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Preface

IN 1959 I lectured on Boolean algebras at the University
of Chicago. A mimeographed version of the notes on which

the lectures were based circulated for about two years; this
volume contains those notes, corrected and revised. Most of
the corrections were suggested by Peter Crawley. To judge
by his detailed and precise suggestions, he must have read
every word, checked every reference, and weighed every
argument, and I am very grateful to him for his help. This is
not to say that he is to be held responsible for the imperfec-
tions that remain, and, in particular, I alone am responsible
for all expressions of personal opinion and irreverent view-
point.

P. R. H.

Ann Arbor, Michigan
January, 1963
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§ 1. Boolean Rings

An element p of aring is idempotent if p2 =p. A
Boolean ring is a ring with unit in which every element is
idempotent. Warning: a ring with unit is by definition a
ring with a distinguished element 1 that acts as a multi-
plicative identity and that is distinct from the additive
identity 0. The effect of the last proviso is to exclude from
consideration the trivial ring consisting of 0 alone. The
phrase ‘‘with unit’’ is sometimes omitted from the definition
of a Boolean ring; in that case our present concept is
called a ‘‘Boolean ring with unit.”’

Every Boolean ring contains 0 and 1; the simplest
Boolean ring contains nothing else. Indeed, the ring of
integers modulo 2 is a Boolean ring. This particular
Boolean ring will be denoted throughout by the same sym-
bol as the ordinary integer 2. The notation is not commonly
used, but it is very convenient. It is in accordance with von
Neumann’s definition of ordinal number, with sound general
principles of notational economy, and (in logical expressions
such as ‘‘two-valued’’) with idiomatic linguistic usage.

A non-trivial and natural example of a Boolean ring is
the set 2% of all functions from an arbitrary non-empty set
X into 2. The elements of 2% will be called 2-valued func-
tions on X. The distinguished elements and operations in
2X are defined pointwise. This means that 0 and 1 in 90X
are the functions defined, for each x in X, by

O(x) = 0 and 1(x) = 1,
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and, if p and ¢ are 2-valued functions on X, then the
functions p + g and pgq are defined by

(P + @)(x) = p(x) + g(x) and (pg)(x) = p(x)q(%).

These equations make sense; their right sides refer to
elements of 2. The assumption that X # @& is needed to
guarantee that 0 and 1 are distinct.

For another example of a Boolean ring let 4 be the set
of all idempotent elements in a commutative (!) ring R
with unit, with addition redefined so that the new sum of p
and ¢ in 4 is p + g - 2pg. The distinguished elements
of A are the same as those of R, and multiplication in 4
is just the restriction of multiplication in R. The verifica-
tion that 4 becomes a Boolean ring this way is an amusing
exercise in ring axiomatics. Commutativity is used re-
peatedly; it is needed, for instance, to prove that 4 is
closed under multiplication.

The main condition in the definition of a Boolean ring
(idempotence) has quite a strong influence on the structure
of such rings. Two of its most surprising consequences are
that (1) a Boolean ring 4 has characteristic 2 (that is,

p +p =0 for every p in 4), and (2) a Boolean ring is
commutative. For the proof, compute (p + q)2, and use
idempotence to conclude that pg + gp =0. This result
implies the two assertions, one after another, as. follows.
Put p = ¢ and use idempotence to get (1); since (1) im-
plies that every element is equal to its own negative, the
fact that pg = —pq yields (2).

Since, as we now know, subtraction in Boolean rings is
the same as addition, it is never necessary to use the
minus sign for additive inverses, and we shall never again
do so. A little later we shall meet another natural use for it.
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Exercises

(1) Prove that every Boolean ring without a unit can be
embedded into a Boolean ring with a unit. To what extent
is this extension procedure unique?

(2) Can every Boolean ring with unit be obtained by
adjoining a unit to a Boolean ring without a unit?

(3) A Boolean group is an (additive) abelian group in
which every element has order two (that is, p + p = 0 for
all p). Is every Boolean group the additive group of some
Boolean ring?

$2. Boolean algebras

Let X be an arbitrary non-empty set and let # (X) (the
power set of X) be the class of all subsets of X. There is a
way of introducing a Boolean structure into ¥ (X), as fol-
lows. The distinguished elements are defined by

0=gand1l=2X,
and, if P and Q are subsets of X, then, by definition,
P+Q=(PNQ"YU(P'NQ)and PQ =P NQ.

The symbols U, N, and ' refer, of course, to the ordinary
set-theoretic concepts of union, intersection, and comple-
ment. The easiest way to verify that the result is indeed a
Boolean ring is to establish a one-to-one correspondence
between P (X) and 2% so that the elements and operations
here defined correspond exactly to the distinguished
elements and operations of 2%X. The 2-valued function p
corresponding to a subset P of X is just its ckaracteristic
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function, that is, the function defined for each x in X by

lifx €P,

p(x) =
0if x €' p-

Observe that the Boolean sum P + Q is what is usually
known in set theory as the symmetric difference of P and

Q.

Motivated by this set-theoretic example, we can introduce
into every Boolean ring operations very much like the set-
theoretic ones; all we need to do is to write

1) p Nq=pg,
(2) pVg=p+gq+pg
(3) p’=1+p-

Meet, join, and complement, respectively, are among the
several possible widely adopted names of these operations.
It should come as no surprise that plus and times can be
recaptured from meet, join, and complement; indeed

4) pg=p g,
(5) p+g=(pPNg" )V Ng).

From this it follows that it must be possible to use meet,
join, and complement (and, of course, 0 and 1) as the
primitive terms of an axiomatization of Boolean rings, and,
indeed, this can be done in many ways.

In principle the task is an easy one. All we have to do
is express each of the defining conditions (axioms) of a
Boolean ring in terms of meet, join, and complement, and
then use the resulting conditions, or some others strong
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enough to imply them, as axioms. Here is a wastefully
large set of conditions, more than strong enough for the

purpose.

(6) 0" =1 1'=0

(7) pA0O=0 pVi=1
(8) pAl= pVO=p
(9) pAp'=0 pVp'=1
(10) P’ =p

(11) pAp=p pVp=p
12) (" ¢'=p" Vg’ (Ve =p" Mg’
(13) phg=g” p pVg=qVp

(14) pA@A)=( Ng) Nr pV(@Vr)=(pVqgVr
(15) pA(gVr)y=(@AQV @A) pV(gNr)=(@VaN(pVr)

The problem of selecting small subsets of this set of condi-
tions that are strong enough to imply them all is one of dull
axiomatics. For the sake of the record: one solution of the
problem is given by the pairs of conditions (8), (9), the
commutative laws (13), and the distributive laws (15). To
prove that these four pairs imply all the other conditions,
and, in particular, to prove that they imply the De Morgan
laws (12) and the associative laws (14), involves some non-
trivial trickery.

The customary succinct way of summarizing the preced-
ing discussion motivates the following definition. Let us
call a Boolean algebra a set A together with two distinct
distinguished elements 0 and 1, two binary operations N and
V, and a unary operation ', satisfying the identities (6)-(15).
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The succinct summary says that every Boolean ring is a
Boolean algebra, and vice versa. A somewhat more precise
statement is somewhat clumsier. It says that if the Boolean
operations (meet, join, and complement) are defined in a
Boolean ring 4 by (1)-(3), then 4 becomes a Boolean
algebra; and, backwards, if the ring operations are defined
in a Boolean algebra A by (4) and (5), then 4 becomes a
Boolean ring. In these notes we shall use the two terms
(Boolean ring and Boolean algebra) almost as if they were
synonymous, selecting on each occasion the one that seems
intuitively more appropriate. Since our motivation comes
from set theory, we shall speak of Boolean algebras much
more often than of Boolean rings.

Here is a comment on notation, inspired by the associa-

tive laws (14). It is an elementary consequence of those
laws that if py, -++, P, are elements of a Boolean algebra,
then py Vo V p, makes sense. The point is, of course,
that since such joins are independent of how they are
bracketed, it is not necessary to indicate any bracketing at
all. The element p; V ... V p may alternatively be denoted
by V ’;1 p; » or, in case no confusion is possible, simply

13

byVipi.

If we make simultaneous use of both the commutative and
the associative laws, we can derive a slight but useful
generalization of the preceding comment. If E is a non-empty
finite subset of a Boolean algebra, then the set E has a
uniquely determined join, independent of any order or
bracketing that may be used in writing it down. (In case E
is a singleton, it is natural to identify that join with the
unique element in E.) We shall denote the join of E by

VE.

Both the preceding comments apply to meets as well as
to joins. The corresponding symbols are, of course,
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AT ipsor A,p;,and A E.

The point of view of Boolean algebras makes it possible
to give a simple and natural description of an example that
would be quite awkward to treat from the point of view of
Boolean rings. Let m be an integer greater than 1, and let
A be the set of all positive integral divisors of m. Define
the Boolean structure of 4 by the equations

0=1,
1=m,

p/Ng=g.c.d. lp, g},
pVg=1 c.m {p, q},
p'=m/p.

It turns out that, with the distinguished elements and opera-
tions so defined, A forms a Boolean algebra if and only if
m is square-free (that is, m is not divisible by the square
of any prime). Query: what are the number-theoretic expres-
sions of the ring operations in this Boolean algebra? And,
while we are on the subject, what are the expressions for
the Boolean operations in the Boolean ring 4 consisting of
the idempotent elements of an arbitrary commutative ring R
with unit? (See §1.) The answer to this question is slightly
different from (1)-(3); those equations give the answer in
terms of the ring operations in 4, and what is wanted is an
answer in terms of the ring operations in R.

A technical reason for preferring the language of Boolean
algebras to that of Boolean rings is the so-called principle
of duality. The principle consists in observing that if 0 and
1 are interchanged in the identities (6)-(15), and if, at the
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same time, N and V are interchanged, then those identities
are merely permuted among themselves. It follows that the
same is true for all the consequences of those identities.
The general theorems about Boolean algebras, and, for that
matter, their proofs also, come in dual pairs. A practical
consequence of this principle, often exploited in what
follows, is that in the theory of Boolean algebras it is
sufficient to state and to prove only half the theorems; the
other half come gratis from the principle of duality.

A slight misunderstanding can arise about the meaning
of duality, and often does. It is well worth while to clear it
up once and for all, especially since the clarification is
quite amusing in its own right. If an experienced Boolean
algebraist is asked for the dual of a Boolean polynomial,
such as say p V g, his answer might be p A ¢ one day and
p' N g’ another day; the answer p’' V ¢’ is less likely but
not impossible. (The definition of Boolean polynomials is
the same as that of ordinary polynomials, except that the
admissible operations are not addition and multiplication
but meet, join, and complement.) What is needed here is
some careful terminological distinction. Let us restrict
attention to the completely typical case of a polynomial
f(p, ¢) in two variables. The complement of f(p, q) is by
definition (f(p, ¢)) ', abbreviated f'(p, q); the dual of f(p, ¢)
isf'(p', ¢'); the contradual of f(p, q) is f(p ", ¢'). What
goes on here is that the group acting, in an obvious way, is
not the group of order two, but the Klein four-group. This
comment was made by Gottschalk (J.S.L., vol. 18) who
describes the situation by speaking of the principle of
quaternality.

A word of warning: the word ‘‘duality’’ is frequently used
in contexts startlingly different from each other and from the
one we met above. This is true even within the theory of
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Boolean algebras, where, for instance, a topological duality
theory turns out to play a much more important role than the
elementary algebraic one. If the context alone is not suffi-
cient to indicate the intended mearing, great care must be
exercised to avoid confusion.

Exercises

(1) The four pairs of identities (8), (9), (13), and (15)
constitute a set of axioms for Boolean algebras; are they
an independent set?

(2) Prove that the following identities constitute a set
of axioms for Boolean algebras: V is commutative and
associative,and (p' V¢')' V(p' Vq)' =p.

(3) Prove that the following identities constitute a set
of axioms for Boolean algebras: p'' =p, p V(¢ V¢g')=p,

andp V(g Vr)'=((¢"Vp)' V(" Vp))'.

(4) Prove that the commutative and associative laws for
Vv, together with the requirement that (for all p, ¢, and r)
pVg'=rVvr'ifandonlyifpV g=p, constitute a set of
axioms for Boolean algebras.

§ 3. Fields of sets

To form ? (X) is not the only natural way to make a
Boolean algebra out of a non-empty set X. A more general
way is to consider an arbitrary non-empty subclass 4 of
? (X) such that if P and Q are in 4, then PN Q, PUQ,
and P' are also in 4. Since A contains at least one element,
it follows that 4 contains @ and X (cf. (2.9)), and hence
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that 4 is a Boolean algebra. Every Boolean algebra ob-
tained in this way is called a field (of sets). There is
usually no danger in denoting a field of sets by the same
symbol as the class of sets that go to make it up. This does
not, however, justify the conclusion (it is false) that set-
theoretic intersection, union, and complement are the only
possible operations that convert a class of sets into a
Boolean algebra.

A subset P of a set X is cofinite (in X) if its complement
P’ is finite. The class 4 of all those subsets of a non-
empty set X that are either finite or cofinite is a field of
subsets of X. If X itself is finite, then 4 is simply ? (X);
if X is infinite, then 4 is a new example of a Boolean alge-
bra.

The preceding construction can be generalized. Call a
subset P of X cocountable (in X) if its complement X ' is
countable. The class of all those subsets of X that are
either countable or cocountable is a field of subsets of X.
Different description of the same field: the class of all
those subsets P of X for which the cardinal number of
either P of P’ is less than or equal to N,. A further
generalization is obtained by using an arbitrary cardinal
number in place of NO'

Let X be the set of all integers (positive, negative, or
zero), and let m be an arbitrary integer. A subset P of X is
periodic of period m if it coincides with the set obtained by
adding m to each of its elements. The class 4 of all peri-
odic sets of period m is a field of subsets of X. If m = 0,
then 4 is simply # (X). If m = 1, then 4 consists of just the
two sets @ and X. In all other cases 4 is a new example of
a Boolean algebra.
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Let X be the set of all real numbers. A left half-closed
interval (or, for brevity, since this is the only kind we shall
consider, a half-closed interval) is a set of one of the forms
(w00, b), or [a, b), or [a, + =), that is, the set of all those
elements x in X for whichx <b,ora <x <b, orag x,
where, of course, ¢ and b themselves are real numbers and
a < b. The class 4 of all finite unions of half-closed inter-
vals is a field of subsets of X. A useful variant of this
example uses the closed unit interval [0, 1] in the role of
X. In this case it is convenient to stretch the terminology
so as to include the closed intervals [a, 1] and the degen-
erate interval {1} among half-closed intervals.

Valuable examples of fields of sets can be defined in
the unit square, as follows. Call a subset P of the square
vertical if, along with each point in P, every point of the
vertical segment through that point also belongs to P. In
other words, P is vertical if the presence of (xy, y,) in P
implies the presence in P of (%, y) for every y in [0, 1]. If
4 is any field of subsets of the square, then the class of
all vertical sets in 4 is another, and, in particular, the
class of all vertical sets is a field of sets. Here are two
comments that are trivial but sometimes useful: (1) the
horizontal sets (whose definition may safely be left to the
reader) constitute just as good a field as the vertical sets,
and (2) the Cartesian product of any two non-empty sets is,
for these purposes, just as good as the unit square.

Other examples of fields of subsets of the real line (or
of an interval in the line) are given by the class of all
Lebesgue measurable sets and by the class of all Borel
sets. These examples are readily generalized to arbitrary
measure spaces and to arbitrary topological spaces,
respectively.
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A subset P of a topological space X may be simultan-
eously closed and open; consider, for example, the sets @
and X. A set with this property is called clopen. If the
space is connected, then @ and X are the only clopen sets,
and conversely; this, in fact, constitutes a possible defini-
tion of connectedness. In any case, the class of all clopen
subsets of a topological space X, connected or not, is a
field of subsets of X.

Our last example, for now, depends on the concept of
the boundary of a subset P of a topological space X; recall
that the boundary of P is, by definition, the intersection
P~ N P'~, where, for typographical convenience, P~ (not
ﬁ) denotes the closure of P. Assertion: if *‘small”’, when
applied to subsets of X is interpreted in any reasonable way,
then the class of all sets with small boundaries is a field.
One reasonable interpretation of ‘‘small’’ is ‘‘countable’;

‘“‘nowhere dense’’. Recall that a set P is

another is
nowhere dense if the interior of its closure is empty. The
proof of the assertion depends on the easily available

topological fact that the boundary of the union of two sets

is included in the union of their boundaries.

Exercises

(1) If m is a positive integer, and if 4 is the class of
all those sets of integers that are periodic of some period
greater than m, is 4 a field of sets?

$4. Regular open sets

The purpose of this section is to discuss one more
example of a Boolean algebra. This example, the most
intricate of all the ones so far, is one in which the elements
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of the Boolean algebra are subsets of a set, but the opera-
tions are not the usual set-theoretic ones, so that the

Boolean algebra is not a field of sets. Artificial examples
of this kind are not hard to manufacture; the example that
follows arises rather naturally and plays an important role
in the general theory of Boolean algebras.

Let X be an arbitrary (non-empty) topological space.
Recall that an open set in X is called regular in case it
coincides with the interior of its own closure. In other
words, since the interior of a set P is P '™, the set P is
regular if and only if P = P~' ', It is convenient, in this
connection, to write P ‘o P~'; in these terms P is regular
if and only if P = P*". Note incidentally that a set P is
open (nothing is said about regularity here) if and only if it
has the form Q * for some set Q. Indeed, if P = Q* , then
P is the complement of the closed set Q~, and, conversely,

if P is open, then P = Q * where Q is the complement of
P.

THEOREM 1. The class A of all regular open sets of a
non-empty topological space X is a Boolean algebra with
respect to the distinguished Boolean elements and opera-
tions defined by

(1) 0=,

@) 1-X,

®) PAQ=PNY,
(4) PVQ=(PUQ™;
(5) P' =P,

where P'L, for every set P, is the complement of the closure
. Ll
of P, and where P, of course, is (P7)™ .
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The proof of the theorem depends on several small
lemmas of some independent interest. Observe that the
first thing to prove is that the right sides of (1)-(5) are
regular open sets. For (1) and (2) this is obvious, but for
(3), for instance, it is not. To say that the intersection of
two regular open sets is regular may sound plausible (this
is what is involved in (3)), and it is true. It is, however,
just as plausible to say that the union of two regular open
sets is regular, but that is false. Example: let X be a plane
and let P and Q be the open right half-plane and left half-
plane. In intuitive terms, an open set is regular if there are
no cracks in it; the trouble with the union of two regular
open sets is that there might be a crack between them. This
example helps to explain the necessity for the possibly
surprising definition (4). It is obvious that something
unusual, such as (5) for instance, is needed in the defini-
tion of complementation; the set-theoretic complement of
an open set (regular or not) is quite unlikely to be open.

LEMMA 1. IfPC Q, then Q* CP*.

Proof. Closure preserves inclusions and complementa-
tion reverses them.

LEMMA 2. If P is open, then P C P*%,

Proof. Since P C P7, it follows, by complementation,
that P* C P'. Now apply closure: since P’ is closed, it
follows that P*= C P ', and this is the complemented
version of what is wanted.

LEMMA 3. If P is open, then P* = P*+%,

Proof. Apply Lemma 1 to the conclusion of Lemma 2 to
got Pt
(in place of P) to get the reverse inclusion.

C P*, and apply Lemma 2 to the open set P*

It is an immediate consequence of Lemma 3 that if P is
open, and all the more if P is regular, then P* is regular;
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this proves that the right side of (5) belongs to the class
A of regular open sets. Since (P U Q) t s always open,
the same thing is true for (4). To settle (3), one more
argument is needed.

LEMMA 4. If P and Q are open, then (P 0\ Q)**= PTrNQtt

Proof. Since P N Q is included in both P and Q, it
follows from Lemma 2 that P N Q is included in both P**
and Q** and hence in their intersection. The reverse in-
clusion depends on the general topological fact that if P
is open, then

PN Q-C (PN Q).

(If U is a neighborhood of a point of P N Q™ , then so is

U N P, and this implies that U N P meets Q, or equiv-
alently, that U meets P N\ Q.) Complementing this relation
we get

(PN Q)"CP'UQ-.

If now we apply closure and then complementation, then,
since closure distributes over union and since P’ is
closed, it follows that

(6) PNQ*tc (PN Q)+

An application of (6) with P**in place of P, followed by an
application of (6) with the roles of P and Q interchanged,
yields, via Lemma 1,

Liil

PJ..J.nQ.L.LC(PJ.J.nQ)J..LC (P N Q) :

the conclusion follows from Lemma 3.
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Lemma 4 implies immediately that the intersection of

two regular open sets is regular, and hence that the right
side of (3) belongs to 4.

To complete the proof of Theorem 1 we must now show
that the Boolean operations defined by (1)-(5) satisfy some
system of axioms for Boolean algebras. It is less trouble to
verify every one of the conditions (2.6)-(2.15) than to prove
that some small subset of them is sufficient to imply the
rest. In the verifications of (2.6), (2.7), (2.8), (2.10), (2.11),
(2.12), (2.13), and (2.14) nothing is needed beyond the
definitions, the equation (P U Q)l -P'nN Q*(valid for
any two sets P and Q), and trivial computations. The proof
of (2.15) depends on Lemma 4. The fact (2.9) that
P N Pt = @ is obvious (since P* C P'). All that remains
is to verify that (P U P*)**= X, This is not obvious;
one way to go is by way of a little topological lemma that
has other applications also.

LEMMA 5. The boundary of an open set is a nowhere

dense closed set.

Proof. If P is open, and if the boundary of P included a
non-empty open set, then that open set would have a non-
empty intersection (namely itself) with P~, and, at the same
time, it would be disjoint from P. This contradicts the
fundamental property of closure (often used as the defini-
tion).

Lemma 5 implies that if P is open, and all the more if it
is regular, then the complement of the boundary of P, that
is, P U Pt is a dense open set. It follows that
(P U P*)* = @ and hence that (P U P*)**= X. This
verifies (2.9) and completes the proof of Theorem 1.
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Exercises

(1) If P and Q are open (and if ° denotes the formation
of interiors), then (P N Q) °= (P N @7)°.

(2) If P is an arbitrary subset of a topological space,
then P+~ = p+ti-,

(3) What is the largest number of distinct sets obtain-
able from a subset of a topological space by repeated
applications of closure and complementation? Construct an
example for which this largest number is attained.

(4) Is the class of regular open sets always a base?

§ 5. Elementary relations

The least profound among the properties of an algebraic
system are usually the relations among its elements (as
opposed to the relations among subsets of it and functions
on it). In this section we shall discuss some of the ele-
mentary relations that hold in Boolean algebras. Since we
shall later meet a powerful tool (namely, the representation
theorem for Boolean algebras) the use of which reduces
all elementary relations to set-theoretic trivialities, the
purpose of the present discussion is more to illustrate than
to exhaust the subject. An incidental purpose is to establish
some notation that will be used freely throughout the
sequel.

Throughout this section p, ¢, r, --- are elements of an
arbitrary but fixed Boolean algebra 4.
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LEMMA 1. IfpVg=p forallp, thenq=0;ifp/Ng=p
for all p, then q = 1.

Proof. To prove the first assertion, put p = 0 and use
(2.8); the second assertion is the dual of the first.

LEMMA 2. If p and q are such thatp N qg=0and p V q
=1,theng=p".

Proof. q=1MNg=(pVp)Ng=( V(" Nq)=
OVE ' Ng=C" AV N=p" N V=p N
=p_

These two lemmas can be expressed by saying that (2.8)
uniquely determines 0 and 1, and (2.9) uniquely determines
p'.In a less precise but more natural phrasing we may
simply say that 0 and 1 and complementation are unique.

LEMMA 8. Forallpand q,p V(p Ngq)=p and
pA(P Vg =p

Proof. pV(pNg)=( A1)V (pNg)=p (Vg
=p N 1=p; the second equation is the dual of the first.

The identities of Lemma 3 are called the laws of absorp-

tion.

Often the most concise and intuitive way to state an
elementary property of Boolean algebras is to introduce a
new operation. Thus for instance, set-theoretic considera-
tions suggest the operation of subtraction. We write

p-qg=phq’.

The ‘‘symmetrized’’ version of the difference p - g is the
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Boolean sum:

(P-9)V(g-p)=p+g.

