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Preface 

Analytic geometry and calculus at a college or university almost always 
consists of a three-semester course. Typically, the first two semesters cover 
plane analytic geometry and the calculus of functions of one variable. The 
third semester usually deals with three-dimensional analytic geometry, partial 
differentiation, multiple integration, and a selection of other topics which 
depend on the book used. Some courses may even include a small amount of 
linear algebra. Most texts for such a three-semester sequence run to an 
unwieldy 1,000 pages or more. 

We believe that an instructor can add a great deal of flexibility to the 
calculus program by separating the text materials used in the third semester 
from those used in the first year. Such a division makes for a greater choice in 
the selection of topics taken up in the third semester. Moreover, at many 
universities there is a fourth semester of analysis in the lower division program. 
In such a case it is desirable to have one book which carries through the entire 
year, as this text does. 

In recent years the percentage of students who enter college after completing 
a year of calculus in high school has been increasing; by now, the number is 
substantial. These students, many of whom have taken the Advanced Place
ment program, have mastered the calculus offunctions of one variable from a 
variety of texts and are ready to begin the third semester of calculus with 
analytic geometry with a text suited to their needs. 

In the first five chapters in this book we present the material which is most 
frequently taught in the third semester of calculus. We suppose that the 
student has completed the usual two semesters of plane analytic geometry and 
one-variable calculus from any standard text. Chapters 6 through 10 provide 
additional material which can be used either to replace some of the traditional 
third-semester course or to fill out a fourth semester of analysis. The latter 
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option would give students a thorough preparation for a junior-level course in 
real analysis. 

One of the main features of our text is the flexibility which results from the 
relative independence of the chapters. For example, if an instructor wishes to 
teach Chapter 6 on Fourier series and if the students have already had the 
standard topics on infinite series which we present in Sections I through IO of 
Chapter 3, then the instructor need only present the advanced material on 
uniform convergence of series in Sections 11, 12, and 13 as preparation for 
Fourier series. On the other hand, if the instructor chooses to skip Chapter 6, 
there is no inconvenience in presenting the remainder of the book. 

We also wish to emphasize the flexibility of our treatment of both vector 
field theory and Green's and Stokes' theorems in Chapters 9 and IO. A 
minimum of preparation from Chapters 2, 4, and 5 is needed for this purpose. 
We first establish Green's theorem for simple domains, a result which is 
adequate for most applications. Here the presentation is quite elementary. 
Then we continue with a section on orientable surfaces, as well as proofs of 
Green's and Stokes' theorems, which use a partition of unity. The serious 
student will benefit greatly from these sections, since the methods we use are 
straightforward, detailed, and sufficiently general so that, for example, it can be 
shown that Cauchy's theorem for complex analytic functions in general 
domains is a corollary of Green's theorem. 

Chapter 7, on the implicit function theorem and the inverse function 
theorem, provides an excellent preparation for those students who intend to 
go on in mathematics. However, it may be skipped with little or no inconve
nience by those instructors who prefer to concentrate on ·the last two chapters 
of the text. Chapter 8, on differentiation under the integral sign and improper 
integrals, treats a useful topic, especially for those planning to work in applied 
mathematics or related fields of technology. It is worth noting that the material 
in Chapter 8 is seldom presented in texts at the lower division level. As with 
Chapter 7, the omission of this chapter will not affect the continuity of the 
remainder of the book. 

Many students are not familiar with the simple properties of matrices and 
determinants. Also, they are usually not aware of Cramer's rule for solving m 
linear equation in n unknowns when m and n are different integers. In an 
appendix we provide an introduction to matrices and determinants sufficient 
to establish Cramer's rule. The instructor may wish to use this material as 
optional independent reading for those interested students who are unfamiliar 
with linear algebra. We include illustrative examples and exercises in this 
appendix so that a good student can easily learn the material without help. 

Berkeley, California 
October 1984 

MURRAY H. PROTIER 
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CHAPTER I 

Analytic Geometry in Three Dimensions 

1. The Number Space R3 • Coordinates. 
The Distance Formula 

Analytic geometry in three dimensions makes essential use of coordinate 
systems. To introduce a coordinate system, we consider triples (a, b, c) of 
real numbers, and we call the set of all such triples of real numbers the 
three-dimensional number space. We denote this space by R~. Each individual 
triple is a point in R3 • The three elements in each number triple are called 
its coordinates. We now show how three-dimensional number space may be 
represented on a geometric or Euclidean three-dimensional space. 

In three-dimensional space, consider three mutually perpendicular lines 
which intersect in a point 0. We designate these lines the coordinate axes 
and, starting from 0, set up identical number scales on each of them. If the 
positive directions of the x, y, and z axes are labeled x, y, and z, as shown in 
Fig. 1-1, we say the axes form a right-handed system. Figure 1-2 illustrates 
the axes in a left-handed system. We shall use a right-handed coordinate 
system throughout. 

z 

----1/-Y / !o 
x : 

Fig. 1-1 

y 

/ 

/ 

-r/-----··-- ... . t :o 

Fig. 1-2 



2 

x 

z 

S(O, 0, zo) 

I 
I 

>---------
,' 0 

Q(x0,0,0) 

Fig. 1-3 
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t y=3 

:! ----++--<-fl--- .r 0. 2 

Fig. 1-4 

Any two intersecting lines in space determine a plane. A plane containing 
two of the coordinate axes is called a coordinate plane. Clearly, there are 
three such planes. 

To each point Pin three-dimensional space we can assign a point in R3 

in the following way. Through P construct three planes, each parallel to one 
of the coordinate planes as shown in Fig. 1-3. We label the intersections of 
the planes through P with the coordinate axes Q, R, and S, as shown. Then, 
if Q is x0 units from the origin 0, R is y 0 units from 0, and S is z0 units 
from 0, we assign to P the number triple (x0 ,y0 , z0 ) and say that the point 
P has Rectangular coordinates (x0 ,.J1o,z0). To each point in space there 
corresponds exactly one ordered number triple and, conversely, to each 
ordered number triple there is associated exactly one point in three
dimensional space. We have just described a rectangular coordinate system. 
In Section 7 we shall discuss other coordinate systems. 

In studying analytic geometry in the plane, an equation such as 

y=3 

repesents all points lying on a line parallel to the x axis and three units 
above it (Fig. 1-4). 

We shall use set notation to describe sets of points. A set of points is 
determined by its properties. If P is a generic element of a set described by 
properties, say A and B, we write this fact in set notation: 

{ P : P has properties A and B}. 

The symbol before the colon is a generic element in the domain under 
discussion, while the properties are described after the colon. For sets in 
the plane a typical point is denoted (x,y), and we write the line y = 3 in the 
form 

{(x,y): y = 3}. 

The equation y = 3 is the property that the generic point (x,y) must possess, 
i.e., the set consists of all points in the plane with coordinates (x, 3). 
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y 

Fig. 1-5 

The equation 

y=3 

in the context of three-dimensional geometry represents something entirely 
different. The graph of the points satisfying this equation is a plane parallel 
to the xz plane (the xz plane is the coordinate plane determined by the x 
axis and the z axis) and three units from it (Fig. 1-5). In set notation, we 
represent this plane by writing 

{(x,y,z):y=3}. 

We see that set notation, by use of the symbols (x, y) or (x, y, z), indicates 
clearly when we are dealing with two- or three-dimensional geometry. The 
equation y = 3 by itself is ambiguous unless we know in advance the dimen
sion of the geometry. 

In three dimensions the plane represented by y = 3 is perpendicular to 
the y axis and passes through the point (0, 3, 0). Since there is exactly one 
plane which is perpendicular to a given line and which passes through a 
given point, we see that the graph of the equation y = 3 consists of one and 
only one such plane. Conversely, from the very definition of a rectangular 
coordinate system every point with y coordinate 3 must lie in this plane. 
Equations such as x = a or y = b or z = c always represent planes parallel 
to the coordinate planes. 

We recall from Euclidean geometry that any two nonparallel planes inter
sect in a straight line. Therefore, the graph of all points which simultaneously 
satisfy the equations 

X=a and y=b 

is a line parallel to (or coincident with) the z axis. Conversely, any such line 
is the graph of a pair of equations of the above form. Since the plane x = a 
is parallel to the z axis, and the plane y = b is parallel to the z axis, the line 
of intersection must be parallel to the z axis also. (Corresponding statements 
hold with the axes interchanged.) 

A plane separates three-dimensional space into two parts, each of which 
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x 

is called a half-space. The inequality 

x>5 

Fig. 1-6 

represents all points with x coordinate greater than 5. In set notation, we 
write 

{(x,y,z):x>5}. 

The set of such points comprises a half-space. Two intersecting planes 
divide three-space into 4 regions which we call infinite wedges. Three inter
secting planes divide space into 8 regions (or possibly fewer), four planes 
into 15 regions (or possibly fewer), and so on. The inequality 

IYI s; 4<=> -4 s; y s; 4 

represents all points between (and on) the planes y = -4 and y = 4. Regions 
in space defined by inequalities are more difficult to visualize than those 
in the plane. However, polyhedral domains-that is, those bounded by a 
number of planes-are frequently simple enough to be sketched. A poly
hedron with six faces in which opposite faces are congruent parallelograms 
is called a parallelepiped. Cubes and rectangular bins are particular cases of 
parallelepipeds. 

Theorem 1. The distance d between the points in three dimensional space 
P1(x 1 ,y1 ,zi) and P2 (x 2 ,y2 ,z2 ) is 

d = ,j(x2 - x,)2 + (Y2 - y,)2 + (z2 - Z1)2. 

PROOF. We make the construction shown in Fig. 1-6. By the Pythagorean 
theorem we have 

d 2 = IP1 Ql 2 + IQP21 2 • 

Where the symbol IP1 QI denotes the length of the line segment with end 
points P1 and Q, and similarly for IQP2 1. 



I. The Number Space R3• Coordinates. The Distance Formula 5 

Noting that IP1 QI= IRS!, we use the formula for distance in the xy plane 
to get 

IP1 Qj2 = jRSj2 = (X2 - X1) 2 + (Y2 - Y1)2. 

Furthermore, since P2 and Qare on a line parallel to the z axis, we see that 

jQP2l2 = IT1 T2l2 = (z2 - z1)2. 

Therefore 

d2 = (x2 - X1)2 + (Y2 - Y1)2 + (z2 - Z1)2. 

The midpoint P of the line segment connecting the point P1(x1,y1,z1) 
and P2(x 2 ,Yi,z2 ) has coordinates P(x,Y, z) given by the formulas 

Y- = Y1 + Y2 
2 ' 

If P1 and P2 lie in the xy plane-that is, if z1 = 0 and z2 = 0-then so does 
the midpoint P, and we recognize the formula as the one we learned in plane 
analytic geometry. The above formula for xis proved as in the case of plane 
geometry, by passing planes through P1 , P, and P2 perpendicular to the x 
axis. The formulas for y and z are established by analogy. 

EXAMPLE I. Find the coordinates of the point Q which divides the line 
segment from P1 (I, 4, - 2) to P2 ( - 3, 6, 7) in the proportion 3 to I. 

SOLUTION. The midpoint P of the segment P1 P2 has coordinates P( -1, 5, t). 
When we find the midpoint of P P2 we get Q( - 2, ¥, 1/). 

EXAMPLE 2. One endpoint of a segment P1 P2 has coordinates P1 ( - l, 2, 5). 
The midpoint P is known to lie in the xz plane, while the other endpoint is 
known to lie on the intersection of the planes x = 5 and z = 8. Find the 
coordinates of P and P2 • 

SOLUTION. For P(.X,y,z) we note that y = 0, since P is in the xz plane. 
Similarly, for P2(x2,y2, z2) we have x 2 = 5 and z2 = 8. From the midpoint 
formula we get 

-1+5 
.X=---

2 
0=y-=2+Yi 2 , 

Therefore the points have coordinates P(2, 0, .!f-), P2(5, - 2, 8). 

PROBLEMS 

In Problems I through 5, find the lengths of the sides of triangle ABC and state whether 
the triangle is a right triangle, an isosceles triangle, or both. 

I. A(2, I, 3), B(3, -1, -2), C(O, 2, -1) 
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2. A(4,3, I), B(2, 1,2), C(0,2,4) 

3. A(3, - I, -1), B(I, 2, I), C(6, - I, 2) 

4. A(l,2,-3),B(4,3,-l),C(3,l,2) 

5. A(0,0,0), 8(4, l,2), C(-5, -5, -1) 

In Problems 6 and 7, find the midpoint of the segment joining the given points A, B. 

6. A(4. -2,6), B(-2,8, I) 7. A( -2, 3, 5), B( -6, 0, 4) 

In Problems 8 and 9, in each case find the coordinates of the three points which divide 
the given segment AB into four equal parts. 

8. A(3,4,-l),B(7,-2,5) 9. A(I, -6,0), B(6, 12, 7) 

In Problems 10 through 13, find the lengths of the medians of the given triangles 
ABC. 

10. A(2, I, 3), B(3, -1, -2), C(O, 2, -1) 

11. A(4, 3, 1), B(2, I, 2), C(O, 2. 4) 

12. A(3,-l,-l),B(l,2,l),C(6,-l,2) 

13. A(l,2, -3), B(4,3, -1), C(3, 1,2) 

14. One endpoint of a line segment is at P(4, 6, -3) and the midpont is at Q(2, I, 6). 
Find the other endpoint. 

15. One endpoint of a line segment is at P1 ( -2, I, 6) and the midpoint Q lies in the 
plane y = 3. The other endpoint, P2 • lies on the intersection of the planes x = 4 
and z = -6. Find the coordinates of P2 and Q. 

In Problems 16 through 19, determine whether or not the three given points lie on a 
line. 

16. A(I, -1,2), B(-1, -4, 3), C(3,2, I) 

17. A(2,3,l),B(4,6,5),C(-2,-2,-7) 

18. A(I, -1,2), B(3,3,4), C(-2, -6, -1) 

19. A( -4, 5, -6), B( -1, 2, -1), C(3, -3, 6) 

20. Describe the set of points in space given by {(x,y,z): x = 2,y = -4}. 

21. Describe the set of points in space given by {(x,y,z): -2 $ y $ 5}. 

22. Describe the set of points in space given by {(x,y,z): x ~ 0,y ~ 0,z ~ O}. 

23. Describe the set of points in space given by {(x,y,z): x 2 + y2 + z2 <I}. 

24. Derive the formula for determining the midpoint of a line segment. 

25. The formula for the coordinates of a point Q(x0 ,y0 , z0 ) which divides the line 
segment from P1(x.,y1 ,z 1) to P2 (x2 ,y2 , z2) in the ratio p to q is 
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Fig. 1-7 x 

PX2 + qx, 
Xo= ' p+q 

Derive this formula. 

Y, _ PY2 + qy, 
o- , 

p+q 

[, 

PZ2 + qz, 
Zo=---. 

p+q 

7 

26. Find the equation of the graph of all points equidistant from the points (2, - I, 3) 
and (3, l, - I). Can you describe the graph? 

27. Find the equation of the graph of all points equidistant from the points (5, 1,0) 
and (2, -1,4). Can you describe the graph? 

28. Find the equation of the graph of all points such that the sum of the distances from 
(I, 0, 0) and ( - I, 0, 0) is always equal to 4. Describe the graph. 

29. The points A(0,0,0), B(l,0,0), C(t,!. I/J'l.), D(0, 1,0) are the vertices ofa four
sided figure. Show that jABj = jBCj = jCDj = jDAI =I. Prove that the figure is 
not a rhombus. 

30. Prove that the diagonals joining opposite vertices of a rectangular parallelepiped 
(there are four of them which are interior to the parallelepiped) bisect each other. 

2. Direction Cosines and Numbers 

In three-dimensional space we consider a line passing through the origin 0 
and place an arrow on it so that one of the two possible directions on the 
line is distinguished (Fig. I-7). We call such a line a directed line. If no 
arrow is placed, then L is called an undirected line. We use the symbol I to 
indicate a directed line while the letter L without the arrow over it indicates 
an undirected line. We denote by oc, p, and y the angles made by the directed 
line land the positive directions of the x, y, and z axes, respectively. We 
define these angles to be the direction angles of the directed line L. The 
undirected line L will have two possible sets of direction angles according to 
the ordering chosen. The two sets are 

a, p, y and 180° - a, 180° - p, 180° -· y. 

The term "line" without further specification shall mean undirected line. 
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z 

• (0,0,z0)~-------------, l . ','·I .' ,' I ; 

~"---- --------- I , 1--'Y d , P(xo. Yo. zo) 
' ' ' 
I fj I I 

' 0 --•-: ' y 
a ' ' : / (0,yo,0) 

(.r0,0,0) 
Fig. 1-8 

Definition. If oc, {J, ~· are direction angles of a directed line l, then cos oc, 
cos {J, cos/' are called the direction cosines of l. 

Since cos (180° - 0) = -cos 0, we see that if;,, µ, v are direction cosines 
of a directed line L, then I.,µ, v and - i., - µ, - v are the two sets of direction 
cosines of the undirected line L. 

We shall show that the direction cosines of any line L satisfy the relation 

cos2 oc + cos2 fJ+cos2 1· = I. 

Let P(x0 , Yo, z0 ) be a point on a line L which goes through the origin. Then 
the distance d of P from the origin is 

d = ..J x~ + y~ + z~, 
and (see Fig. 1-8) we have 

cosoc=J. cos{J =Yo 
d' 

COS'/= Zo. 
d 

Squaring and adding, we get the desired result. 
To define the direction cosines of any line Lin space, we simply consider 

the line L' parallel to L which passes through the origin, and assert that 
by definition L has the same direction cosines as L'. Thus all parallel lines 
in space have the same direction cosines. 

Definition. Two sets of number triples, a, b, c and a', b', c', neither all zero, 
are said to be proportional if there is a number k such that 

a' =ka, b' =kb, c' =kc. 

REMARK. The number k may be positive or negative but not zero, since by 
hypothesis neither of the number triples is 0, 0, 0. If none of the numbers 
a, b, and c is zero, we may write the proportionality relations as 

a' 
-=k, 
a 

b' 
b=k, 

c' 
-=k 
c 
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c 

Fig. 1-9 

or, more simply, 

Definition. Suppose that a line L has direction cosines I.,µ, v. Then a set of 
numbers a, b, c is called a set of direction numbers for L if a, b, c and A., µ, 
v are proportional. 

A line L has unlimited sets of direction numbers. 

µ =Yi -Yi 
d • 

is a set of direction cosines of L where dis the distance from P1 to Pi. 

PROOF. In Fig. 1-9 we note that the angles oc, p, and"'/ are equal to the direction 
angles, since the lines P1 A, P1 B, P1 C are parallel to the coordinate axes. 
We read off from the figure that 

Xi -X1 
COS<X=-i-, 

which is the desired result. 

v -}' cos p = --i __ ..!' 
d 

Y2 -Yi· 

constitute a set of direction numbers for L. 

COS"'= Z2 - Z1 
I d ' 

Multiplying A., µ, v of Theorem 2 by the constant d, we obtain the result 
of the Corollary. 

EXAMPLE I. Find direction numbers and direction cosines for the line L 
passing through the points P1(1,5,2) and P2 (3, 1, -4). 
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~OLUTION. From the Corollary, 2, 2, -6 form a set of direction numbers. 
We i::ompute 

and so 

;11' v 

3 

v1Tf 
form a set of direction cosines. Since L is undirected, it has two such sets, 

h h b . 1 1 3 
t e ot er emg -----;==, - ----;:::=, ----;==. 

v111 v111 ,,11 

EXAMPLE 2. Do the three points P1 (3, - 1, 4), Pi ( 1, 6, 8), and P3 (9, - 22, - 8) 
lie on the same straight line? 

SOLUTION. A set of direction numbers for the line L 1 through Pi and Pi 
is -2, 7, 4. A set of direction numbers for the line Li through Pi and P3 

is 8, -28, -16. Since the second set is proportional to the first (with k = 
-4), we conclude that Li and Li have the same direction cosines. Therefore 
the two lines are parallel. However, they have the point Pi in common and 
so must coincide. 

From Theorem 2 and the statements in Example 2, we easily obtain the 
next result. 

Corollary 2. A line Li is parallel to a line Li if and only if a set of direction 
numbers of L 1 is proportional to a set of direction numbers of Li. 

The angle between two intersecting lines in space is defined in the same 
way as the angle between two lines in the plane. It may happen that two 
lines L 1 and Li in space are neither parallel nor intersecting. Such lines are 
said to be skew to each other. Nevertheless, the angle between Li and Li 
can still be defined. Denote by L'i and L2 the lines passing through the 
origin and parallel to Li and Li, respectively. The angle between Li and 
Li is defined to be the angle between the intersecting lines L'i and L2. 

Theorem 3. If Li and Li have direction cosines ;,i, µi, Vi and A.i, µi, Vi, 
respectir.;ely, and if O is the angle between Li and Li, then 

cos8 = ).ili + µiµi +vi vi. 

PROOF. From the way we defined the angle between two lines we may con
sider Li and Li as lines passing through the origin. Let Pi (xi, y i • z i) be a 
point on Li and Pi(xi,J'i, Zi) a point on Li, neither 0 (see Fig. 1-10). Denote 
by di the distance of Pi from 0, by di the distance of Pi from 0; let d = 



2. Direction Cosines and Numbers l l 

z 

Fig. 1-10 x 

IP1P2 1. We apply the Law of Cosines to triangle OP1P2 , getting 

or 

and cos e 
_xi+ Yi+ zi +xi+ Yi+ zi - (x2 - X1) 2 - (Y2 -y1)2 - (z2 - z1)2 

- 2d1d2 

After simplification we obtain 

cose = X1X2 + Y1Y2 + Z1Z2 = X1 .x2 + b. Y2 + Z1 .z2 
d1d2 d1 d2 d1 d2 d1 d2 

= A1A2 + µ1µ2 + V1 Vz. 

Corollary. Two lines L 1 and L 2 with direction numbers a 1 , b 1 , c1 and a2 , 

b2 , c2 , respectively, are perpendicular if and only if 

a1a2 + b1b2 + C1C2 = 0. 

EXAMPLE 3. Find the cosine of the angle between the line L 1 , passing through 
the points P1(l,4,2) and P2(3,-l,3), and the line L 2 , passing through 
the points Q 1 (3, I, 2) and Q2 (2, I, 3). 

SoLUTION. A set of direction numbers for L 1 is 2, - 5, I. A set for L 2 is -1, 
0, I. Therefore direction cosines for the two lines are 

-5 I . 

J30' J30' 
-I 
J2' o. jr 

We obtain 

I I I 
cos&= --+0+--= --=· JI5 2JI5 2~15 

We observe that two lines always have two possible supplementary angles 
of intersection. If cos 8 is negative, we have obtained the obtuse angle and, 
if it is positive, the acute angle of intersection. 
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PROBLEMS 

In Problems 1 through 4, find a set of direction numbers and a set of direction cosines 
for the line passing through the given points. 

I. A(2, l,4), B(3,5, -2) 

3. A(-2,1,-4),B(0,-5,-7) 

2. A(4,2, -3), B(l,0,5) 

4. A(6, 7, -2), B(8, -5, 1) 

In each of Problems S through 8, a point P1 and a set of direction numbers are given. 
Find the coordinates of another point on the line L determined by P1 and the given 
direction numbers. 

5. P1(1,4, -2), direction numbers 2, l, 4 

6. P1 (3, 5, -1), direction numbers 2, 0, 4 

1. P1(0,4, -3), direction numbers 0, 0, S 

8. P1 (I, 2, 0), direction numbers 4, 0, 0 

In each of Problems 9 through 12, determine whether or not the three given points lie 
on a line. 

9. A(3, I, 0), B(2, 2, 2), C(0,4, 6) 

10. A(2, - I, I), B(4, l, -3), C(7,4, -9) 

II. A(4,2, -1), B(2, l, l), C(0,0,2) 

12. A(S,8,6), B(-2, -3, I), C(4,2,8) 

In each of Problems 13 through IS, determine whether or not the line through the 
points Pl> Pi is parallel to the line through the points Q 1 , Qi. 

13. P1(4,8,0), Pi(l,2,3); Q1(0,5,0), Qi(-3, -1,3) 

14. P1(2,l,l),Pi(3,2,-l); Q1(0,l,4),Qi(2,3,0) 

15. P1(3, l,4), Pi(-3,2,5); Q1(4,6, l), Qi(0,5,8) 

In each of Problems 16 through 18, determine whether or not the line through the 
points P1 , Pi is perpendicular to the line through the points Q 1 , Qi. 

16. P1(2, 1,3), Pi(4,0,5); Q1(3, 1,2), Qi(2, l,6) 

17. P1(2, -1,0), Pi(3, l,2); Q1(2, l,4), Qi(4,0,4) 

18. P1(0,-4,2),Pi(S,-l,O); Q1(3,0,2),Qi(2,l,l) 

In each of Problems 19 through 21, find cosO where 0 is the angle between the line L 1 

passing through P1, Pi and Li passing through Q1 , Qi. 

19. P1(2,l,4),Pi(-l,4,l); Q1(0,5,l),Qi(3,-l,-2) 

20. P1(4,0,5), Pi(- I, -3, -2); Q1(2, 1,4), Qi(2, -5, l) 

21. P1(0,0,5), Pi(4, -2,0); Q1(0,0,6), Qi<3. -2, I) 
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z 

1 P.C•o "" i J 

Po<xo. Yo. zo) , 
Fig. 1-11 x L ,• 

22. A regular tetrahedron is a 4-sided figure each side of which is an equilateral triangle. 
Find 4 points in space which are the vertices of a regular tetrahedron with each 
edge of length 2 units. 

23. A regular pyramid is a 5-sided figure with a square base and sides consisting of 4 
congruent isosceles triangles. If the base has a side of length 4 and if the height of 
the pyramid is 6 units, find the area of each of the triangular faces. 

24. The points P1 (I, 2, 3), P2(2, 1, 2), P3(3, 0, I), P4 (5, 2, 7) are the vertices of a plane 
quadrilateral. Find the coordinates of the midpoints of the sides. What kind of 
quadrilateral do these four midpoints form? 

25. Prove that the four interior diagonals of a parallelepiped bisect each other. 

26. Given the set S = {(x,y, z): x 2 + y 2 + z2 = 1 }. Find the points of Sr. L where L 
is the line passing through the origin and having direction numbers 2, l, 3. 

27. Let A, B, C, D be the vertices of any quadrilateral in three-dimensional space. 
Prove that the lines joining the midpoints of the sides form a parallelogram. 

3. Equations of a Line 

A line in three-dimensional space is determined by two points. If P0 (x0 , Yo, z0 ) 

and P1(x 1 ,y1 ,z1) are given points, we seek an analytic method of repre
senting the line L determined by these points. The result is obtained by 
solving a geometr.ic problem. A point P(x,y,z), different from P0 , is on 
L if and only if the direction numbers determined by P and P0 are propor
tional to those determined by P1 and P0 (Fig. 1-11). Calling the propor
tionality constant t, the proportionality conditions are 

x - x0 = t(x 1 - x 0), Y - Yo = l(Yt - Yo), z - Zo == t(Z1 - Zo). 

Thus we obtain the two-point form of the parametric equations of a line: 

x = Xo + (X1 - Xo)I, 

Y =Yo + (Y1 - Yo)t, 

z=z0 +(z 1 -z0 )t. 

(I) 
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which is t of the way from P0 to P1 is the point P(x, y, z) whose coordinates 
are given by equations (I). 

EXAMPLE I. Find the parametric equations of the line through the points 
A(3, 2, -1) and B(4, 4, 6). Locate three additional points on the line. 

SOLUTION. Substituting in (I) we obtain 

X = 3 + t, )' = 2 + 2t, z = - I+ 7t. 

To get an additional point on the line we let t = 2 and obtain P1(5,6, 13); 
t = - I yields P2(2, 0, -8) and t = 3 gives P3 (6, 8, 20). 

Theorem 4. The parametric equations of a line L through the point P0 (x0 , 

y 0 , z0 ) with direction numbers a, b, care given by 

x = x 0 +at, y =Yo+ bt. z = z0 +ct. (2) 

PROOF. The point P1 (x0 + a,J'o + b, z0 + c) must be on L, since the direction 
numbers formed by P0 and P1 are just a, b, c. Using the two-point form (I) 
for the equations of a line through P0 and P1 , we get (2) precisely. 

If cos ix, cos p, cosy are the direction cosines of a line L passing through 
the point (x0 ,y0 ,z0), the equations of the line are 

X = Xo + tCOSIX, y = y 0 + tcosp, Z = Zo + tCOSj'. 

EXAMPLE 2. Find the parametric equations of the line L through the point 
A(3, -2, 5) with direction numbers 4, 0, -2. What is the relation of L to 
the coordinate planes? 

SOLUTION. Substituting in (2), we obtain 

x = 3 + 4t, y= -2, z = 5 - 2t. 

Since all points on the line must satisfy all three of the above equations, L 
must lie in the plane y = - 2. This plane is parallel to the xz plane. Therefore 
L is parallel to the xz plane. Setting x = 0 in the first equation, we get 
t = -3/4. From the third equation, z = 5 - 2(-3/4) = 13/2. Hence the line 
L intersects the yz plane in the point (0, -2, 13/2). Similarly, setting z = 0, 
we find that t = 5/2, and L intersects the xy plane in the point ( 13, - 2, 0). 

If none of the direction numbers is zero, the parameter t may be eliminated 
from the system of equations (2). We may write 

x - x 0 y - Yo z - z0 
-a-= -b- = -c- (3) 

for the equations ofa line. For any value oft in (2) the ratios in (3) are equal. 
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Conversely, if the ratios in (3) are all equal we may set the common value 
equal to t and (2) is satisfied. 

If one of the direction numbers is zero, the form (3) may still be used if the 
zero in the denominator is interpreted properly. The equations 

are understood to stand for the equations 

The system 

stands for 

x - Xo )' - Yo 
-a-=-b- and Z = Zo· 

x - x0 y - Yo z - z0 
-o-=-h-=-o 

X=Xo and Z = Zo· 

We recognize these last two equations as those of planes parallel to co
ordinate planes. In other words, a line is represented as the intersection of two 
planes. This fact will be discussed further in the next section. 

The two-point form for the equations of a line may be written sym
metrically. The equations 

x - Xo = y - Yo = z - Zo 

X1-Xo Yi-Yo Z1-Zo 

are called the symmetric form for the equations of a line. 

EXAMPLE 3. Find the point of intersection of the line 

L={(x,y,z):x=3-t, y=2+3t, z=-l-t-2t} 

with the plane S = {(x,y,z): z = 5}. 

SOLUTION. Denoting by P(x0 ,y0 ,z0 ) the point of intersection of Land S, 
we see that z0 must have the value 5. From the equation z = - I + 2t, we 
conclude that at the point of intersection, 5 = - I + 2t or t = 3. Then 
x0 = 3 - 3 = 0 and y0 = 2 + 3(3) = 11. Hence* P = L n S has coordinates 
(0, 11, 5). 

EXAMPLE 4. Find the equations of the line through the p<>int P(2, - I, 3) 
and parallel to the line through the points Q( I, 4, -6) and R( - 2, -1, 5). 

•The symbol n denotes intersection; thus L nSis the intersection of the line Land the plane S. 
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SoLUTION. The line through Q and R has direction numbers: - 2 - I = - 3, 
- I - 4 = - 5, 5 - ( - 6) = 11. Therefore the parallel line through P is 
given by the equations 

x = 2 - 3t, y = - I - St, z = 3 + I It. 

PROBLEMS 

In each of Problems I through 4, find the equations of the line going through the given 
points. 

I. A(I, 3, 2), B(2, - 1, 4) 

3. A(4, -2,0), 8(3, 2, -1) 

2. A{l,0,5),B(-2,0,1) 

4. A(5,5, -2), 8(6,4, -4) 

In each of Problems 5 through 9, find the equations of the line passing through the 
given point with the given direction numbers. 

5. P1(1,0,-I), directionnumbers2, 1, -3 

6. Pi ( - 2, I, 3), direction numbers 3, - 1, - 2 

7. Pi(4,0,0), directionnumbers2, -1, -3 

8. Pi (I, 2, 0), direction numbers 0, 1, 3 

9. Pi(3. -1, -2), direction numbers 2, 0, 0 

In each of Problems 10 through 14, decide whether or not Li and Li are perpendicular. 

IO L .x-2_y+l_:-l. 
. i · 2 - -3 - 4 , 

x r+I z+I 
=1··=-3-; 

12 L . x + 2 _ y - 2 = z + 3 . 
. i · -I - 2 3 ' 

13 L .x+5_y-l_z+8. 
• i· 4 - 3 - 5 ' 

14 Li : x + 1 = y - 2 = z + 8. 
. 0 I 0 ' 

x-2 r+l z-1 
Li :--=-3 = l = -3-

L . :l'_=.} - :t.:':...!. - ~_±_4 
i. 0 - -3 - 2 

Li : x + 2 = y - 2 = z + 3 
1 2 -I 

L .x-4=y+7=z+4 
i· 3 2 I 

x-3 y+2 :-1 
Li:-.-=-o-=-o-

I 5. Find the equations of the medians of the triangle with vertices at A(4, 0, 2), 8(3, I, 4), 
C(2,5,0). 

16. Find the equations of any line through Pi (2, I, 4) and perpendicular to any line 
having direction numbers 4, I, 3. 

17. Find the equations of any line through Pi (2, - I, 5) and perpendicular to any line 
having direction numbers 2, - 3, I. 

18. Find the points of intersection of the line 
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L={(x,y,z):x=3+2t, y=7+8t, z=-2+t} 

with each of the coordinate planes. 

19. Find the points of intersection of the line 

{ x+l y+l z-1} L= (x,y,z):---=2 = - 3-= - 7-

with each of the coordinate planes. 

20. Show that the following lines are coincident: 

L .x-l_y+I_~. 
I· 2 - -3 - 4' 

x-5 y+7 z-8 
L2:--=--=--. 

2 -3 4 

21. Find the equations of the line through (3, 1, 5) which is parallel to the line 

L={(x,y,z):x=4-t, y=2+3t, z=-4-H.} 

17 

22. Find the equations of the line through (3, I, -2) which is perpendicular to and 
intersects the line 

L={(x,y,z):x~ I =y~2=z~ 1}-
[Hint: Let (x0 , y0 , z0 ) be the point of intersection and determine its coordinates.] 

23. A triangle has vertices at A (2, 1, 6), B( - 3, 2, 4) and C(5, 8, 7). Perpendiculars are 
drawn from these vertices to the xz plane. Locate the points A', B', and C' which 
are the intersections of the perpendiculars through A, B, C and the xz plane. Find 
the equations of the sides of the triangle A' B'C'. 

Let P1 (x PYt, z1) and P2(x 2,fi, z2) be two points and suppose P( .. 'f,y, z) is on the 
line segment joining P1 to P2 • If Pis h of the way from P1 to P2 , then the coordinates 
(X, y, z) are given by 

The above equations are called the point of division formula. 

24. Find the point 1/5 of the way from 

P1(2, -1,3) to P2(6,2, -5). 

25. What is the relation of the points P1 , P, and P2 when h > I? when his negative? 

26. Show that the medians of any triangle in three-dimensional space intersect at a 
point which divides each median in the proportion 2 : I. 

4. The Plane 

Any three points not on a straight line determine a plane. While this charac
terization of a plane is quite simple, it is not convenient for beginning the 
study of planes. Instead we use the fact that there is exactly one plane which 
passes through a given point and is perpendicular to a given fine. 
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Fig. 1-12 

Let P0 (x0 ,y0 ,z0 ) be a given point, and suppose that a given line L goes 
through the point P1 (x 1 ,y1 ,z 1) and has direction numbers A, B, C. 

Theorem 5. The equation of the plane passing through P0 and perpendicular to 
Lis 

A(x - x0 ) + B(y - y 0 ) + C(z - z0 ) = 0. 

PROOF. We establish the result by solving a geometric problem. Let P(x, y, z) 
be a point on the plane (Fig. 1-12). From Euclidean geometry we recall that 
if a line L 1 through P0 and Pis perpendicular to L, then P must be in the 
desired plane. A set of direction numbers for the line L 1 is 

y-yo, z - =o· 

Since L has direction numbers A, B, C, we conclude that the two lines L 
and L 1 are perpendicular if and only if their direction numbers satisfy the 
relation 

A(x - x0 ) + B(y - y 0 ) + C(z - z0 ) = 0, 

which is the equation we seek. 

REMARK. Note that only the direction of L-and not the coordinates of 
P1-enters the above equation. We obtain the same plane and the same 
equation if any line parallel to L is used in its stead. 

EXAMPLE I. Find the equation of the plane through the point P0 (5, 2, - 3) 
which is perpendicular to the line through the points P1 (5, 4, 3) and 
P2(-6, l, 7). 

SOLUTION. The line through the points P1 and P2 has direction numbers 
-11, - 3, 4. The equation of the plane is 

- 11 (x - 5) - 3(y - 2) + 4(z + 3) = 0 

=- I lx + 3y - 4z - 73 = 0. 

All lines perpendicular to the same plane are parallel and therefore have 
proportional direction numbers. 
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Definition. A set of attitude numbers of a plane is any set of direction numbers 
of a line perpendicular to the plane. 

In Example I above, 11, 3, -4 form a set of attitude numbers of the plane. 

EXAMPLE 2. What are sets of attitude numbers for planes parallel to the 
coordinate planes? 

SOLUTION. A plane parallel to the yz plane has an equation of the form 
x - c = 0, where c is a constant. A set of attitude numbers for this plane is 
1, 0, 0. A plane parallel to the xz plane has attitude numbers 0, 1, 0, and any 
plane parallel to the xy plane has attitude numbers 0, 0, 1. 

Since lines perpendicular to the same or parallel planes are themselves 
parallel, we get at once the next theorem. 

Theorem 6. Tiro planes are parallel if and only if their attitude numbers are 
proportional. 

Theorem 1. lfA, B, and Care not all zero, the graph of an equation of the form 

Ax + By + Cz + D = 0 (1) 

is a plane. 

PROOF. Suppose that C :I: 0, for example. Then the point P0 (0, 0, - D/C) 
is on the graph as its coordinates satisfy the above equation. Therefore we 
may write 

A(x - 0) + B(y - 0) + c(z + ~) = 0, 

and the graph is the plane passing through P0 perpendicular to any line with 
direction numbers A, B, C. 

An equation of the plane through three points not on a line can be found by 
assuming that the plane has an equation of the form (1), substituting in turn 
the coordinates of the three points, and solving simultaneously the three 
resulting equations. The fact that there are four constants, A, B, C, D, and 
only three equations is illusory, since we may divide through by one of them 
(say D) and obtain three equations in the unknowns A/D, B/D, C/D. This 
is equivalent to setting D (or one of the other constants) equal to some 
convenient value. An example illustrates the procedure. 

EXAMPLE 3. Find an equation of the plane passing through the points (2, I, 3), 
( 1, 3, 2), ( - l. 2, 4). 
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SOLUTION. Since the three points lie in the plane, each of them satisfies 
equation (I). We have 

(2, I, 3): 

(1,3,2): 

(-1,2,4): 

2A + B + 3C + D = 0, 

A + 3B + 2C + D = 0, 

-A+ 2B + 4C + D = 0. 

Solving for A, B, C in terms of D, we obtain 

A= - 2\D, B= -2*5D, C = _ 2ssD. 

Setting D = - 25, we get the equation 

3x + 4y + 5z - 25 = 0. 

PROBLEMS 

In each of Problems 1 through 4, find the equation of the plane which passes through 
the given point P0 and has the given attitude numbers. 

I. P0 (1,4,2); 3, 1, -4 2. P0 (2,l,-5);3,0,2 

3. P0 (4, -2, -5); 0, 3, -2 4. P0(-l,-2,-3);4,0,0 

In each of Problems 5 through 8, find the equation of the plane which passes through 
the three points. 

5. (I, - 2, I), (2, 0, 3), (0, 1, - 1) 

7. (3, -1, 2), (I, 2, -1), (2, 3, I) 

6. (2,2,1),(-1,2,3),(3, -5, -2) 

8. (-1,3, 1), (2, 1,2), (4,2, -1) 

In each of Problems 9 through 12, find the equation of the plane passing through P, 
and perpendicular to the line L 1 • 

9. P,(2,-1,3); 

10. P1(1,2, -3); 

11. P,(2, -1, -2); 

12. P, ( - I, 2, - 3); 

L,: x = - I + 21, y = I + 31, z = -41 

LI : x = I, y = - 2 - 21, z = I + 31 

L,: x = 2 + 31, y = 0, z = - 1 - 21 

L,: x = - 1 + 51, y = 1 + 21, z = - I + 31 

In each of Problems 13 through 16, find the equations of the line through P1 and 
perpendicular to the given plane M,. 

13. P1(-2, 3, l); 

14. P1(1, -2, -3); 

15. P1(- l,O, -2); 

16. P1(2, - I, -3); 

M,: 2x + 3y + z - 3 = 0 

M,: 3x - y - 2z + 4 = 0 

M,: x + 2z + 3 = 0 

M,:x=4 

In each of Problems 17 through 20, find an equation of the plane through P1 and 
parallel to the plane <II. 
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17. P1(1, -2, -1); 

18. P1(-l,3,2); 

19. P1(2, -1,3); 

20. P1(3,0, 2); 

<I>: 3x + 2y - z + 4 = 0 

<I>: 2x + y - 3z + 5 = 0 

<I>: x - 2y - 3z + 6 = 0 

<I>: x + 2y + I = 0 

21 

In each of Problems 21 through 23, find the equations of the line through P1 parallel 
to the given line L. 

21. P1(2,-l,3); 
x-1 y+2 z-2 

L:---=--=--
3 -2 4 

22. P1(0,0, I); L.x+2_y- I _z+ I 
.-1---3----=2 

L: x - 2 = y + 2 = z - 3 
2 -I 4 

In each of Problems 24 through 28, find the equation of the plane containing L 1 and 

Li· 

x+I r-2 z-1 
24. L1:-2-=-· -3-=-1-; 

x-1 r+2 z-2 
25. L 1 :--=-· -=--; 

3 2 2 

x+2 y z+I 
26. L1 :1·-= 0=-2; 

27. L1 : ~ = y - I = z + 2. 
2 3 -I ' 

28 L -~~-y+ I=:: . 
. • . 2 - -1 3' 

x+I y-2 z-1 
Li:--=--=--

1 -I 2 

x-1 y+2 z-2 
Li: -1- = -1- = -0-

L .x+2_[_z+I 
i· 2 -3- I 

Li: x - 2 = y + I = 2-(L.IJLi) 
2 3 -I 

Li:x; I= ~I =z;2(L1JJL2) 

In Problems 29 and 30, find the equation of the plane through P1 and the given line L. 

29. P1(3,-l,2); { x-2 y+I z} 
L= (x,y,z):--2- =--3- = -2 

L = {(x,y,z): x =-I+ t, y = 2 + 2t, z = 2 - 2t} 

31. Show that the plane 2x - 3y + z - 2 = 0 is parallel to the line 

x-2 y+2 z+I 
-1-=-1-=-1-

32. Show that the plane 5x - 3y - z - 6 = 0 contains the line 

x =I+ 2t, y = -1+3t, Z = 2 +I. 

33. A plane has attitude numbers A, B, C, and a line has direction numbers a, b, c. 
What condition must be satisfied in order that the plane and line be parallel? 
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Fig. 1-13 

34. Show that the three planes 7x - 2y - 2z - 5 = 0, 3x + 2y - 3z - 10 = 0, 1x + 
2y - 5z - 16 = 0 all contain a common line. Find the coordinates of two points 
on this line. 

*35. Find a condition that three planes A 1x + B,y + C,z + D, = 0, A 2 x + B2 y + 
C2 z + D2 = 0, A 3 x + B3 y + C3 z + D3 = 0 either have a line in common or have 
no point in common. 

5. Angles. Distance from a Point to a Plane 

The angle between two lines was defined in Section 2. We recall that if line L 1 

has direction cosines;,,, µ 1 , v1 and line L 2 has direction cosines ),2 , µ 2 , v2 , 

then 

cosO = ). 1 ). 2 + µ 1µ 2 + v1v2 , 

where 0 is the angle between L 1 and L 2 • 

Definition. Let <1> 1 and <1>2 be two planes, and let L 1 and L 2 be two lines which 
are perpendicular to «1>1 and «1>2 , respectively. Then the angle between «1>1 

and «1>2 is, by definition, the angle between L 1 and L 2 • (See Fig. 1-13.) 
Furthermore, we make the convention that we always select the acute angle 
between these lines as the angle between «1> 1 and «1>2 • 

Theorem 8. The angle 0 between the planes A 1x + B1y + C1z + D1 = 0 and 
A2 x + B2 y + C2 z + D2 = 0 is given by 

cosO = IA 1A 2 + B1B2 + C1C2i 
.JA: +Bf+ Cf-./Af +Bf+ Cf 
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PROOF. From the definition of attitude numbers for a plane, we know that 
they are direction numbers of any line perpendicular to the plane. Convert
ing to direction cosines, we get the above formula. 

Corollary. Tim planes 11·ith attitude numbers A 1 , B 1 , C1 and A 2 , B2 , C2 are 
perpendicular if and only if 

A 1A 2 + B1 B2 + C1 C2 = 0. 

EXAMPLE I. Find cos (J where (J is the angle between the planes 3x - 2y + 
z = 4 and x + 4y - 3z - 2 = 0. 

SOLUTION. Substituting in the formula of Theorem 8, we have 

cos (J = ---===' 3=-=-8_-=3=1 == 
v' 9 + 4 + I ", I + 16 + 9 

4 

Two nonparallel planes intersect in a line. Every point on the line satisfies 
the equations of both planes and, conversely, every point which satisfies the 
equations of both planes must be on the line. Therefore we may characterize 
any line in space byjinding tll"o planes which contain it. Since every line has an 
unlimited number of planes which pass through it and since any two of them 
are sufficient to determine the line uniquely, we see that there is an unlimited 
number of ways of writing the equations of a line. The next example shows 
how to transform one representation into another. 

EXAMPLE 2. The two planes 

2x + 3y - 4z - 6 = 0 and 3x - y + 2z + 4 = 0 

intersect in a line. (That is, the points which satisfy both equations constitute 
the line.) Find a set of parametric equations of the line of intersection. 

SOLUTION. We solve the above equations for x and yin terms of z, getting 

x = -lrz - 161, r=:~z+i~ and x + i61 - J' - it - z 
- 121 - - : t - I. 

We can therefore write 

y = ¥l + i?t, z = t, 

which are the desired parametric equations. 

Three planes may be parallel, may pass through a common line, may have 
no common points, or may have a unique point of intersection. If they have 
a unique point of intersection, the intersection point may be found by solving 
simultaneously the three equations of the planes. If they have no common 
point, an attempt to solve simultaneously will fail. A further examination 
will show whether or not two or more of the planes are parallel. 
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EXAMPLE 3. Determine whether or not the planes cl> 1 : 3x - y + z - 2 = O; 
cl>2 : x + 2y - z + 1 = O; cl>3 : 2x + 2y + z - 4 = 0 intersect. If so, find the 
point of intersection. 

SOLUTION. Eliminating z between cl> 1 and cl>2 , we have 

4x+ y- 1=0. (I) 

Eliminating z between cl>2 and cl>3 , we find 

3x + 4y- 3 = 0. (2) 

We solve equations (I) and (2) simultaneously to get 

x =-h. y= !J. 
Substituting in the equation for cl> I' we obtain z = n. Therefore the single 
point of intersection of the three planes is <-h' n' m. 
EXAMPLE 4. Find the point of intersection of the plane 

3x - y + 2z - 3 = 0 

and the line 

x+l y+l z-1 
-3- = -2- = -=2' 

SOLUTION. We write the equations of the line in parametric form: 

x = -1+3t, y = -1+2t, z = 1 - 2t. 

The point of intersection is given by a value oft; call it t0 • This point must 
satisfy the equation of the plane. We have 

3( -1 + 3t0 ) - ( -1 + 2t0 ) + 2(1 - 2t0 ) - 3 = 0 <=> 10 = I. 

The desired point is (2, l, -1). 

We now derive an important formula which tells us how to find the 
perpendicular distance from a point in space to a plane. 

Theorem 9. The distance dfrom the point P1(x 1 ,y1 , z1) to the plane 

Ax + By + Cz + D = 0 

is given by 

d= jAx 1 + By1 + Cz 1 +DI . 
../A2 + B2 + c2 

PROOF. We write the equations of the line L through P1 which is perpendicular 



5. Angles. Distance from a Point to a Plane 25 

to the plane. They are 

L: x =Xi+ At, y =Yi+ Bt, z = Zi +Ct. 

Denote by (x0 , y 0 , z0) the point of intersection of L and the plane. Then 

d 2 =(xi - Xo)2 +(Yi - Yo)2 + (Zi - Zo)2. (3) 

Also (x0 ,y0 ,z0) is on both the line and the plane. Therefore, we have for 
some value t 0 

and 

Ax0 + By0 + Cz0 + D 

x0 =Xi+ At0 , 

Yo =y, +Bio, 

z0 = z1 + Ct0 , 

(4) 

= 0 = A(x1 + At0) + B(Yi + Bt0) + C(z1 + Ct0) + D. 

Thus, from (3) and (4), we write 

d= JA 2 + B2 + C 2 ltol• 

and now, inserting the relation 

1 _ -(Ax i + By i + Cz 1 + D) 
o - A2 + B2 + c2 

in the preceding expression for d, we obtain the desired fonnula. 

EXAMPLE 5. Find the distance from the point (2, -1, 5) to the plane 

3x + 2y - 2z - 7 = 0. 

SOLUTION. 

16 - 2 - IO - 71 13 
d= =-J9 +4+ 4 JPi" 

PROBLEMS 

In each of Problems I through 4, find cos() where () is the angle between the given 
planes. 

I. 2x - y + 2z - 3 = 0, 3x + 2y - 6z - 11 = 0 

2. x + 2y - 3z + 6 = 0, x + y + z - 4 = 0 

3. 2x - y + 3z - 5 = 0, 3x - 2y + 2z - 7 = 0 

4. x + 4z - 2 = 0, y + 2z - 6 = 0 
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In each of Problems S through 8, find the equations in parametric form of the line of 
intersection of the given planes. 

S. 3x + 2y - z + S = 0, 2x + y + 2z - 3 = 0 

6. x + 2y + 2z - 4 = 0, 2x + y - 3z + S = 0 

7. x + 2y - z + 4 = 0, 2x + 4y + 3z - 7 = 0 

8. 2x + 3y - 4z + 7 = 0, 3x - 2y + 3z - 6 = 0 

In each of Problems 9 through 12, find the point of intersection of the given line and 
the given plane. 

9. 3x - y + 2z - S = 0, 

10. 2x + 3y - 4z + IS= 0, 

11. x + 2z + 3 = 0, 

12. 2x + 3y + z - 3 = 0, 

x-1 y+I z-1 
-2- =-3- = --=2 

x+I y z+2 
-.-=o=-2-

x+2 y-3 z-1 
-2-=-3-=-1-

In each of Problems 13 through 16, find the distance from the given point to the given 
plane. 

13. (2, I, -1), x - 2y + 2z + S = 0 

14. (3,-1,2), 3x+2y-6z-9=0 

IS. (-1,3,2), 2x-3y+4z-S=0 

16. (0,4,-3), 3y+2z-7=0 

17. Find the equation of the plane through the line 

x+I y-1 z-2 
-3- = -2- = -4-

which is perpendicular to the plane 

2x + y - 3z + 4 = 0. 

18. Find the equation of the plane through the line 

x-2 y-2 z-1 
-2-=-3-=--=2 

which is parallel to the line 

x+I y-1 z+I 
-3-=-2-=-,-

19. Find the equation of the plane through the line 
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which is parallel to the line 

x+2 y z+I 
-3-= -2=-2-

x-1 y+I z-1 
-2- = -3- = -4-· 
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20. Find the equations of any line through the point (I, 4, 2) which is parallel to the 
plane 

2x + y + z - 4 = 0. 

21. Find the equation of the plane through (3, 2, - I) and (I, - I, 2) which is parallel 
to the line 

x-1 y+I z 
-3-=-2-= -2· 

In each of Problems 22 through 26, find all the points of intersection of the three given 
planes. If the three planes pass through a line, find the equations of the line in parametric 
form. 

22. 2x + y - 2z - I = 0, 3x + 2y + z - IO = 0, x + 2y - 3z + 2 = 0 

23. x + 2y + 3z - 4 = 0, 2x - 3y + z - 2 = 0, 3x + 2y - 2z - 5 = 0 

24. 3x - y + 2z - 4 = 0, x + 2y - z - 3 = 0, 3x - Sy + 7z + I = 0 

25. 2x + y - 2z - 3 = 0, x - y + z + I = 0, x + Sy - 7z - 3 == 0 

26. x+2y+3z-5=0, 2x-y-2z-2=0, x-8y-13z+ II =0 

In each of Problems 27 through 29, find the equations in parametric form of the line 
through the given point P1 which intersects and is perpendicular to the given line L. 

27 P (3 I 2) L · x - I - y + I - z 
• I ' - ' ; • -2- - -=I - J 

x y-2 z+3 
28. P1(-l,2,3); L: - =--=--

2 0 -3 

29. P1 (0, 2, 4); 
x-1 y-2 z-3 

L:--=--=--
3 I 4 

30. If A 1x + B 1y + C1z + D1 = 0 and A2x + B2y + C2z + D2 = 0 are two intersect
ing planes, what is the graph of all points which satisfy 

A 1x + B 1y + C1z + D1 + k(A 2x + B2Y + C2z + l>2) = 0, 

where k is a constant? 

31. Find the equation of the plane passing through the point (2, I, - 3) and the intersec
tion of the planes 3x + y - z - 2 = 0, 2x + y + 4z - I = 0. [Hint: See Problem 
30.] 

32. Given a regular tetrahedron with each edge 2 units in length. (See Problem 22 at 
the end of Section 2.) Find the distance from a vertex to the opposite face. 
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Fig. 1-14 

33. Given a regular pyramid with each edge of the base 2 units in length and each 
lateral edge 4 units in length. (See Problem 23 at the end of Section 2.) Find the 
distance from the top of the pyramid to the base. Also find the distance from one of 
the vertices of the base to a face opposite to that vertex. 

34. A slice is made in a cube by cutting through a diagonal of one face and proceeding 
through one of the vertices of the opposite face as shown in Fig. 1-14. Find the 
angle between the planar slice and the first face which is cut. 

6. The Sphere. Cylinders 

A sphere is the graph of all points at a given distance from a fixed point. The 
fixed point is called the center and the fixed distance is called the radius. 

If the center is at the point (h, k, /),the radius is r, and (x,y, z) is any point 
on the sphere, then, from the formula for the distance between two points, we 
obtain the relation 

(x - h)2 + (y - k)2 + (z - /)2 = ,2. (I) 

Equation ( 1) is the equation of a sphere. If it is multiplied out and the terms 
collected we have the equivalent form 

x 2 + y 2 + z2 + Dx + Ey + Fz + G = 0 (2) 

with D = -2h, E= -2k, F= -21, G = h2 +k2 +1 2 - r2 • 
I 

EXAMPLE 1. Find the center and radius of the sphere with equation 

x 2 + y 2 + z2 + 4x - 6y + 9z - 6 = 0. 

SoLUTION. We complete the square by first writing 

x 2 +4x +y2 -6y +z2 +9z =6; 

then, adding the appropriate quantities to both sides, we have 

(x2 + 4x + 4) + (y2 - 6y + 9) + (z2 + 9z + 81} = 6 + 4 + 9 + l!j 
-= (x + 2)2 + (y - 3)2 + (z + !)2 = T. 

The center is at ( - 2, 3, -!) and the radius is t v' 157. 
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Fig. 1-15 

EXAMPLE 2. Find the equation of the sphere which passes through (2, I, 3), 
(3, 2, I), (I. -2. -3), (-1. I, 2). 

SOLUTION. Substituting these points in the form (2) above for the equation of 
a sphere, we obtain 

(2, I, 3): 

(3, 2, I): 

(I, -2, -3): 

(-1, 1,2): 

2D + E + 3F + G = - 14, 

3D+2E+ F+G= -14, 

D - 2E - 3F + G = - 14, 

- D + E + 2F + G = -6. 

Solving these by elimination (first G, then D, then F) we obtain, successively, 

D+ E-2F=0, D+ 3E+ 6F=0, 

and 

2E+ 8F= 0, 

Therefore 

The desired equation is 

3£- 7F= 8; and so 

F= -i\, D = -1;, 

3D+ F= -8, 

-38£= -64. 

G=·-W. 

x2 + y 2 + z2 - 1;x + ~y - 189Z - W = 0. 

A cylindrical surface is a surface which consists of a collection of parallel 
lines. Each of the parallel lines is called a generator of the cylinder or cylin
drical surface. 

The customary right circular cylinder of elementary geometry is clearly a 
special case of the type of cylinder we are considering. Figure 1-15 shows 
some examples of cylindrical surfaces. Note that a plane is a cylindrical 
surface. 

lbeorem 10. An equation of the form 

f{x,y) = 0 

is a cylindrical surface with generators all parallel to the z axis. The surface 
intersects the xy plant' in the curve 



30 I. Analytic Geometry in Three Dimensions 

y 

Fig. 1-16 Fig. 1-17 

j(x,y) = 0, z =0. 

A similar result holds with axes interchanged. 

PROOF. Suppose that x 0 , Yo satisfiesf(x0 ,y0 ) = 0. Then any point (x0 ,y0 ,z) 
for - oo < z < x satisfies the same equation, since z is absent. Therefore 
the line parallel to the z axis through (x0 ,y0 ,0) is a generator. 

EXAMPLE 3. Describe and sketch the graph of the equation x 2 + y 2 = 9. 

SOLUTION. The graph is a right circular cylinder with generators parallel to 
the z axis (Theorem 10). It is sketched in Fig. l-16. 

EXAMPLE 4. Describe and sketch the graph of the equation y 2 = 4z. 

SOLUTION. According to Theorem lO the graph is a cylindrical surface with 
generators parallel to the x axis. The intersection with the yz plane is a 
parabola. The graph, called a parabolic cylinder, is sketched in Fig. l-17. 

PROBLEMS 

In each of Problems I through 4, find the equation of the sphere with center at C and 
given radius r. 

I. C(l,4, -2), r = 3 

3. C(0, 1,4), r = 6 

2. C(2,0, -3), r = 5 

4. C(-2,1,-3),r= I 

In each of Problems 5 through 9, determine the graph of the equation. If it is a sphere, 
find its center and radius. 

5. x 2 + y 2 + z2 + 2x - 4z + I = 0 
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6. x 2 + y 2 + z 2 - 4x + 2y + 6z - 2 = 0 

7. x 2 + .r2 + z2 - 2x + 4y - 2z + 7 = 0 

8. x 2 + y 2 + z2 + 4x - 2y + 4z + 9 = 0 

9. x 2 + y 2 + z2 - 6x + 4y + 2z + 10 = 0 

10. Find the equation of the graph of all points which are twice as far from A (3, - I, 2) 
as from 8(0, 2, - I). 

11. Find the equation of the graph of all points which are three times as far from 
A(2, I, -3) as from B( -2, -3, 5). 

12. Find the equation of the graph of all points whose distances from the point (0,0,4) 
are equal to their perpendicular distances from the xy plane. 

In each of Problems 13 through 24, describe and sketch the graph of the given equation. 

13. x = 3 14. x 2 + y 2 = 16 15. 2x + y = 3 

16. x + 2z = 4 17. x 2 =4z 18. z = 2 - y 2 

19. 4x 2 + y 2 = 16 20. 4x2 - y 2 = 16 21. y 2 + x 2 = 9 

22. z2 = 2 - 2x 23. x 2 + y 2 - 2x = 0 24. z2 = y 2 + 4 

In each of Problems 25 through 28, describe the curve of intersection, if any, of the 
given surface Sand the given plane cl>. That is, describe the set Sn cl>. 

25. S: x 2 + y 2 + z2 = 25; 

26. S: 4x = y 2 + z 2 ; 

27. S: x 2 + 2y2 + 3z2 = 12; 

28. S: x 2 + y 2 = z2 ; 

cl>:;;:= 3 

cl>: x = 4 

cl>:y=4 

cl>: 2x +z=4 

29. Verify that the graph of the equation (x - 2)2 + (y - 1)2 = 0 is a straight line. 
Show that every straight line parallel to one of the coordinate axes can be repre
sented by a single equation of the second degree. 

30. If 

S 1 = {(x,y,z): x 2 + y 2 + z2 +A ,x + B,y + C,z + D, = O} 

and 

S2 = {(x,y,z): x 2 + y 2 + z2 + A 2 x + B2Y + C2 z + D2 = 0} 

are two spheres, then the radical plane is obtained by subtraction of the equations 
for S 1 and S2 • It is 

cl>= {(x,y,z): (A, -A 2)x + (B, - B2 )y + (C, - C2)z +ID, - D2) = O}. 

Show that the radical plane is perpendicular to the line joining the centers of the 
spheres S, and S2 • 

31. Show that the three radical planes (see Problem 30) of three spheres interest in a 
common line or are parallel. 
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Fig. 1-18 

7. Other Coordinate Systems 

In plane analytic geometry we employ a rectangular coordinate system for 
certain types of problems and a polar coordinate system for others. We know 
that there are circumstances in which one system is more convenient than 
the other. A similar situation prevails in three-dimensional geometry, and 
we now take up systems of coordinates other than the rectangular one which 
we have studied exclusively so far. One such system, known as cylindrical 
coordinates, is described in the following way. A point P in space with 
rectangular coordinates (x,y, z) may also be located by replacing the x and y 
values with the corresponding polar coordinates r, (J and by allowing the z 
value to remain unchanged. In other words, to each ordered number triple 
of the form (r, 0, z), there is associated a point in space. The transformation 
from cylindrical to rectangular coordinates is given by the equations 

x = rcosO, y=rsinO, z = z. 
The transformation from rectangular to cylindrical coordinates is given by 

,2=x2+y2, tan (J = y/x, z = z. 

If the coordinates of a point are given in one system, the above equations 
show how to get the coordinates in the other. Figure 1-18 exhibits the 
relation between the two systems. It is always assumed that the origins of 
the systems coincide and that (J = 0 corresponds to the xz plane. We see that 
the graph of (J = const consists of all points in a plane containing the z axis. 
The graph of r = const consists of all points on a right circular cylinder with 
the z axis as its central axis. (The term "cylindrical coordinates" comes from 
this fact.) The graph of z = const consists of all points in a plane parallel to 
the xy plane. 

EXAMPLE 1. Find cylindrical coordinates of the points whose rectangular 
coordinates are P(3, 3, 5), Q(2, 0, -1), R(O, 4, 4), S(O, 0, 5), T(2, 2J3, I). 
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SOLUTION. For the point P we haver= J9 + 9 = 3..fi., tan 6 = l, 6 = rc/4, 
z = 5. Therefore one set of coordinates is (3.Ji., rc/4, 5). For Q we have 
r = 2, 6 = 0, z = -1. The coordinates are (2,0, -1). For R we get r = 4, 
0 = rc/2, z = 4. The result is (4, rc/2, 4). For S we see at once that the coor
dinates are (0, 6, 5) for any 6. For T we get r = .J4+12. = 4, tan 6 = .J3, 
6 = rc/3. The answer is (4, rc/3, l). 

REMARK. Just as polar coordinates do not give a one-to-one correspondence 
between ordered number pairs and points in the plane, so cylindrical co
ordinates do not give a one-to-one correspondence between ordered number 
triples and points in space. 

A spherical coordinate system is defined in the following way. A point P 
with rectangular coordinates (x,y, z) has spherical coordinates (p, 6, </>)where 
p is the distance of the point P from the origin, 6 is the same quantity as in 
cylindrical coordinates, and </> is the angle that the directed line OP makes 
with the positive z direction. Figure 1-19 exhibits the relation between 
rectangular and spherical coordinates. The transformation from spherical to 
rectangular coordinates is given by the equations 

x = psin<f>cos6, y = psin<f>sin6, z = pcos<f>. 

The transformation from rectangular to spherical coordinates is given by 

p2 = x2 + y2 + z2, 

and 

tan6 =:!::'., 
x 

z 
cos</> = --;::::====== 

Jx2 + y2 + z2 

We note that the graph of p = const is a sphere with center at the origin 
(from which is derived the term "spherical coordinates"). The graph of 6 = 
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Fig. 1-20 
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Fig. 1-21 

const is a plane through the z axis, as in cylindrical coordinates. The graph 
of </> = const is a cone with vertex at the origin and angle opening 2</> if 
0 < </> < n/2. (See Fig. 1-20.) The lower nappe of the cone in Fig. 1-20 
is or is not included according as negative values of p are or are not 
allowed. 

EXAMPLE 2. Find an equation in spherical coordinates of the sphere 

x 2 + y 2 + z2 - 2z = 0. 

Sketch the graph. 

SOLUTION. Since p 2 = x 2 + y 2 + z2 and z = p cos <J>, we have 

p 2 - 2pcos</> = 0 ~ p(p - 2cos</>) = 0. 

The graph of this equation is the graph of p = 0 and p - 2 cos</> = 0. The 
graph of p = 0 is on the graph of p - 2 cos</> = 0 (with </> = rr./2). Plotting 
the surface 

p = 2cos</>, 

we get the surface shown in Fig. 1-21. 

If pis constant, then the quantities (0, </>)form a coordinate system on the 
surface of a sphere. Latitude and longitude on the surface of the earth also 
form a coordinate system. If we restrict fJ so that - n < fJ ~ n, then (J is 
called the longitude of the point in spherical coordinates. If </> is restricted 
so that 0 ~ </> ~ n, then </> is called the colatitude of the point. That is, </> is 
(rr./2) - latitude, where latitude is taken in the ordinary sense-i.e., positive 
north of the equator and negative south of it. 
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PROBLEMS 

I. Find a set of cylindrical coordinates for each of the points whose rectangular 
coordinates are 

a) (3, 3, 7), b) (4, 8,2), c) (-2,3,1). 

2. Find the rectangular coordinates of the points whose cylindrical coordinates are 

a) (2, n/3, I), b) (3, - n/4, 2), c) (7, 2n/3, -4). 

3. Find a set of spherical coordinates for each of the points whose rectangular coor
dinates are 

a) (2, 2, 2), b) (2, -2, -2), c) ( - I "/3, 2). 

4. Find the rectangular coordinates of the points whose spherical coordinates are 

a) (4, n/6, n/4), b) (6, 2n/3, n/3), c) (8, n/3, 2n/3). 

5. Find a set of cylindrical coordinates for each of the points whose spherical coor
dinates are 

a) (4, n/3, n/2), b) (2, 2n/3, 5n/6), c) (7, n/2, n/6). 

6. Find a set of spherical coordinates for each of the points whose cylindrical coor
dinates are 

a) (2, n/4, I). b) (3, n/2, 2), c) (I, 5n/6, - 2). 

In each of Problems 7 through 16, find an equation in cylindrical coordinates of the 
graph whose (x,y, z) equation is given. Sketch. 

7. x 2 + y2 + z2 = 9 

9. x 2 + y 2 = 4z 

11. x2 + y2 = z2 

13. x 2 - y 2 = 4 

15. x 2 + y 2 - 4y = 0 

8. x 2 + y2 + 2z2 = 8 

10. x 2 + y2 - 2x = 0 

12. x 2 + y 2 + 2z2 + 2z '= 0 

14. xy + z2 = 5 

16. x 2 + y2 + z2 - 2x + 3y- 4z = 0 

In each of Problems 17 through 22, find an equation in spherical coordinates of the 
graph whose (x.y, z) equation is given. Sketch. 

17. x 2+y2+z2 -4z=0 18. x 2+y2+z2 +2z=0 

19. x2 + y2 = z2 20. x 2 + y 2 = 4 

21. x 2 + y 2 = 4z + 4 (Solve for pin terms of cf>.) 

22. x 2 + y2 - z2 + z - y = 0 

23. Theorem 10 on page 29 describes a surface when the equation of the surface has 
one of the rectangular coordinates absent. Describe, in the form of a theorem, the 
nature of a surface with equation/(r, z) = 0 where r, 9, z are cylindrical coordinates. 
Do the same when the equation is of the formj(O,z) = 0. 

24. Same as Problem 23 for spherical coordinates when the equation is of the form 
j(p,cf>) = 0. 



CHAPTER 2 

Vectors 

1. Directed Line Segments and Vectors in the Plane 

Let A and B be two points in a plane. The length of the line segment joining 
A and Bis denoted IABI. 

Definition. The directed segment from A to B is defined as the line segment 
AB which is ordered so that A precedes B. We use the symbol AB to denote 
such a directed segment. We call A its base and Bits head. 

If we select the opposite ordering of the line segment AB, then we get the 
directed segment BA. In this case B precedes A and we call B the base and 
A the head. To distinguish geometrically the base and head of a directed 
line segment, we usually draw an arrow at the head, as shown in Fig. 2- l. 

Definitions. The magnitude~ dire~d line segment AB is its length IABI. 
Two directed line segments AB and CD are said to have the same magnitude 
and direction if and only if either one of the following two conditions holds: 

i) AB and CD are both on the same line L, their magnitudes are equal, 

l 

A~i:e 
segment AB 

Fig. 2-1 Fig. 2-2 
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and the heads B and D are pointing in the same direction, as shown in 
Fig~ 2-2. 

ii) The points A, C, D, and Bare the vertices of a parallelogram, as shown 
in Fig. 2-3. 

Figure 2-4 shows several line segments havin~e sa~-magnitude and 
direction. Whenever two directed line segments AB and CD have the same 
magnitude and direction, we say that they are equivalent and write 

Ai~AB. 

We now prove a theorem which expresses this equivalence relationship 
in terms of coordinates. 

Theorem l. Suppose that A, B, C, and Dare points in a plane. Denote the 
coordinates of A, B, C, and D by (xA,yA), (xB,YB), (xe,yc), (x0 ,y0 ), respec
tively. (See Fig. 2-5.) 

i) If the coordinates above satisfy the equations 

and YB - YA =Yo -·Ye• (I) 

then 

AB~ CD. 
ii) Conversely, if AB is equivalent to CD, then the coordinates of the four 

points satisfy Eqs. (I). 

PROOF. First, we suppose that Eqs. (I) hold, and we wish to show that 
AB~ _f!j. If~- xA and YB - YA are positive, as shown in Fig. 2-5, then 
both AB and CD are directed segments which are pointing upward and to 
the right. It is a simple result from plane geometry that llABE is congruent 
to llCDF; hence IABI = ICDI and the line through AB is parallel to (or 
coincides with) the line through CD. Therefore A, B, D, Care the vertices 
of a parallelogram or the line through AB coincides with the line through 
CD. In either case, AB is equivalent to CD. The reader can easily draw the 
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same conclusion if either x 0 - xA or y0 - YA is negative or if both quantities 
are negative. See Problem 27 at the end of Section 2. 

To prove the converse, we assume that AB~ CD. That is, we suppose 
that jABj = jCDI and that the line through AB is parallel to (or coincides 
with) the line through CD. If the directed line segments appear as in Fig. 2-5, 
we conclude from plane geometry that !l.ABE is congruent to !l.CDF. 
Consequently x 0 - .\·A= x 0 - Xe and Yo - .1:.i =Yo - Ye· The reader may 
verify that the result holds generally if AB and CD are pointing in directions 
other than upward and to the right. 

If we are given a directed line segment AB, we see at once that there is 
an unlimited number of equivalent ones. In fact, if C is any given point in 
the plane. we can use Eqs. (I) of Theorem I to find the coordinates of the 
umquc point D such that CD ~ AB. Theorem I also yields various simple 
properties of the relation ~. For example. if AB~ CD, then CD~ AB; 
also if AB~ CD and CD~ EF, then AB~ EF. 

The definition of a vector involves an abstract concept-that of a collec
tion of directed line segments. 

Definition. A vector is a collection of all directed line segments having a 
given magnitude and a given direction. We shall use boldface letters to 
denote vectors; thus when we write v for a vector, it stands for an entire 
collt!ction of directed line segments. A particular directed line segment in 
the collection is called a representative of the vector* v. Any member of 
the collection may be used as a representative. 

Figure 2-4 shows five representatives of the same vector. Since any two 
representative directed line segments of the same vector are equivalent, 
the collection used to define a vector is called an equivalence cla~. 

• We also say that the directed line segment determines the vector v. 
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The vector as we have defined it is sometimes called a free vector. There 
are other ways of introducing vectors; one is to call a directed line segment 
a vector. We then would make the convention that directed line segments 
with the same magnitude and direction (i.e., equivalent) are equal vectors. 
When there is no danger of confusion we shall identify directed line segments 
and vectors. 

Vectors occur with great frequency in various branches of physics and 
engineering. Problems in mechanics, especially those involving forces, are 
concerned with "lines of action," i.e., the lines along which forces act. 
In such problems it is convenient (but not necessary) to define a vector as 
the equivalence class of all directed line segments which lie along a given 
straight line and which have a given magnitude. 

Definition. The length of a vector is the common length of all its representative 
segments. A unit vector is a vector of length one. Two vectors are said to be 
orthogonal (or perpendicular) if any representative of one vector is perpen
dicular to any representative of the other (i.e., the representatives lie along 
perpendicular lines). 

For convenience, we consider directed line segments of zero length; 
these are simply points. The zero vector, denoted by 0, is the class of directed 
line segments of zero length. We make the convention that the zero vector 
is orthogonal to every vector. 

2. Operations with Vectors 

Vectors may be added to yield other vectors. Suppose u and v are vectors, 
i.e., each is a collection of directed line segments. To add u and v, first 
select a representative of u, say AB, as shown in Fig. 2-6(a). Next take the 
~ticular representative of v which has its~se at the point B, and label it 
BC. Then draw the directed line segment AC. The sum w ofu and vis the 
class of directed line segments of which AC is a representative. We write 

u + v = w. 
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It is important to note that we could have started with any representative ofu, 
say A' B' in Fig. 2-6(b). Then we could have selected the representative ofv 
with base at B'. The directed line segment A' C' and AC are representatives 
of the same vector, as is easily seen from Theorem I. 

Vectors may be multiplied by numbers to yield new vectors. lfv is a vector 
and c is a positive real number, then cv is a vector with its representatives 
having the same direction as those of v but with magnitudes c times as long 
as the representatives ofv. If c is a negative number, then the representatives 
of cv have the opposite direction to those of v and their magnitudes are lei 
times as long as those of v. If c is zero, we get the vector 0. Figure 2-7 shows 
various multiples of a representative line segment AB of a vector v. We 
write -v for the vector (- l)v. 

Definitions. Suppose we are given a rectangular coordinate system in the 
plane. We call I the point with coordinates (I, 0) and J the point with co
ordinates (0. I) as shown in Fig. 2-8. The unit vector i is defined as the vector 
which has Of as a representative. The unit vector j is defined as the vector 
which has OJ as a representative. 

Theorem 2. Suppose a vector w has AB as a representative. Denote the coordi
nates of A and B by (xA,J:,.) and(x8 ,y8 ), respectfrely. Then w may be expressed 
in the form 

PROOF. From Eqs. (I) in Theorem I, we know that w is given by OP where 
P has coordinates (x8 - xA•YB - J:,.). (See Fig. 2-8.) Let Q(x8 - xA,0) and 
R(O,y8 - YA) be the points on the coordinates axes as shown in Fig. 2-8. 
It is clear geometrically that OQ is (x8 - xA) times as long as OJ and that 
OR is (y8 - >:..) times as long as OJ. We denote by u the vector given by 
OQand by v the vector given by OR. Using the rule for addition of vectors, 
we obtain 

w = u + v, 
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Y B(x8 ,y8 ) 

P(xB-xl,YB -1A)w 
R(O,yB -yA)i----· 

J(0,1) A(x_4,Y.4) 

Fig. 2-8 

since OP as well as OR determines v. Since u = (x8 - xA)i and v = (y8 - YA)j, 
the result of the theorem is established. 

EXAMPLE I. A vector v is determined by AB. Given that A has coordinates 
(3, -2) and B has coordinates (I, I), express v in terms of i and j. Draw a 
figure. 

SOLUTION. Using the formula in Theorem 2, we have (see Fig. 2-9) 

v = (I - 3)i + (I + 2)j = - 2i + 3j. 

NOTATION. The length of a vector v will be denoted by !vi. 

Theorem 3. If v = ai + bj, then 

Therefore v = 0 if and only ifa = b = 0. 

PROOF. By means of Theorem 2, we know that vis determined by the directed 

y 

t B(l, 1) ----1 
--+---..;--'l....+----i--+- x 

0 

Fig. 2-9 
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y y 
S(a + c, b + d) 
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Fig. 2-10 Fig. 2-11 

segment OP where P has coordinates (a,b). (See Fig. 2-10.) Then JOPJ = 
.JQ2 + b2 ; since, by definition, the length of a vector is the length of any of 
its representatives, the result follows. 

The next theorem is useful for problems concerned with the addition of 
vectors and the multiplication of vectors by numbers. 

Theorem 4. If v = ai + bj and w = ci + dj, then 

I v + w = (a + c)i + (b + d)j. I 
Further, if his any number, then 

I hv = (ha)i + (hb)j. I 

PROOF. Let P, Q, and Shave coordinates as shown in Fig. 2-11. Then OP and 
OQ determine v and w, respectively. Since PS~ OQ, we use the rule for 
addition of vectors to find that OS determines v + w. The point R (see Fig. 
2-12) is h of the way from 0 to P. Hence OR is a representative of hv. 

We conclude from the theorems above that the addition of vectors and 
their multiplication by numbers satisfy the following laws: 

u + (v + w) = (u + v) + w} 
Associative laws 

c(dv) = (cd)v 

u+v=v+u 

(c + d)v = cv + dv 

c(u + v) = cu + cv 

l ·u = u, O·u=O, 

Commutative law 

} Distributive laws 

(-l)U=-U 
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where -u denotes that vector such that u + (-u) = 0. These laws hold for 
all u, v, wand all numbers c and d. It is important to note that multiplication 
and division of vectors in the ordinary sense is not (and will not be) defined. 
However, subtraction is defined. If AB is a representative of v and AC is 
one ofw, then CB is a representative ofv - w (see Fig. 2-13). 

EXAMPLE 2. Given the vectors u = 2i - 3j, v = -4i + j. Express the vector 
2u - 3v in terms of i and j. 

SOLUTION. 2u = 4i - 6j and - 3v = l 2i - 3j. Adding these vectors. we get 
2u - 3v = l 6i - 9j. 

Definition. Let v be any vector except 0. The unit vector u m the direction 
of v is defined by 

EXAMPLE 3. Given the vector v = - 2i + 3j, find a unit vector in the direction 
ofv. 

SOLUTION. We have jvj = .._,,4+9=v13. The desired vector u is 

I 2 • 3 . 
U = -=V = --=I+ -=J· 

v 13 J13 yl3 

EXAMPLE 4. Given the vector v = 2i - 4j. Find the directed line segment 
AB of v, given that A has coordinates (3, - 5). 

SOLUTION. Denote the coordinates of B by x 8 , y8 . Then we have (by Theorem 
2) 

XR - 3 = 2 

Therefore x 8 = 5, YB= -9. 

and YB+ 5 = -4. 
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PROBLEMS 

In Problems I through 5, express v in terms of I and j, given that the endpoints A and 
B of the directed segment AB of v have the given coordinates. Draw a figure. 

I. A(J, -2), B(I, 5) 

J. A(S, -6), B(O, -2) 

5. A(7,-2),B(-5,-6) 

2. A( -4, I), B(2, -1) 

4. A(4,4), B(8, -J) 

In Problems 6 through 9, in each case find a unit vector u in the direction of v. Express 
u in terms of i and j. 

6. \' = 41 + Jj 

8. \' = 21 - 2J3j 

7. v = -Si - 12j 

9. v= -2i+Sj 

In Problems 10 through I 5, find the representative AB of the vector v from the informa
tion given. Draw a figure. 

10. v = 7i - Jj, A (2, - I) 

12. v =Ji+ 2j, B(-2, I) 

II. v= -2i+4j,A(6,2) 

IJ. v = -4i- 2j, B(O,S) 

14. v = Ji + 2j, midpoint of segment AB has coordinates (J, I) 

15. v = -2i + Jj, midpoint of segment AB has coordinates (-4,2) 

16. Find a representative of the vector v of unit length making an angle of J0° with the 
positive x direction. Express v in terms of i and j. 

17. Find the vector v (in terms of i and j) which has length 2JZ and makes an angle of 
45° with the positive y axis (two solutions). 

18. Given that u = Ji - 2j, v = 4i + Jj. Find u + v in terms of i and j. Draw a figure. 

19. Given that u = - 2i + Jj, v = i - 2j. Find u + v in terms of i and j. Draw a figure. 

20. Given that u = - Ji - 2j, v = 2i + j. Find Ju - 2v in terms of i and j. Draw a 
figure. 

21. Show that if AB:::: CD and CD:::: Ki, then Ali::::· Ei. 
22. Show that if AB:::: DE and BC:::: £1, then AC:::: bl. Draw a figure. 

2J. Show that if AB:::: iii, c is any real number, C is the point c of the way from A to 
B, and Fis the point c of the way from D to E, then AC:::: Di. Draw a figure. 

24. Show that the vectors v = 2i + 4j and w = lOi - Sj are orthogonal. 

25. Show that the vectors v = - Ji + J2j and w = 4JZi + 12j are orthogonal. 

26. Let u and v be two nonzero vectors. Show that they are orthogonal if and only if 
the equation 

iu + vl 2 = iul 2 + lvl 2 

holds. 
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27. Vectors in the plane may be divided into categories as follows: pointing upward to 
the right, upward to the left, downward to the right, downward to the left; also 
those pointing vertically and those horizontally. Theorem I, part (i) was established 
for vectors pointing upward to the right (Fig. 2-5). Write a proof of Theorem I (i) 
for three of the remaining five possibilities. Draw a figure and devise, if you can, 
a general proof. 

28. The same as Problem 27 for part (ii) of Theorem I. 

29. Write out a proof establishing the associative, commutative, and distributive laws 
for vectors. (See page 42.) 

3. Operations with Plane Vectors, Continued. 
The Scalar Product 

Two vectors v and w are said to be parallel or proportional when each is a 
scalar multiple of the other (and neither is zero). Parallel vectors have 
parallel directed line segments. 

By the angle between two vectors v and w (neither= 0), we mean the 
measure of the angle between two representatives of v and w having the 
same base (see Fig. 2-14). Two parallel vectors make an angle either of 0 
or of n, depending on whether they are pointing in the same or opposite 
directions. 

Suppose that i and j are the usual unit vectors pointing in the direction 
of the x and y axes, respectively. Then we have the following theorem. 

Theorem S. If() is the angle beH•;een the vectors 

then 

v = ai + bj and W= d +dj, 

ac+bd 
cos8=~· 
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y 
Q(c,d) 

Fig. 2-15 

PROOF. We draw the directed line segments of v and w with base at the origin 
of the coordinate system, as shown in Fig. 2-15. Using Theorem 2 of Section 
2, we see that the coordinates of Pare (a, b) and those of Q are (c, d). The 
length ofv is JOPJ and the length ofw is JOQJ. We apply the law of cosines 
to ~OPQ, obtaining 

Therefore 

cosO = IOPJ2 + JOQl2 - JQPJ2 

2IOPIJOQI 

a2 + b2 + c2 + d 2 - (a - c)2 - (b - d)2 ac + bd cosO= =---. 
2IOPJ IOQJ lvJ JwJ 

EXAMPLE l. Given the vectors v = 2i - 3j and w = i - 4j, compute the cosine 
of the angle between v and w. 

SOLUTION. We have 

JvJ = ,4 + 9 = ,/13, lwJ = v 1 + 16 = yTI. 
Therefore 

2·1+(-3)(-4) 14 cosO= _ =--. 
vl7v113 y'IB 

Suppose that we have two directed line segments AB and CD, as shown in 
Fig. 2-16. The projection of AB in the direction CD is defined as the directed 
length, denoted EF, of the line segment EF obtained by dropping perpen
diculars from A and B to the line containing CB. We can find the projection 
of a vector v along a vector w by first taking a representative of v and finding 
its projection in the direction of a representative of w. 

If 0 is the angle between two vectors v and w, the quantity 

JvJcos8 
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D 

is positive if (J is an acute angle and the projection of v on w is positive. 
If (J is an obtuse angle, then lvl cos (J is negative, and the projection of v 
on w is negative. 

Definition. The quantity lvl cos (J is called the projection of v on w. We write 
Proj" v for this quantity. Jfv = ai + bj and w = ci + dj, then 

EXAMPLE 2. Find the projection of v = 3i - 2j on w = - 2i -- 4j. 

SOLUTION. We obtain the desired projection by using the formula 

. -6+ 8 
ProJ,. v = = --=· 

,20 "5 

The scalar product of two nonzero vectors v and w, written v · w, is defined 
by the formula 

1·-v·w = lvl lwlcosO, I 

where (J is the angle between v and w. If one of the vectors is 0, the scalar 
product is defined to be 0. The terms dot product and inner product are also 
used to designate scalar product. It is evident from the definition that scalar 
product satisfies the relations 

v·w=w·v, 

Furthermore, if v and w are orthogonal, then 

v·w=O, 

and conversely. If v and ware parallel, we have v · w = ± lvl lwl, and con
versely. In terms of the orthogonal unit vectors i and j, vectors v = ai + bj 
and w = ci + dj have as their scalar product (see Theorem 5) 
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v·w = ac + bd. 

In addition, it can be verified that the distributive law 

u·(v + w) = u·v + u·w 

holds for any three vectors. 

2. Vectors 

EXAMPLE 3. Given the vectors u = 3i + 2j and v = 2i + aj. Determine the 
number a so that u and v are orthogonal. Determine a so that u and v are 
parallel. For what value of a will u and v make an angle of n/4? 

SOLUTION. If u and v are orthogonal, we have 

3·2+2·a=0 and a= -3. 

For u and v to be parallel, we must have 

u. v = ± lul lvl 
or 

- ,---2 
6+2a= ±y13·v4+a. 

Solving, we obtain a= 1. 
Employing the formula in Theorem 5, we find 

I ,-2 _ 7t _ 6 + 2a 
2 "' - cos - - . ' 4 "'13 · ./4 + a2 

so that u and v make an angle of n/4 when 

a=IO,-~. 

Because they are geometric quantities which are independent of the 
coordinate system, vectors are well suited for establishing certain types 

0 

Fig. 2-17 
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of theorems m plane geometry. We give two examples to exhibit the 
technique. 

EXAMPLE 4. Let OA be a representative of u and OB a representative of v. 
Let C be the point on line AB which is f of the way from A to B (Fig. 2-17). 
Express in terms of u and v the vector w which has DC as representative. 

SOLUTION. Let z be the vector with AC as representative, and t the vector 
with AB as representative. We have 

w = u + z = u + ft. 
Also we know that t = v - u, and so 

w = u + f(v - u) =tu+ fv. 

Let AB be a directed line segment. We introduce a convenient symbol 
for the vector which has AB as a representative. 

NOTATION. The symbol v[AB] denotes the vector which has AB as a 
representative. 

EXAMPLE 5. Let ABDC be a parallelogram, as shown in Fig. 2-18. Suppose 
that Eis the midpoint of CD and Fist of the way from A to Eon AE. Show 
that Fis t of the way from B to C. 

SOLUTION. Let AB, AC, AF, AE, BF, BC, and CE determine vectors. Then 
we define v[AB], v[AC], v[AFJ, etc., as the vectors which determine the 
directed line segments shown in brackets. By hypothesis, we have 

v[AB] = v[CD] and v[CT] = tv[CD]. 

The rule for addition of vectors gives us 

v[AE] = v[AC] + v[CE] = v[AC] + tv[AB). 

Also, since v[AF] = fv[AE], we obtain 
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v[~] =iv[K] + !v[AB]. 

The rule for subtraction of vectors yields 

v[BF] = v[AF] - v[AB] = iv[K] - iv[AB] = i(v[K] - v[AB] ). 

Since v[BC] - v[K] - v[AB], we conclude that 

v[BF] = iv[BC], 

which is the desired result. 

PROBLEMS 

In Problems 1 through 6, given that() is the angle between v and w, find JvJ, JwJ, cos(), 
and the projection of v on w. 

I. v = 4i - 3j, w = -4i - 3j 

3. v = 3i - 4j, w = 5i + 12j 

5. v = 3i + 2j, w = 2i - 3j 

2. v = 2i + j, w = i - j 

4. v = 4i + J, w = 6i - 8j 

6. v = 6i + 5j, w = 2i + 5j 

In Problems 7 through 12, find the projection of the vector AB on the vector CD. Draw 
a figure in each case. 

7. A(l,0), B(2, 3), C(l, I), D(-1, I) 

8. A(0,0), B(l,4), C(0,0), D(2, 7) 

9. A(3, I), B(5, 2), C(-2, - I), D(-1, 3) 

10. A(2,4), 8(4, 7), C(6, -1), D(2,2) 

11. A(2, -1), B(I, 3), C(5, 2), D(9, 3) 

12. A(I, 6), B(2, 5), C(5, 2), D(9, 3) 

In Problems 13 through 17, find cosO and cos ex, given that()= LABC and ex= L BAC. 
Use vector methods and draw figures. 

13. A(-l,l),B(3,-l),C(3,4) 

15. A(3,4), B(5, I), C(4, I) 

17. A(0,0),B(3,-5),C(6,-IO) 

14. A(2,l),B(-l,2),C(l,3) 

16. A(4,l),B(l,-l),C{3,3) 

In Problems 18 through 24, determine the number a (if possible) such that the given 
condition for v and w is satisfied. 

18. v = 2i + aj, w = i + 3j, v and w orthogonal 

19. v = i - 3j, w = 2ai + j, v and w orthogonal 

20. v = 3i - 4j, w = 2i + aj, v and w parallel 

21. v = ai + 2j, w = 2i - aj, v and w parallel 

22. v = ai, w = 2i - 3j, v and w parallel 
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23. v = Si + I 2j, w = i + aj, v and w make an angle of n/3 

24. v = 4i - 3j, w = 2i + aj, v and w make an angle of n/6 

25. Prove the distributive law for the scalar product, as stated on page 48. 

26. Let i and j be the usual unit vectors of one coordinate system, and let 11 and j 1 be 
the unit orthogonal vectors corresponding to another rectangular system of 
coordinates. Given that 

v = ai + bj, 

show that 

w = ci + dj, 

In Problems 27 through 30, the quantity IABI denotes (as is customary) the length of the 
line segment AB, the quantity IACI, the length of AC, etc. 

27. Given .6.ABC, in which LA= 120°, IABI = 4, and IACI = 7. Find IBCI and the 
projections of AB and AC on BC. Draw a figure. 

28. Given .6.ABC, with LA= 45°, IABI = 8, IACI = 6,/2 .. Find IBCI and the projec
tions of AB and AC on BC. Draw a figure. 

29. Given .6.ABC, with IABI = JO, IACI = 9, IBCI = 7. Find the projections of AC 
and BC on AB. Draw a figure. 

30. Given .6.ABC, with IABI = 5, IACI = 7, IBCI = 9. Find the projections of AB and 
iiC on EB. Draw a figure. 

31. Given the line segments AB and AC, with D on AB i of the way from A to B. Let 
Ebe the midpoint of AC. Express v[DE] in terms of v[AB] and v[AC]. Draw a 
figure. 

32. Suppose that v[AD] = !v[AB] and v[BE] = !v[BC]. Find v[DE] in terms of 
v[AB] and v[BC]. Draw a figure. 

33. Given D ABDC, a parallelogram, with E f of the way from B to D, and Fas the 
midpoint of segment CD. Find v[EFJ in terms ofv[AB] and v[AC]. 

34. Given parallelogram ABDC, with E i of the way from B to C, and Fi of the way 
from A to D. Find v[EF] in terms ofv[ABJ and v[AC]. 

35. Given parallelogram ABDC, with E ! of the way from B to D, and F ! of the way 
from B to C. Show that Fis ~ of the way from A to E. 

36. Suppose that on the sides of .6.ABC, v[BD] = fv[BC], v[CE] = fv[CA], and 
v[AF] = !v[AB]. Draw figure and show that 

v(AD] + v[BE] + v[CFJ = 0. 

37. Show that the conclusion of Problem 36 holds when the fraction i is replaced by 
any real number h. 

38. Let a= v[OA], b = v[OB], and c = v(OC]. Show that the medians of .6.ABC 
meet at a point P, and express v(OP] in terms of a, b, and c. Draw a figure. 
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4. Vectors in Three Dimensions 

The development of vectors in three-dimensional space is a direct extension 
of the theory of vectors in the plane as given in Sections 1-3. This section, 
which is completely analogous to Section 1, may be read quickly. The 
distinction between two- and three-dimensional vectors appears in Sections 
5, 6, and 7. 

A directed line segment AB is defined as before, except that now the base 
A and the head B may be situated anywhere in three-space. The magnitude 
of a directed line segment is its length. Two directed line segments AB and 
CD are said to have the same magnitude and direction if and only if either 
one of the following two conditions holds: 

i) AB and CD are both on the same directed line i and their directed 
lengths are equal; or 

ii) the points A, C, D, and Bare the vertices of a parallelogram as shown 
in Fig. 2-19. 

We note that the above definition is the same as that given in Section 1. 
Whenever two directed line segments AB and CD have the same magnitude 

and direction, we say they are equivalent and write 

AB~ CD. 
We shall next state a theorem which is a direct extension of Theorem I 

in Section I . 

Theorem 6. Suppose that A, B, C, and D are points in space. Denote the 
coordinates of A, B, C, and D by (xA,yA,zA), (x8 ,y8 ,z8 ), and so forth. (i) If 
the coordinates satisfy the equations 

Ys - YA =Yo - Ye• 

then AB~ CD. (ii) Conversely, if AB~ CD, the coordinates satisfy the 
equations in (I). 

SKETCH OF PROOI'. (i) We assume that the equations in (I) hold. Then also, 
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Xe - xA = Xo - xB, Ye - YA =Yo - YB• Ze - z,. = Zo - ZB. (2) 

As in the proof of Theorem l in Section l, we can conclude that the lines AB 
and CD are parallel because their direction numbers are equal. Similarly, 
AC and BD are parallel. Therefore AB::::: CD or all the points are on a 
directed line L. The proof that AB::::: CD in this latter case is. given in Appen
dix 2. (ii) To prove the converse, assume that AB::::: CD. Then either ACDB 
is a parallelogram or all the points are on a directed line Z. When ACDB 
is a parallelogram there is a unique point E such that 

XE - Xe= XB - XA, YE - Ye= YB - >'.4· ZE - Zc = ZB - ZA. 

As in the proof of Theorem l in Section l, we conclude from part (i) that 
ACEB is a parallelogram and D = E; hence equations (l) hold. The proof 
that equations ( l) hold when the points are on a directed line L is given in 
Appendix 2. 

If we are given a directed line segment AB, it is clear that there is an 
unlimited number of equivalent ones. In fact, if C is any given point in 
three-space, we can use equations (l) of Theorem 6 to find the coordinates 
of the unique point D such that CD ::::: AB. 

Definitions. A vector is the collection of all directed line segments having 
a given magnitude and direction. We shall use boldface letters to denote 
vectors. A particular directed line segment in a collection v is called a 
representative of the vector* v. The length of a vector is the common length 
of all its representatives. A unit vector is a vector of length one. Two vectors 
are said to be orthogonal (or perpendicular) if any representative of one vector 
is perpendicular to any representative of the other. The zero vector, denoted 
by 0, is the class of directed line "segments" of zero length (i.e., simply 
points). 

As in Section 2, we can define the sum of two vectors. Given u and v, 
let AB be a representative of u and let BC be that representative of v which 
has its base at B. Then u + v is the vector which has representative AC as 
shown in Fig. 2-20. If A'ii and B'C' are other representatives of u and v, 
respectively, it follows from Theorem 6 that A'C' ::::: AC. Therefore lfC is 

* We also say that the directed line segment determines the vector v. 



54 2. Vectors 

z 

K 

o>---+---- Y 
J 

x Fig. 2-21 

also a representative of u + v. In other words, the rule for forming the sum 
of two vectors does not depend on the particular representatives we select 
in making the calculation. 

Vectors may be multiplied by numbers (scalars). Given a vector u and a 
number c, let AB determine u and let C be the point c of the way from A 
to B. Then AC also determines cu. It follows easily from Theorem 6 that if 
A'li determines u and C is c of the way from A' to B', then A' C ~ AC and 
so A'C determines cu. 

Definitions. Suppose that a rectangular coordinate system is given. Figure 
2-21 shows such a system with the points 1(1,0,0), J(O, 1,0), and K(O,O, 1) 
identified. The unit vector i is defined as the vector which has of as one of 
its representatives. The unit vector j is defined as the vector which has OJ as 
one of its representatives. The unit vector k is defined as the vector which 
has OK as one of its representatives. 

We now establish a direct extension of Theorem 2 in Section 2. 

Theorem 7. Suppose a vector w has AB as a representative. Denote the coordi
nates of A and B hy (xA,yA,zA) and (x8 ,JB,Z8 ), respectively. Then w may be 
expressed in the form 

PROOF. From equations (I) of Theorem 6, we know that w is determined by 
OP where P has coordinates (x8 - xA·Yn - y 4 ,z8 - zA). Let 

Q(XB - XA, 0, 0), 

S(O, 0, ::,I - ;;A), 

R(0.y8 - .J:.i,0), 

T(x8 - xA,y8 - J:.i.O) 

be as shown in Fig. 2-22. Then Q is x 8 - xA of the way from 0 to /( 1, 0, 0), 
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and similarly for R and S with regard to J and K. Therefore, 

v(OQ) = (x8 - xA)i, 

v(QT) = v(OR) =(YB - _i:.i)j, 

v(TP) = v(OS) = (z8 - .:A)k. 

Using the rule for addition of vectors, we find 

v(OP) = v(OQ) + v(QT) + v(TP), 

and the proof is complete. 
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EXAMPLE I. A vector v has AB as a representative. If A and B have coordinates 
(3, -2, 4) and (2, I, 5), respectively, express v in terms of i, j, and k. 

SOLUTION. From Theorem 7, we obtain 

v(AB) = (2 - 3)i +(I + 2)j + (5 - 4)k = -i + 3j + k. 

The next two theorems are direct extensions of Theorems 3 and 4 in 
Section 2. The proofs are left to the reader. 

The length of a vector vis denoted by !vi. 

Theorem 8. /f v = ai + bj + ck, then 
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If his any number, then 

In complete analogy with vectors in the plane, we conclude from the 
theorems above that the addition of vectors and their multiplication by 
numbers satisfy the following laws: 

u + (v + w) = (u + v) + w} 
Associative laws 

c(dv) = (cd)v 

u+v=v+u 

(c + d)v = cv + dv 

c(u + v) =cu+ cv 

) ·U= U, O·u= 0, 

Commutative law 

} Distributive laws 

(- l)u = -u. 

Definition. Let v be any vector except 0. The unit vector u in the direction of v 
is defined by 

I 
U=i;r 

EXAMPLE 2. Given the vectors u = 3i - 2j + 4k and v = 6i - 4j - 2k, express 
the vector 3u - 2v in terms of i, j, and k. 

SOLUTION. 3u = 9i - 6j + 12k and -2v = -12i + 8j + 4k. Adding these 
vectors, we get 3u - 2v = - 3i + 2j + 16k. 

EXAMPLE 3. Given the vector v = 2i - 3j + k, find a unit vector in the 
direction of v. 

SOLUTION. We have lvl = v·4+9+1 = v14. The desired vector u is 

1 2 . 3 . I k 
U = -r:=V =-=I - --==J +--== . v 14 v' 14 v 14 v 14 

EXAMPLE 4. Given the vector v = 2i + 4j - 3k, find the representative AB of 
v if the point A has coordinates (2, 1, -5). 

SOLUTION. Denote the coordinates of B by xB, YB• zB. Then we have 

XB - 2 = 2, YB- 1=4, ZB + 5 = -3. 

Therefore, xB = 4, YB= 5, zB = -8. 
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PROBLEMS 

In Problems I through 6, express v in terms of i, j, and k, given that the endpoints P 
and Q of the representative PQ of v have the given coordinates. Also find another 
directed line segment for the same vector v. 

I. P(2, 0, J), Q(l,4, -J) 

2. P(l, 1,0), Q(-1,2,0) 

J. P(-4, -2, I), Q(I, -J,4) 

4. P(J,2, I), Q(J, J, J) 

5. P(2,0,0), Q(O,O, -J) 

6. P(4, -5, - I), Q(-2, I, -J) 

In Problems 7 through 10, in each case find a unit vector u in the direction ofv. Express 
u in terms of i, j, and k. 

7. v = Ji+ 2j - 4k 

8. v = i-j + k 

9. v = 2i - 4j - k 

10. V= -2i+Jj+5k 

In Problems 11 through 17, find the directed line segment AB of the vector v from the 
information given. 

11. v = 2i + j - Jk, 

12. V= -i+Jj-2k, 

13. v = Ji + 2j - 4k, 

14. V= -2i+4j+k, 

A(l,2, -1) 

A(2,0,4) 

B(2,0, -4) 

B(O,O, -5) 

15. v = i - 2j + 2k; the midpoint of the segment AB has coordinates (2, -1,4). 

16. v =Ji+ 4k; the midpoint of the segment AB has coordinates (1,2, -5). 

17. v = -i + j - 2k; the point three-founhsofthedistancefromA to Bhascoordinates 
(1,0,2). 

18. Find a vector u in the direction ofv = -i + j- k and having half the length ofv. 

19. Given u = i + 2j - 4k, v =Ji - 7j + 5k, find u + v in terms of i, j, and k. Sketch 
a figure. 

20. Given that u = - Ji + 7j - 4k, v = 2i + j - 6k, find Ju - 7v in terms of i, j, and k. 

21. Let a and b be any real numbers. Show that the vector k is orthogonal to ai + bj. 

22. Show that the vector u = i + 2j - Jk is orthogonal to av + bw where v = 2i + 
2j + 2k, w = - i + 2j + k and a, b are any real numbers. Interpret this statement 
geometrically. 
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23. Discuss the relationship between the direction numbers of a line and the representa
tion of a vector v in terms of the vectors I, j, and k. 

24. Suppose two representatives of u and v determine a plane. Discuss the relationship 
between the attitude numbers of this plane and the representations of u and v in 
terms ofi, j, and k as stated in Theorem 7. 

5. Linear Dependence and Independence* 

Two vectors u and v, neither zero, are said to be proportiooal if and only if 
there is a number c such that u = cv; that is, each vector is a scalar multiple 
of the other. lfv 1 , v2 , ••• , vk are any vectors and c1 , c2 , ••• , ck are numbers, 
we call an expression of the form 

C1V1 + C2V2 + ... + ckvk 

a linear combination of the vectors v1 , v2 , ••• , vk. If two vectors u and v 
are proportional, the definition shows that a linear combination of them is 
the zero vector. In fact, u - cv = 0. A set of vectors {v 1 , v2 , ••• , vk} is 
linearly dependent if and only if there is a set of constants {c 1 , c2 , ••• , ck}, 
not all zero, such that 

(I) 

If no such set of constants exists, then the set {v 1, v2 , ••• , vd is said to be 
linearly independent. 

It is clear that any two proportional vectors are linearly dependent. 
As another example, the vectors 

VI = 2i + 3j - k, V3 = 2i + 7j - k 

form a linearly dependent set since the selection c1 = 3, c2 = 2, c3 = -1 
shows that 

C1V1 + C2 V2 + C3 V3 = 3(2i + 3j - k) + 2( -2i - j + k) - (2i + 7j - k) = 0. 

A set {v 1 , v2 , ••• , vk} is linearly dependent if and only if one member of the 
set can be expressed as a linear combination of the remaining members. 
To see this, we observe that in Eq. (1) one of the terms on the left-hand side, 
say v;. must have a nonzero coefficient and so may be transferred to the 
right-hand side. Dividing by the coefficient -c;, we express this particular 
V; as a linear combination of the remaining v's. Conversely, if some v; is ex
pressible in terms of the others, it follows by transposing V; that v1, v2 , ••• , Vt 

are linearly dependent. 

• For an understanding of Sections 5, 6, and 7, we assume that the reader is acquainted with 
determinants of the second and third order. For those unfamiliar with the subject a discussion 
is provided in Appendix I. 
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The following statement, a direct consequence of the definition of linear 
dependence, is often useful in proofs of theorems. If { v 1 , v 2 , ••• , v k} is a 
linearly independent set and if 

C1V1 + C2V2 + ... + ckvk = 0, 

then it follows that c1 = c2 = · · · =ck= 0. 
The set {i,j, k} is linearly independent. To show this observe that the 

equation 

C1 j + C2j + C3k = 0 

holds if and only if jc1 i + c2j + c3 kj = 0. But 

ic1i + C2j + C3kl =.JC:+ d + d, 

(2) 

and this last expression is zero if and only if c1 = c2 = c3 = 0. Thus no 
nonzero constants satisfying (2) exist and {i,j, k} is a linearly independent 
set. 

The proof of the next theorem employs the tools on determinants given 
in Appendix I. The details of the proof of Theorem JO are carried out in 
Appendix 2. 

Theorem 10. Let 

u = a 11 i + a 12j + a 13 k, 

v = a21 i + a 22 j + a 23 k, 

w = a 31 i + a 32j + a 33k, 

and denote by D the determinant 

a11 a12 a13 

D = a21 a22 a23 

a31 a32 a33 

Then the set {u. v, w} is linearly independent if and only if D ='F 0. 

EXAMPLE I . Determine whether or not the vectors 

u = 2i -j + k, v = i + 2j + k, w = -i + j + 3k 

form a linearly independent set. 

SOLUTION. Expanding D by its first row, we have 

2 - I I 

D= I 2 I = 1 1~ ~l+I_! ~l+I_! ~I· 
-I I 3 

Therefore D = 2(5) + 4 + 3 = 17 # 0. The set is linearly independent. 
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Theorem 11. If {u, v, w} is a linearly independent set and r is any vector, then 
there are constants A 1 , Ai, and A 3 such that 

(3) 

PROOF. According to Theorem 7, every vector can be expressed as a linear 
combination of i, j, and k. Therefore 

u = a 11 i + a 1ij + a 13k, 

v = ai 1 i + a 22j + ai 3 k, 

w = a 31 i + a 32j + a 33 k, 

r=b 1i+bij+b3 k. 

When we insert all these expressions in (3) and collect all terms on one side, 
we get a linear combination of i, j, and k equal to zero. Since {i,j, k} is a 
linearly independent set, the coefficients of i, j, and k are equal to zero 
separately. Computing these coefficients, we get the equations 

a1 iA1 + ai1Ai + a31A3 =bi, 

a12A1 + aiiAi + a3iA3 =bi, 

U13A1 + ai3Ai + a33A3 = b3. 

(4) 

We have here three equations in the three unknowns A 1 , Ai, A3. The deter
minant D' of the coefficients in ( 4) differs from the determinant D of Theorem 
10 in that the rows and columns are interchanged. Since {u, v, w} is an 
independent set, we know that D 'I: 0; also Theorem 6 of Appendix I proves 
that D = D', and so D' # 0. We now use Cramer's rule (Theorem II, 
Appendix I) to solve for A 1 , Ai, A3. 

Note that the proof of Theorem 11 gives the method for finding A 1 , Ai, 
A 3 • We work an example. 

EXAMPLE 2. Given the vectors 

u = 2i + 3j + k, 

w = 3i-j + 3k, 

v= -i +j+ 2k, 

r = i + 2j - 6k, 

show that u, v, and w are linearly independent and express r as a linear 
combination of u, v, and w. 

SOLUTION. Expanding D by its first row, we obtain 

2 3 I 

D= -I I 2 =21-~ ~1-31-~ ~1+1-~ -~I 
3 -1 3 

= 2(5) - 3(-9) + (-2) = 35. 
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Hence D # 0 and so { u, v, w} is a linearly independent set. Using equations 
(4), we now obtain the equations 

2A 1 - A2 + 3A3 =I, 

3A I + A 2 - A 3 = 2, 

A 1 +2A 2 +3A3 =-6. 

Solving these, we find that A 1 = I, A 2 = - 2, A 3 = - I. Finally, 

r = u - 2v- w. 

PROBLEMS 

In Problems I through 5 state whether or not the given vectors are linearly independent. 

I. u = 2i + j- k, v = i - 2j + 5k, w = 2i - 7j + k 

2. u = i + 2j + 3k, V=2i+j+4k, w = 3j + 2k 

3. u = 2i + 3j. v = i - 4j, w=i+2j 

4. u = -i + 2j, v=i+j+k, W= -2j+6k 

5. U= i+j, v = 2i - 6j + 3k, w = -i +j, r= 4k 

In Problems 6 through 11, show that u, v, and w are linearly independent and express 
r in terms of u, v, and w. 

6. u = 2i-j + k, v = -i + j- 2k. w = 2i-j + 2k, r = 3i-j + 2k 

7. u = i -j + k, V= -i + 2j- k, W=2i-j+k, r = 2i + 3j + 4k 

8. u = 3i + j- 2k, v = 2i - k, W= -i + 2j + k, r = i + 2j- 3k 

9. u = 2i-j + k, V= i +j, W= -i +j + 2k, r = 2i -j- 2k 

10. u = i - 2j -- 3k, V= 2i -j- 2k, W= -i+j+k, r = 2i + 3j + 4k 

11. u = 2i - 3k, V= i + 4j- k, w = - 2i + 5j + 3k, r = -i + 20j + 3k 

12. Prove Theorem 8. 

13. Prove Theorem 9. 

14. Show that in three dimensions any set of four vectors must be linearly dependent. 

15. Show that if OA, OB, and OC are directed line segments ofu, v, and w, respectively, 
and if {u, v, w} is a linearly dependent set, then the three line segments lie in one 
plane. 

16. Find the equations of the line passing through the point P(2, I, -3) and parallel 
to v = 3i - 2j + 7k. 

17. Find the equations of the line through the point A(I, -4,0) and perpendicular to 
any plane determined by v = i + 2j - k and w = 3i - j + k. 
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6. The Scalar (Inner or Dot) Product 

Two vectors are said to be parallel or proportional when each is a scalar 
multiple of the other (and neither is zero). The representatives of parallel 
vectors are all parallel directed line segments. 

By the angle between two vectors v and w (neither = 0). we mean the 
measure of the angle between any directed line segment of v and an inter
secting directed line segment of w (Fig. 2-23). Two parallel vectors make an 
angle of 0 or n, depending on whether they are pointing in the same or in 
the opposite direction. 

Theorem 12. If lJ is the angle between the rectors 

and 

then 

The proof is a straightforward extension of the proof of the analogous 
theorem in the plane (Theorem 5 of Section 3) and will therefore be omitted. 

EXAMPLE I. Given the vectors v = 2i + j - 3k and w = - i + 4j - 2k, find 
the cosine of the angle between v and w. 

SOLUTION. We have 

lvi = "'4 + I + 9 = v·T4, 
Therefore 

jwj =.JI + 16 + 4 = v-21. 

coslJ= -2+4+6= s_, 
.Jl4·v21 7...;6 

Definitions. Given the vectors u and v, the scalar (inner or dot) product u · v 
is defined by the formula 
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where(} is the angle between the vectors. If either u or vis 0, we define u · v = 0. 
Two vectors u and v are orthogonal if and only if u · v = 0. 

Thus we see that 0 is orthogonal to every vector. These definitions are 
identical with those for plane vectors. 

Theorem 13. The scalar product satisfies the laws 
a) u·v=v·u; b) u·u=lul 2 • 

c) (f"u = a 1 i + h.j + c1k and v = a2 i + b2 j + c2 k, then 

PROOF. Parts (a) and (b) are direct consequences of the definition; part (c) 
follows from Theorem 12 since 

a a + b b2 + c c2 u·v=lollvlcosfJ=lollvl '2 ' ' . 
lul lvl 

Corollary. (a) If c and d are any numbers and if u, v, w are any vectors, 
then 

u · (cv + dw) = c(u · v) + d(u · w). 

b) Wehave 

i·i=j·j=k·k= 1, i . j = i . k = j . k = 0. 

EXAMPLE 2. Find the scalar product of the vectors 

u = 3i + 2j - 4k and v = - 2i + j + 5k. 

SOLUTION. U • v = 3(-2) + 2 · l + (-4)(5) = -24. 

EXAMPLE 3. Express l3u + 5vl 2 in terms of lul 2 , lvl 2 , and u · v. 

SOLUTION. l3u + 5vl 2 = (3u + 5v). (3u + 5v) 

= 9(u·u) + 15(u·v) + 15(v·u) + 25(v·v) 

= 9lul 2 + 30(u · v) + 25lvl 2 • 

Definition. Let v and w be two vectors which make an angle 9. We denote by 
lvJ cos(} the projection ofv on w. We also call this quantity the component ofv 
along w. As before we denote this quantity by Proj.v. 
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From the formula for cos 0. we may write 

EXAMPLE 4. Find the projection of v = - i + 2j + 3k on w = 2i - j - 4k. 

SOLUTION. We have v · w = (-1)(2) + (2)(-1) + (3)(-4) ==:_-16; Jwj = 
v 21. Therefore, he projection of v on w is Iv I cos 0 = - 16/" 21. 

Theorem 14. /fu and v are not 0, there is a unique number k such that v - ku 
is orthogonal to u. Jn fact, k can be found from the formula 

PROOF. (v - ku) is orthogonal to u if and only if u · (v - ku) = 0. But 

u·(v- ku) = u·v - kjuj 2 = 0. 

Therefore, selection of k = u · v/JuJ 2 yields the result. 

Figure 2-24 shows geometrically how k is to be selected. We drop a 
perpendicular from the head of v (point B) to the line containing u (point D). 
The directed segment AD gives the proper multiple of u[AC], and the 
directed segment DB represents the orthogonal vector. 

EXAMPLE 5. Find a linear combination of 

u = 2i + 3j - k 

which is orthogonal to u. 

and v = i + 2j + k 

SOLUTION. We select k = (2 + 6 - l)/14 = !, and the desired vector is 
tj + tk. 
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PROBLEMS 

In each of Problems I through 5, find cos 8 where 8 is the angle between v and w. 

I. v = i + 3j - 2k, w = 2i + 4j - k 

2. v = - i + 2j + 3k, w = 3i - 2j - 2k 

3. v = 4i - 3j + 5k, w = 2i + j + k 

4. v = 2i + 3k, w = j + 4k 

5. v = - 2i - 3j - 4k, w = 2i - 3j + 4k 

In each of Problems 6 through 10, find the projection of the vector v on u. 

6. u = 2i - 6j + 3k, v = i + 2j - 2k 

7. U=6i+2j-3k, V= -i+8j+4k 

8. u = 12i + 3j + 4k, v = 4i + 8j + k 

9. u = 3i + 5j - 4k, v = 4i - 3j + 5k 

10. u = 2i - 5j + 3k, v = - i + 2j + 7k 

In each of Problems 11 through 13, find a unit vector in the direction of u. 

11. u = 2i - 6j + 3k 12. u = -i + 2k 13. u =Ji - 2j + 7k 

In each of Problems 14 through 17, find the value of k so that v - ku is orthogonal to 
u. Also, find the value h so that u - hv is orthogonal to v. 

14. u = 2i - j + 2k, v = 3i + j + 2k 

15. u = 2i - 3j + 6k, v = 7i + 14k 

16. u = 3i + 4j - 5k, v = 9i + 12j - 5k 

)7. U=i+3j-2k, V=6i+ 10j-3k 

18. Write a detailed proof of Theorem 12. 

19. Show that ifu and v are any vectors ( #0), then u and v make equal angles with w if 

w-(-lvl )u+(-lul )v 
- lul + lvl lul + lvl · 

20. Show that if u and v are any vectors, the vectors lvlu + lulv and lvlu - lulv are 
orthogonal. 

In each of Problems 21 through 23, determine the relation between g and h so that 
gu + hv is orthogonal tow. 

21. u = 3i - 2j + k, v = i + 2j - 3k, w = - i + j + 2k 

22. u = 2i + j - 2k, b = i - j + k, w = - i + 2j + 3k 

23. u = i + 2j - 3k, v = 3i + j - k, w = 4i - j + 2k 
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Fig. 2-25 Fig. 2-26 

In each of Problems 24 through 26, determine g and h so that w - gu - hv is orthogonal 
to both u and v. 

24. u = 2i - j + k, v = i + j + 2k, w=2i-j+4k 

25. u = i + j - 2k, v = - i + 2j + 3k, w = Si + 8k 

26. u = 3i - 2j, v = 2i- k, w=4i-2k 

27. If u and v are nonzero vectors, under what conditions is it true that 

lu +vi= jul + lvl? 

28. Suppose that AB, AC, and AD are directed line segments ofu, v, and u + v, respec
tively, with lul = lvl. Show that AD bisects the angle between AB and AC. 

29. Let P be a vertex of a cube. Draw a diagonal of the cube from P and a diagonal of 
one of the faces from P. Use vectors to find the cosine of the angle between these 
two diagonals. 

30. Use vectors to find the cosine of the angle between two faces of a regular tetrahedron. 
(See Problem 22, Chapter I, Section 2.) 

7. The Vector or Cross Product 

We saw in Section 6 that the scalar product of two vectors u and v associates 
an ordinary number, i.e., a scalar, with each pair of vectors. The vector or 
cross product, on the other hand, associates a vector with each ordered pair 
of vectors. However, before defining the cross product, we shall discuss the 
notion of "right-handed" and "left-handed" triples of vectors. 

An ordered triple {u, v, w} of linearly independent vectors is said to be 
right-handed if the vectors are situated as in Fig. 2-25. If the ordered triple 
is situated as in Fig. 2-26, the vectors are said to form a left-handed triple. 
The notion ofleft-handed and right-handed triple is not defined ifthe vectors 
form a linearly dependent set. 

Definition. Two sets of ordered triples of vectors are said to be similarly 
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oriented if and only if both sets are right-handed or both are left-handed. 
Otherwise they are oppositely oriented. 

Suppose {u 1,v 1,wr} and {u2 ,v2 ,w2 } are ordered linearly independent 
sets of triples. From Theorem 11, it follows that we may express u2 , v2 , and 
w 2 in terms of u 1 , v 1 , and w 1 by equations of the form 

V2 = a21U1 + a22V1 + a23W1, 

W2 = a31U1 + a32V1 + a33W1. 

We denoted by D the determinant 

all a12 a13 

D = a 21 a 22 a23 

a31 a32 a33 

Although the proof will not be given, it is a fact that the two triples above 
are similarly oriented if and only if D > 0; they are oppositely oriented if 
and only if D < 0. Note that the determinant cannot be zero, for then u2 , 

v2 , and w2 would not be linearly independent. (See the proof of Theorem 10' 
in Appendix 2. 

It is also true that if {u 1,v1 ,wi} and {u2 ,v2 ,w2 } are similarly oriented 
and if {u2 , v2 , w2 } and {u3 , v3 , w3 } are similarly oriented, then {u 1 , v1, wi} 
and {u3 , v 3 , w3} are similarly oriented. 

The facts above lead to the following result. 

Theorem 15. /f {u, v, w} is a right-handed triple, then (i) {v,u, -w} is a right
handed triple, and (ii) {c 1u,c2 v,c3 w} is a right-handed triple provided that 
C1C2C3 > 0. 

To prove (i) we apply the above determinant condition on similar orienta
tion by regarding {u,v,w} as {u 1,v 1 ,wi} and {v,u, -w} as {u2 ,v2 ,w2 }. To 
establish (ii) we regard { c1 u, c2 v, c 3 w} as { u 2 , v 2 , w2 }. The details are left to 
the reader. 

Definition. Given the vectors u and v, the vector or cross product u x v is 
defined as follows: 

i) if either u or v is 0, then 

u xv= O; 

ii) if u is proportional to v, then 

u xv= 0; 

iii) otherwise, 
U XV= W 
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where w has the three properties: (a) it is orthogonal to both u and v; (b) it 
has magnitude lwl = lul lvl sin 8, where 8 is the angle between u and v, and 
(c) it is directed so that {u, v, w} is a right-handed triple. 

REMARK. We shall always assume that any coordinate triple { i, j, k} is 
right-handed. (We have assumed this up to now without pointing out this 
fact specifically.) 

The proofs of the next two theorems are given in Appendix 2. 

Theorem 16. Suppose that uandv are any vectors, that {i,j, k} isa right-handed 
triple, and that tis any number. Then 

i) v x u = -(u x v), 
ii) (tu) x v = t(u x v) = u x (tv), 

iii) i x j = - j x i = k, 
jxk=-kxj=i, 
k x i = - i x k = j, 

iv) i x i = j x j = k x k = 0. 

Theorem 17. If u, v, ware any vectors, then 

i) u x (v + w) = (u x v) + (u x w) and 
ii) (v + w) x u = (v x u) + (w x u). 

With the aid of Theorems 16 and 17, the next theorem, an extremely 
useful one, is easily established. 

Theorem 18. If 

and 

then 

PROOF. By using the laws in Theorems 16 and 17 we obtain (being careful 
to keep the order of the factors) 

u xv= a 1h1(i xi)+ a 1b2(i x j) + a 1b3 (i x k) 

+ a2 b 1 (j x i) + a2 h2(j x j) + a2 b3 (j x k) 

+ a3b 1 (k x i) + a3b2(k x j) + a 3b3(k x k). 

The result follows from Theorem 16, parts (iii) and (iv) by collecting terms. 

The formula (1) above is useful in calculating the cross product. The 
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c 

.....__.__.___hl h ~/ 
Fig. 2-27 A B 

following symbolic form is a great aid in remembering the formula. We 
write 

where it is understood that this "determinant" is to be expanded formally 
according to its first row. The reader may easily verify that when the above 
expression is expanded, it is equal to (I). 

EXAMPLE I. Find u x v if u = 2i - 3j + k, V = i + j - 2k. 

SOLUTION. Carrying out the formal expansion, we obtain 

j 
2 -3 k 1-3 II 12 II 12 -31 I = I _ 2 i - I _ 2 j + I I k = 5i + 5j + 5k. 

-2 

REMARKS. In mechanics the cross product is used for the computation of the 
vector moment of a force F applied at a point B, about a point A. There are 
also applications of cross product to problems in electricity and magnetism. 
However, we shall confine our attention to applications in geometry. 

Theorem 19. The area of a parallelogram with adjacent sides AB and AC is 
given by* 

lv(AB) x v(AC)I. 

The area of !::,.ABC is then tlv(AB) x v(AC)I. 

PROOF. From Fig. 2-27, we see that the area of the parallelogram is 

IABlh = IABllAClsin8. 

The result then follows from the definition of cross product. 

• The notation v(AB) to indicate a vector v with representative AB was introduced in Section 3. 
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EXAMPLE2. Find the area of .6.ABCwith A( -2, I, 3), B(I, -1, I), C(3, -2,4). 

SOLUTION. We have v(AB) = 3i - 2j - 2k, v(AC) = 5i - 3j + k. From 
Theorem 19 we obtain 

v(AB) x v(AC) = -8i - 13j + k 

and 

!l-8i - 13j +kl= tv64 + 169 + I = iv'26. 

The vector product may be used to find the equation of a plane through 
three points. The next example illustrates the technique. 

EXAMPLE 3. Find the equation of the plane through the points A ( - I, I, 2), 
B(I, - 2, I), C(2, 2, 4). 

SOLUTION. A vector normal to the plane will be perpendicular to both the 
vectors 

v(AB) = 2i - 3j - k and v<Ac> = 3i + i + 2k. 

One such vector is the cross product 

v(AB) x v(AC) = - 5i - 7j + l lk. 

Therefore the numbers -5, -7, II form a set of allitude numbers (see 
Chapter I, Section 4) of the desired plane. Using A(- I, I, 2) as a point 
on the plane, we get for the equation 

-5(x+ l)-7(y-l)+ ll(z-2)=0 

or 

5x + 7y - l lz + 20 = 0. 

EXAMPLE 4. Find the perpendicular distance between the skew lines 

SOLUTION. The vector 

x-1 y+I z-2 
Li : --=! = -2- = -4-· 

V1=2i+3j-k 

is a vector along L 1 . The vector 

Vi= -i + 2j + 4k 

is a vector along Li. A vector perpendicular to both v1 and Vi (i.e., to both 
L 1 and Li) is 

V1 XVi=l4i-7j+7k. 
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Call this common perpendicular w. The desired length may be obtained as 
a projection. Select any point on L 1 (call it P1) and any poi1.!!_<2!? L 2 (call it P2). 

Then the desired length is the projection of the vector v(P1 P2 ) on w. To get 
this. we select P1 ( - 2, I. - I) on L 1 and P2 (I, - I, 2) on L 2 : and so 

v(P1 P;) = 3i - 2j + 3k. 

Therefore, 

. . -· v(P1P;)·w 
Projection of v(P1 P2) on w = -- - 1 ~-1 -

3. 14 + (-2)(- 7) + 3(7) II --·· -- = ---=· 

PROBLEMS 

In each of Problems I through 6. find the cross product u x v. 

I. u = i + 3j - k, 

2. u = 4i - 2j + 3k. 

3. U= -i+2j, 

4. u = 3j + 2k. 

V=2i-j+k 

V= -i-2j-k 

v = i + 3j- 2k 

v = 2i - 3j 

5. u = - 2i + 4j + Sk. v = 4i + Sk 

6. u = 2i - 3j + k. v =4k 

y6 

In Problems 7 through 11, find in each case the area of L'.:l.ABC and the equation of the 
plane through A. B. and C. Use vector methods. 

7. A(I, -2.3), B(3, I. 2). C(2.3, -1) 

8. A(3.2. -2), B(4. l.2). C(I. 2. 3) 

9. A(2. -I.I), B(3.2.-I), C(- 1.3.2) 

10. A(I. -2.3). B(2. -I. I), C(4.2. -1) 

11. A(-2. 3. I), B(4.2. -2). C(2.0. I) 

In Problems 12 through 14. find in each case the perpendicular distance between the 
given lines. 

12 x + I _ y - 3 z + 2. 
. -2- --=-:1 = -4-. 

x-1 y+I z-1 
13. --=--=--· 

3 2 5 • 

14_ x + I = y - I = z + 2. 
2 -4 3 . 

x-2 y+I z-1 
-3- = -2- = -5-

x + 2 y-1 z+I 
-4- = -3- = --=2 
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In Problems 15 through 19, use vector methods to find, in each case, the equations in 
symmetric form of the line through the given point P and parallel to the two given 
planes. 

15. P(-1, 3,2), 3x - 2y + 4z + 2 = 0, 2x + y- z = 0 

16. P(2,3,-I), x+2y+2z-4=0, 2x+y-3z+5=0 

17. P(I, - 2, 3), 3x + y - 2z + 3 = 0, 2x + 3y + z - 6 = 0 

18. P(-1,0,-2), 2x+3y-z+4=0, 3x-2y+2z-5=0 

19. P(3,0, 1), x + 2y = 0, 3y - z = 0 

.In Problems 20 and 21, find in each case equations in symmetric form of the line of 
intersection of the given planes. Use the method of vector products. 

20. 2(x - I)+ 3(y + I) - 4(z - 2) = 0 

3(x - I) - 4(y + I)+ 2(z - 2) = 0 

21. 3(x + 2) - 2(y - 1) + 2(z + 1) = 0 

(x + 2) + 2(y - 1) - 3(z + I)= 0 

In each of Problems 22 through 26, find an equation of the plane through the given 
point or points and parallel to the given line or lines. 

22. (1, 3, 2); 
x+I y-2 z+3 
-2-=-=1=-3-; 

x-2 y+ 1 z+2 
-1-=--=2=-2-

23. (2, - I, -3); x-l_y+2_ z. _3 ___ 2 __ -4' 

24. (2, I, -2); (1, -1,3); 

25. (1,-2,3); (-1,2, -1); 

x+l y-l z-2 
-3-=2-·=-2-

x-2 y+I z-1 
--=--=--

2 3 4 

26.(0,1,2); (2,0, l); 
x-1 y+I z+l 
-3-=-o-=-1-

In Problems 27 through 29, find in each case the equation of the plane through the 
line L 1 which also satisfies the additional condition. 

27 L .x-l_y+l_z-2. 
• 1 • 2 - 3 - 1 ' 

.x-2 y-2 z-1. 
28. L 1 .-2-=-3-=--=2, 

29 L .x+l=y-l=z-2. 
• 1 • 1 2 -2 ' 

through (2, 1, I) 

x+l y-l z+l 
parallel to --- = -- = --

3 2 I 

perpendicular to 2x + 3y - z + 4 = 0 
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In Problems 30 and 31, find the equation of the plane through the given points and 
perpendicular to the given planes. 

30. (I, 2, -1); 2x - 3y + 5z - I = O; 3x + 2y + 4z + 6 = 0 

31. (-1,3,2); (1,6, I); 3x-y+4z-7=0 

In Problems 32 and 33, find equations in symmetric form of the line through the given 
point P, which is perpendicular to and intersects the given line. Use the cross product. 

32. P(3, 3, -1); 

33. P(3, - 2, 0); 

x y-3 z+I 
=1=-1-=--

x-4 y-4 z-5 
-3-=~=-=1 

34. Suppose that a is a nonzero vector. If a· x = a· y and a x x = a x y, is it true that 
x = y? Justify your answer. 

35. Given that u + v + w - r = 0 and u - v + w + 2r = 0. Prove that r x v = 0, that 
v x w = ir x w, and that 

2uxw=wxr=rxu. 

8. Products of Three Vectors 

Since two types of multiplication, the scalar product and the cross product, 
may be performed on vectors, we can combine three vectors in several ways. 
For example, we can form the product 

(u xv)· w 

and the product 

(u x v) x w. 

Also, we can consider the combinations 

u-(v x w) and u x (v x w). 

The next theorem gives a simple rule for computing (u x v) · w and also 
an elegant geometric interpretation of the quantity l<u x v) · wl. 

Theorem 20. Suppose that u1 , u2 , u3 , are vectors and that the points A, B, C, 
D are chosen so that 

v(AB) = u1 , 

Then 

i) the quantity i(u 1 x u2) · u31 is the volume of the paral/depiped with one 
vertex at A and adjacent vertices at B, C, and D. (See Fig. 2-28.) This 



74 2. Vectors 

H 

G 

Fig. 2-28 

volume is zero if and only if the four points A, B, C, D lie in a plane; 
ii) (l {i,j, k} is the usual right-handed coordinate triple and if 

then 

Ui bi Ci 

(Ui X U2)·U3 = a2 b2 C2 

a3 b3 C3 

PROOF. To prove (i), note that lui x u21 is the area of the parallelogram 
ABEC and that 

l<ui x u2)·u3I = lui x u2ilu3llcosOI, 

where 8 is the angle between the two vectors u3 and Ui x u2. The quantity 
lu3 I lcos OI is the length of the projection of u3 on the normal to the plane of 
ABEC. Clearly, (ui x u2)·u3 = 0=-ui x u2 = 0 or u3 = 0 or cosO = 0. If 
cosO = 0, then u3 is parallel to the plane of Ui and u2 and all four points 
lie in a plane. The proof of parts (ii) and (iii) follow from Theorems 13 
and 18 and are left to the reader. 

Theorem 21. /f u, v, and ware any vectors, then 

i) (u x v) x w = (u · w)v - (v · w)u, 
ii) u x (v x w) = (u · w)v - (u · v)w. 

PROOF. If u and v are proportional or if w is orthogonal to both u and v, 
then both sides of (i) are zero. Otherwise, we see that (u x v) x w is ortho-
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gonal to the perpendicular to the plane determined by u and v. Hence 
(u x v) x w is in the plane of u and v. We choose a right-handed coordinate 
triple { i, j, k} so that i is in the direction of u and j is in the plane of u and v. 
Then there are numbers a1, a2 , b2 , etc., so that 

The reader may now compute both sides of (i) to see that they are equal. 
The proof of (ii) is left to the reader. 

EXAMPLE I. Given A (3, - I, 2), B( I, 2, - 2), C(2, I, - 2), and D( - I, 3, 2), 
find the volume of the parallelepiped having AB, AC, and AD as edges. 

SOLUTION. We have 

u1 = v<Aii> = -2i + 3i - 4k, 

u2 = v(AC) = - i + 2j - 4k, 

u3 = v(AD) = -4i + 4j. 

We compute u2 x u3 = 16i + 16j + 4k. Therefore 

10 1 -(u2 x u3)I = l-32 + 48 - 161=0. 

Hence the four points are in a plane. The volume is zero. 

EXAMPLE 2. Find the equations of the line through the point (3, -2, I) 
perpendicular to the line L (and intersecting it) given by 

{ x-2 y+I z} 
L = (x,y,z): - 2- = ----=-2 = l . 

SOLUTION. Let Po(3, -2, I) and P,(2, -1,0), 

u = 2i - 2j + k, 

v = v(P0 P1 ) = -i + j - k. 

The plane containing L and P0 has a normal perpendicular to u and v. 
Hence this normal is proportional to u x v. The desired line is in this plane 
and perpendicular to L. Therefore it has a direction w perpendicular to u 
and u x v. Thus for some number c, we have 

cw = u x (u x v) = (u · v)u - (u · u)v 

= - 5(2i - 2j + k) - 9( - i + j - k) = - i + j + 4k. 

Consequently, the desired line has equations 

x-3 y+2 z-1 
--=I= -1- = -4-· 
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PROBLEMS 

In Problems I through 4, find the volume of the parallelepiped having edges AB, AC, 
and AD, or else show that A, B, C. and D lie on a plane or on a line. If they lie on a 
plane, find its equation; if they lie on a line, find its equations. 

I. A= (2, -1,3), B = ( -1, 2, 2), C = (1,0, I), D= (4, I, -1) 

2. A= (3, I, -2), B = (1,2, I), c = (2, -1, 3), D = (4,3, -7) 

3. A= (1,2, -3), B = (3, I, -2), C= (-1,3, I), D = (-3,4,3) 

4. A=(-1,-2,2), B= (2, -1, I), c = (0, 1,3), D = (3,2, -1) 

5. Prove Theorem 20, parts (ii) and (iii). 

6. Complete the proof of Theorem 21. 

In Problems 7 through IO, compute (u x v) x w directly and by using Theorem 21. 

7. u = 2i + 3j - k, v = i - 2j + k, 

8. u = 3i - 2j + k, v = i + j + 2k, 

W=-i+j+2k 

w = 2i-j + 3k 

9. u = i + 2j - 3k, v = -i + j - 2k, w = 3i -j + k 

IO. u = 2i - j + 3k, v = i + 2j + k, w = 3i- 2j- k 

11. Show that every vector v satisfies the identity 

i x (v x i) + j x (v x j) + k x (v x k) = 2v. 

In Problems 12 through 14, find, in each case, the equations of the line through the 
given point and perpendicular to the given line and intersecting it. 

x-2 r+I :-1 
12. (1, 3, -2), 3 = ----2- = -4-

x+I r-2 :+I 
13. (2. -1, 3), -2- = =--3- = --=-s 

14. (-1,2,4). 
x-1 r+2 :-1 
--=-· -=--

4 -3 2 

In Problems 15 and 16, express (t x u) x (v x w) in terms of v and w. 

15. t = i + j - 2k, u = 3i - j + 2k, v = 2i + 2j - k, w = - i + j + 2k 

16. t=2i-j+k, U=i+2j-3k, V=3i+j+2k, W= -i+2j-2k 

17. Derive a formula expressing (t x u) x (v x w) in terms ofv and w. 

18. Given a = i - j + k, b = 2i + 3j + k, p = I. Solve the equations a· v = p, a x v = 
b for v. 

19. Given that a• b = 0, a#= 0, b #= 0, find a formula for the solution vofthe equations 

a· v = p, a x v = b. 

[Hint: Note that a, b, and a x bare mutually orthogonal.] 
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20. Show that for any vectors u, v, w, we have 

i) (u ± v) · [(u + v) x (u - v)] = 0 

ii) (u + v) · [(u x w) x (u + v)] = 0. 

21. Ifu, v, ware any vectors show that 

[u x (v x w)] + (v x (w x u)] + [w x (u xv)]== 0. 

*22. Let§ be a collection of objects with A. B, C members of.#'. Let (j) be an operation 
between members of§ satisfying the relation 

(A® B)®C = ocB- PA. 

State general conditions on the numbers oc and P such that the formula 

((AEi:)B)®C] + ((B®C)®A] + ((CEi:)A)Ei:lB] =0 

should hold. 

9. Vector Functions and Their Derivatives 

A function of one variable is a set of ordered pairs (x, y) of real numbers in 
which no two pairs have the same first element. That is, to each value of x 
(the first element of the pair) there corresponds exactly one value of y (the 
second element). The set of all values of x which occur is the domain of the 
function, and the set of all y which occur is the range of the function. 

We denote the collection of all real numbers by R1, and the set of all 
ordered pairs of real numbers (a, b) by R2 . We call R 2 the number plane 
and observe that it forms the basis for a rectangular coordinate system in 
the geometric plane. 

For a real-valued function of one real variable, say j, we use the notation 
f: R1 -+ R1 to indicate its domain and range. 

We now extend the definition of function to the case where the range is 
a vector. In this section we restrict ourselves to vectors in the plane. The 
more general situation in which the range consists of vectors in three-space 
is discussed in Section 10. 

We consider the collection of all vectors in the plane and we denote this 
set by V2 • That is. any vector in the plane is a member of V2 • 

Definition. A vector function is the collection of ordered pairs (t, v) in which 
t is a real number and v is a vector in V2 ; this collection of ordered pairs 
must have the property that no two pairs have the same first element. The 
domain consists of all possible values of t in the collection, and the range 
consists of all vectors which occur. 

In terms of mappings, a vector function is a mapping from a set in R1 into 
a set in V2 • 
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Vector functions are more complicated than ordinary functions, since the 
elements of the range. namely vectors. are themselves equivalence classes of 
directed line segments. However, if we concentrate on the representation--
thc directed line segments-the concept becomes more concrete. Also. many 
of the properties of ordinary functions extend easily to vector functions when 
suitably interpreted. We shall use boldface letters such as f, g, v, F. G to 
represent vector functions. If the dependence on the independent variable 
is to be indicated, we shall write f(t), g(s), F(x), and so forth for the function 
values. 

Definition. A vector function f is continuous at t = a if f(a) is defined and 
if for each 1: > 0 there is a c5 > 0 such that 

1r<t> - r<a>I < f, for all t such that o < It - al < c>. 

We note that the form of the definition of continuity for vector functions 
is identical with that for ordinary functions. We must realize. however. that 
f(t) - f(a) is a i•ector, and that the symbol lf(t) - f(a)I stands for the length 
of a vector. whereas in the case of ordinary functions. IJ(t) - J(a)I is the 
absolute value of a number. In words, the continuity of a vector function 
asserts that as t -+a the vector f(t) approaches f(a). in both length and 
direction. When f is continuous at a. we also write 

lim f(t) = f(a). 
1-a 

If i and j are the customary unit vectors associated with a rectangular 
coordinate system in the plane, a vector function f can be written in the 
form 

f(t) = J; (t)i + Ji(t)j, 
where f 1 and Ji are functions in the ordinary sense. Statements about vector 
functions f may always be interpreted as statements about a pair of functions 

u; .Ji>· 

Theorem 22. A function f is continuous at t =a if and only iff1 and Ji are 
continuous at t = a. 

PROOF. We have f(a) = J; (a)i + Ji(a)j and 

lf(t) - f(a)I = l<f1(t) - f 1(a))i + (fi(t) - Ji(a))jl. 

