, see §5) a
partition of unity {t,},. . subordinate to I, then for every 4 we choose a
set U, in U that contains the support of 7,, then a local solution

fi:Uy—=n" W

Then it is clear how 1, f;, which is initially defined only on U,, can be con-
sidered as a continuous section on the whole of X: just extend it with the
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value 0 outside U,, and because of the local finiteness of the partition of
unity we get by the formula

f= Z L/

AeA

a global continuous section f : X — E which so to speak interpolates as best
it can the local solutions: If at a point x € X all the f; defined there have the
same value f;(x), so does f because ) ;. t; = 1;if they have different values
to choose from, however, f averages them off with “weights” t,(x), 1€ A.
The question is now, under what circumstances are the desired properties of
the local solutions f, transferred to the global section f by this procedure?

I~ /i section

over U a

z LN
.\ AeA

T, /, section defined
on the whole space X
'\

77

\ zero section

For some applications this can only be achieved by skilfully selecting the
f;and 1,; just take the following oversimplified example to see why this may be
the case:

x =R, E = R x R, property: “monotonically increasing™

. $ 5
% & 2 o
The f, don't work The f, work The f, work, but not the 1,

But we won't discuss such cases here, just the numerous other cases in
which the desired property is automatically transferred from the f; to f,
the so-called “convex properties”. The nomenclature is because 7,(x) € [0, 1]
and E 7, = 1 means that for every x the image f(x) is in the convex hull of a
finite number of f;(x):
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zero section

Note. Let n: E = X be a vector bundle over a topological space X for which
there is a partition of unity subordinate to every open cover. Furthermore, let
Q c E be a fiberwise convex set, i.e. suppose every Q, = Q n E, is convex, and
assume finally that there are local sections of E sitting in S, i.e. that every
point in X has an open neighborhood U and a section U — n~'(U) whose

image lies in Q). Then there is also a global section f: X — E whose image lies
inQ.

When this sort of reasoning is applied, one generally says just: “There are
local sections with such and such property, and since the property is convex,
we obtain using partitions of unity a global section with the same property.”
This is an excellent shorthand expression, that avoids the trouble of going into
the nitty-gritty of detailed notation. We’ll now consider a few examples of
such convex properties. Notice also that several convex properties taken
together form again a convex property (the intersection of convex sets is
convex).

(1) The property of coinciding ona set A X with a section f,: A — 1~ !(A)
already given on itis convex: For a € 4,Q, = {fo(a)}, for x ¢ 4,Q, is the
whole fiber E. Thus if we know that f can be locally extended, for instance
using the Tietze extension lemma, we get a global extension using a
partition of unity.

(2) Let X be a differentiable manifold, E := TX. The property of vector
fields on X (i.e. sections in T X) of being tangential to one or more given
submanifolds is convex.

here
nx = 'erl n T;Ml
for instance
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(3) In connection with (1) the following observation is often useful: Let M
be a differentiable manifold, X :== M x [0, 1], E = TX. The property
of a vector field on X having as its component in the direction [0, 1]
the standard unit vector 9/t is convex. The flow of such a vector field
takes M x 0 onto M x t for every time t; in this way one builds in
differential topology *“diffeotopies”, i.e. differentiable homotopies

H:Mx[0,1]-»M

for which every particular H,: M — M isadiffeomorphismand H, = Id,,.
Of course the point is not finding any diffeotopy, but rather one that
achieves some particular end, for instance, carrying a prescribed “isotopy™
h: N x {0, 1] — M (each h, an embedding)

- M
h,(N)

ho(N)

with itself: H, o hy = h,. This problem leads to the question of finding a
vector field on M x [0, 1] which lies “over ” /ot (as in (3) above) and
which is already prescribed on the submanifold | J, (0.1 h(N) X t given
by the isotopy (as in (1)).

,.—-——M X [0. l]

For details see for instance [3], §9.

All in all, a differential topologist would be entirely lost without parti-
tions of unity, because the many diffeomorphisms used in differential top-
ology are almost always obtained by integration of vector fields, and the
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vector fields are almost always secured by local construction (analysis)
and partitions of unity (topology).

(4) Let E be a vector bundle over a topological space X. The property of
sections in the vector bundle (E ® E)* (bilinear forms on the fibers of E)
of being symmetric and positive definite is convex. Thus we get “ Rieman-
nian metrics” on vector bundles, in particular on tangential bundles
TM (“Riemannian manifolds™).

(5) Let E be a vector bundle over X with a Riemannian metric on each fiber.
Let € > 0 and g: X — E a prescribed section. The property of sections
in E of remaining inside the “&-tube” around o is convex:

eﬁ&t“

X

Here again the point is not just finding a section that remains in the tube,
since o is one in the first place, but getting sections with additional, “better”
properties than g, that approximate ¢ “within ¢”.

¥

Though these examples are entirely typical of the applications of par-
titions of unity, I still must straighten the picture given by them with some
additional strokes. First, you shouldn’t get the impression we’re always in the
“local situation™ just because we have a chart before us. This is sometimes
the case (as in (4)), but in general the “local theory” says only that every
point possesses a (possibly very small) neighborhood on which there is a
local solution. In this case partitions of unity are already indispensable in the
harmless case that X is itself an open subset of R* and E is simply X x R".
Singularity theory, for example, often leads to this situation.

Secondly: The construction of global objects starting from local data
is certainly the main objective of partitions of unity. But they can also be used
to break up existing global objects into local ones and thus make computations
practicable. If for instance M = R" is, say, a compact k-dimensional sub-
manifold, and f: M — R is, say, a continuous function on M, the integral
fu S dV can be defined and studied by choosing a finite partition of unity
subordinate to a finite atlas. This reduces each individual ,, t, fdV (using
charts) to the usual multiple integral in R"
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= 1 hchan

(ta-f)oh™?
A U cR

(the actual formula is [y 7, f dV = [au (1, /)™ - /g dx, - -- dx,, where g
is the determinant of the fundamental form of the metric (g;;)). The final step
is to add everything up via

f fav=y [ sav.
M AeA VM

Thirdly and finally, let us mention that partitions of unity don’t exist just
for the sake of functions and sections in vector bundles, but fulfil many other
subtler ends. See for instance A. Dold, *“Partitions of unity in the theory of
fibrations™, 1963 [6].

§5. Paracompactness

Only with some hesitation do I introduce yet another topological concept:
paracompactness. There are so many such concepts! An A is called B if for
every C there is a D such that E holds—this is quite boring in the beginning,
and remains so until we can see some sense behind it, until we can see the
spirit behind the letter. To define a first uninteresting property, then a
second uninteresting property, just to say that the first uninteresting property
implies the second uninteresting property, but there is an uninteresting
example that satisfies the second uninteresting property but not the first—
good heavens! Never was a meaningful concept introduced in mathematics
in a random or just playful way: the sense is there first, and the ends create
the means.

Now I know as well as the next person that in academic teaching it is
entirely unavoidable to put students off with a “later”, and that often;
formal and technical knowledge must reach a certain level before we can
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start talking about the meaning of things honestly, that is, without substitut-
ing simple but false motives for the true complex ones. But “as formal as
necessary” already means very formal in mathematics; and things shouldn’t
be made any more formal than that. If someone is expected too often to find
preparations towards unknown objectives interesting, he eventually loses
interest in knowing what the objectives are in the first place; and I'm afraid
many a student graduates from our universities without having seen the
central fire of mathematics glow anywhere, and, what is worse: without even
believing the existence of such a central fire.—But I'm straying too far from
my subject.

Definition (Paracompact). A Hausdorff space X is called paracompact if
every open cover has a locally finite subcover, i.e. if for every open cover U
of X there is an open cover B = {V,},.a of X such that the following holds:

(1) B is locally finite, i.e. every x € X has a neighborhood that intersects V)
for only finitely many 4; and
(2) Bisarefinement of U, i.e. every V, is contained in a set of U.

This is, so to speak, the “boring state™ of the concept. It immediately
acquires interest, though, because of the

Theorem. A Hausdorff space is paracompact if and only if it has the nice
property that every open cover admits a partition of unity subordinate to it.

One direction of the proof is trivial: If {t,},.4 is a partition of unity
subordinate to U, then the V,:= {x € X|t,(x) # 0} form a locally finite
refinement of U. The proof of the converse, i.e. every paracompact space has
the “partition-of-unity property”, will close the paragraph and the chapter.
But first I will go into an obvious question, namely: What is the theorem for?
Why not define the concept by using the assertion of the theorem, if the whole
point is to have partitions of unity? Now, exactly because the partition-of-
unity property is so wonderful one would like to be able to recognize as
many spaces as possible as having it, and this is better done with help of the
theorem than directly. For instance, every compact Hausdorff space is
trivially paracompact, but is it immediately clear that it satisfies the partition-
of-unity property? No, only using the theorem. The following information,
given without proof, will show you that paracompactness is a widespread,
“common” property.

Remark. If a Hausdorff space is locally compact, i.e. if every neighborhood
contains a compact neighborhood, and ifmoreover it is the union of countably
many compact subspaces (which due to local compactness is true for instance
for second countable spaces), then it is paracompact.
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Corollary. Manifolds, in particular R", are paracompact.

Remark. The product of a paracompact space and a compact Hausdorff space
is paracompact.

Theorem (Stone). Every metrizable space is paracompact!

In particular all subspaces of metrizable spaces are paracompact, because
they are again metrizable. But this is remarkable, because in general para-
compactness is inherited by closed subsets (same reason as for compact
spaces, see Chapter I), but not by arbitrary subspaces.

Theorem (Miyazaki). Every CW -complex is paracompact.

For the proof of this last theorem see the reference in [5]; for the others see
for instance [16], Chapter I, §§8.5 and 8.7. The proofs are not at all difficult—
to read.

But now to the promised proof that in a paracompact space every open
cover has a subordinated partition of unity. The proof has two parts:

(1) Lemma. In every paracompact space the Urysohn lemma is applicable, i.e.
every two closed disjoint subsets can be separated by open neighborhoods.
(2) Construction of partitions of unity using the Urysohn lemma.

For (1). Let A and B be disjoint closed subspaces of the paracompact
space X. For every two points a € A, b € B we choose separating open neigh-
borhoods U(a, b) and V(a, b). Now we keep a fixed and try to separate a and
B by open neighborhoods U(a) and V(a). To this end we choose a locally

Ula, b)g ) m Ula) V(a) Ust /1A (4
A B

step 1 step 2 step 3

finite refinement of the open cover given by {V(a, b)},.s and X\ B, and define
V(a) as the union of all sets of this refinement that are contained in some
V(a, b), b € B. Because of local finiteness there is now an open neighborhood
of a that intersects only finitely many such refinement sets, and if they lie in
V(a, by) v --- L V(a, b,),wejust haveto take the intersection of this neighbor-
hood of a with U(a, b,) n --- n U(a, b,) to obtain a neighborhood U(a) of a
disjoint from V(a).

Now instead of keeping a fixed we choose as above a locally finite re-
finement of the open cover given by {U(a)},. . and X\ A4, and define U as the
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union of all the sets of this refinement that lie in U(a) for a € A. All we need
now is to find for each b € B an open neighborhood not intersecting U: the
union of those is the desired V. In ahy case b has an open neighborhood that
intersects only finitely many of those refinement sets whose union we defined
to be U. Suppose those finitely many sets are contained in

U@ay) v ---vu U(a,).
Then the intersection of this neighborhood of b and
V(a,)n---n V(ay)

is the desired neighborhood disjoint from U, qed for (1).

For (2). Now let U = {U,},.A be an open cover of X, which can be taken
without loss of generality to be locally finite, by (1). To find a partition of
unity subordinate to it we will first “shrink™ the U, a bit, i.e. we will find
an open cover {V;},. With P, = U,. For suppose this is possible: Then we
choose a,: X — [0, 1] with ¢,]V, = 1 and ¢,|X\U, = 0 by the Urysohn
lemma, obtaining a locally finite family {g,};.; the sum g:=) ;.4 0; is
continuous and positive everywhere, and the desired partition of unity would
be obtained by setting 7, := 0,/0, A € A.

So there remains to prove that U has a “shrinking”. Choose for every x € X
an open neighborhood Y, such that ¥, is entirely contained in a set of U.
This is possible because by (1) x and X\U, for x € U, can be separated by
open neighborhoods. Let {W.}.. . be a locally finite refinement of {Y,},.x
and ¥, the union of all the W, whose closure lies in U,. Then of course
{V.}1e is again an open cover, and actually ¥, = U,, because: Take xe V.
Then every neighborhood of x intersects at least one W, whose closure is con-
tained in U,. But due to the local finiteness of {W,} . , a small enough neigh-
borhood intersects only finitely many of those, say W, , ..., W, . But now x
must lie in W,, U --- U W, , otherwise there would be a neighborhood of x
that does not intersect any W, whose closure lies in U,. Thus

er,,u---uW,r=m,u‘--uW,'CU1,
qed. O



CHAPTER IX
Covering Spaces

§1. Topological Spaces Over X

A covering space of X isa space Y with a continuous surjectivemapn: Y — X
(“covering map™), which locally, around every point of the “base space” X,
looks essentially like the canonical map of a disjoint sum of copies of a space
onto their original:

n~'(U): disjoint sum
of copies of U, i.e.,
U x (discrete space)

4

UcX
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That’s it for now—just enough to launch your intuition in the right direction.
The exact definition comes in §2.

In the normal intuition associated with a map f: A — B, A is the primary
object with which something “happens™ under the map: Each pointa € A is
“mapped” to an image point f(a) € B. But one could equally well consider
the counter-domain B as the primary object and think of the map f : A = B
as a family {A,},p of “fibers™ A4, := f~!(b) over B. The two ways of ex-
expressing a map or looking at it are, of course, entirely equivalent, and
choosing one or the other is just a matter of what purpose you are con-
sidering the map for in the first place. For instance, anyone will visualize
a curve a: [0, 1] = X in the first way (knowing for every time t where the
image 1s); whereas for a vector bundle n: E — X, for example, the second

way will convey the more suitable general impression (knowing for every
x € X what the corresponding fiber E, is).

E, fiber

. |

6—‘;_"—i o) image ‘.

——— e
X

Now for covering spaces it is again with the counterdomain that something
“is happening” (it is being covered by something), and for this reason I want
to direct your attention to this mode of seeing things by using the following

Terminology (*‘Over™). Let X be a topological space. By a topological space
over X we mean a pair (Y, n) consisting of a topological space Y and a con-
tinuous surjective map n: Y — X. Whenever possible we eliminate n from
the notation, i.e. we write, if no confusion will arise,

Y instead of (Y, n)

Y.,  instead of n~!(x) (“fiber over x")

Y|U instead of (n~}(U), n|n~}(U)) (“restriction of Y to U = X ™).

Example. The projection on the x-coordinate makes D? into a topological
space over [ —1, 1]. The fibers are intervals or (at each end) points:

YlU\ 11----‘§

.
- Y, ‘ \

LRy 4
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So this is at first just another way of referring to surjective continuous maps.
However, the point of view under which they will be considered here will

become clear when I indicate when two topological spaces over X are to be
seen as equivalent:

Definition. Two topological spaces Y and ¥ over X will be called homeo-
morphic over X, or “isomorphic” for short (Y = Y) if there exists between
them a homeomorphism h: Y — ¥ “over X, i.e. one for which the diagram

y —. ¢
X

commutes. Notice that then h necessarily maps the fiber Y, homeomorphically
onto the fiber Y,.