As a sample of the sort of easily proved relation that the
notation suggests consider the distributive law

pA@-r=(@Ng)-(p Nr).

One reason why Boolean algebras have something to do
with logic is that the familiar sentential connectives and,
or, and not have properties similar to the Boolean connec-
tives A, Vv, and '. Instead of meet, join, and complement,
the logical terminology uses conjunction, disjunction, and
negation. Motivated by the analogy, we now introduce into
the study of Boolean algebra the operations suggested by
logical implication,

p= ¢ =p Vg,

and biconditional,

p<=>9q = (p = 9)N(g = p).

The source of these operations suggests an unintelligent
error that it is important to avoid. The result of the opera-
tion==> on the elements p and g of the Boolean algebra 4
is another element of 4; it is not an assertion about or a
relation between the given elements p and g. (The same is
true of <= .) It is for this reason that logicians sometimes

(X3

warn against reading p = ¢ as ‘‘p implies ¢’ and suggest
instead the reading ‘‘if p, then ¢’’. Observe incidentally
that if V is read as ‘*or’’, the disjunction p V ¢ must be
interpreted in the non-exclusive sense (either p, or g, or
both). The exclusive ‘‘or’’ (either p, or g, but not both)

corresponds to the Boolean sum p + q.



20 Lectures on Boolean Algebras $9

The operations => and <=3 would arise in any
systematic study of Boolean algebra even without any
motivation from logic. The reason is duality: the dual of
p— qis ¢ => p, and the dual of p + g is p<= ¢. The
next well-known Boolean operation that deserves mention
here could not have been discovered through considerations
of duality alone. It is called the (Sheffer) stroke, and it is
defined by

plg=p' Ng'.

In logical contexts this operation is known as binary rejec-
tion (neither p nor q).

The chief theoretical application of the Sheffer stroke is
the remark that a single operation, namely the stroke, is
enough to define Boolean algebras. To establish this remark,
it is sufficient to show that complement, meet, and join can
be expressed in terms of the stroke, and, indeed

p=rplp
pNg=C(plp) ! (¢l9),

pVag=1(plg) | (plg)-

Exercises

(1) Prove that the following identities constitute a set
of axioms for Boolean algebras:

(elp) | (plp) = p,
(p | (gl(ql9)) = plp,
(pl(g!) 1 (pl(gIn)) = Wglg)lp) | ((r1)]p)-
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(2) Enumerate all possible binary operations on 2 (that
is, mappings from 2 x 2 into 2). Identify each of these 16
operations in terms of operations introduced before.

(3) Show that if a ternary Boolean operation g is defined
by

g, =NV (@AY Np),
then that operation is enough to define Boolean algebras.

Exhibit a set of axioms stated in terms of g, (Note that if g
is regarded as defining a binary operation for each g,by, say,

p(g)r = g(p, 9, 1)
then p(O)r = p A rand p(1)r=p VvV r.)

s 6. Order

We continue to work with an arbitrary but fixed Boolean
algebra 4.

LEMMA 1. p Ag=pifand only ifpV q=gq.

Proof. Ifp Ng=p, thenp Vg=(p /A gq)V g, and the
conclusion follows from the appropriate law of absorption.
The converse implication is obtained from this one by inter-
changing the roles of p and ¢ and forming duals.

In set theory the corresponding equations characterize
inclusion; that is, either one of the conditions PN Q = P
and P U Q = Q is equivalent to P C Q. This motivates
the introduction of a binary relation < in every Boolean
algebra; we write

psgorgzp
in case p N\ ¢ = p, or, equivalently, p V g = ¢.

LEMMA 2. The relation < is a partial order. In other
words, it is reflexive (p < p), antisymmetric (if p < g, and



22 Lectures on Boolean Algebras &6

p, then p = q), and transitive (if p < q and g <1, then
r).

IA A

Proof. The three conclusions follow, respectively, from
the facts that A and V are idempotent (2.11), commutative
(2.13), and associative (2.15).

It is sound mathematical practice to re-examine every
part of a structure in the light of each new feature soon after
the novelty is introduced. Here is the result of an examina-
tion of the structure of a Boolean algebra in the light of the
properties of order.

LEMMA 3. (1)0<pand p< 1.

@) Ifp<qandr<s,thenpAr<q/AsandpVr
ngs.

@) Ifp

N

q, then ¢' <p'.

4 <q ifand only if p — q =0, or, equivalently,
Ps4q yuyp—4g q y
p = q = 1.

The proofs of all these assertions are automatic. It is
equally automatic to discover the dual of <; according to
any reasonable interpretation of the phrase it is >.

If E is any subset of a partially ordered set such as our
Boolean algebra 4, we can consider the set F of all upper
bounds of £ and ask whether or not F has a smallest

element. In other words: an element ¢ belongs to F in case
p < q for every p in E; to say that F has a smallest element

means that there exists an (obviously unique) element g, in
F such that gy < g for every ¢ in F. We shall call the least
upper bound of the set E (if it has one) the supremum of E.
All these considerations have their obvious duals. The
greatest lower bound of E is called the infimum of E.
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If the set E is empty, then every element of 4 is an
upper bound of E (p in E implies p < ¢ for each g), and,
consequently, £ has a supremum, namely 0. Similarly
(dually) if £ is empty, then E has an infimum, namely 1.

Consider next the case of a singleton, say {p}. Since p
itself is an upper bound of this set, it follows that the set
has a supremum, namely p, and, similarly, that it has an
infimum, namely p again.

The situation becomes less trivial when we pass to sets
of two elements.

LEMMA 4. For each p and q, the set {p, q} has the
supremum p V q and the infimum p N q.

Proof. Since both p and ¢ are dominated by p V g, that
element is one of the upper bounds of {p, ¢}. It remains to
prove that p V ¢ is the least upper bound, or, in other words,
that if both p and ¢ are dominated by some element r, then
p V g < r. This is easy; by (2), p V ¢ <r V r. The assertion
about infimum follows by duality.

Lemma 4 generalizes immediately to arbitrary non-empty
finite sets (instead of sets with only two elements). We may
therefore conclude that if E is a non-empty finite subset of
A, then E has both a supremum and an infimum, namely

V E and A E, respectively. Motivated by these facts
we hereby extend the interpretation of the symbols used for
joins and meets to sets that may be empty or infinite. If a
subset E of A has a supremum, we shall denote that supre-
mum by V E regardless of the size of E, and, similarly
we shall use A E for all infima. In this notation what we
know about very small sets can be expressed as follows:

V#=0, AN@d=1,and V {p}= A {p} =p. The
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notation used earlier for the join or meet of a finite se-
quence of elements is also extendable to the infinite case.
Thus if {p,} is an infinite sequence with a supremum
(properly speaking: if the range of the sequence has a
supremum), then that supremum is denoted by VZI p;- 1f,
more generally, {pi} is an arbitrary family with a supremum,
indexed by the elements i of a set I, the supremum is
denoted by V ., p;, or, in case no confusion is possible,
simply by  V; p;.

Exercises

(1) The concept of divisibility makes sense in every
ring: p is divisible by ¢ in case p = gr for some r. In a
Boolean ring, p is divisible by ¢ if and only if p < q.

(2) True or false: if p<gand r<s, thenp +r<q+s
and p&>r < g &= 5?

(3) A lattice is a partially ordered set in which every
set of two elements has both a supremum and an infimum.
In analogy with Boolean algebras, the supremum and infimum
of {p, g} are denoted by p V ¢ and p A g, respectively. Prove
that, in every lattice, the identities (the distributive laws)
PA@@V=(@A)V(ArandpV(gAn)=(EVg (V)
imply each other. A lattice in which they hold is called

distributive.

(4) A lattice is called complemented if it contains two
elements 0 and 1 such that 0 < p and p < 1 for all p, and such
that, corresponding to each p, there exists at least one ¢
withp A g = 0 and p V g = 1. Prove that in a distributive
lattice complementation is unique.
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(5) Interpret and prove the assertion: a complemented
distributive lattice is a Boolean algebra.

§7. Infinite operations

An infinite subset of a Boolean algebra may fail to have
a supremum. (Example: take the finite-cofinite algebra of
integers and consider the singletons of the even integers.)
A Boolean algebra with the property that every subset of it
has both a supremum and an infimum is called a complete
(Boolean) algebra. Similarly, a field of sets with the
property that both the union and the intersection of every
class of sets in the field is again in the field is called a
complete field of sets. The simplest example of a complete
field of sets (and hence of a complete algebra) is the field
of all subsets of a set. Our next example of a complete
algebra is not a field; it is the regular open algebra of a
topological space (cf. Theorem 1, p. 13). For purposes of
reference it is worth while recording the formal statement.

LEMMA 1. The regular open algebra of a topological
space is a complete Boolean algebra. The supremum and
the infimum of a family {P.} of regular open sets are
(U ; Pi)'L'Land (N z.F’z.)’L'L ,respectively.

Proof. 1f ( U ; P)** = P, then since each P, is included
in their union, Lemma 4.2 implies that P, C P for every i.
(Since the meet of two regular open sets is the same as
their intersection, it follows that the Boolean order relation
for regular open sets is the same as ordinary set-theoretic
inclusion.) To prove that the upper bound P is the least
possible one, suppose that Q is a regular open set such that
P, C Q for every i. The proof that then P C @ is quite
easy: just observe that U , P, C Q and apply Lemma 4.1
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twice to obtain P C Q** = (. The characterization of
infima proceeds dually.

The last sentence of the preceding proof is justifiable,
but, perhaps, a trifle premature. It leans implicitly on the
following infinite versions of the DeMorgan laws.

LEMMA 2. Ifip;} is a family of elements in a Boolean
algebra, then

(Vipi)'= A ;p' and (A;p) =V ;p'

The equations are to be interpreted in the sense that if
either term in either equation exists, then so does the other

term of that equation, and the two terms are equal.

Proof. Suppose p = V ; p;. Since p, < p for every i, it
follows that p' < p," for every i. It is to be proved that if
g < p;' for every i, then ¢ < p’. The assumption implies
that p, < ¢ ' for every i, and hence, from the definition of
supremum, p < ¢ ' - A dual argument justifies the passage
from the left side of the second equation to the right. To
justify the reverse passage, apply the results already proved
to the families of complements.

COROLLARY. If every subset of a Boolean algebra has
a supremum (or else if every subset has an infimum), then

that algebra is complete.

It will usually not be sufficient to know merely that cer-
tain infinite suprema exist; the algebraic properties of those
suprema (such as commutativity, associativity, and distrib-
utivity) are also needed.

It is almost meaningless to speak of infinite commutative
laws. An infinite supremum is something associated with a
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set of elements, and, by definition, it is independent of any
possible ordering of that set.

A reasonable verbal formulation of an infinite associative
law might go like this. Form each of several suprema and
then form their supremum; the result should be equal to the
supremum of all the elements that originally contributed to
each separate supremum. It is worth while to state and prove
this in a more easily quotable form.

LEMMA 3. If {I]} is a disjoint family of sets with union I,

and if p;» for each i in I, is an element of a Boolean algebra,

then
Vf(vieljpi> = Vb

The equation is to be interpreted in the sense that if the

left side exists, then so does the right, and the two are equal.

Proof. Write 5= VieLb and ¢ = Vg We are to
prove that ¢ is an upper boun]d of the family {p; : i ¢ I}, and
that, in fact, it is the least upper bound. Since each i in ]
belongs to exactly one lj, it follows that for each i there is
one j with p, < 9 since, moreover, 9 <9 it follows that g
is indeed an upper bound. Suppose now that p, < r for every
i. Since, in particular, p, < r for every i in I]., it follows from
the definition of supremum that ¢. < r. Since this is true for

every j, we may conclude, similarly, that ¢< r, and this com-
pletes the proof.

The preceding comments on infinite commutativity and
associativity were made for suprema; it should go without
saying that the corresponding (dual) comments for infima are
just as true. The most interesting infinite laws are the ones
in which suprema and infima occur simultaneously. These
are the distributive laws, to which we now turn. They too
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come in dual pairs; we shall take advantage of the principle
of duality and restrict our attention to only one member of
each such pair. We begin with the simplest infinite distribu-
tive law.

LEMMA 4. p AV .q, = V ; (p Mg The equation
is to be interpreted in the sense that if the left side exists,

then so does the right, and the two are equal.

Proof. Write g = V . g; clearly p N g, <p /g for every
i. It is to be proved that if p /\ ¢, < r for every i, then
p N g < r. For the proof, observe that

;= Ng)V-p" Ng)srVp',
and hence, by the definition of supremum,
gsrvp'.
Form the meet of both sides of this inequality with p to get
phagsp i

the desired conclusion now follows from the trivial fact that
p A r <r.

To motivate the most restrictive distributive law, con-
sider a long infimum of long suprema, such as

(anpm\/pB\/..-)/\(pzl V@VP%V...) /\(P31\/P32VP33V"')/\"' .

Algebraic experience suggests that this ought to be equal to
a very long supremum, each of whose terms is a long infimum

like pjo A pyg A pg; A «e. . The way to get all possible infima
of this kind is to pick one term from each original supremum
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in all possible ways. The picking is done, of course, by a
function that associates with each value of the first index

£

some value of the second index; the ‘‘very long’’ supremum

has one term corresponding to each such function.

We are now ready for a formal definition. Suppose that /
and / are two index sets and that p(i, ;) is an element of a
Boolean algebra A whenever i ¢/ and j € J. Let J' be the set
of all functions from / to /. We say that the family {p(i, j)}
satisfies the complete distributive law in case

1 A i€l Vjejp(i’j)= Vae]l A,’ezP(iaa(’:))-

The assertion of the equation is intended here to imply, in
particular, the existence of the suprema and infima that occur
in it. If the algebra A4 is such that the existence of either
side of (1) (for every family {p(i, j)}) implies that the other
side also exists and that the two are equal, then 4 is called

completely distributive.

The field of all subsets of a set is always completely
distributive. The regular open algebra of a topological space
may fail to be so. Consider, for instance, the regular open
algebra of the open unit interval (0, 1). (Warning to the would-
be expert. Compactness, or its absence, has nothing to do
with this example; the endpoints were omitted for notational
convenience only.) Let / be the set of positive integers and
let J be the set consisting of the two numbers +1 and -1. To
define P(i, j), cut up the interval into 2% open intervals of
length 27%; let P(i, +1) be the union of the open left halves
of these intervals and let P(i, ~1) be- the union of their open
right halves. Since P(i, +1) V P(i, -1) is equal to the entire
space (0, 1) for each i, it follows that the left side of (1) is
the unit element of the algebra under consideration. A moment’s
reflection on the binary expansions of real numbers shows that



30 Lectures on Boolean Algebras §7

N, P(i, a(i)) consists of at most one point, whatever the
function a in J! may be; it follows that the right side of (1)
is the zero element of our algebra.

Exercises

(1) Is a complete field of subsets of a set X the same as
the field of all subsets of X?

(2) Give an example of a field of sets that happens to
be a complete Boolean algebra but not a complete field of
sets.

(3) It follows from Lemmas 1 and 2 that if {P ] is a
family of regular open sets, then

( N iPi)_l—/ =( N iP;)I~,'

Show that this is not necessarily true for arbitrary open sets
and give a direct topological proof for regular open sets.

(4) If a Boolean algebra is such that every subset of it
has either a supremum or an infimum, is it necessarily com-
plete?

(5) Interpret and prove the equation

pV V ip= Vi(Pvpi)-

(6) Interpret and prove the assertion: if for every i there
is a j such that p, < 9 then
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(7) Interpret and prove the assertion: if I C J, then

VierPiS  ViejPi-

(8) Interpret and prove the equation

Vipi/\ qu]'= Vz',]'(PiA‘Ij)'

(9) Discuss possible interpretations of the equations in
Lemma 3 and Lemma 4 besides the ones there stated.

§ 8. Subalgebras

A Boolean subalgebra of a Boolean algebra 4 is a subset
B of A such that B, together with the distinguished elements
and operations of 4, is a Boolean algebra.

Warning: the distinguished elements 0 and 1 are essential
parts of the structure of a Boolean algebra. A subring of a
ring with unit may or may not have a unit, and, if it has one,
its unit may or may not be the same as the unit of the
whole ring. For Boolean algebras this indeterminacy is de-
fined away: a subalgebra must contain the element 1. The
insistence on the role of 1 is not an arbitrary convention, but
a theorem. Since complementation is indubitably an essential
part of the structure of a Boolean algebra, the presence of 1
in every subalgebra can be proved. Proof: a subalgebra con-
tains, along with each element p, the complement p ' and the
join p V p'. This proof made implicit use of the fact that a
subalgebra is not empty. If 0 and 1 are not built into the
definition of a Boolean subalgebra, then non-emptiness must
be explicitly assumed.
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To illustrate the situation, let ¥ be a non-empty subset
of a set X. Both ? (X) and ? (Y) are Boolean algebras in a
natural way ($2), and clearly every element of # (V) is an
element of $ (X). Since, however, the unit of ? (X) is X,
whereas the unit of ? (Y) is Y, it is not true that ? (¥) is a
Boolean subalgebra of # (X). Another reason why it is not
true is, of course, that complementation in ? (¥) is not the
restriction of complementation in ? (X).

There is another possible source of misunderstanding,
but one that is less likely to lead to error. (Reason: it is not
special to Boolean algebras, but has its analogue in almost
every algebraic system.) To be a Boolean subalgebra it is
not enough to be a subset that is a Boolean algebra in its
own right, however natural the Boolean operations may appear
The Boolean operations of a subalgebra, by definition, must
be the restrictions of the Boolean operations of the whole
algebra. The situation is illuminated by the regular open
algebra 4 of a topological space X (§4). Clearly 4 is a sub-
class of the field ? (X), but, equally clearly, 4 is not a
subalgebra of ? (X).

Every Boolean algebra 4 includes a trivial subalgebra,
namely 2; all other subalgebras of A will be called non-
trivial. Every Boolean algebra 4 includes an improper sub-
algebra, namely 4; all other subalgebras will be called

proper.

The definition of a field of subsets of a set X may be
formulated by saying that it is a Boolean subalgebra of the
special field ? (X). In general a Boolean subalgebra of a
field of sets is called a subfield. Here are two examples of
subalgebras (in fact subfields): the finite-cofinite algebra
of a set X is a subalgebra of the countable-cocountable
algebra of X, and the Borel algebra of the real line is a
subalgebra of the Lebesgue algebra.
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If a non-empty subset B of a Boolean algebra 4 is closed
under some Boolean operations, and if there are enough of
those operations that all other Boolean operations can be
defined by them, then B is a subalgebra of 4. Example: if
B is closed under joins and complements, then B is a sub-
algebra; alternatively, if B is closed under the Sheffer
stroke, then B is a subalgebra.

A moment’s thought shows that the intersection of every
collection of subalgebras of a Boolean algebra 4 is again a
subalgebra of 4. It follows that if £ is an arbitrary subset
of 4, then the intersection of all those subalgebras that
happen to include E is a subalgebra. (There is always at
least one subalgebra that includes E, namely the improper
subalgebra A4.) That intersection, say B, is the smallest
subalgebra of 4 that includes E; in other words, B is in-
cluded in every subalgebra that includes E. The subalgebra
B is called the subalgebra generated by E. Thus, for
example, if E is empty, then the subalgebra generated by E
is the smallest possible subalgebra of 4, namely 2. A
generating subset E of a subalgebra B is also known as a
set of generators of B.

The definition of a Boolean subalgebra B says nothing
about the infinite suprema and infima that may be formable
in the whole algebra A. Anything can happen: suprema or
infima can be gained or lost or change value as we pass
back and forth between 4 and B. Everything that can happen
can be illustrated in the theory of complete Boolean
algebras. If B is a subalgebra of a complete algebra A, and
if the supremum (in 4) of every subset of B belongs to B,
we say that B is a complete subalgebra of A. (Warning: this
is stronger than requiring merely that B be a complete
Boolean algebra in its own right.) Note that a complete
subalgebra of 4 contains the infima (in A) of all its subsets,
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as well as their suprema. In the case of fields we speak of
complete subfields. For complete algebras the concept of a
generated complete subalgebra is defined the same way as
when completeness was not yet mentioned; all that is
necessary is to replace ‘‘algebra’ by ‘‘complete algebra’’
throughout the discussion.

Exercises

(1) A subring of a Boolean ring need not be a Boolean
subalgebra; what if the subring contains 1°?

(2) Every subset of a partially ordered set inherits a
partial order from the whole set. If a non-empty subset of a
Boolean algebra is construed as a partially ordered set in
this way, and if it turns out that with respect to this partial
order it is a complemented distributive lattice, does it
follow that it is a Boolean subalgebra of the original
algebra? (See Exercise 6.5.)

(3) If a subset B of a Boolean algebra 4 contains 0 and
1 and is closed under the formation of meets and joins,
does it follow that B is a subalgebra of 4?

(4) Give an example of a Boolean subalgebra B of a
Boolean algebra 4 and of a subset E of B such that £ has a
supremum in B but not in 4.

(5) Prove that an infinite Boolean algebra with m gen-
erators has m elements.

(6) Suppose that a subalgebra B of a Boolean algebra 4
is such that whenever a subset £ of B has a supremum p in
B, then p is the supremum of £ in 4 also. A subalgebra
satisfying this condition is sometimes called regular. Prove
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that a necessary and sufficient condition that B be a regular
subalgebra of 4 is that whenever E is a subset of B with
AE=01in B, then A E =01in4 also.

(7) Is a complete subalgebra of a complete algebra

necessarily regular? Is a regular subalgebra of a regular
subalgebra a regular subalgebra?

5 9. Homomorphisms

A Boolean homomorphism is a mapping f from a Boolean
algebra B, say, to a Boolean algebra 4, such that

1 fie N q) = fip) M fl9),
(2) fle vV q) = f(p) V fg),
3) fie"y=(fp)) ",

whenever p and g are in B. In a somewhat loose but brief
and suggestive phrase, a homomorphism is a structure-
preserving mapping between Boolean algebras. A convenient
synonym for ‘*homomorphism from B to 4’ is **4-valued
homomorphism on B*’. Such expressions will be used most
frequently in case 4 = 2,

Special kinds of Boolean homomorphisms may be de-
scribed in the same words as are used elsewhere in algebra.
A homomorphism may be one-to-one into (monomorphism, if
f(p) = f(q), then p = q); it may be onto (epimorphism, every
element of 4 is equal to f(p) for some p in B); it may be both
one-to-one and onto (isomorphism); its range may be included
in its domain (endomorphism, 4 C B); and it may be a one-
to-one mapping of its domain onto itself (automorphism). If
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there exists an isomorphism from B onto 4, then 4 and B
are called isomorphic.

The distinguished elements 0 and 1 play a special role
for homomorphisms, just as they do for subalgebras. Indeed,
if f is a Boolean homomorphism and p is an element in its
domain (p = 0 will do), then

fte N p')=fp) N (fp) '

and, therefore,

4) 0) = 0.

This much would be expected by a student of ring theory.
What is important is that the dual argument proves the dual
fact,

(5) fay = 1.

The mapping that sends every element of one Boolean
algebra onto the zero element of another is simply not a
homomorphism; in the theory of Boolean algebras there is
no such thing as a ‘“trivial’’ homomorphism.

The equations (1) and (2) imply that 0 and 1 belong to
the range of every homomorphism; a glance at the equations
(1)-(3) should complete the proof that the range of every
homomor phism, from B into 4 say, is a Boolean subalgebra
of A. The range of a homomorphism with domain B is called
a homomorphic image of B.

Since every Boolean operation (e.g., + and => ) can be
defined in terms of /A, V, and ', it follows that a Boolean
homomorphism preserves all such operations. If, that is, f is
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a Boolean homomorphism and p and ¢ are elements of its
domain, then

flp + q) = f(p) + f(¢) and f(p =>q) = f(p) = f(9)-

It follows, in particular, that every Boolean homomorphism
is a ring homomorphism, and also that every Boolean homo-
morphism is order-preserving. The last assertion means that

if p £ g, then f(p) < f(q).

The crucial fact in the preceding paragraph was the
definability of Boolean operations and relations in terms of
meet, join, and complement. Thus, more generally, if a
mapping f from a Boolean algebra B to a Boolean algebra 4
preserves enough Boolean operations so that all others are
definable in terms of them, then f is a homomorphism.
Example: if fpreserves V and ' (that is, satisfies the
identities (2) and (3)), then f is a homomorphism; alterna-
tively, if f preserves the Sheffer stroke, then f is a homo-
morphism.