Also, (see Fig. 2-29) 

lf(t) - f(a)I = vlJ;(t) - f1<aW + IJi(t) - Ji<a)i2. 
If 

limf1 (t) = / 1 (a) 
1-a 

and limJi(t) = Ji(a), 
1-a 
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Fig. 2-29 (f1 (I) - f1 (a))i 

it follows that 

Iim f(t) = f(a). 
1-a 

On the other hand, the inequalities 

II1<1) -fi(a)I s; 1r<1> - r<a>I. 
show that if 

lim f(t) = f(a), 
1-a 

then hoth 

lim/i(I) = / 1 (a) and 
1-a 

Suppose that f is a function from R 1 to R 1• We recall from elementary 
calculus the definition of the derivative of /at a point x0 , denotedf'(x0 ): 

I .,( ) _ 1. f(Xo + h) - f(Xo) . x 0 - 1m--- / . 
h-0 1 

The definition of the derivative of a vector function is completely analogous. 

Definition. If f is a vector function, we define the derivative f' as 

f'( ) - 1· f(/ + h) - f(I) I - 1m , 
h •O lz 

whenever the limit exists. lffis given in terms offunctionsj1 andj2 by 

f(t) = 1; (t)i + j~(t)j, 
then the derivative may be computed by the simple formula 

(I) 

The quantities/;(/) andf;(I) are derivatives in the ordinary sense. Formula 
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0 

Fig. 2-30 

(I) follows directly from the definition of derivative and the theorem on the 
limit of a sum. 

EXAMPLE I. Find the derivative f'(t) if f(t) = (1 2 + 21 - I )i + (3t 3 - 2)j. 

SOLUTION. f'(t) = (21 + 2)i + 9t 2j. 

EXAMPLE 2. Given that f(/) = (sin t)i + (3 - 2 cos t)j, find f"(t). 

SOLUTION. f'(t) =cos ti+ 2sintj. Hence f"(t) =-sin ti+ 2costj. 

EXAMPLE 3. Given f(t) = (3t - 2)i + (2t 2 + l)j. Find the value of 

f'(t). f''(t). 

SOLUTION. f'(t) = 3i + 4tj, f"(l) = 4j, and 

f'(t). f"(t) = (3i + 4tj). (4j) = 161. 

The derivative of a vector function has a simple geometric interpretation 
in terms of directed line segments. Draw the particular directed line segment 
of f(t) which has its base at the origin of the coordinate system. Then the 
head of this directed line segment will trace out a curve C as t takes on all 
possible values in its domain (Fig. 2-30). The directed line segment OP 
represents f(t). Let OQ represent f(t + h). Then f(t + h) - f(t) has PQ as 
one of its directed line segments. Multiplying f(t + h) - f(t) by l/h gives a 
vector in the direction of PQ, but l/h times as long. Ash tends to zero, the 
quantity 

f(t + h) - f(l) ,, 
tends to a vector, with its directed line segment tangent to the curve Cat the 
point P. Using vector terminology instead of directed line segments, we 
conclude that f'(t) is the vector tangent to the curve f(t). 
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PROBLEMS 

In Problems I through 6, calculate f' (1) and f" (1). 

I. f(I) = (1 2 + l)i + (1 3 - 3t)j 

3. f(I) =(tan 3t)i + (cos nt)j 

2. f(/) = (' - 3) i - ~:_±...!___j 
I+ I 12 +I+ I 

4. f(I) = !i - -2-I -j 
I I +I 

6. f(t) = (e' + e-')i + (e' - e-')j 
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7. Find f(1). f'(I) if f(I) = 1: + 21 i + 2tj. 8. Find !!._(f(I). f'(I)) if f(I) = 2ti + - 1-j. 
t+ dt 1+1 

9. Find !!._lf<l)I iff(I) = sin21i + cos3tj. 
dt 

10. Find !!._lf<l)I if f(t) = (1 2 + l)i + (3 + 2t2)j. 
dt 

11. Find !!..1r(1)I iff(t) = cos!i +sin 1 j. 
dt I I 

12. Find !!._(f'(t) · f"(t)) iff(I) = (31 + l)i + (21 2 - 13)j. 
dt 

13. Find !!._(f'(l)·f"(t)) iff(t) = (logt)i + ~j. 
dt I 

14. Find !!._(f"(I) · f'"(t)) iff(I) = e3'i + e- 3'j. 
dt 

15. Given that f(t) = (21 + l)i + 3tj, g(I) = 41j. Find dO/dt, where 0 '= 0(1) is the angle 
between rand g. 

16. Write out a proof establishing Formula (I) on page 79. 

17. Prove the formula 

*'(F(1)f(1)) = F(1)f'(1) + F'(1)f(1). 

18. Show that the following Chain Rule holds: 

!!._{f[g(I)]} = f'[g(l)]g'(I). 
dt 

19. Given the vector f(1) = (21 + l)i + 21j. Describe the curve traced out by the tip of 
the directed line segment which has its base at the origin. 

20. Given the vector g(I) =cos ti+ sin tj. Describe the curve traced out by the tip of 
the directed line segment which has its base at the origin. 

21. Prove that if f(I) =sin 2ti +cos 2tj, then f(t) · f(I) = 0. What is the geometric 
interpretation of this result? 
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22. Prove that if 

f(t) = g(i) then 
h(t)' 

23. Show that if 

f(I) = f; (l)i + fi(t)j, 

24. Show that 

then 

f'(I) = h(t)g'(t) - g(t)h'(t) 
h2(1) 

d 
dt(f(t) · f(I)) = 2f(I) · f'(I). 

~(f(t) · g(t)) = f(t) · g'(I) + f'(t) · g(t). 

[Hint: Write f(t) = f 1(1)i + fi(t)j and g(t) = g1(t)i + g2(1)j.] 

10. Vector Velocity and Acceleration in the Plane 

The vector function 

f(t) = x(t)i + y(t)j 

is equivalent to the pair of parametric equations 

x = x(t), Y = y(r), 

since the head of the directed line segment with base at the origin, which 
represents f, traces out a curve which is identical with the curve given in 
parametric form by these equations. 

We recall from elementary calculus that the arc length of a curve in the 
plane, denoted s, satisfies the relation 

(l) 

For f(t) = x(r)i + y(t)j, we have f'(t) = x'(t)i + y'(t)j and the length lf'(t)I 
is given by 

jf'(r)I = v'Cx'(t))2 + (y'(t)) 2• 

Combining this formula with (I), we get 

ds = 1r'<1>I· 
dt 

We consider the motion of a particle along a curve C in the plane. Suppose 
that C is given by the parametric equations 

C: x = x(t), y = y(t). 

Letting t denote the time, we define the velocity vector v at the time t as 
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v(t) = ~: = f'(t) = x'(t)i + y'(t)j. 

According to the geometrical interpretation of the derivative of a vector 
function given in the preceding section, the velocity vector is always tangent 
to the path describing the motion. We define the speed of the particle to be 
the magnitude of the velocity vector. The speed is 

lv(t)I = lf'(t)I = .J(dx/dt)2 + (dy/dt) 2 , 

which tells us that the speed is identical with the quantity ds/dt; in other 
words, the speed measures the rate of change in arc length s with respect 
to time t. 

The acceleration vector a(t) is defined as the derivative of the velocity 
vector, or 

a(t) = v'(t) = f"(t). 

EXAMPLE I. Suppose that a particle P moves according to the law 

f(t) = (3 cos 2t)i + (3 sin 2t)j. 

Find v(t), a(t), s'(t), s"(t), la(t)I, and v(t) · a(t). 

SOLUTION. We have 

v(t) = f'(t) = ( -6 sin 2t)i + (6 cos 2t)j, 

a(t) = ( - 12 cos 2t)i - (12 sin 2t)j, 

s'(t) = [(-6sin2t)2 + (6cos2t)2] 1' 2 = 6, 

s"(t) = 0, 

la(t)I = [(-12cos2t)2 + (12sin2t)2]1'2 = 12, 

v(t) · a(t) = 0. 

REMARK. We note that Pis moving around a circle with center at 0 and 
radius 3, with a constant speed but a changing velocity vector! Since 

v(t) · a(t) = 0, 

and since v(t) is always tangent to the circle, we conclude that the acceleration 
vector is always pointing toward the center of the circle. 

EXAMPLE 2. Suppose that a particle P moves according to the law 

x(t) = t cost, y(t) = t sin t, 
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or, equivalently, 

f(I) = (1cos1)i + (t sin 1)j. 

Find v(I), a{t), s'(t), s"(I), and la(t)I. 

SOLUTION v{I) = (-1sin1 + cos1)i +(I cost+ sin 1)j, 

a(1) = ( - t cost - 2sin1)i + (-I sin t + 2 cos l)j. 

Therefore 

s'(I) = lvU)I = JI+?, 
s"(I) = i(I + 12)-112(21) = I , 

.JI + 12 

la<1>I = .J4 + 12 • 

PROBLEMS 

In Problems I through 8, assume that a particle P moves according to the given law, t 
denoting the time. Compute v(t), lv(t)I, 8(1), 18(t)I, s'(t), and s"(t). 

I. f(t)=t 2 i-3tj 

3. f(t) = 3ti + (I - ,-I )j 
5. f(t) = (log sec t)i + tj 
7. x=2e',y=3e-• 

2. f(t) = }t2i + !13j 

4. f(t) = (1 - t12)i + 21 1' 2 j 

6. f(t) = (3 cos t)i + (2 sin t)j 

In Problems 9 through 13, assume that a particle P moves according to the given law. 
Find v(t), 8(1), s'(t), and s"(t) at the given time I. 

9. x = 12 - I - I, y = 12 - 21, I= I 

10. f(t) = (5 cos t)i + (4 sin t)j, I = 2n/3 

11. x = 3sect, y = 2tant, t = n/6 

12. f(t) = 4(1CI - sinnt)i + 4(1 - COS7Cl)j, I= j 

13. x =log(! + 1), y = 3/t, I= 2 

14. Suppose that P moves according to the law 

f(t) =(Reos wt)i + (Rsin wt)j, 

where R > 0 and ware constants. Find v(t), 8(1), s'(t), and s"(t). Show that 

I 
18(t)I = Rlv(t}i2. 

15. Let T(t) be a vector one unit long and parallel to the velocity ~ector. Show that 

T(t) = v(t) = x'(t)i + y'(t) •. 
ds/dt s' (1) s' (1) J 
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16. Using the formula of Problem 15, compute T(t) if the law of motion is 

f(t) = (3t - l)i + (t 2 + 2)j. 

17. Using the formula of Problem 15, compute T(t) if the law of motion is 

f(t) = (4e2 ')i + (3e- 2')j. 
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18. A formula for T(t) is given in Problem 15. Compute T' (t) and show that T(t) · T'(t) 
= 0 [Hint: Use the fact that x' 2 + y' 2 = s' 2 .] 

11. Vector Functions in Space. Space Curves. 
Tangents and Arc Length 

The collection of all vectors in three-space is denoted by V3 • We now extend 
the definition of vector function given in Section 9 to the case where the 
range is an element of V3 • 

Definition. A vector function in three-space, or simply a vector function, is the 
collection of ordered pairs (t, v) in which tis a real number (an element of R 1) 

and v is a vector in V3 • As usual, no two pairs have the same first element. 

The definition of continuity for a vector function in three-space is identical 
with that given in Section 9 for vector functions in the plane. Part (b) of the 
next theorem is proved exactly as is Theorem 22 in Section 9. The proofs of 
the remaining parts are left to the reader. 

Theorem 23. Suppose that 

f(t) = 1; (t)i + /2(t)j + jj(t)k 

is a vector function and that the vector c = c 1 i + c 2j + c 3 k is a constant. 
Then 

a) f(t)-+ c as t -+a if and only if 

and and 

b) f is continuous as a if and only if / 1 , Ji, and 13 are. 
c) f'(t) exists if and only if J;(t)Ji.(1), andf3(t) do. 
d) We have the formula 

f'(t) = fi (t)i + J2(t)j + J3(t)k. 

e) Ifv(t) = aw(t), then v'(t) = aw'(t) where a is a constant. 
f) /f v(t) = c(t)w(t), then v'(t) = c(t)w'(t) + c'(t)w(t). 
g) /f v(t) = w(t)/c(t), then 
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v' ( t) = _c ('-'t )_w--=' (-=-t )_-_c=' (..:....t )'-w--'(-'-t) 
[ c(t) ] 2 

2. Vectors 

ExAMPLE I. Given f(t) = 3t2i - 2t3j + (t 2 + 3)k, find f'(t), f"(t), f"'(t). 

SOLUTION f'(t) = 6ti - 6t 2j + 2tk, 

f"(t) = 6i - 12tj + 2k, 

f"'(t) = - I 2j. 

The next theorem shows how to differentiate functions involving scalar 
and vector products. The proofs are left to the reader. 

Theorem 24. If u(t) and v(t) are differentiable, then the derir;ative off(t) = 
u(t) · v(t) is given by the formula 

f'(t) = u(t) · v'(t) + u'(t) · v(t). (I) 

The derivative of w(t) = u(t) x v(t) is given by the formula 

w'(t) = u(t) x v'(t) + u'(t) x v(t). (2) 

The proofs of formulas (I) and (2) follow from the corresponding differ
entiation formulas for ordinary functions. Note that in formula (2) it is 
essential to retain the order of the factors in each vector product. 

EXAMPLE 2. Find the derivative f'(t) and w'(t) of 

f(t) = u(t) · v(t) and w(t) = u(t) x v(t) 

when 

u(t) =(I+ 3)i + t2j + (1 3 - l)k 

and 

v(t) = 2ti + (t4 - l)j + (2t + 3)k. 

SOLUTION. By formula (I) we have 

j(t) = [(t + 3)i + t2j + (t3 - l)k] ·(2i + 4t3j + 2k) 

+ (i + 2tj + 3t2k). [2ti + (t4 - l)j + (2t + 3)k] 

= (2t + 6) + 4t 5 + 2t3 - 2 + 21 + 2t 5 - 2t + 6t3 + 9t2 

= 6t 5 + 8t3 + 9t 2 + 2t + 4. 
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According to (2), we have 

w'(l) =[(I+ 3)i + t2j + (t 3 - l)k] x (2i + 4t3j + 2k) 

+ (i + 2tj + 3t2k) x [2ti + (14 - l)j + (2/ + 3)k]. 

Computing the two cross products on the right, we get 

w'(t) = (- 716 + 4t3 + 9t 2 + 6t)i + (813 - 4t - l l)j 

+ (5t4 + 12t3 - 6t 2 - l)k. 
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Consider a rectangular coordinate system and a directed line segment from 
the origin 0 to a point Pin space. As in two dimensions, we denote the vector 
v(OP) by r. We define an arc C in space in a way completely analogous to 
that in which an arc in the plane was defined. The vector equation 

r(t) = x(t)i + y(t)j + =(l)k (3) 

is considered to be equivalent to the parametric equations 

x = x(t), y = y(t), z = z(t). (4) 

The arc length of a curve in three-space, denoted s, satisfies a relation 
similar to the one for arc length in the plane given in Section 10. When a 
curve is given by (4), we have 

(<!!)2 = (q_~)2 + (r!x)2 + (<!_~)2· 
dt dt dt dt 

The actual length of an arc is determined by integrating ds,'dt between two 
values of the parameter t. We find for the length I of such an arc 

_ f,'' J(dx)2 (dy)2 (dz)2 I - - + -- + -- dt 
I dt df df 
() 

(5) 

If the curve is given in the vector form (3), we obtain 

I'• 
I= lr'(t)I dt. 

'o 

s'(t) = lr'(t)I, (6) 

Definitions. If r'(t) # 0, we define the vector T(t) = r'(t)/lr'(t)j as the unit 
tangent vector to the path corresponding to the value t. The line through 
the point P0 corresponding to r(t0 ) and parallel to T(f 0) is called the tangent 
line to the arc at t 0 ; the line directed in the same way as T(t 0 ) is called the 
directed tangent line at t 0 (Fig. 2-31). 

EXAMPLE 3. The graph of the equations 

x = acost, y = asint, z = bt (7) 

is called a helix. 
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Fig. 2-31 Fig. 2-32 

i) Find s'(t). 
ii) Find the length of that part of the helix for which 0 ::;; t ::;; 2n. 

iii) Show that the unit tangent vector makes a constant angle with the:: axis. 

SOLUTION. (Sec Fig. 2-32 for the graph.) 

i) x'(t) = -a sin t. y'(t) = a cost, z'(t) = b. Therefore, 

s'(t) = "a2 + b2 • 

ii) /(C) = 2n, a2 + b2 • 

iii) T(t) = -,ri + xj +bk. 
va2 + b2 

Letting </> be the angle between T and k, we get 

cos</>= b/va2 + b2 • 

REMARK. We note that the helix (7) winds around the cylinder x 2 + y 2 = a2. 

Definitions. If t denotes time in the parametric equations of an arc r(t), then 
r'(t) is the velocity vector v(t), and r"(t) = v'(t) is called the acceleration vector. 
The quantity s'(t) (a scalar) is called the speed of a particle moving according 
to the law 

r(t) = x(t)i + ,r(t)j + ::(t)k. 

PROBLEMS 

In each of Problems I through 8, find the derivatives f'(t) and f"(t). 

I. f(t) = t2 i + (1 2 + l)j + (2 - 3t)k 

2. f(/) = (2t3 +I - l)i + (/- 1 + l)j + (12 + /- 2)k 
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3. f(1) = (cos 21)i + (sin 21)j + 21k 

4. f(I) = e2 'i + t2j + e- 2'k 

5. f(t) = ~I i+ ~lj + (1 2 + l)k 
I + I + 

6. f(t) = (log2t)i + e3'j + (tlogt)k 

7. f: t-+ (cost)i + (tant)j + (sin1)k 

8. f: I-+ [(12 + 1)(12 - 2)]i + (13 + 21- 3)j + (log(t2 + l)]k 

In Problems 9 through 11, find in each caseeitherf'(t) orf'(1), whichever is appropriate. 

9. j(t) = u(t) · v(t), where 

U(I) = 3ti + 2t2j + !k, 
I 

10. f(t) = u(t) x v(t), where 

u(t) = (cos t)i +(sin t)j + 1k, 

11. f(t) = u(I) · [ l"(I) x w(t)], where 

v(I) = (sin l)i + (cos t)j + 12 k. 

U(I) = ti + (1 + l)k, 

In Problems 12 through 15, find the length of the arcC. 

12. C:x=t, y=t2/J'l., z=t3/3; O:s;1:s;2 

13. C:x=t, y=3t2/2, z=313/2; O:s;1:s;2 

14. C:x=I, y=log(sect+tant), z=logsec1; 

15. C: x = ICOSI, y = 1sin1, z = 1; 0 :s; I :s; n/2 

I 
w(1) = 2 k. 

I 

0 :s; I :s; n/4 

In Problems 16 through 18, the parameter tis the time in seconds. Takings to be the 
length in meters, in each case find the velocity, speed, and acceleration of a particle 
moving according to the given law. 

16. r(I) = t2 i + 2tj + (1 3 - l)k 

17. r(t) = (I sin 1)i + (1cos1)j + tk 

18. r(t) = e3'i + e- 3'j + te3'k 

19. a) Given f(t) = (3cos1)I + (4cosl)j + (5sint)k, show that 

f(t) · f'(I) = 0 

for all 1. 

b) Let f(t) be a vector function such that lf(1)I = I for all t. Show that f(I) and f'(I) 
are orthogonal for all 1. 



90 2. Vectors 

20. Suppose that f: t-+ oc(t)i + P(t)j + ;·(t)k has the properties: f(t) = f'(t) for all t and 
oc(O) = p(O) = ;•(0) = 2. Find f(t). 

21. Show that every differentiable vector function v(t) satisfies the identity 

2v'(t) = i x (v' x i) + j x (v' x j) + k x (v' x k). 

22. Write out a complete proof of Theorem 23. 

23. Write out a complete proof of Theorem 24. 



CHAPTER 3 

Infinite Series 

1. Indeterminate Forms 

Suppose f and F are real-valued functions defined on some interval of R 1 

containing the number a. Iff(x) and F(x) both approach 0 as x tends to the 
value a, the quotient 

f(x) 
F(x) 

may approach a limit, may become infinite, or may fail to have any limit. 
In the definition of derivative it is the evaluation of just such expressions 
that leads to the usual differentiation formulas. We are aware that the ex
pression 

f(a) 0 
F(a) = 0 

is in itself a meaningless one, and we use the term indeterminate form for 
the ratio 0/0. 

If f(x) and F(x) both tend to infinity as x tends to a, the ratio f(x)/F(x) 
may or may not tend to a limit. We use the same term, indeterminate form, 
for the expression oo/oo, obtained by direct substitution of x =a into the 
quotient f(x)/ F(x). 

We recall the Theorem of the Mean, which is established in elementary 
calculus. 

Theorem 1 (fheorem of the Mean). Suppose that f is continuous for 

a 5,X 5,b 
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and that f' (x) exists for each x between a and b. Then there is an x0 between 
a and b (that is, a < x0 < b) such that 

f(b) - f(a) =f"'( ) 
b Xo. 
-a 

REMARK. Rolle's Theorem is the special case f(a) = j(b) = 0. 

The evaluation of indeterminate forms requires an extension of the Theo
rem of the Mean which we now prove. 

Theorem 2 (Generalized Theorem of the Mean). Suppose that f and F are 
continuous for a::;;; x::;;; b, andf'(x) and F'(x) exist for a< x < b with F'(x) =I= 

0 there. Then F(b) - F(a) =I= 0 and there is a number~ 1rith 

such that 
a<~<b 

f(b) - f(a) _ f'W 
F(b) - F(a) - F'(~) 

(l) 

PROOF. The fact that F(b) - F(a) =I= 0 is obtained by applying the Theorem 
of the Mean (Theorem I) to F. For then, F(b) - F(a) = F'(x0 )(b - a) for 
some x 0 such that a < x 0 < b. By hypothesis, the right side is different from 
zero. 

For the proof of the main part of the theorem, we define the function 
</J(x) by the formula 

</J(x) = f(x) - j(a) - ~i!~ = ~~~) [F(x) - F(a)]. 

We compute <jJ(a), <jJ(b), and </J'(x), getting 

<jJ(a) = j(a) - j(a) - ~i!~ = ~~~) [F(a) - F(a)] = 0, 

</J(b) =f(b)-j(a)- j(b) -f(a) [F(b) - F(a)] = 0, 
F(b) - F(a) 

</J'(x) = f'(x) - j(b) - f(a) F'(x). 
F(b) - F(a) 

Applying the Theorem of the Mean (i.e., in the special form of Rolle's 
Theorem) to </J(x) in the interval [a, b ], we find 

</J(b) - </J(a) = o = </J'(e) =f'W - f(h) - f(a) rm 
b - a F(b) - F(a) 

for some~ between a and b. Dividing by F'W, we obtain formula (l). 
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The next theorem, known as l'Hopital's Rule, is useful in the evaluation 
of indeterminate forms. 

Theorem 3 (l'Hopital's Rule). Suppose that 

Jim f(x) = 0, limF(x) = 0, 
.'(-+Q x-+a 

and 
. f'(x) 
hmF,-)=L, 
.<-a (X 

and that Lhe hypolheses of Theorem 2 hold in some deleted interval* about a. 
Then 

. j(x) . f'(x) 
hm F( ) = l1m -F' ) = L . 
. \'-+a X .'<-a (x 

PROOF. For some h we apply Theorem 2 in the interval a < x <a+ h. Then 

j(a + h) - j(a) j(a + h) f'W 
F(a + h) - F(a) = F(a + h) = F'W' a< e <a+ h, 

where we have takenf(a) = F(a) = 0. Ash tends to 0, e tends to a, and so 

lim f(a + h) = Jim f:m = L. 
h-o F(a + h) ~-a F W 

A similar proof is valid for x in the interval a - h < x < a. 

EXAMPLE I. Evaluate 

. x 3 - 2x2 - 2x - 3 
hm 2 
x-3 X - 9 

SOLUTION. We set f(x) = x 3 - 2x2 - 2x - 3 and F(x) = x 2 - 9. We see at 
once that }(3) = 0 and F(3) = 0, and we have an indeterminate form. We 
calculate 

f'(x) = 3x2 - 4x - 2, F'(x) = 2x. 

By Theorem 3 (l'Hopital's Rule): 

Jim /(x) =Jim [~x_) = 3(9) - 4(3) - 2 = .!_:1 
x-3 F(x) .<-3 F'(x) 2(3) 6 · 

REMARKS. It is essential that j(x) and F(x) both tend to zero as x tends to a 
before applying l'Hopital's Rule. If either or both functions tend to finite 
limits # 0, or if one tends to zero and the other does not, then the limit of 
the quotient is found by the method of direct substitution. 

* Let I be an interval which has a as an interior point. The interval I with a removed from 
it is called a deleted interval about a. 
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It may happen that f'(x)/F'(x) is an indeterminate form as x-+ a. Then 
l"Hopital"s Rule may be applied again, and the limitf"(x)/F"(x) may exist 
as x tends to a. In fact, for some problems l"Hopitars Rule may be required 
a number of times before the limit is actually determined. Example 3 below 
exhibits this point. 

EXAMPLE 2. Evaluate 

a> 0. 

Sownor-;. We setf(x) = xP - aP, F(x) = xq - aq. Then/(a) = 0, F(a) = 0. 
We computef'(x) = pxP- 1 , F'(x) = qxq-i. Therefore 

I. j(x) 1. f'(x) 1. pxP- 1 p p-q 
1m--= 1m--= 1m--=-a 
.t-a F(x) .. -a F'(x) x-a qxq-I q · 

EXAMPLE 3. Evaluate 

I. x - sinx 
1m 1 . 

x-o x 

SOLUTION. We set/(x) = x - sinx, F(x) = x3 . Sincej(O) = 0, F(O) = 0, we 
apply l"Hopitars Rule and get 

I. j(x) 1. I - COSX 
1m--= 1m 2 
,-o F(x) .. -o 3x 

But we note thatf'(O) = 0, F'(O) = 0, and so we apply l"Hopitars Rule again: 

Therefore 

f"(x) = sinx, F"(x) = 6x. 

lim j(x) = lim f"<!l. 
x-o F(x) .--o F"(x) 

Again we have an indeterminate form:f"(O) = 0, F"(O) = 0. We continue, 
to obtainf'"(x) = cosx. F'"(x) = 6. Now we find that 

lim /(x) = lim /"'(x) = cosO = !. 
x-o F(x) .. -o F'"(x) 6 6 

L'Hopital"s Rule can be extended to the case where both f(x)-+ oc and 
F(x) -+ oo as x -+a. The proof of the next theorem, which we omit, is analo
gous to the proof of Theorem 3. 

Theorem 4 (l'Hopital's Rule). Supposl' that 

lim j(x) = oc, 
x-a 

limF(x) = oc, 
. \-+Q 

and I. f'(x) L 1m--= 
.. -. F'(x) . 
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Then 

lim j(x) = lim f'(x) = L. 
x-a F(x) x-a F'(x) 
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REMARK. Theorems 3 and 4 hold for one-sided limits as well as for ordinary 
limits. In many problems a one-sided limit is required even though this 
statement is not made explicity. The next example illustrates such a situation. 

EXAMPLE 4. Evaluate 

. logx 
hm--- ·-
x-o log (2ex - 2) 

SOLUTION. We first note that x must tend to zero through positive values 
since otherwise the logarithm function is not defined. We set 

j(x) = logx, F(x) = log(2ex - 2). 

Thenj(x)-+ - oc and F(x)-+ - oc as x-+ o+. Therefore 

I. j(x) 1. l/x 1. ex - I 
Im--= 1m = Im ---

x-o• F(x) x-o· eX/(ex - I) x-o· xex 

. I - e-x 
= hm ---. 

x-o• X 

We still have an indeterminate form. and we take derivatives again. We 
obtain 

I. logx 1. e-·' 1 Im = Im-= . 
x-o• log(2ex - 2) x-o• I 

REMARK. Theorems 3 and 4 are valid when a = + oc or - oo. That is, if 
we have an indeterminate expression for f( xi)/ F( oc ), then 

I. j(x) 1. f'(x) 
Im -- = Im -,-, 

x-+oo F(x) x-+oo F (x) 

and a similar statement holds when x-+ - oc. The next example exhibits 
this type of indeterminate form. 

EXAMPLE 5. Evaluate 

SOLUTION. 

I. Bx 
Im -x· 

x-+oo e 

lim Bx = lim Bx = 0. 
x-+ao ex x-+oo e 



96 3. Infinite Series 

REMARKS. Indeterminate forms of the type 0 · oc or oc - oc can often be 
evaluated by transforming the expression into a quotient of the form 0/0 
or oc)oc. Limits involving exponential expressions may often be evaluated 
by taking logarithms. Of course, algebraic or trigonometric reductions may 
be made at any step. The next examples illustrate the procedure. 

EXAMPLE 6. Evaluate 
lim (secx - tanx). 

x-1'/2 

SoLt:TION. We employ trigonometric reduction to change ex.. - oc into a 
standard form. We have 

I. ( ) 1. I - sin x 1. - cos x 0 1m secx- tanx = 1m = 1m --.- = . 
·'-1'/2 x-1'/2 cos x .<-1'/2 - sm x 

EXAMPLE 7. Evaluate 

lim [(I + x) 11·']. 
.t-0 

SOLUTION. We have 100 , which is indeterminate. Set y =(I + x) 11-' and take 
logarithms. Then 

. log(!+ x) 
logy=log[(i+x) 11·']= . 

x 

By l'Hopital's Rule, 

lim log(!+ x) = lim - 1- =I. 
x-o x .• -o I + x 

Therefore, lim.,_0 logy= I, and we conclude that 

limy= lim (I + x) 11·' = e. 
x-0 .t-0 

PROBLEMS 

In each of Problems I through 42, find the limit. 

I r 2x2 + 5x + 2 
• x!~2 x 2 - 4 

3 r x 3 - 3x + 2 
· .!~ x 3 - x 2 - x + I 

5 r 2x3 - x 2 + 3x + I 
· x2'f oo 3x3 + 2x2 - x - I 

7 r x 3 - 3x +I 
· x2'foc 2x4 - x 2 + 2 

. x 3 - x 2 - x- 2 
2. hm 3 

x-2 X - 8 

4 I. x4 - 3x2 - 4 
Im-· 

• x-2 x 3 + 2x2 - 4x - 8 

6 r x 3 - 8x2 + 2x + I 
• } ... II_! x4 - x 2 + 2x - 3 

. x4 - 2x2 - I 
8. hm ----

·'-+"° 2x3 - 3x2 + 3 
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9. r tan3x 1m-.- 10. r sin 7x 1m--
x-o smx x-o x 

. e2x - 2x - I Jx I 
11. hm----- 12. Jim e -

x-o I - cosx .• -o I - cosx 

13. r logx 14 r logx h>O 1m-- · x2Tix> xh ' x-o (!x 

15. Jim log(I + 2x) 16. 
. 3x - 2"' 
hm---

x-o 3x x-o x 

17. 
. 3x - 2x 

18. 
, 3''-2X 

hm--- hm--. :--
x-o x2 x-o .JX 

19. Jim 
I -sinx 20. 

. v2x - 2 
hm------

x-7t./2 cosx x-2 Jog(x - I) 

21. r logsinx 1m----
x-•12 I - sin x 

22. r cosx 1m--
x-•12 sin2 x 

23. 
XJ 

24. r tanx Jim- Im---
x-+«> ex x-•12 log cos X 

25. r sinx Im-- 26. r sinx Im--
x-+oo x x-n/2 x 

27. Jim 
x - arctanx 

28. limy'xlogx 
x-0 x - sinx x-o 

29. limxcotx 30. lim (x - n/2)secx 
x-o x· ... rr./2 

31. r arctanx 32. ~~(csco-~) 1m---
x-+oo x 

33. lim (cot 2 x - ~) 34. limx' 
x-o \ x x-o 

35. limx4 x 36. Jim (1 +~r x-o x- +co X 

37. limx•x2> 38. lim(cotx)x 
x-o x-0 

39. lim x' l/logx) 40. 
xP 

p>O Jim-, 
x· ... O x-+oo ex 

41. Jim 
x-o+ 

(sin x)tanx 42. r logx 1m--, 
x-0 xh h is a real number 

43. a) Prove that 

Jim x 3e 11x = +cc. 
x·_.O+ 

b) Prove that for every positive integer n, 
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lim x"e 11x = + oc. 
x-o+ 

c) Find the result if in part (b) we have x--. o- instead of x--. OT. 

3. Infinite Series 

44. By direct methods, find the value of lim,-+.,(xsinx)/(x2 +I). What happens if 
l'Hopital's Rule is used? Explain. 

45. Prove the following form of l'Hopital's Rule: 
If 

lim j(x) = 0, lim g(x) = 0 
x-+co x-+oo 

and 

then 

lim /(x) = L. 
x-+oo g(x) 

[Hint: Consider limx-o+ f(l/x)/g(l/x).] 

46. Suppose that 

I. f'(x) L 1m--=, 
x- +oo g'(x) 

lim/(x) = limf'(x) = limj"(x) = limf"'(x) = 0, 
x-o x-o x-o x-o 

and that 

I. x2f"'(x) 2 
1m---=. 
•-O f"(x) 

Find lim,_0 x 2f'(x)/f(x). 

47. If the second derivative/" ofa function/ exists at a value x0 , show that 

r f(Xo + h) - 2/(xo) + f(Xo - h) /"( ) 
~~ h2 Xo. 

48. Let P(x) and Q(x) be polynomials of degree m and n, respectively. Analyze 

lim P(x) 
x-+oo Q(x) 

according as m > n or m = n or m < n. 

2. Convergent and Divergent Series 

The numbers 

form a sequence of fourteen numbers. Since this set contains both a first 
and last element, the sequence is termed fmite. In all other circumstances 
it is called infinite. The subscripts not only identify the location of each 
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element but also serve to associate a positive integer with each member of 
the sequence. In other words, a sequence is a function with domain a portion 
(or all) of the positive integers and with range in the collection of real num
bers. If we use J to denote the collection of positive integers and R the set 
of real numbers, then a sequence is a function/: J-+ R. 

If the domain is an infinite collection of positive.integers, e.g., all positive 
integers, we write 

the final dots indicating the never-ending character of the sequence. Simple 
examples of infinite sequences are 

I I I I 
I, 2' 3' 4' ... '~· ... (1) 

I 2 3 n 
2' 3' 4' ... 'n + I' ... (2) 

2, 4, 6, ... , 2n, ... (3) 

Defmition. Given the infinite sequence 

we say that this sequence bas the limit c if, for each e > 0, there is a positive 
integer N (the size of N depending one) such that 

Ian - cJ < e for all n > N. 

We also write an-+ c as n-+ oo and, equivalently, 

liman = c. 
n-oo 

In the sequence (I) above, we have 

I 
a1 =I, ai = 2' I 

... ' an=-, 
n 

and limn-oo an = 0. The sequence (2) has the form 

n 
... , an= n +I' 

and limn-oo an = I. The sequence (3) does not tend to a limit. 
An expression such as 

U1 + U2 + U3 + · · · + U24 

is called a finite series. The sum of such a series is obtained by adding the 
24 terms. We now extend the notion of a finite series by considering an 
expression of the form 
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U1 + U2 + U3 + · · · +Un+ · · · 

which is nonterminating and which we call an infinite series.* Our first 
task is to give a meaning, if possible, to such an infinite succession of addi
tions. 

Definition. Given the infinite series u 1 + u2 + u3 + · · · + u. + · · ·, the 
quantity sk = u 1 + u2 + · · · + uk is called the kth partial sum of the series. 
That is, 

etc. Each partial sum is obtained by a finite number of additions. 

Definition. Given the series 

U1 + U2 + U3 + · · · +Un+ • · · 

with the sequence of partial sums 

we define the sum of the series (4) to be 

lim s. 
•-oo 

whenever the limit exists. 

Using the I notation for sum, we can also write 
CIO 

Lu.= lims •. 
n= I n-oo 

If the limit (5) does not exist, then the sum (4) is not defined. 

(4) 

(5) 

Definitions. If the limit (5) exists, the series I::°=i u. is said to converge to 
that limit; otherwise the series is said to diverge. 

REMARK. The expression I::°= 1 u. is a shorthand notation for the formal 
series expression (4). However, the symbol I::°= 1 u. is also used as a synonym 
for the numerical value of the series when it converges. There will be no 
difficulty in recognizing which meaning we are employing in any particular 
case. We could obtain more precision by using the (more cumbersome) 
notation described in the footnote below. 

* The definition given here is informal. A more formal definition is as follows: An infinite 
series is an ordered pair ( { u.}, ( s.}) of infinite sequences in which s. = u 1 + · · · + u, for each 
k. The infinite series ({u.}, {s.}) is denoted by u1 + u2 + · · · + u. + · · · or I:;:'. 1 u •. When no 
confusion can arise we also denote by I:;:'. 1 u. the limit of the sequence {s.} when it exists. 
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The sequence of terms 

forms a geometric progression. Each term (except the first) is obtained by 
multiplication of the preceding term by r, the common ratio. The partial 
sums of the geometric series 

a + ar + ar2 + ar3 + · · · + arn + · . · 
are 

s2 =a+ ar, 

s3 =a+ ar + ar2, 

s4 = a + ar + ar2 + ar3, 

and, in general, 

Sn = a(l + r + r2 + ... + rn-1 ). 

For example, with a = 2 and r = t, 

Sn= 2 (1 + i + ~ + • • • + 2L). 
The identity 

(l + r + r2 + ... + rn-1)(1 - r) = I - rn, 

which may be verified by straightforward multiplication, leads to the formula 

I - rn 
sn=a~ 

for the nth partial sum. The example a = 2, r = t gives 

l - rn l 
s =2---=4--

n f 2n-2· 

In general, we may write 

l - rn a a n 
Sn=a--=-----r, 

1-r 1-r 1-r 
r ~ l. 

The next theorem is a direct consequence of formula (6). 

Theorem 5. A geometric series 

a + ar + ar2 + · · · + arn + · · · 

(6) 

converges if - I < r < I and diverges if lrl;;:: l. In the convergent case we 
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hare 

"° a L arn-1 =--. 
n=I I - r 

(7) 

PROOF. From (6) we see that rn-+ 0 if lrl < I, yielding (7); also, rn-+ oc, if 
lrl > I. For r = I, the partial sum sn is na, and .1·n does not tend to a limit 
as 11 -+ ·x. If r = - I, the partial sum .1·n is a if /1 is odd and 0 if /1 is even. 

The next theorem is useful in that it exhibits a limitation on the behavior 
of the terms of a convergent series. 

Theorem 6. If the series 

conreryes, then 

PROOF. Writing 

00 

L Uk= U1 + U2 + U3 + · · · +Un+ · · · 
k=I 

Sn= U1 + U2 + · · · + u,,, 

Sn-I =U1 +u2+ ··· +un-1• 

(8) 

we have, by subtraction, un = sn - sn-i · Letting c denote the sum of the 
series, we see that sn -+ c as n -+ ·X : also, sn- i -+ c as n -+ oc. Therefore 

lim Un= lim (sn - sn- 1) = lim Sn - lim Sn-I = C - c = 0. 
n-oo n-oo n-co n-oo 

REMARK. The converse of Theorem 6 is not necessarily true. Later we shall 
show (by example) that it is possible both for un to tend to 0 and for the 
series to diverge. 

The following corollary, a restatement of Theorem 6, is useful in es
tablishing the divergence of infinite series. 

Corollary. If Un does not tend to zero as n-+ oc, then the series I:::"=i un is 
divergent. 

Convergent series may be added, subtracted, and multiplied by constants, 
as the next theorem shows. 

Theorem 7. If I:::"=i un and I:::"=i t'n both converge and c is any number, then 
the series 
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00 00 00 

I (cu.), I (u. + r.). I (u. - r.) 
n=l n=l n=l 

all conrerge, and 

00 00 

I (cu.) = c I u., 
n=l n=I 

00 00 00 

I (u,, ± r.) = I "• ± I r •. 
n= 1 n-:: I n=-1 

PROOF. For each n, we have the following equalities for the partial sums: 

n n 

I (cu) = c I ui; 
j=I j=I 

n n n 

I (ui ± ij) = I ui ± I ri. 
j=I j=I j=l 

The results now follow from the elementary theorems on limits of sequences 
which the reader will recall from a first course in calculus. 

EXAMPLE. Express the repeating decimal A = 0.151515 ... as the ratio of 
two integers. 

SOLUTION. We write A in the form ofa geometric series: 

A= 0.15(1 + 0.01 + (0.01) 2 + (0.01) 3 + ... ), 
in which a= 0.15 and r = 0.01. This series is convergent and has sum 

~= 0.15 =0.15=-~=A. 
. I - 0.01 0.99 33 

PROBLEMS 

In Problems I through 8, express each repeating decimal as the ratio of two integers. 

I. 0.717171 ... 2. 0.464646 ... 

3. 0.013013013 .. . 4. 2.718718718 ... 

5. 0.000141414 .. . 6. 32.46513513513 .. . 

7. 3.614361436143 ... 8. 42.000100010001 .. . 

9. Find the sum of the geometric series if a = 3, r = - ~. 

I 0. Find the sum of the geometric series if a = - 2, r = ;!- . 

11. The first term of a geometric series is 3 and the fifth term is H. Find the sum of the 
infinite series. 
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12. The fourth term of a geometric series is -1 and the seventh term is k· Find the 
sum of the infinite series. 

13. A ball is dropped from a height of 6 meters. Upon each bounce the ball rises to * 
of its previous height. Find the total distance travelled by the ball. 

In Problems 14 through 18, write the first five terms of the series given. Use the corollary 
to Theorem 6 to show that the series is divergent. 

oo n2 
14. L----

•=l n +I 

16. I n2 2- 2n + 3 
•= 1 2n +n+ I 

18. I n2 + n + 2 
.~ 1 log(n + 1) 

15.f~ 
•=I 3n + 5 

17. f (-l)n+I~ 
n=I n 

In Problems 19 through 22, assume that the series 

oo 1 
L4 
n=I n 

all converge. In each case use Theorem 7 to show that the given series is convergent. 

19. I 3n ~ 2 
n=l n 

20. In-/ 
n=I n 

21. I 3n2: 4 
n=l n 

22. f 3n2 - ~ + 4 
11=1 n 

23. Suppose that the series I:f= 1 uk converges. Show that any series obtained from this 
one by deleting a finite number of terms also converges. [Hint: Since s. = I:i:= 1 uk 
converges to a limit, find the value to which s •. the partial sums of the deleted 
series, must tend.] 

24. Show that any number of the form 

where a 1 , a2 , and a3 are digits between 0 and 9, is expressible as the ratio of two 
integers and therefore is a rational number. 

25. Show that any repeating decimal is a rational number. 

26. Let a 1 , a2 , ••• , a., ... be a sequence of positive terms such that a.+ 1 <a. for every 
n. Give an example to show that I::'= 1 a. may not converge. 

3. Series of Positive Terms 

Except in very special cases, it is not possible to tell if a series converges 
by finding whether or not s., the nth partial sum, tends to a limit. (The 
geometric series, however, is one of the special cases where it is possible.) 
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I 1111111 I 
Fig. 3-1 

In this section, we present some indirect tests for convergence and divergence 
which apply only to series with positive (or at least nonnegative) terms. 
That is, we assume throughout this section that u. ;;::: 0 for n = l, 2, .... 
Tests for series with terms which may be positive or negative will be discussed 
in the following sections. 

Before establishing the next theorem we introduce the Axiom of Con
tinuity, a property of the real number system which is useful throughout 
calculus and analysis. 

Axiom C (Axiom of Continuity). Suppose that an infinite sequence a 1 , a2 , 

... , a., ... has the properties ( l) a.+ 1 ;;::: a. for all n, and (2) there is a number 
M such that a. ::;; M for all n. Then there is a number b ::;; M such that 

lim a.= b and a.::;; b 
n-oo 

for all n. 

Figure 3-1 shows the situation. The numbers a. move steadily to the right, 
and yet they can never get beyond M. It is reasonable to have an axiom which 
assumes that there must be some number h (perhaps M itself) toward which 
the a. cluster. Axiom C is usually stated in the form: Every bounded, non
decreasing sequence of numbers tends to a limit. 

Theorem 8. Suppose that u. :<:: 0, n = l, 2, ... ands.= l:i:=t uk is the nth 
partial sum. Then, either (a), there is a number M such that al/ the s. ::;; M, 
in which case the series l:k"=i uk converges to a values::;; M, or else (b), s.-+ 
+ oc and the series diverges. 

PROOF. By subtraction, we have 

u. = s. - s._ 1 ;;::: 0, 

and so the s. form an increasing (or at least nondecreasing) sequence. If all 
s.::;; M, then by the Axiom of Continuity, we conclude that s.-+ s::;; M. 
Thus part (a) of the theorem is established. If there is no such M, then for 
each number£, no matter how large, there must be ans,,> E; and all sm 
with m > n are greater than or equal to s •. This is another way of saying 
s.-+ +ex:;. 

The next theorem is one of the most useful tests for deciding convergence 
and divergence of series. 

Theorem 9 (Comparison Test). Suppose that all u. ;;::::: 0. (a) If l::'=i a. is a 
convergent series and u.::;; a.for all n, then l::'=i u. is convergent and 
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00 00 

L Un s; Lan. 
n=I n=l 

(b) lf"f.'::=i an is a divergent series of nonnegative terms and Un~ an for all n, 
then "f.':/:, 1 un diverges. 

PROOF. We Jet 

be the nth partial sums. The sn, Sn are both nondecreasing sequences. In 
case (a), we let S be the limit of Sn and, since sn s; Sn s; S for every n, we 
apply Theorem 8 to conclude that sn converges. In case (b), we have Sn-+ 
+ oo and Sn~ Sn for every n. Hence, sn-+ + oo. 

REMARKS. In order to apply the Comparison Test, the reader must show 
either (a), that the terms un of the given series are s; an where "f.'::=i an is a 
known convergent series or (b), that each un ~an where "f.':/= 1 an is a known 
divergent series. In all other cases, no conclusion can be drawn. 

For the Comparison Test to be useful, we must have at hand as large a 
number as possible of series (of positive terms) about whose convergence and 
divergence we are fully informed. Then, when confronted with a new series 
of positive terms, we shall have available a body of series for comparison 
purposes. So far, the only series which we have shown to be convergent are 
the geometric series with r < I, and the only series which we have shown to 
be divergent are those in which un does not tend to zero. We now study the 
convergence and divergence of a few special types of series in order to obtain 
material which can be used for the Comparison Test. 

Definition. If n is a positive integer, we define n ! (read n factorial) = I · 
2 · · -.n; it is convenient to define 0 ! = I. 

For example, 5 ! = I · 2 · 3 · 4 · 5 = 120, etc. We see that 

(n +I)!= (n + l)'n!, n ~o. 

EXAMPLE I. Test the series 

"" I L-
n=I n! 

for convergence or divergence. 

SoLUTION. Writing the first few terms, we obtain 

I 
2! D' 
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Since each factor except I and 2 inn! is larger than 2, we have the inequalities 
(which may be rigorously established by mathematical induction): 

and 

The series l:::°=t an with an= l/2n-t is a geometric series with r = t. and is 
therefore convergent. Hence, by the Comparison Test, l:::°=t l/n! converges. 

REMARK. Since any finite number of terms at the beginning of a series does 
not affect convergence or divergence, the comparison between un and an 
in Theorem 9 is not required for all n. It is required for all n except a finite 
number. 

The next theorem gives us an entire collection of series useful for compari
son purposes. 

Theorem 10 (The p-series). The series 

co I 
L-;;· 

n=I n 

known as the p-series, is convergent if p > I and divergent if p S I. 

The proof of this theorem is deferred until later in the section. We note 
that it is not necessary for p to be an integer:. 

EXAMPLE 2. Test the series 

co I 
L--

n=I n(n + I) 
for convergence or divergence. 

SOLUTION. For each n we have 

I I 
;;(n + I) S n2. 

Since l:::°= 1 I /n 2 is a p-series with p = 2 and so converges, we are in a position 
to use the Comparison Test. Therefore, the series 

co I L--
n=I n(n + l) 

converges. 

EXAMPLE 3. Test the series 
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"" I I-
.~1 n + 10 

for convergence or divergence. 

SOLUTION I. Writing out a few terms, we have 

-tr+ti-+/3+/4+··-. 
and we see that the series is just like I::'=i l/n, except that the first ten terms 
are missing. According to the Remark before Theorem 10, we may compare 
the given series with the p-series for p = I. The comparison establishes 
divergence. 

SOLUTION 2. We have, for every /1 ~ I, 

n + 10 ~ lln, and so 
I I 

---~·--. 
11 + 10 lln 

The series 

"" I I "" I I-=- I -
n=J lln II n= I n 

is divergent (p-series with p = I) and, therefore, the given series diverges. 

The next theorem yields another test which is used frequently in conjunc
tion with the Comparison Test. 

Theorem 11 (Integral Test). Assume that f is a continuous, nonnegative, and 
non increasing function defined for all x ~ I. That is, ire suppose that 

j(x) ~ 0, (nonnegative) 

and 

f(x) ~f(y) for x ~ y (nonincreasing). 

Suppose that I::'=i u. is a series with 

u. = f(n) 

y 

y = f(x) 

for each n ~ I. 

0 1 2 n-1 n n+l Fig. 3-2 
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f(x) 

~ : ·. I tv> 
-0-+-~-j~---l~~~j~~--x 

Fig. 3-3 

------., 
I '.I 
I "I 

f(n): 
I 
I· 

f(x) 

-0-+-~__..n......_~ ...... n~+-1~--x 

Fig. 3-4 
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Then (a) r::"=t un is convergent if the improper integral J'f j(x)dx is convergent 
and, conversely (b), the improper integral converges if the series does. 

PROOF. (See Fig. 3-2.) (a) Suppose first that the improper integral is con
vergent. Then, since j(x) "?::.fl}) for x S j, we see that 

f_
1 

j(x)dx "?::.}(}), (I) 

a fact verified by noting in Fig. 3-3 that fl}) is the shaded area and the integral 
is the area under the curve. We define 

and then 

ai = f i j(x)dx, 
Jj-1 

a 1 + f j(x)dx = a 1 + a2 + · · · +an, 

where we have set a 1 = j(l) = u 1 • By hypothesis, ff j(x)dx is finite, and 
so the series r:;"= I an is convergent. Since f(j) = uj, the inequality aj "?::. Uj is 
a restatement of (I), and now the comparison theorem applies to yield the 
result. 
b) Suppose now that r::"=t un converges. Let 

t'n = r+t f(x)dx Sf(n) =Un• n = 1, 2, ... , 

the inequality holding sincej(x) Sf(n) for n s x (Fig. 3-4). Becausej(x) "?::. 0, 
we have each vn "?::. 0, and so I:::"=t vn converges to some number S. That is, 

t Vk = rn+I j(x)dX '5, S 
k=t J. 

for every n. Let e be any positive number. There is an N such that 

S-e<f."+ 1 f(x)dxsS forall n"?::.N. 
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Since f(x) ;;:: 0, we see that 

S - 1; < r 1 
I j(X) dx ~ r j(X) dx ~ S 

Hence the improper integral converges. 

3. Infinite Series 

if X;;:: N +I. 

We shall now employ the Integral Test to establish the convergence and 
divergence of the p-series. 
PROOF OF THEOREM 10. We define the function j(x) = If xP, which satisfies 
all the conditions of the integral test if p > 0. We have 

-=hm -=hm f""dx . f1 dx . (t 1-P-1) 
1 xP 1-00 1 xP 1-00 I - p 

for p # I. 

The limit exists for p > I and fails to exist for p < I. As for the case p = I, 
we have 

f1 dx = logt, 
.x 

which tends to oc as t--> oo. Thus Theorem 10 is established. 

EXAMPLE 4. Test the series 

"" I 
.~1 (n + 1) log (n + I) 

for convergence or divergence. 

SOLUTION. Let 

j(x) = (x + 1) l~g(;+l) 
and note that all conditions for the Integral Test are fulfilled. We obtain 

f1 dx f i+i du fi+i d(logu) 
1 (x + I) log (x + 1) = 2 u log u = 2 log u 

= log [log (t + I)] - log (log 2). 

The expression on the right diverges as t --> oo and, therefore, the given series 
is divergent. 

The particular p-series with p = 1, known as the harmonic series, is 
interesting, as it is on the borderline between convergence and divergence 
of the various p-series. It is an example of a series in which the general 
term u. tends to zero while the series diverges. (See page 102.) We can prove 
divergence of the harmonic series without recourse to the Integral Test. To 
do so, we write 
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t + t + <-! + !) + <! + k + i + k) 
(2) 

+ (! + /0 +-fr+ 112 + 113 + /4 + /5 + /6 ) +(next 16 terms)+ · · ·. 

We have the obvious inequalities 

! + ! > ! + ! = t, 
! + k + i + k > k + k + k + k = t. 
! + /o + Tr + /2 + /3 + /4 + /s + /6 

> /6 + /6 + /6 + 116 + 116 + 116 + 116 + 116 = t, 
and so forth. 

In other words, each set of terms in a set of parentheses in series (2) is 
larger than t. By taking a sufficient number of parentheses, we can make the 
partial sum s" of the harmonic series as large as we please. Therefore the 
series diverges. 

EXAMPLE 5. Show that the series 

co I 
I-
n=l 3n - 2 

diverges. 

SOLUTION. We may use the Integral Test, or observe that 

"' I I co I I-=-I-2 
n= 1 3n - 2 3 n= 1 (n - 3) 

and for all n ;;::: I. 

The comparison test shows divergence. The divergence may also be shown 
directly by recombination of terms, as we did for the harmonic series. 

PROBLEMS 

In each of Problems I through 30, test for convergence or divergence. 

oo I oo I 
1. :E----= 2. :E--::::: 

n=I n..;n n=I ..;n 

3. I I 
n=I (n + l)(n + 2) 

5 I 2n+3 
• n=I n2 + 3n + 2 

~ n-1 
7. £.....-3-

n=l n 

oo I 
9. :E r.::7:0!\ 

n=I yn(n +I) 

4. I: n+_• 
n=I n-vn 

6. f-•-
•=I n·2" 

00 n2 + 3n - 6 s. :E .. 
n=l n 

oo I 
to. :E 2n-3 

n=I + 
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II. f-1-
•=• n + 100 

oo I 
13. I-2-·=• n + 2 

15. I 2n~5 
n=l n 

17. I logn 
n=t n 

19. I log(n + 31) 
n=t (n + I) 

21. f 4 
n=I e 

23. In+ 1 
n=I n·2" 

25. f !!.. 
n=I 2" 

27. I lo~n 
n=l n 

oo n4 
29. LI 

n=l n. 

00 2 
12.I-

·=•2"+3 

00 2· 
14. I ---

·=• 1000 

16. In~ 1 
n=l n 

3. Infinite Series 

oo I 
1s. I 2 

n=I (n + J)[log(n + I)] 

oo n! 
20. I ---·-· --·= 1 1 · 3 · 5 · 7 ... (2n - I) 

oo I 
22. I -~ 2 

n=I vn +I 

oo n4 
24. I~ 

00 2 

26 I~ 
0 

n=I 2" 

30 f (2n)! 
. n=t (3n) ! 

31. For what values of p does the series 

., 1 
I-
•=2 n(logn)P 

converge? 

32. For what values of q does the series 

converge? 

33. For what values of p and q does the series 

oo (logn)P 
I-
n=• n" 

converge? 

34. State and prove as general an Integral Test as you can in which f is not non
increasing. [Hints: The behavior of /for small values of x can be disregarded. 
Also, the precise behavior off between two successive values of n may not be 
crucial.] 

35. Let j(x) = sin2 nx. Show that the integral Jf sin2 xx dx diverges. However, 
I:::'=t j(n) converges. Explain. 
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36. Suppose that the series l:::'=i a. is convergent with a.~ 0 for all n. Show that 
l:::'=i a; is a convergent series. 

37. Let a.~ 0 for all n and consider '•=~a,;. Show that if lim._.., '• = r < I, then 
l:::'= 1 a. converges. If r > I, the series diverges. (Hint: show that for sufficirntly 
large n, a comparison with a geometric series can be made.] 

"38. Given the polynomials 

P(x) = a.x" + a._ 1x"- 1 + · · · + a1x + a0 , a.> 0, 

Q(x) = bmxm + bm- 1Xm-I + · · · + b 1x +ho, bm > 0. 

Show that the infinite series 

I P(r) 

•=•o Q(r) 

converges if m > n + I and r0 is a sufficiently large integer. 

4. Series of Positive and Negative Terms 

In this section we establish three theorems which serve as important tests 
for the convergence and divergence of series whose terms are not necessarily 
positive. 

Theorem 12. /j"'E.':;'= 1 lu.I converges, then I:':'=i u. converges, and 

PROOF. We define numbers v1 , v2 , ••• , v., ... by the relations 

_ {u• if u. is nonnegative, 
v. - 0 if u. is negative. 

In other words, the series I:':;'= 1 v. consists of all the nonnegative entries in 
I:':;'= 1 u •. Similarly, we define the sequence 'Ii• by 

is nonnegative, 

is negative. 

The tt·. are all nonnegative, and we have 

v. + w. = lu.I, v. - w. = u. (I) 

for each n. Since v.:::;; lu.I and 11'•:::;; lu.I, and since, by hypothesis, I:':;': 1 lu.I 
converges, we may apply the comparison test to conclude that the series 
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converge. Consequently, (see Theorem 7) the series 

converges. Also, 

REMARK. Theorem 12 shows that if the series of absolute values I::'=i lunl is 
convergent, then the series itself also converges. The converse is not neces
sarily true. We give an example below (page 115) in which I::'=i un converges 
while I::'=i lunl diverges. 

Definitions. A series l::'=i un which is such that I::'=i lunl converges is said 
to be absolutely convergent. However, if I::'=i un converges and l::'=i lunl 
diverges, then the series I::'= 1 un is said to be conditionally convergent. 

The next theorem yields a test for series whose terms are alternately 
positive and negative. Since the hypotheses are rather stringent, the test 
can be used only under special circumstances. 

Theorem 13 (Alternating Series Theorem). Suppose that the numbers u1 , u2 , 

... , un, ... satisfy the hypotheses: 

i) the un are alternately positive and negative, 
ii) lun+d < lunlfor every n, and 

iii) limn~oc Un = 0. 

Then I::'=i un is convergent. Furthermore, if the sum is denoted bys, then s 
lies between the partial sums sn and sn+i for each n. 

PROOF. Assume that u1 is positive. (If it is not, we can consider the series 
beginning with u 2 , since discarding a finite number of terms does not affect 
convergence.) Therefore, all uk with odd subscripts are positive and all uk 
with even subscripts are negative. We state this fact in the form 

U2n-I > 0, 

for each n. We now write 

S2n = (U1 + U2) + (U3 + U4) +(Us + U6) + ... + (U2n-I + U2n). 

Since lu2kl < u2k-I for each k, we know that each quantity in the parentheses 
is positive. Hence s2n increases for all n. On the other hand, 

S2n = U1 + (U2 + U3) + (U4 + U5) + ... + (U2n-2 + U2n-1) + U2n• 
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Fig. 3-5 

Each quantity in parentheses in the above expression is negative, and so is 
uin· Therefore Sin< u 1 for all n. We conclude that Sin is an increasing 
sequence bounded by the number u 1 • It must tend to a limit (Axiom of 
Continuity). 

We apply similar reasoning to sin-i· We have 

and, since Uin < 0, we have sin-I >sin for every n. Therefore for n > I, 
sin-I is bounded from below by Si= u 1 + Ui. Also, 

Sin+ I =Sin-I + (Uin + Uin+I), 

Since the quantity in parentheses on the right is negative, Sin-I > Sin+i; 

in other words, the partial sums with odd subscripts form a decreasing 
bounded sequence (Fig. 3-5). The limits approached by sin and sin-I must 
be the same, since by hypothesis (iii), 

Ifs is the limit, we see that every even sum is less than or equal to s, while 
every odd sum is greater than or equal to s. 

EXAMPLE I. Test the series 

f (-1)"+1 

n=I n 

for convergence or divergence. If it is convergent, determine whether it is 
conditionally convergent or absolutely convergent. 

SOLUTION. We set u" = (-1)"+1 /n and observe that the three hypotheses of 
Theorem 13 hold; i.e., the terms alternate in sign, l/(n + l) < l/n for each 
n, and Jim"_"" ( -1)"/n = 0. Therefore the given series converges. However, 
the series I::'=i lunl is the harmonic series 

"" I r-. 
n=I n 

which is divergent. Therefore the original series is conditionally convergent. 

The next test is one of the most useful for determining absolute conver
gence of series. 

Theorem 14 (Ratio Test). Suppose that in the series I::'=i u" t'very u" '# 0 and 
that 
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Jim I Un+! I = P 
n-+ao Un 

or 1u~: 1 1-. +oc as n .... oo. 
Then 

i) if p < I, the series I:;:'= 1 un converges absolutely; 
ii) ifp > I, or ij'lun+ 1/unJ-> + oo, the series diverges; 

iii) !lP = I, the test gives no information. 

PROOF. (i) Suppose that p < I. Choose any p' such that p < p' < I. Then, 
since 

Jim I Un•t I = p, 
n-+cc Un 

there must be a sufficiently large N for which 

I u~: 1 I < p', for all n ~ N. 

Then we obtain 

By substitution we find 

luN+2l < p' 2JuNJ, 

and, in general, 

The series 

fork= I, 2, .... 

ao ao 

L JuNJ(p')k = JuNI L (p')k 
k=I k=I 

etc. 

etc. 

(2) 

is a geometric series with ratio less than I and hence convergent. From (2) 
and the Comparison Test, we conclude that 

(3) 

converges. Since (3) differs from the series 

in only a finite number of terms (N, to be exact), statement (i) of the theorem 
is established. 
ii) Suppose that p > I or Jun+ 1 funl-> + oo. There is an N such that 

Jun+ ii> I for all n ~ N. 
JunJ 
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By induction lu.I > lu"'I for all n > N. Therefore u. does not tend to zero, 
and the series diverges (corollary to Theorem 6). 

To establish (iii), we exhibit two cases in which p = 1, one of them 
corresponding to a divergent series, the other to a convergent series. The p 
series 

co 1 I-·=• nP 

has u. = 1/nP. Therefore 

I Un+• I= nP = 1/(1 + !)P· 
u. (n + l)P n 

Since for any p 

Jim 1 ~( 1 + !)P = 1 = p, 
n-oo I I n 

we see that if p > 1 the series converges (and p = 1), while if p::::;; 1, the 
series diverges (and p = 1). 

REMARKS. A good working procedure for a reader is to try first the ratio 
test for convergence or divergence. If the limit p turns out to be 1, some 
other test must then be tried. The integral test is one possibility. (We observe 
that the integral test establishes convergence and divergence for the p series, 
while the ratio test fails.) When the terms have alternating signs, the Alter
nating Series Theorem is suggested. In addition, we may also try comparison 
theorems. 

In the statement of Theorem 14, it may appear at first glance that all 
possible situations for p have been considered. That is not the case, since it 
may happen that 

lu~:· I 
does not tend to any limit and does not tend to + oo. In such circumstances, 
more sophisticated ratio tests are available-ones which are discussed in 
specialized texts on infinite series. 

EXAMPLE 2. Test for absolute convergence: 

co 2" 
L1· 

n=I 11. 

SOLUTION. Applying the ratio test, we have 

2•+1 
Un+t = (n +I)!' 

2" 
u. =--,, n. 

and 
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Therefore 

lim IUn+ll =O=p. 
n-ao Un 

The series converges absolutely. 

EXAMPLE 3. Test for absolute and conditional convergence. 

I (-l)nn 
n=I 2n . 

SOLUTION. We try the ratio test: 

( l)n+I n + I 
Un+I = - 2n+I ' 

( - l)nn 
Un=-2-n-• 

and therefore 

Hence 

lim IUn+ll =!= p. 
n-ao Un 2 

The series converges absolutely. 

EXAMPLE 4. Test for absolute convergence: 

~ (2n)! 

SOLUTION. We try the ratio test: 

i.... 100. 
n=I n 

(2n)! 
Un= ·-;,100 and 

_ [2(n +I)]! 
Un+I - (n + l)100 · 

Therefore 

3. Infinite Series 

I Un+l I= (2n + 2)! . nlOO = (2n + 1)(2n + 2)(-n-)100 
un (n + 1)100 (2n)! I + n 

( I )100 
= (2n + 1)(2n + 2) 1 + l/n 

Hence 

and the series is divergent. 
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PROBLEMS 

In each of Problems I through 28, test for convergence or divergence. If the series is 
convergent, determine whether it is absolutely or conditionally convergent. 

I f _!!~ 
• n=I IQ" 

oo (-l)"-1n! 
3. I - . ---

·=I 10" 

00 (3)" 5. In -
.-1 4 

00 (-1)" 
7. I-=· 

n=I \: n 

00 (-1)" 
9. I . --= 

n=I llv n 

oo (-l)"n2 
II. I·--

n=I 2" 

00 (-l)"-1(4/3)" 
t3. I --2--

n=l n 

00 < -5r-1 
15. I--,-

n=l n. n. 

17. I (-1)"-tn! 
n=I I ·3·5 · · · (2n - I) 

oo <-1r1<n+I) 
19. 2:-----

n=I n,.;n 

~ (-1)"2·4·6···(2n) 
21. '-

n= I 1·4·7···(3n-2) 

oo (-1)"-tn 
23. I----

·=• n +I 

25. f (-1)"(611 2 3- 911 + 4) 
n=I n 

"' (-tr+1 log(n +I) 
21. I ----=-~ 

n=• n +I 

29. For what values of p does the series 

converge? 

"' IO" 
2. I -, 

n=I n. 

00 (-l)"-110" 
4. 2:---

n=I n! 

6. I n2 (~)" 
n=I 4 

00 (-1)" 
8. I -p-' 0 < p < I 

n=l n 

00 (-lr+ 1(n - I) 
I 0. I --'--2 --'---'-

n =I n +I 

oo (- l)"+1(n - 1)2 
i2. I 3 

n=l n 

00 ( -1)"(3/2)2 
t4. I 4 

n=l n 

16. f<-2r1·(n+t) 
n~I (2n)! 

18 f (-1r1(n!)2. 2" 
• n=I (2n) ! 

20. I (n !)2 5" 
n=I (2n) ! 

oo ( -1)"+ I 3n+I 

22. I 4• -
n=I 2 

24 ~ (- l)"(n - 2) 
• '- 7/4 

n=l n 

00 (-1)"~1 

26" n~I (n + l)log(n + ll 

00 < -1)"- 1 logn 
28. I 2 

n=l n 

"' n' I_: 
n=I nP 
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30. For what values of p does the series 

oo nP 
I-
n=t n! 

converge? 

31. Given a series I:::°=i u. in which, for each n <::: I, u4 • and u4 .+ 1 are positive while 
u4 .: 2 and u4 .+ 3 are negative. After determining appropriate additional hypotheses 
on the { u.J, state and prove a theorem analogous to the Alternating Series 
Theorem. Generalize your result if possible. 

32. Given that I:::°=i u. is a convergent series of positive terms, show that I:::°=i u~ is 
convergent for every p > I. 

33. Given that I:::°= 1 u. is a divergent series of positive terms, show that I:::°= 1 u~ diverges 
for 0 < p < I. 

"34. Consider the series I:::°=i ( -1)"- 1 /n and let A be any real number. Show that by 
rearranging the terms of the series, the sum will be a number in the interval 
(A - l,A + 1). 

35. Suppose that p is a number less than I and that there is a positive integer N such 
that Ju.+ 1/u.J < p for all integers n > N. Prove that I:::°=i Ju.J converges even 
though lim._ 00 Ju.+ 1/u.J may not exist. 

36. Let a, b be two numbers larger than 1 with a -# b. Show that if u. = (I /a") when n 
is odd and u. = (l/b") when n is even, then the series I:::°=i u. converges, although 
Ju.+ 1/u.J does not tend to a limit as n-+ '.JC. 

37. The root test states that a series I:::°=i a. converges if the lim._ 00 ~TO.I exists and 
has a value less than 1. The series diverges if the limit is larger than 1. Show that 
the series 

"' a" I-·=' 2 + b" 
converges if 0 < a < b. 

38. Let I:::°= 1 a. be an absolutely convergent series. Show that 

"" "Ja.J L nP-
n-1 

converges for p > i· What happens if a.= n-'(log(n + 1))- 312 and p = f! 

5. Power Series 

A power series is a series of the form 

c0 +c1(x-a)+c2(x-a)2 + ··· +c.(x-a)"+ ···, 

in which a and the ci, i = 0, 1, 2, ... , are constants. If a particular value is 
given to x, we then obtain an infinite series of numbers of the type we have 
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been considering. The special case a= 0 occurs frequently, in which case 
the series becomes 

Co + C1X + C2X2 + C3X3 + ... + c.x· + .... 
Most often, we use the I:-notation, writing 

and 

If a power series converges for certain values of x, we may define a function 
of x by setting 

00 00 

f(x) = L c.(x - a)" or g(x) = L c.x• 
n=O n=O 

for those values of x. We shall see that all the functions we have studied 
can be represented by convergent power series (with certain exceptions for 
the value a). 

The Ratio Test may be used to determine when a power series converges. 
We begin with several examples. 

EXAMPLE I. Find the values of x for which the series 

~ I • 
£..., -x 

n=I n 
converges. 

SOLUTION. We apply the Ratio Test, noting that 

Then 

I 
u. = -x•, 

n 
I 

U =--x•+I 
n+I n + l 

l
u I lxl•+I n n 
~:1 = n + I. lxl" = lxl n + !" 

It is important to observe that x remains unaffected as n ..... co. Hence 

lim I u.+i I = lim lxl-n- = lxl lim - 1- = Ix!. 
·-oo u. •-oo n + I •-oo I + l/n 

That is, p = lxl in the Ratio Test. 
We conclude: (a) the series converges if !xi < I; (b) the series diverges 

if !xi > I; (c) if !xi= I, the Ratio Test gives no information. The last case 
corresponds to x = ± I, and we may try other methods for these two series, 
which are 

oo I 
I-
•=I n 

(if x = I) and 
00 ( -1)" I--

•=I n 
(if x = -1). 
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The first series above is the divergent harmonic series. The second series 
converges by the Alternating Series Theorem. Therefore the given series 
converges for - I s; x < I. 

EXAMPLE 2. Find the values of x for which the series 

converges. 

SOLUTION. We apply the Ratio Test: 

Therefore 

and 

lim lun+d =~Ix+ II lim (-1-)2 =Ix+ II. 
n-«> lunl 2 n-«> I + 1/n 2 

According to the Ratio Test: (a) the series converges if !Ix+ I I < I; (b) 
the series diverges if !Ix+ I I > I; and (c) if Ix+ I I= 2, the test fails. 

The inequality Ix+ I I < 2 may be written 

-2<x+l<2 -3<x<I, 

and the series converges in this interval, while it diverges for x outside this 
interval. The values x = - 3 and x = I remain for consideration. The corre
sponding series are 

and 

Both series converge by the p series test. The original series converges for 
x in the interval - 3 s; x s; I. 

EXAMPLE 3. Find the values of x for which the series 

"" (- onxn I---
n=o n! 

converges. 

SOLUTION. We apply the Ratio Test: 

(-l)n+lxn+l 

Un+ I = (n + I)! ' 
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and 

u.+1 _x . .!!..:..._ = x --I I I 1•+ 1 ' 1 
u. - (n + l)! lxl" I In+ 1 · 

Hence p = 0, regardless of the value ofjxl. The series converges for all values 
of x; that is, for - oo < x < oo. 

EXAMPLE 4. Find the values of x for which the series 

f (-l)"n!x" 
n=O 10" 

converges. 

SOLUTION. We apply the Ratio Test: 

(-l)"n!x" 
u. = 10" ' 

and 

I
U•+• I = jxj•+l(n + l)!. _!Q_"_ = lxl. n + 1 
u. 10•+ 1 lxl"n! 10 · 

Therefore, if x :F 0, ju.+ 1/u.j-+ oo and the series diverges. The series con
verges only for x = 0. 

The convergence properties of the most general power series are illustrated 
in the examples above. However, the proof of the theorem which states this 
fact (given below in Theorem 16) will be proved in section 13. In all the 
examples above we see that it always happened that ju.+ifu.I tended to a 
limit or to + oo. The examples are deceptive, since there arb cases in which 
ju.+ 1/u.I may neither tend to a limit nor tend to + oo. 

Lemma. If the series I::'=o u. converges, there is a number M such that ju.I ::;; M 
for every n. 

PROOF. By Theorem 6 we know that lim._ 00 u. = 0. From the definition of 
a limit, there must be a number N such that 

lu.j < 1 for all n>N 

(by taking e = 1 in the definition of limit). We define M to be the largest 
of the numbers 

luol• iu.I, lu2I· · · ·' luNI• 1, 

and the result is established. 
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Theorem 15. If the series l:::'=oa.x" converges for some x 1 -:/= 0, then the 
series converges absolutely for all x for which lxl < Ix 11. and there is a number 
M such that 

for all n. 

PROOF. Since the series :t::'=o a.xi converges, we know from the Lemma above 
that there is a number M such that 

la.xii~ M for all n. 

Then 

The series 

is a geometric series with ratio less than l, and so convergent. Hence, by 
the Comparison Test, the series 

converges absolutely. 

REMARK. Theorem 15 may be established for series of the form 
00 

L a.(x - a)" 
n=O 

in a completely analogous manner. 

Theorem 16. Let :t::'=o a.(x - a)" be any given power series. Then either 

i) the series converges only for x =a; 
ii) the series converges for all values of x; or 
iii) there is a number R > 0 such that the series converges for all x for which 

Ix - al< Rand diverges for all xfor which Ix - al> R. 

The proof is given in section 13. The consequence (iii) in Theorem 16 
states that there is an interval of convergence - R < x - a < R or a - R < 
x < a + R. Nothing is stated about what happens when x = a - Rora + R. 
These endpoint problems must be settled on a case-by-case basis. The al
ternatives (i) and (ii) correspond to R = 0 and R = + oo, respectively. 
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PROBLEMS 

In Problems I through 27, find the values of x for which the following power series 
converge. Include a discussion of the endpoints. 

oc 

I. I x• 
n=O 

3. I (2x)" 
n=O 

00 

5. I < -1>"<n + 1>x" 
n=O 

00 (x - I)" 
7 "--· • £... 2"n3 

n=l 

00 (x + 2)" 
9. I-.--

n=t '1 n 

II I~ 
• n=O (2n) ! 

00 ( -1)"(3/2)" x• 
13. I -'---'-'-'--'--

·=o n +I 

15. I n2(x - I)" 
n=l 

oo (- l)"-1(x + 4)" 
i1. I 2 

n=I J• • n 

19 I (- l)"+1(n!)2(x - 2)" 
• n= 1 2"(2n) ! 

21. I (- l)•- 1n!(3/2)"x" 
n=I I ·3·5 · · · (2n- I) 

23. I (n - ;>x" 
n=-1 n 

oo (-1).-•x• 
25. I---

•=I (n + l)log(n +I) 

00 (- l)"- 1 (1ogn)2"x" 
27 .• ~. 3"n2 

00 

2. I<-l)"x" 
n=O 

4. f <ix>· 
n=O 

00 (x - I)" 
6. .~1 y;nz 

00 (- l)"+i(x - 2)" 
8. I , 

n=I n...;n 

10. f < 10~>· 
n=O n. 

12 I n!(x + I)" 
• n=O 5• 

14. f <2n>,!x" 
n=O n. 

16 I n(x + 2)" 
• n=I 2• 

18. I n!(x - ~L
•= I I . 3 . 5 ... (2n - I) 

00 n!(x-1)" 
20 I -·-·- · --· ··-

• n=I 4" · I · 3 · 5 · · · (211 - I) 

"" (-l)"J•+lx• 
22 .• ~o 23• 

00 (6n 2 + Jn+ l)x" 
24 " -

•• -:-0 2"(n + I )3 

26. I log(n + 1)3"(x - I)" 
.~i n +I 

28. Prove Theorem 15 for series of the form 

00 

L a.(x - a)". 
n=O 

29. a) Find the interval of convergence of the series 

~ I· 3 · 5 · · · (2n - I) 
£.., ------x". 

n=I 2·4·6···(2n) 
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b) Show that the series in (a) is identical with the series 

00 (2n) ! x" I 22·<n!)2 . 

30. Find the interval of convergence of the series 

f I· 3 · 5 · · -(2n - l)(x - 2)". 
n=I 2"·1·4·7···(3n-2) 

31. Find the interval of convergence of the binomial series 

~ m(m - I) · · · (m - n + I) 
l+L.. 1 x•; 

n~• n. 
m fixed. 

*32. Suppose that the series I:;,"'=o a.x• has an interval of convergence ( - R, R). (a) Show 
that the series l::':0 a.x•+ 1 /(n + I) has the same interval of convergence. 
b) Show that the series l:::°=i na.x•- 1 has the same interval of convergence. 

33. Given the series l:::"=o a.x•. Suppose that lim0 _ 00 "'la.I = r. Show that the series 
converges for 

I I --<x<-. 
r r 

34. Given the two series I:::"=oa.x• and I:::"~ob.x". Suppose there is an N such that 
la.I::;; lb.I for all n ~ N. Show that the interval of convergence of the first series is 
at least as large as the interval of convergence of the second series. 

35. Suppose the series I:::°=o a.x• converges for - R < x < R. Show that the series 
l:::"=o a.x"• for some fixed positive integer k converges for -;:/Ii< x < ;:/Ii. 

6. Taylor's Series 

Suppose that a power series 

converges in some interval - R < x - o < R (R > 0). Then the sum of the 
series has a value for each x in this interval and so defines a function of x. 
We can therefore write 

f(x) = o0 + 0 1(x - o) + o2 (x - o)2 + o3 (x - o)3 + · · ·, 
(I) 

o-R <x <o+R. 

We ask the question: What is the relationship between the coefficients a 1 , 

o2 , o3 , ••• , o •• ... and the function/? 
We shall proceed naively, as if the right side of (I) were a polynomial. 

Setting x = o, we find at once that 
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f(a) = a0 • 

We differentiate (I) (as ifthe right side were a polynomial) and get 

f'(x) = a 1 + 2a2(x - a)+ 3a3 (x - a)2 + 4a4 (x - a)3 + · ·" 

For x = a, we find that 

f'(a) = a 1 • 

We continue both differentiating and setting x = a, to obtain 
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f"(x) = 2a2 + 3 · 2a3 (x - a) + 4 · 3a4 (x - a)2 + 5 · 4a5(x - a)3 + · · ·, 

f"(a) = 2a2 or 
f"(a) 

ai=l!, 

f"'(x) = 3 ·2a3 + 4· 3 ·2a4 (x - a)+ 5 ·4· 3a5(x - a)2 

+ 6 · 5 · 4a6 (x - a)3 + · · " 

f"'(a) = 3 · 2a3 or 
f"'(a) 

a3=)!· 

and so forth. The pattern is now clear. The general formula for the coeffi
cients a0, a1, ... ,an, ... is 

In Section 8, we will show that all of the above steps are legitimate so long 
as the series is convergent in some interval. Substituting the formulas for the 
coefficients an into the power series, we obtain 

. oo pn>(a) n 
j(x) = L ----1-(x - a) . 

n=O n. 
(2) 

Definition. The right side of Eq. (2) is called the Taylor series for f about 
the point a or the expansion of/into a power series about a. 

For the special case a= 0, the Taylor series is 

j(x) = I pn>~O) xn. (3) 
n=O n. 

The right side of (3) is called the Maclaurin series for f 

EXAMPLE I. Assuming that f(x) = sin x is given by its Maclaurin series, 
expand sin x into such a series. 

SOLUTION. We have 

j(x) = sinx, 

f'(x) = cosx, 

j(O) = 0, 

f'(O) = I, 
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f"(x) = -sinx, 

/' 3 ,(x) = -cosx, 

/' 4 ,(x) = sinx, 

f"(O) = 0, 

/' 3 '(0) = -1, 

./'4'(0) = 0. 

It is clear that f' 5' = f' ,f6 = f", etc., so that the sequence 0, I, 0, -1, 
0, I, 0, - l, ... repeats itself indefinitely. Therefore, from (3) we obtain 

. x3 xs x7 x9 
smx = x- -+- - -+- · · · 

3! 5! 7! 9! 

• a;; (-l)kX2k+I 
smx = L 1 • 

k=O (2k +I). 

(4) 

REMARK. It may be verified (by the Ratio Test, for example) that the series 
(4) converges for all values of x. 

EXAMPLE 2. Expand the function 

j(x) = !_ 
x 

into a Taylor series about x = I, assuming that such an expansion is valid. 

SOLUTION. We have 

f(x) = x-•. 

f'(x) = (-l)x- 2 , 

f"(x) = (- l)(-2)x-3, 

/ 13 ,(x) = (- l)(-2)(-3)x-4 , 

pn>(x) = (-1)(-2) · · · (-n)x-n-I, 

Therefore from (2) with a = l, we obtain 

/(l) = l, 
f'(l) = -1, 

f"(l) = (-1)2 • 2!, 

p3>(l) = (-1)3. 3 !, 

pn>(l) = (- l)n. n! 

l 00 

f(x) = - = L (- lt(x - lt. 
X n=O 

(5) 

REMARK. The series (5) converges for Ix - l I < l or 0 < x < 2, as may be 
confirmed by the Ratio Test. 

Examples l and 2 have meaning only if it is known that the functions are 
representable by means of power series. There are examples of functions 
for which it is possible to compute all the quantitiespn>(x) at a given value a, 
and yet the Taylor series about a will not represent the function. (See Problem 
33 at the end of this Section.) 
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EXAMPLE 3. Compute the first six terms of the Maclaurin expansion of the 
function. 

j(x) = tanx, 

assuming that such an expansion is valid. 

SOLUTION. We have 

j(x) = tanx, 

f'(x) = sec2 x, 

f"(x) = 2sec2 xtanx, 

j13l(x) = 2 sec4 x + 4 sec2 x tan2 x, 

j14 l(x) = 8 tan x sec2 x(2 + 3 tan 2 x), 

/(0) = 0, 

f'(O) = I, 
f"(O) = 0, 

f' 3 l(O) = 2, 

p 4 >(0) = 0, 

f' 5>(x) = 48 tan 2 x sec4 x + 8 sec2 x(2 + 3 tan2 x)(sec2 x + 2 tan 2 x), 

p 5>(0) = 16. 

Therefore 

x 3 2x5 
f(x)=tanx=x+-+-+ ··· 3 15 . 

REMARK. Example 3 shows that the general pattern for the successive deriva
tives may not always be readily discernible. Examples I and 2, on the other 
hand, show how the general formula for the nth derivative may be arrived 
at simply. 

PROBLEMS 

In Problems I through 16, find the Taylor (Maclaurin if u = 0) series for each function 
f about the given value of a. 

I. /(x) = e\ a = 0 

3. j(x) = log(I + x), a= 0 

5. j(x) =(I - x)- 2, a= 0 

7. /(x) =(I + x) 112, a= 0 

9. /(x) =log.~. a= 3 

11. j(x) = cosx, a= n/3 

13. j(x) = .jx, a= 4 

15. j(x) = COS(X + t>. a= 0 

2. j(x) = COSX, a= 0 

4. f(x) = log(I + x), a= I 

6. j(x) =(I - x)- 112, a= 0 

8. j(x) = e", a = I 

10. j(x) = sin x, a= r:/4 

12. j(x) = sinx, a= 2n/3 

14. j(x) = sin(x + !), a= 0 

16. j(x) = xm, a= I 

In each of Problems 17 through 31, find the first few terms of the Taylor expansion 
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about the given value of a. Carry out the process to include the term (x - a)" for the 
giv~n integer n. 

17. j(x) = e-x', a=O, 11=4 

18. j(x) = xe"', a=O, n=4 

( I a=O, n=4 19. j x) = --2 , 
l+x 

20. j(x) = arctan x, a=O, II= 5 

21. j(x) = e" cos x, a= 0, n=4 

22. j(x) = I , 
v I - x 2 

a=O, n=4 

23. f(x) = arcsin x, a=O, II= 5 

24. f(x) = tan x, a= n/4, n=S 

25. f(x) = logsecx, a=O, n=6 

26. f(x) = sec x, a=O, n=4 

27. j(x) = cscx, a= n/6, n=4 

28. j(X) = CSC X, a= n/2, n=4 

29. f(x) = sec x, a= n/3, n=3 

30. f(x) = logsinx, a= n/4, n=4 

31. f(x) = tanx, a=O, n=7 Hint: See Example 
terms of sec x.] 

32. a) Given the polynomial 

j(x) = 3 + 2x - x 2 + 4x3 - 2x4 , 

show that/ may be written in the form 

3· 
' express P 5'(x) 

f(x) = ao + a 1(x - I)+ a2(x - 1)2 + a3(x - 1)3 + a4 (x - 1)4 . 

[Hint: Use the Taylor expansion (2) and (6) to get each ai.] 

*b) Given the same polynomial in two forms, . . 
j(x) = L ak(x - a)t, j(x) = L bk(x -W, 

express each bi in terms of a, b, and the ai. 

*33. a) Given the function (see Fig. 3-6) 

F(x) = {e-•tx', 
0, 

use l'Hopitars Rule to show that 

F'(O) = 0. 

x.,,, 0, 

x=O, 

in 

(6) 
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:sjz: F(x) 

Fig. 3-6 

b) Show that F'"1(0) = 0 for every positive integer n. 

c) What can be said about the Taylor series for F? 

34. For any real number n and any positive number a show that the Maclaurin series 
for (a + x)" is given by 

(a+ x)" =a"+ na•- 1x + n(n - l)a"-Zx2 + ... 
2! 

n(n - 1) · · -(n - k + 1) -L• + k! a" x· + .... 

Set a = 1 and n = ! and find the Maclaurin series for (I + x) 112 • Find the interval 
of convergence. Also, find the Maclaurin expansion and the interval of conver
gence for (I + x)- 1• 

35. Find the Taylor expansion of (3 + x)- 112 about a= I. [Hint: Write 3 + x = 
4 + (x - I) and use the result in Problem 34 with a= 4 and x replaced by x - I. 

7. Taylor's Theorem with Remainder 

If a function f possesses only a finite number-say n-of derivatives, then 
it is clear that it is not possible to represent it by a Taylor series, since the 
coefficients ak = f'k>(a)/k ! cannot be computed beyond a •. In such cases it 
is still possible to obtain a finite version of a Taylor expansion. 

Suppose that j(x) possesses n continuous derivatives in some interval 
about the value a. Then it is always possible to write 

f'(a) f' 2>(a) 
f(x) = j(a) + l!(x - a)+ ~(x - a)2 + · · · 

+ J1">(a) (x - a)" + R 
n! • 

(I) 

for x in this interval. The right side consists of a polynomial in x of degree n 
and a remainder R. about which, as yet, we have no knowledge. In fact, 
the quantity Rn is defined by the formula (I). For example, in the unusual 
case that f and its n derivatives all vanish at x = a, the "remainder" R. is 
just f itself. The content of Taylor's Theorem concerns useful information 
about the nature of R •. This theorem is not only of great theoretical value 
but may also be used in approximations and numerical computations. 



132 3. Infinite Series 

Theorem 17 (Taylor's Theorem with Derivative Form of Remainder). Suppose 
that f;f',fr 21 • ••• ,p•>,p•+t> are all continuous on some interval containing 
a and b. Then there is a number e between a and b such that 

f(b) = f(a) + f'(a) (b - a) + f1 2 '(a) (b - a)2 + ... 
1 ! 2! 

P"'(a) • p•+ 11<eHb - ar 1 

+-1-(b-a) + ( I)' . n. n + . 
That is, the remainder R. is given by the formula 

R = pn+11<e}(b - a)•+t 
" (n+l)! · 

(2) 

REMARKS. (i) We see that R. depends on both b and a, and we write, in 
general, R. = R.(a, b), a function of two variables. 
ii) If we take the special case n = 0, we obtain 

f(b) = j(a) + f'<e}(b - a), 

which we recognize as the Theorem of the Mean. Thus this form of Taylor's 
Theorem is a direct generalization of the Theorem of the Mean. 

PROOF OF THEOREM 17. The proof makes use of Rolle's Theorem. We create 
a function </>(x) which is zero at a and band so, by Rolle's Theorem, there 
must be a number e between a and b where </>'(e) = 0. The algebra is lengthy, 
and the reader should write out the details for the cases n = 1, 2, 3 in order 
to grasp the essence of the proof. We use the form (I) for x =band write 

j(b) = f(a) + f'(a)(b - a)+ p21(a)(b - a)2 + ... 
1 ! 2! 

+ 11•>(a)(b - a)" + R (a b). 
f n ' ' n. 

we wish to find R.(a,b). We define the function 

</>(x) = j(b) _ j(x) _ f(x)(b - x) _ ff 21(x)(b - x)2 

1 ! 2! 

/' 31(x)(b - x)3 _ ... _ f'"- 11(x)(b - x)"- 1 

3! (n - l)! 

/1"1(x)(b - x)" (b - x)"+ 1 
- n! -R.(a,b)(b-a)"+1· 

The function <P was concocted in such a way that </>(a)= 0 and </>(b) = 0, 
facts which are easily checked by straight substitution. We compute the 
derivative </>'(x) (using the formula for the derivative of a product wherever 
necessary) : 



7. Taylor's Theorem with Remainder 

<f/(x) = -f'(x) + f'(x) - p2>(x)/t- x) + 2j12>(x~~b - x) 

f' 3>(x)(b - x)2 3/'3 >(x)(b - x)2 p 4 >(x)(b - x)3 

- ----2!--·--- + --- -31-- - 3! + ... 

f'•+l>(x)(b - x)" R.(a.b)(n + l)(b - x)" 
- n! + (b - a)•+ 1 

Amazingly, all the terms cancel except the last two, and we find 

, p•+ 1 >(x)(b - x)" (h -- x)" 
</> (x) = --·-----~,-- + R.(a,b)(n +I) (h _ ar+ 1 • 

I33 

Using Rolle's Theorem, we know there must be a value~ between a and b 
such that</>'(~)= 0. Therefore we get 

O = _p•+l•(~)(b - ~)" + R (a h)(n + I) (b - ~)" 
n! •' (b-a)•+ 1 

or, upon solving for R.(a, h), the formula (2) exactly. 

REMARKS. (i) lfwe know thatj(x) has continuous derivatives of all orders 
and if R.(a, b)--> 0 as n-+ oo, then we can establish the validity of the Taylor 
series. ii) In any case, R. is a measure of how much/ differs from a certain 
polynomial of degree n. If R. is small, then the polynomial may be used 
for an approximation to f 

When we use Taylor"s Theorem in the computation of functions from the 
approximating polynomial, errors may arise from two sources: the error 
R., made above by neglecting the powers of(b - a) beyond the nth; and the 
"round-off error" made by expressing each term in decimal form. If we wish 
to compute the value of some functionj(b) to an accuracy of four decimal 
places, it is essential to be able to say for certain that/(b) is between some 
decimal fraction with four decimals -0.00005 and the same decimal fraction 
+0.00005. Time is saved by computing each term to two decimals more than 
are required. Frequently R. is close to the value of the first term in the series 
omitted, and this fact can be used as a guide in choosing the number of terms. 
Although we do not know R. exactly, we can often show that there are two 
numbers m and M with 

m $}1"~ n(x) $ M for all x between a and b. 

Then we get for R.(a, b) the inequality 

m(b - a)•+ 1 M(b - a)•+ 1 

(n+I)! $R.(a,b)$ (n+I)! · 

EXAMPLE l. Compute (I. I) 115 to an accuracy of four decimal places. 
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SOLUTION. The key to the solution. using Taylor's Theorem, is the fact that 
we can set 

j(x)=(l +x) 115 . a= 0, b =0.l. 

Then 

j(x) = (I + x) 115 • 

f'(x) =~(I + x)-415 

j(a) =I 

f'(a)(b - a)= ~(0.1) 1 

1.0000 00 

0.0200 00 

/"(x)= -~(I +x)-<J/5 , f"(a)<g!-a) 2 = -{5(0.1)2 = -0.0008 00 

f"'(x) = 13265(1 + x)-14/s, f"'(a)(b - a)3 = _i_(O 1)3 
3! 125 . 0.0000 48 

For all x between 0 and I we have 

0 <(I+ x)-1415 < I. 

Therefore we can estimate R,, for /1 = 2: 

0 < R =~(I+ c)- 1415 (b - a) 3 < _i_(0.1) 3 = 0.0000 48. 
2 125 . 3! 125 

Adding the terms in the Taylor expansion through /1 = 2, we get 

(I.I) 115 = 1.0192, approximately; 

in fact, a more precise statement is 

1.0192 < (l.1) 115 < 1.0192 48. 

REMARK. In Example I. we could have selected f(x) = x 115 with a= I, 
b = I. I. The result is the same. 

EXAMPLE 2. Compute J7 to an accuracy of four decimal places. 

SOLUTION. Set 

j(x) = x 113 . a= 8, b = 7. 

Then b - a = - I and 

j(x) = x 113 , 

f'(x) = ~x-213, 

j '"( ) - 2 -5/3 x - - 9x , 

/(a)= 2 

f'(a)(b - a)= _ __!_ 
12 

f"(a)(b - a) 2 

2! -9·25 

2.0000 00 

= -0.0833 33 

= -0.0034 72 
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f f31( ) - 10 -8/3 
x - 21x • 

f"'(a)(b - a)3 _ 5 
3! - -81 ·28 

= -0.0002 41 

/ 14>(x) = ::- 80 x-1113 f'4'(a) (b - a)4 = - 5 = -0.0000 20 
81 • 4! 243·210 
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It would appear to be sufficient to use only the terms through (b - a)3 . 

However, by computing the sum of the decimal fractions given, we obtain 
l.9129 54. But the next term is -0.0000 20 which, if included, would 
reduce the value to l.9129 34. If we stopped with the (b - a)3 term and 
rounded off, we would obtain l.9130 whereas, if we keep the next term and 
round off, we obtain l.9129. So the term in (b - a)4 should be retained, 
and the remainder R4 must be estimated. We have 

j .,s1( ) = 880 . 1413 = 880x 113 
x 243 x 243x5 • 

Since we are concerned with the interval 7 < x < 8, we see that x 113 < 2 
and x 5 > (49)(343). Hence 

f 151(x) 1760 l 
0 < ~ < (243)(49)(343)(120) < 270,000 < 0·000004· 

Since (b - a) 5 = -1, we conclude that 

- 0.000004 < R4 < 0 

and that 

.:ti= l.9129 

to the required accuracy. Actually, if we merely keep an extra decimal in 
each term retained, we see that 

~ = l.91293 
to five decimals. 

REMARKS. In Example l there was no round-off error, since each decimal 
fraction gave the exact value of the corresponding term. This was not true 
in Example 2, however. In general, the round-off error in each term may be 
as much as ! in the last decimal place retained. Round-off errors may tend 
to cancel each other if there is a large number of computations in a given 
problem. 

The remainder Rn(a, b) in Taylor's Theorem may be given in many forms. 
The next theorem, stated without proof, gives the remainder in the form of 
an integral. 

Theorem 18 (Taylor's Theorem with Integral Form of Remainder). Suppose 
that f,f',f' 2 '. ••• ,J<n>,J'n+o are all continuous in some interval containing a 
and b. Then f(x) may be written in the form 
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j(b) = j(a) + f'(a) (b - a) + p2>(a)(b - a)2 + ... 
I! 2! 

j1n1(a)(b - at + - ----·-- + R 
n! n 

where 

EXAMPLE 3. Write log (l + x) as a polynomial of the third degree, and esti
mate the remainder Rn for 0 < x < t. 

SOLUTION. We select 

j(x) = log(l + x), a=O, b=x. 

Then we write successive derivatives, 

Therefore 

with 

f'(x) =-•-, 
l+x 

j ."( ) I 
x = -(l + x)2' 

1·13>( ) - 2 
x - (l + x)3' 

j14>(x) = _ 6 . 
(l + x)4 

f'(O) = I, 

f"(O) = -1, 

6 ""' I 
R = --J ---(x - 1)3 d1. 

n 6 (l + 1)4 
0 

A simple estimate replaces (l + 1)- 4 by its smallest value I, and we find 

IRnl < f'2 G-1)3 di=~· 
PROBLEMS 

In each of Problems I through 20, compute the given quantities to the specified number 
of decimal places. Make sure of your accuracy by using Taylor's Theorem with Remain
der. Use the fact that 2 < e < 4 wherever necessary. 
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I. e-0.2, 5 decimals 2. e-o.4, 4decimals 

3. ('0.2, 5 decimals 4. sin (0.5), 5 decimals 

5. cos (0.5), 5 decimals 6. lan(O.I), 3 decimals 

7. log ( 1.2), 4decimals 8. log(0.9), 5 decimals 

9. e- 1, 5 decimals 10. e, 5 decimals 

11. ( 1.08) 114, 5 decimals 12. (0.92) 114, 5 decimals 

13. (0.91) 113 ' 5 decimals 14. (0.90) 115, 5 decimals 

15. (30) 115, 5 decimals 16. (15)114, 5 decimals 

17. (0.8) 115 , 5 decimals 18. (65) 116, 5 decimals 

19. log(0.8), 5 decimals 20. log (0.6), 3decimals 

Given that I 0 = n/180 radians = 0.0174533 radians and 5° = n/36 radians = 0.0872655 
radians, in each of Problems 21 through 23 compute to the number of decimal places 
required. 

21. sin 1°, 6 decimals 22. sin 5°, 5 decimals 23. cos5°, 5 decimals 

24. Find the largest interval about x = 0 in which the function f(x) = sin x may be 
approximated to four decimal places by x - ix3 , the first two terms in the Maclaurin 
expansion. 

25. Given the function/: x-+ cos2 x, find an upper and lower bound for R.(a,b) where 
a = 0, b = n/4, n = 4. 

26. Verify the identity in x: 

-·-=I -x+x2- ... +(-l)"-1x"-1 +~)"x". 
I +x I +x 

Integrate between 0 and b to obtain the formula 

n bk fbx" 
log(I + b) = - L (- l)k-k + (-1)" --dx. 

k=I 0 I+ x 

Show that this is Taylor's formula with integral remainder. Obtain the estimate 
for R.: 

for lbl < I. 

27. Apply the method of Problem 26 to the function f(x) = 1/(1 + x2) and obtain 
Taylor's formula for arctan x. 

28. Let I::'=o u. be a convergent infinite series whose terms are alternately positive and 
negative and also such that Ju.+ 11 < lu.I for each n. It can be shown that the error 
in approximating the above series by I::=ou. is always less than luN+il· Apply this 
result to approximate cos(n/6) by its Taylor series with remainder and thereby 
find J3 to three decimal places. 
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8. Differentiation and Integration of Series 

In Section 6 we developed the formula for the Taylor series of a function 
and, in so doing, we ignored the validity of the manipulations which were 
performed. Now we shall establish the theorems which verify the correctness 
of the results already obtained. 

Theorem 19 (Validity of Term-by-Term Differentiation of Power Series). 
If R > 0 and the series 

"" I a.x• 
n=O 

(I) 

converges for lxl < R, then the series obtained from (I) by term-by-term 
differentiation converges obso/utelyfor lxl < R. 

PROOI'. Term-by-term differentiation of (I) yields 

(2) 

Choose any value x such that lxl <Rand choose Xi so that lxl <Ix.I < R. 
According to the Lemma of Section 5 (page 123), there is a positive number 
M with the property that 

for all n. 

We have the relation 

lna.x•-il = na.~-x~ :s; n- -~ , I n-i I Ml 1·-i 
Xi Xi Xi 

and now we can apply the comparison test to the series (2). The series 

-In--M"" Ix, .. i 

xi n=i Xi 

converges by the Ratio Test, since p = lxix i I < 1; hence, so does the series 
(2). Since xis any number in the interval ( - R, R), the interval of convergence 
of (2) is the same as that of (I). 

Corollary. Under the hypotheses of Theorem 19, the series ( 1) may be differ
entiated any number of times and each of the differentiated series converges 
for lxl < R. 

REMARKS. (i) The Corollary is obtained by induction, since each differ
entiated series has the same radius of convergence as the one before. (ii) The 
results of Theorem 19 and the Corollary are valid for a series of the form 

ao 
I a.(x - a)", 
n=O 
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which converges for Jx - aJ < R so long as R > 0. The proof is the same. 
(iii) The quantity R may be + oo, in which case the series and its derived 
ones converge for all values of x. 

Theorem 20. If R > 0 and f is defined by 

00 

f(x) = L anx" for JxJ < R, 

then/ is continuous for JxJ < R. 

PROOF. Let x0 be any number such that -R < x0 < R; we wish to show that 
/is continuous at x 0 • In other words we must show that 

f(x)-+ f(x0 ) as x-+ x 0 . 

We have 

J/(x) - /(xo)J = IJ0 a"(x" - x(,)I :s; J0 JanJJx" - x()J. 

We apply the Theorem of the Mean to the function g(x) = x"; that is, the 
relation 

g(x) - g(xo) = g'(e)(x - xo). 

applied to the function g(x) = x", is 

<e is between x and x0 ), 

X" - Xo = ne:- 1(X - Xo), <en between x and x0 ). 

The subscript n has been put on e to identify the particular exponent of the 
function x". We may also write 

Jx" - x0J = nJenJn- 1 Jx - x0 J. 

Thus we find 
00 

J/(x) - f(xo)J :s; L nJanJ JenJ"- 1 Jx - Xol· 
n=O 

So long as xis in the interval of convergence there is an x I such that I enl < x I 
for all n. We deduce that 

00 

J/(x) - J(x0)j :s; Jx - x0 J L nJanJxj- 1• 
n=O 

Now we apply Theorem 19 to conclude that the series on the right converges; 
call its sum K. Then 

J/(x) - /(xo)J :s; Jx - x0 J · K. 

As x tends to x0 the quantity on the right tends to zero, and so /(x) tends to 
f(x0 ). That is,f(x) is continuous at x 0 • 
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Theorem 21 (Term-by-Term Integration of Power Series). Suppose that R > 0 
and 

00 

f(x) = L anxn 
n=O 

converges for lxl < R. We define 

Then the formula 

holds for lxl < R. 

F(x) = r j(t)dt. 

oo Xn+I 
F(x) =Lan-

n=O n +I 

(3) 

(4) 

PROOF. Let x be any number such that - R < x < R. Choose x 1 so that 
lxl < lxil < R. We note that for any n 

ix a Xn+I 
antndt = _n __ I. 

o n + 
Therefore 

N xn+I ix[ N J F(x) - L an--1 = f(t) - L antn dt. 
n=O n + o n=O 

(5) 

But now 
N oo N oo 

J(t) - I antn = I antn - I antn = I antn, 
n=O n=O n=O n=N+I 

and for all t such that -lxl < t < lxl and lxl < Ix ii < R, 

'1(t) - J0 antn' ~ nJ+ 1 lanllxln· (6) 

Since the series (3) converges absolutely at x, the right side of (6)-being the 
remainder-tends to zero as N-+ oo. We conclude from (5) that 

IF(x)- J0 an::\ I~ lf:CJ+ 1 lanllxln)dt' =CJ+1 lanllxl)·lxl. 

As N tends to oc, the right side above tends to zero, and the left side above 
yields (4). 

EXAMPLE I. Assuming that the function j(x) = sin x is given by the series 

. x3 xs ( _ I)nx2n+I 
smx=x--+-- ··· + + ··· 

3! 5! (2n+l)! ' 

find the Maclaurin series for cos x. 
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SOLUTION. Applying the Ratio Test to the series 

GO (-l)"X2n+I 

.~o (2n+ l)!' 

we see that it converges for all values of x. We define 

F(x)= f:sintdt= -cosx+ I. 

Integrating the above series for sin x term by term, we obtain 

• GO (- l)"X2n+2 
f(x) = 1 - cosx = L (2 2) 1 

n=O n + • 
or 

x 2 x4 x" ( - l)" x 2" "'· ( - l)"x2" 
cosx=l--2,+-4,--6,+···+ (2 ), +···=:L (2 ), · 

• • • n . n=O n . 
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The next theorem relates the derivative of a function given by a series 
with the term-by-term differentiation of the series. 

Theorem 22. If R > 0 and 

GO 

f(x) = L a.x" for lxl < R, (7) 
n=O 

then f(x) has continuous derivatives of all orders for lxl < R which are given 
there by series obtained by successive term-by-term differentiations of (7). 

PROOI'. The fact that 
co 

L na.x•- 1 

n=l 
(8) 

converges for lxl < R was shown in Theorem 19. We must show that g(x) = 
:E:'= 1 na.x•- 1 is the derivative off Theorem 20 establishes the fact that g is 
continuous. Then, integrating the series (8) term by term we get, on the one 
hand, rx 

a0 + Jo g(t)dt 

and, on the other, the series for j(x). That is, 

j(x) = a0 +I' g(t)dt. 

The Fundamental Theorem of the Calculus then asserts that 

f'(x) = g(x), 

which is the result we wished to establish. 
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REMARK. The result of Theorem 22 holds equally well for functions/given 
by series of the form 

00 

j(x) = L a.(x - a)", 
n=O 

which converge for Ix - al< R with R > 0. The kth derivative off is given 
by 

.----------------··-·-·-·---·- ---
00 

_[ik'(x) = L n(n - I)··· (n - k + l)(x - a)"-k 
n=k 

EXAMPLE 2. Assuming that the expansion off: x--+ (4 + x2)- 1 is given by 

I _ ~ (-1)" 2. 

4 + x2 - .~o 22n+2 x ' 

valid for lxl < 2, obtain an expansion for 2x/(4 + x2) 2 • 

SOLUTIOI'. Differentiating term by term, we find 

2x ~ (- l)"2n 2n-1 
- (4 + x2)2 = .~, 22n+2 X • 

We may replace n by n + I in the infinite series if we change the lower limit 
from I to 0. We get 

2x _ ~ (-1)"(2n + 2) 2n+1 
(4 + x2)2 - .~o 22n+4 x . 

We now make use of the above theorems and the fact that the function 
1/(1 + x) may be expanded in the simple geometric series 

I oo -=I <-o•x•, 
I+ X n=O 

to obtain additional series expansions. 

lxl <I, 

Theorem 23. For lxl < I, 1..-e have the expansion: 

oo ( l)"-1 x" 
log (l + x) = L - . 

n=I n 

PROOF. Letting F(x) = log (l + x) and differentiating, we find 

I oo 
F'(x) = j(x) = -1 - = L ( - l)"x", 

+ X n=O 
lxl < l. 
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Now, by Theorem 21, we may integrate term by term and get 

Ix oo (- J}"x"+l 
F(x) = j(t}dt = L 1 , 

o n=o n + 

which is equivalent to the statement of the theorem. 

EXAMPLE 3. Find the Maclaurin series for 

j(x) =(I~ x)2· 

SOLUTION. If we define F(x) = (I - x)- 1, we see that F' (x) == f(x). 
Now 

00 

F(x) = L x", lxl < l 
n=O 

[which we can obtain from the expansion for (I + x)- 1 if we replace x by 
- x]. Therefore 

j(x) = (I ~ x)2 
00 00 

L nx•- 1 = L (k + l)xk, 
n=I k=O 

lxl <I. 

EXAMPLE 4. Find the Maclaurin expansion for f(x) = ( l + x2)- 1• 

SOLUTION. The geometric series 

I oo 
-= :l,(-l)"u", 
) + U n=O 

lul < l 

after substitution of x 2 for u, becomes 

_1_2 = f (-Jtx2•, 
) + X n=O 

valid for x 2 < I. The inequality x 2 < l is equivalent to the inequality 
lxl <I. 

In the problems below, assume that the following formulas hold. They 
will be proved in the next section. 

00 

(I - x)-1 = L x"; 
oo x" 

tr='-· £..,, I' 
n=O n. n=O 

• oo (- l)•x2•+1 oo (- l)"x2• 
SIOX= L (2 l)' ; COSX= L -(2 )'-; 

n=O n + · n=O n • 

(I+ xr =I+ f m(m - l} · · ·
1
(m - n +I) x". 

n=I n. 
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PROBLEMS 

In Problems I and 2, assume the Maclaurin series for sin x and cos x. 

I. Find the Maclaurin series for 

j(x) ={(sin x)/x, x "# 0, 
I, x=O. 

2. Find the Maclaurin series for 

. {(I - cosx)/x, x "# 0, 
j(x) = 

0, x=O. 

3. Find the Maclaurin series for e", determine the interval of convergence, and then 
find the Maclaurin series for f given by 

j(x) = {(e" - l)/x, x "# 0, 
I, x=O. 

In Problems 4 through 8, use term-by-term differentiation and integration of known 
series as in Examples 2, 3, and 4 to determine Taylor or Maclaurin series for the func
tion/ State the interval of convergence. 

4. f(x) =(I + x)- 2 

6. f(x) =(I - xr 3 

8. j(x) = .dog(I + x2) 

5. j(x) = log 1 + x 
1-x 

7. j(x) =(I + xr 3 

9. Find the Maclaurin expansion for (I + x 2)- 1 and then use term-by-term integra
tion to get a Maclaurin expansion for arctanx. 

IO. Find the Maclaurin expansion for (I - x 2r 112 , and then find one for arcsin x. 

11. Find the Maclaurin expansion for cos 2x and then find one for sin2 x. 

12. If j(x) = e", show that the Maclaurin series for f'k 1(x) is rJ.k times the Maclaurin 
series for f 

13. Find the sum of the series* 

14. Find the sum of the series 

for lxl < I. 

oc \"k 

L ·--·-=- ··-- . 
k=I k(k + I) 

15. Find the Maclaurin expansion for log(x + v I+ x 2). 

• That is, find an expression in closed form which is equal to the sum of the series for all x in 
the interval of convergence. 
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16. Find the sum of the series 

f (n + 2)(~ + l)x" 
n=O n. 

and conclude that 

e = ! f (n + 2)(n + I). 
7 n=o n! 

17. Find the first five terms of the Maclaurin expansion of 

F(x) = J 
0
' e-•' dt. 

Obtain an approximate value of F(l). Can you approximate the error? 

18. Show that for every positive integer p, we have 

(I - x)-p-1 = f (n + p) x", 
n=O p 

lxl <I, 

where the symbol (";P) is an abbreviation of 

(n + p)(n + p - I)··· (n + I) 
I ·2·3 · · · p 

Deduce the formula 3p+l = I:::'=o<"?)(j)". 

*19. Let 

. I x x 2 x 3 
j(x) = - + - + - + + ... 

2 5 8 11 . 

a) Show that the expansion for x/(I - x 3 ) is precisely (x2f(x3))'. 
b) Find an expression for j(x). 

20. Use the fact that xP = eP 108" to express xP as a power series in logx: 

xP = I + p(logx) + ... + p"(logx)" --- --- +···. 
I! n! 
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Find the interval of convergence. For what values of p is the above expansion 
valid? 

21. Suppose that j(x) has a Maclaurin series with a positive radius of convergence: 
f(x) = I::'=o a.x". Show that if f is an even function of x, that is, if f( -x) = j(x) 
for all x, then a.= 0 for all odd integers n. If f is odd, i.e., if/( -x) = -j(x), 
show that a. = 0 for all even n. 

22. Writing the identity 

-I 
1-x 
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we get the formal expansion 

I "' I 
I -x= - L x"+1· 

n=O 

For what values of x does this series converge? Under what conditions can the 
series be differentiated and integrated term by term? 

23. Find an expansion for arctanx in powers of 1/x. [Hint: Consider the expansion 
of 1/(1 + x2) as in Problem 22 and then integrate.] 

9. Validity of Taylor Expansions and Computations 
with Series 

The theorems of this section state that certain functions are truly represented 
by their Taylor series. 

Theorem 24. For any values of a and x, we have 

" e" ~ (x - a)" e - "- . 
- n=O n! ' 

(I) 

i.e., the Taylor series fore" about x =a converges to e"for any a and x. 

PROOF. For simplicity, set a= 0, the proof being analogous when a# 0. If 
we let f(x) = e", then /f"l(x) = e" for all n. Now, using Taylor's Theorem 
with Derivative Form of the Remainder, we have 

where 

with ~ between 0 and x. If x is positive, then e~ < e" while, if x is negative, 
then e~ < e0 = I. In either case, 

lxln+J 
Rn:;;; C(n + l)!' (2) 

where C is the larger of 1 and e" but is independent of n. If the right side of 
(2) is the general term of a series then, by the Ratio Test, that series is conver
gent for all x. The general term of any convergent series must tend to zero, 
and so 

lxln+I 
C(n+ l)!-+O as n -+ oo for each x. 

We conclude that Rn-+ 0 as n-+ oo, and so (I) is established. 

Theorem 25. The following functions are given by their Maclaurin series: 
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• oo ( - l)nx2n+I 

smx=I (2 l)'' 
n=O n + · 

oo (- l)nx2n 
cosx= L -(2 ) 1-. 

n=O n • 
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The proofs of these results follow the same outline as the proof of Theorem 
24 and are left as exercises for the reader at the end of this section. 

Theorem 26 (Binomial Theorem). For each real number m, we have 

f m(m - l)(m - 2)- · · (m - n + 1) 
(1 + xr = 1 + L.... ' ~ 

n=I n. 
for !xi< 1. 

PROOF. To show that the series on the right converges absolutely for lxl < l, 
we apply the Ratio Test: 

lu~:·I 
=lm(m-1)-··(m-n+ l)(m-n). n! .xn+•1 

(n + l)! m(m - l) · · · (m - n + 1) xn 

= Im - nl lxl = 11 - m/nl 14 
n + 1 l + l/n 

The quantity on the right tends to !xi as n-> oo, and so the series converges 
for lxl < 1. We define 

j(x) = 1 + I m(m - 1) · · ·1(m - n + 1) xn, (J) 
n=I n. 

and we must show thatj(x) =(I + xr if lxl < 1. Employing Theorem 22, 
we getf'(x) by term by term differentiation of the series for f We have 

f'(x)=m+ I m(m- l)···(m
1
-n+ l)xn-•. 

n=2 (n - 1). 

Multiplying both sides of (4) by x, we get 

1.,( ) _ f m(m - 1)- · · (m - n + 1)..., x x - L.... n 1 ..... 
n=I n. 

We add (4) and (5) to obtain 

(l + x)f'(x) = m {1 + J. m(m - I). ·~/m - n +I) x"} = mf(x). 

In other words, the function/ satisfies the relation 

(I + x)f'(x) - mf(x) = 0. 

(4) 

(5) 

We now use a trick to findj(x). We multiply this equation by (1 + x)-m-•, 
getting 
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(I + x)-"'./'(x) - m(I + x)-m- 1j(x) = 0. 

This last equation can be written 

A function whose derivative is identically zero must be constant, so that 

(I + x)-mj(x) = K, 

where K is some constant. Setting x = 0 in (3), we see thatj(O) = 1, and this 
fact yields K = 1. We conclude finally that 

j(x) =(I+ xr for !xi< I. 

EXAMPLE 1. Write the first 5 terms of the series expansion for ( 1 + x) 312 • 

SOLUTION. We have m =!,and therefore 

(I + x)J12 = 1 + t x +<!Ht) x2 + (tHtH-t> x3 + (tH!H-tH-t) x4 
1 ! 2! 3! 4! 

3 3 2 3 3 32 4 
= 1 +1x+sx -23·3!x +24·4!x - ···. 

EXAMPLE 2. Write the binomial series for (I+ x) 7 • 

SOLUTION. We have 

(I + x)7 = 1 + I 7(6)- .. (71 - n + 1) xn. 
n=l n. 

We now observe that beginning with n = 8 all the terms have a zero in the 
numerator. Therefore, 

(1 )7 l ~ 7(6)- · -(7 - n + 1) n 
+x = +L.. 1 x 

n=I n. 

7·6 2 7·6·5 3 7! 7 
= 1+7x+-x +--x + ··· +-x 2! 3! 7! . 

Form a positive integer, the binomial series always terminates after afinite 
number of terms. 

EXAMPLE 3. Compute 
ro.s 

Jo ex' dx 

to an accuracy of five decimal places. 
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SOLUTION. We have 

u ~ u" e = t.... -
n=O n! 

for all u, and so 
00 x2n 

e···= I -
n=O n! 

By Theorem 21 we can integrate term by term to get 

e· d1 = I x . f x oo 2n+I 

0 n=O n!(2n + I) 

For x = 0.5, we now compute 

x = 0.5 - = 0.50000 00, 
2 

xJ (0.5)3 
= 0.04166 6T, --=--= 

I!· 3 3 24 

XS (0.5)5 I 
= 0.00312 50, --=--= 

2!. 5 IO 320 

x' (0.5) 7 
= 0.00018 60+' =--= 

3!. 7 42 5376 

x9 (0.5)9 I + 
4 ! . 9 = 2J6 = I 10,592 = 0.00000 90 , 

Sum of the right-hand column= 0.54498 67. 
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for all x. 

If we wish to stop at this point we must estimate the error made by neglecting 
all the remaining terms. The remainder is 

oo x2n+1 x11 ( x2 x4 x6 ) 

n~s n!(2n + I) :s; 5Tll" I + 6 + 62 + 63 + ... 

x 11 I 24 I I <-- =-·--·--
- 1320 (I - x 2 /6) 23 1320 2048 

:s; 0.00000 04. 

Therefore 

ex dx = io.s 2 {0.54499 to an accuracy of 5 decimals, 

0 0.544987 to an accuracy of 6 decimals. 

PROBLEMS 

In each of Problems 1 through 7, write the beginning of the binomial series for the 
given expression to the required number of terms. 

I. (I + xr 312 ' 5 terms 2. (I - x) 112 , 4 terms 
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3. (I + x 2)- 213 , 5 terms 4. (I - x 2r 112 , 6 terms 

5. (I + x 3) 7 , all terms 6. (5+x) 112 , 4 terms 

7. (3 + .,,x)- 3, 5 terms 

In each of Problems 8 through 17, compute the value of the definite integral to the 
number of decimal places specified. Estimate the remainder. 

8. L sin(x2)dx, 5 decimals 9. L cos(x2)dx, 5 decimals 

IO. L e-·'2 dx, 5 decimals rs dx II. --J, 
0 I +x 

5 decimals 

12. J • sinx dx, 5 decimals f "'-1 5 decimals 13. · ···--dx, 
0 x 0 x 

14. ---=· r·s dx 
0 vl+x3 

5 decimals 11
'
3 dx 15. J ' 

o v I+ x 2 
5 decimals 

J113 dx 5 decimals r·s . dx 5 decimals 16. J~' 17. . J' 
o "I -x2 o vi -x 

18. Use the series for log.!_+ x to find log 1.5 to 5 decimals of accuracy. 
1-x 

19. Same as Problem 18, to find log2. 

20. Prove that 

21. Prove that 

• oo (-l)"x2n+1 
smx= L---

n=o (2n +I)! 

'° ( - l)"x2• 
COSX= L . 

n=O (2n) ! 

22. Iff(x) = sinx show, by induction, thatjlt1(x) = sin(x + fkn). 

23. Use the result of Problem 22 to show that for all a and x the Taylor series for sinx 
is given by 

ao · ( I ) 
sinx = L sm a+ 2nn (x - a)". 

n=O n! 

24. Iff(x) = cosx show, by induction, thatjlt1(x) = cos(x + fkn). 

25. Use the result of Problem 24 to show that for all a and x the Taylor series for 
cos x is given by 

~ cos (a + fnn)( )" cosx= £... x-a. 
n=o n! 

26. Use the series for log(I + x)/(1 - x) to obtain the formula 
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log(y +I)= logy+ 2[2.r ~I+ 3(2.r ~ 1)3 + 5(2y ~ l)s + .. ]. 

[Hint: Let x = (2y + W 1 .] 
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27. Assuming that log 2 and log 5 are known, use the expansion in Problem 26 to 
estimate the error in finding log 11 when three terms of the series are used. 

10. Algebraic Operations with Series 

In previous sections we discussed the question of term-by-term differentia
tion and integration of series. Now we turn to the question of multiplication 
and division of power series. 

Suppose we are given two power series 
00 

I anxn = ao + ll1X + ll2X2 + ... + anxn + ... ' 
n=O 

00 

I bnxn = b0 + b1x + b2x 2 + · · · + bnxn + · · ·. 
n=O 

Without considering questions of convergence, we multiply the two series 
by following the rules for multiplying two polynomials. We obtain the 
successive lines, each obtained by multiplying an element of the second 
series with all the terms of the first series: 

b0 : a0 b0 + a1b0 x + a2b0 x 2 + · · · + a.b0 X' + · · ·, 
b 1x: a0 b1x+a 1b1x 2 + ··· +a._ 1b 1X'+a.b 1X'+ 1 + ···, 
b2 x 2 : a0 b2 x 2 + · · · + a._ 2 b2 X' + a._ 1b2X'+ 1 + a.b;~X'+ 2 + · · ·, 

b.x•: 

Adding the columns, we obtain the power series 

a0b0 + (a1b0 + a0 b 1)x + (a2b0 + a 1b1 + a0 b2)x2 

+ (a3 b0 + a2b 1 + a1b2 + a0 b3)x3 + · · · 
+ (anbo +an-I b1 + · · · + a0 bn)Xn + · · · . 

The technique for computing the coefficients of any term is easy to determine. 
The subscripts of the a's decrease by one as the subscripts of the b's increase, 
the total always remaining the same. 

Definition. Given the two series 
00 

L a"xn, 
n=O 
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we define the Cauchy Product to be the series 

where 

n 

c. =a.ho+ a._ 1h1 + · · · + a0 b. = L a.-kbk. 
k=O 

3. Infinite Series 

EXAMPLE I. Given the Maclaurin series fore-' and cosx, find the first seven 
terms of the Cauchy Product of these two series-i.e., the terms through x6 . 

SOLUTION. We have 

x x2 x3 x4 xs xo 
e =I +x+-+-+·-+-+-+ ··· 

2 6 24 120 720 

2 
cosx =I 

x2 x4 
+ --

24 

We multiply term by term to obtain 

x2 x3 x4 xs xo 
1 +x+-+-+-+-+-+ ... 

2 6 24 120 720 

x2 x3 x4 xs xo 
----------+ ... 

2 2 4 12 48 

x4 xs xo 
+-+-+--+ ... 

24 24 48 

Xo ---+ ... 
720 

x 3 x-l- x 5 o 
Cauchy Product = I + x - - - - - --- + 0 · x + · · · . 

3 6 30 

Theorem 27. If 

00 00 

f(x) = L a.x", g(x) = L b.x", 
n=O n=O 

both converge for Ix I < R, then the Cauchy Product of the Mo series converges 
toj(x)-g(x)for lxl < R. 

This theorem will be proved in Section 14 (page 181). 
On the basis of Theorem 27, we see that, in Example I above, the Cauchy 

Product is actually the Maclaurin expansion for the function e·' cos x, valid 
for all x. 

Now we apply the process of long division to two series as if they were 
polynomials. We write 
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b0 +b1x+b2 x2 + ···>a0 + a1x+ a2x2 + ··· 
Cobo+ Cob1X + Cob2x2 + ... 

+ (a 1 - c0 b1)x + (a2 - c0 b2)x2 + · · · 
c 1b 0 x+ c 1b 1 x2 + ··· 
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+ (a2 - Cob2 - C1b1)X2 + ... 
c2 b0 x 2 + · · · 

In order for the division process to proceed, we must have (assuming 
b0 #- 0) 

a0 = c0 b0 

a 1 - c0 b 1 = c 1b0 

or 

or 

Co= ao/bo, 

c1 = (a 1 - c0 b 1)/b0 , 

a2 - c0 b2 - c 1b 1 = c2b0 or c2 = (a 2 - c0 b2 -- c 1b 1)/b0 , 

etc. By induction it can be established that the Cauchy Product of the 
quotient series with the divisor series yields the series which is the dividend. 

Theorem 28. Under the hypotheses of Theorem 27, the quotient series converges 
to f(x)/g(x) for lxl < T for some T > 0 so long as b0 #- 0. 

We omit the proof. 

EXAMPLE 2. By dividing the Maclaurin series for sin x by the one for cos x, 
find the terms up to x 5 in the Maclaurin series for tan x. 

SOLUTION. We have 

PROBLEMS 

In each of Problems I through 20, find the Maclaurin series to and including the term 
in x•. 

2 sinx 
· 1-x' 

n=5 
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3. cosx, n = 5 
l+x 

4. cosx, n = 5 
1-x 

3. Infinite Series 

5 . .JI+ xlog(I + x), n = 5 

7. log(I + x), n = 5 

6. v' I - x log (I - x), n = 5 

,/I +x 

9. e-' secx, n = 5 

c 
II.---=· n=5 .JJ +xi 

13 arctanx n = 5 
. I +x' 

15. arcsinx, n = 5 
cosx 

18. sin2 xcosx, n = 4 

19. (I + x2) 312 (1 - x3)- 112 , n = 4 

20. tan 2 x, n = 6 

21. Use series expansions to show that 

22. Use series expansions to show that 

8. log£..=.._x), n = 5 
.JI+ x 

10. e-xtanx, n = 3 

e-x 
12.~, n=5 

vi +x2 

14 ~- 1 alln 
· I - x3 - I + x + x 2 ' 

16. secx, n = 6 

sin(x + y) = sinxcosy + cosxsiny. 

23. Use series expansions to show that for all x, we have 

sin2 x + cos2 x = I. 

24. Writing A(x) = f(ex + e-x) and B(x) =!<ex - e-x), use series expansions to show: 

b) A'(x) = B(x) c) B'(x) = A(x) 

11. Uniform Convergence. Sequences of Functions 

In this section and in the remaining sections of this chapter we discuss more 
advanced topics in infinite series. 

We recall that an infinite sequence 

al' a2, ... , an, ... 

has the limit c if and only if for each f; > 0 there is a positive integer N (the 
size of N depending on e) such that 

Ian - cl < e for all n > N. 
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Frequently the dependence of N upon tis indicated by writing N = N(t). 
Consider a sequence of functions 

!1 (x),f2(x), ... ,J,,(x), ... (I) 

with each function in the sequence defined for x in an interval [a, b]. For 
any particular value of x, sequence (l) is a sequence of numbers which may 
or may not have a limit. If the limit does exist for some values of x, the 
limiting values form a function of x which we may denote by f We write 

lim f,,(x) = f(x) 
.~"' 

where it is understood that/is defined only for those x for which the sequence 
converges. 

For example, the collection of functionsf,,(x) = x", n = l, 2, ... , which 
we may write 

X, X 2 , x3 , ... , Xn, ... , 

is a sequence of functions which converges if x is in the half-open interval 
( - l, l] but does not converge otherwise. The student may easily verify that 
the limit function/is 

{O for - l < x < l, 
f(x) = l for x = I. 

Among the most important limiting processes studied in the calculus are 
those of differentiation and integration of elementary functions and those 
concerned with the convergence of infinite sequences and series. In the 
applications of mathematics to various branches of technology as well as 
in the development of mathematical theory, it frequently happens that two, 
three, or even more limiting processes have to be applied successively. Does 
it matter in which order these limiting processes are performed? The answer 
is emphatically yes! The computation of two successive limits in one order 
usually yields an answer different from that obtained by computing them 
in the reverse order. Therefore it is of the utmost importance to know 
exactly when reversing the order in which two limits are computed does 
not change the answer. Mathematical literature abounds with erroneous 
results caused by the invalid interchange of two successive limiting processes. 

Topics concerning sequences of functions frequently involve several 
successive limiting processes. A basic tool in the study of the evaluation of 
such limiting processes is the notion of the uniform convergence of a 
sequence. 

Definition. We say that a sequence 

J; (x),fz(x), ... ,f,,(x), ... 

of functions converges uniformly on the interval I to the function/(x) if and 
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y 

--- y=f(xl+• 

y=/(x) 

----- y=f(x)-• 

0 
x 

Fig. 3-7 

y 

I 
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I 
I 

n=I 

n=2 

n=3 
'n=4 

~;....llliiiii!~~=-~·--x 
0 

Fig. 3-8 

I 
2 

only if for each e > 0 there is an integer N independent of x such that 

IJ..(x) - /(x)I < e for all x on I and all n > N. (2) 

The important fact which makes uniform convergence differ from ordinary 
convergence is that N does not depend on x, although naturally it depends 
one. 

The geometric meaning of uniform convergence is illustrated in Fig. 3-7. 
Condition (2) in the definition states that if e is any positive number, then 
the graph of J..(x) lies below the graph of f(x) + e and above the graph of 
f(x) - e. The uniformity condition states that the graph of J.. must lie in this 
band of width 2e not only for all n larger than N but also for all x in the 
entire length of the interval /. 

An example of uniform convergence is given by the sequence of functions 
f,,(x) = x", 0 s; x s; !, n = l, 2, ... (Fig. 3-8). We see that the limit function 
is zero and that the largest value off,,(x) occurs at x =!with the value l/2". 
If we are given an e > 0, we select N so that l /2N < e, and then f,,(x) will be 
in the desired band for all n > N and all x in the interval [O, !]. Note that 
the selection of N depended only on e and not on the various values of x in 
the interval [O, tJ. 

It is important to observe that a sequence may converge uniformly on one 
interval and not on another. The same sequence,f,,(x) = x", n = I, 2, ... , 
does not converge uniformly on the interval [O, l ], although it does converge 
at every point of this interval. (See Problem 15.) The limit function is dis
continuous at x = I. 

It can happen that a sequence of continuous functions converges to a 
limit f(x) for each x in an interval, that the limit function f is continuous, 
and that the convergence is not uniform. We shall show that such is the case 
for the sequence 

2nx 
f,,(x) = l + nix2• /={x:Os;xs;l}, n =I, 2, ... 
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y 

n=I 

n=2 

n=3 
n=4 
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The graphs for the first few values of n are shown in Fig .. 3-9. If x =F 0, we 
write 

2x/n 
f,,(x) =xi+ (l/n2)' 

and lim._ 00 f,,(x) = 0 for 0 < x::;; I. Furthermore, f,,(0) = 0 for all n, and 
we conclude that f,,(x) -+ 0 for all x on the closed interva.I /. The graph of 
f,,(x) can be plotted accurately if we locate the maximum of this function. 
Taking the derivative, 

'"'(x) = 2n(l - n2 x 2) 
Jn (l + n2x2)2 ' 

we see that j~ has a maximum at x = l/n with the value j~(l/n) = I. Thus, 
as we proceed from right to left, every function in the sequence rises to the 
value land then drops off to zero at x = 0. Ifwe select e =: t. the condition 
of uniform convergence requires that 

f(x) - t :s;J,,(x) :s;j(x) + t. 
Since, in our example,f(x) = 0 for 0 ::;; x ::;; l, the above condition becomes 
-t ::;; f,,(x) ::;; t. But every function j~(x) has the value l somewhere in the 
interval, and so the sequence cannot converge uniformly. 

REMARK. In calculating the limit of j~(x), it is necessary to consider the case 
x = 0 separately since, for x = 0, the limit of the denominators x 2 + (l/n2) 
is zero. 

In most cases it is not possible to verify directly from the definition 
whether or not a sequence converges uniformly. Therefore it is important 
to develop simple criteria which guarantee that a given sequence converges 
uniformly. We now derive a useful rule. 

Theorem 29. Suppose that Uix)}, n =I, 2, ... , andj(x) are continuous on 
the closed interval I= {x: a::;; x::;; b}. Then the sequence {f,,(x)} converges 
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uniformly to f(x) on I if and only if the maximum value en of IJ~(x) - f(x)j 
converges to zero. 

PROOF. We must show (a), that if the convergence is uniform, then f;n--> 0, 
and (b), that if t:n--> 0, the convergence is uniform. To prove (a), we let 

en= max IJ..(x) - f(x)j 

for x on I. Then, since j~(x) - f(x) is continuous on /, for each n there is a 
value xn such that en= IJ~(xn) - j(xn)j. From the definition of uniform 
convergence, we know that for any e > 0 there is an N such that 

IJ~(x) - j(x)j < e 

for all n > N and all x on /. Thus, for n > N, we must have 

en= IJ~(xn) - f(xn)I < l:. 

Therefore en --> 0 as n --> oc. 
b) Suppose that limn-co en= 0. Let e > 0 be given. There is an N such that 
En < i; for n > N. But then, since en= max IJ~(x) - f(x)j, we must have 

0 ~ IJ~(x) - J(x)j ~ en < e 

for all x on I and all n > N. The convergence is uniform. 

EXAMPLE l. Given the sequence 

. n2 x 
Jn(x) = l + n3x2' 

show thatj~(x)--> 0 for each x on (0, I], and determine whether or not the 
convergence is uniform. 

SOLUTION. Since j~(O) = 0 for every n, we have j~(O)--> 0 as n--> oo. For 
0 < x ~ 1, we see that 

1. J."( ) 1. (x/n) 0 0 
1m n X = Im 2 (l/ 3) = 2 = . n-a:> n-co x + n x 

The limit functionj(x) vanishes for 0 ~ x ~ l. Therefore 

en = max IJ~(x) - j(x)i = maxj~(x). 
To find en, we differentiate j~(x), getting 

., (l +n3x 2)·n2 -n2x·2n3x n2(l -n3 x 2) 

fn(x) = -- (l + n3x2)2 = (l + n3x2)2 · 

Setting this derivative equal to zero, we obtain 

as n--> oc. 
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y 

Fig. 3-10 0 

Since en does not tend to 0, the convergence is not uniform (Fig. 3-10). 

Although Theorem 29 is useful in illustrating the idea of uniform conver
gence, it cannot be applied unless an explicit expression for the limit function 
j(x) is known. 

The next result shows that if a sequence of continuous functions converges 
uniformly on some interval, the limit function must be continuous on this 
interval. 

Theorem 30. Suppose that the sequence {f~}, n = I, 2, ... , converges uniformly 
to f on the interval /, ll'ith each j~ collf inuous on I. Then f is continuous on I. 

PROOF. Suppose that I is the open interval I= {x: a< x < b}. Let x 0 be any 
point of I and suppose that e is any positive number. They, by the definition 
of uniform convergence, we can select N so large that 

IJ~(x) - j(x)I < j for all n > N and all x on /. (3) 

Since f~+ 1 is continuous on /, we apply the definition of continuity to state 
that for any 1: > 0 there is a i5 > 0 such that 

for all x in the interval Ix - x0 I < 6. (4) 

At this point. we use a trick which expresses/(x) - j(x0 ) in a more compli
cated way. We write 

f(x) - f(Xo) = f(x) - f~ ... 1 (x) + f~+ 1 (x) - f~+ 1 (xo) + f~-· 1 (xo) - f(xo) 

and, using our knowledge of absolute values, 

lf<x> - f(xo>I ~ IJ(x) - iN+1<x>I + liN+• (x) - fNt1 (xo>I 

+ IJN+1(Xo) - /(xo)I. 

From (3), the first and third terms on the right are less than e/3 while, 
according to (4), the second term on the right is less than e/3. Hence 
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If( ) j( )I 1; 1; 1; 
X - Xo $ J + J + J = f.. (5) 

Since ( 5) holds for Ix - x0 I < c5, we conclude that f is continuous at each 
point x 0 on /. 

If I includes an endpoint and if each};, is continuous at this endpoint, the 
proof above shows that f is continuous at the endpoint also. 

Suppose that {j~} is a uniformly convergent sequence of continuous 
functions on an interval/. If c is any point on/, we may form the new sequence 
{ F,.}, where for each n, 

f:(x) = r j~(t) dt. 

The next theorem establishes the convergence of such an integrated sequence. 

Theorem 31. Suppose that the sequence {j~} converges uniformly to f on the 
bounded interval /, and suppose that each j~ is continuous on I. Then the 
sequence {F,.(x)} defined by 

F,.(x) = r j~(t) dt. n = l, 2, ... 

converges uniformly to F(x) = J~ f(t) dt on /. 

PROOF. First of all, by Theorem 2,fis continuous and so Fmay be defined. 

Let L be the length of/. For any i; > 0 it follows from the uniform conver
gence that there is an N such that 

l.Ut) - f(l>I < ~ for all 11 > N and all t on /. 

We recall from elementary calculus the basic rule for estimating the size 
of an integral. If j(x) is integrable on an interval a s; x s; b and m and M 
are numbers such that 

m Sf(x) $ M fora s; x s; b, 

then 

m(b - a) s; lb j(x)dx s; M(b - a). 

"" 
It is also not difficult to show that 

/f .t(x)dxl s:: r IJ(x>ldx. 

We use this last inequality to conclude that 
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IF..<x) - F(x)I = Ir {j~(t) - j(t)} dt I ~ If IJ~(l) ·- f(t)I dtl 

<_£_Ix - cl < e -L - for n > N and all x on /. 

Hence {F,,} converges uniformly to F. 

EXAMPLE 2. Show that the sequence 

F. ( ) _ log (I + n3 x2) 
n x - n2 • n = l, 2, ... , 

converges uniformly on the interval I = { x : 0 ~ x ~ I}. 

SOLUTION. The sequence 

F~(x) = I 2n~ 2 =J~(x) 
+nx 

is easily shown to converge to zero uniformly. In fact, we have 

lim j~(x) = 0 for 0 ~ x ~I, 
n-oo 
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and we can calculate en in order to apply Theorem 29. The result is en = j~(xn) 
= 1/.Jii-+ 0 as n-+ oo. Therefore {.f.l converges uniformly. and we now 
apply Theorem 31 to conclude that {F,,} converges uniformly. 

The next theorem allows us to draw conclusions about sequences which 
are differentiated term by term. 

Theorem 32. Suppose that {j~} is a sequence ojfunctions each having a contin· 
uous derivative on a bounded interval I. Suppose that j~(x) coni·erges to j(x) 
on I and that the derived sequence {J:(x)} converges uniformly to g(x) on I. 
Then g(x) = f' (x) on I. 

PROOF. According to Theorem 30, g is continuous on /. Let c be any point 
on/. For each n we write r 1:<1) dt = j~(x) - j~(c), 
and we observe that the hypotheses of Theorem 31 are satisfied for this 
sequence of integrals. Therefore 

fx g(t)dt =Jim ix J:(t)dt = lim [j~(x) - J~(c)]. 
n-oo n-ao 

c c 

However, {j~(x)} converges to j(x) for each x, and so 
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y 

n=4 

Fig. 3-11 

r g(t) dt = j(x) - j(c). 

The left side may be differentiated with respect to x and, applying the 
Fundamental Theorem of Calculus, we find g(x) = f'(x). 

It is natural to ask whether or not the various hypotheses of the above 
theorems are absolutely essential. For example, suppose that {j~} is a 
sequence of continuous functions which converges on an interval I to a 
continuous function}: Is it always true that r J~(x)dx-+ r J(x)dx as n-+ oo? 

The answer is no! The hypothesis of uniform convergence (or some similar 
hypothesis) is required. To illustrate this point, we form the sequence 

n2 x, 
1 0::::;; x =::;;-, 
n 

j~(x) = -n2 x + 2n, 

0, 2 - ::::;; x::::;; I. 
n 

The graph of j~ is shown in Fig. 3-11. As n increases, the triangle becomes 
narrower and taller. We see easily that 

j~(x) -+ j(x) = 0 for all x on [O, 1]. 

On the other hand, JiJ~(x)dx = I for every n, since the integral is exactly 
the area of the triangle. This area is the same for every function. But 
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f f(x)dx = 0. 

Hence 

I = r f,.(x)dx -r+ f f(x)dx = 0. 

(See also Problem 16.) 

PROBLEMS 
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In Problems 1through14, show thatj~(x) converges toj(x) for each x on/, and deter
mine whether or not the convergence is uniform. 