Without further restrictive axioms the concept of a topological space over
X would still be too general to be seriously considered of any use. A more
special class of topological spaces over X, still big but already interesting, is
given by the requirement of “local triviality”:

Definition (Trivial and Locally Trivial Fibrations). A topological space Y over
X 1s called trivial if there is a topological space F such that Y is isomorphic to

X x F

canonical
projection

X

A topological space Y over X is called locally trivial or a locally trivial fibra-
tion if every x € X has a neighborhood U over which Y is trivial, i.e. such that
Y| U is trivial.

If for some neighborhood U of x the restriction Y|U is trivial, then of
course it is even true that Y|U = U x Y,. If for a locally trivial fibration all
the fibers Y, are homeomorphic to a fixed space F, Y is called a locally trivial
fibration with “typical fiber” F. This is not such a strong restriction as it
might seem: the homeomorphism type of the fibers Y, of a locally trivial
fibration is of course locally constant, and consequently globally constant if
the base space X is connected.

For locally trivial fibrations Y over X with fiber F there are for instance
close ties between the homotopy groups of fiber F, base X and total space Y
(“exact homotopy sequence™), so that one can obtain information about the
homotopy properties of one of these spaces from the properties of the other
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two. (In fact local triviality is an unnecessarily strong condition for the exact
homotopy sequence to hold ; the keyword is “Serre fibrations™.)

One word about terminology: fiber bundles, which we are not at all going
to deal with here, “are” among other things locally trivial fibrations, but a
fiber bundle is not merely a locally trivial fibration with special properties:
Besides additional axioms this notion comprehends also additional data.
For instance in vector bundles we require a vector space structure on each
fiber (additional data), and one must be able to choose the local trivializa-
tions to be linearly isomorphic on the fibers (additional axiom).

§2. The Concept of a Covering Space

Definition (Covering Space). A locally trivial fibration is called a covering
space if all its fibers are discrete.

A surjective continuousmapn: Y — X isthusa covering. space if for every
x € X there exist an open neighborhood U of x and a discrete space A such
that Y|U and U x A are homeomorphic over U.

i (7)) UxA
__/
~———

/\: = THO) = (x B)
— .

\

N

y

/

*vu

A can of course be chosen to be the fiber itself, as is always the case for locally
trivial fibrations.

The cardinality # Y, of a fiber over x is called the multiplicity of the
covering at point x. The multiplicity is obviously locally constant and
thus for X connected also globally constant. If the multiplicity is constant
and equal to n, we talk about an n-fold covering.

A covering map n: Y — X is always locally homeomorphic, i.e. every
y € Y has an open neighborhood V such that n(V) is open in X and = defines
a homeomorphism V& n(V). In U x A, of course, every U x {1} is open,
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since A is discrete, and the canonical projection U x {A} — U is clearly a
homeomorphism. Thus in the situation depicted above V :=h~'(U x A) is
open in n~ !(U) and hence in Y, and = maps ¥ homeomorphically onto U.

A%

This concept of covering space is not the only one in use, only the simplest.
In function theory, particularly, one has reason to consider more general
“coverings”, in particular “branched coverings™ like for instance C — C,

D

Then local triviality is no longer required, only continuity, openness (images
of open sets are open) and discreteness of fibers. (See, for instance, [9],
p. 20ff.) The points y at which such a map is not locally homeomorphic are
called branching points; in the example z — z? the only branching point is 0.

But even when such a “generalized”™ covering (i.e. a continuous, open,
discrete map) in unbranched (that is, everywhere locally homeomorphic)

and surjective, it does not have to be a covering space in our sense. It is

easy to create examples of this by cutting away an appropriate closed piece
from a “good ™ covering:

~Z
=
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The simplest example is when ¥ = R x 0 u {x € R|x > 0} x 1 with the
canonical projection Y — R:Y is not locally trivial at 0—the number of
leaves is 1 to the left and 2 to the right.

Y
‘u
R
0
¥

To conclude, a couple of very simple but non-trivial (in the technical
sense) examples:

(1) For every natural number n > 2 the map z+ z" gives an n-fold non-
trivial covering C\0 — C\0 (or S! — §'):

o S
O

C O

n=1 n=2
(trivial)

(2) The map R — S*, x+— ¢, defines a covering with a countably infinite
number of leaves.

(3) The canonical projection S" — RP" is a 2-fold covering.



§3. Path Lifting 133

So much for the notion itself. The uses of covering spaces I will explain in
§8.; the major portion of this chapter will be occupied with the classification
of covering spaces. Yes, because it is possible to get a sort of complete survey
of all covering spaces of a topological space X, and this is what is meant by
“covering space theory”—rather, a mini-theory, but a useful one. Now in
this theory there is an omnipresent technical tool, with which everything is

done, constructed and proved: the lifting of paths. This is what we’re going
to talk about now.

§3. Path Lifting

Definition (Path Lifting). Let n: Y — X be a covering map and a: [a, b] = X
a continuous map (a “path™). A path &:[a, b] — Y is called a lifting of «
starting at y, if d(a) = ypand o & = a.

B {

inY
Y
s 4

)

[a. b] - X

——
-

inX
(0) )
Lemma (Existence and Uniqueness of Path Liftings). If Y is a covering space

of X, then for every path o in X and every y, € Y over a(a) there is one and only
one lifting d of a starting at y,.

PROOF.If U « X is open and Y| U is trivial, it is easy to see exactly what are
all the liftings of all paths § entirely contained in U relativeto Y |U = U x A
they are exactly the paths f, in Y defined by ,(¢) == (8(1), A).

UxA
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Now let a be given from [0, 1] (no loss of generality) into X, and let y, lie
over o(0).

Uniqueness. Let @ and @ be two liftings starting at y,. As shown by the
reasoning for Y | U, the two subsets of [0, 1] on which @ and 4 coincide (resp.
do not coincide) are both open; the first is non-empty, since it contains 0, so it
must be equal to [0, 1] by connectedness.

Existence. The set of t € [0, 1] for which there is a lifting of «|[O0, t]
starting at y, is non-empty, since it contains 0. Let t, be the supremum of this
set. Pick an open neighborhood U of a(ty) over which Y is trivial, and an
£ > Osuch that [ty — ¢ t, + €] N [0, 1] is mapped by « entirely into U. Let
&: [0, 7] — Y be a lifting of «|[0, 7] for some 1 € [ty — &/2, to] N [0, 1], and
B the lifting of a[7, t; + &2] A [0, 1] starting at &(z).

Then

8(r) e a(t) forte[O, 1],
O=V8) forte[r to + 521 A [0, 1]

defines a lifting of «|[0, b] starting at y,, and moreover b is either equal to 1
(if to = 1), in which case we are done, or greater than t,. But the latter case
cannot occur by definition of ty, so & is the desired lifting of «, qed. O

This lemma answers the two most obvious questions about path liftings.
The other most important thing that must be known about path liftings is
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“continuous dependence on additional parameters”. Let’s imagine we're
given not only a single path a, but a whole “family”, i.e. a homotopy

h:Z x[0,1] - X,

and correspondingly, instead of a single starting point y, over «(0) we have a
whole “continuous starting point map” hy: Z — Y over hg, i.e. such that
no hy = hy. Now if for each fixed z € Z we lift the corresponding path to a
path starting at the prescribed point /i,(z), we obtain in all a map

h:Z x[0,1]-Y

over h. The question is whether £ can fail to be continuous:

can this happen?

ho(2)

It can’t! To prove it we’ll again have to do a bit of punctilious work, but in
return we'll have in our hands a very useful instrument for the theory of
covering spaces.

Lemma (Lifting of Homotopies). Let Y be a covering space of X, let Z be
another topological space, h: Z x [0, 1] - X a continuous map, and

ho:Z—Y
a continuous “ lifting” of h,, (* prescribed lifting of the starting point map™).

Z x0 .i.
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Then the map
h:Z x [0,1] - Y,

(2, 1) = a(t),

given by the lifting of the individual paths «,: [0, 1] — X, t — h(z, t) starting at
hy(2), is continuous.

PROOF. We will abbreviate the e-neighborhood (to — ¢, to + €) N [0, 1] of
to in [0, 1] by I(t;). An open box Q x I(ty) in Z x [0, 1] will be called
“small” if it is mapped by A into an open set U < X for which Y |U is trivial.
Now if h is continuous on a “vertical line” Q x t, of this box, then it is
continuous in the whole box. In fact, with respect to a trivialization

YIU=U x A

the A-coordinate of £|Q x I, (which is what matters, since the U-coordinate
is given by h, which is continuous anyway) does not depend on ¢, since each
individual lifted path is continuous; and since h is continuous on Q x t,,
it must be continuous everywhere in Q x I,. In this case we’ll say the box is
not only “small”, but also “good™.

Now for a fixed z € Z let T be the set of t € [0, 1] such that there is a small
and good neighborhood box Q x I(t), which simply means that h, is con-
tinuous in a neighborhood of z. Then T is trivially open in [0, 1], and because
of the continuity of the startmg point map h, we have 0 e T. So now we
only have to prove that T is also closed, because then T = [0, 1] by con-
nectedness, and consequently # is continuous everywhere. So let toe T.
By continuity of h there is a“small” box Q x I,(to)around (z, t,),and because
to€ T thereisat, € I,(t;) n T. Then h,_ is continuous on a neighborhood Q,
of z, hence h is continuous on all of (Q N Q,) x I,(ty), and it follows that
to € T, qed. O

As a first corollary we notice the

Monodromy Lemma. Let Y be a covering space of X and a, B two paths in X
which are homotopic with fixed endpoints, i.e. there is a homotopy

h:[0,1] x[0,1] - X
between h, = o and h, = B with h(0) = «(0) and h(1) = (1) for all t. Now

if & and B are liftings of o and B starting at the same point y,, then they end at the
same point as well: (1) = A).
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PROOF. Lifting each individual h, to a path h, starting at y,, the “ending point
map” t — h,(1) maps into the fiber over x(1); this we know independently of
the lemma, because no h, = h,. Now by the lemma this map is continuous,
hence constant since the fiber is discrete, ged. O

B
)

§4. Introduction to the Classification of
Covering Spaces

A covering space of X is at first a geometric object which cannot be im-
mediately surveyed. If we want to get a general understanding, a classifica-
tion of all covering spaces, we have to look around for “distinctive features”
of coverings, i.e. we want to associate to every covering some data, some
feature or mark of some sort that will be mathematically accessible and
algebraical if possible, in such a way that two covering spaces of X are
assigned the same features if and only if they are isomorphic. The classifica-
tion of covering spaces up to isomorphism is thus reduced to the survey of
the features, which hopefully simplifies the problem.

Many classification problems in mathematics are treated using this idea.
A simple example that you all know is the classification of quadratic forms on
an n-dimensional real vector space. A very obvious feature, an “invariant
of isomorphism”, of quadratic forms is their rank. But the rank does not
characterize the isomorphism class, so one has to look for additional features,
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and one of them is for instance the signature, i.e. the difference p — g of the
maximal dimensions p and g of subspaces where the form is positive and
negative definite, respectively. (Rank p + g and signature p — g evidently
determine p and g, and conversely.) Then the classification theorem asserts
(“Sylvester’s law of inertia™): Two quadratic forms on V are isomorphic if
and only if they have same rank and same signature. With this the surveying
of isomorphism classes of quadratic forms is reduced to the surveying of all
possible pairs (7, 6) of numbers which can occur as rank and signature of a
form, which is of course a much simpler problem: The possible pairs are all
those of the form (p + g, p — q) withO < p,gand p + g < n.

For our covering spaces the path-lifting behavior yields such a distinctive
feature. We restrict ourselves here to path-connected spaces, and we also
consider in each space a given fixed point (“basepoint ). Of course covering
maps are supposed to preserve basepoints, which we will write as

: (Y, yo) = (X, xo).

Path-connectedness, in view of the aims of the theory of coverings spaces, is
not an essential limitation, and using a notation for the basepoint does not
of course harm the mathematical content of the theory in the least.

Now we will say that two covering spaces (Y, y,) and (Y, y,) of (X, x,)
have the same lifting behavior if for every two paths a and § in X from x,
to some other point x, the following holds: The two lifted paths & and f
in Y end at the same point if and only if the two lifted paths & and § in Y’
starting at )/, also end at the same point.

in X:

B

Now if this lifting behavior is to play for covering spaces a role similar to
that played by rank and signature for quadratic forms, there are two very
different questions that must be answerable:

(a) To what extent is a covering space determined by its lifting behavior?
and
(b) How can the lifting behavior be “understood” algebraically?

The next two sections answer these questions, but I will take the perhaps
unnecessary precaution of first delineating the principle on which the answer
is based, so we won’t get bogged down in the details.

For (a). Isomorphic coverings have of course the same lifting behavior;
the question is whether the converse holds.

The lifting behavior decides about the liftability of continuous maps

f: (Z: ZO) i (X' xO)
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from path-connected spaces Z in the following way: If a lifting f exists in the
first place,

(Y. yo)

(Z, zo) 7’ (X, xo)
then of course for every path a from z, to z the path f o a is already the lifting
starting at y, of the path foa, so f(z) is the endpoint of the lifting of foa
starting at y,:

J@
yo""—__‘/
L ¢
Zo\__/z _f. xﬂ-\_/f (2)

Next, it follows from the uniqueness of path liftings that for a given f
there is at most one lifting f with f(z,) = y,. But now we see also how such
an { is to be constructed, using path lifting, if we are given f to begin with:
For z € Z, choose a path a from z, to 2, take its image, lift it and make the
endpoint of the lifting equal to f(z).

I ifti
finally (by lifting) this endpoint is

- tentatively defined as f(z)
Yo
l x

z.o\;:‘—“"/‘:' —L e X~ ____~f(d

initially (by choice) next (by the map)

Now comes in a problem of * well-definedness”: Is the f(z) defined in this
way independent of the choice of a?

« do the liftings
Yo“@' end at the same point?
8 l
J /()
7 <
o
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For this to be true we must have that for any two paths « and f that
start at z, and end at the same point, the liftings of f o « and f o f starting at
yo must also end at the same point. Whether this condition, which is obviously
necessary for the existence of f, is satisfied, is a consequence of the lifting
behavior of the covering, and we will see (liftability criterion in §5) that the
same condition, under appropriate assumptions, is actually sufficient for
the existence of a continuous lifting f. In particular this “criterion” is

clearly satisfied if the two given maps are covering maps with the same lifting
behavior:

(Y, yO)

(Y" y'O) —n,—’ (X' xO).

and another application of the argument, switching the two covering

spaces, gives us isomorphisms between the spaces that are inverse to each
other:

(Y, .Vo) ¢2zzzzzsy (Y, y’o)

\

(X' xO)

For (b). Let « and f be the two paths from x,, to x. Their liftings & and j
starting at y, evidently have the same endpoint if and only if the lifting of the
closed path ¢~ starting at y, is again a closed path, or a “loop”. So in order
to know the lifting behavior all one has to know is which loops at x, can be
lifted to loops at y, and which can’t. By the monodromy lemma this depends

ﬂ— X
ﬁ_.“_.{a(Zl) 0<t<i
PP Be-20 <<

Xo

only on the homotopy class (with fixed endpoints, both equal to x,). But
the set of homotopy classes of loops at x, forms a groups in a canonical
way, namely, the so-called fundamental group n,(X, x,), and the subset of
classes of loops that can be lifted to other loops forms a subgroup G(Y, y,) of
7,(X, xo). Thus knowing the lifting behavior means knowing this sub-
group: the subgroup is the algebraic “feature™ we associate to a covering
space. So the classification of covering spaces consists of the uniqueness
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theorem mentioned in part (a), that says that two coverings are isomorphic
if and only if they have the same lifting behavior, hence the same group G;
and an existence theorem, yet to be formulated, which indicates to what
extent there really is, for a given subgroup G < =,(X, X,), a covering space

with G(Y, yo) = G. The program outlined here shall now be carried out in
detail in §§5 and 6.

