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Preface

The major purpose of this book is to introduce the main concepts of discrete
optimization problems which have a finite number of feasible solutions.
Following common practice, we term this topic combinatorial optimization.
There are now a number of excellent graduate-level textbooks on combina-
torial optimization. However, there does not seem to exist an undergraduate
text in this area. This book is designed to fill this need.

The book is intended for undergraduates in mathematics, engineering,
business, or the physical or social sciences. It may also be useful as a
reference text for practising engineers and scientists. The writing of this
book was inspired through the experience of the author in teaching the
material to undergraduate students in operations research, engineering,
business, and mathematics at the University of Canterbury, New Zealand.
This experience has confirmed the suspicion that it is often wise to adopt the
following approach when teaching material of the nature contained in this
book. When introducing a new topic, begin with a numerical problem which
the students can readily understand; develop a solution technique by using
it on this problem; then go on to general problems. This philosophy has
been adopted throughout the book. The emphasis is on plausibility and
clarity rather than rigor, although rigorous arguments have been used when
they contribute to the understanding of the mechanics of an algorithm. An
example of this is furnished by the construction of the labeling method for
the maximal-network-flow problem from the proof of the max-flow, min-cut
theorem.

The book comprises two parts—Part 1: Techniques and Part II: Applica-
tions. Part I begins with a motivational chapter which includes a description
of the general combinatorial optimization problem, important current
problems, a description of the fundamental algorithm, a discussion of the
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need for efficient algorithms, and the effect of the advent of the digital
computer. This is followed by a chapter on linear programming and its
extensions. Chapter 2 describes the basic procedures of three of the most
important combinatorial optimization techniques—integer programming,
dynamic programming, and heuristic methods. Chapter 3 is concerned with
optimization on graphs and networks.

Part II poses a variety of problems from many different disciplines—the
traveling-salesman problem, the vehicle scheduling problem, car pooling,



Preface ix

evolutionary tree construction, and the facilities layout problem. Each
problem is analyzed and solution procedures are then presented. Some of
these procedures have never appeared before in book form.

The book contains a number of exercises which the reader is strongly
encouraged to try. Mathematics is not a spectator sport! These exercises
range from routine numerical drill-type exercises to open questions from the
research literature. The more challenging problems have an asterisk preced-
ing them. The author is grateful for this opportunity to express his thanks
for the support he received from the University of Canterbury while writing
this book, and to his doctoral student John Giffin, who contributed to
Section 4.1. He is also extremely thankful to his wife Maureen, who not only
provided enthusiastic encouragement, but also typed the complete manu-
script. Finally, the author pays a hearty tribute to the staff at Springer-Verlag
New York for their patience, skill, and cooperation during the preparation
of this book.

Gainesville, Florida L. R. FouLps
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CHAPTER 0

Introduction to the Techniques
of Combinatorial Optimization

0.1. The General Problem

Optimization is concerned with finding the best (or optimal) solution to a
problem. In this book we are concerned with problems that can be stated in
an unambiguous way, usually in terms of mathematical notation and
terminology. It is also assumed that the value of any solution to a given
problem can be measured in a quantifiable way and this value can be
compared with that of any other solution to the problem. Problems of this
nature have been posed since the beginning of mankind. One of the earliest
is recorded by Virgil in his Aeneid where he relates the dilemma of Queen
Dido, who was to be given all the land she could enclose in the hide of a
bull. She cut the hide into thin strips and joining these together formed a
semicircle within which she enclosed a sizeable portion of land with the
Mediterranean coast as the diameter. Later Archimedes conjectured that her
mathematical solution was optimal; that is, a semicircle is the curve of fixed
length which will, together with a straight line, enclose the largest possible
area. This conjecture can be proved using a branch of optimization called
the calculus of variations.

The problem just described has an infinite number of solutions as there is
an infinite number of possible curves of any given length. However, there is
an important class of optimization problems which have only a finite
number of solutions. The body of knowledge concerned with the theory and
techniques for these problems is called “combinatorial optimization” and it
is with this class that our book deals. Let S be the finite set of solutions to a
problem and assume each solution x € S, can be evaluated and assigned a
real number f(x) indicating its worth. This assignment may be in terms of
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some benefit, such as profit, which is to be maximized, or some detriment,
such as cost, which is to be minimized.

We now formally introduce the general problem of combinatorial optimi-
zation. Let

f:D—-R
be a real-valued function with domain D. Let
ScD.

Definition 0.1. x* € S is a global maximum of f if
f(x*)=f(x) forall xeS.

The definition of a global minimum is analogous.

Definition 0.2. x* € S is a global extremum of f if x* is either a global
maximum or global minimum of f.

The “general maximization problem of combinatorial optimization” is to
find x* such that x* is a global maximum of f; that is, to identify x* such
that

f(x*)=Max(f(x)) xe€S.
The definition of the “general minimization problem of combinatorial

optimization” is analogous.
S is called the set of feasible solutions and if

xeSs,
x is called a feasible solution or is termed feasible. If X € D and
f(x)=f(x) forall xesS,
X is termed an upper bound for f on S. If
f(X)<f(x) forallxes,
X is termed a lower bound for f on S. If X is an upper bound for f on S and
f(%)<f(x)

for all upper bounds x for f on S, then X is termed a least upper bound for f
on S. If X is a lower bound for f on S and

(%)= f(x)
for all lower bounds x for f on S, then X is termed a greatest lower bound
for fon S.
Note that X may or may not be a member of S. Of course if
X€ES,
X is a global extremum of f.
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0.1.1. An Illustrative Example of a Combinatorial
Optimization Problem: The Shortest Hamiltonian
Path

This section is based upon an article by D. F. Robinson appearing in the
Proceedings of the First Australian Conference on Combinatorics, New-
castle, Australia, August 1972.

Of course the nature of S can vary considerably from one problem to
another. Even though S is finite it may be extremely large and further it
may not be an easy task to identify its elements. We now present an
illustrative example of a combinatorial optimization problem that is simple
in concept, in order to give the reader some idea of what is to come.

Let V={v,,0,,...,0,} be a set of n cities where n>1. Consider the
problem of finding a shortest itinerary which passes through all the cities of
V. Let d, ; Tepresent the distance from v, to v, 1<i<n,1<j<n. The
distance matrix

D=[d],,,
is assumed to be symmetric in the sense that
d,=d; 1<i<n/1<j<n.

This problem is similar to one in the literature known as the traveling-sales-
man problem which is the subject of Section 4.2.
As V' has n members there are n! paths. We express a typical path as

x=(v«(l),v«(z),...,va(,,),

where {0q (1) Ve 2+ +3 Ve (m) } = { V15 V25-++> U, }, and x is the path which
begins at v, ;, and then visits vy 5), U (3, and so on, ending at v, . The
set S of solutions to this problem is

S = {(v“(l),v«(z),...,va(,,) o (1), @ (2),..., < (n)}={1,2,...,n}}.

If x= (Va1 V(2> Ve (ny) €S, then the value of x, f(x) is the length
of x,

n—1

f(x)= Z dot(i),ot(i+l)'

i=1
Then the problem is find
f(x*)=Min { f(x)}.
X€ES

Tg each path x = (v (1), Va 2)s+ 5 Ve (m)) thpre corresppnds a reverseRpath,
X" = (U (n)» Vet (n=1)»-++» Ve (1))~ Because d is symmetric, f(x)= f(x") for
all x € S. Hence the minimum path will not be unique.
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We define the following elementary operations on a path:

(i) Break the path (v (1), Ve (2)s+ -5 Vec (ny) after some point v, (2 <
m < n) and jOin Vg (ny 10 p« 1y 1h€ NEW path is
<”«(m)"’«(m+1)v~’"«(n)’”«(1)’"«(zwm"’«(m—x))‘
This new path will be shorter than the original one if and only if
dec(my,a) < do(m-1), a(m-
(ii) Break the path (Vg (1), Uc(2)s+++» Ve (ny) after some point vy (,,_;) 2 <
m < n —1) and then reverse the direction of the second part to yield
<"«(1)"’«(2)w"”«(m—l)’Uor(n)’"or(n—lw"")«(m))-
This new path will be shorter than the original one if and only if
dam-1,am <da@m-1,am-
(iii) The reverse of operation (ii). Break the path (v« (1), Ucc(2)se-+s Ve (n))
after vg () (2 <m <n—1) and reverse the first half to give the path
<U«(m>’U«(m—x)w"v«(l)’"«(m+1)’"«(m+2>v~’”a<n>>~
This new path is shorter than the original if

Aoy, am+1) < da(m, a(m+n)-
(iv) Take any pair of adjacent points Vg (s U (m+1y iN the path
<”«(1)’U«<2)v~’v«(n)
and reverse their order to obtain

<vot(l)’U(I(Z)""’va(m—l)’voc(m+l)’vo:(m)’vot(m+2)""’00<(n)>‘

The cases m=1 or m=n—1 have been dealt with in (ii) and (iii).
Otherwise the new path is shorter than the original if

Ao m-1), x(mi) T da(m), «(m+2) <D (m+2), «(m=-1) TV (m), « (m+1)*

We now note some properties of these operations:

(a) If it is possible to obtain path y by an elementary operation on a path
x, then x can be obtained from y by an elementary operation.

(b) If a path y can be obtained from a path x by an elementary operation,
then path yR, the reverse of y, can be obtained from x® by an
elementary operation.

(c) Each path can be considered a permutation on { v, v,,..., 0, }. Type (iv)
operations are in effect permutation transpositions.

It can be shown that any permutation can be expressed as a product of
transpositions. Hence any path can be transformed into any other path by a
finite sequence of type (iv) operations. Hence any pair of paths can be
transformed, one into the other, by a finite sequence of operations of types

()—(iv).
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Table 0.1. A City-to-City Distance Table

Uy Uy U3 Uy Us Vs U7 Ug Uy Uio

v, 201

v; 428 227

v, 207 156 348

vs 232 159 351 25

v 564 363 136 448 423

v, 73 274 501 186 211 634

vg 19 220 447 226 251 583 72

ve 508 307 176 340 314 118 526 527

vy 302 101 126 222 225 262 375 321 217

v, 165 210 437 65 90 513 144 184 405 311

Let us now search for a path of minimum length. The ideas will be made
more clear by examining a numerical example. Table 0.1 gives the distances
between a set of 11 cities.

In Table 0.2 we set out the successive shorter paths, represented by the
cities in order and the distances between them. The starting path A, consists
of the cities in order of increasing subscript. The greatest distance between
successive cities is 634 (from v, to v,). This is greater than d, ;, (=165).
We therefore split the path A4, between v, and v, and join v, to v;; by a
type (i) operation. We denote this break by the symbol A in the appropriate
place. The new path is denoted by 4,. We can never use type (i) operations
twice successively to any advantage. We now turn to type (ii) operations and
compare the distances between cities with the distances from the right-hand
side of a pair to v,. We find that v, is closer to v,, than v, is. So we form
path A, by reversing the section of the path from v, to v,,. This is denoted
by the symbols < and >. In A, the cities vy and vg are 527 apart. This
exceeds the distance between v, and ;. So a type (i) operation will reduce
this length. We continue using type (i) and (ii) operations until we reach
A,5. No further type (i) or (ii) operation will reduce the length of this path.
A type (iii) operation, reversing the order of the last three cities, will reduce
the length of A,;. This produces path A4,,. No operation of any type will
reduce the length of A4,,, which is 965.

Note that the distance from v to v, is 634. Hence it is evident that any
shorter path must have one end “close” to v, and the other “close” to v,. It
is then a simple matter to prove that A,, (with its reverse) is a global
minimum.

Definition 0.3. If, for all such x,
f(x0) < f(x)),

X, is said to be a local minimum of f.
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Definition 0.4. If, for all such x;
f(x0) 2 f(x)),

X, is said to be a local maximum of f.

Definition 0.5. If x, is either a local minimum of f or a local maximum
of f then x, is said to be a local extremum of f.

We may generalize the above approach. Consider the general minimiza-
tion problem of combinatorial optimization as defined in Section 0.1. We
can define on S a collection of elementary operations with the following
properties:

(a) If y €S can be obtained from x € S by an elementary operation, then
x can be obtained from y by an elementary operation.

(b) Given any two x, y € S there is a finite sequence of elementary opera-
tions which convert x into y.

The elementary operations thus define a connected graph, G (see Section
5.2), whose vertices are the members of S and whose edges join members of
S linked by an elementary operation. A solution process can be constructed
as follows. Begin at an arbitrary vertex x, € S and evaluate f(x,). We then
evaluate f(x;) for each x; adjacent to x,, in G.

If no such local minimum is detected, choose an x; € S adjacent to x, for
which

f(x0) > f(x)) (0.1)

and repeat the above process with x, replaced by x,. One method of
selecting x; at each stage is to choose the first member of S adjacent to x,
for which it is discovered that (0.1) holds.

The above process must terminate in the identification of a local mini-
mum in a finite number of steps as S is finite. A possible minor complica-

tion may arise in that a “plateau” x, may be detected where
f(x,)=f(x))

for some x f adjacent to X, but with no adjacent vertex x, such that
f(x,)> f(x0)-

If this situation arises, the set S of all such vertices x; is progressively
examined in the hope that a vertex x; may be found which is adjacent to a
vertex x; € §” and

f(xp) =1(x;) > f(x,).

Then the process is repeated with x, replaced by x,.
Some exercise of judgment is needed in the application of this process. If
the number of vertices adjacent to any given vertex is usually relatively
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small, local but not global minima will frequently be found. On the other
hand, if the number is usually relatively large, the search procedure may
take an inordinate amount of time.

0.2. Important Combinatorial Optimization Problems
This section comprises a description of a number of important combina-
torial optimization problems. The list is by no means exhaustive, but is
meant to give a flavor of the area. Analyses of these and other problems and
references to further work done on them will be found later in the book.
0.2.1. The Minimal Cost Network Problem

Given a network with arc costs and capacities, what is the minimum cost
flow assignment which transports a given commodity from source to sink?
0.2.2. The Transportation Problem

Given a distribution system from a set of warehouses to a set of factories,
what is the least transportation cost assignment of a single commodity
satisfying factory production capacity and warehouse demand?

0.2.3. The Facilities Layout Problem

Given a set of facilities to be laid out on a plane factory floor, what spatial
arrangement of these facilities maximizes the benefit of pairwise adjacency?
0.2.4. The Traveling-Salesman Problem

Given a set of cities, what circuit of them should a salesman tour in order to
minimize total distance traveled if he is to visit each city in the set, returning
to his starting point?

0.2.5. The Vehicle Scheduling Problem

Given a set of vehicles to be used for servicing a number of locations, what

set of tours should be assigned to the vehicles which minimizes distance
traveled and services the locations subject to vehicle capacity?
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0.3. The Fundamental Algorithm, Efficiency and the
Digital Computer

Consider the general maximization problem of combinatorial optimization,
as defined in Section 0.1. How could a specific instance of this problem be
solved? That is, suppose we are given the definition of a particular finite set
S and a function f such that

f:S—R.

Of course f may be nothing more than the specification of some experiment
or task that produces a unique real number f(x) for each x € S. Then our
problem is to find an x* € S such that f(x*) is no less than f(x) for any
other x € §. Since S is finite, we could simply evaluate f(x) for every single
x €S and compare all the function values and choose the largest. The
element (or elements) in S corresponding to this largest value provide us
with the desired solution. This approach is called the “fundamental algo-
rithm of combinatorial optimization” and is stated as follows:

Evaluate f(x), for all x € S. Choose x* to be the value of x for which
f(x*) = f(x), for all x€ S.

Naturally, there is a minimization version of this algorithm in which one
chooses the smallest function value. Although, this algorithm will theoreti-
cally solve any finite-optimization problem, for many realistic problems the
set S may have too many elements for this method to be of any practical
use.

As an example of this rather depressing fact consider the Hamiltonian
path problem of Section 0.1.1. Suppose the number of cities n = 21. Then
we could consider evaluating all 21! possible itineraries and choosing the
shortest. However, even if we had a computer capable of evaluating the
length of one path every nanosecond it would still take over 16,000 years of
continuous calculation!

This example amply demonstrates the need to search for techniques that
are more efficient than simple exhaustive enumeration. Since the beginning
of mathematics there has been a steady stream of such techniques proposed.
Many of the earlier ideas, although far better than complete enumeration,
still involved far too much calculation to be useful to a person armed only
with a pencil and paper. However, the advent of the modern digital
computer, with its awesome capacity to perform arithmetical calculations at
astonishing speed, has rekindled interest in many of these long-forgotten
techniques. This book documents some of the broad approaches that the
computer has now made meaningful.



CHAPTER 1
Linear Programming and Extensions

1.1. An Introduction to Linear Programming

One of the areas of mathematics which has extensive use in combinatorial
optimization is called linear programming (LP). It derives its name from the
fact that the LP problem is an optimization problem in which the objective
function and all the constraints are linear. Many real-world problems can be
formulated in this way. Even more problems can be effectively approxi-
mated by an LP model. Also an LP solution method can be used as a
subroutine in solving integer-programming problems (as indicated in Sec-
tion 2.1) and certain nonlinear optimization problems.

In this chapter we introduce the basic LP concepts. An efficient LP
algorithm, called the “simplex method,” will be detailed. We also discuss
the idea of a dual LP problem with a view to developing the dual simplex
method. This latter method is useful in the solution of integer-programming
problems as shown in Chapter 2. We begin with a simple numerical example
of an LP problem.

1.1.1. A Simple LP Problem

The Melt in Your Mouth ice-cream shop makes two kinds of ice cream—nut
cassata (C) and fruit pistachio (P). The shop is located in a busy tourist area
and is in the fortunate position of being able to sell all the ice cream it can
make. One cone of C sells for $0.75 and one cone of P sells for $0.60. A
cone of C requires 4 g of fruit mix and 2 g of nuts. A cone of P requires 6 g
of fruit mix and 1 g of crushed nuts. However, only 96 g of fruit mix and 24
g of crushed nuts can be produced hourly. How many of each type of cone
should be made in order to maximize hourly revenue?
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In order to answer this question, we first formulate the problem mathe-
matically. We begin by defining some decision variables. Let x, represent
the number of cones of C produced hourly and x, the number of cones of P
produced hourly. We also define a dependent variable. Let Z be the revenue
gained from producing x; cones of C and x, cones of P.

If x, cones of C are produced hourly and the revenue is $0.75 per cone,
then the hourly revenue for C is

$0.75x,.

Similarly, if x, cones of P are produced hourly and the revenue is $0.60 per
cone, then the hourly revenue for P is

$0.60x,.

So for an hourly production schedule of x; and x, cones of C and P,
respectively, the total hourly revenue (in dollars) is

Z=0.75x, +0.60x,.

We wish to find values for x; and x, which maximize this expression.
Naturally, there are constraints on the values that x; and x, can feasibly
assume. For instance, consider the restriction on available fruit. If x, cones
of C are produced and each cone requires 4 g of fruit, then the total fruit
required for C is
4x, 8.
Similarly, if x, cones of P are produced and each cone requires 6 g of fruit,
then the total fruit required for P is 6x, g. Hence the total fruit required for
an (x;, x,) schedule is
4x, +6x,.
But there are only 96 g of fruit available. Thus
4x, +6x, <96.

We can formulate a similar constraint for the restriction on the availability
of nuts. This appears below.
The complete problem is

Maximize 0.75x, +0.60x, (=2Z) (1.1)
subject to
4x, +6x,<96, (1.2)
2x,+ x,<24, (1.3)
x, and x,>0. 1.4)

These expressions can be explained as follows:

(1.1) The objective is to maximize the hourly revenue Z.

(1.2) A maximum of 96 g of fruit mix is available hourly.

(1.3) A maximum of 24 g of nuts is available hourly.

(1.4) A nonnegative number of cones of C and P must be produced.
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2%

24 | Eq.(13)
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Figure 1.1. The Graphical Solution to the Example Problem.

We can solve this problem with the aid of a diagram because there are
only two decision variables. The diagram is shown in Fig. 1.1. The inequali-
ties (1.2) and (1.3) are drawn as shown along with the x, and x, axes, which
represent the nonnegativity conditions x, > 0 and x; > 0, respectively. The
shaded region contains all points which correspond to feasible solutions. In
order to find the point representing the optimal solution, we set Z equal to
an arbitrary value, for example, 10. This creates the equation

0.75x, +0.60x, =10.

As Z is increased this line moves parallel to itself away from the origin.
When Z=11.7 it coincides with a single point of the feasible region.
Clearly, this point represents the optimal solution: (x}, x§) = (6,12). The
best hourly revenue that the shop can hope for is $11.70 from a policy of
making 6 cones of C and 12 cones of P.

Suppose the amounts of fruit mix and nuts available per hour are 101 g
and 25.5 g, respectively. The new optimal solution is (x{, x3) = (6.5,12.5).
(Check this.) Obviously, it would be ludicrous to advise the shop to make an
extra half ice cream cone per hour. In this case, the suggested policy would
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be to make 13 and 25 cones of C and P, respectively, every 2 hours. By
taking lowest common multiples of optimal values in the way illustrated,
feasible integer solutions can sometimes be deduced if necessary. When the
lowest common multiples are too large for the corresponding solution to be
practical, special techniques called integer programming methods must be
used to solve the problem. Some simple integer programming approaches
are explained in Section 2.1.

Most realistic problems have many more than two decision variables. It is
difficult to draw a suitable diagram for a three-variable problem and
impossible in higher dimensions. We need a more useful method for solving
LP problems. Before introducing such a method let us define the general LP
problem.