I. f~(x) = _x_, 
1 +nx 

j(x)=O, /=[0,1] 

. nx2 
3. f.(x) = --, 

1 +nx 

j(x)=x, 1=[0,1] 

. n2 x 
5. J.(x) = 3 i' 

l+nx 

2 !..( ) = sinnx 
• n X - ' 

..jn 

j(x)=O, /=[0,1] 

4. j~(x) = nx2 2, 
l+nx 

j(x)=O, /=[1,2] 

6. j~(x) = nxe-•x', 

f(x)=O, /=[a,oc), a>O j(x)=O, /=[0,IJ 

7 . ) I I . I 
. f.(x = - + -sm-, 

x n nx 

J(x>=I, I=<o,1] 
x 

9. j~(x) = (x" - x•+ 1), 

j(x)=O, 1=[0,1] 

. I -x•+• 
11. f.(x) = --, 

1-x 

j(x)=-1-1_. /=[-!,fl 
-x 

13. f~(x) = n2 x"( I - x), 

j(x)=O, /=[0,1] 

S. J.(x) = sin nx, 
nx 

j(x) = 0, I= (0, oc) 

10. j~(x) = .jn(x" - x"+ 1 ), 

f(x)=O, 1=[0,1] 

. I - x•+• 
12. f.(x) = --, 

1-x 

f(x)=-1-. /=(-1,1) 
1-x 

14. j~(x) = n3 x(I - x)", 

j(x)=O, /=[0,1] 

15. Show that the sequencej~(x) = x" does not converge uniformly on [O, 1]. 

16. Given the sequence j~(x) = (n + l)(n + 2)x"(l - x), show that j~(x)-+ j(x) = 0 
for x on [O, I]. Decide whether or not 

L j~(x)dx-+ L j(x)dx. 

What can you conclude about the uniformity of the convergence ofj~(x)? 
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17. Given f.(x) = 2n"x/(l + nPx2 ) with p > oc ~ 0. Find the values of oc and p for 
which this sequence converges uniformly on (0, 1). 

18. a) If f.(x) and g.(x) converge uniformly on /, show that f.(x) + g.(x) converges 
uniformly on /. 

b) Iff.(x) converges uniformly on I and if c is a constant, show that g.(x) = cj~(x) 
converges uniformly on /. 

19. Show that the sequence 

x" 
J.(x) = x - -

n 

converges uniformly on [O, l]. Show that the sequence 

f;(x) = I - x•- 1 

does not converge uniformly on (0, 1). 

In each of Problems 20 through 23, a sequence f.(x) is given. Decide whether or not 
f,;(x) converges uniformly. Also decide whether or not 

converges uniformly. 

x 20. f.(x) = -1 - 2-, I= (0, l] 
+nx 

2 + nx2 
22. f.(x) = -2--. I= (O, l] 

+nx 

F,,(x) = J: f.(t) dt 

n2 x 
21. f.(x) = 3 2 • I = (0, I] 

l+nx 

23. f.(x) = nxe-•x', I= (0, I] 

24. Show that the sequence f.(x) = (sinx) 11" converges, but not uniformly, on I= 
{x:O::s;xs;n}. 

25. Show that the sequence 

( sinx) 1
'" f.(x)= -

x 

converges, but not uniformly, on I= {x: 0 < x < n}. 

26. Suppose thatf.(x) and g.(x) are sequences of continuous functions which converge 
uniformly on a closed, bounded interval /, to the functions f(x) and g(x), respec
tively. Show that h.(x) = j~(x)g.(x) converges uniformly on I to h(x) = f(x)g(x). 

12. Uniform Convergence of Series 

An infinite series 
00 

L ak = ai + ai + ... +an+ ... 
k=I 

(I) 
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has the sequence of partial sums 

(2) 

defined by 

The convergence of the infinite series (I) is equivalent, by definition, to the 
convergence of the sequence of partial sums (2). The infinite series of 
functions 

converges uniformly on an interval I if and only if the sequence {sn(x)} of 
partial sums converges uniformly on this interval. We observe that all the 
results of Section 11 on the uniform convergence of sequences translate at 
once into the corresponding results for series. In this way we obtain the next 
three theorems. 

Theorem 30'. Suppose that the series l:k°=i uk(x) converges un!formly to s(x) on 
the interval I. rr each Uk is continuous on I, then s is continuous on I. 

Theorem 31'. Suppose that the series l:k"=i uk(x) converges uniformly to s(x) 
on I and that each uk is continuous on I. If we define Uk(x) = J: uk(l)dt, S(x) = 
J: s(t) dt, then l:k"=i Uk(x) converges uniformly to S(x) on I. 

Theorem 32'. Suppose that l:k°=i uk(x) converges to s(x) on I and that 

00 

L uk(x) 
k=l 

converges uniformly to t(x) on I. If each uk is continuous on I, then t(x) = s'(x). 

The following theorem gives a simple and useful indirect test for uniform 
convergence of series. One of its virtues is that we may apply the test without 
finding the sum of the series-i.e., without obtaining the limit of the sequence 
of partial sums. 

Theorem 33 (Weierstrass M-test). Suppose that juk(x)j s; Mk for all x on I 
where, for each k, Mk is a positive constant. If the series l:k'~ 1 Mk converges, 
then the series l:k"=i uk(x) converges uniformly on I. 

PROOF. For each x on/, the series l:k"=i juk(x)I converges by the Comparison 
Test (Theorem 9). Therefore l:k"=i uk(x) converges, and we call the limit s(x). 
We define 



166 3. Infinite Series 

and we note that limn~oo (S - Sn) = 0. Since sn(x) = 'I:.}=i u1(x), we have 

is(x) - sn(x)I = Lt, u1(x)I ::;; J=~i lu1(x)J ::;; J=ti M 1 

= S- Sn-+O. 

Since the numbers S - Sn are independent of x, the convergence is uniform. 

REMARKS. If the interval I is closed and if each un is continuous, then the 
theorem requires that Mn be either the maximum of Jun(x)I on I or some 
conveniently chosen number larger than this maximum. If I is open or 
half-open and un(x) tends to a limit at each endpoint, then Mn must be larger 
than the maximum of the function extended to the closed interval. We shall 
see that the quantities Mn may frequently be found by inspection. It is 
important also that we remember many of the convergent series of positive 
constants studied in Sections 2, 3, and 4. 

EXAMPLE 1. Show that the series 

I cos
2
nx 

n=I n 

converges uniformly for all x. 

SOLUTION. We have 

I cosnxl _ Jcosnxl __!_ 
2 - 2 ::;; 2' n n n 

Since 'E::"=i l/n2 is a known convergent series, the result follows. 

The Weierstrass M-test may frequently be combined with the ratio test 
for convergence of constants to yield results on uniform convergence. We 
illustrate with an example. 

EXAMPLE 2. Given the series 
00 

L (n + l)xn, 
n=O 

determine an interval of the form lxl ::;; h on which the series is uniformly 
convergent. 

SoLUTION. If Jxl ::;; h, then l<n + l)xnl ::;; (n + l)hn = Mn. We apply the Ratio 
Test to determine when I:::°=i Mn converges. We have 
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M.+i =(n+2)h"' 1 =hl +(2/n)-+h 
M. (n + l)h" I + (l/n) 

as n-+ x. 

Accordingly, the series l:::'=i M. converges if h < l and does not converge 
if h ~ l. The original series converges uniformly on any interval of the form 
lxl ;S; h with h < l. 

EXAMPLE 3. Discuss for uniform convergence the series 

oo (-l)"-1x• 
I 2 . 

n= I fl 

SOLUTION. If lxl ;S; h, then 

l(-l)"- 1x"I h" _ 
--'-=2:--- ;S; 2 - M. · 

n n 

The series l:::'=i M. converges for h ;S; I. The given series converges uniformly 
on any interval of the form lxl ~ h with h ;S; l. 

EXAMPLE 4. Given the relation 

l ~ 4n 
-l--4="'-X' 

- X n=O 
-1 < x < l, 

show that 
<X> L nx4Cn-11, -l<x<l. 

n=l 

SOLUTION. Setting u.(x) = x4", we see that the series 
<X> <X> 

L u~(x) = L 4nx4"- 1 
n=t n=l 

converges uniformly for lxl ;S; h with h < l. Therefore, applying Theorem 
32', we find that the sum of the derived series is 

~[(I - x4)-I] = 4x3(l - x4)-2 = f, 4nx4•·-1. 
dx n=J 

Dividing by 4x3, we get the desired expansion. 

PROBLEMS 

In each of Problems I through 14, determine h such that the given series converges 
uniformly on /. 

I. f x", I= {x: lxl ~ h} 
n=O 
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00 ( - l)"x" 
2. L --2 -. I= {x: /x/::;; h) 

n=I n 
00 

3. L nix". l={x:/x/:5hl 
n=O 

"' x" 
4. L -, I= {x: /x/::;; h} 

n=O n! 

"' (!Ox)" 
5. L -,-. l={x:/x/::;;h) 

n=O n. 

"' ( -1)"3"x" 
6. L , 

n=O (n + 1)2" 
l={x:/x/::;;h} 

"' n!(x - 3)" 
7. L . 

n= 1 I · 3 · 5 · · · (2n - I) 
/={x:/x-3/::;;h} 

"'(n!)2(x+ I)" 
8. L ' . 

n=l (211). 
I= {x: /x + I/::;; h} 

"' (-l)"x" 
9. L , 

n=I (n + l)log(n +I) 
l={x:/x/::;;h} 

10 I (logn)2"x" I= {x: !xi ::;; h} 
. n=I 3"n2 ' 

ao (I _ x2")112 
11. I 3• , I= {x: jx/::;; h} 

QC 

12. L x(I - x)", I= {x: /xi::;; h} 
n=l 

"' x2 
13. L: ---2, 

n=I n(4 + nx ) 
l={x:/x/::;;h} 

"' I 
14. L: -x· l={x:h::;;x<x:} 

n=l n 

3. Infinite Series 

15. Given that l::'= 1 /b./ converges, show that l::'= 1 b.sinnx converges uniformly for 
allx. 

16. Given that l::'=i n/b.I converges and that j(x) = I::'=t b.sinnx, show that f'(x) = 
l::'=i nb.cosnx, and that both series converge uniformly for all x. 

17. Find those values of h for which !::;'&1 (x log x)" converges uniformly for 0 < x::;; h. 

18. Find the values of h that I:~=• (sin x)" converges uniformly for lxl::;; h. 

19. Show that !::'=0 (1 + x)x" converges uniformly for - I ::;; x::;; 0. 

20. Given the series expansions 

. ao (-l)"i.2n+IX2n+I 
A(x,;.) = L --·---1 -, 

.~o (2n +I). 

. ao ( _ I)";. 2. x2• 
B(x,;.) = L (2 )' • 

n=O n · 
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use the theorems of this section to show that 
a) dA/dx = ).B, b) dB/dx = -AA, 
c) d 2 A/dx2 +A2A = 0, d) d 2B/dx2 + A2 B = 0. 
Do not use the fact that A (x, A) = sin AX, B(x, A) = cos ,lx. 

21. Show, by successive differentiation of the series (I - x)- 1 = :t:';ox" that 

_I_= I (n+ l)(n+2)-·-(n+k- l)x" k~ 2 
(I - x)k n=O (k - I)! ' 

and that the convergence is uniform for lxl s; h, with h < I. 

22. Let A be an n x n matrix, and consider the series 

I+ _!_A + _!_A 2 + · · · +_!_At+ · .. 
I! 2! k! 

a) Define convergence for such a series in terms of the limit of the matrices forming 
the partial sums. 

b) Show that the above series converges if 

A=(~ :). 

13. Integration and Differentiation of Power Series 

We discussed the elementary properties of power series in Sections 5 through 
IO. In this section we shall show how the notion of uniform convergence can 
be used to extend and amplify many of the earlier results. 

Theorem 34. Suppose that the power series I::°=o a.x" converges for some 
x1 # 0. Then (a), the series converges absolutely for all x with lxl < jx1 j and 
(b), it converges uniformly on any interval lxl s; h with h < lxil. 

PROOF. We recognize part (a) as Theorem 15 (page 124). As for (b), the 
proof of Theorem 15 given on page 124 shows that the convergence is 
uniform (although we did not say so at the time). Referring to the proof 
there, we see that the series 

I M - s; I M - = I M •. 00 I x 
1
. 00 ( h )" 00 

n=O XI n=O Ix 1 I n=O 

The series I::°=o M. is a convergent geometric series, and the Weierstrass 
M-test may be applied to yield uniform convergence. 

REMARK. Theorem 34 also holds for the series I:~ 0 a.(x - c)" with Ix - cl s; h. 

Corollary. //I:~ 0 a.x~ diverges, then I::'=oa.x" diverges for all x with lxl > 
lxd. 
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PROOF. If I:::°=oanxi were convergent for lx21 > lx 1 1, then we could apply 
the above theorem to conclude that I:::°=o a"x~ converges, a contradiction. 

The next theorem shows the pattern for the convergence properties of 
power series in general. The result, which we now prove was stated without 
proof on page 124. 

Theorem 16. Let I::O=o anx" be any power series. Then either 

i) the series converges only for x = 0; or 
ii) the series converges for all x; or 

iii) there is a number R such that the series converges for all x with lxl < R 
and diverges for all x with lxl > R. 

PROOF. We have already encountered examples of series where (i) and (ii) 
hold. The series I::0=0 n!x" converges only for x = 0, and the series 

"" x" I-n=o n! 

converges for all x. Therefore we need consider only alternative (iii). Then 
there is an x 1 "# 0 where the series converges and an X1 where the series 
diverges. We let 

and 

and note that R 1 ~ r 1 > 0. If R1 = r 1 , we select this value for Rand (iii) is 
established. So we suppose that R 1 > r 1 • We define an increasing sequence 
r 1 , r2 , ••• , r", ... and a decreasing sequence R1 , R 2 , ••. , Rn, ... in the 
following way. If the series converges for !(r1 + R 1), we define 

rl +R1 
ri=--2- and 

If the series diverges for !(r1 + R 1), we define 

d R _ rl + Rl 
an 2---2-· 

We continue the process inductively. If the series converges for !(rk + Rk), 
we define 

and 

If the series diverges for t{rk + Rk), we define 

and R - rk + Rk 
hi - 2 . 

Figure 3-12 shows a typical situation for the two sequences. From the 
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Fig. 3-12 O 

manner of construction we see that 

a) rk::;; rk+l < Rk+l ::;; Rk, k = l, 2, .. . 
b) Rk - rk = (R1 - r 1)/2k-i, k = l, 2, .. . 
c) The series converges for all x with lxl < rk and diverges for all x with 

lxl > Rk, k = l, 2, ... Now, from the Axiom of Continuity, (a) and (b) 
together imply that there is a number R such that Rk - R and rk - R. 
Part (c) shows that the series converges if lxl < Rand diverges if lxl > R. 

Definitions. The number R in Theorem 7 is called the radius of convergence 
of the series. We define R = 0 when (i) holds and R = + oo when (ii) holds. 

Corollary. If a power series has a positive radius of convergence R, it converges 
uniformly on any interval lxl ::;; h where h < R. In fact, the series of absolute 
values :E:'=o lanxnl also converges uniformly. 

PROOF. Given h, we select x 1 = t<h + R) and observe that the series 
:E~=o anx~ converges. Now we apply Theorem 34. 

Theorems 19 and 21 on term-by-term differentiation and term-by-term 
integration of power series which were proved earlier may now be established 
as simple consequences of the uniform convergence properties of power 
series. We state the results, leaving as exercises for the reader those proofs 
which use the more advanced methods. (See Exercises 12 through 15.) 

Theorem 3S. Suppose that R > 0 and that the power series :E~=·J anxn converges 
for lxl < R. Then the series obtained by differentiating it term by term also 
converges for Ix: < R. 

(The above theorem is proved on page 138.) 

Theorem 36. Suppose that R > 0 and that 

"' f(x) = L an(X - ct 
n=O 

converges for Ix - cl < R. Then/ is continuous and has continuous derivatives 
of all orders, which are given on Ix - cl < R by differentiating the series the 
appropriate number of times. Moreover, if' 
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F(x) = r f(t)dt, 

then F is given on the same interval by the series obtained by term-by-term 
integration of the series for f 

The fact that/is continuous is the content of Theorem 20. However, since 
un(x) = an(x - c)" is continuous for each n, Theorem 30' yields the continuity 
of/at once. 

Corollary. If R > 0 and 

00 

f(x) = L an(x - c)n for Ix - cl < R, 
n=O 

then 

The reader may verify the formula for an by repeated differentiation of the 
series for f; after which the value x = c is inserted. 

REMARK. In Theorems 35 and 36 nothing has been said about convergence 
at the endpoints. If a power series with radius of convergence R > 0 con
verges uniformly for Ix - cl :::; R, then the integrated series will also converge 
uniformly for Ix - cl :::; R (Theorem 30'). On the other hand, the differen
tiated series may not converge at all at the endpoints. For example, the 
series 

. 00 x" 
f(x) = n~2 n(n - l) 

converges uniformly for lxl :::; I. But the series 
00 

f"<x) = I x", lxl <I, 
n=O 

does not converge at either endpoint. 

Once a power-series expansion for a function is known (say by a Taylor 
or Maclaurin expansion), the series expansions for related functions may 
be found by differentiation and integration. Further results may be obtained 
by using these in connection with the next theorem, on substitution. 

Theorem 37 (Simple Substitutions). (a) If f(u) = :r::'=o an(u - c0 )n for 
lu - c01 < R, and if c0 =be+ d with b "/: 0, then 

00 

f(bx + d) = L anbn(x - c)n 
n=O 

for Ix - cl < l:I" 
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b) ljj(u) = l::'=oanu" for lul < R, then for any positive integer k, 
Q() 

f(xk) = L anxk" for lxl < Rlik. 
n=O 

PROOF. (a) If u = bx + d, then u - c0 = b(x - c) and 

an(u - Co)"= anb"(X - c)" 

for each 11. Therefore the following inequalities are equivalent: 

R 
lu - c0 1 < R<=>lbllx - cl< R<=>lx - cl< fbl" 

The proof of part (b) is similar. 

EXAMPLE I. Use simple substitution to obtain the expansion 
Q() 

(I - xs)-1 = L xa", lxl <I. 
n=O 

SOLUTION. We have 

Q() 

(I - u)-1 = L u", 
n=O 
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and we use Theorem IO(b) with u = x 8 to get the result. Note that since 
R = l, then R 118 = I. 

EXAMPLE 2. Find the Maclaurin expansion for Arctan (x2 ). 

SoLUTION. We have the expansion 

l "" 
-= :L <-1>"u", 
1 + U n=O 

Therefore, letting u = v2 , we get 

l "" 
--2 = :L < - O"v2", 
I + V n=O 

Now we integrate term by term, obtaining 

ao ( l)"v2n+1 
Arctan v = L -----

n=o 2n +I ' 

Setting v = x 2 , we conclude that 

ao (- l)"x4n+2 
Arctan (x2 ) = L -~-

n=o 2n +I 

lul <I. 

lvl <I. 

lvl <I. 

lxl <I. 
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PROBLEMS 

In each of Problems I through 10. find the Maclaurin expansion for the function j~ 
using differentiation, integration, and simple substitution, whenever necessary. 

. I 
I. j(x) =(I - x2)2 
3. f(x) = e<hx't 

5. J<x> =[I + (x/3)3r 3 

. . (3x2) 7. j(x) = sm -;-

. {(e-'2 
- I )/x2 , 9. j(x) = 

I . 

2. j(x) = log(I + x 3 ) 

4. j(x) = arctan (x3) 

6. j(x) = arcsin(x2) 

8. j(x) = arccos (x3 ) 

IO. j(x) =(I + x 2)- 312 

11. Write a complete proof of Theorem 34(b). 

12. Use the results on uniform convergence to prove Theorem 35. 

13. Use the results on uniform convergence to prove Theorem 36. 

14. Write a complete proof of the Corollary to Theorem 36. 

15. Prove Theorem 37(b). 

16. Show that if a power series converges absolutely at an endpoint, then the series 
obtained by term-by-term integration converges at the same point. 

17. Let k be any positive integer. Give an example of a power series for a function f 
such that all the series obtained by term-by-term differentiation k times converge 
at the endpoint, while the series obtained by differentiating k + I times diverges 
at the endpoint. 

14. Double Sequences and Series 

A double sequence is a function which has as its domain S some set of ordered 
pairs (i,j) of nonnegative integers and as its range a portion of the real 
number system. We may write f: S-+ R 1 for such a function. A more 
natural way uses double subscripts for elements of the domain and a letter 
with these subscripts as an element of the range corresponding to the 
subscript. We may write! in the form 

aii• i,j = 0, I, 2, .... 

We obtain a simple way of looking at a double sequence by writing a rectan
gular array, as shown in Fig. 3-13. If all the rows and columns of such an 
array terminate, then the sequence is called finite; if the rows and columns 
continue indefinitely to the right and downward, the double sequence is 
called infinite. 
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Uml Um2 Umn 

Fig. 3-13 

a11 a12 a1n : a1,n+1 
I 

a21 a22 a2n 1 a2,n+ I 
I 
I 
I 

-~~!.---~~2 __ :_:_·--~~~+- am,n+I 
am+1.1 am+l.2 · · · · · · · · 

Fig. 3-14 
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Definition. We say that the double sequence {um.}, m, n = 1, 2, ... , tends to 
a limit Las (m, n)-+ oo if and only if for each t: > 0 there is a positive integer 
N such that 

whenever both m > N and n > N. 

It can be shown that if such a number L exists, then it must be unique. 
Also, the customary theorems on limits which we established for ordinary 
sequences are easily extended to double sequences. We shall use the symbols 

lim um•= L 
(m.n)~oo 

and um•-+ Las (m, n)-+ oo 

for the double limit of a sequence. 
Given a double sequence {am.}, m, n = I, 2, ... , we define its partial sum 

smn by the formula 
m n 

sm. = :L :L ajk· 
j;( k;( 

(I) 

Pictorially, smn denotes the sum of all the terms in the rectangular array 
indicated in Fig. 3-14. 

Definition. The sum of a double sequence {am.}, m, n = I, 2, ... , is defined 
as 

(2) 

where smn is given by (I). The limit may or may not exist. We write the 
expression 

00 

I a'"" 
m.n=J 

instead of (2) and call this the infinite double series* whose terms are amn· If 
the limit in (2) exists, we say that the double series converges; otherwise we 
say it diverges. 

•The definition given here is informal. A more formal definition is the following: An infinite 
double series is an order pair ( {u.,.}, {s.,.}) of infinite double sequences in which 

"' n 
s.,. = L I u,i for each m and n. 

i=I j=I 

The finite double series ( {u.,.J. {s.,.}) is denoted by L::.'.n=i u., •. When no confusion can arise 
we also denote by I:.' .• = 1 u.,. the limit of the double sequence {s ... } when it exists. 
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n11 

1121 

' a1.v r 
' a2.\' : 

: . " 

I.'. 

' Utn: 

a2n : 
• I 
. I 

' ' ' 
_'!.-~·! __ ,~!~-_:~~-~.:\~'.:~ · · · il.Vn~ a.\·m; 

; : : : 
"nl au2 lln.\' Onn : anm; 
--.----=--------------------~ I 

' I 
flml Um2 · · · am;\" · · · Unm: · · · Umm 1 ·--: ---- ~ ·------- --=---· -- ---~---.L.- -- --=--J 
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Fig. 3-15 

Many of the theorems on double series are direct extensions of those for 
single series. The next theorem follows immediately from the theory of 
limits. 

Theorem 38. Suppose that I::;',n=I amn and I::;',n=I bmn are convergent double 
series and suppose that c and dare constants. Then I:;;,n=I (camn + dbmn) is 
convergent and 

00 00 00 

L (camn + dbmn) = C L amn + d L bmn· 
m.n=l m,n=l m.n=l 

The following theorem on double series with positive terms is a direct 
analog of the corresponding theorem for single series. Note that part (ii) of 
the theorem is a comparison test. 

Theorem 39. Suppose that amn ~ 0 for all m and n. 

i) If there is a number M such that the partial sums Smn ::;; M, then I::',n=l amn 
converges to a numbers ::;; M, and each smn ::;; s. 

ii) (Comparison Test). If 0 ::;; amn ::;; Amn and I:;;_n=I Amn converges, then 
I::;',n=I amn does also, and I::;',n=I amn::;; I::;',n=i Amn• 

PROOF. (i) It is clear that the special partial sums s"" are nondecreasing and 
s"" ::;; M for all n. By the Axiom of Continuity, we know there is a number 
s ::;; M such that s"" -+ s and s"" ::;; s for each n. Therefore, for any e > 0, 
there is an N such that 

S - e ::;; Snn ::> S for all n > N. 

Let m, n be any two numbers larger than N. For convenience, suppose that 
m ~ n. It follows that 

Figure 3-15 shows the various rectangular blocks of a;i which make up the 
partial sums. Hence smn-+ s as (m, n) -+ oo and each smn ::;; s. Part (ii) follows 
directly from (i). 
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EXAMPLE l. Show that the double series 

is convergent. 

SOLUTION. We have 

and it is easy to see that 

00 l 
I 22 

p,q=I p q 

m,n l 
L 22=smn• 

p,q=I p q 

Smn = c~I ;2) (JI :2} 
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Since I:k°=i l/k2 = M < oo, it follows that Sm•< M 2 for all m, n'. Therefore 
the double series is convergent. 

EXAMPLE 2. Show that the series 

00 l 
I 4 + 4 m,n=I m n 

is convergent. 

SOLUTION. Since, by Example l, the double series 

l 00 l 00 l 
-2 I 22= I -2 2 2 

p,q=I p q p,q=I p q 

converges and since, for any numbers p and q, we have 2p2q2 :s; p4 + q4 , 

the comparison test may be used to yield the result. 

For single series with positive and negative terms the notion of absolute 
convergence plays an important part. We now establish the basic theorems 
for absolute convergence of double series. 

Theorem 40. Suppose that I:::;,.=i lam.I converges. If we define 

b = { amn whenever amn ~ 0, 
mn O whenever amn < 0, 

Cmn = { O 
whenever amn ~ 0, 

-amn whenever amn < 0, 

then bmn + cmn = lam.I, bmn - Cmn = amn• and I::.n=I bmn• I::.n=I cmn converge. 
Calling the sum of these last two series Band C, respectively, we have 
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I amn = B- C, I lamnl = B + C. 
m,n=l m.n=I 

Furthermore, 

PROOF. Since bmn :<?: 0, Cmn :<?: 0, and bmn + Cmn = lamnl• the Comparison Test 
(Theorem 39 (ii)) shows that I:::;,n=I bmn and I:::;,n=I cmn converge. The 
remaining results follow from Theorem 38 and from the fact that 

IB-CI s;B+ C, 

when B and C are any nonnegative numbers. 

Definition. A series I:::;,n=I amn is called absolutely convergent if the series 
I:::;.n=I lamnl converges. 

Theorem 40 states that a series which is absolutely convergent is itself 
convergent. 

The next theorem establishes the basic relation between double series, 
single series, and repeated or iterated series. 

Theorem 41. Suppose that I:::;,n=i amn is absolutely convergent. Then 

i) I::'=i amn is absolutely convergent for each m. (Each row of the rectangular 
array, considered as a single series, is absolutely convergent.) 

ii) I:::;= 1 [I::'=i amn] is absolutely convergent. (The iterated sum, taking rows 
first, is absolutely convergent.) 

iii) I:::;=I [I::'=1 amn] = I:::;,n=I amn· (The iterated sum is equal to the double 
sum.) The same results hold if the roles ofm and n are interchanged. 

iv) I:~= 2 [I:m+n=pamn] converges absolutely and equals the double sum. 

PROOF. Because of Theorem 40, it suffices to prove the result when amn :<?: 0. 
Let 

00 

s = I amn· 
m,n=I 

Then it follows that I:~=i amn S: s for every N and every m. Thus (i) holds. 
Therefore we may write 

oo N 

Am= L amn = lim L amn· 
n=l N-oo n=l 

Also, since sMN s: s always, we see that 
M 

L Am= lim sMN S: s 
m=l N-oo 

for each M. 
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p=2p=3p=4p=5 ~-m+aj 

Fig. 3-16 

We conclude that I::=i Am is a convergent series, and so (ii) holds. Now let 
e > 0 be given. There is an N0 such that 

M 

s - e < SMN s; L Ams; s if M > N0 and N > N0 • 

m=l 

This last statement establishes (iii). 
To prove (iv), we first consider the meaning of the sum 

CIO 

L L amn· 
p=2 m+n=p 

The inner sum adds the elements of a diagonal, as shown in Fig. 3-16, and 
the outer sum adds all the diagonals. For any e > 0, there is an N0 such 
that s - e < sMN s; s whenever M > N0 and N > N0 • Suppose that P = 
2N0 + 2. Then the triangular set (Fig. 3-16) of all (m,n) such that 

m+n=pS:P 

contains the set of all (m, n) such that m s; N0 + l and n s; N0 + l. This 
set is also contained in the set of all (m, n) such that m .s; P and n s; P. 
Therefore 

which implies statement (iv). 

Theorem 42. Suppose that I::'=i amn converges absolutely for each m and that 

(3) 

converges. Then the double series converges absolutely. The same result holds 
with the roles of m and n interchanged. 

PROOF. Ifs is the sum of the iterated series (3), we see immediately that 

SMN = J1 Lt1 lamnl] S: J1 [J1 lamnl] S: s. 

The result follows from Theorems 39 and 41. 

REMARK. The above theorem states that if each row of a double series is 
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absolutely convergent and if the iterated series of absolute values converges, 
then the double series converges. 

A similar statement is true for columns. 

EXAMPLE 3. Show that the double series 

oo 1 

m.~l m2(1 + n3/2) 

converges. 

SoLUTION. For fixed m, the series 

oo 1 oo 1 
n~l m2(1 + n3/2) < n~l n312' 

which is a convergent p-series with p = 3/2. Denoting 

oo 1 
A= L 3i2• 

n=l n 

we see that 

oo [ oo 1 J 00 1 m~I n~l m2(1 + n312) ::;; m~l m2 A, 

which converges. The hypotheses of Theorem 42 are satisfied and the double 
series converges. 

Theorem 43. Suppose that I:;::= 1 am and I:::°=i bn are each absolutely con
vergent. Then the double series I::,n=I ambn is absolutely convergent, and 

(4) 

PROOF. Let 

Then we see that Smn ::;; AB for every m and n. Hence the double series is 
absolutely convergent. Also 

(5) 

The formula (4) results from passing to the limit in (5). 
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. . . . . . 
~mbozm + ~mbixm+t + · · · + ~bnxm+n + · · · 

Fig. 3-17 

In section IO, page 152, we stated without proof the following theorem 
concerning the Cauchy product of two power series. 

Theorem 27. Suppose that 

00 

J(x) = L amxm for lxl < R, 
m=O 

00 

g(x) = L bnxn for lxl < R, 
n=O 

where R > 0. Then 

for lxl < R. 

PROOF. Since the series for f(x) and g(x) both converge absolutely for lxl < R 
then, by Theorem 43, their product I:::;',n=o ambnxm+n converges absolutely 
as a double series (Fig. 3-17). The convergence of the Cauchy product series 
toj(x)g(x) follows from Theorem 41 (iv). 

REMARK. Theorem 27 applies equally well for power series of the form 

and 

EXAMPLE 4. Use Theorem 27 to find the power-series expansion of all terms 
up to x 5 of the function .JI + x cos x. 

SOLUTION. We have 

(I + x)112 = I + !x - !x2 + _!_x3 - _2_x4 + _}_xs - ... 
2 8 16 128 256 • 

x2 x4 
COSX=) --+-- ··· 

2! 4! 

Taking the Cauchy product, we find 

JI + XCOSX;:::::: ptO [m.t=p ambn] xP 

I 1 5 2 3 3 25 4 13 5 
= +1x-8x -16x +384x +768x. 
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Double sequences and series in which the elements are functions are 
defined in the same way as are single sequences and series of functions. 

Definitions. The sequence smn(x) is said to converge uniformly to s(x) for x 
on some interval I if and only if for each 1: > 0 there is an N independent of 
x such that 

for all m > N and n > N. 

The uniform convergence of a double series is equivalent to the uniform 
convergence of the sequence of its partial sums. The individual terms in a 
sequence or series may consist of functions of several variables. We define 
uniform convergence in the natural way; a sequence such as {smn(x 1, x 2 • x 3)} 

is said to converge uniformly for (x 1 , x 2 • x 3) in some region R of R3 if the 
index N in the definition above does not depend on the location of the 
point (x 1 ,x2 ,x3 ) in R. 

We can now extend the Weierstrass M-test to double series. 

Theorem 44. Suppose that lumn(x,y)j < Mmn for all (x,y) in some region R 
of the plane. If the double series r.:.n=oMmn converges, then r.:.n=oumn(x.y) 
converges uniformly on R. 

PROOF. By Theorem 39, r.:.n=o umn(x,y) converges absolutely for each fixed 
(x, y) in R. Let s(x, y) be the sum of the series and smn<x, y) its partial sum. 
Denote 

and 
m.n=O 

m.n 
smn = L Mjk• 

j,k=O 

Let i; > 0 be given. Then there is an N such that 

IS - smnl < i; for all (m, n) 

Therefore, for each (x,y) in R, 

ls(x,y) - smn(x,y)I s; IS - smnl < ll, 

with m > N. n > N. 

whenever m > N and n > N. 

Since N was chosen without regard to (x, y), the convergence is uniform. 

Theorems on the continuity of the uniform limit of double series of con
tinuous functions read the same as for single series. Similarly the results on 
term-by-term integration and differentiation (partial differentiation for func
tions of several variables) are all quite analogous to those obtained in Sec
tion I. (See Problems 24, 25, and 26.) We shall restrict ourselves to the 
statement of some results for double power series of the form 

00 :L amnxmyn. 
m,n=O (6) 
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Theorem 45. If the double power series (6) converges absolutely for some 
x 0 # 0 and y0 # 0, then the series ( 6) and the series of absolute values converge 
uniformly for lxl :S: lxol and IYI :S: I Yo I· 

PROOF. Since lamnxmy"j :S: lamnXoYol = Mmn• we may apply Theorem 39, and 
the result follows. 

Theorem* 46. If the double power series (6) converges absolutely for x 0 # 0 
and y0 # 0, then a/I the series obtained by differentiating term by term with 
respect to x and y converge for all (x,y) in the rectangle 

R = {(x,y): lxl < lxol. IYI < IYoi}· 
The convergence is uniform on any rectangle R = {(x,y): lxl :S: h. IYI :S: k}, 
where h < lx0 j. k < IYol· 

The proof parallels that for single power series. 

Theorem* 47. {f the double power series (6) converges absolutely for x 0 # 0, 
and Yo # 0, and if f is defined by the series, so that 

00 

f(x,y) = L amnXmyn for lxl < lxol• IYI < IYol• (7) 
m,n=O 

then/ is continuous and has partial derivatives of all orders which are given in 
the rectangle R = {(x,y): lxl < lxol. IYI <I Yo I} by the appropriate series 
obtained by term-by-term differentiation. 

Corollary. Under the assumptions of Theorem 47, we have 

l iJW'+"f(O, 0) 
a =-- . 

mn m !n ! oxmiJy" 
(8) 

REMARK. All the results on double power series are valid for series of the 
form I:amn(X - cr(y - d)", With the Usual modifications; e.g., the evalua
tion in (8) is at (c, d) instead of (0, 0). 

EXAMPLE 5. Find the first six nonvanishing terms of the double power series 
expansion of ex' about the point ( l, 0). Assume that the series is convergent 
in a rectangle containing (I, 0). 

SOLUTION. We have j(l,O) = I. Evaluating all partial derivatives at (1,0), 
we find 

* Partial derivatives are discussed in Chapter 4. Readers unfamiliar with partial differentiation 
may postpone or skip Theorems 46 and 47, the Corollary, and Example 5. 
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Therefore 

I l 
f(x,y) = I + y + (x - l)y + 2! y2 + (x - l)y2 + 3! YJ + ... 

EXAMPLE 6. Using power-series expansions, estimate the error made in 
computing (e0 ·2 - 1)2 from the terms of the series for (ex - 1)2 out to and 
including the terms in xs. 

SOLUTION. We use the Cauchy product of the series ex - I with itself. We 
write 

x2 x3 x4 xs 
ex-1 =x +-+-+-+-+ ... 

2 6 24 120 

x2 x3 x4 xs 
ex - l = x + - + - + - + -·- + · · · 

2 6 24 120 

Therefore 

x4 xs x6 
+-+--+-· 6 12 36 

l +-+-+ ... ( x x 2 
) 

4 4·5 

( x x 2 ) l+-+-+"· 3 3·4 

+- I+-+-+... l +-+-+ .... x 6 
( x x 2 ) ( x x 2 ) 

120 6 6. 7 . 2 2. 3 

7x4 XS 
(ex - 1)2 = x2 + x3 + U + 4 + f; 

where, by replacing each series in parentheses by the geometric series with 
the same first two terms, we obtain 

6 6 6 x6 
e< x + x + x +----

120(1 - x/6) 48(1 - x/5) 36(1 - x/4) 48(1 - x/3) 

x6 
+-------

120(1 - x/6)(1 - x/2) 
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(0.2)6 ( 30 25 20 15 30 ·IO ) 
< ----U- 290 + 96 + 19 · 3 + 56 + IO· 29 · 9 

l 
< 12 (0.000064)(0. I04 + 0.261 + 0.351 + 0.268 + 0.115) 

< 59 x 10- 1 • 

In an actual computation the rounding error would have to be added to 
obtain an estimate of the total error committed. Thus 

(e0 · 2 - 1)2 = 0.049013 ± 0.000006. 

PROBLEMS 

I. Show that the double series 

OD I 
L--

m.•=O (m + n)! 

is convergent. [Hint. Show that (m + n)! ~ m!n!.] 

2. Show that 

OD I 
L-

m.n=l mn 

is divergent. 

3. Test for convergence: 

oo 2m+n 

L -,-,. 
m,n=O m.n. 

4. Show that 

OD I 

m.~I (m2 + n2)P 

converges if p > I. [Hint. Show first that m2 + n2 ~ 2mn.] 

5. Show that 

OD 

L -2--2 
m.n=I m + n 

is divergent. Hint. Note that 

6. Show that 

L 2 2 > L L 2 2 ~ L -. N ) N[m ) Ll N) 

m.n=I (m + n ) m=I n=I (m + n) m=I 2m 

OD (m + n)s L --,-,-
m.n=o m.n. 

is convergent. [Hint. Let 
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and show that 

oo (m + n)s 
am= I--,-,·

·=o m.n. 

= I (m + n)s + f (m + n)s 

n=O m!n! n=m+J m!n! ' 

(2m)s I oo (2n)s 

m~O. 

a <e·--+-"' --=A m - I I .(.., I ,.. m. m. n=O n. 

Then show that .r.:=oA,. converges and use Theorem 42.] 

7. Test for convergence: 

r -2--2· 
m,n=l m - n ..... 

3. Infinite Series 

In each of Problems 8 through 12, use Maclaurin expansions for the separate functions, 
and the formula for the Cauchy product to obtain the Maclaurin expansions for the 
given functions. Carry the process out to the term ax", where n is given. 

8. e2xsin3x, n = 4 

10. (I + x)- 112 eX, n = 4 

12. (cosx)log(I + x), n = 5. 

9. (I + x)- 2 COSX, n = 5 

II. clog(I +x), n=5 

In each of Problems 13 through 18, find the terms in the double (Maclaurin) series of 
the given function up to and including terms of degree three. 

15.-1-
ccosy 

17. cosxy 

I 
14. 2 

I -x-2y+x 

16. e- 2'log(I +y) 

18. (I + x + y)- 112 

In each of Problems 19 through 22, estimate the error made in computing each function 
from its series, as in Example 6 above. 

ex 
19. --, x=0.2, n=4 

1-x 

e-x 
21. --, x = 0.2, n = 4 

l+x 

23. Prove Theorem 38. 

20 COSX x=0.2, n=4 
. I -x2 ' 

sinx 
22. 1 _ x 2 , x = 0.2, n = 5 

24. State and prove a theorem on the limit of a uniformly convergent double series of 
continuous functions of n variables. 

25. State and prove a theorem on the term-by-term differentiation of a uniformly 
convergent double series of functions of n variables. 
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26. State and prove a theorem on the term-by-term integration of a uniformly conver-
gent double series of functions of three variables. 

27. Write out the proof of Theorem 46. 

28. Write out the proof of Theorem 47. 

29. Prove the Corollary to Theorem 47. 

15. Complex Functions. Complex Series 

Although functions of one or more complex variables are defined formally 
in the same manner as are functions of real variables, we shall see that the 
implications of the definition are quite different in the complex case. De
noting the collection of all complex numbers a + bi by C, we define a 
relation from C to C as a collection of ordered pairs (z, w) in which z is 
a complex number and w is a complex number. A relation from C" to C 
is a set of ordered pairs [(z 1,z2 , •.. ,Zn), w] in which (z1,z2 , •.• ,Zn) is an 
ordered array of n complex numbers and w is a complex number. A relation 
from C to C is a function on C if and only if no two distinct pairs have the 
same first element. We use the usual functional notation and write w = /(z) 
for a function of one variable. Functions of more than one variable are 
defined similarly, and we write w =f(z 1 ,z2 , ••• ,zn) for a function on C". 
The domain and range of a function are defined precisely as in the case of a 
real variable. 

For problems concerning a function of a real variable, we found it helpful 
to interpret y ='f(x) as a set of points (frequently a curve or an arc) in the 
plane of analytic geometry. If w = /(z) is a complex-valued function of a 
complex variable z, then both the domain and the range are sets of complex 
numbers. An aid to visualization is obtained by drawing two complex planes 
side by side, denoting one of them the z-plane and the other the w-plane 
(Fig. 3-18). The domain of a function/ is a set of points Sin the z-plane, and 
the range is a set of points T in the w-plane. The function f assigns a value 
Q in T to each point P in S. The functions we shall consider will usually 
have domains which are either a region in the z-plane or the entire z-plane. 

Definition. Suppose that f is a function on C and c and L are complex num-

Fig. 3-18 0 

z-plane 

~ 
C/ 

11·-pl:me 

0 
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l z-plane t 
u·-plane 

i 

0 --1 () 

Fig. 3-19 Fig. 3-20 

bers. We say that j(z) has the limit L as z tends to c if and only if for each 
e > 0 there is a {J > 0 such that 

l/(z) - LI< f. whenever 0 < lz - cl< .:5. 

We also write /(z) -> Las z -> c and limz-c /(z) = L. 

REMARKS. (i) Since absolute values are defined for complex numbers, the 
above definition makes sense when the function is complex-valued as well 
as when it is real-valued. 
ii) The definition has a simple interpretation in terms of two complex planes. 
The set of points lz - cl < c:5 consists of all the points z which are not farther 
away from c than b. That is, the set consists of all points in a circle of radius 
{J with center at c (Fig. 3-19). The inequality 0 < lz - cl means that z is not 
allowed to be equal to c itself. The points w = /(z) which satisfy the inequality 
IJ(z) - LI < e must lie in the circle of radius e with center at L (Fig. 3-20). 
iii) In order for the definition to make sense, the punctured disk 0 < lz - cl 
< {J must lie in the domain S of I If S consists of only part of this disk, then 
it is automatically understood that z is restricted to be a point of S. 
iv) The definition of limit for a function of several complex variables is 
analogous to that for real variables. However, since a geometric interpreta
tion is no longer readily available, we must lean more heavily on the analytic 
statements. 
v) The usual theorems on limits, such as those for limits of sums, products, 
and quotients, have the identical statements and proofs given for real 
variables and need not be repeated. 

If we set z = x + iy and write w = u + iv, then a function w = j(z) may 
be written 

/(z) = u(x,y) + iv(x,y). 

in which u and v are each a function of the two real variables x and y. In other 
words, one complex-valued function of one complex variable may be con
sidered as two real-valued functions of two real variables. If a, b, M, N are 
real numbers, then we see that the statement 

f(z)-> M + iN as Z-> a+ ib 
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is equivalent to 

u(x,y)-+ M, v(x,y)-+ N 

189 

as (x,y)-+ (a,b). 

Thus notions of limits and continuity for a complex function may be reduced 
to the corresponding statements for pairs of functions of two real variables. 
We say that/is continuous at z0 if and only if 

lim /(z) = f(z 0 ). 
z-zo 

If u and Ii are continuous at (x0 ,J•0), then/ is continuous at z0 = x0 + iy0 , 

and conversely. 
The processes of differentiation and integration for complex functions 

are substantially different from those for real-valued functions. There is a 
wealth of material in complex analysis, and the interested student will find 
many books devoted entirely to this subject. 

We shall be concerned here mostly with sequences and series of complex 
numbers. A sequence 

of complex numbers may be written in the form 

where rk and tk are the real and imaginary parts of sk, respectively. We say 
that the sequence {sn} is convergent if and only if the two sequences {rn}, 
{tn} of real numbers are convergent. The infinite series 

(I) 

of complex numbers is convergent if and only if the sequence 

of partial sums is convergent. Many of the theorems established for sequences 
and series ofreal numbers carry over to complex sequences and series without 
change in statement or proof. A series of complex numbers such as (I) is 
said to be absolutely convergent if the real series 

is convergent. As in the case of Theorem 12, we can easily show that an 
absolutely convergent series of complex numbers is convergent. 

A power series with complex terms is one of the form 
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2-plane i 

Fig. 3-21 

in which the coefficients a0 , a 1 , ••• are complex numbers. The Ratio Test 
(Theorem 14, page 115) is valid without change for complex numbers as 
well as for real numbers. We now state the basic theorem on the convergence 
of complex power series. 

Theorem 48. Let r:=oanzn be any power series. Then either 

i) the series converges only for z = O; or 
ii) the series converges for al/ z; or 
iii) there is a number R such that the series converges for al/ z with lzl < R 

and diverges for al/ z with jzj > R. 

The statement and proof of this theorem are the same as those of Theorem 
16 in Section 13. However, we now see that the interpretation of the set 
lzl < R of points of convergence is a disk of radius R with center at the 
origin (Fig. 3-21). We also see why the quantity R is called the radius of 
convergence. For series of the form r:=oan(z - c)n, the circle of convergence 
has radius R with its center at the number c (Fig. 3-21). 

We may define the elementary functions of algebra, trigonometry, and 
calculus as functions of a complex variable. A certain amount of care is 
necessary, since a function such as sin w, which has a perfectly good meaning 
in terms of angles when w is real, has no geometric interpretation or definition 
when w is complex. We solve the problem by defining functions in terms of 
their power-series expansions. We recall that ex with x real has the Taylor 
expansion 

"" xn ex='\"' -,(_, ,. 
n=O n. 

which is convergent for all x. We define e' by the series 

co Zn 
e'= I -

n=O n! 
for all complex z. 

(2) 

(3) 

It is a simple exercise (Ratio Test) to show that the series (3) is absolutely 
convergent for all z. If z is real, then (3) becomes (2) and the definition is 
consistent. The next theorem gives the basic properties of e' when z is 
complex. 
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Theorem 49. (a) e• · ew = e•+w for all complex z and w. 
b) ex+yi =ex (cosy+ isiny)jor all real x and y. 
c) If f(x) = e'a+box, x real, thenf'(x) =(a+ bi)e<a+bil-<. 

PROOF. (a) We write 

e'·ew= L - L -( oo zm)( 00 w") 
m=O m! n=O n! 

and apply Theorems 43 and 41 of Section 14. We obtain 

e'·ew= f [~ L (m;~)!zmw"J = f (z+,w"!!._=e=+w. 
p=O p. m+n=p m.n. p=O p. 

b) From (a) we find 

{ 
oo ( - l)k},2k • oo ( - l)ky2k+ I} 

=e"' L +'L -~-
k=O (2k)! k=O (2k+I)! 

= ex(cosy + isiny). 

To prove (c), we have 

and 

J(x) = eax(cosbx + isinbx) 

f'(x) = eax(-bsinbx + ibcosbx) + aeax(cosbx + isinbx) 

=(a+ ib)e0 x(cosbx + isinbx) =(a+ ib)j(x). 
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The trigonometric and hyperbolic functions of a complex variable are 
defined by the formulas 

. ei• - e-iz 
S1DZ=---

2i 

. e• - e-• 
smhz = 2 , 

ei• + e-iz 
cosz=--2--

e• + e-• 
coshz= 2 , 

for all complex z. The remaining trigonometric and hyperbolic functions 
are defined in the usual way. That is, 

and so forth. 

sinz tanz =--, 
cosz 

I secz=--, 
cosz 

The power series expansion for e• and the definitions of the trigonometric 
functions may be used to get the familiar expansions 
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. oo (-J)kz2k+I 
smz = L -(2k--l)'' 

k=O + · 
(4) 

valid for all complex z. Expansions for the remaining functions are obtained 
similarly. 

Theorem SO. (a) The addition theorems and double-angle formulas for sin z, 
cos z, sinh z and cosh z hold for all complex numbers. 
b) We have for all z: 

cos iz = cosh z, 

siniz = isinhz. 

cosh iz = cosz, 

sinh iz = i sin z, 

sin(x + iy) = sinxcoshy + icosxsinhy, 

cos(x + iy) = cosxcoshy - isinxsinhy. 

PROOF. (a) We show that 

sin(z + w) = sinzcosw + coszsinw. 

From the definition of the trigonometric functions, we may write 

sinzcos w + coszsin II"= ~j [(e;' - e-;')(ei"' + e-; ... ) 

+ (eiz + e-iz)(e;"' _ e-;,..)] 

I [ i(:+M•I + i(z-wl -i(z-wl -i(z+w) =- e e -e -e 
4i 

= ~i [eilz+wl - e-i(z+w)] = sin(z + 11'). 

The remaining portions of the theorem are proved in a similar manner. 

EXAMPLE I. Write sin (I + i) in the form a + ib. 

SOLUTION. sin (I + i) = sin I · cosh I + i cos I · sinh I. Therefore 

a = sin I cosh I, b = cos I sinh I. 

The reader may verify the following formulas: 

z3 2z5 

tanz = z + 3 +IS+··· 

z2 5z4 6lz6 
secz= I+-+-+--+··· 2 24 720 , 

(5) 

(6) 
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z3 2z5 
tanhz=z--+-- ··· 

3 15 ' 

z2 5z4 6lz6 
sechz= 1--+----+ ... 

2 24 720 

EXAMPLE 2. Solve for z : cos z = 2. 

SOLUTION. We have 

cosz = cos(x + iy) = cosxcoshy - isinxsinhy = 2. 

Therefore 

cosxcoshy = 2 and sinxsinhy = 0. 
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(7) 

(8) 

Taking sin x sinh y = 0 first, we see that sinh y = 0 if and only if y = 0. But 
then from the first equation coshy = land cosx must be 2, which is impos
sible if x is real. So y = 0 is excluded. The equation sin x sinhy = 0 can 
also hold if sin x = 0, which occurs if x = ±me. Then cos x = ± l and, 
ruling out the negative values, we get x = ± 2mc and cos x = + I. The 
first equation then implies that cosh y = 2 or y = argcosh 2 = log (2 + j3). 
The answer is 

z = x + iy = ±2nn + ilog(2 + j3). 

REMARK. Example 2 shows that the rules about the range of the various 
trigonometric functions, which we learned for the case when the domain is 
real, no longer hold when the domain is complex. For example, the functions 
sin z and cos z may have arbitrarily large values if z is complex. 

When x is real, the function ex is the inverse of the logarithm function. 
For complex exponential and logarithmic functions we must proceed quite 
differently. With the observation that 

e2"i = (cos2n + isin2n) = l, 

we conclude 

and so e• is a periodic junction with period 2ni. In attempting to define the 
logarithm as the inverse of w = e• we are stymied, because to each value of 
w there corresponds the infinite collection of values z ± 2nni, n = l, 2, ... 
The inverse relation of e• is not a function. However, we can proceed by 
writing w in polar form. That is, if w = r( cos 8 + i sin 8), then 

w = e• = ex+iy = ex(cosy + isiny) = r(coslJ + isinlJ). 

The last equality yields r = ex and y = (J ± 2nn. This suggests defining the 
principal inverse function of e• by 
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Log w = logr + i8 

Thus we find that 

where -1t < (} ~ 1t. 

e• = w z = Log w ± 2nni. 

We observe that if w is real and positive, then (} = 0 and Log w is just the 
ordinary natural logarithm of w. 

EXAMPLE 3. Find the value of Log ( - 3). 

SOLUTION. We have - 3 = 3eni, since eni = cos n + i sin n = - I. Therefore 
Log(-3) =log 3 + ni. 

REMARKS. The trick in Example 3 is to write the number - 3 in the form rei9 

with r ~ 0 and with (} always in the interval - n < (} ~ n. Every complex 
number can be so written. Note that the myth prevalent in elementary 
trigonometry courses concerning the nonexistence of logarithms of negative 
numbers evaporates as we enter the complex domain. 

The inverses of the trigonometric and hyperbolic functions are also 
multiple-valued relations and so are not functions. The definitions of princi
pal inverses of these functions are usually given in texts on complex function 
theory. 

EXAMPLE 4. Express all the solutions of sinh w = z in terms of the Log 
function. 

SOLUTION. From the equation sinh w = z, we have 

or e2w - 2zew - l = 0. 

This is a quadratic equation in ew. Therefore 

ew=z±Jz2 +l 

and 

w = Log(z ± ..Jz2 + 1) ± 2nni. 

REMARK. Since z is complex, it is not clear what meaning should be attached 
to the expression J z2 + 1. If ( = pei4>, - n < cf> ~ n is any complex number, 
the two square roots of ( are 

JPei4>fl and - JPe1""2 , with - n < cf> ~ n. 

The first of these numbers is in the right-hand portion of the z-plane (has 
positive real part), while the second is in the left-hand portion. We call the 
first one the positive square root of (and the second the negative square root 
(except when cf>= n and both square roots are on the imaginary axis). 



15. Complex Functions. Complex Series 

PROBLEMS 

I. Show, by the Ratio Test, that 

"' z• LI 
n=O n. 

converges for all complex z. 

2. Prove that sinz and cosz are given by their series expansions (4). 

3. Prove that the functions sinh z and cosh z are given, respectively, by the series 

co z211+1 

.~o (2n +I)!' 

co z2" 
L (2 )I' 

n=O n · 

which are valid for all z. 

4. Prove that for all complex z, w: 

cos(z + w) = coszcos w - sinzsin w. 

5. Prove that for all complex z, w: 

sinh(z + w) = sinhzcosh w + coshzsinh w. 

6. Prove that for all complex z, w: 

cosh(z + w) = coshzcosh w + sinhzsinh w. 

7. Derive formulas for sin2z, cos2z, sinh 2z, cosh 2z, z complex. 

8. Prove the validity of the formulas in Theorem 50(b). 

9. Verify the formula for tanz in (5). 

10. Verify the formula for secz in (6). 

11. Verify the formula for tanh z in (7). 

12. Verify the formula for sechz in (8). 

13. Write in the form a+ ih: 

b) sin( ~it+ i), 
14. Write in the form a+ ih: 

a) sinh (I - i), b) tanh (2 + Ji), 

15. Write in the form a+ ib: 

a) Log(-4), b) Log(I + i), c) Log(-i) 

16. Write in the form a+ ib: 

c) sin <JT - i) 

17. Write in the form u(x,y) + iv(x,y): 

a) sin2 z, b) tan z 
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18. Write in the form u(x,y) + iv(x,y): 

a) e'', b) e01•1 

19. Write in the form u(x,y) + iv(x,y): 

a) Log (3 + 3i), 

20. Find the radius of convergence of the series 

z2 z3 z4 z" 
Log(! +z)=z--+---+ ···<-1r 1-+ ··· 

2 3 4 n 

21. Find the Maclaurin expansion for (I + x) 112 , replace each x by z and find the 
radius of convergence of the resulting complex series. 

22. Repeat Problem 21 for (I - x2)- 1' 2 . 

23. Show that tanh w = z if and only if 

1 1 +z . 
w = -2Log--± mn. 

1-z 

24. Show that tan w = z if and only if 

i i + z 
w = +nn +-Log--. 

- 2 i-z 

25. Show that sin w = z if and only if 

w = ~Log(iz ± v'l - z2) ± 2nn. 
I 

Are there any complex numbers z for which there is no solution w? Note that 
Logz is defined for all z ¥ 0. 

26. Show that cos w = z if and only if 

w = ~Log(z ± -./z2 - 1) ± 2nn. 
I 

Are there any complex numbers z for which there is no solution w? 



CHAPTER 4 

Partial Derivatives. Applications 

1. Limits and Continuity. Partial Derivatives 

A function f is a mapping which takes each element of the domain D into 
an element of the range S. We write f: D-+ S. If the domain D consists of 
ordered pairs of numbers, then we have a function on R 2 or a function of two 
variables. We employ the notation 

= = j(x,y) or f: (x, .r)-+ = 
to indicate a typical function on R 2 when the elements of the range are real 
numbers (elements of R 1). 

We now give a precise definition of a function of two variables. 

Definition. Consider a collection of ordered pairs (A, 1r) where the elements 
A are themselves ordered pairs of real numbers and the elements 11· are real 
numbers. If no two members of the collection have the same item A as a first 
element·- i.e., ifit can never happen that there are two members (A 1 , 11· 1) and 
(A 1 , 11·2 ) with 11· 1 ¥ 11· 2-then we call this collection a function on R2 or a 
function of two variables. The totality of possible ordered pairs A is called the 
domain of the function. The totality of possible values for 11· is called the 
range of the function. 

REMARK. The definition of a function of three variables is precisely the same 
as that for a function of two variables except that the elements A are ordered 
triples rather than ordered pairs. A function ofn variables is defined by con
sidering the elements A to be ordered 11 tuples of real numbers. 

A function of three variables is frequently denoted by 
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x 

z 

~-z=L+e 
I 

,.----1-~"--..o,. z = L 

L;~===,,,._~ z = L - e 

I 
I I 
I I 
lb-6 lb lb+li 

~ .......... ___,...._.-----+....--+--- y 
Q I/ /( 1,/ 

a - Ii ---,--}'----ri--Y 
a -----+7"--7"--t-T' 
------....li-~~~--..v 

Fig. 4-1 

w = G(x,y,z) or G: (x,y, z)-+ 11-, 

where (x,y, z) is an element of R3 and 11· is an element of R 1 • We can consider 
functions of four, five, or of any number of variables. If the exact number of 
variables is n, we usually write 

y = j(x 1 ,x2 , •••• Xn) 

in which (x 1, x 2 , ••• , xn) is an element of Rn and y is an element of R 1• The 
same letters}; F, y, G, </J, and so forth, are used for functions of any number 
of variables. 

We are now ready to define a limit of a function of two variables. If f is 
such a function, we may write 

z =f(x,y). 

We wish to examine the behavior off as the pair (x,y) tends to the pair 
(a,b); equivalently, we consider x tending to a and y tending to h. 

Definition. We say thatj(x,y) tends to the number Las (x,y) tends to (a, b), 
and we write 

f(x,y)-+ L as (x,y)-+ (a,b) 

if and only if for each e > 0 there is a f> > 0 such that 

JJ(x,y) - LJ < e 

whenever 

Ix - al<{> and IY - bl<{> and (x,y) #= (a,b). 

A geometric interpretation of this definition is exhibited in Fig. 4- l. The 
definition asserts that whenever (x, y) are in the shaded square, as shown, 
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then the function values, which we represent by z, must lie in the rectangular 
box of height 2e between the values L - e and L + e. This interpretation is an 
extension of the one usually given for functions of one variable. 

REMARK. It is not necessary that (a, b) be in the domain of j: That is, a limit 
may exist withj(a,b) being undefined. 

Definition. We say that f is continuous at (a, b) if and only if 

i) f(a, b) is defined, and 
ii) j(x,y)-+ f(a, b) as (x,y)-+ (a. b). 

Definitions of limits and continuity for functions of three, four, and more 
variables are completely similar. 

Functions of two or more variables do not have ordinary derivatives of 
the type we studied for functions of one variable. If f is a function of two 
variables, say x and y, then for each fixed value of y,fis a function of a single 
variable x. The derivative with respect to x (keepingy fixed) is then called the 
partial derivative with respect to x. For x fixed and y varying, we obtain a 
partial derivative with respect toy. 

Definitions. We define the partial derivatives of a function! on R2 by 

1'( ·) _ 1. j(x + h,y) - j(x,y) 
Jx x,y - tm h , 

h-0 

f,( ·) - r f(x,y + h) - J(x,y) 
y X,} - h~ h ' 

where y is kept fixed in the first limit and xis kept fixed in the second. We 
use the symbols fx and j~ for these partial derivatives. 

If Fis a function on R 3 , we define the partial derivatives F.,, F, and F., by 

F ( . ) _ 1. F(x + h,y,z) - F(x,y,z) 
x x,y,z - tm h , 

h-0 
(y,z fixed) 

F( , ) _ J' F(x,y + h,z) - F(x,y,z) 
, x,y,z - hi~ h ' (x,z fixed) 

F( , ) _ J' F(x,y,z + h) - F(x,y,z) 
• x,y,z - h~ h , (x, y fixed). 

In other words, to find the partial derivative F., of a function F(x, y, z) of 
three variables, regard y and z as constants and find the usual derivative with 
respect to x; the derivatives F, and F., are found correspondingly. The same 
procedure applies for functions of any number of variables. 

EXAMPLE I. Givenf(x,y) = x 3 + 1x2y + 8y3 + 3x - 2y + 7, findfx andf,,. 
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SOLUTION. Keeping y fixed and differentiating with respect to x, we find that 

j~ = 3x 2 + 14xy + 3. 

Similarly, keeping x fixed, we get 

j)' = 7x 2 + 24y2 - 2. 

EXAMPLE 2. Givenf(x,y, z) = x 3 + y 3 + z3 + 3xyz, findf~(x,y, z),J;.(x,y, z), 
and j~(x, y, z). 

SOLUTION. We have 

j~(x,y,z) = 3x2 + 3yz,j~(x,y,z) = 3y2 + 3xz,j~(x,y,z) = 3z2 + 3xy. 

REMARKS ON NOTATION. The notation presented here is classical, although it 
may at times lead to confusion. A less ambiguous but less common notation 
uses numerical subscripts with a comma to indicate partial differentiation. 
For example, the symbols 

and 

stand for the partial derivatives with respect to x and y, respectively. These 
symbols have an advantage in that the subscript 1 represents the derivative 
with respect to the first variable, irrespective of the letter used. That is, if 
(r, s) are the independent variables with/the same junclion as the one above, 
then 

and 

have a clear meaning, while in classical notation}; and/; might sometimes be 
interpreted differently fromj~ and J; .. 

Another common symbol for partial differentiation is 

ij 
ex (read: partial off with respect to x). 

This notation has the double disadvantage of using the letter x and of giving 
the impression (incorrectly) that the partial derivative is a fraction with 
cf and ex having independent meanings (which they do not). If we write 
z = j(x,y), still another symbol for partial derivative is the expression 

CZ 
cix · 

Because of the multiplicity of symbols for partial derivatives used in texts 
on mathematics and various related branches of technology, it is important 
that the reader familiarize himself with all of them. For this reason we shall 
employ all the above symbols for partial derivative throughout the chapter. 

EXAMPLE 3. Given/(x,y) = exYcosxsiny, findfAx,y) andJ;,(x,y). 
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SOLUTION. We have 

fx(x,y) = exYsiny(-sinx) + cosxsinyexy · y 

= exYsiny(ycosx - sinx), 

and 

fy(x,y) = exYcosx(xsiny +cosy). 

EXAMPLE 4. Given that z = x arctan (y/x), find oz/ox and cz/oy. 

SOLUTION. We have 

oz -(y/x2) xy ::;-- = x · 1 ( 21 2) + arctan (y/x) = arctan (y/x) -· 2 2 , 
uX + y X X + y 

and 

oz I/x x 2 

oy = x I + (y2 /x2) = x2 + y2. 

EXAMPLE 5. Given/(x,y) = x 2 - 3xy + 2x - 3y + 5, find/ 1(2,3). 

SOLUTION. We have 

f 1(x,y) = 2x - 3y + 2, / 1(2,3) = -3. 

PROBLEMS 

In each of Problems I through 12, find.fx andj~. 

I. f(x,y) = 2x2 - 3xy + 4x 2. f(x,y) = x 2y4 + 2xy - 6 

3. f(x,y) = x3 + y3 + 3x2y - 3xy2 + 7 

5. f(x,y) = ,/ x2 + y2 

7. f(x,y) = log(x2 + y2) 

9. f: (x,y) ..... arctan(y/x) 

11. J(x,y) = xyex>+y> 

4. f: (x,y) ..... J?+I + y3 

xy 
6. f(x,y) = -2--2 

x +y 

8. f(x,y) = log.,/x2 + 3y2 

IO. f(x,y) = arcsin~-
1 + y 

12. f: (x,y) ..... cos(xe') 

In each of Problems 13 through 18, find/ 1 andf 2 at the values indicated. 

13. f(x,y) = xarcsin(x - y), x = I, y = 2 

14. f(u,v) = e""sec(~). u = v = 3 

15. /(x,z) = e"nxtanxz, x =~. Z= I 
4 
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cos2tu 
16. f(t,u) = -2--2 , I= 0, u =I 

I + u 

4. Partial Derivatives. Applications 

17. /(y,x) = x-'1, x = y = 2 18. /(s, t) = t + t•, s = t = 3 

In each of Problems 19 through 22, find.fx(x,y,z),f,(x,y,z) andf.(x,y,z). 

19 .. /(x,y,z) = x2y- 2x2z + 3xyz - y2z + 2xz2 

20. f(x,y,z) = 2 xy:-2 21. f(x,y,z) = ex15 sinxycos2xz 
x +y +z 

22. f(x,y,z) = x 2 + z2 + y3 + 2x - 3y + 4z 

In Problem 23 through 26 find in each case the indicated partial derivative. 

23. w = log( 2 xy 2); x +y 
ow ow 
ox· oy 

OW OW 
24. w = (r2 + s2 + t 2)cos(rst); Tr'at 

25. w = e sin (y/x); 
ow OW 
oy ·ox 

26. w = (sectu)arcsintv; 
ow ow OW 
at' OU. ov 

27. If z = log(y/x), show that 

oz oz 
x-+y-=0. 

ox oy 

28. Let P(x1,x2, ... ,x.) = a1x'; + a2x~ + · · · + a.x!. where a1o a2, ... , a. are 
numbers. Show that 

X1P.1 + XzP.2 + ... + x.P_. = kP. 

29. Let Q(x,y, z) = I:i=i alx2•- 2Ay" ... 1 zA- 1, where the ak are numbers and n is an 
integer greater than I. Show that 

xQ, + yQ1 + zQ, = 2nQ. 

30. i) Given /(x,y) = xy. Show that f is continuous at (0, 0) by finding a value of {J 

corresponding to each given e such that jxy - OI < e for all (x,y) for which 
Ix - Oi < fJ and IY - OI < fJ. 

ii) For the same function/, show that it is continuous at (a,b) by finding a value 
of {J corresponding to each given e such that jxy - abl < e for all (x,y) for 
which Ix - al< {J and jy- bl< fJ. [Hint: Write xy- ab= xy- ay + ay- ab 
and 

jxy - abl :s; lxy - ayl + jay - abl :s; Ix - al· IYI + ial · jy - bl.] 

31. Consider the function 

I 
xy 

x2 + yz 
g(x,y) = 0 

for (x, y) '# (0, 0), 

for x =y =0. 
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a) If x tends to zero and if we select y = x2 , then y also tends to zero. Show that 
under these conditions 

g(x,y) -+0 as x-+O, y-+0. 

b) If x tends to zero and we select y = x, show that 

g(x,y) ..... ! as 

Conclude that g is not continuous at (0, 0). 

32. Use the method of Problem 31 to show that 

l x2 _ yi 

xi+ Yi 
h(x,y) = 0 

is not continuous at (0, 0). 

33. Show that the function 

l x2y2 

xi+ Yi 
f(x,y) = 0 

x and y tend to 0. 

for (x, y) =F (0, 0), 

forx=y=O 

for (x,y) =F (0, 0), 

forx=y=O 

is continuous at (0, 0). [Hint: x 2 y2/(x2 + y2) ~ x2 .J 
34. Show that the function/(x,y) = JiXlv'IYI is continuous at (0,0), but thatfx and!, 

are not continuous at (0, 0). 

35. Let f(x,y) =sin (xy); g(x,y) = sin(x/y) for y =F 0, g(x,O) = 0. Is f continuous at 
(0, 0)? ls g continuous at (0, 0)? 

36. Given the function 

g(x,y) = l 0 X)" 
(xi+ y2) 

for x =y = 0, 

otherwise. 

Show that Yx and g, exist at x = y = 0. Use the result of Problem 31 to conclude 
that a function may have a partial derivative at a point and yet not be continuous 
there. 

2. Implicit Differentiation 

An equation involving x, y, and z establishes a relation among the variables. 
If we can solve for z in terms of x and y, then we may have one or more 
functions determined by the relation. For example, the equation 

2x2 + y 2 + z2 - 16 = 0 (I) 

may be s lved for z to give 



204 4. Partial Derivatives. Applications 

z = ± v 16 - 2x2 - y 2 • (2) 

If one or more functions are determined by a relation, it is possible to 
compute partial derivatives implicitly in a way that is completely similar to 
the methods used for ordinary derivatives. 

For example, in Equation ( 1) above, considering z as a function of x and y, 
we can compute oz/ox directly from (I) without resorting to (2). We keep y 
fixed and in (I) differentiate implicitly with respect to x, getting 

CZ CZ 2x 
4x + 2z- = 0 and = 

ex ox z 

Further examples exhibit the method. 

EXAMPLE l. Suppose that x, y, and z are variables and that z is a function of 
x and y which satisfies 

x3 + y3 + z3 + 3xyz = 5. 

Find oz/ox and oz/oy. 

SOLUTION. Holding y constant and differentiating z with respect to x im
plicitly, we obtain 

o- o-
3x2 + 3z2-).- + 3xy 0 .. + 3yz = 0. 

OX X 

Therefore 

oz x2 + yz 
ox = - xy + z2 · 

Holding x constant and differentiating with respect to y, we get 

and 

2 2 oz oz 
3y + 3z iJy + 3xy iJy + 3xz = 0 

oz 
oy = y 2 + xz 

xy + z2 ' 

The same technique works with equations relating four or more variables, 
as the next example shows. 

EXAMPLE 2. If r, s, t, and ware variables and if w is a function of r, s, and t 
which satisfies 

e" - 2sew + wt - 3w2 r = 5, 

find iJw/iJr and ow/ot. 
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SOLUTION. To find cll'/er, we keeps and t fixed and differentiate implicitly 
with respect to r. The result is 

ell' ell' ell' te" - 2sew- + t- - 31r2 - 6rw- = 0 
er er er 

or 

tu- 311·2 - te" 
er t-2sew-6rll' 0 

Similarly, with rands fixed the result is 

011· 011· cw 
re" - 2sew-~- + 11· + t--·- - 6rll'-~- = 0 

cl ct ot 

or 

cir 11· + re" 
-Cl = 2sew - t + 6rll'· 

PROBLEMS 

In each of Problems I through 12, assume that 11· is a function of all other variables. 
Find the partial derivatives as indicated in each case. 

I. 3x2 + 2y2 + 611·2 - x + y - 12 = 0; 

2. x 2 + y 2 + w2 + 3xy - 2x11· + 3yw = 36; 

011' 011· 
ex, cy 

011· cw 
ex, oy 

3. x 2 - 2xy + 2xll" + 3y2 + w2 = 21; 
Cl\" ow 
ax· a_r 

cw 011" 
ax· cy 

5. 11· - (r2 + s2)cosrw = O; 
cir 011· 

Tr' cs 

6 . ... - eM·sin()1Xi = I; 011' 01\' 
ex. cy 

7. exrwsinxycos2x1r - 4 = O; 

8. w2 - 3xw - log(~) = O; 
x2 + y2 

011· cw 
ax· a.r 

ow 011· 

ax' oy 

9. xyz + x 2 z + xz11· - yz11· + yz 2 - 11·3 = 3; 

10. r 2 + 3s2 - 21 2 + 61w - 8w 2 + 12sw3 = 4; 

011· ow ow 
ox' oy •az 
011' 011' 011' 
Tr' os'at 
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011· ow 
ex. cy 

4. Partial Derivatives. Applications 

12. x 3 + 3x2y + 2z2 t - 4zt 3 + 7x1t· - 8yw2 + tt"4 = 5; 
c1t· c1t· ctt· o»· 
ex ' cy ' oz ' 01 

13. Given that x 2 + y 2 - ;;2 = 4. Show that 

CZ . ox. i!I = - I. 
ex cy oz 

*14. Suppose that the relationj(x.y,z) = 0 may be solved so that z is a function of x 
and y. Then we may compute i!z/cx. If also we may compute cx/cy and cy/cz, 
show that 

CZ ex er 
-·-·. = -1. 
ex cy ·cz 

15. The transformation of rectangular coordinates to spherical coordinates is given 
by 

Find 

x = psincf>cosO, y = psincf>sinO, z =µcos</>. 

ex ex ex oy cy cy CZ CZ CZ 
~·~·oo·~·~·~·~·~·~· 

16. In Problem 15 assume that p, cf>, 0 are functions of x, y, z and find 

op a11 a11 c<f> c<f> c<f> ao ao ao 
fuc' fy' ai' ex' cy' o: 'ox' a):' a;· 

in terms of x, y, and ;;. 

17. An affine transformation in R3 is one which changes a rectangular (x,y, z) coor
dinate system into a (u, v, tt') coordinate system by the equations 

where all the a;i are numbers. Find ov/oy and oy/ov. How are these quantities 
related? 

3. The Chain Rule 

The Chain Rule is one of the most effective devices for calculating ordinary 
derivatives. In this section we show how to extend the Chain Rule for the 
computation of partial derivatives. The basis of the Rule in the case of func
tions of one variable is the Fundamental Lemma on Differentiation, which 
we now recall. 
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Theorem 1 (Fundamental Lemma on Differentiation in R 1 ). Suppose that F has 
a derivative at a value u so that F'(u) exists. We define the function 

1 
F(!! + h) - F(u) _ F'(u) 

G(h) = h ' 

0, 

ifh "'"0, 

ifh = 0. 

Then (a) G is continuous at h = 0, and (b) the formula 

F(u + h) - F(u) = [F'(u) + G(h)]h 

holds. 

PROOF. From the definition of derivative, we know that 

or 

Jim F(u + h) - F(u) = F'(u) 
h~O h 

r [F(u + h) - F(u) F'( >] O 
hi~ h - U=. 

(l) 

Hence G(h) -+ 0 as h -+ 0. Therefore G is continuous at 0, and (a) holds. To 
establish (b ), we observe that for h of. 0, the formula ( l) is a restatement of the 
definition of G. For h = 0, both sides of (l) are zero. 

The above theorem has a natural generalization for functions of two 
variables. 

Theorem 2 (Fundamental Lemma on Differentiation in R 2). Suppose that f is a 
continuous function of two variables (say x and y) and that j~ and fy are con
tinuous at (Xo.J'o). Then there are twojimctions, G1(h,k) and G2(h,k) con
tinuous at (0, 0) with G1(0,0) = G2 (0, 0) = 0, such that 

f(xo + h,yo + k) - f(xo,Yo) = f~(Xo,Yo)h + /y(Xo,Yo)k 

+ G1(h,k)h + G2(h,k)k. 
(2) 

PROOF. The proof depends on writing the left side of (2) in a more com
plicated way: 

f(xo + h,yo + k) - f(xo,Yo) = [f(xo + h,yo + k) - f(xo + h,y0 )] 

+ [j(xo + h,yo) - f(xo.Yo>J. 
(3) 

Figure 4-2 shows the points at which/ is evaluated in (3) (hand k are taken 
to be positive in the figure). We apply the Theorem of the Mean to each of 
the quantities in brackets in (3) above. The result for the first quantity is 

j(x0 + h,y0 + k) - J(xo + h,yo) = '( + h ) 
( + k) Jy Xo 'I'/ ' Yo -Yo 

(4) 
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y 

0 

(r0+h, y0+k) 

(r0 +h.~) 

(~.Yo) _____ _.(.ro+h,yo) 

(xo, Yo) 

Fig. 4-2 

and for the second quantity, 

f(xo + h, Yo) - f(xo, Jo) _ 1. (;: , ) 
( h) - x ... }o , 
Xo + - Xo 

(5) 

where ri is between Yo and Yo + k and ~ is between x0 and x0 + h. Typical 
locations fore and 1"/ are shown in Fig. 4-2. Substituting (4) and (5) into the 
right side of (3), we find 

f(xo + h,yo + k) -f(xo.Yo) =fx(e,y0 )h + fy(x0 + h,ri)k. (6) 

The quantities G1 and G2 are defined by* 

G1 = fx(~.Yo) - fx(xo.>'o), 

G2 = f.,.(x0 +h,1"/) - f.,.(x0 ,y0 ). 

Multiplying the expression for G1 by hand that for G2 by k and inserting the 
result in the right side of (6), we obtain the statement of the theorem. Since 

e -+ Xo as h -+ 0 and ri -+ y 0 as k -+ 0, 

it follows (since fx and .t;. are continuous) that G1 and G2 tend to zero as 
h and k tend to zero. Thus G1 and G2 are continuous at (0, 0) if we define 
them as being equal to zero there. 

Theorem 3 (Chain Rule). Suppose that z = j(x, y) is continuous and that of/ox, 
cf/cy are continuous. Assume that x = x(r, s) and y = y(r, s) are functions of r 
ands such that ox/er, cx/os, cy/or, cy/os all exist. Then z is a function of rand 
sand the following formulas hold: 

oz= (~f){ax) +(of) (oy)! or ex \or oy or 

oz = (°!)(ox) + (of) (Dy) 
os ex os oy os 

(7) 

PROOF. The first formula will be established; the second is proved similarly. 

•Of course, if k = 0, we define G2 = j~(x0 + h,y0 ) - j~(x0 ,y0). etc. 
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We use the A notation. A change Ar in r induces a change Ax in x and a 
change Ay in y. That is, 

Ax = x(r + Ar, s) - x(r, s), 

Ay = y(r + Ar, s) - y(r, s). 

The function z has the partial derivative 

oz= Jim Az, 
or dr-o Ar 

where Az, the change in z due to the change Ar in r, is given by 

Az = f(x + Ax,y + Ay) - f(x,y), 

which latter expression we also denote by Aj: The Fundamental Lemma on 
Differentiation in R2 with h = Ax and k = Ay reads 

of of 
Af = ox Ax+ oy Ay + G1 Ax+ G2 Ay, 

where we have changed notation by using of/ox in place of fx(x,y) and 
ofloy for f,,(x, y). Dividing by Ar in the above equation for Af, we get 

Az = Af = of Ax + of Ay + G Ax + G Ay. 
Ar Ar ox Ar oy Ar I Ar 2 Ar 

Letting Ar tend to zero and remembering that G1 --> 0, G2 --> 0, we obtain the 
first formula in (7), as desired. 

REMARKS. (i) The formulas (7) may be written in various notations. Two 
common expressions are 

and 

oz = (oz) (ox) + (oz) (oy)} or ox or oy or 

oz = (oz) (ox) + (oz) (oy) 
os ox os oy os 

f..: fxx, + f,,y,}· 
f. - fxx. + f,,y, 

(8) 

(9) 

ii) To use the comma notation we define the function g(r,s) =f[x(r,s), 
y(r, s)]. The formulas expressing the Chain Rule are then 

g_ 1(r,s) =f 1(x,y)x. 1(r,s) + f. 2(x,y)y, 1(r,s)} 
(10) 

g, 2(r,s) =f. 1(x,y)x. 2(r,s) + f. 2 (x,y)y, 2(r,s) 

iii) For functions of one variable, the Chain Rule is easily remembered as the 
rule which allows us to think of derivatives as fractions. The formula 
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dy dy du 
dx = du.dx 

4. Partial Derivatives. Applications 

is an example. The symbol du has a meaning of its own. To attempt to draw 
such an analogy with the Chain Rule for Partial Derivatives leads to disaster. 
Formulas (7) are the ones we usually employ in the applications. The paren
theses around the individual terms are used to indicate the inseparable nature 
of each item. Actually, the forms (9) and (10) for the same formulas avoid the 
danger of erroneously treating partial derivatives as fractions. 

EXAMPLE l. Suppose that z = x 3 + y 3 , x = 2r + s, y = 3r - 2s. Find oz/or 
and oz/os. 

SoLUTION. We can employ the Chain Rule and obtain 

Therefore 

ox= 2 
or , 

oz - 3 2 oz - 3 2 
ox - x ' oy - Y ' 

ox= I oy = 3 
OS , or , 

oy = -2 
OS . 

~: = (3x2)(2) + (3y2)(3) = 6x2 + 9y2 = 6(2r + s)2 + 9(3r - 2s)2 , 

~; = (3x2)(l) + (3y2)(-2) = 3x2 - 6y 2 = 3(2r + s) 2 - 6(3r - 2s) 2 . 

In Theorem 3 (the Chain Rule), the variables rands are the independent 
variables; we denote the variables x and y intermediate variables. The 
formulas we derived extend easily to any number of independent variables 
and any number of intermediate variables. For example, 

if It' =f(x,y,z) and if x = x(r, s), y = y(r, s), z = z(r, s), 

then 

~w = (of) (ox) + (of) (oy) + (of) (~z), 
or ox or oy or oz er 

and there is a similar formula for ow/os. The case of four intermediate vari
ables and one independent variable-that is, 

w = j(x,y, u, v), x = x(t), y = y(t), u = u(t), v = v(t) 

--leads to the formula 

dw = of dx + of dy + of du + of dv. 
dt ox dt 0 y dt OU dt ov dt 

The ordinary d (rather than the round o) is used for derivatives with respect 
tot, since w, x, y, u, and v are all functions of the one variable t. 
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REMARK. As an aid in remembering the Chain Rule, we note that there are as 
many terms in the formula as there are intermediate variables. 

EXAMPLE 2. If z =f(x,y) = 2x2 + xy- y 2 + 2x - 3y + 5, x = 2s - t, 
y = s + t, find oz/ot. 

SOLUTION. We use the Chain Rule: 

rx = 4x + y + 2, 
of 
-=x-2y-3 oy , 

OX= -1 
01 • 

Therefore 

oz 
ot = (4x + y + 2)(-1) + (x - 2y - 3)(1) = -3x - 3y - 5 

oy = l. 
ot 

= - 3(2s - t) -- 3(s + t) - 5 

= -9s- 5. 

EXAMPLE 3. Given w =f(x,y,z) = x 2 + 3y2 - 2z2 + 4x -y + 3z - l, x = 
t2 - 2t + l, y = 3t - 2, z = t2 + 4t - 3, find dw/dt when t == 2. 

SOLUTION. Employing the Chain Rule, we find 

rx = 2x + 4, 

dx 
-= 2t-2 
dt ' 

of= 6y - 1 
oy , 

dy = 3 
dt ' 

of 
- = -4z -t· 3 
oz ' 

Therefore 

dw di= (2x + 4)(2t - 2) + (6y - 1)(3) + (-4z + 3)(2t + 4). 

When t = 2, we have x = 1, y = 4, z = 9, and so 

~;· = (6)(2) + (23)(3) + (-33)(8) = -183. 

PROBLEMS 

In each of Problems I through 12, use the Chain Rule to obtain the indicated partial 
derivatives. 

I. z =f{x,y) = x 2 + y 2 ; x = s-21,y= 2s + 1; 
CZ oz 
OS. Ft 

2. z=f(x,y)=x2 -xy-y2 ; x=s+l,y= -s+1; CZ oz 
OS. 01 

3. z =f{x,y) = x 2 + y2 ; x = s2 -12,y= 2sl; 
oz oz 
-as· a1 
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4. z=j(x,y)=~; x=scost,y=ssint; 
x +y 

5. z = j(x y) = x · x = 2s - I y = s + 21 · 
' -v'x2 + y2 ' ' ' 

4. Partial Derivatives. Applications 

oz oz 

fu' 01 

oz oz 
os'ai 

6. z=f(x,y)=e'cosy; x=s2 -t2,y=2vt; 
oz oz 
a;· a, 

7. w = j(x,y,z) = x 2 + y2 + z2 + 3xy - 2xz + 4; x = 3s + t, y = 2s - 1, 
z = s + 21; ow/os, ow/ot 

8. It"= j(x,y,z) = x 3 + 2y3 + z 3 ; x = s2 - 12, )' = s2 + 12 , z = 2st; ow/os, 
ow/01 

9. w =J(x,y,z) = x 2 -y2 + 2z2 ; x = r2 +I, y = r2 - 2r + l,z=r2 -2; 
dw/dr 

IO. z =j(x,y) =I ;\~:)'2 ; x = r + 3s - t, y = r - 2s + 31; oz/or, oz/os, 

oz/ot 

11. w = j(u) = u3 + 2u2 - 3u + I; u = r2 - s2 + 12 ; 
ow ow ow 
a;· cs ·a, 

12. w = f(x,y,u,i;) = x 2 + y2 - u2 - v2 + 3x - 2y + u - v; x = 2r + s -1, 

y = r - lv +I, u = 3r - 2s +I, i; = r - s - t; 
OW OW ow 

In Problems 13 through 20, use the Chain Rule to find the indicated derivatives at the 
values given. 

~ ~where r = 'i (} = 1!. 
or. j}(J " ' 4 

14. w = x 2 + y2 - z2; x =I - 12, y = 21+3,z=12 + t, dw 
- where/= -I 
dt 

15. w=xy+yz+zx; x=tcost,y=tsint,z=t; 
dw n 
-where t =
dt 4 

16. z = u3 + 2u - 3; u = s2 + 12 - 4; 

17. z=-2xy 2 ; x = rcosfJ,y = rsin8; 
x +y 

oz oz 
:;-.-;-wheres= I and t = 2 
us ul 

18. f = e-'1'cosxyz; x = r2 + 12, y = 12 + r, z = r + t; 
of of cf 
-- - - where r = 2 t = -2 
ox· oy • oz· • 

19. w = xl + YJ + zJ - u2 - i;2 ; x = r2 + s2 + ,2, y = r2 + s2 - ,2, 

z = r2 - s2 - ,2, u = r2 + ,2, i; = r2 - s2 ; 
ow ow 
,,-,-wherer= l,s=O,t= -I 
us 01 
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20. w = x 4 - y4 - z* ; x = Sr + 3s - 2t + u - v, 
)' = 2r - 4s + t - u2 + v2, z = s3 - 2t2 + 3v2 ; 

ow ow 
Ts'Tvwherer= l,s= -l,t=0,u=3,v= -2 
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21. Suppose that 1i· = f(x,y,z, t) and z = g(x,y, t). Using the notation as given in (8), 
we may find ow/ox by the formula 

Oil' ow ox ow oy ow oz cw ot 
-=--+--+--+--. 
ox ox ox oy ox oz ox 01 ox 

Since x, y, and / are independent, we have 

and we find 

ox= I 
ox ' 

oy 
-=0 Ox ' 

Oil' ow ow oz 
-=-+-----
OX ox oz ox 

and 

or 

01=0 
ox ' 

O=~~a_z 
oz ax· 

This formula is incorrect. (a) Verify this fact by substituting specific functions for 
/and g. (b) Using formulas ( 10), show that 

011" . . a-;= J.1 + J.Jo .•. 

Verify the correctness of this result for the specific functions employed in part (a). 

22. Suppose that z = j(x,y, z) is continuous and that of/ox, oj/oy, oj/13z are continuous. 
Let x = x(r, s), y = y(r,s), z = z(r,s) be functions all of whose first partial deriva
tives exist. Derive the Chain Rule formula for oz/cs. 

23. State and prove the Fundamental Lemma on Differentiation (Theorem 2) for 
functionsf ofthree variables (say x, y, and z). 

24. Let f = j(x, y, z) be a function with continuous partial derivatives and define 
g(/) = j(lx, ty, lz). Show that g'(t) = xf 1 + >1: 2 + zf3. 

4. Applications of the Chain Rule 

The Chain Rule may be employed profitably in many types of applications. 
These are best illustrated with examples, and we shall begin with two prob
lems in related rates. 

EXAMPLE 1. At a certain instant the altitude of a right circular cone is 30 cm 
and is increasing at the rate of2 cm/sec. At the same instant, the radius of the 
base is 20 cm. and is increasing at the rate of 1 cm/sec. At what rate is the 
volume increasing at that instant? (See Fig. 4-3.) 

SOLUTION. The volume Vis given by V = tnr2h, with rand h functions of the 
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b 

\ f 
h 

~ 
B 

Fig. 4-3 Fig. 4-4 

time t. We can apply the Chain Rule to obtain 

dV iWdr cVdh 
di = Tr di + iJh dt 

2 dr I 2 dh 
= rrrh dt + 3nr dt. 

At the given instant, 

I 

dV 2 1 2000n di= 3x(20)(30)(1) + 3n(20)2(2) = - 3-cm3/sec. 

EXAMPLE 2. The base B of a trapezoid increases in length at the rate of 2 
cm/sec and the base b decreases in length at the rate of 1 cm/sec. If the altitude 
his increasing at the rate of 3 cm/sec, how rapidly is the area A changing when 
B = 30 cm., b = 50 cm., and h = IO cm.? (See Fig. 4-4.) 

SOLUTION. The area A is given by A= t<B + b)h, with B, b, and h functions 
of time. We apply the Chain Rule to get 

dA = iJA dB+ cA db+ cA dh = !h dB+ !1idb + !(B + b)dh 
d1 iJB d1 iJb d1 iJh dt 2 d1 2 dt 2 d1 

= (5)(2) + (5)( - I) + (40)(3) 

= 125 in2/sec. 

Note that since b is decreasing, db/dt is negative. 

The next example shows that a clear understanding of the symbolism in 
partial differentiation is required in many applications. 

EXAMPLE 3. Suppose that z = j(x + at) and a is constant. Show that 

Cz Cz 
iJ1=acx· 

SoLUTIOI". We observe that/isa function of one argument (in which, however, 
two variables occur in a particular combination). We let u = x +al and, if 
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we now write 

z =/(u), u = x +at, 

we recognize the applicability of the Chain Rule. Therefore 

oz =dz ~u = f'(u)- I, 
ox du ox 

We conclude that 

oz =dz ou = f'(u). a. 
01 du ct 
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EXAMPLE 4. An airplane is traveling directly east at 300 km/hr and is climbing 
at the rate of 600 meters/min. At a certain instant, the airplane is 12,000 
meters above ground and 5 km directly west of an observer on the ground. 
How fast is the distance changing between the airplane and the observer at 
this instant? 

SOLUTION. Referring to Fig. 4-5, with the observer at 0 and the airplane at 
A, we see that x, y, ands are functions of the time t. The distances between 
the airplane and the observer is given bys= (x2 + y 2) 112 , and we wish to 
find ds/dt. Using the Chain Rule, we get 

ds = os dx + os dy = x dx + y dy 
dt ox dt oy dt .Jx2 + y2 dt .jx2 + y2 dt' 

From the given data we see that, at the instant in question, 

y = 12,000, x = 5,000, :~ = -83.3 m/sec. and ";, = +IO m/sec. 

Therefore 
ds 5,000 12,000 
dt = 13,000 ( - 83·3> + 13,000 (IO) 

= - 22.8 m/sec. 

The negative sign indicates that the airplane is approaching the observer. 
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PROBLEMS 

I. Find the rate at which the lateral area of the cone in Example I is increasing at 
the given instant. 

2. At a certain instant a right circular cylinder has radius of base IO cm. and altitude 
15 cm. At this instant the radius is decreasing at the rate of 5 cm/sec and the altitude 
is increasing at the rate of 4 cm/sec. How rapidly is the volume changing at this 
moment? 

3. A gas obeys the law pv = RT(R = const). At a certain instant while the gas is being 
compressed, v = 15 m3, p = 25 kg/cm 2, vis decreasing at the rate of 3 m3/min, 
and p is increasing at the rate of 6j kg/cm2 /min. Find dT/dt. (Answer in terms of 
R.) 

4. (a) In Problem 2, find how rapidly the lateral surface area of the cylinder is changing 
at the same instant. (b) What would the result be for the area A consisting of the 
top and bottom of the cylinder as well as the lateral surface? 

5. At a certain instant of time, the angle A of a triangle ABC is 60° and increasing 
at the rate of 5°/sec, the side AB is 10 cm. and increasing at the rate of I cm/sec, 
and side AC is 16 cm. and decreasing at the rate of! cm/sec. Find the rate of change 
of side BC. 

6. A point moves along the surface z = x 2 + 2y2 - 3x + yin such a way that dx/dt = 3 
and dy/dt = 2. Find how z changes with time when x = I, y = 4. 

7. Water is leaking out of a conical tank at the rate of0.5 m3/min. The tank is also 
stretching in such a way that, while it remains conical, the distance across the top 
at the water surface is increasing at the rate of 0.2 m/min. How fast is the height Ii 
of water changing at the instant when h = IO and the volume of water is 75 cu. 
meters? 

8. A rectangular bin is changing in size in such a way that its length is increasing at 
the rate of 3 cm/sec, its width is decreasing at the rate of 2 cm/sec, and its height is 
increasing at the rate of I cm/sec. (a) How fast is the volume changing at the instant 
when the length is 15, the width is IO, and the height is 8? (b) How fast is the total 
surface area changing at the same instant? 

9. a) Given z = j(y/x). Find iJz/iJx and iJz/iJy in terms of f'(y/x) and x and y. [Hint: 
Let u = y/x.] (b) Show that x(iJz/iJx) + y(iJz/iJy) = 0. 

IO. a) Given that w = j(y - x - t, z - y + t). By letting u = y - x - t, v = z - y + t, 
find iJw/iJx, iJw/iJy, iJw/iJz, iJw/iJt in terms of/1 and/2 • 

b) Show that 

cw ow ow iJw 
-a +2-:;-+T+-a =O. 

X oy vZ I 

11. Suppose that z = j(x,y) and x = rcos8, y = rsinO. (a) Express iJz/iJr and iJz/08 
in terms of iJz/iJx and iJz/iJy. (b) Show that 

(iJz)2 + _!__ (~z)2 = (iJz)2 + (~z )2. 
er r 2 cfJ iJx oy 
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12. Suppose that z = f(x,y), x = e'cos1, y = e'sin1. Show that 

13. Suppose that u = j(x + al,y + b1), with a and b constants. Show that 

ou = 0 ou + bou_ 
01 OX oy 

14. Given that 

. x+y 
f(x,y) = · 2 + 2 • x -xy y 

show that 

xf1 +Yf2= -l 

15. Given that/(x,y) = x 2 -y2 + xylog(y/x), show that xf1 + Yf2 = 2/ 
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16. If in Example 4 a second observer is situated at a point O', 12 km west of the one 
at 0, find the rate of change of the distance between A and O' at the same instant. 

17. If in Example 2 one of the acute angles is held constant at 60'", find the rate of 
change of the perimeter of the trapezoid at the instant in question. 

18. A rectangular bin (without a top) is changing in size in such a way that its total 
surface area always maintains the value of 100 sq. cm. The length and width are 
each increasing at the rate of I cm/sec. Find how fast the height and the volume are 
changing when the length and width are each 2 cm. 

19. The number A of bacteria at time / (in hours) of a certain type follows a growth law 
given by 

oA cA oA 
-=x-+2y-, 
01 OX oy 

where x and y are two types of liquid (in cc) in which the culture is grown. Show 
that A (x, y, 1) = c(x2 + y)e2', where c is a constant, is a possible law of growth. If 
there are 4 cc of x-type liquid and 10 cc of y-type and if there are 1000 bacteria at 
time t = 0, find the number of bacteria after four hours. 

5. Directional Derivatives. Gradient 

The partial derivative of a function with respect to x may be considered as 
the derivative in the x direction; the partial derivative with respect toy is the 
derivative in they direction. We now show how we may define the derivative 
in any direction. To see this, we consider a function/(x,y) and a point P(x,y) 
in the xy plane. A particular direction is singled out by specifying the angle 
8 which a line through P makes with the positive x axis (Fig. 4-6). We may 
also prescribe the direction by drawing the directed line segment PP of unit 
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y 
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pt 

(0,1) /I 
..&__Jsin9=p 

P(z,y) cose-x 

Fig. 4-6 

length, as shown, and defining the vector a by the relation 

a=i.i+µj, 

with ). =cos 0, µ = sin 0, and i and j the customary unit vectors. We note 
that a is a vector of unit length. The vector a determines the same direction 
as the angle 0. 

Definition. Let f be a function of two variables. We define the directional 
derivative D.f off in the direction of a by 

D.f(x,y) = limf(x + ).h,y :µh) - f(x,y) 
11-0 

whenever the limit exists. 

REMARK. We note that, when (J = 0, then).= I,µ= 0, and the direction is 
the positive x direction. The directional derivative is exactly of/ox. Similarly, 
if (J = rt/2, we have;.= 0, µ = l, and the directional derivative is of/oy. 

The working formula for directional derivatives is established in the next 
theorem. 

Theorem 4. If j(x,y) and its partial derivatives are continuous and 

a =(cos O)i + (sin O)j, 

then 

D.f(x, y) = j~(x, y) cos (J + j~(x, y) sin IJ. 

PROOF. The proof uses the following artificial device. We define the function 
g(s) by 

g(s) =f(x + scosO,y + ssinO), 

in which we keep x, y, and (J fixed and allows to vary. The Chain Rule now 
yields 

g'(s) =fx(x + scosO,y + ssinO)cos(J + f,,(x + scosO,y + ssinO)sinO, 
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and we see that 

g'(O) =f~(x,y)cos8 + j~(x,y)sin8. 
By definition we know that 

'(O) 1. g(s) - g(O) 1. j{x + scos8,y + ssin8) - f{x,y) g = 1m =1m , .-o s .-o s 

and hence g'(O) is precisely Daf(x,y). The result is established. 

EXAMPLE I. Given/(x,y) = x 2 + 2y2 - 3x + 2y, find the directional deriva
tive off in the direction 8 = 7t/6. What is the value of this derivative at the 
point (2, -1)? 

SOLUTION. We compute 

off ox = 2x - 3, of/oy = 4y + 2. 

Therefore 

Daf= (2x - 3)·!J3 + (4y + 2)·!. 

In particular, when x = 2 and y = - I, we obtain 

f I ~ 

Da = 2.J3 - I. 

An alternate notation for directional derivative for functions of two 
variables is the symbol 

d1Jf{x,y), 

in which 8 is the angle the direction makes with the positive x axis. For a 
fixed value of x and y, the directional derivative is a function of 8. It is an 
ordinary problem in maxima and minima to find the value of 8 which makes 
the directional derivative at a given point the largest or the smallest. The 
next example shows the method. 

EXAMPLE 2. Given/(x, y) = x 2 - xy - y2, find d9 j{x, y) at the point (2, - 3). 
For what value of 8 does d8(2, -3) take on its maximum value? 

SoLUTION. We have 

f 1(x,y) = 2x - y, 

Therefore for x = 2, y = - 3, 

f 2(x,y) = -x - 2y. 

def(2, - 3) = 7 cos() + 4 sin 8. 

To find the maximum of this function of 8 we differentiate the function 

k(8) = 7cos8 + 4sin8 

and set the derivative equal to zero. We get 
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k'(O) = -7sinH + 4cos0 = 0 or tane = t· 
TheresultiscosO= ±7/J65,sin0= ±4/...)65,and 

tanO = ~. 0 = { 29°45' approximately, 
209°45' approximately. 

It is clear by substitution that the first choice for 0 makes k(O) a maximum, 
while the second makes it a minimum. 

The definition of directional derivative for functions of two variables has 
a natural extension to functions of three variables. In three dimensions, a 
direction is determined by a set of direction cosines).,µ, v or, equivalently, 
by a vector 

a = A.i + µj + vk. 

We recall that ).2 + µ 2 + v2 = I, and so a is a unit vector. 

Definition. We define the directional derivative D.foff(x,y,z) in the direc
tion of a by 

D Ji( ) _ 1. j(x + )Ji,y + µh,z + vh) - j(x,y,z) 
• x,y,z - 1m h 

h-0 

whenever the limit exists. 

The proof of the next theorem is entirely analogous to (and employs the 
same device as) the proof of Theorem 4. 

Theorem 5. Jjj(x,y, z) and its partial derivatives are continuous and 

a = A.i + µj + vk 

is a unit vector, then 

D.J(x,y, z) = A.JAx,y, z) + µJ;.(x,y, z) + vJ;(x,y, z). 

EXAMPLE 3. Find the directional derivative of 

f(x,y,z) = x 2 + y 2 + z 2 - 3xy + 2xz - yz 

at the point (l, 2, -1). 

SoLUTION. We have 

fx(x,y,z) = 2x - 3y + 2z; j~(x,y,z) = 2y - 3x - z; 

j~(x,y,z) = 2z + 2x - y. 

Denoting the direction by a = ;J + µj + vk, we get 

D.J(l,2, -1) = -6A. + 2µ - 2v. 
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EXAMPLE 4. Given the function 

f(x,y,z) = xeyz + ye"z + zexY, 

find the directional derivative at P( I, 0, 2) in the direction going from P to 
P'(5, 3, 3). 

SOLUTION. A set of direction numbers for the line through P and P' is 4, 3, I. 
The corresponding direction cosines are 4/._;26, 3/,J26, l/'-'126, which we 
denote by/.,µ, v. The direction a is given by 

4 . 3 . I k 
a=-=•+-=J+-= . 

v/26 .j26 v26 

We find that 

°! (x, )', z) = el"= + yzex= + zyex.r 
ox 

°!c'\,y, z) = xze)·z +ex=+ xzex.r 
uy 

~-(x, y, z) = xye.r= + xyex= + ex.r 

Therefore 

and 

and 

and 

of 
-;-- (I, 0, 2) = I. 
ux 

of _,__ ( I 0 2) = 4 + e2 
~ ' ' ' uy 

~l 
0=(1,0,2) = 1. 

. 4 2 3 I 17 + 3e2 
D.J(l,0,2) =-= + (4 + e )-= +-= = -c=--· 

v 26 ...; 26 v 26 \! 26 

As the next definition shows, the gradient of a function is a vector contain
ing the partial derivatives of the function. 

Definitions. (i) If j(x,y) has partial derivatives, we define the gradient 
vector 

gradj(x,y) =fx(x,y)i + J;(x,y)j. 

ii) If g(x,y, :) has partial derivatives, we define 

grad g(x,y, z) = Yx(x,y, z)i + gy(x,y, z)j + gz(X, y, z)k. 

The symbol V, an inverted delta, is called '"de!" and is a common one used 
to denote the gradient. We will frequently write V/for grad/ 

If b and c are two vectors, we recall that the scalar product b · c of b = 
b 1 i + b2 j + b3 k and c = c 1 i + c2j + c3 k is given by 

b·c=b1c1 +b2 c2 +b3 c3 • 

For two-dimensional vectors the result is the same, with b3 = c3 = 0. 
We recognize that if a is a unit vector so that a= A.i + ,uj + vk, then we 

have the formula 

DJ= i.J.~ + µJ; + vJ; = a· VJ. 
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Looked at another way, the scalar product of a and V f is given by 

a·V/= Jal JV/Jcos¢ = Daf; 

where <Pis the angle between the vectors a and Vf 
From the above formula we can conclude that D8 fis a maximum when¢ 

is zero----i.e., when a is in the direction of grad/ 

EXAMPLE 5. Given the function 

j(x,y,z) = x3 + 2y3 + z3 - 4xyz, 

find the maximum value of DJ at the point P = ( - 1, 1, 2). 

SOLUTION. We have 

oflcx = 3x2 - 4yz; 

Therefore 

cfloy = 6y2 - 4xz; cfloz = 3z2 - 4xy. 

Vj(-1,1,2)= -5i+ 14j+ 16k, 

and a unit vector a in the direction of V/ is 

a = _ 5 __ i + __ 14 j + 16 k. 
3...; 53 3'153 3.J 53 

The maximum value of D. f is given by 

DJ= -5( ~ 5 ) + 14( 14 \ + 16( l~ ) = 3'153. 
3v 53 3-.; 53) 3...; 53 

PROBLEMS 

In Problems 1 through 6, find in each case d8j(x,y) at the given point. 

I. j(x,y) = x 2 + y 2 ; (3,4) 

2. j(x,y) = x 3 + y 3 - 3x2y- 3xy2 ; (1, -2) 

3. j(x,y) = arctan (y/x); (4, 3) 

5. j(x,y) =ex cosy: (0, n/3) 

4. j(x, y) = sin (xy); (2, n/4) 

6. f(x,y) = (sinxr; (n/2,0) 

In each of Problems 7 through lO find the value of d8j(x,y) at the given point. Also, 
find the value of 0 which makes d8 /a maximum at this point. Express your answer in 
terms of sin 0 and cos 0. 

7. j(x,y) = x 2 + y 2 - 2x + 3y; (2, -1) 

8. j(x,y) = arctan(x/y); (3,4) 

9.j(x,y)=e'siny; (O,n/6) 

10. j(x,y) = (siny}'Y; (0, n/2) 



5. Directional Derivatives. Gradient 223 

In each of Problems 11 through 14, find DJ at the given point. 

11. j(x,J-.=) = x 2 + xy - xz + y 2 - z2 ; (2, I, -2) 

12. j(X,J",Z)=x2 y+xze>'-xye'; (-2,3,0) 

13. j(x,y, z) = cosxy + sinxz; (0, 2, -1) 

14. j(x,y,z) = log(x + y + z) - xyz; (-1,2, I) 

In Problems 15 through 18, in each case find D.f at the given point P when a is the 
given unit vector. 

15. j(x,y,z) = x 2 + 2xy-y2 + xz + z2 ; P(2, I, I); a= !i-!j + !k 

16. f(x,y,z) = x 2y + xye' - 2xze>'; P(l,2,0); a= 'i- ~j + ~k 

17.j(x,y,z)=sinxz+cosxy; P(0,-1,2): a=~i-~j+ 2_k 
...;6 v6 ...,6 

18. f(x,y,z) = tanxyz + sinxy- cosxz; P(O, I, I); 

I . 3 . 4 k 
a=---=•+ -:==J +--:== 

v26 ._,26 v26 

19. The temperature at any point of a rectangular plate in the xy plane is given by 
the formula T = 50(x2 - y2) (in degrees Celsius). Find d6 T(4, 3), and find tan 0 
when d6 T(4, 3) = 0. Find also the slope of the curve T = const which passes 
through that point. 

In each of Problems 20 through 23, find VJ at the given point. 

20. f(x, y) = x3 - 2x2 y + xy2 - r 3 ; P(3, - 2) 

21. j(x,y) = log(x2 + y2 +I)+ e2'"'; P(O, -2) 

22. f(x,y, z) = sinxy + sinxz + sinyz; P(I, 2, -1) 

23. f(x,y, z) = xzex> + yze'"' + xye'': P(-1, 2, I) 

In each of Problems 24 through 27, find DJ at the given point P where a is a unit 
vector in the direction ff'. Also, find at P the value of D.f where ll is a unit vector 
such that D,f is a maximum. 

24. f(x,y, z) = x 2 + 3xy + y 2 + z2 ; P(l,O, 2); P'(-1, 3,4) 

25. f(x,y,z)=e'"cosy+e'sinz; P(2,l,0); P'(-1,2,2) 

26./(x,y,z)=log(x2 +y2)+e'; P(0,1,0); P'(-4,2,3) 

27. f(x,y,z) = xcosy + ycosz + zcosx; P(2, 1,0); P'(l,4,2) 

28. Prove Theorem 5. 

29. Given g(x,y,z) = 2x2 + y 2 - z2 + 2xy - 3x + 2y + z, find the points, if any, 
such that IVgl = 0. 

30. Given g(x,y, z) = x3 - 2y2 + z2 - 2xz + 4y2 z, find the points, if any, such that 
IVgl =0. 
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31. Suppose thatf(x,y, z) and g(x,y, ;:) are given functions and that a and bare con
stants. Prove the formulas: 

V(af + bg) = aVf+ bVg, 

V(jg) =JVg + gVf 

32. Suppose that the domain of F = F(u) contains the range of g = g(x,y, z). Prove 
that 

V(F(g)) = F'(u) V g. 

33. Suppose that F(x,y, z) = J;(x,y, z)i + fi(x,y, ;:)j + f,(x,y, z)k is a vector function. 
We define the vector V by the symbolic formula 

V c. c. ck =-•+·-J+ -
ex ?:y c;: 

and the cross product V x F is given by 

v x F = (?/3 _ cfi) i + (a!; _ cf;) j + (?.i _ cf.) k. 
cy c;: c;: ex ex cy 

If g(x,y, z) is a scalar function show that 

V x (gF) = gV x F + (Vg) x F. 

34. Refer to Problem 33 for definitions and show that 

V · (F x G) = G • V x F - F • V x G. 

35. Suppose that/: R3 -+ R 1 has the property that Vf= 0. Show that/ is a constant. 

36. Let F = x3 i + y3j + ;:3k. Show that V x F = O; conclude that V x F = 0 does not 
imply F = const. (See Problem 35.) [Hint: See the proof of Theorem 2.) 

6. Geometric Interpretation of Partial Derivatives. 
Tangent Planes 

From the geometric point of view, a function of one variable represents a 
curve in the plane. The derivative at a point on the curve is the slope of the 
line tangent to the curve at this point. A function of two variables z = j(x, y) 
represents a surface in three-dimensional space. If (x0 ,y0 ) are the coordi
nates of a point in the xy plane, then P(x0 ,y0 , z0 ), with z0 = j(x0 ,y0 ), is a 
point on the surface. Consider the vertical plane y = y0 , as shown in Fig. 
4-7. This plane cuts the surface z = j(x,y) in a curve C1 which contains the 
point P. From the definition of partial derivative we see that 

jJXo.J'o) 

is the slope of the line tangent to the curve C1 at the point P. This line is 
labeled L 1 in Fig. 4-7 and, of course, is in the plane y = y 0 • In a completely 
analogous manner we construct a plane x = x 0 intersecting the surface with 
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x 

equation z = j(x, y) in a curve C2 • The partial derivative 

/y(xo.Yo) 

225 

is the slope of the line tangent to C2 at the point P. The line is denoted L 2 

in Fig. 4-8, and its slope is the tangent of the angle {J, as shown. 
The directional derivative d0 f(x0 ,y0 ) has a similar interpretation. We 

construct the vertical plane through (x0 , y 0 , 0) which makes an angle (} with 
the positive x direction. Such a plane is shown in Fig. 4-9. The curve C3 is 
the intersection of this plane with the surface, and the line L 3 is the line 
tangent to C3 at P. Then d11 f(x 0 ,y0 ) is the slope of L 3 • 

According to Theorem 2, we may write the formula 

f(x,y) - f(xo.Yo) =f~(xo.YoHx - Xo) + /y(xo.YoHY - Yo) 

+ G 1 • (x - x 0 ) + Gi · (y - Yo), 

in which we take 

X-Xo = h and y-yo = k. 
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x 
Fig. 4-'i 

z 

J---> 
x 

z"' f(x,y) Fig. 4-IO 

Since G1 and G2 tend to zero as (x,y)-+ (x0 •. fo), the next definition has an 
intuitive geometric meaning. 

Definition. The plane whose equation is 

z - z0 = m 1(x - x0 ) + m 2(y- Yo) 

where 

is called the tangent plane to the surface z = f(x, y) at (x0 , y 0). 

REMARKS. (i) According to the geometric interpretation of partial deriva
tive which we gave, it is easy to verify that the tangent plane contains the 
lines L 1 and L 2 , tangents to C1 and C2 , respectively. (See Fig. 4-10.)(ii) From 
the definition of tangent plane we observe at once that 

f~(xo.Yo), -I 

is a set of attitude numbers for the plane. (Attitude numbers were defined on 
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page 19.) The equation of the tangent plane is conveniently expressed in 
vector notation. Define 

where 

Also, let v =xi+ yj + zk and v0 = x0 i + y0 j + z0 k. Then the definition of 
the tangent plane takes the form 

I n · (v - v0 ) = 0. I 
Geometrically, the plane is traced by the heads of the directed line segments 
having base at the origin which are representatives of the vector v. The 
geometric importance of the vector n is given in the next definition. 

Definition. The line with equations 

x - x 0 y - Yo z - z0 --=--=--, 
m 1 m2 -1 

with z0 = f(x0 ,y0 ), m 1 = fx(x0 ,y0 ), m2 = fy(x0 ,y0 ), is called the normal line 
to the surface at the point P(x0 ,y0 ,z0 ). Clearly, the normal line is perpen
dicular to the tangent plane. (See Fig. 4-10.) 

REMARK. In addition tofx(x0 ,y0 ) we shall use the symbols 

and 

for m1. and analogous notations for m2. 

EXAMPLE 1. Find the equation of the tangent plane and the equations of the 
normal line to the surface 

z = x 2 + xy-y2 

at the point where x = 2, y = -1. 

SOLUTION. We have Zo = /(2, -1) = I;/ I (x,y) = 2x + y,fi(x,y) = x - 2y. 
Therefore m 1 = 3, m 2 = 4, and the desired equation for the tangent plane is 

z - I = 3(x - 2) + 4(y + I). 
The equations of the normal line are 

x-2 y+l z-1 
-3-=-4-=-=t· 

If the equation of the surface is given in implicit form it is possible to use 
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the methods of Section 2 to find oz/ox and oz/oy at the desired point. The 
next example shows how we obtain the equations of the tangent plane and 
normal line under such circumstances. 

EXAMPLE 2. Find the equation of the tangent plane and the equations of 
the normal line at (3, - l, 2) to the graph of 

xy + yz + xz - 1 = 0. 

SOLUTION. Holding y constant and differentiating with respect to x, we get 

and 
oz y + z 1 -- ---- ---m OX - y + x - 2 - I. 

Similarly, holding x constant, we obtain 

oz CZ oz x + z 5 
x + y oy + z + x i!y = 0, oy = - x + Y = -2 = m2. 

The equation of the tangent plane is 

z - 2 = -!(x - 3) - t(Y + I) 
The normal line has equations 

x-3 y+l z-2 
-1/2 = - 5/2 = -1 

x + 5y + 2z - 2 = 0. 

x-3 y+l z-2 
-1-=-5-=-2-· 

The methods of the calculus of functions of several variables enable us 
to establish purely geometric facts, as the next example shows. 

EXAMPLE 3. Show that any line normal to the sphere 

x2 + Y2 + z2 = 0 2 

always passes through the center of the sphere. 

SOLUTION. Since the sphere has center at (0, 0, 0), we must show that the 
equations of every normal line are satisfied for x = y = z = 0. Let (x0 ,y0 , z0 ) 

be a point on the sphere. Differentiating implicitly, we find 

CZ x oz y 
ax= -z-· oy= -z-

The normal line to the sphere at (x0 ,y0 , z0 ) has equations 

x - x 0 y - Yo z - z0 

-xo/Zo = -yo/Zo = --=-t· (I) 

Letting x = y = z = 0, we get an identity for (I); hence the line passes 
through the origin. 
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Fig. 4-11 

Let the equations 

z =f(x,y) and z = g(x,y) 

represent surfaces which intersect in a curve C. The tangent line to the 
intersection at a point P on C is by definition the line of intersection of the 
tangent planes to f and g at P (Fig. 4-11 ). 

We can use vector algebra in the following way to find the equations of 
this tangent line. If P has coordinates (x0 ,y0 , z0 ), then 

u = J.~(Xo,J'o)i + J;.(xo,J'oH + (- l)k 

is the vector perpendicular to the plane tangent to/at P. Similarly, 

v = g..(xo,)'o)i + gy(xo,JoH + ( - l)k 

is the vector perpendicular to the plane tangent to g at P. The line of inter
section of these tangent planes is perpendicular to both u and v. We recall 
from the study of vectors that, if u and v are nonparallel vectors, the vector 
u x vis perpendicular to both u and v. Defining the vector w = ai + bj + ck 
by the relation 

w = u xv, 

we see that the equations of the line of intersection of the two tangent planes 
are 

x - x 0 y - Yo z - z0 
-a- = -b- = -·· ·c--

The next example shows how the method works. 

EXAMPLE 4. Find the equations of the line tangent to the intersection of the 
surfaces 

z =f(x,y) = x 2 + 2y2 , 

at the point (2, I, 6). 

z = g(x,y) = 2x 2 - 3y2 + I 
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SOLUTION. We have 

!. = 2x, J;. = 4y; gx = 4x, gy = -6y. 

Therefore 

u = 4i + 4j- k; v = 8i- 6j- k; 

u x v = - IOi - 4j - 56k. 

The desired equations are 

PROBLEMS 

In Problems I through 14, find in each case the equation of the tangent plane and the 
equations of the normal line to the given surface at the given point. 

I. z = x2 + 2y2 ; (2, - I, 6) 

3. z = xy; (2, -1, -2) 

5. z=exsiny; (l,n:/2,e) 

7. z=log.jx2 +y2 ; (-3,4,log5) 

8. x 2 + 2y2 + 3z2 = 6; (I, I, -1) 

9. x 2 + 2y2 - 3z2 = 3; (2, I, -1) 

10. x 2 + 3y2 - z2 = O; (2, -2,4) 

11. x 2 + z2 = 25; (4, -2, -3) 

12. xy+yz+xz= I; (2,3,-1) 

13. x 112 + y 112 + z 112 = 6; (4, I, 9) 

14. y 112 + z 112 = 7; (3, 16,9) 

2. = = 3x2 - y 2 - 2; ( - I, 2, - 3) 

6. z = e2xcos3y; (I, n:/3, -e2) 

15. Show that the equation of the plane tangent at (x 1 ,y1,z1) to the surface (an 
ellipsoid unless A = B = C in which case it is a sphere) 

x2 y2 z2 
-+-+-=I Ai B2 c2 is 

16. Show that every plane tangent to the surface (a cone) 

x2 + )'2 = z2 

passes through the origin. 

17. Show that every line normal to the cone 

z2 = 3x2 + 3y2 

intersects the z axis. 

18. Show that the sum of the squares of the intercepts of any plane tangent to the 
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surface 

x213 + y213 + z213 = 0213 

is constant. 

In Problems 19 through 22, find the equations of the line tangent to the intersection 
of the two surfaces at the given point. 

19. z = x2 + .J?2. z = 2x + 4y + 20; (4, -2,20) 

20. z = v'x2 + y2, z = 2x - 3y- 13; (3, -4,5) 

21. z = x2, z = 25 - y 2 ; (4, -3, 16) 

22. z=.j25-9x2 , z=e"Y+3; (1,0,4) 

23. Find the point or points on the surface 

z = x 2 - 2y2 + 3y - 6 

where the tangent plane is parallel to the plane 2x + 3y + z = 5. 

*24. Consider the surface (called a hyperboloid) x 2 + y 2 - z2 = I. Show that at each 
point parts of this surface lie on both sides of the tangent plane. 

25. Given the surface 

x"+y"+z"=a" 

where a (,,;,I) and a are positive constants. Let x, y, z be the intercepts of any 
tangent plane to the surface with the coordinate axes. Show that 

;X"/( 1-2) + jl"/( I -oJ + zai< I -oJ = Const. 

Find the value of the constant 

26. Find the point or points (if any) on the surface 

z = x2 + 2xy - y2 + 3x - 2y - 4 

where the tangent plane is parallel to the xy-plane. 

27. Find the point or points (if any) on the surface 

x 2 + 2xy - y2 + 3z2 - 2x + 2y - 6z - 2 = 0 

where the tangent plane is parallel to the yz-plane. 

7. The Total Differential. Approximation 

The differential of a function of one variable is a function of two variables 
selected in a special way. If y = /(x), then the quantity df, called the differen
tial off, is defined by the relation 

df =f'(x)h, 

where h and x are independent variables. 
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Let f be a function of several variables; the next definition is the ap
propriate one for generalizing the notion of differential to such functions. 

Definitions. The total differential ofj(x,y) is the function dfoffour variables 
x, y, h, k given by the formula 

dj(x,y,h,k) =f~(x,y)h + J;.(x,y)k. 

If Fis a function of three variables-say x, y, and z-we define the total 
differential as the function of six variables x, y, z, h, k, I given by 

dF(x,y, z, h, k, /) = f',,(x,y, z)h + f"y(x,y, z)k + F,(x,y, =)I. 

A quantity associated with the total differential is the difference of the 
values of a function at two nearby points. As is customary, we use!:!. notation 
and, for functions of two variables, we define the quantity l:!.fby the formula 

l:!.f= l:!.j(x,y,h,k) =.f(x + h,y + k)- f(x,y). 

Here l:!.fis a function of four variables, as is df lffis a function of x, y, and 
z, then l:!.f is a function of six variables defined by 

!!f= l:!.j(x,y,::,h,k,I) =f(x + h,y + k,z + 1)-j(x,y,z). 

EXAMPLE 1. Given the function 

f(x,y) = x 2 + xy - 2y2 - 3x + 2y + 4, 

find dj(a,b,h,k) and l:!.j(a,b,h,k) with a= 3, b =I. 

SOLUTION. We have 

j(3, I)= 7; f.1(X,J') = 2x + J' - 3; f2(X,)') = X - 4y + 2; 

/1(3,1)=4; /2(3,1)= I. 
Also 

j(3 + h, I + k) = (3 + h)2 + (3 + h)(I + k) - 2(1 + k)2 - 3(3 + h) 

+ 2(1 + k) + 4 = h2 + hk - 2k 2 + 4h + k + 7. 

Therefore 

df(3, l,h,k) = 4h + k; l:!.f(3, l,h,k) = 4h + k + h 2 + hk - 2k2 • 

The close relationship between df and l:!.f is exhibited in Theorem 2 on 
page 207. Equation (I) of that theorem may be written 

l:!.f(x0 ,y0 ,h,k) = dj(x0 ,y0 ,h,k) '+ G1(h,k)h + Gi(h,k)k. 

The conclusion of the theorem implies that 

as h,k -+O, 
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since both G1 and G2 tend to zero with h and k. In many problems !J.f is 
difficult to calculate, while dfis easy. If hand k are both "small," we can use 
dfas an approximation to !1.j: The next example shows the technique. 

EXAMPLE 2. Find, approximately, the value of J(5.98)2 + (8.01)2 . 

SoLCTION. We consider the function 

z =f(x,y) = .Jx2 + y2, 

and we wish to find/(5.98,8.01). We see at once thatf(6,8) =JO; hence we 
may write 

}(5.98,8.01) =f(6,8) + !lj; 
where fl/is defined as above with x 0 = 6, Yo= 8, h = -0.02, k = 0.01. The 
approximation consists of replacing !J.f by df We have 

CZ x oz y 
ex .. .j x2 + y2 , cy = .. .j x2 + y2. 

and so 

dj(6,8, -0.02,0.01) = fo(-0.02) + 180 (0.01) = -0.004. 

We conclude that '\· (5.98) 2 + (8.01)2 = 10 - 0.004 = 9.996, approximately. 

As in the case of functions of one variable, the symbolism for the total 
differential may be used as an aid in differentiation. We let z = f(x,y) and 
employ the symbols 

dz for df, dx for h, and dy for k. 

As in the case of one variable, there is a certain ambiguity, since dz has 
a precise definition as the total differential, while dx and dy are used as 
independent variables. The next theorem shows how the Chain Rule 
comes to our rescue and removes all difficulties when dx and dy are in turn 
functions of other variables (i.e., dx and dy are what we call intermediate 
variables). 

Theorem 6. Suppose that z = f(x,y), and x and y are functions of some other 
variables. Then* 

oz oz 
dz = OX dx + oy dy. 

The result for w = F(x, y, z) is similar. That is, the formula 

*Of course, iJz/iJx = f.(x,y); iJw/iJx = F',(x,y,z), etc. 
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OW ow ow 
dw= oxdx+ oydy+Tzdz 

holds when x, y, and z are either independent or intermediate variables. 

PROOF. We establish the result for z = f(x, y) with x and y functions of two 
variables, say rands. The proof in all other cases is analogous. We write 

x = x(r,s), y = y(r,s), 

and ther. 
z =f(x,y) =f[x(r,s),y(r,s)] = g(r,s). 

The definition of total differential yields 

dz= g,(r, s)h + g,(r, s)k, 

dx = x,(r, s)h + x,(r, s)k, 

dy = y,(r, s)h + y,(r, s)k. 

According to the Chain Rule, we have 

_ij& ij~_ . . 
g,(r, s) - OX or + oy or - fx(x, y)x,(r, s) + fy(X, y)y,(r, s)' 

of ox of oy . 
g,(r, s) = ~ !>-- + ~ .. - !.- = jx(x, y)x,(r, s) + fy(x, y)y,(r, s). 

ux us uy us 

Substituting the above expressions for g, and g. into that for dz, we obtain 

of of 
dz= OX[x,(r,s)h + x,(r,s)k] + cy[y,(r,s)h + y,(r,s)k] 

or 

of cf 
dz= oxdx + oydy. 

We recognize this last formula as the statement of the theorem. 

EXAMPLE 3. Given 

x = r2 - t2' y = 2rt, 

find dz(r, t, h, k) in two ways and verify that the results coincide. 

SOLUTION. We have, by one method, 

dz= ;;dx + ~;dy =(ex cosy+ eYcosx)dx + (-exsiny + eYsinx)dy; 

dx = 2rh - 2tk; 

dy = 2th + 2rk. 
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Therefore 

dz= (ex cosy+ eYcosx)(2rh - 2tk) + (-exsiny + eYsinx)(2th + 2rk) 

= 2[(excosy + eYcosx)r + (eYsinx - exsiny)t]h 

+ 2[(-eYCOSX - exCOSy)t + (eYsinX - exSiny)r]k. 

On the other hand, the second method gives 

oz oz 
dz=-h +-k, 

or ot 

and using the Chain Rule, we find 

oz = oz ox + oz oy. 
or ox or oy or 

oz oz ox oz oy -=--+--. 
01 ox 01 oy 01 

(1) 

(2) 

We compute the various quantities in the two formulas above and find that 

~: = (eXCOSy + eYC0SX)(2r) + (eYsinX - eXSiny)(2t), 

~;=(ex cosy+ eYcosx)(-21) + (eYsinx-exsiny)(2r). 

Substituting these expressions in (2), we get (1) precisely. 

PROBLEMS 

In each of Problems I through 6, find df(x,y,h,k) and llf(x,y,h,k) for the given values 
of x, y, h, and k. 

I. f(x,y) = x 2 - xy + 2y2 ; x = 2, y = -1, h = -0.01, k = 0.02 

2. f(x,y) = 2x2 + 3xy- y2 ; x =I, y = 2, h = 0.02, k = -0.01 

3. f(x,y) =sin xy + cos(x + y); x = n/6, y = 0, h = 2n, k •=Jn 

4.f(x,y)=ex'sin(x+y); x=n/4, y=O, h=-n/2, k=47C 

5. f(x,y) = x 3 - 3xy + y3 ; x = -2, y = 1, h = -0.03, k =' -0.02 

6. f(x,y) = x 2y- 2xy2 + 3x; x =I, y =I, h = 0.02, k = 0.01 

In each of Problems 7 through IO, find df(x,y,z,h,k,I) and llf(x,y,z,h,k,I) for the 
given values of x, y, z, h, k, and I. 

7. f(x,y,z) = x 2 - 2y2 + z2 - xz; (x,y,z) = (2, -1,3); 
(h, k, I) = (0.0 I, -0.02, 0.03) 

8. f(x,y,z) = xy - xz + yz + 2x - 3y +I; (x,y,z) = (2,0, -3); 
(h,k,I) = (0.1, -0.2,0.1) 

9. f(x,y,z) = x 2y - xyz + z3 ; (x,y,z) = (1,2, -I); 
(h,k,I) = (-0.02,0.01,0.02) 
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10. f(x,y,z) = sin(x + y) - cos(x - z) + sin(y + 2z); 
(x, y, z) = (n/3, n/6, 0); (h, k, I) = (n/4, n/2, 2n) 

11. We define the approximate percentage error of a function f by the formula 

Approximate percentage error = 100 (j} 
Find the approximate percentage error ifj{x,y,z) = 3x3y 1 z4 • 

12. Find the approximate percentage error (see Problem 11) if f = cx"'y"zP (c = 
const). 

13. A ·box has square ends, 11.98 cm. on each side, and has a length of 30.03 cm. 
Find its approximate volume, using differentials. 

14. Use differentials to find the approximate value of 

y'(S.02) 2 + (11.97)2• 

I 5. The legs of a right triangle are measured and found to be 6.0 and 8.0 cm., with a 
possible error of 0.1 cm. Find approximately the maximum possible value of the 
error in computing the hypotenuse. What is the maximum approximate percentage 
error? (See Problem 11.) 

16. Find in degrees the maximum possible approximate error in the computed value 
of the smaller acute angle in the triangle of Problem I 5. 

17. The diameter and height of a right circular cylinder are found by measurement to 
be 8.0 and 12.S cm., respectively, with possible errors of0.05 cm. in each measure
ment. Find the maximum possible approximate error in the computed volume. 

18. A right circular cone is measured, and the radius of the base is 12.0 cm. with the 
height 16.0 cm. If the possible error in each measurement is 0.06, find the max
imum possible error in the computed volume. What is the maximum possible 
approximate error in the lateral surface area? 

19. By measurement, a triangle is found to have two sides of length SO cm. and 70 
cm. ; the angle between them is 30°. If there are possible errors off% in the measure
ments of the sides and t degree in that of the angle, find the maximum approximate 
percentage error in the measurement of the area. (See Problem 11.) 

20. Use differentials to find the approximate value of 

v'(3.02)2 + (1.99) 2 + (5.97)2 • 

21. Use differentials to find the approximate value of 

[(3.01)2 + (3.98)2 + (6.02) 2 + S(l.97)2r 112• 

In each of Problems 22 through 26, find dz in two ways (as in Example 3,) in terms of 
the independent variables. 

22. z = x 2 + xy - y 2 ; x = r 2 + 2s2 , y = rs + 2 

23. z = 2x2 + 3xy + y 2 ; x = t3 + 2t - I, y = t2 + t - 3 

24. z = x 3 + y 3 - x 2y; x = r + 2s - t, y = r - 3s + 2t 
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25. z = u2 + 2L"2 - x 2 + 3y2 ; u = r2 - s2 , v = r2 + s2 , x = 2rs, y = 2r/s 

26. z = u3 + v3 + w3 ; u = r2 + s2 + 12 , v = r2 - s2 + 12 , w = r2 + s2 - 12 

27. Using the formulas in the proof of Theorem 2, find explicit expressions for the 
functions G1 and G2 if 

z = x 2 + 2y2 + 6xy. 

Conclude that (dz - dz)/(lhl + lkl) tends to zero ash, k-+ 0. 

28. Same as Problem 27 for z = 3x3 + 2y3 + 2xy. 

*29. Let z = f(x 1 • x 2 , ••• , x.) be a function of n variables. Define the total differential 
df by the formula 

where h1, h2 , •.• , h. are independent variables. Assume each X; is a function of 
them variables y 1 , y2 , .•• , y,.. State and prove the analog of Theorem 6. 

30. Use the formula in Problem 29 to find approximately the value of 

[<3.01)2 + (2.97)2 + (5.02)2 + (3.99)2 + (7.01)2 + (6.02)2]1'2• 

31. The period T of a simple pendulum is given by T = 2x(//g) •12 where I is the length 
and y is the gravitational constant. If I is measured to be 20 cm with an error of 
0.2, if g is 980 with an error of 7, and if n is computed as 3.14 with an error of 
0.002, use differentials to find an approximate value of T. 

8. Applications of the Total Differential 

Once we clearly understand the concept of function we are able to use the 
notation of the total differential to obtain a number of useful differentiation 
formulas. 

One of the simplest formulas, which we now develop, uses the fact that 
the total differential of a constant is zero. Suppose that x and y are related by 
some equation such as 

f(x,y) = 0. 

If it turns out that y is a function of x, we can compute the derivative dy/dx 
by implicit methods in the usual way. However, we may also use an alter
nate procedure. Since f = 0, the differential df also vanishes. Therefore we 
can write 

df = of dx + of dy = o ox oy 
or 
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dy a11ax 
dx = -aflay (l) 

EXAMPLE I. Use the methods of partial differentiation to compute dy/dx if 

x4 + 3x2 y 2 - y4 + 2x - 3y = 5. 

SoLUTION. Setting 

f(x,y) = x4 + 3x2y2 -y4 + 2x - 3y - 5 = 0, 

we find 

Ix = 4x3 + 6xy2 + 2, 

Therefore, using (I) above, 

fy = 6x2 y - 4y3 - 3. 

dy 4x3 + 6xy2 + 2 
dx = - 6x2 y - 4y3 - 3 · 

Of course, the same result is obtained by the customary process of implicit 
differentiation. 

The above method for ordinary differentiation may be extended to yield 
partial derivatives. Suppose x, y, and z are connected by a relation of the 
form 

F(x,y,z) = 0, 

and we imagine that z is a function of x and y. That is, we make the assump
tion that it is possible to solve for z in terms of x and y even though we have 
no intention of doing so; in fact, we may find it exceptionally difficult (if not 
downright impossible) to perform the necessary steps. If z is a function of x 
and y, then we have the formula for the total differential: 

az az 
dz= axdx + aydy. 

On the other hand, since F = 0, the differential dF is also. Therefore 

dF= F,,dx + F,dy +£.dz= 0. 

Solving this last equation for dz, we get 

dz= (-i.)dx + (-~)dy, 

(2) 

(3) 

assuming that F. ~ 0. Comparing Eqs. (2) and (3), it is possible to prove 
(although we shall not do so) that 

and (4) 

We exhibit the utility of formulas (4) in the next example. 
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EXAMPLE 2. Use formulas (4) to find cz/iJx and oz/oy if 

SOLUTION. We set 

and compute 

Therefore 

F(x,y,z) = exYcosz + e-x•siny + eY'cosx, 

Fx = yexYcosz - ze-x'siny- eY'sinx, 

F;, = xexYcosz + e-x•cosy + zeY'cosx, 

F, = -ex'sinz - xe-x'siny + yeY'cosx. 

cz yexYcosz - ze-x'siny- eY'sinx 
CX= - -eXYsjnz-Xe ·"siny+yeY'COSX' 

i}z xexYcosz + e-x•cosy + zeY•cosx 
Cy -eXYsinz - Xe-x'siny + yeY'COSX• 
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REMARKS. (i) Note that we also could have found the derivatives by the 
implicit methods described in Section 2. (ii) Formulas similar to (4) may be 
established for a single relation with any number of variables. For example, 
if we are given G(x, y, u, v, w) = 0 and we assume w is a function of the 
remaining variables with G,.. #< 0, then 

c»· G. ow G., 
cu - Gw' ov - Gw. 

A more complicated application of differentials is exhibited in the deriva
tion of the next set of formulas. Suppose, for example, that x, y, u, v are 
related by two equations, so that 

F(x,y,u,v) =0 and G(x,y, u, v) = 0. 

Ifwe could solve one of them for, say u, and substitute in the other, we would 
get a single equation for x, y, i-. Then, solving for v, we would find that v is a 
function of x and y. Similarly, we might find u as a function of x and y. Of 
course, all this work is purely fictitious, since we have no intention of 
carrying out such a process. In fact, it may be impossible. The main point is 
that we know that under appropriate circumstances the process is theo
retically feasible. (This fact is discussed in Chapter 9.) Therefore whenever 
u = u(x,y) and i- = L"(x,y) it makes sense to write the symbols 

cu 
ex, 

cu 
cy' 

CV 
ex' 

CV 
cy. (5) 

Furthermore, the selection of u and v in terms of x and y is arbitrary. We 
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could equally well attempt to solve for L" and x in terms of u and y or for any 
two of the variables in terms of the remaining two variables. 

The problem we pose is one of determining the quantities in (5) without 
actually finding the functions u(x, y) and v(x, y). We use the total differential. 
Since F = 0 and G = 0, so are dF and dG. We have 

dF= F_,dx + F;.dy + F,,du + F,.dL· = 0, 

dG = Gxdx + Gydy + G.du + G,.dr = 0. 

We write these equations, 

and consider du and dv as unknowns with everything else known. Solving 
two equations in two unknowns is easy. We obtain 

du = GxF.· - G •. F_, dx + GyF,. - G..Fy dy, 
F,,G,. - F,.G. F,,G .. - F,.G., 

(6) 

dv = ~.F_, - G_,F,, dx + G .. F;. - GYF,, dy. 
F,,G .. - F,.G. F,,G .. - F,.G. 

(7) 

(We suppose, of course, that F,,G,. - F,.G. # 0.) On the other hand, we know 
that if u(x,y), L' = L'(X,y), then 

cu cu 
du= -;;-dx + ~dy, 

ex cy 

tv er 
dr = ~dx + ·;:;-dy. 

ex cy 

Therefore, comparing (6) with (8) and (7) with (9), we find 

cu _ G J •. - G..F_, 
ex - F,,G •. - F,.G.,' 

(8) 

(9) 

(10) 

and similar formulas for cu/c?y, cv/cx, and cL·/cy. If F and G are specific 
functions, the right side of (10) is computable. 

EXAMPLE 3. Given the relations for x, y, u, v: 

u2 - UL' - v2 + x 2 + y 2 - xy = 0, 

UL' - x 2 + y 2 = 0, 

and assuming that u = u(x,y), v = v(x,y), find cu/ox, ou/cy, cv/cx, and 
i3v/cy. 

SOLUTION. We could find Fx, Fy • ... , G., G •. and then substitute for the 
coefficients in (6) and (7) to obtain the result. Instead we make use of the 
fact that we can treat differentials both as independent variables and as 
total differentials, with no fear of difficulty (because of the Chain Rule). 
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Taking such differentials in each of the given equations, we get 

2udu - udv - vdu - 2vdv + 2xdx + 2ydy - xdy - ydx = 0, 

vdu + udv - 2xdx + 2ydy = 0. 
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Solving the two equations simultaneously for du and dv in terms of dx and 
dy, we obtain 

d uy + 4xv d ux - 4y(u + v) d u= x+ y 
2(u2 + v2 ) 2(u2 + v2 ) ' 

dv = 4xu - yv dx + 4y(v - u) - xv d . 
2(u2 + v2 ) 2(u2 + v2 ) y 

From these equations and equations (8) and (9), we read off the results. 
For example, 

cu ux -4y(u+ v) 
cy = 2(u2 + v2 ) 

and there are corresponding expressions for ou/cx, cv/cx, ov/oy. 

PROBLEMS 

In each of Problems I through 7, find the derivative dy/dx by the methods of partial 
differentiation. 

I. x 2 + 3xy - 4y2 + 2x - 6y + 7 = 0 

2. x 3 + 3x2 y - 4xy2 + y 3 - x 2 + 2y - I = 0 

3. log(I + x 2 + y 2) + e"' = 5 

4. x4 - 3x2 y 2 + y4 - x 2 y + 2xy2 = 3 

5. ex'+ sinxy + I = 0 

6. xe' + yex + sin (x + y) - 2 = 0 

7. arctan (y/x) + (x2 + y2)3i2 = 2 

In each of Problems 8 through 12, assume that w is a function of the remaining variables. 
Find the partial derivatives as indicated by the method of Example 2. 

8. x 2 + y 2 + w2 - 3xyw - 4 = O; 
ow 
oy 

9. x 3 + 3x2 w - y 2 w + 2yw2 - 3w + 2x = 8; 

10. e"' + e'w - e"w + xyw = 4; 

11. sin(xyw) + x 2 + y 2 + w2 = 3; 

ow 
oy 

OW 
OX 

ow 
OX 
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011" 
oy 

In Problems 13 and 14, use the methods of this section to find the partial derivatives 
as indicated. 

13. x 2 + y 2 - z2 - 11·2 + 3xy - 2xz + 4x11· - 3zw + 2x - 3y = 0; 

01\" 
oz 

011· 
cy 

If F(x,y, z) = 0 and G(x,y, z) = 0, then we may consider z and y as functions of the 
single variable x; that is, z = z(x), y = y(x). Using differentials, we obtain 

Fxdx + F;.dy +£.dz= 0, 

and so we can get the ordinary derivatives dz/dx and dy/dx. Use this method in Problems 
15 through 18 to obtain these derivatives. 

15. z = x 2 + y 2 , y 2 = 4x + 2z 

16. x 2 - y 2 + z2 = 7, 2x + 3y + 4z = 15 

17. 2x2 + 3y2 +4z2 = 12, x=yz 

18. xyz = 5, x 2 + .l - z 2 = 16 

In each of Problems 19 through 23, find ou/ox, ou/oy, ov/ox, and ov/oy by the method 
of differentials. 