§5. Fundamental Group and Lifting Behavior

Definition (Category of Spaces with Basepoint). By a space with basepoint
we simply mean a pair (X, x,,) consisting of a topological space X and a point
Xo € X. A continuous, basepoint-preserving map f: (X, xo) = (Y, yo) s,
as the name says, a continuous map f: X — Y with f(x,) = y,. In par-

ticular we mean by a covering map n: (Y, yo) — (X, xo) a covering map
n: Y - X with n(y,) = xo.

Definition (Fundamental Group). Let (X, x,) be a space with basepoint. Let
(X, x,) be the set of paths in X that start and end at x, (“loops at x,™),
andletQ x Q — Q, (a, f) — aff be the composition map given by afi(t):=a(2t)
for 0<t <3 and B2t — 1) for § <t <1 respectively. Then on the set
m,(X, xo) :== Q(X, xo)/~ of homotopy classes (~ denotes here homotopy
with endpoints fixed and equal to x,) there is a well-defined composition law
given by [a](f#] := [«f] which makes n,(X, x,) into a group. This group is
called the fundamental group of the space with basepoint (X, x,).

I’ll skip the proofs of the various steps necessary to justify these assertions
(well-definedness of the composition map, associativity, existence of 1 and of
the inverse), which are very simple. The reader who hasn’t had any contact
with path homotopy and wants to see how these things work might profit
by going through pages 78-88 of [12].

Notation. Evidently, this construction actually gives us in a canonical way a
covariant functor n; from the category of spaces with basepoint and base-
point-preserving continuous maps into the category of groups and homo-

morphisms, namely n, f: n,(X, x) = n,(Y, yo). [@] — [f o «]. But instead of
n, J we will use the common notation f.

Corollary of the Monodromy Lemma (Behavior of the Fundamental Group
Relative to Covering Maps). If n:(Y, yo) — (X, Xo) is a covering map, then the
induced group homomorphism nt,:m,(Y, yo) = n,(X, Xx,) is injective.

ProoF. Let n[y] = 1 € (X, x,). Then there is a homotopy h with fixed
endpoints x, between n o y and the constant path [0, 1] — {x,}. Now we lift
to a homotopy h with fixed endpoints y,, and then i, = y and k, is a lifting of
the constant path, hence constant. So [y] = 1 € n,(Y, y,), qed. |



142 IX. Covering Spaces

Definition (Characteristic Group of a Covering Space). Let : (Y, yo)— (X, Xo)
be a covering map. Then call the image of the injective homomorphism
.. 7, (Y, yo) = 7, (X, xo) the characteristic subgroup of the covering, and
denote it by G(Y, yo) < m(X, x,).

For a loop at x, to be liftable to a loop at y, just means of course that it is
the projection of a loop at y,; and so the group G(Y, y,) = m,(X, x,) is the
subgroup announced in the last section, which contains all the informa-
tion about the lifting behavior of the covering.

Now if f:(Z, zo) = (X, X,) is continuous and f:(Z, zo) = (Y, yo) is a
lifting of f,ie. o f = f

(Y' yO)

(Zv ZO) _f. (X' xo),
we obviously have f, n,(Z, zp) = n( f,nl(Z, 2)) < n (Y, yo) = G(Y, yo),
which means that f, n,(Z, zo) = G(Y, y,) is a necessary condition for the
liftability of a given map f : (Z, z,) = (X, Xxo). In order to be able to formulate
to what extent this condition is also sufficient, I must first introduce yet another
notion of connectedness, namely

Definition (Locally Path-Connected). A topological space is called locally
path-connected if every neighborhood contains a path-connected neighbor-
hood.

Remark. Manifolds are locally path-connected (clear), and so are CW-
complexes; see the (more general) theorem in [16], 111, 3.6.

example of a path-connected
space which is not locally
path-connected (at p)

) p
etc. .
Note. In a locally path-connected space every neighborhood V of a point p
actually contains an open path-connected subneighborhood, for instance the
set of all x € V which can be reached by a path in V starting at p.

Now then to the

Liftability Criterion. Let n: (Y, yo) — (X, Xo) be a covering map, Z a path-
connected and locally path-connected space, and f:(Z, zp) —» (X, x,) a
continuous map. There exists a lifting f: (Z, zo) = (Y, yo) of f (which is
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unique) if and only if f, maps the fundamental group m,(Z, z,) into the
characteristic subgroup G(Y, y,) < m,(X, x,) of the covering:

n,(Y, yo)

m(Z, z9) = G(Y, yo) < 7, (X, Xo).

By the way, here we have a simple example of what I had called in Chapter
V, §7 the “second main reason for the usefulness of the notion of homotopy”
(see p.74): The geometric problem is solvable if and only if the corresponding
algebraic problem, which arises by applying the fundamental group functor
7, to this situation, is solvable. A lifting f exists if and only if f is liftable to a
group homomorphism ¢:

(Y, yo) 7,(Y, yo)
3_‘]'.-"““ l n 3p ,-"“‘ n,
(Z, z0) Y (X, xo) n(Z, z) T’ (X, x0)

PrROOF. The condition is obviously necessary, and because of the path-
connectedness of Z and the uniqueness of liftings of paths there can be at
most one f. Now suppose f satisfies the condition. For z € Z we define f(z)
in the way already described in §4, namely: We take a path a from z, to z,
then lift f - « to a path starting at y,, and define f(z) as the endpoint of this
lifted path in Y. This end point does not depend on the choice of a, because if §
is another path from z, to z, then the loop (f ca)(f o f)” represents an
element of G(Y, y,), so it can be lifted to a loop in Y, and consequently the
liftings of foa and f - f§ end at the same point, which is exactly the well-
defined f(z). Then of course no f = f, and all that remains to be shown is
that f* is continuous. Here comes in the local path-connectedness of Z:

Yo v

—\/@ " e v
20 a J
W
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Let z, € Z and let V be an open neighborhood of f(z,) in Y. Without loss of
generality, we can assume V is so small that nr| V is homeomorphism on the
open set U:=n(V). Now choose a path-connected neighborhood W of
z, so small that f(W) < U. To connect the points w € W with z,, we choose
a fixed path o from z, to z; and add to it small “stitch paths”, entirely con-
tained in W, from z, to the w. Then it is evident that f|W = (z|V)™'o f|W,
and in particular f(W) c V, qed. O

§6. The Classification of Covering Spaces

Uniqueness Theorem. Between two path-connected and locally path-connected
covering spaces (Y, yo) and (Y, yo) of (X, x,) there is a basepoint-preserving
isomorphism if and only if they have the same characteristic subgroup

G(Y, yo) = G(Y, yo) © my(X, Xo).
PROOF. Necessity is clear: If ¢o: (Y, yo) = (Y’, ¥o)is such an isomorphism, then
G(Y, ¥o) = n 7y (Y, yo) = (7' 0 @) (Y, yo) = 7' (@M, (Y, yo))
= 'y, (Y’, yo) = G(Y’, yo)-

Conversely, if the condition is satisfied, then we can lift the two projections to
one another, by the liftability criterion:

(Y, yo) azzzzzz2r (Y, yo)

(X: xO)

and then the compositions of these two liftings are liftings of = and =’ to
themselves, hence equal to the identity on Y and Y, respectively, by the
uniqueness of liftings. ged.

Existence Theorem? In the uniqueness theorem we have assumed the
covering spaces, and consequently the base space X, to be path-connected
and locally path-connected. So from now on we formulate the existence
question accordingly: Let (X, x,) be a path-connected and locally path-
connected space, and G < m,(X, x,) an arbitrary subgroup of the funda-
mental group. Question: Is there a path-connected covering space (Y, y,)
of (X, x,) (local path-connectedness is transferred from X to Y anyway),
and with G(Y, yo) = G? Now this is not true in such generality. Why not?
Do we have to make additional assumptions about X? Or about G? And
what would they be?
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Instead of presenting the theorem immediately, I'd like to apply again here
the inductive method of exposition, which is very instructive, though unfor-
tunately too time-consuming to be used all the time; namely, simulating the
situation, so characteristic of a mathematician’s life, where a theorem is not
only to be proved, but has first of all to be found.

The first stage of a theorem is generally made up of wishes, as they present
themselves naturally when we get sufficiently acquainted with some matter.
Theorems then follows when we try to prove the desired assertions, analyze
the difficulties we find, and seek to remedy them by using extra assumptions,
which we try to make as weak as possible. In our case, for instance, we wish

that there always be a covering space whose characteristic subgroup is the
prescribed G. So let’s try to prove it!

PROOF OF THE AS YET UNFOUND EXISTENCE THEOREM. First of all we must
create Y as a set. If we already had a covering map (Y, yo) = (X, Xo) as
desired—in what way could we characterize the points of Y, by means of
objects expressible in terms of (X, x,) and G? Well, for every path « from
Xo to x there would correspond a perfectly determined point of the fiber Y,
over x, namely the point where the lifting of « that starts at y, ends. All points
of Y, would be obtained in this way, and two paths «, # would determine
the same point in Y, if and only if the loop aff~ represented an element of G.
So if Y did not yet exist, how would one proceed to create it ? Like this:

Definition. Let Q(X, x,, x) be the set of paths from x,, to x. We define on this

set an equivalence relation by a ~ f:=>[a¢f~] € G, and define the sets Y,
and Y by

Y= (I(Xs X0, X)/N,
Y= Y,

xeX

Moreover, let y, be the equivalence class of the constant path in Q(X, x,, x,)

andlet n: Y — X be given by Y, — {x}. Then in any case = is a surjective map
between sets and we have n(y,) = x,.-

So now our task consists “only ™ in providing Y with a topology that will
make it into a path-connected space and make (Y, yo) = (X, x,) into a
covering map with G(Y, y,) = G.

When we think about our construction in geometric terms, we see
immediately that besides the set Y and the map =n:(Y, yo) = (X, x,) we
already have something else in our hands: path lifting. For a € (X, x,, x) we
will denote the ~ equivalence classes by [a].., to avoid confusion with the
homotopy class [«]. For ¢t € [0, 1] let o, € Q(X, x4, a(t)) denote the “partial
path” defined by s — a(ts).
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x
aft)
Xo
“complete path™ a from x4 to x
. —~— _/
“partial path” a,: [0, 1] -+ X
s — afts)

The intuition underlying our construction points naturally to a topology
relative to which the lifting of « is already given by &(t) :== [,] ~ . If we follow
it, we find automatically how the topology on Y must be defined. To this
purpose we introduce the following notation: For a path a from x, to x and
an open path-connected neighborhood U of x, denote by V(U, @) = Y the
set of equivalence classes [«f] . of paths which can be obtained by combining
a with paths B in U that start at x:

Xo

Because of the local path-connectedness of X, these U form a neighborhood
basis of x, and consequently the V(U, a) should obviously form a neighbor-
hood basis of y € Y in the topology we're choosing. But before we make this
into a definition, let’s observe that V (U, «) depends only on y = [«] and U,
but not on the choice of the representative path a:

xo g A

From & ~ a it follows [(xfX&67)] =[epp " &"]) =[x@"] € G, and so
[2B8]~ = [&f]- . Because of this independence from « we can write V(U, y)
instead of V(U, «), which we will proceed to do. Notice that n(V (U, y)) = U.

Definition. Call ¥V < Y open if for every y € V there is an open path-
connected neighborhood U of n(y) such that V(U, y) c V.

So now our task is to check, and if necessary to guarantee using additional
assumptions as weak as possible, that the following hold:

(@) 9, Y are open;

(b) arbitrary unions of open sets are open;
(c) finite intersections of open sets are open;
(d) = is continuous;

(e) fibers are discrete;
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(f) mn: Y — X is locally trivial;
(g) Y is path-connected;
(h) G(Y: yo) = G-

~ (a)-(d) are trivially satisfied: It’s really a topology, and = is continuous.
I'd like to remark here en passant that so far we haven’t “ given up” anything;:
If there is a covering space (Y, y;,) with the desired properties in the first
place, then our construction too must have properties (e)-(h), since one can
easily establish a homeomorphism between (Y, y,) and (Y’, yp) over (X, Xo).

(e) Discreteness of the Fibers. Discreteness of the fibers is equivalent
to the fact that for each y € Y, there is a path-connected open neighborhood
U of x such that y is the only point of Y, » V(U, y). What does this unique-
ness mean? If y = [a]., the other points of Y, n V(U, y) are exactly the
[2B]., where Bis aloop in U based at x, and so we must find an U such that
[«]~. = [af]. for all loops B of this form.

y = [af].
Yo :

U

And here our ship runs aground, because without further assumptions
about X the homotopy class [a(xf)~] has no reason to belong to G. If we
think for example of the case x = x4, « = const, G = {1}, for which every-
thing should work: for this case our condition means straight away that the
loop B is null-homotopic in X. But there doesn’t have to be any neighborhood
U for which all loops in U based at x are null-homotopic in the big space X :

Example:
X c R?

b 4 etc.
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To get moving again, we simply assume that X has the desired property—
there is nothing else we can do, otherwise the existence theorem is false
already for the case G = 1. So:

Definition. A topological X is called semi-locally simply connected if every
x € X possesses a neighborhood U such that every path contained in U
and based at x is null-homotopic in X.

The condition is called semi-local because although the loops are *“local ”,
i.e. contained in U, their homotopies to the constant path are global, i.e.
they are allowed to run in X. It is clear that this property is transferred from
U to its subneighborhoods. “Locally simply connected” would be defined
as follows: Every neighborhood contains a simply connected subneighbor-
hood, i.e. a neighborhood V such that all loops inside V are null-homotopic
there. The cone over the example above

is semi-locally simply connected, but not locally simply connected. But this is
beside the point; more important is the

Observation. Manifolds (clear) and also CW-complexes are always semi-
locally (even locally) simply connected—see [16], I11.3.6.

Additional Assumption. In the remainder of this “proof of the yet unfound
existence theorem” X will be assumed to be semi-locally simply connected.

For small enough U we then have Y, n V(U, y) = {y}, whence the dis-
creteness of the fibers follows, (e)-qed.

(f) Local Triviality. Let x € X and U be an open path-connected neighbor-
hood in which every loop at x is null-homotopic within the whole space X.
Then it can be immediately verified that V(U, y) = V(U, 2) for every
ze V(U,y); for ye Y, the V(U,y) are pairwise disjoint open sets and
=Y (U) = Uyer, V(U, y). Then the projection m and the correspondence
V(U, y) — {y}, well-defined for y € Y,, together define a continuous bijective
map h: n~(U) = U x Y, over U, which we still have to check for openness
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(i.e. that it takes open sets into open sets). To do this it suffices to verify that
the projection itself is open, which in its turn is very easy. The sets V(U, y),
for y € Y and open path-connected sets U = X, form a basis of the topology
in Y, so we only have to know that n(¥V (U, y)) is open; but this set is equal to
U.So his open and n: Y — X is indeed locally trivial. (f)-qed.