1.1.2. The General LP Problem

The numerical problem discussed in the last section is an example of an LP
problem. In its general form, the LP problem is

Maximize ¢;x;+ ¢, x, + -+ +¢,x, (=2Z)
subject to
apx;+ apxy+ s tax, <b,

alel + 022x2 + .- +az,,x,, < b2,

ApXx, t a,,x,+ -+ +a,,x, <b,,
Xiy Xgyeuey X, 20,

In the ice-cream-shop example of Section 1.1.1,

the number of variables n = 2,
the number of constraints m = 2,
(Cl, C2) = (0.75,0.60),

b\ (96
b,] \24)
ay ap| (4 6
a, ap| (2 1)
From the way in which we have expressed these data it is clear that we
can formulate the LP problem in terms of matrices as
Maximize CX (=2)
subject to

AX<b (the constraint sets),

X>0 (the nonnegativity conditions).
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(See Section 5.1 for an explanation of the linear algebra needed to follow
the rest of this chapter.) Here

X1
X3
C=(C1,62,...,Cn), X= : .
X,
b,
b,
A=(ay) ., b=
b.

There is an analogous minimization problem; that is,
Minimize CX
subject to

AX>b,
X>0.

We now list some features of the linear-programming problem:

(1) The function Z and each of the constraints is a linear function. This
means that for each activity represented by x;, its contribution to Z and
to the drain on resources of each constraint is linearly proportional to
the value of x,. Also the total value of Z and the drain on each resource
can be found by summing the contributions of the individual activities.

(2) The decision variables are assumed to be nonnegative. When this
assumption is invalid we use a mathematical device to convert the model
into one, with the same set of feasible solutions, for which X > 0.

(3) The decision variables are assumed to be nonnegative real numbers.
When this assumption is invalid (e.g., if some of the decision variables
must be integers, an integer-programming problem results. (Methods for
solution of this problem are given in Chapter 2.)

(4) Each constraint is assumed to be an inequality involving a < or >
sign.

A constraint which is an equation
m
E a;x; = bj’
i=1
for some j, can be replaced by two inequalities in the constraint set

m
> a;x,<b

i=1
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and
m
> a;;x; 2 b;.
i=1

Constraints which are strict inequalities (with < or > signs) are inadmissi-
ble.

We now define a “standard form for the linear-programming problem
and then develop a method which will solve this standard form.

1.1.3. The LP Standard Form

Maximize CX (1.5)
subject to
AX=Db (the constraints), (1.6)
where
X>0 (the nonnegativity conditions), 1.7)
b= 0.

The features of the standard form are:

(5) The objective is one of maximization.
(6) The constraints are all equations.
(7) The decision variables must be nonnegative.

(8) The constant, b;, in each constraint is nonnegative.

We now show how to convert any LP problem, which we assume has the
linear-programming features (1)—(4) into a problem with the standard-form
features (5)-(8), preserving the same set of feasible solutions.

Steps

(i) If the objective is one of minimization, the objective function Z is
multiplied by — 1. Otherwise nothing is done to Z.

(ii) Each variable not constrained to be nonnegative is replaced everywhere
in the formulation by the difference between two new variables, each of
which is constrained to be nonnegative.

(iii) Each constraint with a negative constant is multiplied by —1.

(iv) Each constraint which is an inequality is converted into an equation by
the addition of a new variable to the left-hand side (right-hand side) if
it is a < (=) constraint. These new variables are called slack
variables. (The original variables are called structural variables.)
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We now illustrate these rules by converting the following problem into
standard form:

Minimize 4x,+6x, (=2Z)
subject to
4x,+12x, < -3,
3x,+ 6x,=4,

x, 20, x, any real number.

We begin by replacing the second constraint by the pair of inequalities

3x;+6x,<4 and 3x;+6x,=>4,

so that (4) is obeyed. The steps are:

(i) As the objective is one of minimization, the Z is multiplied by —1.
(ii) x, is not constrained to be nonnegative. We therefore introduce two
new variables x; and x, and set

Xy =X3—X,4
and add
x;20 and x,>0
to the nonnegativity conditions. x, is replaced by x; — x, throughout

the formulation.
(iii) The first constraint is multiplied by —1:

—4x, —12(x; — x4) = 3.
This of course reverses the sense of the inequality.
(iv) The three inequalities
3+ 6(x; —x,)<4,
3x,+ 6(x;3—x4)=4,
—4x,—12(x3—x,)=3
are converted into equations by the introduction of the new slack
variables x5, x4, and x:
3x;+ 6(x;3—x,)+x5=4,
3x,+ 6(x3—x4) =4+ xq,
—4x, —12(x53 — x,) =3+ x,.
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The problem in standard form is
Maximize —4x;— 6x;+ 6x,
subject to
3x,+ 6x3— 6x,+x5=4,
3x;+ 6x;3— 6x,—x5=4,
—4x; —12x3+12x4 — x5 =3,
X1y X3, Xgy Xgy Xg, X7 2 0.

When the solution has been found, the equation
X2 = X3 — X 4
can be used to deduce the value of x,.

The reader may be puzzled as to why we first converted the second
constraint in a pair of inequalities only to convert each back to an equation.
As standard-form feature (6) is satisfied for the constraint, it appears that
these steps are redundant. Indeed some LP computer codes would not
perform them. We do this double conversion here because it is very useful to
introduce a slack variable into each constraint. This makes it far easier to
deduce the behavior of the optimal solution and its value for a problem
when changes are made to the data of the problem.

We now build up the basic concepts necessary to understand the method
which solves problems in standard form.

1.1.4. Background

Consider the problem (1.5)-(1.7), where X = (x,, x5,...,x,)" and B=
(by, by,..., b,)". A solution X is said to be feasible if it satisfies (1.6) and
(1.7). Consider Eq. (1.6):

AX=bh.
It is a system of m linear equations in » unknowns. Because a slack variable
has been introduced into each constraint we have

m<n.

Suppose a set Xy, of n—m variables out of x,, x,,..., x,, is set equal to
zero. Suppose further that a submatrix B is formed from A by deleting
column j if x; is set to zero. Thus B is an m X m submatrix of A. Let the
remaining variables in X, not set to zero, be denoted by Xyz. We have
reduced (1.6) to

BXg =b.
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If B is nonsingular (see Section 5.1 for an explanation of this term) we can
solve for Xpg:

Xz=B"'b. (1.8)
Recall that
XN = 0. (1.9)

Together (1.8) and (1.9) comprise a solution to (1.6). Such a solution is
called a basic solution. The variables in Xy are termed basic variables and
the complete collection of basic variables is called a basis. The variables in
Xy are nonbasic variables. If a basic solution also satisfies (1.7) it is called a
basic feasible solution. A basic feasible solution is termed degenerate if at
least one of the basic variables has value zero.

The reader may have noticed that the feasible region in Fig. 1.1 has the
following property. The straight line joining any two points in the region lies
entirely within the region. Any set with this property is termed “convex.”
This definition can be extended to sets in higher dimensions in a natural
way. Using the analogous definition for higher dimensions, it can be shown
that the set of feasible solutions to any LP problem is convex. As the
objective function is linear, it is clear that the optimal solution to the
problem shown in Fig. 1.1 must lie at one of the “corners” of the convex
feasible region. Such points, which cannot be expressed as a linear combina-
tion of other points in the region, are called extreme points. Thus we need
only examine the extreme points of the feasible region in order to find an
optimal solution (if such a solution exists). The simplex method examines
the extreme points in an efficient way in order to find an optimal solution.
We shall introduce it in the next section.

1.1.5. The Simplex Method

1.1.5.1. Canonical Form. It can be shown that there is a one-to-one corre-
spondence between the basic solutions of an LP problem and the extreme
points of its feasible region. Thus, bearing in mind the last remark of
Section 1.1.4, we need to examine only the basic solutions of a problem in
order to be certain of finding an optimal solution. As an optimal solution is,
by definition, feasible we need to examine only the basic feasible solutions.
The simplex method generates these solutions one at a time, without
decreasing Z in going from one solution to the next. It does this in such a
way that when no further increase in Z is possible the optimal solution has
been found. The change in the basic feasible solution is achieved by making
one of the basic variables nonbasic and one of the nonbasic variables basic.
This is done by setting one of the basic variables to zero and selecting a new
variable to be basic.

Equation (1.8) is solved to obtain values for all the basic variables,
including the newcomer. The incoming variable is selected in order to make



11. An Introduction to Linear Programming 21

the largest possible unit increase in Z. The variable departing from X is
selected on the criterion of ensuring that the new basic solution remains
feasible.

We now introduce a new illustrative example:

Maximize 6x; +4x, +3x;
subject to
4x;+5x, +3x,<12,
3x, +4x, +2x,<10,
4x,+2x,+ x;<8,
X1, X5, X320,

In order to convert the problem into standard form, we introduce slack
variables x,, x5, and x:

Maximize 6x; +4x, + 3x;

subject to
4x; +5x, +3x;+ x, =12, (1.10)
3x, +4x, +2x, + x5 =10, (1.11)
4x;+2x, + x4 +x¢= 8, (1.12)
Xps Xgyeees Xg 2 0.
Let
Xp = (x4, x5, xe)T-
T
Xy = (x1, %2, %3) "
and
B=1
Also,
XB=b.
X=B"'b
and

X=b=(12,10,8)".

As all the variables are nonnegative, we have a basic feasible solution. Its
value is

Z=1(6,4,3)(0,0,0)"
=0.

Let us find a new basic feasible solution with a larger value. We wish to
replace one of the basic variables by a nonbasic variable. As x; has the
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largest coefficient in Z let us choose it. We must decide which variables out
of x,, x5, and x, must depart from the basis. Two considerations guide us:
(i) we want to make x, as large as possible in order to increase Z as much as
possible; and (ii) the new basis must be such that all of its variables are
nonnegative. In order to settle this we solve each constraint for the incoming
variable x,:

Xy =3=3x, 3%~ §x,,

Xy =45 = 9% = 3x3— 3xs,

Xp=2= 31X, = §%3 — §Xg.

As x, and x, are nonbasic, they are zero. So these equations reduce to

xl=3_%x“, (1.10’)
xp =4 - 3xs, (1.11)
x1=2_%x6. (1.12’)

Let us consider the removal of each of the x,, x5, and x¢ in turn from the
basis. This entails setting each of them equal to zero:

x,=0=x,=3 [from (1.10")],
x=0=x,=4 [from (1.11")],
xg=0=x,=2 [from (1.127)].

But if x; = 3 or % then by (1.12), x4 < 0 which is infeasible. Thus x, or x4
cannot leave the basis.

However, if x; =2, x, and x5 >0 and so a feasible basis is maintained.
So the only variable which can safely leave the basis is x¢. There is a quick
way to establish which variable departs—identify the minimum positive
constant in equations of the form (1.10)-(1.12). The basic variable in the
equation with this minimum positive constant departs.

XB=(xl,x4,x5)T, BXg=b

4 1 0\(x, 12
3 0 1||x,|=[10
4 0 0f|xs 8

A=

becomes

because

4 5 3 1 0 0
34 2 01 0
4 2 1

and we are now defining B to be made up of columns, 1, 4, and 5
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corresponding to x,, x4, and xs.
X 4 1 0\°1/12 2
xXg|=13 0 1 10]=|4
Xs 4 0 O 8 4

Z=(6,4,3)(2,0,0)"
=12.

We have, in essence, performed one iteration of the simplex method. We
now show how to transform the solution to optimality.

The calculations of the simplex method are now facilitated by arranging
the initial data in a special table (Table 1.1). Note that each row corre-
sponds to a constraint except the last row, which corresponds to — Z. The
last entry in the — Z row is the current value of the objective function. Each
column corresponds to a variable except the last two, which correspond to b
and the ratios formed in (1.10")—(1.12").

Table 1.1

x, Xx; X3 x4 X5 Xxg b Ratios

and

Eq.1100 4 5 3 1 0 0 12 % R,
Eq.(111) 3 4 2 0 1 0 10 2 R,
Ee.112) @ 2 1 0 0o 1 8 & R,

-Z -6 -4 -3 0 0 0 0 R,

The simplex method begins by selecting an initial basis, corresponding to
a basic feasible solution. In our case an obvious basis is the set of slack
variables: x,, x5, and x. As we shall see, such a selection does not always
correspond to a feasible solution. Special techniques which overcome this
problem are dealt with later. In any table produced by the simplex method
each basic variable has a value equal to the b value in its row. Of course,
each nonbasic variable has a value of 0.

As can be seen from looking at Table 1.1:

(i) B forms an identity matrix within a permutation of columns.

(ii) The entries in the — Z row corresponding to basic variables are zero. A
table for which (i) and (ii) hold is said to be in canonical form. The
simplex method produces a series of tables in canonical form, each
corresponding to an improved basic feasible solution.

Recall that we have decided to replace x¢ by x, in the basis. We must
now create the new table, in canonical form, with basis x,, x,, and x;
satisfying (i) and (ii). This means that the x; column must be transformed
until it looks like the present x¢ column: (0,0,1,0)". It can be shown that
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Gauss—Jordon elimination (see Section 5.1) can be used to achieve this
without affecting the set of feasible solutions to the original problem.

The entry in the table which is at the intersection of the row containing
the minimum ratio and the column of the entering variable is called the
pivot. 1t is represented by a solid circle in Table 1.1.

The Gauss-Jordon elimination is now used to produce an x; column of
(0,0,1,0)” and hence a table satisfying (i) and (ii). It is shown in Table 1.2.
The row operations used are shown to the right. The row labels are given in
Table 1.1.

Table 1.2
X, X, Xx3 x4 X5 x¢ b Ratios
Eq.(1.10) © 3 @ 1 0 -1 4 £ R -R,
Eq.(112) 1 % 41 o0 o0 1 2 8 iR,
-Z 0 -1 -3 0 0 3} 12 R, +$R,

We have now produced the second basic feasible solution. As there are
still negative entries in the — Z row, Table 1.2 does not represent an
optimal solution.

Thus we can bring at least one of the entries into the basis (with positive
value) and increase Z. (Recall that we are maximizing and that a minimiza-
tion problem is converted to one of maximization by step (i) of Section
1.1.3.

We have to find the nonbasic variable with the most negative entry in the
— Z row for entry into the basis. This is x5. On taking ratios, we see that
the minimum occurs in the top row. Thus x, departs. Performing the
necessary transformation to ensure that the new table obeys steps (ii) and
(iii) of Section 1.1.3 produces Table 1.3.

Table 1.3
Xy X2 X3 X4 X5 X¢ b
Egq. (1.10) 0 3 1 3 0 -3 2
Eq. (1.11) 0 3 0 -3 1 -1 3
Eq. (1.12) 1 i 0 -3 0 3 3
-Z 0 3 0 3 0 3 15

As there are no more negative entries in the — Z row, this table
represents the optimal solution

(][}

* —
xl_

9

2,

x3
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1.1.5.2. Artificial Variables. In the example problems introduced in the
previous sections all the constraints have been inequalities of the < type.
This has allowed us to add a slack variable to the left-hand side of each
constraint in order to convert it into an equation. The B matrix correspond-
ing to a basis of all slack variables is the identity matrix. Thus

X=B"lb=>b
is a basic feasible solution as
b>0
and B! is nonsingular. It is usual to define B in this way as it provides an
initial basic feasible solution which is easy to find.

However, if not all of the constraints are of the < type, the initial basis
of slack variables is not feasible. In this case we must introduce extra
variables, called artificial variables, in order to find an initial basic feasible
solution. We now illustrate this point with a numerical example:

Maximize 4x,+5x, (=2Z)
subject to
3x;+5x, <24,
4x,+2x, <16,
X+ x,2>3,
Xy, X,20.

We transform the problem into standard form by introducing slack vari-
ables x;, x4, and xs:

Maximize 4x; +5x, (=2)
subject to
3%, +5x,+ x4 =24,
4x,+2x, +x, =16,
x;+ X, —Xx5 =3,

X1 Xgs.00, X5 2 0.
If we let the slack variables form the initial basis, we have

1 0 O
B=(0 1 0

0 0 -1




26 1. Linear Programming and Extensions

and
X=B'b

24
16 |,

-3

which is infeasible as x5 < 0.

This dilemma is overcome by introducing an additional variable into any
row which does not have an added slack variable. In the present case this
means adding the nonnegative artificial variable x, to the left-hand side of
the last constraint. The problem becomes:

Maximize 4x,; +5x, (=2)
subject to
3x; +5x,+ x4 =24, (1.13)
4x; +2x, + x4 =16, (1.14)
x+ x, —xs+xg =3, (1.15)

X1y Xgyeeey Xg 2 0.
The A matrix is now
Xy X2 X3 X4 X5 X
3 5 1 0 0 0
A=14 2 0 1 0 ol

1 1 0 0 -1 1

If we take as our initial basis x;, x4, and x,,
B=1,
which corresponds to a basic feasible solution. In general, the initial basis is
formed by taking (i) all the artificial variables and (ii) the slack variables
from the constraints which do not have artificial variables.
Of course we cannot simply add a variable to one side of an equation and

expect the equation to be satisfied for any values other than zero for the new
variable. We know that in the optimal solution

x¢=0.

We must modify the version of the simplex method previously outlined to
ensure that it eliminates all artificial variables from the basis. One technique
for doing this is called the two-phase method.

1.1.5.3. The Two-Phase Method. Phase I of the method begins by replacing
the objective function by

Minimize }_x;,

where each x ; in the above summation is an artificial variable. Thus a new
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objective is defined which is to minimize the sum of the artificial variables
subject to the original set of constraints and nonnegativity conditions. In
our case the only artificial variable is x¢ so the new LP problem is

Minimize x (=2) (1.16)
subject to
3x;+5x,+ x4 =24,
4x,+2x, +x, =16,
x+ x, — x5+ x¢ =3,

X1y Xgyeees X6 2 0.

We now apply step (i) of Section 1.1.3 to make the objective one of
maximization:

Maximize —x, (=Z")

The initial table for the new problem is shown as Table 1.4. This table is not
in canonical form as the bottom-row entries for the basis, x5, x,, and xq,
are not all zero (the entry for x4 is 1). We can subtract (1.15) from (— Z”)
to transform the table into canonical form as shown in Table 1.5. We now
use the simplex method to complete the first phase. Either x, and x, can
enter the basis at this stage. We choose x, arbitrarily. This produces Table
1.6. As all the — Z”” row entries are nonnegative, we have solved the new
LP problem, Egs. (1.13)-(1.16). The optimal solution is

x¥=3, x¥=09, x3=10, and Z”=0.

Table 1.4
X3 X, X3 X4 X5 X b

Eq. (1.13) 3 5 1 0 0 0 24
Eq.(1.14) 4 2 0 1 0 0 16
Eq. (1.15) 1 1 0 0 -1 1 3

-z" 0 0 0 0 0 1 0
Table 1.5

X, Xy X3 X4 X5 X b Ratios

Eq.(1.13) 3 5 1 0 0 0 24 %
Eq. (1.14) 4 2 0 1 0 0 16 ¥
Eq. (1.15) 1 0 0 -1 1 3 3

-z" -1 - 0 0 1 0 -3
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Table 1.6
X3 X5 X3 X4 X5 X b
Eq. (1.13) -2 0 1 0 5 -5 9
Eq. (1.149) 2 0 0 1 2 -2 10
Eq. (1.15) 1 1 0 0 -1 1 3
-z" 0 0 0 0 0 1 0
Table 1.7
X, X5 X3 X4 X5 b
Eq. (1.13) -2 0 1 0 5 9
Eq. (1.14) 2 0 0 1 2 10
Eq. (1.15) 1 1 0 0 -1 3
-7 -4 -5 0 0 0 0
Table 1.8
X4 X5 X3 X4 Xs b  Ratios
Eq. (1.13) -2 0 1 0 5 9 3
Eq. (1.14) 2 0 0 1 2 10 i
Eq. (1.15) 1 1 0 0 -1 3
-Z 1 0 0 0 -5 15
Table 1.9
X, X X3 X4 X5 b  Ratios
Eq. (1.13) -3 0 3 0 1 ?
Eq. (1.14) ¥ 0 -3 1 0 2 2
Eq. (1.15) i 1 10 0o ¥ 3
-Z -1 0 1 0 0 24
Table 1.10
Xy X, X3 X4 X5 b
Eq. (1.13) 0 0 i i 1 L
Eq. (1.14) 1 0 -1 & 0 &
Eq. (1.15) 0 1 2 - & 0 z
-Z 0 0 $ % 0 164
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We have succeeded in eliminating x, from the basis and thus Z” = 0. This
solution represents a feasible basis for the original problem. This is what we
were looking for so now we can return to the original problem. x is deleted
from the initial table and the original objective function row — Z replaces
— Z”. This is shown in Table 1.7. We now begin the second phase.

Note that the entry in the bottom right-hand corner is set at zero. It
reflects the true value of Z when the table is converted into standard form.
This is done in Table 1.8.

The simplex method is now used to solve the original problem, starting
from Table 1.7. Note that one of the ratios is not formed in the table as its
denominator is not positive. The calculations are shown in Tables 1.9 and
1.10. Table (1.10) represents the optimal solution:

N

— 16 — 24 — 19 — 164
xt=%, x3=%, x¥=%, and Z*=1§.

Summary of the Two- Phase Method

It is assumed that the LP problem is in standard form.

Phase 1

(1) Add an artificial variable to the left-hand side of each constraint which
has a subtracted slack variable.

(2) Replace the objective function by the minimization of the sum of the
artificial variables (denoted by Z’).

(3) Transform the initial table into canonical form.

(4) Apply the simplex method to this table.
(1) If (Z')* > 0, the original problem does not have any feasible solu-

tions and the method is terminated.

(ii) If (Z')* =0, apply phase II.

Phase 11

(5) Remove all artificial-variable columns from the final tableau produced
in step (4). Replace the — Z’ row by — Z, where Z is the original
objective function.

(6) Transform the table produced in step (5) into canonical form.

(7) Apply the simplex method to this table.