19. x = u2 - v2 , y = 2u~ 
20. X = U + t', y = UV 

21. u + v - x 2 = 0, u2 - v2 - y = 0 

22. u3 + xv2 - xy = 0, u2 y + v3 + x 2 - y 2 = 0 

23. u2 + v2 + x 2 - y 2 = 4, u2 - v2 - x2 - y2 = I 

24. Given that F(x,y, z, u) = 0, show that if each of the partial derivatives in the 
expressions below actually exists, then the two formulas are valid: 

ox.i!J!.. oz= -I; 
oy oz ox 

ox. oy. oz . ou = 1. 
oy oz ou ox 

25. Given that x = j(u, v), y = g(u, v), find ou/iJx, ou/oy, ov/ox, ov/oy in terms of 
u and v and the derivatives of/and g. 

26. Given that F(u, v, x, y, z) = 0 and G(u, v, x, y, z) = 0, assume that u = u(x, y, z) and 
v = v(x,y, z) and find formulas for ou/ox, ov/ox, ...• ov/oz in terms of the deriva
tives of F and G. 

27. Given F(x 1 ,x2, ... ,x.,u1 ,u2) = 0 and G(x 1,x2 , ••• ,x.,u1 ,u2) = 0. Find for
mulas for 
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i = l, 2, ... , n, 

assuming that u 1 and u 2 are functions of x 1 , x 2 , ••• , x •. 

28. Given the equations F;(x1,x2, ... ,x.,u1,u2, ... ,uk) = 0 where i =I, 2, ... , k. 
Assuming that u; = u;(x 1 , x 2 , .•• , x.) where i = I, 2, ... , k, find formulas for 

OU; 
ex/ i= 1,2, ... ,k, )= 1,2, ... ,n. 

29. Given F(x,y, z, u, r, I\") = 0, G(x,y, z, u, v, 11") = 0, and H(x, y, z, u, i:, w) = 0. Use the 
total differentials dF, dG, and dH to derive formulas for 

OU OU 011· 
ox' oy' ... , oz 

similar to formula (10) in the case of two functions. 

Answer: Let 

F,, F. Fw IF, F,. Fw 

D= ·G,. G,. G •. and D1= 1 ~ G,. Gw. 

H. H,. H •. H,. Hw 

Then i'Ju/ox = -(D1JD) if the determinant D is not zero. Similar formulas hold 
for the remaining pahial derivatives. 

30. Given 

x 2 - y 2 + z2 + 2u - v2 + w2 - 3 = 0, 

x 2 - z2 + 2u2 - 11"3 - I = 0, 

y 2 + 2z2 - u2 + 2v - 311"3 - 4 = 0. 

Use the results in Problem 29 to find ov/oy. 

9. Second and Higher Derivatives 

If f is a function of two variables-say x and y-then fx and fy are also 
functions of the same two variables. When we differentiate j~ and j~, we 
obtain second partial derivatives. The second partial derivatives off are 
defined by the formulas 

j . ( ) _ 1. fAx + h,y) - fAx,y) 
xx x,y - tm I ' 

h-O l 

I ( ·) _ r JAx.y + k) - J~(x,y) 
xy X,) - kl~ k . 

The first derivatives off;. are defined by similar expressions. We observe that 
if/is a function of two variables, there are four second partial derivatives. 
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There is a multiplicity of notations for partial derivatives which at times 
may lead to confusion. For example, if we write z = j(x, y), then the fol
lowing five symbols all have the same meaning: 

02 Z 02f. 
f~x; iJx2' iJx2' J:1,1; Zxx· 

For other partial derivatives we have the variety of expressions: 

. . c (oz) o2z o2f 
fxy = f.1. 2 = oy OX = oyox = oyox = Zxy• 

. . c (oz) 02z o2f 
fyx = f. 2· 1 =OX oy = ixoy = oxoy = Zyx• 

. 0 (o 2z) 03 Z 03f . 
fxyx = CX oyox = CXOYOX = OXOYOX =f. 1' 2 ' 1 = Zxyx• 

and so forth. Note that, in the subscript notation, symbols such as f~yy or 
z xyy mean that the order of partial differentiation is taken from left to right
that is, first with respect to x and then twice with respect toy. On the other 
hand, the symbol 

o3 z 
oxoycy 

asserts that we first take two derivatives with respect to y and then one with 
respect to x. The denominator symbol and the subscript symbol are the 
reverse of each other. 

EXAMPLE 1. Given z = x 3 + 3x2 y - 2x2 y2 - y4 + 3xy, find 

oz 
ox' 

SOLUTION. We have 

oz 
oy' 

iJ2z 
oyox' 

oz= 3x2 + 6xy - 4xy2 + 3y; 
OX 

oz= 3x2 - 4x2y - 4y3 + 3x; 
oy 

o2 z 
cx2 = 6x + 6y - 4y2; 

iJ2z 
oyox = 6x - Sxy + 3; 

o2 z 
- 2 = -4x2 - l2y2 ; 
oy 

o2 z 
oxoy = 6x - Sxy + 3. 

In the example above, it is not accidental that o2z/oyox = o2z/oxoy, as 
the next theorem shows. 

Theorem 7. Assume thatf(x,y),fx,fy,fxy, andfyx are all continuous at (x0 ,y0 ). 

Then 
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f~y(Xo,Jo) = f~x<xo.Yo>· 
In comma notation, the formula reads 

f1.2(Xo,Yo) =f2.1(xo .. J!o). 
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(The order of partial differentiation may be reversed without affecting the 
result.) 

PROOF. The result is obtained by use of a quantity we call the double dif
ference, denoted by Iii}; and defined by the formula 

ll.if = [f(xo + h,yo + h) - f(xo +Ii.yo)] - [J(xo.Yo + h) - f(xo.Yo)J. 

(I) 

We shall show that, ash tends to zero, the quantity ll.2 f/h 2 tends to f~y(x0 , y0 ). 

On the other hand, we shall also show that the same quantity tends to 
J;._«x0 ,y0 ). The principal tool is the repeated application of the Theorem of 
the Mean. (See Chapter 3. page 91.) We may write /l.2fin a more transparent 
way by defining 

</J(s) = f(x0 + s,y0 + h) - f(x0 + s,y0 ), 

l/l(t) =f(xo + h,Yo + t)- f(xo,Jo + t). 

(2) 

(3) 

(The quantities x 0 , y 0 , hare considered fixed in the definition of <P and 1/1.) 
Then straight substitution in (I) shows that 

ll.if = </J(h) - </J(O) (4) 

and 

ll.if = l/J(h) - 1/1(0). (5) 

We apply the Theorem of the Mean in (4) and (5), getting two expressions 
for /l.2j: They are 

ll.if= </J'(s1)'h 

ll.if= l/J'(t1)'h 

with 

with 

0 < S1 < h, 

0 < t1 < h. 

The derivatives </J'(s1) and l/J'(t 1) are easily computed from (2) and (3). We 
obtain 

</J'(s1) = fAxo + S1 .Yo+ h) - JAxo + S1 ,yo). 

l/J'(t1) =f~(Xo + h,yo + 11) - J;,(xo.Yo + t1), 

and the two expressions for /l.2fyield 

~ll.if= [j~(xo + S1,Yo.+ h) -JAxo + S1,Yo)], 

~ll.if = [J;,(xo + h,yo + 11) - f~(xo.Yo + t1>J. 

(6) 

(7) 
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We may apply the Theorem of the Mean to the expression on the right in (6) 
with respect to Yo+ hand y0 . We get 

with 0<t2 <h. (8) 

Similarly, the Theorem of the Mean may be applied in (7) to the expression 
on the right with respect to x0 +hand x 0 • The result is 

~Llif=f;x<xo + S2,Yo + t1)h 

Dividing by h in (8) and (9), we find that 

with 0 < S2 < h. 

~2Llif=J~y{xo + Si,Yo + t2) =J;x<xo + S2,Yo +ti). 

(9) 

Letting h tend to zero and noticing that s 1 , s 2 , t 1 , and t 2 all tend to zero with 
h, we obtain the result. The argument is similar if his negative. 

Corollary 1. Suppose that f is a function of any number of variables ands and 
t are any l»'o of them. Then under appropriate hypotheses on the continuity of 
the partial derivatives (as in Theorem 7), we have 

f~, = J;,. 
For example, if the function is j(x, y, s, t, u, v), then 

L = J;x• J;u = f~y• J;, = J;·y• etc. 

The proof of the corollary is identical with the proof of the theorem. 

Corollary 2. For derivatives of the third.fourth, or any order, it does not matter 
in what order the differentiations with respect to the various variables are per
formed. For instance, assuming that all fourth-order partial derivatives are 
continuous, we have 

C4 z 04 z c4 z 
excxoyoy ox oy ox cy cxcycycx 

iJ4 z C4 z C4 z 
oy ox ex iJy cycxoyox oyoyoxcx 

Ri;MARKS. (i) It is true that there are functions for whichf~y is not equal to 
J;x. Of course, the hypotheses of Theorem 7 are violated for such functions. 
(ii) All the functions we have considered thus far and all the functions we 
shall consider from now on will always satisfy the hypotheses of Theorem 7. 
Therefore the order of differentiation will be reversible throughout. (See, 
however, Problem 33 at the end of this Section.) 
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EXAMPLE 2. Given u = ex cosy + e1 sin z, find all first partial derivatives and 
verify that 

c2u e2u 
exoy = oyox' 

e2u iJ 2u o2u o2u 

SOLUTION. We have 

OU - =ex cosy· ox • 

Therefore 

exez=ozox' oyiJz ozoy" 

OU x . y . :;,-= -e smy+e smz; 
vy 

c2u 
--=0 
ozcx 

o2u --= e1 cosz 
oziJy 

c2u 
cxoz' 

o2u 
= iJyez · 

OU 
oz= e1 cosz. 

EXAMPLE 3. Suppose that u = F(x,y, z) and z = j(x,y). Obtain a formula for 
o2u/ox2 in terms of the derivatives of F (that is, f"x, f",, F,, f"xx, etc.) and the 
derivatives off (or, equivalently, z). That is, in the expression for F we 
consider x, y, z intermediate variables, while in the expression for f we 
consider x and y independent variables. 

SOLUTION. We apply the Chain Rule to F to obtain ou/ox with x and y as 
independent variables. We get 

ou = F ex+ F cy F iJz 
OX XOX 'ex+ 'ox" 

Since x and y are independent, oy/ox = O; also, ox/ox= I. Therefore 

~: = f"x + F,~. 
In order to differentiate a second time, we must recognize that f"x and F, are 
again functions of all three intermediate variables. We find that 

i3 2u ex cy oz CZ ( (lX ll)' (lZ) o2z 
"""2 = f"xx-;;;- + Fxy-;;;- + f°xz !l + -;;;- F".x :> + F,y !l + F,, !l + F, """2 · ux ox ex ux ox ux ux ux ux 

The result is 
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PROBLEMS 

In each of Problems I through 10, verify thatf,r = J; .. , 
I. f(x,y) = x 3 + 7x2 y - 2xy2 + y2 

2. j(x,y) = x4 + 4x2 y2 - 2y4 + 4x2 y - 3xy2 

3. j(x,y) = x; + 2y4 - 3x3 y2 + x2 y3 - xy3 + 2x 

4. j(x,y,z) = x2 + 2xyz + y2 + z2 + 3xz - 2xy 

5. f: (x, y) -+ e·'1· sin x + e'1· cosy 

6. j(r,s) = e'1'cos(rs) + e'sins 

7. f: (x,y)-+ arctan (~) 
x+y 

8 j( ) I I +x w . x,y,z = og ·- ···-e · 
I + y 

9. f: (x,y, z)-+ (x2 + )'2 - z2)112 

IO. f: (x, y, z, t)-+ x 3 - 2y3 + z3 + 2t3 - 3xyzt 

In each of Problems 11 through 15, verify that u.,1. = u1 •• , and u., = u,x· 

II. u=log,.;xT:j:."y2-+zi 12. u=log(x+"T+-z2) 

13. u = x3 + y 3 + z3 - 3xyz 14. u = e•r + e2xz - e3Y• 

15. u = e''/...;x2 + z2 

16. Given that u = I/..; x2 + y2 + z2, verify that 

17. Given that u = xe• cosy, verify that 

iJ4u 2 c4u c4u 0 -+ --+--CX4 ox2 cy2 C)'4 - • 

In each of Problems 18 through 21, rands are independent variables. Find c 2 z/cr2 by 
(a) the Chain Rule and by (b) finding z in terms of rands first. 

18. Z=X2 -xy-y2 , x = r + s, y=s-r 

19. z=x2 -y2 , x = rcoss, y = rsins 

20. Z=X3 -y3 , X = 2r- S, y=s+2r 

21. z=x2 -2xy-y2 , x=r2 -s2 , y=2rs 

22. Given that u = F(x,y, z)and z = f(x,y), find c2u/cyox with all variables satisfying 
the conditions in Example 3. 
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23. Given that u = F(x,y, z) and z = f(x,y), find o2u/iJy2 with all variables satisfying 
the conditions in Example 3. 

24. If u = F(x,y), y = f(x), find d2u/dx2. 

25. Given that u = f(x + 2y) + g(x - 2y), show that 

u •• - !u,.1 = 0. 

26. Given that u = F(x,y), x = rcos 0, y = rsinO, find iJ 2u/iJr2, rand(} being indepen
dent variables. 

27. Given u = F(x,y), x = f(r,s), y = g(r,s), find iJ 2u/iJriJs, rands being independent 
variables. 

28. If F(x, y) = 0, find d2 y/dx 2 in terms of partial derivatives of F. 

29. Given that u = F(x,y), x = e"'cost, y = e•sin t, use the Chain Rule to show that 

aiu + iJ2u = e2•(iJ2u + iJ2u\ 
iJs2 iJt2 iJx2 oy2} . 

where sand t are independent variables and x and y are intermediate variables. 

30. Given V = F(x,y), x = !r(e' + e-'), y = !r(e' - e-"'), show that 

1 1 v •• - v,, = v,, + - v, - 2 v ... 
r r 

*31. If u = f(x - ut), show that u, + uu. = 0. 

32. Assume that f(x,y) has all continuous partial derivatives to the nth order. Use 
mathematical induction to prove that every nth partial derivative is independent 
of the order in which it is taken. 

*33. Consider the function 

l x2 -y2 
xy---z--+ 2' x y 

f(x,y) = 
0, 

xi+ yi > 0, 

x=y=O. 

a) Show that.fx(0,0) = 0 andf,,(0,0) = 0. 
b) Show, by appealing to the definition of derivative, that 

!. (O O) = I' f,,(h, 0) - f,,(0, 0) _ I 
yx• ~!'J h -. 

c) Show that the result of (b) follows because fx1 and J,,. are not continuous at 
x =y=O. 

34. a) Show that /(x 1,x2 , ••• ,x.) = [x~ + x~ + · · · + x;p-nwi for n > 2 is a 
solution of the equation 
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02f 02/ -+ ... +-=0 
oxf ox; 

except when x 1 = x 2 = · · · = x. = 0. 

b) Show that g(x 1 ,x2 , ••• ,x.) = [xf + · · · + x;_ 1 - x;]' 2 -•>12 for n > 2 is a 
solution of the equation 

02/ 02/ 02/ 
~+ ... +-2---2 =0 
CX1 OXn-1 OX" 

except when (x 1 , ••• ,x.) is on the cone xf + x~ + · · · + x;_ 1 = x;. 

35. Suppose that u = F(x,y), x = j(s, t), y = g(s, t). Show that 

a2u = F ox ox+ F (ox oy +ox oy) + F oy oy + F o2x + F o2y 
OSOi xx OS ot xy OS ot ot OS yy OS ct x osct y cs ct. 

Also find an expression for c2u/os2• 

10. Taylor's Theorem with Remainder 

Taylors' theorem for functions of one variable was established in Chapter 3 
on page 132. There we found that if F(x) has n + I derivatives in an interval 
containing a value x 0 , then we can obtain the expansion 

F(">(x0 )(x - x 0 )" 
F(x) = F(x0 ) + F'(x0 )(x - x 0 ) + · · · + 1 + R., (I) 

where the remainder R. is given by the formula 

Ftn+t>(~)(x - Xo)"+I 
R.= (n+ I)! ' 

with ~ some number between x0 and x. 

n. 

Taylor's theorem in several variables is a generalization of the expansion 
(I). We carry out the procedure for a function of two variables f(x,y), the 
process for functions of more variables being completely analogous. Con
sider the function 

</>(!) = f(x + },1,y + µt), 

in which the quantities x, y, i., and µ are temporarily kept constant. Then 
</>is a function of the single variable 1, and we may compute its derivative. 
Using the Chain Rule, we obtain 

</>'(!) =l~(x + ),t,y + µt)i. + 1;.(x + i.t,y + µt)µ. 

We will simplify matters further by omitting the arguments inf We write 

</>'(!) = 1~;, + 1;.µ. 
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It is important to compute second, third, fourth, etc., derivatives of t/J. We do 
so by applying the Chain Rule repeatedly. The results are 

,p121(t) = ).2fxx + 2).µfxy + µ2/yy, 

t/J131(t) = A3fxxx + 3).2µfxxy + 3).µ2/xyy + µ 3/yyy-

tP141(t) = A4fxxxx + 4).3µfxxxy + 6).2µ 2fxxyy + 4).µ 3fxm + µ 4hm· 

Examining the pattern in each of the above derivatives, we see that the 
coefficients in qP 1 are formed by the symbolic expression 

(A:x +µ~yf, 
provided that the numerical exponent applied to a partial derivative is 
interpreted as repeated differentiation instead of multiplication. Using this 
new symbolism we can easily write any derivative of</>. The kth derivative 
IS 

<f>Ckl(t) = A-- + µ- f ( a a)k 
ex oy (2) 

For instance, with k = 7 we obtain 

,i.Pl()-·71· 7·6,r 7·6.52r 1r 
'+' l - A. Jxxxxxxx + A µJxxxxxxy +NI. µ Jxxxxxyy + · · · + µ Jyyyyyyy• 

Of course all derivatives are evaluated at (x + At,y + µt). The formula (2) 
may be established by mathematical induction. 

Before stating Taylor's theorem for functions of two variables, we intro
duce still more symbols. The quantity 

I 
1 $r+ssp 

means that the sum of the terms in parentheses is taken over all possible 
combinations of rand s which add up to a number between I and p. Neither 
r nor sis allowed to be negative. For example, if p = 3 the combinations are 

(r = 0, s = I), 

(r = l,s = 0), 

(r = 2,s = 0), 

(r = 3,s = 0). 

(r = O,s = 2), 

(r= l,s= I), 

(r = 2, s = I), 

(r = O,s = 3), 

(r=l,s=2), 

The terms in the sum are shown schematically in Fig. 4-12 as the circled 
lattice points. 

The symbol 

I< 
r+ ... =p 
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.~ 

:j 1..;;r+,p.;3 

• 

s 

t 
4 

3 
r+s=3 

2 @ 
1 ~ • @ 

r 
-1 0 1 2 3 4 

-1 2 3 4 
~+---+~+---~+--•r 

0 

Fig. 4-12 Fig. 4-13 

means that the sum is taken over all possible nonnegative combinations of 
rands which add up top exactly. For instance, if p = 3, then the combina
tions are 

(r = O,s = 3), (r = l,s = 2), (r=2,s=l), (r = 3,s = 0). 

The terms in this sum are indicated schematically in Fig. 4-13. 

Theorem 8 (Taylor's Theorem). Suppose that f is a function of two variables 
and that f and all of its partial derivatives of order up top+ l are continuous 
in a neighborhood of the point (a,b). Then we have the expansion 

ir'j(a, h) (x - a)'. (y - b)" 
f(x,y) =f(a,b) + I ~ ,0 • , , +RP, (3) 

ISr+s,;p OX Y r. S. 

where the remainder RP is given by the formula 

c'+'l(~. '!) (x - a)' (y - b)~ 
RP= L ~ r ~ s I I r+s=p+I CX C)' r. S. 

with the value ( ~. '!) situated on the line segment joining the points (a, b) and 
(x,y). (See Fig. 4-14.) 

PROOF. We let d = J<x - a)2 + (y - h) 2 and define 

x-a y-b }. = -d-. µ = -d-. 

The function 

</>(t) = f(a + i.t, b + µt). 0$;t$;d 

may be differentiated according to the rules described at the beginning of the 
section. Taylor's theorem for <f>(t) (a function of one variable) taken about 
t = 0 and evaluated at d yields 

<f>(d) = </>(0) + </>'(O)d + </>"(0)~~ + ... + <f>(Pl(O)dP + </>(p+l>(t)dP+l. (4) 
2! p! (p+ l)! 
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y 

./(x,y) 

~(~,71) 

(a,b) 
+-------z 

Fig. 4-14 0 

The kth derivative of</> evaluated at 0 is given symbolically by 

</>(kl(O) = (i. :~ + µ ~ )J'(a, b). 
ex cy 

We now recall the binomial formula: 

(A+ B)k = Ak + ~Ak-19 + k(k - I) Ak-292 + ... +Bk 
I I· 2 

k k' = I-,-. _. -,Ak-qBq. 
q=Oq.(k - q). 
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Applying the binomial formula to the symbolic expression for </>(kl(O), we 
obtain 

</>(kl(O) = t k ! okj'(a, b) ).k-qµq. (5) 
q=oq!(k - q)! oxk-qoyq 

Noting that </>(d) = .f'(a + l.d, b + µd) = j'(x,y) and that cp(O) = j'(a, b), we 
find, upon substitution of (5) into ( 4): 

.f'(x,y) = .f'(a,b) + cf\a,b)(x - a)+ cf<:,b>(y - b) 
ex uy 

+ c2j(a, b) (x - a)2 + c2fl~· b) (x - a)(y - b) 
cx2 2! cxcy 

c 2f(a, b) (y - b) 2 

+ cy2 2! + · · · · 

which is precisely the formula in the statement of the theorem. The remainder 
term shows that when 0 < t < d, then 

" + (x - a) ..,=a -d-t, ,, = b + (y - b) 1:, 

d 

which places (e. rr) on the line segment joining (a,b) and (x,y). 

REMARKS. (i) Taylor's formula [as (3) is usually called] is also often written 
in the form 

j .( ·)-}'( b) /... I[~ q! c"j'(a,b)( )q-r(. b)'] R X,J - a, + L ' L -( - -), -, "' q-r ~ ,r x - a y - + p" q=lq. r=O q r .r. (,X CJ 
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ii) For some functions]; if we let p tend to infinity we may find that RP-+ 0. 
We thereby obtain a representation of/as an infinite series in x and y. Such 
a series is called a double series, and we say that/is expanded about the point 
(a, b). For functions of three variables we obtain a triple sum, the Taylor 
formula in this case being 

f(x,y,z) 

ar+s+tf(a, b, c) (x - a)' (y - b)" (z - c)' 
=f(a,b,c)+ L ~'o"o' ' ., --,-+Rp, l:s;r+s+t,;p ox y z r. s. t. 

with 

ap+lf(~,17,,) (x - a)' (y- b}' (z - c)' 
R - "°' 
p- L. ox'o•·"oz' r! s! t! rts+t=pf I · ;' / 

where(~, 17, ')is on the line segment joining (a, b, c) and (x,y, z). 

EXAMPLE I. Expand x 2y about the point (I, -2) out to and including the 
terms of the second degree. Find R 2 • 

SoLUTION. Settingj(x,y) = x 2y, we obtain 

j~ = 2xy, f~x = 2y, f~y = 0, 

f~xx = 0, f~xy = 2, f~yy = f~yy = 0. 

Noting thatf(l, -2) = -2, we find 

x 2y= -2-4(x- l)+(y+2) 

I 
+ 2![ -4(x - 1)2 + 4(x - l)(y + 2)] + R 2 , 

with 

EXAMPLE 2. Givenf(x,y,z) =ex cosy+ eYcosz + ezcosx. Define 

</>(t) =f(x + l.t,y + µt,z + vt). 

Find </>'(0) and c{P 1(0) in terms of x, y, z, )., µ, v. 

SoLUTION. We have 

</>'(0) =JAx,y,z)J. + J;.(x,y,z)µ + j~(x,y,z)v. 
Computing the derivatives, we obtain 

</>'(0) =(ex COS)'- ezsinx)A + (e»cosz - exsiny)µ + (ezCOSX - e>'sinz)v. 

The formula for cf>12>(0) is 
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q/21(0) = (;_!_ + µ c + v.£)2f ex cy c;: 

PROBLEMS 

= l 2(excosy- e'cosx) + µ2(eYcosz - ex cosy) 

+ v2(e'cosx- eYcosz) + 2lµ(-exsiny) 

+ Uv( -e' sin x) + 2µv( -eY sin z). 

I. Expand x 3 + xy2 about the point (2, 1). 
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2. Expand x4 + x 2 y2 - y4 about the point (I, I) out to terms of the second degree. 
Find the form of R2 . 

3. Find the expansion of sin (x + y) about (0, 0) out to and including the terms of 
the third degree in (x,y). Compare the result with that which you get by writing 
sinu ~ u - f;u 3 and setting u = x + y. 

4. Find the expansion of cos(x + y) about (0,0) out to and including terms of the 
fourth degree in (x,y). Compare the result with that which you get by writing 
cosu ~ I - }u2 + -fiu4 and setting u = x + y. 

5. Find the expansion of ec·1 about (0,0) out to and including the terms of the third 
degree in (x,y). Compare the result with that which you get by setting e" ~ I + 
u + }u2 + f;u 3 , and then setting u = x + y. Next compare the result with that 
obtained by multiplying the series for ex by that for e'· and keeping terms up to 
and including the third degree. 

6. Find the expansion of sin x sin y about (0, 0) out to and including the terms of the 
fourth degree in (x,y). Compare the result with that which you get by multiplying 
the series for sin x and siny. 

7. Do the same as Problem 6 for cosxcosy. 

8. Expand e' arctan y about (I, I) out to and including the terms of the second 
degree in (x - 1) and (y - I). 

9. Expand x 2 + 2xy + yz + z2 about (I, 1,0). 

10. Expand x 3 + x 2 y - yz2 + z3 about (I, 0, 1) out to and including the terms of the 
second degree in (x - 1), y, and (z - 1). 

11. If j(x,y) = x 2 + 4xy + y 2 - 6x and c/>(t) =f(x + A.t,y + µt), find cJ>< 21(0) when 
x = - 1 and y = 2. Is c/>< 21(0) > 0 when (x, y) = ( - 1, 2) if A. andµ are related so that 

;_2 + µ2 =I? 

12. If f(x,y) = x 3 + 3xy2 - 3x2 - 3y2 + 4 and c/>(t) =f(x + A.t,y + µt), find cJ>< 21(0) 
for (x, y) = (2, 0). Show that cJ>< 21(0) > 0 for all A. and µ such that ;. 2 + µ 2 = I. 

*13. a) Write the appropriate expansion formula using binomial coefficients for 

(A+ B + C)k, 

with k a positive integer. (b) If f(x,y, z) and c/>(t) = j(x + ).t,y + µt, z + vt) are 
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sufficiently differentiable, show the relationship between the symbolic expression 

(. a a a)kfi< . > I.:;-+µ-;;;-+ V-;;;- X +I.I,)'+ µI, Z + VI 
ox uy uz 

and 

14. Write Taylor's formula for a function j(x,y, u, v) of four variables expanded 
about the point a, b, c, d. How many second-derivative terms are there? Third
derivative terms? 

*15. Use mathematical induction to establish formula (2) on page 251. 

16. Referring to the symbol I:19.,+,sp• find the number of terms when p = 3; when 
p = 4. Exhibit the corresponding lattices with three-dimensional diagrams. 

17. Write Taylor's formula for a functionj(x 1 ,x2 , ••. ,xk) of k variables. Give an 
expression for RP' the remainder. 

18. Write out a proof of Taylor's Theorem (Theorem 8) for a functionj(x,y,z) of 
three variables. 

* 19. a) Given the positive integer p, how many solutions are there of the equation 

'1 +r2 + ··· +rk=p, 

where r1 , r2, ... , rk are positive integers? (b) Same problem with r 1 , r2, ... , rk 
nonnegative integers. (c) How many different partial derivatives of order p are 
there for a functionj(x 1,x2 , •.. ,xk)? 

20. Expand the function/(x,y) = sinxcosy about the values x = n/6 and y = n/3 to 
terms of order 2 and write an approximate formula for sin 29° cos 61°. Estimate the 
remainder term. Evaluate the third derivatives at the point (n/6, n/3). 

21. Letj(x,y,z) be a polynomial in (x,y,z). That is. 
II 

f(x,y,z)- L a;1kxiyizk. 
i+j+k-1 

Show that if all partial derivatives off up to and including order n vanish at some 
point (x0 , y0 , z0 ), then f = const. 

11. Maxima and Minima 

One of the principal applications of differentiation of functions of one 
variable occurs in the study of maxima and minima. In the calculus of func
tions of one variable we learn various tests using first and second derivatives 
which enable us to determine relative maxima and minima of functions of a 
single variable. These tests are useful for graphing functions, for solving 
problems involving related rates, and for attacking a variety of geometrical 
and physical problems. 

The study of maxima and minima for functions of two, three, or more 
variables has its basis in the Extreme Value theorem, which we state without 
proof. 
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z 

Fig. 4-15 x 

Theorem 9 (Extreme Value Theorem). Let R be a region in the xy plane with 
the boundary curve of R considered as part of R also (Fig. 4-15). If f is a 
function of two variables defined and continuous on R, then there is (at least) 
one point in R where f takes on a maximum value and there is (at least) one 
point in R where f takes on a minimum value. 

REMARKS. (i) Analogous theorems may be stated for functions of three, 
four, or more variables. (ii) The maximum and minimum may occur on 
the boundary of R. Thus the region R must contain its boundary in order to 
guarantee the validity of the result. 

Definition. A functionf(x,y) is said to have a relative maximum at (x0 ,y0 ) 

if there is some region containing (x0 ,y0 ) in its interior such that 

f(x,y) 5'.f(xo.Yo) 

for all (x,y) in this region. (See Fig. 4-16.) More precisely, there must be some 
positive number {J (which may be "small") such that the above inequality 

Fig. 4-16 x 

(x,,, Yti. !'(xo • .Voll 
\ 

Relative maximum 
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Fig. 4-17 

holds for all (x,y) in the square 

Ix - x0 I < b, 

A similar definition holds for relative minimum when the inequality 
f(x,y) 2::f(x0 ,y0 ) is satisfied in a square about (x0 ,y0 ). (See Fig. 4-17.) 
The above definitions are easily extended to functions of three, four, or 
more variables. 

Theorem 10. Suppose that f(x,y) is defined in a region R containing (x0 ,y0 ) 

in its interior. Suppose that fAx0 , y0 ) and f~(x0 , y 0 ) are de.fined and that 

f(x, y) $. f(xo .J'o) 

for all (x,y) in R; that is,f(x0 ,y0 ) is a relative maximum. Then 

f~(Xo.J'o) = f;.(xo.J'o) = 0. 

PROOF. We show that fAx0 ,;:0 ) = 0, the proof for f;. being analogous. By 
definition, 

By hypothesis, 

f(xo + h,yo) - f(xo.Yo) $. 0. 

for all h sufficiently small so that (x0 + h,y0 ) is in R. If his positive, then 

f(x0 + h,yo) - f(xo,Yo) < 0 
h - • 

and ash-+ 0 we conclude that f 1 must be nonpositive. On the other hand, 
if h < 0, then 
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Fig. 4-18 

since division of both sides of an inequality by a negative ;mmber reverses 
its direction. Letting h --+ 0, we conclude that f.~ is nonnegative. A quantity 
which is both nonnegative and nonpositive vanishes. 

Corollary. The conclusion of Theorem 10 holds at a relative mi'limum. 

Definition. A value (x<,, y 0 ) at wi1ich both 1~ and 1;. vanish is called a critical 
point of/ 

DISCUSSION. The conditions that 1~ and 1;. vanish at a point are necessary 
conditions for a relative maximum or a relative minimum. It is easy to find 
a function for which f.~ and 1;. vanish at a point, with the function having 
neither a relative maximum nor a relative minimum at that point. A critical 
point at which f is neither a maximum nor a miaimum is a "sa4ole point." 
A simple example of a function which has such a point is given by 

ltx, y) = x2 - J'2. 

We see that 1~ = 2x, 1;. = -2y, and (0,0) is a critical point. However, as 
Fig. 4-18 shows, the function is "saddle-shaped" in a neigh'::>orhood of(O, 0). 

While we shall develop a test which, under certain conditions, guarantees 
that a function has a maximum or minimum at a critical point, it is sometimes 
possible to make this decision from the nature o!' the problem itself. We 
exhibit such an example. 

EXAMPLE l. In three-dimensional space find the point on the plane 

S = { (x,y, z): 2x + 3y - z = I} 

which is closest to the origin. 
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SOLUTION. The function d = vx2 + y 2 + z2 represents a distance function 
which is defined at each point on the plane S. The minimum of the function 

j(x,y, z) = x 2 + y 2 + z2 

occurs at the same point as the minimum of d, and f is simpler to handle. 
We substitute for z from the equation of the plane, and so we must minimize 

f(x,y) = x 2 + y 2 +(I - 2x - 3y)2 

= 5x2 + 10y2 + 12xy - 4x - 6y + I. 

A critical point must be a solution of the equations 

j~ = IOx + I 2y - 4 = 0, j~ = 20y + I 2x - 6 = 0. 

Solving these equations simultaneously, we find 

X=t, 
From the geometric character of the problem we know that (t. i34 ) corre
sponds to a minimum. The point on S corresponding to x = t, y = 134 is 
found by substitution in the equation for S. The answer is (t. i34 , - / 4 ). 

The basic criterion for finding maxima and minima for functions of two 
variables is the so-called Second Derivative Test, which we now establish. 

Theorem 11 (Second Derivative Test). Suppose thatfand its partial derivatives 
up to and including those of the third order are continuous near the point (a, b), 
and suppose that 

j~(a,b) =fia,b) = O; 

that is, (a, b) is a critical point. Then we have 

i) a local minimum if 

f~x(a,b)f;y(a,b) - J~;(a,b) > 0 

ii) a local maximum if 

fxx(a, b)f;y(a, b) - J~;(a, b) > 0 

iii) a saddle point if 

and 

and 

f~x<a,b) > 0; 

J~x<a,b) < O; 

fxx(a,b)J;1(a,b) - J~;(a,b) < 0; 

iv) no information if 

j~x(a, b)f;1(a, b) - J~;(a, b) = 0. 

PROOF. For convenience, we define 

A = fxx(a, b), C = J;y(a, b). 
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From the Taylor expansion (Theorem 8, page 252) off(x, y) about the point 
(a, b), we find 

f(x,y) =j(a,b) + t[A(x - a) 2 + 2B(x - a)(y - b) + C(y - b)2] + R 2 • (l) 

The first derivative terms are absent because (a,b) is a critical point. The 
term R 2 is given by 

R = ![03f(~.t'/)(x - a)3 + 3c3J(~.t'/) (x - a) 2(v- b) 
2 6 cx3 cx2 cy . 

+ 303.[(~·-~ (x - a)(y - b)2 + c3f(~~~()· -- b)3]. 
cxcy2 cy3 

We definer= ..j(x - a) 2 + (y - b)2 and the quantitiesi., µby the formulas 

. x-a 
/ .. =--, 

r 
y-b 

µ=--. 
r 

Note that for any x, y, a, b the relation 1. 2 + µ 2 = l prevails. The Taylor 
expansion ( l) now becomes 

.f(x,y) - j(a,b) = tr2(AA. 2 + 2BA.µ + Cµ 2 + rp), (2) 

where 

l (c3f ·3 c 3f ·2 c3f . 2 c 3f 3) p = -3 ~A + 3~A µ + 3~Aµ + :;-:Jµ . 
• vX ex <./} ux v) vJ x=~ 

)'=•i 
The quantity p is bounded since, by hypothesis, f has continuous third 
derivatives. The behavior of j(x, y) - j(a, b) is determined completely by 
the size of rp and the size of the quadratic expression 

AA.2 + 2BA.µ + Cµ 2, (3) 

with i. 2 + µ 2 = I. If 
B2 -AC< 0 and A >0, 

then there are no real roots to (3) and it has a positive minimum value. 
(Call it m.) Now, selecting r so small that rp is negligible compared with m, 
we deduce that the right side of (2) is always positive if (x,y) is sufficiently 
close to (a, b). Hence 

f(x,y) - f(a,b) > 0 

and/is a minimum at (a,b). We have just established part (i) of the theorem. 
By the same argument, if 

B 2 - AC < 0 and A < 0, 

then (3) is always negative and 

f(x,y) - f(a,b) < 0 
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for (x,y) near (a, b). Thus the statement of (ii) follows. Part (iii) results when 
B2 - AC> 0, in which case the expression (3) (and therefore (2)) is some
times positive and sometimes negative. Then/can have neither a maximum 
nor a minimum at (a, b) and the surface = = l(x,y) can be shown to be 
saddle-shaped near (a, b). Part (iv) is provided for completeness. 

EXAMPLE 2. Test for relative maxima and minima the function/defined by 

l(x,y) = x 3 + 3xy2 - 3x2 - 3y2 + 4. 

SOLUTION. We have 

f; = 3x2 + 3y2 - 6x 

and 

1;. = 6xy - 6y. 

We set these equations equal to zero and solve simultaneously. Writing 

x 2 + y 2 - 2x = 0, y(x - I)= 0, 

we see that the second equation vanishes only when y = 0 or x = I. If y = 0, 
the first equation gives x = 0 or 2; if x = I, the first equation gives y = ± I. 
The critical points are 

(0,0), (2,0), (I, l), (I, -1). 

To apply the Second Derivative Test, we compute 

A = /~"' = 6x - 6, B = f~y = 6y, C = 1;.Y = 6x - 6. 
At (0,0): AC - B2 > 0 and A< 0, a maximum. 
At (2,0): AC - B2 > 0 and A> 0, a minimum. 
At (I, I): AC - B2 < 0, saddle point. 
At (I, -1): AC - B2 < 0, saddle point. 

EXAMPLE 3. Find the dimensions of the rectangular box, open at the top, 
which has maximum volume if the surface area is 12. 

SOLUTION. Let V be the volume of the box; let (x,y) be the horizontal direc
tions and z the height. Then V = xyz, and the surface area is given by 

xy + 2xz + 2yz = 12. (4) 

Solving this equation for z and substituting its value in the expression for V, 
we get 

V = xy(l2 - xy) = l2xy - x 2y 2 • 

2(x + y) 2(x + y) 

The domains for x, y, z are restricted by the inequalities 

x>O, y> o. xy < 12. 
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y 

In other words, x and y must lie in the shaded region shown in Fig. 4-19. 
To find the critical points, we compute 

V = ~)'_2 (_1_2_-_x_2 --..,.2_X~}_') 
·' 2(x + y) 2 

V = _x_2 (_12_-~>_·2_-_2_x}~·) 
" 2(x + y)2 

and set these expressions equal to zero. We obtain (excluding x = y = 0) 

x 2 + 2xy = 12, y 2 + 2xy = 12. 

Subtracting. we find that x = ±y. If x = y, then the positive solution is 
x = y = 2. We reject x = - y, since both quantities must be positive. From 
formula (4) for surface area we conclude that z = l when x = y = 2. From 
geometrical considerations, we conclude that these are the dimensions which 
give a maximum volume. 

REMARKS. (i) Th.e determination of maxima and minima hinges on our 
ability to solve the two simultaneous equations in two unknowns resulting 
when we setf.~ = 0 andJ;. = 0. In Example I these equations are linear and 
so quite easy to solve. In Examples 2 and 3, however, the equations are non
linear, and there are no routine methods for solving nonlinear simultaneous 
equations. Elementary courses in algebra usually avoid such topics, and the 
reader is left to his own devices. The only general rule we can state is: try to 
solve one of the equations for one of the unknowns in terms of the other. 
Substitute this value in the second equation and try to find all solutions of 
the second equation. Otherwise use trickery and guesswork. In actual prac
tice, systems of nonlinear equations may be solved by a variety of numerical 
techniques. The use of a computer is particularly valuable in such problems. 
(ii) Definitions of critical point, relative maximum and minimum, etc., for 
functions of three, four, and more variables are simple extensions of the 
two-variable case. Ifj(x,y, z) has first derivatives, then a point where 

l~ =0, 1;.= 0, 

is a critical point. We obtain such points by solving simultaneously three 
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equations in three unknowns. To obtain the critical points for functions of 
11 variables, we set all n first derivatives equal to zero and solve simultaneously 
the /1 equations in /1 unknowns. (iii) Extensions of the Second-Derivative 
Test (Theorem 11) for functions of three or more variables may be developed 
in a similar manner. 

PROBLEMS 

In each of Problems I through 13, test the functions /for relative maxima and minima. 

I. j(x.y) = x 2 + 2_r 2 - 4x + 4y - 3 

2. j(x,y) = x 2 - y 2 + 2x - 4y - 2 

3. j(x.y) =xi+ 2xy + 3_r2 + 2x + toy+ 9 

4. j(x,y) = x 2 - 3xy + _r2 + 13x - 12_r + 13 

5. j(x. y) = y 3 + xi - 6xy + 3x + 6y - 7 

6. j(x.y) = x-' + y2 + 2xy + 4.t - 3_r - 5 

7. j(x.y) = 3xiy + x 2 - 6x - 3.r - 2 

8. j(x. y) = xy + 4ix + 2/y 

9. j(x.y) = sinx + siny + sin(x + _r) 

10. j(x._r) = x 3 - 6xy + y3 

I I. j(x. y) = 821J _ x21J _ y21.i 

12. j(x.y) = e"cosy 

13. j(x.y) = e-·'sini y 

In each of Problems 14 through 17, find the critical points. 

14. j(x,y,=) = x 2 + 2y2 + =2 - 6x + 3y- 2= - 5 

15. j(x,y, z) = x 2 + y 2 - 2z2 + 3x + y - z - 2 

16. j(x,y.=) = x 2 + y 2 + z2 + 2xy- 3xz + 2yz- x + 3y - 2z - 5 

17. j(x,y,z,1) = x 2 + y 2 + ; 2 - 12 - 2xy + 4xz + 3xi - 2y1+4x - Sy - 3 

18. In three-dimensional space find the minimum distance from the origin to the 
plane 

S = {(x,y,z): 3x + 4y + 2z = 6}. 

19. In the plane find the minimum distance from the point (-I, -3) to the line 

I= {(x,y):x + 3y= 7}. 

20. In three-dimensional space find the minimum distance from the point ( - 1, 3, 2) 
to the plane 

S = {(x,y,z):x + 3y- 2z= 8}. 
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21. In three-dimensional space find the minimum distance from the origin to the 
surface (a cone) 

C = {(x,y,z): z2 = (x - 1)2 + (y- 2)2 }. 

22. For a package to go by parcel post, the sum of the length and girth (perimeter of 
cross-section) must not exceed 100 cm. Find the dimensions of the package of 
largest volume which can be sent; assume the package has the shape of a rectan
gular box. 

23. Find the dimensions of the rectangular parallelepiped of maximum volume with 
edges parallel to the axes which can be inscribed in the surface (an ellipsoid) 

£={(x,y,z):~2 +~~+f:=1}. 
24. Find the shape of the closed rectangular box of largest volume with a surface 

area of 16 sq. cm. 

25. The base of an open rectangular box costs half as much per square cm as the 
sides. Find the dimensions of the box of largest volume which can be made for 
Ddollars. 

*26. The cross-section of a trough is an isosceles trapezoid (see Fig. 4-20). If the trough 
is made by bending up the sides of a strip of metal 18 cm wide, what should the 
dimensions be in order for the area of the cross-section to be a maximum? Choose 
h and I as independent variables. 

*27. A pentagon is composed of a rectangle surmounted by an isosceles triangle (see 
Fig. 4-21). If the pentagon has a given perimeter P, find the dimensions for 
maximum area. Choose variables as indicated in Fig. 4-21. 

28. A curve C in three-space is given by 

C={(x,y,z):x2 -xy+y2 -z2 =1 and x2 +y2 =1}. 

Find the point or points on C closest to the origin. 

29. a) Find a functionj(x,y) withf;J~y - J~; = 0 at a point (a,b) and such that/has 
a maximum at (a,b). 

b) Same as part (a) except that/has a minimum at (a, b). 
c) Same as part (a) except that/has neither a maximum nor a minimum at (a, b). 
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*30 State and i;rove a St:cond-Derivative Test such as Theorem 11 for functions 
j(x, y, => of three variables. 

* 31. Let j(x 1 , x 2 , •••• x.) be a function with the property that f~; = 0 at a point 

P(u 1• u2 , ••• • u.) for i = I, 2 ..... 11. Show that if at the point P we have J;i·'i = 0, 

i "# j. i.j = I, 2, ... , 11 andf; '" < O. i = I, 2, ... , 11, thenj has a relative maximum 
at P. ,., 

32. Show that of all triangles having a given perimeter L. the equilateral triangle has 
the largest area. [Him: Use two sides and the included angle as var;ables.] 

33. Suppose that a rectangular parallelepiped is inscribed in a sphere of radius R. 
That is, all eigt.t vertices lie on the sphere. Show that the inscribed parallelepiped 
of largest volume is a cube. 

12. Maxima and Minima by the Method of 
Lagrange Multipliers 

In Example 2 of Section 11 (page 262), we solved the problem of finding the 
relative maxima and minima of the function 

j(x,y) = x 3 + 3xy2 - 3x2 - 3y2 + 4. (1) 

In Example I of the same section (page 259), we solved the problem of 
finding the minimum of the function 

j(x,y,z) = x 2 + y 2 + z2 , 

subject to the condition thai (x,y, z) is on the plane 

S= {(x,y,z):2x+3y-z- I =0}. 

(2) 

(3) 

The problem of finding the critical points of (I) is quite different from 
that offinding :hose of(2) because, in the latter case, the additional condition 
(3) is attached. This distinction leads to the following definitions. 

Definitions. The problem of finding maxima and minima of a function of 
several variables [ s'lch as (I) above] without added conditions is called a 
problem in free maxima and minima .. When a condition such as (3) is imposed 
on a function such as (2) abcve, the problem of determining the maxi~um 
and minimum of that function is called a problem in constrained maxima 
and minima. The added condition (3) is called a side condition. 

ProbleMs in maxima and minima may have one or more side conditions. 
When side conditions occur, they are crucial. For example, the minimum 
of the function/ given by (2) without a side condition is clearly zero. 

While the problem of minimizing (2) with the side condition (3) has already 
been solved, we shall do it again by a different and important method. This 
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method, due to Lagrange, changes a problem in constrainted maxima and 
minima to a problem in free maxima and minima. 

We first introduce a new variable, traditionally denoted by J.., and form 
the function 

F(x,y, z, ).) = (x2 + y 2 + z2) + A.(2x + 3y - z - 1). 

The problem of finding the critical points of (2) with side condition (3) can 
be shown to be equivalent (under rather general circumstances) to that of 
finding the critical points of F considered as a function of the four variables 
x, y, z, A.. (See Theorem 12 at the end of this section.) We proceed by comput
ing £,,, E"y, F,, and F;. and setting each of these expressions equal to zero. 
We obtain 

F,, = 2x + 2). = 0, 

E"y = 2y + 3). = 0, 

F, = 2z - ). = 0, 

F;. = 2x + 3y - z - 1 = 0. 

Note that the equation F;. = 0 is precisely the side condition (3). That is, 
any solution to the problem will automatically satisfy the side condition. 
We solve these equations simultaneously by writing 

x = -A., z =fl, 

2( -A.)+ 3(-~).) - (fl) - 1 = 0, 

and we get le= -t, x = t. y = 134 , z = --/4 • The solution satisfies F;. = 0 
and so is on the plane (2). 

The general method, known as the method of Lagrange multipliers, may be 
stated as follows: In order to find the critical points of a function 

j(x,y,z) 

subject to the side condition 

</>(x,y,z) = 0, 

form the function 

F(x,y,z,).) =J(x,y,z) + l</>(x,y,z) 

and find the critical points of F considered as a function of the four variables 
x, y, z, A.. 

The method is quite general in that several '"multipliers" may be introduced 
if there are several side conditions. To find the critical points of 

subject to the conditions 

</> 1(x,y,z) = 0 

j(x,y,z), 

and </>2(x,y,z) = 0, (4) 
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form the function 

F(x,y,z,A. 1 ,l.2 ) =J(x,y,z) + ). 1 </> 1(x,y,z) + i. 2 <f>2 (x,y,z) 

and find the critical points of Fas a function of the five variables x, y, z, 
}. 1 , and i. 2 • 

We exhibit the method by working three examples. 

EXAMPLE 1. Find the minimum of the function 

j(x,y) = x 2 + 2y 2 + 2xy + 2x + 3y, 

subject to the condition that x and y satisfy the equation 

x2 - y =I. 

SOLUTION. We form the function 

Then 

F(x,y, ).) = (x 2 + 2y2 + 2xy + 2x + 3y) + A.(x2 - y - 1). 

Fx = 2x + 2y + 2 + 2xA. = 0, 

Fy = 4y + 2x + 3 - A. = 0, 

F1 = x 2 - y - 1 = 0. 

Substituting y = x 2 - 1 in the first two equations, we get 

x + x 2 - 1 + 1 + A.x = 0, 4x2 - 4 + 2x + 3 = /.. 
Solving •. we obtain 

x=O, y= -1, A.= -1, 

or 

X - _J_ 
- 4• y = -i76• 

Evaluating/at these points, we find that a lower value occurs when x = -i, 
y = - 176 • From geometrical considerations we conclude that/is a minimum 
at this value. 

REMARKS. We could have solved this problem as a simple maximum and 
minimum problem by substituting y = x 2 - I in the equation for f and 
finding the critical points of the resulting function of the single variable x. 
However, in some problems the side condition may be so complicated that 
we cannot easily solve for one of the variables in terms of the others, although 
it may be possible to do so theoretically. It is in such cases that the power 
of the method of Lagrange multipliers becomes apparent. The system of 
equations obtained by setting the first derivatives equal to zero may be 
solvable even though the side condition alone may not be. The next example 
illustrates this point. 
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EXAMPLE 2. Find the critical values of 

j(x,y) = x2 + )'2, 

subject to the condition that 

x 3 + y 3 - 6xy = 0. 

SOLUTION. We form the function 

F(x,y, ...i.) = x2 + y2 + ...i.(x3 + y3 - 6xy) 

and obtain the derivatives 

F_, = 2x + 3x2). - 6y...i. = 0, 

F;. = 2y + 3y2 ). - 6x). = 0, 

F, = x 3 + y 3 - 6xy = 0. 

Solving simultaneously, we find from the first two equations that 

269 

(5) 

(6) 

. -2x 
l.=32 6' x - y 

. -2y 
I.= 3y2 - 6x' and x(3y2 - 6x) = y(3x2 - 6y). 

The equations 

x 2y - xy2 + 2x2 - 2y2 = 0, x 3 + y 3 - 6xy = 0 

may be solved simultaneoulsy by a trick. Factoring the first equation, we 
see that 

(x - y)(2x + 2y + xy) = 0 

and x = y is a solution. When x = y, the second equation yields 

2x3 - 6x2 = 0, x =0, 3. 

We discard the complex valued solutions obtained by setting 2x + 2y + xy 
= 0. The values x = 0, y = 0 clearly yield a minimum, while from geometric 
considerations (Fig. 4-22), the point x = 3, y = 3 corresponds to a relative 

y 

Fig.4-22 
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maximum. There is no true maximum of j; since x 2 + y 2 (the square of the 
distance from the origin to the curve) grows without bound if either x or y 
does. 

Note that it is not easy to solve Eq. (6) for either x or y and substitute 
in (5) to get a function of one variable. Therefore the methods of one
dimensional calculus are not readily usable in this problem. 

The next example illustrates the technique of Lagrange multipliers when 
there are two side conditions. 

EXAMPLE 3. Find the minimum of the function 

j(x,y,z,t) = x2 + 2y2 + z2 + t2, 

subject to the conditions 

X + 3y - Z + t = 2, 

2x - y + ;: + 2t = 4. 

SOLUTION. We form tbe function 

F(x,y, z, t, A1 , i. 2 ) = (x2 + 2y2 + z 2 + t 2 ) + A1 (x + 3y - z + t - 2) 

+ A2(2x - y + z + 2t - 4). 

We have 

Fx = 2x + A1 + 2i.2 = 0, 

E;. = 4y + 3;,I - i.2 = 0, 

F, = 2z - ). 1 + ).2 = 0, 

F, = 2t + A1 + 2A2 = 0, 

f";., = X + 3y - ;: + t - 2 = 0. 

F;., = 2x - y + z + 2t - 4 = 0. 

(7) 

(8) 

Solving these six linear equations in six unknowns is tedious but routine. 
We obtain 

X=~, Y = 069• 
- - !.± '- - 69., t = :;. 

The corresponding values of /. 1 and i.2 are: i. 1 = -26/69. i.2 = -54/69. 

The validity of the method of Lagrange multipliers hinges on the ability 
to solve an equation for a side condition such as 

</J(x,y,z) = 0 (9) 

for one of the unknowns in terms of the other two. Theorems which state 
when such a process can be performed (theoretically, that is, not actually) 
are called implicit function theorems and are established in Chapter 9. 

We now show that the method of Lagrange multipliers is valid. 

Theorem 12 (Lagrange Multiplier Method). Suppose that j(x,y, z) subject to 
the side condition 
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</>(x,y,z) = 0 (10) 

has a critical point at (x0 ,y0 ,z0 ). If <f>,(x0 ,y0 ,z0 ) :F 0 so that (10) can be 
solved for z in terms of x and y, then (x0 ,y0 , z0 ) is a critical point of 

F(x,y, z, A)= f(x,y, z) + A</>(x,y, z). 

PROOF. We solve (10) for z in terms of x and y and write the function z = 
g(x,y). Next, we set 

H(x,y) =Jix,y,g(x,y)], 

and we note that H has a critical point at (x0 , y 0 ). Therefore 

Hx = 1~ + l;gx = 0, Hy = 1; + l~gy = 0. 

But, by differentiating (11) implicitly, we obtain 

oz </>y 
--g = --oy - y <I>.' 

[since</>, :F 0 near (x0 ,y0 , z0)]. Substituting (12) into (11), we find 

j ._1;"'=0 and r 1~"' 0 x </>, 'f'x Jy - </>, 'f'y = • 

We add to these equations the obvious identity 

j . l~,1. 0 
z - </>z 'l'z = ' 

(11) 

(12) 

and then we set Ao= -l~(x0 ,y0 ,z0)/<f>,(x0 ,y0 ,z0). In this way we obtain 
at (x0 ,y0 , z0 ) the equations 

fx + Ao</>x = 0, 1~ + Ao</>y = 0, 1; + A0 </>, = 0, </>=0, 

which are just the equations satisfied at a critical point of F = f + A</>. 
The proof when there are more side conditions is similar but somewhat 

more complicated. 

PROBLEMS 

Solve the following problems by the method of Lagrange multipliers. 

I. Find the minimum of j(x,y, z) = x 2 + y2 + z2 subject to the condition that 
x + 3y- 2z = 4. 

2. Find the minimum of j(x, y, z) = 3x2 + 2y2 + 4z2 subject to the condition that 
2x + 4y - 6z + 5 = 0. 

3. Find the minimum of j(x,y,z) = x 2 + y 2 + z2 subject to the condition that 
ax + by + cz = d. 

4. Find the minimum of j(x, y, z) = ax2 + by2 + cz2 subject to the condition that 
dx + ey + gz + h = 0 (a, b, c positive). 
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Fig. 4-23 

5. Find the minimum of j(x,y, :) = x 2 + y2 + : 2 if (x,y, :) is on the line of intersec
tion of the planes 

x + 2y + : - I = 0, 2x - y - 3.: - 4 = 0. 

6. Find the minimum of j(x, y, :) = 2x2 + r 2 + 3:2 if (x, y, :) is on the line of 
intersection of the planes 

2x + .r - 3: = 4, x -y + 2: = 6. 

7. Find the points on the curve x 2 + 2xy + 2y2 = 100 which are closest to the origin. 

8. Find the relative maxima and minima of the function 

j(x,y,:) = xJ + YJ + :3 

where (x,y,.:) is on the plane x + y +: = 4. 

9. Find the dimensions of the rectangular box, open at the top, which has maximum 
volume if the surface area is 12. (Compare with Example 3, page 262.) 

10. A tent is made in the form of a cylinder surmounted by a cone (Fig. 4-23). If the 
cylinder has radius 5 and the total surface area is 100, find the height H of the 
cylinder and the height h of the cone which make the volume a maximum. 

11. A container is made of a right circular cylinder with radius 5 and with a conical 
cap at each end. If the volume is given, find the height Hof the cylinder and the 
height h of each of the conical caps which together make the total surface area as 
small as possible. 

12. Find the minimum of the function 

j(x,y,:,I) = xz + .1"2 + :z + 1 2 

subject to the condition 3x + 2y - 4: + 1 = 2. 

13. Find the minimum of the function 

j(x,y,:,I) = x2 + yz + :2 + 12 

subject to the conditions 

x + y - : + 21 = 2, 

14. Find the minimum of the function 

2x - y + : + 31 = 3. 

j(x,y,:,1) = 2x2 + y 2 + ;:2 + 21 2 
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subject to the conditions 

x+y+z+21= I, 2x + y - z + 41 = 2, 

x-y+ z-1=4. 
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15. Find the points on the curve x4 + y4 + 3xy = 2 which are closest to the origin; 
find those which are farthest from the origin. 

16. Find three critical points of the function x4 + y 4 + z4 + 3xyz subject to the 
condition that (x,y, z) is on the plane x + y + z = 3. Can you identify these 
points? 

17. Work Exercise 22 of Section 11 by the method of Lagrange multipliers. 

18. Find the dimensions of the rectangular parallelepiped of maximum volume with 
edges parallel to the axes which can be inscribed in the ellipsoid 

19. If the base of an open rectangular box costs three times as much per square cm 
as the sides, find the dimensions of the box of largest volume which can be made 
for D dollars. 

20. Find and identify the critical points of the function 

j(x,y,z) = 2x2 + y 2 + z2 

subject to the condition that (x, y, z) is on the surface x 2 yz = I. 

21. Find the critical points of the functionf(x,y,z) = x"/'z' if 

x+y+z=A, 

where a, b, c, A are given positive numbers. 

22. Let b 1 , b2 , ••• , bk be k positive numbers. Find the maximum of 

J(x1>x2, ... ,xk) = b 1x 1 + b2X2 + · · · + bkxk, 

subject to the condition 

x~ + x~ + · · · + xi = I. 

23. Find the maximum of the function 

subject to the condition 

x~ + x~ + · · · + xi = I. 

*24. If a 1 , a 2 , ••• , ak are positive numbers, prove that 

(a ·a ·····a)llk<a1+a2+···+ak 
I 2 k - k • 

[Hint: Define x 1 , x 2, ... , xk by the relations xf = aa1, i = I, 2, ... , k where 
CL= 1/l:~=t a1• Then(•) is equivalent to the inequality 
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(xi· x~ · · · · · xf) 11k S l/k, 

with the side condition 

Now use Lagrange multipliers (see Problem 23).] 

25. State and prove a theorem on the validity of the Lagrange multiplier method for 
obtaining the critical points of the function 

f(x 1,x2, ... ,xk) 

subject to the side condition <f>(x 1 , x 2 , ••. , xt) = 0. 

26. Given the quadratic function 
n 

j(x1,x2, ... ,x.) = L a;ix,xi 
i,j=l 

where a1,;, i,j = I, 2, ... , n are numbers such that a;i = ai'' Write then equations 
which must be satisfied by a maximum off on the unit sphere in R" : xi + x~ + 
· · · + x; = I. The n values of i. obtained when these equations are solved are 
called eigenvalues. If n = 2 and /(x 1 ,x2) = 2xi + 3x 1x2 + 4x~. find the two 
eigenvalues. 

27. A manufacturer makes three types of automobile tires labeled A, 8, and C. Let x, 
y, and z be the number of tires made each day of types A, 8, and C. respectively. 
The profit on each tire of type A is $2, on type 8 it is S3, and on type C it is $5. 
The total number of tires which can be produced each day is subject to the con
straint 2x2 + y 2 + 3z2 = 500. Find how many tires of each type should be 
produced in order to maximize profit. 

13. Exact Differentials 

In Section 7 we saw that the total differential of a functionj(x, y) is given by 

df= Cf dx +Cf dy. 
LX LJ' 

(I) 

The quantity df is a function of four variables, since cf/ex and of/oy are 
functions of x and y and dx and dy are additional independent variables. 
Expressions of the form 

P(x,y)dx+ Q(x,y)dy 

occur frequently in problems in engineering and physics. It is natural to 
ask when such an expression is the total differential of a function f For 
example, if we are given 

(3x 2 + 2y)dx + (2x - 3y2 )dy, 

we may guess (correctly) that the functionf(x,y) = x 3 + 2xy - y 3 has the 
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above expression as its total differential, dj: On the other hand, if we are 
given 

(2x 2 - 3y)dx + (2x - y3)dy, (2) 

then it can be shown that there is no function f whose total differential is the 
expression (2). 

Definition. If there is a functionf(x,y) such that 

df = P(x,y)dx + Q(x,y)dy 

for all (x,y) in some region and for all values of dx and dy, we say that 

P(x,y)dx+ Q(x,y)dy 

is an exact differential. If there is a function F(x, y, z) such that 

dF= P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz 

for all (x, y, z) in some region and for all values of dx, dy, and dz, we say that 
P dx + Q dy + R dz is an exact differential. For functions with any number 
of variables the extension is immediate. 

The next theorem gives a precise criterion for determining when a differ
ential expression is an exact differential. 

Theorem 13. Suppose that P(x,y), Q(x,y), aP/ay, aQ/ax are continuous in 
a rectangle S. Then the expression 

P(x,y)dx + Q(x,y)dy (3) 

is an exact differential for (x, y) in the region S if and only if 

aP aQ I 
ay = ax for all (x,y) in S. , (4) 

PROOF. The theorem has two parts: we must show (a), that if (3) is an exact 
differential, then (4) holds; and (b), that if (4) holds, then the expression (3) 
is an exact differential. 

To establish (a) we start with the assumption that there is a function f 
such that 

df= Pdx + Qdy, 

and so aflax = P(x,y) and af/ay = Q(x,y). We differentiate and obtain 

a21· ap a2j aQ 
ayax = ay and axay = ax. 

Now Theorem 7, page 244, which states that the order of differentiation is 
immaterial, may be invoked to conclude that (4) holds. 
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(a,y) (.r,y) 

D 
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' (11, b) (.r,b) 

....,..+---0 --· x Fig. 4-24 

To prove (b) we assume that (4) holds, and we must construct a function 
f such that df is equal to the differential expression (3). That is, we must 
find a function f such that 

of 
ox= P(x,y) and cf_ 

cy- Q(x,y). (5) 

Let (a, b) be a point of S; suppose we try to solve these two partial differ
ential equations for the function/ We integrate the first with respect to x, 
getting 

j(x,y) = C(y) + r P(~,y)d~ 
where, instead of a "constant" of integration, we get a function of the 
remaining variable. Letting x =a, we find thatf(a,y) = C(y), and we can 
write 

j{x,y) =f{a,y) + r P(~,y)d~. (6) 

Setting x =a in the second equation of (5) and integrating with respect 
toy, we obtain 

j{a,y) =cl+ rQ(a,,,)d,,; 

letting y = b, we see that C1 = j{a, b) and we conclude that 

f(a,y) =f{a,b) + rQ(a,,,)d17. 

Substitution of this expression for j{a,y) into the equation (6) yields (fig. 
4-24) 

j{x,y) =f{a,b) + f Q(a,17)d17 + r P(~,y)d~. (7) 

We may repeat the entire process by integrating with respect toy first and 
with respect to x second. The three equations are 
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and 

j(x,y) =f(x,b) + f Q(x,17)d'f, 

j(x,b) =f(a,b) + r P(e,b)de, 

277 

j(x,y) =f(a,b) + r P(e,b)de + f Q(x,17)d17. (8) 

The two expressions for /given by (7) and (8) will be identical if and only 
if (after subtraction) the equation r [P(e,y)- P(e,b)]de = f [Q(x,17)- Q(a,17)]d17 (9) 

holds. To establish (9), we start with the observation that 

P(e,y) - P(e, b) = f Y oP(e, l7) d17 = fy oQ(e, '7) d17, 
J11 oy J11 ox 

where, for the first time, we have used the hypothesis that oP/oy = oQ/ox. 
Therefore, upon integration, r [P(e,y)- P(e,b)]de = f [f oQ~:·l7) d17]de. 

It will be shown in Chapter 5, Section 3, that the order of integrations in 
the term on the right may be interchanged, so that r [P(e,y) - P(e,b)]de =I: [f oQ~:·l7) de] d17 

= r [Q(x, 17) - Q(a, 17)] d17. 

But this equality is (9) precisely; the theorem is established when we observe 
that as a result of (7) or (8), the relations 

hold. 

of =P 
ox 

and 

The proof ofTheorem 13 contains in it the method for finding the function 
/when it exists. Examples illustrate the technique. 

EXAMPLE I. Show that 

(3x 2 + 6y) dx + (3y2 + 6x) dy 

is an exact differential, and find the function f of which it is the total 
differential. 
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SOLUTION. Setting P = 3x2 + 6y, Q = 3y2 + 6x, we obtain 

so that Pdx + Qdy is an exact differential. We write (as in the proof of the 
theorem) 

j~ = 3x2 + 6y 

and integrate to get 

f= x 3 + 6xy + C(y). 

We differentiate with respect toy. We find 

j~ = 6x + C'(y), 

and this expression must be equal to Q. Therefore 

6x + C'(y) = 3y2 + 6x 

Thus 

or C'(y) = 3y2, 

f{x,y) = x 3 + 6xy + y3 + C1 • 

A constant of integration will always appear in the integration of exact 
differentials. 

EXAMPU:: 2. Show that 

(ex cosy - eYsinx)dx + (eYcosx - exsiny)dy 

is an exact differential, and find the functionfofwhich it is the differential. 

SOLUTION. Setting P = ex cosy - eY sin x, Q = eY cos x - ex sin y, we have 

oP x • y . oQ -= -e smy-e smx=-, oy ax 
and the differential is exact. Integrating}~ = P, we get 

f{x,y) =ex cosy+ eYcosx + C(y). 

Differentiating (10) with respect toy, we find 

j~ = -exsiny + eYcosx + C'(y) = Q = eYcosx - exsiny. 

Therefore, C'(y) = 0 and C is a constant. The function/ is given by 

f{x,y) =ex cosy+ eYcosx + C. 

(10) 

The next theorem is an extension of Theorem 13 to functions of three 
variables. 
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Theorem 14. Suppose that P(x,y,z), Q(x,y,z), R(x,y,z) are continuous on 
some rectangular parallelepiped S. Then 

P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz 

is an exact differential on S if and only (/" 

oP 
az' 

oQ oR 
oz oy · 

It is assumed that all the aboi·e partial derivatives are continuous functions of 
(x, y, z) on S. 

The proof of this theorem follows the lines (and uses the proof) ofTheorem 
13. 

The next example shows how to integrate an exact differential in three 
variables. 

EXAMPLE 3. Determine whether or not 

(3x 2 - 4xy + z 2 + yz - 2)dx + (xz - 6y 2 - 2x2 )dy 

+ (9z2 + 2xz + xy + 6z)dz 

is an exact differential and, if so, find the function f of which it is the total 
differential. 

SOLUTION. Setting P, Q, R equal to the coefficients of dx, dy, and dz, respec
tively, we obtain 

P}. = - 4x + z = Qx, 

P: = 2z + y = Rx, 

Q, = x = R}'. 

Therefore P dx + Q dy + R dz is an exact differential, and we proceed to 
find/ Writing/~= P, we integrate to get 

j(x,y, z) = x 3 - 2x2y + xz2 + xyz - 2x + C(y, z). 

We differentiate with respect toy: 

J;.(x,y,z) = -2x2 + xz + Cy(y,z) = Q = xz - 6y2 - 2x2 • 

Hence 
C}'(y,z) = -6y2 

and, upon integration with respect toy, 

C(y,z) = -2y3 + c.(z). 
We may write 
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f(x,y,z) = x 3 - 2x2y + xz2 + xyz - 2x - 2y3 + C 1(z), 

and we wish to find C1(z). We differentiate/with respect to z: 

J; = 2xz + xy + c;(z) = R = 9z2 + 2xz + xy + 6z. 

We obtain 

c;(z) = 9z2 + 6z and 

Therefore 

j(x,y, z) = x3 - 2y3 + 3z3 - 2x2y + xz2 + xyz + 3z2 - 2x + C2 • 

PROBLEMS 

In each of Problems I through 18, determine which of the differentials are exact. In 
case a differential is exact, find the functions of which it is the total differential. 

I. (x3 + 3x2 y) dx + (x3 + y 3) dy 

3. (2y- ~)dx + (2x + Ddy 

5. x2sinydx+x2cosydy 

7. 2xe'' sinydx +ex' cosydy 

8. (yex1 + 3x2)dx + (xex1 - cosy)dy 

9 xdy-ydx 0 
• 2 2 ' x > x +y 

x2 
10. (2xlogy)dx + -dy, y > 0 

y 

2. (2x + 3y)dx + (3x + 2y)dy 

4. (x2 + 2xy)dx + (y3 - x2)dy 

x2+y2 XJ 
6. ---dx - - dy 

2y2 3y3 

II. (x + cosxtany)dx + (y + tanxcosy)dy 

12. !eix/p dx - _!_eix11 (y + 2x)dy 
y YJ 

3x2 
13. (3x2 logy- x 3 )dx +-dy 

y 

14. xdx +( y - 2)dy 
...;x2 + y2 .Jx2 + y2 

15. (2x - y + 3z)dx + (3y + 2z - x)dy + (2x + 3y - z)dz 

16. (2xy + z2)dx + (2yz + x2)dy + (2xz + y2)dz 

17. (exsinycosz)dx + (e'cosycosz)dy- (exsinysinz)dz 

18. (-!_- ~ - ...!_)dx + (-1 - _!_ _ ...!._) dy + (_!_- _!_ _ L\ dz 
y2 x 2 z x2 y xz y2 z xy2 xy yz2 xz2} 
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*19. a) Given the differential expression 

Pdx + Qdy + Rdz + Sdt, 

where P, Q, R, Sare functions of x, y, z, t, state a theorem which is a plausible 
generalization of Theorem 13 in order to decide when the above expression is 
exact. (b) Use the result of part (a) to show that the following expression is exact. 
Find the function/ of which it is the total differential. 

(3x2 + 2z + 3)dx + (2y - t - 2)dy + (3z2 + 2x)dz 

+ (4 - 31 2 - y)dt. 

*20. Prove Theorem 14. 

*21. Ifw = P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz, define 

dw = (iJP - iJQ) dxdy + (iJP - iJR) dxdz + (iJQ - iJR) dydz. 
iJy iJx \oz iJx iJz iJy 

Verify that if w is an exact differential so that w = df; then Theorem 14 states that 
d(df) = 0. Now by analogy state a formula for dw if w = :E~=• ~(x.,x2 , ••• , 

Xt) dxi. Under what conditions is dw = O? 

22. Letf(x), g(y) be arbitrary integrable functions. Show that 

~f(x) + r g(q)d~ dx + [f j(~)d~ + xg(y~ dy 

is an exact differential. If f(x), g(y), h(z) are integrable, generalize the above 
result to functions of three variables. 

It may happen that the expression P(x,y)dx + Q(x,y)dy is not exact but that a function 
l(x,y) can be found so that l(x,y)[P(x,y)dx + Q(x,y)dy] is an exact differential. The 
function I is called an integrating factor. In each of Problems 23 through 25, show that 
the function I is an integrating factor. Then find the function/ which yields the total 
differential. 

23. (xy + x2 + l)dx + x 2 dy, I= l/x 

~4. xdy - ydx - 2x2 logydy, I= l/x2 

25. (2 - xy)ydx + (2 + xy)xdy, I= l/x2y2 

In the left side of the differential equation of the form P(x,y)dx + Q(x,y)dy = 0 is an 
exact differential and if j(x,y) is the function which yields the total differential, then 
f(x,y) = c where c is any constant is the general solution of the equation. In each of 
Problems 26 through 28, solve the differential equation by first finding an integrating 
factor and then determining the function f 
26. ye-xfy dx - (xe-xfy + y 3 )dy = 0 

27. xdx + ydy + (x2 + y 2)(ydx - xdy) = 0 

28. xdy - (y + x 3e2x)dx = 0 
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• 
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14. Definition of a Line Integral 

Fig. 4-25 

Let C be an arc in the plane extending from the point A(a,b) to the point 
B(c, d), as shown in Fig. 4-25. Suppose that f(x, y) is a continuous function 
defined in a region which contains the arc C in its interior. We make a 
decomposition of the arc C by introducing n - 1 points between A and B 
along C. We label these points P1 , P2 , ••• , Pn-i• Pn-i. and set A= P0 , 

B = P". Denote the coordinates of the point Pi by (xi,J'i), i = 0, 1, 2, ... , n. 
(See Fig. 4-26.) Between each two successive points of the subdivision we 
select a point on the curve. Call these points Q 1 , Q2 , ••• , Q", and denote 
the coordinates of Qi by (~i• '1i), i = 1, 2, ... , n. This selection may be made 
in any manner whatsoever so long as Qi is on the part of C between Pi-I 
and Pi (Fig. 4-27). 

We form the sum 

f(e1,l'f1HX1 - Xo) + f(~2·'12HX2 - X1) + · · · + fl~n•'1nHxn - xn-1), 

or, written more compactly, 
n n 

L f(~i• '1i)(xi - xi-1) = L f{~i• l'/i) L\ix. 
i=l i=l 

(I) 

We define the norm of the subdivision P0 , P1 , P2 , ••• , Pn of the curve C 
to be the maximum distance between any two successive points of the 
subdivision. We denote the norm by JJ.1JJ. 

Definition. Suppose there is a number L with the following property: for 
each e > 0 there is a {) > 0 such that 

Fig. 4-26 
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It J(ei,,,i)(xi - Xi-1) - LI< e 
1=1 

for every subdivision with lldll < {J and for any choices of the <ei, t/i) as 
described above. Then we say that the line integral off with respect to x 
aiong the curve C exists and its value is L. There are various symbols for 
this line integral such as 

l.j(x,y)dx and (C) r j(.v:,y)dx. (2) 

Note that the value of the integral will depend, in general, not only on/and 
the points A and B but also on the particular arc C selected. The number L 
is unique if it exists at all. 

The expression (I) is one of several types of sums which are commonly 
formed in line integrations. We also introduce the sum 

n 

:L 1<e;. 11iHY; - Y;-1> 
i=J 

in which the points (e;. t/;) are selected as before. The limit, if it exists (as 
lldll-+ 0), is the line integral 

(C) r j(x,y)dy, (3) 

and will generally have a value different from (2). 
If the arc C happens to be a segment of the x axis, then the line integral 

Sc j(x, y) dx reduces to an ordinary integral. To see this we note that in the 
approximating sums all the t/; = 0. Therefore we have 

(C) r j(x,y)dx = f j(x,O)dx. 

On the other hand, when C is a segment of the x axis, the integral Sc j(x,y) dy 
always vanishes, since in each approximating sum Y; - Yi-t = 0 for every i. 

Simple properties of line integrals, analogous to those for ordinary 
integrals, may be derived directly from the definition. For example, if the 
arc C is traversed in the opposite direction, the line integral changes sign. 
That is, 
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(C) r j(x,y)dx = -(C) rf(x,y)dx. 

If C1 is an arc extending from A 1 to Ai and Ci is an arc extending from 
Ai to A3 , then 

(C1) fA2 f(x,y)dx +(Ci) fA3 f(x,y)dx = (C1 v Ci) JA3 f(x,y)dx, (4) 
A 1 A2 A 1 

where the symbol C1 v Ci has the obvious meaning. As in the case of ordinary 
integrals, line integrals satisfy the additive property: 

f}f(x,y) + g(x,y)] dx = ij(x,y)dx + i g(x,y)dx. 

Statements similar to those above hold for integrals of the type Jc f(x,y) dy. 
There is one more type of line integral which we can define. If the arc C 

and the function! are as before and ifs denotes arc length along C measured 
from the point A to the point B, we can define the line integral with respect 
to the arc lengths. We use the symbol 

(C) r f(x,y)ds 

for this line integral. If C is given in the form y = g(x), we use the relation 
ds = (1 + (g'(x))i] 11i dx to define: 

(C) r j(x,y)ds = (C) r Jix,g(x)]~l + (g'(x))idx, 

in which the right-hand side has already been defined. If the curve C is in 
the form x = h(y), we may write 

(C) r j(x,y)ds = (C) r J[h(y),y]v'l + (h'(y))idy. 

If C is in neither the form y = g(x) nor the form x = h(y), it may be broken 
up into a sum of arcs, each one of which does have the appropriate functional 
behavior. Then the integrals over each piece may be calculated and the 
results added. 

For ordinary integrals there is a simple theorem to the effect that if a 
function f is continuous on an interval [a, b ], then it is integrable there. It 
can be shown that ifj(x,y) is continuous and ifthe arc C is rectifiable (has 
finite length), then the line integrals exist. We shall consider throughout only 
functions and arcs which are sufficiently smooth so that the line integrals 
always exist. It is worth remarking that if C consists of a collection of smooth 
arcs joined together (Fig. 4-28), then because of (4) the line integral along C 
exists as the sum of the line integrals taken along each of the pieces. 

Line integrals in three dimensions may be defined similarly to the way 
they were defined in the plane. An arc C joining the points A and B in 
three-space may be given either parametrically by three equations, 
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Fig. 4-28 

x = x(t), y = y(t), z = z(t), 

or, in some cases, nonparametrically by two equations, 

Z = gz(X). 

If f(x,y, z) is a function defined along C, then a subdivision of the arc C 
leads to a sum of the form 

n 

I f<ej.,,j.,j><xj - xi-1> 
i=l 

which, in turn, is an approximation to the line integral 

If(x,y,z)dx. 

Line integrals such as Jcf(x,y,z)dy, Jcf(x,y,z)dz and Jcf(x,y,z)ds are 
defined similarly. 

15. Calculation of Line Integrals 

In the study of integration of functions of one variable, the definition of 
integral is fairly worthless as a tool for finding the value of any specific 
integral. The methods actually employed for performing integration use 
the properties of integrals, special formulas for antiderivatives, and other 
devices. 

The situation with line integrals is similar. In the last section we defined 
various types of line integrals, and now we shall exhibit methods for calcu
lating the value of these integrals when the curve C and the function fare 
given specifically. It is an interesting fact that all such integrals may be 
reduced to ordinary integrations of the type we have already studied. Once 
the reduction is made, the problem becomes routine and all the formulas 
we learned for evaluation of integrals and tables of integrals may be used. 

The next theorem, stated without proof, establishes the rule for reducing 
a line integration to an ordinary integration of a function of a single variable. 

Theorem 15. Let C be a (directed) rectifiable arc given in the form 

C={(x,y):x=x(t), y=y(t), t0 S:yS:ti}, (I) 

so that the point A(a, b) corresponds to t0 , and B(c, d) corresponds to t1. 

Suppose /(x, y) is a continuous function along C, and x'(t), y'(t) are 
continuous. Then 
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(C) f8 
j(x,y)dx = f 11 f[x(t),y(t)]x'(t)dt, 

A 'o 

(C) r j{x,y)dy = L J[x(t),y(t)]y'(t)dt, 

(C) f 8 f(x,y) ds = f 11 f[x(t),y(t) ]'1'\x'(t))2 + (y'(t))2 dt. 
A 'o 

A similar theorem is valid for line integrals in three-space. 

Corollary. if the arc C is in the form y = g(x), then 

(C) r j(x,y)dx = f J[x,g(x)]dx. 

For, if y = g(x), then x may be used as a parameter in place oft in (1) and 
the corollary is a restatement of the theorem. Similar statements may be 
made if C is given by an equation of the type x = h(y). 

EXAMPLE 1. Evaluate the integrals 

L (x2 - y 2 )dx - L 2xydy 

where C is the arc (Fig. 4-29): 

C={(x,y):x=t2 -1, y=t2 +t+2, O:s;t:s;l}. 

SOLUTION. According to Theorem 15, we compute 

x'(t) = 2t, y'(t) = 2t + I 
and make the appropriate substitutions. We get 

1 (x2 - y 2)dx = f [(1 2 - 1)2 - (t 2 + t + 2)2] • 2tdt, 

- l 2xydy = -2 l 1 (t 2 - J)(t 2 +I+ 2)(2t + l)dt. 
Jc.. Jo 

Multiplying out the integrands, we find 
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I (x 2 -y2 )dx=211(-2t3 -7t2 -4t-3)tdt, 1- Jo 

-2 Ixydy=-2 f (t4 +t3 +t2 -t-2)(2t+l)dt. 

The integration is now routine, and the final result is 

L [(x2 - y 2)dx - 2xydy] = -2 f (2t 5 + 514 + 1013 + 312 - 21 - 2)d1 

II 
=-3· 

EXAMPLE 2. Evaluate the integral 

1 (x2 - 3xy + y 3)dx 

where C is the arc 

C={(x,y):y=2x2 , O=s;;x=s;;2}. 

SOLUTION. We have 

1 (x2 - 3xy + y 3)dx = r [x2 - 3x(2x2 ) + (2x2) 3]dx 

_ [x3 _ ~ 4 ~ 7] 
2 

_ 2624 
- 3 2x + 7x - 21 · 

0 

EXAMPLE 3. Evaluate 

Lyds 

where C is the arc 

C={(x,y):y=.JX, O=s;;x=s;;6}. 

SOLUTION. We have 

ds=Jl +(t)2dx=~Jl :4xdx, 

and therefore 

1 116 ~~ 116 ~ 
J/ds = 2 Jo ..jx ...j----x-x-dx = g Jo v 1+4xd(I + 4x) 

=[~.~(I + 4x)3/2 J: = 331. 
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y 

Fig. 4-30 

The next example shows how we evaluate integrals when the arc C consists 
of several pieces. 

EXAMPLE 4. Evaluate 

l. [(x + 2y)dx + (x 2 - y 2 )dy], 

where C is the line segment C 1 from (0, 0) to (I, 0) followed by the line 
segment C2 from (1,0) to (I, I) (Fig. 4-30). 

SOLUTION. Along C1 we have x = x, y = 0, 0::;; x::;; I, so dy = 0, and 

i. [(x + 2y)dx + (x 2 - y 2)dy] = f xdx = ~· 
I 

Along C2 we have x = I, y = y, and so dx = 0. We obtain 

f [(x + 2y)dx + (x 2 - y 2)dy] = f1 
(I - y 2 )dy = ~. 

Jc Jo 3 
2 

Therefore 

[(x + 2y)dx + (x 2 - y 2)dy] = - + - = -. i I 2 7 

c 2 3 6 

EXAMPLE 5. Evaluate the integral of Example 4 where the arc C is now the 
line segment C3 from (0,0) to (I, I). (See Fig. 4-30.) 

SOLUTION. Along C3 we have y = x, and so dy = dx. Therefore 

r [(x + 2y)dx + (x 2 - y 2)dy] = f13xdx = ~· 
J~ 1 

The next example illustrates the method for evaluation of line integrals 
in three space. 

EXAMPLE 6. Evaluate the integral 
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l [(x 2 + y 2 - z2 )dx + yzdy + (x - y)dz] 

where C is the arc 

289 

C={(x,y,z):x=12 +2, y=2t-I, z=21 2 -1, O:s;1:s;I}. (2) 

SOLUTION. We substitute for x, y, z from (2) and insert the values dx = 21 di, 
dy = 2d1, dz= (41 - l)d1, to obtain 

f { [(1 2 + 2)2 + (21 - 1)2 - (212 - 1)2]21 di+ (21 - 1)(212 - 1)2d1 

+ (1 2 - 21 + 3)(41 - l)dl}. 

Upon multiplying out all the terms and performing the resulting routine 
integration we get the value 263/30. 

PROBLEMS 

In each of Problems 1 through 10, evaluate Jc(Pdx + Qdy) and draw a sketch of the 
arc C. 

I. Jc [ (x + y) dx + (x - y) dy] where C is the line segment from (0, 0) to (2, I). 

2. Jc [ (x + y) dx + (x - y) dy] where C consists of the line segment from (0, 0) to 
(2,0) followed by that from (2,0) to (2, l). 

3. Jc [ (x2 - 2y)dx + (2x + y 2) dy] where C is the arc of y 2 = 4x - 1 going from 
(!, -1) to (i, 2). 

4. Jc[(x2 - 2y)dx + (2x + y 2)dy] where C is the line segment going from(!, -1) to 
<i.2). 

5. Jc [y dx + (x2 + y 2) dy] where C is the arc of the circle y = .J 4 - x 2 from ( - 2, 0) 
to (0, 2). 

6. Jc [y dx + (x2 + y 2) dy] where C consists of the line segment from ( -2, 0) to (0, 0) 
followed by that from (0, 0) to (0, 2). 

7. f ( ~dx+ 22Y 2d) 
c ..jx2-y2 4x +y } 

where C is the arc y = !x2 from (0, 0) to (2, 2). 

8. r ( x 2 dx + - 2>-'-dy) Jc ..jx2 _ y2 4x2 + y2 

where C consists of the line segment from (0, 0) to (2, 0), followed by the line 
segment from (2, 0) to (2, 2). 

9. ,.....,.----,,dx + dy f ( -y 1 ) 
c x....; x2 - y2 v x2 - y2 

where C is the arc of x 2 - y 2 = 9 from (3, 0) to (5, 4). 
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!~. Same integral as in Problem 9, where C consists of the line segment from (3, 0) to 
(5, 0), followed by the line segment from (5, 0) to (5, 4). 

11. Calculate fc.v'x + (3y)513 ds where C is the arcy = !x3 going from (0, 0) to (3, 9). 

12. Calculate JC\/ x + 3 y ds where C is the straight line segment going from (0, 0) to 
(3, 9). 

13. Calculate Jcy2 sin3 x.JI + cos2 xds where C is the arcy = sinx going from (0,0) 
to (rr./2, I). 

14. Calculate Jc<2x2 + 3y2 - xy)ds where C is the arc 

x = 3cost} 
y = 3sint ' 

15. Calculate Jcx 2 ds where C is the arcx = 2y312 going from (2, I) to (16,4). 

16. Calculate Jc[(x2 + y2)dx + (x 2 - y 2)dy] where C is the arc 

C={(x,y):x=t2 +3, y=t-1, l~t~2}. 

17. Calculate Jc[sinxdy + cosydx] where C is the arc 

C={(x,y):x=t2 +3, y=2t2 -I, O~t~2}. 

18. Calculate Jc[(x-y)dx+(y-z)dy+(z-x)dz] where C is the line segment 
extending from (I, -1,2) to (2, 3, I). 

19. Calculate Jc[(x2 - y 2)dx + 2xzdy + (xy - yz)dz] where C is the line segment 

C={(x,y,z):x=2t-I, y=t+I, z=t-2, O~t~3J. 

20. Calculate Jc[(x - y + z)dx + (y + z - x)dy + (z + x - y)dz] where C consists 
of straight line segments connecting the points (I, - I, 2), (2, - I, 2). (2, 3, 2), and 
(2, 3, I), in that order. 

21. Calculate 

f xdx + ydy + zdz 
c x2 + y2 + z2 

where C is the arcx = 21, y = 21+I,z=12 + t, joining the points (0, 1,0) and 
(2, 3, 2). 

22. Same as Problem 21, where C is the straight line segment joining (0, 1,0) and 
(2, 3, 2). 

23. Evaluate 

where C is the closed curve 

f ydx + xdy 

Jc ,/x2 + y2 

c = {(x,y): x =COS/, y =sin/, -rr. ~I :s; rr.}. 

24. Evaluate 
f -yd~_+ xdy 

Jc .Jx2 + y2 

where C is the same curve as in Problem 23. 
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25. Write out a proof of the formula 

(C) f (f + g)dx = (C) r I dx + (C) r gdx. 

26. Suppose l/(x,y)I s M for all points (x,y) on an arc C. If C is oflength L, establish 
the inequality 

l(C) f f(x,y)dsl s ML. 

27. Suppose a closed curve C consists of the segment L = {(x,y): a S x S b,y = O} 
and the arc K = { (x,y): y = f(x), a S x s b} where the endpoints of K are at 
(a, 0) and (b, 0) and where /(x) ~ 0. Show that the area enclosed by C is given by 
(C)Jxdy where the integral is taken counterclockwise. Extend <he result to a 
general closed curve C. 

28. Let/(x,y) have continuous first derivatives in a region containing a smooth arcC 
with endpoints A(x0 ,y0 ), B(x 1 ,y1). Show that 

(C) f [fxdx + J;,dy] = f(x 1,y1) - f(x 0 ,y0 ). 

[Hint: Assume C is given parametrically by C = { (x,y): x = x(t), y = y(t), 
10 stst 1 }. Then define 4>(t) = f[x(t),y(t)] and use the Chain Rule.] 

29. Suppose that fis a vector function in the plane. That is, f(x,y) = P(x,y)i + Q(x,y)j. 
Define the vector differential dv = (dx)i + (dy)j. Then it is natural to define 

( C) J f ·dv = ( C) j[Pdx + Qdy). 

If g(x,y) is a scalar function which has two derivatives, show that 

(C) f Vg·dv=O 

if (C) is a smooth closed curve. [Hint: Recall the theorem on exact differentials or 
use the result in Problem 28.] 

16. Path-Independent Line Integrals 

In general, the value of a line integral depends on the integrand, on the two 
endpoints, and on the arc connecting these endpoints. However, there are 
special circumstances when the value of a line integral depends solely on tile 
integrand and endpoints but not on the arc on which the integration is 
performed. When such conditions hold, we say that the integral is independent 
of the path. The next theorem establishes the connection between path
independent integrals and exact differentials. (See Section 13.) 

Theorem 16. Suppose that P(x,y)dx + Q(x,y)dy is an exact differential. 
That is, there is afunctionf(x,y) with 
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df = Pdx + Qdy. 

Let C be an arc given parametrically by 

x = x(t), y = y(t), 

where x'(t), y'(t) are continuous. Then 

I. (Pdx + Qdy) = Jix(t 1), y(t 1)] - f1x(t 0 ), y(t0 )]. 

That is, the integral depends only on the endpoints and not on the arc C joining 
them. 

PROOF. We define the function F(t) by 

F(t) =JI x(t), y(t) ], 

We use the Chain Rule to calculate the derivative: 

F'(t) = fxx'(t) + fyy'(t) 

so that 

F'(t) = P[x(t), y(t)]x'(t) + Q[x(t), y(t)]y'(t). (I) 

Integrating both sides of (I) with respect tot and employing Theorem 15, 
we conclude that 

F(t 1) - F(t0 ) = I. (Pdx + Qdy). 

The result follows when we note that 

and F(t0 ) = fix(lo). y(to)]. 

Corollary. If Pdx + Qdy + Rdz is an exact difjerentia/, then 

I (Pdx + Qdy + Rdz) = fix(t 1), y(t 1), z(t 1)] - Jix(t0), y(t0 ), z(t0 )] 

where df = P dx + Q dy + R dz and the curve C is given by 

C = { (x,y, z): x = x(t), y = y(t), z = z(t), 10 !>: t !>:ti}. 

EXAMPLE I. Show that the integrand of 

l [(2x + 3y)dx + (3x - 2y)dy] 

is an exact differential and find the value of the integral over any arc C going 
from the point (I, 3) to the point ( - 2, 5). 

SOLUTION. Setting P = 2x + 3y, Q = 3x - 2y, we have 
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oP = 3 = oQ_ 
oy ax 

By Theorem 13, the integrand is an exact differential. Using the methods of 
Section 13 for integrating exact differentials, we find that 

f(x,y) = x 2 + 3xy - y 2 + C1 • 

Therefore 

I [(2x + 3y)dx + (3x - 2y)dy] = j(-2, 5) - f(l, 3) = -52. 

Notice that in the evaluation process the constant C1 disappears. 

EXAMPLE 2. Show that the integrand of 

I [(3x 2 + 6xy)dx + (3x 2 - 3y2)dy] 

is an exact differential, and find the value of the integral over any arc C 
going from the point ( l, l) to the point (2, 3). 

SOLUTION. Setting P = 3x2 + 6xy, Q = 3x2 - 3y2 , we have 

oP oQ -=6x=-. ay ax 
Instead of finding the function f with the property that df = P dx + Q dy, 
we may pick any simple path joining (I, l) and (2, 3) and evaluate the integral 
along that path. We select the horizontal path C1 from(l, l) to(2, l), followed 
by the vertical path from (2, I) to (2, 3). The result is 

r (3x 2 + 6x)dx + r (12 - 3y2)dy = [x3 + 3x2]~ + [12y - y3]~ = 14. 
Jc, Jc, 

PROBLEMS 

In each of Problems I through 11, show that the integrand is an exact differential and 
evaluate the integral. 

I. Jc[(x2 + 2y)dx + (2y + 2x)dy] where C is any arc from (2, l) to (4.2). 

2. Jc [(3x2 + 4xy - 2y2)dx + (2x2 - 4xy - 3y2 )dy] where C is any arc from (I, 1) 
to (3. 2). 

3. Jc(e"cos}·dx - ex sinydy) where C is any arc from (1.0) to (0.1). 

4. 1[(i2:1~2 +3) dx + (2ylog(l + x2)- 2)dy] 

where C is any arc from (0, 2) to (5. I). 
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5. · dx - · dr f [ r 2 xr J 
c (x2 + y2)J12 (x2 + .r2)J12 . 

where C is any arc from (4, 3) to ( -3, 4) which does not pass through the origin. 

6. f L~.-+'~r+:;j"x + v-f+ ~i + .r2".1J 

where C is any arc from (-2. -2) to (4, I). 

7. fc{[ye'Y(cosxy- sinxy) + cosx]d11: + [xe'Y(cosxy- sinxy) + siny]dy} 
where C is any arc from (0,0) to (3, -2). 

8. Jc[(2x - 2y +;: + 2)dx + (2y- 2x - l)~r + (-2;: + x)d;:] 
where C is any arc from (I, O. 2) to (3. - I, 4). 

9. Jc[(2x + y- z)dx + (-2.r + x + 2;: + 3)~r + (4z - x + 2y- 2)d;;] 
where C is any arc from (0, 2. -1) to (I. -2.4). 

IO. Jc[(3x2 - 3yz + 2xz)d11: + (3y2 - 3xz + z2)dy + (3z 2 - 3xy + x 2 + 2yz)dz] 
where C is any are from ( -1, 2, 3) to (3, 2, -1). 

11. Sc [ (.rze'"' cos x - rY• sin x + ycos xy + :: sin xz) dx 
+ (x::ex»=cosx + xcosxy)dy + (xyex,·=cosx + xsinxz)dz] 

where C is any arc from (0, 0, 0) to ( - I, -2, - 3). 

12. Find the value of the integral in Problem 5 where C is a circle to which the origin 
is exterior. Show that the result is independent of the size of the circle selected. 

13. Let IX;, /J1, i = I. 2, ... , k be constants. and suppose that P;dx + Q1dy, i = I, 2, 
... , k are exact differentials. Show that 

k 

L [(rx;l';)dx + <P;Q;)J] 
i=-1 

is exact if IX; = /J1, i = I, 2 .... , k. Is the condition 0t:1 = p, necessary? 

I4. Suppose that P;d11: + Q1dy, i =I, 2 are exact differentials. Prove that P1P2 dx + 
Q, Q 2 dy is exact if 

(P2 - Qi)~1- = (Q, - PiQ 2 • cy ex 
Is this condition necessary? Extend the result to the product of two exact differen
tials in three variables. 

*15. Let P 1(x 1,x2,x3 ,x4 ). P2(x 1,x2,.X"3 ,x4 ), •••• P4 (X 1,x2.x3 ,X4) be four functions 
of four variables such that 

cP; _ ef'i 
ex; - ex,' i, j = I, 2, 3, 4. 

State and prove a theorem similar to Theorem 15. Note that it is first necessary 
to define a line integral in R 4 • 



CHAPTER 5 

Multiple Integration 

1. Definition of the Double Integral 

Let F be a region of area A situated in the xy plane. We shall always assume 
that a region includes its boundary curve. Such regions are sometimes called 
closed regions in analogy with closed intervals on the real line-that is, ones 
which include their endpoints. We subdivide the xy plane into rectangles 
by drawing lines parallel to the coordinate axes. These lines may or may not 
be equally spaced (Fig. 5-1). Starting in some convenient place (such as 
the upper left-hand corner of F), we systematically number all the rectangles 
lying efllirely within F. Suppose there are n such and we label them r 1 , 

!I 

+ 

' / -...... 
I \ I r1 ri r;i --
~-

-· ,._ 
"' \ 

r1 I r.1 

·-~-· 

\ F 

\ ,/ 
' .. 

"-.. v 
!'-.... rn-1 r,, / .......... --

Fig. 5-1 o x 
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Ti Ti+l 

• 
•(~;.'Ii) ~i-i. '1;+1) 

Fig. 5-2 

r2, ... , rn. We use the symbols A(r1), A (r2), ••• , A(rn) for the areas of these 
rectangles. The collection of n rectangles { r 1 , r 2 , ••• , rn} is called a sub
division A of F. The norm of the subdivision, denoted by llAll. is the length of 
the diagonal of the largest rectangle in the subdivision A. 

Suppose that j(x,y) is a function defined for all (x,y) in the region F. 
The definition of the double integral off over the region Fis similar to the 
definition of the integral for functions of one variable. Select arbitrarily a 
point in each of the rectangles of the subdivision A, denoting the coordinates 
of the point in the rectangle r; by <ei, I'/;). (See Fig. 5-2.) Now form the sum 

J<e1.111)A(r1) + J<e2.'12)A(r2) + · · · + J<en,l'/n)A(rn) 

or, more compactly, 
n 

I J<ei. 11JA(rJ (I) 
i=I 

This sum is an approximation to the double integral we shall define. Sums 
such as (I) may be formed for subdivisions with any positive norm and with 
the ith point <ei, I'/;) chosen in any way whatsoever in the rectangle ri. 

Definition. We say that a number L is the limit of sums of type ( 1) and write 

if the number L has the property: for each e > 0 there is a {> > 0 such that 

lit.J(ei.l'/)A(r,)- LI< e 

for every subdivision A with llAll < {>and for all possible choices of the points 
<ej, I'/;) in the rectangles ri. 

It can be shown that if the number L exists, then it must be unique. 

Definition. If f is defined on a region F and the number L defined above 
exists, we say that f is integrable over F and write 
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L = f ft(x,y)dA. 

F 

We also call the expression above the double integral off over F. 

The double integral has a geometric interpretation in terms of the volume 
of a region in three-space. The definition of volume depends on (i), the defini
tion of the volume of a cube-namely, length times width times height, and 
(ii), a limiting process. 

Let S be a region in three-space. We divide all of space into cubes by con
structing planes parallel to the coordinate planes at a distance apart of 1/2" 
units, with n some positive integer. In such a network, the cubes are of three 
kinds: type(!), those cubes entirely within S; type (2), those cubes partly 
in Sand partly outside S; and type (3), those cubes entirely outside S (Fig. 
5-3). We define 

v.-(S) =;.times the number of cubes of type(!), 

v.+ (S) = v.-(S) + ;. times the number of cubes of type (2). 

Intuitively we expect that, however the volume of S is defined, the number 
v.-(S) would be smaller than the volume, while the number v.+(S) would 
be larger. It can be shown that, as n increases, v.-(S) gets larger or at least 
does not decrease, while v.+(S) gets smaller or at least is nonincreasing. 
Clearly, 

always. Since bounded increasing sequences and bounded decreasing 
sequences tend to limits, the following definitions are appropriate. 

Definitions. The inner volume of a region S, denoted v-(S), is lim._ 00 v.-(S). 
The outer volume, denoted v+(S), is lim._00 v.+(S). A set of points Sin 
three-space has a volume whenever 

v-<s> = v• (S). 

This common value is denoted by V(S) and is called the volume of S. 

Type (3) 

(QJ 

Fig. 5-3 
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/// 
x 

Fig. 5-4 Fig. 5-5 

REMARK. It is not difficult to construct point sets for which v-(S) #- V ... (S). 
For example, take S to be all points (x, y, z) such that x, y, and z are rational 
and 

0 ~ x ~ 1, O~y~ I, O~z~ I. 

The reader can verify that v.-(S) = 0 for every n, while v.+(S) = I for 
every n. 

If S1 and S 2 are two regions with no points in common, it can be shown, as 
expected, that V(S1 v S2) = V(S1) + V(S2). Also, the subdivision of all of 
space into cubes is not vital. Rectangular parallelepipeds would do equally 
well, with the formula for the volume of a rectangular parallelepiped taken 
as length times width times height. 

The volume of a region is intimately connected with the double integral in 
the same way that the area of a region is connected with the single integral. 
We now exhibit this connection. 

Suppose thatj(x, y) is a positive function defined for (x, y) in some region 
F(Fig. 5-4). An item in the sum (I) approximating the double integral is 

j(~;. l/;)A (r;), 

which we recognize as the volume of the rectangular column of height 
JR, l'f;) and area of base A(r;) (Fig. 5-4). The sum of the volumes of such 
columns is an approximation to the volume of the cylindrical region bounded 
by the surface z = f(x,y), the plane figure F, and lines parallel to the z axis 
through the boundary of F(Fig. 5-5). lt can be shown that, with appropriate 
hypotheses on the function}; the double integral 

ff j(x,y)dA 

f' 
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Fig. 5-6 
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measures the "volume under the surface" in the same way that a single 
integral of a positive function/ 

rf(x)dx 

measures the area under the curve. 
The precise result is given in the next theorem which we state without 

proof. 

Theorem 1. lff(x,y) is continuous for (x,y) in a closed region F, then f is 
integrable over F. Furthermore, ijf(x,y) > Ofor (x,y) in F, then 

V(S) = ff j(x,y)dA, 

f" 

where V(S) is the volume of the region defined by 

S = {(x,y,z): (x,y) in F andO:::;; z s;j(x,y)}. 

We discuss methods for evaluating double integrals in Section 3. 

EXAMPLE. Given f(x,y) = 1 + xy and the region F bounded by the lines 
y = 0, y = x, and x = 1 (Fig. 5-6), let !!.. be the subdivision formed by the 
lines x = 0, 0.2, 0.5, 0.8, 1 and y = 0, 0.2, 0.5, 0. 7, I. Find the value of the 
approximating sum 

• I J(e;. 11;)A(r;) 
i=l 

to the double integral 

ff j(x,y)dA 

f" 

if the points ( e;. 17;) are selected at the centers of the rectangles. 
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SOLUTION. Referring to Fig. 5-6, we see that there are 6 rectangles in the 
subdivision which we label r 1 , r 2 , .•• , r6 , as shown. We compute: 

A(r1) = 0.06, f(0.35, 0.1) = l.035 

A (r 2) = 0.06, f(0.65, 0.1) = l.065 

A(r3 ) = 0.04, f(0.9, 0.1) = l.090 

A(r4 ) = 0.09, j(0.65, 0.35) = l.2275 

A(r5 ) = 0.06, j(0.9, 0.35)= 1.315 

A (r 6 ) = 0.04, j(0.9, 0.6) = 1.540 

Multiplying and adding, we find that 
6 

I j(~;. r/i)A(r;) = 0.420575 (Answer). 
;~1 

PROBLEMS 

In each of Problems I through IO, calculate the sum l:j= 1f(.;;. T/;)A(r;) for the sub
division A of the region F formed by the given lines and with the points(.;;. 'I;) selected 
as directed in each case. 

1. f(x, y) = x 2 + 2y2 ; Fis the rectangle 0 :s; x :s; I, 0 :s; y :s; I. The subdivision A is: 
x = 0, 0.4, 0.8, 1; y = 0, 0.3, 0.7, I. For each i the point (<!;.'I;) is taken at the 
center of the rectangle r;. 

2. Same as Problem 1, with (<!;.'I;) taken at the point of r; which is closest to the 
origin. 

3. f(x, y) = 1 + x 2 - y 2 ; Fis the triangular region formed by the lines y = 0, y = x, 
x = 2. The subdivision A is: x = 0, 0.5, 1, 1.6, 2; y = 0, 0.6, 1, 1.5, 2. For each i, 
the point(<!;. I'/;) is taken at the center of the rectangle r;. 

4. Same as Problem 3, with (<!;.'I;) taken at the point of r; which is closest to the 
origin. 

5. Same as Problem 3, with (.;;,I'/;) selected on the lower edge of r;. midway between 
the vertical subdivision lines. 

6. j(x,y) = x 2 - 2xy + 3x - 2y; Fis the trapezoid bounded by the lines x = 0, x = 2, 
y = 0, y = x + I. The subdivision A is: x = 0, 0.4, I, 1.5, 2; y = 0, 0.6, I, 1.4, 1.8, 
2, 3. For each i the point (<!;.I'/;) is taken at the center of the rectangle r;. 

7. Same as Problem 6, with(<!;. 'I;) taken at the point of r; farthest from the origin. 

8. Same as Problem 6, with (<!;,I'/;) taken at the point of r; closest to the origin. 

9. Let 

j(x,y) = x - y ; 
l+x+y 
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Fis the region bounded by the line y = 0 and the curve y = 2x - x 2 • The sub
division~ is: x = 0, 0.5. 1.0, 1.5, 2: y = 0. 0.2, 0.4, 0.6, 0.8, I. For each i, the point 
(~ 1 .17,) is taken at the center of the rectangle r,. 

IO. Same as Problem 9 with the point (~,. q,) taken at the point of r, closest to the 
origin. 

2. Properties of the Double Integral 

In analogy with the properties of the definite integral of functions of one 
variable, we state several basic properties of the double integral. The simplest 
properties are given in the two following theorems. 

Theorem 2. If c is any number andf is integrable over a closed region F, then 
cf is integrable and 

Theorem 3. If f and g are integrable or;er a closed region F, then 

ff [f(x,y) + g(x,y)]dA = ff j'(x,y)dA + ff g(x,y)dA. 

F F F 

The result holds for the sum of any finite number of integrable functions. 
The proofs of Theorems 2 and 3 are obtained directly from the definition. 

Theorem 4. Suppose that f is integrable over a closed region F and 

m -5.f(x,y) -5. M for all (x,y) in F. 

Then, ifA(F) denotes the area of F, we have 

mA(F) -5. ff f(x,y)dA -5. MA(F). 

F 

The proof of Theorem 4 follows exactly the same pattern as does the proof 
in the one-variable case. First it must be shown that the above inequalities 
hold for the sums 

n 

mA(F) -5. LJ(~;.'1;)A(r1) -5. MA(F). 
i=I 

Hence the inequalities hold in the limit. 
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Theorem 5. /ff and g are integrable over F and f(x, y) :5: g(x, y) for all (x, y) 
in F, then 

ff f(x,y)dA :5: ff g(x,y)dA. 

F F 

The proof is established by the same argument used in the one-variable 
case. According to Theorem 4 

ff [g(x,y) - f(x,y)]dA;;:: m(b - a);;:: 0 

F 

since g(x,y) - f(x,y) ~ 0. Then Theorem 3 yields the result. 

Theorem 6. If the closed region Fis decomposed into (non-overlapping) regions 
F1 and F2 and if f is continuous over F, then 

ff f(x,y)dA =ff f(x,y)dA +II f(x,y)dA. 

F F 1 F 2 

The proof depends on the definition of double integral and on the basic 
theorems on limits. 

PROBLEMS 

In Problems I through 7, use Theorem 4 to find in each case estimates for the largest 
and smallest values the given double integrals can possibly have. 

I. JJ xy dA where Fis the region bounded by the lines x = 0, y = 0, x = 2, 
F 

y= x + 3. 

2. JJ (x2 + y 2) dA where Fis the region bounded by the lines x = - 2, x = 3, 
F 

y = x + 2, y = - 2. 

3. JJ (I + 2x2 + y2 ) dA where is the region bounded by the lines x = -3, x = 3, 
F 

y=4, y= -4. 

4. JJ y4 dA where Fis the region bounded by the line y = 0 and the curve y = 2x - x 2 • 

F 

5. JJ<x - y)dA where Fis the region enclosed in the circle x2 + y 2 = 9. 
F 

6. J J [I/( I + x 2 + y2)] dA where Fis the region enclosed in the ellipse 4x2 + 9 y 2 = 36. 
F 

7. JJ ...; I + x 2 + y 2 dA where F is the region bounded by the curves y = 3x - x 2 and 
F 

y = x 2 - 3x. 

8. Write out a proof of Theorem 3. 

IO. Write out a proof of Theorem 5. 

9. Write out a proof of Theorem 4. 

11. Write out a proof of Theorem 6. 
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12. Let F1 • F2 , ••. , F. be n nonoverlapping regions. State and prove a generalization 
of Theorem 6. 

13. Letj(x.y) be continuous on a closed region F. 

a) Show that fJJ(x,y)dA :o; fJIJ(x,y)ldA. 
f" f" 

b) If g(x. y) is also continuous on F. show that 

\tJ(j(x,y) + g(x,y)]dAI :o; tJ [lftx . .r)I + lg(x.r)l]dA. 

14. Use the definition of double integral to show that the volume of a right circular 
cylinder with the height hand radius of baser is nr2h. 

3. Evaluation of Double Integrals. Iterated Integrals 

The definition of the double integral is useless as a tool for evaluation in any 
particular case. Of course-, it may happen that the function j(x, y) and the 
region Fare particularly simple, so that the limit of the sum 

• L J(~;. 11;)A(r;) 
i=I 

can be found directly. However, such limits cannot generally be found. As 
in the case of ordinary integrals and line integrals, it is important to develop 
simple and routine methods for determining the value of a given double 
integral. In this section we show how the evaluation of a double integral 
may be performed by successive evaluations of single integrals. In other 
words, we reduce the problem to one we have already studied extensively. 
The reader will recall that in Chapter 4 the evaluation of line integrals was 
reduced to known techniques for single integrals in a similar way. 

Let F be the rectangle with sides x = a, x = b, y = c, y = d, as shown in 
Fig. 5-7. Suppose that f(x,y) is continuous for (x,y) in F. We form the 
ordinary integral with respect to x, 

f j(x,y)dx, 

in which we keep y fixed when performing the integration. Of course, the 

u=rl .I 
F 

y = c -·1-- ···-·--·--
Fig. 5-7 x=a J·=b 
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value of the above integral will depend on the value of y used, and so we 
write 

A(y) = rj(x,y)dx. 

The function A (y) is defined for c ~ y ~ d and, in fact, it can be shown that 
ifj(x,y) is continuous on F, then A(y) is continuous on [c,d]. The integral 
of A(y) may be computed, and we write r A(y)dy = f [f J(x,y)dx ]dy. (I) 

We could start the other way around by fixing x and forming the integral 

B(x) = f j(x,y)dy. 

Then r B(x)dx = r [f j(x,y)dy Jdx. (2) 

Note that the integrals are computed successively; in (I) we first integrate 
with respect to x (keeping y constant) and then with respect toy; in (2) we 
first integrate with respect to y (keeping x constant) and then with respect 
to x. 

Definition. The integrals r [f 1<x.y)dy] dx 

are called the iterated integrals of}: The terms repeated integrals and succes
sive integrals are also used. 

NOTATION. The brackets in iterated integrals are unwieldy, and we will write 

ff j(x,y)dxdy 

r f j(x,y)dydx 

to mean 

to mean 

f [f j(x,y)dx]dy, 

f [f f(x,y)dy Jdx. 

Iterated integrals are computed in the usual way, as the next example shows. 

EXAMPLE I. Evaluate 

r4 
[

3 (x 2 - 2xy2 + y 3 )dxdy. 
J1 J-2 
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y 

I 
! 
I 
I 
I 

Fig. 5-8 

.1·=a 

q(x) 

p(x) 

Fig. 5-9 

SOLUTION. Keeping y fixed, we have 

J3 (x2 - 2xy2 + y3)dx = [~x3 - x2y2 + y3x]3 
-2 -2 

= 9 - 9y2 + 3y3 - (-~ - 4y2 - 2y3) 

35 5 2 3 =3- y + 5y. 

Therefore r f 2 (x2 - 2xy2 + yl)dxdy = r (3:- 5y2 + 5y3) dy 

= [35 y - ~ y3 + ~ y4]4 = 995 
3 3 4 I 4 . 

305 

Iterated integrals may be defined over regions F which have curved 
boundaries. This situation is more complicated than the one we just dis
cussed. Consider a region F such as that shown in Fig. 5-8, in which the 
boundary consists of the lines x = a, x = b, and the graphs of the functions 
p(x) and q(x) with p(x) ~ q(x) for a ~ x ~ b. We may define 

rb rqlx>j(x,y)dydx, 

Jo Jp(xl 

in which we first integrate (for fixed x) from the lower curve to the upper 
curve, i.e., along a typical line as shown in Fig. 5-8; then we integrate with 
respect to x over all such typical segments from a to b. 

More generally, iterated integrals may be defined over a region Fsuch as 
the one shown in Fig. 5-9. Integrating first with respect toy, we have 

fb rqlx>f(x,y)dydx. 
a Jp(xl 
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Fig. 5-10 
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y=2x 

(2,4) 

-+--~----x 

0 p(x)=O (2,0) 

Fig. 5-11 

On the other hand, the integral taken first with respect to x requires that we 
represent Fas shown in Fig. 5-10. Then we have 

idfs(y) 
j(x,y)dxdy. 

c r(y) 

EXAMPLE 2. Given the function f(x, y) = xy and the triangular region F 
bounded by the lines y = 0, y = 2x, x = 2 (Fig. 5-11), find the value of both 
iterated integrals. 

SOLUTION. Referring to Fig. 5-l l, we see that for 

(biq<x> xydydx, 
Ja p(XI 

we have p(x) = 0, q(x) = 2x, a = 0, b = 2. Therefore 

ff x xydydx = f [~xy2Ix dx 

= f 2x3dx = nx4J: = 8. 

Integrating with respect to x first (Fig. 5-12), we have 

Jdfs(y) 
xydxdy 

c r(y) 

Therefore 

with 
l 

r(y) = 2y, s(y) = 2, c = 0, d = 4. 

f4 l 2 xydxdy = l4 [~x2y] 2 dy o J y/2 Jo y/2 

= 14 
(2y - ~yl)dy = [y2 - 3~y4J: = 8. 
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Fig. 5-12 

It is not accidental that the two integrals in Example 2 have the same 
value. The next theorem describes the general situation. 

Theorem 7. Suppose that Fis a region given by 

F = { (x, y): a:::;; x :::;; b, p(x) :::;; y:::;; q(x) }, 

where p and q are continuous and p(x) :::;; q(x) for a :::;; x :::;; b. Suppose that 
f(x,y) is continuous on F. Then 

ff j(x,y)dA = f J~:lj(x,y)dydx. 
F 

The corresponding result holds if the closed region F has the representation 

F= {(x,y): c:::;; y:::;; d, r(y):::;; x:::;; s(y)} 

where r(y) :::;; s(y)for c:::;; y:::;; d. Jn such a case, 

ff f(x,y)dA = fdislylf(x,y)dxdy. 
c r(y) 

F 

In other words, both iterated integrals, when computable, are equal to the 
double integral and therefore equal to each other. 

PARTIAL PROOF. We shall discuss the first result, the second being similar. 
Suppose first that/(x,y) is positive. A plane x = const intersects the surface 
z = J(x,y) in a curve (Fig. 5-13). The area under this curve in the x = const 
plane is shown as a shaded region. Denoting the area of this region by A (x), 
we have the formula 

lq(x) 

A(x) = f(x,y)dy. 
p(X) 

It can be shown that A(x) is continuous. Furthermore, it can also be shown 
that if A(x) is integrated between x =a and x = b, the volume V under the 
surface/(x,y) is swept out. The double integral yields the volume under the 
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z 

z = f(x, y) 

y 

Fig. 5-13 

surface, and so we write 

V =ff f(x,y)dA. 

F 

On the other hand, we obtain the volume by integrating A(x); that is, 

Jb fblq(x) 
V = A(x)dx = j(x,y)dydx. 

a a p(x) 

If j(x,y) is not positive but is bounded from below by the plane z = c, 
then subtraction of the volume of the cylinder of height c and cross-section 
F leads to the same result. 

REMARKS. We have considered two ways of expressing a region Fin the xy 
plane. They are 

F = { (x,y): a =::;; x =::;; b, p(x) =::;; y =::;; q(x)} (3) 

and 

F= {(x,y): c =::;; y =::;; d, r(y) =::;; x =::;; s(y)}. (4) 

It frequently happens that a region Fis expressible more simply in one of the 
above forms than in the other. In doubtful cases, a sketch of F may show 
which is simpler and, therefore, which of the iterated integrals is evaluated 
more easily. 

A region F may not be expressible in either the form (3) or the form (4). 
In such cases, F may sometimes be subdivided into a number of regions, each 
having one of the two forms. The integrations are then performed for each 
subregion and the results added. Figure 5-14 gives examples of how the 
subdivision process might take place. 

EXAMPLE 3. Evaluate JJ x 2 y 2 dA where F is the figure bounded by the lines 
F 

y = 1, y = 2, x = 0, and x = y (Fig. 5-15). 
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Fig. 5-14 

y 

--P'--~~~~~--x 

Fig. 5-15 0 

SOLUTION. The region Fis the set 

F= {(x,y): I:::;; y s; 2, 0 s; x s; y}. 
We use Theorem 7 and evaluate the iterated integral, to find 

ff x 2y 2 dA = f J: x 2y 2 dxdy = f [jx3y2J: dy 

F 

=jf y5dy=~. 
Note that in the above example the iterated integral in the other order is 

a little more difficult, since the curves p(x), q(x) are 

p(x) = , q(x) = 2, 0 :::;; x :::;; 2. { I for 0 s; x s; 1 } 
x for 1 :::;; x :::;; 2 

The evaluation would have to take place in two parts, so that 

ff x2 y2 dA = 11 12 x2 y2 dydx + 1212 x2 y2 dydx. 

F 

EXAMPLE 4. Evaluate 

f f 212 -.Jr:1=+=;::::;2;:::+=y==2 dy dx. 
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y 

2 

·---..x 

Fig. 5-16 Fig. 5-17 

Sou.:TION. Carrying out the integration first with respect toy is possible but 
difficult and leads to a complicated integral for x. Therefore we shall try to 
express the integral as an iterated integral in the opposite order and use 
Theorem 7. We construct the region Fas shown in Fig. 5-16. The region is 
expressed by 

F={(x,y):O::;;x::;;2 and O::;;y::;;tx2 ]. 

However, it is also expressed by 

F={(x,y):O::;;y::;;2 and v2y::;;x::;;2]. 

Therefore, integrating with respect to x first, we have 

I: f'12 ~'{+';T+~.~:2dydx 

ff ..j I + ;2 + y2 dA = f I 22>· v I + ;2 + y2 dx dy 
f' 

r2 r2 -=Jo [.._/I+ x2 + y2]:7Ydy =Jo [v'5 + _,.2 - (I+ y)]dy 

= (tlog(y + Jy2+.5) + tyJ_?-+ 5 - y- tY2]~ 

= }log5 + 3 - 4 - }logJ5 = - I+ ilog5. 

The next example shows how the volume of a region in R3 may be found 
by iterated integration. 

EXAMPLE 5. Let S be the region bounded by the surface:: = xy, the cylinders 
y = x 2 and y 2 = x, and the plane z = 0. Find the volume V(S). 

SoLUTION. The region Sis shown in Fig. 5-17. It consists of all points "under" 
the surface z = xy, bounded by the cylinders, and .. above" the xy plane. 
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y 

Fig. 5-18 

,/ 
f 

Fig. 5-19 
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,.v 
I 

,/ 

.J ............... J;,' 

The region F in the xy plane is bounded by the curves y = x 2 , y 2 = x and 
is shown in Fig. 5-18. Therefore 

ff 11 f'x 11 [Xl'2],x 
V(S) = xydA =Jo x' xydydx = Jo l x' dx 

F 

1 11 I 
= 2 Jo (x2 - xs)dx = 12· 

If a region S is bounded by two surfaces of the form ::. = j(x,y) and 
; = y(x,y) withf(x,y) s y(x,y), then the volume between the surfaces may 
be found as a double integral, and that integral in turn may be evaluated by 
iterated integrals. The region F over which the integration is performed is 
found by the projection onto the xy plane of the curve of intersection of the 
two surfaces. To find this projection we merely set 

f(x,y) = y(x,y) 

and trace this curve in the xy plane. The next example shows the method. 

EXAMPLE 6. Find the volume bounded by the surfaces 

; =xi 

and 

= = 4 - xi - y2. 

SOLUTION. A portion of the region S (the part corresponding to y .:s; 0) is 
shown in Fig. 5-19. We set 

xi= 4 - xi - Yi 
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-2 

Fig. 5-20 

and find that the region Fin the xy plane is the elliptical disk (Fig. 5-20) 

F= {<x,y):x; +~2 :s; l}. 
Note that the surface z = 4 - x 2 - y 2 = g(x,y) is above the surface z = 
x 2 =f(x,y) for (x,y) inside the above ellipse. Therefore 

V(S) =ff (4-y2 - x2 - x 2)dA 

F 

f 2 f +./4-y2N'2 
= ~ (4- y 2 - 2x2)dxdy 

-2 -v4-y2N'2 

= f 2 2J2 (4 - y2)3/2 dy = 4J2 f \4 - y2)3/2 dy 
-2 3 3 Jo 

64 12 ("'2 16 '2f "'2 
= + J 

0 
cos4 8 dO = + 

0 
(I + 2 cos 28 + cos2 28) dfJ 

8n.J2 [16 /2 ]"'2 8J2f "'2 = - 3-· + T sin 28 
0 

+ - 3- 0 
(I + cos 48) dO = 4nJ2. 

PROBLEMS 

In Problems I through 10, evaluate the iterated integrals as indicated. Sketch the 
region Fin the xy plane over which the integration is taken. 

I. r f: (x 2 - y 2 + xy - 3)dxdy 

2. J 2J 2 
(x3 + 2x2 y - y 3 + xy)dydx 

0 -3 

3. r r~ (x2 + 2xy - 3y2)dydx 
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f 1fx' 4. (x2 - xy)dydx 
0 x 3 

5. f 3f "' (x2 y + xy2 ) dx dy 
l I+)· 

f 2 f +•'4=? 
6. _2 -•4 -x2 ydydx 

f 3 f +•'18-21' 

7. _
3 

_, 
18

_
2
,, xdxdy f 3 f 18-x2 

8. _
3 

x' xy3 dydx 

f 2f 2x2 
9. xcosydydx 

0 x 2 
f 2f 4x' I 

10. -dydx 
I x' y 

In Problems 11 through 17, evaluate the double integrals as indicated. Sketch the 
region F. 

II. ff<x 2 +y2)dA; F={(x,y):y2 :s;x:s;4, O::;y::;2} 

F 

12. ff xcosydA; F={(x,y):O:s;x:s;...;n/2, O::;y::;x2} 

F 

13. ff x 2 :Y2 dA; F={(x,y):J::;x::;v'J. O::;ysx} 

F 

14. ff1ogydA; F={(x,y):2:s;x:s;3, J::;y::;x-1} 

F 

Js.JJ , x dA; F={(x,y):O:s;xst. x::;y::;f} 
v' I - y2 

F 

16.JJ ~dA; F={(x,y):lsxs2, J::;y::;x} 
...;x2 + y2 

F 

17. ff ?exl•YdA; F= {(x,y): I::; x::; .J'i., x 2 ::;y::; 2} 

F 

In each of Problems 18 through 22, (a) sketch the domain F over which the integration 
is performed; (b) write the equivalent iterated integral in the reverse order; (c) evaluate 
the integral obtained in (b). Describe Fusing set notation (in both orders). 

f2fxx2 
18. 2 dydx 

I I y 

r·r~ 20. Jo Jo (a2 - y2)312 dy dx 

22. flJI Jl+?dydx 
Jo ./i 

19. f J_+;: xydydx 

21. { 1 f,1 y'I +x2dxdy 
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In each of Problems 23 through 32, find the volume V(S) of the region S described. 
Sketch the domain F of integration and describe it using set notation. 

23. S is bounded by the surfaces z = 0, z = x, and y 2 = 2 - x. 

24. Sis bounded bytheplanesz = 0, y = 0, y = x, x + y = 2,and x + y + z = 3. 

25. S is bounded by the surfaces x = 0, z = 0, y 2 = 4 - x, and z = y + 2. 

26. Sis bounded by the surfaces x 2 + z2 = 4, y = 0, and x + y + z = 3. 

27. Sis bounded by the surfaces y 2 = z, y = z3, z = x, and y 2 = 2 - x. 

28. Sis bounded by the coordinate planes and the surface x 1' 2 + y 1' 2 + z1' 2 = a1' 2 • 

29. Sis bounded by the surfaces y = x2 and z2 = 4 - y. 

30. S is bounded by the surfaces y 2 = x, x + y = 2, x + z = 0, and z = x + I. 
31. S is bounded by the surfaces x2 = y + z, y = 0, z = 0, and x = 2. 

32. S is bounded by the surfaces y2 + z2 = 2x and y = x - l · 
*33. Let F= {(x,y): 0 s; x s; l, 0 s; y s; l}. We define 

{ 
1 if y is rational, 

f(x,y) = 0 otherwise. 

Show that JSf(x,y)dA does not exist. 
F 

*34. LetF={(x,y):Os;xs;l, Os;ys;l}.Wedefine 

{o if x = t/11, 
j(x,y) = . 

I otherwise. 

n =I, 2, 3, ... , 

Show that JSf(x,y)dA exists and has the value I. 
F 

35. Let F = { (x, y) : a s; x s; b, c s; y s; d) and suppose f(x, y) = g(x) · h(y). Show 
that 

Jfj{x,y)dA =(f g(x)dx)(f h(y)dy). 

F 

*36. Suppose that/(x,y) is continuous on a closed, bounded region F. Assume that 

Hf(x,y)l/>(x,y)dA = 0 

F 

for all functions if>(x,y) which are continuous on F. Show thatj(x,y) = 0 on F. 
[Hint: Assume there is a point in F where f is positive, choose q, carefully, and 
then use Theorem 4 with m > 0 thereby reaching a contradiction.] 

37. Find the volume of the ellipsoid 
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1 
1 

j -+--·X 

y=4-3x2 

Fig. 5-21 Fig. 5-22 

4. Area, Density, and Mass 

The double integral of a nonnegative function z = j(x, y) taken over a region 
F may be intepreted as a volume. The value of such an integral is the volume 
of the cylinder having generators parallel to the z axis and situated between 
the surface z = f(x, y) and the region Fin the xy plane. 

Jfwe select for the surface/the particularly simple function z = 1, then the 
volume Vis given by the formula 

V= ff ldA. 

F 

On the other hand, the volume of a right cylinder of cross section F and 
height 1 is 

V= A(F)-1. 

(See Fig. 5-21.) Therefore 

A(F) =ff dA. 

F 

We see that the double integral of the junction 1 taken over Fis precisely the 
area ofF. By Theorem 7, we conclude that the iterated integral of the func
tion 1 also yields the area of F. 

EXAMPLE 1. Use iterated integration to find the area of the region F given by 

F={(x,y):-l~x~l, x4 ~y~4-3x2 }. 

SOLUTION. The region Fis shown in Fig. 5-22. One of the iterated integrals 
for the area is 
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JI r4-3xl 

A(F) = -I Jx• dydx, 

and its evaluation gives 

A(F) = J~. [yJ:; 3x' dx = J~. (4 - 3x2 - x4 )dx 

= [ 4x - x3 - ~ x5I
1 

~8 . 
Note that the iterated integral in the other direction is more difficult to 
evaluate. 

If a flat object is made of an extremely thin uniform material, then the 
mass of the object is just a multiple of the area of the plane region on which 
the object rests. (The multiple depends on the units used.) If a thin object 
(resting on the xy plane) is made of a nonuniform material, then the mass of 
the object may be expressed in terms of the density p(x,y) of the material 
at any point. We assume that the material is uniform in the z direction. 
Letting F denote the region occupied by the object, we decompose F into 
rectangles r 1,r2 , ••• ,r. in the usual way. Then an approximation to the 
mass of the ith rectangle is given by 

p(e;. l'/;)A(r;). 

where A(r;) is the area of r; and (e;. /'/;)is a point in 'i· The total mass of F 
is approximated by 

n 

L p(e;.l'/j)A(r;). 
i=l 

and when we proceed to the limit in the customary manner, the mass M(F) is 

M(F) = ff p(x,y)dA 

f" 

In other words, the double integral is a useful device for finding the mass of 
a thin object with variable density. 

EXAMPLE 2. A thin object occupies the region 

F= {(x,y) :y2 ~ x ~ 4- y2 , -.Ji.~ y ~ J'l.}. 
The density is given by p(x, y) = l + 2x + y. Find the total mass. 

SoLUTION. We have 

M(F) = ff (l + 2x + y)dA. 

F 

Sketching the region F (Fig. 5-23), we obtain for M(F) the iterated integral 
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y 

Fig. 5-23 

i./2 14-yl 
M(F) = _ (I+ 2x + y)dxdy 

-..;2 yl 
iv'2 2 

= [x + x 2 + xy];,-y dy 
-./2 

J '2 
= ./ (20 + 4y- l0y2 - 2y3)dy 

-./2 

= [ 2oy + 2Y2 _ 130 Y3 _ ~ Y4].12 = ~o J2. 
--1'2 

PROBLEMS 

In each of Problems 1 through 5 use iterated integration to find the area of the given 
region F. Subdivide Fand do each part separately whenever necessary. 

I. F= {(x,y): o s; x s; 1, x 3 s; y s; v'x}. 
2. F={(x,y):!J2 s;xs;y, ls;ys;4}. 

3. Fis determined by the inequalities 

xy s; 4, y s; x, 

4. F consists of all (x,y) which satisfy the inequalities 

y2 s; x, y 2 s; 6- x, y s; x - 2. 

5. F consists of all (x, y) which satisfy the inequalities 

x2 + y2 s; 9, y s; x + 3, x + y s; 0. 

In each of Problems 6 through 14, find the mass of the given region F. Draw a sketch 
ofF. 

6. F={(x,y):x2 +y2 s;64}; p=x2 +y2. 

7. F= {(x,y): 0 s; x s; 1, x 2 s; y s; JX}; p = 3y. 
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8. F={(x,y):-ls;xs;2, x 2 s;ys;x+2}; p=x2y. 

9. F={(x,y):Os;xs;I, x 3 s;ys;"x}; p=2x. 

10. F = {<x,y): I s; x s; 4, ~ s; y s; 5 - x}; p = 4y. 

11. F = ( (x, y) : y 2 s; x s; y + 2, - I s; y s; 2} ; p = x 2 y 2 • 

12. Fis the interior of the triangle with vertices at (0,0), (a,0), (b,c), a> h > 0, 
c>O; p=2x. 

13. F={(x,y):-as;xs;a, Os;ys;"a2 -x2 }; p=3y. 

14. F is the interior of the rectangle with vertices at (0, 0), (a, 0), (a, b), (0, b); 
p = 3x/(I + x 2 y 2 ). 

15. Suppose the density p(x,y) of a region F satisfies the inequalities m 1 s; p(x,y) s; 
m2 • Show that M(F), the mass of F, is between the limits m 1A s; M(F) s; m2 A, 
where A is the area of F. 

* 16. Suppose that p(x, y), the density, is continuous on a region F which has positive 
area. Show that if JJ p(x,y)dA = 0, then p(x,y) = 0 on F. 

f" 

*17. Suppose that the density p(x,y) ofa region Fin the xyplane is of the form p(x,y) = 
p1(x)pi(J"). Let M(F) be the total mass of F. Show that 

M(F) s; t(M1(F) + M2(F)) 

where M 1 is the mass of F with density pf and M 2 is the mass of F with density Pi. 

5. Evaluation of Double Integrals by Polar 
Coordinates 

The polar coordinates (r, 0) of a point in the plane are related to the rec
tangular coordinates (x, y) of the same point by the equations 

x=rcosO, y = rsinO, r ~ 0. (l) 

In the calculus of one variable we saw that certain problems concerned with 
finding areas by integration are solved more easily in polar coordinates than 
in rectangular coordinates. The same situation prevails in problems involv
ing double integration. 

Instead of considering ( l) as a means of representing a point in two dif
ferent coordinate systems, we interpret the equations as a mapping between 
the xy plane and the rO plane. We draw the rO plane as shown in Fig. 5-24, 
treating r = 0 and 0 = 0 as perpendicular straight lines. A rectangle G in 
the rO plane bounded by the lines r = r1 , r = r2 , and 0 = 01 , 0 = 02 (0 in 
radians) with 2n > 02 > 0 1 ~ 0, r2 > r1 > 0 has an image Fin the xy plane 
bounded by two circular arcs and two rays. For the area, denoted Ax.y• of 
Fwe have 
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A .. .y(F) = f<d - rf)(02 - 01). 

This area may be written as an iterated integral. A simple calculation shows 
that 

AxjF) = f :'[f 2 
rdr] dU. 

Because double integrals and iterated integrals are equivalent for evaluation 
purposes, we can also write 

A ... r(F) = ff rdA,, 0 , (2) 

G 

where dA,, 0 is an element of area in the rO plane, r and (} being treated as 
rectangular coordinates. That is, dA,." = drdO. 

More generally, it can be shown that if G is any region in the rO plane and 
Fis its image under the transformation (I), then the area of Fmay be found 
by formula (2). Thus, areas of regions may be determined by expressing the 
double integral in polar coordinates as in (2) and then evaluating the double 
integral by iterated integrals in the usual way. 

EXAMPLE 1. A region F above the x axis is bounded on the left by the line 
y = -x, and on the right by the curve 

C = { (x, y) : x 2 + y 2 = 3v· x 2 + y 2 - 3x J, 
as shown in Fig. 5-25. Find its area. 

SOLUTION. We employ polar coordinates to describe the region. The curve C 
is the cardioid r = 3( 1 - cos 8), and the line y = - x is the ray (} = 3n/4. 
The region Fin Fig. 5-25 is the image under the mapping ( 1) of the set G in 
the (r, 8) plane (Fig. 5-26), given by 

G = { (r, 8) : 0 ~ r ~ 3(1 - cos 8), 0 ~ (} ~ 3n/4}. 

Therefore, for the area A (F) we obtain 
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y =-x 
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ff ff [3ni4 [3(1-cos9) 

A(F) = dA_q· = rdA,. 8 =Jo Jo rdrdfJ 

F G 

f 3ni4 I [ J 3(1-cos8) 9 i3n/4 
= 2 r2 dfJ = 2 (I - cos 0)2 dfJ. 

0 () () 

To perform the integration we multiply out and find that 

9 [3n/4 
A(F) = 2 Jo (I - 2cosfJ + cos2 fJ)dfJ 

9f 1 I ]Jn/4 = 2"LfJ- 2sinfJ + 2o + 4sin20 
0 

9(9 - ) = g :2 n - 4y 2 - I . 

The transformation of regions from the xy plane to the rfJ plane is useful 
because general double integrals as well as areas may be evaluated by means 
of polar coordinates. The theoretical basis for the method is the Fundamental 
Lemma on Integration which we state without proof. 

Theorem 8 (Fundamental Lemma on Integration). Assume that f and g are 
continuous on some region F. Then for each e > 0 there is a c5 > 0 such that 

I it. JigiA (F;) - ff J(x, y)g(x, y) dA I < e 

F 

for every subdivision F1 , F2 , ••• , F,. of F with norm less than i5 and any numbers 
f 1 ,Ji, ... ,J~, g 1 , g 2 , ••• , g. where each Ji and each Yi is any number between 
the minimum and maximum values off and g, respectively, on F;. 

We sketch the proof of the next theorem which is based on the Fundamen
tal Lemma of Integration. 
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Theorem 9. Suppose F and G are regions related according to the mapping 
x = rcos8, y = rsinO, and f{x,y) is continuous on F. Then the function 
g(r,8) = f(rcos8, rsin8) is defined and continuous on G and 

ff f(x,y)dAx.y = ff g(r,8)rdA,, 6 • 

F G 

SKETCH OF PROOF. Consider a subdivision of G into "figures" G1 , .•• , Gn. 
(See the discussion of volume in Section I.) Let (r;, 8;) be in G; for each i, 
and let (e;. rt;) and Fi be the respective images of (r;, O;) and G;. Then 
(F1 , ••• , F,,) is a subdivision of F. From the expression for area in the xy 
plane as an integral, we obtain 

Ax.y(F;) =ff rdA,,9, 

G; 

Using Theorem 4 concerning bounds for integrals, we obtain 

ff rdA,,6 = i';A,,e(G;), 

G; 

where r; is between the minimum and maximum of r on G;. Thus 
n n 

L J(e;. rt)Ax,y(F;) = L g(r;, 8;) · r; · A,,6(G;). 
i=I i=I 

The theorem follows by letting the norms of the subdivisions tend to zero, 
using the fundamental lemma to evaluate the limit of the sum on the right. 

In terms of iterated integrals, the result in Theorem 8 yields the useful 
formula 

ff f(x,y)dA =ff g(r,8)rdrd8. 

F G 

Of course, the integral on the right is equal to the iterated integral in the 
reverse order. In any specific case the order of integration will usually depend 
on the determination of the limits of integration. One way may be easier than 
the other. We give an example. 

EXAMPLE 2. Use polar coordinates to evaluate 

ff Jx2 + y2dAx,y• 

F 

where Fis the region inside the circle x 2 + y 2 = 2x. 
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SOLUTION. F (see Fig. 5-27) is the image of the set G (Fig. 5-28) given by 

G= {<r,8): -~::;;8::;;~, O::;;r::;;2cos0}. 

Therefore 

ff ff C"'2 r2 •o•8 Jx2 +y2 dAx,y= r·rdA,, 8 = J_!t/
2

J
0 

r2 drd8 
F G 

= -cos3 8d0 J!t/2 8 

-!t/2 3 

16 r"'2 32 = 3 Jo (I - sin 2 lJ)coslJd(J = 9 . 

Although the construction of the region G in the rlJ plane is helpful in 
understanding the transformation (I), it is not necessary for determining 
the limits in the iterated integrals. The limits of integration in polar coordi
nates may be found by using rectangular and polar coordinates in the same 
plane and using a sketch of the region F to read off the limits for rand 8. 

Double integrals are useful for finding volumes bounded by surfaces. 
Cylindrical coordinates (r, 8, z) are a natural extension to three-space of 
polar coordinates in the plane. The z direction is selected as in rectangular 
coordinates, as shown in Fig. 5-29. If a closed surface in space is expressed 
in cylindrical coordinates, we may find the volume enclosed by this surface 
by evaluating a double integral in polar coordinates. An example illustrates 
the method. 

EXAMPLE 3. A region S is bounded by the surfaces x 2 + y 2 - 2x = 0, 
4z = x 2 + y 2 , z2 = x 2 + y 2 • Use cylindrical coordinates to find the volume 
V(S). 

SOLUTION. In cylindricalcoordinates, the surface (a paraboloid) 4z = x 2 + y 2 

has equation 4z = r2 ; the cylinder x 2 + y 2 - 2x = 0 has equation r = 2 cos 0; 



5. Evaluation of Double Integrals by Polar Coordinates 

x 

z 

t 
p(x,y,z) 

(r,9, z) 

------x 

Fig. 5-29 

z 

323 

Fig. 5-30 

and the cone z2 = x2 + y2 has equation z2 = r2. The region is shown in 
Fig. 5-30, and we note that the projection of S on the xy plane is precisely 
the plane region F of Example 2. We obtain 

V(S) = ff[ y"x2 + y2 - x2; y2JdAx.y 

PROBLEMS 

F 

= ff(r-~r2)rdA,.9 
G 

= Jn/2 [2cos8 (r2 - ~r3) drdO 
-Jt/2 Jo 

= f "12 (~cos3 8 - cos4 o)do 
-n/2 

= 32 _ !f"'2
( 1 + 2 cos20 +I+ cos40)do = 32 _ 3n 

9 20 2 9 g· 

In each of Problems I through 7, evaluate the given integral by first expressing it as 
a double integral and then changing to polar coordinates. 