(g) Path-connectedness of Y. If y = [a]., then t+ [«]. does indeed
give a path from y, to y, where o,(s) = a(st). (g)-qed.

(h) G(Y, yo) = G. A loop « at x, represents an element of G(Y, y,) if and
only if it can be lifted to a loop at y,. But this is the case if and only if (see (g))
[a]~ = yo, ie. [a]. = [xo)~, and thus if and only if [axo] = [«] € G.
(h)-qed.

So with the one additional assumption we made along the way everything
goes through, and we have proved:

Existence Theorem. If X is path-connected, locally path-connected and semi-
locally simply connected, and if G = n,(X, x,) is an arbitrary subgroup, then

there is a path-connected and locally path-connected covering space (Y, y,) of
(X, xo) With G( Y, yo) = G.

Note. By the monodromy lemma this clearly implies Y is semi-locally simply
connected as well.

§7. Covering Transformations and Universal Cover

The liftability criterion and the existence and uniqueness theorems form the
core of covering space theory. We will now note some useful consequences.

Definition (Covering Transformation). By a covering transformation, or deck
transformation, of a covering map n: Y — X we simply mean an automor-
phism of the covering, i.e. a homeomorphism ¢: Y & Y over X:

n|e

Y — Y
n\ /1! commutes.
X

Covering transformations evidently form a group, which we will denote by 9.
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As an immediate corollary of the uniqueness theorem we have the

Remark. Let Y be a path-connected and locally path-connected covering
space of X and let y,, y, € Y be points over x, € X. There is a covering
transformation ¢: Y — Y with ¢(y,) = y, (which is unique) if and only if
(Y, yo) and (Y, y,) have the same characteristic subgroup in m,(X, x,).

In particular the group of covering transformations operates freely on Y:
Only the identity has fixed points.

But what does the condition G(Y, y,) = G(Y, y,) mean? To study this,
we will take a look at the connection between G(Y, y,) and G(Y, y,)1n general,
for two points y, and y, over x,. Let y be any path in Y from y, to y,, and
let o := 7 o y be its projection:

Then we have a commutative diagram of group isomorphisms,

b ---y)
7, (Y, ¥o) _=’ (Y, y,)

GYo ) —i’ GY, .
(Y. yo (0] [a] (Y, »1)

and so G(Y,y,) = [a]~'G(Y, yo)[e], which means G(Y, y,) = G(Y, y,) if
and only if [a] is in the normalizer of G(Y, y,) in nt,(X, xo):
Review (Algebra). If B is a subgroup of a group A, the set

Ng:= {a€ AlaBa™' = B}

is called the normalizer of B in 4. The normalizer is itself a subgroup of A4,
and B is obviously normal in its normalizer: B < Ng < A4; the normalizer
is simply the biggest group between B and A4 in which B is normal.

Theorem About the Group of Covering Transformations. Let (Y, y,) — (X, x,)
be a covering of a path-connected and locally path-connected space, and let
G = G(Y, y,) be its characteristic subgroup. i.e. the image of the injective



§7. Covering Transformations and Universal Cover 151

homomorphism n,(Y, yo) — (X, Xo) induced by the projection. Then for
every element [«] € N¢ of the normalizer of G in m,(X, ) there is exactly
one covering transformation @, which maps y, into the endpoint &(1) of the
lifting of a starting at yo. Moreover, in this way we get a map Ng — 2 which
in fact defines a group isomorphism N;/G = 9.

The proof I recommend as a pleasant exercise for you to get better
acquainted with the many new concepts introduced in this chapter. Don’t
forget to include @5 = @ © @ in the list of individual assertions to be
proved. (The formula is correct as it stands, and not the other way around:
although in af the path « is described first, in @, © ¢ the covering trans-
formation ¢ is applied first.)

Corollary and Definition (Normal Coverings). The group of covering trans-
formations of a path-connected and locally path-connected covering Y — X
operates transitively on the fibers (i.e. for every two points of a fiber there is
a covering transformation that takes one into the other; or, alternatively, the
fibers are the orbits of the @-action on Y) if and only if for some (and hence

every) point y, € Y the group G(Y, y,) is normal in 7,(X, n(y,))- Such cover-
ings are called normal coverings.

Corollary. For normal coverings (Y, yo) — (X, xo) the following hold:

(i) 2= n,(X, x0)/G(Y, yo).

(i1) The number of leaves of the covering is equal to the order of 2 (because
the fibers are the orbits of the free P-action), and hence also equal to the
order of m,/G, called in group theory the “index” of G(Y, yo) in (X, Xo).

(iii) The bijective map from the orbit space Y/2 onto X defined by the pro-
jection m: Y — X is in fact a homeomor phism:

Y

canonical n
projection

PROOF OF (iii). That the map is continuous follows from III, §2, note 1; that

it is also open follows from the fact that n: Y — X is a local homeomorphism,
hence open.

¥*

In particular all this is true for the case G(Y, yo) = {1}, which we will study
now. Since (Y, yo) = G(Y, y,) this case occurs if and only if the funda-

mental group of Y is trivial, and let’s recall that such spaces are called simply
connected:
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Definition (Simply Connected). A path-connected space Y is called simply
connected if for some (and hence all) y, € Y the fundamental group 7,(Y, yo)
is trivial.

Thus the condition means that every loop in Y is null-homotopic. Con-
tractible spaces are evidently simply connected, but so is for instance the
sphere 8" for n > 2. Surprisingly enough, this fact isn’t really entirely obvious.
How so? Isn’t it enough, given a loop « at g in 8", to choose a point p € §”
outside the image of o, and use the fact that {q} is a strong deformation retract
of S"\p?

Yes, yes; but you must probably have already heard about *“space-filling
curves” (Peano, G., “ Sur une courbe qui remplit toute une aire plane”, Math.
Annalen 36 (1890), 157-160), and by the same token there are sphere-
filling loops, for which such a point p is not at all available.

A direct proof is not really deep, however: All one has to do is subdivide
the interval [0, 1] at points 0 =ty < --- < t, = 1, so finely that a is not
“sphere-filling” on any of the subintervals; this is always possible because of
continuity. Then the contractibility of S™\pt implies there is a homotopy
of a which fixes a at the endpoint ¢; of the subintervals, and in addition takes
a into a loop which maps each subinterval into some great circle. Now
this curve is not sphere-filling, and the argument previously envisaged
works.

If Y is a path-connected and locally path-connected covering space of a
simply connected space X, then Y — X must have multiplicity one and so must
be a homeomorphism. This observation is often very useful; it says that a
simply connected space cannot have any interesting coverings—an immediate
consequence of the uniqueness theorem. But now we want to consider
coverings in which the covering space Y, and not the base space X, is simply
connected.

Definition (Universal Cover). A path-connected and locally path-connected
covering space Y — X is called a universal cover if Y is simply connected.

Corollary of the Classification of Covering Spaces. If X is path-connected,
locally path-connected and semi-locally simply connected, and if x, € X, there
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is exactly one universal cover (X, Xo) — (X, Xo), up to a uniquely determined
isomor phism.

In this sense one could then speak of “the” universal cover X of X.
What is so “universal” about the universal cover? A preliminary con-
sideration about this. Let X be a path-connected, locally path-connected

and semi-locally simply connected space, and let two connected covering
spaces

(Z, 20)

p (Y, .Vo)

—n
(X' xO)

be given, whose characteristic subgroups (H for p and G for r) are contained
in one another: H ¢ G < n,(X, x,). Then by the liftability criterion p can be
“lifted to =™, i.e. there is exactly one continuous map f :(Z, zo) — (Y, o)
which makes the following diagram commute:

(Z, 20) f
\
pl (Y, .Vo)

(X' xO)

Such an f is then always a covering map; to see this, let’s consider the
following diagram:

Z,20) === (Y

N

p (Ys yO)

|/

(X' xO)

where n’ is the covering map which has as characteristic subgroup the inverse
image H’ of H in nt;(Y, yo):

H' = n,(Y, yo)

H = G < nl(xs xO)
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and where moreover h denotes the lifting of f to 7’ and g the lifting of w0 7" to
p- We will show that h is an isomorphism of spaces over (Y, y,) (and conse-
quently that f is a covering map, since 7’ is). We have n’ o h = f, and we will
now verify that g is inverse to h. In any case we have g o h = 1dz , ,, since this
map is the lifting of p to itself: pegeh =non’'ch=mof = p. To prove
also that ho g = Idy- ,:), we'll show that h o g is a lifting of =’ to itself. To
do this we want to show that n’ o ho g, i.e. fo g = 7'. But this follows from
the fact that both maps are liftings of m o n’ to n: The map n’ is anyway, and
fogisbecause mo fog = pog = non', qed. O

To sum up: If the characteristic subgroups of two covering spaces of
(X, x,) are contained in one another, the covering space with the smaller
group canonically covers the other space, and this in such a way that the three
covering maps give rise to a commutative diagram

(Z: ZO)

(Y, yO)

/

(X' xO)

That was the preliminary consideration. Now since the characteristic

subgroup of the universal cover (X, %,) is trivial, i.e. equal to {1}, it follows
that:

Proposition. The universal cover (X, %) canonically covers every other path-
connected covering space (Y, yo) of (X, x,), in such a way that

(X' i0)
\

/

(X' xO)

(Y: yO)

commutes.

This by itself would be sufficient reason for the universal cover to be called
universal, but there is another fact that makes the point even more forcibly:
The universal cover is in particular normal (obvious), and if 2, denotes the
group of covering transformations X — X, we obtain the canonical homeo-
morphism X/@x = X, produced by the projection itself. Choosing base-
points X, — X, we further have a canonical isomorphism 7, (X, xo) = 9Dy, as
described in detail in the theorem about the group of covering transforma-
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tions. Now let’s consider the two groups of covering transformations for the
situation described in the above proposition:

Then we have 2, c 9, and relative to m;(X, xo) = Dx the set QY is no
other than the characteristic subgroup G(Y, yo) = m,(X, xo); and since of

course X — Y also induces a homeomorphism X/2, = Y, we obtain in all
the following

Universality Theorem for the Universal Cover. Let X be a path-connected,
locally path-connected and semi-locally simply connected space, let x, € X, and
let (X, Xo) = (X, xo) be the universal cover and @y = mn,(X, x,) the group of

covering transformations of X — X. Then if T c 9Dy is an arbitrary subgroup,
the map

(X/T, [%0))

(X' xO)

is the covering map of a path-connected covering space, and all path-connected

covering spaces of (X, x,) are obtained in this way, up to a uniquely determined
isomorphism.

L

I'd like to conclude this section with a couple of very short remarks on
how the all-important fundamental groups can be calculated. One means is
covering space theory itself: Now and then it is easy to determine the group
of covering transformations of the universal cover of X. For instance we have
n,(S!, xo) = Z, because the translations by integers R — R obviously form
the group of covering transformations of the universal cover R — S',
x — e*™*; and for n = 2 we have n,(RP", x,) = Z/2Z, because the universal
cover $" — RP" has multiplicity two.

There is also the following trivial but useful observation: The fundamental
group of a product is the product of the fundamental groups:

(X x F,(xo, fo)) = ny(X, x0) x my(F, fo)

in a canonical way.
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Covering spaces and products are special cases of locally trivial fibrations
and these are special cases of Serre fibrations, for which the “exact homotopy
sequence” contains information about the fundamental group of base, fiber
and total space (see, for instance, [11], p. 65); and let’s not forget also that the
functor =, is trivially homotopy invariant.

Finally I should mention the important Seifert-van Kampen theorem,
which under certain conditions allows us to find the fundamental group of a
space X = A U B given the following three groups and two homomorphisms
(see for instance [16], III, 5.8):

1[1(4, xo)

n.(A N B, x)
ny(B, x,)

§8. The Role of Covering Spaces in Mathematics

The notion of a covering space originates from function theory, in particular
from the study of “multi-valued” holomorphic functions, which arise by
analytic continuation. It was discovered by Riemann at a time when there
were not yet means to understand it exactly, by today’s standards.

Let G — C be a domain and f a germ of a holomorphic function that can
be analytically continued along any path contained in G (like for instance \/z_'
in C\O or log in C\O or \/(z — a)(z — b) in C\ {a, b} and so on). Analytical
continuation then defines a “multi-valued” function on G, and this is
essentially a (single-valued) holomorphic function on a covering space of G,

"1

which is given “in a canonical way” (it is easy to say this in retrospect) by the
continued germs.

Incidentally, the coverings thus obtained are really coverings in our sense
(see definition in p. 130). Branching points only start to appear when G is
completed by adding some points of C\ G into which f cannot be analytically
continued (like, for instance, 0 for \/z_'), and covering spaces with “holes”
(as the example in p. 131) come up when f can be continued to all points of G,
but not along every path.
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So the multi-valued functions which are encountered in function theory
(and I need not dwell on the interest that functions like \/z present to the
mathematician) can now be correctly understood in the covering space
setting, and more: they are made accessible to the usual function-theoretical
methods. This is not only the original motive for the invention of covering
spaces, but also, even to this day, an important application, not having been
superseded, as one might have assumed, by any more modern methods.

But things didn’t stop there. Let me first make the general observation that
covering spaces very often “occur in nature”, that is, one comes across them
spontaneously, while studying entirely different problems, and then one can
thankfully pocket the seemingly heaven-sent information provided by cover-
ing space theory. Suppose for instance that a finite group G operates freelyona
topological space Y ; then the quotient map Y — Y/G is a covering map. Or if
we're dealing with a family of differentiable functions with no bifurcation of
the singularities; then the singularities form a covering of the base space. And
so on and on.

But covering spaces are often intentionally introduced as tools. Covering
spaces have a certain tendency of being “simpler” than the space they cover
(the example $" — RP" can be taken as a symbol of that), so the application
principle is generally the following: The object of primary interest is X, but
X is too complicated for a direct grasp, so one goes over to a more transparent
covering space Y of X, and uses covering space theory to obtain information
on X from information on Y. For instance, every non-orientable manifold
M has an orientable two-fold covering manifold M — M (“orientable
double cover™), and this is the vehicle to verify in the non-orientable case
certain assertions, whose proof at first works “ willingly” only for orientable
manifolds.

In a number of applications this simplification process displays all its
power only when one ascends all the way to the universal cover. I will
proceed to mention three significant examples of this.

(1) Riemann Surfaces. Riemann surfaces are the connected one-dimensional
complex manifolds, well-known from function theory. As topological spaces
they are two-dimensional manifolds, hence surfaces. Let X be a Riemann
surface and n: X — X its universal cover. Then X is at first just a topological
space and not a Riemann surface yet, but the complex structure of X is
immediately carried over to covering spaces; it is easy to verify that there is
on X exactly one complex structure for which = is holomorphic. So then X
is a simply connected Riemann surface, and simply connected Riemann
surfaces are in fact much easier to understand than Riemann surfaces,
period: By the Riemann mapping theorem for Riemann surfaces X is bi-
holomorphically equivalent to either the complex plane C or the Riemann
sphere CP! or the open unit disc U =« C! Now how does one use this
knowledge to obtain information about X ? Well, the covering transforma-
tions of X — X are bi-holomorphic maps (this is trivial and not a consequence
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of any special theorem); the group of covering transformations £ operates
freely and “properly discontinuously”, i.e. each X € X possesses a neighbor-
hood U such that the ¢(U), ¢ € 2, are pairwise disjoint; the orbit space
X/9 of such an action has then a complex structure inherited from X,
namely, the only one that makes X — X/2 holomorphic; and so the
homeomorphism X/2 = X given by covering space theory is obviously
bi-holomorphic. Without using anything more sophisticated than covering
space theory (a topological theory!) and the Riemann mapping theorem
one can thus obtain the following: Up to bi-holomorphic equivalence the
Riemann surfaces are exactly the quotients X/2, where X = CP!, C or U,
and 2 is a subgroup of the bi-holomorphic automorphisms of X acting
freely and properly discontinuously.