1.1.5.4. Summary of the Simplex Method. 1t is assumed that the LP prob-
lem is in standard form.
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Steps

(1) Set up the initial table.

Criterion for Optimality

(2) Find the most negative entry in the — Z row. If all are nonnegative, the
table represents an optimal solution and the method is terminated.
Otherwise, label the column of the entry as j. (Ties are settled arbi-
trarily.) Go to step (3).

(3) For each positive entry a;; in column j, form the ratio b/ /a;; where b;
is the entry in the b column in row i.

(4) Choose the minimum ratio of those formed in step (3), say b;/aj,. (Ties
are settled arbitrarily.)

(5) Replace x; in the basis by x, by the Gauss—Jordon elimination.

(6) Go back to step (2).

1.1.5.5. Multiple Optima. Consider the following simple LP problem in
standard form:

Maximize 4x;,+5x, (=2Z2) (1.17)
subject to
4x,+5x, + x5=32 (1.18)
4x,+3x, +x,=24, (1.19)
X, x,20

The problem is solved by the simplex method in Tables 1.11-1.13. Table
(1.12) represents an optimal solution as the criterion for optimality of step
(2) of Section 1.1.5.4 is satisfied. The optimal solution is

x¥=0, x¥=%, x¥=0, x¥=%, and Z=32.

However, it can be seen that the — Z entry of the x, column is zero.
Bringing x, into the basis is achieved in Table 1.13. Table 1.13 represents

Table 1.11
X, X5 X3 X4 b Ratios
Eq. (1.18) 4 5 1 0 32 2
Eq. (1.19) 4 3 0 1 24 4
~-Z -4 -5 0 0 0
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Table 1.12
X X X3 X4 b Ratios
Eq. 1.18) % 1 H 0 2 2
Eq. (1.19) 3 0 -3 1 ¥ ¥
~-Z 0 0 1 0 32
Table 1.13
X X X3 X4 b
Eq. (1.18) 0 1 1 -1 4
Eq. (1.19) 1 0 -3 3 3
-Z 0 0 1 0 32

another optimal solution:
xF=3, x¥=4, x¥=0, x}=0, and Z*=32.

Of course, as the — Z row coefficient of x, is zero we can bring it into the
basis, returning to Table 1.12. We have discovered two distinct optimal
basic solutions. In order to discover how this can come about, please refer
to Fig. 1.2 which depicts the feasible region.

The objective function Z has the same slope as (1.18). It means that in
this case any point on the line segment of (1.19) from (0,32) to (3,4)
represents an optimal solution. We can state this as follows:

4x¥ +5x3 =32,
0<x¥<3,
4<x¥<?%,

Z* =32,

Multiple optima can be detected in the final simplex tableau by the presence of
a nonbasic column having a zero entry in the — Z row.

1.1.5.6. Degeneracy. The simplex method is based on the assumption that
each new basic feasible solution value is an improvement over its predeces-
sor. As we assume maximization this means that Z must strictly increase
from one basis to the next. However, suppose that one of the basic variables
has value zero in an intermediate simplex table (i.e., one of the entries in the
column is zero). A basis with this property is termed “degenerate.” When
ratios are formed, the zero will be the numerator of the minimum ratio.When
the change of basis is made, Z will not have increased. This can possibly
lead to a series of tables, each with the same value of Z. Even worse, there is
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X,

10\ Eq.(119)

Eq.(1.18)
6 8 Xy

Figure 1.2. Multiple Optima.

the possibility that one of the earlier bases will reappear, leading to an
endless series of tables, all with suboptimal solutions. This is called cycling.

Degeneracy often occurs in large-scale real-world problems. However,
cycling in such instances is very rare. There exist techniques to prevent
cycling, but they are seldom used in commercial LP computer codes as the
accumulation of errors usually prevents cycling.

1.1.5.7. No Feasible Solution. Consider the following LP problem in stan-
dard form in which the artificial variable x4 has been introduced:

Maximize 4x, +3x, (=2)
subject to
3x; +4x,+ x5 =12, (1.20)
5xl +2x2 + X4 = 8, (1.21)
X+ X, —Xx5+xg =5, (1.22)

X1 Xgse0es X2 0.
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We now apply the two-phase simplex method to the problem as shown in
Tables 1.14-1.17.

Table 1.14
X, X X3 X4 X5 X b
Eq. (1.20) 3 4 1 0 0 0 12
Eq. (1.21) 5 2 0 1 0 0 8
Eq. (1.22) 1 1 0 0 -1 1 5
A 0 0 0 0 0 1 0
Table 1.15
X, X5 X3 X4 X5 X b
Eq. (1.20) 3 4 1 0 0 0 12
Eq. (1.21) 5 2 0 1 0 0 8
Eq. (1.22) 1 1 0 0 -1 1 5
-Z” -1 - 0 0 -1 0 -5
Table 1.16
X X5 X3 X4 X5 X b
Eq. (1.20) 3 1 3 0 0 0 3
Eq. (1.21) 3 0 -3 1 0 0 2
Eq. (1.22) 1 0 -3 0 -1 1 2
-z" - 0 3 0 -1 0 -2
Table 1.17
Xy X, X3 X4 X5 X b
Eq. (1200 0 1 % - 0 0 B
Eq. (1.21) 1 0 -1 2 0 0 4
Eq. (1.22) 0 0 -4 - % - 1 1
-z 0 0 & 4 0 -1
Phase 1

We have reached the final table in Table 1.17 as the criterion for optimality
[step (2) in Section 1.1.5.4] is satisfied. And yet the artificial variable is still
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Eq (1 22)

Eq.(1 20)

X

Figure 1.3. No Feasible Solutions.

basic and indeed positive:
x¥=8>0.

The first phase has failed to eliminate the artificial variable from the basis.
This means that the original problem has no feasible solution. In order to
see why this is so, please study Fig. 1.3.

As can be seen a point does not exist which satisfies all the constraints
and nonnegativity conditions simultaneously. Hence there is no feasible
solution to the problem. The two-phase method detects infeasibility by
having at least one artificial variable still positive at the end of the first
phase. In this case phase II is not attempted.

1.1.6. Duality

One of the most important concepts in linear programming is that of
duality. Apart from having theoretical interest in its own right, duality is
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used to solve LP problems more efficiently than by simply applying the
simplex method to them. It is also used to answer questions concerning
changes to the data of a problem.

Consider the following LP problem P;:

Maximize 5x, +4x, (=2)
subject to
3x,+4x, <14, (1.23)
4x,+2x, <8, (1.24)
2x,+ x,<6, (1.25)
X, Xx,20.

We can define another closely related LP problem D;:

Minimize 14y, +8y, +6y;, (=W) (1.26)
subject to
3y, +4y, +2y,>5, (1.27)
dntp+ x4 (1.28)
Y Y2 132 0.

Let us compare the two problems. It is easily seen that they have the same
constants, but in different positions. When a second LP problem has the
relationship to another LP problem, shown in the example, it is called dual.
The original problem is called the primal. We now formalize the relation-
ship between the dual and the primal:

(1) One problem P, has a maximization objective, the other D,, a minimi-
zation objective.

(2) Each constraint in P, is a < inequality. Each constraintin D, isa >
inequality.

(3) Each constraint in one problem corresponds to a nonnegative variable
in the other problem.

(4) The objective function coefficient vector in one problem corresponds to
the vector of constants in the constraints of the other problem.

(5) The matrix of constraint coefficients in one problem is the transpose of
the matrix of constraint coefficients in the other problem.
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These relationships can be summarized mathematically. The primal P

Maximize ¢;x; + ¢, x,+ -+ +¢,x, (=2)

subject to
anx, + a17X,y + -+ a,,x, < b[’
anx,tapx;+ - +ay,x,<b,
A Xyt Xy + o0 + ApnXn < b’"’
X1y Xgyeeny Xy 20,
has dual D,
Minimize b,y, + by, + - + by, (=W)
subject to

agzntapnt o ta,y.zc,

apytapy, + - +ta,,y,zc,

auntaynt o a8, Y, 2,
Vs Vaseens Y 2 0.
In matrix form primal P
Maximize CX (1.29)
subject to
AX<b, (1.30)
X=>0, (1.31)
has dual D,
Minimize by
subject to
ATy>CT,
Y>0,

T
Y=(p1 0500 Vm) -

Note that there are nonnegativity conditions in both problems.
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We can use these relationships to devise a recipe for creating the dual D
of any LP problem from a primal LP problem P:

(1) Replace each primal constraint by a pair of inequalities, one with sense
< and one with sense >. X[ ,a; x; = b, becomes

n
> a,;x;<b

i=1

and

n
Y a,x;>b.
i=1
(Recall that this is also one of the rules for transforming an LP problem
into standard form.)

(2) If P has a maximization objective, multiply all > constraints by —1 to
ensure that all constraints are of the < type and define D to have a
minimization objective with all constraints of the > type. If P has a
minimization objective, multiply all < constraints by —1 to ensure that
all constraints are of the > type and define D to have a maximization
objective with all constraints of the < type.

(3) For each constraint in P define a unique structural variable for D.

(4) Define the objective function coefficient of each variable in D to be the
constant of the constraint in P with which it is associated.

(5) Define the vector of constants of the constraints in D to be the
transpose of the vector of the objective function coefficients in P.

(6) Define the matrix of constraint coefficients to be the transpose of the
primal constraint matrix.

We now use these rules to create the dual D, of P;:

(1) There is nothing to be done here.

(2) P; must have a maximization objective with all constraints of the >
type.

(3) and (4) Define y, for (1.23), with objective function coefficient 14; y,
for (1.24), with objective function coefficient 8; and y; for (1.25), with
objective function coefficient 6.

(5) As C=(5,4) in P,, define b= (5,4)" in D,.

(6) As
3 4
A=14 2 for P,
2 1

the corresponding matrix for D, is

(342)
4 2 1)
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Thus we obtain the dual problem (1.26)-(1.28). It is automatically
assumed that a nonnegativity condition holds for each variable as well.

Let us take the dual of LP problem (1.29)-(1.31). Applying the above
rules we obtain the problem:

Maximize (CT)"X
subject to
ANTX< ()7,
X>0.
But as the transpose of the transpose of a vector (or matrix) is just the

vector (or matrix) itself, we have shown that the dual of the dual of an LP
problem is the LP problem itself.

Let us now solve D,. First we introduce slack variables y, and y; and
artificial variables ys and y,. In standard form the problem is

Maximize —14y, —8y, —6y; (=w”)
subject to
Intay+2y— yatys =5
dnt2y,+y — Vet y=4
Y1s Vaseers Y720,

The calculations necessary to find the optimal solution are given in Tables
1.18-1.23.

Phase 1
Table 1.18
n o »n Ya ¥s Ys ¥y, b
Eq.(127) 3 4 2 -1 1 0 0 5
Eq.(128) 4 2 1 0 0 -1 1 4
-w” 0 0 0 0 1 0 1 0
Table 1.19

»©w oy ¥s Y& ¥s Yo ¥y; b Ratios

Eq.127) 3 4 2 -1 1 0 5 %
Fq.(128) 4 2 1 0 -1 1 4 ¢
-w” -7 -6 -3 1 0 -9
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Table 1.20
n » »3 Ya s Ye Y7 b
Eq.(127) 0 3 : -1 1 i -3
Eq.(128) 1 4 1 0 0 -1 1 1
-w” 0 -3 -3 1 0 -3 -
Table 1.21
nooono Ya s Ye bz b
Eq.(127) 0 1 ! -3 3 1% - 3%
Eq.(128) 1 0 o0 i -y -3 i 3
-w” 0 0 2 3 1 e 1 0
Phase 11
Table 1.22
N Y2 V3 Va Yo b
Eq. (1.27) 0 1 1 -3 % 3
Eq. (1.28) 1 0 0 3 -3 3
-w” 14 8 6 0 0 0
Table 1.23
N ) 3 Va Yo b
Eq. (1.27) 0 1 ) -3 1 $
Eq. (1.28) 1 0 0 i -3 3
-w” 0 0 2 3 5 %

Once the table at the beginning of phase II is put into canonical form it is
apparent that no further iterations are necessary. The optimal solution is,
ignoring artificial variables,

yi=%,  yr=%, =0, yr=0, y=0, and W=%.

It is instructive to solve P; by the simplex method and compare the final
table (Table 1.24 with Table 1.23).
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Table 1.24
X, Xy X3 X4 X5 b
Eq. (1.23) 0 1 2 -3 0 1
Eq. (1.24) 1 0 -3 1 0 3
Eq. (1.25) 0 0 0 -3 1 2
-z 0 0 3 4 o %

As the dual has the same data as the primal (but in rearranged form) it
comes as no surprise that therc ire the following similarities between the
two tables:

(1) W*=Z*; that is, the value of the optimal solution of the primal and of
the dual are equal.

(2) The slack variable in constraint j in one problem has the value
appearing in the bottom row, in the jth position, of the other problem.

Complementary Slackness

(3a) If a structural variable is positive, the slack variable in the correspond-
ing constraint in the other problem is zero.

(3b) If a slack variable is positive, the structural variable (in the other
problem) corresponding to its constraint is zero.

The relationships hold for any pair of primal-dual LP problems which
have finite solution values.

Let us now illustrate these properties for the primal-dual example as
shown in Tables 1.23 and (1.24):

1) wx=2z*=2,
(2) Consider the slack variable x; in P,. Its constraint (1.23) is associated
with y; in the construction of D,. Looking at Table 1.24 we can see

that
x3=0,
which equals the — W entry in the y; column.
Similarly,
x¥=0,

which is associated with y,, which equals the — W entry in the y,
column. x4 is associated with y, and

x¥=2,

which is the bottom-row entry in the y; column. The relationship also
holds when we examine the dual slack variables

yi=0.
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Its constraint is (1.27). If we considered D, as the primal and
constructed P, as its dual, x; would be associated with (1.27). We can
see in Table 1.24 that the — Z row entry in the x; column is also zero.

Similarly,

and the — Z row entry in the x, column is also zero.

(3a) x, is a structural variable with positive value (). It is associated with
constraint (1.27) in the dual. The slack variable in (1.27) is y,, which is
zero.

Similarly,

x3>0=y* =0.
Also, y* is a structural variable with positive value (3). It is
associated with (1.23) in the primal. The slack variable in that con-

straint is x; and x¥ = 0.
Similarly,

and
x¥=0.
(3b) x¥>0. Now x5, from constraint (1.25), is associated with y, and
y¥=0.

We now state some useful duality theorems.

Theorem 1.1. If P and D have corresponding feasible solutions X and Y,
respectively, then

CX <bTY. (1.29%)

This result implies that if a primal LP problem has a maximization
objective then the value of any of its feasible solutions is a lower bound on
the value of any corresponding feasible solution to the dual. Obviously, the
value of any feasible solution to the dual is an upper bound on the value of
any corresponding feasible solution to the primal.

Theorem 1.2. Egquality holds in (1.29°) if and only if X and Y are optimal
solutions for P and D, respectively.

We now use these results to develop a new method for solving LP
problems. It is called the dual simplex method.
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1.1.7. The Dual Simplex Method

1.1.7.1 Background. Consider an LP problem P, which has a finite optimal
solution and is solved by the simplex method. The final table can be
interpreted to find the optimal solution to the dual D, of P. Indeed every
table in canonical form produced in the course of phase II of the simplex
method can be interpreted to find a solution to the dual. Thus as the
simplex method is producing a sequence of solutions for P it is also
producing a sequence of solutions for D. It turns out that all but the last in
this sequence will be infeasible for D. The values of the solutions are
progressively worse (decreasing if D maximizes or increasing if D mini-
mizes). The final solution is optimal and by definition feasible.

This can be illustrated by solving P, of Section 1.1.6 by the simplex
method. On the introduction of slack variables x;, x,, and x;, P, becomes:

Maximize 5x, +4x, (=2)
subject to
3x; +4x, + x4 =14, (1.23)
4x, +2x, + x4 =8, (1.24")
2x,+x, +x5=06, (1.25")
X1, X520,

Tables necessary to produce the optimal solution are Tables 1.25-1.27.

Table 1.25
Xy X5 X5 X4 X5 b Ratios
Eq. (1.23") 3 4 1 0 0 14 u
Eq. (1.24") 4 2 0 1 0 8 2
Eq. (1.25%) 2 1 0 0 1 6 $
-Z -5 -4 0 0 0 0
Table 1.26
Xy Xy X3 X4 X5 b  Ratios
Eq. (1.23) 0 3 1 -3 0 8 1§
Eq. (1.24') 1 3 0 4 0 2 4
Eq. (1.25") 0 0 0 -1 1 2
-Z 0 -3 0 3 0 10
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Table 1.27
b X X3 X4 Xs b
Eq. 1.23) 0 1 2 -5 0 ¢
Eq. (1.24%) 1 0 -4 5 0 2
Eq. (1.25") 0 0 0 -1 1 2
-Z 0 0 3 $ 0 3

The dual of P, is D;:
Minimize 14y, +8y, +6y; (=W)
subject to

Snt+ap+2y;—y,=5
Ay +2y+ ;- y=4,
yl’ }’2, )’3, }’4, y6 > 0

We can interpret Tables (1.25)—(1.27) using the complementary slackness
rules (3a) and (3b) stated in Section 1.1.6 to find solutions to P;:

»n=0 »=0 y,=0, y,=-5, yy=—4, and W=0 (from Table 1.25);
n=0 y=% »=0,y=0 y,=-—3, and W=10 (from Table 1.26);
n=%4 »=% »=0,y=0, y=0 and W=2% (from Table 1.27).

The first two of these solutions are infeasible as they possess negative
values. The solutions get progressively worse in value; that is, W increases
for a minimization problem.

The dual simplex method is a method for solving LP problems, which is
based on the above observations. It is quite different from merely taking the
dual of an LP problem, solving it by the simplex method, and then
interpreting the final table. It solves an LP problem P by performing the
same calculations as the simplex method would produce when used to solve
the dual of P. This means that the dual simplex method produces a
sequence of infeasible solutions with progressively worsening values and
then a final, optimal solution. The method is also used as a subroutine to
regain optimality when an additional constraint renders an optimal solution
no longer feasible. This is especially useful in the cutting-plane methods for
integer programming, as described in Section 2.1. We now illustrate the dual
simplex method with a numerical example.
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1.1.7.2. A Numerical Example. We shall now solve D,, discussed in the last
section, by the dual simplex method.

Maximize —14y, —8y, -6y, (=W")

subject to
3y +4y, 42y — =5 (1.26")
dn+2nt p—rs=4, (1.27%)
Piseers Var Vo = 0.

Note that we assume a maximization objective. The initial table is shown in
Table 1.28. The method does not introduce artificial variables, so we must
find another way of finding an initial basic solution. This is achieved by
multiplying the rows in the table other than — W’ by —1. This produces
Table 1.29.

Table 1.28
N Y2 V3 Va Yo b
Eq. (1.26) 3 4 2 -1 0 5
Eq. (1.27) 4 2 1 0 -1 4
—w” 14 8 6 0 0 0
Table 1.29
n Y2 » Ya Ye b
Eq. (1.26)) -3 -2 1 0o -5
Eq. (1.27) -4 = -1 0 1 —4
-w” 14 8 6 0 0 0

We now have an initial basic solution:

Ya=-5,

Yo=—4,

n=»n=y3=0
w”=0.

This solution also satisfies the criterion for optimality, namely, that all the
—W” row entries are nonnegative. Each solution produced by the dual
simplex method will satisfy this criterion. Of course this solution is not
optimal as it is not feasible—it contains negative values. It corresponds to
the initial table for P; when it is solved by the simplex method— Table 1.25.
Its value W” = 0 is better than the known optimal value of %. (Remember
D, was originally a minimization problem.)
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In the simplex method, we first decide which variable enters the basis and
then decide which variable leaves. In the dual simplex method, we first
decide which variable leaves the basis. This is settled by removing the
variable which is the most negative, in this case y, = — 5. If all variables are
nonnegative, the current solution is optimal as it satisfies the criterion for
optimality and the method is terminated. The identification of the b entry
with the negative entry large in magnitude has a sequel in the simplex
method. It corresponds to scanning the — Z row for the most negative entry
in order to settle which variable enters the basis. For P in Table 1.25, it
means choosing the same number, — 5, to bring x, into the basis. Note that
¥4, the departing variable for D,, is the slack variable of constraint (1.26)
which is associated with x;.

We now settle which variable replaces y, in the basis. To do this we take
the same ratios as those formed in the simplex method. Those ratios were

(bl/all’ b, /a3, b3/a13) = (14/3,8/4,6/2).

Only ratios with positive denominators were formed. The corresponding
ratios in Table 1.29 are

14 8 6
"3 —4» and -7

Only ratios with negative denominators are formed. The same ratios as
selected in the simplex method are selected here. Because the denominators
are negative this means that the largest (least negative) ratio is selected. So
that -&; is selected and y, is to enter the basis. The —4 entry is circled in
Table 1.29 as the pivot and a change of basis is performed using
Gauss—Jordon elimination in the usual way. This produces Table 1.30.

Table 1.30
b2 »2 Vs Va s b
Eq. (1.26)) i 1 -1 - 0 3
Eq. (127) 0 0 -1 1 -3
-w” 8 0 2 2 0 -10

Please compare this table with Table 1.26. It contains a new solution for

D;:
YV1=13,
Yo=—1,
N=r=ys=0,
W’ =10.

This solution is still infeasible as y is negative and it is worse in value than
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the last solution. However, y, is nonnegative so we are closer to feasibility.
(We are also closer to optimality as the criterion for optimality is still
satisfied.)

The same steps are now repeated on Table 1.30. Because yg is the only
negative variable, it is fated to leave the basis. The ratios 8 /(—5/2) and
2/(—1/2) are compared to find the incoming variable. The third ratio is not
taken because it has a zero (and hence nonnegative) denominator. The
variable y, comes into the basis, producing Table 1.31.