We proceed to consider some examples of Boolean
homomorphisms.

For our first example let B be an arbitrary Boolean algebra,
and let p, be an arbitrary non-zero element of B. The set 4 of
all subelements of p, (this means the elements p with p < py)
can be construed as a Boolean algebra, as follows: 0, meet,
and join in 4 are the same as in B, but 1 and p’ in 4 are
defined to be the elements p, and p, — p of B. The mapping
p=>=p "\ py is an A-valued homomorphism on B.

Consider next a field B of subsets of a set X, and let x;,
be an arbitrary point of X. For each set P in B, let f(P) be
1 or 0 according as %, € P or x; €' P. The mapping f is a
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2-valued homomorphism on B. Observe that f(P) is equal to
the value of the characteristic function of P at x;.

For one more example, let ¢ be an arbitrary mapping from
a non-empty set X into a set ¥, and let 4 and B be fields of
subsets of X and Y respectively. Write f = ¢~1, or, explicitly,
for each P in B, let f(P) be the inverse image of P. In gen-
eral the set f(P) will not belong to the field 4. If f(P) € 4
whenever P € B, then f is an 4-valued homomorphism on B.

For purposes of reference we shall call the homomorphisms
described in these three examples the homomorphisms induced
by py» %, and ¢, respectively.

If B is a subalgebra of an algebra 4, then the identity
mapping (that is, the mapping f defined for every p in B by
f(p) = p) is a homomorphism from B into 4, and, in particular,
the identity mapping on 4 is an automorphism of 4. There is
a natural way to define the product of (some) pairs of homo-
morphisms, and it turns out that the identity mappings just
mentioned indeed act as multiplicative identities. The product
(or composite) f o g of two homomorphisms f and g is defined
in case 4, B, and C are Boolean algebras, f maps B into 4,
and g maps C into B; the value of f o g at each element p of
C is given by

(fog) (p) = f(e(p))-

If, moreover, k& is a homomorphism from D, say, to C, then
fo(goh)=(fog)oh,
that is, the operation of composition is associative.

An isomorphism between Boolean algebras preserves
every infinite supremum and infimum that happens to exist,
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but, in general, a mere homomorphism will not do so. A
homomorphism f is called complete in case it preserves all
suprema (and, consequently, all infima) that happen to exist.
This means that if {p,} is a family of elements in the domain
of f with supremum p, the family {f(p,)} has a supremum and
that supremum is equal to f(p).

Exercises

(1) Is every ring homomorphism between Boolean algebras
a Boolean homomorphism? What if it preserves 1?

(2) If a mapping f between Boolean algebras preserves
0,1, A, and V, is it necessarily a Boolean homomorphism?

(3) If a mapping f between Boolean algebras preserves
order, is it necessarily a Boolean homomorphism?

(4) Suppose that both f and g are A-valued homomorphisms
on B. Define a mapping f V g from B into 4 by

(f Vv &) (p) = f(p) V &(p)-

Is f V g a homomorphism? What about f + g (defined similarly)?

(5) Prove that if E generates B, and if f and g are
A-valued homomorphisms on B such that f(p) = g(p) whenever
p € E, then f = g. What if B is the complete algebra generated
by E and f and g are complete homomorphisms?

(6) Give an example of an incomplete homomorphism
between complete Boolean algebras. Can such an example
be a monomorphism? An epimorphism?
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(7) Prove that if f is a Boolean homomorphism between
complete algebras, and if {p,} is a family of elements in the
domain of f, then

V; f(P,’) < vV i Pi)-

(8) Prove that if a subalgebra B of a Boolean algebra 4
happens to be complete (considered as an algebra in its own
right), then a necessary and sufficient condition that B be a
complete subalgebra of 4 is that the identity mapping of B
into A be a complete homomorphism.

(9) Prove that a subalgebra B of a Boolean algebra 4 is
regular if and only if the identity mapping of B into 4 is a
complete homomorphism.

(10) Prove that the range of a homomorphism is a regular
subalgebra if and only if the homomorphism is a complete
homomorphism.

§10. Free algebras

The elements of every subset of every Boolean algebra
satisfy various algebraic conditions (such, for example, as
the distributive laws) just by virtue of belonging to the same
Boolean algebra. If the elements of some particular set E
satisfy no conditions except these necessary universal ones,
it is natural to describe E by some such word as ‘‘free.”” A
crude but suggestive way to express the fact that the elements
of E satisfy no special conditions is to say that the elements
of E can be transferred to an arbitrary Boolean algebra in a
completely arbitrary way with no danger of encountering a
contradiction. In what follows we shall make these heuristic
considerations precise. We shall restrict attention to sets
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that generate the entire algebra; from the practical point of

view the loss of generality involved in doing so is negligi-
ble.

A set E of generators of a Boolean algebra B is called
free if every mapping from £ to an arbitrary Boolean algebra
A can be extended to an 4-valued homomorphism on B. In
more detail: E is free in case for every Boolean algebra 4
and for every mapping g from E into 4 there exists an 4-
valued homomorphism f on B such that f(p) = g(p) for every
p in E. Equivalent expressions: ‘“‘E freely generates B’’, or
even ‘‘B is free on E’’. A Boolean algebra is called free if
it has a free set of generators.

The definition is conveniently summarized by the sub-

joined diagram.
’
\ /
/
8 f
Wi

The diagram is to be interpreted as follows. The arrow 4 is
the identity mapping from E to B, expressing the fact that E
is a subset of B. The arrow g is an arbitrary mapping from
E to an arbitrary algebra 4. The arrow f is, of course, the

homomorphic extension required by the definition; it is
dotted to indicate that it comes last, as a construction based
(X

on k and g. It is understood that the diagram is ‘‘commutative’’
in the sense that (f o &) (p) = g(p) for every p in E.

The arrow diagram does not express the fact that E gen-
erates B. The most useful way that that fact affects the
mappings under consideration is to guarantee uniqueness:
there can be only one A-valued homomorphism f on B that



42 Lectures on Boolean Algebras §10

agrees with g on £. One way of expressing this latter fact
is to say that f is uniquely determined by g and 4.

There is another and even more important uniqueness
assertion that can be made here. If B; and B, are Boolean

algebras, free on subsets E; and E,, respectively, and if
E; and Ey have the same cardinal number, then B, and By

are isomorphic, via an isomorphism that interchanges £,
and E,. This says, roughly speaking, that B is uniquely
determined (to within isomorphism) by the cardinal number
of E. The proof is summarized by the diagram:

hl

El Bl

4 ]
afle Atk
I
EQ—_——_-»BQ
)
Here k; is a one-to-one mapping from E; onto E, with inverse
ky, hy and hy are the given embeddings, and f; and f, are the
homomorphic extensions of &y ok and A ok, , respectively.
The commutativity of the diagram tells us that the two
ways of going from E; to By must coincide, and the same is
true for the two ways of going from Eg to B;. If we apply the
appropriate one of f; and f, to these equalities, and use the
fact that the composite of k; and ky , in either order, is the
identity on its domain, we can conclude that f, o f; and
fi © %, are extensions of A and A, , respectively. Since the
identity homomorphisms on B, and B, are also such exten-
sions, the already known uniqueness result guarantees that
the composite of f; and f , in either order, is the identity on
its domain. This implies that f; and f, are isomorphisms, and
the proof is complete.

There is one big gap in what we have seen so far of the
theory of freely generated algebras. We may know all about
uniqueness, but we know nothing about existence. The main



Free Algebras 43

thing to be known here is that for each cardinal number
there actually exists a Boolean algebra that is free on a set
having exactly that many elements. A somewhat unpleasant
combinatorial proof of this existence theorem is available
to us now. We shall not enter into it; we choose, instead,

a pleasanter and more economical road. We postpone the
existence proof till after the introduction of some powerful
techniques. The purpose of this section is just to state the
problem and to indicate, in bare outline, the combinatorial
approach to its solution. The main virtue of this combina-
torial approach is that it shows how Boolean algebras (and,
in particular, free Boolean algebras) arise in considerations
of logic.

A general theory of the usual sentential connectives
(conjunction, disjunction, negation, implication, etc.)
should be applicable to every conceivable collection of
sentences. This implies that its basic constituents (gen-
erators) should be as unrestricted (free) as possible.
Suppose now that we want to construct a theory equipped
to deal with, say, at least m sentences simultaneously,
where m is a cardinal number. The thing to do then is to
take a set E of cardinality m, and to consider all the formal
expressions obtained by combining the elements of E and
the sentential connectives in an intelligent manner. Ulti-
mately the elements of £ are to be replaced (or, at any rate,
replaceable) by sentences. All this can be done, and, in-
cidentally, it is important that in the doing of it the cardinal
number m should be allowed to be infinite. Even if a
mathematician or logician wishes to consider only finite
combinations of sentences, it seems both practically and
theoretically undesirable to place a fixed upper bound on
the number of sentences that may be combined. The only way
to make one theory elastic enough to deal with all finite
combinations is to provide it with an infinite supply of things
that it may combine.
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To achieve the desired end a logician will usually begin
by selecting enough sentential connectives so that all
others are definable in terms of them; we know, for instance,
that V (or) and ' (not) will do. Next, given the set E, the
logician will proceed to form all finite sequences whose
terms are the selected connectives, or elements of E, or
parentheses, put together in the usual and obvious manner.
Precisely speaking, the admissible sequences consist of:
the one-term sequences whose term belongs to £; the
sequences obtained by inserting V between two others
already admitted and enclosing the result in parentheses;
the sequences obtained by following an already admitted
sequence by ' and enclosing the result in parentheses; and
no others. The reason for the insistence on parentheses is
caution. The distinction between (p V (¢ ")) and ((p V q)")
is obvious, whereas the customary decision that p V ¢’
means the former and not the latter is the result of quite an
arbitrary and frequently unformulated convention. One other
word of supercaution deserves mention: it must be assumed
that neither the selected connectives nor the parentheses
that are used occur as elements of E.

If the sequences so obtained are to form a part of a gen-
eral theory of sentences, it is clear that certain identifica-
tions will have to be made. The sequence (p V q) is
different from (¢ V p), but, if p and ¢ are sentences, then
“porg
sentence. The customary way to specify the identifications

29 LR )

and ‘‘q or p’’ are, in some sense, the same

that sound logical intuition and practice demand is first to
define a special class of admissible sequences (called
tautologies) and then to say that two admissible sequences
are to be identified just in case a certain easily describable
combination of them is a tautology. The procedure is similar
to the formation of quotient groups: first we select a normal
subgroup and then we say that two elements of the given
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group are congruent modulo that subgroup just in case
their quotient belongs to the selected normal subgroup.

To define the set of tautologies we first define certain
quite natural abbreviations, then, using these, we describe
some tautologies, and finally we obtain all tautologies by
describing a simple operation that makes -new tautologies
out of old. The abbreviations are these: if S and T are
admissible sequences, we write S A T for (') V(T')) ',
we write S=> T for (S') V T, and we write S <> T for
(§=> T) A (T => S). The initial set of tautologies consists
of all the sequences of one of the four forms

(SVSH=>S,
S=> (SVT),
SV T)y=>(T v S),

S$=>T)y= (R=>S)=>R=>T)),

where R, S, and T are admissible sequences. (Each se-
quence of each of these forms is called an axiom.) The way
to make new tautologies out of old is this: if S is a tautol-
ogy and if S => T is a tautology, then T is a tautology.
(This operation is a rule of inference, namely, in classical
terms, modus ponens.) A tautology is, by definition, a
sequence that is either an axiom or obtainable from the
axioms by a finite number of applications of modus ponens.

Two sequences S and T are called logically equivalent in
case S<=>T is a tautology.

The structure outlined in this way, that is, the structure
consisting of the set of all admissible sequences, the sub-
set of tautologies, and the relation of logical equivalence
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is known as the propositional calculus. The connection
between the propositional calculus (based, as above, on a
set of power m, say) and the theory of Boolean algebras is
this: logical equivalence is an equivalence relation, the
set of equivalence classes has in a natural way the struc-
ture of a Boolean algebra, and, in fact, that Boolean
algebra is freely generated by m generators.

The involved construction of the propositional calculus
outlined above is similar to, but definitely not identical
with, a well-known construction of free groups (via ‘‘words”’
and equivalence classes). That familiar construction could
also be adapted to the construction of free Boolean algebras;
the result would be about equally painful with what we have
already seen. It is unimportant but amusing to know that .
the cross-fertilization between the two theories is complete:
the ‘‘axiom-rule’’ approach can be adapted to the construc-
tion of free groups.

The early part of the theory of free Boolean algebras
extends with no profound conceptual change to the category
of complete algebras. The definition reads just as before
except that all the Boolean algebras that enter into it, and
all the homomorphisms also, are now required to be complete.
The uniqueness theorems are proved just as before. The
situation of the principal existence theorem, however, is
startlingly different. Both H. Gaifman and A. W. Hales
(Cal. Tech. thesis, 1962) have proved that for each cardinal
number m there exists a countably generated complete
Boolean algebra with m or more elements. (Generation is to
be interpreted here in the sense appropriate to the category
of complete Boolean algebras.)
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Exercises

(1) What is the Boolean algebra freely generated by the
empty set?

(2) For which sets X is the algebra ? (X) free? Examine
especially sets X of cardinality 1, 2, 3, and NO

(3) Prove that a necessary and sufficient condition
that a set £ of generators of a Boolean algebra B be free
is that whenever p,, ..., p, are elements of B such that, for
each i, either p, or p; belongs to E, then A :.;1 p; # 0.

(4) If X is an infinite set, is ? (X) free?

(5) Is every subalgebra of a free algebra free?

s11. ldeals and filters

If f is a Boolean homomorphism, from B to 4 say, the
kernel of f is the set of those elements in B that f maps
onto 0 in 4. In symbols the kernel ¥ of f is defined by

M= 1oy,

or, equivalently, by

M=1{p:f(p)=0}.

Motivated by the immediately obvious properties of kernels,
we make the following definition: a Boolean ideal in a
Boolean algebra B is a subset ¥ of B such that



48 Lectures on Boolean Algebras §11

® 0 €M,
@) if peMand g eM, thenp Vg €M,
(3) it p eMand q € B, then p N\ g € M.

Clearly the kernel of every Boolean homomorphism is a
Boolean ideal. Observe that condition (1) in the definition
can be replaced by the superficially less restrictive condi-
tion that M be not empty, without changing the concept of
ideal. Indeed, if ¥ is not empty, say p € M, and if ¥
satisfies (8), then p A 0 € M.

The concept of Boolean ideal can also be defined in
either ring-theoretic or order-theoretic terms. In the
language of ring theory it turns out that an ideal is an
ideal, or, to put it more precisely, that a subset ¥ of a
Boolean algebra B is a Boolean ideal if and only if it is an
ideal in the Boolean ring. Suppose, indeed, that ¥ is a
Boolean ideal; it is to be proved that if p and ¢ are in H,
then p + ¢ is in M. The proof is easy: p N ¢’ € M by (3),
p' g €M for the same reason, and consequently,
(PAq')V(p' Aq) el by (2) (see (5)). Now suppose,
conversely, that M is an ideal in the sense of ring theory;
it is to be proved that if p and ¢ are in M, then p V g is in
M. The proof is, if anything, easier than before: an ideal in
a ring always contains p + ¢ + pq along with p and ¢ (see
(2.2)). The language of order does not have much to con-
tribute to ideal theory. This much can be said: the condition
(3) can be replaced by

if p eM and g < p, thenp €M,

without changing the concept of ideal. The proof is elemen-
tary.
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Here is a general and useful remark about homomorphisms
and their kernels: a necessary and sufficient condition that
2 homomorphism be a monomorphism (one-to-one) is that its
kernel be {0}. Proof of necessity: if fis one-to-one and
fp) = 0, then f(p) = A0), and, therefore, p = 0. Proof of suffi-
ciency: if the kernel of fis {0} and if f{p) = fg), then f(p + ¢) =
f(p) + f(g) = 0, so that p + ¢ = 0, and this means that p = q.

Every example of a homomorphism (such as the ones we
saw in §9) gives rise to an example of an ideal, namely
its kernel. Thus if f(p) = p / p, for every p, then the cor-
responding ideal consists of all those elements p for which
p "\ py =0, or, equivalently, p <py . If f is defined on a field
of subsets of X so that f(P) is the value of the characteristic
function of P at some particular point x; of X, then the cor-
responding ideal consists of all those sets P in the field
that do not contain x,. If, finally, the homomorphism f is
induced by a mapping ¢ from a set X into a set Y, then the
corresponding ideal consists of all those sets P in the
domain of f that are disjoint from the range of ¢.

There are examples of ideals for which it is not obvious
that they are associated with some homomorphism. One
such example is the class of all finite sets in the field of
all subsets of a set. More generally, the class of all those
finite sets that happen to belong to some particular field
is an ideal in that field; a similar generalization is avail-
able for each of the following three examples. The class of
all countable sets is an ideal in the field of all subsets of
an arbitrary set; the class of all sets of measure zero is an
ideal in the field of all measurable subsets of a measure
space; and the class of all nowhere dense sets is an ideal
in the field of all subsets of a topological space.

Every Boolean algebra B has a trivial ideal, namely
the set {0} consisting of 0 alone; all other ideals of B will
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be called non-trivial. Every Boolean algebra B has an
improper ideal, namely B itself; all other ideals will be
called proper. Observe that an ideal is proper if and only if
it does not contain 1.

The intersection of every collection of ideals in a
Boolean algebra B is again an ideal of B. It follows that if
E is an arbitrary subset of B, then the intersection of all
those ideals that happen to include E is an ideal. (There is
always at least one ideal that includes E, namely the
improper ideal B.) That intersection, say M, is the smallest
ideal in B that includes E; in other words, M is included in
every ideal that includes E. The ideal ¥ is called the ideal
generated by E. Thus, for example, if E is empty, then the
ideal generated by E is the smallest possible ideal of B,
namely the trivial ideal {0}. An ideal generated by a sin-
gleton {p} is called a principal ideal; it consists of all the
subelements of p.

The concepts of subalgebra and homomorphism are in a
certain obvious sense self-dual; the concept of ideal is not.
The dual concept is defined as follows. A Boolean filter in
a Boolean algebra B is a subset N of B such that

(4) 1eN,
(5) ifp eNandg €N, thenp N g €N,
(6) ifp eNandg B, thenp Vg eN.

The condition (4) can be replaced by the condition that N
be not empty. The condition (6) can be replaced by

ifp e Nandp<gq,theng eN.
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Neither of these replacements will alter the concept being
defined. The filter generated by a subset of B, and, in
particular, a principal filter are defined by an obvious
dualization of the corresponding definitions for ideals.

The relation between filters and ideals is a very close
one. The fact is that filters and ideals come in dual pairs.
This means that there is a one-to-one correspondence that
pairs each ideal to a filter, its dual, and by means of which
every statement about ideals is immediately translatable
to a statement about filters. The pairing is easy to de-
scribe. If M is an ideal, write N = {p : p' € M}, and, in
reverse, if N is a filter, write M = {p : p' € N}. It is trivial
to verify that this construction does indeed convert an
ideal into a filter, and vice versa.

Ideals and filters have their complete versions. A com-
plete ideal is an ideal M such that the supremum of all its
subsets exists and belongs to M. The importance of com-
plete ideals is that the kernel of every complete homomor-
phism on a complete algebra is a complete ideal. Complete
ideals, nevertheless, do not play a large role; the reason is
that every complete ideal is principal. (Proof: if ¥ is a com-
plete ideal, consider V M.)

Exercises

(1) Is every finitely generated ideal a principal ideal?
(An ideal is finitely generated if it is generated by a finite
set.)

(2) Prove that if M is an ideal in a Boolean algebra and
N is its associated (dual) filter, then the set-theoretic
union ¥ U N is a subalgebra.
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§12. The homomorphism theorem

An ideal is maximal if it is a proper ideal that is not
properly included in any other proper ideal. Equivalently,
to say that M is a maximal ideal in B means that ¥ £ B,
and, moreover, if N is an ideal such that ¥ < N, then
either N = M or N = B. Examples: the trivial ideal is
maximal in 2; the ideals, in fields of sets, defined by the
exclusion of one point are maximal.

Maximal ideals are characterized by a curious algebraic
property.

LEMMA 1. An ideal M in a Boolean algebra B is maximal
if and only if either p € M or p' €M, but not both, for each
pin B.

Proof. Assume first that, for some p,; in B, neither p, € ¥
nor p, € M; it is to be proved that M is not maximal. Let N
be the set of all elements of the form p V ¢, where p < p,
and ¢ € M. Direct verification shows that N is an ideal
including ¥ and containing py; in fact, N is exactly the
ideal generated by M U {py}. It follows that N # M; it re-
mains only to prove that N £ B. This follows from the fact
that py’ €’ N. Indeed, if py = p V g, with p < p, and ¢ € ¥,
then (form the meet of both sides with py’) py’ = ¢, contra-
dicting the assumption p, €’ M.

The converse is easier. Assume that always either
p eMorp’ €M, and suppose that N is an ideal properly
including M; it is to be proved that N = B. Since N £ M,
there is an element p in N that does not belong to ¥. The
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assumption implies that p’ € M, and therefore p ‘' € N;
since N is an ideal, it follows thatp Vp' €eN.

The definition of ideals was formulated so as to guar-
antee that the kernel of every homomorphism is an ideal;
since a homomorphism never maps 1 onto 0, the kernel of
every homomorphism is even a proper ideal. It is natural
and important to raise the converse question: is every
proper ideal the kernel of some homomorphism? For maxi-
mal ideals the answer is easily seen to be yes. Suppose,
indeed, that ¥ is a maximal ideal in B, and write f(p) = 0
or 1 according as the element p of B belongs to M or not.
In view of Lemma 1, the definition of f can also be formu-
lated this way: f(p) = 0 or 1 according as p eM orp’ €M.
A straightforward verification, based on Lemma 1, shows
that f is a homomorphism from B to 2; the kernel of f is
obviously M. What we have proved in this way is a very
special case of the following result, known as the homo-

morphism theorem.

THEOREM 2. Every proper ideal is the kernel of some

epimorphism.

Proof. The simplest way to settle the matter is to refer
to the theory of rings. If B is a Boolean ring and ¥ is a
proper ideal in B, then the quotient B/M is a ring. The
idempotence of the elements of B implies the same for B/M.
The desired epimorphism is the so-called natural or
canonical mapping, or projection, from B onto B/M; it
associates with each element of B the equivalence class
(or coset) of that element modulo ¥. The Boolean algebra
B/M is called the quotient of B modulo M.

Associated with the homomorphism theorem there is a
cluster of results of the universal algebraic kind, some of
which we now proceed to state.
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Suppose that M is a proper ideal in a Boolean algebra B,
write 4 = B/M, and let f be the projection from B to A. The
mapping that associates with every ideal N in 4 the set
1 (N) in B is a one-to-one correspondence between all the
ideals in A and all the ideals that include M in B. The
images of the trivial ideal and of 4 under this correspond-
ence are M and B, respectively. It N; € N, then
f_l(Nl) - f_l(NQ). If f is a homomorphism from B to a
Boolean algebra 4, say, and if the kernel My of f; includes
M, then there exists a unique homomorphism g from 4 to 4
such that fy=gof.

The proofs of all these assertions are the same for
Boolean algebras as for other algebraic structures (such as
groups and rings); the words may change but the ideas -
stay the same. It is not worth while to record the proofs
here; the interested reader should have no serious difficulty
in reconstructing them.

A Boolean algebra is called simple if it has no non-
trivial proper ideals. Simplicity is a universal algebraic
concept, but, as it turns out, in the context of Boolean
algebras it is not a fruitful one. The reason is that there is
just exactly one simple algebra, namely 2. Clearly 2 is
simple. If, conversely, B is simple, and if p is a non-zero
element of B, then the principal ideal generated by p must
be improper, which can happen only if p = 1. In other words,
B is such that if an element of B is not 0, then it is 1; this
means that B = 2.

The correspondence between the ideals of a quotient
algebra and the ideals of its **numerator’® shows that the
quotient algebra is simple if and only if its ‘‘denominator’’
(the ideal) is maximal. For Boolean algebras this means,
via the preceding paragraph, that a quotient algebra is equal
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to 2 if and only if its denominator is maximal. This is a
useful observation, but not a profound one; it is not even
as deep as the general homomorphism theorem.