The groups of automorphisms of CP!, C and U have been explicitly
established and well-known for a long time; the subgroups acting freely and
properly discontinuously can in principle be searched for. and X/2
studied—and while this is by no means a simple problem for the case X = U,
one has at least a very concrete starting point for further studies, and we’re one

great step ahead of the original situation where all we had was “let X be a Rie-
mann surface”.

(2) Space Forms. A classical problem of differential geometry, to this day
not completely solved, is the classification of space forms. By a space, or
Clifford-Klein, form is meant a complete connected n-dimensional Riemann
manifold (M, {.., ..)>) with constant sectional curvature K. (See [21], p. 69.)
Without loss of generality we can consider only the cases K = +1, 0, —1.
A connected covering space of a space form is again in a canonical way a
space form of the same curvature, and in analogy to the Riemann mapping
theorem one has here the Killing-Hopf theorem: The sphere S", the
Euclidean space R" and the “hyperbolic space” H" are the only simply
connected space forms up to isometry, with curvatures K = +1,0and -1
respectively.

[)

a+pf+y-—-=x a+f+y<n

Geodesic triangles of the sphere §2, Euclidean plane R? and
hyperbolic plane (D? with *hyperbolic metric™)
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The isometry groups of these three spaces are well-known, and in analogy
to the case of Riemann surfaces covering space theory shows that: The
quotients of ", R" and hyperbolic space by subgroups of the isometry group

acting freely and properly discontinuously are, up to isometry, the only space
forms that exist.

(3) Lie Groups. A Lie groupis adifferentiable manifold with a “differentiable”
group structure (i.e. G x G — G, (a, b) — ab™! is differentiable). Lie groups
play an important role in various parts of mathematics and, for that matter,
in theoretical physics also; O(n), GL(n, R), GL(n, C), SO(n), U(n), SU(n) are
a few generally known examples. Covering space theory shows that the
universal cover G of a connected Lie group is again a Lie group in a canonical
way, and that G is the quotient G/H by a discrete subgroup H of the center of
G. But the simply connected Lie groups are amenable to classification, since
they are essentially determined by their “Lie algebra™.

*

I don’t want to leave you with the impression that the covering space trick
is the essential point in these classification problems; just the Riemann
mapping theorem by itself is already much deeper than the whole of covering
space theory from A to Z. But one could say that the notion of covering space,
as well as many other topological basic notions, is an indispensable concept

in a number of significant contexts, and should be known by every mathe-
matician.



CHAPTER X
The Theorem of Tychonoff

0onoo nuon

§1. An Unlikely Theorem?

Already in Chapter I, about fundamental concepts, we had convinced our-
selves that the product X x Y of two compact topological spaces is again
compact, and by induction it follows of course that the product of finitely
many compact spaces is always compact. In VI, §2 we had also considered
products of arbitrarily many factors, and we’ll come back to them now,
since this chapter is devoted to the following

Theorem (Tychonoff 1930). If {X,},.a is a family of compact topological
spaces, the product []1.a X 1 is also compact.

¥

Anyone hearing the theorem of Tychonoff for the first time must admit that
our intuition of the notion of compactness would suggest the opposite for
infinite products. For compactness is a finiteness property (finite open
covers), and so it is not surprising that it is carried over to spaces obtained by
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finite unions or products of compact spaces; but we do not expect that a
construct of infinitely many compact elements would again have to be com-
pact. The simplest examples show that successive enlargements of compact
spaces can lead to something non-compact in the end: for instance, CW-
complexes with infinitely many cells are always non-compact; non-compact
manifolds can be “exhausted” by compact subsets,

UK‘=M

21

KioyeK,cKipyc---

or, to mention an entirely trivial, but not atypical process: Adjoining one
isolated point to a compact space gives again a compact space; but doing
this infinitely often, i.e. taking the disjoint union with an infinite discrete
space, the result is non-compact.

From the same point of view, il one considers the sequence of “cubes™

@

[0.1°c [0,1)' [0.1)* c [01P -

one would hardly get the feeling that [0, 1]* must be compact; likewise the
compactness of {0, 1}* does not sound very plausible when we think of
{0,1}° = {0, 1}! < ---: Isn’t {0, 1} something very similar, il not actually
the same, as an infinite discrete space?

“Against” the theorem of Tychonoff could also be adduced the fact that
the unit ball in a normed space is compact only in the finite-dimensional
case: one more evidence that supports the view that infinite dimension is an
obstacle to compactness.

And yet here our intuition is misleading, but not so much our intuition of
compactness, rather more that of products. We naturally derive our intuition
of products from products in R? of two or three factors, and thus it is not so
conspicuous that “closeness” in the product topology of infinite products is
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still a condition on only finitely many coordinates: For any ever so small
neighborhood U of a point x, € [ 1. X, the assertion u € U says absolutely
nothing about most (i.e. all but finitely many) components u;, because U
must contain a box of the form n; '(U,,) N --- n = }(U,,). For this reason
the image of the oo-dimensional cube which we derive from the finite-
dimensional case is not entirely appropriate. In our eyes, which always want
to interpret “close” as “metrically close”, the fact that components of
(xy, X3, ...) that lie “very far away” are relatively unimportant is much
better represented by the so-called Hilbert cube: The box in separable Hilbert
space whose edge lengths are 1/n in the direction of the e,-axis (total diameter

V2 iynt= n/ﬁ), which can be visualized by considering the analogous
lower-dimensional boxes:

In fact the Hilbert cube is actually homeomorphic to the product of countably
many intervals [0, 1]. (The map (x,),» 1 —* (X}, X2/2, x3/3, .. .) gives a homeo-
morphism from the product to the Hilbert cube, as can be easily verified.)

¥

Now after having heard that the theorem of TychonofT is true, one might
think, on the grounds of previous experience with similar-sounding results,
that the proof shouldn't be at all difficult: *“Just the way these things always
go:Let B = {V,},.,beanopencoverof [[,. X;. Forevery x € ¥, theset ¥,
must contain a whole box U;, x --- x U, X []ae1, Xi. Suppose now that
there is no finite subcover. Then...and so on.” But no!... Although many
proofs in point-set topology sort of work by themselves, guided by intuition
and oiled by a cunning terminology and spatial intuition—the proof of the
Tychonoff theorem is not one of these.

§2. What Is It Good For?

A theorem that goes against intuition has its existence justified by this fact
alone. All right. An equally general, but perhaps more weighty point of view
is that every discipline must strive to clarify it own fundamental concepts.
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The concepts don’t just come out and advertise themselves; it is the mathe-
matician’s task to pick the most convenient among several similar concepts,
and the theorem of Tychonoff, for instance, has been a decisive reason to give
preference to the compactness concept defined via open covers, over the
concept of sequential compactness, which is not transferred to infinite
products.

But what’s the situation like as regards applications outside point-set
topology itself? I’d venture to assert that differential and algebraic topology
make no essential use of the Tychonoff theorem. But in functional analysis
the theorem comes to the fore in several very meaningful places, and I will
mention three of these here. My purpose is only to show how the theorem
of TychonofTis introduced in carrying out each proof. To give these proofs in

full would be pedantic, since the context in which they belong can only be
delineated here.

(1) Weak Compactness of the Unit Ball in Reflexive Banach Spaces. Let X
be a normed space over I = Ror C. For a continuous linearmap f : X — K
(“linear form™) we define || /|| == sup <1 | f(x)|, and this makes the space
X' of linear forms into a normed space, called the dual space of X. The dual
space is always a Banach space, even when X itself is not complete.

Every element x € X canonically defines a linear form on the space of
linear forms, by the formula x: X’ — K, f — f(x); and this actually gives an
injective isometric linear map X < X", by means of which one can always
regard X as a subset of X”. X is called reflexive when, furthermore, X = X".
Hilbert spaces, for example, are reflexive.

By the weak topology on a normed space X we mean the coarsest topology
for which the f : X — [ are continuous for all f € X'. A subbasis is:

{f Y U)|f €X', U c K open}.

On every normed space there are thus two topologies: first the topology of
the norm, which is what is meant when the word topology is used by itself;
and second, the weak topology. On the dual space X’ one considers also a
third, ever “weaker” (i.e. coarser) topology, namely the weak-* topology,
which is the coarsest topology for which the x: X’ — I are continuous for
every x € X. A sequence (f,),», in X' is weak-* convergent if and only if

it is pointwise convergent, i.e.if (f,(x)),» , is a convergent sequence of numbers
for every x.

Corollary of the Theorem of Tychonoff. The unit ball in X' is compact in the
weak-* topology.

OUTLINE OF PROOF.Let D be the interval [ —1, 1] (resp. thedisc {zeC||z] < 1})
in I, and D, := {||x|| - z|]z € D}. Then we know from the Tychonoff theorem
that n,, x Dx is compact anyway, hence every closed subspace of this
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product is compact, and we’ll see that the unit ball U := {f e X'| | [l < 1}
with the weak-* topology is homeomorphic to such a closed subspace. In
fact, one defines U’ — [].cx Dx by S {f(x)}, x € X. This map is obviously
injective; the component maps f+ f(x) are continuous by definition of
weak-* topology, so the whole map is continuous in this topology. Let 0
be its image. For a fixed x € X and U < [ open the set { feU’| f(x) € U},
which is in the subbasis, is taken onto ¥ A =] '(U), so the map U’ — U is
indeed a homeomorphism. Next one proves that U is closed in [],cx D,
this takes some work, but does not require any more advanced tool. And so
the assertion follows. . . . qged. O

For reflexive spaces, of course, the weak topology on X" is the same as the
weak-* topology, so the unit ball is weakly compact in X* and alsoin X" = X,
by the same argument. If X is also separable, the whole space with the weak
topology is not first countable, but the unit ball is (it is even metrizable, see
[4], p. 75), and so it is not only compact, but actually sequentially compact:
Every bounded sequence in the norm has a weakly convergent sub-
sequence. .. . .

(2) Compactness of the Spectrum of a Commutative Banach Algebra. A
commutative Banach algebra is a complex Banach space B together with a
multiplication law which makes it into a commutative C-algebra with 1 and
which satisfies |labl] < |la] - |IP]l- The simplest and so to speak most “trans-
parent” examples are the algebras C(X) of bounded continuous functions on
topological spaces X. But the more interesting examples are not so much the
function algebras but operator algebras. The study of operators (for example,
differential or integral operators) is indeed one of the main aims of functional
analysis. Now if one has one or several mutually commuting operators in a
Banach space, they form a commutative sub-algebra B in the (noncommuta-
tive) Banach algebra of all operators of the space, and it is quite plausible that
amore accurate knowledge of B asa Banach algebra, i.e. up toan isomorphism
of Banach algebras, may contain useful information about these operators.
Of course the individual traits of these operators are lost when they are
considered in this way: for instance, if they are differential operators, and
what they act on. These are properties that cannot be inferred from the
isomorphism type of the Banach algebra, just the same as when the applica-
tion of an algebraic topological functor suppresses the individual traits
of a geometric problem. But many important properties of the operators in
the Banach algebra remain recognizable, first the algebraic ones, for instance
whether the operator is a projection (b = b) or if it is nilpotent (b" = 0),
or invertible, or if it has a “square root”: b = a%. But more than that, the
norm of operators is still available in the Banach algebra, so one can consider
limit processes, for instance power series of operators and so on.

But how can we materialize our wish for “insight” into the structure of the
Banach algebra? Well, a high degree of insight into this structure would be
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obtained if one could find a topological space X and an isomorphism of
Banach algebras B =~ C(X)! How, under what circumstances, can this be
achieved? To find this out, one has to study how, and whether, a given space
X can be reconstructed from the Banach algebra structure of C(X). So the
question is: How can a point x € X be made perceptible as a (Banach)
algebraic object? There are actually two outward manifestations of the points
of X that offer themselves. First, each x defines via f+ f(x) an algebra
homomorphism C(X) — C, which characterizes x when the space X is not
too unreasonable; all one need is, given two points x # y, a continuous
bounded function that takes different values on the two points. So in an
arbitrary commutative Banach algebra one could concentrate on the algebra
homomorphisms B — C as an alternative to the points x € X.

On the other hand every x € X in C(X) defines an ideal, the annihilator
of x, given by a,:={feC(X)|f(x) = 0}. This is obviously a maximal
ideal: if an ideal contains both a, and another function f such that f(x) # 0,
it must contain every function: a, + C-f = C(X), trivially. Again for
reasonable spaces we’ll have a, # a, for x # y. So it would be a reasonable
(though not necessarily successful) start to consider, for a commutative
Banach algebra B, the so-called spectrum of B, that is

Spec B := Set of maximal ideals of B,

as a candidate for the underlying set of the desired space.

In fact both starts are two different descriptions of one and the same
thing: To every algebra homomorphism B — C there corresponds a maximal
ideal, namely, its kernel; and this correspondence between algebra homo-
morphisms and maximal ideals is bijective, because, by a theorem that is not
difficult to prove (Gelfand-Mazur), for every maximal ideal a there is
exactly one algebra homomorphism B/a = C. So we can look at the elements
of Spec B both as maximal ideals a and as algebra homomorphisms
¢: B — C, in the way indicated; and for our purposes of representing B as a
function algebra, the special case B = C(X) unmistakably suggests what
functions we should associate to each b € B, namely f,: Spec B — C, ¢ — ¢(b).

Algebra homomorphisms ¢: B'— C are automatically linear forms of
norm 1, so Spec B is canonically a subset of the unit sphere in the dual space
B'. In particular the functions f, are always bounded (by ||b])).

We haven’t chosen a topology on Spec B yet, but if we only want all the
f, to be continuous, we’ll try to achieve this in the most economical possible
way, and this means exactly that we have to give Spec B < B’ the topology
induced by the weak-* topology! Then we really get a canonical algebra
homomorphism p: B — C(Spec B), b f,. Is this an isomorphism? Now,
not every commutative Banach algebra is isomorphic to a C(X). On C(X)
there is still an additional algebraic structure which must be required to be
introducible in B, namely complex conjugation, asfollows : By an “involution”
*: B — B on a commutative Banach algebra is meant an R-algebra homo-
morphism with the properties (1-1)* = 1- 1 for every A€ C and b** = b
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and |b*b]| = ||b||? for all b € B. A commutative Banach algebra with in-
volution is called a B*-algebra. For such algebras there is the following

Theorem (Gelfand-Neumark). If(B, *)isa B*-algebra,thenp: B — C(Spec B)
is an isometric B*-algebra isomorphism.