Table 1.31
»n Y2 » Ya Ye b
Eq. (1.26) 0 1 0 -k -3 4
Eq. (1.27) 1 0 0 i -3 3
-w” 0 0 2 2 1 -1

The reader should compare this table with Table 1.27. It contains the
optimal solution for D,:

y1=%a
y2=%’
3=03=Ys=0,
W=12%,

It is optimal because it is basic and feasible; all the variables are nonnega-
tive, and it satisfies the criterion for optimality.

1.1.7.3. A Summary of the Dual Simplex Method. Here are the steps of the
dual simplex method when applied to a problem in standard form.

Steps

(1) Multiply each constraint containing a slack variable with negative
coefficient by — 1. The initial basis is the set of slack variables.

(2) If the basic solution has all nonnegative values, it is optimal. In this case
terminate the procedure. Otherwise proceed to step (3).

(3) Set up a table in canonical form for the initial basic solution. Identify all
variables with negative values. Among these select the one whose value
is largest in magnitude to leave the basis.

(4) Identify the row in the table which has a +1 coefficient for the
departing variable. Identify all negative entries in this row. For each
such entry, form a ratio of the entry at the bottom of its column over
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itself. The column corresponding to the largest (least negative) of these
ratios corresponds to the variable entering the basis.

(5) Make a change of basis using the Gauss—Jordon elimination. Go back
to step (2).

1.1.7.4. One More Numerical Example for the Dual Simplex Method. The
following problem will now be solved using the dual simplex method:

Maximize —6y, —8y, —9y; =12y, (=W)

subject to
N3y 2y +2y,— ys =3, (1.32)
2y +ap 3yt y— =2, (1.33)
N2y 3y +2p,— y; =1, (1.34)
3t ot A2y =2, (1.35)
Yis Vaseeos Y3 2 0.

The reader is urged to formulate the dual, solve it by the simplex method,
and compare the sequence of tables produced with Tables 1.32-1.34.

Table 1.32
N Y2 V3 Va s Yo Y7 Vs b
Eq.(132) -1 @ 2 -2 1 0o 0o 0 -3
Eq. (1.33) -2 -4 -3 -1 0 1 0 0o -2
Eq. (1.34) -1 -2 -3 -2 0 0 1 0 -1
Eq. (1.35) -3 -1 -1 -2 0 0 0 1 -2
-w 6 8 9 12 0 0 0 0 0
Ratios -$ -3 -3 -4
Table 1.33
2 ) V3 Vs s Yo y1 vy b
Eq. (1.32) 1 1 2 2 -1 0 0 0 1
Eq. (1.33) -3 0 -1 3 -4 1 0 0 2
Eq. (1.34) -1 0 -3 -1 ~3 0 1 0 1
Eq. (1.35) 0 -1 -4 -1 0 0 1 -1
-w » oo oy oz £ 0 0 0 -8
Ratios -3 -4 -1 -3
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Table 1.34
n o » » Ya s Yo W Vs b
Eq.(132) 0 1 H I -3 0 o0 i 3
Eq. (1.33) 0 0 -1 2 -3 1 0 -1 g
Eq(139 o0 o0 -%¥ -3 -% 0 1 -1 2
Eq. (1.35) 1 0- 1 1 3 0 0 -3 3
-W 0 0 B 5 2 0 0 3 =4

The optimal solution is

yE=%, =% w=% ad yf=gy
W=yt=yt=y=0
W*x=_—31 ¥

4.

1.2. The Transportation Problem

1.2.1. A Simple Numerical Example

The Quickly But Surely shipping company has a problem. It has to supply
bags of cement to four warehouses from the three factories of one of its
clients. The daily demands of the four warehouses w;, w,, w;, and w, are 30,
20, 35, and 20, respectively. The daily output of the three factories; f;, f,,
and f;, are 40, 40, and 25, respectively. The cost of shipping one bag from
each factory to each warehouse is given below:

Warehouses
wy Wy w3 Wy
fi 6 5 7 9
Factories fa 3 2 4 1
fi 7 3 9 5

The shipping manager of Quickly But Surely has to devise a schedule that
ensures the following: each warehouse receives at least as much as its daily
demand; each factory does not have to ship more than its daily output; and
the total shipping cost is as small as possible. To this end, we define some
decision variables. Let

x;; = the number of bags shipped daily from factory i to warehouse j,
i=1,2,3 and j=1,2,3,4.
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What would be the cost of a policy defined by giving values to the x,;
variables? We begin with x;,, the number shipped from f, to w,. Shipping
one bag costs six units. As the costs are linear we can say that shipping x,;
bags will cost 6x;;, units. By creating similar expressions for each factory
warehouse pair we come to the fact that the total shipping cost is

6x,; +5x15 +Tx13 + 9%, +3x5, +2x5,
+4x,5 + Xp5 +Tx3; +3x3, +9x35 +5x4,.

It may be that a certain factory, say f;, will not supply a certain warehouse,
say w;, in the minimum cost schedule. In this case, x;;=0 and the unit
shipping cost from f; to w; will not contribute to the total bill. The manager
must minimize the value of this expression.

We now describe some constraints on this minimization process. How
much is f; asked to ship? It ships x;, bags to w;, x,, to w,, x;3 to w3, and
X4 tO Wy, Or

Xyt Xt X+ Xy,
in all. We know that this sum cannot exceed the daily output of f,, namely,
40 bags. Thus we have our first constraint:
X+ X, + x5+ x4 <40,

There are similar constraints on the output of f, and f;, namely,
Xop X9y + Xp3 + X4 <40
and

X3+ X35 + X33+ X34 < 25.

There is a second set of constraints concerning the demands of the
warehouses. Let us begin with w;. What is its total intake? It receives x;;
bags from f, x,; from f,, and x;; from f;, or

Xyt Xt x5

in all. We know that this sum must be at least the daily demand of wy,
namely, 30 bags. Thus we have the constraint:

Xy + Xy + x5, = 30.
There are similar constraints on the intake of w,, wy, and w,, namely,

X1y + Xgy + X3, 2 20,

X153+ X3 + X332 35,

X1gF Xgq + X342 20.
Naturally, the amount shipped from any factory f; to any warehouse w;
must be nonnegative:

x;; >0, i=1,2,3 and j=1,2,3,4.

i
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We now have a complete mathematical model of the shipping manager’s
problem:

Minimize 6x,, +5x,, +7x;3 +9x4 +3x5; +2xp,
+4x,3 + Xpq +Tx3; +3x35, +9%33 +5x34
subject to
X1t Xy x5+ x4 <40,
Xg1 F Xgy + X935 + X4 <40,
X33+ X3y + X33+ X34 <25,
Xy + Xg + X3 2 20, (1.36)
X15+ Xy + x5y 220,
X137+ Xp3 + X332 35,
x;;20, i=1,2,3 and j=1,2,3,4.
We can arrange the data of the problem as in Table 1.35. An appropriate
unit cost appears in a little box in the top left-hand corner of each cell; the

warehouse demands are listed along the bottom; and the factory outputs in
the rightmost column.

Table 1.35

Warehouses

w, w, w3 ws  Outputs
OREIRUE

fi 40
3] 12 | [

Factories f, 40
KNEIERE

fs 25

Demands 30 20 35 20

Does a feasible solution exist? That is, can we find values for all the x; j’s
which satisfy all the constraints? We can begin to answer this question by
adding up the total demand of all warehouses and finding out whether or
not it is less than the total output of the factories. If it is not, we shall be
unable to find a feasible solution. As it turns out the total demand is
30+20+35+20 =105 bags. The total output is also 105 bags so that it is
possible to solve the problem satisfactorily. The methods that we shall use
to solve problems of this type assume that total demand T, equals total
output 7,, as it does in our example. What is to be done to convert an
unbalanced problem (where T,#T,) into a balanced one so that the
methods can be applied? We shall answer this via our example problem. Let
us assume temporarily that the demand of w, is only 10 rather than 20.
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Then T,=95<105=7, and we have an unbalanced problem. In this
situation, we introduce a “dummy” (fictitious) warehouse w; with total
demand equal to 7,—T,=10. The unit transportation costs from each
factory to ws are defined to be zero. We can expand the original table (Table
1.35) to include ws (see Table 1.36):

Table 1.36
Warehouses
w, w,y W3 w, ws Outputs
6] 1] 7 [o) |9
fi 40
3] 2] [4 [ [9f
Factories f, 40
HIERa AR
fs 25

Demands 30 20 35 10 10

We now assume that w, has its original demand of 20 and temporarily
assume that f; has an output reduced from 40 to 20. This causes an
imbalance of T, —T,=20. Obviously, the problem now does not have a
feasible solution as total output cannot match total demand. However, there
are problems which have the same structure as Eqgs. (1.36) but have nothing
to do with factories and warehouses. Many of these still have feasible
solutions when T, >T,. We shall see an example of this in Section 1.3. In
these cases we introduce a dummy “factory” with output equal to 7, — T,,.
In the present instance this means introducing f, with output 20. The unit
transportation costs from it to each warehouse are defined to be zero. We
can expand the original table (Table 1.35) to include f, (see Table 1.37):

Table 1.37
Warehouses
w; w, wy w,  Outputs
6] [s] [7] 9
fi 40
3] 120 4 [
Factories f, 40
ARNEINNEINE]
fi 25
o] [of [of [of
fa 20

Demands 30 20 35 20
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Any solution to a problem by the introduction of a dummy can be
converted into a solution for the original problem. This is done simply by
ignoring the shipments to or from the dummy. The total cost of the
solutions with and without the dummy are the same because the shipment

costs to or from the dummy are zero.

1.2.2. The General Formulation

The problem just discussed is an example of what is called the transportation
problem. In its general form this problem has the following parameters:

m = the number of factories;

n = the number of warehouses;

a; = the daily output of f;,
b; = the daily demand of w;,

i=1,2,...,m;

j=12,....,n;

¢;; = the unit transportation cost from f; to w;.

The problem is to

m n
Minimize ), Y. ¢

ijXij
i=1j=1
subject to
m
inijp j=12,..
i=1
n
Z x;; <a, i=1,2,...
j=1
x;; >0, i=1,2,...

Table 1.38 represents this general problem:

R

Table 1.38
Warehouses
Wi W W,
fi ‘11 ‘12 Cin
FaCtOl’ieS fz (,‘21 sz C2 n
f m Cm1 Cm2 Cmn
Demands b, b, b,

Outputs
a,
a,

(1.37)
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This problem is a linear-programming problem and as such can be solved
by the simplex method (see Section 1.1). However, it can be solved more
efficiently by a modification of the simplex method designed to take
advantage of the problem’s special structure. The structure is:

(1) The coefficient of each decision variable in each constraint is either zero
or one.

(2) The constant on the right-hand side of each constraint is assumed to be
an integer.

(3) The matrix A of the constraint set (see Section 1.1 for an explanation of
this term) has a distinctive pattern.

Structure feature (3) is best explained via our numerical example. If we
rearrange the constraints in (1.36) so that each variable has its own column
we can express the set of left-hand sides of the constraints in the form:

X11
X12
X13
111100000 0 0 0||x,
0000111100 0 0ffx,
00000000 1 1 1 1ff,,
1 00 0100010 0 0|, |=AX
01000100010 0f,
001000100010x24
0001 00 0100 0 1/|°*
X3
X33
X34

where A is the 7X12 matrix and X is the column vector of decision
variables. Let us examine A. The first three rows, one row for each factory,
each has a block of 1’s—a 1 for each warehouse. The remaining four rows,
one row for each warehouse, each has a 1 for each factory. This basic
pattern will remain the same if we increase the number of factories or
warehouses or both. As an exercise the reader should increase m and n each
by 1 in the example problem and discover the new pattern of A and then
find the general description of A for Egs. (1.37).

An LP problem with structure features (1), (2), and (3) has a very
important property. If the problem has a feasible solution there will always
exist an optimal solution with integer-valued decision variables. This prop-
erty is the cornerstone of the efficiency of the modified simplex method. The
method needs as input an initial feasible solution, which it then transforms
to optimality. So we begin in the next section with methods which produce
an initial feasible solution.
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1.2.3. Finding an Initial Feasible Solution

We represent any solution to the transportation problem by inserting the
value of x;; in the cell in the ith row and the jth column—usually with a
circle around it. Thus we wish to find a set of numbers (representing the
x;;’s) for the cells of the table so that the sum of these for each column j
equals b; and the sum for each row i equals a;. This equality arises because
in a balanced problem each factory will ship all of its output and each
warehouse will receive exactly its demand. The reader should follow the
explanations that follow by making a copy of Table 1.35 and putting in the
numbers as they are calculated. The methods for finding a feasible solution
will be explained via our example problem.

1.2.3.1. The Northwest-Corner Method. We begin by allocating as many
bags as possible to the cell in the “northwest” corner of Table 1.35. This is
the cell in the top left-hand corner. The reader should refer to Table 1.39,
ignoring the uncircled numbers. In our case the maximum that can be
allocated is the minimum of the output of f;, that is, a; =40 and the
demand of w,, that is, b, = 30. So we allocate 30 and w, is satisfied. We can
remove the first column from consideration as the number in it equals b;.
The output of f; is now reduced from 40 to 10. This creates a new
northwest corner—the x,, cell. We can allocate 10 to it, the minimum of the
revised output of f; and the demand of w,. The f; row is now removed as
its total output is allocated. The demand of w, is reduced to 10. The new
northwest corner is the cell of x,,. We allocate 10 to it and can remove the
second column. Proceeding in this way we eventually produce the schedule
shown in Table 1.39. It corresponds to the following solution:
x3; =30, x;, =10, Xy =10, X3 =30,
x33=35, and x;,=20.

All other variables are zero.

Northwest Corner
Table 1.39
QU
anomumi
75 B,
20

R
X X @
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This implies that f; should ship 30 units to w; and 10 to w,; f, should ship
10 to w, and 30 to w;; and f; should ship 5 to w; and 20 to w,. The total
cost of the schedule is the sum of the products of the numbers circled times
the unit costs in their cells:

(6x30)+(5%X10)+ (2 10)+ (4 X 30)+ (9% 5) + (5% 20) = 515 units.
We shall refer to Tables 1.40 and 1.41 later.

Table 1.40

o] Pl 1Bl

0| 240

ENENONE

of ® Gy -3]4

1 B 9] |5

_|3_I@J4J25

30 20 35 20
Table 1.41(a) Table 1.41(b)
OEREE COPNERNURE
G0l @ -3 2|40 3J540
T [{ 1 NPT
30 3] B Ol J0_J3_I@J@40
URERENE T
3 1| @25 J3J_J1JC5)25
30 20 35 20 30 20 35 20

Alternative Optimum

Table 1.41(c)
ﬂ@ﬂ 7 @il »
3 2 ll@ i
HENEIREERE

®| 25
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1.2.3.2. The Least-Cost Method. The reader should refer to Tables 1.42(a)
and 1.42(b), ignoring the uncircled numbers and the circled zero. We begin
by identifying the smallest unit cost in the table and allocating as much as
we can to its cell. In our case the least cost is ¢,, =1. We allocate 20 to its
cell as it is the minimum of a, =40 and b, =20. The fourth column is
removed from consideration as it is satisfied and a, is reduced to 20. The
next smallest cost is ¢,,. We allocate the most we can to its cell, which is 20.
This is because both the reduced output of f, and the demand of w, are 20.
Row 2 and column 2 are now both removed. Continuing in this way we
eventually produce Table 1.42(a). This solution has cost:

(6x30)+(2%20) + (7x10) +(9x25) + (1 X 20) = 535 units.

Table 1.42(a)

6 5 7 9
I PP B ET
ENEEND © O o
-1] GO -1| @0)|4e 20 EINNEIRCOENE
UNERCRE 2| @) -4 @
-1 -3 @) O©|2 HINEIREIE

s 20

P

Table 1.42(b)

-1 @ @) 3|25

30 20 35 20

Least Cost

We shall refer to Tables 1.43 later.

Table 1.43(a) Table 1.43(b)
JIRENUIRE 6] 5 7 [9l
4 5 |40 40
3] 2] [4] [ 3] 2] [4] |1
0_|4_|_I40 e _l@j®40
UENEINEIINE HENEIREINE
-1 ®| -1|25 ®|2s

30 20 35 20 30 20 35 20
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This solution is worse in value than that produced by the northwest corner
method. We now introduce a method which usually produces optimal or
near-optimal initial feasible solutions, but at the price of more computation.

1.2.3.3. The Vogel-Approximation Method. The reader should refer to Ta-
bles 1.44-1.49. We begin by calculating column penalties. This is achieved
by identifying the smallest and second smallest cost in each column. The
difference between the two is defined to be the penalty for the column. As
an example, look at the first column. The smallest cost is ¢,; = 3; the second
smallest cost is ¢;, = 6. The penalty for column 1 is ¢;; —¢c; =6—-3=3.
The rationale for this is as follows. If we cannot allocate anything to the cell
with the smallest cost in a column we must pay a penalty by having to
allocate to an inferior cell. The column penalties are shown below the
warehouse demands. Row penalties are calculated in the same way and are
shown to the right of the rows. The allocation now begins. We find the cell
with the largest sum of row and column penalties. As much as possible is
allocated to it. In our case we allocate 20 to the x;, cell. This necessitates
the removal of the w, column and the penalties must be calculated anew.
The new penalties are shown in Table 1.45. The procedure continues in this
way, as shown in Tables 1.44-1.49, where the complete solution is dis-
played. It has the value:

(3%30)+ (5% 15)+(3%x5)+(7%x25)+(4X10)+ (5% 20) = 495 units.

This represents an improvement over the last two solutions.

Vogel Approximation
Table 1.44
Outputs Row penalties
GREIRGRE
40 1
3] 12 4
40 1
HREIRERE
25 2
Demands 30 20 35 20

Column penalties 3 1 3 4
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New Penalties

Table 1.45
Outputs Row penalties
GRENG
40 v/
3] 12 |4
10 1
7} 3] [9)
1 ® 5 4
Demands 30 20 35 O

Column penalties 3 1 3

Table 1.46
Outputs Row penalties
6] 5] 7]
40 2
3 3] 4]
40 1
® 0
Demands 30 15 35 0O

Column penalties 3 3 3

Table 1.47
Outputs Row penalties
Hd
40 2
2] |4
10 2
® 0
Demands 0 15 35 0

Column Penalties 3 3
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Table 1.48
Outputs Row penalties
5] 7]
® 40 2
0
9]
® 0
Demands 0 15 25 0
Column Penalties 2
The Final Allocation
Table 1.49
GENEINUIRE
0| @) @) 2|4
EREEIRY
0 -3[40
dENC e
3] ®| 4 25

30 20 35 20

We shall refer to Tables 1.50 and 1.51 later.

Table 1.50

apERum:
EJNEINCOIND
3| 3 40
HRNEIRERNE
o @) 4 25

30 20 35 20
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Table 1.51
CENEINGIRE
®

ﬂ@EJ 4] H@m
HENEIPNEINE
®|25

30 20 35 20

1.2.4. Transportation-Problem Algorithm

Once we have a feasible solution for the transportation problem, we shall
want to discover whether or not it is optimal. If it is not, we must then
transform it to optimality. We achieve this by the stepping-stone method.

The Stepping-Stone Method

We explain the stepping-stone method by using it on Table 1.39. The first
task is to establish whether or not the solution is optimal. We happen to
know that Table 1.49 represents a cheaper solution so that Table 1.39
cannot be optimal. However, if the northwest-corner method alone has been
used we must have a way of settling optimality. We begin by asking the
following question for each empty cell. If exactly one unit was assigned to
only that cell, would the total shipping cost be reduced? Let us illustrate this
by taking the 2—4 cell in Table 1.39; that is, the cell whose assignment is the
amount shipped from f, to w,. At the moment, x,,=0 as there is no
circled number in the cell. Suppose we set x,, =1. Naturally, we must make
some adjustments to the other allocations as f, cannot output another bag
—it is already shipping its capacity of 40. What we can do is reduce its
shipment to wy from 30 to 29; that is, set x,; = 29. Then the output of f, is
back to 40;

But w, is now receiving only 34 bags: 29 from f, and 5 from f; which is
one less than its demand of 35. To compensate we must increase the
shipment of f; to w; to 6; that is, set x;; = 6. This overstretches the output
of f; by one. So the f; to w, shipment is reduced by 1, from 20 to 19; that
is, we set x3, =19. This last adjustment is a masterstroke as it simulta-
neously puts right the output of f; (which must be 25) and the demand of
w, (which must be 20). The final allocation is given in Table 1.52. Each
demand and each output is what it should be.
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Table 1.52

Warehouses
w; w, w; w, Outputs

OB
fi > 40
T 10
Factories f, @®| 4o
EENEIRNEIRNE]
f ® 25

Demands 30 20 35 20

Let us now discover whether or not this slight change has reduced the
total cost. The difference in cost between the solutions in Tables 1.39 and
1.52 is as follows:

+1 for the bag shipped from f, to w,,

—4 for one bag less shipped from f, to w;,
+9 for the extra bag shipped from f; to w;,
—5 for one bag less shipped from f; to w,.
+1

What we have found is that an allocation of one unit to the 24 cell costs
one extra unit and thus is not worthwhile. We remind ourselves of this fact
by writing the difference in total cost in the right-hand bottom corner for
each cell. The 2-4 cell has a +1 there in Table 1.39. We now evaluate the
unit costs for all the other empty cells. The evaluation for each cell is made on
the assumption that only it and no other empty cell will be filled. The changes
in the total cost are displayed in the empty cells in Table 1.39. The
evaluation of each total cost change is carried out in the same manner as
that for the 2—4 cell. In each case we have to trace out a “stepping-stone”
circuit of circled numbers which includes the empty cell under considera-
tion. The circuit for cell 2-4 is (2,4), (2,3), (3,3), (3,4), and then back to
(2,4). The circuit for each empty cell i— j contains only one empty cell,
namely, i— j itself. Some of the circuits for the empty cells in Table 1.39 are
longer than the simple one of four cells for cell 2-4:

Empty cell Circuit
1-3) ((1-3), (2-3), (2-2), (1-2), 1-3))
(1-4 ((1-4), (3-4), (3-3), (2-3), (2-2), (1-2), (1-4))
(2-1) (2-1), 1-1), 1-2), (2-2), (2-1))
2-4 ((2-4), (2-3), (3-3), 3-4), 2-4))
(3-D ((3-1), 1-1), (1-2), (2-2), 2-3), (3-3), (3-1))

(3-2) (3-2), (2-2), (2-3), 3-3), (3-2)).
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It does not matter whether the circuit is traversed in the clockwise or the
counterclockwise direction. The change in total cost for each empty cell is
arrived at by alternately adding and subtracting the unit costs of the cells on
the circuit as it is traced, starting by adding the unit cost of the empty cell.
We have already done this for cell 2-4:

Circuit for the 24 cell: ((2-4), (2-3), (3-3), (3-4))
Change in total cost: 1 -4 +9 -5=1.