J2 JJ:i:? 2. e-ix•+y'>dydx 
-2 -v4='? 

J4 J'4x-x2 
4. .--.J x 2 + y 2 dy dx 

0 -" 4x-x2 

6. J: J: (x2 + y 2 )dydx 
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In each of Problems 8 through 10, use polar coordinates to find the area of the region 
given. 

8. The region inside the circle x2 + y 2 - Sy= 0 and outside the circle x2 + y 2 = 9. 

9. The region F= {(x,y): h·2 ::;; x::;; 2y, 0::;; y::;; 8}. 

10. The region interior to the curve (x 2 + y2) 3 = 16x2 • 

Jn each of Problems 11 through 26, find the volume of S. 

11. S is the set bounded by the surfaces z = 0, 2z = x2 + y 2 , and x2 + y 2 = 4. 

12. Sis the set bounded by the cone z2 = x2 + y 2 and the cylinder x2 + y 2 = 4. 

13. Sis the set cut from a sphere of radius 4 by a cylinder of radius 2 whose axis is 
a diameter of the sphere. 

14. Sis the set above the cone z2 = x2 + y 2 and inside the sphere 

x2 + y2 + z2 = a2. 

15. S is the set bounded by the cone z2 = x2 + y 2 and the cylinder 

x2 + y 2 - 2y = 0. 

16. Sis the set bounded by the sphere x2 + y 2 + z2 = 4 and the cylinder 

x2 + y 2 = 2x. 

17. S is the set bounded by the cone z2 = x2 + y 2 and the paraboloid 

3z = x2 + .l. 
18. Sis bounded by the surfaces z = 0, 2z = x2 + y 2 , and 2y = x2 + y 2 • 

19. Sis bounded by the cylinder x2 + y 2 = 4 and the surface (a hyperboloid) 

x2 + y2 _ z2 = I. 

20. S is bounded by the cone z2 = x2 + y 2 and the cylinder r = I + cos lJ. 

21. S is bounded by the surfaces z = x and 2z = x2 + y 2 • 

22. S is bounded by the surfaces z = 0, z = x2 + y 2 , and r = 2( I + cos lJ). 

23. S is inside the sphere x2 + y 2 + z2 = a2 and inside the cylinder erected on one 
loop of the curve z = 0, r = acosW. 

24. S is inside the sphere x2 + y 2 + z2 = 4 and inside the cylinder erected on one 
loop of the curve z = 0, r2 = 4cos20. 

25. S is bounded by the surfaces z2 = x2 + y 2, y = 0, y = x, and x = a. 

*26. S is bounded by the surfaces z2 = x2 + y 2 and x - 2z + 2 = 0. 

27. A wedge is cut from a spherical ball of radius C by two planes which intersect on 
a diameter of the ball. If the angle between the planes is n/3, find the volume of 
the wedge. What is the volume if the angle is t/J? 

28. A torus is generated by revolving a circular disk of radius a about an axis outside 
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the disk. If the distance of the axis from the center of the disk is b, use polar 
coordinates to find the volume of the torus. 

29. a) Suppose that g(r, U) = g(r. -U) for all r, U. Let F be a region which is sym
metric with respect to the x axis. Let F0 be the portion of F above the x axis. 
Show that 

ff g(r,8)rdrd8 = 2 ff g(r,8)rdrd8. 

F F0 

b) If g(r,8) = -g(r, -8), show that JSg(r,8)rdrd8 = 0. 
F 

6. Moment of Inertia and Center of Mass 

Consider the idealized situation in which an object of mass m occupies a 
single point. Let L be a line which we designate as an axis. 

Definition. The moment of inertia of a particle of mass m about the axis L is 
mr2 , where r is the perpendicular distance of the object from the axis (Fig. 
5-31). If we have a system of particles m 1 ,m2 , ••• ,mn at perpendicular 
distances, respectively, of r 1 , r 2 , ••• , rn from the axis L, then the moment of 
inertia of the system, /, is given by 

Let F be an object made of thin material occupying a region in the xy 
plane (Fig. 5-32). We wish to define the moment of inertia of F about an 
axis L. The axis L may be any line in three-dimensional space. We proceed 
as in the definition of integration. First we make a subdivision of the plane 
into rectangles or squares. We designate the rectangles either wholly or 
partly in F by F1 , F2 , ••• , F,,. Since the object F may be of irregular shape 
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and of variable density, the mass of the subregions may not be calculable 
exactly. We select a point in each subregion Fi and denote its coordinates 
(e;. r/;). We assume that the entire mass of fi, denoted m(F;), is concentrated 
at the point ( e;, ri;). Letting r; be the perpendicular distance of ( e;, ri;) from 
the line L, we form the sum 

II 

I m(fi)rf. 
i:I 

Definition. If the above sums tend to a limit (called I) as the norms of the 
subdivisions tend to zero, and if this limit is independent of the manner in 
which the (e;. r/;) are selected within the fi, then we say that I is the moment 
of inertia of the mass distribution about the axis L. 

The above definition of moment of inertia leads in a natural way to the 
next theorem. 

Theorem 10. Given a mass distribution occupying a region F in the xy plane 
and haring a continuous density p(x,y). Then the moment of inertia about the 
y axis (denoted by / 1) is gii-en by 

/ 1 = ff x 2p(x,y)dA. 

f 

Similarly, the momellls of inertia about the x axis and the z axis are, respec
tii-e/y, 

12 = f f.r 2p(x,y)dA, 

f" 

/3 = ff (x2 + y2)p(x,y)dA. 

f" 

The proof depends on the Fundamental Lemma on Integration. (See 
Problem 29 at the end of this section.) 

Corollary. The moments of inertia ofF about the lines 

L 1 ={(x,y,z):x=a, z=OJ, L2 ={(x,y,z):y=b, z=O}, 

L 3 ={(x,y,z):x=a, y=b] 

are, respectively, 
I 

1r = f f<x - a)2p(x,y)dA, 

I If~ if<)' - b)'p(x,y)dA, 

: f" 

·---1 
I 

I /j·b = ff [(x - a)2 + (y - b)2]p(x,y)dA. 

I f 
L-~~~~~~--~~~~--~~-
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EXAMPLE I. Find the moment of inertia about the x axis of the homogeneous 
plate bounded by the line y = 0 and the curve y = 4 - x 2 (Fig. 5-33). 

SOLUTION. According to Theorem 10, we have 

/ 2 = f f.J-· 2 pdA =pf f y 2 dydx 

F F 

=pf 2 f,4-x> .r2 dydx =~Ji (4 - x2)3 dx 
-2 0 -2 

= - (64 - 48x2 + 12x4 - x6 )dx = --. pf 2 4096p 
3 -2 105 

EXAMPLE 2. Find the moment of inertia about the z axis of the homogeneous 
triangular plate bounded by the lines y = 0, y = x, and x = 4. 

SOLUTION I. We have 

/3 = f f<x 2 + y2 )pdA =pf I: (x2 + y 2)dydx 

F 

= p x 2 y + - y 3 dx = ...!!.. x 3 dx = __!!_. f 4 [ t Jx 4 14 256 
0 3 0 3 0 3 

SOLUTION 2. We may introduce polar coordinates as shown in Fig. 5-34. 
Then 

/3= JJ(x2 +y2 )pdAx,y=fJ ffr 2 ·rdrdO=p L"'4 L4 ... ur3 drd0 

F i"'4 [G I ~>r/4 256 
=64µ Jo sec40d0=64p tano+ 3tan 3 0J

0 
=--f!"· 
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The moment of inertia about the ;; axis of two-dimensional objects in the 
xy plane is called the polar moment of inertia. Since the combination x 2 + y 2 

= r2 is always present in calculating polar moments, a change to polar 
coordinates is frequently advantageous. 

Suppose that a number of masses, say five, are located at various points 
in the xy plane. We wish to find the center of mass of this system. From the 
point of view of mechanics, we imagine the masses supported by a weightless 
tray and assume that each mass occupies a single point. The center of mass 
is the point at which the tray will balance when supported by a sharp nail 
(Fig. 5-35). To calculate the center of mass we make use of the moment 
ofa mass m with respect to one of the coordinate axes. If particles of masses 
m 1 , m 2 , ••• , mn are situated at the points (x 1 ,y 1), (x2 ,Ji), ... , (xn•Yn), 
respectively, then the algebraic moment (sometimes called first moment 
or simply moment) of this system about they axis is defined by the quantity 

n 

m 1x 1 + m 2 x 2 + · · · + mnxn = I m;X;. 
;-:-1 

Its algebraic moment about the x axis is 
n 

Im;Y;· 
i= I 

More generally, the algebraic moments about the line x =a and about the 
line y =bare, respectively, 

n n 

I m;(x; - a) and Im;()'; - b). 
i=l i=l 

We now define the moment of a thin object occupying a region Fin the 
xy plane. 

Definition. Assume that a thin mass occupies a region Fin the xy plane. Let 
F1 , F2 , ••• , F,, be a subdivision of Fas shown in Fig. 5-36. Choose a point 
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( ei, l'/i) in each F; and replace the mass in F; by a particle of mass m(F;) located 
at <ei, 11J Then idealized masses have moment 

n 

L <ei - a)m(F;) 
i=I 

about the line x =a. If the above sums tend to a limit M 1 as the norms of the 
subdivisions tend to zero and for any choices of the points (e;. l'/i) in F;, 
then we define the limit M 1 as the moment of the mass distribution about the 
line x =a. An analogous definition for the limit Mi of sums of the form 

n 

L <11; - b)m(F;) 
i=t 

yields the first moment about the line y = b. 

The definition of first moment and the Fundamental Lemma on Integra
tion yield the next theorem. 

Theorem 11. If a distribution of mass over a region Fin the xy plane has a 
continuous density p(x,y), then the moments M 1 and Mi of F about the lines 
x = a and y = b are given by the formulas 

M 1 = f f<x - a)p(x,y)dA, 

F 

Mi= ff (y - b)p(x,y)dA. 

F 

Corollary. Given a distribution of mass over a region Fin the xy plane as in 
Theorem 11, then there are unique values of a and b (denoted x and ji, respec
tively) such that M 1 =Mi= 0. Jn fact, the values of x and _v are given by 

where 

r _ Jf xp(x, r> dA 

X=-----
m(F) 

ff yp(x,y)dA 

ji = _f_· ---
m(F) 

m(F) =ff p(x,y)dA. 

F 

PROOF. Ifwe set M1 =0, we get 

0= ff<x-a)p(x,y)dA= ffxp(x,y)dA-a ffp(x,y)dA. 

F F F 

Since m(F) = H p(x,y)dA, we find for the value of a: 

F ff xp(x,y)dA 

a= _,f_· ---- = x. 
m(F) 

The value ji is found similarly. 



330 S. Multiple Integration 

y 

y=:r3 

Fig. 5-37 

Definition. The point (x,Ji) is called the center of mass of the distribution 
over F. 

EXAMPLE 3. Find the center of mass of the region 

F= {(x,y): 0 :s; x :s; I, x3 :s; y :s; Jx} 
if the density of Fis given by p = 3x. 

SOLUTION. (See Fig. 5-37.) For the first moments, we have 

M 1 =ff xpdA = 3 f I~x x 2dydx 

F 

rl - rl 5 
= 3 Jo x 2[y ]~: dx = 3 Jo (x512 - x 5)dx = 14 , 

ff rlfvx 3(1 -
M 2 = ypdA = 3 Jo x> yxdydx=2.Jo x[y2];:dx 

F 

=~ii (x2 - x7)dx = .?_ 
2 16' 

0 

m(F) =ff pdA = 3f1:x xdydx = 3 f x[y];:dx 

I' 

r1 3 
= 3 Jo (x312 - x 4 )dx = 5. 

Therefore 

- M 1 5 5 25 x = -- = -·-··. - = - . 
m(F) 14 3 42' 

EXAMPLE 4. Find the center of mass of a plate in the form of a circular sector 
of radius a and central angle 2cx if its thickness is proportional to its distance 
from the center of the circle from which the sector is taken. 
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Fig. 5-38 

SOLUTION. Select the sector so that the vertex is at the origin and the x axis 
bisects the region (Fig. 5-38). Then the density is given by p = kr, where 
k is a proportionality constant. By symmetry we have y = 0. Using polar 
coordinates, we obtain 

Therefore 

PROBLEMS 

M1 = ff xkrdAx,y = k f
2 
J: r2 cos8rdrd() 

F 

ka4 f « I = T _
2 

cos()d() = 2ka4 sin a, 

m(F) = k ff rdAx,y = k f 
2 
J: r2 drd() = jka3a. 

F 

_ M1 3asina 
x=--=---. 

m(F) 4a 

In each of Problems I through 7, find the moment of inertia about the given axis of the 
plate F whose density is given. 

I. Fis the square with vertices (0, 0), (a, 0), (a, a), (O;a), p = constant; y axis. 

2. Fis the triangle with vertices (0, 0), (a, 0), (b, c), with a > 0, c > 0, p = constant; 
xaxis. 

3. F={(x,y):O:s;x:s; I, x2 :s;y:s;,/x}, p=constant; yaxis. 

4. F={(x,y):l:5x:54, ~:s;y:s;5-x}, p=ky; xaxis. 

5. F= {(x,y): -a :5 x :5,.a, 0 :5 y :5 ,,/a2 - x2 }, p = ky; x axis. 

6. F={(x,y): I :5x:54, ~:s;y:s;5-x}. p=constant; xaxis. 

7. F={(x,y):O:s;x:s;n, O:s;y:s;sinx}, p=constant; yaxis. 
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In each of Problems 8 through 17, find the moment of inertia about the given axis of 
the plate F whose density is given. 

8. F={(x,y):x2 +y2 s;a2 }, p=k..;x2 +y2 ; zaxis. 

9. F= {(x,y): - I::; x::; 2, x 2 ::; y::; x + 2}, p =constant; x axis. 

IO. F is the interior of the square with vertices (0, 0), (a, 0), (a, a), (0, a), p = 
constant; z axis. 

II. F={(x,y):Os;xs; I, x 2 s;ys;,Jx}, p=ky; yaxis. 

12. F= {(x,y): - I::; x::; 2, x 2 ::; y ~ x + 2}, p =constant; axis is line y = 4. 

13. F={(x,y):x2 +y2 ~a2 }, p=k..jx2 +y2 ; xaxis. 

14. Fisboundedbytheclosedcurver=2acos0, p=kr; zaxis. 

15. Fis bounded by one loop of r2 = a2 cos20, p =constant; z axis. 

16. Fis bounded by one loop of r2 = a2 cos20, p =constant; x axis. 

17. Fis the region in the first quadrant inside the circler= I, and bounded by r = I, 
0 = r, and 0 = n/2; ;. =constant; z axis. 

In each of Problems 18 through 28, find the center of mass of the plate F described. 

18. F={(x,y): I s;xs;4, ~s;ys;5-x}, p=ky. 

19. F={(x,y):y2 s;xs;y+2, -I ::;ys;2}, p=kx. 

20. Fis the interior of the triangle with vertices at (0, 0), (a, 0), (b, c), with 0 < b < a, 
0 < c, I'= kx. 

21. F={(x,y):Os;xs; 1, x2 ~ys;'-"x}, p=ky. 

22. F={(x,y):-Is;xs;2, x 2 s;ys;x+2}, µ=constant. 

23. Fis the square with vertices at (0, 0), (a, 0), (a, a), (0, a), p = k(x2 + y 2 ). 

24. Fis the triangle with vertices at (0,0), (1,0), (I, 1), p = kr2 • 

25. Fis bounded by the cardioid r = 2(1 + cos 0), p = constant. 

26. Fis bounded by one loop of the curve r = 2 cos 20, p = constant. 

27. Fis bounded by 3x2 + 4y2 = 48 and (x - 2)2 + y2 = I, p =constant. 

28. Fis bounded by one loop of the curve r2 = a2 cos 20, p =constant. 

29. The Theorem of the Mean for double integrals states that if f is integrable over a 
region F of area A(F) and if m ~f(x,y)::; M for all (x,y) on F, then there is a 
number iii between m and M such that 

JJf(x,y)dA = mA(F). 

F 

Use the Fundamental Lemma on Integration and the Theorem of the Mean to 
establish Theorem IO. Use the idea of the proof of Theorem 9. 
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30. Show that if a mass distribution F lies between the lines x = a and x = b, then 
a s; x s; b. Similarly, if Flies between the lines y = candy= d, then c s; y s; d. 

31. Let F1 , Fi, ... , F,, be regions no two of which have any points in common, and 
let (x1 ,y1), (,fi • .Yi) • ... , (x •• y.) be their respective centers of mass. Denote the 
mass of F; by m;. If Fis the region containing all the points in every F;. show that 
the center of mass (x,y) of Fis given by 

l'_mi.1'1 +miJi + ··· +m •. 1'. 
· - m1 +mi + · · · + m. · 

32. Show that if Fis symmetric with respect to the x axis and p(x, - y) = p(x,y) for 
all (x,y) on F, then y = 0. A similar result holds for symmetry with respect to the 
yaxis. 

33. Find the moment of inertia about the z axis of a ring of uniform density in the xy 
plane bounded by the circles xi+ yi = rf and xi+ yi = r~ with r1 < 'i· Find the 
result of the solid disk with the same density having the same moment of inertia 
about the z axis. 

34. Let F be a region in the xy plane with mass m(F). Show that in the notation of this 
section 

1r = / 1 - 2aM1 + aim(F) 

where M1 is the first moment of Fabout they axis. Also, show that 

1ja,b1 = /3 - 2aM1 - 2bMi + (ai + bi)m(F) 

where Mi is the first moment of Fwith respect to the x axis. 

7. Surface Area 

To define surface area we employ a procedure similar to that used for 
defining area in the plane. First, we define surface area in the simplest case, 
and second, we employ a limiting process for the definition of surface area 
of a general curved surface. 

Suppose two planes r 1 and f 2 intersect at an angle </>(Fig. 5-39). From 

Fig. 5-39 
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b ('OS¢ 

Fig. 5-40 Fig. 5-41 

each point of G 1 , a region in the plane r 1 , we drop a perpendicular to the 
plane r 2 • The set of points of intersection of these perpendiculars with r 2 

forms a region which we denote G2 . The set G2 is called the projection of 
G1 on f 2 • We shall now determine the relationship between the area A(G 1) 

of G1 and the area A(G2 ) of G2 • If G1 is a rectangle-the simplest possible 
case-the problem may be solved by elementary geometry. For convenience, 
we select the rectangle in r 1 so that one side is parallel to the line of inter
section of the two planes (Fig. 5-40). Let the lengths of the sides of the 
rectangle be a and b, as shown. The projection of the rectangle in r 1 onto r 2 

is a rectangle, as the reader may easily verify. The lengths of the sides of 
the rectangle in r 2 are a and b cos</>. The area A 1 = ab for the rectangle in 
r 1 and the area A2 =ab cos</> for the rectangle in f 2 • They satisfy the relation 

A2 = A 1 cos</>. (I) 

Equation ( 1) is the basis of the next useful result. 

Lemma. Let G1 be a region in a plane f 1 and Jet G2 be the projection of G1 

onto a plane r 2 • Then 

A(G2) = A(G1)cos</>, 

where</> is the angle between the planes rl and f2. 

(2) 

This lemma is proved by subdividing the plane r I into a network of 
rectangles and observing that these rectangles project onto rectangles in 
r 2 with areas related by equation (I). Since the areas of G1 and G2 are 
obtained as limits of sums of the areas of rectangles, formula (2) holds in 
the limit (Fig. 5-41). We observe that if the planes are parallel, then </> is 
zero, the region and its projection are congruent, and the areas are equal. 
If the planes are perpendicular, then </> = n/2, the projection of G1 degen
erates into a line segment, and A(G2 ) vanishes. Thus formula (2) is valid 
for all angles </> such that 0 ~ </> ~ n/2. 

Suppose we have a surface S represented by an equation 
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_...._--+-·········-- y 

Fig. 5-42 

= =j(x,y) 

for (x, y) on some region Fin the xy plane. We shall consider only functions 
/which have continuous first partial derivatives for all (x,y} on F. 

To define the area of the surface S we begin by subdividing the xy plane 
into a rectangular mesh. Suppose 7;. a rectangle of the subdivision, is com
pletely contained in F. Select a point (~;. 1'/i} in T;. This selection may be 
made in any manner whatsoever. The point P;(~;. ti;,,;), with C; = j(~;. t/;}. 
is on the surface S. Construct the plane tangent to the surface S at P; (Fig. 
5-42). Planes parallel to the z axis and through the edges of 7; cut out a 
portion (denoted S;} of the surface, and they cut out a quadrilateral, denoted 
Q;. from the tangent plane. The projection of Q; on the xy plane is 7;. 
If the definition of surface area is to satisfy our intuition, then the area of 
S; must be close to the area of Q; whenever the subdivision in the xy plane is 
sufficiently fine. However, Q; is a plane region, and its area can be found 
exactly. We recall from Chapter 4 (page 226) that we can determine the 
equation of a plane tangent to a surface z = j(x,y) at a given point on the 
surface. Such a determination is possible because the quantities 

/~(~;. 1/;}. -I 

form a set of attitude numbers for the tangent plane at the point (~;. t/;. ';} 
where C; = /(~;- t/;}. 

On page 22 we showed that the formula for the angle between two planes is 

cos</>= . lo1b1 + o2b2 + 03b3I ' 
voi + o~ + o~v·bi + b~ + b~ 

where 0 1 , o2 , a3 and b1 , b 2 , b3 are sets of attitude numbers of the two planes. 
We now find the cosine of the angle between the plane tangent to the surface 
and the xy plane. Letting </> denote the angle between the tangent plane and 
the xy plane and recalling that the xy plane has attitude numbers 0, 0, - I, 
we get 

Of +Of+ l·l cos</>= .1 .2 =(I+ r2 + f.2)-112. 
· 1 1·2 1·2 Jx Y Y + ,I+ ,2 
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According to the above lemma, we have 

ACT;)= A(Q;)cos<f> 

or 

Fig. 5-43 

A(Q;) = A(J:h/I + J/(~;.'/;) + f/(~;.'/;). 
We add all expressions of the above type for rectangles I: which are in F. 
We obtain the sum 

• • I A(Q;) =I A(J:hil + J/(~;.t/;) + J/(~;.'/;). (3) 
i=l i=l 

and we expect that this sum is a good approximation to the (as yet undefined) 
surface area if the norm of the rectangular subdivision in the xy plane is 
sufficiently small. 

Definition. If the limit of the sums (3) exists as the norms of the subdivisions 
tend to zero an<;l for arbitrary selections of the values(~;. 'I;) in J:, then we say 
that the surface z = f(x,y) has surface area. The value of the surface area 
A (S) of Sis the limit of the sum (3). 

Theorem 12. The sums in (3) tend to 

A(S) =ff v I+ [JJx,y)] 2 + [f;.(x,y)] 2 dA 

f 

whenever the first derivatives f.~ andj~ are continuous on F. 

This theorem is an immediate consequence of Theorem I and the fact that 
v' I + // + J;.2 is continuous if f.~ and J;. are. The integration formula of the 
theorem may be used to calculate surface area, as the next examples show. 

EXAMPLE I. Find the area of the surface z = hx312 + y312) situated above 
the square F= {(x,y): 0::;; x::;; I, 0::;; y::;; I} (Fig. 5-43). 
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Fig. 5-45 

SoLUTION. Setting z = f(x,y), we have fx = x 112 ,J;, = y 1'2, and 

A(S)= Jfo +x+y)lf2dA 

F 

= 11 11 (I+ x + y)112dydx. 

Therefore 

A(S) = f 1 ~[(I+ x + y) 312Jidx = ~ f1 [(2 + x)3'2 - (I+ x)3'2]dx o 3 3 Jo 
= _![(2 + X)Sf2 - (I+ X)Sf2Ji =_!(I+ 9.J3 - 8J2). 

15 15 

337 

EXAMPLE 2. Find the area of the part of the cylinder z = f x2 cut out by 
the planes y = 0, y = x, and x = 2. 

SOLUTION. See Figs. 5-44 and 5-45, which show the surface S and the pro
jection F. We have oz/ox = x, oz/oy = 0. Therefore 

A(S) = f f.11 + x2dA = f J: y'l + x2dydx 

F 

= xJl + x2dx =-[(I+ x2)3i2]~ f 2 l 

0 3 

= ~(5J5- l). 

The next example shows that it is sometimes useful to use polar coordinates 
for the evaluation of the double integral. 
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y 

Fig. 5-46 

EXAMPLE 3. Find the surface area of the part of the sphere xl + yl + zl =al 
cut out by the vertical cylinder erected on one loop of the curve whose 
equation in polar coordinates is r = a cos 28. 

SOLUTION. (See Fig. 5-46.) The surface consists of two parts, one above and 
one below the xy plane, symmetrically placed. The area of the upper half 
will be found. We have 

CZ -x CZ ______ 1_ ___ _ 

ex ,/al - x2 - y2' cy val - xl - yl 

Therefore (Fig. 5-46), we obtain 

A(S) = ff . a dAx.y ....;al_ x2 _ yl 
F =f "'4 racosl8 -.,-!j' ldrdfJ. 
-rrJ4Jo va -r 

This integral is an improper integral, but it can be shown to be convergent. 
Taking this fact for granted, we get 

A(S) = 2a I"'4 [-,/al - rl]ocos28 dO 

= 2al f'4 
(1 - sin28)d8 = ~a2 (n - 2). 

The total surface area is al(n - 2). 

If the given surface is of the form y = j{x, z) or x = j{y, z). we get similar 
formulas for the surface area. These are 

A(S) =ff (c~)l (c~)l 
1 + 0; + a;. dAx.y if z = f(x,y), 

F 
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if y = f(x, z), 

if x = f(y, z). 

PROBLEMS 

In each of Problems 1 through 18, find the area of the surface described. 

I. The portion of the surface z = j(x312 + y312 ) situated above the triangle 

F = { (x,y): 0 S x Sy, 0 Sy S I}. 

339 

2. The portion of the plane x/a + y/b + z/c = I in the first octant (a > 0, b > 0, 
c > 0). 

3. The part of the cylinder x 2 + z 2 = a2 inside the cylinder x 2 + y 2 = a2 • 

4. The part of the cylinder x 2 + z 2 = a2 above the square lxl Sta, IYI Sta. 

5. The part of the cone z2 = x 2 + y 2 inside the cylinder x 2 + y 2 = 2x. 

6. The part of the cone z2 = x2 + y 2 above the figure bounded by one loop of the 
curve r 2 = 4cos 20. 

7. The part of the cone x 2 = y 2 + z2 between the cylinder y 2 = z and the plane 
)' = z - 2. 

8. The part of the cone y 2 = x 2 + z 2 cut off by the plane 2y = (x + 2).JZ. 

9. The part of the cone x 2 = y 2 + z2 inside the sphere x 2 + y 2 + z2 = 2z. 

I 0. The part of the surface z = xy inside the cylinder x 2 + y 2 = a 2 • 

11. The part of the surface 4z = x 2 - y 2 above the region bounded by the curve 
r2 = 4cos0. 

12. The part of the surface of a sphere of radius 2a inside a cylinder of radius a if the 
center of the sphere is on the surface of the cylinder. 

13. The part of the surface of a sphere of radius a, center at the origin, inside the 
cylinder erected on one loop of the curve r = a cos 36. 

14. The part of the sphere x 2 + y 2 + z2 = 4z inside the paraboloid x 2 + y 2 = z. 

15. The part of the cylinder y 2 + z 2 = 2z cut off by the cone x 2 = y 2 + z2 • 

16. The part of the cylinder x 2 + y 2 = 2ax inside the sphere x 2 + y 2 + z 2 = 4a2 • 

17. The part of the cylinder y 2 + z2 = 4a2 above the xy plane and bounded by the 
planes y = 0, x =a, and y = x. 

18. The part of the paraboloid y 2 + z2 = 4ax cut off by the cylinder y 2 =ax and the 
plane x = 3a; outside the cylinder y 2 = ax. 



340 5. Multiple Integration 

z 
I 
I 
I 

z=c1----1-----
I 

I~ I :B; ll I ,_ __ -
I ' 
}--------- -x=ao 

,__ __ ,_ __ /_ - - - - - - - - - -/---· y 

/ 
(:=Co7_/_" _____ __,,,_ 

y=bo 
x Fig. 5-47 

19. (a) Use elementary geometry (and trigonometry) to establish equation (2) for an 
arbitrary triangle. (b) Use the result of (a) to establish equation (2) for an arbitrary 
polygon. 

20. If r = J x 2 + y2, 6 = arctan (y/x), and z = f(x, y), establish the formula for surface 
area in polar coordinates: 

A(S) =ff 1 + J/ + ~f,/rdrd6. 
F 

Use the polar coordinates formula (Problem 20) to find the surface area in Problems 21 
through 23. 

21. The area of the surface of the paraboloid z = x 2 + y 2 which is inside the cylinder 
x2 + y2 = 4. 

22. The portion of the cone x 2 + y2 = z2 inside the cylinder (x2 + y2)2 = 2xy. 

23. The portion of the cone x 2 + y2 = z2 inside the cylinder x 2 + y 2 = 1. 

8. The Triple Integral 

The definition of the triple integral parallels that of the double integral. 
In the simplest case, we consider a rectangular box R bounded by the six 
planesx = a0 ,x = a1 ,y = h0 ,y = b1 ,z = c0 ,z = c1 (Fig.5-47). Let/(x,y,z) 
be a function of three variables defined for (x, y, z) in R. We subdivide the 
entire three-dimensional space into rectangular boxes by constructing planes 
parallel to the coordinate planes. Let B1 , B2 , ••• , Bn be those boxes of the 
subdivision which contain points of R. Denote by V(B;) the volume of the 
ith box, B;. We select a point ~(~i• 'Ti• 'i) in B;; this selection may be made 
in any manner whatsoever. The sum 

n 

L /(~i• 'Ti· 'i) V(B;) 
i=I 
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is an approximation to the triple integral. The norm of the subdivision is the 
length of the longest diagonal of the boxes B1 , B2 , ••• , Bn. If the above 
sums tend to a limit as the norms of the subdivisions tend to zero and for 
any choices of the points ~. we call this limit the triple integral off over R. 
The expression 

ff f f(x,y,z)dV 

R 

is used to represent this limit. 
Just as the double integral is equal to a twice-iterated integral, so the 

triple integral has the same value as a threefold iterated integral. In the 
case of the rectangular box R, we obtain 

ff f f(x,y,z)dV= f~' {t:· [f' f(x,y,z)dz]dy}dx. 

R 

Suppose a region Sis bounded by the planes x = a0 , x = a1 , y = b0 , 

y = b1 , and by the surfaces z = r(x,y), z = s(x,y), as shown in Fig. 5-48. 
The triple integral may be defined in the same way as for a rectangular box 
R, and once again it is equal to the iterated integral. We have 

ff f f{x,y,z)dV = L:' {f ~' [f~~:> f(x,y,z)dz]dy}dx. 

s 

We state without proof the following theorem, which applies in the general 
case. 

Theorem 14. Suppose that S is a region defined by the inequalities 

S = { (x,y, z): a :s; x s; b, p(x) :s; y :s; q(x), r(x,y) :s; z :s; s(x,y) }, 

where the functions p, q, r, ands are continuous. If f is a continuous function 
on S, then 
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fff f b {f q(.'I [f s(Xo}'I J } j(x,y,z)dV = j(x,y,z)dz dy dx. 
a p(.,J r(Xo}') 

s 

The iterated integrations are performed in turn by holding all variables 
constant except the one being integrated. Brackets and braces in multiple 
integrals will be omitted unless there is danger of confusion. 

EXAMPLE I. Evaluate the iterated integral 

f 3 16-2: J4-12/3Jy-14/31z 
yzdxdydz. 

0 0 0 

SOLUTION. We have 

ro3 ro6- 2z ro~ ·12/3)y-14/3)z 

J< Ji Ji yzdxdydz 

f 3f6-2: = o o [xyz]ti-12/31rt4/3Jzdydz 

f 3f6-2: ( 2 4 ) = 
0 0 

yz 4 - 3 y - 3 z dy dz 

= ~ J: z(6 - 2z)3 dz. 

The integration may be performed by the substitution u = 6 - 2z. The 
result is 54/5. 

The determination of the limits of integration is the principal difficulty in 
reducing a triple integral to an iterated integral. The reader who works a 
large number of problems will develop good powers of visualization of 
three-dimensional figures. There is no simple mechanical technique for 
determining the limits of integration in the wide variety of problems we 
encounter. The next examples illustrate the process. 

EXAMPLE 2. Evaluate 

ff f xdV, 
s 

where S is the region bounded by the surfaces y = x 2 , y = x + 2, 
4z = x 2 + y 2 , and z = x + 3. 
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SOLVTION. To transform the triple integral into an iterated integral, we must 
determine the limits of integration. The region S is sketched in Fig. 5-49. 
The projection of S on the xy plane is the region F bounded by the curves 
y = x 2 and y = x + 2, as shown in Fig. 5-50. From this projection, the 
region rises with vertical walls, bounded from below by the paraboloid 
= = !(x2 + y 2) and above by the plane = = x + 3. Since Fis described by 
the inequalities 

F= {(x,y): -1:s;x:s;2, x 2 :s; y :s; x + 2}, 

we have 

S={(x,y,=): -I sxs2, x 2 s;ys;x+2, !(x2 +y2)s;zs;x+3}. 
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Therefore 

fff f 2 f x+2 Jx+3 
xdV = xdzdydx 

-1 x 2 (x2 +y2 V4 
s I 2 Jx+2 [ l ~ = _

1 
x> x 2 + 3x - 4(x3 + xy2)J dydx 

= f 1 { (3x + x 2 - ~x3) (2 + x - x2) - ~ [(2 + x)3 - x6J} dx 

837 
= 160' 

In the case of double integrals there are two possible orders of integration, 
one of them often being easier to calculate than the other. In the case of 
triple integrals there are six possible orders of integration. It becomes a 
matter of practice and trial and error to find which order is the most con
venient. 

The limits of integration may sometimes be found by projecting the region 
on one of the coordinate planes and then finding the equations of the "bot
tom" and "top" surfaces. This method was used in Example 2. If part of 
the boundary is a cylinder perpendicular to one of the coordinate planes, 
that fact can be used to determine the limits of integration. 

EXAMPLE 3. Express the integral 

I= III f(x,y,z)dV 

s 
as an iterated integral in six different ways when S is the region bounded 
by the surfaces 

z=O, Z=X, and y 2 = 4- 2x. 

SOLUTION. The region Sis shown in Fig. 5-51. The projection of Son the 
xy plane is the two-dimensional region Fxy bounded by x = 0 and y 2 = 
4 - 2x, as shown in Fig. 5-52. Therefore the integral may be written 

f 2 f +J4=2X f x I= f(x,y,z)dzdydx 
0 -J4-2x 0 

f 2 f 2-(1/2)y2 f x = f(x,y,z)dzdxdy. 
-2 0 0 

The projection of S on the xz plane is the triangular region bounded by the 
curves z = 0, z = x, and x = 2, as shown in Fig. 5-53. The iterated integral 
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in this case becomes 

i 2 ix I +..'4=2x I= f(x,y,z)dydzdx 
0 0 -J4-2x 

12 f 2 f +J4=2x = f(x,y,z)dydxdz. 
0 z -v'4=2i 

The projection of S on the yz plane is tile plane region bounded by z = 0 
and z = 2 - ty2 (Fig. 5-54). Then I takes the form 

f 2 f 2-(1/21y2 f2-(1/21y2 

I= f(x,y,z)dxdzdy 
-2 0 • 

- i2 f +J4-2• f 2-(1/2Jy2 

- f(x,y,z)dxdydz. 
0 -J4-2• • 
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PROBLEMS 

In each of Problems I through 6, find the value of the interated integral. Express each 
region of integration in set notation. 

I. f J: J:-y xdzdydx 

3. f 1 r·r p+• xydxdzdy 
Jo J,, Jo 

r1 r1-,·J·' 
2. J_ 1 Jo -vx 2y2.,/xdzdxdy 

4. f rl6-x' rl6-x•-yi (x + y + z)dzdydx 

5. J: J:T-;! r-· zdxdydz J t J' 1}' I + 3·z 6. ~dzdydx 
o O o ..JZ 

In Problems 7 through 17, evaluate 

f Jf 1<x,y,z)dV 

s 

where S is bounded by the given surfaces or regions and f is the given function. In 
each case, express S in set notation. 

7. z=O, y=O, ys;x, x+y=2, x+y+z=3; f(x,y,z)=x 

8. x=O, x= .. .ja2 -y2 -z2; f(x,y,z)=x 

9. z=O, x 2 +z=I, y2 +z=I, j(x,y,z)=z2 

10. x2+z2=a2, y2+z2=a2, f(x,y,z)=x2+y2 

II. x=O, y=O, z=O, (x/a)+(y/b)+(z/c)= I, (a,b,c>O); f(x,y,z)= 
z 

12. y=z2, y2 =z, x=O, x=y-z2; f(x,y,z)=y+z 2 

13. x = 0, y = 0, z = 0, x 112 + y 112 + z 112 = a 1' 2 ; j(x,y,z) =:: 

14. x = 0, y = 0, z = O. y2 = 4 - z, x = y + 2; f(x,y,z) = x 2; y;::: 0 

15. z = x 2 + y2, z = 27 - 2x2 - 2y2; j(x,y,z) =I 

16. z2 = 4ax, x 2 + y 2 = 2ax; f(x,y,z) = I 

*17. y 2 + z2 = 4ax, y 2 =ax, x = 3a; f(x,y,z) = x 2 

In Problems 18 through 22, express each iterated integral as a triple integral by describing 
the set S over which the integration is performed. Sketch the set S and then express the 
iterated integral in two orders differing from the original. Do not evaluate the integrals. 

18. trt-y xdzdydx 19. f 1 J 1 -''f-~ 2y2,/xdzdxdy 
-I 0 -.., x 
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20. xydxdzdy f If ,).iy+• 21. (y2 + z2 )dzdxdy J2 s4-y2J y+2 

0 ,,.1 0 -2 0 0 

22. f If' xf rx
2
f(X,)', z)dzdydx 

0 x 2 0 

23. Express the integral of f(x,y, z) over the region S bounded by the surface z = 
,J 16 - x2 - y2 and the plane z = 2 in 6 ways. 

24. Express the integral 

tJ:J: (x2 + y2 + z 2)dydxdz 

i'n S additional ways. 

25. Let Sbethe solid tetrahedron with vertices at (0, 0,0), (1,0,0), (0, 1,0), and (0,0, I). 
Find the value of JHJ(x,y,z)dVwheref(x,y,z) = (x2 + 2xz + y2). 

s 

26. Let S be the solid pyramid with vertices (0,0,0), (l,0,0), (I, 1,0), (0, 1,0), and 
(0,0, I). Find the value of JHf(x,y,z)dVwheref(x,y,z) = xyz + 2yz. 

s 

9. Mass of a Region in R3 • Triple Integrals in 
Cylindrical and Spherical Coordinates 

From the definition of triple integral we see that if f(x, y, z) = I, then the 
triple integral taken over a region S is precisely the volume V(S). More 
generally, if an object occupies a region S, and if the density at any point is 
given by b(x,y, z), then the total mass, m(S), is given by the triple integral 

m(S) =ff f b(x,y,z)dV. 

s 

NOTATION. For the remainder of this chapter the symbol l> will be used for 
density. The quantity p, which we previously used for density, will denote 
one of the variables in spherical coordinates. 

EXAMPLE l. The region S in the first octant is bounded by the surfaces 

z = 4 - x 2 - y 2 , Z=O, x+y=2, x=O, y=O. 

The density is given by b(x,y, z) = 2z. Find the total mass. 

SOLUTION. We have (Fig. 5-55) 
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z 

x Fig. 5-55 

m(S) =ff f 2zdV = 2 f r-x t4 -x'-r' zdzdydx 

s 

i2 12-x 
= o Jo (4-x2-y2)2dydx 

= L2 L2-x (16 + x4 + y4 - 8x2 - 8y2 + 2x2y2)dydx 

= 12 [<4 - x2)2y - ~(4 - x2)y3 + ! ys]2-x dx 
Jo 3 5 o 

= f [2(4 - x2)2 - x(4 - x2)2 - ~(4 - x 2)(2 - x)3 

+ ~(2 - x)5] dx. 

The above integral, a polynomial in x, can be evaluated. The answer is 
704/45. 

We found that certain double integrals are easy to evaluate if a polar 
coordinate system is used. Similarly, there are triple integrals which, although 
difficult to evaluate in rectangular coordinates, are simple integrations when 
transformed into other systems. The most useful transformations are those 
to cylindrical and spherical coordinates. (See Chapter I, page 32 ff.) 

Cylindrical coordinates consist of polar coordinates in the plane and a 
z coordinate as in a rectangular system. The transformation from rectangular 
to cylindrical coordinates is 

x = rcos6, y = rsinO, Z=Z. (I) 

A region Sin (x,y,z) space corresponds to a region U in (r,6,z) space. 
The volume of S, V(S), may be found in terms of a triple integral in (r, 6, z)
space by the formula (Fig. 5-56) 
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z 

Fig. 5-56 
() 

V(S) =ff f rdV.oz· 
v 

This formula is a natural extension of the formula relating area in rectangular 
and in polar coordinates. (See page 318 ff.) 

More generally, if j(x, y. z) is a continuous function, and if we define 

g(r,0,z) =f(rcosO,rsinO,z). 

then we have the following relationship between triple integrals: 

ff f f(x,y,z)dVxyz =ff f g(r,0,z)rdV,o, . 

• ~ (I 

A triple integral in cylindrical coordinates may be evaluated by iterated 
integrals. We write 

ff f g(r, O,z)rdV,o, = ff f g(r, 0, z)rdrdOdz, 

and, as before, there are five other orders of integration possible. Once again 
the major problem is the determination of the limits of integration. For this 
purpose it is helpful to superimpose cylindrical coordinates on a rectangular 
system, sketch the surface, and read off the limits of integration. The next 
example shows the method. 

EXAMPLE 2. Find the mass of the region bounded by the cylinder x 2 + y 2 = ax 
and the cone z2 = x 2 + y 2 if the density is {J = k J x 2 + y 2 (Fig. 5-57). 

SOLUTION. We change to cylindrical coordinates. The cylinder is r = acosO 
and the cone is z 2 = r2 • The density is kr. The region S corresponds to the 
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region U given by 

U = {(r,ll,z): 0:::; r:::; acosll, 

Therefore 

_'!!.<e<'!!. 
2 - - 2' 

Fig. 5-57 

m(S) =ff f kvx2 + y 2 dV,,) .. = k ff f r·r·dV,9, 

s u 

f n/2 JacosO fr = k r2 dz dr dll 
-n/2 0 -r 

f n/2 Jacos9 J Jn/2 
= 2k r3 dr dO = 2. ka4 cos4 ll dll 

-~ 0 -~ 

=_I ka4f n12 (1+2cosW +I+ cos4ll)de = 3kna4 -
8 -1'/2 2 16 

The transformation from rectangular to spherical coordinates is given by 
the equations (see page 33) 

x = pcos0sin¢, y = p sin (J sin¢, = = pcos</J. (2) 

The region U given by 

U = {(p,0,¢): P1:::; p:::; P2· 01 :::; 0:::; 02, ¢1:::; </J:::; ¢2} 

corresponds to a rectangular box in (p, 0, ¢)-space. We wish to find the 
volume of the region Sin (x, y, z)-space which corresponds to U under the 
transformation (2). Referring to Fig. 5-58, we see that S is a region such as 
ABCDA'B'C'D' between the spheres p = p 1 and p = p2 , between the planes 
ll = 01 and 0 = 82 , and between the cones <P = </J 1(0ADD'A') and <P = 
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z 

D' 

Fig. 5-58 :r: 

Fig. 5-59 

</J2(0BCC' B'). The region S is obtained by sweeping the plane region 
F(ABCD shown in Fig. 5-59) through an angle !l() = 92 - 91 • The formula 
for determining the volume when an area is swept through an angle about 
an axis is given by 

V(S) = llO ff xdA,x. 

F 

Since p, <P are polar coordinates in the zx plane (Fig. 5-59), we have 

x = psin<P and 

Therefore 
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0 Fig. 5-60 

More generally, if j(x, y, z) is continuous on a region Sand if 

g(p, 0, </>) = j(p cos 0 sin</>, p sin 0 sin</>. p cos</>), 

then the triple integral off may be transformed according to the formula 

ff f f(x,y, z)dV,r= = f Jf g(p, O. </>)p 2 sin </>dVpo.p· 

s u 

Once again, the triple integral is evaluated by iterated integrations. The 
next example illustrates the process. 

EXAMPLE 3. Find the volume above the cone z2 = x 2 + y 2 and inside the 
sphere x2 + y 2 + z2 = 2az (Fig. 5-60). 

SOLUTION. In spherical coordinates the cone and sphere have the equations 

TC 
</>=-

4 

respectively. Therefore 

and p = 2acos</>, 

= Lr/4 L2ocos,P L2n p2sin</>d0dpd</> 

r•/4 f2ocos<P 16a3n r•/4 =2rcJ
0 

Jo p2sin</>dpd</>=-3-Jo cos 3 <f>sin</>d</> 

4a3TC = - 3-[ -cos4 </> ]~4 = na3• 
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PROBLEMS 

In each of Problems I through 16, find the mass of the region having the given density 
i5 and bounded by the surfaces whose equations are given. 

I. z2 = x2 + y2, x2 + y2 + z2 = a 2, above the cone, i5 = const. 

2. The rectangular parallelepiped bounded by x = -a, x =a, y = -b, y = b, 
z = -c, z = c, i5 = k(x2 + y2 + z2). 

3. x2 + y2 + z2 = a2, x2 + yz + z2 = b2, u < b, i5 = kJxz + y2 + z2. 

4. The rectangular parallelepiped bounded by x = 0, x = 2a, y = 0, y = 2b, 
z = 0, z = 2c, i5 = k(x2 + y2 + z2). 

S. x2 + y2 = a2, x2 + y2 + z2 = 4a2 ; i5 = kz 2 ; outside the cylinder. 

6. The tetrahedron bounded bythecoordinateplanesandx + y + z = I; i5 = kxyz. 

?. x2 + y2 = 2ax, x2 + yz + z2 = 4a2; 0 = k(x2 + y2). 

8. z2 = 2S(x2 + y2), z = x2 + y2 + 4; i5 = const; above the paraboloid. 

9. z2 = x2 + y2, x 2 + y2 + z2 = 2az; above the cone; i5 = kz. 

10. Interior of x2 + y2 + z2 = a 2; i5 = k(x2 + y2 + z2)", n a positive number. 

11. x2 .+ y2 = az, x 2 + y2 + z2 = 2az; above the paraboloid; i5 = const. 

12. 2z = x 2 + y2, z = 2x; i5 = k,./x2 + y 2. 

13. x2 + y2 + z2 = a 2, r 2 = a 2cos2lJ (cylindrical coordinates); i5 = const. 

14. x2 + y2 + z2 = 4az, z = 3a, above the plane; i5 = k.Jx2 + y2 + z2. 

IS. z2 = x2 + y2, (x2 + y2)2 = 02(x2 _ y2); 0 = kJx2 + y2. 

*16. z2 = x 2 + y2, x 2 + y2 + z2 = 2ax; i5 = const; above the cone. 

10. Moment of Inertia. Center of Mass 

The definition of moment of inertia of a solid body is similar to the definition 
of moment of inertia of a plane region (page 326). The following definition is 
basic for the material of this section. 

Definition. Suppose that a body occupies a region S and that L is any line 
in three-space. We make a subdivision of space into rectangular boxes and let 
S1 , S2 , ••• , Sn be those boxes which contain points of S. For each i, select any 
point P;(l;;, I'/;,{;) in S;. If the sums 

n 

}: r;2m(S;) (r1 = distance of I'; from L) 
i=I 

tend to a limit I as the norms of the subdivisions tend to zero, and for any 
choices of the I';, then I is called the moment of inertia of the solid S about L. 
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Fig. 5-61 

It can be shown that if S has continuous density 6(x,y, z), then the mo
ments of inertia Ix, 11 , and I, about the x, y, and z axes, respectively, are 
given by the triple integrals 

Ix= ff f ci:2 + z2 )6(x,y,z)dV, 

s 

I,= ff fx 2 + y 2 )6(x,y,z)dV. 

s 

11 = ff f (x2 + z2)6(x, y, z) dV, 

s 

If a region S has a density b(x,y, z) and a mass m(S), the point (.\',y, z), 
defined by the formulas 

ff f xb(x,y,z)dV ff f y6(x,y,z)dV ff f z6(x,y,z)dV i 

x- s .f= s ,,._ s I 
L--~ -----~~S? ____ '_ ____ '!!.(~! __ --~ :__~ __ m(S) 

is called the center of mass of S. 
In determining the center of mass, it is helpful to take into account all 

available symmetries. The following rules are useful: 

a) If Sis symmetric in the xy plane and b(x,y, -z) = b(x,y,z), then z= 0. 
A similar result holds for other coordinate planes. 

b) If S is symmetric in the x axis and 6(x, -y, -z) = 6(x,y, z), then y = 
z = 0. A similar result holds for the other axes. 

EXAMPLE 1. Find the moment of inertia of the interior of a homogeneous 
cone of base radius a and altitude h about a line through the vertex and 
perpendicular to the axis. 

SOLUTION. We take the vertex at the origin, the z axis as the axis of the cone, 
and the x axis as the line L about which the moment of inertia is to be 
computed (Fig. 5-61). 
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a 

Fig. 5-62 Fig. 5-63 

Let IX = arctan (a/h) be half the angle opening of the cone. In spherical 
coordinates we get (see Fig. 5-62) 

I= ff f (y2 + z2)dVxy: 

s 

= J: J: ... "' f" p2{sin2 c/>sin2 0 + cos2 cf>)p 2 sin cf>dOdpdcf>. 

Since 

(2" Jo sin2 OdO = n, 

we obtain 

l=n J: f...,"' p4 (1 +cos2 cf>)sinc/>dpdc/> 

= n~5 J: [(cos cf>)- 5 +(cos c/>)- 3] sin</> def> 

= nh5 [sec4 IX - I sec2 IX - I J = nha2 (41 2 2) 

5 4 + 2 20 1 +a ' 

since tan IX = a/h. 

EXAMPLE 2. Find the center of mass of the interior of a hemisphere of radius 
a which has density proportional to the distance from the center of the sphere. 

SOLUTION. We select the hemisphere so that the plane section is in the xy 
plane and the z axis in axis of symmetry (Fig. 5-63). Then x = y = 0. Chang
ing to spherical coordinates, we have 

m(S) = f" f'2 I: kp · p2 sin cf> dp d</> d(J = ~ nka4 

and from this we obtain 
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z= f" {"'2 I pcos</>·kp·p2 sin</>dpd<f>d(} 

!nka4 

2 I J"'2 = ---"4 • -5 a5 • 2n cos</> sin</> d</> 
na 0 

= ~ [sin2 </>]"12 
_ 2a 

5° 2 - 5 · 
0 

The center of mass is at (0, 0, 2a/5). 

PROBLEMS 

In each of Problems 1 through 15, find the moment of inertia about the given axis of 
the region having the specified density i5 and bounded by the surfaces as described. 

I. A cube of side a; i5 = const; about an edge. 

2. A cube of side a; i5 = const; about a line parallel to an edge, at distance 2 
from it, and in a plane of one of the faces. 

3. Bounded by x = 0, y = 0, ;; = 0, x + z =a, y = z; i5 = kx; about the x 
axis. 

4. x2 + y2 = a 2 ; x2 + z2 = a 2 ; i5 = const; about the z axis. 

5. z = x, y2 = 4 - 2z, x = O; i5 = const; about the z axis. 

6. x = 0, y=O, z2 =I - x -y; i5 = const; about the z axis. 

7. z2 = .lO - x2 ); y = I; 6 = const; about the x axis. 

8. x2 + y2 = a2 , x 2 + y2 = b2 , z = 0, z = h; J = k v x 2 + y 2 ; about the x 
axis (a< b). 

9. x2 +y2 +z2 =a2 , x2 +y2 +z2 =b2 ; J=k-vx2 +y2 +z2 ; about the z 
axis (a< b). 

10. p=4, p=5, z=I, z=3(1:s;z:s;3); J=const; aboutthezaxis. 

11. z2 = x2 + y 2, (x2 + y2 ) 2 = a 2 (x2 - y2); J = k....; x2 + y2 ; about the z axis. 

12. z = 0, z = ·/a2 - x2 .:._ y2 ; i5 = kz; about the x axis. 

13. x2 /a2 + y2 /b2 + z2 /c2 = I ; i5 = const; about the z axis. (Divide the integral 
into two parts.) 

14. (r - b) 2 + z2 = a 2 (0 <a< b); i5 = kz; about the z axis. Assume z ~ 0. 

15. p = b, p = c, r =a (a< b < c); outside r =a, between p = b and p = c; 
o = const; about the z axis. 

In each of Problems 16 through 32, find the center of mass of the region having the given 
density and bounded by the surfaces as described. Describe each region in set notation. 
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16. x = 0, y = 0, z = 0, x/a + y/b + z/c = I; b = const. 

17. x = 0, y = 0, z = 0, x + z =a, y = z; b = kx. 

18. x 2 + r 2 = a2 , x 2 + z2 = a2 , b = const: the portion where x ~ 0. 

19. z=x, z= -x, y 2 =4-2x; i>=const. 

20. z2 = y 2 (1 - x2), y = I; b = const. 

21. z=O, x2 +z=I, y2 +z=I; i>=const. 

22. x = 0, y = 0, z = 0, x 112 + y 112 + z112 = a112 ; b = const. 

23. y 2 + z 2 = 4ax, y 2 = ax, x = 3a; b = const. (Inside y 2 = ax.) 

24. z 2 = 4ax, x 2 + y 2 = 2ax; b = const. 

25. z 2 = x 2 + y 2 , x 2 + y 2 + ;;2 = a2 , above the cone; b = const. 

26. z2 = x 2 + y 2 , x 2 + y 2 = 2ax; Ci= k(x2 + y2). 

27. z2 = x 2 + y 2 , x 2 + y 2 + z 2 = 2az, above the cone; b = kz. 

28. x 2 + y 2 = az, x 2 + y 2 + z2 = 2az, above the paraboloid; b = const. 

29. x 2 + y 2 + z2 = 4az, z = 3a, above the plane; b = k-..,/x2 + y 2 + z2 • 

30. µ=4, p=S, z= I, z=3(1 :s;;z:s;;3); i>=const. 

*31. z 2 = x 2 + y 2 , (x2 + y 2 )2 = a2 (x2 - y2); b = k,;x2 + y 2 ; the part for which 
x~O. 

*32. z2 = x 2 + y 2 , x 2 + y 2 + z 2 = 2ax, above the cone; Ci= const. 



CHAPTER 6 

Fourier Series 

1. Fourier Series 

In the study of infinite series, the functions 

I, x, x 2 , ••. , x", ... 

play a central role. Most of the elementary functions of algebra, trigonome
try, and calculus may be expanded in series which are sums of powers of x, 
that is, in power series. The coefficients in such a Taylor or Maclaurin series 
are the successive derivatives of the given function evaluated at a point. 

The simple functionf(x) = lxl cannot be expanded in a Maclaurin series. 
Since f does not have a derivative at x = 0 (Fig. 6-1), there is no way to 
compute the coefficient of xn, n ~ I, in such an expansion. 

The collection of functions 

I, cosx, cos2x, ... , cosnx, ... , 

sin x, sin 2x, ... , sin nx, .. . 

all have period 2n. We consider a function/which is periodic with period 2n 
and try to represent it in a series of the form 

j(X) =a;+ n~I (anCOSnX + bnsinnx), 

y 

\k(=~" 
Fig. 6-1 

(I) 
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where all the a. and b •• 11 = 0, I, 2, .... are constants. Suppose the above 
series (I) converges uniformly to f(x) on the interval - n :::;; x :::;; n. Then 
since u.(x) = a. cos nx + b. sin nx is continuous, we know (Theorem 30' in 
Chapter 3) that f is continuous on - n :::;; x :::;; n. Furthermore, we may 
integrate term by term and perform various manipulations with uniformly 
convergent series. Proceeding formally for the moment, we let m be a fixed 
integer and multiply the series (I) by cosmx. We get 

j(x)cosmx = a2°cosmx + .~1 (a.cosnxcosmx + b.sin11xcosmx). 

Now we integrate this series on the interval [ - n, n ]. obtaining 

f /(x)cosmxdx = ; 0 f n cosmxdx 
(2) 

+ .~1 [a.f :n cos11xcosmxdx + b.J:n sin11xcosmxdx]. 

All the integrals on the right in the above expression may be calculated by 
elementary means. The reader can easily verify that 

f :n cosnxdx = f :n sinnxdx = 0 

Also, using trigonometric relations such as 

for n =I, 2, .... 

cosmxcos11x = t[cos(m + 11)x + cos(m - n)x], 

we find it a simple matter to verify that 

rn cosmxcosnxdx = fn sinmxsinnxdx ={'TC J _n -n 0 

and 

J:n cosmxsinnxdx = 0 

if m = 11, 

if m =/. n, 

for m, n = I, 2, .... In Eq. (2), all the integrals on the right have the value 
zero except the term in which n = m. We conclude (on the basis of the formal 
manipulations) that 

J:/(x)cosmxdx = nam, m = 0, I, 2, .... 

Next, multiplying the series (I) by sin mx with m fixed and then integrating 
term by term, we obtain the corresponding formulas for bm. They are 

J:/(x)sinmxdx = nbm, m =I, 2, .... 

The above development leads to the following theorem: 
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Theorem 1. Suppose that f is continuous for all x and periodic with period 2n. 
Suppose that the series 

j(x) =a;+ J
1 
(ancosnx + bnsinnx) 

converges uniformly to f(x) for all x. Then 

PROOF. Let 

r .. ~ H~.1(') ,.,, ., dt, 

bn = ~L/(t)sinntdl, 

n=O, I, 2, ... , j 
; 

n =I, 2, 3, .... i 

sP(x) =a;+ J
1 
(akcoskx + bksinkx) 

(3) 

(4) 

be the pth partial sum of the series in (3). Since the sequence sP(x) con
verges uniformly to j(x), it follows that sP(x) cos nx converges uniformly to 
j(x) cos nx for each fixed n. In fact, 

lsp(x)cosnx - j(x)cosnxl = lsp(x) - j(x)j lcosnxl ~ lsp(x) - j(x)I, 

and the last expression on the right tends to zero uniformly as p-+ oo. 
Similarly, sp(x) sin nx converges uniformly to j(x) sin nx. Therefore, the 
series for sp(x) cos nx and for sp(x) sin nx may be integrated term by term 
(Theorem 31 in Chapter 3). Performing this process as outlined in the 
discussion preceding the theorem, we obtain the formulas for an and bn. 

Definitions. The series (3) is called the Fourier series of the function j; and 
the numbers an and bn as given by (4), are called the Fourier coefficients off: 

The fact that Theorem I is valid only for functions which are periodic 
with period 2n may be considered an unsatisfactory feature of a Fourier 
series. Functions such as ex, log (I + x), etc., which have Taylor expansions, 
are not periodic at all. Later we shall see how to extend the study of Fourier 
series so that this problem may be partially overcome. (See page 372.) 

A more serious objection to Theorem I is the requirement that the series 
(3) converge uniformly. If f is any continuous function, the coefficients an 
and bn may be calculated by (4). It turns out that there are continuous 
functions f such that the resulting Fourier series does not converge to the 
function. On the other hand, there are discontinuous functions f such that 
the series does converge to the function. /ff is discontinuous, the convergence 
cannot be uniform because of Theorem 30 of Chapter 3. In order to obtain 
a useful convergence theorem-one which includes convergence for dis
continuous functions-we introduce the class of functions described in the 
next paragraph. 
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Definitions. A function f is said to be piecewise continuous on an interval 
[a, b] if and only if there is a finite subdivision 

a= X0 < X 1 < · · · < Xk-• < Xk = b 

such that the function/is continuous on each subinterval (X;_ 1 , X;). Further
more, the one-sided limits off at each of the subdivision points X; must exist 
(Fig. 6-2). At each subdivision point the function is discontinuous, and we 
call the difference f(X; +) - j(X; - ) the jump off at X;. 

The function/may have any value at each X;. In other words, a piecewise 
continuous function on [a, b] is one which is continuous except at a finite 
number of points where it has jumps. 

A function f is piecewise smooth on [a, b] - f is piecewise continuous and 
f' is piecewise continuous, with the jumps off' occurring at X0 , X1 , ..• , Xk. 
The value of a piecewise continuous function at one of the points of dis
continuity plays an important part in Fourier analysis. We say that a 
piecewise continuous function f is normalized if and only if its value at 
X; is given by 

i = l, 2, ... , k - I. 

That is, the function value is halfway between the limit values from the left 
and right (Fig. 6-2). We say that a function/ is smooth on [a, b] if and only 
if/and/' are continuous throughout [a,b]. 

The integral of a function/, thus far defined only for continuous functions, 
may easily be defined for piecewise continuous functions. /ff is continuous 
on [a, b] except at X 1 , X2 , ••• , Xk-• where it has jumps, we define 

fb k IX· j(x) dx = -~ ' j(x) dx. 
a o-I X;-1 

(5) 

The values of the integrals on the right in (5) are not influenced by the value 
off at any X;. Therefore, normalizing a piecesise continuous function by 
changing its values at the {X;} does not affect its integral. Since any finite 
linear combination of piecewise continuous functions is piecewise contin
uous, the formula 

f [cf(x) + dg(x)] dx = c r f(x)dx + d r g(x)dx 



362 6. Fourier Series 

still holds .• 7 urthermore, for piecewise continuousj; 

m(b - a) S: Lb.f{x)dx S: M(b - a) when m S: f{x) S: M, 

and r /(x) dx = f /(x) dx + r /(x) dx, 

and so forth. In addition, if f is piecewise continuous on [a, b ], and if F is 
given by 

F(x) = rj{l)dt, 

then F and F' are continuous except at X1 , X2 , ••. , Xk-• · Moreover, Fis 
continuous on [a,b]. To see this, we note that 

IF(x2) - F(x 1)1 = IJ.~2 f(t)dt' S: Mlx 2 - xii if lflx)j S: M, 

and so F satisfies the definition of continuity. Also, F is piecewise smooth 
on [a,b]. 

The reader may verify that the product Jg of a piecewise continuous 
function f and a continuous function g is piecewise continuous. Therefore 
/(x)cos nx and/(x) sin nx are piecewise continuous on [ -n, n] whenever /is. 
The coefficients an and hn may be defined according to (4) for any piecewise 
contiauousJ: once the integral is defined for such functions. We next state 
a remarkable convergence theorem which, while not the most general one, 
is sufficiently broad for most applications. 

Theorem 2. Suppose that f is pieceu·ise smooth, normalized. and periodic with 
period 2n. Then its Fourier series converges to f(x) for each x. Furthermore, 
if f is smooth on the interval I= {x: c S: x S: d}, then the convergence is 
uniform on I. 

We shall prove the first part of this theorem in Section 4. (See page 378). 
For the second part, see Theorem 5, page 382. 

Suppose we are given a piecewise smooth function f on the interval 
[ -n, n] and we wish to expand it in a Fourier series. First we define the 
periodic extension of fas the functionj0(x) defined for all x by the relation 

. {fizj for-n<x<~ 
fo(X) = 

j 0(x - 2n) for all other x. 

Then we normalize }0, if necessary (Fig. 6-3). No matter how smooth the 
function f may be. the periodic extension fo will introduce a discontinuity 
at n and -n whenever fl -n) '# f{n}. The study of Fourier series would 
have limited value if we were restricted from the beginning to functions 
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Fig. 6-3 

y 

Fig. 6-4 

which are smooth. The fact that the basic theory enables us to handle 
functions with jumps means that we may start with any integrable function 
defined on [ -n, n], form its periodic extension. and apply the theory. We 
illustrate this point with examples. 

EXA!'w!PLE I. Find the Fourier series for the function 

j(x) = x on ( - n, n). 

SOLUTION. We form the periodic extension off and normalize it (Fig. 6-4). 
The normalization yieldsj0(-n) = j 0(n) = 0. We compute a. and b., using 
the formulas (4) for the coefficients: 

If n a.=; -n xcosnxdx, I Jn b. =; xsinnxdx. 
-n 

Integrating by parts, we find 

I [xsinnx]n I f n . a.=-·-···-· - - smnxdx=O, 
n n nn -n -n 

n = I, 2, ... , 

1 [ xcosnx]n I f n 2 _ 2 b. = - - + - cosnxdx = --cosnn = (-It 1 -. 
n n nn n n -n -ir 

Since a0 = 0, the Fourier series for j(x) =xis 

2 [ . sin 2x sin 3x sin 4x + J x= smx--2-+-3---4- ··· , -n<x<n. 

For x = ± n, the series converges not to /but to the normalized value of j 0, 
the extension off In this case we notice that at - n and n all the terms in the 
series vanish, and we verify that the series converges to f 0( - n) = j 0(n) = 0. 
A graph of th.e first few terms of the series is shown in Fig. 6-5. 
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Fig. 6-5 
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EXAMPLE 2. Find the Fourier series of the function 

f 
0, -1t s x : 0, 

j(x) = l, 0 < x < 2, 
1t 

0, 2 s x s 1t. 

SoLUTION. We first extend f periodically and normalize it. The result is 
shown in Fig. 6-6. The solid dots in the figure show the normalized values 
at the jumps. We compute the coefficients: 

If" If nt2 l a0 = 7t _,/(x)dx = 1t 
0 

I dx = 2' 

l J" l f n/2 l Jn/2 a"= - f(x)cosnxdx = - cosnxdx = -sinnx . 
1t -,. 1t o nn o 

Therefore 

I 0 
a = 

n ( - l)k 

(2k + l)1t 

if n is even 

ifn = 2k + l, k = 0, l, 2, .... 

To find bn, we write 

b = !f "'2 sinnxdx = - cosnx]"'2 = ! (2k ! l)n 
n 1t o nn o 1-(-l)k 

2k1t 

ifn = 2k + l, 

ifn=2k. 

The values of sin nx and cos nx at odd and even multiples of n/2 occur often 
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in Fourier series; the reader should study carefully the evaluations above 
to be sure he understands how they are obtained. The desired Fourier series 
for f is 

. I I [ . . cos 3x sin 3x 
j(x) = 4 +; cosx + smx + sm2x- - 3-+-3-

+ cos5x + sin5x + sin6x + .. ·]. 
5 5 3 

Note that at x = 0, n/2, 2n, 5n/2, ... , the series must converge to the value 
1/2. 

In computing the Fourier coefficients we may frequently save a great deal 
of labor by using certain properties of even and odd functions. We state 
that a function .f is even if 

j(-x) = f(x) 

for all x. A function y is odd if 

g(-x) = -g(x) 

for all x. Using the definition of integral, we observe that if f is even and 
g is odd then, for any value a, 

f
0
f(x)dx = 2 J: f(x)dx, fa g(x)dx = 0. 

The product of two even functions is even, the product of two odd functions 
is even, and the product of an even and an odd function is odd. For every 
positive integer n, the function cos nx is even and the function sin nx odd. 
Observe in Example I that j(x) = x is odd; then clearly j(x) cos nx is odd 
for every n; we can thus conclude without any computation at all that an = 0, 
for n = 0, I, 2, .... In Example 2, since the function f is neither even nor 
odd, no simplification can be made on this basis. The preceding discussion 
is now stated in the form of a theorem. 

Theorem 3. Suppose that f is periodic 1\'ith period 2n and is piecewise con
tinuous. Then 

a) !ff is odd on (-n, n), we hare an= Ofor n = 0, I, 2, ... , and 

bn = ~ j"j(x)sinnxdx; 
n Jo 

b) iff is ei•en on (-n, n), we hare bn = Ofor n = I, 2, ... , and 

2i" an= - j(x)cosnxdx. 
7[ 0 
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EXAMPLE 3. Find the Fourier series of the function 

f(x> =Ix!. -7t < x < 7t. 

SOLUTION. We form the periodic extension of/as shown in Fig. 6-7. Note 
that tile extended function happens to be continuous; normalization is 
therefore unnecessary. Because f is even, we conclude at once that bn = 0 
for all n, that a0 = 7t, and that 

2f" an= - f(x)cosnxdx. 
7t 0 

Since j(x) = x for x ~ 0 we obtain, upon integrating by parts, 

2[xsinnx]" 2 f" . 2 ]" an=·- --- - - smnxdx = - 2-cosnx 
7t n o n7t o n 7t o 

= +[cosn7t - l] =+[<-Ir- l] 
n7t n7t 

I -4 
= (2k + 1)2 7t 

l 0 

The desired series is 

forn = 2k + I f , 
for n = 2k 

k = 0, l, 2, .... 

ji(x) = ~ _ ~[cosx + cos3x + ... + cos(2k + l)x + .. ·] 
2 7t 12 32 (2k+ 1)2 . 

Setting x = 0 and noting thatf(O) = 0, we obtain the remarkable formula 

7t2 = 8( l + ~ + A + ~ + ... ). 

PROBLEMS 

In each of Problems I through 15, find the Fourier series for the given function. Draw a 
graph of the periodic, normalized extcnsionj0 on the interval [-Jn, Jn]. 

{ 
n/4 for 0 < x < n 

I. j(x) = 
-n/4 for -n < x < 0 

{o for - 7t < x < 0 
2. j(x) = I 

for 0 < x < n 

3. j(x) = x 2 for -n ;s; x ;s; 7t 
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{o for - 7[ < x < n/2 
4. j(x) = 

I for n/2 < x < n 

-I for -n < x < -n/2 

5. j(x) = 0 for -n/2 < x < n/2 

6. f(x) = { 0 
x 

7. j(x) = { ~ 

for n/2 < x < n 

for -n < x < 0 

for 0:::; x < n 

for -n < x < -n/2 

for -n/2 < x < n/2 

for n/2 < x < n 

8. j(x) = JsinxJ for -n:::; x:::; n 

9. j(x) = JcosxJ for -n:::; x:::; n 

10. j(x) = x 3 for -n < x < n 

11. j(x) = e·' for - n < x < n 

12. f(x) = { _0 
smx 

13. j(x) = sin 2 x 

14. j(x) = xsinx 

for-n<x<O 

forO<x<n 

for - n < x < n 

for -n < x < n 

{ -n for-n<x<O 
15. j(x) = 

x for 0 < x < n 

16. Verify the formulas 

In .cosmxcosnxdx =f. sinmxsinnxdx = {7[ 
-• -n 0 

Also show that J'.'..,cosmxsin11xdx = 0 form, 11 =I, 2, ... 

ifm=n, 

if m "# n. 

17. For the series in Problem 15. show that for x = 0, we get the formula 
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18. Find an expansion for n 1 in Example 3 by evaluation of the series at x = n/4. 
Can the error after 11 terms be estimated? 

19. Given thatf(x) = x + x 2 , -n < x < n, find the Fourier expansion of l Show that 

n1 . .., I 
-= L:---,. 
6 n=I 11• 

20. Using the series expansion in Problem I, show that 
n I I I 

a) - = I - - + - - - + · · · 
4 3 5 7 
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21. Given the function/(x) = x for 0 < x < ! . Extend the definition off to the interval 
-n < x < n in four different ways and compute the Fourier Series for these four 
functions. 

22. Show that the derivative of an even function is an odd function and that the deriva
tive of an odd function is an even function. 

2. Half-Range Expansions 

Suppose that a function f is defined on the interval [O, n] and we wish to 
expand it in a Fourier series. Since the coefficients an and bn involve integrals 
from - n to n, we must somehow extend the definition off to the interval 
( -n, n). We can do this in many ways at our· own convenience. One way is 
to extend f so that it is an even function on the interval ( - n, n) (Fig. 6-8). 
Since an even function has bn = 0 for n = I, 2, ... , the Fourier series has 
only cosine terms. We call such a series a cosine series and, as the original 
function is represented on (0, n), the expansion is called a half-range 
expansion. 

A function/defined on (0, n) may also be extended to the interval ( -n, n) 
as an odd function. Figure 6-9 shows such an extension, and we notice that 
discontinuities are introduced at - n, 0, and n, unless f( - n) = f(O) = 
f(n) = 0. We are not disturbed by this fact, since the convergence theorem 
for Fourier series is valid for piecewise continuous functions. Since the 
Fourier series of an odd function has an = 0, n = 0, I, 2, ... , the resulting 
series is called a sine series. We illustrate the process for obtaining half-range 
expansions with two examples. 

-r 

II 

• , ... 
,' , 

I 
I 

I 
() 

Fig. 6-8 

\ 0.. ' - .. ' ·-~-~I 

' ' .. <> ' 
' ' ' ' "'IP 

Fig. 6-9 



2. Half-Range Expansions 

EXAMPLE I. Given the function 

. {o j(x) = I 
for 0 < x < TC/2, 

for TC/2 < x < TC, 

369 

expand/in a cosine series and draw a graph of the extended function on the 
interval [ - 3TC, 3TC]. 

SOLUTION. The graph of the even function is shown in Fig. 6-10. Since/ is 
extended to be even, we have bn = 0, n = I, 2, ... , and 

21" an= - f(x)cosnxdx, 
TC o 

n = 0, I, 2, .... 

A simple calculation shows that 

2f" a0 = - dx =I 
TC n/2 

and 2f" [ 2 ]" an= - cosnxdx = -sinnx 
TC n/2 nTC n/2 

with 

! _2(-~)k-1 if n is even ! · 
ifn = 2k - I 

k =I, 2, .... 

(2k - J)TC 

Therefore 

f(x) = ! _ ~[cosx _ cos3x + cos5x _ .. ·] 
2TC I 3 5 ' 

0 < X <TC. 

REMARK. Setting x = 0 in this result, we obtain the interesting formula 

TC I I I 
4= l-3+5-7+ ···. 

(See also Problem 20 of Section I.) 

(I) 

EXAMPLE 2. Expand the function f of Example I in a sine series and draw 
a graph of the extended function on the interval [ - 3TC, 3TC]. 

SOLUTION. The graph of the odd function is shown in Fig. 6-11. We have 
an = 0, n = 0, I, 2, ... , and · 

y 

9'--c;> 9'-

• • • ' ' ' 
.i· .. 2 .. a .. Fig. 6-10 -3r -2.. -.. O 
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2Jn bn = - f(x)sinnxdx, 
7t 0 

Therefore 

I 
2 .. 

~ 
I I 

I : 

~ I • :r 
3.-

Fig. 6-11 

n= I, 2, .... 

ll7t 

(2) 

2f n [ 2 Jn bn = - sinnxdx = --cosnx 
7t n/2 ll7t n/2 

1
1_ if n is odd, 

_1__ [ ( - I )k - I] if n = 2k. 
2kn 

We conclude that 

j .( ) 2 [sin x 2 sin 2x sin 3x 0 · sin 4x sin 5x x =- ------+--+ +--
7t I 2 3 4 5 

_ 2sin6x +sin 1x + O· sin8x + .. ·] 
6 7 8 ' 

0 < x < 7t. 

REMARKS. Equation (I) shows that a cosine series may be obtained by using 
only the definition off on (0, n). The extension off as an even function is a 
mental convenience which is used to set bn = 0. The evaluation of an as in 
(I) does not use the extended function at all. Similarly, the evaluation of 
bn in a sine series shows that the extended function plays no part except 
to help us set an= 0 and to permit us to use formula (2). Of course, for both 
cosine and sine series the expansion represents the original function on the 
interval (0, n) only. 

PROBLEMS 

In each of Problems I through 8, expand each function in a cosine series on (0, ir) and 
draw the graph of the extended function on [ - 3ir, 3ir]. 

{ I for 0 < x < ir/2 
I. j(x) = 

0 for ir/2 < x < ir 

3. j(x) = sinx for 0 s;; x S:: ir 

5. j(x) = x for 0 s;; x S:: ir 

7. j(x) = x 3 for 0 s;; x s;; ir 

2. j(x) = { x 
1t-X 

forO < x < ir/2 

for ir/2 < x < ir 

4. j(x) = icosxl for 0 S:: x S:: ir 

6. j(x) = x 2 for 0 s;; x S:: ir 

8. j(x) = e"' for 0 S:: x S:: ir 

In Problems 9 through 16, expand each function in a sine series on (0, ir) and draw the 
graph of the extended function on [ - 3ir, 3ir]. 
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9. /is the function in Problem I. 

11. f(x) = cos x for 0 < x < 7t 

13. /(x) = x for 0 < x < 7t 

15. f(x) = x3 for 0 < x < 7t 

16. /(x) = e•x for 0 < x < 7t, a constant. 

IO. /is the function in Problem 2. 

12. /(x) = lcosxl for 0 < x < 7t 

14. f(x) = x 2 for 0 < x < 7t 
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17. Given the polynomial j(x) = c0 + c1x + c2x 2 + · · · + c.x•. Under what condi
tions will/be an even function? When will/be an odd function? 

3. Expansions on Other Intervals 

If f is a piecewise smooth function defined on the interval [ c - 11:, c + 11: ], 

we form the periodic extension }0 precisely as we did before. According 
to Theorem 2, the Fourier coefficients of the extended function, which 
we denote {a~} and {b~}, are given by the formulas 

lf" a~= it _,.f0 (x)cosnxdx, h~ = ~f ~/0(x)sinnxdx. (I) 

But, since }0, cosnx, and sinnx all have period 211:, we may replace the 
interval [ -11:, 11:] in (l) by any other interval of length 211:. In particular, 
we may replace [ - 11:, 11:] by the interval [ c - 11:, c + 11: ], on which/0 coincides 
withf Denoting by {a.} and {b.} the quantities 

l f'+" a.= 7t: c-n J(x)cosnxdx, 
l f c+n 

h. = n j(x)sinnxdx, 
c-n 

(2) 

we see that a. = a~ and b. = b~. The Fourier series formed with the coeffi
cients in (2) yield an expansion for /which is valid in the interval 

(c - 11:) < x < (c + 11:). 

EXAMPLE I. If j(x) = x for 0 < x < 211:, expand fin a Fourier series on the 
interval (0, 211:). Draw a graph of / 0 , the normalized periodic extension of J: 
on the interval [ - 211:, 411:]. 

SOLUTION. The graph of/0 is drawn in Fig. 6-12. We compute 

t 12
" a0 = -- xdx = 211:, 

7t 0 

'l 2
" d I [xsinnx + cosnx] 2

" 0 a.=- xcosnx x=- --- --2 - = , 
no n n n o 

112" . I [ xcosnx sinnx] 2" 2 b. = - xsmnxdx =- -·----+--2- = ---. 
11: 0 n n n 0 n 
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y 
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Therefore 

x = n _ 2 I sin nx 
n=I n 

for 0 < x < 2n. 

REMARK. Of course, we could make the computations on the interval [ -n, n] 
using the extended function/0 • However, in that case in order to perform 
the integrations, the integrals which determine {a2} and {b2} would have to 
be separated into two parts, even though the final result would be the same. 

A function f which is piecewise smooth and normalized on an interval 
[ -L, L] can be expanded in a modified Fourier series. If/isgiven on [ -L, L], 
we introduce a change of variable and define y and g(y) by the formulas 

nx 
y=L' f(x), =!( 1;) = g(y) = g(~} 

This transformation maps [ -L, L] onto [ -n, n]. We see that g is piecewise 
smooth and normalized on [ -n, n] and so can be expanded in a Fourier 
series 

-7[ < y < 7[, (3) 

with 

If" an=; -n g(y)cosnydy, If" b" =; _,, g(y)sinnydy. (4) 

Using the change of variable y = nx/L, dy = (n/L)dx, we write (4) in the 
form 

l f L . nnx an= L j(x)cosydx, 
-L 

(5) 

The series (3) becomes 

a0 ~ ( nnx . nnx) 
f(x) = 2 + n':'i an cosy+ bnsmy , -L<x<L. (6) 

The modified Fourier series (6), with formulas (5) for the coefficients, shows 
that a function/defined on any interval of finite length may be expanded in 
a Fourier series of the type we have been discussing. Hence such functions 
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y 
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as eX, 1/(1 + x 2 ), etc., have Fourier expansions on intervals of any finite 
size. However, we recall that there are some power series such as the one 
for ex which converge for - oo < x < oo. The corresponding result does 
not exist for Fourier series. There are no Fourier series which are valid 
on an infinite interval if the function is nonperiodic. The situation is not 
completely hopeless because an extension of the idea of Fourier series can 
be employed. This special representation, called the Foorier Integral, exhibits 
many properties for nonperiodic functions which Fourier series exhibit for 
periodic ones. Furthermore, the Fourier Integral is a useful tool in both 
theoretical and applied investigations of differential equations, as are Fourier 
series. 

Theorem 3, for the expansions of even and odd functions, is applicable 
to modified Fourier series on an interval (0, L). For example, a function f 
defined on (0, L) has the sine series 

2 jL . mtx 
bn = L Jo f(x)smydx. 

Half-range expansions may be carried out on any interval of length L, 
either by making a change of variable or by forming the periodic extension 
and computing all the formulas for the interval (0, L). 

EXAMPLE 2. Given 

f(x) = {
x + l 
x-l 

for -1<x<0, 

for 0 < x <I, 

expand f into a Fourier series on ( - l, l) and draw the graph of its periodic 
normalized extension on [ - 3, 3]. 

SOLUTION. The graph of the periodic extension / 0 is drawn in Fig. 6-13. 
The function/0 is odd, so all an= 0. Then 

bn = 2 { 1 
(x - l)sinmtxdx 

= 2 [-(x - l)cosmtx + sinmtx] 1 

nn n2n2 0 

2 
nn 

We obtain 
f(x)= -~ f sinnnx, 

n n=I n 
-l<x<l. 
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PROBLEMS 

In Problems I through 11, expand each function as indicated. Draw the appropriate 
extensionj0 on an interval of length three full periods. 

{ 
I for 0 < x < n, 

I. j(x) = 
- I for n < x < 2n, 

full series on [O, 2n] 

{ I for 0 < x < n/2, 
2. J(x) = 

0 for n/2 < x < 2n, 
full series on [O, 2n] 

3. j(x) = sin (x/2), full series on [O, 2n] 

4. j(x) = x - n, full series on [ n, 3n] 

{o for -2 < x < 0, 
5. j(x) = full series on [ - 2, 2] 

x for 0 :5 x < 2, 

6. j(x) = sin x, full series on [ - n/2, n/2] 

7. j(x) = I - lxj. full series on [ -1, I] 

{ 
I for 0 < x < n, 

8. J(x) = 0 
for n < x < 2n, 

cosine series on [O, 2n] 

9. j(x) = x 2 for 0 < x < 2, 

IO. j(x) = x 2 for 0 < x < I, 

sine series on [O, 2] 

cosine series on [O, I] 

11. j(x) = I - 2x for 0 < x < I, sine series on [O, I] 

12. Denote the Fourier series of a function f by the symbol F, and that of a function 
g by the symbol G. Show that if c is a constant, the Fourier series of the function 
cf is cF. If/and g are periodic with the same period, show that the Fourier series 
off+ g is F + G. 

13. By combining the series in Problems I and 2, and taking into account the results 
of Problem 12, find the Fourier series of 

f(x)={ ~ 
for 0 < x < n/2, 

for n/2 < x < n, 

for n < x < 2n, 

full series on [O, 2nJ. 

-I 

14. Combine the results of Problems 2 and 3, and take the results of Problem 12 into 
account, to get an expansion for 

. {3-2sin(x/2) forO<x<n/2, 
j(x) = 

- 2 sin (x/2) for n/2 < x < 2n, 
full series on L 0, 2n]. 

In each of Problems 15 through 18 expand the given function in a modified Fourier 
series on the interval - L < x < L. 

15. j(x) = e·'. 16. j(x) = x 3 

17. j(x) =He·' - e-x), i.e.j(x) = sinhx. 

18. j(x) = COS3 X. 
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4. Convergence Theorems. Differentiation and 
Integration of Fourier Series 

We now turn to the proof of Theorem 2, in Section I on the convergence of 
a Fourier series to the function it represents. Before repeating the statement 
of the theorem and deriving the main result, we prove four simple lemmas. 

Lemma 1. For every positive integer n and.for all x we have the identity 

sin (n + t>x _ ! f k 
2 . 1 - 2 + L,, COS X, 

sm2x k=t 
x :;60. 

PROOF. This is the type of trigonometric identity which occurs frequently in 
elementary trigonometry courses. It is sufficient to show that 

n 

sin(n + t>x = sin!x + L 2sin!xcoskx. 
k=I 

We employ the formula 

2 cos A sin B = sin (A + B) - sin (A - B), 

with A = kx, B = tx, to get 

• • 
sin!x + L 2sin!xcoskx = sin!x + L [sin(k + t>x - sin(k - ~)x]. 

k=l k=I 

All the terms on the right ''telescope" except for the last which is sin (n + t>x. 
and the result follows. 

Definition. We call the quantity 

D.(x) =sin(~~ t>x = ! + I coskx 
2sm2x 2 k=t 

the Dirichlet kernal. (It is an expression which occurs frequently in the study 
of Fourier series and plays a central role in many proofs.) Three properties 
of Dn(x) which we shall use are the following: 

i) Dn(x) is an even function of x. This fact is readily seen when we note 
that cos k x is even for every k; 

ii) for every n, we have 

(I) 

This result is obtained directly by integrating t + I::=i coskx from 0 ton. 
iii) D"(x) is periodic with period 2n. This result is evident from the formula 

defining D.(x). 

Lemma 2. For all x such that 0 < x =::;; n/2, we have 

x 7t 
I < -.- =::;; -2, 

smx 
Jordan's Inequality. 
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PROOF. We note that h(x) = xjsinx tends to 1whenx-+0 and has the value 
TC/2 when x = TC/2. If we can show that h is an increasing function in this 
interval, the result is established (Fig. 6-14). It suffices to show that h'(x) ~ 0 
on (0, TC/2). We leave this verification for the reader. 

Let f be a piecewise smooth, periodic function with period 2TC, and form 
the Fourier series 

(2) 

where 

lfn 
ak = ;r _/(t)cosktdt, (3) 

The partial sum sn(x) is the sum of the first n terms in (2). 
The next lemma establishes a basic formula for sn(x). 

Lemma 3. Ifsn(x) is the nth partial sum of the Fourier series off; and if Dn(x) 
is the Dirichlet kernel, then 

sn(x) - j(x) = .!_ fn [f(x + u) - j(x+ )]Dn(u)du 
TC Jo 
+ .!_ fn [j(x - u) - j(x-)]Dn(u)du. 

TC Jo 
PROOF. Since 

1 n 

sn(x) = 2 + k'fl (akcoskx + bksinkx), 

we may insert the formulas for ak and bk from (3). We obtain 

s"(x) = *f ~/(l>[~ +kt (cosktcoskx + sinktsinkx)J dt. 

From trigonometry we know that 

(4) 
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cos(kt - kx) = cosktcoskx + sinktsinkx, 

and so 

l f n [l n J Sn(X) = n _/(f) 2 + k~I COSk(t - X) dt. (5) 

Now, in (5), we hold x fixed and change the variable of integration to u by 
setting t = x + u. Then (5) becomes 

lfn-x [l n J 
Sn(X) = n -n-xf(X + U) 2 + k~I COSkU du. 

Since both f and the quantity in the bracket are periodic with period 2n, 
we may adjust the interval of integration to [ -n, n]. We also recognize 
the Dirichlet kernel in the bracket. Therefore 

l f n 
Sn(x) = n -n f(x + u)Dn(u) du 

= ~[f/<x + v)D"(v)dv + f f(x + u)Dn(u)du]. 

Since D"(v) is even, we may replace v by -u in the first integral on the right 
above and get 

l in sn(x) = - [/(x + u) + f(x - u)]Dn(u)du. 
1t 0 

(6) 

We have almost finished. We write f(x) in a tricky form (a simple device 
used frequently in Fourier series), 

l in f(x) = 2 · - f(x)D"(u)du, 
1t 0 

which we can do because of (I). Note that /(x) is constant so far as the 
integration is concerned. Since /(x) = ![f(x +) + f(x - ) ], we have 

l Jn f(x) = - [/(x+) + f(x-)]Dn(u)du. 
1t 0 

Subtracting this expression from (6), we obtain (4) precisely. 

Lemma 4 (Bessel's Inequality). Suppose that f is piecewise smooth and periodic 
with period 2n. Let 

a oo 

2° + k~ (akcoskx + bksinkx) (7) 

be the Fourier series off Then we have 

_Q + L (a; + bf} ::;; - f 2(x) dx, 
a2 n l Jn 
2 k~t 1t -n 

n = 1, 2, .... (8) 
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PROOF. We have the identities 

ta~= k J:,, a; f(t)dt, 

If" af = n -n atf(t)cosktdt, (9) 

bf= kf :,, btf(t)sinktdt, k =I, 2, .... 

Denoting the nth partial sum of (7) by s"(x), and recalling the orthogonality 
relations of the functions {sin nx, cosnx} on [ -n, n], we obtain the formulas 

12 lf"1 ()d 2ao = n -n 2aosn t t, 

If" af = n -n aksnCt)cosktdt, (10) 

bf= k f,, bksn(t)sinktdt; 

and these formulas are valid for every positive integer n. Adding the expres
sions for a~, af, bf and summing from I ton (first according to (9) and then 
according to (10)), we find 

n If" If" ta~+ I (af +bf)= - f(t)s"(t)dt = - s;(t)dt. 
k=I 7t -n 7t -n 

(11) 

Furthermore, we see that 

f,, [f(t) - s"(t)]2 dt = f,, j2(t)dt - 2 f :/(t)sn(t)dt + J:,, s;(t)dt 

= f / 2(t)dt - f /(t)sn(t)dt. 

The fact that Ji:,, [f(t) - s"(1)] 2 dt is nonnegative, combined with the first 
equality in ( 11 ), yields 

.!.f" f 2(t)dt -(ta~+ f. (af +bf)\ ~ 0, 
7t -n k=I '} 

which is Bessel's Inequality. 

We are ready to prove the convergence theorem of Section I, which we 
restate. 

Theorem 2. Suppose that f is piecewise smooth, normalized, and periodic ~rith 
period 2n. Then its Fourier series converges to f(x) for each x. 
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PROOF. To show that the Fourier series converges at a fixed value of x, we 
shall prove that the two integrals on the right in (4) on page 376 tend to 
zero as n tends to infinity. Writing 

T,,(x) = - [f(x - u) - f(x-)]DnCu)du, •J" 1t 0 

for the second integral in (4), we employ Lemma I to obtain 

T,,(x) = .!.f" f(x - u? ~ j(x-) sin(n + !)udu 
7t 0 2sm2u 

= .!. f" f(x - u? ~/(x-)[sinnucos!u + cosnusin!u]du. 
n J 0 2 sm 2u 

We define three functions 

f(x - u) - f(x-) 
</J(x, u) = 2 . t ' 

sm2u 

</J 1 (x, u) = </J(x, u) sin !u, </J2(x, u) = </J(x, u) cos tu. 

The functions </J, </J 1 , and </J2 are all piecewise smooth whenever f is, except 
possibly at u = 0. Applying L'Hopital's Rule to <P at u = 0, we find that 

</J(x,0+) = -f'(x-) 

and conclude that </J, </J 1 , and </J2 are piecewise continuous everywhere. 
Therefore we find that 

T"(x) = - [</J 1(x,u)cosnu + </J2(x,u)sinnu]du. If" 
1t 0 

For fixed x this expression for T,,(x) is the sum of the nth Fourier cosine and 
sine coefficient for !<Pi and !</J2 , respectively. The conditions for the Bessel 
Inequality (Lemma 4, above) apply, and we conclude that 

T,,(x)-+ 0 as n-+ oo. 

The proof for the first integral in ( 4) is identical. 

If a function f is given by a power series with a positive radius of conver
gence, we saw (in Section 12 of Chapter 3) that f possesses derivatives of 
all orders. These derivatives are obtained by differentiating the power series 
for f the appropriate number of times, and the various derived series will 
have the same radius of convergence that/does. Moreover, if F'(x) = j(x), 
then Fis represented by integrating the series for /term by term. The situa
tion is completely different in the case of Fourier series. We showed that any 
piecewise smooth function is representable by its Fourier series. Therefore 
it is intuitively clear that such a series cannot be differentiated at will. 
While it is true that if/ is piecewise smooth, thenf' is piecewise continuous, 
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we observe that if f is not continuous everywhere, then it is not necessarily 
true that 

f(/3) - f(r;.) = r f'(x)dx, 

that is, the Fundamental Theorem of Calculus does not hold. 

In general, if f is piecewise smooth but not continuous, the series obtained 
by term-by-term differentiation of the Fourier series for f does not converge 
to f'; in fact, it ordinarily does not com;erge at all. 

An example to illustrate this point is given by 

{
-1 

f(x) = l 

with the Fourier series 

for -7t<x<0, 

for 0 < x < 7t, 

. 4 (. sin3x sin5x ) 
f(x) = i smx--3-+-5-- · · · . 

The derivative series is 

4 
i(cosx - cos 3x +cos 5x - cos 7x + · · · }, 

which can be shown to diverge. 
Since integration is a "smoothing" process while differentiation is a 

"scrambling" process, we can expect the behavior for term-by-term inte
gration of Fourier series to be quite different from that for term-by-term 
differentiation. The main results in this direction are established in the 
following lemma and in the next two theorems. 

Lemma S. Suppose that f is periodic with period 21t and piecewise smooth 
on every finite interval. Then its Fourier coefficients satisfy the bounds 

n = 1, 2, ... , 

where C is a constant which depends on f but not on n. 

PROOF. If the jumps off occur at X1 , X2 , ••• , XL-I• we have 

a"= - J<t>cosntdt = - I f<t>cosntdt, 1 f" 1 L Jxi 
1t -n 1tl=I Xi-I 

where we set -7t = X0 and 7t =XL. We integrate by parts in each of the 
integrals and obtain 

I L f Xj L f(t) sin nt] xi L 1 f xi f'(t) sin nt - L f(t)cosntdt = L - I- dt. 
n i=I X;-1 i=J 1tn X1-1 i=l 1t X1-1 n 
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We use the fact that lf(x)I ~ Mand lf'(x)I ~ N to estimate the terms on 
the right. We find 

1
1 /. fxi I 2LM 2N - I f(t)cosntdt ~ -- + -. 
n ·- 1 nn n ,_ X;-1 I 

Now choose C = ~LM + 2N and the result follows. 

Theorem 4. Suppose that Fis continuous/or all x and periodic with period 2n, 
and suppose that F' is piecewise smooth. Then 

i) the series obtained by differentiating the Fourier series for F com;erges 
at each point x to -H F'(x +) + F'(x - ) ] ; 

ii) the Fourier coefficients A., B. of F satisfy the inequalities 

n =I, 2, ... , (12) 

ll'here C is a constant 1rhich depends on F but not on n; 
iii) the Fourier series for F converges uniformly to F(x)for all x. 

PROOF. Let the jumps of F'(x) occur at X0 , X1 , •.. , XL. If we define 

G(x) = [n F'(t)dt, 

we see that G(x) is continuous and that G'(x) - F'(x) = 0 on each (X;_ 1 , X;). 
By the Theorem of the Mean, the function G(x) - F(x) is constant on each 
(X;_ 1, X;), and therefore for all x, since G and Fare both continuous. Denote 
the Fourier coefficients of F' by a., b •. We have, for every positive integer n, 

lfn ILfX· A.= - F(x)cosnxdx = - I ' F(x)cosnxdx 
7t 7t . 1 

-n r= X;-1 

and, upon integration by parts, 

A _ I [f F(X;)sinnX; - F(X;_ 1)sinnX;- 1 I IX; F'( ) . d J " - ii .'-- - -··-·- n + n x sm nx x . 
1=1 Xi-I 

The terms in the first sum "telescope" except for the first and last ones, 
and the periodicity of F and sin nx cancels these two. Therefore 

A.=J...fn F'(x)sinnxdx=b". (13) 
mr 11 

-n 

Similarly, 

B =_a. 
n • 

n 
(14) 

The bounds in (12) follow from these formulas for A. and B., taken in 
conjunction with the result of Lemma 5. Since F' is piecewise smooth, its 
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series converges to F' for each x. Also, since Fis piecewise smooth, its series 
converges for each x. The bounds given by (12) allow us to use the comparison 
test and conclude that the Fourier series for F converges uniformly. From 
(13) and (14), we see that the series for F' is obtained by differentiating the 
series for F term by term. 

Theorem 5. Suppose that f is periodic with period 21t and is piecewise smooth 
on any finite interval. Suppose that 

1ta0 = f ,/(x)dx = 0, 

and define 

F(x) = rn f(t) dt. 

Then 

i) the Fourier series for Fis obtained by integrating that for f term by term, 
except for the constant term A0 which is given by 

Jfn 
A0 = -n -n xf(x)dx; 

ii) F and its Fourier coefficients satisfy the conditions of Theorem 4. 

PROOF. If Fis to be periodic, the condition a0 = 0 is required. To find A0 , 

we have (Fig. 6-15) 

If n s·' I ff Ao= n -n _/(t)dtdx = n f(t)dAXI 
H 

I f n = - 1t -n tf(t) dt, 

since J'!..nf(t)dt = 0. All other statements in the theorem follow directly 
from Theorem 4. 
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REMARK. It is interesting that Theorem 5 does not require uniform conver
gence of the derivative series F'(x) = j(x). In general, theorems involving 
term-by-term integration demand fewer hypotheses than those involving 
term-by-term differentiation. 

EXAMPLE. Use the result of Example I in Section I, which establishes the 
expansion 

f(x) = x = 2 I (-l)n-1 sinnx, 
n=I n 

-n < x < n, 

to obtain the Fourier series for F(x) = x 2 on [ -n, n]. 

SOLUTION. The periodic extension F0 of F satisfies the hypotheses of Theorem 
4, and we have 

Fo(x) = 4 I (- lt-1 sinnx. 
n=I n 

Therefore 

r ( ) _ A0 4 ~ (- l)Rcosnx 
ro x - 2 + "'- 2 ' 

n=I n 

with 

If" 2n2 
A0 = n -n F(x)dx = 3 . 

REMARK. The graph of F0 is shown in Fig. 6-16. We see that F0 is continuous 
but has a corner at each of the points (n ± 2nn, n2 ). These corners correspond 
to the jumps in the periodic extension}~ off, the graph of which is shown in 
Fig. 6-4. 

PROBLEMS 

I. If h(x) = x/(sinx), show that h'(x) ~ 0 for 0 < x s; it, thereby completing the 
proof of Lemma 2. 
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2. Using the results of the example on page 383. lind the series for./. where 

./(x) =nix - xl 
3 

on [-n,n], 

and show that 

"" I n" 
I-6::;;- . 

.,_1 II 945 

Draw the graph of/;,. 

[ A11s1rer: j(x) = 4 f ~_!_C: sinn~.J 
11= I ll 

3. Using Theorem 5, find the series for/(x) = lxl. 

[ ( n 4 cosx cos3x cos5x ) J 
A11s11·er: lxl = 2" - ~ 12 + J2 + ----s2 + · · · . 

4. Using the method and result of Problem 3, find the Fourier series for fif 

x 2 - nx 
2 

for 0::;; x::;; n. 

/(x) = . 
1-x22--: nx for - n::;; x::;; 0. 

Show that 

Draw the graph of/;» 

[ An.rn-er: j(x) = _i (sin x +sin 3x +sin 5x + .. ·) .J 
1t 1 ·1 33 53 

5. Using the result of Problem 2, find the series for 

1 2 1 
} ( (n -x) 

X) = 12 . 

Draw the graph of};» 

[ An.nrer: j(x) = 2n* + 4 I ( -1)"- ~cos nx ·] 
45 .,=1 II 

6. Find the Fourier series for /and F, given 

j(x) = Jsin xJ, -n :s;x:s; n, 

F(x)= 
J 

2r 
-(I - cosx)- ~ 

I 2,· 
(I - COSX) - ~· 

for -n::;; x::;; 0. 

for 0::;; x::;; n. 

Draw the graph of F0 . 
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7. Find the Fourier series for the function 

for -n < x < -~ - - 2' 

for-~< x < ~ 
2 - - 2' 

385 

8. Using the results of Problem 4 above and the expansion for j(x) = x, as in the 
example on page 383, find the Fourier series for the function 

1-~ for - n < x ::;; 0, 

g(x) = 

l xi 

2 
for O::;; X< 1l. 

Note that g'(x) = lxl on ( -n, n). Is the series obtained by term-by-term differentia
tion of that for g identical with that for lxl given in Problem 3 above? Explain. 

9. Given the trigonometric polynomial 

j(x) = I (ckcoskx + dksinkx). 
k=O 

Find the Fourier series of this function on ( - n, n). 

*I 0. Suppose that f possesses continuous derivatives of all orders for - oo < x < oo 
and is periodic with period 2n. What can be said about the ratios 

asn-+x, 

where a., h., are the Fourier coefficients ofj; and k is a positive integer? 

11. The Dirichlet conjugate kernel is defined by 

Show that 

n 

15.(u) = L sin ku. 
k=I 

D- ( ) = cos!u - cos(n + !)u 
n U 2 , l , sm 2u 

5. The Complex Form of Fourier Series 

We consider complex-valued functions of a real variable of the form 

f(x) = !1 (x) + if2(x), (I) 

where i = J=T and / 1 , Ji are real-valued, piecewise continuous functions 
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on an interval [a, b]. The definitions of piecewise smooth, normalized, and 
ptriodic extension carry over directly to complex-valued functions. For any 
function/ given by (I), we have 

f'(x) =fi(x) + if].(x), r f(x)dx = r f1(x)dx + i r f2(x)dx. 

The definitions of evenness, oddness, and half-range expansions for complex 
functions are the same as for real-valued functions. The theorems for com
plex functions on convergence, integration, and differentiation of series are 
all established in the same way as for real functions. 

We now introduce expansions of complex-valued functions in terms of 
certain exponential functions. There are problems for which such expansions 
are more convenient that the Fourier expansions discussed above. Using 
the formulas 

einx + e-inx 
cos nx = --2--

. -i(einx - e-inx) 
smnx= 2 , 

we obtain at once 

where 

. - an - ibn Cn---2-, 

If, in addition, we set 

. - an+ ibn c_n ___ 2_' n = l, 2, .... 

Co= ~o, 

we see that if/ is represented by the convergent Fourier series 

a "" 
j(X) = 2° + n~I (anCOSnX + bnsinnx), 

then/ is also represented by the convergent series 
00 

j(x) = Co + L (cneinx + C_ne-inx), 
n=I 

(2) 

(3) 

(4) 

(5) 

where c. and c_n are given in terms of an and hn by (2) and (3). Moreover, 
ifthe series (5) converges tof(x) with the terms grouped as indicated, then 
the series (4) does also, provided the an and hn are related to cn and c-·n by 
(2) and (3); that is, 

an= Cn + C-n• bn = i(cn - c_n). 

Formally, the series (5) can be written in the form 
00 00 00 

j(x) = L Cneinx = L Cneinx + L c_ne-inx + Co 
n= -co n=l n=I 
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but, unless the two series r~= 1 lc.I and r~=i le_.! are convergent, the re
arrangement is not always valid. 

For any complex number a, we denote its complex conjugate by iX. Two 
complex functions f and g defined on an interval [a, b] are orthogonal on 
[a,b] if 

r}gdx=O. 

We now show that the collection 

</>o = 1, 

<l>-1 = e-ix, ... ' <1>-n = e-inx, ... 

forms an orthogonal set on [ - n, n]. That is, we have 

f :n eimx(einx) dx = J_nn eilm-n)x dx 

= =0 [ 
ei(m-n)x Jn 

i(m - n) -n 

and 

if m # n, 

f n eimx. e-imx dx = f n 1. dx = 2n. 
-x -n 

Since c. =!(a. - ib.), we find for n > 0 

c. = 2~f /(x)(cosnx - isinnx)dx = 21nf /(x)e-i•xdx. 

Also, 

1 f n 1 f n . 
c_. = 27t -nf(x)(cosnx + isinnx)dx = 27t -nf(x)e'"xdx 

and 

1 Jn 1 Jn . 
Co = 2n -n f(x) dx = 2n -n j(x)e•·O·x dx. 

Therefore the formula 

ck = - j(x)e-•kx dx 1 Jn . 
2n -n 

holds for all integers k, positive, negative, or zero. 
We have established the following result. 

Theorem 6. The set 

n=O, ±1, ±2, ... , 

(6) 
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is an orthogonal set on the interval [ - n, 7t ]. If f satisfies the hypotheses of 
Theorem 2 and if the ck are given by (6), then the series (5) converges to j(x) 
for each x. Theorems 4 and 5 on the differentiation and integration of series 
remain valid. 

The effect on complex Fourier series of evenness or oddness of a function 
f is analogous to the effect in the real case. The next theorem describes the 
various possibilities. 

Theorem 7. Suppose that f satisfies the hypotheses of Theorem 2 and that the 
en are given by (6). Then 

i) f is real if' and only ij'c-n = cnfor all n; 
ii) f is even if' and only if c_" =en for all n; 

iii) f is even and real if and only if'c_n = en = en for all n; 
iv) f is odd if and only if c _n = - en for all n; 
v) f is odd and real if' and only if c_n = -en = en for all n. 

The series (5) is called the complex Foorier series off. 

EXAMPLE. Ifj(x) = x for -n < x < n, find the complex Fourier series for/. 

SOLUTION. For any integer n .P 0, we have 

en=- xe-inxdx=- ~ +--. einxdx I JK l [ -inx]K l JK 
27t -n 2n - m -n 2nm -n 

= -~(e-inn + einn) + --. ~ . l [ -inx]K 
2nm 2nm - m -n 

Since e• is periodic with period 2ni, we find 

e-inn = einn = cosnn + isinnn = (- l)n. 

Therefore 

Hence 

c = ( - ~)" = i( - on 
n -m n 

and 

x = f i(- l)neinx, 
n= -oo n 

n"O 

l f K 
c0 = 27t -n x dx = 0. 

-7t < x < 7t. 

Note that the en satisfy the conditions of Theorem 7(v) for an odd real 
function. 

PROBLEMS 

Find the complex Fourier series for each of the following functions. 

I. j(x) = x 2, - 7t < x < 7t 
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2. j(x) = }(x3 - ir 2x). -ir < x < ir 

{
-I for-ir<x<O 

3. j(x) = ,. 
I ior 0 < x < ir 

4. j(x) = JxJ for -ir < x < ir 

5. j(x) = e"". a real, -ir < x < ir 

6.j(x)=sinax, O<a< I, -n<x<n 

7. j(x) = !(e"" - e ""). 0 <a< I. -ir < x < ir 

8. j(x) =cos ax. 0 <a< I. -ir < x < ir 

9. j(x) = I +ix, -ir < x < ir 

10. j(x) = 2x + ix2 , -ir < x < ir 

11. Let/be given by its complex Fourier series. 
(a) Show that f is even if and only if c -n = c. for all n. 
(b) Show that f is odd if and only if c _. = - c. for all 11. 

(c) Show that/ is even and real if and only if c_. = c. = c. for all n. 

12. (a) Show that the derivative of an even complex-valued function is odd. 
(b) Show that the derivative of an odd complex-valued function is even. 
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CHAPTER 7 

Implicit Function Theorems. Jacobians 

I. Implicit Function Theorems 

An equation such as 

x 6 + 2y8 + 1x2y 2 - Bx+ 2y = 0 (I) 

represents a relation between x and y. A pair of numbers which satisfies this 
equation corresponds to a point in the xy-plane. Jn general, the totality of 
points in R 2 which satisfy an equation of the form 

F(x,y) = 0 (2) 

is called the graph of the equation. Jn the study of analytic geometry in the 
plane, the work with graphs consists mostly of the study of arcs or simple 
smooth curves. However, it is not at all obvious what the graph might be of 
an equation such as (l) above. Even equations which are quite simple in 
appearance sometimes have unusual graphs. For example, the equation 
x 2 + 2y2 + 9 = 0 is in the form (2) but has no graph, since the sum of 
positive quantities can never be zero. The equation (x - 1)2 + (y + 2)2 = 0 
is satisfied only when x = I, y = - 2, and the graph is a single point. The 
equation 

sinx +secy= 0, (3) 

also in the form of (2), has an interesting graph. Since I sin xi $ l and lsecyl 
~ l, the equation can hold only when sinx = l and secy= -1 or when 
sin x = - l and secy = I. The graph consists of the isolated points 

(rr./2 ± 2mrr., 7r. ± 2nrr.) 

and 
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(37t/2 ± 2m7t, ± 2n7t), m, n = 0, I, 2, ... 

as shown in Fig. 7-1. 
If a function is given explicitly, say y = j(x), then we calculate the deriva

tive according to the usual rules. However, if the function is expressed in the 
form F(x, y) = 0, for example 

x 5 + 2xy4 + 3x - 2y7 - 4 = 0, (4) 

then we must use the method of implicit differentiation to compute dy/dx. 
However, as we saw above, equation (4) may not represent y as a function 
of x, and in such cases dy/dx may not have a meaning. 

Even under the most favorable circumstances, a relation of the form 
F(x,y) = 0 may have a complicated graph, such as the one shown in Fig. 7-2. 
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Fig. 7-3 

We are interested in studying the behavior of the graph near such particular 
points as P, Q, R, or S. At each of these points, the graph has a special 
character, which we now examine. The next definition will be helpful in 
the discussion which follows. 

Definition. By the local behavior of a graph, we mean the behavior of the 
graph in a neighborhood (small disk) ofa particular point P. The term local, 
which is a technical one in mathematics, implies not only that the property 
we are describing persists no matter how small the neighborhood of P is. 
but also that it may be destroyed if a sufficiently large neighborhood is 
selected. It may also be destroyed if a different point is selected, no matter 
how close. 

For example, in Fig. 7-2 we note that the slope of the graph is positive in 
a small neighborhood of P. This property concerns the local behavior, 
in that a selection of a smaller neighborhood will not change the correctness 
of the statement, but if the neighborhood selected is sufficiently large the 
statement is false. The graph in the neighborhood of R also has a special 
character. The tangent line at R is vertical, and therefore in a neighborhood 
of R we may think of x as a function of y. However, y is not a function of x 
since. for each value x 0 ( <xR) nearby. there correspond two values of y 
(Fig. 7-3). Thus we can describe the local behavior near R by saying that x 
is a function of y but that y is not a function of x. The statement is false if 
the neighborhood is sufficiently large. At the point Q the graph intersects 
itself (Fig. 7-2) and, in a neighborhood of Q, y is not representable as a 
function of x nor is x representable as a function of y. This statement concerns 
local behavior because the selection of another point Q', no matter how 
close to Q, changes the assertion. In a small neighborhood of Q', y is repre
sentable as a function of x and x is representable as a function of y. 

If we are given a specific relation in the form 

F(x,y) = 0, (5) 

we are interested in determining when this equation gives y as a function 
of x (or x as a function of y). We may also ask when we can solve for one of 
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the variables in terms of the other. In a simple case such as 

x 2 + 3xy - 2x + Sy - 7 = 0, 

we merely use elementary algebra to get 

7 + 2x - x 2 

Y = 3x + 5 
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and y is expressed as a function of x. However, even in cases where we can 
perform the algebra, certain questions arise. The equation 

x2 Y2 
4+9- l =0 

may be solved for y to give 

y= ±h/4-x2 , 

but still y is not represented as a function of x. If we write 

/ 1 : x--+ +t,J4 - x 2 and / 2 : x--+ -t,J4 - x 2 , 

then the entire graph (an ellipse) is described by these two functions. 
Starting with the relation (5) and a point P(x0 ,y0 ) on the graph, we 

suppose that in a neighborhood of P the relation represents y as a function 
of x. In other words, we assume that the local behavior of the relation allows 
us to write (Fig. 7-4) 

Y =f(x) (6) 

for x 0 - h < x < x 0 + h, where h is some positive number. If we substitute 
(6) into (5), then 

F(x,f(x)) = 0 

is an identity for Ix - x01 < h. Assuming that all quantities are smooth, 
we may use the chain rule to get 

£.:[x,J(x)] + F,[x,J(x)] f(x) = 0. 

If F,, # 0, we obtain the formula 
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f'(x) = -;,". 
y 

(7) 

Implicit function theorems are those which state conditions under which a 
relation (5) may be put in the form (6), at least in the nieghborhood of some 
point P on the graph. These theorems also decide when the differentiation 
formula (7) is valid. Before establishing the most important implicit function 
theorems, we recall several facts which were studied earlier. The first is the 
Intermediate Value Theorem. 

Intermediate Value Theorem. Suppose that/ is continuous on an intert•al [a, b] 
and that j(a) =A, f(b) = B. If C is any number between A and B, there is 
a number c between a and b such thatf(c) = C. 

In other words, a continuous function must take on all intermediate 
values between any two values it assumes. 

A second fact, used many times but never stated as a theorem, concerns 
the local behavior of a continuous function. Briefly, if a continuous function 
is positive for some value, it must be positive for all points in some sufficiently 
small region about this value. The next theorem establishes this result for 
functions in any number of variables. 

Theorem l.Supposej(x 1 , x 2 , ••• , Xn) is continuous at a point (x?, x~ • ... , x~). 
and suppose f(x?, x~, ... , x~) > 0. Then there is a positive number h such that 
f(x 1 , x 2 , ••• , xn) is posit ire for all (x 1 , x 2 , ••• , Xn) in the neighborhood 

lx 1 - x?I < h, lx2 - x~I < h, ... , lxn - x~I < h. (8) 

PROOF. The domain (8) is an n-dimensional rectangular box (called a hyper
cube) of the type used in the definition of limit for functions of several 
variables. (See Chapter 4. page 198, for 11 = 2.) Let 

and apply the definition of continuity. For any e > 0 there is ab> 0 such 
that 

(9) 

whenever 

lx2 - x~I < c5, ••• , 

Setting c5 = h, we see that (9) is the same as 

0 =f(x?, x~ •... , x~) - e <j(x1 , x 2 , ••• , xn) <f(x?. x~ •... , x~) + e 

so long as (x 1 , x 2 , ••• , xn) is in the hypercube (8). 

A third fact we shall use in the proof of the first implicit function theorem 
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is the Fundamental Lemma on Differentiation. For functions of two vari
ables, the result is given by the formula 

F(xo + h,yo + k) - F(xo.Yo) = Fx(xo,Yo)h + F,(xo,Yo)k 

+ G1(h,k)h + G2(h,k)k, 

where G1 and G2 tend to zero ash, k tend to zero, and 

G1(0,0) = G2(0, 0) = 0. 

(See Chapter 4, page 207.) 
We now prove the first implicit function theorem. 

(IO) 

Theorem 2. Suppose that F, Fx, and F, are continuous near (x0 ,y0 ) and suppose 
that 

F(x0 ,y0 ) = 0, 

F,(xo,Yo) "# 0. 

a) Then there are two positive numbers h and k which determine a rectangle 
R about (x0 ,y0 ), 

R = {(x,y): Ix - x0 I < h, IY - Yol < k}, 

such that for each x with Ix - x0 I < h there is a unique number y with 
IY - Yol < k which satisfies the equation F(x,y) = 0. That is, y is a function 
of x, and we may write y = f(x). The domain off is 

Ix - x0 I < h 

and the range is in IY - Yol < k. 
b) The function f determined in (a) and its derivative f' are continuous for 

/x - x 0 I < h. Furthermore, 

and 

for Ix - x0 I < h. 

i;;.[x,f(x)] "# 0 

f'(x) = Fx[x,f(x)] 
F,[x,f(x)] 

PROOF. We may assume that F,(x0 ,y0 ) > O; otherwise we simply replace F 
by - F and repeat the argument. Since F, is continuous, then from Theorem I 
there must be a number k such that F,(x,y) > 0 in the square S = {(x,y): 
Ix - x0 I :s; k, /y - Yol :s; k} (Fig. 7-5). If we fix a value x in Ix - x 0 / < k, 
then F(x,y), considered as a function of y alone, has a positive slope and 
therefore is an increasing function of y in S. In particular, F(x0 ,y) is an 
increasing function of y. Since by hypothesis 

F(xo,Yo) = 0, 
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it follows that 

F(x0 ,y0 + k) > 0 and F(x0 ,y0 - k) < 0. 

We now apply Theorem 1 to each of the functions 

F(x,y0 + k) and F(x,y0 - k) 

and conclude that there is an interval Ix - x0 1 < h in which 

F(x,y0 + k) > 0 and F(x,y0 - k) < 0. 

We now return to the solution of the equation F(x,y) = 0. Fix x in the 
interval x 0 - h < x < x 0 + h and concentrate on the rectangle 

R = {(x,y): Ix - x0 I < h, IY - Yol < k}, 

as shown in Fig. 7-6. Since F(x, y) as a function of y is negative for y = y 0 - k 
and positive for y = y 0 + k then, according to the Intermediate Value 
Theorem, there is a value y such that F(x,y) = 0. Also, since F,, > 0, there 
cannot be more than one such value. The existence of the function y = f(x) 
for Ix - x0 1 <his thus established. 
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To show that.f is continuous at x0 , we must prove that for any t: > 0 

lf(x) - f(xo)I < t:, 

provided that x is sufficiently close to x0 • The values off are restricted by 
the choice of the square S-that is, by the size of k. If we select a k' smaller 
than k and go through the entire process described in the ·proof, we will 
obtain the same function ;; but it may perhaps be defined on a smaller 
interval Ix - x0 I < h'. Selecting k' = c, we see that the choice of h' = i5 in 
the definition of continuity yields the result. At any other point x 1 with 

lx 1 -x0 I < h, 

we establish the result by constructing the square S and the rectangle R 
with (x 1 ,y1) as center, where y 1 =f(x 1). 

To establish part (b), we employ the Fundamental Lemma on Differentia
tion, Eq. (IO). Writing !lf = j(x + !lx) - j(x) and noting that G1(0,0) = 
G2(0, 0) = 0, we have 

0 = F[x + !lx,j(x + !lx)] - F[x,j(x)] 

= F.[x,j(x)]!lx + ~.[x,j(x)]llf+ G,(llx,!lf)!lx + G2(llx,!lf)!lj: 

Therefore 

and 

!lf 
!lx = (II) 

Since/is continuous, !!./tends to zero as !lx does. Consequently G1 (!lx, !lf) 
and G2 (!lx,!lf) tend to zero with !lx. The left side of(! I) is the difference 
quotient off and so tends to f'(x) as the right side tends to -F.J~ .. This 
establishes part (b). Furthermore.f' is continuous because of the hypotheses 
that F_, and f;. are. 

REMARKS. (i) A geometric intepretation of the theorem is indicated in 
Fig. 7-7. The theorem states that there exists a rectangle 

lx-x0 I < h, IY-Yol<k 

such that the part of the graph of F(x,y) = 0 which is in this rectangle lies 
along an arc of the form y = j(x), where f is differentiable. Of course, the 
line x = x0 may intersect the total graph at several points, as shown in the 
figure. (ii) The theorem is purely local in that nothing is determined about 
how far the domain off can be extended. However, the result remains valid 
no matter how small a rectangle about (x0 ,Ji0 ) is selected. (iii) We have 
here an example of an existence theorem, in that the proof does not provide 
us with a method for finding the particular function/ A proof which enables 
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us to determine the actual answer either numerically or analytically is called 
a constructive proof. Constructive proofs, although more desirable than 
existence proofs, are frequently more difficult. (iv) A corresponding result 
holds if the variables are interchanged. If Fx(x0 ,y0 ) 'I: 0, then the Implicit 
Function Theorem allows us to write x = g(y), at least locally. 

EXAMPLE I. Apply Theorem 2 to the equation 

x2 y2 
9+4- l =0, 

and find the function/of the theorem whenever possible. 

SOLUTION. The graph of the equation is shown in Fig. 7-8. We see that if P 
is a point as shown, then F,, = tY > 0 and y is a function of x. In fact, 

y= +lv9-x2• 

At a point Q we have F,, < 0 and 

y = -h/9 -=-~2 . 



I. Implicit Function Theorems 

Fig. 7-9 

!I 

• 

-,,.~-+--"'~-+---+~-+-~-~r 

2 3 

399 

However, E;. = 0 at points such as Sor T, and the theorem fails. On the 
other hand, we observe that F., = ~x > 0 at S, and so we can write x = g(y) 
in a neighborhood of S. We compute easily, g(y) = iv4 - y 2 near S. 

EXAMPLE 2. Show that the entire graph of the equation 

F(x,y) = y 3 + 3x2y - x 3 + 2x + 3y = 0 

is a function which is defined for all x. 

Sou;TION. We have 

F;. = 3y2 + 3x2 + 3 > 0 for all (x,y). 

Therefore, for each x, F(x, y) is increasing in y for ally. Moreover, 

F(x,y)-+ - oo 

as y-+ - oo and F-+ + oo as y-+ + oo for each fixed x. It follows that for 
each x there is a unique y such that F(x,y) = 0. Since the hypotheses of 
Theorem 2 are satisfied at any point (x0 ,y0 ) where F(x0 ,y0 ) = 0, the function 
f determined by the theorem is defined, continuous, and differentiable for 
all x. 

EXAMPLE 3. Discuss the validity of Theorem 2 with regard to the function 

F(x,y) = x 2 - y 2 + 4x + 2y + 3 = 0. 

SOLUTION. We have F, = 2x + 4, F;. = - 2y + 2. At any point on the graph 
with y =f. I, we may solve for y as a function of x, since F;. =f. 0. Also, whenever 
x =f. -2 we may solve for x as a function of y. However, at the point ( -2, I) 
which is on the graph, we have F, = F;. = 0, and Theorem 2 fails (Fig. 7-9). 
The formula on page 394 gives 
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which is indeterminate at ( - 2. I). The point P( - 2, I) is a double point of 
the graph. 

EXAMPLE 4. Locate the points on the graph 

F(x,y) = x 3 + y 3 - 6xy = 0 

for which Theorem 2 is not applicable. 

SOLUTION. This curve is the folium of Descartes (Fig. 7-10). which was 
discussed on page 269. A simple computation yields 

F, = 3x2 - 6y, t;. = 3y2 - 6x, 

and we see that both F, and t;. vanish at the origin. which is a double point. 
We cannot obtain y as a function of x at any point where 3y2 - 6x = 0. 
Substituting x = !J2 into the equation of the curve, we find 

x = 2~4. y = 2~·2. 

This point is designated Pin Fig. 7-10. Similarly, setting F_, = 0 and solving, 
we find that we cannot express x as a function of yin a neighborhood of 
Q(2~2, 2~4). Theorem 2 is applicable at all other points on the curve. 

Theorem 2 is valid in any number of variables. and the proof introduces 
no new difficulties. We state the result for reference. 

Theorem 2'. Suppose that F(x t, x 2 , ••• , x., y) and t;. are continuous near the 
point (x~, x~, ... , x~. y 0 ); suppose also that.for i =I, 2 ..... n, each F,,i is 
continuous near (x~, x~, ... , x~, y0 ). Let 

t;.(x~, x~, ... , x~, Yo)"# 0. 

Then there are positive numbers h and k such that 

a) for each (xt, x2 • ••• , x.) in the h}percube Ix; - x?I < h, i =I, 2, ... , n, 
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there is a unique number y with IY - Yol < k satisfying F(x 1 , x 2 , ••• , Xn, y) 
=0; 

b) if we define f byj(x 1, x 2 , ••• , x") = y, thenfand al/first derivatives!~;• 
i = I, 2, ... , n are continuous and 

J;.[x 1 , X2, ... , Xn,f(x 1, X2, •.. , Xn)] of: 0, 

£,,.[X1, X2, ... , Xn,f(x 1, X2, ... , Xn)] 
I i = I, 2, ... , n, 

for Ix - x;I < h, i = I, 2, ... , n. 

EXAMPLE 5. Using Theorem 2', can we conclude that the part of the graph 
of the equation 

F(x,y,z) = 3x2 + 2y2 + z2 + 2xy + 2xz + 2yz - 9 = 0 

within some box Ix - 21 < h, IY + I I < h, lz + I I < k lies along a surface 
z = j(x,y) in whichfisdefined and differentiable for all x, y with Ix - 21 < h 
and 1.r + I I < h? Solve for z in terms of x and y and discuss. 

SOLUTION. Here x0 = 2, y 0 = -1, z0 = -1. [In Theorem 2' we have 
(x 1 ,x2 ,J.') instead of (x,y,z).] Then F, = 2z + 2x + 2y, F,(2, - I, -1) = 0. 
Consequently, the hypotheses of the theorem are not satisfied. Solving for z, 
we obtain 

z2 + 2(x + y)z + (3x2 + 2y2 + 2xy - 9) = 0, 

z = -(x + y) ± ...;9 :__ 2x2 - y 2 • 

The domain of the two functions in ( 12) is the elliptical region 

{(x,y): 0 :s; 2x2 + y 2 :s; 9}, 

(12) 

and we note that the point (2, -1) is on the boundary of this region. Thus 
there is no box satisfying the conditions. From our knowledge of analytic 
geometry we also observe that the plane tangent to the surface 

F(x,y,z) = 0 

at (2, - I, -1) is parallel to the z axis. 

PROBLEMS 

In each of Problems I through 10, use Theorem 2 to show that the equation F(x,y) = 0 
may be represented in the form y = j(x) in a neighborhood of the given point (x0 ,y0). 

Draw a graph and computef'(x0 ) in each case 

I. F(x,y) = x + y + xsiny = O; (x0 ,y0 ) = (0,0) 

2. F(x,y) = y 2 - 2xy + Sx2 - 16 = 0; (x0 ,y0 ) =(I, I - 2v'J) 

3. F(x,y) = y 3 + y - x 2 = O; (x0 ,y0 ) = (0,0) 
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4. F(x,y) = xe'· - )' + I = 0; (x0 ,y0 ) = (-1,0) 

5. F(x,y) = x 213 + y 213 - 4 = O; (x0 ,y0 ) =(I, 3v 3) 

6. F(x,y) = (x2 + y 2) 2 - 8(x2 - y 2) = O; (x0 ,y0 ) = (.j3, I) 

7. F(x,y) = xy + log(xy) - I = 0; (x0 ,y0 ) =(I, I) 

8. F(x,y) = xcosxy = 0; (x0 ,y0 ) = (l,x/2) 

9. F(x,y) = x 5 + y 5 + xy + 4 = 0; (x0 ,y0 ) = (2, -2) 

10. F(x,y) = 2 sin x +cosy - I = 0; (x0 ,y0 ) = (n/6, 3n/2) 

In each of Problems 11through16, use Theorem 2' to show thattheequation F(x,y, z) = 
0 may be represented in the form z = f(x,y) in a neighborhood of the given point 
(x0 ,.Jlo,Z0 ). Find.fx(x0 ,y0 ) andj~(x0 ,y0). 

II. F(x,y,z)::x3 +y3 +z3 -3xyz-4=0; (x0 ,Yo,Z0)=(1,l,2) 

12. F(x,y,z) = X4 + y4 + z4 - 18 = 0; (x0 ,y0 ,z0 ) =(I, 1,2) 

13. F(x,y,z) = e= - z2 - x2 - y 2 = O; (X0 ,)•0 ,z0 ) = (1,0,0) 

14. F(x,y,z) = z3 - z - xysinz = 0; (x0 ,y0 ,z0 ) = (0,0,0) 

15. F(x,y,z) = x + y + z + cosxyz = O; (x0 ,y0 ,z0 ) = (0,0, -1) 

16. F(x,y,z) = x + )' + z - exy: = 0; (Xo,)'o,Zo) = (0, L n 
17. Do there exist numbers h > 0 and k > 0 such that all the points satisfyingy2 - x 3 = 

0 and lxl < h, IYI < k 
a) lie along an arc y = j(x) wherej(x) is defined and smooth for all x with lxl < h'? 
b) lie along an arc x = g(y) where g has the same properties for IYI < k? 

In Problems 18 through 24, in each case plot and discuss the entire graph, indicate the 
different functions defined implicitly by the equation, and find any points on the graph 
where F1(x0 , y0 ) = 0. At any such points check to see whether ]C.(x0 ,y0 ) = 0. 

18. F(x,y) = (x - 3)4 - (y + 2)2 = O 

19. F(x,y) = xe'· - 2y + 2 = 0 

20. F(x,y):: 2x2 + y 2 - x 3 = 0 

21. F(x,y) = y 3 + x 2y - x 2 = 0 

22. F(x,y) = y 3 - 3y - x 2 = 0 

23. F(x,y) = (x2 + y 2) 2 - 8(x2 - y 2) = 0 (lemniscate) 

24. F(x,y) = e2xr - log[l/(I + y 2)] = 0 

In Problems 25 and 26, show that F:(x0 ,y0 , z0 ) = 0 and determine whether or not it 
is possible to express z as a function of x and y in a neighborhood of (x0 , y 0 , z0 ). Does 
the same situation prevail when y and z are interchanged; i.e., can we solve for yin 
terms of x and z in a neighborhood of(x0 ,y0 ,z0)? 
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25. F(x,y,z) = 5x2 + 3y2 + z2 - 4xy- 4xz + 2yz - 9 = O; 
(x0 ,y0 ,z0 ) = (-1,2, -4) 

26. F(x,y,z) = 2x2 + 3y2 + z2 + 4xy + 2xz + 4yz - 7 = O; 
(x0 ,y0 , z0 ) = (4, - 3, 2) 

27. Write out the proof of part (a) of Theorem 2'. 

28. Write out the proof of part (b) of Theorem 2'. 
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29. Find an example of a relation F(x,y, z) = 0 such that F,.(x0 ,y0 , z0) = F,(x0 ,y0 , z0) 

= F,(x0 ,y0 ,z0 ) = 0, and yet we are able to solve for z in terms of x and yin a 
neighborhood of(x0 ,y0 ,z0). 

30. Repeat Problem 29, for a relation F(x 1> Xi. ... , x.,y) = 0. 

2. Implicit Function Theorems for Systems 

Suppose we have the system of two equations 

x 2 + 2xy - 3xu + 4yv = 0, 

4xy + x 3u- 8yv + 2 = 0 
(I) 

in the four variables x, y, u, and v. It is possible in this case to express u and 
v as functions of x and y. Solving the first equation for u, we get 

x 2 + 2xy + 4yv (2) 
U= 3x • 

and we label this equation u = <f>(x,y, v). Next we substitute u from (2) into 
the second equation in (l) to obtain 

( x 2 + 2xy + 4yv) 4xy + x 3 3x - 8yv + 2 = 0. 

This last equation may be solved for v in terms of x and y. The result is 
(after a little algebra) 

v-x4 +2x3y+l2xy+6 (3) 
- 24y - 4x2y 

We now substitute v from (3) into (2) and find 

u _ (x 2 + 2xy)(6y - x 2) + (x4 + 2x3 y + 12xy + 6)y (4) 
- 3x(6y-x2 ) ' 

which expresses u as a function of x and y. In other words, starting with the 
system (l), we obtain a system u = f(x,y) and v = g(x,y) which, in this 
particular case, consists of the equations (4) and (3). 

Suppose that we have a general system of two equations in four unknowns 
which we write 



404 7. Implicit Function Theorems. Jacobians 

F(x,y,u, v) = 0 and G(x, y, u, v) = 0. (5) 

Proceeding in the most elementary manner, as in the example above, we 
imagine that we can solve the equation F = 0 for u in terms of x, y, and v. 
We write this solution 

u = <f>(x,y, v). 

Then, substituting this value of u in the equation G = 0, we get a single 
equation involving x, y, and t' only. According to the Implicit Function 
Theorem (which we suppose it is possible to use), we extract from the relation 
connecting x, y, and van explicit function 

v = g(x,y). 

Now, continuing to parallel the method of the above example, we substitute 
for v into </> to obtain 

u = <f>[x,y,g(x,y)], 

which we write 

u =f(x,y). 

In this way, we have expressed u in terms of x and y, and we have expressed 
v in terms of x and y. We observe that all these results are local in character, 
and thus the equations 

u =f(x,y) and v = g(x,y) (6) 

are valid only in the neighborhood of some point. 
Taking (6) into account, we can now write the equations F = 0 and 

G = 0 in the form 

F[x,y,j(x,y),g(x,y)] = 0, G[x,y,f(x,y),g(x,y)] = 0. (7) 

Assuming that all functions are smooth and that all operations of differentia
tion are legitimate, we apply the chain rule in (5) to compute partial deriva
tives with respect to x. The result is (since x and y are the independent 
variables and u and v are the dependent variables) 

and (8) 

In (8) we treat ux and vx as unknowns and the remaining quantities as known. 
Then the formula for solving two equations in two unknowns gives 

u = x 

IF,, f"x I 
G. Gx 

vx = - I F,, F., 1 · 

G. G. 

(9) 

provided that the denominator F,,G. - F.,G. is not zero. The derivatives u,, 
and v,, are obtained by differentiating the equations in (5) with respect toy. 
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The above development paid no attention either to the feasibility of 
carrying out the process or to the legitimacy of the various steps. At this 
time we are more interested in determining when the process leading to 
equations (6) and (9) is possible than we are in deciding when the actual steps 
can be performed, either analytically or numerically. The next theorem 
shows the circumstances under which all the various steps are mathematically 
correct. 

Theorem JA. Suppose that F(x,y, u, v) and G(x,y, u, v) are continuous and 
have continuous first derivatives near a point (x0 ,y0 , u0 , v0 ). Also, suppose that 

and 

~- "#. 
- I Fu(Xo,Yo,Uo,Vo) £.:(Xo,Yo•Uo,Vo)I 0 

Gu(Xo,J'o, Uo, Vo) G,.(Xo,Yo• Uo, Vo) 

Then there are positive numbers h, k 1 , and k 2 such that 

a) for each (x,y) ~rith Ix - x0 I < h, IY - Yol < h, there is a unique solution 
(u, v) of the equations 

F(x, y, u, v) = 0, G(x,y, u, v) = 0 

with lu - u0 1<k1 and Iv - v01 < k 2 • We denote these solutions 

u = j(x,y), v = g(x,y). 

b) Thefunctionsfand g are continuous with continuous first derivatives, and 
the following formulas hold: 

. I If. f,=-DG 
x 

F,.,. 
G,. 

I Ir;, gx = - D Gu F:. I Gx' 

. I IFy 
.Ir= - D Gr F,.,. 

G,. gy = - ~l~u Fy I 
G' y 

where D = F,,G,. - F,.Gu. 

PR,OOf. The proof consists of successive applications of the Implicit Function 
Theorem of Section I. In this way the original formal description of the ap
propriate steps required for the elimination process can be made legitimate. 
Since D0 "# 0, it follows that Gu and G,. cannot both be zero at (x0 , y0 , u0 , v0 ). 

Suppose that G,, "# 0; the proof is similar if Gu "# 0. Then, from Theorem 2', 
we conclude that there are numbers m and r such that the entire portion of 
the graph of G(x,y, u, v) = 0, for which 

Ix - xol < m, IY - Yol < m, 

lu - u0 I < m, and Jv - v0I < r 
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may be represented in the form 

i- = H(x,y,u), 

where H is continuous and differentiable; moreover 

H( . )- G,.[x,y,u,H(x,y,u)] 
u X,), U - - [ ] • 

G,. x,y,u, H(x,y, u) 
(10) 

(hi applying Theorem 2', we replace h by m, k by r, (x 1, x 2 , x 3) by (x,y, u), 
and the variable y by the variable v. We also use the label H instead of/for 
the explicitly obtained function.) 

Now we define 

K(x,y,u) = F[x,y,u,H(x,y,u)]; 

the function K is defined for the cube 

lx-x0 l<m', l.r - Yol < m', lu -u0 I < m', 

(11) 

for some m' with 0 < m' ~ m. Using the Chain rule to differentiate (11) with 
respect to u, we find that 

K. = f~ + F,.H. = F,, + F,. (-~:} 
in which ( 10) has been used. Using the values at the point P0 (x0 , Yo, u0 , v0 ), 

we have 

K ( . ) _ F,,G,. - F,.G. _ D0 ..... O 
"Xo,)o,Uo - ---r . 

G,.(xo, Yo· Uo, t:o) G,.(Po) 
(12) 

Because of (12), we can apply the Implicit Function Theorem to the equa
tion K(x,y, u) = 0. We conclude that there are positive numbers m" and 
r" with m" ~ m', r" ~ m' such that the part of the graph of K(x, y, u) = 0, 
for which 

Ix -x0 I < m", IY-Yol < m" and lu - u0 I < r" 

is representable in the form 

u =f(x,y), with Ix - x0 1 < m", IY-Yol < m". 

Furthermore,fand its first derivatives are continuous. Ifwe now define 

v = g(x,y) = H[x,y,j(x,y)] for lx-x0 I < m", IY-Yol<m", 

we see that g and its first derivatives are continuous. 
The validity of the formulas for f~ . ... , g)' follows at once from the Chain 

rule, as described at the beginning of the section. 
Theorem 3A may be generalized to a pair of functions in any number of 

variables. If we are given 

F(x 1 ,x2 , ••• ,x.,u,i-) = 0, G(x 1,x2 , .•• ,x.,u,v) = 0, 
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and a point on the graph of F and G at which 

I F,,(x?, x~, ... , x~, u0 , i·0 ) F,.(x?, x~, ... , x~, u0 , v0 ) I 
Do = . o o o o o) G o o o o o) ;e 0, G,,(x I • x 2 •..•• xn. u • i· ,.(x I • x 2 •.•• , xn. u • v 

then, under hypotheses analogous to those given in the above theorem, we 
may solve for u and r, obtaining 

u =f(x 1,x2 , ••• ,xn), i· = g(x 1,x2 , ••• ,x") (13) 

in a neighborhood of (x?, x~, ... , x~, u0 , i·0 ). Furthermore, 

IF,i F, I 
. _ G_,; G,. 

f,; - - IF,, F, 1·. 
G,, G,. 

IF,, F,.I 
G,, G.:; 

Yx;= -IF,, F,.1 · 
G,, G, 

EXAMPLE I. Show that the graph of the equations 

F(x,y,u,i.;) = x 2 - y 2 - u3 + r 2 + 4 = 0, 

G(x,y,u, r) = 2xy + y 2 - 2u2 + 3r-1 + 8 = 0, 

(14) 

is representable in the form u = j(x, y), v = g(x, y) in a neighborhood of the 
point 

P0 = {(x,y,u, r): x = 2,y = -1, u = 2, v = I}. 

Find the derivatives ux, u>"' vx• v}. at P0 • 

SOLUTION. We have 

F,, = -3u2 , F,. = 2v, G,, = -4u, G .. = 12v3 , 

F_, = 2x, £.,. = -2y, Gx = 2y, GY = 2x + 2y. 

At the point in question, we find 

D0 = F,,G,. - F,.G11 lp0 = -128. 

Since F and G are polynomial expressions (and hence smooth), and since 
D0 ;e 0, Theorem 3A is applicable. We conclude that u and rare expressible 
as functions of x and y. A computation yields 

7 
r_, = 16' 

EXAMPLE 2. Show that there is a box of the form Ix - 1 I < h, IY + I I < k, 
I= - 21 < k (hand k > 0) such that the part of the graph of the equations 

z - 2x - 2y - 2 = 0 and ;; - x 2 - y 2 = 0 

in that box lies along the curve determined by a pair of equations of the form 
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y = f(x) and z = g(x). Show that the functions f; g,f', g' are continuous for 
Ix - I I < h. Also, find/and g explicitly. Does a similar box exist about the 
point (-1, I, 2)? 

SOLUTION. Let F(x,y,z) = z - 2x - 2y - 2, G(x,y,z) = z - x 2 - y 2 • Then 
the Implicit Function Theorem for a general pair of equations is applicable 
with x 1 = x, u = y, v = z. Since 

F,, = -2, F, =I, G,.= -2y, G, =I, 

at the point (I, -1, 2), we have 

F, =I, G, =I, 

and 

F,,G .. - F,_.G" = FyG, - F,G, = -4 =!= 0. 