So this is the answer or an answer to the question posed at the beginning.
Where this question came from and where the answer leads to is a matter
functional analysis has much to say about, but I think that from the little that
I haveindicated here you can realize I mean it when I say it: The spectrum of a
commutative Banach algebra is an “important” concept of functional
analysis. Now the theorem of Tychonoff makes a remarkable assertion about
the spectrum. As we have already seen, Spec B is a subspace of the unit
sphere of B’ with the weak-* topology, which is compact by Tychonoff. It
is not difficult to show that Spec B is in fact a closed subspace, and so the

following result, which is especially striking in view of the Gelfand—-Neumark
theorem, ensues:

Corollary of the Theoremof Tychonoff. The spectrum of a commutative Banach
algebra is compact.

3

(3) Stone-Cech Compactification. In the heuristic process of the preceding
paragraph we were trying to reconstruct X from C(X), but as the corollary of
the theorem of Tychonoff shows, Spec C(X) cannot always be equal to X,
because X does not have to be compact. In what relationship to each other
do X and Spec C(X) stand? Without any additional assumptions the
canonical mapping X — Spec C(X) doesn’t have to be either injective or
surjective. If it doesn’t happen to be injective, however, this is the result of a
rather uninteresting cause, approximately the fact that the topology on X
is so coarse that the continuous bounded functions cannot separate all points.
(For the trivial topology, for instance, every continuous function is constant,
so Spec C(X) is a point.) So in order to exclude this effect one assumes some
separation property, and the right separation property here turns out to be
what is called “completely regular”: Points must be closed and given any
closed set A and any point p ¢ A there must be a continuous f : X — [0, 1]
with f(p) = 0 and f]A = 1; this happens for instance in every Hausdorff
space in which the Urysohn lemma can be applied. But then the following
theorem holds (see [8], p. 870): If X is completely regular, then the canonical
mapping X — Spec C(X) is an embedding, i.e. a homeomorphism onto its
image, and this image is a dense subspace, 1.e. its closure is the whole of
Spec C(X).

By means of this embedding X itself can be considered as a dense subset of
the space Spec C(X) which, by Tychonoff, is compact: In particular every
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completely regular space is a subspace of a compact space, which in itself is
already quite amazing. Spec C(X) s the so-called * Stone-Cech compactifica-
tion™ of a completely regular space, and it is generally denoted by fX.In a
certain sense it is the “biggest ” compactification: it can be characterized by
the property that every continuous map of X into a compact Hausdorff
space can be extended to X ... . To do justice to the Stone-Cech compactifi-
cation another book would be required (as well as another author), but even
without that I hope to have infused you in the meantime with some respect for

the Tychonoff theorem, the proof of which we’re going to turn our attention
to now.

§3. The Proof

All proofs of the Tychonoff theorem use “Zorn’s lemma”, which we are going
to talk about first. After that I want to seize the opportunity to introduce the
concepts of filter and ultrafilter, which are useful elsewhere as well. Equipped
with these tools we will then show: If a space X has a subbasis © with the
property that every cover of X by sets of © possesses a finite subcover, then
X is already compact. So to apply this to a product X = [];. X; of compact
spaces all one has to do is prove that the canonical subbasis of cylinders
{n;(UDIAe A, U, = X, open} has this property, and the theorem of
Tychonoff will be proven. Let’s start out by convincing ourselves of this
property of the subbasis: Let U be a cover of the product by open cylinders.
Assume U has no finite subcover. Then there is in every factor X, at least one
point x, whose *“coordinate plane” n; !(x,) is not covered by finitely many
sets in U, and this for the following reason: A coordinate plane which is
covered by finitely many cylinders of U always fits in one such cylinder,
otherwise the finitely many cylinders would cover the whole product,
which is against the hypothesis; but if every coordinate plane over X,
fits in a cylinder of U it follows from the compactness of X, again contrary
to the hypothesis, that a finite number of the cylinders cover the product.
So for every A there is an x; as asserted.

existence of x,

This must happen... otherwise this happens
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Now let x == {x;},. - Then x must lie in some cylinder =n; '(U,) of U and it
follows that the whole coordinate plane =, !(x,) is contained in the cylinder,
which contradicts our construction—so the assumption was false, ged.

1. Zorn’s Lemma. As you know one often has reason to consider *maxi-
mal” or *“minimal” mathematical objects of a certain type. In the preceding
paragraphs, for instance, we talked about maximal ideals in a commutative
Banach algebra; a differentiable structure on a manifold is by definition a
maximal differentiable atlas; in the theory of Lie groups the maximal compact
subgroups of a connected Lie group are important; the maximal open set
contained in a given subspace A of a topological space is called its interior 4,
and the minimal closed set containing A is its closure A4;the finest and coarsest
topologies with certain properties are maximal and minimal in the set of such
topologies; and so on and on.

In many cases, one could even say in most, the objects in question are in
particular subsets of a fixed set, and the order relation which maximality or
minimality refer to is inclusion of sets. Now when the property in question is
transferred to arbitrary unions, the union of all sets with the property is
naturally maximal with the property, and when the property is transferred to
arbitrary intersections, the intersection of all these sets is minimal with the
property. This is the very simplest situation in which the existence of maximal
or minimal objects is guaranteed; the differentiable structure containing a
given differentiable atlas, as well as the interior and closure of a subset of a
topological space are examples of this type.

But most of the time it would be requiring to much to assume that the
property is transferred to arbitrary unions or intersections. A substantially
weaker condition, however, is often still satisfied, namely that the property be
transferred to the union of intersection of chains of sets that possess it. This
is a typical situation in which Zorn’s lemma is applicable and the existence of
maximal or minimal sets with the property is guaranteed.

It should be remarked at once that Zorn’s lemma, too, doesn’t work in all
cases. For instance, to prove the existence of maximal compact subgroups in
every connected Lie group, one has to go pretty deep into the theory of Lie
groups; a mere formal and purely set-theoretical argument as the Zorn
lemma won’t do.

The Zorn lemma will be proved in the next chapter, but we will quickly
preview its formulation here: As we know, a relation < (“less than or equal
to”) on a set M is called a partial ordering if it is reflexive (x 2 x), anti-
symmetric (x € yand y < x = x = y) and transitive (x < y < z = x < 2).
The set K = M is called a chain if any two elements x, y € K are related to
each other, i.e. either x < yor y < x;and K is called bounded if there is an
m € M such that x < mfor all x € K.

Zorn’s Lemma. If every chain in a non-empty partially ordered set (M, <) is
bounded, M has at least one maximal element, i.e. an element a such that there
is no x # awitha < x.
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2. Filters and Ultrafilters.
Definition (Filter). By a filter & on a topological space X (or, more generally,

on any set X) is meant a set of subsets of X which satisfies the following three
axioms:

Axiom 1. F, F,e = F,nF,e #.
Axiom 2. FeF and Fc F'=>F € %.
Axiom 3. gi¢ F.

Definition (Convergence of Filters). A filter &% on a topological space X
converges towards a if every neighborhood of a belongs to #.

Example. Let (x,),,, be a sequence in X and let & be the filter of all sets in
which the sequence eventually stays. Then obviously the filter converges to a
if and only if the sequence does.

Definition (Ultrafilter) and Corollary of Zorn’s Lemma. Maximal filters are
called ultrafilters. Every filter is contained in an ultrafilter.

Clearly Zorn’s lemma was applied here to the partially ordered set of all
filters which contain the given filter.

Ultrafilters have a remarkable property:

Proposition. If & is an ultrafilter on X and A < X is a subset, then exactly one
of the sets A and X\ A belongs to %.

PROOF. Of course both can’t belong, since their intersection is empty. More-
over, one of the two has to intersect all sets in the filter, otherwise take one
filter set outside A and one outside X\ A4; their intersection would also be
empty. Without loss of generality, let A intersect all elements of &#. Then
the set of all supersets of all intersections A N F, F € &, is a filter containing
F U {A}, and it follows from the maximality of # that A € &, qed. O

3. Application (Proof of the Theorem of Tychonoff). So let © be a subbasis of

the topological space X with the property that every cover of X with sets in
S admits a finite subcover.

Step 1: Every ultrafilter on X converges.

PRrOOF. Suppose there is a non-convergent ultrafilter #. Then for every x € X
we can find a neighborhood U, € G\ %, for if all sets of & containing x were
elements of the filter, then so would be all finite intersections thereof, and the
filter would converge towards x. Then by hypothesis {U,},¢ x has a finite sub-
cover: X = U,, u--- v U, . Since the U, are not elements of #, their
complements would have to belong to the ultrafilter, by the above remarkable
property; but their intersection is empty, and we’d have a contradiction with
the filter axioms, qed. O
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Step 2 (the last): X is compact.

PrOOF. Let {U,}.., be an arbitrary open cover of X. Suppose there is no
finite subcover, i.e. for any finite subcover there remains a non-empty
“deficit” X\U,, U --- U U,,. The set of supersets of such deficits forms then
a filter; let # be the ultrafilter containing this filter. By step 1 we know that
 converges towards some a € X. This  must sit in some set U, of the cover,

so U, € # because of convergence; but X\ U, € &, being a deficit, and this
contradicts the filter axioms, ged. O

And with this we have placed the last stone in the proof of the Tychonoff
theorem.
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by Theodor Brocker

This chapter is not meant to either arouse scruples or allay them. It simply
summarizes, for students who have successfully concluded their first semester
in mathematics, the amount of set-theoretical techniques which are occasion-
ally useful to the mathematician.

If A is a set, and if every A € A has a set M, associated to it, we define
[Tica M, the product of the sets M,, as the set of maps @: A = | ;A M,
such that ¢(4) € M,; in other words, the product is the set of families

(m‘_|l€A,m‘_€MA).
Axiom of Choice. If M, #  for all 1€ A, then [],.A M, # &.

So this means that if there is an element in every M, there is also a function
that chooses one element from each M,.

A partial ordering on a set M is a relation < among elements of M such
that the following hold: x < x (reflexivity), x <y and y<x=>x=y
(antisymmetry), x < y and y < z = x < z (transitivity), in each case for all
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x,,2zeM. Wealsowrite x < yifx<yand x# y.If xe M, A c M, we
write x > A if x > afor all a € A, and similarly x > A4, x < A etc.

Examples. If M is a set and P is the set of its subsets, inclusion defines a
partial ordering on P. From this example derive the partial ordering on the
subgroups of a group, on the subspaces of a vector space etc.

A chain or linearly ordered set is a partially ordered set in which the
following holds: For every x, y € M, we have either x < y or x > y. A chain
is called well-ordered if every non-empty subset of it has a smallest element
(relative to the ordering). Example: N, but not Z, @, R. If M, N are well-
ordered, so is of course M x N with the lexicographical ordering, i.e.
(m,n) < (my,n))if m <m; orm=my, n <n,. Sois also M + N (disjoint
union) with the ordering m < n for me M, ne N, and as before for two
elements of M or N.

In a well-ordered set the following principle holds:

Induction Principle. If A(k) is an assertion about an arbitrary k € K, and A(l)
for every | < k implies A(k), then A(k) for all k € K.

PROOF. Otherwise there would be a smallest k € K such that A(k) is false. But
then A()) for ! < k, hence also A(k). Contradiction. O

In the same way as for the natural numbers one can recursively define
things in a well-ordered set. For instance, a recursion formula for a function f
on M fixes the value f(n) depending on the values f (k) for k < n, i.e.

J(n) = o(f | {klk < n}).

One shows by induction on n that on the subsets {k € M|k < n} there is
exactly one function f satisfying the recursion formula, and so the same holds
on M, since a function f on M is determined by the restrictions f | {k < n}.

At this point you may hear the argument that the statement “ f is uniquely
determined by the recursion formula for all n” follows by induction on n.
However this is not a statement of the form “For every n the following
holds: . ..”, which can be directly proved by induction.

¥

The most important tool in and from set theory is

Zorn’s Lemma (essentially due to Zermelo). Let (M, <) be a partially
ordered set. Suppose every chain K ¢ M is bounded. Then M has a maximal
element, i.e. there is an a € M such that no x € M satisfies x > a.

PrOOF. Suppose the lemma doesn’t hold. Then we can associate to every chain
K = M an element m(K) € M with m(K) > K. Here we have used the axiom
of choice. Call a chain K c M distinguished if K is well-ordered and for
every initial subset K, 1= {k € K|k < x} we have x = m(K,)
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Lemma. If K, L are distinguished chains, then either K = L or K, = L or
L, = K for some x in K or L respectively.

PROOF OF THE LEMMA. Suppose we're not in one of the first two cases. Then
we show by induction on K the following assertion: x€ K = x€ L and
K, = L,. Proof of the assertion: Otherwise there would be a smallest x € K
for which the assertion is false. Then we already have K, = L (since K, < x),
and K, # L by assumption; so let ze L be minimal with the property
z¢ K,. Then z > K,, otherwise for some ye K, we'd have x > y > z;
but then, since the assertion holds for y, ye Land K, = L, 3 z, hence z € K,
contradicting the choice of z.

So now z > K, and clearly K, = L,. But then x = m(K,) = m(L,) = z.
This proves the assertion. It now follows K < L, and since K = L, for the
minimal z € L with z ¢ K, the lemma has been shown. a

It now follows easily that the union of all distinguished chains is dis-
tinguished. Call it A. Then m(A4) > A, and A L {m(A)} is also distinguished,
but then A U {m(A)} = A, a contradiction, since m(A4) ¢ A. End of the proof
of Zorn’s lemma. O

Definition. Two sets M, N have same cardinality | M| = |N| if there is a
bijection M - N. Wealso write |M| < | N|if there is an injection ¢: M — N.

It is obvious that |[M| < |N|and |[N| < |S| imply | M| < |S]|.

Theorem (Schréder-Bernstein).

() IM| <|N|and [N| < |M|=|M]|=|N]|.
(ii) |IM]| < |N]or |N| € |M].

PROOF. (i) Let ¢: M — N and y: N - M be injections. We seek a bijection
y: M — N. Every element me M and n € N appears, up to a translation of
indices, in exactly one sequence of the form

TR Mg R R g M b M e Mg o g r My H oy

n, € N, m, € M, as an n, or m, respectively. Define y(m) = ¢(m) if the sequence
in which m appears starts with an m, € M (and in particular has a first
element), and y(m) = ¢~ '(m) otherwise. Then y is always well-defined and
bijective.

(11) Consider the set of triples A — B such that Ac M, B N, ¢ is
bijective. Define (A - B) < (4, 2 B,)if Ac A,, Bc B, and ¢,|4 = ¢.
This defines a partial ordering on the set of such triples, and every chain
(4, ;2 B)IA€A) is bounded by A=), 4,3 UiB,=B, ¢l4; = ¢,.

Now take 4 — B maximal by Zorn's lemma; then clearly A = M or B = N,
otherwise one could find me M, m¢ A, ne N, n¢ B, and extend A4 — Bon
Avu {m} - Bu {n} withmn. O
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Definition. The power set P(M) is the set of subsets of M.

Theorem (Cantor). |'B(M)| > |M|. We also write | B(M)| =: 2'M1.

PRrOOF. Otherwise there would be a bijection M — (M), x — M(x). Define
asubset A ¢ M by x € A <> x ¢ M(x). We'd have A = M(y) for some y € M,
hence y € A <> y ¢ M(y) = A. Contradiction. O

Theorem. Every set can be well-ordered.