(Of course we add the cost of the empty cell only once!) Here is another
sample calculation:

Circuit for cell 1-4: ((1-4), (3-4), (3-3), (2-3), (2-2), (1-2))
Change in total cost: 9 -5 +9 -4 +2 -—-5=6.

Only empty cells with negative changes in the total cost will lead to an
improved solution. On examining the changes in total cost we see that the
most negative is that of the 3-2 cell in Table 1.39, which is —4. This means
that for every unit we assign to that cell the total cost decreases by four
units. Naturally, we wish to allocate as much as possible to that cell. How
much? In calculating the change in total cost for the 3-2 cell we see that we
must subtract one unit from the 2-2 and the 3-3 cells, and add one unit to
the 3-2 and 2-3 cells. We can do this repeatedly to build up the allocation
in the 3-2 cell. Eventually, one of the cells 2-2 and 3-3 from which we have
been subtracting will become empty. At this point we cannot make a further
subtraction as all cells must have nonnegative allocations. The 2-2 and 3-3
cells start off with 10 and 5 bags, respectively. Thus the most that we can
subtract is five bags. Hence this is the most that we can allocate to the 3-2
cell. Each unit allocated to the 3-2 cell reduces the total cost by 4. Thus the
maximum allocation of 5 to the 3-2 cell is made and the total is reduced by
5X4 =20. The original total cost was 515 units. Thus the total cost of the
new solution, shown in Table 1.40, is 515—20 =495 units. The reader
should check that this is the correct cost by calculating it from first
principles, that is, by multiplying each allocation by its unit cost and then
summing.

The stepping-stone method chooses for allocation the empty cell with the
most negative change in total cost. There is the argument that maybe it
would be more efficient not to allocate to the empty cell with the most-nega-
tive-cost change. Instead maybe we should allocate to the empty cell which
brings about the largest cost reduction. To explain this point consider the
following example. Suppose we have only two empty cells: e; and e, with
negative-cost changes —10 and — 5, respectively. The stepping-stone method
allocates as much as possible to e, as its cost change is more negative. If we
can allocate a maximum of only one bag to e, then the total cost is reduced
by only 10 units. If we can allocate a maximum of three bags to e, then the
total cost is reduced by 3 X5 =15 units. Would it be better in the long run
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to allocate to e, rather than e, as the total cost is reduced more? Computer
scientists have conducted extensive experiments in order to answer this
question. It appears that usually it is unwise to allocate to e, rather than e,.
This is because, although it produces an inferior solution, the e, allocation
requires far less calculation—we do not have to calculate the maximum
allocation for each empty cell, only for the one with the most-negative-cost
change.

We have now illustrated one complete iteration of the stepping-stone
method. We now repeat this iteration on Table 1.40. The method proceeds
in this way, generating solution after solution until it produces a table in
which no empty cell has a negative-cost change. This table then represents
an optimal solution and the method is terminated.

Applying the method to our example problem produces Tables 1.39, 1.40,
1.41(a), and 1.41(b). Table 1.41(b) displays an optimal solution:

xy; = 30, X3, =20, x5 =10,
X3 =125, xy4=15, and x;,=5.
The total cost of the solution is 450 units.

It can be seen that in these tables there are empty cells with zero total cost
changes. If an allocation is made to such a cell a new feasible solution is
produced, which has the same total cost as the present one. We can see that
the optimal solution in Table 1.41(b) has such a cell, namely, 2-1. If we
allocate as much as we can to it we can produce an alternative optimal
solution, shown in Table 1.41(c).

There are interesting phenomena which occur in the calculation of the
cost change of the cell 2-1 in Table 1.41(a). Let us trace the circuit of
“stepping stones” for this cell. It begins with (2,1) itself of course and then
goes upwards to (1,1). We then go to (1,2), down to (3,2), across to (3,4),
up to (2,4), and back to (2,1), skipping over (2,3). We skip over (2,3)
because the f, row and the w; column are already “balanced” again by this
stage. That is, the modified solution:

X, =1, X1 =29, X, =11
X3 =9, X3, =16, and x,,=4,

already allocated the correct output and demand to each factory and
warehouse, respectively, including f, and w;. To make it easy to decide
which cells to use in the circuit and which to skip over we use the following
rule: The circuit has exactly none or two cells from each row and from each
column in the table. If we start tracing from the empty cell, this rule helps to
define uniquely the circuit.

There is a second point to be made about this circuit ((2,1), (1,1), (1,2),
(3,2), (3,4), (2,4), (2,1)). It crosses over itself. This should not be a cause for
alarm. The crossing over has no effect on the calculation and is quite a
common occurrence.

Consider Table 1.42(a). Once the initial solution has been found using the
least-cost method it is apparent that only five cells have positive allocations.
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It is impossible to use these five cells alone to devise circuits for any of the
cells except 3—1. Thus we cannot proceed with the stepping-stone method.
In the language of linear programming, we have a degenerate feasible
solution. That is, at least one basic variable has value zero. In a transporta-
tion problem with n factories and m warehouses there are m+ n con-
straints—one for each factory and one for each warehouse. (We do not
count the nonnegativity conditions.) However, one and only one of these
constraints is redundant in the sense that it can be deduced by an examina-
tion of all the others. This is because we assume that the problem is
balanced; that is, total output equals total demand. We have then n + m —1
effective constraints. Thus there are n + m —1 variables in any basis.

In our present example, n = 3, and m = 4 so that we should have six basic
variables. But the only ones with positive values are: x;;, X3, X5, X,4, and
x33. We need to declare one more variable basic (with value zero) to bring
the basis up to its full complement. We choose the cell of the variable in
such a manner as to make it possible to find a circuit for all empty cells.
Such cells lie at the intersection of a row and column that each have exactly
one positive allocation. Sometimes it is necessary to choose more than one
cell to create a basis of n+m —1. In our example the 3—4 cell is chosen.
(Can you find other cells which make it possible to trace all necessary
circuits?) Now x,, is set to zero and declared basic. This is indicated in
Table 1.42(a) by a circled zero in the 3-4 cell.

The stepping-stone method can now be applied. We find that the cell with
the most-negative-cost change is the 3-2 cell. Its circuit is {(3,2), (2,2),
(4,2), (4,3), (3,2)). The maximum that can be allocated to the 3-2 cell is the
minimum of x,, and x,,, which is zero. Usually the minimum allocation is
positive; however, a zero allocation is quite common and need cause no
special concern. We treat it in the same way as a basic variable with zero
value in the simplex method. Making this allocation produces Table 1.42(b).
Naturally it will have the same total cost as the solution in the previous
table. However, the next iteration produces Table 1.43(a) from which the
degeneracy has disappeared. One more iteration produces the same optimal
solution as previously produced. Naturally, it can be modified to produce
the alternative optimum.

Table 1.49 displays the initial feasible solution found by the Vogel-
approximation method. It is transformed to optimality by the stepping-
stone method as shown in Tables 1.50 and 1.51. The same comments about
multiple optima made for the other two methods also apply here.

1.2.5. The Transshipment Problem

The transportation model of the last section can be expanded to include the
case where locations can act as points of transshipment. This is useful in
problems where warehouses not only receive goods but also ship them. The
model is often used to analyze the problems of where to locate new
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warehouses, how many warehouses to build, as well as finding an efficient
shipping policy for an existing network. The general problem is called the
transshipment problem. We now illustrate it with a numerical example.

1.2.5.1. A Simple Numerical Example. Consider the numerical example of
Section 1.2.1. Suppose that the materials for the cement come from a quarry
q and are distributed to factories f;, f,, and f;. Further, the warehouses
ship the bags on to two stores, s; and s,. However, f; no longer ships its
total output of 40 bags. It keeps 10 bags per day for local distribution. Also
wy keeps 5 of its 35 bags.

However, f; supplies an extra eight bags per day for shipment. All the
other bags are passed through the system to s, and s,, which demand 40
and 58 bags, respectively. The factory warehouse unit shipping costs remain
the same. The quarry must supply 105 bags of materials to f,, f,, and f;,
and all these are ultimately shipped to s, and s, (apart from the 10 kept at
/i and the five kept at w,;) along with the 8 from f;. The new distribution
network is shown in Fig. 1.4. The unit costs for shipping from ¢ and to s,
and s, are shown next to the appropriate arcs. Above each point is a
number indicating the amount it ships on, in excess of what it receives. The
point g is termed a source; f,, f,, f5, w;, w,, w3, and w, are termed
transshipment points; and s, and s, are termed sinks. The problem is to
supply demands via the transshipment points at minimum total cost.

1.2.5.2. Transformation to a Transportation Problem. We now describe how
the problem can be transformed into a transportation problem with the
same set of feasible solutions. We can then use the stepping-stone method of
Section 1.2.4. For our problem, we are going to construct a transportation-
problem table, similar to those of Section 1.2.4. Each location capable of
shipping bags somewhere else is represented by a row in the table. In our
case these are all the locations, except s, and s,. Each location capable of
receiving bags is represented by a column in the table. In our case these are
all the locations except ¢. This has been done in Table 1.53, which you
should now examine.

The unit shipping cost for each arc is inserted in the upper left-hand
corner of the appropriate cell in the usual way. Note that certain direct
shipments are impossible, such as ¢ to w;. In such cases the symbol oo is
inserted. This represents an arbitrarily large number which ensures that
nothing is ever assigned to that cell during the use of the stepping-stone
method. Zero unit costs are assigned to the cell at the intersection of the row
and column of each transshipment point. Assignments to these cells repre-
sent fictitious shipments from a location to itself. This artificial devise is
used so that the stepping-stone method can be used. We assign zero costs to
these cells in order that they do not affect the total shipping cost.

We now explain the quantities representing capacity and demand, to the
right and below the table, respectively. The capacity of ¢ and the demands
of s, and s, are 105, 40, 50 as expected. The difference between the capacity
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Figure 1.4. The Transshipment Problem.

and demand for each of the other locations is equal to its label in Fig. 1.4.
As an example, because w; keeps none of its intake, its label is zero, and
thus its capacity equals its demand. However, f, keeps 10 bags of intake
and its label is —10. The demands of the transshipment points have all been
set equal to a buffer stock of 113, the total number of bags available. The
supply of each transshipment point is set equal to the buffer stock plus the
supply of the point. (Points f; and w; have supplies of —10 and -5,
respectively.)

Consider the feasible solution given in Table 1.53. (It could not have been
obtained by the stepping-stone method as it has too many basic variables.)
We can calculate the amount transshipped by each point as follows. For
each point with a nonnegative quantity to be supplied, it is the difference
between its demand and the quantity shipped to the point. For example, f,
has zero to be supplied. The number of bags shipped through f, equals
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Table 1.53 (Sinks)
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11383 = 30. For each point with a positive quantity to be supplied, it is
the difference between the amount it supplies and the amount shipped to
the point. For example, f, has 10 bags to be supplied. The number of bags
shipped through f; equals 103 —83 = 20.

Consider the basic feasible solution shown in Table 1.54. Beginning with
the first row, we can see that ¢ supplies the bare minimum of 10 bags to f,
and the rest of its supply to f;. As f; has a demand of 10 bags, it cannot
ship anything out. This can be verified by calculating the outward shipment
from f, as 103 —103 = 0. The 95 bags shipped to f; are then boosted by the
output of f; and the 103 bags are shipped to w;. The number of bags
transshipped at f; can be calculated as 113—18 = 95. The number trans-
shipped at f, is zero which can be verified by calculating 113—113 = 0. The
103 bags received at wy are all transshipped to supply the demands of s,
and s,, except the five-bag demand of w, itself. The number transshipped at
wy can be verified as 108 —10 = 98. The quantities transshipped at wy, w;,
and w, can all be found to be zero.

1.2.5.3. General Transformation into a Transportation Problem. The trans-
portation problem for a transshipment problem is constructed in Table 1.54.
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Table 1.54
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Steps

(1) Assign a row i for each source i. Set b, = the capacity of the source i.

(2) Assign a column j for each sink j. Set a; = the demand of the sink ;.

(3) Assign a row and a column for every transshipment point k. Set
a, = the total capacity of all sources. Set b, =a, +t,, where ¢, = the
net output of point k. (If k has a positive capacity for supply, 7, is
positive. If k has a positive demand, ¢, is negative.)

(4) Set c;; the unit shipping cost from point i to point j, to be oo, an
arbitrarily large number, if it is not possible to supply point j directly
from point i. Set ¢; =0 if i is a transshipment point. (All other ¢;;’s
must be given.)

1.3. The Assignment Problem

The assignment problem is a special kind of transportation problem in
which the number of “factories” equals the number of “warehouses” and
each output and demand is exactly one unit. Because of this structure it can
be solved more efficiently by a specialized algorithm, called the “Hungarian
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method,” than by using the stepping-stone method. The problem is usually
described in terms of matching n objects with n other objects in a
one-to-one fashion. We do this now.

1.3.1. A Simple Assignment Problem

The Won’t Wear Out carpet company manufactures 10 carpets. As each
type of carpet comes off the loom it is examined for faults and repaired by
hand sewing called picking. There is one picking board and one picker for
each carpet. The company has 10 workers who have volunteered for picking.
People work at different rates on the different carpets because of individual
preferences over the patterns, the design, board size, and factory location.
Naturally the company wants to make the most efficient assignment possible
of the 10 workers to the 10 boards. It devises a standardized task for each
worker to perform on each carpet and notes the completion times in
minutes. These times are displayed in Table 1.55, where row i represents
worker w; and column j represents carpet ¢;. The problem is to match each
worker with a unique carpet so that the sum of the completion times of the
workers on carpets to which they are matched is minimized. We now define
some decision variables in order to build a mathematical model of this
problem. Let

. { =1 if w; is assigned to s
Y\=0  otherwise.

We begin by constructing the objective function. What is the total comple-

tion time of an assignment defined by a set of values for the x;; variables? If

w, is assigned to c;, then the time of 3 minutes should be included because

this is the entry in the row 1, column 1 position of Table 1.55. If w; is not

Table 1.55
Carpets
1 2 3 4 5 6 7 8 9 10
1{3 310 9 5 2 11 2 1 5 (2
216 2 711 410 4 4 5 4
379 7 9 10 4 4 5 5 4 5 4
4/ 8 6 7 8 8 810 6 3 9 (3
57 2 8 610 9 6 6 11 10 (2
Workers 6| 5 11 3 6 10 3 6 7 2 10 (2
7174 11 11 5 9 11 7 9 10 11 4
8|11 10 5 4 11 4 7 8 71 3 (3
9|11 5 5 3 2 5 710 7 3 (2
0(10 4 5 2 11 6 11 7 8 2 (2
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assigned to c;, then we should not include this time of 3 minutes. From the
definition of the x,;’s it can be seen that we can include the term 3x;; in the
objective function to cover both eventualities. Indeed we can merely sum
the products of the entries of Table 1.55 and their corresponding x;;. The
objective is to

Minimize 3x;; +3x;, +10x,; + -+ +2x54 0.

We now identify the constraints. Worker w;, must be assigned exactly one of
the 10 carpets. Suppose it is c;. Then x;3=1 and x,;=0, where j=
1,2,4,5,...,10.

.'.x11+x12+x13+ M +x1,10=1. (1.38)

Indeed no matter which carpet is assigned to w;, (1.38) will hold. We can
define a constraint like (1.38) for each worker i:

x,1+x,2+x,3+"'+x,'10=1, i=1,2,...,10.

Also ¢, must be assigned exactly one of the 10 workers. If it is w,, we have
x4 =1and x; =0, where i =1,2,3,5,...,10.

. x11+le+x3l+ cee +x10'1=1. (1.39)

Indeed no matter which worker is assigned to c;, (1.39) will hold. We can
now define a constraint like (1.39) for each carpet j:

Xyt Xyt xy e A xy0 =1, i=1,2,...,10.
Further each variable must be equal to either zero or one:
x;=0 or 1, i=1,2,...,10, j=1,2,...,10.
The complete mathematical model is

MimmiZC 3x11 +3x12 +10x13 + .. +2x10,10

subject to
X,l+x,2+x,3+ "'+x,~,10=1, l=1,2,...,10,
xlj+x2j+X3j+"'+xl0'j=1, J=l,2,...,10,
x;=0 or 1, i=1,2,...,10, j=1,2,...,10.

1.3.2. The General Formulation
The problem introduced in the last section is an example of the assignment
problem. We now introduce a general model. Let

n = the number of workers (which is also assumed to be the
number of carpets),

t;; = the completion time of w; on c;.
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The problem is to

n n
Minimize ), } ¢;;x;

i=1j=1
subject to
n
Z x,»j=1, i=1a29"'an9 (1'40)
j=1
n
Y x, =1 Jj=12...,n, (1.41)

i=1
x,;=0 or 1,i=12,..,n, j=12,....n.

Compare this formulation with the general transportation problem formu-
lation (1.37). It can be seen that this one is a special case of the former
where:

(1) m=n.
() =1, j=12,...,n.
3) a;,=1,i=12,...,n.

The constraints are equations rather than inequalities. This is because
once the transportation problem is balanced by the introduction of a
dummy (if necessary) and total output equals total demand, its inequalities
become equations.

We have assumed that the number of workers equals the number of
carpets. If this is not the case we must introduce sufficient dummy workers
or dummy carpets in order to make the two numbers equal. This is done in
much the same way as imbalance in the transportation problem is corrected
(see Section 1.2.1). All times concerned with a dummy are once again
defined to be zero. As an example consider a three-worker, five-carpet-
assignment problem with completion times

Carpets
1 2 3 4 5
1 6 8 7 18 6
Workers 2 9 4 3 4 12
3 12 5 2 10 8

We introduce two extra dummy workers, w, and ws, with zero completion
times for all carpets:

Carpets
1 2 3 4 5
1 6 8 7 18 6
2 9 4 3 4 12
Workers 3 12 5 2 10 8
4 0 0 0 0 0
5 0 0 0 0 0
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A shortage of carpets can be handled in the same way. We now introduce
a method of solution for the balanced assignment problem.

1.3.3. The Hungarian Method

We introduce the method via our example problem. Please examine Table
1.55. In essence what we wish to do is to circle 10 numbers representing 10
times in this table. Each circled number corresponds to an assignment—the
assignment of the worker of its row to the carpet of its column. The circled
numbers must be such that (i) there is exactly one circled number in each
row (each worker must be given exactly one carpet) and (ii) exactly one
circled number is in each column (each carpet must be given to exactly one
worker). Among all possible sets of 10 circled numbers, we seek the set with
the minimum sum. Now consider Table 1.58. It contains a new set of times.
In this case it is quite easy to detect an optimal solution, such as the one
shown. If we can find a set of zeros obeying requirements (i) and (ii) above,
it must be optimal as we assume that all the times are nonnegative. So our
aim is to somehow transform the matrix of times [so that we can find a set
of zeros obeying (i) and (ii)], without altering the set of optimal solutions to
the original problem. The total time of the final assignment represented by
the set of zeros will of course be zero. Thus the total time of the final
assignment will be less than the actual total time for the original matrix.
However, the plan is to ensure that the actual assignment itself is optimal
for the original problem. We now show how this can be done.

Suppose we subtract two units from every entry in Table 1.55. We would
then produce some zeros. Because the relative values of the entries remain
unaltered, a minimal solution for the modified matrix will be minimal for
the original one. We can think of the 2 minutes subtracted as a time which
all workers must take, such as for setting up. This can be neglected as it
plays no part in the optimization. We now define how to make the correct
subtractions in order to arrive at a desired set of zeros. The method is
iterative in the sense that it progressively defines a series of matrices until a
solution of zeros can be identified. Let the original matrix of times be
denoted by T.

General Outline of the Hungarian Method

(1) For each row in T subtract the smallest entry in the row from all entries
in the row.

(2) For each column with all positive entries subtract the smallest entry in
the column from all entries in the column.
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(3) Check to see whether a feasible solution of all zero entries can be
identified. If so it represents an optimal solution and the method is
terminated. If not go to step (4).

(4) Redistribute the zeros in the matrix and go back to step (3).