Exercises

(1) Prove that every Boolean ring without a unit can be
embedded as a maximal ideal into a Boolean ring with a

unit. To what extent is the extension unique? (Cf. Exercise
1.1)

(2) Prove that two epimorphisms with the same domain
and the same kernel have isomorphic ranges.

(8) Prove that the quotient of a complete algebra by a
complete ideal is complete.

8 13. Boolean o-algebras

Between Boolean algebras and complete Boolean alge-
bras there is room for many intermediate concepts. The
most important one is that of a Boolean o-algebra; this
means, by definition, a Boolean algebra in which every
countable set has a supremum (and therefore, of course,
an infimum). Similarly a field of sets is a o-field if it is
closed under the formation of countable unions (and inter-
sections).

It is a routine matter to imitate the entire algebraic
theory developed so far for the two extremes (Boolean alge-
bras and complete algebras) in the intermediate case of
o-algebras. Thus a o-subalgebra of a o-algebra is one that
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is closed under the formation of countable suprema; a
o-subalgebra of a o-field of sets is called a o-subfield. The
definition of the g-subalgebra generated by a set is an
equally obvious modification of the concepts treated before.

Continuing in the same spirit, we define a o-homomorphism
as a homomorphism that preserves all the countable suprema
(that is, the suprema of all the countable sets) that happen
to exist. A free o-algebra is defined the same way as a free
Boolean algebra except that all the algebras and homomor-
phisms that enter the definition are now required to be
o-algebras and o-homomorphisms. (The problem of the exist-
ence of o-algebras free on sets of generators of arbitrary
cardinality will be attacked later.)

A o-ideal is an ideal closed under the formation of
countable suprema. The kernel of a o-homomorphism on a
sigma algebra is a o-ideal, and, conversely, every proper
o-ideal is the kernel of a o-epimorphism. The latter asser-
tion is the only thing that requires proof; here is how it goes.

Suppose that B is a o-algebra and ¥ is a o-ideal in B.
Write 4 = B/M and let f be the projection of B onto 4. We
shall prove that 4 is a o-algebra and f is a o-homomorphism.
The two assertions can be treated simultaneously by proving
that if {g } is a sequence of elements in B, then the se-
quence {f(q )} has a supremum in 4, and, in fact,

V,flg,)=f( V,4)-

Write f(¢,)=p,, V,4,=9,2nd f(g) =p. Clearly p <p
for all n; it is to be proved that if p, <'s for all n, then
p < s. Let ¢ be an element of B such that f(t) = s. Since
f(g,) < f(¢) for all n, or f(q, — t) = 0, it follows that

V , (g, — t) €M (recall that M is a o-ideal). This implies
that f(q) < f(t), as promised.
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The simplest way to be a o-algebra is to be complete.
There are other ways. The countable-cocountable algebra
of every set is a o-algebra that is not complete, unless the
underlying set is countable. (Observe, by the way, that the
class of all countable sets in this algebra is a non-trivial
maximal ideal.) The most famous and useful incomplete
o-algebras arise in topological spaces. A Borel set in a
topological space is, by definition, a set belonging to the
o-field generated by the class of all open sets (or, equiva-
lently, by the class of all closed sets). There is also an
interesting o-ideal that can be defined in topological terms.
A subset of a topological space is meager (Bourbaki) if it
is the union of countably many nowhere dense sets. (In
classically clumsy nomenclature meager sets are called
sets of the first category.) The class of all meager subsets
of a topological space X is a o-ideal in $ (X), and, con-
sequently, the class of all meager Borel sets is a o-ideal
in the o-algebra of all Borel sets.

The following celebrated result, known as the Baire
category theorem, is needed on most occasions when meager
sets occur. The corresponding result for complete metric
spaces, instead of compact Hausdorff spaces, is of impor-
tance in analysis,

THEOREM 3. 4 meager open set in a compact Hausdorff

space is emptly.

Proof. Suppose that U is a non-empty open set and that
{S,} is a sequence of nowhere dense sets; we shall show
that U contains at least one point that does not belong to
any S,. Let V; be a non-empty open set such that VI C U,
and let U; be a non-empty open subset of V; such that
U; N S; = @. (This uses, of course, the assumption that
S, is nowhere dense.) Let V, be a non-empty open set such
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that V5° C Uy, and let U, be a non-empty open subset of
Vo such that U, N S = &. The inductive procedure so
begun yields a decreasing sequence {U,} of open sets such
that N , U, = N , Uy # &, and such that N , U, is
disjoint from each S .

The ideal of meager sets makes contact with an earlier
construction in a somewhat surprising way.

THEOREM 4. Suppose that B is the o-field of Borel
sets and M is the o-ideal of meager Borel sets in a compact
Hausdorff space X. Corresponding to each set S in B there
exists a unique regular open set f(S) such that S + f(S) e M.
The mapping f is a o-homomorphism from B onto the algebra
A of all regular open sets with kernel M, so that A is
isomorphic to B/M.

Proof. Using the ordinary language of ideal theory we
shall say that S is congruent to U modulo ¥, and we shall
write S = U (mod M), in case S + U € M. A subset S of X is
said to have the Baire property if it is congruent to some
open set. (By *‘congruent’’ in the course of this proof we
shall always understand ‘‘congruent modulo ¥#’*.) Clearly
every open set has the Baire property, and the class of
sets with the Baire property is closed under the formation
of countable unions. If S = U, where U is open,.then § = U™
(see Lemma 4.5), and therefore S’'= U™. This implies that
the class of sets with the Baire property is a o-field that
includes all open sets. Conclusion: every Borel set has the
Baire property.

If U is open, then U C U™ " (Lemma 4.2)). Since U "
C U7, it follows that U = U +4. From this, together with
the result of the preceding paragraph, it follows that every
Borel set is congruent to some regular open set.
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If U and V are congruent regular open sets, then, since
U=U"and V = V7, it follows that both U + V" and U™ + V
are congruent to @. It follows that both U — V™ and V — U~
are meager; since they are also open, the Baire category
theorem implies that U C V™ and V¥ C U~. This implies
that the closures of U and V are the same, and hence, by
their regular open character, so also are U and V.

We have seen above that if S = U, where U is open, then
S'=U", and if S,=U,,n=1,2, ..., where again the
U,’s are open, then U S =(U , Un)J"L . These two
assertions mean just that f is a o-homomorphism. The
assertion about the kernel of f is true by definition; the
onto character of f follows from the fact that if S is a
regular open set, then f(S) = S. The proof of the theorem is
complete.

One surprising aspect of the theorem is that the quotient
of a o-algebra by a o-ideal, which is necessarily a ¢-algebra
itself, turns out to be a complete algebra. This is a special
dividend; it is not to be expected in every case.

It is tempting, but not particularly profitable, to define
classes of Boolean algebras depending on other cardinal
numbers the same way as o-algebras depend on NO' The
situation is analogous to the various generalizations of
compactness depending on cardinal numbers. The questions
undeniably exist, the answers are sometimes easy and
sometimes not, and the answers are sometimes the same as
for the ungeneralized concepts and sometimes not. In all
cases, however, and in Boolean algebra as well as in
topology, the generalized theory has much more the flavor
of cardinal number theory than of the subject proper. The
interested reader should have no trouble in reconstructing
the basic theory for himself. The problem is, given an
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infinite cardinal m, to define and to study m-algebras,
m-fields, m-subalgebras, m-subfields, m-homomorphisms,
free m-algebras, m-ideals, m-filters, etc. For complicated
historical reasons the symbol ‘“N,’’ is always replaced by
‘o’ in such contexts, so that, for instance, ¥ -algebras

are the same as the g-algebras that constituted the main
subject of this section.

Exercises
(1) Give an example of an incomplete o-field.

(2) Define o-regular subalgebras, in analogy with the
regular subalgebras introduced in Exercise 8.6, and
investigate whether the results of Exercises 8.6 and 8.7
extend to this concept.

(3) Is every set with the Baire property a Borel set?
(4) Can the ideal of meager sets be maximal?

(5) Prove the Baire category theorem for locally com-
pact Hausdorff spaces.

(6) Is the homomorphism f described in Theorem 3
complete?

(7) Prove that if 4 is a Boolean g-algebra, and if p is
an element of the o-algebra generated by a subset E of 4,
then E has a countable subsat D such that p belongs to the
o-subalgebra generated by D.
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¢ 14. The countable chain condition

The algebraic behavior of the regular open algebra of a
topological space X reflects, at least in part, the topological
properties of X. One particular topological property of X,
namely the possession of a countable base, has important
algebraic repercussions, which we now proceed to study.

A Boolean algebra 4 is said to satisfy the countable
chain condition if every disjoint set of non-zero elements of
4 is countable. (Two elements p and ¢ of a Boolean algebra
are disjoint if p N ¢ = 0; a set E is disjoint if every two
distinct elements of E are disjoint.) The regular open alge-
bra of a space with a countable base does satisfy the
countable chain condition. Proof: select a countable base,
and, given a disjoint class of non-empty regular open sets,
find in each one a set of the base. An algebra satisfying the
countable chain condition is sometimes called countably

decomposable.

LEMMA 1. A Boolean algebra A satisfies the countable
chain condition if and only if every set E in A has a
countable subset D such that D and E have the same set of
upper bounds.

Proof. Assume first that the condition is satisfied and
suppose that E is a disjoint set of non-zero elements of 4.
Let D be a countable subset of £ with the same set of
upper bounds. If E had an element not in D, the complement
of such an element would be an upper bound of D but not
of E. Conclusion: E= D, and therefore E is countable.
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To prove the converse, assume now that the countable
chain condition is satisfied and let £ be an arbitrary subset
of A. Let M be the ideal generated by E; the elements of M
are just those elements of 4 that can be dominated by the
supremum of some finite subset of E. It follows that ¥ and
E have the same set of upper bounds. Apply Zorn’s lemma
to find a maximal disjoint set, say F, of non-zero elements
of M. Reasoning as in the preceding paragraph, we infer
that F and M have the same set of upper bounds. Since the
countable chain condition holds, the set F is countable.
Since each of the countably many elements of F is dominated
by the supremum of some finite subset of E, the union, say
D, of all these finite sets is a countable subset of E with
the same set of upper bounds.

COROLLARY. 4 Boolean o-algebra that satisfies the

countable chain condition is complete.

Proof. Every countable supremum is formable by defini-
tion; by Lemma 1 every conceivable supremum coincides
with some countable one.

The countable chain condition got its name from its
close relation to a condition in which ascending chains do
explicitly occur. An ascending well-ordered chain in a
Boolean algebra 4 is a function that associates with each
element o of some well-ordered set an element p, of 4 so
that p, < pg Whenever a < B. The chain is strictly ascend-
ing if py # pg whenever a < 8, and the chain is called
countable in case the set of indices is countable.

LEMMA 2. If a Boolean algebra A satisfies the count-
able chain condition, then every strictly ascending well-

ordered chain in A is countable.
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Proof. Suppose that {p,} is a strictly ascending well-
ordered chain, and assume, with no loss of generality, that
the index set consists of all ordinal numbers less than some
particular infinite ordinal number, say y. Write ga= pas1 — Pa
whenever 4 + 1 <y, and let E be the set of ¢,’s. The cardi-
nal number of E is the same as that of y. The elements of
E are distinct from 0, since p,,; # p,. Ifa < B and B8 +1 <y,
then p,,; < pgs and therefore

90" 98=Pas1 N Pa N Pgs1 "\ Pg S Pasy " pg =0

In other words E is a disjoint set of non-zero elements and
therefore countable; it follows that the given chain is
countable.

In a Boolean o-algebra the converse of Lemma 2 is also
true.

LEMMA 3. If every strictly ascending well-ordered chain
in a Boolean o-algebra A is countable, then A satisfies the

countable chain condition.

Proof. If the conclusion is false, then there exists a
disjoint set E of cardinal number X; consisting of non-zero
elements of 4. Establish a one-to-one correspondence
between E and the set of all ordinal numbers less than Q
(the first uncountable ordinal number). Let p,be the element
of E corresponding to d (a < Q). Since the number of pre-
decessors of a is countable, it makes sense to write
9a= V pgcaPafor each d. Since {g,} is a strictly ascend-
ing well-ordered chain (strictness follows from the disjoint-
ness of E) the hypothesis of the lemma leads to the
contradictory conclusion that @ is countable.
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Exercises

(1) If the regular open algebra of a topological space
satisfies the countable chain condition, does it follow that
the space has a countable base?

(2) Show that the converse of Lemma 2 is false. (Hint:
consider the finite-cofinite algebra of an uncountable set.)

(3) Show that the countable chain condition is not
preserved by homomorphisms. (Hint: consider the algebra
of all subsets of a countable set modulo the ideal of all
finite sets. For ease in manipulation, let the countable set
be the set of all rational numbers, and, for each real number
t, find a set of rational numbers that has ¢ as its unique
limit point.)

(4) Prove that a Boolean algebra A satisfies the count-
able chain condition if and only if every subset E of 4 that
has a supremum has a countable subset D such that D has
a supremum and V D = V E. (Hint: every disjoint set of
non-zero elements can be embedded in a maximal set of that
kind and that maximal set necessarily has a supremum,
namely 1.)

5 15. Measure algebras

A measure on a Boolean algebra 4 is a non-negative
real-valued function y on 4 such that whenever {p } is a
disjoint sequence of elements of 4 with a supremum p in 4,
then p(p) = 3 , w(p,)- The principal condition that this
definition imposes is called countable additivity, so that a
measure can be described as a non-negative and countably
additive function on a Boolean algebra.
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The concept just defined is the most useful one of a
large collection of related concepts. Sometimes the word
‘‘measure’’ is applied to countably additive functions whose
values are arbitrary real numbers, or complex numbers, or
elements of much more general algebraic structures. Some-
times the condition of countable additivity is relaxed to
finite additivity . (The meaning of this phrase should be
obvious. Note that p is finitely additive if and only if
plp V ¢q) = p(p) + p(g) whenever p and g are disjoint.) If ever
we need to make use of such generalized concepts we
shall refer to them by appropriately qualifying ‘‘measure’’.
(Thus, for instance, we may speak of a complex-valued
finitely additive measure.)

Examples of measures are easy to obtain. For a com-
binatorial example consider the field  (X) of all subsets
of a finite set X and, for each P in ? (X), define u(P) to be
the number of points in P. Many examples occur in analy-
sis; perhaps the simplest is Lebesgue measure on the
algebra of Lebesgue measurable subsets of the closed unit
interval. A more sophisticated example is given by Haar
measure on, say, the algebra of Borel sets in a compact
topological group.

A measure p is normalized if p(1l) = 1; it is positive if 0
is the only element at which u takes the value 0.

LEMMA 1. Let v be a normalized measure on a Boolean
o-algebra B and let M be the set of all those elements q of
B for which v (q)=0. The set M is a proper o-ideal in B.
If A = B/M and if f is the projection of B onto A, then there
exists a unique measure p on A such that p(f(q))=v (q)

for all q on B; the measure p is normalized and positive.

Proof. We shall prove the existence of p and its
positiveness; the remaining assertions of the lemma are
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trivial. Given p in 4, find ¢ in B with f(¢) = p and write
#(p) = v(q)- If f(q;) = f(g), then f(gy + g5) = 0, so that

9 + % € Morv(g + g)=0. This implies that v(q;) = v(gy),
and hence that the definition of p is unambiguous. To
prove that p is countably additive, suppose that {p,}isa
disjoint sequence in 4 and let {g } be a sequence in B such
that f(q,) = p,- The sequence {g,} may not be disjoint, but

it can be disjointed. More precisely, there exists a disjoint
sequence {r } with f(r ) = p, , obtained as follows:

n=4%:
B=% 9>
r3=‘13—(']1 V‘]z):

p=qs— (9 V%V g,
A routine examination proves that f(r ) = p,; once that is
known, the countable additivity of u becomes an obvious
consequence of the corresponding property of v. To prove
that p is positive, suppose that u(p) = 0 for some p in 4.
It follows that v (¢) = 0 whenever f(q) = p, and hence that
q € M whenever f(q) = p. This implies that p = 0 whenever
#(p) = 0.

Lemma 1 says that under certain conditions measures
can be transferred to quotient algebras. The reverse
always works; a measure on a quotient can always be
lifted to its numerator.

LEMMA 2. Let f be a Boolean o-epimorphism from a
o-algebra B to a o-algebra A, and let p be a normalized
measure on A. If v (q) = p(f(q)) for every q in B, then v is
a normalized measure on B. The kernel of f is included in

the set of all those elements q of B for which v(q)=0;
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the kernel coincides with that set if and only if the measure

| is positive.

The proofs of all the assertions of the lemma are imme-
diate from the definitions.

It is sometimes useful to consider a measure as an
intrinsic part of the Boolean algebra it is defined on. The
appropriate definition is that of a measure algebra, defined
as a Boolean o-algebra 4 together with a positive, normal-
ized measure p on 4. If 4 is not required to be a o-algebra,
but just a Boolean algebra, and if, correspondingly, u is
required to be only finitely additive, we may speak of a
finitely additive measure algebra.

The theory of measure algebras has several points of
contact, in both form and content, with the topological and
algebraic results of the preceding two sections. Countability,
for instance, enters through the essential countability prop-
erties of real numbers, as follows.

LEMMA 3. Every finitely additive measure algebra

satisfies the countable chain condition.
Proof. A disjoint set of non-zero elements cannot con-

tain, for any positive integer n, as many as n elements of
measure greater than 1/n.

COROLLARY. Every measure algebra is complete.

Proof. Apply the preceding lemma and the corollary of
Lemma 14.1.

The reduced Borel algebra (Borel sets modulo meager
Borel sets) and the reduced measure algebra (Borel sets
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modulo Borel sets of measure zero) of the unit interval

have much in common. Both algebras are obtained by reducing
an incomplete o-field modulo a o-ideal; both algebras satisfy
the countable chain condition and therefore (Corollary of
Lemma 14.1) both algebras are complete; and, incidentally,
both algebras are non-atomic. (The proof of the latter
assertion is a trivial consequence of Theorem 4 (p. 58) for
the reduced Borel algebra; for the reduced measure algebra
it requires an elementary measure-theoretic argument.) No
property of Boolean algebras that we have encountered so
far is sharp enough to tell these two algebras apart; for all
we know they are isomorphic. We conclude this section by
showing that they are not. (Note incidentally that Borel

sets modulo Borel sets of measure zero and Lebesgue
measurable sets modulo Lebesgue measurable sets of
measure zero are the same. This depends on the fact that
every Lebesgue measurable set differs from some Borel

set in a set of measure zero only.)

LEMMA 4. Every measure on the reduced Borel algebra

of the closed unit interval is identically zero.

Proof. Let B be the o-field of Borel sets in [0, 1], and
let M be the o-ideal of meager sets in B. Write 4 = B/M,
and let f be the projection of B onto 4. If there were a
non-zero measure p on 4, we could assume, with no loss of
generality, that p is normalized. An application of Lemma 2
yields a normalized measure v on B that vanishes on
every meager Borel set. By a standard construction (cover
the rational points with open intervals of small measure),
the interval is the union of two disjoint Borel sets S and T
such that S is meager and v (T) = 0. Since f(S) = 0, so that
f0, 11) = (T), it follows that v ([0, 1]) = 0, a contradiction.
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Exercises

(1) State and prove the analogues of Lemmas 1 and 2
for finitely additive measures.

(2) If A is a measure algebra with measure p, and if
d(p, ¢) = p(p + q), then d is a metric on A; prove that with
respect to this metric 4 is a complete metric space.

s 16. Atoms

The most natural field of subsets of a set is the field
of all its subsets. Does that field have a simple algebraic
characterization? The answer is yes; the purpose of this
section is to exhibit such a characterization.

An atom of a Boolean algebra is an element that has no
non-trivial proper subelements. Better: ¢ is an atom if
g # 0 and if there are only two elements p such that p < g,
namely O and q. A typical example of an atom is a
singleton in a field of sets. A Boolean algebra is atomic if
every non-zero element dominates at least one atom. A
Boolean algebra is non-atomic if it has no atoms. (Note
that these two concepts are not just the negations of one
another.) A field of sets is usually (but not always) atomic:
the field of all subsets, or the finite-cofinite algebra of a
set are obvious examples. A counterexample is the field
generated by half-closed intervals in the line; it is non-
atomic. The regular open algebra of a topological space X
is quite likely to be non-atomic; the absence of separation
axioms and the presence of isolated points, however, is
likely to introduce atoms.
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LEMMA 1. In an atomic algebra every element is the

supremum of the atoms it dominates.

Proof. The statement of the theorem is intended to
convey the information that the supremum in question always
exists (without any assumption of completeness). Observe
also that even the zero element does not have to be ex-
cluded from the statement. Now for the proof itself: begin
with the trivial comment that each element p is an upper
bound of the set, say E, of the atoms that it dominates. It
is to be proved that if r is an arbitrary upper bound of E,
then p < r. Assume that, on the contrary, p — r # 0. It
follows (from the assumption of atomicity)thatthere exists
an atom ¢ with ¢ < p — r. Since p — r < p, the atom ¢
belongs to E; since, however, ¢ A r < (p — r) A r, this con-
tradicts the fact that r is an upper bound of E.

THEOREM 5. A4 necessary and sufficient condition that
a Boolean algebra A be isomorphic to the field of all subset
of some set is that A be complete and atomic, or, alterna-

tively, that A be complete and completely distributive.

Proof. The necessity of either pair of conditions is
obvious. Suppose therefore that 4 is complete and atomic,
and let X be the set of all atoms of 4. For each p in 4 let
f(p) be the set of all those elements g of X for which
g < p. Trivially f(p;) U fim) < f(p; V ). To prove the
reverse inclusion, suppose that ¢ € X and ¢ < p; V p. It
follows that ¢ = ¢ A (p; V) =(g N pp) V(g N ) At
least one of ¢ N p, and ¢ A p, must be different from 0,
and that one, since ¢ is an atom, must be equal to g¢; this
proves that g € f(p;) U f(py). We know therefore that f
preserves joins, and therefore, in particular, f(p) U f(p') =
f(1) = X for every p. Since f(p) and f(p ') are obviously
disjoint, it follows that f preserves complementation also.
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In other words f is a homomorphism from 4 to a field of
subsets of X. If E is an arbitrary subset of X, then, by
completeness, E has a supremum in 4. If p = V E, then
f(p) = E so that f is an epimorphism from 4 to  (X). All
that is needed to complete the proof is to show that f is
one-to-one, that is, that the kernel of f is trivial. This
follows from Lemma 1: since V f(p)= p, the only way f(p)
can be 0 is to have p = 0.

The sufficiency of the second pair of conditions is
proved by showing that if 4 is complete and completely
distributive, then 4 is atomic. To apply complete distribu-
tivity, write I = 4, J = {+1, -1}, and p(i, j) = i or i ' according
as j=+1 or j=-1, for each { in . Since V].E] p(i, ) =1
for every i, it follows from (7.1) that

v A, ., pGa@) =1,

ae gl

and consequently, by Lemma 7.6,
A ; ))) =
Vo g On A pGa@) =

for every r in A. The proof will be completed by showing

that every non-zero element of the form A . _ | p(i, a(i)) is

an atom of 4. Suppose accordingly that ¢ = A . .| p(i, a(i)) # 0
and that r is a non-zero element of 4 such that r < ¢. Since

g < p(r, a(r)), two things follow: (1) a(r) = +1, for otherwise

r < r', contradicting the fact that r # 0, and, therefore, (2)

q < r. This implies that r = ¢, so that ¢ is indeed an atom,

and the proof is complete.

A N A

Exercises

(1) Prove without using Theorem 5 that every finite
Boolean algebra is atomic. (Since a finite algebra is
obviously complete and completely distributive, Theorem 5
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could be used. The conclusion is too elementary to deserve
such a relatively high-powered treatment.)

(2) Prove that the total number of elements in every
finite Boolean algebra is a power of 2, and that two finite
Boolean algebras with the same number of elements must be
isomorphic.

(3) Prove that a finitely generated Boolean algebra is
finite, and, in fact, the number of elements in an algebra
with n generators is < 22", (Hint: if the generators are r,
i=1, ., n, write ] = {+1, -1}, and put p(i, j) = r; or r;
according as j = +1 or j=-1. The non-zero elements of the
form A, p(i, a(i)), where a € JI, are atoms.)