PRrROOF. For a given set M consider the set of pairs (4,R), A < M, R a well-
ordering on A. Set (A,,R;) < (A,,R,)ifand only if A, = {a € A,]a < x} for
an x € A,, with the ordering on A, induced by that on A,. This defines a
partial ordering among the pairs (4, R). Every chain {(A4,, R,)} is bounded by
A =14, R|A; = R;. A maximal element (4, R) satisfies A = M, for other-
wise me M, m¢ A, and A U {m} would be well-ordered by the well-ordering
on A and the condition A < m, so the pair (4 U {m}, <) would be greater than
(4, R). 0

In the same way that cardinals are formed from sets and injections, ordinals
are obtained from well-ordered sets and monotonic injections. Two well-
ordered sets have same ordinal if there is an order-preserving bijection
between them.

Theorem. Let M, N be well-ordered. Then there is exactly one monotonic
bijection from one set onto the other or an initial subset of the other. In par-
ticular the ordinals are linearly ordered.

PROOF. Suppose there is no monotonic bijection M - N or M — N_. Then
define ¢: N = M, inductively: if ¢ is already defined on N, and ¢(N,) = M,
for some z € M, then set ¢(x) = z; if N, U {x} # N, then N, u {x} 1s also
an initial segment in N and @(N,) U {z} an initial segment in M. ¢(N) is
obviously inductively defined, and ¢(N) = M, with y minimal in M, so
y ¢ (N). ged. O

Ifin particular M is well-ordered, then the cardinals < | M| are represented
by subsets of M, hence also by initial segments M, of M (by the theorem),
and |[M,| < |M,|<>x < y. So:

Corollary. There is exactly one bijective monotonic map from the set of
cardinals < | M| onto an initial segment of the well-ordered set M. In particular
the set of cardinals <|M| is well-ordered by their ordering, and |M | is repre-
sented by the set of ordinals < ordinal of M.

Theorem. For an infinite set M we have|M x M| = |[M|and|M + M| = |M|,
where + is disjoint union.



Set Theory 175

Corollary. If | M| is infinite, N # &, then
IM x N| =M + N| = max{|M|,|N|}.
PROOF. From the first assertion it follows that
IM|=|M x M| >|M x {1,2}| = M + M| > |M|;

so the second assertion holds for the same cardinal. Proof of the first assertion:
Consider the set of pairs (B, ¢) where B c M is infinite and : B —+ B x B
i1s bijective. If| B| = | N, there certainly is a bijection as required (enumeration
of N x N). As usual we’re considering among the pairs (B, ) the ordering
(B,y) < (By, ¥,) if Bc B, and y = y,|B. Now Zorn’s lemma provides a
maximal pair (A4, @), ¢: A - A x A. Suppose |A| < |M|;then M = A + B
and |B] > | A| by the induction hypothesis (induction on the cardinality).
SoM=A+ A, + C,|A;| = |A|. Now

A+A))xA+A)=(Ax A)+ (A x A) + (A, x A) + (A, x Ay),
and by the induction hypothesis there is a bijection
Ay (A x A) +(A4; x A) + (4, x A)).
So ¢, gives an extension of ¢, namely a bijection
A+ A 2 (A+ A)x(A+ A),
which coincides with ¢ on A, contradicting the maximality of ¢. This proves
the theorem. O
Let | M| be infinite and K be the set of cardinals x such that
IM| < k < 2IM1,

From the first corollary of the previous theorem we obtain the following
estimate:

0 <|K|<2M.

The continuum hypothesis of Cantor says that | K| = 0. By a theorem of
Cohen this hypothesis is independent of the axioms of set theory, and inside
the estimate above all assumptions are consistent with the axioms of set
theory. The continuum hypothesis would imply there is no cardinal between
IN| and |R| ; hence its name.
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[a. b]

o &

K (x)

R +

—
N

o
S’

-
|-l
C(X)

X/~

G/H
X/G

closed interval fromato b 3
interior of set B 6

closure of B 6
ball of radius ¢ around a point x of a metric space 8
disjoint union, topological sum 10

“isomorphic”; used here for homeomorphisms 13

open interval from 2 to 3 (I haven’t got accustomed to the
disgusting notation ]2, 3[ yet; I will some day, people get ac-
customed to everything.) Danger of confusion with the ordered
pair (2, 3) € R? 14

norm 26

seminorm 27

Banach space of bounded continuous functions on X 29
equivalence class 31

set or space of equivalence classes relative to the equivalence
relation ~ on X 31

quotient space of G by the subgroup H 34

orbit space of a G-space X 38
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X/A

CX

XvY
XaAY
Y u X

M, # M,
X x [0, 1}/

(X.d)
Co'(R")

~

[X, Y]
1t,,(X ’ xO)

nAeA XA
S(Vgs---> V)

G(Y, yO)
[1-

V(U.,y)

Ng
(X' i0)
X'
Spec B

Table of Symbols

quotient space obtained by collapsing 4 < X toa
point 40

cone over X 40

wedge product X xyo U xox Y <« X xY
smash product X x Y/XvY 42
quotient space obtained from X + Y by identifying x with ¢(x)
(“attaching X to Y via ¢”). 43

connected sum 45

quotient space obtained from X x [0, 1] by identifying (x, 0)
with (x(x), 1) 46

completion of the metric space (X, d) 51

vector space of C*™-functions with compact support
homotopic 59

homotopy equivalent 61

set of homotopy classes of maps from X into Y 61
n-th homotopy group of (X, x,) 75

product of family {X,},. A Of sets or topological spaces
simplex, convex hull of points v,, .
R" 88

set underlying a simplicial complex
n-skeleton of a cell decomposition of X

42

56

80
.., U in general position in

90
96

tangent bundle 117

fiber of a topological space Y = X over X at point x 128
restriction of a topological space over X to U < X 128
isomorphic; used here for homeomorphisms **over X™’ 129
written above a map:

usedin Chapter IX mostly for ““liftings’ of varioussorts 133

path described backwards, i.e. a™ () := (1 — 1) 139
set of loops in X at x, 140
here: homotopy of loops with fixed endpoints x, 141

here: equivalence classes of loops by = 141

fundamental group 141

homomorphism between fundamental groups

induced by f 141

characteristic subgroup of m,(X, x,) for the covering space
(Y, yo) = (X, xo) 142

(pages 145-149 only) equivalence classes of relation defined
on page 145 145

(pages 146-149 only—special notation required inside a
proof) 146

group of covering transformations 149
normalizer of subgroup B 150
universal cover of (X, x,) 152

dual space of a normed space X 163

spectrum of a commutative Banach algebra 165
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BX Stone-Cech compactification of X 167

F filter 169

|M| cardinality of set M 173

21MI cardinality of power setof M 174

IN| cardinality of set N of natural numbers; also denoted by

N, (aleph null) 175
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The short explanations accompanying the entries are not always complete and do not
replace the exact definitions given in the text.

accumulation point 3. See cluster

point
attaching 43
a topological space X to a space Y by a
map ¢: X, - Y:taking the quotient space
Y U, X=X + Y/~ by the equivalence
relation that identifies x and ¢(x).
attaching map 43
is the map ¢: Xo = Yusedtoform Y u, X
from X and Y.

axiom of choice 171

e-ball &
in a metric space: K (x):={yld(x, y) < ¢€}.
So in R" with the usual metric

K (x)={yllx — yll < ¢&}.

Banach space 26
a complete normed space.

basepoint 141
In certain situations it is formally con-
venient to consider not topological spaces
but pairs (X, x,) of a topological space and
a point x, in it. x, is then called the
basepoint of the space (more properly, of
the pair).

basis 12
of a topology: a set of open scts containing
enough of them to allow all open sets to be
generated as a union of such basic sets.
(For instance, the open balls form a basis
for the topology of a metric space.)

bordant 76
Two compact differentiable manifolds are
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called bordant if their disjoint union is the
boundary of a compact manifold.
bordism classes 76
equivalence classes under the equivalence
relation “bordant”.
boundary point 6
of B: each neighborhood intersects both B
and X\B.
branched covering 131
a more general concept of covering than
the one dealt with in Chapter IX of this
book.

Brower, L. E. J., 1881-1966 94

Cantor, Georg, 1845-1918 3, 4,174,
175

cardinality

category 66
The data are the objects, morphisms and
composition laws: the axioms are existence
of identity and associativity.

cell 93
any topological space homeomorphic to
R" is an n-cell.

cell decomposition 93
of a topological space X: a partition of X
into subspaces which are cells.

chain 172

characteristic map 95
for and n-cell e in a cell decomposition of
a space X: it’s a continuous map D" =+ X
which maps the open ball homeomorphic-
ally onto e and the boundary $"~* into
the (n — 1)-skeleton.

characteristic subgroup of a covering
space 142
Image of the fundamental group “upstairs”
in the fundamental group “downstairs™.
choice, axiom of 171

classification of covering spaces
149
consists of the uniqueness theorem on
page 144 and the existence theorem on
page 149.

Clifford-Klein forms
space forms

closed 5

a set whose complement is open.

173

144,

158 See

Index

closure 6
the interior plus the boundary of a set
form its closure.

closure finiteness 95
A cell decomposition is closure finite if the
closure of every cell intersects only finitely
many cells.

cluster point 3
of a subspace 4 = R: A point p € R, not
necessarily in A, for which

An(p—¢ep+e)\p
is non-empty for all e > 0. Analogously
for a subspace A of a topological space
X (A n U\p non-empty for every neigh-
borhood U of p).
coarsc 12 See fine

collapsing of a subspace 40
A < X (o a point: means passing to the
quotient space X/A under the equivalence
relation that identifies all points in A.

commutative Banach algebra 164

compact 18
is a space in which every open cover admits
a finite subcover. Hausdorfiness is often
required as well.

complete metric space 50
one in which every Cauchy sequence
converges.

complete topological vector space 28
one in which every Cauchy sequence con-
verges, where the concept of Cauchy
sequence is defined using neighborhoods
of the origin (since there is no metric!).

completely regular 166
a topological space in which one-point sets
are closed and for every closed subset A
and point p¢ A there is a continuous
function into [0, 1] which is 0 at p and 1
on A.

completion 51
of a metric space: a complete metric space
in which the given space is contained (as a
metric space) and dense.

cone 40
over X is defined as

CX = Xx[0,1)/X x {1}.

connected 14
a space X for which the only open and
closed sets are J and X.

connected sum of two manifolds 45
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continuous map 12
f: X = Y continuous if the inverse image
of open selts is open.

continuum hypothesis

contractible 61
a space homotopically equivalent to a one-
point space.

contravariant 69
A functor F is called contravariant when it
associales to every morphism X - Y a
morphism “pointing the other way™:
F(Y) 24 F(x).

convergence 17
a is called the limit of a sequence in a
topological space if for every neighborhood
U of a the sequence eventually stays in U.

convex property 120
of sections in vector bundles: sitting in an
Q for which each £, is convex.

countability axioms 79
require the existence of a countable neigh-
borhood basis for each point (first axiom),
or of a countable basis for the topology
(second axiom).

covariant 69
A functor F is called covariant when it
associates to every morphism X Ly
another morphism “in the same direction”
F(X) 28 F(Y).

covering space 130
a locally trivial fibration with discrete
fibers

covering transformations 149
of a covering space Y = X are the homeo-
morphisms ¢ of Y onto itself such that
Mo =x.

cube 75, 161

I"=[0,1]"cR"

CW-complex 95
A space with a cell decomposition satisfy-
ing the following axioms: (1) existence of
characteristic maps, (2) closure finiteness,
(3) weak topology.

CX 40
Cone Xx [0, 1)/Xx 1.

Cx) 29,79
Banach space of bounded continuous
functions on X with the supremum norm.

Co(R") 56
Vector space of C®-functions with compact
support.

175
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d 8
Metrics X x X - R are generally de-
noted d in this book.

2 149

group of covering transformations.

deck transformations 149. See
covering transformations.
deformation retract 62
If there is a retraction X — A homotopic
to Id,, A is called a deformation retract of
X. (“strong” if A can be kept pointwise
fixed under the homotopy.)
dense 5!
A is called dense in the topological space X
ifd=X.
differential operators 57
In particular, linear partial differential
operators of the form Y.< a.D".
Difflop 61
The category of differential manifolds
and differentiable maps.
discrete topology 12
The finest possible ever; all sets are open,
in particular those with one point. One
can also think of the points as being
arranged “discretely”, in contrast with
points distributed “continuously”.
disjoint union 10
X + Y; union of sets previously “made™

formally disjoint (usually
X+Y=Xx{0}uY x{1}.)
distance 109

of a point a to a set B in a metric space
(X, d): defined as the infimum of

{d(a, x)| x € B}.

dual 163
of a normed space X: The space X’ of
linear forms on X with norm

U/l =sup|f(x)], lix§ < 1.

Euler characteristic, Euler number
71, 72, 104
Alternating sum of the numbers of edges,
vertices etc. of a simplicial complex or of
the Betti numbers of a topological space.

excursus on vector bundles 116
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existence theorem for covering
spaces 149

says under what circumstances, given any
subgroup G c n,(X, x,), there is a cover-
ing space whose characteristic subgroup
is G.

exterior point 6
of B: every point that has X\B as a
neighborhood.

filter 169
on X : A set of subsets containing any super-
set of any of its elements, the intersection
of any two of its elements, and not contain-
ing the empty set.

filter convergence 169
A filter converges towards a if every

' neighborhood of a belongs to the filter,

fine 12
If @ < O are topologies on X, @ is said to
be coarser than @ (fewer open sets) and @'
finer than @ (more open sets).
first countable 79. See countability
axioms

forgetful functor 70, 72, 92

Fourier series 3
Function series of the form

229 + Y a,cosnx + b, sin nx.

n=1
Named after Joseph Fourier (1768-1830),
who used them for the first time (in con-
nection with the heat equation).

Fréchet, Maurice, 1878-1973 3, 24,
27

Fréchet space 28
a complete Hausdorfl topological vector
space whose topology can be given by a
sequence of seminorms.

fundamental group 141
n,(X, xo) of a space with basepoint: under-
lying set is the set of homotopy classes of
loops at x,; composition law given by
“describing the loops after one another™.

functor 69
between two categories, associates objects
to objects and morphisms to morphisms,
preserving the identity morphisms and the
composition law.

Index

Gelfand-Neumark representation for
B*-algebras 166
generated 12
For a given set & of subsets of X there is
exactly one topology &(¥) having & as a
subbasis (topology “generated ” by ¥).
G/H 34
Quotient of a group by a subgroup.
Grassmannian manifold 36
of k-dimensional subspaces of R**%, i..
O(n + k)/O(n) x O(k).
G-space 37
is a topological space X together with a
continuous G-action G x X =+ X. An-
alogously for differentiable G-manifold.

handle 44
In connection with Morse theory, a name
for D* x D*°%,

-’ . hal ” S l
(X, @) denotes the completion of the metric
space (X, d).