Therefore such a box exists. To find the explicit functions, we substitute z 
from F = 0 into G = 0 and find 

z = 2x + 2y + 2, x 2 + y 2 - 2x - 2y - 2 = 0 

or 

z = 2x + 2y + 2, (x - 1)2 + (y - 1)2 = 4. 

Therefore 

y = I ± v' 4 - (x - 1)2 

and 

z = 2x + 2y + 2 for Ix - I I :::;; 2. 

Since y = - I when x = I, we must take the branch I - ..j4 - (x - 1)2 • 

Hence 

f(x) = I - v'4 - (x - 1)2 , 

g(x) = 2x + 4 - 2,/4 - (x - 1)2 

for Ix - I I :::;; 2.;;. - I :::;; x:::;; 3. There is no box about the point ( -1, I, 2), 
since x can never fall below - I anywhere on the graph. 

The implicit function theorems may be extended to cover the situation 
where we have any number of variables and any number of equations, so 
long as there are fewer equations than variables. The next theorem, which 
states the result in full generality, may be established by using an induction 
argument, of which Theorem 3A is the first step in the inductive process. We 
omit the proof. 

Theorem 3. Suppose that F1 , F2 , ••• , F;,. are functions of then+ k variables 
x 1 , x 2 , ••• , xn, u 1 , u2 , ••• , uk, and suppose that each F; and all its first deriva
tives are continuous in a neighborhood of a point 
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The k equations 

i = 1,2, ... ,k, 

are assumed to hold, and we suppose the determinant 

iJF1 iJF1 iJF1 
OU1 OU2 iJuk 

iJF2 iJF2 iJF2 
D= OU1 OU2 iJuk (15) 

iJfk iJfk iJfk 
OU1 OU2 auk 

evaluated at the point P0 is different from zero. Then there are numbers hand 
r such that: 

a) for each (x 1 , x 2 , ••• , xn) in the hypercube 

lxi -x?I < h, i = 1,2, ... ,n, 

there is a unique solution (u 1, u2, ... , uk) of the equations 

i = l, 2, ... ,k, 

for which lui - uJI < r,j = l, 2, ... ,k. The solution is defined by 

Uj=Jj(X 1,X2, ... ,Xn). }= 1,2, .. . ,k. 

b) The junctions Jj and all their first derivatives are continuous and the deter
minant D does not vanish for points Pin the hypercube described in (a). The 
derivatives iJJj/iJxk are obtained by applying Cramer's Rule for solving a 
linear system of equations to each of then systems 

± iJF; !h + iJF; = 0, i = 1,2, ... ,k, (16) 
i= 1iJuiiJxP iJxP p= l,2, ... ,n. 

The determinant in (15) is called a Jacobian determinant or, simply, a 
Jacobian. Customary notations for the one in (15) are 

and 

EXAMPLE 3. Given the three equations 

o(F1, F2 • ... , fk) 
O(U 1' U2, ... , Uk). 

xi+ 2x~ - 3ui + 4u 1u2 - u~ + u~ = 0, 

x 1 + 3x2 - 4x 1x 2 + 4uf - 2u~ + u~ = 0, 

x~ - x~ t 4ui + 2u2 - 3u~ = 0, 
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assume that the conditions of Theorem 3 are valid, and use (16) to compute 
ou1/ox 1 , ou2/ox 1 , ou3 /ox 1 • 

SOLUTION. Differentiating each of the above equations implicitly with 
respect to u 1 , we find 

(-6u 1 +4u2)~u, +(4u 1 -2u2)~u2 +3u~~u3 +2x 1 =0, 
ux, ux, ux, 

8 ou, 4 OU2 2 OU3 
u 1 ~- u2~+ u3 ~+l-4x2 =0, 

ux, ux, ux, 

This linear system of three equations in the three unknowns ou 1/ox 1 , 

ou2/ox 1 , ou3/ox 1 , is easily solved by Cramer's Rule. The details are left to 
the reader. 

PROBLEMS 

In Problems 1 through 6, use Theorem 3 to verify that there is a box 

Ix -x0I < h, IY- Yol < k, lz- z0 I < k 

such that all the points (x,y,z) in that box which satisfy 

F(x,y,z) = 0 and G(x,y,z) = 0 

lie on the graph of equations of the form y = j(x), z = g(x), where f and g are smooth 
for Ix - x0 I < h. In Problems I and 2, find in symmetric form the equations of the 
line. In Problems 3 through 6, find in symmetric form the equations of the tangent 
line at (x0 ,y0 ,z0 ). Let P0 denote (x0 ,Yo,z0 ). 

I. F(x,y,z)=2x+y-z-2, G(x,y,z)=x+2y+z- I, P0 =(2,-l,l). 

2. F=3x+2y-z-8, G=x+y+2z-I, P0 =(1,2,-l). 

3. F=x2 +2y2 -z2 -2, G=2x-y+z- l, P0 =(2,l,-2). 

4. F=2x2 +y2 -z2 +3, G=3x+2y+z-IO, P0 =(1,2,3). 

S. F=x3 +y3 +z3 -3xyz-14, G=x2 +y2 +z2 -6, P0 =(2,-l,l). 

6. F=x2 -xy+2y2 -4xz+2z2 -10, G=xyz-6, P0 =(2,3,l). 

In Problems 7 through 10, show that there is a box 

Jx - x0 J < h, JY-YoJ < h, Ju- u0 J < k, Jv - v0 J < k 

such that all the points (x,y, u, v) in that box which satisfy the equations 

F(x,y, u, v) = 0 and G(x,y, u, v) = 0 

lie along the graph of the equations u = f(x, y), v = g(x, y), where f and g are smooth 
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for Ix - x0 I <hand IY-Yol < h. Find the values offx,J,, g", and g, at (x0 ,y0 ). Let 
P0 denote (x0 ,y0 , u0 , Vo). 

7. F = 2x - 3y + u - v, G = x + 2y + u + 2v, P0 = (0, 0, 0, 0). 

8. F = 2x - y + 2u - v, G = 3x + 2y + u + v, P0 = (0, 0, 0, 0). 

9. F=x-2y+u+v-8. G=x2 -2y2 -u2 +v2 -4, P0 =(3,-l,2,I). 

10. F= x 2 - y 2 + uv - v2 + 3, G = x + y 2 + u2 + uv - 2, P0 = (2, 1, -1,2). 

11. Show that there is a box as in Problems 1 through 6 about each point, except (2, 
- 3, 6) and ( - 10, - I 5, 30) of the graph of 

z2 - ~x2 - 2y2 = 0 and x +Y +z- S =0. 

Solve explicitly for y and z in terms of x. 

12. For what values of (x0 ,y0 ,u0 , v0 ) does there exist a box as in Problems 7 through 
10 if 

F = - x + u2 - v2 , G= -y+ 2uv? 

Find explicit functionsf(x,y) and g(x,y) which are smooth near 

Xo = 3, Yo= -4 

and which are such that 

and 

13. Complete Example 3 and determine au.fox., OU2/0X I• OU3/0X1. 
I I 

14. For the equations in Example 3, determine 

IS. Given that 

u =f(x,y), 

v = g(x,y), 

x = c/J(s,t), 

y = t/l(s,t), 

show, by using the Chain rule for partial derivatives that 

J (u, v) . J (x, y) = J ("· v). 
X, )" S, I S, I 

16. Given that 

u5 + i·5 + x 5 + 2y = 0, u3 + v3 + y3 + 2x = 0, 

find, under the appropriate hypotheses. the quantities u", u~, u"". 

17. Given that 

F(x,y,u, v) = 0, G(x,y, u, v) = O. 

and that the hypotheses of Theorem 3 are satisfied. State conditions under which 
the relation 
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Fig. 7-11 

OU oy ov cy 
--+--=0 
ox ou ox ov 

18. State and prove an extension of Theorem 3A to a system of three equations F(x 1 , 

x2,x3,u1,u2,u3) = 0, G(x1,x2,x3,u.,u2,u3) = 0, H(x 1,x2,x3,u1,u2,u3) = 0. 

19. Extend the result of Problem 15 to show that 

1 (u., ... ,uk)·J(x1, ... ,xk)=J(u1, ... ,uk) 
X 1, •.• ,Xk 11, ... ,lk 11, ... ,lk 

3. Transformations and Jacobians 

Let M and N be two nonempty sets. A relation from M to N is a set of 
ordered pairs (P, Q) in which Pe M and Q e N. The domain of the relation 
consists of all the elements P which occur in any of the pairs, and its range 
consists of all the elements Q which occur (Fig. 7-11). If the relation is such 
that no two of the pairs have the same first element, the relation is called a 
transformation. We shall use capital letters such as T, U, V to denote trans
formations. For example, a function of any number of variables, say 3, is a 
particular case of a transformation in which the domain Mis a set of ordered 
number triples (i.e., a set in R3 ) and the range N is in R1• However, trans
formations are more general in that we allow M and N to be arbitrary sets. 

If T is a transformation and P is in its domain, we denote the unique 
corresponding element Q by T(P) and call Q the image of P under T; we 
also often say that "T carries Pinto Q (or T(P))." If Eis a subset of the 
domain of T, we call the totality of images T(P) of points P in Ethe image 
of £under Tand denote it by T(E) (Fig. 7-12). 

ff U is a relation (which may, in particular, be a transformation) from 
M to N, we often write 

U:M--+N. 

The inverse relation of a given relation U : M --+ N is defined as the set 



3. Transformations and Jacobians 413 

M 

Fig. 7-12 Fig. 7-13 

of all pairs (Q, P) for which the pair (P, Q)e U. We denote the inverse of 
U by u- 1• As in the case of functions on R1, the inverse of a transforma
tion is not necessarily a transformation. If the transformation U is l- l 
(Fig. 7-l l(c))-that is, if no two pairs have the same second element (as 
well as not having the same first element),-then u- 1 is also a transforma
tion. If U is any relation, (U- 1)- 1 = U and the domain of u- 1 is the range 
of U and the range of u- 1 is the domain of U. If U is one-to-one and U 
carries Pinto Q, then u- 1 carries Q back into P (Fig. 7-13). 

In linear algebra we study linear transformations almost exclusively. 
However, many of the transformations we studied in elementary calculus 
are nonlinear. For example, the transformation from rectangular to polar 
coordinates in the plane 

r = ...;x2 + y2, 0 = arctan( 
x 

is a nonlinear transformation. Similarly, the transformations from rectangu
lar to cylindrical coordinates and from rectangular to spherical coordinates 
are nonlinear. Also, it is frequently helpful to make nonlinear changes of vari
ables in both single and multiple integrals. In this section we shall establish 
some general properties of nonlinear transformations and later we shall show 
how these results may be applied in the study of multiple integration. 

Let D be a domain in the xy plane and Ta transformation from D to a 
set of elements in another plane, which we denote the uv plane. We write 

T: u = j(x,y), v = g(x,y), (x,y) in D. 

Definition. We say that the transformation Tis continuously differentiable 
in D ifand only if/and g are continuous and the first derivatives off and g 
are continuous throughout D. 

If Tis a transformation from a domain inn dimensional space ton dimen
sional space, we write 

Un =J~(X1,X2 , ... ,Xn). 

Just as the inverse relation of a function need not be a function, so the 
inverse relation of a transformation need not be a transformation. The in-
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verse of a transformation.Tis also a transformation if and only if T establishes 
a one-to-one relation between its domain and its range. That is, if for each 
element Q in the range of T, there is only one P in its domain such that 
T(P) = Q, then T has an inverse, and we denote this inverse transformation 
by T-1• 

The implicit function theorems are the basis for the following inversion 
theorem for transformations. 

Theorem 4 (Inverse Transformation Theorem). Suppose 

is a continuously differentiable transformation for (x 1 , x 2) interior to D. Let 
P0 = (x?, x~) be a point in D and let Q0 = (u?, u~) be the image of P0 under 
T. We define J0 , the Jacobian 

J(F1 ,F2) 
X1,X2 

evaluated at P0 , and we suppose that 

Jo oF 0. (2) 

Then there exist positive numbers h and k such that whenever Q = (u 1 , u2) is 
within h of(u?, u~). that is lu1 - u?I < h, lu2 - u~I < h, there is one and only 
one point P which satisfies T(P) = Q with lx1 - x?I < k, lx2 - x~I < k. If 
we denote the inverse transformation by 

then f 1 and f 2 are continuously differentiable for all Q for which 

PROOF. Ifwe rewrite equations (I) in the form 

F(u.,u2,x1 ,x2) = u 1 - F1(x 1 ,x2) = 0, 

G(u 1 , u2, x 1 ,x2) = u2 - F2(x 1 ,x2) = 0, 

(3) 

and assume now that u 1 , u2 , x 1, x 2 are independent variables, we see that for 
F and Gall the conditions of Theorem 3 are fulfilled. Therefore we may solve 
for x 1 and x2 in terms of u1 and u2 , which is statement (3) precisely. The 
condition J0 oF 0 is identical with the condition D0 oF 0 in Theorem 3. 

REMARKS. (i) A schematic diagram ofTheorem 4 is shown in Fig. 7-14. The 
transformation T takes the domain D into some region E in the u 1u2-plane. 
The inverse mapping is defined in a square of side 2h about Q0 • 

ii) Theorem 4 may be extended to n equations of the form 

i = I, 2, ... ,n. 

The Inverse Transformation Theorem states that we may solve (at least 
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X2 

i 
i 

I 

I tG 
-1J~--1---2_k_--1 _____ ~·1 

J) 

-·----·--··---- _______ __., Ul 

(a) (b) 

Fig. 7-14 

Xz 

(a) (b) 

Fig. 7-15 

locally) for each X; and obtain 

X; = fi(u 1 , u2 , ••• , u.). i = 1,2, ... ,n, 

with the Ji continuously differentiable. 
iii) We define T1 to be the transformation T restricted to those points Pin 
the square lxi - x?I < k, i = l, 2 which correspond to points Q lying in the 
image square defined by ju; - u?I < h, i = 1,2. Then T1 is one to one, and 
its inverse T1- 1 is just the transformation x; = fi(u 1 , u2), i = I, 2. (See Fig. 
7-15.) 
iv) The theorem says nothing about the sizes of hand k, and extreme caution 
must be used in the applications. It may happen that all other hypotheses of 
the theorem are satisfied, but if h and k are not taken sufficiently small the 
inversion from (I) to (3) may not be possible. [See part (d) of the examples 
below.] 
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v) The theorem fails, and we have no information when the Jacobian van
ishes. Actually, if J0 = 0 anything can happen, and we exhibit this fact with 
the following four illustrative examples. 

a) The transformation 

u = x 3 , v =y 

is one to one for all (x,y) in R 2 , since the inversion formulas are functions 
given by 

x = ~,.-u, y= v. 

However, the Jacobian 

1(u,r) = 3x2 
x,y 

vanishes along the entire y-axis. 
b) The transformation u = x 2 , v = y is not one to one for all (x,y) in R 2 , 

since for any a#: 0 we have (a,b) and (-a,h) transforming into (a 2 ,b). 
However, the Jacobian 

1(u,v) = 2x 
x,y 

vanishes along the entire y-axis, exactly as in Example (a) above, which is 
one to one. 
c) The transformation 

u = x2 -y2, V= 2xy (4) 

has Jacobian 

J -'- = 4(x2 + y2), ( u v) 
x,y 

which vanishes only at the origin. Setting w = u + iv and z = x + iy, we 
see that 

u + iv = w = z2 = (x + iy) 2 = x 2 - y 2 + 2ixy, 

and so the transformation (4) is the same as the complex variable trans
formation 

Therefore, to each w #: 0 there correspond two numbers z such that 
w = z 2 and the transformation is not one to one in the plane. 
d) In Example (c) we select for domain D the annular ring between the 
circles x 2 + y 2 = I and x 2 + y 2 = 9. Then the Jacobian of (4) never 
vanishes in D. Yet the transformation is not one to one in D. [That is, 
(2, 0) and ( - 2, 0) both map into ( 4, 0).] This example shows that the size 
of hand k must be suitably small before the theorem is valid. The theorem 
states that the transformation (4) is one to one in any sufficiently small 
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4 

rectangle in the annular ring. Actually, it is one to one within any rectangle 
whose interior is entirely within D. 

In discussing transformations in R2 it is desirable to find the images of the 
lines x = const and y = const, or those of other convenient curves. We 
illustrate with examples. 

EXAMPLE I. Given the transformation 

X = U - UV, y =UV. 

Find 

J(x,y) 
U,V 

and the inverse transformation. In the (x,y)-plane draw the images of the 
lines u = 0, !. t. !. I and v = 0, !, t. !. I, and find the image of the square 
S = {(u, v): t Su S !. b;; v S t}(Fig. 7-16). 

SOLUTION. We have 

J(x,y)= 11-v 
u,v v 

-u1 U = U - UV + UV = U. 

Solving for u and v, we obtain 

v=-Y-. x+y u = x + y, 

The line u = c corresponds to x + y = c (if c #: 0) and the line v = d cor
responds to dx =(I - d)y. The various lines are drawn and the image of 
the rectangle is shaded in Fig. 7-16. 

EXAMPLE 2. Discuss the transformation 

v = exsiny. 
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y 

Draw the lines x = ± kn/6, y = ± kn/6 for k = 0, 1, 2, 3 and draw their 
images in the (u, v)-plane. Find 

1(u,v). 
x,y 

SoLUTION. If we set w = u + iv and z = x + iy, the transformation becomes 
w = e•. Introducing polar coordinates (p, </J) with p > 0 in the w-plane, we 
write 

p = eX, </>=y. 
Thus the transformation is periodic in y with period 2n. The lines x = c 
correspond to circles p = e' and lines y = d correspond to rays </> = d. We 
obtain 

1(~:;)=1::~:; -::~~s;l=e2x. 
The lines and their images are drawn in Fig. 7-17. 

PROBLEMS 

In each of Problems I through 7, find the Jacobian 

1(~~) x,y 

and find the inverse transformation. In the uv-plane, draw the images of the lines 
x = !, !, i, I and y = -!, -!, 0, !, !-



3. Transformations and Jacobians 

I. u = x, i: = y + x 2 

3. u = 2x - 3y, v = x + 2y 

2. u = x + xy, v = y, y > -1 

4. u = 2x + 3y, v = x + 2y 

5. u = x/(I + x + y), v = y/(I + x + y), x + y > - I 

6. u = x 2 - y 2, L' = 2xy, x > 0 

7. u=xcos(ny/2), v=xsin(ny/2), x>O, -I <y< I 
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8. Show that the transformation u = x 2 - y 2, v = 2xy is one to one if the domain 
D is any rectangle situated in the half-plane y > 0. 

9. Given the transformation 

T: u=--x-, 
x2 + y2 

v=--y
x2 + y2' 

show that boundary of any disk in the xy-plane with center at ( 0, 0) is mapped 
into the boundary of a disk in the uv-plane. Compare the radii of the two disks. 

10. Given the transformation 

T: u= -x+\ix2 +y2, v = -x - ,/x2 + y 2• 

Show that Tis not a one to one transformation. Decide whether or not Tis one to 
one in the rectangle 

R1 ={(x,y):ls;xs;3, -4s;ys;4}; 

1 n the rectangle 

R2 = { (x,y): - I s; x s; I, 2 s; y s; 6}. 

11. Given the transformation 

T: u = j(x,y), v = g(x,y), 

with Jacobian 

J(u, v) # 0 
X, y 

at a point P0 • Show that if/and g are continuously differentiable near P0 , then 

J(u, v)·J(x,y) =I. 
x,y u, v 

12. Suppose that the transformation 

T: u = f(x,y), v = g(x,y) 

is continuously differentiable and one to one. We have the relation 

ou ox + ou oy = 1 ex OU cy OU . 

a) Denoting the inverse transformations x = <J>(u, v), y = t/l(u, t"), differentiate the 
expression v = g[ <J>(u, v), tfl(u, v)] with respect to u to obtain 

ov ox oi: oy 
0=--+-

oxou cyou· 
(**) 
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b) By differentiating(•) and(**) with respect to u (employing the chain rule) and 
then using Cramer's Rule, find expressions for o2x/fJu 2 and fJ 2y/fJu2 • 

13. a) Find the Jacobian of the transformation 

x 
u-~-~-~ 

- xZ + yZ + zZ' 
v- y 

- Xz + yZ + zZ' 

z 
w=--------

xz + )12 + zZ" 

b) Show that the surface of a sphere in xyz-space with center at the origin trans
forms into a sphere in uvw-space. 

14. a) Calculate the Jacobian of the transformation 

u = cosxcoshy, v = sinxcoshy, w = sinhz. 

b) What is the image of the surface cosh 2 y - sinh 2 z = I ? 



CHAPTER 8 

Differentiation under the Integral Sign. 
Improper Integrals. The Gamma 
Function 

1. Differentiation under the Integral Sign 

We recall the elementary integration formula 

11 t"dt =[-1-t" .. l]I =-1-. J0 n + 1 0 n + 1 

valid for any n > - 1. Since n need not be an integer, we employ the variable 
x and write 11 1 

<f>(x) = tx dt = --1, 
o x+ 

x > -1. (I) 

Suppose we wish to compute the derivative </>'(x). We can proceed in two 
ways. Equating the first and last expressions in(!), we have 

1 
t/>(x) = x + l' </>'(x) = 

(x + 1)2 • 

On the other hand, we may try the following procedure: 

d d ii I I d I.I -<f>(x) = - txdt = -(tx)dt = txlogtdt. 
dx dx 0 0 dx 0 

Is it true that 

{
1 txlogtdt = 

(x + 1)2' 

(2) 

(3) 

at least for x > - 1? In this section we shall determine conditions under 
which a process such as (2) is valid. To examine the validity of differentiation 
under the integral sign, as the process (2) is called, we first develop a property 
of continuous functions on R 2 • 
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Let Sbe a region in R2 and/: S-+ R 1 a continuous function. We recall that 
f is continuous at a point (x0 • y 0 ) ES if for every 1: > 0 there is a <> > 0 such 
that 

l.f<x.y) - j(x0 .y0 )I < t: 

whenever 

Ix - Xol + l.r - Yol < b. 

It is important to note that the size of,) depends not only on the size of i; but 
also on the particular point (x0 ,y0 ) at which continuity is defined. If the size 
of,) depends only on t: and not on the point (x0 .y0 ), then f is said to be 
uniformly continuous on S. That is,fis uniformly continuous if for every 1: > 0, 
there is a c) > 0 such that 

IJ(x',y') -f(x",y")I < 1: 

for all (x', y'), (x" ,y") in S which satisfy the inequality 

Ix' - x"I + jy' - y"I < ,), 

In other words, the size of c) depends only on 1:. 
We denote the boundary of a region Sin R2 by cS. A region in R2 is said 

to be bounded if it is contained in a sufficiently large disk. A region S is 
closed if it contains its boundary. ts. The basic theorem concerning uni
formly continuous function states that a function f 1rhich is continuous on a 
closed bounded region is uniformly continuous. The same result holds in any 
number of dimensions. We omit the proof. 

Suppose a function </> is given by the formula 

</>(x) = f j(x,t)dt, a :s; x :s; b, 

where c and dare constants. If the integration can be performed explicitly, 
then <J>'(x) can be found by a computation. However, even when the evalua
tion of the integral is impossible, it sometimes happens that </>'(x) can be 
found. The basic formula is given in the next theorem, known as Leibniz' 
Rule. 

Theorem I. Suppose that </> is defined by 

<J>(x) = f j(x,t)dt, a :s; x :s; b, (4) 

where c and dare constants. ljf andj~ are continuous in the rectangle 

R = { (x, t) : a :s; x :s; b, c :s; t :s; d}, 

then 

</>'(x) = f f.(x,t)dt, a< x < b. (5) 

That is, the derivative may be found by differentiating under the integral sign. 
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PROOF. We prove the theorem by showing that the difference quotient 

[</J(x + k) - </J(x)]/k 
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tends to the right side of (5) ask tends to zero. If xis in (a, b) then, from (4), 
we have 

</J(x +kl- </J(x) = ~ f f(x + k, t)dt - ~ r f(x, t)dt 

= ~ r [j(x + k,t) - f(x, l)]dt. 

Since differentiation and integration are inverse processes, we can write 

fx+k 

j(x + k, t) - j(x, t) = _, j~(~. t)d~. 

and so 

</J(x + ~ - </J(x) = ~ r r+kf~(~,t)d~dt. 
We note that}~ is uniformly continuous on R, since a function which is con
tinuous on a bounded, closed set is uniformly continuous there. Therefore, 
using the comma notation for the derivative with respect to the first variable, 
if e > 0 is given, there is a i> > 0 such that 

j/ 1 (~,I) - / 1 (x, t)j < d ~ (: 

for all tin [c,d] and all~ with I~ - xi< i>. We now wish to show that 

</J(x + ~ - </J(x) - rf 1(x,t)dt--+ 0 as k--+O. 

We write 

r/1(x.1)dt = ~ r r+k/1(x.1)d~d1. 
which is true because the integrand on the right does not contain ~. Sub
stituting this last expressioli in the one above, we find, for 0 < jk I < c5, 

I </J(x + kk - </J(x) - f / 1 (x, t) dt I 
=If Uf+ku1<~.1>-l1<x.1>Jd~}d1j 
=:;; r I~ J:+k d ~ c d~I dt = (d ~ c). (d - c) = e. 

Since e is arbitrary, the theorem follows. 
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Theorem shows that the formula (3) is justified for x > 0, since the 
integrand j(x, 1) is then continuous in an appropriate rectangle. Later we 
shall examine more closely the validity of (3) when - l < x 5: 0, in which 
case the integral is improper. 

EXAMPLE l. Find the value of <f/(x) if 

rn/2 
</>(x) = J 

0 
j(x, 1) di; j sin xi 

f(x,1) = ~ 
if I #= 0, 

if I= 0. 

SOLUTION. Since 

1. sinxl 1. sinxl 
im--=x im--=x, 
1-0 I 1-0 XI 

the integrand is continuous for 0 s; 1 s; n/2 and for all x. Also, we have 

J,«x, t) = . . { COS XI if t #= 0, 
l = COS XI tf I = 0, 

so j~(x, t) is continuous everywhere. Therefore 

f n/2 [) Jn/2 
</>'(x)= 

0 
cosx1dt= - ~sinxt 

0 
= 

sin (n/2)x 
x 

x #= 0. 

It is a fact that the integral expression for </>cannot be evaluated explicitly. 

EXAMPLE 2. Evaluate 

f I du 
o (u2 + 1)2 

by letting 

f 1 du I -
</>(x) = - 2-- = ---r.;arctan (lf.Jx) 

0 U + X yX 

and computing -</>'(I). 

SOLUTION. 

r• du I _.!x- 312 I I 
</>'(x) = - Jo (u2 + x)2 = JX 1 ~ (l/x) - 2xJX arctan JX 

and 

-</>'(I)= f (u2 ~ l)2 = ~G + arctan 1) = ~G + i} 
Leibniz' Rule may be extended to the case where the limits of integration 
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Fig. 8-1 

also depend on x. We consider a function defined by 

</>(x) = f u,(x)f(x,t)dt, 
u0 (x) 

(6) 

where u0 (x) and u 1 (x) are continuously differentiable functions for a :s; x :s; b. 
Furthermore, the ranges of u0 and u 1 are assumed to lie between c and d 
(Fig. 8-1). 

To obtain a formula for the derivative <J>'(x), where</> is given by an in
tegral such as (6), it is simpler to consider a new integral which is more 
general than (6). We define 

F(x,y,z) = f f(x,t)dt (7) 

and obtain the following corollary of Leibniz' Rule. 

Theorem 2. Suppose that f satisfies the conditions of Theorem 1 and that Fis 
defined by (7) with c < y, z < d. Then 

oF f' 
ox= J,/1(x,t)dt, (8a) 

oF 
oy = -f(x,y), (8b) 

oF 
oz =f(x,z). (8c) 

PROOF. Formula (8a) is Theorem I. Formulas (8b) and (8c) are precisely the 
Fundamental Theorem of Calculus, since taking the partial derivative of F 
with respect to one variable, say y, implies that x and z are kept fixed. 

Theorem 3 (General Rule for Differentiation under the Integral Sign). Sup
pose that f and of/ox are continuous in the rectangle 

R = {(x,t): a :s; x :s; b, c :s; t :s; d}, 

and suppose that u0 (x), u 1 (x) are continuously differentiable for a S x Sb 
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with the range of u0 and u 1 in ( c, d). If <P is given by 

Ju 1(x) 

</J(x) = •o(x> f(x, t) dt, 

then 

</J'(x) = f[x, u1 (x)]uj (x) - f[x, u0 (x)] · u0(x) 

I u 1(x) 

+ fx(x, t)dt. 
Uo(X) 

PROOF. We observe that 

F(x, u0 (x), u 1 (x)) = </J(x) 

in Theorem 2. Applying the Chain Rule, we get 

</J'(x) = Fx + F,,u0(x) + F,ul (x). 

(9) 

Inserting the values of£,.,£,,, and F, from (8), we obtain the desired result (9). 

EXAMPLE 3. Find </J'(x), given that 

</J(x) = arctan2dt. ix> t 

0 x 

SOLUTION. We have 

- arctan - - = ----c ( t) -2t/x3 2tx 
ox x 2 -l+(t2/x4 ) t2 +x4 • 

We use formula (9) and find 

</J'(x) = (arctan 1)·(2x)- -2--4· ix' 2txdt 

0 I + X 

Setting t = x 2u in the integral on the right, we obtain 

"''( )=7tx_j~ 1 2x3 u·x2 du=7tx_ l1 _2udu = (?:-I 2) 'l'x 2 42 4 2 x 2 I x2 og. 
0 xu+x 0 u+ 

PROBLEMS 

In each of Problems I through 5, express <f>'(x) as a definite integral, using Leibniz' 
Rule. 

I. <f>(x) = f 1 sin xi d1 
) 0 l +I 

3. <f>(x) = f2 e-' d1 
J1 1 +XI 

2. <f>(x) = f 2 e-xr di 
Jo 1 + 12 

fl 12d1 
4. <f>(x) =Jo (I + xl)2 
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i1 1• - I 
5. <fi(x) = -1-di, 

0 og1 
(f(x,O) = 0,j(x, I)= x,x > 0) 

In each of Problems 6 through 14, obtain expressions of the form (9) for <fi'(x). 

6. <fi(x) = r 13 d1 

8. <fi(x) = r e12 di 

10. <fi(x)= --f .... di 

• I+ XI 

12. <fi(x) =f' log(I + x1)d1, 0 < x s; n 
s1nx 

f x2 
7. <fi(x) = 

1 
cos(1 2)d1 

9. <fi(x) = f' sin (x1)d1 
x2 

f •• 11. <fi(x) = tan (xi) d1 
x2 

13. <fi(x) = --, x > 0 14. <fi(x) = e" di f i+x' e-1 d1 f""' 
cos x I +XI x2 
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15. Given that <fi(x) = J"c/2 cosx1d1, obtain <fi'(x) in two ways: (I) by integrating and 
then differentiating, and (2) by using Leibniz' Rule and then performing the 
integration. 

16. Evaluate 

f.o I du 
(u2 + l)J 

by using the methods and results of Example 2. 

In each of Problems 17 through 25, find <fi'(x) by first applying Theorem I or 3 and then 
integrating. 

17. <fi(x) = f • cos xi di 
•/2 I 

19. <fi(x) = s· sin xi di, x > 0 
x' I 

21. <fi(x) = --, x > 0 Ix• di 

,m x+ I 

22. <fi(x) = r log(I + xcos1)d1, ixl <I 

23. <fi(x) = . • lxl < I f. 1 xd1 

o v I - x 212 

18. <fi(x) = '!._di fx' XI 

I I 

f x2 e-xr 
20. <fi(x) = -di, 

x I 

f.» {r' sin2 xi 24. <fi(x) = 
0 

f(x,1)d1, f(x,1) = 0 
if I# 0 
if/ =0 

25. <fi(x) = r log(I - 2xcos1 + x 2)dt, lxl <I 

x>O 



428 8. Differentiation under the Integral Sign 

26. Show that if m and n are positive integers, then 

J. 1 1"0og1rd1 = <-1r~··-. 
o (n + 1)'"+1 

[Hint. Differentiate Jix"dic = l/(11 +I) and use induction on m. Here we under
stand that t"(log t)'" is defined to be 0 fort = 0, or else that the integral is improper_] 

27. Suppose that <f>(x.y,z) = J!J(: + xcost + ysint)dt. Show that If>::= If> ... + <f>Jr 

28. Show that f(x) = l/x is uniformly continuous on the interval I= {x: c $; x $; I} 
for any number c > 0, but is not uniformly continuous on J = {x: 0 < x $; I}. 

29. Letj(x) =sin l/x on I= {x: 0 < x $; I}. ls/uniformly continuous on I 'l 

2. Tests for Convergence of Improper Integrals. 
The Gamma Function 

Suppose that a function/ is continuous in the half-open interval a$;; x < b, 
and suppose that f tends to infinity as x tends to b. A typical example of 
such a function is shown in Fig. 8-2. Since f is continuous on the interval 
a $;; x $;; c for every value of c between a and b, we define 

f(x)dx = lim f(x)dx I b f b-• 

.-o 
a a 

whenever the limit exists as e tends to zero through positive values. If the 
limit does exist, we say the integral converges; otherwise it diverges. If the 
integrand becomes infinite at the left endpoint of an interval, convergence 
and divergence are defined similarly. If /(x) is continuous for a$;; x < oo, 
we define 

J«>f(x)dx = lim fx f(x)dx 
X-«> a a 

whenever the limit exists. The terms "convergence" and "divergence" are 
used to express the existence and nonexistence of the limit. 

If f becomes infinite at several points in the interval of integration, we 

!I 

1 
I 
I 

I : 
I I 

-m---~-- -~-x 

Fig. 8-2 
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!I 

Fig. 8-3 

decompose the interval and calculate each limit separately. Also, we compute 
the integral of a function f over the infinite interval - oo < x < oo by 
selecting a convenient value C and calculating 

Jim fcj(x)dx and Jim ryj(x)dx. 
x--oo x Y-ooJc 

The integral J~ ,,,f(x) dx is said to converge if both limits above exist. For 
example, suppose that we wish to calculate J~ 00 j(x) dx for a function/ which 
becomes infinite at the points x 0 and x 1 , as shown in Fig. 8-3. We select the 
convenient values c, d, and e (Fig. 8-3) and evaluate 

X~~oc rxc j(x) dx, Jim J"'"-"' j(x) dx, Jim rd j(x) dx, 
J) f.1-0 c £2-0 Jxo+1:2 

Jim f"''-' 1 j(x)dx, 
,_.-o d 

!.~~ f. +,/(x) dx, v~i:!1oo iy j(x) dx. 

If all of these limits exist, their sum* yields the value of 

f_00

00 
j(x) dx. 

In the elementary study of convergence and divergence of integrals, we 
are usually able to obtain an indefinite integral and then evaluate the limit, 
either directly or by I'Hopital's Rule. We now wish to determine methods 
for testing convergence which are useful even when the integrands are so 
complicated that we cannot perform the integrations. The following theo
rem, helpful in establishing convergence tests, is almost a corollary of the 
Axiom of Continuity. 

Theorem 4. (a) Suppose that F is nondecreasing in the halj:open interval 

• Their sum can be shown to be independent of the particular values of c, d, and e as long 
as ce( - :ic, x0 ). de(x0 , x1), and ee(x 1 • ·:x:J). and/is continuous except at x0 , x 1 • 
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a ~ x < b and that F(x) ~ M there. Then (i) F(x) tends to a limit L as x 
tends to b-: (ii) F(x) ~Lin [a,b): (iii) L ~ M. 
b) Similarly, if F is nonincreasing in [a, b) and if F(x) ;;:::; m for a~ x < b, 
then (i) F(x)--> / as x--> b-; (ii) F(x);;:::; l; (iii) 1;;:::; m. 

PROOF. We prove (a); the proof of (b) is the same. For each positive integer 
n, we define x. = b - (l/n)(b - a). Then a~ x. < b and x. < x.+ 1 : also, 
x.--> b as n --> ·X. The numbers F(x.) form a nondecreasing bounded se
quence and, by the Axiom of Continuity, tend to a limit L which is less than 
or equal to M; and F(x.) ~ L for all n. Let c > 0 be given. Then there is an 
N such that F(x.) > L - c for all n > N. If xis in the interval (x.H 1 , b), then 
x1v+ 1 < x < x. for some n, so that 

L - c < F(x,,+ 1) ~ F(x) ~ F(x.) ~ L, 

and the theorem is established. 

The next theorem, known as the comparison test, is one of the basic tools 
used in establishing convergence. Note the analogy with the comparison 
test for series (Chapter 3, Section 3). 

Theorem 5 (Comparison Test). Suppose that fand g are continuous in the half~ 
open interi-al [a, b), that 0 ~ IJ(x)i ~ g(x), and that J:g(x)dx converges. Then 
J:f(x) dx coni-erges, and 

The same result holds ifb is replaced by + :x;, or (/[a, b) is replaced by (a, b ], 
or if the interral considered is ( - oc, b]. 

PROOF. We establish the result for [a, b); the other cases are proved similarly. 
We first assume thatf(x);;:::; 0 and define 

F(X) = r j(x)dx, G(X) = r g(x)dx. 

Then F and Gare nondecreasing on [a, b) and, by hypothesis, G(X) tends to 
a limit Mas X-+ b. Since, by hypothesis, F(X) ~ G(X) ~Mon [a, b), we 
find from Theorem 4 that F(X)-> L ~ M. 

If j(x) is not always nonnegative, we define 

I . ( ) = if(x)i + f(x) 
. IX 2 ' 

j . ( ) = if(x)i -.f(x) 
2 x 2 . 

Thenf; and/2 are continuous on [a, b) and nonnegative there. Furthermore, 
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f1 (x) + f2(x) = IJ(x)I ~ g(x), j~ (x) - Ji(x) = j(x). 

Therefore the improper integrals of f 1 ,f2 , and If I all exist. From the elemen
tary theorems on limits we conclude that 

lf1<x)dxj= lf1;<x>dx- f12<x)dxl 

~ r[J~(x)+Ji(x)]dx~ f g(x)dx. 

We have the following comparison test for divergence. 

Theorem 6. Suppose that f and g are co111inuous on [a, b) where 

0 ~ g(x) ~f(x), 

and suppose that J!g(x)dx direrges. Then J!J(x)dx dil:erges. The same result 
holds !l[a,b) is replaced by [a, + oc), (a, b ], or (- oc, b]. 

PROOF. If J!J(x) dx were convergent then, according to Theorem 5, 

f g(x)dx 

would be also. 

The comparison tests are useful if we have available a class or several 
classes of integrals which we knoll' converge or diverge. Then these integrals 
may be used for comparison purposes. Two such classes are given in the 
next theorem. The proof is obtained by straightforward integration and 
evaluation of the resulting limit. 

Theorem 7. (a) The integrals 

f (b - x)-Pdx, 

converge ifp < 1 and diverge ifp ~ I. 
b) The integrals 

and 

with a > 0, b > 0 converge ifp > I and diverge ifp ~ I. 

EXAMPLE I. Test for convergence or divergence 

f 1 x'dx 
o v'l - xl, 

where ix is a positive constant. 
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SOLUTION. Taking 

. x• l 
f(x) = . 3 , g(x) = ----;---, 

vi -x v'l -x 

we show that IJ(x)I :$ g(x) for 0 :$ x :$ 1. To see this, we observe that 

. x• x• x• 
f (x) = ---== = . ---- . g(x). 

yl-x3 "/(l-x)(l+x+x2) y'l+x+x2 

Since x• :$ l :$ v I + x + x 2 for 0 :$ x :$ 1 so long as a ~ 0, we conclude 
that 

IJ(x)I :$ g(x). 

However, 

11 
g(x)dx 

converges by Theorem 7(a) with p = !. The Comparison Test shows that 
the given integral converges for all a ~ 0. 

EXAMPLE 2. Test for convergence or divergence: 

f 00 vx 
1 3J2dx. 

I +x 

SOLUTION. For x ~ 1, we see that 

. ,,;x ,_1'x I 1 
j(x) = l + x3/2 ~ x3/2 + x312 = 2. ~ = g(x). 

However, according to Theorem 7(b), Jf g(x) dx diverges. Therefore the 
integral diverges. 

EXAMPLE 3. Test for convergence or divergence: 

SOLUTION. Since 

iao sinx 
312dx. 

I X 

I sinx I 1 
x3/2 :$ x3/2 • 

we employ Theorem 7 (b ), with p = f, and the Comparison Test to conclude 
that the integral converges. 

EXAMPLE 4. Test for convergence or divergence: 
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SOLUTION. Because the integrand is infinite at x = 0, we select a convenient 
value, say x = l, and break the integral into two parts: 

f 00 e~ dx = l 1 e-;_ dx + l 00 e~ dx. 
Jo yX Jo yX J1 yX 

(l) 

In the first integral on the right, we have 

e-x I 

JX 5, JX' 
and f~(l/jX)dx converges by Theorem 7(a) with p = !. In the second 
integral on the right, we have 

The integral 

fx e-xdx = [ -e-x]~ = e- 1 - e-x -+! as X-+ + oo, 
I e 

so that the second integral converges. Since both integrals on the right in (1) 
converge, the original integral is convergent. 

We shall show that the integral 

Loo lx-le-'dt (2) 

is convergent for x > 0. To do so, we notice that for 0 < x < I the integrand 
becomes infinite at t = 0, and so we treat the integral as in Example 4. We 
write 

1 00 lx-le-'dt=1' lx-le-'dt + 100 lx-le-'dt. (3) 

In the first integral on the right, we obtain the inequality 

The integral g Ix-I dx converges for x > 0 (Theorem 7(a), p < I). As for 
the second integral on the right in (3), we first note that 

Ix-le-'= 1- 2 ·j(t) 

wheref(I) = tx+ie-'. We obtain an inequality by computing the maximum 
value of the function j(l) = 1x+ie-1 • The derivative j'(I) is zero when 
1 = x + I; the maximum value off occurs at x + I and is 
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Therefore 

f" ix-le-• di= J:xi (lx+le-') il2 di :5; (x + 1y+1e-1x+ll J:xi i~ di. 

The last integral on the right converges and, consequently, so does (2). This 
last device can be used to show the convergence of the integral (2) when 
x ;;::: I. 

Definition. The Gamma function, denoted by r, is defined by 

r(x) ={xi ix-le-• di, x > 0. 

This function, which has many important applications in both mathe
matics and physics, has a number of interesting properties. The observation 
that 

r(x + I) = {xi ixe- 1 di 

and an integration by parts yield one of the most important properties. We 
have 

f: ixe-• di= [ix(-e-')]& + X LT ix-le-• dt, x ;;::: I. (4) 

Letting T-+ + oo and using l'Hopital's Rule in the first term on the right, 
we obtain 

nx + I) = xr(x). (5) 

Since 

we find, by successive applications of (5), that 

n2) = 1 · ro) = 1, r(3) = 2 · r(2) = 2, 

r(4) = 3 · r(3) = I · 2 · 3, 

and, by induction, that 

r(n + I)= 11 ! 

In other words, the Gamma function, which is defined for all real numbers 
x > 0, is a generalization of the "factorial function" defined for positive 
integers. 

The relation (5), which is a recursion formula, shows that if the Gamma 
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function is known for any particular value of x, it may be found for all num
bers of the form x + n, where n is a positive integer. For example, it can be 
shown that r(f) = 1Jn. From this fact it is easy to deduce that 

( 2k + 1)- I· 3 · 5 · · · (2k - I) ,-r 2 - 2k v n 

for any positive integer k. 

PROBLEMS 

In each of Problems I through 22, test the integral for convergence or divergence. 

I. f"" dx 
1 (X + 2)y'X 

11 dx 
3. -= 

ov'I-x4 

5. f"' dx 
Jo .. .,/x3 + I 

7. J"" xdx 
o .. Jx4 +I 

f4 v' 16 - x 2 
9. dx 

JX2 -x-6 

JI dx 
II. 2 

-IX 

13. ....;x dx f 3 -

1 logx 

15. L"' e-·•' dx 

17. f"' ____!!!._ __ 
o <x + l) .. Jx 

19. f"' cosxdx 
Jo I+ x2 

21. r cos:_dx 
Jo ...;x 

2. f"" dx 
2 (x - 1).Jx 

f 1 dx 
4. 

o .,;(l -x)4 

6. f"' dx 
! 3 

2 \}X - I 

8. f 2 '": 
1 xv'x - I 

IO. J1 dx 
-1 ...;I -x2 

12 _v __ f"'2 xdx 
• 0 sinx 

f 00 (arctan x)2 dx 
14. -~2---

0 x +I 

16. J
0
"' x 2e-x' dx 

18. rl dx 
Jo ...;x - x 2 

20. L"' e-xsinxdx 

22. r sin~dx 
Jo x...;x 

23. Show that J'f x- 1(logx)-p dx converges if p > I and diverges if p s; I. 

24. Show that J A I log x IP dx converges to r( p + I) for each p > 0. [Hint. Consider 
J: (log(l/x))P dx, set x = e-', and let e-+ O.J 

25. Show that Jf e-x' dx = }r(}) = r<l). 
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26. Show that 

f. "" p -x2d 1r(P +I) xe x= 2 --, 
0 2 

p > -1. 

27. Show how to extend the procedure in Eq. (4) to establish (5) for x > 0. 

3. Improper Multiple Integrals 

For functions of one variable we have considered two types of improper in
tegrals: (i) those in which the integrand becomes infinite at some point in 
the interval of integration, and (ii) those in which the interval of integration 
becomes infinite. 

Double and triple integrals have been defined only for bounded functions 
and for bounded regions of integration. We now take up the problem of de
fining a double integral when the integrand f becomes infinite at a single 
point in a bounded region of integration. For example, suppose we wish to 
integrate the function 

f: (x,y) ...... [(x _ I)~+ y2]112 

over the rectangular region 

R = {(x,y): lxl s;; 3, IYI s;; 2}. 

The function f becomes infinite at the point P(l, 0), which is in the region 
of integration. We construct a small region S containing the point P, and 
we observe that the function/ is continuous in the region R - S (Fig. 8-4). 
Therefore the integral 

ff j(x,y)dA.<>. (I) 

R-S 

may be defined in the usual way if S is a small disk, square, triangle, or 
even a region of rather irregular shape, so long as Pis interior to S (that is, 

y 

(0, 2) 

R 

~~~~~--+-1--..._~-1-+---x 

0 (3,0) 

Fig. 8-4 
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Fig. 8-5 

so long as S contains a disk with center at P). For a set S we define the 
diameter of S as follows: Let d(P, Q) be the distance between the points 
P and Q of S; then the diameter of S, denoted d(S), is the least upper bound 
of d(P, Q) as P and Q take on all possible values in S. 

Let Sn be a sequence of closed regions, each containing Pin its interior, 
and such that 

as n-+ oo. 

Then, intuitively, we define the integral of/over Ras the limit L of the inte
grals taken over R - Sn whenever this limit exists. There are many different 
ways in which such a sequence Sn may be chosen, and of course the value L 
must be the same for all possible choices of the {Sn}· More precisely, we say 
that if for every s > 0 there is a <> > 0 such that 

whenever S is a closed region containing P in its interior with diameter less 
than 6, then the improper integral 

f J J(x,y)dAxy 

R 

exists and has the value L. 
If a function becomes infinite at a finite number of points Pi, P2 , ••• , Pk 

within (or on the boundary of) the region of integration but is otherwise con
tinuous, we subdivide R into a number of non overlapping pieces so that each 
portion contains one of the points~- (Figure 8-5 shows a typical situation.) 
Then, if the improper integral over each portion exists, we add the resulting 
values to obtain the improper integral over R. It can be shown that the 
value of the integral does not depend on how the region R is subdivided. 

In any particular case, it is usually extremely difficult to verify the exis
tence of an improper integral by use of the definition alone. We now establish 
theorems which are helpful not only in verifying the existence of improper 
integrals but also in their actual evaluation. Let R be a closed region and Pa 
point in R. We define an increasing sequence of regions closing down on 
Pas a sequence of closed regions Hi, H2 , ••• , Hn, ... with these properties: 
(i) every Hn is in R - P; (ii) for each n, Hn c Hn+i; and (iii) if R' is any 
closed set contained in R - P, then there is an integer n such that R' c Hn. 
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I' 

Fig. 8-6 

Since Hn is closed and does not contain P. it also does not contain a small 
circle (of radius rn, r,,-+ 0) about P. In Fig. 8-6, for example. we could 
select H 1 as the portion of R between rand f 1 • H2 as the portion of R be
tween rand f 2 , H3 as the portion of R between rand f 3 , and so forth. 

Theorem 8. Suppose that f(x,y) ~ 0 in a closed, bounded region R, and 
suppose that f is continuous on R - P, 1rhere Pis a point of R. If there is a 
number M such that 

ff f(x,y)dAxy:::;; M 

R" 

for every closed region R' c R - P, then the improper imegral off over R 
exists. Moreover, suppose that { H,,) is an increasing sequence of regions closing 
dmrn on P, as defined above. Then we have 

~~~ff j(x,y)dAxy = f J f(x,y)dA.q·· 

H11 R 

PROOF. Let {H,,l be any sequence of regions of the type specified. Since 
j(x,y) ~ 0, we see that for each n 

ff f(x,y)dA =ff f(x,y)dA + ff j(x,y)dA ~JI j(x,y)dA. 

Hn+I H11 Hnr1-Hn H11 

Therefore Hu,,f(x,y)dA_,}. is a nondecreasing sequence bounded by M. 
From the Axiom of Continuity, it follows that there is a number L such that 

Jim ff1tx,y)dAxy = L. 
n-oo 

(2) 

Now, let e > 0 be given. There is an integer N such that 

L - e < ff f(x,y)dAxy:::;; ff f(x,y)dAx}·:::;; L for n ~ N + I. 

Let R' be any closed region such that 

HN+J c R' c R - P. 
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Since R' does not contain P, there is an H" such that R' c: H" for some n 
(and so for all larger n). Consequently, 

L - t: < ff f(x,y)dA s; ff j(x,y)dA s; ff j(x,y)dA s; L. 

HN+l R" 

Since t: is arbitrary, it follows that 

L =ff J(x,y)dA. 

R 

Corollary. ljj; R, Pare as in Theon'm 8, if {H"} is an increasing sequence 
closing down on P, and if 

ff j(x,y)dAxy s; M 

Hn 

for all n, then the improper integral off over R exists and (2) holds. 

If an improper integral exists, we say that the integral is convergent; if it 
does not exist, we say that the integral is divergent. 

EXAMPLE I. Discuss the convergence or divergence of 

ff #~-·;~2)P dAxy• p > 0, 
R 

where R is the disk R = { (x,y): x 2 + y 2 s; I}. 

SOLUTION. The integrand becomes infinite at the origin. We select for H" the 
ring H" = { (x, y) : (I /n) s; -./ x 2 + y 2 s; I}. Then, changing to polar co
ordinates by setting x = rcos 0, y = r sin 0, we have 

ff rlPdA = fn f>-PrdrdO 

"" 
~ (1 - -1-) if p < 2, 2-p n2 -p 

2nlogn if p = 2, 

~(nP-2 - I) if p > 2. 
p-2 

By the Corollary to Theorem 8, the integral converges if p < 2. Since r-p > 0, 
it follows that the definition of the existence of improper integral is not 
satisfied if p ~ 2. 
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y 

R: upper half-plane 

y 

R: infinite strip 

8. Differentiation under the Integral Sign 

y 

R: one quadrant 

y 

R: unbounded region 
with finite area Fig. 8-7 

So far we have considered integrals in which the integrand becomes in
finite at one or several points. However, for functions of two or more vari
ables the integrand may misbehave in many ways. For example, the function 

I 
/: (x,y)-+ (x2 _ y)l/3 

becomes infinite all along the parabola C = { (x,y): y = x 2 }. It is possible 
to define an improper integral for functions which are infinite along an arc 
C. It is necessary to define an increasing sequence of regions closing down on 
C and to make an appropriate generalization of Theorem 8. This topic and 
various extensions to triple integrals will not be discussed in detail. 

Suppose that R is an unbounded region in the plane and that/is a function 
on R. ln defining the improper integral of/ over R we must be aware that the 
situation is more complicated than it is for functions of one variable. For 
integrals along the x axis, the interval of integration could extend from some 
point a to - oo, from a point a to + oo, or from - oo to + oo. As exhibited in 
Fig. 8-7, unbounded regions in the plane may be of many types. The reader 
can easily think of many other kinds of unbounded regions. 

Definition. Suppose that R is an unbounded region and that f is continuous 
on R. We say that the improper integral off over R exists if and only if there 
is a number K such that: for every e > 0 there is a closed bounded region 
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R 1 c R with the property that 

11f f(x,y)dAxy - KI< e 

for every closed bounded region R' with R 1 c R' c R. The number K is the 
value of the improper integral, and we write 

ff f(x,y)dAxy = K. 

R 

For unbounded regions R, we define an increasing sequence of regions 
{ Hn} filling R as a sequence of closed bounded regions in R with the proper
ties: (i) for each n, Hn c Hn+ 1 , and (ii) if R' is any bounded region in R, then 
there is an integer n such that R' c Hn. With this definition of the sequence 
{Hn}, Theorem 8 and its Corollary have obvious analogs for an improper 
integral taken over an unbounded region R. 

EXAMPLE 2. Evaluate fo e-x• dx. 

SoLUTION. We employ a device which has become classical in the study of 
improper multiple integrals but which is seldom useful otherwise. First we 
observe that 

["' e-x• dx = Jim J" e-x• dx Jo n-oo O 

is a convergent integral (by comparison with fo e-x dx, for example). Next 
we note that 

(J: e-x• dx r = I I e-<x'+y•) dx dy =ff e-<x•+y•) dA, 

Rn 

where Rn is the square 

Rn = { (x, y) : 0 :;;; x :;;; n, 0 :;;; y :;;; n}. 

Let R be the entire first quadrant and let R' be a closed bounded region in R. 
For n sufficiently large, R' c Rn and, denoting 

we see that 

ff e-<x'+y'l dA :;;; M. 

R' 

The quantity M is also equal to 
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lim ff e-ix•+y•) dA, 
n-oo 

Gn 

where Gn is the quarter circle (p~lar coordinates) 

Gn = { (r, 8): 0 :s; r :s; n, 0 :s; 8 :s; n/2}. 

But 

ff -1x•+y•) dA in/2 f n -r• d d8 7t [ -r•]n 7t e = e r r = - -e 0 -+ -
0 0 4 4 

as n-+ oo. 

Gn 

Hence M = n/4 and, taking the square root, we conclude that 

Joo -x•d ,,jlr e x= 2 . 
0 

Comparison theorems for determining the convergence and divergence 
of multiple integrals follow the same pattern as do those for integrals of 
functions of one variable. (See Section 2.) 

Theorem 9. (a) Suppose that 1; R, Pare as in Theorem 8 and that lltx, y)j :s; 
g(x,y) on R - P. If g is continuous on R - P and the integral ol g over R 
exists, then the integral olf over R does also, and 

b) Suppose that f and g are continuous on an unbounded region R. If 

lltx,y)j :s; g(x,y) 

(3) 

on Rand if the integral of g over R exists, then the integral olfdoes also, and 
the inequality (3) holds. 

The proof of Theorem 9 is similar to that of Theorem 5 of the preceding 
section and is left to the reader. 

Theorem IO. (a) Suppose that 1; g, R, Pare as in Theorem 9 and that 

0 :s; g(x, y) :s; ltx, y). 

lfJJRg(x,y)dA diverges, then JJRf(x,y)dA does a/so. 
b) If R is unbounded and JfRg(x,y) dA diverges, then JJRl{x,y)dA diverges 
also. 

Theorem IO follows directly from Theorem 9, since the supposition that 
JJRf(x,y)dA converges implies that JJRgdA does. 
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EXAMPLE 3. Test for convergence or divergence: 

ff sinxy dA 
x2(l + y2) • 

R 

where R is the half-infinite strip R = { (x,y): I ::;; x < oo, 0::;; y::;; I}. 
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SOLUTION. We define the domain Rn= { (x,y): I ::;; x::;; n, 0::;; y::;; I}. 
Setting 

we have 

sinxy 
.f(x, y) = x2( I + y2)' 

ff IJ<x,y)jdA::;; ff g(x,y)dA = r r xl2 -I +\2 dydx. 
Rn Rn 

However, 

ff g(x • .v>dA = [arctanyJ~ f :2dx =~[-~I-+~ as n-+ oo. 

Rn 

Hence JIRgdA is convergent, and so JIRfdA is also. 

The entire discussion of this section has an appropriate generalization to 
functions of three variable and to triple integrals. Improper integrals may 
be defined for functionsf(x,y,z) which become infinite at points, on curves, 
or on surfaces. Also, integrals over unbounded domains may be defined. 
We work an example. 

EXAMPLE 4. Test for convergence or divergence: 

fff I 
~- _ dV, 

.j(x2 + l'2 + z2)P 
R • 

p> 0, 

where R is the unit ball R = { (x, y, z) : 0 ::;; x2 + y2 + z2 ::;; I}. 

SOLUTION. We define the regions bounded by concentric spheres 

Rn= {<x,y,z):~::;; Jx2 +y2 +z2 ::;;1}. 
Then, introducing spherical coordinates 

x = pcos8sinc/J, y = psin8sinc/J, z = pcosc/J, 

and using the change-of-variables formula for integration in spherical 
coordinates (see page 351), we find 
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fff ~dV= f 2"J" f' -~p 2 sin</>dpd<J>d() 
P Jo o J11nP 

R 3 ~ p (• - )-p). Q :s;;p < 3, 

4nlogn. p=3, 

~(nP-3 - l), p > 3. 
p-3 

We conclude that the integral is convergent for p < 3 and divergent for 
p -;z. 3. 

PROBLEMS 

In each of Problems I through I 0, the region R is the unit disk 

R = { (x,y): 0 ~ x2 + y 2 ~ I}. 

Test the given integral for convergence or divergence. Specify the choice of the sequence 
{Hn} and describe the set S where the integrand is singular. 

2 ff xydA 
· (x2 + y2)J/2 

R 

3. ff 1og~dA 4. ff r- 2(1ogn-2 dA 

R R 

5. ff (1og;)_, dA 6. ff x2y2 
(x2 + y2)J dA 

R R 

7. ff J~~x 8. ff xdA 
(x2 + y2),.JI - x 

R R 

9. ff 1~x 10 ff dA 
· ~(I - 2x)(I - 3x)(I - 4x) 

R R 

In each of Problems 11 through 16, test for convergence or divergence. Specify your 
choice of {H.}. 

II. ff(x 2 +y2)-i'2dA, R={(x,y):x2 +y2 ;;:: I}; p>O 

R 

12. ff 2 {dA 213 , R={(x,y):O~x~l,O~y~I} 
(x + y )(I - x) 

R 

13. ff----~----, R = {(x,y): x;;:: 1,y;;:: I} 
(x2 + y 2)..j(x - l)(y - I) 

R 
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14. III p-PdV, I'= (x2 + y2 + :2)112, 

R 

R= :<x.y,z):p~ I]; p>O 

15. ff Ix:;, R = {(x,y,z): 0::::; p::::; I) 

R 

16. III p2(1d~ x)312• R = {(x,y,:):O::::; I'::::; I) 
R 

17. Use the result of Example 2 to find r<!). 
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* 18. (a) Define an improper double integral for a function f which becomes infinite 
along an arc C contained in a bounded region R. (b) State and prove the ap
propriate analog of Theorem 8 for improper integrals as defined in (a). 

* 19. (a) Define an improper triple integral for a function f which is continuous in a 
bounded region R except at one point where it becomes infinite. (b) State and 
prove the appropriate analog ofTheorem 8 for improper integrals as defined in (a). 

20. Define an improper triple integral for a function continuous in an unbounded 
domain R. 

21. Write out a proof of Theorem 9. 

22. State and prove the analog of Theorem 9 for triple integrals. 

23. State the appropriate generalization of Theorem 9(a) for functions of two variables 
which become infinite along an arc. 

4. Functions Defined by Improper Integrals 

We recall that the Gamma function is defined by the formula 

r(x) = 100 tx-•e-• dt, x > 0. 

Is it possible to differentiate under the integral sign? That is, is the formula 
(Leibniz' Rule) 

f'(x) = 100 0 ux-•e-')dt 
Jo ex 

= 100 
Ix-I (log t)e-• dt 

valid? Leibniz' Rule, given in Section I, page 422, was established for proper 
integrals. Not only does the integral for the Gamma function have an infinite 
interval of integration, but also its integrand has a singularity at t = 0 if 
0 < x < I. In order to extend Leibniz' Rule to functions given by improper 
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d-~r==u 
I 

I I 
I I 

o a ~ · x Fig. 8-8 

integrals, we must first extend the notion of uniform convergence introduced 
in Chapter 3, page 154. 

Suppose that F(x, t) is continuous for a~ x ~ b and for c ~ t < d. We 
wish to consider the limit of F(x, t) as t tends to d (from values less than d). 
The limiting value will depend on x, and we write 

lim F(x, t) = j(x). 
1-d 

Definition. We say that F(x,t)-+f(x) uniformly on [a,b] as t-+r ifand 
only if for each e > 0 there is a <> > 0 such that 

JF(x, t) - j(x)J < e (I) 

for all t in the interval d - c) < t < d and for all x on [a, h]. 

Of course the size of<> will depend on t:. However, the crucial distinction 
between uniform limits (called uniform convergence) and ordinary limits 
lies in the fact that for uniform convergence, 6 is independent of x. In other 
words, in uniform convergence, inequality (I) holds for all values of x and 
t in the shaded strip shown in Fig. 8-8. 

Uniform convergence for a .. continuous variable" may also be defined 
if the interval c ~ t <dis replaced by c ~ t < x,. We say that F(x, t)-+ j(x) 
uniformly for x on [a, h] as t -+ + oc if and only if for each 1: > 0 there is a 
value T such that 

JF(x, t) -j(x)J < t: 

for all t > T. Once again, the value of Twill depend one, but the uniformity 
condition requires that T not depend on x. 

The next theorems, which are analogs of those for series given in Chapter 
3, Section 11, are useful in establishing Leibniz' Rule for improper integrals. 

Theorem 11. Suppose that F(x, t) is continuous in x on [a, b ]for each t, 

(' ~ t < d, 

and suppose that F(x, t)-+ </>(x) uniformly on [a. b] as t-+ r. Then </>(x) is 
continuous on [a,b]. The same result holds ij.d is replaced by + oc. 
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PROOF. The proof follows the pattern of that given for Theorem 30 (Chapter 
3, page 159). Let x 1 , x 2 be two values of x in [a, b]. We write <f>(x1) - <f>(x2) 
in the complicated form 

</>(Xi) - </>(x2) = <f>(x1) - F(Xi' 1) + F(Xi' t) - F(X2, t) + F(x2. t) - </>(X2). 

Therefore, by the triangle inequality, 

l<f>(x 1 ) - </>(x2 )1 ::::;; l<f>(x 1) - F(x 1 , t)I + IF(x 1 , t) - F(x2, t)I 
+ IF(x 2 , t) - </>(x 2)1. 

Let f: > 0 be given. Then, from the uniform convergence of F, the first and 
third terms on the right may be made < t:/3 for all t E (d - c5, d). The middle 
term on the right may be made < t:/3 if x 1 and x 2 are close enough, since 
Fis continuous in x. Hence l<f>(x 1) - </>(x 2)1 < t: if lx 1 - x 2 1 is sufficiently 
small-that is,</> is continuous. 

Theorem 12. Suppose that the hypotheses of Theorem 11 hold and also, that 
F:.Cx. t) is continuous on [a, b] for each t. If F.(x, t)-+ l/J(x) uniformly for x 
on [a, b] as t-+ r or as t-+ + oc, then l/J(x) = </J'(x) on (a,b). 

The proof follows the pattern of that given for Theorem 32, Chapter 3, 
page 161. and is left to the reader. 

We now see that Leibniz' Rule for improper integrals, given below, is an 
immediate consequence of the two theorems above. 

Theorem 13. Suppose that j(x, r) is continuous for a::::;; x::::;; band c::::;; r < d; 
we define 

F(x, t) = f j(x, r)dr. 

If the improper integral 

<f>(x) = r j(x, r)dr 

exists for a::::;; x::::;; b, and ifF(x, t)-+ </>(x) unijormlyjor x on [a, b] as t-+ r, 
then </> is continuous on [a, b]. The same result holds if d is replaced by + oo. 
(This result is a corollary of Theorem 11.) 

Theorem 14 (Leibniz' Rule for improper integrals). Suppose that the h}potheses 
of Theorem 13 hold, and suppose also that J.~ is continuous. If F..(x, t) converges 
uniformly to l/l(x) on [a, b] as t -+ d- (or + oc ), then 

l/J(x) = </>'(x) = rJ.~(x, r)dr, a< x < b, 

or, ifd is replaced by + oc, 
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f ... <C 

l/J(x) = </>'(x) = .. J.~(x, r) dr, a< x < b. 

PROOF. According to Leibniz' Rule, for each t < d (or < + oc,), we have 

F..(x, t) = f 1 .f)x, r) dr . 
.. 

Hence the result follows from Theorem 12. 

EXAMPLE I. Show that if </>(x) = J~ e-xr dt, then <P and <P' are continuous for 
x > 0 and 

(2) 

SOLUTION. We define 

f, I_ e-x1 
F(x, t) = e-xt dr = . 

0 x 

Also, 

Ast-+ oo, we see that F(x,l)-+ l/x and F_.(x,t)-+ - l/x2 • To show that 
the convergence is uniform, we note that for h > 0 

I I I e-·" e-hr 
F(x, t) - - = - < -

x x h 

I ( I ) I- e-·"(I + xt) e-hr(I +ht) 
f'..(x, t) - -2 - 2 ::;; hi x x 

for all x ~ h, 

for x ~ h. 

Thus the convergence is uniform on any interval x ~ h for positive h. Apply
ing Leibniz' Rule for improper integrals, we conclude that (2) is valid. 

In Example I it is possible to integrate the expression for F(x, t) and so 
verify the uniform convergence directly. Since in most instances this direct 
approach is not possible, it is important to have some indirect tests for 
uniform convergence. The next theorem, which is a comparison test, is 
useful in that the direct evaluation of F(x, t) is not required. The test may 
also be applied to f'x(x, t) and in this way the applicability of Leibniz' Rule 
for improper integrals may be verified. 

Theorem IS (Comparison Test). (a) Suppose that f(x, t) is continuous for 
a ::;; x ::;; b and c ::;; t < d, and suppose that 

l.t~x. OI ::;; g(t) for a::;; x::;; b, c::;; t < d. 
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lfJ:g(t)dt converges, then the improper integral 

</J(x) = r j(x, l) dt 

is defined for each x on [a, b] and </J is continuous on [a, b]. 
b) (Leibniz Rule) Suppose, also, thatj~ is continuous for a S x Sb, c St < d 
and that 

for a S x Sb, c St < d. 

IfJ:g 1(t)dt converges, then 

</J'(x) = r j~(x,t)dt, a< x < b. 

The same results hold ifd is replaced by + oo. 

PROOF. (a) That </J(x) is defined for each x follows from Theorem 5. We 
define 

F(x,t) = f j(x,t)dt. 

Then 

l</J(x)- F(x,t>I =If j(x,t)dt sf g(t)dt. 

But since J:g(r)dt converges, we know that for each e > 0 there is a {J > 0 
such that for te(d- {J,d) we have IJ~g(t)drl < e. Thus 

i<f>(x) - F(x, 1)1-+ 0 as I-+ r, 
uniformly for x on [a, b]. 

To prove (b), we note that 

If j~(x. t)dt Is; f g1(t)dt - o as t-+ d-, 

as above. The convergence is uniform and the result established. 

Definition. If 

F(x,t) = f f(x,t)dt 

and 

</J(x) = f j(x, t)dt (3) 

and if F(x, t)-+ </J(x) uniformly for x on [a, b ], we say that the improper 
integral (3) converges uniformly for x on [a, b ]. 
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EXAMPLE 2. Show that the improper integral 

</J(x) = - 2--2 dt f co sint 

1 X +I 

converges uniformly for all x. 

SoLUTION. We have 

I sin t I 1 
x2 + ,2 :s; (2 

for all x and all t ~ I. Since Jf (l/t 2) dt converges, Theorem 15 applies. 

EXAMPLE 3. Given the integral 

</J(x) = dt. f co e-xr - e-' 

o I 

Show that the integral for </J(x) and the integral for </J'(x) (obtained by dif
ferentiation under the integral sign) both converge uniformly for x on 
[a, b] if a > 0. Evaluate </J(x) by this means. 

SOLUTION. Setting/(x, t) = (e-x• - e-1)/t, we have 

Jfx(x,t)J :s;{e~~·· 
e , 

fx(x, t) = -e-x1, 

a :s; 1, 

1 <a. 

The last inequality may be written more compactly as 

Jfx(x,t)J :s; e-h1 where h = min(a, 1). 

Now, using the Theorem of the Mean on/(as a function of x), we find that 

for 0 :s; t :s; I. 

Also, 

I e-x1 - e-1 I :s; e-h1 
t I 

fort~ I. 

Thus the integrals for <P and </J' converge uniformly. We may apply Leibniz' 
Rule to get 

</J'(x) = -e-x1dt = lim -f co [e-x1]1 

0 1~co X 0 X 

The equation </J'(x) = l/x can now be integrated to give </J(x) = C - logx. 
Since 

JC() -1 -1 e -e 
</J(l)= dt=O, 

0 t 
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we obtain 

Joo -xr -r e - e 
cf>(x) = -logx = dt. 

o I 

PROBLEMS 

In each of Problems 1 through 8, show that the integrals for cp(x) and cp'(x) converge 
uniformly on the given intervals, and find cp'(x) by Leibniz' Rule. 

I. cp(x) = --, a ::; x, a> 0 f. oo e-x1 di 

0 I+ I 

2. cp(x) = f. 1 e:dl, lxl::; A, A> 0 
o vi 

3. cp(x) = --3 dl, jxj::; A, A> 0 f. 00 COSXI 

0 I+ I 

f 00 e-• di 
4. cp(x)= --, x::?:O 

0 I+ XI 

f. 1 sinxl 
S. cp(x) = --(log1)d1, lxl::; A, 

o I 
A>O 

f. I (log 1)2 
6. cp(x) = --di, x ::?: A, A > - I 

0 I +xi 

fl di 
7. cp(x) = · ,..---• x::?: A, A > - I 

0 (I + xl)v I - I 

foo sinxl 
8. cp(x) = ---2 d1, jxj ::; A, A > 0 

0 1(1 +I ) 

9. Using the complex exponential function (and Theorem 15), show that 

f. 00 e-•x cos bx dx = ~b2 , 
o a + 

f00 e-•xsinbxdx = ~b2 , a> 0. 
o a + 

10. From the fact that 

lxdl=--, f1 I 

0 x+ I 
X> -I, 

deduce that 

L' 1x(-log1)'"d1 = (x +ml!)'"+'' x > -1. 

11. From the fact that 

--dl=-.-n-, O<x< I, Joo 1x-I 

0 1+1 smnx 
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deduce that 

---di= . f 001x-•1og1 n 2 cosnx 

0 I + I cos2 nx - I 

12. Verify that 

and, more generally, that 

13. If 

cp(x) = f"' e-xr di, 
0 I+ I 

show that cp(x) - cp'(x) = l/x. Justify your steps. 

14. If 

Joo e-xr di 
cp(x)= o I+ 12• 

show that cp(x) + cp"(x) = l/x. Justify your steps. 

15. Given that 

cp(X) = r e-'(1- ~SXl)dl. 

Find cp'(x) by Leibniz' Rule. Evaluate the integral for cp'(x) and then find cp(x) 
by integration. 

16. Given that 

f. 1 Ix - I 
cp(x) = -1-di, 

0 og1 
x ;e: a, a> -1. 

Find cp'(x) by Leibniz' Rule, evaluate, and find cp(x) by integration. 

17. Given that 

Find cp'(x) and cp"(x) by Leibniz' Rule. Find <P' and <P by integration. 

18. Given that 

f. 00 I cp(x) = e-xr di=-, 
0 x 

show that 

q,<•l(x) = ( -1)" ["' t•e-x• di= (-1)" ~! 1 , x > 0. Jo x 
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19. Starting from the formula 

deduce the formula 

I. '° dt = I· 3 · 5 · · · (2n - I) x-•-1/2 = (2n)! x-•-112 

0 (t 2 + x)•+I 2 · 4 · 6 · · · 2n 22"(n!)2 · 

20. Prove Theorem 12. 

*21. Given that 

show that 

d d 
x-(P.(x)) - d-(P0 _ 1(x)) = nP.(x). 

dx x 

[P.(x) is the Legendre polynomial.] 
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CHAPTER 9 

Vector Field Theory 

1. Vector Functions 

A vector function v(P) assigns a specific vector to each element P in a given 
domain !Z. The range of such a function is the collection of vectors which 
correspond lo the points in the domain. In Chapter 2, Section 9, we discussed 
vector functions with domain a portion (or all) of R1 and with range a 
collection of vectors in R 2 and R3 . For example, if a vector function is 
defined on the interval a :::.:; t :::.:; b, then we may represent such a function 
in the form 

v(t) = j(t)i + g(t)j, 

where i and j are the customary unit vectors. The real-valued functions f 
and g are defined on the interval a :::.:; t :::.:; b. 

If the range of a vector function of one variable is a collection of vectors 
in three-space, we can write 

v(t) = j(t)i + g(t)j + h(t)k, 

where i, j. and k are mutually perpendicular unit vectors in R3 • The functions 
f, g, and hare ordinary real-valued functions of the variable 1. In Chapter 2, 
we discussed various properties of vector functions with range in R3 • 

We now continue the study of vector functions by considering those with 
domain a portion of R 2 or R3 • A vector function with domain in R 2 and with 
range consisting of vectors in R 2 has the representation 

v(x, y) = f(x, y)i + g(x, y)j. (I) 

If the range consists of vectors in R 3 , we write 
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v(x, y) = .f(x, y)i + g(x, y)j + h(x, y)k. (I') 

If the domain ft is a region in three-space and the range is in R2 , so that 
we are dealing with functions of three variables, a vector function u(P) has 
the representation 

u(x,y,z) =J(x,y,z)i + g(x,y,z)j. 

If the range of such a vector function is a collection of vectors in three-space, 
we write 

u(x, y, z) = j(x, y, z)i + g(x, y, z)j + (x, y, z)k. (2) 

The vector functions described above are actually special cases of the 
general transformations described in Chapter 7, Section 3. In fact, we may 
easily define a vector function with domain q in some m-dimensional 
Euclidean space and with range in some n-dimensional vector space. The 
numbers m and n may be different. Although many of the results of this 
chapter are valid in quite general spaces, we shall state and prove theorems 
in two and three dimensions only. In this way we can take full advantage 
of our geometrical insight. 

The usual properties of continuity, differentiation, and integration for 
vector functions of several variables are immediate generalizations of those 
for vector functions of one variable. A function v(x,y) as given by (I) is 
continuous if and only if the functions f and g are. A function u as in (2) has 
partial derivatives if and only if the functions;: g, and h do. For example, 
we have the formula 

cu= cj(x,y,z)i + cg(x,y,z). + ch(x,y,z)k 
ex ex ex J ex . 

We also use the comma notation 

u. 1(x,y,z) =f 1(x,y,z)i + g_ 1(x,y,z)j + h, 1(x,y,z)k. 

The formulas for partial derivatives with respect to y and z are obvious 
analogs. 

EXAMPLE I. Find cu/ex and c 2uf cxcy if 

u(x,y) = (x 2 + 2xy)i +(I + x 2 - y 2)j + (x3 - xy2)k. 

SOLUTION. We have 

~; = 2(x + y)i + 2xj + (3x2 - y 2)k, 

02u = 2i + 0. j - 2yk = 2i - 2yk. 
cxcy 

The formulas for the partial derivatives of the scalar and cross products 
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of vector functions are similar to those for vector functions of variable. 
(See Chapter 2. Sections 6 and 7.) For example, if u and v are differentiable 
functions, then the reader may verify that 

c CV OU 
-(u·v) = u·-+-·v 
ox ox ex ' 

0 OV OU 
;;-(U X v) = U X -;;--- + ;;--- X V. 
uX OX uX 

EXAMPLE 2. Given the vector functions 

u = (ex cos y)i + (e1 sin z)j + (e •sin x)k 

and 

v =(cos z)i + (eix siny)j + e'k. 

Find o(u · v)/oy. Decide whether the vectors ou/oz and ov/ox are perpendicular 
at the point P0 : x = I, y = 0, z = n/4. 

SOLUTION. We have 

OU ( . )" ( . )' ;;--- = -exsmy 1 + eYsmz J, 
uy 

a av ou 
-(u·v) = u·- +-·v 
oy oy oy 

av = e2x cos yj, 
oy 

= e2x+ycosysinz - exsinycosz + e2x+ 1 sinysinz. 

Computing the derivatives 

~~ = (eY cos z)j + (e' sin x)k, !; = (2e2 x siny)j, 

we find 

OU OV 2 2x+y . -·- = e smycosz. 
oz ox 

At P0 (1, 0, n/4), this scalar product is zero, and so the vectors are orthogonal 
there. 

The integration of a vector function is given in terms of the integration of 
each of its components. If R is a region and v is a vector function as in (I') 
with domain containing R, then the integral 

JJ v(x,y)dA 

R 

is defined by the formula 
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We see that the definite integral of a vector function is a vector. Similarly, 
triple integrals and line integrals of a vector function are defined in terms of 
the corresponding integrals of each of its components. 

The parametric equations 

x =J(t), y=g(l), as.tsb (3) 

represent a curve in the xy plane. Similarly, the equations 

x = /(t), y = g(t), z = h(t), a s; I s; b 

represent a curve in three-space. These curves may also be represented by 
vector functions. A vector is an equivalence class of directed line segments. 
If we consider the particular directed line segment which has its base at 
the origin, then the vector function 

v(t) = /(l)i + g(t)j (4) 

is a characterization of the curve given by (3). The heads of the directed line 
segments representing v(l) which have their base at the origin trace out the 
curve (3). This geometric interpretation was discussed in some detail in the 
study of vector functions of one variable. 

The parametric equations 

x =f(s, t), Y = g(s, I), z = h(s, t) (5) 

represent a surface in three-space. The vector function 

v(s, t) = j(s, t)i + g(s, t)j + h(s, t)k 

characterizes the same surface when we consider the directed line segments 
with base at the origin which represent v. The heads of these directed line 
segments form the surface (5). 

EXAMPLE 3. Sketch the surface represented by the vector function 

v(s,t) = (scost)i + (ssint)j + (Jjs)k, s ~ 0, 0 st s; 2x. 

SOLUTION. We write 

x = scost, y = ssint, z = J3s. 
Squaring and adding to eliminate the parameters sand t, we find 

3(x2 + y2) = z2, 

which we recognize as the equation of a cone. The domain of the vector 
function and the surface represented by it are shown in Fig. 9-l(a) and (b). 
Since s ~ 0, t~e given surface is the upper half of the cone only. 
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x 

(a) 

PROBLEMS 

In each of Problems I through 9, find the partial derivatives as indicated. 

I. u(x,y) = (x2 + 2xy)i + (x3 - y3)j; 
OU OU 
ox' oy 

OU OU 
ox' oy 

2. u(x,y) = (xcosy)i + (ysinx)j; 

3() x. y. zk · ux,y,z =-2--21+-2--2J+-2--2; 
x+y x+z x+y 

4. u(x,y,z) = (ex1logz)i + (eY'logx)j; 
OU cu 
cy ' oz 

5. v(s,1) = (scost)i + (1sins)j + (12 - s2)k; 
CV 
-;;---. 
OS 

6. v(s, I)= (e' tan l)i + (e-'cos 1)j; 

7. v(r,s,t) = (s 2 -12)i + (12 - r2)j + (r2 -s2)k; 

OU OU 
OX ' oz 

OV 
01 

o2v o2v 
ores. OSOi 

8. u(x,y) = (x + y)i + x2j + (y - x)k; :x (ju(x,y)j2) 

9. u(x,y,z) = (sinxy)i + (cosyz)j + (sinxz)k; ·~· (ju(x,y, z)j2) 
uy 

10. Find o(u · v)/ox if 

11. Find o(u · v)/oy if 

12. Find o(u x v)/ox if 

u = (xy)i + (x - y)j + (x + y)k, 

v = (2x - y)i - xj + (x + 2y)k. 

u = log(x + y)i + (x - y)j + log(x - y)k, 

v = tr•j + (x + y)j + log(x + y)k. 

Fig. 9-1 
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13. Find o(u x v)/01 if 

u = (I + x)i + (y + 2)j + (x + y)k, 

v = 2i + (3 - x + y)j + (x - 2y)k. 

u = (e'coss)i + (e-'sins)j + e'k, 

v = (e-'sin2s)i + (e'coss)j + 2k. 

14. Given the vector functions 

u(x,y) = (x + y)i + (2x - y)j, 

v(x,y) = (x2 - y)I + (x + 2y2)j. 

a) At what values of x and y are ou/ox and ov/ox orthogonal? 
b) At what values of x and y are ou/oy and ov/oy orthogonal? 
c) At what values of x and y do both (a) and (b) hold? 

15. Given the vector functions 

u(x,y) = (x - 2y)i + (x - y)j + (x + 2y)k, 

v(x,y) = (2x - y)i + (x + y)j + (x + 3y)k. 

Find the values of x and y such that 

U·(U.1XV.2)=0. 

16. Derive a formula for 

j) 
-[u·(v x w)] 
OX 

in terms of ou/ox, ov/ox, and ow/ox. 

17. Describe the surface represented by the vector function 

v(s, I) = (3 cos scos l)i + (3 cos s sin l)j + (3 sin s)k 

for { (s, 1); 0 S s S (n/2), 0 S I S 2n }. 

18. Describe the surface represented by the vector function 

v(s, 1) = (s + l)i + (s + l)j + (s1)k 

for {(s,1); -<Xi< s <<Xi, -oo < / < oo}. 

19. Describe the surface represented by the vector function 

v(s, 1) = (2scos l)i + (3ssin l)j + s2 k 

for { (s, 1) ; 0 s s < oc, 0 s 1 s 2n}. 

20. Show that if 

( ) _ w(x,y, z) 
v x,y,z - , 

F(x,y,z) 
then 

v· _ Fw. 1 - wF 1 
.I - F2 

459 
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2. Vector and Scalar Fields. Directional Derivative 
and Gradient 

Vector functions occur frequently in applications. The vector velocity of the 
wind in the atmosphere is an example of a vector function. Other examples 
of vector functions are the vector velocity of the particles of fluid in a stream 
and the vector force of gravity exerted by the earth on an object in space. 

We may represent a vector function graphically. At each point P of the 
domain D of a function v(P), we construct the directed line segment of 
v(P) having its base at P. If D is a plane region and if the range of v(P) is 
a collection of vectors in the plane, the graphical representation appears as 
in Fig. 9-2. The vectors in Fig. 9-2 form a field of vectors. More precisely, 
vector field is a synonym for vector function. In analogy, an ordinary func
tion f which assigns a real number to each point of a region in the plane 
or in space is called a scalar field or a scalar function. 

In Section I we defined vector fields in terms of the unit vectors i, j, and 
k. In other words, we introduced a rectangular coordinate system and used 
this system as a basis for various definitions. Many of the most important 
properties of vector fields are geometric in character and so are independent 
of any coordinate system. Therefore. whenever it is possible we shall define 
properties of vector functions without reference to a particular coordinate 
system. For example, in Section l we defined the continuity of a vector 
function v(x,y) given by 

v(x,y) = j(x,y)i + g(x,y)j 

in terms of the continuity off and g. It is also possible to proceed without 
such a reference to coordinate vectors i and j. Suppose that P0 is a point in 
the domain D of a vector field v(P). Then we say that v(P) is continuous at 
point P0 if and only if for every e > 0 there is a 6 > 0 such that 

jv(P) - v(P0 )j < c 

whenever 0 < jPP0 1 < 6. Observe that this definition is valid if the domain 
of v(P) is a two- or three-dimensional region. Furthermore, since 

lv(P) - v(P0 )I 
is the length of the vector v(P) - v(P0 ), the definition is applicable for vector 
fields which have either a two- or a three-dimensional range. 

It is possible to define the definite integral of a scalar or vector field without 

--:::z~--
.--::.- ~ ---.,,--- P--" Fig. 9-2 
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a 

~ 
Fig. 9-3 P 

reference to a coordinate system. If R is the region of integration, we sub
divide R into a number of smaller regions R1 , R 2 , ••• , R •. Let Pi be any 
point in Ri. Then we form the sums 

• • L f(PJA(Ri) and L v(PJA(RJ, 
i~l i=l 

where A(Ri) is the area (or volume if R is in three-space) of the region Ri. 
If the above expressions approach limits under the usual hypotheses imposed 
for the definition of integrals, then we say the integral exists. The first sum 
above will approach a numerical limit, while the limit of the second sum will 
be a vector. Note that no reference to a particular coordinate system is 
required in these definitions. 

Suppose that I is a scalar field, that P is a point in the domain of j; and 
that a is a unit vector. We define the directional derivative of/in the direction 
of a at the point P by 

lim /(Q) - j(P). 
h-O /i 

where Q is a point at distance h from P in the direction of a. The relation 
between P and Q is shown in Fig. 9-3. We denote this directional derivative 
by 

D.J(P). 

If we hold a and I fixed and consider P as variable, then D1 j(P) defines a 
scalar field which is analogous to a partial derivative. In fact if we introduce 
a rectangular (x,y,z)-coordinate system and select a= i, the directional 
derivative is i7/i:x. Similarly, choosing a= j and a= k correspond to partial 
derivatives with respect toy and z, respectively. 

Definition. A scalar field f is continuously differentiable on an open set !?) 

if and only if /and D1 f are continuous on !Z for each fixed a. 

The definition of directional derivative of a vector field is analogous to 
that of a scalar field. 

Definition. The directional derivative, D1 w(P), of a vector field w in the 
direction of a at the point P is given by 

D (p) _ 1. w(Q) - w(P) 
.w - 1m h , 

h-0 
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where the relation between Q and Pis that shown in Fig. 9-3. We say that 
w is continuously differentiable on[/ if and only if wand D. ware continuous 
on f/ for every fixed a. 

REMARKS. For fixed a and w, the directional derivative D. w defines a vector 
field on ft. If a rectangular (x,_r.=)-coordinate system is introduced, then 
selecting a equal to i. j, and k. in turn, gives the partial derivatives of w with 
respect to x. y. and =· respectively. The computation of these derivatives 
was discussed in Section I. 

While it is convenient to define properties of scalar and vector fields 
without reference to any coordinate axes, it is usually desirable to use some 
appropriate coordinate system when specific computations are to be made. 
Suppose that f is a scalar field in space and that a rectangular (x.y, .:)
coordinate system r is introduced. We use the symbol f to denote a scalar 
field without reference to any coordinate system and the symbol}; to denote 
the same scalar field in the r-coordinate system. Then with/there is associated 
the unique function}; defined by the equations 

/lP) = f[r(xp.)"p.=r>] =f;(xp.yp.=p) 

where (x1 •• y1 •• =1,) are the r-coordinates of Pin three-space. In general, two 
different coordinate systems r 1 and r2 will associate two different functions 
.1;, and/;, to the same scalar fieldf 

We shall now derive an expression for the directional derivative D.f in 
terms of an (x.y. =>-coordinate system r. Using the corresponding mutually 
orthogonal unit vectors i. j. k, the unit vector a has the representation 

a = i.i + µj + I' k. i.2 + 112 + 1'2 = I. 
If the r-coordinates of Pare (xp.yp. =r> and those of Qare (xp + iJ1,yp + µh, 
.:p + vh). then the directional derivative is given by 

D.J(P) =Jim J;(.'Cp + i.h,yp + µh,.:p +I'll) - f;(xp.yp.=p), (I) 
~o h 

where}; is the coordinate function in R 3 corresponding to the scalar field/ 
Recalling the definition of directional derivative as defined on page 218 of 
Chapter 4. we find 

D1 f(P) = i..f;_«xp,J'p.=r) + µ.f;).(xp,J"p,Zp) + ij;=(xp.yp,Zp). (2) 

From this formula. we see that a function/ is continuously differentiable if 
and only if its corresponding function with respect to every coordinate 
system is continuously differentiable. 

A similar discussion holds for vector fields. If u is a vector field in space, 
then in each coordinate system there corresponds a triple of functions. More 
precisely, if (x.y, z) is a rectangular coordinate system and i, j, k are the 
customary unit vectors. then the components of u with respect to this system 
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are defined by 

u(P) =f~(Xp,J'p,Zp)i + g,(xp.yp.Zp)j + h,(xp,yp,Zp)k. 

The directional derivative D0 u(P) in this coordinate system is 

D1 u(P) = (D1 J;)i + (D1 g,)j + (D0 h,)k. 

The directional derivatives of the coordinate functions on the right may be 
calculated according to formula (2). 

While it is important to distinguish between a scalar field/and its corre
sponding function}; given in a particular coordinate system, we shall usually, 
drop the r notation. Since almost all computational work is done in some 
coordinate system, there is little danger of confusion. 

EXAMPLE 1. Given the vector field 

u(P) = (x 2 - y + .:)i + (2y - 3z)j + (x + z)k 

and the unit vector 

a = ~ (2i - j + k). 
y6 

Find D1 u(P). 

SOLUTION. We have 

D0 (x 2 - y + z) = ~(2x) - - 1 (-1) + ~(!) = ~(4x + 2), 
-v6 ..;6 "'6 ,,;6 

D1 (2r - 3z) = 2_(0) - ~(2) + ~(-3) = -1=, 
. "\/6 y6 ~6 ~6 

2 1 1 3 
D0 (x + z) = --=0) - --=(0) + ---=0) = ---=· 

"6 v6 v6 v6 
Therefore 

D0 u(P)=- 1_(4x+2)i- 5_j+ 3_k. 
'V6 ..,;6 v6 

Letj(P) be a scalar field, let r: (x,y, z) be a rectangular coordinate system, 
and let a be a unit vector. We define the vector field 

v(P) = f;x(Xp.J'p,Zp)i + f;y(Xp,J'p,Zp)j + f;:(Xp,Jp, Zp)k, (3) 

where J;, i, j, and k have the significance described above. Then according 
to the definition of scalar product, formula (2) may be written 

D,./(P) = v(P) ·a. (4) 

We now show that the vector v(P), as given in (4), is unique. 
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Theorem 1. Suppose that 
v·a=w·a 

for every unit vector a (in the plane or in space). Then v = w. 

PROOF. The equation v ·a= w ·a is equivalent to 

(v - w)-a = 0. (5) 

If v - w ~ 0, we select a to be a unit vector in the direction of v - w. Then 
(5) would not hold. 

Defmition. The unique vectorv(P) determined by Eq. ( 4) is called the gradient 
of/ at P. We denote this vector by VJ, which we read "delf" Then equation 
(4) becomes 

D1 J(P) =VJ-a (6) 

for any unit vector a. Since D1 J(P) and a are defined without reference to a 
coordinate system, the vector VJ (which is uniquely determined) has a 
significance independent of coordinates. 

To calculate Vfwhen a rectangular (x, y, z)-system is introduced, we simply 
use the formula 

v J = J;) + J;yj + ;;,k. 
The geometric significance of v f is easily seen with reference to the surface 
f(x, y, z) = const. If P is a point on the surface, the vector Vf(P), 
whenever it is not zero, is perpendicular to the surface. To see this, observe 
that if a is any vector tangent to the surface /, then D.f = 0 since f is 
constant. Then (6) states that v f is perpendicular to a, i.e., perpendicular to 
the surface. To find a unit vector normal to a surface f(P) = const, we 
select 

evaluated at the desired point. 

n= VJ 
IV/I 

EXAMPLE 2. Given the function J(x,y, z) = 3x2 - y 2 + 2z2 , find VJ and a 
unit normal to the surface f(x, y, z) = 17 at the point (I, - 2, 3). 

SOLUTION. We have 

Vf =/,xi + /,yj + J;,k = 6xi - 2yj + 4zk, 

VJ(I, -2,3) = 6i + 4j + 12k = 2(3i + 2j + 6k), 

n = ±~(3i + 2j + 6k). 

The proof of the next theorem is left to the reader. 
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Theorem 2. Suppose that j; g, and u are continuously differentiable scalar 
fields. Then 

V(f+ g) = Vf+ Vg, V(jg) =fVg + gVf I· 
v(~)=:2 (gVf-fVg) if. g#O 

Vf(u) = f'(u)Vu. 

PROBLEMS 

In each of Problems I through 6, find Vfand D.fat P0 (x0 ,y0 ,z0 ) as given. 

I. f(x,y, z) = x 2 - y 2 + 2yz + 2z2, P0(2, -1, I), 

a = - I (2i - j + 3k) 
~14 

2. f =ex cosy+ xz 2, P0 (0, n/2, I), a= ~(3i + 2j - 6k) 

3. f = 2 ;"< 2 312 , P0 (2,2, I), a= !(i - 2j + 2k) 
(x + y + z) 

4. f = log (x2 + y2), P0 (3, 4, 2), a= ~(6i - 3j - 2k) 

5. f = tanx + log(y + z), P0 (n/4, I, I), a= !(2i + 2j - k) 

6. /= ex'cosz + e''sinx, P0 (n/6,0,n/3), a= ~(Ji+ 2j- 2k) 
"17 

In Problems 7 through 9, find D. u at P0 (x0 ,y0 , z0 ) as given. 

7. u = (x 2 + y 2)i + 2xyj + 3xzk, P0 (1,0,2), a= ~(i + 4j + 2k) 
v21 

8 u=-x-i+-Y-j+-z-k P0 (1,l,2), 
· xi + Yi Yi + z2 xi + z2 • 

a = v~(2i + j - k) 

9. u =cos (xy)i + sin (z2)j + 2k, P0 (0, n/4, 0), a = ,!,,,(2i + Sk) 
-.;29 

10. Find the unit vector a such that D.f(P0 ) is a maximum, given that 

f = 2x2 - 3y2 + z2 , P0 =(2,1,3). 

I I. Find the unit vector a such that D.f(P0 ) is a minimum, given that 

f= xyz, P0 =(I, -3, -2). 

12. Prove the laws stated in Eqs. (7). [Hint. Introduce a coordinate system.] 

13. Prove the law (8). 

(7) 

(8) 
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14. Suppose that 0 is the origin of coordinates, Pis a point, and r is the vector having 
the directed line segment OP as a representative. We writer= v(OP). Show that 

Vf(lrJ> = ~f'<lrl)r. 

In each of Problems 15 through 20, find the unit normal to the surface at the given 
point P0 . 

15. x 2 - 2'1"y + 2y2 - =2 = 9, P0 = (2, -1, I) 

16. z=x2 -y2 , P0 =(3,-2,5) 

17. z2 = x 2 + y 2 , P0 = (-3,4, 5) 

18. z = e·' siny, P0 = (I. n/2, e) 

19. z = arctanx + log(I + y), 

20. x 3 + y3 + z3 - 3xyz = 14, 

P0 ( I, 0, n/4) 

P0 (2, I, -1) 

3. The Divergence of a Vector Field 

Suppose t is a rectangular coordinate system in space and i, j, and k are the 
corresponding orthogonal unit vectors. For any scalar function j; we may 
regard the gradient, V, as an operator (i.e., a transformation) which takes 
scalar fields into vector fields. Jn the coordinate system above, we write V 
in the symbolic form 

.., c. c . ck 
v =~•+-;-J+-;;- . 

<-X <-Y CZ 

If we make the convention that V/has the meaning 

..,r_of.+cf. cfk 
YJ--1 -J+-Cx iJy CZ , 

we see that V/is the gradient off: 
Suppose, now, that a vector field w in space has the representation 

( 1) 

w(P) = u(xp,yp,Zp)i + L'(Xp,yp,Zp)j + w(xp.)"p,Zp)k, (2) 

in the coordinate system above. We form the inner product of the symbolic 
vector V and w, denoted by V · w, to get 

vu 01: ow 
V·w=-+-+-. 

ex iJy CZ 
(3) 

The fact that the operator V has a significance independent of the coordinates 
suggests that the expression on the right in (3) might have such a significance. 
We show this to be true in Theorem 3 below. 
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0 
Fig. 9-4 

Lemma. Suppose that A is a co111inuousfunction defined in a region Gin R3 , 

and that 

ff f V(x,y,z)A(x,y,z)dA = 0 

G 

for all co11linuously differentiable* functions V defined on G which rnnish 
outside some ball contained in G. (The location and size of the ball may depend 
on U.) Then A(x,y,z) = 0 in G. 

PROOF. Let P0 (x0 ,y0 ,z0 ) be a point of G and suppose A(x0 ,y0 ,z0 ) # 0. We 
shall reach a contradiction. We may assume that A(x0 ,y0 ,z0 ) > O; other
wise we would replace A by -A. Since A is continuous in G, there is a closed 
ball with center at P0 and radius c) > 0 which is contained in G and such 
that A(x,y,z) > 0 in this ball. We denote this ball by B(P0 ,6). We now 
define the function </> by the formula 

for 0::;; s::;; !. 
for!::;; s::;; I, 

for s ~ I. 

We observe that </>(1} = I, </>(I)= 0, and </>'0) =</>'(I)= 0, and so </> is 
continuously differentiable for all values of s. See Fig. 9-4. We choose V(P) 
by setting V(P) = </>(JPP0 J/6). Then Vis continuously differentiable in G and 

VA> 0 in B(P0 ,6). 

Also, we have VA = 0 outside B(P0 , 6). We conclude that 

f ff VAdV= fff VAdV>O, 
G BIP.,.b) 

which contradicts the hypotheses. 

Theorem 3. Suppose that w is a cominuously differentiable rector field defined 
in a region G in three-space. 

* We recall that a function is continuously differentiable if all first partial derivatives are con
tinuous. 
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a) Then there exists a unique continuous scalar field A defined in G such that 

fff UAdV= - f ff VU·wdV (4) 
G G 

for every continuously differentiable scalar field U which vanishes outside some 
ball contained in G. 
b) Consider a rectangular coordinate system with i, j, and k corresponding 
orthogonal unit vectors. If the vector field w in part (a) is given by 

w(x,y,z) = u(x,y,z)i + i-(x,y,z)j + w(x,y,z)k, 

then the scalar field A in (4) is given by 

OU CV 011· 
A(x,y,z) = ~ +-;:;--- + ~-

ux oy uz 

(5) 

(6) 

PROOF. Suppose w is given by (5) in a rectangular coordinate system. We 
define A by the right side of (6). We must show that (4) holds and that A 
is unique. 

Let B(P0 , b) be a ball with center at P0 and radius {J which together with 
its boundary is entirely in G. Suppose that U is any continuously differenti
able scalar field on G which vanishes outside B(P0 , b). Then (4) is equivalent 
to 

ff f (VA+ VU·w)dV= o- ff f (VA+ VU·w)dV= 0. (7) 

G ~~~ 

In terms of the rectangular coordinate system, we have 

VA +VU·w= U -+-+- +-u+-v+- w ( OU or; ow) cu oU oU 
ox oy oz ox oy oz 

= ! (Vu)+ ~ (Uv) + ~ (Uw). (8) 
ux oy uz 

We now integrate the first term on the right in (8). Denoting the coordinates 
of P0 by (x0 ,y0 , z0 ), we find 

fff 0 _ ff {fxo+•·d2-<Y-Yo>2-<•-•0>2 0 } 
-;;-(Uu)dVxyz - ~(Uu)dx dAY• 
~ ~ x0-"d2-(y-yo>2-<•-•o>2 (9) 

8(P0 ,d) C(y0 ,z0 ;d) 

where C(.J!o, z0 ; b) is the circular disk in the yz-plane which has center at 
(y0 , z0 ) and radius b. See Fig. 9-5. Since U = 0 on the boundary of B(P0 , b), 
that is, when x = x0 ± Jb 2 - (y - y0 ) 2 - (z - z0 ) 2 , when we perform the 
x-integration in (9) and substitute the limits, the result is zero. In a similar 
way, when we integrate the second and third terms on the right in (8), we 
get zero. We conclude that (4) holds for every scalar field U with the required 
properties. To show that A is unique, we assume there is another continuous 
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Fig. 9-5 

scalar field A' which satisfies (4). Then we obtain 

ff f U(A -A')dV=O 

G 
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for every U which satisfies the conditions of the Lemma. Hence A = A· 
in G and the proof is complete. 

Definition. If w is a continuously differentiable vector field in a region in 
three-space. we define the divergence of w as the scalar field A given in 
Theorem 3. We denote the divergence by 

divw or V·w. 

It is clear from Theorem 3 that div w is independent of the coordinate system. 
The formula for div w in a rectangular coordinate system in which 

w = u(x.y. :)i + r(x.y. :)j + 1r(x. y. :)k 

is given by 

. cu er cir 
div w = -;;-- + -;;-- + -.- . 

ex cy c: 

The proof of the following simple properties of the divergence operator is 
left to the reader. 

Theorem 4. If u and v are rector fields and f is a scalar field, all continuously 
differentiable. then 

a) div(u + v) = divu + divv. 
b) div(ju) =/divu + V/·u. 

REMARKS. (i) The results of this section can be extended to vectors and 
scalars in n dimensional Euclidean space. (ii) The divergence operator, a 
differential operator which takes vector fields into scalar fields, has an 
important geometric interpretation. We exhibit this fact in the Divergence 



470 9. Vector Field Theory 

Theorem which is discussed in Section 8 of Chapter IO. The divergence 
operator is also useful for many problems in mechanics, fluid flow, and 
electromagnetism. We give an application to mechanics in Example 2 below, 
and we develop the connection of the divergence operator with fluid flow 
problems in Section 8 of Chapter IO. 

EXAMPLE I. Given the vector 

x+z ·+ y-x ·+ z-y k 
W= I J 2 , xi + Yi + 2 2 xz + yz + 2 2 xz + yz + z 

find div w. Evaluate div w at P0 (1, 0, -2). 

SOLUTION. We have 

!___ ( x + z ) = (x2 + y 2 + z2) - (x + z)(2x) = y 2 + z2 -_x2 - 2xz 
ex x2 + y2 + z2 (x2 + y2 + z2)2 (x2 + y2 + z2)2 ' 

c ( y - x ) x 2 + z2 - y 2 + 2xy 
cy x2 + )'2 + z2 = (x2 + y2 + z2)2 ' 

i} ( z - y ) x 2 + y 2 - z2 + 2yz 
oz xi + Yi + 2 2 = (xl+ Yi + 2 2)2 · 

Therefore 

. x 2 + y 2 + z2 + 2(xy - xz + yz) 
d1vw= --

(xz +Yi + 2 2)2 

At P0 we obtain div w = 2/5. 

EXAMPLE 2. Suppose R is the radius of the earth, 0 is its center, and g is the 
acceleration due to gravity at the surface of the earth. If P is a point in 
space near the surface, we denote by r the directed line segment OP. The 
length lrl of the vector r we denote simply by r. From classical physics it is 
known that the vector field v(P) due to gravity (called the gravitational field 
of the earth) is given (approximately) by the equation 

Rz 
v(P) = - 9

3 r. 
r 

Show that for r > R, we have div v(P) = 0. 

SOLUTION. A computation yields 

. d. (-gR2 ) d1vv = 1v -,-3 -r . 

and using formula (b) of Theorem 4, we find 
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- Ri (- Ri) divv=+divr+V + ·r 

= -gR2 [,
1
3 div r +:, (,13) Vr · r] 

= -gR2 (r- 3 divr-3r-4 Vr·r). 

Introducing a rectangular (x,y,z)-system with origin at 0, we write 

r = xi + yj + zk, 

from which we obtain div r = 3. Also, the length r of r is given by 

r = " x2 + y2 + z2' 

and so 

Hence 

and 

We conclude that 

er y 
cy =-;: 

er z 
-=-
Cz r 

Vr =!(xi+ yj + zk) = ! 
r r 

r·r 
Vr·r=-=r. 

r 
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The force field in Example 2 is illustrative of a large class of vector fields 
which occur in mechanics, electrostatics, fluid dynamics, and so forth. A 
vector field v(P) is called conservative if there exists a scalar function u(P) 
of which v is the gradient. That is, if there is a function u such that 

v(P) =Vu, 

we say that u is the potential function which corresponds to the conservative 
force field v. In fact, the potential function u which yields the force field in 
Example 2 above is 

Ri 
u(P) =fl_. 

r 

A simple computation shows that 

Vu=gR 2V - = -~Vr= -~r=v. (1) R 2 Ri 
r r r 

Since the result of Example 2 shows that V · v = 0, we conclude that 
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V ·Vu= div Vu= 0. (10) 

Equation (IO) is known as Laplace's equation and is often written 

V2u=0 or Au=O. 

The latter notation is used by mathematicians and the former by scientists 
in related fields. It is clear that if v = Vu with div v = 0, then u satisfies 
Laplace's equation, and conversely. 

In any rectangular coordinate system we may write 

V = OU . + cu . + OU k 
U !:> I !:> J !:> , ux (J)' uz 

and, therefore, the Laplacian has the form 

o2u iJ 2u o2u 
Au = V 2u = V ·Vu = ox2 + oy2 + oz2 . ( 11) 

The Laplacian is a differential operator from scalar fields to scalar fields. 
The next corollary is an immediate consequence of Theorem 3. 

Corollary. If u and Vu are continuously differentiable and if (x,y,z) and 
(x',y',z') are two rectangular coordinate systems, then 

o2u c2u iJ 2u o2u' o 2u' c 2u' --+----+-=-+-+-ox2 oy2 cz2 ox' 2 oy' 2 oz' 2 • 

That is, the form of the Laplace operator ( 11) is the same in every rectangular 
coordinate system. 

EXAMPLE 3. Let r(P) be the vector from the origin 0 to a point P in the xy 
plane. Definer= lrl. Show that the plane scalar field 

u(P) = logr 

satisfies the Laplace equation for r > 0. 

SOLUTION. We have 

I I 
Vu= V(logr) = -V(r) = 2 r. 

r r 

Therefore 

V ·Vu =div Vu = div(,12 r) = r12 div r - 2r- 3 Vr · r. 

Since r is a vector in the plane, we have 

r =xi+ yj, 

and so 
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divr = 2 

Therefore 

PROBLEMS 

and ..., x. r. r 
vr=-1+'-J=-. 

r r r 

In each of Problems 1 through 10. find div v in the given coordinate system. 

I. v = (a 11 x +a. 2.r + a13=)i + (a21X + a22Y + a23 z)j 
+ (031X + 032.\" + 033=)k 

2. v = (x2 _ .r2)i + (xi _ =z)j + (.r2 _ =2)k 

3. V = (X 2 + l)j + (_r2 - l)j + =2k 

4. v = 4x=i - 2.r=j + (2x2 - y 2 - =2)k 

5. v = e·"(cos.r=i + siny=j - k) 

6. v = ylog(l + x)i + =log(l + y)j + xlog(l + z)k 

7. v = Vu. u = x 3 - 3xy2 

8. ,. =Vu. u = a 11 x 2 + a22 y2 + a33 z2 + 2a12 xy + 2a13 xz + 2a2.1YZ 

9. v=Vu. u=e'cosy+ercos=+e=cosx 

10. v = 2xi + 3yj + (~u)k, where u = x3 + y3 + =3 
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In each of Problems 11 through 14, find divv, assuming that r =xi+ yj + zk and 
that r = lrl. 
11. v = r;r", n > 0 

12. v = f(r)r 

13. v = Vu, u = c/>(r) 

14. l = Vu. u = <i>(x + .r + => 

15. Prove Theorem 4. 

16. Find div(jVg- gVf) 

17. Show that div (a x r) = 0 for any constant vector a. 

18. Show that there is a vector w such that 

div(vxa)=w·a 

for any constant vector a. 

19. Suppose that a rigid body is rotating about the z axis with an angular velocity w. 
Show that the velocity of a particle of the body which is at position P(x,y,z) at 
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time t is given by 

v =wk x r. 

20. a) Compute the quantity du in cylindrical coordinates given by 

x = rcosO, y = rsinO, Z= z. 

[Hint. Start with formula (11) and use the Chain Rule.] 
b) Compute du in spherical coordinates: 

x = pcosOsin<f>, y = psinOsin<f>, 

4. The Curl of a Vector Field 

z =µcos</>. 

The cross or vector product of two vectors, as defined in Chapter 2, page 67, 
changes in sign when we shift from a right-handed system of coordinates to 
a left-handed one. Three-dimensional space is said to have an orientation 
when one of these two systems of coordinates is introduced. We shall use 
the term positive orientation for a right-handed coordinate system and 
negative orientation for a left-handed one.* 

If i, j, k and i', j', k' are two sets of mutually perpendicular unit vectors, 
it can be shown that there is a relation between them of the form 

i = C11i' + C12f + C13k', 

j = C21i' + C22f + C23k', 

k = C3 1i' + C32j' + C33k', 

where C = (c;) is a matrix with det C = ±I. If both bases are positively 
oriented or if both are negatively oriented, then det C = +I. If one system 
is positively oriented and the other negatively oriented, then det C = - I. 
We shall always consider positively oriented systems in three-space and, 
when discussing transformations from one system to another, we shall 
assume that the new system has the same orientation as the old. 

Suppose that v is a continuously differentiable vector field in space. In 
the last section we saw that the differential operator div v, which we also 
write V · v, is independent of the axes chosen and so defines a scalar field. It 
might be expected-and indeed we shall show it to be the case-that the 
f~rmal expression V x v defines a vector field. 

• It can be shown that it is impossible for a right-handed triple of basis vectors i, j, k to be 
deformed continuously into a left-handed one without the vectors becoming linearly dependent 
at some time during the process. Furthermore, it can be shown that any triple of linearly in
dependent vectors can be deformed continuously (always remaining linearly independent in 
the process) into either a right-handed set or a left-handed set and, in the light of the preceding 
sentence, not both. 
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Let i. j. k be an orthogonal set of unit vectors (positively oriented, of 
course). and let u and v be two vector fields. Then, in terms of the basis 
vectors. we may write 

U =Iii i + ll2j + ll3k. 

v=rii+r2j+r3k. 

We recall (Chapter 2. page 68) that the cross product u x vis given by 

u xv= (1121'3 - !131'2)i + (!131'i - llil'3)j + (llil'2 - ll21'i)k. (I) 

This formula may be written more compactly in the symbolic form 

k 

(2) 

where it is understood that the determinant is expanded in minors according 
to the first row. Note that (I) and (2) are identical. With the vector operator 
V given by 

..., ?. ?. ck 
v =-::-•+-::-J+-::-. 

ex cy c; 

we define the vector V x ,. by the symbolic determinant 

k 

v ? ? ? 
x V= ex ?y [; 

(3) 

Since V x v is defined in terms of a particular coordinate system. It 1s 
essential to show that V x ,. is a true vector field (if orientation is preserved). 

For any three vectors b. c. d. it is not hard to establish the identity 

(b x c) · d = b -(c x d). (4) 

Csing the usual definitions. b =bi i + b2 j + b3 k, etc., the reader may verify 
that 

bi b2 b3 
(b X c)-d= Ci C2 C3 

di di d3 

Identity (4) is now an immediate consequence of the properties of determi
nants. 

The next theorem establishes the invariance of(3) under a change of basis. 
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Theorem S. Suppose that vis a continuously differentiable vector field. Then 
there exists a unique continuous vector field w such that 

V·(v x a)= w·a 

for every constant vector a. In fact, ij"i, j, k is an orthonormal basis, then 

w=Vxv 

where the vector V x v is given by (3). 

PROOF. Let i, j, k be an orthonormal basis. We define a= a 1 i + a 2 j + a 3k. 
Then 

v x a= (v 2a3 - v3a2)i + (v3a 1 - v1a 3)j + (v 1a2 - v2a 1)k. 

The formula for the divergence yields 

or 

d. ( ) CV2 CV3 CV3 cv, cv. CV2 1v v x a =a3--a2 -+a1--a3 -+a2--a1 -
cx ex cy cy CZ CZ 

V ( ) ( CV3 CV2) (Ct'1 Ct"3) (CV2 cv,) · v x a = - - - a1 + -~- - - a2 + - - - a3 • 
oy CZ CZ ex ex cy 

Taking into account the identity (3) and the definition ofV x v, we conclude 
that the last equation states the result of the theorem. The uniqueness of 
w follows from Theorem I. 

Definition. For any vector field v we define curl v by the formula 

curlv = V xv, 

where V x v is given by (3). 

EXAMPLE I. Given the vector field 

v = (x2 - y 2 + 2xz)i + (xz - xy + yz)j + (z 2 + x2)k, 

find curlv. Show that the vectors given by curlv evaluated at P0 (1,2, -3) 
and P 1 (2, 3, 12) are orthogonal. 

Sou;TJON. We have 

curlv = 

j 

c 
cy 

k 

c 
CZ 

x 2 - y2 + 2xz xz - xy + yz z2 + x 2 

= -(x + y)i + (z + y)k. 

At P0 (1,2, -3), we find curlv = -3i - k = v0 • At P 1(2,3, 12) we find 
curl v = -Si + I 5k = v 1 • Since v0 ·v1 = 0, the vectors are orthogonal. 
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The proofs of the following identities are left to the reader. 

Theorem 6. Suppose that u, v, and fare cominuously differentiable fields. Then 

a) curl (u + v) = curl u + curl v. 
b) curl(ju) =fcurlu + Vf x u. 
c) div(u xv)= v·curlu - u·curlv. 
d) lfVf is a continuously differentiable rector field. then 

curl Vf= 0. 

e) If v is a f\rice com i1111ousely differentiable rector field. then 

div curl v = 0. 

ExA~PLE 2. Given the scalar field/= x2 + y 2 + : 2 and the vector field 

u = (xi + y2)i + (y2 + :2)j + (:2 + x2)k, 

compute curl (ju). 

Sou..:110N. We use formula (b) of Theorem 6 and the definition of curl as 
given in (3). Then 

We have 

A computation yields 

curl(ju) 

curl u = - 2(:i + xj + yk), 

Vf = 2(xi + yj + :k). 

curl (ju) =/curl u + V f x u. 

= -2(x2 + y 2 + : 2)(=i + xj + yk) + 2x 2y 

k 

2= 
x2 + .r2 y2 + =2 ;:2 + x2 

= -2[:(x2 + 2y2 + 2=2) - y(x2 + =2)]i 

- 2[x(2x 2 + y 2 + 2:2 ) - :(x2 + y 2)]j 

- 2[y(2x2 + 2y2 + :2) - x(y2 + :2) ]k. 

The curl of a vector is intimately connected with the notion of exact 
differential. We repeat the definition of exact differential as given in Chapter 
4. page 275. Suppose that P(x, y. =>. Q(x,y, z) and R(X,J', z) are continuously 
differentiable functions on some region 9. We say that the expression 

Pdx + Qdy +Rd= (5) 

is an exact differential if and only if there is a continuously differentiable 
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functionf(x,y, z) such that 

df= Pdx + Qdy + Rdz. (6) 

Whenever such a function/exists, the definition of the total differential of a 
function yields the relations 

f~= P, f;.= Q, f~= R. (7) 

If the region s:i is a box in R 3 then a necessary and sufficient condition 
for the expression (5) to be an exact differential is that the three equations 

(8) 

hold. (See Chapter 4, page 279.) 
We may formulate the notion of exact differential in vector terms. We 

introduce the usual rectangular coordinate system and define the vectors 

v = Pi + Qj + Rk, r = xi + yj + zk, dr = (dx)i + (dy)j + (dz)k. 

Suppose that/and Vfare continuously differentiable on some domain gt in 
three-space. Then Eqs. (6) and (7) are equivalent to 

df= v·dr and Vf=v. 

The necessary and sufficient conditions (8) become the simple vector condi
tion 

curlv = 0. (9) 

Whenever a vector v has the form V f; we see that (9) is a consequence of 
Theorem 6(d). Conversely, if(9) holds, then the results on exact differentials 
in Chapter 4, Section 13, show that there is a function/ such that Vf = v. 
We state this conclusion in the following theorem. 

Theorem 7. Suppose that v is a continuously differentiable vector field with 
curlv = 0 in some rectangular parallelepiped~ in space. Then there exists 
a continuously differentiable scalar field fin fi) such that VJ= v. Any two 
such fields differ by a constant. 

In Section 6 we shall state the above theorem for more general domains gt 
(Theorem 13). 

If we are given a specific vector field v with curl v = 0, then the method 
of determining/ such that V f = v is precisely the one described in Chapter 4, 
Section 13. We review the process by working an example. 

EXAMPLE 3. Given the vector field 

v = 2xyzi + (x 2z + y)j + (x 2y + 3z2)k, 

verify that curl v = 0 and find the function f such that Vf = v. 
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SOLUTION. We have 

k 

c 
curlv = ex cy CZ 

2xyz (x 2= + y) (x2y + 3z2) 

= (x2 - x 2)i + (2xy - 2xy)j + (2xz - 2xz:tk = 0. 

We wish to find/ such that 

j~ = 2xyz, fz = x 2y + 3z2 • 

Integrating the first equation, we get 

f= x 2yz + C(y,z); 

differentiating/ with respect toy and z, we obtain 

J;. = x 2:: + Cy(y,z) = x 2z + y, fz = x 2y + C=(y,z) = x 2y + 3z2 • 

The preceding equations yield 

c= = 3z2 • 
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Hence C = t.r2 + K(z). Differentiation of C with respect to z shows that 

C, = K'(z) = 3z2 , 

so that K(z) = z3 + C1 , where C1 is a constant. We conclude that 

c = t.r2 + z3 +cl 
and, finally, that 

PROBLEMS 

In each of Problems I through 8, find curl v; in case curl v = 0, find the function/such 
that 'Vf= v. 

I. v = (2x - y + 3z)i + (-x + 3.r + 2z)j + (2x + 3.r - z)k 

2. v = (2xy + z2)i + (2.r: + x2)j + (2xz + y 2)k 

3. v = e·'(sinycoszi + cosycos:j- sinysinzk) 

4. v = (x + 2y - z)i + (x - .r + z)j + ( -x + .r + 2z)k 

5. v = (x2 + y2r112[ -xzi - yzj + (x2 + y2)k] 

6. v = (x2 + y 2 + z2)- 1(xi + yj + zk), (x,y,z) # (0,0,0) 

7. v=x2zi+O·j+xz2k 

8. v = 2x + y + z i + x + 2y + z j + x + y + 2z k 
(x + y)(x + z) (x + y)(y + z) (y + z)(x + z) 
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• 9. Suppose that G{(x) = g1 (x), G2(J) = g2 (y), G.}(z) = g3(z), and that 

v = [x 2 (y 3 + z-') + g1(x)]i + [y2 (x 3 + : 3 ) + g2 (.r)]j + Lz 2(x3 + J 3 ) + g3(:)]k. 

Show that curl v = Oand find/such that "ilf= v. 

IO. Verify the identity (b x c) · d = b · (c x d) by introducing coordinate vectors and 
calculating each side separately. 

11. Prove Theorem 6(a). 

12. Prove Theorem 6(b). 

13. Prove Theorem 6(c). 

14. Prove Theorem 6(d). 

15. Prove Theorem 6(e). 

Jn Problems 16 through 18, suppose that r =xi+ yj + zk, and let r = jrj. 

16. Show that 

cur1(;)= 0. 

17. Find curl [ l/i(r)r ], where q, is a differentiable function. 

18. Assumingp and a constant, find curl(rPa x r). 

19. Verify Theorem 6(b) for f = (x 2 + y 2 + z 2 )P, u = zi + xj + yk. 

20. Verify Theorem 6(c) for u = yi + :j + xk, v = :i + xj + yk. 

21. Verify Theorem 6(d) with}= (x 2 + y 2 + z2 ) 112 x. 

22. Verify Theorem 6(e) with v = (y 2 - z2)i + (z2 - x 2 )j + (x 2 - y2)k. 

23. If v is any vector of the form 

V = V1i + L'2j + V3k, 

we define the Laplacian of v, denoted dv or V2 v, by the formula 

dv = (dv1)i + (di·2)j + (di:3)k. 

For any vector field u (sufficiently differentiable), establish the identity 

curl curl u = grad div u - du. 

24. Verify (IO) with u = (y2 + zx)i + (z 2 + xy)j + (x 2 + yz)k. 

5. Line Integrals; Vector Formulation 

An arc in three-space is the graph of the equations 

x = J(t), y = g(t), z = h(t), a :5; I :5; b, 

(10) 

provided that f; g, and h are continuous and that no point on the graph 
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corresponds to two different values of t. In terms of vectors and trans
formations, we define an arc as the range of a one-to-one continuous 
transformation of the form (Fig. 9-6) 

v(OP) = r(I), a !5; I !5; b, 

with the auxiliary condition that 

r(t ') # r(t ") if t' # t". 

The definition of an arc in a space of any number of dimensions is analogous 
to its definition in three-space. 

Suppose that in a rectangular coordinate system an arc C is given by the 
transformation 

C: r = r(t) = j(t)i + g(t)j + h(t)k, a !5; I !5; b. 

Ast increases from a to b, the point P moves along the arc from the point A, 
corresponding to t = a, to the point B, corresponding to t = b. Since the 
transformation is one to one, the point P moves along "without doubling 
back." We say that "P describes the arc in a certain sense." (See Fig. 9-7.) 

Any arc C will have many different parametric representations. Suppose 
that two representations of C arc 

C: x =/(I). y = g(I), = = h(I), a:;.t;5;;b; 

C: x = F(r), y = G(r), : = H(r). c :;. r ;5;; d. 

In vector notation, we write 

C: r = r(I), a:;.1;5;;b; r(t') # r(I") if ( # ('; (I) 

C: r = R(r), C;5;;r;5;;d; R(r') # R(r") ifr' # r". (2) 
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Intuitively we see that as t increases from a to h, the arc C is described in a 
particular sense. As r increases from c to d, the arc is described either in the 
same sense or in the opposite sense. (See Fig. 9-8.) There are no other possi
bilities. We make this conclusion precise in the next theorem, which is 
stated without proof. 

Theorem 8. Suppose that the arc C is the range of the continuous transforma
tions (I) and (2). Then there are continuous functions S1 (t). S2 (!) defined 
on [a, b] and [ c, d], re~pective/y, and ~rith ranges [ c, d] and [a, b ], re~pectively, 
such that 

R[S1(t)] = r(t)for ton [a,b] andr[S2 (<)] = R(<)jor r on [c,d]. 

Either S1 and S2 are both increasing or they are both decreasing; moreover, 
each is the im:erse of the other. 

As Fig. 9-8 shows, the function S1 (t) is the mapping obtained by going 
from a point t to the point P(i) on C and then finding the unique point 
! in [ c, d] which corresponds to the same point P. Thus we get ! = S1 (t). 
The function S2 is obtained by reversing the process. 

Theorem 8 implies that all parametric representations of an arc C fall 
into two classes: one class, in which S1 and S2 are both increasing, and the 
other, in which S 1 and S2 are both decreasing. Two representations in the 
same class define the same ordering of the points of C in the sense that a 
point P' on C precedes P" if and only if ( < t''. 

Definitions. A directed arc C is an arc C together with one of the two orderings 
described above. If C is a directed arc, we denote the corresponding undi
rected arc by C or, if we wish to emphasize the undirected property_,_,_by ICI. 
A transformation (I) is said to be a parametric representation of C if and 
only if it is a representation ~ IC I and establis_!!.es the given order on C. 
The arc oppositely directed to C is denoted by - C. 

The definitions and basic properties of line integrals in the plane and in 
space were taken up in Chapter 4, page 282. We shall now see how vector 
notation may be used to simplify the statements and proofs of some of the 
elementary theorems on line integrals in space. 

Let C be a directed arc from a point A to a point B. We make a subdivision 
of C by arranging the points A = P0 , P1 , P2 , .•. , Pn- •, Pn = B in order 
along the directed arc. As usual, we define the norm 11~11 of the subdivision 
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as the length of the longest line segment connecting two successive points 
Pi-I, P; in the subdivision (Fig. 9-9). Suppose we are given a vector field w 
defined on JCJ. For each i, we select a point Q; on the subarc from P;_ 1 

to P; (Fig. 9-9) and form the sum of the scalar products 

I w(Q;)-v(P;- 1 P;) =I w(Q;)-[r(t;) - r(l;_ 1)]. (3) 
i=l i=l 

We may abbreviate this expression by denoting d;r = r(t;) - r(t;_ 1) and 
then writing 

• I w(Q;)-d;r. 
i=l 

Definition. Suppose there is a number L with the property that for each e > 0 
there is a i5 > 0 such that 

I;~ w(Q;}-d;r - LI< e 

for all subdivisions with norm less than i5 and for all choices of the Q; on 

the arc W;· Then we say that the differential w · dr is integrable along C. 
We write 

L= J w·dr. 

c 
The next theorem establishes a few of the elementary properties of line 

integrals in three-space. 

Theorem 9. (a) There is at most one number L satisfying the conditions of 
the definition above. 
b) When such a number L exists, it is independent of the choict'for the origin 0. 
c) If w · dr is integrable along C, it is integrable along -C, and 

f w·dr = -f w·dr. 

-c c 
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PROOF. (a) Suppose there are two numbers L 1 and Li satisfying the re
quired conditions. We select e =(Li - L 1)/2 (supposing that Li > L 1). 

Then, if ll-111 is sufficiently small, we have 

• L-L L+L I w(Q·). ,1.r < L + e = L + i i - i i (4) 
i=I I I I • I 2 - 2 • 

On the other hand, since Li is also a limit, we see that 

L1 +Li f Q A 

2 =Li - e < i~ w( ;}·Lljr. (5) 

Since (4) and (5) are contradictory, L 1 =Li. 
b) This statement follows from the fact that each sum, as given on the left 
side of (3), is independent of 0. 
c) If P0 , P1 , ••• , P. is a subdivision for C, then P., P._ 1 , ••• , P0 is a sub
division for - C. Therefore a sum of the type (3) for - C is 
w(Q.) · v(P.P._ 1) + w(Q._i) · v(P._ 1 P.-i) + · · · + w(Q 1) • v(P1 P0 ) 

n 

= - I w(Qi) · d;r. 
(6) 

i=t 

The result of part (c) follows by letting ll-111-+ 0 in (6). 

Suppose that C is a directed arc and that w is a vector field defined on 
ICI. We introduce a rectangular coordinate system (x,y, z) and basis vectors 
i, j, k. We now write 

C: r(t) = x(t)i + y(t)j + z(t)k, (7) 

w = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k. (8) 

If r(t) is a continuously differentiable function and w is a continuous vector 
field, it can be shown that 

f w·dr = f Pdx + Qdy + Rdz, 

c c 
where the line integral on the right is defined in terms of coordinates as in 
Chapter 4, Section 14. The evaluation of line integrals is reduced to that of 
ordinary integrals, as is shown in the next theorem. 

Theorem 10. Suppose that Chas the parametric representation r = r(t), with 
r continuously differentiable f!!! a ~ t ~ b. Suppose that w = wj!), a ~ t ~ b, 
is defined and continuous on IC I. Then w · dr is integrable along C and 

f w · dr = J.b w(t) · r'(t)dt. 

c 
Furthermore, if w is given by (8), then 



5. Line Integrals; Vector Formulation 485 

(0. I. I) 

/--:::::;;;oo--Y 

l l. 11. 0\ 
tll. I.()) 

Fig. 9-IO .1· 

f w · dr = r { P[x(t), y(1), :(1) ]x' (t) + Q[x(1), y(t), :(I)] y' (t) 

+ R[x(1),y(t), :(1) ]:'(1)} dt. 

REMARK. If r is continuous and only piecewise smooth, we may evaluate the 
line integral along each smooth subarc and add the results. 

EXAMPLE. Compute fr w · dr. where 

w = xyi + x;j - yk. 

r =xi+ yj + :k, 

and C is the directed line segment C1 from ( l, 0. 0) to (0, I. 0). followed by 
C2 , which is the segment from (0, 1,0) to (0.1.1). (See Fig. 9-10.) 

SOLUTION. Along cl we have; = 0. Taking t = .r. we may write the equation 
of the line segment 

r(.r) = (I - y)i + yj, 0:::;; .r:::;; 1. 

Then 

W=(J -y)yi-yk. 

Therefore 

f w·dr= f w(y)·r'(.r)~r= f (-.r+.r2)d.r=' -f;. 

c, 
Along C2 we have x = 0 and we take 1 =:.Then we find 

r(z) = j + :k. w(z) = -k. r'(z) = k. 

Hence 

f w · dr = f -k · k dz = - I. 

c, 
The result is 
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f w · dr + f w · dr = -i - I = - ~. 
c, c2 

PROBLEMS 

In each of Problems I through I 0, evaluate fr w · dr. Sketch the arc C in each case. 

I. w = xyi - yj + k; C is the segment going from (0,0,0) to (I, I, I). 

2. w=xyi-yj+k;Cisthearcgivenbyx=I, y=l 2 , ::=13 , 0$1$1. 

3. w =xi - yj + zk; C is the helical path x = cosO, y = sinO, :: = (l/n)O, 0 :S 
0 :S 2n. 

4. w =xi - yj + zk; C is the segment from (I, 0, 0) to (I, 0, 2). 

5. w = 2xi - 3yj + z2 k; C is the path x = cosO, y = sinO, z = 0, 0 :S 0 :S (n/2). 

6. w = 2xi - 3yj + z2 k; C is the segment from (I, 0, 0) to (0, I, n/2). 

7. w=y2 i+x2j+O·k;Cisthearcoftheparabolax=I, _r=l 2 , z=O, l:S 
I:$ 2. 

8. w = z2 i + 0 · j + x2 k; C is the segment C1 from (I, 0, I) to (2, 0, I) followed by the 
segment C2 from (2,0, I) to (2,0,4). 

9. w = (x 2 - y2)i + 2xyj + 0 · k; C is the segment from (2, 0, 0) to (0, 2, 0). 

10. w = 2yzj + (z2 - y2)k; C is the circular arc given by: x = 0, y 2 + z2 = 4 going 
from (0, 2, 0) to (0, 0, 2). 

11. Show that 

f w·dr= f vP2 +Q 2 +R2 cosOds, 

[ [ 

where w = Pi + Qj + Rk, ds is the element of arc along C, and 0 is the angle made 
by the vector dr and the vector w. 

6. Path-Independent Line Integrals 

A continuous transformation 

v(OP) = r(t), 
is called a path in space. Since a path is not necessarily one to one, we see 
that arcs are special cases of paths. As the examples in Fig. 9-11 show, a 
path may have loops and multiple intersections. Parametric representations 
are needed to distinguish the first two paths in Fig. 9-11, both of which 
start at A and end at B; they are identical in appearance. However, it is 
intuitively clear that if r(t) is a representation of a path and t = S(t) is 
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Fig. 9-11 

an increasing function, then the representation R(r) determined by the 
relation 

R(r) = r[S(r)] 

describes the same path as r(t), and in the same order. Also, we denote 
directed paths by sym_!>ols such as C, undirected paths by IC!, and oppositely 
directed paths by - C. 

The theorems about line integrals which we established for piecewise 
smooth arcs are equally valid for piecewise smooth paths. As we saw in the 
preceding section, a line integral Jc w · dr depends not only on the~ vector 
field w and the endpoints A and B of the path but also on the path C itself. 
Whenever the value of a line integral depends only on the vector field w 
and on the endpoints A and B of the path but not on C itself, we say the 
integral is independent of the path. Such integrals were first discussed on 
page 291 of Chapter 4. The results given there are now stated in vector form 
so that the extension to higher-dimensional spaces becomes evident. 

We say that D is a connected region in space if it has the property that 
any two points in D can be joined by a smooth arc which lies in D. 

Theorem 11. Suppose that u is a continuously differentiable scalar field on a 
connected region D and that A and Bare in D. Then 

f Vu· dr = u(B) - u(A) 

c 
for any piecewise smooth path from A to B which is contained in D. 

PROOF. Since each piecewise smooth path is the finite sum of smooth paths, 
it is sufficient to prove the theorem for a smooth path. Let (x, y, z) be a 
rectangular coordinate system with i, j, k the usual basis. The path C is 
given by 

r = r(t) = x(t)i + y(t)j + z(t)k, 

and the vector field Vu is 

V ou. ou. ouk U=-1+-J+-. 
ox oy oz 

a~ I~ b, 
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Then 

I Vu·dr =f {cu dx +cu dy + ou dz}dt. 
ox dt cy dt oz dt 

c (: 
Along C we have u = u[x(t),y(t), z(t)] which we denote by g(t). Therefore 
(noting that r(a) =A, r(b) = B) the above integral is r :i u[ x(t), y(t), z(t)] dt = r g' (t) dt = g(b) - g(a) = u(B) - u(A), 

which is the desired result. 

Theorem 11 shows that, under appropriate hypotheses, every vector field 
which is the gradient of a scalar field has a path-independent line integral. 
The next theorem shows that, conversely, if a vector field leads to path
independent line integrals in a domain, it must be the gradient of some 
scalar field. 

Theorem 12. Suppose that v is a continuous vector field on a domain D, and 
suppose that for every ordered pair (A, B) of points in D, the integral 

f v·dr 

c 
has the same value for every smooth path from A to B with ICI in D. That is, 
suppose the integral is path-independent. Then there is a continuously differenti
able scalar field u with domain D such that 

v=Vu. 

PROOF. Let A be a fixed point in D, and define 

u(P) = f v ·dr, 

c 
where C is any smooth path from A to a point P (which lies in D). We shall 
show that u is the desired scalar field. We introduce the customary rect
angular coordinate system and let P0 be any point in D with coordinates 
(x0 ,y0 , z0). We construct a ball with center at P0 and radius p so small 
that the ball is entirely in D (Fig. 9-12). Let C0 be a directed path in D from 
A to P0 which ends with a directed straight line segment P1P0 , as shown in 
Fig. 9-12. The coordinates of P1 are (x 1 , y 1 , z 1). We suppose for convenience 
that this segment is parallel to the x-axis. Let P be a point with coordinates 
(x0 + h,y0 ,z0 ), where ihl < p. Then we have 

u(x0 +h,y0 ,z0)= f v·dr+ Jv·dr, (I) 

c, c, 
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where C1 is the directed path from A to P1 and C2 is the directed segment 
P1 P. Now we write 

v(x,y,z) = v1(x,y,z)i + v2(x,y,z)j + v3 (x,y,z)k, 

r = xi + yj + zk, 

and we observe that, along P1 P, we have dr = (dx)i. Then, defining 

¢(x) = fx V 1 (~,y0 ,zo)d~, 
x, 

we see from (I) that 

u(x0 + h,y0 , z0 ) - u(x0 ,y0 , z0 ) = ¢(x0 + h) - lj>(x0). 

We conclude from Leibniz' Rule that 

Since the same arguments work in the y- and z-directions, we obtain 

Vu(P0 ) = v(P0 ). 

But P0 is an arbitrary point of D, and so the result is established. 

The above theorem is intimately connected with Theorem 7 of Section 4, 
because any vector field v in a box in R 3 with the property that 

curl v = 0 

is the gradient of a scalar function. Thus fov · dr will be independent of the 
path in such a box. We would like to establish Theorem 7 for more general 
domains, but in doing so we must exercise extreme care, as the following 
illustration shows. 

We consider the vector field 

V= y i +--x-j + O·k. 
x2 + y2 x2 + ri 
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Fig. 9-13 

The reader may easily verify that curl v = 0 for all (x, y, z) so long as (x, y) #: 
(0, 0). However, when we select for C the circular path 

C: x =cost, y = sint, z =0, - 11: :5 t :5 n:, 

and for D any region containing C and excluding the z-axis, a calculation 
shows that 

f f xdy- ydx f" v·dr = = dt = 2n. 
x2 + Y2 _,, 

C.' (' 

If v · dr were an exact differential in D, then v = V f and the integral would 
be zero, according to Theorem 7. So we see that some restriction on the 
domain D is essential before Theorem I I can be extended. 

Suppose that A and Bare points of a domain D which are connected by 
two paths C0 and C1, both lying in D. We shall define formally the concept 
which states: "C0 can be deformed smoothly into C1 without going outside 
D." 

Definition. A domain Din the plane (or in space) is said to be simply connected 
if for each pair Co and c\ of smooth directed paths in D joining the same 
points A and B, there exists a vector function f on R2 (or R3 ) with the follow
ing properties 

i) f(t, r) is continuous for a :5 t :5 b, 0 :5 r :s; I. 
ii) lfv(OP) is the vector from the origin to a point P, then for r = 0, f(t,0) 

describes C0 • That is, 

C0 : v(OF) = f(t, 0), a :5 t :5 b. 

iii) Similarly, for r = I, 

C\: v(OP) = f(t, I), a :s; t :s; b. 

iv) For each fixed r on [O, t], v(OP) = f(t, r), a :5 t :5 b, is a directed path 
from A to B lying entirely in D, i.e., f(O, r) = A, f(l, r) = B for 0 :5 r :5 I. 

The definition of simple connectivity in the plane is illustrated in Fig. 9-13, 
where we denote by C, the path v(OP) = f(t, r) for fixed r going from A to B. 
We note that the paths vary smoothly from C0 to C1 as r goes from 0 to I. 
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Fig. 9-14 

It is intuitively clear that the domain D, consisting of the entire plane with 
a single point (denoted 0) removed, is not simply connected. As Fig. 9-14 
shows, it is impossible to deform Cu into C1 without some C, passing through 
0. Similarly, the domain between two concentric circles (fig. 9-14) is not 
simply connected. 

In three-space the domain inside a sphere or ellipsoid is simply connected. 
Also, it can be shown (although we shall not do so) that, on one hand, the 
region between two concentric spheres is simply connected while, on the 
other, the region inside a torus (that is, the space inside a doughnut) is not 
simply connected. The region between two coaxial cylinders is another 
example of a region which is not simply connected. 

The next theorem which is an extension to three dimensions of Theorem 7 
of Section 4 uses a slightly stronger definition of simple connectivity. We 
say a domain is strongly simply connected if and only if it is simply connected 
and if the derivatives f,, f,, fir, and f" of the function f given in the definition 
of simple connectivity are all continuous. 

Theorem 13. Suppose that vis continuously differentiable in a strongly simply 
connected region D in space and that curl v = 0 in D. Then there is a con
tinuously differentiable scalar field u on D such that v = Vu. 

PROOF. In the light of Theorem 12, it is sufficient to prove that fc v · dr is 
independent of the path. It is convenient to use the summation notation, 
and so we denote the coordinates of a rectangular system by (x 1 , x 2 , x 3) 

instead of(x,y, z). We let Cu, C1 , C, be paths from A to Bas in the definition 
of simple connectivity, and we write 

v(x,,Xz,X3) = v,(x,,Xz,X3)i + Vz(X,,Xz,X3)j + V3(X,,Xz,X3)k, 

f(t, r) = f 1 (t, r)i + fi(t, r)j + f3(t, r)k. 

We define 

</>(r) = f v · dr = f b I v;[fi (t, r),fi(t, r),f3(t, r)] fi dt. 
a !=I I 

<\ 
Then, using Leibniz' Rule (and the Chain Rule), we obtain 

f b 3 { o2fi 3 av. a.1,: iJF} 
</>'(r) = a .L V;(f1.fz,f3)iJ a'+~ iJ~-iJ· iJJ dt. 

, = 1 t r 1= 1 x1 t r. 
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Integrating by parts the terms in the first sum above, we eliminate the 
second derivatives of the f; and find 

,/..'( ) -[~ . of;J'=b J b ~ ovj (of; ofj of; ofj)d '+' r - L.. i;.- + L.. - - - - - - t 
i= I 1 Or t=a a i.j= I CXj Ct Or Or Ot • 

(2) 

Denoting the coordinates of A and B by (x?, x~, x~) and (xl, x1, xn, re
spectively, we observe that for all r in [O, I] 

f;(a, r) = x? and J;(b, r) = xl, i =I, 2, 3. 