(4) If p is a non-zero element of an atomic Boolean alge-
bra A, then there exists a 2-valued homomorphism f on 4
such that f(p) = 1.

(5) Characterize the topological spaces whose regular
open algebra is (1) atomic, (2) non-atomic.

(6) Prove that the mapping f defined in the proof of
Theorem 5 is a complete homomorphism.

(7) Does the set of all atoms in a Boolean algebra

always have a supremum?

§17. Boolean spaces

We know by now that not every Boolean algebra is
isomorphic to the field of all subsets of some set. In the
next section we shall prove that every Boolean algebra is
isomorphic to some field of subsets of some set. In order
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to get a usable description of what kind of fields and what
kind of sets are needed, we proceed now to introduce a
rather special category of topological spaces.

A Boolean space is a totally disconnected compact
Hausdorff space. There are several possible definitions of
total disconnectedness, but, as it turns out, they are all
equivalent for compact Hausdorff spaces. The most con-
venient definition for our algebraic purposes is the one that
demands that the clopen sets constitute a base. Explicitly:
a Boolean space is a compact Hausdorff space with the
property that every open set is the union of those simulta-
neously closed and open sets that it happens to include.

For Boolean spaces, as for every topological space, it
is true that the class of all clopen sets is a field. The
field of all clopen sets in a Boolean space X is called the
dual algebra of X.

The simplest Boolean spaces are the finite discrete
spaces. Since every subset of such a space is clopen, the
dual algebra of each finite Boolean space is a finite
Boolean algebra. Since every finite Boolean algebra is
isomorphic to the field of all subsets of some (necessarily
finite) set (see §16), it follows that every finite Boolean
algebra is isomorphic to the dual algebra of some discrete
Boolean space.

A less trivial collection of examples consists of the
one-point compactifications of infinite discrete spaces.
Explicitly, suppose that a set X with a distinguished point
xy is topologized as follows: every subset of the comple-
ment of {xy} is open, but a set containing x, is open if and
only if its complement is finite. It is easy to verify that the
space X so defined is Boolean; a subset of X is clopen if
and only if it is either a finite subset of X — {xy} or a
cofinite subset (of X) containing x;. The dual algebra of X
is isomorphic to the finite-cofinite algebra of X — {x,}.
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The set 2 is a Boolean algebra; from now on it will be
convenient to construe it as a topological space as well,
endowed with the discrete topology. For an arbitrary set /,
the set 2! of all functions from / into 2 (equivalently: the
Cartesian product of copies of 2, one for each element of
I) is a topological space (product topology); it is well
known that that space is compact and Hausdorff (Tychonoff’s
theorem). We shall denote the value of a function x in 2!
at an element i of / by x;. The sets of the form
fxe2l: x; = 8}, where i € ] and & € 2, constitute a subbase
for 21; finite intersections of them constitute a base. Since
the complement of each set of the indicated form is another
set of the same form, so that each such set is clopen, it
follows that 2/ is a Boolean space. In the sequel these
particular Boolean spaces will be called Cantor spaces.

The following somewhat technical result is useful in
the study of Boolean spaces.

LEMMA 1. If X is a compact Hausdorff space and if A
is a separating field of clopen subsets of X, then X is a
Boolean space and A is the field of all clopen subsets of
X. (To say that A is separating means that for every pair

of distinct points x and y in X there exists a set P in A

with x € Pand ye P'.)

Proof. The fact that A separates points implies that 4
separates points and closed sets. This involves a standard
compactness argument. Suppose, indeed, that F is a closed
set and x is a point not in F. Separate each point of F
from x by a suitable set in A. Compactness yields a finite
cover of F by sets in 4 none of which contains x; their
union is a set in 4 that separates x from F. (The union is
in A because 4 is a field.)

The result of the preceding paragraph can be rephrased
by saying that 4 is a base for X; this already implies that
X is Boolean. It follows that every clopen set in X is a
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finite union of sets of 4 (because it is both open and
compact). Since A is closed under the formation of finite
unions, the proof is complete.

COROLLARY. If a field of clopen subsets of a compact
Hausdorff space is a base, then the space is Boolean and

the field contains all clopen sets,

LEMMA 2. Every closed subset Y of a Boolean space
X is a Boolean space with respect to the topology it in-
herits from X. Every clopen set in Y is the intersection of

Y with some clopen subset of X.

Proof. The first statement is obvious: if the clopen sets
form a base in X, their intersections with ¥ do the same for
Y. If Q is clopen in Y, then it is open in Y, and, therefore,
there exists an open set U in X such that Q =Y N U. The
clopen subsets of U in X cover the closed set ¢, and,
therefore, by compactness, there exists a finite class of
clopen subsets of U whose union, say P, covers (. Since
Q C P CUand?Y N U=0Q,it follows that Y N P =Q.

Exercises

(1) Let X be the set of all ordinal numbers up to and
including some particular one. The set X is ordered (by
magnitude), and, as such, has a natural topology, namely
the one for which the open intervals constitute a base.
Prove that X is a Boolean space.

(2) Let X be the perimeter of a circle in the Cartesian
plane. Order X as follows: (% , %) precedes (y; , yg) if and
only if either x; <y, , or (in case x; = y;) %9 < yo. (This is
known as the lexicographic ordering.) Endow X with the



76 Lectures on Boolean Algebras §18

order topology (as defined in a similar situation in Exercise
1 above). Prove that X is a Boolean space whose dual
algebra is the field of half-closed intervals in the closed
unit interval (see §3).

(3) Prove that if I is countably infinite, then the Cantor
space 2! is homeomorphic to the Cantor middle-third set.

(4) Prove that the Stone-Cech compactification of anin-
finite discrete space X is a Boolean space whose dual
algebra is isomorphic to # (X).

(5) Prove that a compact Hausdorff space is a Boolean
space if and only if all its components are singletons.

(6) If I is an infinite set, of power m, say, what is the
cardinal number of the dual algebra of the Cantor space 2/?

(7) Prove that the dual algebra of every Cantor space
satisfies the countable chain condition. (Hint: regard the
Cantor space as a topological group and use Haar measure.
Note that this gives a solution of Exercise 14.1.)

(8) Is the Cartesian product of a family of Boolean
spaces a Boolean space with respect to the usual product
topology?

(9) Imitating the definition of a free Boolean algebra,
define the concept of a free Boolean space, and prove that
every finite Boolean space is free but there are no infinite
free Boolean spaces.
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§18. The representation theorem

If a Boolean algebra A is a field of subsets of a set X,
and, in particular, if it is the dual algebra of a Boolean
space X, then the points of X serve to define 2-valued
homomorphisms on A (see §¢9). This comment suggests that
if we start with a Boolean algebra 4 and seek to represent
it as the dual of some Boolean space X, a reasonabie place
to conduct the search for points suitable to make up X is
amrong the 2-valued homomorphisms of 4. The suggestion
would be impractical if it turned out that A has no 2-valued
homomorphisms. Our first result along these lines is that
there is nothing to fear; there is always a plethora of
2-valued homomorphisms.

LEMMA 1. For every non-zero element p of every Boo-
lean algebra A there is a 2-valued homomorphism x on A
such that x(p) = 1.

Proof. In view of the results of §12, the conclusion can
be rephrased as follows: there exists a maximal ideal M in
A such that p €' M. For the proof, apply Zorn’s lemma to
obtain a maximal ideal M that contains p ‘. Clearly p €' M,
for otherwise 1=p Vp' €M.

LEMMA 2. The set X of all 2-valued homomorphisms on
a Boolean algebra A is a closed subset of the Cantor space
24 of all 2-valued functions on A.

Proof. The definition of topology in 24 implies that for
each fixed p in 4 the value x(p) depends continuously on
the point x of 24, Since the set of points where two
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continuous functions are equal is always a closed set, it
follows that {x : x(p ) = (x(p)) ' } is closed in 24 for each p
in A. Forming the intersection of all these sets, we con-
clude that those 2-valued functions on 4 that preserve
complementation form a closed subset of 2. A similar
argument, involving sets such as {x : x(p V q) = x(p) V x(q)},
justifies the same conclusion for the join-preserving
functions.

Lemma 2 implies that the set X of all 2-valued homo-
morphisms on a Boolean algebra 4 has the structure of a
Boolean space in a natural way; we shall call that Boolean
space the dual space of 4.

The following assertion, known as the Stone representa-
tion theorem, is the most fundamental result about the
relation between Boolean algebras and Boolean spaces.

THEOREM 6. The second dual of every Boolean algebra
A is isomorphic to A. More explicitly, if B is the dual
algebra of the dual space X of A, and if f(p)=1{x € X : x(p) =1}

for each p in A, then fis an isomorphism from A onto B.

Proof. Since x(p) is continuous in X, it follows that
f(p) is clopen for each p in 4, and hence that f maps 4 into
B. The verification that f is a homomorphism is purely
mechanical. Thus, for example,

fleVg)=tix:x(pVgq)=1l={x:x(p) V 2(q) = 1}

={x 1 x(p) =1} U lx:x(g)=1}=f(p) U f(g)-

If f(p) = 0, that is {x : x(p) = 1} = &, then Lemma 1 implies
that p = 0; this means that f is one-to-one. Since the range
of every Boolean homomorphism is a Boolean algebra, the
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clopen sets of the form {x : x(p) = 1} constitute a field.
Since two distinct 2-valued homomorphisms on 4 must
disagree on some element of 4, the field is separating, and,
consequently, Lemma 17.1 implies that f maps 4 onto B.

CCROLLARY. Every Boolean algebra is isomorphic to
a field of sets.

THEOREM 7. The second dual of every Boolean space
X is homeomorphic to X. More explicitly, if Y is the dual
space of the dual algebra A of X, and if ¢ (x) is the
2-valued homomorphism that sends each element P of A
onto I or 0 according as x € P orx €' P, then ¢ is a

homeomorphism from X onto Y.

Proof. To prove that ¢ is continuous, it is sufficient to
prove that the inverse image of every clopen subset of Y
is clopen in X. The proof follows from the fact that every
clopen subset of Y is of the form {y : y(P) = 1}, where
P € A (see Theorem 6); indeed the inverse image of the
indicated set is exactly P. We conclude also that the
inverse image of a non-empty clopen set in Y is never
empty; since the clopen sets form a base for Y, this implies
that the range of the function ¢ is dense in Y. The con-
tinuity of ¢ and the density of its range together imply that
¢ maps X onto Y. Since the clopen sets separate points in
X, distinct points of X determine distinct 2-valued homo-
morphisms on 4, so that ¢ is one-to-one.

It is sometimes convenient to indicate the relation
between Boolean algebras and Boolean spaces by some
special terminology and notation. By a pairing of a Boolean
algebra A and a Boolean space X we shall mean a function
that associates with every pair (p, x), where p € 4 and
x € X, an element of 2 in a certain particular way. If the
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value of the function is denoted by <p, x> , then the
requirements on the function can be expressed as follows:
1) <p, x> is continuous in %, and, by suitable choice
of p, every 2-valued continuous function on X has this form;
(2) <p, x> determines a homomorphism in p, and, by
suitable choice of x, every 2-valued homomorphism on 4
has this form. Here are two typical examples. (1) let X be
the dual space of a Boolean algebra A; write ps x> = x(p).
(2) Let A be the dual algebra of a Boolean space X; write
<P, x> =1 or 0 according as x € P or x €' P. More
generally, it should be clear by now that if 4 and X are
paired, then A4 is isomorphic to the dual algebra of X and X
is homeomorphic to the dual space of 4.

Exercises

(1) Prove that every proper ideal in a Boolean algebra
is included in some maximal ideal.

(2) A principal ideal in a Boolean algebra is not a sub-
algebra, but it constitutes a Boolean algebra in a natural
way (see §§9 and 11). Is that Boolean algebra necessarily
isomorphic to a subalgebra of the whole algebra? (Hint:
use 2-valued homomorphisms of the small algebra.)

(3) Is every Boolean space a subspace of a Cantor
space”?

(4) Is every complete Boolean algebra isomorphic to a
complete field of sets?

(5) Is every Boolean algebra isomorphic to a subalgebra
of a complete algebra?



Duality for ldeals 81

§19. Duality for ideals

The topological duality theory of Boolean algebras, in-
troduced in the preceding two sections, pervades and
enriches the entire subject. Each of the two halves of the
theory (algebras and spaces) suggests interesting questions
about the other half. By means of the theory it is in
principle possible to dualize every fact and every concept,
converting algebraic facts and concepts into topological
ones, and vice versa. In almost every case the dualization
is worth while; it is often useful and illuminating, and, at
the very least, it is amusing.

The following trivial example serves to illustrate the
meaning of topological duality. Question: what can be said
about the dual of a finite Boolean algebra? Answer: a
Boolean algebra is finite if and only if it is the dual of
discrete space. Reason: for compact Hausdorff spaces
discreteness is the same as finiteness,

Finite Boolean algebras are atomic. A natural general-
ization of the problem of dualizing finiteness, and one that
is somewhat less trivial, is the problem of dualizing atom-
icity. If, as before, X is a Boolean space and 4 is its dual
algebra, then, by definition, an atom of 4 is a non-empty
clopen subset of X that does not include any properly
smaller non-empty clopen set. This implies that an atom of
A is a singleton, namely the singleton of an isolated point
of X. To say that 4 is atomic is to say that every clopen
subset of X contains an isolated point. Since the clopen
sets form a base, it follows that 4 is atomic if and only if
the isolated points are dense in X. The other extreme has
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an equally satisfactory dual: 4 is non-atomic if and only
if X is perfect.

The concept of countability has an interesting dual: the
dual algebra 4 of a Boolean space X is countable if and
only if X is metrizable. (Observe that for compact Hausdorff
spaces metrizability is the same as the possession of a
countable base.) Indeed, if 4 is countable, then the sets of
A constitute a countable base for X. If, conversely, X has
a countable base, then every base includes a countable
subclass that is itself a base. This implies that there exists
a countable base of clopen sets in X. The field generated
by this base is still countable (see Exercise 8.5), and, by
the corollary to Lemma 17.1; it coincides with 4.

The duality theory for subsets of a Boolean algebra
(for example, ideals and filters) is both more interesting
and more useful than the duality theory for elements. The
following definitions are the basic ones. If X is a Boolean
space with dual algebra 4, the dual of an ideal ¥ in 4 is
the union of the clopen sets belonging to ¥ (equally cor-
rectly and more simply, the union of ¥), and the dual of
an open subset U of X is the class of all clopen sets P
included in U. The principal facts about this kind of set-
duality can be summarized as follows:

LEMMA 1. The dual of every ideal is an open set, and
the dual of every open set is an ideal. The second dual of
every ideal and of every open set is itself. Duality between
ideals and open sets is a one-to-one correspondence that
associates @ to the trivial ideal {0} and X to the improper
ideal A. If M and N are ideals with duals U and V, respec-
tively, then the dual of M N Nis U N V, and a neces-
sary sufficient condition that M < N is that U C V. If,

for each jin a certain index set, M’. is an ideal with dual
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U]., then the union Ui U]. is the dual of the ideal
generated by U; M]..

The proofs of all the assertions of the lemma are imme-
diate from the definitions.

It is easy to examine the duals of various special
concepts in ideal theory. Thus, for instance, all the ideals
of A are either trivial or improper if and only if all the open
subsets of X are either @ or X. In other words, the unique
simple algebra 2 is the dual of a singleton. The dual of a
principal ideal is a clopen set, namely the generator. The
dual of a maximal ideal is a maximal open set, that is, the
complement of a singleton.

If M is an ideal in A, then {p : p' € M} is a filter in 4;
if U is an open set in X, then U' is a closed set in X. It
follows that the duality between ideals and open sets
induces a similar duality between filters and closed sets.
The open duality is order-preserving; the closed duality is
order-reversing. Thus, for example, the closed set cor-
responding to a maximal filter is a minimal closed set, that
is, a singleton.

Exercises

(1) If “compact’’ is replaced by ‘‘locally compact’ in
the definition of Boolean spaces, most of the theory remains
true. The dual of a locally compact but not compact Boolean
space is a Boolean ring without a unit. A typical example
of a non-compact Boolean space is obtained by omitting one
point from a compact one. The act of restoring such an
omitted point, that is, the one-point compactification, is
the dual of the process of adjoining a unit (see Exercise
12.1). The dual of the empty Boolean space is the one-
element (zero) Boolean ring (without a unit).
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(2) The duality theory of ideals rests ultimately on the
two relatively deep theorems of §18. This explains the fact
that dualization can sometimes convert a non-trivial asser-
tion into a complete triviality. For an example, dualize
Exercise 18.1.

(83) The nowhere dense closed sets are of interest in a
Boolean space, and so therefore are their complements, the
dense open sets. Prove that the dual of a dense open set is
a dense ideal, defined as follows. If ¥ is a subset of a
commutative ring R, the annitkilator of M is the set of all
elements p in R such that pg = O for all ¢ in #. The annihil-
ator of every set is an ideal. Motivated by the special case
of Boolean rings and their topological duality theory, we
call the set M dense if its annihilator is the trivial ideal.

(4) Prove that every countable Boolean algebra is
isomorphic to a field of subsets of a countable set. (Hint:
a compact metric space is separable.)

(5) What is the algebraic dual of separability? What
about the first countability axiom (there is a countable base
at each point)?

820, Duality for homomorphisms

To establish a dual correspondence between structure-
preserving mappings of Boolean algebras and Boolean spaces,
it is best not to give preferential treatment to either. A good
way to stay neutral is to use the concept of pairing intro-
duced in §¢18. Suppose, accordingly, that 4 is a Boolean
algebra and X is a Boolean space, and suppose that <p, x
represents all continuous 2-valued functions on X and all
2-valued homomorphisms on A. Suppose, moreover, that B
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and Y are a similarly paired pair. The purpose of this sec-
tion is to make a connection between continuous mappings
(from X into Y) and homomorphisms (from B into 4). The
basic facts, on which subsequent definitions and theorems
depend, can be stated as follows:

THEOREM 8. There is a one-to-one correspondence
between all continuous mappings ¢ from X into Y and all

homomorphisms f from B into A such that

(1) (8> = {fla) %)

identically for all g in B and all x in X. Each of ¢ and f is
called the dual of the other; the second dual of either one
is itself. The homomorphism f is one-to-one if and only if
¢ maps X onto Y; the mapping ¢ is one-to-one if and only
if f maps B onto A.

Proof. Fix ¢ and consider <q, b (x)> . As a function
of g, for fixed x, it corresponds to (we shall just say: jt is)
an element of Y, namely ¢ (x). This yields nothing new.
The novelty comes from considering <q, ol (x)> as a
function of x for fixed g. Since it is the composite of the
two continuous functions x = ¢ (x) and y=» <q, y> , it
is a continuous 2-valued function on X. As such, it is given
by an (obviously unique) element p of 4, so that

(g, @) = (px)

identically in x. Denote the passage from ¢ to p by f, that

is write p = f(g). The proof that f is a Boolean homomorphism
is a mechanical computation. Here, for instance, is the

proof that f preserves complementation:

g sy = <a'so@y = o p@)’ = fla)=)" -
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To make the definition of the dual homomorphism and the
fact that it is a homomorphism more intuitive, suppose that
A and B are the dual algebras of X and Y, respectively, and
that the pairings are given by evaluating the characteristic
function of the first coordinate at the second coordinate.

In this case the fundamental duality equation (1) can be
expressed as follows:

¢ (x) € Q if and only if x € f(Q).

Since ¢ (x) € Q if and only if x € ¢~1(Q), this means that
f= ¢»“1, or, more precisely, that f is the restriction of ¢!
to the class of clopen subsets of X.

Now fix f and consider <f(q), x> . As a function of x,
for fixed ¢, it is an element of A, namely f(q). This yields
nothing new. The novelty comes from considering

<f(q), x> as a function of ¢ for fixed x. Since it is the
composite of the two homomorphisms g-» f(¢) and p—s
<p, x> , it is a 2-valued homomorphism on B. As such, it
is given by an (obviously unique) element y of ¥, so that

@)=y = (a7

identically in ¢g. Denote the passage from x to y by ¢, that
is, write y = & (x). The definition of ¢ implies that

¢~ (ly : <<1, y> =1 =tx: {f9), x> = 1}

Since every clopen subset of ¥ is given by some ¢ in B,

and since the clopen sets form a basis for Y, it follows that
¢ is continuous. To make the definition of ¢ more intuitive,
suppose that X and Y are the dual spaces of 4 and B,
respectively, and that the pairings are defined by evaluating
the second coordinate at the first coordinate. In this case
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the fundamental duality equation (1) can be expressed as
follows:

(¢ (x))q) = x(f(9)) -

The validity of this for all ¢ says simply that ¢ (x) is equal
to the composition x o f.

If f is the dual of ¢ and ¢ is the dual of f, then, iden-
tically,

(o $ =) = M), xy = g, ¥ (=) ,

and therefore ¢ = ¢ . If, finally, ¢ is the dual of f and g is
the dual of ¢, then, identically,

(@) x) = (o 8(=)) = (e@) %)

and therefore [ = g.

It remains to prove the epi-mono assertions. For this
purpose it is convenient to specialize; we shall assume that
the algebra 4 is the dual of the space X. (The specializa-
tion is, of course, only notational; there is no real loss of
generality here.) Consider now the following five assertions,
each of which is easily seen to be equivalent to its neigh-
bors: (1) ¢ maps X onto Y; (2) Y — (X)) =@, (3) every
clopen subset of Y — & (X) is empty; (4) if a clopen subset
¢ of Y is such that $~1(Q) = &, then Q = @; (5) f is one-
to-one. This proves the equivalence of (1) and (5). (To go
from (2) to (3) recall that Y — ¢ (X) is always open.)
Consider, finally, the following four assertions, each of
which is equivalent to its neighbors: (1) ¢ is one-to-one;
(2) the inverse images under ¢ of clopen subsets of Y
separate points in X; (8) every clopen subset of X is the
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inverse image under ¢ of some clopen subset of Y; (4) f
maps B onto 4. (To go from (2) to (3) recall that the inverse
images under ¢ of clopen subsets of ¥ constitute a field of
subsets of X, and use Lemma 17.1.)

The proof of the fundamental duality theorem for homo-
morphisms is complete.

COROLLARY. If ¢ is a continuous mapping from a
Boolean space X into a Boolean space Y, and if f is the
homomorphism dual to ¢, then the dual of the kernel of f is
the complement of the range of ¢.

In loose language the corollary can be expressed as
follows: to divide an algebra by an ideal is the same as to
discard an open set from a space.

The epi-mono duality for structure-preserving maps im-
plies a useful sub-quotient duality for the structures them-
selves. To see how this goes, suppose that the Boolean
algebras 4 and B are paired with the Boolean spaces X and
Y, respectively, and suppose that X is a subspace of Y.
This implies that there is a natural mapping ¢ (namely the
identity) from X into Y. Since ¢ is one-to-one, the dual
homomorphism f maps B onto 4, so that 4 is isomorphic to
a quotient of B. (If, in fact, B is given as the dual of X,
then 4 is isomorphic to B/M, where the ideal M is the dual
of the open set ¥— ¢(X).) Inversely it is clear that every
quotient of B determines a subspace of Y. In the other
direction, suppose that B is a subalgebra of 4. There is
then a natural homomorphism f (namely the identity) from B
into 4. Since f is one-to-one, the dual mapping ¢ maps X
onto Y, so that Y is isomorphic to a quotient-space of X.
Inversely it is clear that every quotient of X determines a
subalgebra of 4.
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To see a non-trivial application of the duality theorem
for homomorphisms, we consider the construction of free
Boolean algebras (cf. §10).

THEOREM 9. For every set I, the dual algebra of the

Cantor space 21 is freely generated by a set of the same

power as I.