Hausdorfl, Felix, 1868-1942 2,17

Hausdorfl separation axiom 17
Any two distinct points have separating
neighborhoods.
Hausdorff space 17
A topological space satisfying the
Hausdorff separation axiom.
Hilbert basis 26
acomplete orthonormalsystemina Hilbert
space.
Hilbert cube 162
In a separable Hilbert space, for instance
the space of square-integrable sequences,
it's the subspace of sequences (x,),,; with
I1x.] < 1/n.
Hilbert space 26
a complete space with inner product.
homeomorphic 13
Two spaces are homeomorphic if there is a
homeomorphism between them.
homeomorphism 13
a bijection f: X — Y such that both f and
J ! are continuous.
homogeneous space 35
a quotient G/H of topological groups.
homology 72, 73,92, 103
We talk about homology (and a number of
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other objects beyond the realm of point-
set topology) several times in this book, but
the definition is not given. See for instance
(5] or [16).
homotopic 59
Twomaps X — Y aresaid to be homotopic
if they can be continuously deformed into
one another.
homotopy 59
between f, g: X — Y: a continuous map
H:X x[0,1]> YwithHy = f,H, = g.
homotopy category 68
Objects: topological spaces. Morphisms:
homotopy classes of continuous maps.
homotopy classes 61
Equivalence classes of maps X — Y under
the equivalence relation “homotopic”.
homotopy equivalence 61
a continuous map f:X — Y for which
there is a “homotopy inverse”g: Y — X.
homotopy groups 75
(X, xo) of a space X with basepoint x,.
This important concept was introduced in
1935 by Witold Hurewicz (1904-1957).
homotopy inverse 61
of f2 X - Y isamapg: Y — X such that
g o f and f - gare homotopicto the identity.

ideal limit points 52
Points that have to be added to a space to
form its completion.

incidence data 91

incidence numbers 103
homologically describe the way in which
the cells of a CW-complex stick to the
lower-dimensional skeletons. The concept
is not detailed in the text.

induced topology 10
A set V c X, is open in the topology
“induced” on Xy < X if there is a set U
openin X withV = Xy U.

induction principle 172

interior 6
of a set B: set of interior points of B.

interior point 6
of B: any point for which B is a neighbor-
hood.

invariant 70

isomorphism 129
between topological spaces (Y, n) and
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(¥, #)over X : Ahomeomorphism ¢: Y— ¥
with o ¢ = n (homeomorphism “over”
X).
isomorphisms 68

of a category: the morphisms that have an
inverse. In the topological category, for
instance, the isomorphisms are the homeo-
morphisms.

isotropy group 39. See stabilizer

Klein bottle 46
Named after Felix Klein (1849-1925).

Kuratowski closure axioms 7
An alternative way to see the concept of
topological spaces—axiomatizing the con-
cept of closure.

leaves, number of 130. See
number of leaves

lexicographical ordering
Lie groups 85, 159

differentiable manifolds with differentiable
group structure.

liftability criterion 142

172

(Y' }’o)

Z. 200 —L (X,x0)

where we're looking for f. The criterion
refers to the fundamental group.

locally convex 28
a topological vector space for which every
neighborhood of the origin contains a
convex neighborhood.

locally homeomorphic 130
amap f: X — Y for which for every x e X
there are open neighborhoods U of x and
V of f(x) such that f|U defines a homeo-
morphism from U onto V.

locally path connected 142
a space for which every neighborhood of a
point contains a path-connected neighbor-
hood.

locally trivial fibration 129
a topological space Y over X such that for
every point in X there is a neighborhood U
over which Y is trivial, i.c. such that Y|U
is homeomorphic to U x F — U over U.
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LP-space 56
function space with norm

isil, = J_ﬁﬂ—'ﬁ

named after Henri Lebesgue (1875-1941).

M 66
category of sets and maps

M,# M, 45
connected sum

manifold 19, 85, 106
*Differentiable manifold™ is the funda-
mental concept of differential topology.
See for instance [3].

metric space 8
a pair (X,d) with a positive definite,
symmetric map d: X x X — R satisfying
the triangle inequality. The (X, 6(d)) form
an important class of examples of topo-
logical spaces.

metrizable space 9
topological space (X, @) for which it is
possible to find a metric with ©@ = 6(d).

Maébius strip 46
named after August Ferdinand M&bius
(1790-1868).

monodromy lemma 136
of covering space theory: homotopic paths
are lifted to paths ending at the same point.

Morse theory 44, 65

differential topological theory dcvclope& .

by Marston Morse (1892-1977) which
allows one to draw inferences about the
topological properties of a (possibly in-
finite-dimensional) manifold from the type
and number of critical points of a function
on the manifold.
Mor(X, Y) 66

set of morphisms from X into Y in a
category.

neighborhood 5
of x is a set which contains not only x but a
whole open set containing x.
neighborhood axioms 7
alternative way of looking at the concept
“topological space”, by axiomatizing the
neighborhood concept.

Index

neighborhood basis 78
set of neighborhoods of x, in which “occur
arbitrarily small neighborhoods™, i.c. any
neighborhoods of x, contains a neighbor-
hood in the basis.

RN, 76
bordism groups

norm 26
I.-l: E—+ R positive definite,
geneous, triangle inequality.

normal covering space 151
onc whose characteristic subgroup is
normal in the fundamental group of the
base space. Geometrically it means the
group ofcovering transformations operates
transitively on the fiber.

normalizer 151
of a subgroup B « A: the largest group N,
between B and A in which B is still normal.

north pole 42
of the sphere S" < R"*! is the point
N=(,...,0,1).

null-homotopic 147
a loop which is homotopic (with fixed
endpoints) to the constant loop. It repre-
sents the neutral element in the funda-
mental group.

number of leaves 130

of a covering space at point x: number of
points in the fiber over x.

homo-

Ob(¥) 66
class of objects of category .

od) 8
topology of the metric space (X, d).

open 5
The definition of “ topological space” rests
on the axiomatization of this concept. All
other topological concepts are derived
from the fundamental concept of “open™.

open ball 8
in a metric space the set {y|d(x, y) < &} is
the “open &-ball™ around x. Because of the
triangle inequality it really belongs to
0(d).

open boxes 11, 81
in X x Y: The sets of the form U x V,
where U is openin X and V in Y. In
infinite products: finite intersections of
“open cylinders”. They form a basis for
the product topology.



Index

open cover 18
of a topological space X : A family {U,},,4 -
of open sets whose union is X.
orbit 37
of a point in a G-space. It’s the set Gx of
points into which the action of the group
can take x.
orbit space 38
X/G of a G-space X is the space of orbits
endowed with the quotient topology.
ordinals 174
0lX,
the topology inducedon Xy < X by(X, 0).

paracompact 124
A Hausdorff space such that every open
cover has a locally finite refinement.
Important because the Hausdorfl spaces
for which every open cover admits a
subordinate partition of unity are exactly
the paracompact spaces.

partially ordered set 171

partition 93
of a set X : a set of pairwise disjoint subsets
whose union is the whole of X.

partition of unity 116
representation of the constant function 1
on a topological space X as a “locally
finite™ sum of functions X — [0, 1). Useful
when the summands have “small " support.

path 15
a continuous map [0, 1] - X.
path-connected 15

a space such that any two points can be
joined by a path.

path hfting 133
The omnipresent technique in the theory of
covering spaces: If Y = X is a covering
space and y, is a point over the starting
point of a path a in X, there is exactly one
“lifted” path & (i. o & = a) starting at y,.

Peano, Giuseppe, 1858-1932 152

(X, xo) 75
n-th homotopy group of (X, xo).

+, “plus” 10
X + Y denotes the disjoint union of sets
or topological spaces.

polyhedron 88. See simplicial

complex
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pre-Fréchet space 28
A Hausdorfl, not necessarily complete
topological vector space whose topology
can be given by a sequence of seminorms.

product of topological spaces 11, 80
product X x Yor][]ica Xa,cndowed with
the product topology (“open boxes™ as
basis).

product topology 11, 80
Q< X x Y is open in the product top-
ology if for every point in € there is an
open box U x V in Q. (Similarly for
infinitely many factors. .. .)

PX) 7,174

set of all subsets of X (*power set™).

quasi-compact 18
name given to our compact spaces by
authors who reserve the word compact for
what for us would be “compact and
Hausdorfl™.

quotient space 3l
X/~ of a topological space X by an
equivalence relation ~; It's the set X/~
of equivalence classes endowed with the
*quotient topology ™.

quotient topology 31
on X/~ is the finest topology for which
X — X/~ is still continuous; in other
words, U ¢ X/~ is open if and only if
its inverse image in X is.

recursion formula 172
recursive definition 172

reflexive Banach space 163
a Banach space X for which the canonical
inclusion X < (XY into its “double dual”
is actually a bijection: X = X*.

retract, retraction 62
A < X is called a retract of X if there is a
retraction from X onto A, ie. a con-
tinuous map X — A whose restriction to A
is the identity.

Riemann, Bernhard, 1826-1866 3,

122, 157

Riemann metric 122
on a vector bundle E: A scalar product
..,-.>« for each fiber E,, in such a way
that x — {..,..), is continuous or differ-
entiable in an appropriate sense.
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Riemann surfaces 157
connected one-dimensional complex mani-
folds. Not dealt with in more detail in the
book —see [9]).

Schroder-Bernstein theorem 173

second countable 79. See
countability axioms
section 73,117
of a continuous map n:Y — X is a con-
tinuous map o: X — Y with no o = Id,.
semi-local simply connected 148
a space in which every point x has a
neighborhood U such that every loop at
x in U is null-homotopic in the whole
space.
seminorm 27
|..]:E—>R; |x| can be 0 for x # 0, in
contrast with norms.
separable 85
a topological space which contains a
countable dense subset.
sequentially compact 83
A set in which every sequence has a con-
vergent subsequence.
sequentially continuous 82
A map that takes every convergent se-
quence into a sequence that converges
towards the image of the limit.
shrinking 126
of an open cover: another open cover
whose sets have their closures contained in
the sets of the first.
simplex 88
the convex hull of k + 1 points in R” in
general position is called a k-simplex.
simplicial category 92
simplicial complexes and simplicial maps.
simplicial complex 88
aset K of simplices in R” (satisfying certain
regularity conditions). The name simplicial
complex is also applied to the union | K| of
the simplices.
simplicial homology 92
(definition not given in text)
simplicial map 92
a map between simplicial complexes that
takes k-simplices affinely into k-simplices.
simply connected 148, 152
A path-connected space is simply con-

Index

nected if every loop is null-homotopic,
i.c. if for some (hence every) basepoint the
fundamental group is trivial.

skeleton 96
The n-skeleton X* of a space X with a cell
decomposition is the union of all cells of
dimension <n.

small category 69
one whose objects are the elements of a
certain set.

smash product 42
XAY=XxY/XVY.

Sobolev space 58

solid torus 63
S' x D2,

space forms 158
concept from differential geometry: com-
plete connected Riemann manifolds with
constant Riemann sectional curvature;
concept not developed in the text. Riemann
(1854) had already thought of them as
models for the real physical space.

space-filling curve 152
a continuous surjective map

[0,1]) - [0, 1]~

spectrum 165
of a commutative Banach algebra: set of
maximal ideals. endowed with the weak-*
topology.

stabilizer 39
or isotropy group G, of a point x in a G-
space: subgroup consisting of the elements
of G that fix x.

Stone-Cech compactification 166
BX of a completely regular space X ; it isin
a sense the “biggest possible™ compactifi-
cation of X.

subbasis 12
of a topology: a set of open sets containing
at least enough sets to “generate™ the
topology, i.c. the finite intersections of sets
in a subbasis form a basis. (For instance,
open cylinders form a subbasis of the
product topology.)

subcomplex 98
of a CW-complex: a closed union of cells.

subordinate 116
a partition of unity is subordinate to a
cover if the support of every function in the
partition is contained in a set of the cover
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subsimplex 88

subspace 10
X, of a topological space X: The subset
Xo<c X endowed with one special
topology, the “subspace” topology.
subspace topology 10. See
induced topology
sum 10
of sets or spaces, See disjoint union.

support 107
Supp of a function f: the closure of the set
of points where the function does not
vanish.

suspension 4l
ZX of X, obtained from the cylinder over X
by collapsing the bottom and the lid to one
point each.

s(vg, ..., v) 8B. Seesimplex

Thom, René, *1923 42,77

Thom space 42
of a vector bundle E: defined as DE/SE.

Tietze extension lemma 114
about the extendability of functions given
on closed subsets.
™ 117
tangent bundle of the manifold M. Not
developed in the text; see [3].
Fop 66
the “topological category™: topological
spaces and continuous maps.
topological group 25, 34
G is a group and a topological space at
the same time, and moreover

(a, byr—ab!

is continuous.
topological space 5
a pair (X, 0) such that ¥ and X, arbitrary
unions and finite intersections of sets in @
are again in 0.
topological space over X 128
a pair (Y, n) formed by a topological space
Y and a surjective coOntinuous map
n:Y - X.
topological sum
union
topological vector space 24
a vector space endowed with a topology
compatible with the linear structure.

10. See disjoint
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topology §
technical sense: set of open sets of a
topological space. In general, the theory of
topological spaces.

topology of a metric space 8
O(d) = {U|for every x € U there is € > 0
with K (x) < U}.

transitive 151
The action of a group on a set is transitive
if there is only one orbit, i.c. if for every
x, yeY ther is always a ge G with
y = gx.

triangle inequality 8
d(x, z) < d(x, y) + d(y, 2).

trivial topology 12
the coarsest ever, contains only ¥ and X.

Tychonoff, Andrej Nikolajevitch,
*1906 160

Tychonoff product theorem 160
Arbitrary products of compact spaces are
compact.

What we call compact, Tychonoff used
to call “bicompact™. He wrote in [20],
p. 772: “The product of bicompact spaces
is again bicompact. This is proved ex-
actly thesame way as for the bicompactness
of products of intervals”, which he had
done in [19), §2.

“Probably the most important single
theorem of general topology " (J. L. Kelley,
General Topology, Springer-Verlag).

ultrafilter 169
a maximal filter.

uniformly continuous S5
A map between metric spaces is uniformly
continuous if for every € > 0 there is a
6 > 0 such that points with distance <é
are mapped into points with distance &.

uniqueness theorem for covering
spaces 144
says to what extent a covering space is
determined by the image of the funda-
mental group “upstairs” in the funda-
mental group “downstairs™ (**character-
istic subgroup™).

universal cover 152
of a space: the (uniquely determined)
simply connected covering space. For the
notation “universal " see theoremon p. 155.
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Urysohn, Pavel Samuilovitch,
1898-1924 109

Urysohn lemma 109
fundamental theorem of function con-
struction on topological spaces.

vector bundle 117
consisting of total and base spaces, pro-
jection and vector space structure on the
fibers. The “axiom of local triviality™
must be satisfied. Example: tangent bundle
of a manifold.

vector field 19, 37, 121
Examples about integration of vector
fields on differentiable manifolds are in-
cluded for the reader acquainted with such
things. To learn them read for instance [3).

weak topology 30, 81, 95, 101, 163

for topological vector spaces: the coarsest
topology in which the continuous linear
functionals are still continuous.

for spaces with a cell decomposition: a
subset is closed in the weak topology if and
only if its intersection with all the cell
closures is closed.

wedge product 42

X v Y of two spaces with basepoint: the
subspace X x yoUxo X Y X x Y.

Index

well-ordered 172
Whitehead, J. H. C., 1904-1960 96
winding number 75

X/A 40
quotient space obtained by collapsing
A c X to a point.

X/G 38
orbit space of a G-space X.

X/~ 3l
quotient of a space X by the equivalence
relation ~.

[X,Y] el
set of homotopy classes of maps from X
into Y.

Yu, X 43
space obtained by attaching X to Y via ¢.

Zariski topology 17
topology of the projective space in which a
set is open if and only if its complement is a
projective variety.

Zorn'’s lemma 172
If every chain in a partially ordered set M
is bounded, then M has a maximal ele-
ment.
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ist. In his presentation, and through many illustrations, the author
strongly appeals to the intuition of the reader, presenting many exam-
ples and situations where the understanding of elementary topological
questions will lead to much deeper and more advanced problems in
topology and geometry.
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