We shall now make these steps more definite. First, we must show that
steps (1) and (2) do not alter the set of optimal solutions. That is, any
optimal solution for T will still be optimal for the matrix created by steps
(1) and (2). Let

d; = the amount subtracted from the ith row, i=1,2,...,m;
e = the amount subtracted from the jth row column, j=12,...,m;
T= (ti/j)mxm = the matrix created by steps (1) and (2).
Then
ti=tij—di—e

The new objective function equals

m m
X X HiXi)s
i=1j=1
m m
= Z E (tl_/ d: ej)xlj’
i=1j=1
m m m m m m
= z Z tuxu_ Z E dixl_[_ E E ejxlj’
i=1j=1 i=1j=1 i=1j=1
m m m m m m
=z Ztuxu Zdizxu_ Zejlej
i=1j=1 i=1 j=1 Jj=1 i=1

By (1.40) and (1.41):

m m m m m m

Z Z tiljxij= Z Z LjXi— Z d;— Z €.
i=1 j=1

i=1j=1 i=1j=1
Thus it can be seen that the original and new objective function values differ
only in the total amount subtracted, which is a constant. Therefore the
problems defined by T and T’ have identical optimal solutions.
We now define an efficient way to perform step (3):

(3i) Identify a row or column in T’ with exactly one zero. If there is no
such row or column, choose the row or column with the smallest
number of zeros. Ties are settled arbitrarily. Identify a zero in the row
(column) selected. If it is a row that has been identified, draw a
vertical line through this zero. If a column has been identified, draw a
horizontal line through this zero.
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(3ii)) Repeat step (3i), ignoring any zeros with a line through it, until each
zero has at least one line through it.

(3iii) If exactly m lines have been drawn, an optimal set of zeros is present.
The zeros identified for the drawing of lines comprise a solution—it
may not be unique. If less than m lines have been drawn, an optimal
set of zeros is not yet at hand. In this case go to step (4).

Steps (3i), (3ii), and (3iii) will be made clear via the numerical example
shortly. We now come to step (4). The zeros are redistributed by taking
advantage of Theorem 1.3.

Theorem 1.3 (Konig’s Theorem). Let the entries of a matrix T be divided
into exactly two classes by property P. Then the minimum number of straight
lines that contain all the entries with property P is equal to the maximum
number of entries with property P, no two on the same line.

We take advantage of this theorem where in our case property P is to be
equal to zero. Step (4) in expanded form is:

(4i) Subtract the minimum entry in T’ with no line through it from each
entry with no line through it.
(4ii)) Add the number subtracted in step (4i) to each entry in T’, which has
two lines (both horizontal and vertical) through it.
(4iii) Remove all lines.

We shall now illustrate the Hungarian method by applying it to the
numerical example. We begin with step (1) and subtract the minimum entry
in each row from the row. The numbers subtracted are shown in parentheses
on the right. This produces Table 1.56. We then apply step (2) and find that
only two columns now have all positive entries—columns 3 and 7. Their
minimum entries are subtracted (shown in parentheses) which produces
Table 1.57. We now apply step (3) and draw the minimum possible number
of lines needed to cross out all the zeros. Only nine lines are required which
is less than the 10 required for success. So we move to step (4). The
minimum uncrossed number in Table 1.57 is 1. It is subtracted from all
uncrossed numbers and added to all doubly crossed numbers. The lines are
then removed. This produces Table 1.58. Returning to step (3) it turns out
that we now need 10 lines to cross out all the zeros. [If we had needed less
than 10 we would have returned to step (4)]. An optimal solution is at hand.
We can find it by identifying the zeros through which lines are drawn. There
are a number of choices and thus there is more than one optimal solution.
One of the optimal solutions is circled in Table 1.58. (Can you find all the
others?) This solution is

Xig = Xy7 = X36=Xg9 = Xs5p = X3 = X7, = Xg 10 = Xg5 = X194 = 1.
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All other x,;’s are zero. Thus an optimal assignment is:
Worker: 1 2 3 4 5 6 7 8 9 10
Carpet: 8 7 6 9 2 3 1 10 5 4,

The total completion time of this assignment can be calculated by referring
to the original matrix:

2+4+4+342+3+4+3+2+2=29 min.

A useful check can be made on this calculation. The total completion time
of an optimal assignment is equal to the total amount subtracted from the
original matrix. So adding the number in parentheses, plus the 1 subtracted
in step (4):

2424+4+34242+4+3+2+2+1+1+1=29 min.

1.4. EXERCISES

1. A shop produces two types of cake. Type 1 requires 5 1b of flour F, and 4 Ib of
flour F, per batch. Type 2 requires 4 and 6 Ib of F, and F, per batch,
respectively. The profit is §1 and $2 for a batch of type 1 and 2, respectively.
There is 200 and 240 Ib of F, and F, available. How many batches of each type
of cake should be produced in order to maximize profit? Solve this problem
both graphically and by the simplex method.

2. A brewery makes three beers: B,, B,, and B;. The amounts (in pounds) of
sugar, malt, and hops required for each are shown below:

Beer Profit/barrel Sugar Malt Hops
B, $30 1 2 1
B, $20 2 1 1
B, $30 3 1 1

Every hour, 6, 4, and 3 Ib of sugar, malt, and hops can be fed into the process.
How much of each beer should be made per hour in order to maximize profit?
Solve this problem by the simplex method.

3. Create and solve the dual for the following problem. Find the optimal solution
for the problem by interpreting the optimal dual tableau. An engineering plant
makes two products: P, and P, at a profit of $500 and $200 per pound,
respectively. P, (P,) requires per pound, 2, 5, 5, and 2 (3, 2, 3, and 1) Ib of
nickel (N) chromium (C), germanium (G), and magnesium (M), respectively.
The plant can obtain 7, 11, 10, and 6 Ib of N, C, G, and M, respectively, per
day. Products P; and P, require 1 and 2 hr of furnace time daily. The furnace
can be operated for only 6 hr per day. What production policy should be
adopted in order to maximize daily profit?
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4. Solve the following unbalanced transportation problem:

Warehouses Outputs
7 5 4 3 7
Factories 5 4 4 3 8
6 5 6 7 11
3 4 7 9 5
Demands 6 12 5 7

5. Solve the following unbalanced assignment problem:

Machines
8 3 7 7 12
3 4 1 7 19
4 5 6 1 20
Workers 1 7 5 5 14
6 9 4 12 13
9 2 3 14 12

6. Form the dual of the following problem.

Maximize 2y, +4y, + y; +3y,
subject to
2y1=y2 + y3+2y <6,
2y, - <l
Nty +2y,<4,
242yt 2y + 3, <9,
Yis--» Y4 2 0.

(a) Solve the dual problem by the dual simplex method.

(b) Solve the dual problem by the regular simplex.

(c) Compare the computational effort required in (a) and (b).
(d) From (a) and (b) deduce the solution to the primal problem.

*7. Prove that if a linear programming problem has an optimal solution with
infinite value then its dual does not have any feasible solutions.

8. Apply the stepping-stone method to convert the solution given in Table 1.53
into a table depicting the optimal solution.

*9. Describe how the solution given in Table 1.52 can be converted into a basic
feasible solution.
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10. Carry out the conversion required in problem 9 and convert the resulting
solution into the optimal solution.

*11. Describe how the northwest-corner method can be modified to produce an
initial basic feasible solution for the transshipment problem which does not
involve any prohibited arcs (i.e., no oo costs are involved).

*12. Repeat problem 10 for the least-cost method.
*13. Repeat problem 11 for the Vogel-approximation method.



CHAPTER 2

Solution Techniques

This chapter describes some of the basic solution techniques for combina-
torial optimization problems—integer programming, dynamic program-
ming, and heuristic problem solving. It begins with integer programming
(IP), that is, the optimization of a linear function subject to a number of
linear constraints, where the variables of the function must be integers. The
elementary notions of two broad approaches to integer programming— enu-
merative techniques and cutting planes, are covered.

'” Dynamic programming (DP) is an approach for solving problems in
which decisions are to be made in stages."It is easy to think of real-world
situations that are multistage decision problems. The investment of funds
over a period of time and construction projects are two of the multitude of
common examples. Dynamic programming also uses the philosophy of
implicit enumeration as does one of the integer-programming approaches.
The scope of dynamic programming is very vast indeed, so only a modest
introduction to the elementary DP techniques is attempted here. The
interested reader is referred to the Further Reading section at the end of the
book for a guide to specialist DP books.

The two previously mentioned techniques are designed to produce global
extrema for the problems to which they are applied. Unfortunately, many
real-world problems are so large and difficult that these methods cannot
achieve this extrema efficiently due to their large storage or computational-
time requirements. In this case a more modest aim is in order. Instead of
requiring an absolute optimum, it is often more realistic to design a solution
procedure which will produce, in reasonable computing time, solutions
which are relatively close to the optimum. Such procedures are called
heuristics.
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An example of an heuristic was given in Chapter 0 for the shortest
Hamiltonian Path problem. There is a wide variety of uses for heuristics.
They may be used to attempt to solve well-defined, large, difficult problems,
or ill-defined problems with imprecise constraints and multiple-objective
criteria. They are also used as subroutines within larger procedures, to
construct initial solutions, and to improve on existing solutions. There is
something of an art, rather than a science, to heuristic design as will be seen
later in this chapter.

2.1. Integer Programming

The Quick as Lightning freight company has a problem. It has entered into
a long-term contract with a corporation which makes three types of machine
parts: A, B, and C, which are then stored in very large crates. The contract
requires the company to ship periodically these crates from the manufactur-
ing plant to a distant warehouse. The company decides to use its only
aircraft (a DC3) to its best advantage and carry the rest of the crates by
truck. The question is, Which goods should be airfreighted? The volume of
one crate of A, B, and C is two, six, and three units, respectively, the DC3
having eight units of volume capacity. The weight of one crate of A, B, and
C is five, four, and four units, respectively, the DC3 having seven units of
weight capacity. The value of one crate of A, B, and C is 60, 10, and 10
units, respectively and due to the nature of the company’s insurance policy
the plane must not carry goods worth more than 120 units. Further, the
revenue gained by transporting one crate of A, B, and C is three, five, and
four units, respectively. The company decides to calculate how many crates
each of A, B, and C to carry in order to maximize revenue.
In order to settle this let

x; = the number of crates of type A carried;
x, = the number of crates of type B carried;
x5 = the number of crates of type C carried.

Thus if x; crates of type A are carried a revenue of 3x, is produced.
Similarly, revenues of 5x, and 4x; will be produced for types B and C,
respectively. The total revenue for a policy of carrying x;, x,, and x; of A,
B, and Cis

3x, +5x, +4x;.
As one crate of type A occupies two units of volume, x; crates will occupy
2x, units. We can make a similar deduction for B and C. Hence the

X1, X,, X5 policy requires 2x; +6x, + 3x; units of volume. But as only eight
units are available we must have

2x; +6x, +3x; <8.
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Similar reasoning leads to constraints for weight:
5x, +4x, +4x; <7,
and for value after dividing by 10:
6x, +x, + x5, <12.

The problem can now be formally defined as

Maximize 3x, +5x, +4x; (=2) 21
subject to
2x, +6x, +3x; <8, (2.2)
S5x,+4x,+4x, <7, (2.3)
6x,+ x,+ x;<12, (2.4)
X1, X5, X3, NONNegative integers. (2.5)

It is the last constraint (2.5) that distinguishes the problem from one of
linear programming. Before looking for methods which will solve this
problem, let us present the general formulation of which our airfreight
problem is a special case.

In terms of the definitions given in Section 1.1, S is a set of n-dimen-
sional real vectors X, where the following restrictions apply. There are given
two sets of n-variable, real-valued functions g where j=1,2,...,m, and
h;, where i =1,2,..., k, such that

g (X)=0, j=12,..,m,
and
h;(X) <0, i=1,2,...,k,
for any X € S. Further there is a given ¢, 1 < g < n, such that x,, x,,..., X,

are integers, where X = (xy, X;,..., X, X, 115+, X,,). Stated formally, the

general integer programming problem is

Maximize f(X)
subject to
g/(X)=0, j=12,...,m,
h;(X) <0, i=1,2,...,k,
X = (X1, X000y Xgs Xy 10ees Xy ),
where
Xy, Xy,..., X, are integers for a given q.

As this problem remains essentially unsolved in the general case we
confine our attention to a useful simplification. We assume that f and the
h;’s are linear, there are no g;’s, and all the variables in X must be
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nonnegative. Then the formulation can be expressed in matrix notation as

Maximize CX (2.6)
subject to
AX <b, 2.7
X >0, (2.8)
Xps Xgsenes Xgs integers, 2.9)
where
X = (X}, Xgseees Xgo Xgy1seeer X,) 7
Cis alX n real vector,
b is an m X1 real vector,
A is an m X n real matrix.
If

q=n,
the problem is termed an all-integer linear-programming (IP) problem.
Indeed our airfreight problem is of this type with

C=(3,5,4),
8
b=| 7|,
12
and
2 6 3
A=|5 4 4].
6 1 1

If 1< g <n, the problem is termed a mixed-integer linear-programming
problem. 1f (2.9) is replaced by

x;=0 or 1, i=1,2,...,n,

the problem is termed a zero—one programming problem.

Because most of the research presented in the literature has been con-
cerned with the integer-linear-programming problem, the word “linear” is
often dropped from use here. Having fitted the airfreight problem into the
general framework, we now present ways to solve it.

2.1.1. Rounding

One obvious approach to (2.6)—(2.9) is to neglect (2.9) and use the powerful
simplex method on the resulting problem. If the solution produced satisfies
(2.9) then it must be optimal. If it does not then there are a number of
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options available. One straightforward strategy is to round the values of
noninteger variables either up or down to achieve an integer solution.
Let us explore this idea on the following integer-programming problem:

Maximize x;+ x, (=2)
subject to
15x, +12x, <85,
5x, > 11,
X, X2 0,
X1, X,, integers.

The linear-programming version of this problem has been solved graphically
in Fig. 2.1. It can be seen that the optimal solution is

(x1,x2) = (¥, %), z=%.
Rounding each of these values up and down produces the four solutions:
2,4), (3,4), (2,5), and (3,5). However, as can be seen, none of these

solutions are feasible. Indeed the optimal solutions for the original problem
are

(%1, x,)=1(3,3),(4,2), 0r (5,1), Z=6.

So even on a problem as small as this there may be severe problems with
rounding. The process may fail to produce a feasible solution, let alone the

Xzﬁ

l W77 Y 2% 77
1 2 3 4 5 X

Figure 2.1. The Failure to Obtain an IP Solution by Rounding an LP Solution.
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optimal one. Even when a rounded solution is feasible it is sometimes quite
different in value, relatively speaking, from the optimum.

Given these problems of rounding we can, of course, use instead the
fundamental algorithm. That is, list all feasible solutions and choose the
best. We now explore a modified version of this approach.

2.1.2. Branch-and-Bound Enumeration

In this section we unveil a method that guarantees to find an optimal
solution (if one exists) to any integer-programming problem. It is an implicit
enumeration technique and is thus named because it implicitly examines all
possible solutions in its search for the optimum. Another example of
implicit enumeration—dynamic programming—will be discussed in Section
2.2.

The approach is called “branch-and-bound enumeration” and a variation
due to Dakin (1965) is explained first.

2.1.2.1. Dakin’s Method. In order to explain Dakin’s method we use it to
solve the airfreight problem [Egs. (2.1)-(2.5)]:
Maximize 3x, +5x, +4x; (=Z)

subject to

2x;+6x, +3x, <8,

5x, +4x, +4x, <7,

6x; + x, + x5 <12,

X;, X,, X3, NONNegative integers.

We begin by neglecting the fact that x;, x,, and x; are required to be
integers and solve the problem by the simplex method. Introducing slack
variables x,, x5, and x4 into (2.2), (2.3), and (2.4), respectively, Table 2.1
provides us with the optimal LP solution:

- —1u s — 95
xi“—O, x;_ﬁ’ x;_ﬁ, Z*_I_Z'
Table 2.1
X, X5 X3 X4 Xs X b
-k 10 L
11 1
o 0 1 -3 3 0 3
2 0 0 0 -4 1 s
1
o 0 0 3 i o #
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If this was a feasible IP solution it would be the optimal IP solution and
nothing more would have to be done. As this is not the case, Dakin’s
method does not round this solution but identifies just one of the variables
with a fractional value, say,

* — 11
xz_ 2.

Taking the integer part of this value of 4, which is zero, we form two
constraints:

x,<0 (2.10)
and
x,20+1. (2.11)

Stated in words, “we form one constraint with the variable less than or
equal to the integral part and another with the variable greater than or equal
to the integral part plus one.” Now as x, is constrained to be a nonnegative
integer, it must either be 0 or greater than or equal to 1. Suppose two new
problems, (I) and (II) are created—one by adding (2.10) to the original
problem (2.1)-(2.5) and the other by adding (2.11). Then the optimal IP
solution to (2.1)-(2.5) must be optimal for exactly one of (I) and (II).

As x, denotes the number of type B crates that are accepted, all we are
doing in this particular case is listing the two possibilities: (i) no B crates
are flown and (ii) at least one B crate is flown. The two new LP problems
are:

M an
Maximize 3x; + 5x, +4x; Maximize 3x; + 5x, +4x;
subject to subject to
2x; +6x, +3x; <8, 2x;+6x,+3x, <8,
Sx;+4x, +4x; <7, Sxy+4x, +4x; <7,
6x,+ x,+ x;<1, 6x,+ x,+ x3<12,
x, <0, X, 21,
X1, Xq, X320, Xy, Xp, x320.

It has turned out in our given instance that our nonintegral value (1) is
fractional. Thus the integral part is zero. Thus (2.10), together with the
nonnegativity condition on x,, implies that in any feasible solution to (I),

x2=0.

So we could simply remove x, from the original formulation and solve a
new LP problem in order to find the optimum to (I). However, in general,
the integral part will be positive and so this approach is inappropriate. Even
more importantly, we can use the dual simplex method (see Section 1.1.7) to
arrive at the optimum to the new LP problems very efficiently.
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Table 2.2
X, X5 X3 X4 X5 X Xq rhs
-5 1 0 i -1 0 0 4
L0 1 -3 b0 o 3
L 0 0 0 -1 1 0 4
0 1 0 0 0 0 1 0
¥ 0 0 4 1 0 0 #

We now apply the dual simplex method to Table 2.2 in order to
incorporate (2.10); that is,

x,<0
becomes, with slack variable x-,
x,+x,=0.

In canonical form, we arrive at Tables 2.3 and 2.4. This has solution:

x¥=0,
x¥=0 (asexpected as x, <0 and x, > 0),
x¥=1,
Z*=1.

We can apply the dual simplex method in a similar manner to (II) and

Table 2.3
X, X5 X3 X4 X5 Xg X7 rhs
-5 1 0 i -1 0 0 4
o0 1 -4 b0 o0 :
b 0 0 0 -1 1 0 4
B0 0 -} P
i 0 0 1 3 0 0 s
Table 2.4

X, X5 X3 X4 X5 X X7 rhs

0 1 0 0 0 0 0 0

3 0 1 0 : 0 0 3

1 0 0 0 -1 1 0 4

-3 0 0 1 -3 0 1 4

2 0 0 0 1 0 0 7
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This also is infeasible for the IP so let us review the situation. From the
solution to (I) we know that the best feasible IP solution with x, = 0 cannot
have a value better than 7 (the value of the LP solution). From the solution
to (II) we know that the best feasible IP solution with x, >1 cannot have a
value better than % (the value of the LP solution). Consider the set of all
the feasible solutions to the original IP, say S. We can partition S into two
disjoint subsets, S; and S,, where all solutions in S; have x, =0 and all
solutions in S, have x, >1. Then the value of the best solution in §,(S,)
cannot be more than 7 (3). Naturally the value of the best solution may
turn out to be strictly less than these numbers, but we have established an
upper bound on the values of the solutions in each set.

Because the upper bound of S, is higher than that of §;, S, will be
further examined. In order to keep track of the information that is un-
covered, a decision tree is used, as displayed in Fig. 2.2.

Figure 2.2. A Decision Tree for Dakin’s Method.
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Branching from node (II) we choose a variable with a noninteger value,
say x} =1, Then proceeding as before we create two new constraints:

x <0
and
x, >1.

These are then added separately to the LP problem (II) to create two new
problems: (IIT) and (IV). These new problems can be solved most easily by
applying the dual simplex method to the final tableau of problem (II). As
can be seen, the bound on the best IP value (i.e., the LP optimal-solution
value) is associated with each node. As problem (IV) has no feasible
solutions, the symbol — oo is used to designate its upper bound.

Branching from node (III) [as its bound of % is higher than that of node
(I)] we create nodes (V) and (VI). The highest bound is now that of node (I);
we branch from it to create nodes (VII) and (VIII). The highest bound is
now that of node (V) and so we create nodes (IX) and (X). The LP solution
for node (IX) is

xF=0,
x¥=1,
x¥=0,
x¥=35,

which is feasible for the original IP. This is the best IP solution we have
found so far, indeed it is the only one. It is stored as the incumbent and so
we proceed, branching from node (VII). [There is no reason to branch from
node (IX) as a feasible solution has been found for it.] This creates nodes
(XI) and (XII) with bounds no better than the value of the incumbent. Thus
there is no reason to branch further from these nodes as no solution better
than the incumbent could be unearthed. Thus we have shown that the
incumbent must be optimal, so the search is terminated.

We have found that the optimal solution to this problem is to fly one B
crate, no others, for a revenue of five units. Let us now review some of the
general principles of branch-and-bound enumeration. During the course of
the search, a node that is currently at the endpoint of a path from the node
labeled afs (all feasible solutions) must be in one of the following states,
where its associated IP problem:

(i) Has no feasible solution.
(ii) Is such that its LP solution S is feasible and
(a) S has a value better than that of the incumbent, or
(b) S has a value no better than that of the incumbent.
(iii) Neither of states (i) or (ii) have as yet been established.

So that state (ii) can be attained before an initial incumbent has been found,
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define
Z = the value of the current incumbent solution,
and initially set
Z=—o0.