Proof. Write Y = 2/, let B be the dual algebra of ¥, and
define a mapping A from./ into B by A(i) ={y : y, = 1}.
Since h is one-to-one, the image h(l) has the same power as
I. The field generated by %(/) is a base (by the definition
of topology in Y) and therefore (by the corollary to Lemma
17.1) k(I) generates B. We shall prove that B is free on
k(I). Suppose therefore that 4 is an arbitrary Boolean alge-
bra and that g is an arbitrary mapping from / into 4. Let X
be the dual space of 4 and for each x in X write ¢(x) = x o g.
Clearly ¢ (x) € 2! for each x in X, so that ¢ maps X into Y.
Since

(2) ¢~ 1(h(i)) = {x : xo g € h(i)} = {x : x(g(i)) = 1},

and since the elements of 4(/) and their complements form

a subbase for Y, it follows that ¢ is continuous. Let f be the
dual homomorphism from B into A. This means (see (1))

that ¢ (x) € A(i) if and only if x(f(%(i))) = 1. Since, by (2),

¢ (x) € h(P) if and only if x(g(i)) = 1, it follows that
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x(f(h(7))) = x(g(i)) for all x, and hence that f ok = g. In
other words, the homomorphism f is an extension of the
mapping g © k=1, and the proof of the theorem is complete.

Exercises

(1) Prove that a finite Boolean algebra is free if and
only if the number of its atoms is a power of 2.

(2) Prove that every infinite free algebra is non-atomic.
(3) Prove that a countable non-atomic algebra is free.

(4) Prove that every Boolean algebra is isomorphic to a
quotient of a free one. (With Exercise 17.7, this gives a
solution of Exercise 14.3.)

(5) Give a topological solution of Exercise 18.2.

§21, Completion

By now we have seen the dual of every significant finite
algebraic concept that was introduced before; it is time to
turn to the infinite ones. What topological property, for
instance, characterizes a Boolean space whose dual algebra
is known to be complete? The answer is a weird but
interesting part of pathological topology.

A Boolean space is called complete if the closure of
every open set is open. (Observe that every compact
Hausdorff space with this property is automatically a Boo-
lean space.) Complete Boolean spaces are sometimes
called extremally disconnected spaces. Completeness is a



Completion 91

self-dual property: a space is complete if and only if the
interior of every closed set is closed. At first glance it is

not at all obvious that non-trivial (that is non-discrete)
complete spaces exist. It turns out, however, that they exist
in profusion; there are as many of them as there are com-
plete Boolean algebras.

The brunt of the major theorem in this direction is
carried by an auxiliary result that has other applications
also. It is in effect a topological characterization of the
suprema that happen to be formable in a not necessarily
complete Boolean algebra.

LEMMA 1. If {Pz.} is a family of elements (clopen sets)
in the dual algebra A of a Boolean space X, and if
U= Ui P,, then a necessary and sufficient condition that
{P.} have a supremum in A is that U~ be open. If the condi-
tion is satisfied, then

V, P,=U;
that is, the algebraic supremum is the closure of the set-

theoretic union.

Proof. Assume first that P = V, P,. Since P is closed
and includes each P,, it follows that U~ < P. The set
P — U™ is open. If it is not empty, then it includes a non-
empty clopen set Q, and then P — Q is a clopen set includ-
ing all the P,’s and properly included in P. Since this
contradicts the definition of supremum (least upper bound),
it follows that U™ = P, and hence that U™ is open.

If, conversely, U™ is open, then it is clopen, and, of
course, it includes all the P,’s. If P is a clopen set that
includes all the P,’s, then U C P, and therefore, since
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P is closed, U” C P. This implies that the family {P,}
does have a supremum in 4, namely U~.

COROLLARY. If a family of elements in the dual alge-
bra of a Boolean space has a supremum, then that supremum

differs from the set-theoretic union by a nowhere dense set.

Proof. By Lemma 1 the difference in question is exactly
the boundary of the union; apply Lemma 4.5.

THEOREM 10. The dual algebra A of a Boolean space
X is complete if and only if X is complete.

Proof. If A is complete and if U is an open set in X,
apply Lemma 1 to the family of all clopen subsets of U. If
X is complete and if {P.} is a family of elements of 4,
apply Lemma 1 to the union U, P,.

The Stone representation theorem implies easily that
every Boolean algebra can be embedded into a complete
one. It is often important to know that Boolean algebras
have completions in this sense, but the rudimentary comple-
tion obtained directly from the representation theorem is
not good enough for most purposes.

The appropriate concept can be defined (somewhat
pedantically) as follows. A completion of a Boolean algebra
4 is a complete Boolean algebra B together with an embedd-
ing k (that is, a monomorphism) from 4 into B, such that
(1) if V; p;=pin 4, then V; h(p;) = k(p) in B, and (2) the
complete algebra generated by h(4) in B is B itself. A com-
pletion (B, k) is minimal if it is smaller than every other
completion in the following sense: corresponding to every
completion (C, k), there exists a complete
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3
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C

monomorphism f from B into C such that foh = k.

It is not obvious that there are any completions at all,
let alone minimal ones. We shall presently prove the nec-
essary existence theorem. First, however, we dispose of
uniqueness; the following result shows that the minimal
completion of every Boolean algebra 4 is uniquely deter-
mined to within an isomorphism that preserves 4.

LEMMA 2. If (B, k) and (C, k) are minimal completions
of A, then there exists an isomorphism between B and C

that interchanges h(A) and k(A).

Proof. The minimality of B and C implies the existence
of complete monomorphisms f and g (from B to C and from C
to B, respectively) such that fokh =%k and g ok = h. It
follows, by substitution, that fog ok =k and gofoh = h.
If two complete homomorphisms agree on a complete gen-
erating set, then they are identical. This implies that f
and g are each other’s inverses.

The existence theorem produces the minimal completion
of an algebra by combining two steps each of which sep-
arately is familiar by now. Given a Boolean algebra, use
duality to associate it with a topological space, and then
use some general topology to associate with that space the
algebra of regular open sets; the result is, in a natural
way, the minimal completion of the given algebra.

THEOREM 11. If A is the dual algebra of a Boolean

space X, if B is the algebra of regular open sets in X, and
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if b is the identity mapping from A into B, then (B, k)is a
minimal completion of A.

Proof. By Lemma 7.1, B is a complete Boolean algebra.
Clearly % is a one-to-one mapping from 4 to B. To verify
that 4 is a homomorphism we need merely to observe that
for clopen sets the Boolean operations of B reduce to the
ordinary set-theoretic operations. Suppose next that {P } is
a family of elements in 4 that has a supremum, say P, in 4.
Let Q be the supremum of {Pz.} inB.If U = Ui PZ., then P
is U™, by Lemma 1, and Q is the interior of U™, by Lemma
7.1. Since U~ is open, it follows that P = ¢, so that suprema
formable in 4 stay the same in B. One more step is needed
to prove that B is a completion of 4: we must show that
there is no complete algebra properly between 4 and B. For
this purpose, let U be an arbitrary element of B. Since U is
open, it is the union of the clopen sets it includes. The
supremum of that family of clopen sets in B is Ut (Lemma
7.1) and therefore U. This implies that U belongs to the
complete algebra generated by 4 in B, and therefore B is
indeed a completion of 4.

It remains to prove minimality. Suppose that (C, k) is a
completion of A. If U € B, write U as the union of all the
clopen sets it includes, U = U, P,, and define f(U) as the
supremum of the family {k(Pi)} in C. We shall show that f
is a complete monomorphism such that f o & = k. The last
part is the easiest. It says that if U happens to be clopen,
then f(U) = k(U). The reasoning runs as follows. If U is
clopen, then U is not only the supremum but in fact the
largest element of {P,}. This implies that £(U) is the largest
element of {£(P,;)}, and hence that k(U) is the supremum of
that family, as promised. Knowing that f o o = k£ we can
conclude also that f(U) can be 0 only when U is empty.
Indeed, if f(U) = 0, then f(P) = O for all clopen subsets P of
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U, and therefore £(P) = O for all such sets. Since % is given
as a monomorphism, it follows that every clopen subset of
U is empty, and hence that U is empty. We know therefore
that £ is a monomorphism, provided it is a homomorphism
at all. If, moreover, we borrow from the future the fact that
f is a complete homomorphism, we can also conclude that
f maps B onto C. Reason: the range of f is a complete sub-
algebra of C that includes the range of £.

Let U be an element of B and write both U and its com-
plement (that is, U™') as unions of clopen sets; say
U= U, P,, Ut = U, Q;.8ince P, N Q, =&, it follows
that k(P) ﬂ k(Q )=10 for all i and j, and hence (see Lemma
7.4 and Exerc1se 7.8) that f(U) N f(U*) = 0. The fact that
UV U*=1in B implies that there is no clopen set properly
smaller than X that includes all the P’s and Q’s, so that

(P N Q )=1in 4. Since (C, k) is a completion of

A, it follows that \2 ; (k(P,) V k(@) =1 in C, and hence
that f(U) Vv f(U ) = 1. (ThIS argument makes use of an easy
special case of the associative law, Lemma 7.3). Conclusion:

U™ = (fUY) .

The last thing to prove is that f preserves all suprema.
Suppose that {U7} is a family of elements of B and write
U= V]. U7. Since f is obviously order-preserving, it is
clear that V]. flU7) < f(U). To prove the reverse inclusion,
suppose that Q is a clopen subset of U, so that

Q=0 NU=V.(Q NUH=V, (@ N V,P),

where, of course, {P; 7} is the family of all clopen subsets of
Ul. It follows that Q Vi Vi Q@ N P, 7) in 4, and hence
that £(Q) = V; 'V, (k(0Q) A kP =V, (k(Q) ) f(U7) =
kQ) NV f(U’)
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This implies that

KO S V, f(U7)

for every clopen Q in U, and hence, by the definition of f,
that f(U) < \Z f(U7). The proof of the theorem is complete.

Exercises

(1) Every complete Boolean algebra is isomorphic to the
regular open algebra of some compact Hausdorff space.
(Hint: in every space clopen sets are regular open sets; in
a complete Boolean space the converse is true.)

(2) If the regular open sets of a Boolean space consti-
tute a field, does it follow that the space is complete?

(3) Show that if I is infinite and if X is the Cantor space
2!  then 9 (X) is not a completion of the dual algebra of X.

(4) Let A be the Boolean algebra generated by the left
half-closed intervals in [0, 1], let B be the quotient of the
algebra of Lebesgue measurable sets in [0, 1] modulo the
ideal of sets of measure zero, and let C be the quotient of
the algebra of Borel sets in [0, 1] modulo the ideal of
meager sets. Prove that both B and C are in a natural sense
completions of 4.

(5) The minimal completion of an algebra 4 has the
praperty that every element is the supremum of the elements
of A that it dominates. Does any other completion have this
property?

(6) Imitate the construction of real numbers by Dedekind
cuts to construct a completion by cuts for every Boolean
algebra. Is the completion so obtained minimal?
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(7) Prove that the minimal completion of an atomic
algebra is isomorphic to the field of all subsets of the set
of atoms.

(8) Prove that the minimal completion of a non-atomic
algebra is non-atomic.

(9) Does the minimal completion of an algebra satisfying
the countable chain condition satisfy that condition also?

§22. Boolean o-spaces

A Baire set in a Boolean space is a set belonging to the
o-field generated by the class of all clopen sets. Clearly
every Baire set in a Boolean space is a Borel set; the
converse is not true in general. A trivial way to manufac-
ture open Baire sets is to form the union of a countable
class of clopen sets. The converse is true but not trivial.
The converse implies that every open Baire set is an F
(that is, the union of a countable class of closed sets),
and, consequently, every closed Baire set is a Gy (that is,
the intersection of a countable class of open sets). We
shall prove the main result about the structure of open
Baire sets by proving first that every closed Baire set is a
Gs. Observe that in a metric space every closed set is a
Gs; in a general topological space this not so. The proof
of the following auxiliary result uses the fact about metric
spaces just mentioned; the trick is to construct a suitable
metric space associated with each given closed Baire set.

LEMMA 1. Every closed Baire set is a Gg.

Proof. Let F be a closed Baire set in the Boolean space
X, and let {P_} be a sequence of clopen sets such that F
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belongs to the o-field generated by {Pn} (see Exercise
13.7). Let p, be the characteristic function of P and write

Ao y) = L e =0

for all x and y in X. The function d is a metric except per-
haps for strict positiveness. If, in other words, two points
x and y are defined to be equivalent, x = y, in case

d(x, y) = 0, then the equivalence classes may be more than
singletons. (It is trivial that the relation so defined is an
equivalence.) Let U be the set of all equivalence classes.
There is a natural mapping T from X onto U; the value of
T(x) is the equivalence class of x, for each x in X. If
T(xy) = T(x9) and T(y;) = T(yg), then

d("p }’1) < d(xp "2) + d(xg, }’2) + d(}’g» }’1) = d("g: }’2),

and, by symmetry, the reverse inequality is also true, so
that d(x;, y;) = d(x9, y). This implies that writing

e(u, v) = d(x, y),

whenever u = T(x) and v = T(y), unambiguously defines a
metric e on U. The inverse image (under T) of each open
sphere in U is an open set in X, so that T is continuous. A
set in X is the inverse image of some set in U if and only
if it consists of (that is, is the union of) equivalence
classes. The class of sets with this property is a o-field.
If x = y, that is d(x, y) = O, then p_(x) = p, (y) for all n, so
that x and y belong to the same P ’s; this implies that each
P belongs to the o-field of unions of equivalence classes.
It follows from the definition of generated o-field that F
also belongs to that o-field, and hence that F = T‘l(V) for
some subset V of U. Since T(T~!(V)) = V, we infer that ¥
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is compact and therefore closed. The set V is therefore a
Gs; the inverse images of a countable class of open sets
whose intersection is V form a countable class of open sets
whose intersection is F.

COROLLARY. Every open Baire set in a Boolean space

is the union of a countable class of clopen sets.

Proof. By Lemma 1, every open Baire set is the union
of a countable class of closed sets, say 6 = U_ F, . Since
the clopen sets form a base, each F_ is covered by the
clopen sets included in G, and hence, by compactness,
each F is covered by a finite number of such clopen sets.

We shall say that a Boolean space is a g-space in case
the closure of every open Baire set is open. The role of
Boolean o-spaces in the theory of o-algebras is the same as
the role of complete spaces in the theory of complete alge-
bras.

THEOREM 12. The dual algebra A of a Boolean space

X is a o-algebra if and only if X is a o-space.

Proof. (Compare Theorem 10.) If 4 is a o-algebra and if
U is an open Baire set in X, then (by the corollary above)
U is the union of a countable class of clopen sets; since
this class has a supremum in 4, it follows (Lemma 21.1)
that U~ is open. If X is a o-space and if {P }is a countable
class of elements of A, then U P is a Baire open set in
X; since the closure of that set is open, it follows (Lemma
21.1) that {P } has a supremum in 4.
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Exercises

(1) Let I be an uncountable discrete space; give
examples of open sets that are not Baire sets in the one-
point compactification of / and in the Cantor space 2/,

(2) Prove that a set in a Boolean space is a Baire set
if and only if it belongs to the o-field generated by the
class of all open F_’s. (This condition can be and is used
to define Baire sets in topological spaces more general
than Boolean spaces.)

(3) Prove that in every topological space (see Exercise 2)
with a countable base, every Borel set is a Baire set.

(4) Is Lemma 1 true in arbitrary compact spaces? (See
Exercise 2.)

(5) Prove that the closure of a Baire set in a Boolean
space need not be a Baire set. What if the space is a
o-space?

§23. The representation of o-algebras

We know that every Boolean algebra is isomorphic to a
field, whereas a complete Boolean algebra need not be
isomorphic to a complete field (since, for instance, it need
not be atomic). It is natural to ask the intermediate ques-
tion: is every o-algebra isomorphic to a o-field? The
answer is no. We shall see, in fact, that if 4 is a non-atomic
o-algebra satisfying the countable chain condition, then 4
cannot be isomorphic to a o-field. For an example of such
an algebra consider the regular open algebra of a Hausdorff
space with no isolated points and with a countable base.
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Alternatively, consider either the reduced Borel algebra or
the reduced measure algebra of the unit interval.

To prove the negative result promised above, suppose
that 4 is a non-atomic o-algebra satisfying the countable
chain condition., We shall make use of the fact (Corollary
of Lemma 14.1) that 4 is complete. Assume now that 4 is
isomorphic to a o-field; we may as well assume that 4 is a
o-field of subsets of a set X. Select a point x of X and
consider the class E of all those sets in 4 that contain x.
Since A is complete, £ has an infimum in 4, say P; since
A satisfies the countable chain condition, £ has a countable
subclass {P } such that P = A P (see Lemma 14.1). The
fact that 4 is a o-field implies that P = N P ; since
each P contains x, it follows that P # 0. As a non-zero
element of the non-atomic algebra A, the set P has a non-
empty proper subset Q in A. Either Q or P — Q contains «x;
we may assume that Q does. This means that Q € E, and
implies therefore that P C Q (recall that P = A E). This
in turn implies that P = 0, and, since Q was supposed to
be a proper subset of P, the contradiction has arrived.

If a class of Boolean algebras is not large enough to
represent every algebra of a certain kind, the next best
thing to hope is that the homomorphic images of the algebras
of the class will suffice for the purpose. We have just seen
that the class of o-fields is not large enough to represent
every o-algebra; next we shall see that the class of homo-
morphic images of o-fields (and, in fact, o-homomorphic
images) is quite large enough. The following result resem-
bles Theorem 4 (p. 58) in many details, in both statement
and proof. It is almost certain that the two results are
special cases of a common generalization; it is far from
certain whether the formulation and proof of such a generali-
zation would yield any new information or save any time.
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THEOREM 13. Suppose that B is the o-field of Baire
sets and M is the o-ideal of meager Baire sets in a Boolean
o-space X. Corresponding to each set S in B there exists
a unique clopen set f(S) such that S + f(S) € M. The mapping
fis a o-homomorphism from B onto the dual algebra A of
X, with kernel M, so that A is isomorphic to B/M.

Proof. We proceed as in the proof of Theorem 4 (p. 58).
Consider the class of all those subsets of X that are con-
gruent modulo M to a clopen set. This class is a o-field
that contains every clopen set, and, therefore, by the
definition of generated o-field, contains every Baire set.
Since, by the Baire category theorem, two clopen sets can
be congruent modulo M only if they are equal, the existence
and uniqueness of f(S) is proved for every Baire set S. A
straightforward verification yields the remaining statements
of the theorem.

COROLLARY. Every o-algebra is isomorphic to some
o-field modulo a o-ideal.

Proof. By Theorem 12 (p. 99) every o-algebra is
isomorphic to the dual algebra of some o-space. This
corollary is known as Loomis’s theorem.

For o-algebras, just as for plain Boolean algebras, the
representation and duality theory yields an elegant proof
of the existence and representation of free algebras.

THEOREM 14. For every set I, there exists a free
o-algebra generated by I, and, in fact, that algebra is
isomorphic to the o-field of all Baire sets in the Cantor
space 2!,

Proof. Write Y = 2! let B be the dual algebra of Y, and
let B* be the o-field of Baire sets in Y. Define a mapping
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h from I into B by k(i) = {y : y, = 1}, let h* be the identity
mapping from B to B*. The Boolean algebra generated by
k(I) is B; the o-algebra generated by h*(k(I)) is B*. We are
to prove that B* is, in fact, the free o-algebra generated by

h*(h(1))-

1 h » B h” S
g\A//f ///
N,

For this purpose we need to prove that every mapping g
from I to an arbitrary o-algebra 4 can be ‘‘extended’’ to a
o-homomorphism from B* to A. We may and do assume that
A is the dual a.gebra of a o-space X. Let 4* be the o-field
of Baire sets in X; by Theorem 13 there is a o-epimorphism,
k say, from A* to 4.

> B *

Since (see Theorem 9, p. 89) B is free on A(l), there
exists a Boolean homomorphism f from B to 4 such that
foh =g. The homomorphism f is the dual of a continuous
mapping ¢ from X into Y; this implies that f(Q) = ¢~1(Q)
for every Q in B (see Theorem 8, p. 85). Let f* be the
o-homomorphism from B* into 4* defined by f*(S) = 6~ 1(S)
for every S in B*. The promised ‘‘extension’’ is the com-
position k& o f*.

Exercises

(1) Where does the proof of Theorem 13 make use of
the assumption that X is a o-space?
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(2) Derive Loomis’s theorem from Theorem 14.

(3) Is the generalization of Exercise 10.3 to free
o-algebras true? (Compare Exercise 10.5.)

(4) Find an example of an m-algebra (for some infinite
cardinal m) that is not isomorphic to any m-field modulo an
m-ideal. (Hints suppose that B is an m-field, ¥ is an m-ideal
in B, and f is the projection of B onto B/M, where m is
greater than or equal to the power of the continuum. Prove
that if I = {1, 2, 8, .-} and J = 2, then

VaeQI Az’ €1 (pi+a(i))=1
for every sequence {p,} of elements of B/M. The idea is that
such a relation does hold in B and is preserved by f. The
regular open algebra of (0, 1) does not satisfy this condi-
tion.)

824, Boolean measure spaces

A Boolean measure space is a Boolean o-space X to-
gether with a normalized measure on the o-field of Borel
sets in X, such that non-empty open sets have positive
measure and nowhere dense Borel sets have measure zero.
The last condition is a very strange one. At first glance it
might seem that since a nowhere dense set is topologically
small and a set of measure zero is measure-theoretically
small, it is fitting and proper that the one should imply the
other. A little measure-theoretic experience (with Lebesgue
measure in Euclidean spaces, for instance) shows, however,
that the implication is not at all likely to hold. The results
of this section will show that Boolean measure spaces, in
which the implication is assumed to hold, have rather
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pathological and almost paradoxical properties. The reason
for considering them anyway is that measure algebras are
important, and, as it turns out, Boolean measure spaces
are exactly the duals of measure algebras.

We proceed to establish the notation that will be used in
this section. Let X be a Boolean o-space with dual algebra
A (which is, therefore, a o-algebra; see Theorem 12, p. 99).
Let B be the o-field of Borel sets in X, let ¥ be the o-ideal
of meager Borel sets, and let f be the natural o-epimorphism
(Theorem 4, p. 58) from B onto the regular open algebra of
X with kernel M.

LEMMA 1. If v is a normalized measure on B such that
non-empty open sets have positive measure and nowhere
dense Borel sets have measure zero, and if p is the restric-
tion of v to A, then p is a positive, normalized measure on
A (so that A together with p is a measure algebra).

Proof. The only thing that needs proof is that u is
countably additive on 4. Suppose that {P_} is a disjoint
sequence of elements of A (clopen sets in X); write

U= U,y P andP=V P, . ByLemma21l.1, P =0U"
Since, by Lemma 4.5, U~ — U is nowhere dense, so that, by

assumption, v (U~ — U) = 0, it follows that u(P) = v(U).
The countable additivity of u on 4 is now an immediate
consequence of the countable additivity of v on B.

LEMMA 2. If p is a positive, normalized measure on 4,
then f maps B onto A. If v(S) = u(f(S)) for every S in B,
then v is a normalized measure on B such that non-empty
open sets have positive measure and such that the sets of

measure zero are exactly the meager sets.

Proof. The algebra 4 together with the measure p is a
measure algebra, and therefore complete (Corollary of
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Lemma 15.3). It follows that the space X is complete
(Theorem 10, p. 99), and hence that every regular open

set in X is clopen (compare Exercise 21.1). This proves
the first sentence of the lemma. The second sentence is an
immediate consequence of Lemma 15.2.

COROLLARY. The dual algebra A of a Boolean space
X is a measure algebra if and only if X is a Boolean measure

space.

In the rest of the section we shall assume that X and 4
have not only the topological and algebraic properties
originally required, but also the measure-theoretic structure
(the measures v and p) described in Lemmas 1 and 2. This
additional structure has profound and surprising effects on
the topology of X. Thus, for instance, every open set is
included in a clopen set of the same measure (namely its
own closure). In other words, every open set is almost
clopen; next we shall see that something like this is true
for arbitrary Borel sets also.

Consider, indeed, those Borel sets whose measure can
be approximated arbitrarily closely by clopen sets, from
both inside and outside. More precisely, we shall say
(temporarily) that a Borel set S is regular in case sup p(P)
= v(S) (where the supremum is extended over all clopen
sets P included in S) and inf p(Q) = v(S) (where the infimum
is extended over all clopen sets @ including S).

LEMMA 3. Every Borel set is regular.