Thus the first term on the right in (2) vanishes. Moreover, if we interchange 
the indices i and J in the second sum in (2), we get 

</J'(r)= Jb I (or;._ tv1)of;ofjdt. 
a 1.1~1 ex) OX; ot or 

The condition that curl v = 0 is equivalent to the condition 

CV Cr· 
-' -~=0, i,j= 1,2,3 
OXj CX; 

and so </J'(r) = 0. Hence </J(r) is constant and therefore the integral is inde
pendent of the path. 

REMARK. This proof generalizes lo n dimensional space if we replace the 
condition curl v = 0 by the condition 

OV; - oi;j = 0 
oxj OX; , 

i,j= 1,2, ... ,n (3) 

which can be shown to be independent of the coordinates. However, the 
equations (3) cannot be expressed in terms of vector operators for n > 3. 
More complicated objects called alternating tensors or exterior differential 
forms are employed. The specific details are usually discussed in courses in 
differential geometry. 

A domain D in the plane or in three space is said to be convex if and only 
if the line segment P-;l'~ lies in D whenever P1 and P2 do. Figure 9-15 shows 
examples of convex and nonconvex domains. The next theorem establishes 
relationships between convex and simply connected domains. 

Theorem 14. (a) Any convex domain is simply connected. 
b) Suppose D and D' are domains with D' simply connected. If there is a 
one-to-one twice continuously differentiable transformation with D as its 
domain and D' as its range, then Dis simply connected. 

PROOF. (a) Suppose that Co and c\ are paths in D. If Co: f(t,O), cl: f(t, I), 
we define 
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Convex 
Convex 

Fig. 9-15 Not convex 

(J 

Fig. 9-16 

f(t, t) = (l - t)f(t,O) + tf(t, 1), OS:tS:l. 

Ast varies from 0 to 1, f(t, t) describes (for each I) the straight line segment 
joining the points f(t, 0) and f(t, 1). By convexity, this segment is in D. 
b) If f(t, t) is the desired function in D' then, under the transformation, it 
would correspond to a function with similar properties in D. 

REMARK. The statement and proof of Theorem 14 are valid in a Euclidean 
space of any dimension. 

EXAMPLE. Let D be the set in the plane consisting of all points except the 
origin and the points on the negative x-axis. Show that Dis simply connected. 

SOLUTION. The equations x = r cos 8, y = r sin 8 set up a one-to-one twice 
differentiable map of D onto the domain 

D'={(r,O):r>O, -n<O<n}, 

in the (r, 8)-plane. The inverse map is also twice differentiable. The domain 
D' is a half-infinite strip, and its convexity is easily verified. (See Fig. 9-16; 
see also Problem 14.) According to Theorem l4(a), D' is simply connected 
and then, by part (b), Dis also. 

PROBLEMS 

In each of Problems I through 5, verify Theorem 11 by calculating the line integral 
Jc Vu· dr for each of the given paths. 
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I . u = x 2 - xy - y 2 ; 

l\:x=cosO, y=sin20, z=O. 0$0$n/2; 
C2: straight segment from (I, 0, 0) to (0, I, 0). 

2. u = x 2 - 2y2 + xz + z2 ; 

C1 : straight segment from (1,0, I) to (-1, 1,2); 
C2 : straight segment from (I, 0, I) to (I, 0, 2) followed by 

straight segment from (I, 0, 2) to ( - I, I, 2). 

3. u = (x2 + yi + z2)-112; 

C1:x=sin0cos0. y=sin20, z=cosO, 0$0$n/2; 
C2: straight segment from (0. 0, I) to (0, I, I). 

4. u = z(x2 + y2)-112; 

C1: x = 31, y = -41, z = 5t2, I $I$ 2; 
C2: x = 31, y = -41, z =ti+ 4, I $I$ 2. 

5. u = sinxy + cosyz + sinxz; 
C\ : straight segment from (0, n/4, I) to ( n/2, I, 0); 
C2: straight segment from (0, n/4, I) to (0, I, n/4) followed by 

straight segment from (0, I, n/4) to (n/2, I, 0). 

In each of Problems 6 through 10, decide whether Theorem 13 is valid in the given 
domain. If so, find the appropriate scalar field. 

6. v = (2x + 8y - 2z)i + (2y + 4z + 8x)j + (2z - 2x + 4y)k; Dis the interior of the 
ball x 2 + y2 + z2 $ I. 

7. v = 3(x2 - yz)i + 3(y2 - xz)j - 3xyk; D is the domain between the spheres 
x2 + yi + z2 = I, x2 + y2 + z2 = 9. 

8. v = (x4 - 8y2 + 2)i + 2xyzj + (y2 - x 2)k; D is the interior of the ellipsoid 
x 2 + 2y2 + 3z2 = 27. 

9. v - x i + y j + z k. 
- (x2 + y2 + z2)213 (x2 + yi + z2)213 (x2 + yi + z2)213 • 

D is the domain between the cylinders 

x2 + z2 =I and x 2 + z2 = 9. 

10. v = - .. _x_i + · y j + · L. · ·-k; 
x+y+z x+y+z x+y+z 

D is the parallelepiped 

D={(x,y,z):l$x$2, l$y$3, 2$z$4}. 

11. Prove that the intersection of any finite number of convex sets is a convex set. 

12. Prove, using coordinates, that any half-plane (that is, the part of a plane on one 
side of a line) is convex. 

13. Prove, using coordinates, that any half-space (that is, the portion of three-space 
on one side of a plane) is convex. 
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y z 

Y =c 

Fig. 9-17 Fig. 9-18 

14. Using the results of Problems 11 and 12, show that the domain D' in Fig. 9-16 
is convex. 

15. Prove that any set of the form a< x < b, c < y <f(x) in the plane, where/ and 
f' are smooth in an interval containing [a, b] in its interior, is simply connected. 
[Hint. Set up a transformation from this region onto a rectangle a<~< b, 
0 < 17 < I; it is assumed that f(x) > c for a - h S: x S: b + h for some h > 0. 
(See Fig. 9-17.J] 

16. Use Theorem 13 and the vector field 

v = (xl + .rl)- 1(-_ri + xj + O· k), 

C: x = cosO, y = sinO, -1[ s; lJ s; 1t, 

to show that the plane with the origin removed is not simply connected. 

17. A torus is obtained by revolving a circle about an axis in its plane (provided the 
axis does not intersect the circle). (See Fig. 9-18.) The interior of the torus consists 
of all points whose cylindrical coordinates (r, 0, z) satisfy 

(r - b)l + zl < al, 0 <a< b. 

Using the example of Problem 16, show that the interior of a torus in three-space 
is not simply connected. 

18. Show that the set of points (x, y) satisfying 

xl yl 
--+-<I al bl 

is convex. [Hint. Consider the function 

"'() = [x. + t(xl - x.>]l [Y1 + t(yl - Y1>]l 
~, I al + bl , 

Draw a figure. J 

Os;1s;I. 

19. Show that the totality of points in the plane which are not on the spiral r = 0, 
0 ;;::: 0, r and 0 polar coordinates, is simply connected. Draw a figure. 

20. Use the results of Problems 11 and 12 to show that the interior of every regular 
polygon in the plane is convex. 



CHAPTER 10 

Green's and Stokes' Theorems 

1. Green's Theorem 

The Fundamental Theorem of Calculus states that differentiation and inte
gration are inverse processes. An appropriate extension of this theorem to 
double integrals offunctions of two variables is known as Green's Theorem. 
Suppose that P and Qare smooth (i.e., continuously differentiable) func
tions defined in some region R of the plane. A simple closed curve is a curve 
that can be obtained as the union of two arcs which have only their endpoints 
in common. Thus a circle is the union of two half circles. Of course, any two 
points on a simple closed curve divide it into two arcs in this way. It is 
intuitively clear that a simple closed curve in the plane divides the plane 
into two regions, constituting the "interior" and the "exterior" of the curve. 
This fact which is surprisingly hard to prove, is not used in the proofs of any 
theorems. A smooth simple closed curve is one which has a parametric 
representation x = x(t), y = y(t), a ~ t ~ b, in which x, y, x', and y' are 
continuous and [x'(t)] 2 + [y'(t)] 2 > Oandx(b) = x(a),x'(h) = x'(a),y(b) = 
y(a), y'(b) = y'(a). If r is a smooth simple closed curve which, together with 
itsinteriorG, is in R, then the basic formula associated with Green'sTheorem 
is 

ff(~; -~i) dA = f (Pdx + Qdy). (I) 

G r 

The symbol on the right represents the line integral taken in the counter
clockwise sense, so that r is traversed with the interior of G always on the 
left. 

We first establish Green's Theorem for regions which have a special 
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y=f(x) 

G C2 c\ 

I 
y=c 

l\ I 
I 

Fig. 10-1 x=a x=b 

shape. Then we show how the result for these special regions may be extended 
to yield the theorem for general domains. 

Lemma 1. Suppose that G is a region bounded by the straight lines x = a, 
x = b, y = c, and by an arc (situated above the line y = c) with equation 

y =flx), a~ x ~ b. 

Assume that f is smooth (continuously differentiable). If P(x,y) and Q(x,y) 
are continuously differentiable in a region which contains G and its boundary 
then 

ff(~;-~;) dA = f (Pdx + Qdy), (2) 

G cG 

where the symbol iJG denotes the boundary ofG and the line integral is traversed 
in a counterclockwise sense. 

PROOF. We establish the result by proving separately each of the formulas 

-ff~~ dA = f Pdx, (2a) 
G cG 

(2b) 

Figure 10-1 shows a typical region G with the arcs directed as shown by the 
arrows. To prove (2a), we change the double integral to an iterated integral 
and then employ the Fundamental Theorem of Calculus. We get 

ff iJP fblf<x> iJP - -dA = - -dydx 
G iJy a c iJy (3) 

= -f {P[x,f(x)] - P(x,c)}dx. 

The right side of (3) may be written as the line integrals 
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Fig. 10-2 

f P(x,y)dx + f P(x,y)dx. 

c; c; 
Since xis constant along C2 and C4 , we may write 

f P dx = J P dx = 0, 

c; ~ 

and so 

-ff~~dA= f Pdx=fPdx. 
G C'; +l'; +C) +C:, i!G 

To prove (2b), we define 

U(x,y) = f Q(x,17)d17. 

The formula for differentiating under the integral sign yields 

f)' 
UxCx,y) = c Qx(x,17)d17, Uy(x,y) = Q(x,y), 

Therefore we may apply Theorem 11 of Chapter 9 to get 

f (Uxdx + U,dy) = O<=> f U,,dx = -f U,dy = -f Qdy. (4) 
i!G i!G i!G i!G 

Now we use (2a) with P = U,, to find 

J J Q,,dA = J J u,,,dA = -f U,,dx. 
G G i!G 

Taking (4) into account, we conclude that 

ff Q,,dA = f Qdy. 
G i!G 

By means of a simple change of coordinates or other minor adjustment, 
we see easily that the above lemma holds for all regions of the type shown 
in Fig. 10-2. The next important step is the observation that the result of 
Lemma I [i.e., Eq. (2)] may be established for any region which can be 
divided up into a finite number of regions, each of the type considered in 
the lemma. How this may be done is suggested in Fig. 10-3, which shows a 
region with a smooth simple closed curve as boundary divided by straight-



I. Green's Theorem 499 

-- t + t" ,,:, i t - =+ ! -t 
1 ' t i:: + ·~ + t 

~ -:::;..- Multiply connected region 
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line segments into a number of regions of special type. It is clear that the 
double integral over the whole region is the sum of the double integral over 
the parts. In adding the line integrals we observe that the integrals over the 
interior segments must cancel, since each segment is directed in opposite 
senses when considered as part of the boundary of two adjacent special 
regions. Unfortunately, it is not true that every region for which formula (2) 
holds can be divided into special regions in the manner described above. 

We shall not attempt to examine the most general type of domain for 
which formula ( 2) is valid, but shall note some examples of regions to which 
we may apply the lemma. The shaded domain shown in Fig. 10-4 is bounded 
by four smooth simple closed curves. It may be subdivided into regions to 
which the lemma applies. It is important to notice in such a case that the 
line integral as given in (2) must be traversed so that the region G always 
remains on the left counterclockwise for the outer boundary curve and 
clockwise for the three inner boundary curves. 

A simple closed curve is piecewise smooth if it is made up of a finite number 
of smooth arcs (i.e .. having parametric representations as above) and if these 
arcs are joined at points called corners. A corner is the juncture of two smooth 
arcs which have limiting tangent lines making a positire angle (Fig. 10-5). 
For a piecewise smooth boundary with corners. it is possible to use Lemma I, 
thus establishing formula (2) for any region which has a boundary consisting 
of a piecewise smooth simple closed curve. Since polygons have piecewise 
smooth boundaries, they are included in the collection of regions for which 
(2) is valid. We now state Green·s Theorem in a form which is sufficiently 
general for most applications. 

Theorem I (Green's Theorem in the Plane). Suppose that G is a region 1rith 
a boundary consisting of a .finite number of piecewise smooth simple closed 
curres, no tll"O which illfersect. Suppose that P, Qare continuously differentiable 
/unctions defined in a region ll"hich contaim G and cG. Then 

if J (~?- ~~) dA ~ .t(Pd<+ Qdy), ! 

[ __ ---------· - ___ __J 

(5) 
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Fig. 10-5 Fig. 10-6 

where the integral on the right is defined 10 be the sum of the integrals over 
the boundary curves, each of which is directed so that G is on the left. 

The proof of Green's Theorem for all possible regions which may be 
subdivided into regions of special type has been described above in a dis
cursive manner. In the next section we provide a proof which is sufficiently 
general to be used in most problems in advanced analysis. 

Green's Theorem may be stated in vector form. We write 

v = Pi + Qj + 0 · k 

and denote by r(t) the vector from the origin 0 of a rectangular coordinate 
system in the plane to the boundary oG of G. We interpret 

curl v = (~Q - oP)k 
ex cy 

as the scalar function [(oQ/ox) - (oP/oy)] in the i, j-plane. We call this 
expression the scalar curl of v, although we use the same symbol. Then, 
under the hypotheses of Theorem I, we have the formula 

ff curl v dA = f v · dr. 
G oG 

It is a simple matter to verify that this formula is identical with (5). However, 
the vector formulation has the advantage of exhibiting the invariance of the 
result under a change of coordinates. Furthermore, the nature of the exten
sion to three-space is apparent from the vector formulation. 

We now illustrate Green's Theorem in the plane with several examples. 

EXAMPLE I. Verify Green's Theorem when P(x,y) = 2y, Q(x,y) = 3x and 
G is the unit disk, 

G = {(x,y): x2 + y 2 =::;;I} 

(see Fig. 10-6). 

SoLUTION. We have 

oQ oP ---=3-2= I. ax ay 
Therefore 
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The boundary oG is given by x = cos 9, y = sin 9, - n :s; 9 :s; 11:. Hence 

f (Pdx + Qdy) = fn {2(sin9)d(cos9) + 3(cos9)d(sin9)} 

i!G 

= fn(-2sin2 0+3cos2 9)d0= -2:n:+3n=n. 

501 

EXAMPLE 2. If G is the unit disk as in Example I, use Green's Theorem to 
evaluate 

f [(x2 - y3)dx + (y2 + x3)dy]. 

i!G 

SOLUTION. Here, P = x 2 - y 3 , Q = y 2 + x3 • Therefore 

f [(x2 - y3)dx + (y2 + x3)dy] =ff 3(x2 + y2)dA 

~ G 

= 3 r2 • rdrd9 = ....!!.. f 2nil 3 

0 0 2 

EXAMPLE 3. Let G be the region outside the unit circle which is bounded on 
the left by the parabola y 2 = 2(x + 2) and on the right by the line x = 2. 
(See Fig. I0-7.) Use Green's Theorem to evaluate 

f ( 2 - Y 2 dx + 2 x 2 dy), 
x +y x +y 

c; 
where C\ is the oriented outer boundary of Gas shown in Fig. IO-7. 

Fig. 10-7 
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SOLUTION. We write P = - y/(x2 + y 2), Q = x/(x2 + y 2) and observe that 
P and Q have singularities at the origin. Denoting the boundary of the unit 
disk oriented clockwise by C2 and noting that (oQ/iJx) - (oP/cy) = 0, we 
use Green's Theorem to write 

f ( y x ) ----dx + ---dy - 0 x2 + y2 x2 + y2 - · 
c~ +(~ 

Therefore 

f (Pdx + Qdy) = - f (Pdx + Qdy) = f (Pdx + Qdy), 

~ c, -c, 
where - C2 is the unit circle oriented counterclockwise. Since x = cos 8, 
y = sin8, -n ~ 0 ~non the unit circle -C2 , we obtain 

f (Pdx + Qdy) = r. (sin2 8 + cos28)d8 = 2n. 

c; 

EXAMPLE 4. Let v = -hi+ txj be defined in a region G with area A. 
Show that 

A= f v·dr. 
iJG 

SOLUTION. We apply Green's Theorem and obtain 

f v·dr= ff curlvdA =ff <t+i)dA =A, 
cG G G 

in which we have used the scalar interpretation of curl v. 

PROBLEMS 

In each of Problems I through 8, verify Green's Theorem. 

I. P(x,y)= -y,Q(x,y)=x; G:O$x$ l,0$y$ I 

2. P = 0, Q = x; G is the region outside the unit circle, bounded below by the parabola 
y = x2 - 2 and bounded above by the line y = 2. 

3. P = xy, Q = - 2xy; G = ( (x, y) : I $ x $ 2, 0 $ y $ 3) 

4. P=exsiny,Q=excosy; G=((x,y):O$x$l,0$y$n/2) 

5. P = ~xy3 - x 2 y, Q = x2 y2 ; G is the triangle with vertices at (0, 0), (I, 0), and (I, I). 

6. P = 0, Q = x; G is the region inside the circle x2 + y2 = 4 and outside the circles 
(x- l)2+y2=!.(x+ l)2+y2=!. 

7. v = (x2 + y2)- 1 ( -yi + xj); G is the region between the circles x2 + y2 = I and 
xi+ yi = 4. 
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8. P = 4x - 2y, Q = 2x + 6y; G is the interior of the ellipse x = 2cos6, y = sin6, 
-n~O~n. 

In each of Problems 9 through 14, compute the area A(G) of G by using the formula 

A(G) = J xdy, 

cG 

which is valid because of Green's Theorem. 

9. G is the triangle with vertices at (I, I), (4, I), and (4, 9). 

10. G is the triangle with vertices (2, I), (3, 4), and (I, 5). 

11. G is the region given by G = { (x, y) : 0 ~ x ~ y 2 , I ~ y ~ 3}. 

12. G is the region bounded by the line y = x + 2 and the parabola y = x 2 • 

13. G is the region in the first quadrant bounded by the lines 4y = x and y = 4x and 
the hyperbola xy = 4. 

14. G is the region interior to the ellipse 

x2 y2 
1c;+9= I. 

In each of Problems 15 through 21, compute faGv ·d~. using Green's Theorem. 

15. v = (~xy5 + 2y - e")i + (2xy4 - 4siny)j; G: I ~ x ~ 2, I ~ y ~ 3 

16. v = (2xe>' - x 2 y - }y3)i + (x2eY + siny)j; G: x 2 + y 2 ~ I 

17. v = 2xy2 i + 3x2 yj; G is the interior of the ellipse 

x2 y2 
a2 + h2 = I. 

18. v = -yi + xj; G is the interior of the circle (x - 1)2 + y 2 = I. 

19. v = (coshx - 2)sinyi + sinhxcosyj; 
G = { (x,y): 0 ~ x ~ I, 0 ~ y ~ (n/2)} 

20. v = 2Arctan(y/x)i + log(x2 + y2)j; 

G = { (x, y): I ~ x ~ 2, - I ~ y ~ I} 

21. v = -3x2yi + 3xy2j; G = {(x,y): -a~ x ~a, 0 ~ y ~ .Jli2- x2 } 

22. Evaluate 

f xdy-ydx 
x2 + y2 • 

(' 

where C consists of the arc of the parabola y = x 2 - I, - I ~ x ~ 2, followed by 
the straight segment from (2, 3) to ( - I, 0). Do this by applying Green's Theorem 
to the region G interior to C and exterior to a small circle of radius p centered at 
the origin. 
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23. Evaluate 

f xdx + ydy 
x2 + y2 

c 
where C is the path described in Problem 22. 

24. Suppose that l(x,y) satisfies the Laplace equation (f~. + 1;, = 0) in a region G. 
Show that 

f <J;dx - l~dy) = 0, 

i!G• 

where G* is any region interior to G. 

25. If (x*, y*) is the location of the center of gravity of a plane region G of uniform 
density, show that 

f x2dy 

* cG x ---
- 2 f xdy' 

oG 

f y2dx 

y* =-cG __ 

2 f ydx. 

iJG 

26. If l~x + 1;, = 0 in a region R and v is any smooth function. use the identity ( vl~). = 
vlxx + vxlx and a similar one for the derivative with respect toy, to prove that 

-f v<J;dx - l~dy) =ff (v.1~ + v,l;)dA, 

oG oG 

where G is any region interior to R. 

2. Proof of Green's Theorem 

We define a function <P by the formula 

l I, 

</J(s) = ](2s - l)(s - 2)2 , 

0, 

0::::;; s::::;; I, 

I ::::;; s::::;; 2, 

2::::;; s. 

(I) 

We extend the definition to negative values of s by making <P even: </J( - s) = 
</J(s). It is a simple matter to verify that </J( I) = I, </J(2) = 0 and, therefore, 

• 

:1 SI 1/1 I S 

-2 -I I 2 Fig. 10-8 
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that </> is continuous everywhere. Furthermore, since </>'(l) = 0, </>'(2) = 0, 
we see that </> has a continuous first derivative everywhere. Its graph is shown 
in Fig. 10-8. The function </>(s/b) with b > 0 has the same general behavior 
as </>(s) except that the scale is changed. We note that </>(s/b) is 1 for Isl ~ b, 
is between 0 and 1 for b ~ Isl ~ 2b, and vanishes for Isl ;;::: 2h. 

Functions of two variables with analogous properties are defined by taking 
products. The function 

<l>(x,y) = </>(x)</>(y) 

is I in the square 

S1 ={(x,y):-l~x~l. -l~y~l}; 

is 0 outside the square 

S2 ={(x,y):-2~x~2. -2~y~2}; 

and is between 0 and I in the region between S1 and S2 (Fig. 10-9). The 
function <I> and its first partial derivatives are continuous everywhere. A 
change of scale shows that the function <l>(x/b,y/c) has the same properties 
as <l>(x,y) in a rectangle of width 2b and height 2c. 

The function <I> is the basic quantity in performing a decomposition of a 
region G in the plane. This decomposition will be used to prove Green's 
Theorem. Let a bounded region G have for its boundary a finite number of 
smooth arcs which may form corners at points where they meet. With each 
point P of G and its boundary oG, we associate both a rectangular coordinate 
system which has Pas its origin and a function <I> of the type described above. 
We consider three cases: 

l) If Pis interior to G, we select any two perpendicular lines intersecting at 
Pas coordinate axes (properly oriented, of course). We label these x and 
y. Choose any square with center at P, with sides parallel to the axes x 
and y, and situated entirely inside G. Denote this square by Rr and the 
length of one side by 3Lp. The parallel square with side Lr and center at P 
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Fig. 10-11 

we designate rp (Fig. 10-10). The function 

has the property that it is smooth, is I in rp. and is 0 outside of a square 
halfway between rp and Rp. We may set up such a coordinate system and 
pairs of squares for each point P interior to G. Of course, if Pis very near 
the boundary, the quantity 3Lp will be very small; nevertheless, the selections 
can be made and functions <l>p formed. 

2) If P is on the boundary of G but interior to a smooth arc, we choose the 
positive y axis in the direction of the exterior normal, as shown in Fig. 10-11. 
The x axis is then situated along the tangent, properly oriented. We choose 
a rectangle rp of width Lp and height Hp parallel to the axes and centered 
at P. The rectangle of width 3Lpand height 3H1, is denoted Rp. The numbers 
Lpand Hp are taken so small that we may express the portion of the boundary 
in Rp by an equation 

Y =f(x), 

where f is smooth. Furthermore, we make the rectangles so small, if neces
sary, that the conditions 

IJ(x)I <Hp 

IJ(x)I < 3Hp 

for lxl < Lp, 

for lxl < 3Lp. 

are satisfied. In other words, the boundary arc must enter and leave the 
"sides" of the rectangles* rp and Rp. With each such boundary point P. 
we associate the function 

<l>p(x,y) = q,(~:)q,(~} 

• That such rectangles can always be found follows from the fact that a smooth arc in the 
plane has a representation x = x(1), y = y(1), a s 1 s b, in which x and y are smooth with 
(x'(1)] 2 + (y'(1)] 2 > 0. If 1 = 0 at P, we have y'(O) = 0, so x'(O) # 0 and the function x has 
a differentiable inverse Tp; thus we have x(t) = x and t = Tp(x). Hence y = x[ Tp(x)] = /(x) 
for lxl small. 
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which is I in the rectangle rp and 0 outside a rectangle halfway between rp 
and Rp. 

3) If P is a corner point of the boundary, we choose the positive y axis 
along the bisector of the angle between the tangents at P and pointing 
outside ofG; the x axis is selected accordingly (Fig. 10-12). The rectangles 
rp and Rp are chosen as in case (2) above, and the function 

<l>p(x,y) = ¢(~:)¢({4) 
is defined as before. 

The above description shows that with each point of the region G and its 
boundary oG we may associate a point P and a rectangle (or square) rp. 
From this fact it is possible to conclude that a finite number of the interiors 
of the rectangles {rp} cover G and cG. We label these covering rectangles 

and we denote their centers P1, P2 , ••• , Pk. The associated functions are 

Let Q be any point in G. Then Q is in some r;. According to the way we 
defined the functions <l>p, we see that 

<l>p;( Q) = I, 

since <l>P; is identically equal to I in all of r;. Thus, for every point Q of G, 
we have 

We now define the function 



508 10. Green's and Stokes' Theorems 

y 

t 

Fig. 10-13 

Then each 1MQ) is smooth on all the ri and, since <l>pi(Q) is zero outside a 
rectangle halfway between ri and Ri, 1MQ) is also. 

Defmition. The sequence 1/1 1 , 1/12, ..• , lf;k is called a partition of unity. The 
term partition of unity comes from the formula 

k 

I !f;i(Q) =I, 
i=I 

valid for every point Q not only in G but also in any of the rectangles r 1 , 

r2, •.• , rk. We have defined a finite sequence of functions 1/1 1 , 1/12, ... , l/Jk, 
which add up to I identically, and yet each member of the sequence vanishes, 
except for a small rectangle about a given point. This form of decomposition, 
is extremely useful not only in analysis but also in geometry and topology. 
It has the virtue of reducing certain types of global problems to local ones. 

We now prove Green's Theorem i.e., Theorem I of Section I. Let v = 
P(x,y)i + Q(x,y)j be a smooth vector field given in a region containing G. 
We define 

\'; = l/J;V, 

where 1/1 1 , 1/1 2, ... , lf;k is a partition of unity, as described above. Then it is 
clear that for all points Q in G, 

k 

v(Q) = I vi(Q). 
i=l 

Green's Theorem will then follow for v if we prove it for each vector field vi. 
Recalling that ri and Ri are the rectangles associated with I/Ji, we define 

Gi = GnRi. 

That is, Gi consists of those points of Ri contained in G. If~. the center 
of Ri, is interior to G, then so is Ri; in this case Gi = Ri. It is apparent that 
Gi is a region of the special type discussed in Lemma I on page 497. We have 

ff curlvidA = f vi·dr = 0, 
Gi cGi 
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because V; = l/l;V is 0 near and on the boundary oGj. Therefore (2) holds for 
all those Ri which have centers in G. Now suppose that P; is on the boundary 
ofG. We see that G; = G n R; is again a region of special type, and so Lemma 
1 of page 497 applies. Since V; = 0 outside G; and on the part of oGj (see 
Fig. 10-13) which is interior to G, we have 

ff curlvidA = JJ curlvidA = J vi·dr= f vi·dr. 
G G; CG; CG 

The result holds in this case also, and so the theorem is established. 

PROBLEMS 

I. Given the function l I, 

<f>(s) = (6s2 - 9s + 4)(2 - s)3 , 

0, 

0:::;; s:::;; I, 

I:::;; s:::;; 2, 

2:::;; s < 00, 

and cf>( -s) = <f>(s). Show that, for alls, cf> is twice continuously differentiable and 
that 0 :::;; cf> :::;; I. 

2. Using the function in Problem I, construct a twice continuously differentiable 
function of two variables which is one in a given rectangle, zero outside a larger 
similarly placed rectangle, and between zero and one in the region between the 
rectangles. 

3. Defining the function F(x,y) = <f>(x2 + y2 ) where cf> is the function given by (I), 
show that F(x,y) is one in the unit disk, vanishes outside the circle x 2 + y 2 = 2, and 
is between zero and one otherwise. 

4. Using the result of Problem 3, find a smooth function which is one in a disk of 
radius a, vanishes outside a concentric circle of radius 2a, and is between zero and 
one otherwise. 

5. Same as Problem 4, except that the function is to be twice continuously differ
entiable. (Use the function iii Problem I.) 

6. Show how to construct a function G(x,y, z) which is smooth, is one inside a rectan
gular box, is zero outside of a larger box, and is between zero and one in the region 
between boxes. 

7. By considering an expression of the form 

P(s)(2 - s)~. 

where Pis a fourth-degree polynomial, show how to construct a function which is 
one for Isl :::;; I, zero for Isl ;;::: 2, is between zero and one for I :::;; Isl :::;; 2, and is three 
times continuously differentiable. 

8. Show how to construct a smooth function which is one in the unit ball, vanishes 
outside the sphere x 2 + y 2 + z2 = 4, and is between zero and one between the two 
spheres. 
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9. Show, by sketching the appropriate rectangles, how a partition of unity would be 
made for the triangle with vertices at (0, 0), (I, 0), (0, I). Do not construct the func
tions analytically. 

10. Show, by sketching the appropriate rectangles. how a partition of unity would be 
made for the interior of the ellipse 4x 2 + 9y2 = 36. 

11. Define the function 

J o. 
j(x) = 1:'111.,-21.1:'11<1-x', 

I o, 

ifO :::;x:::; I, 

if I< x < 2, 

if2:::; x. 

Show that/ has (continuous) derivatives of all orders. 

12. Let/be the function of Problem 11. Define the function 

rj(l)dt 

F(x) = f2 
j(t)dt 

I 

Show that F is one for 0 :::; x :::; I, zero for x ~ 2, and between zero and one for 
I :::; x :::; 2. Furthermore, show that F has derivatives of all orders. 

13. Use the function in Problem 12 to find a function with derivatives of all orders which 
is one in a rectangle, vanishes outside a larger similarly placed rectangle, and is 
between zero and one in the region between the rectangles. 

14. By considering F(x 2 + y2) where Fis the function in Problem 12, show that Fis 
one in a disk, zero outside a larger concentric disk, and between zero and one in 
the ring between the circles. 

15. Describe a partition of unity with disks instead of rectangles. 

16. Set v = x 2i + (2y + x)j. Set S be the ellipse x 2 + 4y2 = 16. By making a partition 
of unity for the region interior to S, find the functions V; as in the proof of Green's 
Theorem. Then verify the result of the Theorem for v. 

3. Change of Variables in a Multiple Integral 

One of the principal techniques used in the evaluation of single integrals is 
the method of substitution. We do this by making a substitution or change 
of variable of the form x = g(u) which enables us to transform an integral 

J Jtx)dx (I) 

into 

f jfg(u)]g'(u)du. (2) 
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It sometimes happens that (2) is simpler to evaluate than (I). If we start 
with a definite integral of the form 

f f{x)dx 

then, after the change of variable x = g(u), we obtain r f[g(u)]g'(u)du, (3) 

where g(c) = a and g(d) = b. This method is always valid, provided that g 
and g' are continuous and f is defined and continuous for all the values 
of g(u) for u on [c,d]. 

In this section we apply Green's Theorem to obtain a general formula 
for a change of variables in a multiple integral. Let R be a bounded region 
in the xy plane and suppose that a transformation 

T: u =f{x,y). r =g(x,y) (4) 

takes R into a region R' in the uv plane. See Fig. 10-14. We assume that Tis 
continuously differentiable throughout Rand that it is one-to-one. Further
more, we suppose that the Jacobian 

OU OU 

1 ( u,v) = ex oy 
x,y CV CV 

ex cy 
does not vanish at any point of R. That is, J is always positive or always 
negative. We first establish a formula for the area of R' in terms of the area 
of R and the transformation T. 

Theorem 2. Suppose that T, given by (4), is a one-to-one, twice continuously 
differentiable transformation which takes a bounded region R with finite area 
A(R) into a bounded region R' with area A(R'). Assume that the boundaries 
of R and R' consist of a finite number of piecewise smooth arcs, and that the 
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Jacobian 

j(U,l.') 
X,)' 

is never zero for (x, y) ER. Then 

(5) 

PROOF. Theorem I (Green's Theorem) applied to the region R' takes the 
form 

ff (oQ oP) ,( 
OU - -a~ dA.,. = r<Pdu + Qdv). 

R' cR' 

We choose P = 0 and Q = u, and we find 

A(R') =ff I ·dA.,,. = f udv. 
R' cR' 

Substituting from (4), we obtain 

A(R') = f udv =f j(x,J')[~~dx + :~dyl 
cR' <R 

(6) 

The integral on the right is integrated in a counterclockwise direction if T 
preserves the orientation of the boundary of R; otherwise it is taken in a 
clockwise direction. Equivalently, the integration in (6) is counterclockwise 
or clockwise according as J is positive or negative in R. We now apply 
Green's Theorem to the integral on the right in (6) by setting 

P=f~g 
ex 

We find 

and Q=fag_ 
oy 

A (R') = ,( (f ~g dx + f~g d ·) = ± JJ (cf og - cg of) dA ... r ex cy } OX cy OX oy ·') 
oR R 

Since the area A(R') is always positive, we obtain (5). 

If T is the identity mapping, so that u = x and v = y, then J = I and 
A(R') = A(R), as it should be. Hence the Jacobian is a measure of the 
distortion in the area which the transformation T introduces when a region 
R is mapped into a region R'. 

In evaluating multiple integrals, we may use a transformation such as (4) 
for a change of variables of integration. The next theorem states the rule 
for the appropriate substitution in each case. 
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Theorem 3. Suppose that the regions R and R' and the transformation T are 
as in Theorem 2. Let F be a continuous function defined on R' u iJR'. We 
define G(x,y) = F[f(x,y),g(x,y)]. Then we have 

(7) 

SKETCH OF PROOF. We first divide the region R into subregions R1 , R 2 , ••• , Rn 
as is customary in the definition of a double integral. The areas of these 
regions are denoted A(R 1), ••• , A(Rn). The transformation T maps the 
regions R 1 , R 2 , ••• , Rn into regions R'1 , R'z, ... , R~ in the uv plane, and 
the latter regions have areas A(R'1), A(R'z), ... , A(R~). According to 
Theorem 2, we have 

k =I, 2, ... ,n. (8) 

We apply the Theorem of the Mean for double integrals which states that 
if f is continuous over a region R in the plane with area A (R) and if m :::;; 
Jtx,y):::;; M for all (x,y) in R, then there is a point (x,Y) in R such that 

ff f(x,y)dA_,y = f(x,y)A(R). 

R 

The proof is similar to that for single integrals. For the integral in (8), 
we find that there is a point Pk(xk,yk) in Rk such that 

A(Ri) = IJ(~: ~-)I x=x A(Rk), k = I, 2, ... , n. . y=y: 
The transformation T takes the point Pk into a point P(. in Ri, and P(. has 
coordinates which we denote by uk, vk; that is, 

From the definition of Fand G, we have 

F(uk, vk) = G(xk,yk), 

and so we can form the sum 

J. F(uk, rk)A(Ri) =kt. G(xk,yk)IJ(::nl.~~::"'(Rk). (9) 

We let n-+ oo and the norm of the subdivision of R tend to zero, and employ 
the tools used in establishing the existence of double integrals for continuous 
functions. We recognize the left and right sides of (9) as sums which tend 
to the corresponding integrals in (7), a valid conclusion when the integrands 
are continuous. 
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REMARKS. (i) We note that formula (7) employs only the first derivatives 
off and g, while in the proof we require that/and g have continuous second 
derivatives. By a more sophisticated argument it can be shown that the 
change-of-variables formula (7) is valid when/and g are once-continuously 
differentiable. (ii) We assumed in Theorems 2 and 3 that R', the image of 
R, is a region which has area. Actually, if Tis continuously differentiable, 
then it can be proved that R' has area whenever R does. 

EXAMPLE I. Evaluate JJ xydAxy• where R is the parallelogram bounded by 
the •lines 2x - y = I, 2x - y = 3, x + y = - 2, and x + y = 0. Draw a 
figure. 

SOLUTION. See Fig. 10-15. Let u = 2x - y, v = x + y. Then R' is the region 
determined by the inequalities 

I :s; u :s; 3, - 2 :s; v :s; 0, 

and 

x = !(u + v), y = !<-u + 2v). 

We compute 

Therefore 

.f(x,y) = xy = ~( -u2 + uv + 2v2 ), 

J= t. 

ff xydAxy = l 7 ff (-u2 + uv + 2t·2)dA 0 ,. 

R R' 

=l7 [
3f0 

(-u 2 +ur:+2v2)dvdu= -:t. J1 -2 

EXAMPLE 2. Evaluate JJ Rx dA _.,., where R is the region bounded by the 
curves 
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Fig. 10-16 (a) (b) 

x = -y2. x = 2y- y 2 and x = 2 - y 2 - 2y. 

Perform the integration by introducing the new variables u, v: 

(u + v) 2 u + v 
x=u- 4 ' y=-2-· 

Draw R and the corresponding region R' in the uv-plane. 

SOLUTION. The equations of the boundary curves for R' in the uv-plane are 
obtained by substitution. We find 

x = -y2 -+ u = 0, 

X = 2y - y 2 -+ U = U + V¢>V = 0, 

x + y 2 = 2 - 2y -+ u = 2 - u - v ¢> 2u + v =' 2. 

The regions Rand R' are shown in Fig. 10-16. We have 

1 _u+v u+r 

1(x,y)= 
2 2 

u,v I 2 
2 2 

Therefore 

ff ff [ (u + r) 2] I xdA.,>· = u - 4 · 2.dA.,. 
R R' 

= - u - dvdu I 1• 12-2"[ (u + v)2] 
2 0 0 4 _ !f 1 [ _ (u + v)3]2-2u - 2 UV 12 du 

0 0 

I f 1 
[ 2 (2 - u)3 u3 ] I =1 o 2u-2u - 12 +12 du= 4g· 



516 

x(y -1) :,-YI 
x(y-1) = ?::>" 

""=1 
xy=3'. \ 

y 

y=l 

0 4 

Fig. 10-17 

10. Green's and Stokes' Theorems 

u 

3 R' = T(R) 
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EXAMPLE 3. Evaluate JIRxdAxy• where R is the region bounded by the 
curves x(I - y) = I, x(I - y) = 2, xy = I, and xy = 3. The region R is 
shown in Fig. 10-17. 

SOLUTION. Let u = x( I - y), r = xy. Then 

x = u + v, r=--, J -•-' =x=u+i-. i· (u r) 
. U + L' X,J 

Since the Jacobian of the inverse of a one-to-one transformation is the 
reciprocal of the Jacobian of the transformation, we have 

J(x,y) __ I 
u,v - u+ i-· 

Therefore 

The theorems of this section have appropriate generalizations to three or 
more dimensions. Furthermore, the specialization to one dimension shows 
that the ordinary method of substitution x = g(u) is valid whenever g is 
continuously differentiable and g' "# 0. 

PROBLEMS 

In each of Problems I through 6, evaluate fJ R x 2 dA xy• where R is the parallelogram 
specified by the given inequalities. Draw a figure in each case. Use the method of 
Example I. 
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I. -I s;x-ys; I 
Os;x+ys;2 

3. I :::;; 2x - y :::;; 6 
- I :::;; x + 2y :::;; 4 

5. I :::;; 3x + y :::;; 6 
2:::;; x + 2y:::;; 7 

7. Show that 

2. -ls;2x+ys;2 
0:::;; x + 2y:::;; 3 

4. - I :::;; 3x + 2y :::;; 3 
I:::;; x+ 2ys; 5 

6. 2 :::;; 3x - y :::;; 9 
I:::;; x + 2y:::;; 8 

J(x,y) = r 
r,9 

if x = rcos9, y = rsin9. 

8. Show that 

9. Find 

10. Find 

if 

1(x,y,z) = p2sin</> if x = pcos9sin</>, y = psin9sin r/J, z = pcosr/J. 
p,9,r/I 

1 (x,y,z) 
u,v,w 

given that x = u(I - v), y = uv, z = uvw. 

X 1 = U 1 COSU2, 

X2 = U1 sinu2COSU3, 
X3 = u. sin U2Sin U3 COSU4, 
x4 = u1 sin u2 sin u3 sin u4. 
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In each of Problems 11 through 18, evaluate JfRf(x,y)dA,1 , where R is bounded by 
the curves whose equations are given. Perform the integration by introducing variables 
u and v as indicated. Draw a graph of R and the corresponding region R' in the uv
plane. Find the inverse of each transformation. 

11. f(x, y) = x 2 ; R bounded by y = 3x, x = 3y and x + y = 4; transformation: 
x = 3u + v, y = u + 3v. 

12. f(x,y) = x - y 2 ; R bounded by y = 2, x = y 2 - y, x = 2y + y 2 ; transformation: 
x = 2u - v + (u + v) 2 , y = u + v. 

13. f(x,y) = y; R bounded by x + y - y 2 = 0, 2~ + y - 2y2 = I, x - y 2 = O; trans
formation: x = u - v + (u - 2v)2,y = -u + 2v. 

14. j(x,y) = x 2 ; R bounded by y = -x - x 2 , y = 2x - x 2 , y = !x - x 2 + 3; trans
formation: x = u - v, y = 2u + v - (u - v)2 • 

15. j(x,y) = (x 2 + y2)-3; R bounded by x 2 + y 2 = 2x, x 2 + y 2 = 4x, x 2 + y 2 = 2y, 
x 2 + y 2 = 6y; transformation: x = u/(u2 + v2 ), y = v/(u2 + v2). 
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16. j(x,y) = 4xy; R bounded by y = x, y = -x, (x + y) 2 + x - y - I = O; transfor
mation: x = (u + r)/2, y = (-u + r:)/2 (assume that x + y > 0). 

17. j(x,y) = y; R bounded by x = e"12 - -!y, x = 5 + e"12 - h, x = 2y + e"12 , 3x = 
y + 3e1' 2 - 5; transformation: u = x - e112 + (y/2), r = y. 

18. j(x,y) = x 2 + y 2; R is the region in the first quadrant bounded by x 2 - y 2 = I, 
x2 - y 2 = 2, 2xy = 2: 2xy = 4: transformation: u = x 2 - y 2 , r = l:{y. 

19. Show that the integrals 

[" r·-,.j(x.y)dxdy 

Jo Jo 
and f J:j(u - ur:,uv)ududr 

are equal if u = x + y, r = y/(x + y). 

20. Show that the integrals 

Joa ro·'j(x,y)dyd;{ and f' r•(l+u)f[-l'_ . ...!!!'._] __ l'_2drdu 
J, J0 J0 l+ul+u(l+u) 

are equal if x = r/( I + u), y = ur/( I + u). 

21. Evaluate the integral 

f ff :dV,,, 

R 

where R is the region x 2 + y 2 ::;; z2, x 2 + y 2 + z2 ::;; I, ;: <=: 0, by changing to 
spherical coordinates. 

22. By introducing polar coordinates, evaluate 

ff dAx,. 
(I + x2 + y2)2 

R 

where R is the right-hand loop of the lemniscate: 

(x2 + _r2)2 _ (x2 _ y2) = o. 

4. Surface Elements. Surfaces. Parametric 
Representation 

So far we have interpreted the term "surface in three-space" as the graph in 
a given rectangular coordinate system of an equation of the form z = f(x, y) 
of F(x, y, z) = 0. The definition and computation of areas of general surfaces 
were taken up in Section 7 of Chapter 5. Now we are interested in studying 
surfaces which have a structure much more complicated than those we have 
considered previously. 

In order to simplify the study of surfaces, we decompose a given surface 
into a large number of small pieces and examine each piece separately. It 
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may happen that a particular surface has an unusual or bizarre appearance 
and yet each small piece has a fairly simple structure. In fact, for most 
surfaces we shall investigate, the "local" behavior will be much like that of 
a piece of a sphere, a hyperboloid, a cylinder, or some other smooth surface. 

Some surfaces have boundaries and others do not. For example, a hemi
sphere has a boundary consisting of its equatorial rim. An entire sphere, 
an ellipsoid, and the surface of a cube are examples of surfaces without 
boundary. 

We now describe the "small pieces" into which we divide a surface. 
More precisely, a smooth surface element is the graph of a system of equations 
of the form 

x = x(u, v), y = y(u,v), z = z(u, v), (u, v)eG u iJG, (I) 

in which x, y, z are continuously differentiable functions on a domain D 
containing G and its boundary iJG. It is convenient to use vector notation, 
and we write the above system in the form 

v(OQ) = r( u, v ), (u,v)eGuaG, 0 is the origin of coordinates. 
(2) 

We assume that G is a domain whose boundary consists of a finite number 
of piecewise smooth simple closed curves. See Fig. 10-18, in which iJG 
consists of one piecewise smooth curve. 

We shall suppose that 

for (u, v) e D, (3) 

and that r(u 1,v1) -F r(u2 ,v2) whenever (u1 ,v1) #: (u2 ,v2). In other words, 
the equations (1) (or (2)) define a one-to-one, continuously differentiable 
transformation from Gu iJG onto the points of the surface element. We 
observe that since 
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r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k, 

then 

r. x rv = (y.zv - Yvz.)i + (z.xv - zvx.)j + (x.Yv - x.,y.)k, 

which, in Jacobian notation, may be written 

r x r. = 1(Y· z)i + 1(z, x)j + 1(X,}) k. 
u • u, i; u, v u, v (4) 

We also say that the equations (I) or (2) form a parametric representation 
of the smooth surface element. 

The next theorem establishes the relation between two parametric repre
sentations of the same smooth surface element. 

Theorem 4. Suppose that the transformation (2) satisfies the conditions above 
for (u, v) in a region D which contains G and oG. Let Sand S* denote the 
images under (2) of G v oG and D, respectively. Let (x,y, z) be any rectangular 
coordinate system. Then 

a) if (uo, Vo) is any point of G v oG, there is a positive number p such that the 
part of S* corresponding to the square 

lu - u0 I < p, lv-v0 l<p 
is of one of the forms 

z =f(x,y), x = g(y,z), or y = h(x, z), 

where f, g, or h (as the case may be) is smooth near the point (x0 ,y0 , z0 ) 

corresponding to (u0 , v0 ). 

b) Suppose that another parametric representation of Sand S* is given by 

v(OP) = r 1(s,t), 

in which Sand S* are the images of G1 v oG1 and D1 , respectively, in the 
(s, 1)-plane. Suppose that G1 , D1 , and r 1 have all the properties which G, 
D, and r have. Then there is a one-to-one continuously differentiable 
transformation 

T: u = U(s, t), v = V(s, t), (s, t) on D1 , 

from D 1 to D such that T(G1) = G, T(oG1) = oG, and 

r[ U(s, l), V(s, t)] = r 1 (s, t) for (s, t) on D1 • 

PROOF. (a) Since r. x r., # 0 at a point (u0 , v0 ), we conclude from the 
formula 

r x r = 1(Y·Z) i + 1(Z,X). + 1(x,y)k 
u " u, v u, v J u, v (4) 

that at least one of the three Jacobians is not zero at (u0 , v0). Suppose, 
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Fig. 10-19 

for instance, that 

1(x,y) 
u,v 

is not zero. We set 

r(u, v) = X(u, v)i + Y(u, v)j + Z(u, v)k, 

and x 0 = X(u0 , v0 ), y 0 = Y(u0 , v0 ). Then, from the Implicit Function 
Theorem, it follows that there are positive numbers h and k such that all 
numbers x, y, u, v for which 

Ix - x0 I < h, IY-Yol < h, lu - u0 I < k, Iv- v0 I < k, 

and x = X(u, v), y = Y(u, v) lie along the graph of u = <f>(x,y), v = t/J(x,y), 
where</> and I/I are smooth in the square Ix - x0 I < h, IY - Yol < h. In this 
case, the part of S* near (x0 ,y0 ,z0 ) is the graph of 

z = Z[<f>(x,y),l/J(x,y)], lx-x0 I < h, IY- Yol < h. 

The conclusion (a) follows when we select p > 0 small enough so that the 
image of the square lu - u0 I < p, Iv - v0 1 <plies in the (x,y)-square above. 
b) Since r(u, v) and r 1 (s, t) are one-to-one, it follows that to each (s, t) in 
D, there corresponds a unique Pon S* which comes from a unique (u, v) in 
D (Fig. 10-19). If we define U(s, t) = uand V(s, t) = v by this correspondence, 
then Tis one-to-one. To see that it is smooth, let (s0 , t 0 ) be any point in D1 

and let (u0 , v0 ) = T(s0 , 10 ). Denote by P0 the point of S corresponding to 
(s0 , 10 ) and (u0 , v0). At least one of the three Jacobians in (4) does not vanish. 
If, for example, the last one does not vanish, we can solve for u and v in 
terms of x and y as in part (a). We now set 

r 1 (s, t) = X1 (s, t)i + Y1 (s, t)j + Z 1 (s, t)k. 

Since there is a one-to-one correspondence between the points P near P0 

and the points (x,y) "below" them, we see that 

Hence U and Vare smooth near (s0 , t0 ), an arbitrary point of G1 . 
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Fig. 10-20 

REMARK. Of course, T- 1, the inverse transformation, has the same smooth
ness properties that T does. 

Suppose that S is a smooth surface element given by 

r(u, i;) = x(u, v)i + y(u, v)j + z(u, i;)k, (u, i·) e Gu iJG. 

Then the boundary of S is the image of cG in the above parametric repre
sentation. From part (b) of Theorem 4, we see that the boundary of a smooth 
surface element is independent of the particular parametric representation. 
Also, it is not difficult to see that the boundary of a smooth surface element 
consists of a finite number of piecewise smooth, simple closed curves, no 
two of which intersect. 

From Theorem 4, part (a), we observe that a neighborhood of any point 
of a smooth surface element is the graph of an equation of one of the forms 

z =J(x,y), x = g(y,z), or y = h(x,z), 

where J: g, or h is a smooth function on its domain. The set of points 

{(x,y,z):z=j(x,y), (x,y)eGuiJG}, 

where f is smooth on a domain D containing Gu cG, is a smooth surface 
element S. To see this, we observe that Sis the graph of the equations 

x=u, y= r, z = j(u, v), (u,r)eGucG. 

Definition. A piecewise smooth surface S is the union S 1 u S2 u · · · us. 
of a finite number of smooth surface elements S 1 , S 2 , ••• , s. satisfying the 
following conditions: 

i) no two of the Si have common interior points; 
ii) the intersection of the boundaries of two elements, cSj n cSi, is either 

empty, or a single point, or a piecewise smooth arc (see Fig. 10-20); 
iii) the boundaries of any three elements have at most one point in common. 
iv) any two points of Scan be joined by an arc in S. 
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A piecewise smooth surface S may be decomposed into a finite union of 
smooth surface elements in many ways. A smooth arc which is part of the 
boundary of two of the Si is called an edge of the decomposition. A corner 
of one of the boundaries of an Si is called a vertex. The boundary oS of a 
piecewise smooth surface consists of all points P such that (i) P is on the 
boundary of exactly one Si• or (ii) Pis a limit point of such points. It can be 
shown that cS is either empty or the union of a finite number of piecewise 
smooth, simple closed curves no two of which intersect. 

A piecewise smooth surface S is said to be a smooth surface if and only if 
for every point p not on as a decomposition of s into piecewise smooth 
surface elements can be found such that P is an interior point of one of the 
surface elements. It can be shown that if Fis a smooth scalar field on some 
domain and F(P) and V F(P) are never simultaneously zero, then the graph 
of the equation F(P) = 0 is a smooth surface provided that the graph is a 
bounded, closed set. Thus, by choosing 

F(P) = x 2 + y 2 + z2 - a2 or 
x2 y2 z2 

F(P) = a2 + b2 + (.2 - I, 

we see that spheres and ellipsoids are smooth surfaces. Any polyhedron is a 
piecewise smooth surface. 

EXAMPLE. Suppose that a smooth scalar field is defined in all of R3 by the 
formula 

F(P) = x 2 + 4y2 + 9z2 - 44. 

Show that the set S: F(P) = 0 is a smooth surface. 

SOLUTION. We compute the gradient: 

VF= 2xi + 8yj + 18zk. 

Then VF is zero only at (0, 0, 0). Since S is not void [the point (J44, 0, 0) 
is on it] and since (0. 0, 0) is not a point of S, the surface is smooth. 

5. Area of a Surface. Surface Integrals 

If a surface S is given by 

S= {(x,y,z):z=f(x,y), (x,y)eGvoG}, 

we know that if f has continuous first derivatives, the area of S may be 
computed by the method described in Chapter 5, Section 7. We begin the 
study of area for more general surfaces by defining the area of a smooth 
surface element. 

Let a be a fmooth surface element given by 
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Fig. 10-21 

<J: v( ()Q) = r(u, v), where (u, v)E G v cG, (l) 

with r and G satisfying the conditions stated in the definition of a surface 
element. If r is held constant, equal to z:0 , say, then the graph of (I) is a 
smooth curve on the surface element <J. Therefore the vector r.(u, v0 ) is a 
vector tangent to the curve on the surface. Similarly, the vector r,.(u0 , v) is 
tangent to the smooth curve on the surface clement <J obtained when u is 
set equal to the constant u0 (Fig. 10-21). The vectors r.(u0 , v0 ) and r,,(u0 , v0 ) 

lie in the plane tangent to the surface at the point P0 corresponding to 
r(u0 , r0 ). Since the cross product of two vectors is orthogonal to each of 
them, it follows that the vector r.(u0. t•IJ) x r,.(110, v0) is a vector normal to 
1he surface of P0 . 

For convenience, we write a= r.<uc» t•0 ), b = r"(110 • r0 ). and we consider 
the tangent linear tra11sformatio11 defined by 

v(di>) = r(u0 • r 0 ) + (11 - u0 )a + (r - 1•0 )b. (2) 

We notice that the image of the rectangle 

R = {(u, r): u1 S: u S: u2 , 1• 1 S: r S: v2 J 

under (2) is a parallelogram ABCD in the plane tangent to the surface at the 
point/~;= r(u0 , r0 ) (Fig. L0-22). The points A. B, C, and Dare determined 
by 

v(<iA) = r(«c;, l.'0 ) + (u 1 - u0 )a + (r 1 - u0 )b, 

v(OB) ·::::. r(u0 , v0 ) + (u 2 - u0 )a + (1.01 - v0 )b, 

v((}C) = r(uc» v0 ) + (u 1 - u0 )a + (v2 ••· r 0 )b, 

v(OD) = r(u0, v0) + (u1 - u0)a + (1:2 - r0)b. 

B 

u 

c 

0 • Fig. 10-22 
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Using vector subtraction, we find that 

v(AB) = (U2 - U1)a, 

525 

Denoting the area of R by A(R), we use the definition of cross product to 
obtain 

Area ABCD = lv(AB) x v(AD)I = l<u2 - u 1)(v2 - v1)l ·la x bl 

= A(R)lru(uo, t:o) x rv(uo, Vo)I. 

In defining the area of a surface element, we would expect that for a very 
small piece near P0 , the area of ABCD would be a good approximation to 
the (as yet undefined) area of the portion of the surface which is the image 
of R. We use this fact to define the area of a surface element <r. We subdivide 
the region Gin the uv plane into a number of subregions G1 , G2 , ••• , Gk 
and define the norm 11~11 as the maximum diameter of any of the subregions. 
We define 

• 
Area of u = lim L A(Gi)iru(ui, V;) x r,.(ui, vJI, 

11.lll~Oi=I 

where (ui, vi) is any point in G; and where the limit has the usual interpretation 
as given in the definition of integral. Therefore the definition of area of a is 

A(a)= fflru(u,v)xrv(u,v)ldAuv· (3) 

G 

We immediately raise the following question concerning the use of 
parameters. Suppose that the same smooth surface element a has another 
parametric representation 

r' = r'(s, t) 

Is it true that the formula 

for (s, t) in G'. 

A(a) = ff lr;(s, t) x r;(s, t)I dA,1 

G' 

(4) 

gives the same value as formula (3)? Because of the rule for change of 
variable in a multiple integral (Theorem 3, page 513) and the rule for the 
product of Jacobians 

J(x,y) = J(x,y)J(u, v). 
s, t u, v s, t 

it follows that (3) and (4) yield the same value. In fact, we have 

I (u v\ I lr;(s, t) x r;<s, t)I = lru(u, v) x rv(u, v)l · 1J -' ) s,t 1 

If the representation is the simple one z = f(x, y) discussed at the beginning 
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of the section, we may set x = u, y = v, z = j(u, v), and find 

1(Y·~)= -J., u, v u 
1(~·x) = _,. 

U, t' .Ir' 
1(x,y) =I. 

U,L' 

Then (3) becomes 

A(a) =ff -v'f +-(/Y + (i.f2 dA.,., (5) 
G 

which is the formula we established in Section 7, Chapter 5. 
Unfortunately, not every surface can be covered by a single smooth 

surface element, and so (5) cannot be used exclusively for the computation 
of surface area. In fact, it can be shown that even a simple surface such as 
a sphere cannot be part of a single smooth surface element. (See, however, 
Example 2 below.) 

We define figures and their areas on more general piecewise continuous 
surfaces as follows: We say that a set Fon a smooth surface element is a 
figure if and only if it is the image under ( 1) of a region E in G u oG which 
has an area, and we define its area by the formula (3). If r' = r'(s, t) is another 
representation, and£' is the corresponding set, it follows from Theorem 4(b) 
above and the rule for multiplying Jacobians, that £' is a figure and the area 
of Fis given by (4) which is the same as (3). We say that a set Fon a piecewise 
continuous surface is a figure -= F = f~ u · · · u F,. where each fi is a figure 
contained in some smooth surface element CT; and no two have common 
interior points; in this case we define 

A(F) = A(f~) + · · · + A(f/c). 

It is not difficult to see that two different decompositions of this sort yield 
the same result for A (F). 

If Fis a closed figure (i.e., one which contains its boundary) on a piecewise 
smooth surface and f is a continuous scalar field on F, we define 

(6) 

where F = { F1 , ••• , £,.} is a subdivision of F as above; the terms in the 
right side of ( 6) are given by 

ff fdS= ff.t{r;(u,v)J-lr;. x rfrldudv, (7) 

F; I::; 

where F; is the image of E; under the transformation 

v(OQ) = r;(u. v), 

The result is independent of the subdivision and the parametric representa
tions of the elements ai' 

If a surface element u has the representation z = cp(x,y) in a given co-
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z 

(0, 5) 

Fig. 10-23 Fig. 10-24 

ordinate system, then (7) becomes 

ff J(Q)dS =ff Jix,y,<J>(x,y)]v'l + </>; + q,;dAxy• (8) 

f' G 

with corresponding formulas in the cases x = </>(y, z) or y = <f>(x, z). The 
evaluation of the integral on the right in (8) follows the usual rules for 
evaluation of double integrals which we studied earlier. Some examples 
illustrate the technique. 

EXAMPLE I. Evaluate JJf'z2 dS, where Fis the part of the lateral surface 
of the cylinder x 2 + y 2 = 4 between the planes z = 0 and z = x + 3. 

SownoN. (See Fig. 10-23.) If we transform to cylindrical coordinates r, 8, z 
then F lies on the surface r = 2. We may choose (J and z as parametric 
coordinates on F and write 

F={(x,y,z):x=2cos0, y=2sin0, z=z, (0,z)inG}, 

G = {(H.z): -n :s;; (J :s;; n, 0 :s;; z :s;; 3 + 2cos8}. 

See Fig. 10-24. The element of surface area dS is given by 

dS = lr8 x r,I dA 8,, 

and since 

( r z) (~ x) (x r) r8 x r, = J o: z i + J ~: z j + J o:~ k 

= (2cos0)i + (2sin8)j + O·k, 

we have 

dS = 2dA8,. 
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Then 

I I z2dS = 2 I I z2dA9, = 2 [, r+2cos8 z2dzd8 

F G 

= 1 rn (3 + 2cos8)3 d8 

= 1 rn (27 + 54cos8 + 36cos2 8 + 8cos3 8)d8 

= 1(54n + 36n) = 60n. 

(9) 

REMARK. Strictly speaking, the whole of Fis not a smooth surface element, 
since the transformation from G to F shows that the points ( -n, z) and (n, z) 
of Gare carried into the same points on F. For a smooth surface element, the 
condition that the transformation be one to one is therefore violated. How
ever, if we subdivide G into G1 and G2 as shown in Fig. 10-24, the images are 
smooth surface elements. The evaluation as given in (9) is unaffected. 

Surface integrals can be used to make approximate computations of vari
ous physical quantities. The center of mass and the moment of inertia of a 
thin curvilinear plate are sometimes computable in the form of surface 
integrals. The potential due to a distribution of an electric charge over a 
surface may be expressed in the form of an integral. (See Problems 18 
through 21 at the end of this section.) With each surface Fwe may associate 
a mass (assuming it to be made of a thin material), and this mass may be 
given by a density function '5. The density will be assumed continuous but 
not necessarily constant. The total mass M(F) of a surface Fis given by 

M(F) = I I '5(P) dS. 

F 

The formula for the moment of inertia of F about the z axis becomes 

I,= ff i5(Q)(x~ + y~)dS, 
F 

with corresponding formulas for Ix and fy. The formula for the center of 
mass is analogous to those which we studied earlier. (See Chapter 5, Section 
6, and also Example 3 below.) 

EXAMPLE 2. Find the moment of inertia about the x axis of the part of the 
surface of the unit sphere x 2 + y2 + z2 = I which is above the cone z 2 = 
x 2 + y 2 • Assume 15 = const. 

SOLUTION. (See Fig. I0-25.) In spherical coordinates (p, q,, 8), the portion F 
of the surface is given by p = I. Then ( </>, 8) are parametric coordinates and 
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y 

Fig. 10-25 

F= {(x,y,z): x = sin<f>cos8, y = sin<f>sin8, z =cos</>, (</>,8)eG]-; 

G = { ( </>, 8) : 0 ~ </> ~ n/4, 0 ~ 8 ~ 2n}. 

We compute rq, x r6 , getting 

J( r,=)· 1 (=·x). J(x, r)k rq,xr6 = ~. 8 1+ </>, 8 J+ </>:8 

= (sin2 <f>cos 8)i + (sin 2 </>sin £l)j +(sin</> cos </>)k. 

We obtain 

Then 

Ix= ff (y2 + z2)c5sin</>dAt/>6 

G 

rn/4 r2n 
=6 Jo Jo (sin 2 </>sin 2 8+cos2 </>)sin</>d8d</> 

rn/4 
= nb Jo (sin2 </> + 2cos2 </>)sin <f>d</> 

= m5 f '4 
(I + cos2 </>)sin <f>d</> = m5[ -cos</> - ~ cos3 </>]0'4 

nc5 .~ = 12(16 - 7....;2). 

REMARK. The parametric representation of F by spherical coordinates does 
not fulfill the conditions required for such representations, as given in 
Theorem 4, since Ir"' x r6I =sin</> vanishes for</>= 0. However, the same 
surface, with a small hole cut out around the z axis, is of the required type. 
A limiting process in which the size of the hole tends to zero yields the 
above result for the moment of inertia Ix. 

EXAMPLE 3. Let R be the region in three-space bounded by the cylinder 
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Fig. 10-26 

xi + yi = 1 and the planes z = 0, z = x + 2. Evaluate JJF x dS, where F is 
the surface made up of the entire boundary of R (Fig. 10-26). If Fis made 
of thin material of uniform density 6, find its mass. Also, find .\', the x
coordinate of the center of mass. 

SOLUTION. As shown in Fig. 10-26, the surface is composed of three parts: 
F1 , the circular base in the xy plane; Fi, the lateral surface of the cylinder; 
and F3 , the part of the plane z = x + 2 inside the cylinder. We have 

ff xdS =ff xdA_.y = 0, 
f 1 (j I 

where 
G1 ={(x,y,z):xi+yi::;;1, z=OJ 

is a disk. On F3 , we see that z = j(x,y) = x + 2, so that dS = .,_ ldA_.). and 

ff.HIS= v2 ff xdA,y=O. 
f" J 

On Fi. we choose coordinates (0,z) as in Example I and obtain x = cosO, 
y = sin 0, z = z, dS = dAo:· We write 

where 

Therefore 

ff ff Jn ri+cu>O 

xdS = cos0c/A 0= = -n Jo cosOtl=dO, 

f"2 G, 

ff xdS = rn (2cos0 + cosiO)dO = n. 
f" 2 
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We conclude that 

ff x dS = ff x dS = n. 
F F 1+F2 +F3 

We observe that the surface F is a piecewise smooth surface without 
boundary. There are no vertices on F, but there are two smooth edges, 
namely the intersections of x 2 + y 2 = I with the planes z = 0 and z = x + 2. 
To compute the mass M(F), we have 

M(F) =ff iJdS = bA(F) = b[A(F1) + A(F2) + A(F3)]. 

F 

Clearly, A(F1) = n, A(F3) = n,.2. To find A(F2 ), we write 

A(F2) =ff dA 9, = rn J:+cose dzdO = rn (2 + cosO)dO = 4n. 

G2 

Therefore M(F) = b[n + 4n + n.Jl] = n(5 + vl)b. We use the formula 

ff iJxdA 
- F x = _________ ,,_ 

M(F) 
to get - !Jn x=-------= -· bn(5 + ..j2) 5 + .j2 

PROBLEMS 

In each of Problems I through 9, evaluate 

Jff(x,y,z)dS. 

F 

I. f(x,y, z) = x, Fis the part of the plane x + y + z = I in the first octant. 

2. j(x, y, z) = x 2 , Fis the part of the plane z = x inside the cylinder x 2 + y2 = I. 
3. f(x, y, z) = x 2 , Fis the part of the cone z2 = x 2 + y 2 between the planes z = I and 

Z= 2. 

4. j(x, y, z) = x 2, F is the part of the cylinder z = x 2 /2 cut out by the planes y = 0, 
x = 2, and y = x. 

5. f(x, y, z) = xz. F is the part of the cylinder x 2 + y 2 = I between the planes z = 0 
and z = x + 2. 

6. j(x, y, z) = x, Fis the part of the cylinder x 2 + y 2 = 2x between the lower and upper 
nappes of the cone z2 = x 2 + y 2 • 

7. f(x,y, z) = I, F is the part of the vertical cylinder erected on the spiral r = 8, 
0 ~ 8 ~ n/2 (polar coordinates in the xy-plane), bounded below by the xy-plane 
and above by the cone z2 = x 2 + y 2 • 

8. f(x, y, z) = x 2 + y 2 - 2z2 , Fis the surface of the sphere 
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Fig. 10-27 

9. f(x, y, z) = x 2 , Fis the total boundary of the region R in three-space bounded by 
the cone z2 = x2 + y 2 and the planes z = I, z = 2. (See Problem 3.) 

In each of Problems IO through 14, find the moment of inertia of Fabout the indicated 
axis, assuming that t5 = const. 

I 0. The surface F of Problem 3; x axis. 

11. The surface F of Problem 6; x axis. 

12. The surface F of Problem 7; z axis. 

13. The total surface of the tetrahedron L bounded by the coordinate planes and the 
plane x + y + z = I, having vertices B(I, 0, 0), £(0, I, 0), R(O, 0, I), and S(O, 0, 0); 
yaxis. 

14. The torus (r - b)2 + z2 = a2 , 0 <a< b: z axis. Note that 

,2 = x2 + y2 

and that we may introduce parameters 

with the torus swept out by 

x = (b + acos<f>)cosO, 

y = (b + acos</>)sinO, 

z = asin</>, 

0 ~ </> ~ 2n, 0 ~ 0 ~ 2n. 

(See Fig. 10-27.) 

In each of Problems 15 through 17, find the center of mass, assuming 6 = const. 

15. Fis the surface of Example 2. 16. Fis the surface of Problem 13. 

17. Fis the part of the sphere x 2 + y 2 + z2 = 4a2 inside the cylinder x 2 + y 2 = 2ax. 
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Fig. 10-28 

The electrostatic potential V(Q) at a point Q due to a distribution of charge (with 
charge density c5) on a surface Fis given by 

V(Q) = ff J(P)dS 
IPQI. 

F 

where IPQI is the distance from Qin space not on F to a point Pon the surface F. In 
Problems 18 through 21, find V(Q) at the point given, assuming c5 constant. 

18. Q = (0, 0, 0), Fis the part of the cylinder x 2 + y 2 = I between the planes z = 0 and 
:: =I. 

19. Q = (0, 0, c); F is the surface of the sphere x 2 + y2 + z2 = a2 • Do two cases: (i), 
c > a > 0 and (ii), a > c > 0. 

20. Q = (0;0, c); Fis the upper half of the sphere x2 + y 2 + z2 = a2 ; 0 < c <a. 

21. Q = (0,0,0); Fis the surface of Problem 3. 

6. Orientable Surfaces 

Suppose S is a smooth surface element represented by the equation 

v(OQ) = r(u, v) with (u, v) in Gu oG (I) 

where G is a region in the (u, v)-plane with piecewise smooth boundary oG. 
According to the definition of smooth surface element, we know that 
r. x r,, .P 0 for (u, v) in a domain D containing G and its boundary. There
fore we can define a unit normal function to the surface S by the formula 
(Fig. 10-28) 

n _ r. x r. 
- Ir. x rvl' (u, v) in G. (2) 

Whenever Sis a smooth surface element, the vector n is a continuous function 
of u and v. If we use Jacobian notation, we see that 
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n = lru x r,.1- 1 [1( ~-:~)i + 1(~: ~)j + 1(::n k J (3) 

Suppose now that 

v(OQ) = r 1 (s, t), 

is another parametric representation of the same smooth surface element S. 
Then from part (b) of Theorem 4, it follows that there is a one-to-one 
continuously differentiable transformation 

T: u = U(s, t), v = V(s, t), (s, t)eD1 , 

from D 1 to D such that T(G1) = G and T(oG1) = oG. Also, we have 

r[U(s,t), V(s,t)] = r 1(s,t), (s,1)eD1 • 

Now we define 

I l-1[1 (y,z). 1 (z,x). 1 (x,y)k] n1 = r1s X r 11 - I+ - J + - . 
S, t S, I S, t 

(4) 

Since Jacobians multiply according to the law 

1(Y· z) = 1(y,z) 1 (u, v). 
S, I u, V s, I 

and similar laws when (y,z) is replaced by (z,x) or (x,y), we conclude from 
(3) and (4) that 

n1(P) = +n(P) or n1(P) = -n(P) 

for all Pon S. The choice of sign depends upon whether 1(u, v) is positive 
or negative on G1 v oG1 • s, t 

Definitions. A smooth surface S is orientable =- there exists a continuous 
unit normal function defined over the whole of S. Such a function is called 
an orientation of S. 

Since any unit vector normal to Sat a point Pis either n(P) or -n(P), 
we see that each smooth orientable surface possesses exactly two orientations 
each of which is the negative of the other. We call a pair (S, n), where n is an 
orientation of S, an oriented surface and denote it by S. Suppose S = (S, n) 
is a smooth oriented surface and f = (I:, n'), where I: is a smooth surface 
element on Sand n' is the restriction of n to I:, and I: is given by (l). Then 
the representation (l) of I: is said to agree with the orientation on S=-n' 
is given by (2). 

It is easy to see that smooth surfaces such as spheres, ellipsoids, tori (see 
Problem 14, Section 5), and so forth, are all orientable. However, there are 
smooth surfaces for which there is no way to choose a continuous normal 
function over the whole surface. One such surface is the Mobius strip drawn 
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in Fig. 10-29. The reader can make a model of such a surface from a long, 
narrow, rectangular strip of paper by giving one end a half-twist and then 
gluing the ends together. A Mobius strip can be represented parametrically 
on a rectangle 

R = {(8,s): 0 :5; 8 :s;; 2n, -h :5; s :5; h}, 

(see Fig. 10-30) by the equations 

x =(a+ ssin~)cosO, y =(a+ ssin~) sin8, 

(0 < h <a) 

(5) 

To obtain the unit normal to the surface, we compute r9 x r, from the 
formula 

J(y, z). J(z, x). J(x,y) k 
r9 xr.= 8,s •+ e,s J+ 8,s . 

We find 

J(y, z) ( . 0) () () s . () O,s = a+ ssm 2 cos 2cos + 2sm , 

J(~'.:) = (a+ ssinVcos~sinO - ~cos(), 

J(x,y) ( . 0) . 0 
8,s = - a+ ssm 2, sm 2, 

and 
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n 
n 

b 

Fig. 10-31 Fig. 10-32 

Therefore r9 x r. is never 0, so that if we define n(O, s) by (2), we see that 
n(O,s) is continuous. However, n(O,O) = i, n(2n,O) =-= -i, and the points 
(0, 0), (2n, 0) in the parametric plane correspond to the same point on the 
surface. The transformation (5) is one to one, except that the points of R 
given by (0, s) and (2n, -s), -h ~ s ~ h, are always carried into the same 
point on the surface (Fig. I0-30). The Mobius strip, often called a "one
sided surface," is not a smooth surface element (defined in Section 4). If a 
pencil line is drawn down the center of the strip (corresponding to s = 0) 
then, after one complete trip around, the line is on the "opposite side." 
Two circuits are needed to "close up" the curve made by the pencil line. 
The Mobius strip is not an orientable surface. 

A smooth surface element S which, according to (1) is the image of a 
plane region G, has a boundary (denoted as) which is the image of the 
boundary aG of G. The closed curve aG, which is piecewise smooth, can be 
made into a directed curve by traversing it in a given direction. We say that 
aG is positively directed when we travel along it so that the interior of G is 
always on the left. We write a<J for a positively directed closed curve. In 
Fig. 10-31 the curve aG is shown positively directed. The closed curve as, 
the image of aG, becomes a directed curve in space, with the direction the 
one induced by a<J. We say the curve as is positive_!y directed when its 
direction corresponds to the positively directed curve aG. Geometrically the 
curve as is directed so that when one walks along as in an upright position 
with his head in the direction of the positive normal n to the surface, then 
the surface is on his left. In terms of right- and left-handed coordinate 
systems, if t is tangent to as pointing in the positive direction, if n is per
pendicular to t and in the direction of the positive normal, and if b is per
pendicular to the vectors t and n and pointing toward the surface, then the 
triple t, b, and n is a right-handed triple (Fig. I0-32). If oG and as contain 
several closed curves, this argument holds for each curve. 

We wish to extend the notion of orientable surface to piecewise smooth 
surfaces. Such surfaces have edges, and so a continuous unit normal vector 
field cannot be defined over the entirely of such a surface. However, a 
piecewise smooth surface F can be subdivided into a finite number of smooth 
surface elements F1 , F2 , .•• , fk. Each such surface element may be oriented 
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Fig. 10-33 

and each boundary ofi may be correspondingly positively directed. Suppose 
that Yii is a smooth arc which is the common boundary~ of two surface 
elements Fi and Fj. If the positive direction ~fyij as part of of; is the opposite 
of the positive direction of Yii as part of ofj for all arcs ~·ii· we say that the 
surface Fis an orientable, piecewise smooth surface. In this case, the collection 
of orientations of the Fi form an orientation of F and the normal function 
defined on each Fl01 (interior of fi) is called the positive normal. 

Figure 10-33 shows a piecewise smooth, orientable surface and its de
composition into smooth surface elements. The boundary oFis a positively 
directed, closed, piecewise smooth curve. Those boundary arcs of F1 , F2 , 

... , F,. which are traversed only once comprise oF. From the discussion 
of the last paragraph, it follows that if a piecewise smooth surface is orientable 
according to one decomposition into smooth surface elements, then it is 
orientable according to any other such decomposition. It can be shown that 
there is no way to subdivide a Mobius strip into smooth elements, with two 
adjacent elements always having oppositely directed common boundary arcs. 
In other words, a Mobius strip is not orientable even if it is treated as a 
pie'--ewise smooth surface. On the other hand, the surface of a cube, which 
is piecewise smooth, is an orientable surface. We select the "outward" 
pointing normal on each face and traverse the boundary of any face in a 
counterclockwise direction as we view it from outside the cube. We easily 
verify that all edges are traversed twice, once in each direction. 

7. Stokes' Theorem 

Let S be a smooth oriented surface element and (x, y, z) a fixed rectangular 
coordinate system. We represent S parametrically: 

S: r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k. 

Then the positive unit normal n(u, v) is given by 

n(u, v) = I l I [J(Y· z) i + J(z, x)j + J(x,y ')k]. 
ru x r. u,v u,v u,v, 

If v is a continuous vector field defined on S with coordinate functions 

v(x,y,z) = v1(x,y,z)i + v2(x,y,z)j + v3(x,y,z)k, 
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we can compute the scalar product v · n: 

v· n = 1 [v 1(y,z) + v 1(z,x.) + l' 1(x·.Y)]· I I I U V 2 U l' 3 U, L' ru x r(. ' ' 

Since v · n is a continuous function on S, we may define the integral 

ff v·ndS. 
s 

The surface element dS can be computed in terms of the parameters (u, v) 
according to the formula 

dS = Ir. x r,.I dA.,., 

and so 

where G is the domain in the (u, r)-plane which has S for its image. 
lfr 1 (s, t) is another smooth representation of S, it follows from Theorem 4 

that there is a one-to-one smooth transformation 

u = U(s, t), r = V(s, t) 

such that 

r[ U(s, t), V(s, t)] = r 1(s,1). 

According to the rule for multiplying Jacobians, 

1(Y·=) = 1(Y·=)1(u,v) s, I u, L' s, I 

[and the analogous equations for (z,x) and (x,y)], we see that the repre
sentation r 1(s,1) gives the same orientation as the representation r(u, v) if 
and only if 

1(u,v) > 0. 
s, I 

In such a case, if we replace (u, v) by (s, t) in (l) and integrate over G1 [the 
region in the (s, 1)-plane whose image is S], we obtain the formula for 

ff v·ndS 
s 

in terms of the parameters s and t. 
When S is a piecewise smooth orientable surface, we can represent it as 

the union ofa number of smooth surface elements S1, S2 , ••• , Sk. Then we 
define 
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z 

_x 

Fig. 10-34 

JJ v·ndS= it Jf v·n;dS;. 
S S; 

Each integral on the right is evaluated as in (I). 

EXAMPLE 1. Let R be the region bounded by the cylinder x 2 + y 2 = 1 and 
the planes z = 0 and z = x + 2 (Fig. 10-34). Let S be the entire boundary 
of R. Find the value of Hs v · ndS where n is the outward directed unit 
normal on S and 

v = 2xi - 3yj + zk. 

SOLUTION. The surface S is piecewise smooth and we label the smooth 
portions S1 , S2 , and S3 , as shown in Fig. 10-34. On S1 we have 

n = -k, v·ndS = -zdAx>· = 0, 

as S1 is in the plane z = 0. Therefore we have Hs, v · ndS = 0. On S3 , we 
have z = x + 2 and 

n =~(-i + k), 
,./2 

1 
v · n = -=< - 2x + z), 

..)2 

v· ndS = (-2x + z)dAxy-

We obtain JJ53 v·ndS=JJs,(-x+2)dAx>·· We see that JJ5 ,xdAx1 =0, 
since the integrand is an odd function. Also, 2 Hs, dAxy = 2n. 

On S2 , we select cylindrical coordinates 

S2 : x=cos8, y=sin8, z = z, (8,z)inF2 ; 

F2 ={(0,z):-n::;;O::;;n, O:::;;z:::;;2+cos0}. 
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We find 

n = (cosO)i + (sinO)j, v·n = 2cos2 8- 3sin2 8. 

Therefore 

Hence 

ff v·ndS= ff (2cos2 8-3sin2 8)dA11, 

S2 F2 

= J" rl+cosll (2 - 5 sin2 8)dzd8 
-.. Jo 

= r .. (4- 10sin2 8 + 2cos8- 5sin2 8cos8)d8 

= Sn - IOn + 0 + 0 = - 2n. 

JJ v·ndS = f J v·ndS +ff v·ndS +ff v·ndS = 0. 
s ~ ~ ~ 

_Suppose that Sis an oriented, piecewise smooth surface with the bounda!)' 
as positively directed and made up of a finite number of smooth arcs C 1 

C2 •... ' c,.. If vis a continuous vector field defined on and near as, we 
define 

J v·dr= .± Jv·dr. 
1=! 

as c, 
With the aid of this definition we can state Stokes' Theorem. 

Theorem 5 (Stokes' Theorem). Suppose that Sis a bounded, closed, orientable, 
piecewise smooth surface and that v is a smooth vector field defined in a region 
containing S. Then 

H (curlv)·ndS= J v·dr. 

s as 

(2) 

Corolluy. Suppose that Sis a bounded, closed, orientable, piecewise smooth 
surface without boundary and that v is a smooth vector field def med in a region 
containing S. Then 

ff (curl v) · ndS = 0. 
§ 

We require two lemmas to prove Stokes' Theorem. 

(3) 
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Lemma 2. Suppose that -r is a rectangular coordinate system in three-space 
ll'ith corresponding orthogonal unit vectors i, j, k. Suppose that Sis a smooth 
oriented surface element ll'ith a parametric representation 

r(u, r) = x(u, v)i + y(u, v)j + z(u, v)k, (u,v)eGuoG, (4) 

which agrees 1rith the orientation ofS. Let v be a continuous vector field defined 
in a region E containing S, and suppose vis given by 

v(x,y,z) = r 1(x,y,z)i + v2(x,y,z)j + v3(x,y,z)k, (x,y,z)EE. (5) 

Then 

J v·dr = J [(v 1x,. + i·2y,. + r 3z.)du + (v 1xv + v2 y,. + v3z..)dv]. (6) 

os oiJ 

PROOF. We establish the result for the case that cG consists of a single piece
wise smooth simple closed curve; the extension to several such curves is 
clear. Let 

u = u(s), v = v(s), a~ s ~ b, 

be a parametric representation of the closed curve oG. Then 

x = x[ u(s), r(s) ], y = y[u(s), v(s)], z = z[ u(s), v(s) ], a~s~b 

is a parametric representation of cS. Using the Chain Rule, we find 

dr=dxi+dyj+dzk 

= (x.u, + x, v,) ds i + (y,.us + y,.V5 ) ds j + (z.u, + zvv,) ds k. 

Therefore 

Iv· dr = r [(v1x. + L'2Yu + i;3z.)us + (v,x,. + V2Yv + V3Z..)vJds. (7) 

oS 

Making the insertions 

du= u.,ds, dv = vsds 

in the right side of (6), we see that (6) and (7) are identical. 

Lemma 3. Suppose that f(u, v) is smooth in a region D containing Gu oG 
where G has the usual piecewise smooth properties. Then there is a sequence 

f . f. r h I hf.. cf.. cf.. . h G d 
1 , 2 , ••• , 1 ., ••. sue t 1at eac "'..,,-,..,,-is smoot on an 

t;U liV 

of.. of ---OU ou' 
of~ of ---CV CV 

as n- oo, 

uniformly on G. 
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PROOF. Since G is bounded, there is no loss in generality in assuming that D 
is bounded. Since G is closed and contained in D, it follows that there is a 
fl > 0 such that the disk C(P, p) with center at P and radius p, is in D for 
P any point of G. We let G0 be the set of all P in D such that C(P, p/2) is 
in D: it can be shown that G0 is closed. For (uci. r0 ) in G, it is then clear that 
the square 

lu - u0 I S: h, 

is in G0 so long as 0 < h < p/2,/2. We now define the function 

. I J"+h J..-~h . 
jh(u, r) = 4'12 ..-h ··-h j(s, t) dA_,, 

for all (u, r) in G with 0 < h < pf2v2· Holding r fixed and applying Leibniz' 
Rule for differentiating under the integral sign, we obtain 

cl"( ) I J'+h Jh ::.u, r = -12 [J(u + h, t) - f(u - h, t)] dt 
LU 41 ,·-h 

- 1 1··+h J .. +h cj(s, t) 
--2 -~-dA..,. 

4h i·-h u-h CS 

Applying Leibniz' Rule again, first with respect to u and then with respect 
tot'. we get 

c2j~(u, r) =_I_ r·- h [cj(u ;- 11, t) _ cj(u: h, t)J dt 
t:U2 411 2 J..-h CU CU 

c2{~(u, r) = -4 J"~h[cj(s, !' + h) - cj(s~r _ ,;>J ds. 
cuer 4/z 11-h ($ cs 

A similar argument shows that 

Cj~(u, r) =_I_ f u+h ["+h cj(s, t) dA. 
Cr 4'12 u-h J..-h C( SI 

~- -
and that -;;1'- is smooth for 0 < /1 < p/2...; 2. 

er 
cf cf 

Since ~ and ~ are continuous on G0 , a closed bounded set, they are 
1,S LI 

uniformly continuous there. Hence for any r. > 0, there is a ,5 with 0 < c5 < 
p/2./2 such that 

I <~/(s' .t') - C./(s" ,/'') I < f; 

ts' cs" 

if Is' - s"I < c5 and It' - t"I < ci. A similar statement holds for i'//Ct. There
fore if 0 < h < ci, then 

I cf~(u, r) - cj(u, r) I=_!_ I r•+h r··+h[cj(s, t) - cj(u, r)J dA,,, I< f., 

cu cu 411 2 J .. -h J.._h cs cu 
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and similarly for the derivative with respect to v. Now letting {hnl be any 
sequence tending to zero, we set .f~ = .f~n and the result follows. 

We now establish Stokes· Theorem (Theorem 5). 

PROOF OF STOKES' THEOREM. We first prove this theorem for the case thats is 
a single smooth oriented surface element. Let r be a rectangular coordinate 
system with corresponding vectors i, j, and k, and let v be given by (5) and 
let (4) be a parametric representation of S which agrees with the orientation 
on S. Finally we assume that x, y, ;:, x., y •• z •• x,., y,., and z,. are all smooth 
on D. Then (6) holds on account of Lemma 2. Applying Green's Theorem 
to the integral on the right side of(6), we obtain 

J v·dr = Jf [:)V1X,. + V2Y .. + L'3Z,.)- !,<vix .. + V2Yu + V3z.,)J dA ... 
~S G 

= Jf [x,.(V1xXu + v1l.y" + v1,z.) + y,.(v2xxu + V2yYu + v2,z.) (8) 

G 

+ z .. (v3XXU + V3)'Y11 + V3,z.) - x.(L'ixX,. + v.,y,. + V1,z,.) 

- y.(v2xx" + v2).y,. + v2,z,.) - z.(v3xx,. + v31y,. + v3,z,.)] dA., .. 

It is easy to verify that all the terms in the right side of (8) involving the 
derivatives x.,., y., .• and z ... cancel each other. Collecting terms in (8), we 
obtain 

JV· dr =ff [ (V3y - V2,)J(:;: ~) + (viz - V3x)J( ~: ~) 
G 

+(Vix - V1 1)J(~:-~) JdA.,. 

(9) 

and the right side of(9) is the left side of(2), as is seen using (I). 
Now, if we merely know that x, y, and z are smooth on D, it follows from 

Lemma 3 that there are sequences {xn}, {Yn}, and {zn} such that Xn, Yn• Zn, 
x,. •• Ynu• Znu• Xm·• Yn,·• and zn,. are all smooth on an open set D' containing 
Gu oG such that all these quantities converge uniformly to x, y, z, and 
their first derivatives on Gu iJG. The formula (9) with x. y, z replaced by 
xn, Yn• and ;:n holds for each n. The uniform convergence implies that (9) 
holds in the limit. 

Finally, if Sis any piecewise smooth oriented surface, we may express 
S = S1 u · · · u Sk, where each S; is an oriented smooth surface element, 
oriented in such a way that any piecewise smooth arc on the boundary of 
S; and 5~ is~directed oppositely as part of iJS; from the way it is directed as 
a part of c~. Formula (2) follows for each i from the proof above. Adding 
these results, we obtain 
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n 

Fig. I0-35 

f f<curl v)-ndS = ;~ J v · dr. (10) 

s o~ 

In the sum on the right the integrals over arcs which are on the boundaries 
of two S; cancel, leaving only the integrals over those arcs only on the 
boundary of one S;. These latter arcs comprise oS. 

EXAMPLE 2. Verify Stokes' Theorem, given that 

v = yi + zj + xk 

and that S is the part of the surface of the cylinder x 2 + y 2 = 1 between the 
planes z = 0 and z = x + 2, oriented with n pointing outward (Fig. 10-35). 

SOLUTION. An examination of Fig. 10-35 shows that the curves C1 and C2 

must be directed as exhibited. We choose cylindrical coordinates and write 

S={(x,y,z):x=cosO, y=sinO, z=z, (0,z)onF}; 

F={(O,z):-n:s;O::;;n, O:s;z:s;2+cos0}. 

We think of Sas made up of two smooth surface elements corresponding to 
F1 and F2 , as shown in Fig. 10-36. We must make this subdivision because 
the representation of S by Fis not one-to-one. The formulas 

JG'::)= cosO, 

JG::)= sinO, 

J(x,y)= 0, 
e,z 
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z 

Fig. 10-36 
& .. 

-r 0 r 

n = (cos O)i + (sin O)j, 

show that the representation agrees with the given orientation. Therefore 
the orientation of the boundary of S is determined by the orientations of 
the boundaries of F1 and F2 • We note that when we form the boundary 
integral, those parts taken over vertical segments cancel. Now 

curl v = -i - j - k, n = (cos O)i + (sin O)j, and dS= dA 9,. 

We obtain 

if J" r2+eos9 
(curlv·n)dS= _,,Jo (-cosO- sinO)dzdO 

s J" = - _,, [(2cosO+cos2 0)+(2+cosO)sinO)]dO (11) 

= -7t. 

For the boundary integral, we have 

~ v · dr = J v · dr - J v · dr, 

as, c; -Ci 

in which the integrals on the right are taken in a counterclockwise direction. 
We find: 

On C1 : v = (sin O)i + (cos O)k, dr = (-sin Oi + cos Oj) dO. 

On -C2 : v = (sin O)i + (2 +cos O)j + (cos O)k, 

dr = (-sinOi + cosOj - sinOk)dO. 

Taking the scalar products, we get 

I v·dr = r .. (-sin2 0)d0 = -n. (12) 

c; 

J v · dr = f,. (-sin2 0 + 2cos0 + cos2 0 - sinOcosO)dO = 0. (13) 

c; 
A comparison of(l l) with (12) and (13) verifies Stokes' Theorem. 
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PROBLEMS 

In t!ach of Problems I through 7, compute Jfrv · n dS. 

I. v = (x + l)i- (2y + l)j + zk; Sis the triangle with vertices (1,0,0), (0, 1,0), and 
(0, 0, I), with n pointing away from the origin. 

2. v =xi+ yj + zk; Sis the part of the paraboloid 2z = x 2 + y 2 inside the cylinder 
x 2 + y2 = 2x with n · k > 0 (n pointing upward). 

3. v = x2 i + y2j + z2 k; Sis the part of the cone 

z2 =xi+ y2 for which I s; z s; 2, 

with n·k > 0. 

4. v = xyi + xzj + yzk; Sis the part of the cylinder y2 = 2 - xcutout by the cylinders 
y 2 = z and y = z3 . 

5. v = y2 i + zj - xk; S is the part of the cylinder y 2 = I - x between the planes 
z = 0 and z = x; x ~ 0, with n · i > 0. 

6. v = 2xi - yj + 3zk; Sis the part of the cylinder z2 = x to the left of the cylinder 
y 2 = I - x and n · i > 0, n pointing to the right. 

*7. v =xi+ yj - 2zk; S is the part of the cylinder x 2 + y2 = 2x between the two 
nappes of the cone z2 = x2 + y2, n pointing outward. 

In each of Problems 8 through 13, verify Stokes' Theorem. 

8. v = zi + xj + yk; Sis the part of the paraboloid z = I - x 2 - y2 for which z ~ 0 
and n·k > 0. 

9. v = y2 i + xyj - 2xzk; Sis the hemisphere x2 + y2 + z2 = a2, z ~ 0 with n · k > 0. 

IO. v = - yzi; S is the part of the sphere x2 + y2 + z2 = 4 outside the cylinder 
x 2 + y 2 = I, n pointing outward. 

11. v = -zj + yk; Sis the part of the vertical cylinder r = 0 (cylindrical coordinates), 
0 s; (} ::;; n/2, bounded below by the (x,y)-plane and above by the cone z2 = x 2 + y2, 
n · i > 0 for 0 > 0. 

12. v = yi + zj + xk; Sis the part of the surface z2 = 4 - x to the right of the cylinder 
y 2 = x, n · i > 0, i pointing to the right. 

13. v = zi - xk; Sis the part of the cylinder r = 2 + cosO above the (x,y)-plane and 
below the cone z2 = x 2 + y2, n pointing outward. 

In each of Problems 14 through 16, compute J0.sv · dr, using Stokes' Theorem. 

14. v = r- 3 r, r =xi+ yj + zk, r =Ir!; Sis the surface of Example 2. 

15. v = (ex siny)i + (ex cosy - z)j + yk; Sis the surface of Problem 3. 

16. v = (x2 + z)i + (y2 + x)j + (z2 + y)k; Sis the part of the sphere x 2 + y2 + z2 = I 
above the cone z2 = x 2 + y2 ; n · k > 0. 

17. Show that if Sis given by z = f(x,y) for x2 + y2 s; I, where f is smooth and if 
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v = (I - x2 - y2)w(x, y, z), where w is any smooth vector field defined on an open 
set containing S, then JJ.r(curl v · n) dS = 0. 

18. Suppose that v = r- 3(yi + zj + xk), where r = lrl = lxi + yj + zkl and 'S is the 
unit sphere with n directed outward. Show by direct calculation that 

f f<curl v) · ndS = 0. 

s· 

8. The Divergence Theorem 

Stokes' Theorem, which relates an integral over a surface in space to a line 
integral over the boundary of the surface, is a generalization of Green's 
Theorem. Another type of generalization, known as the Divergence Theo
rem, establishes a connection between an integral over a three-dimensional 
domain and an integral over the surface which forms the boundary of the 
domain. It can be shown that the Divergence Theorem and the theorems of 
Green and Stokes are all special cases of a general formula which connects 
an integral over a set of points in some n-dimensional space with another 
integral over the boundary of that set of points. 

Theorem 6 (The Divergence Theorem). Suppose that a bounded domain G in 
three-space is bounded by one or more disjoint piecewise smooth, orientable 
surfaces without boundary and suppose that v is a smooth vector field defined 
on an open set containing G and cG. Then 

JJJ div.dv~ [• nds._I (l) 

i. 

where the boundary oG is oriented by taking n as the exterior normal. 

We prove the Divergence Theorem (with an added condition that the 
boundary is not too irregular) later in this section. However, certain special 
cases which give the principal content of the result will be established first. 

Lemma 4. Suppose that v and G are such that there exists a rectangular 
coordinate system in which v(x, y, z) = R(x, y, z)k and G is of the form 

G = {(x,y,z): (x,y)eD, c < z <f{x,y)}, 

where f is piecewise smooth (as indicated in Fig. 10-37).* If Rand R, are 
continuous on an open set containing G and oG, then (l) holds. 

•That is, the graph S of the equation z = j(x,y), (x,y)e Du oD is a piecewise smooth surface 
and z = f(x,y), (x,y)e D; u vD; is a parametric representation of each smooth part S;. 
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/ 
/ 

/ [)-
L. 

z 

PROOF. We note that div v = R, and, therefore, that 

Fig. 10-37 

ff f divvdV = JJJ R,dV,yz = f J r(x,y> R,dzdA">" 

G G D 

Upon performing the integration with respect to z, we find 

fff divvdV= ff {R[x,y,Jtx,y)]-R(x,y,c)jdA.,Y' (2) 
G D 

Let cG =SI v S2 v S3, where SI is the domain Din the plane z = c, S2 is 
the lateral surface of the cylinder, and S3 is the top surface: 

S3 = {(x,y,z): (x,y)eD, z =f(x,y)}. 

We have 

On S2 : n · k = 0, ff v·ndS= 0. (3) 
s, 

n = -k, ff v·ndS= - ff R(x,y,c)dA">" (4) 
S 1 D 

n = (1 + j} + J/)- 112(-j~i - /yj + k), 

dS =(I + f?' + 1~2)112 dAxy; (5) 

J f v·ndS= ff R[x,y,Jtx,y)]dAxy· 
s, D 

A comparison of(2) with (3), (4), and (5) yields the result. 

Lemma 5. Suppose that the hypotheses of Lemma 4 hold, except that v has the 
form 

v = P(x, y, z)i + Q(x, y, z)j 

with P, Q smooth on a region containing G and iJG. Then (I) holds. 



8. The Divergence Theorem 

PROOF. We define the functions U, V by the formulas 

U(x,y,z) = r Q(x,y,t)dt, V(x,y,z) = -r P(x,y,t)dt. 

Also, we set 

w =Vi+ Vj and 

Then w is smooth and R, Rz are continuous, so that 

curl w = - Vzi + Uzj + ( "'., - Uy)k = v - U, 

divv = P_, + QY = Rz = divu. 

We apply the Corollary to Stokes' Theorem and obtain 

Jf<curlw)·ndS=O= ff<v-u)-ndS. 
~G cG 

Therefore 

J f v·ndS = f Ju· ndS =ff f divudV; 
cG i!(; G 

549 

(6) 

(7) 

the last equality holds because Lemma 4 may be applied to u = Rk. Taking 
(6) and (7) into account, we get 

ff v · n dS = ff f div v dV. 
cG G 

The Divergence Theorem holds also for cylindrical domains which are 
parallel to the x- or y-axes. By addition, the result is valid for smooth vector 
fields v defined over regions G which are the sum of cylindrical domains of 
the kind just described. These regions may be quite general. However, the 
proof we now present uses the partition of unity, and therefore avoids the 
difficulty of describing such regions in detail. 

We suppose that G is a region in R3 , the boundary of which consists of a 
finite number of disjoint piecewise smooth surfaces. Each of these surfaces 
has the property: For any point P of such a surface S, we can associate a 
coordinate system (x, y, z) with P as the origin, and a function f which is 
piecewise smooth as in Lemma 4. That is, we have a domain 

D = {(x,y): x 2 + y 2 < r 3 } 

and a cylindrical region 

y={(x,y,z):(x,y)eD, -K<z<K} 

such that the part of G in y is 
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{(x,y,z): (x,y)eD, -K < z <.f(x,y)}. 

We assume that /(0, 0) = 0. When each point P has the above property, 
we say that G has a regular boundary. 

We now establish the Divergence Theorem with the additional condition 
that G has a regular boundary. 

PROOF. Let P be a point of the boundary of G. We assume D, ;·,and/ are as 
described above. We also introduce the cylinder r which is similar to;· but 
has radius 3r instead of r. We taker so small that r is in G. 

Let </> be the function defined in Section 2 (Equation I) in the proof of 
Green's Theorem. We set 

( · x2 + r2) ( -) ric(x,y,z)=</> v· r • </> ~ · (8) 

Let ;·1 , ;·2 •••• , i'k be a set of cylinders of the above type which covers G, 
and °'i. ric2, ...• °'k the corresponding functions of type (8). We next define 

°';(Q) 
t/J;(Q) = ric.(Q) + ric2(Q) + ... + °'k(Q) 

for each Q in R 3 • We note that the t/J; form a smooth partition of unity on 
a region containing G and its boundary. Setting 

V; = t/J;V 

we have 

v=v 1 +v2 + ··· +vk, 

and it suffices to prove the Divergence Theorem for each v;. If for some i, 
the cylinder r; is interior to G, then v; = 0 outsider; as well as on and near 
its boundary. Applying Lemmas 4 and 5 to V; in r; we find that 

When P; is on the boundary of G, we still have v; = 0 in the exterior of r;. 
so that Lemmas 4 and 5 yield 

ff f divv;dV =ff f divv;dV =ff v;· ndS = JJ v;·ndS. 
G r; er; <G 

The last inequality holds because v; = 0 on that portion of c:r; which is not 
part of the boundary of G. The proof is complete. 

In two dimensions the Divergence Theorem is a direct consequence of 
Green's Theorem. To see this we choose the usual coordinate system in the 
xy plane and suppose that v = Pi + Qj. We define u = Qi - Pj. As Fig. 
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n 

Fig. 10-38 Fig. 10-39 

10-38 shows, the exterior normal n to a region G makes an angle of -n/2 
with the tangent vector T, directed so that the interior of G is always on the 
left as we proceed around the boundary. If</> is the angle the vector T makes 
with the positive x-direction, we may write 

T = (cos </>)i +(sin </>)j, n = (sin</>)i - (cos</>)j, 

v·T = u·n, divu = Qx - PY. 

The Divergence Theorem (Equation (1)) applied to u is, when translated in 
terms of v (or P, Q), a restatement of Green's Theorem. 

EXAMPLE I. Verify the Divergence Theorem, given that G is the domain 
between the concentric spheres S1 and S 2 of radius 1 and 2, respectively, 
and center at O; the vector vis v = r/r3 , with r = v(OP), Pa point in the 
domain, and r = I rl. 

SOLUTIOK (See Fig. 10-39.) Let S1 and S2 be the spheres, both oriented with 
n pointing outward from 0. Then 

J J v · n dS = H v · n dS - JJ v · n dS, 

cG s-; s-; 
since the normal on S1 , as part of cG, points toward 0 when the Divergence 
Theorem is used. According to Example 2 in Section 3 of Chapter 9, we 
easily find that 

divv = 0 
and hence 

ff f divvdV = 0. 
G 
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Fig. 10-40 L ..... -u At .............. / 

Now, on both S1 and S2 , we haven= ,- 1r, and so 

Jf v·ndS- H v·ndS=iA(S2)- l·A(S1)=0. 

s; s; 

EXAMPLE 2. Given that G is the domain inside the cylinder 

x2 + y2 = 1 

and between the planes z = 0 and z = x + 2, and given that 

v = (x 2 + ye')i + (y2 + zex)j + (z2 + xeY)k, 

use the Divergence Theorem to evaluate J J~G v · n dS. 

SOLUTION. We have div v = 2x + 2y + 2z. Therefore, letting F denote the 
unit disk, we obtain (Fig. 10-35) 

JJv·ndS= fff 2(x+y+z)dV=2 Jf [(x+y)z+!z2]~i2dAxy 
i!G G F 

= JJ [2y(x + 2) + 2x2 + 4x + (x2 + 4x + 4)]dAxy 
F 

= Jf(3x2 +4)dAxy= f r·[(3r3 cos28)+4r]drd8 
F 

= 7t f (3r 3 + 8r)dr = 1Jn. 

The Divergence Theorem has an important physical interpretation in 
connection with problems in fluid flow. We suppose that a fluid (liquid or 
gas) is flowing through a region is space. In general, the density p and the 
velocity vector u will depend not only on the point P in space but also on 
the time t. We select a point Pin space, a value oft, and a small plane surface 
u through P (Fig. 10-40). For a moment we suppose that p and u are constant. 
Then, after a short time !!.t, all the particles on u at time t would be in the 
shaded region u' shown in Fig. 10-40. The particles sweep out a small 
cylindrical region as they travel from u to u'. The total mass of fluid flowing 
across u in time ll.t is just enough to fill up the oblique cylinder between u 
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and u'. We denote this cylindrical region by G, its boundary by fJG, and 
the outward normal on the boundary by n. If u · n > 0 on u, then the fluid 
flow is out of G across u, while if u · n < 0 on u, the flow is into G across u. 
The amount of fluid leaving (or entering, if the value is negative) G across 
u is then given by 

(pu) lit · nA ( u). 

The net rate of flow of mass out of G across u (per unit time) is just 

pu · nA(u). 

If p and u are continuous on iJG, a piecewise smooth boundary, and if we 
divide up iJG into small, smooth surface elements such as u and add the 
results, we obtain (in the limit) 

ff (pu) · ndS 
aa 

for the rate of flow of the total amount of mass out of G. We denote by 
M(G, t) the total mass in the region G at time t. Using the definition of 
density, we may write 

M(G,t)= ff f p(P,t)dVp 
G 

and, using Leibniz' Rule (extended to triple integrals), we find 

~M(G,t) =ff f p,(P,t)dVp. 
G 

Since (d/dt)M is the amount of mass flowing into G, we obtain 

ff f p,(P,t)dVp =-ff (pu)·ndS. 
G oG 

If p and u are smooth, we may apply the Divergence Theorem to the boundary 
integral and get the equation 

ff f [p,(P, t) + div (pu)] dV = 0. 
G 

Since G is arbitrary, we can divide the above equation by V(G), the volume 
of G, and let G shrink to a point P. The result is the equation of continuity 

p, + div (pu) = 0. 

If the fluid is an incompressible liquid, so that p = const, the equation of 
continuity becomes 

divu = 0. 
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PROBLEMS 

In each of Problems I through 10, verify the Divergence Theorem by computing 
separately each side of Eq. (I). 

I. v = xyi + yzj + zxk; G is bounded by the coordinate planes and the plane 
x+y+z= I. 

2. v = x2i - y2j + z2k; G is bounded by: x2 + y2 = 4, z = 0, z = 2. 

3. v = 2xi + 3yj - 4zk; G is the ball x2 + y2 + z2 s; 4. 

4. v = x2i + y2j + z2k; G is bounded by: y2 = 2 - x, z = 0, z = x. 

5. v = xi + yj + zk; G is the domain outside x2 + y2 = I and inside 

x2 + y2 + z2 = 4. 

6. v =xi - 2yj + 3zk; G is bounded by y2 = x and z2 = 4 - x. 

7. v = ,- 3 (zi + xj + yk); G is the domain outside x2 + y2 + z2 = I and inside 
x2 + y2 + z2 = 4. 

8. v = 3xi - 2yj + zk; G is bounded by x2 + z2 = 4, y = 0, 

x + y + z = 3. 

9. v = 2xi + yj + zk; G is bounded by z = x2 + y2 and z = 2x. 

I 0. v = xi + yj + zk; G is bounded by x2 + y2 = 4 and x2 + y2 - z2 = I. 

In each of Problems 11 through 13, evaluate Jfro v · n dS, using the Divergence Theorem. 

11. v = ye'i + (y - zex)j + (xe» - z)k; G is the interior of the torus (r - b)2 + z2 s; a 2, 
0 <a< b; r, z cylindrical coordinates. 

12. v = x 3 i + y3j + z3 k; G is the ball x2 + y2 + : 2 s; I. 

13. v = x3 i + y3j + zk; G is bounded by: x2 + y2 = I. z = 0, and 

= = x + 2. 

14. Suppose that G is a region in three-space with a boundary cG for which the Diver
gence Theorem is applicable. Prove the following formula for integration by parts 
if u and v are smooth on a region D containing G and oG: 

ff f udivvdV =ff uv·ndS- f ff \7u·vdV. 

G ~G G 

15. Suppose that D and Gare as in Problem 14 and that u, Vu, and v are smooth in 
D. Leto/on denote the directional derivative on oG in the direction ofn. Show that 

16. Suppose that u satisfies Laplace's equation in a region G of the type described in 
Problem 14. Show that 
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ff ~~dS= 0. 
oG 

[Hint. Use the formula in Problem 15.] 

555 

17. Suppose that u satisfies Laplace's equation in a region G of the type described in 
Problem 14. Show that if u = 0 on oG, then u = 0 in G. [Hint. Set v = u in the 
formula of Problem 15.] 

18. Evaluate JJsv · ndS, where Sis the torus 

S = {(r,8,z): (r - 3)2 + z2 =I} ((r,8,z) cylindrical coordinates); 

n is the outward normal on S; R = (x - 3)i + yj + zk; R = IRI. v = R-3 R. [Hint. 
Use the Divergence Theorem, with Gas the part of the interior of the torus which 
is outside a small sphere of radius p and center at (3, 0, 0).] 





APPENDIX 1 

Matrices and Determinants 

1. Matrices 

A matrix is a rectangular array of numbers enclosed in parentheses. For 
example, the array 

2 
4 

1 

0 

6 

3 

is a matrix with three rows and four columns. A matrix with m rows and n 
columns is written 

The individual entries in the matrix are called its elements; the quantity 
aii in the above matrix is the element in the ith row and jth column. The 
subscripts used to indicate the elements will always denote the row first and 
the column second. If the number of rows of a matrix is the same as the 
number of columns, it is said to be a square matrix. We shall use capital 
letters such as A, B, C, ... to denote matrices. The corresponding lower
case letters with subscripts, such as aii• bii• cii• etc., will be used to denote 
the elements. We use the expression "m by n matrix" and write "m x n 
matrix" for a matrix with m rows and n columns. 

A matrix with one row and n columns is called a row vector. For example, 
the matrix 
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(3, -1, 2, 0. 5, 4) 

is a row vector with 6 columns. A matrix with m rows and one column is 
called a column vector. The array 

is a column vector with 5 rows. We say that two matrices are of the same 
size if and only if they have the same number of rows and the same number 
of columns. 

The most important properties of matrices are contained in the rules of 
operation which we now define. 

Rule I (Multiplication by a Constant). If A is a matrix and c is a number, then 
cA is the matrix obtained by multiplying each element of A by the number c. 
For example, ifc = 3 and 

A= ( : 
-I 

-2 
4 

-3 
then 3A = ( ~ 

-3 

We use the symbol -A for the matrix (- l)A. 

-6 
12 

-9 

Rule II (Addition of Matrices). {/A and Bare of th<• same size and have elements 
aii and bii• respectively, we define their sum A + B as the matrix C with 
elements cii such that 

for each i and j. 

For example, if 

A=(! 
then 

2 

6 
-1) 

0 ' 

C=A+B=G 

B= (
-2 

0 4 

3 

IO -~). 

-~). 

It is important to remember that addition of matrices can be defined only 
for matrices of the same size. Subtraction of two matrices is defined in terms 
of addition. We have A - B = A + ( - l}B. 
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Rule III (Equality of Matrices). Two matrices are equal if and only if all their 
corresponding elements are equal. That is, in order that A = B we must have 
A and B the same size and a;i = bii for each i and j; in other words A and B 
denote the same matrix. 

EXAMPLE 1. Solve the following matrix equation for A: 

2A - 3( 2 
-3 

-I 

2 

3 

4 
-3) 

3 . 

SOLUTION. In order to make sense, A must be a 2 x 3 matrix. We may use 
the rules for adding matrices to write 

(-2 3 -3) 3 ( 2 
-1 ~) 2A = I 4 3 + -3 2 

=(-~ 3 -3)+ ( 6 -3 ~)=(_: 0 
6) 

4 3 -9 6 IO 6 . 

Therefore 

A=( 2 
0 ~). -4 5 

We define a zero matrix as any matrix with all elements zeros. 

Rule IV (Multiplication of Matrices). Let A be an m x n matrix and B an 
n x p matrix. The product AB is that m x p matrix C with elements cii given 
by 

n 

C;i = L a;kbki• 
k=I 

i = 1,2, ... ,m; j = 1,2, ... ,p. 

It is extremely important to note that the product of two matrices is 
defined only when the number of columns in the first matrix is equal to the 
number of rows in the second matrix. 

EXAMPLE 2. Compute AB, given that 

A=G -1 

-2 -~). B=( ~ 
-I 

-1) 
2 . 
I 

SOLUTION. 

AB=(2·3+(-l)-I +3·(-1) 2·(-l)+(-1)-2+3·1 ) 
1·3+(-2)-1 +(-1)(-1) l·(-l)+(-2)-2+(-l)-I 

=(2 -•). 
2 -6 
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REMARKS. Note that A is a 2 x 3 matrix and Bis a 3 x 2 matrix. Therefore 
the product can be formed, and the result is a 2 x 2 matrix. The product 
BA can also be formed, the result being a 3 x 3 matrix. It is clear that 
AB#: BA, since AB is a 2 x 2 matrix and BA is a 3 x 3 matrix. In general, 
multiplication of matrices is not commutative. This is true even for square 
matrices. We observe that if 

A= ( I 
-I 

and 

then 

AB= ( 4 
-I 

-2) 
-I , BA=G 

The reader can easily establish the following result, which is stated in the 
form of a theorem. 

Theorem 1. (a) If A is an m x n matrix and Band Caren x p matrices, then 

A(B + C) =AB+ AC. 

b) If A and Bare m x n matrices and C is an n x p matrix, then 

(A+ B)C =AC+ BC. 

c) If A is an m x 11 matrix, Bis an n x p matrix, and c is a number, then 

(cA)B = A(cB) = c(AB). 

If the matrix C is the product of the matrices A and B, the elements of 
C may be expressed in terms of the inner or scalar product of two vectors. 
The element in the ith row andjth column of C is the inner product of the 
ith row vector of A with thejth column vector of B. The formula 

verifies this fact. 
A system oflinear equations is easily written in matrix form. For example, 

the system 

a11 x 1 + a12 x 2 + · · · + a1.x. = b1 

a21 x1 + a22 x 2 + · · · + a20x 0 = b2 

am1X1 + am2X2 + ... + amnXn = bm 

has m equations and the n unknowns x 1 , x 2 , ••• , x.; it may be written in 
the form 

AX=B, 
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where A is the m x n matrix with elements aii and where X and B are the 
column vectors with n rows and m rows, respectively: 

A precise definition of an m x n matrix may be given in terms of functions. 
The domain of a matrix function consists of all ordered pairs (i,j) of integers 
with 1 :::;; i :::;; m and l :::;; j :::;; n. The range of the function is the real number 
system. The particular nature of the function is determined by the rules 
of operation which we described in terms of rectangular arrays. 

PROBLEMS 

In Problems I through 7, solve for A. 

I. A= 2G -2)- 3 ( 2 I) 
3 -I 4 

2. A= 3(~ -3 
I) 2(1 

-I _:) I -I 2 3 

3. 2A -G 2 3) = 3(3 0 !) -I 2 2 I 

4 3A+(; 
-I 

-') (' ') ~ = 2 : -! c _, ') (' 3 

D 5. - I 3 2 - 2A = 3 -I 
I 2 -I I -2 

6 (2 I) ( 3 0) . 0 3 A= -3 -6 
( 3 I) ( 5 i) 7· A -2 2 = -5 9 

8. If A is a matrix and c and dare numbers, show that c(dA) = (cd)A. 

9. If A and B are matrices of the same size and c and dare numbers, show that 
(c + d)A = cA + dA and c(A + B) = cA + cB. 

In Problems 10 through 13, solve simultaneously for A and B. 

10. A - 2B = ( I 2). 
-I I 

(2 J 0) ll.A+2B= , 
I -1 2 

A -B=(2 I) 
I -I 

( I 2 -1
1
) 

2A + 3B= l O 
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12. A - B= ( l 
-1 

-2) 
3 , A+ B=G ~) 

13. 2A -B=G -3 0) 
3 2 , -A+ 2B= ( O 

-3 
3 3) 
0 -4 

In Problems 14 through 21, compute AB when possible and compute BA when possible. 

14. A=G -1) 
2 • B=G ~) 

15. A=G -1) 
3 ' B=e -~) 

16. A=(~ ~). B=(~ ~) 
17. A=G ~). B=(~ :) 

18. A=( l 
0 ~). •. (-: D -2 

2 -1) ··C -1 -i) 19. A=( l 
1 3 ' 

3 
-2 

-1 2 

2-0. A•e i} B= ( I 
2 -1 -2) 

-1 3 -1 
-2 

(" 0) ··G 0 

D 21. A= 0 0 0 , 0 
0 1 0 0 

22. Prove Theorem 1 

23. Let 

A=(~ ~) and B=G ~) 
Show that A and B commute with all 2 x 2 matrices. Are there any other matrices 
which commute with all 2 x 2 matrices? 

24. Find two 3 x 3 matrices A and B with the property that AB= 0, and BA = 0 and 
A'# 0, B '# 0. 

25. If 

A=G ~) and (-1 1) B= 2 3 ' 
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solve for X: 

Also, solve for Y: 

26. If 

AX=B. 

YA=B. 

A=(~~~) 
-2 I 

and B= ( ~ ~ ~). 
-I 3 

solve for X: 

AX=B. 

27. If A, B, and Care 3 x 3 matrices, prove that 

(AB)C = A(BC). 

APP-7 

2. Matrices, Continued. Double Sums and Double 
Sequences 

If A is an m x n matrix, the transpose of A is that n x m matrix obtained 
from A by interchanging its rows and columns. We use the symbol A' for the 
transpose of A. The element in the ith row and jth column of A', denoted 
a/i, is given by 

i = 1, 2, ... ,n; j= 1,2, ... ,m. 

For example, if 

A=G 
-I 

-2 
then A'=(-~ -~). 

3 --1 

The following theorem follows from the definition of transpose. 

Theorem 2. (a) If A and Bare m x n matrices and c is a constant, then 

(A + B)' =A'+ B'. (cA)' = cA'. 

b) If A is an m x n matrix and Bis an n x p matrix, then 

(AB)'= B'A'. 

PROOF. Part (a) can be performed by the reader. To prove (b), we let C =AB. 
Then C is an m x p matrix, and C' is a p x m matrix. Using aii, bii• and cii 
for elements of A, B, and C, respectively, we have 

• 
c;i = L a;kbki• 

k=t 
i= 1,2, .. . ,m; j= 1,2, ... ,p. 
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Also 

n 

C:i = cii = L aikbki• i= 1,2, ... ,p; j= 1,2, ... ,m. 
k=I 

We must show that the elements of B'A' are precisely cli· We let D = B'A'. 
Since B' is a p x n matrix and since A' is an n x m matrix, the matrix D is 
p x m, and we have 

i= 1,2, ... ,p, j= 1,2, ... ,n, 

i = 1,2, ... ,n, j= 1,2, ... ,m, 
n n n 

dii = L b;ka1i = L bkiaik = L aikbki = cii = cli· 
k=I k=I k=I 

Definitions. If A is a square matrix, we call those elements of the form aii 
diagonal elements, and we call the totality of diagonal elements the diagonal 
of the matrix. A diagonal matrix is one in which all elements are zero, except 
possibly those on the diagonal. That is, 

if i '# j. 

If, in a diagonal matrix A, we have a;;= I for all i, the matrix is called the 
identity matrix and is denoted by/. A square matrix is said to be triangular 
if and only if all the elements on one side of the diagonal are zero, i.e., 

aii = 0 for i > j or aii=O for i<j. 

Examples of 4 x 4 diagonal, identity, and triangular matrices are shown 
below. 

D~G 
0 0 

D /{~ 
0 0 

D 2 0 I 0 

0 I 0 

0 0 0 0 

Diagonal Identity 

( 
-I 0 

D T,{~ 
0 0 

D T,~ ~ 
2 I 3 0 

0 3 5 I 

0 0 4 6 

aii=O if i > j aii=O if i <j 

Triangular Triangular 

It is useful to introduce the Kronecker delta symbol Jii• which is defined 
by the relation 
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c} .. = {l 
IJ 0 

if i = j, 
if i "# j. 

APP-9 

If Bis a square matrix with elements b;;, then the relation bi; = 6;; implies that 
the matrix Bis the identity matrix/. We also note that the Kronecker delta 
allows simplifications of the type 

n 

L c5ijx; = x;. 
j=I 

These formulas are used frequently. 

n 

'"··l"· = l'· ~ IJ .. I .J• 
i=l 

Theorem 3. (a) If A and Bare each n x n diagonal matrices, then AB= BA 
and this is a diagonal matrix. (b) If A is any n x n matrix and I is then x n 
identity matrix, then IA= Al= A. 

The proofs are left to the reader. 
We recall that a sequence is a succession of numbers such as 

If there is a first and last element, the sequence is called finite; otherwise it 
is infinite. We may consider a sequence as a function with domain consist
ing of a portion of the integers (i.e., the subscripts) and with the range (the 
numbers ai) in the real number system. 

A double sequence is a function the domain of which is some set S of 
ordered pairs (i,j) of integers and with range consisting of a portion of the 
real number system. A matrix is a special type of double sequence in which 
the domain S consists of pairs (i,j) in which 1 :::;; i:::;; m and I :s;j:::;; n. In 
general, the domain S of a double sequence is not restricted in this way; in 
fact, S may be infinite, in which case we say that the double sequence is 
infinite. 

A finite double sum is an expression of the form 

L aij• 
(i.j)eS 

in which the aij form a finite double sequence with domain Sand with the 
sum extending over all elements of S. The symbol (i,j)eS, which we read 
'"(i.j) belongs to S, ·· indicates this fact. The general commutative property 
for addition of ordinary numbers shows that the order in which we add the 
terms of a finite double sum is irrelevant. 

Suppose the domain of a double sequence consists of all pairs (i,j) for 
which I :::;; i:::;; m and 1 :s;j:::;; n. Then we can easily conclude that 

L a;; = I [I a;;] = f. [I ai;] · 
(i.j)eS i=I j=I j=I i=I 

(I) 

The latter two sums are called iterated sums, since we sum first with respect 
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to one index and then with respect to the other. The fact that double sums 
and iterated sums are identical leads to many conveniences, and we shall 
use this fact on a number of occasions. For example, it follows that 

S={(i,j):ls;is;m, ls;js;n}. 

There is a convenient notation which consists of the symbol 

I ::;:; i <}::;:; n. 

This is used to represent the set S, which consists of all (i,j) for which 
I =;; i < n, I <}::;:; n and i <}. Note that i cannot have the value n, since i 
must be strictly less than} and} can be at most n. Similarly,) cannot have the 
value I. We write 

to mean 

in which Sis the set described above. We may also conclude on the basis of 
the equivalence of double sums and iterated sums that 

n-1 n 

L a;j= L L aij. (2) 
t si<j$n i=l j=i+l 

It can also be shown that 

n j-1 

L aij= LL aij• (3) 
ls.i<jsn j=2 i=I 

The set S for n = 6 is shown schematically below. 

j 

6 * * * * * 
5 * * * * 
4 * * * 
3 * * 
2 * 

2 3 4 5 6 

EXAMPLE I. Write out the iterated sum 

4 i 

L L 0 u· 
i=l j=l 
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SOLUTION. We have 

=al 1 + (a21 + a22) + (a31 + a32 + a33) 

+ (a41 + a42 + a43 + a44). 

EXAMPLE 2. Verify formulas (2) and (3) for n = 3. 

SOLUTION. The symbol 

:L aij means 
1 si<js3 

APP-I I 

where S consists of all ( i,j) for which l ~ i < 3, I < j ~ 3 and i < j. Therefore 

:L aij = a,2 + a,3 + a23· 
1 si<js3 

From formulas (2) and (3) we have 
2 3 3 3 

L L a;;= L a,j + L a2j = (a12 + a13) + a23, 
i=l j=i+I j=2 j=3 

3 j-1 1 2 

L La;;= L ll;2 + L a;3 = ll12 + (a13 + ll23). 
j=2 i=I i=l i=l 

Theorem 4 (ASHCiative Law for Multiplication of Matrices). Suppose that 
A, B, and Care m x n, n x p, and p x q matrices, respectively. Then 

(AB)C = A(BC). 

PROOF. We define D = AB and F = DC= (AB)C. Also, we define E = BC 
and G = AE = A(BC). We must show that F = G. Using lower-case letters 
for the elements of the matrix with the corresponding capital letters, we have 

n 

d;; = I a;kbkj• 
k=l 

p 

f;; = :L dilclj. 
1=1 

We substitute the expression for diJ on the left into that for Ii; (changing sub
scripts in the process), and we find 

p n 

h; = I I a;kb.,c1;· 
l=I k=I 

Similarly, we may write 
p 

eiJ = L bile,;, 
l=l 

n 

g,J = L a;kek;· 
k=l 

A straight substitution shows that the expressions for Ji1 and g;1 are identical. 
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PROBLEMS 

In each of Problems I through 6, compute the quantities (AB)' and B'A' for the given 
matrices A and B. Verify that the expressions are equal. 

( 2 3 I) 
I. A= -I 0 2 ' ·~GD 
2. A =G _:). ( 3 2) 

B= -I -2 

3 A= (I 2 -1) 
. 3 -2 I ' B=(-~ I~) 

0 I 0 

B= (2 S -I 4) 

-I 2 

2 

0 2 0 ' I S I 3 
!) B= (-~ -~ ~ -~) 

s 4 4 -2 3 2 

( 3 2 -I 4) 
6· A= I 6 8 S ' •~ ( : i) 

-I 0 

7. Show that IA =A if I is them x m identity and A' is any m x n matrix. 

8. Prove part (a) of Theorem 2. 

9. Prove part (a) of Theorem 3. 

IO. Prove part (b) of Theorem 3. 

11. Verify formula (I) of this section form= 2 and n = 3. 

12. Verify formula (I) of this section form= 4 and n = 3. 

13. Verify the formula 

(.fa,)( f h;) = . L a,h;. S = {(i,j): I :;; i:;; m; I :;;j:;; n}, 
t=I 1=1 (1,J)i;S 

for m = 3 and n = 4. 

14. Verify the formula 

n-1 n 

L a,; = L L a,; for n = 4. 
1 si<j!fn i= t j=i+ 1 
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15. Verify the formula 
n j-1 

L a,j= L L a,j 
1 '!fi<jsn j=2 i=I 

for n = 5. 

In each of Problems 16 through 18, write out and evaluate the following double sums. 

t6. L c; + J>. S={(i,j):ls;is;3, ls;js;4}. 
(i.j)eS 

17. L iJ, S = {(i,j): I :::; i:::; 4, I :::;j:::; 4, j:::; i}. 
(i.j)ES 

18. L C3i + 21>. S={(i,j):Os;i::.:;4, Os;j:;,;4, Os;i+j::.:;4}. 
(i,j)eS 

In each of Problems 19 through 23, write out and evaluate the given iterated sums. 

4 3 

19. L L (i-J> 
i=l j=I 

3 i+3 

21. L L (i + j + 1) 
i=O j=i+ I 

3 i+l 

23. L L iJ 
i=O j=O 

4 5-i 

20. L L Ci 2J> 
i=l j=t 

4 s . 
22. L L ·:-' 

•= -1 j=ol + 2 

24. Write the iterated sum in Example 1 as an iterated sum in the other order (i.e., 
with} in the "outside" summation). 

25. Write the double sum in Problem 18 as an iterated sum with} in the outside summa
tion. 

26. In the sum in Problem 18, let p = i + j be the index in the outer sum and verify 
that 

4 p 4 p 

L C3i + 21> = L L [3<p - J>+ 21] = L L (3p - J>. 
(i.j)eS p=O j=O p=O j=O 

27. Given 

A=(_~ ;) and 

Find x and y so that AA' = B. 

28. A square matrix A = (a,i) is called symmetric if for all i and j we have a11 = ai1• 

Show that for any square matrix B, it is always true that BB' is symmetric. 

29. If A, B, C, and Dare matrices, prove that 

(AB)(CD) = A(BC)D, 

assuming that all multiplications are appropriate. 

30. Name necessary and sufficient conditions in order that the formula 

(A + B)(A - B) = A2 - B 2 

should be true for two matrices A and B. 
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3. Determinants 

With each n x n square matrix we associate a real number called its deter
minant. If the matrix is A, we denote its determinant by det A. If the matrix 
A is written out as a square array, its determinant is denoted by the same 
array between vertical bars. For example, if 

A= ( ~ 
-1 

-I 

1 

2 
~). 

-3 
then 

2 

det A= 3 

-I 

-I 

I 

2 

3 

2 

-3 

Definitions. The order of an n x n square matrix is the integer n. A sub
matrix of a given matrix is any matrix obtained by deleting certain rows and 
columns from the original matrix and consolidating the remaining elements. 

For example, the matrix 

(-~ 
0 1 

_!) j_ 2 2 

. .j6 7 8 

0 5 4 

has the submatrix 

(~ 
0 

~). 7 

5 -6 

obtained by deleting the second row and third column. Another submatrix, 
obtained by striking out the third and fourth rows and the fourth column, is 

(_~ 0 
1 
2 

Definitions. A determinant is a function the domain of which is the collection 
of square matrices; its range is the real number system. To define the deter
minant of a matrix, we proceed inductively with respect to its order n. For 
n = 1, we define 

det (all)= all. 

Assuming, for n > I, that we have defined determinants oforder ~(n - I), 
we define those of order n by the formula 

all a12 a,n 

ai1 022 a2n n 
det A= = L ( - l)i+nainMin· (I) 

i=l 

a., a.2 a •• 
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In this formula Min is the determinant of the (n - I} x (n - I) submatrix of 
A, obtained by deleting its ith row and nth column. The determinant Min is 
called the minor of the element ain· 

To illustrate formula (I}, we obtain for n = 2 

l
a! I a121 ( 1)1+2 ( 1)2+2 . = - a12a21 + - a12a11 = a11a22 - a12a21 • 
a21 a22 

for n = 3, 

au a12 a13 

a21 a22 a23 

a31 a32 a33 

- ( 1)1+3 la21 a22 I+ (-1)2+3a23I a11 a121 - - a13 
a31 a32 a31 a32 

+ (-1)3+3a331 au 
a21 

a121 
a22 

= a13(ll21ll32 - ll31ll22) - a23(a11a32 - a31a12) 

+ a33(a11a22 - a21a12). 

In formula (I) it is convenient to consolidate the quantity ( - I )i+n and the 
minor Min· We define the cofactor Aii of the element aii in det A of (I) by 
the formula 

Aii = (- l)i+i Mii. (2) 

In terms of cofactors we obtain the basic expansion theorem for deter
minants: 

Theorem 5. If A is an n x n matrix with n;:::: 2, then 
n 

a) det A = L aiiAii for each fixed j, l$.j$.n; 
i=l 

n 

b) det A = L aiiAii for each fixed i, I $. i $. n. 
j=I 

We postpone the proof until the next section. 
The formula in (a) is called the expansion of det A according to its ith 

column; that in (b) is called the expansion of det A according to its ith row. 
From (2) it follows that the signs preceding Mii alternate as one proceeds along 
a row or column, so that (2) is needed only to get the first sign correct. 

EXAMPLE I. Evaluate the determinant of A by expanding it according to its 
second column and then evaluating the 2 x 2 determinants, given that 

A= ( ~ 
-2 

-2 

-D -I 
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SOLUTION. Expanding according to the second column, we have 

I 2 -11 I I det A= -(-2) + I 
-2 2 -2 

= 2(4 - 2) + I (2 + 6) + I ( - I - 6) = 5. 

EXAMPLE 2. Write out the expansion of the determinant 

-I 2 3 -4 
4 2 0 

det A= 
2 -I 3 

-5 6 2 

according to the fourth column. Do not evaluate. 

SOLUTION. 

4 2 0 -I 2 3 -I 2 3 
det A= -(-4) -I 2 +I -I 2 - 3 4 2 0 

-5 6 -5 6 -5 6 

-I 2 3 

+2 4 2 0. 

-I 2 

PROBLEMS 

In each of Problems I through 4, evaluate the given determinant by expanding it 
according to (a) the second row, and (b) the third column. 

I. 3 2 -I 2. I 0 3 

-I 0 I 2 -I -2 

2 -2 3 2 

3. 2 3 4. ! 5 
I 2 -2 2 0 

-2 3 3 -6 l 
3 

In Problems 5 through 7, expand in each case according to the second row. Do not 
evaluate. 

5. 2 0 2 3 6. 0 -I 2 

-I 3 6 -I 4 4 -4 2 
I -I -2 4 3 -I 2 3 
0 4 8 2 -2 3 4 
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7. 8 0 2 5 

6 -1 -1 4 

0 2 5 

4 4 0 0 

In each of Problems 8 through 10, expand according to the fourth column. Do not 

12. Show that in the plane the equation of a line through the points (x0 ,)'0 ) and (x 1,y1) 

is given by 

x y 

Xo Yo = 0. 

X1 Yi 

13. Expand a general 4 x 4 determinant (a) according to the third column, and (b) 
according to the second row. Do not evaluate. 

14. Show that ifu = a 1i + a 2j + a 3k and v = b 1i + b 2j + b3 k then (formally) 

k 

u x v = a 1 a2 a3 • 

b. b2 b3 

15. Show that the determinant of any triangular matrix is the product of the diagonal 
elements. 

16. Show that if 

and 

are both triangular matrices with a;1 = 0 for i < j, b;1 = 0 for i < j, then 

" det(AB) = L a;;h;;· 
i=I 



APP-18 Appendix I. Matrices and Determinants 

17. A square matrix A= (a;1) is called skew if a;;= -a;i for all i andj. If A is a skew 
matrix, show that A 2 is symmetric. 

4. Properties of Determinants 

The evaluation of determinants of high order by expansion in rows or 
columns is a tedious and lengthy process. We now establish a number of 
important theorems which not only are of theoretical interest but also lead 
to rapid methods of evaluating determinants. 

Theorem 6. If A is an n x n matrix, then 

detA' = detA. 

PROOF. We proceed by induction on the order n. For n = I the result is 
obvious. Now let n > I and denote B =A'. Assume that the result holds for 
all matrices of order ::;; (n - I). We wish to show that it holds for a matrix 
of order n. Using lower-case letters in the usual way, we write 

The cofactor of b;j is denoted Bij and the cofactor of ai; is the determinant 
Ai;· The determinants Aji and Bij come from two (n - 1) x (n - I) matrices, 
each of which is the transpose of the other. According to the induction 
hypothesis, 

B;j =Ai;· 

Expanding det B according to its ith row, we obtain 
n n 

det B = I bijBij = I aj;A 1; = det A. 
j=I j=I 

Theorem 7. (a) If all the elements in the kth row or kth column (I ::;; k ::;; n) 
of a matrix A are zero, then det A = 0. 
b) If a matrix A' is obtained from A by multiplying the elements of the kth row 
or column by a constant c, then 

detA' = cdetA. 

c) If each element alcj of the kth row of a matrix A equals a;.i + a;:j, then 

detA = detA' + detA", 

where A' and A" are obtained from A by replacing akj by a;.1 and by a;:i, re
spectively. The analogous result holds for the kth column. 

PROOF. (a) Expanding according to the kth row (or kth column), we 
introduce the factor zero in each term. 
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b) Expanding according to the kth row (or kth column), we introduce the 
factor c in each term of the expansion. 
c) Expanding according to the kth row and setting aki = a;.i + a;:i, we get 
expansions of A' and A" in terms of the kth row. 

As an example of part (c) of the theorem, we have 

all a12 a13 all a12 a13 I all all a13 

ai1 ai2 a23 = az1 a22 a:3I + a2t a22 a23 

a31 + a'.31 a32 + a'.32 a33 + a33 a31 a32 a:~, a32 a" a33 33 

Theorem 8. (a) ~l A' is obtained from A by interchanging two rows or two 
columns, then 

det A' = - det A. 

b) If two rmrs or two columns of A are proportional, then det A = 0. 

PROOF. (a) We proceed by induction on n. If n = I, there is nothing to 
prove. For n = 2, the result follows at once by inspection of the formula 

We let n > 2, suppose that two rows are interchanged, and assume that the 
result holds for n - l. Now we expand A according to the ith row, where 
the ith row is not one of those being interchanged. Then a;i = aii• and each 
cofactor A;i is obtained from Aii by interchanging two rows. Invoking the 
induction hypothesis, we have 

Therefore 
n n 

detA' = L a;iA;i = - L aiiAu = -detA. 
j=l j=l 

The proof is identical for the case when two columns are interchanged. 
b) If two rows (or columns) are proportional, then either one row consists of 
zeros so that the determinant is zero, or else one row (or column) is a con
stant c times the other row (or column). Using part (b) of Theorem 7, we 
see that the determinant D = cD' where D' has two identical rows (or 
columns). Interchanging the two identical rows and employing part (a) 
(which was just established), we find D' = -D', so that D' is zero; therefore 
D=O. 

By combining part (c) of Theorem 7 and part (b) of Theorem 8, we obtain 
the next extremely useful result. 
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Theorem 9.1/ A' is obtained from A by multiplying the kth row by the constant 
c and adding the result to the ith row where i-::/: k, then 

detA' = detA. 

The same result holds for two columns. 

PROOF. The element a;i of A' is of the form a;i + caki• so that [by Theorem 
7(c)] 

detA' = detA + cdetA", 

where A" is obtained from A by replacing the ith row by the kth row. But 
then the ith and kth rows of A" are identical, so that det A" = 0. The same 
proof holds for columns. 

Corollary. //A' is obtained from A by multiplying the kth row by c; and adding 
the result to the ith row for i =I, 2, ... , k - 1, k + 1, ... , n in turn, then 
det A' = det A. The same is true for columns. 

PROOF. Each step of the process is one for which Theorem 9 applies and which 
leaves det A unchanged. Therefore a succession of such steps will not alter 
the determinant. 

The next example shows how to use the results of this section to simplify 
and evaluate a determinant. 

EXAMPLE I. Simplify by using the Corollary, and use the expansion theorem 
to evaluate the determinant 

2 -1 0 

-3 0 -2 
D= 

-1 
2 -1 5 -1 

SOLUTION. By adding the third row to the first and fourth rows in turn, we 
find that 

3 0 0 1 
-3 0 -2 

D= 
I I -1 1 
3 0 4 0 

Expanding according to the second column, we obtain 

3 0 1 
D = (-1) -3 -2 

3 4 0 
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Multiplying the first row by 2 and adding the result to the second row, we get 

3 

D= - 3 
3 

0 

4 
~I= -9. 

The 2 x 2 determinant was obtained by expansion according to the third 
column. 

EXAMPLE 2. Show that 

x x 2 x3 

D = y y 2 y 3 = xyz(y - x)(z - y)(z - x). 

z z 2 z3 

SOLUTION. We may factor out an x from the first row, a y from the second 
row, and a z from the third row, to obtain 

D=xyz 

x x 2 

y y2 

z z 2 

Subtracting the third row from the first and second in turn, and then ex
panding in terms of the first column, we get 

0 x - z x 2 - z2 

l
x-z 

D = xyz 0 y - z y 2 - z2 = xyz 
r-z 

I z z2 • 

x2 - z2 

yl - 221 

11 x + zl = xyz(x - z)(y - z) 1 )' + = = xyz(y - x)(z - x)(z - y). 

The next theorem is employed in Section 5. 

Theorem 10. For any square matrix A, we have 

n 

a) I aiiAik = bik(detA), 
i=I 

n 

b) I a;kAik = <Vdet A). 
k=I 

PROOF. (a) If}= k, then 6ik = I and the formula (a) is the statement of the 
expansion theorem (Theorem 5) according to the kth column. If} =F k, then 
6ik = 0 and the right side of (a) is zero. As for the left side of (a), we introduce 
the matrix A' obtained from A by replacing the kth column with the jth 
column. Then the left side of (a) is the expansion of A' according to the 
}th column. But since A' has two columns alike (}th and kth), we have 
det A' = 0, and so the left side of (a) vanishes. The proof of (b) is the same. 
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We conclude this section with a proof of Theorem 5, stated in Section 3. 

P1woF OF THEOREM 5. Our first aim is to establish the formula 

n 

det A = I aijAii for each fixed j, 15'}5,n. (I) 
i=l 

If j = n, the above formula is just the definition of det A. It must be shown 
that all other expansions, I 5, j 5, (n - I), yield the same result. 

We proceed by induction on n. If fl= I, there is nothing to prove. If 
fl = 2, the result is easily verified by inspection of the expansion of a 2 x 2 
determinant. So we let n > 2 and assume the result is true for all determinants 
of order 5, (n - I). 