A node in either state (i) or (ii) is said to be fathomed. A node that has
not yet been fathomed is said to be active. A node in states (i) or (iib)
represents a set of feasible IP solutions, which cannot possibly contain the
optimum. It is thus disregarded, or “pruned” from the tree. The search
continues, branching from the active node with the highest bound until
either:

(i) All nodes have been pruned from the tree (in which case the problem
has no feasible solution) or

(ii) All active nodes have bounds no greater than the value of the in-
cumbent (in which case the incumbent represents an optimal solution).

A summary of Dakin’s method is given in the flowchart of Fig. 2.3.

2.1.2.2. The Method of Balas. A second branch-and-bound method will also
be discussed. It is the method of Balas (1965) which is designed for
zero—one IP problems. In order to motivate it we return to the airfreight
problem.

Suppose now the management of the Quick as Lightning company
decides to make some major policy changes regarding their problem. Their
old DC3 is sold and a new, larger aircraft is bought which has volume and
weight capacity of 8 and 10 units, respectively. The constraint concerning
insurance is unchanged. However, it has now decreed that at most one of
each type of crate will be carried per flight. The problem becomes

Maximize 3x;+5x, +4x; (=2Z) (2.12)
subject to
2x;+6x, +3x; <8, (2.13)
5x; +4x, +4x, <10, (2.14)
6x,+ x,+ x3<12, (2.15)
X1, X0, x3=0 or 1. (2.16)

This is a zero—one IP problem and we now use the method of Balas to
solve it. As the method is of the branch-and-bound type, a decision tree will
be built up. The reader should refer to Fig. 2.4 during this discussion. We
begin by assigning a value of one to all variables. That is, set

(x1, x5, x3) =(1,1,1). (2.17)

Because all the objective-function coefficients are nonnegative, if (2.17) was
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Set Z =
andP = @

!

Set P to be initial LP
Solve P,

Terminate. Problem
has unbounded
solution value

Terminate Problem No
has no solution

Feasible
solution
exists?

Terminate.
Incumbent
is optimal.

Store solution
as incumbent
Setz=2"

Choose x; = b; € N Create problems
P, x, <[b]and P,

v P, x;>(b]+1and P,

Solve P and P, as LP’s

Add P and P, to P

1

Choose problem P in P with
largest Z* Remove P o from P

Figure 2.3. Summary of Dakin’s Method.

feasible it would be optimal. Indeed Balas’s method assumes
=0, i=1,2,...,n.

Any IP problem can be transformed so that this is so without altering its set
of feasible solutions. This point will be raised in the general discussions
later.

However, (2.17) is infeasible so at least one variable must be zero in any
feasible solution. The variable whose reduction to zero will reduce Z by the
least will be the one with the smallest objective-function coefficient. This is
x, with

¢ =3.
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Thus the largest possible feasible-solution value we can hope for is the sum
of the other coefficients, 4+5=9. We have established an upper bound on
the value of the optimal solution, which is associated with the initial node
(afs) in the decision tree in Fig. 2.4. We now make a decision about x,. Like
all variables, it has value either 0 or 1. We can partition the set of feasible
solutions into two sets—one set in which

x=0
and the other in which

x; =1

All feasible
solutions

Figure 2.4. A Decision Tree for the Method of Balas.

These sets are represented by nodes (I) and (II) in the tree.
Let us consider (I) first. Given

x, =0,

we set all unspecified variables equal to one and check to see whether the
resulting solution is feasible. Now

(xl’ X2 X3) = (0’1’1)
is infeasible as (2.13) is violated. Hence the largest feasible solution we can
hope for with
x,=0
is obtained by ignoring the smallest objective-function coefficient among
those belonging to unspecified variables, namely, x, with
C 3= 4.

The bound for (I) is thus 5. Examining (II), we know that (2.17) is infeasible
so we set the unspecified variable with least c; to zero. Thus set
x;=0
and obtain a bound of
3+5=38,
that is, the sum of: the coefficients of all variables set equal to one and the
coeflicients of all unspecified variables.
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Adopting a policy of branching from the node with the highest bound we
branch from (II). The unspecified variable with least c; is x;. We create two
new nodes, (III) and (IV), where

x;=0 (and x;=1)
and

x;=1 (and x,=1),
for (IIT) and (IV), respectively. Examining (III) first we set the unspecified
variables (x, only) to one and discover that

(%1, %45, x3)=(1,1,0) (2.18)

is feasible with a value of 8. This solution is stored as the incumbent. In (IV)
we know (2.17) is infeasible thus x, is set to zero producing a bound of 7.
Node (III) represents the optimal solution as the value of its feasible
solution is no less than the bound of any other node in the tree. The optimal
solution is

xf=1,
x3=1,
x¥=0,
Z*=8.

In terms of our original problem, it appears that the company should fly
one A and one B crate on each trip for a return of eight units.

The method of Balas is additive in the sense that it requires only the
addition (not multiplication) of numbers in the data. It assumes that all
objective function coefficients are nonnegative. If this assumption is violated
and there exists an i, 1 <i < n, such that

¢; <0,
then x; can be replaced throughout the formulation by x; where
x;=1-—x;.
For each node in the decision tree, the variables are partitioned into three
mutually exclusive subsets:
V = the set of variables set equal to zero;
W = the set of variables set equal to one;
F = the free variables, not yet specified.
Initially, set
F={x;,x5,...,%,},
V=W=0.

In general, when examining a node representing an assignment to V, W, and
F, all variables in F are temporarily assigned a value of 1. If this solution is
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feasible, it is clearly the best that can be obtained for the particular partition
of V, W, and F, as

¢; =0, i=1,2,...,n.

If this solution is infeasible, an upper bound can be obtained for the set of
values for all feasible solutions with the policy of ¥ and W. This bound is

Y ¢—Min{¢}+ Y c.
x,€F x €F x, €W

Two new nodes are sprouted from a node with bound greater than that of
the incumbent solution value. For one node, the sets V, W, and F remain as
they are in the parent node except that

F becomes F\{x;}
and

W becomes W U { x;}.

And in the other node,

F becomes F\{x;}
and

V becomes V' U { x;}.

where x; is such that ¢; = Min, ¢ r{c;}.
A flowchart for the method of Balas is given in Fig. 2.5.

2.1.3. Cutting Planes

In this section we develop an alternative way to solve IP problems. It is
introduced via the airfreight problem: (2.1)-(2.5). Suppose that (2.1)-(2.4)
is solved by the simplex method. The final tableau was given in Table 2.1. It
can be seen that x, and x, are noninteger. Let us examine the top line in
Table 2.1, corresponding to x,, which must be satisfied by any feasible
solution:
—gx tx, Hix,—ixs=4. (2.19)
Equation (2.19) can be solved for x,:
X =1 = (= &)x —ixs—(—§)xs. (2.20)

Each number on the right-hand side of the equation can be expressed as a
sum of an integer and a positive fraction:

X, =0+8—(-14+32)x,—(0+4)x, —(—143)xs. (2.21)
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Set Z = —oo,
V,W,and P=0. and
F={x.x,, S )

Set variables in
V,F,and W to
be 0,1,and I,
respectively

V,F, and
W feasible

Select x, € F with least c,
Set bound for V,F, and W
to be ¢

X, e(FUW)\ {x;}

Set
Z =27 Store Py
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Create problems
P, ~F F\{x,}.w WU{x}, and
P, ~F F\{x}, v vu{x}

r Add P,and P, to P

Remove P Does No Choose problem in P with
from P largest bound Call this problem P,

Yes
Does Yes | No feasible solution
Z = -0 exists Terminate
2
No

Incumbent is optimal Terminate —I

Figure 2.5. A Flowchart for the Method of Balas.

The integer parts and the fractional parts of (2.21) can be collected together:
x,={0—(=1)x; = (0)x, —(—1)xs } + {}—%—%xl—%x“—%xs}.

Because (2.2), (2.3), and (2.4) have integer coefficients, the slack variables
X3, X4, and x5 must be integer in any feasible solution. Thus the expression:

{0-1(-1)x, = (0)xy — (—=1)xs}
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must be integral in any feasible solution. As x, must be an integer, the
second expression:

11 S 1 3
I — g — s )
must be an integer in any feasible solution. However, it is the difference
between a fraction (1) and a sum of fractions, times variables constrained
to be integer. The largest value this expression can attain is {3 when

x1=x4=x5=0.

However, as it is constrained to be integral it must be a nonpositive integer.
Therefore

1

—

—&x, —ix,—3x,<0. (2.22)

—
)

Equation (2.22) is a further constraint that must be satisfied by any feasible

solution. We can add a slack variable x, to it:
S 1 3 = 11
X T3XgTaXst X, =0

and add it to Table 2.1 to produce Table 2.5. Applying the dual simplex
method, Table 2.6 is produced. This process can now be repeated with the
equation for x;:

9 S — xo =1
Zx1+X3+ZxS x7—4.
Solving for x;:

x3=(1+3)-(2+5)x - (1+5)xs—(=1+0)x,.

Table 2.5
X3 X X3 X4 Xs Xg Xq rhs
-5 1 0 i -4 0 0 B
N b0 o :
2 0 0 0 -4 1 0 4
- 0 0 -1 -3 0 1 -4
it 0 0 3 i 0 0 #
Table 2.6
Xy X5 X3 X4 Xs X X4 ths
-1 1 0 0 -1 0 1 0
3 0 1 0 3 0 -1 3
L 0 0 0 -4 1 0 3
3 0 0 1 $ 0 -3 4
1 0 0 0 0 0 1 7
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The same reasoning as above produces the constraint:
_%xl _%XSSO. (2.23)

On introduction of the slack variable x,, this becomes

&lw

1 1 - 3
—3X) T aXstxg=—3.

Introducing this into Table 2.6 we arrive at Table 2.7. We now apply the
dual simplex method to Table 2.7 to get Tables 2.8-2.10. Table 2.10
represents a feasible solution

xf=0, x¥=1, x3=0, Z*=5.

As only essential constraints have been added to the original problem, this

Table 2.7

X X, X3 X4 X5 X X7 xg  rhs

-1 1 0 0 -1 0 1 0 0

3 0 1 0 3 0 -1 0 3

2 0 0 0 -1 1 0 0 4

50 0 1 $ 0 -3 o 4

-3 0 0 0 -3 0, 0 1 -3

1 0 0 0 0 0 1 0 7
Table 2.8

X, X X3 X4 Xs X X Xg rhs

0 1 0 0 0 0 1 -4 3

1 0 1 0 0 0 -1 5 =2

5 0 0 0 0 1 0 -1 11

-1 0 0 1 0 0 -3 9 -4

1 0 0 0 1 0 0 -4 3

1 0 0 0 0 0 1 0 7
Table 2.9

X, X, X3 X4 Xs X X7 Xg ths

-1 1 0 1 0 0 0 -1 3

% 0 1 -1 0 0 0 2 -3

5 0 0 0 0 1 0 -1 11

% 0 0 -1 0 0 1 -3 4

1 0 0 0 1 0 0 -4 3

3 0 0 1 0 0 0 3 u
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Table 2.10
X, X X3 X4 X5 X X7 xg  rhs
1 1 1 0 0 0 0 1 1
-4 0 -3 1 0 0 0 ) 2
5 0 0 0 0 1 0 -1 11
-1 0 -1 0 0 0 1 -5 2
1 0 0 0 1 0 0 -4 3
2 0 1 0 0 0 0 5 5

solution must be optimal. It is, of course, the same solution as that obtained
by Dakin’s method.

Let us now develop the general theory of the cutting-plane approach as
introduced by Gomory (1958). The method assumes that all the data are
rational. The implications of this are that fractions can be cleared so that all
constraints have integer coefficients. New constraints called cuts are intro-
duced into the problem one at a time which progressively remove noninteger
parts of the feasible region. No feasible integer solution is ever removed by
a cut. Examples of these cuts are (2.22) and (2.23).

The method begins by solving the underlying LP problem by the simplex
method. As in Dakin’s method, if the LP solution is integer, it is optimal
and nothing further needs to be done. If it is noninteger, the equation
corresponding to a noninteger variable is identified, say the jth row:

x;+a@, y+apnt - +a y,=b, (2.24)

where x; is a basic variable and y,, y;,..., ¥,
Equation (2.24) can be rewritten as

b, - Z 6jkyka (225)

k=1

represent the nonbasic x,’s.

and each of the numbers b and @;,a,,...,a; can be expressed as the sum
of the greatest integer not excecdmg 1t and a fracuonal part.

Let the integral part of a number 4 be denoted by [4’] and the fractional
part by Z’. Then (2.25) becomes

x=[5]+8~ T ([a:]+a) v
This can be written as
n n
X = {[Bj]_kgl[ajk]yk}*'{i)j,_ Z _j/‘k)’k}

—a+B,
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where
a=[p]- él (@] 7

and
B=>b/— él @y (2.26)

As integral coefficients have been assumed, all y, will be integer in any
feasible solution. Thus a will be integer for any feasible solution. As x;
must be integer in any feasible solution, 8 must also be integer. Let us
examine (2.26). Because 77! is noninteger,

0<b/<l.
Also
0<aj, k=1,2,....n,
and
0<ye, k=1,2,...,n.
Hence B attains its maximum value when
Y% =0, k=1,2,...,n.

B<b.
But as Bj' is fractional and 8 must be integer,
B<0.
That is,
n
b/— Y ayy,<0. (2.27)
k=1

Equation (2.27) is termed a Gomory cut and must be satisfied by any
feasible solution. It is added to the original problem as follows. A slack
variable x, is introduced into (2.27):

n
Z a/,'kyk + X == bj,‘
k=1
This is then added to the final simplex tableau and the dual simplex method
is used to produce another final tableau. If this is feasible, it is optimal and
the procedure is terminated. Otherwise, another noninteger variable is
identified and the process is repeated.

Consider now a mixed-integer programming problem. That is, some but
not all of the variables are constrained to be integers. In terms of (2.6)—(2.9),

0<g<n.
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Gomory’s mixed-integer LP algorithm follows the same initial pattern as the
all-integer algorithm. Suppose the initial simplex solution contains a nonin-
teger-valued variable x;, which is one of those which is constrained to be
integers. Then its tableau equation can be rewritten as

P
[b,] +b/—x; = ;;1 Y- (2.28)

At this point the analysis takes a different path from the all-integer case
because not all of the variables y,, k =1,..., p, may be constrained to be
integers. However let

S,={k:a, =0}
and

S_={k:a,<0}.
Then (2.28) can be written as

[Bf]+i)j,_xj= Z ajkyk+ E 5,~kyk. (229)
kes, keS_

Case 1

Assume [b ]+ b'— x; <0. Now as [bj] is an mteger x; is constrained to be
an integer in any fcasxble solution, and b’ is a nonnegatlve fraction. Thus

[ bj] =X
must be a negative integer, say — u.

o8]+ —x,=b—u, we{1,2,3,..}.

Using (2.29),
77,{_ u= Z it Z aj Y-
kes, kesS_
Now since
ux>1,
we have

Bj,_lz Z /kyk+ E —jkyk‘
kesS, kesS_

And from the definition of S, and the fact that y, > 0 for all k,

b/=1= Y a,y.
kes
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Now as b/ —1<0,

and multiplying by 5/,
- - = -1 _
bi<bi(b-1) ¥ aun. (2.30)

Case 11

Assume [Zj]+ Bj’—szO. As x; is constrained to be an integer in any
feasible solution

[B,] +5/—x; =B+

for some v, where v € {0,1,2,3,...}.
Using (2.29),

bi+v= > Ayt > Ay V-
keS, keES._

Now since v > 0, we have

-, _ _
bj = Z QY+ Z A V-
kesS, keS_

And from the definition of S_ and the fact that y, > 0 for all k,
b< Y auy. (2.31)
kES,
Combining (2.30) and (2.31),
— - /= -1 _ _
b<b(b-1) ¥ @Gnt L 3. (2.32)
kes_ kes,

This inequality must be satisfied if x; is to be an integer. The constraint
(2.32) is the Gomory cut, which is now introduced into the final tableau.
A slack variable x, is now added to (2.32):

B=b(5-1)" ¥ @yt L @ x.- (2.33)
kes_ kes,
Now as
Y =0, k=1,2,...,p,
we have

- _ B
x,=—b,

which is infeasible. The dual simplex method is used to remedy this
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situation. The above process is repeated until either one of the following
occurs.

(i) A tableau is produced in which x;, i=1,2,...,q, are integer in which
case the corresponding solution is optimal.

(ii) The use of the dual simplex method leads to the conclusion that no
feasible solution exists in which case one can conclude that the original
mixed-integer problem has no feasible solution.

The method will be illustrated on the following problem.

Maximize 4x,+3x, (=2Z2) (2.34)
subject to
3x, +4x, <12,
4x,+2x,<9, (2.35)
xla x2 2 Oa (2.36)
x, must be an integer. (2.37)
That is,
qg=1.

On examining the optimal simplex tableau (Table 2.11) for (2.34)-(2.36) it
can be seen that x, is noninteger and can be expressed as

1+4—x,=—ix;+x,.
Table 2.11
Xy X, X3 X4 b
o 1 I
1 0 -1 H §
0 0 % o 1
In terms of (2.28):

[3]=1.

71

' S

J=2,

i=1,

p=2,

6J'|=_%’

—=Z

jao 3
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Also

S, = {4}
and

S_={3}.
Letting

X, = Xs,

in terms of (2.33) the cut becomes

F=3(-1) T (- D+ B s,

Adding the negative of this constraint to Table 2.11 yields Table 2.12. The
application of the dual simplex method yields Table 2.13. Table 2.13
displays the optimal solution to the problem as x, is now integer-valued.
This solution is

xf=1,
xF=1
Zx=4
Table 2.12
Xy Xy X3 X4 X5 b
o1 S T
10 - R
o 0 % -3 1
0 0 z o 0 B
Table 2.13
X, X, X3 X4 X5 b
o 1 g o -1 3
1 0 -3 0 1 1
0 0 § 1 -3 3
0 0 & 0 3 2

2.1.4. EXERCISES

1. Solve the following problem by Dakin’s method:

Maximize 4x; +3x, +3x;
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subject to

4x,+2x,+ x5 <10,
3x,+4x, +2x; <14,
2x1+ X2 +3X3S7,

Xy, X5, X3, NONNegative integers.

2. Solve problem 1 above by the method of Balas by converting to zero—one
variables.

3. Add the following constraint to problem 1 above:
X1,%X,Xx3=0 or 1.

Solve the resulting problem by the method of Balas.
4. Solve problem 1 above by Gomory’s method.

5. Suppose in problem 1 above that only x, is constrained to be integral. Solve this
new problem by Gomory’s mixed-integer method.

6. Solve problem 3 above by exhaustive enumeration. Compare the amount of
computation required with that required by the method of Balas.

*7. Formulate the traveling-salesman-path problem of Chapter 0 as an integer-pro-
gramming problem.

2.2. Dynamic Programming

2.1.1. A Simple Dynamic-Programming Problem

Consider Fig. 2.6, ignoring the boxed numbers, which depicts a network of
huts connected by trails. Each path is labeled with its distance in kilometers.
Suppose we have a hiker who would like to trudge from hut 1 to hut 11 by
the shortest path of trails. The hiker could, of course, list all possible paths
from 1 to 11, calculate their distances, and choose the shortest. But such a
method is useful only for relatively small networks. If the number of huts in
the problem is gradually increased, the amount of computation increases
very quickly indeed. Soon it is far too much for hand calculation and after
that it is inefficient even for a computer. Further discussion on the in-
efficiency of the fundamental algorithm appears in Section 2.3.

Obviously we must find a method with less computation if we are to be
able to guarantee to find shortest paths for large networks. The technique of
dynamic programming (DP) can be used to devise such a method. Other
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shortest-path methods are given in Chapter 3. Dynamic programming is a
generalized approach to solving staged optimization and can be applied to a
tremendous variety of problems, not just to finding shortest paths. We now
apply it to the problem of Fig. 2.6.

We begin by dividing the huts into szages, as shown in Fig. 2.6. The hiker
will visit exactly one hut from each stage on the trip. Each stage is
numbered to represent the number of trails walked on the trip so far to get
to that stage. For each stage we define at least one szare. The states for each
stage are the numbers of the huts associated with that stage. For example,
the states of stage 1 are 2, 3, and 4. Naturally the hiker will be in exactly one
state (the number of the hut the hiker visits) at each stage. We define for
each state a return. The return of a state is the minimum distance from hut

Stage
0

N

w

Figure 2.6. The Network of Trails for the Hiker’s Problem.
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1 to the hut of that state. Let us now solve the problem by using these ideas.
The reader should refer to Fig. 2.6 during the course of the discussion where
the various states are depicted in boxes.

Initially, the hiker is at stage 0 in state 1. The hiker walks a first trail and
is at stage 1 in one of the states 2, 3, or 4. The returns for states 2, 3, and 4
are 16, 14, and 12, respectively, the distances of these first trails. The hiker
now proceeds from stage 1 to stage 2. At stage 2 the hiker will be in either of
the states 5, 6, or 7. Let us suppose for the moment that the hiker ends up in
state 5. There are two ways to get there: from state 2 or state 3. If the hiker
comes from state 2 the total distance walked will be the sum of the state 2
return and the length of 2-5 trail, that is, 16 + 8 = 24. If one arrives via state
3 the total distance traveled will be 14+ 14 = 28.

The following idea is an example of the fundamental concept of dynamic
programming. Once the hiker leaves state 5, the later trail choices are not
affected by the actual path which was taken to get to 5. One just wants to
get from 5 to 11 by the shortest route. To minimize overall distance the
hiker should proceed from 1 to 5 by the shortest 1-5 path. Any shortest
1-11 path via 5 will contain the shortest 1-5 path, otherwise it could be
improved. So we can look at the two options for getting to 5 and choose the
shorter, namely, via 2 for a distance of 24 km. By definition this becomes
the return for state 5.