Proof. We have already noted that an open set can be
approximated arbitrarily closely by clopen sets from above.
To approximate an open set U from below, consider the
class of all clopen sets included in U, take a countable
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subclass with the same supremum, and take a finite sub-
class whose union has very nearly the same measure. The
self-dual character of the definition of regularity implies
that the complement of a regular Borel set is regular, so
that, in particular, every closed set is regular. If S is a
nowhere dense Borel set, n = 1, 2, 3, ..., and therefore a
set of measure zero, then the same is true of the closed
set S, Sirce S is included in a clopen set of very small
measure, it follows that every meager Borel set is included
in an open set of small measure, and hence, by the already
known facts for open sets, in a clopen set of small measure.
By Theorem 4, p. 58 every Borel set S is congruent modulo
meager sets to some clopen set P. If Q is a clopen set of
small measure including the meager set S + P, then P U @
is a clopen set that approximates S from above. Applying
this result to S’, we obtain the approximability of S by
clopen sets from below, and the proof of the lemma is com-
plete.

Lemma 3 says something very strong about the measure
v; the property it ascribes to v is considerably stronger
than the familiar measure-theoretic properties of regularity
and completion regularity.

LEMMA 4. Every Borel set has the same measure as

its closure.

Proof. If S is a Borel set, then, by Lemma 3, there
exist clopen sets @ including S such that v(Q — 5) < 1/n,
n=1,2,8,.... The intersection of these clopen sets is a
closed set that includes S and has the same measure as S.

LEMMA 5. A Borel set of measure zero is nowhere

dense.
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Proof. If v(S) = 0, then, by Lemma 4, v(57) = 0. This
implies, by Lemma 3, that S~ includes no clopen set, and
therefore also mo open set.

LEMMA 6. Every meager set is nowhere dense.

Proof. IfS= U_ S , where each S, is nowhere dense,
then each S~ is nowhere dense. It follows that v (S) = 0
(the reason for forming S is that S is not known to be
measurable), and therefore S is included in the Borel set
u, S;Z‘ of measure zero. The conclusion follows from
Lemma 5.

Exercises

(1) Prove that in a Boolean measure space the boundary
of every Borel set has measure zero.

(2) Prove that the dual space of the reduced measure
algebra of [0, 1] is not separable. (Hint: use Lemma 4 and
the fact that the algebra is non-atomic.)

(83) Use Exercise 2 to show that the reduced measure
algebra and the reduced Borel algebra of [0, 1] are not
isomorphic by showing that the dual space of the latter is
separable. (Hint: For each ¢ in [0, 1] define a proper ideal
M, in the regular open algebra A4 of [0, 1] thus: U € M, if
and only if ¢ € UL . Since every proper ideal is included in
some maximal ideal, there exists a 2-valued homomorphism
x, on 4 such that if U € M,, then x,(U) = 0. If f is an iso-
morphism from the dual algebra of the dual space X of 4 to
A itself, and if t € f(P), where P is a clopen subset of X,

then x, € P. The set of x,’s with ¢ rational is dense in X.)
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§25. Incomplete algebras

The quotient of a Boolean algebra modulo an ideal may
turn out to have a higher degree of completeness than one
has a right to expect. Thus, for instance, the reduced Borel
algebra and the reduced measure algebra of the unit interval
are not only o-algebras, which is all that the general theory
can predict, but even complete. A few observations of this
kind are likely to tip the balance of expectations too far
over to the optimistic side. The purpose of this section is
to provide a counterbalance in the form of some counter-
examples. In other words, we shall obtain a few negative
results: we shall see that certain quotient algebras are not
complete.

The natural questions in this direction are obtained from
the ones already answered by changing either the algebra
or the ideal. The Borel sets modulo meager Borel sets in
[0, 1] constitute a complete Boolean algebra; what about
the Borel sets modulo countable sets, and what about all
sets modulo meager sets? In deriving some of the answers
we shall make use of the continuum hypothesis. This is
sometimes avoidable; since, however, it simplifies and
shortens the argument in any case, and especially since
the purpose of the discussion is not to build the theory but
merely to give warning of some danger spots, the effort of
avoidance is not worth the trouble.

A typical result is that if Xis an uncountable set, then the
field B of all subsets of X modulo the ideal ¥ of countable
sets in X is not a complete Boolean algebra. To illustrate
the argument, consider the special case in which X is the
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Cartesian plane. The proof exhibits a concrete subset E

of B/M that has no supremum. Let f be the projection from
B to B/M; let E be the set of all those elements of B/M
that have the form f(S) for some vertical line S. The best
way to prove that £ has no supremum is to show that to
every upper bound of £ there corresponds a strictly smaller
upper bound. Suppose, accordingly, that f(S) < p for all
vertical lines S. Since f maps B onto B/M, there exists a
subset P of X such that p = f(P). To say f(S) < f(P) means
that P contains all but countably many of the points of S.
Since each S under consideration is uncountable, it follows
that P contains at least one point in each S; let Q be a
subset of P that contains exactly one point in each S.
Clearly f(S) < f(P — Q) for each S; since, however, Q is
uncountable (there are uncountably many vertical lines), it

follows that f(Q) # 0 and hence that f(P) — f(Q) # f(P).

The proof proves more than the statement states. Clearly
the plane has nothing to do with the matter; any set in a
one-to-one correspondence with the plane would do as well.
The exact cardinality of X is also immaterial; all that
matters is that X be uncountable. Indeed, since m? = m for
every infinite cardinal number m, there is always a one-
to-one correspondence between X and X2 (provided only
that X is infinite), and the proof works again. Still another
glance at the proof shows that the countability of the sets
in the ideal M did not play a very great role; what mattered
was that singletons belong to ¥ and sets in one-to-one
correspondence with X do not. On the basis of this last
observation even the assumption that X is uncountable can
be dropped; here is what remains.

LEMMA 1. If B is the field of all subsets of an infinite
set X, and if M is an ideal in B containing all singletons
and not containing any set in one-to-one correspondence
with X, then the algebra B/M is not complete.
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The lemma includes the statement we started with as a
special case; as another special case it contains the state-
ment that the algebra of all subsets of an infinite set
modulo the ideal of finite sets is never complete, not even
if the basic set is merely countable.

Lemma 1 is a relatively crude result, but its proof con-
tains, in skeletal form, the two constructions that yield the
more delicate results obtainable along these lines. The first
step is to construct the set of vertical lines; in abstract
terms, the problem is to construct a large disjoint class of
sets none of which belongs to the prescribed ideal. The
second step is to cut across the vertical lines; here the
problem is to construct a large set whose intersection with
each of the sets constructed before does belong to the ideal.
The first of these constructions is the harder one; it is
based on the following result of Ulam (Fundamenta, vol. 16).

LEMMA 2. If X is the set of all ordinal numbers less
than the first uncountable ordinal number ), then, correspond-
ing to each natural number n and to each ordinal number d
less than ), there exists a subset S(n, a)in X such that the

sets in each row of the array

S(O’ O), S(O’ 1)3 5(03 2)’ ] 5(03 w), A ] 5(09 d),
5(1, 0), 5(1, 1), S(1, 2), -, S(1, @), ++=y S(1, a), -

S(2, 0), S(2, 1)$ S, 2)’ ey (2, w), ) 5(21 a’)s

S(r, 0), S(n, 1), S(n,2), ==, S(rs @)y ey S(n, @), -
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are pairwise disjoint, and the union of the sets in each

column is cocountable.

Proof. For each B in X select a sequence {k(a, B)} of
type B (that is, a < 8) whose terms are distinct natural
numbers. These sequences can be laid out in a triangular
array, as follows.

0 1 92 eee a

1 | k0, 1),
2 k(0, 2), k(1, 2),

3 | KO,3), K(1,3), k@,3)

B | kO, B), KA, B), K2, B) e e B)y -

Let S(n, a) be the set of all those 8 for which k(a, 8) = n.

For example: to get S(5, 2), consider the column labeled

2, and collect all those elements B for which the 8 entry

in that column has the value 5. If B8 € S(n, a), then k(a, B) = n;
since k(ay, B) # k(ag, B) unless a; = ay, it follows that,

for each n, the sets S(n, a) are indeed pairwise disjoint.

If @ < B, then

B €5(k(a, B)ya) < U, S(n, a),

so that the union U_ S(r, a) contains every 8 greater
than a; it follows that each such union is indeed cocountable.
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To apply Lemma 2 we assume the continuum hypothesis.

COROLLARY 1. The unit interval is the union of a
disjoint class of power Nl consisting of sets none of which

is meager.

Proof. Establishing a one-to-one correspondence between
[0, 1] and the set of all ordinal numbers less than Q, we may
and do assume that the sets S(n, a) described in Lemma 2
are subsets of [0, 1]. Since each column of the square array
of §’s consists of countably many sets whose union is co-
countable in [0, 1], it follows that at least one of the sets
in each column must not be meager. Since there are uncount-
ably many columns but only countably many rows, some row
must contain uncountably many non-meager sets, and those
sets, by Lemma 2, are pairwise disjoint. In case the union
of the non-meager sets so obtained is not the entire inter-
val, adjoin the complement of that union to one of them.

COROLLARY 2. The unit interval is the union of a
disjoint class of power Nl consisting of sets none of which

has measure zero.

Proof. Same as for Corollary 1; just interpret the word
‘“meager’’ to mean ‘*having measure zero’’.

We are now ready to imitate the argument (vertical lines)
that lead to Lemma 1. This time let X be the unit interval,
let B be the field of all subsets of X, and let ¥ be the ideal
of meager sets. By Corollary 1 there exists a disjoint family
{S;} of power Nl consisting of sets not in M. Let f be the
projection from B to B/M; let E be the set of all those
elements of B/M that have the form f(S;) for some i. We shall
show that the set £ has no supremum by showing that to
every upper bound p of E there corresponds a strictly
smaller upper bound.
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The preceding paragraph has the analogues of the ver-
tical lines; the next problem is to cut across them. The
technique here is based on the fact that every meager set
is included in some meager F_. (Proof: every nowhere
dense set is included in a closed nowhere dense set, namely
its closure.) Since an easy argument shows that the cardi-
nal number of the class of F ’s is the power of the continuum,
and since we have already assumed the continuum hypothe-
sis, we may assume that all meager F's occur as the terms

of a family {R.} with the same set of indices as the family
(5,1

Suppose now that P is a subset of X such that f(P) = p
(=the presumed upper bound of all f(5,)). To say f(S;) < f(P)
means that P includes all but a meager subset of S;. Since
R; is meager but S, is not, it follows that P contains at
least one point in each S, — R;; let Q be a subset of P that
contains exactly one point in each S, — R,. Clearly
f(5;) £ (P — Q) for each i; since, however, ¢ is not included
in any R, itfollows that f(Q) # 0 and hence that f(P) —

f(Q) # f(P).

The proof is over; the time has come to see what it
proves. The following statement (Sikorski) is a suitably
general formulation of what the technique can be made to
yield.

LEMMA 3. Suppose that B is the field of all subsets of
a set X, that M is an ideal containing all singletons, and
that {R.} is a family of sets in M with the property that every
set in M is included in some R. If there exists a disjoint
family {Si}, with the same set of indices, consisting of sets

not in M, then the algebra B/M is not complete.
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A special case of the lemma, different from the one
proved above, is that the algebra of all subsets of [0, 1]
modulo the ideal of sets of measure zero is not complete.
To deduce this conclusion from the lemma, let {Ri§ be the
family of Gg's of measure zero.

Exercises

(1) Prove Corollary 2 without assuming the continuum
hypothesis.

(2) Let B be the field of all subsets of [0, 1] and let ¥
be the ideal of countable sets. Is there a normalized meas-
ure on the algebra B/M?

§26. Products of algebras

A familiar way of making one new structure out of two
old ones is to form their Cartesian product and, in case the
structure involves some algebraic operations, to define the
requisite operations coordinate-wise. Boolean algebras
furnish an instance of this procedure. Since nothing is
gained by restricting attention to two algebras at a time,
we proceed at once to discuss arbitrary families. By the
product of a family {4} of Boolean algebras we shall under-
stand their Cartesian product TTi A;, construed as a
Boolean algebra with respect to the coordinate-wise opera-
tions. This means that, for instance, O in TT,. A, is defined
by 0, = 0 for all i, and p V ¢ inﬂi A; is defined by
(pVgq)=p; Vg forall i. We shall indicate the product of
finite or infinite sequences of Boolean algebras by such
obvious and customary modifications of the symbolism as
TT7i=1 4;- For sequences of length two (and sometimes
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even for longer ones) we use the multiplication cross, so
that TT ?=1 A; = Ay x 45. It is an immediate consequence of
the definition that the product of a family of o-algebras is
a o-algebra, and, similarly, the product of a family of com-
plete algebras is complete.

In case each of a family of algebras {4,} is a field of
subsets of a set X, then their product, say A, presents
itself naturally as a field of subsets of the disjoint union
of the given sets. One way to make the latter phrase precise
is to form the set X of all ordered pairs (x, i) with x € X, .
This set includes a copy (in an obvious sense) of each X,
and these copies constitute a disjoint family of subsets of
X. (The whole point of considering ordered pairs here is to
force disjointness by means of the second coordinate.) To
put the whole matter differently, suppose that a set X is
the union of a disjoint family of non-empty subsets X.. If
A, is a field of subsets of X;, then 4 is naturally isomorphic
to a field of subsets of X; the natural isomorphism is the
one that assigns to an element P of 4 the subset U , P,
of X. (Recall that for each element P of TTi A;, and for
each index i, the coordinate P, of P makes sense.)

If A is the product of a family {4 } of algebras, then, for
each i, there is a natural epimorphism from 4 to 4;, namely
the projection f, defined by f,(p) = p;. If, moreover, B is an
arbitrary Boolean algebra, and if, for each i, there is a
homomorphism g, from B to 4;, then there is a unique homo-
morphism g from B to 4 such that f, o g = g; for all i. (Both
existence and uniqueness are direct consequences of the
definition of product.)
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The algebra 4 and the family {f,} of homomorphisms are
uniquely determined (to within isomorphism) by the property
just ascribed to them. To prove this, suppose that B and
{g;} have the same property. It follows that there exists a
homomorphism f from 4 to B such that g; o f = f, for all i}
this, in turn, implies that f, o g of = f; and g; o f 0 g = g; for
all ;. Since the role of g o f in the first of these equations
and the role of f o g in the second is played by the identity
automorphisms also (on 4 and on B, respectively), the
assumed uniqueness proves that both f and g are isomor-
phisms, and that, in fact, each is the inverse of the other.

If {X.} is a family of Boolean spaces, we define their
sum Zi X,; as the dual space of the product of the
corresponding algebras. Since the disjoint union of a finite
family of Boolean spaces is a Boolean space in a natural
way, it follows from the discussion of the product of fields
of sets that the dual space of a finite product of algebras
is (to within a homeomorphism) equal to the corresponding
disjoint union of spaces. In other words, the concept of
addition for Boolean spaces is an infinite generalization of
the simple finite concept of disjoint union. Motivated by
the additive terminology and notation, we shall use the plus
sign for the finite concept, so that Zil X; =Xy + Xgq.

If A, = 2 for each element i of an infinite set /, then
TT A4; is isomorphic to P (I). This shows that the sum of
even the simplest spaces (singletons) can be something as
unruly as the Stone-Cech compactification of an infinite
discrete space (see Exercise 17.4).

The characterization of the product of a family of Boolean
algebras by a family of homomorphisms can, of course, be
dualized. The result is the following characterization of
sums. If {X;} is a family of Boolean spaces, then there
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exists a Boolean space X, and, for each i, there exists a
continuous one-to-one mapping ¢, from X, into X, so that if
Y is any Boolean space, and if, for each i, there exists a
continuous mapping ¥, from X; to Y, then there exists a
unique continuous mapping ¢ from X to Y such that

Y og, =y, for all i.

—— e ¥

BN

Exercises

(1) Suppose that {4.} is a family of Boolean algebras
such that, for each i, there exists a positive normalized
measure on A.. Under what conditions does it follow that
there exists a positive normalized measure on ﬂi 4,?

(2) Find Boolean algebras A, B, and C such that 4 x B
= A x C but B #£ C. (In other words, the cancellation law
for products is false. Interpret the equal sign in this context
to mean isomorphism.) Can the algebras be countable? Can
they be finite?

(3) A product TT:' A; includes two subalgebras, each of
which might deserve some consideration as a kind of weak
product of the family {4;}. One subalgebra consists of those
elements p for which p, € 2 for all but a finite set of indices
i; the other, smaller, subalgebra consists of those elements
p for which either p, = 0 for all but a finite set of indices i
or else p. = 1 for all but a finite set of indices i. Give an
example for which all three algebras are distinct. What can
be said about the duals of these algebras?
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§27. Sums of algebras

There are two ways to dualize arrow diagrams such as
we met in the preceding section. What, for instance, does
the diagram for products of algebras imply about the cor-
responding dual spaces? That is the first question; the
answer is given by the diagram for sums of spaces. An
equally natural question is this: What does the diagram for
products of algebras become if the algebras and homomor-
phisms involved in it are replaced by spaces and continuous
mappings? Two similar questions can be asked about the
dualization of the diagram for sums of spaces. One of them
leads back to products of algebras, and the other is the
algebra dual of the space question just asked. The purpose
of the present section is to answer the two as yet unan-
swered questions.

We proceed to the precise formulations. Suppose that
{X;} is a family of Boolean spaces. Does there exist a
Boolean space X, and does there exist, for each i, a con-
tinuous mapping ¢, from X onto X; such that the requiSite
lifting condition is satisfied? The

X<--—-— il 4
qs\ /¢

lifting condition says that if Y is a Boolean space and if,
for each i, there exists a continuous mapping ¢; from Y to
X;, then there exists a unique continuous mapping ¢ from Y
to X such that ¢, oy = ¢; for all i. The answer is obviously
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yes; if X is the Cartesian product of the family {X.}, with
the product topology, and if the ¢, are the usual projections
from a product space to its factors, then all the requirements
are fulfilled. The only special fact that needs verification

is that the clopen sets form a base for X (see Exercise
17.8). An argument similar to the one that proved the unique-
ness of the product of Boolean algebras (to within an
isomorphism) proves that there is a unique Boolean space
(to within a homeomorphism) that, together with a suitable
family of mappings, satisfies the lifting condition. It is
natural to call the space we constructed the product of the
given family of spaces and to use the multiplicative nota-
tion (Trz. X;, X; x Xg, etc.) that this terminology suggests.

Suppose next that {4,} is a family of Boolean algebras.
Does there exist a Boolean algebra 4, and does there exist,
for each i, a monomorphism f, from 4, to 4 such that the
transfer condition is satisfied? By the transfer condition
we mean that if B is a Boolean algebra and if, for each i,
there exists a homomorphism g, from 4, to B, then there
exists a unique homomorphism g from 4 to B such that
g of, = g for all i. The answer by now is obviously yes;
just dualize the theory of products of Boolean spaces. To
be more

precise, let X; be the dual space of 4,, let A be the dual
algebra of TTZ. X;, and, for each p in A]., write f](p)

={x € TTZ. X; : x(p) = 1}. We shall call the algebra the
sum of the given family of algebras and we shall use the
additive notation (2, 4,, 4; + 4, etc.) that this termi-
ology suggests. Standard arguments prove that the transfer
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condition uniquely determines the sum of a family of alge-
bras, to within an isomorphism.

Sum and product constructions similar to the Boolean
ones introduced above are useful for every known mathe-
matical category, and, almost as a consequence of their
universality, they are called by many different names. The
terminology adopted above clashes head-on with some terms
in common usage, but even so it is as nearly consistent
with all already existing terminologies as any systematic
usage could possibly be. No one will argue about products
of spaces; that terminology is universally accepted. Pro-
ducts of algebras are almost as good (but not quite); the
terminology is in harmony with accepted usage for groups,
modules, and topological spaces. Instead of ‘‘product’’ a
group-theorist would perhaps say ‘‘direct product’’, or, in
the infinite case, ‘*strong direct product’’, but that is close
enough. Disagreements begin when group-theorists speak
of *“‘direct sum®’ or *‘strong direct sum”’. Even our ‘‘product’’
of Boolean algebras is sometimes called ‘‘direct sum’’, or,
worse yet, ‘‘direct union”’. Our *‘sum’’ of Boolean spaces
is not in common usage, but it does not seriously conflict
with anything either; its sole competitor is ‘‘disjoint union’’,
and that in the finite case only. The most radical departure
is our ““sum’’ of algebras. The word is in harmony with
“‘weak direct sum’’ for modules, which, however, has also
been called ‘‘weak direct product’’. The word is completely
out of harmony with the usage in non-abelian group theory;
the corresponding concept there is called ‘‘free product.’”
Whether the word has the right intuitive connotations is
perhaps arguable; at the very least a good case can be made
out for it.
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Exercises

(1) Show that a sum of complete algebras need not be
complete. What about a finite sum? What about o-algebras?

(2) If A, = 2 for every element i of a set /, what is
. A.?
z 1

(3) Prove that if 4, = 2 x 2 for every element i'of a set

I, then ; 4; 1s isomorphic to the free algebra generated
by 1.

§28. Isomorphisms of factors

A natural question about products of Boolean algebras
(and of many other algebraic systems) is this: if each of
two algebras is isomorphic to a factor of the other, does it
follow that the two algebras are isomorphic. (‘‘Factor”’
refers of course to the multiplication defined in §26.) The
question can be reformulated and specialized in various
interesting ways. For grammatical convenience we shall
express the reformulations as statements rather than ques-
tions; the problem will then be to decide which statements
are true and which ones false. For typographical conven-
ience we shall use the sign of equality to denote isomorphism.

(1) f D=4 xBand 4 =D x C, then 4 = D.
(2) If4=4xBxC,thend =4 xB.
(3) IfA = A x B xB,then 4 =4 x B.

(4) If A=A x2x2,then 4 =4 x2.
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The assertions (1) and (2) are easily seen to be equivalent;
(2) implies (3) (put C = B), and (3) implies (4) (put B = 2).
Following Hanf, we shall settle the status of all these
assertions by proving that (4) is false. The exposition is
strongly influenced by several inspiring conversations with
Dana Scott.

Let {a } and {5, } be two countable sets, disjoint from
each other, and let X be their union. A permutation T of X
is defined by writing T(a,) = b, and T(b,) = a,, n = 1,2,3, ---.
The class of all those subsets of X that are invariant under
T is a complete field of subsets of X; the atoms of that
field are the couples {a , b}, n =1,2,3, .... Call a subset
of X almost invariant if it differs from an invariant set by a
finite set. The class 4 of all almost invariant sets is a
field. The field 4 is atomic; its atoms are the singletons of
X. Note that every infinite almost invariant set (that is,

every infinite set in 4) includes an infinite invariant set.

The algebra 4 x 2 x 2 can be described as follows. Adjoin
two new points to X, say a; and b,, and form all sets that
differ from a set in 4 by a subset of {ao, byl. The mapping
S defined by S(a)) =a,,; and S(b,) = b, 41, n = 0,1,2, ..., is
a one-to-one correspondence between the enlarged set and

the old one. The restriction of the inverse image map s-1
to sets in 4 is an isomorphism between 4 and 4 x 2 x 2.

The algebra 4 x 2 can be described similarly. Adjoin one
new point to X, say ¢, and form all sets that differ from a
set in 4 by a subset of the singleton {c}. Observe that
A x 2 has an involution (an automorphism of period 2) that
leaves exactly one atom fixed. (Extend T to a permutation
Uof X U {c} by writing U(c) = c; the induced inverse image
map is an involution of the sort described.) To prove that
A £ A x 2, we shall show that 4 has no such involution.
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Assume that, on the contrary, 4 has an involution U
with exactly one fixed atom. We may assume, with no loss
of generality, that that atom is one of the a’s. The cor-
responding b is not left fixed by U; we may assume (typical
special case) that its image is one of the a’s. By applying
this argument repeatedly we obtain an infinite sequence
{ank} such that U(anl) =4, and U(bnk) =% k=1,2,3, ...

a"l/, anj/ a"g/, a"j/, a"5/, "o
St Y * . YA

The set consisting of the ¢ ’s and the b, ’s with k congruent
£ "k

to 2 modulo 8 is invariant (under T) and therefore an element
of A. The image of that set under U is infinite, but that image
includes no non-empty subset invariant under T. This is a
contradiction, proving that the assumption of the existence

of U is untenable.