Choose j, I 5, j 5, (n - I), and let Mik,jn denote the determinant formed 
from A by deleting its ith and kth rows and itsjth and nth columns. Mik.jn 

is the determinant of an (n - 2) x (11 - 2) matrix. Recalling that Min is 
the minor of the element ain• we obtain from the definition of determinant 

n 

D = detA = L (- l)i+nainMin• 
i=l 

(2) 

Now, using our induction hypothesis, we may expand each Min according 
to itsjth column. The determinant of A is shown below with lines through 
the ith row and nth column so that the remaining terms form Min· 

a1i In 

aki kn 

I) In 

anj nn 

If k < i (as shown above), then akp is in the kth row of Min• but if k > i, 
then each akp is in the (k - !)st row of Min· Therefore, if I < i < n, we have 
the expansion 

i-1 n 

M;n = L (- l)k+iakjMik.jn + L (- l)k-I +.iakjMik,jn· (3) 
k=I k=i+I 

If i = I, the first sum in (3) is missing, while if i = n, the second sum is absent. 
Substituting Min from (3) into (2), we see that 

n i-1 n-1 n 
D _ ' ' ( l)i+k+j+n M ' ' (- l)i+k+j+n M - £.., £.., - a;nakj ik,jn - £.., £.., a;nakj ik.jn• (4) 

i=2 k=I i=I k=i+I 

If we interchange the indices i and k in the first sum and make use of the 
double-sum notation of Section 3, we can combine the two iterated sums in 
(4) into the single double sum 
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D = L ( -l)i+k+j+n(aknaij - a;naki)M;k,jn· 
1 si<ksn 

APP-23 

(5) 

The relation M;k,jn = Mki,jn• which follows directly from the definition of 
these four-subscript determinants, was used to obtain (5). 

To establish (1), it is sufficient to show that the expansion 

(6) 

is equal to (5). To do so, we expand Mki according to its (n - J)st column, 
noting that the (n - l)st column of Mki is the nth column of D with akn 

removed. If i < k, then the elements a;p are in the ith row of Mki but, if 
i > k, then the a;p are in the (i - l)st row of Mki· If we then write out the 
expansion of Mki• collect terms, and substitute in (6), we find an expression 
which is identical with (5). 

The proof of the formula 

n 

detA = L a;kAik 
k=I 

for each fixed i, I :;;; i:;;; n, 

is obtained by first showing that an expansion according to the nth row is 
equal to the expansion according to the nth column. This proof is omitted. 
Then the proof that the expansion according to two different rows yields the 
same result is analogous to the proof for columns. 

PROBLEMS 

In each of Problems 1 through 12, simplify and evaluate the determinant. 

I. 2 -1 3 2. 3 I -1 

2 -1 1 3 -2 

3 -2 -2 3 

3. 2 3 4. 5 0 -I 

-1 I 1 -1 1 -2 
2 4 -1 4 -4 2 

-2 I 0 

5. 2 3 6 3 6. 2 -1 3 2 
0 1 3 -2 -2 3 

-I -2 0 4 -1 3 2 0 
2 4 -1 3 2 -2 I 

7. -2 3 2 4 8. 1 2 -3 4 
-3 1 -2 3 3 -4 2 -I 

2 2 3 -2 2 -2 3 4 

4 -3 2 2 -2 3 
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9. 3 2 
2 -3 

-4 2 
2 4 

11. 2 
2 3 
0 -I 

-I 0 

2 

13. Show that 

-I 4 10. 2 -I 3 4 0 
4 I -I 2 I 0 -I 
0 3 -3 0 0 0 

-I 2 0 I 0 -I 2 
0 -2 0 2 -I 

0 -I 2 12. 2 -I 0 4 

-I 0 I 2 I 2 I 3 

2 4 -2 4 -I 0 2 -2 
4 -I 0 I 5 4 0 2 

-I 0 6 2 I 4 -3 
-I 2 5 -3 4 

x x 2 x3 

y y2 

z z2 

y3 
= (x - y)(y - z)(z - w)(x - z)(x - w)(y - w). 

z3 

[Hint: Use the relation a3 - b3 = (a - b)(a2 + ab + b2).] 

14. Show that the equation of a plane through the three points 

Po(Xo,Yo· Zo), P1(x1,y1,z1), and P2(X2.J'2,Z2) 

is given by 

I x y z 

Xo Yo Zo 
=0. 

x. Y1 Z1 

X2 Yi Z2 

15. Given the matrix 

(3 -I 2) 
A= I 4 -I , 

2 0 5 

-3 
2 
3 

0 

0 

2 

verify Theorem 10 by computing a 11 A13 + a21 A 23 + a31 A33 , and showing that 
the result vanishes. 

16. Given the matrices( 1 

A= 3 
-2 

2 -1) 
I I , 

0 5 

show that det(AB) = (detA)(detB). 

B=( ! 
-2 

-I 

0 l} 
17. Let A be a square n x n matrix which is skew symmetric; that is, 

for all i and j 

Prove that if n is an odd integer, then det A = 0. 
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18. Suppose A is a 4 x 4 matrix such that every 2 x 2 submatrix has determinant zero. 
Prove that det A = 0. 

19. Show that when 

A~ ( 
Xi xf 

~-·) X2 x~ x'i-· 
, 

x. x; ·-· .. . x • 

then 

detA = [(x2 - x 1)] • [(x3 - x 2)(x3 - .:t 1)] 

x [(X4 - X3)(X4 - X2Hx .. - x.)] .... 

x [(x. - x._ 1)(x. - x._ 2)' • • • • (x. - x 1)]. 

5. Cramer's Rule 

With the aid of determinants, we are able to give a formula for the solution 
of n simultaneous linear equations in n unknowns. The resulting theorem is 
known as Cramer's Rule. 

Theorem 11. /fdetA # 0, the system of equations 

a 11 x 1 + a 12 x 2 + · · · + a1.x. = h1 

a21X1 + a22X2 + · · · + a2.x. = b2 

has a unique solution given by 

I 
a11 a 1.k-1 b1 a 1.k+ I a1. 

Xk= D 

a.1 a •. k-1 b. an.k+I a •• 

(I) 

D = detA, 
k =I, 2, ... , n, 

(2) 

where, if k = I or n, the column ofb 'sis in the first or nth column, respectively. 

PROOF. We must show that (I) implies (2) and that (2) implies (1). Suppose 
first that x 1 , x 2 , ••• , x. are numbers which satisfy (I). Multiply the ith 
equation of(!) by Aik• the cofactor of aik• where k is a fixed number between 
I and n. We get 

n 

L aiiAikxi = b;A;k· 
j=I 
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Now we add all such equations; that is, we sum on the index i. After inter
changing the order of the iterated sum, we obtain 

n [ n J n 
i"f-1 i~ aiiAik xi= i~ b;A;k· (3) 

The sum on the right in (3) is the expansion according to the kth column of 
the determinant displayed in (2). As for the left side of (3), the quantity in 
brackets is precisely the expression which appears in Theorem IO of the last 
section and is equal to bik (det A). Therefore, using the property of the 
Kronecker {J (defined on page APP-8), we find that 

n n 

L bik(det A)xi = Dxk = L b;Aik• 
j=I i=l 

and the formula (2) follows. 
If we assume formula (2) holds, we see that 

n 

Dxk = L b;A;k· 
i=l 

We multiply this expression by aik and sum with respect to k to get (after 
interchanging the order of summation) 

n n [ n J 
D k"f-1 aikxk = i~ k"f-1 aikAik b;. 

Using Theorem IO of Section 4 again, we obtain 
n n 

D L aikxk = L c5ii(det A)b; = Db1, 
k=I i=l 

from which (I) follows. 

EXAMPLE. Solve, using Cramer's Rule, 

SOLUTION. We have 

3 -2 4 5 -2 IO 
= J_~ D= I 3 0 0 IOI= -5 

-I 2 -I -3 2 
-7 , 

-7 

5 -2 4 9 0 IO 
X1 = -t 2 I 3 = -t 2 I 3 =-!I 9 IOI=¥. -3 -7 

2 -I -3 0 -7 

In a similar way, we find that 
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3 5 4 3 -2 5 

X2 = -t 2 3 = .Ll. 
5 ' X3 = -t 2 =-¥. 

-1 -1 -I 2 

Cramer's Rule is useful in many theoretical investigations, since it gives 
an explicit formula for the solution. However, because of the enormous work 
of evaluating n + 1 determinants when n is large, Cramer's Rule is rather 
poor for numerical computations. Furthermore, there are many chances for 
error in the large number of multiplications and additions which must be 
performed. Techniques for solving linear systems which proceed by iteration 
and elimination are computationally superior not only because there are 
fewer arithmetical operations, but also because numerical errors are fre
quently self-correcting. 

PROBLEMS 

Solve the systems in Problems I through 10, using Cramer's Rule. 

I. 2xi - x 2 + 3x3 = I 
3Xi + X 2 - X3 = 2 
Xi+ 4 2 + 3x3 = -6 

3. Xi + 3x2 - 2x3 = 4 
-2xi + x 2 + 3x3 = 2 

2xi + 4x2 - x 3 = -I 

5. 2xi - x 2 + 2x3 = 11 
X1 + 2X2 - X3 = -3 

3xi - 2x2 - 3x3 = - I 

7. Xi - 2x2 + 2x3 = - I 
2xi - 3x2 - 3x3 = I 
3Xi + X2 + 2X3 = 3 

9. 3Xi + 2x2 - 4X4 = 0 
X2 - 2x3 + X4 = -) 

2xi + 3x2 =I 
Xi + 4X3 - 2x4 = 2 

10. 2xi + x 2 - 2x3 + 3x4 - 4x5 = 0 
4xi - x 2 + x 3 - 3x4 + 2x5 = I 

-2xi + x 2 + 2x3 + 6x4 - 2x5 = -2 
-4xi + 3x2 - 5x3 - 6x4 + 4x5 = 13 

2. 2xi - X2 + X3 = -3 
Xi+ 3x2 - 2x3 = 0 
Xi - X 2 + x 3 = -2 

4. 2xi + X2 - X3 = I 
Xi - 2x2 + 3x3 = 0 

2xi - 3X2 + 4X3 = 0 

6. 2xi - X2 - 2x3 = 0 
-xi+ 2x2 - 3x3 = II 
3xi - 2x2 + 4x3 = -15 

8. Xi + X3-2x4=3 
X2 + 2x3 - X4 = 2 

2xi + 3x2 - 2x3 =-I 
Xi- X2 -4X4=0 

6xi -3x2 +4x3 +9x4 -6x5 = -13 

11. Given a system of two equations in three unknowns: 

Oi iXi + Oi2X2 + 013X3 =bi, 

02iX1 + 022X2 + 023X3 = b2. 
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State conditions under which this system has (i) no solutions, (ii) one solution, 
(iii) infinitely many solutions. 

12. Given a system of three equations in two unknowns: 

G21X1 + G22X2 = b2, 

ll31·'"1 + G32X2 = b3. 

State conditions under which this system has (i) no solutions, (ii) one solution, 
(iii) infinitely many solutions. 

6. The Rank of a Matrix. Elementary 
Transformations 

Cramer's Rule applies when the number of equations is the same as the 
number of unknowns and when the determinant of the coefficients is not 
zero. In order to treat systems in which the number of equations is different 
from the number of unknowns, it is necessary to introduce a quantity called 
the rank of a matrix. 

Definitions. A square matrix is said to be nonsingular if its determinant is 
not zero. The rank of an m x n matrix is the largest integer r for which a 
nonsingular r x r submatrix exists. The rank of any matrix of zeros is zero. 

For example, the matrix 

G 
0 0 n 0 3 

0 0 

is of rank 2, since the 2 x 2 submatrix 

G ~). 
obtained by deleting the third row and the second and fourth columns, is 
nonsingular, and since every 3 x 3 submatrix has zero determinant. 

We note that the rank of an m x n matrix can never exceed the smaller 
of the numbers m and n. 

Definition. An elementary transformation of a matrix is a process of obtaining 
a second matrix from the given matrix in one of the following ways: 

a) interchanging two rows or two columns, 
b) multiplying a row or column by a nonzero constant, 
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c) multiplying one row (or column) by a constant and adding it to another 
row (or column). 

We observe that transformations of type (c) are just those which we used 
for simplifying and evaluating determinants. 

Theorem 12. If A' is obtained jrom A by an elementary transformation, the 
rank of A' equals the rank of A. 

PROOF. For transformations of type (a) and (b), the result is immediate from 
the definition. To prove the result for type (c), let r be the rank of A. If A 
is an m x n matrix and r is the smaller of m and n (i.e., the rank of A is as 
large as possible), then 

rank A':::;; rankA. (I) 

We show first that (I) holds regardless of the rank of A. Suppose that r is 
smaller than m and n; let D' beak x k submatrix of A' with k > r. To be 
specific, suppose that A' is obtained from A by multiplying the first row of A 
by c and adding the result to the second row. If D' contains both the first and 
second rows of A', then det D' = det D, where Dis the corresponding matrix 
in A. But det D = 0, since k > r and since A is of rank r. The same result 
holds if D' contains neither the first nor the second row. If D' contains only 
the first row, we again have det D' = det D. The only remaining case occurs 
when D' contains the second row but not the first. But then det D' is a linear 
combination of two determinants of A of order k. Since all determinants of 
A of order k are zero, we conclude that det D' = 0. Thus the determinant of 
every k x k submatrix of A' with k > r is zero, and therefore (I) is estab
lished for every rank r. The argument just given works for any two matrices 
which are related to each other by a transformation of type (c). But since A 
can be obtained from A' in this manner, we conclude that 

rankA:::;; rankA'. (2) 

Combining (I) and (2), we get rankA =rank A'. 

We say that two matrices are equivalent if and only if it is possible to 
pass from one to the other by applying a finite number of elementary trans
formations. We write A ;;:; B when A and B are equivalent. From Theorem 
12 we conclude that equivalent matrices have the same rank. 

To compute the rank of an m x n matrix A directly from the definition, 
we must evaluate the determinant of every square submatrix of A. If m 
and n are large, this task is laborious, unless A has many zero entries. How
ever, with the aid of elementary transformations and without an undue 
amount of computation, we can find a matrix equivalent to A whose rank 
can be determined by inspection. We first illustrate the technique with an 
example and then establish the appropriate theorem. 
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EXAMPLE 1. Determine the rank of the 4 x 5 matrix 

c~ 
-3 -I I 

-~) 1 7 1 
A= 

1 2 4 0 -2 
-2 -2 6 2 -4/ 

SOLUTION. Interchanging the first and third rows, we find that 

(-~ 
2 4 0 

-2) 7 -4 
A~ 0 . -3 -1 1 

-2 -2 6 2 -4 

Multiplying the first row of this new matrix by 2 and adding the result to the 
third and fourth rows, we obtain 

A::::('~ - 0 

0 

2 

2 

4 

7 

7 

14 

0 

-2) -4 
-4 . 

-8 2 

Multiplying the second row by 1 and 2 and subtracting the results from the 
third and fourth rows, respectively, we get 

A:::: ( ~ - 0 

0 

2 

1 

0 

0 

4 

7 

0 

0 

0 

0 

0 

-~) -A' 0 - . 

0 

By inspection, A' is seen to have rank 2. Therefore A has rank 2. 

We now state a theorem which describes the process developed in the 
above example. 

Theorem 13. By a succession of elementary transformations of type (a) and (c) 
operating on rows only, any m x n matrix A can be reduced to an equivalent 
matrix A' in which 

for j <};, i = 1, 2, ... , m, 
where 

1 -.::;,j 1 <}2 < · · · <},-.::;, n, 

};=n+ 1 for i=r+ 1,r+2, ... ,m. 
(3) 

The rank r is the integer equal to the number of rows which do not consist 
entirely of zeros. A corresponding result holds for columns. 
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Before proceeding with the proof, we give an example of the content of(3). 

11 = l 3 2 3 

Ji= 2 0 I 2 5 

h=4 0 0 0 2 -I 4 

14 = 5 0 0 0 0 3 

lm = n +I 0 0 0 0 0 0 0 

In other words, by means of elementary transformations we introduce as 
many zeros as possible in the bottom row, the second largest number of 
zeros in the second from bottom row, and so on until, in the first row, we 
introduce the fewest zeros (or perhaps none). 

PROOF. If A is the zero matrix, then11 = 12 = · · · lm = n + I, and A is already 
in the desired form. The rank is zero. Otherwise we let the 11 st column be 
the first column which does not consist entirely of zeros. If a nonzero element 
occurs in the first column, then 11 = I. We interchange rows, if necessary, 
so that the element a 1.i, '# 0. Then, by elementary transformations of type 
(c), we make the remainder of that column all zeros; of course, all the 
numbers (if any) to the left of the 11 st column are still 0. If all the numbers 
below the first row are zero, then 12 = j 3 = · · · = lm = n + I, and the matrix 
is in the desired form; then r = I. Otherwise, we let the }ind column (of 
course Ji> 11) be the first one which contains a nonzero element below the 
first row. By interchanging rows and performing elementary transformations 
of type (c), we arrange that a 2.i, '# 0 but that all the numbers ai.i, = 0 if 
i > 2; of course, all aii = 0 if i ~ 2and1 <Ji. If all the aii with i > 2 are zero, 
then h = · · · lm = 11 + I, and the matrix has been reduced to the desired 
form with r = 2. In any case, the process will stop after some step, say the 
rth, where r ~ m; if r < m, all the rows below the rth will consist of zeros. 
If, now, we select the submatrix of A' consisting of the first r rows and the 
11 • ••• • 1, columns, this r x r submatrix has the form 

Otj, * * * * 
0 a2i, * * * 
0 0 

0 

* 
0 0 0 a,i, 

The diagonal elements are all nonzero and the asterisks stand for numbers 
which may or may not be zero. The matrix is triangular and nonsingular. 
The rank of A is r. 

The proof for columns is the same. 
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Corollary I. If A is an n x n matrix, the process described in the proof of 
Theorem 13 transforms A to a triangular matrix with all zeros located below the 
diagonal. 

Corollary 2. If A is a nonsingular n x n matrix, it can be reduced by means 
of elementary transformations, as in Theorem 13, to a matrix having nonzero 
elements along the diagonal and zeros elsewhere. 

PROOF. By Corollary I, we make A into the triangular matrix A'. The value 
of the determinant is then the product of the diagonal elements; hence all 
diagonal elements are nonzero. Now, starting with the last column and the 
element in the lower right-hand corner, we use elementary transformations 
of type (c) to transform to zero all the elements above the bottom one in the 
last column. Proceeding to the second-from-last column, we transform to 
zero all the elements above the diagonal element. Continuing this process, 
working from right to left, we get a diagonal matrix which is equivalent to A. 

Corollary 3. The basic process as described in the proof of Theorem 13 leads 
to the simultaneous reduction to a similar form of each of the submatrices A1, 

which are obtained by deleting all but the first 1 columns of A. The rank of A1 

is the integer equal to the number of rows in Al which have nonzero elements. 

The proof of the theorem shows that, in principle, elementary transforma
tions of type (b) are not needed to carry out the reduction from A to A'. 
However, if we have matrices with integers or if, in carrying out the reduc
tion, we wish to avoid arithmetical difficulties, transformations of type (b) 
are helpful. The next example illustrates the use of type (b) transformations 
in performing the reduction. 

EXAMPLE 2. Given the matrix 

3 2 -2 3 

2 3 -3 4 

A= -2 4 2 3 

5 -2 4 2 

3 4 2 3 

determine the rank of A, as in Example I. Use transformations of type (b) 
when convenient. 

SOLUTION. We begin by interchanging the first two rows and then multiplying 
the second, fourth, and fifth rows by 2. In this way we avoid fractions. The 
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reduction then proceeds as follows: 

2 3 -3 4 2 3 -3 4 

6 4 -4 6 0 -5 5 -6 

A;;;;;; -2 4 2 3 - 0 7 -I 7 

IO -4 8 4 0 -19 23 -16 

6 8 4 6 0 -I 13 -6 

2 3 -3 4 2 3 -3 4 

0 -1 13 -6 0 -I 13 -6 

- 0 -5 5 -6 - 0 0 -60 24 

0 7 -I 7 0 0 90 -35 

0 -19 23 -16 0 0 -224 98 

2 3 -3 4 

0 -1 13 -6 

- 0 0 -5 2 

0 0 18 -7 
0 0 -16 7 

Multiplying the third row of the last matrix by 3 and combining with the 
fourth and fifth rows, we get 

2 3 -3 4 2 3 -3 4 2 3 -3 4 

0 -I 13 -6 0 -I 13 -6 0 -1 13 -6 
A;;;;;; 0 0 -5 2 - 0 0 -1 - 0 0 -I 

0 0 3 -I 0 0 3 -I 0 0 0 2 
0 0 -I I 0 0 -5 2 0 0 0 -3 

Finally, we obtain 

2 3 -3 4 

0 -I 13 -6 

A;;;;;; 0 0 -1 =A', 

0 0 0 2 

0 0 0 0 

and A is of rank 4. 

The next example shows how the reduction proceeds when only elementary 
transformations involving columns are used. 
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EXAMPLE 3. Given the matrix 

A= 

2 I 

4 2 
-5 -2 

Appendix I. Matrices and Determinants 

-I -2 

-2 -4 

3 2 
I -I -2 8 

8 3 -2 

reduce A to the form described in Theorem 13, using only elementary trans
formations involving columns. Find the rank of A. 

SOLUTION. We begin by interchanging the first two columns; we then intro
duce zeros in the first row. 

I 2 -I -2 I 0 0 0 

2 4 -2 -4 2 0 0 0 
A;;;;;; -2 -5 3 2 - -2 -I I -2 

-I I -2 8 -I 3 -3 6 

3 8 -2 3 2 7 

(-i 
0 0 0 I 0 0 0 

0 0 0 2 0 0 0 - -I 0 0 - -2 -I 0 0 
-I 3 0 0 -I 3 0 0 

3 2 3 3 3 2 3 0 

The rank is 3. 

PROBLEMS 

In each of Problems I through 9, reduce A to a matrix A', using elementary trans-
formations involving rows, in accordance with the procedure of Theorem 13. Determine 
the rank of A. 

'C 4 6 

D 2 ( : 

4 -2 

-i) -I 2 5 0 

-II -6 -I -I 8 

2 10 0 

3 (j -I 0 

~) 4 ( j 
0 -2 -5 

-i) I 0 -I 3 I 
-2 0 0 0 

-2 -I 0 
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, H =: ~[ i) 
7. ( ~ =~ ~ =~) 

-2 3 -2 I 

4 -2 3 

-± 
I 

3 

3 

! 
2 

-2 

-! D 

6 (-: 

8. ( 2 
-3 

4 

5 

2 

-5 

7 

0 

3 

2 

-2 

4 

-I 

-I 

3 

0 

7 

-3 

2 

3 

-2 

3 

0 

-6 

3 

-15 

-j) 
-I 

In each of Problems 10 through 14, reduce A to a matrix A' as above, but use elementary 
transformations involving columns only. Determine the rank of A in each case. 

10. A is the matrix in Problem 3. 

12. A is the matrix in Problem 7. 

14. A is the matrix in Problem 9. 

11. A is the matrix in Problem 4. 

13. A is the matrix in Problem 8. 

In Problems 15 through 17, in each case reduce the given matrix to diagonal form as in 
Corollary 2. 

15 ( 2 

-I 

17. (; 

-2 

-3 

-2 

3 

2 

-] 

3 

-4 

-2 

-II 

3 

-I 2 

5 -] 

6 

4 -2 

-5 6 

~) 
j) 

16 u -I 

-2 
-I 

2 

-2 

-I 

2 

-3 
~) 
2, 

18. Show that every n x n matrix may be reduced by elementary row transformations 
to triangular form, with all elements above the diagonal consisting of zeros. 

19. Let A be an m x n matrix with ms; n. If A is ofrank r with r < m, describe a process 
using elementary row transformations which reduces A to a form having the first 
(m - r) rows consisting entirely of zeros. 

20. Show that every n x n nonsingular matrix A may be reduced by row transformations 
to a form in which the only nonzero elements are 
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21. Let A and B be n x n matrices. Show that 

rank (A + B) s; rank A + rank B. 

22. Show that for any matrix A, the rank of A is the same as the rank of A'. 

7. General Linear Systems 

We consider a system of m linear equations in n unknowns in which m may 
be different from n. In a system such as 

{ 

011X1 + 012X2 + 0 0
• + 01nXn =bl l 

021X1 + 022X2 + 0 0
• + 02nXn = b2 

: : : ' . . . 
Om1X1 + Om2X2 + · · · + OmnXn = bm 

we call them x n matrix 

012 

021 022 c A= . 

oml Om2 

the coefficient matrix of the system ( l ). The m x (n + I) matrix 

-( ::: ::: B- . . 

Om1 Om2 

01n bl) 
02n bi 

Omn bm 

is called the augmented matrix of(l). 
As an illustration, suppose we wish to solve the system of equations 

3x + 2y - 2z = 3, 

2x + 3y - 3z = 4, 

-2x + 4y + 2z = 3, 

5x - 2y + 4z = 2, 

3x + 4y + 2z = 3. 

(I) 

(2) 

The reader, noticing that there are more equations than there are unknowns, 
would not expect a solution. However, sometimes such systems do have 
solutions. Geometrically, the above system represents five planes in three
dimensional space. If it should accidentally happen that the five planes have 
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a point in common, then (2) has a solution. We shall show that the existence 
of a solution of (2) depends on the behavior of both the coefficient matrix and 
the augmented matrix. 

Suppose now that we proceed to reduce an augmented matrix of a given 
system such as (I), using the methods of elementary transformations as 
described in the preceding section. First we note that the coefficient matrix 
is reduced simultaneously. Second, the interchange of two rows of a matrix 
corresponds to an interchange of two rows of the system of equations and 
does not affect the solution. Multiplication of a row by a constant is the 
same as multiplication of an equation by a constant and also has no effect 
on the solution. A transformation of type (c) is the same as multiplication 
of one equation by a constant and addition of the resulting equation to 
another equation. Again, the solution is unaffected. Thus to each elementary 
transformation of the augmented matrix involving only rows, there corre
sponds an operation which we call the corresponding elementary trans
formation of the given system of equations. By now, the following important 
theorem is evident. 

Theorem 14. Suppose Bis the augmented matrix of a certain system of equa
tions and B' is obtained from B by applying a finite number of elementary 
transformations involving only rows. Then B' is the augmented matrix of that 
system of equations which is obtained from the original system by performing 
the corresponding elementary transformations. The coefficient matrix of the 
transformed system is obtained from B' by omitting the last column. The 
systems corresponding to Band B' have the same solutions. We say the systems 
are equivalent. 

The augmented matrix of (2) is 

3 2 -2 3 

2 3 -3 4 

-2 4 2 3 

5 -2 4 2 

3 4 2 3 

We recognize this matrix as the one in Example 2 of the preceding section. 
The result of reduction shows that 

( 

3 2 -2 

2 3 -3 

-2 4 2 

5 -2 4 

3 4 2 

3 

4 

3 

2 

3 

3 
-l 

0 

0 

0 

-3 4 

13 -6 
-l 

0 2 

0 0 
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We now use Theorem 14 to conclude that the system (2) is equivalent to the 
system 

2x + 3y- 3z = 4 

y + l3z = -6 

z = l 
0=2 

0= 0, 

which has no solution. However, if the column of numbers on the right in (2) 
is replaced by the column 

so that the system becomes 

-3 

-7 

-2 

15 

3, 

3x + 2y - 2z = - 3 

2x + 3y - 3z = - 7 

-2x+4y+2z= -2 

5x - 2y + 4z = 15 

3x + 4y + 2z = 3, 

(3) 

we see that exactly the same elementary transformations as before bring 
about an equivalent system. We obtain 

2x + 3y- 3z = -7 

-y + 13z = 27 

-z= -2 

0=0 

0=0, 

which has the solution x = I, y = - I, z = 2. The reader can easily verify 
that this set of numbers satisfies all equations in (3). 

EXAMPLE. Solve, if possible, the following system of equations by using 
elementary row transformations on the augmented matrix to reduce the 
system to a simpler equivalent form: 
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x 1 +2x2 -2x3 +3x4 - 4x5 =-3, 

2x 1 + 4x2 - 5x3 + 6x4 - 5x5 = -1, 

- 3x4 + I lx5 = 15. 

SOLUTION. The augmented matrix is 

B= ( 2 
-I 

2 -2 
4 -5 

-2 0 

3 -4 : -3) 
6 -5 : -I • 

-3 11 : 15 
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and the part of B to the left of the dotted vertical line is the coefficient matrix. 
We multiply the first row by 2 and subtract from the second row. Then, 
adding the first row to the third row, we obtain 

3 -4 

0 3 B ;;:(~ ~ =~ ~ -; -~) ~(~ ~ =~ 
0 0 -2 0 7 12 0 0 0 0 

Therefore, the given system is equivalent to the system 

x 1 + 2x2 - 2x3 + 3x4 - 4x5 = -3, 

+ 3x5 = 5, 

X 5 = 2. 

-3) 5 . 
2 

From the last two equations we get at once x 5 = 2 and x 3 = l. Solving the 
first equation for x 1 , we find that 

x 1 = 7 - 2x2 - 3x4 • 

In other words, regardless of the values we assign to x 2 and x4 , the remaining 
values of x 1 , x 3 , and x 5 will satisfy the given system. There is an infinite 
number of solutions. 

We now give a criterion (in terms of the ranks of both the coefficient 
matrix and the augmented matrix) which determines when a general linear 
system has a solution. However, the actual solution of a problem is most 
easily obtained as in the example above. 

Theorem 15 (Cramer's General Rule). (a) A system of m linear equations 
in n unknowns has a solution if and only if the rank r of the augmented matrix 
equals that of the coefficient matrix. 
b) If the two matrices have the same rank rand r = n, the solution is unique. 
c) If the two matrices have the same rank rand r < n, then at least one set of 
r c~f' the unknowns can be solved in terms of the remaining (n - r) unknowns, 
and there are infinitely many solutions. 

PROOF. Let A be the m x n coefficient matrix and B be the m x (n + I) 
augmented matrix of the given system. Suppose that B is reduced to the 
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matrix B' as in Theorem 13 (using rows only). The coefficient matrix of the 
equivalent system corresponding to A is the submatrix A' of B' obtained by 
deleting the last column. If A and B are not of the same rank, neither are 
A' and B'. Then the last column of B' has at least one nonzero element b' 
in which all remaining elements of that row are zeros. The corresponding 
equation of the equivalent system is 

O=b', 

which is clearly impossible. 
If A' and B' are of the same rank r and r = n, then there are as many 

equations as unknowns and Cramer's Rule applies. There is a unique 
solution. 

If r < n, we select an r x r submatrix of A' which is nonsingular, and we 
apply Cramer's Rule to solve for r of the unknowns in terms of the remaining 
(n - r) unknowns. Thus part (c) of the theorem is established. 

A system of linear equations is said to be homogeneous if and only if the 
numbers on the right [i.e., b 1 , b2 , ••• , bm in (l)] are all zero. In this case, 
it is clear that the rank of the augmented matrix equals that of the coefficient 
matrix. Every homogeneous system has the solution 

X1 =x2 = ··· =Xn=O. 

Moreover, if x 1 , x 2 , ••• , xn and y 1 , y 2 , ••• , J'n are solutions of a homo
geneous system and c is a constant, then 

and 

are solutions. If the rank of a homogeneous system is n, then the solution is 
unique and x 1 = x 2 = · · · = 0 is the only solution. We have just derived 
the following corollary. 

Corollary. A homogeneous system of m equations inn unknowns has a solution 
x 1 , x 2 , ••• , Xn in which not all the xi are zero if and only if the rank r of the 
coefficient matrix is less than n. When r < n, some group of r of the xi can be 
expressed in terms of the remaining xi. 

PROBLEMS 

In Problems 1 through 16, find in each case all the solutions, if any, of the system of 
equations. Begin by reducing the augmented matrix (and thus the coefficient matrix) 
to the simplified form, using only row transformations. Find the rank r of the coefficient 
matrix and the rank r* of the augmented matrix. 

J. X 1 - X2 + 2X3 = -2 
3x1 - 2x2 + 4x3 = -5 

2X"2 - 3x3 = 2 

2. Xi + X2 - 5X3 = 26 
X 1 + 2x2 + X3 = -4 
x 1 + 3x2 + 7x3 = -34 
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3. 2x1 + 3x2 - x 3 = - IS 
3xi + Sx2 + 2x3 = 0 

Xi + 3x2 + 3x3 = 11 
1xi + llx2 = -30 

S. 3x1 - x2 +2x3=3 
2x1"+2x2 + x3 =2 

XI - 3X2 + X3 = 4 

7. 2x1 - x 2 + x4 = 2 
-3X1 + X3 - 2x4 = -4 

X1 + Xz - X3 + X4 = 2 
2x 1 - x 2 + Sx3 = 6 

9. 2x1 - 7x2 - 6x3 = 0 
3x1 + Sx2 - 2x3 = 0 
4x1 - 2x2 - 7x3 = 0 

11. 2xi + 3x2 - x 3 - x4 = 0 
Xi- Xz-2X3-4X4=0 

3x1 + x2 +3x3 -2x4 =0 
6xi + 3x2 - 7x4 = 0 

13. Xi + x 2 - 3x3 + x4 = I 
2xi-4x2 +2x4 =2 
3xi - 4x2 - 2x3 = 0 
x1 -2x3 +3x4 =3 

IS. Xi + 3x2 - 2x3 - 3x4 + 2x5 = 4 

4. X 1 - X3+ X4= -2 
- Xz + 2x3 + X4 = S 

Xi - X3 + 2X4 = 3 
2xi + x 2 - x 3 = -6 

6. 4xi - 6x2 + 7x3 = 8 
Xi - 2x2 + 6X3 = 4 

8x1 - 10x2 - 3x3 = 8 

8. X1 + Xz + 2x3 - X4 = 3 
2x1 - x 2 + x 3 + X 4 =I 

Xi - Sx2 - 4x3 + 5x4 = -7 
4x1 - Sx2 - x 3 + 5x4 = -3 

10. Xi - x 2 - Sx 3 = 0 
2x1 + 3x2 = 0 
4xi - Sx2 - 22x3 = 0 
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12. x1 - 2x2 + 10x3 - 4x4 = 0 
3xi- X2 =0 

-2x1 + x 2 + Sx3 -2x4 =0 
2x1 - 3x2 - Sx3 + 2x4 = 0 

14. x 1 - 2x2 + 2x3 + 3x4 = I 
-x 1 + 4x 2 - x 3 - Sx4 = 2 
2x1 - 2x2 + Sx 3 + 4x4 = S 
-xi+6x2 - x4 =12 

-x1 - 3x2 + 4x3 + 4x4 + 4x5 = - I 
-xi - 3x2 + 4x3 + 4x4 - x 5 = -2 

-2x1 - 6x2 + 10x3 + 9x4 - 4x5 = I 

16. 2x1 + X2 - 3x3 + X4 + Xs = 0 
x 1 + 2x2 - x3 + 4x4 + 2x5 = I 

2x1 - 3x2 + 2x3 - x4 + 3x5 = -6 
-x1 +2x3 +3x4 - x 5 =8 

2x2+ x3 +2x4 +3x5 = -7 
3x1 - 4x 2 + Sx3 - 2x4 + x 5 = 0 

17. Let A be an m x n matrix. Let B be the matrix formed by adjoining p new columns, 
thus forming an m x (n + p) matrix. Show that rank A ~ rank B. 

18. Consider a system of m equations inn unknowns. Show that if this system has at 
least two solutions, then it has infinitely many. 

19. The trace of a square matrix is the sum of the diagonal elements. Show that if A 
is an m x n matrix, then A is the zero matrix if and only if the trace of AA' = 0. 
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Proofs of Theorems 6, 10, 16 and 17 of 
Chapter 2 

In this appendix we give statements and proofs of several of the more 
difficult theorems on vectors in three dimensions. The proofs make liberal 
use of the material on determinants given in Appendix l. 

Theorem 6. Suppose that A, B, C, and D are points in space and that a Car
tesian coordinate system is introduced in space. Denote the coordinates of A, 
B, C, and D by (xA,}A,zA), (x8 ,y8 ,z8 ), and so forth. (i) If the coordinates 
satisfy the equations 

Xs - XA = Xn - Xe, YB - }A = Yn - Ye· Zs - ZA = Zv - Zc, (l) 

then AB~ CD. (ii) Conversely, if AB~ CD, the coordinates satisfy the 
equations in (I). 

PROOF. (i) We assume that the equations in (l) hold. Then also, 

Ye - YA = Yn - YB• 

From (l) and Corollary 2 on p. IO, it follows that either ABllCD or A, B, 
C, and Dare on a line. From Eqs. (2), we conclude that either ACjjBD or 
A, B, C, and D are on a line. Thus, either ACDB is a parallelogram or A, 
B, C, and Dare on a line l, which we may assume is directed. 

If ACDB is a parallelogram then AB~ CD by definition. If A, B, C, 
and D are on a line L, let l have the parametric equations 

x = x 0 + tcosa, y =Yo+ tcosp, z = z0 + tcos1• (3) 

and let A, B, C, and D have t coordinates IA, t8, le, and Iv, respectively. 
Thus xA = x 0 + tAcosa, x 8 = x 0 + t8 cosa, etc. Subtracting, we get 
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XB - XA = (tB - tA}COSIX, 

YB - YA= (tB - tA)cosfJ, 

ZB - ZA = (tB - tA)COS}', 

Xv - Xe= (Iv - tc)coslX,l 
Yv - Ye= Uv - tc)cos/3, 

Zv - Ze = Uv - tc)cosy. 

From the equations in (l) and (4), we conclude that 

(t 8 - tA)coslX = Uv - te)coslX,l 
(1 8 - tA)cos/3 = Uv - tc)cosfJ, 

(1 8 - tA)cos}' = Uv - le) cosy. 
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(4) 

(5) 

Since cos IX, cos {3, and cos I' are never simultaneously zero (as cos2 IX + 
cos2 f3 + cos2 y = 1), it follows from (5) that t8 - tA = Iv - le, so that AB= 
CD and hence Ali~ CD in this case also. 
ii) To prove the converse, we assume that AB~ CD. Then either ACDB 
is a parallelogram or A, B, C, and Dare on a directed line L. Let us first 
assume the former; we wish to show that the equations in (1) hold. Suppose 
they do not. It is clear that there are unique numbers xE, YE• zE, coordinates 
of a point E # D such that 

YE - Ye= YB - YA, 

and 

Then, by part (i), we know that ACEB is a parallelogram (since C is not on 
line AB because ACDB is a parallelogram). But then D and £must coincide, 
thus contradicting the fact above that D # E. Accordingly, the equations in 
(I) must hold. 

To consider the other case, let L have the parametric equations (3). If 
we use our previous notation, we conclude that the equations in (4) hold. 
But, since Ali~ CD, we know by definition that AB =CD, i.e., that 18 -

tA =Iv - le. But then the equations in (I) follow from those in (4), and the 
proof is complete. 

We know that the vectors i, j, and k corresponding to any given coordinate 
system in space are linearly independent. Consequently Theorem IO is a 
special case of the following Theorem 10': 

Theorem 10'. Suppose that u 1 , v 1 , and w 1 are linearly independent and suppose 
that 

V2 = 021U1 + a22VI + a23W1, 

W2 = a31U1+a32V1+033W1, 

all a12 013 

D = a21 a22 a23 

031 a32 033 

Then the set {u2 , v2 , w2 } is linearly dependent <=> D = 0. 

(6) 
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PROOF. (a) Suppose the set is linearly dependent. Then there are constants 
c 1 , c 2 , and c 3 , not all zero, such that 

C1U2 + C2V2 + C3W2 = 0. (7) 

If we substitute (6) into (7), we obtain 

(C1a11 + C2a21 + C3a31)U1 + (C1a12 + C2a22 + C3a32)V1 

+ (c1a13 + C2a23 + C3a33)W1 = 0. 
(8) 

Since u1, v 1 , and w 1 are linearly independent, their coefficients must all 
vanish. That is, we must have 

a11C1 + a11C2 + a31C3 = 0, 

a12C1 + a22C2 + a32C3 = 0, 

a13C 1 + ai3C2 + a33C3 = 0. 

(9) 

But if(9) holds with c 1 , c 2 , and c 3 not all zero, the determinant D' of the co
efficients must vanish according to the Corollary to Cramer's Rule (Theorem 
l l, Appendix I). But D' is obtained from D by interchanging rows and col
umns. Accordingly, det D = det D' = 0. 
b) Now suppose D = 0. If all the cofactors Ali are zero, any two rows of 
D and hence any two of the vectors u2 , v2 , and w2 are proportional and the 
set is linearly dependent. Otherwise, some A,q ::/: 0. By interchanging the 
order of the vectors, if necessary, we may assume that p = 3. From the 
expansion theorem (Theorem 5, Appendix I), we conclude that 

a11 A 1q + a21 A2q + a31 A3q = 0, 

a12 A1q + a22 A2q + a32 A3q = 0, (IO) 

a 13 A 1q + a23 A2q + a 33A39 = 0. 

Since A3q ::/: 0, we can solve equations (10) for the a3i, obtaining 

a31 = ka11 + la21• a32 = ka12 + la22• a33 = ka13 + la23•} (l l) 
k = -A19/A3q, I= -A2q/A3q. 

In this case it follows from (I I) and (6) that w2 = ku2 + /v2 , and the vectors 
u2 , v2 , and w2 are linearly dependent. 

Theorem 16. Suppose that u and v are any vectors, that {i,j, k} is a right
handed coordinate triple, and that t is any number. Then 

i) v x u = -u x v, 
ii) (tu) x v = t(u x v) = u x t(v), 

iii) i x j = - j x i = k, 
j x k = -k x j = i, 
k xi= -ix k = j, 

iv) i x i = j x j = k x k = 0. 



Appendix 2. Proofs of Theorems 6, 10, 16 and 17 of Chapter 2 APP-45 

PROOFS. (i) By definition Iv x ul = lu x vi and v x u and u x v are both 
orthogonal to both u and v (or are both zero if u and v are proportional). 
Thus v x u = ±u x v. If we let w = u xv, then {u, v, w} and {v, u, -w} 
are right-handed (see Theorem 15, Chapter 2), so v x u must equal -w. 
ii) If t = 0 or u and v are proportional, (ii) certainly holds. Otherwise, let 
us set w = u x v. Then (ii) follows since all the terms in (ii) have the same 
magnitude, all are orthogonal to both u and v, and {tu, v, tw} and { u, tv, tw} 
are right-handed by Theorem 15, Chapter 2. 
iv) This follows, since we must have i x i = -i x i = 0, etc. 
iii) To prove (iii}, we note that, since {i,j,k} is right-handed, () = rr./2, 
Iii = ljl = lkl = 1, and k is orthogonal to both i and j, it follows that i x j = 
k. That j x i = - k follows from this and from (i). Since {i, j, k} is a coordi
nate triple, it follows as above that j x k = ± i. Setting 

we see that 

u2 = O·u 1 + l ·v1 + O·w 1 , 

v2 = O·u1 + O·v1 +I ·w 1 , 

w2 = l ·u1 + O·v1 + O·w 1 • 

Since {i,j, k} was given as right-handed, it follows from the discussion in 
Chapter 2, Section 7, that {u2 , v2 , w2 } is right-handed since 

0 l 0 

D= 0 0 l =+l. 
0 0 

The proof that k x i = j is similar. 

Theorem 17 (Distributive law). /fu, v, andw are any vectors, 

i) u x (v + w) = (u x v) + (u x w) and 
ii) (v + w) x u = (v x u) + (w x u). 

PROOF. Part (ii) follows from part (i) and part (i) of Theorem 11, for 

(v + w) x u = -[u x (v + w)] = -[(u xv)+ (u x w)] 

= [ -(u x v)] + [ -(u x w)] = (v x u) + (w x u). 

It is clear that (i) holds if u = 0. Otherwise, let {i' ,j', k'} be a right-handed 
coordinate triple such that u = Ioli' (i.e., i' is the unit vector in the direction 
of u). Suppose that 
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Since Vis orthogonal to both u and v, we must have 

Thus 

A1 =0 and b1B1 +c1C1 =0 

for some k. Moreover, 

so that 

IVI = lul · .Jaf +bf+ cf sin8 

and 

u·v = lul·.Jaf +bf+ cfcos8 = juja,. 

Since 0 :s;; e :s;; n and coslJ = a 1/lvl, it follows that 

sin 8 = ..J bf + ciflvj. 

Thus 

IV!= lkl·.Jbf + ci = lul·.Jbi +cf 

Finally {u, v, V} must be right-handed, so that 

lul 0 0 

0 -kc1 kb 1 

so k = ±juj. 

(unless v = 0 or v is proportional to u). Hence k = +I and 

V = lul ·(-cd' + b1k'). 

The result in ( 12) evidently holds also if v = 0 or is proportional to u. 
In like manner, if we let 

W = a2i' + b2j' + C2k', 

we see that 

W = lul · (-c2j' + b2k'), 

from which (i) follows. 

W=u x w, X = u x (v + w), 

X = lul · [ -(C1 + C2)j' + (b1 + b2)k'] 

(12) 
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Introduction to the Use of a Table of 
Integrals 

We recall some of the methods of integration with which the reader should 
be familiar. These devices, together with the integrals listed below, enable 
the reader to perform expeditiously any integration that is required in order 
to work the problems in this text. 

1. Substitution in a Table of Integrals 

EXAMPLE. Letting u = tan x, du = sec2 x dx, we find that J e18"x sec2 x dx = 
J e" du = e" + C = e aanx + C. · 

2. Certain Trigonometric and Hyperbolic Integrals 

We illustrate with trigonometric integrals; the corresponding hyperbolic 
forms are treated similarly. 
a) Jsinmucos"udu. 
i) n an odd positive integer, m arbitrary. Factor out cosudu and express 
the remaining cosines in terms of sines. 

EXAMPLE 

f sin4 2xcos3 2xdx = t f sin4 2x(I - sin2 2x) · (2cos2xdx) 

= ! f (sin4 2x - sin6 2x)d(sin 2x) 

= 110 sin5 2x - i'4 sin 7 2x + C. 
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ii) m an odd positive integer, n arbitrary. Factor out sin u du and express 
the remaining sines in terms of cosines. 

iii) m and n both even integers~ 0. Reduce the degree of the expression 
by the substitutions 

EXAMPLE 

• 2 I - cos2u 
sm u= 2 , 

2 t+cos2u 
COSU= 2 . 

f sin4 udu = ! f (I - cos2u)2 du 

= ! f (I - 2cos2u)du + k f (I + cos4u)du 

= 3u _ sin 2u + sin 4u -\T C 
8 4 32 . 

b) Jtanmusecnudu. 

i) nan even positive integer, m arbitrary. Factor out sec2 udu and express 
the remaining secants in terms of tan u. 

EXAMPLE 

,---- = (tan u) (l +tan u) ·(sec u du) f sec4 udu f -112 2 2 

.ytanu 

= f ((tanu)- 112 + (tanu)3' 2]d(tanu) 

= 2(tanu) 112 + f(tanu) 512 + C. 

ii) m and odd positive integer, n arbitrary. Factor out secutanudu and 
express the remaining tangents in terms of the secants. 

EXAMPLE 

3 . = (secu) 4 tan u·(secutanudu) f tan3 udu f _ 13 2 

..:;secu 

= f [(secu)213 - (secu)-413]d(secu) 

= t{secu)513 + 3(secu)- 1' 3 + C. 

c) J cotm u cscnu du. These are treated like those in (b). 
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3. Trigonometric and Hyperbolic Substitutions 

a) If J a2 - u2 occurs (or a2 - u2 occurs in the denominator), set u = 
asinO, 0 = arcsin(u/a), du= acosOdO, Ja2 - u2 = acosO. 

EXAMPLE 

f .Ja2 - u2 du= a2 f cos2 OdO =a; f (1 + cosW)dO 

a2 
= 2 (0 + sinOcosO) + C 

a2 u 
= 2 arcsina + uJa2 - u2 + C. 

b) If Ja2 + u2 occurs, set u = atanO, etc. 

EXAMPLE 

f u3 Ja2 + u2 du= a5 f tan3 0sec3 OdO. 

The last integral is of type (2)(b)(ii) above. 

c) If Ju2 - a2 occurs, set u = asecO, etc. 

EXAMPLE 

f .Ju2 - a2 f atanO du= --0 ·asecOtanOdO 
u a sec 

= f atan2 0d0 =a f (sec2 0 - l)dO 

=a(tanO-O)+C 

= .Ju2 - a2 - aarcsec(u/a) + C. 

A hyperbolic substitution is sometimes more effective: 

EXAMPLE. If we let u = a sinh v, then 

f Ja2 +u2 du=f a2 cosh2 vdv=a; J (1 +cosh2v)dv 

a2 
= 2 (v + sinhvcoshv) + C 

=a; argsinh(~) + uJa2 + u2 + C. 
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4. Integrals Involving Quadratic Functions 

Complete the square in the quadratic function and introduce a simple change 
of variable to reduce the quadratic to one of the forms a2 - u2 , a2 + u2 , or 
u2 - a2. 

EXAMPLE 

f (2x-3)dx =f (2x-3)dx 
x 2 + 2x + 2 (x + 1)2 + I· 

Let u = x + I. Then x = u - I, dx = du, and 

f (2x - 3)dx f (2u - 5)du 2 
(x+l)T+J= u2 +l =log(u +l)-5arctanu+C 

= log(x2 + 2x + 2) - 5arctan(x +I)+ C. 

5. Integration by Parts: J udv = uv - J vdu. 

EXAMPLE. If we let u = x and v = eX, then the formula for integration by 
parts gives 

f Xex dx = f U dv = UV - f V du = Xex - f ex dx = xex - ex + C. 

6. Integration of Rational Functions (Quotients of 
Polynomials) 

If the degree of the numerator ~ that of the denominator, divide out, thus 
expressing the given function as a polynomial plus a "proper fraction." Each 
proper fraction can be expressed as a sum of simpler "proper partial 
fractions" : 

P(x) = P1 (x) + ... + Pix) , 
Q(x) Q 1 (x) Qn(x) 

in which no two Q; have common factors and each Q; is of the form (x - a)k 
or (ax 2 +bx+ c)k; of course Q = Q 1 • Q2 • • • Qn. Each of these fractions 
can be expressed uniquely in terms of still simpler fractions as follows: 
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P;(x) = A1x+B1 + A2x+B2 + ... 
(ax 2 + bx + ct ax2 + bx + c (ax2 + bx + c)2 

+ A•x + B• 
(ax2 +bx+ c)k" 

Each of these simplest fractions can be integrated by methods already de
scribed. The constants are obtained by multiplying up the denominators and 
either equating coefficients of like powers of x in the resulting polynomials 
or by substituting a sufficient number of values of x to determine the 
coefficients. 

EXAMPLE I. Integrate 

J x 2 + 2x + 3 d 
x(x - l)(x + 1) x. 

According to the results above, there exist constants A, B, and C such that 

x 2 + 2x + 3 A B C 
------=-+--+--. 
x(x - I) (x + 1) x x - l x + 1 

Multiplying up, we see that we must have 

A(x - l)(x + I)+ Bx(x + l) + Cx(x - 1) = x 2 + 2x + 3. 

The constants are most easily found by substituting x = 0, I, and - 1 in turn 
in this identity, yielding A = - 3, B = 3, C = 1. 

EXAMPLE 2. Integrate 

f 3x2 + x- 2 
(x - 1 )(x2 + I)· 

There are constants A, B, and C such that 

3x2 + x - 2 = _i_ + Bx + C 
(x - 1)(x2 + 1) x - l x 2 + l ' 

or 

A (x2 + I) + Bx(x - 1) + C(x - 1) = 3x2 + x - 2. 

Setting x = l, 0, and -1 in turn, we find that A= 1, C = 3, B = 2. 

EXAMPLE 3. Show how to break up the fraction 

2x6 - 3x5 + x4 - 4x3 + 2x2 - x + 1 _ P(x) 
(x - 2)3(x2 + 2x + 2)2 = Q(x) 

into simplest partial fractions. Do not determine the constants. 
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SOLUTION. 

P(x) P1(x) + P2(x) = ---6._ + A2 
Q(x) (x - 2) 3 (x2 + 2x + 2)2 x - 2 (x - 2) 2 

7. Three Rationalizing Substitutions 

a) If the integrand contains a single irrational expression of the form 
(ax+ b)P1q, the substitution z = (ax + b) 11q will convert the integral into 
that of a rational function of z. 

EXAMPLE. If we let z = (x + 1) 113 so that x = z3 - 1 and dx = 3z2 dz, then 

f{j x + l dx = f_z - · 3z2 dz = f 3 dz + f 3 dz . 
x J z3 - I J (z - I )(z2 + z + 1) 

b) If a single irrational expression of the form v a2 - x 2, J a2 + x 2, or 
J x 2 - a2 occurs with an odd power of x outside, the substitution z = 
J a2 - x 2 (or etc.) reduces the given integral to that of a rational function. 

EXAMPLE. If we let z = .J a2 - x 2 , then 

x2 = a2 - z2, xdx = -zdz, 

---dx=-Syal - x2 f z2dz 
x3 (z2 _ a1)2 · 

c) In case a given integrand is a rational function of trigonometric func
tions, the substitution 

t = tan (8/2), e = 2 arctan I, dB= _l!!!_ 
I+ 12• 

I - t 2 
cos() = -1 --2 , 

+1 
. () 21 

Sin = -1--2 , 
+1 

reduces the integral to one of a rational function of 1. 

EXAMPLE. Making these substitutions, we obtain 

f d(J f (2dl)/(I + 12) f 2dl 
5 - 4cos8 = 5 - 4[(1 - t 2)/(l + 12)] = I+ 91 2 " 



A Short Table of Integrals 

A Short Table of Integrals. The constant of integration is omitted. 

Elementary formulas 

I. f u•+I 
u"du =;+I' n # -1 

3. f e"du = e" 

s. f sinudu = -cosu 

7. f sec2 udu =tan u 

9. f secutanudu = secu 

11. f sinh udu = cosh u 

13. f sech2 udu = tanh u 

15. f sechutanhudu = -sechu 

17. f du . u a> juj ~=arcsm-, 
a 

18. f-2 du 2 = !arctan~. a# 0 
a + u a a 

19. = -arcsec-, juj >a f du 1 u 

u../u2 - al a a 

l argsinh~ 20.f du a 
.Ja2 + u2 = log(u + .Ja2 + u2) 

f du 
21. -2--2 = 

a - u 

1 u 
-argtanh-, juj <a 
a a 

1 u -argcoth-, juj >a 
a a 

f du 2. -; = log juj 

4. f a• a"du =Ina' a>O, a;t.l 

6. f cosudu = sinu 

8. f csc2 udu = -cotu 

10. f cscucot udu = -cscu 

12. f cosh u du = sinh u 

14. f csch2 udu = -cothu 

16. f cschucothudu = -cschu 

f du 1 u 
22. ~ = --argsech-, 0 < u <a 

uvu- -u- a a 

f du 1 u 
23. ~ = --argcsch-, u # 0 

jujvu2 +al a a 

APP-53 



APP-54 A Short Table of Integrals 

Elementary formulas (cont.) 

I argcosh~ 24 J du= a 
· ,Ju2 - a2 loglu + ,Ju2 - a2 1 

lul >a> 0 

Algebraic forms 

f udu u a 
25. a+ bu= b - p- log(a +bu) 26. f du _ ! logl-u-1 

u(a + bu) a a + bu 

27. f (a :d:u)2 = p(~: bu+~ logia+ bul) 

28· f u(a !ubu)2 = a(a ~bu)+ a1210g la: bul 

29 f du =_!_log ,F+bu-Jal 
· u,Ja +bu Ja ,Ja +bu+ Ja 

30 f ~d _ 2(3bu - 2a),J(a + bu)3 
. Uya + uU u - 15b2 

f ,Ja +bu f du 
31. ---du= 2,Ja +bu+ a F+bu 

u u a+bu 

32 J~ = 2(bu - 2a) ~b 
. r;;--o-c 3 2 '\/a+ uU 

va +bu b 

33 ,Ja2 - u2 du = -,Ja2 - u2 + -Arcsin- jul <a f u a2 u 
· 2 2 a' 

34. f ,Ju2 ± a2 du= ~,Ju2 ± a2 ±~log lu + ,Ju2 ± a2 1 

35 f Ja2± u2d ~+ i I la+ .,f(T±U21 . u =...;a _ u - a og 
u u 

36. - du= ,Ju2 - a2 - a Arccos-, 0 <a< lul f~ a 
u u 

Trigonometric forms 

37. f tanudu = -loglcosul 

38. f secudu = loglsecu + tanul 

39. f sin2 udu = ~u - !sin2u 



A Short Table of Integrals 

40. f sin"udu = _si_n•_-_1 _u_cos_u +-n_-_l fsin"- 2 udu 
n n 

41 f 
n d cos"- 1 usinu n-lf n-2 d . cos u u= +-- cos u u 

n n 

f 
du cosu n-2f du 

42· sin"u= (n-l)sin•-1 u+n-l sin"- 2 u' 

43 f 
. . d sin(m - n)u sin(m + n)u 

. smmusmnu u = 2 ) - 2 , 
(m - n (m + n) 

44 f d sin(m - n)u sin(m + n)u 
. cos mu cos nu u = + , 

2(m - n) 2(m + n) 

n # 1 

m# ±n 

m# ±n 

45. f sin mu cos nu du = 
cos(m - n)u cos(m + n)u _,, + 

- mr n 
2(m - n) 2(m + n) ' -

46. f u"sinudu = -u"cosu + n f u•- 1 cosudu 

47. f u"cosudu = u"sinu-n f u"- 1 sinudu 

48. f Arcsin u du = u Arcsin u + ~ 

49. f Arccosudu = uArccosu -~ 

50. f u Arcsin u du = ![(2u2 - 1) Arcsin u + u~] 

Logarithmic and exponential forms 

51. f logluldu = u(loglul - 1) 

52. f (log lul)2 du = u(log lu1)2 - 2u log lul + 2u 

f u•+t u•+t 
53. u" log lul du= --log lul - --2 , n ¢ - I 

n +I (n +I) 

54. f u"e" du = u"e" - n f u•-• e" du 

55 fe"• . b d _ e""(asinbu - bcosbu) 
. sm u u - a2 + bi 

56 f...u• b d _ e .. (acosbu + bsinbu) 
. "' cos u u - 02 + b2 
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Miscellaneous forms 

I (a+ bur+ 1 
57. (a + bur du = b , n # -1 

(n +I) 

58. f 2 dub = -(aur• + ba- 2 [1og(a +bu) - logu] 
u (a+ u) 

A Short Table of Integrals 

59 I du 2 (a+ bu)112 be - ad# 0 
· (a + bu)112 (c + du)312 = be - ad e + du ' 

60. f du = (an)- 1 (log (u") - log (a + bu")], n # 0 
u(a +bu") 

61. I udu = 2(bu - 2a)(a + bu)112 
(a + bu)112 3b2 

62. I du = -(a2u)-1(u2 + az)112 
u2(u2 + az)112 

63. du= -u-1(a2 - u2)112 - arcsin-I (a2 _ u2)112 u 

~ a 

64 I. 4 d 3u sin2u sin4u 
. sm u u=-g--4-+~ 

65. f cot3 udu = -!cot2 u - logsinu 



Answers to Odd-Numbered Problems 

Chapter 1 

Section I 

I. IABI = J30; IBCI = Jf9; IACI = J'if; scalene 
3. IABI =fa; IACI = .Jf8; IBCI = J35; right triangle 

5. IABI = J'if; IACI = JST; IBCI =Jill 
1. < -4, !. !) 9. <t -!. ~). G. 3, ;). e:. 1i, 21) 

11. tJ6f, tJ6f, tJTO 13. tJ74, tJ74, tv'26 
15. P2(4,5,-6),Q(l,3,0) 17. Notonaline 
19. Not on a line 
21. Block extending indefinitely in x and z directions, bounded by planes 

y = - 2 and y = 5. 
23. Interior of sphere of radius l 27. 6x + 4y - 8z - 5 = 0; plane 

Chapter 1 

Section 2 

I D . I 4 6 d" . I 4 - 6 
. 1r. nos.: , , - ; 1r. cosmes: v'53 , J53' J53 

3 D. 2 6 3 d" . 2 - 6 - 3 . 1r. nos.: , - , - ; 1r. cosmes: 7• 7• 7 
5. (3, 5, 2) 7. (0, 4, 2) 

11. Not on line 13. Parallel 
17. Perpendicular 19. J'i./3 
23. 4JTO 

9. On line 
15. Not parallel 
21. 41/3JI90 



ANS-2 

Chapter 1 
Section 3 

I. x = I + t, y = 3 - 4t, z = 2 + 2t 
3. X=4-t,y= -2+41,Z= -t 

x-1 y z+I 
5· -2- = 1 = ---=3 
?. x-4=_1'._=~ 

2 -I -3 

9 x-3_y+ I _z+2 . _2 ___ 0 ___ 0_ 

Answers to Odd-Numbered Problems 

11. Perpendicular 13. Not perpendicular 
x-4 y z-2 x-3 y-1 z-4 x-2 y-5 z 15. --=-=--·--=--=--·--=-·-=-

I -2 0 ' 0 I -2 ' I -3 2 

17. x-2=y+I= z-5 
a b -2a+3b 

19. (o. -;5. -;5).(~5.o, 1~).(-;5. -;o.o) 
21. x = 3 - t, y = I + 3t, z = 5 + t 

23 A'B'·x-2=,!:'.=z-6.A'C'·x-2=.l=z-6 . 
. ·5 0 2' ·3 0 I' 

B'C': x; 3 = ~ = z ~ 4 

Chapter 1 
Section 4 

I. 3x + y - 4z + l = 0 
5. 2x - z = l 9. 2x + 3y - 4z + 11 = 0 

x+2 y-3 z-1 
13· -2- = -3- = -1-

17. 3x + 2y - z = 0 
x-2 y+I z-3 

21. -3-=-=-z=-4-

25. 2x - 2y - z - 4 = 0 
29. 2x - 2y - z - 6 = 0 

A1 B1 C1 
35. A2 B2 C2 = 0 

A3 B3 C3 

Chapter 1 
Section 5 

I. 8/21 

3. 3y - 2z - 4 = 0 
7. 9x + y - 5z = 16 

11. 3x - 2z = 10 

15 x+l=,1'.=z+2 
. I 0 2 

19. x-2y-3z+5=0 

23. x - I = y + 2 = ~ 
2 -I 4 

27. 2x - 3y - 5z = 7 
33. aA + bB + cC = 0 

3. J14/17 



Answers to Odd-Numbered Problems 

5. x = 11 - 5t, y = -19 + 81, z =I 

7. x = - I - 2t, y = t, z = 3 
9. (3,2, -1) 

13. I 
17. IOx- 17y + z + 25 = 0 
21. y + z = I 
25. No intersection 

II. (-!,O, -~) 
15. 8/J29 
19. 14x +Sy - 13z + 15 = 0 
23. m,g,m 

27. x = 3 + 4t, y = - I + 5t, z = 2 - t 
29. X = 29t, y = 2 +I, Z = 4 - 22t 
31. 5x + 2y + 3z - 3 = 0 
33. ji4; 2jf4/ji5 

Chapter 1 

Section 6 

I. x 2 + y 2 + z2 - 2x - 8y + 4z + 12 = 0 
3. x 2 + y 2 + z2 - 2y - 8z - 19 = 0 
5. Sphere: C(-1, 0, 2), r = 2 
7. No graph 
9. Sphere: C(3, -2, -1), r = 2 

11. x 2 + y 2 + z2 + 5x + 7y - 12z + 41 = 0 
13. Plane 15. Plane 
17. Parabolic cylinder 19. Elliptic cylinder 
21. Circular cylinder 23. Circular cylinder 
25. Circle, C(O, 0, 3), r = 4 27. No intersection 

Chapter 1 

Section 7 

ANS-3 

b) (4JS,arctan2,2) c) (ff3,n-arctanG),1) 

7. r2 + z2 = 9 
11. r2 = z2 

15. r = 4sin8 
1t 

19. <P=4 

( - -n I ) b) 2J3, 4 ,arccosJ3 

c) G·~,~J3) 
9. r2 = 4z 

13. r2 cosW = 4 
17. p = 4cos¢ 

+2 
21. P =(I +~os¢) 
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Chapter 2 

Section 2 

I. v = -2i + 7j 
5. v = -12i - 4j 

9 -2. 5 . 
. u =-=• +--=oJ 

..)29 ..)29 
13. A(4, 7) 
17. ±2i + 2j 

Chapter 2 
Section 3 

Answers to Odd-Numbered Problems 

3. v = -5i + 4j 
1. u = - 153 i - m 

11. B(4, 6) 

15. A(-3,!). B(-5,f) 
19. -i +j 

I. lvl = 5, lwl = 5, cos ll = - 275 , proj. v on w = -! 
3. lvl = 5, lwl = 13, cosll = -H. proj. v on w = -H 
5. lvl = Ji3, lwl = ,/i3, cosO = 0, proj. v on w = 0 

6 
7. - I 9. --:----- 11. 0 

"17 
+I I 

13. cos ll = -.-,-· , cos ex = ---= 
..;5 .. J5 

2 II 
15. cosO =--=.cos ex=~ 

v' 13 v' 130 
17. cosll = -1, cos ex= I 19. a= f 
21 I 'bl 23 _(-240+v'(2402 +69-·407)) 

. mposs1 e . a - 407 

27. l~I = .J93.~ _ _proj. of Ali on BC= -30/ .. ../93; proj. of AC on 
BC= 63/.../93 

~ ~ 33 ~ - -17 
29. Proj. of AC on AB= 5 ; proj. of BC on AB= - 5-

31. v[DE] = !v[AC] - ~v[AB] 33. v[ff] = !v[AC] - !v[AB] 

Chapter 2 

Section 4 

I. -i+4j-6k 

5. -2i - 3k 

9. - 1-(2i - 4j - k) 
J2I 

13. A : ( - I, - 2, 0) 
17. A:{t,-t.t),B:(!,!,f) 

Chapter 2 

Section 5 

I. Linearly independent 

3. 5i - j + 3k 

7. -i-·(3i + 2j - 4k) 
-v29 

II. B: (3,3, -4) 

15. A:(f,0,3),B:(i.-2,5) 
19. 4i- 5j + k 

3. Linearly dependent 



Answers to Odd-Numbered Problems 

5. Linearly dependent 
9. ±u +iv - tw 

17 x-l_y+4_z 
. -=T--4--7 

Chapter 2 

Section 6 

I 

7. l 3u + 7v - 2w 
11. -tu+ 3v + !w 

-II 
5. --

29 

ANS-5 

I. 16_ 
1'16 

1. -t 
3. 7i 

y3 
9. -23/v'50 11. t(2i - 6j + 3k) 

13. I (3i-2j+7k) 
.J62 

17. k = 3, h = lls 
23. 4g- 9h = 0 

27. Only if u = kv for some k > 0 

Chapter 2 

Section 7 

I. 2i - 3j - 7k 

5. 20i + 30j - 16k 

3 15 
9. - ~ , I Ix+ 5y + 13z - 30 = 0 

;421 
11. T' 9x + 12y + 14z = 32 

x+I y-3 z-2 
15. -2-=-=-u=-=7 

x-3 y z-l 
19. --=2 = T =-3-

23. 8x + 14y + 13z + 37 = 0 
27. 5x - 3y - z = 6 

31. x - y - z + 6 = 0 

Chapter 2 

Section 8 

I. v = 20 
1. i + 5j - 2k 

x-2 y+I z-3 13. --=--=--
160 -45 37 

17. [(t x u)-w]v- [(t x u)-v]w 

15. k = 2, h = t 
21. 3g + 5h = 0 
25. h = I, g = - I 

2 
29. ~ 

.J6 

3. -4i - 2j - 5k 
7 '3 

1. ~ 'x - y - z = 0 

13. 107 
Jl038 
x- l y+2 z-3 

17. -1-=-=T=-1-
21 x + 2 _ y - 1 _ z +I . -2---,,---8-
25. 2x - z + I = 0 
29. 4x - 3y - z + 9 = 0 

33 x - 3 = y + 2 = ~ 
. 2 I 2 

3. Plane: x + 2y - 5 = 0 
9. Si+ toj - l4k 

15. - l6v + 12w 

19. v = lal 2pa - lal 2(a x b) 
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Chapter 2 
Section 9 

I. f'(t) = 2ti + (31 2 - 3)j; f"(t) = 2i + 6tj 
3. f'(t) = 3 sec2 3ti - n sin mj; f"(t) = 18 sec2 31 tan 3ti - n2 cos mj 
5. f'(t) = 2e2'i - 2e- 2'j; f"(I) = 4e2'i + 4e- 2'j 

7 2t(t2 +I)+ 4 9 2sin41- 3sin6t 
· (1 2 + 2)3 / • 2(sin2 2t + cos2 3t) 112 

11. 0 13. ~!~ ~ 40 
I 

15. dO = _ 3 ·r O 
di 1312 + 41 + I 1 I > ; 
de 3(21 + 1 > ·r 0 ..J. 1 

I I< ,l.,---2 
d1 121 + II. 0312 + 41 + 1> 

19. Straight line, x - y - I = 0 
21. f and f' are perpendicular (or f .l f'), or the tangent is .l radius vector. 

Chapter 2 

Section JO 

I. v(t) = 2ti - 3j; lv(t)I = s'(t) = J4t 2 + 9; 

a(t) = 2i; la(1)I = 2; s"(1) = , 41 
..;4t2 + 9 

3. v(I) = 3i + 1- 2j; lv(1)I = s'(I) = J9 + 1-4; 

a(I) = -21- 3j; la(1)I = l2t- 3 I; s"(I) = - 2 
t3 J9t4 +1 

5. v(t) = tan ti + j; lv(1)I = s'(t) = !sec ti; 
a(I) =sec2 1i; la(1)I = sec2 t; s"(1) = secttant 

7. v(I) = 2e'i - 3e-'j; lv(l)I = s'(I) = J4e2' + 9e- 2'; 
4e2' 9e- 2' 

a(I} = 2e'i + 3e-'j; la(t)I = .j4e2' + 9e- 2'; s"(t) = -
J4e2' + 9e- 2' 

9. v(l) = i; a(l) = 2i + 2j; s'(I) = I; s"(l) = 2 

11 ( n) 2. ~· IO. 16 • , 10 ,, 154 
. V 6 = I+ 3J; a= J3"1 + 3J3J; S = T• S = 15.J} 

Vi 13 1 • 3 • • 1 • 3 •. ' V . " - 259 . v = 3 1 - ;iJ, a= - 9 1 + 4J, s = 12. s = 36.J97 
4e2'i - 3e- 2'j 

17. T = (l6e4• + 9e 41)112 

Chapter 2 
Section I I 

I. f' = 2ti + 2tj - 3k; f" = 2i + 2j 
3. f' = -2(sin2t)i + 2(cos2t)j + 2k 

f" = -4(cos 21)i - 4(sin 2t)j 
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5 f ' 2t • 21 • 2 k 
. = (12 + 1)2 I - (12 + 1)2J + I 

f" = - 612 + 2 i - - 61 2 + 2. + 2k 
(12 + 1)3 (12 + 1)3 J 

7. f' = -(sin l)i + (sec2 l)j + (cos l)k 
f" = -(cos t)i + 2(sec2 t tan t)j - (sin t)k 

9. f' = 912 + 21 + 2 11. f'(t) = I 13. 14 

15. ~Jn2 + 8 + log(n + Jn2 + 8) - f log2 

17. v(t) = (sint + tcost)i + (cos1-1sin1)j + k; 
s'(t) = J12 + 2; a(l) = (2cost - tsint)i - (2sint + 1cos1)j 

Chapter 3 

Section I 

I. t 
9. 3 

17. 00 

25. 0 
33. -1 
41. I 

Chapter 3 

Section 2 

71 
I. 99 

36140 
7· 9999 

3. t 
11. 4 
19. 0 
27. 2 
35. I 
43. (c)O 

13 
3· 999 

9 ~ 
·4 

5. 1 
13. -00 

21. -I 
29. I 
37. I 

7. 0 
15. 1 
23. 0 
31. 0 
39. e 

14 
5· 99,000 

11. 9 

13. 12 meters 15. ! + 141 + ~ + f.; + t + · · · 
e2 e3 e4 es 

17 e--+---+-- ··· 
. 8 27 64 125 

Chapter 3 

Section 3 

I. Convergent 
7. Convergent 

13. Convergent 
19. Convergent 
25. Convergent 
31. Convergent if p > I 

3. Convergent 5. Divergent 
9. Divergent 11. Divergent 

15. Convergent 17. Divergent 
21. Convergent 23. Convergent 
27. Convergent 29. Convergent 

33. q > l, and p arbitrary 

ANS-7 
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Chapter 3 

Section 4 

l. Divergent 
5. Absolutely convergent 
9. Absolutely convergent 

13. Divergent 
17. Absolutely convergent 
21. Absolutely convergent 
25. Conditionally convergent 
29. p has no effect 

Chapter 3 

Section 5 

I. Converges for - l < x < l 
5. Converges for - l < x < l 
9. Converges for - 3 ~ x < - l 

13. Converges for - J < x ~ f 
17. Converges for - 7 ~ x ~ - l 
21. Converges for -1 < x < 1 
25. Converges for - 1 < x ~ l 
29. (a) Converges for - l < x < l 

Chapter 3 

Section 6 

oo x" 
I. } -

.-;-o u! 
00 

5. L (n + l)x" 

Answers to Odd-Numbered Problems 

3. Divergent 
7. Conditionally convergent 

11. Absolutely convergent 
15. Absolutely convergent 
19. Conditionally convergent 
23. Divergent 
27. Conditionally convergent 

3. Converges for -t < x < t 
7. Converges for -1 ~ x ~ 3 

l l. Converges for - oo < x < oo 
15. Converges for 0 < x < 2 
19. Converges for -6 < x < lO 
23. Converges for - I ~ x < l 
27. Converges for -f ~ x ~ f 
31. Converges for -1 < x < l 

oo (- l)"-lxn 
3.I~-

n=I n 

7. :·: f GK;')(-;l (-·+Dx· 
n=I n! 

"" (-1r 1<x - 3)" 
9. log3 + .~, 3 •. n 

ll ! _ J3 (x _ ?:)- ! (x - n/3) 2 + J3 (x - n/3)3 + ... 
. 2 2 3 2 2! 2 3! 

13. 2 + i(x - 4) + 2 J2 (-1)•-1. l. 3 ~~~~~: - 3)(x - 4)" 

x2 xJ 
15. cos(t)-xsin(t)- 2!cos(!)+3Tsin(t)+ ··· 

2 x4 
17. I -x + 2 ! 
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19. l - x 2 + x4 

x3 3xs x2 x4 xb 
23· x + 2-"3 + 2 · 4 · 5 25· 2 + 12 + 45 

27 2 - 2 /3 (x - ~) + 7(x - x/6)2 - 23Jj(x - x/6)3 + 305(x - x/6)4 
. v 6 3 12 

29. 2 + 2J3(x- ~) + 1(x - ~r + 23 J3(x3- x/3)3 + ... 

31. x + x; + 1
2
5x 5 + ; 1

7
5x 7 + · · · 33. (c) Sum of Taylor's series= 0 

35 (3+x)- 112 =! __ l_(x- l)+ ··· 
. 2 2·23 

(-1)11·3 · · -(2k - l)(x - 1)1 

+ 2kk!22k+I + . • •. 
Interval of convergence: - 3 < x < 5. 

Chapter 3 

Section 7 

l. 0.81873 
7. 0.1823 

13. 0.96905 
19. -0.22314 
25. jR4j = jR5 j < 0.01 l 

Chapter 3 

Section 8 

3. l.22140 
9. 0.36788 

15. l.97435 
21. 0.017452 

5. 0.87758 
11. l.01943 
17. 0.95635 
23. 0.99619 

oo (- l)"x2n 
l. I 2n I)' n=o( + · 

00 xn 
3· n~o(n + l)! 

oo X2n+I 
5. 2I2n-I 

n=O + oo X2n+I 
9. I <-1t-2n i 

n=O + 
13. f(x) = (l - x)-2 

7. t~o ( -l)"(n + l)(n + 2)x" 

I I oo ( - l)"(2x)2" 
} }. 2- 2n~O (2n)! 

15. x + I (-l)n l · 3 ... (2n - l) x2n+I 
n=I 2·4··-(2n) 2n+l 
xJ xs x1 x9 

17. x-3+ 5 . 2!+ 3!. 7 + 4!9 ;F(l)=0.747,0>R> --rfro 

[ I (2x113 + I) 19. -x- 213 f log(l - x1'3) - .!Jog(x2' 3 + x1' 3 +I) +-arctan 
6 J3 J3 

l I ] - J3 arctan J3 

I l oo (1)2n+2 
23. I + x2 = x2(1 + (l/x2)) = n~o (- l)n x 



ANS-10 Answers to Odd-Numbered Problems 

Chapter 3 

Section 9 

.J. 1·3·5 2 1·3·5·7 3 1·3·5·7·9 4 
I. l-2x+ 22·2!x - 23·3! x + 24·4! x ... 

2 2 2·5 4 2·5·8 6 2·5·8·11 8 
3. I -3x + 32.2!x - 33·3!x + 34·4! x - ... 

5. I+ 7x3 + 21x6 + 35x9 + 35x12 + 2lx15 + 7x 18 + x21 

7 I 3 112 + 3 · 4 3 · 4 · 5 312 3 · 4 · 5 · 6 2 
. 33-34x 3s.2!x- 36·3!x + 31.4! x - ... 

9. 0.9045243 + R, where 0 < R < 1.4 x 10- 6 

11. 0.48540 18 + R, where 0 > R > -9.5 x 10- 7 

13. 1.3179019 + R, where 0 < R < 3.4 x 10- 7 

15. 0.3293897 + R, where 0 < R < 10 x 10- 7 

17. 0.5082641 + R, where 0 < R < 4 x 10-? 
19. 0.69315 

27. log 11 =log 10 + 2 [.!_ + --··}__ J + R R < 4.9 x 10-s 
21 3·(21)3 ' 

Chapter 3 

Section IO 
I. x - x 2 + ~x3 - ~x4 + ffix 5 

x 2 x3 13x4 13x5 

3· I -x+2-2+24-24 
x3 x4 71x5 

5· x - 24 + 24 - 1920 
7. x - xi + Nx3 - Hx4 + ~~Sxs 

2 2 3 x4 3xs 
9. I + x + x + 3X + -2 +lo 

x 3 X 4 3 · 
II. I +x--+-+-x' 

3 6 10 
13. x-x2+ix3 -ix4 +Hx5 

x I lx2 4lx3 8x4 

17· I + 3 + -9- + 8J + 243 

19. I + ~x2 + !x3 + ix4 

Chapter 3 

Section 11 

I. Yes 
7. Yes 

13. No 
21. 1; does not; F,, does 

3. Yes 
9. Yes 

15. x + ix3 + }tx5 

5. Yes 
11. Yes 

17. 1~ converges uniformly-= fJ > 2cx 
23. 1; does not; F,, does not 



Answers to Odd-Numbered Problems 

Chapter 3 

Section 12 

l.(O<)h<I 
7. 0 < h < 2 

I3. h > 0 

3. 0 < h < I 5. 0 < h 
9. 0 < h < I I I. 0 < h ~ I 

I7. 0 < h < h0 ,h0 Iogh0 =I 

Chapter 3 

Section 13 

00 

I. f(x) = L (n + I)x2" 3. f(x) = I ex~" 
n=O n. n=O 

5 j( ) = ~ ( - l)"(n + I)(n + 2)x3" 

• X .':'o 2 ! . 3 Jn 

. oo ( - I)"(3x2)2n+ 1 

7. j(x) = n~l7t2n+l ,(2n +I)! 
oo x2• 

9. J<x> = I -< -I->, 
n=O n + · 

Chapter 3 

Section 14 

3. Converges 7. Diverges 
9. I - 2x + 1x2 - 3x3 + !ix4 - i~x5 + · · · 

I I. x + fx 2 + tx3 + 0 · X4 + }0x 5 + · · · 
I3. I + x + <txz - fy2) + (-#;x3 - fxy2) + ... 
I5. I - x + (fx2 + fr2) - (!x3 + fxy 2) + · · · 
I7. I+ ... 

tI9. E (02)s( I 25 IO I5 IO 25) OOOIII rror < · . lT6 + 242 + 57 + 28 + 9 + I6 < · 

t2l. Error< (0.2)5 (I + I + ~ + ~ + 2~ + I~o) < 0.00073 

Chapter 3 

Section 15 

ANS-II 

I3. (a) e(cos I + isin I); (b) -i<J3·coshI +isinhI); 
(c) f(cosh 2 + iJ3 sinh 2) 

I5. (a) Iog4 + ni; (b) tlog2 + ~i; 
I7. (a) W - cos2xcosh2y + isin2xsinh2y) 

(b) sin2x + isinh2y 
cos2x + cosh2y 

I 7ti I9. (a) Iog3+ 2 1og2+ 4 

(c) 
ni 
2 

(b) e•in(.•'- 121 cosht 2x11(cosO + isinO), 0 = cos(x2 - y2)sinh(2xy) 



ANS-I 2 Answers to Odd-Numbered Problems 

21. I + !z + f (- l)n-1 I. 3 ... (2n - 3) Zn, jzj < I 
n=2 2 · 4 · · · (2n) 

Chapter 4 
Section 1 

I. fx = 4x - 3y + 4;J;, = -3x 
3. fx = 3x2 + 6xy - 3y2 ;J;, = 3y2 + 3x2 - 6xy 
5. fx = x/J x2 + y2 ;J;, = y/J x2 + y2 
7. fx = 2x/(x2 + y 2);f,, = 2y/(x2 + y 2) 
9. fx = -y/(x2 + y2);J;, = x/(x2 + y2) 

I I. fx = yex•+y2(2x 2 + l);J;, = xex•+y2(2y2 + I) 
I 3. No solution 
15. fx = !e"'li2(4 + j2);f,, = (7t/2)e"2'2 

17. fx = 32log2;J;, = 32(1 + log2) 
19. fx = 2xy- 4xz + 3yz + 2z2 ; 

j~ = x 2 + 3xz - 2yz; 
f. = - 2x2 + 3xy - y 2 + 4xz 

21. fx = f(x,y, z) · (yz + ycotxy - 2ztan 2xz) 
J;, = (xz + xcotxy)f(x,y,z) 
f. = (xy - 2xtan2xz)/(x,y,z) 
ow y 2 - x 2 ow x 2 - y 2 

23 - = . - = -~--=--~ 
. ox x(x2 + y 2) ' oy y(x2 + y2) 

25. _ow_·= -( y) e'in(y/x>cos (l); _ow_= .!cos(:!:) esin(y/x> 
OX x 2 x oy x x 

35. f continuous at (0, 0); g not continuous at (0, 0) 

Chapter 4 

Section 2 

1 cw = I - 6x. ow = _ (l + 4y) 
· iJx l2w ' iJy 12w 

3_ ow= x-y+w; ow =x-3y 
h x+w ~ x+w 

5 ow= 2rcosrw - w(r2 + s2)sinrw 
. or I + r(r2 + s2) sin rw 

ow 2scosrw 
Ts = I + r(r2 + s2) sin rw 

7 ow= ycos2xw(wsinxy + cosxy) - 2wsinxysin2xw 
· iJx sinxy(2xsin2xw - xycos2xw) 

ow cos2xw(wsinxy + cosxy) 
iJy sinxy(2sin2xw - ycos2xw) 

9 ow = _ z(y + 2x + w). ow = z(w - x - z) 
. ox xz - yz - 3w2' oy xz - yz - 3w2 



Answers to Odd-Numbered Problems 

ow yw - xy - x2 - xw - 2yz 
7iZ = xz - yz - 3w2 

cw yex(y-w) + w2 OW xe)l(x-w) - yw - I 
I I. - = ; - = -:---~--:---:-

ox y 2e""Y X) - xw - I oy y 2 - (I + xw)ew(x-y) 

15 OX . A.. 8 OX A.. 0 OX . A. • () . op= sm.,,cos ; o</> = pcos.,,cos ; 08 = -psm.,,sm 

:~ = sin </> sin 8; :; = p cos </> sin 8; :~ = p sin </> cos 8 

oz oz . oz 
op= cos</>; o</> = -psm<J>; 08 = 0 

Chapter 4 

Section 3 

oz oz 
I. os = IOs; ot = IOt 

oz oz 
3. OS= 4s(s2 + t 2); ot = 4t(t2 + s2) 

5 oz = y(2y - x) . cz = - y(2x + y) 
. OS (x2 + y2)3/2' of (x2 + y2)3/2 

ow OW 
7. -;--- = IOx + I 3 y - 4z; -~- = - 5x + y + 2z 

vS ct 
ow 

9. Tr = 4(2r3 + 3r2 - 6r + I) 
ow OW 

I I. Tr= 2r(3u2 + 4u - 3); Ts= -2s(3u2 + 4u - 3); 

OW 
-~- = 2t(3u2 + 4u - 3) 
ot 

oz oz 
13. or= O; o8 = -4 

- r= dw 
15. iJ2n(4 + .J2) =di 

17 oz = 0. oz = ! 
. or 'c8 2 

19. OW= O; OW = - I6 
OS iJt 

Chapter 4 

Section 4 

29011: 2 
I. JT3 cm /sec 

3 dT = 250,000 
. dt R 

ANS-13 



ANS-14 Answers to Odd-Numbered Problems 

5 40nJ3- 63 
. 252 

1. -n(l + 2JIOn) 
oz 2 oz 

9. a) ox= f'(y/x)( - y/x ) ; oy = f'(y/x)(l/x) 

oz oz oz . oz oz . oz 
11. a) or= ox cosO +a/mo; ao = OX(-rsmO) + a/rcosO) 

17. 1+2J3- 6 + 3J3 19. 1000e8 

2Jl2- 3J3 

Chapter 4 
Section 5 

I. def= 6 cos 0 + 8 sin 0 3. def= rs( - 3 cos 0 + 4 sin 0) 
5. def= !(cos 0 - J3 sin 0) 

7. def= 2cos0 + sinO; max ifcosO = Js· sinO = )s 
9. def= !cosO + f sinO; max ifsinO = f, cosO = t 

11. D,f = 7A. + 4µ + 2v where a = A.i + µj + vk 
13. D1 f = -A. where a= A.i + µj + vk 
15. ¥ 17. 2/J6 
19. deT(4,3) = 400cos0- 300sin0; tanO =!;slope of curve=! 
21. VJ= -4i - ~j 
23. V/ = (2e2 + 2e- 1 - e- 2)i + (e- 2 + e- 1 - 3e2)j - (4e2 + e- 2)k 

25. D.f = ~ ( - 3e2 cos 1 - e2 sin 1 + 2e) 
v l~ 

DJ= eJe2+l is max. 

27. D.f = ~(3 - cos 1 - 6sin 1+2cos2) 
vH~--~----~ 

D.f = Jcos2 l + cos2 2 + (1 - 2sin 1)2 is maximum 

29. G· -;7 ·~) 
Chapter 4 
Section 6 

1. 4x - 4y - z - 6 = O; x - 2 = y + l = z - 6 
4 -4 -1 

3 x - 2y + z - 2 = O· x - 2 = y + l = z + 2 
. ' -1 2 -1 

5. ex _ z = 0 . x - l = y - n/2 = z - e 
' e 0 -1 

7. 3x - 4y + 25z = 25(log5 - l); x + 3 =y- 4 = z - log5 
3 -4 25 



Answers to Odd-Numbered Problems ANS-15 

9 2x + 2y + 3z - 3 = O· x - 2 = y - I = z + I 
. ' 2 2 3 

11 4x - 3z - 25 = 0 · x - 4 = y + 2 = z + 3 
. ' 4 0 -3 

13 3x + 6u + 2z - 36 = O· x - 4 = y- 1 = z - 9 
• 'J '3 6 2 

19 x - 4 = y + 2 = z - 20 21 x - 4 = y + 3 = z - 16 
·4 3 20 ·3 4 24 

23. (-I,!,-5) 25. Valueofconstantisa«/U-m> 
27. (J2, I + J2, I); (-J2, I - J2, I) 

Chapter 4 
Section 7 

I. df = -0.17; /!,.f = -0.1689 
7t Pl . l37t2 

3. df= 2.(7t - 5); L\f= -v3 + sm-2-

5. df = -0.45; !!,.f = -0.456035 
1. df = o.o5; af = o.0499 
9. df = -0.08; !!,.f = -0.080384 

11. 300x-1h + 100y-1k + 400z-1 / 

13. v ~ 4309.92 

17. 3.307t 

21. O.III427 

15. 1.4% 

19 (1 57tJ3)% . + 18 ° 

23. [I2t5 + 15t4 + 48t3 - 15t2 + 12t - 35]dt 
25. (12r3 - 4rs2 + 24rs- 2)h + (-4r2s + 12s3 - 24r2s-3)k 

27. G1 = h, G2 = 2k + 6h 31. T~ 6·~8 + .00185 = .89899 

Chapter 4 
Section 8 

I. dy = 2x + 3y + 2 
dx -3x + 8y+6 
dy y 

5. -= --
dx x 

9_ ow = 3x2 + 6xw + 2 
ox y 2 - 3x2 - 4yw + 3 

l3. ow = 2y + 3x - 3 
oy 2w - 4x + 3z 

15. : = - (2x: 2); : = -(2x + 4) 

3 dy _ 2x + (I + x 2 + y 2)yex1 

· dx - 2y + (1 + x 2 + y 2)xex' 
dy Y - 3x(x2 + y2)3f2 

7 -=----~~= . dx x + 3y(x2 + y2)3/2 

I I. ow = yw cos (xyw) + 2x 
ox xycos(xyw) + 2w 



ANS-16 

17 dz __ 2xz + 3y . dy _ 4z + 2xy 
· dx - 4z2 - 3y2' dx - 4z2 - 3y2 

Answers to Odd-Numbered Problems 

19 OU = u . cu = v . OV = - v . CV = u 
. ox 2(u2 + v2)' oy 2(u2 + v2)' OX 2(u2 + v2), oy 2(u2 + v2) 

21 ou = 2xv . ou = I . cv = ~. ov = - I 
·ox v+u'oy 2(v+u)'ox (u+v)'oy 2(u+v) 

23 OU = 0. OU = !'.. OV = - ~. CV = 0 
· ox • oy u • ox v • cy 

25 iJu = 9v . iJu - f.. . ov = - g. . iJv f. 
. OX j~gv - j~g.' oy j~gv - 1;.g., OX f.gv - j~g., oy j~gv - f,,g. 

27 OU1 = F,,,Gxi - G.,Fxi. CU2 = G.,Fxi - F,,, Gxi. D = F G - F G 
. vxi D ' oxi D ' "• "z •2 •, • 

Chapter 4 

Section 9 

Chapter 4 

Section JO 

I. 10 + 13(x - 2) + 4(y - I)+ 6(x - 2)2 + 2(x - 2)(y - I) 
+ 2(y - 1)2 + (x - 2)3 + (x - 2)(y - 1)2 

3. x + y - !(x + y)3 

5. I + (x + y) + t<x + y) 2 + i(x + y)3 + · · · 
x2 y2 x2 x2y2 y4 

1· 1-2!-2!+4!+2!2!+4!+ 



Answers to Odd-Numbered Problems ANS-17 

9. 3 + 4(x - I)+ 2(y- I)+ z + (x - 1)2 + z2 + 2(x - l)(y- I)+ (y- l)z 
11. 9"(0) = 2A. 2 + 8A.µ + 2µ 2 • No. 

13 t ± i!k ! AiBi-iCk-i 
. i=Oj=oi!j!(k - i)!(i-j)! 

Chapter 4 

Section 11 

I. Rel. min. at (2, - I) 3. Rel. min. at (I, -2) 
5. Rel. Min. (.2f,5); saddle point (f, I) 
7. No rel. max. or rel. min; (I, f), (-1, -i), saddle points 

9. Rel. max. at(~± 2mt,~± 2mn} rel. min. at(-~± 2nn, -~±2mn); 
test fails for (x ± 2nn, n ± 2mx). 

11. Test fails but (0, 0) is rel. max. 
13. Test fails; critical points on lines (x, nn) 
15. Critical point, ( -f, -t, -;\:) 

9 55 18 41 
17. x= -31,y=62'z=31,t= -31 

19. 17/JIO 21. tJIO 
6 4 8 I ( @_)3 

23. J3' J3' J3 25. v = 4 ·{T 
27 _ P(2-J'3) _ P(j3- I) 

.X- 2 ,y- 2J3 
29. (a) f(x,y) = -(x - a)4 - (y- b)4 (b) f(x,y) = (x - a)4 + (y - b)4 

(c) f(x,y) = (x - a)3 + (y - b)3 

Chapter 4 

Section 12 

8 
I. 7 
5. Min.Wat(tt.t,-ft) 

d2 
3. a2 + b2 + c2 



ANS-18 Answers to Odd-Numbered Problems 

7. x = ±t(l - ,/5)v'50 - 10~/5, y = + v'50 - IOJ5 
- ;-. - v 4J5 9. 2, 2, I 11. h - 2v 5, H - - - -

17 IO I -1 17 
13. 23 occurs when x = 23 , y = 23 , z = 23· t = 23 

15. Closest: ( ± ) 2. ± ~2} farthest: (±v'2. + ,/2) 

17 50 50 100 
. 3' 3' 3 

257t 3 

19. If C is cost (in dollars) per square cm of material, then length = width = 

!,JD/C; height= t.JD/C. 
21. x = aA/(a + b + c); y = hA/(a + h + c); z = cA/(a + b + c) 
23. Max. value = l/kk 
27. x = .j750/29, y = 3x, z = 5x/3 

Chapter 4 

Section 13 

I. Exact: (x4 /4) + x 3 y + (y4 /4) + C 
3. Exact: 2xy - logx +logy+ C 
5. Not exact 
9. Exact: arctan(y/x) + C 

13. Not exact 
17. Exact: exsinycosz + C 

7. Exact: ex2 siny + C 
11. Not exact 
15. Not exact 

19. (b)j{x,y,z,t) = x3 + z3 - t3 + y 2 + 2xz - yt + 3x - 2y + 4t + C 
23. j{x,y) = xy + !x2 + logx + C 
25. f(x,y) = (-2/xy) - logx +logy+ C 
27. I= (x 2 + y2)-2 ;f(x,y) = -!(x2 + y2)- 1 + arctan(x/y) + C 

Chapter 4 

Section 15 

I. ~ 3. 2l41 5. 1t + 8 
7. 4 + 2log(i) 9. arcsin! 

508.JJ 64 
11. -,-!- 13. 105 

15. :4 {<37)3'2 [(3~) 3 - ~(37)2 + ~(37) - ;J 
- (10)3/2 [~10)3 - ~ (10)2 + ~(10) - !]} 

9 7 5 3 
17. t(sin7+sinl)+2(cos3-cos7) 
19. 24 21. !log 17 23. 0 



Answers to Odd-Numbered Problems 

Chapter 4 
Section 16 

I. 1~1 3. -e +cos I 
7. sin3 - cos2 + e- 6 cos6 9. -9 

5. -~ 

II. e- 6 cosl +sin2-cos3 I (al+ bl) 
13. 2log cl+ dl 

Chapter 5 

Section J 

I. 0.9690 
5. 3.8140 
9. 0.182 

Chapter 5 

Section 2 

I. Smallest = 0; largest = 80 
3. Smallest= 48; largest= 1680 

3. 3.5355 
7. 3.2148 

5. Smallest= -27n,/2; largest= 27n,/2 
7. Smallest= 9; largest= 9JIO 

Chapter 5 

Section 3 

I 413 
. 4 

5. -.J/"/3 + ttv'l + .s.p 
9. !(2cos4 - cos8 - I) 

3. -1498-h 
7. 0 

11. 40fo\ 
7t -

13. 4(~3 - I) 

17. 2e 11~-z - e.j2 
21. (2v'2 - I )/3 
25. 64/3 

15. (27t - 3J3)/48 

19. 0 

29. 8n 
37. 4nabc/3 

Chapter 5 
Section 4 

I. tsl 

7. -lo 
13. 2a3 

23. 32.j2/15 
27. 8/15 
31. 16/5 

3. ~ + 4log@ 
9. t 

5. i(37t + 2) 
11. lf"'ef-

ANS-19 
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Chapter 5 

Section 5 

I. 41t/3 3. 21t 

7. J'i- l 9. ¥ 
13. 321t(8 - 3J3)/3 15. 64/9 
19. 41CJ3 21. 1t/4 
25. a3 [J2 + log(I + J'i)]/3 

Chapter 5 

Section 6 

I. I= pa4 /3; 
5. I= 4ka5/l5; 
7. I= p(1t2 - 4); 
9. WP 

4 
15 p1ta 

. 16 

t9. x=ffi,.Y=H 
23. x = Ji = 5a/8 

11. 3k/56 

27. x = -2/(8J3 - I), Ji= 0 

Chapter 5 

Section 7 

I. 12s0 + 9J3 - 8J'i) 
5. 21tf,_2 
9. 1t...;2/2 

13. 2a2 (1t - 2)/3 

Answers to Odd-Numbered Problems 

5 641t - 256 
. 3 9 

11. 41t 
17. 91t/2 
23. a3 (31t - 4)/9 

27. 21tc3 /3; 2c3 </J/3 

13. ka5 1t/5 

17. l=p(~-D 
21. x= ~ • .Y = ~ 
25. x = 5/3, y = 0 
33. m5(r~ - r~)/2; R4 = r~ - r~ 

3. 8a2 

7. 9J2 
11. ~(160 - 241t) 
15. 16 

a2 
17. 3(1t + 6J3 - 12) 21. 1t(l7Jf7-I)/6 23. 2J'i1t 

Chapter 5 

Section 8 

I. t 
7. ! 

13. a4 /840 

3. foWa 
9. 1 

15. 2431t/2 

5. (16 - 31t)/3 
11. abc2/24 
17. 27a5 (21t + 3J3)/2 

r· f .r. r J'"i"=X r · JJ'"i"=X J..r. 19. Jo -.r. J-J'"i"=X 2y2 JXdydzdx; Jo -J'"i"=X -.r. 2y2 JXdzdydx 



Answers to Odd-Numbered Problems ANS-21 

f 4 f./i=i 1"+2 f 2 iy+214-,' 21. ,.,-- (y2 + z2)dzdydx; (y2 + z2)dxdzdy 
0 -"4-x 0 -2 0 0 

23. f(x,y,z)dzdydx; f(x,y,z)dzdxdy fm fJ12-x' i'1•-x'-Y' fm f"IM' fJ10-x'·7 
-m -"' 12-x2 2 -v'TI -"' 12-1 2 2 

f4 f"'6=? f'••->'-•' fm f•1Hfv'l6-7=? 
2 -"'i•-•' _J,._,,_,,f(x,y,z)dxdydz; -mJ, -"i•->'-•'f(x,y,z)dxdzdy 

14 JJ1•-•' f"•6-x•-,• f m i~f v 16-x'-,' f(x,y,z)dydxdz; /(x,y,z)dydzdx 
2 _..; t6-z 2 -../ 16-x2-z2 -.JTI 2 _..; 16-x2-z£ 

25. l/20 

Chapter 5 

Section 9 

l. nba3 (2 - j'i.)/3 
5. 12nka5 j3/5 
9. 7nka4 /6 

13. 2ba3 (3n + 20 - l6j'i.)/9 

Chapter 5 

Section JO 

l. 2ba5/3 

( 4 l l) 2944b 
5· 32b 9 - 5 + 21 = 315 
9. 4~k (b6 _ a6) 

13. 4nbabc(a2 + b2)/l5 

3. nk(b4 - a4 ) 

7. l28ka5 (l5n - 26)/225 
l l. 7nba3 /6 
15. nka4 /4 

3. ka6 /90 

7 5nb 
. 16 

ll 4ka6 
. 9 

15. 41n: [(c2 _ 02)3'2(2c2 + 302) _ (b2 _ 02)3'2(2b2 + 302)] 

17. x=z=2a/5;y=a/5 19. y=z=O;x=8/7 
21. x=y=O;z= l/3 23. y=z=O;x=2a 
25. x=y=O;z=3a(2+j2)/16 
27. x = y = O; z = 9a/7 

29. x =.., = O· z = 4(1591 - 720j3) 
y ' 7(391 - l92j3) 

31. y = z = 0; x = aj'i./2 

Chapter 6 

Section 1 

l. /(x) = f: sin (2k - l )x 
k=I 2k - l 

3. /(x) = n2 _ 4 f: (- l)"-~ cosnx 
3 n=! n 
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5. f(x) = ~ f sin(2k - l)x _ ~ f sin(4k - 2)x 
1tk=1 2k-l 1tk=1 2k-l 

1. f(x) = ! _ ~ f (- l)k-1 cos(2k - l)x 
2 1tk=1 2k - l 

9. f(x) = ~ + ~ f c- o•-21 cos2kx 
1t 1tk=r 4k _ l 

l l. f(x) = 2sinh n ! + f (- l)"(cos~x - n sinnx)] 
1t 2 n=l n + l 

13. f(x) = t- !cos2x 

15. f(x) = -~ + 3 f sin(2k - l)x _ ~ f cos(2k - ~x _ ! f sin2kx 
4 k=l 2/c-1 1tk=I (2k-l) 2k=I k 

19. f(x) = 2 f (-l)n-1 sinnx + n2 - 4 f (-l)n-~ cosnx 
n=I n 3 n=l n 

Chapter 6 

Section 2 

l 2 ( cos3x cos5x ) l. f(x)= 2+; cosx--3-+-5-- ... 

3. f(x) = ~ - ~ f co~2kx 
1t 1t k= 1 4k - l 

5. f(x) = ~ _ ~ f cos (2k - ~x 
2 1tk=1 (2k - l) 
1t3 ao 3n 

7. f(x) = -4 + L 2k2 cos2kx 

k=I 6 ao [ 4 n2 ] 
+ ;.~ (2k - 1)4 - (2k - 1)2 cos(2k - l)x 

9. f(x) = ~ f sin(2k - l)x + ~ f sin(4k - 2)x 
1t1=1 2k - l 1tk=1 2k - l 

ao 8k . ao ( - l)n-I Sin nX 
11. /(x) = - L (4k2 _ l)sm2kx 13. f(x) = 2 L 

!=11t (1t2 6) n=l n 
15. f(x) = 2 L (-l)n-l - - 3 sinnx 

n=l n n 

Chapter 6 

Section 3 

l. f(x) = ~ f sin(2k - l)x 
1t1=1 2k-l 

3. f(x)=~-~ f c~snx 
1t 1tn=I 4n - l 
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5 Ji( ) _ ! _ ~ ~ ( - I)" . nnx _ .±. ~ I (2k - l)nx 
• X - 2 t.., SID 2 2 t.., (2/c _ l) 2 COS 2 

7t n=l n 7t k=l 

7. /(x) = ! + ~ f cos(2k - ~x 
2 1t k=I (2/c - l) 

9. f(x) = _± f sinknx 
1tk=I k 

ANS-23 

8 ~ [ n2 4 J . (2k - l)nx 
- n3 /:'1 - 2k - I + (2k - l )3 sm 2 

l l. f(x) = ~ f sin 2knx 
7t k=l k 

13. /(x) = ! + .!. f (- l)k-1 cos(2k - l)x 
4 nk=I 2k- I 

+ ! f 5sin(2k - l)x + sin(4k - 2)x 
1tk=I 2k - I 

Chapter 6 

Section 5 

3. f(x) = ~ f _l_[e(2k-l)ix - e-(2k-l)ix] 
1tlk=l2k-1 

5. eax = f ( -1)" sin.h na einx 

n= -oo n(a - zn) 

7 . h _ sinh na ~ ( - I)" in inx .sm ax---'-' 2 2 e 
7t n=-ooa +n 
CX) einx 

9. f(x) = I - L ( -1)"-
n= -oo n 
""0 

Chapter 7 

Section I 

In Problems I through 10, F(x0 ,y0 ) = 0. 
l. F,,(xo,Yo) = l .P O,f'(x0 ) = -1 
3. F,,(x0 ,y0 ) = l,f'(x0 ) = 0 
5. F,,(x0 ,y0 ) = 2/3j3,f'(x0 ) = -J3 
7. F,,(x0 ,y0 ) = 2,f'(x0 ) = -1 
9. F,,(x0 ,y0 ) = 82,f'(x0 ) = -if 

In Problems 11 through 16, F(x0 ,y0 , z0 ) = 0. 
11. F,(xo,Yo,Zo) = 9,fx(xo.Yo) =/y(xo,Yo) = t 
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13. F,(x0 ,y0 ,z0 ) = l,fx = 2,fy = 0 
15. F.= l,f~=f~= -1 17. (a) No (b) No 
19. F, = 0 at (2e- 2,2), F. #: 0 there 
21. F, = 0 at (0, 0), £.(0, 0) = 0 
23. F, = 0 at (0, 0) and ( ± 2.fl, 0) 

£.(0, 0) = 0, Fx( ± 2.fl, 0) #: 0 
25. Cannot solve for z in a full box about ( - l, 2). Can solve for y in a box 

aboutx= -1,z= -4. 

Chapter 7 

Section 2 

In Problems l through 6, F(x0 ,y0 ,z0 ) = G(x0 ,y0 ,z0 ) = 0. 
l. F,G, - £.G, = 3 #: 0 at P0 

. x-l y z 
Lme: - 1-=-=t=I 

3. F,G, - £.G, = S #: 0 at P0 

. x-2 y-1 z+2 
Tan hne: - 2- =-1- = ---=3 

5. F,G, - £.G, = 12 #: 0 at P0 

.. x-2_y+l_z-I 
Tan hne. - 2- - - 1- ----=3 

In Problems 7 through IO, F = G = 0 at P0 • 

7. D0 = F,,G. - F,,G. = 3 #: 0 
fx= -i,gx=i,fy=t,gy= -i 

9. D0 = 6 at P0 

fx = f,/y = t, Yx = -i, Yy = f 
11. F,G. - £.G, = D = -4y - 2z 

D = F = G = 0 - P = (2, - 3, 6) or ( - l 0, - 15, 30) 

13 -=-au. I 1-3xi + l2x2 - 3 2 - l2u2 I 
. ox, D -4x 1 - 3xiu3 Su 1 - 4u2 + 2u3 

ou2 I I 32u1 -3xi + l2x2 - 31 
ox,= D - l2u 1 + Su2 + Su 1u3 -4x1 - 3xiu3 

ou3 = _l_ [su, ou, + 2 ou2 + 3xi] 
ox1 6u3 ox1 ox1 

D - I 32u 1 2 - 12u2 I 
- l2u 1 + Su2 + Su 1u3 Su 1 - 4u2 + 2u3 

17. The result will hold if, also, 

J(F,G) #: O, 
x,y 

so that the equations define one-to-one transformations from (u, v) to 
(x,y). 
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Chapter 7 
Section 3 

I. J u, v = I; T-1: -( ) 
x-u 

x,y y = v- u2 

3_ 1 (u, L') = 7 ; ri: x = (2u + 3v)/7 
x,y y = (-u + 2v)/7 

5. J -·- = (l + x + y)- 3 ; T- 1 : , u + v < I ( u v) x = u/(l - u - v) 

x,y y = v/(I - u - v) 

7. J -'- = - ; T : x = vu + v • y = -arctan -( u v) xx _1 1- 2--2 2 v 
x,y 2 1t u 

9. T-1: x=-u-,y=-v-,x2+y2=r2<=>u2+v2=_!_ 
u2 + v2 u2 + v2 r2 

I3. (a) 1(u, v, w) = (x2 + y2 + z2)-3 
x,y,z 

(b) T- 1 • x = u 
. u2 + v2 + w2' 

v 
Y=----

u2 + v2 + w2' 
w 

z=----
u2 + v2 + w2 

x2 + y2 + z2 = r2<=>u2 + v2 + w2 = I/r2 

Chapter 8 

Section I 

I. </J'(x) = r1 tcosxt dt 3. </J'(x) = f2 --.-t-e-'dt Jo I + t 1 (I -i- xt)2 

5. </J'(x) = f txdt, x > 0 7. </J'(x) = 2xcos(x4 ) 

9. <P' (x) = si: (x2) - 2x sin (x3) + f x t cos (xt) dt 
x 2 x 

I I. </J'(x) = ex tan (x~) - 2x tan (x3) + f e t sec2 (xt) dt 
x' 

I3. </J'(x) = 2x e-O+x2> + sinx e-•osx 
I + x + x 3 I + x cos x 

I5. </J'(x) = 2:cos(x;)- ; 2 sin(x;) 

I7. </J'(x) = ~ [cos(xx) - cos(x;)J 

+f l+x2 t e-'dt 
(I + xt)2 

cosx 
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19. </>'(x) = ![2sin(x2) - 3sin(x3)] 
x 

n-1 + n-2 m-1 + m-2 
21. </>'(x) = x nx _ x mx x > 0 

I + x•-I I + xm 1 ' 

23. </>'(x) = . 1 · 2 25. 0 29. No. 
v I -x 

Chapter 8 

Section 2 

I. Converges 
9. Diverges 

17. Converges 

Chapter 8 

Section 3 

3. Converges 
11. Diverges 
19. Converges 

5. Converges 
13. Diverges 
21. Converges 

7. Diverges 
15. Converges 

I. Converges 
9. Converges 

13. Converges 

3. Converges 5. Diverges 7. Converges 
11. Converges if p > 2. diverges if p :s; 2 
15. Converges 17. r(t) = JTc 

Chapter 8 

Section 4 

f 00 -re--" 
I. </>'(x) = -1-dr 

0 + ( 
3. </>'(x) = -f "° rsi1n(xt~dt 

0 + ( 

5. </>'(x) = f (log r)- cos (xt) dt 

15. </>(x) = ! log(I + x2) 

17. </>'(x) = Arctanx 
</>(x) = xArctanx -!log(I + x2 ) 

Chapter 9 

Section 1 

I. ux = (2x + 2y)i + 3x2 j 
Uy= 2xi - 3y2j 

1. <t>'Cx> = - 11 -----'~= J 0 (I + xt) 2 v' I - t 

- x 2 + v2 • 2xy • 2xz 
3 u = . ·- J- k • x (x2 + y2)2 (x2 + z2)2 (x2 + y2)2 

u = - 2yz • +--'-k 
= (x2 + 2 2)2J x2 + y2 

5. v, = (cost)i + (tcoss)j - 2sk 
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v, = (-ssin t)i + (sins)j + 2tk 
7. v,. = 0, v., = 0 

9. ~,<lul 2 ) = xsin(2xy) - zsin(2yz) 

II c( ) ex-y ,,x-y1 ( + ) 2 log(x+y)+log(x-y) . ~ u · v = -- - ., og x y - y -
oy x + y x - y x + y 

13. ~ (u xv)= (-2e-'sins- 2e2'coss)i + (-2e'coss)j 
ul 

+ (2e 2 ' cos2 s + 2e- 21 sins sin 2s)k 
15. u·(u. 1 x v2)=0<=>y=0 
17. Sis the hemisphere x2 + y 2 + z2 = 9, z ~ 0 

x2 yz 
19. Sis the paraboloid z = 4 + 9 

Chapter 9 

Section 2 

I. V/=4i+4j+2k, D.J= IO 
v' 14 

3. V/= 8\(-i-4j-2k), D.J=if 
5. VJ= 2i + !j + fk, D.f= f 
7. D.u = 2 (i + 4J. + 6k) 

v'21 
9. D.u = 0 

11. a= -~(6i - 2j - 3k) 

15. n = +-1-(3i - 4J" - k) - J26 
17. n= ± 5~(3i-4j+5k) 
19. n = ± !< - i - 2j + 2k) 

Chapter 9 

Section 3 

J. 01 I + Ozz + 033 
5. e"'(2zcosyz - x) 

11. ,-n(3 - n) 

Chapter 9 

Section 4 

I. curl v = i + j 

3. 2x + 2y + 2z 
7. 0 9. 0 

13. </J"(r) + 2r- 1</J'(r) 

3. f(x,y,z) = e"sinycosz + C 
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5. curl v = 2 (yi - xj) 7. curl v = (x2 - z2)j 
Jxi + y2 

9. f = f(x3y3 + x3 z3 + y3 z3) + G1(x) + G2(y) + G3(z) + C 
17. curl[l/>(r)r] = 0 

Chapter 9 

Section 5 

Chapter 9 

Section 6 

3. 2 7 ill 
• 10 

In Problems 1 through 5, we give the common answer. 

9. ~ 

l. -2 3. 0 
l 

5. 2 - J2. 
7. Valid;/= x 3 - 3xyz + y 3 + C 
9. Domain not simply connected but have/= f(x2 + y 2 + z2) 113 + C in D. 

Chapter 10 

Section 1 

In Problems l through 8, we give the value of fJ6 (Qx - Py)dAx,-
1. 2 3. -¥ 5. t 7. 0 
9. 12 11. 1f 13. 4log4 15. -2¥ 

17. 0 19. 2 21. 3~04 23. O 

Chapter 10 

Section 3 

l. i 
9. J = u2 v 

3.¥/ 
ll. ¥ 

T-1: u = 2x + y - 2y2 13. O; 

15. rlh; 

17. i; 
21. n/8 

v= x+y- y2 

r-1. u = x/(x2 + y2) 
. v = y/(x2 + y2) 

T- 1 : x = u - v/2 + ev12 

y=v 

5 .!.Q 
• 3 
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Chapter 10 

Section 5 

l J3 . 6 

7. t[(l + n2/4)312 - I] 

l l 1024<5 
. 45 

3 l5nJ2 
. 4 

- 2+J2 - -15. z=-4-,x=y=O 

19. Case (i) 4na2 {J, Case (ii) 4nba 
c 

Chapter 10 

Section 7 

5. 2n 

9. ~(l5J2 + 17) 

13. (2 + 6j3){J 

17 - 4a - - 0 
. x = 3(7t - 2)' y = z = 

21. 2m5 

l 0 3 l 5n 5 4 7 M 
. · 2 · TS • 3 

In Problems 8 through 13, we give the value of J.is v · dr. 

9. 0 ll. 2(~2 - •) 13. 0 15. 0 

Chapter 10 

Section 8 

In Problems l through IO, we give the value of JJJG div v dV. 

ANS-29 

32n Pi 
I. i 3. T 5. l2nvi3 7. 0 9. 2n II. 0 13. Sn 

Appendix 1 

Section I 

l. A= (-4 -7) 
7 -6 

3 A= ( 5 
. 4 

( 0 -2 l) 
5. A= -2 2 0 

0 2 -l 
7 A= ( 3 
. l 

II. A= (-4 l -2). B=(3 0 
l 3 -4 0 -2 ~) 

-~) 13 A= B= ( 2 - l l) ( l 
. l 2 0 ' -l 

~) 
~) 
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(1 -4) (0 -5) 15. AB= 7 7 , BA= 
7 8 

17 AB= BA= ( 0 
. 0 :) 

19. AB= ( 5 3 -4) 
-6 11 -1 

21 AB~G 
0 

~} BA~G 
0 

0 0 

0 

(-1 25. X= ! ~). Y-(-1 - -! D 
Appendix 1 

Section 2 

17. 65 

23. 45 

19. 6 
4 4-j 

25. I I (3i + 2j) 
j=O i=O 

27. (x,y) =(I, 2), or (-1, -2) 

Appendix 1 

Section 3 

I. -2 

Appendix 1 

Section 4 

I. 14 
7. -69 

Appendix 1 

Section 5 

I. (1, -2, -1) 
7. (l,f, -t) 

Appendix 1 

Section 6 

I. Rank= 2 

3. 21 
9. 297 

3. 24 

3. (-*·*· -fi) 
9. (2, -1,f, l) 

3. Rank= 3 

D 

21. 72 

5. -21 
11. -22 

5. (2, -1, 3) 

5. Rank= 3 
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7. Rank= 4 
I3. Rank= 4 

Appendix I 

Section 7 

I. ( - I, I, 0) 

9. Rank= 3 
I5. Rank= 4 

3. (2, -4, 7) 

7. r = r* = 3; (4 - 3x3 ,2 - x3 ,x3 , 5x3 - 4) 

ANS-3I 

I I. Rank= 4 

5. r = 2, r* = 3; 
inconsistent 

9. (0,0,0) II. (ix4 , -X4, -~X4 ,x4) 
I3. (0, 0, 0, I) I5. r = 3; r* = 4; inconsistent 





Index 

Absolutely convergent series, 114, 178 
Acceleration vector, 83, 88 
Algebraic moment, 328 
Alternating series theorem, 114 
Angle between two lines, 10 
Angle between two planes, 22 
Angle between vectors, 45, 62 
Approximate percentage error, 236 
Arc, 87 

length of,87 
Area, 315 
Area of a surface, 333, 523 
Associative law, of addition of vectors, 

42 
of multiplication of matrices, APP-I I 

Attitude numbers, 19 
Augmented matrix, APP-36 
Axiom of Continuity, 105 

Bessel's Inequality, 377 
Binomial Theorem, 147 
Boundary, 522 

Cauchy product, 152 
Center of mass, 325, 353 
Chain Rule, 206 

Change of variables in a multiple 
integral, 510 

Closed region, 295 
Coefficient matrix, APP-36 
Cofactor, APP-15 
Colatitude, 34 
Colummn vector, APP-2 
Commutative law for vectors, 42 
Comparison test, for integrals, 430, 448 

for series, 105, 176 
Complex functions, 187 
Complex series, convegence of, 187, 385 
Component, 63 

of one vector along another, 63 
Conditionally convergent series, 114 
Connected region in space, 487 
Conservative vector field, 471 
Continuity, equation of, 553 

of functions on R2 and R3, 78 
of vector functions, 78 

Continuously differentiable 
transformation, 462 

Convex domain, 492 
Coordinate axes, I 
Coordinate plane, 2 
Coordinates, I 

cylindrical, 32 
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Coordinates (cont.) 
left-handed, 1 
right-handed, 1 
spherical, 3 3 

Cosine series, 368 
Cramer's rule, APP-25, APP-39 
Critical point, 259 
Cross product of two vectors, 67 
Curl (of a vector field), 4 7 4 
Cylindrical coordinates, 32 
Cylindrical surface, 29 

generator of, 29 
parabolic, 30 
right circular, 29 

Density, 315 
Derivative, higher-order, 243 

second, 243 
of vector functions, 79 

Determinant, APP-14 
minor of a, APP-15 

Diameter of a set, 437 
Differential, 231 

exact, 275, 279, 477 
total, 231 

Differentiation, Fundamental Lemma on, 
. 207 

implicit, 203 
of series, 138, 169 
under the integral sign, 421 

Directed arc, 487 
Directed line segment, 7, 36, 52 

base, 36, 52 
head, 36, 52 
magnitude, 36, 52 
two having same magnitude and 

direction, 36, 52 
Direction angles, 7 
Direction cosines, 8 
Direction numbers, 9 
Directional derivatives, 217 

of a vector field, 461 
Dirichlet kernel, 375 
Distance, between two points, 4 

from a point to a plane, 24 
Distributive law of vectors, 42, 48 
Divergence (of a vector field), 466 
Divergence Theorem, 547 

Domain of a function, 77 
Dot product of vectors, 47, 62 
Double difference, 245 
Double integral, 295, 303 

polar coordinates, 318 
Double sequence, 174, APP-9 

finite, 174, APP-9 
infinite, 174, APP-9 
limit of, 175 
partial sums of a, 175 
sum of a, 175 
uniform convergence of a, 182 

Double series, 174, 254 
absolute convergence of, 178 
comparison test for, 176 
convergent, 175 
divergent, 175 
partial sums of, 17 5 
sum of, 175 
uniform convergence of, 182 

Elementary transformations, APP-28 
Ellipsoid, 230 
Equation of a plane, 18 
Equivalent matrices, APP-29 
Equations of a line, parametric, 13 

symmetric form, 15 
two-point form, 13 

Even function, 365 
Exact differential, 275, 279, 477 
Extreme Value Theorem, 257 

Figure, 526 
Folium of Descartes, 400 
Fourier coefficients, 360 
Fourier integral, 373 
Fourier series, 358 

complex, 385 
convergence theorems, 375 
modified, 372 
term-by-term differentiation of, 375 
term-by-term integration of, 375 

Free vector, 39 
Function, 77, 187 

even, 365 
odd, 365 
periodic, 358 



piecewise continuous, 361 
piecewise smooth, 361 

Functions, continuous, 77 
domain of, 77 
limit of, 145 
on R2, 77 
on R', 77 
range of, 77 

Functions defined by improper integrals, 
445 

Fundamental Lemma on Differentiation, 
207 

Fundamental Lemma on Integration, 320 

Gamma function, 434 
Generalized Theorem of the Mean, 92 
Geometric series, IOI 
Gradient, 217, 464 

of a function, 221 
Graph of an equation, 391 
Green's theorem, 496 

proof of, 504 

Half-range expansion, 368 
Half-space, 4 
Harmonic series, llO 
Helix, 87 
Homogeneous system (of linear 

equations), APP-40 
Hyperboloid, 231 

Identity matrix, APP-8 
Image, 412 
Implicit differentiation, 203 
Implicit function theorems, 390, 403 
Improper integrals, 428 

comparison test for, 430 
convergent, 428 
divergent, 428 

Improper multiple integrals, 436 
convergent, 439, 449 
divergent, 439 

Independent variables, 2 IO 
Indeterminate form, 91 
Infinite series, 98 

absolute convergence of, ll4, 178 

INDEX-3 

comparison test for, I05, 176 
conditionally convergent, ll4 
convergent, I 00 
divergent, 100 
geometric, IO I 
integral test for, I08 
partial sums of, 100 
sum of, 100 

Inner product, 47 
Inner volume, 297 
Integrable over a set, 296 
Integral, triple, 340 
Integral test, 108 
Integrals, double, 303 

iterated, 304 
line, 282 
repeated, 304 
successive, 304 
triple, 340 

Integrating factor, 281 
Integration of series, 138, 169 
Intermediate value theorem, 394 
Intermediate variables, 2IO, 394 
Inversion theorem, 414 
Iterated integrals, 303 
Iterated sum, APP-9 

Jacobian (determinant), 409 
Jump, 361 

Kronecker delta, APP-8 

Lagrange multipliers, 266 
Laplace's equation, 472 
Left-handed coordinate system, I 
Legendre polynomials, 453 
Leibniz' Rule, 422 

for improper integrals, 447 
Length (of an arc), 87 
Length of a vector, 39 
I'Hopital's rule, 93 
Limit of a sequence, 99 
Lines in space, directed, 7 

direction angles, 7 
direction cosines of, 8 
direction numbers of, 9 
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Lines in space, directed (cont.) 
parallel, 8 
parametric equations of, 13 
perpendicular, 11 
symmetric form of equations of, 15 
two-point form of equations of, 13 
undirected, 7 

Line integral, 282, 480 
calculation of, 285 
with respect to arc length, 284 
independent of the path, 291, 486 

Linear dependence of vectors, 58 
Linear independence of vectors, 58 
Local behavior, 392 
Longitude, 34 

Maclaurin series, 127 
Mass, 315, 347 

center of, 330 
Mass in R'. 347 
Matrices, APP-I 

addition of, APP-2 
equality of, APP-3 
equivalent, APP-29 
product of, APP-3 

Matrix, APP-I 
additive inverse, APP-2 
augmented, APP-36 
coefficient, APP-36 
diagonal, APP-8 
diagonal elements of a, APP-8 
diagonal of a, APP-8 
elementary transformation of a, APP-

28 
elements of a, APP- I 
identity, APP-8 
multiplication of, by a scalar, APP-2 
nonsingular, APP-28 
rank of a, APP-28 
square, APP- I 
symmetric, APP-13 
transpose of a, APP-7 
triangular, APP-8 
zero, APP-3 

Maximum, constrained, 266 
free, 266 
method of Lagrange multipliers for, 

266 

relative, 256 
second-derivative test for, 260 

Method of Lagrange multipliers, 266 
Minimum, constrained, 266 

free, 266 
method of Lagrange multipliers for, 

266 
relative, 256 
second-derivative test for, 260 

Mobius strip, 534 
Modified Fourier series, 372 
Moment, 328 

algebraic, 328 
first, 328 

Moment of inertia, 325, 353 
polar, 271 

Multiplication of matrices, APP-3 

Normal line, 227 
Normalized function, 361 

Odd function, 365 
Ordered triple (of vectors), 66 

left-handed, 66 
right-handed, 66 

Ordered triples, 66 
oppositely oriented, 67 
similarly oriented, 66 

Orientable piecewise-smooth surface, 535 
Orientable surface, 533 
Orientation of a surface, 534 

representation agrees with the, 534 
Orthogonal functions, 387 
Orthogonal vectors 39, 53 
Outer volume, 297 

Parallelepiped, 4 
Parametric equations of a line, 13 
Partial derivatives (of a function), 197 
Partial sum of a series, 100 
Partition of unity, 508 
Path, 486 

integral independent of, 486 
Periodic extension, 362 
Periodic function, 358 
Perpendicular vectors, 39, 53 



Piecewise-continuous function, 361 
Piecewise-smooth function, 361 
Piecewise-smooth surface, 522 
Plane, equation of, 18 

attitude numbers of, 19 
Point of division formula, 17 
Polar moment of inertia, 271 
Polyhedral domains, 4 
Potential function, 471 
Power series, 120 
Projection of one vector on another, 47, 

63 
Proportional vectors, 45 
P-series, 107 

Radical plane 31, 
Radius of convergence of a series, 171 
Range of a function, 77 
Rank of a matrix, APP-28 
Ratio test, 115 
Rectangular coordinates, 2 
Recursion formula, 475 
Regular pyramid, 13 
Regular tetrahedron, 13 
Relation from C1 to C', 187 
Relation 

domain of a, 187 
inverse, 193 
range of a, 187 

Right-handed coordinate system, 1 
Rolle's theorem, 92 
Row vector, APP-I 

Saddle point, 259 
Scalar curl, 500 
Scalar field, 460 
Scalar function, 460 
Scalar product, 47 
Second derivatives, 243 
Second-derivative test, 260 
Sequence, 99 

finite, 98 
infinite, 98 
limit of a, 99 

Series, 100 
absolutely convergent, 114, 178, 189 
alternating, 114 

INDEX-5 

binomial, 147 
Cauchy product of, 152 
comparison test for, 105 
conditionally convergent, 114 
convergent, 100, 189 
cosine, 368 
differentiation of, 138, 169 
divergent, 100 
double, 174, 254 
Fourier, 358 
geometric, 101 
harmonic, 110 
integral test for, 108 
integration of, 138, 169 
interval of convergence of, 114 
Maclaurin's, 127 
partial sums of, 100 
of positive terms, 104 
power, 120 
radius of convergence, 171 
ratio test for, 115 
sine, 368 
sum of, 100 
Taylor's, 126 
uniform convergence of, 154, 164, 182 

Side condition, 266 
Simply-connected domain, 490 
Sine series, 368 
Smooth function, 361 
Smooth-surface element, 519 
Speed, 83, 88 
Spheres, 28 

center of, 28 
equation of, 28 
radius of, 28 

Spherical coordinates, 33 
Stokes' theorem, 537, 540 
Strongly simply connected, 491 
Subdivision, 296 

norm of, 296 
Successive integrals, 304 
Surface area, 333 
Surface integrals, 523 

Tangent line, 87, 229 
Tangent linear transformation, 524 
Tangent plane, 224 
Tangential component, 79 



INDEX-6 

Taylor's series, 126 
Taylor's theorem 131, 250 
Theorem of the Mean, 91 

generalized, 92 
Three-dimensional number space, 1 
Torus, 324 
Total differential, 231 
Transfonnation, 412 

continuously differentiable, 413 
image, 412 
inverse, 414 
tangent linear, 524 

Transpose of a matrix, APP-7 
Triple 

ordered, 66 
Triple integral, 340 

in cylindrical coordinates, 347 
in spherical coordinates, 347 

Undirected line, 7 
Uniform convergence, 154, 164, 182, 

446 
of a double sequence, 182 
of a double series, 182 
of a sequence (of functions), 155 
of a series, 164 

Unit normal function, 533 
Unit tangent vector, 87 

Vector, 38, 53 
column, APP-2 
free, 39 
length of a, 39, 53 
representative of a, 38, 53 
unit, 39 
unit in direction of a given vector, 43, 

56 

zero, 39, 53 
Vector acceleration, 83 
Vector field, 454 
Vector functions, 77, 85, 454 

continuous, 78 
differentiable, 79 
limit of, 78 

Vector product of two vectors, 67 
Vector velocity, 82 
Vectors, 39 

addition of, 39 
angle between, 45, 62 
associative laws for, 42, 56 
cross product of, 67 
distributive laws for, 42, 48, 56 
dot product of, 47, 62 
inner product of, 47, 62 
linear combination of, 58 
linearly dependent, 58 
linearly independent, 58 
multiplication of, by numbers, 39, 56 
orthogonal, 39, 53, 63 
parallel, 45 
projection of, 47, 63 
proportional, 45, 58 
scalar product of, 47, 62 
vector product of, 67 

Velocity vector, 82, 88 
Volume, 297 

inner, 297 
outer, 297 

Weierstrass M-Test, 165 

Zero matrix, APP-3 
Zero vector, 39, 53 



Table I. Natural Trigonometric Functions 
Angle Angle 

De- Ra- Co- Tan- De- Ra- Co- Tan-
gree di an Sine sine gent gree dian Sine sine gent 

oo 0.000 0.000 1.000 0.000 
10 0.017 0.017 1.000 0.017 46° 0.803 0.719 0.695 1.036 
20 0.035 0.035 0.999 0.035 47° 0.820 0.731 0.682 1.072 
30 0.052 0.052 0.999 0.052 48° 0.838 0.743 0.669 1.111 
40 0.070 0.070 0.998 0.070 49° 0.855 0.755 0.656 1.150 
50 0.087 0.087 0.996 0.087 50° 0.873 0.766 0.643 1.192 

6c 0.105 0.105 0.995 0.105 51° 0.890 0.777 0.629 1.235 
70 0.122 0.122 0.993 0.123 52° 0.908 0.788 0.616 1.280 
8" 0.140 0.139 0.990 0.141 53° 0.925 0.799 0.602 1.327 
90 0.157 

I 
0.156 0.988 0.158 54° 0.942 0.800 0.588 1.376 

10° 0.175 0.174 0.985 I 0.176 55° 
I 

0.960 0.819 0.574 1.428 

11° 0.192 

I 

0.191 0.982 0.194 56° 0.977 0.829 0.559 1.483 
12° 0.209 0.208 0.978 0.213 57° 0.995 0.839 0.545 1.540 
13° 0.227 0.225 0.974 0.231 58° 1.012 0.848 0.530 1.600 
14° 0.244 0.242 0.970 0.249 59° 1.030 0.857 0.515 1.664 
15° 0.262 0.259 0.966 0.268 60° 1.047 0.866 0.500 1.732 

I 
16° 0.279 0.276 0.961 0.287 61° 1.065 0.875 0.485 1.804 
17° 0.297 0.292 0.956 0.306 62° 1.082 0.883 0.469 1.881 
18° 0.314 0.309 0.951 0.325 63° 1.100 0.891 0.454 1.963 
19° 0.332 0.326 0.946 0.344 64° 1.117 0.899 0.438 2.050 
200 0.349 0.342 0.940 0.364 65° 1.134 0.906 0.423 2.145 

21° 0.367 0.358 0.934 I o.384 66° 1.152 0.914 0.407 2.246 
22° 0.384 0.375 0.927 0.404 67° 1.169 0.921 0.391 2.356 
23° 0.401 0.391 0.921 0.424 68° 1.187 0.927 0.375 2.475 
24° 0.419 0.407 0.914 0.445 

I 
69° 1.204 0.934 0.358 2.605 

25° 0.436 0.423 0.906 0.466 70° 1.222 0.940 0.342 2.748 

26° 0.454 0.438 0.899 I 0.488 71° 1.239 0.946 0.326 2.904 
27° 0.471 0.454 0.891 0.510 720 1.257 0.951 0.309 3.078 
28° 0.489 0.469 0.883 0.532 73° 1.274 0.956 0.292 3.271 
29° 0.506 0.485 0.875 0.554 74° 1.292 0.961 0.276 3.487 
30° 0.524 0.500 0.866 0.577 75° 1.309 0.966 0.259 3.732 

31° 0.541 0.515 0.857 0.601 76° 1.326 0.970 0.212 4.011 
32° 0.559 0.530 0.848 0.625 77° 1.344 0.974 0.225 4.332 
33° 0.576 0.545 0.839 0.649 780 1.361 0.978 0.208 4.705 
34° 0.593 0.559 0.829 0.675 79° 1.379 0.982 0.191 5.145 
35° 0.611 0.574 0.819 0.700 goo 1.396 0.985 0.174 5.671 

36° 0.628 0.588 0.809 0.727 81° 1.414 0.988 0.456 6.314 
37° 0.646 0.602 0.799 0.754 82° 1.431 0.990 0.139 7.115 
38° 0.663 0.616 0.788 0.781 g30 1.449 0.993 0.122 8.144 
39° 0.681 0.629 0.777 0.810 84° 1.466 0.995 0.105 9.514 
40° 0.698 0.643 0.766 0.839 85° 1.484 0.996 0.087 11.43 

41° 0.716 0.656 0.755 0.869 86° 1.501 0.998 0.070 14.30 
42° 0.733 0.669 0.743 0.900 g70 1.518 0.999 0.052 19.08 
43' 0.750 0.682 0.731 0.933 880 1.536 0.999 0.035 28.64 
44' 0.768 0.695 0.719 0.966 89° 1.553 1.000 0.017 57.29 
45· 0.785 0.707 0.707 1.000 90° 1.571 1.000 0.000 

--



Table 2. Exponential Functions 

l x ex e-x x ex e-x 

I 
0.00 1.0000 1.0000 2.5 12.182 0.0821 
0.05 1.0513 0.9512 2.6 13.464 0.0743 
0.10 1.1052 0.9048 2.7 14.880 0.0672 
0.15 1.1618 0.8607 2.8 16.445 0.0608 
0.20 1.2214 0.8187 2.9 18.174 0.0550 

0.25 1.2840 0.7788 3.0 20.086 0.0498 I 
0.30 1.3499 0.7408 3.1 22.198 0.0450 
0.35 1.4191 0.7047 3.2 24.533 0.0408 
0.40 1.4918 0.6703 3.3 27.113 0.0369 
0.45 1.5683 0.6376 3.4 29.964 0.0334 

0.50 1.6487 0.6065 3.5 33.115 0.0302 
0.55 1.7333 0.5769 3.6 36.598 0.0273 
0.60 1.8221 0.5488 3.7 40.447 0.0247 I 

0.65 1.9155 0.5220 3.8 44.701 0.0224 I 
0.70 2.0138 0.4966 3.9 49.402 0.0202 

0.75 2.1170 0.4724 4.0 54.598 0.0183 
0.80 2.2255 0.4493 4.1 60.340 0.0166 

I 
0.85 2.3396 0.4274 4.2 66.686 0.0150 

I 0.90 2.4596 0.4066 4.3 73.700 0.0136 

! 0.95 2.5857 0.3867 4.4 81.451 0.0123 

1.0 2.7183 0.3679 4.5 90.017 0.0111 
I.I 3.0042 0.3329 4.6 99.484 0.0101 
1.2 3.3201 0.3012 4.7 109.95 0.0091 
1.3 3.6693 0.2725 4.8 121.51 0.0082 
1.4 4.0552 0.2466 4.9 134.29 0.0074 

I 

1.5 I 4.4817 0.2231 5 148.41 0.0067 
1.6 

I 

4.9530 0.2019 6 403.43 0.0025 
I. 7 5.4739 0.1827 7 1096.6 0.0009 
1.8 6.0496 0.1653 8 2981.0 0.0003 
1.9 6.6859 0.1496 9 8103.1 0.0001 

2.0 7.3891 0.1353 10 22026 0.00005 
2.1 8.1662 0.1225 
2.2 9.0250 0.1108 
2.3 9.9742 0.1003 

I 2.4 I 11.023 0.0907 



Table 3. Natural Logarithms of Numbers 
n log,n n log,n n log,n 

0.0 * 4.5 1.5041 9.0 2.1972 
0.1 7.6974 4.6 1.5261 9.1 2.2083 
0.2 8.3906 4.7 1.5476 9.2 2.2192 
0.3 8.7960 4.8 1.5686 9.3 2.2300 
0.4 9.0837 4.9 1.5892 9.4 2.2407 

0.5 9.3069 5.0 1.6094 9.5 2.2513 
0.6 9.4892 5.1 1.6292 9.6 2.2618 
0.7 9.6433 5.2 1.6487 9.7 2.2721 
0.8 9.7769 5.3 1.6677 9.8 2.2824 
0.9 9.8946 5.4 1.6864 9.9 2.2925 

1.0 0.0000 5.5 1.7047 10 2.3026 
I.I 0.0953 5.6 1.7228 11 2.3979 
1.2 0.1823 5.7 1.7405 12 2.4849 
1.3 0.2624 5.8 1.7579 13 2.5649 
1.4 0.3365 5.9 1.7750 14 2.6391 

1.5 0.4055 6.0 1.7918 15 2.7081 
1.6 0.4700 6.1 1.8083 16 2.7726 
1.7 0.5306 6.2 1.8245 17 2.8332 
1.8 0.5878 6.3 1.8405 18 2.8904 
1.9 0.6419 6.4 1.8563 19 2.9444 

2.0 0.6931 6.5 1.8718 20 2.9957 
2.1 0.7419 6.6 1.8871 25 3.2189 
2.2 0.7885 6.7 1.9021 30 3.4012 
2.3 0.8329 6.8 1.9169 35 3.5553 
2.4 0.8755 6.9 1.9315 40 3.6889 

2.5 0.9163 7.0 1.9459 45 3.8067 
2.6 0.9555 7.1 1.9601 50 3.9120 
2.7 0.9933 7.2 1.9741 55 4.0073 
2.8 1.0296 7.3 1.9879 60 4.0943 
2.9 1.0647 7.4 2.0015 65 4.1744 

3.0 1.0986 7.5 2.0149 70 4.2485 
3.1 1.1314 7.6 2.0281 75 4.3175 
3.2 1.1632 7.7 2.0412 80 4.3820 
3.3 1.1939 7.8 2.0541 85 4.4427 
3.4 1.2238 7.9 2.0669 90 4.4998 

3.5 1.2528 8.0 2.0794 95 4.5539 
3.6 1.2809 8.1 2.0919 100 4.6052 
3.7 1.3083 8.2 2.1041 
3.8 1.3350 8.3 2.1163 
3.9 1.3610 8.4 2.1282 

4.0 1.3863 8.5 2.1401 
4.1 1.4110 8.6 2.1518 
4.2 1.4351 8.7 2.1633 
4.3 1.4586 8.8 2.1748 
4.4 1.4816 8.9 2.1861 



Greek Alphabet 
Capital Name of Lower-case 
letters letters letters 

A Alpha ()( 

B Beta p 
r Gamma y 
~ Delta {J 

E Epsilon e 
z Zeta ' H Eta ,, 
e Theta 8,8 
I Iota I 

K Kappa " A Lambda A. 
M Mu µ 

N Nu v 

- Xi e 
0 Omicron 0 

n Pi 1l 

p Rho p 
I: Sigma <1 

T Tau r 
y Upsilon v 
cl> Phi """' x Chi x 
'I' Psi 

"' Q Omega (J) 



Chapters 1-5 of this book contain all the material normally included 
in a third semester multivariable calculus course. Chapters 6-1 O cover 
such topics as Fourier series, Green's and Stokes' Theorems, and 
the implicit function theorem. The authors have made their treatment 
of the topics in the second half of the book as independent of each 
other as possible, giving the instructor a high degree of flexibility in 
structuring the course. This part of the book provides the topics for 
a thorough introduction to advanced calculus. A brief chapter on lin
ear algebra is included in an Appendix. 
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