We now relax our assumption that the hiker was in state 5. Similar
reasoning can be used to deduce that the states 6 and 7 returns are the
minimum of (16+ 19,14+ 20,12+ 8) and the minimum of (14+11,12+17),
respectively. The hiker now goes from stage 2 to 3. The stage 3 returns are
calculated in the same manner as before. For example, the state 8 return is
the minimum of the state 5 return plus the 5-8 distance and the state 6
return plus the 68 distance. In order to calculate the state 8 return we need
to know only the states 5 and 6 return, not the paths that produced them.
The reader should verify that the returns for states 8, 9, and 10 are 33, 33,
and 36 km, respectively.

The hiker now comes to the final stage. Its only state (11) has a return of
44, We now know that the length of the shortest path is 44 km. To find the
path itself we must backtrack, using the returns and trail distances. Where
did the state 11 return of 44 come from? We can test to see if the state 8
return plus the 8-11 trail length equals the state 11 return. If it does, hut 8
is on a shortest path. If it does not, hut 8 is not on a shortest path. We can
test each of the other stage 3 returns in a similar manner. Any returns for
which the above test is positive have huts which are on a shortest path.
(There may be more than one shortest path.) In our present case the test is
positive only for state 8. So we know that the shortest path goes through hut
8 just before reaching hut 11. We now ask where the state 8 return came
from. Working back in this way we find that the complete shortest path is
1,4,6,8,11. In solving this problem we have used all the notions of basic
DP.
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2.2.2. Forward Recursion

We now define notation which allows us to solve formally the shortest-path
problem. Let

d;; = the cost of transforming the system from state i to state j;
s, = the states of the nth stage;
N = the number of stages of the system—1;
f,(s) = the return of state s when the system is at stage n.

Using these definitions, the formal calculations for the solution of the
problem are

fo(s)) =0,

fi(sy) = fo(s,)+d;, =0+16 =16,
f1(s3) = fo(s1)+d}3 =0+14 =14,
fi(ss)=fo(s))+dy,=0+12=12,

fo(ss) =Min{ f,(s,)+dys, fi(53) +dss}
— Min{16+8,14+14} = 24,

fz(se) = Min{f1(52)+d26’f1(s3)+d36’f1(s4)+d46}
= Min{16+19,14+20,12+8} =20,

fo(s7) =Min{ f,(s;)+ ds;, fy(54) +d 7}
= Min{14+11,12+17} =25,

f3(sg) =Min{ f,(s5)+dsg, fo(56) +des }
— Min{24+20,20+13} = 33,

f3(s9) =Min{ f,(s5)+dsg, f,(56) + deo } £,(57)+d39}
= Min{24+9,25+17,25+10} =33,

f3(s10) = Min{ f,(s6) + dg 105 f(57) + d7 10}
= Min{25+16,25+20} =41,

f4(5u) = Min{f3(53)+ds,u’f3(59)+d9,11af3(510)+d10,11}
=Min{33+11,33+12,41+10} = 44.
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Backtracking

fa(sy)—dg 11— f3(sg) =44—11-33=0,
fals1)=ds 11— f3(s9) = 44—12-33 %0,
fa(sy)—dg 11— f3(510) =44—10—-41# 0,
fi(sg)—dsg— f(s5) =33-9-24=0,
fi(sg)—des — fr(s6) =33—17-25+0,
fr(s¢)—dr— f1(5,) =20—-19-16 # 0,
f(s¢)—dqg— fi(s3) =20—20—-14# 0,
fr(s¢)—dys— fi(s4)=20-8-12=0,
filsg)—dyy— fo(s)=12-12-0=0.,

The shortest path is 1 » 4 — 6 — 8 —11 with length = f,(s;;) = 44 km.

In our hiker’s problem we performed the calculations in the most natural
order, that is, by following the direction in which the hiker walks. Thus we
calculated the return functions in the numerical order of their subscripts: f,,
fi» o, f5, and f,. Such a “direction” of calculation is called forward
recursion.

In general, the calculation for the return f,(s) at stage n of state s is

fi(s)=Min{f,_,(s,-1)+d, .}, n=12,.,N. (2.38)
Sn-1

Equation (2.38) is the general forward-recursion equation and equations of
this form are called recursive equations. They are used, in one form or
another, to solve DP problems. The set of decisions which make up a
problem solution is called a policy. A set of decisions which transforms the
system from an intermediate stage to the final stage is called a subpolicy. We
noticed earlier that if the hiker leaves state 5, the later trail choices are not
affected by how the hiker got to state 5. Generalizing this statement and
phrasing it in the above language, we can say that “an optimal subpolicy at
any stage depends only upon that stage and the transformation costs from
that stage, not upon choices made at earlier stages.” This sums up the
“principle of optimality of dynamic programming’:

The decisions of the optimal policy for stages beyond a given stage will
constitute an optimal subpolicy regardless of how the system entered that

stage.
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It can be seen from (2.38) that f,(s) is a function of f,_(s,_,) and d,
and this function is simply one of addition. In some problems, however, the
function is more complicated. Consider, for example, the case where the
transformation “costs” are probabilities and one is attempting to minimize
the overall probability of a complete path from the initial to the final stage.
Here the function between f,_(s,_,) and d; _  is one of multiplication.
We state the general relationship by & (which may be addition, multiplica-
tion, or some other operation). The general formula for forward recursion is

f,(s) = Optimize{ f,_,(s,_,)@d, .}, n=1,23,..,N. (2.39)

We use the term “optimize” rather than “minimize” because in some
problems we may wish to maximize the “costs” which are, in this case,
benefits.

2.2.3. Backwards Recursion

As has already been mentioned, the values of the return functions for the
shortest-path problem were calculated in the order of increasing subscripts.
When the return functions are calculated in the order fy, fy_y1,..., f1, the
approach is termed backwards recursion. It usually means performing the
calculations in the opposite direction to that of the events as they will occur
when the solution is implemented. We now illustrate backwards recursion
by using it to solve the hiker’s problem. We must first redefine the return
functions as

f,(s) = the return from the future stages (n+1,n+2,...,N)
when the system is in state s at stage n.

In terms of our shortest-path problem, f,(s) is the shortest distance from
hut s (state s) at stage n to the final stage. Thus f,(s) is the distance the
hiker still has to walk. [This is usually different from the distance the hiker
has already walked, which is what f,(s) was in forward recursion.]

Once hut 11 is reached there is no further distance to be walked so
f4(s11) = 0. At the third stage only one further trail has to be walked, so the
returns are simply their lengths. At the second stage we must calculate the
minimum distance from each state to state 11 using the lengths of the trails
from stage 2 and the stage 3 returns. Continuing in this way we are
eventually able to establish that f,(s,)=44. Naturally this is the same
distance as calculated earlier. We can backtrack in a similar manner to that
used for forward recursion to find the actual shortest path. Of course it is
the same path as that found in Section 2.2.1. The complete set of calcula-
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tions for backwards recursion are:

f4(511)=0’

f3(sg) =dg 1y + fi(s) =11+0 =11,

f3(s9) =dg 1y + fo(s1,) =12+0 =12,

f3(s10) =dyo 11 + fu(s51,) =10+0 =10,

fo(ss) =Min{dsg + f,(sg),dsg + f3(s9)}
=Min{20+11,9+12} =21,

fo(sg) =Min{dgg + f3(55), dgo + f3(59), dg 10 + f3(510) }
= Min{l3+ll,l7+10,l6+10} =24,

fo(s7) =Min{ds+ f3(s5),d710+ f3(510) }
=Min{10+12,20+10} =22,

fi(sy) =Min{dys + f,(s5), dos + fo(s6) }
— Min{8+21,19+24} =29,

fi(s3) =Min{dys + f,(s5), dss + fo(56), d37 + fo(s7) }
— Min{14+21,20+24,11+22) = 33,

fi(sg) =Min{dy + f,(s¢),dgs + fo(s7)}
=Min{8+24,l7+22} =32,

fo(sy) =Min{dy, + f,(s,),dy3 + f1(s3), dyy + f1(54) )
= Min{16+29,14+33,12+32) = 44.

Backtracking

fo(s1)—dyy — fi(s,) =44—16-29 # 0,
fo(s1)—di3— fi(s;) =44—14-33 %0,
fo(s))—dy— fi(s,)=44-12-32=0,
fi(s4)—dis— fr(s6) =32-8-24=0,
fi(ss)—dy— fi(s7)=32-17-22+0,
fi(sg)—des — fo(s5) =24-13-11=0,
fo(s¢)—dgo — f1(59) =24—17-12# 0,

f(s¢)=dg 10— f3(510) =24-16-10# 0,

fi(sg)—dg 1y~ f3(s1,) =11-11-0=0.

The shortest path is 11 « 8 « 6 « 4 « 1 with length =5, = 44 km.
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In this example an equal amount of effort is required in order to solve the
problem in either direction. However, there are problems for which the
return function is more complicated than a simple arithmetical operation on
two numbers. In some of these cases the two directions of computation
require markedly differing amounts of computation, one from the other. The
general backwards-recursive equation is

f.(s) = Optimize { f,,,(s,41)®d,, }, n=N-1,N=2,..,0.

Sn+1

(2.40)

2.2.4. EXERCISES

1. Find the shortest path from the point with the lowest index to the point with
the highest index for each of the networks in the exercises at the end of
Chapter 3 using forward recursion.

2. Repeat problem 1 above using backwards recursion.
3. Repeat problems 1 and 2 above for the networks in Tables 3.1, 3.2, and 3.4.

4. Repeat problems 1, 2, and 3 above with & = X (multiplication) rather than
+ (addition).

5. Solve the following problem by forward recursion:

4
Maximize Y, (6x, — nx2),
n=1

subject to

4
L x,=8,
n=1
x,, nonnegative integer, n=1,2,3,4

6. Solve problem 5 above by backwards recursion.

7. Compare the amount of computational effort required to solve problems 5 and
6 above.

8. A machine must produce 20 spindles over 4 days— Sunday (S), Monday (M),
Tuesday (T), and Wednesday (W). Integer numbers of up to 6 can be produced
on any day. It costs $2 to store each spindle for any day after it is produced.
The production costs for different numbers of spindles produced on the
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*11.
*12.

different days are:

Cost

Number

produced S M T w
0 4 12 10 8
1 8 14 16 10
2 16 18 22 18
3 18 22 30 26
4 22 30 32 30
5 24 38 34 34
6 28 40 40 44

Solve this problem by forward recursion.

. Solve problem 8 above by backwards recursion.
*10.

A strong burglar can carry 100 kg in weight. The burglar finds seven objects to
steal with values and weights:

(30,50,10,20,14,25,60) and (40,50,30,10,10,40,30),

respectively. Using forward recursion, decide which selection of objects is the
most valuable to steal.

Solve problem 10 above by backwards recursion.

A farmer has 30 kg of pumpkin seed. If the farmer plants 1 kg of pumpkin
seed, it will produce 3 kg of pumpkins in 1 year’s time. The farmer has a very
brave buyer who will guarantee to pay $450, $390, $330, $44, $15, and $5 for 1
kg of pumpkins over the next 5 years, respectively. The farmer decides to retire
in 5-year’s time and wants to dispose of all the pumpkins and seeds by the end
of the fifth year. What is the farmer’s optimal planting and selling policy if
either must be done in integral amounts?

(a) Decide this by forward recursion.

(b) Decide this by backwards recursion.

2.3. Complexity

Combinatorial mathematics is often described as the study of the arrange-
ment and selection of discrete objects. Combinatorial optimization (CO), is
concerned with identifying the best possible arrangement or selection from
among all those possible. As there is usually a finite number of possibilities
for any given problem, it is theoretically possible to examine them all and
choose the best. Unfortunately, there are just too many solutions to any
nontrivial problem for this approach to be feasible. An example of this was
given at the end of Chapter 0.
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It is therefore of interest to attempt to design algorithms, which are more
effective than complete enumeration. We turn now to the question of
evaluating the effectiveness of an algorithm. The concept of effectiveness
was placed on a firm scientific foundation by Edmonds (1965), whose work
caused the following convention to be adopted by most of those concerned
with algorithm efficiency:

An algorithm is considered to be effective if it can guarantee to solve any
instance of the problem for which it was designed by performing a number of
elementary computational steps and the number can be expressed as a
polynomial function of the size of the problem.

It is assumed that computational time is linearly proportional to the
number of elementary computational steps required to implement the
algorithm. The size of a specific instance of a problem is defined to be the
number of symbols required to describe it.

It is a valid question to ask whether an effective, or “polynomial-time,”
algorithm can be devised for a given CO problem. There exist obscure CO
problems in Number Theory for which it has been shown that no effective
algorithm exists, and problems in other areas for which polynomial-time
algorithms have been devised. This second class of problems is denoted by P
(polynomial). Examples of problems in P are given in Sections 3.1 and 3.2.

There exists a third class of problems whose status is unknown. It is
possible to devise algorithms for each problem, but no effective algorithm is
known for any of them. However, neither has there yet appeared a proof
showing that any are intractable. Our problem of finding the shortest path
through a given set of cities lies in this last class which is denoted by NP
(nondeterministic polynomial).

Within NP there is a subset of problems which is called NP-Complete. A
problem is termed NP-Complete if it (1) belongs to NP and (2) has the
property that if an effective algorithm is found for it then an effective
algorithm can be found for every problem in NP. In this sense the
NP-Complete problems are the hardest in NP. To establish the status of a
CO problem for which no effective algorithm is known, it is usual to employ
the concept of reducibility.

A problem p; is said to be reducible to problem p, (written p; & p,) if the
existence of an effective algorithm for p, implies the existence of an effective
algorithm for p,. The following result is often used to establish that a
problem p € NP is NP-Complete.

Theorem 2.1. If p, is NP-Complete and p, < p, then p, is also NP-Complete.

(For a proof, see Garey and Johnson, 1979, p. 38.)
Many of the problems in NP have defied the attempts to find effective
algorithms of some of the best mathematicians over the past 30 years. There
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is also more objective circumstantial evidence that P # NP. Thus it seems
unlikely that an effective algorithm exists for any of the NP-Complete
problems. Hence the fact that a problem is NP-Complete is considered
justification for heuristic procedures to be applied to it, that is, procedures
which do not guarantee to produce an optimal solution for every instance of
the problem. The challenge is to find heuristics with good-performance
guarantees which are also effective in the sense defined earlier. Heuristics are
discussed in the next section.

2.4. Heuristic Problem Solving

An algorithm for a problem is a scientific procedure which will converge to
the best feasible solution to the problem. Analysts in business and industry
are often faced with problems of such complexity that the standard algo-
rithms are inappropriate. There are many reasons why this might be so.

(1) The dimensions of the problem may be so large that the application of
the fastest-known algorithm on the fastest computer may take a prohibi-
tive amount of computational time. This is certainly true for certain
vehicle routing problems.

(2) The problem may be virtually impossible to formulate in explicit terms.
The aims of different managers involved in operating a system may be
conflicting or ill-defined. In fact it may be difficult to express many
features of the problem in quantitative terms.

(3) Data collection may be beset with problems of accuracy and magnitude.
For example, in large-scale location problems the analyst may be faced
with calculating an enormous number of location-to-location distances.
In order to provide this information in reasonable time it may be
necessary to make approximations. Sometimes the use of approximate
data makes the concept of an optimal solution meaningless.

Of course, a manager will find no comfort at all in a consultant saying
that the literature does not contain an efficient method which guarantees an
optimal solution for the problem in reasonable computational time. Come
what may, the manager somehow has to schedule flight crews, route delivery
vans, or whatever. At this point the analyst has a number of options:

(1) Develop the methodology that will provide optimal solutions efficiently.

(2) Find algorithms that will solve certain special cases of the problem.

(3) Look for efficient algorithms that solve a relaxed version of the problem.

(4) Come up with algorithms that seem likely to run quickly most, but not
all, of the time.

(5) Give up the quest for optimality and provide approximate methods that
run quickly but have no guarantee of optimality.
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Aim (1) is often unrealistic. Aims (2) and (3) are occasionally appropriate.
However, there is a very real danger: People have warned of the pitfalls of
substituting the real problem with an artificial one which corresponds to
standard models and known techniques. Nothing can give consultancy a
worse name than the consultant who “bends” a clients’ problem into a form
which is amenable to solution by the consultant’s pet method, producing
solutions which are of little practical use. However aim (4) is obviously
worthy. It is usually satisfactory to employ an algorithm which almost
always runs in reasonable time. The simplex algorithm for linear program-
ming (see Chapter 1) is a good example. However, if such a method cannot
be found we are left with aim (5).

The idea of approximate methods, which are easy to use but which give
up the guarantee of optimality, is not new. Indeed as early as 300 A.D.
Pappas, writing on Euclid, suggested this approach. Descartes and Leibnitz
both attempted to formalize the subject. It became known as the study of
heuristics and heuristic was the name of an area of academic study whose
aim was to investigate the methods of discovery and invention. It was allied
with logic, philosophy, and psychology. The name itself was derived from
the Greek word heuriskein —to discover. Today the term heuristic is used to
describe a method “which, on the basis of experience or judgment, seems
likely to yield a good solution to a problem, but which cannot be guaranteed
to produce an optimum.”

Most people use heuristics all the time in their day-to-day lives:

e In order to guard against catching a cold, if clouds are building up in the
West, take a raincoat.

e In order to guarantee never to run out of gas, when the gasoline gauge
shows less than one-quarter full, buy more gas for the car.

o In order to avoid problems with one’s bank manager, transfer funds from
the savings account to the checking account when the latter is in the red
by more than $100.

Heuristics abound in business too:

o Reorder when only one-third of the stock is left.
o Schedule the urgent jobs first.
o Allocate 4% of last year’s sales revenue to advertising.

There are four basic strategies for heuristic procedures. Many methods
comprise a combination of more than one of these strategies.

1. The Construction Strategy. The input for methods based on this strategy
is nothing more than the data which define a specific instance of the
problem. A solution is built up one component at a time. A construction
strategy begins by examining these data and attempting to identify an
element of the final solution which is likely to be a valuable part of a very
good final solution. Next, successive additional elements of a solution are
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added. The better construction heuristics employ some kind of “look-ahead”
mechanism. That is, additions are made not just because they appear as a
good idea at the time, but because they are likely to be of genuine value in
the complete solution. Once the final solution has been built up it may be
obvious that improvements can be easily effected. Thus the strategy is often
applied to the output of the construction method. This strategy is worthwhile
when it is relatively difficult to generate feasible solutions to the problem.

2. The Improvement Strategy. The input for methods based on this strategy
is a solution to the problem. This solution is then progressively improved by
a series of modifications. In some instances it may be impossible to make
much progress in this way and yet the final product may still be far from
optimal. Some improvement strategies are farsighted in the following sense.
Some iterations of the “improvement” process may actually be allowed to
bring about a temporary worsening in solution value if it can be seen that
this will create a situation where worthwhile gains can eventually be made.
This strategy is useful when it is relatively easy to generate starting solu-
tions. A variety of solutions can be used as input and the best final result
chosen. Sometimes the strategy is used to convert an infeasible solution into
a feasible one.

3. The Component Analysis Strategy. Some problems are so large or so
complicated that the only practical approach is to break them up into
manageable portions. Sometimes these portions are then dealt with indepen-
dently by heuristics or algorithms. The solutions for the portions are then
joined to form some master plan. Of course, it may be extremely difficult to
piece together the solutions to the different components into an acceptable
plan. If the components can be ordered in some sort of logical sequence it
usually makes sense to examine them in the same order. This ordering is
often based on some time scale which is an integral part of the problem. For
instance, in investment problems a natural sequencing may be to define a
component as 1 year’s activities. Obviously, the output of the analysis of
one component may be a valuable input for the analysis of later compo-
nents.

4. The Learning Strategy. Methods based on this strategy often use a
tree-search diagram to chart their progress. That is, the different options
which appear at various stages are represented by different branches of a
tree. The sequences of choices actually made can be traced by a path
through the tree. The choice of which branch to take is guided by learning
from the outcome of earlier decisions. The early termination of a branch-
and-bound search is an example of this strategy.
We turn now to the problem of how to design an effective heuristic.
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2.4.1. The Design of Heuristics

When confronted with the problem of designing a heuristic for a specific
problem it is often very useful to set aspiration levels before plunging into
the actual design process; that is, what type of performance guarantees must
the heuristic possess? The guarantees must apply to the actual problems
under study. This usually means large-scale problems, not just small test
problems. Desirable characteristics include:

(1) Execution in reasonable computational time.

(2) Solutions which are close to optimality on the average.

(3) Only a small probability of any one solution being far below optimality.
(4) Simplicity of both design and computational requirements.

Characteristics (2) and (3) suggest an average-case performance bound be
calculated.

Returning to the point of guaranteeing good performance on realistic and
not just small test problems we turn to the question of validation. Some-
times this can be achieved by constructing large-scale problems with known
optimal solutions. That is, this solution is defined and then the rest of the
data for the problem are “built around it” ensuring the optimality of S.
Although such problems are inherently artificial, careful construction can
provide useful test problems. Despite the previous remark, it is often still
quite useful to compare heuristic performance with that of an algorithm on
a wide variety of small- and medium-sized test problems if possible.

When validation is difficult but it is relatively easy to generate feasible
solutions, the following design approach may be valuable. Called the
better-than-most approach (BTM), it randomly generates solutions, select-
ing those that are feasible. The best solutions among these are selected
according to the optimality criteria of the analyst, where some of these
criteria may be difficult to quantify. There is the obvious question of how
large a sample must be taken in order to guarantee that the best solution
identified will be with a specified probability, within a given percentage of
optimality.

This approach leads to the question of when to terminate a heuristic that
generates one or more feasible solutions early in its execution and then
spends most of its time searching for improvements.

When optimality criteria are difficult to quantify, it may be reasonab