The phenomena so observed can be described in topologi-
cal terms also. The dual space of 4 is just like the dual
space-of the algebra of all subsets of a countable set (which
can alternatively be described as the Stone-Cech compatifica-
tion of a countable discrete space), with one important
modification: each isolated point is split into two distinct
points, a red one and a blue one, say. The isolated points
were dense before the split; they still are. Before the split
interesting clopen sets were obtained by forming closures of
infinite sets of isolated points; this is still true. What is
different after the split is that two disjoint infinite sets of
isolated points (for example, in case the given countable set
consists of the positive integers, the red even numbers and
the blue even numbers) can now have the same closure. The
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isomorphism facts proved above amount to this: adjoining
(or discarding) two isolated points we get a homeomorphic
space, but if we adjoin (or discard) only one isolated point,
we do not.

There are several questions closely related to the ones
we just answered. The counterexample to (4) is a large
algebra (it has the power of the continuum); is there a
countable one? If not, are there countable counterexamples
to (3)? The answers are no (Exercise 28.7) and yes (§29)
respectively. Is there a countable algebra 4 such that
A=A4xAxA4but4d#£A4 xA? The answer is not known.

The corresponding questions for sums in place of pro-
ducts have not yet been attacked. It is not even known
whether there exist Boolean algebras 4 and B such that
A+A =B + B but 4 # B:

Exercises

(1) Prove that for the Boolean algebra 4 constructed
above 4 = 4 x 4.

(2) Find two Boolean algebras 4 and D such that
AxA=DxDbutd #£D.

(3) Find a Boolean algebra D such that D =D x D x D
but D £ D x D.

(4) Find a Boolean algebra 4 suchthat 4 =4 x2 x 2 x2
but 4 # 4 x2and 4 #4 x2x2.

(5) Find Boolean algebras 4; and 4, such that 4; x 44
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(6) Prove that if 4 is a countable Boolean algebra with
infinitely many atoms, and if B is a finite Boolean algebra,
then 4 = 4 x B. (Hint: dualize.)

(7) Prove that if 4 is a countable Boolean algebra, and
if B and C are finite Boolean algebras such that 4 =4 x B x C,
then 4 = 4 x B.

§29. Isomorphisms of countable factors

The purpose of this section is to show (following Hanf,
as simplified, orally, by Dana Scott) that there exist count-
able Boolean algebras 4 and B such that 4 = 4 x B x B but
A £ A x B. The method of attack is topological; in fact, we
shall construct Boolean spaces X and Y, each with a count-
able base, sothat X = X +Y + Y but X £ X + Y. (The equal
sign denotes homeomorphism here.)

We begin by constructing for each integer n (=0,1,2, ...)
a Boolean space U, , with countable base, and a distinguished
point u, of U , such that no neighborhood of u, is homeo-
morphic to any neighborhood of any other point in any U,
(not even in U, itself). Here is one way to do this: let U,
consist of a sequence of type »” in [-1,0] converging to 0,
together with the Cantor set in [0, 1]. The point 0 of U is
then such that the derivatives of order less than n of every
neighborhood of it contain isolated points, whereas the n-th
derivative is perfect. No other point in any of the spaces
under consideration can make that claim.

Next we form the union of a disjoint class consisting of
exactly one copy of each of the spaces U, With k > n; let
Y, be the one-point compactification, by y, of that union.
Schematically ¥, may be represented in the form
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n,n+ 1,042 ot iy,

where, for the sake of brevity, we have used the symbol for
the integer n to denote the space U . We form also the union
of a disjoint class consisting of exactly two copies of each
of the spaces U, with & > n; let Z be the one-point com-
pactification, by z, of that union. Schematically Z may be
represented in the form

n,n+l,n+2, oz, + 2,0+ 1, 0.

We go on to form the union of a countable disjoint class
consisting of copies of Z,, and compactify it by one point
z*, The result is represented schematically by the part of
the subjoined diagram that lies above the unbroken dividing
line. The part of the diagram below that line is a schematic
representation of the union of a disjoint class consisting
of exactly one copy of each Z, and of exactly two copies of
each Y _, compactified by one point y*.Let X be the disjoint
union of the two grand unions formed before, so that the
whole diagram represents X. Clearly X is a Boolean space
with a countable base.

Each copy of each u, in X has a neighborhood that con-
tains no other copy of that u, or of any other. The v ’s are
the only points of X with this property.

Every neighborhood of each copy of y in X contains a
copy of almost all the u’s (that is, all but a finite number),
and some neighborhood of each y contains exactly one copy
of each u. The y’s are the only points in X with this prop-
erty.

Every neighborhood of each copy of z in X contains at
least two copies of almost all the u’s, and some neighbor-
hood of each z contains exactly two copies of each u. The
z's are the only points in X with this property.
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Every neighborhood of y* contains almost all y’s and
almost all z’s. The point y* is the only point in X with this

property.
Every neighborhood of z* contains almost all z’s, and

some neighborhood of z* contains no y’s. The point z* is
the only point in X with this property.

The preceding paragraphs imply that if T is a homeomor-
phism of X onto X, then y* and z* are invariant under T,
the set U* of all u’s is invariant under T for each n, the
set Y* of all y's is invariant under T, and the set Z* of all
z’s is invariant under T. "

R

012345 e Z e 54 32102,
012345 . —»ze— 543210 2,
1 345 —_— e 5 4 3 1 Z4
345 — I ee 5 43 Zg
345 o —> ze—p 5 43 Z,

!

3 y 345 iy ye—- 5 43¢ Y,
o 1423845 >y ye— 54327 |7,
Y, 12345 ommy ye— 54321107
Yo 01 23 45 oy ya—- 5 43210 Yy
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Let the space Y be the Y, already defined above. We
are to prove that two copies of ¥ can be adjoined to X with
impunity; we shall prove the equivalent assertion that two
copies of Y can be discarded from X with impurity. Suppose,
indeed, that the bottom row of the diagram is erased. To
reconstruct the space X, take the 0’s from the lowest Z
and give them to ¥, take the 1's from Z; and give them to
Yy, and so on, as indicated by the long vertical arrows in
the diagram; leave all other parts of X alone. The trans-
formation so defined is a homeomorphism from the deleted
space to the original X. The verification of this assertion
is routine. The only excitement can come from a sequence
chosen from the moving parts and converging to y*; the
construction guarantees that the transform of such a se-
quence still converges to the (fixed) point y*.

The next and last thing to prove is that the ad-
junction of one copy of Y to X makes a difference; we
shall prove the equivalent assertion that if X is diminished
by discarding one copy of Y, say the right half of the
bottom line, then the resulting space X is topologically
distinguishable from X. Indeed: X has an involution (a
self-homeomorphism of period 2) that leaves fixed each
point of Y* U Z* U {y*} U {z*}, and nothing else. (Re-
flect the diagram about the central vertical axis.) We shall
prove that X has no such involution. Suppose that, on the
contrary, T is an involution whose set of fixed points is
exactly Y* U Z* U {y*} U {z*}; our remaining task is to
derive a contradiction from this supposition.

Let V be the part of X represented by the part of the
diagram below the unbroken horizontal line. Since ¥ is a
compact subset of X — {z*}, the same is true of T(¥). This
implies that there exists a dotted horizontal line (as
indicated) such that T(V) is below it. (The linguistic
identification of parts of the diagram with corresponding
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parts of the space X is obvious and harmless.) Below the
dotted line there are an odd number of 0’s. Since T maps

Ug into itself, and since no copy of u is fixed under T, one
of those 0’s (or, to be a little more precise, the copy of u
belonging to one of those 0’s) is mapped above the dotted
line. The 0 (or 0’s) to which this happens cannot be in ¥V
(since T(V) is below the dotted line). Conclusion: one of
the 0’s between the two horizontal lines gets mapped above
the dotted line. What was just argued about the 0’s is just
as true about the 1’s, the 2’s, etc. Since there are only a
finite number of rows between the two horizontal lines, it
follows that there is at least one such row with the property
that infinitely many of its parts get mapped above the dotted
line. Since from those parts a sequence of points converging
to some z (between the lines) can be selected, the continuity
of T implies that T moves some z from between the lines to
above the dotted line. The contradiction has arrived: the z’s
must be fixed under T.

§ 30. Retracts

A Boolean algebra B is a retract of a Boolean algebra 4
if there exist homomorphisms f and g mapping A and B into
B and A4, respectively, such that f o g is the identity mapping
on B. The condition implies that f is an epimorphism and g
is a monomorphism, so that a retract of 4 may be simultane-
ously regarded as a quotient algebra and a subalgebra of 4.

We shall meet quite a few arrow diagrams in what follows;
some conventions will be useful. An epimorphism will be
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indicated by double-headed arrows == ; monomor-

phism will be indicated by double-footed ones |jrmmmms-,
The adjoined diagram is, accordingly, a better representa-
tion of the definition of a retract than the one above. The

diagram obtained from a given one by reversing all arrows
and interchanging double-headed and double-footed ones is,
in a certain informal sense, the dual of that given one. In
this sense the concept of retraction (or, rather, its diagram)
is self-dual.

We shall say that an algebra B is an absolute subretract
if, roughly speaking, B is a retract of every algebra that
includes it. More precisely, B is an absolute subretract in
case corresponding to every monomorphism g from B to any
Boolean algebra A there exists an epimorphism f from 4 to
B such that f o g is the identity on B. Dually, B is an
absolute quotient retract if B is a retract of every algebra
that maps onto it. In precise terms the requirement is that
to every epimorphism f from an arbitrary Boolean algebra 4
to B there corresponds a monomorphism g from B to 4 such
that, again, f o g is the identity on B.

The dual definitions make sense and are worth while in
the study of Boolean spaces. A Boolean space Y is a retract
of a Boolean space X
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if there exist continuous mappings ¢ and ¢, as indicated in
the diagram, such that ¢ o ¢ is the identity on X. The
definitions of the absolute concepts should be obvious by
now. Note that if <A, X> and <B, Y > are dual pairs
(see §18), then a necessary and sufficient condition that ¥
be a retract of X is that B be a retract of 4; in this sense

of duality absolute subretracts and absolute quotient retracts
are the duals of one another.

The rather natural definitions above are special cases of
some others that, on first glance, may look somewhat
artifical. Since, however, it turns out that the generalizations
have a very satisfying and useful theory, we proceed to
introduce them. We say, accordingly, that a Boolean algebra
B is projective if every homomorphism from B to a quotient
can be lifted to the numerator. More precisely, B is projec-
tive in case for every epimorphism f from an arbitrary Boolean
algebra 4

A
o
/
,5/ f
B ~C
h

to an arbitrary Boolean algebra C, and for every homomor-
phism 4 from B into C, there exists a homomorphism g from
B into A such that f o g = h. Clearly every projective algebra
is an absolute quotient retract. (Take C = B and let % be the
identity.) Similarly, B is injective if every homomorphism
from some subalgebra into B can be extended to the whole
algebra. More precisely, B is injective in case for every
monomorphism g from an arbitrary Boolean algebra C to an
arbitrary Boolean algebra 4, and for every homomorphism 4
from C into B, there exists a homomorphism f from 4 into B
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such that f o g = n. Clearly every injective algebra is an
absolute subretract. (Take C = B and let & be the identity.)

The dual definitions apply, of course, to Boolean spaces.
A Boolean space Y is projective if every continuous mapping
from Y to a quotient space can be lifted to the numerator;
it is injective if every continuous mapping from some sub-
space into Y can be extended to the whole space. The precise
formulations, as well as the informal ones just given, are the
topological duals of the corresponding algebraic definitions.

All the concepts defined in this section have a universal
(and hence rather shallow) character; they apply with only
minor modifications to modules, or groups, or topological
spaces, and, in fact, to every known category of mathematical
objects. The interested reader may pursue this comment for
himself. We shall not even pause to give the appropriate
examples and counterexamples in the cases of central inter-
est (that is, Boolean algebras and Boolean spaces). We
stay, instead, on or near the universal level, by deriving
some elementary consequences of the definitions; the juicy
existence and characterization theorems follow in later
sections.

LEMMA 1. Every retract of a projective algebra is pro-

jective; every retract of an injective algebra is injective.

Proof. Assume that B is a retract of a projective algebra
B, with associated epimorphism 4 and monomorphism j. It is
to be proved that for given 4, C, f, and &, as in the diagram,
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g can be contructed. erte K =hok,and, using the projec-
tivity of B lift h to g. The desired homomorphism is
defined by g = g’ o j- The dual assertion for injective algebras

(**dual® in the arrow diagram sense) is proved by a dual
proof.

COROLLARY. Every retract of a projective Boolean space

is projective; every retract of an injective space is injective.
Proof. Topological duality, from Lemma 1.

LEMMA 2. IfY is the sum (disjoint union) of a finite
family {Y } of Boolean spaces, then each Y, is a retract of
Y; if, in fact, §, is the natural mapping (embedding) from Y,
to Y, then there exists a continuous mapping y; from Y onto
Y, such that y; o §; is the identity on Y.

Proof. (Compare Exercises 18.2 and 20.5.) We may and
do identify each ¥, with a clopen subset of Y. Map ¥ onto
Y, by mapping Y, onto itself identically and sending every
other point in ¥ onto an arbitrary but fixed point of Y .

LEMMA 3. IfY is the product of a family {Y,} of Boolean
spaces, then each Y, is a retract of Y; if, in fact, y; is the
projection from Y onto Y,, then there exists a continuous
mapping 8; (which is necessarily one-to-one) from Y into ¥
such that y, o §; is the identity on Y,
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Proof. Map Y, into Y by selecting an arbitrary but fixed
point from each factor, except Y, itself, and sending every
point in Y, onto that point of ¥ whose i coordinate is the
given one and whose other coordinates are the selected
points.

THEOREM 15. The sum of a finite family of Boolean
spaces is injective if and only if each one of them is injec-

tive.

Proof. The ‘“‘only if*’ follows from the Corollary of
Lemma 1 and Lemma 2. To prove the converse, let Y be the
sum of the finite family {¥,}, let 5, be the natural mapping
from Y, to ¥, and

let y, be a continuous mapping from Y onto ¥, such that

¥; 0 8, is the identity on ¥; (Lemma 2). Suppose now that
each Y, is injective. It is to be proved that for given X, Z,
&, and 0, as in the diagram, ¢ can be contructed. Write

Z = 6‘1(81.(Yi)), so that {Z } is a finite disjoint family of
clopen sets in Z. It follows that {¢ (Z,)} is a finite disjoint
family of closed sets in X, and, consequently, there exists
a disjoint family {X;} of clopen sets in X such that

¢ (Z;) < X, for each i. We may and do assume that

U, X; = X. Let 6, be the restriction of y;, 0 0 to Z;, and
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using the injectivity of Y, extend 6; to mapping y; from X,
to Y;. The desired mapping is defined by writing
¥ (x) = 8, (Y, (x)) whenever x € X..

COROLLARY. The product of a finite family of Boolean

algebras is projective if and only if each one of them is
projective.

THEOREM 16. The product of a family of Boolean spaces

is injective if and only if each one of them is injective.

Proof. The ‘“‘only if”’ follows from the Corollary of
Lemma 1 and Lemma 3. To prove the converse, let Y be the
product of the family {¥ 1, and let y, be the projection from .
Y into Y,. Suppose now that each Y; is injective. It is to be
proved that for given X, Z, ¢, and 6, as in the diagram, ¢
can be constructed.

Write 6, = y, o 6, and, using the injectivity of Y;, extend 6,
to a mapping ¢; from X to Y,. The desired mapping is ¢,
uniquely determined by y; (¥ (x)) = ¢; (x) for each i.

COROLLARY. The sum of a family of Boolean algebras

is projective if and only if each one of them is projective.
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$31. Projective algebras

We still have no examples of projective algebras; the
following result provides infinitely many.

THEOREM 17. Every free Boolean algebra is projective.
Proof. Suppose that B is free on a subset / and let j be

the identity mapping of I into B. It is to be proved that given
A, C, f, and h, as in the diagram, g can be constructed. For

every i
A
7
/
8,7 NS
’
’ \
ol
/ ]
B - C

in I there exists an element k(i) in 4 such that f(k(?)) = A(j(i));
the reason is that f is an epimorphism. Since B is free on I,
there exists a unique homomorphism g from B to 4 such that
g oj = k. Since f o g agrees with 4 on /, the fact that / gen-
erates B implies the desired result.

COROLLARY 1. Every Cantor space is injective.

COROLLARY 2. 4 Boolean algebra is projective if and

only if it is a retract of a free algebra.

Proof. A retract of a free algebra is a retract of a projective
algebra (Theorem 17)and therefore projective (Lemma 30.1).
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A projective algebra is an absolute quotient retract ($30);
since every Boolean algebra is a quotient of a free one, it
follows that a projective algebra is a retract of a free
one.

COROLLARY 3. 4 Boolean space is injective if and

only if it is a retract of a Cantor space.

COROLLARY 4. 4 Boolean algebra is projective if and

only if it is an absolute quotient retract.

Proof. The *‘only if”* was proved in §30. If an algebra
is an absolute quotient retract, then, in particular, it is a
retract of a free algebra and hence (Corollary 2) projective.

COROLLARY 5. 4 Boolean space is injective if and

only if it is an absolute subretract.

Freedom is a rather severe structural restriction on a
Boolean algebra and it is not too surprising that freedom
implies projectivity. It is considerably more surprising that
a cardinal number restriction can also imply projectivity; we
proceed to prove an assertion of this kind, first in dual form.

LEMMA 1. Iflis a countable set, then every non-empty

closed subset of the Cantor space ol is a retract of21.

Proof. We may and do assume that [ = {1,2,3, ... }; all
that we omit thereby is the trivial finite case. If x and y are
in 21, write d(x, y) = Zi: i# |x; — ,|; the function d is
a metric that induces the topology of 2!. The uniqueness of
the decimal expansions in which only 0’s and 1’s occur (no
9’s) implies that if d(x, y) = d(x, z), then y = z. It follows
that if F is a non-empty closed subset of 2, then a trans-
formation ¢ of 2! into itself is unambiguously determined by
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writing y = ¢ (x) in case y is the point of F nearest to x.
Straightforward verification proves that ¢ is continuous. The
composition of ¢ with the natural embedding of F into 2!

is the identity mapping on F; this completes the proof.

COROLLARY 1. Every Boolean space with a countable

base is injective.

Proof. Every such space is homeomorphic to a subset of
a Cantor space with a countable base.

COROLLARY 2. Every countable Boolean algebra is

projective.

We began this section with not enough examples of pro-
jective algebras; we have reached the point where it could
seem that every algebra is projective. This is not so; the
characterization in Corollary 2 of Theorem 17 can be used
to obtain negative results as well as the positive ones
obtained above. Indeed: every free algebra satisfies the
countable chain condition, and, therefore, so does every
subalgebra of a free algebra. Hence, in view of Corollary 2
of Theorem 17, to get an example of an algebra that is not
projective, it is sufficient to exhibit an algebra that does
not satisfy the countable chain condition. The finite-cofinite
algebra of an uncountable set will do.

No satisfactory characterization of projective Boolean
algebras (or, equivalently, of injective Boolean spaces) is
known. Combining the results of this section and the preced-
ing one we see that the product of a finite number of algebras
each of which is the sum of an arbitrary number of countable
algebras is projective; for all that is known now every pro-
jective algebra is included in this description.
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Exercises

(1) Prove that every projective Boolean algebra has a
finitely additive, positive, normalized measure whose values
are dyadic rational numbers (that is, rational numbers whose
denominator is a power of 2). (Hint: use Corollary 3 of
Theorem 17 and the theory of Haar measure.)

(2) Prove that every infinite complete algebra has a sub-
algebra that is isomorphic to the field of all subsets of a
countable set.

(3) Prove that an infinite complete algebra is never pro-
jective. (Hint: in view of Exercises 1 and 2 it is sufficient
to prove that the field of all subsets of a countable set has
no measure of the kind described in Exercise 1. Prove first
that such a measure could not be countably additive on any
infinite set. Reason: since it takes arbitrarily small values,
it would then take irrational values. Hence: if the sum of
the measures of the singletons in a set is subtracted from
the measure of the set itself, the result vanishes just in case
the set is finite. This implies the existence of a finitely
additive, positive, normalized measure on the quotient of
the field of all subsets of a countable set modulo the ideal
of finite sets. Since, however, that quotient does not satisfy
the countable chain condition, the result is a contradiction.
This proof is due to D. S. Scott and H. F. Trotter.)

§32. Injective algebras

The theory of injective algebras is somehwat harder than
the theory of projective algebras, but the extra difficulty buys
considerably more satisfying information. Injectivity for
Boolean algebras turns out to be closely connected with com-
pleteness; we begin with an auxiliary result on complete alge-
bras.
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LEMMA 1. Every retract of a complete algebra is com-
plete.

Proof. Let f be an epimorphism from a complete algebra
4 to the algebra B, say, and let g be a monomorphism from
B to 4 such that f o g is the identity on B. It is to be proved
that every family {g.} in B has a supremum in B. Write
p; = g(g;) and p = V, p; (in 4). Assertion: if ¢ = f(p), then
g= V,g,;in B. Since p; < p, it follows that f(p,) < g and
hence that g; < ¢ for all ; (recall that f(g(q,)) = ¢;). If ¢; < 7
for all i, then p, < g(r) and therefore p < g(r); this implies
that ¢ <r.

A part of the connection between injectivity and complete-
ness becomes visible now.

THEOREM 18. Every injective algebra is complete.

Proof. We kncw that every algebra can be embedded into
a complete one (421). Since every injective algebra is an
absolute subretract (§30), it follows that every injective alge-
bra is a retract of a complete one; the conclusion now follows
from Lemma 1.

The crucial result along these lines is the converse.
THEOREM 19. Every complete algebra is injective.

The proof depends on a lemma that has other applications;
we shall refer to it as the extension lemma.

LEMMA 2. Suppose that a Boolean algebra A is generated
by a subalgebra C and an element r, and suppose that h is a
homomorphism from C to B, say. Suppose also that p, and p*
are elements of B such that h(s) < py whenever s € C and
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s <r, and p* < h(t) whenever t € C and r < t. Under these
conditions, to each element p of B, with p, < p < p*, there
corresponds a unique extension f of h to a B-valued homomor-
phism on A such that f(r) = p.

Proof. Since C and r generate 4, every element of 4 has
a (not necessarily unique) representation in the form
(s Nr)V (¢ ANr')withs and ¢ in C. A straightforward calcula-
tion shows that the mapping f that sends each such element
onto

(h(s) Np) V (h(t) Np ')

is unambiguously determinmed and does everything that is
required of it.

We are now ready to prove Theorem 19. Suppose, accord-
ingly, that B is a complete Boolean algebra, that C is a
subalgebra of a Boolean algebra 4 (with embedding g) and
that £ is a homomorphism from

C into B. We are to construct an extension f that maps 4
into B. The idea of the proof is to extend step by step,
transfinitely; a typical step is of the kind described in the
extension lemma. An efficient way to carry out the trans-
finite process is, as usual, by Zorn’s lemma. In view of
Zorn’s lemma we may and do assume that & is a maximal
homomorphism from C to B, that is, that it admits of no
extension to a subalgebra of A that is strictly larger than C.
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If C £ A, then 4 has an element, r say, that is not in C. We
derive a contradiction by extending % to the algebra gen-
erated by C and r; by an obvious change of notation we may
and do assume that that generated algebra is 4 itself. Let
p, be the supremum in B of all the elements of the form A(s),
where s € C and s < r; similarly, let p* be the infimum in B
of all the elements of the form A(t), where ¢t € C and r < ¢.
(Here is where the completeness of B is used.) If s <r < ¢,
then k(s) < k(¢t); this implies that p, < p*, and hence that
there exists an element p in B such that p, < p < p*. The
expected contradiction is now a direct consequence of the
extension lemma.

COROLLARY. 4 Boolean space is injective if and

only if it is complete.

From the characterization of injectivity now at hand we
can deduce for injective algebras the results obtained in the
preceding section for projective algebras.

COROLLARY 1. A Boolean algebra is injective if and

only if it is a retract of a complete algebra.

COROLLARY 2. 4 Boolean algebra is injective if and

only if it is an absolute subretract.

COROLLARY 3. A4 Boolean space is projective if and

only if it is a retract of a complete space.

COROLLARY 4. 4 Boolean space is projective if and

only if it is an absolute quotient retract.
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EPILOGUE

There is much more to Boolean algebras than is covered
in this volume. The reader who wants to learn more should
consult Sikorski’s scholarly book (Berlin, 1960) and its
excellent bibliography.
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